| 1 | /* |
| 2 | * Copyright (c) 2015-2023 Apple Inc. All rights reserved. |
| 3 | * |
| 4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ |
| 5 | * |
| 6 | * This file contains Original Code and/or Modifications of Original Code |
| 7 | * as defined in and that are subject to the Apple Public Source License |
| 8 | * Version 2.0 (the 'License'). You may not use this file except in |
| 9 | * compliance with the License. The rights granted to you under the License |
| 10 | * may not be used to create, or enable the creation or redistribution of, |
| 11 | * unlawful or unlicensed copies of an Apple operating system, or to |
| 12 | * circumvent, violate, or enable the circumvention or violation of, any |
| 13 | * terms of an Apple operating system software license agreement. |
| 14 | * |
| 15 | * Please obtain a copy of the License at |
| 16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. |
| 17 | * |
| 18 | * The Original Code and all software distributed under the License are |
| 19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER |
| 20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
| 21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, |
| 22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
| 23 | * Please see the License for the specific language governing rights and |
| 24 | * limitations under the License. |
| 25 | * |
| 26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ |
| 27 | */ |
| 28 | |
| 29 | /* |
| 30 | * Copyright (C) 2012-2014 Matteo Landi, Luigi Rizzo, Giuseppe Lettieri. |
| 31 | * All rights reserved. |
| 32 | * Copyright (C) 2013-2014 Universita` di Pisa. All rights reserved. |
| 33 | * |
| 34 | * Redistribution and use in source and binary forms, with or without |
| 35 | * modification, are permitted provided that the following conditions |
| 36 | * are met: |
| 37 | * 1. Redistributions of source code must retain the above copyright |
| 38 | * notice, this list of conditions and the following disclaimer. |
| 39 | * 2. Redistributions in binary form must reproduce the above copyright |
| 40 | * notice, this list of conditions and the following disclaimer in the |
| 41 | * documentation and/or other materials provided with the distribution. |
| 42 | * |
| 43 | * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND |
| 44 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 45 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 46 | * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE |
| 47 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
| 48 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
| 49 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| 50 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
| 51 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
| 52 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
| 53 | * SUCH DAMAGE. |
| 54 | */ |
| 55 | #include <sys/systm.h> |
| 56 | #include <skywalk/os_skywalk_private.h> |
| 57 | #include <skywalk/nexus/monitor/nx_monitor.h> |
| 58 | #include <skywalk/nexus/flowswitch/nx_flowswitch.h> |
| 59 | #include <skywalk/nexus/netif/nx_netif.h> |
| 60 | #include <skywalk/nexus/upipe/nx_user_pipe.h> |
| 61 | #include <skywalk/nexus/kpipe/nx_kernel_pipe.h> |
| 62 | #include <kern/thread.h> |
| 63 | |
| 64 | static int na_krings_use(struct kern_channel *); |
| 65 | static void na_krings_unuse(struct kern_channel *); |
| 66 | static void na_krings_verify(struct nexus_adapter *); |
| 67 | static int na_notify(struct __kern_channel_ring *, struct proc *, uint32_t); |
| 68 | static void na_set_ring(struct nexus_adapter *, uint32_t, enum txrx, uint32_t); |
| 69 | static void na_set_all_rings(struct nexus_adapter *, uint32_t); |
| 70 | static int na_set_ringid(struct kern_channel *, ring_set_t, ring_id_t); |
| 71 | static void na_unset_ringid(struct kern_channel *); |
| 72 | static void na_teardown(struct nexus_adapter *, struct kern_channel *, |
| 73 | boolean_t); |
| 74 | |
| 75 | static int na_kr_create(struct nexus_adapter *, boolean_t); |
| 76 | static void na_kr_delete(struct nexus_adapter *); |
| 77 | static int na_kr_setup(struct nexus_adapter *, struct kern_channel *); |
| 78 | static void na_kr_teardown_all(struct nexus_adapter *, struct kern_channel *, |
| 79 | boolean_t); |
| 80 | static void na_kr_teardown_txrx(struct nexus_adapter *, struct kern_channel *, |
| 81 | boolean_t, struct proc *); |
| 82 | static int na_kr_populate_slots(struct __kern_channel_ring *); |
| 83 | static void na_kr_depopulate_slots(struct __kern_channel_ring *, |
| 84 | struct kern_channel *, boolean_t defunct); |
| 85 | |
| 86 | static int na_schema_alloc(struct kern_channel *); |
| 87 | |
| 88 | static struct nexus_adapter *na_pseudo_alloc(zalloc_flags_t); |
| 89 | static void na_pseudo_free(struct nexus_adapter *); |
| 90 | static int na_pseudo_txsync(struct __kern_channel_ring *, struct proc *, |
| 91 | uint32_t); |
| 92 | static int na_pseudo_rxsync(struct __kern_channel_ring *, struct proc *, |
| 93 | uint32_t); |
| 94 | static int na_pseudo_activate(struct nexus_adapter *, na_activate_mode_t); |
| 95 | static void na_pseudo_dtor(struct nexus_adapter *); |
| 96 | static int na_pseudo_krings_create(struct nexus_adapter *, |
| 97 | struct kern_channel *); |
| 98 | static void na_pseudo_krings_delete(struct nexus_adapter *, |
| 99 | struct kern_channel *, boolean_t); |
| 100 | static int na_packet_pool_alloc_sync(struct __kern_channel_ring *, |
| 101 | struct proc *, uint32_t); |
| 102 | static int na_packet_pool_alloc_large_sync(struct __kern_channel_ring *, |
| 103 | struct proc *, uint32_t); |
| 104 | static int na_packet_pool_free_sync(struct __kern_channel_ring *, |
| 105 | struct proc *, uint32_t); |
| 106 | static int na_packet_pool_alloc_buf_sync(struct __kern_channel_ring *, |
| 107 | struct proc *, uint32_t); |
| 108 | static int na_packet_pool_free_buf_sync(struct __kern_channel_ring *, |
| 109 | struct proc *, uint32_t); |
| 110 | |
| 111 | #define NA_KRING_IDLE_TIMEOUT (NSEC_PER_SEC * 30) /* 30 seconds */ |
| 112 | |
| 113 | static SKMEM_TYPE_DEFINE(na_pseudo_zone, struct nexus_adapter); |
| 114 | |
| 115 | static int __na_inited = 0; |
| 116 | |
| 117 | #define NA_NUM_WMM_CLASSES 4 |
| 118 | #define NAKR_WMM_SC2RINGID(_s) PKT_SC2TC(_s) |
| 119 | #define NAKR_SET_SVC_LUT(_n, _s) \ |
| 120 | (_n)->na_kring_svc_lut[MBUF_SCIDX(_s)] = NAKR_WMM_SC2RINGID(_s) |
| 121 | #define NAKR_SET_KR_SVC(_n, _s) \ |
| 122 | NAKR((_n), NR_TX)[NAKR_WMM_SC2RINGID(_s)].ckr_svc = (_s) |
| 123 | |
| 124 | #define NA_UPP_ALLOC_LOWAT 8 |
| 125 | static uint32_t na_upp_alloc_lowat = NA_UPP_ALLOC_LOWAT; |
| 126 | |
| 127 | #define NA_UPP_REAP_INTERVAL 10 /* seconds */ |
| 128 | static uint32_t na_upp_reap_interval = NA_UPP_REAP_INTERVAL; |
| 129 | |
| 130 | #define NA_UPP_WS_HOLD_TIME 2 /* seconds */ |
| 131 | static uint32_t na_upp_ws_hold_time = NA_UPP_WS_HOLD_TIME; |
| 132 | |
| 133 | #define NA_UPP_REAP_MIN_PKTS 0 |
| 134 | static uint32_t na_upp_reap_min_pkts = NA_UPP_REAP_MIN_PKTS; |
| 135 | |
| 136 | #define NA_UPP_ALLOC_BUF_LOWAT 64 |
| 137 | static uint32_t na_upp_alloc_buf_lowat = NA_UPP_ALLOC_BUF_LOWAT; |
| 138 | |
| 139 | #if (DEVELOPMENT || DEBUG) |
| 140 | static uint64_t _na_inject_error = 0; |
| 141 | #define _NA_INJECT_ERROR(_en, _ev, _ec, _f, ...) \ |
| 142 | _SK_INJECT_ERROR(_na_inject_error, _en, _ev, _ec, NULL, _f, __VA_ARGS__) |
| 143 | |
| 144 | SYSCTL_UINT(_kern_skywalk, OID_AUTO, na_upp_ws_hold_time, |
| 145 | CTLFLAG_RW | CTLFLAG_LOCKED, &na_upp_ws_hold_time, |
| 146 | NA_UPP_WS_HOLD_TIME, "" ); |
| 147 | SYSCTL_UINT(_kern_skywalk, OID_AUTO, na_upp_reap_interval, |
| 148 | CTLFLAG_RW | CTLFLAG_LOCKED, &na_upp_reap_interval, |
| 149 | NA_UPP_REAP_INTERVAL, "" ); |
| 150 | SYSCTL_UINT(_kern_skywalk, OID_AUTO, na_upp_reap_min_pkts, |
| 151 | CTLFLAG_RW | CTLFLAG_LOCKED, &na_upp_reap_min_pkts, |
| 152 | NA_UPP_REAP_MIN_PKTS, "" ); |
| 153 | SYSCTL_UINT(_kern_skywalk, OID_AUTO, na_upp_alloc_lowat, |
| 154 | CTLFLAG_RW | CTLFLAG_LOCKED, &na_upp_alloc_lowat, |
| 155 | NA_UPP_ALLOC_LOWAT, "" ); |
| 156 | SYSCTL_UINT(_kern_skywalk, OID_AUTO, na_upp_alloc_buf_lowat, |
| 157 | CTLFLAG_RW | CTLFLAG_LOCKED, &na_upp_alloc_buf_lowat, |
| 158 | NA_UPP_ALLOC_BUF_LOWAT, "" ); |
| 159 | SYSCTL_QUAD(_kern_skywalk, OID_AUTO, na_inject_error, |
| 160 | CTLFLAG_RW | CTLFLAG_LOCKED, &_na_inject_error, "" ); |
| 161 | #else |
| 162 | #define _NA_INJECT_ERROR(_en, _ev, _ec, _f, ...) do { } while (0) |
| 163 | #endif /* !DEVELOPMENT && !DEBUG */ |
| 164 | |
| 165 | #define SKMEM_TAG_NX_RINGS "com.apple.skywalk.nexus.rings" |
| 166 | static SKMEM_TAG_DEFINE(skmem_tag_nx_rings, SKMEM_TAG_NX_RINGS); |
| 167 | |
| 168 | #define SKMEM_TAG_NX_CONTEXTS "com.apple.skywalk.nexus.contexts" |
| 169 | static SKMEM_TAG_DEFINE(skmem_tag_nx_contexts, SKMEM_TAG_NX_CONTEXTS); |
| 170 | |
| 171 | #define SKMEM_TAG_NX_SCRATCH "com.apple.skywalk.nexus.scratch" |
| 172 | static SKMEM_TAG_DEFINE(skmem_tag_nx_scratch, SKMEM_TAG_NX_SCRATCH); |
| 173 | |
| 174 | #if !XNU_TARGET_OS_OSX |
| 175 | /* see KLDBootstrap::readPrelinkedExtensions() for details */ |
| 176 | extern uuid_t kernelcache_uuid; |
| 177 | #else /* XNU_TARGET_OS_OSX */ |
| 178 | /* see panic_init() for details */ |
| 179 | extern unsigned char *kernel_uuid; |
| 180 | #endif /* XNU_TARGET_OS_OSX */ |
| 181 | |
| 182 | void |
| 183 | na_init(void) |
| 184 | { |
| 185 | /* |
| 186 | * Changing the size of nexus_mdata structure won't break ABI, |
| 187 | * but we need to be mindful of memory consumption; Thus here |
| 188 | * we add a compile-time check to make sure the size is within |
| 189 | * the expected limit and that it's properly aligned. This |
| 190 | * check may be adjusted in future as needed. |
| 191 | */ |
| 192 | _CASSERT(sizeof(struct nexus_mdata) <= 32 && |
| 193 | IS_P2ALIGNED(sizeof(struct nexus_mdata), 8)); |
| 194 | _CASSERT(sizeof(struct nexus_mdata) <= sizeof(struct __user_quantum)); |
| 195 | |
| 196 | /* see comments on nexus_meta_type_t */ |
| 197 | _CASSERT(NEXUS_META_TYPE_MAX == 3); |
| 198 | _CASSERT(NEXUS_META_SUBTYPE_MAX == 3); |
| 199 | |
| 200 | ASSERT(!__na_inited); |
| 201 | |
| 202 | __na_inited = 1; |
| 203 | } |
| 204 | |
| 205 | void |
| 206 | na_fini(void) |
| 207 | { |
| 208 | if (__na_inited) { |
| 209 | __na_inited = 0; |
| 210 | } |
| 211 | } |
| 212 | |
| 213 | /* |
| 214 | * Interpret the ringid of an chreq, by translating it into a pair |
| 215 | * of intervals of ring indices: |
| 216 | * |
| 217 | * [txfirst, txlast) and [rxfirst, rxlast) |
| 218 | */ |
| 219 | int |
| 220 | na_interp_ringid(struct nexus_adapter *na, ring_id_t ring_id, |
| 221 | ring_set_t ring_set, uint32_t first[NR_TXRX], uint32_t last[NR_TXRX]) |
| 222 | { |
| 223 | enum txrx t; |
| 224 | |
| 225 | switch (ring_set) { |
| 226 | case RING_SET_ALL: |
| 227 | /* |
| 228 | * Ring pair eligibility: all ring(s). |
| 229 | */ |
| 230 | if (ring_id != CHANNEL_RING_ID_ANY && |
| 231 | ring_id >= na_get_nrings(na, t: NR_TX) && |
| 232 | ring_id >= na_get_nrings(na, t: NR_RX)) { |
| 233 | SK_ERR("\"%s\": invalid ring_id %d for ring_set %u" , |
| 234 | na->na_name, (int)ring_id, ring_set); |
| 235 | return EINVAL; |
| 236 | } |
| 237 | for_rx_tx(t) { |
| 238 | if (ring_id == CHANNEL_RING_ID_ANY) { |
| 239 | first[t] = 0; |
| 240 | last[t] = na_get_nrings(na, t); |
| 241 | } else { |
| 242 | first[t] = ring_id; |
| 243 | last[t] = ring_id + 1; |
| 244 | } |
| 245 | } |
| 246 | break; |
| 247 | |
| 248 | default: |
| 249 | SK_ERR("\"%s\": invalid ring_set %u" , na->na_name, ring_set); |
| 250 | return EINVAL; |
| 251 | } |
| 252 | |
| 253 | SK_DF(SK_VERB_NA | SK_VERB_RING, |
| 254 | "\"%s\": ring_id %d, ring_set %u tx [%u,%u) rx [%u,%u)" , |
| 255 | na->na_name, (int)ring_id, ring_set, first[NR_TX], last[NR_TX], |
| 256 | first[NR_RX], last[NR_RX]); |
| 257 | |
| 258 | return 0; |
| 259 | } |
| 260 | |
| 261 | /* |
| 262 | * Set the ring ID. For devices with a single queue, a request |
| 263 | * for all rings is the same as a single ring. |
| 264 | */ |
| 265 | static int |
| 266 | na_set_ringid(struct kern_channel *ch, ring_set_t ring_set, ring_id_t ring_id) |
| 267 | { |
| 268 | struct nexus_adapter *na = ch->ch_na; |
| 269 | int error; |
| 270 | enum txrx t; |
| 271 | uint32_t n_alloc_rings; |
| 272 | |
| 273 | if ((error = na_interp_ringid(na, ring_id, ring_set, |
| 274 | first: ch->ch_first, last: ch->ch_last)) != 0) { |
| 275 | return error; |
| 276 | } |
| 277 | |
| 278 | n_alloc_rings = na_get_nrings(na, t: NR_A); |
| 279 | if (n_alloc_rings != 0) { |
| 280 | uint32_t n_large_alloc_rings; |
| 281 | |
| 282 | ch->ch_first[NR_A] = ch->ch_first[NR_F] = 0; |
| 283 | ch->ch_last[NR_A] = ch->ch_last[NR_F] = |
| 284 | ch->ch_first[NR_A] + n_alloc_rings; |
| 285 | |
| 286 | n_large_alloc_rings = na_get_nrings(na, t: NR_LBA); |
| 287 | ch->ch_first[NR_LBA] = 0; |
| 288 | ch->ch_last[NR_LBA] = ch->ch_first[NR_LBA] + n_large_alloc_rings; |
| 289 | } else { |
| 290 | ch->ch_first[NR_A] = ch->ch_last[NR_A] = 0; |
| 291 | ch->ch_first[NR_F] = ch->ch_last[NR_F] = 0; |
| 292 | ch->ch_first[NR_LBA] = ch->ch_last[NR_LBA] = 0; |
| 293 | } |
| 294 | ch->ch_first[NR_EV] = 0; |
| 295 | ch->ch_last[NR_EV] = ch->ch_first[NR_EV] + na_get_nrings(na, t: NR_EV); |
| 296 | |
| 297 | /* XXX: should we initialize na_si_users for event ring ? */ |
| 298 | |
| 299 | /* |
| 300 | * Optimization: count the users registered for more than |
| 301 | * one ring, which are the ones sleeping on the global queue. |
| 302 | * The default na_notify() callback will then avoid signaling |
| 303 | * the global queue if nobody is using it |
| 304 | */ |
| 305 | for_rx_tx(t) { |
| 306 | if (ch_is_multiplex(ch, t)) { |
| 307 | na->na_si_users[t]++; |
| 308 | ASSERT(na->na_si_users[t] != 0); |
| 309 | } |
| 310 | } |
| 311 | return 0; |
| 312 | } |
| 313 | |
| 314 | static void |
| 315 | na_unset_ringid(struct kern_channel *ch) |
| 316 | { |
| 317 | struct nexus_adapter *na = ch->ch_na; |
| 318 | enum txrx t; |
| 319 | |
| 320 | for_rx_tx(t) { |
| 321 | if (ch_is_multiplex(ch, t)) { |
| 322 | ASSERT(na->na_si_users[t] != 0); |
| 323 | na->na_si_users[t]--; |
| 324 | } |
| 325 | ch->ch_first[t] = ch->ch_last[t] = 0; |
| 326 | } |
| 327 | } |
| 328 | |
| 329 | /* |
| 330 | * Check that the rings we want to bind are not exclusively owned by a previous |
| 331 | * bind. If exclusive ownership has been requested, we also mark the rings. |
| 332 | */ |
| 333 | /* Hoisted out of line to reduce kernel stack footprint */ |
| 334 | SK_NO_INLINE_ATTRIBUTE |
| 335 | static int |
| 336 | na_krings_use(struct kern_channel *ch) |
| 337 | { |
| 338 | struct nexus_adapter *na = ch->ch_na; |
| 339 | struct __kern_channel_ring *kring; |
| 340 | boolean_t excl = !!(ch->ch_flags & CHANF_EXCLUSIVE); |
| 341 | enum txrx t; |
| 342 | uint32_t i; |
| 343 | |
| 344 | SK_DF(SK_VERB_NA | SK_VERB_RING, "na \"%s\" (0x%llx) grabbing tx [%u,%u) rx [%u,%u)" , |
| 345 | na->na_name, SK_KVA(na), ch->ch_first[NR_TX], ch->ch_last[NR_TX], |
| 346 | ch->ch_first[NR_RX], ch->ch_last[NR_RX]); |
| 347 | |
| 348 | /* |
| 349 | * First round: check that all the requested rings |
| 350 | * are neither alread exclusively owned, nor we |
| 351 | * want exclusive ownership when they are already in use |
| 352 | */ |
| 353 | for_all_rings(t) { |
| 354 | for (i = ch->ch_first[t]; i < ch->ch_last[t]; i++) { |
| 355 | kring = &NAKR(na, t)[i]; |
| 356 | if ((kring->ckr_flags & CKRF_EXCLUSIVE) || |
| 357 | (kring->ckr_users && excl)) { |
| 358 | SK_DF(SK_VERB_NA | SK_VERB_RING, |
| 359 | "kr \"%s\" (0x%llx) krflags 0x%b is busy" , |
| 360 | kring->ckr_name, SK_KVA(kring), |
| 361 | kring->ckr_flags, CKRF_BITS); |
| 362 | return EBUSY; |
| 363 | } |
| 364 | } |
| 365 | } |
| 366 | |
| 367 | /* |
| 368 | * Second round: increment usage count and possibly |
| 369 | * mark as exclusive |
| 370 | */ |
| 371 | |
| 372 | for_all_rings(t) { |
| 373 | for (i = ch->ch_first[t]; i < ch->ch_last[t]; i++) { |
| 374 | kring = &NAKR(na, t)[i]; |
| 375 | kring->ckr_users++; |
| 376 | if (excl) { |
| 377 | kring->ckr_flags |= CKRF_EXCLUSIVE; |
| 378 | } |
| 379 | } |
| 380 | } |
| 381 | |
| 382 | return 0; |
| 383 | } |
| 384 | |
| 385 | /* Hoisted out of line to reduce kernel stack footprint */ |
| 386 | SK_NO_INLINE_ATTRIBUTE |
| 387 | static void |
| 388 | na_krings_unuse(struct kern_channel *ch) |
| 389 | { |
| 390 | struct nexus_adapter *na = ch->ch_na; |
| 391 | struct __kern_channel_ring *kring; |
| 392 | boolean_t excl = !!(ch->ch_flags & CHANF_EXCLUSIVE); |
| 393 | enum txrx t; |
| 394 | uint32_t i; |
| 395 | |
| 396 | SK_DF(SK_VERB_NA | SK_VERB_RING, |
| 397 | "na \"%s\" (0x%llx) releasing tx [%u, %u) rx [%u, %u)" , |
| 398 | na->na_name, SK_KVA(na), ch->ch_first[NR_TX], ch->ch_last[NR_TX], |
| 399 | ch->ch_first[NR_RX], ch->ch_last[NR_RX]); |
| 400 | |
| 401 | for_all_rings(t) { |
| 402 | for (i = ch->ch_first[t]; i < ch->ch_last[t]; i++) { |
| 403 | kring = &NAKR(na, t)[i]; |
| 404 | if (excl) { |
| 405 | kring->ckr_flags &= ~CKRF_EXCLUSIVE; |
| 406 | } |
| 407 | kring->ckr_users--; |
| 408 | } |
| 409 | } |
| 410 | } |
| 411 | |
| 412 | /* Hoisted out of line to reduce kernel stack footprint */ |
| 413 | SK_NO_INLINE_ATTRIBUTE |
| 414 | static void |
| 415 | na_krings_verify(struct nexus_adapter *na) |
| 416 | { |
| 417 | struct __kern_channel_ring *kring; |
| 418 | enum txrx t; |
| 419 | uint32_t i; |
| 420 | |
| 421 | for_all_rings(t) { |
| 422 | for (i = 0; i < na_get_nrings(na, t); i++) { |
| 423 | kring = &NAKR(na, t)[i]; |
| 424 | /* na_kr_create() validations */ |
| 425 | ASSERT(kring->ckr_num_slots > 0); |
| 426 | ASSERT(kring->ckr_lim == (kring->ckr_num_slots - 1)); |
| 427 | ASSERT(kring->ckr_pp != NULL); |
| 428 | |
| 429 | if (!(kring->ckr_flags & CKRF_MEM_RING_INITED)) { |
| 430 | continue; |
| 431 | } |
| 432 | /* na_kr_setup() validations */ |
| 433 | if (KR_KERNEL_ONLY(kring)) { |
| 434 | ASSERT(kring->ckr_ring == NULL); |
| 435 | } else { |
| 436 | ASSERT(kring->ckr_ring != NULL); |
| 437 | } |
| 438 | ASSERT(kring->ckr_ksds_last == |
| 439 | &kring->ckr_ksds[kring->ckr_lim]); |
| 440 | } |
| 441 | } |
| 442 | } |
| 443 | |
| 444 | int |
| 445 | na_bind_channel(struct nexus_adapter *na, struct kern_channel *ch, |
| 446 | struct chreq *chr) |
| 447 | { |
| 448 | struct kern_pbufpool *rx_pp = skmem_arena_nexus(ar: na->na_arena)->arn_rx_pp; |
| 449 | struct kern_pbufpool *tx_pp = skmem_arena_nexus(ar: na->na_arena)->arn_tx_pp; |
| 450 | uint32_t ch_mode = chr->cr_mode; |
| 451 | int err = 0; |
| 452 | |
| 453 | SK_LOCK_ASSERT_HELD(); |
| 454 | ASSERT(ch->ch_schema == NULL); |
| 455 | ASSERT(ch->ch_na == NULL); |
| 456 | |
| 457 | /* ring configuration may have changed, fetch from the card */ |
| 458 | na_update_config(na); |
| 459 | ch->ch_na = na; /* store the reference */ |
| 460 | err = na_set_ringid(ch, ring_set: chr->cr_ring_set, ring_id: chr->cr_ring_id); |
| 461 | if (err != 0) { |
| 462 | goto err; |
| 463 | } |
| 464 | |
| 465 | os_atomic_andnot(&ch->ch_flags, (CHANF_RXONLY | CHANF_EXCLUSIVE | |
| 466 | CHANF_USER_PACKET_POOL | CHANF_EVENT_RING), relaxed); |
| 467 | if (ch_mode & CHMODE_EXCLUSIVE) { |
| 468 | os_atomic_or(&ch->ch_flags, CHANF_EXCLUSIVE, relaxed); |
| 469 | } |
| 470 | /* |
| 471 | * Disallow automatic sync for monitor mode, since TX |
| 472 | * direction is disabled. |
| 473 | */ |
| 474 | if (ch_mode & CHMODE_MONITOR) { |
| 475 | os_atomic_or(&ch->ch_flags, CHANF_RXONLY, relaxed); |
| 476 | } |
| 477 | |
| 478 | if (!!(na->na_flags & NAF_USER_PKT_POOL) ^ |
| 479 | !!(ch_mode & CHMODE_USER_PACKET_POOL)) { |
| 480 | SK_ERR("incompatible channel mode (0x%b), na_flags (0x%b)" , |
| 481 | ch_mode, CHMODE_BITS, na->na_flags, NAF_BITS); |
| 482 | err = EINVAL; |
| 483 | goto err; |
| 484 | } |
| 485 | |
| 486 | if (na->na_arena->ar_flags & ARF_DEFUNCT) { |
| 487 | err = ENXIO; |
| 488 | goto err; |
| 489 | } |
| 490 | |
| 491 | if (ch_mode & CHMODE_USER_PACKET_POOL) { |
| 492 | ASSERT(na->na_flags & NAF_USER_PKT_POOL); |
| 493 | ASSERT(ch->ch_first[NR_A] != ch->ch_last[NR_A]); |
| 494 | ASSERT(ch->ch_first[NR_F] != ch->ch_last[NR_F]); |
| 495 | os_atomic_or(&ch->ch_flags, CHANF_USER_PACKET_POOL, relaxed); |
| 496 | } |
| 497 | |
| 498 | if (ch_mode & CHMODE_EVENT_RING) { |
| 499 | ASSERT(na->na_flags & NAF_USER_PKT_POOL); |
| 500 | ASSERT(na->na_flags & NAF_EVENT_RING); |
| 501 | ASSERT(ch->ch_first[NR_EV] != ch->ch_last[NR_EV]); |
| 502 | os_atomic_or(&ch->ch_flags, CHANF_EVENT_RING, relaxed); |
| 503 | } |
| 504 | |
| 505 | /* |
| 506 | * If this is the first channel of the adapter, create |
| 507 | * the rings and their in-kernel view, the krings. |
| 508 | */ |
| 509 | if (na->na_channels == 0) { |
| 510 | err = na->na_krings_create(na, ch); |
| 511 | if (err != 0) { |
| 512 | goto err; |
| 513 | } |
| 514 | |
| 515 | /* |
| 516 | * Sanity check; this is already done in na_kr_create(), |
| 517 | * but we do it here as well to validate na_kr_setup(). |
| 518 | */ |
| 519 | na_krings_verify(na); |
| 520 | *(nexus_meta_type_t *)(uintptr_t)&na->na_md_type = |
| 521 | skmem_arena_nexus(ar: na->na_arena)->arn_rx_pp->pp_md_type; |
| 522 | *(nexus_meta_subtype_t *)(uintptr_t)&na->na_md_subtype = |
| 523 | skmem_arena_nexus(ar: na->na_arena)->arn_rx_pp->pp_md_subtype; |
| 524 | } |
| 525 | |
| 526 | /* |
| 527 | * Validate ownership and usability of the krings; take into account |
| 528 | * whether some previous bind has exclusive ownership on them. |
| 529 | */ |
| 530 | err = na_krings_use(ch); |
| 531 | if (err != 0) { |
| 532 | goto err_del_rings; |
| 533 | } |
| 534 | |
| 535 | /* for user-facing channel, create a new channel schema */ |
| 536 | if (!(ch->ch_flags & CHANF_KERNEL)) { |
| 537 | err = na_schema_alloc(ch); |
| 538 | if (err != 0) { |
| 539 | goto err_rel_excl; |
| 540 | } |
| 541 | |
| 542 | ASSERT(ch->ch_schema != NULL); |
| 543 | ASSERT(ch->ch_schema_offset != (mach_vm_offset_t)-1); |
| 544 | } else { |
| 545 | ASSERT(ch->ch_schema == NULL); |
| 546 | ch->ch_schema_offset = (mach_vm_offset_t)-1; |
| 547 | } |
| 548 | |
| 549 | /* update our work timestamp */ |
| 550 | na->na_work_ts = net_uptime(); |
| 551 | |
| 552 | na->na_channels++; |
| 553 | |
| 554 | /* |
| 555 | * If user packet pool is desired, initialize the allocated |
| 556 | * object hash table in the pool, if not already. This also |
| 557 | * retains a refcnt on the pool which the caller must release. |
| 558 | */ |
| 559 | ASSERT(ch->ch_pp == NULL); |
| 560 | if (ch_mode & CHMODE_USER_PACKET_POOL) { |
| 561 | #pragma unused(tx_pp) |
| 562 | ASSERT(rx_pp == tx_pp); |
| 563 | err = pp_init_upp(rx_pp, TRUE); |
| 564 | if (err != 0) { |
| 565 | goto err_free_schema; |
| 566 | } |
| 567 | ch->ch_pp = rx_pp; |
| 568 | } |
| 569 | |
| 570 | if (!NA_IS_ACTIVE(na)) { |
| 571 | err = na->na_activate(na, NA_ACTIVATE_MODE_ON); |
| 572 | if (err != 0) { |
| 573 | goto err_release_pp; |
| 574 | } |
| 575 | |
| 576 | SK_D("activated \"%s\" adapter 0x%llx" , na->na_name, |
| 577 | SK_KVA(na)); |
| 578 | SK_D(" na_md_type: %u" , na->na_md_type); |
| 579 | SK_D(" na_md_subtype: %u" , na->na_md_subtype); |
| 580 | } |
| 581 | |
| 582 | SK_D("ch 0x%llx" , SK_KVA(ch)); |
| 583 | SK_D(" ch_flags: 0x%b" , ch->ch_flags, CHANF_BITS); |
| 584 | if (ch->ch_schema != NULL) { |
| 585 | SK_D(" ch_schema: 0x%llx" , SK_KVA(ch->ch_schema)); |
| 586 | } |
| 587 | SK_D(" ch_na: 0x%llx (chcnt %u)" , SK_KVA(ch->ch_na), |
| 588 | ch->ch_na->na_channels); |
| 589 | SK_D(" ch_tx_rings: [%u,%u)" , ch->ch_first[NR_TX], |
| 590 | ch->ch_last[NR_TX]); |
| 591 | SK_D(" ch_rx_rings: [%u,%u)" , ch->ch_first[NR_RX], |
| 592 | ch->ch_last[NR_RX]); |
| 593 | SK_D(" ch_alloc_rings: [%u,%u)" , ch->ch_first[NR_A], |
| 594 | ch->ch_last[NR_A]); |
| 595 | SK_D(" ch_free_rings: [%u,%u)" , ch->ch_first[NR_F], |
| 596 | ch->ch_last[NR_F]); |
| 597 | SK_D(" ch_ev_rings: [%u,%u)" , ch->ch_first[NR_EV], |
| 598 | ch->ch_last[NR_EV]); |
| 599 | |
| 600 | return 0; |
| 601 | |
| 602 | err_release_pp: |
| 603 | if (ch_mode & CHMODE_USER_PACKET_POOL) { |
| 604 | ASSERT(ch->ch_pp != NULL); |
| 605 | pp_release(rx_pp); |
| 606 | ch->ch_pp = NULL; |
| 607 | } |
| 608 | err_free_schema: |
| 609 | *(nexus_meta_type_t *)(uintptr_t)&na->na_md_type = |
| 610 | NEXUS_META_TYPE_INVALID; |
| 611 | *(nexus_meta_subtype_t *)(uintptr_t)&na->na_md_subtype = |
| 612 | NEXUS_META_SUBTYPE_INVALID; |
| 613 | ASSERT(na->na_channels != 0); |
| 614 | na->na_channels--; |
| 615 | if (ch->ch_schema != NULL) { |
| 616 | skmem_cache_free( |
| 617 | skmem_arena_nexus(ar: na->na_arena)->arn_schema_cache, |
| 618 | ch->ch_schema); |
| 619 | ch->ch_schema = NULL; |
| 620 | ch->ch_schema_offset = (mach_vm_offset_t)-1; |
| 621 | } |
| 622 | err_rel_excl: |
| 623 | na_krings_unuse(ch); |
| 624 | err_del_rings: |
| 625 | if (na->na_channels == 0) { |
| 626 | na->na_krings_delete(na, ch, FALSE); |
| 627 | } |
| 628 | err: |
| 629 | ch->ch_na = NULL; |
| 630 | ASSERT(err != 0); |
| 631 | |
| 632 | return err; |
| 633 | } |
| 634 | |
| 635 | /* |
| 636 | * Undo everything that was done in na_bind_channel(). |
| 637 | */ |
| 638 | /* call with SK_LOCK held */ |
| 639 | void |
| 640 | na_unbind_channel(struct kern_channel *ch) |
| 641 | { |
| 642 | struct nexus_adapter *na = ch->ch_na; |
| 643 | |
| 644 | SK_LOCK_ASSERT_HELD(); |
| 645 | |
| 646 | ASSERT(na->na_channels != 0); |
| 647 | na->na_channels--; |
| 648 | |
| 649 | /* release exclusive use if it was requested at bind time */ |
| 650 | na_krings_unuse(ch); |
| 651 | |
| 652 | if (na->na_channels == 0) { /* last instance */ |
| 653 | SK_D("%s(%d): deleting last channel instance for %s" , |
| 654 | ch->ch_name, ch->ch_pid, na->na_name); |
| 655 | |
| 656 | /* |
| 657 | * Free any remaining allocated packets attached to |
| 658 | * the slots, followed by a teardown of the arena. |
| 659 | */ |
| 660 | na_teardown(na, ch, FALSE); |
| 661 | |
| 662 | *(nexus_meta_type_t *)(uintptr_t)&na->na_md_type = |
| 663 | NEXUS_META_TYPE_INVALID; |
| 664 | *(nexus_meta_subtype_t *)(uintptr_t)&na->na_md_subtype = |
| 665 | NEXUS_META_SUBTYPE_INVALID; |
| 666 | } else { |
| 667 | SK_D("%s(%d): %s has %u remaining channel instance(s)" , |
| 668 | ch->ch_name, ch->ch_pid, na->na_name, na->na_channels); |
| 669 | } |
| 670 | |
| 671 | /* |
| 672 | * Free any allocated packets (for the process) attached to the slots; |
| 673 | * note that na_teardown() could have done this there as well. |
| 674 | */ |
| 675 | if (ch->ch_pp != NULL) { |
| 676 | ASSERT(ch->ch_flags & CHANF_USER_PACKET_POOL); |
| 677 | pp_purge_upp(ch->ch_pp, ch->ch_pid); |
| 678 | pp_release(ch->ch_pp); |
| 679 | ch->ch_pp = NULL; |
| 680 | } |
| 681 | |
| 682 | /* possibily decrement counter of tx_si/rx_si users */ |
| 683 | na_unset_ringid(ch); |
| 684 | |
| 685 | /* reap the caches now (purge if adapter is idle) */ |
| 686 | skmem_arena_reap(na->na_arena, (na->na_channels == 0)); |
| 687 | |
| 688 | /* delete the csm */ |
| 689 | if (ch->ch_schema != NULL) { |
| 690 | skmem_cache_free( |
| 691 | skmem_arena_nexus(ar: na->na_arena)->arn_schema_cache, |
| 692 | ch->ch_schema); |
| 693 | ch->ch_schema = NULL; |
| 694 | ch->ch_schema_offset = (mach_vm_offset_t)-1; |
| 695 | } |
| 696 | |
| 697 | /* destroy the memory map */ |
| 698 | skmem_arena_munmap_channel(na->na_arena, ch); |
| 699 | |
| 700 | /* mark the channel as unbound */ |
| 701 | os_atomic_andnot(&ch->ch_flags, (CHANF_RXONLY | CHANF_EXCLUSIVE), relaxed); |
| 702 | ch->ch_na = NULL; |
| 703 | |
| 704 | /* and finally release the nexus adapter; this might free it */ |
| 705 | (void) na_release_locked(na); |
| 706 | } |
| 707 | |
| 708 | static void |
| 709 | na_teardown(struct nexus_adapter *na, struct kern_channel *ch, |
| 710 | boolean_t defunct) |
| 711 | { |
| 712 | SK_LOCK_ASSERT_HELD(); |
| 713 | LCK_MTX_ASSERT(&ch->ch_lock, LCK_MTX_ASSERT_OWNED); |
| 714 | |
| 715 | #if CONFIG_NEXUS_MONITOR |
| 716 | /* |
| 717 | * Walk through all the rings and tell any monitor |
| 718 | * that the port is going to exit Skywalk mode |
| 719 | */ |
| 720 | nx_mon_stop(na); |
| 721 | #endif /* CONFIG_NEXUS_MONITOR */ |
| 722 | |
| 723 | /* |
| 724 | * Deactive the adapter. |
| 725 | */ |
| 726 | (void) na->na_activate(na, |
| 727 | (defunct ? NA_ACTIVATE_MODE_DEFUNCT : NA_ACTIVATE_MODE_OFF)); |
| 728 | |
| 729 | /* |
| 730 | * Free any remaining allocated packets for this process. |
| 731 | */ |
| 732 | if (ch->ch_pp != NULL) { |
| 733 | ASSERT(ch->ch_flags & CHANF_USER_PACKET_POOL); |
| 734 | pp_purge_upp(ch->ch_pp, ch->ch_pid); |
| 735 | if (!defunct) { |
| 736 | pp_release(ch->ch_pp); |
| 737 | ch->ch_pp = NULL; |
| 738 | } |
| 739 | } |
| 740 | |
| 741 | /* |
| 742 | * Delete rings and buffers. |
| 743 | */ |
| 744 | na->na_krings_delete(na, ch, defunct); |
| 745 | } |
| 746 | |
| 747 | /* call with SK_LOCK held */ |
| 748 | /* |
| 749 | * Allocate the per-fd structure __user_channel_schema. |
| 750 | */ |
| 751 | static int |
| 752 | na_schema_alloc(struct kern_channel *ch) |
| 753 | { |
| 754 | struct nexus_adapter *na = ch->ch_na; |
| 755 | struct skmem_arena *ar = na->na_arena; |
| 756 | struct skmem_arena_nexus *arn; |
| 757 | mach_vm_offset_t roff[SKMEM_REGIONS]; |
| 758 | struct __kern_channel_ring *kr; |
| 759 | struct __user_channel_schema *csm; |
| 760 | struct skmem_obj_info csm_oi, ring_oi, ksd_oi, usd_oi; |
| 761 | mach_vm_offset_t base; |
| 762 | uint32_t i, j, k, n[NR_ALL]; |
| 763 | enum txrx t; |
| 764 | |
| 765 | /* see comments for struct __user_channel_schema */ |
| 766 | _CASSERT(offsetof(struct __user_channel_schema, csm_ver) == 0); |
| 767 | _CASSERT(offsetof(struct __user_channel_schema, csm_flags) == |
| 768 | sizeof(csm->csm_ver)); |
| 769 | _CASSERT(offsetof(struct __user_channel_schema, csm_kern_name) == |
| 770 | sizeof(csm->csm_ver) + sizeof(csm->csm_flags)); |
| 771 | _CASSERT(offsetof(struct __user_channel_schema, csm_kern_uuid) == |
| 772 | sizeof(csm->csm_ver) + sizeof(csm->csm_flags) + |
| 773 | sizeof(csm->csm_kern_name)); |
| 774 | |
| 775 | SK_LOCK_ASSERT_HELD(); |
| 776 | |
| 777 | ASSERT(!(ch->ch_flags & CHANF_KERNEL)); |
| 778 | ASSERT(ar->ar_type == SKMEM_ARENA_TYPE_NEXUS); |
| 779 | arn = skmem_arena_nexus(ar); |
| 780 | ASSERT(arn != NULL); |
| 781 | for_all_rings(t) { |
| 782 | n[t] = 0; |
| 783 | } |
| 784 | |
| 785 | csm = skmem_cache_alloc(arn->arn_schema_cache, SKMEM_NOSLEEP); |
| 786 | if (csm == NULL) { |
| 787 | return ENOMEM; |
| 788 | } |
| 789 | |
| 790 | skmem_cache_get_obj_info(arn->arn_schema_cache, csm, &csm_oi, NULL); |
| 791 | bzero(s: csm, SKMEM_OBJ_SIZE(&csm_oi)); |
| 792 | |
| 793 | *(uint32_t *)(uintptr_t)&csm->csm_ver = CSM_CURRENT_VERSION; |
| 794 | |
| 795 | /* kernel version and executable UUID */ |
| 796 | _CASSERT(sizeof(csm->csm_kern_name) == _SYS_NAMELEN); |
| 797 | (void) strncpy((char *)(uintptr_t)csm->csm_kern_name, |
| 798 | version, sizeof(csm->csm_kern_name) - 1); |
| 799 | #if !XNU_TARGET_OS_OSX |
| 800 | (void) memcpy((void *)(uintptr_t)csm->csm_kern_uuid, |
| 801 | kernelcache_uuid, sizeof(csm->csm_kern_uuid)); |
| 802 | #else /* XNU_TARGET_OS_OSX */ |
| 803 | if (kernel_uuid != NULL) { |
| 804 | (void) memcpy(dst: (void *)(uintptr_t)csm->csm_kern_uuid, |
| 805 | src: kernel_uuid, n: sizeof(csm->csm_kern_uuid)); |
| 806 | } |
| 807 | #endif /* XNU_TARGET_OS_OSX */ |
| 808 | |
| 809 | for_rx_tx(t) { |
| 810 | ASSERT((ch->ch_last[t] > 0) || (ch->ch_first[t] == 0)); |
| 811 | n[t] = ch->ch_last[t] - ch->ch_first[t]; |
| 812 | ASSERT(n[t] == 0 || n[t] <= na_get_nrings(na, t)); |
| 813 | } |
| 814 | |
| 815 | /* return total number of tx and rx rings for this channel */ |
| 816 | *(uint32_t *)(uintptr_t)&csm->csm_tx_rings = n[NR_TX]; |
| 817 | *(uint32_t *)(uintptr_t)&csm->csm_rx_rings = n[NR_RX]; |
| 818 | |
| 819 | if (ch->ch_flags & CHANF_USER_PACKET_POOL) { |
| 820 | *(uint32_t *)(uintptr_t)&csm->csm_allocator_ring_pairs = |
| 821 | na->na_num_allocator_ring_pairs; |
| 822 | n[NR_A] = n[NR_F] = na->na_num_allocator_ring_pairs; |
| 823 | ASSERT(n[NR_A] != 0 && n[NR_A] <= na_get_nrings(na, NR_A)); |
| 824 | ASSERT(n[NR_A] == (ch->ch_last[NR_A] - ch->ch_first[NR_A])); |
| 825 | ASSERT(n[NR_F] == (ch->ch_last[NR_F] - ch->ch_first[NR_F])); |
| 826 | |
| 827 | n[NR_LBA] = na->na_num_large_buf_alloc_rings; |
| 828 | if (n[NR_LBA] != 0) { |
| 829 | *(uint32_t *)(uintptr_t)&csm->csm_large_buf_alloc_rings = n[NR_LBA]; |
| 830 | ASSERT(n[NR_LBA] == (ch->ch_last[NR_LBA] - ch->ch_first[NR_LBA])); |
| 831 | } |
| 832 | } |
| 833 | |
| 834 | if (ch->ch_flags & CHANF_EVENT_RING) { |
| 835 | n[NR_EV] = ch->ch_last[NR_EV] - ch->ch_first[NR_EV]; |
| 836 | ASSERT(n[NR_EV] != 0 && n[NR_EV] <= na_get_nrings(na, NR_EV)); |
| 837 | *(uint32_t *)(uintptr_t)&csm->csm_num_event_rings = n[NR_EV]; |
| 838 | } |
| 839 | |
| 840 | bzero(s: &roff, n: sizeof(roff)); |
| 841 | for (i = 0; i < SKMEM_REGIONS; i++) { |
| 842 | if (ar->ar_regions[i] == NULL) { |
| 843 | ASSERT(i == SKMEM_REGION_GUARD_HEAD || |
| 844 | i == SKMEM_REGION_SCHEMA || |
| 845 | i == SKMEM_REGION_BUF_LARGE || |
| 846 | i == SKMEM_REGION_RXBUF_DEF || |
| 847 | i == SKMEM_REGION_RXBUF_LARGE || |
| 848 | i == SKMEM_REGION_TXBUF_DEF || |
| 849 | i == SKMEM_REGION_TXBUF_LARGE || |
| 850 | i == SKMEM_REGION_RXKMD || |
| 851 | i == SKMEM_REGION_TXKMD || |
| 852 | i == SKMEM_REGION_UMD || |
| 853 | i == SKMEM_REGION_UBFT || |
| 854 | i == SKMEM_REGION_KBFT || |
| 855 | i == SKMEM_REGION_RXKBFT || |
| 856 | i == SKMEM_REGION_TXKBFT || |
| 857 | i == SKMEM_REGION_TXAUSD || |
| 858 | i == SKMEM_REGION_RXFUSD || |
| 859 | i == SKMEM_REGION_USTATS || |
| 860 | i == SKMEM_REGION_KSTATS || |
| 861 | i == SKMEM_REGION_INTRINSIC || |
| 862 | i == SKMEM_REGION_FLOWADV || |
| 863 | i == SKMEM_REGION_NEXUSADV || |
| 864 | i == SKMEM_REGION_SYSCTLS || |
| 865 | i == SKMEM_REGION_GUARD_TAIL); |
| 866 | continue; |
| 867 | } |
| 868 | |
| 869 | /* not for nexus */ |
| 870 | ASSERT(i != SKMEM_REGION_SYSCTLS); |
| 871 | |
| 872 | /* |
| 873 | * Get region offsets from base of mmap span; the arena |
| 874 | * doesn't need to be mmap'd at this point, since we |
| 875 | * simply compute the relative offset. |
| 876 | */ |
| 877 | roff[i] = skmem_arena_get_region_offset(ar, i); |
| 878 | } |
| 879 | |
| 880 | /* |
| 881 | * The schema is made up of the descriptor followed inline by an array |
| 882 | * of offsets to the tx, rx, allocator and event rings in the mmap span. |
| 883 | * They contain the offset between the ring and schema, so the |
| 884 | * information is usable in userspace to reach the ring from |
| 885 | * the schema. |
| 886 | */ |
| 887 | base = roff[SKMEM_REGION_SCHEMA] + SKMEM_OBJ_ROFF(&csm_oi); |
| 888 | |
| 889 | /* initialize schema with tx ring info */ |
| 890 | for (i = 0, j = ch->ch_first[NR_TX]; i < n[NR_TX]; i++, j++) { |
| 891 | kr = &na->na_tx_rings[j]; |
| 892 | if (KR_KERNEL_ONLY(kr)) { /* skip kernel-only rings */ |
| 893 | continue; |
| 894 | } |
| 895 | |
| 896 | ASSERT(kr->ckr_flags & CKRF_MEM_RING_INITED); |
| 897 | skmem_cache_get_obj_info(arn->arn_ring_cache, |
| 898 | kr->ckr_ring, &ring_oi, NULL); |
| 899 | *(mach_vm_offset_t *)(uintptr_t)&csm->csm_ring_ofs[i].ring_off = |
| 900 | (roff[SKMEM_REGION_RING] + SKMEM_OBJ_ROFF(&ring_oi)) - base; |
| 901 | |
| 902 | ASSERT(kr->ckr_flags & CKRF_MEM_SD_INITED); |
| 903 | skmem_cache_get_obj_info(kr->ckr_ksds_cache, |
| 904 | kr->ckr_ksds, &ksd_oi, &usd_oi); |
| 905 | |
| 906 | *(mach_vm_offset_t *)(uintptr_t)&csm->csm_ring_ofs[i].sd_off = |
| 907 | (roff[SKMEM_REGION_TXAUSD] + SKMEM_OBJ_ROFF(&usd_oi)) - |
| 908 | base; |
| 909 | } |
| 910 | /* initialize schema with rx ring info */ |
| 911 | for (i = 0, j = ch->ch_first[NR_RX]; i < n[NR_RX]; i++, j++) { |
| 912 | kr = &na->na_rx_rings[j]; |
| 913 | if (KR_KERNEL_ONLY(kr)) { /* skip kernel-only rings */ |
| 914 | continue; |
| 915 | } |
| 916 | |
| 917 | ASSERT(kr->ckr_flags & CKRF_MEM_RING_INITED); |
| 918 | skmem_cache_get_obj_info(arn->arn_ring_cache, |
| 919 | kr->ckr_ring, &ring_oi, NULL); |
| 920 | *(mach_vm_offset_t *) |
| 921 | (uintptr_t)&csm->csm_ring_ofs[i + n[NR_TX]].ring_off = |
| 922 | (roff[SKMEM_REGION_RING] + SKMEM_OBJ_ROFF(&ring_oi)) - base; |
| 923 | |
| 924 | ASSERT(kr->ckr_flags & CKRF_MEM_SD_INITED); |
| 925 | skmem_cache_get_obj_info(kr->ckr_ksds_cache, |
| 926 | kr->ckr_ksds, &ksd_oi, &usd_oi); |
| 927 | |
| 928 | *(mach_vm_offset_t *) |
| 929 | (uintptr_t)&csm->csm_ring_ofs[i + n[NR_TX]].sd_off = |
| 930 | (roff[SKMEM_REGION_RXFUSD] + SKMEM_OBJ_ROFF(&usd_oi)) - |
| 931 | base; |
| 932 | } |
| 933 | /* initialize schema with allocator ring info */ |
| 934 | for (i = 0, j = ch->ch_first[NR_A], k = n[NR_TX] + n[NR_RX]; |
| 935 | i < n[NR_A]; i++, j++) { |
| 936 | mach_vm_offset_t usd_roff; |
| 937 | |
| 938 | usd_roff = roff[SKMEM_REGION_TXAUSD]; |
| 939 | kr = &na->na_alloc_rings[j]; |
| 940 | ASSERT(kr->ckr_flags & CKRF_MEM_RING_INITED); |
| 941 | ASSERT(kr->ckr_flags & CKRF_MEM_SD_INITED); |
| 942 | |
| 943 | skmem_cache_get_obj_info(arn->arn_ring_cache, kr->ckr_ring, |
| 944 | &ring_oi, NULL); |
| 945 | *(mach_vm_offset_t *) |
| 946 | (uintptr_t)&csm->csm_ring_ofs[i + k].ring_off = |
| 947 | (roff[SKMEM_REGION_RING] + SKMEM_OBJ_ROFF(&ring_oi)) - base; |
| 948 | |
| 949 | skmem_cache_get_obj_info(kr->ckr_ksds_cache, kr->ckr_ksds, |
| 950 | &ksd_oi, &usd_oi); |
| 951 | *(mach_vm_offset_t *) |
| 952 | (uintptr_t)&csm->csm_ring_ofs[i + k].sd_off = |
| 953 | (usd_roff + SKMEM_OBJ_ROFF(&usd_oi)) - base; |
| 954 | } |
| 955 | /* initialize schema with free ring info */ |
| 956 | for (i = 0, j = ch->ch_first[NR_F], k = n[NR_TX] + n[NR_RX] + n[NR_A]; |
| 957 | i < n[NR_F]; i++, j++) { |
| 958 | mach_vm_offset_t usd_roff; |
| 959 | |
| 960 | usd_roff = roff[SKMEM_REGION_RXFUSD]; |
| 961 | kr = &na->na_free_rings[j]; |
| 962 | ASSERT(kr->ckr_flags & CKRF_MEM_RING_INITED); |
| 963 | ASSERT(kr->ckr_flags & CKRF_MEM_SD_INITED); |
| 964 | |
| 965 | skmem_cache_get_obj_info(arn->arn_ring_cache, kr->ckr_ring, |
| 966 | &ring_oi, NULL); |
| 967 | *(mach_vm_offset_t *) |
| 968 | (uintptr_t)&csm->csm_ring_ofs[i + k].ring_off = |
| 969 | (roff[SKMEM_REGION_RING] + SKMEM_OBJ_ROFF(&ring_oi)) - base; |
| 970 | |
| 971 | skmem_cache_get_obj_info(kr->ckr_ksds_cache, kr->ckr_ksds, |
| 972 | &ksd_oi, &usd_oi); |
| 973 | *(mach_vm_offset_t *) |
| 974 | (uintptr_t)&csm->csm_ring_ofs[i + k].sd_off = |
| 975 | (usd_roff + SKMEM_OBJ_ROFF(&usd_oi)) - base; |
| 976 | } |
| 977 | /* initialize schema with event ring info */ |
| 978 | for (i = 0, j = ch->ch_first[NR_EV], k = n[NR_TX] + n[NR_RX] + |
| 979 | n[NR_A] + n[NR_F]; i < n[NR_EV]; i++, j++) { |
| 980 | ASSERT(csm->csm_num_event_rings != 0); |
| 981 | kr = &na->na_event_rings[j]; |
| 982 | ASSERT(!KR_KERNEL_ONLY(kr)); |
| 983 | ASSERT(kr->ckr_flags & CKRF_MEM_RING_INITED); |
| 984 | skmem_cache_get_obj_info(arn->arn_ring_cache, |
| 985 | kr->ckr_ring, &ring_oi, NULL); |
| 986 | *(mach_vm_offset_t *) |
| 987 | (uintptr_t)&csm->csm_ring_ofs[i + k].ring_off = |
| 988 | (roff[SKMEM_REGION_RING] + SKMEM_OBJ_ROFF(&ring_oi)) - base; |
| 989 | |
| 990 | ASSERT(kr->ckr_flags & CKRF_MEM_SD_INITED); |
| 991 | skmem_cache_get_obj_info(kr->ckr_ksds_cache, |
| 992 | kr->ckr_ksds, &ksd_oi, &usd_oi); |
| 993 | |
| 994 | *(mach_vm_offset_t *) |
| 995 | (uintptr_t)&csm->csm_ring_ofs[i + k].sd_off = |
| 996 | (roff[SKMEM_REGION_TXAUSD] + SKMEM_OBJ_ROFF(&usd_oi)) - |
| 997 | base; |
| 998 | } |
| 999 | /* initialize schema with large buf alloc ring info */ |
| 1000 | for (i = 0, j = ch->ch_first[NR_LBA], k = n[NR_TX] + n[NR_RX] + |
| 1001 | n[NR_A] + n[NR_F] + n[NR_EV]; i < n[NR_LBA]; i++, j++) { |
| 1002 | ASSERT(csm->csm_large_buf_alloc_rings != 0); |
| 1003 | kr = &na->na_large_buf_alloc_rings[j]; |
| 1004 | ASSERT(!KR_KERNEL_ONLY(kr)); |
| 1005 | ASSERT(kr->ckr_flags & CKRF_MEM_RING_INITED); |
| 1006 | skmem_cache_get_obj_info(arn->arn_ring_cache, |
| 1007 | kr->ckr_ring, &ring_oi, NULL); |
| 1008 | *(mach_vm_offset_t *) |
| 1009 | (uintptr_t)&csm->csm_ring_ofs[i + k].ring_off = |
| 1010 | (roff[SKMEM_REGION_RING] + SKMEM_OBJ_ROFF(&ring_oi)) - base; |
| 1011 | |
| 1012 | ASSERT(kr->ckr_flags & CKRF_MEM_SD_INITED); |
| 1013 | skmem_cache_get_obj_info(kr->ckr_ksds_cache, |
| 1014 | kr->ckr_ksds, &ksd_oi, &usd_oi); |
| 1015 | |
| 1016 | *(mach_vm_offset_t *) |
| 1017 | (uintptr_t)&csm->csm_ring_ofs[i + k].sd_off = |
| 1018 | (roff[SKMEM_REGION_TXAUSD] + SKMEM_OBJ_ROFF(&usd_oi)) - |
| 1019 | base; |
| 1020 | } |
| 1021 | |
| 1022 | *(uint64_t *)(uintptr_t)&csm->csm_md_redzone_cookie = |
| 1023 | __ch_umd_redzone_cookie; |
| 1024 | *(nexus_meta_type_t *)(uintptr_t)&csm->csm_md_type = na->na_md_type; |
| 1025 | *(nexus_meta_subtype_t *)(uintptr_t)&csm->csm_md_subtype = |
| 1026 | na->na_md_subtype; |
| 1027 | |
| 1028 | if (arn->arn_stats_obj != NULL) { |
| 1029 | ASSERT(ar->ar_regions[SKMEM_REGION_USTATS] != NULL); |
| 1030 | ASSERT(roff[SKMEM_REGION_USTATS] != 0); |
| 1031 | *(mach_vm_offset_t *)(uintptr_t)&csm->csm_stats_ofs = |
| 1032 | roff[SKMEM_REGION_USTATS]; |
| 1033 | *(nexus_stats_type_t *)(uintptr_t)&csm->csm_stats_type = |
| 1034 | na->na_stats_type; |
| 1035 | } else { |
| 1036 | ASSERT(ar->ar_regions[SKMEM_REGION_USTATS] == NULL); |
| 1037 | *(mach_vm_offset_t *)(uintptr_t)&csm->csm_stats_ofs = 0; |
| 1038 | *(nexus_stats_type_t *)(uintptr_t)&csm->csm_stats_type = |
| 1039 | NEXUS_STATS_TYPE_INVALID; |
| 1040 | } |
| 1041 | |
| 1042 | if (arn->arn_flowadv_obj != NULL) { |
| 1043 | ASSERT(ar->ar_regions[SKMEM_REGION_FLOWADV] != NULL); |
| 1044 | ASSERT(roff[SKMEM_REGION_FLOWADV] != 0); |
| 1045 | *(mach_vm_offset_t *)(uintptr_t)&csm->csm_flowadv_ofs = |
| 1046 | roff[SKMEM_REGION_FLOWADV]; |
| 1047 | *(uint32_t *)(uintptr_t)&csm->csm_flowadv_max = |
| 1048 | na->na_flowadv_max; |
| 1049 | } else { |
| 1050 | ASSERT(ar->ar_regions[SKMEM_REGION_FLOWADV] == NULL); |
| 1051 | *(mach_vm_offset_t *)(uintptr_t)&csm->csm_flowadv_ofs = 0; |
| 1052 | *(uint32_t *)(uintptr_t)&csm->csm_flowadv_max = 0; |
| 1053 | } |
| 1054 | |
| 1055 | if (arn->arn_nexusadv_obj != NULL) { |
| 1056 | struct __kern_nexus_adv_metadata *adv_md; |
| 1057 | |
| 1058 | adv_md = arn->arn_nexusadv_obj; |
| 1059 | ASSERT(adv_md->knam_version == NX_ADVISORY_MD_CURRENT_VERSION); |
| 1060 | ASSERT(ar->ar_regions[SKMEM_REGION_NEXUSADV] != NULL); |
| 1061 | ASSERT(roff[SKMEM_REGION_NEXUSADV] != 0); |
| 1062 | *(mach_vm_offset_t *)(uintptr_t)&csm->csm_nexusadv_ofs = |
| 1063 | roff[SKMEM_REGION_NEXUSADV]; |
| 1064 | } else { |
| 1065 | ASSERT(ar->ar_regions[SKMEM_REGION_NEXUSADV] == NULL); |
| 1066 | *(mach_vm_offset_t *)(uintptr_t)&csm->csm_nexusadv_ofs = 0; |
| 1067 | } |
| 1068 | |
| 1069 | ch->ch_schema = csm; |
| 1070 | ch->ch_schema_offset = base; |
| 1071 | |
| 1072 | return 0; |
| 1073 | } |
| 1074 | |
| 1075 | /* |
| 1076 | * Called by all routines that create nexus_adapters. |
| 1077 | * Attach na to the ifp (if any) and provide defaults |
| 1078 | * for optional callbacks. Defaults assume that we |
| 1079 | * are creating an hardware nexus_adapter. |
| 1080 | */ |
| 1081 | void |
| 1082 | na_attach_common(struct nexus_adapter *na, struct kern_nexus *nx, |
| 1083 | struct kern_nexus_domain_provider *nxdom_prov) |
| 1084 | { |
| 1085 | SK_LOCK_ASSERT_HELD(); |
| 1086 | |
| 1087 | ASSERT(nx != NULL); |
| 1088 | ASSERT(nxdom_prov != NULL); |
| 1089 | ASSERT(na->na_krings_create != NULL); |
| 1090 | ASSERT(na->na_krings_delete != NULL); |
| 1091 | if (na->na_type != NA_NETIF_COMPAT_DEV) { |
| 1092 | ASSERT(na_get_nrings(na, NR_TX) != 0); |
| 1093 | } |
| 1094 | if (na->na_type != NA_NETIF_COMPAT_HOST) { |
| 1095 | ASSERT(na_get_nrings(na, NR_RX) != 0); |
| 1096 | } |
| 1097 | ASSERT(na->na_channels == 0); |
| 1098 | |
| 1099 | if (na->na_notify == NULL) { |
| 1100 | na->na_notify = na_notify; |
| 1101 | } |
| 1102 | |
| 1103 | na->na_nx = nx; |
| 1104 | na->na_nxdom_prov = nxdom_prov; |
| 1105 | |
| 1106 | SK_D("na 0x%llx nx 0x%llx nxtype %u ar 0x%llx" , |
| 1107 | SK_KVA(na), SK_KVA(nx), nxdom_prov->nxdom_prov_dom->nxdom_type, |
| 1108 | SK_KVA(na->na_arena)); |
| 1109 | } |
| 1110 | |
| 1111 | void |
| 1112 | na_post_event(struct __kern_channel_ring *kring, boolean_t nodelay, |
| 1113 | boolean_t within_kevent, boolean_t selwake, uint32_t hint) |
| 1114 | { |
| 1115 | struct nexus_adapter *na = KRNA(kring); |
| 1116 | enum txrx t = kring->ckr_tx; |
| 1117 | |
| 1118 | SK_DF(SK_VERB_EVENTS, |
| 1119 | "%s(%d) na \"%s\" (0x%llx) kr 0x%llx kev %u sel %u hint 0x%b" , |
| 1120 | sk_proc_name_address(current_proc()), sk_proc_pid(current_proc()), |
| 1121 | na->na_name, SK_KVA(na), SK_KVA(kring), within_kevent, selwake, |
| 1122 | hint, CHAN_FILT_HINT_BITS); |
| 1123 | |
| 1124 | csi_selwakeup_one(kring, nodelay, within_kevent, selwake, hint); |
| 1125 | /* |
| 1126 | * optimization: avoid a wake up on the global |
| 1127 | * queue if nobody has registered for more |
| 1128 | * than one ring |
| 1129 | */ |
| 1130 | if (na->na_si_users[t] > 0) { |
| 1131 | csi_selwakeup_all(na, t, nodelay, within_kevent, selwake, hint); |
| 1132 | } |
| 1133 | } |
| 1134 | |
| 1135 | /* default notify callback */ |
| 1136 | static int |
| 1137 | na_notify(struct __kern_channel_ring *kring, struct proc *p, uint32_t flags) |
| 1138 | { |
| 1139 | #pragma unused(p) |
| 1140 | SK_DF(SK_VERB_NOTIFY | ((kring->ckr_tx == NR_TX) ? |
| 1141 | SK_VERB_TX : SK_VERB_RX), |
| 1142 | "%s(%d) [%s] na \"%s\" (0x%llx) kr \"%s\" (0x%llx) krflags 0x%b " |
| 1143 | "flags 0x%x, kh %u kt %u | h %u t %u" , |
| 1144 | sk_proc_name_address(p), sk_proc_pid(p), |
| 1145 | (kring->ckr_tx == NR_TX) ? "W" : "R" , KRNA(kring)->na_name, |
| 1146 | SK_KVA(KRNA(kring)), kring->ckr_name, SK_KVA(kring), |
| 1147 | kring->ckr_flags, CKRF_BITS, flags, kring->ckr_khead, |
| 1148 | kring->ckr_ktail, kring->ckr_rhead, kring->ckr_rtail); |
| 1149 | |
| 1150 | na_post_event(kring, nodelay: (flags & NA_NOTEF_PUSH), |
| 1151 | within_kevent: (flags & NA_NOTEF_IN_KEVENT), TRUE, hint: 0); |
| 1152 | |
| 1153 | return 0; |
| 1154 | } |
| 1155 | |
| 1156 | /* |
| 1157 | * Fetch configuration from the device, to cope with dynamic |
| 1158 | * reconfigurations after loading the module. |
| 1159 | */ |
| 1160 | /* call with SK_LOCK held */ |
| 1161 | int |
| 1162 | na_update_config(struct nexus_adapter *na) |
| 1163 | { |
| 1164 | uint32_t txr, txd, rxr, rxd; |
| 1165 | |
| 1166 | SK_LOCK_ASSERT_HELD(); |
| 1167 | |
| 1168 | txr = txd = rxr = rxd = 0; |
| 1169 | if (na->na_config == NULL || |
| 1170 | na->na_config(na, &txr, &txd, &rxr, &rxd)) { |
| 1171 | /* take whatever we had at init time */ |
| 1172 | txr = na_get_nrings(na, t: NR_TX); |
| 1173 | txd = na_get_nslots(na, t: NR_TX); |
| 1174 | rxr = na_get_nrings(na, t: NR_RX); |
| 1175 | rxd = na_get_nslots(na, t: NR_RX); |
| 1176 | } |
| 1177 | |
| 1178 | if (na_get_nrings(na, t: NR_TX) == txr && |
| 1179 | na_get_nslots(na, t: NR_TX) == txd && |
| 1180 | na_get_nrings(na, t: NR_RX) == rxr && |
| 1181 | na_get_nslots(na, t: NR_RX) == rxd) { |
| 1182 | return 0; /* nothing changed */ |
| 1183 | } |
| 1184 | SK_D("stored config %s: txring %u x %u, rxring %u x %u" , |
| 1185 | na->na_name, na_get_nrings(na, NR_TX), na_get_nslots(na, NR_TX), |
| 1186 | na_get_nrings(na, NR_RX), na_get_nslots(na, NR_RX)); |
| 1187 | SK_D("new config %s: txring %u x %u, rxring %u x %u" , |
| 1188 | na->na_name, txr, txd, rxr, rxd); |
| 1189 | |
| 1190 | if (na->na_channels == 0) { |
| 1191 | SK_D("configuration changed (but fine)" ); |
| 1192 | na_set_nrings(na, t: NR_TX, v: txr); |
| 1193 | na_set_nslots(na, t: NR_TX, v: txd); |
| 1194 | na_set_nrings(na, t: NR_RX, v: rxr); |
| 1195 | na_set_nslots(na, t: NR_RX, v: rxd); |
| 1196 | return 0; |
| 1197 | } |
| 1198 | SK_ERR("configuration changed while active, this is bad..." ); |
| 1199 | return 1; |
| 1200 | } |
| 1201 | |
| 1202 | static void |
| 1203 | na_kr_setup_netif_svc_map(struct nexus_adapter *na) |
| 1204 | { |
| 1205 | uint32_t i; |
| 1206 | uint32_t num_tx_rings; |
| 1207 | |
| 1208 | ASSERT(na->na_type == NA_NETIF_DEV); |
| 1209 | num_tx_rings = na_get_nrings(na, t: NR_TX); |
| 1210 | |
| 1211 | _CASSERT(NAKR_WMM_SC2RINGID(KPKT_SC_BK_SYS) == |
| 1212 | NAKR_WMM_SC2RINGID(KPKT_SC_BK)); |
| 1213 | _CASSERT(NAKR_WMM_SC2RINGID(KPKT_SC_BE) == |
| 1214 | NAKR_WMM_SC2RINGID(KPKT_SC_RD)); |
| 1215 | _CASSERT(NAKR_WMM_SC2RINGID(KPKT_SC_BE) == |
| 1216 | NAKR_WMM_SC2RINGID(KPKT_SC_OAM)); |
| 1217 | _CASSERT(NAKR_WMM_SC2RINGID(KPKT_SC_AV) == |
| 1218 | NAKR_WMM_SC2RINGID(KPKT_SC_RV)); |
| 1219 | _CASSERT(NAKR_WMM_SC2RINGID(KPKT_SC_AV) == |
| 1220 | NAKR_WMM_SC2RINGID(KPKT_SC_VI)); |
| 1221 | _CASSERT(NAKR_WMM_SC2RINGID(KPKT_SC_VO) == |
| 1222 | NAKR_WMM_SC2RINGID(KPKT_SC_CTL)); |
| 1223 | |
| 1224 | _CASSERT(NAKR_WMM_SC2RINGID(KPKT_SC_BK) < NA_NUM_WMM_CLASSES); |
| 1225 | _CASSERT(NAKR_WMM_SC2RINGID(KPKT_SC_BE) < NA_NUM_WMM_CLASSES); |
| 1226 | _CASSERT(NAKR_WMM_SC2RINGID(KPKT_SC_VI) < NA_NUM_WMM_CLASSES); |
| 1227 | _CASSERT(NAKR_WMM_SC2RINGID(KPKT_SC_VO) < NA_NUM_WMM_CLASSES); |
| 1228 | |
| 1229 | _CASSERT(MBUF_SCIDX(KPKT_SC_BK_SYS) < KPKT_SC_MAX_CLASSES); |
| 1230 | _CASSERT(MBUF_SCIDX(KPKT_SC_BK) < KPKT_SC_MAX_CLASSES); |
| 1231 | _CASSERT(MBUF_SCIDX(KPKT_SC_BE) < KPKT_SC_MAX_CLASSES); |
| 1232 | _CASSERT(MBUF_SCIDX(KPKT_SC_RD) < KPKT_SC_MAX_CLASSES); |
| 1233 | _CASSERT(MBUF_SCIDX(KPKT_SC_OAM) < KPKT_SC_MAX_CLASSES); |
| 1234 | _CASSERT(MBUF_SCIDX(KPKT_SC_AV) < KPKT_SC_MAX_CLASSES); |
| 1235 | _CASSERT(MBUF_SCIDX(KPKT_SC_RV) < KPKT_SC_MAX_CLASSES); |
| 1236 | _CASSERT(MBUF_SCIDX(KPKT_SC_VI) < KPKT_SC_MAX_CLASSES); |
| 1237 | _CASSERT(MBUF_SCIDX(KPKT_SC_SIG) < KPKT_SC_MAX_CLASSES); |
| 1238 | _CASSERT(MBUF_SCIDX(KPKT_SC_VO) < KPKT_SC_MAX_CLASSES); |
| 1239 | _CASSERT(MBUF_SCIDX(KPKT_SC_CTL) < KPKT_SC_MAX_CLASSES); |
| 1240 | |
| 1241 | /* |
| 1242 | * we support the following 2 configurations: |
| 1243 | * 1. packets from all 10 service class map to one ring. |
| 1244 | * 2. a 10:4 mapping between service classes and the rings. These 4 |
| 1245 | * rings map to the 4 WMM access categories. |
| 1246 | */ |
| 1247 | if (na->na_nx->nx_prov->nxprov_params->nxp_qmap == NEXUS_QMAP_TYPE_WMM) { |
| 1248 | ASSERT(num_tx_rings == NEXUS_NUM_WMM_QUEUES); |
| 1249 | /* setup the adapter's service class LUT */ |
| 1250 | NAKR_SET_SVC_LUT(na, KPKT_SC_BK_SYS); |
| 1251 | NAKR_SET_SVC_LUT(na, KPKT_SC_BK); |
| 1252 | NAKR_SET_SVC_LUT(na, KPKT_SC_BE); |
| 1253 | NAKR_SET_SVC_LUT(na, KPKT_SC_RD); |
| 1254 | NAKR_SET_SVC_LUT(na, KPKT_SC_OAM); |
| 1255 | NAKR_SET_SVC_LUT(na, KPKT_SC_AV); |
| 1256 | NAKR_SET_SVC_LUT(na, KPKT_SC_RV); |
| 1257 | NAKR_SET_SVC_LUT(na, KPKT_SC_VI); |
| 1258 | NAKR_SET_SVC_LUT(na, KPKT_SC_SIG); |
| 1259 | NAKR_SET_SVC_LUT(na, KPKT_SC_VO); |
| 1260 | NAKR_SET_SVC_LUT(na, KPKT_SC_CTL); |
| 1261 | |
| 1262 | /* Initialize the service class for each of the 4 ring */ |
| 1263 | NAKR_SET_KR_SVC(na, KPKT_SC_BK); |
| 1264 | NAKR_SET_KR_SVC(na, KPKT_SC_BE); |
| 1265 | NAKR_SET_KR_SVC(na, KPKT_SC_VI); |
| 1266 | NAKR_SET_KR_SVC(na, KPKT_SC_VO); |
| 1267 | } else { |
| 1268 | ASSERT(na->na_nx->nx_prov->nxprov_params->nxp_qmap == |
| 1269 | NEXUS_QMAP_TYPE_DEFAULT); |
| 1270 | /* 10: 1 mapping */ |
| 1271 | for (i = 0; i < KPKT_SC_MAX_CLASSES; i++) { |
| 1272 | na->na_kring_svc_lut[i] = 0; |
| 1273 | } |
| 1274 | for (i = 0; i < num_tx_rings; i++) { |
| 1275 | NAKR(na, t: NR_TX)[i].ckr_svc = KPKT_SC_UNSPEC; |
| 1276 | } |
| 1277 | } |
| 1278 | } |
| 1279 | |
| 1280 | static LCK_GRP_DECLARE(channel_txq_lock_group, "sk_ch_txq_lock" ); |
| 1281 | static LCK_GRP_DECLARE(channel_rxq_lock_group, "sk_ch_rxq_lock" ); |
| 1282 | static LCK_GRP_DECLARE(channel_txs_lock_group, "sk_ch_txs_lock" ); |
| 1283 | static LCK_GRP_DECLARE(channel_rxs_lock_group, "sk_ch_rxs_lock" ); |
| 1284 | static LCK_GRP_DECLARE(channel_alloc_lock_group, "sk_ch_alloc_lock" ); |
| 1285 | static LCK_GRP_DECLARE(channel_evq_lock_group, "sk_ch_evq_lock" ); |
| 1286 | static LCK_GRP_DECLARE(channel_evs_lock_group, "sk_ch_evs_lock" ); |
| 1287 | |
| 1288 | static lck_grp_t * |
| 1289 | na_kr_q_lck_grp(enum txrx t) |
| 1290 | { |
| 1291 | switch (t) { |
| 1292 | case NR_TX: |
| 1293 | return &channel_txq_lock_group; |
| 1294 | case NR_RX: |
| 1295 | return &channel_rxq_lock_group; |
| 1296 | case NR_A: |
| 1297 | case NR_F: |
| 1298 | case NR_LBA: |
| 1299 | return &channel_alloc_lock_group; |
| 1300 | case NR_EV: |
| 1301 | return &channel_evq_lock_group; |
| 1302 | default: |
| 1303 | VERIFY(0); |
| 1304 | /* NOTREACHED */ |
| 1305 | __builtin_unreachable(); |
| 1306 | } |
| 1307 | } |
| 1308 | |
| 1309 | static lck_grp_t * |
| 1310 | na_kr_s_lck_grp(enum txrx t) |
| 1311 | { |
| 1312 | switch (t) { |
| 1313 | case NR_TX: |
| 1314 | return &channel_txs_lock_group; |
| 1315 | case NR_RX: |
| 1316 | return &channel_rxs_lock_group; |
| 1317 | case NR_A: |
| 1318 | case NR_F: |
| 1319 | case NR_LBA: |
| 1320 | return &channel_alloc_lock_group; |
| 1321 | case NR_EV: |
| 1322 | return &channel_evs_lock_group; |
| 1323 | default: |
| 1324 | VERIFY(0); |
| 1325 | /* NOTREACHED */ |
| 1326 | __builtin_unreachable(); |
| 1327 | } |
| 1328 | } |
| 1329 | |
| 1330 | static void |
| 1331 | kr_init_tbr(struct __kern_channel_ring *r) |
| 1332 | { |
| 1333 | r->ckr_tbr_depth = CKR_TBR_TOKEN_INVALID; |
| 1334 | r->ckr_tbr_token = CKR_TBR_TOKEN_INVALID; |
| 1335 | r->ckr_tbr_last = 0; |
| 1336 | } |
| 1337 | |
| 1338 | struct kern_pbufpool * |
| 1339 | na_kr_get_pp(struct nexus_adapter *na, enum txrx t) |
| 1340 | { |
| 1341 | struct kern_pbufpool *pp = NULL; |
| 1342 | switch (t) { |
| 1343 | case NR_RX: |
| 1344 | case NR_F: |
| 1345 | case NR_EV: |
| 1346 | pp = skmem_arena_nexus(ar: na->na_arena)->arn_rx_pp; |
| 1347 | break; |
| 1348 | case NR_TX: |
| 1349 | case NR_A: |
| 1350 | case NR_LBA: |
| 1351 | pp = skmem_arena_nexus(ar: na->na_arena)->arn_tx_pp; |
| 1352 | break; |
| 1353 | default: |
| 1354 | VERIFY(0); |
| 1355 | /* NOTREACHED */ |
| 1356 | __builtin_unreachable(); |
| 1357 | } |
| 1358 | |
| 1359 | return pp; |
| 1360 | } |
| 1361 | |
| 1362 | /* |
| 1363 | * Create the krings array and initialize the fields common to all adapters. |
| 1364 | * The array layout is this: |
| 1365 | * |
| 1366 | * +----------+ |
| 1367 | * na->na_tx_rings -----> | | \ |
| 1368 | * | | } na->na_num_tx_rings |
| 1369 | * | | / |
| 1370 | * na->na_rx_rings ----> +----------+ |
| 1371 | * | | \ |
| 1372 | * | | } na->na_num_rx_rings |
| 1373 | * | | / |
| 1374 | * na->na_alloc_rings -> +----------+ |
| 1375 | * | | \ |
| 1376 | * na->na_free_rings --> +----------+ } na->na_num_allocator_ring_pairs |
| 1377 | * | | / |
| 1378 | * na->na_event_rings -> +----------+ |
| 1379 | * | | \ |
| 1380 | * | | } na->na_num_event_rings |
| 1381 | * | | / |
| 1382 | * na->na_large_buf_alloc_rings -> +----------+ |
| 1383 | * | | \ |
| 1384 | * | | } na->na_num_large_buf_alloc_rings |
| 1385 | * | | / |
| 1386 | * na->na_tail -----> +----------+ |
| 1387 | */ |
| 1388 | /* call with SK_LOCK held */ |
| 1389 | static int |
| 1390 | na_kr_create(struct nexus_adapter *na, boolean_t alloc_ctx) |
| 1391 | { |
| 1392 | lck_grp_t *q_lck_grp, *s_lck_grp; |
| 1393 | uint32_t i, count, ndesc; |
| 1394 | struct kern_pbufpool *pp = NULL; |
| 1395 | struct __kern_channel_ring *kring; |
| 1396 | uint32_t n[NR_ALL]; |
| 1397 | int c, tot_slots, err = 0; |
| 1398 | enum txrx t; |
| 1399 | |
| 1400 | SK_LOCK_ASSERT_HELD(); |
| 1401 | |
| 1402 | n[NR_TX] = na_get_nrings(na, t: NR_TX); |
| 1403 | n[NR_RX] = na_get_nrings(na, t: NR_RX); |
| 1404 | n[NR_A] = na_get_nrings(na, t: NR_A); |
| 1405 | n[NR_F] = na_get_nrings(na, t: NR_F); |
| 1406 | n[NR_EV] = na_get_nrings(na, t: NR_EV); |
| 1407 | n[NR_LBA] = na_get_nrings(na, t: NR_LBA); |
| 1408 | |
| 1409 | count = n[NR_TX] + n[NR_RX] + n[NR_A] + n[NR_F] + n[NR_EV] + n[NR_LBA]; |
| 1410 | |
| 1411 | na->na_tx_rings = sk_alloc_type_array(struct __kern_channel_ring, count, |
| 1412 | Z_WAITOK, skmem_tag_nx_rings); |
| 1413 | if (__improbable(na->na_tx_rings == NULL)) { |
| 1414 | SK_ERR("Cannot allocate krings" ); |
| 1415 | err = ENOMEM; |
| 1416 | goto error; |
| 1417 | } |
| 1418 | |
| 1419 | na->na_rx_rings = na->na_tx_rings + n[NR_TX]; |
| 1420 | if (n[NR_A] != 0) { |
| 1421 | na->na_alloc_rings = na->na_rx_rings + n[NR_RX]; |
| 1422 | na->na_free_rings = na->na_alloc_rings + n[NR_A]; |
| 1423 | } else { |
| 1424 | na->na_alloc_rings = na->na_free_rings = NULL; |
| 1425 | } |
| 1426 | if (n[NR_EV] != 0) { |
| 1427 | if (na->na_free_rings != NULL) { |
| 1428 | na->na_event_rings = na->na_free_rings + n[NR_F]; |
| 1429 | } else { |
| 1430 | na->na_event_rings = na->na_rx_rings + n[NR_RX]; |
| 1431 | } |
| 1432 | } |
| 1433 | if (n[NR_LBA] != 0) { |
| 1434 | ASSERT(n[NR_A] != 0); |
| 1435 | if (na->na_event_rings != NULL) { |
| 1436 | na->na_large_buf_alloc_rings = na->na_event_rings + n[NR_EV]; |
| 1437 | } else { |
| 1438 | /* alloc/free rings must also be present */ |
| 1439 | ASSERT(na->na_free_rings != NULL); |
| 1440 | na->na_large_buf_alloc_rings = na->na_free_rings + n[NR_F]; |
| 1441 | } |
| 1442 | } |
| 1443 | |
| 1444 | /* total number of slots for TX/RX adapter rings */ |
| 1445 | c = tot_slots = (n[NR_TX] * na_get_nslots(na, t: NR_TX)) + |
| 1446 | (n[NR_RX] * na_get_nslots(na, t: NR_RX)); |
| 1447 | |
| 1448 | /* for scratch space on alloc and free rings */ |
| 1449 | if (n[NR_A] != 0) { |
| 1450 | tot_slots += n[NR_A] * na_get_nslots(na, t: NR_A); |
| 1451 | tot_slots += n[NR_F] * na_get_nslots(na, t: NR_F); |
| 1452 | tot_slots += n[NR_LBA] * na_get_nslots(na, t: NR_LBA); |
| 1453 | c = tot_slots; |
| 1454 | } |
| 1455 | na->na_total_slots = tot_slots; |
| 1456 | |
| 1457 | /* slot context (optional) for all TX/RX ring slots of this adapter */ |
| 1458 | if (alloc_ctx) { |
| 1459 | na->na_slot_ctxs = |
| 1460 | skn_alloc_type_array(slot_ctxs, struct slot_ctx, |
| 1461 | na->na_total_slots, Z_WAITOK, skmem_tag_nx_contexts); |
| 1462 | if (na->na_slot_ctxs == NULL) { |
| 1463 | SK_ERR("Cannot allocate slot contexts" ); |
| 1464 | err = ENOMEM; |
| 1465 | goto error; |
| 1466 | } |
| 1467 | os_atomic_or(&na->na_flags, NAF_SLOT_CONTEXT, relaxed); |
| 1468 | } |
| 1469 | |
| 1470 | /* |
| 1471 | * packet handle array storage for all TX/RX ring slots of this |
| 1472 | * adapter. |
| 1473 | */ |
| 1474 | na->na_scratch = skn_alloc_type_array(scratch, kern_packet_t, |
| 1475 | na->na_total_slots, Z_WAITOK, skmem_tag_nx_scratch); |
| 1476 | if (na->na_scratch == NULL) { |
| 1477 | SK_ERR("Cannot allocate slot contexts" ); |
| 1478 | err = ENOMEM; |
| 1479 | goto error; |
| 1480 | } |
| 1481 | |
| 1482 | /* |
| 1483 | * All fields in krings are 0 except the one initialized below. |
| 1484 | * but better be explicit on important kring fields. |
| 1485 | */ |
| 1486 | for_all_rings(t) { |
| 1487 | ndesc = na_get_nslots(na, t); |
| 1488 | pp = na_kr_get_pp(na, t); |
| 1489 | for (i = 0; i < n[t]; i++) { |
| 1490 | kring = &NAKR(na, t)[i]; |
| 1491 | bzero(s: kring, n: sizeof(*kring)); |
| 1492 | kring->ckr_na = na; |
| 1493 | kring->ckr_pp = pp; |
| 1494 | kring->ckr_max_pkt_len = |
| 1495 | (t == NR_LBA ? PP_BUF_SIZE_LARGE(pp) : |
| 1496 | PP_BUF_SIZE_DEF(pp)) * |
| 1497 | pp->pp_max_frags; |
| 1498 | kring->ckr_ring_id = i; |
| 1499 | kring->ckr_tx = t; |
| 1500 | kr_init_to_mhints(kring, ndesc); |
| 1501 | kr_init_tbr(r: kring); |
| 1502 | if (NA_KERNEL_ONLY(na)) { |
| 1503 | kring->ckr_flags |= CKRF_KERNEL_ONLY; |
| 1504 | } |
| 1505 | if (na->na_flags & NAF_HOST_ONLY) { |
| 1506 | kring->ckr_flags |= CKRF_HOST; |
| 1507 | } |
| 1508 | ASSERT((t >= NR_TXRX) || (c > 0)); |
| 1509 | if ((t < NR_TXRX) && |
| 1510 | (na->na_flags & NAF_SLOT_CONTEXT)) { |
| 1511 | ASSERT(na->na_slot_ctxs != NULL); |
| 1512 | kring->ckr_flags |= CKRF_SLOT_CONTEXT; |
| 1513 | kring->ckr_slot_ctxs = |
| 1514 | na->na_slot_ctxs + (tot_slots - c); |
| 1515 | } |
| 1516 | ASSERT(na->na_scratch != NULL); |
| 1517 | if (t < NR_TXRXAF || t == NR_LBA) { |
| 1518 | kring->ckr_scratch = |
| 1519 | na->na_scratch + (tot_slots - c); |
| 1520 | } |
| 1521 | if (t < NR_TXRXAF || t == NR_LBA) { |
| 1522 | c -= ndesc; |
| 1523 | } |
| 1524 | switch (t) { |
| 1525 | case NR_A: |
| 1526 | if (i == 0) { |
| 1527 | kring->ckr_na_sync = |
| 1528 | na_packet_pool_alloc_sync; |
| 1529 | kring->ckr_alloc_ws = |
| 1530 | na_upp_alloc_lowat; |
| 1531 | } else { |
| 1532 | ASSERT(i == 1); |
| 1533 | kring->ckr_na_sync = |
| 1534 | na_packet_pool_alloc_buf_sync; |
| 1535 | kring->ckr_alloc_ws = |
| 1536 | na_upp_alloc_buf_lowat; |
| 1537 | } |
| 1538 | break; |
| 1539 | case NR_F: |
| 1540 | if (i == 0) { |
| 1541 | kring->ckr_na_sync = |
| 1542 | na_packet_pool_free_sync; |
| 1543 | } else { |
| 1544 | ASSERT(i == 1); |
| 1545 | kring->ckr_na_sync = |
| 1546 | na_packet_pool_free_buf_sync; |
| 1547 | } |
| 1548 | break; |
| 1549 | case NR_TX: |
| 1550 | kring->ckr_na_sync = na->na_txsync; |
| 1551 | if (na->na_flags & NAF_TX_MITIGATION) { |
| 1552 | kring->ckr_flags |= CKRF_MITIGATION; |
| 1553 | } |
| 1554 | switch (na->na_type) { |
| 1555 | #if CONFIG_NEXUS_USER_PIPE |
| 1556 | case NA_USER_PIPE: |
| 1557 | ASSERT(!(na->na_flags & |
| 1558 | NAF_USER_PKT_POOL)); |
| 1559 | kring->ckr_prologue = kr_txprologue; |
| 1560 | kring->ckr_finalize = NULL; |
| 1561 | break; |
| 1562 | #endif /* CONFIG_NEXUS_USER_PIPE */ |
| 1563 | #if CONFIG_NEXUS_MONITOR |
| 1564 | case NA_MONITOR: |
| 1565 | ASSERT(!(na->na_flags & |
| 1566 | NAF_USER_PKT_POOL)); |
| 1567 | kring->ckr_prologue = kr_txprologue; |
| 1568 | kring->ckr_finalize = NULL; |
| 1569 | break; |
| 1570 | #endif /* CONFIG_NEXUS_MONITOR */ |
| 1571 | default: |
| 1572 | if (na->na_flags & NAF_USER_PKT_POOL) { |
| 1573 | kring->ckr_prologue = |
| 1574 | kr_txprologue_upp; |
| 1575 | kring->ckr_finalize = |
| 1576 | kr_txfinalize_upp; |
| 1577 | } else { |
| 1578 | kring->ckr_prologue = |
| 1579 | kr_txprologue; |
| 1580 | kring->ckr_finalize = |
| 1581 | kr_txfinalize; |
| 1582 | } |
| 1583 | break; |
| 1584 | } |
| 1585 | break; |
| 1586 | case NR_RX: |
| 1587 | kring->ckr_na_sync = na->na_rxsync; |
| 1588 | if (na->na_flags & NAF_RX_MITIGATION) { |
| 1589 | kring->ckr_flags |= CKRF_MITIGATION; |
| 1590 | } |
| 1591 | switch (na->na_type) { |
| 1592 | #if CONFIG_NEXUS_USER_PIPE |
| 1593 | case NA_USER_PIPE: |
| 1594 | ASSERT(!(na->na_flags & |
| 1595 | NAF_USER_PKT_POOL)); |
| 1596 | kring->ckr_prologue = |
| 1597 | kr_rxprologue_nodetach; |
| 1598 | kring->ckr_finalize = kr_rxfinalize; |
| 1599 | break; |
| 1600 | #endif /* CONFIG_NEXUS_USER_PIPE */ |
| 1601 | #if CONFIG_NEXUS_MONITOR |
| 1602 | case NA_MONITOR: |
| 1603 | ASSERT(!(na->na_flags & |
| 1604 | NAF_USER_PKT_POOL)); |
| 1605 | kring->ckr_prologue = |
| 1606 | kr_rxprologue_nodetach; |
| 1607 | kring->ckr_finalize = kr_rxfinalize; |
| 1608 | break; |
| 1609 | #endif /* CONFIG_NEXUS_MONITOR */ |
| 1610 | default: |
| 1611 | if (na->na_flags & NAF_USER_PKT_POOL) { |
| 1612 | kring->ckr_prologue = |
| 1613 | kr_rxprologue_upp; |
| 1614 | kring->ckr_finalize = |
| 1615 | kr_rxfinalize_upp; |
| 1616 | } else { |
| 1617 | kring->ckr_prologue = |
| 1618 | kr_rxprologue; |
| 1619 | kring->ckr_finalize = |
| 1620 | kr_rxfinalize; |
| 1621 | } |
| 1622 | break; |
| 1623 | } |
| 1624 | break; |
| 1625 | case NR_EV: |
| 1626 | kring->ckr_na_sync = kern_channel_event_sync; |
| 1627 | break; |
| 1628 | case NR_LBA: |
| 1629 | kring->ckr_na_sync = na_packet_pool_alloc_large_sync; |
| 1630 | kring->ckr_alloc_ws = na_upp_alloc_lowat; |
| 1631 | break; |
| 1632 | default: |
| 1633 | VERIFY(0); |
| 1634 | /* NOTREACHED */ |
| 1635 | __builtin_unreachable(); |
| 1636 | } |
| 1637 | if (t != NR_EV) { |
| 1638 | kring->ckr_na_notify = na->na_notify; |
| 1639 | } else { |
| 1640 | kring->ckr_na_notify = NULL; |
| 1641 | } |
| 1642 | (void) snprintf(kring->ckr_name, |
| 1643 | count: sizeof(kring->ckr_name) - 1, |
| 1644 | "%s %s%u%s" , na->na_name, sk_ring2str(t), i, |
| 1645 | ((kring->ckr_flags & CKRF_HOST) ? "^" : "" )); |
| 1646 | SK_DF(SK_VERB_NA | SK_VERB_RING, |
| 1647 | "kr \"%s\" (0x%llx) krflags 0x%b rh %u rt %u" , |
| 1648 | kring->ckr_name, SK_KVA(kring), kring->ckr_flags, |
| 1649 | CKRF_BITS, kring->ckr_rhead, kring->ckr_rtail); |
| 1650 | kring->ckr_state = KR_READY; |
| 1651 | q_lck_grp = na_kr_q_lck_grp(t); |
| 1652 | s_lck_grp = na_kr_s_lck_grp(t); |
| 1653 | kring->ckr_qlock_group = q_lck_grp; |
| 1654 | lck_mtx_init(lck: &kring->ckr_qlock, grp: kring->ckr_qlock_group, |
| 1655 | attr: &channel_lock_attr); |
| 1656 | kring->ckr_slock_group = s_lck_grp; |
| 1657 | lck_spin_init(lck: &kring->ckr_slock, grp: kring->ckr_slock_group, |
| 1658 | attr: &channel_lock_attr); |
| 1659 | csi_init(&kring->ckr_si, |
| 1660 | (kring->ckr_flags & CKRF_MITIGATION), |
| 1661 | na->na_ch_mit_ival); |
| 1662 | } |
| 1663 | csi_init(&na->na_si[t], |
| 1664 | (na->na_flags & (NAF_TX_MITIGATION | NAF_RX_MITIGATION)), |
| 1665 | na->na_ch_mit_ival); |
| 1666 | } |
| 1667 | ASSERT(c == 0); |
| 1668 | na->na_tail = na->na_rx_rings + n[NR_RX] + n[NR_A] + n[NR_F] + |
| 1669 | n[NR_EV] + n[NR_LBA]; |
| 1670 | |
| 1671 | if (na->na_type == NA_NETIF_DEV) { |
| 1672 | na_kr_setup_netif_svc_map(na); |
| 1673 | } |
| 1674 | |
| 1675 | /* validate now for cases where we create only krings */ |
| 1676 | na_krings_verify(na); |
| 1677 | return 0; |
| 1678 | |
| 1679 | error: |
| 1680 | ASSERT(err != 0); |
| 1681 | if (na->na_tx_rings != NULL) { |
| 1682 | sk_free_type_array(struct __kern_channel_ring, |
| 1683 | na->na_tail - na->na_tx_rings, na->na_tx_rings); |
| 1684 | } |
| 1685 | if (na->na_slot_ctxs != NULL) { |
| 1686 | ASSERT(na->na_flags & NAF_SLOT_CONTEXT); |
| 1687 | skn_free_type_array(slot_ctxs, |
| 1688 | struct slot_ctx, na->na_total_slots, |
| 1689 | na->na_slot_ctxs); |
| 1690 | na->na_slot_ctxs = NULL; |
| 1691 | } |
| 1692 | if (na->na_scratch != NULL) { |
| 1693 | skn_free_type_array(scratch, |
| 1694 | kern_packet_t, na->na_total_slots, |
| 1695 | na->na_scratch); |
| 1696 | na->na_scratch = NULL; |
| 1697 | } |
| 1698 | return err; |
| 1699 | } |
| 1700 | |
| 1701 | /* undo the actions performed by na_kr_create() */ |
| 1702 | /* call with SK_LOCK held */ |
| 1703 | static void |
| 1704 | na_kr_delete(struct nexus_adapter *na) |
| 1705 | { |
| 1706 | struct __kern_channel_ring *kring = na->na_tx_rings; |
| 1707 | enum txrx t; |
| 1708 | |
| 1709 | ASSERT((kring != NULL) && (na->na_tail != NULL)); |
| 1710 | SK_LOCK_ASSERT_HELD(); |
| 1711 | |
| 1712 | for_all_rings(t) { |
| 1713 | csi_destroy(&na->na_si[t]); |
| 1714 | } |
| 1715 | /* we rely on the krings layout described above */ |
| 1716 | for (; kring != na->na_tail; kring++) { |
| 1717 | lck_mtx_destroy(lck: &kring->ckr_qlock, grp: kring->ckr_qlock_group); |
| 1718 | lck_spin_destroy(lck: &kring->ckr_slock, grp: kring->ckr_slock_group); |
| 1719 | csi_destroy(&kring->ckr_si); |
| 1720 | if (kring->ckr_flags & CKRF_SLOT_CONTEXT) { |
| 1721 | kring->ckr_flags &= ~CKRF_SLOT_CONTEXT; |
| 1722 | ASSERT(kring->ckr_slot_ctxs != NULL); |
| 1723 | kring->ckr_slot_ctxs = NULL; |
| 1724 | } |
| 1725 | } |
| 1726 | if (na->na_slot_ctxs != NULL) { |
| 1727 | ASSERT(na->na_flags & NAF_SLOT_CONTEXT); |
| 1728 | os_atomic_andnot(&na->na_flags, NAF_SLOT_CONTEXT, relaxed); |
| 1729 | skn_free_type_array(slot_ctxs, |
| 1730 | struct slot_ctx, na->na_total_slots, |
| 1731 | na->na_slot_ctxs); |
| 1732 | na->na_slot_ctxs = NULL; |
| 1733 | } |
| 1734 | if (na->na_scratch != NULL) { |
| 1735 | skn_free_type_array(scratch, |
| 1736 | kern_packet_t, na->na_total_slots, |
| 1737 | na->na_scratch); |
| 1738 | na->na_scratch = NULL; |
| 1739 | } |
| 1740 | ASSERT(!(na->na_flags & NAF_SLOT_CONTEXT)); |
| 1741 | sk_free_type_array(struct __kern_channel_ring, |
| 1742 | na->na_tail - na->na_tx_rings, na->na_tx_rings); |
| 1743 | na->na_tx_rings = na->na_rx_rings = na->na_alloc_rings = |
| 1744 | na->na_free_rings = na->na_event_rings = na->na_tail = NULL; |
| 1745 | } |
| 1746 | |
| 1747 | static void |
| 1748 | na_kr_slot_desc_init(struct __slot_desc *ksds, |
| 1749 | boolean_t kernel_only, struct __slot_desc *usds, size_t ndesc) |
| 1750 | { |
| 1751 | size_t i; |
| 1752 | |
| 1753 | bzero(s: ksds, n: ndesc * SLOT_DESC_SZ); |
| 1754 | if (usds != NULL) { |
| 1755 | ASSERT(!kernel_only); |
| 1756 | bzero(s: usds, n: ndesc * SLOT_DESC_SZ); |
| 1757 | } else { |
| 1758 | ASSERT(kernel_only); |
| 1759 | } |
| 1760 | |
| 1761 | for (i = 0; i < ndesc; i++) { |
| 1762 | KSD_INIT(SLOT_DESC_KSD(&ksds[i])); |
| 1763 | if (!kernel_only) { |
| 1764 | USD_INIT(SLOT_DESC_USD(&usds[i])); |
| 1765 | } |
| 1766 | } |
| 1767 | } |
| 1768 | |
| 1769 | /* call with SK_LOCK held */ |
| 1770 | static int |
| 1771 | na_kr_setup(struct nexus_adapter *na, struct kern_channel *ch) |
| 1772 | { |
| 1773 | struct skmem_arena *ar = na->na_arena; |
| 1774 | struct skmem_arena_nexus *arn; |
| 1775 | mach_vm_offset_t roff[SKMEM_REGIONS]; |
| 1776 | enum txrx t; |
| 1777 | uint32_t i; |
| 1778 | |
| 1779 | SK_LOCK_ASSERT_HELD(); |
| 1780 | ASSERT(!(na->na_flags & NAF_MEM_NO_INIT)); |
| 1781 | ASSERT(ar->ar_type == SKMEM_ARENA_TYPE_NEXUS); |
| 1782 | arn = skmem_arena_nexus(ar); |
| 1783 | ASSERT(arn != NULL); |
| 1784 | |
| 1785 | bzero(s: &roff, n: sizeof(roff)); |
| 1786 | for (i = 0; i < SKMEM_REGIONS; i++) { |
| 1787 | if (ar->ar_regions[i] == NULL) { |
| 1788 | continue; |
| 1789 | } |
| 1790 | |
| 1791 | /* not for nexus */ |
| 1792 | ASSERT(i != SKMEM_REGION_SYSCTLS); |
| 1793 | |
| 1794 | /* |
| 1795 | * Get region offsets from base of mmap span; the arena |
| 1796 | * doesn't need to be mmap'd at this point, since we |
| 1797 | * simply compute the relative offset. |
| 1798 | */ |
| 1799 | roff[i] = skmem_arena_get_region_offset(ar, i); |
| 1800 | } |
| 1801 | |
| 1802 | for_all_rings(t) { |
| 1803 | for (i = 0; i < na_get_nrings(na, t); i++) { |
| 1804 | struct __kern_channel_ring *kring = &NAKR(na, t)[i]; |
| 1805 | struct __user_channel_ring *ring = kring->ckr_ring; |
| 1806 | mach_vm_offset_t ring_off, usd_roff; |
| 1807 | struct skmem_obj_info oi, oim; |
| 1808 | uint32_t ndesc; |
| 1809 | |
| 1810 | if (ring != NULL) { |
| 1811 | SK_DF(SK_VERB_NA | SK_VERB_RING, |
| 1812 | "kr 0x%llx (\"%s\") is already " |
| 1813 | "initialized" , SK_KVA(kring), |
| 1814 | kring->ckr_name); |
| 1815 | continue; /* already created by somebody else */ |
| 1816 | } |
| 1817 | |
| 1818 | if (!KR_KERNEL_ONLY(kring) && |
| 1819 | (ring = skmem_cache_alloc(arn->arn_ring_cache, |
| 1820 | SKMEM_NOSLEEP)) == NULL) { |
| 1821 | SK_ERR("Cannot allocate %s_ring for kr " |
| 1822 | "0x%llx (\"%s\")" , sk_ring2str(t), |
| 1823 | SK_KVA(kring), kring->ckr_name); |
| 1824 | goto cleanup; |
| 1825 | } |
| 1826 | kring->ckr_flags |= CKRF_MEM_RING_INITED; |
| 1827 | kring->ckr_ring = ring; |
| 1828 | ndesc = kring->ckr_num_slots; |
| 1829 | |
| 1830 | if (ring == NULL) { |
| 1831 | goto skip_user_ring_setup; |
| 1832 | } |
| 1833 | |
| 1834 | *(uint32_t *)(uintptr_t)&ring->ring_num_slots = ndesc; |
| 1835 | |
| 1836 | /* offset of current ring in mmap span */ |
| 1837 | skmem_cache_get_obj_info(arn->arn_ring_cache, |
| 1838 | ring, &oi, NULL); |
| 1839 | ring_off = (roff[SKMEM_REGION_RING] + |
| 1840 | SKMEM_OBJ_ROFF(&oi)); |
| 1841 | |
| 1842 | /* |
| 1843 | * ring_{buf,md,sd}_ofs offsets are relative to the |
| 1844 | * current ring, and not to the base of mmap span. |
| 1845 | */ |
| 1846 | *(mach_vm_offset_t *)(uintptr_t) |
| 1847 | &ring->ring_def_buf_base = |
| 1848 | (roff[SKMEM_REGION_BUF_DEF] - ring_off); |
| 1849 | *(mach_vm_offset_t *)(uintptr_t) |
| 1850 | &ring->ring_large_buf_base = |
| 1851 | (roff[SKMEM_REGION_BUF_LARGE] - ring_off); |
| 1852 | *(mach_vm_offset_t *)(uintptr_t)&ring->ring_md_base = |
| 1853 | (roff[SKMEM_REGION_UMD] - ring_off); |
| 1854 | _CASSERT(sizeof(uint16_t) == |
| 1855 | sizeof(ring->ring_bft_size)); |
| 1856 | if (roff[SKMEM_REGION_UBFT] != 0) { |
| 1857 | ASSERT(ar->ar_regions[SKMEM_REGION_UBFT] != |
| 1858 | NULL); |
| 1859 | *(mach_vm_offset_t *)(uintptr_t) |
| 1860 | &ring->ring_bft_base = |
| 1861 | (roff[SKMEM_REGION_UBFT] - ring_off); |
| 1862 | *(uint16_t *)(uintptr_t)&ring->ring_bft_size = |
| 1863 | (uint16_t)ar->ar_regions[SKMEM_REGION_UBFT]-> |
| 1864 | skr_c_obj_size; |
| 1865 | ASSERT(ring->ring_bft_size == |
| 1866 | ar->ar_regions[SKMEM_REGION_KBFT]-> |
| 1867 | skr_c_obj_size); |
| 1868 | } else { |
| 1869 | *(mach_vm_offset_t *)(uintptr_t) |
| 1870 | &ring->ring_bft_base = 0; |
| 1871 | *(uint16_t *)(uintptr_t)&ring->ring_md_size = 0; |
| 1872 | } |
| 1873 | |
| 1874 | if (t == NR_TX || t == NR_A || t == NR_EV || t == NR_LBA) { |
| 1875 | usd_roff = roff[SKMEM_REGION_TXAUSD]; |
| 1876 | } else { |
| 1877 | ASSERT(t == NR_RX || t == NR_F); |
| 1878 | usd_roff = roff[SKMEM_REGION_RXFUSD]; |
| 1879 | } |
| 1880 | *(mach_vm_offset_t *)(uintptr_t)&ring->ring_sd_base = |
| 1881 | (usd_roff - ring_off); |
| 1882 | |
| 1883 | /* copy values from kring */ |
| 1884 | ring->ring_head = kring->ckr_rhead; |
| 1885 | *(slot_idx_t *)(uintptr_t)&ring->ring_khead = |
| 1886 | kring->ckr_khead; |
| 1887 | *(slot_idx_t *)(uintptr_t)&ring->ring_tail = |
| 1888 | kring->ckr_rtail; |
| 1889 | |
| 1890 | _CASSERT(sizeof(uint32_t) == |
| 1891 | sizeof(ring->ring_def_buf_size)); |
| 1892 | _CASSERT(sizeof(uint32_t) == |
| 1893 | sizeof(ring->ring_large_buf_size)); |
| 1894 | _CASSERT(sizeof(uint16_t) == |
| 1895 | sizeof(ring->ring_md_size)); |
| 1896 | *(uint32_t *)(uintptr_t)&ring->ring_def_buf_size = |
| 1897 | ar->ar_regions[SKMEM_REGION_BUF_DEF]->skr_c_obj_size; |
| 1898 | if (ar->ar_regions[SKMEM_REGION_BUF_LARGE] != NULL) { |
| 1899 | *(uint32_t *)(uintptr_t)&ring->ring_large_buf_size = |
| 1900 | ar->ar_regions[SKMEM_REGION_BUF_LARGE]->skr_c_obj_size; |
| 1901 | } else { |
| 1902 | *(uint32_t *)(uintptr_t)&ring->ring_large_buf_size = 0; |
| 1903 | } |
| 1904 | if (ar->ar_regions[SKMEM_REGION_UMD] != NULL) { |
| 1905 | *(uint16_t *)(uintptr_t)&ring->ring_md_size = |
| 1906 | (uint16_t)ar->ar_regions[SKMEM_REGION_UMD]-> |
| 1907 | skr_c_obj_size; |
| 1908 | ASSERT(ring->ring_md_size == |
| 1909 | ar->ar_regions[SKMEM_REGION_KMD]-> |
| 1910 | skr_c_obj_size); |
| 1911 | } else { |
| 1912 | *(uint16_t *)(uintptr_t)&ring->ring_md_size = 0; |
| 1913 | ASSERT(PP_KERNEL_ONLY(arn->arn_rx_pp)); |
| 1914 | ASSERT(PP_KERNEL_ONLY(arn->arn_tx_pp)); |
| 1915 | } |
| 1916 | |
| 1917 | /* ring info */ |
| 1918 | _CASSERT(sizeof(uint16_t) == sizeof(ring->ring_id)); |
| 1919 | _CASSERT(sizeof(uint16_t) == sizeof(ring->ring_kind)); |
| 1920 | *(uint16_t *)(uintptr_t)&ring->ring_id = |
| 1921 | (uint16_t)kring->ckr_ring_id; |
| 1922 | *(uint16_t *)(uintptr_t)&ring->ring_kind = |
| 1923 | (uint16_t)kring->ckr_tx; |
| 1924 | |
| 1925 | SK_DF(SK_VERB_NA | SK_VERB_RING, |
| 1926 | "%s_ring at 0x%llx kr 0x%llx (\"%s\")" , |
| 1927 | sk_ring2str(t), SK_KVA(ring), SK_KVA(kring), |
| 1928 | kring->ckr_name); |
| 1929 | SK_DF(SK_VERB_NA | SK_VERB_RING, |
| 1930 | " num_slots: %u" , ring->ring_num_slots); |
| 1931 | SK_DF(SK_VERB_NA | SK_VERB_RING, |
| 1932 | " def_buf_base: 0x%llx" , |
| 1933 | (uint64_t)ring->ring_def_buf_base); |
| 1934 | SK_DF(SK_VERB_NA | SK_VERB_RING, |
| 1935 | " large_buf_base: 0x%llx" , |
| 1936 | (uint64_t)ring->ring_large_buf_base); |
| 1937 | SK_DF(SK_VERB_NA | SK_VERB_RING, |
| 1938 | " md_base: 0x%llx" , |
| 1939 | (uint64_t)ring->ring_md_base); |
| 1940 | SK_DF(SK_VERB_NA | SK_VERB_RING, |
| 1941 | " sd_base: 0x%llx" , |
| 1942 | (uint64_t)ring->ring_sd_base); |
| 1943 | SK_DF(SK_VERB_NA | SK_VERB_RING, |
| 1944 | " h, t: %u, %u, %u" , ring->ring_head, |
| 1945 | ring->ring_tail); |
| 1946 | SK_DF(SK_VERB_NA | SK_VERB_RING, |
| 1947 | " md_size: %d" , |
| 1948 | (uint64_t)ring->ring_md_size); |
| 1949 | |
| 1950 | /* make sure they're in synch */ |
| 1951 | _CASSERT(NR_RX == CR_KIND_RX); |
| 1952 | _CASSERT(NR_TX == CR_KIND_TX); |
| 1953 | _CASSERT(NR_A == CR_KIND_ALLOC); |
| 1954 | _CASSERT(NR_F == CR_KIND_FREE); |
| 1955 | _CASSERT(NR_EV == CR_KIND_EVENT); |
| 1956 | _CASSERT(NR_LBA == CR_KIND_LARGE_BUF_ALLOC); |
| 1957 | |
| 1958 | skip_user_ring_setup: |
| 1959 | /* |
| 1960 | * This flag tells na_kr_teardown_all() that it should |
| 1961 | * go thru the checks to free up the slot maps. |
| 1962 | */ |
| 1963 | kring->ckr_flags |= CKRF_MEM_SD_INITED; |
| 1964 | if (t == NR_TX || t == NR_A || t == NR_EV || t == NR_LBA) { |
| 1965 | kring->ckr_ksds_cache = arn->arn_txaksd_cache; |
| 1966 | } else { |
| 1967 | ASSERT(t == NR_RX || t == NR_F); |
| 1968 | kring->ckr_ksds_cache = arn->arn_rxfksd_cache; |
| 1969 | } |
| 1970 | kring->ckr_ksds = |
| 1971 | skmem_cache_alloc(kring->ckr_ksds_cache, |
| 1972 | SKMEM_NOSLEEP); |
| 1973 | if (kring->ckr_ksds == NULL) { |
| 1974 | SK_ERR("Cannot allocate %s_ksds for kr " |
| 1975 | "0x%llx (\"%s\")" , sk_ring2str(t), |
| 1976 | SK_KVA(kring), kring->ckr_name); |
| 1977 | goto cleanup; |
| 1978 | } |
| 1979 | if (!KR_KERNEL_ONLY(kring)) { |
| 1980 | skmem_cache_get_obj_info(kring->ckr_ksds_cache, |
| 1981 | kring->ckr_ksds, &oi, &oim); |
| 1982 | kring->ckr_usds = SKMEM_OBJ_ADDR(&oim); |
| 1983 | } |
| 1984 | na_kr_slot_desc_init(ksds: kring->ckr_ksds, |
| 1985 | KR_KERNEL_ONLY(kring), usds: kring->ckr_usds, ndesc); |
| 1986 | |
| 1987 | /* cache last slot descriptor address */ |
| 1988 | ASSERT(kring->ckr_lim == (ndesc - 1)); |
| 1989 | kring->ckr_ksds_last = &kring->ckr_ksds[kring->ckr_lim]; |
| 1990 | |
| 1991 | if ((t < NR_TXRX) && |
| 1992 | !(na->na_flags & NAF_USER_PKT_POOL) && |
| 1993 | na_kr_populate_slots(kring) != 0) { |
| 1994 | SK_ERR("Cannot allocate buffers for kr " |
| 1995 | "0x%llx (\"%s\")" , SK_KVA(kring), |
| 1996 | kring->ckr_name); |
| 1997 | goto cleanup; |
| 1998 | } |
| 1999 | } |
| 2000 | } |
| 2001 | |
| 2002 | return 0; |
| 2003 | |
| 2004 | cleanup: |
| 2005 | na_kr_teardown_all(na, ch, FALSE); |
| 2006 | |
| 2007 | return ENOMEM; |
| 2008 | } |
| 2009 | |
| 2010 | static void |
| 2011 | na_kr_teardown_common(struct nexus_adapter *na, |
| 2012 | struct __kern_channel_ring *kring, enum txrx t, struct kern_channel *ch, |
| 2013 | boolean_t defunct) |
| 2014 | { |
| 2015 | struct skmem_arena_nexus *arn = skmem_arena_nexus(ar: na->na_arena); |
| 2016 | struct __user_channel_ring *ckr_ring; |
| 2017 | boolean_t sd_idle, sd_inited; |
| 2018 | |
| 2019 | ASSERT(arn != NULL); |
| 2020 | kr_enter(kring, TRUE); |
| 2021 | /* |
| 2022 | * Check for CKRF_MEM_SD_INITED and CKRF_MEM_RING_INITED |
| 2023 | * to make sure that the freeing needs to happen (else just |
| 2024 | * nullify the values). |
| 2025 | * If this adapter owns the memory for the slot descriptors, |
| 2026 | * check if the region is marked as busy (sd_idle is false) |
| 2027 | * and leave the kring's slot descriptor fields alone if so, |
| 2028 | * at defunct time. At final teardown time, sd_idle must be |
| 2029 | * true else we assert; this indicates a missing call to |
| 2030 | * skmem_arena_nexus_sd_set_noidle(). |
| 2031 | */ |
| 2032 | sd_inited = ((kring->ckr_flags & CKRF_MEM_SD_INITED) != 0); |
| 2033 | if (sd_inited) { |
| 2034 | /* callee will do KR_KSD(), so check */ |
| 2035 | if (((t < NR_TXRX) || (t == NR_EV)) && |
| 2036 | (kring->ckr_ksds != NULL)) { |
| 2037 | na_kr_depopulate_slots(kring, ch, defunct); |
| 2038 | } |
| 2039 | /* leave CKRF_MEM_SD_INITED flag alone until idle */ |
| 2040 | sd_idle = skmem_arena_nexus_sd_idle(arn); |
| 2041 | VERIFY(sd_idle || defunct); |
| 2042 | } else { |
| 2043 | sd_idle = TRUE; |
| 2044 | } |
| 2045 | |
| 2046 | if (sd_idle) { |
| 2047 | kring->ckr_flags &= ~CKRF_MEM_SD_INITED; |
| 2048 | if (kring->ckr_ksds != NULL) { |
| 2049 | if (sd_inited) { |
| 2050 | skmem_cache_free(kring->ckr_ksds_cache, |
| 2051 | kring->ckr_ksds); |
| 2052 | } |
| 2053 | kring->ckr_ksds = NULL; |
| 2054 | kring->ckr_ksds_last = NULL; |
| 2055 | kring->ckr_usds = NULL; |
| 2056 | } |
| 2057 | ASSERT(kring->ckr_ksds_last == NULL); |
| 2058 | ASSERT(kring->ckr_usds == NULL); |
| 2059 | } |
| 2060 | |
| 2061 | if ((ckr_ring = kring->ckr_ring) != NULL) { |
| 2062 | kring->ckr_ring = NULL; |
| 2063 | } |
| 2064 | |
| 2065 | if (kring->ckr_flags & CKRF_MEM_RING_INITED) { |
| 2066 | ASSERT(ckr_ring != NULL || KR_KERNEL_ONLY(kring)); |
| 2067 | if (ckr_ring != NULL) { |
| 2068 | skmem_cache_free(arn->arn_ring_cache, ckr_ring); |
| 2069 | } |
| 2070 | kring->ckr_flags &= ~CKRF_MEM_RING_INITED; |
| 2071 | } |
| 2072 | |
| 2073 | if (defunct) { |
| 2074 | /* if defunct, drop everything; see KR_DROP() */ |
| 2075 | kring->ckr_flags |= CKRF_DEFUNCT; |
| 2076 | } |
| 2077 | kr_exit(kring); |
| 2078 | } |
| 2079 | |
| 2080 | /* |
| 2081 | * Teardown ALL rings of a nexus adapter; this includes {tx,rx,alloc,free,event} |
| 2082 | */ |
| 2083 | static void |
| 2084 | na_kr_teardown_all(struct nexus_adapter *na, struct kern_channel *ch, |
| 2085 | boolean_t defunct) |
| 2086 | { |
| 2087 | enum txrx t; |
| 2088 | |
| 2089 | ASSERT(na->na_arena->ar_type == SKMEM_ARENA_TYPE_NEXUS); |
| 2090 | |
| 2091 | /* skip if this adapter has no allocated rings */ |
| 2092 | if (na->na_tx_rings == NULL) { |
| 2093 | return; |
| 2094 | } |
| 2095 | |
| 2096 | for_all_rings(t) { |
| 2097 | for (uint32_t i = 0; i < na_get_nrings(na, t); i++) { |
| 2098 | na_kr_teardown_common(na, kring: &NAKR(na, t)[i], |
| 2099 | t, ch, defunct); |
| 2100 | } |
| 2101 | } |
| 2102 | } |
| 2103 | |
| 2104 | /* |
| 2105 | * Teardown only {tx,rx} rings assigned to the channel. |
| 2106 | */ |
| 2107 | static void |
| 2108 | na_kr_teardown_txrx(struct nexus_adapter *na, struct kern_channel *ch, |
| 2109 | boolean_t defunct, struct proc *p) |
| 2110 | { |
| 2111 | enum txrx t; |
| 2112 | |
| 2113 | ASSERT(na->na_arena->ar_type == SKMEM_ARENA_TYPE_NEXUS); |
| 2114 | |
| 2115 | for_rx_tx(t) { |
| 2116 | ring_id_t qfirst = ch->ch_first[t]; |
| 2117 | ring_id_t qlast = ch->ch_last[t]; |
| 2118 | uint32_t i; |
| 2119 | |
| 2120 | for (i = qfirst; i < qlast; i++) { |
| 2121 | struct __kern_channel_ring *kring = &NAKR(na, t)[i]; |
| 2122 | na_kr_teardown_common(na, kring, t, ch, defunct); |
| 2123 | |
| 2124 | /* |
| 2125 | * Issue a notify to wake up anyone sleeping in kqueue |
| 2126 | * so that they notice the newly defuncted channels and |
| 2127 | * return an error |
| 2128 | */ |
| 2129 | kring->ckr_na_notify(kring, p, 0); |
| 2130 | } |
| 2131 | } |
| 2132 | } |
| 2133 | |
| 2134 | static int |
| 2135 | na_kr_populate_slots(struct __kern_channel_ring *kring) |
| 2136 | { |
| 2137 | const boolean_t kernel_only = KR_KERNEL_ONLY(kring); |
| 2138 | struct nexus_adapter *na = KRNA(kring); |
| 2139 | kern_pbufpool_t pp = kring->ckr_pp; |
| 2140 | uint32_t nslots = kring->ckr_num_slots; |
| 2141 | uint32_t start_idx, i; |
| 2142 | uint32_t sidx = 0; /* slot counter */ |
| 2143 | struct __kern_slot_desc *ksd; |
| 2144 | struct __user_slot_desc *usd; |
| 2145 | struct __kern_quantum *kqum; |
| 2146 | nexus_type_t nexus_type; |
| 2147 | int err = 0; |
| 2148 | |
| 2149 | ASSERT(kring->ckr_tx < NR_TXRX); |
| 2150 | ASSERT(!(KRNA(kring)->na_flags & NAF_USER_PKT_POOL)); |
| 2151 | ASSERT(na->na_arena->ar_type == SKMEM_ARENA_TYPE_NEXUS); |
| 2152 | ASSERT(pp != NULL); |
| 2153 | |
| 2154 | /* |
| 2155 | * xxx_ppool: remove this special case |
| 2156 | */ |
| 2157 | nexus_type = na->na_nxdom_prov->nxdom_prov_dom->nxdom_type; |
| 2158 | |
| 2159 | switch (nexus_type) { |
| 2160 | case NEXUS_TYPE_FLOW_SWITCH: |
| 2161 | case NEXUS_TYPE_KERNEL_PIPE: |
| 2162 | /* |
| 2163 | * xxx_ppool: This is temporary code until we come up with a |
| 2164 | * scheme for user space to alloc & attach packets to tx ring. |
| 2165 | */ |
| 2166 | if (kernel_only || kring->ckr_tx == NR_RX) { |
| 2167 | return 0; |
| 2168 | } |
| 2169 | break; |
| 2170 | |
| 2171 | case NEXUS_TYPE_NET_IF: |
| 2172 | if (((na->na_type == NA_NETIF_DEV) || |
| 2173 | (na->na_type == NA_NETIF_HOST)) && |
| 2174 | (kernel_only || (kring->ckr_tx == NR_RX))) { |
| 2175 | return 0; |
| 2176 | } |
| 2177 | |
| 2178 | ASSERT((na->na_type == NA_NETIF_COMPAT_DEV) || |
| 2179 | (na->na_type == NA_NETIF_COMPAT_HOST) || |
| 2180 | (na->na_type == NA_NETIF_DEV) || |
| 2181 | (na->na_type == NA_NETIF_VP)); |
| 2182 | |
| 2183 | if (!kernel_only) { |
| 2184 | if (kring->ckr_tx == NR_RX) { |
| 2185 | return 0; |
| 2186 | } else { |
| 2187 | break; |
| 2188 | } |
| 2189 | } |
| 2190 | |
| 2191 | ASSERT(kernel_only); |
| 2192 | |
| 2193 | if ((na->na_type == NA_NETIF_COMPAT_DEV) || |
| 2194 | (na->na_type == NA_NETIF_COMPAT_HOST)) { |
| 2195 | return 0; |
| 2196 | } |
| 2197 | VERIFY(0); |
| 2198 | /* NOTREACHED */ |
| 2199 | __builtin_unreachable(); |
| 2200 | |
| 2201 | case NEXUS_TYPE_USER_PIPE: |
| 2202 | case NEXUS_TYPE_MONITOR: |
| 2203 | break; |
| 2204 | |
| 2205 | default: |
| 2206 | VERIFY(0); |
| 2207 | /* NOTREACHED */ |
| 2208 | __builtin_unreachable(); |
| 2209 | } |
| 2210 | |
| 2211 | /* Fill the ring with packets */ |
| 2212 | sidx = start_idx = 0; |
| 2213 | for (i = 0; i < nslots; i++) { |
| 2214 | kqum = SK_PTR_ADDR_KQUM(pp_alloc_packet(pp, pp->pp_max_frags, |
| 2215 | SKMEM_NOSLEEP)); |
| 2216 | if (kqum == NULL) { |
| 2217 | err = ENOMEM; |
| 2218 | SK_ERR("ar 0x%llx (\"%s\") no more buffers " |
| 2219 | "after %u of %u, err %d" , SK_KVA(na->na_arena), |
| 2220 | na->na_arena->ar_name, i, nslots, err); |
| 2221 | goto cleanup; |
| 2222 | } |
| 2223 | ksd = KR_KSD(kring, i); |
| 2224 | usd = (kernel_only ? NULL : KR_USD(kring, i)); |
| 2225 | |
| 2226 | /* attach packet to slot */ |
| 2227 | kqum->qum_ksd = ksd; |
| 2228 | ASSERT(!KSD_VALID_METADATA(ksd)); |
| 2229 | KSD_ATTACH_METADATA(ksd, kqum); |
| 2230 | if (usd != NULL) { |
| 2231 | USD_ATTACH_METADATA(usd, METADATA_IDX(kqum)); |
| 2232 | kr_externalize_metadata(kring, pp->pp_max_frags, |
| 2233 | kqum, current_proc()); |
| 2234 | } |
| 2235 | |
| 2236 | SK_DF(SK_VERB_MEM, " C ksd [%-3d, 0x%llx] kqum [%-3u, 0x%llx] " |
| 2237 | " kbuf[%-3u, 0x%llx]" , i, SK_KVA(ksd), METADATA_IDX(kqum), |
| 2238 | SK_KVA(kqum), kqum->qum_buf[0].buf_idx, |
| 2239 | SK_KVA(&kqum->qum_buf[0])); |
| 2240 | if (!(kqum->qum_qflags & QUM_F_KERNEL_ONLY)) { |
| 2241 | SK_DF(SK_VERB_MEM, " C usd [%-3d, 0x%llx] " |
| 2242 | "uqum [%-3u, 0x%llx] ubuf[%-3u, 0x%llx]" , |
| 2243 | (int)(usd ? usd->sd_md_idx : OBJ_IDX_NONE), |
| 2244 | SK_KVA(usd), METADATA_IDX(kqum), |
| 2245 | SK_KVA(kqum->qum_user), |
| 2246 | kqum->qum_user->qum_buf[0].buf_idx, |
| 2247 | SK_KVA(&kqum->qum_user->qum_buf[0])); |
| 2248 | } |
| 2249 | |
| 2250 | sidx = SLOT_NEXT(i: sidx, lim: kring->ckr_lim); |
| 2251 | } |
| 2252 | |
| 2253 | SK_DF(SK_VERB_NA | SK_VERB_RING, "ar 0x%llx (\"%s\") populated %u slots from idx %u" , |
| 2254 | SK_KVA(na->na_arena), na->na_arena->ar_name, nslots, start_idx); |
| 2255 | |
| 2256 | cleanup: |
| 2257 | if (err != 0) { |
| 2258 | sidx = start_idx; |
| 2259 | while (i-- > 0) { |
| 2260 | ksd = KR_KSD(kring, i); |
| 2261 | usd = (kernel_only ? NULL : KR_USD(kring, i)); |
| 2262 | kqum = ksd->sd_qum; |
| 2263 | |
| 2264 | ASSERT(ksd == kqum->qum_ksd); |
| 2265 | KSD_RESET(ksd); |
| 2266 | if (usd != NULL) { |
| 2267 | USD_RESET(usd); |
| 2268 | } |
| 2269 | /* detach packet from slot */ |
| 2270 | kqum->qum_ksd = NULL; |
| 2271 | pp_free_packet(pp, SK_PTR_ADDR(kqum)); |
| 2272 | |
| 2273 | sidx = SLOT_NEXT(i: sidx, lim: kring->ckr_lim); |
| 2274 | } |
| 2275 | } |
| 2276 | return err; |
| 2277 | } |
| 2278 | |
| 2279 | static void |
| 2280 | na_kr_depopulate_slots(struct __kern_channel_ring *kring, |
| 2281 | struct kern_channel *ch, boolean_t defunct) |
| 2282 | { |
| 2283 | #pragma unused(ch) |
| 2284 | const boolean_t kernel_only = KR_KERNEL_ONLY(kring); |
| 2285 | uint32_t i, j, n = kring->ckr_num_slots; |
| 2286 | struct nexus_adapter *na = KRNA(kring); |
| 2287 | struct kern_pbufpool *pp = kring->ckr_pp; |
| 2288 | boolean_t upp = FALSE; |
| 2289 | obj_idx_t midx; |
| 2290 | |
| 2291 | ASSERT((kring->ckr_tx < NR_TXRX) || (kring->ckr_tx == NR_EV)); |
| 2292 | LCK_MTX_ASSERT(&ch->ch_lock, LCK_MTX_ASSERT_OWNED); |
| 2293 | |
| 2294 | ASSERT(na->na_arena->ar_type == SKMEM_ARENA_TYPE_NEXUS); |
| 2295 | |
| 2296 | if (((na->na_flags & NAF_USER_PKT_POOL) != 0) && |
| 2297 | (kring->ckr_tx != NR_EV)) { |
| 2298 | upp = TRUE; |
| 2299 | } |
| 2300 | for (i = 0, j = 0; i < n; i++) { |
| 2301 | struct __kern_slot_desc *ksd = KR_KSD(kring, i); |
| 2302 | struct __user_slot_desc *usd; |
| 2303 | struct __kern_quantum *qum, *kqum; |
| 2304 | boolean_t free_packet = FALSE; |
| 2305 | int err; |
| 2306 | |
| 2307 | if (!KSD_VALID_METADATA(ksd)) { |
| 2308 | continue; |
| 2309 | } |
| 2310 | |
| 2311 | kqum = ksd->sd_qum; |
| 2312 | usd = (kernel_only ? NULL : KR_USD(kring, i)); |
| 2313 | midx = METADATA_IDX(kqum); |
| 2314 | |
| 2315 | /* |
| 2316 | * if the packet is internalized it should not be in the |
| 2317 | * hash table of packets loaned to user space. |
| 2318 | */ |
| 2319 | if (upp && (kqum->qum_qflags & QUM_F_INTERNALIZED)) { |
| 2320 | if ((qum = pp_find_upp(pp, midx)) != NULL) { |
| 2321 | panic("internalized packet 0x%llx in htbl" , |
| 2322 | SK_KVA(qum)); |
| 2323 | /* NOTREACHED */ |
| 2324 | __builtin_unreachable(); |
| 2325 | } |
| 2326 | free_packet = TRUE; |
| 2327 | } else if (upp) { |
| 2328 | /* |
| 2329 | * if the packet is not internalized check if it is |
| 2330 | * in the list of packets loaned to user-space. |
| 2331 | * Remove from the list before freeing. |
| 2332 | */ |
| 2333 | ASSERT(!(kqum->qum_qflags & QUM_F_INTERNALIZED)); |
| 2334 | qum = pp_remove_upp(pp, midx, &err); |
| 2335 | if (err != 0) { |
| 2336 | SK_ERR("un-allocated packet or buflet %d %p" , |
| 2337 | midx, SK_KVA(qum)); |
| 2338 | if (qum != NULL) { |
| 2339 | free_packet = TRUE; |
| 2340 | } |
| 2341 | } |
| 2342 | } else { |
| 2343 | free_packet = TRUE; |
| 2344 | } |
| 2345 | |
| 2346 | /* |
| 2347 | * Clear the user and kernel slot descriptors. Note that |
| 2348 | * if we are depopulating the slots due to defunct (and not |
| 2349 | * due to normal deallocation/teardown), we leave the user |
| 2350 | * slot descriptor alone. At that point the process may |
| 2351 | * be suspended, and later when it resumes it would just |
| 2352 | * pick up the original contents and move forward with |
| 2353 | * whatever it was doing. |
| 2354 | */ |
| 2355 | KSD_RESET(ksd); |
| 2356 | if (usd != NULL && !defunct) { |
| 2357 | USD_RESET(usd); |
| 2358 | } |
| 2359 | |
| 2360 | /* detach packet from slot */ |
| 2361 | kqum->qum_ksd = NULL; |
| 2362 | |
| 2363 | SK_DF(SK_VERB_MEM, " D ksd [%-3d, 0x%llx] kqum [%-3u, 0x%llx] " |
| 2364 | " kbuf[%-3u, 0x%llx]" , i, SK_KVA(ksd), |
| 2365 | METADATA_IDX(kqum), SK_KVA(kqum), kqum->qum_buf[0].buf_idx, |
| 2366 | SK_KVA(&kqum->qum_buf[0])); |
| 2367 | if (!(kqum->qum_qflags & QUM_F_KERNEL_ONLY)) { |
| 2368 | SK_DF(SK_VERB_MEM, " D usd [%-3u, 0x%llx] " |
| 2369 | "uqum [%-3u, 0x%llx] ubuf[%-3u, 0x%llx]" , |
| 2370 | (int)(usd ? usd->sd_md_idx : OBJ_IDX_NONE), |
| 2371 | SK_KVA(usd), METADATA_IDX(kqum), |
| 2372 | SK_KVA(kqum->qum_user), |
| 2373 | kqum->qum_user->qum_buf[0].buf_idx, |
| 2374 | SK_KVA(&kqum->qum_user->qum_buf[0])); |
| 2375 | } |
| 2376 | |
| 2377 | if (free_packet) { |
| 2378 | pp_free_packet(pp, SK_PTR_ADDR(kqum)); ++j; |
| 2379 | } |
| 2380 | } |
| 2381 | |
| 2382 | SK_DF(SK_VERB_NA | SK_VERB_RING, "ar 0x%llx (\"%s\") depopulated %u of %u slots" , |
| 2383 | SK_KVA(KRNA(kring)->na_arena), KRNA(kring)->na_arena->ar_name, |
| 2384 | j, n); |
| 2385 | } |
| 2386 | |
| 2387 | int |
| 2388 | na_rings_mem_setup(struct nexus_adapter *na, |
| 2389 | boolean_t alloc_ctx, struct kern_channel *ch) |
| 2390 | { |
| 2391 | boolean_t kronly; |
| 2392 | int err; |
| 2393 | |
| 2394 | SK_LOCK_ASSERT_HELD(); |
| 2395 | ASSERT(na->na_channels == 0); |
| 2396 | /* |
| 2397 | * If NAF_MEM_NO_INIT is set, then only create the krings and not |
| 2398 | * the backing memory regions for the adapter. |
| 2399 | */ |
| 2400 | kronly = (na->na_flags & NAF_MEM_NO_INIT); |
| 2401 | ASSERT(!kronly || NA_KERNEL_ONLY(na)); |
| 2402 | |
| 2403 | /* |
| 2404 | * Create and initialize the common fields of the krings array. |
| 2405 | * using the information that must be already available in the na. |
| 2406 | */ |
| 2407 | if ((err = na_kr_create(na, alloc_ctx)) == 0 && !kronly) { |
| 2408 | err = na_kr_setup(na, ch); |
| 2409 | if (err != 0) { |
| 2410 | na_kr_delete(na); |
| 2411 | } |
| 2412 | } |
| 2413 | |
| 2414 | return err; |
| 2415 | } |
| 2416 | |
| 2417 | void |
| 2418 | na_rings_mem_teardown(struct nexus_adapter *na, struct kern_channel *ch, |
| 2419 | boolean_t defunct) |
| 2420 | { |
| 2421 | SK_LOCK_ASSERT_HELD(); |
| 2422 | ASSERT(na->na_channels == 0 || (na->na_flags & NAF_DEFUNCT)); |
| 2423 | |
| 2424 | /* |
| 2425 | * Deletes the kring and ring array of the adapter. They |
| 2426 | * must have been created using na_rings_mem_setup(). |
| 2427 | * |
| 2428 | * XXX: adi@apple.com -- the parameter "ch" should not be |
| 2429 | * needed here; however na_kr_depopulate_slots() needs to |
| 2430 | * go thru the channel's user packet pool hash, and so for |
| 2431 | * now we leave it here. |
| 2432 | */ |
| 2433 | na_kr_teardown_all(na, ch, defunct); |
| 2434 | if (!defunct) { |
| 2435 | na_kr_delete(na); |
| 2436 | } |
| 2437 | } |
| 2438 | |
| 2439 | void |
| 2440 | na_ch_rings_defunct(struct kern_channel *ch, struct proc *p) |
| 2441 | { |
| 2442 | LCK_MTX_ASSERT(&ch->ch_lock, LCK_MTX_ASSERT_OWNED); |
| 2443 | |
| 2444 | /* |
| 2445 | * Depopulate slots on the TX and RX rings of this channel, |
| 2446 | * but don't touch other rings owned by other channels if |
| 2447 | * this adapter is being shared. |
| 2448 | */ |
| 2449 | na_kr_teardown_txrx(na: ch->ch_na, ch, TRUE, p); |
| 2450 | } |
| 2451 | |
| 2452 | void |
| 2453 | na_kr_drop(struct nexus_adapter *na, boolean_t drop) |
| 2454 | { |
| 2455 | enum txrx t; |
| 2456 | uint32_t i; |
| 2457 | |
| 2458 | for_rx_tx(t) { |
| 2459 | for (i = 0; i < na_get_nrings(na, t); i++) { |
| 2460 | struct __kern_channel_ring *kring = &NAKR(na, t)[i]; |
| 2461 | int error; |
| 2462 | error = kr_enter(kring, TRUE); |
| 2463 | if (drop) { |
| 2464 | kring->ckr_flags |= CKRF_DROP; |
| 2465 | } else { |
| 2466 | kring->ckr_flags &= ~CKRF_DROP; |
| 2467 | } |
| 2468 | |
| 2469 | if (error != 0) { |
| 2470 | SK_ERR("na \"%s\" (0x%llx) kr \"%s\" (0x%llx) " |
| 2471 | "kr_enter failed %d" , |
| 2472 | na->na_name, SK_KVA(na), |
| 2473 | kring->ckr_name, SK_KVA(kring), |
| 2474 | error); |
| 2475 | } else { |
| 2476 | kr_exit(kring); |
| 2477 | } |
| 2478 | SK_D("na \"%s\" (0x%llx) kr \"%s\" (0x%llx) " |
| 2479 | "krflags 0x%b" , na->na_name, SK_KVA(na), |
| 2480 | kring->ckr_name, SK_KVA(kring), kring->ckr_flags, |
| 2481 | CKRF_BITS); |
| 2482 | } |
| 2483 | } |
| 2484 | } |
| 2485 | |
| 2486 | /* |
| 2487 | * Set the stopped/enabled status of ring. When stopping, they also wait |
| 2488 | * for all current activity on the ring to terminate. The status change |
| 2489 | * is then notified using the na na_notify callback. |
| 2490 | */ |
| 2491 | static void |
| 2492 | na_set_ring(struct nexus_adapter *na, uint32_t ring_id, enum txrx t, |
| 2493 | uint32_t state) |
| 2494 | { |
| 2495 | struct __kern_channel_ring *kr = &NAKR(na, t)[ring_id]; |
| 2496 | |
| 2497 | /* |
| 2498 | * Mark the ring as stopped/enabled, and run through the |
| 2499 | * locks to make sure other users get to see it. |
| 2500 | */ |
| 2501 | if (state == KR_READY) { |
| 2502 | kr_start(kr); |
| 2503 | } else { |
| 2504 | kr_stop(kr, state); |
| 2505 | } |
| 2506 | } |
| 2507 | |
| 2508 | |
| 2509 | /* stop or enable all the rings of na */ |
| 2510 | static void |
| 2511 | na_set_all_rings(struct nexus_adapter *na, uint32_t state) |
| 2512 | { |
| 2513 | uint32_t i; |
| 2514 | enum txrx t; |
| 2515 | |
| 2516 | SK_LOCK_ASSERT_HELD(); |
| 2517 | |
| 2518 | if (!NA_IS_ACTIVE(na)) { |
| 2519 | return; |
| 2520 | } |
| 2521 | |
| 2522 | for_rx_tx(t) { |
| 2523 | for (i = 0; i < na_get_nrings(na, t); i++) { |
| 2524 | na_set_ring(na, ring_id: i, t, state); |
| 2525 | } |
| 2526 | } |
| 2527 | } |
| 2528 | |
| 2529 | /* |
| 2530 | * Convenience function used in drivers. Waits for current txsync()s/rxsync()s |
| 2531 | * to finish and prevents any new one from starting. Call this before turning |
| 2532 | * Skywalk mode off, or before removing the harware rings (e.g., on module |
| 2533 | * onload). As a rule of thumb for linux drivers, this should be placed near |
| 2534 | * each napi_disable(). |
| 2535 | */ |
| 2536 | void |
| 2537 | na_disable_all_rings(struct nexus_adapter *na) |
| 2538 | { |
| 2539 | na_set_all_rings(na, state: KR_STOPPED); |
| 2540 | } |
| 2541 | |
| 2542 | /* |
| 2543 | * Convenience function used in drivers. Re-enables rxsync and txsync on the |
| 2544 | * adapter's rings In linux drivers, this should be placed near each |
| 2545 | * napi_enable(). |
| 2546 | */ |
| 2547 | void |
| 2548 | na_enable_all_rings(struct nexus_adapter *na) |
| 2549 | { |
| 2550 | na_set_all_rings(na, state: KR_READY /* enabled */); |
| 2551 | } |
| 2552 | |
| 2553 | void |
| 2554 | na_lock_all_rings(struct nexus_adapter *na) |
| 2555 | { |
| 2556 | na_set_all_rings(na, state: KR_LOCKED); |
| 2557 | } |
| 2558 | |
| 2559 | void |
| 2560 | na_unlock_all_rings(struct nexus_adapter *na) |
| 2561 | { |
| 2562 | na_enable_all_rings(na); |
| 2563 | } |
| 2564 | |
| 2565 | int |
| 2566 | na_connect(struct kern_nexus *nx, struct kern_channel *ch, struct chreq *chr, |
| 2567 | struct kern_channel *ch0, struct nxbind *nxb, struct proc *p) |
| 2568 | { |
| 2569 | struct nexus_adapter *na = NULL; |
| 2570 | mach_vm_size_t memsize = 0; |
| 2571 | int err = 0; |
| 2572 | enum txrx t; |
| 2573 | |
| 2574 | ASSERT(!(chr->cr_mode & CHMODE_KERNEL)); |
| 2575 | ASSERT(!(ch->ch_flags & CHANF_KERNEL)); |
| 2576 | |
| 2577 | SK_LOCK_ASSERT_HELD(); |
| 2578 | |
| 2579 | /* find the nexus adapter and return the reference */ |
| 2580 | err = na_find(ch, nx, chr, ch0, nxb, p, &na, TRUE /* create */); |
| 2581 | if (err != 0) { |
| 2582 | ASSERT(na == NULL); |
| 2583 | goto done; |
| 2584 | } |
| 2585 | |
| 2586 | if (NA_KERNEL_ONLY(na)) { |
| 2587 | err = EBUSY; |
| 2588 | goto done; |
| 2589 | } |
| 2590 | |
| 2591 | /* reject if the adapter is defunct of non-permissive */ |
| 2592 | if ((na->na_flags & NAF_DEFUNCT) || na_reject_channel(ch, na)) { |
| 2593 | err = ENXIO; |
| 2594 | goto done; |
| 2595 | } |
| 2596 | |
| 2597 | err = na_bind_channel(na, ch, chr); |
| 2598 | if (err != 0) { |
| 2599 | goto done; |
| 2600 | } |
| 2601 | |
| 2602 | ASSERT(ch->ch_schema != NULL); |
| 2603 | ASSERT(na == ch->ch_na); |
| 2604 | |
| 2605 | for_all_rings(t) { |
| 2606 | if (na_get_nrings(na, t) == 0) { |
| 2607 | ch->ch_si[t] = NULL; |
| 2608 | continue; |
| 2609 | } |
| 2610 | ch->ch_si[t] = ch_is_multiplex(ch, t) ? &na->na_si[t] : |
| 2611 | &NAKR(na, t)[ch->ch_first[t]].ckr_si; |
| 2612 | } |
| 2613 | |
| 2614 | skmem_arena_get_stats(na->na_arena, &memsize, NULL); |
| 2615 | |
| 2616 | if (!(skmem_arena_nexus(ar: na->na_arena)->arn_mode & |
| 2617 | AR_NEXUS_MODE_EXTERNAL_PPOOL)) { |
| 2618 | os_atomic_or(__DECONST(uint32_t *, &ch->ch_schema->csm_flags), CSM_PRIV_MEM, relaxed); |
| 2619 | } |
| 2620 | |
| 2621 | err = skmem_arena_mmap(na->na_arena, p, &ch->ch_mmap); |
| 2622 | if (err != 0) { |
| 2623 | goto done; |
| 2624 | } |
| 2625 | |
| 2626 | os_atomic_or(__DECONST(uint32_t *, &ch->ch_schema->csm_flags), CSM_ACTIVE, relaxed); |
| 2627 | chr->cr_memsize = memsize; |
| 2628 | chr->cr_memoffset = ch->ch_schema_offset; |
| 2629 | |
| 2630 | SK_D("%s(%d) ch 0x%llx <-> nx 0x%llx (%s:\"%s\":%d:%d) na 0x%llx " |
| 2631 | "naflags %b" , sk_proc_name_address(p), sk_proc_pid(p), |
| 2632 | SK_KVA(ch), SK_KVA(nx), NX_DOM_PROV(nx)->nxdom_prov_name, |
| 2633 | na->na_name, (int)chr->cr_port, (int)chr->cr_ring_id, SK_KVA(na), |
| 2634 | na->na_flags, NAF_BITS); |
| 2635 | |
| 2636 | done: |
| 2637 | if (err != 0) { |
| 2638 | if (ch->ch_schema != NULL || na != NULL) { |
| 2639 | if (ch->ch_schema != NULL) { |
| 2640 | ASSERT(na == ch->ch_na); |
| 2641 | /* |
| 2642 | * Callee will unmap memory region if needed, |
| 2643 | * as well as release reference held on 'na'. |
| 2644 | */ |
| 2645 | na_disconnect(nx, ch); |
| 2646 | na = NULL; |
| 2647 | } |
| 2648 | if (na != NULL) { |
| 2649 | (void) na_release_locked(na); |
| 2650 | na = NULL; |
| 2651 | } |
| 2652 | } |
| 2653 | } |
| 2654 | |
| 2655 | return err; |
| 2656 | } |
| 2657 | |
| 2658 | void |
| 2659 | na_disconnect(struct kern_nexus *nx, struct kern_channel *ch) |
| 2660 | { |
| 2661 | #pragma unused(nx) |
| 2662 | enum txrx t; |
| 2663 | |
| 2664 | SK_LOCK_ASSERT_HELD(); |
| 2665 | |
| 2666 | SK_D("ch 0x%llx -!- nx 0x%llx (%s:\"%s\":%u:%d) na 0x%llx naflags %b" , |
| 2667 | SK_KVA(ch), SK_KVA(nx), NX_DOM_PROV(nx)->nxdom_prov_name, |
| 2668 | ch->ch_na->na_name, ch->ch_info->cinfo_nx_port, |
| 2669 | (int)ch->ch_info->cinfo_ch_ring_id, SK_KVA(ch->ch_na), |
| 2670 | ch->ch_na->na_flags, NAF_BITS); |
| 2671 | |
| 2672 | /* destroy mapping and release references */ |
| 2673 | na_unbind_channel(ch); |
| 2674 | ASSERT(ch->ch_na == NULL); |
| 2675 | ASSERT(ch->ch_schema == NULL); |
| 2676 | for_all_rings(t) { |
| 2677 | ch->ch_si[t] = NULL; |
| 2678 | } |
| 2679 | } |
| 2680 | |
| 2681 | void |
| 2682 | na_defunct(struct kern_nexus *nx, struct kern_channel *ch, |
| 2683 | struct nexus_adapter *na, boolean_t locked) |
| 2684 | { |
| 2685 | #pragma unused(nx) |
| 2686 | SK_LOCK_ASSERT_HELD(); |
| 2687 | if (!locked) { |
| 2688 | lck_mtx_lock(lck: &ch->ch_lock); |
| 2689 | } |
| 2690 | |
| 2691 | LCK_MTX_ASSERT(&ch->ch_lock, LCK_MTX_ASSERT_OWNED); |
| 2692 | |
| 2693 | if (!(na->na_flags & NAF_DEFUNCT)) { |
| 2694 | /* |
| 2695 | * Mark this adapter as defunct to inform nexus-specific |
| 2696 | * teardown handler called by na_teardown() below. |
| 2697 | */ |
| 2698 | os_atomic_or(&na->na_flags, NAF_DEFUNCT, relaxed); |
| 2699 | |
| 2700 | /* |
| 2701 | * Depopulate slots. |
| 2702 | */ |
| 2703 | na_teardown(na, ch, TRUE); |
| 2704 | |
| 2705 | /* |
| 2706 | * And finally destroy any already-defunct memory regions. |
| 2707 | * Do this only if the nexus adapter owns the arena, i.e. |
| 2708 | * NAF_MEM_LOANED is not set. Otherwise, we'd expect |
| 2709 | * that this routine be called again for the real owner. |
| 2710 | */ |
| 2711 | if (!(na->na_flags & NAF_MEM_LOANED)) { |
| 2712 | skmem_arena_defunct(na->na_arena); |
| 2713 | } |
| 2714 | } |
| 2715 | |
| 2716 | SK_D("%s(%d): ch 0x%llx -/- nx 0x%llx (%s:\"%s\":%u:%d) " |
| 2717 | "na 0x%llx naflags %b" , ch->ch_name, ch->ch_pid, |
| 2718 | SK_KVA(ch), SK_KVA(nx), NX_DOM_PROV(nx)->nxdom_prov_name, |
| 2719 | na->na_name, ch->ch_info->cinfo_nx_port, |
| 2720 | (int)ch->ch_info->cinfo_ch_ring_id, SK_KVA(na), |
| 2721 | na->na_flags, NAF_BITS); |
| 2722 | |
| 2723 | if (!locked) { |
| 2724 | lck_mtx_unlock(lck: &ch->ch_lock); |
| 2725 | } |
| 2726 | } |
| 2727 | |
| 2728 | /* |
| 2729 | * TODO: adi@apple.com -- merge this into na_connect() |
| 2730 | */ |
| 2731 | int |
| 2732 | na_connect_spec(struct kern_nexus *nx, struct kern_channel *ch, |
| 2733 | struct chreq *chr, struct proc *p) |
| 2734 | { |
| 2735 | #pragma unused(p) |
| 2736 | struct nexus_adapter *na = NULL; |
| 2737 | mach_vm_size_t memsize = 0; |
| 2738 | int error = 0; |
| 2739 | enum txrx t; |
| 2740 | |
| 2741 | ASSERT(chr->cr_mode & CHMODE_KERNEL); |
| 2742 | ASSERT(ch->ch_flags & CHANF_KERNEL); |
| 2743 | ASSERT(ch->ch_na == NULL); |
| 2744 | ASSERT(ch->ch_schema == NULL); |
| 2745 | |
| 2746 | SK_LOCK_ASSERT_HELD(); |
| 2747 | |
| 2748 | error = na_find(ch, nx, chr, NULL, NULL, kernproc, &na, TRUE); |
| 2749 | if (error != 0) { |
| 2750 | goto done; |
| 2751 | } |
| 2752 | |
| 2753 | if (na == NULL) { |
| 2754 | error = EINVAL; |
| 2755 | goto done; |
| 2756 | } |
| 2757 | |
| 2758 | if (na->na_channels > 0) { |
| 2759 | error = EBUSY; |
| 2760 | goto done; |
| 2761 | } |
| 2762 | |
| 2763 | if (na->na_flags & NAF_DEFUNCT) { |
| 2764 | error = ENXIO; |
| 2765 | goto done; |
| 2766 | } |
| 2767 | |
| 2768 | /* |
| 2769 | * Special connect requires the nexus adapter to handle its |
| 2770 | * own channel binding and unbinding via na_special(); bail |
| 2771 | * if this adapter doesn't support it. |
| 2772 | */ |
| 2773 | if (na->na_special == NULL) { |
| 2774 | error = ENOTSUP; |
| 2775 | goto done; |
| 2776 | } |
| 2777 | |
| 2778 | /* upon success, "ch->ch_na" will point to "na" */ |
| 2779 | error = na->na_special(na, ch, chr, NXSPEC_CMD_CONNECT); |
| 2780 | if (error != 0) { |
| 2781 | ASSERT(ch->ch_na == NULL); |
| 2782 | goto done; |
| 2783 | } |
| 2784 | |
| 2785 | ASSERT(na->na_flags & NAF_SPEC_INIT); |
| 2786 | ASSERT(na == ch->ch_na); |
| 2787 | /* make sure this is still the case */ |
| 2788 | ASSERT(ch->ch_schema == NULL); |
| 2789 | |
| 2790 | for_rx_tx(t) { |
| 2791 | ch->ch_si[t] = ch_is_multiplex(ch, t) ? &na->na_si[t] : |
| 2792 | &NAKR(na, t)[ch->ch_first[t]].ckr_si; |
| 2793 | } |
| 2794 | |
| 2795 | skmem_arena_get_stats(na->na_arena, &memsize, NULL); |
| 2796 | chr->cr_memsize = memsize; |
| 2797 | |
| 2798 | SK_D("%s(%d) ch 0x%llx <-> nx 0x%llx (%s:\"%s\":%d:%d) na 0x%llx " |
| 2799 | "naflags %b" , sk_proc_name_address(p), sk_proc_pid(p), |
| 2800 | SK_KVA(ch), SK_KVA(nx), NX_DOM_PROV(nx)->nxdom_prov_name, |
| 2801 | na->na_name, (int)chr->cr_port, (int)chr->cr_ring_id, SK_KVA(na), |
| 2802 | na->na_flags, NAF_BITS); |
| 2803 | |
| 2804 | done: |
| 2805 | if (error != 0) { |
| 2806 | if (ch->ch_na != NULL || na != NULL) { |
| 2807 | if (ch->ch_na != NULL) { |
| 2808 | ASSERT(na == ch->ch_na); |
| 2809 | /* callee will release reference on 'na' */ |
| 2810 | na_disconnect_spec(nx, ch); |
| 2811 | na = NULL; |
| 2812 | } |
| 2813 | if (na != NULL) { |
| 2814 | (void) na_release_locked(na); |
| 2815 | na = NULL; |
| 2816 | } |
| 2817 | } |
| 2818 | } |
| 2819 | |
| 2820 | return error; |
| 2821 | } |
| 2822 | |
| 2823 | /* |
| 2824 | * TODO: adi@apple.com -- merge this into na_disconnect() |
| 2825 | */ |
| 2826 | void |
| 2827 | na_disconnect_spec(struct kern_nexus *nx, struct kern_channel *ch) |
| 2828 | { |
| 2829 | #pragma unused(nx) |
| 2830 | struct nexus_adapter *na = ch->ch_na; |
| 2831 | enum txrx t; |
| 2832 | int error; |
| 2833 | |
| 2834 | SK_LOCK_ASSERT_HELD(); |
| 2835 | ASSERT(na != NULL); |
| 2836 | ASSERT(na->na_flags & NAF_SPEC_INIT); /* has been bound */ |
| 2837 | |
| 2838 | SK_D("ch 0x%llx -!- nx 0x%llx (%s:\"%s\":%u:%d) na 0x%llx naflags %b" , |
| 2839 | SK_KVA(ch), SK_KVA(nx), NX_DOM_PROV(nx)->nxdom_prov_name, |
| 2840 | na->na_name, ch->ch_info->cinfo_nx_port, |
| 2841 | (int)ch->ch_info->cinfo_ch_ring_id, SK_KVA(na), |
| 2842 | na->na_flags, NAF_BITS); |
| 2843 | |
| 2844 | /* take a reference for this routine */ |
| 2845 | na_retain_locked(na); |
| 2846 | |
| 2847 | ASSERT(ch->ch_flags & CHANF_KERNEL); |
| 2848 | ASSERT(ch->ch_schema == NULL); |
| 2849 | ASSERT(na->na_special != NULL); |
| 2850 | /* unbind this channel */ |
| 2851 | error = na->na_special(na, ch, NULL, NXSPEC_CMD_DISCONNECT); |
| 2852 | ASSERT(error == 0); |
| 2853 | ASSERT(!(na->na_flags & NAF_SPEC_INIT)); |
| 2854 | |
| 2855 | /* now release our reference; this may be the last */ |
| 2856 | na_release_locked(na); |
| 2857 | na = NULL; |
| 2858 | |
| 2859 | ASSERT(ch->ch_na == NULL); |
| 2860 | for_rx_tx(t) { |
| 2861 | ch->ch_si[t] = NULL; |
| 2862 | } |
| 2863 | } |
| 2864 | |
| 2865 | void |
| 2866 | na_start_spec(struct kern_nexus *nx, struct kern_channel *ch) |
| 2867 | { |
| 2868 | #pragma unused(nx) |
| 2869 | struct nexus_adapter *na = ch->ch_na; |
| 2870 | |
| 2871 | SK_LOCK_ASSERT_HELD(); |
| 2872 | |
| 2873 | ASSERT(ch->ch_flags & CHANF_KERNEL); |
| 2874 | ASSERT(NA_KERNEL_ONLY(na)); |
| 2875 | ASSERT(na->na_special != NULL); |
| 2876 | |
| 2877 | na->na_special(na, ch, NULL, NXSPEC_CMD_START); |
| 2878 | } |
| 2879 | |
| 2880 | void |
| 2881 | na_stop_spec(struct kern_nexus *nx, struct kern_channel *ch) |
| 2882 | { |
| 2883 | #pragma unused(nx) |
| 2884 | struct nexus_adapter *na = ch->ch_na; |
| 2885 | |
| 2886 | SK_LOCK_ASSERT_HELD(); |
| 2887 | |
| 2888 | ASSERT(ch->ch_flags & CHANF_KERNEL); |
| 2889 | ASSERT(NA_KERNEL_ONLY(na)); |
| 2890 | ASSERT(na->na_special != NULL); |
| 2891 | |
| 2892 | na->na_special(na, ch, NULL, NXSPEC_CMD_STOP); |
| 2893 | } |
| 2894 | |
| 2895 | /* |
| 2896 | * MUST BE CALLED UNDER SK_LOCK() |
| 2897 | * |
| 2898 | * Get a refcounted reference to a nexus adapter attached |
| 2899 | * to the interface specified by chr. |
| 2900 | * This is always called in the execution of an ioctl(). |
| 2901 | * |
| 2902 | * Return ENXIO if the interface specified by the request does |
| 2903 | * not exist, ENOTSUP if Skywalk is not supported by the interface, |
| 2904 | * EINVAL if parameters are invalid, ENOMEM if needed resources |
| 2905 | * could not be allocated. |
| 2906 | * If successful, hold a reference to the nexus adapter. |
| 2907 | * |
| 2908 | * No reference is kept on the real interface, which may then |
| 2909 | * disappear at any time. |
| 2910 | */ |
| 2911 | int |
| 2912 | na_find(struct kern_channel *ch, struct kern_nexus *nx, struct chreq *chr, |
| 2913 | struct kern_channel *ch0, struct nxbind *nxb, struct proc *p, |
| 2914 | struct nexus_adapter **na, boolean_t create) |
| 2915 | { |
| 2916 | int error = 0; |
| 2917 | |
| 2918 | _CASSERT(sizeof(chr->cr_name) == sizeof((*na)->na_name)); |
| 2919 | |
| 2920 | *na = NULL; /* default return value */ |
| 2921 | |
| 2922 | SK_LOCK_ASSERT_HELD(); |
| 2923 | |
| 2924 | /* |
| 2925 | * We cascade through all possibile types of nexus adapter. |
| 2926 | * All nx_*_na_find() functions return an error and an na, |
| 2927 | * with the following combinations: |
| 2928 | * |
| 2929 | * error na |
| 2930 | * 0 NULL type doesn't match |
| 2931 | * !0 NULL type matches, but na creation/lookup failed |
| 2932 | * 0 !NULL type matches and na created/found |
| 2933 | * !0 !NULL impossible |
| 2934 | */ |
| 2935 | |
| 2936 | #if CONFIG_NEXUS_MONITOR |
| 2937 | /* try to see if this is a monitor port */ |
| 2938 | error = nx_monitor_na_find(nx, ch, chr, ch0, nxb, p, na, create); |
| 2939 | if (error != 0 || *na != NULL) { |
| 2940 | return error; |
| 2941 | } |
| 2942 | #endif /* CONFIG_NEXUS_MONITOR */ |
| 2943 | #if CONFIG_NEXUS_USER_PIPE |
| 2944 | /* try to see if this is a pipe port */ |
| 2945 | error = nx_upipe_na_find(nx, ch, chr, nxb, p, na, create); |
| 2946 | if (error != 0 || *na != NULL) { |
| 2947 | return error; |
| 2948 | } |
| 2949 | #endif /* CONFIG_NEXUS_USER_PIPE */ |
| 2950 | #if CONFIG_NEXUS_KERNEL_PIPE |
| 2951 | /* try to see if this is a kernel pipe port */ |
| 2952 | error = nx_kpipe_na_find(nx, ch, chr, nxb, p, na, create); |
| 2953 | if (error != 0 || *na != NULL) { |
| 2954 | return error; |
| 2955 | } |
| 2956 | #endif /* CONFIG_NEXUS_KERNEL_PIPE */ |
| 2957 | #if CONFIG_NEXUS_FLOWSWITCH |
| 2958 | /* try to see if this is a flowswitch port */ |
| 2959 | error = nx_fsw_na_find(nx, ch, chr, nxb, p, na, create); |
| 2960 | if (error != 0 || *na != NULL) { |
| 2961 | return error; |
| 2962 | } |
| 2963 | #endif /* CONFIG_NEXUS_FLOWSWITCH */ |
| 2964 | #if CONFIG_NEXUS_NETIF |
| 2965 | error = nx_netif_na_find(nx, ch, chr, nxb, p, na, create); |
| 2966 | if (error != 0 || *na != NULL) { |
| 2967 | return error; |
| 2968 | } |
| 2969 | #endif /* CONFIG_NEXUS_NETIF */ |
| 2970 | |
| 2971 | ASSERT(*na == NULL); |
| 2972 | return ENXIO; |
| 2973 | } |
| 2974 | |
| 2975 | void |
| 2976 | na_retain_locked(struct nexus_adapter *na) |
| 2977 | { |
| 2978 | SK_LOCK_ASSERT_HELD(); |
| 2979 | |
| 2980 | if (na != NULL) { |
| 2981 | #if SK_LOG |
| 2982 | uint32_t oref = os_atomic_inc_orig(&na->na_refcount, relaxed); |
| 2983 | SK_DF(SK_VERB_REFCNT, "na \"%s\" (0x%llx) refcnt %u chcnt %u" , |
| 2984 | na->na_name, SK_KVA(na), oref + 1, na->na_channels); |
| 2985 | #else /* !SK_LOG */ |
| 2986 | os_atomic_inc(&na->na_refcount, relaxed); |
| 2987 | #endif /* !SK_LOG */ |
| 2988 | } |
| 2989 | } |
| 2990 | |
| 2991 | /* returns 1 iff the nexus_adapter is destroyed */ |
| 2992 | int |
| 2993 | na_release_locked(struct nexus_adapter *na) |
| 2994 | { |
| 2995 | uint32_t oref; |
| 2996 | |
| 2997 | SK_LOCK_ASSERT_HELD(); |
| 2998 | |
| 2999 | ASSERT(na->na_refcount > 0); |
| 3000 | oref = os_atomic_dec_orig(&na->na_refcount, relaxed); |
| 3001 | if (oref > 1) { |
| 3002 | SK_DF(SK_VERB_REFCNT, "na \"%s\" (0x%llx) refcnt %u chcnt %u" , |
| 3003 | na->na_name, SK_KVA(na), oref - 1, na->na_channels); |
| 3004 | return 0; |
| 3005 | } |
| 3006 | ASSERT(na->na_channels == 0); |
| 3007 | |
| 3008 | if (na->na_dtor != NULL) { |
| 3009 | na->na_dtor(na); |
| 3010 | } |
| 3011 | |
| 3012 | ASSERT(na->na_tx_rings == NULL && na->na_rx_rings == NULL); |
| 3013 | ASSERT(na->na_slot_ctxs == NULL); |
| 3014 | ASSERT(na->na_scratch == NULL); |
| 3015 | |
| 3016 | #if CONFIG_NEXUS_USER_PIPE |
| 3017 | nx_upipe_na_dealloc(na); |
| 3018 | #endif /* CONFIG_NEXUS_USER_PIPE */ |
| 3019 | if (na->na_arena != NULL) { |
| 3020 | skmem_arena_release(na->na_arena); |
| 3021 | na->na_arena = NULL; |
| 3022 | } |
| 3023 | |
| 3024 | SK_DF(SK_VERB_MEM, "na \"%s\" (0x%llx) being freed" , |
| 3025 | na->na_name, SK_KVA(na)); |
| 3026 | |
| 3027 | NA_FREE(na); |
| 3028 | return 1; |
| 3029 | } |
| 3030 | |
| 3031 | static struct nexus_adapter * |
| 3032 | na_pseudo_alloc(zalloc_flags_t how) |
| 3033 | { |
| 3034 | struct nexus_adapter *na; |
| 3035 | |
| 3036 | na = zalloc_flags(na_pseudo_zone, how | Z_ZERO); |
| 3037 | if (na) { |
| 3038 | na->na_type = NA_PSEUDO; |
| 3039 | na->na_free = na_pseudo_free; |
| 3040 | } |
| 3041 | return na; |
| 3042 | } |
| 3043 | |
| 3044 | static void |
| 3045 | na_pseudo_free(struct nexus_adapter *na) |
| 3046 | { |
| 3047 | ASSERT(na->na_refcount == 0); |
| 3048 | SK_DF(SK_VERB_MEM, "na 0x%llx FREE" , SK_KVA(na)); |
| 3049 | bzero(s: na, n: sizeof(*na)); |
| 3050 | zfree(na_pseudo_zone, na); |
| 3051 | } |
| 3052 | |
| 3053 | static int |
| 3054 | na_pseudo_txsync(struct __kern_channel_ring *kring, struct proc *p, |
| 3055 | uint32_t flags) |
| 3056 | { |
| 3057 | #pragma unused(kring, p, flags) |
| 3058 | SK_DF(SK_VERB_SYNC | SK_VERB_TX, |
| 3059 | "%s(%d) kr \"%s\" (0x%llx) krflags 0x%b ring %u flags 0%x" , |
| 3060 | sk_proc_name_address(p), sk_proc_pid(p), kring->ckr_name, |
| 3061 | SK_KVA(kring), kring->ckr_flags, CKRF_BITS, kring->ckr_ring_id, |
| 3062 | flags); |
| 3063 | |
| 3064 | return 0; |
| 3065 | } |
| 3066 | |
| 3067 | static int |
| 3068 | na_pseudo_rxsync(struct __kern_channel_ring *kring, struct proc *p, |
| 3069 | uint32_t flags) |
| 3070 | { |
| 3071 | #pragma unused(kring, p, flags) |
| 3072 | SK_DF(SK_VERB_SYNC | SK_VERB_RX, |
| 3073 | "%s(%d) kr \"%s\" (0x%llx) krflags 0x%b ring %u flags 0%x" , |
| 3074 | sk_proc_name_address(p), sk_proc_pid(p), kring->ckr_name, |
| 3075 | SK_KVA(kring), kring->ckr_flags, CKRF_BITS, kring->ckr_ring_id, |
| 3076 | flags); |
| 3077 | |
| 3078 | ASSERT(kring->ckr_rhead <= kring->ckr_lim); |
| 3079 | |
| 3080 | return 0; |
| 3081 | } |
| 3082 | |
| 3083 | static int |
| 3084 | na_pseudo_activate(struct nexus_adapter *na, na_activate_mode_t mode) |
| 3085 | { |
| 3086 | SK_D("na \"%s\" (0x%llx) %s" , na->na_name, |
| 3087 | SK_KVA(na), na_activate_mode2str(mode)); |
| 3088 | |
| 3089 | switch (mode) { |
| 3090 | case NA_ACTIVATE_MODE_ON: |
| 3091 | os_atomic_or(&na->na_flags, NAF_ACTIVE, relaxed); |
| 3092 | break; |
| 3093 | |
| 3094 | case NA_ACTIVATE_MODE_DEFUNCT: |
| 3095 | break; |
| 3096 | |
| 3097 | case NA_ACTIVATE_MODE_OFF: |
| 3098 | os_atomic_andnot(&na->na_flags, NAF_ACTIVE, relaxed); |
| 3099 | break; |
| 3100 | |
| 3101 | default: |
| 3102 | VERIFY(0); |
| 3103 | /* NOTREACHED */ |
| 3104 | __builtin_unreachable(); |
| 3105 | } |
| 3106 | |
| 3107 | return 0; |
| 3108 | } |
| 3109 | |
| 3110 | static void |
| 3111 | na_pseudo_dtor(struct nexus_adapter *na) |
| 3112 | { |
| 3113 | #pragma unused(na) |
| 3114 | } |
| 3115 | |
| 3116 | static int |
| 3117 | na_pseudo_krings_create(struct nexus_adapter *na, struct kern_channel *ch) |
| 3118 | { |
| 3119 | return na_rings_mem_setup(na, FALSE, ch); |
| 3120 | } |
| 3121 | |
| 3122 | static void |
| 3123 | na_pseudo_krings_delete(struct nexus_adapter *na, struct kern_channel *ch, |
| 3124 | boolean_t defunct) |
| 3125 | { |
| 3126 | na_rings_mem_teardown(na, ch, defunct); |
| 3127 | } |
| 3128 | |
| 3129 | /* |
| 3130 | * Pseudo nexus adapter; typically used as a generic parent adapter. |
| 3131 | */ |
| 3132 | int |
| 3133 | na_pseudo_create(struct kern_nexus *nx, struct chreq *chr, |
| 3134 | struct nexus_adapter **ret) |
| 3135 | { |
| 3136 | struct nxprov_params *nxp = NX_PROV(nx)->nxprov_params; |
| 3137 | struct nexus_adapter *na; |
| 3138 | int error; |
| 3139 | |
| 3140 | SK_LOCK_ASSERT_HELD(); |
| 3141 | *ret = NULL; |
| 3142 | |
| 3143 | na = na_pseudo_alloc(how: Z_WAITOK); |
| 3144 | |
| 3145 | ASSERT(na->na_type == NA_PSEUDO); |
| 3146 | ASSERT(na->na_free == na_pseudo_free); |
| 3147 | |
| 3148 | (void) strncpy(na->na_name, chr->cr_name, sizeof(na->na_name) - 1); |
| 3149 | na->na_name[sizeof(na->na_name) - 1] = '\0'; |
| 3150 | uuid_generate_random(out: na->na_uuid); |
| 3151 | |
| 3152 | /* |
| 3153 | * Verify upper bounds; for all cases including user pipe nexus, |
| 3154 | * the parameters must have already been validated by corresponding |
| 3155 | * nxdom_prov_params() function defined by each domain. |
| 3156 | */ |
| 3157 | na_set_nrings(na, t: NR_TX, v: nxp->nxp_tx_rings); |
| 3158 | na_set_nrings(na, t: NR_RX, v: nxp->nxp_rx_rings); |
| 3159 | na_set_nslots(na, t: NR_TX, v: nxp->nxp_tx_slots); |
| 3160 | na_set_nslots(na, t: NR_RX, v: nxp->nxp_rx_slots); |
| 3161 | ASSERT(na_get_nrings(na, NR_TX) <= NX_DOM(nx)->nxdom_tx_rings.nb_max); |
| 3162 | ASSERT(na_get_nrings(na, NR_RX) <= NX_DOM(nx)->nxdom_rx_rings.nb_max); |
| 3163 | ASSERT(na_get_nslots(na, NR_TX) <= NX_DOM(nx)->nxdom_tx_slots.nb_max); |
| 3164 | ASSERT(na_get_nslots(na, NR_RX) <= NX_DOM(nx)->nxdom_rx_slots.nb_max); |
| 3165 | |
| 3166 | na->na_txsync = na_pseudo_txsync; |
| 3167 | na->na_rxsync = na_pseudo_rxsync; |
| 3168 | na->na_activate = na_pseudo_activate; |
| 3169 | na->na_dtor = na_pseudo_dtor; |
| 3170 | na->na_krings_create = na_pseudo_krings_create; |
| 3171 | na->na_krings_delete = na_pseudo_krings_delete; |
| 3172 | |
| 3173 | *(nexus_stats_type_t *)(uintptr_t)&na->na_stats_type = |
| 3174 | NEXUS_STATS_TYPE_INVALID; |
| 3175 | |
| 3176 | /* other fields are set in the common routine */ |
| 3177 | na_attach_common(na, nx, NX_DOM_PROV(nx)); |
| 3178 | |
| 3179 | if ((error = NX_DOM_PROV(nx)->nxdom_prov_mem_new(NX_DOM_PROV(nx), |
| 3180 | nx, na)) != 0) { |
| 3181 | ASSERT(na->na_arena == NULL); |
| 3182 | goto err; |
| 3183 | } |
| 3184 | ASSERT(na->na_arena != NULL); |
| 3185 | |
| 3186 | *(uint32_t *)(uintptr_t)&na->na_flowadv_max = nxp->nxp_flowadv_max; |
| 3187 | ASSERT(na->na_flowadv_max == 0 || |
| 3188 | skmem_arena_nexus(na->na_arena)->arn_flowadv_obj != NULL); |
| 3189 | |
| 3190 | #if SK_LOG |
| 3191 | uuid_string_t uuidstr; |
| 3192 | SK_D("na_name: \"%s\"" , na->na_name); |
| 3193 | SK_D(" UUID: %s" , sk_uuid_unparse(na->na_uuid, uuidstr)); |
| 3194 | SK_D(" nx: 0x%llx (\"%s\":\"%s\")" , |
| 3195 | SK_KVA(na->na_nx), NX_DOM(na->na_nx)->nxdom_name, |
| 3196 | NX_DOM_PROV(na->na_nx)->nxdom_prov_name); |
| 3197 | SK_D(" flags: %b" , na->na_flags, NAF_BITS); |
| 3198 | SK_D(" flowadv_max: %u" , na->na_flowadv_max); |
| 3199 | SK_D(" rings: tx %u rx %u" , |
| 3200 | na_get_nrings(na, NR_TX), na_get_nrings(na, NR_RX)); |
| 3201 | SK_D(" slots: tx %u rx %u" , |
| 3202 | na_get_nslots(na, NR_TX), na_get_nslots(na, NR_RX)); |
| 3203 | #if CONFIG_NEXUS_USER_PIPE |
| 3204 | SK_D(" next_pipe: %u" , na->na_next_pipe); |
| 3205 | SK_D(" max_pipes: %u" , na->na_max_pipes); |
| 3206 | #endif /* CONFIG_NEXUS_USER_PIPE */ |
| 3207 | #endif /* SK_LOG */ |
| 3208 | |
| 3209 | *ret = na; |
| 3210 | na_retain_locked(na); |
| 3211 | |
| 3212 | return 0; |
| 3213 | |
| 3214 | err: |
| 3215 | if (na != NULL) { |
| 3216 | if (na->na_arena != NULL) { |
| 3217 | skmem_arena_release(na->na_arena); |
| 3218 | na->na_arena = NULL; |
| 3219 | } |
| 3220 | NA_FREE(na); |
| 3221 | } |
| 3222 | return error; |
| 3223 | } |
| 3224 | |
| 3225 | void |
| 3226 | na_flowadv_entry_alloc(const struct nexus_adapter *na, uuid_t fae_id, |
| 3227 | const flowadv_idx_t fe_idx, const uint32_t flowid) |
| 3228 | { |
| 3229 | struct skmem_arena *ar = na->na_arena; |
| 3230 | struct skmem_arena_nexus *arn = skmem_arena_nexus(ar: na->na_arena); |
| 3231 | struct __flowadv_entry *fae; |
| 3232 | |
| 3233 | ASSERT(NA_IS_ACTIVE(na) && na->na_flowadv_max != 0); |
| 3234 | ASSERT(ar->ar_type == SKMEM_ARENA_TYPE_NEXUS); |
| 3235 | |
| 3236 | AR_LOCK(ar); |
| 3237 | |
| 3238 | /* we must not get here if arena is defunct; this must be valid */ |
| 3239 | ASSERT(arn->arn_flowadv_obj != NULL); |
| 3240 | |
| 3241 | VERIFY(fe_idx < na->na_flowadv_max); |
| 3242 | fae = &arn->arn_flowadv_obj[fe_idx]; |
| 3243 | uuid_copy(dst: fae->fae_id, src: fae_id); |
| 3244 | fae->fae_flowid = flowid; |
| 3245 | fae->fae_flags = FLOWADVF_VALID; |
| 3246 | |
| 3247 | AR_UNLOCK(ar); |
| 3248 | } |
| 3249 | |
| 3250 | void |
| 3251 | na_flowadv_entry_free(const struct nexus_adapter *na, uuid_t fae_id, |
| 3252 | const flowadv_idx_t fe_idx, const uint32_t flowid) |
| 3253 | { |
| 3254 | #pragma unused(fae_id) |
| 3255 | struct skmem_arena *ar = na->na_arena; |
| 3256 | struct skmem_arena_nexus *arn = skmem_arena_nexus(ar); |
| 3257 | |
| 3258 | ASSERT(NA_IS_ACTIVE(na) && (na->na_flowadv_max != 0)); |
| 3259 | ASSERT(ar->ar_type == SKMEM_ARENA_TYPE_NEXUS); |
| 3260 | |
| 3261 | AR_LOCK(ar); |
| 3262 | |
| 3263 | ASSERT(arn->arn_flowadv_obj != NULL || (ar->ar_flags & ARF_DEFUNCT)); |
| 3264 | if (arn->arn_flowadv_obj != NULL) { |
| 3265 | struct __flowadv_entry *fae; |
| 3266 | |
| 3267 | VERIFY(fe_idx < na->na_flowadv_max); |
| 3268 | fae = &arn->arn_flowadv_obj[fe_idx]; |
| 3269 | ASSERT(uuid_compare(fae->fae_id, fae_id) == 0); |
| 3270 | uuid_clear(uu: fae->fae_id); |
| 3271 | VERIFY(fae->fae_flowid == flowid); |
| 3272 | fae->fae_flowid = 0; |
| 3273 | fae->fae_flags = 0; |
| 3274 | } |
| 3275 | |
| 3276 | AR_UNLOCK(ar); |
| 3277 | } |
| 3278 | |
| 3279 | bool |
| 3280 | na_flowadv_set(const struct nexus_adapter *na, const flowadv_idx_t fe_idx, |
| 3281 | const flowadv_token_t flow_token) |
| 3282 | { |
| 3283 | struct skmem_arena *ar = na->na_arena; |
| 3284 | struct skmem_arena_nexus *arn = skmem_arena_nexus(ar); |
| 3285 | bool suspend; |
| 3286 | |
| 3287 | ASSERT(NA_IS_ACTIVE(na) && (na->na_flowadv_max != 0)); |
| 3288 | ASSERT(fe_idx < na->na_flowadv_max); |
| 3289 | ASSERT(ar->ar_type == SKMEM_ARENA_TYPE_NEXUS); |
| 3290 | |
| 3291 | AR_LOCK(ar); |
| 3292 | |
| 3293 | ASSERT(arn->arn_flowadv_obj != NULL || (ar->ar_flags & ARF_DEFUNCT)); |
| 3294 | |
| 3295 | if (arn->arn_flowadv_obj != NULL) { |
| 3296 | struct __flowadv_entry *fae = &arn->arn_flowadv_obj[fe_idx]; |
| 3297 | |
| 3298 | _CASSERT(sizeof(fae->fae_token) == sizeof(flow_token)); |
| 3299 | /* |
| 3300 | * We cannot guarantee that the flow is still around by now, |
| 3301 | * so check if that's the case and let the caller know. |
| 3302 | */ |
| 3303 | if ((suspend = (fae->fae_token == flow_token))) { |
| 3304 | ASSERT(fae->fae_flags & FLOWADVF_VALID); |
| 3305 | fae->fae_flags |= FLOWADVF_SUSPENDED; |
| 3306 | } |
| 3307 | } else { |
| 3308 | suspend = false; |
| 3309 | } |
| 3310 | if (suspend) { |
| 3311 | SK_DF(SK_VERB_FLOW_ADVISORY, "%s(%d) flow token 0x%llu fidx %u " |
| 3312 | "SUSPEND" , sk_proc_name_address(current_proc()), |
| 3313 | sk_proc_pid(current_proc()), flow_token, fe_idx); |
| 3314 | } else { |
| 3315 | SK_ERR("%s(%d) flow token 0x%llu fidx %u no longer around" , |
| 3316 | sk_proc_name_address(current_proc()), |
| 3317 | sk_proc_pid(current_proc()), flow_token, fe_idx); |
| 3318 | } |
| 3319 | |
| 3320 | AR_UNLOCK(ar); |
| 3321 | |
| 3322 | return suspend; |
| 3323 | } |
| 3324 | |
| 3325 | int |
| 3326 | na_flowadv_clear(const struct kern_channel *ch, const flowadv_idx_t fe_idx, |
| 3327 | const flowadv_token_t flow_token) |
| 3328 | { |
| 3329 | struct nexus_adapter *na = ch->ch_na; |
| 3330 | struct skmem_arena *ar = na->na_arena; |
| 3331 | struct skmem_arena_nexus *arn = skmem_arena_nexus(ar); |
| 3332 | boolean_t resume; |
| 3333 | |
| 3334 | ASSERT(NA_IS_ACTIVE(na) && (na->na_flowadv_max != 0)); |
| 3335 | ASSERT(fe_idx < na->na_flowadv_max); |
| 3336 | ASSERT(ar->ar_type == SKMEM_ARENA_TYPE_NEXUS); |
| 3337 | |
| 3338 | AR_LOCK(ar); |
| 3339 | |
| 3340 | ASSERT(arn->arn_flowadv_obj != NULL || (ar->ar_flags & ARF_DEFUNCT)); |
| 3341 | |
| 3342 | if (arn->arn_flowadv_obj != NULL) { |
| 3343 | struct __flowadv_entry *fae = &arn->arn_flowadv_obj[fe_idx]; |
| 3344 | |
| 3345 | _CASSERT(sizeof(fae->fae_token) == sizeof(flow_token)); |
| 3346 | /* |
| 3347 | * We cannot guarantee that the flow is still around by now, |
| 3348 | * so check if that's the case and let the caller know. |
| 3349 | */ |
| 3350 | if ((resume = (fae->fae_token == flow_token))) { |
| 3351 | ASSERT(fae->fae_flags & FLOWADVF_VALID); |
| 3352 | fae->fae_flags &= ~FLOWADVF_SUSPENDED; |
| 3353 | } |
| 3354 | } else { |
| 3355 | resume = FALSE; |
| 3356 | } |
| 3357 | if (resume) { |
| 3358 | SK_DF(SK_VERB_FLOW_ADVISORY, "%s(%d): flow token 0x%x " |
| 3359 | "fidx %u RESUME" , ch->ch_name, ch->ch_pid, flow_token, |
| 3360 | fe_idx); |
| 3361 | } else { |
| 3362 | SK_ERR("%s(%d): flow token 0x%x fidx %u no longer around" , |
| 3363 | ch->ch_name, ch->ch_pid, flow_token, fe_idx); |
| 3364 | } |
| 3365 | |
| 3366 | AR_UNLOCK(ar); |
| 3367 | |
| 3368 | return resume; |
| 3369 | } |
| 3370 | |
| 3371 | int |
| 3372 | na_flowadv_report_ce_event(const struct kern_channel *ch, const flowadv_idx_t fe_idx, |
| 3373 | const flowadv_token_t flow_token, uint32_t ce_cnt, uint32_t total_pkt_cnt) |
| 3374 | { |
| 3375 | struct nexus_adapter *na = ch->ch_na; |
| 3376 | struct skmem_arena *ar = na->na_arena; |
| 3377 | struct skmem_arena_nexus *arn = skmem_arena_nexus(ar); |
| 3378 | boolean_t added; |
| 3379 | |
| 3380 | ASSERT(NA_IS_ACTIVE(na) && (na->na_flowadv_max != 0)); |
| 3381 | ASSERT(fe_idx < na->na_flowadv_max); |
| 3382 | ASSERT(ar->ar_type == SKMEM_ARENA_TYPE_NEXUS); |
| 3383 | |
| 3384 | AR_LOCK(ar); |
| 3385 | |
| 3386 | ASSERT(arn->arn_flowadv_obj != NULL || (ar->ar_flags & ARF_DEFUNCT)); |
| 3387 | |
| 3388 | if (arn->arn_flowadv_obj != NULL) { |
| 3389 | struct __flowadv_entry *fae = &arn->arn_flowadv_obj[fe_idx]; |
| 3390 | |
| 3391 | _CASSERT(sizeof(fae->fae_token) == sizeof(flow_token)); |
| 3392 | /* |
| 3393 | * We cannot guarantee that the flow is still around by now, |
| 3394 | * so check if that's the case and let the caller know. |
| 3395 | */ |
| 3396 | if ((added = (fae->fae_token == flow_token))) { |
| 3397 | ASSERT(fae->fae_flags & FLOWADVF_VALID); |
| 3398 | fae->fae_ce_cnt += ce_cnt; |
| 3399 | fae->fae_pkt_cnt += total_pkt_cnt; |
| 3400 | } |
| 3401 | } else { |
| 3402 | added = FALSE; |
| 3403 | } |
| 3404 | if (added) { |
| 3405 | SK_DF(SK_VERB_FLOW_ADVISORY, "%s(%d): flow token 0x%x " |
| 3406 | "fidx %u ce cnt incremented" , ch->ch_name, |
| 3407 | ch->ch_pid, flow_token, fe_idx); |
| 3408 | } else { |
| 3409 | SK_ERR("%s(%d): flow token 0x%x fidx %u no longer around" , |
| 3410 | ch->ch_name, ch->ch_pid, flow_token, fe_idx); |
| 3411 | } |
| 3412 | |
| 3413 | AR_UNLOCK(ar); |
| 3414 | |
| 3415 | return added; |
| 3416 | } |
| 3417 | |
| 3418 | void |
| 3419 | na_flowadv_event(struct __kern_channel_ring *kring) |
| 3420 | { |
| 3421 | ASSERT(kring->ckr_tx == NR_TX); |
| 3422 | |
| 3423 | SK_DF(SK_VERB_EVENTS, "%s(%d) na \"%s\" (0x%llx) kr 0x%llx" , |
| 3424 | sk_proc_name_address(current_proc()), sk_proc_pid(current_proc()), |
| 3425 | KRNA(kring)->na_name, SK_KVA(KRNA(kring)), SK_KVA(kring)); |
| 3426 | |
| 3427 | na_post_event(kring, TRUE, FALSE, FALSE, CHAN_FILT_HINT_FLOW_ADV_UPD); |
| 3428 | } |
| 3429 | |
| 3430 | static int |
| 3431 | na_packet_pool_free_sync(struct __kern_channel_ring *kring, struct proc *p, |
| 3432 | uint32_t flags) |
| 3433 | { |
| 3434 | #pragma unused(flags, p) |
| 3435 | int n, ret = 0; |
| 3436 | slot_idx_t j; |
| 3437 | struct __kern_slot_desc *ksd; |
| 3438 | struct __user_slot_desc *usd; |
| 3439 | struct __kern_quantum *kqum; |
| 3440 | struct kern_pbufpool *pp = kring->ckr_pp; |
| 3441 | uint32_t nfree = 0; |
| 3442 | |
| 3443 | /* packet pool list is protected by channel lock */ |
| 3444 | ASSERT(!KR_KERNEL_ONLY(kring)); |
| 3445 | |
| 3446 | /* # of new slots */ |
| 3447 | n = kring->ckr_rhead - kring->ckr_khead; |
| 3448 | if (n < 0) { |
| 3449 | n += kring->ckr_num_slots; |
| 3450 | } |
| 3451 | |
| 3452 | /* nothing to free */ |
| 3453 | if (__improbable(n == 0)) { |
| 3454 | SK_DF(SK_VERB_MEM | SK_VERB_SYNC, "%s(%d) kr \"%s\" %s" , |
| 3455 | sk_proc_name_address(p), sk_proc_pid(p), kring->ckr_name, |
| 3456 | "nothing to free" ); |
| 3457 | goto done; |
| 3458 | } |
| 3459 | |
| 3460 | j = kring->ckr_khead; |
| 3461 | PP_LOCK(pp); |
| 3462 | while (n--) { |
| 3463 | int err; |
| 3464 | |
| 3465 | ksd = KR_KSD(kring, j); |
| 3466 | usd = KR_USD(kring, j); |
| 3467 | |
| 3468 | if (__improbable(!SD_VALID_METADATA(usd))) { |
| 3469 | SK_ERR("bad slot %d 0x%llx" , j, SK_KVA(ksd)); |
| 3470 | ret = EINVAL; |
| 3471 | break; |
| 3472 | } |
| 3473 | |
| 3474 | kqum = pp_remove_upp_locked(pp, usd->sd_md_idx, &err); |
| 3475 | if (__improbable(err != 0)) { |
| 3476 | SK_ERR("un-allocated packet or buflet %d %p" , |
| 3477 | usd->sd_md_idx, SK_KVA(kqum)); |
| 3478 | ret = EINVAL; |
| 3479 | break; |
| 3480 | } |
| 3481 | |
| 3482 | /* detach and free the packet */ |
| 3483 | kqum->qum_qflags &= ~QUM_F_FINALIZED; |
| 3484 | kqum->qum_ksd = NULL; |
| 3485 | ASSERT(!KSD_VALID_METADATA(ksd)); |
| 3486 | USD_DETACH_METADATA(usd); |
| 3487 | ASSERT(pp == kqum->qum_pp); |
| 3488 | ASSERT(nfree < kring->ckr_num_slots); |
| 3489 | kring->ckr_scratch[nfree++] = (uint64_t)kqum; |
| 3490 | j = SLOT_NEXT(i: j, lim: kring->ckr_lim); |
| 3491 | } |
| 3492 | PP_UNLOCK(pp); |
| 3493 | |
| 3494 | if (__probable(nfree > 0)) { |
| 3495 | pp_free_packet_batch(pp, &kring->ckr_scratch[0], nfree); |
| 3496 | } |
| 3497 | |
| 3498 | kring->ckr_khead = j; |
| 3499 | kring->ckr_ktail = SLOT_PREV(i: j, lim: kring->ckr_lim); |
| 3500 | |
| 3501 | done: |
| 3502 | return ret; |
| 3503 | } |
| 3504 | |
| 3505 | #define MAX_BUFLETS 64 |
| 3506 | static int |
| 3507 | alloc_packets(kern_pbufpool_t pp, uint64_t *buf_arr, bool large, uint32_t *ph_cnt) |
| 3508 | { |
| 3509 | int err; |
| 3510 | uint32_t need, need_orig, remain, alloced, i; |
| 3511 | uint64_t buflets[MAX_BUFLETS]; |
| 3512 | uint64_t *pkts; |
| 3513 | |
| 3514 | need_orig = *ph_cnt; |
| 3515 | err = kern_pbufpool_alloc_batch_nosleep(pbufpool: pp, bufcnt: large ? 0 : 1, array: buf_arr, size: ph_cnt); |
| 3516 | if (!large) { |
| 3517 | return err; |
| 3518 | } |
| 3519 | if (*ph_cnt == 0) { |
| 3520 | SK_ERR("failed to alloc %d packets for alloc ring: err %d" , |
| 3521 | need_orig, err); |
| 3522 | DTRACE_SKYWALK2(alloc__pkts__fail, uint32_t, need_orig, int, err); |
| 3523 | return err; |
| 3524 | } |
| 3525 | need = remain = *ph_cnt; |
| 3526 | alloced = 0; |
| 3527 | pkts = buf_arr; |
| 3528 | while (remain > 0) { |
| 3529 | uint32_t cnt, cnt_orig; |
| 3530 | |
| 3531 | cnt = MIN(remain, MAX_BUFLETS); |
| 3532 | cnt_orig = cnt; |
| 3533 | err = pp_alloc_buflet_batch(pp, array: buflets, size: &cnt, SKMEM_NOSLEEP, true); |
| 3534 | if (cnt == 0) { |
| 3535 | SK_ERR("failed to alloc %d buflets for alloc ring: " |
| 3536 | "remain %d, err %d" , cnt_orig, remain, err); |
| 3537 | DTRACE_SKYWALK3(alloc__bufs__fail, uint32_t, cnt_orig, |
| 3538 | uint32_t, remain, int, err); |
| 3539 | break; |
| 3540 | } |
| 3541 | for (i = 0; i < cnt; i++) { |
| 3542 | kern_packet_t ph = (kern_packet_t)pkts[i]; |
| 3543 | kern_buflet_t buf = (kern_buflet_t)buflets[i]; |
| 3544 | kern_buflet_t pbuf = kern_packet_get_next_buflet(ph, NULL); |
| 3545 | VERIFY(kern_packet_add_buflet(ph, pbuf, buf) == 0); |
| 3546 | buflets[i] = 0; |
| 3547 | } |
| 3548 | DTRACE_SKYWALK3(alloc__bufs, uint32_t, remain, uint32_t, cnt, |
| 3549 | uint32_t, cnt_orig); |
| 3550 | pkts += cnt; |
| 3551 | alloced += cnt; |
| 3552 | remain -= cnt; |
| 3553 | } |
| 3554 | /* free packets without attached buffers */ |
| 3555 | if (remain > 0) { |
| 3556 | DTRACE_SKYWALK1(remaining__pkts, uint32_t, remain); |
| 3557 | ASSERT(remain + alloced == need); |
| 3558 | pp_free_packet_batch(pp, pkts, remain); |
| 3559 | |
| 3560 | /* pp_free_packet_batch() should clear the pkts array */ |
| 3561 | for (i = 0; i < remain; i++) { |
| 3562 | ASSERT(pkts[i] == 0); |
| 3563 | } |
| 3564 | } |
| 3565 | *ph_cnt = alloced; |
| 3566 | if (*ph_cnt == 0) { |
| 3567 | err = ENOMEM; |
| 3568 | } else if (*ph_cnt < need_orig) { |
| 3569 | err = EAGAIN; |
| 3570 | } else { |
| 3571 | err = 0; |
| 3572 | } |
| 3573 | DTRACE_SKYWALK3(alloc__packets, uint32_t, need_orig, uint32_t, *ph_cnt, int, err); |
| 3574 | return err; |
| 3575 | } |
| 3576 | |
| 3577 | static int |
| 3578 | na_packet_pool_alloc_sync_common(struct __kern_channel_ring *kring, struct proc *p, |
| 3579 | uint32_t flags, bool large) |
| 3580 | { |
| 3581 | int b, err; |
| 3582 | uint32_t n = 0; |
| 3583 | slot_idx_t j; |
| 3584 | uint64_t now; |
| 3585 | uint32_t curr_ws, ph_needed, ph_cnt; |
| 3586 | struct __kern_slot_desc *ksd; |
| 3587 | struct __user_slot_desc *usd; |
| 3588 | struct __kern_quantum *kqum; |
| 3589 | kern_pbufpool_t pp = kring->ckr_pp; |
| 3590 | pid_t pid = proc_pid(p); |
| 3591 | |
| 3592 | /* packet pool list is protected by channel lock */ |
| 3593 | ASSERT(!KR_KERNEL_ONLY(kring)); |
| 3594 | ASSERT(!PP_KERNEL_ONLY(pp)); |
| 3595 | |
| 3596 | now = _net_uptime; |
| 3597 | if ((flags & NA_SYNCF_UPP_PURGE) != 0) { |
| 3598 | if (now - kring->ckr_sync_time >= na_upp_reap_interval) { |
| 3599 | kring->ckr_alloc_ws = na_upp_reap_min_pkts; |
| 3600 | } |
| 3601 | SK_DF(SK_VERB_MEM | SK_VERB_SYNC, |
| 3602 | "%s: purged curr_ws(%d)" , kring->ckr_name, |
| 3603 | kring->ckr_alloc_ws); |
| 3604 | return 0; |
| 3605 | } |
| 3606 | /* reclaim the completed slots */ |
| 3607 | kring->ckr_khead = kring->ckr_rhead; |
| 3608 | |
| 3609 | /* # of busy (unclaimed) slots */ |
| 3610 | b = kring->ckr_ktail - kring->ckr_khead; |
| 3611 | if (b < 0) { |
| 3612 | b += kring->ckr_num_slots; |
| 3613 | } |
| 3614 | |
| 3615 | curr_ws = kring->ckr_alloc_ws; |
| 3616 | if (flags & NA_SYNCF_FORCE_UPP_SYNC) { |
| 3617 | /* increment the working set by 50% */ |
| 3618 | curr_ws += (curr_ws >> 1); |
| 3619 | curr_ws = MIN(curr_ws, kring->ckr_lim); |
| 3620 | } else { |
| 3621 | if ((now - kring->ckr_sync_time >= na_upp_ws_hold_time) && |
| 3622 | (uint32_t)b >= (curr_ws >> 2)) { |
| 3623 | /* decrease the working set by 25% */ |
| 3624 | curr_ws -= (curr_ws >> 2); |
| 3625 | } |
| 3626 | } |
| 3627 | curr_ws = MAX(curr_ws, na_upp_alloc_lowat); |
| 3628 | if (curr_ws > (uint32_t)b) { |
| 3629 | n = curr_ws - b; |
| 3630 | } |
| 3631 | kring->ckr_alloc_ws = curr_ws; |
| 3632 | kring->ckr_sync_time = now; |
| 3633 | |
| 3634 | /* min with # of avail free slots (subtract busy from max) */ |
| 3635 | n = ph_needed = MIN(n, kring->ckr_lim - b); |
| 3636 | j = kring->ckr_ktail; |
| 3637 | SK_DF(SK_VERB_MEM | SK_VERB_SYNC, |
| 3638 | "%s: curr_ws(%d), n(%d)" , kring->ckr_name, curr_ws, n); |
| 3639 | |
| 3640 | if ((ph_cnt = ph_needed) == 0) { |
| 3641 | goto done; |
| 3642 | } |
| 3643 | |
| 3644 | err = alloc_packets(pp, buf_arr: kring->ckr_scratch, |
| 3645 | PP_HAS_BUFFER_ON_DEMAND(pp) && large, ph_cnt: &ph_cnt); |
| 3646 | if (__improbable(ph_cnt == 0)) { |
| 3647 | SK_ERR("kr 0x%llx failed to alloc %u packet s(%d)" , |
| 3648 | SK_KVA(kring), ph_needed, err); |
| 3649 | kring->ckr_err_stats.cres_pkt_alloc_failures += ph_needed; |
| 3650 | } else { |
| 3651 | /* |
| 3652 | * Add packets to the allocated list of user packet pool. |
| 3653 | */ |
| 3654 | pp_insert_upp_batch(pp, pid, array: kring->ckr_scratch, num: ph_cnt); |
| 3655 | } |
| 3656 | |
| 3657 | for (n = 0; n < ph_cnt; n++) { |
| 3658 | ksd = KR_KSD(kring, j); |
| 3659 | usd = KR_USD(kring, j); |
| 3660 | |
| 3661 | kqum = SK_PTR_ADDR_KQUM(kring->ckr_scratch[n]); |
| 3662 | kring->ckr_scratch[n] = 0; |
| 3663 | ASSERT(kqum != NULL); |
| 3664 | |
| 3665 | /* cleanup any stale slot mapping */ |
| 3666 | KSD_RESET(ksd); |
| 3667 | ASSERT(usd != NULL); |
| 3668 | USD_RESET(usd); |
| 3669 | |
| 3670 | /* |
| 3671 | * Since this packet is freshly allocated and we need to |
| 3672 | * have the flag set for the attach to succeed, just set |
| 3673 | * it here rather than calling __packet_finalize(). |
| 3674 | */ |
| 3675 | kqum->qum_qflags |= QUM_F_FINALIZED; |
| 3676 | |
| 3677 | /* Attach packet to slot */ |
| 3678 | KR_SLOT_ATTACH_METADATA(kring, ksd, kqum); |
| 3679 | /* |
| 3680 | * externalize the packet as it is being transferred to |
| 3681 | * user space. |
| 3682 | */ |
| 3683 | kr_externalize_metadata(kring, pp->pp_max_frags, kqum, p); |
| 3684 | |
| 3685 | j = SLOT_NEXT(i: j, lim: kring->ckr_lim); |
| 3686 | } |
| 3687 | done: |
| 3688 | ASSERT(j != kring->ckr_khead || j == kring->ckr_ktail); |
| 3689 | kring->ckr_ktail = j; |
| 3690 | return 0; |
| 3691 | } |
| 3692 | |
| 3693 | static int |
| 3694 | na_packet_pool_alloc_sync(struct __kern_channel_ring *kring, struct proc *p, |
| 3695 | uint32_t flags) |
| 3696 | { |
| 3697 | return na_packet_pool_alloc_sync_common(kring, p, flags, false); |
| 3698 | } |
| 3699 | |
| 3700 | static int |
| 3701 | na_packet_pool_alloc_large_sync(struct __kern_channel_ring *kring, struct proc *p, |
| 3702 | uint32_t flags) |
| 3703 | { |
| 3704 | return na_packet_pool_alloc_sync_common(kring, p, flags, true); |
| 3705 | } |
| 3706 | |
| 3707 | static int |
| 3708 | na_packet_pool_free_buf_sync(struct __kern_channel_ring *kring, struct proc *p, |
| 3709 | uint32_t flags) |
| 3710 | { |
| 3711 | #pragma unused(flags, p) |
| 3712 | int n, ret = 0; |
| 3713 | slot_idx_t j; |
| 3714 | struct __kern_slot_desc *ksd; |
| 3715 | struct __user_slot_desc *usd; |
| 3716 | struct __kern_buflet *kbft; |
| 3717 | struct kern_pbufpool *pp = kring->ckr_pp; |
| 3718 | |
| 3719 | /* packet pool list is protected by channel lock */ |
| 3720 | ASSERT(!KR_KERNEL_ONLY(kring)); |
| 3721 | |
| 3722 | /* # of new slots */ |
| 3723 | n = kring->ckr_rhead - kring->ckr_khead; |
| 3724 | if (n < 0) { |
| 3725 | n += kring->ckr_num_slots; |
| 3726 | } |
| 3727 | |
| 3728 | /* nothing to free */ |
| 3729 | if (__improbable(n == 0)) { |
| 3730 | SK_DF(SK_VERB_MEM | SK_VERB_SYNC, "%s(%d) kr \"%s\" %s" , |
| 3731 | sk_proc_name_address(p), sk_proc_pid(p), kring->ckr_name, |
| 3732 | "nothing to free" ); |
| 3733 | goto done; |
| 3734 | } |
| 3735 | |
| 3736 | j = kring->ckr_khead; |
| 3737 | while (n--) { |
| 3738 | int err; |
| 3739 | |
| 3740 | ksd = KR_KSD(kring, j); |
| 3741 | usd = KR_USD(kring, j); |
| 3742 | |
| 3743 | if (__improbable(!SD_VALID_METADATA(usd))) { |
| 3744 | SK_ERR("bad slot %d 0x%llx" , j, SK_KVA(ksd)); |
| 3745 | ret = EINVAL; |
| 3746 | break; |
| 3747 | } |
| 3748 | |
| 3749 | kbft = pp_remove_upp_bft(pp, usd->sd_md_idx, &err); |
| 3750 | if (__improbable(err != 0)) { |
| 3751 | SK_ERR("un-allocated buflet %d %p" , usd->sd_md_idx, |
| 3752 | SK_KVA(kbft)); |
| 3753 | ret = EINVAL; |
| 3754 | break; |
| 3755 | } |
| 3756 | |
| 3757 | /* detach and free the packet */ |
| 3758 | ASSERT(!KSD_VALID_METADATA(ksd)); |
| 3759 | USD_DETACH_METADATA(usd); |
| 3760 | pp_free_buflet(pp, kbft); |
| 3761 | j = SLOT_NEXT(i: j, lim: kring->ckr_lim); |
| 3762 | } |
| 3763 | kring->ckr_khead = j; |
| 3764 | kring->ckr_ktail = SLOT_PREV(i: j, lim: kring->ckr_lim); |
| 3765 | |
| 3766 | done: |
| 3767 | return ret; |
| 3768 | } |
| 3769 | |
| 3770 | static int |
| 3771 | na_packet_pool_alloc_buf_sync(struct __kern_channel_ring *kring, struct proc *p, |
| 3772 | uint32_t flags) |
| 3773 | { |
| 3774 | int b, err; |
| 3775 | uint32_t n = 0; |
| 3776 | slot_idx_t j; |
| 3777 | uint64_t now; |
| 3778 | uint32_t curr_ws, bh_needed, bh_cnt; |
| 3779 | struct __kern_slot_desc *ksd; |
| 3780 | struct __user_slot_desc *usd; |
| 3781 | struct __kern_buflet *kbft; |
| 3782 | struct __kern_buflet_ext *kbe; |
| 3783 | kern_pbufpool_t pp = kring->ckr_pp; |
| 3784 | pid_t pid = proc_pid(p); |
| 3785 | |
| 3786 | /* packet pool list is protected by channel lock */ |
| 3787 | ASSERT(!KR_KERNEL_ONLY(kring)); |
| 3788 | ASSERT(!PP_KERNEL_ONLY(pp)); |
| 3789 | |
| 3790 | now = _net_uptime; |
| 3791 | if ((flags & NA_SYNCF_UPP_PURGE) != 0) { |
| 3792 | if (now - kring->ckr_sync_time >= na_upp_reap_interval) { |
| 3793 | kring->ckr_alloc_ws = na_upp_reap_min_pkts; |
| 3794 | } |
| 3795 | SK_DF(SK_VERB_MEM | SK_VERB_SYNC, |
| 3796 | "%s: purged curr_ws(%d)" , kring->ckr_name, |
| 3797 | kring->ckr_alloc_ws); |
| 3798 | return 0; |
| 3799 | } |
| 3800 | /* reclaim the completed slots */ |
| 3801 | kring->ckr_khead = kring->ckr_rhead; |
| 3802 | |
| 3803 | /* # of busy (unclaimed) slots */ |
| 3804 | b = kring->ckr_ktail - kring->ckr_khead; |
| 3805 | if (b < 0) { |
| 3806 | b += kring->ckr_num_slots; |
| 3807 | } |
| 3808 | |
| 3809 | curr_ws = kring->ckr_alloc_ws; |
| 3810 | if (flags & NA_SYNCF_FORCE_UPP_SYNC) { |
| 3811 | /* increment the working set by 50% */ |
| 3812 | curr_ws += (curr_ws >> 1); |
| 3813 | curr_ws = MIN(curr_ws, kring->ckr_lim); |
| 3814 | } else { |
| 3815 | if ((now - kring->ckr_sync_time >= na_upp_ws_hold_time) && |
| 3816 | (uint32_t)b >= (curr_ws >> 2)) { |
| 3817 | /* decrease the working set by 25% */ |
| 3818 | curr_ws -= (curr_ws >> 2); |
| 3819 | } |
| 3820 | } |
| 3821 | curr_ws = MAX(curr_ws, na_upp_alloc_buf_lowat); |
| 3822 | if (curr_ws > (uint32_t)b) { |
| 3823 | n = curr_ws - b; |
| 3824 | } |
| 3825 | kring->ckr_alloc_ws = curr_ws; |
| 3826 | kring->ckr_sync_time = now; |
| 3827 | |
| 3828 | /* min with # of avail free slots (subtract busy from max) */ |
| 3829 | n = bh_needed = MIN(n, kring->ckr_lim - b); |
| 3830 | j = kring->ckr_ktail; |
| 3831 | SK_DF(SK_VERB_MEM | SK_VERB_SYNC, |
| 3832 | "%s: curr_ws(%d), n(%d)" , kring->ckr_name, curr_ws, n); |
| 3833 | |
| 3834 | if ((bh_cnt = bh_needed) == 0) { |
| 3835 | goto done; |
| 3836 | } |
| 3837 | |
| 3838 | err = pp_alloc_buflet_batch(pp, array: kring->ckr_scratch, size: &bh_cnt, |
| 3839 | SKMEM_NOSLEEP, false); |
| 3840 | |
| 3841 | if (bh_cnt == 0) { |
| 3842 | SK_ERR("kr 0x%llx failed to alloc %u buflets(%d)" , |
| 3843 | SK_KVA(kring), bh_needed, err); |
| 3844 | kring->ckr_err_stats.cres_pkt_alloc_failures += bh_needed; |
| 3845 | } |
| 3846 | |
| 3847 | for (n = 0; n < bh_cnt; n++) { |
| 3848 | struct __user_buflet *ubft; |
| 3849 | |
| 3850 | ksd = KR_KSD(kring, j); |
| 3851 | usd = KR_USD(kring, j); |
| 3852 | |
| 3853 | kbft = (struct __kern_buflet *)(kring->ckr_scratch[n]); |
| 3854 | kbe = (struct __kern_buflet_ext *)kbft; |
| 3855 | kring->ckr_scratch[n] = 0; |
| 3856 | ASSERT(kbft != NULL); |
| 3857 | |
| 3858 | /* |
| 3859 | * Add buflet to the allocated list of user packet pool. |
| 3860 | */ |
| 3861 | pp_insert_upp_bft(pp, kbft, pid); |
| 3862 | |
| 3863 | /* |
| 3864 | * externalize the buflet as it is being transferred to |
| 3865 | * user space. |
| 3866 | */ |
| 3867 | ubft = __DECONST(struct __user_buflet *, kbe->kbe_buf_user); |
| 3868 | KBUF_EXTERNALIZE(kbft, ubft, pp); |
| 3869 | |
| 3870 | /* cleanup any stale slot mapping */ |
| 3871 | KSD_RESET(ksd); |
| 3872 | ASSERT(usd != NULL); |
| 3873 | USD_RESET(usd); |
| 3874 | |
| 3875 | /* Attach buflet to slot */ |
| 3876 | KR_SLOT_ATTACH_BUF_METADATA(kring, ksd, kbuf: kbft); |
| 3877 | |
| 3878 | j = SLOT_NEXT(i: j, lim: kring->ckr_lim); |
| 3879 | } |
| 3880 | done: |
| 3881 | ASSERT(j != kring->ckr_khead || j == kring->ckr_ktail); |
| 3882 | kring->ckr_ktail = j; |
| 3883 | return 0; |
| 3884 | } |
| 3885 | |
| 3886 | /* The caller needs to ensure that the NA stays intact */ |
| 3887 | void |
| 3888 | na_drain(struct nexus_adapter *na, boolean_t purge) |
| 3889 | { |
| 3890 | /* will be cleared on next channel sync */ |
| 3891 | if (!(os_atomic_or_orig(&na->na_flags, NAF_DRAINING, relaxed) & |
| 3892 | NAF_DRAINING) && NA_IS_ACTIVE(na)) { |
| 3893 | SK_DF(SK_VERB_NA, "%s: %s na 0x%llx flags %b" , |
| 3894 | na->na_name, (purge ? "purging" : "pruning" ), |
| 3895 | SK_KVA(na), na->na_flags, NAF_BITS); |
| 3896 | |
| 3897 | /* reap (purge/prune) caches in the arena */ |
| 3898 | skmem_arena_reap(na->na_arena, purge); |
| 3899 | } |
| 3900 | } |
| 3901 | |