| 1 | // |
| 2 | // Copyright (c) 2019 Apple, Inc. All rights reserved. |
| 3 | // |
| 4 | // @APPLE_OSREFERENCE_LICENSE_HEADER_START@ |
| 5 | // |
| 6 | // This file contains Original Code and/or Modifications of Original Code |
| 7 | // as defined in and that are subject to the Apple Public Source License |
| 8 | // Version 2.0 (the 'License'). You may not use this file except in |
| 9 | // compliance with the License. The rights granted to you under the License |
| 10 | // may not be used to create, or enable the creation or redistribution of, |
| 11 | // unlawful or unlicensed copies of an Apple operating system, or to |
| 12 | // circumvent, violate, or enable the circumvention or violation of, any |
| 13 | // terms of an Apple operating system software license agreement. |
| 14 | // |
| 15 | // Please obtain a copy of the License at |
| 16 | // http://www.opensource.apple.com/apsl/ and read it before using this file. |
| 17 | // |
| 18 | // The Original Code and all software distributed under the License are |
| 19 | // distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER |
| 20 | // EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
| 21 | // INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, |
| 22 | // FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
| 23 | // Please see the License for the specific language governing rights and |
| 24 | // limitations under the License. |
| 25 | // |
| 26 | // @APPLE_OSREFERENCE_LICENSE_HEADER_END@ |
| 27 | // |
| 28 | |
| 29 | #ifndef XNU_LIBKERN_LIBKERN_CXX_INTRUSIVE_SHARED_PTR_H |
| 30 | #define XNU_LIBKERN_LIBKERN_CXX_INTRUSIVE_SHARED_PTR_H |
| 31 | |
| 32 | namespace libkern { |
| 33 | namespace isp_detail { |
| 34 | // TODO: Consolidate these utilities with the ones used in other similar places. |
| 35 | using nullptr_t = decltype(nullptr); |
| 36 | |
| 37 | template <typename T> T && declval() noexcept; |
| 38 | |
| 39 | template <typename ...> using void_t = void; |
| 40 | |
| 41 | template <typename T> struct is_lvalue_reference { static constexpr bool value = false; }; |
| 42 | template <typename T> struct is_lvalue_reference<T&> { static constexpr bool value = true; }; |
| 43 | template <typename T> constexpr bool is_lvalue_reference_v = is_lvalue_reference<T>::value; |
| 44 | |
| 45 | template <typename T> constexpr bool is_empty_v = __is_empty(T); |
| 46 | |
| 47 | template <typename T> struct remove_reference { using type = T; }; |
| 48 | template <typename T> struct remove_reference<T&> { using type = T; }; |
| 49 | template <typename T> struct remove_reference<T &&> { using type = T; }; |
| 50 | template <typename T> using remove_reference_t = typename remove_reference<T>::type; |
| 51 | |
| 52 | template <bool Cond, typename T = void> struct enable_if; |
| 53 | template <typename T> struct enable_if<true, T> { using type = T; }; |
| 54 | template <bool Cond, typename T = void> using enable_if_t = typename enable_if<Cond, T>::type; |
| 55 | |
| 56 | template <typename From, typename To> constexpr bool is_convertible_v = __is_convertible_to(From, To); |
| 57 | |
| 58 | template <typename T> |
| 59 | constexpr T && forward(remove_reference_t<T>&t) noexcept { |
| 60 | return static_cast<T &&>(t); |
| 61 | } |
| 62 | |
| 63 | template <typename T> |
| 64 | constexpr T && forward(remove_reference_t<T>&& t) noexcept { |
| 65 | static_assert(!is_lvalue_reference_v<T>, |
| 66 | "can not forward an rvalue as an lvalue" ); |
| 67 | return static_cast<T &&>(t); |
| 68 | } |
| 69 | |
| 70 | template <typename T> |
| 71 | constexpr remove_reference_t<T>&& move(T && t) noexcept { |
| 72 | using RvalueRef = remove_reference_t<T>&&; |
| 73 | return static_cast<RvalueRef>(t); |
| 74 | } |
| 75 | |
| 76 | template <typename T, typename U> |
| 77 | using WhenComparable = void_t< |
| 78 | decltype(declval<T>() == declval<U>()), |
| 79 | decltype(declval<T>() != declval<U>()) |
| 80 | >; |
| 81 | } // end namespace isp_detail |
| 82 | |
| 83 | struct no_retain_t { |
| 84 | explicit constexpr no_retain_t() |
| 85 | { |
| 86 | } |
| 87 | }; |
| 88 | struct retain_t { |
| 89 | explicit constexpr retain_t() |
| 90 | { |
| 91 | } |
| 92 | }; |
| 93 | inline constexpr no_retain_t no_retain{}; |
| 94 | inline constexpr retain_t retain{}; |
| 95 | |
| 96 | // Smart pointer representing a shared resource. |
| 97 | // |
| 98 | // This shared pointer class implements a refcounted resource that uses |
| 99 | // a policy to manage the refcount. This allows various refcount |
| 100 | // implementations, notably ones where the refcount is contained |
| 101 | // in the pointed-to object. |
| 102 | // |
| 103 | // The refcounting policy must consist of the following two static functions: |
| 104 | // |
| 105 | // static void RefcountPolicy::retain(T&); |
| 106 | // static void RefcountPolicy::release(T&); |
| 107 | // |
| 108 | // The `retain` function is called whenever a new reference to the pointed-to |
| 109 | // object is created, and should increase the refcount. The `release` function |
| 110 | // is called whenever a reference to the pointed-to object is removed, and |
| 111 | // should decrease the refcount. These functions are always called with a |
| 112 | // reference to a valid object, i.e. there is no need to check whether the |
| 113 | // reference is null in `retain()` and `release()` (since this is already |
| 114 | // handled by the shared pointer). |
| 115 | // |
| 116 | // One notable difference between this shared pointer and most other shared |
| 117 | // pointer classes is that this shared pointer never destroys the pointed-to |
| 118 | // object. It relies on the `release()` function to do it whenever the refcount |
| 119 | // hits 0. |
| 120 | // |
| 121 | // Since this class represents a pointer to an object (as opposed to a range |
| 122 | // of objects), pointer arithmetic is not allowed on `intrusive_shared_ptr`s. |
| 123 | template <typename T, typename RefcountPolicy> |
| 124 | struct __attribute__((trivial_abi)) intrusive_shared_ptr { |
| 125 | static_assert(isp_detail::is_empty_v<RefcountPolicy>, |
| 126 | "intrusive_shared_ptr only allows a stateless RefcountPolicy " |
| 127 | "because it must be ABI compatible with raw pointers." ); |
| 128 | |
| 129 | // TODO: Add a check that `T` can be used with the `RefcountPolicy` |
| 130 | |
| 131 | using pointer = T *; |
| 132 | using element_type = T; |
| 133 | |
| 134 | // Constructs a null shared pointer. |
| 135 | // |
| 136 | // A null shared pointer can't be dereferenced, but it can be checked |
| 137 | // for nullness, assigned to, reset, etc. |
| 138 | constexpr intrusive_shared_ptr() noexcept : ptr_(nullptr) { |
| 139 | } |
| 140 | constexpr intrusive_shared_ptr(isp_detail::nullptr_t) noexcept : ptr_(nullptr) { |
| 141 | } |
| 142 | |
| 143 | // Constructs a shared pointer to the given object, incrementing the |
| 144 | // refcount for that object. |
| 145 | // |
| 146 | // This constructor is adequate when transforming a raw pointer with |
| 147 | // shared ownership into a shared pointer, when the raw pointer is at |
| 148 | // +1. This can be done by replacing the raw pointer and the manual call |
| 149 | // to `retain()` by a shared pointer constructed with this constructor, |
| 150 | // which will retain the pointed-to object. |
| 151 | // |
| 152 | // If the original code did not contain a manual retain and you use this |
| 153 | // constructor, you will create a leak. |
| 154 | explicit |
| 155 | intrusive_shared_ptr(pointer p, retain_t) noexcept : ptr_(p) { |
| 156 | if (ptr_ != nullptr) { |
| 157 | RefcountPolicy::retain(*ptr_); |
| 158 | } |
| 159 | } |
| 160 | |
| 161 | // Constructs a shared pointer to the given object, without incrementing |
| 162 | // the refcount for that object. |
| 163 | // |
| 164 | // This constructor is adequate when transforming a raw pointer with |
| 165 | // shared ownership into a shared pointer, when the raw pointer is at |
| 166 | // +0. This can be done by replacing the raw pointer by a shared |
| 167 | // pointer constructed with this constructor, which does not retain |
| 168 | // the pointed-to object. |
| 169 | // |
| 170 | // If the original code contained a manual retain that you removed and |
| 171 | // you use this constructor, you will cause a use-after-free bug. |
| 172 | explicit constexpr |
| 173 | intrusive_shared_ptr(__attribute__((os_consumed)) pointer p, no_retain_t) noexcept : ptr_(p) { |
| 174 | } |
| 175 | |
| 176 | // Makes a copy of a shared pointer, incrementing the refcount. |
| 177 | // |
| 178 | // Since this creates a new reference to the pointed-to object, the |
| 179 | // refcount is increased. Unlike for move operations, the source |
| 180 | // pointer is left untouched. |
| 181 | intrusive_shared_ptr(intrusive_shared_ptr const & other) : ptr_(other.ptr_) { |
| 182 | if (ptr_ != nullptr) { |
| 183 | RefcountPolicy::retain(*ptr_); |
| 184 | } |
| 185 | } |
| 186 | |
| 187 | // Makes a copy of a shared pointer from another compatible shared pointer, |
| 188 | // increasing the refcount. |
| 189 | // |
| 190 | // This converting constructor is enabled whenever `U*` is implicitly |
| 191 | // convertible to `T*`. This allows the usual implicit conversions |
| 192 | // between base-and-derived types. |
| 193 | // |
| 194 | // Since this creates a new reference to the pointed-to object, the |
| 195 | // refcount is increased. Unlike for move operations, the source |
| 196 | // pointer is left untouched. |
| 197 | template <typename U, typename = isp_detail::enable_if_t<isp_detail::is_convertible_v<U*, T*> > > |
| 198 | intrusive_shared_ptr(intrusive_shared_ptr<U, RefcountPolicy> const & other) : ptr_(other.ptr_) { |
| 199 | if (ptr_ != nullptr) { |
| 200 | RefcountPolicy::retain(*ptr_); |
| 201 | } |
| 202 | } |
| 203 | |
| 204 | // Moves a shared pointer into another one, nulling the source. |
| 205 | // |
| 206 | // Since this moves the ownership from one pointer to another, no |
| 207 | // refcount increment or decrement is required. The moved-from pointer |
| 208 | // becomes a null pointer, as if it had been default-constructed. |
| 209 | constexpr intrusive_shared_ptr(intrusive_shared_ptr && other) noexcept : ptr_(other.ptr_) { |
| 210 | other.ptr_ = nullptr; |
| 211 | } |
| 212 | |
| 213 | // Moves a shared pointer to a type `U` into a shared pointer |
| 214 | // to a type `T`. |
| 215 | // |
| 216 | // This converting constructor is enabled whenever `U*` is implicitly |
| 217 | // convertible to `T*`. This allows the usual implicit conversions |
| 218 | // between base-and-derived types. |
| 219 | // |
| 220 | // Since this moves the ownership from one pointer to another, no |
| 221 | // refcount increment or decrement is required. The moved-from pointer |
| 222 | // becomes a null pointer, as if it had been default-constructed. |
| 223 | template <typename U, typename = isp_detail::enable_if_t<isp_detail::is_convertible_v<U*, T*> > > |
| 224 | constexpr intrusive_shared_ptr(intrusive_shared_ptr<U, RefcountPolicy>&& other) noexcept : ptr_(other.ptr_) { |
| 225 | other.ptr_ = nullptr; |
| 226 | } |
| 227 | |
| 228 | // Destroys a shared pointer. |
| 229 | // |
| 230 | // The destruction of the shared pointer implies that one fewer reference |
| 231 | // to the pointed-to object exist, which means that the refcount of the |
| 232 | // pointed-to object is decremented. |
| 233 | // |
| 234 | // If that decrement causes the refcount to reach 0, the refcounting |
| 235 | // policy must destroy the pointed-to object and perform any cleanup |
| 236 | // associated to it (such as freeing the allocated memory). |
| 237 | ~intrusive_shared_ptr() { |
| 238 | reset(); |
| 239 | } |
| 240 | |
| 241 | // Copy-assigns a shared pointer. |
| 242 | // |
| 243 | // Since this creates a new reference to the pointed-to object, the |
| 244 | // refcount is increased. Unlike for move operations, the source |
| 245 | // pointer is left untouched. |
| 246 | // |
| 247 | // If the destination shared pointer is pointing to an object before |
| 248 | // the assignment, the refcount is decremented on that object after |
| 249 | // the assignment is performed. |
| 250 | intrusive_shared_ptr& |
| 251 | operator=(intrusive_shared_ptr const& other) |
| 252 | { |
| 253 | reset(other.get(), retain); |
| 254 | return *this; |
| 255 | } |
| 256 | |
| 257 | // Copy-assigns a shared pointer, enabling implicit conversions. |
| 258 | // |
| 259 | // This converting copy-assignment is enabled whenever `U*` is implicitly |
| 260 | // convertible to `T*`. This allows the usual implicit conversions |
| 261 | // between base-and-derived types. |
| 262 | // |
| 263 | // Since this creates a new reference to the pointed-to object, the |
| 264 | // refcount is increased. Unlike for move operations, the source |
| 265 | // pointer is left untouched. |
| 266 | // |
| 267 | // If the destination shared pointer is pointing to an object before |
| 268 | // the assignment, the refcount is decremented on that object after |
| 269 | // the assignment is performed. |
| 270 | template <typename U, typename = isp_detail::enable_if_t<isp_detail::is_convertible_v<U*, T*> > > |
| 271 | intrusive_shared_ptr& |
| 272 | operator=(intrusive_shared_ptr<U, RefcountPolicy> const& other) |
| 273 | { |
| 274 | reset(other.get(), retain); |
| 275 | return *this; |
| 276 | } |
| 277 | |
| 278 | // Move-assigns a shared pointer. |
| 279 | // |
| 280 | // Since this moves the ownership from one pointer to another, no |
| 281 | // refcount increment or decrement is required. The moved-from pointer |
| 282 | // becomes a null pointer, as if it had been default-constructed. |
| 283 | // |
| 284 | // If the destination shared pointer is pointing to an object before |
| 285 | // the assignment, the refcount is decremented on that object after |
| 286 | // the assignment is performed. |
| 287 | intrusive_shared_ptr& |
| 288 | operator=(intrusive_shared_ptr&& other) |
| 289 | { |
| 290 | reset(other.get(), no_retain); |
| 291 | other.ptr_ = nullptr; |
| 292 | return *this; |
| 293 | } |
| 294 | |
| 295 | // Move-assigns a shared pointer, enabling implicit conversions. |
| 296 | // |
| 297 | // This converting move-assignment is enabled whenever `U*` is implicitly |
| 298 | // convertible to `T*`. This allows the usual implicit conversions |
| 299 | // between base-and-derived types. |
| 300 | // |
| 301 | // Since this moves the ownership from one pointer to another, no |
| 302 | // refcount increment or decrement is required. The moved-from pointer |
| 303 | // becomes a null pointer, as if it had been default-constructed. |
| 304 | // |
| 305 | // If the destination shared pointer is pointing to an object before |
| 306 | // the assignment, the refcount is decremented on that object after |
| 307 | // the assignment is performed. |
| 308 | template <typename U, typename = isp_detail::enable_if_t<isp_detail::is_convertible_v<U*, T*> > > |
| 309 | intrusive_shared_ptr& |
| 310 | operator=(intrusive_shared_ptr<U, RefcountPolicy>&& other) |
| 311 | { |
| 312 | reset(other.get(), no_retain); |
| 313 | other.ptr_ = nullptr; |
| 314 | return *this; |
| 315 | } |
| 316 | |
| 317 | // Resets a shared pointer to a null pointer, as if calling `reset()`. |
| 318 | // |
| 319 | // If the destination shared pointer is pointing to an object before |
| 320 | // the assignment, the refcount is decremented on that object after |
| 321 | // the assignment is performed. |
| 322 | intrusive_shared_ptr& |
| 323 | operator=(isp_detail::nullptr_t) noexcept |
| 324 | { |
| 325 | reset(); |
| 326 | return *this; |
| 327 | } |
| 328 | |
| 329 | // Returns a reference to the object pointed-to by the shared pointer. |
| 330 | constexpr T& |
| 331 | operator*() const noexcept |
| 332 | { |
| 333 | return *ptr_; |
| 334 | } |
| 335 | constexpr pointer |
| 336 | operator->() const noexcept |
| 337 | { |
| 338 | return ptr_; |
| 339 | } |
| 340 | |
| 341 | // Implicit conversion to bool, returning whether the shared pointer is null. |
| 342 | explicit constexpr |
| 343 | operator bool() const noexcept |
| 344 | { |
| 345 | return ptr_ != nullptr; |
| 346 | } |
| 347 | |
| 348 | // Sets a shared pointer to null. |
| 349 | // |
| 350 | // If the shared pointer is pointing to an object, the refcount is |
| 351 | // decremented on that object. |
| 352 | intrusive_shared_ptr& |
| 353 | reset() noexcept |
| 354 | { |
| 355 | if (ptr_ != nullptr) { |
| 356 | RefcountPolicy::release(*ptr_); |
| 357 | } |
| 358 | ptr_ = nullptr; |
| 359 | return *this; |
| 360 | } |
| 361 | |
| 362 | // Sets the object pointed-to by the shared pointer to the given object. |
| 363 | // |
| 364 | // This variant of `reset()` does not increment the refcount on the object |
| 365 | // assigned to the shared pointer. |
| 366 | // |
| 367 | // If the shared pointer is pointing to an object before calling `reset`, |
| 368 | // the refcount is decremented on that object. |
| 369 | intrusive_shared_ptr& |
| 370 | reset(__attribute__((os_consumed)) pointer p, no_retain_t) noexcept |
| 371 | { |
| 372 | if (ptr_ != nullptr) { |
| 373 | RefcountPolicy::release(*ptr_); |
| 374 | } |
| 375 | ptr_ = p; |
| 376 | return *this; |
| 377 | } |
| 378 | |
| 379 | // Sets the object pointed-to by the shared pointer to the given object. |
| 380 | // |
| 381 | // This variant of `reset()` increments the refcount on the object |
| 382 | // assigned to the shared pointer. |
| 383 | // |
| 384 | // If the shared pointer is pointing to an object before calling `reset`, |
| 385 | // the refcount is decremented on that object. |
| 386 | intrusive_shared_ptr& |
| 387 | reset(pointer p, retain_t) noexcept |
| 388 | { |
| 389 | // Make sure we don't release-before-we-retain in case of self-reset |
| 390 | pointer old = ptr_; |
| 391 | ptr_ = p; |
| 392 | if (ptr_ != nullptr) { |
| 393 | RefcountPolicy::retain(*ptr_); |
| 394 | } |
| 395 | if (old != nullptr) { |
| 396 | RefcountPolicy::release(*old); |
| 397 | } |
| 398 | return *this; |
| 399 | } |
| 400 | |
| 401 | // Retrieves the raw pointer held by a shared pointer. |
| 402 | // |
| 403 | // The primary intended usage of this function is to aid bridging between |
| 404 | // code that uses shared pointers and code that does not, or simply to |
| 405 | // obtain a non-owning reference to the object managed by the shared pointer. |
| 406 | // |
| 407 | // After this operation, the shared pointer still manages the object it |
| 408 | // points to (unlike for `detach()`). |
| 409 | // |
| 410 | // One must not hold on to the pointer returned by `.get()` after the |
| 411 | // last shared pointer pointing to that object goes out of scope, since |
| 412 | // it will then be a dangling pointer. To try and catch frequent cases of |
| 413 | // misuse, calling `.get()` on a temporary shared pointer is not allowed. |
| 414 | constexpr pointer |
| 415 | get() const & noexcept |
| 416 | { |
| 417 | return ptr_; |
| 418 | } |
| 419 | |
| 420 | constexpr pointer |
| 421 | get() const&& noexcept = delete; |
| 422 | |
| 423 | // Returns the raw pointer contained in a shared pointer, detaching |
| 424 | // ownership management from the shared pointer. |
| 425 | // |
| 426 | // This operation returns a pointer to the object pointed-to by the |
| 427 | // shared pointer, and severes the link between the shared pointer and |
| 428 | // that object. After this operation, the shared pointer is no longer |
| 429 | // responsible for managing the object, and instead whoever called |
| 430 | // `detach()` has that responsibility. |
| 431 | // |
| 432 | // `detach()` does _not_ decrement the refcount of the pointee, since |
| 433 | // the caller of `detach()` is responsible for managing the lifetime of |
| 434 | // that object. |
| 435 | // |
| 436 | // After a call to `detach()`, the shared pointer is null since it has |
| 437 | // no more object to manage. |
| 438 | constexpr pointer |
| 439 | detach() noexcept |
| 440 | { |
| 441 | pointer tmp = ptr_; |
| 442 | ptr_ = nullptr; |
| 443 | return tmp; |
| 444 | } |
| 445 | |
| 446 | private: |
| 447 | friend constexpr void |
| 448 | swap(intrusive_shared_ptr& a, intrusive_shared_ptr& b) noexcept |
| 449 | { |
| 450 | pointer tmp = a.ptr_; |
| 451 | a.ptr_ = b.ptr_; |
| 452 | b.ptr_ = tmp; |
| 453 | } |
| 454 | |
| 455 | // For access to other.ptr_ in converting operations |
| 456 | template <typename U, typename Policy> |
| 457 | friend struct intrusive_shared_ptr; |
| 458 | |
| 459 | pointer ptr_; |
| 460 | }; |
| 461 | |
| 462 | // Casts a shared pointer to a type `T` to a shared pointer to a type `U` |
| 463 | // using `static_cast` on the underlying pointer type. |
| 464 | // |
| 465 | // The version of this function that takes a const reference to the source |
| 466 | // shared pointer makes a copy, and as such it increments the refcount of the |
| 467 | // pointed-to object (since a new reference is created). It leaves the source |
| 468 | // shared pointer untouched. |
| 469 | // |
| 470 | // The version of this function that takes a rvalue-reference moves the |
| 471 | // ownership from the source shared pointer to the destination shared pointer. |
| 472 | // It does not increment the refcount, and the source shared pointer is in a |
| 473 | // moved-from state (i.e. null). |
| 474 | template <typename To, typename From, typename R> |
| 475 | intrusive_shared_ptr<To, R> |
| 476 | static_pointer_cast(intrusive_shared_ptr<From, R> const& ptr) |
| 477 | { |
| 478 | return intrusive_shared_ptr<To, R>(static_cast<To*>(ptr.get()), retain); |
| 479 | } |
| 480 | template <typename To, typename From, typename R> |
| 481 | intrusive_shared_ptr<To, R> |
| 482 | static_pointer_cast(intrusive_shared_ptr<From, R>&& ptr) |
| 483 | { |
| 484 | return intrusive_shared_ptr<To, R>(static_cast<To*>(ptr.detach()), no_retain); |
| 485 | } |
| 486 | |
| 487 | // Const-casts a shared pointer to a type `cv-T` to a shared pointer to a |
| 488 | // type `T` (without cv-qualifiers) using `const_cast` on the underlying |
| 489 | // pointer type. |
| 490 | // |
| 491 | // The version of this function that takes a const reference to the source |
| 492 | // shared pointer makes a copy, and as such it increments the refcount of the |
| 493 | // pointed-to object (since a new reference is created). It leaves the source |
| 494 | // shared pointer untouched. |
| 495 | // |
| 496 | // The version of this function that takes a rvalue-reference moves the |
| 497 | // ownership from the source shared pointer to the destination shared pointer. |
| 498 | // It does not increment the refcount, and the source shared pointer is in a |
| 499 | // moved-from state (i.e. null). |
| 500 | template <typename To, typename From, typename R> |
| 501 | intrusive_shared_ptr<To, R> |
| 502 | const_pointer_cast(intrusive_shared_ptr<From, R> const& ptr) noexcept |
| 503 | { |
| 504 | return intrusive_shared_ptr<To, R>(const_cast<To*>(ptr.get()), retain); |
| 505 | } |
| 506 | template <typename To, typename From, typename R> |
| 507 | intrusive_shared_ptr<To, R> |
| 508 | const_pointer_cast(intrusive_shared_ptr<From, R>&& ptr) noexcept |
| 509 | { |
| 510 | return intrusive_shared_ptr<To, R>(const_cast<To*>(ptr.detach()), no_retain); |
| 511 | } |
| 512 | |
| 513 | // Casts a shared pointer to a type `T` to a shared pointer to a type `U` |
| 514 | // using `reinterpret_cast` on the underlying pointer type. |
| 515 | // |
| 516 | // The version of this function that takes a const reference to the source |
| 517 | // shared pointer makes a copy, and as such it increments the refcount of the |
| 518 | // pointed-to object (since a new reference is created). It leaves the source |
| 519 | // shared pointer untouched. |
| 520 | // |
| 521 | // The version of this function that takes a rvalue-reference moves the |
| 522 | // ownership from the source shared pointer to the destination shared pointer. |
| 523 | // It does not increment the refcount, and the source shared pointer is in a |
| 524 | // moved-from state (i.e. null). |
| 525 | // |
| 526 | // WARNING: |
| 527 | // This function makes it possible to cast pointers between unrelated types. |
| 528 | // This rarely makes sense, and when it does, it can often point to a design |
| 529 | // problem. You should have red lights turning on when you're about to use |
| 530 | // this function. |
| 531 | template<typename To, typename From, typename R> |
| 532 | intrusive_shared_ptr<To, R> |
| 533 | reinterpret_pointer_cast(intrusive_shared_ptr<From, R> const& ptr) noexcept |
| 534 | { |
| 535 | return intrusive_shared_ptr<To, R>(reinterpret_cast<To*>(ptr.get()), retain); |
| 536 | } |
| 537 | template<typename To, typename From, typename R> |
| 538 | intrusive_shared_ptr<To, R> |
| 539 | reinterpret_pointer_cast(intrusive_shared_ptr<From, R>&& ptr) noexcept |
| 540 | { |
| 541 | return intrusive_shared_ptr<To, R>(reinterpret_cast<To*>(ptr.detach()), no_retain); |
| 542 | } |
| 543 | |
| 544 | // Comparison operations between: |
| 545 | // - two shared pointers |
| 546 | // - a shared pointer and nullptr_t |
| 547 | // - a shared pointer and a raw pointer |
| 548 | template <typename T, typename U, typename R, typename = isp_detail::WhenComparable<T*, U*> > |
| 549 | bool |
| 550 | operator==(intrusive_shared_ptr<T, R> const& x, intrusive_shared_ptr<U, R> const& y) |
| 551 | { |
| 552 | return x.get() == y.get(); |
| 553 | } |
| 554 | |
| 555 | template <typename T, typename U, typename R, typename = isp_detail::WhenComparable<T*, U*> > |
| 556 | bool |
| 557 | operator!=(intrusive_shared_ptr<T, R> const& x, intrusive_shared_ptr<U, R> const& y) |
| 558 | { |
| 559 | return x.get() != y.get(); |
| 560 | } |
| 561 | |
| 562 | template <typename T, typename U, typename R, typename = isp_detail::WhenComparable<T*, U*> > |
| 563 | bool |
| 564 | operator==(intrusive_shared_ptr<T, R> const& x, U* y) |
| 565 | { |
| 566 | return x.get() == y; |
| 567 | } |
| 568 | |
| 569 | template <typename T, typename U, typename R, typename = isp_detail::WhenComparable<T*, U*> > |
| 570 | bool |
| 571 | operator!=(intrusive_shared_ptr<T, R> const& x, U* y) |
| 572 | { |
| 573 | return x.get() != y; |
| 574 | } |
| 575 | |
| 576 | template <typename T, typename U, typename R, typename = isp_detail::WhenComparable<T*, U*> > |
| 577 | bool |
| 578 | operator==(T* x, intrusive_shared_ptr<U, R> const& y) |
| 579 | { |
| 580 | return x == y.get(); |
| 581 | } |
| 582 | |
| 583 | template <typename T, typename U, typename R, typename = isp_detail::WhenComparable<T*, U*> > |
| 584 | bool |
| 585 | operator!=(T* x, intrusive_shared_ptr<U, R> const& y) |
| 586 | { |
| 587 | return x != y.get(); |
| 588 | } |
| 589 | |
| 590 | template <typename T, typename R> |
| 591 | bool |
| 592 | operator==(intrusive_shared_ptr<T, R> const& x, isp_detail::nullptr_t) noexcept |
| 593 | { |
| 594 | return x.get() == nullptr; |
| 595 | } |
| 596 | |
| 597 | template <typename T, typename R> |
| 598 | bool |
| 599 | operator==(isp_detail::nullptr_t, intrusive_shared_ptr<T, R> const& x) noexcept |
| 600 | { |
| 601 | return nullptr == x.get(); |
| 602 | } |
| 603 | |
| 604 | template <typename T, typename R> |
| 605 | bool |
| 606 | operator!=(intrusive_shared_ptr<T, R> const& x, isp_detail::nullptr_t) noexcept |
| 607 | { |
| 608 | return x.get() != nullptr; |
| 609 | } |
| 610 | |
| 611 | template <typename T, typename R> |
| 612 | bool |
| 613 | operator!=(isp_detail::nullptr_t, intrusive_shared_ptr<T, R> const& x) noexcept |
| 614 | { |
| 615 | return nullptr != x.get(); |
| 616 | } |
| 617 | } // end namespace libkern |
| 618 | |
| 619 | #endif // !XNU_LIBKERN_LIBKERN_CXX_INTRUSIVE_SHARED_PTR_H |
| 620 | |