| 1 | /* |
| 2 | * Copyright (c) 2016-2023 Apple Inc. All rights reserved. |
| 3 | * |
| 4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ |
| 5 | * |
| 6 | * This file contains Original Code and/or Modifications of Original Code |
| 7 | * as defined in and that are subject to the Apple Public Source License |
| 8 | * Version 2.0 (the 'License'). You may not use this file except in |
| 9 | * compliance with the License. The rights granted to you under the License |
| 10 | * may not be used to create, or enable the creation or redistribution of, |
| 11 | * unlawful or unlicensed copies of an Apple operating system, or to |
| 12 | * circumvent, violate, or enable the circumvention or violation of, any |
| 13 | * terms of an Apple operating system software license agreement. |
| 14 | * |
| 15 | * Please obtain a copy of the License at |
| 16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. |
| 17 | * |
| 18 | * The Original Code and all software distributed under the License are |
| 19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER |
| 20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
| 21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, |
| 22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
| 23 | * Please see the License for the specific language governing rights and |
| 24 | * limitations under the License. |
| 25 | * |
| 26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ |
| 27 | */ |
| 28 | |
| 29 | #include <skywalk/os_skywalk_private.h> |
| 30 | #include <skywalk/packet/pbufpool_var.h> |
| 31 | #include <sys/sdt.h> |
| 32 | |
| 33 | static struct kern_pbufpool *pp_alloc(zalloc_flags_t); |
| 34 | static void pp_free(struct kern_pbufpool *); |
| 35 | static uint32_t pp_alloc_packet_common(struct kern_pbufpool *, uint16_t, |
| 36 | uint64_t *, uint32_t, boolean_t, alloc_cb_func_t, const void *, uint32_t); |
| 37 | static void pp_free_packet_array(struct kern_pbufpool *, uint64_t *, uint32_t); |
| 38 | static int pp_metadata_ctor_no_buflet(struct skmem_obj_info *, |
| 39 | struct skmem_obj_info *, void *, uint32_t); |
| 40 | static int pp_metadata_ctor_max_buflet(struct skmem_obj_info *, |
| 41 | struct skmem_obj_info *, void *, uint32_t); |
| 42 | static void pp_metadata_dtor(void *, void *); |
| 43 | static int pp_metadata_construct(struct __kern_quantum *, |
| 44 | struct __user_quantum *, obj_idx_t, struct kern_pbufpool *, uint32_t, |
| 45 | uint16_t, bool, struct skmem_obj **); |
| 46 | static void pp_metadata_destruct(struct __kern_quantum *, |
| 47 | struct kern_pbufpool *, bool); |
| 48 | static struct __kern_quantum *pp_metadata_init(struct __metadata_preamble *, |
| 49 | struct kern_pbufpool *, uint16_t, uint32_t, struct skmem_obj **); |
| 50 | static struct __metadata_preamble *pp_metadata_fini(struct __kern_quantum *, |
| 51 | struct kern_pbufpool *, struct mbuf **, struct __kern_packet **, |
| 52 | struct skmem_obj **, struct skmem_obj **); |
| 53 | static void pp_purge_upp_locked(struct kern_pbufpool *pp, pid_t pid); |
| 54 | static void pp_buf_seg_ctor(struct sksegment *, IOSKMemoryBufferRef, void *); |
| 55 | static void pp_buf_seg_dtor(struct sksegment *, IOSKMemoryBufferRef, void *); |
| 56 | static void pp_destroy_upp_locked(struct kern_pbufpool *); |
| 57 | static void pp_destroy_upp_bft_locked(struct kern_pbufpool *); |
| 58 | static int pp_init_upp_bft_locked(struct kern_pbufpool *, boolean_t); |
| 59 | static void pp_free_buflet_common(const kern_pbufpool_t, kern_buflet_t); |
| 60 | static mach_vm_address_t pp_alloc_buffer_common(const kern_pbufpool_t pp, |
| 61 | struct skmem_obj_info *oi, uint32_t skmflag, bool large); |
| 62 | static inline uint32_t |
| 63 | pp_alloc_buflet_common(struct kern_pbufpool *pp, uint64_t *array, |
| 64 | uint32_t num, uint32_t skmflag, bool large); |
| 65 | |
| 66 | #define KERN_PBUFPOOL_U_HASH_SIZE 64 /* hash table size */ |
| 67 | |
| 68 | /* |
| 69 | * Since the inputs are small (indices to the metadata region), we can use |
| 70 | * Knuth's multiplicative hash method which is fast and good enough. Here |
| 71 | * we multiply the input by the golden ratio of 2^32. See "The Art of |
| 72 | * Computer Programming", section 6.4. |
| 73 | */ |
| 74 | #define KERN_PBUFPOOL_U_HASH_INDEX(_i, _m) \ |
| 75 | (((_i) * 2654435761U) & (_m)) |
| 76 | #define KERN_PBUFPOOL_U_HASH(_pp, _i) \ |
| 77 | (&(_pp)->pp_u_hash_table[KERN_PBUFPOOL_U_HASH_INDEX(_i, \ |
| 78 | KERN_PBUFPOOL_U_HASH_SIZE - 1)]) |
| 79 | #define KERN_PBUFPOOL_U_BFT_HASH(_pp, _i) \ |
| 80 | (&(_pp)->pp_u_bft_hash_table[KERN_PBUFPOOL_U_HASH_INDEX(_i, \ |
| 81 | KERN_PBUFPOOL_U_HASH_SIZE - 1)]) |
| 82 | |
| 83 | static SKMEM_TYPE_DEFINE(pp_zone, struct kern_pbufpool); |
| 84 | |
| 85 | struct kern_pbufpool_u_htbl { |
| 86 | struct kern_pbufpool_u_bkt upp_hash[KERN_PBUFPOOL_U_HASH_SIZE]; |
| 87 | }; |
| 88 | |
| 89 | #define PP_U_HTBL_SIZE sizeof(struct kern_pbufpool_u_htbl) |
| 90 | static SKMEM_TYPE_DEFINE(pp_u_htbl_zone, struct kern_pbufpool_u_htbl); |
| 91 | |
| 92 | static struct skmem_cache *pp_opt_cache; /* cache for __packet_opt */ |
| 93 | static struct skmem_cache *pp_flow_cache; /* cache for __flow */ |
| 94 | static struct skmem_cache *pp_compl_cache; /* cache for __packet_compl */ |
| 95 | |
| 96 | static int __pp_inited = 0; |
| 97 | |
| 98 | int |
| 99 | pp_init(void) |
| 100 | { |
| 101 | _CASSERT(KPKT_SC_UNSPEC == MBUF_SC_UNSPEC); |
| 102 | _CASSERT(KPKT_SC_BK_SYS == MBUF_SC_BK_SYS); |
| 103 | _CASSERT(KPKT_SC_BK == MBUF_SC_BK); |
| 104 | _CASSERT(KPKT_SC_BE == MBUF_SC_BE); |
| 105 | _CASSERT(KPKT_SC_RD == MBUF_SC_RD); |
| 106 | _CASSERT(KPKT_SC_OAM == MBUF_SC_OAM); |
| 107 | _CASSERT(KPKT_SC_AV == MBUF_SC_AV); |
| 108 | _CASSERT(KPKT_SC_RV == MBUF_SC_RV); |
| 109 | _CASSERT(KPKT_SC_VI == MBUF_SC_VI); |
| 110 | _CASSERT(KPKT_SC_SIG == MBUF_SC_SIG); |
| 111 | _CASSERT(KPKT_SC_VO == MBUF_SC_VO); |
| 112 | _CASSERT(KPKT_SC_CTL == MBUF_SC_CTL); |
| 113 | |
| 114 | _CASSERT(KPKT_SC_BK_SYS == PKT_SC_BK_SYS); |
| 115 | _CASSERT(KPKT_SC_BK == PKT_SC_BK); |
| 116 | _CASSERT(KPKT_SC_BE == PKT_SC_BE); |
| 117 | _CASSERT(KPKT_SC_RD == PKT_SC_RD); |
| 118 | _CASSERT(KPKT_SC_OAM == PKT_SC_OAM); |
| 119 | _CASSERT(KPKT_SC_AV == PKT_SC_AV); |
| 120 | _CASSERT(KPKT_SC_RV == PKT_SC_RV); |
| 121 | _CASSERT(KPKT_SC_VI == PKT_SC_VI); |
| 122 | _CASSERT(KPKT_SC_SIG == PKT_SC_SIG); |
| 123 | _CASSERT(KPKT_SC_VO == PKT_SC_VO); |
| 124 | _CASSERT(KPKT_SC_CTL == PKT_SC_CTL); |
| 125 | _CASSERT(KPKT_SC_MAX_CLASSES == MBUF_SC_MAX_CLASSES); |
| 126 | |
| 127 | _CASSERT(KPKT_TC_UNSPEC == MBUF_TC_UNSPEC); |
| 128 | _CASSERT(KPKT_TC_BE == MBUF_TC_BE); |
| 129 | _CASSERT(KPKT_TC_BK == MBUF_TC_BK); |
| 130 | _CASSERT(KPKT_TC_VI == MBUF_TC_VI); |
| 131 | _CASSERT(KPKT_TC_VO == MBUF_TC_VO); |
| 132 | _CASSERT(KPKT_TC_MAX == MBUF_TC_MAX); |
| 133 | |
| 134 | _CASSERT(KPKT_TC_BE == PKT_TC_BE); |
| 135 | _CASSERT(KPKT_TC_BK == PKT_TC_BK); |
| 136 | _CASSERT(KPKT_TC_VI == PKT_TC_VI); |
| 137 | _CASSERT(KPKT_TC_VO == PKT_TC_VO); |
| 138 | |
| 139 | _CASSERT(PKT_SCVAL_BK_SYS == SCVAL_BK_SYS); |
| 140 | _CASSERT(PKT_SCVAL_BK == SCVAL_BK); |
| 141 | _CASSERT(PKT_SCVAL_BE == SCVAL_BE); |
| 142 | _CASSERT(PKT_SCVAL_RD == SCVAL_RD); |
| 143 | _CASSERT(PKT_SCVAL_OAM == SCVAL_OAM); |
| 144 | _CASSERT(PKT_SCVAL_AV == SCVAL_AV); |
| 145 | _CASSERT(PKT_SCVAL_RV == SCVAL_RV); |
| 146 | _CASSERT(PKT_SCVAL_VI == SCVAL_VI); |
| 147 | _CASSERT(PKT_SCVAL_VO == SCVAL_VO); |
| 148 | _CASSERT(PKT_SCVAL_CTL == SCVAL_CTL); |
| 149 | |
| 150 | /* |
| 151 | * Assert that the value of common packet flags between mbuf and |
| 152 | * skywalk packets match, and that they are in PKT_F_COMMON_MASK. |
| 153 | */ |
| 154 | _CASSERT(PKT_F_BACKGROUND == PKTF_SO_BACKGROUND); |
| 155 | _CASSERT(PKT_F_REALTIME == PKTF_SO_REALTIME); |
| 156 | _CASSERT(PKT_F_REXMT == PKTF_TCP_REXMT); |
| 157 | _CASSERT(PKT_F_LAST_PKT == PKTF_LAST_PKT); |
| 158 | _CASSERT(PKT_F_FLOW_ID == PKTF_FLOW_ID); |
| 159 | _CASSERT(PKT_F_FLOW_ADV == PKTF_FLOW_ADV); |
| 160 | _CASSERT(PKT_F_TX_COMPL_TS_REQ == PKTF_TX_COMPL_TS_REQ); |
| 161 | _CASSERT(PKT_F_TS_VALID == PKTF_TS_VALID); |
| 162 | _CASSERT(PKT_F_NEW_FLOW == PKTF_NEW_FLOW); |
| 163 | _CASSERT(PKT_F_START_SEQ == PKTF_START_SEQ); |
| 164 | _CASSERT(PKT_F_KEEPALIVE == PKTF_KEEPALIVE); |
| 165 | _CASSERT(PKT_F_WAKE_PKT == PKTF_WAKE_PKT); |
| 166 | _CASSERT(PKT_F_COMMON_MASK == (PKT_F_BACKGROUND | PKT_F_REALTIME | |
| 167 | PKT_F_REXMT | PKT_F_LAST_PKT | PKT_F_FLOW_ID | PKT_F_FLOW_ADV | |
| 168 | PKT_F_TX_COMPL_TS_REQ | PKT_F_TS_VALID | PKT_F_NEW_FLOW | |
| 169 | PKT_F_START_SEQ | PKT_F_KEEPALIVE | PKT_F_WAKE_PKT)); |
| 170 | /* |
| 171 | * Assert packet flags shared with userland. |
| 172 | */ |
| 173 | _CASSERT(PKT_F_USER_MASK == (PKT_F_BACKGROUND | PKT_F_REALTIME | |
| 174 | PKT_F_REXMT | PKT_F_LAST_PKT | PKT_F_OPT_DATA | PKT_F_PROMISC | |
| 175 | PKT_F_TRUNCATED | PKT_F_WAKE_PKT | PKT_F_L4S)); |
| 176 | |
| 177 | _CASSERT(offsetof(struct __kern_quantum, qum_len) == |
| 178 | offsetof(struct __kern_packet, pkt_length)); |
| 179 | |
| 180 | /* |
| 181 | * Due to the use of tagged pointer, we need the size of |
| 182 | * the metadata preamble structure to be multiples of 16. |
| 183 | * See SK_PTR_TAG() definition for details. |
| 184 | */ |
| 185 | _CASSERT(sizeof(struct __metadata_preamble) != 0 && |
| 186 | (sizeof(struct __metadata_preamble) % 16) == 0); |
| 187 | |
| 188 | _CASSERT(NX_PBUF_FRAGS_MIN == 1 && |
| 189 | NX_PBUF_FRAGS_MIN == NX_PBUF_FRAGS_DEFAULT); |
| 190 | |
| 191 | /* |
| 192 | * Batch alloc/free requires linking the objects together; |
| 193 | * make sure that the fields are at the same offset since |
| 194 | * we cast the object to struct skmem_obj. |
| 195 | */ |
| 196 | _CASSERT(offsetof(struct __metadata_preamble, _mdp_next) == |
| 197 | offsetof(struct skmem_obj, mo_next)); |
| 198 | _CASSERT(offsetof(struct __buflet, __buflet_next) == |
| 199 | offsetof(struct skmem_obj, mo_next)); |
| 200 | |
| 201 | SK_LOCK_ASSERT_HELD(); |
| 202 | ASSERT(!__pp_inited); |
| 203 | |
| 204 | pp_opt_cache = skmem_cache_create("pkt.opt" , |
| 205 | sizeof(struct __packet_opt), sizeof(uint64_t), |
| 206 | NULL, NULL, NULL, NULL, NULL, 0); |
| 207 | pp_flow_cache = skmem_cache_create("pkt.flow" , |
| 208 | sizeof(struct __flow), 16, /* 16-bytes aligned */ |
| 209 | NULL, NULL, NULL, NULL, NULL, 0); |
| 210 | pp_compl_cache = skmem_cache_create("pkt.compl" , |
| 211 | sizeof(struct __packet_compl), sizeof(uint64_t), |
| 212 | NULL, NULL, NULL, NULL, NULL, 0); |
| 213 | |
| 214 | return 0; |
| 215 | } |
| 216 | |
| 217 | void |
| 218 | pp_fini(void) |
| 219 | { |
| 220 | SK_LOCK_ASSERT_HELD(); |
| 221 | |
| 222 | if (__pp_inited) { |
| 223 | if (pp_compl_cache != NULL) { |
| 224 | skmem_cache_destroy(pp_compl_cache); |
| 225 | pp_compl_cache = NULL; |
| 226 | } |
| 227 | if (pp_flow_cache != NULL) { |
| 228 | skmem_cache_destroy(pp_flow_cache); |
| 229 | pp_flow_cache = NULL; |
| 230 | } |
| 231 | if (pp_opt_cache != NULL) { |
| 232 | skmem_cache_destroy(pp_opt_cache); |
| 233 | pp_opt_cache = NULL; |
| 234 | } |
| 235 | |
| 236 | __pp_inited = 0; |
| 237 | } |
| 238 | } |
| 239 | |
| 240 | static struct kern_pbufpool * |
| 241 | pp_alloc(zalloc_flags_t how) |
| 242 | { |
| 243 | struct kern_pbufpool *pp = zalloc_flags(pp_zone, how | Z_ZERO); |
| 244 | |
| 245 | if (pp) { |
| 246 | lck_mtx_init(lck: &pp->pp_lock, grp: &skmem_lock_grp, attr: &skmem_lock_attr); |
| 247 | } |
| 248 | return pp; |
| 249 | } |
| 250 | |
| 251 | static void |
| 252 | pp_free(struct kern_pbufpool *pp) |
| 253 | { |
| 254 | PP_LOCK_ASSERT_HELD(pp); |
| 255 | |
| 256 | pp_destroy(pp); |
| 257 | PP_UNLOCK(pp); |
| 258 | |
| 259 | SK_DF(SK_VERB_MEM, "pp 0x%llx FREE" , SK_KVA(pp)); |
| 260 | lck_mtx_destroy(lck: &pp->pp_lock, grp: &skmem_lock_grp); |
| 261 | zfree(pp_zone, pp); |
| 262 | } |
| 263 | |
| 264 | void |
| 265 | pp_retain_locked(struct kern_pbufpool *pp) |
| 266 | { |
| 267 | PP_LOCK_ASSERT_HELD(pp); |
| 268 | |
| 269 | pp->pp_refcnt++; |
| 270 | ASSERT(pp->pp_refcnt != 0); |
| 271 | } |
| 272 | |
| 273 | void |
| 274 | pp_retain(struct kern_pbufpool *pp) |
| 275 | { |
| 276 | PP_LOCK(pp); |
| 277 | pp_retain_locked(pp); |
| 278 | PP_UNLOCK(pp); |
| 279 | } |
| 280 | |
| 281 | boolean_t |
| 282 | pp_release_locked(struct kern_pbufpool *pp) |
| 283 | { |
| 284 | uint32_t oldref = pp->pp_refcnt; |
| 285 | |
| 286 | PP_LOCK_ASSERT_HELD(pp); |
| 287 | |
| 288 | ASSERT(pp->pp_refcnt != 0); |
| 289 | if (--pp->pp_refcnt == 0) { |
| 290 | pp_free(pp); |
| 291 | } |
| 292 | |
| 293 | return oldref == 1; |
| 294 | } |
| 295 | |
| 296 | boolean_t |
| 297 | pp_release(struct kern_pbufpool *pp) |
| 298 | { |
| 299 | boolean_t lastref; |
| 300 | |
| 301 | PP_LOCK(pp); |
| 302 | if (!(lastref = pp_release_locked(pp))) { |
| 303 | PP_UNLOCK(pp); |
| 304 | } |
| 305 | |
| 306 | return lastref; |
| 307 | } |
| 308 | |
| 309 | void |
| 310 | pp_close(struct kern_pbufpool *pp) |
| 311 | { |
| 312 | PP_LOCK(pp); |
| 313 | ASSERT(pp->pp_refcnt > 0); |
| 314 | ASSERT(!(pp->pp_flags & PPF_CLOSED)); |
| 315 | pp->pp_flags |= PPF_CLOSED; |
| 316 | if (!pp_release_locked(pp)) { |
| 317 | PP_UNLOCK(pp); |
| 318 | } |
| 319 | } |
| 320 | |
| 321 | void |
| 322 | pp_regions_params_adjust(struct skmem_region_params *srp_array, |
| 323 | nexus_meta_type_t md_type, nexus_meta_subtype_t md_subtype, uint32_t md_cnt, |
| 324 | uint16_t max_frags, uint32_t buf_size, uint32_t large_buf_size, |
| 325 | uint32_t buf_cnt, uint32_t buf_seg_size, uint32_t flags) |
| 326 | { |
| 327 | struct skmem_region_params *srp, *kmd_srp, *buf_srp, *kbft_srp, |
| 328 | *lbuf_srp; |
| 329 | uint32_t md_size = 0; |
| 330 | bool kernel_only = ((flags & PP_REGION_CONFIG_KERNEL_ONLY) != 0); |
| 331 | bool md_persistent = ((flags & PP_REGION_CONFIG_MD_PERSISTENT) != 0); |
| 332 | bool buf_persistent = ((flags & PP_REGION_CONFIG_BUF_PERSISTENT) != 0); |
| 333 | bool config_buflet = ((flags & PP_REGION_CONFIG_BUFLET) != 0); |
| 334 | bool md_magazine_enable = ((flags & |
| 335 | PP_REGION_CONFIG_MD_MAGAZINE_ENABLE) != 0); |
| 336 | |
| 337 | ASSERT(max_frags != 0); |
| 338 | |
| 339 | switch (md_type) { |
| 340 | case NEXUS_META_TYPE_QUANTUM: |
| 341 | md_size = NX_METADATA_QUANTUM_SZ; |
| 342 | break; |
| 343 | case NEXUS_META_TYPE_PACKET: |
| 344 | md_size = NX_METADATA_PACKET_SZ(max_frags); |
| 345 | break; |
| 346 | default: |
| 347 | VERIFY(0); |
| 348 | /* NOTREACHED */ |
| 349 | __builtin_unreachable(); |
| 350 | } |
| 351 | |
| 352 | switch (flags & PP_REGION_CONFIG_BUF_IODIR_BIDIR) { |
| 353 | case PP_REGION_CONFIG_BUF_IODIR_IN: |
| 354 | kmd_srp = &srp_array[SKMEM_REGION_RXKMD]; |
| 355 | buf_srp = &srp_array[SKMEM_REGION_RXBUF_DEF]; |
| 356 | lbuf_srp = &srp_array[SKMEM_REGION_RXBUF_LARGE]; |
| 357 | kbft_srp = &srp_array[SKMEM_REGION_RXKBFT]; |
| 358 | break; |
| 359 | case PP_REGION_CONFIG_BUF_IODIR_OUT: |
| 360 | kmd_srp = &srp_array[SKMEM_REGION_TXKMD]; |
| 361 | buf_srp = &srp_array[SKMEM_REGION_TXBUF_DEF]; |
| 362 | lbuf_srp = &srp_array[SKMEM_REGION_TXBUF_LARGE]; |
| 363 | kbft_srp = &srp_array[SKMEM_REGION_TXKBFT]; |
| 364 | break; |
| 365 | case PP_REGION_CONFIG_BUF_IODIR_BIDIR: |
| 366 | default: |
| 367 | kmd_srp = &srp_array[SKMEM_REGION_KMD]; |
| 368 | buf_srp = &srp_array[SKMEM_REGION_BUF_DEF]; |
| 369 | lbuf_srp = &srp_array[SKMEM_REGION_BUF_LARGE]; |
| 370 | kbft_srp = &srp_array[SKMEM_REGION_KBFT]; |
| 371 | break; |
| 372 | } |
| 373 | |
| 374 | /* add preamble size to metadata obj size */ |
| 375 | md_size += METADATA_PREAMBLE_SZ; |
| 376 | ASSERT(md_size >= NX_METADATA_OBJ_MIN_SZ); |
| 377 | |
| 378 | /* configure kernel metadata region */ |
| 379 | kmd_srp->srp_md_type = md_type; |
| 380 | kmd_srp->srp_md_subtype = md_subtype; |
| 381 | kmd_srp->srp_r_obj_cnt = md_cnt; |
| 382 | kmd_srp->srp_r_obj_size = md_size; |
| 383 | kmd_srp->srp_max_frags = max_frags; |
| 384 | ASSERT((kmd_srp->srp_cflags & SKMEM_REGION_CR_PERSISTENT) == 0); |
| 385 | if (md_persistent) { |
| 386 | kmd_srp->srp_cflags |= SKMEM_REGION_CR_PERSISTENT; |
| 387 | } |
| 388 | ASSERT((kmd_srp->srp_cflags & SKMEM_REGION_CR_NOMAGAZINES) != 0); |
| 389 | if (md_magazine_enable) { |
| 390 | kmd_srp->srp_cflags &= ~SKMEM_REGION_CR_NOMAGAZINES; |
| 391 | } |
| 392 | skmem_region_params_config(kmd_srp); |
| 393 | |
| 394 | /* configure user metadata region */ |
| 395 | srp = &srp_array[SKMEM_REGION_UMD]; |
| 396 | if (!kernel_only) { |
| 397 | srp->srp_md_type = kmd_srp->srp_md_type; |
| 398 | srp->srp_md_subtype = kmd_srp->srp_md_subtype; |
| 399 | srp->srp_r_obj_cnt = kmd_srp->srp_c_obj_cnt; |
| 400 | srp->srp_r_obj_size = kmd_srp->srp_c_obj_size; |
| 401 | srp->srp_max_frags = kmd_srp->srp_max_frags; |
| 402 | ASSERT((srp->srp_cflags & SKMEM_REGION_CR_PERSISTENT) == 0); |
| 403 | if (md_persistent) { |
| 404 | srp->srp_cflags |= SKMEM_REGION_CR_PERSISTENT; |
| 405 | } |
| 406 | /* |
| 407 | * UMD is a mirrored region and object allocation operations |
| 408 | * are performed on the KMD objects. |
| 409 | */ |
| 410 | ASSERT((srp->srp_cflags & SKMEM_REGION_CR_NOMAGAZINES) != 0); |
| 411 | skmem_region_params_config(srp); |
| 412 | ASSERT(srp->srp_c_obj_cnt == kmd_srp->srp_c_obj_cnt); |
| 413 | } else { |
| 414 | ASSERT(srp->srp_r_obj_cnt == 0); |
| 415 | ASSERT(srp->srp_r_obj_size == 0); |
| 416 | } |
| 417 | |
| 418 | /* configure buffer region */ |
| 419 | buf_srp->srp_r_obj_cnt = MAX(buf_cnt, kmd_srp->srp_c_obj_cnt); |
| 420 | buf_srp->srp_r_obj_size = buf_size; |
| 421 | buf_srp->srp_cflags &= ~SKMEM_REGION_CR_MONOLITHIC; |
| 422 | ASSERT((buf_srp->srp_cflags & SKMEM_REGION_CR_PERSISTENT) == 0); |
| 423 | if (buf_persistent) { |
| 424 | buf_srp->srp_cflags |= SKMEM_REGION_CR_PERSISTENT; |
| 425 | } |
| 426 | ASSERT((buf_srp->srp_cflags & SKMEM_REGION_CR_NOMAGAZINES) != 0); |
| 427 | ASSERT((buf_srp->srp_cflags & SKMEM_REGION_CR_UREADONLY) == 0); |
| 428 | if ((flags & PP_REGION_CONFIG_BUF_UREADONLY) != 0) { |
| 429 | buf_srp->srp_cflags |= SKMEM_REGION_CR_UREADONLY; |
| 430 | } |
| 431 | ASSERT((buf_srp->srp_cflags & SKMEM_REGION_CR_KREADONLY) == 0); |
| 432 | if ((flags & PP_REGION_CONFIG_BUF_KREADONLY) != 0) { |
| 433 | buf_srp->srp_cflags |= SKMEM_REGION_CR_KREADONLY; |
| 434 | } |
| 435 | ASSERT((buf_srp->srp_cflags & SKMEM_REGION_CR_MONOLITHIC) == 0); |
| 436 | if ((flags & PP_REGION_CONFIG_BUF_MONOLITHIC) != 0) { |
| 437 | buf_srp->srp_cflags |= SKMEM_REGION_CR_MONOLITHIC; |
| 438 | } |
| 439 | ASSERT((srp->srp_cflags & SKMEM_REGION_CR_SEGPHYSCONTIG) == 0); |
| 440 | if ((flags & PP_REGION_CONFIG_BUF_SEGPHYSCONTIG) != 0) { |
| 441 | buf_srp->srp_cflags |= SKMEM_REGION_CR_SEGPHYSCONTIG; |
| 442 | } |
| 443 | ASSERT((buf_srp->srp_cflags & SKMEM_REGION_CR_NOCACHE) == 0); |
| 444 | if ((flags & PP_REGION_CONFIG_BUF_NOCACHE) != 0) { |
| 445 | buf_srp->srp_cflags |= SKMEM_REGION_CR_NOCACHE; |
| 446 | } |
| 447 | ASSERT((buf_srp->srp_cflags & SKMEM_REGION_CR_THREADSAFE) == 0); |
| 448 | if ((flags & PP_REGION_CONFIG_BUF_THREADSAFE) != 0) { |
| 449 | buf_srp->srp_cflags |= SKMEM_REGION_CR_THREADSAFE; |
| 450 | } |
| 451 | if (buf_seg_size != 0) { |
| 452 | buf_srp->srp_r_seg_size = buf_seg_size; |
| 453 | } |
| 454 | skmem_region_params_config(buf_srp); |
| 455 | |
| 456 | /* configure large buffer region */ |
| 457 | if (large_buf_size != 0) { |
| 458 | lbuf_srp->srp_r_obj_cnt = buf_srp->srp_r_obj_cnt; |
| 459 | lbuf_srp->srp_r_obj_size = large_buf_size; |
| 460 | lbuf_srp->srp_r_seg_size = buf_srp->srp_r_seg_size; |
| 461 | lbuf_srp->srp_cflags = buf_srp->srp_cflags; |
| 462 | skmem_region_params_config(lbuf_srp); |
| 463 | } |
| 464 | |
| 465 | /* configure kernel buflet region */ |
| 466 | if (config_buflet) { |
| 467 | ASSERT(md_type == NEXUS_META_TYPE_PACKET); |
| 468 | /* |
| 469 | * Ideally we want the number of buflets to be |
| 470 | * "kmd_srp->srp_c_obj_cnt * (kmd_srp->srp_max_frags - 1)", |
| 471 | * so that we have enough buflets when multi-buflet and |
| 472 | * shared buffer object is used. |
| 473 | * Currently multi-buflet is being used only by user pool |
| 474 | * which doesn't support shared buffer object, hence to reduce |
| 475 | * the number of objects we are restricting the number of |
| 476 | * buflets to the number of buffers. |
| 477 | */ |
| 478 | kbft_srp->srp_r_obj_cnt = buf_srp->srp_c_obj_cnt + |
| 479 | lbuf_srp->srp_c_obj_cnt; |
| 480 | kbft_srp->srp_r_obj_size = MAX(sizeof(struct __kern_buflet_ext), |
| 481 | sizeof(struct __user_buflet)); |
| 482 | kbft_srp->srp_cflags = kmd_srp->srp_cflags; |
| 483 | skmem_region_params_config(kbft_srp); |
| 484 | ASSERT(kbft_srp->srp_c_obj_cnt >= buf_srp->srp_c_obj_cnt + |
| 485 | lbuf_srp->srp_c_obj_cnt); |
| 486 | } else { |
| 487 | ASSERT(kbft_srp->srp_r_obj_cnt == 0); |
| 488 | ASSERT(kbft_srp->srp_r_obj_size == 0); |
| 489 | } |
| 490 | |
| 491 | /* configure user buflet region */ |
| 492 | srp = &srp_array[SKMEM_REGION_UBFT]; |
| 493 | if (config_buflet && !kernel_only) { |
| 494 | srp->srp_r_obj_cnt = kbft_srp->srp_c_obj_cnt; |
| 495 | srp->srp_r_obj_size = kbft_srp->srp_c_obj_size; |
| 496 | srp->srp_cflags = srp_array[SKMEM_REGION_UMD].srp_cflags; |
| 497 | skmem_region_params_config(srp); |
| 498 | ASSERT(srp->srp_c_obj_cnt == kbft_srp->srp_c_obj_cnt); |
| 499 | } else { |
| 500 | ASSERT(srp->srp_r_obj_cnt == 0); |
| 501 | ASSERT(srp->srp_r_obj_size == 0); |
| 502 | } |
| 503 | |
| 504 | /* make sure each metadata can be paired with a buffer */ |
| 505 | ASSERT(kmd_srp->srp_c_obj_cnt <= buf_srp->srp_c_obj_cnt); |
| 506 | } |
| 507 | |
| 508 | SK_NO_INLINE_ATTRIBUTE |
| 509 | static int |
| 510 | pp_metadata_construct(struct __kern_quantum *kqum, struct __user_quantum *uqum, |
| 511 | obj_idx_t midx, struct kern_pbufpool *pp, uint32_t skmflag, uint16_t bufcnt, |
| 512 | bool raw, struct skmem_obj **blist) |
| 513 | { |
| 514 | struct __kern_buflet *kbuf; |
| 515 | mach_vm_address_t baddr = 0; |
| 516 | uint16_t *pbufs_cnt, *pbufs_max; |
| 517 | uint16_t i; |
| 518 | |
| 519 | ASSERT(bufcnt == 1 || PP_HAS_BUFFER_ON_DEMAND(pp)); |
| 520 | |
| 521 | /* construct {user,kernel} metadata */ |
| 522 | switch (pp->pp_md_type) { |
| 523 | case NEXUS_META_TYPE_PACKET: { |
| 524 | struct __kern_packet *kpkt = SK_PTR_ADDR_KPKT(kqum); |
| 525 | struct __user_packet *upkt = SK_PTR_ADDR_UPKT(uqum); |
| 526 | struct __packet_opt *opt; |
| 527 | struct __flow *flow; |
| 528 | struct __packet_compl *compl; |
| 529 | uint64_t pflags; |
| 530 | |
| 531 | if (raw) { |
| 532 | opt = skmem_cache_alloc(pp_opt_cache, SKMEM_SLEEP); |
| 533 | flow = skmem_cache_alloc(pp_flow_cache, SKMEM_SLEEP); |
| 534 | compl = skmem_cache_alloc(pp_compl_cache, SKMEM_SLEEP); |
| 535 | pflags = (PKT_F_OPT_ALLOC | PKT_F_FLOW_ALLOC | |
| 536 | PKT_F_TX_COMPL_ALLOC); |
| 537 | } else { |
| 538 | ASSERT((kpkt->pkt_pflags & PKT_F_OPT_ALLOC) && |
| 539 | kpkt->pkt_com_opt != NULL); |
| 540 | opt = kpkt->pkt_com_opt; |
| 541 | ASSERT((kpkt->pkt_pflags & PKT_F_FLOW_ALLOC) && |
| 542 | kpkt->pkt_flow != NULL); |
| 543 | flow = kpkt->pkt_flow; |
| 544 | ASSERT((kpkt->pkt_pflags & PKT_F_TX_COMPL_ALLOC) && |
| 545 | kpkt->pkt_tx_compl != NULL); |
| 546 | compl = kpkt->pkt_tx_compl; |
| 547 | pflags = kpkt->pkt_pflags; |
| 548 | } |
| 549 | /* will be adjusted below as part of allocating buffer(s) */ |
| 550 | _CASSERT(sizeof(kpkt->pkt_bufs_cnt) == sizeof(uint16_t)); |
| 551 | _CASSERT(sizeof(kpkt->pkt_bufs_max) == sizeof(uint16_t)); |
| 552 | pbufs_cnt = __DECONST(uint16_t *, &kpkt->pkt_bufs_cnt); |
| 553 | pbufs_max = __DECONST(uint16_t *, &kpkt->pkt_bufs_max); |
| 554 | |
| 555 | /* kernel (and user) packet */ |
| 556 | KPKT_CTOR(kpkt, pflags, opt, flow, compl, midx, |
| 557 | upkt, pp, 0, pp->pp_max_frags, 0); |
| 558 | break; |
| 559 | } |
| 560 | default: |
| 561 | ASSERT(pp->pp_md_type == NEXUS_META_TYPE_QUANTUM); |
| 562 | VERIFY(bufcnt == 1); |
| 563 | /* TODO: point these to quantum's once they're defined */ |
| 564 | pbufs_cnt = pbufs_max = NULL; |
| 565 | /* kernel quantum */ |
| 566 | KQUM_CTOR(kqum, midx, uqum, pp, 0); |
| 567 | break; |
| 568 | } |
| 569 | |
| 570 | kbuf = kqum->qum_buf; |
| 571 | for (i = 0; i < bufcnt; i++) { |
| 572 | struct skmem_obj_info oib; |
| 573 | |
| 574 | if (!PP_HAS_BUFFER_ON_DEMAND(pp)) { |
| 575 | ASSERT(i == 0); |
| 576 | ASSERT(*blist == NULL); |
| 577 | /* |
| 578 | * quantum has a native buflet, so we only need a |
| 579 | * buffer to be allocated and attached to the buflet. |
| 580 | */ |
| 581 | baddr = pp_alloc_buffer_common(pp, oi: &oib, skmflag, |
| 582 | false); |
| 583 | if (__improbable(baddr == 0)) { |
| 584 | goto fail; |
| 585 | } |
| 586 | KBUF_CTOR(kbuf, baddr, SKMEM_OBJ_IDX_REG(&oib), |
| 587 | SKMEM_OBJ_BUFCTL(&oib), pp, false); |
| 588 | baddr = 0; |
| 589 | } else { |
| 590 | /* |
| 591 | * we use pre-constructed buflets with attached buffers. |
| 592 | */ |
| 593 | struct __kern_buflet *pkbuf = kbuf; |
| 594 | struct skmem_obj *blistn; |
| 595 | |
| 596 | ASSERT(pkbuf != NULL); |
| 597 | kbuf = (kern_buflet_t)*blist; |
| 598 | if (__improbable(kbuf == NULL)) { |
| 599 | SK_DF(SK_VERB_MEM, "failed to get buflet," |
| 600 | " pp 0x%llx" , SK_KVA(pp)); |
| 601 | goto fail; |
| 602 | } |
| 603 | |
| 604 | #if CONFIG_KERNEL_TAGGING && !defined(KASAN_LIGHT) |
| 605 | /* Checking to ensure the object address is tagged */ |
| 606 | ASSERT((vm_offset_t)kbuf != |
| 607 | vm_memtag_canonicalize_address((vm_offset_t)kbuf)); |
| 608 | #endif /* CONFIG_KERNEL_TAGGING && !defined(KASAN_LIGHT) */ |
| 609 | |
| 610 | blistn = (*blist)->mo_next; |
| 611 | (*blist)->mo_next = NULL; |
| 612 | |
| 613 | KBUF_EXT_INIT(kbuf, pp); |
| 614 | KBUF_LINK(pkbuf, kbuf); |
| 615 | *blist = blistn; |
| 616 | } |
| 617 | |
| 618 | /* adjust buffer count accordingly */ |
| 619 | if (__probable(pbufs_cnt != NULL)) { |
| 620 | *pbufs_cnt += 1; |
| 621 | ASSERT(*pbufs_cnt <= *pbufs_max); |
| 622 | } |
| 623 | } |
| 624 | |
| 625 | ASSERT(!PP_KERNEL_ONLY(pp) || (kqum->qum_qflags & QUM_F_KERNEL_ONLY)); |
| 626 | ASSERT(METADATA_IDX(kqum) != OBJ_IDX_NONE); |
| 627 | SK_DF(SK_VERB_MEM, "pp 0x%llx pkt 0x%llx bufcnt %d buf 0x%llx" , |
| 628 | SK_KVA(pp), SK_KVA(kqum), bufcnt, SK_KVA(baddr)); |
| 629 | return 0; |
| 630 | |
| 631 | fail: |
| 632 | ASSERT(bufcnt != 0 && baddr == 0); |
| 633 | pp_metadata_destruct(kqum, pp, raw); |
| 634 | return ENOMEM; |
| 635 | } |
| 636 | |
| 637 | static int |
| 638 | pp_metadata_ctor_common(struct skmem_obj_info *oi0, |
| 639 | struct skmem_obj_info *oim0, struct kern_pbufpool *pp, uint32_t skmflag, |
| 640 | bool no_buflet) |
| 641 | { |
| 642 | struct skmem_obj_info _oi, _oim; |
| 643 | struct skmem_obj_info *oi, *oim; |
| 644 | struct __kern_quantum *kqum; |
| 645 | struct __user_quantum *uqum; |
| 646 | uint16_t bufcnt = (no_buflet ? 0 : pp->pp_max_frags); |
| 647 | struct skmem_obj *blist = NULL; |
| 648 | int error; |
| 649 | |
| 650 | #if (DEVELOPMENT || DEBUG) |
| 651 | uint64_t mtbf = skmem_region_get_mtbf(); |
| 652 | /* |
| 653 | * MTBF is applicable only for non-blocking allocations here. |
| 654 | */ |
| 655 | if (__improbable(mtbf != 0 && (net_uptime_ms() % mtbf) == 0 && |
| 656 | (skmflag & SKMEM_NOSLEEP))) { |
| 657 | SK_ERR("pp \"%s\" MTBF failure" , pp->pp_name); |
| 658 | net_update_uptime(); |
| 659 | return ENOMEM; |
| 660 | } |
| 661 | #endif /* (DEVELOPMENT || DEBUG) */ |
| 662 | |
| 663 | /* |
| 664 | * Note that oi0 and oim0 may be stored inside the object itself; |
| 665 | * if so, copy them to local variables before constructing. We |
| 666 | * don't use PPF_BATCH to test as the allocator may be allocating |
| 667 | * storage space differently depending on the number of objects. |
| 668 | */ |
| 669 | if (__probable((uintptr_t)oi0 >= (uintptr_t)SKMEM_OBJ_ADDR(oi0) && |
| 670 | ((uintptr_t)oi0 + sizeof(*oi0)) <= |
| 671 | ((uintptr_t)SKMEM_OBJ_ADDR(oi0) + SKMEM_OBJ_SIZE(oi0)))) { |
| 672 | oi = &_oi; |
| 673 | *oi = *oi0; |
| 674 | if (__probable(oim0 != NULL)) { |
| 675 | oim = &_oim; |
| 676 | *oim = *oim0; |
| 677 | } else { |
| 678 | oim = NULL; |
| 679 | } |
| 680 | } else { |
| 681 | oi = oi0; |
| 682 | oim = oim0; |
| 683 | } |
| 684 | |
| 685 | kqum = SK_PTR_ADDR_KQUM((uintptr_t)SKMEM_OBJ_ADDR(oi) + |
| 686 | METADATA_PREAMBLE_SZ); |
| 687 | |
| 688 | if (__probable(!PP_KERNEL_ONLY(pp))) { |
| 689 | ASSERT(oim != NULL && SKMEM_OBJ_ADDR(oim) != NULL); |
| 690 | ASSERT(SKMEM_OBJ_SIZE(oi) == SKMEM_OBJ_SIZE(oim)); |
| 691 | uqum = SK_PTR_ADDR_UQUM((uintptr_t)SKMEM_OBJ_ADDR(oim) + |
| 692 | METADATA_PREAMBLE_SZ); |
| 693 | } else { |
| 694 | ASSERT(oim == NULL); |
| 695 | uqum = NULL; |
| 696 | } |
| 697 | |
| 698 | if (oim != NULL) { |
| 699 | /* initialize user metadata redzone */ |
| 700 | struct __metadata_preamble *mdp = SKMEM_OBJ_ADDR(oim); |
| 701 | mdp->mdp_redzone = |
| 702 | (SKMEM_OBJ_ROFF(oim) + METADATA_PREAMBLE_SZ) ^ |
| 703 | __ch_umd_redzone_cookie; |
| 704 | } |
| 705 | |
| 706 | /* allocate (constructed) buflet(s) with buffer(s) attached */ |
| 707 | if (PP_HAS_BUFFER_ON_DEMAND(pp) && bufcnt != 0) { |
| 708 | (void) skmem_cache_batch_alloc(PP_KBFT_CACHE_DEF(pp), list: &blist, |
| 709 | bufcnt, skmflag); |
| 710 | } |
| 711 | |
| 712 | error = pp_metadata_construct(kqum, uqum, SKMEM_OBJ_IDX_REG(oi), pp, |
| 713 | skmflag, bufcnt, TRUE, blist: &blist); |
| 714 | if (__improbable(blist != NULL)) { |
| 715 | skmem_cache_batch_free(PP_KBFT_CACHE_DEF(pp), blist); |
| 716 | blist = NULL; |
| 717 | } |
| 718 | return error; |
| 719 | } |
| 720 | |
| 721 | static int |
| 722 | pp_metadata_ctor_no_buflet(struct skmem_obj_info *oi0, |
| 723 | struct skmem_obj_info *oim0, void *arg, uint32_t skmflag) |
| 724 | { |
| 725 | return pp_metadata_ctor_common(oi0, oim0, pp: arg, skmflag, true); |
| 726 | } |
| 727 | |
| 728 | static int |
| 729 | pp_metadata_ctor_max_buflet(struct skmem_obj_info *oi0, |
| 730 | struct skmem_obj_info *oim0, void *arg, uint32_t skmflag) |
| 731 | { |
| 732 | return pp_metadata_ctor_common(oi0, oim0, pp: arg, skmflag, false); |
| 733 | } |
| 734 | |
| 735 | __attribute__((always_inline)) |
| 736 | static void |
| 737 | pp_metadata_destruct_common(struct __kern_quantum *kqum, |
| 738 | struct kern_pbufpool *pp, bool raw, struct skmem_obj **blist_def, |
| 739 | struct skmem_obj **blist_large) |
| 740 | { |
| 741 | struct __kern_buflet *kbuf, *nbuf; |
| 742 | struct skmem_obj *p_blist_def = NULL, *p_blist_large = NULL; |
| 743 | struct skmem_obj **pp_blist_def = &p_blist_def; |
| 744 | struct skmem_obj **pp_blist_large = &p_blist_large; |
| 745 | uint16_t bufcnt, i = 0; |
| 746 | bool first_buflet_empty; |
| 747 | |
| 748 | ASSERT(blist_def != NULL); |
| 749 | ASSERT(blist_large != NULL); |
| 750 | |
| 751 | switch (pp->pp_md_type) { |
| 752 | case NEXUS_META_TYPE_PACKET: { |
| 753 | struct __kern_packet *kpkt = SK_PTR_ADDR_KPKT(kqum); |
| 754 | |
| 755 | ASSERT(kpkt->pkt_user != NULL || PP_KERNEL_ONLY(pp)); |
| 756 | ASSERT(kpkt->pkt_qum.qum_pp == pp); |
| 757 | ASSERT(METADATA_TYPE(kpkt) == pp->pp_md_type); |
| 758 | ASSERT(METADATA_SUBTYPE(kpkt) == pp->pp_md_subtype); |
| 759 | ASSERT(METADATA_IDX(kpkt) != OBJ_IDX_NONE); |
| 760 | ASSERT(kpkt->pkt_qum.qum_ksd == NULL); |
| 761 | ASSERT(kpkt->pkt_bufs_cnt <= kpkt->pkt_bufs_max); |
| 762 | ASSERT(kpkt->pkt_bufs_max == pp->pp_max_frags); |
| 763 | _CASSERT(sizeof(kpkt->pkt_bufs_cnt) == sizeof(uint16_t)); |
| 764 | bufcnt = kpkt->pkt_bufs_cnt; |
| 765 | kbuf = &kqum->qum_buf[0]; |
| 766 | /* |
| 767 | * special handling for empty first buflet. |
| 768 | */ |
| 769 | first_buflet_empty = (kbuf->buf_addr == 0); |
| 770 | *__DECONST(uint16_t *, &kpkt->pkt_bufs_cnt) = 0; |
| 771 | break; |
| 772 | } |
| 773 | default: |
| 774 | ASSERT(pp->pp_md_type == NEXUS_META_TYPE_QUANTUM); |
| 775 | ASSERT(kqum->qum_user != NULL || PP_KERNEL_ONLY(pp)); |
| 776 | ASSERT(kqum->qum_pp == pp); |
| 777 | ASSERT(METADATA_TYPE(kqum) == pp->pp_md_type); |
| 778 | ASSERT(METADATA_SUBTYPE(kqum) == pp->pp_md_subtype); |
| 779 | ASSERT(METADATA_IDX(kqum) != OBJ_IDX_NONE); |
| 780 | ASSERT(kqum->qum_ksd == NULL); |
| 781 | kbuf = &kqum->qum_buf[0]; |
| 782 | /* |
| 783 | * XXX: Special handling for quantum as we don't currently |
| 784 | * define bufs_{cnt,max} there. Given that we support at |
| 785 | * most only 1 buflet for now, check if buf_addr is non-NULL. |
| 786 | * See related code in pp_metadata_construct(). |
| 787 | */ |
| 788 | first_buflet_empty = (kbuf->buf_addr == 0); |
| 789 | bufcnt = first_buflet_empty ? 0 : 1; |
| 790 | break; |
| 791 | } |
| 792 | |
| 793 | nbuf = __DECONST(struct __kern_buflet *, kbuf->buf_nbft_addr); |
| 794 | BUF_NBFT_ADDR(kbuf, 0); |
| 795 | BUF_NBFT_IDX(kbuf, OBJ_IDX_NONE); |
| 796 | if (!first_buflet_empty) { |
| 797 | pp_free_buflet_common(pp, kbuf); |
| 798 | ++i; |
| 799 | } |
| 800 | |
| 801 | while (nbuf != NULL) { |
| 802 | if (BUFLET_HAS_LARGE_BUF(nbuf)) { |
| 803 | *pp_blist_large = (struct skmem_obj *)(void *)nbuf; |
| 804 | pp_blist_large = |
| 805 | &((struct skmem_obj *)(void *)nbuf)->mo_next; |
| 806 | } else { |
| 807 | *pp_blist_def = (struct skmem_obj *)(void *)nbuf; |
| 808 | pp_blist_def = |
| 809 | &((struct skmem_obj *)(void *)nbuf)->mo_next; |
| 810 | } |
| 811 | BUF_NBFT_IDX(nbuf, OBJ_IDX_NONE); |
| 812 | nbuf = __DECONST(struct __kern_buflet *, nbuf->buf_nbft_addr); |
| 813 | ++i; |
| 814 | } |
| 815 | |
| 816 | ASSERT(i == bufcnt); |
| 817 | |
| 818 | if (p_blist_def != NULL) { |
| 819 | *pp_blist_def = *blist_def; |
| 820 | *blist_def = p_blist_def; |
| 821 | } |
| 822 | if (p_blist_large != NULL) { |
| 823 | *pp_blist_large = *blist_large; |
| 824 | *blist_large = p_blist_large; |
| 825 | } |
| 826 | |
| 827 | /* if we're about to return this object to the slab, clean it up */ |
| 828 | if (raw) { |
| 829 | switch (pp->pp_md_type) { |
| 830 | case NEXUS_META_TYPE_PACKET: { |
| 831 | struct __kern_packet *kpkt = SK_PTR_ADDR_KPKT(kqum); |
| 832 | |
| 833 | ASSERT(kpkt->pkt_com_opt != NULL || |
| 834 | !(kpkt->pkt_pflags & PKT_F_OPT_ALLOC)); |
| 835 | if (kpkt->pkt_com_opt != NULL) { |
| 836 | ASSERT(kpkt->pkt_pflags & PKT_F_OPT_ALLOC); |
| 837 | skmem_cache_free(pp_opt_cache, |
| 838 | kpkt->pkt_com_opt); |
| 839 | kpkt->pkt_com_opt = NULL; |
| 840 | } |
| 841 | ASSERT(kpkt->pkt_flow != NULL || |
| 842 | !(kpkt->pkt_pflags & PKT_F_FLOW_ALLOC)); |
| 843 | if (kpkt->pkt_flow != NULL) { |
| 844 | ASSERT(kpkt->pkt_pflags & PKT_F_FLOW_ALLOC); |
| 845 | skmem_cache_free(pp_flow_cache, kpkt->pkt_flow); |
| 846 | kpkt->pkt_flow = NULL; |
| 847 | } |
| 848 | ASSERT(kpkt->pkt_tx_compl != NULL || |
| 849 | !(kpkt->pkt_pflags & PKT_F_TX_COMPL_ALLOC)); |
| 850 | if (kpkt->pkt_tx_compl != NULL) { |
| 851 | ASSERT(kpkt->pkt_pflags & PKT_F_TX_COMPL_ALLOC); |
| 852 | skmem_cache_free(pp_compl_cache, |
| 853 | kpkt->pkt_tx_compl); |
| 854 | kpkt->pkt_tx_compl = NULL; |
| 855 | } |
| 856 | kpkt->pkt_pflags = 0; |
| 857 | break; |
| 858 | } |
| 859 | default: |
| 860 | ASSERT(METADATA_TYPE(kqum) == NEXUS_META_TYPE_QUANTUM); |
| 861 | /* nothing to do for quantum (yet) */ |
| 862 | break; |
| 863 | } |
| 864 | } |
| 865 | } |
| 866 | |
| 867 | __attribute__((always_inline)) |
| 868 | static void |
| 869 | pp_metadata_destruct(struct __kern_quantum *kqum, struct kern_pbufpool *pp, |
| 870 | bool raw) |
| 871 | { |
| 872 | struct skmem_obj *blist_def = NULL, *blist_large = NULL; |
| 873 | |
| 874 | pp_metadata_destruct_common(kqum, pp, raw, blist_def: &blist_def, blist_large: &blist_large); |
| 875 | if (blist_def != NULL) { |
| 876 | skmem_cache_batch_free(PP_KBFT_CACHE_DEF(pp), blist_def); |
| 877 | } |
| 878 | if (blist_large != NULL) { |
| 879 | skmem_cache_batch_free(PP_KBFT_CACHE_LARGE(pp), blist_large); |
| 880 | } |
| 881 | } |
| 882 | |
| 883 | static void |
| 884 | pp_metadata_dtor(void *addr, void *arg) |
| 885 | { |
| 886 | pp_metadata_destruct(SK_PTR_ADDR_KQUM((uintptr_t)addr + |
| 887 | METADATA_PREAMBLE_SZ), pp: arg, TRUE); |
| 888 | } |
| 889 | |
| 890 | static void |
| 891 | pp_buf_seg_ctor(struct sksegment *sg, IOSKMemoryBufferRef md, void *arg) |
| 892 | { |
| 893 | struct kern_pbufpool *pp = arg; |
| 894 | |
| 895 | if (pp->pp_pbuf_seg_ctor != NULL) { |
| 896 | pp->pp_pbuf_seg_ctor(pp, sg, md); |
| 897 | } |
| 898 | } |
| 899 | |
| 900 | static void |
| 901 | pp_buf_seg_dtor(struct sksegment *sg, IOSKMemoryBufferRef md, void *arg) |
| 902 | { |
| 903 | struct kern_pbufpool *pp = arg; |
| 904 | |
| 905 | if (pp->pp_pbuf_seg_dtor != NULL) { |
| 906 | pp->pp_pbuf_seg_dtor(pp, sg, md); |
| 907 | } |
| 908 | } |
| 909 | |
| 910 | static int |
| 911 | pp_buflet_metadata_ctor_common(struct skmem_obj_info *oi0, |
| 912 | struct skmem_obj_info *oim0, void *arg, uint32_t skmflag, bool large) |
| 913 | { |
| 914 | #pragma unused (skmflag) |
| 915 | struct kern_pbufpool *pp = (struct kern_pbufpool *)arg; |
| 916 | struct __kern_buflet *kbft; |
| 917 | struct __user_buflet *ubft; |
| 918 | struct skmem_obj_info oib; |
| 919 | mach_vm_address_t baddr; |
| 920 | obj_idx_t oi_idx_reg; |
| 921 | |
| 922 | baddr = pp_alloc_buffer_common(pp, oi: &oib, skmflag, large); |
| 923 | if (__improbable(baddr == 0)) { |
| 924 | return ENOMEM; |
| 925 | } |
| 926 | /* |
| 927 | * Note that oi0 and oim0 may be stored inside the object itself; |
| 928 | * so copy what is required to local variables before constructing. |
| 929 | */ |
| 930 | oi_idx_reg = SKMEM_OBJ_IDX_REG(oi0); |
| 931 | kbft = SKMEM_OBJ_ADDR(oi0); |
| 932 | |
| 933 | if (__probable(!PP_KERNEL_ONLY(pp))) { |
| 934 | ASSERT(oim0 != NULL && SKMEM_OBJ_ADDR(oim0) != NULL); |
| 935 | ASSERT(SKMEM_OBJ_SIZE(oi0) == SKMEM_OBJ_SIZE(oim0)); |
| 936 | ASSERT(oi_idx_reg == SKMEM_OBJ_IDX_REG(oim0)); |
| 937 | ASSERT(SKMEM_OBJ_IDX_SEG(oi0) == SKMEM_OBJ_IDX_SEG(oim0)); |
| 938 | ubft = SKMEM_OBJ_ADDR(oim0); |
| 939 | } else { |
| 940 | ASSERT(oim0 == NULL); |
| 941 | ubft = NULL; |
| 942 | } |
| 943 | KBUF_EXT_CTOR(kbft, ubft, baddr, SKMEM_OBJ_IDX_REG(&oib), |
| 944 | SKMEM_OBJ_BUFCTL(&oib), oi_idx_reg, pp, large); |
| 945 | return 0; |
| 946 | } |
| 947 | |
| 948 | static int |
| 949 | pp_buflet_default_buffer_metadata_ctor(struct skmem_obj_info *oi0, |
| 950 | struct skmem_obj_info *oim0, void *arg, uint32_t skmflag) |
| 951 | { |
| 952 | return pp_buflet_metadata_ctor_common(oi0, oim0, arg, skmflag, false); |
| 953 | } |
| 954 | |
| 955 | static int |
| 956 | pp_buflet_large_buffer_metadata_ctor(struct skmem_obj_info *oi0, |
| 957 | struct skmem_obj_info *oim0, void *arg, uint32_t skmflag) |
| 958 | { |
| 959 | return pp_buflet_metadata_ctor_common(oi0, oim0, arg, skmflag, true); |
| 960 | } |
| 961 | |
| 962 | static void |
| 963 | pp_buflet_metadata_dtor(void *addr, void *arg) |
| 964 | { |
| 965 | struct __kern_buflet *kbft = addr; |
| 966 | void *objaddr = kbft->buf_objaddr; |
| 967 | struct kern_pbufpool *pp = arg; |
| 968 | uint32_t usecnt = 0; |
| 969 | bool large = BUFLET_HAS_LARGE_BUF(kbft); |
| 970 | |
| 971 | ASSERT(kbft->buf_flag & BUFLET_FLAG_EXTERNAL); |
| 972 | /* |
| 973 | * don't assert for (buf_nbft_addr == 0) here as constructed |
| 974 | * buflet may have this field as non-zero. This is because |
| 975 | * buf_nbft_addr (__buflet_next) is used by skmem batch alloc |
| 976 | * for chaining the buflets. |
| 977 | * To ensure that the frred buflet was not part of a chain we |
| 978 | * assert for (buf_nbft_idx == OBJ_IDX_NONE). |
| 979 | */ |
| 980 | ASSERT(kbft->buf_nbft_idx == OBJ_IDX_NONE); |
| 981 | ASSERT(((struct __kern_buflet_ext *)kbft)->kbe_buf_upp_link.sle_next == |
| 982 | NULL); |
| 983 | ASSERT(kbft->buf_addr != 0); |
| 984 | ASSERT(kbft->buf_idx != OBJ_IDX_NONE); |
| 985 | ASSERT(kbft->buf_ctl != NULL); |
| 986 | |
| 987 | KBUF_DTOR(kbft, usecnt); |
| 988 | SK_DF(SK_VERB_MEM, "pp 0x%llx buf 0x%llx usecnt %u" , SK_KVA(pp), |
| 989 | SK_KVA(objaddr), usecnt); |
| 990 | if (__probable(usecnt == 0)) { |
| 991 | skmem_cache_free(large ? PP_BUF_CACHE_LARGE(pp) : |
| 992 | PP_BUF_CACHE_DEF(pp), objaddr); |
| 993 | } |
| 994 | } |
| 995 | |
| 996 | struct kern_pbufpool * |
| 997 | pp_create(const char *name, struct skmem_region_params *srp_array, |
| 998 | pbuf_seg_ctor_fn_t buf_seg_ctor, pbuf_seg_dtor_fn_t buf_seg_dtor, |
| 999 | const void *ctx, pbuf_ctx_retain_fn_t ctx_retain, |
| 1000 | pbuf_ctx_release_fn_t ctx_release, uint32_t ppcreatef) |
| 1001 | { |
| 1002 | struct kern_pbufpool *pp = NULL; |
| 1003 | uint32_t md_size, def_buf_obj_size; |
| 1004 | uint32_t def_buf_size, large_buf_size; |
| 1005 | nexus_meta_type_t md_type; |
| 1006 | nexus_meta_subtype_t md_subtype; |
| 1007 | uint32_t md_cflags; |
| 1008 | uint16_t max_frags; |
| 1009 | char cname[64]; |
| 1010 | struct skmem_region_params *kmd_srp; |
| 1011 | struct skmem_region_params *buf_srp; |
| 1012 | struct skmem_region_params *kbft_srp; |
| 1013 | struct skmem_region_params *umd_srp = NULL; |
| 1014 | struct skmem_region_params *ubft_srp = NULL; |
| 1015 | struct skmem_region_params *lbuf_srp = NULL; |
| 1016 | |
| 1017 | /* buf_seg_{ctor,dtor} pair must be either NULL or non-NULL */ |
| 1018 | ASSERT(!(!(buf_seg_ctor == NULL && buf_seg_dtor == NULL) && |
| 1019 | ((buf_seg_ctor == NULL) ^ (buf_seg_dtor == NULL)))); |
| 1020 | |
| 1021 | /* ctx{,_retain,_release} must be either ALL NULL or ALL non-NULL */ |
| 1022 | ASSERT((ctx == NULL && ctx_retain == NULL && ctx_release == NULL) || |
| 1023 | (ctx != NULL && ctx_retain != NULL && ctx_release != NULL)); |
| 1024 | |
| 1025 | if (srp_array[SKMEM_REGION_KMD].srp_c_obj_cnt != 0) { |
| 1026 | kmd_srp = &srp_array[SKMEM_REGION_KMD]; |
| 1027 | buf_srp = &srp_array[SKMEM_REGION_BUF_DEF]; |
| 1028 | lbuf_srp = &srp_array[SKMEM_REGION_BUF_LARGE]; |
| 1029 | kbft_srp = &srp_array[SKMEM_REGION_KBFT]; |
| 1030 | } else if (srp_array[SKMEM_REGION_RXKMD].srp_c_obj_cnt != 0) { |
| 1031 | kmd_srp = &srp_array[SKMEM_REGION_RXKMD]; |
| 1032 | buf_srp = &srp_array[SKMEM_REGION_RXBUF_DEF]; |
| 1033 | lbuf_srp = &srp_array[SKMEM_REGION_RXBUF_LARGE]; |
| 1034 | kbft_srp = &srp_array[SKMEM_REGION_RXKBFT]; |
| 1035 | } else { |
| 1036 | VERIFY(srp_array[SKMEM_REGION_TXKMD].srp_c_obj_cnt != 0); |
| 1037 | kmd_srp = &srp_array[SKMEM_REGION_TXKMD]; |
| 1038 | buf_srp = &srp_array[SKMEM_REGION_TXBUF_DEF]; |
| 1039 | lbuf_srp = &srp_array[SKMEM_REGION_TXBUF_LARGE]; |
| 1040 | kbft_srp = &srp_array[SKMEM_REGION_TXKBFT]; |
| 1041 | } |
| 1042 | |
| 1043 | VERIFY(kmd_srp->srp_c_obj_size != 0); |
| 1044 | VERIFY(buf_srp->srp_c_obj_cnt != 0); |
| 1045 | VERIFY(buf_srp->srp_c_obj_size != 0); |
| 1046 | |
| 1047 | if (ppcreatef & PPCREATEF_ONDEMAND_BUF) { |
| 1048 | VERIFY(kbft_srp->srp_c_obj_cnt != 0); |
| 1049 | VERIFY(kbft_srp->srp_c_obj_size != 0); |
| 1050 | } else { |
| 1051 | kbft_srp = NULL; |
| 1052 | } |
| 1053 | |
| 1054 | if ((ppcreatef & PPCREATEF_KERNEL_ONLY) == 0) { |
| 1055 | umd_srp = &srp_array[SKMEM_REGION_UMD]; |
| 1056 | ASSERT(umd_srp->srp_c_obj_size == kmd_srp->srp_c_obj_size); |
| 1057 | ASSERT(umd_srp->srp_c_obj_cnt == kmd_srp->srp_c_obj_cnt); |
| 1058 | ASSERT(umd_srp->srp_c_seg_size == kmd_srp->srp_c_seg_size); |
| 1059 | ASSERT(umd_srp->srp_seg_cnt == kmd_srp->srp_seg_cnt); |
| 1060 | ASSERT(umd_srp->srp_md_type == kmd_srp->srp_md_type); |
| 1061 | ASSERT(umd_srp->srp_md_subtype == kmd_srp->srp_md_subtype); |
| 1062 | ASSERT(umd_srp->srp_max_frags == kmd_srp->srp_max_frags); |
| 1063 | ASSERT((umd_srp->srp_cflags & SKMEM_REGION_CR_PERSISTENT) == |
| 1064 | (kmd_srp->srp_cflags & SKMEM_REGION_CR_PERSISTENT)); |
| 1065 | if (kbft_srp != NULL) { |
| 1066 | ubft_srp = &srp_array[SKMEM_REGION_UBFT]; |
| 1067 | ASSERT(ubft_srp->srp_c_obj_size == |
| 1068 | kbft_srp->srp_c_obj_size); |
| 1069 | ASSERT(ubft_srp->srp_c_obj_cnt == |
| 1070 | kbft_srp->srp_c_obj_cnt); |
| 1071 | ASSERT(ubft_srp->srp_c_seg_size == |
| 1072 | kbft_srp->srp_c_seg_size); |
| 1073 | ASSERT(ubft_srp->srp_seg_cnt == kbft_srp->srp_seg_cnt); |
| 1074 | } |
| 1075 | } |
| 1076 | |
| 1077 | md_size = kmd_srp->srp_r_obj_size; |
| 1078 | md_type = kmd_srp->srp_md_type; |
| 1079 | md_subtype = kmd_srp->srp_md_subtype; |
| 1080 | max_frags = kmd_srp->srp_max_frags; |
| 1081 | def_buf_obj_size = buf_srp->srp_c_obj_size; |
| 1082 | def_buf_size = def_buf_obj_size; |
| 1083 | large_buf_size = lbuf_srp->srp_c_obj_size; |
| 1084 | |
| 1085 | #if (DEBUG || DEVELOPMENT) |
| 1086 | ASSERT(def_buf_obj_size != 0); |
| 1087 | ASSERT(md_type > NEXUS_META_TYPE_INVALID && |
| 1088 | md_type <= NEXUS_META_TYPE_MAX); |
| 1089 | if (md_type == NEXUS_META_TYPE_QUANTUM) { |
| 1090 | ASSERT(max_frags == 1); |
| 1091 | ASSERT(md_size >= |
| 1092 | (METADATA_PREAMBLE_SZ + NX_METADATA_QUANTUM_SZ)); |
| 1093 | } else { |
| 1094 | ASSERT(max_frags >= 1); |
| 1095 | ASSERT(md_type == NEXUS_META_TYPE_PACKET); |
| 1096 | ASSERT(md_size >= (METADATA_PREAMBLE_SZ + |
| 1097 | NX_METADATA_PACKET_SZ(max_frags))); |
| 1098 | } |
| 1099 | ASSERT(md_subtype > NEXUS_META_SUBTYPE_INVALID && |
| 1100 | md_subtype <= NEXUS_META_SUBTYPE_MAX); |
| 1101 | #endif /* DEBUG || DEVELOPMENT */ |
| 1102 | |
| 1103 | pp = pp_alloc(how: Z_WAITOK); |
| 1104 | |
| 1105 | (void) snprintf((char *)pp->pp_name, count: sizeof(pp->pp_name), |
| 1106 | "skywalk.pp.%s" , name); |
| 1107 | |
| 1108 | pp->pp_ctx = __DECONST(void *, ctx); |
| 1109 | pp->pp_ctx_retain = ctx_retain; |
| 1110 | pp->pp_ctx_release = ctx_release; |
| 1111 | if (pp->pp_ctx != NULL) { |
| 1112 | pp->pp_ctx_retain(pp->pp_ctx); |
| 1113 | } |
| 1114 | |
| 1115 | pp->pp_pbuf_seg_ctor = buf_seg_ctor; |
| 1116 | pp->pp_pbuf_seg_dtor = buf_seg_dtor; |
| 1117 | PP_BUF_SIZE_DEF(pp) = def_buf_size; |
| 1118 | PP_BUF_OBJ_SIZE_DEF(pp) = def_buf_obj_size; |
| 1119 | PP_BUF_SIZE_LARGE(pp) = large_buf_size; |
| 1120 | PP_BUF_OBJ_SIZE_LARGE(pp) = lbuf_srp->srp_c_obj_size; |
| 1121 | pp->pp_md_type = md_type; |
| 1122 | pp->pp_md_subtype = md_subtype; |
| 1123 | pp->pp_max_frags = max_frags; |
| 1124 | if (ppcreatef & PPCREATEF_EXTERNAL) { |
| 1125 | pp->pp_flags |= PPF_EXTERNAL; |
| 1126 | } |
| 1127 | if (ppcreatef & PPCREATEF_TRUNCATED_BUF) { |
| 1128 | pp->pp_flags |= PPF_TRUNCATED_BUF; |
| 1129 | } |
| 1130 | if (ppcreatef & PPCREATEF_KERNEL_ONLY) { |
| 1131 | pp->pp_flags |= PPF_KERNEL; |
| 1132 | } |
| 1133 | if (ppcreatef & PPCREATEF_ONDEMAND_BUF) { |
| 1134 | pp->pp_flags |= PPF_BUFFER_ON_DEMAND; |
| 1135 | } |
| 1136 | if (ppcreatef & PPCREATEF_DYNAMIC) { |
| 1137 | pp->pp_flags |= PPF_DYNAMIC; |
| 1138 | } |
| 1139 | if (lbuf_srp->srp_c_obj_cnt > 0) { |
| 1140 | ASSERT(lbuf_srp->srp_c_obj_size != 0); |
| 1141 | pp->pp_flags |= PPF_LARGE_BUF; |
| 1142 | } |
| 1143 | |
| 1144 | pp_retain(pp); |
| 1145 | |
| 1146 | md_cflags = ((kmd_srp->srp_cflags & SKMEM_REGION_CR_NOMAGAZINES) ? |
| 1147 | SKMEM_CR_NOMAGAZINES : 0); |
| 1148 | md_cflags |= SKMEM_CR_BATCH; |
| 1149 | pp->pp_flags |= PPF_BATCH; |
| 1150 | |
| 1151 | if (pp->pp_flags & PPF_DYNAMIC) { |
| 1152 | md_cflags |= SKMEM_CR_DYNAMIC; |
| 1153 | } |
| 1154 | |
| 1155 | if (umd_srp != NULL && (pp->pp_umd_region = |
| 1156 | skmem_region_create(name, umd_srp, NULL, NULL, NULL)) == NULL) { |
| 1157 | SK_ERR("\"%s\" (0x%llx) failed to create %s region" , |
| 1158 | pp->pp_name, SK_KVA(pp), umd_srp->srp_name); |
| 1159 | goto failed; |
| 1160 | } |
| 1161 | |
| 1162 | if ((pp->pp_kmd_region = skmem_region_create(name, kmd_srp, NULL, NULL, |
| 1163 | NULL)) == NULL) { |
| 1164 | SK_ERR("\"%s\" (0x%llx) failed to create %s region" , |
| 1165 | pp->pp_name, SK_KVA(pp), kmd_srp->srp_name); |
| 1166 | goto failed; |
| 1167 | } |
| 1168 | |
| 1169 | if (PP_HAS_BUFFER_ON_DEMAND(pp)) { |
| 1170 | VERIFY((kbft_srp != NULL) && (kbft_srp->srp_c_obj_cnt > 0)); |
| 1171 | if (!PP_KERNEL_ONLY(pp)) { |
| 1172 | VERIFY((ubft_srp != NULL) && |
| 1173 | (ubft_srp->srp_c_obj_cnt > 0)); |
| 1174 | } |
| 1175 | } |
| 1176 | /* |
| 1177 | * Metadata regions {KMD,KBFT,UBFT} magazines layer and persistency |
| 1178 | * attribute must match. |
| 1179 | */ |
| 1180 | if (PP_HAS_BUFFER_ON_DEMAND(pp)) { |
| 1181 | ASSERT((kmd_srp->srp_cflags & SKMEM_REGION_CR_NOMAGAZINES) == |
| 1182 | (kbft_srp->srp_cflags & SKMEM_REGION_CR_NOMAGAZINES)); |
| 1183 | ASSERT((kmd_srp->srp_cflags & SKMEM_REGION_CR_PERSISTENT) == |
| 1184 | (kbft_srp->srp_cflags & SKMEM_REGION_CR_PERSISTENT)); |
| 1185 | } |
| 1186 | |
| 1187 | if (PP_HAS_BUFFER_ON_DEMAND(pp) && !PP_KERNEL_ONLY(pp)) { |
| 1188 | if ((pp->pp_ubft_region = skmem_region_create(name, ubft_srp, |
| 1189 | NULL, NULL, NULL)) == NULL) { |
| 1190 | SK_ERR("\"%s\" (0x%llx) failed to create %s region" , |
| 1191 | pp->pp_name, SK_KVA(pp), ubft_srp->srp_name); |
| 1192 | goto failed; |
| 1193 | } |
| 1194 | } |
| 1195 | |
| 1196 | if (PP_HAS_BUFFER_ON_DEMAND(pp)) { |
| 1197 | if ((pp->pp_kbft_region = skmem_region_create(name, |
| 1198 | kbft_srp, NULL, NULL, NULL)) == NULL) { |
| 1199 | SK_ERR("\"%s\" (0x%llx) failed to create %s region" , |
| 1200 | pp->pp_name, SK_KVA(pp), kbft_srp->srp_name); |
| 1201 | goto failed; |
| 1202 | } |
| 1203 | } |
| 1204 | |
| 1205 | if (!PP_KERNEL_ONLY(pp)) { |
| 1206 | skmem_region_mirror(pp->pp_kmd_region, pp->pp_umd_region); |
| 1207 | } |
| 1208 | if (!PP_KERNEL_ONLY(pp) && pp->pp_ubft_region != NULL) { |
| 1209 | ASSERT(pp->pp_kbft_region != NULL); |
| 1210 | skmem_region_mirror(pp->pp_kbft_region, pp->pp_ubft_region); |
| 1211 | } |
| 1212 | |
| 1213 | /* |
| 1214 | * Create the metadata cache; magazines layer is determined by caller. |
| 1215 | */ |
| 1216 | (void) snprintf(cname, count: sizeof(cname), "kmd.%s" , name); |
| 1217 | if (PP_HAS_BUFFER_ON_DEMAND(pp)) { |
| 1218 | pp->pp_kmd_cache = skmem_cache_create(cname, md_size, 0, |
| 1219 | pp_metadata_ctor_no_buflet, pp_metadata_dtor, NULL, pp, |
| 1220 | pp->pp_kmd_region, md_cflags); |
| 1221 | } else { |
| 1222 | pp->pp_kmd_cache = skmem_cache_create(cname, md_size, 0, |
| 1223 | pp_metadata_ctor_max_buflet, pp_metadata_dtor, NULL, pp, |
| 1224 | pp->pp_kmd_region, md_cflags); |
| 1225 | } |
| 1226 | |
| 1227 | if (pp->pp_kmd_cache == NULL) { |
| 1228 | SK_ERR("\"%s\" (0x%llx) failed to create \"%s\" cache" , |
| 1229 | pp->pp_name, SK_KVA(pp), cname); |
| 1230 | goto failed; |
| 1231 | } |
| 1232 | |
| 1233 | /* |
| 1234 | * Create the buflet metadata cache |
| 1235 | */ |
| 1236 | if (pp->pp_kbft_region != NULL) { |
| 1237 | (void) snprintf(cname, count: sizeof(cname), "kbft_def.%s" , name); |
| 1238 | PP_KBFT_CACHE_DEF(pp) = skmem_cache_create(cname, |
| 1239 | kbft_srp->srp_c_obj_size, 0, |
| 1240 | pp_buflet_default_buffer_metadata_ctor, |
| 1241 | pp_buflet_metadata_dtor, NULL, pp, pp->pp_kbft_region, |
| 1242 | md_cflags); |
| 1243 | |
| 1244 | if (PP_KBFT_CACHE_DEF(pp) == NULL) { |
| 1245 | SK_ERR("\"%s\" (0x%llx) failed to create \"%s\" cache" , |
| 1246 | pp->pp_name, SK_KVA(pp), cname); |
| 1247 | goto failed; |
| 1248 | } |
| 1249 | |
| 1250 | if (PP_HAS_LARGE_BUF(pp)) { |
| 1251 | /* Aggressive memory reclaim flag set to kbft_large for now */ |
| 1252 | md_cflags |= SKMEM_CR_RECLAIM; |
| 1253 | (void) snprintf(cname, count: sizeof(cname), "kbft_large.%s" , |
| 1254 | name); |
| 1255 | PP_KBFT_CACHE_LARGE(pp) = skmem_cache_create(cname, |
| 1256 | kbft_srp->srp_c_obj_size, 0, |
| 1257 | pp_buflet_large_buffer_metadata_ctor, |
| 1258 | pp_buflet_metadata_dtor, |
| 1259 | NULL, pp, pp->pp_kbft_region, md_cflags); |
| 1260 | |
| 1261 | if (PP_KBFT_CACHE_LARGE(pp) == NULL) { |
| 1262 | SK_ERR("\"%s\" (0x%llx) failed to " |
| 1263 | "create \"%s\" cache" , pp->pp_name, |
| 1264 | SK_KVA(pp), cname); |
| 1265 | goto failed; |
| 1266 | } |
| 1267 | } |
| 1268 | } |
| 1269 | |
| 1270 | if ((PP_BUF_REGION_DEF(pp) = skmem_region_create(name, |
| 1271 | buf_srp, pp_buf_seg_ctor, pp_buf_seg_dtor, pp)) == NULL) { |
| 1272 | SK_ERR("\"%s\" (0x%llx) failed to create %s region" , |
| 1273 | pp->pp_name, SK_KVA(pp), buf_srp->srp_name); |
| 1274 | goto failed; |
| 1275 | } |
| 1276 | |
| 1277 | if (PP_HAS_LARGE_BUF(pp)) { |
| 1278 | PP_BUF_REGION_LARGE(pp) = skmem_region_create(name, lbuf_srp, |
| 1279 | pp_buf_seg_ctor, pp_buf_seg_dtor, pp); |
| 1280 | if (PP_BUF_REGION_LARGE(pp) == NULL) { |
| 1281 | SK_ERR("\"%s\" (0x%llx) failed to create %s region" , |
| 1282 | pp->pp_name, SK_KVA(pp), lbuf_srp->srp_name); |
| 1283 | goto failed; |
| 1284 | } |
| 1285 | } |
| 1286 | |
| 1287 | /* |
| 1288 | * Create the buffer object cache without the magazines layer. |
| 1289 | * We rely on caching the constructed metadata object instead. |
| 1290 | */ |
| 1291 | (void) snprintf(cname, count: sizeof(cname), "buf_def.%s" , name); |
| 1292 | if ((PP_BUF_CACHE_DEF(pp) = skmem_cache_create(cname, def_buf_obj_size, |
| 1293 | 0, NULL, NULL, NULL, pp, PP_BUF_REGION_DEF(pp), |
| 1294 | SKMEM_CR_NOMAGAZINES)) == NULL) { |
| 1295 | SK_ERR("\"%s\" (0x%llx) failed to create \"%s\" cache" , |
| 1296 | pp->pp_name, SK_KVA(pp), cname); |
| 1297 | goto failed; |
| 1298 | } |
| 1299 | |
| 1300 | if (PP_BUF_REGION_LARGE(pp) != NULL) { |
| 1301 | (void) snprintf(cname, count: sizeof(cname), "buf_large.%s" , name); |
| 1302 | if ((PP_BUF_CACHE_LARGE(pp) = skmem_cache_create(cname, |
| 1303 | lbuf_srp->srp_c_obj_size, 0, NULL, NULL, NULL, pp, |
| 1304 | PP_BUF_REGION_LARGE(pp), SKMEM_CR_NOMAGAZINES)) == NULL) { |
| 1305 | SK_ERR("\"%s\" (0x%llx) failed to create \"%s\" cache" , |
| 1306 | pp->pp_name, SK_KVA(pp), cname); |
| 1307 | goto failed; |
| 1308 | } |
| 1309 | } |
| 1310 | |
| 1311 | return pp; |
| 1312 | |
| 1313 | failed: |
| 1314 | if (pp != NULL) { |
| 1315 | if (pp->pp_ctx != NULL) { |
| 1316 | pp->pp_ctx_release(pp->pp_ctx); |
| 1317 | pp->pp_ctx = NULL; |
| 1318 | } |
| 1319 | pp_close(pp); |
| 1320 | } |
| 1321 | |
| 1322 | return NULL; |
| 1323 | } |
| 1324 | |
| 1325 | void |
| 1326 | pp_destroy(struct kern_pbufpool *pp) |
| 1327 | { |
| 1328 | PP_LOCK_ASSERT_HELD(pp); |
| 1329 | |
| 1330 | /* may be called for built-in pp with outstanding reference */ |
| 1331 | ASSERT(!(pp->pp_flags & PPF_EXTERNAL) || pp->pp_refcnt == 0); |
| 1332 | |
| 1333 | pp_destroy_upp_locked(pp); |
| 1334 | |
| 1335 | pp_destroy_upp_bft_locked(pp); |
| 1336 | |
| 1337 | if (pp->pp_kmd_cache != NULL) { |
| 1338 | skmem_cache_destroy(pp->pp_kmd_cache); |
| 1339 | pp->pp_kmd_cache = NULL; |
| 1340 | } |
| 1341 | |
| 1342 | if (pp->pp_umd_region != NULL) { |
| 1343 | skmem_region_release(pp->pp_umd_region); |
| 1344 | pp->pp_umd_region = NULL; |
| 1345 | } |
| 1346 | |
| 1347 | if (pp->pp_kmd_region != NULL) { |
| 1348 | skmem_region_release(pp->pp_kmd_region); |
| 1349 | pp->pp_kmd_region = NULL; |
| 1350 | } |
| 1351 | |
| 1352 | if (PP_KBFT_CACHE_DEF(pp) != NULL) { |
| 1353 | skmem_cache_destroy(PP_KBFT_CACHE_DEF(pp)); |
| 1354 | PP_KBFT_CACHE_DEF(pp) = NULL; |
| 1355 | } |
| 1356 | |
| 1357 | if (PP_KBFT_CACHE_LARGE(pp) != NULL) { |
| 1358 | skmem_cache_destroy(PP_KBFT_CACHE_LARGE(pp)); |
| 1359 | PP_KBFT_CACHE_LARGE(pp) = NULL; |
| 1360 | } |
| 1361 | |
| 1362 | if (pp->pp_ubft_region != NULL) { |
| 1363 | skmem_region_release(pp->pp_ubft_region); |
| 1364 | pp->pp_ubft_region = NULL; |
| 1365 | } |
| 1366 | |
| 1367 | if (pp->pp_kbft_region != NULL) { |
| 1368 | skmem_region_release(pp->pp_kbft_region); |
| 1369 | pp->pp_kbft_region = NULL; |
| 1370 | } |
| 1371 | |
| 1372 | /* |
| 1373 | * The order is important here, since pp_metadata_dtor() |
| 1374 | * called by freeing on the pp_kmd_cache will in turn |
| 1375 | * free the attached buffer. Therefore destroy the |
| 1376 | * buffer cache last. |
| 1377 | */ |
| 1378 | if (PP_BUF_CACHE_DEF(pp) != NULL) { |
| 1379 | skmem_cache_destroy(PP_BUF_CACHE_DEF(pp)); |
| 1380 | PP_BUF_CACHE_DEF(pp) = NULL; |
| 1381 | } |
| 1382 | if (PP_BUF_REGION_DEF(pp) != NULL) { |
| 1383 | skmem_region_release(PP_BUF_REGION_DEF(pp)); |
| 1384 | PP_BUF_REGION_DEF(pp) = NULL; |
| 1385 | } |
| 1386 | if (PP_BUF_CACHE_LARGE(pp) != NULL) { |
| 1387 | skmem_cache_destroy(PP_BUF_CACHE_LARGE(pp)); |
| 1388 | PP_BUF_CACHE_LARGE(pp) = NULL; |
| 1389 | } |
| 1390 | if (PP_BUF_REGION_LARGE(pp) != NULL) { |
| 1391 | skmem_region_release(PP_BUF_REGION_LARGE(pp)); |
| 1392 | PP_BUF_REGION_LARGE(pp) = NULL; |
| 1393 | } |
| 1394 | |
| 1395 | if (pp->pp_ctx != NULL) { |
| 1396 | pp->pp_ctx_release(pp->pp_ctx); |
| 1397 | pp->pp_ctx = NULL; |
| 1398 | } |
| 1399 | } |
| 1400 | |
| 1401 | static int |
| 1402 | pp_init_upp_locked(struct kern_pbufpool *pp, boolean_t can_block) |
| 1403 | { |
| 1404 | int i, err = 0; |
| 1405 | |
| 1406 | if (pp->pp_u_hash_table != NULL) { |
| 1407 | goto done; |
| 1408 | } |
| 1409 | |
| 1410 | /* allocated-address hash table */ |
| 1411 | pp->pp_u_hash_table = can_block ? zalloc(kt_view: pp_u_htbl_zone) : |
| 1412 | zalloc_noblock(kt_view: pp_u_htbl_zone); |
| 1413 | if (pp->pp_u_hash_table == NULL) { |
| 1414 | SK_ERR("failed to zalloc packet buffer pool upp hash table" ); |
| 1415 | err = ENOMEM; |
| 1416 | goto done; |
| 1417 | } |
| 1418 | |
| 1419 | for (i = 0; i < KERN_PBUFPOOL_U_HASH_SIZE; i++) { |
| 1420 | SLIST_INIT(&pp->pp_u_hash_table[i].upp_head); |
| 1421 | } |
| 1422 | done: |
| 1423 | return err; |
| 1424 | } |
| 1425 | |
| 1426 | static void |
| 1427 | pp_destroy_upp_locked(struct kern_pbufpool *pp) |
| 1428 | { |
| 1429 | PP_LOCK_ASSERT_HELD(pp); |
| 1430 | if (pp->pp_u_hash_table != NULL) { |
| 1431 | /* purge anything that's left */ |
| 1432 | pp_purge_upp_locked(pp, pid: -1); |
| 1433 | |
| 1434 | #if (DEBUG || DEVELOPMENT) |
| 1435 | for (int i = 0; i < KERN_PBUFPOOL_U_HASH_SIZE; i++) { |
| 1436 | ASSERT(SLIST_EMPTY(&pp->pp_u_hash_table[i].upp_head)); |
| 1437 | } |
| 1438 | #endif /* DEBUG || DEVELOPMENT */ |
| 1439 | |
| 1440 | zfree(pp_u_htbl_zone, pp->pp_u_hash_table); |
| 1441 | pp->pp_u_hash_table = NULL; |
| 1442 | } |
| 1443 | ASSERT(pp->pp_u_bufinuse == 0); |
| 1444 | } |
| 1445 | |
| 1446 | int |
| 1447 | pp_init_upp(struct kern_pbufpool *pp, boolean_t can_block) |
| 1448 | { |
| 1449 | int err = 0; |
| 1450 | |
| 1451 | PP_LOCK(pp); |
| 1452 | err = pp_init_upp_locked(pp, can_block); |
| 1453 | if (err) { |
| 1454 | SK_ERR("packet UPP init failed (%d)" , err); |
| 1455 | goto done; |
| 1456 | } |
| 1457 | err = pp_init_upp_bft_locked(pp, can_block); |
| 1458 | if (err) { |
| 1459 | SK_ERR("buflet UPP init failed (%d)" , err); |
| 1460 | pp_destroy_upp_locked(pp); |
| 1461 | goto done; |
| 1462 | } |
| 1463 | pp_retain_locked(pp); |
| 1464 | done: |
| 1465 | PP_UNLOCK(pp); |
| 1466 | return err; |
| 1467 | } |
| 1468 | |
| 1469 | __attribute__((always_inline)) |
| 1470 | static void |
| 1471 | pp_insert_upp_bft_locked(struct kern_pbufpool *pp, |
| 1472 | struct __kern_buflet *kbft, pid_t pid) |
| 1473 | { |
| 1474 | struct kern_pbufpool_u_bft_bkt *bkt; |
| 1475 | struct __kern_buflet_ext *kbe = (struct __kern_buflet_ext *)kbft; |
| 1476 | |
| 1477 | ASSERT(kbft->buf_flag & BUFLET_FLAG_EXTERNAL); |
| 1478 | ASSERT(kbe->kbe_buf_pid == (pid_t)-1); |
| 1479 | kbe->kbe_buf_pid = pid; |
| 1480 | bkt = KERN_PBUFPOOL_U_BFT_HASH(pp, kbft->buf_bft_idx_reg); |
| 1481 | SLIST_INSERT_HEAD(&bkt->upp_head, kbe, kbe_buf_upp_link); |
| 1482 | pp->pp_u_bftinuse++; |
| 1483 | } |
| 1484 | |
| 1485 | __attribute__((always_inline)) |
| 1486 | static void |
| 1487 | pp_insert_upp_bft_chain_locked(struct kern_pbufpool *pp, |
| 1488 | struct __kern_buflet *kbft, pid_t pid) |
| 1489 | { |
| 1490 | while (kbft != NULL) { |
| 1491 | pp_insert_upp_bft_locked(pp, kbft, pid); |
| 1492 | kbft = __DECONST(kern_buflet_t, kbft->buf_nbft_addr); |
| 1493 | } |
| 1494 | } |
| 1495 | |
| 1496 | /* Also inserts the attached chain of buflets */ |
| 1497 | void static inline |
| 1498 | pp_insert_upp_common(struct kern_pbufpool *pp, struct __kern_quantum *kqum, |
| 1499 | pid_t pid) |
| 1500 | { |
| 1501 | struct kern_pbufpool_u_bkt *bkt; |
| 1502 | struct __kern_buflet *kbft; |
| 1503 | |
| 1504 | ASSERT(kqum->qum_pid == (pid_t)-1); |
| 1505 | kqum->qum_pid = pid; |
| 1506 | |
| 1507 | bkt = KERN_PBUFPOOL_U_HASH(pp, METADATA_IDX(kqum)); |
| 1508 | SLIST_INSERT_HEAD(&bkt->upp_head, kqum, qum_upp_link); |
| 1509 | pp->pp_u_bufinuse++; |
| 1510 | |
| 1511 | kbft = (kern_buflet_t)kqum->qum_buf[0].buf_nbft_addr; |
| 1512 | if (kbft != NULL) { |
| 1513 | ASSERT(((kern_buflet_t)kbft)->buf_flag & BUFLET_FLAG_EXTERNAL); |
| 1514 | ASSERT(kqum->qum_qflags & QUM_F_INTERNALIZED); |
| 1515 | pp_insert_upp_bft_chain_locked(pp, kbft, pid); |
| 1516 | } |
| 1517 | } |
| 1518 | |
| 1519 | void |
| 1520 | pp_insert_upp_locked(struct kern_pbufpool *pp, struct __kern_quantum *kqum, |
| 1521 | pid_t pid) |
| 1522 | { |
| 1523 | pp_insert_upp_common(pp, kqum, pid); |
| 1524 | } |
| 1525 | |
| 1526 | void |
| 1527 | pp_insert_upp(struct kern_pbufpool *pp, struct __kern_quantum *kqum, pid_t pid) |
| 1528 | { |
| 1529 | PP_LOCK(pp); |
| 1530 | pp_insert_upp_common(pp, kqum, pid); |
| 1531 | PP_UNLOCK(pp); |
| 1532 | } |
| 1533 | |
| 1534 | void |
| 1535 | pp_insert_upp_batch(struct kern_pbufpool *pp, pid_t pid, uint64_t *array, |
| 1536 | uint32_t num) |
| 1537 | { |
| 1538 | uint32_t i = 0; |
| 1539 | |
| 1540 | ASSERT(array != NULL && num > 0); |
| 1541 | PP_LOCK(pp); |
| 1542 | while (num != 0) { |
| 1543 | struct __kern_quantum *kqum = SK_PTR_ADDR_KQUM(array[i]); |
| 1544 | |
| 1545 | ASSERT(kqum != NULL); |
| 1546 | pp_insert_upp_common(pp, kqum, pid); |
| 1547 | --num; |
| 1548 | ++i; |
| 1549 | } |
| 1550 | PP_UNLOCK(pp); |
| 1551 | } |
| 1552 | |
| 1553 | __attribute__((always_inline)) |
| 1554 | static struct __kern_buflet * |
| 1555 | pp_remove_upp_bft_locked(struct kern_pbufpool *pp, obj_idx_t bft_idx) |
| 1556 | { |
| 1557 | struct __kern_buflet_ext *kbft, *tbft; |
| 1558 | struct kern_pbufpool_u_bft_bkt *bkt; |
| 1559 | |
| 1560 | bkt = KERN_PBUFPOOL_U_BFT_HASH(pp, bft_idx); |
| 1561 | SLIST_FOREACH_SAFE(kbft, &bkt->upp_head, kbe_buf_upp_link, tbft) { |
| 1562 | if (((kern_buflet_t)kbft)->buf_bft_idx_reg == bft_idx) { |
| 1563 | SLIST_REMOVE(&bkt->upp_head, kbft, __kern_buflet_ext, |
| 1564 | kbe_buf_upp_link); |
| 1565 | kbft->kbe_buf_pid = (pid_t)-1; |
| 1566 | kbft->kbe_buf_upp_link.sle_next = NULL; |
| 1567 | ASSERT(pp->pp_u_bftinuse != 0); |
| 1568 | pp->pp_u_bftinuse--; |
| 1569 | break; |
| 1570 | } |
| 1571 | } |
| 1572 | return (kern_buflet_t)kbft; |
| 1573 | } |
| 1574 | |
| 1575 | struct __kern_buflet * |
| 1576 | pp_remove_upp_bft(struct kern_pbufpool *pp, obj_idx_t md_idx, int *err) |
| 1577 | { |
| 1578 | struct __kern_buflet *kbft = pp_remove_upp_bft_locked(pp, bft_idx: md_idx); |
| 1579 | |
| 1580 | *err = __improbable(kbft != NULL) ? 0 : EINVAL; |
| 1581 | return kbft; |
| 1582 | } |
| 1583 | |
| 1584 | __attribute__((always_inline)) |
| 1585 | static int |
| 1586 | pp_remove_upp_bft_chain_locked(struct kern_pbufpool *pp, |
| 1587 | struct __kern_quantum *kqum) |
| 1588 | { |
| 1589 | uint32_t max_frags = pp->pp_max_frags; |
| 1590 | struct __kern_buflet *kbft; |
| 1591 | uint16_t nbfts, upkt_nbfts; |
| 1592 | obj_idx_t bft_idx; |
| 1593 | |
| 1594 | ASSERT(!(kqum->qum_qflags & QUM_F_INTERNALIZED)); |
| 1595 | bft_idx = kqum->qum_user->qum_buf[0].buf_nbft_idx; |
| 1596 | kbft = &kqum->qum_buf[0]; |
| 1597 | if (bft_idx == OBJ_IDX_NONE) { |
| 1598 | return 0; |
| 1599 | } |
| 1600 | |
| 1601 | ASSERT(METADATA_TYPE(kqum) == NEXUS_META_TYPE_PACKET); |
| 1602 | struct __kern_packet *kpkt = __DECONST(struct __kern_packet *, kqum); |
| 1603 | struct __user_packet *upkt = __DECONST(struct __user_packet *, |
| 1604 | kpkt->pkt_qum.qum_user); |
| 1605 | |
| 1606 | upkt_nbfts = upkt->pkt_bufs_cnt; |
| 1607 | if (__improbable(upkt_nbfts > max_frags)) { |
| 1608 | SK_ERR("bad bcnt in upkt (%d > %d)" , upkt_nbfts, max_frags); |
| 1609 | BUF_NBFT_IDX(kbft, OBJ_IDX_NONE); |
| 1610 | BUF_NBFT_ADDR(kbft, 0); |
| 1611 | return ERANGE; |
| 1612 | } |
| 1613 | |
| 1614 | nbfts = (kbft->buf_addr != 0) ? 1 : 0; |
| 1615 | |
| 1616 | do { |
| 1617 | struct __kern_buflet *pbft = kbft; |
| 1618 | struct __kern_buflet_ext *kbe; |
| 1619 | |
| 1620 | kbft = pp_remove_upp_bft_locked(pp, bft_idx); |
| 1621 | if (__improbable(kbft == NULL)) { |
| 1622 | BUF_NBFT_IDX(pbft, OBJ_IDX_NONE); |
| 1623 | BUF_NBFT_ADDR(pbft, 0); |
| 1624 | SK_ERR("unallocated next buflet (%d), %p" , bft_idx, |
| 1625 | SK_KVA(pbft)); |
| 1626 | return ERANGE; |
| 1627 | } |
| 1628 | ASSERT(kbft->buf_flag & BUFLET_FLAG_EXTERNAL); |
| 1629 | BUF_NBFT_IDX(pbft, bft_idx); |
| 1630 | BUF_NBFT_ADDR(pbft, kbft); |
| 1631 | kbe = (struct __kern_buflet_ext *)kbft; |
| 1632 | bft_idx = kbe->kbe_buf_user->buf_nbft_idx; |
| 1633 | ++nbfts; |
| 1634 | } while ((bft_idx != OBJ_IDX_NONE) && (nbfts < upkt_nbfts)); |
| 1635 | |
| 1636 | ASSERT(kbft != NULL); |
| 1637 | BUF_NBFT_IDX(kbft, OBJ_IDX_NONE); |
| 1638 | BUF_NBFT_ADDR(kbft, 0); |
| 1639 | *__DECONST(uint16_t *, &kpkt->pkt_bufs_cnt) = nbfts; |
| 1640 | |
| 1641 | if (__improbable((bft_idx != OBJ_IDX_NONE) || (nbfts != upkt_nbfts))) { |
| 1642 | SK_ERR("bad buflet in upkt (%d, %d)" , nbfts, upkt_nbfts); |
| 1643 | return ERANGE; |
| 1644 | } |
| 1645 | return 0; |
| 1646 | } |
| 1647 | |
| 1648 | struct __kern_quantum * |
| 1649 | pp_remove_upp_locked(struct kern_pbufpool *pp, obj_idx_t md_idx, int *err) |
| 1650 | { |
| 1651 | struct __kern_quantum *kqum, *tqum; |
| 1652 | struct kern_pbufpool_u_bkt *bkt; |
| 1653 | |
| 1654 | bkt = KERN_PBUFPOOL_U_HASH(pp, md_idx); |
| 1655 | SLIST_FOREACH_SAFE(kqum, &bkt->upp_head, qum_upp_link, tqum) { |
| 1656 | if (METADATA_IDX(kqum) == md_idx) { |
| 1657 | SLIST_REMOVE(&bkt->upp_head, kqum, __kern_quantum, |
| 1658 | qum_upp_link); |
| 1659 | kqum->qum_pid = (pid_t)-1; |
| 1660 | ASSERT(pp->pp_u_bufinuse != 0); |
| 1661 | pp->pp_u_bufinuse--; |
| 1662 | break; |
| 1663 | } |
| 1664 | } |
| 1665 | if (__probable(kqum != NULL)) { |
| 1666 | *err = pp_remove_upp_bft_chain_locked(pp, kqum); |
| 1667 | } else { |
| 1668 | *err = ERANGE; |
| 1669 | } |
| 1670 | return kqum; |
| 1671 | } |
| 1672 | |
| 1673 | struct __kern_quantum * |
| 1674 | pp_remove_upp(struct kern_pbufpool *pp, obj_idx_t md_idx, int *err) |
| 1675 | { |
| 1676 | struct __kern_quantum *kqum; |
| 1677 | |
| 1678 | PP_LOCK(pp); |
| 1679 | kqum = pp_remove_upp_locked(pp, md_idx, err); |
| 1680 | PP_UNLOCK(pp); |
| 1681 | return kqum; |
| 1682 | } |
| 1683 | |
| 1684 | struct __kern_quantum * |
| 1685 | pp_find_upp(struct kern_pbufpool *pp, obj_idx_t md_idx) |
| 1686 | { |
| 1687 | struct __kern_quantum *kqum, *tqum; |
| 1688 | struct kern_pbufpool_u_bkt *bkt; |
| 1689 | |
| 1690 | PP_LOCK(pp); |
| 1691 | bkt = KERN_PBUFPOOL_U_HASH(pp, md_idx); |
| 1692 | SLIST_FOREACH_SAFE(kqum, &bkt->upp_head, qum_upp_link, tqum) { |
| 1693 | if (METADATA_IDX(kqum) == md_idx) { |
| 1694 | break; |
| 1695 | } |
| 1696 | } |
| 1697 | PP_UNLOCK(pp); |
| 1698 | |
| 1699 | return kqum; |
| 1700 | } |
| 1701 | |
| 1702 | __attribute__((always_inline)) |
| 1703 | static void |
| 1704 | pp_purge_upp_locked(struct kern_pbufpool *pp, pid_t pid) |
| 1705 | { |
| 1706 | struct __kern_quantum *kqum, *tqum; |
| 1707 | struct kern_pbufpool_u_bkt *bkt; |
| 1708 | int i; |
| 1709 | |
| 1710 | PP_LOCK_ASSERT_HELD(pp); |
| 1711 | |
| 1712 | /* |
| 1713 | * TODO: Build a list of packets and batch-free them. |
| 1714 | */ |
| 1715 | for (i = 0; i < KERN_PBUFPOOL_U_HASH_SIZE; i++) { |
| 1716 | bkt = &pp->pp_u_hash_table[i]; |
| 1717 | SLIST_FOREACH_SAFE(kqum, &bkt->upp_head, qum_upp_link, tqum) { |
| 1718 | ASSERT(kqum->qum_pid != (pid_t)-1); |
| 1719 | if (pid != (pid_t)-1 && kqum->qum_pid != pid) { |
| 1720 | continue; |
| 1721 | } |
| 1722 | SLIST_REMOVE(&bkt->upp_head, kqum, __kern_quantum, |
| 1723 | qum_upp_link); |
| 1724 | pp_remove_upp_bft_chain_locked(pp, kqum); |
| 1725 | kqum->qum_pid = (pid_t)-1; |
| 1726 | kqum->qum_qflags &= ~QUM_F_FINALIZED; |
| 1727 | kqum->qum_ksd = NULL; |
| 1728 | pp_free_packet(__DECONST(struct kern_pbufpool *, |
| 1729 | kqum->qum_pp), (uint64_t)kqum); |
| 1730 | ASSERT(pp->pp_u_bufinuse != 0); |
| 1731 | pp->pp_u_bufinuse--; |
| 1732 | } |
| 1733 | } |
| 1734 | } |
| 1735 | |
| 1736 | __attribute__((always_inline)) |
| 1737 | static void |
| 1738 | pp_purge_upp_bft_locked(struct kern_pbufpool *pp, pid_t pid) |
| 1739 | { |
| 1740 | struct __kern_buflet_ext *kbft, *tbft; |
| 1741 | struct kern_pbufpool_u_bft_bkt *bkt; |
| 1742 | int i; |
| 1743 | |
| 1744 | PP_LOCK_ASSERT_HELD(pp); |
| 1745 | |
| 1746 | for (i = 0; i < KERN_PBUFPOOL_U_HASH_SIZE; i++) { |
| 1747 | bkt = &pp->pp_u_bft_hash_table[i]; |
| 1748 | SLIST_FOREACH_SAFE(kbft, &bkt->upp_head, kbe_buf_upp_link, |
| 1749 | tbft) { |
| 1750 | ASSERT(kbft->kbe_buf_pid != (pid_t)-1); |
| 1751 | if (pid != (pid_t)-1 && kbft->kbe_buf_pid != pid) { |
| 1752 | continue; |
| 1753 | } |
| 1754 | SLIST_REMOVE(&bkt->upp_head, kbft, __kern_buflet_ext, |
| 1755 | kbe_buf_upp_link); |
| 1756 | kbft->kbe_buf_pid = (pid_t)-1; |
| 1757 | kbft->kbe_buf_upp_link.sle_next = NULL; |
| 1758 | pp_free_buflet(pp, (kern_buflet_t)kbft); |
| 1759 | ASSERT(pp->pp_u_bftinuse != 0); |
| 1760 | pp->pp_u_bftinuse--; |
| 1761 | } |
| 1762 | } |
| 1763 | } |
| 1764 | |
| 1765 | void |
| 1766 | pp_purge_upp(struct kern_pbufpool *pp, pid_t pid) |
| 1767 | { |
| 1768 | PP_LOCK(pp); |
| 1769 | pp_purge_upp_locked(pp, pid); |
| 1770 | pp_purge_upp_bft_locked(pp, pid); |
| 1771 | PP_UNLOCK(pp); |
| 1772 | } |
| 1773 | |
| 1774 | static int |
| 1775 | pp_init_upp_bft_locked(struct kern_pbufpool *pp, boolean_t can_block) |
| 1776 | { |
| 1777 | int i, err = 0; |
| 1778 | |
| 1779 | PP_LOCK_ASSERT_HELD(pp); |
| 1780 | if (pp->pp_u_bft_hash_table != NULL) { |
| 1781 | return 0; |
| 1782 | } |
| 1783 | |
| 1784 | /* allocated-address hash table */ |
| 1785 | pp->pp_u_bft_hash_table = can_block ? zalloc(kt_view: pp_u_htbl_zone) : |
| 1786 | zalloc_noblock(kt_view: pp_u_htbl_zone); |
| 1787 | if (pp->pp_u_bft_hash_table == NULL) { |
| 1788 | SK_ERR("failed to zalloc packet buffer pool upp buflet hash table" ); |
| 1789 | err = ENOMEM; |
| 1790 | goto fail; |
| 1791 | } |
| 1792 | |
| 1793 | for (i = 0; i < KERN_PBUFPOOL_U_HASH_SIZE; i++) { |
| 1794 | SLIST_INIT(&pp->pp_u_bft_hash_table[i].upp_head); |
| 1795 | } |
| 1796 | |
| 1797 | fail: |
| 1798 | return err; |
| 1799 | } |
| 1800 | |
| 1801 | static void |
| 1802 | pp_destroy_upp_bft_locked(struct kern_pbufpool *pp) |
| 1803 | { |
| 1804 | PP_LOCK_ASSERT_HELD(pp); |
| 1805 | if (pp->pp_u_bft_hash_table != NULL) { |
| 1806 | /* purge anything that's left */ |
| 1807 | pp_purge_upp_bft_locked(pp, pid: -1); |
| 1808 | |
| 1809 | #if (DEBUG || DEVELOPMENT) |
| 1810 | for (int i = 0; i < KERN_PBUFPOOL_U_HASH_SIZE; i++) { |
| 1811 | ASSERT(SLIST_EMPTY(&pp->pp_u_bft_hash_table[i].upp_head)); |
| 1812 | } |
| 1813 | #endif /* DEBUG || DEVELOPMENT */ |
| 1814 | |
| 1815 | zfree(pp_u_htbl_zone, pp->pp_u_bft_hash_table); |
| 1816 | pp->pp_u_bft_hash_table = NULL; |
| 1817 | } |
| 1818 | ASSERT(pp->pp_u_bftinuse == 0); |
| 1819 | } |
| 1820 | |
| 1821 | void |
| 1822 | pp_insert_upp_bft(struct kern_pbufpool *pp, |
| 1823 | struct __kern_buflet *kbft, pid_t pid) |
| 1824 | { |
| 1825 | PP_LOCK(pp); |
| 1826 | pp_insert_upp_bft_locked(pp, kbft, pid); |
| 1827 | PP_UNLOCK(pp); |
| 1828 | } |
| 1829 | |
| 1830 | boolean_t |
| 1831 | pp_isempty_upp(struct kern_pbufpool *pp) |
| 1832 | { |
| 1833 | boolean_t isempty; |
| 1834 | |
| 1835 | PP_LOCK(pp); |
| 1836 | isempty = (pp->pp_u_bufinuse == 0); |
| 1837 | PP_UNLOCK(pp); |
| 1838 | |
| 1839 | return isempty; |
| 1840 | } |
| 1841 | |
| 1842 | __attribute__((always_inline)) |
| 1843 | static inline struct __kern_quantum * |
| 1844 | pp_metadata_init(struct __metadata_preamble *mdp, struct kern_pbufpool *pp, |
| 1845 | uint16_t bufcnt, uint32_t skmflag, struct skmem_obj **blist) |
| 1846 | { |
| 1847 | struct __kern_quantum *kqum; |
| 1848 | struct __user_quantum *uqum; |
| 1849 | |
| 1850 | kqum = SK_PTR_ADDR_KQUM((uintptr_t)mdp + METADATA_PREAMBLE_SZ); |
| 1851 | ASSERT(kqum->qum_pp == pp); |
| 1852 | if (__probable(!PP_KERNEL_ONLY(pp))) { |
| 1853 | ASSERT(!(kqum->qum_qflags & QUM_F_KERNEL_ONLY)); |
| 1854 | uqum = __DECONST(struct __user_quantum *, kqum->qum_user); |
| 1855 | ASSERT(uqum != NULL); |
| 1856 | } else { |
| 1857 | ASSERT(kqum->qum_qflags & QUM_F_KERNEL_ONLY); |
| 1858 | ASSERT(kqum->qum_user == NULL); |
| 1859 | uqum = NULL; |
| 1860 | } |
| 1861 | |
| 1862 | if (PP_HAS_BUFFER_ON_DEMAND(pp) && bufcnt != 0 && |
| 1863 | pp_metadata_construct(kqum, uqum, METADATA_IDX(kqum), pp, |
| 1864 | skmflag, bufcnt, FALSE, blist) != 0) { |
| 1865 | return NULL; |
| 1866 | } |
| 1867 | |
| 1868 | /* (re)construct {user,kernel} metadata */ |
| 1869 | switch (pp->pp_md_type) { |
| 1870 | case NEXUS_META_TYPE_PACKET: { |
| 1871 | struct __kern_packet *kpkt = SK_PTR_ADDR_KPKT(kqum); |
| 1872 | struct __kern_buflet *kbuf = &kpkt->pkt_qum_buf; |
| 1873 | uint16_t i; |
| 1874 | |
| 1875 | /* sanitize flags */ |
| 1876 | kpkt->pkt_pflags &= PKT_F_INIT_MASK; |
| 1877 | |
| 1878 | ASSERT((kpkt->pkt_pflags & PKT_F_OPT_ALLOC) && |
| 1879 | kpkt->pkt_com_opt != NULL); |
| 1880 | ASSERT((kpkt->pkt_pflags & PKT_F_FLOW_ALLOC) && |
| 1881 | kpkt->pkt_flow != NULL); |
| 1882 | ASSERT((kpkt->pkt_pflags & PKT_F_TX_COMPL_ALLOC) && |
| 1883 | kpkt->pkt_tx_compl != NULL); |
| 1884 | |
| 1885 | /* |
| 1886 | * XXX: For now we always set PKT_F_FLOW_DATA; |
| 1887 | * this is a no-op but done for consistency |
| 1888 | * with the other PKT_F_*_DATA flags. |
| 1889 | */ |
| 1890 | kpkt->pkt_pflags |= PKT_F_FLOW_DATA; |
| 1891 | |
| 1892 | /* initialize kernel packet */ |
| 1893 | KPKT_INIT(kpkt, QUM_F_INTERNALIZED); |
| 1894 | |
| 1895 | ASSERT(bufcnt || PP_HAS_BUFFER_ON_DEMAND(pp)); |
| 1896 | if (PP_HAS_BUFFER_ON_DEMAND(pp)) { |
| 1897 | ASSERT(kbuf->buf_ctl == NULL); |
| 1898 | ASSERT(kbuf->buf_addr == 0); |
| 1899 | kbuf = __DECONST(struct __kern_buflet *, |
| 1900 | kbuf->buf_nbft_addr); |
| 1901 | } |
| 1902 | /* initialize kernel buflet */ |
| 1903 | for (i = 0; i < bufcnt; i++) { |
| 1904 | ASSERT(kbuf != NULL); |
| 1905 | KBUF_INIT(kbuf); |
| 1906 | kbuf = __DECONST(struct __kern_buflet *, |
| 1907 | kbuf->buf_nbft_addr); |
| 1908 | } |
| 1909 | ASSERT((kbuf == NULL) || (bufcnt == 0)); |
| 1910 | break; |
| 1911 | } |
| 1912 | default: |
| 1913 | ASSERT(pp->pp_md_type == NEXUS_META_TYPE_QUANTUM); |
| 1914 | /* kernel quantum */ |
| 1915 | KQUM_INIT(kqum, QUM_F_INTERNALIZED); |
| 1916 | KBUF_INIT(&kqum->qum_buf[0]); |
| 1917 | break; |
| 1918 | } |
| 1919 | |
| 1920 | return kqum; |
| 1921 | } |
| 1922 | |
| 1923 | /* |
| 1924 | * When PPF_BUFFER_ON_DEMAND flag is set on packet pool creation, we create |
| 1925 | * packet descriptor cache with no buffer attached and a buflet cache with |
| 1926 | * cpu layer caching enabled. While operating in this mode, we can call |
| 1927 | * pp_alloc_packet_common() either with `bufcnt = 0` or `bufcnt = n`, |
| 1928 | * where n <= pp->pp_max_frags. If `bufcnt == 0` then we allocate packet |
| 1929 | * descriptor with no attached buffer from the metadata cache. |
| 1930 | * If `bufcnt != 0`, then this routine allocates packet descriptor and buflets |
| 1931 | * from their respective caches and constructs the packet on behalf of the |
| 1932 | * caller. |
| 1933 | */ |
| 1934 | __attribute__((always_inline)) |
| 1935 | static inline uint32_t |
| 1936 | pp_alloc_packet_common(struct kern_pbufpool *pp, uint16_t bufcnt, |
| 1937 | uint64_t *array, uint32_t num, boolean_t tagged, alloc_cb_func_t cb, |
| 1938 | const void *ctx, uint32_t skmflag) |
| 1939 | { |
| 1940 | struct __metadata_preamble *mdp; |
| 1941 | struct __kern_quantum *kqum = NULL; |
| 1942 | uint32_t allocp, need = num; |
| 1943 | struct skmem_obj *plist, *blist = NULL; |
| 1944 | |
| 1945 | ASSERT(bufcnt <= pp->pp_max_frags); |
| 1946 | ASSERT(array != NULL && num > 0); |
| 1947 | ASSERT(PP_BATCH_CAPABLE(pp)); |
| 1948 | |
| 1949 | /* allocate (constructed) packet(s) with buffer(s) attached */ |
| 1950 | allocp = skmem_cache_batch_alloc(pp->pp_kmd_cache, list: &plist, num, |
| 1951 | skmflag); |
| 1952 | |
| 1953 | /* allocate (constructed) buflet(s) with buffer(s) attached */ |
| 1954 | if (PP_HAS_BUFFER_ON_DEMAND(pp) && bufcnt != 0 && allocp != 0) { |
| 1955 | (void) skmem_cache_batch_alloc(PP_KBFT_CACHE_DEF(pp), list: &blist, |
| 1956 | (allocp * bufcnt), skmflag); |
| 1957 | } |
| 1958 | |
| 1959 | while (plist != NULL) { |
| 1960 | struct skmem_obj *plistn; |
| 1961 | |
| 1962 | plistn = plist->mo_next; |
| 1963 | plist->mo_next = NULL; |
| 1964 | |
| 1965 | mdp = (struct __metadata_preamble *)(void *)plist; |
| 1966 | kqum = pp_metadata_init(mdp, pp, bufcnt, skmflag, blist: &blist); |
| 1967 | if (kqum == NULL) { |
| 1968 | if (blist != NULL) { |
| 1969 | skmem_cache_batch_free(PP_KBFT_CACHE_DEF(pp), |
| 1970 | blist); |
| 1971 | blist = NULL; |
| 1972 | } |
| 1973 | plist->mo_next = plistn; |
| 1974 | skmem_cache_batch_free(pp->pp_kmd_cache, plist); |
| 1975 | plist = NULL; |
| 1976 | break; |
| 1977 | } |
| 1978 | |
| 1979 | #if CONFIG_KERNEL_TAGGING && !defined(KASAN_LIGHT) |
| 1980 | /* Checking to ensure the object address is tagged */ |
| 1981 | ASSERT((vm_offset_t)kqum != |
| 1982 | vm_memtag_canonicalize_address((vm_offset_t)kqum)); |
| 1983 | #endif /* CONFIG_KERNEL_TAGGING && !defined(KASAN_LIGHT) */ |
| 1984 | |
| 1985 | if (tagged) { |
| 1986 | *array = SK_PTR_ENCODE(kqum, METADATA_TYPE(kqum), |
| 1987 | METADATA_SUBTYPE(kqum)); |
| 1988 | } else { |
| 1989 | *array = (uint64_t)kqum; |
| 1990 | } |
| 1991 | |
| 1992 | if (cb != NULL) { |
| 1993 | (cb)(*array, (num - need), ctx); |
| 1994 | } |
| 1995 | |
| 1996 | ++array; |
| 1997 | plist = plistn; |
| 1998 | |
| 1999 | ASSERT(need > 0); |
| 2000 | --need; |
| 2001 | } |
| 2002 | ASSERT(blist == NULL); |
| 2003 | ASSERT((num - need) == allocp || kqum == NULL); |
| 2004 | |
| 2005 | return num - need; |
| 2006 | } |
| 2007 | |
| 2008 | uint64_t |
| 2009 | pp_alloc_packet(struct kern_pbufpool *pp, uint16_t bufcnt, uint32_t skmflag) |
| 2010 | { |
| 2011 | uint64_t kpkt = 0; |
| 2012 | |
| 2013 | (void) pp_alloc_packet_common(pp, bufcnt, array: &kpkt, num: 1, FALSE, |
| 2014 | NULL, NULL, skmflag); |
| 2015 | |
| 2016 | return kpkt; |
| 2017 | } |
| 2018 | |
| 2019 | int |
| 2020 | pp_alloc_packet_batch(struct kern_pbufpool *pp, uint16_t bufcnt, |
| 2021 | uint64_t *array, uint32_t *size, boolean_t tagged, alloc_cb_func_t cb, |
| 2022 | const void *ctx, uint32_t skmflag) |
| 2023 | { |
| 2024 | uint32_t i, n; |
| 2025 | int err; |
| 2026 | |
| 2027 | ASSERT(array != NULL && size > 0); |
| 2028 | |
| 2029 | n = *size; |
| 2030 | *size = 0; |
| 2031 | |
| 2032 | i = pp_alloc_packet_common(pp, bufcnt, array, num: n, tagged, |
| 2033 | cb, ctx, skmflag); |
| 2034 | *size = i; |
| 2035 | |
| 2036 | if (__probable(i == n)) { |
| 2037 | err = 0; |
| 2038 | } else if (i != 0) { |
| 2039 | err = EAGAIN; |
| 2040 | } else { |
| 2041 | err = ENOMEM; |
| 2042 | } |
| 2043 | |
| 2044 | return err; |
| 2045 | } |
| 2046 | |
| 2047 | int |
| 2048 | pp_alloc_pktq(struct kern_pbufpool *pp, uint16_t bufcnt, |
| 2049 | struct pktq *pktq, uint32_t num, alloc_cb_func_t cb, const void *ctx, |
| 2050 | uint32_t skmflag) |
| 2051 | { |
| 2052 | struct __metadata_preamble *mdp; |
| 2053 | struct __kern_packet *kpkt = NULL; |
| 2054 | uint32_t allocp, need = num; |
| 2055 | struct skmem_obj *plist, *blist = NULL; |
| 2056 | int err; |
| 2057 | |
| 2058 | ASSERT(pktq != NULL && num > 0); |
| 2059 | ASSERT(pp->pp_md_type == NEXUS_META_TYPE_PACKET); |
| 2060 | ASSERT(bufcnt <= pp->pp_max_frags); |
| 2061 | ASSERT(PP_BATCH_CAPABLE(pp)); |
| 2062 | |
| 2063 | /* allocate (constructed) packet(s) with buffer(s) attached */ |
| 2064 | allocp = skmem_cache_batch_alloc(pp->pp_kmd_cache, list: &plist, num, |
| 2065 | skmflag); |
| 2066 | |
| 2067 | /* allocate (constructed) buflet(s) with buffer(s) attached */ |
| 2068 | if (PP_HAS_BUFFER_ON_DEMAND(pp) && bufcnt != 0 && allocp != 0) { |
| 2069 | (void) skmem_cache_batch_alloc(PP_KBFT_CACHE_DEF(pp), list: &blist, |
| 2070 | (allocp * bufcnt), skmflag); |
| 2071 | } |
| 2072 | |
| 2073 | while (plist != NULL) { |
| 2074 | struct skmem_obj *plistn; |
| 2075 | |
| 2076 | plistn = plist->mo_next; |
| 2077 | plist->mo_next = NULL; |
| 2078 | |
| 2079 | mdp = (struct __metadata_preamble *)(void *)plist; |
| 2080 | kpkt = (struct __kern_packet *)pp_metadata_init(mdp, pp, |
| 2081 | bufcnt, skmflag, blist: &blist); |
| 2082 | if (kpkt == NULL) { |
| 2083 | if (blist != NULL) { |
| 2084 | skmem_cache_batch_free(PP_KBFT_CACHE_DEF(pp), |
| 2085 | blist); |
| 2086 | blist = NULL; |
| 2087 | } |
| 2088 | plist->mo_next = plistn; |
| 2089 | skmem_cache_batch_free(pp->pp_kmd_cache, plist); |
| 2090 | plist = NULL; |
| 2091 | break; |
| 2092 | } |
| 2093 | |
| 2094 | #if CONFIG_KERNEL_TAGGING && !defined(KASAN_LIGHT) |
| 2095 | /* Checking to ensure the object address is tagged */ |
| 2096 | ASSERT((vm_offset_t)kpkt != |
| 2097 | vm_memtag_canonicalize_address((vm_offset_t)kpkt)); |
| 2098 | #endif /* CONFIG_KERNEL_TAGGING && !defined(KASAN_LIGHT) */ |
| 2099 | |
| 2100 | KPKTQ_ENQUEUE(pktq, kpkt); |
| 2101 | |
| 2102 | if (cb != NULL) { |
| 2103 | (cb)((uint64_t)kpkt, (num - need), ctx); |
| 2104 | } |
| 2105 | |
| 2106 | plist = plistn; |
| 2107 | |
| 2108 | ASSERT(need > 0); |
| 2109 | --need; |
| 2110 | } |
| 2111 | ASSERT(blist == NULL); |
| 2112 | ASSERT((num - need) == allocp || kpkt == NULL); |
| 2113 | |
| 2114 | if (__probable(need == 0)) { |
| 2115 | err = 0; |
| 2116 | } else if (need == num) { |
| 2117 | err = ENOMEM; |
| 2118 | } else { |
| 2119 | err = EAGAIN; |
| 2120 | } |
| 2121 | |
| 2122 | return err; |
| 2123 | } |
| 2124 | |
| 2125 | uint64_t |
| 2126 | pp_alloc_packet_by_size(struct kern_pbufpool *pp, uint32_t size, |
| 2127 | uint32_t skmflag) |
| 2128 | { |
| 2129 | uint32_t bufcnt = pp->pp_max_frags; |
| 2130 | uint64_t kpkt = 0; |
| 2131 | |
| 2132 | if (PP_HAS_BUFFER_ON_DEMAND(pp)) { |
| 2133 | bufcnt = |
| 2134 | SK_ROUNDUP(size, PP_BUF_SIZE_DEF(pp)) / PP_BUF_SIZE_DEF(pp); |
| 2135 | ASSERT(bufcnt <= UINT16_MAX); |
| 2136 | } |
| 2137 | |
| 2138 | (void) pp_alloc_packet_common(pp, bufcnt: (uint16_t)bufcnt, array: &kpkt, num: 1, TRUE, |
| 2139 | NULL, NULL, skmflag); |
| 2140 | |
| 2141 | return kpkt; |
| 2142 | } |
| 2143 | |
| 2144 | __attribute__((always_inline)) |
| 2145 | static inline struct __metadata_preamble * |
| 2146 | pp_metadata_fini(struct __kern_quantum *kqum, struct kern_pbufpool *pp, |
| 2147 | struct mbuf **mp, struct __kern_packet **kpp, struct skmem_obj **blist_def, |
| 2148 | struct skmem_obj **blist_large) |
| 2149 | { |
| 2150 | struct __metadata_preamble *mdp = METADATA_PREAMBLE(kqum); |
| 2151 | |
| 2152 | ASSERT(SK_PTR_TAG(kqum) == 0); |
| 2153 | |
| 2154 | switch (pp->pp_md_type) { |
| 2155 | case NEXUS_META_TYPE_PACKET: { |
| 2156 | struct __kern_packet *kpkt = SK_PTR_KPKT(kqum); |
| 2157 | |
| 2158 | if ((kpkt->pkt_pflags & PKT_F_TX_COMPL_TS_REQ) != 0) { |
| 2159 | __packet_perform_tx_completion_callbacks( |
| 2160 | SK_PKT2PH(kpkt), NULL); |
| 2161 | } |
| 2162 | if ((kpkt->pkt_pflags & PKT_F_MBUF_DATA) != 0) { |
| 2163 | ASSERT((kpkt->pkt_pflags & PKT_F_PKT_DATA) == 0); |
| 2164 | ASSERT(kpkt->pkt_mbuf != NULL); |
| 2165 | ASSERT(kpkt->pkt_mbuf->m_nextpkt == NULL); |
| 2166 | if (mp != NULL) { |
| 2167 | ASSERT(*mp == NULL); |
| 2168 | *mp = kpkt->pkt_mbuf; |
| 2169 | } else { |
| 2170 | m_freem(kpkt->pkt_mbuf); |
| 2171 | } |
| 2172 | KPKT_CLEAR_MBUF_DATA(kpkt); |
| 2173 | } else if ((kpkt->pkt_pflags & PKT_F_PKT_DATA) != 0) { |
| 2174 | ASSERT(kpkt->pkt_pkt != NULL); |
| 2175 | ASSERT(kpkt->pkt_pkt->pkt_nextpkt == NULL); |
| 2176 | if (kpp != NULL) { |
| 2177 | ASSERT(*kpp == NULL); |
| 2178 | *kpp = kpkt->pkt_pkt; |
| 2179 | } else { |
| 2180 | /* can only recurse once */ |
| 2181 | ASSERT((kpkt->pkt_pkt->pkt_pflags & |
| 2182 | PKT_F_PKT_DATA) == 0); |
| 2183 | pp_free_packet_single(kpkt->pkt_pkt); |
| 2184 | } |
| 2185 | KPKT_CLEAR_PKT_DATA(kpkt); |
| 2186 | } |
| 2187 | kpkt->pkt_pflags &= ~PKT_F_TRUNCATED; |
| 2188 | ASSERT(kpkt->pkt_nextpkt == NULL); |
| 2189 | ASSERT(kpkt->pkt_qum.qum_ksd == NULL); |
| 2190 | ASSERT((kpkt->pkt_pflags & PKT_F_MBUF_MASK) == 0); |
| 2191 | ASSERT((kpkt->pkt_pflags & PKT_F_PKT_MASK) == 0); |
| 2192 | break; |
| 2193 | } |
| 2194 | default: |
| 2195 | break; |
| 2196 | } |
| 2197 | |
| 2198 | if (__improbable(PP_HAS_BUFFER_ON_DEMAND(pp))) { |
| 2199 | pp_metadata_destruct_common(kqum, pp, FALSE, blist_def, |
| 2200 | blist_large); |
| 2201 | } |
| 2202 | return mdp; |
| 2203 | } |
| 2204 | |
| 2205 | void |
| 2206 | pp_free_packet_chain(struct __kern_packet *pkt_chain, int *npkt) |
| 2207 | { |
| 2208 | struct __metadata_preamble *mdp; |
| 2209 | struct skmem_obj *top = NULL; |
| 2210 | struct skmem_obj *blist_def = NULL; |
| 2211 | struct skmem_obj *blist_large = NULL; |
| 2212 | struct skmem_obj **list = ⊤ |
| 2213 | struct mbuf *mtop = NULL; |
| 2214 | struct mbuf **mp = &mtop; |
| 2215 | struct __kern_packet *kptop = NULL; |
| 2216 | struct __kern_packet **kpp = &kptop, *pkt, *next; |
| 2217 | struct kern_pbufpool *pp; |
| 2218 | int c = 0; |
| 2219 | |
| 2220 | pp = __DECONST(struct kern_pbufpool *, pkt_chain->pkt_qum.qum_pp); |
| 2221 | ASSERT(pp != NULL); |
| 2222 | ASSERT(PP_BATCH_CAPABLE(pp)); |
| 2223 | |
| 2224 | for (pkt = pkt_chain; pkt != NULL; pkt = next) { |
| 2225 | next = pkt->pkt_nextpkt; |
| 2226 | pkt->pkt_nextpkt = NULL; |
| 2227 | |
| 2228 | ASSERT(SK_PTR_ADDR_KQUM(pkt)->qum_pp == pp); |
| 2229 | mdp = pp_metadata_fini(SK_PTR_ADDR_KQUM(pkt), pp, |
| 2230 | mp, kpp, blist_def: &blist_def, blist_large: &blist_large); |
| 2231 | |
| 2232 | *list = (struct skmem_obj *)mdp; |
| 2233 | list = &(*list)->mo_next; |
| 2234 | c++; |
| 2235 | |
| 2236 | if (*mp != NULL) { |
| 2237 | mp = &(*mp)->m_nextpkt; |
| 2238 | ASSERT(*mp == NULL); |
| 2239 | } |
| 2240 | if (*kpp != NULL) { |
| 2241 | kpp = &(*kpp)->pkt_nextpkt; |
| 2242 | ASSERT(*kpp == NULL); |
| 2243 | } |
| 2244 | } |
| 2245 | |
| 2246 | ASSERT(top != NULL); |
| 2247 | skmem_cache_batch_free(pp->pp_kmd_cache, top); |
| 2248 | if (blist_def != NULL) { |
| 2249 | skmem_cache_batch_free(PP_KBFT_CACHE_DEF(pp), blist_def); |
| 2250 | blist_def = NULL; |
| 2251 | } |
| 2252 | if (blist_large != NULL) { |
| 2253 | skmem_cache_batch_free(PP_KBFT_CACHE_LARGE(pp), blist_large); |
| 2254 | blist_large = NULL; |
| 2255 | } |
| 2256 | if (mtop != NULL) { |
| 2257 | DTRACE_SKYWALK(free__attached__mbuf); |
| 2258 | if (__probable(mtop->m_nextpkt != NULL)) { |
| 2259 | m_freem_list(mtop); |
| 2260 | } else { |
| 2261 | m_freem(mtop); |
| 2262 | } |
| 2263 | } |
| 2264 | if (kptop != NULL) { |
| 2265 | int cnt = 0; |
| 2266 | pp_free_packet_chain(pkt_chain: kptop, npkt: &cnt); |
| 2267 | DTRACE_SKYWALK1(free__attached__pkt, int, cnt); |
| 2268 | } |
| 2269 | if (npkt != NULL) { |
| 2270 | *npkt = c; |
| 2271 | } |
| 2272 | } |
| 2273 | |
| 2274 | void |
| 2275 | pp_free_pktq(struct pktq *pktq) |
| 2276 | { |
| 2277 | if (__improbable(KPKTQ_EMPTY(pktq))) { |
| 2278 | return; |
| 2279 | } |
| 2280 | struct __kern_packet *pkt = KPKTQ_FIRST(pktq); |
| 2281 | pp_free_packet_chain(pkt_chain: pkt, NULL); |
| 2282 | KPKTQ_DISPOSE(pktq); |
| 2283 | } |
| 2284 | |
| 2285 | __attribute__((always_inline)) |
| 2286 | static inline void |
| 2287 | pp_free_packet_array(struct kern_pbufpool *pp, uint64_t *array, uint32_t num) |
| 2288 | { |
| 2289 | struct __metadata_preamble *mdp; |
| 2290 | struct skmem_obj *top = NULL; |
| 2291 | struct skmem_obj *blist_def = NULL; |
| 2292 | struct skmem_obj *blist_large = NULL; |
| 2293 | struct skmem_obj **list = ⊤ |
| 2294 | struct mbuf *mtop = NULL; |
| 2295 | struct mbuf **mp = &mtop; |
| 2296 | struct __kern_packet *kptop = NULL; |
| 2297 | struct __kern_packet **kpp = &kptop; |
| 2298 | uint32_t i; |
| 2299 | |
| 2300 | ASSERT(pp != NULL); |
| 2301 | ASSERT(array != NULL && num > 0); |
| 2302 | ASSERT(PP_BATCH_CAPABLE(pp)); |
| 2303 | |
| 2304 | for (i = 0; i < num; i++) { |
| 2305 | ASSERT(SK_PTR_ADDR_KQUM(array[i])->qum_pp == pp); |
| 2306 | mdp = pp_metadata_fini(SK_PTR_ADDR_KQUM(array[i]), pp, |
| 2307 | mp, kpp, blist_def: &blist_def, blist_large: &blist_large); |
| 2308 | |
| 2309 | *list = (struct skmem_obj *)mdp; |
| 2310 | list = &(*list)->mo_next; |
| 2311 | array[i] = 0; |
| 2312 | |
| 2313 | if (*mp != NULL) { |
| 2314 | mp = &(*mp)->m_nextpkt; |
| 2315 | ASSERT(*mp == NULL); |
| 2316 | } |
| 2317 | if (*kpp != NULL) { |
| 2318 | kpp = &(*kpp)->pkt_nextpkt; |
| 2319 | ASSERT(*kpp == NULL); |
| 2320 | } |
| 2321 | } |
| 2322 | |
| 2323 | ASSERT(top != NULL); |
| 2324 | skmem_cache_batch_free(pp->pp_kmd_cache, top); |
| 2325 | if (blist_def != NULL) { |
| 2326 | skmem_cache_batch_free(PP_KBFT_CACHE_DEF(pp), blist_def); |
| 2327 | blist_def = NULL; |
| 2328 | } |
| 2329 | if (blist_large != NULL) { |
| 2330 | skmem_cache_batch_free(PP_KBFT_CACHE_LARGE(pp), blist_large); |
| 2331 | blist_large = NULL; |
| 2332 | } |
| 2333 | if (mtop != NULL) { |
| 2334 | DTRACE_SKYWALK(free__attached__mbuf); |
| 2335 | if (__probable(mtop->m_nextpkt != NULL)) { |
| 2336 | m_freem_list(mtop); |
| 2337 | } else { |
| 2338 | m_freem(mtop); |
| 2339 | } |
| 2340 | } |
| 2341 | if (kptop != NULL) { |
| 2342 | int cnt = 0; |
| 2343 | pp_free_packet_chain(pkt_chain: kptop, npkt: &cnt); |
| 2344 | DTRACE_SKYWALK1(free__attached__pkt, int, cnt); |
| 2345 | } |
| 2346 | } |
| 2347 | |
| 2348 | void |
| 2349 | pp_free_packet(struct kern_pbufpool *pp, uint64_t kqum) |
| 2350 | { |
| 2351 | pp_free_packet_array(pp, array: &kqum, num: 1); |
| 2352 | } |
| 2353 | |
| 2354 | void |
| 2355 | pp_free_packet_batch(const kern_pbufpool_t pp, uint64_t *array, uint32_t size) |
| 2356 | { |
| 2357 | pp_free_packet_array(pp, array, num: size); |
| 2358 | } |
| 2359 | |
| 2360 | void |
| 2361 | pp_free_packet_single(struct __kern_packet *pkt) |
| 2362 | { |
| 2363 | ASSERT(pkt->pkt_nextpkt == NULL); |
| 2364 | pp_free_packet(__DECONST(struct kern_pbufpool *, |
| 2365 | pkt->pkt_qum.qum_pp), SK_PTR_ADDR(pkt)); |
| 2366 | } |
| 2367 | |
| 2368 | static mach_vm_address_t |
| 2369 | pp_alloc_buffer_common(const kern_pbufpool_t pp, struct skmem_obj_info *oi, |
| 2370 | uint32_t skmflag, bool large) |
| 2371 | { |
| 2372 | mach_vm_address_t baddr; |
| 2373 | struct skmem_cache *skm = large ? PP_BUF_CACHE_LARGE(pp): |
| 2374 | PP_BUF_CACHE_DEF(pp); |
| 2375 | |
| 2376 | ASSERT(skm != NULL); |
| 2377 | /* allocate a cached buffer */ |
| 2378 | baddr = (mach_vm_address_t)skmem_cache_alloc(skm, skmflag); |
| 2379 | |
| 2380 | #if (DEVELOPMENT || DEBUG) |
| 2381 | uint64_t mtbf = skmem_region_get_mtbf(); |
| 2382 | /* |
| 2383 | * MTBF is applicable only for non-blocking allocations here. |
| 2384 | */ |
| 2385 | if (__improbable(mtbf != 0 && (net_uptime_ms() % mtbf) == 0 && |
| 2386 | (skmflag & SKMEM_NOSLEEP))) { |
| 2387 | SK_ERR("pp \"%s\" MTBF failure" , pp->pp_name); |
| 2388 | net_update_uptime(); |
| 2389 | if (baddr != 0) { |
| 2390 | skmem_cache_free(skm, (void *)baddr); |
| 2391 | baddr = 0; |
| 2392 | } |
| 2393 | } |
| 2394 | #endif /* (DEVELOPMENT || DEBUG) */ |
| 2395 | |
| 2396 | if (__improbable(baddr == 0)) { |
| 2397 | SK_DF(SK_VERB_MEM, "failed to alloc buffer, pp 0x%llx" , |
| 2398 | SK_KVA(pp)); |
| 2399 | return 0; |
| 2400 | } |
| 2401 | skmem_cache_get_obj_info(skm, (void *)baddr, oi, NULL); |
| 2402 | ASSERT(SKMEM_OBJ_BUFCTL(oi) != NULL); |
| 2403 | ASSERT((mach_vm_address_t)SKMEM_OBJ_ADDR(oi) == baddr); |
| 2404 | return baddr; |
| 2405 | } |
| 2406 | |
| 2407 | errno_t |
| 2408 | pp_alloc_buffer(const kern_pbufpool_t pp, mach_vm_address_t *baddr, |
| 2409 | kern_segment_t *seg, kern_obj_idx_seg_t *idx, uint32_t skmflag) |
| 2410 | { |
| 2411 | struct skmem_obj_info oib; |
| 2412 | |
| 2413 | VERIFY(pp != NULL && baddr != NULL); |
| 2414 | VERIFY((seg != NULL) == (idx != NULL)); |
| 2415 | |
| 2416 | if (__improbable(!PP_HAS_BUFFER_ON_DEMAND(pp))) { |
| 2417 | return ENOTSUP; |
| 2418 | } |
| 2419 | |
| 2420 | *baddr = pp_alloc_buffer_common(pp, oi: &oib, skmflag, false); |
| 2421 | if (__improbable(*baddr == 0)) { |
| 2422 | return ENOMEM; |
| 2423 | } |
| 2424 | |
| 2425 | if (seg != NULL) { |
| 2426 | ASSERT(SKMEM_OBJ_SEG(&oib) != NULL); |
| 2427 | *seg = SKMEM_OBJ_SEG(&oib); |
| 2428 | *idx = SKMEM_OBJ_IDX_SEG(&oib); |
| 2429 | } |
| 2430 | return 0; |
| 2431 | } |
| 2432 | |
| 2433 | void |
| 2434 | pp_free_buffer(const kern_pbufpool_t pp, mach_vm_address_t addr) |
| 2435 | { |
| 2436 | ASSERT(pp != NULL && addr != 0); |
| 2437 | skmem_cache_free(PP_BUF_CACHE_DEF(pp), (void *)addr); |
| 2438 | } |
| 2439 | |
| 2440 | __attribute__((always_inline)) |
| 2441 | static inline uint32_t |
| 2442 | pp_alloc_buflet_common(struct kern_pbufpool *pp, uint64_t *array, |
| 2443 | uint32_t num, uint32_t skmflag, bool large) |
| 2444 | { |
| 2445 | struct __kern_buflet *kbft = NULL; |
| 2446 | uint32_t allocd, need = num; |
| 2447 | struct skmem_obj *list; |
| 2448 | |
| 2449 | ASSERT(array != NULL && num > 0); |
| 2450 | ASSERT(PP_BATCH_CAPABLE(pp)); |
| 2451 | ASSERT(PP_KBFT_CACHE_DEF(pp) != NULL); |
| 2452 | ASSERT(PP_BUF_SIZE_LARGE(pp) != 0 || !large); |
| 2453 | |
| 2454 | allocd = skmem_cache_batch_alloc(large ? PP_KBFT_CACHE_LARGE(pp) : |
| 2455 | PP_KBFT_CACHE_DEF(pp), list: &list, num, skmflag); |
| 2456 | |
| 2457 | while (list != NULL) { |
| 2458 | struct skmem_obj *listn; |
| 2459 | |
| 2460 | listn = list->mo_next; |
| 2461 | list->mo_next = NULL; |
| 2462 | kbft = (kern_buflet_t)(void *)list; |
| 2463 | |
| 2464 | #if CONFIG_KERNEL_TAGGING && !defined(KASAN_LIGHT) |
| 2465 | /* Checking to ensure the object address is tagged */ |
| 2466 | ASSERT((vm_offset_t)kbft != |
| 2467 | vm_memtag_canonicalize_address((vm_offset_t)kbft)); |
| 2468 | #endif /* CONFIG_KERNEL_TAGGING && !defined(KASAN_LIGHT) */ |
| 2469 | |
| 2470 | KBUF_EXT_INIT(kbft, pp); |
| 2471 | *array = (uint64_t)kbft; |
| 2472 | ++array; |
| 2473 | list = listn; |
| 2474 | ASSERT(need > 0); |
| 2475 | --need; |
| 2476 | } |
| 2477 | ASSERT((num - need) == allocd || kbft == NULL); |
| 2478 | return num - need; |
| 2479 | } |
| 2480 | |
| 2481 | errno_t |
| 2482 | pp_alloc_buflet(struct kern_pbufpool *pp, kern_buflet_t *kbft, uint32_t skmflag, |
| 2483 | bool large) |
| 2484 | { |
| 2485 | uint64_t bft; |
| 2486 | |
| 2487 | if (__improbable(!pp_alloc_buflet_common(pp, &bft, 1, skmflag, large))) { |
| 2488 | return ENOMEM; |
| 2489 | } |
| 2490 | *kbft = (kern_buflet_t)bft; |
| 2491 | return 0; |
| 2492 | } |
| 2493 | |
| 2494 | errno_t |
| 2495 | pp_alloc_buflet_batch(struct kern_pbufpool *pp, uint64_t *array, |
| 2496 | uint32_t *size, uint32_t skmflag, bool large) |
| 2497 | { |
| 2498 | uint32_t i, n; |
| 2499 | int err; |
| 2500 | |
| 2501 | ASSERT(array != NULL && size > 0); |
| 2502 | |
| 2503 | n = *size; |
| 2504 | *size = 0; |
| 2505 | |
| 2506 | i = pp_alloc_buflet_common(pp, array, num: n, skmflag, large); |
| 2507 | *size = i; |
| 2508 | |
| 2509 | if (__probable(i == n)) { |
| 2510 | err = 0; |
| 2511 | } else if (i != 0) { |
| 2512 | err = EAGAIN; |
| 2513 | } else { |
| 2514 | err = ENOMEM; |
| 2515 | } |
| 2516 | |
| 2517 | return err; |
| 2518 | } |
| 2519 | |
| 2520 | __attribute__((always_inline)) |
| 2521 | static void |
| 2522 | pp_free_buflet_common(const kern_pbufpool_t pp, kern_buflet_t kbft) |
| 2523 | { |
| 2524 | ASSERT(kbft->buf_nbft_idx == OBJ_IDX_NONE); |
| 2525 | ASSERT(kbft->buf_nbft_addr == 0); |
| 2526 | |
| 2527 | if (kbft->buf_flag & BUFLET_FLAG_EXTERNAL) { |
| 2528 | ASSERT(kbft->buf_addr != 0); |
| 2529 | ASSERT(kbft->buf_idx != OBJ_IDX_NONE); |
| 2530 | ASSERT(kbft->buf_bft_idx_reg != OBJ_IDX_NONE); |
| 2531 | ASSERT(kbft->buf_ctl != NULL); |
| 2532 | ASSERT(((struct __kern_buflet_ext *)kbft)-> |
| 2533 | kbe_buf_upp_link.sle_next == NULL); |
| 2534 | /* |
| 2535 | * external buflet has buffer attached at construction, |
| 2536 | * so we don't free the buffer here. |
| 2537 | */ |
| 2538 | skmem_cache_free(BUFLET_HAS_LARGE_BUF(kbft) ? |
| 2539 | PP_KBFT_CACHE_LARGE(pp) : PP_KBFT_CACHE_DEF(pp), |
| 2540 | (void *)kbft); |
| 2541 | } else if (__probable(kbft->buf_addr != 0)) { |
| 2542 | void *objaddr = kbft->buf_objaddr; |
| 2543 | uint32_t usecnt = 0; |
| 2544 | |
| 2545 | ASSERT(kbft->buf_idx != OBJ_IDX_NONE); |
| 2546 | ASSERT(kbft->buf_ctl != NULL); |
| 2547 | KBUF_DTOR(kbft, usecnt); |
| 2548 | SK_DF(SK_VERB_MEM, "pp 0x%llx buf 0x%llx usecnt %u" , |
| 2549 | SK_KVA(pp), SK_KVA(objaddr), usecnt); |
| 2550 | if (__probable(usecnt == 0)) { |
| 2551 | skmem_cache_free(BUFLET_HAS_LARGE_BUF(kbft) ? |
| 2552 | PP_BUF_CACHE_LARGE(pp) : PP_BUF_CACHE_DEF(pp), |
| 2553 | objaddr); |
| 2554 | } |
| 2555 | } |
| 2556 | } |
| 2557 | |
| 2558 | void |
| 2559 | pp_free_buflet(const kern_pbufpool_t pp, kern_buflet_t kbft) |
| 2560 | { |
| 2561 | ASSERT(kbft->buf_flag & BUFLET_FLAG_EXTERNAL); |
| 2562 | ASSERT(pp != NULL && kbft != NULL); |
| 2563 | pp_free_buflet_common(pp, kbft); |
| 2564 | } |
| 2565 | |
| 2566 | void |
| 2567 | pp_reap_caches(boolean_t purge) |
| 2568 | { |
| 2569 | skmem_cache_reap_now(pp_opt_cache, purge); |
| 2570 | skmem_cache_reap_now(pp_flow_cache, purge); |
| 2571 | skmem_cache_reap_now(pp_compl_cache, purge); |
| 2572 | } |
| 2573 | |