1/*
2 * Copyright (c) 2000-2020 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28/* Copyright (c) 1995 NeXT Computer, Inc. All Rights Reserved */
29/*-
30 * Copyright (c) 1994 Christopher G. Demetriou
31 * Copyright (c) 1982, 1986, 1989, 1993
32 * The Regents of the University of California. All rights reserved.
33 * (c) UNIX System Laboratories, Inc.
34 * All or some portions of this file are derived from material licensed
35 * to the University of California by American Telephone and Telegraph
36 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
37 * the permission of UNIX System Laboratories, Inc.
38 *
39 * Redistribution and use in source and binary forms, with or without
40 * modification, are permitted provided that the following conditions
41 * are met:
42 * 1. Redistributions of source code must retain the above copyright
43 * notice, this list of conditions and the following disclaimer.
44 * 2. Redistributions in binary form must reproduce the above copyright
45 * notice, this list of conditions and the following disclaimer in the
46 * documentation and/or other materials provided with the distribution.
47 * 3. All advertising materials mentioning features or use of this software
48 * must display the following acknowledgement:
49 * This product includes software developed by the University of
50 * California, Berkeley and its contributors.
51 * 4. Neither the name of the University nor the names of its contributors
52 * may be used to endorse or promote products derived from this software
53 * without specific prior written permission.
54 *
55 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
56 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
57 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
58 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
59 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
60 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
61 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
62 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
63 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
64 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
65 * SUCH DAMAGE.
66 *
67 * @(#)vfs_bio.c 8.6 (Berkeley) 1/11/94
68 */
69
70/*
71 * Some references:
72 * Bach: The Design of the UNIX Operating System (Prentice Hall, 1986)
73 * Leffler, et al.: The Design and Implementation of the 4.3BSD
74 * UNIX Operating System (Addison Welley, 1989)
75 */
76
77#include <sys/param.h>
78#include <sys/systm.h>
79#include <sys/proc_internal.h>
80#include <sys/buf_internal.h>
81#include <sys/vnode_internal.h>
82#include <sys/mount_internal.h>
83#include <sys/trace.h>
84#include <kern/kalloc.h>
85#include <sys/resourcevar.h>
86#include <miscfs/specfs/specdev.h>
87#include <sys/ubc.h>
88#include <sys/kauth.h>
89#if DIAGNOSTIC
90#include <kern/assert.h>
91#endif /* DIAGNOSTIC */
92#include <kern/task.h>
93#include <kern/zalloc.h>
94#include <kern/locks.h>
95#include <kern/thread.h>
96
97#include <sys/fslog.h> /* fslog_io_error() */
98#include <sys/disk.h> /* dk_error_description_t */
99
100#include <mach/mach_types.h>
101#include <mach/memory_object_types.h>
102#include <kern/sched_prim.h> /* thread_block() */
103
104#include <vm/vm_kern.h>
105#include <vm/vm_pageout.h>
106
107#include <sys/kdebug.h>
108
109#include <libkern/OSAtomic.h>
110#include <libkern/OSDebug.h>
111#include <sys/ubc_internal.h>
112
113#include <sys/sdt.h>
114
115int bcleanbuf(buf_t bp, boolean_t discard);
116static int brecover_data(buf_t bp);
117static boolean_t incore(vnode_t vp, daddr64_t blkno);
118/* timeout is in msecs */
119static buf_t getnewbuf(int slpflag, int slptimeo, int *queue);
120static void bremfree_locked(buf_t bp);
121static void buf_reassign(buf_t bp, vnode_t newvp);
122static errno_t buf_acquire_locked(buf_t bp, int flags, int slpflag, int slptimeo);
123static int buf_iterprepare(vnode_t vp, struct buflists *, int flags);
124static void buf_itercomplete(vnode_t vp, struct buflists *, int flags);
125static boolean_t buffer_cache_gc(int);
126static buf_t buf_brelse_shadow(buf_t bp);
127static void buf_free_meta_store(buf_t bp);
128
129static buf_t buf_create_shadow_internal(buf_t bp, boolean_t force_copy,
130 uintptr_t external_storage, void (*iodone)(buf_t, void *), void *arg, int priv);
131
132
133int bdwrite_internal(buf_t, int);
134
135extern void disk_conditioner_delay(buf_t, int, int, uint64_t);
136
137/* zone allocated buffer headers */
138static void bcleanbuf_thread_init(void);
139static void bcleanbuf_thread(void);
140
141static ZONE_DEFINE_TYPE(buf_hdr_zone, "buf headers", struct buf, ZC_NONE);
142static int buf_hdr_count;
143
144
145/*
146 * Definitions for the buffer hash lists.
147 */
148#define BUFHASH(dvp, lbn) \
149 (&bufhashtbl[((long)(dvp) / sizeof(*(dvp)) + (int)(lbn)) & bufhash])
150LIST_HEAD(bufhashhdr, buf) * bufhashtbl, invalhash;
151u_long bufhash;
152
153static buf_t incore_locked(vnode_t vp, daddr64_t blkno, struct bufhashhdr *dp);
154
155/* Definitions for the buffer stats. */
156struct bufstats bufstats;
157
158/* Number of delayed write buffers */
159long nbdwrite = 0;
160int blaundrycnt = 0;
161static int boot_nbuf_headers = 0;
162
163static TAILQ_HEAD(delayqueue, buf) delaybufqueue;
164
165static TAILQ_HEAD(ioqueue, buf) iobufqueue;
166static TAILQ_HEAD(bqueues, buf) bufqueues[BQUEUES];
167static int needbuffer;
168static int need_iobuffer;
169
170static LCK_GRP_DECLARE(buf_mtx_grp, "buffer cache");
171static LCK_ATTR_DECLARE(buf_mtx_attr, 0, 0);
172static LCK_MTX_DECLARE_ATTR(iobuffer_mtxp, &buf_mtx_grp, &buf_mtx_attr);
173static LCK_MTX_DECLARE_ATTR(buf_mtx, &buf_mtx_grp, &buf_mtx_attr);
174static LCK_MTX_DECLARE_ATTR(buf_gc_callout, &buf_mtx_grp, &buf_mtx_attr);
175
176static uint32_t buf_busycount;
177
178#define FS_BUFFER_CACHE_GC_CALLOUTS_MAX_SIZE 16
179typedef struct {
180 void (* callout)(int, void *);
181 void *context;
182} fs_buffer_cache_gc_callout_t;
183
184fs_buffer_cache_gc_callout_t fs_callouts[FS_BUFFER_CACHE_GC_CALLOUTS_MAX_SIZE] = { {NULL, NULL} };
185
186static __inline__ int
187buf_timestamp(void)
188{
189 struct timeval t;
190 microuptime(tv: &t);
191 return (int)t.tv_sec;
192}
193
194/*
195 * Insq/Remq for the buffer free lists.
196 */
197#define binsheadfree(bp, dp, whichq) do { \
198 TAILQ_INSERT_HEAD(dp, bp, b_freelist); \
199 } while (0)
200
201#define binstailfree(bp, dp, whichq) do { \
202 TAILQ_INSERT_TAIL(dp, bp, b_freelist); \
203 } while (0)
204
205#define BHASHENTCHECK(bp) \
206 if ((bp)->b_hash.le_prev != (struct buf **)0xdeadbeef) \
207 panic("%p: b_hash.le_prev is not deadbeef", (bp));
208
209#define BLISTNONE(bp) \
210 (bp)->b_hash.le_next = (struct buf *)0; \
211 (bp)->b_hash.le_prev = (struct buf **)0xdeadbeef;
212
213/*
214 * Insq/Remq for the vnode usage lists.
215 */
216#define bufinsvn(bp, dp) LIST_INSERT_HEAD(dp, bp, b_vnbufs)
217#define bufremvn(bp) { \
218 LIST_REMOVE(bp, b_vnbufs); \
219 (bp)->b_vnbufs.le_next = NOLIST; \
220}
221
222/*
223 * Time in seconds before a buffer on a list is
224 * considered as a stale buffer
225 */
226#define LRU_IS_STALE 120 /* default value for the LRU */
227#define AGE_IS_STALE 60 /* default value for the AGE */
228#define META_IS_STALE 180 /* default value for the BQ_META */
229
230int lru_is_stale = LRU_IS_STALE;
231int age_is_stale = AGE_IS_STALE;
232int meta_is_stale = META_IS_STALE;
233
234#define MAXLAUNDRY 10
235
236/* LIST_INSERT_HEAD() with assertions */
237static __inline__ void
238blistenterhead(struct bufhashhdr * head, buf_t bp)
239{
240 if ((bp->b_hash.le_next = (head)->lh_first) != NULL) {
241 (head)->lh_first->b_hash.le_prev = &(bp)->b_hash.le_next;
242 }
243 (head)->lh_first = bp;
244 bp->b_hash.le_prev = &(head)->lh_first;
245 if (bp->b_hash.le_prev == (struct buf **)0xdeadbeef) {
246 panic("blistenterhead: le_prev is deadbeef");
247 }
248}
249
250static __inline__ void
251binshash(buf_t bp, struct bufhashhdr *dp)
252{
253#if DIAGNOSTIC
254 buf_t nbp;
255#endif /* DIAGNOSTIC */
256
257 BHASHENTCHECK(bp);
258
259#if DIAGNOSTIC
260 nbp = dp->lh_first;
261 for (; nbp != NULL; nbp = nbp->b_hash.le_next) {
262 if (nbp == bp) {
263 panic("buf already in hashlist");
264 }
265 }
266#endif /* DIAGNOSTIC */
267
268 blistenterhead(head: dp, bp);
269}
270
271static __inline__ void
272bremhash(buf_t bp)
273{
274 if (bp->b_hash.le_prev == (struct buf **)0xdeadbeef) {
275 panic("bremhash le_prev is deadbeef");
276 }
277 if (bp->b_hash.le_next == bp) {
278 panic("bremhash: next points to self");
279 }
280
281 if (bp->b_hash.le_next != NULL) {
282 bp->b_hash.le_next->b_hash.le_prev = bp->b_hash.le_prev;
283 }
284 *bp->b_hash.le_prev = (bp)->b_hash.le_next;
285}
286
287/*
288 * buf_mtx held.
289 */
290static __inline__ void
291bmovelaundry(buf_t bp)
292{
293 bp->b_whichq = BQ_LAUNDRY;
294 bp->b_timestamp = buf_timestamp();
295 binstailfree(bp, &bufqueues[BQ_LAUNDRY], BQ_LAUNDRY);
296 blaundrycnt++;
297}
298
299static __inline__ void
300buf_release_credentials(buf_t bp)
301{
302 if (IS_VALID_CRED(bp->b_rcred)) {
303 kauth_cred_unref(&bp->b_rcred);
304 }
305 if (IS_VALID_CRED(bp->b_wcred)) {
306 kauth_cred_unref(&bp->b_wcred);
307 }
308}
309
310
311int
312buf_valid(buf_t bp)
313{
314 if ((bp->b_flags & (B_DONE | B_DELWRI))) {
315 return 1;
316 }
317 return 0;
318}
319
320int
321buf_fromcache(buf_t bp)
322{
323 if ((bp->b_flags & B_CACHE)) {
324 return 1;
325 }
326 return 0;
327}
328
329void
330buf_markinvalid(buf_t bp)
331{
332 SET(bp->b_flags, B_INVAL);
333}
334
335void
336buf_markdelayed(buf_t bp)
337{
338 if (!ISSET(bp->b_flags, B_DELWRI)) {
339 SET(bp->b_flags, B_DELWRI);
340
341 OSAddAtomicLong(1, &nbdwrite);
342 buf_reassign(bp, newvp: bp->b_vp);
343 }
344 SET(bp->b_flags, B_DONE);
345}
346
347void
348buf_markclean(buf_t bp)
349{
350 if (ISSET(bp->b_flags, B_DELWRI)) {
351 CLR(bp->b_flags, B_DELWRI);
352
353 OSAddAtomicLong(-1, &nbdwrite);
354 buf_reassign(bp, newvp: bp->b_vp);
355 }
356}
357
358void
359buf_markeintr(buf_t bp)
360{
361 SET(bp->b_flags, B_EINTR);
362}
363
364
365void
366buf_markaged(buf_t bp)
367{
368 SET(bp->b_flags, B_AGE);
369}
370
371int
372buf_fua(buf_t bp)
373{
374 if ((bp->b_flags & B_FUA) == B_FUA) {
375 return 1;
376 }
377 return 0;
378}
379
380void
381buf_markfua(buf_t bp)
382{
383 SET(bp->b_flags, B_FUA);
384}
385
386#if CONFIG_PROTECT
387cpx_t
388bufattr_cpx(bufattr_t bap)
389{
390 return bap->ba_cpx;
391}
392
393void
394bufattr_setcpx(bufattr_t bap, cpx_t cpx)
395{
396 bap->ba_cpx = cpx;
397}
398
399void
400buf_setcpoff(buf_t bp, uint64_t foffset)
401{
402 bp->b_attr.ba_cp_file_off = foffset;
403}
404
405uint64_t
406bufattr_cpoff(bufattr_t bap)
407{
408 return bap->ba_cp_file_off;
409}
410
411void
412bufattr_setcpoff(bufattr_t bap, uint64_t foffset)
413{
414 bap->ba_cp_file_off = foffset;
415}
416
417#else // !CONTECT_PROTECT
418
419uint64_t
420bufattr_cpoff(bufattr_t bap __unused)
421{
422 return 0;
423}
424
425void
426bufattr_setcpoff(__unused bufattr_t bap, __unused uint64_t foffset)
427{
428 return;
429}
430
431struct cpx *
432bufattr_cpx(__unused bufattr_t bap)
433{
434 return NULL;
435}
436
437void
438bufattr_setcpx(__unused bufattr_t bap, __unused struct cpx *cpx)
439{
440}
441
442#endif /* !CONFIG_PROTECT */
443
444bufattr_t
445bufattr_alloc(void)
446{
447 return kalloc_type(struct bufattr, Z_WAITOK | Z_ZERO);
448}
449
450void
451bufattr_free(bufattr_t bap)
452{
453 kfree_type(struct bufattr, bap);
454}
455
456bufattr_t
457bufattr_dup(bufattr_t bap)
458{
459 bufattr_t new_bufattr;
460 new_bufattr = kalloc_type(struct bufattr, Z_WAITOK | Z_NOFAIL);
461
462 /* Copy the provided one into the new copy */
463 memcpy(dst: new_bufattr, src: bap, n: sizeof(struct bufattr));
464 return new_bufattr;
465}
466
467int
468bufattr_rawencrypted(bufattr_t bap)
469{
470 if ((bap->ba_flags & BA_RAW_ENCRYPTED_IO)) {
471 return 1;
472 }
473 return 0;
474}
475
476int
477bufattr_throttled(bufattr_t bap)
478{
479 return GET_BUFATTR_IO_TIER(bap);
480}
481
482int
483bufattr_passive(bufattr_t bap)
484{
485 if ((bap->ba_flags & BA_PASSIVE)) {
486 return 1;
487 }
488 return 0;
489}
490
491int
492bufattr_nocache(bufattr_t bap)
493{
494 if ((bap->ba_flags & BA_NOCACHE)) {
495 return 1;
496 }
497 return 0;
498}
499
500int
501bufattr_meta(bufattr_t bap)
502{
503 if ((bap->ba_flags & BA_META)) {
504 return 1;
505 }
506 return 0;
507}
508
509void
510bufattr_markmeta(bufattr_t bap)
511{
512 SET(bap->ba_flags, BA_META);
513}
514
515int
516bufattr_delayidlesleep(bufattr_t bap)
517{
518 if ((bap->ba_flags & BA_DELAYIDLESLEEP)) {
519 return 1;
520 }
521 return 0;
522}
523
524bufattr_t
525buf_attr(buf_t bp)
526{
527 return &bp->b_attr;
528}
529
530void
531buf_markstatic(buf_t bp __unused)
532{
533 SET(bp->b_flags, B_STATICCONTENT);
534}
535
536int
537buf_static(buf_t bp)
538{
539 if ((bp->b_flags & B_STATICCONTENT)) {
540 return 1;
541 }
542 return 0;
543}
544
545void
546bufattr_markgreedymode(bufattr_t bap)
547{
548 SET(bap->ba_flags, BA_GREEDY_MODE);
549}
550
551int
552bufattr_greedymode(bufattr_t bap)
553{
554 if ((bap->ba_flags & BA_GREEDY_MODE)) {
555 return 1;
556 }
557 return 0;
558}
559
560void
561bufattr_markisochronous(bufattr_t bap)
562{
563 SET(bap->ba_flags, BA_ISOCHRONOUS);
564}
565
566int
567bufattr_isochronous(bufattr_t bap)
568{
569 if ((bap->ba_flags & BA_ISOCHRONOUS)) {
570 return 1;
571 }
572 return 0;
573}
574
575void
576bufattr_markquickcomplete(bufattr_t bap)
577{
578 SET(bap->ba_flags, BA_QUICK_COMPLETE);
579}
580
581int
582bufattr_quickcomplete(bufattr_t bap)
583{
584 if ((bap->ba_flags & BA_QUICK_COMPLETE)) {
585 return 1;
586 }
587 return 0;
588}
589
590void
591bufattr_markioscheduled(bufattr_t bap)
592{
593 SET(bap->ba_flags, BA_IO_SCHEDULED);
594}
595
596
597int
598bufattr_ioscheduled(bufattr_t bap)
599{
600 if ((bap->ba_flags & BA_IO_SCHEDULED)) {
601 return 1;
602 }
603 return 0;
604}
605
606void
607bufattr_markexpeditedmeta(bufattr_t bap)
608{
609 SET(bap->ba_flags, BA_EXPEDITED_META_IO);
610}
611
612int
613bufattr_expeditedmeta(bufattr_t bap)
614{
615 if ((bap->ba_flags & BA_EXPEDITED_META_IO)) {
616 return 1;
617 }
618 return 0;
619}
620
621int
622bufattr_willverify(bufattr_t bap)
623{
624 if ((bap->ba_flags & BA_WILL_VERIFY)) {
625 return 1;
626 }
627 return 0;
628}
629
630errno_t
631buf_error(buf_t bp)
632{
633 return bp->b_error;
634}
635
636void
637buf_seterror(buf_t bp, errno_t error)
638{
639 if ((bp->b_error = error)) {
640 SET(bp->b_flags, B_ERROR);
641 } else {
642 CLR(bp->b_flags, B_ERROR);
643 }
644}
645
646void
647buf_setflags(buf_t bp, int32_t flags)
648{
649 SET(bp->b_flags, (flags & BUF_X_WRFLAGS));
650}
651
652void
653buf_clearflags(buf_t bp, int32_t flags)
654{
655 CLR(bp->b_flags, (flags & BUF_X_WRFLAGS));
656}
657
658int32_t
659buf_flags(buf_t bp)
660{
661 return bp->b_flags & BUF_X_RDFLAGS;
662}
663
664void
665buf_reset(buf_t bp, int32_t io_flags)
666{
667 CLR(bp->b_flags, (B_READ | B_WRITE | B_ERROR | B_DONE | B_INVAL | B_ASYNC | B_NOCACHE | B_FUA));
668 SET(bp->b_flags, (io_flags & (B_ASYNC | B_READ | B_WRITE | B_NOCACHE)));
669
670 bp->b_error = 0;
671}
672
673uint32_t
674buf_count(buf_t bp)
675{
676 return bp->b_bcount;
677}
678
679void
680buf_setcount(buf_t bp, uint32_t bcount)
681{
682 bp->b_bcount = bcount;
683}
684
685uint32_t
686buf_size(buf_t bp)
687{
688 return bp->b_bufsize;
689}
690
691void
692buf_setsize(buf_t bp, uint32_t bufsize)
693{
694 bp->b_bufsize = bufsize;
695}
696
697uint32_t
698buf_resid(buf_t bp)
699{
700 return bp->b_resid;
701}
702
703void
704buf_setresid(buf_t bp, uint32_t resid)
705{
706 bp->b_resid = resid;
707}
708
709uint32_t
710buf_dirtyoff(buf_t bp)
711{
712 return bp->b_dirtyoff;
713}
714
715uint32_t
716buf_dirtyend(buf_t bp)
717{
718 return bp->b_dirtyend;
719}
720
721void
722buf_setdirtyoff(buf_t bp, uint32_t dirtyoff)
723{
724 bp->b_dirtyoff = dirtyoff;
725}
726
727void
728buf_setdirtyend(buf_t bp, uint32_t dirtyend)
729{
730 bp->b_dirtyend = dirtyend;
731}
732
733uintptr_t
734buf_dataptr(buf_t bp)
735{
736 return bp->b_datap;
737}
738
739void
740buf_setdataptr(buf_t bp, uintptr_t data)
741{
742 bp->b_datap = data;
743}
744
745vnode_t
746buf_vnode(buf_t bp)
747{
748 return bp->b_vp;
749}
750
751void
752buf_setvnode(buf_t bp, vnode_t vp)
753{
754 bp->b_vp = vp;
755}
756
757vnode_t
758buf_vnop_vnode(buf_t bp)
759{
760 return bp->b_vnop_vp ? bp->b_vnop_vp : bp->b_vp;
761}
762
763void *
764buf_callback(buf_t bp)
765{
766 if (!(bp->b_flags & B_CALL)) {
767 return (void *) NULL;
768 }
769
770 return (void *)bp->b_iodone;
771}
772
773
774errno_t
775buf_setcallback(buf_t bp, void (*callback)(buf_t, void *), void *transaction)
776{
777 assert(!ISSET(bp->b_flags, B_FILTER) && ISSET(bp->b_lflags, BL_BUSY));
778
779 if (callback) {
780 bp->b_flags |= (B_CALL | B_ASYNC);
781 } else {
782 bp->b_flags &= ~B_CALL;
783 }
784 bp->b_transaction = transaction;
785 bp->b_iodone = callback;
786
787 return 0;
788}
789
790errno_t
791buf_setupl(buf_t bp, upl_t upl, uint32_t offset)
792{
793 if (!(bp->b_lflags & BL_IOBUF)) {
794 return EINVAL;
795 }
796
797 if (upl) {
798 bp->b_flags |= B_CLUSTER;
799 } else {
800 bp->b_flags &= ~B_CLUSTER;
801 }
802 bp->b_upl = upl;
803 bp->b_uploffset = offset;
804
805 return 0;
806}
807
808buf_t
809buf_clone(buf_t bp, int io_offset, int io_size, void (*iodone)(buf_t, void *), void *arg)
810{
811 buf_t io_bp;
812 int add1, add2;
813
814 if (io_offset < 0 || io_size < 0) {
815 return NULL;
816 }
817
818 if ((unsigned)(io_offset + io_size) > (unsigned)bp->b_bcount) {
819 return NULL;
820 }
821
822 if (bp->b_flags & B_CLUSTER) {
823 if (io_offset && ((bp->b_uploffset + io_offset) & PAGE_MASK)) {
824 return NULL;
825 }
826
827 if (os_add_overflow(io_offset, io_size, &add1) || os_add_overflow(add1, bp->b_uploffset, &add2)) {
828 return NULL;
829 }
830 if ((add2 & PAGE_MASK) && ((uint32_t)add1 < (uint32_t)bp->b_bcount)) {
831 return NULL;
832 }
833 }
834 io_bp = alloc_io_buf(bp->b_vp, 0);
835
836 io_bp->b_flags = bp->b_flags & (B_COMMIT_UPL | B_META | B_PAGEIO | B_CLUSTER | B_PHYS | B_RAW | B_ASYNC | B_READ | B_FUA);
837
838 if (iodone) {
839 io_bp->b_transaction = arg;
840 io_bp->b_iodone = iodone;
841 io_bp->b_flags |= B_CALL;
842 }
843 if (bp->b_flags & B_CLUSTER) {
844 io_bp->b_upl = bp->b_upl;
845 io_bp->b_uploffset = bp->b_uploffset + io_offset;
846 } else {
847 io_bp->b_datap = (uintptr_t)(((char *)bp->b_datap) + io_offset);
848 }
849 io_bp->b_bcount = io_size;
850
851 return io_bp;
852}
853
854
855int
856buf_shadow(buf_t bp)
857{
858 if (bp->b_lflags & BL_SHADOW) {
859 return 1;
860 }
861 return 0;
862}
863
864
865buf_t
866buf_create_shadow_priv(buf_t bp, boolean_t force_copy, uintptr_t external_storage, void (*iodone)(buf_t, void *), void *arg)
867{
868 return buf_create_shadow_internal(bp, force_copy, external_storage, iodone, arg, priv: 1);
869}
870
871buf_t
872buf_create_shadow(buf_t bp, boolean_t force_copy, uintptr_t external_storage, void (*iodone)(buf_t, void *), void *arg)
873{
874 return buf_create_shadow_internal(bp, force_copy, external_storage, iodone, arg, priv: 0);
875}
876
877
878static buf_t
879buf_create_shadow_internal(buf_t bp, boolean_t force_copy, uintptr_t external_storage, void (*iodone)(buf_t, void *), void *arg, int priv)
880{
881 buf_t io_bp;
882
883 KERNEL_DEBUG(0xbbbbc000 | DBG_FUNC_START, bp, 0, 0, 0, 0);
884
885 if (!(bp->b_flags & B_META) || (bp->b_lflags & BL_IOBUF)) {
886 KERNEL_DEBUG(0xbbbbc000 | DBG_FUNC_END, bp, 0, 0, 0, 0);
887 return NULL;
888 }
889#ifdef BUF_MAKE_PRIVATE
890 if (bp->b_shadow_ref && bp->b_data_ref == 0 && external_storage == 0) {
891 panic("buf_create_shadow: %p is in the private state (%d, %d)", bp, bp->b_shadow_ref, bp->b_data_ref);
892 }
893#endif
894 io_bp = alloc_io_buf(bp->b_vp, priv);
895
896 io_bp->b_flags = bp->b_flags & (B_META | B_ZALLOC | B_ASYNC | B_READ | B_FUA);
897 io_bp->b_blkno = bp->b_blkno;
898 io_bp->b_lblkno = bp->b_lblkno;
899 io_bp->b_lblksize = bp->b_lblksize;
900
901 if (iodone) {
902 io_bp->b_transaction = arg;
903 io_bp->b_iodone = iodone;
904 io_bp->b_flags |= B_CALL;
905 }
906 if (force_copy == FALSE) {
907 io_bp->b_bcount = bp->b_bcount;
908 io_bp->b_bufsize = bp->b_bufsize;
909
910 if (external_storage) {
911 io_bp->b_datap = external_storage;
912#ifdef BUF_MAKE_PRIVATE
913 io_bp->b_data_store = NULL;
914#endif
915 } else {
916 io_bp->b_datap = bp->b_datap;
917#ifdef BUF_MAKE_PRIVATE
918 io_bp->b_data_store = bp;
919#endif
920 }
921 *(buf_t *)(&io_bp->b_orig) = bp;
922
923 lck_mtx_lock_spin(lck: &buf_mtx);
924
925 io_bp->b_lflags |= BL_SHADOW;
926 io_bp->b_shadow = bp->b_shadow;
927 bp->b_shadow = io_bp;
928 bp->b_shadow_ref++;
929
930#ifdef BUF_MAKE_PRIVATE
931 if (external_storage) {
932 io_bp->b_lflags |= BL_EXTERNAL;
933 } else {
934 bp->b_data_ref++;
935 }
936#endif
937 lck_mtx_unlock(lck: &buf_mtx);
938 } else {
939 if (external_storage) {
940#ifdef BUF_MAKE_PRIVATE
941 io_bp->b_lflags |= BL_EXTERNAL;
942#endif
943 io_bp->b_bcount = bp->b_bcount;
944 io_bp->b_bufsize = bp->b_bufsize;
945 io_bp->b_datap = external_storage;
946 } else {
947 allocbuf(io_bp, bp->b_bcount);
948
949 io_bp->b_lflags |= BL_IOBUF_ALLOC;
950 }
951 bcopy(src: (caddr_t)bp->b_datap, dst: (caddr_t)io_bp->b_datap, n: bp->b_bcount);
952
953#ifdef BUF_MAKE_PRIVATE
954 io_bp->b_data_store = NULL;
955#endif
956 }
957 KERNEL_DEBUG(0xbbbbc000 | DBG_FUNC_END, bp, bp->b_shadow_ref, 0, io_bp, 0);
958
959 return io_bp;
960}
961
962
963#ifdef BUF_MAKE_PRIVATE
964errno_t
965buf_make_private(buf_t bp)
966{
967 buf_t ds_bp;
968 buf_t t_bp;
969 struct buf my_buf;
970
971 KERNEL_DEBUG(0xbbbbc004 | DBG_FUNC_START, bp, bp->b_shadow_ref, 0, 0, 0);
972
973 if (bp->b_shadow_ref == 0 || bp->b_data_ref == 0 || ISSET(bp->b_lflags, BL_SHADOW)) {
974 KERNEL_DEBUG(0xbbbbc004 | DBG_FUNC_END, bp, bp->b_shadow_ref, 0, EINVAL, 0);
975 return EINVAL;
976 }
977 my_buf.b_flags = B_META;
978 my_buf.b_datap = (uintptr_t)NULL;
979 allocbuf(&my_buf, bp->b_bcount);
980
981 bcopy((caddr_t)bp->b_datap, (caddr_t)my_buf.b_datap, bp->b_bcount);
982
983 lck_mtx_lock_spin(&buf_mtx);
984
985 for (t_bp = bp->b_shadow; t_bp; t_bp = t_bp->b_shadow) {
986 if (!ISSET(bp->b_lflags, BL_EXTERNAL)) {
987 break;
988 }
989 }
990 ds_bp = t_bp;
991
992 if (ds_bp == NULL && bp->b_data_ref) {
993 panic("buf_make_private: b_data_ref != 0 && ds_bp == NULL");
994 }
995
996 if (ds_bp && (bp->b_data_ref == 0 || bp->b_shadow_ref == 0)) {
997 panic("buf_make_private: ref_count == 0 && ds_bp != NULL");
998 }
999
1000 if (ds_bp == NULL) {
1001 lck_mtx_unlock(&buf_mtx);
1002
1003 buf_free_meta_store(&my_buf);
1004
1005 KERNEL_DEBUG(0xbbbbc004 | DBG_FUNC_END, bp, bp->b_shadow_ref, 0, EINVAL, 0);
1006 return EINVAL;
1007 }
1008 for (t_bp = bp->b_shadow; t_bp; t_bp = t_bp->b_shadow) {
1009 if (!ISSET(t_bp->b_lflags, BL_EXTERNAL)) {
1010 t_bp->b_data_store = ds_bp;
1011 }
1012 }
1013 ds_bp->b_data_ref = bp->b_data_ref;
1014
1015 bp->b_data_ref = 0;
1016 bp->b_datap = my_buf.b_datap;
1017
1018 lck_mtx_unlock(&buf_mtx);
1019
1020 KERNEL_DEBUG(0xbbbbc004 | DBG_FUNC_END, bp, bp->b_shadow_ref, 0, 0, 0);
1021 return 0;
1022}
1023#endif
1024
1025
1026void
1027buf_setfilter(buf_t bp, void (*filter)(buf_t, void *), void *transaction,
1028 void(**old_iodone)(buf_t, void *), void **old_transaction)
1029{
1030 assert(ISSET(bp->b_lflags, BL_BUSY));
1031
1032 if (old_iodone) {
1033 *old_iodone = bp->b_iodone;
1034 }
1035 if (old_transaction) {
1036 *old_transaction = bp->b_transaction;
1037 }
1038
1039 bp->b_transaction = transaction;
1040 bp->b_iodone = filter;
1041 if (filter) {
1042 bp->b_flags |= B_FILTER;
1043 } else {
1044 bp->b_flags &= ~B_FILTER;
1045 }
1046}
1047
1048
1049daddr64_t
1050buf_blkno(buf_t bp)
1051{
1052 return bp->b_blkno;
1053}
1054
1055daddr64_t
1056buf_lblkno(buf_t bp)
1057{
1058 return bp->b_lblkno;
1059}
1060
1061uint32_t
1062buf_lblksize(buf_t bp)
1063{
1064 return bp->b_lblksize;
1065}
1066
1067void
1068buf_setblkno(buf_t bp, daddr64_t blkno)
1069{
1070 bp->b_blkno = blkno;
1071}
1072
1073void
1074buf_setlblkno(buf_t bp, daddr64_t lblkno)
1075{
1076 bp->b_lblkno = lblkno;
1077}
1078
1079void
1080buf_setlblksize(buf_t bp, uint32_t lblksize)
1081{
1082 bp->b_lblksize = lblksize;
1083}
1084
1085dev_t
1086buf_device(buf_t bp)
1087{
1088 return bp->b_dev;
1089}
1090
1091errno_t
1092buf_setdevice(buf_t bp, vnode_t vp)
1093{
1094 if ((vp->v_type != VBLK) && (vp->v_type != VCHR)) {
1095 return EINVAL;
1096 }
1097 bp->b_dev = vp->v_rdev;
1098
1099 return 0;
1100}
1101
1102
1103void *
1104buf_drvdata(buf_t bp)
1105{
1106 return bp->b_drvdata;
1107}
1108
1109void
1110buf_setdrvdata(buf_t bp, void *drvdata)
1111{
1112 bp->b_drvdata = drvdata;
1113}
1114
1115void *
1116buf_fsprivate(buf_t bp)
1117{
1118 return bp->b_fsprivate;
1119}
1120
1121void
1122buf_setfsprivate(buf_t bp, void *fsprivate)
1123{
1124 bp->b_fsprivate = fsprivate;
1125}
1126
1127kauth_cred_t
1128buf_rcred(buf_t bp)
1129{
1130 return bp->b_rcred;
1131}
1132
1133kauth_cred_t
1134buf_wcred(buf_t bp)
1135{
1136 return bp->b_wcred;
1137}
1138
1139void *
1140buf_upl(buf_t bp)
1141{
1142 return bp->b_upl;
1143}
1144
1145uint32_t
1146buf_uploffset(buf_t bp)
1147{
1148 return (uint32_t)(bp->b_uploffset);
1149}
1150
1151proc_t
1152buf_proc(buf_t bp)
1153{
1154 return bp->b_proc;
1155}
1156
1157
1158static errno_t
1159buf_map_range_internal(buf_t bp, caddr_t *io_addr, boolean_t legacymode,
1160 vm_prot_t prot)
1161{
1162 buf_t real_bp;
1163 vm_offset_t vaddr;
1164 kern_return_t kret;
1165
1166 if (!(bp->b_flags & B_CLUSTER)) {
1167 *io_addr = (caddr_t)bp->b_datap;
1168 return 0;
1169 }
1170 real_bp = (buf_t)(bp->b_real_bp);
1171
1172 if (real_bp && real_bp->b_datap) {
1173 /*
1174 * b_real_bp is only valid if B_CLUSTER is SET
1175 * if it's non-zero, than someone did a cluster_bp call
1176 * if the backing physical pages were already mapped
1177 * in before the call to cluster_bp (non-zero b_datap),
1178 * than we just use that mapping
1179 */
1180 *io_addr = (caddr_t)real_bp->b_datap;
1181 return 0;
1182 }
1183
1184 if (legacymode) {
1185 kret = ubc_upl_map(bp->b_upl, &vaddr); /* Map it in */
1186 if (kret == KERN_SUCCESS) {
1187 vaddr += bp->b_uploffset;
1188 }
1189 } else {
1190 kret = ubc_upl_map_range(bp->b_upl, bp->b_uploffset, bp->b_bcount, prot, &vaddr); /* Map it in */
1191 }
1192
1193 if (kret != KERN_SUCCESS) {
1194 *io_addr = NULL;
1195
1196 return ENOMEM;
1197 }
1198
1199 *io_addr = (caddr_t)vaddr;
1200
1201 return 0;
1202}
1203
1204errno_t
1205buf_map_range(buf_t bp, caddr_t *io_addr)
1206{
1207 return buf_map_range_internal(bp, io_addr, false, VM_PROT_DEFAULT);
1208}
1209
1210errno_t
1211buf_map_range_with_prot(buf_t bp, caddr_t *io_addr, vm_prot_t prot)
1212{
1213 /* Only VM_PROT_READ and/or VM_PROT_WRITE is allowed. */
1214 prot &= (VM_PROT_READ | VM_PROT_WRITE);
1215 if (prot == VM_PROT_NONE) {
1216 *io_addr = NULL;
1217 return EINVAL;
1218 }
1219
1220 return buf_map_range_internal(bp, io_addr, false, prot);
1221}
1222
1223errno_t
1224buf_map(buf_t bp, caddr_t *io_addr)
1225{
1226 return buf_map_range_internal(bp, io_addr, true, VM_PROT_DEFAULT);
1227}
1228
1229static errno_t
1230buf_unmap_range_internal(buf_t bp, boolean_t legacymode)
1231{
1232 buf_t real_bp;
1233 kern_return_t kret;
1234
1235 if (!(bp->b_flags & B_CLUSTER)) {
1236 return 0;
1237 }
1238 /*
1239 * see buf_map for the explanation
1240 */
1241 real_bp = (buf_t)(bp->b_real_bp);
1242
1243 if (real_bp && real_bp->b_datap) {
1244 return 0;
1245 }
1246
1247 if ((bp->b_lflags & BL_IOBUF) &&
1248 ((bp->b_flags & (B_PAGEIO | B_READ)) != (B_PAGEIO | B_READ))) {
1249 /*
1250 * ignore pageins... the 'right' thing will
1251 * happen due to the way we handle speculative
1252 * clusters...
1253 *
1254 * when we commit these pages, we'll hit
1255 * it with UPL_COMMIT_INACTIVE which
1256 * will clear the reference bit that got
1257 * turned on when we touched the mapping
1258 */
1259 bp->b_flags |= B_AGE;
1260 }
1261
1262 if (legacymode) {
1263 kret = ubc_upl_unmap(bp->b_upl);
1264 } else {
1265 kret = ubc_upl_unmap_range(bp->b_upl, bp->b_uploffset, bp->b_bcount);
1266 }
1267
1268 if (kret != KERN_SUCCESS) {
1269 return EINVAL;
1270 }
1271 return 0;
1272}
1273
1274errno_t
1275buf_unmap_range(buf_t bp)
1276{
1277 return buf_unmap_range_internal(bp, false);
1278}
1279
1280errno_t
1281buf_unmap(buf_t bp)
1282{
1283 return buf_unmap_range_internal(bp, true);
1284}
1285
1286
1287void
1288buf_clear(buf_t bp)
1289{
1290 caddr_t baddr;
1291
1292 if (buf_map(bp, io_addr: &baddr) == 0) {
1293 bzero(s: baddr, n: bp->b_bcount);
1294 buf_unmap(bp);
1295 }
1296 bp->b_resid = 0;
1297}
1298
1299/*
1300 * Read or write a buffer that is not contiguous on disk.
1301 * buffer is marked done/error at the conclusion
1302 */
1303static int
1304buf_strategy_fragmented(vnode_t devvp, buf_t bp, off_t f_offset, size_t contig_bytes)
1305{
1306 vnode_t vp = buf_vnode(bp);
1307 buf_t io_bp; /* For reading or writing a single block */
1308 int io_direction;
1309 int io_resid;
1310 size_t io_contig_bytes;
1311 daddr64_t io_blkno;
1312 int error = 0;
1313 int bmap_flags;
1314
1315 /*
1316 * save our starting point... the bp was already mapped
1317 * in buf_strategy before we got called
1318 * no sense doing it again.
1319 */
1320 io_blkno = bp->b_blkno;
1321 /*
1322 * Make sure we redo this mapping for the next I/O
1323 * i.e. this can never be a 'permanent' mapping
1324 */
1325 bp->b_blkno = bp->b_lblkno;
1326
1327 /*
1328 * Get an io buffer to do the deblocking
1329 */
1330 io_bp = alloc_io_buf(devvp, 0);
1331
1332 io_bp->b_lblkno = bp->b_lblkno;
1333 io_bp->b_lblksize = bp->b_lblksize;
1334 io_bp->b_datap = bp->b_datap;
1335 io_resid = bp->b_bcount;
1336 io_direction = bp->b_flags & B_READ;
1337 io_contig_bytes = contig_bytes;
1338
1339 if (bp->b_flags & B_READ) {
1340 bmap_flags = VNODE_READ;
1341 } else {
1342 bmap_flags = VNODE_WRITE;
1343 }
1344
1345 for (;;) {
1346 if (io_blkno == -1) {
1347 /*
1348 * this is unexepected, but we'll allow for it
1349 */
1350 bzero(s: (caddr_t)io_bp->b_datap, n: (int)io_contig_bytes);
1351 } else {
1352 io_bp->b_bcount = (uint32_t)io_contig_bytes;
1353 io_bp->b_bufsize = (uint32_t)io_contig_bytes;
1354 io_bp->b_resid = (uint32_t)io_contig_bytes;
1355 io_bp->b_blkno = io_blkno;
1356
1357 buf_reset(bp: io_bp, io_flags: io_direction);
1358
1359 /*
1360 * Call the device to do the I/O and wait for it. Make sure the appropriate party is charged for write
1361 */
1362
1363 if (!ISSET(bp->b_flags, B_READ)) {
1364 OSAddAtomic(1, &devvp->v_numoutput);
1365 }
1366
1367 if ((error = VNOP_STRATEGY(bp: io_bp))) {
1368 break;
1369 }
1370 if ((error = (int)buf_biowait(bp: io_bp))) {
1371 break;
1372 }
1373 if (io_bp->b_resid) {
1374 io_resid -= (io_contig_bytes - io_bp->b_resid);
1375 break;
1376 }
1377 }
1378 if ((io_resid -= io_contig_bytes) == 0) {
1379 break;
1380 }
1381 f_offset += io_contig_bytes;
1382 io_bp->b_datap += io_contig_bytes;
1383
1384 /*
1385 * Map the current position to a physical block number
1386 */
1387 if ((error = VNOP_BLOCKMAP(vp, f_offset, io_resid, &io_blkno, &io_contig_bytes, NULL, bmap_flags, NULL))) {
1388 break;
1389 }
1390 }
1391 buf_free(bp: io_bp);
1392
1393 if (error) {
1394 buf_seterror(bp, error);
1395 }
1396 bp->b_resid = io_resid;
1397 /*
1398 * This I/O is now complete
1399 */
1400 buf_biodone(bp);
1401
1402 return error;
1403}
1404
1405
1406/*
1407 * struct vnop_strategy_args {
1408 * struct buf *a_bp;
1409 * } *ap;
1410 */
1411errno_t
1412buf_strategy(vnode_t devvp, void *ap)
1413{
1414 buf_t bp = ((struct vnop_strategy_args *)ap)->a_bp;
1415 vnode_t vp = bp->b_vp;
1416 int bmap_flags;
1417 errno_t error;
1418#if CONFIG_DTRACE
1419 int dtrace_io_start_flag = 0; /* We only want to trip the io:::start
1420 * probe once, with the true physical
1421 * block in place (b_blkno)
1422 */
1423
1424#endif
1425
1426 if (vp == NULL || vp->v_type == VCHR || vp->v_type == VBLK) {
1427 panic("buf_strategy: b_vp == NULL || vtype == VCHR | VBLK");
1428 }
1429 /*
1430 * associate the physical device with
1431 * with this buf_t even if we don't
1432 * end up issuing the I/O...
1433 */
1434 bp->b_dev = devvp->v_rdev;
1435
1436 if (bp->b_flags & B_READ) {
1437 bmap_flags = VNODE_READ;
1438 } else {
1439 bmap_flags = VNODE_WRITE;
1440 }
1441
1442 if (!(bp->b_flags & B_CLUSTER)) {
1443 if ((bp->b_upl)) {
1444 /*
1445 * we have a UPL associated with this bp
1446 * go through cluster_bp which knows how
1447 * to deal with filesystem block sizes
1448 * that aren't equal to the page size
1449 */
1450 DTRACE_IO1(start, buf_t, bp);
1451 return cluster_bp(bp);
1452 }
1453 if (bp->b_blkno == bp->b_lblkno) {
1454 off_t f_offset;
1455 size_t contig_bytes;
1456
1457 if (bp->b_lblksize && bp->b_lblkno >= 0) {
1458 f_offset = bp->b_lblkno * bp->b_lblksize;
1459 } else if ((error = VNOP_BLKTOOFF(vp, bp->b_lblkno, &f_offset))) {
1460 DTRACE_IO1(start, buf_t, bp);
1461 buf_seterror(bp, error);
1462 buf_biodone(bp);
1463
1464 return error;
1465 }
1466
1467 if ((error = VNOP_BLOCKMAP(vp, f_offset, bp->b_bcount, &bp->b_blkno, &contig_bytes, NULL, bmap_flags, NULL))) {
1468 DTRACE_IO1(start, buf_t, bp);
1469 buf_seterror(bp, error);
1470 buf_biodone(bp);
1471
1472 return error;
1473 }
1474
1475 DTRACE_IO1(start, buf_t, bp);
1476#if CONFIG_DTRACE
1477 dtrace_io_start_flag = 1;
1478#endif /* CONFIG_DTRACE */
1479
1480 if ((bp->b_blkno == -1) || (contig_bytes == 0)) {
1481 /* Set block number to force biodone later */
1482 bp->b_blkno = -1;
1483 buf_clear(bp);
1484 } else if (contig_bytes < (size_t)bp->b_bcount) {
1485 return buf_strategy_fragmented(devvp, bp, f_offset, contig_bytes);
1486 }
1487 }
1488
1489#if CONFIG_DTRACE
1490 if (dtrace_io_start_flag == 0) {
1491 DTRACE_IO1(start, buf_t, bp);
1492 dtrace_io_start_flag = 1;
1493 }
1494#endif /* CONFIG_DTRACE */
1495
1496 if (bp->b_blkno == -1) {
1497 buf_biodone(bp);
1498 return 0;
1499 }
1500 }
1501
1502#if CONFIG_DTRACE
1503 if (dtrace_io_start_flag == 0) {
1504 DTRACE_IO1(start, buf_t, bp);
1505 }
1506#endif /* CONFIG_DTRACE */
1507
1508#if CONFIG_PROTECT
1509 /* Capture f_offset in the bufattr*/
1510 cpx_t cpx = bufattr_cpx(bap: buf_attr(bp));
1511 if (cpx) {
1512 /* No need to go here for older EAs */
1513 if (cpx_use_offset_for_iv(cpx) && !cpx_synthetic_offset_for_iv(cpx)) {
1514 off_t f_offset;
1515
1516 /*
1517 * this assert should be changed if cluster_io ever
1518 * changes its logical block size.
1519 */
1520 assert((bp->b_lblksize == CLUSTER_IO_BLOCK_SIZE) || !(bp->b_flags & B_CLUSTER));
1521
1522 if (bp->b_lblksize && bp->b_lblkno >= 0) {
1523 f_offset = bp->b_lblkno * bp->b_lblksize;
1524 } else if ((error = VNOP_BLKTOOFF(bp->b_vp, bp->b_lblkno, &f_offset))) {
1525 return error;
1526 }
1527
1528 /*
1529 * Attach the file offset to this buffer. The
1530 * bufattr attributes will be passed down the stack
1531 * until they reach the storage driver (whether
1532 * IOFlashStorage, ASP, or IONVMe). The driver
1533 * will retain the offset in a local variable when it
1534 * issues its I/Os to the NAND controller.
1535 *
1536 * Note that LwVM may end up splitting this I/O
1537 * into sub-I/Os if it crosses a chunk boundary. In this
1538 * case, LwVM will update this field when it dispatches
1539 * each I/O to IOFlashStorage. But from our perspective
1540 * we have only issued a single I/O.
1541 *
1542 * In the case of APFS we do not bounce through another
1543 * intermediate layer (such as CoreStorage). APFS will
1544 * issue the I/Os directly to the block device / IOMedia
1545 * via buf_strategy on the specfs node.
1546 */
1547 buf_setcpoff(bp, foffset: f_offset);
1548 CP_DEBUG((CPDBG_OFFSET_IO | DBG_FUNC_NONE), (uint32_t) f_offset, (uint32_t) bp->b_lblkno, (uint32_t) bp->b_blkno, (uint32_t) bp->b_bcount, 0);
1549 }
1550 }
1551#endif
1552
1553 /*
1554 * we can issue the I/O because...
1555 * either B_CLUSTER is set which
1556 * means that the I/O is properly set
1557 * up to be a multiple of the page size, or
1558 * we were able to successfully set up the
1559 * physical block mapping
1560 */
1561 bp->b_vnop_vp = devvp;
1562 error = VOCALL(devvp->v_op, VOFFSET(vnop_strategy), ap);
1563 bp->b_vnop_vp = NULLVP;
1564 DTRACE_FSINFO(strategy, vnode_t, vp);
1565 return error;
1566}
1567
1568
1569
1570buf_t
1571buf_alloc(vnode_t vp)
1572{
1573 return alloc_io_buf(vp, is_vm_privileged());
1574}
1575
1576void
1577buf_free(buf_t bp)
1578{
1579 free_io_buf(bp);
1580}
1581
1582
1583/*
1584 * iterate buffers for the specified vp.
1585 * if BUF_SCAN_DIRTY is set, do the dirty list
1586 * if BUF_SCAN_CLEAN is set, do the clean list
1587 * if neither flag is set, default to BUF_SCAN_DIRTY
1588 * if BUF_NOTIFY_BUSY is set, call the callout function using a NULL bp for busy pages
1589 */
1590
1591struct buf_iterate_info_t {
1592 int flag;
1593 struct buflists *listhead;
1594};
1595
1596void
1597buf_iterate(vnode_t vp, int (*callout)(buf_t, void *), int flags, void *arg)
1598{
1599 buf_t bp;
1600 int retval;
1601 struct buflists local_iterblkhd;
1602 int lock_flags = BAC_NOWAIT | BAC_REMOVE;
1603 int notify_busy = flags & BUF_NOTIFY_BUSY;
1604 struct buf_iterate_info_t list[2];
1605 int num_lists, i;
1606
1607 if (flags & BUF_SKIP_LOCKED) {
1608 lock_flags |= BAC_SKIP_LOCKED;
1609 }
1610 if (flags & BUF_SKIP_NONLOCKED) {
1611 lock_flags |= BAC_SKIP_NONLOCKED;
1612 }
1613
1614 if (!(flags & (BUF_SCAN_DIRTY | BUF_SCAN_CLEAN))) {
1615 flags |= BUF_SCAN_DIRTY;
1616 }
1617
1618 num_lists = 0;
1619
1620 if (flags & BUF_SCAN_DIRTY) {
1621 list[num_lists].flag = VBI_DIRTY;
1622 list[num_lists].listhead = &vp->v_dirtyblkhd;
1623 num_lists++;
1624 }
1625 if (flags & BUF_SCAN_CLEAN) {
1626 list[num_lists].flag = VBI_CLEAN;
1627 list[num_lists].listhead = &vp->v_cleanblkhd;
1628 num_lists++;
1629 }
1630
1631 for (i = 0; i < num_lists; i++) {
1632 lck_mtx_lock(lck: &buf_mtx);
1633
1634 if (buf_iterprepare(vp, &local_iterblkhd, flags: list[i].flag)) {
1635 lck_mtx_unlock(lck: &buf_mtx);
1636 continue;
1637 }
1638 while (!LIST_EMPTY(&local_iterblkhd)) {
1639 bp = LIST_FIRST(&local_iterblkhd);
1640 LIST_REMOVE(bp, b_vnbufs);
1641 LIST_INSERT_HEAD(list[i].listhead, bp, b_vnbufs);
1642
1643 if (buf_acquire_locked(bp, flags: lock_flags, slpflag: 0, slptimeo: 0)) {
1644 if (notify_busy) {
1645 bp = NULL;
1646 } else {
1647 continue;
1648 }
1649 }
1650
1651 lck_mtx_unlock(lck: &buf_mtx);
1652
1653 retval = callout(bp, arg);
1654
1655 switch (retval) {
1656 case BUF_RETURNED:
1657 if (bp) {
1658 buf_brelse(bp);
1659 }
1660 break;
1661 case BUF_CLAIMED:
1662 break;
1663 case BUF_RETURNED_DONE:
1664 if (bp) {
1665 buf_brelse(bp);
1666 }
1667 lck_mtx_lock(lck: &buf_mtx);
1668 goto out;
1669 case BUF_CLAIMED_DONE:
1670 lck_mtx_lock(lck: &buf_mtx);
1671 goto out;
1672 }
1673 lck_mtx_lock(lck: &buf_mtx);
1674 } /* while list has more nodes */
1675out:
1676 buf_itercomplete(vp, &local_iterblkhd, flags: list[i].flag);
1677 lck_mtx_unlock(lck: &buf_mtx);
1678 } /* for each list */
1679} /* buf_iterate */
1680
1681
1682/*
1683 * Flush out and invalidate all buffers associated with a vnode.
1684 */
1685int
1686buf_invalidateblks(vnode_t vp, int flags, int slpflag, int slptimeo)
1687{
1688 buf_t bp;
1689 int aflags;
1690 int error = 0;
1691 int must_rescan = 1;
1692 struct buflists local_iterblkhd;
1693
1694
1695 if (LIST_EMPTY(&vp->v_cleanblkhd) && LIST_EMPTY(&vp->v_dirtyblkhd)) {
1696 return 0;
1697 }
1698
1699 lck_mtx_lock(lck: &buf_mtx);
1700
1701 for (;;) {
1702 if (must_rescan == 0) {
1703 /*
1704 * the lists may not be empty, but all that's left at this
1705 * point are metadata or B_LOCKED buffers which are being
1706 * skipped... we know this because we made it through both
1707 * the clean and dirty lists without dropping buf_mtx...
1708 * each time we drop buf_mtx we bump "must_rescan"
1709 */
1710 break;
1711 }
1712 if (LIST_EMPTY(&vp->v_cleanblkhd) && LIST_EMPTY(&vp->v_dirtyblkhd)) {
1713 break;
1714 }
1715 must_rescan = 0;
1716 /*
1717 * iterate the clean list
1718 */
1719 if (buf_iterprepare(vp, &local_iterblkhd, VBI_CLEAN)) {
1720 goto try_dirty_list;
1721 }
1722 while (!LIST_EMPTY(&local_iterblkhd)) {
1723 bp = LIST_FIRST(&local_iterblkhd);
1724
1725 LIST_REMOVE(bp, b_vnbufs);
1726 LIST_INSERT_HEAD(&vp->v_cleanblkhd, bp, b_vnbufs);
1727
1728 /*
1729 * some filesystems distinguish meta data blocks with a negative logical block #
1730 */
1731 if ((flags & BUF_SKIP_META) && (bp->b_lblkno < 0 || ISSET(bp->b_flags, B_META))) {
1732 continue;
1733 }
1734
1735 aflags = BAC_REMOVE;
1736
1737 if (!(flags & BUF_INVALIDATE_LOCKED)) {
1738 aflags |= BAC_SKIP_LOCKED;
1739 }
1740
1741 if ((error = (int)buf_acquire_locked(bp, flags: aflags, slpflag, slptimeo))) {
1742 if (error == EDEADLK) {
1743 /*
1744 * this buffer was marked B_LOCKED...
1745 * we didn't drop buf_mtx, so we
1746 * we don't need to rescan
1747 */
1748 continue;
1749 }
1750 if (error == EAGAIN) {
1751 /*
1752 * found a busy buffer... we blocked and
1753 * dropped buf_mtx, so we're going to
1754 * need to rescan after this pass is completed
1755 */
1756 must_rescan++;
1757 continue;
1758 }
1759 /*
1760 * got some kind of 'real' error out of the msleep
1761 * in buf_acquire_locked, terminate the scan and return the error
1762 */
1763 buf_itercomplete(vp, &local_iterblkhd, VBI_CLEAN);
1764
1765 lck_mtx_unlock(lck: &buf_mtx);
1766 return error;
1767 }
1768 lck_mtx_unlock(lck: &buf_mtx);
1769
1770 if (bp->b_flags & B_LOCKED) {
1771 KERNEL_DEBUG(0xbbbbc038, bp, 0, 0, 0, 0);
1772 }
1773
1774 CLR(bp->b_flags, B_LOCKED);
1775 SET(bp->b_flags, B_INVAL);
1776 buf_brelse(bp);
1777
1778 lck_mtx_lock(lck: &buf_mtx);
1779
1780 /*
1781 * by dropping buf_mtx, we allow new
1782 * buffers to be added to the vnode list(s)
1783 * we'll have to rescan at least once more
1784 * if the queues aren't empty
1785 */
1786 must_rescan++;
1787 }
1788 buf_itercomplete(vp, &local_iterblkhd, VBI_CLEAN);
1789
1790try_dirty_list:
1791 /*
1792 * Now iterate on dirty blks
1793 */
1794 if (buf_iterprepare(vp, &local_iterblkhd, VBI_DIRTY)) {
1795 continue;
1796 }
1797 while (!LIST_EMPTY(&local_iterblkhd)) {
1798 bp = LIST_FIRST(&local_iterblkhd);
1799
1800 LIST_REMOVE(bp, b_vnbufs);
1801 LIST_INSERT_HEAD(&vp->v_dirtyblkhd, bp, b_vnbufs);
1802
1803 /*
1804 * some filesystems distinguish meta data blocks with a negative logical block #
1805 */
1806 if ((flags & BUF_SKIP_META) && (bp->b_lblkno < 0 || ISSET(bp->b_flags, B_META))) {
1807 continue;
1808 }
1809
1810 aflags = BAC_REMOVE;
1811
1812 if (!(flags & BUF_INVALIDATE_LOCKED)) {
1813 aflags |= BAC_SKIP_LOCKED;
1814 }
1815
1816 if ((error = (int)buf_acquire_locked(bp, flags: aflags, slpflag, slptimeo))) {
1817 if (error == EDEADLK) {
1818 /*
1819 * this buffer was marked B_LOCKED...
1820 * we didn't drop buf_mtx, so we
1821 * we don't need to rescan
1822 */
1823 continue;
1824 }
1825 if (error == EAGAIN) {
1826 /*
1827 * found a busy buffer... we blocked and
1828 * dropped buf_mtx, so we're going to
1829 * need to rescan after this pass is completed
1830 */
1831 must_rescan++;
1832 continue;
1833 }
1834 /*
1835 * got some kind of 'real' error out of the msleep
1836 * in buf_acquire_locked, terminate the scan and return the error
1837 */
1838 buf_itercomplete(vp, &local_iterblkhd, VBI_DIRTY);
1839
1840 lck_mtx_unlock(lck: &buf_mtx);
1841 return error;
1842 }
1843 lck_mtx_unlock(lck: &buf_mtx);
1844
1845 if (bp->b_flags & B_LOCKED) {
1846 KERNEL_DEBUG(0xbbbbc038, bp, 0, 0, 1, 0);
1847 }
1848
1849 CLR(bp->b_flags, B_LOCKED);
1850 SET(bp->b_flags, B_INVAL);
1851
1852 if (ISSET(bp->b_flags, B_DELWRI) && (flags & BUF_WRITE_DATA)) {
1853 (void) VNOP_BWRITE(bp);
1854 } else {
1855 buf_brelse(bp);
1856 }
1857
1858 lck_mtx_lock(lck: &buf_mtx);
1859 /*
1860 * by dropping buf_mtx, we allow new
1861 * buffers to be added to the vnode list(s)
1862 * we'll have to rescan at least once more
1863 * if the queues aren't empty
1864 */
1865 must_rescan++;
1866 }
1867 buf_itercomplete(vp, &local_iterblkhd, VBI_DIRTY);
1868 }
1869 lck_mtx_unlock(lck: &buf_mtx);
1870
1871 return 0;
1872}
1873
1874void
1875buf_flushdirtyblks(vnode_t vp, int wait, int flags, const char *msg)
1876{
1877 (void) buf_flushdirtyblks_skipinfo(vp, wait, flags, msg);
1878 return;
1879}
1880
1881int
1882buf_flushdirtyblks_skipinfo(vnode_t vp, int wait, int flags, const char *msg)
1883{
1884 buf_t bp;
1885 int writes_issued = 0;
1886 errno_t error;
1887 int busy = 0;
1888 struct buflists local_iterblkhd;
1889 int lock_flags = BAC_NOWAIT | BAC_REMOVE;
1890 int any_locked = 0;
1891
1892 if (flags & BUF_SKIP_LOCKED) {
1893 lock_flags |= BAC_SKIP_LOCKED;
1894 }
1895 if (flags & BUF_SKIP_NONLOCKED) {
1896 lock_flags |= BAC_SKIP_NONLOCKED;
1897 }
1898loop:
1899 lck_mtx_lock(lck: &buf_mtx);
1900
1901 if (buf_iterprepare(vp, &local_iterblkhd, VBI_DIRTY) == 0) {
1902 while (!LIST_EMPTY(&local_iterblkhd)) {
1903 bp = LIST_FIRST(&local_iterblkhd);
1904 LIST_REMOVE(bp, b_vnbufs);
1905 LIST_INSERT_HEAD(&vp->v_dirtyblkhd, bp, b_vnbufs);
1906
1907 if ((error = buf_acquire_locked(bp, flags: lock_flags, slpflag: 0, slptimeo: 0)) == EBUSY) {
1908 busy++;
1909 }
1910 if (error) {
1911 /*
1912 * If we passed in BUF_SKIP_LOCKED or BUF_SKIP_NONLOCKED,
1913 * we may want to do somethign differently if a locked or unlocked
1914 * buffer was encountered (depending on the arg specified).
1915 * In this case, we know that one of those two was set, and the
1916 * buf acquisition failed above.
1917 *
1918 * If it failed with EDEADLK, then save state which can be emitted
1919 * later on to the caller. Most callers should not care.
1920 */
1921 if (error == EDEADLK) {
1922 any_locked++;
1923 }
1924 continue;
1925 }
1926 lck_mtx_unlock(lck: &buf_mtx);
1927
1928 bp->b_flags &= ~B_LOCKED;
1929
1930 /*
1931 * Wait for I/O associated with indirect blocks to complete,
1932 * since there is no way to quickly wait for them below.
1933 */
1934 if ((bp->b_vp == vp) || (wait == 0)) {
1935 (void) buf_bawrite(bp);
1936 } else {
1937 (void) VNOP_BWRITE(bp);
1938 }
1939 writes_issued++;
1940
1941 lck_mtx_lock(lck: &buf_mtx);
1942 }
1943 buf_itercomplete(vp, &local_iterblkhd, VBI_DIRTY);
1944 }
1945 lck_mtx_unlock(lck: &buf_mtx);
1946
1947 if (wait) {
1948 (void)vnode_waitforwrites(vp, output_target: 0, slpflag: 0, slptimeout: 0, msg);
1949
1950 if (vp->v_dirtyblkhd.lh_first && busy) {
1951 /*
1952 * we had one or more BUSY buffers on
1953 * the dirtyblock list... most likely
1954 * these are due to delayed writes that
1955 * were moved to the bclean queue but
1956 * have not yet been 'written'.
1957 * if we issued some writes on the
1958 * previous pass, we try again immediately
1959 * if we didn't, we'll sleep for some time
1960 * to allow the state to change...
1961 */
1962 if (writes_issued == 0) {
1963 (void)tsleep(chan: (caddr_t)&vp->v_numoutput,
1964 PRIBIO + 1, wmesg: "vnode_flushdirtyblks", timo: hz / 20);
1965 }
1966 writes_issued = 0;
1967 busy = 0;
1968
1969 goto loop;
1970 }
1971 }
1972
1973 return any_locked;
1974}
1975
1976
1977/*
1978 * called with buf_mtx held...
1979 * this lock protects the queue manipulation
1980 */
1981static int
1982buf_iterprepare(vnode_t vp, struct buflists *iterheadp, int flags)
1983{
1984 struct buflists * listheadp;
1985
1986 if (flags & VBI_DIRTY) {
1987 listheadp = &vp->v_dirtyblkhd;
1988 } else {
1989 listheadp = &vp->v_cleanblkhd;
1990 }
1991
1992 while (vp->v_iterblkflags & VBI_ITER) {
1993 vp->v_iterblkflags |= VBI_ITERWANT;
1994 msleep(chan: &vp->v_iterblkflags, mtx: &buf_mtx, pri: 0, wmesg: "buf_iterprepare", NULL);
1995 }
1996 if (LIST_EMPTY(listheadp)) {
1997 LIST_INIT(iterheadp);
1998 return EINVAL;
1999 }
2000 vp->v_iterblkflags |= VBI_ITER;
2001
2002 iterheadp->lh_first = listheadp->lh_first;
2003 listheadp->lh_first->b_vnbufs.le_prev = &iterheadp->lh_first;
2004 LIST_INIT(listheadp);
2005
2006 return 0;
2007}
2008
2009/*
2010 * called with buf_mtx held...
2011 * this lock protects the queue manipulation
2012 */
2013static void
2014buf_itercomplete(vnode_t vp, struct buflists *iterheadp, int flags)
2015{
2016 struct buflists * listheadp;
2017 buf_t bp;
2018
2019 if (flags & VBI_DIRTY) {
2020 listheadp = &vp->v_dirtyblkhd;
2021 } else {
2022 listheadp = &vp->v_cleanblkhd;
2023 }
2024
2025 while (!LIST_EMPTY(iterheadp)) {
2026 bp = LIST_FIRST(iterheadp);
2027 LIST_REMOVE(bp, b_vnbufs);
2028 LIST_INSERT_HEAD(listheadp, bp, b_vnbufs);
2029 }
2030 vp->v_iterblkflags &= ~VBI_ITER;
2031
2032 if (vp->v_iterblkflags & VBI_ITERWANT) {
2033 vp->v_iterblkflags &= ~VBI_ITERWANT;
2034 wakeup(chan: &vp->v_iterblkflags);
2035 }
2036}
2037
2038
2039static void
2040bremfree_locked(buf_t bp)
2041{
2042 struct bqueues *dp = NULL;
2043 int whichq;
2044
2045 whichq = bp->b_whichq;
2046
2047 if (whichq == -1) {
2048 if (bp->b_shadow_ref == 0) {
2049 panic("bremfree_locked: %p not on freelist", bp);
2050 }
2051 /*
2052 * there are clones pointing to 'bp'...
2053 * therefore, it was not put on a freelist
2054 * when buf_brelse was last called on 'bp'
2055 */
2056 return;
2057 }
2058 /*
2059 * We only calculate the head of the freelist when removing
2060 * the last element of the list as that is the only time that
2061 * it is needed (e.g. to reset the tail pointer).
2062 *
2063 * NB: This makes an assumption about how tailq's are implemented.
2064 */
2065 if (bp->b_freelist.tqe_next == NULL) {
2066 dp = &bufqueues[whichq];
2067
2068 if (dp->tqh_last != &bp->b_freelist.tqe_next) {
2069 panic("bremfree: lost tail");
2070 }
2071 }
2072 TAILQ_REMOVE(dp, bp, b_freelist);
2073
2074 if (whichq == BQ_LAUNDRY) {
2075 blaundrycnt--;
2076 }
2077
2078 bp->b_whichq = -1;
2079 bp->b_timestamp = 0;
2080 bp->b_shadow = 0;
2081}
2082
2083/*
2084 * Associate a buffer with a vnode.
2085 * buf_mtx must be locked on entry
2086 */
2087static void
2088bgetvp_locked(vnode_t vp, buf_t bp)
2089{
2090 if (bp->b_vp != vp) {
2091 panic("bgetvp_locked: not free");
2092 }
2093
2094 if (vp->v_type == VBLK || vp->v_type == VCHR) {
2095 bp->b_dev = vp->v_rdev;
2096 } else {
2097 bp->b_dev = NODEV;
2098 }
2099 /*
2100 * Insert onto list for new vnode.
2101 */
2102 bufinsvn(bp, &vp->v_cleanblkhd);
2103}
2104
2105/*
2106 * Disassociate a buffer from a vnode.
2107 * buf_mtx must be locked on entry
2108 */
2109static void
2110brelvp_locked(buf_t bp)
2111{
2112 /*
2113 * Delete from old vnode list, if on one.
2114 */
2115 if (bp->b_vnbufs.le_next != NOLIST) {
2116 bufremvn(bp);
2117 }
2118
2119 bp->b_vp = (vnode_t)NULL;
2120}
2121
2122/*
2123 * Reassign a buffer from one vnode to another.
2124 * Used to assign file specific control information
2125 * (indirect blocks) to the vnode to which they belong.
2126 */
2127static void
2128buf_reassign(buf_t bp, vnode_t newvp)
2129{
2130 struct buflists *listheadp;
2131
2132 if (newvp == NULL) {
2133 printf("buf_reassign: NULL");
2134 return;
2135 }
2136 lck_mtx_lock_spin(lck: &buf_mtx);
2137
2138 /*
2139 * Delete from old vnode list, if on one.
2140 */
2141 if (bp->b_vnbufs.le_next != NOLIST) {
2142 bufremvn(bp);
2143 }
2144 /*
2145 * If dirty, put on list of dirty buffers;
2146 * otherwise insert onto list of clean buffers.
2147 */
2148 if (ISSET(bp->b_flags, B_DELWRI)) {
2149 listheadp = &newvp->v_dirtyblkhd;
2150 } else {
2151 listheadp = &newvp->v_cleanblkhd;
2152 }
2153 bufinsvn(bp, listheadp);
2154
2155 lck_mtx_unlock(lck: &buf_mtx);
2156}
2157
2158static __inline__ void
2159bufhdrinit(buf_t bp)
2160{
2161 bzero(s: (char *)bp, n: sizeof *bp);
2162 bp->b_dev = NODEV;
2163 bp->b_rcred = NOCRED;
2164 bp->b_wcred = NOCRED;
2165 bp->b_vnbufs.le_next = NOLIST;
2166 bp->b_flags = B_INVAL;
2167
2168 return;
2169}
2170
2171/*
2172 * Initialize buffers and hash links for buffers.
2173 */
2174__private_extern__ void
2175bufinit(void)
2176{
2177 buf_t bp;
2178 struct bqueues *dp;
2179 int i;
2180
2181 nbuf_headers = 0;
2182 /* Initialize the buffer queues ('freelists') and the hash table */
2183 for (dp = bufqueues; dp < &bufqueues[BQUEUES]; dp++) {
2184 TAILQ_INIT(dp);
2185 }
2186 bufhashtbl = hashinit(count: nbuf_hashelements, M_CACHE, hashmask: &bufhash);
2187
2188 buf_busycount = 0;
2189
2190 /* Initialize the buffer headers */
2191 for (i = 0; i < max_nbuf_headers; i++) {
2192 nbuf_headers++;
2193 bp = &buf_headers[i];
2194 bufhdrinit(bp);
2195
2196 BLISTNONE(bp);
2197 dp = &bufqueues[BQ_EMPTY];
2198 bp->b_whichq = BQ_EMPTY;
2199 bp->b_timestamp = buf_timestamp();
2200 binsheadfree(bp, dp, BQ_EMPTY);
2201 binshash(bp, dp: &invalhash);
2202 }
2203 boot_nbuf_headers = nbuf_headers;
2204
2205 TAILQ_INIT(&iobufqueue);
2206 TAILQ_INIT(&delaybufqueue);
2207
2208 for (; i < nbuf_headers + niobuf_headers; i++) {
2209 bp = &buf_headers[i];
2210 bufhdrinit(bp);
2211 bp->b_whichq = -1;
2212 binsheadfree(bp, &iobufqueue, -1);
2213 }
2214
2215 /*
2216 * allocate and initialize cluster specific global locks...
2217 */
2218 cluster_init();
2219
2220 printf("using %d buffer headers and %d cluster IO buffer headers\n",
2221 nbuf_headers, niobuf_headers);
2222
2223 /* start the bcleanbuf() thread */
2224 bcleanbuf_thread_init();
2225
2226 /* Register a callout for relieving vm pressure */
2227 if (vm_set_buffer_cleanup_callout(func: buffer_cache_gc) != KERN_SUCCESS) {
2228 panic("Couldn't register buffer cache callout for vm pressure!");
2229 }
2230}
2231
2232/*
2233 * Zones for the meta data buffers
2234 */
2235
2236#define MINMETA 512
2237#define MAXMETA 16384
2238
2239KALLOC_HEAP_DEFINE(KHEAP_VFS_BIO, "vfs_bio", KHEAP_ID_DATA_BUFFERS);
2240
2241static struct buf *
2242bio_doread(vnode_t vp, daddr64_t blkno, int size, kauth_cred_t cred, int async, int queuetype)
2243{
2244 buf_t bp;
2245
2246 bp = buf_getblk(vp, blkno, size, slpflag: 0, slptimeo: 0, operation: queuetype);
2247
2248 /*
2249 * If buffer does not have data valid, start a read.
2250 * Note that if buffer is B_INVAL, buf_getblk() won't return it.
2251 * Therefore, it's valid if it's I/O has completed or been delayed.
2252 */
2253 if (!ISSET(bp->b_flags, (B_DONE | B_DELWRI))) {
2254 struct proc *p;
2255
2256 p = current_proc();
2257
2258 /* Start I/O for the buffer (keeping credentials). */
2259 SET(bp->b_flags, B_READ | async);
2260 if (IS_VALID_CRED(cred) && !IS_VALID_CRED(bp->b_rcred)) {
2261 kauth_cred_ref(cred);
2262 bp->b_rcred = cred;
2263 }
2264
2265 VNOP_STRATEGY(bp);
2266
2267 trace(TR_BREADMISS, pack(vp, size), blkno);
2268
2269 /* Pay for the read. */
2270 if (p && p->p_stats) {
2271 OSIncrementAtomicLong(address: &p->p_stats->p_ru.ru_inblock); /* XXX */
2272 }
2273
2274 if (async) {
2275 /*
2276 * since we asked for an ASYNC I/O
2277 * the biodone will do the brelse
2278 * we don't want to pass back a bp
2279 * that we don't 'own'
2280 */
2281 bp = NULL;
2282 }
2283 } else if (async) {
2284 buf_brelse(bp);
2285 bp = NULL;
2286 }
2287
2288 trace(TR_BREADHIT, pack(vp, size), blkno);
2289
2290 return bp;
2291}
2292
2293/*
2294 * Perform the reads for buf_breadn() and buf_meta_breadn().
2295 * Trivial modification to the breada algorithm presented in Bach (p.55).
2296 */
2297static errno_t
2298do_breadn_for_type(vnode_t vp, daddr64_t blkno, int size, daddr64_t *rablks, int *rasizes,
2299 int nrablks, kauth_cred_t cred, buf_t *bpp, int queuetype)
2300{
2301 buf_t bp;
2302 int i;
2303
2304 bp = *bpp = bio_doread(vp, blkno, size, cred, async: 0, queuetype);
2305
2306 /*
2307 * For each of the read-ahead blocks, start a read, if necessary.
2308 */
2309 for (i = 0; i < nrablks; i++) {
2310 /* If it's in the cache, just go on to next one. */
2311 if (incore(vp, blkno: rablks[i])) {
2312 continue;
2313 }
2314
2315 /* Get a buffer for the read-ahead block */
2316 (void) bio_doread(vp, blkno: rablks[i], size: rasizes[i], cred, B_ASYNC, queuetype);
2317 }
2318
2319 /* Otherwise, we had to start a read for it; wait until it's valid. */
2320 return buf_biowait(bp);
2321}
2322
2323
2324/*
2325 * Read a disk block.
2326 * This algorithm described in Bach (p.54).
2327 */
2328errno_t
2329buf_bread(vnode_t vp, daddr64_t blkno, int size, kauth_cred_t cred, buf_t *bpp)
2330{
2331 buf_t bp;
2332
2333 /* Get buffer for block. */
2334 bp = *bpp = bio_doread(vp, blkno, size, cred, async: 0, BLK_READ);
2335
2336 /* Wait for the read to complete, and return result. */
2337 return buf_biowait(bp);
2338}
2339
2340/*
2341 * Read a disk block. [bread() for meta-data]
2342 * This algorithm described in Bach (p.54).
2343 */
2344errno_t
2345buf_meta_bread(vnode_t vp, daddr64_t blkno, int size, kauth_cred_t cred, buf_t *bpp)
2346{
2347 buf_t bp;
2348
2349 /* Get buffer for block. */
2350 bp = *bpp = bio_doread(vp, blkno, size, cred, async: 0, BLK_META);
2351
2352 /* Wait for the read to complete, and return result. */
2353 return buf_biowait(bp);
2354}
2355
2356/*
2357 * Read-ahead multiple disk blocks. The first is sync, the rest async.
2358 */
2359errno_t
2360buf_breadn(vnode_t vp, daddr64_t blkno, int size, daddr64_t *rablks, int *rasizes, int nrablks, kauth_cred_t cred, buf_t *bpp)
2361{
2362 return do_breadn_for_type(vp, blkno, size, rablks, rasizes, nrablks, cred, bpp, BLK_READ);
2363}
2364
2365/*
2366 * Read-ahead multiple disk blocks. The first is sync, the rest async.
2367 * [buf_breadn() for meta-data]
2368 */
2369errno_t
2370buf_meta_breadn(vnode_t vp, daddr64_t blkno, int size, daddr64_t *rablks, int *rasizes, int nrablks, kauth_cred_t cred, buf_t *bpp)
2371{
2372 return do_breadn_for_type(vp, blkno, size, rablks, rasizes, nrablks, cred, bpp, BLK_META);
2373}
2374
2375/*
2376 * Block write. Described in Bach (p.56)
2377 */
2378errno_t
2379buf_bwrite(buf_t bp)
2380{
2381 int sync, wasdelayed;
2382 errno_t rv;
2383 proc_t p = current_proc();
2384 vnode_t vp = bp->b_vp;
2385
2386 if (bp->b_datap == 0) {
2387 if (brecover_data(bp) == 0) {
2388 return 0;
2389 }
2390 }
2391 /* Remember buffer type, to switch on it later. */
2392 sync = !ISSET(bp->b_flags, B_ASYNC);
2393 wasdelayed = ISSET(bp->b_flags, B_DELWRI);
2394 CLR(bp->b_flags, (B_READ | B_DONE | B_ERROR | B_DELWRI));
2395
2396 if (wasdelayed) {
2397 OSAddAtomicLong(-1, &nbdwrite);
2398 }
2399
2400 if (!sync) {
2401 /*
2402 * If not synchronous, pay for the I/O operation and make
2403 * sure the buf is on the correct vnode queue. We have
2404 * to do this now, because if we don't, the vnode may not
2405 * be properly notified that its I/O has completed.
2406 */
2407 if (wasdelayed) {
2408 buf_reassign(bp, newvp: vp);
2409 } else if (p && p->p_stats) {
2410 OSIncrementAtomicLong(address: &p->p_stats->p_ru.ru_oublock); /* XXX */
2411 }
2412 }
2413 trace(TR_BUFWRITE, pack(vp, bp->b_bcount), bp->b_lblkno);
2414
2415 /* Initiate disk write. Make sure the appropriate party is charged. */
2416
2417 OSAddAtomic(1, &vp->v_numoutput);
2418
2419 VNOP_STRATEGY(bp);
2420
2421 if (sync) {
2422 /*
2423 * If I/O was synchronous, wait for it to complete.
2424 */
2425 rv = buf_biowait(bp);
2426
2427 /*
2428 * Pay for the I/O operation, if it's not been paid for, and
2429 * make sure it's on the correct vnode queue. (async operatings
2430 * were payed for above.)
2431 */
2432 if (wasdelayed) {
2433 buf_reassign(bp, newvp: vp);
2434 } else if (p && p->p_stats) {
2435 OSIncrementAtomicLong(address: &p->p_stats->p_ru.ru_oublock); /* XXX */
2436 }
2437
2438 /* Release the buffer. */
2439 buf_brelse(bp);
2440
2441 return rv;
2442 } else {
2443 return 0;
2444 }
2445}
2446
2447int
2448vn_bwrite(struct vnop_bwrite_args *ap)
2449{
2450 return buf_bwrite(bp: ap->a_bp);
2451}
2452
2453/*
2454 * Delayed write.
2455 *
2456 * The buffer is marked dirty, but is not queued for I/O.
2457 * This routine should be used when the buffer is expected
2458 * to be modified again soon, typically a small write that
2459 * partially fills a buffer.
2460 *
2461 * NB: magnetic tapes cannot be delayed; they must be
2462 * written in the order that the writes are requested.
2463 *
2464 * Described in Leffler, et al. (pp. 208-213).
2465 *
2466 * Note: With the ability to allocate additional buffer
2467 * headers, we can get in to the situation where "too" many
2468 * buf_bdwrite()s can create situation where the kernel can create
2469 * buffers faster than the disks can service. Doing a buf_bawrite() in
2470 * cases where we have "too many" outstanding buf_bdwrite()s avoids that.
2471 */
2472int
2473bdwrite_internal(buf_t bp, int return_error)
2474{
2475 proc_t p = current_proc();
2476 vnode_t vp = bp->b_vp;
2477
2478 /*
2479 * If the block hasn't been seen before:
2480 * (1) Mark it as having been seen,
2481 * (2) Charge for the write.
2482 * (3) Make sure it's on its vnode's correct block list,
2483 */
2484 if (!ISSET(bp->b_flags, B_DELWRI)) {
2485 SET(bp->b_flags, B_DELWRI);
2486 if (p && p->p_stats) {
2487 OSIncrementAtomicLong(address: &p->p_stats->p_ru.ru_oublock); /* XXX */
2488 }
2489 OSAddAtomicLong(1, &nbdwrite);
2490 buf_reassign(bp, newvp: vp);
2491 }
2492
2493 /*
2494 * if we're not LOCKED, but the total number of delayed writes
2495 * has climbed above 75% of the total buffers in the system
2496 * return an error if the caller has indicated that it can
2497 * handle one in this case, otherwise schedule the I/O now
2498 * this is done to prevent us from allocating tons of extra
2499 * buffers when dealing with virtual disks (i.e. DiskImages),
2500 * because additional buffers are dynamically allocated to prevent
2501 * deadlocks from occurring
2502 *
2503 * however, can't do a buf_bawrite() if the LOCKED bit is set because the
2504 * buffer is part of a transaction and can't go to disk until
2505 * the LOCKED bit is cleared.
2506 */
2507 if (!ISSET(bp->b_flags, B_LOCKED) && nbdwrite > ((nbuf_headers / 4) * 3)) {
2508 if (return_error) {
2509 return EAGAIN;
2510 }
2511 /*
2512 * If the vnode has "too many" write operations in progress
2513 * wait for them to finish the IO
2514 */
2515 (void)vnode_waitforwrites(vp, VNODE_ASYNC_THROTTLE, slpflag: 0, slptimeout: 0, msg: "buf_bdwrite");
2516
2517 return buf_bawrite(bp);
2518 }
2519
2520 /* Otherwise, the "write" is done, so mark and release the buffer. */
2521 SET(bp->b_flags, B_DONE);
2522 buf_brelse(bp);
2523 return 0;
2524}
2525
2526errno_t
2527buf_bdwrite(buf_t bp)
2528{
2529 return bdwrite_internal(bp, return_error: 0);
2530}
2531
2532
2533/*
2534 * Asynchronous block write; just an asynchronous buf_bwrite().
2535 *
2536 * Note: With the abilitty to allocate additional buffer
2537 * headers, we can get in to the situation where "too" many
2538 * buf_bawrite()s can create situation where the kernel can create
2539 * buffers faster than the disks can service.
2540 * We limit the number of "in flight" writes a vnode can have to
2541 * avoid this.
2542 */
2543static int
2544bawrite_internal(buf_t bp, int throttle)
2545{
2546 vnode_t vp = bp->b_vp;
2547
2548 if (vp) {
2549 if (throttle) {
2550 /*
2551 * If the vnode has "too many" write operations in progress
2552 * wait for them to finish the IO
2553 */
2554 (void)vnode_waitforwrites(vp, VNODE_ASYNC_THROTTLE, slpflag: 0, slptimeout: 0, msg: (const char *)"buf_bawrite");
2555 } else if (vp->v_numoutput >= VNODE_ASYNC_THROTTLE) {
2556 /*
2557 * return to the caller and
2558 * let him decide what to do
2559 */
2560 return EWOULDBLOCK;
2561 }
2562 }
2563 SET(bp->b_flags, B_ASYNC);
2564
2565 return VNOP_BWRITE(bp);
2566}
2567
2568errno_t
2569buf_bawrite(buf_t bp)
2570{
2571 return bawrite_internal(bp, throttle: 1);
2572}
2573
2574
2575
2576static void
2577buf_free_meta_store(buf_t bp)
2578{
2579 if (bp->b_bufsize) {
2580 uintptr_t datap = bp->b_datap;
2581 int bufsize = bp->b_bufsize;
2582
2583 bp->b_datap = (uintptr_t)NULL;
2584 bp->b_bufsize = 0;
2585
2586 /*
2587 * Ensure the assignment of b_datap has global visibility
2588 * before we free the region.
2589 */
2590 OSMemoryBarrier();
2591
2592 if (ISSET(bp->b_flags, B_ZALLOC)) {
2593 kheap_free(KHEAP_VFS_BIO, datap, bufsize);
2594 } else {
2595 kmem_free(map: kernel_map, addr: datap, size: bufsize);
2596 }
2597 }
2598}
2599
2600
2601static buf_t
2602buf_brelse_shadow(buf_t bp)
2603{
2604 buf_t bp_head;
2605 buf_t bp_temp;
2606 buf_t bp_return = NULL;
2607#ifdef BUF_MAKE_PRIVATE
2608 buf_t bp_data;
2609 int data_ref = 0;
2610#endif
2611 int need_wakeup = 0;
2612
2613 lck_mtx_lock_spin(lck: &buf_mtx);
2614
2615 __IGNORE_WCASTALIGN(bp_head = (buf_t)bp->b_orig);
2616
2617 if (bp_head->b_whichq != -1) {
2618 panic("buf_brelse_shadow: bp_head on freelist %d", bp_head->b_whichq);
2619 }
2620
2621#ifdef BUF_MAKE_PRIVATE
2622 if (bp_data = bp->b_data_store) {
2623 bp_data->b_data_ref--;
2624 /*
2625 * snapshot the ref count so that we can check it
2626 * outside of the lock... we only want the guy going
2627 * from 1 -> 0 to try and release the storage
2628 */
2629 data_ref = bp_data->b_data_ref;
2630 }
2631#endif
2632 KERNEL_DEBUG(0xbbbbc008 | DBG_FUNC_START, bp, bp_head, bp_head->b_shadow_ref, 0, 0);
2633
2634 bp_head->b_shadow_ref--;
2635
2636 for (bp_temp = bp_head; bp_temp && bp != bp_temp->b_shadow; bp_temp = bp_temp->b_shadow) {
2637 ;
2638 }
2639
2640 if (bp_temp == NULL) {
2641 panic("buf_brelse_shadow: bp not on list %p", bp_head);
2642 }
2643
2644 bp_temp->b_shadow = bp_temp->b_shadow->b_shadow;
2645
2646#ifdef BUF_MAKE_PRIVATE
2647 /*
2648 * we're about to free the current 'owner' of the data buffer and
2649 * there is at least one other shadow buf_t still pointing at it
2650 * so transfer it to the first shadow buf left in the chain
2651 */
2652 if (bp == bp_data && data_ref) {
2653 if ((bp_data = bp_head->b_shadow) == NULL) {
2654 panic("buf_brelse_shadow: data_ref mismatch bp(%p)", bp);
2655 }
2656
2657 for (bp_temp = bp_data; bp_temp; bp_temp = bp_temp->b_shadow) {
2658 bp_temp->b_data_store = bp_data;
2659 }
2660 bp_data->b_data_ref = data_ref;
2661 }
2662#endif
2663 if (bp_head->b_shadow_ref == 0 && bp_head->b_shadow) {
2664 panic("buf_relse_shadow: b_shadow != NULL && b_shadow_ref == 0 bp(%p)", bp);
2665 }
2666 if (bp_head->b_shadow_ref && bp_head->b_shadow == 0) {
2667 panic("buf_relse_shadow: b_shadow == NULL && b_shadow_ref != 0 bp(%p)", bp);
2668 }
2669
2670 if (bp_head->b_shadow_ref == 0) {
2671 if (!ISSET(bp_head->b_lflags, BL_BUSY)) {
2672 CLR(bp_head->b_flags, B_AGE);
2673 bp_head->b_timestamp = buf_timestamp();
2674
2675 if (ISSET(bp_head->b_flags, B_LOCKED)) {
2676 bp_head->b_whichq = BQ_LOCKED;
2677 binstailfree(bp_head, &bufqueues[BQ_LOCKED], BQ_LOCKED);
2678 } else {
2679 bp_head->b_whichq = BQ_META;
2680 binstailfree(bp_head, &bufqueues[BQ_META], BQ_META);
2681 }
2682 } else if (ISSET(bp_head->b_lflags, BL_WAITSHADOW)) {
2683 CLR(bp_head->b_lflags, BL_WAITSHADOW);
2684
2685 bp_return = bp_head;
2686 }
2687 if (ISSET(bp_head->b_lflags, BL_WANTED_REF)) {
2688 CLR(bp_head->b_lflags, BL_WANTED_REF);
2689 need_wakeup = 1;
2690 }
2691 }
2692 lck_mtx_unlock(lck: &buf_mtx);
2693
2694 if (need_wakeup) {
2695 wakeup(chan: bp_head);
2696 }
2697
2698#ifdef BUF_MAKE_PRIVATE
2699 if (bp == bp_data && data_ref == 0) {
2700 buf_free_meta_store(bp);
2701 }
2702
2703 bp->b_data_store = NULL;
2704#endif
2705 KERNEL_DEBUG(0xbbbbc008 | DBG_FUNC_END, bp, 0, 0, 0, 0);
2706
2707 return bp_return;
2708}
2709
2710
2711/*
2712 * Release a buffer on to the free lists.
2713 * Described in Bach (p. 46).
2714 */
2715void
2716buf_brelse(buf_t bp)
2717{
2718 struct bqueues *bufq;
2719 int whichq;
2720 upl_t upl;
2721 int need_wakeup = 0;
2722 int need_bp_wakeup = 0;
2723
2724
2725 if (bp->b_whichq != -1 || !(bp->b_lflags & BL_BUSY)) {
2726 panic("buf_brelse: bad buffer = %p", bp);
2727 }
2728
2729#ifdef JOE_DEBUG
2730 (void) OSBacktrace(&bp->b_stackbrelse[0], 6);
2731
2732 bp->b_lastbrelse = current_thread();
2733 bp->b_tag = 0;
2734#endif
2735 if (bp->b_lflags & BL_IOBUF) {
2736 buf_t shadow_master_bp = NULL;
2737
2738 if (ISSET(bp->b_lflags, BL_SHADOW)) {
2739 shadow_master_bp = buf_brelse_shadow(bp);
2740 } else if (ISSET(bp->b_lflags, BL_IOBUF_ALLOC)) {
2741 buf_free_meta_store(bp);
2742 }
2743 free_io_buf(bp);
2744
2745 if (shadow_master_bp) {
2746 bp = shadow_master_bp;
2747 goto finish_shadow_master;
2748 }
2749 return;
2750 }
2751
2752 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 388)) | DBG_FUNC_START,
2753 bp->b_lblkno * PAGE_SIZE, bp, bp->b_datap,
2754 bp->b_flags, 0);
2755
2756 trace(TR_BRELSE, pack(bp->b_vp, bp->b_bufsize), bp->b_lblkno);
2757
2758 /*
2759 * if we're invalidating a buffer that has the B_FILTER bit
2760 * set then call the b_iodone function so it gets cleaned
2761 * up properly.
2762 *
2763 * the HFS journal code depends on this
2764 */
2765 if (ISSET(bp->b_flags, B_META) && ISSET(bp->b_flags, B_INVAL)) {
2766 if (ISSET(bp->b_flags, B_FILTER)) { /* if necessary, call out */
2767 void (*iodone_func)(struct buf *, void *) = bp->b_iodone;
2768 void *arg = bp->b_transaction;
2769
2770 CLR(bp->b_flags, B_FILTER); /* but note callout done */
2771 bp->b_iodone = NULL;
2772 bp->b_transaction = NULL;
2773
2774 if (iodone_func == NULL) {
2775 panic("brelse: bp @ %p has NULL b_iodone!", bp);
2776 }
2777 (*iodone_func)(bp, arg);
2778 }
2779 }
2780 /*
2781 * I/O is done. Cleanup the UPL state
2782 */
2783 upl = bp->b_upl;
2784
2785 if (!ISSET(bp->b_flags, B_META) && UBCINFOEXISTS(bp->b_vp) && bp->b_bufsize) {
2786 kern_return_t kret;
2787 int upl_flags;
2788
2789 if (upl == NULL) {
2790 if (!ISSET(bp->b_flags, B_INVAL)) {
2791 kret = ubc_create_upl_kernel(bp->b_vp,
2792 ubc_blktooff(bp->b_vp, bp->b_lblkno),
2793 bp->b_bufsize,
2794 &upl,
2795 NULL,
2796 UPL_PRECIOUS,
2797 VM_KERN_MEMORY_FILE);
2798
2799 if (kret != KERN_SUCCESS) {
2800 panic("brelse: Failed to create UPL");
2801 }
2802#if UPL_DEBUG
2803 upl_ubc_alias_set(upl, (uintptr_t) bp, (uintptr_t) 5);
2804#endif /* UPL_DEBUG */
2805 }
2806 } else {
2807 if (bp->b_datap) {
2808 kret = ubc_upl_unmap(upl);
2809
2810 if (kret != KERN_SUCCESS) {
2811 panic("ubc_upl_unmap failed");
2812 }
2813 bp->b_datap = (uintptr_t)NULL;
2814 }
2815 }
2816 if (upl) {
2817 if (bp->b_flags & (B_ERROR | B_INVAL)) {
2818 if (bp->b_flags & (B_READ | B_INVAL)) {
2819 upl_flags = UPL_ABORT_DUMP_PAGES;
2820 } else {
2821 upl_flags = 0;
2822 }
2823
2824 ubc_upl_abort(upl, upl_flags);
2825 } else {
2826 if (ISSET(bp->b_flags, B_DELWRI | B_WASDIRTY)) {
2827 upl_flags = UPL_COMMIT_SET_DIRTY;
2828 } else {
2829 upl_flags = UPL_COMMIT_CLEAR_DIRTY;
2830 }
2831
2832 ubc_upl_commit_range(upl, 0, bp->b_bufsize, upl_flags |
2833 UPL_COMMIT_INACTIVATE | UPL_COMMIT_FREE_ON_EMPTY);
2834 }
2835 bp->b_upl = NULL;
2836 }
2837 } else {
2838 if ((upl)) {
2839 panic("brelse: UPL set for non VREG; vp=%p", bp->b_vp);
2840 }
2841 }
2842
2843 /*
2844 * If it's locked, don't report an error; try again later.
2845 */
2846 if (ISSET(bp->b_flags, (B_LOCKED | B_ERROR)) == (B_LOCKED | B_ERROR)) {
2847 CLR(bp->b_flags, B_ERROR);
2848 }
2849 /*
2850 * If it's not cacheable, or an error, mark it invalid.
2851 */
2852 if (ISSET(bp->b_flags, (B_NOCACHE | B_ERROR))) {
2853 SET(bp->b_flags, B_INVAL);
2854 }
2855
2856 if ((bp->b_bufsize <= 0) ||
2857 ISSET(bp->b_flags, B_INVAL) ||
2858 (ISSET(bp->b_lflags, BL_WANTDEALLOC) && !ISSET(bp->b_flags, B_DELWRI))) {
2859 boolean_t delayed_buf_free_meta_store = FALSE;
2860
2861 /*
2862 * If it's invalid or empty, dissociate it from its vnode,
2863 * release its storage if B_META, and
2864 * clean it up a bit and put it on the EMPTY queue
2865 */
2866 if (ISSET(bp->b_flags, B_DELWRI)) {
2867 OSAddAtomicLong(-1, &nbdwrite);
2868 }
2869
2870 if (ISSET(bp->b_flags, B_META)) {
2871 if (bp->b_shadow_ref) {
2872 delayed_buf_free_meta_store = TRUE;
2873 } else {
2874 buf_free_meta_store(bp);
2875 }
2876 }
2877 /*
2878 * nuke any credentials we were holding
2879 */
2880 buf_release_credentials(bp);
2881
2882 lck_mtx_lock_spin(lck: &buf_mtx);
2883
2884 if (bp->b_shadow_ref) {
2885 SET(bp->b_lflags, BL_WAITSHADOW);
2886
2887 lck_mtx_unlock(lck: &buf_mtx);
2888
2889 return;
2890 }
2891 if (delayed_buf_free_meta_store == TRUE) {
2892 lck_mtx_unlock(lck: &buf_mtx);
2893finish_shadow_master:
2894 buf_free_meta_store(bp);
2895
2896 lck_mtx_lock_spin(lck: &buf_mtx);
2897 }
2898 CLR(bp->b_flags, (B_META | B_ZALLOC | B_DELWRI | B_LOCKED | B_AGE | B_ASYNC | B_NOCACHE | B_FUA));
2899
2900 if (bp->b_vp) {
2901 brelvp_locked(bp);
2902 }
2903
2904 bremhash(bp);
2905 BLISTNONE(bp);
2906 binshash(bp, dp: &invalhash);
2907
2908 bp->b_whichq = BQ_EMPTY;
2909 binsheadfree(bp, &bufqueues[BQ_EMPTY], BQ_EMPTY);
2910 } else {
2911 /*
2912 * It has valid data. Put it on the end of the appropriate
2913 * queue, so that it'll stick around for as long as possible.
2914 */
2915 if (ISSET(bp->b_flags, B_LOCKED)) {
2916 whichq = BQ_LOCKED; /* locked in core */
2917 } else if (ISSET(bp->b_flags, B_META)) {
2918 whichq = BQ_META; /* meta-data */
2919 } else if (ISSET(bp->b_flags, B_AGE)) {
2920 whichq = BQ_AGE; /* stale but valid data */
2921 } else {
2922 whichq = BQ_LRU; /* valid data */
2923 }
2924 bufq = &bufqueues[whichq];
2925
2926 bp->b_timestamp = buf_timestamp();
2927
2928 lck_mtx_lock_spin(lck: &buf_mtx);
2929
2930 /*
2931 * the buf_brelse_shadow routine doesn't take 'ownership'
2932 * of the parent buf_t... it updates state that is protected by
2933 * the buf_mtx, and checks for BL_BUSY to determine whether to
2934 * put the buf_t back on a free list. b_shadow_ref is protected
2935 * by the lock, and since we have not yet cleared B_BUSY, we need
2936 * to check it while holding the lock to insure that one of us
2937 * puts this buf_t back on a free list when it is safe to do so
2938 */
2939 if (bp->b_shadow_ref == 0) {
2940 CLR(bp->b_flags, (B_AGE | B_ASYNC | B_NOCACHE));
2941 bp->b_whichq = whichq;
2942 binstailfree(bp, bufq, whichq);
2943 } else {
2944 /*
2945 * there are still cloned buf_t's pointing
2946 * at this guy... need to keep it off the
2947 * freelists until a buf_brelse is done on
2948 * the last clone
2949 */
2950 CLR(bp->b_flags, (B_ASYNC | B_NOCACHE));
2951 }
2952 }
2953 if (needbuffer) {
2954 /*
2955 * needbuffer is a global
2956 * we're currently using buf_mtx to protect it
2957 * delay doing the actual wakeup until after
2958 * we drop buf_mtx
2959 */
2960 needbuffer = 0;
2961 need_wakeup = 1;
2962 }
2963 if (ISSET(bp->b_lflags, BL_WANTED)) {
2964 /*
2965 * delay the actual wakeup until after we
2966 * clear BL_BUSY and we've dropped buf_mtx
2967 */
2968 need_bp_wakeup = 1;
2969 }
2970 /*
2971 * Unlock the buffer.
2972 */
2973 CLR(bp->b_lflags, (BL_BUSY | BL_WANTED));
2974 buf_busycount--;
2975
2976 lck_mtx_unlock(lck: &buf_mtx);
2977
2978 if (need_wakeup) {
2979 /*
2980 * Wake up any processes waiting for any buffer to become free.
2981 */
2982 wakeup(chan: &needbuffer);
2983 }
2984 if (need_bp_wakeup) {
2985 /*
2986 * Wake up any proceeses waiting for _this_ buffer to become free.
2987 */
2988 wakeup(chan: bp);
2989 }
2990 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 388)) | DBG_FUNC_END,
2991 bp, bp->b_datap, bp->b_flags, 0, 0);
2992}
2993
2994/*
2995 * Determine if a block is in the cache.
2996 * Just look on what would be its hash chain. If it's there, return
2997 * a pointer to it, unless it's marked invalid. If it's marked invalid,
2998 * we normally don't return the buffer, unless the caller explicitly
2999 * wants us to.
3000 */
3001static boolean_t
3002incore(vnode_t vp, daddr64_t blkno)
3003{
3004 boolean_t retval;
3005 struct bufhashhdr *dp;
3006
3007 dp = BUFHASH(vp, blkno);
3008
3009 lck_mtx_lock_spin(lck: &buf_mtx);
3010
3011 if (incore_locked(vp, blkno, dp)) {
3012 retval = TRUE;
3013 } else {
3014 retval = FALSE;
3015 }
3016 lck_mtx_unlock(lck: &buf_mtx);
3017
3018 return retval;
3019}
3020
3021
3022static buf_t
3023incore_locked(vnode_t vp, daddr64_t blkno, struct bufhashhdr *dp)
3024{
3025 struct buf *bp;
3026
3027 /* Search hash chain */
3028 for (bp = dp->lh_first; bp != NULL; bp = bp->b_hash.le_next) {
3029 if (bp->b_lblkno == blkno && bp->b_vp == vp &&
3030 !ISSET(bp->b_flags, B_INVAL)) {
3031 return bp;
3032 }
3033 }
3034 return NULL;
3035}
3036
3037
3038void
3039buf_wait_for_shadow_io(vnode_t vp, daddr64_t blkno)
3040{
3041 buf_t bp;
3042 struct bufhashhdr *dp;
3043
3044 dp = BUFHASH(vp, blkno);
3045
3046 lck_mtx_lock_spin(lck: &buf_mtx);
3047
3048 for (;;) {
3049 if ((bp = incore_locked(vp, blkno, dp)) == NULL) {
3050 break;
3051 }
3052
3053 if (bp->b_shadow_ref == 0) {
3054 break;
3055 }
3056
3057 SET(bp->b_lflags, BL_WANTED_REF);
3058
3059 (void) msleep(chan: bp, mtx: &buf_mtx, PSPIN | (PRIBIO + 1), wmesg: "buf_wait_for_shadow", NULL);
3060 }
3061 lck_mtx_unlock(lck: &buf_mtx);
3062}
3063
3064/* XXX FIXME -- Update the comment to reflect the UBC changes (please) -- */
3065/*
3066 * Get a block of requested size that is associated with
3067 * a given vnode and block offset. If it is found in the
3068 * block cache, mark it as having been found, make it busy
3069 * and return it. Otherwise, return an empty block of the
3070 * correct size. It is up to the caller to insure that the
3071 * cached blocks be of the correct size.
3072 */
3073buf_t
3074buf_getblk(vnode_t vp, daddr64_t blkno, int size, int slpflag, int slptimeo, int operation)
3075{
3076 buf_t bp;
3077 int err;
3078 upl_t upl;
3079 upl_page_info_t *pl;
3080 kern_return_t kret;
3081 int ret_only_valid;
3082 struct timespec ts;
3083 int upl_flags;
3084 struct bufhashhdr *dp;
3085
3086 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 386)) | DBG_FUNC_START,
3087 (uintptr_t)(blkno * PAGE_SIZE), size, operation, 0, 0);
3088
3089 ret_only_valid = operation & BLK_ONLYVALID;
3090 operation &= ~BLK_ONLYVALID;
3091 dp = BUFHASH(vp, blkno);
3092start:
3093 lck_mtx_lock_spin(lck: &buf_mtx);
3094
3095 if ((bp = incore_locked(vp, blkno, dp))) {
3096 /*
3097 * Found in the Buffer Cache
3098 */
3099 if (ISSET(bp->b_lflags, BL_BUSY)) {
3100 /*
3101 * but is busy
3102 */
3103 switch (operation) {
3104 case BLK_READ:
3105 case BLK_WRITE:
3106 case BLK_META:
3107 SET(bp->b_lflags, BL_WANTED);
3108 bufstats.bufs_busyincore++;
3109
3110 /*
3111 * don't retake the mutex after being awakened...
3112 * the time out is in msecs
3113 */
3114 ts.tv_sec = (slptimeo / 1000);
3115 ts.tv_nsec = (slptimeo % 1000) * 10 * NSEC_PER_USEC * 1000;
3116
3117 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 396)) | DBG_FUNC_NONE,
3118 (uintptr_t)blkno, size, operation, 0, 0);
3119
3120 err = msleep(chan: bp, mtx: &buf_mtx, pri: slpflag | PDROP | (PRIBIO + 1), wmesg: "buf_getblk", ts: &ts);
3121
3122 /*
3123 * Callers who call with PCATCH or timeout are
3124 * willing to deal with the NULL pointer
3125 */
3126 if (err && ((slpflag & PCATCH) || ((err == EWOULDBLOCK) && slptimeo))) {
3127 return NULL;
3128 }
3129 goto start;
3130 /*NOTREACHED*/
3131
3132 default:
3133 /*
3134 * unknown operation requested
3135 */
3136 panic("getblk: paging or unknown operation for incore busy buffer - %x", operation);
3137 /*NOTREACHED*/
3138 break;
3139 }
3140 } else {
3141 int clear_bdone;
3142
3143 /*
3144 * buffer in core and not busy
3145 */
3146 SET(bp->b_lflags, BL_BUSY);
3147 SET(bp->b_flags, B_CACHE);
3148 buf_busycount++;
3149
3150 bremfree_locked(bp);
3151 bufstats.bufs_incore++;
3152
3153 lck_mtx_unlock(lck: &buf_mtx);
3154#ifdef JOE_DEBUG
3155 bp->b_owner = current_thread();
3156 bp->b_tag = 1;
3157#endif
3158 if ((bp->b_upl)) {
3159 panic("buffer has UPL, but not marked BUSY: %p", bp);
3160 }
3161
3162 clear_bdone = FALSE;
3163 if (!ret_only_valid) {
3164 /*
3165 * If the number bytes that are valid is going
3166 * to increase (even if we end up not doing a
3167 * reallocation through allocbuf) we have to read
3168 * the new size first.
3169 *
3170 * This is required in cases where we doing a read
3171 * modify write of a already valid data on disk but
3172 * in cases where the data on disk beyond (blkno + b_bcount)
3173 * is invalid, we may end up doing extra I/O.
3174 */
3175 if (operation == BLK_META && bp->b_bcount < (uint32_t)size) {
3176 /*
3177 * Since we are going to read in the whole size first
3178 * we first have to ensure that any pending delayed write
3179 * is flushed to disk first.
3180 */
3181 if (ISSET(bp->b_flags, B_DELWRI)) {
3182 CLR(bp->b_flags, B_CACHE);
3183 buf_bwrite(bp);
3184 goto start;
3185 }
3186 /*
3187 * clear B_DONE before returning from
3188 * this function so that the caller can
3189 * can issue a read for the new size.
3190 */
3191 clear_bdone = TRUE;
3192 }
3193
3194 if (bp->b_bufsize != (uint32_t)size) {
3195 allocbuf(bp, size);
3196 }
3197 }
3198
3199 upl_flags = 0;
3200 switch (operation) {
3201 case BLK_WRITE:
3202 /*
3203 * "write" operation: let the UPL subsystem
3204 * know that we intend to modify the buffer
3205 * cache pages we're gathering.
3206 */
3207 upl_flags |= UPL_WILL_MODIFY;
3208 OS_FALLTHROUGH;
3209 case BLK_READ:
3210 upl_flags |= UPL_PRECIOUS;
3211 if (UBCINFOEXISTS(bp->b_vp) && bp->b_bufsize) {
3212 kret = ubc_create_upl_kernel(vp,
3213 ubc_blktooff(vp, bp->b_lblkno),
3214 bp->b_bufsize,
3215 &upl,
3216 &pl,
3217 upl_flags,
3218 VM_KERN_MEMORY_FILE);
3219 if (kret != KERN_SUCCESS) {
3220 panic("Failed to create UPL");
3221 }
3222
3223 bp->b_upl = upl;
3224
3225 if (upl_valid_page(upl: pl, index: 0)) {
3226 if (upl_dirty_page(upl: pl, index: 0)) {
3227 SET(bp->b_flags, B_WASDIRTY);
3228 } else {
3229 CLR(bp->b_flags, B_WASDIRTY);
3230 }
3231 } else {
3232 CLR(bp->b_flags, (B_DONE | B_CACHE | B_WASDIRTY | B_DELWRI));
3233 }
3234
3235 kret = ubc_upl_map(upl, (vm_offset_t*)&(bp->b_datap));
3236
3237 if (kret != KERN_SUCCESS) {
3238 panic("getblk: ubc_upl_map() failed with (%d)", kret);
3239 }
3240 }
3241 break;
3242
3243 case BLK_META:
3244 /*
3245 * VM is not involved in IO for the meta data
3246 * buffer already has valid data
3247 */
3248 break;
3249
3250 default:
3251 panic("getblk: paging or unknown operation for incore buffer- %d", operation);
3252 /*NOTREACHED*/
3253 break;
3254 }
3255
3256 if (clear_bdone) {
3257 CLR(bp->b_flags, B_DONE);
3258 }
3259 }
3260 } else { /* not incore() */
3261 int queue = BQ_EMPTY; /* Start with no preference */
3262
3263 if (ret_only_valid) {
3264 lck_mtx_unlock(lck: &buf_mtx);
3265 return NULL;
3266 }
3267 if ((vnode_isreg(vp) == 0) || (UBCINFOEXISTS(vp) == 0) /*|| (vnode_issystem(vp) == 1)*/) {
3268 operation = BLK_META;
3269 }
3270
3271 if ((bp = getnewbuf(slpflag, slptimeo, queue: &queue)) == NULL) {
3272 goto start;
3273 }
3274
3275 /*
3276 * getnewbuf may block for a number of different reasons...
3277 * if it does, it's then possible for someone else to
3278 * create a buffer for the same block and insert it into
3279 * the hash... if we see it incore at this point we dump
3280 * the buffer we were working on and start over
3281 */
3282 if (incore_locked(vp, blkno, dp)) {
3283 SET(bp->b_flags, B_INVAL);
3284 binshash(bp, dp: &invalhash);
3285
3286 lck_mtx_unlock(lck: &buf_mtx);
3287
3288 buf_brelse(bp);
3289 goto start;
3290 }
3291 /*
3292 * NOTE: YOU CAN NOT BLOCK UNTIL binshash() HAS BEEN
3293 * CALLED! BE CAREFUL.
3294 */
3295
3296 /*
3297 * mark the buffer as B_META if indicated
3298 * so that when buffer is released it will goto META queue
3299 */
3300 if (operation == BLK_META) {
3301 SET(bp->b_flags, B_META);
3302 }
3303
3304 bp->b_blkno = bp->b_lblkno = blkno;
3305 bp->b_lblksize = 0; /* Should be set by caller */
3306 bp->b_vp = vp;
3307
3308 /*
3309 * Insert in the hash so that incore() can find it
3310 */
3311 binshash(bp, BUFHASH(vp, blkno));
3312
3313 bgetvp_locked(vp, bp);
3314
3315 lck_mtx_unlock(lck: &buf_mtx);
3316
3317 allocbuf(bp, size);
3318
3319 upl_flags = 0;
3320 switch (operation) {
3321 case BLK_META:
3322 /*
3323 * buffer data is invalid...
3324 *
3325 * I don't want to have to retake buf_mtx,
3326 * so the miss and vmhits counters are done
3327 * with Atomic updates... all other counters
3328 * in bufstats are protected with either
3329 * buf_mtx or iobuffer_mtxp
3330 */
3331 OSAddAtomicLong(1, &bufstats.bufs_miss);
3332 break;
3333
3334 case BLK_WRITE:
3335 /*
3336 * "write" operation: let the UPL subsystem know
3337 * that we intend to modify the buffer cache pages
3338 * we're gathering.
3339 */
3340 upl_flags |= UPL_WILL_MODIFY;
3341 OS_FALLTHROUGH;
3342 case BLK_READ:
3343 { off_t f_offset;
3344 size_t contig_bytes;
3345 int bmap_flags;
3346
3347#if DEVELOPMENT || DEBUG
3348 /*
3349 * Apple implemented file systems use UBC excludively; they should
3350 * not call in here."
3351 */
3352 const char* excldfs[] = {"hfs", "afpfs", "smbfs", "acfs",
3353 "exfat", "msdos", "webdav", NULL};
3354
3355 for (int i = 0; excldfs[i] != NULL; i++) {
3356 if (vp->v_mount &&
3357 !strcmp(vp->v_mount->mnt_vfsstat.f_fstypename,
3358 excldfs[i])) {
3359 panic("%s %s calls buf_getblk",
3360 excldfs[i],
3361 operation == BLK_READ ? "BLK_READ" : "BLK_WRITE");
3362 }
3363 }
3364#endif
3365
3366 if ((bp->b_upl)) {
3367 panic("bp already has UPL: %p", bp);
3368 }
3369
3370 f_offset = ubc_blktooff(vp, blkno);
3371
3372 upl_flags |= UPL_PRECIOUS;
3373 kret = ubc_create_upl_kernel(vp,
3374 f_offset,
3375 bp->b_bufsize,
3376 &upl,
3377 &pl,
3378 upl_flags,
3379 VM_KERN_MEMORY_FILE);
3380
3381 if (kret != KERN_SUCCESS) {
3382 panic("Failed to create UPL");
3383 }
3384#if UPL_DEBUG
3385 upl_ubc_alias_set(upl, (uintptr_t) bp, (uintptr_t) 4);
3386#endif /* UPL_DEBUG */
3387 bp->b_upl = upl;
3388
3389 if (upl_valid_page(upl: pl, index: 0)) {
3390 if (operation == BLK_READ) {
3391 bmap_flags = VNODE_READ;
3392 } else {
3393 bmap_flags = VNODE_WRITE;
3394 }
3395
3396 SET(bp->b_flags, B_CACHE | B_DONE);
3397
3398 OSAddAtomicLong(1, &bufstats.bufs_vmhits);
3399
3400 bp->b_validoff = 0;
3401 bp->b_dirtyoff = 0;
3402
3403 if (upl_dirty_page(upl: pl, index: 0)) {
3404 /* page is dirty */
3405 SET(bp->b_flags, B_WASDIRTY);
3406
3407 bp->b_validend = bp->b_bcount;
3408 bp->b_dirtyend = bp->b_bcount;
3409 } else {
3410 /* page is clean */
3411 bp->b_validend = bp->b_bcount;
3412 bp->b_dirtyend = 0;
3413 }
3414 /*
3415 * try to recreate the physical block number associated with
3416 * this buffer...
3417 */
3418 if (VNOP_BLOCKMAP(vp, f_offset, bp->b_bcount, &bp->b_blkno, &contig_bytes, NULL, bmap_flags, NULL)) {
3419 panic("getblk: VNOP_BLOCKMAP failed");
3420 }
3421 /*
3422 * if the extent represented by this buffer
3423 * is not completely physically contiguous on
3424 * disk, than we can't cache the physical mapping
3425 * in the buffer header
3426 */
3427 if ((uint32_t)contig_bytes < bp->b_bcount) {
3428 bp->b_blkno = bp->b_lblkno;
3429 }
3430 } else {
3431 OSAddAtomicLong(1, &bufstats.bufs_miss);
3432 }
3433 kret = ubc_upl_map(upl, (vm_offset_t *)&(bp->b_datap));
3434
3435 if (kret != KERN_SUCCESS) {
3436 panic("getblk: ubc_upl_map() failed with (%d)", kret);
3437 }
3438 break;} // end BLK_READ
3439 default:
3440 panic("getblk: paging or unknown operation - %x", operation);
3441 /*NOTREACHED*/
3442 break;
3443 } // end switch
3444 } //end buf_t !incore
3445
3446 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 386)) | DBG_FUNC_END,
3447 bp, bp->b_datap, bp->b_flags, 3, 0);
3448
3449#ifdef JOE_DEBUG
3450 (void) OSBacktrace(&bp->b_stackgetblk[0], 6);
3451#endif
3452 return bp;
3453}
3454
3455/*
3456 * Get an empty, disassociated buffer of given size.
3457 */
3458buf_t
3459buf_geteblk(int size)
3460{
3461 buf_t bp = NULL;
3462 int queue = BQ_EMPTY;
3463
3464 do {
3465 lck_mtx_lock_spin(lck: &buf_mtx);
3466
3467 bp = getnewbuf(slpflag: 0, slptimeo: 0, queue: &queue);
3468 } while (bp == NULL);
3469
3470 SET(bp->b_flags, (B_META | B_INVAL));
3471
3472#if DIAGNOSTIC
3473 assert(queue == BQ_EMPTY);
3474#endif /* DIAGNOSTIC */
3475 /* XXX need to implement logic to deal with other queues */
3476
3477 binshash(bp, dp: &invalhash);
3478 bufstats.bufs_eblk++;
3479
3480 lck_mtx_unlock(lck: &buf_mtx);
3481
3482 allocbuf(bp, size);
3483
3484 return bp;
3485}
3486
3487uint32_t
3488buf_redundancy_flags(buf_t bp)
3489{
3490 return bp->b_redundancy_flags;
3491}
3492
3493void
3494buf_set_redundancy_flags(buf_t bp, uint32_t flags)
3495{
3496 SET(bp->b_redundancy_flags, flags);
3497}
3498
3499void
3500buf_clear_redundancy_flags(buf_t bp, uint32_t flags)
3501{
3502 CLR(bp->b_redundancy_flags, flags);
3503}
3504
3505
3506
3507static void *
3508recycle_buf_from_pool(int nsize)
3509{
3510 buf_t bp;
3511 void *ptr = NULL;
3512
3513 lck_mtx_lock_spin(lck: &buf_mtx);
3514
3515 TAILQ_FOREACH(bp, &bufqueues[BQ_META], b_freelist) {
3516 if (ISSET(bp->b_flags, B_DELWRI) || bp->b_bufsize != (uint32_t)nsize) {
3517 continue;
3518 }
3519 ptr = (void *)bp->b_datap;
3520 bp->b_bufsize = 0;
3521
3522 bcleanbuf(bp, TRUE);
3523 break;
3524 }
3525 lck_mtx_unlock(lck: &buf_mtx);
3526
3527 return ptr;
3528}
3529
3530
3531
3532int zalloc_nopagewait_failed = 0;
3533int recycle_buf_failed = 0;
3534
3535static void *
3536grab_memory_for_meta_buf(int nsize)
3537{
3538 void *ptr;
3539 boolean_t was_vmpriv;
3540
3541
3542 /*
3543 * make sure we're NOT priviliged so that
3544 * if a vm_page_grab is needed, it won't
3545 * block if we're out of free pages... if
3546 * it blocks, then we can't honor the
3547 * nopagewait request
3548 */
3549 was_vmpriv = set_vm_privilege(FALSE);
3550
3551 ptr = kheap_alloc(KHEAP_VFS_BIO, nsize, Z_NOPAGEWAIT);
3552
3553 if (was_vmpriv == TRUE) {
3554 set_vm_privilege(TRUE);
3555 }
3556
3557 if (ptr == NULL) {
3558 zalloc_nopagewait_failed++;
3559
3560 ptr = recycle_buf_from_pool(nsize);
3561
3562 if (ptr == NULL) {
3563 recycle_buf_failed++;
3564
3565 if (was_vmpriv == FALSE) {
3566 set_vm_privilege(TRUE);
3567 }
3568
3569 ptr = kheap_alloc(KHEAP_VFS_BIO, nsize, Z_WAITOK);
3570
3571 if (was_vmpriv == FALSE) {
3572 set_vm_privilege(FALSE);
3573 }
3574 }
3575 }
3576 return ptr;
3577}
3578
3579/*
3580 * With UBC, there is no need to expand / shrink the file data
3581 * buffer. The VM uses the same pages, hence no waste.
3582 * All the file data buffers can have one size.
3583 * In fact expand / shrink would be an expensive operation.
3584 *
3585 * Only exception to this is meta-data buffers. Most of the
3586 * meta data operations are smaller than PAGE_SIZE. Having the
3587 * meta-data buffers grow and shrink as needed, optimizes use
3588 * of the kernel wired memory.
3589 */
3590
3591int
3592allocbuf(buf_t bp, int size)
3593{
3594 vm_size_t desired_size;
3595
3596 desired_size = roundup(size, CLBYTES);
3597
3598 if (desired_size < PAGE_SIZE) {
3599 desired_size = PAGE_SIZE;
3600 }
3601 if (desired_size > MAXBSIZE) {
3602 panic("allocbuf: buffer larger than MAXBSIZE requested");
3603 }
3604
3605 if (ISSET(bp->b_flags, B_META)) {
3606 int nsize = roundup(size, MINMETA);
3607
3608 if (bp->b_datap) {
3609 void *elem = (void *)bp->b_datap;
3610
3611 if (ISSET(bp->b_flags, B_ZALLOC)) {
3612 if (bp->b_bufsize < (uint32_t)nsize) {
3613 /* reallocate to a bigger size */
3614
3615 if (nsize <= MAXMETA) {
3616 desired_size = nsize;
3617
3618 /* b_datap not really a ptr */
3619 *(void **)(&bp->b_datap) = grab_memory_for_meta_buf(nsize);
3620 } else {
3621 bp->b_datap = (uintptr_t)NULL;
3622 kmem_alloc(map: kernel_map, addrp: (vm_offset_t *)&bp->b_datap, size: desired_size,
3623 flags: KMA_KOBJECT | KMA_DATA | KMA_NOFAIL,
3624 VM_KERN_MEMORY_FILE);
3625 CLR(bp->b_flags, B_ZALLOC);
3626 }
3627 bcopy(src: elem, dst: (caddr_t)bp->b_datap, n: bp->b_bufsize);
3628 kheap_free(KHEAP_VFS_BIO, elem, bp->b_bufsize);
3629 } else {
3630 desired_size = bp->b_bufsize;
3631 }
3632 } else {
3633 if ((vm_size_t)bp->b_bufsize < desired_size) {
3634 /* reallocate to a bigger size */
3635 bp->b_datap = (uintptr_t)NULL;
3636 kmem_alloc(map: kernel_map, addrp: (vm_offset_t *)&bp->b_datap, size: desired_size,
3637 flags: KMA_KOBJECT | KMA_DATA | KMA_NOFAIL,
3638 VM_KERN_MEMORY_FILE);
3639 bcopy(src: elem, dst: (caddr_t)bp->b_datap, n: bp->b_bufsize);
3640 kmem_free(map: kernel_map, addr: (vm_offset_t)elem, size: bp->b_bufsize);
3641 } else {
3642 desired_size = bp->b_bufsize;
3643 }
3644 }
3645 } else {
3646 /* new allocation */
3647 if (nsize <= MAXMETA) {
3648 desired_size = nsize;
3649
3650 /* b_datap not really a ptr */
3651 *(void **)(&bp->b_datap) = grab_memory_for_meta_buf(nsize);
3652 SET(bp->b_flags, B_ZALLOC);
3653 } else {
3654 kmem_alloc(map: kernel_map, addrp: (vm_offset_t *)&bp->b_datap, size: desired_size,
3655 flags: KMA_KOBJECT | KMA_DATA | KMA_NOFAIL,
3656 VM_KERN_MEMORY_FILE);
3657 }
3658 }
3659 }
3660 bp->b_bufsize = (uint32_t)desired_size;
3661 bp->b_bcount = size;
3662
3663 return 0;
3664}
3665
3666/*
3667 * Get a new buffer from one of the free lists.
3668 *
3669 * Request for a queue is passes in. The queue from which the buffer was taken
3670 * from is returned. Out of range queue requests get BQ_EMPTY. Request for
3671 * BQUEUE means no preference. Use heuristics in that case.
3672 * Heuristics is as follows:
3673 * Try BQ_AGE, BQ_LRU, BQ_EMPTY, BQ_META in that order.
3674 * If none available block till one is made available.
3675 * If buffers available on both BQ_AGE and BQ_LRU, check the timestamps.
3676 * Pick the most stale buffer.
3677 * If found buffer was marked delayed write, start the async. write
3678 * and restart the search.
3679 * Initialize the fields and disassociate the buffer from the vnode.
3680 * Remove the buffer from the hash. Return the buffer and the queue
3681 * on which it was found.
3682 *
3683 * buf_mtx is held upon entry
3684 * returns with buf_mtx locked if new buf available
3685 * returns with buf_mtx UNlocked if new buf NOT available
3686 */
3687
3688static buf_t
3689getnewbuf(int slpflag, int slptimeo, int * queue)
3690{
3691 buf_t bp;
3692 buf_t lru_bp;
3693 buf_t age_bp;
3694 buf_t meta_bp;
3695 int age_time, lru_time, bp_time, meta_time;
3696 int req = *queue; /* save it for restarts */
3697 struct timespec ts;
3698
3699start:
3700 /*
3701 * invalid request gets empty queue
3702 */
3703 if ((*queue >= BQUEUES) || (*queue < 0)
3704 || (*queue == BQ_LAUNDRY) || (*queue == BQ_LOCKED)) {
3705 *queue = BQ_EMPTY;
3706 }
3707
3708
3709 if (*queue == BQ_EMPTY && (bp = bufqueues[*queue].tqh_first)) {
3710 goto found;
3711 }
3712
3713 /*
3714 * need to grow number of bufs, add another one rather than recycling
3715 */
3716 if (nbuf_headers < max_nbuf_headers) {
3717 /*
3718 * Increment count now as lock
3719 * is dropped for allocation.
3720 * That avoids over commits
3721 */
3722 nbuf_headers++;
3723 goto add_newbufs;
3724 }
3725 /* Try for the requested queue first */
3726 bp = bufqueues[*queue].tqh_first;
3727 if (bp) {
3728 goto found;
3729 }
3730
3731 /* Unable to use requested queue */
3732 age_bp = bufqueues[BQ_AGE].tqh_first;
3733 lru_bp = bufqueues[BQ_LRU].tqh_first;
3734 meta_bp = bufqueues[BQ_META].tqh_first;
3735
3736 if (!age_bp && !lru_bp && !meta_bp) {
3737 /*
3738 * Unavailble on AGE or LRU or META queues
3739 * Try the empty list first
3740 */
3741 bp = bufqueues[BQ_EMPTY].tqh_first;
3742 if (bp) {
3743 *queue = BQ_EMPTY;
3744 goto found;
3745 }
3746 /*
3747 * We have seen is this is hard to trigger.
3748 * This is an overcommit of nbufs but needed
3749 * in some scenarios with diskiamges
3750 */
3751
3752add_newbufs:
3753 lck_mtx_unlock(lck: &buf_mtx);
3754
3755 /* Create a new temporary buffer header */
3756 bp = zalloc_flags(buf_hdr_zone, Z_WAITOK | Z_NOFAIL);
3757 bufhdrinit(bp);
3758 bp->b_whichq = BQ_EMPTY;
3759 bp->b_timestamp = buf_timestamp();
3760 BLISTNONE(bp);
3761 SET(bp->b_flags, B_HDRALLOC);
3762 *queue = BQ_EMPTY;
3763 lck_mtx_lock_spin(lck: &buf_mtx);
3764
3765 if (bp) {
3766 binshash(bp, dp: &invalhash);
3767 binsheadfree(bp, &bufqueues[BQ_EMPTY], BQ_EMPTY);
3768 buf_hdr_count++;
3769 goto found;
3770 }
3771 /* subtract already accounted bufcount */
3772 nbuf_headers--;
3773
3774 bufstats.bufs_sleeps++;
3775
3776 /* wait for a free buffer of any kind */
3777 needbuffer = 1;
3778 /* hz value is 100 */
3779 ts.tv_sec = (slptimeo / 1000);
3780 /* the hz value is 100; which leads to 10ms */
3781 ts.tv_nsec = (slptimeo % 1000) * NSEC_PER_USEC * 1000 * 10;
3782
3783 msleep(chan: &needbuffer, mtx: &buf_mtx, pri: slpflag | PDROP | (PRIBIO + 1), wmesg: "getnewbuf", ts: &ts);
3784 return NULL;
3785 }
3786
3787 /* Buffer available either on AGE or LRU or META */
3788 bp = NULL;
3789 *queue = -1;
3790
3791 /* Buffer available either on AGE or LRU */
3792 if (!age_bp) {
3793 bp = lru_bp;
3794 *queue = BQ_LRU;
3795 } else if (!lru_bp) {
3796 bp = age_bp;
3797 *queue = BQ_AGE;
3798 } else { /* buffer available on both AGE and LRU */
3799 int t = buf_timestamp();
3800
3801 age_time = t - age_bp->b_timestamp;
3802 lru_time = t - lru_bp->b_timestamp;
3803 if ((age_time < 0) || (lru_time < 0)) { /* time set backwards */
3804 bp = age_bp;
3805 *queue = BQ_AGE;
3806 /*
3807 * we should probably re-timestamp eveything in the
3808 * queues at this point with the current time
3809 */
3810 } else {
3811 if ((lru_time >= lru_is_stale) && (age_time < age_is_stale)) {
3812 bp = lru_bp;
3813 *queue = BQ_LRU;
3814 } else {
3815 bp = age_bp;
3816 *queue = BQ_AGE;
3817 }
3818 }
3819 }
3820
3821 if (!bp) { /* Neither on AGE nor on LRU */
3822 bp = meta_bp;
3823 *queue = BQ_META;
3824 } else if (meta_bp) {
3825 int t = buf_timestamp();
3826
3827 bp_time = t - bp->b_timestamp;
3828 meta_time = t - meta_bp->b_timestamp;
3829
3830 if (!(bp_time < 0) && !(meta_time < 0)) {
3831 /* time not set backwards */
3832 int bp_is_stale;
3833 bp_is_stale = (*queue == BQ_LRU) ?
3834 lru_is_stale : age_is_stale;
3835
3836 if ((meta_time >= meta_is_stale) &&
3837 (bp_time < bp_is_stale)) {
3838 bp = meta_bp;
3839 *queue = BQ_META;
3840 }
3841 }
3842 }
3843found:
3844 if (ISSET(bp->b_flags, B_LOCKED) || ISSET(bp->b_lflags, BL_BUSY)) {
3845 panic("getnewbuf: bp @ %p is LOCKED or BUSY! (flags 0x%x)", bp, bp->b_flags);
3846 }
3847
3848 /* Clean it */
3849 if (bcleanbuf(bp, FALSE)) {
3850 /*
3851 * moved to the laundry thread, buffer not ready
3852 */
3853 *queue = req;
3854 goto start;
3855 }
3856 return bp;
3857}
3858
3859
3860/*
3861 * Clean a buffer.
3862 * Returns 0 if buffer is ready to use,
3863 * Returns 1 if issued a buf_bawrite() to indicate
3864 * that the buffer is not ready.
3865 *
3866 * buf_mtx is held upon entry
3867 * returns with buf_mtx locked
3868 */
3869int
3870bcleanbuf(buf_t bp, boolean_t discard)
3871{
3872 /* Remove from the queue */
3873 bremfree_locked(bp);
3874
3875#ifdef JOE_DEBUG
3876 bp->b_owner = current_thread();
3877 bp->b_tag = 2;
3878#endif
3879 /*
3880 * If buffer was a delayed write, start the IO by queuing
3881 * it on the LAUNDRY queue, and return 1
3882 */
3883 if (ISSET(bp->b_flags, B_DELWRI)) {
3884 if (discard) {
3885 SET(bp->b_lflags, BL_WANTDEALLOC);
3886 }
3887
3888 bmovelaundry(bp);
3889
3890 lck_mtx_unlock(lck: &buf_mtx);
3891
3892 wakeup(chan: &bufqueues[BQ_LAUNDRY]);
3893 /*
3894 * and give it a chance to run
3895 */
3896 (void)thread_block(THREAD_CONTINUE_NULL);
3897
3898 lck_mtx_lock_spin(lck: &buf_mtx);
3899
3900 return 1;
3901 }
3902#ifdef JOE_DEBUG
3903 bp->b_owner = current_thread();
3904 bp->b_tag = 8;
3905#endif
3906 /*
3907 * Buffer is no longer on any free list... we own it
3908 */
3909 SET(bp->b_lflags, BL_BUSY);
3910 buf_busycount++;
3911
3912 bremhash(bp);
3913
3914 /*
3915 * disassociate us from our vnode, if we had one...
3916 */
3917 if (bp->b_vp) {
3918 brelvp_locked(bp);
3919 }
3920
3921 lck_mtx_unlock(lck: &buf_mtx);
3922
3923 BLISTNONE(bp);
3924
3925 if (ISSET(bp->b_flags, B_META)) {
3926 buf_free_meta_store(bp);
3927 }
3928
3929 trace(TR_BRELSE, pack(bp->b_vp, bp->b_bufsize), bp->b_lblkno);
3930
3931 buf_release_credentials(bp);
3932
3933 /* If discarding, just move to the empty queue */
3934 if (discard) {
3935 lck_mtx_lock_spin(lck: &buf_mtx);
3936 CLR(bp->b_flags, (B_META | B_ZALLOC | B_DELWRI | B_LOCKED | B_AGE | B_ASYNC | B_NOCACHE | B_FUA));
3937 bp->b_whichq = BQ_EMPTY;
3938 binshash(bp, dp: &invalhash);
3939 binsheadfree(bp, &bufqueues[BQ_EMPTY], BQ_EMPTY);
3940 CLR(bp->b_lflags, BL_BUSY);
3941 buf_busycount--;
3942 } else {
3943 /* Not discarding: clean up and prepare for reuse */
3944 bp->b_bufsize = 0;
3945 bp->b_datap = (uintptr_t)NULL;
3946 bp->b_upl = (void *)NULL;
3947 bp->b_fsprivate = (void *)NULL;
3948 /*
3949 * preserve the state of whether this buffer
3950 * was allocated on the fly or not...
3951 * the only other flag that should be set at
3952 * this point is BL_BUSY...
3953 */
3954#ifdef JOE_DEBUG
3955 bp->b_owner = current_thread();
3956 bp->b_tag = 3;
3957#endif
3958 bp->b_lflags = BL_BUSY;
3959 bp->b_flags = (bp->b_flags & B_HDRALLOC);
3960 bp->b_redundancy_flags = 0;
3961 bp->b_dev = NODEV;
3962 bp->b_blkno = bp->b_lblkno = 0;
3963 bp->b_lblksize = 0;
3964 bp->b_iodone = NULL;
3965 bp->b_error = 0;
3966 bp->b_resid = 0;
3967 bp->b_bcount = 0;
3968 bp->b_dirtyoff = bp->b_dirtyend = 0;
3969 bp->b_validoff = bp->b_validend = 0;
3970 bzero(s: &bp->b_attr, n: sizeof(struct bufattr));
3971
3972 lck_mtx_lock_spin(lck: &buf_mtx);
3973 }
3974 return 0;
3975}
3976
3977
3978
3979errno_t
3980buf_invalblkno(vnode_t vp, daddr64_t lblkno, int flags)
3981{
3982 buf_t bp;
3983 errno_t error;
3984 struct bufhashhdr *dp;
3985
3986 dp = BUFHASH(vp, lblkno);
3987
3988relook:
3989 lck_mtx_lock_spin(lck: &buf_mtx);
3990
3991 if ((bp = incore_locked(vp, blkno: lblkno, dp)) == (struct buf *)0) {
3992 lck_mtx_unlock(lck: &buf_mtx);
3993 return 0;
3994 }
3995 if (ISSET(bp->b_lflags, BL_BUSY)) {
3996 if (!ISSET(flags, BUF_WAIT)) {
3997 lck_mtx_unlock(lck: &buf_mtx);
3998 return EBUSY;
3999 }
4000 SET(bp->b_lflags, BL_WANTED);
4001
4002 error = msleep(chan: (caddr_t)bp, mtx: &buf_mtx, PDROP | (PRIBIO + 1), wmesg: "buf_invalblkno", NULL);
4003
4004 if (error) {
4005 return error;
4006 }
4007 goto relook;
4008 }
4009 bremfree_locked(bp);
4010 SET(bp->b_lflags, BL_BUSY);
4011 SET(bp->b_flags, B_INVAL);
4012 buf_busycount++;
4013#ifdef JOE_DEBUG
4014 bp->b_owner = current_thread();
4015 bp->b_tag = 4;
4016#endif
4017 lck_mtx_unlock(lck: &buf_mtx);
4018 buf_brelse(bp);
4019
4020 return 0;
4021}
4022
4023
4024void
4025buf_drop(buf_t bp)
4026{
4027 int need_wakeup = 0;
4028
4029 lck_mtx_lock_spin(lck: &buf_mtx);
4030
4031 if (ISSET(bp->b_lflags, BL_WANTED)) {
4032 /*
4033 * delay the actual wakeup until after we
4034 * clear BL_BUSY and we've dropped buf_mtx
4035 */
4036 need_wakeup = 1;
4037 }
4038#ifdef JOE_DEBUG
4039 bp->b_owner = current_thread();
4040 bp->b_tag = 9;
4041#endif
4042 /*
4043 * Unlock the buffer.
4044 */
4045 CLR(bp->b_lflags, (BL_BUSY | BL_WANTED));
4046 buf_busycount--;
4047
4048 lck_mtx_unlock(lck: &buf_mtx);
4049
4050 if (need_wakeup) {
4051 /*
4052 * Wake up any proceeses waiting for _this_ buffer to become free.
4053 */
4054 wakeup(chan: bp);
4055 }
4056}
4057
4058
4059errno_t
4060buf_acquire(buf_t bp, int flags, int slpflag, int slptimeo)
4061{
4062 errno_t error;
4063
4064 lck_mtx_lock_spin(lck: &buf_mtx);
4065
4066 error = buf_acquire_locked(bp, flags, slpflag, slptimeo);
4067
4068 lck_mtx_unlock(lck: &buf_mtx);
4069
4070 return error;
4071}
4072
4073
4074static errno_t
4075buf_acquire_locked(buf_t bp, int flags, int slpflag, int slptimeo)
4076{
4077 errno_t error;
4078 struct timespec ts;
4079
4080 if (ISSET(bp->b_flags, B_LOCKED)) {
4081 if ((flags & BAC_SKIP_LOCKED)) {
4082 return EDEADLK;
4083 }
4084 } else {
4085 if ((flags & BAC_SKIP_NONLOCKED)) {
4086 return EDEADLK;
4087 }
4088 }
4089 if (ISSET(bp->b_lflags, BL_BUSY)) {
4090 /*
4091 * since the lck_mtx_lock may block, the buffer
4092 * may become BUSY, so we need to
4093 * recheck for a NOWAIT request
4094 */
4095 if (flags & BAC_NOWAIT) {
4096 return EBUSY;
4097 }
4098 SET(bp->b_lflags, BL_WANTED);
4099
4100 /* the hz value is 100; which leads to 10ms */
4101 ts.tv_sec = (slptimeo / 100);
4102 ts.tv_nsec = (slptimeo % 100) * 10 * NSEC_PER_USEC * 1000;
4103 error = msleep(chan: (caddr_t)bp, mtx: &buf_mtx, pri: slpflag | (PRIBIO + 1), wmesg: "buf_acquire", ts: &ts);
4104
4105 if (error) {
4106 return error;
4107 }
4108 return EAGAIN;
4109 }
4110 if (flags & BAC_REMOVE) {
4111 bremfree_locked(bp);
4112 }
4113 SET(bp->b_lflags, BL_BUSY);
4114 buf_busycount++;
4115
4116#ifdef JOE_DEBUG
4117 bp->b_owner = current_thread();
4118 bp->b_tag = 5;
4119#endif
4120 return 0;
4121}
4122
4123
4124/*
4125 * Wait for operations on the buffer to complete.
4126 * When they do, extract and return the I/O's error value.
4127 */
4128errno_t
4129buf_biowait(buf_t bp)
4130{
4131 while (!ISSET(bp->b_flags, B_DONE)) {
4132 lck_mtx_lock_spin(lck: &buf_mtx);
4133
4134 if (!ISSET(bp->b_flags, B_DONE)) {
4135 DTRACE_IO1(wait__start, buf_t, bp);
4136 (void) msleep(chan: bp, mtx: &buf_mtx, PDROP | (PRIBIO + 1), wmesg: "buf_biowait", NULL);
4137 DTRACE_IO1(wait__done, buf_t, bp);
4138 } else {
4139 lck_mtx_unlock(lck: &buf_mtx);
4140 }
4141 }
4142 /* check for interruption of I/O (e.g. via NFS), then errors. */
4143 if (ISSET(bp->b_flags, B_EINTR)) {
4144 CLR(bp->b_flags, B_EINTR);
4145 return EINTR;
4146 } else if (ISSET(bp->b_flags, B_ERROR)) {
4147 return bp->b_error ? bp->b_error : EIO;
4148 } else {
4149 return 0;
4150 }
4151}
4152
4153
4154/*
4155 * Mark I/O complete on a buffer.
4156 *
4157 * If a callback has been requested, e.g. the pageout
4158 * daemon, do so. Otherwise, awaken waiting processes.
4159 *
4160 * [ Leffler, et al., says on p.247:
4161 * "This routine wakes up the blocked process, frees the buffer
4162 * for an asynchronous write, or, for a request by the pagedaemon
4163 * process, invokes a procedure specified in the buffer structure" ]
4164 *
4165 * In real life, the pagedaemon (or other system processes) wants
4166 * to do async stuff to, and doesn't want the buffer buf_brelse()'d.
4167 * (for swap pager, that puts swap buffers on the free lists (!!!),
4168 * for the vn device, that puts malloc'd buffers on the free lists!)
4169 */
4170
4171void
4172buf_biodone(buf_t bp)
4173{
4174 mount_t mp;
4175 struct bufattr *bap;
4176 struct timeval real_elapsed;
4177 uint64_t real_elapsed_usec = 0;
4178
4179 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 387)) | DBG_FUNC_START,
4180 bp, bp->b_datap, bp->b_flags, 0, 0);
4181
4182 /* Record our progress. */
4183 vfs_update_last_completion_time();
4184
4185 if (ISSET(bp->b_flags, B_DONE)) {
4186 panic("biodone already");
4187 }
4188
4189 bap = &bp->b_attr;
4190
4191 if (bp->b_vp && bp->b_vp->v_mount) {
4192 mp = bp->b_vp->v_mount;
4193 } else {
4194 mp = NULL;
4195 }
4196
4197 if (ISSET(bp->b_flags, B_ERROR)) {
4198 if (mp && (MNT_ROOTFS & mp->mnt_flag)) {
4199 dk_error_description_t desc;
4200 bzero(s: &desc, n: sizeof(desc));
4201 desc.description = panic_disk_error_description;
4202 desc.description_size = panic_disk_error_description_size;
4203 VNOP_IOCTL(vp: mp->mnt_devvp, DKIOCGETERRORDESCRIPTION, data: (caddr_t)&desc, fflag: 0, ctx: vfs_context_kernel());
4204 }
4205 }
4206
4207 if (mp && (bp->b_flags & B_READ) == 0) {
4208 update_last_io_time(mp);
4209 INCR_PENDING_IO(-(pending_io_t)buf_count(bp), mp->mnt_pending_write_size);
4210 } else if (mp) {
4211 INCR_PENDING_IO(-(pending_io_t)buf_count(bp), mp->mnt_pending_read_size);
4212 }
4213
4214 throttle_info_end_io(bp);
4215
4216 if (kdebug_enable) {
4217 int code = DKIO_DONE;
4218 int io_tier = GET_BUFATTR_IO_TIER(bap);
4219
4220 if (bp->b_flags & B_READ) {
4221 code |= DKIO_READ;
4222 }
4223 if (bp->b_flags & B_ASYNC) {
4224 code |= DKIO_ASYNC;
4225 }
4226
4227 if (bp->b_flags & B_META) {
4228 code |= DKIO_META;
4229 } else if (bp->b_flags & B_PAGEIO) {
4230 code |= DKIO_PAGING;
4231 }
4232
4233 if (io_tier != 0) {
4234 code |= DKIO_THROTTLE;
4235 }
4236
4237 code |= ((io_tier << DKIO_TIER_SHIFT) & DKIO_TIER_MASK);
4238
4239 if (bp->b_flags & B_PASSIVE) {
4240 code |= DKIO_PASSIVE;
4241 }
4242
4243 if (bap->ba_flags & BA_NOCACHE) {
4244 code |= DKIO_NOCACHE;
4245 }
4246
4247 if (bap->ba_flags & BA_IO_TIER_UPGRADE) {
4248 code |= DKIO_TIER_UPGRADE;
4249 }
4250
4251 KDBG_RELEASE_NOPROCFILT(FSDBG_CODE(DBG_DKRW, code),
4252 buf_kernel_addrperm_addr(bp),
4253 (uintptr_t)VM_KERNEL_ADDRPERM(bp->b_vp), bp->b_resid,
4254 bp->b_error);
4255 }
4256
4257 microuptime(tv: &real_elapsed);
4258 timevalsub(t1: &real_elapsed, t2: &bp->b_timestamp_tv);
4259 real_elapsed_usec = real_elapsed.tv_sec * USEC_PER_SEC + real_elapsed.tv_usec;
4260 disk_conditioner_delay(bp, 1, bp->b_bcount, real_elapsed_usec);
4261
4262 /*
4263 * I/O was done, so don't believe
4264 * the DIRTY state from VM anymore...
4265 * and we need to reset the THROTTLED/PASSIVE
4266 * indicators
4267 */
4268 CLR(bp->b_flags, (B_WASDIRTY | B_PASSIVE));
4269 CLR(bap->ba_flags, (BA_META | BA_NOCACHE | BA_DELAYIDLESLEEP | BA_IO_TIER_UPGRADE));
4270
4271 SET_BUFATTR_IO_TIER(bap, 0);
4272
4273 DTRACE_IO1(done, buf_t, bp);
4274
4275 if (!ISSET(bp->b_flags, B_READ) && !ISSET(bp->b_flags, B_RAW)) {
4276 /*
4277 * wake up any writer's blocked
4278 * on throttle or waiting for I/O
4279 * to drain
4280 */
4281 vnode_writedone(vp: bp->b_vp);
4282 }
4283
4284 if (ISSET(bp->b_flags, (B_CALL | B_FILTER))) { /* if necessary, call out */
4285 void (*iodone_func)(struct buf *, void *) = bp->b_iodone;
4286 void *arg = bp->b_transaction;
4287 int callout = ISSET(bp->b_flags, B_CALL);
4288
4289 if (iodone_func == NULL) {
4290 panic("biodone: bp @ %p has NULL b_iodone!", bp);
4291 }
4292
4293 CLR(bp->b_flags, (B_CALL | B_FILTER)); /* filters and callouts are one-shot */
4294 bp->b_iodone = NULL;
4295 bp->b_transaction = NULL;
4296
4297 if (callout) {
4298 SET(bp->b_flags, B_DONE); /* note that it's done */
4299 }
4300 (*iodone_func)(bp, arg);
4301
4302 if (callout) {
4303 /*
4304 * assumes that the callback function takes
4305 * ownership of the bp and deals with releasing it if necessary
4306 */
4307 goto biodone_done;
4308 }
4309 /*
4310 * in this case the call back function is acting
4311 * strictly as a filter... it does not take
4312 * ownership of the bp and is expecting us
4313 * to finish cleaning up... this is currently used
4314 * by the HFS journaling code
4315 */
4316 }
4317 if (ISSET(bp->b_flags, B_ASYNC)) { /* if async, release it */
4318 SET(bp->b_flags, B_DONE); /* note that it's done */
4319
4320 buf_brelse(bp);
4321 } else { /* or just wakeup the buffer */
4322 /*
4323 * by taking the mutex, we serialize
4324 * the buf owner calling buf_biowait so that we'll
4325 * only see him in one of 2 states...
4326 * state 1: B_DONE wasn't set and he's
4327 * blocked in msleep
4328 * state 2: he's blocked trying to take the
4329 * mutex before looking at B_DONE
4330 * BL_WANTED is cleared in case anyone else
4331 * is blocked waiting for the buffer... note
4332 * that we haven't cleared B_BUSY yet, so if
4333 * they do get to run, their going to re-set
4334 * BL_WANTED and go back to sleep
4335 */
4336 lck_mtx_lock_spin(lck: &buf_mtx);
4337
4338 CLR(bp->b_lflags, BL_WANTED);
4339 SET(bp->b_flags, B_DONE); /* note that it's done */
4340
4341 lck_mtx_unlock(lck: &buf_mtx);
4342
4343 wakeup(chan: bp);
4344 }
4345biodone_done:
4346 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 387)) | DBG_FUNC_END,
4347 (uintptr_t)bp, (uintptr_t)bp->b_datap, bp->b_flags, 0, 0);
4348}
4349
4350/*
4351 * Obfuscate buf pointers.
4352 */
4353vm_offset_t
4354buf_kernel_addrperm_addr(void * addr)
4355{
4356 if ((vm_offset_t)addr == 0) {
4357 return 0;
4358 } else {
4359 return (vm_offset_t)addr + buf_kernel_addrperm;
4360 }
4361}
4362
4363/*
4364 * Return a count of buffers on the "locked" queue.
4365 */
4366int
4367count_lock_queue(void)
4368{
4369 buf_t bp;
4370 int n = 0;
4371
4372 lck_mtx_lock_spin(lck: &buf_mtx);
4373
4374 for (bp = bufqueues[BQ_LOCKED].tqh_first; bp;
4375 bp = bp->b_freelist.tqe_next) {
4376 n++;
4377 }
4378 lck_mtx_unlock(lck: &buf_mtx);
4379
4380 return n;
4381}
4382
4383/*
4384 * Return a count of 'busy' buffers. Used at the time of shutdown.
4385 * note: This is also called from the mach side in debug context in kdp.c
4386 */
4387uint32_t
4388count_busy_buffers(void)
4389{
4390 return buf_busycount + bufstats.bufs_iobufinuse;
4391}
4392
4393#if DIAGNOSTIC
4394/*
4395 * Print out statistics on the current allocation of the buffer pool.
4396 * Can be enabled to print out on every ``sync'' by setting "syncprt"
4397 * in vfs_syscalls.c using sysctl.
4398 */
4399void
4400vfs_bufstats()
4401{
4402 int i, j, count;
4403 struct buf *bp;
4404 struct bqueues *dp;
4405 int counts[MAXBSIZE / CLBYTES + 1];
4406 static char *bname[BQUEUES] =
4407 { "LOCKED", "LRU", "AGE", "EMPTY", "META", "LAUNDRY" };
4408
4409 for (dp = bufqueues, i = 0; dp < &bufqueues[BQUEUES]; dp++, i++) {
4410 count = 0;
4411 for (j = 0; j <= MAXBSIZE / CLBYTES; j++) {
4412 counts[j] = 0;
4413 }
4414
4415 lck_mtx_lock(&buf_mtx);
4416
4417 for (bp = dp->tqh_first; bp; bp = bp->b_freelist.tqe_next) {
4418 counts[bp->b_bufsize / CLBYTES]++;
4419 count++;
4420 }
4421 lck_mtx_unlock(&buf_mtx);
4422
4423 printf("%s: total-%d", bname[i], count);
4424 for (j = 0; j <= MAXBSIZE / CLBYTES; j++) {
4425 if (counts[j] != 0) {
4426 printf(", %d-%d", j * CLBYTES, counts[j]);
4427 }
4428 }
4429 printf("\n");
4430 }
4431}
4432#endif /* DIAGNOSTIC */
4433
4434#define NRESERVEDIOBUFS 128
4435
4436#define MNT_VIRTUALDEV_MAX_IOBUFS 128
4437#define VIRTUALDEV_MAX_IOBUFS ((40*niobuf_headers)/100)
4438
4439buf_t
4440alloc_io_buf(vnode_t vp, int priv)
4441{
4442 buf_t bp;
4443 mount_t mp = NULL;
4444 int alloc_for_virtualdev = FALSE;
4445
4446 lck_mtx_lock_spin(lck: &iobuffer_mtxp);
4447
4448 /*
4449 * We subject iobuf requests for diskimages to additional restrictions.
4450 *
4451 * a) A single diskimage mount cannot use up more than
4452 * MNT_VIRTUALDEV_MAX_IOBUFS. However,vm privileged (pageout) requests
4453 * are not subject to this restriction.
4454 * b) iobuf headers used by all diskimage headers by all mount
4455 * points cannot exceed VIRTUALDEV_MAX_IOBUFS.
4456 */
4457 if (vp && ((mp = vp->v_mount)) && mp != dead_mountp &&
4458 mp->mnt_kern_flag & MNTK_VIRTUALDEV) {
4459 alloc_for_virtualdev = TRUE;
4460 while ((!priv && mp->mnt_iobufinuse > MNT_VIRTUALDEV_MAX_IOBUFS) ||
4461 bufstats.bufs_iobufinuse_vdev > VIRTUALDEV_MAX_IOBUFS) {
4462 bufstats.bufs_iobufsleeps++;
4463
4464 need_iobuffer = 1;
4465 (void)msleep(chan: &need_iobuffer, mtx: &iobuffer_mtxp,
4466 PSPIN | (PRIBIO + 1), wmesg: (const char *)"alloc_io_buf (1)",
4467 NULL);
4468 }
4469 }
4470
4471 while ((((uint32_t)(niobuf_headers - NRESERVEDIOBUFS) < bufstats.bufs_iobufinuse) && !priv) ||
4472 (bp = iobufqueue.tqh_first) == NULL) {
4473 bufstats.bufs_iobufsleeps++;
4474
4475 need_iobuffer = 1;
4476 (void)msleep(chan: &need_iobuffer, mtx: &iobuffer_mtxp, PSPIN | (PRIBIO + 1),
4477 wmesg: (const char *)"alloc_io_buf (2)", NULL);
4478 }
4479 TAILQ_REMOVE(&iobufqueue, bp, b_freelist);
4480
4481 bufstats.bufs_iobufinuse++;
4482 if (bufstats.bufs_iobufinuse > bufstats.bufs_iobufmax) {
4483 bufstats.bufs_iobufmax = bufstats.bufs_iobufinuse;
4484 }
4485
4486 if (alloc_for_virtualdev) {
4487 mp->mnt_iobufinuse++;
4488 bufstats.bufs_iobufinuse_vdev++;
4489 }
4490
4491 lck_mtx_unlock(lck: &iobuffer_mtxp);
4492
4493 /*
4494 * initialize various fields
4495 * we don't need to hold the mutex since the buffer
4496 * is now private... the vp should have a reference
4497 * on it and is not protected by this mutex in any event
4498 */
4499 bp->b_timestamp = 0;
4500 bp->b_proc = NULL;
4501
4502 bp->b_datap = 0;
4503 bp->b_flags = 0;
4504 bp->b_lflags = BL_BUSY | BL_IOBUF;
4505 if (alloc_for_virtualdev) {
4506 bp->b_lflags |= BL_IOBUF_VDEV;
4507 }
4508 bp->b_redundancy_flags = 0;
4509 bp->b_blkno = bp->b_lblkno = 0;
4510 bp->b_lblksize = 0;
4511#ifdef JOE_DEBUG
4512 bp->b_owner = current_thread();
4513 bp->b_tag = 6;
4514#endif
4515 bp->b_iodone = NULL;
4516 bp->b_error = 0;
4517 bp->b_resid = 0;
4518 bp->b_bcount = 0;
4519 bp->b_bufsize = 0;
4520 bp->b_upl = NULL;
4521 bp->b_fsprivate = (void *)NULL;
4522 bp->b_vp = vp;
4523 bzero(s: &bp->b_attr, n: sizeof(struct bufattr));
4524
4525 if (vp && (vp->v_type == VBLK || vp->v_type == VCHR)) {
4526 bp->b_dev = vp->v_rdev;
4527 } else {
4528 bp->b_dev = NODEV;
4529 }
4530
4531 return bp;
4532}
4533
4534
4535void
4536free_io_buf(buf_t bp)
4537{
4538 int need_wakeup = 0;
4539 int free_for_virtualdev = FALSE;
4540 mount_t mp = NULL;
4541
4542 /* Was this iobuf for a diskimage ? */
4543 if (bp->b_lflags & BL_IOBUF_VDEV) {
4544 free_for_virtualdev = TRUE;
4545 if (bp->b_vp) {
4546 mp = bp->b_vp->v_mount;
4547 }
4548 }
4549
4550 /*
4551 * put buffer back on the head of the iobufqueue
4552 */
4553 bp->b_vp = NULL;
4554 bp->b_flags = B_INVAL;
4555
4556 /* Zero out the bufattr and its flags before relinquishing this iobuf */
4557 bzero(s: &bp->b_attr, n: sizeof(struct bufattr));
4558
4559 lck_mtx_lock_spin(lck: &iobuffer_mtxp);
4560
4561 binsheadfree(bp, &iobufqueue, -1);
4562
4563 if (need_iobuffer) {
4564 /*
4565 * Wake up any processes waiting because they need an io buffer
4566 *
4567 * do the wakeup after we drop the mutex... it's possible that the
4568 * wakeup will be superfluous if need_iobuffer gets set again and
4569 * another thread runs this path, but it's highly unlikely, doesn't
4570 * hurt, and it means we don't hold up I/O progress if the wakeup blocks
4571 * trying to grab a task related lock...
4572 */
4573 need_iobuffer = 0;
4574 need_wakeup = 1;
4575 }
4576 if (bufstats.bufs_iobufinuse <= 0) {
4577 panic("free_io_buf: bp(%p) - bufstats.bufs_iobufinuse < 0", bp);
4578 }
4579
4580 bufstats.bufs_iobufinuse--;
4581
4582 if (free_for_virtualdev) {
4583 bufstats.bufs_iobufinuse_vdev--;
4584 if (mp && mp != dead_mountp) {
4585 mp->mnt_iobufinuse--;
4586 }
4587 }
4588
4589 lck_mtx_unlock(lck: &iobuffer_mtxp);
4590
4591 if (need_wakeup) {
4592 wakeup(chan: &need_iobuffer);
4593 }
4594}
4595
4596
4597void
4598buf_list_lock(void)
4599{
4600 lck_mtx_lock_spin(lck: &buf_mtx);
4601}
4602
4603void
4604buf_list_unlock(void)
4605{
4606 lck_mtx_unlock(lck: &buf_mtx);
4607}
4608
4609/*
4610 * If getnewbuf() calls bcleanbuf() on the same thread
4611 * there is a potential for stack overrun and deadlocks.
4612 * So we always handoff the work to a worker thread for completion
4613 */
4614
4615
4616static void
4617bcleanbuf_thread_init(void)
4618{
4619 thread_t thread = THREAD_NULL;
4620
4621 /* create worker thread */
4622 kernel_thread_start(continuation: (thread_continue_t)bcleanbuf_thread, NULL, new_thread: &thread);
4623 thread_deallocate(thread);
4624}
4625
4626typedef int (*bcleanbufcontinuation)(int);
4627
4628__attribute__((noreturn))
4629static void
4630bcleanbuf_thread(void)
4631{
4632 struct buf *bp;
4633 int error = 0;
4634 int loopcnt = 0;
4635
4636 for (;;) {
4637 lck_mtx_lock_spin(lck: &buf_mtx);
4638
4639 while ((bp = TAILQ_FIRST(&bufqueues[BQ_LAUNDRY])) == NULL) {
4640 (void)msleep0(chan: &bufqueues[BQ_LAUNDRY], mtx: &buf_mtx, PRIBIO | PDROP, wmesg: "blaundry", timo: 0, continuation: (bcleanbufcontinuation)bcleanbuf_thread);
4641 }
4642
4643 /*
4644 * Remove from the queue
4645 */
4646 bremfree_locked(bp);
4647
4648 /*
4649 * Buffer is no longer on any free list
4650 */
4651 SET(bp->b_lflags, BL_BUSY);
4652 buf_busycount++;
4653
4654#ifdef JOE_DEBUG
4655 bp->b_owner = current_thread();
4656 bp->b_tag = 10;
4657#endif
4658
4659 lck_mtx_unlock(lck: &buf_mtx);
4660 /*
4661 * do the IO
4662 */
4663 error = bawrite_internal(bp, throttle: 0);
4664
4665 if (error) {
4666 bp->b_whichq = BQ_LAUNDRY;
4667 bp->b_timestamp = buf_timestamp();
4668
4669 lck_mtx_lock_spin(lck: &buf_mtx);
4670
4671 binstailfree(bp, &bufqueues[BQ_LAUNDRY], BQ_LAUNDRY);
4672 blaundrycnt++;
4673
4674 /* we never leave a busy page on the laundry queue */
4675 CLR(bp->b_lflags, BL_BUSY);
4676 buf_busycount--;
4677#ifdef JOE_DEBUG
4678 bp->b_owner = current_thread();
4679 bp->b_tag = 11;
4680#endif
4681
4682 lck_mtx_unlock(lck: &buf_mtx);
4683
4684 if (loopcnt > MAXLAUNDRY) {
4685 /*
4686 * bawrite_internal() can return errors if we're throttled. If we've
4687 * done several I/Os and failed, give the system some time to unthrottle
4688 * the vnode
4689 */
4690 (void)tsleep(chan: (void *)&bufqueues[BQ_LAUNDRY], PRIBIO, wmesg: "blaundry", timo: 1);
4691 loopcnt = 0;
4692 } else {
4693 /* give other threads a chance to run */
4694 (void)thread_block(THREAD_CONTINUE_NULL);
4695 loopcnt++;
4696 }
4697 }
4698 }
4699}
4700
4701
4702static int
4703brecover_data(buf_t bp)
4704{
4705 int upl_offset;
4706 upl_t upl;
4707 upl_page_info_t *pl;
4708 kern_return_t kret;
4709 vnode_t vp = bp->b_vp;
4710 int upl_flags;
4711
4712
4713 if (!UBCINFOEXISTS(vp) || bp->b_bufsize == 0) {
4714 goto dump_buffer;
4715 }
4716
4717 upl_flags = UPL_PRECIOUS;
4718 if (!(buf_flags(bp) & B_READ)) {
4719 /*
4720 * "write" operation: let the UPL subsystem know
4721 * that we intend to modify the buffer cache pages we're
4722 * gathering.
4723 */
4724 upl_flags |= UPL_WILL_MODIFY;
4725 }
4726
4727 kret = ubc_create_upl_kernel(vp,
4728 ubc_blktooff(vp, bp->b_lblkno),
4729 bp->b_bufsize,
4730 &upl,
4731 &pl,
4732 upl_flags,
4733 VM_KERN_MEMORY_FILE);
4734 if (kret != KERN_SUCCESS) {
4735 panic("Failed to create UPL");
4736 }
4737
4738 for (upl_offset = 0; (uint32_t)upl_offset < bp->b_bufsize; upl_offset += PAGE_SIZE) {
4739 if (!upl_valid_page(upl: pl, index: upl_offset / PAGE_SIZE) || !upl_dirty_page(upl: pl, index: upl_offset / PAGE_SIZE)) {
4740 ubc_upl_abort(upl, 0);
4741 goto dump_buffer;
4742 }
4743 }
4744 bp->b_upl = upl;
4745
4746 kret = ubc_upl_map(upl, (vm_offset_t *)&(bp->b_datap));
4747
4748 if (kret != KERN_SUCCESS) {
4749 panic("getblk: ubc_upl_map() failed with (%d)", kret);
4750 }
4751 return 1;
4752
4753dump_buffer:
4754 bp->b_bufsize = 0;
4755 SET(bp->b_flags, B_INVAL);
4756 buf_brelse(bp);
4757
4758 return 0;
4759}
4760
4761int
4762fs_buffer_cache_gc_register(void (* callout)(int, void *), void *context)
4763{
4764 lck_mtx_lock(lck: &buf_gc_callout);
4765 for (int i = 0; i < FS_BUFFER_CACHE_GC_CALLOUTS_MAX_SIZE; i++) {
4766 if (fs_callouts[i].callout == NULL) {
4767 fs_callouts[i].callout = callout;
4768 fs_callouts[i].context = context;
4769 lck_mtx_unlock(lck: &buf_gc_callout);
4770 return 0;
4771 }
4772 }
4773
4774 lck_mtx_unlock(lck: &buf_gc_callout);
4775 return ENOMEM;
4776}
4777
4778int
4779fs_buffer_cache_gc_unregister(void (* callout)(int, void *), void *context)
4780{
4781 lck_mtx_lock(lck: &buf_gc_callout);
4782 for (int i = 0; i < FS_BUFFER_CACHE_GC_CALLOUTS_MAX_SIZE; i++) {
4783 if (fs_callouts[i].callout == callout &&
4784 fs_callouts[i].context == context) {
4785 fs_callouts[i].callout = NULL;
4786 fs_callouts[i].context = NULL;
4787 }
4788 }
4789 lck_mtx_unlock(lck: &buf_gc_callout);
4790 return 0;
4791}
4792
4793static void
4794fs_buffer_cache_gc_dispatch_callouts(int all)
4795{
4796 lck_mtx_lock(lck: &buf_gc_callout);
4797 for (int i = 0; i < FS_BUFFER_CACHE_GC_CALLOUTS_MAX_SIZE; i++) {
4798 if (fs_callouts[i].callout != NULL) {
4799 fs_callouts[i].callout(all, fs_callouts[i].context);
4800 }
4801 }
4802 lck_mtx_unlock(lck: &buf_gc_callout);
4803}
4804
4805static boolean_t
4806buffer_cache_gc(int all)
4807{
4808 buf_t bp;
4809 boolean_t did_large_zfree = FALSE;
4810 boolean_t need_wakeup = FALSE;
4811 int now = buf_timestamp();
4812 uint32_t found = 0;
4813 struct bqueues privq;
4814 int thresh_hold = BUF_STALE_THRESHHOLD;
4815
4816 if (all) {
4817 thresh_hold = 0;
4818 }
4819 /*
4820 * We only care about metadata (incore storage comes from zalloc()).
4821 * Unless "all" is set (used to evict meta data buffers in preparation
4822 * for deep sleep), we only evict up to BUF_MAX_GC_BATCH_SIZE buffers
4823 * that have not been accessed in the last BUF_STALE_THRESHOLD seconds.
4824 * BUF_MAX_GC_BATCH_SIZE controls both the hold time of the global lock
4825 * "buf_mtx" and the length of time we spend compute bound in the GC
4826 * thread which calls this function
4827 */
4828 lck_mtx_lock(lck: &buf_mtx);
4829
4830 do {
4831 found = 0;
4832 TAILQ_INIT(&privq);
4833 need_wakeup = FALSE;
4834
4835 while (((bp = TAILQ_FIRST(&bufqueues[BQ_META]))) &&
4836 (now > bp->b_timestamp) &&
4837 (now - bp->b_timestamp > thresh_hold) &&
4838 (found < BUF_MAX_GC_BATCH_SIZE)) {
4839 /* Remove from free list */
4840 bremfree_locked(bp);
4841 found++;
4842
4843#ifdef JOE_DEBUG
4844 bp->b_owner = current_thread();
4845 bp->b_tag = 12;
4846#endif
4847
4848 /* If dirty, move to laundry queue and remember to do wakeup */
4849 if (ISSET(bp->b_flags, B_DELWRI)) {
4850 SET(bp->b_lflags, BL_WANTDEALLOC);
4851
4852 bmovelaundry(bp);
4853 need_wakeup = TRUE;
4854
4855 continue;
4856 }
4857
4858 /*
4859 * Mark busy and put on private list. We could technically get
4860 * away without setting BL_BUSY here.
4861 */
4862 SET(bp->b_lflags, BL_BUSY);
4863 buf_busycount++;
4864
4865 /*
4866 * Remove from hash and dissociate from vp.
4867 */
4868 bremhash(bp);
4869 if (bp->b_vp) {
4870 brelvp_locked(bp);
4871 }
4872
4873 TAILQ_INSERT_TAIL(&privq, bp, b_freelist);
4874 }
4875
4876 if (found == 0) {
4877 break;
4878 }
4879
4880 /* Drop lock for batch processing */
4881 lck_mtx_unlock(lck: &buf_mtx);
4882
4883 /* Wakeup and yield for laundry if need be */
4884 if (need_wakeup) {
4885 wakeup(chan: &bufqueues[BQ_LAUNDRY]);
4886 (void)thread_block(THREAD_CONTINUE_NULL);
4887 }
4888
4889 /* Clean up every buffer on private list */
4890 TAILQ_FOREACH(bp, &privq, b_freelist) {
4891 /* Take note if we've definitely freed at least a page to a zone */
4892 if ((ISSET(bp->b_flags, B_ZALLOC)) && (buf_size(bp) >= PAGE_SIZE)) {
4893 did_large_zfree = TRUE;
4894 }
4895
4896 trace(TR_BRELSE, pack(bp->b_vp, bp->b_bufsize), bp->b_lblkno);
4897
4898 /* Free Storage */
4899 buf_free_meta_store(bp);
4900
4901 /* Release credentials */
4902 buf_release_credentials(bp);
4903
4904 /* Prepare for moving to empty queue */
4905 CLR(bp->b_flags, (B_META | B_ZALLOC | B_DELWRI | B_LOCKED
4906 | B_AGE | B_ASYNC | B_NOCACHE | B_FUA));
4907 bp->b_whichq = BQ_EMPTY;
4908 BLISTNONE(bp);
4909 }
4910 lck_mtx_lock(lck: &buf_mtx);
4911
4912 /* Back under lock, move them all to invalid hash and clear busy */
4913 TAILQ_FOREACH(bp, &privq, b_freelist) {
4914 binshash(bp, dp: &invalhash);
4915 CLR(bp->b_lflags, BL_BUSY);
4916 buf_busycount--;
4917
4918#ifdef JOE_DEBUG
4919 if (bp->b_owner != current_thread()) {
4920 panic("Buffer stolen from buffer_cache_gc()");
4921 }
4922 bp->b_owner = current_thread();
4923 bp->b_tag = 13;
4924#endif
4925 }
4926
4927 /* And do a big bulk move to the empty queue */
4928 TAILQ_CONCAT(&bufqueues[BQ_EMPTY], &privq, b_freelist);
4929 } while (all && (found == BUF_MAX_GC_BATCH_SIZE));
4930
4931 lck_mtx_unlock(lck: &buf_mtx);
4932
4933 fs_buffer_cache_gc_dispatch_callouts(all);
4934
4935 return did_large_zfree;
4936}
4937
4938
4939/*
4940 * disabled for now
4941 */
4942
4943#if FLUSH_QUEUES
4944
4945#define NFLUSH 32
4946
4947static int
4948bp_cmp(void *a, void *b)
4949{
4950 buf_t *bp_a = *(buf_t **)a,
4951 *bp_b = *(buf_t **)b;
4952 daddr64_t res;
4953
4954 // don't have to worry about negative block
4955 // numbers so this is ok to do.
4956 //
4957 res = (bp_a->b_blkno - bp_b->b_blkno);
4958
4959 return (int)res;
4960}
4961
4962
4963int
4964bflushq(int whichq, mount_t mp)
4965{
4966 buf_t bp, next;
4967 int i, buf_count;
4968 int total_writes = 0;
4969 static buf_t flush_table[NFLUSH];
4970
4971 if (whichq < 0 || whichq >= BQUEUES) {
4972 return 0;
4973 }
4974
4975restart:
4976 lck_mtx_lock(&buf_mtx);
4977
4978 bp = TAILQ_FIRST(&bufqueues[whichq]);
4979
4980 for (buf_count = 0; bp; bp = next) {
4981 next = bp->b_freelist.tqe_next;
4982
4983 if (bp->b_vp == NULL || bp->b_vp->v_mount != mp) {
4984 continue;
4985 }
4986
4987 if (ISSET(bp->b_flags, B_DELWRI) && !ISSET(bp->b_lflags, BL_BUSY)) {
4988 bremfree_locked(bp);
4989#ifdef JOE_DEBUG
4990 bp->b_owner = current_thread();
4991 bp->b_tag = 7;
4992#endif
4993 SET(bp->b_lflags, BL_BUSY);
4994 buf_busycount++;
4995
4996 flush_table[buf_count] = bp;
4997 buf_count++;
4998 total_writes++;
4999
5000 if (buf_count >= NFLUSH) {
5001 lck_mtx_unlock(&buf_mtx);
5002
5003 qsort(flush_table, buf_count, sizeof(struct buf *), bp_cmp);
5004
5005 for (i = 0; i < buf_count; i++) {
5006 buf_bawrite(flush_table[i]);
5007 }
5008 goto restart;
5009 }
5010 }
5011 }
5012 lck_mtx_unlock(&buf_mtx);
5013
5014 if (buf_count > 0) {
5015 qsort(flush_table, buf_count, sizeof(struct buf *), bp_cmp);
5016
5017 for (i = 0; i < buf_count; i++) {
5018 buf_bawrite(flush_table[i]);
5019 }
5020 }
5021
5022 return total_writes;
5023}
5024#endif
5025