| 1 | /* |
| 2 | * Copyright (c) 2015-2022 Apple Inc. All rights reserved. |
| 3 | * |
| 4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ |
| 5 | * |
| 6 | * This file contains Original Code and/or Modifications of Original Code |
| 7 | * as defined in and that are subject to the Apple Public Source License |
| 8 | * Version 2.0 (the 'License'). You may not use this file except in |
| 9 | * compliance with the License. The rights granted to you under the License |
| 10 | * may not be used to create, or enable the creation or redistribution of, |
| 11 | * unlawful or unlicensed copies of an Apple operating system, or to |
| 12 | * circumvent, violate, or enable the circumvention or violation of, any |
| 13 | * terms of an Apple operating system software license agreement. |
| 14 | * |
| 15 | * Please obtain a copy of the License at |
| 16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. |
| 17 | * |
| 18 | * The Original Code and all software distributed under the License are |
| 19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER |
| 20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
| 21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, |
| 22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
| 23 | * Please see the License for the specific language governing rights and |
| 24 | * limitations under the License. |
| 25 | * |
| 26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ |
| 27 | */ |
| 28 | |
| 29 | /* |
| 30 | * Copyright (C) 2013-2014 Universita` di Pisa. All rights reserved. |
| 31 | * |
| 32 | * Redistribution and use in source and binary forms, with or without |
| 33 | * modification, are permitted provided that the following conditions |
| 34 | * are met: |
| 35 | * 1. Redistributions of source code must retain the above copyright |
| 36 | * notice, this list of conditions and the following disclaimer. |
| 37 | * 2. Redistributions in binary form must reproduce the above copyright |
| 38 | * notice, this list of conditions and the following disclaimer in the |
| 39 | * documentation and/or other materials provided with the distribution. |
| 40 | * |
| 41 | * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND |
| 42 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 43 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 44 | * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE |
| 45 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
| 46 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
| 47 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| 48 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
| 49 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
| 50 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
| 51 | * SUCH DAMAGE. |
| 52 | */ |
| 53 | |
| 54 | #include <skywalk/os_skywalk_private.h> |
| 55 | #include <skywalk/nexus/netif/nx_netif.h> |
| 56 | #include <skywalk/nexus/flowswitch/nx_flowswitch.h> |
| 57 | #include <mach/thread_act.h> |
| 58 | #include <kern/thread.h> |
| 59 | #include <kern/sched_prim.h> |
| 60 | |
| 61 | static void na_netif_compat_finalize(struct nexus_netif_adapter *, |
| 62 | struct ifnet *); |
| 63 | static errno_t nx_netif_compat_receive(struct ifnet *ifp, struct mbuf *m_head, |
| 64 | struct mbuf *m_tail, const struct ifnet_stat_increment_param *s, |
| 65 | boolean_t poll, struct thread *tp); |
| 66 | static int nx_netif_compat_catch_rx(struct nexus_netif_compat_adapter *na, |
| 67 | boolean_t enable); |
| 68 | static int nx_netif_compat_xmit_frame(struct nexus_adapter *, struct mbuf *, |
| 69 | struct __kern_packet *); |
| 70 | |
| 71 | static int nx_netif_compat_na_notify_tx(struct __kern_channel_ring *, |
| 72 | struct proc *, uint32_t); |
| 73 | static int nx_netif_compat_na_notify_rx(struct __kern_channel_ring *, |
| 74 | struct proc *, uint32_t); |
| 75 | static int nx_netif_compat_na_activate(struct nexus_adapter *, |
| 76 | na_activate_mode_t); |
| 77 | static int nx_netif_compat_na_txsync(struct __kern_channel_ring *, |
| 78 | struct proc *, uint32_t); |
| 79 | static int nx_netif_compat_na_rxsync(struct __kern_channel_ring *, |
| 80 | struct proc *, uint32_t); |
| 81 | static void nx_netif_compat_na_dtor(struct nexus_adapter *na); |
| 82 | |
| 83 | static void nx_netif_compat_tx_intr(struct ifnet *, enum txrx, uint32_t, |
| 84 | uint32_t *); |
| 85 | static inline struct mbuf *nx_netif_compat_ring_alloc(int, int, uint16_t); |
| 86 | static inline void nx_netif_compat_ring_free(struct mbuf *m); |
| 87 | static void nx_netif_compat_ringcb(caddr_t cl, uint32_t size, caddr_t arg); |
| 88 | |
| 89 | static uint32_t nx_netif_compat_tx_clean(struct netif_stats *nifs, |
| 90 | struct __kern_channel_ring *kring); |
| 91 | static void nx_netif_compat_set_tx_event(struct __kern_channel_ring *kring, |
| 92 | slot_idx_t khead); |
| 93 | |
| 94 | static struct nexus_netif_compat_adapter *na_netif_compat_alloc(zalloc_flags_t); |
| 95 | static void na_netif_compat_free(struct nexus_adapter *); |
| 96 | #if DEBUG || DEVELOPMENT |
| 97 | static struct mbuf *nx_netif_rx_split(struct mbuf *, uint32_t); |
| 98 | #endif /* DEBUG || DEVELOPMENT */ |
| 99 | |
| 100 | #define MBUF_TXQ(m) ((m)->m_pkthdr.pkt_flowid) |
| 101 | #define MBUF_RXQ(m) ((m)->m_pkthdr.pkt_flowid) |
| 102 | |
| 103 | #define NMB_PROPF_TX_NOTIFY 0x1 /* generate transmit event */ |
| 104 | #define NMB_FLAGS_MASK 0x0000ffff |
| 105 | #define NMB_INDEX_MASK 0xffff0000 |
| 106 | #define NMB_GET_FLAGS(p) (((uint32_t)(p) & NMB_FLAGS_MASK)) |
| 107 | #define NMB_SET_FLAGS(p, f) (((uint32_t)(p) & ~NMB_FLAGS_MASK) | (f)) |
| 108 | #define NMB_GET_INDEX(p) (((uint32_t)(p) & NMB_INDEX_MASK) >> 16) |
| 109 | #define NMB_SET_INDEX(p, i) (((uint32_t)(p) & ~NMB_INDEX_MASK) | (i << 16)) |
| 110 | |
| 111 | static SKMEM_TYPE_DEFINE(na_netif_compat_zone, struct nexus_netif_compat_adapter); |
| 112 | |
| 113 | static int netif_tx_event_mode = 0; |
| 114 | |
| 115 | #if (DEVELOPMENT || DEBUG) |
| 116 | SYSCTL_EXTENSIBLE_NODE(_kern_skywalk_netif, OID_AUTO, compat, |
| 117 | CTLFLAG_RW | CTLFLAG_LOCKED, |
| 118 | 0, "Skywalk netif Nexus legacy compatibility support" ); |
| 119 | SYSCTL_INT(_kern_skywalk_netif_compat, OID_AUTO, tx_event_mode, |
| 120 | CTLFLAG_RW | CTLFLAG_LOCKED, &netif_tx_event_mode, 0, "" ); |
| 121 | static uint32_t netif_rx_split = 0; |
| 122 | SYSCTL_UINT(_kern_skywalk_netif_compat, OID_AUTO, rx_split, |
| 123 | CTLFLAG_RW | CTLFLAG_LOCKED, &netif_rx_split, 0, "" ); |
| 124 | #endif /* !DEVELOPMENT && !DEBUG */ |
| 125 | |
| 126 | struct kern_nexus_domain_provider nx_netif_compat_prov_s = { |
| 127 | .nxdom_prov_name = NEXUS_PROVIDER_NET_IF_COMPAT, |
| 128 | .nxdom_prov_flags = NXDOMPROVF_DEFAULT, |
| 129 | .nxdom_prov_cb = { |
| 130 | .dp_cb_init = nx_netif_prov_init, |
| 131 | .dp_cb_fini = nx_netif_prov_fini, |
| 132 | .dp_cb_params = nx_netif_prov_params, |
| 133 | /* |
| 134 | * We must be using the native netif handlers below, |
| 135 | * since we act as the default domain provider; see |
| 136 | * kern_nexus_register_domain_provider(). |
| 137 | */ |
| 138 | .dp_cb_mem_new = nx_netif_prov_mem_new, |
| 139 | .dp_cb_config = nx_netif_prov_config, |
| 140 | .dp_cb_nx_ctor = nx_netif_prov_nx_ctor, |
| 141 | .dp_cb_nx_dtor = nx_netif_prov_nx_dtor, |
| 142 | .dp_cb_nx_mem_info = nx_netif_prov_nx_mem_info, |
| 143 | .dp_cb_nx_mib_get = nx_netif_prov_nx_mib_get, |
| 144 | .dp_cb_nx_stop = nx_netif_prov_nx_stop, |
| 145 | }, |
| 146 | }; |
| 147 | |
| 148 | struct nexus_ifnet_ops na_netif_compat_ops = { |
| 149 | .ni_finalize = na_netif_compat_finalize, |
| 150 | .ni_reap = nx_netif_reap, |
| 151 | .ni_dequeue = nx_netif_compat_tx_dequeue, |
| 152 | .ni_get_len = nx_netif_compat_tx_get_len, |
| 153 | }; |
| 154 | |
| 155 | #define SKMEM_TAG_NETIF_COMPAT_MIT "com.apple.skywalk.netif.compat.mit" |
| 156 | static SKMEM_TAG_DEFINE(skmem_tag_netif_compat_mit, SKMEM_TAG_NETIF_COMPAT_MIT); |
| 157 | |
| 158 | #define SKMEM_TAG_NETIF_COMPAT_POOL "com.apple.skywalk.netif.compat.pool" |
| 159 | static SKMEM_TAG_DEFINE(skmem_tag_netif_compat_pool, SKMEM_TAG_NETIF_COMPAT_POOL); |
| 160 | |
| 161 | void |
| 162 | nx_netif_compat_init(struct nxdom *nxdom) |
| 163 | { |
| 164 | _CASSERT(NETIF_COMPAT_MAX_MBUF_DATA_COPY <= NETIF_COMPAT_BUF_SIZE); |
| 165 | |
| 166 | /* |
| 167 | * We want nxprov_create() coming from userland to use the |
| 168 | * netif_compat domain provider, so install it as default. |
| 169 | * This is verified by the caller. |
| 170 | */ |
| 171 | (void) nxdom_prov_add(nxdom, &nx_netif_compat_prov_s); |
| 172 | } |
| 173 | |
| 174 | void |
| 175 | nx_netif_compat_fini(void) |
| 176 | { |
| 177 | (void) nxdom_prov_del(&nx_netif_compat_prov_s); |
| 178 | } |
| 179 | |
| 180 | static struct nexus_netif_compat_adapter * |
| 181 | na_netif_compat_alloc(zalloc_flags_t how) |
| 182 | { |
| 183 | struct nexus_netif_compat_adapter *nca; |
| 184 | |
| 185 | _CASSERT(offsetof(struct nexus_netif_compat_adapter, nca_up) == 0); |
| 186 | |
| 187 | nca = zalloc_flags(na_netif_compat_zone, how | Z_ZERO); |
| 188 | if (nca) { |
| 189 | SK_DF(SK_VERB_MEM, "nca %p ALLOC" , SK_KVA(nca)); |
| 190 | } |
| 191 | return nca; |
| 192 | } |
| 193 | |
| 194 | static void |
| 195 | na_netif_compat_free(struct nexus_adapter *na) |
| 196 | { |
| 197 | struct nexus_netif_compat_adapter *nca = |
| 198 | (struct nexus_netif_compat_adapter *)na; |
| 199 | |
| 200 | SK_LOCK_ASSERT_HELD(); |
| 201 | ASSERT(na->na_refcount == 0); |
| 202 | |
| 203 | SK_DF(SK_VERB_MEM, "nca [dev+host] %p FREE" , SK_KVA(nca)); |
| 204 | bzero(s: nca, n: sizeof(*nca)); |
| 205 | zfree(na_netif_compat_zone, nca); |
| 206 | } |
| 207 | |
| 208 | /* |
| 209 | * Callback invoked when the device driver frees an mbuf used |
| 210 | * by skywalk to transmit a packet. This usually happens when |
| 211 | * the NIC notifies the driver that transmission is completed. |
| 212 | */ |
| 213 | static void |
| 214 | nx_netif_compat_ringcb(caddr_t cl, uint32_t size, caddr_t arg) |
| 215 | { |
| 216 | #pragma unused(cl, size) |
| 217 | struct mbuf *m = (void *)arg; |
| 218 | struct ifnet *ifp = NULL; |
| 219 | struct netif_stats *nifs = NULL; |
| 220 | uintptr_t data; /* not used */ |
| 221 | uint32_t txq; |
| 222 | errno_t err; |
| 223 | |
| 224 | err = mbuf_get_tx_compl_data(m, arg: (uintptr_t *)&ifp, data: &data); |
| 225 | ASSERT(err == 0); |
| 226 | |
| 227 | nifs = &NX_NETIF_PRIVATE(NA(ifp)->nifna_up.na_nx)->nif_stats; |
| 228 | txq = MBUF_TXQ(m); |
| 229 | |
| 230 | for (;;) { |
| 231 | uint32_t p = 0, i, f; |
| 232 | |
| 233 | (void) mbuf_cluster_get_prop(mbuf: m, prop: &p); |
| 234 | f = NMB_GET_FLAGS(p); |
| 235 | i = NMB_GET_INDEX(p); |
| 236 | |
| 237 | SK_DF(SK_VERB_NETIF, "%s m 0x%llx txq %u i %u f 0x%x" , |
| 238 | if_name(ifp), SK_KVA(m), MBUF_TXQ(m), i, f); |
| 239 | |
| 240 | if (f & NMB_PROPF_TX_NOTIFY) { |
| 241 | uint32_t pn; |
| 242 | |
| 243 | f &= ~NMB_PROPF_TX_NOTIFY; |
| 244 | pn = NMB_SET_FLAGS(p, f); |
| 245 | |
| 246 | err = mbuf_cluster_set_prop(mbuf: m, oldprop: p, newprop: pn); |
| 247 | if (err != 0) { |
| 248 | if (err == EBUSY) { /* try again */ |
| 249 | continue; |
| 250 | } |
| 251 | /* TODO: adi@apple.com -- what to do? */ |
| 252 | SK_ERR("Failed to clear TX_NOTIFY " |
| 253 | "m 0x%llx i %u err %d" , SK_KVA(m), i, err); |
| 254 | } else { |
| 255 | nx_netif_compat_tx_intr(ifp, NR_TX, txq, NULL); |
| 256 | SK_DF(SK_VERB_NETIF | SK_VERB_INTR | SK_VERB_TX, |
| 257 | "%s TX irq m 0x%llx txq %u i %u f 0x%x" , |
| 258 | if_name(ifp), SK_KVA(m), MBUF_TXQ(m), i, f); |
| 259 | STATS_INC(nifs, NETIF_STATS_TX_IRQ); |
| 260 | } |
| 261 | } |
| 262 | break; |
| 263 | } |
| 264 | } |
| 265 | |
| 266 | /* Hoisted out of line to reduce kernel stack footprint */ |
| 267 | SK_NO_INLINE_ATTRIBUTE |
| 268 | static struct mbuf * |
| 269 | nx_netif_compat_ring_alloc(int how, int len, uint16_t idx) |
| 270 | { |
| 271 | struct mbuf *m = NULL; |
| 272 | size_t size = len; |
| 273 | uint32_t i; |
| 274 | |
| 275 | if (mbuf_ring_cluster_alloc(how, type: MBUF_TYPE_HEADER, mbuf: &m, |
| 276 | extfree: nx_netif_compat_ringcb, size: &size) != 0) { |
| 277 | return NULL; |
| 278 | } |
| 279 | |
| 280 | for (;;) { |
| 281 | uint32_t p = 0, pn; |
| 282 | int err; |
| 283 | |
| 284 | (void) mbuf_cluster_get_prop(mbuf: m, prop: &p); |
| 285 | pn = NMB_SET_FLAGS(p, 0); |
| 286 | pn = NMB_SET_INDEX(pn, idx); |
| 287 | |
| 288 | err = mbuf_cluster_set_prop(mbuf: m, oldprop: p, newprop: pn); |
| 289 | if (err != 0) { |
| 290 | if (err == EBUSY) { /* try again */ |
| 291 | continue; |
| 292 | } |
| 293 | SK_ERR("Failed to initialize properties m 0x%llx " |
| 294 | "err %d" , SK_KVA(m), err); |
| 295 | m_freem(m); |
| 296 | return NULL; |
| 297 | } |
| 298 | (void) mbuf_cluster_get_prop(mbuf: m, prop: &p); |
| 299 | i = NMB_GET_INDEX(p); |
| 300 | ASSERT(i == idx); |
| 301 | break; |
| 302 | } |
| 303 | |
| 304 | SK_DF(SK_VERB_MEM, "alloc m 0x%llx size %u i %u" , |
| 305 | SK_KVA(m), (uint32_t)size, i); |
| 306 | |
| 307 | return m; |
| 308 | } |
| 309 | |
| 310 | /* Hoisted out of line to reduce kernel stack footprint */ |
| 311 | SK_NO_INLINE_ATTRIBUTE |
| 312 | static void |
| 313 | nx_netif_compat_ring_free(struct mbuf *m) |
| 314 | { |
| 315 | if (m == NULL) { |
| 316 | return; |
| 317 | } |
| 318 | |
| 319 | for (;;) { |
| 320 | uint32_t p = 0; |
| 321 | int err; |
| 322 | |
| 323 | (void) mbuf_cluster_get_prop(mbuf: m, prop: &p); |
| 324 | err = mbuf_cluster_set_prop(mbuf: m, oldprop: p, newprop: 0); |
| 325 | if (err != 0) { |
| 326 | if (err == EBUSY) { /* try again */ |
| 327 | continue; |
| 328 | } |
| 329 | /* TODO: adi@apple.com -- what to do? */ |
| 330 | SK_ERR("Failed to clear properties m 0x%llx err %d" , |
| 331 | SK_KVA(m), err); |
| 332 | } |
| 333 | break; |
| 334 | } |
| 335 | m_freem(m); |
| 336 | } |
| 337 | |
| 338 | static void |
| 339 | nx_netif_compat_tx_intr(struct ifnet *ifp, enum txrx t, uint32_t q, |
| 340 | uint32_t *work_done) |
| 341 | { |
| 342 | struct nexus_adapter *na = &NA(ifp)->nifna_up; |
| 343 | |
| 344 | if (__improbable(!NA_IS_ACTIVE(na) || q >= na_get_nrings(na, t))) { |
| 345 | if (q >= na_get_nrings(na, t)) { |
| 346 | SK_ERR("na \"%s\" (0x%llx) invalid q %u >= %u" , |
| 347 | na->na_name, SK_KVA(na), q, na_get_nrings(na, t)); |
| 348 | } |
| 349 | } else { |
| 350 | (void) nx_netif_mit_tx_intr((NAKR(na, t) + q), kernproc, |
| 351 | 0, work_done); |
| 352 | } |
| 353 | } |
| 354 | |
| 355 | static int |
| 356 | nx_netif_compat_na_notify_tx(struct __kern_channel_ring *kring, |
| 357 | struct proc *p, uint32_t flags) |
| 358 | { |
| 359 | /* |
| 360 | * This should never get executed, as nothing should be invoking |
| 361 | * the TX ring notify callback. The compat adapter directly |
| 362 | * calls nx_netif_compat_tx_intr() for TX completion from within |
| 363 | * nx_netif_compat_ringcb(). |
| 364 | * |
| 365 | * If we ever get here, use the original na_notify callback |
| 366 | * saved during na_activate(). |
| 367 | */ |
| 368 | return kring->ckr_netif_notify(kring, p, flags); |
| 369 | } |
| 370 | |
| 371 | static int |
| 372 | nx_netif_compat_na_notify_rx(struct __kern_channel_ring *kring, |
| 373 | struct proc *p, uint32_t flags) |
| 374 | { |
| 375 | /* |
| 376 | * This should never get executed, as nothing should be invoking |
| 377 | * the RX ring notify callback. The compat adapter directly |
| 378 | * calls nx_netif_mit_rx_intr() for RX completion from within |
| 379 | * nx_netif_compat_receive(). |
| 380 | * |
| 381 | * If we ever get here, use the original na_notify callback |
| 382 | * saved during na_activate(). |
| 383 | */ |
| 384 | return kring->ckr_netif_notify(kring, p, flags); |
| 385 | } |
| 386 | |
| 387 | /* Enable/disable skywalk mode for a compat network interface. */ |
| 388 | static int |
| 389 | nx_netif_compat_na_activate(struct nexus_adapter *na, na_activate_mode_t mode) |
| 390 | { |
| 391 | struct nexus_netif_adapter *nifna = (struct nexus_netif_adapter *)na; |
| 392 | boolean_t tx_mit, rx_mit, tx_mit_simple, rx_mit_simple, rxpoll; |
| 393 | uint32_t limit = (uint32_t)sk_netif_compat_rx_mbq_limit; |
| 394 | struct nx_netif *nif = nifna->nifna_netif; |
| 395 | struct nexus_netif_compat_adapter *nca; |
| 396 | ifnet_t ifp = na->na_ifp; |
| 397 | uint32_t i, r; |
| 398 | int error; |
| 399 | |
| 400 | ASSERT(na->na_type == NA_NETIF_COMPAT_DEV); |
| 401 | ASSERT(!(na->na_flags & NAF_HOST_ONLY)); |
| 402 | |
| 403 | SK_DF(SK_VERB_NETIF, "na \"%s\" (0x%llx) %s" , na->na_name, |
| 404 | SK_KVA(na), na_activate_mode2str(mode)); |
| 405 | |
| 406 | nca = (struct nexus_netif_compat_adapter *)nifna; |
| 407 | |
| 408 | switch (mode) { |
| 409 | case NA_ACTIVATE_MODE_ON: |
| 410 | ASSERT(SKYWALK_CAPABLE(na->na_ifp)); |
| 411 | |
| 412 | nx_netif_mit_config(nifna, &tx_mit, &tx_mit_simple, |
| 413 | &rx_mit, &rx_mit_simple); |
| 414 | |
| 415 | /* |
| 416 | * Init the mitigation support on all the dev TX rings. |
| 417 | */ |
| 418 | if (na_get_nrings(na, t: NR_TX) != 0 && tx_mit) { |
| 419 | nifna->nifna_tx_mit = |
| 420 | skn_alloc_type_array(tx_on, struct nx_netif_mit, |
| 421 | na_get_nrings(na, NR_TX), Z_WAITOK, |
| 422 | skmem_tag_netif_compat_mit); |
| 423 | if (nifna->nifna_tx_mit == NULL) { |
| 424 | SK_ERR("TX mitigation allocation failed" ); |
| 425 | error = ENOMEM; |
| 426 | goto out; |
| 427 | } |
| 428 | } else { |
| 429 | ASSERT(nifna->nifna_tx_mit == NULL); |
| 430 | } |
| 431 | |
| 432 | /* |
| 433 | * Init either poller or mitigation support on all the |
| 434 | * dev RX rings; they're mutually exclusive and poller |
| 435 | * takes precedence. |
| 436 | */ |
| 437 | rxpoll = (net_rxpoll && (ifp->if_eflags & IFEF_RXPOLL)); |
| 438 | if (rxpoll) { |
| 439 | int err; |
| 440 | __unused kern_return_t kret; |
| 441 | thread_precedence_policy_data_t info; |
| 442 | |
| 443 | ASSERT((ifp->if_xflags & IFXF_LEGACY) == 0); |
| 444 | ASSERT(ifp->if_input_poll != NULL); |
| 445 | ASSERT(ifp->if_input_ctl != NULL); |
| 446 | if ((err = |
| 447 | kernel_thread_start(continuation: netif_rxpoll_compat_thread_func, |
| 448 | parameter: ifp, new_thread: &ifp->if_poll_thread)) != KERN_SUCCESS) { |
| 449 | panic_plain("%s: ifp=%p couldn't get a poll " |
| 450 | " thread; err=%d" , __func__, ifp, err); |
| 451 | /* NOTREACHED */ |
| 452 | __builtin_unreachable(); |
| 453 | } |
| 454 | VERIFY(ifp->if_poll_thread != NULL); |
| 455 | |
| 456 | /* wait until thread is ready */ |
| 457 | lck_mtx_lock(lck: &ifp->if_poll_lock); |
| 458 | while (!(ifp->if_poll_flags & IF_POLLF_READY)) { |
| 459 | (void) assert_wait(event: &ifp->if_poll_flags, |
| 460 | THREAD_UNINT); |
| 461 | lck_mtx_unlock(lck: &ifp->if_poll_lock); |
| 462 | (void) thread_block(THREAD_CONTINUE_NULL); |
| 463 | lck_mtx_lock(lck: &ifp->if_poll_lock); |
| 464 | } |
| 465 | lck_mtx_unlock(lck: &ifp->if_poll_lock); |
| 466 | |
| 467 | bzero(s: &info, n: sizeof(info)); |
| 468 | info.importance = 1; |
| 469 | kret = thread_policy_set(thread: ifp->if_poll_thread, |
| 470 | THREAD_PRECEDENCE_POLICY, policy_info: (thread_policy_t)&info, |
| 471 | THREAD_PRECEDENCE_POLICY_COUNT); |
| 472 | ASSERT(kret == KERN_SUCCESS); |
| 473 | limit = if_rcvq_maxlen; |
| 474 | (void) netif_rxpoll_set_params(ifp, NULL, FALSE); |
| 475 | ASSERT(nifna->nifna_rx_mit == NULL); |
| 476 | } else if (rx_mit) { |
| 477 | nifna->nifna_rx_mit = |
| 478 | skn_alloc_type_array(rx_on, struct nx_netif_mit, |
| 479 | na_get_nrings(na, NR_RX), Z_WAITOK, |
| 480 | skmem_tag_netif_compat_mit); |
| 481 | if (nifna->nifna_rx_mit == NULL) { |
| 482 | SK_ERR("RX mitigation allocation failed" ); |
| 483 | if (nifna->nifna_tx_mit != NULL) { |
| 484 | skn_free_type_array(rx_fail, |
| 485 | struct nx_netif_mit, |
| 486 | na_get_nrings(na, NR_TX), |
| 487 | nifna->nifna_tx_mit); |
| 488 | nifna->nifna_tx_mit = NULL; |
| 489 | } |
| 490 | error = ENOMEM; |
| 491 | goto out; |
| 492 | } |
| 493 | } |
| 494 | |
| 495 | /* intercept na_notify callback on the TX rings */ |
| 496 | for (r = 0; r < na_get_nrings(na, t: NR_TX); r++) { |
| 497 | na->na_tx_rings[r].ckr_netif_notify = |
| 498 | na->na_tx_rings[r].ckr_na_notify; |
| 499 | na->na_tx_rings[r].ckr_na_notify = |
| 500 | nx_netif_compat_na_notify_tx; |
| 501 | if (nifna->nifna_tx_mit != NULL) { |
| 502 | nx_netif_mit_init(nif, na->na_ifp, |
| 503 | &nifna->nifna_tx_mit[r], |
| 504 | &na->na_tx_rings[r], tx_mit_simple); |
| 505 | } |
| 506 | } |
| 507 | |
| 508 | /* intercept na_notify callback on the RX rings */ |
| 509 | for (r = 0; r < na_get_nrings(na, t: NR_RX); r++) { |
| 510 | na->na_rx_rings[r].ckr_netif_notify = |
| 511 | na->na_rx_rings[r].ckr_na_notify; |
| 512 | na->na_rx_rings[r].ckr_na_notify = |
| 513 | nx_netif_compat_na_notify_rx; |
| 514 | if (nifna->nifna_rx_mit != NULL) { |
| 515 | nx_netif_mit_init(nif, na->na_ifp, |
| 516 | &nifna->nifna_rx_mit[r], |
| 517 | &na->na_rx_rings[r], rx_mit_simple); |
| 518 | } |
| 519 | } |
| 520 | /* |
| 521 | * Initialize the rx queue, as nx_netif_compat_receive() can |
| 522 | * be called as soon as nx_netif_compat_catch_rx() returns. |
| 523 | */ |
| 524 | for (r = 0; r < na_get_nrings(na, t: NR_RX); r++) { |
| 525 | struct __kern_channel_ring *kr = &na->na_rx_rings[r]; |
| 526 | |
| 527 | nx_mbq_safe_init(kr, q: &kr->ckr_rx_queue, lim: limit, |
| 528 | lck_grp: &nexus_mbq_lock_group, lck_attr: &nexus_lock_attr); |
| 529 | SK_DF(SK_VERB_NETIF, |
| 530 | "na \"%s\" (0x%llx) initialized kr \"%s\" " |
| 531 | "(0x%llx) krflags 0x%b" , na->na_name, SK_KVA(na), |
| 532 | kr->ckr_name, SK_KVA(kr), kr->ckr_flags, CKRF_BITS); |
| 533 | } |
| 534 | |
| 535 | /* |
| 536 | * Prepare packet buffers for the tx rings; don't preallocate |
| 537 | * the mbufs here, leave this to nx_netif_compat_na_txsync(). |
| 538 | */ |
| 539 | for (r = 0; r < na_get_nrings(na, t: NR_TX); r++) { |
| 540 | na->na_tx_rings[r].ckr_tx_pool = NULL; |
| 541 | } |
| 542 | |
| 543 | for (r = 0; r < na_get_nrings(na, t: NR_TX); r++) { |
| 544 | na->na_tx_rings[r].ckr_tx_pool = |
| 545 | skn_alloc_type_array(tx_pool_on, struct mbuf *, |
| 546 | na_get_nslots(na, NR_TX), Z_WAITOK, |
| 547 | skmem_tag_netif_compat_pool); |
| 548 | if (na->na_tx_rings[r].ckr_tx_pool == NULL) { |
| 549 | SK_ERR("ckr_tx_pool allocation failed" ); |
| 550 | error = ENOMEM; |
| 551 | goto free_tx_pools; |
| 552 | } |
| 553 | } |
| 554 | |
| 555 | /* Prepare to intercept incoming traffic. */ |
| 556 | error = nx_netif_compat_catch_rx(na: nca, TRUE); |
| 557 | if (error != 0) { |
| 558 | SK_ERR("RX intercept failed (%d)" , error); |
| 559 | goto uncatch; |
| 560 | } |
| 561 | nx_netif_filter_enable(nifna->nifna_netif); |
| 562 | nx_netif_flow_enable(nifna->nifna_netif); |
| 563 | os_atomic_or(&na->na_flags, NAF_ACTIVE, relaxed); |
| 564 | break; |
| 565 | |
| 566 | case NA_ACTIVATE_MODE_DEFUNCT: |
| 567 | ASSERT(SKYWALK_CAPABLE(na->na_ifp)); |
| 568 | break; |
| 569 | |
| 570 | case NA_ACTIVATE_MODE_OFF: |
| 571 | /* |
| 572 | * Note that here we cannot assert SKYWALK_CAPABLE() |
| 573 | * as we're called in the destructor path. |
| 574 | */ |
| 575 | os_atomic_andnot(&na->na_flags, NAF_ACTIVE, relaxed); |
| 576 | nx_netif_flow_disable(nifna->nifna_netif); |
| 577 | nx_netif_filter_disable(nifna->nifna_netif); |
| 578 | |
| 579 | /* |
| 580 | * Signal the poller thread to terminate itself, and |
| 581 | * wait for it to exit. |
| 582 | */ |
| 583 | if (ifp->if_poll_thread != THREAD_NULL) { |
| 584 | ASSERT(net_rxpoll && (ifp->if_eflags & IFEF_RXPOLL)); |
| 585 | ASSERT((ifp->if_xflags & IFXF_LEGACY) == 0); |
| 586 | lck_mtx_lock_spin(lck: &ifp->if_poll_lock); |
| 587 | ifp->if_poll_flags |= IF_POLLF_TERMINATING; |
| 588 | wakeup_one(chan: (caddr_t)&ifp->if_poll_thread); |
| 589 | lck_mtx_unlock(lck: &ifp->if_poll_lock); |
| 590 | |
| 591 | /* wait for poller thread to terminate */ |
| 592 | lck_mtx_lock(lck: &ifp->if_poll_lock); |
| 593 | while (ifp->if_poll_thread != THREAD_NULL) { |
| 594 | SK_DF(SK_VERB_NETIF_POLL, |
| 595 | "%s: waiting for poller thread to terminate" , |
| 596 | if_name(ifp)); |
| 597 | (void) msleep(chan: &ifp->if_poll_thread, |
| 598 | mtx: &ifp->if_poll_lock, pri: (PZERO - 1), |
| 599 | wmesg: "netif_poll_thread_exit" , NULL); |
| 600 | } |
| 601 | lck_mtx_unlock(lck: &ifp->if_poll_lock); |
| 602 | SK_DF(SK_VERB_NETIF_POLL, |
| 603 | "%s: poller thread termination complete" , |
| 604 | if_name(ifp)); |
| 605 | } |
| 606 | |
| 607 | /* Do not intercept packets on the rx path. */ |
| 608 | (void) nx_netif_compat_catch_rx(na: nca, FALSE); |
| 609 | |
| 610 | /* Free the mbufs going to the channel rings */ |
| 611 | for (r = 0; r < na_get_nrings(na, t: NR_RX); r++) { |
| 612 | nx_mbq_safe_purge(q: &na->na_rx_rings[r].ckr_rx_queue); |
| 613 | nx_mbq_safe_destroy(q: &na->na_rx_rings[r].ckr_rx_queue); |
| 614 | } |
| 615 | |
| 616 | /* reset all TX notify callbacks */ |
| 617 | for (r = 0; r < na_get_nrings(na, t: NR_TX); r++) { |
| 618 | na->na_tx_rings[r].ckr_na_notify = |
| 619 | na->na_tx_rings[r].ckr_netif_notify; |
| 620 | na->na_tx_rings[r].ckr_netif_notify = NULL; |
| 621 | if (nifna->nifna_tx_mit != NULL) { |
| 622 | na->na_tx_rings[r].ckr_netif_mit_stats = NULL; |
| 623 | nx_netif_mit_cleanup(&nifna->nifna_tx_mit[r]); |
| 624 | } |
| 625 | } |
| 626 | |
| 627 | if (nifna->nifna_tx_mit != NULL) { |
| 628 | skn_free_type_array(tx_off, struct nx_netif_mit, |
| 629 | na_get_nrings(na, NR_TX), nifna->nifna_tx_mit); |
| 630 | nifna->nifna_tx_mit = NULL; |
| 631 | } |
| 632 | |
| 633 | /* reset all RX notify callbacks */ |
| 634 | for (r = 0; r < na_get_nrings(na, t: NR_RX); r++) { |
| 635 | na->na_rx_rings[r].ckr_na_notify = |
| 636 | na->na_rx_rings[r].ckr_netif_notify; |
| 637 | na->na_rx_rings[r].ckr_netif_notify = NULL; |
| 638 | if (nifna->nifna_rx_mit != NULL) { |
| 639 | na->na_rx_rings[r].ckr_netif_mit_stats = NULL; |
| 640 | nx_netif_mit_cleanup(&nifna->nifna_rx_mit[r]); |
| 641 | } |
| 642 | } |
| 643 | if (nifna->nifna_rx_mit != NULL) { |
| 644 | skn_free_type_array(rx_off, struct nx_netif_mit, |
| 645 | na_get_nrings(na, NR_RX), nifna->nifna_rx_mit); |
| 646 | nifna->nifna_rx_mit = NULL; |
| 647 | } |
| 648 | |
| 649 | for (r = 0; r < na_get_nrings(na, t: NR_TX); r++) { |
| 650 | for (i = 0; i < na_get_nslots(na, t: NR_TX); i++) { |
| 651 | nx_netif_compat_ring_free(m: na-> |
| 652 | na_tx_rings[r].ckr_tx_pool[i]); |
| 653 | na->na_tx_rings[r].ckr_tx_pool[i] = NULL; |
| 654 | } |
| 655 | skn_free_type_array(tx_pool_off, |
| 656 | struct mbuf *, na_get_nslots(na, NR_TX), |
| 657 | na->na_tx_rings[r].ckr_tx_pool); |
| 658 | } |
| 659 | break; |
| 660 | |
| 661 | default: |
| 662 | VERIFY(0); |
| 663 | /* NOTREACHED */ |
| 664 | __builtin_unreachable(); |
| 665 | } |
| 666 | |
| 667 | return 0; |
| 668 | |
| 669 | uncatch: |
| 670 | (void) nx_netif_compat_catch_rx(na: nca, FALSE); |
| 671 | |
| 672 | free_tx_pools: |
| 673 | for (r = 0; r < na_get_nrings(na, t: NR_TX); r++) { |
| 674 | if (na->na_tx_rings[r].ckr_tx_pool == NULL) { |
| 675 | continue; |
| 676 | } |
| 677 | for (i = 0; i < na_get_nslots(na, t: NR_TX); i++) { |
| 678 | nx_netif_compat_ring_free( |
| 679 | m: na->na_tx_rings[r].ckr_tx_pool[i]); |
| 680 | na->na_tx_rings[r].ckr_tx_pool[i] = NULL; |
| 681 | } |
| 682 | skn_free_type_array(tx_pool, struct mbuf *, |
| 683 | na_get_nslots(na, NR_TX), na->na_tx_rings[r].ckr_tx_pool); |
| 684 | na->na_tx_rings[r].ckr_tx_pool = NULL; |
| 685 | } |
| 686 | if (nifna->nifna_tx_mit != NULL) { |
| 687 | for (r = 0; r < na_get_nrings(na, t: NR_TX); r++) { |
| 688 | nx_netif_mit_cleanup(&nifna->nifna_tx_mit[r]); |
| 689 | } |
| 690 | skn_free_type_array(tx, struct nx_netif_mit, |
| 691 | na_get_nrings(na, NR_TX), nifna->nifna_tx_mit); |
| 692 | nifna->nifna_tx_mit = NULL; |
| 693 | } |
| 694 | if (nifna->nifna_rx_mit != NULL) { |
| 695 | for (r = 0; r < na_get_nrings(na, t: NR_RX); r++) { |
| 696 | nx_netif_mit_cleanup(&nifna->nifna_rx_mit[r]); |
| 697 | } |
| 698 | skn_free_type_array(rx, struct nx_netif_mit, |
| 699 | na_get_nrings(na, NR_RX), nifna->nifna_rx_mit); |
| 700 | nifna->nifna_rx_mit = NULL; |
| 701 | } |
| 702 | for (r = 0; r < na_get_nrings(na, t: NR_RX); r++) { |
| 703 | nx_mbq_safe_destroy(q: &na->na_rx_rings[r].ckr_rx_queue); |
| 704 | } |
| 705 | out: |
| 706 | |
| 707 | return error; |
| 708 | } |
| 709 | |
| 710 | /* |
| 711 | * Record completed transmissions and update ktail. |
| 712 | * |
| 713 | * The oldest tx buffer not yet completed is at ckr_ktail + 1, |
| 714 | * ckr_khead is the first unsent buffer. |
| 715 | */ |
| 716 | /* Hoisted out of line to reduce kernel stack footprint */ |
| 717 | SK_NO_INLINE_ATTRIBUTE |
| 718 | static uint32_t |
| 719 | nx_netif_compat_tx_clean(struct netif_stats *nifs, |
| 720 | struct __kern_channel_ring *kring) |
| 721 | { |
| 722 | const slot_idx_t lim = kring->ckr_lim; |
| 723 | slot_idx_t nm_i = SLOT_NEXT(i: kring->ckr_ktail, lim); |
| 724 | slot_idx_t khead = kring->ckr_khead; |
| 725 | uint32_t n = 0; |
| 726 | struct mbuf **ckr_tx_pool = kring->ckr_tx_pool; |
| 727 | |
| 728 | while (nm_i != khead) { /* buffers not completed */ |
| 729 | struct mbuf *m = ckr_tx_pool[nm_i]; |
| 730 | |
| 731 | if (__improbable(m == NULL)) { |
| 732 | /* this is done, try to replenish the entry */ |
| 733 | VERIFY(nm_i <= UINT16_MAX); |
| 734 | ckr_tx_pool[nm_i] = m = |
| 735 | nx_netif_compat_ring_alloc(M_WAITOK, |
| 736 | len: kring->ckr_max_pkt_len, idx: (uint16_t)nm_i); |
| 737 | if (__improbable(m == NULL)) { |
| 738 | STATS_INC(nifs, NETIF_STATS_DROP_NOMEM_MBUF); |
| 739 | STATS_INC(nifs, NETIF_STATS_DROP); |
| 740 | SK_DF(SK_VERB_MEM, |
| 741 | "mbuf allocation failed (slot %u)" , nm_i); |
| 742 | /* XXX how do we proceed ? break ? */ |
| 743 | return -ENOMEM; |
| 744 | } |
| 745 | } else if (mbuf_ring_cluster_is_active(mbuf: m)) { |
| 746 | break; /* This mbuf is still busy */ |
| 747 | } |
| 748 | n++; |
| 749 | nm_i = SLOT_NEXT(i: nm_i, lim); |
| 750 | } |
| 751 | kring->ckr_ktail = SLOT_PREV(i: nm_i, lim); |
| 752 | |
| 753 | SK_RDF(SK_VERB_NETIF, 10, "kr \"%s\" (0x%llx) tx completed [%u] -> " |
| 754 | "kh %u kt %u | rh %u rt %u" , kring->ckr_name, SK_KVA(kring), |
| 755 | n, kring->ckr_khead, kring->ckr_ktail, |
| 756 | kring->ckr_rhead, kring->ckr_rtail); |
| 757 | |
| 758 | return n; |
| 759 | } |
| 760 | |
| 761 | /* Hoisted out of line to reduce kernel stack footprint */ |
| 762 | SK_NO_INLINE_ATTRIBUTE |
| 763 | static void |
| 764 | nx_netif_compat_set_tx_event(struct __kern_channel_ring *kring, |
| 765 | slot_idx_t khead) |
| 766 | { |
| 767 | const slot_idx_t lim = kring->ckr_lim; |
| 768 | slot_idx_t ntc = SLOT_NEXT(i: kring->ckr_ktail, lim); /* next to clean */ |
| 769 | struct mbuf *m; |
| 770 | slot_idx_t e; |
| 771 | |
| 772 | if (ntc == khead) { |
| 773 | return; /* all buffers are free */ |
| 774 | } |
| 775 | /* |
| 776 | * We have pending packet in the driver between ckr_ktail+1 and |
| 777 | * ckr_khead, and we have to choose one of these slots to generate |
| 778 | * a TX notification. There is a race, but this is only called |
| 779 | * within TX sync which does a double check. |
| 780 | */ |
| 781 | if (__probable(netif_tx_event_mode == 0)) { |
| 782 | /* |
| 783 | * Choose the first pending slot, to be safe against drivers |
| 784 | * reordering mbuf transmissions. |
| 785 | */ |
| 786 | e = ntc; |
| 787 | } else { |
| 788 | /* |
| 789 | * Choose a slot in the middle, so that we don't risk ending |
| 790 | * up in a situation where the client continuously wake up, |
| 791 | * fills one or a few TX slots and go to sleep again. |
| 792 | */ |
| 793 | slot_idx_t n = lim + 1; |
| 794 | |
| 795 | if (khead >= ntc) { |
| 796 | e = (khead + ntc) >> 1; |
| 797 | } else { /* wrap around */ |
| 798 | e = (khead + n + ntc) >> 1; |
| 799 | if (e >= n) { |
| 800 | e -= n; |
| 801 | } |
| 802 | } |
| 803 | |
| 804 | if (__improbable(e >= n)) { |
| 805 | SK_ERR("This cannot happen" ); |
| 806 | e = 0; |
| 807 | } |
| 808 | } |
| 809 | m = kring->ckr_tx_pool[e]; |
| 810 | |
| 811 | for (;;) { |
| 812 | uint32_t p = 0, pn, i, f; |
| 813 | int err; |
| 814 | |
| 815 | (void) mbuf_cluster_get_prop(mbuf: m, prop: &p); |
| 816 | f = NMB_GET_FLAGS(p); |
| 817 | i = NMB_GET_INDEX(p); |
| 818 | |
| 819 | if (f & NMB_PROPF_TX_NOTIFY) { |
| 820 | /* |
| 821 | * This can happen if there is already an event |
| 822 | * on the ring slot 'e': There is nothing to do. |
| 823 | */ |
| 824 | SK_DF(SK_VERB_NETIF | SK_VERB_NOTIFY | SK_VERB_TX, |
| 825 | "TX_NOTIFY already set at %u m 0x%llx kc %u ntc %u" , |
| 826 | e, SK_KVA(m), khead, ntc); |
| 827 | return; |
| 828 | } |
| 829 | |
| 830 | f |= NMB_PROPF_TX_NOTIFY; |
| 831 | pn = NMB_SET_FLAGS(p, f); |
| 832 | |
| 833 | err = mbuf_cluster_set_prop(mbuf: m, oldprop: p, newprop: pn); |
| 834 | if (err != 0) { |
| 835 | if (err == EBUSY) { /* try again */ |
| 836 | continue; |
| 837 | } |
| 838 | /* TODO: adi@apple.com -- what to do? */ |
| 839 | SK_ERR("Failed to set TX_NOTIFY at %u m 0x%llx kh %u " |
| 840 | "ntc %u, err %d" , e, SK_KVA(m), khead, ntc, err); |
| 841 | } else { |
| 842 | SK_DF(SK_VERB_NETIF | SK_VERB_NOTIFY | SK_VERB_TX, |
| 843 | "Request TX_NOTIFY at %u m 0x%llx kh %u ntc %u" , |
| 844 | e, SK_KVA(m), khead, ntc); |
| 845 | } |
| 846 | break; |
| 847 | } |
| 848 | } |
| 849 | |
| 850 | #if SK_LOG |
| 851 | /* Hoisted out of line to reduce kernel stack footprint */ |
| 852 | SK_LOG_ATTRIBUTE |
| 853 | static void |
| 854 | nx_netif_compat_na_txsync_log(struct __kern_channel_ring *kring, |
| 855 | struct proc *p, uint32_t flags, slot_idx_t nm_i) |
| 856 | { |
| 857 | SK_DF(SK_VERB_NETIF | SK_VERB_SYNC | SK_VERB_TX, |
| 858 | "%s(%d) kr \"%s\" (0x%llx) krflags 0x%b ring %u flags 0x%x " |
| 859 | "nm_i %u, kh %u kt %u | rh %u rt %u" , |
| 860 | sk_proc_name_address(p), sk_proc_pid(p), kring->ckr_name, |
| 861 | SK_KVA(kring), kring->ckr_flags, CKRF_BITS, kring->ckr_ring_id, |
| 862 | flags, nm_i, kring->ckr_khead, kring->ckr_ktail, |
| 863 | kring->ckr_rhead, kring->ckr_rtail); |
| 864 | } |
| 865 | #endif /* SK_LOG */ |
| 866 | |
| 867 | /* |
| 868 | * nx_netif_compat_na_txsync() transforms packets into mbufs and passes |
| 869 | * them to the device driver. |
| 870 | */ |
| 871 | static int |
| 872 | nx_netif_compat_na_txsync(struct __kern_channel_ring *kring, struct proc *p, |
| 873 | uint32_t flags) |
| 874 | { |
| 875 | #pragma unused(p) |
| 876 | struct nexus_adapter *na = KRNA(kring); |
| 877 | struct netif_stats *nifs = &NX_NETIF_PRIVATE(na->na_nx)->nif_stats; |
| 878 | slot_idx_t nm_i; /* index into the channel ring */ // j |
| 879 | const slot_idx_t head = kring->ckr_rhead; |
| 880 | uint32_t slot_count = 0; |
| 881 | uint32_t byte_count = 0; |
| 882 | |
| 883 | STATS_INC(nifs, NETIF_STATS_TX_SYNC); |
| 884 | |
| 885 | /* update our work timestamp */ |
| 886 | na->na_work_ts = _net_uptime; |
| 887 | |
| 888 | /* |
| 889 | * First part: process new packets to send. |
| 890 | */ |
| 891 | nm_i = kring->ckr_khead; |
| 892 | if (nm_i != head) { /* we have new packets to send */ |
| 893 | while (nm_i != head) { |
| 894 | struct __kern_slot_desc *sd = KR_KSD(kring, nm_i); |
| 895 | |
| 896 | /* device-specific */ |
| 897 | struct mbuf *m; |
| 898 | int tx_ret; |
| 899 | /* |
| 900 | * Take a mbuf from the tx pool (replenishing the pool |
| 901 | * entry if necessary) and copy in the user packet. |
| 902 | */ |
| 903 | VERIFY(nm_i <= UINT16_MAX); |
| 904 | m = kring->ckr_tx_pool[nm_i]; |
| 905 | if (__improbable(m == NULL)) { |
| 906 | kring->ckr_tx_pool[nm_i] = m = |
| 907 | nx_netif_compat_ring_alloc(M_WAITOK, |
| 908 | len: kring->ckr_max_pkt_len, idx: (uint16_t)nm_i); |
| 909 | if (__improbable(m == NULL)) { |
| 910 | STATS_INC(nifs, NETIF_STATS_DROP); |
| 911 | STATS_INC(nifs, |
| 912 | NETIF_STATS_DROP_NOMEM_MBUF); |
| 913 | SK_DF(SK_VERB_MEM, |
| 914 | "%s(%d) kr \"%s\" (0x%llx) " |
| 915 | "krflags 0x%b ckr_tx_pool[%u] " |
| 916 | "allocation failed" , |
| 917 | sk_proc_name_address(p), |
| 918 | sk_proc_pid(p), kring->ckr_name, |
| 919 | SK_KVA(kring), kring->ckr_flags, |
| 920 | CKRF_BITS, nm_i); |
| 921 | /* |
| 922 | * Here we could schedule a timer |
| 923 | * which retries to replenish after |
| 924 | * a while, and notifies the client |
| 925 | * when it manages to replenish some |
| 926 | * slot. In any cae we break early |
| 927 | * to avoid crashes. |
| 928 | */ |
| 929 | break; |
| 930 | } |
| 931 | STATS_INC(nifs, NETIF_STATS_TX_REPL); |
| 932 | } |
| 933 | |
| 934 | byte_count += sd->sd_pkt->pkt_length; |
| 935 | slot_count++; |
| 936 | |
| 937 | /* |
| 938 | * We should ask notifications when CS_REPORT is set, |
| 939 | * or roughly every half ring. To optimize this, |
| 940 | * we set a notification event when the client runs |
| 941 | * out of TX ring space, or when transmission fails. |
| 942 | * In the latter case we also break early. |
| 943 | */ |
| 944 | tx_ret = nx_netif_compat_xmit_frame(na, m, sd->sd_pkt); |
| 945 | if (__improbable(tx_ret)) { |
| 946 | SK_RD(5, "start_xmit failed: err %d " |
| 947 | "[nm_i %u, h %u, kt %u]" , |
| 948 | tx_ret, nm_i, head, kring->ckr_ktail); |
| 949 | /* |
| 950 | * No room for this mbuf in the device driver. |
| 951 | * Request a notification FOR A PREVIOUS MBUF, |
| 952 | * then call nx_netif_compat_tx_clean(kring) to |
| 953 | * do the double check and see if we can free |
| 954 | * more buffers. If there is space continue, |
| 955 | * else break; NOTE: the double check is |
| 956 | * necessary if the problem occurs in the |
| 957 | * txsync call after selrecord(). Also, we |
| 958 | * need some way to tell the caller that not |
| 959 | * all buffers were queued onto the device |
| 960 | * (this was not a problem with native skywalk |
| 961 | * driver where space is preallocated). The |
| 962 | * bridge has a similar problem and we solve |
| 963 | * it there by dropping the excess packets. |
| 964 | */ |
| 965 | nx_netif_compat_set_tx_event(kring, khead: nm_i); |
| 966 | if (nx_netif_compat_tx_clean(nifs, kring)) { |
| 967 | /* space now available */ |
| 968 | continue; |
| 969 | } else { |
| 970 | break; |
| 971 | } |
| 972 | } |
| 973 | nm_i = SLOT_NEXT(i: nm_i, lim: kring->ckr_lim); |
| 974 | STATS_INC(nifs, NETIF_STATS_TX_PACKETS); |
| 975 | } |
| 976 | |
| 977 | /* |
| 978 | * Update khead to the next slot to transmit; Here nm_i |
| 979 | * is not necesarrily head, we could break early. |
| 980 | */ |
| 981 | kring->ckr_khead = nm_i; |
| 982 | |
| 983 | kr_update_stats(kring, slot_count, byte_count); |
| 984 | } |
| 985 | |
| 986 | /* |
| 987 | * Second, reclaim completed buffers |
| 988 | */ |
| 989 | if ((flags & NA_SYNCF_FORCE_RECLAIM) || kr_txempty(kring)) { |
| 990 | /* |
| 991 | * No more available slots? Set a notification event on a |
| 992 | * channel slot that will be cleaned in the future. No |
| 993 | * doublecheck is performed, since nx_netif_compat_na_txsync() |
| 994 | * will be called twice by ch_event(). |
| 995 | */ |
| 996 | nx_netif_compat_set_tx_event(kring, khead: nm_i); |
| 997 | } |
| 998 | kring->ckr_pending_intr = 0; |
| 999 | |
| 1000 | #if SK_LOG |
| 1001 | if (__improbable((sk_verbose & SK_VERB_NETIF) != 0)) { |
| 1002 | nx_netif_compat_na_txsync_log(kring, p, flags, nm_i); |
| 1003 | } |
| 1004 | #endif /* SK_LOG */ |
| 1005 | |
| 1006 | (void) nx_netif_compat_tx_clean(nifs, kring); |
| 1007 | |
| 1008 | return 0; |
| 1009 | } |
| 1010 | |
| 1011 | #if SK_LOG |
| 1012 | /* Hoisted out of line to reduce kernel stack footprint */ |
| 1013 | SK_LOG_ATTRIBUTE |
| 1014 | static void |
| 1015 | nx_netif_compat_receive_log1(const struct __kern_channel_ring *kring, |
| 1016 | struct nx_mbq *q) |
| 1017 | { |
| 1018 | SK_RD(10, "kr \"%s\" (0x%llx) krflags 0x%b FULL " |
| 1019 | "(qlen %u qsize %llu), kc %u kt %u" , kring->ckr_name, |
| 1020 | SK_KVA(kring), kring->ckr_flags, CKRF_BITS, nx_mbq_len(q), |
| 1021 | nx_mbq_size(q), kring->ckr_khead, kring->ckr_ktail); |
| 1022 | } |
| 1023 | |
| 1024 | /* Hoisted out of line to reduce kernel stack footprint */ |
| 1025 | SK_LOG_ATTRIBUTE |
| 1026 | static void |
| 1027 | nx_netif_compat_receive_log2(const struct __kern_channel_ring *kring, |
| 1028 | struct nx_mbq *q, const struct ifnet_stat_increment_param *s) |
| 1029 | { |
| 1030 | SK_RDF(SK_VERB_RX, 10, "kr \"%s\" (0x%llx) krflags 0x%b OK, " |
| 1031 | "added %u packets %u bytes, now qlen %u qsize %llu" , |
| 1032 | kring->ckr_name, SK_KVA(kring), kring->ckr_flags, CKRF_BITS, |
| 1033 | s->packets_in, s->bytes_in, nx_mbq_len(q), nx_mbq_size(q)); |
| 1034 | } |
| 1035 | #endif /* SK_LOG */ |
| 1036 | |
| 1037 | /* |
| 1038 | * This is the default RX path for the compat netif nexus. Packets |
| 1039 | * are enqueued and later extracted by nx_netif_compat_na_rxsync(). |
| 1040 | */ |
| 1041 | /* TODO: adi@apple.com -- implement chaining */ |
| 1042 | static errno_t |
| 1043 | nx_netif_compat_receive(struct ifnet *ifp, struct mbuf *m_head, |
| 1044 | struct mbuf *m_tail, const struct ifnet_stat_increment_param *s, |
| 1045 | boolean_t poll, struct thread *tp) |
| 1046 | { |
| 1047 | #pragma unused(tp) |
| 1048 | boolean_t ifp_rxpoll = ((ifp->if_eflags & IFEF_RXPOLL) && net_rxpoll); |
| 1049 | struct nexus_adapter *na = &NA(ifp)->nifna_up; |
| 1050 | struct __kern_channel_ring *kring; |
| 1051 | struct netif_stats *nifs; |
| 1052 | uint32_t r, work_done; |
| 1053 | unsigned int qlimit; |
| 1054 | struct nx_mbq *q; |
| 1055 | errno_t err = 0; |
| 1056 | |
| 1057 | /* update our work timestamp */ |
| 1058 | na->na_work_ts = _net_uptime; |
| 1059 | |
| 1060 | if (__improbable(m_head == NULL)) { |
| 1061 | ASSERT(m_tail == NULL); |
| 1062 | ASSERT(poll); |
| 1063 | ASSERT(s->bytes_in == 0); |
| 1064 | ASSERT(s->packets_in == 0); |
| 1065 | } |
| 1066 | |
| 1067 | /* BEGIN CSTYLED */ |
| 1068 | /* |
| 1069 | * TODO: adi@apple.com -- this needs to be revisited once we |
| 1070 | * have a clear definition of how multiple RX rings are mapped |
| 1071 | * to flows; this would involve the hardware/driver doing some |
| 1072 | * kind of classification and RSS-like demuxing. |
| 1073 | * |
| 1074 | * When we enable that, we'll need to consider sifting thru the |
| 1075 | * mbuf chain we get from the caller, and enqueue them across |
| 1076 | * per-ring temporary mbuf queue (along with marking the ring |
| 1077 | * indicating pending packets.) During second stage processing, |
| 1078 | * we'll issue nx_netif_mit_rx_intr() on each marked ring to |
| 1079 | * dispatch the packets upstream. |
| 1080 | * |
| 1081 | * r = MBUF_RXQ(m); |
| 1082 | * |
| 1083 | * if (r >= na->na_num_rx_rings) |
| 1084 | * r = r % na->na_num_rx_rings; |
| 1085 | * |
| 1086 | * kring = &na->na_rx_rings[r]; |
| 1087 | * q = &kring->ckr_rx_queue; |
| 1088 | * |
| 1089 | * For now, target only the first RX ring (ring 0). |
| 1090 | */ |
| 1091 | /* END CSTYLED */ |
| 1092 | r = 0; /* receive ring number */ |
| 1093 | kring = &na->na_rx_rings[r]; |
| 1094 | |
| 1095 | ASSERT(na->na_type == NA_NETIF_COMPAT_DEV); |
| 1096 | nifs = &NX_NETIF_PRIVATE(na->na_nx)->nif_stats; |
| 1097 | |
| 1098 | if (__improbable((!NA_IS_ACTIVE(na)) || KR_DROP(kring))) { |
| 1099 | /* BEGIN CSTYLED */ |
| 1100 | /* |
| 1101 | * If we deal with multiple rings, change above to: |
| 1102 | * |
| 1103 | * if (!NA_IS_ACTIVE(na) || r >= na_get_nrings(na, NR_RX))) |
| 1104 | * |
| 1105 | * then here do: |
| 1106 | * |
| 1107 | * if (r >= na_get_nrings(na, NR_RX)) { |
| 1108 | * SK_ERR("na \"%s\" (0x%llx) invalid r %u >= %u", |
| 1109 | * na->na_name, SK_KVA(na), r, |
| 1110 | * na_get_nrings(na, NR_RX)); |
| 1111 | * } |
| 1112 | */ |
| 1113 | /* END CSTYLED */ |
| 1114 | m_freem_list(m_head); |
| 1115 | if (!NA_IS_ACTIVE(na)) { |
| 1116 | STATS_ADD(nifs, NETIF_STATS_DROP_NA_INACTIVE, |
| 1117 | s->packets_in); |
| 1118 | } else if (KR_DROP(kring)) { |
| 1119 | STATS_ADD(nifs, NETIF_STATS_DROP_KRDROP_MODE, |
| 1120 | s->packets_in); |
| 1121 | } |
| 1122 | STATS_ADD(nifs, NETIF_STATS_DROP, s->packets_in); |
| 1123 | err = ENXIO; |
| 1124 | goto done; |
| 1125 | } |
| 1126 | if (__improbable(m_head == NULL)) { |
| 1127 | goto send_packets; |
| 1128 | } |
| 1129 | |
| 1130 | q = &kring->ckr_rx_queue; |
| 1131 | nx_mbq_lock_spin(q); |
| 1132 | qlimit = nx_mbq_limit(q); |
| 1133 | if (ifp_rxpoll) { |
| 1134 | /* |
| 1135 | * qlimit of the receive queue is much smaller when the |
| 1136 | * interface is in oppurtunistic polling mode. In this case |
| 1137 | * when the interface is operating in interrupt mode, |
| 1138 | * a sudden burst of input packets can cause the receive queue |
| 1139 | * to quickly buildup due to scheduling latency in waking up |
| 1140 | * the poller thread. To avoid drops here due to this latency |
| 1141 | * we provide a leeway on the qlimit. |
| 1142 | */ |
| 1143 | qlimit <<= 5; |
| 1144 | } |
| 1145 | if (__improbable(nx_mbq_len(q) > qlimit)) { |
| 1146 | #if SK_LOG |
| 1147 | if (__improbable(sk_verbose != 0)) { |
| 1148 | nx_netif_compat_receive_log1(kring, q); |
| 1149 | } |
| 1150 | #endif /* SK_LOG */ |
| 1151 | nx_mbq_unlock(q); |
| 1152 | m_freem_list(m_head); |
| 1153 | STATS_ADD(nifs, NETIF_STATS_DROP_RXQ_OVFL, s->packets_in); |
| 1154 | STATS_ADD(nifs, NETIF_STATS_DROP, s->packets_in); |
| 1155 | goto send_packets; |
| 1156 | } |
| 1157 | nx_mbq_enq_multi(q, m_head, m_tail, cnt: s->packets_in, size: s->bytes_in); |
| 1158 | |
| 1159 | #if SK_LOG |
| 1160 | if (__improbable((sk_verbose & SK_VERB_NETIF) != 0)) { |
| 1161 | nx_netif_compat_receive_log2(kring, q, s); |
| 1162 | } |
| 1163 | #endif /* SK_LOG */ |
| 1164 | |
| 1165 | nx_mbq_unlock(q); |
| 1166 | |
| 1167 | (void) ifnet_stat_increment_in(interface: ifp, packets_in: s->packets_in, bytes_in: s->bytes_in, |
| 1168 | errors_in: s->errors_in); |
| 1169 | |
| 1170 | if (poll) { |
| 1171 | /* update incremental poll stats */ |
| 1172 | PKTCNTR_ADD(&ifp->if_poll_tstats, s->packets_in, s->bytes_in); |
| 1173 | } |
| 1174 | |
| 1175 | send_packets: |
| 1176 | /* |
| 1177 | * if the interface supports oppurtunistic input polling, then the |
| 1178 | * input packet processing is performed in context of the poller thread. |
| 1179 | */ |
| 1180 | if (!poll && ifp_rxpoll) { |
| 1181 | /* wakeup the poller thread */ |
| 1182 | ifnet_poll(ifp); |
| 1183 | } else { |
| 1184 | /* |
| 1185 | * wakeup the mitigation thread if needed to perform input |
| 1186 | * packet processing. |
| 1187 | * if the interface supports oppurtunistic input polling, then |
| 1188 | * mitigation thread is not created and the input packet |
| 1189 | * processing happens in context of the poller thread. |
| 1190 | */ |
| 1191 | err = nx_netif_mit_rx_intr((NAKR(na, t: NR_RX) + r), kernproc, 0, |
| 1192 | &work_done); |
| 1193 | } |
| 1194 | done: |
| 1195 | return err; |
| 1196 | } |
| 1197 | |
| 1198 | #if SK_LOG |
| 1199 | /* Hoisted out of line to reduce kernel stack footprint */ |
| 1200 | SK_LOG_ATTRIBUTE |
| 1201 | static void |
| 1202 | nx_netif_compat_na_rxsync_log(const struct __kern_channel_ring *kring, |
| 1203 | struct proc *p, uint32_t flags, slot_idx_t nm_i) |
| 1204 | { |
| 1205 | SK_DF(SK_VERB_NETIF | SK_VERB_SYNC | SK_VERB_RX, |
| 1206 | "%s(%d) kr \"%s\" (0x%llx) krflags 0x%b " |
| 1207 | "ring %u flags 0x%x nm_i %u kt %u" , sk_proc_name_address(p), |
| 1208 | sk_proc_pid(p), kring->ckr_name, SK_KVA(kring), kring->ckr_flags, |
| 1209 | CKRF_BITS, kring->ckr_ring_id, flags, nm_i, kring->ckr_ktail); |
| 1210 | } |
| 1211 | #endif /* SK_LOG */ |
| 1212 | |
| 1213 | #if DEBUG || DEVELOPMENT |
| 1214 | /* |
| 1215 | * Split an mbuf chain at offset "split", such that the first mbuf |
| 1216 | * is a zero-length M_PKTHDR, followed by the rest of the mbufs. |
| 1217 | * Typically, the "split" value is equal to the size of the link |
| 1218 | * layer header, e.g. Ethernet header. |
| 1219 | */ |
| 1220 | static struct mbuf * |
| 1221 | nx_netif_rx_split(struct mbuf *m0, uint32_t split) |
| 1222 | { |
| 1223 | struct mbuf *m = m0; |
| 1224 | |
| 1225 | if (split == 0) { |
| 1226 | split = MHLEN; |
| 1227 | M_PREPEND(m, split, M_DONTWAIT, 0); |
| 1228 | } else { |
| 1229 | m->m_data -= split; |
| 1230 | m->m_len += split; |
| 1231 | m_pktlen(m) += split; |
| 1232 | |
| 1233 | ASSERT((uintptr_t)m->m_data >= (uintptr_t)mbuf_datastart(m)); |
| 1234 | ASSERT((uintptr_t)m->m_data < ((uintptr_t)mbuf_datastart(m) + |
| 1235 | mbuf_maxlen(m))); |
| 1236 | } |
| 1237 | if (m != NULL) { |
| 1238 | struct mbuf *n = m_split(m, split, M_DONTWAIT); |
| 1239 | if (n == NULL) { |
| 1240 | m_freem(m); |
| 1241 | return NULL; |
| 1242 | } |
| 1243 | m0 = m; |
| 1244 | ASSERT((uint32_t)m->m_len == split); |
| 1245 | m->m_data += split; |
| 1246 | m->m_len -= split; |
| 1247 | while (m->m_next != NULL) { |
| 1248 | m = m->m_next; |
| 1249 | } |
| 1250 | m->m_next = n; |
| 1251 | m = m0; |
| 1252 | m_pktlen(m) = m_length2(m, NULL); |
| 1253 | } |
| 1254 | |
| 1255 | return m; |
| 1256 | } |
| 1257 | #endif /* DEBUG || DEVELOPMENT */ |
| 1258 | |
| 1259 | /* |
| 1260 | * nx_netif_compat_na_rxsync() extracts mbufs from the queue filled by |
| 1261 | * nx_netif_compat_receive() and puts their content in the channel |
| 1262 | * receive ring. |
| 1263 | * |
| 1264 | * Accesses to kring are serialized via kring->ckr_rx_queue lock, because |
| 1265 | * the rx handler is asynchronous, |
| 1266 | */ |
| 1267 | static int |
| 1268 | nx_netif_compat_na_rxsync(struct __kern_channel_ring *kring, struct proc *p, |
| 1269 | uint32_t flags) |
| 1270 | { |
| 1271 | #pragma unused(p) |
| 1272 | struct nexus_adapter *na = KRNA(kring); |
| 1273 | struct nexus_netif_adapter *nifna = (struct nexus_netif_adapter *)na; |
| 1274 | struct nx_netif *nif = nifna->nifna_netif; |
| 1275 | slot_idx_t nm_i; /* index into the channel ring */ |
| 1276 | struct netif_stats *nifs = &NX_NETIF_PRIVATE(na->na_nx)->nif_stats; |
| 1277 | uint32_t npkts = 0; |
| 1278 | uint32_t byte_count = 0; |
| 1279 | const slot_idx_t lim = kring->ckr_lim; |
| 1280 | const slot_idx_t head = kring->ckr_rhead; |
| 1281 | boolean_t force_update = ((flags & NA_SYNCF_FORCE_READ) || |
| 1282 | kring->ckr_pending_intr != 0); |
| 1283 | struct mbuf *m; |
| 1284 | uint32_t n; |
| 1285 | uint32_t avail; /* in slots */ |
| 1286 | int err, mlen; |
| 1287 | boolean_t attach_mbuf = FALSE; |
| 1288 | struct nx_mbq *q, tmpq; |
| 1289 | struct kern_pbufpool *pp = kring->ckr_pp; |
| 1290 | uint32_t ph_cnt, i = 0; |
| 1291 | |
| 1292 | ASSERT(pp->pp_max_frags == 1); |
| 1293 | ASSERT(head <= lim); |
| 1294 | |
| 1295 | /* |
| 1296 | * First part: skip past packets that userspace has released. |
| 1297 | * This can possibly make room for the second part. |
| 1298 | * equivalent to kr_reclaim() |
| 1299 | */ |
| 1300 | if (kring->ckr_khead != head) { |
| 1301 | kring->ckr_khead = head; |
| 1302 | /* ensure global visibility */ |
| 1303 | os_atomic_thread_fence(seq_cst); |
| 1304 | } |
| 1305 | |
| 1306 | STATS_INC(nifs, NETIF_STATS_RX_SYNC); |
| 1307 | |
| 1308 | /* |
| 1309 | * Second part: import newly received packets. |
| 1310 | */ |
| 1311 | if (!force_update) { |
| 1312 | return 0; |
| 1313 | } |
| 1314 | |
| 1315 | /* update our work timestamp */ |
| 1316 | na->na_work_ts = _net_uptime; |
| 1317 | |
| 1318 | /* first empty slot in the receive ring */ |
| 1319 | nm_i = kring->ckr_ktail; |
| 1320 | |
| 1321 | /* |
| 1322 | * Compute the available space (in bytes) in this ring. |
| 1323 | * The first slot that is not considered in is the one |
| 1324 | * before ckr_khead. |
| 1325 | */ |
| 1326 | avail = kr_available_slots_rxring(rxkring: kring); |
| 1327 | if (__improbable(avail == 0)) { |
| 1328 | return 0; |
| 1329 | } |
| 1330 | |
| 1331 | if (NA_KERNEL_ONLY(na)) { |
| 1332 | ASSERT(na->na_ifp != NULL && |
| 1333 | fsw_ifp_to_fsw(na->na_ifp) != NULL); |
| 1334 | /* |
| 1335 | * We are not supporting attachment to bridge flowswitch |
| 1336 | * for now, until we support PKT_F_MBUF_DATA packets |
| 1337 | * in bridge flowswitch. |
| 1338 | */ |
| 1339 | attach_mbuf = TRUE; |
| 1340 | } |
| 1341 | |
| 1342 | /* |
| 1343 | * Quickly move all of ckr_rx_queue to a temporary queue to dequeue |
| 1344 | * from. For each mbuf, attach or copy it to the packet attached |
| 1345 | * to the slot. Release the lock while we're doing that, to allow |
| 1346 | * for the input thread to enqueue. |
| 1347 | */ |
| 1348 | q = &kring->ckr_rx_queue; |
| 1349 | nx_mbq_init(q: &tmpq, NX_MBQ_NO_LIMIT); |
| 1350 | nx_mbq_lock_spin(q); |
| 1351 | nx_mbq_concat(&tmpq, q); |
| 1352 | nx_mbq_unlock(q); |
| 1353 | |
| 1354 | if (__improbable(nx_mbq_len(&tmpq) == 0)) { |
| 1355 | return 0; |
| 1356 | } |
| 1357 | |
| 1358 | ph_cnt = MIN(avail, nx_mbq_len(&tmpq)); |
| 1359 | err = kern_pbufpool_alloc_batch_nosleep(pbufpool: pp, bufcnt: 1, array: kring->ckr_scratch, |
| 1360 | size: &ph_cnt); |
| 1361 | if (err == ENOMEM) { |
| 1362 | SK_DF(SK_VERB_MEM, "%s(%p) failed to alloc %d pkts for kr " |
| 1363 | "0x%llu" , sk_proc_name_address(p), sk_proc_pid(p), ph_cnt, |
| 1364 | SK_KVA(kring)); |
| 1365 | goto done; |
| 1366 | } |
| 1367 | ASSERT(ph_cnt != 0); |
| 1368 | |
| 1369 | for (n = 0; (n < ph_cnt) && |
| 1370 | ((m = nx_mbq_deq(q: &tmpq)) != NULL); n++) { |
| 1371 | struct __kern_slot_desc *ksd = KR_KSD(kring, nm_i); |
| 1372 | struct __kern_packet *pkt; |
| 1373 | kern_packet_t ph; |
| 1374 | uint8_t hlen; |
| 1375 | uint16_t tag; |
| 1376 | char *h; |
| 1377 | |
| 1378 | ASSERT(m->m_flags & M_PKTHDR); |
| 1379 | mlen = m_pktlen(m); |
| 1380 | h = m->m_pkthdr.pkt_hdr; |
| 1381 | if (__improbable(mlen == 0 || h == NULL || |
| 1382 | h < (char *)mbuf_datastart(m) || h > (char *)m->m_data)) { |
| 1383 | STATS_INC(nifs, NETIF_STATS_DROP_BADLEN); |
| 1384 | SK_RD(5, "kr \"%s\" (0x%llx) m 0x%llx len %d" |
| 1385 | "bad pkt_hdr" , kring->ckr_name, |
| 1386 | SK_KVA(kring), SK_KVA(m), mlen); |
| 1387 | m_freem(m); |
| 1388 | m = NULL; |
| 1389 | continue; |
| 1390 | } |
| 1391 | |
| 1392 | hlen = (uint8_t)(m->m_data - (uintptr_t)h); |
| 1393 | mlen += hlen; |
| 1394 | |
| 1395 | #if DEBUG || DEVELOPMENT |
| 1396 | if (__improbable(netif_rx_split != 0)) { |
| 1397 | /* callee frees mbuf upon failure */ |
| 1398 | if ((m = nx_netif_rx_split(m, hlen)) == NULL) { |
| 1399 | continue; |
| 1400 | } |
| 1401 | |
| 1402 | ASSERT((uintptr_t)m->m_data >= |
| 1403 | (uintptr_t)mbuf_datastart(m)); |
| 1404 | ASSERT((uintptr_t)m->m_data < |
| 1405 | ((uintptr_t)mbuf_datastart(m) + |
| 1406 | mbuf_maxlen(m))); |
| 1407 | } |
| 1408 | #endif /* DEBUG || DEVELOPMENT */ |
| 1409 | |
| 1410 | ph = kring->ckr_scratch[i]; |
| 1411 | ASSERT(ph != 0); |
| 1412 | kring->ckr_scratch[i] = 0; |
| 1413 | pkt = SK_PTR_ADDR_KPKT(ph); |
| 1414 | ++i; |
| 1415 | |
| 1416 | /* |
| 1417 | * Wind back the data pointer to include any frame headers |
| 1418 | * as part of the copy below. The header length is then |
| 1419 | * stored in the corresponding metadata area of the buffer. |
| 1420 | */ |
| 1421 | m->m_data -= hlen; |
| 1422 | m->m_len += hlen; |
| 1423 | m->m_pkthdr.len += hlen; |
| 1424 | ASSERT(mlen == m->m_pkthdr.len); |
| 1425 | |
| 1426 | pkt->pkt_link_flags = 0; |
| 1427 | if (m->m_flags & M_HASFCS) { |
| 1428 | pkt->pkt_link_flags |= PKT_LINKF_ETHFCS; |
| 1429 | } |
| 1430 | if (mbuf_get_vlan_tag(mbuf: m, vlan: &tag) == 0) { |
| 1431 | (void) kern_packet_set_vlan_tag(SK_PKT2PH(pkt), tag, |
| 1432 | FALSE); |
| 1433 | } |
| 1434 | SK_DF(SK_VERB_NETIF | SK_VERB_SYNC | SK_VERB_RX, |
| 1435 | "kr \"%s\" (0x%llx) m 0x%llx idx %u slot_len %d" , |
| 1436 | kring->ckr_name, SK_KVA(kring), SK_KVA(m), nm_i, mlen); |
| 1437 | |
| 1438 | if (__probable(attach_mbuf)) { |
| 1439 | STATS_INC(nifs, NETIF_STATS_RX_COPY_ATTACH); |
| 1440 | err = __packet_initialize_with_mbuf(pkt, mbuf: m, headroom: 0, l2len: hlen); |
| 1441 | VERIFY(err == 0); |
| 1442 | } else if (__probable(mlen <= (int)PP_BUF_SIZE_DEF(pp))) { |
| 1443 | STATS_INC(nifs, NETIF_STATS_RX_COPY_DIRECT); |
| 1444 | /* |
| 1445 | * We're sending this up to a user channel opened |
| 1446 | * directly to the netif; copy everything. |
| 1447 | */ |
| 1448 | err = __packet_set_headroom(ph, headroom: 0); |
| 1449 | VERIFY(err == 0); |
| 1450 | err = __packet_set_link_header_length(ph, len: hlen); |
| 1451 | VERIFY(err == 0); |
| 1452 | nif->nif_pkt_copy_from_mbuf(NR_RX, ph, 0, m, 0, |
| 1453 | mlen, FALSE, 0); |
| 1454 | /* finalize and attach the packet */ |
| 1455 | err = __packet_finalize(ph); |
| 1456 | VERIFY(err == 0); |
| 1457 | m_freem(m); |
| 1458 | m = NULL; |
| 1459 | } else { |
| 1460 | STATS_INC(nifs, NETIF_STATS_DROP_BADLEN); |
| 1461 | STATS_INC(nifs, NETIF_STATS_DROP); |
| 1462 | m_freem(m); |
| 1463 | m = NULL; |
| 1464 | kern_pbufpool_free(pbufpool: pp, ph); |
| 1465 | ph = 0; |
| 1466 | pkt = NULL; |
| 1467 | continue; |
| 1468 | } |
| 1469 | |
| 1470 | err = KR_SLOT_ATTACH_METADATA(kring, ksd, |
| 1471 | kqum: (struct __kern_quantum *)pkt); |
| 1472 | ASSERT(err == 0); |
| 1473 | |
| 1474 | byte_count += mlen; |
| 1475 | ++npkts; |
| 1476 | ASSERT(npkts < kring->ckr_num_slots); |
| 1477 | nm_i = SLOT_NEXT(i: nm_i, lim); |
| 1478 | } |
| 1479 | |
| 1480 | if (__improbable(i < ph_cnt)) { |
| 1481 | kern_pbufpool_free_batch(pbufpool: pp, array: &kring->ckr_scratch[i], |
| 1482 | size: (ph_cnt - i)); |
| 1483 | } |
| 1484 | |
| 1485 | ASSERT(npkts <= ph_cnt); |
| 1486 | kr_update_stats(kring, slot_count: npkts, byte_count); |
| 1487 | |
| 1488 | if (npkts != 0) { |
| 1489 | kring->ckr_ktail = nm_i; |
| 1490 | STATS_ADD(nifs, NETIF_STATS_RX_PACKETS, npkts); |
| 1491 | } |
| 1492 | kring->ckr_pending_intr = 0; |
| 1493 | |
| 1494 | #if SK_LOG |
| 1495 | if (__improbable((sk_verbose & SK_VERB_NETIF) != 0)) { |
| 1496 | nx_netif_compat_na_rxsync_log(kring, p, flags, nm_i); |
| 1497 | } |
| 1498 | #endif /* SK_LOG */ |
| 1499 | |
| 1500 | done: |
| 1501 | /* |
| 1502 | * If we didn't process all packets in temporary queue, |
| 1503 | * move them back to the head of ckr_rx_queue. |
| 1504 | */ |
| 1505 | if (!nx_mbq_empty(&tmpq)) { |
| 1506 | nx_mbq_lock_spin(q); |
| 1507 | nx_mbq_concat(&tmpq, q); |
| 1508 | ASSERT(nx_mbq_empty(q)); |
| 1509 | nx_mbq_concat(q, &tmpq); |
| 1510 | nx_mbq_unlock(q); |
| 1511 | } |
| 1512 | ASSERT(nx_mbq_empty(&tmpq)); |
| 1513 | |
| 1514 | return 0; |
| 1515 | } |
| 1516 | |
| 1517 | static void |
| 1518 | nx_netif_compat_na_dtor(struct nexus_adapter *na) |
| 1519 | { |
| 1520 | struct ifnet *ifp; |
| 1521 | struct nexus_netif_compat_adapter *nca = |
| 1522 | (struct nexus_netif_compat_adapter *)na; |
| 1523 | |
| 1524 | SK_LOCK_ASSERT_HELD(); |
| 1525 | |
| 1526 | SK_DF(SK_VERB_NETIF, "na \"%s\" (0x%llx)" , na->na_name, SK_KVA(na)); |
| 1527 | |
| 1528 | /* |
| 1529 | * If the finalizer callback hasn't been called for whatever |
| 1530 | * reasons, pick up the embryonic ifnet stored in na_private. |
| 1531 | * Otherwise, release the I/O refcnt of a non-NULL na_ifp. |
| 1532 | */ |
| 1533 | if ((ifp = na->na_ifp) == NULL) { |
| 1534 | ifp = na->na_private; |
| 1535 | na->na_private = NULL; |
| 1536 | } else { |
| 1537 | ifnet_decr_iorefcnt(ifp); |
| 1538 | na->na_ifp = NULL; |
| 1539 | } |
| 1540 | |
| 1541 | if (nca->nca_up.nifna_netif != NULL) { |
| 1542 | nx_netif_release(nca->nca_up.nifna_netif); |
| 1543 | nca->nca_up.nifna_netif = NULL; |
| 1544 | } |
| 1545 | ASSERT(!SKYWALK_NATIVE(ifp)); |
| 1546 | } |
| 1547 | |
| 1548 | /* |
| 1549 | * nx_netif_compat_attach() makes it possible to use skywalk on |
| 1550 | * a device without native skywalk support. |
| 1551 | * This is less performant than native support but potentially |
| 1552 | * faster than raw sockets or similar schemes. |
| 1553 | */ |
| 1554 | int |
| 1555 | nx_netif_compat_attach(struct kern_nexus *nx, struct ifnet *ifp) |
| 1556 | { |
| 1557 | struct nx_netif *nif = NX_NETIF_PRIVATE(nx); |
| 1558 | struct nxprov_params *nxp = NX_PROV(nx)->nxprov_params; |
| 1559 | struct nexus_netif_compat_adapter *devnca = NULL; |
| 1560 | struct nexus_netif_compat_adapter *hostnca = NULL; |
| 1561 | struct nexus_adapter *devna = NULL; |
| 1562 | struct nexus_adapter *hostna = NULL; |
| 1563 | boolean_t embryonic = FALSE; |
| 1564 | uint32_t tx_rings, tx_slots; |
| 1565 | int retval = 0; |
| 1566 | |
| 1567 | SK_LOCK_ASSERT_HELD(); |
| 1568 | ASSERT(!SKYWALK_NATIVE(ifp)); |
| 1569 | ASSERT(!SKYWALK_CAPABLE(ifp)); |
| 1570 | ASSERT(ifp->if_na == NULL); |
| 1571 | ASSERT(ifp->if_na_ops == NULL); |
| 1572 | |
| 1573 | devnca = na_netif_compat_alloc(how: Z_WAITOK); |
| 1574 | hostnca = na_netif_compat_alloc(how: Z_WAITOK); |
| 1575 | |
| 1576 | /* |
| 1577 | * We can be called for two different interface states: |
| 1578 | * |
| 1579 | * Fully attached: get an io ref count; upon success, this |
| 1580 | * holds a reference to the ifnet for the ifp pointer stored |
| 1581 | * in 'na_ifp' down below for both adapters. |
| 1582 | * |
| 1583 | * Embryonic: temporary hold the ifnet in na_private, which |
| 1584 | * upon a successful ifnet_attach(), will be moved over to |
| 1585 | * the 'na_ifp' with an io ref count held. |
| 1586 | * |
| 1587 | * The ifnet in 'na_ifp' will be released by na_release_locked(). |
| 1588 | */ |
| 1589 | if (!ifnet_is_attached(ifp, refio: 1)) { |
| 1590 | if (!(ifp->if_refflags & IFRF_EMBRYONIC)) { |
| 1591 | ifp = NULL; |
| 1592 | retval = ENXIO; |
| 1593 | goto err; |
| 1594 | } |
| 1595 | embryonic = TRUE; |
| 1596 | } |
| 1597 | |
| 1598 | /* initialize the (compat) device netif adapter */ |
| 1599 | devnca->nca_up.nifna_netif = nif; |
| 1600 | nx_netif_retain(nif); |
| 1601 | devna = &devnca->nca_up.nifna_up; |
| 1602 | (void) strncpy(devna->na_name, ifp->if_xname, sizeof(devna->na_name) - 1); |
| 1603 | devna->na_name[sizeof(devna->na_name) - 1] = '\0'; |
| 1604 | uuid_generate_random(out: devna->na_uuid); |
| 1605 | if (embryonic) { |
| 1606 | /* |
| 1607 | * We will move this over to na_ifp once |
| 1608 | * the interface is fully attached. |
| 1609 | */ |
| 1610 | devna->na_private = ifp; |
| 1611 | ASSERT(devna->na_ifp == NULL); |
| 1612 | } else { |
| 1613 | ASSERT(devna->na_private == NULL); |
| 1614 | /* use I/O refcnt from ifnet_is_attached() */ |
| 1615 | devna->na_ifp = ifp; |
| 1616 | } |
| 1617 | |
| 1618 | devna->na_type = NA_NETIF_COMPAT_DEV; |
| 1619 | devna->na_free = na_netif_compat_free; |
| 1620 | devna->na_activate = nx_netif_compat_na_activate; |
| 1621 | devna->na_txsync = nx_netif_compat_na_txsync; |
| 1622 | devna->na_rxsync = nx_netif_compat_na_rxsync; |
| 1623 | devna->na_dtor = nx_netif_compat_na_dtor; |
| 1624 | devna->na_krings_create = nx_netif_dev_krings_create; |
| 1625 | devna->na_krings_delete = nx_netif_dev_krings_delete; |
| 1626 | devna->na_special = nx_netif_na_special; |
| 1627 | |
| 1628 | *(nexus_stats_type_t *)(uintptr_t)&devna->na_stats_type = |
| 1629 | NEXUS_STATS_TYPE_INVALID; |
| 1630 | |
| 1631 | if (skywalk_netif_direct_allowed(ifp->if_xname)) { |
| 1632 | tx_rings = nxp->nxp_tx_rings; |
| 1633 | tx_slots = nxp->nxp_tx_slots; |
| 1634 | } else { |
| 1635 | tx_rings = 0; |
| 1636 | tx_slots = 0; |
| 1637 | } |
| 1638 | na_set_nrings(na: devna, t: NR_TX, v: tx_rings); |
| 1639 | na_set_nrings(na: devna, t: NR_RX, v: nxp->nxp_rx_rings); |
| 1640 | na_set_nslots(na: devna, t: NR_TX, v: tx_slots); |
| 1641 | na_set_nslots(na: devna, t: NR_RX, v: nxp->nxp_rx_slots); |
| 1642 | /* |
| 1643 | * Verify upper bounds; the parameters must have already been |
| 1644 | * validated by nxdom_prov_params() by the time we get here. |
| 1645 | */ |
| 1646 | ASSERT(na_get_nrings(devna, NR_TX) <= NX_DOM(nx)->nxdom_tx_rings.nb_max); |
| 1647 | ASSERT(na_get_nrings(devna, NR_RX) <= NX_DOM(nx)->nxdom_rx_rings.nb_max); |
| 1648 | ASSERT(na_get_nslots(devna, NR_TX) <= NX_DOM(nx)->nxdom_tx_slots.nb_max); |
| 1649 | ASSERT(na_get_nslots(devna, NR_RX) <= NX_DOM(nx)->nxdom_rx_slots.nb_max); |
| 1650 | |
| 1651 | na_attach_common(devna, nx, &nx_netif_compat_prov_s); |
| 1652 | |
| 1653 | if ((retval = NX_DOM_PROV(nx)->nxdom_prov_mem_new(NX_DOM_PROV(nx), |
| 1654 | nx, devna)) != 0) { |
| 1655 | ASSERT(devna->na_arena == NULL); |
| 1656 | /* we've transferred the refcnt to na_ifp above */ |
| 1657 | ifp = NULL; |
| 1658 | goto err; |
| 1659 | } |
| 1660 | ASSERT(devna->na_arena != NULL); |
| 1661 | |
| 1662 | *(uint32_t *)(uintptr_t)&devna->na_flowadv_max = nxp->nxp_flowadv_max; |
| 1663 | ASSERT(devna->na_flowadv_max == 0 || |
| 1664 | skmem_arena_nexus(devna->na_arena)->arn_flowadv_obj != NULL); |
| 1665 | |
| 1666 | /* setup packet copy routines */ |
| 1667 | if (skmem_arena_nexus(ar: devna->na_arena)->arn_rx_pp->pp_max_frags > 1) { |
| 1668 | nif->nif_pkt_copy_from_mbuf = |
| 1669 | pkt_copy_multi_buflet_from_mbuf; |
| 1670 | nif->nif_pkt_copy_to_mbuf = |
| 1671 | pkt_copy_multi_buflet_to_mbuf; |
| 1672 | } else { |
| 1673 | nif->nif_pkt_copy_from_mbuf = pkt_copy_from_mbuf; |
| 1674 | nif->nif_pkt_copy_to_mbuf = pkt_copy_to_mbuf; |
| 1675 | } |
| 1676 | |
| 1677 | /* initialize the host netif adapter */ |
| 1678 | hostnca->nca_up.nifna_netif = nif; |
| 1679 | nx_netif_retain(nif); |
| 1680 | hostna = &hostnca->nca_up.nifna_up; |
| 1681 | (void) snprintf(hostna->na_name, count: sizeof(hostna->na_name), |
| 1682 | "%s^" , devna->na_name); |
| 1683 | uuid_generate_random(out: hostna->na_uuid); |
| 1684 | if (embryonic) { |
| 1685 | /* |
| 1686 | * We will move this over to na_ifp once |
| 1687 | * the interface is fully attached. |
| 1688 | */ |
| 1689 | hostna->na_private = ifp; |
| 1690 | ASSERT(hostna->na_ifp == NULL); |
| 1691 | } else { |
| 1692 | ASSERT(hostna->na_private == NULL); |
| 1693 | hostna->na_ifp = devna->na_ifp; |
| 1694 | ifnet_incr_iorefcnt(hostna->na_ifp); |
| 1695 | } |
| 1696 | hostna->na_type = NA_NETIF_COMPAT_HOST; |
| 1697 | hostna->na_free = na_netif_compat_free; |
| 1698 | hostna->na_activate = nx_netif_host_na_activate; |
| 1699 | hostna->na_txsync = nx_netif_host_na_txsync; |
| 1700 | hostna->na_rxsync = nx_netif_host_na_rxsync; |
| 1701 | hostna->na_dtor = nx_netif_compat_na_dtor; |
| 1702 | hostna->na_krings_create = nx_netif_host_krings_create; |
| 1703 | hostna->na_krings_delete = nx_netif_host_krings_delete; |
| 1704 | hostna->na_special = nx_netif_host_na_special; |
| 1705 | |
| 1706 | os_atomic_or(&hostna->na_flags, NAF_HOST_ONLY, relaxed); |
| 1707 | *(nexus_stats_type_t *)(uintptr_t)&hostna->na_stats_type = |
| 1708 | NEXUS_STATS_TYPE_INVALID; |
| 1709 | |
| 1710 | na_set_nrings(na: hostna, t: NR_TX, v: 1); |
| 1711 | na_set_nrings(na: hostna, t: NR_RX, v: 0); |
| 1712 | na_set_nslots(na: hostna, t: NR_TX, v: nxp->nxp_tx_slots); |
| 1713 | na_set_nslots(na: hostna, t: NR_RX, v: 0); |
| 1714 | |
| 1715 | na_attach_common(hostna, nx, &nx_netif_prov_s); |
| 1716 | |
| 1717 | if ((retval = NX_DOM_PROV(nx)->nxdom_prov_mem_new(NX_DOM_PROV(nx), |
| 1718 | nx, hostna)) != 0) { |
| 1719 | ASSERT(hostna->na_arena == NULL); |
| 1720 | /* we've transferred the refcnt to na_ifp above */ |
| 1721 | ifp = NULL; |
| 1722 | goto err; |
| 1723 | } |
| 1724 | ASSERT(hostna->na_arena != NULL); |
| 1725 | |
| 1726 | *(uint32_t *)(uintptr_t)&hostna->na_flowadv_max = nxp->nxp_flowadv_max; |
| 1727 | ASSERT(hostna->na_flowadv_max == 0 || |
| 1728 | skmem_arena_nexus(hostna->na_arena)->arn_flowadv_obj != NULL); |
| 1729 | |
| 1730 | /* these will be undone by destructor */ |
| 1731 | ifp->if_na_ops = &na_netif_compat_ops; |
| 1732 | ifp->if_na = &devnca->nca_up; |
| 1733 | na_retain_locked(na: devna); |
| 1734 | na_retain_locked(na: hostna); |
| 1735 | |
| 1736 | SKYWALK_SET_CAPABLE(ifp); |
| 1737 | |
| 1738 | NETIF_WLOCK(nif); |
| 1739 | nif->nif_ifp = ifp; |
| 1740 | retval = nx_port_alloc(nx, NEXUS_PORT_NET_IF_DEV, NULL, &devna, kernproc); |
| 1741 | ASSERT(retval == 0); |
| 1742 | retval = nx_port_alloc(nx, NEXUS_PORT_NET_IF_HOST, NULL, &hostna, kernproc); |
| 1743 | ASSERT(retval == 0); |
| 1744 | NETIF_WUNLOCK(nif); |
| 1745 | |
| 1746 | #if SK_LOG |
| 1747 | uuid_string_t uuidstr; |
| 1748 | SK_DF(SK_VERB_NETIF, "na_name: \"%s\"" , devna->na_name); |
| 1749 | SK_DF(SK_VERB_NETIF, " UUID: %s" , |
| 1750 | sk_uuid_unparse(devna->na_uuid, uuidstr)); |
| 1751 | SK_DF(SK_VERB_NETIF, " nx: 0x%llx (\"%s\":\"%s\")" , |
| 1752 | SK_KVA(devna->na_nx), NX_DOM(devna->na_nx)->nxdom_name, |
| 1753 | NX_DOM_PROV(devna->na_nx)->nxdom_prov_name); |
| 1754 | SK_DF(SK_VERB_NETIF, " flags: 0x%b" , devna->na_flags, NAF_BITS); |
| 1755 | SK_DF(SK_VERB_NETIF, " flowadv_max: %u" , devna->na_flowadv_max); |
| 1756 | SK_DF(SK_VERB_NETIF, " rings: tx %u rx %u" , |
| 1757 | na_get_nrings(devna, NR_TX), na_get_nrings(devna, NR_RX)); |
| 1758 | SK_DF(SK_VERB_NETIF, " slots: tx %u rx %u" , |
| 1759 | na_get_nslots(devna, NR_TX), na_get_nslots(devna, NR_RX)); |
| 1760 | #if CONFIG_NEXUS_USER_PIPE |
| 1761 | SK_DF(SK_VERB_NETIF, " next_pipe: %u" , devna->na_next_pipe); |
| 1762 | SK_DF(SK_VERB_NETIF, " max_pipes: %u" , devna->na_max_pipes); |
| 1763 | #endif /* CONFIG_NEXUS_USER_PIPE */ |
| 1764 | SK_DF(SK_VERB_NETIF, " ifp: 0x%llx %s [ioref %u]" , |
| 1765 | SK_KVA(ifp), ifp->if_xname, ifp->if_refio); |
| 1766 | SK_DF(SK_VERB_NETIF, "hostna: \"%s\"" , hostna->na_name); |
| 1767 | SK_DF(SK_VERB_NETIF, " UUID: %s" , |
| 1768 | sk_uuid_unparse(hostna->na_uuid, uuidstr)); |
| 1769 | SK_DF(SK_VERB_NETIF, " nx: 0x%llx (\"%s\":\"%s\")" , |
| 1770 | SK_KVA(hostna->na_nx), NX_DOM(hostna->na_nx)->nxdom_name, |
| 1771 | NX_DOM_PROV(hostna->na_nx)->nxdom_prov_name); |
| 1772 | SK_DF(SK_VERB_NETIF, " flags: 0x%b" , |
| 1773 | hostna->na_flags, NAF_BITS); |
| 1774 | SK_DF(SK_VERB_NETIF, " flowadv_max: %u" , hostna->na_flowadv_max); |
| 1775 | SK_DF(SK_VERB_NETIF, " rings: tx %u rx %u" , |
| 1776 | na_get_nrings(hostna, NR_TX), na_get_nrings(hostna, NR_RX)); |
| 1777 | SK_DF(SK_VERB_NETIF, " slots: tx %u rx %u" , |
| 1778 | na_get_nslots(hostna, NR_TX), na_get_nslots(hostna, NR_RX)); |
| 1779 | #if CONFIG_NEXUS_USER_PIPE |
| 1780 | SK_DF(SK_VERB_NETIF, " next_pipe: %u" , hostna->na_next_pipe); |
| 1781 | SK_DF(SK_VERB_NETIF, " max_pipes: %u" , hostna->na_max_pipes); |
| 1782 | #endif /* CONFIG_NEXUS_USER_PIPE */ |
| 1783 | SK_DF(SK_VERB_NETIF, " ifp: 0x%llx %s [ioref %u]" , SK_KVA(ifp), |
| 1784 | ifp->if_xname, ifp->if_refio); |
| 1785 | #endif /* SK_LOG */ |
| 1786 | |
| 1787 | err: |
| 1788 | if (retval != 0) { |
| 1789 | ASSERT(ifp == NULL); |
| 1790 | if (devna != NULL) { |
| 1791 | if (devna->na_arena != NULL) { |
| 1792 | skmem_arena_release(devna->na_arena); |
| 1793 | devna->na_arena = NULL; |
| 1794 | } |
| 1795 | if (devna->na_ifp != NULL) { |
| 1796 | ifnet_decr_iorefcnt(devna->na_ifp); |
| 1797 | devna->na_ifp = NULL; |
| 1798 | } |
| 1799 | devna->na_private = NULL; |
| 1800 | } |
| 1801 | if (hostna != NULL) { |
| 1802 | if (hostna->na_arena != NULL) { |
| 1803 | skmem_arena_release(hostna->na_arena); |
| 1804 | hostna->na_arena = NULL; |
| 1805 | } |
| 1806 | if (hostna->na_ifp != NULL) { |
| 1807 | ifnet_decr_iorefcnt(hostna->na_ifp); |
| 1808 | hostna->na_ifp = NULL; |
| 1809 | } |
| 1810 | hostna->na_private = NULL; |
| 1811 | } |
| 1812 | if (devnca != NULL) { |
| 1813 | if (devnca->nca_up.nifna_netif != NULL) { |
| 1814 | nx_netif_release(devnca->nca_up.nifna_netif); |
| 1815 | devnca->nca_up.nifna_netif = NULL; |
| 1816 | } |
| 1817 | na_netif_compat_free(na: (struct nexus_adapter *)devnca); |
| 1818 | } |
| 1819 | if (hostnca != NULL) { |
| 1820 | if (hostnca->nca_up.nifna_netif != NULL) { |
| 1821 | nx_netif_release(hostnca->nca_up.nifna_netif); |
| 1822 | hostnca->nca_up.nifna_netif = NULL; |
| 1823 | } |
| 1824 | na_netif_compat_free(na: (struct nexus_adapter *)hostnca); |
| 1825 | } |
| 1826 | } |
| 1827 | return retval; |
| 1828 | } |
| 1829 | |
| 1830 | static void |
| 1831 | na_netif_compat_finalize(struct nexus_netif_adapter *nifna, struct ifnet *ifp) |
| 1832 | { |
| 1833 | na_netif_finalize(nifna, ifp); |
| 1834 | } |
| 1835 | |
| 1836 | /* |
| 1837 | * Intercept the rx routine in the standard device driver. |
| 1838 | * Second argument is non-zero to intercept, 0 to restore |
| 1839 | */ |
| 1840 | static int |
| 1841 | nx_netif_compat_catch_rx(struct nexus_netif_compat_adapter *nca, |
| 1842 | boolean_t enable) |
| 1843 | { |
| 1844 | struct ifnet *ifp = nca->nca_up.nifna_up.na_ifp; |
| 1845 | int err = 0; |
| 1846 | |
| 1847 | ASSERT(!(nca->nca_up.nifna_up.na_flags & NAF_HOST_ONLY)); |
| 1848 | |
| 1849 | if (enable) { |
| 1850 | err = dlil_set_input_handler(ifp, fn: nx_netif_compat_receive); |
| 1851 | } else { |
| 1852 | dlil_reset_input_handler(ifp); |
| 1853 | } |
| 1854 | return err; |
| 1855 | } |
| 1856 | |
| 1857 | /* |
| 1858 | * Transmit routine used by nx_netif_compat_na_txsync(). Returns 0 on success |
| 1859 | * and non-zero on error (which may be packet drops or other errors). |
| 1860 | * len identifies the channel buffer, m is the (preallocated) mbuf to use |
| 1861 | * for transmissions. |
| 1862 | * |
| 1863 | * We should add a reference to the mbuf so the m_freem() at the end |
| 1864 | * of the transmission does not consume resources. |
| 1865 | * |
| 1866 | * On FreeBSD, and on multiqueue cards, we can force the queue using |
| 1867 | * if (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE) |
| 1868 | * i = m->m_pkthdr.flowid % adapter->num_queues; |
| 1869 | * else |
| 1870 | * i = curcpu % adapter->num_queues; |
| 1871 | * |
| 1872 | */ |
| 1873 | static int |
| 1874 | nx_netif_compat_xmit_frame(struct nexus_adapter *na, struct mbuf *m, |
| 1875 | struct __kern_packet *pkt) |
| 1876 | { |
| 1877 | struct nexus_netif_adapter *nifna = (struct nexus_netif_adapter *)na; |
| 1878 | struct nx_netif *nif = nifna->nifna_netif; |
| 1879 | struct netif_stats *nifs = &NX_NETIF_PRIVATE(na->na_nx)->nif_stats; |
| 1880 | struct ifnet *ifp = na->na_ifp; |
| 1881 | kern_packet_t ph = SK_PTR_ENCODE(pkt, METADATA_TYPE(pkt), |
| 1882 | METADATA_SUBTYPE(pkt)); |
| 1883 | uint32_t len; |
| 1884 | int ret = 0; |
| 1885 | |
| 1886 | if ((ret = mbuf_ring_cluster_activate(mbuf: m)) != 0) { |
| 1887 | panic("Failed to activate mbuf ring cluster 0x%llx (%d)" , |
| 1888 | SK_KVA(m), ret); |
| 1889 | /* NOTREACHED */ |
| 1890 | __builtin_unreachable(); |
| 1891 | } |
| 1892 | |
| 1893 | len = pkt->pkt_length; |
| 1894 | |
| 1895 | /* |
| 1896 | * The mbuf should be a cluster from our special pool, |
| 1897 | * so we do not need to do an m_copyback but just copy. |
| 1898 | */ |
| 1899 | if (m->m_ext.ext_size < len) { |
| 1900 | SK_RD(5, "size %u < len %u" , m->m_ext.ext_size, len); |
| 1901 | len = m->m_ext.ext_size; |
| 1902 | } |
| 1903 | |
| 1904 | STATS_INC(nifs, NETIF_STATS_TX_COPY_MBUF); |
| 1905 | if (PACKET_HAS_PARTIAL_CHECKSUM(pkt)) { |
| 1906 | STATS_INC(nifs, NETIF_STATS_TX_COPY_SUM); |
| 1907 | } |
| 1908 | |
| 1909 | nif->nif_pkt_copy_to_mbuf(NR_TX, ph, pkt->pkt_headroom, m, 0, len, |
| 1910 | PACKET_HAS_PARTIAL_CHECKSUM(pkt), pkt->pkt_csum_tx_start_off); |
| 1911 | |
| 1912 | /* used for tx notification */ |
| 1913 | ret = mbuf_set_tx_compl_data(m, arg: (uintptr_t)ifp, data: (uintptr_t)NULL); |
| 1914 | ASSERT(ret == 0); |
| 1915 | |
| 1916 | ret = dlil_output_handler(ifp, m); |
| 1917 | return ret; |
| 1918 | } |
| 1919 | |