| 1 | /* |
| 2 | * Copyright (c) 2007-2021 Apple Inc. All rights reserved. |
| 3 | * |
| 4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ |
| 5 | * |
| 6 | * This file contains Original Code and/or Modifications of Original Code |
| 7 | * as defined in and that are subject to the Apple Public Source License |
| 8 | * Version 2.0 (the 'License'). You may not use this file except in |
| 9 | * compliance with the License. The rights granted to you under the License |
| 10 | * may not be used to create, or enable the creation or redistribution of, |
| 11 | * unlawful or unlicensed copies of an Apple operating system, or to |
| 12 | * circumvent, violate, or enable the circumvention or violation of, any |
| 13 | * terms of an Apple operating system software license agreement. |
| 14 | * |
| 15 | * Please obtain a copy of the License at |
| 16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. |
| 17 | * |
| 18 | * The Original Code and all software distributed under the License are |
| 19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER |
| 20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
| 21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, |
| 22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
| 23 | * Please see the License for the specific language governing rights and |
| 24 | * limitations under the License. |
| 25 | * |
| 26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ |
| 27 | */ |
| 28 | /* |
| 29 | * @OSF_COPYRIGHT@ |
| 30 | */ |
| 31 | /* |
| 32 | * @APPLE_FREE_COPYRIGHT@ |
| 33 | */ |
| 34 | /* |
| 35 | * File: arm/rtclock.c |
| 36 | * Purpose: Routines for handling the machine dependent |
| 37 | * real-time clock. |
| 38 | */ |
| 39 | |
| 40 | #include <mach/mach_types.h> |
| 41 | |
| 42 | #include <kern/clock.h> |
| 43 | #include <kern/thread.h> |
| 44 | #include <kern/macro_help.h> |
| 45 | #include <kern/spl.h> |
| 46 | #include <kern/timer_queue.h> |
| 47 | |
| 48 | #include <kern/host_notify.h> |
| 49 | |
| 50 | #include <machine/commpage.h> |
| 51 | #include <machine/machine_routines.h> |
| 52 | #include <machine/config.h> |
| 53 | #include <arm/exception.h> |
| 54 | #include <arm/cpu_data_internal.h> |
| 55 | #if __arm64__ |
| 56 | #include <arm64/proc_reg.h> |
| 57 | #else |
| 58 | #error Unsupported arch |
| 59 | #endif |
| 60 | #include <arm/rtclock.h> |
| 61 | |
| 62 | #include <IOKit/IOPlatformExpert.h> |
| 63 | #include <libkern/OSAtomic.h> |
| 64 | |
| 65 | #include <sys/kdebug.h> |
| 66 | |
| 67 | #define MAX_TIMEBASE_TRIES 10 |
| 68 | |
| 69 | int rtclock_init(void); |
| 70 | |
| 71 | static int |
| 72 | deadline_to_decrementer(uint64_t deadline, |
| 73 | uint64_t now); |
| 74 | static void |
| 75 | timebase_callback(struct timebase_freq_t * freq); |
| 76 | |
| 77 | #if DEVELOPMENT || DEBUG |
| 78 | uint32_t timebase_validation = 0; |
| 79 | #endif |
| 80 | |
| 81 | /* |
| 82 | * Configure the real-time clock device at boot |
| 83 | */ |
| 84 | void |
| 85 | rtclock_early_init(void) |
| 86 | { |
| 87 | PE_register_timebase_callback(callback: timebase_callback); |
| 88 | #if DEVELOPMENT || DEBUG |
| 89 | uint32_t tmp_mv = 1; |
| 90 | |
| 91 | #if defined(APPLE_ARM64_ARCH_FAMILY) |
| 92 | /* Enable MAT validation on A0 hardware by default. */ |
| 93 | timebase_validation = ml_get_topology_info()->chip_revision == CPU_VERSION_A0; |
| 94 | #endif |
| 95 | |
| 96 | if (kern_feature_override(KF_MATV_OVRD)) { |
| 97 | timebase_validation = 0; |
| 98 | } |
| 99 | if (PE_parse_boot_argn("timebase_validation" , &tmp_mv, sizeof(tmp_mv))) { |
| 100 | timebase_validation = tmp_mv; |
| 101 | } |
| 102 | #endif |
| 103 | } |
| 104 | |
| 105 | static void |
| 106 | timebase_callback(struct timebase_freq_t * freq) |
| 107 | { |
| 108 | unsigned long numer, denom; |
| 109 | uint64_t t64_1, t64_2; |
| 110 | uint32_t divisor; |
| 111 | |
| 112 | if (freq->timebase_den < 1 || freq->timebase_den > 4 || |
| 113 | freq->timebase_num < freq->timebase_den) { |
| 114 | panic("rtclock timebase_callback: invalid constant %ld / %ld" , |
| 115 | freq->timebase_num, freq->timebase_den); |
| 116 | } |
| 117 | |
| 118 | denom = freq->timebase_num; |
| 119 | numer = freq->timebase_den * NSEC_PER_SEC; |
| 120 | // reduce by the greatest common denominator to minimize overflow |
| 121 | if (numer > denom) { |
| 122 | t64_1 = numer; |
| 123 | t64_2 = denom; |
| 124 | } else { |
| 125 | t64_1 = denom; |
| 126 | t64_2 = numer; |
| 127 | } |
| 128 | while (t64_2 != 0) { |
| 129 | uint64_t temp = t64_2; |
| 130 | t64_2 = t64_1 % t64_2; |
| 131 | t64_1 = temp; |
| 132 | } |
| 133 | numer /= t64_1; |
| 134 | denom /= t64_1; |
| 135 | |
| 136 | rtclock_timebase_const.numer = (uint32_t)numer; |
| 137 | rtclock_timebase_const.denom = (uint32_t)denom; |
| 138 | divisor = (uint32_t)(freq->timebase_num / freq->timebase_den); |
| 139 | |
| 140 | rtclock_sec_divisor = divisor; |
| 141 | rtclock_usec_divisor = divisor / USEC_PER_SEC; |
| 142 | } |
| 143 | |
| 144 | /* |
| 145 | * Initialize the system clock device for the current cpu |
| 146 | */ |
| 147 | int |
| 148 | rtclock_init(void) |
| 149 | { |
| 150 | uint64_t abstime; |
| 151 | cpu_data_t * cdp; |
| 152 | |
| 153 | clock_timebase_init(); |
| 154 | |
| 155 | cdp = getCpuDatap(); |
| 156 | |
| 157 | abstime = mach_absolute_time(); |
| 158 | cdp->rtcPop = EndOfAllTime; /* Init Pop time */ |
| 159 | timer_resync_deadlines(); /* Start the timers going */ |
| 160 | |
| 161 | return 1; |
| 162 | } |
| 163 | |
| 164 | |
| 165 | uint64_t |
| 166 | mach_absolute_time(void) |
| 167 | { |
| 168 | #if DEVELOPMENT || DEBUG |
| 169 | if (__improbable(timebase_validation)) { |
| 170 | #if __ARM_ARCH_8_6__ || HAS_ACNTVCT |
| 171 | static _Atomic uint64_t s_last_absolute_time = 1; |
| 172 | |
| 173 | uint64_t old_absolute_time = os_atomic_load(&s_last_absolute_time, relaxed); |
| 174 | |
| 175 | /* |
| 176 | * Because this timebase read is nonspeculative, it cannot begin reading |
| 177 | * the timebase value until after the load of the old value completes. |
| 178 | */ |
| 179 | |
| 180 | if (old_absolute_time == 0) { |
| 181 | timebase_validation = 0; // we know it's bad, now prevent nested panics |
| 182 | panic("old_absolute_time was 0" ); |
| 183 | } |
| 184 | |
| 185 | uint64_t new_absolute_time = ml_get_timebase(); |
| 186 | |
| 187 | if (old_absolute_time > new_absolute_time) { |
| 188 | timebase_validation = 0; // prevent nested panics |
| 189 | panic("mach_absolute_time returning non-monotonically increasing value 0x%llx (old value 0x%llx)" , |
| 190 | new_absolute_time, old_absolute_time); |
| 191 | } |
| 192 | |
| 193 | if (old_absolute_time < new_absolute_time) { |
| 194 | /* read again, to pretest the atomic max */ |
| 195 | uint64_t pretest_absolute_time = os_atomic_load(&s_last_absolute_time, relaxed); |
| 196 | if (pretest_absolute_time < new_absolute_time) { |
| 197 | uint64_t fresh_last_absolute_time = os_atomic_max_orig(&s_last_absolute_time, new_absolute_time, relaxed); |
| 198 | |
| 199 | if (fresh_last_absolute_time != pretest_absolute_time) { |
| 200 | /* |
| 201 | * Someone else published a newer time after we loaded s_last_absolute_time. |
| 202 | * Enforce that our timebase is not behind this new one. |
| 203 | * We can't compare it with our previous timebase read, as it is too old. |
| 204 | */ |
| 205 | |
| 206 | uint64_t newest_absolute_time = ml_get_timebase(); |
| 207 | |
| 208 | if (fresh_last_absolute_time > newest_absolute_time) { |
| 209 | timebase_validation = 0; // prevent nested panics |
| 210 | panic("mach_absolute_time returning non-monotonically increasing value 0x%llx (old values 0x%llx, 0x%llx, 0x%llx, 0x%llx)\n" , |
| 211 | newest_absolute_time, fresh_last_absolute_time, pretest_absolute_time, old_absolute_time, new_absolute_time); |
| 212 | } |
| 213 | } |
| 214 | } |
| 215 | } |
| 216 | |
| 217 | return new_absolute_time; |
| 218 | |
| 219 | #else /* !(__ARM_ARCH_8_6__ || HAS_ACNTVCT) */ |
| 220 | static volatile uint64_t s_last_absolute_time = 0; |
| 221 | uint64_t new_absolute_time, old_absolute_time; |
| 222 | int attempts = 0; |
| 223 | |
| 224 | /* ARM 64: We need a dsb here to ensure that the load of s_last_absolute_time |
| 225 | * completes before the timebase read. Were the load to complete after the |
| 226 | * timebase read, there would be a window for another CPU to update |
| 227 | * s_last_absolute_time and leave us in an inconsistent state. Consider the |
| 228 | * following interleaving: |
| 229 | * |
| 230 | * Let s_last_absolute_time = t0 |
| 231 | * CPU0: Read timebase at t1 |
| 232 | * CPU1: Read timebase at t2 |
| 233 | * CPU1: Update s_last_absolute_time to t2 |
| 234 | * CPU0: Load completes |
| 235 | * CPU0: Update s_last_absolute_time to t1 |
| 236 | * |
| 237 | * This would cause the assertion to fail even though time did not go |
| 238 | * backwards. Thus, we use a dsb to guarantee completion of the load before |
| 239 | * the timebase read. |
| 240 | */ |
| 241 | do { |
| 242 | attempts++; |
| 243 | old_absolute_time = s_last_absolute_time; |
| 244 | |
| 245 | __builtin_arm_dsb(DSB_ISHLD); |
| 246 | |
| 247 | new_absolute_time = ml_get_timebase(); |
| 248 | } while (attempts < MAX_TIMEBASE_TRIES && !OSCompareAndSwap64(old_absolute_time, new_absolute_time, &s_last_absolute_time)); |
| 249 | |
| 250 | if (attempts < MAX_TIMEBASE_TRIES && old_absolute_time > new_absolute_time) { |
| 251 | timebase_validation = 0; // we know it's bad, now prevent nested panics |
| 252 | panic("mach_absolute_time returning non-monotonically increasing value 0x%llx (old value 0x%llx\n)" , |
| 253 | new_absolute_time, old_absolute_time); |
| 254 | } |
| 255 | return new_absolute_time; |
| 256 | #endif /* __ARM_ARCH_8_6__ || HAS_ACNTVCT */ |
| 257 | } |
| 258 | #endif /* DEVELOPMENT || DEBUG */ |
| 259 | |
| 260 | return ml_get_timebase(); |
| 261 | } |
| 262 | |
| 263 | uint64_t |
| 264 | mach_approximate_time(void) |
| 265 | { |
| 266 | #if __ARM_TIME__ || __ARM_TIME_TIMEBASE_ONLY__ || __arm64__ |
| 267 | /* Hardware supports a fast timestamp, so grab it without asserting monotonicity */ |
| 268 | return ml_get_timebase(); |
| 269 | #else |
| 270 | processor_t processor; |
| 271 | uint64_t approx_time; |
| 272 | |
| 273 | disable_preemption(); |
| 274 | processor = current_processor(); |
| 275 | approx_time = processor->last_dispatch; |
| 276 | enable_preemption(); |
| 277 | |
| 278 | return approx_time; |
| 279 | #endif |
| 280 | } |
| 281 | |
| 282 | void |
| 283 | clock_get_system_microtime(clock_sec_t * secs, |
| 284 | clock_usec_t * microsecs) |
| 285 | { |
| 286 | absolutetime_to_microtime(abstime: mach_absolute_time(), secs, microsecs); |
| 287 | } |
| 288 | |
| 289 | void |
| 290 | clock_get_system_nanotime(clock_sec_t * secs, |
| 291 | clock_nsec_t * nanosecs) |
| 292 | { |
| 293 | uint64_t abstime; |
| 294 | uint64_t t64; |
| 295 | |
| 296 | abstime = mach_absolute_time(); |
| 297 | *secs = (t64 = abstime / rtclock_sec_divisor); |
| 298 | abstime -= (t64 * rtclock_sec_divisor); |
| 299 | |
| 300 | *nanosecs = (clock_nsec_t)((abstime * NSEC_PER_SEC) / rtclock_sec_divisor); |
| 301 | } |
| 302 | |
| 303 | void |
| 304 | clock_gettimeofday_set_commpage(uint64_t abstime, |
| 305 | uint64_t sec, |
| 306 | uint64_t frac, |
| 307 | uint64_t scale, |
| 308 | uint64_t tick_per_sec) |
| 309 | { |
| 310 | commpage_set_timestamp(tbr: abstime, secs: sec, frac, scale, tick_per_sec); |
| 311 | } |
| 312 | |
| 313 | void |
| 314 | clock_timebase_info(mach_timebase_info_t info) |
| 315 | { |
| 316 | *info = rtclock_timebase_const; |
| 317 | } |
| 318 | |
| 319 | /* |
| 320 | * Real-time clock device interrupt. |
| 321 | */ |
| 322 | void |
| 323 | rtclock_intr(__unused unsigned int is_user_context) |
| 324 | { |
| 325 | uint64_t abstime; |
| 326 | cpu_data_t * cdp; |
| 327 | struct arm_saved_state * regs; |
| 328 | unsigned int user_mode; |
| 329 | uintptr_t pc; |
| 330 | |
| 331 | cdp = getCpuDatap(); |
| 332 | |
| 333 | cdp->cpu_stat.timer_cnt++; |
| 334 | SCHED_STATS_INC(timer_pop_count); |
| 335 | |
| 336 | assert(!ml_get_interrupts_enabled()); |
| 337 | |
| 338 | abstime = mach_absolute_time(); |
| 339 | |
| 340 | if (cdp->cpu_idle_pop != 0x0ULL) { |
| 341 | if ((cdp->rtcPop - abstime) < cdp->cpu_idle_latency) { |
| 342 | cdp->cpu_idle_pop = 0x0ULL; |
| 343 | while (abstime < cdp->rtcPop) { |
| 344 | abstime = mach_absolute_time(); |
| 345 | } |
| 346 | } else { |
| 347 | ClearIdlePop(FALSE); |
| 348 | } |
| 349 | } |
| 350 | |
| 351 | if ((regs = cdp->cpu_int_state)) { |
| 352 | pc = get_saved_state_pc(iss: regs); |
| 353 | |
| 354 | #if __arm64__ |
| 355 | user_mode = PSR64_IS_USER(get_saved_state_cpsr(regs)); |
| 356 | #endif |
| 357 | } else { |
| 358 | pc = 0; |
| 359 | user_mode = 0; |
| 360 | } |
| 361 | if (abstime >= cdp->rtcPop) { |
| 362 | /* Log the interrupt service latency (-ve value expected by tool) */ |
| 363 | KDBG_RELEASE(DECR_TRAP_LATENCY | DBG_FUNC_NONE, |
| 364 | -(abstime - cdp->rtcPop), |
| 365 | user_mode ? pc : VM_KERNEL_UNSLIDE(pc), user_mode); |
| 366 | } |
| 367 | |
| 368 | /* call the generic etimer */ |
| 369 | timer_intr(inuser: user_mode, iaddr: pc); |
| 370 | } |
| 371 | |
| 372 | static int |
| 373 | deadline_to_decrementer(uint64_t deadline, |
| 374 | uint64_t now) |
| 375 | { |
| 376 | uint64_t delt; |
| 377 | |
| 378 | if (deadline <= now) { |
| 379 | return DECREMENTER_MIN; |
| 380 | } else { |
| 381 | delt = deadline - now; |
| 382 | |
| 383 | return (delt >= (DECREMENTER_MAX + 1)) ? DECREMENTER_MAX : ((delt >= (DECREMENTER_MIN + 1)) ? (int)delt : DECREMENTER_MIN); |
| 384 | } |
| 385 | } |
| 386 | |
| 387 | /* |
| 388 | * Request a decrementer pop |
| 389 | */ |
| 390 | int |
| 391 | setPop(uint64_t time) |
| 392 | { |
| 393 | int delay_time; |
| 394 | uint64_t current_time; |
| 395 | cpu_data_t * cdp; |
| 396 | |
| 397 | cdp = getCpuDatap(); |
| 398 | current_time = mach_absolute_time(); |
| 399 | |
| 400 | delay_time = deadline_to_decrementer(deadline: time, now: current_time); |
| 401 | cdp->rtcPop = delay_time + current_time; |
| 402 | |
| 403 | ml_set_decrementer(dec_value: (uint32_t) delay_time); |
| 404 | |
| 405 | return delay_time; |
| 406 | } |
| 407 | |
| 408 | /* |
| 409 | * Request decrementer Idle Pop. Return true if set |
| 410 | */ |
| 411 | boolean_t |
| 412 | SetIdlePop(void) |
| 413 | { |
| 414 | int delay_time; |
| 415 | uint64_t time; |
| 416 | uint64_t current_time; |
| 417 | cpu_data_t * cdp; |
| 418 | |
| 419 | cdp = getCpuDatap(); |
| 420 | current_time = mach_absolute_time(); |
| 421 | |
| 422 | if (((cdp->rtcPop < current_time) || |
| 423 | (cdp->rtcPop - current_time) < cdp->cpu_idle_latency)) { |
| 424 | return FALSE; |
| 425 | } |
| 426 | |
| 427 | time = cdp->rtcPop - cdp->cpu_idle_latency; |
| 428 | |
| 429 | delay_time = deadline_to_decrementer(deadline: time, now: current_time); |
| 430 | cdp->cpu_idle_pop = delay_time + current_time; |
| 431 | ml_set_decrementer(dec_value: (uint32_t) delay_time); |
| 432 | |
| 433 | return TRUE; |
| 434 | } |
| 435 | |
| 436 | /* |
| 437 | * Clear decrementer Idle Pop |
| 438 | */ |
| 439 | void |
| 440 | ClearIdlePop( |
| 441 | boolean_t wfi) |
| 442 | { |
| 443 | cpu_data_t * cdp; |
| 444 | |
| 445 | cdp = getCpuDatap(); |
| 446 | cdp->cpu_idle_pop = 0x0ULL; |
| 447 | |
| 448 | /* |
| 449 | * Don't update the HW timer if there's a pending |
| 450 | * interrupt (we can lose interrupt assertion); |
| 451 | * we want to take the interrupt right now and update |
| 452 | * the deadline from the handler). |
| 453 | * |
| 454 | * ARM64_TODO: consider this more carefully. |
| 455 | */ |
| 456 | if (!(wfi && ml_get_timer_pending())) { |
| 457 | setPop(cdp->rtcPop); |
| 458 | } |
| 459 | } |
| 460 | |
| 461 | void |
| 462 | absolutetime_to_microtime(uint64_t abstime, |
| 463 | clock_sec_t * secs, |
| 464 | clock_usec_t * microsecs) |
| 465 | { |
| 466 | uint64_t t64; |
| 467 | |
| 468 | *secs = t64 = abstime / rtclock_sec_divisor; |
| 469 | abstime -= (t64 * rtclock_sec_divisor); |
| 470 | |
| 471 | *microsecs = (uint32_t)(abstime / rtclock_usec_divisor); |
| 472 | } |
| 473 | |
| 474 | void |
| 475 | absolutetime_to_nanoseconds(uint64_t abstime, |
| 476 | uint64_t * result) |
| 477 | { |
| 478 | uint64_t t64; |
| 479 | |
| 480 | *result = (t64 = abstime / rtclock_sec_divisor) * NSEC_PER_SEC; |
| 481 | abstime -= (t64 * rtclock_sec_divisor); |
| 482 | *result += (abstime * NSEC_PER_SEC) / rtclock_sec_divisor; |
| 483 | } |
| 484 | |
| 485 | void |
| 486 | nanoseconds_to_absolutetime(uint64_t nanosecs, |
| 487 | uint64_t * result) |
| 488 | { |
| 489 | uint64_t t64; |
| 490 | |
| 491 | *result = (t64 = nanosecs / NSEC_PER_SEC) * rtclock_sec_divisor; |
| 492 | nanosecs -= (t64 * NSEC_PER_SEC); |
| 493 | *result += (nanosecs * rtclock_sec_divisor) / NSEC_PER_SEC; |
| 494 | } |
| 495 | |
| 496 | void |
| 497 | nanotime_to_absolutetime(clock_sec_t secs, |
| 498 | clock_nsec_t nanosecs, |
| 499 | uint64_t * result) |
| 500 | { |
| 501 | *result = ((uint64_t) secs * rtclock_sec_divisor) + |
| 502 | ((uint64_t) nanosecs * rtclock_sec_divisor) / NSEC_PER_SEC; |
| 503 | } |
| 504 | |
| 505 | void |
| 506 | clock_interval_to_absolutetime_interval(uint32_t interval, |
| 507 | uint32_t scale_factor, |
| 508 | uint64_t * result) |
| 509 | { |
| 510 | uint64_t nanosecs = (uint64_t) interval * scale_factor; |
| 511 | uint64_t t64; |
| 512 | |
| 513 | *result = (t64 = nanosecs / NSEC_PER_SEC) * rtclock_sec_divisor; |
| 514 | nanosecs -= (t64 * NSEC_PER_SEC); |
| 515 | *result += (nanosecs * rtclock_sec_divisor) / NSEC_PER_SEC; |
| 516 | } |
| 517 | |
| 518 | void |
| 519 | machine_delay_until(uint64_t interval, |
| 520 | uint64_t deadline) |
| 521 | { |
| 522 | #pragma unused(interval) |
| 523 | uint64_t now; |
| 524 | |
| 525 | do { |
| 526 | __builtin_arm_wfe(); |
| 527 | now = mach_absolute_time(); |
| 528 | } while (now < deadline); |
| 529 | } |
| 530 | |