| 1 | /* |
| 2 | * Copyright (c) 2015-2023 Apple Inc. All rights reserved. |
| 3 | * |
| 4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ |
| 5 | * |
| 6 | * This file contains Original Code and/or Modifications of Original Code |
| 7 | * as defined in and that are subject to the Apple Public Source License |
| 8 | * Version 2.0 (the 'License'). You may not use this file except in |
| 9 | * compliance with the License. The rights granted to you under the License |
| 10 | * may not be used to create, or enable the creation or redistribution of, |
| 11 | * unlawful or unlicensed copies of an Apple operating system, or to |
| 12 | * circumvent, violate, or enable the circumvention or violation of, any |
| 13 | * terms of an Apple operating system software license agreement. |
| 14 | * |
| 15 | * Please obtain a copy of the License at |
| 16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. |
| 17 | * |
| 18 | * The Original Code and all software distributed under the License are |
| 19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER |
| 20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
| 21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, |
| 22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
| 23 | * Please see the License for the specific language governing rights and |
| 24 | * limitations under the License. |
| 25 | * |
| 26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ |
| 27 | */ |
| 28 | |
| 29 | #include <sys/cprotect.h> |
| 30 | #include <sys/malloc.h> |
| 31 | #include <sys/mount_internal.h> |
| 32 | #include <sys/filio.h> |
| 33 | #include <sys/content_protection.h> |
| 34 | #include <libkern/crypto/sha1.h> |
| 35 | #include <libkern/libkern.h> |
| 36 | //for write protection |
| 37 | #include <vm/vm_kern.h> |
| 38 | #include <vm/vm_map.h> |
| 39 | |
| 40 | #define PTR_ADD(type, base, offset) (type)((uintptr_t)(base) + (offset)) |
| 41 | |
| 42 | // -- struct cpx -- |
| 43 | |
| 44 | /* |
| 45 | * This structure contains the unwrapped key and is passed to the lower layers. |
| 46 | * It is private so users must use the accessors declared in sys/cprotect.h |
| 47 | * to read/write it. |
| 48 | */ |
| 49 | |
| 50 | // cpx_flags defined in cprotect.h |
| 51 | enum { |
| 52 | CPX_SEP_WRAPPEDKEY = 0x01, |
| 53 | CPX_IV_AES_CTX_INITIALIZED = 0x02, |
| 54 | CPX_USE_OFFSET_FOR_IV = 0x04, |
| 55 | |
| 56 | // Using AES IV context generated from key |
| 57 | CPX_IV_AES_CTX_VFS = 0x08, |
| 58 | CPX_SYNTHETIC_OFFSET_FOR_IV = 0x10, |
| 59 | CPX_COMPOSITEKEY = 0x20, |
| 60 | |
| 61 | //write page protection |
| 62 | CPX_WRITE_PROTECTABLE = 0x40 |
| 63 | }; |
| 64 | |
| 65 | /* |
| 66 | * variable-length CPX structure. See fixed-length variant in cprotect.h |
| 67 | */ |
| 68 | struct cpx { |
| 69 | #if DEBUG |
| 70 | uint32_t cpx_magic1; |
| 71 | #endif |
| 72 | aes_encrypt_ctx *cpx_iv_aes_ctx_ptr;// Pointer to context used for generating the IV |
| 73 | cpx_flags_t cpx_flags; |
| 74 | uint16_t cpx_max_key_len; |
| 75 | uint16_t cpx_key_len; |
| 76 | //fixed length up to here. cpx_cached_key is variable-length |
| 77 | uint8_t cpx_cached_key[]; |
| 78 | }; |
| 79 | |
| 80 | /* Allows us to switch between CPX types */ |
| 81 | typedef union cpxunion { |
| 82 | struct cpx cpx_var; |
| 83 | fcpx_t cpx_fixed; |
| 84 | } cpxunion_t; |
| 85 | |
| 86 | ZONE_DEFINE(cpx_zone, "cpx" , |
| 87 | sizeof(struct fcpx), ZC_ZFREE_CLEARMEM); |
| 88 | ZONE_DEFINE(aes_ctz_zone, "AES ctx" , |
| 89 | sizeof(aes_encrypt_ctx), ZC_ZFREE_CLEARMEM); |
| 90 | |
| 91 | // Note: see struct fcpx defined in sys/cprotect.h |
| 92 | |
| 93 | // -- cpx_t accessors -- |
| 94 | |
| 95 | size_t |
| 96 | cpx_size(size_t key_len) |
| 97 | { |
| 98 | // This should pick up the 'magic' word in DEBUG for free. |
| 99 | size_t size = sizeof(struct cpx) + key_len; |
| 100 | |
| 101 | return size; |
| 102 | } |
| 103 | |
| 104 | size_t |
| 105 | cpx_sizex(const struct cpx *cpx) |
| 106 | { |
| 107 | return cpx_size(key_len: cpx->cpx_max_key_len); |
| 108 | } |
| 109 | |
| 110 | cpx_t |
| 111 | cpx_alloc(size_t key_len, bool needs_ctx) |
| 112 | { |
| 113 | cpx_t cpx = NULL; |
| 114 | |
| 115 | #if CONFIG_KEYPAGE_WP |
| 116 | #pragma unused(key_len, needs_ctx) |
| 117 | |
| 118 | /* |
| 119 | * Macs only use 1 key per volume, so force it into its own page. |
| 120 | * This way, we can write-protect as needed. |
| 121 | */ |
| 122 | |
| 123 | assert(cpx_size(key_len) <= PAGE_SIZE); |
| 124 | kmem_alloc(kernel_map, (vm_offset_t *)&cpx, PAGE_SIZE, |
| 125 | KMA_DATA | KMA_NOFAIL, VM_KERN_MEMORY_FILE); |
| 126 | //mark the page as protectable, since kmem_alloc succeeded. |
| 127 | cpx->cpx_flags |= CPX_WRITE_PROTECTABLE; |
| 128 | #else |
| 129 | /* If key page write protection disabled, just switch to zalloc */ |
| 130 | |
| 131 | // error out if you try to request a key that's too big |
| 132 | if (key_len > VFS_CP_MAX_CACHEBUFLEN) { |
| 133 | return NULL; |
| 134 | } |
| 135 | |
| 136 | // the actual key array is fixed-length, but the amount of usable content can vary, via 'key_len' |
| 137 | cpx = zalloc_flags(cpx_zone, Z_WAITOK | Z_ZERO); |
| 138 | |
| 139 | // if our encryption type needs it, alloc the context |
| 140 | if (needs_ctx) { |
| 141 | cpx_alloc_ctx(cpx); |
| 142 | } |
| 143 | |
| 144 | #endif |
| 145 | cpx_init(cpx, key_len); |
| 146 | |
| 147 | return cpx; |
| 148 | } |
| 149 | |
| 150 | int |
| 151 | cpx_alloc_ctx(cpx_t cpx) |
| 152 | { |
| 153 | #if CONFIG_KEYPAGE_WP |
| 154 | (void) cpx; |
| 155 | #else |
| 156 | if (cpx->cpx_iv_aes_ctx_ptr) { |
| 157 | // already allocated? |
| 158 | return 0; |
| 159 | } |
| 160 | |
| 161 | cpx->cpx_iv_aes_ctx_ptr = zalloc_flags(aes_ctz_zone, Z_WAITOK | Z_ZERO); |
| 162 | #endif // CONFIG_KEYPAGE_WP |
| 163 | |
| 164 | return 0; |
| 165 | } |
| 166 | |
| 167 | void |
| 168 | cpx_free_ctx(cpx_t cpx) |
| 169 | { |
| 170 | #if CONFIG_KEYPAGE_WP |
| 171 | (void) cpx; |
| 172 | # else |
| 173 | if (cpx->cpx_iv_aes_ctx_ptr) { |
| 174 | zfree(aes_ctz_zone, cpx->cpx_iv_aes_ctx_ptr); |
| 175 | } |
| 176 | #endif // CONFIG_KEYPAGE_WP |
| 177 | } |
| 178 | |
| 179 | void |
| 180 | cpx_writeprotect(cpx_t cpx) |
| 181 | { |
| 182 | #if CONFIG_KEYPAGE_WP |
| 183 | void *cpxstart = (void*)cpx; |
| 184 | void *cpxend = (void*)((uint8_t*)cpx + PAGE_SIZE); |
| 185 | if (cpx->cpx_flags & CPX_WRITE_PROTECTABLE) { |
| 186 | vm_map_protect(kernel_map, (vm_map_offset_t)cpxstart, (vm_map_offset_t)cpxend, (VM_PROT_READ), FALSE); |
| 187 | } |
| 188 | #else |
| 189 | (void) cpx; |
| 190 | #endif |
| 191 | return; |
| 192 | } |
| 193 | |
| 194 | #if DEBUG |
| 195 | static const uint32_t cpx_magic1 = 0x7b787063; // cpx{ |
| 196 | static const uint32_t cpx_magic2 = 0x7870637d; // }cpx |
| 197 | #endif |
| 198 | |
| 199 | void |
| 200 | cpx_free(cpx_t cpx) |
| 201 | { |
| 202 | #if DEBUG |
| 203 | assert(cpx->cpx_magic1 == cpx_magic1); |
| 204 | assert(*PTR_ADD(uint32_t *, cpx, cpx_sizex(cpx) - 4) == cpx_magic2); |
| 205 | #endif |
| 206 | |
| 207 | #if CONFIG_KEYPAGE_WP |
| 208 | /* unprotect the page before bzeroing */ |
| 209 | void *cpxstart = (void*)cpx; |
| 210 | void *cpxend = (void*)((uint8_t*)cpx + PAGE_SIZE); |
| 211 | if (cpx->cpx_flags & CPX_WRITE_PROTECTABLE) { |
| 212 | vm_map_protect(kernel_map, (vm_map_offset_t)cpxstart, (vm_map_offset_t)cpxend, (VM_PROT_DEFAULT), FALSE); |
| 213 | |
| 214 | //now zero the memory after un-protecting it |
| 215 | bzero(cpx->cpx_cached_key, cpx->cpx_max_key_len); |
| 216 | |
| 217 | //If we are here, then we used kmem_alloc to get the page. Must use kmem_free to drop it. |
| 218 | kmem_free(kernel_map, (vm_offset_t)cpx, PAGE_SIZE); |
| 219 | return; |
| 220 | } |
| 221 | #else |
| 222 | // free the context if it wasn't already freed |
| 223 | cpx_free_ctx(cpx); |
| 224 | zfree(cpx_zone, cpx); |
| 225 | return; |
| 226 | #endif |
| 227 | } |
| 228 | |
| 229 | void |
| 230 | cpx_init(cpx_t cpx, size_t key_len) |
| 231 | { |
| 232 | #if DEBUG |
| 233 | cpx->cpx_magic1 = cpx_magic1; |
| 234 | *PTR_ADD(uint32_t *, cpx, cpx_size(key_len) - 4) = cpx_magic2; |
| 235 | #endif |
| 236 | cpx->cpx_flags = 0; |
| 237 | cpx->cpx_key_len = 0; |
| 238 | assert(key_len <= UINT16_MAX); |
| 239 | cpx->cpx_max_key_len = (uint16_t)key_len; |
| 240 | } |
| 241 | |
| 242 | bool |
| 243 | cpx_is_sep_wrapped_key(const struct cpx *cpx) |
| 244 | { |
| 245 | return ISSET(cpx->cpx_flags, CPX_SEP_WRAPPEDKEY); |
| 246 | } |
| 247 | |
| 248 | void |
| 249 | cpx_set_is_sep_wrapped_key(struct cpx *cpx, bool v) |
| 250 | { |
| 251 | if (v) { |
| 252 | SET(cpx->cpx_flags, CPX_SEP_WRAPPEDKEY); |
| 253 | } else { |
| 254 | CLR(cpx->cpx_flags, CPX_SEP_WRAPPEDKEY); |
| 255 | } |
| 256 | } |
| 257 | |
| 258 | bool |
| 259 | cpx_is_composite_key(const struct cpx *cpx) |
| 260 | { |
| 261 | return ISSET(cpx->cpx_flags, CPX_COMPOSITEKEY); |
| 262 | } |
| 263 | |
| 264 | void |
| 265 | cpx_set_is_composite_key(struct cpx *cpx, bool v) |
| 266 | { |
| 267 | if (v) { |
| 268 | SET(cpx->cpx_flags, CPX_COMPOSITEKEY); |
| 269 | } else { |
| 270 | CLR(cpx->cpx_flags, CPX_COMPOSITEKEY); |
| 271 | } |
| 272 | } |
| 273 | |
| 274 | bool |
| 275 | cpx_use_offset_for_iv(const struct cpx *cpx) |
| 276 | { |
| 277 | return ISSET(cpx->cpx_flags, CPX_USE_OFFSET_FOR_IV); |
| 278 | } |
| 279 | |
| 280 | void |
| 281 | cpx_set_use_offset_for_iv(struct cpx *cpx, bool v) |
| 282 | { |
| 283 | if (v) { |
| 284 | SET(cpx->cpx_flags, CPX_USE_OFFSET_FOR_IV); |
| 285 | } else { |
| 286 | CLR(cpx->cpx_flags, CPX_USE_OFFSET_FOR_IV); |
| 287 | } |
| 288 | } |
| 289 | |
| 290 | bool |
| 291 | cpx_synthetic_offset_for_iv(const struct cpx *cpx) |
| 292 | { |
| 293 | return ISSET(cpx->cpx_flags, CPX_SYNTHETIC_OFFSET_FOR_IV); |
| 294 | } |
| 295 | |
| 296 | void |
| 297 | cpx_set_synthetic_offset_for_iv(struct cpx *cpx, bool v) |
| 298 | { |
| 299 | if (v) { |
| 300 | SET(cpx->cpx_flags, CPX_SYNTHETIC_OFFSET_FOR_IV); |
| 301 | } else { |
| 302 | CLR(cpx->cpx_flags, CPX_SYNTHETIC_OFFSET_FOR_IV); |
| 303 | } |
| 304 | } |
| 305 | |
| 306 | uint16_t |
| 307 | cpx_max_key_len(const struct cpx *cpx) |
| 308 | { |
| 309 | return cpx->cpx_max_key_len; |
| 310 | } |
| 311 | |
| 312 | uint16_t |
| 313 | cpx_key_len(const struct cpx *cpx) |
| 314 | { |
| 315 | return cpx->cpx_key_len; |
| 316 | } |
| 317 | |
| 318 | void |
| 319 | cpx_set_key_len(struct cpx *cpx, uint16_t key_len) |
| 320 | { |
| 321 | cpx->cpx_key_len = key_len; |
| 322 | |
| 323 | if (ISSET(cpx->cpx_flags, CPX_IV_AES_CTX_VFS)) { |
| 324 | /* |
| 325 | * We assume that if the key length is being modified, the key |
| 326 | * has changed. As a result, un-set any bits related to the |
| 327 | * AES context, if needed. They should be re-generated |
| 328 | * on-demand. |
| 329 | */ |
| 330 | CLR(cpx->cpx_flags, CPX_IV_AES_CTX_INITIALIZED | CPX_IV_AES_CTX_VFS); |
| 331 | } |
| 332 | } |
| 333 | |
| 334 | bool |
| 335 | cpx_has_key(const struct cpx *cpx) |
| 336 | { |
| 337 | return cpx->cpx_key_len > 0; |
| 338 | } |
| 339 | |
| 340 | #pragma clang diagnostic push |
| 341 | #pragma clang diagnostic ignored "-Wcast-qual" |
| 342 | void * |
| 343 | cpx_key(const struct cpx *cpx) |
| 344 | { |
| 345 | return (void *)cpx->cpx_cached_key; |
| 346 | } |
| 347 | #pragma clang diagnostic pop |
| 348 | |
| 349 | void |
| 350 | cpx_set_aes_iv_key(struct cpx *cpx, void *iv_key) |
| 351 | { |
| 352 | if (cpx->cpx_iv_aes_ctx_ptr) { |
| 353 | aes_encrypt_key128(key: iv_key, cx: cpx->cpx_iv_aes_ctx_ptr); |
| 354 | SET(cpx->cpx_flags, CPX_IV_AES_CTX_INITIALIZED | CPX_USE_OFFSET_FOR_IV); |
| 355 | CLR(cpx->cpx_flags, CPX_IV_AES_CTX_VFS); |
| 356 | } |
| 357 | } |
| 358 | |
| 359 | aes_encrypt_ctx * |
| 360 | cpx_iv_aes_ctx(struct cpx *cpx) |
| 361 | { |
| 362 | if (ISSET(cpx->cpx_flags, CPX_IV_AES_CTX_INITIALIZED)) { |
| 363 | return cpx->cpx_iv_aes_ctx_ptr; |
| 364 | } |
| 365 | |
| 366 | SHA1_CTX sha1ctxt; |
| 367 | uint8_t digest[SHA_DIGEST_LENGTH]; /* Kiv */ |
| 368 | |
| 369 | /* First init the cp_cache_iv_key[] */ |
| 370 | SHA1Init(&sha1ctxt); |
| 371 | |
| 372 | /* |
| 373 | * We can only use this when the keys are generated in the AP; As a result |
| 374 | * we only use the first 32 bytes of key length in the cache key |
| 375 | */ |
| 376 | SHA1Update(&sha1ctxt, cpx->cpx_cached_key, cpx->cpx_key_len); |
| 377 | SHA1Final(digest, &sha1ctxt); |
| 378 | |
| 379 | cpx_set_aes_iv_key(cpx, iv_key: digest); |
| 380 | SET(cpx->cpx_flags, CPX_IV_AES_CTX_VFS); |
| 381 | |
| 382 | return cpx->cpx_iv_aes_ctx_ptr; |
| 383 | } |
| 384 | |
| 385 | void |
| 386 | cpx_flush(cpx_t cpx) |
| 387 | { |
| 388 | bzero(s: cpx->cpx_cached_key, n: cpx->cpx_max_key_len); |
| 389 | if (cpx->cpx_iv_aes_ctx_ptr) { |
| 390 | bzero(s: cpx->cpx_iv_aes_ctx_ptr, n: sizeof(aes_encrypt_ctx)); |
| 391 | } |
| 392 | cpx->cpx_flags = 0; |
| 393 | cpx->cpx_key_len = 0; |
| 394 | } |
| 395 | |
| 396 | bool |
| 397 | cpx_can_copy(const struct cpx *src, const struct cpx *dst) |
| 398 | { |
| 399 | return src->cpx_key_len <= dst->cpx_max_key_len; |
| 400 | } |
| 401 | |
| 402 | void |
| 403 | cpx_copy(const struct cpx *src, cpx_t dst) |
| 404 | { |
| 405 | uint16_t key_len = cpx_key_len(cpx: src); |
| 406 | cpx_set_key_len(cpx: dst, key_len); |
| 407 | memcpy(dst: cpx_key(cpx: dst), src: cpx_key(cpx: src), n: key_len); |
| 408 | dst->cpx_flags = src->cpx_flags; |
| 409 | if (ISSET(dst->cpx_flags, CPX_IV_AES_CTX_INITIALIZED)) { |
| 410 | *(dst->cpx_iv_aes_ctx_ptr) = *(src->cpx_iv_aes_ctx_ptr); // deep copy |
| 411 | } |
| 412 | } |
| 413 | |
| 414 | typedef unsigned char cp_vfs_callback_arg_type_t; |
| 415 | enum { |
| 416 | CP_TYPE_LOCK_STATE = 0, |
| 417 | CP_TYPE_EP_STATE = 1, |
| 418 | CP_TYPE_CX_STATE = 2, |
| 419 | }; |
| 420 | |
| 421 | typedef struct { |
| 422 | cp_vfs_callback_arg_type_t type; |
| 423 | union { |
| 424 | cp_lock_state_t lock_state; |
| 425 | cp_ep_state_t ep_state; |
| 426 | cp_cx_state_t cx_state; |
| 427 | }; |
| 428 | int valid_uuid; |
| 429 | uuid_t volume_uuid; |
| 430 | } cp_vfs_callback_arg; |
| 431 | |
| 432 | static int |
| 433 | cp_vfs_callback(mount_t mp, void *arg) |
| 434 | { |
| 435 | cp_vfs_callback_arg *callback_arg = (cp_vfs_callback_arg *)arg; |
| 436 | |
| 437 | if (callback_arg->valid_uuid) { |
| 438 | struct vfs_attr va; |
| 439 | VFSATTR_INIT(&va); |
| 440 | VFSATTR_WANTED(&va, f_uuid); |
| 441 | |
| 442 | if (vfs_getattr(mp, vfa: &va, ctx: vfs_context_current())) { |
| 443 | return 0; |
| 444 | } |
| 445 | |
| 446 | if (!VFSATTR_IS_SUPPORTED(&va, f_uuid)) { |
| 447 | return 0; |
| 448 | } |
| 449 | |
| 450 | if (memcmp(s1: va.f_uuid, s2: callback_arg->volume_uuid, n: sizeof(uuid_t))) { |
| 451 | return 0; |
| 452 | } |
| 453 | } |
| 454 | |
| 455 | switch (callback_arg->type) { |
| 456 | case(CP_TYPE_LOCK_STATE): |
| 457 | VFS_IOCTL(mp, FIODEVICELOCKED, data: (void *)(uintptr_t)callback_arg->lock_state, flags: 0, context: vfs_context_kernel()); |
| 458 | break; |
| 459 | case(CP_TYPE_EP_STATE): |
| 460 | VFS_IOCTL(mp, FIODEVICEEPSTATE, data: (void *)(uintptr_t)callback_arg->ep_state, flags: 0, context: vfs_context_kernel()); |
| 461 | break; |
| 462 | case(CP_TYPE_CX_STATE): |
| 463 | VFS_IOCTL(mp, FIODEVICECXSTATE, data: (void *)(uintptr_t)callback_arg->cx_state, flags: 0, context: vfs_context_kernel()); |
| 464 | break; |
| 465 | default: |
| 466 | break; |
| 467 | } |
| 468 | return 0; |
| 469 | } |
| 470 | |
| 471 | int |
| 472 | cp_key_store_action(cp_key_store_action_t action) |
| 473 | { |
| 474 | cp_vfs_callback_arg callback_arg; |
| 475 | |
| 476 | memset(s: callback_arg.volume_uuid, c: 0, n: sizeof(uuid_t)); |
| 477 | callback_arg.valid_uuid = 0; |
| 478 | |
| 479 | switch (action) { |
| 480 | case CP_ACTION_LOCKED: |
| 481 | case CP_ACTION_UNLOCKED: |
| 482 | callback_arg.type = CP_TYPE_LOCK_STATE; |
| 483 | callback_arg.lock_state = (action == CP_ACTION_LOCKED ? CP_LOCKED_STATE : CP_UNLOCKED_STATE); |
| 484 | return vfs_iterate(flags: 0, callout: cp_vfs_callback, arg: (void *)&callback_arg); |
| 485 | case CP_ACTION_EP_INVALIDATED: |
| 486 | callback_arg.type = CP_TYPE_EP_STATE; |
| 487 | callback_arg.ep_state = CP_EP_INVALIDATED; |
| 488 | return vfs_iterate(flags: 0, callout: cp_vfs_callback, arg: (void *)&callback_arg); |
| 489 | case CP_ACTION_CX_EXPIRED: |
| 490 | callback_arg.type = CP_TYPE_CX_STATE; |
| 491 | callback_arg.cx_state = CP_CX_EXPIRED; |
| 492 | return vfs_iterate(flags: 0, callout: cp_vfs_callback, arg: (void *)&callback_arg); |
| 493 | default: |
| 494 | return -1; |
| 495 | } |
| 496 | } |
| 497 | |
| 498 | int |
| 499 | cp_key_store_action_for_volume(uuid_t volume_uuid, cp_key_store_action_t action) |
| 500 | { |
| 501 | cp_vfs_callback_arg callback_arg; |
| 502 | |
| 503 | memcpy(dst: callback_arg.volume_uuid, src: volume_uuid, n: sizeof(uuid_t)); |
| 504 | callback_arg.valid_uuid = 1; |
| 505 | |
| 506 | switch (action) { |
| 507 | case CP_ACTION_LOCKED: |
| 508 | case CP_ACTION_UNLOCKED: |
| 509 | callback_arg.type = CP_TYPE_LOCK_STATE; |
| 510 | callback_arg.lock_state = (action == CP_ACTION_LOCKED ? CP_LOCKED_STATE : CP_UNLOCKED_STATE); |
| 511 | return vfs_iterate(flags: 0, callout: cp_vfs_callback, arg: (void *)&callback_arg); |
| 512 | case CP_ACTION_EP_INVALIDATED: |
| 513 | callback_arg.type = CP_TYPE_EP_STATE; |
| 514 | callback_arg.ep_state = CP_EP_INVALIDATED; |
| 515 | return vfs_iterate(flags: 0, callout: cp_vfs_callback, arg: (void *)&callback_arg); |
| 516 | case CP_ACTION_CX_EXPIRED: |
| 517 | callback_arg.type = CP_TYPE_CX_STATE; |
| 518 | callback_arg.cx_state = CP_CX_EXPIRED; |
| 519 | return vfs_iterate(flags: 0, callout: cp_vfs_callback, arg: (void *)&callback_arg); |
| 520 | default: |
| 521 | return -1; |
| 522 | } |
| 523 | } |
| 524 | |
| 525 | int |
| 526 | cp_is_valid_class(int isdir, int32_t protectionclass) |
| 527 | { |
| 528 | /* |
| 529 | * The valid protection classes are from 0 -> N |
| 530 | * We use a signed argument to detect unassigned values from |
| 531 | * directory entry creation time in HFS. |
| 532 | */ |
| 533 | if (isdir) { |
| 534 | /* Directories are not allowed to have F, but they can have "NONE" */ |
| 535 | return (protectionclass == PROTECTION_CLASS_CX) || |
| 536 | ((protectionclass >= PROTECTION_CLASS_DIR_NONE) && |
| 537 | (protectionclass <= PROTECTION_CLASS_D)); |
| 538 | } else { |
| 539 | return (protectionclass >= PROTECTION_CLASS_A) && |
| 540 | (protectionclass <= PROTECTION_CLASS_CX); |
| 541 | } |
| 542 | } |
| 543 | |
| 544 | /* |
| 545 | * Parses versions of the form 12A316, i.e. <major><minor><revision> and |
| 546 | * returns a uint32_t in the form 0xaabbcccc where aa = <major>, |
| 547 | * bb = <ASCII char>, cccc = <revision>. |
| 548 | */ |
| 549 | static cp_key_os_version_t |
| 550 | parse_os_version(const char *vers) |
| 551 | { |
| 552 | const char *p = vers; |
| 553 | |
| 554 | int a = 0; |
| 555 | while (*p >= '0' && *p <= '9') { |
| 556 | a = a * 10 + *p - '0'; |
| 557 | ++p; |
| 558 | } |
| 559 | |
| 560 | if (!a) { |
| 561 | return 0; |
| 562 | } |
| 563 | |
| 564 | int b = *p++; |
| 565 | if (!b) { |
| 566 | return 0; |
| 567 | } |
| 568 | |
| 569 | int c = 0; |
| 570 | while (*p >= '0' && *p <= '9') { |
| 571 | c = c * 10 + *p - '0'; |
| 572 | ++p; |
| 573 | } |
| 574 | |
| 575 | if (!c) { |
| 576 | return 0; |
| 577 | } |
| 578 | |
| 579 | return (a & 0xff) << 24 | b << 16 | (c & 0xffff); |
| 580 | } |
| 581 | |
| 582 | cp_key_os_version_t |
| 583 | cp_os_version(void) |
| 584 | { |
| 585 | static cp_key_os_version_t cp_os_version; |
| 586 | |
| 587 | if (cp_os_version) { |
| 588 | return cp_os_version; |
| 589 | } |
| 590 | |
| 591 | if (!osversion[0]) { |
| 592 | return 0; |
| 593 | } |
| 594 | |
| 595 | cp_os_version = parse_os_version(vers: osversion); |
| 596 | if (!cp_os_version) { |
| 597 | printf("cp_os_version: unable to parse osversion `%s'\n" , osversion); |
| 598 | cp_os_version = 1; |
| 599 | } |
| 600 | |
| 601 | return cp_os_version; |
| 602 | } |
| 603 | |