1 | /* |
2 | * Copyright (c) 1998-2021 Apple Inc. All rights reserved. |
3 | * |
4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ |
5 | * |
6 | * This file contains Original Code and/or Modifications of Original Code |
7 | * as defined in and that are subject to the Apple Public Source License |
8 | * Version 2.0 (the 'License'). You may not use this file except in |
9 | * compliance with the License. The rights granted to you under the License |
10 | * may not be used to create, or enable the creation or redistribution of, |
11 | * unlawful or unlicensed copies of an Apple operating system, or to |
12 | * circumvent, violate, or enable the circumvention or violation of, any |
13 | * terms of an Apple operating system software license agreement. |
14 | * |
15 | * Please obtain a copy of the License at |
16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. |
17 | * |
18 | * The Original Code and all software distributed under the License are |
19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER |
20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, |
22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
23 | * Please see the License for the specific language governing rights and |
24 | * limitations under the License. |
25 | * |
26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ |
27 | */ |
28 | #define IOKIT_ENABLE_SHARED_PTR |
29 | |
30 | #include <sys/cdefs.h> |
31 | |
32 | #include <IOKit/assert.h> |
33 | #include <IOKit/system.h> |
34 | #include <IOKit/IOLib.h> |
35 | #include <IOKit/IOMemoryDescriptor.h> |
36 | #include <IOKit/IOMapper.h> |
37 | #include <IOKit/IODMACommand.h> |
38 | #include <IOKit/IOKitKeysPrivate.h> |
39 | |
40 | #include <IOKit/IOSubMemoryDescriptor.h> |
41 | #include <IOKit/IOMultiMemoryDescriptor.h> |
42 | #include <IOKit/IOBufferMemoryDescriptor.h> |
43 | |
44 | #include <IOKit/IOKitDebug.h> |
45 | #include <IOKit/IOTimeStamp.h> |
46 | #include <libkern/OSDebug.h> |
47 | #include <libkern/OSKextLibPrivate.h> |
48 | |
49 | #include "IOKitKernelInternal.h" |
50 | |
51 | #include <libkern/c++/OSAllocation.h> |
52 | #include <libkern/c++/OSContainers.h> |
53 | #include <libkern/c++/OSDictionary.h> |
54 | #include <libkern/c++/OSArray.h> |
55 | #include <libkern/c++/OSSymbol.h> |
56 | #include <libkern/c++/OSNumber.h> |
57 | #include <os/overflow.h> |
58 | #include <os/cpp_util.h> |
59 | #include <os/base_private.h> |
60 | |
61 | #include <sys/uio.h> |
62 | |
63 | __BEGIN_DECLS |
64 | #include <vm/pmap.h> |
65 | #include <vm/vm_pageout.h> |
66 | #include <mach/memory_object_types.h> |
67 | #include <device/device_port.h> |
68 | |
69 | #include <mach/vm_prot.h> |
70 | #include <mach/mach_vm.h> |
71 | #include <mach/memory_entry.h> |
72 | #include <vm/vm_fault.h> |
73 | #include <vm/vm_protos.h> |
74 | |
75 | extern ppnum_t pmap_find_phys(pmap_t pmap, addr64_t va); |
76 | extern void ipc_port_release_send(ipc_port_t port); |
77 | |
78 | extern kern_return_t |
79 | mach_memory_entry_ownership( |
80 | ipc_port_t entry_port, |
81 | task_t owner, |
82 | int ledger_tag, |
83 | int ledger_flags); |
84 | |
85 | __END_DECLS |
86 | |
87 | #define kIOMapperWaitSystem ((IOMapper *) 1) |
88 | |
89 | static IOMapper * gIOSystemMapper = NULL; |
90 | |
91 | ppnum_t gIOLastPage; |
92 | |
93 | enum { |
94 | kIOMapGuardSizeLarge = 65536 |
95 | }; |
96 | |
97 | /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */ |
98 | |
99 | OSDefineMetaClassAndAbstractStructors( IOMemoryDescriptor, OSObject ) |
100 | |
101 | #define super IOMemoryDescriptor |
102 | |
103 | OSDefineMetaClassAndStructorsWithZone(IOGeneralMemoryDescriptor, |
104 | IOMemoryDescriptor, ZC_ZFREE_CLEARMEM) |
105 | |
106 | /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */ |
107 | |
108 | static IORecursiveLock * gIOMemoryLock; |
109 | |
110 | #define LOCK IORecursiveLockLock( gIOMemoryLock) |
111 | #define UNLOCK IORecursiveLockUnlock( gIOMemoryLock) |
112 | #define SLEEP IORecursiveLockSleep( gIOMemoryLock, (void *)this, THREAD_UNINT) |
113 | #define WAKEUP \ |
114 | IORecursiveLockWakeup( gIOMemoryLock, (void *)this, /* one-thread */ false) |
115 | |
116 | #if 0 |
117 | #define DEBG(fmt, args...) { kprintf(fmt, ## args); } |
118 | #else |
119 | #define DEBG(fmt, args...) {} |
120 | #endif |
121 | |
122 | /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */ |
123 | |
124 | // Some data structures and accessor macros used by the initWithOptions |
125 | // Function |
126 | |
127 | enum ioPLBlockFlags { |
128 | kIOPLOnDevice = 0x00000001, |
129 | kIOPLExternUPL = 0x00000002, |
130 | }; |
131 | |
132 | struct IOMDPersistentInitData { |
133 | const IOGeneralMemoryDescriptor * fMD; |
134 | IOMemoryReference * fMemRef; |
135 | }; |
136 | |
137 | struct ioPLBlock { |
138 | upl_t fIOPL; |
139 | vm_address_t fPageInfo; // Pointer to page list or index into it |
140 | uint64_t fIOMDOffset; // The offset of this iopl in descriptor |
141 | ppnum_t fMappedPage; // Page number of first page in this iopl |
142 | unsigned int fPageOffset; // Offset within first page of iopl |
143 | unsigned int fFlags; // Flags |
144 | }; |
145 | |
146 | enum { kMaxWireTags = 6 }; |
147 | |
148 | struct ioGMDData { |
149 | IOMapper * fMapper; |
150 | uint64_t fDMAMapAlignment; |
151 | uint64_t fMappedBase; |
152 | uint64_t fMappedLength; |
153 | uint64_t fPreparationID; |
154 | #if IOTRACKING |
155 | IOTracking fWireTracking; |
156 | #endif /* IOTRACKING */ |
157 | unsigned int fPageCnt; |
158 | uint8_t fDMAMapNumAddressBits; |
159 | unsigned char fCompletionError:1; |
160 | unsigned char fMappedBaseValid:1; |
161 | unsigned char _resv:4; |
162 | unsigned char fDMAAccess:2; |
163 | |
164 | /* variable length arrays */ |
165 | upl_page_info_t fPageList[1] |
166 | #if __LP64__ |
167 | // align fPageList as for ioPLBlock |
168 | __attribute__((aligned(sizeof(upl_t)))) |
169 | #endif |
170 | ; |
171 | //ioPLBlock fBlocks[1]; |
172 | }; |
173 | |
174 | #pragma GCC visibility push(hidden) |
175 | |
176 | class _IOMemoryDescriptorMixedData : public OSObject |
177 | { |
178 | OSDeclareDefaultStructors(_IOMemoryDescriptorMixedData); |
179 | |
180 | public: |
181 | static OSPtr<_IOMemoryDescriptorMixedData> withCapacity(size_t capacity); |
182 | bool initWithCapacity(size_t capacity); |
183 | virtual void free() APPLE_KEXT_OVERRIDE; |
184 | |
185 | bool appendBytes(const void * bytes, size_t length); |
186 | bool setLength(size_t length); |
187 | |
188 | const void * getBytes() const; |
189 | size_t getLength() const; |
190 | |
191 | private: |
192 | void freeMemory(); |
193 | |
194 | void * _data = nullptr; |
195 | size_t _length = 0; |
196 | size_t _capacity = 0; |
197 | }; |
198 | |
199 | #pragma GCC visibility pop |
200 | |
201 | #define getDataP(osd) ((ioGMDData *) (osd)->getBytes()) |
202 | #define getIOPLList(d) ((ioPLBlock *) (void *)&(d->fPageList[d->fPageCnt])) |
203 | #define getNumIOPL(osd, d) \ |
204 | ((UInt)(((osd)->getLength() - ((char *) getIOPLList(d) - (char *) d)) / sizeof(ioPLBlock))) |
205 | #define getPageList(d) (&(d->fPageList[0])) |
206 | #define computeDataSize(p, u) \ |
207 | (offsetof(ioGMDData, fPageList) + p * sizeof(upl_page_info_t) + u * sizeof(ioPLBlock)) |
208 | |
209 | enum { kIOMemoryHostOrRemote = kIOMemoryHostOnly | kIOMemoryRemote }; |
210 | |
211 | /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */ |
212 | |
213 | extern "C" { |
214 | kern_return_t |
215 | device_data_action( |
216 | uintptr_t device_handle, |
217 | ipc_port_t , |
218 | vm_prot_t protection, |
219 | vm_object_offset_t offset, |
220 | vm_size_t size) |
221 | { |
222 | kern_return_t kr; |
223 | IOMemoryDescriptorReserved * ref = (IOMemoryDescriptorReserved *) device_handle; |
224 | OSSharedPtr<IOMemoryDescriptor> memDesc; |
225 | |
226 | LOCK; |
227 | if (ref->dp.memory) { |
228 | memDesc.reset(p: ref->dp.memory, OSRetain); |
229 | kr = memDesc->handleFault(pager: device_pager, sourceOffset: offset, length: size); |
230 | memDesc.reset(); |
231 | } else { |
232 | kr = KERN_ABORTED; |
233 | } |
234 | UNLOCK; |
235 | |
236 | return kr; |
237 | } |
238 | |
239 | kern_return_t |
240 | device_close( |
241 | uintptr_t device_handle) |
242 | { |
243 | IOMemoryDescriptorReserved * ref = (IOMemoryDescriptorReserved *) device_handle; |
244 | |
245 | IOFreeType( ref, IOMemoryDescriptorReserved ); |
246 | |
247 | return kIOReturnSuccess; |
248 | } |
249 | }; // end extern "C" |
250 | |
251 | /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */ |
252 | |
253 | // Note this inline function uses C++ reference arguments to return values |
254 | // This means that pointers are not passed and NULLs don't have to be |
255 | // checked for as a NULL reference is illegal. |
256 | static inline void |
257 | getAddrLenForInd( |
258 | mach_vm_address_t &addr, |
259 | mach_vm_size_t &len, // Output variables |
260 | UInt32 type, |
261 | IOGeneralMemoryDescriptor::Ranges r, |
262 | UInt32 ind, |
263 | task_t task __unused) |
264 | { |
265 | assert(kIOMemoryTypeUIO == type |
266 | || kIOMemoryTypeVirtual == type || kIOMemoryTypeVirtual64 == type |
267 | || kIOMemoryTypePhysical == type || kIOMemoryTypePhysical64 == type); |
268 | if (kIOMemoryTypeUIO == type) { |
269 | user_size_t us; |
270 | user_addr_t ad; |
271 | uio_getiov(a_uio: (uio_t) r.uio, a_index: ind, a_baseaddr_p: &ad, a_length_p: &us); addr = ad; len = us; |
272 | } |
273 | #ifndef __LP64__ |
274 | else if ((kIOMemoryTypeVirtual64 == type) || (kIOMemoryTypePhysical64 == type)) { |
275 | IOAddressRange cur = r.v64[ind]; |
276 | addr = cur.address; |
277 | len = cur.length; |
278 | } |
279 | #endif /* !__LP64__ */ |
280 | else { |
281 | IOVirtualRange cur = r.v[ind]; |
282 | addr = cur.address; |
283 | len = cur.length; |
284 | } |
285 | #if CONFIG_PROB_GZALLOC |
286 | if (task == kernel_task) { |
287 | addr = pgz_decode(addr, len); |
288 | } |
289 | #endif /* CONFIG_PROB_GZALLOC */ |
290 | } |
291 | |
292 | /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */ |
293 | |
294 | static IOReturn |
295 | purgeableControlBits(IOOptionBits newState, vm_purgable_t * control, int * state) |
296 | { |
297 | IOReturn err = kIOReturnSuccess; |
298 | |
299 | *control = VM_PURGABLE_SET_STATE; |
300 | |
301 | enum { kIOMemoryPurgeableControlMask = 15 }; |
302 | |
303 | switch (kIOMemoryPurgeableControlMask & newState) { |
304 | case kIOMemoryPurgeableKeepCurrent: |
305 | *control = VM_PURGABLE_GET_STATE; |
306 | break; |
307 | |
308 | case kIOMemoryPurgeableNonVolatile: |
309 | *state = VM_PURGABLE_NONVOLATILE; |
310 | break; |
311 | case kIOMemoryPurgeableVolatile: |
312 | *state = VM_PURGABLE_VOLATILE | (newState & ~kIOMemoryPurgeableControlMask); |
313 | break; |
314 | case kIOMemoryPurgeableEmpty: |
315 | *state = VM_PURGABLE_EMPTY | (newState & ~kIOMemoryPurgeableControlMask); |
316 | break; |
317 | default: |
318 | err = kIOReturnBadArgument; |
319 | break; |
320 | } |
321 | |
322 | if (*control == VM_PURGABLE_SET_STATE) { |
323 | // let VM know this call is from the kernel and is allowed to alter |
324 | // the volatility of the memory entry even if it was created with |
325 | // MAP_MEM_PURGABLE_KERNEL_ONLY |
326 | *control = VM_PURGABLE_SET_STATE_FROM_KERNEL; |
327 | } |
328 | |
329 | return err; |
330 | } |
331 | |
332 | static IOReturn |
333 | purgeableStateBits(int * state) |
334 | { |
335 | IOReturn err = kIOReturnSuccess; |
336 | |
337 | switch (VM_PURGABLE_STATE_MASK & *state) { |
338 | case VM_PURGABLE_NONVOLATILE: |
339 | *state = kIOMemoryPurgeableNonVolatile; |
340 | break; |
341 | case VM_PURGABLE_VOLATILE: |
342 | *state = kIOMemoryPurgeableVolatile; |
343 | break; |
344 | case VM_PURGABLE_EMPTY: |
345 | *state = kIOMemoryPurgeableEmpty; |
346 | break; |
347 | default: |
348 | *state = kIOMemoryPurgeableNonVolatile; |
349 | err = kIOReturnNotReady; |
350 | break; |
351 | } |
352 | return err; |
353 | } |
354 | |
355 | typedef struct { |
356 | unsigned int wimg; |
357 | unsigned int object_type; |
358 | } iokit_memtype_entry; |
359 | |
360 | static const iokit_memtype_entry iomd_mem_types[] = { |
361 | [kIODefaultCache] = {VM_WIMG_DEFAULT, MAP_MEM_NOOP}, |
362 | [kIOInhibitCache] = {VM_WIMG_IO, MAP_MEM_IO}, |
363 | [kIOWriteThruCache] = {VM_WIMG_WTHRU, MAP_MEM_WTHRU}, |
364 | [kIOWriteCombineCache] = {VM_WIMG_WCOMB, MAP_MEM_WCOMB}, |
365 | [kIOCopybackCache] = {VM_WIMG_COPYBACK, MAP_MEM_COPYBACK}, |
366 | [kIOCopybackInnerCache] = {VM_WIMG_INNERWBACK, MAP_MEM_INNERWBACK}, |
367 | [kIOPostedWrite] = {VM_WIMG_POSTED, MAP_MEM_POSTED}, |
368 | [kIORealTimeCache] = {VM_WIMG_RT, MAP_MEM_RT}, |
369 | [kIOPostedReordered] = {VM_WIMG_POSTED_REORDERED, MAP_MEM_POSTED_REORDERED}, |
370 | [kIOPostedCombinedReordered] = {VM_WIMG_POSTED_COMBINED_REORDERED, MAP_MEM_POSTED_COMBINED_REORDERED}, |
371 | }; |
372 | |
373 | static vm_prot_t |
374 | vmProtForCacheMode(IOOptionBits cacheMode) |
375 | { |
376 | assert(cacheMode < (sizeof(iomd_mem_types) / sizeof(iomd_mem_types[0]))); |
377 | if (cacheMode >= (sizeof(iomd_mem_types) / sizeof(iomd_mem_types[0]))) { |
378 | cacheMode = kIODefaultCache; |
379 | } |
380 | vm_prot_t prot = 0; |
381 | SET_MAP_MEM(iomd_mem_types[cacheMode].object_type, prot); |
382 | return prot; |
383 | } |
384 | |
385 | static unsigned int |
386 | (IOOptionBits cacheMode) |
387 | { |
388 | assert(cacheMode < (sizeof(iomd_mem_types) / sizeof(iomd_mem_types[0]))); |
389 | if (cacheMode >= (sizeof(iomd_mem_types) / sizeof(iomd_mem_types[0]))) { |
390 | cacheMode = kIODefaultCache; |
391 | } |
392 | if (cacheMode == kIODefaultCache) { |
393 | return -1U; |
394 | } |
395 | return iomd_mem_types[cacheMode].wimg; |
396 | } |
397 | |
398 | static IOOptionBits |
399 | (unsigned int ) |
400 | { |
401 | pagerFlags &= VM_WIMG_MASK; |
402 | IOOptionBits cacheMode = kIODefaultCache; |
403 | for (IOOptionBits i = 0; i < (sizeof(iomd_mem_types) / sizeof(iomd_mem_types[0])); ++i) { |
404 | if (iomd_mem_types[i].wimg == pagerFlags) { |
405 | cacheMode = i; |
406 | break; |
407 | } |
408 | } |
409 | return (cacheMode == kIODefaultCache) ? kIOCopybackCache : cacheMode; |
410 | } |
411 | |
412 | /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */ |
413 | /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */ |
414 | |
415 | struct IOMemoryEntry { |
416 | ipc_port_t entry; |
417 | int64_t offset; |
418 | uint64_t size; |
419 | uint64_t start; |
420 | }; |
421 | |
422 | struct IOMemoryReference { |
423 | volatile SInt32 refCount; |
424 | vm_prot_t prot; |
425 | uint32_t capacity; |
426 | uint32_t count; |
427 | struct IOMemoryReference * mapRef; |
428 | IOMemoryEntry entries[0]; |
429 | }; |
430 | |
431 | enum{ |
432 | kIOMemoryReferenceReuse = 0x00000001, |
433 | kIOMemoryReferenceWrite = 0x00000002, |
434 | kIOMemoryReferenceCOW = 0x00000004, |
435 | }; |
436 | |
437 | SInt32 gIOMemoryReferenceCount; |
438 | |
439 | IOMemoryReference * |
440 | IOGeneralMemoryDescriptor::memoryReferenceAlloc(uint32_t capacity, IOMemoryReference * realloc) |
441 | { |
442 | IOMemoryReference * ref; |
443 | size_t oldCapacity; |
444 | |
445 | if (realloc) { |
446 | oldCapacity = realloc->capacity; |
447 | } else { |
448 | oldCapacity = 0; |
449 | } |
450 | |
451 | // Use the kalloc API instead of manually handling the reallocation |
452 | ref = krealloc_type(IOMemoryReference, IOMemoryEntry, |
453 | oldCapacity, capacity, realloc, Z_WAITOK_ZERO); |
454 | if (ref) { |
455 | if (oldCapacity == 0) { |
456 | ref->refCount = 1; |
457 | OSIncrementAtomic(&gIOMemoryReferenceCount); |
458 | } |
459 | ref->capacity = capacity; |
460 | } |
461 | return ref; |
462 | } |
463 | |
464 | void |
465 | IOGeneralMemoryDescriptor::memoryReferenceFree(IOMemoryReference * ref) |
466 | { |
467 | IOMemoryEntry * entries; |
468 | |
469 | if (ref->mapRef) { |
470 | memoryReferenceFree(ref: ref->mapRef); |
471 | ref->mapRef = NULL; |
472 | } |
473 | |
474 | entries = ref->entries + ref->count; |
475 | while (entries > &ref->entries[0]) { |
476 | entries--; |
477 | ipc_port_release_send(port: entries->entry); |
478 | } |
479 | kfree_type(IOMemoryReference, IOMemoryEntry, ref->capacity, ref); |
480 | |
481 | OSDecrementAtomic(&gIOMemoryReferenceCount); |
482 | } |
483 | |
484 | void |
485 | IOGeneralMemoryDescriptor::memoryReferenceRelease(IOMemoryReference * ref) |
486 | { |
487 | if (1 == OSDecrementAtomic(&ref->refCount)) { |
488 | memoryReferenceFree(ref); |
489 | } |
490 | } |
491 | |
492 | |
493 | IOReturn |
494 | IOGeneralMemoryDescriptor::memoryReferenceCreate( |
495 | IOOptionBits options, |
496 | IOMemoryReference ** reference) |
497 | { |
498 | enum { kCapacity = 4, kCapacityInc = 4 }; |
499 | |
500 | kern_return_t err; |
501 | IOMemoryReference * ref; |
502 | IOMemoryEntry * entries; |
503 | IOMemoryEntry * cloneEntries = NULL; |
504 | vm_map_t map; |
505 | ipc_port_t entry, cloneEntry; |
506 | vm_prot_t prot; |
507 | memory_object_size_t actualSize; |
508 | uint32_t rangeIdx; |
509 | uint32_t count; |
510 | mach_vm_address_t entryAddr, endAddr, entrySize; |
511 | mach_vm_size_t srcAddr, srcLen; |
512 | mach_vm_size_t nextAddr, nextLen; |
513 | mach_vm_size_t offset, remain; |
514 | vm_map_offset_t overmap_start = 0, overmap_end = 0; |
515 | int misaligned_start = 0, misaligned_end = 0; |
516 | IOByteCount physLen; |
517 | IOOptionBits type = (_flags & kIOMemoryTypeMask); |
518 | IOOptionBits cacheMode; |
519 | unsigned int ; |
520 | vm_tag_t tag; |
521 | vm_named_entry_kernel_flags_t vmne_kflags; |
522 | |
523 | ref = memoryReferenceAlloc(capacity: kCapacity, NULL); |
524 | if (!ref) { |
525 | return kIOReturnNoMemory; |
526 | } |
527 | |
528 | tag = (vm_tag_t) getVMTag(map: kernel_map); |
529 | vmne_kflags = VM_NAMED_ENTRY_KERNEL_FLAGS_NONE; |
530 | entries = &ref->entries[0]; |
531 | count = 0; |
532 | err = KERN_SUCCESS; |
533 | |
534 | offset = 0; |
535 | rangeIdx = 0; |
536 | remain = _length; |
537 | if (_task) { |
538 | getAddrLenForInd(addr&: nextAddr, len&: nextLen, type, r: _ranges, ind: rangeIdx, task: _task); |
539 | |
540 | // account for IOBMD setLength(), use its capacity as length |
541 | IOBufferMemoryDescriptor * bmd; |
542 | if ((bmd = OSDynamicCast(IOBufferMemoryDescriptor, this))) { |
543 | nextLen = bmd->getCapacity(); |
544 | remain = nextLen; |
545 | } |
546 | } else { |
547 | nextAddr = getPhysicalSegment(offset, length: &physLen, options: kIOMemoryMapperNone); |
548 | nextLen = physLen; |
549 | |
550 | // default cache mode for physical |
551 | if (kIODefaultCache == ((_flags & kIOMemoryBufferCacheMask) >> kIOMemoryBufferCacheShift)) { |
552 | IOOptionBits mode = cacheModeForPagerFlags(pagerFlags: IODefaultCacheBits(pa: nextAddr)); |
553 | _flags |= (mode << kIOMemoryBufferCacheShift); |
554 | } |
555 | } |
556 | |
557 | // cache mode & vm_prot |
558 | prot = VM_PROT_READ; |
559 | cacheMode = ((_flags & kIOMemoryBufferCacheMask) >> kIOMemoryBufferCacheShift); |
560 | prot |= vmProtForCacheMode(cacheMode); |
561 | // VM system requires write access to change cache mode |
562 | if (kIODefaultCache != cacheMode) { |
563 | prot |= VM_PROT_WRITE; |
564 | } |
565 | if (kIODirectionOut != (kIODirectionOutIn & _flags)) { |
566 | prot |= VM_PROT_WRITE; |
567 | } |
568 | if (kIOMemoryReferenceWrite & options) { |
569 | prot |= VM_PROT_WRITE; |
570 | } |
571 | if (kIOMemoryReferenceCOW & options) { |
572 | prot |= MAP_MEM_VM_COPY; |
573 | } |
574 | |
575 | if (kIOMemoryUseReserve & _flags) { |
576 | prot |= MAP_MEM_GRAB_SECLUDED; |
577 | } |
578 | |
579 | if ((kIOMemoryReferenceReuse & options) && _memRef) { |
580 | cloneEntries = &_memRef->entries[0]; |
581 | prot |= MAP_MEM_NAMED_REUSE; |
582 | } |
583 | |
584 | if (_task) { |
585 | // virtual ranges |
586 | |
587 | if (kIOMemoryBufferPageable & _flags) { |
588 | int ledger_tag, ; |
589 | |
590 | // IOBufferMemoryDescriptor alloc - set flags for entry + object create |
591 | prot |= MAP_MEM_NAMED_CREATE; |
592 | |
593 | // default accounting settings: |
594 | // + "none" ledger tag |
595 | // + include in footprint |
596 | // can be changed later with ::setOwnership() |
597 | ledger_tag = VM_LEDGER_TAG_NONE; |
598 | ledger_no_footprint = 0; |
599 | |
600 | if (kIOMemoryBufferPurgeable & _flags) { |
601 | prot |= (MAP_MEM_PURGABLE | MAP_MEM_PURGABLE_KERNEL_ONLY); |
602 | if (VM_KERN_MEMORY_SKYWALK == tag) { |
603 | // Skywalk purgeable memory accounting: |
604 | // + "network" ledger tag |
605 | // + not included in footprint |
606 | ledger_tag = VM_LEDGER_TAG_NETWORK; |
607 | ledger_no_footprint = 1; |
608 | } else { |
609 | // regular purgeable memory accounting: |
610 | // + no ledger tag |
611 | // + included in footprint |
612 | ledger_tag = VM_LEDGER_TAG_NONE; |
613 | ledger_no_footprint = 0; |
614 | } |
615 | } |
616 | vmne_kflags.vmnekf_ledger_tag = ledger_tag; |
617 | vmne_kflags.vmnekf_ledger_no_footprint = ledger_no_footprint; |
618 | if (kIOMemoryUseReserve & _flags) { |
619 | prot |= MAP_MEM_GRAB_SECLUDED; |
620 | } |
621 | |
622 | prot |= VM_PROT_WRITE; |
623 | map = NULL; |
624 | } else { |
625 | prot |= MAP_MEM_USE_DATA_ADDR; |
626 | map = get_task_map(_task); |
627 | } |
628 | DEBUG4K_IOKIT("map %p _length 0x%llx prot 0x%x\n" , map, (uint64_t)_length, prot); |
629 | |
630 | while (remain) { |
631 | srcAddr = nextAddr; |
632 | srcLen = nextLen; |
633 | nextAddr = 0; |
634 | nextLen = 0; |
635 | // coalesce addr range |
636 | for (++rangeIdx; rangeIdx < _rangesCount; rangeIdx++) { |
637 | getAddrLenForInd(addr&: nextAddr, len&: nextLen, type, r: _ranges, ind: rangeIdx, task: _task); |
638 | if ((srcAddr + srcLen) != nextAddr) { |
639 | break; |
640 | } |
641 | srcLen += nextLen; |
642 | } |
643 | |
644 | if (MAP_MEM_USE_DATA_ADDR & prot) { |
645 | entryAddr = srcAddr; |
646 | endAddr = srcAddr + srcLen; |
647 | } else { |
648 | entryAddr = trunc_page_64(srcAddr); |
649 | endAddr = round_page_64(x: srcAddr + srcLen); |
650 | } |
651 | if (vm_map_page_mask(map: get_task_map(_task)) < PAGE_MASK) { |
652 | DEBUG4K_IOKIT("IOMemRef %p _flags 0x%x prot 0x%x _ranges[%d]: 0x%llx 0x%llx\n" , ref, (uint32_t)_flags, prot, rangeIdx - 1, srcAddr, srcLen); |
653 | } |
654 | |
655 | do{ |
656 | entrySize = (endAddr - entryAddr); |
657 | if (!entrySize) { |
658 | break; |
659 | } |
660 | actualSize = entrySize; |
661 | |
662 | cloneEntry = MACH_PORT_NULL; |
663 | if (MAP_MEM_NAMED_REUSE & prot) { |
664 | if (cloneEntries < &_memRef->entries[_memRef->count]) { |
665 | cloneEntry = cloneEntries->entry; |
666 | } else { |
667 | prot &= ~MAP_MEM_NAMED_REUSE; |
668 | } |
669 | } |
670 | |
671 | err = mach_make_memory_entry_internal(target_map: map, |
672 | size: &actualSize, offset: entryAddr, permission: prot, vmne_kflags, object_handle: &entry, parent_handle: cloneEntry); |
673 | |
674 | if (KERN_SUCCESS != err) { |
675 | DEBUG4K_ERROR("make_memory_entry(map %p, addr 0x%llx, size 0x%llx, prot 0x%x) err 0x%x\n" , map, entryAddr, actualSize, prot, err); |
676 | break; |
677 | } |
678 | if (MAP_MEM_USE_DATA_ADDR & prot) { |
679 | if (actualSize > entrySize) { |
680 | actualSize = entrySize; |
681 | } |
682 | } else if (actualSize > entrySize) { |
683 | panic("mach_make_memory_entry_64 actualSize" ); |
684 | } |
685 | |
686 | memory_entry_check_for_adjustment(src_map: map, port: entry, overmap_start: &overmap_start, overmap_end: &overmap_end); |
687 | |
688 | if (count && overmap_start) { |
689 | /* |
690 | * Track misaligned start for all |
691 | * except the first entry. |
692 | */ |
693 | misaligned_start++; |
694 | } |
695 | |
696 | if (overmap_end) { |
697 | /* |
698 | * Ignore misaligned end for the |
699 | * last entry. |
700 | */ |
701 | if ((entryAddr + actualSize) != endAddr) { |
702 | misaligned_end++; |
703 | } |
704 | } |
705 | |
706 | if (count) { |
707 | /* Middle entries */ |
708 | if (misaligned_start || misaligned_end) { |
709 | DEBUG4K_IOKIT("stopped at entryAddr 0x%llx\n" , entryAddr); |
710 | ipc_port_release_send(port: entry); |
711 | err = KERN_NOT_SUPPORTED; |
712 | break; |
713 | } |
714 | } |
715 | |
716 | if (count >= ref->capacity) { |
717 | ref = memoryReferenceAlloc(capacity: ref->capacity + kCapacityInc, realloc: ref); |
718 | entries = &ref->entries[count]; |
719 | } |
720 | entries->entry = entry; |
721 | entries->size = actualSize; |
722 | entries->offset = offset + (entryAddr - srcAddr); |
723 | entries->start = entryAddr; |
724 | entryAddr += actualSize; |
725 | if (MAP_MEM_NAMED_REUSE & prot) { |
726 | if ((cloneEntries->entry == entries->entry) |
727 | && (cloneEntries->size == entries->size) |
728 | && (cloneEntries->offset == entries->offset)) { |
729 | cloneEntries++; |
730 | } else { |
731 | prot &= ~MAP_MEM_NAMED_REUSE; |
732 | } |
733 | } |
734 | entries++; |
735 | count++; |
736 | }while (true); |
737 | offset += srcLen; |
738 | remain -= srcLen; |
739 | } |
740 | } else { |
741 | // _task == 0, physical or kIOMemoryTypeUPL |
742 | memory_object_t ; |
743 | vm_size_t size = ptoa_64(_pages); |
744 | |
745 | if (!getKernelReserved()) { |
746 | panic("getKernelReserved" ); |
747 | } |
748 | |
749 | reserved->dp.pagerContig = (1 == _rangesCount); |
750 | reserved->dp.memory = this; |
751 | |
752 | pagerFlags = pagerFlagsForCacheMode(cacheMode); |
753 | if (-1U == pagerFlags) { |
754 | panic("phys is kIODefaultCache" ); |
755 | } |
756 | if (reserved->dp.pagerContig) { |
757 | pagerFlags |= DEVICE_PAGER_CONTIGUOUS; |
758 | } |
759 | |
760 | pager = device_pager_setup((memory_object_t) NULL, (uintptr_t) reserved, |
761 | size, pagerFlags); |
762 | assert(pager); |
763 | if (!pager) { |
764 | DEBUG4K_ERROR("pager setup failed size 0x%llx flags 0x%x\n" , (uint64_t)size, pagerFlags); |
765 | err = kIOReturnVMError; |
766 | } else { |
767 | srcAddr = nextAddr; |
768 | entryAddr = trunc_page_64(srcAddr); |
769 | err = mach_memory_object_memory_entry_64(host: (host_t) 1, internal: false /*internal*/, |
770 | size, VM_PROT_READ | VM_PROT_WRITE, pager, entry_handle: &entry); |
771 | assert(KERN_SUCCESS == err); |
772 | if (KERN_SUCCESS != err) { |
773 | device_pager_deallocate(pager); |
774 | } else { |
775 | reserved->dp.devicePager = pager; |
776 | entries->entry = entry; |
777 | entries->size = size; |
778 | entries->offset = offset + (entryAddr - srcAddr); |
779 | entries++; |
780 | count++; |
781 | } |
782 | } |
783 | } |
784 | |
785 | ref->count = count; |
786 | ref->prot = prot; |
787 | |
788 | if (_task && (KERN_SUCCESS == err) |
789 | && (kIOMemoryMapCopyOnWrite & _flags) |
790 | && !(kIOMemoryReferenceCOW & options)) { |
791 | err = memoryReferenceCreate(options: options | kIOMemoryReferenceCOW, reference: &ref->mapRef); |
792 | if (KERN_SUCCESS != err) { |
793 | DEBUG4K_ERROR("ref %p options 0x%x err 0x%x\n" , ref, (unsigned int)options, err); |
794 | } |
795 | } |
796 | |
797 | if (KERN_SUCCESS == err) { |
798 | if (MAP_MEM_NAMED_REUSE & prot) { |
799 | memoryReferenceFree(ref); |
800 | OSIncrementAtomic(&_memRef->refCount); |
801 | ref = _memRef; |
802 | } |
803 | } else { |
804 | DEBUG4K_ERROR("ref %p err 0x%x\n" , ref, err); |
805 | memoryReferenceFree(ref); |
806 | ref = NULL; |
807 | } |
808 | |
809 | *reference = ref; |
810 | |
811 | return err; |
812 | } |
813 | |
814 | static mach_vm_size_t |
815 | IOMemoryDescriptorMapGuardSize(vm_map_t map, IOOptionBits options) |
816 | { |
817 | switch (kIOMapGuardedMask & options) { |
818 | default: |
819 | case kIOMapGuardedSmall: |
820 | return vm_map_page_size(map); |
821 | case kIOMapGuardedLarge: |
822 | assert(0 == (kIOMapGuardSizeLarge & vm_map_page_mask(map))); |
823 | return kIOMapGuardSizeLarge; |
824 | } |
825 | ; |
826 | } |
827 | |
828 | static kern_return_t |
829 | IOMemoryDescriptorMapDealloc(IOOptionBits options, vm_map_t map, |
830 | vm_map_offset_t addr, mach_vm_size_t size) |
831 | { |
832 | kern_return_t kr; |
833 | vm_map_offset_t actualAddr; |
834 | mach_vm_size_t actualSize; |
835 | |
836 | actualAddr = vm_map_trunc_page(addr, vm_map_page_mask(map)); |
837 | actualSize = vm_map_round_page(addr + size, vm_map_page_mask(map)) - actualAddr; |
838 | |
839 | if (kIOMapGuardedMask & options) { |
840 | mach_vm_size_t guardSize = IOMemoryDescriptorMapGuardSize(map, options); |
841 | actualAddr -= guardSize; |
842 | actualSize += 2 * guardSize; |
843 | } |
844 | kr = mach_vm_deallocate(target: map, address: actualAddr, size: actualSize); |
845 | |
846 | return kr; |
847 | } |
848 | |
849 | kern_return_t |
850 | IOMemoryDescriptorMapAlloc(vm_map_t map, void * _ref) |
851 | { |
852 | IOMemoryDescriptorMapAllocRef * ref = (typeof(ref))_ref; |
853 | IOReturn err; |
854 | vm_map_offset_t addr; |
855 | mach_vm_size_t size; |
856 | mach_vm_size_t guardSize; |
857 | vm_map_kernel_flags_t vmk_flags; |
858 | |
859 | addr = ref->mapped; |
860 | size = ref->size; |
861 | guardSize = 0; |
862 | |
863 | if (kIOMapGuardedMask & ref->options) { |
864 | if (!(kIOMapAnywhere & ref->options)) { |
865 | return kIOReturnBadArgument; |
866 | } |
867 | guardSize = IOMemoryDescriptorMapGuardSize(map, options: ref->options); |
868 | size += 2 * guardSize; |
869 | } |
870 | if (kIOMapAnywhere & ref->options) { |
871 | vmk_flags = VM_MAP_KERNEL_FLAGS_ANYWHERE(); |
872 | } else { |
873 | vmk_flags = VM_MAP_KERNEL_FLAGS_FIXED(); |
874 | } |
875 | vmk_flags.vm_tag = ref->tag; |
876 | |
877 | /* |
878 | * Mapping memory into the kernel_map using IOMDs use the data range. |
879 | * Memory being mapped should not contain kernel pointers. |
880 | */ |
881 | if (map == kernel_map) { |
882 | vmk_flags.vmkf_range_id = KMEM_RANGE_ID_DATA; |
883 | } |
884 | |
885 | err = vm_map_enter_mem_object(map, address: &addr, size, |
886 | #if __ARM_MIXED_PAGE_SIZE__ |
887 | // TODO4K this should not be necessary... |
888 | mask: (vm_map_offset_t)((ref->options & kIOMapAnywhere) ? max(PAGE_MASK, vm_map_page_mask(map)) : 0), |
889 | #else /* __ARM_MIXED_PAGE_SIZE__ */ |
890 | (vm_map_offset_t) 0, |
891 | #endif /* __ARM_MIXED_PAGE_SIZE__ */ |
892 | vmk_flags, |
893 | IPC_PORT_NULL, |
894 | offset: (memory_object_offset_t) 0, |
895 | needs_copy: false, /* copy */ |
896 | cur_protection: ref->prot, |
897 | max_protection: ref->prot, |
898 | VM_INHERIT_NONE); |
899 | if (KERN_SUCCESS == err) { |
900 | ref->mapped = (mach_vm_address_t) addr; |
901 | ref->map = map; |
902 | if (kIOMapGuardedMask & ref->options) { |
903 | vm_map_offset_t lastpage = vm_map_trunc_page(addr + size - guardSize, vm_map_page_mask(map)); |
904 | |
905 | err = vm_map_protect(map, start: addr, end: addr + guardSize, VM_PROT_NONE, set_max: false /*set_max*/); |
906 | assert(KERN_SUCCESS == err); |
907 | err = vm_map_protect(map, start: lastpage, end: lastpage + guardSize, VM_PROT_NONE, set_max: false /*set_max*/); |
908 | assert(KERN_SUCCESS == err); |
909 | ref->mapped += guardSize; |
910 | } |
911 | } |
912 | |
913 | return err; |
914 | } |
915 | |
916 | IOReturn |
917 | IOGeneralMemoryDescriptor::memoryReferenceMap( |
918 | IOMemoryReference * ref, |
919 | vm_map_t map, |
920 | mach_vm_size_t inoffset, |
921 | mach_vm_size_t size, |
922 | IOOptionBits options, |
923 | mach_vm_address_t * inaddr) |
924 | { |
925 | IOReturn err; |
926 | int64_t offset = inoffset; |
927 | uint32_t rangeIdx, entryIdx; |
928 | vm_map_offset_t addr, mapAddr; |
929 | vm_map_offset_t pageOffset, entryOffset, remain, chunk; |
930 | |
931 | mach_vm_address_t nextAddr; |
932 | mach_vm_size_t nextLen; |
933 | IOByteCount physLen; |
934 | IOMemoryEntry * entry; |
935 | vm_prot_t prot, memEntryCacheMode; |
936 | IOOptionBits type; |
937 | IOOptionBits cacheMode; |
938 | vm_tag_t tag; |
939 | // for the kIOMapPrefault option. |
940 | upl_page_info_t * pageList = NULL; |
941 | UInt currentPageIndex = 0; |
942 | bool didAlloc; |
943 | |
944 | DEBUG4K_IOKIT("ref %p map %p inoffset 0x%llx size 0x%llx options 0x%x *inaddr 0x%llx\n" , ref, map, inoffset, size, (uint32_t)options, *inaddr); |
945 | |
946 | if (ref->mapRef) { |
947 | err = memoryReferenceMap(ref: ref->mapRef, map, inoffset, size, options, inaddr); |
948 | return err; |
949 | } |
950 | |
951 | if (MAP_MEM_USE_DATA_ADDR & ref->prot) { |
952 | err = memoryReferenceMapNew(ref, map, inoffset, size, options, inaddr); |
953 | return err; |
954 | } |
955 | |
956 | type = _flags & kIOMemoryTypeMask; |
957 | |
958 | prot = VM_PROT_READ; |
959 | if (!(kIOMapReadOnly & options)) { |
960 | prot |= VM_PROT_WRITE; |
961 | } |
962 | prot &= ref->prot; |
963 | |
964 | cacheMode = ((options & kIOMapCacheMask) >> kIOMapCacheShift); |
965 | if (kIODefaultCache != cacheMode) { |
966 | // VM system requires write access to update named entry cache mode |
967 | memEntryCacheMode = (MAP_MEM_ONLY | VM_PROT_WRITE | prot | vmProtForCacheMode(cacheMode)); |
968 | } |
969 | |
970 | tag = (typeof(tag))getVMTag(map); |
971 | |
972 | if (_task) { |
973 | // Find first range for offset |
974 | if (!_rangesCount) { |
975 | return kIOReturnBadArgument; |
976 | } |
977 | for (remain = offset, rangeIdx = 0; rangeIdx < _rangesCount; rangeIdx++) { |
978 | getAddrLenForInd(addr&: nextAddr, len&: nextLen, type, r: _ranges, ind: rangeIdx, task: _task); |
979 | if (remain < nextLen) { |
980 | break; |
981 | } |
982 | remain -= nextLen; |
983 | } |
984 | } else { |
985 | rangeIdx = 0; |
986 | remain = 0; |
987 | nextAddr = getPhysicalSegment(offset, length: &physLen, options: kIOMemoryMapperNone); |
988 | nextLen = size; |
989 | } |
990 | |
991 | assert(remain < nextLen); |
992 | if (remain >= nextLen) { |
993 | DEBUG4K_ERROR("map %p inoffset 0x%llx size 0x%llx options 0x%x inaddr 0x%llx remain 0x%llx nextLen 0x%llx\n" , map, inoffset, size, (uint32_t)options, *inaddr, (uint64_t)remain, nextLen); |
994 | return kIOReturnBadArgument; |
995 | } |
996 | |
997 | nextAddr += remain; |
998 | nextLen -= remain; |
999 | #if __ARM_MIXED_PAGE_SIZE__ |
1000 | pageOffset = (vm_map_page_mask(map) & nextAddr); |
1001 | #else /* __ARM_MIXED_PAGE_SIZE__ */ |
1002 | pageOffset = (page_mask & nextAddr); |
1003 | #endif /* __ARM_MIXED_PAGE_SIZE__ */ |
1004 | addr = 0; |
1005 | didAlloc = false; |
1006 | |
1007 | if (!(options & kIOMapAnywhere)) { |
1008 | addr = *inaddr; |
1009 | if (pageOffset != (vm_map_page_mask(map) & addr)) { |
1010 | DEBUG4K_ERROR("map %p inoffset 0x%llx size 0x%llx options 0x%x inaddr 0x%llx addr 0x%llx page_mask 0x%llx pageOffset 0x%llx\n" , map, inoffset, size, (uint32_t)options, *inaddr, (uint64_t)addr, (uint64_t)page_mask, (uint64_t)pageOffset); |
1011 | } |
1012 | addr -= pageOffset; |
1013 | } |
1014 | |
1015 | // find first entry for offset |
1016 | for (entryIdx = 0; |
1017 | (entryIdx < ref->count) && (offset >= ref->entries[entryIdx].offset); |
1018 | entryIdx++) { |
1019 | } |
1020 | entryIdx--; |
1021 | entry = &ref->entries[entryIdx]; |
1022 | |
1023 | // allocate VM |
1024 | #if __ARM_MIXED_PAGE_SIZE__ |
1025 | size = round_page_mask_64(size + pageOffset, vm_map_page_mask(map)); |
1026 | #else |
1027 | size = round_page_64(size + pageOffset); |
1028 | #endif |
1029 | if (kIOMapOverwrite & options) { |
1030 | if ((map == kernel_map) && (kIOMemoryBufferPageable & _flags)) { |
1031 | map = IOPageableMapForAddress(address: addr); |
1032 | } |
1033 | err = KERN_SUCCESS; |
1034 | } else { |
1035 | IOMemoryDescriptorMapAllocRef ref; |
1036 | ref.map = map; |
1037 | ref.tag = tag; |
1038 | ref.options = options; |
1039 | ref.size = size; |
1040 | ref.prot = prot; |
1041 | if (options & kIOMapAnywhere) { |
1042 | // vm_map looks for addresses above here, even when VM_FLAGS_ANYWHERE |
1043 | ref.mapped = 0; |
1044 | } else { |
1045 | ref.mapped = addr; |
1046 | } |
1047 | if ((ref.map == kernel_map) && (kIOMemoryBufferPageable & _flags)) { |
1048 | err = IOIteratePageableMaps( size: ref.size, callback: &IOMemoryDescriptorMapAlloc, ref: &ref ); |
1049 | } else { |
1050 | err = IOMemoryDescriptorMapAlloc(map: ref.map, ref: &ref); |
1051 | } |
1052 | if (KERN_SUCCESS == err) { |
1053 | addr = ref.mapped; |
1054 | map = ref.map; |
1055 | didAlloc = true; |
1056 | } |
1057 | } |
1058 | |
1059 | /* |
1060 | * If the memory is associated with a device pager but doesn't have a UPL, |
1061 | * it will be immediately faulted in through the pager via populateDevicePager(). |
1062 | * kIOMapPrefault is redundant in that case, so don't try to use it for UPL |
1063 | * operations. |
1064 | */ |
1065 | if ((reserved != NULL) && (reserved->dp.devicePager) && (_wireCount != 0)) { |
1066 | options &= ~kIOMapPrefault; |
1067 | } |
1068 | |
1069 | /* |
1070 | * Prefaulting is only possible if we wired the memory earlier. Check the |
1071 | * memory type, and the underlying data. |
1072 | */ |
1073 | if (options & kIOMapPrefault) { |
1074 | /* |
1075 | * The memory must have been wired by calling ::prepare(), otherwise |
1076 | * we don't have the UPL. Without UPLs, pages cannot be pre-faulted |
1077 | */ |
1078 | assert(_wireCount != 0); |
1079 | assert(_memoryEntries != NULL); |
1080 | if ((_wireCount == 0) || |
1081 | (_memoryEntries == NULL)) { |
1082 | DEBUG4K_ERROR("map %p inoffset 0x%llx size 0x%llx options 0x%x inaddr 0x%llx\n" , map, inoffset, size, (uint32_t)options, *inaddr); |
1083 | return kIOReturnBadArgument; |
1084 | } |
1085 | |
1086 | // Get the page list. |
1087 | ioGMDData* dataP = getDataP(_memoryEntries); |
1088 | ioPLBlock const* ioplList = getIOPLList(dataP); |
1089 | pageList = getPageList(dataP); |
1090 | |
1091 | // Get the number of IOPLs. |
1092 | UInt numIOPLs = getNumIOPL(_memoryEntries, dataP); |
1093 | |
1094 | /* |
1095 | * Scan through the IOPL Info Blocks, looking for the first block containing |
1096 | * the offset. The research will go past it, so we'll need to go back to the |
1097 | * right range at the end. |
1098 | */ |
1099 | UInt ioplIndex = 0; |
1100 | while ((ioplIndex < numIOPLs) && (((uint64_t) offset) >= ioplList[ioplIndex].fIOMDOffset)) { |
1101 | ioplIndex++; |
1102 | } |
1103 | ioplIndex--; |
1104 | |
1105 | // Retrieve the IOPL info block. |
1106 | ioPLBlock ioplInfo = ioplList[ioplIndex]; |
1107 | |
1108 | /* |
1109 | * For external UPLs, the fPageInfo points directly to the UPL's page_info_t |
1110 | * array. |
1111 | */ |
1112 | if (ioplInfo.fFlags & kIOPLExternUPL) { |
1113 | pageList = (upl_page_info_t*) ioplInfo.fPageInfo; |
1114 | } else { |
1115 | pageList = &pageList[ioplInfo.fPageInfo]; |
1116 | } |
1117 | |
1118 | // Rebase [offset] into the IOPL in order to looks for the first page index. |
1119 | mach_vm_size_t offsetInIOPL = offset - ioplInfo.fIOMDOffset + ioplInfo.fPageOffset; |
1120 | |
1121 | // Retrieve the index of the first page corresponding to the offset. |
1122 | currentPageIndex = atop_32(offsetInIOPL); |
1123 | } |
1124 | |
1125 | // enter mappings |
1126 | remain = size; |
1127 | mapAddr = addr; |
1128 | addr += pageOffset; |
1129 | |
1130 | while (remain && (KERN_SUCCESS == err)) { |
1131 | entryOffset = offset - entry->offset; |
1132 | if ((min(vm_map_page_mask(map), page_mask) & entryOffset) != pageOffset) { |
1133 | err = kIOReturnNotAligned; |
1134 | DEBUG4K_ERROR("map %p inoffset 0x%llx size 0x%llx options 0x%x inaddr 0x%llx entryOffset 0x%llx pageOffset 0x%llx\n" , map, inoffset, size, (uint32_t)options, *inaddr, (uint64_t)entryOffset, (uint64_t)pageOffset); |
1135 | break; |
1136 | } |
1137 | |
1138 | if (kIODefaultCache != cacheMode) { |
1139 | vm_size_t unused = 0; |
1140 | err = mach_make_memory_entry(NULL /*unused*/, size: &unused, offset: 0 /*unused*/, |
1141 | permission: memEntryCacheMode, NULL, parent_entry: entry->entry); |
1142 | assert(KERN_SUCCESS == err); |
1143 | } |
1144 | |
1145 | entryOffset -= pageOffset; |
1146 | if (entryOffset >= entry->size) { |
1147 | panic("entryOffset" ); |
1148 | } |
1149 | chunk = entry->size - entryOffset; |
1150 | if (chunk) { |
1151 | vm_map_kernel_flags_t vmk_flags = { |
1152 | .vmf_fixed = true, |
1153 | .vmf_overwrite = true, |
1154 | .vm_tag = tag, |
1155 | .vmkf_iokit_acct = true, |
1156 | }; |
1157 | |
1158 | if (chunk > remain) { |
1159 | chunk = remain; |
1160 | } |
1161 | if (options & kIOMapPrefault) { |
1162 | UInt nb_pages = (typeof(nb_pages))round_page(x: chunk) / PAGE_SIZE; |
1163 | |
1164 | err = vm_map_enter_mem_object_prefault(map, |
1165 | address: &mapAddr, |
1166 | size: chunk, mask: 0 /* mask */, |
1167 | vmk_flags, |
1168 | port: entry->entry, |
1169 | offset: entryOffset, |
1170 | cur_protection: prot, // cur |
1171 | max_protection: prot, // max |
1172 | page_list: &pageList[currentPageIndex], |
1173 | page_list_count: nb_pages); |
1174 | |
1175 | if (err || vm_map_page_mask(map) < PAGE_MASK) { |
1176 | DEBUG4K_IOKIT("IOMemRef %p mapped in map %p (pgshift %d) at 0x%llx size 0x%llx err 0x%x\n" , ref, map, vm_map_page_shift(map), (uint64_t)mapAddr, (uint64_t)chunk, err); |
1177 | } |
1178 | // Compute the next index in the page list. |
1179 | currentPageIndex += nb_pages; |
1180 | assert(currentPageIndex <= _pages); |
1181 | } else { |
1182 | err = vm_map_enter_mem_object(map, |
1183 | address: &mapAddr, |
1184 | size: chunk, mask: 0 /* mask */, |
1185 | vmk_flags, |
1186 | port: entry->entry, |
1187 | offset: entryOffset, |
1188 | needs_copy: false, // copy |
1189 | cur_protection: prot, // cur |
1190 | max_protection: prot, // max |
1191 | VM_INHERIT_NONE); |
1192 | } |
1193 | if (KERN_SUCCESS != err) { |
1194 | DEBUG4K_ERROR("IOMemRef %p mapped in map %p (pgshift %d) at 0x%llx size 0x%llx err 0x%x\n" , ref, map, vm_map_page_shift(map), (uint64_t)mapAddr, (uint64_t)chunk, err); |
1195 | break; |
1196 | } |
1197 | remain -= chunk; |
1198 | if (!remain) { |
1199 | break; |
1200 | } |
1201 | mapAddr += chunk; |
1202 | offset += chunk - pageOffset; |
1203 | } |
1204 | pageOffset = 0; |
1205 | entry++; |
1206 | entryIdx++; |
1207 | if (entryIdx >= ref->count) { |
1208 | err = kIOReturnOverrun; |
1209 | DEBUG4K_ERROR("map %p inoffset 0x%llx size 0x%llx options 0x%x inaddr 0x%llx entryIdx %d ref->count %d\n" , map, inoffset, size, (uint32_t)options, *inaddr, entryIdx, ref->count); |
1210 | break; |
1211 | } |
1212 | } |
1213 | |
1214 | if ((KERN_SUCCESS != err) && didAlloc) { |
1215 | (void) IOMemoryDescriptorMapDealloc(options, map, trunc_page_64(addr), size); |
1216 | addr = 0; |
1217 | } |
1218 | *inaddr = addr; |
1219 | |
1220 | if (err /* || vm_map_page_mask(map) < PAGE_MASK */) { |
1221 | DEBUG4K_ERROR("map %p (%d) inoffset 0x%llx size 0x%llx options 0x%x inaddr 0x%llx err 0x%x\n" , map, vm_map_page_shift(map), inoffset, size, (uint32_t)options, *inaddr, err); |
1222 | } |
1223 | return err; |
1224 | } |
1225 | |
1226 | #define LOGUNALIGN 0 |
1227 | IOReturn |
1228 | IOGeneralMemoryDescriptor::memoryReferenceMapNew( |
1229 | IOMemoryReference * ref, |
1230 | vm_map_t map, |
1231 | mach_vm_size_t inoffset, |
1232 | mach_vm_size_t size, |
1233 | IOOptionBits options, |
1234 | mach_vm_address_t * inaddr) |
1235 | { |
1236 | IOReturn err; |
1237 | int64_t offset = inoffset; |
1238 | uint32_t entryIdx, firstEntryIdx; |
1239 | vm_map_offset_t addr, mapAddr, mapAddrOut; |
1240 | vm_map_offset_t entryOffset, remain, chunk; |
1241 | |
1242 | IOMemoryEntry * entry; |
1243 | vm_prot_t prot, memEntryCacheMode; |
1244 | IOOptionBits type; |
1245 | IOOptionBits cacheMode; |
1246 | vm_tag_t tag; |
1247 | // for the kIOMapPrefault option. |
1248 | upl_page_info_t * pageList = NULL; |
1249 | UInt currentPageIndex = 0; |
1250 | bool didAlloc; |
1251 | |
1252 | DEBUG4K_IOKIT("ref %p map %p inoffset 0x%llx size 0x%llx options 0x%x *inaddr 0x%llx\n" , ref, map, inoffset, size, (uint32_t)options, *inaddr); |
1253 | |
1254 | if (ref->mapRef) { |
1255 | err = memoryReferenceMap(ref: ref->mapRef, map, inoffset, size, options, inaddr); |
1256 | return err; |
1257 | } |
1258 | |
1259 | #if LOGUNALIGN |
1260 | printf("MAP offset %qx, %qx\n" , inoffset, size); |
1261 | #endif |
1262 | |
1263 | type = _flags & kIOMemoryTypeMask; |
1264 | |
1265 | prot = VM_PROT_READ; |
1266 | if (!(kIOMapReadOnly & options)) { |
1267 | prot |= VM_PROT_WRITE; |
1268 | } |
1269 | prot &= ref->prot; |
1270 | |
1271 | cacheMode = ((options & kIOMapCacheMask) >> kIOMapCacheShift); |
1272 | if (kIODefaultCache != cacheMode) { |
1273 | // VM system requires write access to update named entry cache mode |
1274 | memEntryCacheMode = (MAP_MEM_ONLY | VM_PROT_WRITE | prot | vmProtForCacheMode(cacheMode)); |
1275 | } |
1276 | |
1277 | tag = (vm_tag_t) getVMTag(map); |
1278 | |
1279 | addr = 0; |
1280 | didAlloc = false; |
1281 | |
1282 | if (!(options & kIOMapAnywhere)) { |
1283 | addr = *inaddr; |
1284 | } |
1285 | |
1286 | // find first entry for offset |
1287 | for (firstEntryIdx = 0; |
1288 | (firstEntryIdx < ref->count) && (offset >= ref->entries[firstEntryIdx].offset); |
1289 | firstEntryIdx++) { |
1290 | } |
1291 | firstEntryIdx--; |
1292 | |
1293 | // calculate required VM space |
1294 | |
1295 | entryIdx = firstEntryIdx; |
1296 | entry = &ref->entries[entryIdx]; |
1297 | |
1298 | remain = size; |
1299 | int64_t iteroffset = offset; |
1300 | uint64_t mapSize = 0; |
1301 | while (remain) { |
1302 | entryOffset = iteroffset - entry->offset; |
1303 | if (entryOffset >= entry->size) { |
1304 | panic("entryOffset" ); |
1305 | } |
1306 | |
1307 | #if LOGUNALIGN |
1308 | printf("[%d] size %qx offset %qx start %qx iter %qx\n" , |
1309 | entryIdx, entry->size, entry->offset, entry->start, iteroffset); |
1310 | #endif |
1311 | |
1312 | chunk = entry->size - entryOffset; |
1313 | if (chunk) { |
1314 | if (chunk > remain) { |
1315 | chunk = remain; |
1316 | } |
1317 | mach_vm_size_t entrySize; |
1318 | err = mach_memory_entry_map_size(entry_port: entry->entry, map, offset: entryOffset, size: chunk, map_size: &entrySize); |
1319 | assert(KERN_SUCCESS == err); |
1320 | mapSize += entrySize; |
1321 | |
1322 | remain -= chunk; |
1323 | if (!remain) { |
1324 | break; |
1325 | } |
1326 | iteroffset += chunk; // - pageOffset; |
1327 | } |
1328 | entry++; |
1329 | entryIdx++; |
1330 | if (entryIdx >= ref->count) { |
1331 | panic("overrun" ); |
1332 | err = kIOReturnOverrun; |
1333 | break; |
1334 | } |
1335 | } |
1336 | |
1337 | if (kIOMapOverwrite & options) { |
1338 | if ((map == kernel_map) && (kIOMemoryBufferPageable & _flags)) { |
1339 | map = IOPageableMapForAddress(address: addr); |
1340 | } |
1341 | err = KERN_SUCCESS; |
1342 | } else { |
1343 | IOMemoryDescriptorMapAllocRef ref; |
1344 | ref.map = map; |
1345 | ref.tag = tag; |
1346 | ref.options = options; |
1347 | ref.size = mapSize; |
1348 | ref.prot = prot; |
1349 | if (options & kIOMapAnywhere) { |
1350 | // vm_map looks for addresses above here, even when VM_FLAGS_ANYWHERE |
1351 | ref.mapped = 0; |
1352 | } else { |
1353 | ref.mapped = addr; |
1354 | } |
1355 | if ((ref.map == kernel_map) && (kIOMemoryBufferPageable & _flags)) { |
1356 | err = IOIteratePageableMaps( size: ref.size, callback: &IOMemoryDescriptorMapAlloc, ref: &ref ); |
1357 | } else { |
1358 | err = IOMemoryDescriptorMapAlloc(map: ref.map, ref: &ref); |
1359 | } |
1360 | |
1361 | if (KERN_SUCCESS == err) { |
1362 | addr = ref.mapped; |
1363 | map = ref.map; |
1364 | didAlloc = true; |
1365 | } |
1366 | #if LOGUNALIGN |
1367 | IOLog("map err %x size %qx addr %qx\n" , err, mapSize, addr); |
1368 | #endif |
1369 | } |
1370 | |
1371 | /* |
1372 | * If the memory is associated with a device pager but doesn't have a UPL, |
1373 | * it will be immediately faulted in through the pager via populateDevicePager(). |
1374 | * kIOMapPrefault is redundant in that case, so don't try to use it for UPL |
1375 | * operations. |
1376 | */ |
1377 | if ((reserved != NULL) && (reserved->dp.devicePager) && (_wireCount != 0)) { |
1378 | options &= ~kIOMapPrefault; |
1379 | } |
1380 | |
1381 | /* |
1382 | * Prefaulting is only possible if we wired the memory earlier. Check the |
1383 | * memory type, and the underlying data. |
1384 | */ |
1385 | if (options & kIOMapPrefault) { |
1386 | /* |
1387 | * The memory must have been wired by calling ::prepare(), otherwise |
1388 | * we don't have the UPL. Without UPLs, pages cannot be pre-faulted |
1389 | */ |
1390 | assert(_wireCount != 0); |
1391 | assert(_memoryEntries != NULL); |
1392 | if ((_wireCount == 0) || |
1393 | (_memoryEntries == NULL)) { |
1394 | return kIOReturnBadArgument; |
1395 | } |
1396 | |
1397 | // Get the page list. |
1398 | ioGMDData* dataP = getDataP(_memoryEntries); |
1399 | ioPLBlock const* ioplList = getIOPLList(dataP); |
1400 | pageList = getPageList(dataP); |
1401 | |
1402 | // Get the number of IOPLs. |
1403 | UInt numIOPLs = getNumIOPL(_memoryEntries, dataP); |
1404 | |
1405 | /* |
1406 | * Scan through the IOPL Info Blocks, looking for the first block containing |
1407 | * the offset. The research will go past it, so we'll need to go back to the |
1408 | * right range at the end. |
1409 | */ |
1410 | UInt ioplIndex = 0; |
1411 | while ((ioplIndex < numIOPLs) && (((uint64_t) offset) >= ioplList[ioplIndex].fIOMDOffset)) { |
1412 | ioplIndex++; |
1413 | } |
1414 | ioplIndex--; |
1415 | |
1416 | // Retrieve the IOPL info block. |
1417 | ioPLBlock ioplInfo = ioplList[ioplIndex]; |
1418 | |
1419 | /* |
1420 | * For external UPLs, the fPageInfo points directly to the UPL's page_info_t |
1421 | * array. |
1422 | */ |
1423 | if (ioplInfo.fFlags & kIOPLExternUPL) { |
1424 | pageList = (upl_page_info_t*) ioplInfo.fPageInfo; |
1425 | } else { |
1426 | pageList = &pageList[ioplInfo.fPageInfo]; |
1427 | } |
1428 | |
1429 | // Rebase [offset] into the IOPL in order to looks for the first page index. |
1430 | mach_vm_size_t offsetInIOPL = offset - ioplInfo.fIOMDOffset + ioplInfo.fPageOffset; |
1431 | |
1432 | // Retrieve the index of the first page corresponding to the offset. |
1433 | currentPageIndex = atop_32(offsetInIOPL); |
1434 | } |
1435 | |
1436 | // enter mappings |
1437 | remain = size; |
1438 | mapAddr = addr; |
1439 | entryIdx = firstEntryIdx; |
1440 | entry = &ref->entries[entryIdx]; |
1441 | |
1442 | while (remain && (KERN_SUCCESS == err)) { |
1443 | #if LOGUNALIGN |
1444 | printf("offset %qx, %qx\n" , offset, entry->offset); |
1445 | #endif |
1446 | if (kIODefaultCache != cacheMode) { |
1447 | vm_size_t unused = 0; |
1448 | err = mach_make_memory_entry(NULL /*unused*/, size: &unused, offset: 0 /*unused*/, |
1449 | permission: memEntryCacheMode, NULL, parent_entry: entry->entry); |
1450 | assert(KERN_SUCCESS == err); |
1451 | } |
1452 | entryOffset = offset - entry->offset; |
1453 | if (entryOffset >= entry->size) { |
1454 | panic("entryOffset" ); |
1455 | } |
1456 | chunk = entry->size - entryOffset; |
1457 | #if LOGUNALIGN |
1458 | printf("entryIdx %d, chunk %qx\n" , entryIdx, chunk); |
1459 | #endif |
1460 | if (chunk) { |
1461 | vm_map_kernel_flags_t vmk_flags = { |
1462 | .vmf_fixed = true, |
1463 | .vmf_overwrite = true, |
1464 | .vmf_return_data_addr = true, |
1465 | .vm_tag = tag, |
1466 | .vmkf_iokit_acct = true, |
1467 | }; |
1468 | |
1469 | if (chunk > remain) { |
1470 | chunk = remain; |
1471 | } |
1472 | mapAddrOut = mapAddr; |
1473 | if (options & kIOMapPrefault) { |
1474 | UInt nb_pages = (typeof(nb_pages))round_page(x: chunk) / PAGE_SIZE; |
1475 | |
1476 | err = vm_map_enter_mem_object_prefault(map, |
1477 | address: &mapAddrOut, |
1478 | size: chunk, mask: 0 /* mask */, |
1479 | vmk_flags, |
1480 | port: entry->entry, |
1481 | offset: entryOffset, |
1482 | cur_protection: prot, // cur |
1483 | max_protection: prot, // max |
1484 | page_list: &pageList[currentPageIndex], |
1485 | page_list_count: nb_pages); |
1486 | |
1487 | // Compute the next index in the page list. |
1488 | currentPageIndex += nb_pages; |
1489 | assert(currentPageIndex <= _pages); |
1490 | } else { |
1491 | #if LOGUNALIGN |
1492 | printf("mapAddr i %qx chunk %qx\n" , mapAddr, chunk); |
1493 | #endif |
1494 | err = vm_map_enter_mem_object(map, |
1495 | address: &mapAddrOut, |
1496 | size: chunk, mask: 0 /* mask */, |
1497 | vmk_flags, |
1498 | port: entry->entry, |
1499 | offset: entryOffset, |
1500 | needs_copy: false, // copy |
1501 | cur_protection: prot, // cur |
1502 | max_protection: prot, // max |
1503 | VM_INHERIT_NONE); |
1504 | } |
1505 | if (KERN_SUCCESS != err) { |
1506 | panic("map enter err %x" , err); |
1507 | break; |
1508 | } |
1509 | #if LOGUNALIGN |
1510 | printf("mapAddr o %qx\n" , mapAddrOut); |
1511 | #endif |
1512 | if (entryIdx == firstEntryIdx) { |
1513 | addr = mapAddrOut; |
1514 | } |
1515 | remain -= chunk; |
1516 | if (!remain) { |
1517 | break; |
1518 | } |
1519 | mach_vm_size_t entrySize; |
1520 | err = mach_memory_entry_map_size(entry_port: entry->entry, map, offset: entryOffset, size: chunk, map_size: &entrySize); |
1521 | assert(KERN_SUCCESS == err); |
1522 | mapAddr += entrySize; |
1523 | offset += chunk; |
1524 | } |
1525 | |
1526 | entry++; |
1527 | entryIdx++; |
1528 | if (entryIdx >= ref->count) { |
1529 | err = kIOReturnOverrun; |
1530 | break; |
1531 | } |
1532 | } |
1533 | |
1534 | if (KERN_SUCCESS != err) { |
1535 | DEBUG4K_ERROR("size 0x%llx err 0x%x\n" , size, err); |
1536 | } |
1537 | |
1538 | if ((KERN_SUCCESS != err) && didAlloc) { |
1539 | (void) IOMemoryDescriptorMapDealloc(options, map, trunc_page_64(addr), size); |
1540 | addr = 0; |
1541 | } |
1542 | *inaddr = addr; |
1543 | |
1544 | return err; |
1545 | } |
1546 | |
1547 | uint64_t |
1548 | IOGeneralMemoryDescriptor::memoryReferenceGetDMAMapLength( |
1549 | IOMemoryReference * ref, |
1550 | uint64_t * offset) |
1551 | { |
1552 | kern_return_t kr; |
1553 | vm_object_offset_t data_offset = 0; |
1554 | uint64_t total; |
1555 | uint32_t idx; |
1556 | |
1557 | assert(ref->count); |
1558 | if (offset) { |
1559 | *offset = (uint64_t) data_offset; |
1560 | } |
1561 | total = 0; |
1562 | for (idx = 0; idx < ref->count; idx++) { |
1563 | kr = mach_memory_entry_phys_page_offset(entry_port: ref->entries[idx].entry, |
1564 | offset_p: &data_offset); |
1565 | if (KERN_SUCCESS != kr) { |
1566 | DEBUG4K_ERROR("ref %p entry %p kr 0x%x\n" , ref, ref->entries[idx].entry, kr); |
1567 | } else if (0 != data_offset) { |
1568 | DEBUG4K_IOKIT("ref %p entry %p offset 0x%llx kr 0x%x\n" , ref, ref->entries[0].entry, data_offset, kr); |
1569 | } |
1570 | if (offset && !idx) { |
1571 | *offset = (uint64_t) data_offset; |
1572 | } |
1573 | total += round_page(x: data_offset + ref->entries[idx].size); |
1574 | } |
1575 | |
1576 | DEBUG4K_IOKIT("ref %p offset 0x%llx total 0x%llx\n" , ref, |
1577 | (offset ? *offset : (vm_object_offset_t)-1), total); |
1578 | |
1579 | return total; |
1580 | } |
1581 | |
1582 | |
1583 | IOReturn |
1584 | IOGeneralMemoryDescriptor::memoryReferenceGetPageCounts( |
1585 | IOMemoryReference * ref, |
1586 | IOByteCount * residentPageCount, |
1587 | IOByteCount * dirtyPageCount) |
1588 | { |
1589 | IOReturn err; |
1590 | IOMemoryEntry * entries; |
1591 | unsigned int resident, dirty; |
1592 | unsigned int totalResident, totalDirty; |
1593 | |
1594 | totalResident = totalDirty = 0; |
1595 | err = kIOReturnSuccess; |
1596 | entries = ref->entries + ref->count; |
1597 | while (entries > &ref->entries[0]) { |
1598 | entries--; |
1599 | err = mach_memory_entry_get_page_counts(entry_port: entries->entry, resident_page_count: &resident, dirty_page_count: &dirty); |
1600 | if (KERN_SUCCESS != err) { |
1601 | break; |
1602 | } |
1603 | totalResident += resident; |
1604 | totalDirty += dirty; |
1605 | } |
1606 | |
1607 | if (residentPageCount) { |
1608 | *residentPageCount = totalResident; |
1609 | } |
1610 | if (dirtyPageCount) { |
1611 | *dirtyPageCount = totalDirty; |
1612 | } |
1613 | return err; |
1614 | } |
1615 | |
1616 | IOReturn |
1617 | IOGeneralMemoryDescriptor::memoryReferenceSetPurgeable( |
1618 | IOMemoryReference * ref, |
1619 | IOOptionBits newState, |
1620 | IOOptionBits * oldState) |
1621 | { |
1622 | IOReturn err; |
1623 | IOMemoryEntry * entries; |
1624 | vm_purgable_t control; |
1625 | int totalState, state; |
1626 | |
1627 | totalState = kIOMemoryPurgeableNonVolatile; |
1628 | err = kIOReturnSuccess; |
1629 | entries = ref->entries + ref->count; |
1630 | while (entries > &ref->entries[0]) { |
1631 | entries--; |
1632 | |
1633 | err = purgeableControlBits(newState, control: &control, state: &state); |
1634 | if (KERN_SUCCESS != err) { |
1635 | break; |
1636 | } |
1637 | err = memory_entry_purgeable_control_internal(entry_port: entries->entry, control, state: &state); |
1638 | if (KERN_SUCCESS != err) { |
1639 | break; |
1640 | } |
1641 | err = purgeableStateBits(state: &state); |
1642 | if (KERN_SUCCESS != err) { |
1643 | break; |
1644 | } |
1645 | |
1646 | if (kIOMemoryPurgeableEmpty == state) { |
1647 | totalState = kIOMemoryPurgeableEmpty; |
1648 | } else if (kIOMemoryPurgeableEmpty == totalState) { |
1649 | continue; |
1650 | } else if (kIOMemoryPurgeableVolatile == totalState) { |
1651 | continue; |
1652 | } else if (kIOMemoryPurgeableVolatile == state) { |
1653 | totalState = kIOMemoryPurgeableVolatile; |
1654 | } else { |
1655 | totalState = kIOMemoryPurgeableNonVolatile; |
1656 | } |
1657 | } |
1658 | |
1659 | if (oldState) { |
1660 | *oldState = totalState; |
1661 | } |
1662 | return err; |
1663 | } |
1664 | |
1665 | IOReturn |
1666 | IOGeneralMemoryDescriptor::memoryReferenceSetOwnership( |
1667 | IOMemoryReference * ref, |
1668 | task_t newOwner, |
1669 | int newLedgerTag, |
1670 | IOOptionBits newLedgerOptions) |
1671 | { |
1672 | IOReturn err, totalErr; |
1673 | IOMemoryEntry * entries; |
1674 | |
1675 | totalErr = kIOReturnSuccess; |
1676 | entries = ref->entries + ref->count; |
1677 | while (entries > &ref->entries[0]) { |
1678 | entries--; |
1679 | |
1680 | err = mach_memory_entry_ownership(entry_port: entries->entry, owner: newOwner, ledger_tag: newLedgerTag, ledger_flags: newLedgerOptions); |
1681 | if (KERN_SUCCESS != err) { |
1682 | totalErr = err; |
1683 | } |
1684 | } |
1685 | |
1686 | return totalErr; |
1687 | } |
1688 | |
1689 | /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */ |
1690 | |
1691 | OSSharedPtr<IOMemoryDescriptor> |
1692 | IOMemoryDescriptor::withAddress(void * address, |
1693 | IOByteCount length, |
1694 | IODirection direction) |
1695 | { |
1696 | return IOMemoryDescriptor:: |
1697 | withAddressRange(address: (IOVirtualAddress) address, length, options: direction | kIOMemoryAutoPrepare, task: kernel_task); |
1698 | } |
1699 | |
1700 | #ifndef __LP64__ |
1701 | OSSharedPtr<IOMemoryDescriptor> |
1702 | IOMemoryDescriptor::withAddress(IOVirtualAddress address, |
1703 | IOByteCount length, |
1704 | IODirection direction, |
1705 | task_t task) |
1706 | { |
1707 | OSSharedPtr<IOGeneralMemoryDescriptor> that = OSMakeShared<IOGeneralMemoryDescriptor>(); |
1708 | if (that) { |
1709 | if (that->initWithAddress(address, length, direction, task)) { |
1710 | return os::move(that); |
1711 | } |
1712 | } |
1713 | return nullptr; |
1714 | } |
1715 | #endif /* !__LP64__ */ |
1716 | |
1717 | OSSharedPtr<IOMemoryDescriptor> |
1718 | IOMemoryDescriptor::withPhysicalAddress( |
1719 | IOPhysicalAddress address, |
1720 | IOByteCount length, |
1721 | IODirection direction ) |
1722 | { |
1723 | return IOMemoryDescriptor::withAddressRange(address, length, options: direction, TASK_NULL); |
1724 | } |
1725 | |
1726 | #ifndef __LP64__ |
1727 | OSSharedPtr<IOMemoryDescriptor> |
1728 | IOMemoryDescriptor::withRanges( IOVirtualRange * ranges, |
1729 | UInt32 withCount, |
1730 | IODirection direction, |
1731 | task_t task, |
1732 | bool asReference) |
1733 | { |
1734 | OSSharedPtr<IOGeneralMemoryDescriptor> that = OSMakeShared<IOGeneralMemoryDescriptor>(); |
1735 | if (that) { |
1736 | if (that->initWithRanges(ranges, withCount, direction, task, asReference)) { |
1737 | return os::move(that); |
1738 | } |
1739 | } |
1740 | return nullptr; |
1741 | } |
1742 | #endif /* !__LP64__ */ |
1743 | |
1744 | OSSharedPtr<IOMemoryDescriptor> |
1745 | IOMemoryDescriptor::withAddressRange(mach_vm_address_t address, |
1746 | mach_vm_size_t length, |
1747 | IOOptionBits options, |
1748 | task_t task) |
1749 | { |
1750 | IOAddressRange range = { .address: address, .length: length }; |
1751 | return IOMemoryDescriptor::withAddressRanges(ranges: &range, rangeCount: 1, options, task); |
1752 | } |
1753 | |
1754 | OSSharedPtr<IOMemoryDescriptor> |
1755 | IOMemoryDescriptor::withAddressRanges(IOAddressRange * ranges, |
1756 | UInt32 rangeCount, |
1757 | IOOptionBits options, |
1758 | task_t task) |
1759 | { |
1760 | OSSharedPtr<IOGeneralMemoryDescriptor> that = OSMakeShared<IOGeneralMemoryDescriptor>(); |
1761 | if (that) { |
1762 | if (task) { |
1763 | options |= kIOMemoryTypeVirtual64; |
1764 | } else { |
1765 | options |= kIOMemoryTypePhysical64; |
1766 | } |
1767 | |
1768 | if (that->initWithOptions(buffers: ranges, count: rangeCount, offset: 0, task, options, /* mapper */ NULL)) { |
1769 | return os::move(t&: that); |
1770 | } |
1771 | } |
1772 | |
1773 | return nullptr; |
1774 | } |
1775 | |
1776 | |
1777 | /* |
1778 | * withOptions: |
1779 | * |
1780 | * Create a new IOMemoryDescriptor. The buffer is made up of several |
1781 | * virtual address ranges, from a given task. |
1782 | * |
1783 | * Passing the ranges as a reference will avoid an extra allocation. |
1784 | */ |
1785 | OSSharedPtr<IOMemoryDescriptor> |
1786 | IOMemoryDescriptor::withOptions(void * buffers, |
1787 | UInt32 count, |
1788 | UInt32 offset, |
1789 | task_t task, |
1790 | IOOptionBits opts, |
1791 | IOMapper * mapper) |
1792 | { |
1793 | OSSharedPtr<IOGeneralMemoryDescriptor> self = OSMakeShared<IOGeneralMemoryDescriptor>(); |
1794 | |
1795 | if (self |
1796 | && !self->initWithOptions(buffers, count, offset, task, options: opts, mapper)) { |
1797 | return nullptr; |
1798 | } |
1799 | |
1800 | return os::move(t&: self); |
1801 | } |
1802 | |
1803 | bool |
1804 | IOMemoryDescriptor::initWithOptions(void * buffers, |
1805 | UInt32 count, |
1806 | UInt32 offset, |
1807 | task_t task, |
1808 | IOOptionBits options, |
1809 | IOMapper * mapper) |
1810 | { |
1811 | return false; |
1812 | } |
1813 | |
1814 | #ifndef __LP64__ |
1815 | OSSharedPtr<IOMemoryDescriptor> |
1816 | IOMemoryDescriptor::withPhysicalRanges( IOPhysicalRange * ranges, |
1817 | UInt32 withCount, |
1818 | IODirection direction, |
1819 | bool asReference) |
1820 | { |
1821 | OSSharedPtr<IOGeneralMemoryDescriptor> that = OSMakeShared<IOGeneralMemoryDescriptor>(); |
1822 | if (that) { |
1823 | if (that->initWithPhysicalRanges(ranges, withCount, direction, asReference)) { |
1824 | return os::move(that); |
1825 | } |
1826 | } |
1827 | return nullptr; |
1828 | } |
1829 | |
1830 | OSSharedPtr<IOMemoryDescriptor> |
1831 | IOMemoryDescriptor::withSubRange(IOMemoryDescriptor * of, |
1832 | IOByteCount offset, |
1833 | IOByteCount length, |
1834 | IODirection direction) |
1835 | { |
1836 | return IOSubMemoryDescriptor::withSubRange(of, offset, length, direction); |
1837 | } |
1838 | #endif /* !__LP64__ */ |
1839 | |
1840 | OSSharedPtr<IOMemoryDescriptor> |
1841 | IOMemoryDescriptor::withPersistentMemoryDescriptor(IOMemoryDescriptor *originalMD) |
1842 | { |
1843 | IOGeneralMemoryDescriptor *origGenMD = |
1844 | OSDynamicCast(IOGeneralMemoryDescriptor, originalMD); |
1845 | |
1846 | if (origGenMD) { |
1847 | return IOGeneralMemoryDescriptor:: |
1848 | withPersistentMemoryDescriptor(originalMD: origGenMD); |
1849 | } else { |
1850 | return nullptr; |
1851 | } |
1852 | } |
1853 | |
1854 | OSSharedPtr<IOMemoryDescriptor> |
1855 | IOGeneralMemoryDescriptor::withPersistentMemoryDescriptor(IOGeneralMemoryDescriptor *originalMD) |
1856 | { |
1857 | IOMemoryReference * memRef; |
1858 | OSSharedPtr<IOGeneralMemoryDescriptor> self; |
1859 | |
1860 | if (kIOReturnSuccess != originalMD->memoryReferenceCreate(options: kIOMemoryReferenceReuse, reference: &memRef)) { |
1861 | return nullptr; |
1862 | } |
1863 | |
1864 | if (memRef == originalMD->_memRef) { |
1865 | self.reset(p: originalMD, OSRetain); |
1866 | originalMD->memoryReferenceRelease(ref: memRef); |
1867 | return os::move(t&: self); |
1868 | } |
1869 | |
1870 | self = OSMakeShared<IOGeneralMemoryDescriptor>(); |
1871 | IOMDPersistentInitData initData = { .fMD: originalMD, .fMemRef: memRef }; |
1872 | |
1873 | if (self |
1874 | && !self->initWithOptions(buffers: &initData, count: 1, offset: 0, NULL, options: kIOMemoryTypePersistentMD, NULL)) { |
1875 | return nullptr; |
1876 | } |
1877 | return os::move(t&: self); |
1878 | } |
1879 | |
1880 | #ifndef __LP64__ |
1881 | bool |
1882 | IOGeneralMemoryDescriptor::initWithAddress(void * address, |
1883 | IOByteCount withLength, |
1884 | IODirection withDirection) |
1885 | { |
1886 | _singleRange.v.address = (vm_offset_t) address; |
1887 | _singleRange.v.length = withLength; |
1888 | |
1889 | return initWithRanges(&_singleRange.v, 1, withDirection, kernel_task, true); |
1890 | } |
1891 | |
1892 | bool |
1893 | IOGeneralMemoryDescriptor::initWithAddress(IOVirtualAddress address, |
1894 | IOByteCount withLength, |
1895 | IODirection withDirection, |
1896 | task_t withTask) |
1897 | { |
1898 | _singleRange.v.address = address; |
1899 | _singleRange.v.length = withLength; |
1900 | |
1901 | return initWithRanges(&_singleRange.v, 1, withDirection, withTask, true); |
1902 | } |
1903 | |
1904 | bool |
1905 | IOGeneralMemoryDescriptor::initWithPhysicalAddress( |
1906 | IOPhysicalAddress address, |
1907 | IOByteCount withLength, |
1908 | IODirection withDirection ) |
1909 | { |
1910 | _singleRange.p.address = address; |
1911 | _singleRange.p.length = withLength; |
1912 | |
1913 | return initWithPhysicalRanges( &_singleRange.p, 1, withDirection, true); |
1914 | } |
1915 | |
1916 | bool |
1917 | IOGeneralMemoryDescriptor::initWithPhysicalRanges( |
1918 | IOPhysicalRange * ranges, |
1919 | UInt32 count, |
1920 | IODirection direction, |
1921 | bool reference) |
1922 | { |
1923 | IOOptionBits mdOpts = direction | kIOMemoryTypePhysical; |
1924 | |
1925 | if (reference) { |
1926 | mdOpts |= kIOMemoryAsReference; |
1927 | } |
1928 | |
1929 | return initWithOptions(ranges, count, 0, NULL, mdOpts, /* mapper */ NULL); |
1930 | } |
1931 | |
1932 | bool |
1933 | IOGeneralMemoryDescriptor::initWithRanges( |
1934 | IOVirtualRange * ranges, |
1935 | UInt32 count, |
1936 | IODirection direction, |
1937 | task_t task, |
1938 | bool reference) |
1939 | { |
1940 | IOOptionBits mdOpts = direction; |
1941 | |
1942 | if (reference) { |
1943 | mdOpts |= kIOMemoryAsReference; |
1944 | } |
1945 | |
1946 | if (task) { |
1947 | mdOpts |= kIOMemoryTypeVirtual; |
1948 | |
1949 | // Auto-prepare if this is a kernel memory descriptor as very few |
1950 | // clients bother to prepare() kernel memory. |
1951 | // But it was not enforced so what are you going to do? |
1952 | if (task == kernel_task) { |
1953 | mdOpts |= kIOMemoryAutoPrepare; |
1954 | } |
1955 | } else { |
1956 | mdOpts |= kIOMemoryTypePhysical; |
1957 | } |
1958 | |
1959 | return initWithOptions(ranges, count, 0, task, mdOpts, /* mapper */ NULL); |
1960 | } |
1961 | #endif /* !__LP64__ */ |
1962 | |
1963 | /* |
1964 | * initWithOptions: |
1965 | * |
1966 | * IOMemoryDescriptor. The buffer is made up of several virtual address ranges, |
1967 | * from a given task, several physical ranges, an UPL from the ubc |
1968 | * system or a uio (may be 64bit) from the BSD subsystem. |
1969 | * |
1970 | * Passing the ranges as a reference will avoid an extra allocation. |
1971 | * |
1972 | * An IOMemoryDescriptor can be re-used by calling initWithOptions again on an |
1973 | * existing instance -- note this behavior is not commonly supported in other |
1974 | * I/O Kit classes, although it is supported here. |
1975 | */ |
1976 | |
1977 | bool |
1978 | IOGeneralMemoryDescriptor::initWithOptions(void * buffers, |
1979 | UInt32 count, |
1980 | UInt32 offset, |
1981 | task_t task, |
1982 | IOOptionBits options, |
1983 | IOMapper * mapper) |
1984 | { |
1985 | IOOptionBits type = options & kIOMemoryTypeMask; |
1986 | |
1987 | #ifndef __LP64__ |
1988 | if (task |
1989 | && (kIOMemoryTypeVirtual == type) |
1990 | && vm_map_is_64bit(get_task_map(task)) |
1991 | && ((IOVirtualRange *) buffers)->address) { |
1992 | OSReportWithBacktrace("IOMemoryDescriptor: attempt to create 32b virtual in 64b task, use ::withAddressRange()" ); |
1993 | return false; |
1994 | } |
1995 | #endif /* !__LP64__ */ |
1996 | |
1997 | // Grab the original MD's configuation data to initialse the |
1998 | // arguments to this function. |
1999 | if (kIOMemoryTypePersistentMD == type) { |
2000 | IOMDPersistentInitData *initData = (typeof(initData))buffers; |
2001 | const IOGeneralMemoryDescriptor *orig = initData->fMD; |
2002 | ioGMDData *dataP = getDataP(orig->_memoryEntries); |
2003 | |
2004 | // Only accept persistent memory descriptors with valid dataP data. |
2005 | assert(orig->_rangesCount == 1); |
2006 | if (!(orig->_flags & kIOMemoryPersistent) || !dataP) { |
2007 | return false; |
2008 | } |
2009 | |
2010 | _memRef = initData->fMemRef; // Grab the new named entry |
2011 | options = orig->_flags & ~kIOMemoryAsReference; |
2012 | type = options & kIOMemoryTypeMask; |
2013 | buffers = orig->_ranges.v; |
2014 | count = orig->_rangesCount; |
2015 | |
2016 | // Now grab the original task and whatever mapper was previously used |
2017 | task = orig->_task; |
2018 | mapper = dataP->fMapper; |
2019 | |
2020 | // We are ready to go through the original initialisation now |
2021 | } |
2022 | |
2023 | switch (type) { |
2024 | case kIOMemoryTypeUIO: |
2025 | case kIOMemoryTypeVirtual: |
2026 | #ifndef __LP64__ |
2027 | case kIOMemoryTypeVirtual64: |
2028 | #endif /* !__LP64__ */ |
2029 | assert(task); |
2030 | if (!task) { |
2031 | return false; |
2032 | } |
2033 | break; |
2034 | |
2035 | case kIOMemoryTypePhysical: // Neither Physical nor UPL should have a task |
2036 | #ifndef __LP64__ |
2037 | case kIOMemoryTypePhysical64: |
2038 | #endif /* !__LP64__ */ |
2039 | case kIOMemoryTypeUPL: |
2040 | assert(!task); |
2041 | break; |
2042 | default: |
2043 | return false; /* bad argument */ |
2044 | } |
2045 | |
2046 | assert(buffers); |
2047 | assert(count); |
2048 | |
2049 | /* |
2050 | * We can check the _initialized instance variable before having ever set |
2051 | * it to an initial value because I/O Kit guarantees that all our instance |
2052 | * variables are zeroed on an object's allocation. |
2053 | */ |
2054 | |
2055 | if (_initialized) { |
2056 | /* |
2057 | * An existing memory descriptor is being retargeted to point to |
2058 | * somewhere else. Clean up our present state. |
2059 | */ |
2060 | IOOptionBits type = _flags & kIOMemoryTypeMask; |
2061 | if ((kIOMemoryTypePhysical != type) && (kIOMemoryTypePhysical64 != type)) { |
2062 | while (_wireCount) { |
2063 | complete(); |
2064 | } |
2065 | } |
2066 | if (_ranges.v && !(kIOMemoryAsReference & _flags)) { |
2067 | if (kIOMemoryTypeUIO == type) { |
2068 | uio_free(a_uio: (uio_t) _ranges.v); |
2069 | } |
2070 | #ifndef __LP64__ |
2071 | else if ((kIOMemoryTypeVirtual64 == type) || (kIOMemoryTypePhysical64 == type)) { |
2072 | IODelete(_ranges.v64, IOAddressRange, _rangesCount); |
2073 | } |
2074 | #endif /* !__LP64__ */ |
2075 | else { |
2076 | IODelete(_ranges.v, IOVirtualRange, _rangesCount); |
2077 | } |
2078 | } |
2079 | |
2080 | options |= (kIOMemoryRedirected & _flags); |
2081 | if (!(kIOMemoryRedirected & options)) { |
2082 | if (_memRef) { |
2083 | memoryReferenceRelease(ref: _memRef); |
2084 | _memRef = NULL; |
2085 | } |
2086 | if (_mappings) { |
2087 | _mappings->flushCollection(); |
2088 | } |
2089 | } |
2090 | } else { |
2091 | if (!super::init()) { |
2092 | return false; |
2093 | } |
2094 | _initialized = true; |
2095 | } |
2096 | |
2097 | // Grab the appropriate mapper |
2098 | if (kIOMemoryHostOrRemote & options) { |
2099 | options |= kIOMemoryMapperNone; |
2100 | } |
2101 | if (kIOMemoryMapperNone & options) { |
2102 | mapper = NULL; // No Mapper |
2103 | } else if (mapper == kIOMapperSystem) { |
2104 | IOMapper::checkForSystemMapper(); |
2105 | gIOSystemMapper = mapper = IOMapper::gSystem; |
2106 | } |
2107 | |
2108 | // Remove the dynamic internal use flags from the initial setting |
2109 | options &= ~(kIOMemoryPreparedReadOnly); |
2110 | _flags = options; |
2111 | _task = task; |
2112 | |
2113 | #ifndef __LP64__ |
2114 | _direction = (IODirection) (_flags & kIOMemoryDirectionMask); |
2115 | #endif /* !__LP64__ */ |
2116 | |
2117 | _dmaReferences = 0; |
2118 | __iomd_reservedA = 0; |
2119 | __iomd_reservedB = 0; |
2120 | _highestPage = 0; |
2121 | |
2122 | if (kIOMemoryThreadSafe & options) { |
2123 | if (!_prepareLock) { |
2124 | _prepareLock = IOLockAlloc(); |
2125 | } |
2126 | } else if (_prepareLock) { |
2127 | IOLockFree(lock: _prepareLock); |
2128 | _prepareLock = NULL; |
2129 | } |
2130 | |
2131 | if (kIOMemoryTypeUPL == type) { |
2132 | ioGMDData *dataP; |
2133 | unsigned int dataSize = computeDataSize(/* pages */ 0, /* upls */ 1); |
2134 | |
2135 | if (!initMemoryEntries(size: dataSize, mapper)) { |
2136 | return false; |
2137 | } |
2138 | dataP = getDataP(_memoryEntries); |
2139 | dataP->fPageCnt = 0; |
2140 | switch (kIOMemoryDirectionMask & options) { |
2141 | case kIODirectionOut: |
2142 | dataP->fDMAAccess = kIODMAMapReadAccess; |
2143 | break; |
2144 | case kIODirectionIn: |
2145 | dataP->fDMAAccess = kIODMAMapWriteAccess; |
2146 | break; |
2147 | case kIODirectionNone: |
2148 | case kIODirectionOutIn: |
2149 | default: |
2150 | panic("bad dir for upl 0x%x" , (int) options); |
2151 | break; |
2152 | } |
2153 | // _wireCount++; // UPLs start out life wired |
2154 | |
2155 | _length = count; |
2156 | _pages += atop_32(offset + count + PAGE_MASK) - atop_32(offset); |
2157 | |
2158 | ioPLBlock iopl; |
2159 | iopl.fIOPL = (upl_t) buffers; |
2160 | upl_set_referenced(upl: iopl.fIOPL, value: true); |
2161 | upl_page_info_t *pageList = UPL_GET_INTERNAL_PAGE_LIST(iopl.fIOPL); |
2162 | |
2163 | if (upl_get_size(upl: iopl.fIOPL) < (count + offset)) { |
2164 | panic("short external upl" ); |
2165 | } |
2166 | |
2167 | _highestPage = upl_get_highest_page(upl: iopl.fIOPL); |
2168 | DEBUG4K_IOKIT("offset 0x%x task %p options 0x%x -> _highestPage 0x%x\n" , (uint32_t)offset, task, (uint32_t)options, _highestPage); |
2169 | |
2170 | // Set the flag kIOPLOnDevice convieniently equal to 1 |
2171 | iopl.fFlags = pageList->device | kIOPLExternUPL; |
2172 | if (!pageList->device) { |
2173 | // Pre-compute the offset into the UPL's page list |
2174 | pageList = &pageList[atop_32(offset)]; |
2175 | offset &= PAGE_MASK; |
2176 | } |
2177 | iopl.fIOMDOffset = 0; |
2178 | iopl.fMappedPage = 0; |
2179 | iopl.fPageInfo = (vm_address_t) pageList; |
2180 | iopl.fPageOffset = offset; |
2181 | _memoryEntries->appendBytes(bytes: &iopl, length: sizeof(iopl)); |
2182 | } else { |
2183 | // kIOMemoryTypeVirtual | kIOMemoryTypeVirtual64 | kIOMemoryTypeUIO |
2184 | // kIOMemoryTypePhysical | kIOMemoryTypePhysical64 |
2185 | |
2186 | // Initialize the memory descriptor |
2187 | if (options & kIOMemoryAsReference) { |
2188 | #ifndef __LP64__ |
2189 | _rangesIsAllocated = false; |
2190 | #endif /* !__LP64__ */ |
2191 | |
2192 | // Hack assignment to get the buffer arg into _ranges. |
2193 | // I'd prefer to do _ranges = (Ranges) buffers, but that doesn't |
2194 | // work, C++ sigh. |
2195 | // This also initialises the uio & physical ranges. |
2196 | _ranges.v = (IOVirtualRange *) buffers; |
2197 | } else { |
2198 | #ifndef __LP64__ |
2199 | _rangesIsAllocated = true; |
2200 | #endif /* !__LP64__ */ |
2201 | switch (type) { |
2202 | case kIOMemoryTypeUIO: |
2203 | _ranges.v = (IOVirtualRange *) uio_duplicate(a_uio: (uio_t) buffers); |
2204 | break; |
2205 | |
2206 | #ifndef __LP64__ |
2207 | case kIOMemoryTypeVirtual64: |
2208 | case kIOMemoryTypePhysical64: |
2209 | if (count == 1 |
2210 | #ifndef __arm__ |
2211 | && (((IOAddressRange *) buffers)->address + ((IOAddressRange *) buffers)->length) <= 0x100000000ULL |
2212 | #endif |
2213 | ) { |
2214 | if (kIOMemoryTypeVirtual64 == type) { |
2215 | type = kIOMemoryTypeVirtual; |
2216 | } else { |
2217 | type = kIOMemoryTypePhysical; |
2218 | } |
2219 | _flags = (_flags & ~kIOMemoryTypeMask) | type | kIOMemoryAsReference; |
2220 | _rangesIsAllocated = false; |
2221 | _ranges.v = &_singleRange.v; |
2222 | _singleRange.v.address = ((IOAddressRange *) buffers)->address; |
2223 | _singleRange.v.length = ((IOAddressRange *) buffers)->length; |
2224 | break; |
2225 | } |
2226 | _ranges.v64 = IONew(IOAddressRange, count); |
2227 | if (!_ranges.v64) { |
2228 | return false; |
2229 | } |
2230 | bcopy(buffers, _ranges.v, count * sizeof(IOAddressRange)); |
2231 | break; |
2232 | #endif /* !__LP64__ */ |
2233 | case kIOMemoryTypeVirtual: |
2234 | case kIOMemoryTypePhysical: |
2235 | if (count == 1) { |
2236 | _flags |= kIOMemoryAsReference; |
2237 | #ifndef __LP64__ |
2238 | _rangesIsAllocated = false; |
2239 | #endif /* !__LP64__ */ |
2240 | _ranges.v = &_singleRange.v; |
2241 | } else { |
2242 | _ranges.v = IONew(IOVirtualRange, count); |
2243 | if (!_ranges.v) { |
2244 | return false; |
2245 | } |
2246 | } |
2247 | bcopy(src: buffers, dst: _ranges.v, n: count * sizeof(IOVirtualRange)); |
2248 | break; |
2249 | } |
2250 | } |
2251 | _rangesCount = count; |
2252 | |
2253 | // Find starting address within the vector of ranges |
2254 | Ranges vec = _ranges; |
2255 | mach_vm_size_t totalLength = 0; |
2256 | unsigned int ind, pages = 0; |
2257 | for (ind = 0; ind < count; ind++) { |
2258 | mach_vm_address_t addr; |
2259 | mach_vm_address_t endAddr; |
2260 | mach_vm_size_t len; |
2261 | |
2262 | // addr & len are returned by this function |
2263 | getAddrLenForInd(addr, len, type, r: vec, ind, task: _task); |
2264 | if (_task) { |
2265 | mach_vm_size_t phys_size; |
2266 | kern_return_t kret; |
2267 | kret = vm_map_range_physical_size(map: get_task_map(_task), start: addr, size: len, phys_size: &phys_size); |
2268 | if (KERN_SUCCESS != kret) { |
2269 | break; |
2270 | } |
2271 | if (os_add_overflow(pages, atop_64(phys_size), &pages)) { |
2272 | break; |
2273 | } |
2274 | } else { |
2275 | if (os_add3_overflow(addr, len, PAGE_MASK, &endAddr)) { |
2276 | break; |
2277 | } |
2278 | if (!(kIOMemoryRemote & options) && (atop_64(endAddr) > UINT_MAX)) { |
2279 | break; |
2280 | } |
2281 | if (os_add_overflow(pages, (atop_64(endAddr) - atop_64(addr)), &pages)) { |
2282 | break; |
2283 | } |
2284 | } |
2285 | if (os_add_overflow(totalLength, len, &totalLength)) { |
2286 | break; |
2287 | } |
2288 | if ((kIOMemoryTypePhysical == type) || (kIOMemoryTypePhysical64 == type)) { |
2289 | uint64_t highPage = atop_64(addr + len - 1); |
2290 | if ((highPage > _highestPage) && (highPage <= UINT_MAX)) { |
2291 | _highestPage = (ppnum_t) highPage; |
2292 | DEBUG4K_IOKIT("offset 0x%x task %p options 0x%x -> _highestPage 0x%x\n" , (uint32_t)offset, task, (uint32_t)options, _highestPage); |
2293 | } |
2294 | } |
2295 | } |
2296 | if ((ind < count) |
2297 | || (totalLength != ((IOByteCount) totalLength))) { |
2298 | return false; /* overflow */ |
2299 | } |
2300 | _length = totalLength; |
2301 | _pages = pages; |
2302 | |
2303 | // Auto-prepare memory at creation time. |
2304 | // Implied completion when descriptor is free-ed |
2305 | |
2306 | |
2307 | if ((kIOMemoryTypePhysical == type) || (kIOMemoryTypePhysical64 == type)) { |
2308 | _wireCount++; // Physical MDs are, by definition, wired |
2309 | } else { /* kIOMemoryTypeVirtual | kIOMemoryTypeVirtual64 | kIOMemoryTypeUIO */ |
2310 | ioGMDData *dataP; |
2311 | unsigned dataSize; |
2312 | |
2313 | if (_pages > atop_64(max_mem)) { |
2314 | return false; |
2315 | } |
2316 | |
2317 | dataSize = computeDataSize(_pages, /* upls */ count * 2); |
2318 | if (!initMemoryEntries(size: dataSize, mapper)) { |
2319 | return false; |
2320 | } |
2321 | dataP = getDataP(_memoryEntries); |
2322 | dataP->fPageCnt = _pages; |
2323 | |
2324 | if (((_task != kernel_task) || (kIOMemoryBufferPageable & _flags)) |
2325 | && (VM_KERN_MEMORY_NONE == _kernelTag)) { |
2326 | _kernelTag = IOMemoryTag(map: kernel_map); |
2327 | if (_kernelTag == gIOSurfaceTag) { |
2328 | _userTag = VM_MEMORY_IOSURFACE; |
2329 | } |
2330 | } |
2331 | |
2332 | if ((kIOMemoryPersistent & _flags) && !_memRef) { |
2333 | IOReturn |
2334 | err = memoryReferenceCreate(options: 0, reference: &_memRef); |
2335 | if (kIOReturnSuccess != err) { |
2336 | return false; |
2337 | } |
2338 | } |
2339 | |
2340 | if ((_flags & kIOMemoryAutoPrepare) |
2341 | && prepare() != kIOReturnSuccess) { |
2342 | return false; |
2343 | } |
2344 | } |
2345 | } |
2346 | |
2347 | return true; |
2348 | } |
2349 | |
2350 | /* |
2351 | * free |
2352 | * |
2353 | * Free resources. |
2354 | */ |
2355 | void |
2356 | IOGeneralMemoryDescriptor::free() |
2357 | { |
2358 | IOOptionBits type = _flags & kIOMemoryTypeMask; |
2359 | |
2360 | if (reserved && reserved->dp.memory) { |
2361 | LOCK; |
2362 | reserved->dp.memory = NULL; |
2363 | UNLOCK; |
2364 | } |
2365 | if ((kIOMemoryTypePhysical == type) || (kIOMemoryTypePhysical64 == type)) { |
2366 | ioGMDData * dataP; |
2367 | if (_memoryEntries && (dataP = getDataP(_memoryEntries)) && dataP->fMappedBaseValid) { |
2368 | dmaUnmap(mapper: dataP->fMapper, NULL, offset: 0, mapAddress: dataP->fMappedBase, mapLength: dataP->fMappedLength); |
2369 | dataP->fMappedBaseValid = dataP->fMappedBase = 0; |
2370 | } |
2371 | } else { |
2372 | while (_wireCount) { |
2373 | complete(); |
2374 | } |
2375 | } |
2376 | |
2377 | if (_memoryEntries) { |
2378 | _memoryEntries.reset(); |
2379 | } |
2380 | |
2381 | if (_ranges.v && !(kIOMemoryAsReference & _flags)) { |
2382 | if (kIOMemoryTypeUIO == type) { |
2383 | uio_free(a_uio: (uio_t) _ranges.v); |
2384 | } |
2385 | #ifndef __LP64__ |
2386 | else if ((kIOMemoryTypeVirtual64 == type) || (kIOMemoryTypePhysical64 == type)) { |
2387 | IODelete(_ranges.v64, IOAddressRange, _rangesCount); |
2388 | } |
2389 | #endif /* !__LP64__ */ |
2390 | else { |
2391 | IODelete(_ranges.v, IOVirtualRange, _rangesCount); |
2392 | } |
2393 | |
2394 | _ranges.v = NULL; |
2395 | } |
2396 | |
2397 | if (reserved) { |
2398 | cleanKernelReserved(reserved); |
2399 | if (reserved->dp.devicePager) { |
2400 | // memEntry holds a ref on the device pager which owns reserved |
2401 | // (IOMemoryDescriptorReserved) so no reserved access after this point |
2402 | device_pager_deallocate((memory_object_t) reserved->dp.devicePager ); |
2403 | } else { |
2404 | IOFreeType(reserved, IOMemoryDescriptorReserved); |
2405 | } |
2406 | reserved = NULL; |
2407 | } |
2408 | |
2409 | if (_memRef) { |
2410 | memoryReferenceRelease(ref: _memRef); |
2411 | } |
2412 | if (_prepareLock) { |
2413 | IOLockFree(lock: _prepareLock); |
2414 | } |
2415 | |
2416 | super::free(); |
2417 | } |
2418 | |
2419 | #ifndef __LP64__ |
2420 | void |
2421 | IOGeneralMemoryDescriptor::unmapFromKernel() |
2422 | { |
2423 | panic("IOGMD::unmapFromKernel deprecated" ); |
2424 | } |
2425 | |
2426 | void |
2427 | IOGeneralMemoryDescriptor::mapIntoKernel(unsigned rangeIndex) |
2428 | { |
2429 | panic("IOGMD::mapIntoKernel deprecated" ); |
2430 | } |
2431 | #endif /* !__LP64__ */ |
2432 | |
2433 | /* |
2434 | * getDirection: |
2435 | * |
2436 | * Get the direction of the transfer. |
2437 | */ |
2438 | IODirection |
2439 | IOMemoryDescriptor::getDirection() const |
2440 | { |
2441 | #ifndef __LP64__ |
2442 | if (_direction) { |
2443 | return _direction; |
2444 | } |
2445 | #endif /* !__LP64__ */ |
2446 | return (IODirection) (_flags & kIOMemoryDirectionMask); |
2447 | } |
2448 | |
2449 | /* |
2450 | * getLength: |
2451 | * |
2452 | * Get the length of the transfer (over all ranges). |
2453 | */ |
2454 | IOByteCount |
2455 | IOMemoryDescriptor::getLength() const |
2456 | { |
2457 | return _length; |
2458 | } |
2459 | |
2460 | void |
2461 | IOMemoryDescriptor::setTag( IOOptionBits tag ) |
2462 | { |
2463 | _tag = tag; |
2464 | } |
2465 | |
2466 | IOOptionBits |
2467 | IOMemoryDescriptor::getTag( void ) |
2468 | { |
2469 | return _tag; |
2470 | } |
2471 | |
2472 | uint64_t |
2473 | IOMemoryDescriptor::getFlags(void) |
2474 | { |
2475 | return _flags; |
2476 | } |
2477 | |
2478 | OSObject * |
2479 | IOMemoryDescriptor::copyContext(void) const |
2480 | { |
2481 | if (reserved) { |
2482 | OSObject * context = reserved->contextObject; |
2483 | if (context) { |
2484 | context->retain(); |
2485 | } |
2486 | return context; |
2487 | } else { |
2488 | return NULL; |
2489 | } |
2490 | } |
2491 | |
2492 | void |
2493 | IOMemoryDescriptor::setContext(OSObject * obj) |
2494 | { |
2495 | if (this->reserved == NULL && obj == NULL) { |
2496 | // No existing object, and no object to set |
2497 | return; |
2498 | } |
2499 | |
2500 | IOMemoryDescriptorReserved * reserved = getKernelReserved(); |
2501 | if (reserved) { |
2502 | OSObject * oldObject = reserved->contextObject; |
2503 | if (oldObject && OSCompareAndSwapPtr(oldObject, NULL, &reserved->contextObject)) { |
2504 | oldObject->release(); |
2505 | } |
2506 | if (obj != NULL) { |
2507 | obj->retain(); |
2508 | reserved->contextObject = obj; |
2509 | } |
2510 | } |
2511 | } |
2512 | |
2513 | #ifndef __LP64__ |
2514 | #pragma clang diagnostic push |
2515 | #pragma clang diagnostic ignored "-Wdeprecated-declarations" |
2516 | |
2517 | // @@@ gvdl: who is using this API? Seems like a wierd thing to implement. |
2518 | IOPhysicalAddress |
2519 | IOMemoryDescriptor::getSourceSegment( IOByteCount offset, IOByteCount * length ) |
2520 | { |
2521 | addr64_t physAddr = 0; |
2522 | |
2523 | if (prepare() == kIOReturnSuccess) { |
2524 | physAddr = getPhysicalSegment64( offset, length ); |
2525 | complete(); |
2526 | } |
2527 | |
2528 | return (IOPhysicalAddress) physAddr; // truncated but only page offset is used |
2529 | } |
2530 | |
2531 | #pragma clang diagnostic pop |
2532 | |
2533 | #endif /* !__LP64__ */ |
2534 | |
2535 | IOByteCount |
2536 | IOMemoryDescriptor::readBytes |
2537 | (IOByteCount offset, void *bytes, IOByteCount length) |
2538 | { |
2539 | addr64_t dstAddr = CAST_DOWN(addr64_t, bytes); |
2540 | IOByteCount endoffset; |
2541 | IOByteCount remaining; |
2542 | |
2543 | |
2544 | // Check that this entire I/O is within the available range |
2545 | if ((offset > _length) |
2546 | || os_add_overflow(length, offset, &endoffset) |
2547 | || (endoffset > _length)) { |
2548 | assertf(false, "readBytes exceeds length (0x%lx, 0x%lx) > 0x%lx" , (long) offset, (long) length, (long) _length); |
2549 | return 0; |
2550 | } |
2551 | if (offset >= _length) { |
2552 | return 0; |
2553 | } |
2554 | |
2555 | assert(!(kIOMemoryRemote & _flags)); |
2556 | if (kIOMemoryRemote & _flags) { |
2557 | return 0; |
2558 | } |
2559 | |
2560 | if (kIOMemoryThreadSafe & _flags) { |
2561 | LOCK; |
2562 | } |
2563 | |
2564 | remaining = length = min(length, _length - offset); |
2565 | while (remaining) { // (process another target segment?) |
2566 | addr64_t srcAddr64; |
2567 | IOByteCount srcLen; |
2568 | |
2569 | srcAddr64 = getPhysicalSegment(offset, length: &srcLen, options: kIOMemoryMapperNone); |
2570 | if (!srcAddr64) { |
2571 | break; |
2572 | } |
2573 | |
2574 | // Clip segment length to remaining |
2575 | if (srcLen > remaining) { |
2576 | srcLen = remaining; |
2577 | } |
2578 | |
2579 | if (srcLen > (UINT_MAX - PAGE_SIZE + 1)) { |
2580 | srcLen = (UINT_MAX - PAGE_SIZE + 1); |
2581 | } |
2582 | copypv(source: srcAddr64, sink: dstAddr, size: (unsigned int) srcLen, |
2583 | cppvPsrc | cppvNoRefSrc | cppvFsnk | cppvKmap); |
2584 | |
2585 | dstAddr += srcLen; |
2586 | offset += srcLen; |
2587 | remaining -= srcLen; |
2588 | } |
2589 | |
2590 | if (kIOMemoryThreadSafe & _flags) { |
2591 | UNLOCK; |
2592 | } |
2593 | |
2594 | assert(!remaining); |
2595 | |
2596 | return length - remaining; |
2597 | } |
2598 | |
2599 | IOByteCount |
2600 | IOMemoryDescriptor::writeBytes |
2601 | (IOByteCount inoffset, const void *bytes, IOByteCount length) |
2602 | { |
2603 | addr64_t srcAddr = CAST_DOWN(addr64_t, bytes); |
2604 | IOByteCount remaining; |
2605 | IOByteCount endoffset; |
2606 | IOByteCount offset = inoffset; |
2607 | |
2608 | assert( !(kIOMemoryPreparedReadOnly & _flags)); |
2609 | |
2610 | // Check that this entire I/O is within the available range |
2611 | if ((offset > _length) |
2612 | || os_add_overflow(length, offset, &endoffset) |
2613 | || (endoffset > _length)) { |
2614 | assertf(false, "writeBytes exceeds length (0x%lx, 0x%lx) > 0x%lx" , (long) inoffset, (long) length, (long) _length); |
2615 | return 0; |
2616 | } |
2617 | if (kIOMemoryPreparedReadOnly & _flags) { |
2618 | return 0; |
2619 | } |
2620 | if (offset >= _length) { |
2621 | return 0; |
2622 | } |
2623 | |
2624 | assert(!(kIOMemoryRemote & _flags)); |
2625 | if (kIOMemoryRemote & _flags) { |
2626 | return 0; |
2627 | } |
2628 | |
2629 | if (kIOMemoryThreadSafe & _flags) { |
2630 | LOCK; |
2631 | } |
2632 | |
2633 | remaining = length = min(length, _length - offset); |
2634 | while (remaining) { // (process another target segment?) |
2635 | addr64_t dstAddr64; |
2636 | IOByteCount dstLen; |
2637 | |
2638 | dstAddr64 = getPhysicalSegment(offset, length: &dstLen, options: kIOMemoryMapperNone); |
2639 | if (!dstAddr64) { |
2640 | break; |
2641 | } |
2642 | |
2643 | // Clip segment length to remaining |
2644 | if (dstLen > remaining) { |
2645 | dstLen = remaining; |
2646 | } |
2647 | |
2648 | if (dstLen > (UINT_MAX - PAGE_SIZE + 1)) { |
2649 | dstLen = (UINT_MAX - PAGE_SIZE + 1); |
2650 | } |
2651 | if (!srcAddr) { |
2652 | bzero_phys(phys_address: dstAddr64, length: (unsigned int) dstLen); |
2653 | } else { |
2654 | copypv(source: srcAddr, sink: (addr64_t) dstAddr64, size: (unsigned int) dstLen, |
2655 | cppvPsnk | cppvFsnk | cppvNoRefSrc | cppvNoModSnk | cppvKmap); |
2656 | srcAddr += dstLen; |
2657 | } |
2658 | offset += dstLen; |
2659 | remaining -= dstLen; |
2660 | } |
2661 | |
2662 | if (kIOMemoryThreadSafe & _flags) { |
2663 | UNLOCK; |
2664 | } |
2665 | |
2666 | assert(!remaining); |
2667 | |
2668 | #if defined(__x86_64__) |
2669 | // copypv does not cppvFsnk on intel |
2670 | #else |
2671 | if (!srcAddr) { |
2672 | performOperation(options: kIOMemoryIncoherentIOFlush, offset: inoffset, length); |
2673 | } |
2674 | #endif |
2675 | |
2676 | return length - remaining; |
2677 | } |
2678 | |
2679 | #ifndef __LP64__ |
2680 | void |
2681 | IOGeneralMemoryDescriptor::setPosition(IOByteCount position) |
2682 | { |
2683 | panic("IOGMD::setPosition deprecated" ); |
2684 | } |
2685 | #endif /* !__LP64__ */ |
2686 | |
2687 | static volatile SInt64 gIOMDPreparationID __attribute__((aligned(8))) = (1ULL << 32); |
2688 | static volatile SInt64 gIOMDDescriptorID __attribute__((aligned(8))) = (kIODescriptorIDInvalid + 1ULL); |
2689 | |
2690 | uint64_t |
2691 | IOGeneralMemoryDescriptor::getPreparationID( void ) |
2692 | { |
2693 | ioGMDData *dataP; |
2694 | |
2695 | if (!_wireCount) { |
2696 | return kIOPreparationIDUnprepared; |
2697 | } |
2698 | |
2699 | if (((kIOMemoryTypeMask & _flags) == kIOMemoryTypePhysical) |
2700 | || ((kIOMemoryTypeMask & _flags) == kIOMemoryTypePhysical64)) { |
2701 | IOMemoryDescriptor::setPreparationID(); |
2702 | return IOMemoryDescriptor::getPreparationID(); |
2703 | } |
2704 | |
2705 | if (!_memoryEntries || !(dataP = getDataP(_memoryEntries))) { |
2706 | return kIOPreparationIDUnprepared; |
2707 | } |
2708 | |
2709 | if (kIOPreparationIDUnprepared == dataP->fPreparationID) { |
2710 | SInt64 newID = OSIncrementAtomic64(address: &gIOMDPreparationID); |
2711 | OSCompareAndSwap64(kIOPreparationIDUnprepared, newID, &dataP->fPreparationID); |
2712 | } |
2713 | return dataP->fPreparationID; |
2714 | } |
2715 | |
2716 | void |
2717 | IOMemoryDescriptor::cleanKernelReserved( IOMemoryDescriptorReserved * reserved ) |
2718 | { |
2719 | if (reserved->creator) { |
2720 | task_deallocate(reserved->creator); |
2721 | reserved->creator = NULL; |
2722 | } |
2723 | |
2724 | if (reserved->contextObject) { |
2725 | reserved->contextObject->release(); |
2726 | reserved->contextObject = NULL; |
2727 | } |
2728 | } |
2729 | |
2730 | IOMemoryDescriptorReserved * |
2731 | IOMemoryDescriptor::getKernelReserved( void ) |
2732 | { |
2733 | if (!reserved) { |
2734 | reserved = IOMallocType(IOMemoryDescriptorReserved); |
2735 | } |
2736 | return reserved; |
2737 | } |
2738 | |
2739 | void |
2740 | IOMemoryDescriptor::setPreparationID( void ) |
2741 | { |
2742 | if (getKernelReserved() && (kIOPreparationIDUnprepared == reserved->preparationID)) { |
2743 | SInt64 newID = OSIncrementAtomic64(address: &gIOMDPreparationID); |
2744 | OSCompareAndSwap64(kIOPreparationIDUnprepared, newID, &reserved->preparationID); |
2745 | } |
2746 | } |
2747 | |
2748 | uint64_t |
2749 | IOMemoryDescriptor::getPreparationID( void ) |
2750 | { |
2751 | if (reserved) { |
2752 | return reserved->preparationID; |
2753 | } else { |
2754 | return kIOPreparationIDUnsupported; |
2755 | } |
2756 | } |
2757 | |
2758 | void |
2759 | IOMemoryDescriptor::setDescriptorID( void ) |
2760 | { |
2761 | if (getKernelReserved() && (kIODescriptorIDInvalid == reserved->descriptorID)) { |
2762 | SInt64 newID = OSIncrementAtomic64(address: &gIOMDDescriptorID); |
2763 | OSCompareAndSwap64(kIODescriptorIDInvalid, newID, &reserved->descriptorID); |
2764 | } |
2765 | } |
2766 | |
2767 | uint64_t |
2768 | IOMemoryDescriptor::getDescriptorID( void ) |
2769 | { |
2770 | setDescriptorID(); |
2771 | |
2772 | if (reserved) { |
2773 | return reserved->descriptorID; |
2774 | } else { |
2775 | return kIODescriptorIDInvalid; |
2776 | } |
2777 | } |
2778 | |
2779 | IOReturn |
2780 | IOMemoryDescriptor::ktraceEmitPhysicalSegments( void ) |
2781 | { |
2782 | if (!kdebug_debugid_enabled(IODBG_IOMDPA(IOMDPA_MAPPED))) { |
2783 | return kIOReturnSuccess; |
2784 | } |
2785 | |
2786 | assert(getPreparationID() >= kIOPreparationIDAlwaysPrepared); |
2787 | if (getPreparationID() < kIOPreparationIDAlwaysPrepared) { |
2788 | return kIOReturnBadArgument; |
2789 | } |
2790 | |
2791 | uint64_t descriptorID = getDescriptorID(); |
2792 | assert(descriptorID != kIODescriptorIDInvalid); |
2793 | if (getDescriptorID() == kIODescriptorIDInvalid) { |
2794 | return kIOReturnBadArgument; |
2795 | } |
2796 | |
2797 | IOTimeStampConstant(IODBG_IOMDPA(IOMDPA_MAPPED), a: descriptorID, VM_KERNEL_ADDRHIDE(this), c: getLength()); |
2798 | |
2799 | #if __LP64__ |
2800 | static const uint8_t num_segments_page = 8; |
2801 | #else |
2802 | static const uint8_t num_segments_page = 4; |
2803 | #endif |
2804 | static const uint8_t num_segments_long = 2; |
2805 | |
2806 | IOPhysicalAddress segments_page[num_segments_page]; |
2807 | IOPhysicalRange segments_long[num_segments_long]; |
2808 | memset(s: segments_page, UINT32_MAX, n: sizeof(segments_page)); |
2809 | memset(s: segments_long, c: 0, n: sizeof(segments_long)); |
2810 | |
2811 | uint8_t segment_page_idx = 0; |
2812 | uint8_t segment_long_idx = 0; |
2813 | |
2814 | IOPhysicalRange physical_segment; |
2815 | for (IOByteCount offset = 0; offset < getLength(); offset += physical_segment.length) { |
2816 | physical_segment.address = getPhysicalSegment(offset, length: &physical_segment.length); |
2817 | |
2818 | if (physical_segment.length == 0) { |
2819 | break; |
2820 | } |
2821 | |
2822 | /** |
2823 | * Most IOMemoryDescriptors are made up of many individual physically discontiguous pages. To optimize for trace |
2824 | * buffer memory, pack segment events according to the following. |
2825 | * |
2826 | * Mappings must be emitted in ascending order starting from offset 0. Mappings can be associated with the previous |
2827 | * IOMDPA_MAPPED event emitted on by the current thread_id. |
2828 | * |
2829 | * IOMDPA_SEGMENTS_PAGE = up to 8 virtually contiguous page aligned mappings of PAGE_SIZE length |
2830 | * - (ppn_0 << 32 | ppn_1), ..., (ppn_6 << 32 | ppn_7) |
2831 | * - unmapped pages will have a ppn of MAX_INT_32 |
2832 | * IOMDPA_SEGMENTS_LONG = up to 2 virtually contiguous mappings of variable length |
2833 | * - address_0, length_0, address_0, length_1 |
2834 | * - unmapped pages will have an address of 0 |
2835 | * |
2836 | * During each iteration do the following depending on the length of the mapping: |
2837 | * 1. add the current segment to the appropriate queue of pending segments |
2838 | * 1. check if we are operating on the same type of segment (PAGE/LONG) as the previous pass |
2839 | * 1a. if FALSE emit and reset all events in the previous queue |
2840 | * 2. check if we have filled up the current queue of pending events |
2841 | * 2a. if TRUE emit and reset all events in the pending queue |
2842 | * 3. after completing all iterations emit events in the current queue |
2843 | */ |
2844 | |
2845 | bool emit_page = false; |
2846 | bool emit_long = false; |
2847 | if ((physical_segment.address & PAGE_MASK) == 0 && physical_segment.length == PAGE_SIZE) { |
2848 | segments_page[segment_page_idx] = physical_segment.address; |
2849 | segment_page_idx++; |
2850 | |
2851 | emit_long = segment_long_idx != 0; |
2852 | emit_page = segment_page_idx == num_segments_page; |
2853 | |
2854 | if (os_unlikely(emit_long)) { |
2855 | IOTimeStampConstant(IODBG_IOMDPA(IOMDPA_SEGMENTS_LONG), |
2856 | a: segments_long[0].address, b: segments_long[0].length, |
2857 | c: segments_long[1].address, d: segments_long[1].length); |
2858 | } |
2859 | |
2860 | if (os_unlikely(emit_page)) { |
2861 | #if __LP64__ |
2862 | IOTimeStampConstant(IODBG_IOMDPA(IOMDPA_SEGMENTS_PAGE), |
2863 | a: ((uintptr_t) atop_64(segments_page[0]) << 32) | (ppnum_t) atop_64(segments_page[1]), |
2864 | b: ((uintptr_t) atop_64(segments_page[2]) << 32) | (ppnum_t) atop_64(segments_page[3]), |
2865 | c: ((uintptr_t) atop_64(segments_page[4]) << 32) | (ppnum_t) atop_64(segments_page[5]), |
2866 | d: ((uintptr_t) atop_64(segments_page[6]) << 32) | (ppnum_t) atop_64(segments_page[7])); |
2867 | #else |
2868 | IOTimeStampConstant(IODBG_IOMDPA(IOMDPA_SEGMENTS_PAGE), |
2869 | (ppnum_t) atop_32(segments_page[1]), |
2870 | (ppnum_t) atop_32(segments_page[2]), |
2871 | (ppnum_t) atop_32(segments_page[3]), |
2872 | (ppnum_t) atop_32(segments_page[4])); |
2873 | #endif |
2874 | } |
2875 | } else { |
2876 | segments_long[segment_long_idx] = physical_segment; |
2877 | segment_long_idx++; |
2878 | |
2879 | emit_page = segment_page_idx != 0; |
2880 | emit_long = segment_long_idx == num_segments_long; |
2881 | |
2882 | if (os_unlikely(emit_page)) { |
2883 | #if __LP64__ |
2884 | IOTimeStampConstant(IODBG_IOMDPA(IOMDPA_SEGMENTS_PAGE), |
2885 | a: ((uintptr_t) atop_64(segments_page[0]) << 32) | (ppnum_t) atop_64(segments_page[1]), |
2886 | b: ((uintptr_t) atop_64(segments_page[2]) << 32) | (ppnum_t) atop_64(segments_page[3]), |
2887 | c: ((uintptr_t) atop_64(segments_page[4]) << 32) | (ppnum_t) atop_64(segments_page[5]), |
2888 | d: ((uintptr_t) atop_64(segments_page[6]) << 32) | (ppnum_t) atop_64(segments_page[7])); |
2889 | #else |
2890 | IOTimeStampConstant(IODBG_IOMDPA(IOMDPA_SEGMENTS_PAGE), |
2891 | (ppnum_t) atop_32(segments_page[1]), |
2892 | (ppnum_t) atop_32(segments_page[2]), |
2893 | (ppnum_t) atop_32(segments_page[3]), |
2894 | (ppnum_t) atop_32(segments_page[4])); |
2895 | #endif |
2896 | } |
2897 | |
2898 | if (emit_long) { |
2899 | IOTimeStampConstant(IODBG_IOMDPA(IOMDPA_SEGMENTS_LONG), |
2900 | a: segments_long[0].address, b: segments_long[0].length, |
2901 | c: segments_long[1].address, d: segments_long[1].length); |
2902 | } |
2903 | } |
2904 | |
2905 | if (os_unlikely(emit_page)) { |
2906 | memset(s: segments_page, UINT32_MAX, n: sizeof(segments_page)); |
2907 | segment_page_idx = 0; |
2908 | } |
2909 | |
2910 | if (os_unlikely(emit_long)) { |
2911 | memset(s: segments_long, c: 0, n: sizeof(segments_long)); |
2912 | segment_long_idx = 0; |
2913 | } |
2914 | } |
2915 | |
2916 | if (segment_page_idx != 0) { |
2917 | assert(segment_long_idx == 0); |
2918 | #if __LP64__ |
2919 | IOTimeStampConstant(IODBG_IOMDPA(IOMDPA_SEGMENTS_PAGE), |
2920 | a: ((uintptr_t) atop_64(segments_page[0]) << 32) | (ppnum_t) atop_64(segments_page[1]), |
2921 | b: ((uintptr_t) atop_64(segments_page[2]) << 32) | (ppnum_t) atop_64(segments_page[3]), |
2922 | c: ((uintptr_t) atop_64(segments_page[4]) << 32) | (ppnum_t) atop_64(segments_page[5]), |
2923 | d: ((uintptr_t) atop_64(segments_page[6]) << 32) | (ppnum_t) atop_64(segments_page[7])); |
2924 | #else |
2925 | IOTimeStampConstant(IODBG_IOMDPA(IOMDPA_SEGMENTS_PAGE), |
2926 | (ppnum_t) atop_32(segments_page[1]), |
2927 | (ppnum_t) atop_32(segments_page[2]), |
2928 | (ppnum_t) atop_32(segments_page[3]), |
2929 | (ppnum_t) atop_32(segments_page[4])); |
2930 | #endif |
2931 | } else if (segment_long_idx != 0) { |
2932 | assert(segment_page_idx == 0); |
2933 | IOTimeStampConstant(IODBG_IOMDPA(IOMDPA_SEGMENTS_LONG), |
2934 | a: segments_long[0].address, b: segments_long[0].length, |
2935 | c: segments_long[1].address, d: segments_long[1].length); |
2936 | } |
2937 | |
2938 | return kIOReturnSuccess; |
2939 | } |
2940 | |
2941 | void |
2942 | IOMemoryDescriptor::setVMTags(uint32_t kernelTag, uint32_t userTag) |
2943 | { |
2944 | _kernelTag = (vm_tag_t) kernelTag; |
2945 | _userTag = (vm_tag_t) userTag; |
2946 | } |
2947 | |
2948 | uint32_t |
2949 | IOMemoryDescriptor::getVMTag(vm_map_t map) |
2950 | { |
2951 | if (vm_kernel_map_is_kernel(map)) { |
2952 | if (VM_KERN_MEMORY_NONE != _kernelTag) { |
2953 | return (uint32_t) _kernelTag; |
2954 | } |
2955 | } else { |
2956 | if (VM_KERN_MEMORY_NONE != _userTag) { |
2957 | return (uint32_t) _userTag; |
2958 | } |
2959 | } |
2960 | return IOMemoryTag(map); |
2961 | } |
2962 | |
2963 | IOReturn |
2964 | IOGeneralMemoryDescriptor::dmaCommandOperation(DMACommandOps op, void *vData, UInt dataSize) const |
2965 | { |
2966 | IOReturn err = kIOReturnSuccess; |
2967 | DMACommandOps params; |
2968 | IOGeneralMemoryDescriptor * md = const_cast<IOGeneralMemoryDescriptor *>(this); |
2969 | ioGMDData *dataP; |
2970 | |
2971 | params = (op & ~kIOMDDMACommandOperationMask & op); |
2972 | op &= kIOMDDMACommandOperationMask; |
2973 | |
2974 | if (kIOMDDMAMap == op) { |
2975 | if (dataSize < sizeof(IOMDDMAMapArgs)) { |
2976 | return kIOReturnUnderrun; |
2977 | } |
2978 | |
2979 | IOMDDMAMapArgs * data = (IOMDDMAMapArgs *) vData; |
2980 | |
2981 | if (!_memoryEntries |
2982 | && !md->initMemoryEntries(computeDataSize(0, 0), kIOMapperWaitSystem)) { |
2983 | return kIOReturnNoMemory; |
2984 | } |
2985 | |
2986 | if (_memoryEntries && data->fMapper) { |
2987 | bool remap, keepMap; |
2988 | dataP = getDataP(_memoryEntries); |
2989 | |
2990 | if (data->fMapSpec.numAddressBits < dataP->fDMAMapNumAddressBits) { |
2991 | dataP->fDMAMapNumAddressBits = data->fMapSpec.numAddressBits; |
2992 | } |
2993 | if (data->fMapSpec.alignment > dataP->fDMAMapAlignment) { |
2994 | dataP->fDMAMapAlignment = data->fMapSpec.alignment; |
2995 | } |
2996 | |
2997 | keepMap = (data->fMapper == gIOSystemMapper); |
2998 | keepMap &= ((data->fOffset == 0) && (data->fLength == _length)); |
2999 | |
3000 | if ((data->fMapper == gIOSystemMapper) && _prepareLock) { |
3001 | IOLockLock(_prepareLock); |
3002 | } |
3003 | |
3004 | remap = (!keepMap); |
3005 | remap |= (dataP->fDMAMapNumAddressBits < 64) |
3006 | && ((dataP->fMappedBase + _length) > (1ULL << dataP->fDMAMapNumAddressBits)); |
3007 | remap |= (dataP->fDMAMapAlignment > page_size); |
3008 | |
3009 | if (remap || !dataP->fMappedBaseValid) { |
3010 | err = md->dmaMap(mapper: data->fMapper, memory: md, command: data->fCommand, mapSpec: &data->fMapSpec, offset: data->fOffset, length: data->fLength, mapAddress: &data->fAlloc, mapLength: &data->fAllocLength); |
3011 | if (keepMap && (kIOReturnSuccess == err) && !dataP->fMappedBaseValid) { |
3012 | dataP->fMappedBase = data->fAlloc; |
3013 | dataP->fMappedBaseValid = true; |
3014 | dataP->fMappedLength = data->fAllocLength; |
3015 | data->fAllocLength = 0; // IOMD owns the alloc now |
3016 | } |
3017 | } else { |
3018 | data->fAlloc = dataP->fMappedBase; |
3019 | data->fAllocLength = 0; // give out IOMD map |
3020 | md->dmaMapRecord(mapper: data->fMapper, command: data->fCommand, mapLength: dataP->fMappedLength); |
3021 | } |
3022 | |
3023 | if ((data->fMapper == gIOSystemMapper) && _prepareLock) { |
3024 | IOLockUnlock(_prepareLock); |
3025 | } |
3026 | } |
3027 | return err; |
3028 | } |
3029 | if (kIOMDDMAUnmap == op) { |
3030 | if (dataSize < sizeof(IOMDDMAMapArgs)) { |
3031 | return kIOReturnUnderrun; |
3032 | } |
3033 | IOMDDMAMapArgs * data = (IOMDDMAMapArgs *) vData; |
3034 | |
3035 | err = md->dmaUnmap(mapper: data->fMapper, command: data->fCommand, offset: data->fOffset, mapAddress: data->fAlloc, mapLength: data->fAllocLength); |
3036 | |
3037 | return kIOReturnSuccess; |
3038 | } |
3039 | |
3040 | if (kIOMDAddDMAMapSpec == op) { |
3041 | if (dataSize < sizeof(IODMAMapSpecification)) { |
3042 | return kIOReturnUnderrun; |
3043 | } |
3044 | |
3045 | IODMAMapSpecification * data = (IODMAMapSpecification *) vData; |
3046 | |
3047 | if (!_memoryEntries |
3048 | && !md->initMemoryEntries(computeDataSize(0, 0), kIOMapperWaitSystem)) { |
3049 | return kIOReturnNoMemory; |
3050 | } |
3051 | |
3052 | if (_memoryEntries) { |
3053 | dataP = getDataP(_memoryEntries); |
3054 | if (data->numAddressBits < dataP->fDMAMapNumAddressBits) { |
3055 | dataP->fDMAMapNumAddressBits = data->numAddressBits; |
3056 | } |
3057 | if (data->alignment > dataP->fDMAMapAlignment) { |
3058 | dataP->fDMAMapAlignment = data->alignment; |
3059 | } |
3060 | } |
3061 | return kIOReturnSuccess; |
3062 | } |
3063 | |
3064 | if (kIOMDGetCharacteristics == op) { |
3065 | if (dataSize < sizeof(IOMDDMACharacteristics)) { |
3066 | return kIOReturnUnderrun; |
3067 | } |
3068 | |
3069 | IOMDDMACharacteristics *data = (IOMDDMACharacteristics *) vData; |
3070 | data->fLength = _length; |
3071 | data->fSGCount = _rangesCount; |
3072 | data->fPages = _pages; |
3073 | data->fDirection = getDirection(); |
3074 | if (!_wireCount) { |
3075 | data->fIsPrepared = false; |
3076 | } else { |
3077 | data->fIsPrepared = true; |
3078 | data->fHighestPage = _highestPage; |
3079 | if (_memoryEntries) { |
3080 | dataP = getDataP(_memoryEntries); |
3081 | ioPLBlock *ioplList = getIOPLList(dataP); |
3082 | UInt count = getNumIOPL(_memoryEntries, dataP); |
3083 | if (count == 1) { |
3084 | data->fPageAlign = (ioplList[0].fPageOffset & PAGE_MASK) | ~PAGE_MASK; |
3085 | } |
3086 | } |
3087 | } |
3088 | |
3089 | return kIOReturnSuccess; |
3090 | } else if (kIOMDDMAActive == op) { |
3091 | if (params) { |
3092 | int16_t prior; |
3093 | prior = OSAddAtomic16(amount: 1, address: &md->_dmaReferences); |
3094 | if (!prior) { |
3095 | md->_mapName = NULL; |
3096 | } |
3097 | } else { |
3098 | if (md->_dmaReferences) { |
3099 | OSAddAtomic16(amount: -1, address: &md->_dmaReferences); |
3100 | } else { |
3101 | panic("_dmaReferences underflow" ); |
3102 | } |
3103 | } |
3104 | } else if (kIOMDWalkSegments != op) { |
3105 | return kIOReturnBadArgument; |
3106 | } |
3107 | |
3108 | // Get the next segment |
3109 | struct InternalState { |
3110 | IOMDDMAWalkSegmentArgs fIO; |
3111 | mach_vm_size_t fOffset2Index; |
3112 | mach_vm_size_t fNextOffset; |
3113 | UInt fIndex; |
3114 | } *isP; |
3115 | |
3116 | // Find the next segment |
3117 | if (dataSize < sizeof(*isP)) { |
3118 | return kIOReturnUnderrun; |
3119 | } |
3120 | |
3121 | isP = (InternalState *) vData; |
3122 | uint64_t offset = isP->fIO.fOffset; |
3123 | uint8_t mapped = isP->fIO.fMapped; |
3124 | uint64_t mappedBase; |
3125 | |
3126 | if (mapped && (kIOMemoryRemote & _flags)) { |
3127 | return kIOReturnNotAttached; |
3128 | } |
3129 | |
3130 | if (IOMapper::gSystem && mapped |
3131 | && (!(kIOMemoryHostOnly & _flags)) |
3132 | && (!_memoryEntries || !getDataP(_memoryEntries)->fMappedBaseValid)) { |
3133 | // && (_memoryEntries && !getDataP(_memoryEntries)->fMappedBaseValid)) |
3134 | if (!_memoryEntries |
3135 | && !md->initMemoryEntries(computeDataSize(0, 0), kIOMapperWaitSystem)) { |
3136 | return kIOReturnNoMemory; |
3137 | } |
3138 | |
3139 | dataP = getDataP(_memoryEntries); |
3140 | if (dataP->fMapper) { |
3141 | IODMAMapSpecification mapSpec; |
3142 | bzero(s: &mapSpec, n: sizeof(mapSpec)); |
3143 | mapSpec.numAddressBits = dataP->fDMAMapNumAddressBits; |
3144 | mapSpec.alignment = dataP->fDMAMapAlignment; |
3145 | err = md->dmaMap(mapper: dataP->fMapper, memory: md, NULL, mapSpec: &mapSpec, offset: 0, length: _length, mapAddress: &dataP->fMappedBase, mapLength: &dataP->fMappedLength); |
3146 | if (kIOReturnSuccess != err) { |
3147 | return err; |
3148 | } |
3149 | dataP->fMappedBaseValid = true; |
3150 | } |
3151 | } |
3152 | |
3153 | if (mapped) { |
3154 | if (IOMapper::gSystem |
3155 | && (!(kIOMemoryHostOnly & _flags)) |
3156 | && _memoryEntries |
3157 | && (dataP = getDataP(_memoryEntries)) |
3158 | && dataP->fMappedBaseValid) { |
3159 | mappedBase = dataP->fMappedBase; |
3160 | } else { |
3161 | mapped = 0; |
3162 | } |
3163 | } |
3164 | |
3165 | if (offset >= _length) { |
3166 | return (offset == _length)? kIOReturnOverrun : kIOReturnInternalError; |
3167 | } |
3168 | |
3169 | // Validate the previous offset |
3170 | UInt ind; |
3171 | mach_vm_size_t off2Ind = isP->fOffset2Index; |
3172 | if (!params |
3173 | && offset |
3174 | && (offset == isP->fNextOffset || off2Ind <= offset)) { |
3175 | ind = isP->fIndex; |
3176 | } else { |
3177 | ind = off2Ind = 0; // Start from beginning |
3178 | } |
3179 | mach_vm_size_t length; |
3180 | UInt64 address; |
3181 | |
3182 | if ((_flags & kIOMemoryTypeMask) == kIOMemoryTypePhysical) { |
3183 | // Physical address based memory descriptor |
3184 | const IOPhysicalRange *physP = (IOPhysicalRange *) &_ranges.p[0]; |
3185 | |
3186 | // Find the range after the one that contains the offset |
3187 | mach_vm_size_t len; |
3188 | for (len = 0; off2Ind <= offset; ind++) { |
3189 | len = physP[ind].length; |
3190 | off2Ind += len; |
3191 | } |
3192 | |
3193 | // Calculate length within range and starting address |
3194 | length = off2Ind - offset; |
3195 | address = physP[ind - 1].address + len - length; |
3196 | |
3197 | if (true && mapped) { |
3198 | address = mappedBase + offset; |
3199 | } else { |
3200 | // see how far we can coalesce ranges |
3201 | while (ind < _rangesCount && address + length == physP[ind].address) { |
3202 | len = physP[ind].length; |
3203 | length += len; |
3204 | off2Ind += len; |
3205 | ind++; |
3206 | } |
3207 | } |
3208 | |
3209 | // correct contiguous check overshoot |
3210 | ind--; |
3211 | off2Ind -= len; |
3212 | } |
3213 | #ifndef __LP64__ |
3214 | else if ((_flags & kIOMemoryTypeMask) == kIOMemoryTypePhysical64) { |
3215 | // Physical address based memory descriptor |
3216 | const IOAddressRange *physP = (IOAddressRange *) &_ranges.v64[0]; |
3217 | |
3218 | // Find the range after the one that contains the offset |
3219 | mach_vm_size_t len; |
3220 | for (len = 0; off2Ind <= offset; ind++) { |
3221 | len = physP[ind].length; |
3222 | off2Ind += len; |
3223 | } |
3224 | |
3225 | // Calculate length within range and starting address |
3226 | length = off2Ind - offset; |
3227 | address = physP[ind - 1].address + len - length; |
3228 | |
3229 | if (true && mapped) { |
3230 | address = mappedBase + offset; |
3231 | } else { |
3232 | // see how far we can coalesce ranges |
3233 | while (ind < _rangesCount && address + length == physP[ind].address) { |
3234 | len = physP[ind].length; |
3235 | length += len; |
3236 | off2Ind += len; |
3237 | ind++; |
3238 | } |
3239 | } |
3240 | // correct contiguous check overshoot |
3241 | ind--; |
3242 | off2Ind -= len; |
3243 | } |
3244 | #endif /* !__LP64__ */ |
3245 | else { |
3246 | do { |
3247 | if (!_wireCount) { |
3248 | panic("IOGMD: not wired for the IODMACommand" ); |
3249 | } |
3250 | |
3251 | assert(_memoryEntries); |
3252 | |
3253 | dataP = getDataP(_memoryEntries); |
3254 | const ioPLBlock *ioplList = getIOPLList(dataP); |
3255 | UInt numIOPLs = getNumIOPL(_memoryEntries, dataP); |
3256 | upl_page_info_t *pageList = getPageList(dataP); |
3257 | |
3258 | assert(numIOPLs > 0); |
3259 | |
3260 | // Scan through iopl info blocks looking for block containing offset |
3261 | while (ind < numIOPLs && offset >= ioplList[ind].fIOMDOffset) { |
3262 | ind++; |
3263 | } |
3264 | |
3265 | // Go back to actual range as search goes past it |
3266 | ioPLBlock ioplInfo = ioplList[ind - 1]; |
3267 | off2Ind = ioplInfo.fIOMDOffset; |
3268 | |
3269 | if (ind < numIOPLs) { |
3270 | length = ioplList[ind].fIOMDOffset; |
3271 | } else { |
3272 | length = _length; |
3273 | } |
3274 | length -= offset; // Remainder within iopl |
3275 | |
3276 | // Subtract offset till this iopl in total list |
3277 | offset -= off2Ind; |
3278 | |
3279 | // If a mapped address is requested and this is a pre-mapped IOPL |
3280 | // then just need to compute an offset relative to the mapped base. |
3281 | if (mapped) { |
3282 | offset += (ioplInfo.fPageOffset & PAGE_MASK); |
3283 | address = trunc_page_64(mappedBase) + ptoa_64(ioplInfo.fMappedPage) + offset; |
3284 | continue; // Done leave do/while(false) now |
3285 | } |
3286 | |
3287 | // The offset is rebased into the current iopl. |
3288 | // Now add the iopl 1st page offset. |
3289 | offset += ioplInfo.fPageOffset; |
3290 | |
3291 | // For external UPLs the fPageInfo field points directly to |
3292 | // the upl's upl_page_info_t array. |
3293 | if (ioplInfo.fFlags & kIOPLExternUPL) { |
3294 | pageList = (upl_page_info_t *) ioplInfo.fPageInfo; |
3295 | } else { |
3296 | pageList = &pageList[ioplInfo.fPageInfo]; |
3297 | } |
3298 | |
3299 | // Check for direct device non-paged memory |
3300 | if (ioplInfo.fFlags & kIOPLOnDevice) { |
3301 | address = ptoa_64(pageList->phys_addr) + offset; |
3302 | continue; // Done leave do/while(false) now |
3303 | } |
3304 | |
3305 | // Now we need compute the index into the pageList |
3306 | UInt pageInd = atop_32(offset); |
3307 | offset &= PAGE_MASK; |
3308 | |
3309 | // Compute the starting address of this segment |
3310 | IOPhysicalAddress pageAddr = pageList[pageInd].phys_addr; |
3311 | if (!pageAddr) { |
3312 | panic("!pageList phys_addr" ); |
3313 | } |
3314 | |
3315 | address = ptoa_64(pageAddr) + offset; |
3316 | |
3317 | // length is currently set to the length of the remainider of the iopl. |
3318 | // We need to check that the remainder of the iopl is contiguous. |
3319 | // This is indicated by pageList[ind].phys_addr being sequential. |
3320 | IOByteCount contigLength = PAGE_SIZE - offset; |
3321 | while (contigLength < length |
3322 | && ++pageAddr == pageList[++pageInd].phys_addr) { |
3323 | contigLength += PAGE_SIZE; |
3324 | } |
3325 | |
3326 | if (contigLength < length) { |
3327 | length = contigLength; |
3328 | } |
3329 | |
3330 | |
3331 | assert(address); |
3332 | assert(length); |
3333 | } while (false); |
3334 | } |
3335 | |
3336 | // Update return values and state |
3337 | isP->fIO.fIOVMAddr = address; |
3338 | isP->fIO.fLength = length; |
3339 | isP->fIndex = ind; |
3340 | isP->fOffset2Index = off2Ind; |
3341 | isP->fNextOffset = isP->fIO.fOffset + length; |
3342 | |
3343 | return kIOReturnSuccess; |
3344 | } |
3345 | |
3346 | addr64_t |
3347 | IOGeneralMemoryDescriptor::getPhysicalSegment(IOByteCount offset, IOByteCount *lengthOfSegment, IOOptionBits options) |
3348 | { |
3349 | IOReturn ret; |
3350 | mach_vm_address_t address = 0; |
3351 | mach_vm_size_t length = 0; |
3352 | IOMapper * mapper = gIOSystemMapper; |
3353 | IOOptionBits type = _flags & kIOMemoryTypeMask; |
3354 | |
3355 | if (lengthOfSegment) { |
3356 | *lengthOfSegment = 0; |
3357 | } |
3358 | |
3359 | if (offset >= _length) { |
3360 | return 0; |
3361 | } |
3362 | |
3363 | // IOMemoryDescriptor::doMap() cannot use getPhysicalSegment() to obtain the page offset, since it must |
3364 | // support the unwired memory case in IOGeneralMemoryDescriptor, and hibernate_write_image() cannot use |
3365 | // map()->getVirtualAddress() to obtain the kernel pointer, since it must prevent the memory allocation |
3366 | // due to IOMemoryMap, so _kIOMemorySourceSegment is a necessary evil until all of this gets cleaned up |
3367 | |
3368 | if ((options & _kIOMemorySourceSegment) && (kIOMemoryTypeUPL != type)) { |
3369 | unsigned rangesIndex = 0; |
3370 | Ranges vec = _ranges; |
3371 | mach_vm_address_t addr; |
3372 | |
3373 | // Find starting address within the vector of ranges |
3374 | for (;;) { |
3375 | getAddrLenForInd(addr, len&: length, type, r: vec, ind: rangesIndex, task: _task); |
3376 | if (offset < length) { |
3377 | break; |
3378 | } |
3379 | offset -= length; // (make offset relative) |
3380 | rangesIndex++; |
3381 | } |
3382 | |
3383 | // Now that we have the starting range, |
3384 | // lets find the last contiguous range |
3385 | addr += offset; |
3386 | length -= offset; |
3387 | |
3388 | for (++rangesIndex; rangesIndex < _rangesCount; rangesIndex++) { |
3389 | mach_vm_address_t newAddr; |
3390 | mach_vm_size_t newLen; |
3391 | |
3392 | getAddrLenForInd(addr&: newAddr, len&: newLen, type, r: vec, ind: rangesIndex, task: _task); |
3393 | if (addr + length != newAddr) { |
3394 | break; |
3395 | } |
3396 | length += newLen; |
3397 | } |
3398 | if (addr) { |
3399 | address = (IOPhysicalAddress) addr; // Truncate address to 32bit |
3400 | } |
3401 | } else { |
3402 | IOMDDMAWalkSegmentState _state; |
3403 | IOMDDMAWalkSegmentArgs * state = (IOMDDMAWalkSegmentArgs *) (void *)&_state; |
3404 | |
3405 | state->fOffset = offset; |
3406 | state->fLength = _length - offset; |
3407 | state->fMapped = (0 == (options & kIOMemoryMapperNone)) && !(_flags & kIOMemoryHostOrRemote); |
3408 | |
3409 | ret = dmaCommandOperation(op: kIOMDFirstSegment, vData: _state, dataSize: sizeof(_state)); |
3410 | |
3411 | if ((kIOReturnSuccess != ret) && (kIOReturnOverrun != ret)) { |
3412 | DEBG("getPhysicalSegment dmaCommandOperation(%lx), %p, offset %qx, addr %qx, len %qx\n" , |
3413 | ret, this, state->fOffset, |
3414 | state->fIOVMAddr, state->fLength); |
3415 | } |
3416 | if (kIOReturnSuccess == ret) { |
3417 | address = state->fIOVMAddr; |
3418 | length = state->fLength; |
3419 | } |
3420 | |
3421 | // dmaCommandOperation() does not distinguish between "mapped" and "unmapped" physical memory, even |
3422 | // with fMapped set correctly, so we must handle the transformation here until this gets cleaned up |
3423 | |
3424 | if (mapper && ((kIOMemoryTypePhysical == type) || (kIOMemoryTypePhysical64 == type))) { |
3425 | if ((options & kIOMemoryMapperNone) && !(_flags & kIOMemoryMapperNone)) { |
3426 | addr64_t origAddr = address; |
3427 | IOByteCount origLen = length; |
3428 | |
3429 | address = mapper->mapToPhysicalAddress(mappedAddress: origAddr); |
3430 | length = page_size - (address & (page_size - 1)); |
3431 | while ((length < origLen) |
3432 | && ((address + length) == mapper->mapToPhysicalAddress(mappedAddress: origAddr + length))) { |
3433 | length += page_size; |
3434 | } |
3435 | if (length > origLen) { |
3436 | length = origLen; |
3437 | } |
3438 | } |
3439 | } |
3440 | } |
3441 | |
3442 | if (!address) { |
3443 | length = 0; |
3444 | } |
3445 | |
3446 | if (lengthOfSegment) { |
3447 | *lengthOfSegment = length; |
3448 | } |
3449 | |
3450 | return address; |
3451 | } |
3452 | |
3453 | #ifndef __LP64__ |
3454 | #pragma clang diagnostic push |
3455 | #pragma clang diagnostic ignored "-Wdeprecated-declarations" |
3456 | |
3457 | addr64_t |
3458 | IOMemoryDescriptor::getPhysicalSegment(IOByteCount offset, IOByteCount *lengthOfSegment, IOOptionBits options) |
3459 | { |
3460 | addr64_t address = 0; |
3461 | |
3462 | if (options & _kIOMemorySourceSegment) { |
3463 | address = getSourceSegment(offset, lengthOfSegment); |
3464 | } else if (options & kIOMemoryMapperNone) { |
3465 | address = getPhysicalSegment64(offset, lengthOfSegment); |
3466 | } else { |
3467 | address = getPhysicalSegment(offset, lengthOfSegment); |
3468 | } |
3469 | |
3470 | return address; |
3471 | } |
3472 | #pragma clang diagnostic pop |
3473 | |
3474 | addr64_t |
3475 | IOGeneralMemoryDescriptor::getPhysicalSegment64(IOByteCount offset, IOByteCount *lengthOfSegment) |
3476 | { |
3477 | return getPhysicalSegment(offset, lengthOfSegment, kIOMemoryMapperNone); |
3478 | } |
3479 | |
3480 | IOPhysicalAddress |
3481 | IOGeneralMemoryDescriptor::getPhysicalSegment(IOByteCount offset, IOByteCount *lengthOfSegment) |
3482 | { |
3483 | addr64_t address = 0; |
3484 | IOByteCount length = 0; |
3485 | |
3486 | address = getPhysicalSegment(offset, lengthOfSegment, 0); |
3487 | |
3488 | if (lengthOfSegment) { |
3489 | length = *lengthOfSegment; |
3490 | } |
3491 | |
3492 | if ((address + length) > 0x100000000ULL) { |
3493 | panic("getPhysicalSegment() out of 32b range 0x%qx, len 0x%lx, class %s" , |
3494 | address, (long) length, (getMetaClass())->getClassName()); |
3495 | } |
3496 | |
3497 | return (IOPhysicalAddress) address; |
3498 | } |
3499 | |
3500 | addr64_t |
3501 | IOMemoryDescriptor::getPhysicalSegment64(IOByteCount offset, IOByteCount *lengthOfSegment) |
3502 | { |
3503 | IOPhysicalAddress phys32; |
3504 | IOByteCount length; |
3505 | addr64_t phys64; |
3506 | IOMapper * mapper = NULL; |
3507 | |
3508 | phys32 = getPhysicalSegment(offset, lengthOfSegment); |
3509 | if (!phys32) { |
3510 | return 0; |
3511 | } |
3512 | |
3513 | if (gIOSystemMapper) { |
3514 | mapper = gIOSystemMapper; |
3515 | } |
3516 | |
3517 | if (mapper) { |
3518 | IOByteCount origLen; |
3519 | |
3520 | phys64 = mapper->mapToPhysicalAddress(phys32); |
3521 | origLen = *lengthOfSegment; |
3522 | length = page_size - (phys64 & (page_size - 1)); |
3523 | while ((length < origLen) |
3524 | && ((phys64 + length) == mapper->mapToPhysicalAddress(phys32 + length))) { |
3525 | length += page_size; |
3526 | } |
3527 | if (length > origLen) { |
3528 | length = origLen; |
3529 | } |
3530 | |
3531 | *lengthOfSegment = length; |
3532 | } else { |
3533 | phys64 = (addr64_t) phys32; |
3534 | } |
3535 | |
3536 | return phys64; |
3537 | } |
3538 | |
3539 | IOPhysicalAddress |
3540 | IOMemoryDescriptor::getPhysicalSegment(IOByteCount offset, IOByteCount *lengthOfSegment) |
3541 | { |
3542 | return (IOPhysicalAddress) getPhysicalSegment(offset, lengthOfSegment, 0); |
3543 | } |
3544 | |
3545 | IOPhysicalAddress |
3546 | IOGeneralMemoryDescriptor::getSourceSegment(IOByteCount offset, IOByteCount *lengthOfSegment) |
3547 | { |
3548 | return (IOPhysicalAddress) getPhysicalSegment(offset, lengthOfSegment, _kIOMemorySourceSegment); |
3549 | } |
3550 | |
3551 | #pragma clang diagnostic push |
3552 | #pragma clang diagnostic ignored "-Wdeprecated-declarations" |
3553 | |
3554 | void * |
3555 | IOGeneralMemoryDescriptor::getVirtualSegment(IOByteCount offset, |
3556 | IOByteCount * lengthOfSegment) |
3557 | { |
3558 | if (_task == kernel_task) { |
3559 | return (void *) getSourceSegment(offset, lengthOfSegment); |
3560 | } else { |
3561 | panic("IOGMD::getVirtualSegment deprecated" ); |
3562 | } |
3563 | |
3564 | return NULL; |
3565 | } |
3566 | #pragma clang diagnostic pop |
3567 | #endif /* !__LP64__ */ |
3568 | |
3569 | IOReturn |
3570 | IOMemoryDescriptor::dmaCommandOperation(DMACommandOps op, void *vData, UInt dataSize) const |
3571 | { |
3572 | IOMemoryDescriptor *md = const_cast<IOMemoryDescriptor *>(this); |
3573 | DMACommandOps params; |
3574 | IOReturn err; |
3575 | |
3576 | params = (op & ~kIOMDDMACommandOperationMask & op); |
3577 | op &= kIOMDDMACommandOperationMask; |
3578 | |
3579 | if (kIOMDGetCharacteristics == op) { |
3580 | if (dataSize < sizeof(IOMDDMACharacteristics)) { |
3581 | return kIOReturnUnderrun; |
3582 | } |
3583 | |
3584 | IOMDDMACharacteristics *data = (IOMDDMACharacteristics *) vData; |
3585 | data->fLength = getLength(); |
3586 | data->fSGCount = 0; |
3587 | data->fDirection = getDirection(); |
3588 | data->fIsPrepared = true; // Assume prepared - fails safe |
3589 | } else if (kIOMDWalkSegments == op) { |
3590 | if (dataSize < sizeof(IOMDDMAWalkSegmentArgs)) { |
3591 | return kIOReturnUnderrun; |
3592 | } |
3593 | |
3594 | IOMDDMAWalkSegmentArgs *data = (IOMDDMAWalkSegmentArgs *) vData; |
3595 | IOByteCount offset = (IOByteCount) data->fOffset; |
3596 | IOPhysicalLength length, nextLength; |
3597 | addr64_t addr, nextAddr; |
3598 | |
3599 | if (data->fMapped) { |
3600 | panic("fMapped %p %s %qx" , this, getMetaClass()->getClassName(), (uint64_t) getLength()); |
3601 | } |
3602 | addr = md->getPhysicalSegment(offset, length: &length, options: kIOMemoryMapperNone); |
3603 | offset += length; |
3604 | while (offset < getLength()) { |
3605 | nextAddr = md->getPhysicalSegment(offset, length: &nextLength, options: kIOMemoryMapperNone); |
3606 | if ((addr + length) != nextAddr) { |
3607 | break; |
3608 | } |
3609 | length += nextLength; |
3610 | offset += nextLength; |
3611 | } |
3612 | data->fIOVMAddr = addr; |
3613 | data->fLength = length; |
3614 | } else if (kIOMDAddDMAMapSpec == op) { |
3615 | return kIOReturnUnsupported; |
3616 | } else if (kIOMDDMAMap == op) { |
3617 | if (dataSize < sizeof(IOMDDMAMapArgs)) { |
3618 | return kIOReturnUnderrun; |
3619 | } |
3620 | IOMDDMAMapArgs * data = (IOMDDMAMapArgs *) vData; |
3621 | |
3622 | err = md->dmaMap(mapper: data->fMapper, memory: md, command: data->fCommand, mapSpec: &data->fMapSpec, offset: data->fOffset, length: data->fLength, mapAddress: &data->fAlloc, mapLength: &data->fAllocLength); |
3623 | |
3624 | return err; |
3625 | } else if (kIOMDDMAUnmap == op) { |
3626 | if (dataSize < sizeof(IOMDDMAMapArgs)) { |
3627 | return kIOReturnUnderrun; |
3628 | } |
3629 | IOMDDMAMapArgs * data = (IOMDDMAMapArgs *) vData; |
3630 | |
3631 | err = md->dmaUnmap(mapper: data->fMapper, command: data->fCommand, offset: data->fOffset, mapAddress: data->fAlloc, mapLength: data->fAllocLength); |
3632 | |
3633 | return kIOReturnSuccess; |
3634 | } else { |
3635 | return kIOReturnBadArgument; |
3636 | } |
3637 | |
3638 | return kIOReturnSuccess; |
3639 | } |
3640 | |
3641 | IOReturn |
3642 | IOGeneralMemoryDescriptor::setPurgeable( IOOptionBits newState, |
3643 | IOOptionBits * oldState ) |
3644 | { |
3645 | IOReturn err = kIOReturnSuccess; |
3646 | |
3647 | vm_purgable_t control; |
3648 | int state; |
3649 | |
3650 | assert(!(kIOMemoryRemote & _flags)); |
3651 | if (kIOMemoryRemote & _flags) { |
3652 | return kIOReturnNotAttached; |
3653 | } |
3654 | |
3655 | if (_memRef) { |
3656 | err = super::setPurgeable(newState, oldState); |
3657 | } else { |
3658 | if (kIOMemoryThreadSafe & _flags) { |
3659 | LOCK; |
3660 | } |
3661 | do{ |
3662 | // Find the appropriate vm_map for the given task |
3663 | vm_map_t curMap; |
3664 | if (_task == kernel_task && (kIOMemoryBufferPageable & _flags)) { |
3665 | err = kIOReturnNotReady; |
3666 | break; |
3667 | } else if (!_task) { |
3668 | err = kIOReturnUnsupported; |
3669 | break; |
3670 | } else { |
3671 | curMap = get_task_map(_task); |
3672 | if (NULL == curMap) { |
3673 | err = KERN_INVALID_ARGUMENT; |
3674 | break; |
3675 | } |
3676 | } |
3677 | |
3678 | // can only do one range |
3679 | Ranges vec = _ranges; |
3680 | IOOptionBits type = _flags & kIOMemoryTypeMask; |
3681 | mach_vm_address_t addr; |
3682 | mach_vm_size_t len; |
3683 | getAddrLenForInd(addr, len, type, r: vec, ind: 0, task: _task); |
3684 | |
3685 | err = purgeableControlBits(newState, control: &control, state: &state); |
3686 | if (kIOReturnSuccess != err) { |
3687 | break; |
3688 | } |
3689 | err = vm_map_purgable_control(map: curMap, address: addr, control, state: &state); |
3690 | if (oldState) { |
3691 | if (kIOReturnSuccess == err) { |
3692 | err = purgeableStateBits(state: &state); |
3693 | *oldState = state; |
3694 | } |
3695 | } |
3696 | }while (false); |
3697 | if (kIOMemoryThreadSafe & _flags) { |
3698 | UNLOCK; |
3699 | } |
3700 | } |
3701 | |
3702 | return err; |
3703 | } |
3704 | |
3705 | IOReturn |
3706 | IOMemoryDescriptor::setPurgeable( IOOptionBits newState, |
3707 | IOOptionBits * oldState ) |
3708 | { |
3709 | IOReturn err = kIOReturnNotReady; |
3710 | |
3711 | if (kIOMemoryThreadSafe & _flags) { |
3712 | LOCK; |
3713 | } |
3714 | if (_memRef) { |
3715 | err = IOGeneralMemoryDescriptor::memoryReferenceSetPurgeable(ref: _memRef, newState, oldState); |
3716 | } |
3717 | if (kIOMemoryThreadSafe & _flags) { |
3718 | UNLOCK; |
3719 | } |
3720 | |
3721 | return err; |
3722 | } |
3723 | |
3724 | IOReturn |
3725 | IOGeneralMemoryDescriptor::setOwnership( task_t newOwner, |
3726 | int newLedgerTag, |
3727 | IOOptionBits newLedgerOptions ) |
3728 | { |
3729 | IOReturn err = kIOReturnSuccess; |
3730 | |
3731 | assert(!(kIOMemoryRemote & _flags)); |
3732 | if (kIOMemoryRemote & _flags) { |
3733 | return kIOReturnNotAttached; |
3734 | } |
3735 | |
3736 | if (iokit_iomd_setownership_enabled == FALSE) { |
3737 | return kIOReturnUnsupported; |
3738 | } |
3739 | |
3740 | if (_memRef) { |
3741 | err = super::setOwnership(newOwner, newLedgerTag, newLedgerOptions); |
3742 | } else { |
3743 | err = kIOReturnUnsupported; |
3744 | } |
3745 | |
3746 | return err; |
3747 | } |
3748 | |
3749 | IOReturn |
3750 | IOMemoryDescriptor::setOwnership( task_t newOwner, |
3751 | int newLedgerTag, |
3752 | IOOptionBits newLedgerOptions ) |
3753 | { |
3754 | IOReturn err = kIOReturnNotReady; |
3755 | |
3756 | assert(!(kIOMemoryRemote & _flags)); |
3757 | if (kIOMemoryRemote & _flags) { |
3758 | return kIOReturnNotAttached; |
3759 | } |
3760 | |
3761 | if (iokit_iomd_setownership_enabled == FALSE) { |
3762 | return kIOReturnUnsupported; |
3763 | } |
3764 | |
3765 | if (kIOMemoryThreadSafe & _flags) { |
3766 | LOCK; |
3767 | } |
3768 | if (_memRef) { |
3769 | err = IOGeneralMemoryDescriptor::memoryReferenceSetOwnership(ref: _memRef, newOwner, newLedgerTag, newLedgerOptions); |
3770 | } else { |
3771 | IOMultiMemoryDescriptor * mmd; |
3772 | IOSubMemoryDescriptor * smd; |
3773 | if ((smd = OSDynamicCast(IOSubMemoryDescriptor, this))) { |
3774 | err = smd->setOwnership(newOwner, newLedgerTag, newLedgerOptions); |
3775 | } else if ((mmd = OSDynamicCast(IOMultiMemoryDescriptor, this))) { |
3776 | err = mmd->setOwnership(newOwner, newLedgerTag, newOptions: newLedgerOptions); |
3777 | } |
3778 | } |
3779 | if (kIOMemoryThreadSafe & _flags) { |
3780 | UNLOCK; |
3781 | } |
3782 | |
3783 | return err; |
3784 | } |
3785 | |
3786 | |
3787 | uint64_t |
3788 | IOMemoryDescriptor::getDMAMapLength(uint64_t * offset) |
3789 | { |
3790 | uint64_t length; |
3791 | |
3792 | if (_memRef) { |
3793 | length = IOGeneralMemoryDescriptor::memoryReferenceGetDMAMapLength(ref: _memRef, offset); |
3794 | } else { |
3795 | IOByteCount iterate, segLen; |
3796 | IOPhysicalAddress sourceAddr, sourceAlign; |
3797 | |
3798 | if (kIOMemoryThreadSafe & _flags) { |
3799 | LOCK; |
3800 | } |
3801 | length = 0; |
3802 | iterate = 0; |
3803 | while ((sourceAddr = getPhysicalSegment(offset: iterate, length: &segLen, options: _kIOMemorySourceSegment))) { |
3804 | sourceAlign = (sourceAddr & page_mask); |
3805 | if (offset && !iterate) { |
3806 | *offset = sourceAlign; |
3807 | } |
3808 | length += round_page(x: sourceAddr + segLen) - trunc_page(sourceAddr); |
3809 | iterate += segLen; |
3810 | } |
3811 | if (!iterate) { |
3812 | length = getLength(); |
3813 | if (offset) { |
3814 | *offset = 0; |
3815 | } |
3816 | } |
3817 | if (kIOMemoryThreadSafe & _flags) { |
3818 | UNLOCK; |
3819 | } |
3820 | } |
3821 | |
3822 | return length; |
3823 | } |
3824 | |
3825 | |
3826 | IOReturn |
3827 | IOMemoryDescriptor::getPageCounts( IOByteCount * residentPageCount, |
3828 | IOByteCount * dirtyPageCount ) |
3829 | { |
3830 | IOReturn err = kIOReturnNotReady; |
3831 | |
3832 | assert(!(kIOMemoryRemote & _flags)); |
3833 | if (kIOMemoryRemote & _flags) { |
3834 | return kIOReturnNotAttached; |
3835 | } |
3836 | |
3837 | if (kIOMemoryThreadSafe & _flags) { |
3838 | LOCK; |
3839 | } |
3840 | if (_memRef) { |
3841 | err = IOGeneralMemoryDescriptor::memoryReferenceGetPageCounts(ref: _memRef, residentPageCount, dirtyPageCount); |
3842 | } else { |
3843 | IOMultiMemoryDescriptor * mmd; |
3844 | IOSubMemoryDescriptor * smd; |
3845 | if ((smd = OSDynamicCast(IOSubMemoryDescriptor, this))) { |
3846 | err = smd->getPageCounts(residentPageCount, dirtyPageCount); |
3847 | } else if ((mmd = OSDynamicCast(IOMultiMemoryDescriptor, this))) { |
3848 | err = mmd->getPageCounts(residentPageCount, dirtyPageCount); |
3849 | } |
3850 | } |
3851 | if (kIOMemoryThreadSafe & _flags) { |
3852 | UNLOCK; |
3853 | } |
3854 | |
3855 | return err; |
3856 | } |
3857 | |
3858 | |
3859 | #if defined(__arm64__) |
3860 | extern "C" void dcache_incoherent_io_flush64(addr64_t pa, unsigned int count, unsigned int remaining, unsigned int *res); |
3861 | extern "C" void dcache_incoherent_io_store64(addr64_t pa, unsigned int count, unsigned int remaining, unsigned int *res); |
3862 | #else /* defined(__arm64__) */ |
3863 | extern "C" void dcache_incoherent_io_flush64(addr64_t pa, unsigned int count); |
3864 | extern "C" void dcache_incoherent_io_store64(addr64_t pa, unsigned int count); |
3865 | #endif /* defined(__arm64__) */ |
3866 | |
3867 | static void |
3868 | SetEncryptOp(addr64_t pa, unsigned int count) |
3869 | { |
3870 | ppnum_t page, end; |
3871 | |
3872 | page = (ppnum_t) atop_64(round_page_64(pa)); |
3873 | end = (ppnum_t) atop_64(trunc_page_64(pa + count)); |
3874 | for (; page < end; page++) { |
3875 | pmap_clear_noencrypt(pn: page); |
3876 | } |
3877 | } |
3878 | |
3879 | static void |
3880 | ClearEncryptOp(addr64_t pa, unsigned int count) |
3881 | { |
3882 | ppnum_t page, end; |
3883 | |
3884 | page = (ppnum_t) atop_64(round_page_64(pa)); |
3885 | end = (ppnum_t) atop_64(trunc_page_64(pa + count)); |
3886 | for (; page < end; page++) { |
3887 | pmap_set_noencrypt(pn: page); |
3888 | } |
3889 | } |
3890 | |
3891 | IOReturn |
3892 | IOMemoryDescriptor::performOperation( IOOptionBits options, |
3893 | IOByteCount offset, IOByteCount length ) |
3894 | { |
3895 | IOByteCount remaining; |
3896 | unsigned int res; |
3897 | void (*func)(addr64_t pa, unsigned int count) = NULL; |
3898 | #if defined(__arm64__) |
3899 | void (*func_ext)(addr64_t pa, unsigned int count, unsigned int remaining, unsigned int *result) = NULL; |
3900 | #endif |
3901 | |
3902 | assert(!(kIOMemoryRemote & _flags)); |
3903 | if (kIOMemoryRemote & _flags) { |
3904 | return kIOReturnNotAttached; |
3905 | } |
3906 | |
3907 | switch (options) { |
3908 | case kIOMemoryIncoherentIOFlush: |
3909 | #if defined(__arm64__) |
3910 | func_ext = &dcache_incoherent_io_flush64; |
3911 | #if __ARM_COHERENT_IO__ |
3912 | func_ext(0, 0, 0, &res); |
3913 | return kIOReturnSuccess; |
3914 | #else /* __ARM_COHERENT_IO__ */ |
3915 | break; |
3916 | #endif /* __ARM_COHERENT_IO__ */ |
3917 | #else /* defined(__arm64__) */ |
3918 | func = &dcache_incoherent_io_flush64; |
3919 | break; |
3920 | #endif /* defined(__arm64__) */ |
3921 | case kIOMemoryIncoherentIOStore: |
3922 | #if defined(__arm64__) |
3923 | func_ext = &dcache_incoherent_io_store64; |
3924 | #if __ARM_COHERENT_IO__ |
3925 | func_ext(0, 0, 0, &res); |
3926 | return kIOReturnSuccess; |
3927 | #else /* __ARM_COHERENT_IO__ */ |
3928 | break; |
3929 | #endif /* __ARM_COHERENT_IO__ */ |
3930 | #else /* defined(__arm64__) */ |
3931 | func = &dcache_incoherent_io_store64; |
3932 | break; |
3933 | #endif /* defined(__arm64__) */ |
3934 | |
3935 | case kIOMemorySetEncrypted: |
3936 | func = &SetEncryptOp; |
3937 | break; |
3938 | case kIOMemoryClearEncrypted: |
3939 | func = &ClearEncryptOp; |
3940 | break; |
3941 | } |
3942 | |
3943 | #if defined(__arm64__) |
3944 | if ((func == NULL) && (func_ext == NULL)) { |
3945 | return kIOReturnUnsupported; |
3946 | } |
3947 | #else /* defined(__arm64__) */ |
3948 | if (!func) { |
3949 | return kIOReturnUnsupported; |
3950 | } |
3951 | #endif /* defined(__arm64__) */ |
3952 | |
3953 | if (kIOMemoryThreadSafe & _flags) { |
3954 | LOCK; |
3955 | } |
3956 | |
3957 | res = 0x0UL; |
3958 | remaining = length = min(length, getLength() - offset); |
3959 | while (remaining) { |
3960 | // (process another target segment?) |
3961 | addr64_t dstAddr64; |
3962 | IOByteCount dstLen; |
3963 | |
3964 | dstAddr64 = getPhysicalSegment(offset, length: &dstLen, options: kIOMemoryMapperNone); |
3965 | if (!dstAddr64) { |
3966 | break; |
3967 | } |
3968 | |
3969 | // Clip segment length to remaining |
3970 | if (dstLen > remaining) { |
3971 | dstLen = remaining; |
3972 | } |
3973 | if (dstLen > (UINT_MAX - PAGE_SIZE + 1)) { |
3974 | dstLen = (UINT_MAX - PAGE_SIZE + 1); |
3975 | } |
3976 | if (remaining > UINT_MAX) { |
3977 | remaining = UINT_MAX; |
3978 | } |
3979 | |
3980 | #if defined(__arm64__) |
3981 | if (func) { |
3982 | (*func)(dstAddr64, (unsigned int) dstLen); |
3983 | } |
3984 | if (func_ext) { |
3985 | (*func_ext)(dstAddr64, (unsigned int) dstLen, (unsigned int) remaining, &res); |
3986 | if (res != 0x0UL) { |
3987 | remaining = 0; |
3988 | break; |
3989 | } |
3990 | } |
3991 | #else /* defined(__arm64__) */ |
3992 | (*func)(dstAddr64, (unsigned int) dstLen); |
3993 | #endif /* defined(__arm64__) */ |
3994 | |
3995 | offset += dstLen; |
3996 | remaining -= dstLen; |
3997 | } |
3998 | |
3999 | if (kIOMemoryThreadSafe & _flags) { |
4000 | UNLOCK; |
4001 | } |
4002 | |
4003 | return remaining ? kIOReturnUnderrun : kIOReturnSuccess; |
4004 | } |
4005 | |
4006 | /* |
4007 | * |
4008 | */ |
4009 | |
4010 | #if defined(__i386__) || defined(__x86_64__) |
4011 | |
4012 | extern vm_offset_t kc_highest_nonlinkedit_vmaddr; |
4013 | |
4014 | /* XXX: By extending io_kernel_static_end to the highest virtual address in the KC, |
4015 | * we're opening up this path to IOMemoryDescriptor consumers who can now create UPLs to |
4016 | * kernel non-text data -- should we just add another range instead? |
4017 | */ |
4018 | #define io_kernel_static_start vm_kernel_stext |
4019 | #define io_kernel_static_end (kc_highest_nonlinkedit_vmaddr ? kc_highest_nonlinkedit_vmaddr : vm_kernel_etext) |
4020 | |
4021 | #elif defined(__arm64__) |
4022 | |
4023 | extern vm_offset_t static_memory_end; |
4024 | |
4025 | #if defined(__arm64__) |
4026 | #define io_kernel_static_start vm_kext_base |
4027 | #else /* defined(__arm64__) */ |
4028 | #define io_kernel_static_start vm_kernel_stext |
4029 | #endif /* defined(__arm64__) */ |
4030 | |
4031 | #define io_kernel_static_end static_memory_end |
4032 | |
4033 | #else |
4034 | #error io_kernel_static_end is undefined for this architecture |
4035 | #endif |
4036 | |
4037 | static kern_return_t |
4038 | io_get_kernel_static_upl( |
4039 | vm_map_t /* map */, |
4040 | uintptr_t offset, |
4041 | upl_size_t *upl_size, |
4042 | unsigned int *page_offset, |
4043 | upl_t *upl, |
4044 | upl_page_info_array_t page_list, |
4045 | unsigned int *count, |
4046 | ppnum_t *highest_page) |
4047 | { |
4048 | unsigned int pageCount, page; |
4049 | ppnum_t phys; |
4050 | ppnum_t highestPage = 0; |
4051 | |
4052 | pageCount = atop_32(round_page(*upl_size + (page_mask & offset))); |
4053 | if (pageCount > *count) { |
4054 | pageCount = *count; |
4055 | } |
4056 | *upl_size = (upl_size_t) ptoa_64(pageCount); |
4057 | |
4058 | *upl = NULL; |
4059 | *page_offset = ((unsigned int) page_mask & offset); |
4060 | |
4061 | for (page = 0; page < pageCount; page++) { |
4062 | phys = pmap_find_phys(pmap: kernel_pmap, va: ((addr64_t)offset) + ptoa_64(page)); |
4063 | if (!phys) { |
4064 | break; |
4065 | } |
4066 | page_list[page].phys_addr = phys; |
4067 | page_list[page].free_when_done = 0; |
4068 | page_list[page].absent = 0; |
4069 | page_list[page].dirty = 0; |
4070 | page_list[page].precious = 0; |
4071 | page_list[page].device = 0; |
4072 | if (phys > highestPage) { |
4073 | highestPage = phys; |
4074 | } |
4075 | } |
4076 | |
4077 | *highest_page = highestPage; |
4078 | |
4079 | return (page >= pageCount) ? kIOReturnSuccess : kIOReturnVMError; |
4080 | } |
4081 | |
4082 | IOReturn |
4083 | IOGeneralMemoryDescriptor::wireVirtual(IODirection forDirection) |
4084 | { |
4085 | IOOptionBits type = _flags & kIOMemoryTypeMask; |
4086 | IOReturn error = kIOReturnSuccess; |
4087 | ioGMDData *dataP; |
4088 | upl_page_info_array_t pageInfo; |
4089 | ppnum_t mapBase; |
4090 | vm_tag_t tag = VM_KERN_MEMORY_NONE; |
4091 | mach_vm_size_t numBytesWired = 0; |
4092 | |
4093 | assert(kIOMemoryTypeVirtual == type || kIOMemoryTypeVirtual64 == type || kIOMemoryTypeUIO == type); |
4094 | |
4095 | if ((kIODirectionOutIn & forDirection) == kIODirectionNone) { |
4096 | forDirection = (IODirection) (forDirection | getDirection()); |
4097 | } |
4098 | |
4099 | dataP = getDataP(_memoryEntries); |
4100 | upl_control_flags_t uplFlags; // This Mem Desc's default flags for upl creation |
4101 | switch (kIODirectionOutIn & forDirection) { |
4102 | case kIODirectionOut: |
4103 | // Pages do not need to be marked as dirty on commit |
4104 | uplFlags = UPL_COPYOUT_FROM; |
4105 | dataP->fDMAAccess = kIODMAMapReadAccess; |
4106 | break; |
4107 | |
4108 | case kIODirectionIn: |
4109 | dataP->fDMAAccess = kIODMAMapWriteAccess; |
4110 | uplFlags = 0; // i.e. ~UPL_COPYOUT_FROM |
4111 | break; |
4112 | |
4113 | default: |
4114 | dataP->fDMAAccess = kIODMAMapReadAccess | kIODMAMapWriteAccess; |
4115 | uplFlags = 0; // i.e. ~UPL_COPYOUT_FROM |
4116 | break; |
4117 | } |
4118 | |
4119 | if (_wireCount) { |
4120 | if ((kIOMemoryPreparedReadOnly & _flags) && !(UPL_COPYOUT_FROM & uplFlags)) { |
4121 | OSReportWithBacktrace(str: "IOMemoryDescriptor 0x%zx prepared read only" , |
4122 | (size_t)VM_KERNEL_ADDRPERM(this)); |
4123 | error = kIOReturnNotWritable; |
4124 | } |
4125 | } else { |
4126 | IOTimeStampIntervalConstantFiltered traceInterval(IODBG_MDESC(IOMDESC_WIRE), VM_KERNEL_ADDRHIDE(this), forDirection); |
4127 | IOMapper *mapper; |
4128 | |
4129 | mapper = dataP->fMapper; |
4130 | dataP->fMappedBaseValid = dataP->fMappedBase = 0; |
4131 | |
4132 | uplFlags |= UPL_SET_IO_WIRE | UPL_SET_LITE; |
4133 | tag = _kernelTag; |
4134 | if (VM_KERN_MEMORY_NONE == tag) { |
4135 | tag = IOMemoryTag(map: kernel_map); |
4136 | } |
4137 | |
4138 | if (kIODirectionPrepareToPhys32 & forDirection) { |
4139 | if (!mapper) { |
4140 | uplFlags |= UPL_NEED_32BIT_ADDR; |
4141 | } |
4142 | if (dataP->fDMAMapNumAddressBits > 32) { |
4143 | dataP->fDMAMapNumAddressBits = 32; |
4144 | } |
4145 | } |
4146 | if (kIODirectionPrepareNoFault & forDirection) { |
4147 | uplFlags |= UPL_REQUEST_NO_FAULT; |
4148 | } |
4149 | if (kIODirectionPrepareNoZeroFill & forDirection) { |
4150 | uplFlags |= UPL_NOZEROFILLIO; |
4151 | } |
4152 | if (kIODirectionPrepareNonCoherent & forDirection) { |
4153 | uplFlags |= UPL_REQUEST_FORCE_COHERENCY; |
4154 | } |
4155 | |
4156 | mapBase = 0; |
4157 | |
4158 | // Note that appendBytes(NULL) zeros the data up to the desired length |
4159 | size_t uplPageSize = dataP->fPageCnt * sizeof(upl_page_info_t); |
4160 | if (uplPageSize > ((unsigned int)uplPageSize)) { |
4161 | error = kIOReturnNoMemory; |
4162 | traceInterval.setEndArg2(error); |
4163 | return error; |
4164 | } |
4165 | if (!_memoryEntries->appendBytes(NULL, length: uplPageSize)) { |
4166 | error = kIOReturnNoMemory; |
4167 | traceInterval.setEndArg2(error); |
4168 | return error; |
4169 | } |
4170 | dataP = NULL; |
4171 | |
4172 | // Find the appropriate vm_map for the given task |
4173 | vm_map_t curMap; |
4174 | if ((NULL != _memRef) || ((_task == kernel_task && (kIOMemoryBufferPageable & _flags)))) { |
4175 | curMap = NULL; |
4176 | } else { |
4177 | curMap = get_task_map(_task); |
4178 | } |
4179 | |
4180 | // Iterate over the vector of virtual ranges |
4181 | Ranges vec = _ranges; |
4182 | unsigned int pageIndex = 0; |
4183 | IOByteCount mdOffset = 0; |
4184 | ppnum_t highestPage = 0; |
4185 | bool byteAlignUPL; |
4186 | |
4187 | IOMemoryEntry * memRefEntry = NULL; |
4188 | if (_memRef) { |
4189 | memRefEntry = &_memRef->entries[0]; |
4190 | byteAlignUPL = (0 != (MAP_MEM_USE_DATA_ADDR & _memRef->prot)); |
4191 | } else { |
4192 | byteAlignUPL = true; |
4193 | } |
4194 | |
4195 | for (UInt range = 0; mdOffset < _length; range++) { |
4196 | ioPLBlock iopl; |
4197 | mach_vm_address_t startPage, startPageOffset; |
4198 | mach_vm_size_t numBytes; |
4199 | ppnum_t highPage = 0; |
4200 | |
4201 | if (_memRef) { |
4202 | if (range >= _memRef->count) { |
4203 | panic("memRefEntry" ); |
4204 | } |
4205 | memRefEntry = &_memRef->entries[range]; |
4206 | numBytes = memRefEntry->size; |
4207 | startPage = -1ULL; |
4208 | if (byteAlignUPL) { |
4209 | startPageOffset = 0; |
4210 | } else { |
4211 | startPageOffset = (memRefEntry->start & PAGE_MASK); |
4212 | } |
4213 | } else { |
4214 | // Get the startPage address and length of vec[range] |
4215 | getAddrLenForInd(addr&: startPage, len&: numBytes, type, r: vec, ind: range, task: _task); |
4216 | if (byteAlignUPL) { |
4217 | startPageOffset = 0; |
4218 | } else { |
4219 | startPageOffset = startPage & PAGE_MASK; |
4220 | startPage = trunc_page_64(startPage); |
4221 | } |
4222 | } |
4223 | iopl.fPageOffset = (typeof(iopl.fPageOffset))startPageOffset; |
4224 | numBytes += startPageOffset; |
4225 | |
4226 | if (mapper) { |
4227 | iopl.fMappedPage = mapBase + pageIndex; |
4228 | } else { |
4229 | iopl.fMappedPage = 0; |
4230 | } |
4231 | |
4232 | // Iterate over the current range, creating UPLs |
4233 | while (numBytes) { |
4234 | vm_address_t kernelStart = (vm_address_t) startPage; |
4235 | vm_map_t theMap; |
4236 | if (curMap) { |
4237 | theMap = curMap; |
4238 | } else if (_memRef) { |
4239 | theMap = NULL; |
4240 | } else { |
4241 | assert(_task == kernel_task); |
4242 | theMap = IOPageableMapForAddress(address: kernelStart); |
4243 | } |
4244 | |
4245 | // ioplFlags is an in/out parameter |
4246 | upl_control_flags_t ioplFlags = uplFlags; |
4247 | dataP = getDataP(_memoryEntries); |
4248 | pageInfo = getPageList(dataP); |
4249 | upl_page_list_ptr_t baseInfo = &pageInfo[pageIndex]; |
4250 | |
4251 | mach_vm_size_t ioplPhysSize; |
4252 | upl_size_t ioplSize; |
4253 | unsigned int numPageInfo; |
4254 | |
4255 | if (_memRef) { |
4256 | error = mach_memory_entry_map_size(entry_port: memRefEntry->entry, NULL /*physical*/, offset: 0, size: memRefEntry->size, map_size: &ioplPhysSize); |
4257 | DEBUG4K_IOKIT("_memRef %p memRefEntry %p entry %p startPage 0x%llx numBytes 0x%llx ioplPhysSize 0x%llx\n" , _memRef, memRefEntry, memRefEntry->entry, startPage, numBytes, ioplPhysSize); |
4258 | } else { |
4259 | error = vm_map_range_physical_size(map: theMap, start: startPage, size: numBytes, phys_size: &ioplPhysSize); |
4260 | DEBUG4K_IOKIT("_memRef %p theMap %p startPage 0x%llx numBytes 0x%llx ioplPhysSize 0x%llx\n" , _memRef, theMap, startPage, numBytes, ioplPhysSize); |
4261 | } |
4262 | if (error != KERN_SUCCESS) { |
4263 | if (_memRef) { |
4264 | DEBUG4K_ERROR("_memRef %p memRefEntry %p entry %p theMap %p startPage 0x%llx numBytes 0x%llx error 0x%x\n" , _memRef, memRefEntry, memRefEntry->entry, theMap, startPage, numBytes, error); |
4265 | } else { |
4266 | DEBUG4K_ERROR("_memRef %p theMap %p startPage 0x%llx numBytes 0x%llx error 0x%x\n" , _memRef, theMap, startPage, numBytes, error); |
4267 | } |
4268 | printf("entry size error %d\n" , error); |
4269 | goto abortExit; |
4270 | } |
4271 | ioplPhysSize = (ioplPhysSize <= MAX_UPL_SIZE_BYTES) ? ioplPhysSize : MAX_UPL_SIZE_BYTES; |
4272 | numPageInfo = atop_32(ioplPhysSize); |
4273 | if (byteAlignUPL) { |
4274 | if (numBytes > ioplPhysSize) { |
4275 | ioplSize = ((typeof(ioplSize))ioplPhysSize); |
4276 | } else { |
4277 | ioplSize = ((typeof(ioplSize))numBytes); |
4278 | } |
4279 | } else { |
4280 | ioplSize = ((typeof(ioplSize))ioplPhysSize); |
4281 | } |
4282 | |
4283 | if (_memRef) { |
4284 | memory_object_offset_t entryOffset; |
4285 | |
4286 | entryOffset = mdOffset; |
4287 | if (byteAlignUPL) { |
4288 | entryOffset = (entryOffset - memRefEntry->offset); |
4289 | } else { |
4290 | entryOffset = (entryOffset - iopl.fPageOffset - memRefEntry->offset); |
4291 | } |
4292 | if (ioplSize > (memRefEntry->size - entryOffset)) { |
4293 | ioplSize = ((typeof(ioplSize))(memRefEntry->size - entryOffset)); |
4294 | } |
4295 | error = memory_object_iopl_request(port: memRefEntry->entry, |
4296 | offset: entryOffset, |
4297 | upl_size: &ioplSize, |
4298 | upl_ptr: &iopl.fIOPL, |
4299 | user_page_list: baseInfo, |
4300 | page_list_count: &numPageInfo, |
4301 | flags: &ioplFlags, |
4302 | tag); |
4303 | } else if ((theMap == kernel_map) |
4304 | && (kernelStart >= io_kernel_static_start) |
4305 | && (kernelStart < io_kernel_static_end)) { |
4306 | error = io_get_kernel_static_upl(theMap, |
4307 | offset: kernelStart, |
4308 | upl_size: &ioplSize, |
4309 | page_offset: &iopl.fPageOffset, |
4310 | upl: &iopl.fIOPL, |
4311 | page_list: baseInfo, |
4312 | count: &numPageInfo, |
4313 | highest_page: &highPage); |
4314 | } else { |
4315 | assert(theMap); |
4316 | error = vm_map_create_upl(map: theMap, |
4317 | offset: startPage, |
4318 | upl_size: (upl_size_t*)&ioplSize, |
4319 | upl: &iopl.fIOPL, |
4320 | page_list: baseInfo, |
4321 | count: &numPageInfo, |
4322 | flags: &ioplFlags, |
4323 | tag); |
4324 | } |
4325 | |
4326 | if (error != KERN_SUCCESS) { |
4327 | traceInterval.setEndArg2(error); |
4328 | DEBUG4K_ERROR("UPL create error 0x%x theMap %p (kernel:%d) _memRef %p startPage 0x%llx ioplSize 0x%x\n" , error, theMap, (theMap == kernel_map), _memRef, startPage, ioplSize); |
4329 | goto abortExit; |
4330 | } |
4331 | |
4332 | assert(ioplSize); |
4333 | |
4334 | if (iopl.fIOPL) { |
4335 | highPage = upl_get_highest_page(upl: iopl.fIOPL); |
4336 | } |
4337 | if (highPage > highestPage) { |
4338 | highestPage = highPage; |
4339 | } |
4340 | |
4341 | if (baseInfo->device) { |
4342 | numPageInfo = 1; |
4343 | iopl.fFlags = kIOPLOnDevice; |
4344 | } else { |
4345 | iopl.fFlags = 0; |
4346 | } |
4347 | |
4348 | if (byteAlignUPL) { |
4349 | if (iopl.fIOPL) { |
4350 | DEBUG4K_UPL("startPage 0x%llx numBytes 0x%llx iopl.fPageOffset 0x%x upl_get_data_offset(%p) 0x%llx\n" , startPage, numBytes, iopl.fPageOffset, iopl.fIOPL, upl_get_data_offset(iopl.fIOPL)); |
4351 | iopl.fPageOffset = (typeof(iopl.fPageOffset))upl_get_data_offset(upl: iopl.fIOPL); |
4352 | } |
4353 | if (startPage != (mach_vm_address_t)-1) { |
4354 | // assert(iopl.fPageOffset == (startPage & PAGE_MASK)); |
4355 | startPage -= iopl.fPageOffset; |
4356 | } |
4357 | ioplSize = ((typeof(ioplSize))ptoa_64(numPageInfo)); |
4358 | numBytes += iopl.fPageOffset; |
4359 | } |
4360 | |
4361 | iopl.fIOMDOffset = mdOffset; |
4362 | iopl.fPageInfo = pageIndex; |
4363 | |
4364 | if (!_memoryEntries->appendBytes(bytes: &iopl, length: sizeof(iopl))) { |
4365 | // Clean up partial created and unsaved iopl |
4366 | if (iopl.fIOPL) { |
4367 | upl_abort(upl_object: iopl.fIOPL, abort_cond: 0); |
4368 | upl_deallocate(upl: iopl.fIOPL); |
4369 | } |
4370 | error = kIOReturnNoMemory; |
4371 | traceInterval.setEndArg2(error); |
4372 | goto abortExit; |
4373 | } |
4374 | dataP = NULL; |
4375 | |
4376 | // Check for a multiple iopl's in one virtual range |
4377 | pageIndex += numPageInfo; |
4378 | mdOffset -= iopl.fPageOffset; |
4379 | numBytesWired += ioplSize; |
4380 | if (ioplSize < numBytes) { |
4381 | numBytes -= ioplSize; |
4382 | if (startPage != (mach_vm_address_t)-1) { |
4383 | startPage += ioplSize; |
4384 | } |
4385 | mdOffset += ioplSize; |
4386 | iopl.fPageOffset = 0; |
4387 | if (mapper) { |
4388 | iopl.fMappedPage = mapBase + pageIndex; |
4389 | } |
4390 | } else { |
4391 | mdOffset += numBytes; |
4392 | break; |
4393 | } |
4394 | } |
4395 | } |
4396 | |
4397 | _highestPage = highestPage; |
4398 | DEBUG4K_IOKIT("-> _highestPage 0x%x\n" , _highestPage); |
4399 | |
4400 | if (UPL_COPYOUT_FROM & uplFlags) { |
4401 | _flags |= kIOMemoryPreparedReadOnly; |
4402 | } |
4403 | traceInterval.setEndCodes(arg1: numBytesWired, arg2: error); |
4404 | } |
4405 | |
4406 | #if IOTRACKING |
4407 | if (!(_flags & kIOMemoryAutoPrepare) && (kIOReturnSuccess == error)) { |
4408 | dataP = getDataP(_memoryEntries); |
4409 | if (!dataP->fWireTracking.link.next) { |
4410 | IOTrackingAdd(gIOWireTracking, &dataP->fWireTracking, ptoa(_pages), false, tag); |
4411 | } |
4412 | } |
4413 | #endif /* IOTRACKING */ |
4414 | |
4415 | return error; |
4416 | |
4417 | abortExit: |
4418 | { |
4419 | dataP = getDataP(_memoryEntries); |
4420 | UInt done = getNumIOPL(_memoryEntries, dataP); |
4421 | ioPLBlock *ioplList = getIOPLList(dataP); |
4422 | |
4423 | for (UInt ioplIdx = 0; ioplIdx < done; ioplIdx++) { |
4424 | if (ioplList[ioplIdx].fIOPL) { |
4425 | upl_abort(upl_object: ioplList[ioplIdx].fIOPL, abort_cond: 0); |
4426 | upl_deallocate(upl: ioplList[ioplIdx].fIOPL); |
4427 | } |
4428 | } |
4429 | _memoryEntries->setLength(computeDataSize(0, 0)); |
4430 | } |
4431 | |
4432 | if (error == KERN_FAILURE) { |
4433 | error = kIOReturnCannotWire; |
4434 | } else if (error == KERN_MEMORY_ERROR) { |
4435 | error = kIOReturnNoResources; |
4436 | } |
4437 | |
4438 | return error; |
4439 | } |
4440 | |
4441 | bool |
4442 | IOGeneralMemoryDescriptor::initMemoryEntries(size_t size, IOMapper * mapper) |
4443 | { |
4444 | ioGMDData * dataP; |
4445 | |
4446 | if (size > UINT_MAX) { |
4447 | return false; |
4448 | } |
4449 | if (!_memoryEntries) { |
4450 | _memoryEntries = _IOMemoryDescriptorMixedData::withCapacity(capacity: size); |
4451 | if (!_memoryEntries) { |
4452 | return false; |
4453 | } |
4454 | } else if (!_memoryEntries->initWithCapacity(capacity: size)) { |
4455 | return false; |
4456 | } |
4457 | |
4458 | _memoryEntries->appendBytes(NULL, computeDataSize(0, 0)); |
4459 | dataP = getDataP(_memoryEntries); |
4460 | |
4461 | if (mapper == kIOMapperWaitSystem) { |
4462 | IOMapper::checkForSystemMapper(); |
4463 | mapper = IOMapper::gSystem; |
4464 | } |
4465 | dataP->fMapper = mapper; |
4466 | dataP->fPageCnt = 0; |
4467 | dataP->fMappedBase = 0; |
4468 | dataP->fDMAMapNumAddressBits = 64; |
4469 | dataP->fDMAMapAlignment = 0; |
4470 | dataP->fPreparationID = kIOPreparationIDUnprepared; |
4471 | dataP->fCompletionError = false; |
4472 | dataP->fMappedBaseValid = false; |
4473 | |
4474 | return true; |
4475 | } |
4476 | |
4477 | IOReturn |
4478 | IOMemoryDescriptor::dmaMap( |
4479 | IOMapper * mapper, |
4480 | IOMemoryDescriptor * memory, |
4481 | IODMACommand * command, |
4482 | const IODMAMapSpecification * mapSpec, |
4483 | uint64_t offset, |
4484 | uint64_t length, |
4485 | uint64_t * mapAddress, |
4486 | uint64_t * mapLength) |
4487 | { |
4488 | IOReturn err; |
4489 | uint32_t mapOptions; |
4490 | |
4491 | mapOptions = 0; |
4492 | mapOptions |= kIODMAMapReadAccess; |
4493 | if (!(kIOMemoryPreparedReadOnly & _flags)) { |
4494 | mapOptions |= kIODMAMapWriteAccess; |
4495 | } |
4496 | |
4497 | err = mapper->iovmMapMemory(memory, descriptorOffset: offset, length, mapOptions, |
4498 | mapSpecification: mapSpec, dmaCommand: command, NULL, mapAddress, mapLength); |
4499 | |
4500 | if (kIOReturnSuccess == err) { |
4501 | dmaMapRecord(mapper, command, mapLength: *mapLength); |
4502 | } |
4503 | |
4504 | return err; |
4505 | } |
4506 | |
4507 | void |
4508 | IOMemoryDescriptor::dmaMapRecord( |
4509 | IOMapper * mapper, |
4510 | IODMACommand * command, |
4511 | uint64_t mapLength) |
4512 | { |
4513 | IOTimeStampIntervalConstantFiltered traceInterval(IODBG_MDESC(IOMDESC_DMA_MAP), VM_KERNEL_ADDRHIDE(this)); |
4514 | kern_allocation_name_t alloc; |
4515 | int16_t prior; |
4516 | |
4517 | if ((alloc = mapper->fAllocName) /* && mapper != IOMapper::gSystem */) { |
4518 | kern_allocation_update_size(allocation: mapper->fAllocName, delta: mapLength, NULL); |
4519 | } |
4520 | |
4521 | if (!command) { |
4522 | return; |
4523 | } |
4524 | prior = OSAddAtomic16(amount: 1, address: &_dmaReferences); |
4525 | if (!prior) { |
4526 | if (alloc && (VM_KERN_MEMORY_NONE != _kernelTag)) { |
4527 | _mapName = alloc; |
4528 | mapLength = _length; |
4529 | kern_allocation_update_subtotal(allocation: alloc, subtag: _kernelTag, delta: mapLength); |
4530 | } else { |
4531 | _mapName = NULL; |
4532 | } |
4533 | } |
4534 | } |
4535 | |
4536 | IOReturn |
4537 | IOMemoryDescriptor::dmaUnmap( |
4538 | IOMapper * mapper, |
4539 | IODMACommand * command, |
4540 | uint64_t offset, |
4541 | uint64_t mapAddress, |
4542 | uint64_t mapLength) |
4543 | { |
4544 | IOTimeStampIntervalConstantFiltered traceInterval(IODBG_MDESC(IOMDESC_DMA_UNMAP), VM_KERNEL_ADDRHIDE(this)); |
4545 | IOReturn ret; |
4546 | kern_allocation_name_t alloc; |
4547 | kern_allocation_name_t mapName; |
4548 | int16_t prior; |
4549 | |
4550 | mapName = NULL; |
4551 | prior = 0; |
4552 | if (command) { |
4553 | mapName = _mapName; |
4554 | if (_dmaReferences) { |
4555 | prior = OSAddAtomic16(amount: -1, address: &_dmaReferences); |
4556 | } else { |
4557 | panic("_dmaReferences underflow" ); |
4558 | } |
4559 | } |
4560 | |
4561 | if (!mapLength) { |
4562 | traceInterval.setEndArg1(kIOReturnSuccess); |
4563 | return kIOReturnSuccess; |
4564 | } |
4565 | |
4566 | ret = mapper->iovmUnmapMemory(memory: this, dmaCommand: command, mapAddress, mapLength); |
4567 | |
4568 | if ((alloc = mapper->fAllocName)) { |
4569 | kern_allocation_update_size(allocation: alloc, delta: -mapLength, NULL); |
4570 | if ((1 == prior) && mapName && (VM_KERN_MEMORY_NONE != _kernelTag)) { |
4571 | mapLength = _length; |
4572 | kern_allocation_update_subtotal(allocation: mapName, subtag: _kernelTag, delta: -mapLength); |
4573 | } |
4574 | } |
4575 | |
4576 | traceInterval.setEndArg1(ret); |
4577 | return ret; |
4578 | } |
4579 | |
4580 | IOReturn |
4581 | IOGeneralMemoryDescriptor::dmaMap( |
4582 | IOMapper * mapper, |
4583 | IOMemoryDescriptor * memory, |
4584 | IODMACommand * command, |
4585 | const IODMAMapSpecification * mapSpec, |
4586 | uint64_t offset, |
4587 | uint64_t length, |
4588 | uint64_t * mapAddress, |
4589 | uint64_t * mapLength) |
4590 | { |
4591 | IOReturn err = kIOReturnSuccess; |
4592 | ioGMDData * dataP; |
4593 | IOOptionBits type = _flags & kIOMemoryTypeMask; |
4594 | |
4595 | *mapAddress = 0; |
4596 | if (kIOMemoryHostOnly & _flags) { |
4597 | return kIOReturnSuccess; |
4598 | } |
4599 | if (kIOMemoryRemote & _flags) { |
4600 | return kIOReturnNotAttached; |
4601 | } |
4602 | |
4603 | if ((type == kIOMemoryTypePhysical) || (type == kIOMemoryTypePhysical64) |
4604 | || offset || (length != _length)) { |
4605 | err = super::dmaMap(mapper, memory, command, mapSpec, offset, length, mapAddress, mapLength); |
4606 | } else if (_memoryEntries && _pages && (dataP = getDataP(_memoryEntries))) { |
4607 | const ioPLBlock * ioplList = getIOPLList(dataP); |
4608 | upl_page_info_t * pageList; |
4609 | uint32_t mapOptions = 0; |
4610 | |
4611 | IODMAMapSpecification mapSpec; |
4612 | bzero(s: &mapSpec, n: sizeof(mapSpec)); |
4613 | mapSpec.numAddressBits = dataP->fDMAMapNumAddressBits; |
4614 | mapSpec.alignment = dataP->fDMAMapAlignment; |
4615 | |
4616 | // For external UPLs the fPageInfo field points directly to |
4617 | // the upl's upl_page_info_t array. |
4618 | if (ioplList->fFlags & kIOPLExternUPL) { |
4619 | pageList = (upl_page_info_t *) ioplList->fPageInfo; |
4620 | mapOptions |= kIODMAMapPagingPath; |
4621 | } else { |
4622 | pageList = getPageList(dataP); |
4623 | } |
4624 | |
4625 | if ((_length == ptoa_64(_pages)) && !(page_mask & ioplList->fPageOffset)) { |
4626 | mapOptions |= kIODMAMapPageListFullyOccupied; |
4627 | } |
4628 | |
4629 | assert(dataP->fDMAAccess); |
4630 | mapOptions |= dataP->fDMAAccess; |
4631 | |
4632 | // Check for direct device non-paged memory |
4633 | if (ioplList->fFlags & kIOPLOnDevice) { |
4634 | mapOptions |= kIODMAMapPhysicallyContiguous; |
4635 | } |
4636 | |
4637 | IODMAMapPageList dmaPageList = |
4638 | { |
4639 | .pageOffset = (uint32_t)(ioplList->fPageOffset & page_mask), |
4640 | .pageListCount = _pages, |
4641 | .pageList = &pageList[0] |
4642 | }; |
4643 | err = mapper->iovmMapMemory(memory, descriptorOffset: offset, length, mapOptions, mapSpecification: &mapSpec, |
4644 | dmaCommand: command, pageList: &dmaPageList, mapAddress, mapLength); |
4645 | |
4646 | if (kIOReturnSuccess == err) { |
4647 | dmaMapRecord(mapper, command, mapLength: *mapLength); |
4648 | } |
4649 | } |
4650 | |
4651 | return err; |
4652 | } |
4653 | |
4654 | /* |
4655 | * prepare |
4656 | * |
4657 | * Prepare the memory for an I/O transfer. This involves paging in |
4658 | * the memory, if necessary, and wiring it down for the duration of |
4659 | * the transfer. The complete() method completes the processing of |
4660 | * the memory after the I/O transfer finishes. This method needn't |
4661 | * called for non-pageable memory. |
4662 | */ |
4663 | |
4664 | IOReturn |
4665 | IOGeneralMemoryDescriptor::prepare(IODirection forDirection) |
4666 | { |
4667 | IOReturn error = kIOReturnSuccess; |
4668 | IOOptionBits type = _flags & kIOMemoryTypeMask; |
4669 | IOTimeStampIntervalConstantFiltered traceInterval(IODBG_MDESC(IOMDESC_PREPARE), VM_KERNEL_ADDRHIDE(this), forDirection); |
4670 | |
4671 | if ((kIOMemoryTypePhysical == type) || (kIOMemoryTypePhysical64 == type)) { |
4672 | traceInterval.setEndArg1(kIOReturnSuccess); |
4673 | return kIOReturnSuccess; |
4674 | } |
4675 | |
4676 | assert(!(kIOMemoryRemote & _flags)); |
4677 | if (kIOMemoryRemote & _flags) { |
4678 | traceInterval.setEndArg1(kIOReturnNotAttached); |
4679 | return kIOReturnNotAttached; |
4680 | } |
4681 | |
4682 | if (_prepareLock) { |
4683 | IOLockLock(_prepareLock); |
4684 | } |
4685 | |
4686 | if (kIOMemoryTypeVirtual == type || kIOMemoryTypeVirtual64 == type || kIOMemoryTypeUIO == type) { |
4687 | if ((forDirection & kIODirectionPrepareAvoidThrottling) && NEED_TO_HARD_THROTTLE_THIS_TASK()) { |
4688 | error = kIOReturnNotReady; |
4689 | goto finish; |
4690 | } |
4691 | error = wireVirtual(forDirection); |
4692 | } |
4693 | |
4694 | if (kIOReturnSuccess == error) { |
4695 | if (1 == ++_wireCount) { |
4696 | if (kIOMemoryClearEncrypt & _flags) { |
4697 | performOperation(options: kIOMemoryClearEncrypted, offset: 0, length: _length); |
4698 | } |
4699 | |
4700 | ktraceEmitPhysicalSegments(); |
4701 | } |
4702 | } |
4703 | |
4704 | finish: |
4705 | |
4706 | if (_prepareLock) { |
4707 | IOLockUnlock(_prepareLock); |
4708 | } |
4709 | traceInterval.setEndArg1(error); |
4710 | |
4711 | return error; |
4712 | } |
4713 | |
4714 | /* |
4715 | * complete |
4716 | * |
4717 | * Complete processing of the memory after an I/O transfer finishes. |
4718 | * This method should not be called unless a prepare was previously |
4719 | * issued; the prepare() and complete() must occur in pairs, before |
4720 | * before and after an I/O transfer involving pageable memory. |
4721 | */ |
4722 | |
4723 | IOReturn |
4724 | IOGeneralMemoryDescriptor::complete(IODirection forDirection) |
4725 | { |
4726 | IOOptionBits type = _flags & kIOMemoryTypeMask; |
4727 | ioGMDData * dataP; |
4728 | IOTimeStampIntervalConstantFiltered traceInterval(IODBG_MDESC(IOMDESC_COMPLETE), VM_KERNEL_ADDRHIDE(this), forDirection); |
4729 | |
4730 | if ((kIOMemoryTypePhysical == type) || (kIOMemoryTypePhysical64 == type)) { |
4731 | traceInterval.setEndArg1(kIOReturnSuccess); |
4732 | return kIOReturnSuccess; |
4733 | } |
4734 | |
4735 | assert(!(kIOMemoryRemote & _flags)); |
4736 | if (kIOMemoryRemote & _flags) { |
4737 | traceInterval.setEndArg1(kIOReturnNotAttached); |
4738 | return kIOReturnNotAttached; |
4739 | } |
4740 | |
4741 | if (_prepareLock) { |
4742 | IOLockLock(_prepareLock); |
4743 | } |
4744 | do{ |
4745 | assert(_wireCount); |
4746 | if (!_wireCount) { |
4747 | break; |
4748 | } |
4749 | dataP = getDataP(_memoryEntries); |
4750 | if (!dataP) { |
4751 | break; |
4752 | } |
4753 | |
4754 | if (kIODirectionCompleteWithError & forDirection) { |
4755 | dataP->fCompletionError = true; |
4756 | } |
4757 | |
4758 | if ((kIOMemoryClearEncrypt & _flags) && (1 == _wireCount)) { |
4759 | performOperation(options: kIOMemorySetEncrypted, offset: 0, length: _length); |
4760 | } |
4761 | |
4762 | _wireCount--; |
4763 | if (!_wireCount || (kIODirectionCompleteWithDataValid & forDirection)) { |
4764 | ioPLBlock *ioplList = getIOPLList(dataP); |
4765 | UInt ind, count = getNumIOPL(_memoryEntries, dataP); |
4766 | |
4767 | if (_wireCount) { |
4768 | // kIODirectionCompleteWithDataValid & forDirection |
4769 | if (kIOMemoryTypeVirtual == type || kIOMemoryTypeVirtual64 == type || kIOMemoryTypeUIO == type) { |
4770 | vm_tag_t tag; |
4771 | tag = (typeof(tag))getVMTag(map: kernel_map); |
4772 | for (ind = 0; ind < count; ind++) { |
4773 | if (ioplList[ind].fIOPL) { |
4774 | iopl_valid_data(upl_ptr: ioplList[ind].fIOPL, tag); |
4775 | } |
4776 | } |
4777 | } |
4778 | } else { |
4779 | if (_dmaReferences) { |
4780 | panic("complete() while dma active" ); |
4781 | } |
4782 | |
4783 | if (dataP->fMappedBaseValid) { |
4784 | dmaUnmap(mapper: dataP->fMapper, NULL, offset: 0, mapAddress: dataP->fMappedBase, mapLength: dataP->fMappedLength); |
4785 | dataP->fMappedBaseValid = dataP->fMappedBase = 0; |
4786 | } |
4787 | #if IOTRACKING |
4788 | if (dataP->fWireTracking.link.next) { |
4789 | IOTrackingRemove(gIOWireTracking, &dataP->fWireTracking, ptoa(_pages)); |
4790 | } |
4791 | #endif /* IOTRACKING */ |
4792 | // Only complete iopls that we created which are for TypeVirtual |
4793 | if (kIOMemoryTypeVirtual == type || kIOMemoryTypeVirtual64 == type || kIOMemoryTypeUIO == type) { |
4794 | for (ind = 0; ind < count; ind++) { |
4795 | if (ioplList[ind].fIOPL) { |
4796 | if (dataP->fCompletionError) { |
4797 | upl_abort(upl_object: ioplList[ind].fIOPL, abort_cond: 0 /*!UPL_ABORT_DUMP_PAGES*/); |
4798 | } else { |
4799 | upl_commit(upl_object: ioplList[ind].fIOPL, NULL, page_listCnt: 0); |
4800 | } |
4801 | upl_deallocate(upl: ioplList[ind].fIOPL); |
4802 | } |
4803 | } |
4804 | } else if (kIOMemoryTypeUPL == type) { |
4805 | upl_set_referenced(upl: ioplList[0].fIOPL, value: false); |
4806 | } |
4807 | |
4808 | _memoryEntries->setLength(computeDataSize(0, 0)); |
4809 | |
4810 | dataP->fPreparationID = kIOPreparationIDUnprepared; |
4811 | _flags &= ~kIOMemoryPreparedReadOnly; |
4812 | |
4813 | if (kdebug_debugid_explicitly_enabled(IODBG_IOMDPA(IOMDPA_UNMAPPED))) { |
4814 | IOTimeStampConstantFiltered(IODBG_IOMDPA(IOMDPA_UNMAPPED), a: getDescriptorID(), VM_KERNEL_ADDRHIDE(this)); |
4815 | } |
4816 | } |
4817 | } |
4818 | }while (false); |
4819 | |
4820 | if (_prepareLock) { |
4821 | IOLockUnlock(_prepareLock); |
4822 | } |
4823 | |
4824 | traceInterval.setEndArg1(kIOReturnSuccess); |
4825 | return kIOReturnSuccess; |
4826 | } |
4827 | |
4828 | IOOptionBits |
4829 | IOGeneralMemoryDescriptor::memoryReferenceCreateOptions(IOOptionBits options, IOMemoryMap * mapping) |
4830 | { |
4831 | IOOptionBits createOptions = 0; |
4832 | |
4833 | if (!(kIOMap64Bit & options)) { |
4834 | panic("IOMemoryDescriptor::makeMapping !64bit" ); |
4835 | } |
4836 | if (!(kIOMapReadOnly & options)) { |
4837 | createOptions |= kIOMemoryReferenceWrite; |
4838 | #if DEVELOPMENT || DEBUG |
4839 | if ((kIODirectionOut == (kIODirectionOutIn & _flags)) |
4840 | && (!reserved || (reserved->creator != mapping->fAddressTask))) { |
4841 | OSReportWithBacktrace("warning: creating writable mapping from IOMemoryDescriptor(kIODirectionOut) - use kIOMapReadOnly or change direction" ); |
4842 | } |
4843 | #endif |
4844 | } |
4845 | return createOptions; |
4846 | } |
4847 | |
4848 | /* |
4849 | * Attempt to create any kIOMemoryMapCopyOnWrite named entry needed ahead of the global |
4850 | * lock taken in IOMemoryDescriptor::makeMapping() since it may allocate real pages on |
4851 | * creation. |
4852 | */ |
4853 | |
4854 | IOMemoryMap * |
4855 | IOGeneralMemoryDescriptor::makeMapping( |
4856 | IOMemoryDescriptor * owner, |
4857 | task_t __intoTask, |
4858 | IOVirtualAddress __address, |
4859 | IOOptionBits options, |
4860 | IOByteCount __offset, |
4861 | IOByteCount __length ) |
4862 | { |
4863 | IOReturn err = kIOReturnSuccess; |
4864 | |
4865 | if ((kIOMemoryMapCopyOnWrite & _flags) && _task && !_memRef) { |
4866 | if (!_memRef) { |
4867 | struct IOMemoryReference * newRef; |
4868 | err = memoryReferenceCreate(options: memoryReferenceCreateOptions(options, mapping: (IOMemoryMap *) __address), reference: &newRef); |
4869 | if (kIOReturnSuccess == err) { |
4870 | if (!OSCompareAndSwapPtr(NULL, newRef, &_memRef)) { |
4871 | memoryReferenceFree(ref: newRef); |
4872 | } |
4873 | } |
4874 | } |
4875 | } |
4876 | if (kIOReturnSuccess != err) { |
4877 | return NULL; |
4878 | } |
4879 | return IOMemoryDescriptor::makeMapping( |
4880 | owner, intoTask: __intoTask, atAddress: __address, options, offset: __offset, length: __length); |
4881 | } |
4882 | |
4883 | IOReturn |
4884 | IOGeneralMemoryDescriptor::doMap( |
4885 | vm_map_t __addressMap, |
4886 | IOVirtualAddress * __address, |
4887 | IOOptionBits options, |
4888 | IOByteCount __offset, |
4889 | IOByteCount __length ) |
4890 | { |
4891 | IOTimeStampIntervalConstantFiltered traceInterval(IODBG_MDESC(IOMDESC_MAP), VM_KERNEL_ADDRHIDE(this), VM_KERNEL_ADDRHIDE(*__address), __length); |
4892 | traceInterval.setEndArg1(kIOReturnSuccess); |
4893 | #ifndef __LP64__ |
4894 | if (!(kIOMap64Bit & options)) { |
4895 | panic("IOGeneralMemoryDescriptor::doMap !64bit" ); |
4896 | } |
4897 | #endif /* !__LP64__ */ |
4898 | |
4899 | kern_return_t err; |
4900 | |
4901 | IOMemoryMap * mapping = (IOMemoryMap *) *__address; |
4902 | mach_vm_size_t offset = mapping->fOffset + __offset; |
4903 | mach_vm_size_t length = mapping->fLength; |
4904 | |
4905 | IOOptionBits type = _flags & kIOMemoryTypeMask; |
4906 | Ranges vec = _ranges; |
4907 | |
4908 | mach_vm_address_t range0Addr = 0; |
4909 | mach_vm_size_t range0Len = 0; |
4910 | |
4911 | if ((offset >= _length) || ((offset + length) > _length)) { |
4912 | traceInterval.setEndArg1(kIOReturnBadArgument); |
4913 | DEBUG4K_ERROR("map %p offset 0x%llx length 0x%llx _length 0x%llx kIOReturnBadArgument\n" , __addressMap, offset, length, (uint64_t)_length); |
4914 | // assert(offset == 0 && _length == 0 && length == 0); |
4915 | return kIOReturnBadArgument; |
4916 | } |
4917 | |
4918 | assert(!(kIOMemoryRemote & _flags)); |
4919 | if (kIOMemoryRemote & _flags) { |
4920 | return 0; |
4921 | } |
4922 | |
4923 | if (vec.v) { |
4924 | getAddrLenForInd(addr&: range0Addr, len&: range0Len, type, r: vec, ind: 0, task: _task); |
4925 | } |
4926 | |
4927 | // mapping source == dest? (could be much better) |
4928 | if (_task |
4929 | && (mapping->fAddressTask == _task) |
4930 | && (mapping->fAddressMap == get_task_map(_task)) |
4931 | && (options & kIOMapAnywhere) |
4932 | && (!(kIOMapUnique & options)) |
4933 | && (!(kIOMapGuardedMask & options)) |
4934 | && (1 == _rangesCount) |
4935 | && (0 == offset) |
4936 | && range0Addr |
4937 | && (length <= range0Len)) { |
4938 | mapping->fAddress = range0Addr; |
4939 | mapping->fOptions |= kIOMapStatic; |
4940 | |
4941 | return kIOReturnSuccess; |
4942 | } |
4943 | |
4944 | if (!_memRef) { |
4945 | err = memoryReferenceCreate(options: memoryReferenceCreateOptions(options, mapping), reference: &_memRef); |
4946 | if (kIOReturnSuccess != err) { |
4947 | traceInterval.setEndArg1(err); |
4948 | DEBUG4K_ERROR("map %p err 0x%x\n" , __addressMap, err); |
4949 | return err; |
4950 | } |
4951 | } |
4952 | |
4953 | memory_object_t ; |
4954 | pager = (memory_object_t) (reserved ? reserved->dp.devicePager : NULL); |
4955 | |
4956 | // <upl_transpose // |
4957 | if ((kIOMapReference | kIOMapUnique) == ((kIOMapReference | kIOMapUnique) & options)) { |
4958 | do{ |
4959 | upl_t redirUPL2; |
4960 | upl_size_t size; |
4961 | upl_control_flags_t flags; |
4962 | unsigned int lock_count; |
4963 | |
4964 | if (!_memRef || (1 != _memRef->count)) { |
4965 | err = kIOReturnNotReadable; |
4966 | DEBUG4K_ERROR("map %p err 0x%x\n" , __addressMap, err); |
4967 | break; |
4968 | } |
4969 | |
4970 | size = (upl_size_t) round_page(x: mapping->fLength); |
4971 | flags = UPL_COPYOUT_FROM | UPL_SET_INTERNAL |
4972 | | UPL_SET_LITE | UPL_SET_IO_WIRE | UPL_BLOCK_ACCESS; |
4973 | |
4974 | if (KERN_SUCCESS != memory_object_iopl_request(port: _memRef->entries[0].entry, offset: 0, upl_size: &size, upl_ptr: &redirUPL2, |
4975 | NULL, NULL, |
4976 | flags: &flags, tag: (vm_tag_t) getVMTag(map: kernel_map))) { |
4977 | redirUPL2 = NULL; |
4978 | } |
4979 | |
4980 | for (lock_count = 0; |
4981 | IORecursiveLockHaveLock(lock: gIOMemoryLock); |
4982 | lock_count++) { |
4983 | UNLOCK; |
4984 | } |
4985 | err = upl_transpose(upl1: redirUPL2, upl2: mapping->fRedirUPL); |
4986 | for (; |
4987 | lock_count; |
4988 | lock_count--) { |
4989 | LOCK; |
4990 | } |
4991 | |
4992 | if (kIOReturnSuccess != err) { |
4993 | IOLog(format: "upl_transpose(%x)\n" , err); |
4994 | err = kIOReturnSuccess; |
4995 | } |
4996 | |
4997 | if (redirUPL2) { |
4998 | upl_commit(upl_object: redirUPL2, NULL, page_listCnt: 0); |
4999 | upl_deallocate(upl: redirUPL2); |
5000 | redirUPL2 = NULL; |
5001 | } |
5002 | { |
5003 | // swap the memEntries since they now refer to different vm_objects |
5004 | IOMemoryReference * me = _memRef; |
5005 | _memRef = mapping->fMemory->_memRef; |
5006 | mapping->fMemory->_memRef = me; |
5007 | } |
5008 | if (pager) { |
5009 | err = populateDevicePager( pager, addressMap: mapping->fAddressMap, address: mapping->fAddress, sourceOffset: offset, length, options ); |
5010 | } |
5011 | }while (false); |
5012 | } |
5013 | // upl_transpose> // |
5014 | else { |
5015 | err = memoryReferenceMap(ref: _memRef, map: mapping->fAddressMap, inoffset: offset, size: length, options, inaddr: &mapping->fAddress); |
5016 | if (err) { |
5017 | DEBUG4K_ERROR("map %p err 0x%x\n" , mapping->fAddressMap, err); |
5018 | } |
5019 | #if IOTRACKING |
5020 | if ((err == KERN_SUCCESS) && ((kIOTracking & gIOKitDebug) || _task)) { |
5021 | // only dram maps in the default on developement case |
5022 | IOTrackingAddUser(gIOMapTracking, &mapping->fTracking, mapping->fLength); |
5023 | } |
5024 | #endif /* IOTRACKING */ |
5025 | if ((err == KERN_SUCCESS) && pager) { |
5026 | err = populateDevicePager(pager, addressMap: mapping->fAddressMap, address: mapping->fAddress, sourceOffset: offset, length, options); |
5027 | |
5028 | if (err != KERN_SUCCESS) { |
5029 | doUnmap(addressMap: mapping->fAddressMap, logical: (IOVirtualAddress) mapping, length: 0); |
5030 | } else if (kIOMapDefaultCache == (options & kIOMapCacheMask)) { |
5031 | mapping->fOptions |= ((_flags & kIOMemoryBufferCacheMask) >> kIOMemoryBufferCacheShift); |
5032 | } |
5033 | } |
5034 | } |
5035 | |
5036 | traceInterval.setEndArg1(err); |
5037 | if (err) { |
5038 | DEBUG4K_ERROR("map %p err 0x%x\n" , __addressMap, err); |
5039 | } |
5040 | return err; |
5041 | } |
5042 | |
5043 | #if IOTRACKING |
5044 | IOReturn |
5045 | IOMemoryMapTracking(IOTrackingUser * tracking, task_t * task, |
5046 | mach_vm_address_t * address, mach_vm_size_t * size) |
5047 | { |
5048 | #define iomap_offsetof(type, field) ((size_t)(&((type *)NULL)->field)) |
5049 | |
5050 | IOMemoryMap * map = (typeof(map))(((uintptr_t) tracking) - iomap_offsetof(IOMemoryMap, fTracking)); |
5051 | |
5052 | if (!map->fAddressMap || (map->fAddressMap != get_task_map(map->fAddressTask))) { |
5053 | return kIOReturnNotReady; |
5054 | } |
5055 | |
5056 | *task = map->fAddressTask; |
5057 | *address = map->fAddress; |
5058 | *size = map->fLength; |
5059 | |
5060 | return kIOReturnSuccess; |
5061 | } |
5062 | #endif /* IOTRACKING */ |
5063 | |
5064 | IOReturn |
5065 | IOGeneralMemoryDescriptor::doUnmap( |
5066 | vm_map_t addressMap, |
5067 | IOVirtualAddress __address, |
5068 | IOByteCount __length ) |
5069 | { |
5070 | IOTimeStampIntervalConstantFiltered traceInterval(IODBG_MDESC(IOMDESC_UNMAP), VM_KERNEL_ADDRHIDE(this), VM_KERNEL_ADDRHIDE(__address), __length); |
5071 | IOReturn ret; |
5072 | ret = super::doUnmap(addressMap, logical: __address, length: __length); |
5073 | traceInterval.setEndArg1(ret); |
5074 | return ret; |
5075 | } |
5076 | |
5077 | /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */ |
5078 | |
5079 | #undef super |
5080 | #define super OSObject |
5081 | |
5082 | OSDefineMetaClassAndStructorsWithZone( IOMemoryMap, OSObject, ZC_NONE ) |
5083 | |
5084 | OSMetaClassDefineReservedUnused(IOMemoryMap, 0); |
5085 | OSMetaClassDefineReservedUnused(IOMemoryMap, 1); |
5086 | OSMetaClassDefineReservedUnused(IOMemoryMap, 2); |
5087 | OSMetaClassDefineReservedUnused(IOMemoryMap, 3); |
5088 | OSMetaClassDefineReservedUnused(IOMemoryMap, 4); |
5089 | OSMetaClassDefineReservedUnused(IOMemoryMap, 5); |
5090 | OSMetaClassDefineReservedUnused(IOMemoryMap, 6); |
5091 | OSMetaClassDefineReservedUnused(IOMemoryMap, 7); |
5092 | |
5093 | /* ex-inline function implementation */ |
5094 | IOPhysicalAddress |
5095 | IOMemoryMap::getPhysicalAddress() |
5096 | { |
5097 | return getPhysicalSegment( offset: 0, NULL ); |
5098 | } |
5099 | |
5100 | /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */ |
5101 | |
5102 | bool |
5103 | IOMemoryMap::init( |
5104 | task_t intoTask, |
5105 | mach_vm_address_t toAddress, |
5106 | IOOptionBits _options, |
5107 | mach_vm_size_t _offset, |
5108 | mach_vm_size_t _length ) |
5109 | { |
5110 | if (!intoTask) { |
5111 | return false; |
5112 | } |
5113 | |
5114 | if (!super::init()) { |
5115 | return false; |
5116 | } |
5117 | |
5118 | fAddressMap = get_task_map(intoTask); |
5119 | if (!fAddressMap) { |
5120 | return false; |
5121 | } |
5122 | vm_map_reference(map: fAddressMap); |
5123 | |
5124 | fAddressTask = intoTask; |
5125 | fOptions = _options; |
5126 | fLength = _length; |
5127 | fOffset = _offset; |
5128 | fAddress = toAddress; |
5129 | |
5130 | return true; |
5131 | } |
5132 | |
5133 | bool |
5134 | IOMemoryMap::setMemoryDescriptor(IOMemoryDescriptor * _memory, mach_vm_size_t _offset) |
5135 | { |
5136 | if (!_memory) { |
5137 | return false; |
5138 | } |
5139 | |
5140 | if (!fSuperMap) { |
5141 | if ((_offset + fLength) > _memory->getLength()) { |
5142 | return false; |
5143 | } |
5144 | fOffset = _offset; |
5145 | } |
5146 | |
5147 | |
5148 | OSSharedPtr<IOMemoryDescriptor> tempval(_memory, OSRetain); |
5149 | if (fMemory) { |
5150 | if (fMemory != _memory) { |
5151 | fMemory->removeMapping(mapping: this); |
5152 | } |
5153 | } |
5154 | fMemory = os::move(t&: tempval); |
5155 | |
5156 | return true; |
5157 | } |
5158 | |
5159 | IOReturn |
5160 | IOMemoryDescriptor::doMap( |
5161 | vm_map_t __addressMap, |
5162 | IOVirtualAddress * __address, |
5163 | IOOptionBits options, |
5164 | IOByteCount __offset, |
5165 | IOByteCount __length ) |
5166 | { |
5167 | return kIOReturnUnsupported; |
5168 | } |
5169 | |
5170 | IOReturn |
5171 | IOMemoryDescriptor::handleFault( |
5172 | void * , |
5173 | mach_vm_size_t sourceOffset, |
5174 | mach_vm_size_t length) |
5175 | { |
5176 | if (kIOMemoryRedirected & _flags) { |
5177 | #if DEBUG |
5178 | IOLog("sleep mem redirect %p, %qx\n" , this, sourceOffset); |
5179 | #endif |
5180 | do { |
5181 | SLEEP; |
5182 | } while (kIOMemoryRedirected & _flags); |
5183 | } |
5184 | return kIOReturnSuccess; |
5185 | } |
5186 | |
5187 | IOReturn |
5188 | IOMemoryDescriptor::( |
5189 | void * , |
5190 | vm_map_t addressMap, |
5191 | mach_vm_address_t address, |
5192 | mach_vm_size_t sourceOffset, |
5193 | mach_vm_size_t length, |
5194 | IOOptionBits options ) |
5195 | { |
5196 | IOReturn err = kIOReturnSuccess; |
5197 | memory_object_t = (memory_object_t) _pager; |
5198 | mach_vm_size_t size; |
5199 | mach_vm_size_t bytes; |
5200 | mach_vm_size_t page; |
5201 | mach_vm_size_t pageOffset; |
5202 | mach_vm_size_t ; |
5203 | IOPhysicalLength segLen, chunk; |
5204 | addr64_t physAddr; |
5205 | IOOptionBits type; |
5206 | |
5207 | type = _flags & kIOMemoryTypeMask; |
5208 | |
5209 | if (reserved->dp.pagerContig) { |
5210 | sourceOffset = 0; |
5211 | pagerOffset = 0; |
5212 | } |
5213 | |
5214 | physAddr = getPhysicalSegment( offset: sourceOffset, length: &segLen, options: kIOMemoryMapperNone ); |
5215 | assert( physAddr ); |
5216 | pageOffset = physAddr - trunc_page_64( physAddr ); |
5217 | pagerOffset = sourceOffset; |
5218 | |
5219 | size = length + pageOffset; |
5220 | physAddr -= pageOffset; |
5221 | |
5222 | segLen += pageOffset; |
5223 | bytes = size; |
5224 | do{ |
5225 | // in the middle of the loop only map whole pages |
5226 | if (segLen >= bytes) { |
5227 | segLen = bytes; |
5228 | } else if (segLen != trunc_page_64(segLen)) { |
5229 | err = kIOReturnVMError; |
5230 | } |
5231 | if (physAddr != trunc_page_64(physAddr)) { |
5232 | err = kIOReturnBadArgument; |
5233 | } |
5234 | |
5235 | if (kIOReturnSuccess != err) { |
5236 | break; |
5237 | } |
5238 | |
5239 | #if DEBUG || DEVELOPMENT |
5240 | if ((kIOMemoryTypeUPL != type) |
5241 | && pmap_has_managed_page((ppnum_t) atop_64(physAddr), (ppnum_t) atop_64(physAddr + segLen - 1))) { |
5242 | OSReportWithBacktrace("IOMemoryDescriptor physical with managed page 0x%qx:0x%qx" , |
5243 | physAddr, (uint64_t)segLen); |
5244 | } |
5245 | #endif /* DEBUG || DEVELOPMENT */ |
5246 | |
5247 | chunk = (reserved->dp.pagerContig ? round_page(x: segLen) : page_size); |
5248 | for (page = 0; |
5249 | (page < segLen) && (KERN_SUCCESS == err); |
5250 | page += chunk) { |
5251 | err = device_pager_populate_object(device: pager, offset: pagerOffset, |
5252 | page_num: (ppnum_t)(atop_64(physAddr + page)), size: chunk); |
5253 | pagerOffset += chunk; |
5254 | } |
5255 | |
5256 | assert(KERN_SUCCESS == err); |
5257 | if (err) { |
5258 | break; |
5259 | } |
5260 | |
5261 | // This call to vm_fault causes an early pmap level resolution |
5262 | // of the mappings created above for kernel mappings, since |
5263 | // faulting in later can't take place from interrupt level. |
5264 | if ((addressMap == kernel_map) && !(kIOMemoryRedirected & _flags)) { |
5265 | err = vm_fault(map: addressMap, |
5266 | vaddr: (vm_map_offset_t)trunc_page_64(address), |
5267 | fault_type: options & kIOMapReadOnly ? VM_PROT_READ : VM_PROT_READ | VM_PROT_WRITE, |
5268 | FALSE, VM_KERN_MEMORY_NONE, |
5269 | THREAD_UNINT, NULL, |
5270 | pmap_addr: (vm_map_offset_t)0); |
5271 | |
5272 | if (KERN_SUCCESS != err) { |
5273 | break; |
5274 | } |
5275 | } |
5276 | |
5277 | sourceOffset += segLen - pageOffset; |
5278 | address += segLen; |
5279 | bytes -= segLen; |
5280 | pageOffset = 0; |
5281 | }while (bytes && (physAddr = getPhysicalSegment( offset: sourceOffset, length: &segLen, options: kIOMemoryMapperNone ))); |
5282 | |
5283 | if (bytes) { |
5284 | err = kIOReturnBadArgument; |
5285 | } |
5286 | |
5287 | return err; |
5288 | } |
5289 | |
5290 | IOReturn |
5291 | IOMemoryDescriptor::doUnmap( |
5292 | vm_map_t addressMap, |
5293 | IOVirtualAddress __address, |
5294 | IOByteCount __length ) |
5295 | { |
5296 | IOReturn err; |
5297 | IOMemoryMap * mapping; |
5298 | mach_vm_address_t address; |
5299 | mach_vm_size_t length; |
5300 | |
5301 | if (__length) { |
5302 | panic("doUnmap" ); |
5303 | } |
5304 | |
5305 | mapping = (IOMemoryMap *) __address; |
5306 | addressMap = mapping->fAddressMap; |
5307 | address = mapping->fAddress; |
5308 | length = mapping->fLength; |
5309 | |
5310 | if (kIOMapOverwrite & mapping->fOptions) { |
5311 | err = KERN_SUCCESS; |
5312 | } else { |
5313 | if ((addressMap == kernel_map) && (kIOMemoryBufferPageable & _flags)) { |
5314 | addressMap = IOPageableMapForAddress( address ); |
5315 | } |
5316 | #if DEBUG |
5317 | if (kIOLogMapping & gIOKitDebug) { |
5318 | IOLog("IOMemoryDescriptor::doUnmap map %p, 0x%qx:0x%qx\n" , |
5319 | addressMap, address, length ); |
5320 | } |
5321 | #endif |
5322 | err = IOMemoryDescriptorMapDealloc(options: mapping->fOptions, map: addressMap, addr: address, size: length ); |
5323 | if (vm_map_page_mask(map: addressMap) < PAGE_MASK) { |
5324 | DEBUG4K_IOKIT("map %p address 0x%llx length 0x%llx err 0x%x\n" , addressMap, address, length, err); |
5325 | } |
5326 | } |
5327 | |
5328 | #if IOTRACKING |
5329 | IOTrackingRemoveUser(gIOMapTracking, &mapping->fTracking); |
5330 | #endif /* IOTRACKING */ |
5331 | |
5332 | return err; |
5333 | } |
5334 | |
5335 | IOReturn |
5336 | IOMemoryDescriptor::redirect( task_t safeTask, bool doRedirect ) |
5337 | { |
5338 | IOReturn err = kIOReturnSuccess; |
5339 | IOMemoryMap * mapping = NULL; |
5340 | OSSharedPtr<OSIterator> iter; |
5341 | |
5342 | LOCK; |
5343 | |
5344 | if (doRedirect) { |
5345 | _flags |= kIOMemoryRedirected; |
5346 | } else { |
5347 | _flags &= ~kIOMemoryRedirected; |
5348 | } |
5349 | |
5350 | do { |
5351 | if ((iter = OSCollectionIterator::withCollection( inColl: _mappings.get()))) { |
5352 | memory_object_t ; |
5353 | |
5354 | if (reserved) { |
5355 | pager = (memory_object_t) reserved->dp.devicePager; |
5356 | } else { |
5357 | pager = MACH_PORT_NULL; |
5358 | } |
5359 | |
5360 | while ((mapping = (IOMemoryMap *) iter->getNextObject())) { |
5361 | mapping->redirect( intoTask: safeTask, redirect: doRedirect ); |
5362 | if (!doRedirect && !safeTask && pager && (kernel_map == mapping->fAddressMap)) { |
5363 | err = populateDevicePager(pager: pager, addressMap: mapping->fAddressMap, address: mapping->fAddress, sourceOffset: mapping->fOffset, length: mapping->fLength, options: kIOMapDefaultCache ); |
5364 | } |
5365 | } |
5366 | |
5367 | iter.reset(); |
5368 | } |
5369 | } while (false); |
5370 | |
5371 | if (!doRedirect) { |
5372 | WAKEUP; |
5373 | } |
5374 | |
5375 | UNLOCK; |
5376 | |
5377 | #ifndef __LP64__ |
5378 | // temporary binary compatibility |
5379 | IOSubMemoryDescriptor * subMem; |
5380 | if ((subMem = OSDynamicCast( IOSubMemoryDescriptor, this))) { |
5381 | err = subMem->redirect( safeTask, doRedirect ); |
5382 | } else { |
5383 | err = kIOReturnSuccess; |
5384 | } |
5385 | #endif /* !__LP64__ */ |
5386 | |
5387 | return err; |
5388 | } |
5389 | |
5390 | IOReturn |
5391 | IOMemoryMap::redirect( task_t safeTask, bool doRedirect ) |
5392 | { |
5393 | IOReturn err = kIOReturnSuccess; |
5394 | |
5395 | if (fSuperMap) { |
5396 | // err = ((IOMemoryMap *)superMap)->redirect( safeTask, doRedirect ); |
5397 | } else { |
5398 | LOCK; |
5399 | |
5400 | do{ |
5401 | if (!fAddress) { |
5402 | break; |
5403 | } |
5404 | if (!fAddressMap) { |
5405 | break; |
5406 | } |
5407 | |
5408 | if ((!safeTask || (get_task_map(safeTask) != fAddressMap)) |
5409 | && (0 == (fOptions & kIOMapStatic))) { |
5410 | IOUnmapPages( map: fAddressMap, va: fAddress, length: fLength ); |
5411 | err = kIOReturnSuccess; |
5412 | #if DEBUG |
5413 | IOLog("IOMemoryMap::redirect(%d, %p) 0x%qx:0x%qx from %p\n" , doRedirect, this, fAddress, fLength, fAddressMap); |
5414 | #endif |
5415 | } else if (kIOMapWriteCombineCache == (fOptions & kIOMapCacheMask)) { |
5416 | IOOptionBits newMode; |
5417 | newMode = (fOptions & ~kIOMapCacheMask) | (doRedirect ? kIOMapInhibitCache : kIOMapWriteCombineCache); |
5418 | IOProtectCacheMode(map: fAddressMap, va: fAddress, length: fLength, options: newMode); |
5419 | } |
5420 | }while (false); |
5421 | UNLOCK; |
5422 | } |
5423 | |
5424 | if ((((fMemory->_flags & kIOMemoryTypeMask) == kIOMemoryTypePhysical) |
5425 | || ((fMemory->_flags & kIOMemoryTypeMask) == kIOMemoryTypePhysical64)) |
5426 | && safeTask |
5427 | && (doRedirect != (0 != (fMemory->_flags & kIOMemoryRedirected)))) { |
5428 | fMemory->redirect(safeTask, doRedirect); |
5429 | } |
5430 | |
5431 | return err; |
5432 | } |
5433 | |
5434 | IOReturn |
5435 | IOMemoryMap::unmap( void ) |
5436 | { |
5437 | IOReturn err; |
5438 | |
5439 | LOCK; |
5440 | |
5441 | if (fAddress && fAddressMap && (NULL == fSuperMap) && fMemory |
5442 | && (0 == (kIOMapStatic & fOptions))) { |
5443 | err = fMemory->doUnmap(addressMap: fAddressMap, address: (IOVirtualAddress) this, length: 0); |
5444 | } else { |
5445 | err = kIOReturnSuccess; |
5446 | } |
5447 | |
5448 | if (fAddressMap) { |
5449 | vm_map_deallocate(map: fAddressMap); |
5450 | fAddressMap = NULL; |
5451 | } |
5452 | |
5453 | fAddress = 0; |
5454 | |
5455 | UNLOCK; |
5456 | |
5457 | return err; |
5458 | } |
5459 | |
5460 | void |
5461 | IOMemoryMap::taskDied( void ) |
5462 | { |
5463 | LOCK; |
5464 | if (fUserClientUnmap) { |
5465 | unmap(); |
5466 | } |
5467 | #if IOTRACKING |
5468 | else { |
5469 | IOTrackingRemoveUser(gIOMapTracking, &fTracking); |
5470 | } |
5471 | #endif /* IOTRACKING */ |
5472 | |
5473 | if (fAddressMap) { |
5474 | vm_map_deallocate(map: fAddressMap); |
5475 | fAddressMap = NULL; |
5476 | } |
5477 | fAddressTask = NULL; |
5478 | fAddress = 0; |
5479 | UNLOCK; |
5480 | } |
5481 | |
5482 | IOReturn |
5483 | IOMemoryMap::userClientUnmap( void ) |
5484 | { |
5485 | fUserClientUnmap = true; |
5486 | return kIOReturnSuccess; |
5487 | } |
5488 | |
5489 | // Overload the release mechanism. All mappings must be a member |
5490 | // of a memory descriptors _mappings set. This means that we |
5491 | // always have 2 references on a mapping. When either of these mappings |
5492 | // are released we need to free ourselves. |
5493 | void |
5494 | IOMemoryMap::taggedRelease(const void *tag) const |
5495 | { |
5496 | LOCK; |
5497 | super::taggedRelease(tag, freeWhen: 2); |
5498 | UNLOCK; |
5499 | } |
5500 | |
5501 | void |
5502 | IOMemoryMap::free() |
5503 | { |
5504 | unmap(); |
5505 | |
5506 | if (fMemory) { |
5507 | LOCK; |
5508 | fMemory->removeMapping(mapping: this); |
5509 | UNLOCK; |
5510 | fMemory.reset(); |
5511 | } |
5512 | |
5513 | if (fSuperMap) { |
5514 | fSuperMap.reset(); |
5515 | } |
5516 | |
5517 | if (fRedirUPL) { |
5518 | upl_commit(upl_object: fRedirUPL, NULL, page_listCnt: 0); |
5519 | upl_deallocate(upl: fRedirUPL); |
5520 | } |
5521 | |
5522 | super::free(); |
5523 | } |
5524 | |
5525 | IOByteCount |
5526 | IOMemoryMap::getLength() |
5527 | { |
5528 | return fLength; |
5529 | } |
5530 | |
5531 | IOVirtualAddress |
5532 | IOMemoryMap::getVirtualAddress() |
5533 | { |
5534 | #ifndef __LP64__ |
5535 | if (fSuperMap) { |
5536 | fSuperMap->getVirtualAddress(); |
5537 | } else if (fAddressMap |
5538 | && vm_map_is_64bit(fAddressMap) |
5539 | && (sizeof(IOVirtualAddress) < 8)) { |
5540 | OSReportWithBacktrace("IOMemoryMap::getVirtualAddress(0x%qx) called on 64b map; use ::getAddress()" , fAddress); |
5541 | } |
5542 | #endif /* !__LP64__ */ |
5543 | |
5544 | return fAddress; |
5545 | } |
5546 | |
5547 | #ifndef __LP64__ |
5548 | mach_vm_address_t |
5549 | IOMemoryMap::getAddress() |
5550 | { |
5551 | return fAddress; |
5552 | } |
5553 | |
5554 | mach_vm_size_t |
5555 | IOMemoryMap::getSize() |
5556 | { |
5557 | return fLength; |
5558 | } |
5559 | #endif /* !__LP64__ */ |
5560 | |
5561 | |
5562 | task_t |
5563 | IOMemoryMap::getAddressTask() |
5564 | { |
5565 | if (fSuperMap) { |
5566 | return fSuperMap->getAddressTask(); |
5567 | } else { |
5568 | return fAddressTask; |
5569 | } |
5570 | } |
5571 | |
5572 | IOOptionBits |
5573 | IOMemoryMap::getMapOptions() |
5574 | { |
5575 | return fOptions; |
5576 | } |
5577 | |
5578 | IOMemoryDescriptor * |
5579 | IOMemoryMap::getMemoryDescriptor() |
5580 | { |
5581 | return fMemory.get(); |
5582 | } |
5583 | |
5584 | IOMemoryMap * |
5585 | IOMemoryMap::copyCompatible( |
5586 | IOMemoryMap * newMapping ) |
5587 | { |
5588 | task_t task = newMapping->getAddressTask(); |
5589 | mach_vm_address_t toAddress = newMapping->fAddress; |
5590 | IOOptionBits _options = newMapping->fOptions; |
5591 | mach_vm_size_t _offset = newMapping->fOffset; |
5592 | mach_vm_size_t _length = newMapping->fLength; |
5593 | |
5594 | if ((!task) || (!fAddressMap) || (fAddressMap != get_task_map(task))) { |
5595 | return NULL; |
5596 | } |
5597 | if ((fOptions ^ _options) & kIOMapReadOnly) { |
5598 | return NULL; |
5599 | } |
5600 | if ((fOptions ^ _options) & kIOMapGuardedMask) { |
5601 | return NULL; |
5602 | } |
5603 | if ((kIOMapDefaultCache != (_options & kIOMapCacheMask)) |
5604 | && ((fOptions ^ _options) & kIOMapCacheMask)) { |
5605 | return NULL; |
5606 | } |
5607 | |
5608 | if ((0 == (_options & kIOMapAnywhere)) && (fAddress != toAddress)) { |
5609 | return NULL; |
5610 | } |
5611 | |
5612 | if (_offset < fOffset) { |
5613 | return NULL; |
5614 | } |
5615 | |
5616 | _offset -= fOffset; |
5617 | |
5618 | if ((_offset + _length) > fLength) { |
5619 | return NULL; |
5620 | } |
5621 | |
5622 | if ((fLength == _length) && (!_offset)) { |
5623 | retain(); |
5624 | newMapping = this; |
5625 | } else { |
5626 | newMapping->fSuperMap.reset(p: this, OSRetain); |
5627 | newMapping->fOffset = fOffset + _offset; |
5628 | newMapping->fAddress = fAddress + _offset; |
5629 | } |
5630 | |
5631 | return newMapping; |
5632 | } |
5633 | |
5634 | IOReturn |
5635 | IOMemoryMap::wireRange( |
5636 | uint32_t options, |
5637 | mach_vm_size_t offset, |
5638 | mach_vm_size_t length) |
5639 | { |
5640 | IOReturn kr; |
5641 | mach_vm_address_t start = trunc_page_64(fAddress + offset); |
5642 | mach_vm_address_t end = round_page_64(x: fAddress + offset + length); |
5643 | vm_prot_t prot; |
5644 | |
5645 | prot = (kIODirectionOutIn & options); |
5646 | if (prot) { |
5647 | kr = vm_map_wire_kernel(map: fAddressMap, start, end, access_type: prot, tag: (vm_tag_t) fMemory->getVMTag(map: kernel_map), FALSE); |
5648 | } else { |
5649 | kr = vm_map_unwire(map: fAddressMap, start, end, FALSE); |
5650 | } |
5651 | |
5652 | return kr; |
5653 | } |
5654 | |
5655 | |
5656 | IOPhysicalAddress |
5657 | #ifdef __LP64__ |
5658 | IOMemoryMap::getPhysicalSegment( IOByteCount _offset, IOPhysicalLength * _length, IOOptionBits _options) |
5659 | #else /* !__LP64__ */ |
5660 | IOMemoryMap::getPhysicalSegment( IOByteCount _offset, IOPhysicalLength * _length) |
5661 | #endif /* !__LP64__ */ |
5662 | { |
5663 | IOPhysicalAddress address; |
5664 | |
5665 | LOCK; |
5666 | #ifdef __LP64__ |
5667 | address = fMemory->getPhysicalSegment( offset: fOffset + _offset, length: _length, options: _options ); |
5668 | #else /* !__LP64__ */ |
5669 | address = fMemory->getPhysicalSegment( fOffset + _offset, _length ); |
5670 | #endif /* !__LP64__ */ |
5671 | UNLOCK; |
5672 | |
5673 | return address; |
5674 | } |
5675 | |
5676 | /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */ |
5677 | |
5678 | #undef super |
5679 | #define super OSObject |
5680 | |
5681 | /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */ |
5682 | |
5683 | void |
5684 | IOMemoryDescriptor::initialize( void ) |
5685 | { |
5686 | if (NULL == gIOMemoryLock) { |
5687 | gIOMemoryLock = IORecursiveLockAlloc(); |
5688 | } |
5689 | |
5690 | gIOLastPage = IOGetLastPageNumber(); |
5691 | } |
5692 | |
5693 | void |
5694 | IOMemoryDescriptor::free( void ) |
5695 | { |
5696 | if (_mappings) { |
5697 | _mappings.reset(); |
5698 | } |
5699 | |
5700 | if (reserved) { |
5701 | cleanKernelReserved(reserved); |
5702 | IOFreeType(reserved, IOMemoryDescriptorReserved); |
5703 | reserved = NULL; |
5704 | } |
5705 | super::free(); |
5706 | } |
5707 | |
5708 | OSSharedPtr<IOMemoryMap> |
5709 | IOMemoryDescriptor::setMapping( |
5710 | task_t intoTask, |
5711 | IOVirtualAddress mapAddress, |
5712 | IOOptionBits options ) |
5713 | { |
5714 | return createMappingInTask( intoTask, atAddress: mapAddress, |
5715 | options: options | kIOMapStatic, |
5716 | offset: 0, length: getLength()); |
5717 | } |
5718 | |
5719 | OSSharedPtr<IOMemoryMap> |
5720 | IOMemoryDescriptor::map( |
5721 | IOOptionBits options ) |
5722 | { |
5723 | return createMappingInTask( intoTask: kernel_task, atAddress: 0, |
5724 | options: options | kIOMapAnywhere, |
5725 | offset: 0, length: getLength()); |
5726 | } |
5727 | |
5728 | #ifndef __LP64__ |
5729 | OSSharedPtr<IOMemoryMap> |
5730 | IOMemoryDescriptor::map( |
5731 | task_t intoTask, |
5732 | IOVirtualAddress atAddress, |
5733 | IOOptionBits options, |
5734 | IOByteCount offset, |
5735 | IOByteCount length ) |
5736 | { |
5737 | if ((!(kIOMapAnywhere & options)) && vm_map_is_64bit(get_task_map(intoTask))) { |
5738 | OSReportWithBacktrace("IOMemoryDescriptor::map() in 64b task, use ::createMappingInTask()" ); |
5739 | return NULL; |
5740 | } |
5741 | |
5742 | return createMappingInTask(intoTask, atAddress, |
5743 | options, offset, length); |
5744 | } |
5745 | #endif /* !__LP64__ */ |
5746 | |
5747 | OSSharedPtr<IOMemoryMap> |
5748 | IOMemoryDescriptor::createMappingInTask( |
5749 | task_t intoTask, |
5750 | mach_vm_address_t atAddress, |
5751 | IOOptionBits options, |
5752 | mach_vm_size_t offset, |
5753 | mach_vm_size_t length) |
5754 | { |
5755 | IOMemoryMap * result; |
5756 | IOMemoryMap * mapping; |
5757 | |
5758 | if (0 == length) { |
5759 | length = getLength(); |
5760 | } |
5761 | |
5762 | mapping = new IOMemoryMap; |
5763 | |
5764 | if (mapping |
5765 | && !mapping->init( intoTask, toAddress: atAddress, |
5766 | options: options, offset: offset, length: length )) { |
5767 | mapping->release(); |
5768 | mapping = NULL; |
5769 | } |
5770 | |
5771 | if (mapping) { |
5772 | result = makeMapping(owner: this, intoTask, atAddress: (IOVirtualAddress) mapping, options: options | kIOMap64Bit, offset: 0, length: 0); |
5773 | } else { |
5774 | result = nullptr; |
5775 | } |
5776 | |
5777 | #if DEBUG |
5778 | if (!result) { |
5779 | IOLog("createMappingInTask failed desc %p, addr %qx, options %x, offset %qx, length %llx\n" , |
5780 | this, atAddress, (uint32_t) options, offset, length); |
5781 | } |
5782 | #endif |
5783 | |
5784 | // already retained through makeMapping |
5785 | OSSharedPtr<IOMemoryMap> retval(result, OSNoRetain); |
5786 | |
5787 | return retval; |
5788 | } |
5789 | |
5790 | #ifndef __LP64__ // there is only a 64 bit version for LP64 |
5791 | IOReturn |
5792 | IOMemoryMap::redirect(IOMemoryDescriptor * newBackingMemory, |
5793 | IOOptionBits options, |
5794 | IOByteCount offset) |
5795 | { |
5796 | return redirect(newBackingMemory, options, (mach_vm_size_t)offset); |
5797 | } |
5798 | #endif |
5799 | |
5800 | IOReturn |
5801 | IOMemoryMap::redirect(IOMemoryDescriptor * newBackingMemory, |
5802 | IOOptionBits options, |
5803 | mach_vm_size_t offset) |
5804 | { |
5805 | IOReturn err = kIOReturnSuccess; |
5806 | OSSharedPtr<IOMemoryDescriptor> physMem; |
5807 | |
5808 | LOCK; |
5809 | |
5810 | if (fAddress && fAddressMap) { |
5811 | do{ |
5812 | if (((fMemory->_flags & kIOMemoryTypeMask) == kIOMemoryTypePhysical) |
5813 | || ((fMemory->_flags & kIOMemoryTypeMask) == kIOMemoryTypePhysical64)) { |
5814 | physMem = fMemory; |
5815 | } |
5816 | |
5817 | if (!fRedirUPL && fMemory->_memRef && (1 == fMemory->_memRef->count)) { |
5818 | upl_size_t size = (typeof(size))round_page(x: fLength); |
5819 | upl_control_flags_t flags = UPL_COPYOUT_FROM | UPL_SET_INTERNAL |
5820 | | UPL_SET_LITE | UPL_SET_IO_WIRE | UPL_BLOCK_ACCESS; |
5821 | if (KERN_SUCCESS != memory_object_iopl_request(port: fMemory->_memRef->entries[0].entry, offset: 0, upl_size: &size, upl_ptr: &fRedirUPL, |
5822 | NULL, NULL, |
5823 | flags: &flags, tag: (vm_tag_t) fMemory->getVMTag(map: kernel_map))) { |
5824 | fRedirUPL = NULL; |
5825 | } |
5826 | |
5827 | if (physMem) { |
5828 | IOUnmapPages( map: fAddressMap, va: fAddress, length: fLength ); |
5829 | if ((false)) { |
5830 | physMem->redirect(NULL, doRedirect: true); |
5831 | } |
5832 | } |
5833 | } |
5834 | |
5835 | if (newBackingMemory) { |
5836 | if (newBackingMemory != fMemory) { |
5837 | fOffset = 0; |
5838 | if (this != newBackingMemory->makeMapping(owner: newBackingMemory, intoTask: fAddressTask, atAddress: (IOVirtualAddress) this, |
5839 | options: options | kIOMapUnique | kIOMapReference | kIOMap64Bit, |
5840 | offset, length: fLength)) { |
5841 | err = kIOReturnError; |
5842 | } |
5843 | } |
5844 | if (fRedirUPL) { |
5845 | upl_commit(upl_object: fRedirUPL, NULL, page_listCnt: 0); |
5846 | upl_deallocate(upl: fRedirUPL); |
5847 | fRedirUPL = NULL; |
5848 | } |
5849 | if ((false) && physMem) { |
5850 | physMem->redirect(NULL, doRedirect: false); |
5851 | } |
5852 | } |
5853 | }while (false); |
5854 | } |
5855 | |
5856 | UNLOCK; |
5857 | |
5858 | return err; |
5859 | } |
5860 | |
5861 | IOMemoryMap * |
5862 | IOMemoryDescriptor::makeMapping( |
5863 | IOMemoryDescriptor * owner, |
5864 | task_t __intoTask, |
5865 | IOVirtualAddress __address, |
5866 | IOOptionBits options, |
5867 | IOByteCount __offset, |
5868 | IOByteCount __length ) |
5869 | { |
5870 | #ifndef __LP64__ |
5871 | if (!(kIOMap64Bit & options)) { |
5872 | panic("IOMemoryDescriptor::makeMapping !64bit" ); |
5873 | } |
5874 | #endif /* !__LP64__ */ |
5875 | |
5876 | OSSharedPtr<IOMemoryDescriptor> mapDesc; |
5877 | __block IOMemoryMap * result = NULL; |
5878 | |
5879 | IOMemoryMap * mapping = (IOMemoryMap *) __address; |
5880 | mach_vm_size_t offset = mapping->fOffset + __offset; |
5881 | mach_vm_size_t length = mapping->fLength; |
5882 | |
5883 | mapping->fOffset = offset; |
5884 | |
5885 | LOCK; |
5886 | |
5887 | do{ |
5888 | if (kIOMapStatic & options) { |
5889 | result = mapping; |
5890 | addMapping(mapping); |
5891 | mapping->setMemoryDescriptor(memory: this, offset: 0); |
5892 | continue; |
5893 | } |
5894 | |
5895 | if (kIOMapUnique & options) { |
5896 | addr64_t phys; |
5897 | IOByteCount physLen; |
5898 | |
5899 | // if (owner != this) continue; |
5900 | |
5901 | if (((_flags & kIOMemoryTypeMask) == kIOMemoryTypePhysical) |
5902 | || ((_flags & kIOMemoryTypeMask) == kIOMemoryTypePhysical64)) { |
5903 | phys = getPhysicalSegment(offset, length: &physLen, options: kIOMemoryMapperNone); |
5904 | if (!phys || (physLen < length)) { |
5905 | continue; |
5906 | } |
5907 | |
5908 | mapDesc = IOMemoryDescriptor::withAddressRange( |
5909 | address: phys, length, options: getDirection() | kIOMemoryMapperNone, NULL); |
5910 | if (!mapDesc) { |
5911 | continue; |
5912 | } |
5913 | offset = 0; |
5914 | mapping->fOffset = offset; |
5915 | } |
5916 | } else { |
5917 | // look for a compatible existing mapping |
5918 | if (_mappings) { |
5919 | _mappings->iterateObjects(block: ^(OSObject * object) |
5920 | { |
5921 | IOMemoryMap * lookMapping = (IOMemoryMap *) object; |
5922 | if ((result = lookMapping->copyCompatible(newMapping: mapping))) { |
5923 | addMapping(mapping: result); |
5924 | result->setMemoryDescriptor(memory: this, offset: offset); |
5925 | return true; |
5926 | } |
5927 | return false; |
5928 | }); |
5929 | } |
5930 | if (result || (options & kIOMapReference)) { |
5931 | if (result != mapping) { |
5932 | mapping->release(); |
5933 | mapping = NULL; |
5934 | } |
5935 | continue; |
5936 | } |
5937 | } |
5938 | |
5939 | if (!mapDesc) { |
5940 | mapDesc.reset(p: this, OSRetain); |
5941 | } |
5942 | IOReturn |
5943 | kr = mapDesc->doMap( NULL, address: (IOVirtualAddress *) &mapping, options, offset: 0, length: 0 ); |
5944 | if (kIOReturnSuccess == kr) { |
5945 | result = mapping; |
5946 | mapDesc->addMapping(mapping: result); |
5947 | result->setMemoryDescriptor(memory: mapDesc.get(), offset: offset); |
5948 | } else { |
5949 | mapping->release(); |
5950 | mapping = NULL; |
5951 | } |
5952 | }while (false); |
5953 | |
5954 | UNLOCK; |
5955 | |
5956 | return result; |
5957 | } |
5958 | |
5959 | void |
5960 | IOMemoryDescriptor::addMapping( |
5961 | IOMemoryMap * mapping ) |
5962 | { |
5963 | if (mapping) { |
5964 | if (NULL == _mappings) { |
5965 | _mappings = OSSet::withCapacity(capacity: 1); |
5966 | } |
5967 | if (_mappings) { |
5968 | _mappings->setObject( mapping ); |
5969 | } |
5970 | } |
5971 | } |
5972 | |
5973 | void |
5974 | IOMemoryDescriptor::removeMapping( |
5975 | IOMemoryMap * mapping ) |
5976 | { |
5977 | if (_mappings) { |
5978 | _mappings->removeObject( anObject: mapping); |
5979 | } |
5980 | } |
5981 | |
5982 | void |
5983 | IOMemoryDescriptor::setMapperOptions( uint16_t options) |
5984 | { |
5985 | _iomapperOptions = options; |
5986 | } |
5987 | |
5988 | uint16_t |
5989 | IOMemoryDescriptor::getMapperOptions( void ) |
5990 | { |
5991 | return _iomapperOptions; |
5992 | } |
5993 | |
5994 | #ifndef __LP64__ |
5995 | // obsolete initializers |
5996 | // - initWithOptions is the designated initializer |
5997 | bool |
5998 | IOMemoryDescriptor::initWithAddress(void * address, |
5999 | IOByteCount length, |
6000 | IODirection direction) |
6001 | { |
6002 | return false; |
6003 | } |
6004 | |
6005 | bool |
6006 | IOMemoryDescriptor::initWithAddress(IOVirtualAddress address, |
6007 | IOByteCount length, |
6008 | IODirection direction, |
6009 | task_t task) |
6010 | { |
6011 | return false; |
6012 | } |
6013 | |
6014 | bool |
6015 | IOMemoryDescriptor::initWithPhysicalAddress( |
6016 | IOPhysicalAddress address, |
6017 | IOByteCount length, |
6018 | IODirection direction ) |
6019 | { |
6020 | return false; |
6021 | } |
6022 | |
6023 | bool |
6024 | IOMemoryDescriptor::initWithRanges( |
6025 | IOVirtualRange * ranges, |
6026 | UInt32 withCount, |
6027 | IODirection direction, |
6028 | task_t task, |
6029 | bool asReference) |
6030 | { |
6031 | return false; |
6032 | } |
6033 | |
6034 | bool |
6035 | IOMemoryDescriptor::initWithPhysicalRanges( IOPhysicalRange * ranges, |
6036 | UInt32 withCount, |
6037 | IODirection direction, |
6038 | bool asReference) |
6039 | { |
6040 | return false; |
6041 | } |
6042 | |
6043 | void * |
6044 | IOMemoryDescriptor::getVirtualSegment(IOByteCount offset, |
6045 | IOByteCount * lengthOfSegment) |
6046 | { |
6047 | return NULL; |
6048 | } |
6049 | #endif /* !__LP64__ */ |
6050 | |
6051 | /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */ |
6052 | |
6053 | bool |
6054 | IOGeneralMemoryDescriptor::serialize(OSSerialize * s) const |
6055 | { |
6056 | OSSharedPtr<OSSymbol const> keys[2] = {NULL}; |
6057 | OSSharedPtr<OSObject> values[2] = {NULL}; |
6058 | OSSharedPtr<OSArray> array; |
6059 | |
6060 | struct SerData { |
6061 | user_addr_t address; |
6062 | user_size_t length; |
6063 | }; |
6064 | |
6065 | unsigned int index; |
6066 | |
6067 | IOOptionBits type = _flags & kIOMemoryTypeMask; |
6068 | |
6069 | if (s == NULL) { |
6070 | return false; |
6071 | } |
6072 | |
6073 | array = OSArray::withCapacity(capacity: 4); |
6074 | if (!array) { |
6075 | return false; |
6076 | } |
6077 | |
6078 | OSDataAllocation<struct SerData> vcopy(_rangesCount, OSAllocateMemory); |
6079 | if (!vcopy) { |
6080 | return false; |
6081 | } |
6082 | |
6083 | keys[0] = OSSymbol::withCString(cString: "address" ); |
6084 | keys[1] = OSSymbol::withCString(cString: "length" ); |
6085 | |
6086 | // Copy the volatile data so we don't have to allocate memory |
6087 | // while the lock is held. |
6088 | LOCK; |
6089 | if (vcopy.size() == _rangesCount) { |
6090 | Ranges vec = _ranges; |
6091 | for (index = 0; index < vcopy.size(); index++) { |
6092 | mach_vm_address_t addr; mach_vm_size_t len; |
6093 | getAddrLenForInd(addr, len, type, r: vec, ind: index, task: _task); |
6094 | vcopy[index].address = addr; |
6095 | vcopy[index].length = len; |
6096 | } |
6097 | } else { |
6098 | // The descriptor changed out from under us. Give up. |
6099 | UNLOCK; |
6100 | return false; |
6101 | } |
6102 | UNLOCK; |
6103 | |
6104 | for (index = 0; index < vcopy.size(); index++) { |
6105 | user_addr_t addr = vcopy[index].address; |
6106 | IOByteCount len = (IOByteCount) vcopy[index].length; |
6107 | values[0] = OSNumber::withNumber(value: addr, numberOfBits: sizeof(addr) * 8); |
6108 | if (values[0] == NULL) { |
6109 | return false; |
6110 | } |
6111 | values[1] = OSNumber::withNumber(value: len, numberOfBits: sizeof(len) * 8); |
6112 | if (values[1] == NULL) { |
6113 | return false; |
6114 | } |
6115 | OSSharedPtr<OSDictionary> dict = OSDictionary::withObjects(objects: (const OSObject **)values, keys: (const OSSymbol **)keys, count: 2); |
6116 | if (dict == NULL) { |
6117 | return false; |
6118 | } |
6119 | array->setObject(dict.get()); |
6120 | dict.reset(); |
6121 | values[0].reset(); |
6122 | values[1].reset(); |
6123 | } |
6124 | |
6125 | return array->serialize(serializer: s); |
6126 | } |
6127 | /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */ |
6128 | |
6129 | OSMetaClassDefineReservedUsedX86(IOMemoryDescriptor, 0); |
6130 | #ifdef __LP64__ |
6131 | OSMetaClassDefineReservedUnused(IOMemoryDescriptor, 1); |
6132 | OSMetaClassDefineReservedUnused(IOMemoryDescriptor, 2); |
6133 | OSMetaClassDefineReservedUnused(IOMemoryDescriptor, 3); |
6134 | OSMetaClassDefineReservedUnused(IOMemoryDescriptor, 4); |
6135 | OSMetaClassDefineReservedUnused(IOMemoryDescriptor, 5); |
6136 | OSMetaClassDefineReservedUnused(IOMemoryDescriptor, 6); |
6137 | OSMetaClassDefineReservedUnused(IOMemoryDescriptor, 7); |
6138 | #else /* !__LP64__ */ |
6139 | OSMetaClassDefineReservedUsedX86(IOMemoryDescriptor, 1); |
6140 | OSMetaClassDefineReservedUsedX86(IOMemoryDescriptor, 2); |
6141 | OSMetaClassDefineReservedUsedX86(IOMemoryDescriptor, 3); |
6142 | OSMetaClassDefineReservedUsedX86(IOMemoryDescriptor, 4); |
6143 | OSMetaClassDefineReservedUsedX86(IOMemoryDescriptor, 5); |
6144 | OSMetaClassDefineReservedUsedX86(IOMemoryDescriptor, 6); |
6145 | OSMetaClassDefineReservedUsedX86(IOMemoryDescriptor, 7); |
6146 | #endif /* !__LP64__ */ |
6147 | OSMetaClassDefineReservedUnused(IOMemoryDescriptor, 8); |
6148 | OSMetaClassDefineReservedUnused(IOMemoryDescriptor, 9); |
6149 | OSMetaClassDefineReservedUnused(IOMemoryDescriptor, 10); |
6150 | OSMetaClassDefineReservedUnused(IOMemoryDescriptor, 11); |
6151 | OSMetaClassDefineReservedUnused(IOMemoryDescriptor, 12); |
6152 | OSMetaClassDefineReservedUnused(IOMemoryDescriptor, 13); |
6153 | OSMetaClassDefineReservedUnused(IOMemoryDescriptor, 14); |
6154 | OSMetaClassDefineReservedUnused(IOMemoryDescriptor, 15); |
6155 | |
6156 | /* for real this is a ioGMDData + upl_page_info_t + ioPLBlock */ |
6157 | KALLOC_TYPE_VAR_DEFINE(KT_IOMD_MIXED_DATA, |
6158 | struct ioGMDData, struct ioPLBlock, KT_DEFAULT); |
6159 | |
6160 | /* ex-inline function implementation */ |
6161 | IOPhysicalAddress |
6162 | IOMemoryDescriptor::getPhysicalAddress() |
6163 | { |
6164 | return getPhysicalSegment( offset: 0, NULL ); |
6165 | } |
6166 | |
6167 | OSDefineMetaClassAndStructors(_IOMemoryDescriptorMixedData, OSObject) |
6168 | |
6169 | OSPtr<_IOMemoryDescriptorMixedData> |
6170 | _IOMemoryDescriptorMixedData::withCapacity(size_t capacity) |
6171 | { |
6172 | OSSharedPtr<_IOMemoryDescriptorMixedData> me = OSMakeShared<_IOMemoryDescriptorMixedData>(); |
6173 | if (me && !me->initWithCapacity(capacity)) { |
6174 | return nullptr; |
6175 | } |
6176 | return me; |
6177 | } |
6178 | |
6179 | bool |
6180 | _IOMemoryDescriptorMixedData::initWithCapacity(size_t capacity) |
6181 | { |
6182 | if (_data && (!capacity || (_capacity < capacity))) { |
6183 | freeMemory(); |
6184 | } |
6185 | |
6186 | if (!OSObject::init()) { |
6187 | return false; |
6188 | } |
6189 | |
6190 | if (!_data && capacity) { |
6191 | _data = kalloc_type_var_impl(KT_IOMD_MIXED_DATA, capacity, |
6192 | Z_VM_TAG_BT(Z_WAITOK_ZERO, VM_KERN_MEMORY_IOKIT), NULL); |
6193 | if (!_data) { |
6194 | return false; |
6195 | } |
6196 | _capacity = capacity; |
6197 | } |
6198 | |
6199 | _length = 0; |
6200 | |
6201 | return true; |
6202 | } |
6203 | |
6204 | void |
6205 | _IOMemoryDescriptorMixedData::free() |
6206 | { |
6207 | freeMemory(); |
6208 | OSObject::free(); |
6209 | } |
6210 | |
6211 | void |
6212 | _IOMemoryDescriptorMixedData::freeMemory() |
6213 | { |
6214 | kfree_type_var_impl(kt_view: KT_IOMD_MIXED_DATA, ptr: _data, size: _capacity); |
6215 | _data = nullptr; |
6216 | _capacity = _length = 0; |
6217 | } |
6218 | |
6219 | bool |
6220 | _IOMemoryDescriptorMixedData::appendBytes(const void * bytes, size_t length) |
6221 | { |
6222 | const auto oldLength = getLength(); |
6223 | size_t newLength; |
6224 | if (os_add_overflow(oldLength, length, &newLength)) { |
6225 | return false; |
6226 | } |
6227 | |
6228 | if (!setLength(newLength)) { |
6229 | return false; |
6230 | } |
6231 | |
6232 | unsigned char * const dest = &(((unsigned char *)_data)[oldLength]); |
6233 | if (bytes) { |
6234 | bcopy(src: bytes, dst: dest, n: length); |
6235 | } |
6236 | |
6237 | return true; |
6238 | } |
6239 | |
6240 | bool |
6241 | _IOMemoryDescriptorMixedData::setLength(size_t length) |
6242 | { |
6243 | if (!_data || (length > _capacity)) { |
6244 | void *newData; |
6245 | |
6246 | newData = __krealloc_type(kt_view: KT_IOMD_MIXED_DATA, addr: _data, old_size: _capacity, |
6247 | new_size: length, Z_VM_TAG_BT(Z_WAITOK_ZERO, VM_KERN_MEMORY_IOKIT), |
6248 | NULL); |
6249 | if (!newData) { |
6250 | return false; |
6251 | } |
6252 | |
6253 | _data = newData; |
6254 | _capacity = length; |
6255 | } |
6256 | |
6257 | _length = length; |
6258 | return true; |
6259 | } |
6260 | |
6261 | const void * |
6262 | _IOMemoryDescriptorMixedData::getBytes() const |
6263 | { |
6264 | return _length ? _data : nullptr; |
6265 | } |
6266 | |
6267 | size_t |
6268 | _IOMemoryDescriptorMixedData::getLength() const |
6269 | { |
6270 | return _data ? _length : 0; |
6271 | } |
6272 | |