| 1 | /* |
| 2 | * Copyright (c) 2018 Apple Inc. All rights reserved. |
| 3 | * |
| 4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ |
| 5 | * |
| 6 | * This file contains Original Code and/or Modifications of Original Code |
| 7 | * as defined in and that are subject to the Apple Public Source License |
| 8 | * Version 2.0 (the 'License'). You may not use this file except in |
| 9 | * compliance with the License. The rights granted to you under the License |
| 10 | * may not be used to create, or enable the creation or redistribution of, |
| 11 | * unlawful or unlicensed copies of an Apple operating system, or to |
| 12 | * circumvent, violate, or enable the circumvention or violation of, any |
| 13 | * terms of an Apple operating system software license agreement. |
| 14 | * |
| 15 | * Please obtain a copy of the License at |
| 16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. |
| 17 | * |
| 18 | * The Original Code and all software distributed under the License are |
| 19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER |
| 20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
| 21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, |
| 22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
| 23 | * Please see the License for the specific language governing rights and |
| 24 | * limitations under the License. |
| 25 | * |
| 26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ |
| 27 | */ |
| 28 | |
| 29 | #if KERNEL |
| 30 | #include <kern/priority_queue.h> |
| 31 | #include <mach/vm_param.h> |
| 32 | #include <vm/vm_memtag.h> |
| 33 | |
| 34 | #ifdef __LP64__ |
| 35 | static_assert(PRIORITY_QUEUE_ENTRY_CHILD_BITS >= VM_KERNEL_POINTER_SIGNIFICANT_BITS, |
| 36 | "Priority Queue child pointer packing failed" ); |
| 37 | #endif |
| 38 | #endif // KERNEL |
| 39 | |
| 40 | #pragma mark priority queue helpers |
| 41 | |
| 42 | /* |
| 43 | * These traits allow to parametrize `struct pqueue` below. |
| 44 | */ |
| 45 | |
| 46 | template <typename queue_t, typename entry_t> |
| 47 | struct pqueue_entry_traits { |
| 48 | /* |
| 49 | * Explain how to compare two elements in the natural order. |
| 50 | */ |
| 51 | static inline int |
| 52 | compare(queue_t que, entry_t a, entry_t b); |
| 53 | }; |
| 54 | |
| 55 | template <typename queue_t> |
| 56 | struct pqueue_entry_traits<queue_t, priority_queue_entry_t> { |
| 57 | static inline int |
| 58 | compare(queue_t que, priority_queue_entry_t e1, priority_queue_entry_t e2) |
| 59 | { |
| 60 | return que->pq_cmp_fn(e1, e2); |
| 61 | } |
| 62 | }; |
| 63 | |
| 64 | template <typename queue_t> |
| 65 | struct pqueue_entry_traits<queue_t, priority_queue_entry_deadline_t> { |
| 66 | static inline int |
| 67 | compare(queue_t que __unused, |
| 68 | priority_queue_entry_deadline_t e1, priority_queue_entry_deadline_t e2) |
| 69 | { |
| 70 | return priority_heap_compare_ints(e1->deadline, e2->deadline); |
| 71 | } |
| 72 | }; |
| 73 | |
| 74 | template <typename queue_t> |
| 75 | struct pqueue_entry_traits<queue_t, priority_queue_entry_sched_t> { |
| 76 | static inline int |
| 77 | compare(queue_t que __unused, |
| 78 | priority_queue_entry_sched_t e1, priority_queue_entry_sched_t e2) |
| 79 | { |
| 80 | return (int)e2->key - (int)e1->key; |
| 81 | } |
| 82 | }; |
| 83 | |
| 84 | template <typename queue_t> |
| 85 | struct pqueue_entry_traits<queue_t, priority_queue_entry_stable_t> { |
| 86 | static inline int |
| 87 | compare(queue_t que __unused, |
| 88 | priority_queue_entry_stable_t e1, priority_queue_entry_stable_t e2) |
| 89 | { |
| 90 | /* |
| 91 | * the key is (2 * pri + preempted) so preempted entries |
| 92 | * sort "higher" than non preempted entries at the same priority. |
| 93 | */ |
| 94 | if (e1->key != e2->key) { |
| 95 | return (int)e2->key - (int)e1->key; |
| 96 | } |
| 97 | if (e1->stamp != e2->stamp) { |
| 98 | /* |
| 99 | * preempted entries: younger (bigger timestamp) is "higher" |
| 100 | * non preempted entries: older (smaller timestamp) is "higher" |
| 101 | */ |
| 102 | if (e1->key & PRIORITY_QUEUE_ENTRY_PREEMPTED) { |
| 103 | return e1->stamp < e2->stamp ? 1 : -1; |
| 104 | } else { |
| 105 | return e1->stamp > e2->stamp ? 1 : -1; |
| 106 | } |
| 107 | } |
| 108 | return 0; |
| 109 | } |
| 110 | }; |
| 111 | |
| 112 | #pragma mark main template |
| 113 | |
| 114 | /* |
| 115 | * Template for our priority queue. |
| 116 | * |
| 117 | * It is parametrized with: |
| 118 | * - `queue_t`: the queue type |
| 119 | * - `entry_t`: the element type |
| 120 | * |
| 121 | * It will use: |
| 122 | * - priority_queue_is_min_heap() to determine if it is a min/max heap |
| 123 | * - pqueue_entry_traits<queue_t, entry_t>::compare for the ordering |
| 124 | */ |
| 125 | template <typename queue_t, typename entry_t> |
| 126 | struct pqueue { |
| 127 | using entry_traits = pqueue_entry_traits<queue_t, entry_t>; |
| 128 | |
| 129 | static inline void |
| 130 | pack_child(entry_t e, const entry_t child) |
| 131 | { |
| 132 | #if CONFIG_KERNEL_TAGGING |
| 133 | e->tag = vm_memtag_extract_tag((vm_offset_t)child); |
| 134 | #endif /* CONFIG_KERNEL_TAGGING */ |
| 135 | e->child = (long)child; |
| 136 | } |
| 137 | |
| 138 | static inline entry_t |
| 139 | unpack_child(entry_t e) |
| 140 | { |
| 141 | #if CONFIG_KERNEL_TAGGING |
| 142 | return (entry_t)(vm_memtag_add_ptr_tag(e->child, e->tag)); |
| 143 | #endif /* CONFIG_KERNEL_TAGGING */ |
| 144 | return (entry_t)e->child; |
| 145 | } |
| 146 | |
| 147 | private: |
| 148 | static inline bool |
| 149 | merge_parent_is_subtree_b(queue_t que, entry_t subtree_a, entry_t subtree_b) |
| 150 | { |
| 151 | if (priority_queue_is_max_heap((queue_t)nullptr)) { |
| 152 | return entry_traits::compare(que, subtree_a, subtree_b) > 0; |
| 153 | } |
| 154 | return entry_traits::compare(que, subtree_a, subtree_b) < 0; |
| 155 | } |
| 156 | |
| 157 | static inline entry_t |
| 158 | merge_pair_inline(queue_t que, entry_t subtree_a, entry_t subtree_b) |
| 159 | { |
| 160 | entry_t merge_result = NULL; |
| 161 | if (subtree_a == NULL) { |
| 162 | merge_result = subtree_b; |
| 163 | } else if (subtree_b == NULL || (subtree_a == subtree_b)) { |
| 164 | merge_result = subtree_a; |
| 165 | } else { |
| 166 | entry_t parent = subtree_a; |
| 167 | entry_t child = subtree_b; |
| 168 | if (merge_parent_is_subtree_b(que, subtree_a, subtree_b)) { |
| 169 | parent = subtree_b; |
| 170 | child = subtree_a; |
| 171 | } |
| 172 | /* Insert the child as the first element in the parent's child list */ |
| 173 | child->next = unpack_child(e: parent); |
| 174 | child->prev = parent; |
| 175 | if (unpack_child(e: parent) != NULL) { |
| 176 | unpack_child(e: parent)->prev = child; |
| 177 | } |
| 178 | /* Create the parent child relationship */ |
| 179 | pack_child(e: parent, child); |
| 180 | parent->next = NULL; |
| 181 | parent->prev = NULL; |
| 182 | merge_result = parent; |
| 183 | } |
| 184 | return merge_result; |
| 185 | } |
| 186 | |
| 187 | OS_NOINLINE |
| 188 | static entry_t |
| 189 | merge_pair(queue_t que, entry_t subtree_a, entry_t subtree_b) |
| 190 | { |
| 191 | return merge_pair_inline(que, subtree_a, subtree_b); |
| 192 | } |
| 193 | |
| 194 | OS_NOINLINE |
| 195 | static entry_t |
| 196 | meld_pair(queue_t que, entry_t elt) |
| 197 | { |
| 198 | entry_t pq_meld_result = NULL; |
| 199 | entry_t pair_list = NULL; |
| 200 | |
| 201 | assert(elt); // caller needs to check this. |
| 202 | |
| 203 | /* Phase 1: */ |
| 204 | /* Split the list into a set of pairs going front to back. */ |
| 205 | /* Hook these pairs onto an intermediary list in reverse order of traversal.*/ |
| 206 | |
| 207 | do { |
| 208 | /* Consider two elements at a time for pairing */ |
| 209 | entry_t pair_item_a = elt; |
| 210 | entry_t pair_item_b = elt->next; |
| 211 | if (pair_item_b == NULL) { |
| 212 | /* Odd number of elements in the list; link the odd element */ |
| 213 | /* as it is on the intermediate list. */ |
| 214 | pair_item_a->prev = pair_list; |
| 215 | pair_list = pair_item_a; |
| 216 | break; |
| 217 | } |
| 218 | /* Found two elements to pair up */ |
| 219 | elt = pair_item_b->next; |
| 220 | entry_t pair = merge_pair_inline(que, subtree_a: pair_item_a, subtree_b: pair_item_b); |
| 221 | /* Link the pair onto the intermediary list */ |
| 222 | pair->prev = pair_list; |
| 223 | pair_list = pair; |
| 224 | } while (elt != NULL); |
| 225 | |
| 226 | /* Phase 2: Merge all the pairs in the pair_list */ |
| 227 | do { |
| 228 | elt = pair_list->prev; |
| 229 | pq_meld_result = merge_pair_inline(que, subtree_a: pq_meld_result, subtree_b: pair_list); |
| 230 | pair_list = elt; |
| 231 | } while (pair_list != NULL); |
| 232 | |
| 233 | return pq_meld_result; |
| 234 | } |
| 235 | |
| 236 | static inline void |
| 237 | list_clear(entry_t e) |
| 238 | { |
| 239 | e->next = e->prev = NULL; |
| 240 | } |
| 241 | |
| 242 | static inline void |
| 243 | list_remove(entry_t elt) |
| 244 | { |
| 245 | assert(elt->prev != NULL); |
| 246 | /* Check if elt is head of list at its level; */ |
| 247 | /* If yes, make the next node the head at that level */ |
| 248 | /* Else, remove elt from the list at that level */ |
| 249 | if (unpack_child(e: elt->prev) == elt) { |
| 250 | pack_child(e: elt->prev, child: elt->next); |
| 251 | } else { |
| 252 | elt->prev->next = elt->next; |
| 253 | } |
| 254 | /* Update prev for next element in list */ |
| 255 | if (elt->next != NULL) { |
| 256 | elt->next->prev = elt->prev; |
| 257 | } |
| 258 | list_clear(e: elt); |
| 259 | } |
| 260 | |
| 261 | static inline bool |
| 262 | sift_down(queue_t que, entry_t elt) |
| 263 | { |
| 264 | bool was_root = (que->pq_root == elt); |
| 265 | |
| 266 | if (!was_root) { |
| 267 | remove_non_root(que, elt); |
| 268 | insert(que, elt, clear: false); |
| 269 | } else if (unpack_child(e: elt)) { |
| 270 | remove_root(que, old_root: elt); |
| 271 | insert(que, elt, clear: false); |
| 272 | } else { |
| 273 | /* |
| 274 | * If the queue is reduced to a single element, |
| 275 | * we have nothing to do. |
| 276 | * |
| 277 | * It is important not to, so that pq_root remains |
| 278 | * non null at all times during priority changes, |
| 279 | * so that unsynchronized peeking at the "emptiness" |
| 280 | * of the priority queue works as expected. |
| 281 | */ |
| 282 | } |
| 283 | return was_root; |
| 284 | } |
| 285 | |
| 286 | static inline bool |
| 287 | sift_up(queue_t que, entry_t elt) |
| 288 | { |
| 289 | if (elt == que->pq_root) { |
| 290 | return true; |
| 291 | } |
| 292 | |
| 293 | /* Remove the element from its current level list */ |
| 294 | list_remove(elt); |
| 295 | /* Re-insert the element into the heap with a merge */ |
| 296 | return insert(que, elt, clear: false); |
| 297 | } |
| 298 | |
| 299 | static inline entry_t |
| 300 | remove_non_root(queue_t que, entry_t elt) |
| 301 | { |
| 302 | entry_t child, new_root; |
| 303 | |
| 304 | /* To remove a non-root element with children levels, */ |
| 305 | /* - Remove element from its current level list */ |
| 306 | /* - Pairwise split all the elements in the child level list */ |
| 307 | /* - Meld all these splits (right-to-left) to form new subtree */ |
| 308 | /* - Merge the root subtree with the newly formed subtree */ |
| 309 | list_remove(elt); |
| 310 | |
| 311 | child = unpack_child(e: elt); |
| 312 | if (child) { |
| 313 | child = meld_pair(que, elt: child); |
| 314 | new_root = merge_pair(que, subtree_a: que->pq_root, subtree_b: child); |
| 315 | que->pq_root = new_root; |
| 316 | pack_child(e: elt, child: nullptr); |
| 317 | } |
| 318 | |
| 319 | return elt; |
| 320 | } |
| 321 | |
| 322 | public: |
| 323 | |
| 324 | /* |
| 325 | * exposed interfaces |
| 326 | */ |
| 327 | |
| 328 | OS_NOINLINE |
| 329 | static void |
| 330 | destroy(queue_t que, uintptr_t offset, void (^callback)(void *e)) |
| 331 | { |
| 332 | assert(callback != NULL); |
| 333 | entry_t head = que->pq_root; |
| 334 | entry_t tail = head; |
| 335 | |
| 336 | while (head != NULL) { |
| 337 | entry_t child_list = unpack_child(e: head); |
| 338 | if (child_list) { |
| 339 | tail->next = child_list; |
| 340 | while (tail->next) { |
| 341 | tail = tail->next; |
| 342 | } |
| 343 | } |
| 344 | |
| 345 | entry_t elt = head; |
| 346 | head = head->next; |
| 347 | callback((void *)((char *)elt - offset)); |
| 348 | } |
| 349 | |
| 350 | /* poison the queue now that it's destroyed */ |
| 351 | que->pq_root = (entry_t)(~0ul); |
| 352 | } |
| 353 | |
| 354 | static inline bool |
| 355 | insert(queue_t que, entry_t elt, bool clear = true) |
| 356 | { |
| 357 | if (clear) { |
| 358 | list_clear(e: elt); |
| 359 | pack_child(e: elt, child: nullptr); |
| 360 | } |
| 361 | return (que->pq_root = merge_pair(que, subtree_a: que->pq_root, subtree_b: elt)) == elt; |
| 362 | } |
| 363 | |
| 364 | static inline entry_t |
| 365 | remove_root(queue_t que, entry_t old_root) |
| 366 | { |
| 367 | entry_t new_root = unpack_child(e: old_root); |
| 368 | |
| 369 | if (new_root) { |
| 370 | que->pq_root = meld_pair(que, elt: new_root); |
| 371 | pack_child(e: old_root, child: nullptr); |
| 372 | } else { |
| 373 | que->pq_root = NULL; |
| 374 | } |
| 375 | return old_root; |
| 376 | } |
| 377 | |
| 378 | static inline bool |
| 379 | remove(queue_t que, entry_t elt) |
| 380 | { |
| 381 | if (elt == que->pq_root) { |
| 382 | remove_root(que, old_root: elt); |
| 383 | return true; |
| 384 | } else { |
| 385 | remove_non_root(que, elt); |
| 386 | return false; |
| 387 | } |
| 388 | } |
| 389 | |
| 390 | static inline bool |
| 391 | entry_increased(queue_t que, entry_t elt) |
| 392 | { |
| 393 | if (priority_queue_is_max_heap(que)) { |
| 394 | return sift_up(que, elt); |
| 395 | } else { |
| 396 | return sift_down(que, elt); |
| 397 | } |
| 398 | } |
| 399 | |
| 400 | static inline bool |
| 401 | entry_decreased(queue_t que, entry_t elt) |
| 402 | { |
| 403 | if (priority_queue_is_min_heap(que)) { |
| 404 | return sift_up(que, elt); |
| 405 | } else { |
| 406 | return sift_down(que, elt); |
| 407 | } |
| 408 | } |
| 409 | }; |
| 410 | |
| 411 | #pragma mark instantiation |
| 412 | |
| 413 | #define PRIORITY_QUEUE_MAKE_IMPL(pqueue_t, queue_t, entry_t) \ |
| 414 | \ |
| 415 | using pqueue_t = pqueue<queue_t, entry_t>; \ |
| 416 | \ |
| 417 | extern "C" { \ |
| 418 | \ |
| 419 | __pqueue_overloadable void \ |
| 420 | _priority_queue_destroy(queue_t que, uintptr_t offset, void (^cb)(void *e)) \ |
| 421 | { \ |
| 422 | pqueue_t::destroy(que, offset, cb); \ |
| 423 | } \ |
| 424 | \ |
| 425 | __pqueue_overloadable extern bool \ |
| 426 | priority_queue_insert(queue_t que, entry_t elt) \ |
| 427 | { \ |
| 428 | return pqueue_t::insert(que, elt); \ |
| 429 | } \ |
| 430 | \ |
| 431 | __pqueue_overloadable extern entry_t \ |
| 432 | _priority_queue_remove_root(queue_t que) \ |
| 433 | { \ |
| 434 | return pqueue_t::remove_root(que, que->pq_root); \ |
| 435 | } \ |
| 436 | \ |
| 437 | __pqueue_overloadable extern bool \ |
| 438 | priority_queue_remove(queue_t que, entry_t elt) \ |
| 439 | { \ |
| 440 | return pqueue_t::remove(que, elt); \ |
| 441 | } \ |
| 442 | \ |
| 443 | __pqueue_overloadable extern bool \ |
| 444 | priority_queue_entry_decreased(queue_t que, entry_t elt) \ |
| 445 | { \ |
| 446 | return pqueue_t::entry_decreased(que, elt); \ |
| 447 | } \ |
| 448 | \ |
| 449 | __pqueue_overloadable extern bool \ |
| 450 | priority_queue_entry_increased(queue_t que, entry_t elt) \ |
| 451 | { \ |
| 452 | return pqueue_t::entry_increased(que, elt); \ |
| 453 | } \ |
| 454 | \ |
| 455 | } |
| 456 | |
| 457 | PRIORITY_QUEUE_MAKE_IMPL(pqueue_min_t, |
| 458 | struct priority_queue_min *, priority_queue_entry_t); |
| 459 | PRIORITY_QUEUE_MAKE_IMPL(pqueue_max_t, |
| 460 | struct priority_queue_max *, priority_queue_entry_t); |
| 461 | |
| 462 | PRIORITY_QUEUE_MAKE_IMPL(pqueue_sched_min_t, |
| 463 | struct priority_queue_sched_min *, priority_queue_entry_sched_t); |
| 464 | PRIORITY_QUEUE_MAKE_IMPL(pqueue_sched_max_t, |
| 465 | struct priority_queue_sched_max *, priority_queue_entry_sched_t); |
| 466 | |
| 467 | PRIORITY_QUEUE_MAKE_IMPL(pqueue_deadline_min_t, |
| 468 | struct priority_queue_deadline_min *, priority_queue_entry_deadline_t); |
| 469 | PRIORITY_QUEUE_MAKE_IMPL(pqueue_deadline_max_t, |
| 470 | struct priority_queue_deadline_max *, priority_queue_entry_deadline_t); |
| 471 | |
| 472 | PRIORITY_QUEUE_MAKE_IMPL(pqueue_sched_stable_min_t, |
| 473 | struct priority_queue_sched_stable_min *, priority_queue_entry_stable_t); |
| 474 | PRIORITY_QUEUE_MAKE_IMPL(pqueue_sched_stable_max_t, |
| 475 | struct priority_queue_sched_stable_max *, priority_queue_entry_stable_t); |
| 476 | |