| 1 | /* |
| 2 | * Copyright (c) 2000-2020 Apple Inc. All rights reserved. |
| 3 | * |
| 4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ |
| 5 | * |
| 6 | * This file contains Original Code and/or Modifications of Original Code |
| 7 | * as defined in and that are subject to the Apple Public Source License |
| 8 | * Version 2.0 (the 'License'). You may not use this file except in |
| 9 | * compliance with the License. The rights granted to you under the License |
| 10 | * may not be used to create, or enable the creation or redistribution of, |
| 11 | * unlawful or unlicensed copies of an Apple operating system, or to |
| 12 | * circumvent, violate, or enable the circumvention or violation of, any |
| 13 | * terms of an Apple operating system software license agreement. |
| 14 | * |
| 15 | * Please obtain a copy of the License at |
| 16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. |
| 17 | * |
| 18 | * The Original Code and all software distributed under the License are |
| 19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER |
| 20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
| 21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, |
| 22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
| 23 | * Please see the License for the specific language governing rights and |
| 24 | * limitations under the License. |
| 25 | * |
| 26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ |
| 27 | */ |
| 28 | /* Copyright (c) 1995 NeXT Computer, Inc. All Rights Reserved */ |
| 29 | /* |
| 30 | * Copyright (c) 1993 |
| 31 | * The Regents of the University of California. All rights reserved. |
| 32 | * |
| 33 | * Redistribution and use in source and binary forms, with or without |
| 34 | * modification, are permitted provided that the following conditions |
| 35 | * are met: |
| 36 | * 1. Redistributions of source code must retain the above copyright |
| 37 | * notice, this list of conditions and the following disclaimer. |
| 38 | * 2. Redistributions in binary form must reproduce the above copyright |
| 39 | * notice, this list of conditions and the following disclaimer in the |
| 40 | * documentation and/or other materials provided with the distribution. |
| 41 | * 3. All advertising materials mentioning features or use of this software |
| 42 | * must display the following acknowledgement: |
| 43 | * This product includes software developed by the University of |
| 44 | * California, Berkeley and its contributors. |
| 45 | * 4. Neither the name of the University nor the names of its contributors |
| 46 | * may be used to endorse or promote products derived from this software |
| 47 | * without specific prior written permission. |
| 48 | * |
| 49 | * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND |
| 50 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 51 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 52 | * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE |
| 53 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
| 54 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
| 55 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| 56 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
| 57 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
| 58 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
| 59 | * SUCH DAMAGE. |
| 60 | * |
| 61 | * @(#)vfs_cluster.c 8.10 (Berkeley) 3/28/95 |
| 62 | */ |
| 63 | |
| 64 | #include <sys/param.h> |
| 65 | #include <sys/proc_internal.h> |
| 66 | #include <sys/buf_internal.h> |
| 67 | #include <sys/mount_internal.h> |
| 68 | #include <sys/vnode_internal.h> |
| 69 | #include <sys/trace.h> |
| 70 | #include <kern/kalloc.h> |
| 71 | #include <sys/time.h> |
| 72 | #include <sys/kernel.h> |
| 73 | #include <sys/resourcevar.h> |
| 74 | #include <miscfs/specfs/specdev.h> |
| 75 | #include <sys/uio_internal.h> |
| 76 | #include <libkern/libkern.h> |
| 77 | #include <machine/machine_routines.h> |
| 78 | |
| 79 | #include <sys/ubc_internal.h> |
| 80 | #include <vm/vnode_pager.h> |
| 81 | |
| 82 | #include <mach/mach_types.h> |
| 83 | #include <mach/memory_object_types.h> |
| 84 | #include <mach/vm_map.h> |
| 85 | #include <mach/upl.h> |
| 86 | #include <kern/task.h> |
| 87 | #include <kern/policy_internal.h> |
| 88 | |
| 89 | #include <vm/vm_kern.h> |
| 90 | #include <vm/vm_map.h> |
| 91 | #include <vm/vm_pageout.h> |
| 92 | #include <vm/vm_fault.h> |
| 93 | |
| 94 | #include <sys/kdebug.h> |
| 95 | #include <sys/kdebug_triage.h> |
| 96 | #include <libkern/OSAtomic.h> |
| 97 | |
| 98 | #include <sys/sdt.h> |
| 99 | |
| 100 | #include <stdbool.h> |
| 101 | |
| 102 | #include <vfs/vfs_disk_conditioner.h> |
| 103 | |
| 104 | #if 0 |
| 105 | #undef KERNEL_DEBUG |
| 106 | #define KERNEL_DEBUG KERNEL_DEBUG_CONSTANT |
| 107 | #endif |
| 108 | |
| 109 | |
| 110 | #define CL_READ 0x01 |
| 111 | #define CL_WRITE 0x02 |
| 112 | #define CL_ASYNC 0x04 |
| 113 | #define CL_COMMIT 0x08 |
| 114 | #define CL_PAGEOUT 0x10 |
| 115 | #define CL_AGE 0x20 |
| 116 | #define CL_NOZERO 0x40 |
| 117 | #define CL_PAGEIN 0x80 |
| 118 | #define CL_DEV_MEMORY 0x100 |
| 119 | #define CL_PRESERVE 0x200 |
| 120 | #define CL_THROTTLE 0x400 |
| 121 | #define CL_KEEPCACHED 0x800 |
| 122 | #define CL_DIRECT_IO 0x1000 |
| 123 | #define CL_PASSIVE 0x2000 |
| 124 | #define CL_IOSTREAMING 0x4000 |
| 125 | #define CL_CLOSE 0x8000 |
| 126 | #define CL_ENCRYPTED 0x10000 |
| 127 | #define CL_RAW_ENCRYPTED 0x20000 |
| 128 | #define CL_NOCACHE 0x40000 |
| 129 | |
| 130 | #define MAX_VECTOR_UPL_SIZE (2 * MAX_UPL_SIZE_BYTES) |
| 131 | |
| 132 | #define CLUSTER_IO_WAITING ((buf_t)1) |
| 133 | |
| 134 | extern upl_t vector_upl_create(vm_offset_t, uint32_t); |
| 135 | extern uint32_t vector_upl_max_upls(upl_t); |
| 136 | extern boolean_t vector_upl_is_valid(upl_t); |
| 137 | extern boolean_t vector_upl_set_subupl(upl_t, upl_t, u_int32_t); |
| 138 | extern void vector_upl_set_pagelist(upl_t); |
| 139 | extern void vector_upl_set_iostate(upl_t, upl_t, vm_offset_t, u_int32_t); |
| 140 | |
| 141 | struct clios { |
| 142 | lck_mtx_t io_mtxp; |
| 143 | u_int io_completed; /* amount of io that has currently completed */ |
| 144 | u_int io_issued; /* amount of io that was successfully issued */ |
| 145 | int io_error; /* error code of first error encountered */ |
| 146 | int io_wanted; /* someone is sleeping waiting for a change in state */ |
| 147 | }; |
| 148 | |
| 149 | struct cl_direct_read_lock { |
| 150 | LIST_ENTRY(cl_direct_read_lock) chain; |
| 151 | int32_t ref_count; |
| 152 | vnode_t vp; |
| 153 | lck_rw_t rw_lock; |
| 154 | }; |
| 155 | |
| 156 | #define CL_DIRECT_READ_LOCK_BUCKETS 61 |
| 157 | |
| 158 | static LIST_HEAD(cl_direct_read_locks, cl_direct_read_lock) |
| 159 | cl_direct_read_locks[CL_DIRECT_READ_LOCK_BUCKETS]; |
| 160 | |
| 161 | static LCK_GRP_DECLARE(cl_mtx_grp, "cluster I/O" ); |
| 162 | static LCK_MTX_DECLARE(cl_transaction_mtxp, &cl_mtx_grp); |
| 163 | static LCK_SPIN_DECLARE(cl_direct_read_spin_lock, &cl_mtx_grp); |
| 164 | |
| 165 | static ZONE_DEFINE(cl_rd_zone, "cluster_read" , |
| 166 | sizeof(struct cl_readahead), ZC_ZFREE_CLEARMEM); |
| 167 | |
| 168 | static ZONE_DEFINE(cl_wr_zone, "cluster_write" , |
| 169 | sizeof(struct cl_writebehind), ZC_ZFREE_CLEARMEM); |
| 170 | |
| 171 | #define IO_UNKNOWN 0 |
| 172 | #define IO_DIRECT 1 |
| 173 | #define IO_CONTIG 2 |
| 174 | #define IO_COPY 3 |
| 175 | |
| 176 | #define PUSH_DELAY 0x01 |
| 177 | #define PUSH_ALL 0x02 |
| 178 | #define PUSH_SYNC 0x04 |
| 179 | |
| 180 | |
| 181 | static void cluster_EOT(buf_t cbp_head, buf_t cbp_tail, int zero_offset, size_t verify_block_size); |
| 182 | static void cluster_wait_IO(buf_t cbp_head, int async); |
| 183 | static void cluster_complete_transaction(buf_t *cbp_head, void *callback_arg, int *retval, int flags, int needwait); |
| 184 | |
| 185 | static int cluster_io_type(struct uio *uio, int *io_type, u_int32_t *io_length, u_int32_t min_length); |
| 186 | |
| 187 | static int cluster_io(vnode_t vp, upl_t upl, vm_offset_t upl_offset, off_t f_offset, int non_rounded_size, |
| 188 | int flags, buf_t real_bp, struct clios *iostate, int (*)(buf_t, void *), void *callback_arg); |
| 189 | static int cluster_iodone(buf_t bp, void *callback_arg); |
| 190 | static int cluster_ioerror(upl_t upl, int upl_offset, int abort_size, int error, int io_flags, vnode_t vp); |
| 191 | static int cluster_is_throttled(vnode_t vp); |
| 192 | |
| 193 | static void cluster_iostate_wait(struct clios *iostate, u_int target, const char *wait_name); |
| 194 | |
| 195 | static void cluster_syncup(vnode_t vp, off_t newEOF, int (*)(buf_t, void *), void *callback_arg, int flags); |
| 196 | |
| 197 | static void cluster_read_upl_release(upl_t upl, int start_pg, int last_pg, int take_reference); |
| 198 | static int cluster_copy_ubc_data_internal(vnode_t vp, struct uio *uio, int *io_resid, int mark_dirty, int take_reference); |
| 199 | |
| 200 | static int cluster_read_copy(vnode_t vp, struct uio *uio, u_int32_t io_req_size, off_t filesize, int flags, |
| 201 | int (*)(buf_t, void *), void *callback_arg) __attribute__((noinline)); |
| 202 | static int cluster_read_direct(vnode_t vp, struct uio *uio, off_t filesize, int *read_type, u_int32_t *read_length, |
| 203 | int flags, int (*)(buf_t, void *), void *callback_arg) __attribute__((noinline)); |
| 204 | static int cluster_read_contig(vnode_t vp, struct uio *uio, off_t filesize, int *read_type, u_int32_t *read_length, |
| 205 | int (*)(buf_t, void *), void *callback_arg, int flags) __attribute__((noinline)); |
| 206 | |
| 207 | static int cluster_write_copy(vnode_t vp, struct uio *uio, u_int32_t io_req_size, off_t oldEOF, off_t newEOF, |
| 208 | off_t headOff, off_t tailOff, int flags, int (*)(buf_t, void *), void *callback_arg) __attribute__((noinline)); |
| 209 | static int cluster_write_direct(vnode_t vp, struct uio *uio, off_t oldEOF, off_t newEOF, |
| 210 | int *write_type, u_int32_t *write_length, int flags, int (*)(buf_t, void *), void *callback_arg) __attribute__((noinline)); |
| 211 | static int cluster_write_contig(vnode_t vp, struct uio *uio, off_t newEOF, |
| 212 | int *write_type, u_int32_t *write_length, int (*)(buf_t, void *), void *callback_arg, int bflag) __attribute__((noinline)); |
| 213 | |
| 214 | static void cluster_update_state_internal(vnode_t vp, struct cl_extent *cl, int flags, boolean_t defer_writes, boolean_t *first_pass, |
| 215 | off_t write_off, int write_cnt, off_t newEOF, int (*callback)(buf_t, void *), void *callback_arg, boolean_t vm_initiated); |
| 216 | |
| 217 | static int cluster_align_phys_io(vnode_t vp, struct uio *uio, addr64_t usr_paddr, u_int32_t xsize, int flags, int (*)(buf_t, void *), void *callback_arg); |
| 218 | |
| 219 | static int cluster_read_prefetch(vnode_t vp, off_t f_offset, u_int size, off_t filesize, int (*callback)(buf_t, void *), void *callback_arg, int bflag); |
| 220 | static void cluster_read_ahead(vnode_t vp, struct cl_extent *extent, off_t filesize, struct cl_readahead *ra, |
| 221 | int (*callback)(buf_t, void *), void *callback_arg, int bflag); |
| 222 | |
| 223 | static int cluster_push_now(vnode_t vp, struct cl_extent *, off_t EOF, int flags, int (*)(buf_t, void *), void *callback_arg, boolean_t vm_ioitiated); |
| 224 | |
| 225 | static int cluster_try_push(struct cl_writebehind *, vnode_t vp, off_t EOF, int push_flag, int flags, int (*)(buf_t, void *), |
| 226 | void *callback_arg, int *err, boolean_t vm_initiated); |
| 227 | |
| 228 | static int sparse_cluster_switch(struct cl_writebehind *, vnode_t vp, off_t EOF, int (*)(buf_t, void *), void *callback_arg, boolean_t vm_initiated); |
| 229 | static int sparse_cluster_push(struct cl_writebehind *, void **cmapp, vnode_t vp, off_t EOF, int push_flag, |
| 230 | int io_flags, int (*)(buf_t, void *), void *callback_arg, boolean_t vm_initiated); |
| 231 | static int sparse_cluster_add(struct cl_writebehind *, void **cmapp, vnode_t vp, struct cl_extent *, off_t EOF, |
| 232 | int (*)(buf_t, void *), void *callback_arg, boolean_t vm_initiated); |
| 233 | |
| 234 | static kern_return_t vfs_drt_mark_pages(void **cmapp, off_t offset, u_int length, u_int *setcountp); |
| 235 | static kern_return_t vfs_drt_get_cluster(void **cmapp, off_t *offsetp, u_int *lengthp); |
| 236 | static kern_return_t vfs_drt_control(void **cmapp, int op_type); |
| 237 | static kern_return_t vfs_get_scmap_push_behavior_internal(void **cmapp, int *push_flag); |
| 238 | |
| 239 | |
| 240 | /* |
| 241 | * For throttled IO to check whether |
| 242 | * a block is cached by the boot cache |
| 243 | * and thus it can avoid delaying the IO. |
| 244 | * |
| 245 | * bootcache_contains_block is initially |
| 246 | * NULL. The BootCache will set it while |
| 247 | * the cache is active and clear it when |
| 248 | * the cache is jettisoned. |
| 249 | * |
| 250 | * Returns 0 if the block is not |
| 251 | * contained in the cache, 1 if it is |
| 252 | * contained. |
| 253 | * |
| 254 | * The function pointer remains valid |
| 255 | * after the cache has been evicted even |
| 256 | * if bootcache_contains_block has been |
| 257 | * cleared. |
| 258 | * |
| 259 | * See rdar://9974130 The new throttling mechanism breaks the boot cache for throttled IOs |
| 260 | */ |
| 261 | int (*bootcache_contains_block)(dev_t device, u_int64_t blkno) = NULL; |
| 262 | |
| 263 | |
| 264 | /* |
| 265 | * limit the internal I/O size so that we |
| 266 | * can represent it in a 32 bit int |
| 267 | */ |
| 268 | #define MAX_IO_REQUEST_SIZE (1024 * 1024 * 512) |
| 269 | #define MAX_IO_CONTIG_SIZE MAX_UPL_SIZE_BYTES |
| 270 | #define MAX_VECTS 16 |
| 271 | /* |
| 272 | * The MIN_DIRECT_WRITE_SIZE governs how much I/O should be issued before we consider |
| 273 | * allowing the caller to bypass the buffer cache. For small I/Os (less than 16k), |
| 274 | * we have not historically allowed the write to bypass the UBC. |
| 275 | */ |
| 276 | #define MIN_DIRECT_WRITE_SIZE (16384) |
| 277 | |
| 278 | #define WRITE_THROTTLE 6 |
| 279 | #define WRITE_THROTTLE_SSD 2 |
| 280 | #define WRITE_BEHIND 1 |
| 281 | #define WRITE_BEHIND_SSD 1 |
| 282 | |
| 283 | #if !defined(XNU_TARGET_OS_OSX) |
| 284 | #define PREFETCH 1 |
| 285 | #define PREFETCH_SSD 1 |
| 286 | uint32_t speculative_prefetch_max = (2048 * 1024); /* maximum bytes in a specluative read-ahead */ |
| 287 | uint32_t speculative_prefetch_max_iosize = (512 * 1024); /* maximum I/O size to use in a specluative read-ahead */ |
| 288 | #else /* XNU_TARGET_OS_OSX */ |
| 289 | #define PREFETCH 3 |
| 290 | #define PREFETCH_SSD 2 |
| 291 | uint32_t speculative_prefetch_max = (MAX_UPL_SIZE_BYTES * 3); /* maximum bytes in a specluative read-ahead */ |
| 292 | uint32_t speculative_prefetch_max_iosize = (512 * 1024); /* maximum I/O size to use in a specluative read-ahead on SSDs*/ |
| 293 | #endif /* ! XNU_TARGET_OS_OSX */ |
| 294 | |
| 295 | /* maximum bytes for read-ahead */ |
| 296 | uint32_t prefetch_max = (1024 * 1024 * 1024); |
| 297 | /* maximum bytes for outstanding reads */ |
| 298 | uint32_t overlapping_read_max = (1024 * 1024 * 1024); |
| 299 | /* maximum bytes for outstanding writes */ |
| 300 | uint32_t overlapping_write_max = (1024 * 1024 * 1024); |
| 301 | |
| 302 | #define IO_SCALE(vp, base) (vp->v_mount->mnt_ioscale * (base)) |
| 303 | #define MAX_CLUSTER_SIZE(vp) (cluster_max_io_size(vp->v_mount, CL_WRITE)) |
| 304 | |
| 305 | int speculative_reads_disabled = 0; |
| 306 | |
| 307 | /* |
| 308 | * throttle the number of async writes that |
| 309 | * can be outstanding on a single vnode |
| 310 | * before we issue a synchronous write |
| 311 | */ |
| 312 | #define THROTTLE_MAXCNT 0 |
| 313 | |
| 314 | uint32_t throttle_max_iosize = (128 * 1024); |
| 315 | |
| 316 | #define THROTTLE_MAX_IOSIZE (throttle_max_iosize) |
| 317 | |
| 318 | SYSCTL_INT(_debug, OID_AUTO, lowpri_throttle_max_iosize, CTLFLAG_RW | CTLFLAG_LOCKED, &throttle_max_iosize, 0, "" ); |
| 319 | |
| 320 | |
| 321 | void |
| 322 | cluster_init(void) |
| 323 | { |
| 324 | for (int i = 0; i < CL_DIRECT_READ_LOCK_BUCKETS; ++i) { |
| 325 | LIST_INIT(&cl_direct_read_locks[i]); |
| 326 | } |
| 327 | } |
| 328 | |
| 329 | |
| 330 | uint32_t |
| 331 | cluster_max_io_size(mount_t mp, int type) |
| 332 | { |
| 333 | uint32_t max_io_size; |
| 334 | uint32_t segcnt; |
| 335 | uint32_t maxcnt; |
| 336 | |
| 337 | switch (type) { |
| 338 | case CL_READ: |
| 339 | segcnt = mp->mnt_segreadcnt; |
| 340 | maxcnt = mp->mnt_maxreadcnt; |
| 341 | break; |
| 342 | case CL_WRITE: |
| 343 | segcnt = mp->mnt_segwritecnt; |
| 344 | maxcnt = mp->mnt_maxwritecnt; |
| 345 | break; |
| 346 | default: |
| 347 | segcnt = min(a: mp->mnt_segreadcnt, b: mp->mnt_segwritecnt); |
| 348 | maxcnt = min(a: mp->mnt_maxreadcnt, b: mp->mnt_maxwritecnt); |
| 349 | break; |
| 350 | } |
| 351 | if (segcnt > (MAX_UPL_SIZE_BYTES >> PAGE_SHIFT)) { |
| 352 | /* |
| 353 | * don't allow a size beyond the max UPL size we can create |
| 354 | */ |
| 355 | segcnt = MAX_UPL_SIZE_BYTES >> PAGE_SHIFT; |
| 356 | } |
| 357 | max_io_size = min(a: (segcnt * PAGE_SIZE), b: maxcnt); |
| 358 | |
| 359 | if (max_io_size < MAX_UPL_TRANSFER_BYTES) { |
| 360 | /* |
| 361 | * don't allow a size smaller than the old fixed limit |
| 362 | */ |
| 363 | max_io_size = MAX_UPL_TRANSFER_BYTES; |
| 364 | } else { |
| 365 | /* |
| 366 | * make sure the size specified is a multiple of PAGE_SIZE |
| 367 | */ |
| 368 | max_io_size &= ~PAGE_MASK; |
| 369 | } |
| 370 | return max_io_size; |
| 371 | } |
| 372 | |
| 373 | /* |
| 374 | * Returns max prefetch value. If the value overflows or exceeds the specified |
| 375 | * 'prefetch_limit', it will be capped at 'prefetch_limit' value. |
| 376 | */ |
| 377 | static inline uint32_t |
| 378 | cluster_max_prefetch(vnode_t vp, uint32_t max_io_size, uint32_t prefetch_limit) |
| 379 | { |
| 380 | bool is_ssd = disk_conditioner_mount_is_ssd(vp->v_mount); |
| 381 | uint32_t io_scale = IO_SCALE(vp, is_ssd ? PREFETCH_SSD : PREFETCH); |
| 382 | uint32_t prefetch = 0; |
| 383 | |
| 384 | if (__improbable(os_mul_overflow(max_io_size, io_scale, &prefetch) || |
| 385 | (prefetch > prefetch_limit))) { |
| 386 | prefetch = prefetch_limit; |
| 387 | } |
| 388 | |
| 389 | return prefetch; |
| 390 | } |
| 391 | |
| 392 | static inline uint32_t |
| 393 | calculate_max_throttle_size(vnode_t vp) |
| 394 | { |
| 395 | bool is_ssd = disk_conditioner_mount_is_ssd(vp->v_mount); |
| 396 | uint32_t io_scale = IO_SCALE(vp, is_ssd ? 2 : 1); |
| 397 | |
| 398 | return MIN(io_scale * THROTTLE_MAX_IOSIZE, MAX_UPL_TRANSFER_BYTES); |
| 399 | } |
| 400 | |
| 401 | static inline uint32_t |
| 402 | calculate_max_throttle_cnt(vnode_t vp) |
| 403 | { |
| 404 | bool is_ssd = disk_conditioner_mount_is_ssd(vp->v_mount); |
| 405 | uint32_t io_scale = IO_SCALE(vp, 1); |
| 406 | |
| 407 | return is_ssd ? MIN(io_scale, 4) : THROTTLE_MAXCNT; |
| 408 | } |
| 409 | |
| 410 | #define CLW_ALLOCATE 0x01 |
| 411 | #define CLW_RETURNLOCKED 0x02 |
| 412 | #define CLW_IONOCACHE 0x04 |
| 413 | #define CLW_IOPASSIVE 0x08 |
| 414 | |
| 415 | /* |
| 416 | * if the read ahead context doesn't yet exist, |
| 417 | * allocate and initialize it... |
| 418 | * the vnode lock serializes multiple callers |
| 419 | * during the actual assignment... first one |
| 420 | * to grab the lock wins... the other callers |
| 421 | * will release the now unnecessary storage |
| 422 | * |
| 423 | * once the context is present, try to grab (but don't block on) |
| 424 | * the lock associated with it... if someone |
| 425 | * else currently owns it, than the read |
| 426 | * will run without read-ahead. this allows |
| 427 | * multiple readers to run in parallel and |
| 428 | * since there's only 1 read ahead context, |
| 429 | * there's no real loss in only allowing 1 |
| 430 | * reader to have read-ahead enabled. |
| 431 | */ |
| 432 | static struct cl_readahead * |
| 433 | cluster_get_rap(vnode_t vp) |
| 434 | { |
| 435 | struct ubc_info *ubc; |
| 436 | struct cl_readahead *rap; |
| 437 | |
| 438 | ubc = vp->v_ubcinfo; |
| 439 | |
| 440 | if ((rap = ubc->cl_rahead) == NULL) { |
| 441 | rap = zalloc_flags(cl_rd_zone, Z_WAITOK | Z_ZERO); |
| 442 | rap->cl_lastr = -1; |
| 443 | lck_mtx_init(lck: &rap->cl_lockr, grp: &cl_mtx_grp, LCK_ATTR_NULL); |
| 444 | |
| 445 | vnode_lock(vp); |
| 446 | |
| 447 | if (ubc->cl_rahead == NULL) { |
| 448 | ubc->cl_rahead = rap; |
| 449 | } else { |
| 450 | lck_mtx_destroy(lck: &rap->cl_lockr, grp: &cl_mtx_grp); |
| 451 | zfree(cl_rd_zone, rap); |
| 452 | rap = ubc->cl_rahead; |
| 453 | } |
| 454 | vnode_unlock(vp); |
| 455 | } |
| 456 | if (lck_mtx_try_lock(lck: &rap->cl_lockr) == TRUE) { |
| 457 | return rap; |
| 458 | } |
| 459 | |
| 460 | return (struct cl_readahead *)NULL; |
| 461 | } |
| 462 | |
| 463 | |
| 464 | /* |
| 465 | * if the write behind context doesn't yet exist, |
| 466 | * and CLW_ALLOCATE is specified, allocate and initialize it... |
| 467 | * the vnode lock serializes multiple callers |
| 468 | * during the actual assignment... first one |
| 469 | * to grab the lock wins... the other callers |
| 470 | * will release the now unnecessary storage |
| 471 | * |
| 472 | * if CLW_RETURNLOCKED is set, grab (blocking if necessary) |
| 473 | * the lock associated with the write behind context before |
| 474 | * returning |
| 475 | */ |
| 476 | |
| 477 | static struct cl_writebehind * |
| 478 | cluster_get_wbp(vnode_t vp, int flags) |
| 479 | { |
| 480 | struct ubc_info *ubc; |
| 481 | struct cl_writebehind *wbp; |
| 482 | |
| 483 | ubc = vp->v_ubcinfo; |
| 484 | |
| 485 | if ((wbp = ubc->cl_wbehind) == NULL) { |
| 486 | if (!(flags & CLW_ALLOCATE)) { |
| 487 | return (struct cl_writebehind *)NULL; |
| 488 | } |
| 489 | |
| 490 | wbp = zalloc_flags(cl_wr_zone, Z_WAITOK | Z_ZERO); |
| 491 | |
| 492 | lck_mtx_init(lck: &wbp->cl_lockw, grp: &cl_mtx_grp, LCK_ATTR_NULL); |
| 493 | |
| 494 | vnode_lock(vp); |
| 495 | |
| 496 | if (ubc->cl_wbehind == NULL) { |
| 497 | ubc->cl_wbehind = wbp; |
| 498 | } else { |
| 499 | lck_mtx_destroy(lck: &wbp->cl_lockw, grp: &cl_mtx_grp); |
| 500 | zfree(cl_wr_zone, wbp); |
| 501 | wbp = ubc->cl_wbehind; |
| 502 | } |
| 503 | vnode_unlock(vp); |
| 504 | } |
| 505 | if (flags & CLW_RETURNLOCKED) { |
| 506 | lck_mtx_lock(lck: &wbp->cl_lockw); |
| 507 | } |
| 508 | |
| 509 | return wbp; |
| 510 | } |
| 511 | |
| 512 | |
| 513 | static void |
| 514 | cluster_syncup(vnode_t vp, off_t newEOF, int (*callback)(buf_t, void *), void *callback_arg, int flags) |
| 515 | { |
| 516 | struct cl_writebehind *wbp; |
| 517 | |
| 518 | if ((wbp = cluster_get_wbp(vp, flags: 0)) != NULL) { |
| 519 | if (wbp->cl_number) { |
| 520 | lck_mtx_lock(lck: &wbp->cl_lockw); |
| 521 | |
| 522 | cluster_try_push(wbp, vp, EOF: newEOF, PUSH_ALL | flags, flags: 0, callback, callback_arg, NULL, FALSE); |
| 523 | |
| 524 | lck_mtx_unlock(lck: &wbp->cl_lockw); |
| 525 | } |
| 526 | } |
| 527 | } |
| 528 | |
| 529 | |
| 530 | static int |
| 531 | cluster_io_present_in_BC(vnode_t vp, off_t f_offset) |
| 532 | { |
| 533 | daddr64_t blkno; |
| 534 | size_t io_size; |
| 535 | int (*bootcache_check_fn)(dev_t device, u_int64_t blkno) = bootcache_contains_block; |
| 536 | |
| 537 | if (bootcache_check_fn && vp->v_mount && vp->v_mount->mnt_devvp) { |
| 538 | if (VNOP_BLOCKMAP(vp, f_offset, PAGE_SIZE, &blkno, &io_size, NULL, VNODE_READ | VNODE_BLOCKMAP_NO_TRACK, NULL)) { |
| 539 | return 0; |
| 540 | } |
| 541 | |
| 542 | if (io_size == 0) { |
| 543 | return 0; |
| 544 | } |
| 545 | |
| 546 | if (bootcache_check_fn(vp->v_mount->mnt_devvp->v_rdev, blkno)) { |
| 547 | return 1; |
| 548 | } |
| 549 | } |
| 550 | return 0; |
| 551 | } |
| 552 | |
| 553 | |
| 554 | static int |
| 555 | cluster_is_throttled(vnode_t vp) |
| 556 | { |
| 557 | return throttle_io_will_be_throttled(lowpri_window_msecs: -1, mp: vp->v_mount); |
| 558 | } |
| 559 | |
| 560 | |
| 561 | static void |
| 562 | cluster_iostate_wait(struct clios *iostate, u_int target, const char *wait_name) |
| 563 | { |
| 564 | lck_mtx_lock(lck: &iostate->io_mtxp); |
| 565 | |
| 566 | while ((iostate->io_issued - iostate->io_completed) > target) { |
| 567 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 95)) | DBG_FUNC_START, |
| 568 | iostate->io_issued, iostate->io_completed, target, 0, 0); |
| 569 | |
| 570 | iostate->io_wanted = 1; |
| 571 | msleep(chan: (caddr_t)&iostate->io_wanted, mtx: &iostate->io_mtxp, PRIBIO + 1, wmesg: wait_name, NULL); |
| 572 | |
| 573 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 95)) | DBG_FUNC_END, |
| 574 | iostate->io_issued, iostate->io_completed, target, 0, 0); |
| 575 | } |
| 576 | lck_mtx_unlock(lck: &iostate->io_mtxp); |
| 577 | } |
| 578 | |
| 579 | static void |
| 580 | cluster_handle_associated_upl(struct clios *iostate, upl_t upl, |
| 581 | upl_offset_t upl_offset, upl_size_t size) |
| 582 | { |
| 583 | if (!size) { |
| 584 | return; |
| 585 | } |
| 586 | |
| 587 | upl_t associated_upl = upl_associated_upl(upl); |
| 588 | |
| 589 | if (!associated_upl) { |
| 590 | return; |
| 591 | } |
| 592 | |
| 593 | #if 0 |
| 594 | printf("1: %d %d\n" , upl_offset, upl_offset + size); |
| 595 | #endif |
| 596 | |
| 597 | /* |
| 598 | * The associated UPL is page aligned to file offsets whereas the |
| 599 | * UPL it's attached to has different alignment requirements. The |
| 600 | * upl_offset that we have refers to @upl. The code that follows |
| 601 | * has to deal with the first and last pages in this transaction |
| 602 | * which might straddle pages in the associated UPL. To keep |
| 603 | * track of these pages, we use the mark bits: if the mark bit is |
| 604 | * set, we know another transaction has completed its part of that |
| 605 | * page and so we can unlock that page here. |
| 606 | * |
| 607 | * The following illustrates what we have to deal with: |
| 608 | * |
| 609 | * MEM u <------------ 1 PAGE ------------> e |
| 610 | * +-------------+----------------------+----------------- |
| 611 | * | |######################|################# |
| 612 | * +-------------+----------------------+----------------- |
| 613 | * FILE | <--- a ---> o <------------ 1 PAGE ------------> |
| 614 | * |
| 615 | * So here we show a write to offset @o. The data that is to be |
| 616 | * written is in a buffer that is not page aligned; it has offset |
| 617 | * @a in the page. The upl that carries the data starts in memory |
| 618 | * at @u. The associated upl starts in the file at offset @o. A |
| 619 | * transaction will always end on a page boundary (like @e above) |
| 620 | * except for the very last transaction in the group. We cannot |
| 621 | * unlock the page at @o in the associated upl until both the |
| 622 | * transaction ending at @e and the following transaction (that |
| 623 | * starts at @e) has completed. |
| 624 | */ |
| 625 | |
| 626 | /* |
| 627 | * We record whether or not the two UPLs are aligned as the mark |
| 628 | * bit in the first page of @upl. |
| 629 | */ |
| 630 | upl_page_info_t *pl = UPL_GET_INTERNAL_PAGE_LIST(upl); |
| 631 | bool is_unaligned = upl_page_get_mark(upl: pl, index: 0); |
| 632 | |
| 633 | if (is_unaligned) { |
| 634 | upl_page_info_t *assoc_pl = UPL_GET_INTERNAL_PAGE_LIST(associated_upl); |
| 635 | |
| 636 | upl_offset_t upl_end = upl_offset + size; |
| 637 | assert(upl_end >= PAGE_SIZE); |
| 638 | |
| 639 | upl_size_t assoc_upl_size = upl_get_size(upl: associated_upl); |
| 640 | |
| 641 | /* |
| 642 | * In the very first transaction in the group, upl_offset will |
| 643 | * not be page aligned, but after that it will be and in that |
| 644 | * case we want the preceding page in the associated UPL hence |
| 645 | * the minus one. |
| 646 | */ |
| 647 | assert(upl_offset); |
| 648 | if (upl_offset) { |
| 649 | upl_offset = trunc_page_32(upl_offset - 1); |
| 650 | } |
| 651 | |
| 652 | lck_mtx_lock_spin(lck: &iostate->io_mtxp); |
| 653 | |
| 654 | // Look at the first page... |
| 655 | if (upl_offset |
| 656 | && !upl_page_get_mark(upl: assoc_pl, index: upl_offset >> PAGE_SHIFT)) { |
| 657 | /* |
| 658 | * The first page isn't marked so let another transaction |
| 659 | * completion handle it. |
| 660 | */ |
| 661 | upl_page_set_mark(upl: assoc_pl, index: upl_offset >> PAGE_SHIFT, true); |
| 662 | upl_offset += PAGE_SIZE; |
| 663 | } |
| 664 | |
| 665 | // And now the last page... |
| 666 | |
| 667 | /* |
| 668 | * This needs to be > rather than >= because if it's equal, it |
| 669 | * means there's another transaction that is sharing the last |
| 670 | * page. |
| 671 | */ |
| 672 | if (upl_end > assoc_upl_size) { |
| 673 | upl_end = assoc_upl_size; |
| 674 | } else { |
| 675 | upl_end = trunc_page_32(upl_end); |
| 676 | const int last_pg = (upl_end >> PAGE_SHIFT) - 1; |
| 677 | |
| 678 | if (!upl_page_get_mark(upl: assoc_pl, index: last_pg)) { |
| 679 | /* |
| 680 | * The last page isn't marked so mark the page and let another |
| 681 | * transaction completion handle it. |
| 682 | */ |
| 683 | upl_page_set_mark(upl: assoc_pl, index: last_pg, true); |
| 684 | upl_end -= PAGE_SIZE; |
| 685 | } |
| 686 | } |
| 687 | |
| 688 | lck_mtx_unlock(lck: &iostate->io_mtxp); |
| 689 | |
| 690 | #if 0 |
| 691 | printf("2: %d %d\n" , upl_offset, upl_end); |
| 692 | #endif |
| 693 | |
| 694 | if (upl_end <= upl_offset) { |
| 695 | return; |
| 696 | } |
| 697 | |
| 698 | size = upl_end - upl_offset; |
| 699 | } else { |
| 700 | assert(!(upl_offset & PAGE_MASK)); |
| 701 | assert(!(size & PAGE_MASK)); |
| 702 | } |
| 703 | |
| 704 | boolean_t empty; |
| 705 | |
| 706 | /* |
| 707 | * We can unlock these pages now and as this is for a |
| 708 | * direct/uncached write, we want to dump the pages too. |
| 709 | */ |
| 710 | kern_return_t kr = upl_abort_range(upl_object: associated_upl, offset: upl_offset, size, |
| 711 | UPL_ABORT_DUMP_PAGES, empty: &empty); |
| 712 | |
| 713 | assert(!kr); |
| 714 | |
| 715 | if (!kr && empty) { |
| 716 | upl_set_associated_upl(upl, NULL); |
| 717 | upl_deallocate(upl: associated_upl); |
| 718 | } |
| 719 | } |
| 720 | |
| 721 | static int |
| 722 | cluster_ioerror(upl_t upl, int upl_offset, int abort_size, int error, int io_flags, vnode_t vp) |
| 723 | { |
| 724 | int upl_abort_code = 0; |
| 725 | int page_in = 0; |
| 726 | int page_out = 0; |
| 727 | |
| 728 | if ((io_flags & (B_PHYS | B_CACHE)) == (B_PHYS | B_CACHE)) { |
| 729 | /* |
| 730 | * direct write of any flavor, or a direct read that wasn't aligned |
| 731 | */ |
| 732 | ubc_upl_commit_range(upl, upl_offset, abort_size, UPL_COMMIT_FREE_ON_EMPTY); |
| 733 | } else { |
| 734 | if (io_flags & B_PAGEIO) { |
| 735 | if (io_flags & B_READ) { |
| 736 | page_in = 1; |
| 737 | } else { |
| 738 | page_out = 1; |
| 739 | } |
| 740 | } |
| 741 | if (io_flags & B_CACHE) { |
| 742 | /* |
| 743 | * leave pages in the cache unchanged on error |
| 744 | */ |
| 745 | upl_abort_code = UPL_ABORT_FREE_ON_EMPTY; |
| 746 | } else if (((io_flags & B_READ) == 0) && ((error != ENXIO) || vnode_isswap(vp))) { |
| 747 | /* |
| 748 | * transient error on pageout/write path... leave pages unchanged |
| 749 | */ |
| 750 | upl_abort_code = UPL_ABORT_FREE_ON_EMPTY; |
| 751 | } else if (page_in) { |
| 752 | upl_abort_code = UPL_ABORT_FREE_ON_EMPTY | UPL_ABORT_ERROR; |
| 753 | } else { |
| 754 | upl_abort_code = UPL_ABORT_FREE_ON_EMPTY | UPL_ABORT_DUMP_PAGES; |
| 755 | } |
| 756 | |
| 757 | ubc_upl_abort_range(upl, upl_offset, abort_size, upl_abort_code); |
| 758 | } |
| 759 | return upl_abort_code; |
| 760 | } |
| 761 | |
| 762 | |
| 763 | static int |
| 764 | cluster_iodone(buf_t bp, void *callback_arg) |
| 765 | { |
| 766 | int b_flags; |
| 767 | int error; |
| 768 | int total_size; |
| 769 | int total_resid; |
| 770 | int upl_offset; |
| 771 | int zero_offset; |
| 772 | int pg_offset = 0; |
| 773 | int commit_size = 0; |
| 774 | int upl_flags = 0; |
| 775 | int transaction_size = 0; |
| 776 | upl_t upl; |
| 777 | buf_t cbp; |
| 778 | buf_t cbp_head; |
| 779 | buf_t cbp_next; |
| 780 | buf_t real_bp; |
| 781 | vnode_t vp; |
| 782 | struct clios *iostate; |
| 783 | void *verify_ctx; |
| 784 | boolean_t transaction_complete = FALSE; |
| 785 | |
| 786 | __IGNORE_WCASTALIGN(cbp_head = (buf_t)(bp->b_trans_head)); |
| 787 | |
| 788 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 20)) | DBG_FUNC_START, |
| 789 | cbp_head, bp->b_lblkno, bp->b_bcount, bp->b_flags, 0); |
| 790 | |
| 791 | if (cbp_head->b_trans_next || !(cbp_head->b_flags & B_EOT)) { |
| 792 | lck_mtx_lock_spin(lck: &cl_transaction_mtxp); |
| 793 | |
| 794 | bp->b_flags |= B_TDONE; |
| 795 | |
| 796 | for (cbp = cbp_head; cbp; cbp = cbp->b_trans_next) { |
| 797 | /* |
| 798 | * all I/O requests that are part of this transaction |
| 799 | * have to complete before we can process it |
| 800 | */ |
| 801 | if (!(cbp->b_flags & B_TDONE)) { |
| 802 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 20)) | DBG_FUNC_END, |
| 803 | cbp_head, cbp, cbp->b_bcount, cbp->b_flags, 0); |
| 804 | |
| 805 | lck_mtx_unlock(lck: &cl_transaction_mtxp); |
| 806 | |
| 807 | return 0; |
| 808 | } |
| 809 | |
| 810 | if (cbp->b_trans_next == CLUSTER_IO_WAITING) { |
| 811 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 20)) | DBG_FUNC_END, |
| 812 | cbp_head, cbp, cbp->b_bcount, cbp->b_flags, 0); |
| 813 | |
| 814 | lck_mtx_unlock(lck: &cl_transaction_mtxp); |
| 815 | wakeup(chan: cbp); |
| 816 | |
| 817 | return 0; |
| 818 | } |
| 819 | |
| 820 | if (cbp->b_flags & B_EOT) { |
| 821 | transaction_complete = TRUE; |
| 822 | } |
| 823 | } |
| 824 | lck_mtx_unlock(lck: &cl_transaction_mtxp); |
| 825 | |
| 826 | if (transaction_complete == FALSE) { |
| 827 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 20)) | DBG_FUNC_END, |
| 828 | cbp_head, 0, 0, 0, 0); |
| 829 | return 0; |
| 830 | } |
| 831 | } |
| 832 | error = 0; |
| 833 | total_size = 0; |
| 834 | total_resid = 0; |
| 835 | |
| 836 | cbp = cbp_head; |
| 837 | vp = cbp->b_vp; |
| 838 | upl_offset = cbp->b_uploffset; |
| 839 | upl = cbp->b_upl; |
| 840 | b_flags = cbp->b_flags; |
| 841 | real_bp = cbp->b_real_bp; |
| 842 | zero_offset = cbp->b_validend; |
| 843 | iostate = (struct clios *)cbp->b_iostate; |
| 844 | |
| 845 | if (real_bp) { |
| 846 | real_bp->b_dev = cbp->b_dev; |
| 847 | } |
| 848 | |
| 849 | while (cbp) { |
| 850 | if ((cbp->b_flags & B_ERROR) && error == 0) { |
| 851 | error = cbp->b_error; |
| 852 | } |
| 853 | |
| 854 | total_resid += cbp->b_resid; |
| 855 | total_size += cbp->b_bcount; |
| 856 | |
| 857 | cbp_next = cbp->b_trans_next; |
| 858 | |
| 859 | if (cbp_next == NULL) { |
| 860 | /* |
| 861 | * compute the overall size of the transaction |
| 862 | * in case we created one that has 'holes' in it |
| 863 | * 'total_size' represents the amount of I/O we |
| 864 | * did, not the span of the transaction w/r to the UPL |
| 865 | */ |
| 866 | transaction_size = cbp->b_uploffset + cbp->b_bcount - upl_offset; |
| 867 | } |
| 868 | |
| 869 | if (cbp != cbp_head) { |
| 870 | free_io_buf(cbp); |
| 871 | } |
| 872 | |
| 873 | cbp = cbp_next; |
| 874 | } |
| 875 | |
| 876 | if (ISSET(b_flags, B_COMMIT_UPL)) { |
| 877 | cluster_handle_associated_upl(iostate, |
| 878 | upl: cbp_head->b_upl, |
| 879 | upl_offset, |
| 880 | size: transaction_size); |
| 881 | } |
| 882 | |
| 883 | if (error == 0 && total_resid) { |
| 884 | error = EIO; |
| 885 | } |
| 886 | |
| 887 | if (error == 0) { |
| 888 | int (*cliodone_func)(buf_t, void *) = (int (*)(buf_t, void *))(cbp_head->b_cliodone); |
| 889 | |
| 890 | if (cliodone_func != NULL) { |
| 891 | cbp_head->b_bcount = transaction_size; |
| 892 | |
| 893 | error = (*cliodone_func)(cbp_head, callback_arg); |
| 894 | } |
| 895 | } |
| 896 | if (zero_offset) { |
| 897 | cluster_zero(upl, zero_offset, PAGE_SIZE - (zero_offset & PAGE_MASK), real_bp); |
| 898 | } |
| 899 | |
| 900 | verify_ctx = cbp_head->b_attr.ba_verify_ctx; |
| 901 | cbp_head->b_attr.ba_verify_ctx = NULL; |
| 902 | if (verify_ctx) { |
| 903 | vnode_verify_flags_t verify_flags = VNODE_VERIFY_CONTEXT_FREE; |
| 904 | caddr_t verify_buf = NULL; |
| 905 | off_t start_off = cbp_head->b_lblkno * cbp_head->b_lblksize; |
| 906 | size_t verify_length = transaction_size; |
| 907 | vm_offset_t vaddr; |
| 908 | |
| 909 | if (!error) { |
| 910 | verify_flags |= VNODE_VERIFY_WITH_CONTEXT; |
| 911 | error = ubc_upl_map_range(upl, upl_offset, round_page(x: transaction_size), VM_PROT_DEFAULT, &vaddr); /* Map it in */ |
| 912 | if (error) { |
| 913 | panic("ubc_upl_map_range returned error %d, upl = %p, upl_offset = %d, size = %d" , |
| 914 | error, upl, (int)upl_offset, (int)round_page(transaction_size)); |
| 915 | } else { |
| 916 | verify_buf = (caddr_t)vaddr; |
| 917 | } |
| 918 | } |
| 919 | |
| 920 | error = VNOP_VERIFY(vp, start_off, (uint8_t *)verify_buf, verify_length, 0, &verify_ctx, verify_flags, NULL); |
| 921 | |
| 922 | if (verify_buf) { |
| 923 | (void)ubc_upl_unmap_range(upl, upl_offset, round_page(x: transaction_size)); |
| 924 | verify_buf = NULL; |
| 925 | } |
| 926 | } else if (cbp_head->b_attr.ba_flags & BA_WILL_VERIFY) { |
| 927 | error = EBADMSG; |
| 928 | } |
| 929 | |
| 930 | free_io_buf(cbp_head); |
| 931 | |
| 932 | if (iostate) { |
| 933 | int need_wakeup = 0; |
| 934 | |
| 935 | /* |
| 936 | * someone has issued multiple I/Os asynchrounsly |
| 937 | * and is waiting for them to complete (streaming) |
| 938 | */ |
| 939 | lck_mtx_lock_spin(lck: &iostate->io_mtxp); |
| 940 | |
| 941 | if (error && iostate->io_error == 0) { |
| 942 | iostate->io_error = error; |
| 943 | } |
| 944 | |
| 945 | iostate->io_completed += total_size; |
| 946 | |
| 947 | if (iostate->io_wanted) { |
| 948 | /* |
| 949 | * someone is waiting for the state of |
| 950 | * this io stream to change |
| 951 | */ |
| 952 | iostate->io_wanted = 0; |
| 953 | need_wakeup = 1; |
| 954 | } |
| 955 | lck_mtx_unlock(lck: &iostate->io_mtxp); |
| 956 | |
| 957 | if (need_wakeup) { |
| 958 | wakeup(chan: (caddr_t)&iostate->io_wanted); |
| 959 | } |
| 960 | } |
| 961 | |
| 962 | if (b_flags & B_COMMIT_UPL) { |
| 963 | pg_offset = upl_offset & PAGE_MASK; |
| 964 | commit_size = (pg_offset + transaction_size + (PAGE_SIZE - 1)) & ~PAGE_MASK; |
| 965 | |
| 966 | if (error) { |
| 967 | upl_set_iodone_error(upl, error); |
| 968 | |
| 969 | upl_flags = cluster_ioerror(upl, upl_offset: upl_offset - pg_offset, abort_size: commit_size, error, io_flags: b_flags, vp); |
| 970 | } else { |
| 971 | upl_flags = UPL_COMMIT_FREE_ON_EMPTY; |
| 972 | |
| 973 | if ((b_flags & B_PHYS) && (b_flags & B_READ)) { |
| 974 | upl_flags |= UPL_COMMIT_SET_DIRTY; |
| 975 | } |
| 976 | |
| 977 | if (b_flags & B_AGE) { |
| 978 | upl_flags |= UPL_COMMIT_INACTIVATE; |
| 979 | } |
| 980 | |
| 981 | ubc_upl_commit_range(upl, upl_offset - pg_offset, commit_size, upl_flags); |
| 982 | } |
| 983 | } |
| 984 | if (real_bp) { |
| 985 | if (error) { |
| 986 | real_bp->b_flags |= B_ERROR; |
| 987 | real_bp->b_error = error; |
| 988 | } |
| 989 | real_bp->b_resid = total_resid; |
| 990 | |
| 991 | buf_biodone(bp: real_bp); |
| 992 | } |
| 993 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 20)) | DBG_FUNC_END, |
| 994 | upl, upl_offset - pg_offset, commit_size, (error << 24) | upl_flags, 0); |
| 995 | |
| 996 | return error; |
| 997 | } |
| 998 | |
| 999 | |
| 1000 | uint32_t |
| 1001 | cluster_throttle_io_limit(vnode_t vp, uint32_t *limit) |
| 1002 | { |
| 1003 | if (cluster_is_throttled(vp)) { |
| 1004 | *limit = calculate_max_throttle_size(vp); |
| 1005 | return 1; |
| 1006 | } |
| 1007 | return 0; |
| 1008 | } |
| 1009 | |
| 1010 | |
| 1011 | void |
| 1012 | cluster_zero(upl_t upl, upl_offset_t upl_offset, int size, buf_t bp) |
| 1013 | { |
| 1014 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 23)) | DBG_FUNC_START, |
| 1015 | upl_offset, size, bp, 0, 0); |
| 1016 | |
| 1017 | if (bp == NULL || bp->b_datap == 0) { |
| 1018 | upl_page_info_t *pl; |
| 1019 | addr64_t zero_addr; |
| 1020 | |
| 1021 | pl = ubc_upl_pageinfo(upl); |
| 1022 | |
| 1023 | if (upl_device_page(upl: pl) == TRUE) { |
| 1024 | zero_addr = ((addr64_t)upl_phys_page(upl: pl, index: 0) << PAGE_SHIFT) + upl_offset; |
| 1025 | |
| 1026 | bzero_phys_nc(src64: zero_addr, bytes: size); |
| 1027 | } else { |
| 1028 | while (size) { |
| 1029 | int page_offset; |
| 1030 | int page_index; |
| 1031 | int zero_cnt; |
| 1032 | |
| 1033 | page_index = upl_offset / PAGE_SIZE; |
| 1034 | page_offset = upl_offset & PAGE_MASK; |
| 1035 | |
| 1036 | zero_addr = ((addr64_t)upl_phys_page(upl: pl, index: page_index) << PAGE_SHIFT) + page_offset; |
| 1037 | zero_cnt = min(PAGE_SIZE - page_offset, b: size); |
| 1038 | |
| 1039 | bzero_phys(phys_address: zero_addr, length: zero_cnt); |
| 1040 | |
| 1041 | size -= zero_cnt; |
| 1042 | upl_offset += zero_cnt; |
| 1043 | } |
| 1044 | } |
| 1045 | } else { |
| 1046 | bzero(s: (caddr_t)((vm_offset_t)bp->b_datap + upl_offset), n: size); |
| 1047 | } |
| 1048 | |
| 1049 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 23)) | DBG_FUNC_END, |
| 1050 | upl_offset, size, 0, 0, 0); |
| 1051 | } |
| 1052 | |
| 1053 | |
| 1054 | static void |
| 1055 | cluster_EOT(buf_t cbp_head, buf_t cbp_tail, int zero_offset, size_t verify_block_size) |
| 1056 | { |
| 1057 | /* |
| 1058 | * We will assign a verification context to cbp_head. |
| 1059 | * This will be passed back to the filesystem when |
| 1060 | * verifying (in cluster_iodone). |
| 1061 | */ |
| 1062 | if (verify_block_size) { |
| 1063 | off_t start_off = cbp_head->b_lblkno * cbp_head->b_lblksize; |
| 1064 | size_t length; |
| 1065 | void *verify_ctx = NULL; |
| 1066 | int error = 0; |
| 1067 | vnode_t vp = buf_vnode(bp: cbp_head); |
| 1068 | |
| 1069 | if (cbp_head == cbp_tail) { |
| 1070 | length = cbp_head->b_bcount; |
| 1071 | } else { |
| 1072 | length = ((cbp_tail->b_lblkno * cbp_tail->b_lblksize) + cbp_tail->b_bcount) - start_off; |
| 1073 | } |
| 1074 | |
| 1075 | /* |
| 1076 | * zero_offset is non zero for the transaction containing the EOF |
| 1077 | * (if the filesize is not page aligned). In that case we might |
| 1078 | * have the transaction size not be page/verify block size aligned |
| 1079 | */ |
| 1080 | if ((zero_offset == 0) && |
| 1081 | ((length < verify_block_size) || (length % verify_block_size)) != 0) { |
| 1082 | panic("%s length = %zu, verify_block_size = %zu" , |
| 1083 | __FUNCTION__, length, verify_block_size); |
| 1084 | } |
| 1085 | |
| 1086 | error = VNOP_VERIFY(vp, start_off, NULL, length, |
| 1087 | &verify_block_size, &verify_ctx, VNODE_VERIFY_CONTEXT_ALLOC, NULL); |
| 1088 | |
| 1089 | cbp_head->b_attr.ba_verify_ctx = verify_ctx; |
| 1090 | } else { |
| 1091 | cbp_head->b_attr.ba_verify_ctx = NULL; |
| 1092 | } |
| 1093 | |
| 1094 | cbp_head->b_validend = zero_offset; |
| 1095 | cbp_tail->b_flags |= B_EOT; |
| 1096 | } |
| 1097 | |
| 1098 | static void |
| 1099 | cluster_wait_IO(buf_t cbp_head, int async) |
| 1100 | { |
| 1101 | buf_t cbp; |
| 1102 | |
| 1103 | if (async) { |
| 1104 | /* |
| 1105 | * Async callback completion will not normally generate a |
| 1106 | * wakeup upon I/O completion. To get woken up, we set |
| 1107 | * b_trans_next (which is safe for us to modify) on the last |
| 1108 | * buffer to CLUSTER_IO_WAITING so that cluster_iodone knows |
| 1109 | * to wake us up when all buffers as part of this transaction |
| 1110 | * are completed. This is done under the umbrella of |
| 1111 | * cl_transaction_mtxp which is also taken in cluster_iodone. |
| 1112 | */ |
| 1113 | bool done = true; |
| 1114 | buf_t last = NULL; |
| 1115 | |
| 1116 | lck_mtx_lock_spin(lck: &cl_transaction_mtxp); |
| 1117 | |
| 1118 | for (cbp = cbp_head; cbp; last = cbp, cbp = cbp->b_trans_next) { |
| 1119 | if (!ISSET(cbp->b_flags, B_TDONE)) { |
| 1120 | done = false; |
| 1121 | } |
| 1122 | } |
| 1123 | |
| 1124 | if (!done) { |
| 1125 | last->b_trans_next = CLUSTER_IO_WAITING; |
| 1126 | |
| 1127 | DTRACE_IO1(wait__start, buf_t, last); |
| 1128 | do { |
| 1129 | msleep(chan: last, mtx: &cl_transaction_mtxp, PSPIN | (PRIBIO + 1), wmesg: "cluster_wait_IO" , NULL); |
| 1130 | |
| 1131 | /* |
| 1132 | * We should only have been woken up if all the |
| 1133 | * buffers are completed, but just in case... |
| 1134 | */ |
| 1135 | done = true; |
| 1136 | for (cbp = cbp_head; cbp != CLUSTER_IO_WAITING; cbp = cbp->b_trans_next) { |
| 1137 | if (!ISSET(cbp->b_flags, B_TDONE)) { |
| 1138 | done = false; |
| 1139 | break; |
| 1140 | } |
| 1141 | } |
| 1142 | } while (!done); |
| 1143 | DTRACE_IO1(wait__done, buf_t, last); |
| 1144 | |
| 1145 | last->b_trans_next = NULL; |
| 1146 | } |
| 1147 | |
| 1148 | lck_mtx_unlock(lck: &cl_transaction_mtxp); |
| 1149 | } else { // !async |
| 1150 | for (cbp = cbp_head; cbp; cbp = cbp->b_trans_next) { |
| 1151 | buf_biowait(bp: cbp); |
| 1152 | } |
| 1153 | } |
| 1154 | } |
| 1155 | |
| 1156 | static void |
| 1157 | cluster_complete_transaction(buf_t *cbp_head, void *callback_arg, int *retval, int flags, int needwait) |
| 1158 | { |
| 1159 | buf_t cbp; |
| 1160 | int error; |
| 1161 | boolean_t isswapout = FALSE; |
| 1162 | |
| 1163 | /* |
| 1164 | * cluster_complete_transaction will |
| 1165 | * only be called if we've issued a complete chain in synchronous mode |
| 1166 | * or, we've already done a cluster_wait_IO on an incomplete chain |
| 1167 | */ |
| 1168 | if (needwait) { |
| 1169 | for (cbp = *cbp_head; cbp; cbp = cbp->b_trans_next) { |
| 1170 | buf_biowait(bp: cbp); |
| 1171 | } |
| 1172 | } |
| 1173 | /* |
| 1174 | * we've already waited on all of the I/Os in this transaction, |
| 1175 | * so mark all of the buf_t's in this transaction as B_TDONE |
| 1176 | * so that cluster_iodone sees the transaction as completed |
| 1177 | */ |
| 1178 | for (cbp = *cbp_head; cbp; cbp = cbp->b_trans_next) { |
| 1179 | cbp->b_flags |= B_TDONE; |
| 1180 | } |
| 1181 | cbp = *cbp_head; |
| 1182 | |
| 1183 | if ((flags & (CL_ASYNC | CL_PAGEOUT)) == CL_PAGEOUT && vnode_isswap(vp: cbp->b_vp)) { |
| 1184 | isswapout = TRUE; |
| 1185 | } |
| 1186 | |
| 1187 | error = cluster_iodone(bp: cbp, callback_arg); |
| 1188 | |
| 1189 | if (!(flags & CL_ASYNC) && error && *retval == 0) { |
| 1190 | if (((flags & (CL_PAGEOUT | CL_KEEPCACHED)) != CL_PAGEOUT) || (error != ENXIO)) { |
| 1191 | *retval = error; |
| 1192 | } else if (isswapout == TRUE) { |
| 1193 | *retval = error; |
| 1194 | } |
| 1195 | } |
| 1196 | *cbp_head = (buf_t)NULL; |
| 1197 | } |
| 1198 | |
| 1199 | |
| 1200 | static int |
| 1201 | cluster_io(vnode_t vp, upl_t upl, vm_offset_t upl_offset, off_t f_offset, int non_rounded_size, |
| 1202 | int flags, buf_t real_bp, struct clios *iostate, int (*callback)(buf_t, void *), void *callback_arg) |
| 1203 | { |
| 1204 | buf_t cbp; |
| 1205 | u_int size; |
| 1206 | u_int io_size; |
| 1207 | int io_flags; |
| 1208 | int bmap_flags; |
| 1209 | int error = 0; |
| 1210 | int retval = 0; |
| 1211 | buf_t cbp_head = NULL; |
| 1212 | buf_t cbp_tail = NULL; |
| 1213 | int trans_count = 0; |
| 1214 | int max_trans_count; |
| 1215 | u_int pg_count; |
| 1216 | int pg_offset; |
| 1217 | u_int max_iosize; |
| 1218 | u_int max_vectors; |
| 1219 | int priv; |
| 1220 | int zero_offset = 0; |
| 1221 | int async_throttle = 0; |
| 1222 | mount_t mp; |
| 1223 | vm_offset_t upl_end_offset; |
| 1224 | boolean_t need_EOT = FALSE; |
| 1225 | size_t verify_block_size = 0; |
| 1226 | |
| 1227 | /* |
| 1228 | * we currently don't support buffers larger than a page |
| 1229 | */ |
| 1230 | if (real_bp && non_rounded_size > PAGE_SIZE) { |
| 1231 | panic("%s(): Called with real buffer of size %d bytes which " |
| 1232 | "is greater than the maximum allowed size of " |
| 1233 | "%d bytes (the system PAGE_SIZE).\n" , |
| 1234 | __FUNCTION__, non_rounded_size, PAGE_SIZE); |
| 1235 | } |
| 1236 | |
| 1237 | mp = vp->v_mount; |
| 1238 | |
| 1239 | /* |
| 1240 | * we don't want to do any funny rounding of the size for IO requests |
| 1241 | * coming through the DIRECT or CONTIGUOUS paths... those pages don't |
| 1242 | * belong to us... we can't extend (nor do we need to) the I/O to fill |
| 1243 | * out a page |
| 1244 | */ |
| 1245 | if (mp->mnt_devblocksize > 1 && !(flags & (CL_DEV_MEMORY | CL_DIRECT_IO))) { |
| 1246 | /* |
| 1247 | * round the requested size up so that this I/O ends on a |
| 1248 | * page boundary in case this is a 'write'... if the filesystem |
| 1249 | * has blocks allocated to back the page beyond the EOF, we want to |
| 1250 | * make sure to write out the zero's that are sitting beyond the EOF |
| 1251 | * so that in case the filesystem doesn't explicitly zero this area |
| 1252 | * if a hole is created via a lseek/write beyond the current EOF, |
| 1253 | * it will return zeros when it's read back from the disk. If the |
| 1254 | * physical allocation doesn't extend for the whole page, we'll |
| 1255 | * only write/read from the disk up to the end of this allocation |
| 1256 | * via the extent info returned from the VNOP_BLOCKMAP call. |
| 1257 | */ |
| 1258 | pg_offset = upl_offset & PAGE_MASK; |
| 1259 | |
| 1260 | size = (((non_rounded_size + pg_offset) + (PAGE_SIZE - 1)) & ~PAGE_MASK) - pg_offset; |
| 1261 | } else { |
| 1262 | /* |
| 1263 | * anyone advertising a blocksize of 1 byte probably |
| 1264 | * can't deal with us rounding up the request size |
| 1265 | * AFP is one such filesystem/device |
| 1266 | */ |
| 1267 | size = non_rounded_size; |
| 1268 | } |
| 1269 | upl_end_offset = upl_offset + size; |
| 1270 | |
| 1271 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 22)) | DBG_FUNC_START, (int)f_offset, size, upl_offset, flags, 0); |
| 1272 | |
| 1273 | /* |
| 1274 | * Set the maximum transaction size to the maximum desired number of |
| 1275 | * buffers. |
| 1276 | */ |
| 1277 | max_trans_count = 8; |
| 1278 | if (flags & CL_DEV_MEMORY) { |
| 1279 | max_trans_count = 16; |
| 1280 | } |
| 1281 | |
| 1282 | if (flags & CL_READ) { |
| 1283 | io_flags = B_READ; |
| 1284 | bmap_flags = VNODE_READ; |
| 1285 | |
| 1286 | max_iosize = mp->mnt_maxreadcnt; |
| 1287 | max_vectors = mp->mnt_segreadcnt; |
| 1288 | |
| 1289 | if ((flags & CL_PAGEIN) && /* Cluster layer verification will be limited to pagein for now */ |
| 1290 | !(mp->mnt_kern_flag & MNTK_VIRTUALDEV) && |
| 1291 | (VNOP_VERIFY(vp, f_offset, NULL, 0, &verify_block_size, NULL, VNODE_VERIFY_DEFAULT, NULL) == 0) && |
| 1292 | verify_block_size) { |
| 1293 | if (verify_block_size != PAGE_SIZE) { |
| 1294 | verify_block_size = 0; |
| 1295 | } |
| 1296 | if (real_bp && verify_block_size) { |
| 1297 | panic("%s(): Called with real buffer and needs verification " , |
| 1298 | __FUNCTION__); |
| 1299 | } |
| 1300 | } |
| 1301 | } else { |
| 1302 | io_flags = B_WRITE; |
| 1303 | bmap_flags = VNODE_WRITE; |
| 1304 | |
| 1305 | max_iosize = mp->mnt_maxwritecnt; |
| 1306 | max_vectors = mp->mnt_segwritecnt; |
| 1307 | } |
| 1308 | if (verify_block_size) { |
| 1309 | bmap_flags |= VNODE_CLUSTER_VERIFY; |
| 1310 | } |
| 1311 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 22)) | DBG_FUNC_NONE, max_iosize, max_vectors, mp->mnt_devblocksize, 0, 0); |
| 1312 | |
| 1313 | /* |
| 1314 | * make sure the maximum iosize is a |
| 1315 | * multiple of the page size |
| 1316 | */ |
| 1317 | max_iosize &= ~PAGE_MASK; |
| 1318 | |
| 1319 | /* |
| 1320 | * Ensure the maximum iosize is sensible. |
| 1321 | */ |
| 1322 | if (!max_iosize) { |
| 1323 | max_iosize = PAGE_SIZE; |
| 1324 | } |
| 1325 | |
| 1326 | if (flags & CL_THROTTLE) { |
| 1327 | if (!(flags & CL_PAGEOUT) && cluster_is_throttled(vp)) { |
| 1328 | uint32_t max_throttle_size = calculate_max_throttle_size(vp); |
| 1329 | |
| 1330 | if (max_iosize > max_throttle_size) { |
| 1331 | max_iosize = max_throttle_size; |
| 1332 | } |
| 1333 | async_throttle = calculate_max_throttle_cnt(vp); |
| 1334 | } else { |
| 1335 | if ((flags & CL_DEV_MEMORY)) { |
| 1336 | async_throttle = IO_SCALE(vp, VNODE_ASYNC_THROTTLE); |
| 1337 | } else { |
| 1338 | u_int max_cluster; |
| 1339 | u_int max_cluster_size; |
| 1340 | u_int scale; |
| 1341 | |
| 1342 | if (vp->v_mount->mnt_minsaturationbytecount) { |
| 1343 | max_cluster_size = vp->v_mount->mnt_minsaturationbytecount; |
| 1344 | |
| 1345 | scale = 1; |
| 1346 | } else { |
| 1347 | max_cluster_size = MAX_CLUSTER_SIZE(vp); |
| 1348 | |
| 1349 | if (disk_conditioner_mount_is_ssd(vp->v_mount)) { |
| 1350 | scale = WRITE_THROTTLE_SSD; |
| 1351 | } else { |
| 1352 | scale = WRITE_THROTTLE; |
| 1353 | } |
| 1354 | } |
| 1355 | if (max_iosize > max_cluster_size) { |
| 1356 | max_cluster = max_cluster_size; |
| 1357 | } else { |
| 1358 | max_cluster = max_iosize; |
| 1359 | } |
| 1360 | |
| 1361 | if (size < max_cluster) { |
| 1362 | max_cluster = size; |
| 1363 | } |
| 1364 | |
| 1365 | if (flags & CL_CLOSE) { |
| 1366 | scale += MAX_CLUSTERS; |
| 1367 | } |
| 1368 | |
| 1369 | async_throttle = min(IO_SCALE(vp, VNODE_ASYNC_THROTTLE), b: ((scale * max_cluster_size) / max_cluster) - 1); |
| 1370 | } |
| 1371 | } |
| 1372 | } |
| 1373 | if (flags & CL_AGE) { |
| 1374 | io_flags |= B_AGE; |
| 1375 | } |
| 1376 | if (flags & (CL_PAGEIN | CL_PAGEOUT)) { |
| 1377 | io_flags |= B_PAGEIO; |
| 1378 | } |
| 1379 | if (flags & (CL_IOSTREAMING)) { |
| 1380 | io_flags |= B_IOSTREAMING; |
| 1381 | } |
| 1382 | if (flags & CL_COMMIT) { |
| 1383 | io_flags |= B_COMMIT_UPL; |
| 1384 | } |
| 1385 | if (flags & CL_DIRECT_IO) { |
| 1386 | io_flags |= B_PHYS; |
| 1387 | } |
| 1388 | if (flags & (CL_PRESERVE | CL_KEEPCACHED)) { |
| 1389 | io_flags |= B_CACHE; |
| 1390 | } |
| 1391 | if (flags & CL_PASSIVE) { |
| 1392 | io_flags |= B_PASSIVE; |
| 1393 | } |
| 1394 | if (flags & CL_ENCRYPTED) { |
| 1395 | io_flags |= B_ENCRYPTED_IO; |
| 1396 | } |
| 1397 | |
| 1398 | if (vp->v_flag & VSYSTEM) { |
| 1399 | io_flags |= B_META; |
| 1400 | } |
| 1401 | |
| 1402 | if ((flags & CL_READ) && ((upl_offset + non_rounded_size) & PAGE_MASK) && (!(flags & CL_NOZERO))) { |
| 1403 | /* |
| 1404 | * then we are going to end up |
| 1405 | * with a page that we can't complete (the file size wasn't a multiple |
| 1406 | * of PAGE_SIZE and we're trying to read to the end of the file |
| 1407 | * so we'll go ahead and zero out the portion of the page we can't |
| 1408 | * read in from the file |
| 1409 | */ |
| 1410 | zero_offset = (int)(upl_offset + non_rounded_size); |
| 1411 | } else if (!ISSET(flags, CL_READ) && ISSET(flags, CL_DIRECT_IO)) { |
| 1412 | assert(ISSET(flags, CL_COMMIT)); |
| 1413 | |
| 1414 | // For a direct/uncached write, we need to lock pages... |
| 1415 | |
| 1416 | upl_t cached_upl; |
| 1417 | |
| 1418 | /* |
| 1419 | * Create a UPL to lock the pages in the cache whilst the |
| 1420 | * write is in progress. |
| 1421 | */ |
| 1422 | ubc_create_upl_kernel(vp, f_offset, non_rounded_size, &cached_upl, |
| 1423 | NULL, UPL_SET_LITE, VM_KERN_MEMORY_FILE); |
| 1424 | |
| 1425 | /* |
| 1426 | * Attach this UPL to the other UPL so that we can find it |
| 1427 | * later. |
| 1428 | */ |
| 1429 | upl_set_associated_upl(upl, associated_upl: cached_upl); |
| 1430 | |
| 1431 | if (upl_offset & PAGE_MASK) { |
| 1432 | /* |
| 1433 | * The two UPLs are not aligned, so mark the first page in |
| 1434 | * @upl so that cluster_handle_associated_upl can handle |
| 1435 | * it accordingly. |
| 1436 | */ |
| 1437 | upl_page_info_t *pl = UPL_GET_INTERNAL_PAGE_LIST(upl); |
| 1438 | upl_page_set_mark(upl: pl, index: 0, true); |
| 1439 | } |
| 1440 | } |
| 1441 | |
| 1442 | while (size) { |
| 1443 | daddr64_t blkno; |
| 1444 | daddr64_t lblkno; |
| 1445 | size_t io_size_tmp; |
| 1446 | u_int io_size_wanted; |
| 1447 | uint32_t lblksize; |
| 1448 | |
| 1449 | if (size > max_iosize) { |
| 1450 | io_size = max_iosize; |
| 1451 | } else { |
| 1452 | io_size = size; |
| 1453 | } |
| 1454 | |
| 1455 | io_size_wanted = io_size; |
| 1456 | io_size_tmp = (size_t)io_size; |
| 1457 | |
| 1458 | if ((error = VNOP_BLOCKMAP(vp, f_offset, io_size, &blkno, &io_size_tmp, NULL, bmap_flags, NULL))) { |
| 1459 | break; |
| 1460 | } |
| 1461 | |
| 1462 | if (io_size_tmp > io_size_wanted) { |
| 1463 | io_size = io_size_wanted; |
| 1464 | } else { |
| 1465 | io_size = (u_int)io_size_tmp; |
| 1466 | } |
| 1467 | |
| 1468 | if (real_bp && (real_bp->b_blkno == real_bp->b_lblkno)) { |
| 1469 | real_bp->b_blkno = blkno; |
| 1470 | } |
| 1471 | |
| 1472 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 24)) | DBG_FUNC_NONE, |
| 1473 | (int)f_offset, (int)(blkno >> 32), (int)blkno, io_size, 0); |
| 1474 | |
| 1475 | if (io_size == 0) { |
| 1476 | /* |
| 1477 | * vnop_blockmap didn't return an error... however, it did |
| 1478 | * return an extent size of 0 which means we can't |
| 1479 | * make forward progress on this I/O... a hole in the |
| 1480 | * file would be returned as a blkno of -1 with a non-zero io_size |
| 1481 | * a real extent is returned with a blkno != -1 and a non-zero io_size |
| 1482 | */ |
| 1483 | error = EINVAL; |
| 1484 | break; |
| 1485 | } |
| 1486 | if (!(flags & CL_READ) && blkno == -1) { |
| 1487 | off_t e_offset; |
| 1488 | int pageout_flags; |
| 1489 | |
| 1490 | if (upl_get_internal_vectorupl(upl)) { |
| 1491 | panic("Vector UPLs should not take this code-path" ); |
| 1492 | } |
| 1493 | /* |
| 1494 | * we're writing into a 'hole' |
| 1495 | */ |
| 1496 | if (flags & CL_PAGEOUT) { |
| 1497 | /* |
| 1498 | * if we got here via cluster_pageout |
| 1499 | * then just error the request and return |
| 1500 | * the 'hole' should already have been covered |
| 1501 | */ |
| 1502 | error = EINVAL; |
| 1503 | break; |
| 1504 | } |
| 1505 | /* |
| 1506 | * we can get here if the cluster code happens to |
| 1507 | * pick up a page that was dirtied via mmap vs |
| 1508 | * a 'write' and the page targets a 'hole'... |
| 1509 | * i.e. the writes to the cluster were sparse |
| 1510 | * and the file was being written for the first time |
| 1511 | * |
| 1512 | * we can also get here if the filesystem supports |
| 1513 | * 'holes' that are less than PAGE_SIZE.... because |
| 1514 | * we can't know if the range in the page that covers |
| 1515 | * the 'hole' has been dirtied via an mmap or not, |
| 1516 | * we have to assume the worst and try to push the |
| 1517 | * entire page to storage. |
| 1518 | * |
| 1519 | * Try paging out the page individually before |
| 1520 | * giving up entirely and dumping it (the pageout |
| 1521 | * path will insure that the zero extent accounting |
| 1522 | * has been taken care of before we get back into cluster_io) |
| 1523 | * |
| 1524 | * go direct to vnode_pageout so that we don't have to |
| 1525 | * unbusy the page from the UPL... we used to do this |
| 1526 | * so that we could call ubc_msync, but that results |
| 1527 | * in a potential deadlock if someone else races us to acquire |
| 1528 | * that page and wins and in addition needs one of the pages |
| 1529 | * we're continuing to hold in the UPL |
| 1530 | */ |
| 1531 | pageout_flags = UPL_MSYNC | UPL_VNODE_PAGER | UPL_NESTED_PAGEOUT; |
| 1532 | |
| 1533 | if (!(flags & CL_ASYNC)) { |
| 1534 | pageout_flags |= UPL_IOSYNC; |
| 1535 | } |
| 1536 | if (!(flags & CL_COMMIT)) { |
| 1537 | pageout_flags |= UPL_NOCOMMIT; |
| 1538 | } |
| 1539 | |
| 1540 | if (cbp_head) { |
| 1541 | buf_t prev_cbp; |
| 1542 | uint32_t bytes_in_last_page; |
| 1543 | |
| 1544 | /* |
| 1545 | * first we have to wait for the the current outstanding I/Os |
| 1546 | * to complete... EOT hasn't been set yet on this transaction |
| 1547 | * so the pages won't be released |
| 1548 | */ |
| 1549 | cluster_wait_IO(cbp_head, async: (flags & CL_ASYNC)); |
| 1550 | |
| 1551 | bytes_in_last_page = cbp_head->b_uploffset & PAGE_MASK; |
| 1552 | for (cbp = cbp_head; cbp; cbp = cbp->b_trans_next) { |
| 1553 | bytes_in_last_page += cbp->b_bcount; |
| 1554 | } |
| 1555 | bytes_in_last_page &= PAGE_MASK; |
| 1556 | |
| 1557 | while (bytes_in_last_page) { |
| 1558 | /* |
| 1559 | * we've got a transcation that |
| 1560 | * includes the page we're about to push out through vnode_pageout... |
| 1561 | * find the bp's in the list which intersect this page and either |
| 1562 | * remove them entirely from the transaction (there could be multiple bp's), or |
| 1563 | * round it's iosize down to the page boundary (there can only be one)... |
| 1564 | * |
| 1565 | * find the last bp in the list and act on it |
| 1566 | */ |
| 1567 | for (prev_cbp = cbp = cbp_head; cbp->b_trans_next; cbp = cbp->b_trans_next) { |
| 1568 | prev_cbp = cbp; |
| 1569 | } |
| 1570 | |
| 1571 | if (bytes_in_last_page >= cbp->b_bcount) { |
| 1572 | /* |
| 1573 | * this buf no longer has any I/O associated with it |
| 1574 | */ |
| 1575 | bytes_in_last_page -= cbp->b_bcount; |
| 1576 | cbp->b_bcount = 0; |
| 1577 | |
| 1578 | free_io_buf(cbp); |
| 1579 | |
| 1580 | if (cbp == cbp_head) { |
| 1581 | assert(bytes_in_last_page == 0); |
| 1582 | /* |
| 1583 | * the buf we just freed was the only buf in |
| 1584 | * this transaction... so there's no I/O to do |
| 1585 | */ |
| 1586 | cbp_head = NULL; |
| 1587 | cbp_tail = NULL; |
| 1588 | } else { |
| 1589 | /* |
| 1590 | * remove the buf we just freed from |
| 1591 | * the transaction list |
| 1592 | */ |
| 1593 | prev_cbp->b_trans_next = NULL; |
| 1594 | cbp_tail = prev_cbp; |
| 1595 | } |
| 1596 | } else { |
| 1597 | /* |
| 1598 | * this is the last bp that has I/O |
| 1599 | * intersecting the page of interest |
| 1600 | * only some of the I/O is in the intersection |
| 1601 | * so clip the size but keep it in the transaction list |
| 1602 | */ |
| 1603 | cbp->b_bcount -= bytes_in_last_page; |
| 1604 | cbp_tail = cbp; |
| 1605 | bytes_in_last_page = 0; |
| 1606 | } |
| 1607 | } |
| 1608 | if (cbp_head) { |
| 1609 | /* |
| 1610 | * there was more to the current transaction |
| 1611 | * than just the page we are pushing out via vnode_pageout... |
| 1612 | * mark it as finished and complete it... we've already |
| 1613 | * waited for the I/Os to complete above in the call to cluster_wait_IO |
| 1614 | */ |
| 1615 | cluster_EOT(cbp_head, cbp_tail, zero_offset: 0, verify_block_size: 0); |
| 1616 | |
| 1617 | cluster_complete_transaction(cbp_head: &cbp_head, callback_arg, retval: &retval, flags, needwait: 0); |
| 1618 | |
| 1619 | trans_count = 0; |
| 1620 | } |
| 1621 | } |
| 1622 | if (vnode_pageout(vp, upl, (upl_offset_t)trunc_page(upl_offset), trunc_page_64(f_offset), PAGE_SIZE, pageout_flags, NULL) != PAGER_SUCCESS) { |
| 1623 | error = EINVAL; |
| 1624 | } |
| 1625 | e_offset = round_page_64(x: f_offset + 1); |
| 1626 | io_size = (u_int)(e_offset - f_offset); |
| 1627 | |
| 1628 | f_offset += io_size; |
| 1629 | upl_offset += io_size; |
| 1630 | |
| 1631 | if (size >= io_size) { |
| 1632 | size -= io_size; |
| 1633 | } else { |
| 1634 | size = 0; |
| 1635 | } |
| 1636 | /* |
| 1637 | * keep track of how much of the original request |
| 1638 | * that we've actually completed... non_rounded_size |
| 1639 | * may go negative due to us rounding the request |
| 1640 | * to a page size multiple (i.e. size > non_rounded_size) |
| 1641 | */ |
| 1642 | non_rounded_size -= io_size; |
| 1643 | |
| 1644 | if (non_rounded_size <= 0) { |
| 1645 | /* |
| 1646 | * we've transferred all of the data in the original |
| 1647 | * request, but we were unable to complete the tail |
| 1648 | * of the last page because the file didn't have |
| 1649 | * an allocation to back that portion... this is ok. |
| 1650 | */ |
| 1651 | size = 0; |
| 1652 | } |
| 1653 | if (error) { |
| 1654 | if (size == 0) { |
| 1655 | flags &= ~CL_COMMIT; |
| 1656 | } |
| 1657 | break; |
| 1658 | } |
| 1659 | continue; |
| 1660 | } |
| 1661 | |
| 1662 | lblksize = CLUSTER_IO_BLOCK_SIZE; |
| 1663 | lblkno = (daddr64_t)(f_offset / lblksize); |
| 1664 | |
| 1665 | /* |
| 1666 | * we have now figured out how much I/O we can do - this is in 'io_size' |
| 1667 | * pg_offset is the starting point in the first page for the I/O |
| 1668 | * pg_count is the number of full and partial pages that 'io_size' encompasses |
| 1669 | */ |
| 1670 | pg_offset = upl_offset & PAGE_MASK; |
| 1671 | |
| 1672 | if (flags & CL_DEV_MEMORY) { |
| 1673 | /* |
| 1674 | * treat physical requests as one 'giant' page |
| 1675 | */ |
| 1676 | pg_count = 1; |
| 1677 | } else { |
| 1678 | pg_count = (io_size + pg_offset + (PAGE_SIZE - 1)) / PAGE_SIZE; |
| 1679 | } |
| 1680 | |
| 1681 | if ((flags & CL_READ) && blkno == -1) { |
| 1682 | vm_offset_t commit_offset; |
| 1683 | int bytes_to_zero; |
| 1684 | int complete_transaction_now = 0; |
| 1685 | |
| 1686 | /* |
| 1687 | * if we're reading and blkno == -1, then we've got a |
| 1688 | * 'hole' in the file that we need to deal with by zeroing |
| 1689 | * out the affected area in the upl |
| 1690 | */ |
| 1691 | if (io_size >= (u_int)non_rounded_size) { |
| 1692 | /* |
| 1693 | * if this upl contains the EOF and it is not a multiple of PAGE_SIZE |
| 1694 | * than 'zero_offset' will be non-zero |
| 1695 | * if the 'hole' returned by vnop_blockmap extends all the way to the eof |
| 1696 | * (indicated by the io_size finishing off the I/O request for this UPL) |
| 1697 | * than we're not going to issue an I/O for the |
| 1698 | * last page in this upl... we need to zero both the hole and the tail |
| 1699 | * of the page beyond the EOF, since the delayed zero-fill won't kick in |
| 1700 | */ |
| 1701 | bytes_to_zero = non_rounded_size; |
| 1702 | if (!(flags & CL_NOZERO)) { |
| 1703 | bytes_to_zero = (int)((((upl_offset + io_size) + (PAGE_SIZE - 1)) & ~PAGE_MASK) - upl_offset); |
| 1704 | } |
| 1705 | |
| 1706 | zero_offset = 0; |
| 1707 | } else { |
| 1708 | bytes_to_zero = io_size; |
| 1709 | } |
| 1710 | |
| 1711 | pg_count = 0; |
| 1712 | |
| 1713 | cluster_zero(upl, upl_offset: (upl_offset_t)upl_offset, size: bytes_to_zero, bp: real_bp); |
| 1714 | |
| 1715 | if (cbp_head) { |
| 1716 | int pg_resid; |
| 1717 | |
| 1718 | /* |
| 1719 | * if there is a current I/O chain pending |
| 1720 | * then the first page of the group we just zero'd |
| 1721 | * will be handled by the I/O completion if the zero |
| 1722 | * fill started in the middle of the page |
| 1723 | */ |
| 1724 | commit_offset = (upl_offset + (PAGE_SIZE - 1)) & ~PAGE_MASK; |
| 1725 | |
| 1726 | pg_resid = (int)(commit_offset - upl_offset); |
| 1727 | |
| 1728 | if (bytes_to_zero >= pg_resid) { |
| 1729 | /* |
| 1730 | * the last page of the current I/O |
| 1731 | * has been completed... |
| 1732 | * compute the number of fully zero'd |
| 1733 | * pages that are beyond it |
| 1734 | * plus the last page if its partial |
| 1735 | * and we have no more I/O to issue... |
| 1736 | * otherwise a partial page is left |
| 1737 | * to begin the next I/O |
| 1738 | */ |
| 1739 | if ((int)io_size >= non_rounded_size) { |
| 1740 | pg_count = (bytes_to_zero - pg_resid + (PAGE_SIZE - 1)) / PAGE_SIZE; |
| 1741 | } else { |
| 1742 | pg_count = (bytes_to_zero - pg_resid) / PAGE_SIZE; |
| 1743 | } |
| 1744 | |
| 1745 | complete_transaction_now = 1; |
| 1746 | } |
| 1747 | } else { |
| 1748 | /* |
| 1749 | * no pending I/O to deal with |
| 1750 | * so, commit all of the fully zero'd pages |
| 1751 | * plus the last page if its partial |
| 1752 | * and we have no more I/O to issue... |
| 1753 | * otherwise a partial page is left |
| 1754 | * to begin the next I/O |
| 1755 | */ |
| 1756 | if ((int)io_size >= non_rounded_size) { |
| 1757 | pg_count = (pg_offset + bytes_to_zero + (PAGE_SIZE - 1)) / PAGE_SIZE; |
| 1758 | } else { |
| 1759 | pg_count = (pg_offset + bytes_to_zero) / PAGE_SIZE; |
| 1760 | } |
| 1761 | |
| 1762 | commit_offset = upl_offset & ~PAGE_MASK; |
| 1763 | } |
| 1764 | |
| 1765 | // Associated UPL is currently only used in the direct write path |
| 1766 | assert(!upl_associated_upl(upl)); |
| 1767 | |
| 1768 | if ((flags & CL_COMMIT) && pg_count) { |
| 1769 | ubc_upl_commit_range(upl, (upl_offset_t)commit_offset, |
| 1770 | pg_count * PAGE_SIZE, |
| 1771 | UPL_COMMIT_CLEAR_DIRTY | UPL_COMMIT_FREE_ON_EMPTY); |
| 1772 | } |
| 1773 | upl_offset += io_size; |
| 1774 | f_offset += io_size; |
| 1775 | size -= io_size; |
| 1776 | |
| 1777 | /* |
| 1778 | * keep track of how much of the original request |
| 1779 | * that we've actually completed... non_rounded_size |
| 1780 | * may go negative due to us rounding the request |
| 1781 | * to a page size multiple (i.e. size > non_rounded_size) |
| 1782 | */ |
| 1783 | non_rounded_size -= io_size; |
| 1784 | |
| 1785 | if (non_rounded_size <= 0) { |
| 1786 | /* |
| 1787 | * we've transferred all of the data in the original |
| 1788 | * request, but we were unable to complete the tail |
| 1789 | * of the last page because the file didn't have |
| 1790 | * an allocation to back that portion... this is ok. |
| 1791 | */ |
| 1792 | size = 0; |
| 1793 | } |
| 1794 | if (cbp_head && (complete_transaction_now || size == 0)) { |
| 1795 | cluster_wait_IO(cbp_head, async: (flags & CL_ASYNC)); |
| 1796 | |
| 1797 | cluster_EOT(cbp_head, cbp_tail, zero_offset: size == 0 ? zero_offset : 0, verify_block_size); |
| 1798 | |
| 1799 | cluster_complete_transaction(cbp_head: &cbp_head, callback_arg, retval: &retval, flags, needwait: 0); |
| 1800 | |
| 1801 | trans_count = 0; |
| 1802 | } |
| 1803 | continue; |
| 1804 | } |
| 1805 | if (pg_count > max_vectors) { |
| 1806 | if (((pg_count - max_vectors) * PAGE_SIZE) > io_size) { |
| 1807 | io_size = PAGE_SIZE - pg_offset; |
| 1808 | pg_count = 1; |
| 1809 | } else { |
| 1810 | io_size -= (pg_count - max_vectors) * PAGE_SIZE; |
| 1811 | pg_count = max_vectors; |
| 1812 | } |
| 1813 | } |
| 1814 | /* |
| 1815 | * If the transaction is going to reach the maximum number of |
| 1816 | * desired elements, truncate the i/o to the nearest page so |
| 1817 | * that the actual i/o is initiated after this buffer is |
| 1818 | * created and added to the i/o chain. |
| 1819 | * |
| 1820 | * I/O directed to physically contiguous memory |
| 1821 | * doesn't have a requirement to make sure we 'fill' a page |
| 1822 | */ |
| 1823 | if (!(flags & CL_DEV_MEMORY) && trans_count >= max_trans_count && |
| 1824 | ((upl_offset + io_size) & PAGE_MASK)) { |
| 1825 | vm_offset_t aligned_ofs; |
| 1826 | |
| 1827 | aligned_ofs = (upl_offset + io_size) & ~PAGE_MASK; |
| 1828 | /* |
| 1829 | * If the io_size does not actually finish off even a |
| 1830 | * single page we have to keep adding buffers to the |
| 1831 | * transaction despite having reached the desired limit. |
| 1832 | * |
| 1833 | * Eventually we get here with the page being finished |
| 1834 | * off (and exceeded) and then we truncate the size of |
| 1835 | * this i/o request so that it is page aligned so that |
| 1836 | * we can finally issue the i/o on the transaction. |
| 1837 | */ |
| 1838 | if (aligned_ofs > upl_offset) { |
| 1839 | io_size = (u_int)(aligned_ofs - upl_offset); |
| 1840 | pg_count--; |
| 1841 | } |
| 1842 | } |
| 1843 | |
| 1844 | if (!(mp->mnt_kern_flag & MNTK_VIRTUALDEV)) { |
| 1845 | /* |
| 1846 | * if we're not targeting a virtual device i.e. a disk image |
| 1847 | * it's safe to dip into the reserve pool since real devices |
| 1848 | * can complete this I/O request without requiring additional |
| 1849 | * bufs from the alloc_io_buf pool |
| 1850 | */ |
| 1851 | priv = 1; |
| 1852 | } else if ((flags & CL_ASYNC) && !(flags & CL_PAGEOUT) && !cbp_head) { |
| 1853 | /* |
| 1854 | * Throttle the speculative IO |
| 1855 | * |
| 1856 | * We can only throttle this if it is the first iobuf |
| 1857 | * for the transaction. alloc_io_buf implements |
| 1858 | * additional restrictions for diskimages anyway. |
| 1859 | */ |
| 1860 | priv = 0; |
| 1861 | } else { |
| 1862 | priv = 1; |
| 1863 | } |
| 1864 | |
| 1865 | cbp = alloc_io_buf(vp, priv); |
| 1866 | |
| 1867 | if (flags & CL_PAGEOUT) { |
| 1868 | u_int i; |
| 1869 | |
| 1870 | /* |
| 1871 | * since blocks are in offsets of lblksize (CLUSTER_IO_BLOCK_SIZE), scale |
| 1872 | * iteration to (PAGE_SIZE * pg_count) of blks. |
| 1873 | */ |
| 1874 | for (i = 0; i < (PAGE_SIZE * pg_count) / lblksize; i++) { |
| 1875 | if (buf_invalblkno(vp, lblkno: lblkno + i, flags: 0) == EBUSY) { |
| 1876 | panic("BUSY bp found in cluster_io" ); |
| 1877 | } |
| 1878 | } |
| 1879 | } |
| 1880 | if (flags & CL_ASYNC) { |
| 1881 | if (buf_setcallback(bp: cbp, callback: (void *)cluster_iodone, transaction: callback_arg)) { |
| 1882 | panic("buf_setcallback failed" ); |
| 1883 | } |
| 1884 | } |
| 1885 | cbp->b_cliodone = (void *)callback; |
| 1886 | cbp->b_flags |= io_flags; |
| 1887 | if (flags & CL_NOCACHE) { |
| 1888 | cbp->b_attr.ba_flags |= BA_NOCACHE; |
| 1889 | } |
| 1890 | if (verify_block_size) { |
| 1891 | cbp->b_attr.ba_flags |= BA_WILL_VERIFY; |
| 1892 | } |
| 1893 | |
| 1894 | cbp->b_lblkno = lblkno; |
| 1895 | cbp->b_lblksize = lblksize; |
| 1896 | cbp->b_blkno = blkno; |
| 1897 | cbp->b_bcount = io_size; |
| 1898 | |
| 1899 | if (buf_setupl(bp: cbp, upl, offset: (uint32_t)upl_offset)) { |
| 1900 | panic("buf_setupl failed" ); |
| 1901 | } |
| 1902 | #if CONFIG_IOSCHED |
| 1903 | upl_set_blkno(upl, upl_offset, size: io_size, blkno); |
| 1904 | #endif |
| 1905 | cbp->b_trans_next = (buf_t)NULL; |
| 1906 | |
| 1907 | if ((cbp->b_iostate = (void *)iostate)) { |
| 1908 | /* |
| 1909 | * caller wants to track the state of this |
| 1910 | * io... bump the amount issued against this stream |
| 1911 | */ |
| 1912 | iostate->io_issued += io_size; |
| 1913 | } |
| 1914 | |
| 1915 | if (flags & CL_READ) { |
| 1916 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 26)) | DBG_FUNC_NONE, |
| 1917 | (int)cbp->b_lblkno, (int)cbp->b_blkno, upl_offset, io_size, 0); |
| 1918 | } else { |
| 1919 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 27)) | DBG_FUNC_NONE, |
| 1920 | (int)cbp->b_lblkno, (int)cbp->b_blkno, upl_offset, io_size, 0); |
| 1921 | } |
| 1922 | |
| 1923 | if (cbp_head) { |
| 1924 | cbp_tail->b_trans_next = cbp; |
| 1925 | cbp_tail = cbp; |
| 1926 | } else { |
| 1927 | cbp_head = cbp; |
| 1928 | cbp_tail = cbp; |
| 1929 | |
| 1930 | if ((cbp_head->b_real_bp = real_bp)) { |
| 1931 | real_bp = (buf_t)NULL; |
| 1932 | } |
| 1933 | } |
| 1934 | *(buf_t *)(&cbp->b_trans_head) = cbp_head; |
| 1935 | |
| 1936 | trans_count++; |
| 1937 | |
| 1938 | upl_offset += io_size; |
| 1939 | f_offset += io_size; |
| 1940 | size -= io_size; |
| 1941 | /* |
| 1942 | * keep track of how much of the original request |
| 1943 | * that we've actually completed... non_rounded_size |
| 1944 | * may go negative due to us rounding the request |
| 1945 | * to a page size multiple (i.e. size > non_rounded_size) |
| 1946 | */ |
| 1947 | non_rounded_size -= io_size; |
| 1948 | |
| 1949 | if (non_rounded_size <= 0) { |
| 1950 | /* |
| 1951 | * we've transferred all of the data in the original |
| 1952 | * request, but we were unable to complete the tail |
| 1953 | * of the last page because the file didn't have |
| 1954 | * an allocation to back that portion... this is ok. |
| 1955 | */ |
| 1956 | size = 0; |
| 1957 | } |
| 1958 | if (size == 0) { |
| 1959 | /* |
| 1960 | * we have no more I/O to issue, so go |
| 1961 | * finish the final transaction |
| 1962 | */ |
| 1963 | need_EOT = TRUE; |
| 1964 | } else if (((flags & CL_DEV_MEMORY) || (upl_offset & PAGE_MASK) == 0) && |
| 1965 | ((flags & CL_ASYNC) || trans_count > max_trans_count)) { |
| 1966 | /* |
| 1967 | * I/O directed to physically contiguous memory... |
| 1968 | * which doesn't have a requirement to make sure we 'fill' a page |
| 1969 | * or... |
| 1970 | * the current I/O we've prepared fully |
| 1971 | * completes the last page in this request |
| 1972 | * and ... |
| 1973 | * it's either an ASYNC request or |
| 1974 | * we've already accumulated more than 8 I/O's into |
| 1975 | * this transaction so mark it as complete so that |
| 1976 | * it can finish asynchronously or via the cluster_complete_transaction |
| 1977 | * below if the request is synchronous |
| 1978 | */ |
| 1979 | need_EOT = TRUE; |
| 1980 | } |
| 1981 | if (need_EOT == TRUE) { |
| 1982 | cluster_EOT(cbp_head, cbp_tail, zero_offset: size == 0 ? zero_offset : 0, verify_block_size); |
| 1983 | } |
| 1984 | |
| 1985 | if (flags & CL_THROTTLE) { |
| 1986 | (void)vnode_waitforwrites(vp, output_target: async_throttle, slpflag: 0, slptimeout: 0, msg: "cluster_io" ); |
| 1987 | } |
| 1988 | |
| 1989 | if (!(io_flags & B_READ)) { |
| 1990 | vnode_startwrite(vp); |
| 1991 | } |
| 1992 | |
| 1993 | if (flags & CL_RAW_ENCRYPTED) { |
| 1994 | /* |
| 1995 | * User requested raw encrypted bytes. |
| 1996 | * Twiddle the bit in the ba_flags for the buffer |
| 1997 | */ |
| 1998 | cbp->b_attr.ba_flags |= BA_RAW_ENCRYPTED_IO; |
| 1999 | } |
| 2000 | |
| 2001 | (void) VNOP_STRATEGY(bp: cbp); |
| 2002 | |
| 2003 | if (need_EOT == TRUE) { |
| 2004 | if (!(flags & CL_ASYNC)) { |
| 2005 | cluster_complete_transaction(cbp_head: &cbp_head, callback_arg, retval: &retval, flags, needwait: 1); |
| 2006 | } |
| 2007 | |
| 2008 | need_EOT = FALSE; |
| 2009 | trans_count = 0; |
| 2010 | cbp_head = NULL; |
| 2011 | } |
| 2012 | } |
| 2013 | if (error) { |
| 2014 | int abort_size; |
| 2015 | |
| 2016 | io_size = 0; |
| 2017 | |
| 2018 | if (cbp_head) { |
| 2019 | /* |
| 2020 | * Wait until all of the outstanding I/O |
| 2021 | * for this partial transaction has completed |
| 2022 | */ |
| 2023 | cluster_wait_IO(cbp_head, async: (flags & CL_ASYNC)); |
| 2024 | |
| 2025 | /* |
| 2026 | * Rewind the upl offset to the beginning of the |
| 2027 | * transaction. |
| 2028 | */ |
| 2029 | upl_offset = cbp_head->b_uploffset; |
| 2030 | } |
| 2031 | |
| 2032 | if (ISSET(flags, CL_COMMIT)) { |
| 2033 | cluster_handle_associated_upl(iostate, upl, |
| 2034 | upl_offset: (upl_offset_t)upl_offset, |
| 2035 | size: (upl_size_t)(upl_end_offset - upl_offset)); |
| 2036 | } |
| 2037 | |
| 2038 | // Free all the IO buffers in this transaction |
| 2039 | for (cbp = cbp_head; cbp;) { |
| 2040 | buf_t cbp_next; |
| 2041 | |
| 2042 | size += cbp->b_bcount; |
| 2043 | io_size += cbp->b_bcount; |
| 2044 | |
| 2045 | cbp_next = cbp->b_trans_next; |
| 2046 | free_io_buf(cbp); |
| 2047 | cbp = cbp_next; |
| 2048 | } |
| 2049 | |
| 2050 | if (iostate) { |
| 2051 | int need_wakeup = 0; |
| 2052 | |
| 2053 | /* |
| 2054 | * update the error condition for this stream |
| 2055 | * since we never really issued the io |
| 2056 | * just go ahead and adjust it back |
| 2057 | */ |
| 2058 | lck_mtx_lock_spin(lck: &iostate->io_mtxp); |
| 2059 | |
| 2060 | if (iostate->io_error == 0) { |
| 2061 | iostate->io_error = error; |
| 2062 | } |
| 2063 | iostate->io_issued -= io_size; |
| 2064 | |
| 2065 | if (iostate->io_wanted) { |
| 2066 | /* |
| 2067 | * someone is waiting for the state of |
| 2068 | * this io stream to change |
| 2069 | */ |
| 2070 | iostate->io_wanted = 0; |
| 2071 | need_wakeup = 1; |
| 2072 | } |
| 2073 | lck_mtx_unlock(lck: &iostate->io_mtxp); |
| 2074 | |
| 2075 | if (need_wakeup) { |
| 2076 | wakeup(chan: (caddr_t)&iostate->io_wanted); |
| 2077 | } |
| 2078 | } |
| 2079 | |
| 2080 | if (flags & CL_COMMIT) { |
| 2081 | int upl_flags; |
| 2082 | |
| 2083 | pg_offset = upl_offset & PAGE_MASK; |
| 2084 | abort_size = (int)((upl_end_offset - upl_offset + PAGE_MASK) & ~PAGE_MASK); |
| 2085 | |
| 2086 | upl_flags = cluster_ioerror(upl, upl_offset: (int)(upl_offset - pg_offset), |
| 2087 | abort_size, error, io_flags, vp); |
| 2088 | |
| 2089 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 28)) | DBG_FUNC_NONE, |
| 2090 | upl, upl_offset - pg_offset, abort_size, (error << 24) | upl_flags, 0); |
| 2091 | } |
| 2092 | if (retval == 0) { |
| 2093 | retval = error; |
| 2094 | } |
| 2095 | } else if (cbp_head) { |
| 2096 | panic("%s(): cbp_head is not NULL." , __FUNCTION__); |
| 2097 | } |
| 2098 | |
| 2099 | if (real_bp) { |
| 2100 | /* |
| 2101 | * can get here if we either encountered an error |
| 2102 | * or we completely zero-filled the request and |
| 2103 | * no I/O was issued |
| 2104 | */ |
| 2105 | if (error) { |
| 2106 | real_bp->b_flags |= B_ERROR; |
| 2107 | real_bp->b_error = error; |
| 2108 | } |
| 2109 | buf_biodone(bp: real_bp); |
| 2110 | } |
| 2111 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 22)) | DBG_FUNC_END, (int)f_offset, size, upl_offset, retval, 0); |
| 2112 | |
| 2113 | return retval; |
| 2114 | } |
| 2115 | |
| 2116 | #define reset_vector_run_state() \ |
| 2117 | issueVectorUPL = vector_upl_offset = vector_upl_index = vector_upl_iosize = vector_upl_size = 0; |
| 2118 | |
| 2119 | static int |
| 2120 | vector_cluster_io(vnode_t vp, upl_t vector_upl, vm_offset_t vector_upl_offset, off_t v_upl_uio_offset, int vector_upl_iosize, |
| 2121 | int io_flag, buf_t real_bp, struct clios *iostate, int (*callback)(buf_t, void *), void *callback_arg) |
| 2122 | { |
| 2123 | vector_upl_set_pagelist(vector_upl); |
| 2124 | |
| 2125 | if (io_flag & CL_READ) { |
| 2126 | if (vector_upl_offset == 0 && ((vector_upl_iosize & PAGE_MASK) == 0)) { |
| 2127 | io_flag &= ~CL_PRESERVE; /*don't zero fill*/ |
| 2128 | } else { |
| 2129 | io_flag |= CL_PRESERVE; /*zero fill*/ |
| 2130 | } |
| 2131 | } |
| 2132 | return cluster_io(vp, upl: vector_upl, upl_offset: vector_upl_offset, f_offset: v_upl_uio_offset, non_rounded_size: vector_upl_iosize, flags: io_flag, real_bp, iostate, callback, callback_arg); |
| 2133 | } |
| 2134 | |
| 2135 | static int |
| 2136 | cluster_read_prefetch(vnode_t vp, off_t f_offset, u_int size, off_t filesize, int (*callback)(buf_t, void *), void *callback_arg, int bflag) |
| 2137 | { |
| 2138 | int pages_in_prefetch; |
| 2139 | |
| 2140 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 49)) | DBG_FUNC_START, |
| 2141 | (int)f_offset, size, (int)filesize, 0, 0); |
| 2142 | |
| 2143 | if (f_offset >= filesize) { |
| 2144 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 49)) | DBG_FUNC_END, |
| 2145 | (int)f_offset, 0, 0, 0, 0); |
| 2146 | return 0; |
| 2147 | } |
| 2148 | if ((off_t)size > (filesize - f_offset)) { |
| 2149 | size = (u_int)(filesize - f_offset); |
| 2150 | } |
| 2151 | pages_in_prefetch = (size + (PAGE_SIZE - 1)) / PAGE_SIZE; |
| 2152 | |
| 2153 | advisory_read_ext(vp, filesize, f_offset, size, callback, callback_arg, bflag); |
| 2154 | |
| 2155 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 49)) | DBG_FUNC_END, |
| 2156 | (int)f_offset + size, pages_in_prefetch, 0, 1, 0); |
| 2157 | |
| 2158 | return pages_in_prefetch; |
| 2159 | } |
| 2160 | |
| 2161 | |
| 2162 | |
| 2163 | static void |
| 2164 | cluster_read_ahead(vnode_t vp, struct cl_extent *extent, off_t filesize, struct cl_readahead *rap, int (*callback)(buf_t, void *), void *callback_arg, |
| 2165 | int bflag) |
| 2166 | { |
| 2167 | daddr64_t r_addr; |
| 2168 | off_t f_offset; |
| 2169 | int size_of_prefetch; |
| 2170 | u_int max_prefetch; |
| 2171 | |
| 2172 | |
| 2173 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 48)) | DBG_FUNC_START, |
| 2174 | (int)extent->b_addr, (int)extent->e_addr, (int)rap->cl_lastr, 0, 0); |
| 2175 | |
| 2176 | if (extent->b_addr == rap->cl_lastr && extent->b_addr == extent->e_addr) { |
| 2177 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 48)) | DBG_FUNC_END, |
| 2178 | rap->cl_ralen, (int)rap->cl_maxra, (int)rap->cl_lastr, 0, 0); |
| 2179 | return; |
| 2180 | } |
| 2181 | if (rap->cl_lastr == -1 || (extent->b_addr != rap->cl_lastr && extent->b_addr != (rap->cl_lastr + 1))) { |
| 2182 | rap->cl_ralen = 0; |
| 2183 | rap->cl_maxra = 0; |
| 2184 | |
| 2185 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 48)) | DBG_FUNC_END, |
| 2186 | rap->cl_ralen, (int)rap->cl_maxra, (int)rap->cl_lastr, 1, 0); |
| 2187 | |
| 2188 | return; |
| 2189 | } |
| 2190 | |
| 2191 | max_prefetch = cluster_max_prefetch(vp, |
| 2192 | max_io_size: cluster_max_io_size(mp: vp->v_mount, CL_READ), prefetch_limit: speculative_prefetch_max); |
| 2193 | |
| 2194 | if (max_prefetch <= PAGE_SIZE) { |
| 2195 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 48)) | DBG_FUNC_END, |
| 2196 | rap->cl_ralen, (int)rap->cl_maxra, (int)rap->cl_lastr, 6, 0); |
| 2197 | return; |
| 2198 | } |
| 2199 | if (extent->e_addr < rap->cl_maxra && rap->cl_ralen >= 4) { |
| 2200 | if ((rap->cl_maxra - extent->e_addr) > (rap->cl_ralen / 4)) { |
| 2201 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 48)) | DBG_FUNC_END, |
| 2202 | rap->cl_ralen, (int)rap->cl_maxra, (int)rap->cl_lastr, 2, 0); |
| 2203 | return; |
| 2204 | } |
| 2205 | } |
| 2206 | r_addr = MAX(extent->e_addr, rap->cl_maxra) + 1; |
| 2207 | f_offset = (off_t)(r_addr * PAGE_SIZE_64); |
| 2208 | |
| 2209 | size_of_prefetch = 0; |
| 2210 | |
| 2211 | ubc_range_op(vp, f_offset, f_offset + PAGE_SIZE_64, UPL_ROP_PRESENT, &size_of_prefetch); |
| 2212 | |
| 2213 | if (size_of_prefetch) { |
| 2214 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 48)) | DBG_FUNC_END, |
| 2215 | rap->cl_ralen, (int)rap->cl_maxra, (int)rap->cl_lastr, 3, 0); |
| 2216 | return; |
| 2217 | } |
| 2218 | if (f_offset < filesize) { |
| 2219 | daddr64_t read_size; |
| 2220 | |
| 2221 | rap->cl_ralen = rap->cl_ralen ? min(a: max_prefetch / PAGE_SIZE, b: rap->cl_ralen << 1) : 1; |
| 2222 | |
| 2223 | read_size = (extent->e_addr + 1) - extent->b_addr; |
| 2224 | |
| 2225 | if (read_size > rap->cl_ralen) { |
| 2226 | if (read_size > max_prefetch / PAGE_SIZE) { |
| 2227 | rap->cl_ralen = max_prefetch / PAGE_SIZE; |
| 2228 | } else { |
| 2229 | rap->cl_ralen = (int)read_size; |
| 2230 | } |
| 2231 | } |
| 2232 | size_of_prefetch = cluster_read_prefetch(vp, f_offset, size: rap->cl_ralen * PAGE_SIZE, filesize, callback, callback_arg, bflag); |
| 2233 | |
| 2234 | if (size_of_prefetch) { |
| 2235 | rap->cl_maxra = (r_addr + size_of_prefetch) - 1; |
| 2236 | } |
| 2237 | } |
| 2238 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 48)) | DBG_FUNC_END, |
| 2239 | rap->cl_ralen, (int)rap->cl_maxra, (int)rap->cl_lastr, 4, 0); |
| 2240 | } |
| 2241 | |
| 2242 | |
| 2243 | int |
| 2244 | cluster_pageout(vnode_t vp, upl_t upl, upl_offset_t upl_offset, off_t f_offset, |
| 2245 | int size, off_t filesize, int flags) |
| 2246 | { |
| 2247 | return cluster_pageout_ext(vp, upl, upl_offset, f_offset, size, filesize, flags, NULL, NULL); |
| 2248 | } |
| 2249 | |
| 2250 | |
| 2251 | int |
| 2252 | cluster_pageout_ext(vnode_t vp, upl_t upl, upl_offset_t upl_offset, off_t f_offset, |
| 2253 | int size, off_t filesize, int flags, int (*callback)(buf_t, void *), void *callback_arg) |
| 2254 | { |
| 2255 | int io_size; |
| 2256 | int rounded_size; |
| 2257 | off_t max_size; |
| 2258 | int local_flags; |
| 2259 | |
| 2260 | local_flags = CL_PAGEOUT | CL_THROTTLE; |
| 2261 | |
| 2262 | if ((flags & UPL_IOSYNC) == 0) { |
| 2263 | local_flags |= CL_ASYNC; |
| 2264 | } |
| 2265 | if ((flags & UPL_NOCOMMIT) == 0) { |
| 2266 | local_flags |= CL_COMMIT; |
| 2267 | } |
| 2268 | if ((flags & UPL_KEEPCACHED)) { |
| 2269 | local_flags |= CL_KEEPCACHED; |
| 2270 | } |
| 2271 | if (flags & UPL_PAGING_ENCRYPTED) { |
| 2272 | local_flags |= CL_ENCRYPTED; |
| 2273 | } |
| 2274 | |
| 2275 | |
| 2276 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 52)) | DBG_FUNC_NONE, |
| 2277 | (int)f_offset, size, (int)filesize, local_flags, 0); |
| 2278 | |
| 2279 | /* |
| 2280 | * If they didn't specify any I/O, then we are done... |
| 2281 | * we can't issue an abort because we don't know how |
| 2282 | * big the upl really is |
| 2283 | */ |
| 2284 | if (size <= 0) { |
| 2285 | return EINVAL; |
| 2286 | } |
| 2287 | |
| 2288 | if (vp->v_mount->mnt_flag & MNT_RDONLY) { |
| 2289 | if (local_flags & CL_COMMIT) { |
| 2290 | ubc_upl_abort_range(upl, upl_offset, size, UPL_ABORT_FREE_ON_EMPTY); |
| 2291 | } |
| 2292 | return EROFS; |
| 2293 | } |
| 2294 | /* |
| 2295 | * can't page-in from a negative offset |
| 2296 | * or if we're starting beyond the EOF |
| 2297 | * or if the file offset isn't page aligned |
| 2298 | * or the size requested isn't a multiple of PAGE_SIZE |
| 2299 | */ |
| 2300 | if (f_offset < 0 || f_offset >= filesize || |
| 2301 | (f_offset & PAGE_MASK_64) || (size & PAGE_MASK)) { |
| 2302 | if (local_flags & CL_COMMIT) { |
| 2303 | ubc_upl_abort_range(upl, upl_offset, size, UPL_ABORT_FREE_ON_EMPTY); |
| 2304 | } |
| 2305 | return EINVAL; |
| 2306 | } |
| 2307 | max_size = filesize - f_offset; |
| 2308 | |
| 2309 | if (size < max_size) { |
| 2310 | io_size = size; |
| 2311 | } else { |
| 2312 | io_size = (int)max_size; |
| 2313 | } |
| 2314 | |
| 2315 | rounded_size = (io_size + (PAGE_SIZE - 1)) & ~PAGE_MASK; |
| 2316 | |
| 2317 | if (size > rounded_size) { |
| 2318 | if (local_flags & CL_COMMIT) { |
| 2319 | ubc_upl_abort_range(upl, upl_offset + rounded_size, size - rounded_size, |
| 2320 | UPL_ABORT_FREE_ON_EMPTY); |
| 2321 | } |
| 2322 | } |
| 2323 | return cluster_io(vp, upl, upl_offset, f_offset, non_rounded_size: io_size, |
| 2324 | flags: local_flags, real_bp: (buf_t)NULL, iostate: (struct clios *)NULL, callback, callback_arg); |
| 2325 | } |
| 2326 | |
| 2327 | |
| 2328 | int |
| 2329 | cluster_pagein(vnode_t vp, upl_t upl, upl_offset_t upl_offset, off_t f_offset, |
| 2330 | int size, off_t filesize, int flags) |
| 2331 | { |
| 2332 | return cluster_pagein_ext(vp, upl, upl_offset, f_offset, size, filesize, flags, NULL, NULL); |
| 2333 | } |
| 2334 | |
| 2335 | |
| 2336 | int |
| 2337 | cluster_pagein_ext(vnode_t vp, upl_t upl, upl_offset_t upl_offset, off_t f_offset, |
| 2338 | int size, off_t filesize, int flags, int (*callback)(buf_t, void *), void *callback_arg) |
| 2339 | { |
| 2340 | u_int io_size; |
| 2341 | int rounded_size; |
| 2342 | off_t max_size; |
| 2343 | int retval; |
| 2344 | int local_flags = 0; |
| 2345 | |
| 2346 | if (upl == NULL || size < 0) { |
| 2347 | panic("cluster_pagein: NULL upl passed in" ); |
| 2348 | } |
| 2349 | |
| 2350 | if ((flags & UPL_IOSYNC) == 0) { |
| 2351 | local_flags |= CL_ASYNC; |
| 2352 | } |
| 2353 | if ((flags & UPL_NOCOMMIT) == 0) { |
| 2354 | local_flags |= CL_COMMIT; |
| 2355 | } |
| 2356 | if (flags & UPL_IOSTREAMING) { |
| 2357 | local_flags |= CL_IOSTREAMING; |
| 2358 | } |
| 2359 | if (flags & UPL_PAGING_ENCRYPTED) { |
| 2360 | local_flags |= CL_ENCRYPTED; |
| 2361 | } |
| 2362 | |
| 2363 | |
| 2364 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 56)) | DBG_FUNC_NONE, |
| 2365 | (int)f_offset, size, (int)filesize, local_flags, 0); |
| 2366 | |
| 2367 | /* |
| 2368 | * can't page-in from a negative offset |
| 2369 | * or if we're starting beyond the EOF |
| 2370 | * or if the file offset isn't page aligned |
| 2371 | * or the size requested isn't a multiple of PAGE_SIZE |
| 2372 | */ |
| 2373 | if (f_offset < 0 || f_offset >= filesize || |
| 2374 | (f_offset & PAGE_MASK_64) || (size & PAGE_MASK) || (upl_offset & PAGE_MASK)) { |
| 2375 | if (local_flags & CL_COMMIT) { |
| 2376 | ubc_upl_abort_range(upl, upl_offset, size, UPL_ABORT_FREE_ON_EMPTY | UPL_ABORT_ERROR); |
| 2377 | } |
| 2378 | |
| 2379 | if (f_offset >= filesize) { |
| 2380 | ktriage_record(thread_id: thread_tid(thread: current_thread()), KDBG_TRIAGE_EVENTID(KDBG_TRIAGE_SUBSYS_CLUSTER, KDBG_TRIAGE_RESERVED, KDBG_TRIAGE_CL_PGIN_PAST_EOF), arg: 0 /* arg */); |
| 2381 | } |
| 2382 | |
| 2383 | return EINVAL; |
| 2384 | } |
| 2385 | max_size = filesize - f_offset; |
| 2386 | |
| 2387 | if (size < max_size) { |
| 2388 | io_size = size; |
| 2389 | } else { |
| 2390 | io_size = (int)max_size; |
| 2391 | } |
| 2392 | |
| 2393 | rounded_size = (io_size + (PAGE_SIZE - 1)) & ~PAGE_MASK; |
| 2394 | |
| 2395 | if (size > rounded_size && (local_flags & CL_COMMIT)) { |
| 2396 | ubc_upl_abort_range(upl, upl_offset + rounded_size, |
| 2397 | size - rounded_size, UPL_ABORT_FREE_ON_EMPTY | UPL_ABORT_ERROR); |
| 2398 | } |
| 2399 | |
| 2400 | retval = cluster_io(vp, upl, upl_offset, f_offset, non_rounded_size: io_size, |
| 2401 | flags: local_flags | CL_READ | CL_PAGEIN, real_bp: (buf_t)NULL, iostate: (struct clios *)NULL, callback, callback_arg); |
| 2402 | |
| 2403 | return retval; |
| 2404 | } |
| 2405 | |
| 2406 | |
| 2407 | int |
| 2408 | cluster_bp(buf_t bp) |
| 2409 | { |
| 2410 | return cluster_bp_ext(bp, NULL, NULL); |
| 2411 | } |
| 2412 | |
| 2413 | |
| 2414 | int |
| 2415 | cluster_bp_ext(buf_t bp, int (*callback)(buf_t, void *), void *callback_arg) |
| 2416 | { |
| 2417 | off_t f_offset; |
| 2418 | int flags; |
| 2419 | |
| 2420 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 19)) | DBG_FUNC_START, |
| 2421 | bp, (int)bp->b_lblkno, bp->b_bcount, bp->b_flags, 0); |
| 2422 | |
| 2423 | if (bp->b_flags & B_READ) { |
| 2424 | flags = CL_ASYNC | CL_READ; |
| 2425 | } else { |
| 2426 | flags = CL_ASYNC; |
| 2427 | } |
| 2428 | if (bp->b_flags & B_PASSIVE) { |
| 2429 | flags |= CL_PASSIVE; |
| 2430 | } |
| 2431 | |
| 2432 | f_offset = ubc_blktooff(bp->b_vp, bp->b_lblkno); |
| 2433 | |
| 2434 | return cluster_io(vp: bp->b_vp, upl: bp->b_upl, upl_offset: 0, f_offset, non_rounded_size: bp->b_bcount, flags, real_bp: bp, iostate: (struct clios *)NULL, callback, callback_arg); |
| 2435 | } |
| 2436 | |
| 2437 | |
| 2438 | |
| 2439 | int |
| 2440 | cluster_write(vnode_t vp, struct uio *uio, off_t oldEOF, off_t newEOF, off_t headOff, off_t tailOff, int xflags) |
| 2441 | { |
| 2442 | return cluster_write_ext(vp, uio, oldEOF, newEOF, headOff, tailOff, xflags, NULL, NULL); |
| 2443 | } |
| 2444 | |
| 2445 | |
| 2446 | int |
| 2447 | cluster_write_ext(vnode_t vp, struct uio *uio, off_t oldEOF, off_t newEOF, off_t headOff, off_t tailOff, |
| 2448 | int xflags, int (*callback)(buf_t, void *), void *callback_arg) |
| 2449 | { |
| 2450 | user_ssize_t cur_resid; |
| 2451 | int retval = 0; |
| 2452 | int flags; |
| 2453 | int zflags; |
| 2454 | int bflag; |
| 2455 | int write_type = IO_COPY; |
| 2456 | u_int32_t write_length; |
| 2457 | |
| 2458 | flags = xflags; |
| 2459 | |
| 2460 | if (flags & IO_PASSIVE) { |
| 2461 | bflag = CL_PASSIVE; |
| 2462 | } else { |
| 2463 | bflag = 0; |
| 2464 | } |
| 2465 | |
| 2466 | if (vp->v_flag & VNOCACHE_DATA) { |
| 2467 | flags |= IO_NOCACHE; |
| 2468 | bflag |= CL_NOCACHE; |
| 2469 | } |
| 2470 | if (uio == NULL) { |
| 2471 | /* |
| 2472 | * no user data... |
| 2473 | * this call is being made to zero-fill some range in the file |
| 2474 | */ |
| 2475 | retval = cluster_write_copy(vp, NULL, io_req_size: (u_int32_t)0, oldEOF, newEOF, headOff, tailOff, flags, callback, callback_arg); |
| 2476 | |
| 2477 | return retval; |
| 2478 | } |
| 2479 | /* |
| 2480 | * do a write through the cache if one of the following is true.... |
| 2481 | * NOCACHE is not true or NODIRECT is true |
| 2482 | * the uio request doesn't target USERSPACE |
| 2483 | * otherwise, find out if we want the direct or contig variant for |
| 2484 | * the first vector in the uio request |
| 2485 | */ |
| 2486 | if (((flags & (IO_NOCACHE | IO_NODIRECT)) == IO_NOCACHE) && UIO_SEG_IS_USER_SPACE(uio->uio_segflg)) { |
| 2487 | retval = cluster_io_type(uio, io_type: &write_type, io_length: &write_length, MIN_DIRECT_WRITE_SIZE); |
| 2488 | } |
| 2489 | |
| 2490 | if ((flags & (IO_TAILZEROFILL | IO_HEADZEROFILL)) && write_type == IO_DIRECT) { |
| 2491 | /* |
| 2492 | * must go through the cached variant in this case |
| 2493 | */ |
| 2494 | write_type = IO_COPY; |
| 2495 | } |
| 2496 | |
| 2497 | while ((cur_resid = uio_resid(a_uio: uio)) && uio->uio_offset < newEOF && retval == 0) { |
| 2498 | switch (write_type) { |
| 2499 | case IO_COPY: |
| 2500 | /* |
| 2501 | * make sure the uio_resid isn't too big... |
| 2502 | * internally, we want to handle all of the I/O in |
| 2503 | * chunk sizes that fit in a 32 bit int |
| 2504 | */ |
| 2505 | if (cur_resid > (user_ssize_t)(MAX_IO_REQUEST_SIZE)) { |
| 2506 | /* |
| 2507 | * we're going to have to call cluster_write_copy |
| 2508 | * more than once... |
| 2509 | * |
| 2510 | * only want the last call to cluster_write_copy to |
| 2511 | * have the IO_TAILZEROFILL flag set and only the |
| 2512 | * first call should have IO_HEADZEROFILL |
| 2513 | */ |
| 2514 | zflags = flags & ~IO_TAILZEROFILL; |
| 2515 | flags &= ~IO_HEADZEROFILL; |
| 2516 | |
| 2517 | write_length = MAX_IO_REQUEST_SIZE; |
| 2518 | } else { |
| 2519 | /* |
| 2520 | * last call to cluster_write_copy |
| 2521 | */ |
| 2522 | zflags = flags; |
| 2523 | |
| 2524 | write_length = (u_int32_t)cur_resid; |
| 2525 | } |
| 2526 | retval = cluster_write_copy(vp, uio, io_req_size: write_length, oldEOF, newEOF, headOff, tailOff, flags: zflags, callback, callback_arg); |
| 2527 | break; |
| 2528 | |
| 2529 | case IO_CONTIG: |
| 2530 | zflags = flags & ~(IO_TAILZEROFILL | IO_HEADZEROFILL); |
| 2531 | |
| 2532 | if (flags & IO_HEADZEROFILL) { |
| 2533 | /* |
| 2534 | * only do this once per request |
| 2535 | */ |
| 2536 | flags &= ~IO_HEADZEROFILL; |
| 2537 | |
| 2538 | retval = cluster_write_copy(vp, uio: (struct uio *)0, io_req_size: (u_int32_t)0, oldEOF: (off_t)0, newEOF: uio->uio_offset, |
| 2539 | headOff, tailOff: (off_t)0, flags: zflags | IO_HEADZEROFILL | IO_SYNC, callback, callback_arg); |
| 2540 | if (retval) { |
| 2541 | break; |
| 2542 | } |
| 2543 | } |
| 2544 | retval = cluster_write_contig(vp, uio, newEOF, write_type: &write_type, write_length: &write_length, callback, callback_arg, bflag); |
| 2545 | |
| 2546 | if (retval == 0 && (flags & IO_TAILZEROFILL) && uio_resid(a_uio: uio) == 0) { |
| 2547 | /* |
| 2548 | * we're done with the data from the user specified buffer(s) |
| 2549 | * and we've been requested to zero fill at the tail |
| 2550 | * treat this as an IO_HEADZEROFILL which doesn't require a uio |
| 2551 | * by rearranging the args and passing in IO_HEADZEROFILL |
| 2552 | */ |
| 2553 | |
| 2554 | /* |
| 2555 | * Update the oldEOF to reflect the current EOF. If the UPL page |
| 2556 | * to zero-fill is not valid (when F_NOCACHE is set), the |
| 2557 | * cluster_write_copy() will perform RMW on the UPL page when |
| 2558 | * the oldEOF is not aligned on page boundary due to unaligned |
| 2559 | * write. |
| 2560 | */ |
| 2561 | if (uio->uio_offset > oldEOF) { |
| 2562 | oldEOF = uio->uio_offset; |
| 2563 | } |
| 2564 | retval = cluster_write_copy(vp, uio: (struct uio *)0, io_req_size: (u_int32_t)0, oldEOF: (off_t)oldEOF, newEOF: tailOff, headOff: uio->uio_offset, |
| 2565 | tailOff: (off_t)0, flags: zflags | IO_HEADZEROFILL | IO_SYNC, callback, callback_arg); |
| 2566 | } |
| 2567 | break; |
| 2568 | |
| 2569 | case IO_DIRECT: |
| 2570 | /* |
| 2571 | * cluster_write_direct is never called with IO_TAILZEROFILL || IO_HEADZEROFILL |
| 2572 | */ |
| 2573 | retval = cluster_write_direct(vp, uio, oldEOF, newEOF, write_type: &write_type, write_length: &write_length, flags, callback, callback_arg); |
| 2574 | break; |
| 2575 | |
| 2576 | case IO_UNKNOWN: |
| 2577 | retval = cluster_io_type(uio, io_type: &write_type, io_length: &write_length, MIN_DIRECT_WRITE_SIZE); |
| 2578 | break; |
| 2579 | } |
| 2580 | /* |
| 2581 | * in case we end up calling cluster_write_copy (from cluster_write_direct) |
| 2582 | * multiple times to service a multi-vector request that is not aligned properly |
| 2583 | * we need to update the oldEOF so that we |
| 2584 | * don't zero-fill the head of a page if we've successfully written |
| 2585 | * data to that area... 'cluster_write_copy' will zero-fill the head of a |
| 2586 | * page that is beyond the oldEOF if the write is unaligned... we only |
| 2587 | * want that to happen for the very first page of the cluster_write, |
| 2588 | * NOT the first page of each vector making up a multi-vector write. |
| 2589 | */ |
| 2590 | if (uio->uio_offset > oldEOF) { |
| 2591 | oldEOF = uio->uio_offset; |
| 2592 | } |
| 2593 | } |
| 2594 | return retval; |
| 2595 | } |
| 2596 | |
| 2597 | |
| 2598 | static int |
| 2599 | cluster_write_direct(vnode_t vp, struct uio *uio, off_t oldEOF, off_t newEOF, int *write_type, u_int32_t *write_length, |
| 2600 | int flags, int (*callback)(buf_t, void *), void *callback_arg) |
| 2601 | { |
| 2602 | upl_t upl = NULL; |
| 2603 | upl_page_info_t *pl; |
| 2604 | vm_offset_t upl_offset; |
| 2605 | vm_offset_t vector_upl_offset = 0; |
| 2606 | u_int32_t io_req_size; |
| 2607 | u_int32_t offset_in_file; |
| 2608 | u_int32_t offset_in_iovbase; |
| 2609 | u_int32_t io_size; |
| 2610 | int io_flag = 0; |
| 2611 | upl_size_t upl_size = 0, vector_upl_size = 0; |
| 2612 | vm_size_t upl_needed_size; |
| 2613 | mach_msg_type_number_t pages_in_pl = 0; |
| 2614 | upl_control_flags_t upl_flags; |
| 2615 | kern_return_t kret = KERN_SUCCESS; |
| 2616 | mach_msg_type_number_t i = 0; |
| 2617 | int force_data_sync; |
| 2618 | int retval = 0; |
| 2619 | int first_IO = 1; |
| 2620 | struct clios iostate; |
| 2621 | user_addr_t iov_base; |
| 2622 | u_int32_t mem_alignment_mask; |
| 2623 | u_int32_t devblocksize; |
| 2624 | u_int32_t max_io_size; |
| 2625 | u_int32_t max_upl_size; |
| 2626 | u_int32_t max_vector_size; |
| 2627 | u_int32_t bytes_outstanding_limit; |
| 2628 | boolean_t io_throttled = FALSE; |
| 2629 | |
| 2630 | u_int32_t vector_upl_iosize = 0; |
| 2631 | int issueVectorUPL = 0, useVectorUPL = (uio->uio_iovcnt > 1); |
| 2632 | off_t v_upl_uio_offset = 0; |
| 2633 | int vector_upl_index = 0; |
| 2634 | upl_t vector_upl = NULL; |
| 2635 | |
| 2636 | |
| 2637 | /* |
| 2638 | * When we enter this routine, we know |
| 2639 | * -- the resid will not exceed iov_len |
| 2640 | */ |
| 2641 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 75)) | DBG_FUNC_START, |
| 2642 | (int)uio->uio_offset, *write_length, (int)newEOF, 0, 0); |
| 2643 | |
| 2644 | assert(vm_map_page_shift(current_map()) >= PAGE_SHIFT); |
| 2645 | |
| 2646 | max_upl_size = cluster_max_io_size(mp: vp->v_mount, CL_WRITE); |
| 2647 | |
| 2648 | io_flag = CL_ASYNC | CL_PRESERVE | CL_COMMIT | CL_THROTTLE | CL_DIRECT_IO; |
| 2649 | |
| 2650 | if (flags & IO_PASSIVE) { |
| 2651 | io_flag |= CL_PASSIVE; |
| 2652 | } |
| 2653 | |
| 2654 | if (flags & IO_NOCACHE) { |
| 2655 | io_flag |= CL_NOCACHE; |
| 2656 | } |
| 2657 | |
| 2658 | if (flags & IO_SKIP_ENCRYPTION) { |
| 2659 | io_flag |= CL_ENCRYPTED; |
| 2660 | } |
| 2661 | |
| 2662 | iostate.io_completed = 0; |
| 2663 | iostate.io_issued = 0; |
| 2664 | iostate.io_error = 0; |
| 2665 | iostate.io_wanted = 0; |
| 2666 | |
| 2667 | lck_mtx_init(lck: &iostate.io_mtxp, grp: &cl_mtx_grp, LCK_ATTR_NULL); |
| 2668 | |
| 2669 | mem_alignment_mask = (u_int32_t)vp->v_mount->mnt_alignmentmask; |
| 2670 | devblocksize = (u_int32_t)vp->v_mount->mnt_devblocksize; |
| 2671 | |
| 2672 | if (devblocksize == 1) { |
| 2673 | /* |
| 2674 | * the AFP client advertises a devblocksize of 1 |
| 2675 | * however, its BLOCKMAP routine maps to physical |
| 2676 | * blocks that are PAGE_SIZE in size... |
| 2677 | * therefore we can't ask for I/Os that aren't page aligned |
| 2678 | * or aren't multiples of PAGE_SIZE in size |
| 2679 | * by setting devblocksize to PAGE_SIZE, we re-instate |
| 2680 | * the old behavior we had before the mem_alignment_mask |
| 2681 | * changes went in... |
| 2682 | */ |
| 2683 | devblocksize = PAGE_SIZE; |
| 2684 | } |
| 2685 | |
| 2686 | next_dwrite: |
| 2687 | io_req_size = *write_length; |
| 2688 | iov_base = uio_curriovbase(a_uio: uio); |
| 2689 | |
| 2690 | offset_in_file = (u_int32_t)uio->uio_offset & PAGE_MASK; |
| 2691 | offset_in_iovbase = (u_int32_t)iov_base & mem_alignment_mask; |
| 2692 | |
| 2693 | if (offset_in_file || offset_in_iovbase) { |
| 2694 | /* |
| 2695 | * one of the 2 important offsets is misaligned |
| 2696 | * so fire an I/O through the cache for this entire vector |
| 2697 | */ |
| 2698 | goto wait_for_dwrites; |
| 2699 | } |
| 2700 | if (iov_base & (devblocksize - 1)) { |
| 2701 | /* |
| 2702 | * the offset in memory must be on a device block boundary |
| 2703 | * so that we can guarantee that we can generate an |
| 2704 | * I/O that ends on a page boundary in cluster_io |
| 2705 | */ |
| 2706 | goto wait_for_dwrites; |
| 2707 | } |
| 2708 | |
| 2709 | task_update_logical_writes(task: current_task(), io_size: (io_req_size & ~PAGE_MASK), TASK_WRITE_IMMEDIATE, vp); |
| 2710 | while (io_req_size >= PAGE_SIZE && uio->uio_offset < newEOF && retval == 0) { |
| 2711 | int throttle_type; |
| 2712 | |
| 2713 | if ((throttle_type = cluster_is_throttled(vp))) { |
| 2714 | uint32_t max_throttle_size = calculate_max_throttle_size(vp); |
| 2715 | |
| 2716 | /* |
| 2717 | * we're in the throttle window, at the very least |
| 2718 | * we want to limit the size of the I/O we're about |
| 2719 | * to issue |
| 2720 | */ |
| 2721 | if ((flags & IO_RETURN_ON_THROTTLE) && throttle_type == THROTTLE_NOW) { |
| 2722 | /* |
| 2723 | * we're in the throttle window and at least 1 I/O |
| 2724 | * has already been issued by a throttleable thread |
| 2725 | * in this window, so return with EAGAIN to indicate |
| 2726 | * to the FS issuing the cluster_write call that it |
| 2727 | * should now throttle after dropping any locks |
| 2728 | */ |
| 2729 | throttle_info_update_by_mount(mp: vp->v_mount); |
| 2730 | |
| 2731 | io_throttled = TRUE; |
| 2732 | goto wait_for_dwrites; |
| 2733 | } |
| 2734 | max_vector_size = max_throttle_size; |
| 2735 | max_io_size = max_throttle_size; |
| 2736 | } else { |
| 2737 | max_vector_size = MAX_VECTOR_UPL_SIZE; |
| 2738 | max_io_size = max_upl_size; |
| 2739 | } |
| 2740 | |
| 2741 | if (first_IO) { |
| 2742 | cluster_syncup(vp, newEOF, callback, callback_arg, flags: callback ? PUSH_SYNC : 0); |
| 2743 | first_IO = 0; |
| 2744 | } |
| 2745 | io_size = io_req_size & ~PAGE_MASK; |
| 2746 | iov_base = uio_curriovbase(a_uio: uio); |
| 2747 | |
| 2748 | if (io_size > max_io_size) { |
| 2749 | io_size = max_io_size; |
| 2750 | } |
| 2751 | |
| 2752 | if (useVectorUPL && (iov_base & PAGE_MASK)) { |
| 2753 | /* |
| 2754 | * We have an iov_base that's not page-aligned. |
| 2755 | * Issue all I/O's that have been collected within |
| 2756 | * this Vectored UPL. |
| 2757 | */ |
| 2758 | if (vector_upl_index) { |
| 2759 | retval = vector_cluster_io(vp, vector_upl, vector_upl_offset, v_upl_uio_offset, vector_upl_iosize, io_flag, real_bp: (buf_t)NULL, iostate: &iostate, callback, callback_arg); |
| 2760 | reset_vector_run_state(); |
| 2761 | } |
| 2762 | |
| 2763 | /* |
| 2764 | * After this point, if we are using the Vector UPL path and the base is |
| 2765 | * not page-aligned then the UPL with that base will be the first in the vector UPL. |
| 2766 | */ |
| 2767 | } |
| 2768 | |
| 2769 | upl_offset = (vm_offset_t)((u_int32_t)iov_base & PAGE_MASK); |
| 2770 | upl_needed_size = (upl_offset + io_size + (PAGE_SIZE - 1)) & ~PAGE_MASK; |
| 2771 | |
| 2772 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 76)) | DBG_FUNC_START, |
| 2773 | (int)upl_offset, upl_needed_size, (int)iov_base, io_size, 0); |
| 2774 | |
| 2775 | vm_map_t map = UIO_SEG_IS_USER_SPACE(uio->uio_segflg) ? current_map() : kernel_map; |
| 2776 | for (force_data_sync = 0; force_data_sync < 3; force_data_sync++) { |
| 2777 | pages_in_pl = 0; |
| 2778 | upl_size = (upl_size_t)upl_needed_size; |
| 2779 | upl_flags = UPL_FILE_IO | UPL_COPYOUT_FROM | UPL_NO_SYNC | |
| 2780 | UPL_CLEAN_IN_PLACE | UPL_SET_INTERNAL | UPL_SET_LITE | UPL_SET_IO_WIRE; |
| 2781 | |
| 2782 | kret = vm_map_get_upl(target_map: map, |
| 2783 | map_offset: (vm_map_offset_t)(iov_base & ~((user_addr_t)PAGE_MASK)), |
| 2784 | size: &upl_size, |
| 2785 | upl: &upl, |
| 2786 | NULL, |
| 2787 | page_infoCnt: &pages_in_pl, |
| 2788 | flags: &upl_flags, |
| 2789 | VM_KERN_MEMORY_FILE, |
| 2790 | force_data_sync); |
| 2791 | |
| 2792 | if (kret != KERN_SUCCESS) { |
| 2793 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 76)) | DBG_FUNC_END, |
| 2794 | 0, 0, 0, kret, 0); |
| 2795 | /* |
| 2796 | * failed to get pagelist |
| 2797 | * |
| 2798 | * we may have already spun some portion of this request |
| 2799 | * off as async requests... we need to wait for the I/O |
| 2800 | * to complete before returning |
| 2801 | */ |
| 2802 | goto wait_for_dwrites; |
| 2803 | } |
| 2804 | pl = UPL_GET_INTERNAL_PAGE_LIST(upl); |
| 2805 | pages_in_pl = upl_size / PAGE_SIZE; |
| 2806 | |
| 2807 | for (i = 0; i < pages_in_pl; i++) { |
| 2808 | if (!upl_valid_page(upl: pl, index: i)) { |
| 2809 | break; |
| 2810 | } |
| 2811 | } |
| 2812 | if (i == pages_in_pl) { |
| 2813 | break; |
| 2814 | } |
| 2815 | |
| 2816 | /* |
| 2817 | * didn't get all the pages back that we |
| 2818 | * needed... release this upl and try again |
| 2819 | */ |
| 2820 | ubc_upl_abort(upl, 0); |
| 2821 | } |
| 2822 | if (force_data_sync >= 3) { |
| 2823 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 76)) | DBG_FUNC_END, |
| 2824 | i, pages_in_pl, upl_size, kret, 0); |
| 2825 | /* |
| 2826 | * for some reason, we couldn't acquire a hold on all |
| 2827 | * the pages needed in the user's address space |
| 2828 | * |
| 2829 | * we may have already spun some portion of this request |
| 2830 | * off as async requests... we need to wait for the I/O |
| 2831 | * to complete before returning |
| 2832 | */ |
| 2833 | goto wait_for_dwrites; |
| 2834 | } |
| 2835 | |
| 2836 | /* |
| 2837 | * Consider the possibility that upl_size wasn't satisfied. |
| 2838 | */ |
| 2839 | if (upl_size < upl_needed_size) { |
| 2840 | if (upl_size && upl_offset == 0) { |
| 2841 | io_size = upl_size; |
| 2842 | } else { |
| 2843 | io_size = 0; |
| 2844 | } |
| 2845 | } |
| 2846 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 76)) | DBG_FUNC_END, |
| 2847 | (int)upl_offset, upl_size, (int)iov_base, io_size, 0); |
| 2848 | |
| 2849 | if (io_size == 0) { |
| 2850 | ubc_upl_abort(upl, 0); |
| 2851 | /* |
| 2852 | * we may have already spun some portion of this request |
| 2853 | * off as async requests... we need to wait for the I/O |
| 2854 | * to complete before returning |
| 2855 | */ |
| 2856 | goto wait_for_dwrites; |
| 2857 | } |
| 2858 | |
| 2859 | if (useVectorUPL) { |
| 2860 | vm_offset_t end_off = ((iov_base + io_size) & PAGE_MASK); |
| 2861 | if (end_off) { |
| 2862 | issueVectorUPL = 1; |
| 2863 | } |
| 2864 | /* |
| 2865 | * After this point, if we are using a vector UPL, then |
| 2866 | * either all the UPL elements end on a page boundary OR |
| 2867 | * this UPL is the last element because it does not end |
| 2868 | * on a page boundary. |
| 2869 | */ |
| 2870 | } |
| 2871 | |
| 2872 | /* |
| 2873 | * we want push out these writes asynchronously so that we can overlap |
| 2874 | * the preparation of the next I/O |
| 2875 | * if there are already too many outstanding writes |
| 2876 | * wait until some complete before issuing the next |
| 2877 | */ |
| 2878 | if (vp->v_mount->mnt_minsaturationbytecount) { |
| 2879 | bytes_outstanding_limit = vp->v_mount->mnt_minsaturationbytecount; |
| 2880 | } else { |
| 2881 | if (__improbable(os_mul_overflow(max_upl_size, IO_SCALE(vp, 2), |
| 2882 | &bytes_outstanding_limit) || |
| 2883 | (bytes_outstanding_limit > overlapping_write_max))) { |
| 2884 | bytes_outstanding_limit = overlapping_write_max; |
| 2885 | } |
| 2886 | } |
| 2887 | |
| 2888 | cluster_iostate_wait(iostate: &iostate, target: bytes_outstanding_limit, wait_name: "cluster_write_direct" ); |
| 2889 | |
| 2890 | if (iostate.io_error) { |
| 2891 | /* |
| 2892 | * one of the earlier writes we issued ran into a hard error |
| 2893 | * don't issue any more writes, cleanup the UPL |
| 2894 | * that was just created but not used, then |
| 2895 | * go wait for all writes that are part of this stream |
| 2896 | * to complete before returning the error to the caller |
| 2897 | */ |
| 2898 | ubc_upl_abort(upl, 0); |
| 2899 | |
| 2900 | goto wait_for_dwrites; |
| 2901 | } |
| 2902 | |
| 2903 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 77)) | DBG_FUNC_START, |
| 2904 | (int)upl_offset, (int)uio->uio_offset, io_size, io_flag, 0); |
| 2905 | |
| 2906 | if (!useVectorUPL) { |
| 2907 | retval = cluster_io(vp, upl, upl_offset, f_offset: uio->uio_offset, |
| 2908 | non_rounded_size: io_size, flags: io_flag, real_bp: (buf_t)NULL, iostate: &iostate, callback, callback_arg); |
| 2909 | } else { |
| 2910 | if (!vector_upl_index) { |
| 2911 | vector_upl = vector_upl_create(upl_offset, uio->uio_iovcnt); |
| 2912 | v_upl_uio_offset = uio->uio_offset; |
| 2913 | vector_upl_offset = upl_offset; |
| 2914 | } |
| 2915 | |
| 2916 | vector_upl_set_subupl(vector_upl, upl, upl_size); |
| 2917 | vector_upl_set_iostate(vector_upl, upl, vector_upl_size, upl_size); |
| 2918 | vector_upl_index++; |
| 2919 | vector_upl_iosize += io_size; |
| 2920 | vector_upl_size += upl_size; |
| 2921 | |
| 2922 | if (issueVectorUPL || vector_upl_index == vector_upl_max_upls(vector_upl) || vector_upl_size >= max_vector_size) { |
| 2923 | retval = vector_cluster_io(vp, vector_upl, vector_upl_offset, v_upl_uio_offset, vector_upl_iosize, io_flag, real_bp: (buf_t)NULL, iostate: &iostate, callback, callback_arg); |
| 2924 | reset_vector_run_state(); |
| 2925 | } |
| 2926 | } |
| 2927 | |
| 2928 | /* |
| 2929 | * update the uio structure to |
| 2930 | * reflect the I/O that we just issued |
| 2931 | */ |
| 2932 | uio_update(a_uio: uio, a_count: (user_size_t)io_size); |
| 2933 | |
| 2934 | /* |
| 2935 | * in case we end up calling through to cluster_write_copy to finish |
| 2936 | * the tail of this request, we need to update the oldEOF so that we |
| 2937 | * don't zero-fill the head of a page if we've successfully written |
| 2938 | * data to that area... 'cluster_write_copy' will zero-fill the head of a |
| 2939 | * page that is beyond the oldEOF if the write is unaligned... we only |
| 2940 | * want that to happen for the very first page of the cluster_write, |
| 2941 | * NOT the first page of each vector making up a multi-vector write. |
| 2942 | */ |
| 2943 | if (uio->uio_offset > oldEOF) { |
| 2944 | oldEOF = uio->uio_offset; |
| 2945 | } |
| 2946 | |
| 2947 | io_req_size -= io_size; |
| 2948 | |
| 2949 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 77)) | DBG_FUNC_END, |
| 2950 | (int)upl_offset, (int)uio->uio_offset, io_req_size, retval, 0); |
| 2951 | } /* end while */ |
| 2952 | |
| 2953 | if (retval == 0 && iostate.io_error == 0 && io_req_size == 0) { |
| 2954 | retval = cluster_io_type(uio, io_type: write_type, io_length: write_length, MIN_DIRECT_WRITE_SIZE); |
| 2955 | |
| 2956 | if (retval == 0 && *write_type == IO_DIRECT) { |
| 2957 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 75)) | DBG_FUNC_NONE, |
| 2958 | (int)uio->uio_offset, *write_length, (int)newEOF, 0, 0); |
| 2959 | |
| 2960 | goto next_dwrite; |
| 2961 | } |
| 2962 | } |
| 2963 | |
| 2964 | wait_for_dwrites: |
| 2965 | |
| 2966 | if (retval == 0 && iostate.io_error == 0 && useVectorUPL && vector_upl_index) { |
| 2967 | retval = vector_cluster_io(vp, vector_upl, vector_upl_offset, v_upl_uio_offset, vector_upl_iosize, io_flag, real_bp: (buf_t)NULL, iostate: &iostate, callback, callback_arg); |
| 2968 | reset_vector_run_state(); |
| 2969 | } |
| 2970 | /* |
| 2971 | * make sure all async writes issued as part of this stream |
| 2972 | * have completed before we return |
| 2973 | */ |
| 2974 | cluster_iostate_wait(iostate: &iostate, target: 0, wait_name: "cluster_write_direct" ); |
| 2975 | |
| 2976 | if (iostate.io_error) { |
| 2977 | retval = iostate.io_error; |
| 2978 | } |
| 2979 | |
| 2980 | lck_mtx_destroy(lck: &iostate.io_mtxp, grp: &cl_mtx_grp); |
| 2981 | |
| 2982 | if (io_throttled == TRUE && retval == 0) { |
| 2983 | retval = EAGAIN; |
| 2984 | } |
| 2985 | |
| 2986 | if (io_req_size && retval == 0) { |
| 2987 | /* |
| 2988 | * we couldn't handle the tail of this request in DIRECT mode |
| 2989 | * so fire it through the copy path |
| 2990 | * |
| 2991 | * note that flags will never have IO_HEADZEROFILL or IO_TAILZEROFILL set |
| 2992 | * so we can just pass 0 in for the headOff and tailOff |
| 2993 | */ |
| 2994 | if (uio->uio_offset > oldEOF) { |
| 2995 | oldEOF = uio->uio_offset; |
| 2996 | } |
| 2997 | |
| 2998 | retval = cluster_write_copy(vp, uio, io_req_size, oldEOF, newEOF, headOff: (off_t)0, tailOff: (off_t)0, flags, callback, callback_arg); |
| 2999 | |
| 3000 | *write_type = IO_UNKNOWN; |
| 3001 | } |
| 3002 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 75)) | DBG_FUNC_END, |
| 3003 | (int)uio->uio_offset, io_req_size, retval, 4, 0); |
| 3004 | |
| 3005 | return retval; |
| 3006 | } |
| 3007 | |
| 3008 | |
| 3009 | static int |
| 3010 | cluster_write_contig(vnode_t vp, struct uio *uio, off_t newEOF, int *write_type, u_int32_t *write_length, |
| 3011 | int (*callback)(buf_t, void *), void *callback_arg, int bflag) |
| 3012 | { |
| 3013 | upl_page_info_t *pl; |
| 3014 | addr64_t src_paddr = 0; |
| 3015 | upl_t upl[MAX_VECTS]; |
| 3016 | vm_offset_t upl_offset; |
| 3017 | u_int32_t tail_size = 0; |
| 3018 | u_int32_t io_size; |
| 3019 | u_int32_t xsize; |
| 3020 | upl_size_t upl_size; |
| 3021 | vm_size_t upl_needed_size; |
| 3022 | mach_msg_type_number_t pages_in_pl; |
| 3023 | upl_control_flags_t upl_flags; |
| 3024 | kern_return_t kret; |
| 3025 | struct clios iostate; |
| 3026 | int error = 0; |
| 3027 | int cur_upl = 0; |
| 3028 | int num_upl = 0; |
| 3029 | int n; |
| 3030 | user_addr_t iov_base; |
| 3031 | u_int32_t devblocksize; |
| 3032 | u_int32_t mem_alignment_mask; |
| 3033 | |
| 3034 | /* |
| 3035 | * When we enter this routine, we know |
| 3036 | * -- the io_req_size will not exceed iov_len |
| 3037 | * -- the target address is physically contiguous |
| 3038 | */ |
| 3039 | cluster_syncup(vp, newEOF, callback, callback_arg, flags: callback ? PUSH_SYNC : 0); |
| 3040 | |
| 3041 | devblocksize = (u_int32_t)vp->v_mount->mnt_devblocksize; |
| 3042 | mem_alignment_mask = (u_int32_t)vp->v_mount->mnt_alignmentmask; |
| 3043 | |
| 3044 | iostate.io_completed = 0; |
| 3045 | iostate.io_issued = 0; |
| 3046 | iostate.io_error = 0; |
| 3047 | iostate.io_wanted = 0; |
| 3048 | |
| 3049 | lck_mtx_init(lck: &iostate.io_mtxp, grp: &cl_mtx_grp, LCK_ATTR_NULL); |
| 3050 | |
| 3051 | next_cwrite: |
| 3052 | io_size = *write_length; |
| 3053 | |
| 3054 | iov_base = uio_curriovbase(a_uio: uio); |
| 3055 | |
| 3056 | upl_offset = (vm_offset_t)((u_int32_t)iov_base & PAGE_MASK); |
| 3057 | upl_needed_size = upl_offset + io_size; |
| 3058 | |
| 3059 | pages_in_pl = 0; |
| 3060 | upl_size = (upl_size_t)upl_needed_size; |
| 3061 | upl_flags = UPL_FILE_IO | UPL_COPYOUT_FROM | UPL_NO_SYNC | |
| 3062 | UPL_CLEAN_IN_PLACE | UPL_SET_INTERNAL | UPL_SET_LITE | UPL_SET_IO_WIRE; |
| 3063 | |
| 3064 | vm_map_t map = UIO_SEG_IS_USER_SPACE(uio->uio_segflg) ? current_map() : kernel_map; |
| 3065 | kret = vm_map_get_upl(target_map: map, |
| 3066 | vm_map_trunc_page(iov_base, vm_map_page_mask(map)), |
| 3067 | size: &upl_size, upl: &upl[cur_upl], NULL, page_infoCnt: &pages_in_pl, flags: &upl_flags, VM_KERN_MEMORY_FILE, force_data_sync: 0); |
| 3068 | |
| 3069 | if (kret != KERN_SUCCESS) { |
| 3070 | /* |
| 3071 | * failed to get pagelist |
| 3072 | */ |
| 3073 | error = EINVAL; |
| 3074 | goto wait_for_cwrites; |
| 3075 | } |
| 3076 | num_upl++; |
| 3077 | |
| 3078 | /* |
| 3079 | * Consider the possibility that upl_size wasn't satisfied. |
| 3080 | */ |
| 3081 | if (upl_size < upl_needed_size) { |
| 3082 | /* |
| 3083 | * This is a failure in the physical memory case. |
| 3084 | */ |
| 3085 | error = EINVAL; |
| 3086 | goto wait_for_cwrites; |
| 3087 | } |
| 3088 | pl = ubc_upl_pageinfo(upl[cur_upl]); |
| 3089 | |
| 3090 | src_paddr = ((addr64_t)upl_phys_page(upl: pl, index: 0) << PAGE_SHIFT) + (addr64_t)upl_offset; |
| 3091 | |
| 3092 | while (((uio->uio_offset & (devblocksize - 1)) || io_size < devblocksize) && io_size) { |
| 3093 | u_int32_t head_size; |
| 3094 | |
| 3095 | head_size = devblocksize - (u_int32_t)(uio->uio_offset & (devblocksize - 1)); |
| 3096 | |
| 3097 | if (head_size > io_size) { |
| 3098 | head_size = io_size; |
| 3099 | } |
| 3100 | |
| 3101 | error = cluster_align_phys_io(vp, uio, usr_paddr: src_paddr, xsize: head_size, flags: 0, callback, callback_arg); |
| 3102 | |
| 3103 | if (error) { |
| 3104 | goto wait_for_cwrites; |
| 3105 | } |
| 3106 | |
| 3107 | upl_offset += head_size; |
| 3108 | src_paddr += head_size; |
| 3109 | io_size -= head_size; |
| 3110 | |
| 3111 | iov_base += head_size; |
| 3112 | } |
| 3113 | if ((u_int32_t)iov_base & mem_alignment_mask) { |
| 3114 | /* |
| 3115 | * request doesn't set up on a memory boundary |
| 3116 | * the underlying DMA engine can handle... |
| 3117 | * return an error instead of going through |
| 3118 | * the slow copy path since the intent of this |
| 3119 | * path is direct I/O from device memory |
| 3120 | */ |
| 3121 | error = EINVAL; |
| 3122 | goto wait_for_cwrites; |
| 3123 | } |
| 3124 | |
| 3125 | tail_size = io_size & (devblocksize - 1); |
| 3126 | io_size -= tail_size; |
| 3127 | |
| 3128 | while (io_size && error == 0) { |
| 3129 | if (io_size > MAX_IO_CONTIG_SIZE) { |
| 3130 | xsize = MAX_IO_CONTIG_SIZE; |
| 3131 | } else { |
| 3132 | xsize = io_size; |
| 3133 | } |
| 3134 | /* |
| 3135 | * request asynchronously so that we can overlap |
| 3136 | * the preparation of the next I/O... we'll do |
| 3137 | * the commit after all the I/O has completed |
| 3138 | * since its all issued against the same UPL |
| 3139 | * if there are already too many outstanding writes |
| 3140 | * wait until some have completed before issuing the next |
| 3141 | */ |
| 3142 | cluster_iostate_wait(iostate: &iostate, MAX_IO_CONTIG_SIZE * IO_SCALE(vp, 2), wait_name: "cluster_write_contig" ); |
| 3143 | |
| 3144 | if (iostate.io_error) { |
| 3145 | /* |
| 3146 | * one of the earlier writes we issued ran into a hard error |
| 3147 | * don't issue any more writes... |
| 3148 | * go wait for all writes that are part of this stream |
| 3149 | * to complete before returning the error to the caller |
| 3150 | */ |
| 3151 | goto wait_for_cwrites; |
| 3152 | } |
| 3153 | /* |
| 3154 | * issue an asynchronous write to cluster_io |
| 3155 | */ |
| 3156 | error = cluster_io(vp, upl: upl[cur_upl], upl_offset, f_offset: uio->uio_offset, |
| 3157 | non_rounded_size: xsize, CL_DEV_MEMORY | CL_ASYNC | bflag, real_bp: (buf_t)NULL, iostate: (struct clios *)&iostate, callback, callback_arg); |
| 3158 | |
| 3159 | if (error == 0) { |
| 3160 | /* |
| 3161 | * The cluster_io write completed successfully, |
| 3162 | * update the uio structure |
| 3163 | */ |
| 3164 | uio_update(a_uio: uio, a_count: (user_size_t)xsize); |
| 3165 | |
| 3166 | upl_offset += xsize; |
| 3167 | src_paddr += xsize; |
| 3168 | io_size -= xsize; |
| 3169 | } |
| 3170 | } |
| 3171 | if (error == 0 && iostate.io_error == 0 && tail_size == 0 && num_upl < MAX_VECTS) { |
| 3172 | error = cluster_io_type(uio, io_type: write_type, io_length: write_length, min_length: 0); |
| 3173 | |
| 3174 | if (error == 0 && *write_type == IO_CONTIG) { |
| 3175 | cur_upl++; |
| 3176 | goto next_cwrite; |
| 3177 | } |
| 3178 | } else { |
| 3179 | *write_type = IO_UNKNOWN; |
| 3180 | } |
| 3181 | |
| 3182 | wait_for_cwrites: |
| 3183 | /* |
| 3184 | * make sure all async writes that are part of this stream |
| 3185 | * have completed before we proceed |
| 3186 | */ |
| 3187 | cluster_iostate_wait(iostate: &iostate, target: 0, wait_name: "cluster_write_contig" ); |
| 3188 | |
| 3189 | if (iostate.io_error) { |
| 3190 | error = iostate.io_error; |
| 3191 | } |
| 3192 | |
| 3193 | lck_mtx_destroy(lck: &iostate.io_mtxp, grp: &cl_mtx_grp); |
| 3194 | |
| 3195 | if (error == 0 && tail_size) { |
| 3196 | error = cluster_align_phys_io(vp, uio, usr_paddr: src_paddr, xsize: tail_size, flags: 0, callback, callback_arg); |
| 3197 | } |
| 3198 | |
| 3199 | for (n = 0; n < num_upl; n++) { |
| 3200 | /* |
| 3201 | * just release our hold on each physically contiguous |
| 3202 | * region without changing any state |
| 3203 | */ |
| 3204 | ubc_upl_abort(upl[n], 0); |
| 3205 | } |
| 3206 | |
| 3207 | return error; |
| 3208 | } |
| 3209 | |
| 3210 | |
| 3211 | /* |
| 3212 | * need to avoid a race between an msync of a range of pages dirtied via mmap |
| 3213 | * vs a filesystem such as HFS deciding to write a 'hole' to disk via cluster_write's |
| 3214 | * zerofill mechanism before it has seen the VNOP_PAGEOUTs for the pages being msync'd |
| 3215 | * |
| 3216 | * we should never force-zero-fill pages that are already valid in the cache... |
| 3217 | * the entire page contains valid data (either from disk, zero-filled or dirtied |
| 3218 | * via an mmap) so we can only do damage by trying to zero-fill |
| 3219 | * |
| 3220 | */ |
| 3221 | static int |
| 3222 | cluster_zero_range(upl_t upl, upl_page_info_t *pl, int flags, int io_offset, off_t zero_off, off_t upl_f_offset, int bytes_to_zero) |
| 3223 | { |
| 3224 | int zero_pg_index; |
| 3225 | boolean_t need_cluster_zero = TRUE; |
| 3226 | |
| 3227 | if ((flags & (IO_NOZEROVALID | IO_NOZERODIRTY))) { |
| 3228 | bytes_to_zero = min(a: bytes_to_zero, PAGE_SIZE - (int)(zero_off & PAGE_MASK_64)); |
| 3229 | zero_pg_index = (int)((zero_off - upl_f_offset) / PAGE_SIZE_64); |
| 3230 | |
| 3231 | if (upl_valid_page(upl: pl, index: zero_pg_index)) { |
| 3232 | /* |
| 3233 | * never force zero valid pages - dirty or clean |
| 3234 | * we'll leave these in the UPL for cluster_write_copy to deal with |
| 3235 | */ |
| 3236 | need_cluster_zero = FALSE; |
| 3237 | } |
| 3238 | } |
| 3239 | if (need_cluster_zero == TRUE) { |
| 3240 | cluster_zero(upl, upl_offset: io_offset, size: bytes_to_zero, NULL); |
| 3241 | } |
| 3242 | |
| 3243 | return bytes_to_zero; |
| 3244 | } |
| 3245 | |
| 3246 | |
| 3247 | void |
| 3248 | cluster_update_state(vnode_t vp, vm_object_offset_t s_offset, vm_object_offset_t e_offset, boolean_t vm_initiated) |
| 3249 | { |
| 3250 | struct cl_extent cl; |
| 3251 | boolean_t first_pass = TRUE; |
| 3252 | |
| 3253 | assert(s_offset < e_offset); |
| 3254 | assert((s_offset & PAGE_MASK_64) == 0); |
| 3255 | assert((e_offset & PAGE_MASK_64) == 0); |
| 3256 | |
| 3257 | cl.b_addr = (daddr64_t)(s_offset / PAGE_SIZE_64); |
| 3258 | cl.e_addr = (daddr64_t)(e_offset / PAGE_SIZE_64); |
| 3259 | |
| 3260 | cluster_update_state_internal(vp, cl: &cl, flags: 0, TRUE, first_pass: &first_pass, write_off: s_offset, write_cnt: (int)(e_offset - s_offset), |
| 3261 | newEOF: vp->v_un.vu_ubcinfo->ui_size, NULL, NULL, vm_initiated); |
| 3262 | } |
| 3263 | |
| 3264 | |
| 3265 | static void |
| 3266 | cluster_update_state_internal(vnode_t vp, struct cl_extent *cl, int flags, boolean_t defer_writes, |
| 3267 | boolean_t *first_pass, off_t write_off, int write_cnt, off_t newEOF, |
| 3268 | int (*callback)(buf_t, void *), void *callback_arg, boolean_t vm_initiated) |
| 3269 | { |
| 3270 | struct cl_writebehind *wbp; |
| 3271 | int cl_index; |
| 3272 | int ret_cluster_try_push; |
| 3273 | u_int max_cluster_pgcount; |
| 3274 | |
| 3275 | |
| 3276 | max_cluster_pgcount = MAX_CLUSTER_SIZE(vp) / PAGE_SIZE; |
| 3277 | |
| 3278 | /* |
| 3279 | * take the lock to protect our accesses |
| 3280 | * of the writebehind and sparse cluster state |
| 3281 | */ |
| 3282 | wbp = cluster_get_wbp(vp, CLW_ALLOCATE | CLW_RETURNLOCKED); |
| 3283 | |
| 3284 | if (wbp->cl_scmap) { |
| 3285 | if (!(flags & IO_NOCACHE)) { |
| 3286 | /* |
| 3287 | * we've fallen into the sparse |
| 3288 | * cluster method of delaying dirty pages |
| 3289 | */ |
| 3290 | sparse_cluster_add(wbp, cmapp: &(wbp->cl_scmap), vp, cl, EOF: newEOF, callback, callback_arg, vm_initiated); |
| 3291 | |
| 3292 | lck_mtx_unlock(lck: &wbp->cl_lockw); |
| 3293 | return; |
| 3294 | } |
| 3295 | /* |
| 3296 | * must have done cached writes that fell into |
| 3297 | * the sparse cluster mechanism... we've switched |
| 3298 | * to uncached writes on the file, so go ahead |
| 3299 | * and push whatever's in the sparse map |
| 3300 | * and switch back to normal clustering |
| 3301 | */ |
| 3302 | wbp->cl_number = 0; |
| 3303 | |
| 3304 | sparse_cluster_push(wbp, cmapp: &(wbp->cl_scmap), vp, EOF: newEOF, PUSH_ALL, io_flags: 0, callback, callback_arg, vm_initiated); |
| 3305 | /* |
| 3306 | * no clusters of either type present at this point |
| 3307 | * so just go directly to start_new_cluster since |
| 3308 | * we know we need to delay this I/O since we've |
| 3309 | * already released the pages back into the cache |
| 3310 | * to avoid the deadlock with sparse_cluster_push |
| 3311 | */ |
| 3312 | goto start_new_cluster; |
| 3313 | } |
| 3314 | if (*first_pass == TRUE) { |
| 3315 | if (write_off == wbp->cl_last_write) { |
| 3316 | wbp->cl_seq_written += write_cnt; |
| 3317 | } else { |
| 3318 | wbp->cl_seq_written = write_cnt; |
| 3319 | } |
| 3320 | |
| 3321 | wbp->cl_last_write = write_off + write_cnt; |
| 3322 | |
| 3323 | *first_pass = FALSE; |
| 3324 | } |
| 3325 | if (wbp->cl_number == 0) { |
| 3326 | /* |
| 3327 | * no clusters currently present |
| 3328 | */ |
| 3329 | goto start_new_cluster; |
| 3330 | } |
| 3331 | |
| 3332 | for (cl_index = 0; cl_index < wbp->cl_number; cl_index++) { |
| 3333 | /* |
| 3334 | * check each cluster that we currently hold |
| 3335 | * try to merge some or all of this write into |
| 3336 | * one or more of the existing clusters... if |
| 3337 | * any portion of the write remains, start a |
| 3338 | * new cluster |
| 3339 | */ |
| 3340 | if (cl->b_addr >= wbp->cl_clusters[cl_index].b_addr) { |
| 3341 | /* |
| 3342 | * the current write starts at or after the current cluster |
| 3343 | */ |
| 3344 | if (cl->e_addr <= (wbp->cl_clusters[cl_index].b_addr + max_cluster_pgcount)) { |
| 3345 | /* |
| 3346 | * we have a write that fits entirely |
| 3347 | * within the existing cluster limits |
| 3348 | */ |
| 3349 | if (cl->e_addr > wbp->cl_clusters[cl_index].e_addr) { |
| 3350 | /* |
| 3351 | * update our idea of where the cluster ends |
| 3352 | */ |
| 3353 | wbp->cl_clusters[cl_index].e_addr = cl->e_addr; |
| 3354 | } |
| 3355 | break; |
| 3356 | } |
| 3357 | if (cl->b_addr < (wbp->cl_clusters[cl_index].b_addr + max_cluster_pgcount)) { |
| 3358 | /* |
| 3359 | * we have a write that starts in the middle of the current cluster |
| 3360 | * but extends beyond the cluster's limit... we know this because |
| 3361 | * of the previous checks |
| 3362 | * we'll extend the current cluster to the max |
| 3363 | * and update the b_addr for the current write to reflect that |
| 3364 | * the head of it was absorbed into this cluster... |
| 3365 | * note that we'll always have a leftover tail in this case since |
| 3366 | * full absorbtion would have occurred in the clause above |
| 3367 | */ |
| 3368 | wbp->cl_clusters[cl_index].e_addr = wbp->cl_clusters[cl_index].b_addr + max_cluster_pgcount; |
| 3369 | |
| 3370 | cl->b_addr = wbp->cl_clusters[cl_index].e_addr; |
| 3371 | } |
| 3372 | /* |
| 3373 | * we come here for the case where the current write starts |
| 3374 | * beyond the limit of the existing cluster or we have a leftover |
| 3375 | * tail after a partial absorbtion |
| 3376 | * |
| 3377 | * in either case, we'll check the remaining clusters before |
| 3378 | * starting a new one |
| 3379 | */ |
| 3380 | } else { |
| 3381 | /* |
| 3382 | * the current write starts in front of the cluster we're currently considering |
| 3383 | */ |
| 3384 | if ((wbp->cl_clusters[cl_index].e_addr - cl->b_addr) <= max_cluster_pgcount) { |
| 3385 | /* |
| 3386 | * we can just merge the new request into |
| 3387 | * this cluster and leave it in the cache |
| 3388 | * since the resulting cluster is still |
| 3389 | * less than the maximum allowable size |
| 3390 | */ |
| 3391 | wbp->cl_clusters[cl_index].b_addr = cl->b_addr; |
| 3392 | |
| 3393 | if (cl->e_addr > wbp->cl_clusters[cl_index].e_addr) { |
| 3394 | /* |
| 3395 | * the current write completely |
| 3396 | * envelops the existing cluster and since |
| 3397 | * each write is limited to at most max_cluster_pgcount pages |
| 3398 | * we can just use the start and last blocknos of the write |
| 3399 | * to generate the cluster limits |
| 3400 | */ |
| 3401 | wbp->cl_clusters[cl_index].e_addr = cl->e_addr; |
| 3402 | } |
| 3403 | break; |
| 3404 | } |
| 3405 | /* |
| 3406 | * if we were to combine this write with the current cluster |
| 3407 | * we would exceed the cluster size limit.... so, |
| 3408 | * let's see if there's any overlap of the new I/O with |
| 3409 | * the cluster we're currently considering... in fact, we'll |
| 3410 | * stretch the cluster out to it's full limit and see if we |
| 3411 | * get an intersection with the current write |
| 3412 | * |
| 3413 | */ |
| 3414 | if (cl->e_addr > wbp->cl_clusters[cl_index].e_addr - max_cluster_pgcount) { |
| 3415 | /* |
| 3416 | * the current write extends into the proposed cluster |
| 3417 | * clip the length of the current write after first combining it's |
| 3418 | * tail with the newly shaped cluster |
| 3419 | */ |
| 3420 | wbp->cl_clusters[cl_index].b_addr = wbp->cl_clusters[cl_index].e_addr - max_cluster_pgcount; |
| 3421 | |
| 3422 | cl->e_addr = wbp->cl_clusters[cl_index].b_addr; |
| 3423 | } |
| 3424 | /* |
| 3425 | * if we get here, there was no way to merge |
| 3426 | * any portion of this write with this cluster |
| 3427 | * or we could only merge part of it which |
| 3428 | * will leave a tail... |
| 3429 | * we'll check the remaining clusters before starting a new one |
| 3430 | */ |
| 3431 | } |
| 3432 | } |
| 3433 | if (cl_index < wbp->cl_number) { |
| 3434 | /* |
| 3435 | * we found an existing cluster(s) that we |
| 3436 | * could entirely merge this I/O into |
| 3437 | */ |
| 3438 | goto delay_io; |
| 3439 | } |
| 3440 | |
| 3441 | if (defer_writes == FALSE && |
| 3442 | wbp->cl_number == MAX_CLUSTERS && |
| 3443 | wbp->cl_seq_written >= (MAX_CLUSTERS * (max_cluster_pgcount * PAGE_SIZE))) { |
| 3444 | uint32_t n; |
| 3445 | |
| 3446 | if (vp->v_mount->mnt_minsaturationbytecount) { |
| 3447 | n = vp->v_mount->mnt_minsaturationbytecount / MAX_CLUSTER_SIZE(vp); |
| 3448 | |
| 3449 | if (n > MAX_CLUSTERS) { |
| 3450 | n = MAX_CLUSTERS; |
| 3451 | } |
| 3452 | } else { |
| 3453 | n = 0; |
| 3454 | } |
| 3455 | |
| 3456 | if (n == 0) { |
| 3457 | if (disk_conditioner_mount_is_ssd(vp->v_mount)) { |
| 3458 | n = WRITE_BEHIND_SSD; |
| 3459 | } else { |
| 3460 | n = WRITE_BEHIND; |
| 3461 | } |
| 3462 | } |
| 3463 | while (n--) { |
| 3464 | cluster_try_push(wbp, vp, EOF: newEOF, push_flag: 0, flags: 0, callback, callback_arg, NULL, vm_initiated); |
| 3465 | } |
| 3466 | } |
| 3467 | if (wbp->cl_number < MAX_CLUSTERS) { |
| 3468 | /* |
| 3469 | * we didn't find an existing cluster to |
| 3470 | * merge into, but there's room to start |
| 3471 | * a new one |
| 3472 | */ |
| 3473 | goto start_new_cluster; |
| 3474 | } |
| 3475 | /* |
| 3476 | * no exisitng cluster to merge with and no |
| 3477 | * room to start a new one... we'll try |
| 3478 | * pushing one of the existing ones... if none of |
| 3479 | * them are able to be pushed, we'll switch |
| 3480 | * to the sparse cluster mechanism |
| 3481 | * cluster_try_push updates cl_number to the |
| 3482 | * number of remaining clusters... and |
| 3483 | * returns the number of currently unused clusters |
| 3484 | */ |
| 3485 | ret_cluster_try_push = 0; |
| 3486 | |
| 3487 | /* |
| 3488 | * if writes are not deferred, call cluster push immediately |
| 3489 | */ |
| 3490 | if (defer_writes == FALSE) { |
| 3491 | ret_cluster_try_push = cluster_try_push(wbp, vp, EOF: newEOF, push_flag: (flags & IO_NOCACHE) ? 0 : PUSH_DELAY, flags: 0, callback, callback_arg, NULL, vm_initiated); |
| 3492 | } |
| 3493 | /* |
| 3494 | * execute following regardless of writes being deferred or not |
| 3495 | */ |
| 3496 | if (ret_cluster_try_push == 0) { |
| 3497 | /* |
| 3498 | * no more room in the normal cluster mechanism |
| 3499 | * so let's switch to the more expansive but expensive |
| 3500 | * sparse mechanism.... |
| 3501 | */ |
| 3502 | sparse_cluster_switch(wbp, vp, EOF: newEOF, callback, callback_arg, vm_initiated); |
| 3503 | sparse_cluster_add(wbp, cmapp: &(wbp->cl_scmap), vp, cl, EOF: newEOF, callback, callback_arg, vm_initiated); |
| 3504 | |
| 3505 | lck_mtx_unlock(lck: &wbp->cl_lockw); |
| 3506 | return; |
| 3507 | } |
| 3508 | start_new_cluster: |
| 3509 | wbp->cl_clusters[wbp->cl_number].b_addr = cl->b_addr; |
| 3510 | wbp->cl_clusters[wbp->cl_number].e_addr = cl->e_addr; |
| 3511 | |
| 3512 | wbp->cl_clusters[wbp->cl_number].io_flags = 0; |
| 3513 | |
| 3514 | if (flags & IO_NOCACHE) { |
| 3515 | wbp->cl_clusters[wbp->cl_number].io_flags |= CLW_IONOCACHE; |
| 3516 | } |
| 3517 | |
| 3518 | if (flags & IO_PASSIVE) { |
| 3519 | wbp->cl_clusters[wbp->cl_number].io_flags |= CLW_IOPASSIVE; |
| 3520 | } |
| 3521 | |
| 3522 | wbp->cl_number++; |
| 3523 | delay_io: |
| 3524 | lck_mtx_unlock(lck: &wbp->cl_lockw); |
| 3525 | return; |
| 3526 | } |
| 3527 | |
| 3528 | |
| 3529 | static int |
| 3530 | cluster_write_copy(vnode_t vp, struct uio *uio, u_int32_t io_req_size, off_t oldEOF, off_t newEOF, off_t headOff, |
| 3531 | off_t tailOff, int flags, int (*callback)(buf_t, void *), void *callback_arg) |
| 3532 | { |
| 3533 | upl_page_info_t *pl; |
| 3534 | upl_t upl; |
| 3535 | vm_offset_t upl_offset = 0; |
| 3536 | vm_size_t upl_size; |
| 3537 | off_t upl_f_offset; |
| 3538 | int pages_in_upl; |
| 3539 | int start_offset; |
| 3540 | int xfer_resid; |
| 3541 | int io_size; |
| 3542 | int io_offset; |
| 3543 | int bytes_to_zero; |
| 3544 | int bytes_to_move; |
| 3545 | kern_return_t kret; |
| 3546 | int retval = 0; |
| 3547 | int io_resid; |
| 3548 | long long total_size; |
| 3549 | long long zero_cnt; |
| 3550 | off_t zero_off; |
| 3551 | long long zero_cnt1; |
| 3552 | off_t zero_off1; |
| 3553 | off_t write_off = 0; |
| 3554 | int write_cnt = 0; |
| 3555 | boolean_t first_pass = FALSE; |
| 3556 | struct cl_extent cl; |
| 3557 | int bflag; |
| 3558 | u_int max_io_size; |
| 3559 | |
| 3560 | if (uio) { |
| 3561 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 40)) | DBG_FUNC_START, |
| 3562 | (int)uio->uio_offset, io_req_size, (int)oldEOF, (int)newEOF, 0); |
| 3563 | |
| 3564 | io_resid = io_req_size; |
| 3565 | } else { |
| 3566 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 40)) | DBG_FUNC_START, |
| 3567 | 0, 0, (int)oldEOF, (int)newEOF, 0); |
| 3568 | |
| 3569 | io_resid = 0; |
| 3570 | } |
| 3571 | if (flags & IO_PASSIVE) { |
| 3572 | bflag = CL_PASSIVE; |
| 3573 | } else { |
| 3574 | bflag = 0; |
| 3575 | } |
| 3576 | if (flags & IO_NOCACHE) { |
| 3577 | bflag |= CL_NOCACHE; |
| 3578 | } |
| 3579 | |
| 3580 | if (flags & IO_SKIP_ENCRYPTION) { |
| 3581 | bflag |= CL_ENCRYPTED; |
| 3582 | } |
| 3583 | |
| 3584 | zero_cnt = 0; |
| 3585 | zero_cnt1 = 0; |
| 3586 | zero_off = 0; |
| 3587 | zero_off1 = 0; |
| 3588 | |
| 3589 | max_io_size = cluster_max_io_size(mp: vp->v_mount, CL_WRITE); |
| 3590 | |
| 3591 | if (flags & IO_HEADZEROFILL) { |
| 3592 | /* |
| 3593 | * some filesystems (HFS is one) don't support unallocated holes within a file... |
| 3594 | * so we zero fill the intervening space between the old EOF and the offset |
| 3595 | * where the next chunk of real data begins.... ftruncate will also use this |
| 3596 | * routine to zero fill to the new EOF when growing a file... in this case, the |
| 3597 | * uio structure will not be provided |
| 3598 | */ |
| 3599 | if (uio) { |
| 3600 | if (headOff < uio->uio_offset) { |
| 3601 | zero_cnt = uio->uio_offset - headOff; |
| 3602 | zero_off = headOff; |
| 3603 | } |
| 3604 | } else if (headOff < newEOF) { |
| 3605 | zero_cnt = newEOF - headOff; |
| 3606 | zero_off = headOff; |
| 3607 | } |
| 3608 | } else { |
| 3609 | if (uio && uio->uio_offset > oldEOF) { |
| 3610 | zero_off = uio->uio_offset & ~PAGE_MASK_64; |
| 3611 | |
| 3612 | if (zero_off >= oldEOF) { |
| 3613 | zero_cnt = uio->uio_offset - zero_off; |
| 3614 | |
| 3615 | flags |= IO_HEADZEROFILL; |
| 3616 | } |
| 3617 | } |
| 3618 | } |
| 3619 | if (flags & IO_TAILZEROFILL) { |
| 3620 | if (uio) { |
| 3621 | zero_off1 = uio->uio_offset + io_req_size; |
| 3622 | |
| 3623 | if (zero_off1 < tailOff) { |
| 3624 | zero_cnt1 = tailOff - zero_off1; |
| 3625 | } |
| 3626 | } |
| 3627 | } else { |
| 3628 | if (uio && newEOF > oldEOF) { |
| 3629 | zero_off1 = uio->uio_offset + io_req_size; |
| 3630 | |
| 3631 | if (zero_off1 == newEOF && (zero_off1 & PAGE_MASK_64)) { |
| 3632 | zero_cnt1 = PAGE_SIZE_64 - (zero_off1 & PAGE_MASK_64); |
| 3633 | |
| 3634 | flags |= IO_TAILZEROFILL; |
| 3635 | } |
| 3636 | } |
| 3637 | } |
| 3638 | if (zero_cnt == 0 && uio == (struct uio *) 0) { |
| 3639 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 40)) | DBG_FUNC_END, |
| 3640 | retval, 0, 0, 0, 0); |
| 3641 | return 0; |
| 3642 | } |
| 3643 | if (uio) { |
| 3644 | write_off = uio->uio_offset; |
| 3645 | write_cnt = (int)uio_resid(a_uio: uio); |
| 3646 | /* |
| 3647 | * delay updating the sequential write info |
| 3648 | * in the control block until we've obtained |
| 3649 | * the lock for it |
| 3650 | */ |
| 3651 | first_pass = TRUE; |
| 3652 | } |
| 3653 | while ((total_size = (io_resid + zero_cnt + zero_cnt1)) && retval == 0) { |
| 3654 | /* |
| 3655 | * for this iteration of the loop, figure out where our starting point is |
| 3656 | */ |
| 3657 | if (zero_cnt) { |
| 3658 | start_offset = (int)(zero_off & PAGE_MASK_64); |
| 3659 | upl_f_offset = zero_off - start_offset; |
| 3660 | } else if (io_resid) { |
| 3661 | start_offset = (int)(uio->uio_offset & PAGE_MASK_64); |
| 3662 | upl_f_offset = uio->uio_offset - start_offset; |
| 3663 | } else { |
| 3664 | start_offset = (int)(zero_off1 & PAGE_MASK_64); |
| 3665 | upl_f_offset = zero_off1 - start_offset; |
| 3666 | } |
| 3667 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 46)) | DBG_FUNC_NONE, |
| 3668 | (int)zero_off, (int)zero_cnt, (int)zero_off1, (int)zero_cnt1, 0); |
| 3669 | |
| 3670 | if (total_size > max_io_size) { |
| 3671 | total_size = max_io_size; |
| 3672 | } |
| 3673 | |
| 3674 | cl.b_addr = (daddr64_t)(upl_f_offset / PAGE_SIZE_64); |
| 3675 | |
| 3676 | if (uio && ((flags & (IO_SYNC | IO_HEADZEROFILL | IO_TAILZEROFILL)) == 0)) { |
| 3677 | /* |
| 3678 | * assumption... total_size <= io_resid |
| 3679 | * because IO_HEADZEROFILL and IO_TAILZEROFILL not set |
| 3680 | */ |
| 3681 | if ((start_offset + total_size) > max_io_size) { |
| 3682 | total_size = max_io_size - start_offset; |
| 3683 | } |
| 3684 | xfer_resid = (int)total_size; |
| 3685 | |
| 3686 | retval = cluster_copy_ubc_data_internal(vp, uio, io_resid: &xfer_resid, mark_dirty: 1, take_reference: 1); |
| 3687 | |
| 3688 | if (retval) { |
| 3689 | break; |
| 3690 | } |
| 3691 | |
| 3692 | io_resid -= (total_size - xfer_resid); |
| 3693 | total_size = xfer_resid; |
| 3694 | start_offset = (int)(uio->uio_offset & PAGE_MASK_64); |
| 3695 | upl_f_offset = uio->uio_offset - start_offset; |
| 3696 | |
| 3697 | if (total_size == 0) { |
| 3698 | if (start_offset) { |
| 3699 | /* |
| 3700 | * the write did not finish on a page boundary |
| 3701 | * which will leave upl_f_offset pointing to the |
| 3702 | * beginning of the last page written instead of |
| 3703 | * the page beyond it... bump it in this case |
| 3704 | * so that the cluster code records the last page |
| 3705 | * written as dirty |
| 3706 | */ |
| 3707 | upl_f_offset += PAGE_SIZE_64; |
| 3708 | } |
| 3709 | upl_size = 0; |
| 3710 | |
| 3711 | goto check_cluster; |
| 3712 | } |
| 3713 | } |
| 3714 | /* |
| 3715 | * compute the size of the upl needed to encompass |
| 3716 | * the requested write... limit each call to cluster_io |
| 3717 | * to the maximum UPL size... cluster_io will clip if |
| 3718 | * this exceeds the maximum io_size for the device, |
| 3719 | * make sure to account for |
| 3720 | * a starting offset that's not page aligned |
| 3721 | */ |
| 3722 | upl_size = (start_offset + total_size + (PAGE_SIZE - 1)) & ~PAGE_MASK; |
| 3723 | |
| 3724 | if (upl_size > max_io_size) { |
| 3725 | upl_size = max_io_size; |
| 3726 | } |
| 3727 | |
| 3728 | pages_in_upl = (int)(upl_size / PAGE_SIZE); |
| 3729 | io_size = (int)(upl_size - start_offset); |
| 3730 | |
| 3731 | if ((long long)io_size > total_size) { |
| 3732 | io_size = (int)total_size; |
| 3733 | } |
| 3734 | |
| 3735 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 41)) | DBG_FUNC_START, upl_size, io_size, total_size, 0, 0); |
| 3736 | |
| 3737 | |
| 3738 | /* |
| 3739 | * Gather the pages from the buffer cache. |
| 3740 | * The UPL_WILL_MODIFY flag lets the UPL subsystem know |
| 3741 | * that we intend to modify these pages. |
| 3742 | */ |
| 3743 | kret = ubc_create_upl_kernel(vp, |
| 3744 | upl_f_offset, |
| 3745 | (int)upl_size, |
| 3746 | &upl, |
| 3747 | &pl, |
| 3748 | UPL_SET_LITE | ((uio != NULL && (uio->uio_flags & UIO_FLAGS_IS_COMPRESSED_FILE)) ? 0 : UPL_WILL_MODIFY), |
| 3749 | VM_KERN_MEMORY_FILE); |
| 3750 | if (kret != KERN_SUCCESS) { |
| 3751 | panic("cluster_write_copy: failed to get pagelist" ); |
| 3752 | } |
| 3753 | |
| 3754 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 41)) | DBG_FUNC_END, |
| 3755 | upl, (int)upl_f_offset, start_offset, 0, 0); |
| 3756 | |
| 3757 | if (start_offset && upl_f_offset < oldEOF && !upl_valid_page(upl: pl, index: 0)) { |
| 3758 | int read_size; |
| 3759 | |
| 3760 | /* |
| 3761 | * we're starting in the middle of the first page of the upl |
| 3762 | * and the page isn't currently valid, so we're going to have |
| 3763 | * to read it in first... this is a synchronous operation |
| 3764 | */ |
| 3765 | read_size = PAGE_SIZE; |
| 3766 | |
| 3767 | if ((upl_f_offset + read_size) > oldEOF) { |
| 3768 | read_size = (int)(oldEOF - upl_f_offset); |
| 3769 | } |
| 3770 | |
| 3771 | retval = cluster_io(vp, upl, upl_offset: 0, f_offset: upl_f_offset, non_rounded_size: read_size, |
| 3772 | CL_READ | bflag, real_bp: (buf_t)NULL, iostate: (struct clios *)NULL, callback, callback_arg); |
| 3773 | if (retval) { |
| 3774 | /* |
| 3775 | * we had an error during the read which causes us to abort |
| 3776 | * the current cluster_write request... before we do, we need |
| 3777 | * to release the rest of the pages in the upl without modifying |
| 3778 | * there state and mark the failed page in error |
| 3779 | */ |
| 3780 | ubc_upl_abort_range(upl, 0, PAGE_SIZE, UPL_ABORT_DUMP_PAGES | UPL_ABORT_FREE_ON_EMPTY); |
| 3781 | |
| 3782 | if (upl_size > PAGE_SIZE) { |
| 3783 | ubc_upl_abort_range(upl, 0, (upl_size_t)upl_size, |
| 3784 | UPL_ABORT_FREE_ON_EMPTY); |
| 3785 | } |
| 3786 | |
| 3787 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 45)) | DBG_FUNC_NONE, |
| 3788 | upl, 0, 0, retval, 0); |
| 3789 | break; |
| 3790 | } |
| 3791 | } |
| 3792 | if ((start_offset == 0 || upl_size > PAGE_SIZE) && ((start_offset + io_size) & PAGE_MASK)) { |
| 3793 | /* |
| 3794 | * the last offset we're writing to in this upl does not end on a page |
| 3795 | * boundary... if it's not beyond the old EOF, then we'll also need to |
| 3796 | * pre-read this page in if it isn't already valid |
| 3797 | */ |
| 3798 | upl_offset = upl_size - PAGE_SIZE; |
| 3799 | |
| 3800 | if ((upl_f_offset + start_offset + io_size) < oldEOF && |
| 3801 | !upl_valid_page(upl: pl, index: (int)(upl_offset / PAGE_SIZE))) { |
| 3802 | int read_size; |
| 3803 | |
| 3804 | read_size = PAGE_SIZE; |
| 3805 | |
| 3806 | if ((off_t)(upl_f_offset + upl_offset + read_size) > oldEOF) { |
| 3807 | read_size = (int)(oldEOF - (upl_f_offset + upl_offset)); |
| 3808 | } |
| 3809 | |
| 3810 | retval = cluster_io(vp, upl, upl_offset, f_offset: upl_f_offset + upl_offset, non_rounded_size: read_size, |
| 3811 | CL_READ | bflag, real_bp: (buf_t)NULL, iostate: (struct clios *)NULL, callback, callback_arg); |
| 3812 | if (retval) { |
| 3813 | /* |
| 3814 | * we had an error during the read which causes us to abort |
| 3815 | * the current cluster_write request... before we do, we |
| 3816 | * need to release the rest of the pages in the upl without |
| 3817 | * modifying there state and mark the failed page in error |
| 3818 | */ |
| 3819 | ubc_upl_abort_range(upl, (upl_offset_t)upl_offset, PAGE_SIZE, UPL_ABORT_DUMP_PAGES | UPL_ABORT_FREE_ON_EMPTY); |
| 3820 | |
| 3821 | if (upl_size > PAGE_SIZE) { |
| 3822 | ubc_upl_abort_range(upl, 0, (upl_size_t)upl_size, UPL_ABORT_FREE_ON_EMPTY); |
| 3823 | } |
| 3824 | |
| 3825 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 45)) | DBG_FUNC_NONE, |
| 3826 | upl, 0, 0, retval, 0); |
| 3827 | break; |
| 3828 | } |
| 3829 | } |
| 3830 | } |
| 3831 | xfer_resid = io_size; |
| 3832 | io_offset = start_offset; |
| 3833 | |
| 3834 | while (zero_cnt && xfer_resid) { |
| 3835 | if (zero_cnt < (long long)xfer_resid) { |
| 3836 | bytes_to_zero = (int)zero_cnt; |
| 3837 | } else { |
| 3838 | bytes_to_zero = xfer_resid; |
| 3839 | } |
| 3840 | |
| 3841 | bytes_to_zero = cluster_zero_range(upl, pl, flags, io_offset, zero_off, upl_f_offset, bytes_to_zero); |
| 3842 | |
| 3843 | xfer_resid -= bytes_to_zero; |
| 3844 | zero_cnt -= bytes_to_zero; |
| 3845 | zero_off += bytes_to_zero; |
| 3846 | io_offset += bytes_to_zero; |
| 3847 | } |
| 3848 | if (xfer_resid && io_resid) { |
| 3849 | u_int32_t io_requested; |
| 3850 | |
| 3851 | bytes_to_move = min(a: io_resid, b: xfer_resid); |
| 3852 | io_requested = bytes_to_move; |
| 3853 | |
| 3854 | retval = cluster_copy_upl_data(uio, upl, io_offset, (int *)&io_requested); |
| 3855 | |
| 3856 | if (retval) { |
| 3857 | ubc_upl_abort_range(upl, 0, (upl_size_t)upl_size, UPL_ABORT_FREE_ON_EMPTY); |
| 3858 | |
| 3859 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 45)) | DBG_FUNC_NONE, |
| 3860 | upl, 0, 0, retval, 0); |
| 3861 | } else { |
| 3862 | io_resid -= bytes_to_move; |
| 3863 | xfer_resid -= bytes_to_move; |
| 3864 | io_offset += bytes_to_move; |
| 3865 | } |
| 3866 | } |
| 3867 | while (xfer_resid && zero_cnt1 && retval == 0) { |
| 3868 | if (zero_cnt1 < (long long)xfer_resid) { |
| 3869 | bytes_to_zero = (int)zero_cnt1; |
| 3870 | } else { |
| 3871 | bytes_to_zero = xfer_resid; |
| 3872 | } |
| 3873 | |
| 3874 | bytes_to_zero = cluster_zero_range(upl, pl, flags, io_offset, zero_off: zero_off1, upl_f_offset, bytes_to_zero); |
| 3875 | |
| 3876 | xfer_resid -= bytes_to_zero; |
| 3877 | zero_cnt1 -= bytes_to_zero; |
| 3878 | zero_off1 += bytes_to_zero; |
| 3879 | io_offset += bytes_to_zero; |
| 3880 | } |
| 3881 | if (retval == 0) { |
| 3882 | int do_zeroing = 1; |
| 3883 | |
| 3884 | io_size += start_offset; |
| 3885 | |
| 3886 | /* Force more restrictive zeroing behavior only on APFS */ |
| 3887 | if ((vnode_tag(vp) == VT_APFS) && (newEOF < oldEOF)) { |
| 3888 | do_zeroing = 0; |
| 3889 | } |
| 3890 | |
| 3891 | if (do_zeroing && (upl_f_offset + io_size) >= newEOF && (u_int)io_size < upl_size) { |
| 3892 | /* |
| 3893 | * if we're extending the file with this write |
| 3894 | * we'll zero fill the rest of the page so that |
| 3895 | * if the file gets extended again in such a way as to leave a |
| 3896 | * hole starting at this EOF, we'll have zero's in the correct spot |
| 3897 | */ |
| 3898 | cluster_zero(upl, upl_offset: io_size, size: (int)(upl_size - io_size), NULL); |
| 3899 | } |
| 3900 | /* |
| 3901 | * release the upl now if we hold one since... |
| 3902 | * 1) pages in it may be present in the sparse cluster map |
| 3903 | * and may span 2 separate buckets there... if they do and |
| 3904 | * we happen to have to flush a bucket to make room and it intersects |
| 3905 | * this upl, a deadlock may result on page BUSY |
| 3906 | * 2) we're delaying the I/O... from this point forward we're just updating |
| 3907 | * the cluster state... no need to hold the pages, so commit them |
| 3908 | * 3) IO_SYNC is set... |
| 3909 | * because we had to ask for a UPL that provides currenty non-present pages, the |
| 3910 | * UPL has been automatically set to clear the dirty flags (both software and hardware) |
| 3911 | * upon committing it... this is not the behavior we want since it's possible for |
| 3912 | * pages currently present as part of a mapped file to be dirtied while the I/O is in flight. |
| 3913 | * we'll pick these pages back up later with the correct behavior specified. |
| 3914 | * 4) we don't want to hold pages busy in a UPL and then block on the cluster lock... if a flush |
| 3915 | * of this vnode is in progress, we will deadlock if the pages being flushed intersect the pages |
| 3916 | * we hold since the flushing context is holding the cluster lock. |
| 3917 | */ |
| 3918 | ubc_upl_commit_range(upl, 0, (upl_size_t)upl_size, |
| 3919 | UPL_COMMIT_SET_DIRTY | UPL_COMMIT_INACTIVATE | UPL_COMMIT_FREE_ON_EMPTY); |
| 3920 | check_cluster: |
| 3921 | /* |
| 3922 | * calculate the last logical block number |
| 3923 | * that this delayed I/O encompassed |
| 3924 | */ |
| 3925 | cl.e_addr = (daddr64_t)((upl_f_offset + (off_t)upl_size) / PAGE_SIZE_64); |
| 3926 | |
| 3927 | if (flags & IO_SYNC) { |
| 3928 | /* |
| 3929 | * if the IO_SYNC flag is set than we need to bypass |
| 3930 | * any clustering and immediately issue the I/O |
| 3931 | * |
| 3932 | * we don't hold the lock at this point |
| 3933 | * |
| 3934 | * we've already dropped the current upl, so pick it back up with COPYOUT_FROM set |
| 3935 | * so that we correctly deal with a change in state of the hardware modify bit... |
| 3936 | * we do this via cluster_push_now... by passing along the IO_SYNC flag, we force |
| 3937 | * cluster_push_now to wait until all the I/Os have completed... cluster_push_now is also |
| 3938 | * responsible for generating the correct sized I/O(s) |
| 3939 | */ |
| 3940 | retval = cluster_push_now(vp, &cl, EOF: newEOF, flags, callback, callback_arg, FALSE); |
| 3941 | } else { |
| 3942 | boolean_t defer_writes = FALSE; |
| 3943 | |
| 3944 | if (vfs_flags(mp: vp->v_mount) & MNT_DEFWRITE) { |
| 3945 | defer_writes = TRUE; |
| 3946 | } |
| 3947 | |
| 3948 | cluster_update_state_internal(vp, cl: &cl, flags, defer_writes, first_pass: &first_pass, |
| 3949 | write_off, write_cnt, newEOF, callback, callback_arg, FALSE); |
| 3950 | } |
| 3951 | } |
| 3952 | } |
| 3953 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 40)) | DBG_FUNC_END, retval, 0, io_resid, 0, 0); |
| 3954 | |
| 3955 | return retval; |
| 3956 | } |
| 3957 | |
| 3958 | |
| 3959 | |
| 3960 | int |
| 3961 | cluster_read(vnode_t vp, struct uio *uio, off_t filesize, int xflags) |
| 3962 | { |
| 3963 | return cluster_read_ext(vp, uio, filesize, xflags, NULL, NULL); |
| 3964 | } |
| 3965 | |
| 3966 | |
| 3967 | int |
| 3968 | cluster_read_ext(vnode_t vp, struct uio *uio, off_t filesize, int xflags, int (*callback)(buf_t, void *), void *callback_arg) |
| 3969 | { |
| 3970 | int retval = 0; |
| 3971 | int flags; |
| 3972 | user_ssize_t cur_resid; |
| 3973 | u_int32_t io_size; |
| 3974 | u_int32_t read_length = 0; |
| 3975 | int read_type = IO_COPY; |
| 3976 | |
| 3977 | flags = xflags; |
| 3978 | |
| 3979 | if (vp->v_flag & VNOCACHE_DATA) { |
| 3980 | flags |= IO_NOCACHE; |
| 3981 | } |
| 3982 | if ((vp->v_flag & VRAOFF) || speculative_reads_disabled) { |
| 3983 | flags |= IO_RAOFF; |
| 3984 | } |
| 3985 | |
| 3986 | if (flags & IO_SKIP_ENCRYPTION) { |
| 3987 | flags |= IO_ENCRYPTED; |
| 3988 | } |
| 3989 | |
| 3990 | /* |
| 3991 | * do a read through the cache if one of the following is true.... |
| 3992 | * NOCACHE is not true |
| 3993 | * the uio request doesn't target USERSPACE |
| 3994 | * Alternatively, if IO_ENCRYPTED is set, then we want to bypass the cache as well. |
| 3995 | * Reading encrypted data from a CP filesystem should never result in the data touching |
| 3996 | * the UBC. |
| 3997 | * |
| 3998 | * otherwise, find out if we want the direct or contig variant for |
| 3999 | * the first vector in the uio request |
| 4000 | */ |
| 4001 | if (((flags & IO_NOCACHE) && UIO_SEG_IS_USER_SPACE(uio->uio_segflg)) || (flags & IO_ENCRYPTED)) { |
| 4002 | retval = cluster_io_type(uio, io_type: &read_type, io_length: &read_length, min_length: 0); |
| 4003 | } |
| 4004 | |
| 4005 | while ((cur_resid = uio_resid(a_uio: uio)) && uio->uio_offset < filesize && retval == 0) { |
| 4006 | switch (read_type) { |
| 4007 | case IO_COPY: |
| 4008 | /* |
| 4009 | * make sure the uio_resid isn't too big... |
| 4010 | * internally, we want to handle all of the I/O in |
| 4011 | * chunk sizes that fit in a 32 bit int |
| 4012 | */ |
| 4013 | if (cur_resid > (user_ssize_t)(MAX_IO_REQUEST_SIZE)) { |
| 4014 | io_size = MAX_IO_REQUEST_SIZE; |
| 4015 | } else { |
| 4016 | io_size = (u_int32_t)cur_resid; |
| 4017 | } |
| 4018 | |
| 4019 | retval = cluster_read_copy(vp, uio, io_req_size: io_size, filesize, flags, callback, callback_arg); |
| 4020 | break; |
| 4021 | |
| 4022 | case IO_DIRECT: |
| 4023 | retval = cluster_read_direct(vp, uio, filesize, read_type: &read_type, read_length: &read_length, flags, callback, callback_arg); |
| 4024 | break; |
| 4025 | |
| 4026 | case IO_CONTIG: |
| 4027 | retval = cluster_read_contig(vp, uio, filesize, read_type: &read_type, read_length: &read_length, callback, callback_arg, flags); |
| 4028 | break; |
| 4029 | |
| 4030 | case IO_UNKNOWN: |
| 4031 | retval = cluster_io_type(uio, io_type: &read_type, io_length: &read_length, min_length: 0); |
| 4032 | break; |
| 4033 | } |
| 4034 | } |
| 4035 | return retval; |
| 4036 | } |
| 4037 | |
| 4038 | |
| 4039 | |
| 4040 | static void |
| 4041 | cluster_read_upl_release(upl_t upl, int start_pg, int last_pg, int take_reference) |
| 4042 | { |
| 4043 | int range; |
| 4044 | int abort_flags = UPL_ABORT_FREE_ON_EMPTY; |
| 4045 | |
| 4046 | if ((range = last_pg - start_pg)) { |
| 4047 | if (take_reference) { |
| 4048 | abort_flags |= UPL_ABORT_REFERENCE; |
| 4049 | } |
| 4050 | |
| 4051 | ubc_upl_abort_range(upl, start_pg * PAGE_SIZE, range * PAGE_SIZE, abort_flags); |
| 4052 | } |
| 4053 | } |
| 4054 | |
| 4055 | |
| 4056 | static int |
| 4057 | cluster_read_copy(vnode_t vp, struct uio *uio, u_int32_t io_req_size, off_t filesize, int flags, int (*callback)(buf_t, void *), void *callback_arg) |
| 4058 | { |
| 4059 | upl_page_info_t *pl; |
| 4060 | upl_t upl = NULL; |
| 4061 | vm_offset_t upl_offset; |
| 4062 | u_int32_t upl_size; |
| 4063 | off_t upl_f_offset; |
| 4064 | int start_offset; |
| 4065 | int start_pg; |
| 4066 | int last_pg; |
| 4067 | int uio_last = 0; |
| 4068 | int pages_in_upl; |
| 4069 | off_t max_size; |
| 4070 | off_t last_ioread_offset; |
| 4071 | off_t last_request_offset; |
| 4072 | kern_return_t kret; |
| 4073 | int error = 0; |
| 4074 | int retval = 0; |
| 4075 | u_int32_t size_of_prefetch; |
| 4076 | u_int32_t xsize; |
| 4077 | u_int32_t io_size; |
| 4078 | u_int32_t max_rd_size; |
| 4079 | u_int32_t max_io_size; |
| 4080 | u_int32_t max_prefetch; |
| 4081 | u_int rd_ahead_enabled = 1; |
| 4082 | u_int prefetch_enabled = 1; |
| 4083 | struct cl_readahead * rap; |
| 4084 | struct clios iostate; |
| 4085 | struct cl_extent extent; |
| 4086 | int bflag; |
| 4087 | int take_reference = 1; |
| 4088 | int policy = IOPOL_DEFAULT; |
| 4089 | boolean_t iolock_inited = FALSE; |
| 4090 | |
| 4091 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 32)) | DBG_FUNC_START, |
| 4092 | (int)uio->uio_offset, io_req_size, (int)filesize, flags, 0); |
| 4093 | |
| 4094 | if (flags & IO_ENCRYPTED) { |
| 4095 | panic("encrypted blocks will hit UBC!" ); |
| 4096 | } |
| 4097 | |
| 4098 | policy = throttle_get_io_policy(NULL); |
| 4099 | |
| 4100 | if (policy == THROTTLE_LEVEL_TIER3 || policy == THROTTLE_LEVEL_TIER2 || (flags & IO_NOCACHE)) { |
| 4101 | take_reference = 0; |
| 4102 | } |
| 4103 | |
| 4104 | if (flags & IO_PASSIVE) { |
| 4105 | bflag = CL_PASSIVE; |
| 4106 | } else { |
| 4107 | bflag = 0; |
| 4108 | } |
| 4109 | |
| 4110 | if (flags & IO_NOCACHE) { |
| 4111 | bflag |= CL_NOCACHE; |
| 4112 | } |
| 4113 | |
| 4114 | if (flags & IO_SKIP_ENCRYPTION) { |
| 4115 | bflag |= CL_ENCRYPTED; |
| 4116 | } |
| 4117 | |
| 4118 | max_io_size = cluster_max_io_size(mp: vp->v_mount, CL_READ); |
| 4119 | max_prefetch = cluster_max_prefetch(vp, max_io_size, prefetch_limit: prefetch_max); |
| 4120 | max_rd_size = max_prefetch; |
| 4121 | |
| 4122 | last_request_offset = uio->uio_offset + io_req_size; |
| 4123 | |
| 4124 | if (last_request_offset > filesize) { |
| 4125 | last_request_offset = filesize; |
| 4126 | } |
| 4127 | |
| 4128 | if ((flags & (IO_RAOFF | IO_NOCACHE)) || ((last_request_offset & ~PAGE_MASK_64) == (uio->uio_offset & ~PAGE_MASK_64))) { |
| 4129 | rd_ahead_enabled = 0; |
| 4130 | rap = NULL; |
| 4131 | } else { |
| 4132 | if (cluster_is_throttled(vp)) { |
| 4133 | /* |
| 4134 | * we're in the throttle window, at the very least |
| 4135 | * we want to limit the size of the I/O we're about |
| 4136 | * to issue |
| 4137 | */ |
| 4138 | rd_ahead_enabled = 0; |
| 4139 | prefetch_enabled = 0; |
| 4140 | |
| 4141 | max_rd_size = calculate_max_throttle_size(vp); |
| 4142 | } |
| 4143 | if ((rap = cluster_get_rap(vp)) == NULL) { |
| 4144 | rd_ahead_enabled = 0; |
| 4145 | } else { |
| 4146 | extent.b_addr = uio->uio_offset / PAGE_SIZE_64; |
| 4147 | extent.e_addr = (last_request_offset - 1) / PAGE_SIZE_64; |
| 4148 | } |
| 4149 | } |
| 4150 | if (rap != NULL && rap->cl_ralen && (rap->cl_lastr == extent.b_addr || (rap->cl_lastr + 1) == extent.b_addr)) { |
| 4151 | /* |
| 4152 | * determine if we already have a read-ahead in the pipe courtesy of the |
| 4153 | * last read systemcall that was issued... |
| 4154 | * if so, pick up it's extent to determine where we should start |
| 4155 | * with respect to any read-ahead that might be necessary to |
| 4156 | * garner all the data needed to complete this read systemcall |
| 4157 | */ |
| 4158 | last_ioread_offset = (rap->cl_maxra * PAGE_SIZE_64) + PAGE_SIZE_64; |
| 4159 | |
| 4160 | if (last_ioread_offset < uio->uio_offset) { |
| 4161 | last_ioread_offset = (off_t)0; |
| 4162 | } else if (last_ioread_offset > last_request_offset) { |
| 4163 | last_ioread_offset = last_request_offset; |
| 4164 | } |
| 4165 | } else { |
| 4166 | last_ioread_offset = (off_t)0; |
| 4167 | } |
| 4168 | |
| 4169 | while (io_req_size && uio->uio_offset < filesize && retval == 0) { |
| 4170 | max_size = filesize - uio->uio_offset; |
| 4171 | bool leftover_upl_aborted = false; |
| 4172 | |
| 4173 | if ((off_t)(io_req_size) < max_size) { |
| 4174 | io_size = io_req_size; |
| 4175 | } else { |
| 4176 | io_size = (u_int32_t)max_size; |
| 4177 | } |
| 4178 | |
| 4179 | if (!(flags & IO_NOCACHE)) { |
| 4180 | while (io_size) { |
| 4181 | u_int32_t io_resid; |
| 4182 | u_int32_t io_requested; |
| 4183 | |
| 4184 | /* |
| 4185 | * if we keep finding the pages we need already in the cache, then |
| 4186 | * don't bother to call cluster_read_prefetch since it costs CPU cycles |
| 4187 | * to determine that we have all the pages we need... once we miss in |
| 4188 | * the cache and have issued an I/O, than we'll assume that we're likely |
| 4189 | * to continue to miss in the cache and it's to our advantage to try and prefetch |
| 4190 | */ |
| 4191 | if (last_request_offset && last_ioread_offset && (size_of_prefetch = (u_int32_t)(last_request_offset - last_ioread_offset))) { |
| 4192 | if ((last_ioread_offset - uio->uio_offset) <= max_rd_size && prefetch_enabled) { |
| 4193 | /* |
| 4194 | * we've already issued I/O for this request and |
| 4195 | * there's still work to do and |
| 4196 | * our prefetch stream is running dry, so issue a |
| 4197 | * pre-fetch I/O... the I/O latency will overlap |
| 4198 | * with the copying of the data |
| 4199 | */ |
| 4200 | if (size_of_prefetch > max_rd_size) { |
| 4201 | size_of_prefetch = max_rd_size; |
| 4202 | } |
| 4203 | |
| 4204 | size_of_prefetch = cluster_read_prefetch(vp, f_offset: last_ioread_offset, size: size_of_prefetch, filesize, callback, callback_arg, bflag); |
| 4205 | |
| 4206 | last_ioread_offset += (off_t)(size_of_prefetch * PAGE_SIZE); |
| 4207 | |
| 4208 | if (last_ioread_offset > last_request_offset) { |
| 4209 | last_ioread_offset = last_request_offset; |
| 4210 | } |
| 4211 | } |
| 4212 | } |
| 4213 | /* |
| 4214 | * limit the size of the copy we're about to do so that |
| 4215 | * we can notice that our I/O pipe is running dry and |
| 4216 | * get the next I/O issued before it does go dry |
| 4217 | */ |
| 4218 | if (last_ioread_offset && io_size > (max_io_size / 4)) { |
| 4219 | io_resid = (max_io_size / 4); |
| 4220 | } else { |
| 4221 | io_resid = io_size; |
| 4222 | } |
| 4223 | |
| 4224 | io_requested = io_resid; |
| 4225 | |
| 4226 | retval = cluster_copy_ubc_data_internal(vp, uio, io_resid: (int *)&io_resid, mark_dirty: 0, take_reference); |
| 4227 | |
| 4228 | xsize = io_requested - io_resid; |
| 4229 | |
| 4230 | io_size -= xsize; |
| 4231 | io_req_size -= xsize; |
| 4232 | |
| 4233 | if (retval || io_resid) { |
| 4234 | /* |
| 4235 | * if we run into a real error or |
| 4236 | * a page that is not in the cache |
| 4237 | * we need to leave streaming mode |
| 4238 | */ |
| 4239 | break; |
| 4240 | } |
| 4241 | |
| 4242 | if (rd_ahead_enabled && (io_size == 0 || last_ioread_offset == last_request_offset)) { |
| 4243 | /* |
| 4244 | * we're already finished the I/O for this read request |
| 4245 | * let's see if we should do a read-ahead |
| 4246 | */ |
| 4247 | cluster_read_ahead(vp, extent: &extent, filesize, rap, callback, callback_arg, bflag); |
| 4248 | } |
| 4249 | } |
| 4250 | if (retval) { |
| 4251 | break; |
| 4252 | } |
| 4253 | if (io_size == 0) { |
| 4254 | if (rap != NULL) { |
| 4255 | if (extent.e_addr < rap->cl_lastr) { |
| 4256 | rap->cl_maxra = 0; |
| 4257 | } |
| 4258 | rap->cl_lastr = extent.e_addr; |
| 4259 | } |
| 4260 | break; |
| 4261 | } |
| 4262 | /* |
| 4263 | * recompute max_size since cluster_copy_ubc_data_internal |
| 4264 | * may have advanced uio->uio_offset |
| 4265 | */ |
| 4266 | max_size = filesize - uio->uio_offset; |
| 4267 | } |
| 4268 | |
| 4269 | iostate.io_completed = 0; |
| 4270 | iostate.io_issued = 0; |
| 4271 | iostate.io_error = 0; |
| 4272 | iostate.io_wanted = 0; |
| 4273 | |
| 4274 | if ((flags & IO_RETURN_ON_THROTTLE)) { |
| 4275 | if (cluster_is_throttled(vp) == THROTTLE_NOW) { |
| 4276 | if (!cluster_io_present_in_BC(vp, f_offset: uio->uio_offset)) { |
| 4277 | /* |
| 4278 | * we're in the throttle window and at least 1 I/O |
| 4279 | * has already been issued by a throttleable thread |
| 4280 | * in this window, so return with EAGAIN to indicate |
| 4281 | * to the FS issuing the cluster_read call that it |
| 4282 | * should now throttle after dropping any locks |
| 4283 | */ |
| 4284 | throttle_info_update_by_mount(mp: vp->v_mount); |
| 4285 | |
| 4286 | retval = EAGAIN; |
| 4287 | break; |
| 4288 | } |
| 4289 | } |
| 4290 | } |
| 4291 | |
| 4292 | /* |
| 4293 | * compute the size of the upl needed to encompass |
| 4294 | * the requested read... limit each call to cluster_io |
| 4295 | * to the maximum UPL size... cluster_io will clip if |
| 4296 | * this exceeds the maximum io_size for the device, |
| 4297 | * make sure to account for |
| 4298 | * a starting offset that's not page aligned |
| 4299 | */ |
| 4300 | start_offset = (int)(uio->uio_offset & PAGE_MASK_64); |
| 4301 | upl_f_offset = uio->uio_offset - (off_t)start_offset; |
| 4302 | |
| 4303 | if (io_size > max_rd_size) { |
| 4304 | io_size = max_rd_size; |
| 4305 | } |
| 4306 | |
| 4307 | upl_size = (start_offset + io_size + (PAGE_SIZE - 1)) & ~PAGE_MASK; |
| 4308 | |
| 4309 | if (flags & IO_NOCACHE) { |
| 4310 | if (upl_size > max_io_size) { |
| 4311 | upl_size = max_io_size; |
| 4312 | } |
| 4313 | } else { |
| 4314 | if (upl_size > max_io_size / 4) { |
| 4315 | upl_size = max_io_size / 4; |
| 4316 | upl_size &= ~PAGE_MASK; |
| 4317 | |
| 4318 | if (upl_size == 0) { |
| 4319 | upl_size = PAGE_SIZE; |
| 4320 | } |
| 4321 | } |
| 4322 | } |
| 4323 | pages_in_upl = upl_size / PAGE_SIZE; |
| 4324 | |
| 4325 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 33)) | DBG_FUNC_START, |
| 4326 | upl, (int)upl_f_offset, upl_size, start_offset, 0); |
| 4327 | |
| 4328 | kret = ubc_create_upl_kernel(vp, |
| 4329 | upl_f_offset, |
| 4330 | upl_size, |
| 4331 | &upl, |
| 4332 | &pl, |
| 4333 | UPL_FILE_IO | UPL_SET_LITE, |
| 4334 | VM_KERN_MEMORY_FILE); |
| 4335 | if (kret != KERN_SUCCESS) { |
| 4336 | panic("cluster_read_copy: failed to get pagelist" ); |
| 4337 | } |
| 4338 | |
| 4339 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 33)) | DBG_FUNC_END, |
| 4340 | upl, (int)upl_f_offset, upl_size, start_offset, 0); |
| 4341 | |
| 4342 | /* |
| 4343 | * scan from the beginning of the upl looking for the first |
| 4344 | * non-valid page.... this will become the first page in |
| 4345 | * the request we're going to make to 'cluster_io'... if all |
| 4346 | * of the pages are valid, we won't call through to 'cluster_io' |
| 4347 | */ |
| 4348 | for (start_pg = 0; start_pg < pages_in_upl; start_pg++) { |
| 4349 | if (!upl_valid_page(upl: pl, index: start_pg)) { |
| 4350 | break; |
| 4351 | } |
| 4352 | } |
| 4353 | |
| 4354 | /* |
| 4355 | * scan from the starting invalid page looking for a valid |
| 4356 | * page before the end of the upl is reached, if we |
| 4357 | * find one, then it will be the last page of the request to |
| 4358 | * 'cluster_io' |
| 4359 | */ |
| 4360 | for (last_pg = start_pg; last_pg < pages_in_upl; last_pg++) { |
| 4361 | if (upl_valid_page(upl: pl, index: last_pg)) { |
| 4362 | break; |
| 4363 | } |
| 4364 | } |
| 4365 | |
| 4366 | if (start_pg < last_pg) { |
| 4367 | /* |
| 4368 | * we found a range of 'invalid' pages that must be filled |
| 4369 | * if the last page in this range is the last page of the file |
| 4370 | * we may have to clip the size of it to keep from reading past |
| 4371 | * the end of the last physical block associated with the file |
| 4372 | */ |
| 4373 | if (iolock_inited == FALSE) { |
| 4374 | lck_mtx_init(lck: &iostate.io_mtxp, grp: &cl_mtx_grp, LCK_ATTR_NULL); |
| 4375 | |
| 4376 | iolock_inited = TRUE; |
| 4377 | } |
| 4378 | upl_offset = start_pg * PAGE_SIZE; |
| 4379 | io_size = (last_pg - start_pg) * PAGE_SIZE; |
| 4380 | |
| 4381 | if ((off_t)(upl_f_offset + upl_offset + io_size) > filesize) { |
| 4382 | io_size = (u_int32_t)(filesize - (upl_f_offset + upl_offset)); |
| 4383 | } |
| 4384 | |
| 4385 | /* |
| 4386 | * Find out if this needs verification, we'll have to manage the UPL |
| 4387 | * diffrently if so. Note that this call only lets us know if |
| 4388 | * verification is enabled on this mount point, the actual verification |
| 4389 | * is performed in the File system. |
| 4390 | */ |
| 4391 | size_t verify_block_size = 0; |
| 4392 | if ((VNOP_VERIFY(vp, start_offset, NULL, 0, &verify_block_size, NULL, VNODE_VERIFY_DEFAULT, NULL) == 0) /* && verify_block_size */) { |
| 4393 | for (uio_last = last_pg; uio_last < pages_in_upl; uio_last++) { |
| 4394 | if (!upl_valid_page(upl: pl, index: uio_last)) { |
| 4395 | break; |
| 4396 | } |
| 4397 | } |
| 4398 | if (uio_last < pages_in_upl) { |
| 4399 | /* |
| 4400 | * there were some invalid pages beyond the valid pages |
| 4401 | * that we didn't issue an I/O for, just release them |
| 4402 | * unchanged now, so that any prefetch/readahed can |
| 4403 | * include them |
| 4404 | */ |
| 4405 | ubc_upl_abort_range(upl, uio_last * PAGE_SIZE, |
| 4406 | (pages_in_upl - uio_last) * PAGE_SIZE, UPL_ABORT_FREE_ON_EMPTY); |
| 4407 | leftover_upl_aborted = true; |
| 4408 | } |
| 4409 | } |
| 4410 | |
| 4411 | /* |
| 4412 | * issue an asynchronous read to cluster_io |
| 4413 | */ |
| 4414 | |
| 4415 | error = cluster_io(vp, upl, upl_offset, f_offset: upl_f_offset + upl_offset, |
| 4416 | non_rounded_size: io_size, CL_READ | CL_ASYNC | bflag, real_bp: (buf_t)NULL, iostate: &iostate, callback, callback_arg); |
| 4417 | |
| 4418 | if (rap) { |
| 4419 | if (extent.e_addr < rap->cl_maxra) { |
| 4420 | /* |
| 4421 | * we've just issued a read for a block that should have been |
| 4422 | * in the cache courtesy of the read-ahead engine... something |
| 4423 | * has gone wrong with the pipeline, so reset the read-ahead |
| 4424 | * logic which will cause us to restart from scratch |
| 4425 | */ |
| 4426 | rap->cl_maxra = 0; |
| 4427 | } |
| 4428 | } |
| 4429 | } |
| 4430 | if (error == 0) { |
| 4431 | /* |
| 4432 | * if the read completed successfully, or there was no I/O request |
| 4433 | * issued, than copy the data into user land via 'cluster_upl_copy_data' |
| 4434 | * we'll first add on any 'valid' |
| 4435 | * pages that were present in the upl when we acquired it. |
| 4436 | */ |
| 4437 | u_int val_size; |
| 4438 | |
| 4439 | if (!leftover_upl_aborted) { |
| 4440 | for (uio_last = last_pg; uio_last < pages_in_upl; uio_last++) { |
| 4441 | if (!upl_valid_page(upl: pl, index: uio_last)) { |
| 4442 | break; |
| 4443 | } |
| 4444 | } |
| 4445 | if (uio_last < pages_in_upl) { |
| 4446 | /* |
| 4447 | * there were some invalid pages beyond the valid pages |
| 4448 | * that we didn't issue an I/O for, just release them |
| 4449 | * unchanged now, so that any prefetch/readahed can |
| 4450 | * include them |
| 4451 | */ |
| 4452 | ubc_upl_abort_range(upl, uio_last * PAGE_SIZE, |
| 4453 | (pages_in_upl - uio_last) * PAGE_SIZE, UPL_ABORT_FREE_ON_EMPTY); |
| 4454 | } |
| 4455 | } |
| 4456 | |
| 4457 | /* |
| 4458 | * compute size to transfer this round, if io_req_size is |
| 4459 | * still non-zero after this attempt, we'll loop around and |
| 4460 | * set up for another I/O. |
| 4461 | */ |
| 4462 | val_size = (uio_last * PAGE_SIZE) - start_offset; |
| 4463 | |
| 4464 | if (val_size > max_size) { |
| 4465 | val_size = (u_int)max_size; |
| 4466 | } |
| 4467 | |
| 4468 | if (val_size > io_req_size) { |
| 4469 | val_size = io_req_size; |
| 4470 | } |
| 4471 | |
| 4472 | if ((uio->uio_offset + val_size) > last_ioread_offset) { |
| 4473 | last_ioread_offset = uio->uio_offset + val_size; |
| 4474 | } |
| 4475 | |
| 4476 | if ((size_of_prefetch = (u_int32_t)(last_request_offset - last_ioread_offset)) && prefetch_enabled) { |
| 4477 | if ((last_ioread_offset - (uio->uio_offset + val_size)) <= upl_size) { |
| 4478 | /* |
| 4479 | * if there's still I/O left to do for this request, and... |
| 4480 | * we're not in hard throttle mode, and... |
| 4481 | * we're close to using up the previous prefetch, then issue a |
| 4482 | * new pre-fetch I/O... the I/O latency will overlap |
| 4483 | * with the copying of the data |
| 4484 | */ |
| 4485 | if (size_of_prefetch > max_rd_size) { |
| 4486 | size_of_prefetch = max_rd_size; |
| 4487 | } |
| 4488 | |
| 4489 | size_of_prefetch = cluster_read_prefetch(vp, f_offset: last_ioread_offset, size: size_of_prefetch, filesize, callback, callback_arg, bflag); |
| 4490 | |
| 4491 | last_ioread_offset += (off_t)(size_of_prefetch * PAGE_SIZE); |
| 4492 | |
| 4493 | if (last_ioread_offset > last_request_offset) { |
| 4494 | last_ioread_offset = last_request_offset; |
| 4495 | } |
| 4496 | } |
| 4497 | } else if ((uio->uio_offset + val_size) == last_request_offset) { |
| 4498 | /* |
| 4499 | * this transfer will finish this request, so... |
| 4500 | * let's try to read ahead if we're in |
| 4501 | * a sequential access pattern and we haven't |
| 4502 | * explicitly disabled it |
| 4503 | */ |
| 4504 | if (rd_ahead_enabled) { |
| 4505 | cluster_read_ahead(vp, extent: &extent, filesize, rap, callback, callback_arg, bflag); |
| 4506 | } |
| 4507 | |
| 4508 | if (rap != NULL) { |
| 4509 | if (extent.e_addr < rap->cl_lastr) { |
| 4510 | rap->cl_maxra = 0; |
| 4511 | } |
| 4512 | rap->cl_lastr = extent.e_addr; |
| 4513 | } |
| 4514 | } |
| 4515 | if (iolock_inited == TRUE) { |
| 4516 | cluster_iostate_wait(iostate: &iostate, target: 0, wait_name: "cluster_read_copy" ); |
| 4517 | } |
| 4518 | |
| 4519 | if (iostate.io_error) { |
| 4520 | error = iostate.io_error; |
| 4521 | } else { |
| 4522 | u_int32_t io_requested; |
| 4523 | |
| 4524 | io_requested = val_size; |
| 4525 | |
| 4526 | retval = cluster_copy_upl_data(uio, upl, start_offset, (int *)&io_requested); |
| 4527 | |
| 4528 | io_req_size -= (val_size - io_requested); |
| 4529 | } |
| 4530 | } else { |
| 4531 | if (iolock_inited == TRUE) { |
| 4532 | cluster_iostate_wait(iostate: &iostate, target: 0, wait_name: "cluster_read_copy" ); |
| 4533 | } |
| 4534 | } |
| 4535 | if (start_pg < last_pg) { |
| 4536 | /* |
| 4537 | * compute the range of pages that we actually issued an I/O for |
| 4538 | * and either commit them as valid if the I/O succeeded |
| 4539 | * or abort them if the I/O failed or we're not supposed to |
| 4540 | * keep them in the cache |
| 4541 | */ |
| 4542 | io_size = (last_pg - start_pg) * PAGE_SIZE; |
| 4543 | |
| 4544 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 35)) | DBG_FUNC_START, upl, start_pg * PAGE_SIZE, io_size, error, 0); |
| 4545 | |
| 4546 | if (error || (flags & IO_NOCACHE)) { |
| 4547 | ubc_upl_abort_range(upl, start_pg * PAGE_SIZE, io_size, |
| 4548 | UPL_ABORT_DUMP_PAGES | UPL_ABORT_FREE_ON_EMPTY); |
| 4549 | } else { |
| 4550 | int commit_flags = UPL_COMMIT_CLEAR_DIRTY | UPL_COMMIT_FREE_ON_EMPTY; |
| 4551 | |
| 4552 | if (take_reference) { |
| 4553 | commit_flags |= UPL_COMMIT_INACTIVATE; |
| 4554 | } else { |
| 4555 | commit_flags |= UPL_COMMIT_SPECULATE; |
| 4556 | } |
| 4557 | |
| 4558 | ubc_upl_commit_range(upl, start_pg * PAGE_SIZE, io_size, commit_flags); |
| 4559 | } |
| 4560 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 35)) | DBG_FUNC_END, upl, start_pg * PAGE_SIZE, io_size, error, 0); |
| 4561 | } |
| 4562 | if ((last_pg - start_pg) < pages_in_upl) { |
| 4563 | /* |
| 4564 | * the set of pages that we issued an I/O for did not encompass |
| 4565 | * the entire upl... so just release these without modifying |
| 4566 | * their state |
| 4567 | */ |
| 4568 | if (error) { |
| 4569 | if (leftover_upl_aborted) { |
| 4570 | ubc_upl_abort_range(upl, start_pg * PAGE_SIZE, (uio_last - start_pg) * PAGE_SIZE, |
| 4571 | UPL_ABORT_FREE_ON_EMPTY); |
| 4572 | } else { |
| 4573 | ubc_upl_abort_range(upl, 0, upl_size, UPL_ABORT_FREE_ON_EMPTY); |
| 4574 | } |
| 4575 | } else { |
| 4576 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 35)) | DBG_FUNC_START, |
| 4577 | upl, -1, pages_in_upl - (last_pg - start_pg), 0, 0); |
| 4578 | |
| 4579 | /* |
| 4580 | * handle any valid pages at the beginning of |
| 4581 | * the upl... release these appropriately |
| 4582 | */ |
| 4583 | cluster_read_upl_release(upl, start_pg: 0, last_pg: start_pg, take_reference); |
| 4584 | |
| 4585 | /* |
| 4586 | * handle any valid pages immediately after the |
| 4587 | * pages we issued I/O for... ... release these appropriately |
| 4588 | */ |
| 4589 | cluster_read_upl_release(upl, start_pg: last_pg, last_pg: uio_last, take_reference); |
| 4590 | |
| 4591 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 35)) | DBG_FUNC_END, upl, -1, -1, 0, 0); |
| 4592 | } |
| 4593 | } |
| 4594 | if (retval == 0) { |
| 4595 | retval = error; |
| 4596 | } |
| 4597 | |
| 4598 | if (io_req_size) { |
| 4599 | uint32_t max_throttle_size = calculate_max_throttle_size(vp); |
| 4600 | |
| 4601 | if (cluster_is_throttled(vp)) { |
| 4602 | /* |
| 4603 | * we're in the throttle window, at the very least |
| 4604 | * we want to limit the size of the I/O we're about |
| 4605 | * to issue |
| 4606 | */ |
| 4607 | rd_ahead_enabled = 0; |
| 4608 | prefetch_enabled = 0; |
| 4609 | max_rd_size = max_throttle_size; |
| 4610 | } else { |
| 4611 | if (max_rd_size == max_throttle_size) { |
| 4612 | /* |
| 4613 | * coming out of throttled state |
| 4614 | */ |
| 4615 | if (policy != THROTTLE_LEVEL_TIER3 && policy != THROTTLE_LEVEL_TIER2) { |
| 4616 | if (rap != NULL) { |
| 4617 | rd_ahead_enabled = 1; |
| 4618 | } |
| 4619 | prefetch_enabled = 1; |
| 4620 | } |
| 4621 | max_rd_size = max_prefetch; |
| 4622 | last_ioread_offset = 0; |
| 4623 | } |
| 4624 | } |
| 4625 | } |
| 4626 | } |
| 4627 | if (iolock_inited == TRUE) { |
| 4628 | /* |
| 4629 | * cluster_io returned an error after it |
| 4630 | * had already issued some I/O. we need |
| 4631 | * to wait for that I/O to complete before |
| 4632 | * we can destroy the iostate mutex... |
| 4633 | * 'retval' already contains the early error |
| 4634 | * so no need to pick it up from iostate.io_error |
| 4635 | */ |
| 4636 | cluster_iostate_wait(iostate: &iostate, target: 0, wait_name: "cluster_read_copy" ); |
| 4637 | |
| 4638 | lck_mtx_destroy(lck: &iostate.io_mtxp, grp: &cl_mtx_grp); |
| 4639 | } |
| 4640 | if (rap != NULL) { |
| 4641 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 32)) | DBG_FUNC_END, |
| 4642 | (int)uio->uio_offset, io_req_size, rap->cl_lastr, retval, 0); |
| 4643 | |
| 4644 | lck_mtx_unlock(lck: &rap->cl_lockr); |
| 4645 | } else { |
| 4646 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 32)) | DBG_FUNC_END, |
| 4647 | (int)uio->uio_offset, io_req_size, 0, retval, 0); |
| 4648 | } |
| 4649 | |
| 4650 | return retval; |
| 4651 | } |
| 4652 | |
| 4653 | /* |
| 4654 | * We don't want another read/write lock for every vnode in the system |
| 4655 | * so we keep a hash of them here. There should never be very many of |
| 4656 | * these around at any point in time. |
| 4657 | */ |
| 4658 | cl_direct_read_lock_t * |
| 4659 | cluster_lock_direct_read(vnode_t vp, lck_rw_type_t type) |
| 4660 | { |
| 4661 | struct cl_direct_read_locks *head |
| 4662 | = &cl_direct_read_locks[(uintptr_t)vp / sizeof(*vp) |
| 4663 | % CL_DIRECT_READ_LOCK_BUCKETS]; |
| 4664 | |
| 4665 | struct cl_direct_read_lock *lck, *new_lck = NULL; |
| 4666 | |
| 4667 | for (;;) { |
| 4668 | lck_spin_lock(lck: &cl_direct_read_spin_lock); |
| 4669 | |
| 4670 | LIST_FOREACH(lck, head, chain) { |
| 4671 | if (lck->vp == vp) { |
| 4672 | ++lck->ref_count; |
| 4673 | lck_spin_unlock(lck: &cl_direct_read_spin_lock); |
| 4674 | if (new_lck) { |
| 4675 | // Someone beat us to it, ditch the allocation |
| 4676 | lck_rw_destroy(lck: &new_lck->rw_lock, grp: &cl_mtx_grp); |
| 4677 | kfree_type(cl_direct_read_lock_t, new_lck); |
| 4678 | } |
| 4679 | lck_rw_lock(lck: &lck->rw_lock, lck_rw_type: type); |
| 4680 | return lck; |
| 4681 | } |
| 4682 | } |
| 4683 | |
| 4684 | if (new_lck) { |
| 4685 | // Use the lock we allocated |
| 4686 | LIST_INSERT_HEAD(head, new_lck, chain); |
| 4687 | lck_spin_unlock(lck: &cl_direct_read_spin_lock); |
| 4688 | lck_rw_lock(lck: &new_lck->rw_lock, lck_rw_type: type); |
| 4689 | return new_lck; |
| 4690 | } |
| 4691 | |
| 4692 | lck_spin_unlock(lck: &cl_direct_read_spin_lock); |
| 4693 | |
| 4694 | // Allocate a new lock |
| 4695 | new_lck = kalloc_type(cl_direct_read_lock_t, Z_WAITOK); |
| 4696 | lck_rw_init(lck: &new_lck->rw_lock, grp: &cl_mtx_grp, LCK_ATTR_NULL); |
| 4697 | new_lck->vp = vp; |
| 4698 | new_lck->ref_count = 1; |
| 4699 | |
| 4700 | // Got to go round again |
| 4701 | } |
| 4702 | } |
| 4703 | |
| 4704 | void |
| 4705 | cluster_unlock_direct_read(cl_direct_read_lock_t *lck) |
| 4706 | { |
| 4707 | lck_rw_done(lck: &lck->rw_lock); |
| 4708 | |
| 4709 | lck_spin_lock(lck: &cl_direct_read_spin_lock); |
| 4710 | if (lck->ref_count == 1) { |
| 4711 | LIST_REMOVE(lck, chain); |
| 4712 | lck_spin_unlock(lck: &cl_direct_read_spin_lock); |
| 4713 | lck_rw_destroy(lck: &lck->rw_lock, grp: &cl_mtx_grp); |
| 4714 | kfree_type(cl_direct_read_lock_t, lck); |
| 4715 | } else { |
| 4716 | --lck->ref_count; |
| 4717 | lck_spin_unlock(lck: &cl_direct_read_spin_lock); |
| 4718 | } |
| 4719 | } |
| 4720 | |
| 4721 | static int |
| 4722 | cluster_read_direct(vnode_t vp, struct uio *uio, off_t filesize, int *read_type, u_int32_t *read_length, |
| 4723 | int flags, int (*callback)(buf_t, void *), void *callback_arg) |
| 4724 | { |
| 4725 | upl_t upl = NULL; |
| 4726 | upl_page_info_t *pl; |
| 4727 | off_t max_io_size; |
| 4728 | vm_offset_t upl_offset, vector_upl_offset = 0; |
| 4729 | upl_size_t upl_size = 0, vector_upl_size = 0; |
| 4730 | vm_size_t upl_needed_size; |
| 4731 | unsigned int pages_in_pl; |
| 4732 | upl_control_flags_t upl_flags; |
| 4733 | kern_return_t kret = KERN_SUCCESS; |
| 4734 | unsigned int i; |
| 4735 | int force_data_sync; |
| 4736 | int retval = 0; |
| 4737 | int no_zero_fill = 0; |
| 4738 | int io_flag = 0; |
| 4739 | int misaligned = 0; |
| 4740 | struct clios iostate; |
| 4741 | user_addr_t iov_base; |
| 4742 | u_int32_t io_req_size; |
| 4743 | u_int32_t offset_in_file; |
| 4744 | u_int32_t offset_in_iovbase; |
| 4745 | u_int32_t io_size; |
| 4746 | u_int32_t io_min; |
| 4747 | u_int32_t xsize; |
| 4748 | u_int32_t devblocksize; |
| 4749 | u_int32_t mem_alignment_mask; |
| 4750 | u_int32_t max_upl_size; |
| 4751 | u_int32_t max_rd_size; |
| 4752 | u_int32_t max_rd_ahead; |
| 4753 | u_int32_t max_vector_size; |
| 4754 | boolean_t io_throttled = FALSE; |
| 4755 | |
| 4756 | u_int32_t vector_upl_iosize = 0; |
| 4757 | int issueVectorUPL = 0, useVectorUPL = (uio->uio_iovcnt > 1); |
| 4758 | off_t v_upl_uio_offset = 0; |
| 4759 | int vector_upl_index = 0; |
| 4760 | upl_t vector_upl = NULL; |
| 4761 | cl_direct_read_lock_t *lock = NULL; |
| 4762 | |
| 4763 | assert(vm_map_page_shift(current_map()) >= PAGE_SHIFT); |
| 4764 | |
| 4765 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 70)) | DBG_FUNC_START, |
| 4766 | (int)uio->uio_offset, (int)filesize, *read_type, *read_length, 0); |
| 4767 | |
| 4768 | max_upl_size = cluster_max_io_size(mp: vp->v_mount, CL_READ); |
| 4769 | |
| 4770 | max_rd_size = max_upl_size; |
| 4771 | |
| 4772 | if (__improbable(os_mul_overflow(max_rd_size, IO_SCALE(vp, 2), |
| 4773 | &max_rd_ahead) || (max_rd_ahead > overlapping_read_max))) { |
| 4774 | max_rd_ahead = overlapping_read_max; |
| 4775 | } |
| 4776 | |
| 4777 | io_flag = CL_COMMIT | CL_READ | CL_ASYNC | CL_NOZERO | CL_DIRECT_IO; |
| 4778 | |
| 4779 | if (flags & IO_PASSIVE) { |
| 4780 | io_flag |= CL_PASSIVE; |
| 4781 | } |
| 4782 | |
| 4783 | if (flags & IO_ENCRYPTED) { |
| 4784 | io_flag |= CL_RAW_ENCRYPTED; |
| 4785 | } |
| 4786 | |
| 4787 | if (flags & IO_NOCACHE) { |
| 4788 | io_flag |= CL_NOCACHE; |
| 4789 | } |
| 4790 | |
| 4791 | if (flags & IO_SKIP_ENCRYPTION) { |
| 4792 | io_flag |= CL_ENCRYPTED; |
| 4793 | } |
| 4794 | |
| 4795 | iostate.io_completed = 0; |
| 4796 | iostate.io_issued = 0; |
| 4797 | iostate.io_error = 0; |
| 4798 | iostate.io_wanted = 0; |
| 4799 | |
| 4800 | lck_mtx_init(lck: &iostate.io_mtxp, grp: &cl_mtx_grp, LCK_ATTR_NULL); |
| 4801 | |
| 4802 | devblocksize = (u_int32_t)vp->v_mount->mnt_devblocksize; |
| 4803 | mem_alignment_mask = (u_int32_t)vp->v_mount->mnt_alignmentmask; |
| 4804 | |
| 4805 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 70)) | DBG_FUNC_NONE, |
| 4806 | (int)devblocksize, (int)mem_alignment_mask, 0, 0, 0); |
| 4807 | |
| 4808 | if (devblocksize == 1) { |
| 4809 | /* |
| 4810 | * the AFP client advertises a devblocksize of 1 |
| 4811 | * however, its BLOCKMAP routine maps to physical |
| 4812 | * blocks that are PAGE_SIZE in size... |
| 4813 | * therefore we can't ask for I/Os that aren't page aligned |
| 4814 | * or aren't multiples of PAGE_SIZE in size |
| 4815 | * by setting devblocksize to PAGE_SIZE, we re-instate |
| 4816 | * the old behavior we had before the mem_alignment_mask |
| 4817 | * changes went in... |
| 4818 | */ |
| 4819 | devblocksize = PAGE_SIZE; |
| 4820 | } |
| 4821 | |
| 4822 | /* |
| 4823 | * We are going to need this uio for the prefaulting later |
| 4824 | * especially for the cases where multiple non-contiguous |
| 4825 | * iovs are passed into this routine. |
| 4826 | */ |
| 4827 | uio_t uio_acct = uio_duplicate(a_uio: uio); |
| 4828 | |
| 4829 | next_dread: |
| 4830 | io_req_size = *read_length; |
| 4831 | iov_base = uio_curriovbase(a_uio: uio); |
| 4832 | |
| 4833 | offset_in_file = (u_int32_t)uio->uio_offset & (devblocksize - 1); |
| 4834 | offset_in_iovbase = (u_int32_t)iov_base & mem_alignment_mask; |
| 4835 | |
| 4836 | if (vm_map_page_mask(map: current_map()) < PAGE_MASK) { |
| 4837 | /* |
| 4838 | * XXX TODO4K |
| 4839 | * Direct I/O might not work as expected from a 16k kernel space |
| 4840 | * to a 4k user space because each 4k chunk might point to |
| 4841 | * a different 16k physical page... |
| 4842 | * Let's go the "misaligned" way. |
| 4843 | */ |
| 4844 | if (!misaligned) { |
| 4845 | DEBUG4K_VFS("forcing misaligned\n" ); |
| 4846 | } |
| 4847 | misaligned = 1; |
| 4848 | } |
| 4849 | |
| 4850 | if (offset_in_file || offset_in_iovbase) { |
| 4851 | /* |
| 4852 | * one of the 2 important offsets is misaligned |
| 4853 | * so fire an I/O through the cache for this entire vector |
| 4854 | */ |
| 4855 | misaligned = 1; |
| 4856 | } |
| 4857 | if (iov_base & (devblocksize - 1)) { |
| 4858 | /* |
| 4859 | * the offset in memory must be on a device block boundary |
| 4860 | * so that we can guarantee that we can generate an |
| 4861 | * I/O that ends on a page boundary in cluster_io |
| 4862 | */ |
| 4863 | misaligned = 1; |
| 4864 | } |
| 4865 | |
| 4866 | max_io_size = filesize - uio->uio_offset; |
| 4867 | |
| 4868 | /* |
| 4869 | * The user must request IO in aligned chunks. If the |
| 4870 | * offset into the file is bad, or the userland pointer |
| 4871 | * is non-aligned, then we cannot service the encrypted IO request. |
| 4872 | */ |
| 4873 | if (flags & IO_ENCRYPTED) { |
| 4874 | if (misaligned || (io_req_size & (devblocksize - 1))) { |
| 4875 | retval = EINVAL; |
| 4876 | } |
| 4877 | |
| 4878 | max_io_size = roundup(max_io_size, devblocksize); |
| 4879 | } |
| 4880 | |
| 4881 | if ((off_t)io_req_size > max_io_size) { |
| 4882 | io_req_size = (u_int32_t)max_io_size; |
| 4883 | } |
| 4884 | |
| 4885 | /* |
| 4886 | * When we get to this point, we know... |
| 4887 | * -- the offset into the file is on a devblocksize boundary |
| 4888 | */ |
| 4889 | |
| 4890 | while (io_req_size && retval == 0) { |
| 4891 | u_int32_t io_start; |
| 4892 | |
| 4893 | if (cluster_is_throttled(vp)) { |
| 4894 | uint32_t max_throttle_size = calculate_max_throttle_size(vp); |
| 4895 | |
| 4896 | /* |
| 4897 | * we're in the throttle window, at the very least |
| 4898 | * we want to limit the size of the I/O we're about |
| 4899 | * to issue |
| 4900 | */ |
| 4901 | max_rd_size = max_throttle_size; |
| 4902 | max_rd_ahead = max_throttle_size - 1; |
| 4903 | max_vector_size = max_throttle_size; |
| 4904 | } else { |
| 4905 | max_rd_size = max_upl_size; |
| 4906 | max_rd_ahead = max_rd_size * IO_SCALE(vp, 2); |
| 4907 | max_vector_size = MAX_VECTOR_UPL_SIZE; |
| 4908 | } |
| 4909 | io_start = io_size = io_req_size; |
| 4910 | |
| 4911 | /* |
| 4912 | * First look for pages already in the cache |
| 4913 | * and move them to user space. But only do this |
| 4914 | * check if we are not retrieving encrypted data directly |
| 4915 | * from the filesystem; those blocks should never |
| 4916 | * be in the UBC. |
| 4917 | * |
| 4918 | * cluster_copy_ubc_data returns the resid |
| 4919 | * in io_size |
| 4920 | */ |
| 4921 | if ((flags & IO_ENCRYPTED) == 0) { |
| 4922 | retval = cluster_copy_ubc_data_internal(vp, uio, io_resid: (int *)&io_size, mark_dirty: 0, take_reference: 0); |
| 4923 | } |
| 4924 | /* |
| 4925 | * calculate the number of bytes actually copied |
| 4926 | * starting size - residual |
| 4927 | */ |
| 4928 | xsize = io_start - io_size; |
| 4929 | |
| 4930 | io_req_size -= xsize; |
| 4931 | |
| 4932 | if (useVectorUPL && (xsize || (iov_base & PAGE_MASK))) { |
| 4933 | /* |
| 4934 | * We found something in the cache or we have an iov_base that's not |
| 4935 | * page-aligned. |
| 4936 | * |
| 4937 | * Issue all I/O's that have been collected within this Vectored UPL. |
| 4938 | */ |
| 4939 | if (vector_upl_index) { |
| 4940 | retval = vector_cluster_io(vp, vector_upl, vector_upl_offset, v_upl_uio_offset, vector_upl_iosize, io_flag, real_bp: (buf_t)NULL, iostate: &iostate, callback, callback_arg); |
| 4941 | reset_vector_run_state(); |
| 4942 | } |
| 4943 | |
| 4944 | if (xsize) { |
| 4945 | useVectorUPL = 0; |
| 4946 | } |
| 4947 | |
| 4948 | /* |
| 4949 | * After this point, if we are using the Vector UPL path and the base is |
| 4950 | * not page-aligned then the UPL with that base will be the first in the vector UPL. |
| 4951 | */ |
| 4952 | } |
| 4953 | |
| 4954 | /* |
| 4955 | * check to see if we are finished with this request. |
| 4956 | * |
| 4957 | * If we satisfied this IO already, then io_req_size will be 0. |
| 4958 | * Otherwise, see if the IO was mis-aligned and needs to go through |
| 4959 | * the UBC to deal with the 'tail'. |
| 4960 | * |
| 4961 | */ |
| 4962 | if (io_req_size == 0 || (misaligned)) { |
| 4963 | /* |
| 4964 | * see if there's another uio vector to |
| 4965 | * process that's of type IO_DIRECT |
| 4966 | * |
| 4967 | * break out of while loop to get there |
| 4968 | */ |
| 4969 | break; |
| 4970 | } |
| 4971 | /* |
| 4972 | * assume the request ends on a device block boundary |
| 4973 | */ |
| 4974 | io_min = devblocksize; |
| 4975 | |
| 4976 | /* |
| 4977 | * we can handle I/O's in multiples of the device block size |
| 4978 | * however, if io_size isn't a multiple of devblocksize we |
| 4979 | * want to clip it back to the nearest page boundary since |
| 4980 | * we are going to have to go through cluster_read_copy to |
| 4981 | * deal with the 'overhang'... by clipping it to a PAGE_SIZE |
| 4982 | * multiple, we avoid asking the drive for the same physical |
| 4983 | * blocks twice.. once for the partial page at the end of the |
| 4984 | * request and a 2nd time for the page we read into the cache |
| 4985 | * (which overlaps the end of the direct read) in order to |
| 4986 | * get at the overhang bytes |
| 4987 | */ |
| 4988 | if (io_size & (devblocksize - 1)) { |
| 4989 | assert(!(flags & IO_ENCRYPTED)); |
| 4990 | /* |
| 4991 | * Clip the request to the previous page size boundary |
| 4992 | * since request does NOT end on a device block boundary |
| 4993 | */ |
| 4994 | io_size &= ~PAGE_MASK; |
| 4995 | io_min = PAGE_SIZE; |
| 4996 | } |
| 4997 | if (retval || io_size < io_min) { |
| 4998 | /* |
| 4999 | * either an error or we only have the tail left to |
| 5000 | * complete via the copy path... |
| 5001 | * we may have already spun some portion of this request |
| 5002 | * off as async requests... we need to wait for the I/O |
| 5003 | * to complete before returning |
| 5004 | */ |
| 5005 | goto wait_for_dreads; |
| 5006 | } |
| 5007 | |
| 5008 | /* |
| 5009 | * Don't re-check the UBC data if we are looking for uncached IO |
| 5010 | * or asking for encrypted blocks. |
| 5011 | */ |
| 5012 | if ((flags & IO_ENCRYPTED) == 0) { |
| 5013 | if ((xsize = io_size) > max_rd_size) { |
| 5014 | xsize = max_rd_size; |
| 5015 | } |
| 5016 | |
| 5017 | io_size = 0; |
| 5018 | |
| 5019 | if (!lock) { |
| 5020 | /* |
| 5021 | * We hold a lock here between the time we check the |
| 5022 | * cache and the time we issue I/O. This saves us |
| 5023 | * from having to lock the pages in the cache. Not |
| 5024 | * all clients will care about this lock but some |
| 5025 | * clients may want to guarantee stability between |
| 5026 | * here and when the I/O is issued in which case they |
| 5027 | * will take the lock exclusively. |
| 5028 | */ |
| 5029 | lock = cluster_lock_direct_read(vp, LCK_RW_TYPE_SHARED); |
| 5030 | } |
| 5031 | |
| 5032 | ubc_range_op(vp, uio->uio_offset, uio->uio_offset + xsize, UPL_ROP_ABSENT, (int *)&io_size); |
| 5033 | |
| 5034 | if (io_size == 0) { |
| 5035 | /* |
| 5036 | * a page must have just come into the cache |
| 5037 | * since the first page in this range is no |
| 5038 | * longer absent, go back and re-evaluate |
| 5039 | */ |
| 5040 | continue; |
| 5041 | } |
| 5042 | } |
| 5043 | if ((flags & IO_RETURN_ON_THROTTLE)) { |
| 5044 | if (cluster_is_throttled(vp) == THROTTLE_NOW) { |
| 5045 | if (!cluster_io_present_in_BC(vp, f_offset: uio->uio_offset)) { |
| 5046 | /* |
| 5047 | * we're in the throttle window and at least 1 I/O |
| 5048 | * has already been issued by a throttleable thread |
| 5049 | * in this window, so return with EAGAIN to indicate |
| 5050 | * to the FS issuing the cluster_read call that it |
| 5051 | * should now throttle after dropping any locks |
| 5052 | */ |
| 5053 | throttle_info_update_by_mount(mp: vp->v_mount); |
| 5054 | |
| 5055 | io_throttled = TRUE; |
| 5056 | goto wait_for_dreads; |
| 5057 | } |
| 5058 | } |
| 5059 | } |
| 5060 | if (io_size > max_rd_size) { |
| 5061 | io_size = max_rd_size; |
| 5062 | } |
| 5063 | |
| 5064 | iov_base = uio_curriovbase(a_uio: uio); |
| 5065 | |
| 5066 | upl_offset = (vm_offset_t)((u_int32_t)iov_base & PAGE_MASK); |
| 5067 | upl_needed_size = (upl_offset + io_size + (PAGE_SIZE - 1)) & ~PAGE_MASK; |
| 5068 | |
| 5069 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 72)) | DBG_FUNC_START, |
| 5070 | (int)upl_offset, upl_needed_size, (int)iov_base, io_size, 0); |
| 5071 | |
| 5072 | if (upl_offset == 0 && ((io_size & PAGE_MASK) == 0)) { |
| 5073 | no_zero_fill = 1; |
| 5074 | } else { |
| 5075 | no_zero_fill = 0; |
| 5076 | } |
| 5077 | |
| 5078 | vm_map_t map = UIO_SEG_IS_USER_SPACE(uio->uio_segflg) ? current_map() : kernel_map; |
| 5079 | for (force_data_sync = 0; force_data_sync < 3; force_data_sync++) { |
| 5080 | pages_in_pl = 0; |
| 5081 | upl_size = (upl_size_t)upl_needed_size; |
| 5082 | upl_flags = UPL_FILE_IO | UPL_NO_SYNC | UPL_SET_INTERNAL | UPL_SET_LITE | UPL_SET_IO_WIRE; |
| 5083 | if (no_zero_fill) { |
| 5084 | upl_flags |= UPL_NOZEROFILL; |
| 5085 | } |
| 5086 | if (force_data_sync) { |
| 5087 | upl_flags |= UPL_FORCE_DATA_SYNC; |
| 5088 | } |
| 5089 | |
| 5090 | kret = vm_map_create_upl(map, |
| 5091 | offset: (vm_map_offset_t)(iov_base & ~((user_addr_t)PAGE_MASK)), |
| 5092 | upl_size: &upl_size, upl: &upl, NULL, count: &pages_in_pl, flags: &upl_flags, VM_KERN_MEMORY_FILE); |
| 5093 | |
| 5094 | if (kret != KERN_SUCCESS) { |
| 5095 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 72)) | DBG_FUNC_END, |
| 5096 | (int)upl_offset, upl_size, io_size, kret, 0); |
| 5097 | /* |
| 5098 | * failed to get pagelist |
| 5099 | * |
| 5100 | * we may have already spun some portion of this request |
| 5101 | * off as async requests... we need to wait for the I/O |
| 5102 | * to complete before returning |
| 5103 | */ |
| 5104 | goto wait_for_dreads; |
| 5105 | } |
| 5106 | pages_in_pl = upl_size / PAGE_SIZE; |
| 5107 | pl = UPL_GET_INTERNAL_PAGE_LIST(upl); |
| 5108 | |
| 5109 | for (i = 0; i < pages_in_pl; i++) { |
| 5110 | if (!upl_page_present(upl: pl, index: i)) { |
| 5111 | break; |
| 5112 | } |
| 5113 | } |
| 5114 | if (i == pages_in_pl) { |
| 5115 | break; |
| 5116 | } |
| 5117 | |
| 5118 | ubc_upl_abort(upl, 0); |
| 5119 | } |
| 5120 | if (force_data_sync >= 3) { |
| 5121 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 72)) | DBG_FUNC_END, |
| 5122 | (int)upl_offset, upl_size, io_size, kret, 0); |
| 5123 | |
| 5124 | goto wait_for_dreads; |
| 5125 | } |
| 5126 | /* |
| 5127 | * Consider the possibility that upl_size wasn't satisfied. |
| 5128 | */ |
| 5129 | if (upl_size < upl_needed_size) { |
| 5130 | if (upl_size && upl_offset == 0) { |
| 5131 | io_size = upl_size; |
| 5132 | } else { |
| 5133 | io_size = 0; |
| 5134 | } |
| 5135 | } |
| 5136 | if (io_size == 0) { |
| 5137 | ubc_upl_abort(upl, 0); |
| 5138 | goto wait_for_dreads; |
| 5139 | } |
| 5140 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 72)) | DBG_FUNC_END, |
| 5141 | (int)upl_offset, upl_size, io_size, kret, 0); |
| 5142 | |
| 5143 | if (useVectorUPL) { |
| 5144 | vm_offset_t end_off = ((iov_base + io_size) & PAGE_MASK); |
| 5145 | if (end_off) { |
| 5146 | issueVectorUPL = 1; |
| 5147 | } |
| 5148 | /* |
| 5149 | * After this point, if we are using a vector UPL, then |
| 5150 | * either all the UPL elements end on a page boundary OR |
| 5151 | * this UPL is the last element because it does not end |
| 5152 | * on a page boundary. |
| 5153 | */ |
| 5154 | } |
| 5155 | |
| 5156 | /* |
| 5157 | * request asynchronously so that we can overlap |
| 5158 | * the preparation of the next I/O |
| 5159 | * if there are already too many outstanding reads |
| 5160 | * wait until some have completed before issuing the next read |
| 5161 | */ |
| 5162 | cluster_iostate_wait(iostate: &iostate, target: max_rd_ahead, wait_name: "cluster_read_direct" ); |
| 5163 | |
| 5164 | if (iostate.io_error) { |
| 5165 | /* |
| 5166 | * one of the earlier reads we issued ran into a hard error |
| 5167 | * don't issue any more reads, cleanup the UPL |
| 5168 | * that was just created but not used, then |
| 5169 | * go wait for any other reads to complete before |
| 5170 | * returning the error to the caller |
| 5171 | */ |
| 5172 | ubc_upl_abort(upl, 0); |
| 5173 | |
| 5174 | goto wait_for_dreads; |
| 5175 | } |
| 5176 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 73)) | DBG_FUNC_START, |
| 5177 | upl, (int)upl_offset, (int)uio->uio_offset, io_size, 0); |
| 5178 | |
| 5179 | if (!useVectorUPL) { |
| 5180 | if (no_zero_fill) { |
| 5181 | io_flag &= ~CL_PRESERVE; |
| 5182 | } else { |
| 5183 | io_flag |= CL_PRESERVE; |
| 5184 | } |
| 5185 | |
| 5186 | retval = cluster_io(vp, upl, upl_offset, f_offset: uio->uio_offset, non_rounded_size: io_size, flags: io_flag, real_bp: (buf_t)NULL, iostate: &iostate, callback, callback_arg); |
| 5187 | } else { |
| 5188 | if (!vector_upl_index) { |
| 5189 | vector_upl = vector_upl_create(upl_offset, uio->uio_iovcnt); |
| 5190 | v_upl_uio_offset = uio->uio_offset; |
| 5191 | vector_upl_offset = upl_offset; |
| 5192 | } |
| 5193 | |
| 5194 | vector_upl_set_subupl(vector_upl, upl, upl_size); |
| 5195 | vector_upl_set_iostate(vector_upl, upl, vector_upl_size, upl_size); |
| 5196 | vector_upl_index++; |
| 5197 | vector_upl_size += upl_size; |
| 5198 | vector_upl_iosize += io_size; |
| 5199 | |
| 5200 | if (issueVectorUPL || vector_upl_index == vector_upl_max_upls(vector_upl) || vector_upl_size >= max_vector_size) { |
| 5201 | retval = vector_cluster_io(vp, vector_upl, vector_upl_offset, v_upl_uio_offset, vector_upl_iosize, io_flag, real_bp: (buf_t)NULL, iostate: &iostate, callback, callback_arg); |
| 5202 | reset_vector_run_state(); |
| 5203 | } |
| 5204 | } |
| 5205 | |
| 5206 | if (lock) { |
| 5207 | // We don't need to wait for the I/O to complete |
| 5208 | cluster_unlock_direct_read(lck: lock); |
| 5209 | lock = NULL; |
| 5210 | } |
| 5211 | |
| 5212 | /* |
| 5213 | * update the uio structure |
| 5214 | */ |
| 5215 | if ((flags & IO_ENCRYPTED) && (max_io_size < io_size)) { |
| 5216 | uio_update(a_uio: uio, a_count: (user_size_t)max_io_size); |
| 5217 | } else { |
| 5218 | uio_update(a_uio: uio, a_count: (user_size_t)io_size); |
| 5219 | } |
| 5220 | |
| 5221 | io_req_size -= io_size; |
| 5222 | |
| 5223 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 73)) | DBG_FUNC_END, |
| 5224 | upl, (int)uio->uio_offset, io_req_size, retval, 0); |
| 5225 | } /* end while */ |
| 5226 | |
| 5227 | if (retval == 0 && iostate.io_error == 0 && io_req_size == 0 && uio->uio_offset < filesize) { |
| 5228 | retval = cluster_io_type(uio, io_type: read_type, io_length: read_length, min_length: 0); |
| 5229 | |
| 5230 | if (retval == 0 && *read_type == IO_DIRECT) { |
| 5231 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 70)) | DBG_FUNC_NONE, |
| 5232 | (int)uio->uio_offset, (int)filesize, *read_type, *read_length, 0); |
| 5233 | |
| 5234 | goto next_dread; |
| 5235 | } |
| 5236 | } |
| 5237 | |
| 5238 | wait_for_dreads: |
| 5239 | |
| 5240 | if (retval == 0 && iostate.io_error == 0 && useVectorUPL && vector_upl_index) { |
| 5241 | retval = vector_cluster_io(vp, vector_upl, vector_upl_offset, v_upl_uio_offset, vector_upl_iosize, io_flag, real_bp: (buf_t)NULL, iostate: &iostate, callback, callback_arg); |
| 5242 | reset_vector_run_state(); |
| 5243 | } |
| 5244 | |
| 5245 | // We don't need to wait for the I/O to complete |
| 5246 | if (lock) { |
| 5247 | cluster_unlock_direct_read(lck: lock); |
| 5248 | } |
| 5249 | |
| 5250 | /* |
| 5251 | * make sure all async reads that are part of this stream |
| 5252 | * have completed before we return |
| 5253 | */ |
| 5254 | cluster_iostate_wait(iostate: &iostate, target: 0, wait_name: "cluster_read_direct" ); |
| 5255 | |
| 5256 | if (iostate.io_error) { |
| 5257 | retval = iostate.io_error; |
| 5258 | } |
| 5259 | |
| 5260 | lck_mtx_destroy(lck: &iostate.io_mtxp, grp: &cl_mtx_grp); |
| 5261 | |
| 5262 | if (io_throttled == TRUE && retval == 0) { |
| 5263 | retval = EAGAIN; |
| 5264 | } |
| 5265 | |
| 5266 | vm_map_offset_t current_page_size, current_page_mask; |
| 5267 | current_page_size = vm_map_page_size(map: current_map()); |
| 5268 | current_page_mask = vm_map_page_mask(map: current_map()); |
| 5269 | if (uio_acct) { |
| 5270 | off_t bytes_to_prefault = 0, bytes_prefaulted = 0; |
| 5271 | user_addr_t curr_iov_base = 0; |
| 5272 | user_addr_t curr_iov_end = 0; |
| 5273 | user_size_t curr_iov_len = 0; |
| 5274 | |
| 5275 | bytes_to_prefault = uio_offset(a_uio: uio) - uio_offset(a_uio: uio_acct); |
| 5276 | |
| 5277 | for (; bytes_prefaulted < bytes_to_prefault;) { |
| 5278 | curr_iov_base = uio_curriovbase(a_uio: uio_acct); |
| 5279 | curr_iov_len = MIN(uio_curriovlen(uio_acct), bytes_to_prefault - bytes_prefaulted); |
| 5280 | curr_iov_end = curr_iov_base + curr_iov_len; |
| 5281 | |
| 5282 | for (; curr_iov_base < curr_iov_end;) { |
| 5283 | /* |
| 5284 | * This is specifically done for pmap accounting purposes. |
| 5285 | * vm_pre_fault() will call vm_fault() to enter the page into |
| 5286 | * the pmap if there isn't _a_ physical page for that VA already. |
| 5287 | */ |
| 5288 | vm_pre_fault(vm_map_trunc_page(curr_iov_base, current_page_mask), VM_PROT_READ); |
| 5289 | curr_iov_base += current_page_size; |
| 5290 | bytes_prefaulted += current_page_size; |
| 5291 | } |
| 5292 | /* |
| 5293 | * Use update instead of advance so we can see how many iovs we processed. |
| 5294 | */ |
| 5295 | uio_update(a_uio: uio_acct, a_count: curr_iov_len); |
| 5296 | } |
| 5297 | uio_free(a_uio: uio_acct); |
| 5298 | uio_acct = NULL; |
| 5299 | } |
| 5300 | |
| 5301 | if (io_req_size && retval == 0) { |
| 5302 | /* |
| 5303 | * we couldn't handle the tail of this request in DIRECT mode |
| 5304 | * so fire it through the copy path |
| 5305 | */ |
| 5306 | if (flags & IO_ENCRYPTED) { |
| 5307 | /* |
| 5308 | * We cannot fall back to the copy path for encrypted I/O. If this |
| 5309 | * happens, there is something wrong with the user buffer passed |
| 5310 | * down. |
| 5311 | */ |
| 5312 | retval = EFAULT; |
| 5313 | } else { |
| 5314 | retval = cluster_read_copy(vp, uio, io_req_size, filesize, flags, callback, callback_arg); |
| 5315 | } |
| 5316 | |
| 5317 | *read_type = IO_UNKNOWN; |
| 5318 | } |
| 5319 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 70)) | DBG_FUNC_END, |
| 5320 | (int)uio->uio_offset, (int)uio_resid(uio), io_req_size, retval, 0); |
| 5321 | |
| 5322 | return retval; |
| 5323 | } |
| 5324 | |
| 5325 | |
| 5326 | static int |
| 5327 | cluster_read_contig(vnode_t vp, struct uio *uio, off_t filesize, int *read_type, u_int32_t *read_length, |
| 5328 | int (*callback)(buf_t, void *), void *callback_arg, int flags) |
| 5329 | { |
| 5330 | upl_page_info_t *pl; |
| 5331 | upl_t upl[MAX_VECTS]; |
| 5332 | vm_offset_t upl_offset; |
| 5333 | addr64_t dst_paddr = 0; |
| 5334 | user_addr_t iov_base; |
| 5335 | off_t max_size; |
| 5336 | upl_size_t upl_size; |
| 5337 | vm_size_t upl_needed_size; |
| 5338 | mach_msg_type_number_t pages_in_pl; |
| 5339 | upl_control_flags_t upl_flags; |
| 5340 | kern_return_t kret; |
| 5341 | struct clios iostate; |
| 5342 | int error = 0; |
| 5343 | int cur_upl = 0; |
| 5344 | int num_upl = 0; |
| 5345 | int n; |
| 5346 | u_int32_t xsize; |
| 5347 | u_int32_t io_size; |
| 5348 | u_int32_t devblocksize; |
| 5349 | u_int32_t mem_alignment_mask; |
| 5350 | u_int32_t tail_size = 0; |
| 5351 | int bflag; |
| 5352 | |
| 5353 | if (flags & IO_PASSIVE) { |
| 5354 | bflag = CL_PASSIVE; |
| 5355 | } else { |
| 5356 | bflag = 0; |
| 5357 | } |
| 5358 | |
| 5359 | if (flags & IO_NOCACHE) { |
| 5360 | bflag |= CL_NOCACHE; |
| 5361 | } |
| 5362 | |
| 5363 | /* |
| 5364 | * When we enter this routine, we know |
| 5365 | * -- the read_length will not exceed the current iov_len |
| 5366 | * -- the target address is physically contiguous for read_length |
| 5367 | */ |
| 5368 | cluster_syncup(vp, newEOF: filesize, callback, callback_arg, PUSH_SYNC); |
| 5369 | |
| 5370 | devblocksize = (u_int32_t)vp->v_mount->mnt_devblocksize; |
| 5371 | mem_alignment_mask = (u_int32_t)vp->v_mount->mnt_alignmentmask; |
| 5372 | |
| 5373 | iostate.io_completed = 0; |
| 5374 | iostate.io_issued = 0; |
| 5375 | iostate.io_error = 0; |
| 5376 | iostate.io_wanted = 0; |
| 5377 | |
| 5378 | lck_mtx_init(lck: &iostate.io_mtxp, grp: &cl_mtx_grp, LCK_ATTR_NULL); |
| 5379 | |
| 5380 | next_cread: |
| 5381 | io_size = *read_length; |
| 5382 | |
| 5383 | max_size = filesize - uio->uio_offset; |
| 5384 | |
| 5385 | if (io_size > max_size) { |
| 5386 | io_size = (u_int32_t)max_size; |
| 5387 | } |
| 5388 | |
| 5389 | iov_base = uio_curriovbase(a_uio: uio); |
| 5390 | |
| 5391 | upl_offset = (vm_offset_t)((u_int32_t)iov_base & PAGE_MASK); |
| 5392 | upl_needed_size = upl_offset + io_size; |
| 5393 | |
| 5394 | pages_in_pl = 0; |
| 5395 | upl_size = (upl_size_t)upl_needed_size; |
| 5396 | upl_flags = UPL_FILE_IO | UPL_NO_SYNC | UPL_CLEAN_IN_PLACE | UPL_SET_INTERNAL | UPL_SET_LITE | UPL_SET_IO_WIRE; |
| 5397 | |
| 5398 | |
| 5399 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 92)) | DBG_FUNC_START, |
| 5400 | (int)upl_offset, (int)upl_size, (int)iov_base, io_size, 0); |
| 5401 | |
| 5402 | vm_map_t map = UIO_SEG_IS_USER_SPACE(uio->uio_segflg) ? current_map() : kernel_map; |
| 5403 | kret = vm_map_get_upl(target_map: map, |
| 5404 | vm_map_trunc_page(iov_base, vm_map_page_mask(map)), |
| 5405 | size: &upl_size, upl: &upl[cur_upl], NULL, page_infoCnt: &pages_in_pl, flags: &upl_flags, VM_KERN_MEMORY_FILE, force_data_sync: 0); |
| 5406 | |
| 5407 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 92)) | DBG_FUNC_END, |
| 5408 | (int)upl_offset, upl_size, io_size, kret, 0); |
| 5409 | |
| 5410 | if (kret != KERN_SUCCESS) { |
| 5411 | /* |
| 5412 | * failed to get pagelist |
| 5413 | */ |
| 5414 | error = EINVAL; |
| 5415 | goto wait_for_creads; |
| 5416 | } |
| 5417 | num_upl++; |
| 5418 | |
| 5419 | if (upl_size < upl_needed_size) { |
| 5420 | /* |
| 5421 | * The upl_size wasn't satisfied. |
| 5422 | */ |
| 5423 | error = EINVAL; |
| 5424 | goto wait_for_creads; |
| 5425 | } |
| 5426 | pl = ubc_upl_pageinfo(upl[cur_upl]); |
| 5427 | |
| 5428 | dst_paddr = ((addr64_t)upl_phys_page(upl: pl, index: 0) << PAGE_SHIFT) + (addr64_t)upl_offset; |
| 5429 | |
| 5430 | while (((uio->uio_offset & (devblocksize - 1)) || io_size < devblocksize) && io_size) { |
| 5431 | u_int32_t head_size; |
| 5432 | |
| 5433 | head_size = devblocksize - (u_int32_t)(uio->uio_offset & (devblocksize - 1)); |
| 5434 | |
| 5435 | if (head_size > io_size) { |
| 5436 | head_size = io_size; |
| 5437 | } |
| 5438 | |
| 5439 | error = cluster_align_phys_io(vp, uio, usr_paddr: dst_paddr, xsize: head_size, CL_READ, callback, callback_arg); |
| 5440 | |
| 5441 | if (error) { |
| 5442 | goto wait_for_creads; |
| 5443 | } |
| 5444 | |
| 5445 | upl_offset += head_size; |
| 5446 | dst_paddr += head_size; |
| 5447 | io_size -= head_size; |
| 5448 | |
| 5449 | iov_base += head_size; |
| 5450 | } |
| 5451 | if ((u_int32_t)iov_base & mem_alignment_mask) { |
| 5452 | /* |
| 5453 | * request doesn't set up on a memory boundary |
| 5454 | * the underlying DMA engine can handle... |
| 5455 | * return an error instead of going through |
| 5456 | * the slow copy path since the intent of this |
| 5457 | * path is direct I/O to device memory |
| 5458 | */ |
| 5459 | error = EINVAL; |
| 5460 | goto wait_for_creads; |
| 5461 | } |
| 5462 | |
| 5463 | tail_size = io_size & (devblocksize - 1); |
| 5464 | |
| 5465 | io_size -= tail_size; |
| 5466 | |
| 5467 | while (io_size && error == 0) { |
| 5468 | if (io_size > MAX_IO_CONTIG_SIZE) { |
| 5469 | xsize = MAX_IO_CONTIG_SIZE; |
| 5470 | } else { |
| 5471 | xsize = io_size; |
| 5472 | } |
| 5473 | /* |
| 5474 | * request asynchronously so that we can overlap |
| 5475 | * the preparation of the next I/O... we'll do |
| 5476 | * the commit after all the I/O has completed |
| 5477 | * since its all issued against the same UPL |
| 5478 | * if there are already too many outstanding reads |
| 5479 | * wait until some have completed before issuing the next |
| 5480 | */ |
| 5481 | cluster_iostate_wait(iostate: &iostate, MAX_IO_CONTIG_SIZE * IO_SCALE(vp, 2), wait_name: "cluster_read_contig" ); |
| 5482 | |
| 5483 | if (iostate.io_error) { |
| 5484 | /* |
| 5485 | * one of the earlier reads we issued ran into a hard error |
| 5486 | * don't issue any more reads... |
| 5487 | * go wait for any other reads to complete before |
| 5488 | * returning the error to the caller |
| 5489 | */ |
| 5490 | goto wait_for_creads; |
| 5491 | } |
| 5492 | error = cluster_io(vp, upl: upl[cur_upl], upl_offset, f_offset: uio->uio_offset, non_rounded_size: xsize, |
| 5493 | CL_READ | CL_NOZERO | CL_DEV_MEMORY | CL_ASYNC | bflag, |
| 5494 | real_bp: (buf_t)NULL, iostate: &iostate, callback, callback_arg); |
| 5495 | /* |
| 5496 | * The cluster_io read was issued successfully, |
| 5497 | * update the uio structure |
| 5498 | */ |
| 5499 | if (error == 0) { |
| 5500 | uio_update(a_uio: uio, a_count: (user_size_t)xsize); |
| 5501 | |
| 5502 | dst_paddr += xsize; |
| 5503 | upl_offset += xsize; |
| 5504 | io_size -= xsize; |
| 5505 | } |
| 5506 | } |
| 5507 | if (error == 0 && iostate.io_error == 0 && tail_size == 0 && num_upl < MAX_VECTS && uio->uio_offset < filesize) { |
| 5508 | error = cluster_io_type(uio, io_type: read_type, io_length: read_length, min_length: 0); |
| 5509 | |
| 5510 | if (error == 0 && *read_type == IO_CONTIG) { |
| 5511 | cur_upl++; |
| 5512 | goto next_cread; |
| 5513 | } |
| 5514 | } else { |
| 5515 | *read_type = IO_UNKNOWN; |
| 5516 | } |
| 5517 | |
| 5518 | wait_for_creads: |
| 5519 | /* |
| 5520 | * make sure all async reads that are part of this stream |
| 5521 | * have completed before we proceed |
| 5522 | */ |
| 5523 | cluster_iostate_wait(iostate: &iostate, target: 0, wait_name: "cluster_read_contig" ); |
| 5524 | |
| 5525 | if (iostate.io_error) { |
| 5526 | error = iostate.io_error; |
| 5527 | } |
| 5528 | |
| 5529 | lck_mtx_destroy(lck: &iostate.io_mtxp, grp: &cl_mtx_grp); |
| 5530 | |
| 5531 | if (error == 0 && tail_size) { |
| 5532 | error = cluster_align_phys_io(vp, uio, usr_paddr: dst_paddr, xsize: tail_size, CL_READ, callback, callback_arg); |
| 5533 | } |
| 5534 | |
| 5535 | for (n = 0; n < num_upl; n++) { |
| 5536 | /* |
| 5537 | * just release our hold on each physically contiguous |
| 5538 | * region without changing any state |
| 5539 | */ |
| 5540 | ubc_upl_abort(upl[n], 0); |
| 5541 | } |
| 5542 | |
| 5543 | return error; |
| 5544 | } |
| 5545 | |
| 5546 | |
| 5547 | static int |
| 5548 | cluster_io_type(struct uio *uio, int *io_type, u_int32_t *io_length, u_int32_t min_length) |
| 5549 | { |
| 5550 | user_size_t iov_len; |
| 5551 | user_addr_t iov_base = 0; |
| 5552 | upl_t upl; |
| 5553 | upl_size_t upl_size; |
| 5554 | upl_control_flags_t upl_flags; |
| 5555 | int retval = 0; |
| 5556 | |
| 5557 | /* |
| 5558 | * skip over any emtpy vectors |
| 5559 | */ |
| 5560 | uio_update(a_uio: uio, a_count: (user_size_t)0); |
| 5561 | |
| 5562 | iov_len = uio_curriovlen(a_uio: uio); |
| 5563 | |
| 5564 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 94)) | DBG_FUNC_START, uio, (int)iov_len, 0, 0, 0); |
| 5565 | |
| 5566 | if (iov_len) { |
| 5567 | iov_base = uio_curriovbase(a_uio: uio); |
| 5568 | /* |
| 5569 | * make sure the size of the vector isn't too big... |
| 5570 | * internally, we want to handle all of the I/O in |
| 5571 | * chunk sizes that fit in a 32 bit int |
| 5572 | */ |
| 5573 | if (iov_len > (user_size_t)MAX_IO_REQUEST_SIZE) { |
| 5574 | upl_size = MAX_IO_REQUEST_SIZE; |
| 5575 | } else { |
| 5576 | upl_size = (u_int32_t)iov_len; |
| 5577 | } |
| 5578 | |
| 5579 | upl_flags = UPL_QUERY_OBJECT_TYPE; |
| 5580 | |
| 5581 | vm_map_t map = UIO_SEG_IS_USER_SPACE(uio->uio_segflg) ? current_map() : kernel_map; |
| 5582 | if ((vm_map_get_upl(target_map: map, |
| 5583 | vm_map_trunc_page(iov_base, vm_map_page_mask(map)), |
| 5584 | size: &upl_size, upl: &upl, NULL, NULL, flags: &upl_flags, VM_KERN_MEMORY_FILE, force_data_sync: 0)) != KERN_SUCCESS) { |
| 5585 | /* |
| 5586 | * the user app must have passed in an invalid address |
| 5587 | */ |
| 5588 | retval = EFAULT; |
| 5589 | } |
| 5590 | if (upl_size == 0) { |
| 5591 | retval = EFAULT; |
| 5592 | } |
| 5593 | |
| 5594 | *io_length = upl_size; |
| 5595 | |
| 5596 | if (upl_flags & UPL_PHYS_CONTIG) { |
| 5597 | *io_type = IO_CONTIG; |
| 5598 | } else if (iov_len >= min_length) { |
| 5599 | *io_type = IO_DIRECT; |
| 5600 | } else { |
| 5601 | *io_type = IO_COPY; |
| 5602 | } |
| 5603 | } else { |
| 5604 | /* |
| 5605 | * nothing left to do for this uio |
| 5606 | */ |
| 5607 | *io_length = 0; |
| 5608 | *io_type = IO_UNKNOWN; |
| 5609 | } |
| 5610 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 94)) | DBG_FUNC_END, iov_base, *io_type, *io_length, retval, 0); |
| 5611 | |
| 5612 | if (*io_type == IO_DIRECT && |
| 5613 | vm_map_page_shift(map: current_map()) < PAGE_SHIFT) { |
| 5614 | /* no direct I/O for sub-page-size address spaces */ |
| 5615 | DEBUG4K_VFS("io_type IO_DIRECT -> IO_COPY\n" ); |
| 5616 | *io_type = IO_COPY; |
| 5617 | } |
| 5618 | |
| 5619 | return retval; |
| 5620 | } |
| 5621 | |
| 5622 | |
| 5623 | /* |
| 5624 | * generate advisory I/O's in the largest chunks possible |
| 5625 | * the completed pages will be released into the VM cache |
| 5626 | */ |
| 5627 | int |
| 5628 | advisory_read(vnode_t vp, off_t filesize, off_t f_offset, int resid) |
| 5629 | { |
| 5630 | return advisory_read_ext(vp, filesize, f_offset, resid, NULL, NULL, CL_PASSIVE); |
| 5631 | } |
| 5632 | |
| 5633 | int |
| 5634 | advisory_read_ext(vnode_t vp, off_t filesize, off_t f_offset, int resid, int (*callback)(buf_t, void *), void *callback_arg, int bflag) |
| 5635 | { |
| 5636 | upl_page_info_t *pl; |
| 5637 | upl_t upl = NULL; |
| 5638 | vm_offset_t upl_offset; |
| 5639 | int upl_size; |
| 5640 | off_t upl_f_offset; |
| 5641 | int start_offset; |
| 5642 | int start_pg; |
| 5643 | int last_pg; |
| 5644 | int pages_in_upl; |
| 5645 | off_t max_size; |
| 5646 | int io_size; |
| 5647 | kern_return_t kret; |
| 5648 | int retval = 0; |
| 5649 | int issued_io; |
| 5650 | int skip_range; |
| 5651 | uint32_t max_io_size; |
| 5652 | |
| 5653 | |
| 5654 | if (!UBCINFOEXISTS(vp)) { |
| 5655 | return EINVAL; |
| 5656 | } |
| 5657 | |
| 5658 | if (f_offset < 0 || resid < 0) { |
| 5659 | return EINVAL; |
| 5660 | } |
| 5661 | |
| 5662 | max_io_size = cluster_max_io_size(mp: vp->v_mount, CL_READ); |
| 5663 | |
| 5664 | if (disk_conditioner_mount_is_ssd(vp->v_mount)) { |
| 5665 | if (max_io_size > speculative_prefetch_max_iosize) { |
| 5666 | max_io_size = speculative_prefetch_max_iosize; |
| 5667 | } |
| 5668 | } |
| 5669 | |
| 5670 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 60)) | DBG_FUNC_START, |
| 5671 | (int)f_offset, resid, (int)filesize, 0, 0); |
| 5672 | |
| 5673 | while (resid && f_offset < filesize && retval == 0) { |
| 5674 | /* |
| 5675 | * compute the size of the upl needed to encompass |
| 5676 | * the requested read... limit each call to cluster_io |
| 5677 | * to the maximum UPL size... cluster_io will clip if |
| 5678 | * this exceeds the maximum io_size for the device, |
| 5679 | * make sure to account for |
| 5680 | * a starting offset that's not page aligned |
| 5681 | */ |
| 5682 | start_offset = (int)(f_offset & PAGE_MASK_64); |
| 5683 | upl_f_offset = f_offset - (off_t)start_offset; |
| 5684 | max_size = filesize - f_offset; |
| 5685 | |
| 5686 | if (resid < max_size) { |
| 5687 | io_size = resid; |
| 5688 | } else { |
| 5689 | io_size = (int)max_size; |
| 5690 | } |
| 5691 | |
| 5692 | upl_size = (start_offset + io_size + (PAGE_SIZE - 1)) & ~PAGE_MASK; |
| 5693 | if ((uint32_t)upl_size > max_io_size) { |
| 5694 | upl_size = max_io_size; |
| 5695 | } |
| 5696 | |
| 5697 | skip_range = 0; |
| 5698 | /* |
| 5699 | * return the number of contiguously present pages in the cache |
| 5700 | * starting at upl_f_offset within the file |
| 5701 | */ |
| 5702 | ubc_range_op(vp, upl_f_offset, upl_f_offset + upl_size, UPL_ROP_PRESENT, &skip_range); |
| 5703 | |
| 5704 | if (skip_range) { |
| 5705 | /* |
| 5706 | * skip over pages already present in the cache |
| 5707 | */ |
| 5708 | io_size = skip_range - start_offset; |
| 5709 | |
| 5710 | f_offset += io_size; |
| 5711 | resid -= io_size; |
| 5712 | |
| 5713 | if (skip_range == upl_size) { |
| 5714 | continue; |
| 5715 | } |
| 5716 | /* |
| 5717 | * have to issue some real I/O |
| 5718 | * at this point, we know it's starting on a page boundary |
| 5719 | * because we've skipped over at least the first page in the request |
| 5720 | */ |
| 5721 | start_offset = 0; |
| 5722 | upl_f_offset += skip_range; |
| 5723 | upl_size -= skip_range; |
| 5724 | } |
| 5725 | pages_in_upl = upl_size / PAGE_SIZE; |
| 5726 | |
| 5727 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 61)) | DBG_FUNC_START, |
| 5728 | upl, (int)upl_f_offset, upl_size, start_offset, 0); |
| 5729 | |
| 5730 | kret = ubc_create_upl_kernel(vp, |
| 5731 | upl_f_offset, |
| 5732 | upl_size, |
| 5733 | &upl, |
| 5734 | &pl, |
| 5735 | UPL_RET_ONLY_ABSENT | UPL_SET_LITE, |
| 5736 | VM_KERN_MEMORY_FILE); |
| 5737 | if (kret != KERN_SUCCESS) { |
| 5738 | return retval; |
| 5739 | } |
| 5740 | issued_io = 0; |
| 5741 | |
| 5742 | /* |
| 5743 | * before we start marching forward, we must make sure we end on |
| 5744 | * a present page, otherwise we will be working with a freed |
| 5745 | * upl |
| 5746 | */ |
| 5747 | for (last_pg = pages_in_upl - 1; last_pg >= 0; last_pg--) { |
| 5748 | if (upl_page_present(upl: pl, index: last_pg)) { |
| 5749 | break; |
| 5750 | } |
| 5751 | } |
| 5752 | pages_in_upl = last_pg + 1; |
| 5753 | |
| 5754 | |
| 5755 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 61)) | DBG_FUNC_END, |
| 5756 | upl, (int)upl_f_offset, upl_size, start_offset, 0); |
| 5757 | |
| 5758 | |
| 5759 | for (last_pg = 0; last_pg < pages_in_upl;) { |
| 5760 | /* |
| 5761 | * scan from the beginning of the upl looking for the first |
| 5762 | * page that is present.... this will become the first page in |
| 5763 | * the request we're going to make to 'cluster_io'... if all |
| 5764 | * of the pages are absent, we won't call through to 'cluster_io' |
| 5765 | */ |
| 5766 | for (start_pg = last_pg; start_pg < pages_in_upl; start_pg++) { |
| 5767 | if (upl_page_present(upl: pl, index: start_pg)) { |
| 5768 | break; |
| 5769 | } |
| 5770 | } |
| 5771 | |
| 5772 | /* |
| 5773 | * scan from the starting present page looking for an absent |
| 5774 | * page before the end of the upl is reached, if we |
| 5775 | * find one, then it will terminate the range of pages being |
| 5776 | * presented to 'cluster_io' |
| 5777 | */ |
| 5778 | for (last_pg = start_pg; last_pg < pages_in_upl; last_pg++) { |
| 5779 | if (!upl_page_present(upl: pl, index: last_pg)) { |
| 5780 | break; |
| 5781 | } |
| 5782 | } |
| 5783 | |
| 5784 | if (last_pg > start_pg) { |
| 5785 | /* |
| 5786 | * we found a range of pages that must be filled |
| 5787 | * if the last page in this range is the last page of the file |
| 5788 | * we may have to clip the size of it to keep from reading past |
| 5789 | * the end of the last physical block associated with the file |
| 5790 | */ |
| 5791 | upl_offset = start_pg * PAGE_SIZE; |
| 5792 | io_size = (last_pg - start_pg) * PAGE_SIZE; |
| 5793 | |
| 5794 | if ((off_t)(upl_f_offset + upl_offset + io_size) > filesize) { |
| 5795 | io_size = (int)(filesize - (upl_f_offset + upl_offset)); |
| 5796 | } |
| 5797 | |
| 5798 | /* |
| 5799 | * issue an asynchronous read to cluster_io |
| 5800 | */ |
| 5801 | retval = cluster_io(vp, upl, upl_offset, f_offset: upl_f_offset + upl_offset, non_rounded_size: io_size, |
| 5802 | CL_ASYNC | CL_READ | CL_COMMIT | CL_AGE | bflag, real_bp: (buf_t)NULL, iostate: (struct clios *)NULL, callback, callback_arg); |
| 5803 | |
| 5804 | issued_io = 1; |
| 5805 | } |
| 5806 | } |
| 5807 | if (issued_io == 0) { |
| 5808 | ubc_upl_abort(upl, 0); |
| 5809 | } |
| 5810 | |
| 5811 | io_size = upl_size - start_offset; |
| 5812 | |
| 5813 | if (io_size > resid) { |
| 5814 | io_size = resid; |
| 5815 | } |
| 5816 | f_offset += io_size; |
| 5817 | resid -= io_size; |
| 5818 | } |
| 5819 | |
| 5820 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 60)) | DBG_FUNC_END, |
| 5821 | (int)f_offset, resid, retval, 0, 0); |
| 5822 | |
| 5823 | return retval; |
| 5824 | } |
| 5825 | |
| 5826 | |
| 5827 | int |
| 5828 | cluster_push(vnode_t vp, int flags) |
| 5829 | { |
| 5830 | return cluster_push_ext(vp, flags, NULL, NULL); |
| 5831 | } |
| 5832 | |
| 5833 | |
| 5834 | int |
| 5835 | cluster_push_ext(vnode_t vp, int flags, int (*callback)(buf_t, void *), void *callback_arg) |
| 5836 | { |
| 5837 | return cluster_push_err(vp, flags, callback, callback_arg, NULL); |
| 5838 | } |
| 5839 | |
| 5840 | /* write errors via err, but return the number of clusters written */ |
| 5841 | extern uint32_t system_inshutdown; |
| 5842 | uint32_t cl_sparse_push_error = 0; |
| 5843 | int |
| 5844 | cluster_push_err(vnode_t vp, int flags, int (*callback)(buf_t, void *), void *callback_arg, int *err) |
| 5845 | { |
| 5846 | int retval; |
| 5847 | int my_sparse_wait = 0; |
| 5848 | struct cl_writebehind *wbp; |
| 5849 | int local_err = 0; |
| 5850 | |
| 5851 | if (err) { |
| 5852 | *err = 0; |
| 5853 | } |
| 5854 | |
| 5855 | if (!UBCINFOEXISTS(vp)) { |
| 5856 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 53)) | DBG_FUNC_NONE, kdebug_vnode(vp), flags, 0, -1, 0); |
| 5857 | return 0; |
| 5858 | } |
| 5859 | /* return if deferred write is set */ |
| 5860 | if (((unsigned int)vfs_flags(mp: vp->v_mount) & MNT_DEFWRITE) && (flags & IO_DEFWRITE)) { |
| 5861 | return 0; |
| 5862 | } |
| 5863 | if ((wbp = cluster_get_wbp(vp, CLW_RETURNLOCKED)) == NULL) { |
| 5864 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 53)) | DBG_FUNC_NONE, kdebug_vnode(vp), flags, 0, -2, 0); |
| 5865 | return 0; |
| 5866 | } |
| 5867 | if (!ISSET(flags, IO_SYNC) && wbp->cl_number == 0 && wbp->cl_scmap == NULL) { |
| 5868 | lck_mtx_unlock(lck: &wbp->cl_lockw); |
| 5869 | |
| 5870 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 53)) | DBG_FUNC_NONE, kdebug_vnode(vp), flags, 0, -3, 0); |
| 5871 | return 0; |
| 5872 | } |
| 5873 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 53)) | DBG_FUNC_START, |
| 5874 | wbp->cl_scmap, wbp->cl_number, flags, 0, 0); |
| 5875 | |
| 5876 | /* |
| 5877 | * if we have an fsync in progress, we don't want to allow any additional |
| 5878 | * sync/fsync/close(s) to occur until it finishes. |
| 5879 | * note that its possible for writes to continue to occur to this file |
| 5880 | * while we're waiting and also once the fsync starts to clean if we're |
| 5881 | * in the sparse map case |
| 5882 | */ |
| 5883 | while (wbp->cl_sparse_wait) { |
| 5884 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 97)) | DBG_FUNC_START, kdebug_vnode(vp), 0, 0, 0, 0); |
| 5885 | |
| 5886 | msleep(chan: (caddr_t)&wbp->cl_sparse_wait, mtx: &wbp->cl_lockw, PRIBIO + 1, wmesg: "cluster_push_ext" , NULL); |
| 5887 | |
| 5888 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 97)) | DBG_FUNC_END, kdebug_vnode(vp), 0, 0, 0, 0); |
| 5889 | } |
| 5890 | if (flags & IO_SYNC) { |
| 5891 | my_sparse_wait = 1; |
| 5892 | wbp->cl_sparse_wait = 1; |
| 5893 | |
| 5894 | /* |
| 5895 | * this is an fsync (or equivalent)... we must wait for any existing async |
| 5896 | * cleaning operations to complete before we evaulate the current state |
| 5897 | * and finish cleaning... this insures that all writes issued before this |
| 5898 | * fsync actually get cleaned to the disk before this fsync returns |
| 5899 | */ |
| 5900 | while (wbp->cl_sparse_pushes) { |
| 5901 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 98)) | DBG_FUNC_START, kdebug_vnode(vp), 0, 0, 0, 0); |
| 5902 | |
| 5903 | msleep(chan: (caddr_t)&wbp->cl_sparse_pushes, mtx: &wbp->cl_lockw, PRIBIO + 1, wmesg: "cluster_push_ext" , NULL); |
| 5904 | |
| 5905 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 98)) | DBG_FUNC_END, kdebug_vnode(vp), 0, 0, 0, 0); |
| 5906 | } |
| 5907 | } |
| 5908 | if (wbp->cl_scmap) { |
| 5909 | void *scmap; |
| 5910 | |
| 5911 | if (wbp->cl_sparse_pushes < SPARSE_PUSH_LIMIT) { |
| 5912 | scmap = wbp->cl_scmap; |
| 5913 | wbp->cl_scmap = NULL; |
| 5914 | |
| 5915 | wbp->cl_sparse_pushes++; |
| 5916 | |
| 5917 | lck_mtx_unlock(lck: &wbp->cl_lockw); |
| 5918 | |
| 5919 | retval = sparse_cluster_push(wbp, cmapp: &scmap, vp, EOF: ubc_getsize(vp), PUSH_ALL, io_flags: flags, callback, callback_arg, FALSE); |
| 5920 | |
| 5921 | lck_mtx_lock(lck: &wbp->cl_lockw); |
| 5922 | |
| 5923 | wbp->cl_sparse_pushes--; |
| 5924 | |
| 5925 | if (retval) { |
| 5926 | if (wbp->cl_scmap != NULL) { |
| 5927 | /* |
| 5928 | * panic("cluster_push_err: Expected NULL cl_scmap\n"); |
| 5929 | * |
| 5930 | * This can happen if we get an error from the underlying FS |
| 5931 | * e.g. ENOSPC, EPERM or EIO etc. We hope that these errors |
| 5932 | * are transient and the I/Os will succeed at a later point. |
| 5933 | * |
| 5934 | * The tricky part here is that a new sparse cluster has been |
| 5935 | * allocated and tracking a different set of dirty pages. So these |
| 5936 | * pages are not going to be pushed out with the next sparse_cluster_push. |
| 5937 | * An explicit msync or file close will, however, push the pages out. |
| 5938 | * |
| 5939 | * What if those calls still don't work? And so, during shutdown we keep |
| 5940 | * trying till we succeed... |
| 5941 | */ |
| 5942 | |
| 5943 | if (system_inshutdown) { |
| 5944 | if ((retval == ENOSPC) && (vp->v_mount->mnt_flag & (MNT_LOCAL | MNT_REMOVABLE)) == MNT_LOCAL) { |
| 5945 | os_atomic_inc(&cl_sparse_push_error, relaxed); |
| 5946 | } |
| 5947 | } else { |
| 5948 | vfs_drt_control(cmapp: &scmap, op_type: 0); /* emit stats and free this memory. Dirty pages stay intact. */ |
| 5949 | scmap = NULL; |
| 5950 | } |
| 5951 | } else { |
| 5952 | wbp->cl_scmap = scmap; |
| 5953 | } |
| 5954 | } |
| 5955 | |
| 5956 | if (wbp->cl_sparse_wait && wbp->cl_sparse_pushes == 0) { |
| 5957 | wakeup(chan: (caddr_t)&wbp->cl_sparse_pushes); |
| 5958 | } |
| 5959 | } else { |
| 5960 | retval = sparse_cluster_push(wbp, cmapp: &(wbp->cl_scmap), vp, EOF: ubc_getsize(vp), PUSH_ALL, io_flags: flags, callback, callback_arg, FALSE); |
| 5961 | } |
| 5962 | |
| 5963 | local_err = retval; |
| 5964 | |
| 5965 | if (err) { |
| 5966 | *err = retval; |
| 5967 | } |
| 5968 | retval = 1; |
| 5969 | } else { |
| 5970 | retval = cluster_try_push(wbp, vp, EOF: ubc_getsize(vp), PUSH_ALL, flags, callback, callback_arg, err: &local_err, FALSE); |
| 5971 | if (err) { |
| 5972 | *err = local_err; |
| 5973 | } |
| 5974 | } |
| 5975 | lck_mtx_unlock(lck: &wbp->cl_lockw); |
| 5976 | |
| 5977 | if (flags & IO_SYNC) { |
| 5978 | (void)vnode_waitforwrites(vp, output_target: 0, slpflag: 0, slptimeout: 0, msg: "cluster_push" ); |
| 5979 | } |
| 5980 | |
| 5981 | if (my_sparse_wait) { |
| 5982 | /* |
| 5983 | * I'm the owner of the serialization token |
| 5984 | * clear it and wakeup anyone that is waiting |
| 5985 | * for me to finish |
| 5986 | */ |
| 5987 | lck_mtx_lock(lck: &wbp->cl_lockw); |
| 5988 | |
| 5989 | wbp->cl_sparse_wait = 0; |
| 5990 | wakeup(chan: (caddr_t)&wbp->cl_sparse_wait); |
| 5991 | |
| 5992 | lck_mtx_unlock(lck: &wbp->cl_lockw); |
| 5993 | } |
| 5994 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 53)) | DBG_FUNC_END, |
| 5995 | wbp->cl_scmap, wbp->cl_number, retval, local_err, 0); |
| 5996 | |
| 5997 | return retval; |
| 5998 | } |
| 5999 | |
| 6000 | |
| 6001 | __private_extern__ void |
| 6002 | cluster_release(struct ubc_info *ubc) |
| 6003 | { |
| 6004 | struct cl_writebehind *wbp; |
| 6005 | struct cl_readahead *rap; |
| 6006 | |
| 6007 | if ((wbp = ubc->cl_wbehind)) { |
| 6008 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 81)) | DBG_FUNC_START, ubc, wbp->cl_scmap, 0, 0, 0); |
| 6009 | |
| 6010 | if (wbp->cl_scmap) { |
| 6011 | vfs_drt_control(cmapp: &(wbp->cl_scmap), op_type: 0); |
| 6012 | } |
| 6013 | lck_mtx_destroy(lck: &wbp->cl_lockw, grp: &cl_mtx_grp); |
| 6014 | zfree(cl_wr_zone, wbp); |
| 6015 | ubc->cl_wbehind = NULL; |
| 6016 | } else { |
| 6017 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 81)) | DBG_FUNC_START, ubc, 0, 0, 0, 0); |
| 6018 | } |
| 6019 | |
| 6020 | if ((rap = ubc->cl_rahead)) { |
| 6021 | lck_mtx_destroy(lck: &rap->cl_lockr, grp: &cl_mtx_grp); |
| 6022 | zfree(cl_rd_zone, rap); |
| 6023 | ubc->cl_rahead = NULL; |
| 6024 | } |
| 6025 | |
| 6026 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 81)) | DBG_FUNC_END, ubc, rap, wbp, 0, 0); |
| 6027 | } |
| 6028 | |
| 6029 | |
| 6030 | static int |
| 6031 | cluster_try_push(struct cl_writebehind *wbp, vnode_t vp, off_t EOF, int push_flag, int io_flags, int (*callback)(buf_t, void *), void *callback_arg, int *err, boolean_t vm_initiated) |
| 6032 | { |
| 6033 | int cl_index; |
| 6034 | int cl_index1; |
| 6035 | int min_index; |
| 6036 | int cl_len; |
| 6037 | int cl_pushed = 0; |
| 6038 | struct cl_wextent l_clusters[MAX_CLUSTERS]; |
| 6039 | u_int max_cluster_pgcount; |
| 6040 | int error = 0; |
| 6041 | |
| 6042 | max_cluster_pgcount = MAX_CLUSTER_SIZE(vp) / PAGE_SIZE; |
| 6043 | /* |
| 6044 | * the write behind context exists and has |
| 6045 | * already been locked... |
| 6046 | */ |
| 6047 | if (wbp->cl_number == 0) { |
| 6048 | /* |
| 6049 | * no clusters to push |
| 6050 | * return number of empty slots |
| 6051 | */ |
| 6052 | return MAX_CLUSTERS; |
| 6053 | } |
| 6054 | |
| 6055 | /* |
| 6056 | * make a local 'sorted' copy of the clusters |
| 6057 | * and clear wbp->cl_number so that new clusters can |
| 6058 | * be developed |
| 6059 | */ |
| 6060 | for (cl_index = 0; cl_index < wbp->cl_number; cl_index++) { |
| 6061 | for (min_index = -1, cl_index1 = 0; cl_index1 < wbp->cl_number; cl_index1++) { |
| 6062 | if (wbp->cl_clusters[cl_index1].b_addr == wbp->cl_clusters[cl_index1].e_addr) { |
| 6063 | continue; |
| 6064 | } |
| 6065 | if (min_index == -1) { |
| 6066 | min_index = cl_index1; |
| 6067 | } else if (wbp->cl_clusters[cl_index1].b_addr < wbp->cl_clusters[min_index].b_addr) { |
| 6068 | min_index = cl_index1; |
| 6069 | } |
| 6070 | } |
| 6071 | if (min_index == -1) { |
| 6072 | break; |
| 6073 | } |
| 6074 | |
| 6075 | l_clusters[cl_index].b_addr = wbp->cl_clusters[min_index].b_addr; |
| 6076 | l_clusters[cl_index].e_addr = wbp->cl_clusters[min_index].e_addr; |
| 6077 | l_clusters[cl_index].io_flags = wbp->cl_clusters[min_index].io_flags; |
| 6078 | |
| 6079 | wbp->cl_clusters[min_index].b_addr = wbp->cl_clusters[min_index].e_addr; |
| 6080 | } |
| 6081 | wbp->cl_number = 0; |
| 6082 | |
| 6083 | cl_len = cl_index; |
| 6084 | |
| 6085 | /* skip switching to the sparse cluster mechanism if on diskimage */ |
| 6086 | if (((push_flag & PUSH_DELAY) && cl_len == MAX_CLUSTERS) && |
| 6087 | !(vp->v_mount->mnt_kern_flag & MNTK_VIRTUALDEV)) { |
| 6088 | int i; |
| 6089 | |
| 6090 | /* |
| 6091 | * determine if we appear to be writing the file sequentially |
| 6092 | * if not, by returning without having pushed any clusters |
| 6093 | * we will cause this vnode to be pushed into the sparse cluster mechanism |
| 6094 | * used for managing more random I/O patterns |
| 6095 | * |
| 6096 | * we know that we've got all clusters currently in use and the next write doesn't fit into one of them... |
| 6097 | * that's why we're in try_push with PUSH_DELAY... |
| 6098 | * |
| 6099 | * check to make sure that all the clusters except the last one are 'full'... and that each cluster |
| 6100 | * is adjacent to the next (i.e. we're looking for sequential writes) they were sorted above |
| 6101 | * so we can just make a simple pass through, up to, but not including the last one... |
| 6102 | * note that e_addr is not inclusive, so it will be equal to the b_addr of the next cluster if they |
| 6103 | * are sequential |
| 6104 | * |
| 6105 | * we let the last one be partial as long as it was adjacent to the previous one... |
| 6106 | * we need to do this to deal with multi-threaded servers that might write an I/O or 2 out |
| 6107 | * of order... if this occurs at the tail of the last cluster, we don't want to fall into the sparse cluster world... |
| 6108 | */ |
| 6109 | for (i = 0; i < MAX_CLUSTERS - 1; i++) { |
| 6110 | if ((l_clusters[i].e_addr - l_clusters[i].b_addr) != max_cluster_pgcount) { |
| 6111 | goto dont_try; |
| 6112 | } |
| 6113 | if (l_clusters[i].e_addr != l_clusters[i + 1].b_addr) { |
| 6114 | goto dont_try; |
| 6115 | } |
| 6116 | } |
| 6117 | } |
| 6118 | if (vm_initiated == TRUE) { |
| 6119 | lck_mtx_unlock(lck: &wbp->cl_lockw); |
| 6120 | } |
| 6121 | |
| 6122 | for (cl_index = 0; cl_index < cl_len; cl_index++) { |
| 6123 | int flags; |
| 6124 | struct cl_extent cl; |
| 6125 | int retval; |
| 6126 | |
| 6127 | flags = io_flags & (IO_PASSIVE | IO_CLOSE); |
| 6128 | |
| 6129 | /* |
| 6130 | * try to push each cluster in turn... |
| 6131 | */ |
| 6132 | if (l_clusters[cl_index].io_flags & CLW_IONOCACHE) { |
| 6133 | flags |= IO_NOCACHE; |
| 6134 | } |
| 6135 | |
| 6136 | if (l_clusters[cl_index].io_flags & CLW_IOPASSIVE) { |
| 6137 | flags |= IO_PASSIVE; |
| 6138 | } |
| 6139 | |
| 6140 | if (push_flag & PUSH_SYNC) { |
| 6141 | flags |= IO_SYNC; |
| 6142 | } |
| 6143 | |
| 6144 | cl.b_addr = l_clusters[cl_index].b_addr; |
| 6145 | cl.e_addr = l_clusters[cl_index].e_addr; |
| 6146 | |
| 6147 | retval = cluster_push_now(vp, &cl, EOF, flags, callback, callback_arg, vm_ioitiated: vm_initiated); |
| 6148 | |
| 6149 | if (retval == 0) { |
| 6150 | cl_pushed++; |
| 6151 | |
| 6152 | l_clusters[cl_index].b_addr = 0; |
| 6153 | l_clusters[cl_index].e_addr = 0; |
| 6154 | } else if (error == 0) { |
| 6155 | error = retval; |
| 6156 | } |
| 6157 | |
| 6158 | if (!(push_flag & PUSH_ALL)) { |
| 6159 | break; |
| 6160 | } |
| 6161 | } |
| 6162 | if (vm_initiated == TRUE) { |
| 6163 | lck_mtx_lock(lck: &wbp->cl_lockw); |
| 6164 | } |
| 6165 | |
| 6166 | if (err) { |
| 6167 | *err = error; |
| 6168 | } |
| 6169 | |
| 6170 | dont_try: |
| 6171 | if (cl_len > cl_pushed) { |
| 6172 | /* |
| 6173 | * we didn't push all of the clusters, so |
| 6174 | * lets try to merge them back in to the vnode |
| 6175 | */ |
| 6176 | if ((MAX_CLUSTERS - wbp->cl_number) < (cl_len - cl_pushed)) { |
| 6177 | /* |
| 6178 | * we picked up some new clusters while we were trying to |
| 6179 | * push the old ones... this can happen because I've dropped |
| 6180 | * the vnode lock... the sum of the |
| 6181 | * leftovers plus the new cluster count exceeds our ability |
| 6182 | * to represent them, so switch to the sparse cluster mechanism |
| 6183 | * |
| 6184 | * collect the active public clusters... |
| 6185 | */ |
| 6186 | sparse_cluster_switch(wbp, vp, EOF, callback, callback_arg, vm_initiated); |
| 6187 | |
| 6188 | for (cl_index = 0, cl_index1 = 0; cl_index < cl_len; cl_index++) { |
| 6189 | if (l_clusters[cl_index].b_addr == l_clusters[cl_index].e_addr) { |
| 6190 | continue; |
| 6191 | } |
| 6192 | wbp->cl_clusters[cl_index1].b_addr = l_clusters[cl_index].b_addr; |
| 6193 | wbp->cl_clusters[cl_index1].e_addr = l_clusters[cl_index].e_addr; |
| 6194 | wbp->cl_clusters[cl_index1].io_flags = l_clusters[cl_index].io_flags; |
| 6195 | |
| 6196 | cl_index1++; |
| 6197 | } |
| 6198 | /* |
| 6199 | * update the cluster count |
| 6200 | */ |
| 6201 | wbp->cl_number = cl_index1; |
| 6202 | |
| 6203 | /* |
| 6204 | * and collect the original clusters that were moved into the |
| 6205 | * local storage for sorting purposes |
| 6206 | */ |
| 6207 | sparse_cluster_switch(wbp, vp, EOF, callback, callback_arg, vm_initiated); |
| 6208 | } else { |
| 6209 | /* |
| 6210 | * we've got room to merge the leftovers back in |
| 6211 | * just append them starting at the next 'hole' |
| 6212 | * represented by wbp->cl_number |
| 6213 | */ |
| 6214 | for (cl_index = 0, cl_index1 = wbp->cl_number; cl_index < cl_len; cl_index++) { |
| 6215 | if (l_clusters[cl_index].b_addr == l_clusters[cl_index].e_addr) { |
| 6216 | continue; |
| 6217 | } |
| 6218 | |
| 6219 | wbp->cl_clusters[cl_index1].b_addr = l_clusters[cl_index].b_addr; |
| 6220 | wbp->cl_clusters[cl_index1].e_addr = l_clusters[cl_index].e_addr; |
| 6221 | wbp->cl_clusters[cl_index1].io_flags = l_clusters[cl_index].io_flags; |
| 6222 | |
| 6223 | cl_index1++; |
| 6224 | } |
| 6225 | /* |
| 6226 | * update the cluster count |
| 6227 | */ |
| 6228 | wbp->cl_number = cl_index1; |
| 6229 | } |
| 6230 | } |
| 6231 | return MAX_CLUSTERS - wbp->cl_number; |
| 6232 | } |
| 6233 | |
| 6234 | |
| 6235 | |
| 6236 | static int |
| 6237 | cluster_push_now(vnode_t vp, struct cl_extent *cl, off_t EOF, int flags, |
| 6238 | int (*callback)(buf_t, void *), void *callback_arg, boolean_t vm_initiated) |
| 6239 | { |
| 6240 | upl_page_info_t *pl; |
| 6241 | upl_t upl; |
| 6242 | vm_offset_t upl_offset; |
| 6243 | int upl_size; |
| 6244 | off_t upl_f_offset; |
| 6245 | int pages_in_upl; |
| 6246 | int start_pg; |
| 6247 | int last_pg; |
| 6248 | int io_size; |
| 6249 | int io_flags; |
| 6250 | int upl_flags; |
| 6251 | int bflag; |
| 6252 | int size; |
| 6253 | int error = 0; |
| 6254 | int retval; |
| 6255 | kern_return_t kret; |
| 6256 | |
| 6257 | if (flags & IO_PASSIVE) { |
| 6258 | bflag = CL_PASSIVE; |
| 6259 | } else { |
| 6260 | bflag = 0; |
| 6261 | } |
| 6262 | |
| 6263 | if (flags & IO_SKIP_ENCRYPTION) { |
| 6264 | bflag |= CL_ENCRYPTED; |
| 6265 | } |
| 6266 | |
| 6267 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 51)) | DBG_FUNC_START, |
| 6268 | (int)cl->b_addr, (int)cl->e_addr, (int)EOF, flags, 0); |
| 6269 | |
| 6270 | if ((pages_in_upl = (int)(cl->e_addr - cl->b_addr)) == 0) { |
| 6271 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 51)) | DBG_FUNC_END, 1, 0, 0, 0, 0); |
| 6272 | |
| 6273 | return 0; |
| 6274 | } |
| 6275 | upl_size = pages_in_upl * PAGE_SIZE; |
| 6276 | upl_f_offset = (off_t)(cl->b_addr * PAGE_SIZE_64); |
| 6277 | |
| 6278 | if (upl_f_offset + upl_size >= EOF) { |
| 6279 | if (upl_f_offset >= EOF) { |
| 6280 | /* |
| 6281 | * must have truncated the file and missed |
| 6282 | * clearing a dangling cluster (i.e. it's completely |
| 6283 | * beyond the new EOF |
| 6284 | */ |
| 6285 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 51)) | DBG_FUNC_END, 1, 1, 0, 0, 0); |
| 6286 | |
| 6287 | return 0; |
| 6288 | } |
| 6289 | size = (int)(EOF - upl_f_offset); |
| 6290 | |
| 6291 | upl_size = (size + (PAGE_SIZE - 1)) & ~PAGE_MASK; |
| 6292 | pages_in_upl = upl_size / PAGE_SIZE; |
| 6293 | } else { |
| 6294 | size = upl_size; |
| 6295 | } |
| 6296 | |
| 6297 | |
| 6298 | if (vm_initiated) { |
| 6299 | vnode_pageout(vp, NULL, (upl_offset_t)0, upl_f_offset, (upl_size_t)upl_size, |
| 6300 | UPL_MSYNC | UPL_VNODE_PAGER | UPL_KEEPCACHED, &error); |
| 6301 | |
| 6302 | return error; |
| 6303 | } |
| 6304 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 41)) | DBG_FUNC_START, upl_size, size, 0, 0, 0); |
| 6305 | |
| 6306 | /* |
| 6307 | * by asking for UPL_COPYOUT_FROM and UPL_RET_ONLY_DIRTY, we get the following desirable behavior |
| 6308 | * |
| 6309 | * - only pages that are currently dirty are returned... these are the ones we need to clean |
| 6310 | * - the hardware dirty bit is cleared when the page is gathered into the UPL... the software dirty bit is set |
| 6311 | * - if we have to abort the I/O for some reason, the software dirty bit is left set since we didn't clean the page |
| 6312 | * - when we commit the page, the software dirty bit is cleared... the hardware dirty bit is untouched so that if |
| 6313 | * someone dirties this page while the I/O is in progress, we don't lose track of the new state |
| 6314 | * |
| 6315 | * when the I/O completes, we no longer ask for an explicit clear of the DIRTY state (either soft or hard) |
| 6316 | */ |
| 6317 | |
| 6318 | if ((vp->v_flag & VNOCACHE_DATA) || (flags & IO_NOCACHE)) { |
| 6319 | upl_flags = UPL_COPYOUT_FROM | UPL_RET_ONLY_DIRTY | UPL_SET_LITE | UPL_WILL_BE_DUMPED; |
| 6320 | } else { |
| 6321 | upl_flags = UPL_COPYOUT_FROM | UPL_RET_ONLY_DIRTY | UPL_SET_LITE; |
| 6322 | } |
| 6323 | |
| 6324 | kret = ubc_create_upl_kernel(vp, |
| 6325 | upl_f_offset, |
| 6326 | upl_size, |
| 6327 | &upl, |
| 6328 | &pl, |
| 6329 | upl_flags, |
| 6330 | VM_KERN_MEMORY_FILE); |
| 6331 | if (kret != KERN_SUCCESS) { |
| 6332 | panic("cluster_push: failed to get pagelist" ); |
| 6333 | } |
| 6334 | |
| 6335 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 41)) | DBG_FUNC_END, upl, upl_f_offset, 0, 0, 0); |
| 6336 | |
| 6337 | /* |
| 6338 | * since we only asked for the dirty pages back |
| 6339 | * it's possible that we may only get a few or even none, so... |
| 6340 | * before we start marching forward, we must make sure we know |
| 6341 | * where the last present page is in the UPL, otherwise we could |
| 6342 | * end up working with a freed upl due to the FREE_ON_EMPTY semantics |
| 6343 | * employed by commit_range and abort_range. |
| 6344 | */ |
| 6345 | for (last_pg = pages_in_upl - 1; last_pg >= 0; last_pg--) { |
| 6346 | if (upl_page_present(upl: pl, index: last_pg)) { |
| 6347 | break; |
| 6348 | } |
| 6349 | } |
| 6350 | pages_in_upl = last_pg + 1; |
| 6351 | |
| 6352 | if (pages_in_upl == 0) { |
| 6353 | ubc_upl_abort(upl, 0); |
| 6354 | |
| 6355 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 51)) | DBG_FUNC_END, 1, 2, 0, 0, 0); |
| 6356 | return 0; |
| 6357 | } |
| 6358 | |
| 6359 | for (last_pg = 0; last_pg < pages_in_upl;) { |
| 6360 | /* |
| 6361 | * find the next dirty page in the UPL |
| 6362 | * this will become the first page in the |
| 6363 | * next I/O to generate |
| 6364 | */ |
| 6365 | for (start_pg = last_pg; start_pg < pages_in_upl; start_pg++) { |
| 6366 | if (upl_dirty_page(upl: pl, index: start_pg)) { |
| 6367 | break; |
| 6368 | } |
| 6369 | if (upl_page_present(upl: pl, index: start_pg)) { |
| 6370 | /* |
| 6371 | * RET_ONLY_DIRTY will return non-dirty 'precious' pages |
| 6372 | * just release these unchanged since we're not going |
| 6373 | * to steal them or change their state |
| 6374 | */ |
| 6375 | ubc_upl_abort_range(upl, start_pg * PAGE_SIZE, PAGE_SIZE, UPL_ABORT_FREE_ON_EMPTY); |
| 6376 | } |
| 6377 | } |
| 6378 | if (start_pg >= pages_in_upl) { |
| 6379 | /* |
| 6380 | * done... no more dirty pages to push |
| 6381 | */ |
| 6382 | break; |
| 6383 | } |
| 6384 | if (start_pg > last_pg) { |
| 6385 | /* |
| 6386 | * skipped over some non-dirty pages |
| 6387 | */ |
| 6388 | size -= ((start_pg - last_pg) * PAGE_SIZE); |
| 6389 | } |
| 6390 | |
| 6391 | /* |
| 6392 | * find a range of dirty pages to write |
| 6393 | */ |
| 6394 | for (last_pg = start_pg; last_pg < pages_in_upl; last_pg++) { |
| 6395 | if (!upl_dirty_page(upl: pl, index: last_pg)) { |
| 6396 | break; |
| 6397 | } |
| 6398 | } |
| 6399 | upl_offset = start_pg * PAGE_SIZE; |
| 6400 | |
| 6401 | io_size = min(a: size, b: (last_pg - start_pg) * PAGE_SIZE); |
| 6402 | |
| 6403 | io_flags = CL_THROTTLE | CL_COMMIT | CL_AGE | bflag; |
| 6404 | |
| 6405 | if (!(flags & IO_SYNC)) { |
| 6406 | io_flags |= CL_ASYNC; |
| 6407 | } |
| 6408 | |
| 6409 | if (flags & IO_CLOSE) { |
| 6410 | io_flags |= CL_CLOSE; |
| 6411 | } |
| 6412 | |
| 6413 | if (flags & IO_NOCACHE) { |
| 6414 | io_flags |= CL_NOCACHE; |
| 6415 | } |
| 6416 | |
| 6417 | retval = cluster_io(vp, upl, upl_offset, f_offset: upl_f_offset + upl_offset, non_rounded_size: io_size, |
| 6418 | flags: io_flags, real_bp: (buf_t)NULL, iostate: (struct clios *)NULL, callback, callback_arg); |
| 6419 | |
| 6420 | if (error == 0 && retval) { |
| 6421 | error = retval; |
| 6422 | } |
| 6423 | |
| 6424 | size -= io_size; |
| 6425 | } |
| 6426 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 51)) | DBG_FUNC_END, 1, 3, error, 0, 0); |
| 6427 | |
| 6428 | return error; |
| 6429 | } |
| 6430 | |
| 6431 | |
| 6432 | /* |
| 6433 | * sparse_cluster_switch is called with the write behind lock held |
| 6434 | */ |
| 6435 | static int |
| 6436 | sparse_cluster_switch(struct cl_writebehind *wbp, vnode_t vp, off_t EOF, int (*callback)(buf_t, void *), void *callback_arg, boolean_t vm_initiated) |
| 6437 | { |
| 6438 | int cl_index; |
| 6439 | int error = 0; |
| 6440 | |
| 6441 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 78)) | DBG_FUNC_START, kdebug_vnode(vp), wbp->cl_scmap, wbp->cl_number, 0, 0); |
| 6442 | |
| 6443 | for (cl_index = 0; cl_index < wbp->cl_number; cl_index++) { |
| 6444 | int flags; |
| 6445 | struct cl_extent cl; |
| 6446 | |
| 6447 | for (cl.b_addr = wbp->cl_clusters[cl_index].b_addr; cl.b_addr < wbp->cl_clusters[cl_index].e_addr; cl.b_addr++) { |
| 6448 | if (ubc_page_op(vp, (off_t)(cl.b_addr * PAGE_SIZE_64), 0, NULL, &flags) == KERN_SUCCESS) { |
| 6449 | if (flags & UPL_POP_DIRTY) { |
| 6450 | cl.e_addr = cl.b_addr + 1; |
| 6451 | |
| 6452 | error = sparse_cluster_add(wbp, cmapp: &(wbp->cl_scmap), vp, &cl, EOF, callback, callback_arg, vm_initiated); |
| 6453 | |
| 6454 | if (error) { |
| 6455 | break; |
| 6456 | } |
| 6457 | } |
| 6458 | } |
| 6459 | } |
| 6460 | } |
| 6461 | wbp->cl_number -= cl_index; |
| 6462 | |
| 6463 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 78)) | DBG_FUNC_END, kdebug_vnode(vp), wbp->cl_scmap, wbp->cl_number, error, 0); |
| 6464 | |
| 6465 | return error; |
| 6466 | } |
| 6467 | |
| 6468 | |
| 6469 | /* |
| 6470 | * sparse_cluster_push must be called with the write-behind lock held if the scmap is |
| 6471 | * still associated with the write-behind context... however, if the scmap has been disassociated |
| 6472 | * from the write-behind context (the cluster_push case), the wb lock is not held |
| 6473 | */ |
| 6474 | static int |
| 6475 | sparse_cluster_push(struct cl_writebehind *wbp, void **scmap, vnode_t vp, off_t EOF, int push_flag, |
| 6476 | int io_flags, int (*callback)(buf_t, void *), void *callback_arg, boolean_t vm_initiated) |
| 6477 | { |
| 6478 | struct cl_extent cl; |
| 6479 | off_t offset; |
| 6480 | u_int length; |
| 6481 | void *l_scmap; |
| 6482 | int error = 0; |
| 6483 | |
| 6484 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 79)) | DBG_FUNC_START, kdebug_vnode(vp), (*scmap), 0, push_flag, 0); |
| 6485 | |
| 6486 | if (push_flag & PUSH_ALL) { |
| 6487 | vfs_drt_control(cmapp: scmap, op_type: 1); |
| 6488 | } |
| 6489 | |
| 6490 | l_scmap = *scmap; |
| 6491 | |
| 6492 | for (;;) { |
| 6493 | int retval; |
| 6494 | |
| 6495 | if (vfs_drt_get_cluster(cmapp: scmap, offsetp: &offset, lengthp: &length) != KERN_SUCCESS) { |
| 6496 | /* |
| 6497 | * Not finding anything to push will return KERN_FAILURE. |
| 6498 | * Confusing since it isn't really a failure. But that's the |
| 6499 | * reason we don't set 'error' here like we do below. |
| 6500 | */ |
| 6501 | break; |
| 6502 | } |
| 6503 | |
| 6504 | if (vm_initiated == TRUE) { |
| 6505 | lck_mtx_unlock(lck: &wbp->cl_lockw); |
| 6506 | } |
| 6507 | |
| 6508 | cl.b_addr = (daddr64_t)(offset / PAGE_SIZE_64); |
| 6509 | cl.e_addr = (daddr64_t)((offset + length) / PAGE_SIZE_64); |
| 6510 | |
| 6511 | retval = cluster_push_now(vp, cl: &cl, EOF, flags: io_flags, callback, callback_arg, vm_initiated); |
| 6512 | if (error == 0 && retval) { |
| 6513 | error = retval; |
| 6514 | } |
| 6515 | |
| 6516 | if (vm_initiated == TRUE) { |
| 6517 | lck_mtx_lock(lck: &wbp->cl_lockw); |
| 6518 | |
| 6519 | if (*scmap != l_scmap) { |
| 6520 | break; |
| 6521 | } |
| 6522 | } |
| 6523 | |
| 6524 | if (error) { |
| 6525 | if (vfs_drt_mark_pages(cmapp: scmap, offset, length, NULL) != KERN_SUCCESS) { |
| 6526 | panic("Failed to restore dirty state on failure" ); |
| 6527 | } |
| 6528 | |
| 6529 | break; |
| 6530 | } |
| 6531 | |
| 6532 | if (!(push_flag & PUSH_ALL)) { |
| 6533 | break; |
| 6534 | } |
| 6535 | } |
| 6536 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 79)) | DBG_FUNC_END, kdebug_vnode(vp), (*scmap), error, 0, 0); |
| 6537 | |
| 6538 | return error; |
| 6539 | } |
| 6540 | |
| 6541 | |
| 6542 | /* |
| 6543 | * sparse_cluster_add is called with the write behind lock held |
| 6544 | */ |
| 6545 | static int |
| 6546 | sparse_cluster_add(struct cl_writebehind *wbp, void **scmap, vnode_t vp, struct cl_extent *cl, off_t EOF, |
| 6547 | int (*callback)(buf_t, void *), void *callback_arg, boolean_t vm_initiated) |
| 6548 | { |
| 6549 | u_int new_dirty; |
| 6550 | u_int length; |
| 6551 | off_t offset; |
| 6552 | int error = 0; |
| 6553 | int push_flag = 0; /* Is this a valid value? */ |
| 6554 | |
| 6555 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 80)) | DBG_FUNC_START, (*scmap), 0, cl->b_addr, (int)cl->e_addr, 0); |
| 6556 | |
| 6557 | offset = (off_t)(cl->b_addr * PAGE_SIZE_64); |
| 6558 | length = ((u_int)(cl->e_addr - cl->b_addr)) * PAGE_SIZE; |
| 6559 | |
| 6560 | while (vfs_drt_mark_pages(cmapp: scmap, offset, length, setcountp: &new_dirty) != KERN_SUCCESS) { |
| 6561 | /* |
| 6562 | * no room left in the map |
| 6563 | * only a partial update was done |
| 6564 | * push out some pages and try again |
| 6565 | */ |
| 6566 | |
| 6567 | if (vfs_get_scmap_push_behavior_internal(cmapp: scmap, push_flag: &push_flag)) { |
| 6568 | push_flag = 0; |
| 6569 | } |
| 6570 | |
| 6571 | error = sparse_cluster_push(wbp, scmap, vp, EOF, push_flag, io_flags: 0, callback, callback_arg, vm_initiated); |
| 6572 | |
| 6573 | if (error) { |
| 6574 | break; |
| 6575 | } |
| 6576 | |
| 6577 | offset += (new_dirty * PAGE_SIZE_64); |
| 6578 | length -= (new_dirty * PAGE_SIZE); |
| 6579 | } |
| 6580 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 80)) | DBG_FUNC_END, kdebug_vnode(vp), (*scmap), error, 0, 0); |
| 6581 | |
| 6582 | return error; |
| 6583 | } |
| 6584 | |
| 6585 | |
| 6586 | static int |
| 6587 | cluster_align_phys_io(vnode_t vp, struct uio *uio, addr64_t usr_paddr, u_int32_t xsize, int flags, int (*callback)(buf_t, void *), void *callback_arg) |
| 6588 | { |
| 6589 | upl_page_info_t *pl; |
| 6590 | upl_t upl; |
| 6591 | addr64_t ubc_paddr; |
| 6592 | kern_return_t kret; |
| 6593 | int error = 0; |
| 6594 | int did_read = 0; |
| 6595 | int abort_flags; |
| 6596 | int upl_flags; |
| 6597 | int bflag; |
| 6598 | |
| 6599 | if (flags & IO_PASSIVE) { |
| 6600 | bflag = CL_PASSIVE; |
| 6601 | } else { |
| 6602 | bflag = 0; |
| 6603 | } |
| 6604 | |
| 6605 | if (flags & IO_NOCACHE) { |
| 6606 | bflag |= CL_NOCACHE; |
| 6607 | } |
| 6608 | |
| 6609 | upl_flags = UPL_SET_LITE; |
| 6610 | |
| 6611 | if (!(flags & CL_READ)) { |
| 6612 | /* |
| 6613 | * "write" operation: let the UPL subsystem know |
| 6614 | * that we intend to modify the buffer cache pages |
| 6615 | * we're gathering. |
| 6616 | */ |
| 6617 | upl_flags |= UPL_WILL_MODIFY; |
| 6618 | } else { |
| 6619 | /* |
| 6620 | * indicate that there is no need to pull the |
| 6621 | * mapping for this page... we're only going |
| 6622 | * to read from it, not modify it. |
| 6623 | */ |
| 6624 | upl_flags |= UPL_FILE_IO; |
| 6625 | } |
| 6626 | kret = ubc_create_upl_kernel(vp, |
| 6627 | uio->uio_offset & ~PAGE_MASK_64, |
| 6628 | PAGE_SIZE, |
| 6629 | &upl, |
| 6630 | &pl, |
| 6631 | upl_flags, |
| 6632 | VM_KERN_MEMORY_FILE); |
| 6633 | |
| 6634 | if (kret != KERN_SUCCESS) { |
| 6635 | return EINVAL; |
| 6636 | } |
| 6637 | |
| 6638 | if (!upl_valid_page(upl: pl, index: 0)) { |
| 6639 | /* |
| 6640 | * issue a synchronous read to cluster_io |
| 6641 | */ |
| 6642 | error = cluster_io(vp, upl, upl_offset: 0, f_offset: uio->uio_offset & ~PAGE_MASK_64, PAGE_SIZE, |
| 6643 | CL_READ | bflag, real_bp: (buf_t)NULL, iostate: (struct clios *)NULL, callback, callback_arg); |
| 6644 | if (error) { |
| 6645 | ubc_upl_abort_range(upl, 0, PAGE_SIZE, UPL_ABORT_DUMP_PAGES | UPL_ABORT_FREE_ON_EMPTY); |
| 6646 | |
| 6647 | return error; |
| 6648 | } |
| 6649 | did_read = 1; |
| 6650 | } |
| 6651 | ubc_paddr = ((addr64_t)upl_phys_page(upl: pl, index: 0) << PAGE_SHIFT) + (addr64_t)(uio->uio_offset & PAGE_MASK_64); |
| 6652 | |
| 6653 | /* |
| 6654 | * NOTE: There is no prototype for the following in BSD. It, and the definitions |
| 6655 | * of the defines for cppvPsrc, cppvPsnk, cppvFsnk, and cppvFsrc will be found in |
| 6656 | * osfmk/ppc/mappings.h. They are not included here because there appears to be no |
| 6657 | * way to do so without exporting them to kexts as well. |
| 6658 | */ |
| 6659 | if (flags & CL_READ) { |
| 6660 | // copypv(ubc_paddr, usr_paddr, xsize, cppvPsrc | cppvPsnk | cppvFsnk); /* Copy physical to physical and flush the destination */ |
| 6661 | copypv(source: ubc_paddr, sink: usr_paddr, size: xsize, which: 2 | 1 | 4); /* Copy physical to physical and flush the destination */ |
| 6662 | } else { |
| 6663 | // copypv(usr_paddr, ubc_paddr, xsize, cppvPsrc | cppvPsnk | cppvFsrc); /* Copy physical to physical and flush the source */ |
| 6664 | copypv(source: usr_paddr, sink: ubc_paddr, size: xsize, which: 2 | 1 | 8); /* Copy physical to physical and flush the source */ |
| 6665 | } |
| 6666 | if (!(flags & CL_READ) || (upl_valid_page(upl: pl, index: 0) && upl_dirty_page(upl: pl, index: 0))) { |
| 6667 | /* |
| 6668 | * issue a synchronous write to cluster_io |
| 6669 | */ |
| 6670 | error = cluster_io(vp, upl, upl_offset: 0, f_offset: uio->uio_offset & ~PAGE_MASK_64, PAGE_SIZE, |
| 6671 | flags: bflag, real_bp: (buf_t)NULL, iostate: (struct clios *)NULL, callback, callback_arg); |
| 6672 | } |
| 6673 | if (error == 0) { |
| 6674 | uio_update(a_uio: uio, a_count: (user_size_t)xsize); |
| 6675 | } |
| 6676 | |
| 6677 | if (did_read) { |
| 6678 | abort_flags = UPL_ABORT_FREE_ON_EMPTY; |
| 6679 | } else { |
| 6680 | abort_flags = UPL_ABORT_FREE_ON_EMPTY | UPL_ABORT_DUMP_PAGES; |
| 6681 | } |
| 6682 | |
| 6683 | ubc_upl_abort_range(upl, 0, PAGE_SIZE, abort_flags); |
| 6684 | |
| 6685 | return error; |
| 6686 | } |
| 6687 | |
| 6688 | int |
| 6689 | cluster_copy_upl_data(struct uio *uio, upl_t upl, int upl_offset, int *io_resid) |
| 6690 | { |
| 6691 | int pg_offset; |
| 6692 | int pg_index; |
| 6693 | int csize; |
| 6694 | int segflg; |
| 6695 | int retval = 0; |
| 6696 | int xsize; |
| 6697 | upl_page_info_t *pl; |
| 6698 | int dirty_count; |
| 6699 | |
| 6700 | xsize = *io_resid; |
| 6701 | |
| 6702 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 34)) | DBG_FUNC_START, |
| 6703 | (int)uio->uio_offset, upl_offset, xsize, 0, 0); |
| 6704 | |
| 6705 | segflg = uio->uio_segflg; |
| 6706 | |
| 6707 | switch (segflg) { |
| 6708 | case UIO_USERSPACE32: |
| 6709 | case UIO_USERISPACE32: |
| 6710 | uio->uio_segflg = UIO_PHYS_USERSPACE32; |
| 6711 | break; |
| 6712 | |
| 6713 | case UIO_USERSPACE: |
| 6714 | case UIO_USERISPACE: |
| 6715 | uio->uio_segflg = UIO_PHYS_USERSPACE; |
| 6716 | break; |
| 6717 | |
| 6718 | case UIO_USERSPACE64: |
| 6719 | case UIO_USERISPACE64: |
| 6720 | uio->uio_segflg = UIO_PHYS_USERSPACE64; |
| 6721 | break; |
| 6722 | |
| 6723 | case UIO_SYSSPACE: |
| 6724 | uio->uio_segflg = UIO_PHYS_SYSSPACE; |
| 6725 | break; |
| 6726 | } |
| 6727 | pl = ubc_upl_pageinfo(upl); |
| 6728 | |
| 6729 | pg_index = upl_offset / PAGE_SIZE; |
| 6730 | pg_offset = upl_offset & PAGE_MASK; |
| 6731 | csize = min(PAGE_SIZE - pg_offset, b: xsize); |
| 6732 | |
| 6733 | dirty_count = 0; |
| 6734 | while (xsize && retval == 0) { |
| 6735 | addr64_t paddr; |
| 6736 | |
| 6737 | paddr = ((addr64_t)upl_phys_page(upl: pl, index: pg_index) << PAGE_SHIFT) + pg_offset; |
| 6738 | if ((uio->uio_rw == UIO_WRITE) && (upl_dirty_page(upl: pl, index: pg_index) == FALSE)) { |
| 6739 | dirty_count++; |
| 6740 | } |
| 6741 | |
| 6742 | retval = uiomove64(cp: paddr, n: csize, uio); |
| 6743 | |
| 6744 | pg_index += 1; |
| 6745 | pg_offset = 0; |
| 6746 | xsize -= csize; |
| 6747 | csize = min(PAGE_SIZE, b: xsize); |
| 6748 | } |
| 6749 | *io_resid = xsize; |
| 6750 | |
| 6751 | uio->uio_segflg = segflg; |
| 6752 | |
| 6753 | if (dirty_count) { |
| 6754 | task_update_logical_writes(task: current_task(), io_size: (dirty_count * PAGE_SIZE), TASK_WRITE_DEFERRED, vp: upl_lookup_vnode(upl)); |
| 6755 | } |
| 6756 | |
| 6757 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 34)) | DBG_FUNC_END, |
| 6758 | (int)uio->uio_offset, xsize, retval, segflg, 0); |
| 6759 | |
| 6760 | return retval; |
| 6761 | } |
| 6762 | |
| 6763 | |
| 6764 | int |
| 6765 | cluster_copy_ubc_data(vnode_t vp, struct uio *uio, int *io_resid, int mark_dirty) |
| 6766 | { |
| 6767 | return cluster_copy_ubc_data_internal(vp, uio, io_resid, mark_dirty, take_reference: 1); |
| 6768 | } |
| 6769 | |
| 6770 | |
| 6771 | static int |
| 6772 | cluster_copy_ubc_data_internal(vnode_t vp, struct uio *uio, int *io_resid, int mark_dirty, int take_reference) |
| 6773 | { |
| 6774 | int segflg; |
| 6775 | int io_size; |
| 6776 | int xsize; |
| 6777 | int start_offset; |
| 6778 | int retval = 0; |
| 6779 | memory_object_control_t control; |
| 6780 | |
| 6781 | io_size = *io_resid; |
| 6782 | |
| 6783 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 34)) | DBG_FUNC_START, |
| 6784 | (int)uio->uio_offset, io_size, mark_dirty, take_reference, 0); |
| 6785 | |
| 6786 | control = ubc_getobject(vp, UBC_FLAGS_NONE); |
| 6787 | |
| 6788 | if (control == MEMORY_OBJECT_CONTROL_NULL) { |
| 6789 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 34)) | DBG_FUNC_END, |
| 6790 | (int)uio->uio_offset, io_size, retval, 3, 0); |
| 6791 | |
| 6792 | return 0; |
| 6793 | } |
| 6794 | segflg = uio->uio_segflg; |
| 6795 | |
| 6796 | switch (segflg) { |
| 6797 | case UIO_USERSPACE32: |
| 6798 | case UIO_USERISPACE32: |
| 6799 | uio->uio_segflg = UIO_PHYS_USERSPACE32; |
| 6800 | break; |
| 6801 | |
| 6802 | case UIO_USERSPACE64: |
| 6803 | case UIO_USERISPACE64: |
| 6804 | uio->uio_segflg = UIO_PHYS_USERSPACE64; |
| 6805 | break; |
| 6806 | |
| 6807 | case UIO_USERSPACE: |
| 6808 | case UIO_USERISPACE: |
| 6809 | uio->uio_segflg = UIO_PHYS_USERSPACE; |
| 6810 | break; |
| 6811 | |
| 6812 | case UIO_SYSSPACE: |
| 6813 | uio->uio_segflg = UIO_PHYS_SYSSPACE; |
| 6814 | break; |
| 6815 | } |
| 6816 | |
| 6817 | if ((io_size = *io_resid)) { |
| 6818 | start_offset = (int)(uio->uio_offset & PAGE_MASK_64); |
| 6819 | xsize = (int)uio_resid(a_uio: uio); |
| 6820 | |
| 6821 | retval = memory_object_control_uiomove(control, uio->uio_offset - start_offset, uio, |
| 6822 | start_offset, io_size, mark_dirty, take_reference); |
| 6823 | xsize -= uio_resid(a_uio: uio); |
| 6824 | |
| 6825 | int num_bytes_copied = xsize; |
| 6826 | if (num_bytes_copied && uio_rw(a_uio: uio)) { |
| 6827 | task_update_logical_writes(task: current_task(), io_size: num_bytes_copied, TASK_WRITE_DEFERRED, vp); |
| 6828 | } |
| 6829 | io_size -= xsize; |
| 6830 | } |
| 6831 | uio->uio_segflg = segflg; |
| 6832 | *io_resid = io_size; |
| 6833 | |
| 6834 | KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 34)) | DBG_FUNC_END, |
| 6835 | (int)uio->uio_offset, io_size, retval, 0x80000000 | segflg, 0); |
| 6836 | |
| 6837 | return retval; |
| 6838 | } |
| 6839 | |
| 6840 | |
| 6841 | int |
| 6842 | is_file_clean(vnode_t vp, off_t filesize) |
| 6843 | { |
| 6844 | off_t f_offset; |
| 6845 | int flags; |
| 6846 | int total_dirty = 0; |
| 6847 | |
| 6848 | for (f_offset = 0; f_offset < filesize; f_offset += PAGE_SIZE_64) { |
| 6849 | if (ubc_page_op(vp, f_offset, 0, NULL, &flags) == KERN_SUCCESS) { |
| 6850 | if (flags & UPL_POP_DIRTY) { |
| 6851 | total_dirty++; |
| 6852 | } |
| 6853 | } |
| 6854 | } |
| 6855 | if (total_dirty) { |
| 6856 | return EINVAL; |
| 6857 | } |
| 6858 | |
| 6859 | return 0; |
| 6860 | } |
| 6861 | |
| 6862 | |
| 6863 | |
| 6864 | /* |
| 6865 | * Dirty region tracking/clustering mechanism. |
| 6866 | * |
| 6867 | * This code (vfs_drt_*) provides a mechanism for tracking and clustering |
| 6868 | * dirty regions within a larger space (file). It is primarily intended to |
| 6869 | * support clustering in large files with many dirty areas. |
| 6870 | * |
| 6871 | * The implementation assumes that the dirty regions are pages. |
| 6872 | * |
| 6873 | * To represent dirty pages within the file, we store bit vectors in a |
| 6874 | * variable-size circular hash. |
| 6875 | */ |
| 6876 | |
| 6877 | /* |
| 6878 | * Bitvector size. This determines the number of pages we group in a |
| 6879 | * single hashtable entry. Each hashtable entry is aligned to this |
| 6880 | * size within the file. |
| 6881 | */ |
| 6882 | #define DRT_BITVECTOR_PAGES ((1024 * 256) / PAGE_SIZE) |
| 6883 | |
| 6884 | /* |
| 6885 | * File offset handling. |
| 6886 | * |
| 6887 | * DRT_ADDRESS_MASK is dependent on DRT_BITVECTOR_PAGES; |
| 6888 | * the correct formula is (~((DRT_BITVECTOR_PAGES * PAGE_SIZE) - 1)) |
| 6889 | */ |
| 6890 | #define DRT_ADDRESS_MASK (~((DRT_BITVECTOR_PAGES * PAGE_SIZE) - 1)) |
| 6891 | #define DRT_ALIGN_ADDRESS(addr) ((addr) & DRT_ADDRESS_MASK) |
| 6892 | |
| 6893 | /* |
| 6894 | * Hashtable address field handling. |
| 6895 | * |
| 6896 | * The low-order bits of the hashtable address are used to conserve |
| 6897 | * space. |
| 6898 | * |
| 6899 | * DRT_HASH_COUNT_MASK must be large enough to store the range |
| 6900 | * 0-DRT_BITVECTOR_PAGES inclusive, as well as have one value |
| 6901 | * to indicate that the bucket is actually unoccupied. |
| 6902 | */ |
| 6903 | #define DRT_HASH_GET_ADDRESS(scm, i) ((scm)->scm_hashtable[(i)].dhe_control & DRT_ADDRESS_MASK) |
| 6904 | #define DRT_HASH_SET_ADDRESS(scm, i, a) \ |
| 6905 | do { \ |
| 6906 | (scm)->scm_hashtable[(i)].dhe_control = \ |
| 6907 | ((scm)->scm_hashtable[(i)].dhe_control & ~DRT_ADDRESS_MASK) | DRT_ALIGN_ADDRESS(a); \ |
| 6908 | } while (0) |
| 6909 | #define DRT_HASH_COUNT_MASK 0x1ff |
| 6910 | #define DRT_HASH_GET_COUNT(scm, i) ((scm)->scm_hashtable[(i)].dhe_control & DRT_HASH_COUNT_MASK) |
| 6911 | #define DRT_HASH_SET_COUNT(scm, i, c) \ |
| 6912 | do { \ |
| 6913 | (scm)->scm_hashtable[(i)].dhe_control = \ |
| 6914 | ((scm)->scm_hashtable[(i)].dhe_control & ~DRT_HASH_COUNT_MASK) | ((c) & DRT_HASH_COUNT_MASK); \ |
| 6915 | } while (0) |
| 6916 | #define DRT_HASH_CLEAR(scm, i) \ |
| 6917 | do { \ |
| 6918 | (scm)->scm_hashtable[(i)].dhe_control = 0; \ |
| 6919 | } while (0) |
| 6920 | #define DRT_HASH_VACATE(scm, i) DRT_HASH_SET_COUNT((scm), (i), DRT_HASH_COUNT_MASK) |
| 6921 | #define DRT_HASH_VACANT(scm, i) (DRT_HASH_GET_COUNT((scm), (i)) == DRT_HASH_COUNT_MASK) |
| 6922 | #define DRT_HASH_COPY(oscm, oi, scm, i) \ |
| 6923 | do { \ |
| 6924 | (scm)->scm_hashtable[(i)].dhe_control = (oscm)->scm_hashtable[(oi)].dhe_control; \ |
| 6925 | DRT_BITVECTOR_COPY(oscm, oi, scm, i); \ |
| 6926 | } while(0); |
| 6927 | |
| 6928 | |
| 6929 | #if !defined(XNU_TARGET_OS_OSX) |
| 6930 | /* |
| 6931 | * Hash table moduli. |
| 6932 | * |
| 6933 | * Since the hashtable entry's size is dependent on the size of |
| 6934 | * the bitvector, and since the hashtable size is constrained to |
| 6935 | * both being prime and fitting within the desired allocation |
| 6936 | * size, these values need to be manually determined. |
| 6937 | * |
| 6938 | * For DRT_BITVECTOR_SIZE = 64, the entry size is 16 bytes. |
| 6939 | * |
| 6940 | * The small hashtable allocation is 4096 bytes, so the modulus is 251. |
| 6941 | * The large hashtable allocation is 32768 bytes, so the modulus is 2039. |
| 6942 | * The xlarge hashtable allocation is 131072 bytes, so the modulus is 8179. |
| 6943 | */ |
| 6944 | |
| 6945 | #define DRT_HASH_SMALL_MODULUS 251 |
| 6946 | #define DRT_HASH_LARGE_MODULUS 2039 |
| 6947 | #define DRT_HASH_XLARGE_MODULUS 8179 |
| 6948 | |
| 6949 | /* |
| 6950 | * Physical memory required before the large hash modulus is permitted. |
| 6951 | * |
| 6952 | * On small memory systems, the large hash modulus can lead to phsyical |
| 6953 | * memory starvation, so we avoid using it there. |
| 6954 | */ |
| 6955 | #define DRT_HASH_LARGE_MEMORY_REQUIRED (1024LL * 1024LL * 1024LL) /* 1GiB */ |
| 6956 | #define DRT_HASH_XLARGE_MEMORY_REQUIRED (8 * 1024LL * 1024LL * 1024LL) /* 8GiB */ |
| 6957 | |
| 6958 | #define DRT_SMALL_ALLOCATION 4096 /* 80 bytes spare */ |
| 6959 | #define DRT_LARGE_ALLOCATION 32768 /* 144 bytes spare */ |
| 6960 | #define DRT_XLARGE_ALLOCATION 131072 /* 208 bytes spare */ |
| 6961 | |
| 6962 | #else /* XNU_TARGET_OS_OSX */ |
| 6963 | /* |
| 6964 | * Hash table moduli. |
| 6965 | * |
| 6966 | * Since the hashtable entry's size is dependent on the size of |
| 6967 | * the bitvector, and since the hashtable size is constrained to |
| 6968 | * both being prime and fitting within the desired allocation |
| 6969 | * size, these values need to be manually determined. |
| 6970 | * |
| 6971 | * For DRT_BITVECTOR_SIZE = 64, the entry size is 16 bytes. |
| 6972 | * |
| 6973 | * The small hashtable allocation is 16384 bytes, so the modulus is 1019. |
| 6974 | * The large hashtable allocation is 131072 bytes, so the modulus is 8179. |
| 6975 | * The xlarge hashtable allocation is 524288 bytes, so the modulus is 32749. |
| 6976 | */ |
| 6977 | |
| 6978 | #define DRT_HASH_SMALL_MODULUS 1019 |
| 6979 | #define DRT_HASH_LARGE_MODULUS 8179 |
| 6980 | #define DRT_HASH_XLARGE_MODULUS 32749 |
| 6981 | |
| 6982 | /* |
| 6983 | * Physical memory required before the large hash modulus is permitted. |
| 6984 | * |
| 6985 | * On small memory systems, the large hash modulus can lead to phsyical |
| 6986 | * memory starvation, so we avoid using it there. |
| 6987 | */ |
| 6988 | #define DRT_HASH_LARGE_MEMORY_REQUIRED (4 * 1024LL * 1024LL * 1024LL) /* 4GiB */ |
| 6989 | #define DRT_HASH_XLARGE_MEMORY_REQUIRED (32 * 1024LL * 1024LL * 1024LL) /* 32GiB */ |
| 6990 | |
| 6991 | #define DRT_SMALL_ALLOCATION 16384 /* 80 bytes spare */ |
| 6992 | #define DRT_LARGE_ALLOCATION 131072 /* 208 bytes spare */ |
| 6993 | #define DRT_XLARGE_ALLOCATION 524288 /* 304 bytes spare */ |
| 6994 | |
| 6995 | #endif /* ! XNU_TARGET_OS_OSX */ |
| 6996 | |
| 6997 | /* *** nothing below here has secret dependencies on DRT_BITVECTOR_PAGES *** */ |
| 6998 | |
| 6999 | /* |
| 7000 | * Hashtable entry. |
| 7001 | */ |
| 7002 | struct vfs_drt_hashentry { |
| 7003 | u_int64_t dhe_control; |
| 7004 | /* |
| 7005 | * dhe_bitvector was declared as dhe_bitvector[DRT_BITVECTOR_PAGES / 32]; |
| 7006 | * DRT_BITVECTOR_PAGES is defined as ((1024 * 256) / PAGE_SIZE) |
| 7007 | * Since PAGE_SIZE is only known at boot time, |
| 7008 | * -define MAX_DRT_BITVECTOR_PAGES for smallest supported page size (4k) |
| 7009 | * -declare dhe_bitvector array for largest possible length |
| 7010 | */ |
| 7011 | #define MAX_DRT_BITVECTOR_PAGES (1024 * 256)/( 4 * 1024) |
| 7012 | u_int32_t dhe_bitvector[MAX_DRT_BITVECTOR_PAGES / 32]; |
| 7013 | }; |
| 7014 | |
| 7015 | /* |
| 7016 | * Hashtable bitvector handling. |
| 7017 | * |
| 7018 | * Bitvector fields are 32 bits long. |
| 7019 | */ |
| 7020 | |
| 7021 | #define DRT_HASH_SET_BIT(scm, i, bit) \ |
| 7022 | (scm)->scm_hashtable[(i)].dhe_bitvector[(bit) / 32] |= (1 << ((bit) % 32)) |
| 7023 | |
| 7024 | #define DRT_HASH_CLEAR_BIT(scm, i, bit) \ |
| 7025 | (scm)->scm_hashtable[(i)].dhe_bitvector[(bit) / 32] &= ~(1 << ((bit) % 32)) |
| 7026 | |
| 7027 | #define DRT_HASH_TEST_BIT(scm, i, bit) \ |
| 7028 | ((scm)->scm_hashtable[(i)].dhe_bitvector[(bit) / 32] & (1 << ((bit) % 32))) |
| 7029 | |
| 7030 | #define DRT_BITVECTOR_CLEAR(scm, i) \ |
| 7031 | bzero(&(scm)->scm_hashtable[(i)].dhe_bitvector[0], (MAX_DRT_BITVECTOR_PAGES / 32) * sizeof(u_int32_t)) |
| 7032 | |
| 7033 | #define DRT_BITVECTOR_COPY(oscm, oi, scm, i) \ |
| 7034 | bcopy(&(oscm)->scm_hashtable[(oi)].dhe_bitvector[0], \ |
| 7035 | &(scm)->scm_hashtable[(i)].dhe_bitvector[0], \ |
| 7036 | (MAX_DRT_BITVECTOR_PAGES / 32) * sizeof(u_int32_t)) |
| 7037 | |
| 7038 | /* |
| 7039 | * Dirty Region Tracking structure. |
| 7040 | * |
| 7041 | * The hashtable is allocated entirely inside the DRT structure. |
| 7042 | * |
| 7043 | * The hash is a simple circular prime modulus arrangement, the structure |
| 7044 | * is resized from small to large if it overflows. |
| 7045 | */ |
| 7046 | |
| 7047 | struct vfs_drt_clustermap { |
| 7048 | u_int32_t scm_magic; /* sanity/detection */ |
| 7049 | #define DRT_SCM_MAGIC 0x12020003 |
| 7050 | u_int32_t scm_modulus; /* current ring size */ |
| 7051 | u_int32_t scm_buckets; /* number of occupied buckets */ |
| 7052 | u_int32_t scm_lastclean; /* last entry we cleaned */ |
| 7053 | u_int32_t scm_iskips; /* number of slot skips */ |
| 7054 | |
| 7055 | struct vfs_drt_hashentry scm_hashtable[0]; |
| 7056 | }; |
| 7057 | |
| 7058 | |
| 7059 | #define DRT_HASH(scm, addr) ((addr) % (scm)->scm_modulus) |
| 7060 | #define DRT_HASH_NEXT(scm, addr) (((addr) + 1) % (scm)->scm_modulus) |
| 7061 | |
| 7062 | /* |
| 7063 | * Debugging codes and arguments. |
| 7064 | */ |
| 7065 | #define DRT_DEBUG_EMPTYFREE (FSDBG_CODE(DBG_FSRW, 82)) /* nil */ |
| 7066 | #define DRT_DEBUG_RETCLUSTER (FSDBG_CODE(DBG_FSRW, 83)) /* offset, length */ |
| 7067 | #define DRT_DEBUG_ALLOC (FSDBG_CODE(DBG_FSRW, 84)) /* copycount */ |
| 7068 | #define DRT_DEBUG_INSERT (FSDBG_CODE(DBG_FSRW, 85)) /* offset, iskip */ |
| 7069 | #define DRT_DEBUG_MARK (FSDBG_CODE(DBG_FSRW, 86)) /* offset, length, |
| 7070 | * dirty */ |
| 7071 | /* 0, setcount */ |
| 7072 | /* 1 (clean, no map) */ |
| 7073 | /* 2 (map alloc fail) */ |
| 7074 | /* 3, resid (partial) */ |
| 7075 | #define DRT_DEBUG_6 (FSDBG_CODE(DBG_FSRW, 87)) |
| 7076 | #define DRT_DEBUG_SCMDATA (FSDBG_CODE(DBG_FSRW, 88)) /* modulus, buckets, |
| 7077 | * lastclean, iskips */ |
| 7078 | |
| 7079 | |
| 7080 | static kern_return_t vfs_drt_alloc_map(struct vfs_drt_clustermap **cmapp); |
| 7081 | static kern_return_t vfs_drt_free_map(struct vfs_drt_clustermap *cmap); |
| 7082 | static kern_return_t vfs_drt_search_index(struct vfs_drt_clustermap *cmap, |
| 7083 | u_int64_t offset, int *indexp); |
| 7084 | static kern_return_t vfs_drt_get_index(struct vfs_drt_clustermap **cmapp, |
| 7085 | u_int64_t offset, |
| 7086 | int *indexp, |
| 7087 | int recursed); |
| 7088 | static kern_return_t vfs_drt_do_mark_pages( |
| 7089 | void **cmapp, |
| 7090 | u_int64_t offset, |
| 7091 | u_int length, |
| 7092 | u_int *setcountp, |
| 7093 | int dirty); |
| 7094 | static void vfs_drt_trace( |
| 7095 | struct vfs_drt_clustermap *cmap, |
| 7096 | int code, |
| 7097 | int arg1, |
| 7098 | int arg2, |
| 7099 | int arg3, |
| 7100 | int arg4); |
| 7101 | |
| 7102 | |
| 7103 | /* |
| 7104 | * Allocate and initialise a sparse cluster map. |
| 7105 | * |
| 7106 | * Will allocate a new map, resize or compact an existing map. |
| 7107 | * |
| 7108 | * XXX we should probably have at least one intermediate map size, |
| 7109 | * as the 1:16 ratio seems a bit drastic. |
| 7110 | */ |
| 7111 | static kern_return_t |
| 7112 | vfs_drt_alloc_map(struct vfs_drt_clustermap **cmapp) |
| 7113 | { |
| 7114 | struct vfs_drt_clustermap *cmap = NULL, *ocmap = NULL; |
| 7115 | kern_return_t kret = KERN_SUCCESS; |
| 7116 | u_int64_t offset = 0; |
| 7117 | u_int32_t i = 0; |
| 7118 | int modulus_size = 0, map_size = 0, active_buckets = 0, index = 0, copycount = 0; |
| 7119 | |
| 7120 | ocmap = NULL; |
| 7121 | if (cmapp != NULL) { |
| 7122 | ocmap = *cmapp; |
| 7123 | } |
| 7124 | |
| 7125 | /* |
| 7126 | * Decide on the size of the new map. |
| 7127 | */ |
| 7128 | if (ocmap == NULL) { |
| 7129 | modulus_size = DRT_HASH_SMALL_MODULUS; |
| 7130 | map_size = DRT_SMALL_ALLOCATION; |
| 7131 | } else { |
| 7132 | /* count the number of active buckets in the old map */ |
| 7133 | active_buckets = 0; |
| 7134 | for (i = 0; i < ocmap->scm_modulus; i++) { |
| 7135 | if (!DRT_HASH_VACANT(ocmap, i) && |
| 7136 | (DRT_HASH_GET_COUNT(ocmap, i) != 0)) { |
| 7137 | active_buckets++; |
| 7138 | } |
| 7139 | } |
| 7140 | /* |
| 7141 | * If we're currently using the small allocation, check to |
| 7142 | * see whether we should grow to the large one. |
| 7143 | */ |
| 7144 | if (ocmap->scm_modulus == DRT_HASH_SMALL_MODULUS) { |
| 7145 | /* |
| 7146 | * If the ring is nearly full and we are allowed to |
| 7147 | * use the large modulus, upgrade. |
| 7148 | */ |
| 7149 | if ((active_buckets > (DRT_HASH_SMALL_MODULUS - 5)) && |
| 7150 | (max_mem >= DRT_HASH_LARGE_MEMORY_REQUIRED)) { |
| 7151 | modulus_size = DRT_HASH_LARGE_MODULUS; |
| 7152 | map_size = DRT_LARGE_ALLOCATION; |
| 7153 | } else { |
| 7154 | modulus_size = DRT_HASH_SMALL_MODULUS; |
| 7155 | map_size = DRT_SMALL_ALLOCATION; |
| 7156 | } |
| 7157 | } else if (ocmap->scm_modulus == DRT_HASH_LARGE_MODULUS) { |
| 7158 | if ((active_buckets > (DRT_HASH_LARGE_MODULUS - 5)) && |
| 7159 | (max_mem >= DRT_HASH_XLARGE_MEMORY_REQUIRED)) { |
| 7160 | modulus_size = DRT_HASH_XLARGE_MODULUS; |
| 7161 | map_size = DRT_XLARGE_ALLOCATION; |
| 7162 | } else { |
| 7163 | /* |
| 7164 | * If the ring is completely full and we can't |
| 7165 | * expand, there's nothing useful for us to do. |
| 7166 | * Behave as though we had compacted into the new |
| 7167 | * array and return. |
| 7168 | */ |
| 7169 | return KERN_SUCCESS; |
| 7170 | } |
| 7171 | } else { |
| 7172 | /* already using the xlarge modulus */ |
| 7173 | modulus_size = DRT_HASH_XLARGE_MODULUS; |
| 7174 | map_size = DRT_XLARGE_ALLOCATION; |
| 7175 | |
| 7176 | /* |
| 7177 | * If the ring is completely full, there's |
| 7178 | * nothing useful for us to do. Behave as |
| 7179 | * though we had compacted into the new |
| 7180 | * array and return. |
| 7181 | */ |
| 7182 | if (active_buckets >= DRT_HASH_XLARGE_MODULUS) { |
| 7183 | return KERN_SUCCESS; |
| 7184 | } |
| 7185 | } |
| 7186 | } |
| 7187 | |
| 7188 | /* |
| 7189 | * Allocate and initialise the new map. |
| 7190 | */ |
| 7191 | |
| 7192 | kret = kmem_alloc(map: kernel_map, addrp: (vm_offset_t *)&cmap, size: map_size, |
| 7193 | flags: KMA_DATA, VM_KERN_MEMORY_FILE); |
| 7194 | if (kret != KERN_SUCCESS) { |
| 7195 | return kret; |
| 7196 | } |
| 7197 | cmap->scm_magic = DRT_SCM_MAGIC; |
| 7198 | cmap->scm_modulus = modulus_size; |
| 7199 | cmap->scm_buckets = 0; |
| 7200 | cmap->scm_lastclean = 0; |
| 7201 | cmap->scm_iskips = 0; |
| 7202 | for (i = 0; i < cmap->scm_modulus; i++) { |
| 7203 | DRT_HASH_CLEAR(cmap, i); |
| 7204 | DRT_HASH_VACATE(cmap, i); |
| 7205 | DRT_BITVECTOR_CLEAR(cmap, i); |
| 7206 | } |
| 7207 | |
| 7208 | /* |
| 7209 | * If there's an old map, re-hash entries from it into the new map. |
| 7210 | */ |
| 7211 | copycount = 0; |
| 7212 | if (ocmap != NULL) { |
| 7213 | for (i = 0; i < ocmap->scm_modulus; i++) { |
| 7214 | /* skip empty buckets */ |
| 7215 | if (DRT_HASH_VACANT(ocmap, i) || |
| 7216 | (DRT_HASH_GET_COUNT(ocmap, i) == 0)) { |
| 7217 | continue; |
| 7218 | } |
| 7219 | /* get new index */ |
| 7220 | offset = DRT_HASH_GET_ADDRESS(ocmap, i); |
| 7221 | kret = vfs_drt_get_index(cmapp: &cmap, offset, indexp: &index, recursed: 1); |
| 7222 | if (kret != KERN_SUCCESS) { |
| 7223 | /* XXX need to bail out gracefully here */ |
| 7224 | panic("vfs_drt: new cluster map mysteriously too small" ); |
| 7225 | index = 0; |
| 7226 | } |
| 7227 | /* copy */ |
| 7228 | DRT_HASH_COPY(ocmap, i, cmap, index); |
| 7229 | copycount++; |
| 7230 | } |
| 7231 | } |
| 7232 | |
| 7233 | /* log what we've done */ |
| 7234 | vfs_drt_trace(cmap, DRT_DEBUG_ALLOC, arg1: copycount, arg2: 0, arg3: 0, arg4: 0); |
| 7235 | |
| 7236 | /* |
| 7237 | * It's important to ensure that *cmapp always points to |
| 7238 | * a valid map, so we must overwrite it before freeing |
| 7239 | * the old map. |
| 7240 | */ |
| 7241 | *cmapp = cmap; |
| 7242 | if (ocmap != NULL) { |
| 7243 | /* emit stats into trace buffer */ |
| 7244 | vfs_drt_trace(cmap: ocmap, DRT_DEBUG_SCMDATA, |
| 7245 | arg1: ocmap->scm_modulus, |
| 7246 | arg2: ocmap->scm_buckets, |
| 7247 | arg3: ocmap->scm_lastclean, |
| 7248 | arg4: ocmap->scm_iskips); |
| 7249 | |
| 7250 | vfs_drt_free_map(cmap: ocmap); |
| 7251 | } |
| 7252 | return KERN_SUCCESS; |
| 7253 | } |
| 7254 | |
| 7255 | |
| 7256 | /* |
| 7257 | * Free a sparse cluster map. |
| 7258 | */ |
| 7259 | static kern_return_t |
| 7260 | vfs_drt_free_map(struct vfs_drt_clustermap *cmap) |
| 7261 | { |
| 7262 | vm_size_t map_size = 0; |
| 7263 | |
| 7264 | if (cmap->scm_modulus == DRT_HASH_SMALL_MODULUS) { |
| 7265 | map_size = DRT_SMALL_ALLOCATION; |
| 7266 | } else if (cmap->scm_modulus == DRT_HASH_LARGE_MODULUS) { |
| 7267 | map_size = DRT_LARGE_ALLOCATION; |
| 7268 | } else if (cmap->scm_modulus == DRT_HASH_XLARGE_MODULUS) { |
| 7269 | map_size = DRT_XLARGE_ALLOCATION; |
| 7270 | } else { |
| 7271 | panic("vfs_drt_free_map: Invalid modulus %d" , cmap->scm_modulus); |
| 7272 | } |
| 7273 | |
| 7274 | kmem_free(map: kernel_map, addr: (vm_offset_t)cmap, size: map_size); |
| 7275 | return KERN_SUCCESS; |
| 7276 | } |
| 7277 | |
| 7278 | |
| 7279 | /* |
| 7280 | * Find the hashtable slot currently occupied by an entry for the supplied offset. |
| 7281 | */ |
| 7282 | static kern_return_t |
| 7283 | vfs_drt_search_index(struct vfs_drt_clustermap *cmap, u_int64_t offset, int *indexp) |
| 7284 | { |
| 7285 | int index; |
| 7286 | u_int32_t i; |
| 7287 | |
| 7288 | offset = DRT_ALIGN_ADDRESS(offset); |
| 7289 | index = DRT_HASH(cmap, offset); |
| 7290 | |
| 7291 | /* traverse the hashtable */ |
| 7292 | for (i = 0; i < cmap->scm_modulus; i++) { |
| 7293 | /* |
| 7294 | * If the slot is vacant, we can stop. |
| 7295 | */ |
| 7296 | if (DRT_HASH_VACANT(cmap, index)) { |
| 7297 | break; |
| 7298 | } |
| 7299 | |
| 7300 | /* |
| 7301 | * If the address matches our offset, we have success. |
| 7302 | */ |
| 7303 | if (DRT_HASH_GET_ADDRESS(cmap, index) == offset) { |
| 7304 | *indexp = index; |
| 7305 | return KERN_SUCCESS; |
| 7306 | } |
| 7307 | |
| 7308 | /* |
| 7309 | * Move to the next slot, try again. |
| 7310 | */ |
| 7311 | index = DRT_HASH_NEXT(cmap, index); |
| 7312 | } |
| 7313 | /* |
| 7314 | * It's not there. |
| 7315 | */ |
| 7316 | return KERN_FAILURE; |
| 7317 | } |
| 7318 | |
| 7319 | /* |
| 7320 | * Find the hashtable slot for the supplied offset. If we haven't allocated |
| 7321 | * one yet, allocate one and populate the address field. Note that it will |
| 7322 | * not have a nonzero page count and thus will still technically be free, so |
| 7323 | * in the case where we are called to clean pages, the slot will remain free. |
| 7324 | */ |
| 7325 | static kern_return_t |
| 7326 | vfs_drt_get_index(struct vfs_drt_clustermap **cmapp, u_int64_t offset, int *indexp, int recursed) |
| 7327 | { |
| 7328 | struct vfs_drt_clustermap *cmap; |
| 7329 | kern_return_t kret; |
| 7330 | u_int32_t index; |
| 7331 | u_int32_t i; |
| 7332 | |
| 7333 | cmap = *cmapp; |
| 7334 | |
| 7335 | /* look for an existing entry */ |
| 7336 | kret = vfs_drt_search_index(cmap, offset, indexp); |
| 7337 | if (kret == KERN_SUCCESS) { |
| 7338 | return kret; |
| 7339 | } |
| 7340 | |
| 7341 | /* need to allocate an entry */ |
| 7342 | offset = DRT_ALIGN_ADDRESS(offset); |
| 7343 | index = DRT_HASH(cmap, offset); |
| 7344 | |
| 7345 | /* scan from the index forwards looking for a vacant slot */ |
| 7346 | for (i = 0; i < cmap->scm_modulus; i++) { |
| 7347 | /* slot vacant? */ |
| 7348 | if (DRT_HASH_VACANT(cmap, index) || DRT_HASH_GET_COUNT(cmap, index) == 0) { |
| 7349 | cmap->scm_buckets++; |
| 7350 | if (index < cmap->scm_lastclean) { |
| 7351 | cmap->scm_lastclean = index; |
| 7352 | } |
| 7353 | DRT_HASH_SET_ADDRESS(cmap, index, offset); |
| 7354 | DRT_HASH_SET_COUNT(cmap, index, 0); |
| 7355 | DRT_BITVECTOR_CLEAR(cmap, index); |
| 7356 | *indexp = index; |
| 7357 | vfs_drt_trace(cmap, DRT_DEBUG_INSERT, arg1: (int)offset, arg2: i, arg3: 0, arg4: 0); |
| 7358 | return KERN_SUCCESS; |
| 7359 | } |
| 7360 | cmap->scm_iskips += i; |
| 7361 | index = DRT_HASH_NEXT(cmap, index); |
| 7362 | } |
| 7363 | |
| 7364 | /* |
| 7365 | * We haven't found a vacant slot, so the map is full. If we're not |
| 7366 | * already recursed, try reallocating/compacting it. |
| 7367 | */ |
| 7368 | if (recursed) { |
| 7369 | return KERN_FAILURE; |
| 7370 | } |
| 7371 | kret = vfs_drt_alloc_map(cmapp); |
| 7372 | if (kret == KERN_SUCCESS) { |
| 7373 | /* now try to insert again */ |
| 7374 | kret = vfs_drt_get_index(cmapp, offset, indexp, recursed: 1); |
| 7375 | } |
| 7376 | return kret; |
| 7377 | } |
| 7378 | |
| 7379 | /* |
| 7380 | * Implementation of set dirty/clean. |
| 7381 | * |
| 7382 | * In the 'clean' case, not finding a map is OK. |
| 7383 | */ |
| 7384 | static kern_return_t |
| 7385 | vfs_drt_do_mark_pages( |
| 7386 | void **private, |
| 7387 | u_int64_t offset, |
| 7388 | u_int length, |
| 7389 | u_int *setcountp, |
| 7390 | int dirty) |
| 7391 | { |
| 7392 | struct vfs_drt_clustermap *cmap, **cmapp; |
| 7393 | kern_return_t kret; |
| 7394 | int i, index, pgoff, pgcount, setcount, ecount; |
| 7395 | |
| 7396 | cmapp = (struct vfs_drt_clustermap **)private; |
| 7397 | cmap = *cmapp; |
| 7398 | |
| 7399 | vfs_drt_trace(cmap, DRT_DEBUG_MARK | DBG_FUNC_START, arg1: (int)offset, arg2: (int)length, arg3: dirty, arg4: 0); |
| 7400 | |
| 7401 | if (setcountp != NULL) { |
| 7402 | *setcountp = 0; |
| 7403 | } |
| 7404 | |
| 7405 | /* allocate a cluster map if we don't already have one */ |
| 7406 | if (cmap == NULL) { |
| 7407 | /* no cluster map, nothing to clean */ |
| 7408 | if (!dirty) { |
| 7409 | vfs_drt_trace(cmap, DRT_DEBUG_MARK | DBG_FUNC_END, arg1: 1, arg2: 0, arg3: 0, arg4: 0); |
| 7410 | return KERN_SUCCESS; |
| 7411 | } |
| 7412 | kret = vfs_drt_alloc_map(cmapp); |
| 7413 | if (kret != KERN_SUCCESS) { |
| 7414 | vfs_drt_trace(cmap, DRT_DEBUG_MARK | DBG_FUNC_END, arg1: 2, arg2: 0, arg3: 0, arg4: 0); |
| 7415 | return kret; |
| 7416 | } |
| 7417 | } |
| 7418 | setcount = 0; |
| 7419 | |
| 7420 | /* |
| 7421 | * Iterate over the length of the region. |
| 7422 | */ |
| 7423 | while (length > 0) { |
| 7424 | /* |
| 7425 | * Get the hashtable index for this offset. |
| 7426 | * |
| 7427 | * XXX this will add blank entries if we are clearing a range |
| 7428 | * that hasn't been dirtied. |
| 7429 | */ |
| 7430 | kret = vfs_drt_get_index(cmapp, offset, indexp: &index, recursed: 0); |
| 7431 | cmap = *cmapp; /* may have changed! */ |
| 7432 | /* this may be a partial-success return */ |
| 7433 | if (kret != KERN_SUCCESS) { |
| 7434 | if (setcountp != NULL) { |
| 7435 | *setcountp = setcount; |
| 7436 | } |
| 7437 | vfs_drt_trace(cmap, DRT_DEBUG_MARK | DBG_FUNC_END, arg1: 3, arg2: (int)length, arg3: 0, arg4: 0); |
| 7438 | |
| 7439 | return kret; |
| 7440 | } |
| 7441 | |
| 7442 | /* |
| 7443 | * Work out how many pages we're modifying in this |
| 7444 | * hashtable entry. |
| 7445 | */ |
| 7446 | pgoff = (int)((offset - DRT_ALIGN_ADDRESS(offset)) / PAGE_SIZE); |
| 7447 | pgcount = min(a: (length / PAGE_SIZE), b: (DRT_BITVECTOR_PAGES - pgoff)); |
| 7448 | |
| 7449 | /* |
| 7450 | * Iterate over pages, dirty/clearing as we go. |
| 7451 | */ |
| 7452 | ecount = DRT_HASH_GET_COUNT(cmap, index); |
| 7453 | for (i = 0; i < pgcount; i++) { |
| 7454 | if (dirty) { |
| 7455 | if (!DRT_HASH_TEST_BIT(cmap, index, pgoff + i)) { |
| 7456 | if (ecount >= DRT_BITVECTOR_PAGES) { |
| 7457 | panic("ecount >= DRT_BITVECTOR_PAGES, cmap = %p, index = %d, bit = %d" , cmap, index, pgoff + i); |
| 7458 | } |
| 7459 | DRT_HASH_SET_BIT(cmap, index, pgoff + i); |
| 7460 | ecount++; |
| 7461 | setcount++; |
| 7462 | } |
| 7463 | } else { |
| 7464 | if (DRT_HASH_TEST_BIT(cmap, index, pgoff + i)) { |
| 7465 | if (ecount <= 0) { |
| 7466 | panic("ecount <= 0, cmap = %p, index = %d, bit = %d" , cmap, index, pgoff + i); |
| 7467 | } |
| 7468 | assert(ecount > 0); |
| 7469 | DRT_HASH_CLEAR_BIT(cmap, index, pgoff + i); |
| 7470 | ecount--; |
| 7471 | setcount++; |
| 7472 | } |
| 7473 | } |
| 7474 | } |
| 7475 | DRT_HASH_SET_COUNT(cmap, index, ecount); |
| 7476 | |
| 7477 | offset += pgcount * PAGE_SIZE; |
| 7478 | length -= pgcount * PAGE_SIZE; |
| 7479 | } |
| 7480 | if (setcountp != NULL) { |
| 7481 | *setcountp = setcount; |
| 7482 | } |
| 7483 | |
| 7484 | vfs_drt_trace(cmap, DRT_DEBUG_MARK | DBG_FUNC_END, arg1: 0, arg2: setcount, arg3: 0, arg4: 0); |
| 7485 | |
| 7486 | return KERN_SUCCESS; |
| 7487 | } |
| 7488 | |
| 7489 | /* |
| 7490 | * Mark a set of pages as dirty/clean. |
| 7491 | * |
| 7492 | * This is a public interface. |
| 7493 | * |
| 7494 | * cmapp |
| 7495 | * Pointer to storage suitable for holding a pointer. Note that |
| 7496 | * this must either be NULL or a value set by this function. |
| 7497 | * |
| 7498 | * size |
| 7499 | * Current file size in bytes. |
| 7500 | * |
| 7501 | * offset |
| 7502 | * Offset of the first page to be marked as dirty, in bytes. Must be |
| 7503 | * page-aligned. |
| 7504 | * |
| 7505 | * length |
| 7506 | * Length of dirty region, in bytes. Must be a multiple of PAGE_SIZE. |
| 7507 | * |
| 7508 | * setcountp |
| 7509 | * Number of pages newly marked dirty by this call (optional). |
| 7510 | * |
| 7511 | * Returns KERN_SUCCESS if all the pages were successfully marked. |
| 7512 | */ |
| 7513 | static kern_return_t |
| 7514 | vfs_drt_mark_pages(void **cmapp, off_t offset, u_int length, u_int *setcountp) |
| 7515 | { |
| 7516 | /* XXX size unused, drop from interface */ |
| 7517 | return vfs_drt_do_mark_pages(private: cmapp, offset, length, setcountp, dirty: 1); |
| 7518 | } |
| 7519 | |
| 7520 | #if 0 |
| 7521 | static kern_return_t |
| 7522 | vfs_drt_unmark_pages(void **cmapp, off_t offset, u_int length) |
| 7523 | { |
| 7524 | return vfs_drt_do_mark_pages(cmapp, offset, length, NULL, 0); |
| 7525 | } |
| 7526 | #endif |
| 7527 | |
| 7528 | /* |
| 7529 | * Get a cluster of dirty pages. |
| 7530 | * |
| 7531 | * This is a public interface. |
| 7532 | * |
| 7533 | * cmapp |
| 7534 | * Pointer to storage managed by drt_mark_pages. Note that this must |
| 7535 | * be NULL or a value set by drt_mark_pages. |
| 7536 | * |
| 7537 | * offsetp |
| 7538 | * Returns the byte offset into the file of the first page in the cluster. |
| 7539 | * |
| 7540 | * lengthp |
| 7541 | * Returns the length in bytes of the cluster of dirty pages. |
| 7542 | * |
| 7543 | * Returns success if a cluster was found. If KERN_FAILURE is returned, there |
| 7544 | * are no dirty pages meeting the minmum size criteria. Private storage will |
| 7545 | * be released if there are no more dirty pages left in the map |
| 7546 | * |
| 7547 | */ |
| 7548 | static kern_return_t |
| 7549 | vfs_drt_get_cluster(void **cmapp, off_t *offsetp, u_int *lengthp) |
| 7550 | { |
| 7551 | struct vfs_drt_clustermap *cmap; |
| 7552 | u_int64_t offset; |
| 7553 | u_int length; |
| 7554 | u_int32_t j; |
| 7555 | int index, i, fs, ls; |
| 7556 | |
| 7557 | /* sanity */ |
| 7558 | if ((cmapp == NULL) || (*cmapp == NULL)) { |
| 7559 | return KERN_FAILURE; |
| 7560 | } |
| 7561 | cmap = *cmapp; |
| 7562 | |
| 7563 | /* walk the hashtable */ |
| 7564 | for (offset = 0, j = 0; j < cmap->scm_modulus; offset += (DRT_BITVECTOR_PAGES * PAGE_SIZE), j++) { |
| 7565 | index = DRT_HASH(cmap, offset); |
| 7566 | |
| 7567 | if (DRT_HASH_VACANT(cmap, index) || (DRT_HASH_GET_COUNT(cmap, index) == 0)) { |
| 7568 | continue; |
| 7569 | } |
| 7570 | |
| 7571 | /* scan the bitfield for a string of bits */ |
| 7572 | fs = -1; |
| 7573 | |
| 7574 | for (i = 0; i < DRT_BITVECTOR_PAGES; i++) { |
| 7575 | if (DRT_HASH_TEST_BIT(cmap, index, i)) { |
| 7576 | fs = i; |
| 7577 | break; |
| 7578 | } |
| 7579 | } |
| 7580 | if (fs == -1) { |
| 7581 | /* didn't find any bits set */ |
| 7582 | panic("vfs_drt: entry summary count > 0 but no bits set in map, cmap = %p, index = %d, count = %lld" , |
| 7583 | cmap, index, DRT_HASH_GET_COUNT(cmap, index)); |
| 7584 | } |
| 7585 | for (ls = 0; i < DRT_BITVECTOR_PAGES; i++, ls++) { |
| 7586 | if (!DRT_HASH_TEST_BIT(cmap, index, i)) { |
| 7587 | break; |
| 7588 | } |
| 7589 | } |
| 7590 | |
| 7591 | /* compute offset and length, mark pages clean */ |
| 7592 | offset = DRT_HASH_GET_ADDRESS(cmap, index) + (PAGE_SIZE * fs); |
| 7593 | length = ls * PAGE_SIZE; |
| 7594 | vfs_drt_do_mark_pages(private: cmapp, offset, length, NULL, dirty: 0); |
| 7595 | cmap->scm_lastclean = index; |
| 7596 | |
| 7597 | /* return successful */ |
| 7598 | *offsetp = (off_t)offset; |
| 7599 | *lengthp = length; |
| 7600 | |
| 7601 | vfs_drt_trace(cmap, DRT_DEBUG_RETCLUSTER, arg1: (int)offset, arg2: (int)length, arg3: 0, arg4: 0); |
| 7602 | return KERN_SUCCESS; |
| 7603 | } |
| 7604 | /* |
| 7605 | * We didn't find anything... hashtable is empty |
| 7606 | * emit stats into trace buffer and |
| 7607 | * then free it |
| 7608 | */ |
| 7609 | vfs_drt_trace(cmap, DRT_DEBUG_SCMDATA, |
| 7610 | arg1: cmap->scm_modulus, |
| 7611 | arg2: cmap->scm_buckets, |
| 7612 | arg3: cmap->scm_lastclean, |
| 7613 | arg4: cmap->scm_iskips); |
| 7614 | |
| 7615 | vfs_drt_free_map(cmap); |
| 7616 | *cmapp = NULL; |
| 7617 | |
| 7618 | return KERN_FAILURE; |
| 7619 | } |
| 7620 | |
| 7621 | |
| 7622 | static kern_return_t |
| 7623 | vfs_drt_control(void **cmapp, int op_type) |
| 7624 | { |
| 7625 | struct vfs_drt_clustermap *cmap; |
| 7626 | |
| 7627 | /* sanity */ |
| 7628 | if ((cmapp == NULL) || (*cmapp == NULL)) { |
| 7629 | return KERN_FAILURE; |
| 7630 | } |
| 7631 | cmap = *cmapp; |
| 7632 | |
| 7633 | switch (op_type) { |
| 7634 | case 0: |
| 7635 | /* emit stats into trace buffer */ |
| 7636 | vfs_drt_trace(cmap, DRT_DEBUG_SCMDATA, |
| 7637 | arg1: cmap->scm_modulus, |
| 7638 | arg2: cmap->scm_buckets, |
| 7639 | arg3: cmap->scm_lastclean, |
| 7640 | arg4: cmap->scm_iskips); |
| 7641 | |
| 7642 | vfs_drt_free_map(cmap); |
| 7643 | *cmapp = NULL; |
| 7644 | break; |
| 7645 | |
| 7646 | case 1: |
| 7647 | cmap->scm_lastclean = 0; |
| 7648 | break; |
| 7649 | } |
| 7650 | return KERN_SUCCESS; |
| 7651 | } |
| 7652 | |
| 7653 | |
| 7654 | |
| 7655 | /* |
| 7656 | * Emit a summary of the state of the clustermap into the trace buffer |
| 7657 | * along with some caller-provided data. |
| 7658 | */ |
| 7659 | #if KDEBUG |
| 7660 | static void |
| 7661 | vfs_drt_trace(__unused struct vfs_drt_clustermap *cmap, int code, int arg1, int arg2, int arg3, int arg4) |
| 7662 | { |
| 7663 | KERNEL_DEBUG(code, arg1, arg2, arg3, arg4, 0); |
| 7664 | } |
| 7665 | #else |
| 7666 | static void |
| 7667 | vfs_drt_trace(__unused struct vfs_drt_clustermap *cmap, __unused int code, |
| 7668 | __unused int arg1, __unused int arg2, __unused int arg3, |
| 7669 | __unused int arg4) |
| 7670 | { |
| 7671 | } |
| 7672 | #endif |
| 7673 | |
| 7674 | #if 0 |
| 7675 | /* |
| 7676 | * Perform basic sanity check on the hash entry summary count |
| 7677 | * vs. the actual bits set in the entry. |
| 7678 | */ |
| 7679 | static void |
| 7680 | vfs_drt_sanity(struct vfs_drt_clustermap *cmap) |
| 7681 | { |
| 7682 | int index, i; |
| 7683 | int bits_on; |
| 7684 | |
| 7685 | for (index = 0; index < cmap->scm_modulus; index++) { |
| 7686 | if (DRT_HASH_VACANT(cmap, index)) { |
| 7687 | continue; |
| 7688 | } |
| 7689 | |
| 7690 | for (bits_on = 0, i = 0; i < DRT_BITVECTOR_PAGES; i++) { |
| 7691 | if (DRT_HASH_TEST_BIT(cmap, index, i)) { |
| 7692 | bits_on++; |
| 7693 | } |
| 7694 | } |
| 7695 | if (bits_on != DRT_HASH_GET_COUNT(cmap, index)) { |
| 7696 | panic("bits_on = %d, index = %d" , bits_on, index); |
| 7697 | } |
| 7698 | } |
| 7699 | } |
| 7700 | #endif |
| 7701 | |
| 7702 | /* |
| 7703 | * Internal interface only. |
| 7704 | */ |
| 7705 | static kern_return_t |
| 7706 | vfs_get_scmap_push_behavior_internal(void **cmapp, int *push_flag) |
| 7707 | { |
| 7708 | struct vfs_drt_clustermap *cmap; |
| 7709 | |
| 7710 | /* sanity */ |
| 7711 | if ((cmapp == NULL) || (*cmapp == NULL) || (push_flag == NULL)) { |
| 7712 | return KERN_FAILURE; |
| 7713 | } |
| 7714 | cmap = *cmapp; |
| 7715 | |
| 7716 | if (cmap->scm_modulus == DRT_HASH_XLARGE_MODULUS) { |
| 7717 | /* |
| 7718 | * If we have a full xlarge sparse cluster, |
| 7719 | * we push it out all at once so the cluster |
| 7720 | * map can be available to absorb more I/Os. |
| 7721 | * This is done on large memory configs so |
| 7722 | * the small I/Os don't interfere with the |
| 7723 | * pro workloads. |
| 7724 | */ |
| 7725 | *push_flag = PUSH_ALL; |
| 7726 | } |
| 7727 | return KERN_SUCCESS; |
| 7728 | } |
| 7729 | |