| 1 | /* |
| 2 | * Copyright (c) 2007-2020 Apple Inc. All rights reserved. |
| 3 | * |
| 4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ |
| 5 | * |
| 6 | * This file contains Original Code and/or Modifications of Original Code |
| 7 | * as defined in and that are subject to the Apple Public Source License |
| 8 | * Version 2.0 (the 'License'). You may not use this file except in |
| 9 | * compliance with the License. The rights granted to you under the License |
| 10 | * may not be used to create, or enable the creation or redistribution of, |
| 11 | * unlawful or unlicensed copies of an Apple operating system, or to |
| 12 | * circumvent, violate, or enable the circumvention or violation of, any |
| 13 | * terms of an Apple operating system software license agreement. |
| 14 | * |
| 15 | * Please obtain a copy of the License at |
| 16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. |
| 17 | * |
| 18 | * The Original Code and all software distributed under the License are |
| 19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER |
| 20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
| 21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, |
| 22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
| 23 | * Please see the License for the specific language governing rights and |
| 24 | * limitations under the License. |
| 25 | * |
| 26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ |
| 27 | */ |
| 28 | |
| 29 | #include <debug.h> |
| 30 | #include <mach_kdp.h> |
| 31 | |
| 32 | #include <kern/thread.h> |
| 33 | #include <machine/pmap.h> |
| 34 | #include <device/device_types.h> |
| 35 | |
| 36 | #include <mach/vm_param.h> |
| 37 | #include <mach/clock_types.h> |
| 38 | #include <mach/machine.h> |
| 39 | #include <mach/kmod.h> |
| 40 | #include <pexpert/boot.h> |
| 41 | #include <pexpert/pexpert.h> |
| 42 | |
| 43 | #include <ptrauth.h> |
| 44 | |
| 45 | #include <kern/misc_protos.h> |
| 46 | #include <kern/startup.h> |
| 47 | #include <kern/clock.h> |
| 48 | #include <kern/debug.h> |
| 49 | #include <kern/processor.h> |
| 50 | #include <kdp/kdp_core.h> |
| 51 | #if ALTERNATE_DEBUGGER |
| 52 | #include <arm64/alternate_debugger.h> |
| 53 | #endif |
| 54 | #include <machine/atomic.h> |
| 55 | #include <machine/trap.h> |
| 56 | #include <kern/spl.h> |
| 57 | #include <pexpert/pexpert.h> |
| 58 | #include <kdp/kdp_callout.h> |
| 59 | #include <kdp/kdp_dyld.h> |
| 60 | #include <kdp/kdp_internal.h> |
| 61 | #include <kdp/kdp_common.h> |
| 62 | #include <uuid/uuid.h> |
| 63 | #include <sys/codesign.h> |
| 64 | #include <sys/time.h> |
| 65 | |
| 66 | #include <IOKit/IOPlatformExpert.h> |
| 67 | #include <IOKit/IOKitServer.h> |
| 68 | |
| 69 | #include <mach/vm_prot.h> |
| 70 | #include <vm/vm_map.h> |
| 71 | #include <vm/pmap.h> |
| 72 | #include <vm/vm_shared_region.h> |
| 73 | #include <mach/time_value.h> |
| 74 | #include <machine/machparam.h> /* for btop */ |
| 75 | |
| 76 | #include <console/video_console.h> |
| 77 | #include <console/serial_protos.h> |
| 78 | #include <arm/cpu_data.h> |
| 79 | #include <arm/cpu_data_internal.h> |
| 80 | #include <arm/cpu_internal.h> |
| 81 | #include <arm/misc_protos.h> |
| 82 | #include <libkern/OSKextLibPrivate.h> |
| 83 | #include <vm/vm_kern.h> |
| 84 | #include <kern/kern_cdata.h> |
| 85 | #include <kern/ledger.h> |
| 86 | |
| 87 | |
| 88 | #if DEVELOPMENT || DEBUG |
| 89 | #include <kern/ext_paniclog.h> |
| 90 | #endif |
| 91 | |
| 92 | #if CONFIG_EXCLAVES |
| 93 | #include <kern/exclaves_panic.h> |
| 94 | #include <kern/exclaves_inspection.h> |
| 95 | #endif |
| 96 | |
| 97 | #if MACH_KDP |
| 98 | void kdp_trap(unsigned int, struct arm_saved_state *); |
| 99 | #endif |
| 100 | |
| 101 | extern kern_return_t do_panic_stackshot(void *); |
| 102 | extern void kdp_snapshot_preflight(int pid, void * tracebuf, |
| 103 | uint32_t tracebuf_size, uint64_t flags, |
| 104 | kcdata_descriptor_t data_p, |
| 105 | uint64_t since_timestamp, uint32_t pagetable_mask); |
| 106 | extern int kdp_stack_snapshot_bytes_traced(void); |
| 107 | extern int kdp_stack_snapshot_bytes_uncompressed(void); |
| 108 | |
| 109 | /* |
| 110 | * Increment the PANICLOG_VERSION if you change the format of the panic |
| 111 | * log in any way. |
| 112 | */ |
| 113 | #define PANICLOG_VERSION 14 |
| 114 | static struct kcdata_descriptor kc_panic_data; |
| 115 | |
| 116 | extern char iBoot_version[]; |
| 117 | #if defined(TARGET_OS_OSX) && defined(__arm64__) |
| 118 | extern char iBoot_Stage_2_version[]; |
| 119 | #endif /* defined(TARGET_OS_OSX) && defined(__arm64__) */ |
| 120 | |
| 121 | extern volatile uint32_t debug_enabled; |
| 122 | extern unsigned int not_in_kdp; |
| 123 | |
| 124 | extern int copyinframe(vm_address_t fp, uint32_t * frame); |
| 125 | extern void kdp_callouts(kdp_event_t event); |
| 126 | |
| 127 | /* #include <sys/proc.h> */ |
| 128 | #define MAXCOMLEN 16 |
| 129 | struct proc; |
| 130 | extern int proc_pid(struct proc *p); |
| 131 | extern void proc_name_kdp(struct proc *, char *, int); |
| 132 | |
| 133 | /* |
| 134 | * Make sure there's enough space to include the relevant bits in the format required |
| 135 | * within the space allocated for the panic version string in the panic header. |
| 136 | * The format required by OSAnalytics/DumpPanic is 'Product Version (OS Version)'. |
| 137 | */ |
| 138 | #define "%.14s (%.14s)" |
| 139 | |
| 140 | extern const char version[]; |
| 141 | extern char osversion[]; |
| 142 | extern char osproductversion[]; |
| 143 | extern char osreleasetype[]; |
| 144 | |
| 145 | #if defined(XNU_TARGET_OS_BRIDGE) |
| 146 | extern char macosproductversion[]; |
| 147 | extern char macosversion[]; |
| 148 | #endif |
| 149 | |
| 150 | extern uint8_t gPlatformECID[8]; |
| 151 | extern uint32_t gPlatformMemoryID; |
| 152 | |
| 153 | extern uint64_t last_hwaccess_thread; |
| 154 | |
| 155 | /*Choosing the size for gTargetTypeBuffer as 16 and size for gModelTypeBuffer as 32 |
| 156 | * since the target name and model name typically doesn't exceed this size */ |
| 157 | extern char gTargetTypeBuffer[16]; |
| 158 | extern char gModelTypeBuffer[32]; |
| 159 | |
| 160 | extern struct timeval gIOLastSleepTime; |
| 161 | extern struct timeval gIOLastWakeTime; |
| 162 | extern boolean_t is_clock_configured; |
| 163 | extern boolean_t kernelcache_uuid_valid; |
| 164 | extern uuid_t kernelcache_uuid; |
| 165 | extern uuid_string_t bootsessionuuid_string; |
| 166 | |
| 167 | extern uint64_t roots_installed; |
| 168 | |
| 169 | /* Definitions for frame pointers */ |
| 170 | #define FP_ALIGNMENT_MASK ((uint32_t)(0x3)) |
| 171 | #define FP_LR_OFFSET ((uint32_t)4) |
| 172 | #define FP_LR_OFFSET64 ((uint32_t)8) |
| 173 | #define FP_MAX_NUM_TO_EVALUATE (50) |
| 174 | |
| 175 | /* Timeout for all processors responding to debug crosscall */ |
| 176 | MACHINE_TIMEOUT(debug_ack_timeout, "debug-ack" , 240000, MACHINE_TIMEOUT_UNIT_TIMEBASE, NULL); |
| 177 | |
| 178 | /* Forward functions definitions */ |
| 179 | void panic_display_times(void); |
| 180 | void panic_print_symbol_name(vm_address_t search); |
| 181 | |
| 182 | |
| 183 | /* Global variables */ |
| 184 | static uint32_t panic_bt_depth; |
| 185 | boolean_t PanicInfoSaved = FALSE; |
| 186 | boolean_t force_immediate_debug_halt = FALSE; |
| 187 | unsigned int debug_ack_timeout_count = 0; |
| 188 | volatile unsigned int debugger_sync = 0; |
| 189 | volatile unsigned int mp_kdp_trap = 0; /* CPUs signalled by the debug CPU will spin on this */ |
| 190 | volatile unsigned int debug_cpus_spinning = 0; /* Number of signalled CPUs still spinning on mp_kdp_trap (in DebuggerXCall). */ |
| 191 | unsigned int DebugContextCount = 0; |
| 192 | |
| 193 | #if defined(__arm64__) |
| 194 | uint8_t PE_smc_stashed_x86_system_state = 0xFF; |
| 195 | uint8_t PE_smc_stashed_x86_power_state = 0xFF; |
| 196 | uint8_t PE_smc_stashed_x86_efi_boot_state = 0xFF; |
| 197 | uint8_t PE_smc_stashed_x86_shutdown_cause = 0xFF; |
| 198 | uint64_t PE_smc_stashed_x86_prev_power_transitions = UINT64_MAX; |
| 199 | uint32_t PE_pcie_stashed_link_state = UINT32_MAX; |
| 200 | uint64_t PE_nvram_stashed_x86_macos_slide = UINT64_MAX; |
| 201 | #endif |
| 202 | |
| 203 | |
| 204 | /* |
| 205 | * Backtrace a single frame. |
| 206 | */ |
| 207 | static void |
| 208 | print_one_backtrace(pmap_t pmap, vm_offset_t topfp, const char *cur_marker, |
| 209 | boolean_t is_64_bit, boolean_t print_kexts_in_backtrace) |
| 210 | { |
| 211 | unsigned int i = 0; |
| 212 | addr64_t lr = 0; |
| 213 | addr64_t fp = topfp; |
| 214 | addr64_t fp_for_ppn = 0; |
| 215 | ppnum_t ppn = (ppnum_t)NULL; |
| 216 | vm_offset_t raddrs[FP_MAX_NUM_TO_EVALUATE] = { 0 }; |
| 217 | bool dump_kernel_stack = (fp >= VM_MIN_KERNEL_ADDRESS); |
| 218 | |
| 219 | #if defined(HAS_APPLE_PAC) |
| 220 | fp = (addr64_t)ptrauth_strip((void *)fp, ptrauth_key_frame_pointer); |
| 221 | #endif |
| 222 | do { |
| 223 | if ((fp == 0) || ((fp & FP_ALIGNMENT_MASK) != 0)) { |
| 224 | break; |
| 225 | } |
| 226 | if (dump_kernel_stack && ((fp < VM_MIN_KERNEL_ADDRESS) || (fp > VM_MAX_KERNEL_ADDRESS))) { |
| 227 | break; |
| 228 | } |
| 229 | if ((!dump_kernel_stack) && (fp >= VM_MIN_KERNEL_ADDRESS)) { |
| 230 | break; |
| 231 | } |
| 232 | |
| 233 | /* |
| 234 | * Check to see if current address will result in a different |
| 235 | * ppn than previously computed (to avoid recomputation) via |
| 236 | * (addr) ^ fp_for_ppn) >> PAGE_SHIFT) |
| 237 | */ |
| 238 | if ((((fp + FP_LR_OFFSET) ^ fp_for_ppn) >> PAGE_SHIFT) != 0x0U) { |
| 239 | ppn = pmap_find_phys(map: pmap, va: fp + FP_LR_OFFSET); |
| 240 | fp_for_ppn = fp + (is_64_bit ? FP_LR_OFFSET64 : FP_LR_OFFSET); |
| 241 | } |
| 242 | if (ppn != (ppnum_t)NULL) { |
| 243 | if (is_64_bit) { |
| 244 | lr = ml_phys_read_double_64(paddr: ((((vm_offset_t)ppn) << PAGE_SHIFT)) | ((fp + FP_LR_OFFSET64) & PAGE_MASK)); |
| 245 | #if defined(HAS_APPLE_PAC) |
| 246 | /* return addresses on stack will be signed by arm64e ABI */ |
| 247 | lr = (addr64_t) ptrauth_strip((void *)lr, ptrauth_key_return_address); |
| 248 | #endif |
| 249 | } else { |
| 250 | lr = ml_phys_read_word(paddr: ((((vm_offset_t)ppn) << PAGE_SHIFT)) | ((fp + FP_LR_OFFSET) & PAGE_MASK)); |
| 251 | } |
| 252 | } else { |
| 253 | if (is_64_bit) { |
| 254 | paniclog_append_noflush(format: "%s\t Could not read LR from frame at 0x%016llx\n" , cur_marker, fp + FP_LR_OFFSET64); |
| 255 | } else { |
| 256 | paniclog_append_noflush(format: "%s\t Could not read LR from frame at 0x%08x\n" , cur_marker, (uint32_t)(fp + FP_LR_OFFSET)); |
| 257 | } |
| 258 | break; |
| 259 | } |
| 260 | if (((fp ^ fp_for_ppn) >> PAGE_SHIFT) != 0x0U) { |
| 261 | ppn = pmap_find_phys(map: pmap, va: fp); |
| 262 | fp_for_ppn = fp; |
| 263 | } |
| 264 | if (ppn != (ppnum_t)NULL) { |
| 265 | if (is_64_bit) { |
| 266 | fp = ml_phys_read_double_64(paddr: ((((vm_offset_t)ppn) << PAGE_SHIFT)) | (fp & PAGE_MASK)); |
| 267 | #if defined(HAS_APPLE_PAC) |
| 268 | /* frame pointers on stack will be signed by arm64e ABI */ |
| 269 | fp = (addr64_t) ptrauth_strip((void *)fp, ptrauth_key_frame_pointer); |
| 270 | #endif |
| 271 | } else { |
| 272 | fp = ml_phys_read_word(paddr: ((((vm_offset_t)ppn) << PAGE_SHIFT)) | (fp & PAGE_MASK)); |
| 273 | } |
| 274 | } else { |
| 275 | if (is_64_bit) { |
| 276 | paniclog_append_noflush(format: "%s\t Could not read FP from frame at 0x%016llx\n" , cur_marker, fp); |
| 277 | } else { |
| 278 | paniclog_append_noflush(format: "%s\t Could not read FP from frame at 0x%08x\n" , cur_marker, (uint32_t)fp); |
| 279 | } |
| 280 | break; |
| 281 | } |
| 282 | /* |
| 283 | * Counter 'i' may == FP_MAX_NUM_TO_EVALUATE when running one |
| 284 | * extra round to check whether we have all frames in order to |
| 285 | * indicate (in)complete backtrace below. This happens in a case |
| 286 | * where total frame count and FP_MAX_NUM_TO_EVALUATE are equal. |
| 287 | * Do not capture anything. |
| 288 | */ |
| 289 | if (i < FP_MAX_NUM_TO_EVALUATE && lr) { |
| 290 | if (is_64_bit) { |
| 291 | paniclog_append_noflush(format: "%s\t lr: 0x%016llx fp: 0x%016llx\n" , cur_marker, lr, fp); |
| 292 | } else { |
| 293 | paniclog_append_noflush(format: "%s\t lr: 0x%08x fp: 0x%08x\n" , cur_marker, (uint32_t)lr, (uint32_t)fp); |
| 294 | } |
| 295 | raddrs[i] = lr; |
| 296 | } |
| 297 | } while ((++i <= FP_MAX_NUM_TO_EVALUATE) && (fp != topfp)); |
| 298 | |
| 299 | if (i > FP_MAX_NUM_TO_EVALUATE && fp != 0) { |
| 300 | paniclog_append_noflush(format: "Backtrace continues...\n" ); |
| 301 | } |
| 302 | |
| 303 | if (print_kexts_in_backtrace && i > 0) { |
| 304 | kmod_panic_dump(addr: &raddrs[0], dump_cnt: i); |
| 305 | } |
| 306 | } |
| 307 | |
| 308 | #define SANE_TASK_LIMIT 256 |
| 309 | #define TOP_RUNNABLE_LIMIT 5 |
| 310 | #define PANICLOG_UUID_BUF_SIZE 256 |
| 311 | |
| 312 | extern void panic_print_vnodes(void); |
| 313 | |
| 314 | static void |
| 315 | panic_display_tpidrs(void) |
| 316 | { |
| 317 | #if defined(__arm64__) |
| 318 | paniclog_append_noflush(format: "TPIDRx_ELy = {1: 0x%016llx 0: 0x%016llx 0ro: 0x%016llx }\n" , |
| 319 | __builtin_arm_rsr64("TPIDR_EL1" ), __builtin_arm_rsr64("TPIDR_EL0" ), |
| 320 | __builtin_arm_rsr64("TPIDRRO_EL0" )); |
| 321 | #endif //defined(__arm64__) |
| 322 | } |
| 323 | |
| 324 | static void |
| 325 | panic_display_hung_cpus_help(void) |
| 326 | { |
| 327 | #if defined(__arm64__) |
| 328 | const uint32_t pcsr_offset = 0x90; |
| 329 | |
| 330 | /* |
| 331 | * Print some info that might help in cases where nothing |
| 332 | * else does |
| 333 | */ |
| 334 | const ml_topology_info_t *info = ml_get_topology_info(); |
| 335 | if (info) { |
| 336 | unsigned i, retry; |
| 337 | |
| 338 | for (i = 0; i < info->num_cpus; i++) { |
| 339 | if (!PE_cpu_power_check_kdp(cpu_id: i)) { |
| 340 | paniclog_append_noflush(format: "CORE %u is offline, skipping\n" , i); |
| 341 | continue; |
| 342 | } |
| 343 | if (info->cpus[i].cpu_UTTDBG_regs) { |
| 344 | volatile uint64_t *pcsr = (volatile uint64_t*)(info->cpus[i].cpu_UTTDBG_regs + pcsr_offset); |
| 345 | volatile uint32_t *pcsrTrigger = (volatile uint32_t*)pcsr; |
| 346 | uint64_t pc = 0; |
| 347 | |
| 348 | // a number of retries are needed till this works |
| 349 | for (retry = 1024; retry && !pc; retry--) { |
| 350 | //a 32-bit read is required to make a PC sample be produced, else we'll only get a zero |
| 351 | (void)*pcsrTrigger; |
| 352 | pc = *pcsr; |
| 353 | } |
| 354 | |
| 355 | //postprocessing (same as astris does) |
| 356 | if (pc >> 48) { |
| 357 | pc |= 0xffff000000000000ull; |
| 358 | } |
| 359 | paniclog_append_noflush(format: "CORE %u recently retired instr at 0x%016llx\n" , i, pc); |
| 360 | } |
| 361 | } |
| 362 | } |
| 363 | #endif //defined(__arm64__) |
| 364 | } |
| 365 | |
| 366 | |
| 367 | static void |
| 368 | panic_display_pvhs_locked(void) |
| 369 | { |
| 370 | } |
| 371 | |
| 372 | static void |
| 373 | panic_display_pvh_to_lock(void) |
| 374 | { |
| 375 | } |
| 376 | |
| 377 | static void |
| 378 | panic_display_last_pc_lr(void) |
| 379 | { |
| 380 | #if defined(__arm64__) |
| 381 | const int max_cpu = ml_get_max_cpu_number(); |
| 382 | |
| 383 | for (int cpu = 0; cpu <= max_cpu; cpu++) { |
| 384 | cpu_data_t *current_cpu_datap = cpu_datap(cpu); |
| 385 | |
| 386 | if (current_cpu_datap == NULL) { |
| 387 | continue; |
| 388 | } |
| 389 | |
| 390 | if (current_cpu_datap == getCpuDatap()) { |
| 391 | /** |
| 392 | * Skip printing the PC/LR if this is the CPU |
| 393 | * that initiated the panic. |
| 394 | */ |
| 395 | paniclog_append_noflush(format: "CORE %u is the one that panicked. Check the full backtrace for details.\n" , cpu); |
| 396 | continue; |
| 397 | } |
| 398 | |
| 399 | paniclog_append_noflush(format: "CORE %u: PC=0x%016llx, LR=0x%016llx, FP=0x%016llx\n" , cpu, |
| 400 | current_cpu_datap->ipi_pc, (uint64_t)VM_KERNEL_STRIP_PTR(current_cpu_datap->ipi_lr), |
| 401 | (uint64_t)VM_KERNEL_STRIP_PTR(current_cpu_datap->ipi_fp)); |
| 402 | } |
| 403 | #endif |
| 404 | } |
| 405 | |
| 406 | #if CONFIG_EXCLAVES |
| 407 | static void |
| 408 | panic_report_exclaves_stackshot(void) |
| 409 | { |
| 410 | if (exclaves_panic_ss_status == EXCLAVES_PANIC_STACKSHOT_FOUND) { |
| 411 | paniclog_append_noflush("** Exclaves panic stackshot found\n" ); |
| 412 | } else if (exclaves_panic_ss_status == EXCLAVES_PANIC_STACKSHOT_NOT_FOUND) { |
| 413 | paniclog_append_noflush("** Exclaves panic stackshot not found\n" ); |
| 414 | } else if (exclaves_panic_ss_status == EXCLAVES_PANIC_STACKSHOT_DECODE_FAILED) { |
| 415 | paniclog_append_noflush("!! Exclaves panic stackshot decode failed !!\n" ); |
| 416 | } |
| 417 | } |
| 418 | #endif /* CONFIG_EXCLAVES */ |
| 419 | |
| 420 | static void |
| 421 | do_print_all_backtraces(const char *message, uint64_t panic_options) |
| 422 | { |
| 423 | int logversion = PANICLOG_VERSION; |
| 424 | thread_t cur_thread = current_thread(); |
| 425 | uintptr_t cur_fp; |
| 426 | task_t task; |
| 427 | struct proc *proc; |
| 428 | int print_vnodes = 0; |
| 429 | const char *nohilite_thread_marker = "\t" ; |
| 430 | |
| 431 | /* end_marker_bytes set to 200 for printing END marker + stackshot summary info always */ |
| 432 | int bytes_traced = 0, bytes_remaining = 0, end_marker_bytes = 200; |
| 433 | int bytes_uncompressed = 0; |
| 434 | uint64_t bytes_used = 0ULL; |
| 435 | int err = 0; |
| 436 | char *stackshot_begin_loc = NULL; |
| 437 | kc_format_t kc_format; |
| 438 | bool filesetKC = false; |
| 439 | #if CONFIG_EXT_PANICLOG |
| 440 | uint32_t ext_paniclog_bytes = 0; |
| 441 | #endif |
| 442 | |
| 443 | #if defined(__arm64__) |
| 444 | __asm__ volatile ("add %0, xzr, fp" :"=r" (cur_fp)); |
| 445 | #else |
| 446 | #error Unknown architecture. |
| 447 | #endif |
| 448 | if (panic_bt_depth != 0) { |
| 449 | return; |
| 450 | } |
| 451 | panic_bt_depth++; |
| 452 | |
| 453 | __unused bool result = PE_get_primary_kc_format(type: &kc_format); |
| 454 | assert(result == true); |
| 455 | filesetKC = kc_format == KCFormatFileset; |
| 456 | |
| 457 | /* Truncate panic string to 1200 bytes */ |
| 458 | paniclog_append_noflush(format: "Debugger message: %.1200s\n" , message); |
| 459 | if (debug_enabled) { |
| 460 | paniclog_append_noflush(format: "Device: %s\n" , |
| 461 | ('\0' != gTargetTypeBuffer[0]) ? gTargetTypeBuffer : "Not set yet" ); |
| 462 | paniclog_append_noflush(format: "Hardware Model: %s\n" , |
| 463 | ('\0' != gModelTypeBuffer[0]) ? gModelTypeBuffer:"Not set yet" ); |
| 464 | paniclog_append_noflush(format: "ECID: %02X%02X%02X%02X%02X%02X%02X%02X\n" , gPlatformECID[7], |
| 465 | gPlatformECID[6], gPlatformECID[5], gPlatformECID[4], gPlatformECID[3], |
| 466 | gPlatformECID[2], gPlatformECID[1], gPlatformECID[0]); |
| 467 | if (last_hwaccess_thread) { |
| 468 | paniclog_append_noflush(format: "AppleHWAccess Thread: 0x%llx\n" , last_hwaccess_thread); |
| 469 | } |
| 470 | paniclog_append_noflush(format: "Boot args: %s\n" , PE_boot_args()); |
| 471 | } |
| 472 | paniclog_append_noflush(format: "Memory ID: 0x%x\n" , gPlatformMemoryID); |
| 473 | paniclog_append_noflush(format: "OS release type: %.256s\n" , |
| 474 | ('\0' != osreleasetype[0]) ? osreleasetype : "Not set yet" ); |
| 475 | paniclog_append_noflush(format: "OS version: %.256s\n" , |
| 476 | ('\0' != osversion[0]) ? osversion : "Not set yet" ); |
| 477 | #if defined(XNU_TARGET_OS_BRIDGE) |
| 478 | paniclog_append_noflush("macOS version: %.256s\n" , |
| 479 | ('\0' != macosversion[0]) ? macosversion : "Not set" ); |
| 480 | #endif |
| 481 | paniclog_append_noflush(format: "Kernel version: %.512s\n" , version); |
| 482 | |
| 483 | #if CONFIG_EXCLAVES |
| 484 | exclaves_panic_append_info(); |
| 485 | #endif |
| 486 | |
| 487 | if (kernelcache_uuid_valid) { |
| 488 | if (filesetKC) { |
| 489 | paniclog_append_noflush(format: "Fileset Kernelcache UUID: " ); |
| 490 | } else { |
| 491 | paniclog_append_noflush(format: "KernelCache UUID: " ); |
| 492 | } |
| 493 | for (size_t index = 0; index < sizeof(uuid_t); index++) { |
| 494 | paniclog_append_noflush(format: "%02X" , kernelcache_uuid[index]); |
| 495 | } |
| 496 | paniclog_append_noflush(format: "\n" ); |
| 497 | } |
| 498 | panic_display_kernel_uuid(); |
| 499 | |
| 500 | if (bootsessionuuid_string[0] != '\0') { |
| 501 | paniclog_append_noflush(format: "Boot session UUID: %s\n" , bootsessionuuid_string); |
| 502 | } else { |
| 503 | paniclog_append_noflush(format: "Boot session UUID not yet initialized\n" ); |
| 504 | } |
| 505 | |
| 506 | paniclog_append_noflush(format: "iBoot version: %.128s\n" , iBoot_version); |
| 507 | #if defined(TARGET_OS_OSX) && defined(__arm64__) |
| 508 | paniclog_append_noflush("iBoot Stage 2 version: %.128s\n" , iBoot_Stage_2_version); |
| 509 | #endif /* defined(TARGET_OS_OSX) && defined(__arm64__) */ |
| 510 | |
| 511 | paniclog_append_noflush(format: "secure boot?: %s\n" , debug_enabled ? "NO" : "YES" ); |
| 512 | paniclog_append_noflush(format: "roots installed: %lld\n" , roots_installed); |
| 513 | #if defined(XNU_TARGET_OS_BRIDGE) |
| 514 | paniclog_append_noflush("x86 EFI Boot State: " ); |
| 515 | if (PE_smc_stashed_x86_efi_boot_state != 0xFF) { |
| 516 | paniclog_append_noflush("0x%x\n" , PE_smc_stashed_x86_efi_boot_state); |
| 517 | } else { |
| 518 | paniclog_append_noflush("not available\n" ); |
| 519 | } |
| 520 | paniclog_append_noflush("x86 System State: " ); |
| 521 | if (PE_smc_stashed_x86_system_state != 0xFF) { |
| 522 | paniclog_append_noflush("0x%x\n" , PE_smc_stashed_x86_system_state); |
| 523 | } else { |
| 524 | paniclog_append_noflush("not available\n" ); |
| 525 | } |
| 526 | paniclog_append_noflush("x86 Power State: " ); |
| 527 | if (PE_smc_stashed_x86_power_state != 0xFF) { |
| 528 | paniclog_append_noflush("0x%x\n" , PE_smc_stashed_x86_power_state); |
| 529 | } else { |
| 530 | paniclog_append_noflush("not available\n" ); |
| 531 | } |
| 532 | paniclog_append_noflush("x86 Shutdown Cause: " ); |
| 533 | if (PE_smc_stashed_x86_shutdown_cause != 0xFF) { |
| 534 | paniclog_append_noflush("0x%x\n" , PE_smc_stashed_x86_shutdown_cause); |
| 535 | } else { |
| 536 | paniclog_append_noflush("not available\n" ); |
| 537 | } |
| 538 | paniclog_append_noflush("x86 Previous Power Transitions: " ); |
| 539 | if (PE_smc_stashed_x86_prev_power_transitions != UINT64_MAX) { |
| 540 | paniclog_append_noflush("0x%llx\n" , PE_smc_stashed_x86_prev_power_transitions); |
| 541 | } else { |
| 542 | paniclog_append_noflush("not available\n" ); |
| 543 | } |
| 544 | paniclog_append_noflush("PCIeUp link state: " ); |
| 545 | if (PE_pcie_stashed_link_state != UINT32_MAX) { |
| 546 | paniclog_append_noflush("0x%x\n" , PE_pcie_stashed_link_state); |
| 547 | } else { |
| 548 | paniclog_append_noflush("not available\n" ); |
| 549 | } |
| 550 | paniclog_append_noflush("macOS kernel slide: " ); |
| 551 | if (PE_nvram_stashed_x86_macos_slide != UINT64_MAX) { |
| 552 | paniclog_append_noflush("%#llx\n" , PE_nvram_stashed_x86_macos_slide); |
| 553 | } else { |
| 554 | paniclog_append_noflush("not available\n" ); |
| 555 | } |
| 556 | #endif |
| 557 | if (panic_data_buffers != NULL) { |
| 558 | paniclog_append_noflush(format: "%s data: " , panic_data_buffers->producer_name); |
| 559 | uint8_t *panic_buffer_data = (uint8_t *) panic_data_buffers->buf; |
| 560 | for (int i = 0; i < panic_data_buffers->len; i++) { |
| 561 | paniclog_append_noflush(format: "%02X" , panic_buffer_data[i]); |
| 562 | } |
| 563 | paniclog_append_noflush(format: "\n" ); |
| 564 | } |
| 565 | paniclog_append_noflush(format: "Paniclog version: %d\n" , logversion); |
| 566 | |
| 567 | panic_display_kernel_aslr(); |
| 568 | panic_display_times(); |
| 569 | panic_display_zalloc(); |
| 570 | panic_display_hung_cpus_help(); |
| 571 | panic_display_tpidrs(); |
| 572 | panic_display_pvhs_locked(); |
| 573 | panic_display_pvh_to_lock(); |
| 574 | panic_display_last_pc_lr(); |
| 575 | #if CONFIG_ECC_LOGGING |
| 576 | panic_display_ecc_errors(); |
| 577 | #endif /* CONFIG_ECC_LOGGING */ |
| 578 | panic_display_compressor_stats(); |
| 579 | |
| 580 | #if DEVELOPMENT || DEBUG |
| 581 | if (cs_debug_unsigned_exec_failures != 0 || cs_debug_unsigned_mmap_failures != 0) { |
| 582 | paniclog_append_noflush("Unsigned code exec failures: %u\n" , cs_debug_unsigned_exec_failures); |
| 583 | paniclog_append_noflush("Unsigned code mmap failures: %u\n" , cs_debug_unsigned_mmap_failures); |
| 584 | } |
| 585 | #endif |
| 586 | |
| 587 | // Highlight threads that used high amounts of CPU in the panic log if requested (historically requested for watchdog panics) |
| 588 | if (panic_options & DEBUGGER_OPTION_PRINT_CPU_USAGE_PANICLOG) { |
| 589 | thread_t top_runnable[5] = {0}; |
| 590 | thread_t thread; |
| 591 | int total_cpu_usage = 0; |
| 592 | |
| 593 | print_vnodes = 1; |
| 594 | |
| 595 | |
| 596 | for (thread = (thread_t)queue_first(&threads); |
| 597 | PANIC_VALIDATE_PTR(thread) && !queue_end(&threads, (queue_entry_t)thread); |
| 598 | thread = (thread_t)queue_next(&thread->threads)) { |
| 599 | total_cpu_usage += thread->cpu_usage; |
| 600 | |
| 601 | // Look for the 5 runnable threads with highest priority |
| 602 | if (thread->state & TH_RUN) { |
| 603 | int k; |
| 604 | thread_t comparison_thread = thread; |
| 605 | |
| 606 | for (k = 0; k < TOP_RUNNABLE_LIMIT; k++) { |
| 607 | if (top_runnable[k] == 0) { |
| 608 | top_runnable[k] = comparison_thread; |
| 609 | break; |
| 610 | } else if (comparison_thread->sched_pri > top_runnable[k]->sched_pri) { |
| 611 | thread_t temp = top_runnable[k]; |
| 612 | top_runnable[k] = comparison_thread; |
| 613 | comparison_thread = temp; |
| 614 | } // if comparison thread has higher priority than previously saved thread |
| 615 | } // loop through highest priority runnable threads |
| 616 | } // Check if thread is runnable |
| 617 | } // Loop through all threads |
| 618 | |
| 619 | // Print the relevant info for each thread identified |
| 620 | paniclog_append_noflush(format: "Total cpu_usage: %d\n" , total_cpu_usage); |
| 621 | paniclog_append_noflush(format: "Thread task pri cpu_usage\n" ); |
| 622 | |
| 623 | for (int i = 0; i < TOP_RUNNABLE_LIMIT; i++) { |
| 624 | if (top_runnable[i] && |
| 625 | panic_get_thread_proc_task(thread: top_runnable[i], task: &task, proc: &proc) && proc) { |
| 626 | char name[MAXCOMLEN + 1]; |
| 627 | proc_name_kdp(proc, name, sizeof(name)); |
| 628 | paniclog_append_noflush(format: "%p %s %d %d\n" , |
| 629 | top_runnable[i], name, top_runnable[i]->sched_pri, top_runnable[i]->cpu_usage); |
| 630 | } |
| 631 | } // Loop through highest priority runnable threads |
| 632 | paniclog_append_noflush(format: "\n" ); |
| 633 | } |
| 634 | |
| 635 | // print current task info |
| 636 | if (panic_get_thread_proc_task(thread: cur_thread, task: &task, proc: &proc)) { |
| 637 | if (PANIC_VALIDATE_PTR(task->map) && |
| 638 | PANIC_VALIDATE_PTR(task->map->pmap)) { |
| 639 | ledger_amount_t resident = 0; |
| 640 | if (task != kernel_task) { |
| 641 | ledger_get_balance(ledger: task->ledger, entry: task_ledgers.phys_mem, balance: &resident); |
| 642 | resident >>= VM_MAP_PAGE_SHIFT(map: task->map); |
| 643 | } |
| 644 | paniclog_append_noflush(format: "Panicked task %p: %lld pages, %d threads: " , |
| 645 | task, resident, task->thread_count); |
| 646 | } else { |
| 647 | paniclog_append_noflush(format: "Panicked task %p: %d threads: " , |
| 648 | task, task->thread_count); |
| 649 | } |
| 650 | |
| 651 | if (proc) { |
| 652 | char name[MAXCOMLEN + 1]; |
| 653 | proc_name_kdp(proc, name, sizeof(name)); |
| 654 | paniclog_append_noflush(format: "pid %d: %s" , proc_pid(p: proc), name); |
| 655 | } else { |
| 656 | paniclog_append_noflush(format: "unknown task" ); |
| 657 | } |
| 658 | |
| 659 | paniclog_append_noflush(format: "\n" ); |
| 660 | } |
| 661 | |
| 662 | if (cur_fp < VM_MAX_KERNEL_ADDRESS) { |
| 663 | paniclog_append_noflush(format: "Panicked thread: %p, backtrace: 0x%llx, tid: %llu\n" , |
| 664 | cur_thread, (addr64_t)cur_fp, thread_tid(thread: cur_thread)); |
| 665 | #if __LP64__ |
| 666 | print_one_backtrace(pmap: kernel_pmap, topfp: cur_fp, cur_marker: nohilite_thread_marker, TRUE, print_kexts_in_backtrace: filesetKC); |
| 667 | #else |
| 668 | print_one_backtrace(kernel_pmap, cur_fp, nohilite_thread_marker, FALSE, filesetKC); |
| 669 | #endif |
| 670 | } else { |
| 671 | paniclog_append_noflush(format: "Could not print panicked thread backtrace:" |
| 672 | "frame pointer outside kernel vm.\n" ); |
| 673 | } |
| 674 | |
| 675 | paniclog_append_noflush(format: "\n" ); |
| 676 | if (filesetKC) { |
| 677 | kext_dump_panic_lists(printf_func: &paniclog_append_noflush); |
| 678 | paniclog_append_noflush(format: "\n" ); |
| 679 | } |
| 680 | panic_info->eph_panic_log_len = PE_get_offset_into_panic_region(location: debug_buf_ptr) - panic_info->eph_panic_log_offset; |
| 681 | /* set the os version data in the panic header in the format 'Product Version (OS Version)' (only if they have been set) */ |
| 682 | if ((osversion[0] != '\0') && (osproductversion[0] != '\0')) { |
| 683 | snprintf((char *)&panic_info->eph_os_version, sizeof(panic_info->eph_os_version), PANIC_HEADER_VERSION_FMT_STR, |
| 684 | osproductversion, osversion); |
| 685 | } |
| 686 | #if defined(XNU_TARGET_OS_BRIDGE) |
| 687 | if ((macosversion[0] != '\0') && (macosproductversion[0] != '\0')) { |
| 688 | snprintf((char *)&panic_info->eph_macos_version, sizeof(panic_info->eph_macos_version), PANIC_HEADER_VERSION_FMT_STR, |
| 689 | macosproductversion, macosversion); |
| 690 | } |
| 691 | #endif |
| 692 | if (bootsessionuuid_string[0] != '\0') { |
| 693 | memcpy(dst: panic_info->eph_bootsessionuuid_string, src: bootsessionuuid_string, |
| 694 | n: sizeof(panic_info->eph_bootsessionuuid_string)); |
| 695 | } |
| 696 | panic_info->eph_roots_installed = roots_installed; |
| 697 | |
| 698 | if (debug_ack_timeout_count) { |
| 699 | panic_info->eph_panic_flags |= EMBEDDED_PANIC_HEADER_FLAG_STACKSHOT_FAILED_DEBUGGERSYNC; |
| 700 | panic_info->eph_other_log_offset = PE_get_offset_into_panic_region(location: debug_buf_ptr); |
| 701 | paniclog_append_noflush(format: "!! debugger synchronization failed, no stackshot !!\n" ); |
| 702 | } else if (stackshot_active()) { |
| 703 | panic_info->eph_panic_flags |= EMBEDDED_PANIC_HEADER_FLAG_STACKSHOT_FAILED_NESTED; |
| 704 | panic_info->eph_other_log_offset = PE_get_offset_into_panic_region(location: debug_buf_ptr); |
| 705 | paniclog_append_noflush(format: "!! panicked during stackshot, skipping panic stackshot !!\n" ); |
| 706 | } else { |
| 707 | /* Align the stackshot buffer to an 8-byte address (especially important for armv7k devices) */ |
| 708 | debug_buf_ptr += (8 - ((uintptr_t)debug_buf_ptr % 8)); |
| 709 | stackshot_begin_loc = debug_buf_ptr; |
| 710 | |
| 711 | bytes_remaining = debug_buf_size - (unsigned int)((uintptr_t)stackshot_begin_loc - (uintptr_t)debug_buf_base); |
| 712 | err = kcdata_memory_static_init(data: &kc_panic_data, buffer_addr_p: (mach_vm_address_t)debug_buf_ptr, |
| 713 | KCDATA_BUFFER_BEGIN_COMPRESSED, size: bytes_remaining - end_marker_bytes, |
| 714 | KCFLAG_USE_MEMCOPY); |
| 715 | if (err == KERN_SUCCESS) { |
| 716 | uint64_t stackshot_flags = (STACKSHOT_GET_GLOBAL_MEM_STATS | STACKSHOT_SAVE_LOADINFO | STACKSHOT_KCDATA_FORMAT | |
| 717 | STACKSHOT_ENABLE_BT_FAULTING | STACKSHOT_ENABLE_UUID_FAULTING | STACKSHOT_FROM_PANIC | STACKSHOT_DO_COMPRESS | |
| 718 | STACKSHOT_DISABLE_LATENCY_INFO | STACKSHOT_NO_IO_STATS | STACKSHOT_THREAD_WAITINFO | STACKSHOT_GET_DQ | |
| 719 | STACKSHOT_COLLECT_SHAREDCACHE_LAYOUT); |
| 720 | |
| 721 | err = kcdata_init_compress(&kc_panic_data, KCDATA_BUFFER_BEGIN_STACKSHOT, memcpy_f: kdp_memcpy, type: KCDCT_ZLIB); |
| 722 | if (err != KERN_SUCCESS) { |
| 723 | panic_info->eph_panic_flags |= EMBEDDED_PANIC_HEADER_FLAG_COMPRESS_FAILED; |
| 724 | stackshot_flags &= ~STACKSHOT_DO_COMPRESS; |
| 725 | } |
| 726 | if (filesetKC) { |
| 727 | stackshot_flags |= STACKSHOT_SAVE_KEXT_LOADINFO; |
| 728 | } |
| 729 | |
| 730 | kdp_snapshot_preflight(pid: -1, tracebuf: stackshot_begin_loc, tracebuf_size: bytes_remaining - end_marker_bytes, |
| 731 | flags: stackshot_flags, data_p: &kc_panic_data, since_timestamp: 0, pagetable_mask: 0); |
| 732 | err = do_panic_stackshot(NULL); |
| 733 | bytes_traced = kdp_stack_snapshot_bytes_traced(); |
| 734 | if (bytes_traced > 0 && !err) { |
| 735 | debug_buf_ptr += bytes_traced; |
| 736 | panic_info->eph_panic_flags |= EMBEDDED_PANIC_HEADER_FLAG_STACKSHOT_SUCCEEDED; |
| 737 | panic_info->eph_stackshot_offset = PE_get_offset_into_panic_region(location: stackshot_begin_loc); |
| 738 | panic_info->eph_stackshot_len = bytes_traced; |
| 739 | |
| 740 | panic_info->eph_other_log_offset = PE_get_offset_into_panic_region(location: debug_buf_ptr); |
| 741 | #if CONFIG_EXCLAVES |
| 742 | panic_report_exclaves_stackshot(); |
| 743 | #endif /* CONFIG_EXCLAVES */ |
| 744 | if (stackshot_flags & STACKSHOT_DO_COMPRESS) { |
| 745 | panic_info->eph_panic_flags |= EMBEDDED_PANIC_HEADER_FLAG_STACKSHOT_DATA_COMPRESSED; |
| 746 | bytes_uncompressed = kdp_stack_snapshot_bytes_uncompressed(); |
| 747 | paniclog_append_noflush(format: "\n** Stackshot Succeeded ** Bytes Traced %d (Uncompressed %d) **\n" , bytes_traced, bytes_uncompressed); |
| 748 | } else { |
| 749 | paniclog_append_noflush(format: "\n** Stackshot Succeeded ** Bytes Traced %d **\n" , bytes_traced); |
| 750 | } |
| 751 | } else { |
| 752 | bytes_used = kcdata_memory_get_used_bytes(kcd: &kc_panic_data); |
| 753 | #if CONFIG_EXCLAVES |
| 754 | panic_report_exclaves_stackshot(); |
| 755 | #endif /* CONFIG_EXCLAVES */ |
| 756 | if (bytes_used > 0) { |
| 757 | /* Zero out the stackshot data */ |
| 758 | bzero(s: stackshot_begin_loc, n: bytes_used); |
| 759 | panic_info->eph_panic_flags |= EMBEDDED_PANIC_HEADER_FLAG_STACKSHOT_FAILED_INCOMPLETE; |
| 760 | |
| 761 | panic_info->eph_other_log_offset = PE_get_offset_into_panic_region(location: debug_buf_ptr); |
| 762 | paniclog_append_noflush(format: "\n** Stackshot Incomplete ** Bytes Filled %llu **\n" , bytes_used); |
| 763 | } else { |
| 764 | bzero(s: stackshot_begin_loc, n: bytes_used); |
| 765 | panic_info->eph_panic_flags |= EMBEDDED_PANIC_HEADER_FLAG_STACKSHOT_FAILED_ERROR; |
| 766 | |
| 767 | panic_info->eph_other_log_offset = PE_get_offset_into_panic_region(location: debug_buf_ptr); |
| 768 | paniclog_append_noflush(format: "\n!! Stackshot Failed !! Bytes Traced %d, err %d\n" , bytes_traced, err); |
| 769 | } |
| 770 | } |
| 771 | } else { |
| 772 | panic_info->eph_panic_flags |= EMBEDDED_PANIC_HEADER_FLAG_STACKSHOT_FAILED_ERROR; |
| 773 | panic_info->eph_other_log_offset = PE_get_offset_into_panic_region(location: debug_buf_ptr); |
| 774 | paniclog_append_noflush(format: "\n!! Stackshot Failed !!\nkcdata_memory_static_init returned %d" , err); |
| 775 | } |
| 776 | } |
| 777 | |
| 778 | #if CONFIG_EXT_PANICLOG |
| 779 | // Write ext paniclog at the end of the paniclog region. |
| 780 | ext_paniclog_bytes = ext_paniclog_write_panicdata(); |
| 781 | panic_info->eph_ext_paniclog_offset = (ext_paniclog_bytes != 0) ? |
| 782 | PE_get_offset_into_panic_region((debug_buf_base + debug_buf_size) - ext_paniclog_bytes) : |
| 783 | 0; |
| 784 | panic_info->eph_ext_paniclog_len = ext_paniclog_bytes; |
| 785 | #endif |
| 786 | |
| 787 | assert(panic_info->eph_other_log_offset != 0); |
| 788 | |
| 789 | if (print_vnodes != 0) { |
| 790 | panic_print_vnodes(); |
| 791 | } |
| 792 | |
| 793 | panic_bt_depth--; |
| 794 | } |
| 795 | |
| 796 | /* |
| 797 | * Entry to print_all_backtraces is serialized by the debugger lock |
| 798 | */ |
| 799 | static void |
| 800 | print_all_backtraces(const char *message, uint64_t panic_options) |
| 801 | { |
| 802 | unsigned int initial_not_in_kdp = not_in_kdp; |
| 803 | |
| 804 | cpu_data_t * cpu_data_ptr = getCpuDatap(); |
| 805 | |
| 806 | assert(cpu_data_ptr->PAB_active == FALSE); |
| 807 | cpu_data_ptr->PAB_active = TRUE; |
| 808 | |
| 809 | /* |
| 810 | * Because print all backtraces uses the pmap routines, it needs to |
| 811 | * avoid taking pmap locks. Right now, this is conditionalized on |
| 812 | * not_in_kdp. |
| 813 | */ |
| 814 | not_in_kdp = 0; |
| 815 | do_print_all_backtraces(message, panic_options); |
| 816 | |
| 817 | not_in_kdp = initial_not_in_kdp; |
| 818 | |
| 819 | cpu_data_ptr->PAB_active = FALSE; |
| 820 | } |
| 821 | |
| 822 | void |
| 823 | panic_display_times() |
| 824 | { |
| 825 | if (kdp_clock_is_locked()) { |
| 826 | paniclog_append_noflush(format: "Warning: clock is locked. Can't get time\n" ); |
| 827 | return; |
| 828 | } |
| 829 | |
| 830 | extern lck_ticket_t clock_lock; |
| 831 | extern lck_grp_t clock_lock_grp; |
| 832 | |
| 833 | if ((is_clock_configured) && (lck_ticket_lock_try(tlock: &clock_lock, grp: &clock_lock_grp))) { |
| 834 | clock_sec_t secs, boot_secs; |
| 835 | clock_usec_t usecs, boot_usecs; |
| 836 | |
| 837 | lck_ticket_unlock(tlock: &clock_lock); |
| 838 | |
| 839 | clock_get_calendar_microtime(secs: &secs, microsecs: &usecs); |
| 840 | clock_get_boottime_microtime(secs: &boot_secs, microsecs: &boot_usecs); |
| 841 | |
| 842 | paniclog_append_noflush(format: "mach_absolute_time: 0x%llx\n" , mach_absolute_time()); |
| 843 | paniclog_append_noflush(format: "Epoch Time: sec usec\n" ); |
| 844 | paniclog_append_noflush(format: " Boot : 0x%08x 0x%08x\n" , (unsigned int)boot_secs, (unsigned int)boot_usecs); |
| 845 | paniclog_append_noflush(format: " Sleep : 0x%08x 0x%08x\n" , (unsigned int)gIOLastSleepTime.tv_sec, (unsigned int)gIOLastSleepTime.tv_usec); |
| 846 | paniclog_append_noflush(format: " Wake : 0x%08x 0x%08x\n" , (unsigned int)gIOLastWakeTime.tv_sec, (unsigned int)gIOLastWakeTime.tv_usec); |
| 847 | paniclog_append_noflush(format: " Calendar: 0x%08x 0x%08x\n\n" , (unsigned int)secs, (unsigned int)usecs); |
| 848 | } |
| 849 | } |
| 850 | |
| 851 | void |
| 852 | panic_print_symbol_name(vm_address_t search) |
| 853 | { |
| 854 | #pragma unused(search) |
| 855 | // empty stub. Really only used on x86_64. |
| 856 | return; |
| 857 | } |
| 858 | |
| 859 | void |
| 860 | SavePanicInfo( |
| 861 | const char *message, __unused void *panic_data, uint64_t panic_options) |
| 862 | { |
| 863 | /* |
| 864 | * This should be initialized by the time we get here, but |
| 865 | * if it is not, asserting about it will be of no use (it will |
| 866 | * come right back to here), so just loop right here and now. |
| 867 | * This prevents early-boot panics from becoming recursive and |
| 868 | * thus makes them easier to debug. If you attached to a device |
| 869 | * and see your PC here, look down a few frames to see your |
| 870 | * early-boot panic there. |
| 871 | */ |
| 872 | while (!panic_info || panic_info->eph_panic_log_offset == 0) { |
| 873 | // rdar://87170225 (PanicHardening: audit panic code for naked spinloops) |
| 874 | // rdar://88094367 (Add test hooks for panic at different stages in XNU) |
| 875 | ; |
| 876 | } |
| 877 | |
| 878 | if (panic_options & DEBUGGER_OPTION_PANICLOGANDREBOOT) { |
| 879 | panic_info->eph_panic_flags |= EMBEDDED_PANIC_HEADER_FLAG_BUTTON_RESET_PANIC; |
| 880 | } |
| 881 | |
| 882 | if (panic_options & DEBUGGER_OPTION_COPROC_INITIATED_PANIC) { |
| 883 | panic_info->eph_panic_flags |= EMBEDDED_PANIC_HEADER_FLAG_COPROC_INITIATED_PANIC; |
| 884 | } |
| 885 | |
| 886 | #if defined(XNU_TARGET_OS_BRIDGE) |
| 887 | panic_info->eph_x86_power_state = PE_smc_stashed_x86_power_state; |
| 888 | panic_info->eph_x86_efi_boot_state = PE_smc_stashed_x86_efi_boot_state; |
| 889 | panic_info->eph_x86_system_state = PE_smc_stashed_x86_system_state; |
| 890 | #endif |
| 891 | |
| 892 | /* |
| 893 | * On newer targets, panic data is stored directly into the iBoot panic region. |
| 894 | * If we re-enter SavePanicInfo (e.g. on a double panic) on such a target, update the |
| 895 | * panic CRC so that iBoot can hopefully find *something* useful in the panic region. |
| 896 | */ |
| 897 | if (PanicInfoSaved && (debug_buf_base >= (char*)gPanicBase) && (debug_buf_base < (char*)gPanicBase + gPanicSize)) { |
| 898 | unsigned int pi_size = (unsigned int)(debug_buf_ptr - gPanicBase); |
| 899 | PE_update_panic_crc((unsigned char*)gPanicBase, &pi_size); |
| 900 | PE_sync_panic_buffers(); // extra precaution; panic path likely isn't reliable if we're here |
| 901 | } |
| 902 | |
| 903 | if (PanicInfoSaved || (debug_buf_size == 0)) { |
| 904 | return; |
| 905 | } |
| 906 | |
| 907 | PanicInfoSaved = TRUE; |
| 908 | |
| 909 | |
| 910 | print_all_backtraces(message, panic_options); |
| 911 | |
| 912 | assert(panic_info->eph_panic_log_len != 0); |
| 913 | panic_info->eph_other_log_len = PE_get_offset_into_panic_region(location: debug_buf_ptr) - panic_info->eph_other_log_offset; |
| 914 | |
| 915 | PEHaltRestart(type: kPEPanicSync); |
| 916 | |
| 917 | /* |
| 918 | * Notifies registered IOPlatformPanicAction callbacks |
| 919 | * (which includes one to disable the memcache) and flushes |
| 920 | * the buffer contents from the cache |
| 921 | */ |
| 922 | paniclog_flush(); |
| 923 | } |
| 924 | |
| 925 | void |
| 926 | paniclog_flush() |
| 927 | { |
| 928 | unsigned int panicbuf_length = 0; |
| 929 | |
| 930 | panicbuf_length = (unsigned int)(debug_buf_ptr - gPanicBase); |
| 931 | if (!debug_buf_ptr || !panicbuf_length) { |
| 932 | return; |
| 933 | } |
| 934 | |
| 935 | /* |
| 936 | * Updates the log length of the last part of the panic log. |
| 937 | */ |
| 938 | panic_info->eph_other_log_len = PE_get_offset_into_panic_region(location: debug_buf_ptr) - panic_info->eph_other_log_offset; |
| 939 | |
| 940 | /* |
| 941 | * Updates the metadata at the beginning of the panic buffer, |
| 942 | * updates the CRC. |
| 943 | */ |
| 944 | PE_update_panic_crc((unsigned char *)gPanicBase, &panicbuf_length); |
| 945 | |
| 946 | /* |
| 947 | * This is currently unused by platform KEXTs on embedded but is |
| 948 | * kept for compatibility with the published IOKit interfaces. |
| 949 | */ |
| 950 | PESavePanicInfo(buffer: (unsigned char *)gPanicBase, length: panicbuf_length); |
| 951 | |
| 952 | PE_sync_panic_buffers(); |
| 953 | } |
| 954 | |
| 955 | /* |
| 956 | * @function DebuggerXCallEnter |
| 957 | * |
| 958 | * @abstract IPI other cores so this core can run in a single-threaded context. |
| 959 | * |
| 960 | * @discussion This function should be called with the debugger lock held. It |
| 961 | * signals the other cores to go into a busy loop so this core can run in a |
| 962 | * single-threaded context and inspect kernel memory. |
| 963 | * |
| 964 | * @param proceed_on_sync_failure If true, then go ahead and try to debug even |
| 965 | * if we can't synch with the other cores. This is inherently unsafe and should |
| 966 | * only be used if the kernel is going down in flames anyway. |
| 967 | * |
| 968 | * @param is_stackshot If true, this is a stackshot request. |
| 969 | * |
| 970 | * @result returns KERN_OPERATION_TIMED_OUT if synchronization times out and |
| 971 | * proceed_on_sync_failure is false. |
| 972 | */ |
| 973 | kern_return_t |
| 974 | DebuggerXCallEnter( |
| 975 | boolean_t proceed_on_sync_failure, bool is_stackshot) |
| 976 | { |
| 977 | uint64_t max_mabs_time, current_mabs_time; |
| 978 | int cpu; |
| 979 | int max_cpu; |
| 980 | cpu_data_t *target_cpu_datap; |
| 981 | cpu_data_t *cpu_data_ptr = getCpuDatap(); |
| 982 | |
| 983 | /* Check for nested debugger entry. */ |
| 984 | cpu_data_ptr->debugger_active++; |
| 985 | if (cpu_data_ptr->debugger_active != 1) { |
| 986 | return KERN_SUCCESS; |
| 987 | } |
| 988 | |
| 989 | /* |
| 990 | * If debugger_sync is not 0, someone responded excessively late to the last |
| 991 | * debug request (we zero the sync variable in the return function). Zero it |
| 992 | * again here. This should prevent us from getting out of sync (heh) and |
| 993 | * timing out on every entry to the debugger if we timeout once. |
| 994 | */ |
| 995 | |
| 996 | debugger_sync = 0; |
| 997 | mp_kdp_trap = 1; |
| 998 | debug_cpus_spinning = 0; |
| 999 | |
| 1000 | #pragma unused(is_stackshot) |
| 1001 | |
| 1002 | /* |
| 1003 | * Try to signal all CPUs (except ourselves, of course). Use debugger_sync to |
| 1004 | * synchronize with every CPU that we appeared to signal successfully (cpu_signal |
| 1005 | * is not synchronous). |
| 1006 | */ |
| 1007 | max_cpu = ml_get_max_cpu_number(); |
| 1008 | |
| 1009 | boolean_t immediate_halt = FALSE; |
| 1010 | if (proceed_on_sync_failure && force_immediate_debug_halt) { |
| 1011 | immediate_halt = TRUE; |
| 1012 | } |
| 1013 | |
| 1014 | if (!immediate_halt) { |
| 1015 | for (cpu = 0; cpu <= max_cpu; cpu++) { |
| 1016 | target_cpu_datap = (cpu_data_t *)CpuDataEntries[cpu].cpu_data_vaddr; |
| 1017 | |
| 1018 | if ((target_cpu_datap == NULL) || (target_cpu_datap == cpu_data_ptr)) { |
| 1019 | continue; |
| 1020 | } |
| 1021 | |
| 1022 | kern_return_t ret = cpu_signal(target: target_cpu_datap, SIGPdebug, p0: (void *)NULL, NULL); |
| 1023 | if (ret == KERN_SUCCESS) { |
| 1024 | os_atomic_inc(&debugger_sync, relaxed); |
| 1025 | os_atomic_inc(&debug_cpus_spinning, relaxed); |
| 1026 | } else if (proceed_on_sync_failure) { |
| 1027 | kprintf(fmt: "cpu_signal failed in DebuggerXCallEnter\n" ); |
| 1028 | } |
| 1029 | } |
| 1030 | |
| 1031 | max_mabs_time = os_atomic_load(&debug_ack_timeout, relaxed); |
| 1032 | |
| 1033 | if (max_mabs_time > 0) { |
| 1034 | current_mabs_time = mach_absolute_time(); |
| 1035 | max_mabs_time += current_mabs_time; |
| 1036 | assert(max_mabs_time > current_mabs_time); |
| 1037 | } |
| 1038 | |
| 1039 | /* |
| 1040 | * Wait for DEBUG_ACK_TIMEOUT ns for a response from everyone we IPI'd. If we |
| 1041 | * timeout, that is simply too bad; we don't have a true NMI, and one CPU may be |
| 1042 | * uninterruptibly spinning on someone else. The best we can hope for is that |
| 1043 | * all other CPUs have either responded or are spinning in a context that is |
| 1044 | * debugger safe. |
| 1045 | */ |
| 1046 | while ((debugger_sync != 0) && (max_mabs_time == 0 || current_mabs_time < max_mabs_time)) { |
| 1047 | current_mabs_time = mach_absolute_time(); |
| 1048 | } |
| 1049 | } |
| 1050 | |
| 1051 | if (!proceed_on_sync_failure && (max_mabs_time > 0 && current_mabs_time >= max_mabs_time)) { |
| 1052 | __builtin_arm_dmb(DMB_ISH); |
| 1053 | for (cpu = 0; cpu <= max_cpu; cpu++) { |
| 1054 | target_cpu_datap = (cpu_data_t *)CpuDataEntries[cpu].cpu_data_vaddr; |
| 1055 | |
| 1056 | if ((target_cpu_datap == NULL) || (target_cpu_datap == cpu_data_ptr)) { |
| 1057 | continue; |
| 1058 | } |
| 1059 | if (!(target_cpu_datap->cpu_signal & SIGPdebug)) { |
| 1060 | continue; |
| 1061 | } |
| 1062 | if (processor_array[cpu]->state <= PROCESSOR_PENDING_OFFLINE) { |
| 1063 | /* |
| 1064 | * This is a processor that was successfully sent a SIGPdebug signal |
| 1065 | * but which hasn't acknowledged it because it went offline with |
| 1066 | * interrupts disabled before the IPI was delivered, so count it |
| 1067 | * here. |
| 1068 | */ |
| 1069 | os_atomic_dec(&debugger_sync, relaxed); |
| 1070 | kprintf(fmt: "%s>found CPU %d offline, debugger_sync=%d\n" , __FUNCTION__, cpu, debugger_sync); |
| 1071 | continue; |
| 1072 | } |
| 1073 | |
| 1074 | kprintf(fmt: "%s>Debugger synch pending on cpu %d\n" , __FUNCTION__, cpu); |
| 1075 | } |
| 1076 | |
| 1077 | if (debugger_sync == 0) { |
| 1078 | return KERN_SUCCESS; |
| 1079 | } else { |
| 1080 | DebuggerXCallReturn(); |
| 1081 | kprintf(fmt: "%s>returning KERN_OPERATION_TIMED_OUT\n" , __FUNCTION__); |
| 1082 | return KERN_OPERATION_TIMED_OUT; |
| 1083 | } |
| 1084 | } else if (immediate_halt || (max_mabs_time > 0 && current_mabs_time >= max_mabs_time)) { |
| 1085 | /* |
| 1086 | * For the moment, we're aiming for a timeout that the user shouldn't notice, |
| 1087 | * but will be sufficient to let the other core respond. |
| 1088 | */ |
| 1089 | __builtin_arm_dmb(DMB_ISH); |
| 1090 | for (cpu = 0; cpu <= max_cpu; cpu++) { |
| 1091 | target_cpu_datap = (cpu_data_t *)CpuDataEntries[cpu].cpu_data_vaddr; |
| 1092 | |
| 1093 | if ((target_cpu_datap == NULL) || (target_cpu_datap == cpu_data_ptr)) { |
| 1094 | continue; |
| 1095 | } |
| 1096 | if (!(target_cpu_datap->cpu_signal & SIGPdebug) && !immediate_halt) { |
| 1097 | continue; |
| 1098 | } |
| 1099 | if (proceed_on_sync_failure) { |
| 1100 | paniclog_append_noflush(format: "Attempting to forcibly halt cpu %d\n" , cpu); |
| 1101 | dbgwrap_status_t halt_status = ml_dbgwrap_halt_cpu(cpu_index: cpu, timeout_ns: 0); |
| 1102 | if (halt_status < 0) { |
| 1103 | paniclog_append_noflush(format: "cpu %d failed to halt with error %d: %s\n" , cpu, halt_status, ml_dbgwrap_strerror(status: halt_status)); |
| 1104 | } else { |
| 1105 | if (halt_status > 0) { |
| 1106 | paniclog_append_noflush(format: "cpu %d halted with warning %d: %s\n" , cpu, halt_status, ml_dbgwrap_strerror(status: halt_status)); |
| 1107 | } |
| 1108 | target_cpu_datap->halt_status = CPU_HALTED; |
| 1109 | } |
| 1110 | } else { |
| 1111 | kprintf(fmt: "Debugger synch pending on cpu %d\n" , cpu); |
| 1112 | } |
| 1113 | } |
| 1114 | if (proceed_on_sync_failure) { |
| 1115 | for (cpu = 0; cpu <= max_cpu; cpu++) { |
| 1116 | target_cpu_datap = (cpu_data_t *)CpuDataEntries[cpu].cpu_data_vaddr; |
| 1117 | |
| 1118 | if ((target_cpu_datap == NULL) || (target_cpu_datap == cpu_data_ptr) || |
| 1119 | (target_cpu_datap->halt_status == CPU_NOT_HALTED)) { |
| 1120 | continue; |
| 1121 | } |
| 1122 | dbgwrap_status_t halt_status = ml_dbgwrap_halt_cpu_with_state(cpu_index: cpu, |
| 1123 | NSEC_PER_SEC, state: &target_cpu_datap->halt_state); |
| 1124 | if ((halt_status < 0) || (halt_status == DBGWRAP_WARN_CPU_OFFLINE)) { |
| 1125 | paniclog_append_noflush(format: "Unable to obtain state for cpu %d with status %d: %s\n" , cpu, halt_status, ml_dbgwrap_strerror(status: halt_status)); |
| 1126 | } else { |
| 1127 | paniclog_append_noflush(format: "cpu %d successfully halted\n" , cpu); |
| 1128 | target_cpu_datap->halt_status = CPU_HALTED_WITH_STATE; |
| 1129 | } |
| 1130 | } |
| 1131 | if (immediate_halt) { |
| 1132 | paniclog_append_noflush(format: "Immediate halt requested on all cores\n" ); |
| 1133 | } else { |
| 1134 | paniclog_append_noflush(format: "Debugger synchronization timed out; waited %llu nanoseconds\n" , |
| 1135 | os_atomic_load(&debug_ack_timeout, relaxed)); |
| 1136 | } |
| 1137 | debug_ack_timeout_count++; |
| 1138 | return KERN_SUCCESS; |
| 1139 | } else { |
| 1140 | DebuggerXCallReturn(); |
| 1141 | return KERN_OPERATION_TIMED_OUT; |
| 1142 | } |
| 1143 | } else { |
| 1144 | return KERN_SUCCESS; |
| 1145 | } |
| 1146 | } |
| 1147 | |
| 1148 | /* |
| 1149 | * @function DebuggerXCallReturn |
| 1150 | * |
| 1151 | * @abstract Resume normal multicore operation after DebuggerXCallEnter() |
| 1152 | * |
| 1153 | * @discussion This function should be called with debugger lock held. |
| 1154 | */ |
| 1155 | void |
| 1156 | DebuggerXCallReturn( |
| 1157 | void) |
| 1158 | { |
| 1159 | cpu_data_t *cpu_data_ptr = getCpuDatap(); |
| 1160 | uint64_t max_mabs_time, current_mabs_time; |
| 1161 | |
| 1162 | cpu_data_ptr->debugger_active--; |
| 1163 | if (cpu_data_ptr->debugger_active != 0) { |
| 1164 | return; |
| 1165 | } |
| 1166 | |
| 1167 | mp_kdp_trap = 0; |
| 1168 | debugger_sync = 0; |
| 1169 | |
| 1170 | max_mabs_time = os_atomic_load(&debug_ack_timeout, relaxed); |
| 1171 | |
| 1172 | if (max_mabs_time > 0) { |
| 1173 | current_mabs_time = mach_absolute_time(); |
| 1174 | max_mabs_time += current_mabs_time; |
| 1175 | assert(max_mabs_time > current_mabs_time); |
| 1176 | } |
| 1177 | |
| 1178 | /* |
| 1179 | * Wait for other CPUs to stop spinning on mp_kdp_trap (see DebuggerXCall). |
| 1180 | * It's possible for one or more CPUs to not decrement debug_cpus_spinning, |
| 1181 | * since they may be stuck somewhere else with interrupts disabled. |
| 1182 | * Wait for DEBUG_ACK_TIMEOUT ns for a response and move on if we don't get it. |
| 1183 | * |
| 1184 | * Note that the same is done in DebuggerXCallEnter, when we wait for other |
| 1185 | * CPUS to update debugger_sync. If we time out, let's hope for all CPUs to be |
| 1186 | * spinning in a debugger-safe context |
| 1187 | */ |
| 1188 | while ((os_atomic_load_exclusive(&debug_cpus_spinning, relaxed) != 0) && |
| 1189 | (max_mabs_time == 0 || current_mabs_time < max_mabs_time)) { |
| 1190 | __builtin_arm_wfe(); |
| 1191 | current_mabs_time = mach_absolute_time(); |
| 1192 | } |
| 1193 | os_atomic_clear_exclusive(); |
| 1194 | } |
| 1195 | |
| 1196 | extern void wait_while_mp_kdp_trap(bool check_SIGPdebug); |
| 1197 | /* |
| 1198 | * Spin while mp_kdp_trap is set. |
| 1199 | * |
| 1200 | * processor_offline() calls this with check_SIGPdebug=true |
| 1201 | * to break out of the spin loop if the cpu has SIGPdebug |
| 1202 | * pending. |
| 1203 | */ |
| 1204 | void |
| 1205 | wait_while_mp_kdp_trap(bool check_SIGPdebug) |
| 1206 | { |
| 1207 | bool found_mp_kdp_trap = false; |
| 1208 | bool found_SIGPdebug = false; |
| 1209 | |
| 1210 | while (os_atomic_load_exclusive(&mp_kdp_trap, relaxed) != 0) { |
| 1211 | found_mp_kdp_trap = true; |
| 1212 | if (check_SIGPdebug && cpu_has_SIGPdebug_pending()) { |
| 1213 | found_SIGPdebug = true; |
| 1214 | break; |
| 1215 | } |
| 1216 | __builtin_arm_wfe(); |
| 1217 | } |
| 1218 | os_atomic_clear_exclusive(); |
| 1219 | |
| 1220 | if (check_SIGPdebug && found_mp_kdp_trap) { |
| 1221 | kprintf(fmt: "%s>found_mp_kdp_trap=true found_SIGPdebug=%s\n" , __FUNCTION__, found_SIGPdebug ? "true" : "false" ); |
| 1222 | } |
| 1223 | } |
| 1224 | |
| 1225 | void |
| 1226 | DebuggerXCall( |
| 1227 | void *ctx) |
| 1228 | { |
| 1229 | boolean_t save_context = FALSE; |
| 1230 | vm_offset_t kstackptr = 0; |
| 1231 | arm_saved_state_t *regs = (arm_saved_state_t *) ctx; |
| 1232 | |
| 1233 | if (regs != NULL) { |
| 1234 | #if defined(__arm64__) |
| 1235 | current_cpu_datap()->ipi_pc = (uint64_t)get_saved_state_pc(iss: regs); |
| 1236 | current_cpu_datap()->ipi_lr = (uint64_t)get_saved_state_lr(iss: regs); |
| 1237 | current_cpu_datap()->ipi_fp = (uint64_t)get_saved_state_fp(iss: regs); |
| 1238 | save_context = PSR64_IS_KERNEL(get_saved_state_cpsr(regs)); |
| 1239 | #endif |
| 1240 | } |
| 1241 | |
| 1242 | kstackptr = (vm_offset_t)current_thread()->machine.kstackptr; |
| 1243 | |
| 1244 | #if defined(__arm64__) |
| 1245 | arm_kernel_saved_state_t *state = (arm_kernel_saved_state_t *)kstackptr; |
| 1246 | |
| 1247 | if (save_context) { |
| 1248 | /* Save the interrupted context before acknowledging the signal */ |
| 1249 | current_thread()->machine.kpcb = regs; |
| 1250 | } else if (regs) { |
| 1251 | /* zero old state so machine_trace_thread knows not to backtrace it */ |
| 1252 | state->fp = 0; |
| 1253 | state->pc_was_in_userspace = true; |
| 1254 | state->lr = 0; |
| 1255 | state->sp = 0; |
| 1256 | state->ssbs = 0; |
| 1257 | state->uao = 0; |
| 1258 | state->dit = 0; |
| 1259 | } |
| 1260 | #endif |
| 1261 | |
| 1262 | /* |
| 1263 | * When running in serial mode, the core capturing the dump may hold interrupts disabled |
| 1264 | * for a time longer than the timeout. That path includes logic to reset the timestamp |
| 1265 | * so that we do not eventually trigger the interrupt timeout assert(). |
| 1266 | * |
| 1267 | * Here we check whether other cores have already gone over the timeout at this point |
| 1268 | * before spinning, so we at least cover the IPI reception path. After spinning, however, |
| 1269 | * we reset the timestamp so as to avoid hitting the interrupt timeout assert(). |
| 1270 | */ |
| 1271 | if ((serialmode & SERIALMODE_OUTPUT) || stackshot_active()) { |
| 1272 | INTERRUPT_MASKED_DEBUG_END(); |
| 1273 | } |
| 1274 | |
| 1275 | os_atomic_dec(&debugger_sync, relaxed); |
| 1276 | |
| 1277 | |
| 1278 | wait_while_mp_kdp_trap(false); |
| 1279 | |
| 1280 | /** |
| 1281 | * Alert the triggering CPU that this CPU is done spinning. The CPU that |
| 1282 | * signalled all of the other CPUs will wait (in DebuggerXCallReturn) for |
| 1283 | * all of the CPUs to exit the above loop before continuing. |
| 1284 | */ |
| 1285 | os_atomic_dec(&debug_cpus_spinning, relaxed); |
| 1286 | |
| 1287 | #if SCHED_HYGIENE_DEBUG |
| 1288 | /* |
| 1289 | * We also abandon the measurement for preemption disable |
| 1290 | * timeouts, if any. Normally, time in interrupt handlers would be |
| 1291 | * subtracted from preemption disable time, and this will happen |
| 1292 | * up to this point here, but since we here "end" the interrupt |
| 1293 | * handler prematurely (from the point of view of interrupt masked |
| 1294 | * debugging), the time spinning would otherwise still be |
| 1295 | * attributed to preemption disable time, and potentially trigger |
| 1296 | * an event, which could be a panic. |
| 1297 | */ |
| 1298 | abandon_preemption_disable_measurement(); |
| 1299 | #endif /* SCHED_HYGIENE_DEBUG */ |
| 1300 | |
| 1301 | if ((serialmode & SERIALMODE_OUTPUT) || stackshot_active()) { |
| 1302 | INTERRUPT_MASKED_DEBUG_START(current_thread()->machine.int_handler_addr, current_thread()->machine.int_type); |
| 1303 | } |
| 1304 | |
| 1305 | #if defined(__arm64__) |
| 1306 | current_thread()->machine.kpcb = NULL; |
| 1307 | #endif /* defined(__arm64__) */ |
| 1308 | |
| 1309 | /* Any cleanup for our pushed context should go here */ |
| 1310 | } |
| 1311 | |
| 1312 | void |
| 1313 | DebuggerCall( |
| 1314 | unsigned int reason, |
| 1315 | void *ctx) |
| 1316 | { |
| 1317 | #if !MACH_KDP |
| 1318 | #pragma unused(reason,ctx) |
| 1319 | #endif /* !MACH_KDP */ |
| 1320 | |
| 1321 | #if ALTERNATE_DEBUGGER |
| 1322 | alternate_debugger_enter(); |
| 1323 | #endif |
| 1324 | |
| 1325 | #if MACH_KDP |
| 1326 | kdp_trap(reason, (struct arm_saved_state *)ctx); |
| 1327 | #else |
| 1328 | /* TODO: decide what to do if no debugger config */ |
| 1329 | #endif |
| 1330 | } |
| 1331 | |
| 1332 | boolean_t |
| 1333 | bootloader_valid_page(ppnum_t ppn) |
| 1334 | { |
| 1335 | return pmap_bootloader_page(pn: ppn); |
| 1336 | } |
| 1337 | |