| 1 | typedef struct _IODataQueueEntry { |
| 2 | uint32_t size; |
| 3 | uint8_t data[0]; |
| 4 | } IODataQueueEntry; |
| 5 | |
| 6 | #define sizeof(IODataQueueEntry) |
| 7 | |
| 8 | typedef struct _IODataQueueMemory { |
| 9 | volatile uint32_t head; |
| 10 | volatile uint32_t tail; |
| 11 | volatile uint8_t needServicedCallback; |
| 12 | volatile uint8_t _resv[119]; |
| 13 | IODataQueueEntry queue[0]; |
| 14 | } IODataQueueMemory; |
| 15 | |
| 16 | struct IODataQueueDispatchSource_IVars { |
| 17 | IODataQueueMemory * dataQueue; |
| 18 | IODataQueueDispatchSource * source; |
| 19 | // IODispatchQueue * queue; |
| 20 | IOMemoryDescriptor * memory; |
| 21 | OSAction * dataAvailableAction; |
| 22 | OSAction * dataServicedAction; |
| 23 | uint64_t options; |
| 24 | uint32_t queueByteCount; |
| 25 | |
| 26 | #if !KERNEL |
| 27 | bool enable; |
| 28 | bool canceled; |
| 29 | #endif |
| 30 | }; |
| 31 | |
| 32 | bool |
| 33 | IODataQueueDispatchSource::init() |
| 34 | { |
| 35 | if (!super::init()) { |
| 36 | return false; |
| 37 | } |
| 38 | |
| 39 | ivars = IONewZero(IODataQueueDispatchSource_IVars, 1); |
| 40 | ivars->source = this; |
| 41 | |
| 42 | #if !KERNEL |
| 43 | kern_return_t ret; |
| 44 | |
| 45 | ret = CopyMemory(&ivars->memory); |
| 46 | assert(kIOReturnSuccess == ret); |
| 47 | |
| 48 | uint64_t address; |
| 49 | uint64_t length; |
| 50 | |
| 51 | ret = ivars->memory->Map(0, 0, 0, 0, &address, &length); |
| 52 | assert(kIOReturnSuccess == ret); |
| 53 | ivars->dataQueue = (typeof(ivars->dataQueue))(uintptr_t) address; |
| 54 | ivars->queueByteCount = length; |
| 55 | #endif |
| 56 | |
| 57 | return true; |
| 58 | } |
| 59 | |
| 60 | kern_return_t |
| 61 | IODataQueueDispatchSource::CheckForWork_Impl( |
| 62 | const IORPC rpc, |
| 63 | bool synchronous) |
| 64 | { |
| 65 | IOReturn ret = kIOReturnNotReady; |
| 66 | |
| 67 | return ret; |
| 68 | } |
| 69 | |
| 70 | #if KERNEL |
| 71 | |
| 72 | kern_return_t |
| 73 | IODataQueueDispatchSource::Create_Impl( |
| 74 | uint64_t queueByteCount, |
| 75 | IODispatchQueue * queue, |
| 76 | IODataQueueDispatchSource ** source) |
| 77 | { |
| 78 | IODataQueueDispatchSource * inst; |
| 79 | IOBufferMemoryDescriptor * bmd; |
| 80 | |
| 81 | if (3 & queueByteCount) { |
| 82 | return kIOReturnBadArgument; |
| 83 | } |
| 84 | if (queueByteCount > UINT_MAX) { |
| 85 | return kIOReturnBadArgument; |
| 86 | } |
| 87 | inst = OSTypeAlloc(IODataQueueDispatchSource); |
| 88 | if (!inst) { |
| 89 | return kIOReturnNoMemory; |
| 90 | } |
| 91 | if (!inst->init()) { |
| 92 | inst->release(); |
| 93 | return kIOReturnError; |
| 94 | } |
| 95 | |
| 96 | bmd = IOBufferMemoryDescriptor::withOptions( |
| 97 | options: kIODirectionOutIn | kIOMemoryKernelUserShared, |
| 98 | capacity: queueByteCount, alignment: page_size); |
| 99 | if (!bmd) { |
| 100 | inst->release(); |
| 101 | return kIOReturnNoMemory; |
| 102 | } |
| 103 | inst->ivars->memory = bmd; |
| 104 | inst->ivars->queueByteCount = ((uint32_t) queueByteCount); |
| 105 | inst->ivars->options = 0; |
| 106 | inst->ivars->dataQueue = (typeof(inst->ivars->dataQueue))bmd->getBytesNoCopy(); |
| 107 | |
| 108 | *source = inst; |
| 109 | |
| 110 | return kIOReturnSuccess; |
| 111 | } |
| 112 | |
| 113 | kern_return_t |
| 114 | IODataQueueDispatchSource::CopyMemory_Impl( |
| 115 | IOMemoryDescriptor ** memory) |
| 116 | { |
| 117 | kern_return_t ret; |
| 118 | IOMemoryDescriptor * result; |
| 119 | |
| 120 | result = ivars->memory; |
| 121 | if (result) { |
| 122 | result->retain(); |
| 123 | ret = kIOReturnSuccess; |
| 124 | } else { |
| 125 | ret = kIOReturnNotReady; |
| 126 | } |
| 127 | *memory = result; |
| 128 | |
| 129 | return ret; |
| 130 | } |
| 131 | |
| 132 | kern_return_t |
| 133 | IODataQueueDispatchSource::CopyDataAvailableHandler_Impl( |
| 134 | OSAction ** action) |
| 135 | { |
| 136 | kern_return_t ret; |
| 137 | OSAction * result; |
| 138 | |
| 139 | result = ivars->dataAvailableAction; |
| 140 | if (result) { |
| 141 | result->retain(); |
| 142 | ret = kIOReturnSuccess; |
| 143 | } else { |
| 144 | ret = kIOReturnNotReady; |
| 145 | } |
| 146 | *action = result; |
| 147 | |
| 148 | return ret; |
| 149 | } |
| 150 | |
| 151 | kern_return_t |
| 152 | IODataQueueDispatchSource::CopyDataServicedHandler_Impl( |
| 153 | OSAction ** action) |
| 154 | { |
| 155 | kern_return_t ret; |
| 156 | OSAction * result; |
| 157 | |
| 158 | result = ivars->dataServicedAction; |
| 159 | if (result) { |
| 160 | result->retain(); |
| 161 | ret = kIOReturnSuccess; |
| 162 | } else { |
| 163 | ret = kIOReturnNotReady; |
| 164 | } |
| 165 | *action = result; |
| 166 | return ret; |
| 167 | } |
| 168 | |
| 169 | kern_return_t |
| 170 | IODataQueueDispatchSource::SetDataAvailableHandler_Impl( |
| 171 | OSAction * action) |
| 172 | { |
| 173 | IOReturn ret; |
| 174 | OSAction * oldAction; |
| 175 | |
| 176 | oldAction = ivars->dataAvailableAction; |
| 177 | if (oldAction && OSCompareAndSwapPtr(oldAction, NULL, &ivars->dataAvailableAction)) { |
| 178 | oldAction->release(); |
| 179 | } |
| 180 | if (action) { |
| 181 | action->retain(); |
| 182 | ivars->dataAvailableAction = action; |
| 183 | if (IsDataAvailable()) { |
| 184 | DataAvailable(action: ivars->dataAvailableAction); |
| 185 | } |
| 186 | } |
| 187 | ret = kIOReturnSuccess; |
| 188 | |
| 189 | return ret; |
| 190 | } |
| 191 | |
| 192 | kern_return_t |
| 193 | IODataQueueDispatchSource::SetDataServicedHandler_Impl( |
| 194 | OSAction * action) |
| 195 | { |
| 196 | IOReturn ret; |
| 197 | OSAction * oldAction; |
| 198 | |
| 199 | oldAction = ivars->dataServicedAction; |
| 200 | if (oldAction && OSCompareAndSwapPtr(oldAction, NULL, &ivars->dataServicedAction)) { |
| 201 | oldAction->release(); |
| 202 | } |
| 203 | if (action) { |
| 204 | action->retain(); |
| 205 | ivars->dataServicedAction = action; |
| 206 | } |
| 207 | ret = kIOReturnSuccess; |
| 208 | |
| 209 | return ret; |
| 210 | } |
| 211 | |
| 212 | #endif /* KERNEL */ |
| 213 | |
| 214 | void |
| 215 | IODataQueueDispatchSource::SendDataAvailable(void) |
| 216 | { |
| 217 | IOReturn ret; |
| 218 | |
| 219 | if (!ivars->dataAvailableAction) { |
| 220 | ret = CopyDataAvailableHandler(action: &ivars->dataAvailableAction); |
| 221 | if (kIOReturnSuccess != ret) { |
| 222 | ivars->dataAvailableAction = NULL; |
| 223 | } |
| 224 | } |
| 225 | if (ivars->dataAvailableAction) { |
| 226 | DataAvailable(action: ivars->dataAvailableAction); |
| 227 | } |
| 228 | } |
| 229 | |
| 230 | void |
| 231 | IODataQueueDispatchSource::SendDataServiced(void) |
| 232 | { |
| 233 | IOReturn ret; |
| 234 | |
| 235 | if (!ivars->dataServicedAction) { |
| 236 | ret = CopyDataServicedHandler(action: &ivars->dataServicedAction); |
| 237 | if (kIOReturnSuccess != ret) { |
| 238 | ivars->dataServicedAction = NULL; |
| 239 | } |
| 240 | } |
| 241 | if (ivars->dataServicedAction) { |
| 242 | ivars->dataQueue->needServicedCallback = false; |
| 243 | DataServiced(action: ivars->dataServicedAction); |
| 244 | } |
| 245 | } |
| 246 | |
| 247 | kern_return_t |
| 248 | IODataQueueDispatchSource::SetEnableWithCompletion_Impl( |
| 249 | bool enable, |
| 250 | IODispatchSourceCancelHandler handler) |
| 251 | { |
| 252 | IOReturn ret; |
| 253 | |
| 254 | #if !KERNEL |
| 255 | ivars->enable = enable; |
| 256 | #endif |
| 257 | |
| 258 | ret = kIOReturnSuccess; |
| 259 | return ret; |
| 260 | } |
| 261 | |
| 262 | void |
| 263 | IODataQueueDispatchSource::free() |
| 264 | { |
| 265 | OSSafeReleaseNULL(ivars->memory); |
| 266 | OSSafeReleaseNULL(ivars->dataAvailableAction); |
| 267 | OSSafeReleaseNULL(ivars->dataServicedAction); |
| 268 | IOSafeDeleteNULL(ivars, IODataQueueDispatchSource_IVars, 1); |
| 269 | super::free(); |
| 270 | } |
| 271 | |
| 272 | kern_return_t |
| 273 | IODataQueueDispatchSource::Cancel_Impl( |
| 274 | IODispatchSourceCancelHandler handler) |
| 275 | { |
| 276 | if (handler) { |
| 277 | handler(); |
| 278 | } |
| 279 | return kIOReturnSuccess; |
| 280 | } |
| 281 | |
| 282 | bool |
| 283 | IODataQueueDispatchSource::IsDataAvailable(void) |
| 284 | { |
| 285 | IODataQueueMemory *dataQueue = ivars->dataQueue; |
| 286 | |
| 287 | return dataQueue && (dataQueue->head != dataQueue->tail); |
| 288 | } |
| 289 | |
| 290 | kern_return_t |
| 291 | IODataQueueDispatchSource::Peek(IODataQueueClientDequeueEntryBlock callback) |
| 292 | { |
| 293 | IODataQueueEntry * entry = NULL; |
| 294 | IODataQueueMemory * dataQueue; |
| 295 | uint32_t callerDataSize; |
| 296 | uint32_t dataSize; |
| 297 | uint32_t headOffset; |
| 298 | uint32_t tailOffset; |
| 299 | |
| 300 | dataQueue = ivars->dataQueue; |
| 301 | if (!dataQueue) { |
| 302 | return kIOReturnNoMemory; |
| 303 | } |
| 304 | |
| 305 | // Read head and tail with acquire barrier |
| 306 | headOffset = __c11_atomic_load((_Atomic uint32_t *)&dataQueue->head, __ATOMIC_RELAXED); |
| 307 | tailOffset = __c11_atomic_load((_Atomic uint32_t *)&dataQueue->tail, __ATOMIC_ACQUIRE); |
| 308 | |
| 309 | if (headOffset != tailOffset) { |
| 310 | IODataQueueEntry * head = NULL; |
| 311 | uint32_t headSize = 0; |
| 312 | uint32_t queueSize = ivars->queueByteCount; |
| 313 | |
| 314 | if (headOffset > queueSize) { |
| 315 | return kIOReturnError; |
| 316 | } |
| 317 | |
| 318 | head = (IODataQueueEntry *)((uintptr_t)dataQueue->queue + headOffset); |
| 319 | callerDataSize = head->size; |
| 320 | if (os_add_overflow(3, callerDataSize, &headSize)) { |
| 321 | return kIOReturnError; |
| 322 | } |
| 323 | headSize &= ~3U; |
| 324 | |
| 325 | // Check if there's enough room before the end of the queue for a header. |
| 326 | // If there is room, check if there's enough room to hold the header and |
| 327 | // the data. |
| 328 | |
| 329 | if ((headOffset > UINT32_MAX - DATA_QUEUE_ENTRY_HEADER_SIZE) || |
| 330 | (headOffset + DATA_QUEUE_ENTRY_HEADER_SIZE > queueSize) || |
| 331 | (headOffset + DATA_QUEUE_ENTRY_HEADER_SIZE > UINT32_MAX - headSize) || |
| 332 | (headOffset + headSize + DATA_QUEUE_ENTRY_HEADER_SIZE > queueSize)) { |
| 333 | // No room for the header or the data, wrap to the beginning of the queue. |
| 334 | // Note: wrapping even with the UINT32_MAX checks, as we have to support |
| 335 | // queueSize of UINT32_MAX |
| 336 | entry = dataQueue->queue; |
| 337 | callerDataSize = entry->size; |
| 338 | dataSize = entry->size; |
| 339 | if (os_add_overflow(3, callerDataSize, &dataSize)) { |
| 340 | return kIOReturnError; |
| 341 | } |
| 342 | dataSize &= ~3U; |
| 343 | |
| 344 | if ((dataSize > UINT32_MAX - DATA_QUEUE_ENTRY_HEADER_SIZE) || |
| 345 | (dataSize + DATA_QUEUE_ENTRY_HEADER_SIZE > queueSize)) { |
| 346 | return kIOReturnError; |
| 347 | } |
| 348 | |
| 349 | callback(&entry->data, callerDataSize); |
| 350 | return kIOReturnSuccess; |
| 351 | } else { |
| 352 | callback(&head->data, callerDataSize); |
| 353 | return kIOReturnSuccess; |
| 354 | } |
| 355 | } |
| 356 | |
| 357 | return kIOReturnUnderrun; |
| 358 | } |
| 359 | |
| 360 | kern_return_t |
| 361 | IODataQueueDispatchSource::Dequeue(IODataQueueClientDequeueEntryBlock callback) |
| 362 | { |
| 363 | kern_return_t ret; |
| 364 | bool sendDataServiced; |
| 365 | |
| 366 | sendDataServiced = false; |
| 367 | ret = DequeueWithCoalesce(sendDataServiced: &sendDataServiced, callback); |
| 368 | if (sendDataServiced) { |
| 369 | SendDataServiced(); |
| 370 | } |
| 371 | return ret; |
| 372 | } |
| 373 | |
| 374 | kern_return_t |
| 375 | IODataQueueDispatchSource::DequeueWithCoalesce(bool * sendDataServiced, |
| 376 | IODataQueueClientDequeueEntryBlock callback) |
| 377 | { |
| 378 | IOReturn retVal = kIOReturnSuccess; |
| 379 | IODataQueueEntry * entry = NULL; |
| 380 | IODataQueueMemory * dataQueue; |
| 381 | uint32_t callerDataSize; |
| 382 | uint32_t dataSize = 0; |
| 383 | uint32_t headOffset = 0; |
| 384 | uint32_t tailOffset = 0; |
| 385 | uint32_t newHeadOffset = 0; |
| 386 | |
| 387 | dataQueue = ivars->dataQueue; |
| 388 | if (!dataQueue) { |
| 389 | return kIOReturnNoMemory; |
| 390 | } |
| 391 | |
| 392 | // Read head and tail with acquire barrier |
| 393 | headOffset = __c11_atomic_load((_Atomic uint32_t *)&dataQueue->head, __ATOMIC_RELAXED); |
| 394 | tailOffset = __c11_atomic_load((_Atomic uint32_t *)&dataQueue->tail, __ATOMIC_ACQUIRE); |
| 395 | |
| 396 | if (headOffset != tailOffset) { |
| 397 | IODataQueueEntry * head = NULL; |
| 398 | uint32_t headSize = 0; |
| 399 | uint32_t queueSize = ivars->queueByteCount; |
| 400 | |
| 401 | if (headOffset > queueSize) { |
| 402 | return kIOReturnError; |
| 403 | } |
| 404 | |
| 405 | head = (IODataQueueEntry *)((uintptr_t)dataQueue->queue + headOffset); |
| 406 | callerDataSize = head->size; |
| 407 | if (os_add_overflow(3, callerDataSize, &headSize)) { |
| 408 | return kIOReturnError; |
| 409 | } |
| 410 | headSize &= ~3U; |
| 411 | |
| 412 | // we wrapped around to beginning, so read from there |
| 413 | // either there was not even room for the header |
| 414 | if ((headOffset > UINT32_MAX - DATA_QUEUE_ENTRY_HEADER_SIZE) || |
| 415 | (headOffset + DATA_QUEUE_ENTRY_HEADER_SIZE > queueSize) || |
| 416 | // or there was room for the header, but not for the data |
| 417 | (headOffset + DATA_QUEUE_ENTRY_HEADER_SIZE > UINT32_MAX - headSize) || |
| 418 | (headOffset + headSize + DATA_QUEUE_ENTRY_HEADER_SIZE > queueSize)) { |
| 419 | // Note: we have to wrap to the beginning even with the UINT32_MAX checks |
| 420 | // because we have to support a queueSize of UINT32_MAX. |
| 421 | entry = dataQueue->queue; |
| 422 | callerDataSize = entry->size; |
| 423 | |
| 424 | if (os_add_overflow(callerDataSize, 3, &dataSize)) { |
| 425 | return kIOReturnError; |
| 426 | } |
| 427 | dataSize &= ~3U; |
| 428 | if ((dataSize > UINT32_MAX - DATA_QUEUE_ENTRY_HEADER_SIZE) || |
| 429 | (dataSize + DATA_QUEUE_ENTRY_HEADER_SIZE > queueSize)) { |
| 430 | return kIOReturnError; |
| 431 | } |
| 432 | newHeadOffset = dataSize + DATA_QUEUE_ENTRY_HEADER_SIZE; |
| 433 | // else it is at the end |
| 434 | } else { |
| 435 | entry = head; |
| 436 | |
| 437 | if ((headSize > UINT32_MAX - DATA_QUEUE_ENTRY_HEADER_SIZE) || |
| 438 | (headSize + DATA_QUEUE_ENTRY_HEADER_SIZE > UINT32_MAX - headOffset) || |
| 439 | (headSize + DATA_QUEUE_ENTRY_HEADER_SIZE + headOffset > queueSize)) { |
| 440 | return kIOReturnError; |
| 441 | } |
| 442 | newHeadOffset = headOffset + headSize + DATA_QUEUE_ENTRY_HEADER_SIZE; |
| 443 | } |
| 444 | } else { |
| 445 | // empty queue |
| 446 | if (dataQueue->needServicedCallback) { |
| 447 | *sendDataServiced = true; |
| 448 | } |
| 449 | return kIOReturnUnderrun; |
| 450 | } |
| 451 | |
| 452 | callback(&entry->data, callerDataSize); |
| 453 | if (dataQueue->needServicedCallback) { |
| 454 | *sendDataServiced = true; |
| 455 | } |
| 456 | |
| 457 | __c11_atomic_store((_Atomic uint32_t *)&dataQueue->head, newHeadOffset, __ATOMIC_RELEASE); |
| 458 | |
| 459 | if (newHeadOffset == tailOffset) { |
| 460 | // |
| 461 | // If we are making the queue empty, then we need to make sure |
| 462 | // that either the enqueuer notices, or we notice the enqueue |
| 463 | // that raced with our making of the queue empty. |
| 464 | // |
| 465 | __c11_atomic_thread_fence(__ATOMIC_SEQ_CST); |
| 466 | } |
| 467 | |
| 468 | return retVal; |
| 469 | } |
| 470 | |
| 471 | kern_return_t |
| 472 | IODataQueueDispatchSource::Enqueue(uint32_t callerDataSize, |
| 473 | IODataQueueClientEnqueueEntryBlock callback) |
| 474 | { |
| 475 | kern_return_t ret; |
| 476 | bool sendDataAvailable; |
| 477 | |
| 478 | sendDataAvailable = false; |
| 479 | ret = EnqueueWithCoalesce(dataSize: callerDataSize, sendDataAvailable: &sendDataAvailable, callback); |
| 480 | if (sendDataAvailable) { |
| 481 | SendDataAvailable(); |
| 482 | } |
| 483 | return ret; |
| 484 | } |
| 485 | |
| 486 | kern_return_t |
| 487 | IODataQueueDispatchSource::EnqueueWithCoalesce(uint32_t callerDataSize, |
| 488 | bool * sendDataAvailable, |
| 489 | IODataQueueClientEnqueueEntryBlock callback) |
| 490 | { |
| 491 | IODataQueueMemory * dataQueue; |
| 492 | IODataQueueEntry * entry; |
| 493 | uint32_t head; |
| 494 | uint32_t tail; |
| 495 | uint32_t newTail; |
| 496 | uint32_t dataSize; |
| 497 | uint32_t queueSize; |
| 498 | uint32_t entrySize; |
| 499 | IOReturn retVal = kIOReturnSuccess; |
| 500 | |
| 501 | dataQueue = ivars->dataQueue; |
| 502 | if (!dataQueue) { |
| 503 | return kIOReturnNoMemory; |
| 504 | } |
| 505 | queueSize = ivars->queueByteCount; |
| 506 | |
| 507 | // Force a single read of head and tail |
| 508 | tail = __c11_atomic_load((_Atomic uint32_t *)&dataQueue->tail, __ATOMIC_RELAXED); |
| 509 | head = __c11_atomic_load((_Atomic uint32_t *)&dataQueue->head, __ATOMIC_ACQUIRE); |
| 510 | |
| 511 | if (os_add_overflow(callerDataSize, 3, &dataSize)) { |
| 512 | return kIOReturnOverrun; |
| 513 | } |
| 514 | dataSize &= ~3U; |
| 515 | |
| 516 | // Check for overflow of entrySize |
| 517 | if (os_add_overflow(DATA_QUEUE_ENTRY_HEADER_SIZE, dataSize, &entrySize)) { |
| 518 | return kIOReturnOverrun; |
| 519 | } |
| 520 | |
| 521 | // Check for underflow of (getQueueSize() - tail) |
| 522 | if (queueSize < tail || queueSize < head) { |
| 523 | return kIOReturnUnderrun; |
| 524 | } |
| 525 | |
| 526 | newTail = tail; |
| 527 | if (tail >= head) { |
| 528 | // Is there enough room at the end for the entry? |
| 529 | if ((entrySize <= (UINT32_MAX - tail)) && |
| 530 | ((tail + entrySize) <= queueSize)) { |
| 531 | entry = (IODataQueueEntry *)((uintptr_t)dataQueue->queue + tail); |
| 532 | |
| 533 | callback(&entry->data, callerDataSize); |
| 534 | |
| 535 | entry->size = callerDataSize; |
| 536 | |
| 537 | // The tail can be out of bound when the size of the new entry |
| 538 | // exactly matches the available space at the end of the queue. |
| 539 | // The tail can range from 0 to queueSize inclusive. |
| 540 | |
| 541 | newTail = tail + entrySize; |
| 542 | } else if (head > entrySize) { // Is there enough room at the beginning? |
| 543 | entry = (IODataQueueEntry *)((uintptr_t)dataQueue->queue); |
| 544 | |
| 545 | callback(&entry->data, callerDataSize); |
| 546 | |
| 547 | // Wrap around to the beginning, but do not allow the tail to catch |
| 548 | // up to the head. |
| 549 | |
| 550 | entry->size = callerDataSize; |
| 551 | |
| 552 | // We need to make sure that there is enough room to set the size before |
| 553 | // doing this. The user client checks for this and will look for the size |
| 554 | // at the beginning if there isn't room for it at the end. |
| 555 | |
| 556 | if ((queueSize - tail) >= DATA_QUEUE_ENTRY_HEADER_SIZE) { |
| 557 | ((IODataQueueEntry *)((uintptr_t)dataQueue->queue + tail))->size = dataSize; |
| 558 | } |
| 559 | |
| 560 | newTail = entrySize; |
| 561 | } else { |
| 562 | retVal = kIOReturnOverrun; // queue is full |
| 563 | } |
| 564 | } else { |
| 565 | // Do not allow the tail to catch up to the head when the queue is full. |
| 566 | // That's why the comparison uses a '>' rather than '>='. |
| 567 | |
| 568 | if ((head - tail) > entrySize) { |
| 569 | entry = (IODataQueueEntry *)((uintptr_t)dataQueue->queue + tail); |
| 570 | |
| 571 | callback(&entry->data, callerDataSize); |
| 572 | |
| 573 | entry->size = callerDataSize; |
| 574 | |
| 575 | newTail = tail + entrySize; |
| 576 | } else { |
| 577 | retVal = kIOReturnOverrun; // queue is full |
| 578 | } |
| 579 | } |
| 580 | |
| 581 | // Send notification (via mach message) that data is available. |
| 582 | |
| 583 | if (retVal == kIOReturnSuccess) { |
| 584 | // Publish the data we just enqueued |
| 585 | __c11_atomic_store((_Atomic uint32_t *)&dataQueue->tail, newTail, __ATOMIC_RELEASE); |
| 586 | |
| 587 | if (tail != head) { |
| 588 | // |
| 589 | // The memory barrier below pairs with the one in dequeue |
| 590 | // so that either our store to the tail cannot be missed by |
| 591 | // the next dequeue attempt, or we will observe the dequeuer |
| 592 | // making the queue empty. |
| 593 | // |
| 594 | // Of course, if we already think the queue is empty, |
| 595 | // there's no point paying this extra cost. |
| 596 | // |
| 597 | __c11_atomic_thread_fence(__ATOMIC_SEQ_CST); |
| 598 | head = __c11_atomic_load((_Atomic uint32_t *)&dataQueue->head, __ATOMIC_RELAXED); |
| 599 | } |
| 600 | |
| 601 | if (tail == head) { |
| 602 | // Send notification that data is now available. |
| 603 | *sendDataAvailable = true; |
| 604 | retVal = kIOReturnSuccess; |
| 605 | } |
| 606 | } else if (retVal == kIOReturnOverrun) { |
| 607 | // ask to be notified of Dequeue() |
| 608 | dataQueue->needServicedCallback = true; |
| 609 | *sendDataAvailable = true; |
| 610 | } |
| 611 | |
| 612 | return retVal; |
| 613 | } |
| 614 | |
| 615 | kern_return_t |
| 616 | IODataQueueDispatchSource::CanEnqueueData(uint32_t callerDataSize) |
| 617 | { |
| 618 | return CanEnqueueData(dataSize: callerDataSize, entryCount: 1); |
| 619 | } |
| 620 | |
| 621 | kern_return_t |
| 622 | IODataQueueDispatchSource::CanEnqueueData(uint32_t callerDataSize, uint32_t dataCount) |
| 623 | { |
| 624 | IODataQueueMemory * dataQueue; |
| 625 | uint32_t head; |
| 626 | uint32_t tail; |
| 627 | uint32_t dataSize; |
| 628 | uint32_t queueSize; |
| 629 | uint32_t entrySize; |
| 630 | |
| 631 | dataQueue = ivars->dataQueue; |
| 632 | if (!dataQueue) { |
| 633 | return kIOReturnNoMemory; |
| 634 | } |
| 635 | queueSize = ivars->queueByteCount; |
| 636 | |
| 637 | // Force a single read of head and tail |
| 638 | tail = __c11_atomic_load((_Atomic uint32_t *)&dataQueue->tail, __ATOMIC_RELAXED); |
| 639 | head = __c11_atomic_load((_Atomic uint32_t *)&dataQueue->head, __ATOMIC_ACQUIRE); |
| 640 | |
| 641 | if (os_add_overflow(callerDataSize, 3, &dataSize)) { |
| 642 | return kIOReturnOverrun; |
| 643 | } |
| 644 | dataSize &= ~3U; |
| 645 | |
| 646 | // Check for overflow of entrySize |
| 647 | if (os_add_overflow(DATA_QUEUE_ENTRY_HEADER_SIZE, dataSize, &entrySize)) { |
| 648 | return kIOReturnOverrun; |
| 649 | } |
| 650 | |
| 651 | // Check for underflow of (getQueueSize() - tail) |
| 652 | if (queueSize < tail || queueSize < head) { |
| 653 | return kIOReturnError; |
| 654 | } |
| 655 | |
| 656 | if (tail >= head) { |
| 657 | uint32_t endSpace = queueSize - tail; |
| 658 | uint32_t endElements = endSpace / entrySize; |
| 659 | uint32_t beginElements = head / entrySize; |
| 660 | if (endElements < dataCount && endElements + beginElements <= dataCount) { |
| 661 | return kIOReturnOverrun; |
| 662 | } |
| 663 | } else { |
| 664 | // Do not allow the tail to catch up to the head when the queue is full. |
| 665 | uint32_t space = head - tail - 1; |
| 666 | uint32_t elements = space / entrySize; |
| 667 | if (elements < dataCount) { |
| 668 | return kIOReturnOverrun; |
| 669 | } |
| 670 | } |
| 671 | |
| 672 | return kIOReturnSuccess; |
| 673 | } |
| 674 | |
| 675 | size_t |
| 676 | IODataQueueDispatchSource::() |
| 677 | { |
| 678 | return DATA_QUEUE_ENTRY_HEADER_SIZE; |
| 679 | } |
| 680 | |