| 1 | /* |
| 2 | * Copyright (c) 2007-2021 Apple Inc. All rights reserved. |
| 3 | * |
| 4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ |
| 5 | * |
| 6 | * This file contains Original Code and/or Modifications of Original Code |
| 7 | * as defined in and that are subject to the Apple Public Source License |
| 8 | * Version 2.0 (the 'License'). You may not use this file except in |
| 9 | * compliance with the License. The rights granted to you under the License |
| 10 | * may not be used to create, or enable the creation or redistribution of, |
| 11 | * unlawful or unlicensed copies of an Apple operating system, or to |
| 12 | * circumvent, violate, or enable the circumvention or violation of, any |
| 13 | * terms of an Apple operating system software license agreement. |
| 14 | * |
| 15 | * Please obtain a copy of the License at |
| 16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. |
| 17 | * |
| 18 | * The Original Code and all software distributed under the License are |
| 19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER |
| 20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
| 21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, |
| 22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
| 23 | * Please see the License for the specific language governing rights and |
| 24 | * limitations under the License. |
| 25 | * |
| 26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ |
| 27 | */ |
| 28 | |
| 29 | #include <arm/machine_cpu.h> |
| 30 | #include <arm/cpu_internal.h> |
| 31 | #include <arm/cpuid.h> |
| 32 | #include <arm/cpuid_internal.h> |
| 33 | #include <arm/cpu_data.h> |
| 34 | #include <arm/cpu_data_internal.h> |
| 35 | #include <arm/misc_protos.h> |
| 36 | #include <arm/machdep_call.h> |
| 37 | #include <arm/machine_routines.h> |
| 38 | #include <arm/rtclock.h> |
| 39 | #include <kern/machine.h> |
| 40 | #include <kern/thread.h> |
| 41 | #include <kern/thread_group.h> |
| 42 | #include <kern/policy_internal.h> |
| 43 | #include <kern/sched_hygiene.h> |
| 44 | #include <kern/startup.h> |
| 45 | #include <kern/monotonic.h> |
| 46 | #include <machine/config.h> |
| 47 | #include <machine/atomic.h> |
| 48 | #include <machine/monotonic.h> |
| 49 | #include <pexpert/pexpert.h> |
| 50 | #include <pexpert/device_tree.h> |
| 51 | |
| 52 | #include <mach/machine.h> |
| 53 | #include <mach/machine/sdt.h> |
| 54 | |
| 55 | #if !HAS_CONTINUOUS_HWCLOCK |
| 56 | extern uint64_t mach_absolutetime_asleep; |
| 57 | #else |
| 58 | extern uint64_t wake_abstime; |
| 59 | static uint64_t wake_conttime = UINT64_MAX; |
| 60 | #endif |
| 61 | |
| 62 | extern volatile uint32_t debug_enabled; |
| 63 | extern _Atomic unsigned int cluster_type_num_active_cpus[MAX_CPU_TYPES]; |
| 64 | const char *cluster_type_names[MAX_CPU_TYPES] = { |
| 65 | [CLUSTER_TYPE_SMP] = "Standard" , |
| 66 | [CLUSTER_TYPE_P] = "Performance" , |
| 67 | [CLUSTER_TYPE_E] = "Efficiency" , |
| 68 | }; |
| 69 | |
| 70 | static int max_cpus_initialized = 0; |
| 71 | #define MAX_CPUS_SET 0x1 |
| 72 | #define MAX_CPUS_WAIT 0x2 |
| 73 | |
| 74 | LCK_GRP_DECLARE(max_cpus_grp, "max_cpus" ); |
| 75 | LCK_MTX_DECLARE(max_cpus_lock, &max_cpus_grp); |
| 76 | uint32_t lockdown_done = 0; |
| 77 | boolean_t is_clock_configured = FALSE; |
| 78 | |
| 79 | |
| 80 | static void |
| 81 | sched_perfcontrol_oncore_default(perfcontrol_state_t new_thread_state __unused, going_on_core_t on __unused) |
| 82 | { |
| 83 | } |
| 84 | |
| 85 | static void |
| 86 | sched_perfcontrol_switch_default(perfcontrol_state_t old_thread_state __unused, perfcontrol_state_t new_thread_state __unused) |
| 87 | { |
| 88 | } |
| 89 | |
| 90 | static void |
| 91 | sched_perfcontrol_offcore_default(perfcontrol_state_t old_thread_state __unused, going_off_core_t off __unused, boolean_t thread_terminating __unused) |
| 92 | { |
| 93 | } |
| 94 | |
| 95 | static void |
| 96 | sched_perfcontrol_thread_group_default(thread_group_data_t data __unused) |
| 97 | { |
| 98 | } |
| 99 | |
| 100 | static void |
| 101 | sched_perfcontrol_max_runnable_latency_default(perfcontrol_max_runnable_latency_t latencies __unused) |
| 102 | { |
| 103 | } |
| 104 | |
| 105 | static void |
| 106 | sched_perfcontrol_work_interval_notify_default(perfcontrol_state_t thread_state __unused, |
| 107 | perfcontrol_work_interval_t work_interval __unused) |
| 108 | { |
| 109 | } |
| 110 | |
| 111 | static void |
| 112 | sched_perfcontrol_work_interval_ctl_default(perfcontrol_state_t thread_state __unused, |
| 113 | perfcontrol_work_interval_instance_t instance __unused) |
| 114 | { |
| 115 | } |
| 116 | |
| 117 | static void |
| 118 | sched_perfcontrol_deadline_passed_default(__unused uint64_t deadline) |
| 119 | { |
| 120 | } |
| 121 | |
| 122 | static void |
| 123 | sched_perfcontrol_csw_default( |
| 124 | __unused perfcontrol_event event, __unused uint32_t cpu_id, __unused uint64_t timestamp, |
| 125 | __unused uint32_t flags, __unused struct perfcontrol_thread_data *offcore, |
| 126 | __unused struct perfcontrol_thread_data *oncore, |
| 127 | __unused struct perfcontrol_cpu_counters *cpu_counters, __unused void *unused) |
| 128 | { |
| 129 | } |
| 130 | |
| 131 | static void |
| 132 | sched_perfcontrol_state_update_default( |
| 133 | __unused perfcontrol_event event, __unused uint32_t cpu_id, __unused uint64_t timestamp, |
| 134 | __unused uint32_t flags, __unused struct perfcontrol_thread_data *thr_data, |
| 135 | __unused void *unused) |
| 136 | { |
| 137 | } |
| 138 | |
| 139 | static void |
| 140 | sched_perfcontrol_thread_group_blocked_default( |
| 141 | __unused thread_group_data_t blocked_tg, __unused thread_group_data_t blocking_tg, |
| 142 | __unused uint32_t flags, __unused perfcontrol_state_t blocked_thr_state) |
| 143 | { |
| 144 | } |
| 145 | |
| 146 | static void |
| 147 | sched_perfcontrol_thread_group_unblocked_default( |
| 148 | __unused thread_group_data_t unblocked_tg, __unused thread_group_data_t unblocking_tg, |
| 149 | __unused uint32_t flags, __unused perfcontrol_state_t unblocked_thr_state) |
| 150 | { |
| 151 | } |
| 152 | |
| 153 | sched_perfcontrol_offcore_t sched_perfcontrol_offcore = sched_perfcontrol_offcore_default; |
| 154 | sched_perfcontrol_context_switch_t sched_perfcontrol_switch = sched_perfcontrol_switch_default; |
| 155 | sched_perfcontrol_oncore_t sched_perfcontrol_oncore = sched_perfcontrol_oncore_default; |
| 156 | sched_perfcontrol_thread_group_init_t sched_perfcontrol_thread_group_init = sched_perfcontrol_thread_group_default; |
| 157 | sched_perfcontrol_thread_group_deinit_t sched_perfcontrol_thread_group_deinit = sched_perfcontrol_thread_group_default; |
| 158 | sched_perfcontrol_thread_group_flags_update_t sched_perfcontrol_thread_group_flags_update = sched_perfcontrol_thread_group_default; |
| 159 | sched_perfcontrol_max_runnable_latency_t sched_perfcontrol_max_runnable_latency = sched_perfcontrol_max_runnable_latency_default; |
| 160 | sched_perfcontrol_work_interval_notify_t sched_perfcontrol_work_interval_notify = sched_perfcontrol_work_interval_notify_default; |
| 161 | sched_perfcontrol_work_interval_ctl_t sched_perfcontrol_work_interval_ctl = sched_perfcontrol_work_interval_ctl_default; |
| 162 | sched_perfcontrol_deadline_passed_t sched_perfcontrol_deadline_passed = sched_perfcontrol_deadline_passed_default; |
| 163 | sched_perfcontrol_csw_t sched_perfcontrol_csw = sched_perfcontrol_csw_default; |
| 164 | sched_perfcontrol_state_update_t sched_perfcontrol_state_update = sched_perfcontrol_state_update_default; |
| 165 | sched_perfcontrol_thread_group_blocked_t sched_perfcontrol_thread_group_blocked = sched_perfcontrol_thread_group_blocked_default; |
| 166 | sched_perfcontrol_thread_group_unblocked_t sched_perfcontrol_thread_group_unblocked = sched_perfcontrol_thread_group_unblocked_default; |
| 167 | boolean_t sched_perfcontrol_thread_shared_rsrc_flags_enabled = false; |
| 168 | |
| 169 | void |
| 170 | sched_perfcontrol_register_callbacks(sched_perfcontrol_callbacks_t callbacks, unsigned long size_of_state) |
| 171 | { |
| 172 | assert(callbacks == NULL || callbacks->version >= SCHED_PERFCONTROL_CALLBACKS_VERSION_2); |
| 173 | |
| 174 | if (size_of_state > sizeof(struct perfcontrol_state)) { |
| 175 | panic("%s: Invalid required state size %lu" , __FUNCTION__, size_of_state); |
| 176 | } |
| 177 | |
| 178 | if (callbacks) { |
| 179 | #if CONFIG_THREAD_GROUPS |
| 180 | if (callbacks->version >= SCHED_PERFCONTROL_CALLBACKS_VERSION_3) { |
| 181 | if (callbacks->thread_group_init != NULL) { |
| 182 | sched_perfcontrol_thread_group_init = callbacks->thread_group_init; |
| 183 | } else { |
| 184 | sched_perfcontrol_thread_group_init = sched_perfcontrol_thread_group_default; |
| 185 | } |
| 186 | if (callbacks->thread_group_deinit != NULL) { |
| 187 | sched_perfcontrol_thread_group_deinit = callbacks->thread_group_deinit; |
| 188 | } else { |
| 189 | sched_perfcontrol_thread_group_deinit = sched_perfcontrol_thread_group_default; |
| 190 | } |
| 191 | // tell CLPC about existing thread groups |
| 192 | thread_group_resync(TRUE); |
| 193 | } |
| 194 | |
| 195 | if (callbacks->version >= SCHED_PERFCONTROL_CALLBACKS_VERSION_6) { |
| 196 | if (callbacks->thread_group_flags_update != NULL) { |
| 197 | sched_perfcontrol_thread_group_flags_update = callbacks->thread_group_flags_update; |
| 198 | } else { |
| 199 | sched_perfcontrol_thread_group_flags_update = sched_perfcontrol_thread_group_default; |
| 200 | } |
| 201 | } |
| 202 | |
| 203 | if (callbacks->version >= SCHED_PERFCONTROL_CALLBACKS_VERSION_8) { |
| 204 | if (callbacks->thread_group_blocked != NULL) { |
| 205 | sched_perfcontrol_thread_group_blocked = callbacks->thread_group_blocked; |
| 206 | } else { |
| 207 | sched_perfcontrol_thread_group_blocked = sched_perfcontrol_thread_group_blocked_default; |
| 208 | } |
| 209 | |
| 210 | if (callbacks->thread_group_unblocked != NULL) { |
| 211 | sched_perfcontrol_thread_group_unblocked = callbacks->thread_group_unblocked; |
| 212 | } else { |
| 213 | sched_perfcontrol_thread_group_unblocked = sched_perfcontrol_thread_group_unblocked_default; |
| 214 | } |
| 215 | } |
| 216 | #endif |
| 217 | if (callbacks->version >= SCHED_PERFCONTROL_CALLBACKS_VERSION_9) { |
| 218 | sched_perfcontrol_thread_shared_rsrc_flags_enabled = true; |
| 219 | } |
| 220 | |
| 221 | if (callbacks->version >= SCHED_PERFCONTROL_CALLBACKS_VERSION_7) { |
| 222 | if (callbacks->work_interval_ctl != NULL) { |
| 223 | sched_perfcontrol_work_interval_ctl = callbacks->work_interval_ctl; |
| 224 | } else { |
| 225 | sched_perfcontrol_work_interval_ctl = sched_perfcontrol_work_interval_ctl_default; |
| 226 | } |
| 227 | } |
| 228 | |
| 229 | if (callbacks->version >= SCHED_PERFCONTROL_CALLBACKS_VERSION_5) { |
| 230 | if (callbacks->csw != NULL) { |
| 231 | sched_perfcontrol_csw = callbacks->csw; |
| 232 | } else { |
| 233 | sched_perfcontrol_csw = sched_perfcontrol_csw_default; |
| 234 | } |
| 235 | |
| 236 | if (callbacks->state_update != NULL) { |
| 237 | sched_perfcontrol_state_update = callbacks->state_update; |
| 238 | } else { |
| 239 | sched_perfcontrol_state_update = sched_perfcontrol_state_update_default; |
| 240 | } |
| 241 | } |
| 242 | |
| 243 | if (callbacks->version >= SCHED_PERFCONTROL_CALLBACKS_VERSION_4) { |
| 244 | if (callbacks->deadline_passed != NULL) { |
| 245 | sched_perfcontrol_deadline_passed = callbacks->deadline_passed; |
| 246 | } else { |
| 247 | sched_perfcontrol_deadline_passed = sched_perfcontrol_deadline_passed_default; |
| 248 | } |
| 249 | } |
| 250 | |
| 251 | if (callbacks->offcore != NULL) { |
| 252 | sched_perfcontrol_offcore = callbacks->offcore; |
| 253 | } else { |
| 254 | sched_perfcontrol_offcore = sched_perfcontrol_offcore_default; |
| 255 | } |
| 256 | |
| 257 | if (callbacks->context_switch != NULL) { |
| 258 | sched_perfcontrol_switch = callbacks->context_switch; |
| 259 | } else { |
| 260 | sched_perfcontrol_switch = sched_perfcontrol_switch_default; |
| 261 | } |
| 262 | |
| 263 | if (callbacks->oncore != NULL) { |
| 264 | sched_perfcontrol_oncore = callbacks->oncore; |
| 265 | } else { |
| 266 | sched_perfcontrol_oncore = sched_perfcontrol_oncore_default; |
| 267 | } |
| 268 | |
| 269 | if (callbacks->max_runnable_latency != NULL) { |
| 270 | sched_perfcontrol_max_runnable_latency = callbacks->max_runnable_latency; |
| 271 | } else { |
| 272 | sched_perfcontrol_max_runnable_latency = sched_perfcontrol_max_runnable_latency_default; |
| 273 | } |
| 274 | |
| 275 | if (callbacks->work_interval_notify != NULL) { |
| 276 | sched_perfcontrol_work_interval_notify = callbacks->work_interval_notify; |
| 277 | } else { |
| 278 | sched_perfcontrol_work_interval_notify = sched_perfcontrol_work_interval_notify_default; |
| 279 | } |
| 280 | } else { |
| 281 | /* reset to defaults */ |
| 282 | #if CONFIG_THREAD_GROUPS |
| 283 | thread_group_resync(FALSE); |
| 284 | #endif |
| 285 | sched_perfcontrol_offcore = sched_perfcontrol_offcore_default; |
| 286 | sched_perfcontrol_switch = sched_perfcontrol_switch_default; |
| 287 | sched_perfcontrol_oncore = sched_perfcontrol_oncore_default; |
| 288 | sched_perfcontrol_thread_group_init = sched_perfcontrol_thread_group_default; |
| 289 | sched_perfcontrol_thread_group_deinit = sched_perfcontrol_thread_group_default; |
| 290 | sched_perfcontrol_thread_group_flags_update = sched_perfcontrol_thread_group_default; |
| 291 | sched_perfcontrol_max_runnable_latency = sched_perfcontrol_max_runnable_latency_default; |
| 292 | sched_perfcontrol_work_interval_notify = sched_perfcontrol_work_interval_notify_default; |
| 293 | sched_perfcontrol_work_interval_ctl = sched_perfcontrol_work_interval_ctl_default; |
| 294 | sched_perfcontrol_csw = sched_perfcontrol_csw_default; |
| 295 | sched_perfcontrol_state_update = sched_perfcontrol_state_update_default; |
| 296 | sched_perfcontrol_thread_group_blocked = sched_perfcontrol_thread_group_blocked_default; |
| 297 | sched_perfcontrol_thread_group_unblocked = sched_perfcontrol_thread_group_unblocked_default; |
| 298 | } |
| 299 | } |
| 300 | |
| 301 | |
| 302 | static void |
| 303 | machine_switch_populate_perfcontrol_thread_data(struct perfcontrol_thread_data *data, |
| 304 | thread_t thread, |
| 305 | uint64_t same_pri_latency) |
| 306 | { |
| 307 | bzero(s: data, n: sizeof(struct perfcontrol_thread_data)); |
| 308 | data->perfctl_class = thread_get_perfcontrol_class(thread); |
| 309 | data->energy_estimate_nj = 0; |
| 310 | data->thread_id = thread->thread_id; |
| 311 | #if CONFIG_THREAD_GROUPS |
| 312 | struct thread_group *tg = thread_group_get(t: thread); |
| 313 | data->thread_group_id = thread_group_get_id(tg); |
| 314 | data->thread_group_data = thread_group_get_machine_data(tg); |
| 315 | #endif |
| 316 | data->scheduling_latency_at_same_basepri = same_pri_latency; |
| 317 | data->perfctl_state = FIND_PERFCONTROL_STATE(thread); |
| 318 | } |
| 319 | |
| 320 | static void |
| 321 | machine_switch_populate_perfcontrol_cpu_counters(struct perfcontrol_cpu_counters *cpu_counters) |
| 322 | { |
| 323 | #if CONFIG_CPU_COUNTERS |
| 324 | mt_perfcontrol(&cpu_counters->instructions, &cpu_counters->cycles); |
| 325 | #else /* CONFIG_CPU_COUNTERS */ |
| 326 | cpu_counters->instructions = 0; |
| 327 | cpu_counters->cycles = 0; |
| 328 | #endif /* !CONFIG_CPU_COUNTERS */ |
| 329 | } |
| 330 | |
| 331 | int perfcontrol_callout_stats_enabled = 0; |
| 332 | static _Atomic uint64_t perfcontrol_callout_stats[PERFCONTROL_CALLOUT_MAX][PERFCONTROL_STAT_MAX]; |
| 333 | static _Atomic uint64_t perfcontrol_callout_count[PERFCONTROL_CALLOUT_MAX]; |
| 334 | |
| 335 | #if CONFIG_CPU_COUNTERS |
| 336 | static inline |
| 337 | bool |
| 338 | perfcontrol_callout_counters_begin(uint64_t *counters) |
| 339 | { |
| 340 | if (!perfcontrol_callout_stats_enabled) { |
| 341 | return false; |
| 342 | } |
| 343 | mt_fixed_counts(counters); |
| 344 | return true; |
| 345 | } |
| 346 | |
| 347 | static inline |
| 348 | void |
| 349 | perfcontrol_callout_counters_end(uint64_t *start_counters, |
| 350 | perfcontrol_callout_type_t type) |
| 351 | { |
| 352 | uint64_t end_counters[MT_CORE_NFIXED]; |
| 353 | mt_fixed_counts(end_counters); |
| 354 | os_atomic_add(&perfcontrol_callout_stats[type][PERFCONTROL_STAT_CYCLES], |
| 355 | end_counters[MT_CORE_CYCLES] - start_counters[MT_CORE_CYCLES], relaxed); |
| 356 | os_atomic_add(&perfcontrol_callout_stats[type][PERFCONTROL_STAT_INSTRS], |
| 357 | end_counters[MT_CORE_INSTRS] - start_counters[MT_CORE_INSTRS], relaxed); |
| 358 | os_atomic_inc(&perfcontrol_callout_count[type], relaxed); |
| 359 | } |
| 360 | #endif /* CONFIG_CPU_COUNTERS */ |
| 361 | |
| 362 | uint64_t |
| 363 | perfcontrol_callout_stat_avg(perfcontrol_callout_type_t type, |
| 364 | perfcontrol_callout_stat_t stat) |
| 365 | { |
| 366 | if (!perfcontrol_callout_stats_enabled) { |
| 367 | return 0; |
| 368 | } |
| 369 | return os_atomic_load_wide(&perfcontrol_callout_stats[type][stat], relaxed) / |
| 370 | os_atomic_load_wide(&perfcontrol_callout_count[type], relaxed); |
| 371 | } |
| 372 | |
| 373 | |
| 374 | |
| 375 | #if CONFIG_SCHED_EDGE |
| 376 | |
| 377 | /* |
| 378 | * The Edge scheduler allows the performance controller to update properties about the |
| 379 | * threads as part of the callouts. These properties typically include shared cluster |
| 380 | * resource usage. This allows the scheduler to manage specific threads within the |
| 381 | * workload more optimally. |
| 382 | */ |
| 383 | static void |
| 384 | sched_perfcontrol_thread_flags_update(thread_t thread, |
| 385 | struct perfcontrol_thread_data *thread_data, |
| 386 | shared_rsrc_policy_agent_t agent) |
| 387 | { |
| 388 | kern_return_t kr = KERN_SUCCESS; |
| 389 | if (thread_data->thread_flags_mask & PERFCTL_THREAD_FLAGS_MASK_CLUSTER_SHARED_RSRC_RR) { |
| 390 | if (thread_data->thread_flags & PERFCTL_THREAD_FLAGS_MASK_CLUSTER_SHARED_RSRC_RR) { |
| 391 | kr = thread_shared_rsrc_policy_set(thread, 0, CLUSTER_SHARED_RSRC_TYPE_RR, agent); |
| 392 | } else { |
| 393 | kr = thread_shared_rsrc_policy_clear(thread, CLUSTER_SHARED_RSRC_TYPE_RR, agent); |
| 394 | } |
| 395 | } |
| 396 | if (thread_data->thread_flags_mask & PERFCTL_THREAD_FLAGS_MASK_CLUSTER_SHARED_RSRC_NATIVE_FIRST) { |
| 397 | if (thread_data->thread_flags & PERFCTL_THREAD_FLAGS_MASK_CLUSTER_SHARED_RSRC_NATIVE_FIRST) { |
| 398 | kr = thread_shared_rsrc_policy_set(thread, 0, CLUSTER_SHARED_RSRC_TYPE_NATIVE_FIRST, agent); |
| 399 | } else { |
| 400 | kr = thread_shared_rsrc_policy_clear(thread, CLUSTER_SHARED_RSRC_TYPE_NATIVE_FIRST, agent); |
| 401 | } |
| 402 | } |
| 403 | /* |
| 404 | * The thread_shared_rsrc_policy_* routines only fail if the performance controller is |
| 405 | * attempting to double set/clear a policy on the thread. |
| 406 | */ |
| 407 | assert(kr == KERN_SUCCESS); |
| 408 | } |
| 409 | |
| 410 | #endif /* CONFIG_SCHED_EDGE */ |
| 411 | |
| 412 | void |
| 413 | machine_switch_perfcontrol_context(perfcontrol_event event, |
| 414 | uint64_t timestamp, |
| 415 | uint32_t flags, |
| 416 | uint64_t new_thread_same_pri_latency, |
| 417 | thread_t old, |
| 418 | thread_t new) |
| 419 | { |
| 420 | |
| 421 | if (sched_perfcontrol_switch != sched_perfcontrol_switch_default) { |
| 422 | perfcontrol_state_t old_perfcontrol_state = FIND_PERFCONTROL_STATE(old); |
| 423 | perfcontrol_state_t new_perfcontrol_state = FIND_PERFCONTROL_STATE(new); |
| 424 | sched_perfcontrol_switch(old_perfcontrol_state, new_perfcontrol_state); |
| 425 | } |
| 426 | |
| 427 | if (sched_perfcontrol_csw != sched_perfcontrol_csw_default) { |
| 428 | uint32_t cpu_id = (uint32_t)cpu_number(); |
| 429 | struct perfcontrol_cpu_counters cpu_counters; |
| 430 | struct perfcontrol_thread_data offcore, oncore; |
| 431 | machine_switch_populate_perfcontrol_thread_data(data: &offcore, thread: old, same_pri_latency: 0); |
| 432 | machine_switch_populate_perfcontrol_thread_data(data: &oncore, thread: new, |
| 433 | same_pri_latency: new_thread_same_pri_latency); |
| 434 | machine_switch_populate_perfcontrol_cpu_counters(cpu_counters: &cpu_counters); |
| 435 | |
| 436 | #if CONFIG_CPU_COUNTERS |
| 437 | uint64_t counters[MT_CORE_NFIXED]; |
| 438 | bool ctrs_enabled = perfcontrol_callout_counters_begin(counters); |
| 439 | #endif /* CONFIG_CPU_COUNTERS */ |
| 440 | sched_perfcontrol_csw(event, cpu_id, timestamp, flags, |
| 441 | &offcore, &oncore, &cpu_counters, NULL); |
| 442 | #if CONFIG_CPU_COUNTERS |
| 443 | if (ctrs_enabled) { |
| 444 | perfcontrol_callout_counters_end(counters, PERFCONTROL_CALLOUT_CONTEXT); |
| 445 | } |
| 446 | #endif /* CONFIG_CPU_COUNTERS */ |
| 447 | |
| 448 | recount_add_energy(off_thread: old, off_task: get_threadtask(old), |
| 449 | energy_nj: offcore.energy_estimate_nj); |
| 450 | |
| 451 | #if CONFIG_SCHED_EDGE |
| 452 | if (sched_perfcontrol_thread_shared_rsrc_flags_enabled) { |
| 453 | sched_perfcontrol_thread_flags_update(old, &offcore, SHARED_RSRC_POLICY_AGENT_PERFCTL_CSW); |
| 454 | } |
| 455 | #endif /* CONFIG_SCHED_EDGE */ |
| 456 | } |
| 457 | } |
| 458 | |
| 459 | void |
| 460 | machine_switch_perfcontrol_state_update(perfcontrol_event event, |
| 461 | uint64_t timestamp, |
| 462 | uint32_t flags, |
| 463 | thread_t thread) |
| 464 | { |
| 465 | |
| 466 | if (sched_perfcontrol_state_update == sched_perfcontrol_state_update_default) { |
| 467 | return; |
| 468 | } |
| 469 | uint32_t cpu_id = (uint32_t)cpu_number(); |
| 470 | struct perfcontrol_thread_data data; |
| 471 | machine_switch_populate_perfcontrol_thread_data(data: &data, thread, same_pri_latency: 0); |
| 472 | |
| 473 | #if CONFIG_CPU_COUNTERS |
| 474 | uint64_t counters[MT_CORE_NFIXED]; |
| 475 | bool ctrs_enabled = perfcontrol_callout_counters_begin(counters); |
| 476 | #endif /* CONFIG_CPU_COUNTERS */ |
| 477 | sched_perfcontrol_state_update(event, cpu_id, timestamp, flags, |
| 478 | &data, NULL); |
| 479 | #if CONFIG_CPU_COUNTERS |
| 480 | if (ctrs_enabled) { |
| 481 | perfcontrol_callout_counters_end(counters, PERFCONTROL_CALLOUT_STATE_UPDATE); |
| 482 | } |
| 483 | #endif /* CONFIG_CPU_COUNTERS */ |
| 484 | |
| 485 | #if CONFIG_PERVASIVE_ENERGY |
| 486 | recount_add_energy(thread, get_threadtask(thread), data.energy_estimate_nj); |
| 487 | #endif /* CONFIG_PERVASIVE_ENERGY */ |
| 488 | |
| 489 | #if CONFIG_SCHED_EDGE |
| 490 | if (sched_perfcontrol_thread_shared_rsrc_flags_enabled && (event == QUANTUM_EXPIRY)) { |
| 491 | sched_perfcontrol_thread_flags_update(thread, &data, SHARED_RSRC_POLICY_AGENT_PERFCTL_QUANTUM); |
| 492 | } else { |
| 493 | assert(data.thread_flags_mask == 0); |
| 494 | } |
| 495 | #endif /* CONFIG_SCHED_EDGE */ |
| 496 | } |
| 497 | |
| 498 | void |
| 499 | machine_thread_going_on_core(thread_t new_thread, |
| 500 | thread_urgency_t urgency, |
| 501 | uint64_t sched_latency, |
| 502 | uint64_t same_pri_latency, |
| 503 | uint64_t timestamp) |
| 504 | { |
| 505 | if (sched_perfcontrol_oncore == sched_perfcontrol_oncore_default) { |
| 506 | return; |
| 507 | } |
| 508 | struct going_on_core on_core; |
| 509 | perfcontrol_state_t state = FIND_PERFCONTROL_STATE(new_thread); |
| 510 | |
| 511 | on_core.thread_id = new_thread->thread_id; |
| 512 | on_core.energy_estimate_nj = 0; |
| 513 | on_core.qos_class = (uint16_t)proc_get_effective_thread_policy(thread: new_thread, TASK_POLICY_QOS); |
| 514 | on_core.urgency = (uint16_t)urgency; |
| 515 | on_core.is_32_bit = thread_is_64bit_data(new_thread) ? FALSE : TRUE; |
| 516 | on_core.is_kernel_thread = get_threadtask(new_thread) == kernel_task; |
| 517 | #if CONFIG_THREAD_GROUPS |
| 518 | struct thread_group *tg = thread_group_get(t: new_thread); |
| 519 | on_core.thread_group_id = thread_group_get_id(tg); |
| 520 | on_core.thread_group_data = thread_group_get_machine_data(tg); |
| 521 | #endif |
| 522 | on_core.scheduling_latency = sched_latency; |
| 523 | on_core.start_time = timestamp; |
| 524 | on_core.scheduling_latency_at_same_basepri = same_pri_latency; |
| 525 | |
| 526 | #if CONFIG_CPU_COUNTERS |
| 527 | uint64_t counters[MT_CORE_NFIXED]; |
| 528 | bool ctrs_enabled = perfcontrol_callout_counters_begin(counters); |
| 529 | #endif /* CONFIG_CPU_COUNTERS */ |
| 530 | sched_perfcontrol_oncore(state, &on_core); |
| 531 | #if CONFIG_CPU_COUNTERS |
| 532 | if (ctrs_enabled) { |
| 533 | perfcontrol_callout_counters_end(counters, PERFCONTROL_CALLOUT_ON_CORE); |
| 534 | } |
| 535 | #endif /* CONFIG_CPU_COUNTERS */ |
| 536 | } |
| 537 | |
| 538 | void |
| 539 | machine_thread_going_off_core(thread_t old_thread, boolean_t thread_terminating, |
| 540 | uint64_t last_dispatch, __unused boolean_t thread_runnable) |
| 541 | { |
| 542 | if (sched_perfcontrol_offcore == sched_perfcontrol_offcore_default) { |
| 543 | return; |
| 544 | } |
| 545 | struct going_off_core off_core; |
| 546 | perfcontrol_state_t state = FIND_PERFCONTROL_STATE(old_thread); |
| 547 | |
| 548 | off_core.thread_id = old_thread->thread_id; |
| 549 | off_core.energy_estimate_nj = 0; |
| 550 | off_core.end_time = last_dispatch; |
| 551 | #if CONFIG_THREAD_GROUPS |
| 552 | struct thread_group *tg = thread_group_get(t: old_thread); |
| 553 | off_core.thread_group_id = thread_group_get_id(tg); |
| 554 | off_core.thread_group_data = thread_group_get_machine_data(tg); |
| 555 | #endif |
| 556 | |
| 557 | #if CONFIG_CPU_COUNTERS |
| 558 | uint64_t counters[MT_CORE_NFIXED]; |
| 559 | bool ctrs_enabled = perfcontrol_callout_counters_begin(counters); |
| 560 | #endif /* CONFIG_CPU_COUNTERS */ |
| 561 | sched_perfcontrol_offcore(state, &off_core, thread_terminating); |
| 562 | #if CONFIG_CPU_COUNTERS |
| 563 | if (ctrs_enabled) { |
| 564 | perfcontrol_callout_counters_end(counters, PERFCONTROL_CALLOUT_OFF_CORE); |
| 565 | } |
| 566 | #endif /* CONFIG_CPU_COUNTERS */ |
| 567 | } |
| 568 | |
| 569 | #if CONFIG_THREAD_GROUPS |
| 570 | void |
| 571 | machine_thread_group_init(struct thread_group *tg) |
| 572 | { |
| 573 | if (sched_perfcontrol_thread_group_init == sched_perfcontrol_thread_group_default) { |
| 574 | return; |
| 575 | } |
| 576 | struct thread_group_data data; |
| 577 | data.thread_group_id = thread_group_get_id(tg); |
| 578 | data.thread_group_data = thread_group_get_machine_data(tg); |
| 579 | data.thread_group_size = thread_group_machine_data_size(); |
| 580 | data.thread_group_flags = thread_group_get_flags(tg); |
| 581 | sched_perfcontrol_thread_group_init(&data); |
| 582 | } |
| 583 | |
| 584 | void |
| 585 | machine_thread_group_deinit(struct thread_group *tg) |
| 586 | { |
| 587 | if (sched_perfcontrol_thread_group_deinit == sched_perfcontrol_thread_group_default) { |
| 588 | return; |
| 589 | } |
| 590 | struct thread_group_data data; |
| 591 | data.thread_group_id = thread_group_get_id(tg); |
| 592 | data.thread_group_data = thread_group_get_machine_data(tg); |
| 593 | data.thread_group_size = thread_group_machine_data_size(); |
| 594 | data.thread_group_flags = thread_group_get_flags(tg); |
| 595 | sched_perfcontrol_thread_group_deinit(&data); |
| 596 | } |
| 597 | |
| 598 | void |
| 599 | machine_thread_group_flags_update(struct thread_group *tg, uint32_t flags) |
| 600 | { |
| 601 | if (sched_perfcontrol_thread_group_flags_update == sched_perfcontrol_thread_group_default) { |
| 602 | return; |
| 603 | } |
| 604 | struct thread_group_data data; |
| 605 | data.thread_group_id = thread_group_get_id(tg); |
| 606 | data.thread_group_data = thread_group_get_machine_data(tg); |
| 607 | data.thread_group_size = thread_group_machine_data_size(); |
| 608 | data.thread_group_flags = flags; |
| 609 | sched_perfcontrol_thread_group_flags_update(&data); |
| 610 | } |
| 611 | |
| 612 | void |
| 613 | machine_thread_group_blocked(struct thread_group *blocked_tg, |
| 614 | struct thread_group *blocking_tg, |
| 615 | uint32_t flags, |
| 616 | thread_t blocked_thread) |
| 617 | { |
| 618 | if (sched_perfcontrol_thread_group_blocked == sched_perfcontrol_thread_group_blocked_default) { |
| 619 | return; |
| 620 | } |
| 621 | |
| 622 | spl_t s = splsched(); |
| 623 | |
| 624 | perfcontrol_state_t state = FIND_PERFCONTROL_STATE(blocked_thread); |
| 625 | struct thread_group_data blocked_data; |
| 626 | assert(blocked_tg != NULL); |
| 627 | |
| 628 | blocked_data.thread_group_id = thread_group_get_id(tg: blocked_tg); |
| 629 | blocked_data.thread_group_data = thread_group_get_machine_data(tg: blocked_tg); |
| 630 | blocked_data.thread_group_size = thread_group_machine_data_size(); |
| 631 | |
| 632 | if (blocking_tg == NULL) { |
| 633 | /* |
| 634 | * For special cases such as the render server, the blocking TG is a |
| 635 | * well known TG. Only in that case, the blocking_tg should be NULL. |
| 636 | */ |
| 637 | assert(flags & PERFCONTROL_CALLOUT_BLOCKING_TG_RENDER_SERVER); |
| 638 | sched_perfcontrol_thread_group_blocked(&blocked_data, NULL, flags, state); |
| 639 | } else { |
| 640 | struct thread_group_data blocking_data; |
| 641 | blocking_data.thread_group_id = thread_group_get_id(tg: blocking_tg); |
| 642 | blocking_data.thread_group_data = thread_group_get_machine_data(tg: blocking_tg); |
| 643 | blocking_data.thread_group_size = thread_group_machine_data_size(); |
| 644 | sched_perfcontrol_thread_group_blocked(&blocked_data, &blocking_data, flags, state); |
| 645 | } |
| 646 | KDBG(MACHDBG_CODE(DBG_MACH_THREAD_GROUP, MACH_THREAD_GROUP_BLOCK) | DBG_FUNC_START, |
| 647 | thread_tid(blocked_thread), thread_group_get_id(blocked_tg), |
| 648 | blocking_tg ? thread_group_get_id(blocking_tg) : THREAD_GROUP_INVALID, |
| 649 | flags); |
| 650 | |
| 651 | splx(s); |
| 652 | } |
| 653 | |
| 654 | void |
| 655 | machine_thread_group_unblocked(struct thread_group *unblocked_tg, |
| 656 | struct thread_group *unblocking_tg, |
| 657 | uint32_t flags, |
| 658 | thread_t unblocked_thread) |
| 659 | { |
| 660 | if (sched_perfcontrol_thread_group_unblocked == sched_perfcontrol_thread_group_unblocked_default) { |
| 661 | return; |
| 662 | } |
| 663 | |
| 664 | spl_t s = splsched(); |
| 665 | |
| 666 | perfcontrol_state_t state = FIND_PERFCONTROL_STATE(unblocked_thread); |
| 667 | struct thread_group_data unblocked_data; |
| 668 | assert(unblocked_tg != NULL); |
| 669 | |
| 670 | unblocked_data.thread_group_id = thread_group_get_id(tg: unblocked_tg); |
| 671 | unblocked_data.thread_group_data = thread_group_get_machine_data(tg: unblocked_tg); |
| 672 | unblocked_data.thread_group_size = thread_group_machine_data_size(); |
| 673 | |
| 674 | if (unblocking_tg == NULL) { |
| 675 | /* |
| 676 | * For special cases such as the render server, the unblocking TG is a |
| 677 | * well known TG. Only in that case, the unblocking_tg should be NULL. |
| 678 | */ |
| 679 | assert(flags & PERFCONTROL_CALLOUT_BLOCKING_TG_RENDER_SERVER); |
| 680 | sched_perfcontrol_thread_group_unblocked(&unblocked_data, NULL, flags, state); |
| 681 | } else { |
| 682 | struct thread_group_data unblocking_data; |
| 683 | unblocking_data.thread_group_id = thread_group_get_id(tg: unblocking_tg); |
| 684 | unblocking_data.thread_group_data = thread_group_get_machine_data(tg: unblocking_tg); |
| 685 | unblocking_data.thread_group_size = thread_group_machine_data_size(); |
| 686 | sched_perfcontrol_thread_group_unblocked(&unblocked_data, &unblocking_data, flags, state); |
| 687 | } |
| 688 | KDBG(MACHDBG_CODE(DBG_MACH_THREAD_GROUP, MACH_THREAD_GROUP_BLOCK) | DBG_FUNC_END, |
| 689 | thread_tid(unblocked_thread), thread_group_get_id(unblocked_tg), |
| 690 | unblocking_tg ? thread_group_get_id(unblocking_tg) : THREAD_GROUP_INVALID, |
| 691 | flags); |
| 692 | |
| 693 | splx(s); |
| 694 | } |
| 695 | |
| 696 | #endif /* CONFIG_THREAD_GROUPS */ |
| 697 | |
| 698 | void |
| 699 | machine_max_runnable_latency(uint64_t bg_max_latency, |
| 700 | uint64_t default_max_latency, |
| 701 | uint64_t realtime_max_latency) |
| 702 | { |
| 703 | if (sched_perfcontrol_max_runnable_latency == sched_perfcontrol_max_runnable_latency_default) { |
| 704 | return; |
| 705 | } |
| 706 | struct perfcontrol_max_runnable_latency latencies = { |
| 707 | .max_scheduling_latencies = { |
| 708 | [THREAD_URGENCY_NONE] = 0, |
| 709 | [THREAD_URGENCY_BACKGROUND] = bg_max_latency, |
| 710 | [THREAD_URGENCY_NORMAL] = default_max_latency, |
| 711 | [THREAD_URGENCY_REAL_TIME] = realtime_max_latency |
| 712 | } |
| 713 | }; |
| 714 | |
| 715 | sched_perfcontrol_max_runnable_latency(&latencies); |
| 716 | } |
| 717 | |
| 718 | void |
| 719 | machine_work_interval_notify(thread_t thread, |
| 720 | struct kern_work_interval_args* kwi_args) |
| 721 | { |
| 722 | if (sched_perfcontrol_work_interval_notify == sched_perfcontrol_work_interval_notify_default) { |
| 723 | return; |
| 724 | } |
| 725 | perfcontrol_state_t state = FIND_PERFCONTROL_STATE(thread); |
| 726 | struct perfcontrol_work_interval work_interval = { |
| 727 | .thread_id = thread->thread_id, |
| 728 | .qos_class = (uint16_t)proc_get_effective_thread_policy(thread, TASK_POLICY_QOS), |
| 729 | .urgency = kwi_args->urgency, |
| 730 | .flags = kwi_args->notify_flags, |
| 731 | .work_interval_id = kwi_args->work_interval_id, |
| 732 | .start = kwi_args->start, |
| 733 | .finish = kwi_args->finish, |
| 734 | .deadline = kwi_args->deadline, |
| 735 | .next_start = kwi_args->next_start, |
| 736 | .create_flags = kwi_args->create_flags, |
| 737 | }; |
| 738 | #if CONFIG_THREAD_GROUPS |
| 739 | struct thread_group *tg; |
| 740 | tg = thread_group_get(t: thread); |
| 741 | work_interval.thread_group_id = thread_group_get_id(tg); |
| 742 | work_interval.thread_group_data = thread_group_get_machine_data(tg); |
| 743 | #endif |
| 744 | sched_perfcontrol_work_interval_notify(state, &work_interval); |
| 745 | } |
| 746 | |
| 747 | |
| 748 | void |
| 749 | machine_perfcontrol_deadline_passed(uint64_t deadline) |
| 750 | { |
| 751 | if (sched_perfcontrol_deadline_passed != sched_perfcontrol_deadline_passed_default) { |
| 752 | sched_perfcontrol_deadline_passed(deadline); |
| 753 | } |
| 754 | } |
| 755 | |
| 756 | #if SCHED_HYGIENE_DEBUG |
| 757 | |
| 758 | __options_decl(int_mask_hygiene_flags_t, uint8_t, { |
| 759 | INT_MASK_BASE = 0x00, |
| 760 | INT_MASK_FROM_HANDLER = 0x01, |
| 761 | INT_MASK_IS_STACKSHOT = 0x02, |
| 762 | }); |
| 763 | |
| 764 | /* |
| 765 | * ml_spin_debug_reset() |
| 766 | * Reset the timestamp on a thread that has been unscheduled |
| 767 | * to avoid false alarms. Alarm will go off if interrupts are held |
| 768 | * disabled for too long, starting from now. |
| 769 | * |
| 770 | * Call ml_get_timebase() directly to prevent extra overhead on newer |
| 771 | * platforms that's enabled in DEVELOPMENT kernel configurations. |
| 772 | */ |
| 773 | void |
| 774 | ml_spin_debug_reset(thread_t thread) |
| 775 | { |
| 776 | if (thread->machine.intmask_timestamp) { |
| 777 | thread->machine.intmask_timestamp = ml_get_sched_hygiene_timebase(); |
| 778 | INTERRUPT_MASKED_DEBUG_CAPTURE_PMC(thread); |
| 779 | } |
| 780 | } |
| 781 | |
| 782 | /* |
| 783 | * ml_spin_debug_clear() |
| 784 | * Clear the timestamp and cycle/instruction counts on a thread that |
| 785 | * has been unscheduled to avoid false alarms |
| 786 | */ |
| 787 | void |
| 788 | ml_spin_debug_clear(thread_t thread) |
| 789 | { |
| 790 | thread->machine.intmask_timestamp = 0; |
| 791 | thread->machine.intmask_cycles = 0; |
| 792 | thread->machine.intmask_instr = 0; |
| 793 | } |
| 794 | |
| 795 | /* |
| 796 | * ml_spin_debug_clear_self() |
| 797 | * Clear the timestamp on the current thread to prevent |
| 798 | * false alarms |
| 799 | */ |
| 800 | void |
| 801 | ml_spin_debug_clear_self(void) |
| 802 | { |
| 803 | ml_spin_debug_clear(current_thread()); |
| 804 | } |
| 805 | |
| 806 | #ifndef KASAN |
| 807 | |
| 808 | /* |
| 809 | * Get a character representing the provided thread's kind of CPU. |
| 810 | */ |
| 811 | #if !CONFIG_CPU_COUNTERS |
| 812 | __unused |
| 813 | #endif // !CONFIG_CPU_COUNTERS |
| 814 | static char |
| 815 | __ml_interrupts_disabled_cpu_kind(thread_t thread) |
| 816 | { |
| 817 | #if __AMP__ |
| 818 | processor_t processor = thread->last_processor; |
| 819 | if (!processor) { |
| 820 | return '!'; |
| 821 | } |
| 822 | |
| 823 | switch (processor->processor_set->pset_cluster_type) { |
| 824 | case PSET_AMP_P: |
| 825 | return 'P'; |
| 826 | case PSET_AMP_E: |
| 827 | return 'E'; |
| 828 | default: |
| 829 | return '?'; |
| 830 | } |
| 831 | #else // __AMP__ |
| 832 | #pragma unused(thread) |
| 833 | return '-'; |
| 834 | #endif // !__AMP__ |
| 835 | } |
| 836 | |
| 837 | #define EXTRA_INFO_STRING_SIZE 256 |
| 838 | #define LOW_FREQ_THRESHOLD_MHZ 500 |
| 839 | #define HIGH_CPI_THRESHOLD 3 |
| 840 | |
| 841 | static void |
| 842 | __ml_trigger_interrupts_disabled_handle(thread_t thread, uint64_t start, uint64_t now, uint64_t timeout, int_mask_hygiene_flags_t flags) |
| 843 | { |
| 844 | mach_timebase_info_data_t timebase; |
| 845 | clock_timebase_info(&timebase); |
| 846 | bool is_int_handler = flags & INT_MASK_FROM_HANDLER; |
| 847 | bool is_stackshot = flags & INT_MASK_IS_STACKSHOT; |
| 848 | |
| 849 | const uint64_t time_elapsed = now - start; |
| 850 | const uint64_t time_elapsed_ns = (time_elapsed * timebase.numer) / timebase.denom; |
| 851 | |
| 852 | uint64_t current_cycles = 0, current_instrs = 0; |
| 853 | |
| 854 | #if CONFIG_CPU_COUNTERS |
| 855 | if (sched_hygiene_debug_pmc) { |
| 856 | mt_cur_cpu_cycles_instrs_speculative(¤t_cycles, ¤t_instrs); |
| 857 | } |
| 858 | #endif // CONFIG_CPU_COUNTERS |
| 859 | |
| 860 | const uint64_t cycles_elapsed = current_cycles - thread->machine.intmask_cycles; |
| 861 | const uint64_t instrs_elapsed = current_instrs - thread->machine.intmask_instr; |
| 862 | |
| 863 | if (interrupt_masked_debug_mode == SCHED_HYGIENE_MODE_PANIC) { |
| 864 | const uint64_t timeout_ns = ((timeout * debug_cpu_performance_degradation_factor) * timebase.numer) / timebase.denom; |
| 865 | char extra_info_string[EXTRA_INFO_STRING_SIZE] = { '\0' }; |
| 866 | #if CONFIG_CPU_COUNTERS |
| 867 | if (sched_hygiene_debug_pmc) { |
| 868 | const uint64_t time_elapsed_us = time_elapsed_ns / 1000; |
| 869 | const uint64_t average_freq_mhz = cycles_elapsed / time_elapsed_us; |
| 870 | const uint64_t average_cpi_whole = cycles_elapsed / instrs_elapsed; |
| 871 | const uint64_t average_cpi_fractional = ((cycles_elapsed * 100) / instrs_elapsed) % 100; |
| 872 | bool high_cpi = average_cpi_whole >= HIGH_CPI_THRESHOLD; |
| 873 | char core_kind = __ml_interrupts_disabled_cpu_kind(thread); |
| 874 | bool low_mhz = average_freq_mhz < LOW_FREQ_THRESHOLD_MHZ; |
| 875 | |
| 876 | snprintf(extra_info_string, EXTRA_INFO_STRING_SIZE, |
| 877 | ", %sfreq = %llu MHz, %sCPI = %llu.%llu, CPU kind = %c" , |
| 878 | low_mhz ? "low " : "" , |
| 879 | average_freq_mhz, |
| 880 | high_cpi ? "high " : "" , |
| 881 | average_cpi_whole, |
| 882 | average_cpi_fractional, |
| 883 | core_kind); |
| 884 | } |
| 885 | #endif // CONFIG_CPU_COUNTERS |
| 886 | |
| 887 | if (is_int_handler) { |
| 888 | panic("Processing of an interrupt (type = %u, handler address = %p, vector = %p) " |
| 889 | "took %llu nanoseconds (start = %llu, now = %llu, timeout = %llu ns%s)" , |
| 890 | thread->machine.int_type, (void *)thread->machine.int_handler_addr, (void *)thread->machine.int_vector, |
| 891 | time_elapsed_ns, start, now, timeout_ns, extra_info_string); |
| 892 | } else { |
| 893 | panic("%s for %llu nanoseconds (start = %llu, now = %llu, timeout = %llu ns%s)" , |
| 894 | is_stackshot ? "Stackshot disabled interrupts" : "Interrupts held disabled" , |
| 895 | time_elapsed_ns, start, now, timeout_ns, extra_info_string); |
| 896 | } |
| 897 | } else if (interrupt_masked_debug_mode == SCHED_HYGIENE_MODE_TRACE) { |
| 898 | if (is_int_handler) { |
| 899 | static const uint32_t interrupt_handled_dbgid = |
| 900 | MACHDBG_CODE(DBG_MACH_SCHED, MACH_INT_HANDLED_EXPIRED); |
| 901 | DTRACE_SCHED3(interrupt_handled_dbgid, uint64_t, time_elapsed, |
| 902 | uint64_t, cycles_elapsed, uint64_t, instrs_elapsed); |
| 903 | KDBG(interrupt_handled_dbgid, time_elapsed, |
| 904 | cycles_elapsed, instrs_elapsed); |
| 905 | } else { |
| 906 | static const uint32_t interrupt_masked_dbgid = |
| 907 | MACHDBG_CODE(DBG_MACH_SCHED, MACH_INT_MASKED_EXPIRED); |
| 908 | DTRACE_SCHED3(interrupt_masked_dbgid, uint64_t, time_elapsed, |
| 909 | uint64_t, cycles_elapsed, uint64_t, instrs_elapsed); |
| 910 | KDBG(interrupt_masked_dbgid, time_elapsed, |
| 911 | cycles_elapsed, instrs_elapsed); |
| 912 | } |
| 913 | } |
| 914 | } |
| 915 | #endif // !defined(KASAN) |
| 916 | |
| 917 | static inline void |
| 918 | __ml_handle_interrupts_disabled_duration(thread_t thread, uint64_t timeout, bool is_int_handler) |
| 919 | { |
| 920 | if (timeout == 0) { |
| 921 | return; // 0 means timeout disabled. |
| 922 | } |
| 923 | uint64_t start = is_int_handler ? thread->machine.inthandler_timestamp : thread->machine.intmask_timestamp; |
| 924 | if (start != 0) { |
| 925 | uint64_t now = ml_get_sched_hygiene_timebase(); |
| 926 | |
| 927 | if (interrupt_masked_debug_mode && |
| 928 | ((now - start) > timeout * debug_cpu_performance_degradation_factor) && |
| 929 | !thread->machine.inthandler_abandon) { |
| 930 | /* |
| 931 | * Disable the actual panic for KASAN due to the overhead of KASAN itself, leave the rest of the |
| 932 | * mechanism enabled so that KASAN can catch any bugs in the mechanism itself. |
| 933 | */ |
| 934 | #ifndef KASAN |
| 935 | __ml_trigger_interrupts_disabled_handle(thread, start, now, timeout, is_int_handler); |
| 936 | #endif |
| 937 | } |
| 938 | |
| 939 | if (is_int_handler) { |
| 940 | uint64_t const duration = now - start; |
| 941 | /* |
| 942 | * No need for an atomic add, the only thread modifying |
| 943 | * this is ourselves. Other threads querying will just see |
| 944 | * either the old or the new value. (This will also just |
| 945 | * resolve to regular loads and stores on relevant |
| 946 | * platforms.) |
| 947 | */ |
| 948 | uint64_t const old_duration = os_atomic_load_wide(&thread->machine.int_time_mt, relaxed); |
| 949 | os_atomic_store_wide(&thread->machine.int_time_mt, old_duration + duration, relaxed); |
| 950 | } |
| 951 | } |
| 952 | } |
| 953 | |
| 954 | void |
| 955 | ml_handle_interrupts_disabled_duration(thread_t thread) |
| 956 | { |
| 957 | __ml_handle_interrupts_disabled_duration(thread, os_atomic_load(&interrupt_masked_timeout, relaxed), INT_MASK_BASE); |
| 958 | } |
| 959 | |
| 960 | void |
| 961 | ml_handle_stackshot_interrupt_disabled_duration(thread_t thread) |
| 962 | { |
| 963 | /* Use MAX() to let the user bump the timeout further if needed */ |
| 964 | uint64_t stackshot_timeout = os_atomic_load(&stackshot_interrupt_masked_timeout, relaxed); |
| 965 | uint64_t normal_timeout = os_atomic_load(&interrupt_masked_timeout, relaxed); |
| 966 | uint64_t timeout = MAX(stackshot_timeout, normal_timeout); |
| 967 | __ml_handle_interrupts_disabled_duration(thread, timeout, INT_MASK_IS_STACKSHOT); |
| 968 | } |
| 969 | |
| 970 | void |
| 971 | ml_handle_interrupt_handler_duration(thread_t thread) |
| 972 | { |
| 973 | __ml_handle_interrupts_disabled_duration(thread, os_atomic_load(&interrupt_masked_timeout, relaxed), INT_MASK_FROM_HANDLER); |
| 974 | } |
| 975 | |
| 976 | void |
| 977 | ml_irq_debug_start(uintptr_t handler, uintptr_t vector) |
| 978 | { |
| 979 | INTERRUPT_MASKED_DEBUG_START(handler, DBG_INTR_TYPE_OTHER); |
| 980 | current_thread()->machine.int_vector = (uintptr_t)VM_KERNEL_STRIP_PTR(vector); |
| 981 | } |
| 982 | |
| 983 | void |
| 984 | ml_irq_debug_end() |
| 985 | { |
| 986 | INTERRUPT_MASKED_DEBUG_END(); |
| 987 | } |
| 988 | |
| 989 | /* |
| 990 | * Abandon a potential timeout when handling an interrupt. It is important to |
| 991 | * continue to keep track of the interrupt time so the time-stamp can't be |
| 992 | * reset. (Interrupt time is subtracted from preemption time to maintain |
| 993 | * accurate preemption time measurement). |
| 994 | * When `inthandler_abandon` is true, a timeout will be ignored when the |
| 995 | * interrupt handler finishes. |
| 996 | */ |
| 997 | void |
| 998 | ml_irq_debug_abandon(void) |
| 999 | { |
| 1000 | assert(!ml_get_interrupts_enabled()); |
| 1001 | |
| 1002 | thread_t t = current_thread(); |
| 1003 | if (t->machine.inthandler_timestamp != 0) { |
| 1004 | t->machine.inthandler_abandon = true; |
| 1005 | } |
| 1006 | } |
| 1007 | #endif // SCHED_HYGIENE_DEBUG |
| 1008 | |
| 1009 | #if SCHED_HYGIENE_DEBUG |
| 1010 | __attribute__((noinline)) |
| 1011 | static void |
| 1012 | ml_interrupt_masked_debug_timestamp(thread_t thread) |
| 1013 | { |
| 1014 | thread->machine.intmask_timestamp = ml_get_sched_hygiene_timebase(); |
| 1015 | INTERRUPT_MASKED_DEBUG_CAPTURE_PMC(thread); |
| 1016 | } |
| 1017 | #endif |
| 1018 | |
| 1019 | boolean_t |
| 1020 | ml_set_interrupts_enabled_with_debug(boolean_t enable, boolean_t __unused debug) |
| 1021 | { |
| 1022 | thread_t thread; |
| 1023 | uint64_t state; |
| 1024 | |
| 1025 | thread = current_thread(); |
| 1026 | |
| 1027 | state = __builtin_arm_rsr("DAIF" ); |
| 1028 | |
| 1029 | if (enable && (state & DAIF_IRQF)) { |
| 1030 | assert(getCpuDatap()->cpu_int_state == NULL); // Make sure we're not enabling interrupts from primary interrupt context |
| 1031 | #if SCHED_HYGIENE_DEBUG |
| 1032 | if (__probable(debug && (interrupt_masked_debug_mode || sched_preemption_disable_debug_mode))) { |
| 1033 | // Interrupts are currently masked, we will enable them (after finishing this check) |
| 1034 | if (stackshot_active()) { |
| 1035 | ml_handle_stackshot_interrupt_disabled_duration(thread); |
| 1036 | } else { |
| 1037 | ml_handle_interrupts_disabled_duration(thread); |
| 1038 | } |
| 1039 | thread->machine.intmask_timestamp = 0; |
| 1040 | thread->machine.intmask_cycles = 0; |
| 1041 | thread->machine.intmask_instr = 0; |
| 1042 | } |
| 1043 | #endif // SCHED_HYGIENE_DEBUG |
| 1044 | if (get_preemption_level() == 0) { |
| 1045 | while (thread->machine.CpuDatap->cpu_pending_ast & AST_URGENT) { |
| 1046 | #if __ARM_USER_PROTECT__ |
| 1047 | uintptr_t up = arm_user_protect_begin(thread); |
| 1048 | #endif |
| 1049 | ast_taken_kernel(); |
| 1050 | #if __ARM_USER_PROTECT__ |
| 1051 | arm_user_protect_end(thread, up, FALSE); |
| 1052 | #endif |
| 1053 | } |
| 1054 | } |
| 1055 | __builtin_arm_wsr("DAIFClr" , DAIFSC_STANDARD_DISABLE); |
| 1056 | } else if (!enable && ((state & DAIF_IRQF) == 0)) { |
| 1057 | __builtin_arm_wsr("DAIFSet" , DAIFSC_STANDARD_DISABLE); |
| 1058 | |
| 1059 | #if SCHED_HYGIENE_DEBUG |
| 1060 | if (__probable(debug && (interrupt_masked_debug_mode || sched_preemption_disable_debug_mode))) { |
| 1061 | // Interrupts were enabled, we just masked them |
| 1062 | ml_interrupt_masked_debug_timestamp(thread); |
| 1063 | } |
| 1064 | #endif |
| 1065 | } |
| 1066 | return (state & DAIF_IRQF) == 0; |
| 1067 | } |
| 1068 | |
| 1069 | boolean_t |
| 1070 | ml_set_interrupts_enabled(boolean_t enable) |
| 1071 | { |
| 1072 | return ml_set_interrupts_enabled_with_debug(enable, true); |
| 1073 | } |
| 1074 | |
| 1075 | boolean_t |
| 1076 | ml_early_set_interrupts_enabled(boolean_t enable) |
| 1077 | { |
| 1078 | return ml_set_interrupts_enabled(enable); |
| 1079 | } |
| 1080 | |
| 1081 | /* |
| 1082 | * Interrupt enable function exported for AppleCLPC without |
| 1083 | * measurements enabled. |
| 1084 | * |
| 1085 | * Only for AppleCLPC! |
| 1086 | */ |
| 1087 | boolean_t |
| 1088 | sched_perfcontrol_ml_set_interrupts_without_measurement(boolean_t enable) |
| 1089 | { |
| 1090 | return ml_set_interrupts_enabled_with_debug(enable, false); |
| 1091 | } |
| 1092 | |
| 1093 | /* |
| 1094 | * Routine: ml_at_interrupt_context |
| 1095 | * Function: Check if running at interrupt context |
| 1096 | */ |
| 1097 | boolean_t |
| 1098 | ml_at_interrupt_context(void) |
| 1099 | { |
| 1100 | /* Do not use a stack-based check here, as the top-level exception handler |
| 1101 | * is free to use some other stack besides the per-CPU interrupt stack. |
| 1102 | * Interrupts should always be disabled if we're at interrupt context. |
| 1103 | * Check that first, as we may be in a preemptible non-interrupt context, in |
| 1104 | * which case we could be migrated to a different CPU between obtaining |
| 1105 | * the per-cpu data pointer and loading cpu_int_state. We then might end |
| 1106 | * up checking the interrupt state of a different CPU, resulting in a false |
| 1107 | * positive. But if interrupts are disabled, we also know we cannot be |
| 1108 | * preempted. */ |
| 1109 | return !ml_get_interrupts_enabled() && (getCpuDatap()->cpu_int_state != NULL); |
| 1110 | } |
| 1111 | |
| 1112 | /* |
| 1113 | * This answers the question |
| 1114 | * "after returning from this interrupt handler with the AST_URGENT bit set, |
| 1115 | * will I end up in ast_taken_user or ast_taken_kernel?" |
| 1116 | * |
| 1117 | * If it's called in non-interrupt context (e.g. regular syscall), it should |
| 1118 | * return false. |
| 1119 | * |
| 1120 | * Must be called with interrupts disabled. |
| 1121 | */ |
| 1122 | bool |
| 1123 | ml_did_interrupt_userspace(void) |
| 1124 | { |
| 1125 | assert(ml_get_interrupts_enabled() == false); |
| 1126 | |
| 1127 | struct arm_saved_state *state = getCpuDatap()->cpu_int_state; |
| 1128 | |
| 1129 | return state && PSR64_IS_USER(get_saved_state_cpsr(state)); |
| 1130 | } |
| 1131 | |
| 1132 | |
| 1133 | vm_offset_t |
| 1134 | ml_stack_remaining(void) |
| 1135 | { |
| 1136 | uintptr_t local = (uintptr_t) &local; |
| 1137 | vm_offset_t intstack_top_ptr; |
| 1138 | |
| 1139 | /* Since this is a stack-based check, we don't need to worry about |
| 1140 | * preemption as we do in ml_at_interrupt_context(). If we are preemptible, |
| 1141 | * then the sp should never be within any CPU's interrupt stack unless |
| 1142 | * something has gone horribly wrong. */ |
| 1143 | intstack_top_ptr = getCpuDatap()->intstack_top; |
| 1144 | if ((local < intstack_top_ptr) && (local > intstack_top_ptr - INTSTACK_SIZE)) { |
| 1145 | return local - (getCpuDatap()->intstack_top - INTSTACK_SIZE); |
| 1146 | } else { |
| 1147 | return local - current_thread()->kernel_stack; |
| 1148 | } |
| 1149 | } |
| 1150 | |
| 1151 | static boolean_t ml_quiescing = FALSE; |
| 1152 | |
| 1153 | void |
| 1154 | ml_set_is_quiescing(boolean_t quiescing) |
| 1155 | { |
| 1156 | ml_quiescing = quiescing; |
| 1157 | os_atomic_thread_fence(release); |
| 1158 | } |
| 1159 | |
| 1160 | boolean_t |
| 1161 | ml_is_quiescing(void) |
| 1162 | { |
| 1163 | os_atomic_thread_fence(acquire); |
| 1164 | return ml_quiescing; |
| 1165 | } |
| 1166 | |
| 1167 | uint64_t |
| 1168 | ml_get_booter_memory_size(void) |
| 1169 | { |
| 1170 | uint64_t size; |
| 1171 | uint64_t roundsize = 512 * 1024 * 1024ULL; |
| 1172 | size = BootArgs->memSizeActual; |
| 1173 | if (!size) { |
| 1174 | size = BootArgs->memSize; |
| 1175 | if (size < (2 * roundsize)) { |
| 1176 | roundsize >>= 1; |
| 1177 | } |
| 1178 | size = (size + roundsize - 1) & ~(roundsize - 1); |
| 1179 | } |
| 1180 | |
| 1181 | size -= BootArgs->memSize; |
| 1182 | |
| 1183 | return size; |
| 1184 | } |
| 1185 | |
| 1186 | uint64_t |
| 1187 | ml_get_abstime_offset(void) |
| 1188 | { |
| 1189 | return rtclock_base_abstime; |
| 1190 | } |
| 1191 | |
| 1192 | uint64_t |
| 1193 | ml_get_conttime_offset(void) |
| 1194 | { |
| 1195 | #if HIBERNATION && HAS_CONTINUOUS_HWCLOCK |
| 1196 | return hwclock_conttime_offset; |
| 1197 | #elif HAS_CONTINUOUS_HWCLOCK |
| 1198 | return 0; |
| 1199 | #else |
| 1200 | return rtclock_base_abstime + mach_absolutetime_asleep; |
| 1201 | #endif |
| 1202 | } |
| 1203 | |
| 1204 | uint64_t |
| 1205 | ml_get_time_since_reset(void) |
| 1206 | { |
| 1207 | #if HAS_CONTINUOUS_HWCLOCK |
| 1208 | if (wake_conttime == UINT64_MAX) { |
| 1209 | return UINT64_MAX; |
| 1210 | } else { |
| 1211 | return mach_continuous_time() - wake_conttime; |
| 1212 | } |
| 1213 | #else |
| 1214 | /* The timebase resets across S2R, so just return the raw value. */ |
| 1215 | return ml_get_hwclock(); |
| 1216 | #endif |
| 1217 | } |
| 1218 | |
| 1219 | void |
| 1220 | ml_set_reset_time(__unused uint64_t wake_time) |
| 1221 | { |
| 1222 | #if HAS_CONTINUOUS_HWCLOCK |
| 1223 | wake_conttime = wake_time; |
| 1224 | #endif |
| 1225 | } |
| 1226 | |
| 1227 | uint64_t |
| 1228 | ml_get_conttime_wake_time(void) |
| 1229 | { |
| 1230 | #if HAS_CONTINUOUS_HWCLOCK |
| 1231 | /* |
| 1232 | * For now, we will reconstitute the timebase value from |
| 1233 | * cpu_timebase_init and use it as the wake time. |
| 1234 | */ |
| 1235 | return wake_abstime - ml_get_abstime_offset(); |
| 1236 | #else /* HAS_CONTINOUS_HWCLOCK */ |
| 1237 | /* The wake time is simply our continuous time offset. */ |
| 1238 | return ml_get_conttime_offset(); |
| 1239 | #endif /* HAS_CONTINOUS_HWCLOCK */ |
| 1240 | } |
| 1241 | |
| 1242 | /* |
| 1243 | * ml_snoop_thread_is_on_core(thread_t thread) |
| 1244 | * Check if the given thread is currently on core. This function does not take |
| 1245 | * locks, disable preemption, or otherwise guarantee synchronization. The |
| 1246 | * result should be considered advisory. |
| 1247 | */ |
| 1248 | bool |
| 1249 | ml_snoop_thread_is_on_core(thread_t thread) |
| 1250 | { |
| 1251 | unsigned int cur_cpu_num = 0; |
| 1252 | const unsigned int max_cpu_id = ml_get_max_cpu_number(); |
| 1253 | |
| 1254 | for (cur_cpu_num = 0; cur_cpu_num <= max_cpu_id; cur_cpu_num++) { |
| 1255 | if (CpuDataEntries[cur_cpu_num].cpu_data_vaddr) { |
| 1256 | if (CpuDataEntries[cur_cpu_num].cpu_data_vaddr->cpu_active_thread == thread) { |
| 1257 | return true; |
| 1258 | } |
| 1259 | } |
| 1260 | } |
| 1261 | |
| 1262 | return false; |
| 1263 | } |
| 1264 | |
| 1265 | int |
| 1266 | ml_early_cpu_max_number(void) |
| 1267 | { |
| 1268 | assert(startup_phase >= STARTUP_SUB_TUNABLES); |
| 1269 | return ml_get_max_cpu_number(); |
| 1270 | } |
| 1271 | |
| 1272 | void |
| 1273 | ml_set_max_cpus(unsigned int max_cpus __unused) |
| 1274 | { |
| 1275 | lck_mtx_lock(lck: &max_cpus_lock); |
| 1276 | if (max_cpus_initialized != MAX_CPUS_SET) { |
| 1277 | if (max_cpus_initialized == MAX_CPUS_WAIT) { |
| 1278 | thread_wakeup((event_t) &max_cpus_initialized); |
| 1279 | } |
| 1280 | max_cpus_initialized = MAX_CPUS_SET; |
| 1281 | } |
| 1282 | lck_mtx_unlock(lck: &max_cpus_lock); |
| 1283 | } |
| 1284 | |
| 1285 | unsigned int |
| 1286 | ml_wait_max_cpus(void) |
| 1287 | { |
| 1288 | assert(lockdown_done); |
| 1289 | lck_mtx_lock(lck: &max_cpus_lock); |
| 1290 | while (max_cpus_initialized != MAX_CPUS_SET) { |
| 1291 | max_cpus_initialized = MAX_CPUS_WAIT; |
| 1292 | lck_mtx_sleep(lck: &max_cpus_lock, lck_sleep_action: LCK_SLEEP_DEFAULT, event: &max_cpus_initialized, THREAD_UNINT); |
| 1293 | } |
| 1294 | lck_mtx_unlock(lck: &max_cpus_lock); |
| 1295 | return machine_info.max_cpus; |
| 1296 | } |
| 1297 | |
| 1298 | void |
| 1299 | ml_cpu_get_info_type(ml_cpu_info_t * ml_cpu_info, cluster_type_t cluster_type) |
| 1300 | { |
| 1301 | cache_info_t *cpuid_cache_info; |
| 1302 | |
| 1303 | cpuid_cache_info = cache_info_type(cluster_type); |
| 1304 | ml_cpu_info->vector_unit = 0; |
| 1305 | ml_cpu_info->cache_line_size = cpuid_cache_info->c_linesz; |
| 1306 | ml_cpu_info->l1_icache_size = cpuid_cache_info->c_isize; |
| 1307 | ml_cpu_info->l1_dcache_size = cpuid_cache_info->c_dsize; |
| 1308 | |
| 1309 | #if (__ARM_ARCH__ >= 8) |
| 1310 | ml_cpu_info->l2_settings = 1; |
| 1311 | ml_cpu_info->l2_cache_size = cpuid_cache_info->c_l2size; |
| 1312 | #else |
| 1313 | #error Unsupported arch |
| 1314 | #endif |
| 1315 | ml_cpu_info->l3_settings = 0; |
| 1316 | ml_cpu_info->l3_cache_size = 0xFFFFFFFF; |
| 1317 | } |
| 1318 | |
| 1319 | /* |
| 1320 | * Routine: ml_cpu_get_info |
| 1321 | * Function: Fill out the ml_cpu_info_t structure with parameters associated |
| 1322 | * with the boot cluster. |
| 1323 | */ |
| 1324 | void |
| 1325 | ml_cpu_get_info(ml_cpu_info_t * ml_cpu_info) |
| 1326 | { |
| 1327 | ml_cpu_get_info_type(ml_cpu_info, cluster_type: ml_get_topology_info()->boot_cpu->cluster_type); |
| 1328 | } |
| 1329 | |
| 1330 | unsigned int |
| 1331 | ml_get_cpu_number_type(cluster_type_t cluster_type, bool logical, bool available) |
| 1332 | { |
| 1333 | /* |
| 1334 | * At present no supported ARM system features SMT, so the "logical" |
| 1335 | * parameter doesn't have an impact on the result. |
| 1336 | */ |
| 1337 | if (logical && available) { |
| 1338 | return os_atomic_load(&cluster_type_num_active_cpus[cluster_type], relaxed); |
| 1339 | } else if (logical && !available) { |
| 1340 | return ml_get_topology_info()->cluster_type_num_cpus[cluster_type]; |
| 1341 | } else if (!logical && available) { |
| 1342 | return os_atomic_load(&cluster_type_num_active_cpus[cluster_type], relaxed); |
| 1343 | } else { |
| 1344 | return ml_get_topology_info()->cluster_type_num_cpus[cluster_type]; |
| 1345 | } |
| 1346 | } |
| 1347 | |
| 1348 | void |
| 1349 | ml_get_cluster_type_name(cluster_type_t cluster_type, char *name, size_t name_size) |
| 1350 | { |
| 1351 | strlcpy(dst: name, src: cluster_type_names[cluster_type], n: name_size); |
| 1352 | } |
| 1353 | |
| 1354 | unsigned int |
| 1355 | ml_get_cluster_number_type(cluster_type_t cluster_type) |
| 1356 | { |
| 1357 | return ml_get_topology_info()->cluster_type_num_clusters[cluster_type]; |
| 1358 | } |
| 1359 | |
| 1360 | unsigned int |
| 1361 | ml_cpu_cache_sharing(unsigned int level, cluster_type_t cluster_type, bool include_all_cpu_types __unused) |
| 1362 | { |
| 1363 | unsigned int cpu_number = 0, cluster_types = 0; |
| 1364 | |
| 1365 | /* |
| 1366 | * Level 0 corresponds to main memory, which is shared across all cores. |
| 1367 | */ |
| 1368 | if (level == 0) { |
| 1369 | return ml_get_topology_info()->num_cpus; |
| 1370 | } |
| 1371 | |
| 1372 | /* |
| 1373 | * At present no supported ARM system features more than 2 levels of caches. |
| 1374 | */ |
| 1375 | if (level > 2) { |
| 1376 | return 0; |
| 1377 | } |
| 1378 | |
| 1379 | /* |
| 1380 | * L1 caches are always per core. |
| 1381 | */ |
| 1382 | if (level == 1) { |
| 1383 | return 1; |
| 1384 | } |
| 1385 | |
| 1386 | cluster_types = (1 << cluster_type); |
| 1387 | |
| 1388 | /* |
| 1389 | * Traverse clusters until we find the one(s) of the desired type(s). |
| 1390 | */ |
| 1391 | for (int i = 0; i < ml_get_topology_info()->num_clusters; i++) { |
| 1392 | ml_topology_cluster_t *cluster = &ml_get_topology_info()->clusters[i]; |
| 1393 | if ((1 << cluster->cluster_type) & cluster_types) { |
| 1394 | cpu_number += cluster->num_cpus; |
| 1395 | cluster_types &= ~(1 << cluster->cluster_type); |
| 1396 | if (!cluster_types) { |
| 1397 | break; |
| 1398 | } |
| 1399 | } |
| 1400 | } |
| 1401 | |
| 1402 | return cpu_number; |
| 1403 | } |
| 1404 | |
| 1405 | unsigned int |
| 1406 | ml_get_cpu_types(void) |
| 1407 | { |
| 1408 | return ml_get_topology_info()->cluster_types; |
| 1409 | } |
| 1410 | |
| 1411 | void |
| 1412 | machine_conf(void) |
| 1413 | { |
| 1414 | /* |
| 1415 | * This is known to be inaccurate. mem_size should always be capped at 2 GB |
| 1416 | */ |
| 1417 | machine_info.memory_size = (uint32_t)mem_size; |
| 1418 | |
| 1419 | // rdar://problem/58285685: Userland expects _COMM_PAGE_LOGICAL_CPUS to report |
| 1420 | // (max_cpu_id+1) rather than a literal *count* of logical CPUs. |
| 1421 | unsigned int num_cpus = ml_get_topology_info()->max_cpu_id + 1; |
| 1422 | machine_info.max_cpus = num_cpus; |
| 1423 | machine_info.physical_cpu_max = num_cpus; |
| 1424 | machine_info.logical_cpu_max = num_cpus; |
| 1425 | } |
| 1426 | |
| 1427 | void |
| 1428 | machine_init(void) |
| 1429 | { |
| 1430 | debug_log_init(); |
| 1431 | clock_config(); |
| 1432 | is_clock_configured = TRUE; |
| 1433 | if (debug_enabled) { |
| 1434 | pmap_map_globals(); |
| 1435 | } |
| 1436 | ml_lockdown_init(); |
| 1437 | } |
| 1438 | |