| 1 | /* |
| 2 | * Copyright (c) 2015-2023 Apple Inc. All rights reserved. |
| 3 | * |
| 4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ |
| 5 | * |
| 6 | * This file contains Original Code and/or Modifications of Original Code |
| 7 | * as defined in and that are subject to the Apple Public Source License |
| 8 | * Version 2.0 (the 'License'). You may not use this file except in |
| 9 | * compliance with the License. The rights granted to you under the License |
| 10 | * may not be used to create, or enable the creation or redistribution of, |
| 11 | * unlawful or unlicensed copies of an Apple operating system, or to |
| 12 | * circumvent, violate, or enable the circumvention or violation of, any |
| 13 | * terms of an Apple operating system software license agreement. |
| 14 | * |
| 15 | * Please obtain a copy of the License at |
| 16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. |
| 17 | * |
| 18 | * The Original Code and all software distributed under the License are |
| 19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER |
| 20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
| 21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, |
| 22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
| 23 | * Please see the License for the specific language governing rights and |
| 24 | * limitations under the License. |
| 25 | * |
| 26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ |
| 27 | */ |
| 28 | |
| 29 | /* |
| 30 | * The netif nexus domain has two domain providers: native and compat, with |
| 31 | * the latter being the default provider of this domain. The compat provider |
| 32 | * has special handlers for NXCFG_CMD_ATTACH and NXCFG_CMD_DETACH, etc. |
| 33 | * |
| 34 | * A netif nexus instance can be in a native or compat mode; in either case, |
| 35 | * it is associated with two instances of a nexus_adapter structure, and allows |
| 36 | * at most two channels opened to the nexus. Two two adapters correspond to |
| 37 | * host and device ports, respectively. |
| 38 | * |
| 39 | * By itself, a netif nexus isn't associated with a network interface. The |
| 40 | * association happens by attaching a network interface to the nexus instance. |
| 41 | * A channel can only be successfully opened to a netif nexus after it has an |
| 42 | * interface attached to it. |
| 43 | * |
| 44 | * During an attach, the interface is marked as Skywalk-capable, and its ifnet |
| 45 | * structure refers to the attached netif nexus adapter via its if_na field. |
| 46 | * The nexus also holds a reference to the interface on its na_ifp field. Note |
| 47 | * that attaching to a netif_compat nexus does not alter the input/output data |
| 48 | * path, nor does it remove any of the interface's hardware offload flags. It |
| 49 | * merely associates the interface and netif nexus together. |
| 50 | * |
| 51 | * During a detach, the above references are dropped and the fields are cleared; |
| 52 | * the interface is also marked as non-Skywalk-capable. This detach can happen |
| 53 | * explicitly via a command down the nexus, or implicitly when the nexus goes |
| 54 | * away (assuming there's no channel opened to it.) |
| 55 | * |
| 56 | * A userland channel can be opened to a netif nexus via the usual ch_open() |
| 57 | * way, assuming the nexus provider is setup to allow access for the userland |
| 58 | * process (either by binding the nexus port to PID, etc. or by creating the |
| 59 | * nexus in the anonymous mode.) |
| 60 | * |
| 61 | * Alternatively, a kernel channel can also be opened to it by some kernel |
| 62 | * subsystem, via ch_open_special(), e.g. by the flowswitch. Kernel channels |
| 63 | * don't have any task mapping created, and the flag CHANF_KERNEL is used to |
| 64 | * indicate that. |
| 65 | * |
| 66 | * Opening a channel to the host port of a native or compat netif causes the |
| 67 | * ifnet output path to be redirected to nx_netif_host_transmit(). We also, |
| 68 | * at present, disable any hardware offload features. |
| 69 | * |
| 70 | * Opening a channel to the device port of a compat netif causes the ifnet |
| 71 | * input path to be redirected to nx_netif_compat_receive(). This is specific |
| 72 | * to the compat variant, as the native variant's RX path already goes to |
| 73 | * the native netif. |
| 74 | * |
| 75 | * During channel close, we restore the original I/O callbacks, as well as the |
| 76 | * interface's offload flags. |
| 77 | */ |
| 78 | |
| 79 | #include <skywalk/os_skywalk_private.h> |
| 80 | #include <skywalk/nexus/netif/nx_netif.h> |
| 81 | #include <skywalk/nexus/upipe/nx_user_pipe.h> |
| 82 | #include <skywalk/nexus/flowswitch/nx_flowswitch.h> |
| 83 | #include <sys/kdebug.h> |
| 84 | #include <sys/sdt.h> |
| 85 | #include <os/refcnt.h> |
| 86 | #include <libkern/OSDebug.h> |
| 87 | |
| 88 | #define NX_NETIF_MAXRINGS NX_MAX_NUM_RING_PAIR |
| 89 | #define NX_NETIF_MINSLOTS 2 /* XXX same as above */ |
| 90 | #define NX_NETIF_MAXSLOTS NX_MAX_NUM_SLOT_PER_RING /* max # of slots */ |
| 91 | #define NX_NETIF_TXRINGSIZE 512 /* default TX ring size */ |
| 92 | #define NX_NETIF_RXRINGSIZE 1024 /* default RX ring size */ |
| 93 | #define NX_NETIF_BUFSIZE (2 * 1024) /* default buffer size */ |
| 94 | #define NX_NETIF_MINBUFSIZE (128) /* min buffer size */ |
| 95 | #define NX_NETIF_MAXBUFSIZE (32 * 1024) /* max buffer size */ |
| 96 | |
| 97 | /* |
| 98 | * TODO: adi@apple.com -- minimum buflets for now; we will need to |
| 99 | * have a way to adjust this based on the underlying interface's |
| 100 | * parameters, e.g. jumbo MTU, large segment offload, etc. |
| 101 | */ |
| 102 | #define NX_NETIF_UMD_SIZE _USER_PACKET_SIZE(BUFLETS_MIN) |
| 103 | #define NX_NETIF_KMD_SIZE _KERN_PACKET_SIZE(BUFLETS_MIN) |
| 104 | |
| 105 | /* |
| 106 | * minimum stack space required for IOSkywalkFamily and Driver execution. |
| 107 | */ |
| 108 | #if XNU_TARGET_OS_OSX |
| 109 | #define NX_NETIF_MIN_DRIVER_STACK_SIZE (kernel_stack_size >> 1) |
| 110 | #else /* !XNU_TARGET_OS_OSX */ |
| 111 | #define NX_NETIF_MIN_DRIVER_STACK_SIZE (kernel_stack_size >> 2) |
| 112 | #endif /* XNU_TARGET_OS_OSX */ |
| 113 | |
| 114 | static void nx_netif_dom_init(struct nxdom *); |
| 115 | static void nx_netif_dom_terminate(struct nxdom *); |
| 116 | static void nx_netif_dom_fini(struct nxdom *); |
| 117 | static int nx_netif_prov_params_adjust( |
| 118 | const struct kern_nexus_domain_provider *, const struct nxprov_params *, |
| 119 | struct nxprov_adjusted_params *); |
| 120 | |
| 121 | static int nx_netif_dom_bind_port(struct kern_nexus *, nexus_port_t *, |
| 122 | struct nxbind *, void *); |
| 123 | static int nx_netif_dom_unbind_port(struct kern_nexus *, nexus_port_t); |
| 124 | static int nx_netif_dom_connect(struct kern_nexus_domain_provider *, |
| 125 | struct kern_nexus *, struct kern_channel *, struct chreq *, |
| 126 | struct kern_channel *, struct nxbind *, struct proc *); |
| 127 | static void nx_netif_dom_disconnect(struct kern_nexus_domain_provider *, |
| 128 | struct kern_nexus *, struct kern_channel *); |
| 129 | static void nx_netif_dom_defunct(struct kern_nexus_domain_provider *, |
| 130 | struct kern_nexus *, struct kern_channel *, struct proc *); |
| 131 | static void nx_netif_dom_defunct_finalize(struct kern_nexus_domain_provider *, |
| 132 | struct kern_nexus *, struct kern_channel *, boolean_t); |
| 133 | |
| 134 | static void nx_netif_doorbell(struct ifnet *); |
| 135 | static int nx_netif_na_txsync(struct __kern_channel_ring *, struct proc *, |
| 136 | uint32_t); |
| 137 | static int nx_netif_na_rxsync(struct __kern_channel_ring *, struct proc *, |
| 138 | uint32_t); |
| 139 | static void nx_netif_na_dtor(struct nexus_adapter *na); |
| 140 | static int nx_netif_na_notify_tx(struct __kern_channel_ring *, struct proc *, |
| 141 | uint32_t); |
| 142 | static int nx_netif_na_notify_rx(struct __kern_channel_ring *, struct proc *, |
| 143 | uint32_t); |
| 144 | static int nx_netif_na_activate(struct nexus_adapter *, na_activate_mode_t); |
| 145 | |
| 146 | static int nx_netif_ctl(struct kern_nexus *, nxcfg_cmd_t, void *, |
| 147 | struct proc *); |
| 148 | static int nx_netif_ctl_attach(struct kern_nexus *, struct nx_spec_req *, |
| 149 | struct proc *); |
| 150 | static int nx_netif_ctl_detach(struct kern_nexus *, struct nx_spec_req *); |
| 151 | static int nx_netif_attach(struct kern_nexus *, struct ifnet *); |
| 152 | static void nx_netif_flags_init(struct nx_netif *); |
| 153 | static void nx_netif_flags_fini(struct nx_netif *); |
| 154 | static void nx_netif_callbacks_init(struct nx_netif *); |
| 155 | static void nx_netif_callbacks_fini(struct nx_netif *); |
| 156 | static void nx_netif_capabilities_fini(struct nx_netif *); |
| 157 | static errno_t nx_netif_interface_advisory_notify(void *, |
| 158 | const struct ifnet_interface_advisory *); |
| 159 | |
| 160 | struct nxdom nx_netif_dom_s = { |
| 161 | .nxdom_prov_head = |
| 162 | STAILQ_HEAD_INITIALIZER(nx_netif_dom_s.nxdom_prov_head), |
| 163 | .nxdom_type = NEXUS_TYPE_NET_IF, |
| 164 | .nxdom_md_type = NEXUS_META_TYPE_PACKET, |
| 165 | .nxdom_md_subtype = NEXUS_META_SUBTYPE_RAW, |
| 166 | .nxdom_name = "netif" , |
| 167 | .nxdom_ports = { |
| 168 | .nb_def = 2, |
| 169 | .nb_min = 2, |
| 170 | .nb_max = NX_NETIF_MAXPORTS, |
| 171 | }, |
| 172 | .nxdom_tx_rings = { |
| 173 | .nb_def = 1, |
| 174 | .nb_min = 1, |
| 175 | .nb_max = NX_NETIF_MAXRINGS, |
| 176 | }, |
| 177 | .nxdom_rx_rings = { |
| 178 | .nb_def = 1, |
| 179 | .nb_min = 1, |
| 180 | .nb_max = NX_NETIF_MAXRINGS, |
| 181 | }, |
| 182 | .nxdom_tx_slots = { |
| 183 | .nb_def = NX_NETIF_TXRINGSIZE, |
| 184 | .nb_min = NX_NETIF_MINSLOTS, |
| 185 | .nb_max = NX_NETIF_MAXSLOTS, |
| 186 | }, |
| 187 | .nxdom_rx_slots = { |
| 188 | .nb_def = NX_NETIF_RXRINGSIZE, |
| 189 | .nb_min = NX_NETIF_MINSLOTS, |
| 190 | .nb_max = NX_NETIF_MAXSLOTS, |
| 191 | }, |
| 192 | .nxdom_buf_size = { |
| 193 | .nb_def = NX_NETIF_BUFSIZE, |
| 194 | .nb_min = NX_NETIF_MINBUFSIZE, |
| 195 | .nb_max = NX_NETIF_MAXBUFSIZE, |
| 196 | }, |
| 197 | .nxdom_large_buf_size = { |
| 198 | .nb_def = 0, |
| 199 | .nb_min = 0, |
| 200 | .nb_max = 0, |
| 201 | }, |
| 202 | .nxdom_meta_size = { |
| 203 | .nb_def = NX_NETIF_UMD_SIZE, |
| 204 | .nb_min = NX_NETIF_UMD_SIZE, |
| 205 | .nb_max = NX_METADATA_USR_MAX_SZ, |
| 206 | }, |
| 207 | .nxdom_stats_size = { |
| 208 | .nb_def = 0, |
| 209 | .nb_min = 0, |
| 210 | .nb_max = NX_STATS_MAX_SZ, |
| 211 | }, |
| 212 | .nxdom_pipes = { |
| 213 | .nb_def = 0, |
| 214 | .nb_min = 0, |
| 215 | .nb_max = NX_UPIPE_MAXPIPES, |
| 216 | }, |
| 217 | .nxdom_flowadv_max = { |
| 218 | .nb_def = 0, |
| 219 | .nb_min = 0, |
| 220 | .nb_max = NX_FLOWADV_MAX, |
| 221 | }, |
| 222 | .nxdom_nexusadv_size = { |
| 223 | .nb_def = 0, |
| 224 | .nb_min = 0, |
| 225 | .nb_max = NX_NEXUSADV_MAX_SZ, |
| 226 | }, |
| 227 | .nxdom_capabilities = { |
| 228 | .nb_def = NXPCAP_USER_CHANNEL, |
| 229 | .nb_min = 0, |
| 230 | .nb_max = NXPCAP_USER_CHANNEL, |
| 231 | }, |
| 232 | .nxdom_qmap = { |
| 233 | .nb_def = NEXUS_QMAP_TYPE_DEFAULT, |
| 234 | .nb_min = NEXUS_QMAP_TYPE_DEFAULT, |
| 235 | .nb_max = NEXUS_QMAP_TYPE_WMM, |
| 236 | }, |
| 237 | .nxdom_max_frags = { |
| 238 | .nb_def = NX_PBUF_FRAGS_DEFAULT, |
| 239 | .nb_min = NX_PBUF_FRAGS_MIN, |
| 240 | .nb_max = NX_PBUF_FRAGS_MAX, |
| 241 | }, |
| 242 | .nxdom_init = nx_netif_dom_init, |
| 243 | .nxdom_terminate = nx_netif_dom_terminate, |
| 244 | .nxdom_fini = nx_netif_dom_fini, |
| 245 | .nxdom_find_port = NULL, |
| 246 | .nxdom_port_is_reserved = NULL, |
| 247 | .nxdom_bind_port = nx_netif_dom_bind_port, |
| 248 | .nxdom_unbind_port = nx_netif_dom_unbind_port, |
| 249 | .nxdom_connect = nx_netif_dom_connect, |
| 250 | .nxdom_disconnect = nx_netif_dom_disconnect, |
| 251 | .nxdom_defunct = nx_netif_dom_defunct, |
| 252 | .nxdom_defunct_finalize = nx_netif_dom_defunct_finalize, |
| 253 | }; |
| 254 | |
| 255 | struct kern_nexus_domain_provider nx_netif_prov_s = { |
| 256 | .nxdom_prov_name = NEXUS_PROVIDER_NET_IF, |
| 257 | /* |
| 258 | * Don't install this as the default domain provider, i.e. |
| 259 | * NXDOMPROVF_DEFAULT flag not set; we want netif_compat |
| 260 | * provider to be the one handling userland-issued requests |
| 261 | * coming down thru nxprov_create() instead. |
| 262 | */ |
| 263 | .nxdom_prov_flags = 0, |
| 264 | .nxdom_prov_cb = { |
| 265 | .dp_cb_init = nx_netif_prov_init, |
| 266 | .dp_cb_fini = nx_netif_prov_fini, |
| 267 | .dp_cb_params = nx_netif_prov_params, |
| 268 | .dp_cb_mem_new = nx_netif_prov_mem_new, |
| 269 | .dp_cb_config = nx_netif_prov_config, |
| 270 | .dp_cb_nx_ctor = nx_netif_prov_nx_ctor, |
| 271 | .dp_cb_nx_dtor = nx_netif_prov_nx_dtor, |
| 272 | .dp_cb_nx_mem_info = nx_netif_prov_nx_mem_info, |
| 273 | .dp_cb_nx_mib_get = nx_netif_prov_nx_mib_get, |
| 274 | .dp_cb_nx_stop = nx_netif_prov_nx_stop, |
| 275 | }, |
| 276 | }; |
| 277 | |
| 278 | struct nexus_ifnet_ops na_netif_ops = { |
| 279 | .ni_finalize = na_netif_finalize, |
| 280 | .ni_reap = nx_netif_reap, |
| 281 | .ni_dequeue = nx_netif_native_tx_dequeue, |
| 282 | .ni_get_len = nx_netif_native_tx_get_len, |
| 283 | }; |
| 284 | |
| 285 | #define NX_NETIF_DOORBELL_MAX_DEQUEUE 64 |
| 286 | uint32_t nx_netif_doorbell_max_dequeue = NX_NETIF_DOORBELL_MAX_DEQUEUE; |
| 287 | |
| 288 | #define NQ_TRANSFER_DECAY 2 /* ilog2 of EWMA decay rate (4) */ |
| 289 | static uint32_t nq_transfer_decay = NQ_TRANSFER_DECAY; |
| 290 | |
| 291 | #define NQ_ACCUMULATE_INTERVAL 2 /* 2 seconds */ |
| 292 | static uint32_t nq_accumulate_interval = NQ_ACCUMULATE_INTERVAL; |
| 293 | |
| 294 | static uint32_t nq_stat_enable = 0; |
| 295 | |
| 296 | SYSCTL_EXTENSIBLE_NODE(_kern_skywalk, OID_AUTO, netif, |
| 297 | CTLFLAG_RW | CTLFLAG_LOCKED, 0, "Skywalk network interface" ); |
| 298 | #if (DEVELOPMENT || DEBUG) |
| 299 | SYSCTL_STRING(_kern_skywalk_netif, OID_AUTO, sk_ll_prefix, |
| 300 | CTLFLAG_RW | CTLFLAG_LOCKED, sk_ll_prefix, sizeof(sk_ll_prefix), |
| 301 | "ifname prefix for enabling low latency support" ); |
| 302 | static uint32_t nx_netif_force_ifnet_start = 0; |
| 303 | SYSCTL_UINT(_kern_skywalk_netif, OID_AUTO, force_ifnet_start, |
| 304 | CTLFLAG_RW | CTLFLAG_LOCKED, &nx_netif_force_ifnet_start, 0, |
| 305 | "always use ifnet starter thread" ); |
| 306 | SYSCTL_UINT(_kern_skywalk_netif, OID_AUTO, doorbell_max_dequeue, |
| 307 | CTLFLAG_RW | CTLFLAG_LOCKED, &nx_netif_doorbell_max_dequeue, |
| 308 | NX_NETIF_DOORBELL_MAX_DEQUEUE, |
| 309 | "max packets to dequeue in doorbell context" ); |
| 310 | SYSCTL_UINT(_kern_skywalk_netif, OID_AUTO, netif_queue_transfer_decay, |
| 311 | CTLFLAG_RW | CTLFLAG_LOCKED, &nq_transfer_decay, |
| 312 | NQ_TRANSFER_DECAY, "ilog2 of EWMA decay rate of netif queue transfers" ); |
| 313 | SYSCTL_UINT(_kern_skywalk_netif, OID_AUTO, netif_queue_stat_accumulate_interval, |
| 314 | CTLFLAG_RW | CTLFLAG_LOCKED, &nq_accumulate_interval, |
| 315 | NQ_ACCUMULATE_INTERVAL, "accumulation interval for netif queue stats" ); |
| 316 | #endif /* !DEVELOPMENT && !DEBUG */ |
| 317 | |
| 318 | SYSCTL_UINT(_kern_skywalk_netif, OID_AUTO, netif_queue_stat_enable, |
| 319 | CTLFLAG_RW | CTLFLAG_LOCKED, &nq_stat_enable, |
| 320 | 0, "enable/disable stats collection for netif queue" ); |
| 321 | |
| 322 | static SKMEM_TYPE_DEFINE(na_netif_zone, struct nexus_netif_adapter); |
| 323 | |
| 324 | static SKMEM_TYPE_DEFINE(nx_netif_zone, struct nx_netif); |
| 325 | |
| 326 | #define SKMEM_TAG_NETIF_MIT "com.apple.skywalk.netif.mit" |
| 327 | static SKMEM_TAG_DEFINE(skmem_tag_netif_mit, SKMEM_TAG_NETIF_MIT); |
| 328 | |
| 329 | #define SKMEM_TAG_NETIF_FILTER "com.apple.skywalk.netif.filter" |
| 330 | SKMEM_TAG_DEFINE(skmem_tag_netif_filter, SKMEM_TAG_NETIF_FILTER); |
| 331 | |
| 332 | #define SKMEM_TAG_NETIF_FLOW "com.apple.skywalk.netif.flow" |
| 333 | SKMEM_TAG_DEFINE(skmem_tag_netif_flow, SKMEM_TAG_NETIF_FLOW); |
| 334 | |
| 335 | #define SKMEM_TAG_NETIF_AGENT_FLOW "com.apple.skywalk.netif.agent_flow" |
| 336 | SKMEM_TAG_DEFINE(skmem_tag_netif_agent_flow, SKMEM_TAG_NETIF_AGENT_FLOW); |
| 337 | |
| 338 | #define SKMEM_TAG_NETIF_LLINK "com.apple.skywalk.netif.llink" |
| 339 | SKMEM_TAG_DEFINE(skmem_tag_netif_llink, SKMEM_TAG_NETIF_LLINK); |
| 340 | |
| 341 | #define SKMEM_TAG_NETIF_QSET "com.apple.skywalk.netif.qset" |
| 342 | SKMEM_TAG_DEFINE(skmem_tag_netif_qset, SKMEM_TAG_NETIF_QSET); |
| 343 | |
| 344 | #define SKMEM_TAG_NETIF_LLINK_INFO "com.apple.skywalk.netif.llink_info" |
| 345 | SKMEM_TAG_DEFINE(skmem_tag_netif_llink_info, SKMEM_TAG_NETIF_LLINK_INFO); |
| 346 | |
| 347 | /* use this for any temporary allocations */ |
| 348 | #define SKMEM_TAG_NETIF_TEMP "com.apple.skywalk.netif.temp" |
| 349 | static SKMEM_TAG_DEFINE(skmem_tag_netif_temp, SKMEM_TAG_NETIF_TEMP); |
| 350 | |
| 351 | static void |
| 352 | nx_netif_dom_init(struct nxdom *nxdom) |
| 353 | { |
| 354 | SK_LOCK_ASSERT_HELD(); |
| 355 | ASSERT(!(nxdom->nxdom_flags & NEXUSDOMF_INITIALIZED)); |
| 356 | |
| 357 | _CASSERT(NEXUS_PORT_NET_IF_DEV == 0); |
| 358 | _CASSERT(NEXUS_PORT_NET_IF_HOST == 1); |
| 359 | _CASSERT(NEXUS_PORT_NET_IF_CLIENT == 2); |
| 360 | _CASSERT(SK_NETIF_MIT_FORCE_OFF < SK_NETIF_MIT_FORCE_SIMPLE); |
| 361 | _CASSERT(SK_NETIF_MIT_FORCE_SIMPLE < SK_NETIF_MIT_FORCE_ADVANCED); |
| 362 | _CASSERT(SK_NETIF_MIT_FORCE_ADVANCED < SK_NETIF_MIT_AUTO); |
| 363 | _CASSERT(SK_NETIF_MIT_AUTO == SK_NETIF_MIT_MAX); |
| 364 | |
| 365 | (void) nxdom_prov_add(nxdom, &nx_netif_prov_s); |
| 366 | |
| 367 | nx_netif_compat_init(nxdom); |
| 368 | |
| 369 | ASSERT(nxdom_prov_default[nxdom->nxdom_type] != NULL && |
| 370 | strcmp(nxdom_prov_default[nxdom->nxdom_type]->nxdom_prov_name, |
| 371 | NEXUS_PROVIDER_NET_IF_COMPAT) == 0); |
| 372 | |
| 373 | netif_gso_init(); |
| 374 | } |
| 375 | |
| 376 | static void |
| 377 | nx_netif_dom_terminate(struct nxdom *nxdom) |
| 378 | { |
| 379 | struct kern_nexus_domain_provider *nxdom_prov, *tnxdp; |
| 380 | |
| 381 | SK_LOCK_ASSERT_HELD(); |
| 382 | |
| 383 | netif_gso_fini(); |
| 384 | nx_netif_compat_fini(); |
| 385 | |
| 386 | STAILQ_FOREACH_SAFE(nxdom_prov, &nxdom->nxdom_prov_head, |
| 387 | nxdom_prov_link, tnxdp) { |
| 388 | (void) nxdom_prov_del(nxdom_prov); |
| 389 | } |
| 390 | } |
| 391 | |
| 392 | static void |
| 393 | nx_netif_dom_fini(struct nxdom *nxdom) |
| 394 | { |
| 395 | #pragma unused(nxdom) |
| 396 | } |
| 397 | |
| 398 | int |
| 399 | nx_netif_prov_init(struct kern_nexus_domain_provider *nxdom_prov) |
| 400 | { |
| 401 | #pragma unused(nxdom_prov) |
| 402 | SK_D("initializing %s" , nxdom_prov->nxdom_prov_name); |
| 403 | return 0; |
| 404 | } |
| 405 | |
| 406 | static int |
| 407 | nx_netif_na_notify_drop(struct __kern_channel_ring *kring, struct proc *p, |
| 408 | uint32_t flags) |
| 409 | { |
| 410 | #pragma unused(kring, p, flags) |
| 411 | return ENXIO; |
| 412 | } |
| 413 | |
| 414 | int |
| 415 | nx_netif_prov_nx_stop(struct kern_nexus *nx) |
| 416 | { |
| 417 | uint32_t r; |
| 418 | struct nexus_adapter *na = nx_port_get_na(nx, NEXUS_PORT_NET_IF_DEV); |
| 419 | struct nexus_netif_adapter *nifna = (struct nexus_netif_adapter *)na; |
| 420 | |
| 421 | SK_LOCK_ASSERT_HELD(); |
| 422 | ASSERT(nx != NULL); |
| 423 | |
| 424 | /* place all rings in drop mode */ |
| 425 | na_kr_drop(na, TRUE); |
| 426 | |
| 427 | /* ensure global visibility */ |
| 428 | os_atomic_thread_fence(seq_cst); |
| 429 | |
| 430 | /* reset all TX notify callbacks */ |
| 431 | for (r = 0; r < na_get_nrings(na, t: NR_TX); r++) { |
| 432 | while (!os_atomic_cmpxchg((void * volatile *)&na->na_tx_rings[r].ckr_na_notify, |
| 433 | ptrauth_nop_cast(void *, na->na_tx_rings[r].ckr_na_notify), |
| 434 | ptrauth_nop_cast(void *, &nx_netif_na_notify_drop), acq_rel)) { |
| 435 | ; |
| 436 | } |
| 437 | os_atomic_thread_fence(seq_cst); |
| 438 | if (nifna->nifna_tx_mit != NULL) { |
| 439 | nx_netif_mit_cleanup(&nifna->nifna_tx_mit[r]); |
| 440 | } |
| 441 | } |
| 442 | if (nifna->nifna_tx_mit != NULL) { |
| 443 | skn_free_type_array(tx, struct nx_netif_mit, |
| 444 | na_get_nrings(na, NR_TX), nifna->nifna_tx_mit); |
| 445 | nifna->nifna_tx_mit = NULL; |
| 446 | } |
| 447 | |
| 448 | /* reset all RX notify callbacks */ |
| 449 | for (r = 0; r < na_get_nrings(na, t: NR_RX); r++) { |
| 450 | while (!os_atomic_cmpxchg((void * volatile *)&na->na_rx_rings[r].ckr_na_notify, |
| 451 | ptrauth_nop_cast(void *, na->na_rx_rings[r].ckr_na_notify), |
| 452 | ptrauth_nop_cast(void *, &nx_netif_na_notify_drop), acq_rel)) { |
| 453 | ; |
| 454 | } |
| 455 | os_atomic_thread_fence(seq_cst); |
| 456 | if (nifna->nifna_rx_mit != NULL) { |
| 457 | nx_netif_mit_cleanup(&nifna->nifna_rx_mit[r]); |
| 458 | } |
| 459 | } |
| 460 | if (nifna->nifna_rx_mit != NULL) { |
| 461 | skn_free_type_array(rx, struct nx_netif_mit, |
| 462 | na_get_nrings(na, NR_RX), nifna->nifna_rx_mit); |
| 463 | nifna->nifna_rx_mit = NULL; |
| 464 | } |
| 465 | return 0; |
| 466 | } |
| 467 | |
| 468 | static inline void |
| 469 | nx_netif_compat_adjust_ring_size(struct nxprov_adjusted_params *adj, |
| 470 | ifnet_t ifp) |
| 471 | { |
| 472 | if (IFNET_IS_CELLULAR(ifp) && (ifp->if_unit != 0)) { |
| 473 | *(adj->adj_rx_slots) = sk_netif_compat_aux_cell_rx_ring_sz; |
| 474 | *(adj->adj_tx_slots) = sk_netif_compat_aux_cell_tx_ring_sz; |
| 475 | } else if (IFNET_IS_WIFI(ifp)) { |
| 476 | if (ifp->if_name[0] == 'a' && ifp->if_name[1] == 'p' && |
| 477 | ifp->if_name[2] == '\0') { |
| 478 | /* Wi-Fi Access Point */ |
| 479 | *(adj->adj_rx_slots) = sk_netif_compat_wap_rx_ring_sz; |
| 480 | *(adj->adj_tx_slots) = sk_netif_compat_wap_tx_ring_sz; |
| 481 | } else if (ifp->if_eflags & IFEF_AWDL) { |
| 482 | /* AWDL */ |
| 483 | *(adj->adj_rx_slots) = sk_netif_compat_awdl_rx_ring_sz; |
| 484 | *(adj->adj_tx_slots) = sk_netif_compat_awdl_tx_ring_sz; |
| 485 | } else { |
| 486 | /* Wi-Fi infrastructure */ |
| 487 | *(adj->adj_rx_slots) = sk_netif_compat_wif_rx_ring_sz; |
| 488 | *(adj->adj_tx_slots) = sk_netif_compat_wif_tx_ring_sz; |
| 489 | } |
| 490 | } else if (IFNET_IS_ETHERNET(ifp)) { |
| 491 | #if !XNU_TARGET_OS_OSX |
| 492 | /* |
| 493 | * On non-macOS platforms, treat all compat Ethernet |
| 494 | * interfaces as USB Ethernet with reduced ring sizes. |
| 495 | */ |
| 496 | *(adj->adj_rx_slots) = sk_netif_compat_usb_eth_rx_ring_sz; |
| 497 | *(adj->adj_tx_slots) = sk_netif_compat_usb_eth_tx_ring_sz; |
| 498 | #else /* XNU_TARGET_OS_OSX */ |
| 499 | if (ifp->if_subfamily == IFNET_SUBFAMILY_USB) { |
| 500 | *(adj->adj_rx_slots) = |
| 501 | sk_netif_compat_usb_eth_rx_ring_sz; |
| 502 | *(adj->adj_tx_slots) = |
| 503 | sk_netif_compat_usb_eth_tx_ring_sz; |
| 504 | } |
| 505 | #endif /* XNU_TARGET_OS_OSX */ |
| 506 | } |
| 507 | } |
| 508 | |
| 509 | static int |
| 510 | nx_netif_prov_params_adjust(const struct kern_nexus_domain_provider *nxdom_prov, |
| 511 | const struct nxprov_params *nxp, struct nxprov_adjusted_params *adj) |
| 512 | { |
| 513 | /* |
| 514 | * for netif compat adjust the following parameters for memory |
| 515 | * optimization: |
| 516 | * - change the size of buffer object to 128 bytes. |
| 517 | * - don't allocate rx ring for host port and tx ring for dev port. |
| 518 | * - for cellular interfaces other than pdp_ip0 reduce the ring size. |
| 519 | * Assumption here is that pdp_ip0 is always used as the data |
| 520 | * interface. |
| 521 | * - reduce the ring size for AWDL interface. |
| 522 | * - reduce the ring size for USB ethernet interface. |
| 523 | */ |
| 524 | if (strcmp(s1: nxdom_prov->nxdom_prov_name, |
| 525 | NEXUS_PROVIDER_NET_IF_COMPAT) == 0) { |
| 526 | /* |
| 527 | * Leave the parameters default if userspace access may be |
| 528 | * needed. We can't use skywalk_direct_allowed() here because |
| 529 | * the drivers have not attached yet. |
| 530 | */ |
| 531 | if (skywalk_netif_direct_enabled()) { |
| 532 | goto done; |
| 533 | } |
| 534 | |
| 535 | *(adj->adj_buf_size) = NETIF_COMPAT_BUF_SIZE; |
| 536 | *(adj->adj_tx_rings) = 1; |
| 537 | if (IF_INDEX_IN_RANGE(nxp->nxp_ifindex)) { |
| 538 | ifnet_t ifp; |
| 539 | ifnet_head_lock_shared(); |
| 540 | ifp = ifindex2ifnet[nxp->nxp_ifindex]; |
| 541 | ifnet_head_done(); |
| 542 | VERIFY(ifp != NULL); |
| 543 | nx_netif_compat_adjust_ring_size(adj, ifp); |
| 544 | } |
| 545 | } else { /* netif native */ |
| 546 | if (nxp->nxp_flags & NXPF_NETIF_LLINK) { |
| 547 | *(adj->adj_tx_slots) = NX_NETIF_MINSLOTS; |
| 548 | *(adj->adj_rx_slots) = NX_NETIF_MINSLOTS; |
| 549 | } |
| 550 | /* |
| 551 | * Add another extra ring for host port. Note that if the |
| 552 | * nexus isn't configured to use the same pbufpool for all of |
| 553 | * its ports, we'd end up allocating extra here. |
| 554 | * Not a big deal since that case isn't the default. |
| 555 | */ |
| 556 | *(adj->adj_tx_rings) += 1; |
| 557 | *(adj->adj_rx_rings) += 1; |
| 558 | |
| 559 | if ((*(adj->adj_buf_size) < PKT_MAX_PROTO_HEADER_SIZE)) { |
| 560 | SK_ERR("buf size too small, min (%d)" , |
| 561 | PKT_MAX_PROTO_HEADER_SIZE); |
| 562 | return EINVAL; |
| 563 | } |
| 564 | _CASSERT(sizeof(struct __kern_netif_intf_advisory) == |
| 565 | NX_INTF_ADV_SIZE); |
| 566 | *(adj->adj_nexusadv_size) = sizeof(struct netif_nexus_advisory); |
| 567 | } |
| 568 | done: |
| 569 | return 0; |
| 570 | } |
| 571 | |
| 572 | int |
| 573 | nx_netif_prov_params(struct kern_nexus_domain_provider *nxdom_prov, |
| 574 | const uint32_t req, const struct nxprov_params *nxp0, |
| 575 | struct nxprov_params *nxp, struct skmem_region_params srp[SKMEM_REGIONS], |
| 576 | uint32_t pp_region_config_flags) |
| 577 | { |
| 578 | struct nxdom *nxdom = nxdom_prov->nxdom_prov_dom; |
| 579 | |
| 580 | return nxprov_params_adjust(nxdom_prov, req, nxp0, nxp, srp, |
| 581 | nxdom, nxdom, nxdom, pp_region_config_flags, |
| 582 | adjust_fn: nx_netif_prov_params_adjust); |
| 583 | } |
| 584 | |
| 585 | int |
| 586 | nx_netif_prov_mem_new(struct kern_nexus_domain_provider *nxdom_prov, |
| 587 | struct kern_nexus *nx, struct nexus_adapter *na) |
| 588 | { |
| 589 | #pragma unused(nxdom_prov) |
| 590 | int err = 0; |
| 591 | boolean_t pp_truncated_buf = FALSE; |
| 592 | boolean_t allow_direct; |
| 593 | boolean_t kernel_only; |
| 594 | |
| 595 | SK_DF(SK_VERB_NETIF, |
| 596 | "nx 0x%llx (\"%s\":\"%s\") na \"%s\" (0x%llx)" , SK_KVA(nx), |
| 597 | NX_DOM(nx)->nxdom_name, nxdom_prov->nxdom_prov_name, na->na_name, |
| 598 | SK_KVA(na)); |
| 599 | |
| 600 | ASSERT(na->na_arena == NULL); |
| 601 | if ((na->na_type == NA_NETIF_COMPAT_DEV) || |
| 602 | (na->na_type == NA_NETIF_COMPAT_HOST)) { |
| 603 | pp_truncated_buf = TRUE; |
| 604 | } |
| 605 | /* |
| 606 | * We do this check to determine whether to create the extra |
| 607 | * regions needed for userspace access. This is per interface. |
| 608 | * NX_USER_CHANNEL_PROV() is systemwide so it can't be used. |
| 609 | */ |
| 610 | allow_direct = skywalk_netif_direct_allowed(na->na_name); |
| 611 | |
| 612 | /* |
| 613 | * Both ports (host and dev) share the same packet buffer pool; |
| 614 | * the first time a port gets opened will allocate the pp that |
| 615 | * gets stored in the nexus, which will then be used by any |
| 616 | * subsequent opens. |
| 617 | */ |
| 618 | kernel_only = !allow_direct || !NX_USER_CHANNEL_PROV(nx); |
| 619 | na->na_arena = skmem_arena_create_for_nexus(na, |
| 620 | NX_PROV(nx)->nxprov_region_params, &nx->nx_tx_pp, |
| 621 | &nx->nx_rx_pp, pp_truncated_buf, kernel_only, &nx->nx_adv, &err); |
| 622 | ASSERT(na->na_arena != NULL || err != 0); |
| 623 | ASSERT(nx->nx_tx_pp == NULL || (nx->nx_tx_pp->pp_md_type == |
| 624 | NX_DOM(nx)->nxdom_md_type && nx->nx_tx_pp->pp_md_subtype == |
| 625 | NX_DOM(nx)->nxdom_md_subtype)); |
| 626 | |
| 627 | return err; |
| 628 | } |
| 629 | |
| 630 | SK_NO_INLINE_ATTRIBUTE |
| 631 | static int |
| 632 | nx_netif_get_llink_info(struct sockopt *sopt, struct kern_nexus *nx) |
| 633 | { |
| 634 | struct nx_llink_info_req *nlir = NULL; |
| 635 | struct nx_netif *nif; |
| 636 | struct netif_llink *llink; |
| 637 | uint16_t llink_cnt; |
| 638 | size_t len, user_len; |
| 639 | int err, i; |
| 640 | |
| 641 | nif = NX_NETIF_PRIVATE(nx); |
| 642 | if (!NETIF_LLINK_ENABLED(nif)) { |
| 643 | SK_ERR("llink mode not enabled" ); |
| 644 | return ENOTSUP; |
| 645 | } |
| 646 | lck_rw_lock_shared(lck: &nif->nif_llink_lock); |
| 647 | llink_cnt = nif->nif_llink_cnt; |
| 648 | if (llink_cnt == 0) { |
| 649 | SK_ERR("zero llink cnt" ); |
| 650 | err = ENXIO; |
| 651 | goto done; |
| 652 | } |
| 653 | len = sizeof(*nlir) + (sizeof(struct nx_llink_info) * llink_cnt); |
| 654 | /* preserve sopt_valsize because it gets overwritten by copyin */ |
| 655 | user_len = sopt->sopt_valsize; |
| 656 | if (user_len < len) { |
| 657 | SK_ERR("buffer too small" ); |
| 658 | err = ENOBUFS; |
| 659 | goto done; |
| 660 | } |
| 661 | nlir = sk_alloc_data(len, Z_WAITOK, skmem_tag_netif_llink_info); |
| 662 | if (nlir == NULL) { |
| 663 | SK_ERR("failed to allocate nlir" ); |
| 664 | err = ENOMEM; |
| 665 | goto done; |
| 666 | } |
| 667 | err = sooptcopyin(sopt, nlir, len: sizeof(*nlir), minlen: sizeof(*nlir)); |
| 668 | if (err != 0) { |
| 669 | SK_ERR("copyin failed: %d" , err); |
| 670 | goto done; |
| 671 | } |
| 672 | if (nlir->nlir_version != NETIF_LLINK_INFO_VERSION) { |
| 673 | SK_ERR("nlir version mismatch: %d != %d" , |
| 674 | nlir->nlir_version, NETIF_LLINK_INFO_VERSION); |
| 675 | err = ENOTSUP; |
| 676 | goto done; |
| 677 | } |
| 678 | nlir->nlir_llink_cnt = llink_cnt; |
| 679 | i = 0; |
| 680 | STAILQ_FOREACH(llink, &nif->nif_llink_list, nll_link) { |
| 681 | struct nx_llink_info *nli; |
| 682 | struct netif_qset *qset; |
| 683 | uint16_t qset_cnt; |
| 684 | int j; |
| 685 | |
| 686 | nli = &nlir->nlir_llink[i]; |
| 687 | nli->nli_link_id = llink->nll_link_id; |
| 688 | nli->nli_link_id_internal = llink->nll_link_id_internal; |
| 689 | nli->nli_state = llink->nll_state; |
| 690 | nli->nli_flags = llink->nll_flags; |
| 691 | |
| 692 | qset_cnt = llink->nll_qset_cnt; |
| 693 | ASSERT(qset_cnt <= NETIF_LLINK_MAX_QSETS); |
| 694 | nli->nli_qset_cnt = qset_cnt; |
| 695 | |
| 696 | j = 0; |
| 697 | SLIST_FOREACH(qset, &llink->nll_qset_list, nqs_list) { |
| 698 | struct nx_qset_info *nqi; |
| 699 | |
| 700 | nqi = &nli->nli_qset[j]; |
| 701 | nqi->nqi_id = qset->nqs_id; |
| 702 | nqi->nqi_flags = qset->nqs_flags; |
| 703 | nqi->nqi_num_rx_queues = qset->nqs_num_rx_queues; |
| 704 | nqi->nqi_num_tx_queues = qset->nqs_num_tx_queues; |
| 705 | j++; |
| 706 | } |
| 707 | ASSERT(j == qset_cnt); |
| 708 | i++; |
| 709 | } |
| 710 | ASSERT(i == llink_cnt); |
| 711 | sopt->sopt_valsize = user_len; |
| 712 | err = sooptcopyout(sopt, data: nlir, len); |
| 713 | if (err != 0) { |
| 714 | SK_ERR("sooptcopyout failed: %d" , err); |
| 715 | } |
| 716 | done: |
| 717 | lck_rw_unlock_shared(lck: &nif->nif_llink_lock); |
| 718 | if (nlir != NULL) { |
| 719 | sk_free_data(nlir, len); |
| 720 | } |
| 721 | return err; |
| 722 | } |
| 723 | |
| 724 | int |
| 725 | nx_netif_prov_config(struct kern_nexus_domain_provider *nxdom_prov, |
| 726 | struct kern_nexus *nx, struct nx_cfg_req *ncr, int sopt_dir, |
| 727 | struct proc *p, kauth_cred_t cred) |
| 728 | { |
| 729 | #pragma unused(nxdom_prov) |
| 730 | struct sockopt sopt; |
| 731 | int err = 0; |
| 732 | |
| 733 | SK_LOCK_ASSERT_HELD(); |
| 734 | |
| 735 | /* proceed only if the client possesses netif entitlement */ |
| 736 | if ((err = skywalk_priv_check_cred(p, cred, |
| 737 | PRIV_SKYWALK_REGISTER_NET_IF)) != 0) { |
| 738 | goto done; |
| 739 | } |
| 740 | |
| 741 | if (ncr->nc_req == USER_ADDR_NULL) { |
| 742 | err = EINVAL; |
| 743 | goto done; |
| 744 | } |
| 745 | |
| 746 | /* to make life easier for handling copies */ |
| 747 | bzero(s: &sopt, n: sizeof(sopt)); |
| 748 | sopt.sopt_dir = sopt_dir; |
| 749 | sopt.sopt_val = ncr->nc_req; |
| 750 | sopt.sopt_valsize = ncr->nc_req_len; |
| 751 | sopt.sopt_p = p; |
| 752 | |
| 753 | switch (ncr->nc_cmd) { |
| 754 | case NXCFG_CMD_ATTACH: |
| 755 | case NXCFG_CMD_DETACH: { |
| 756 | struct nx_spec_req nsr; |
| 757 | |
| 758 | bzero(s: &nsr, n: sizeof(nsr)); |
| 759 | err = sooptcopyin(sopt: &sopt, &nsr, len: sizeof(nsr), minlen: sizeof(nsr)); |
| 760 | if (err != 0) { |
| 761 | goto done; |
| 762 | } |
| 763 | |
| 764 | /* |
| 765 | * Null-terminate in case this has an interface name; |
| 766 | * the union is already large enough for uuid_t. |
| 767 | */ |
| 768 | nsr.nsr_name[sizeof(nsr.nsr_name) - 1] = '\0'; |
| 769 | if (p != kernproc) { |
| 770 | nsr.nsr_flags &= NXSPECREQ_MASK; |
| 771 | } |
| 772 | |
| 773 | err = nx_netif_ctl(nx, ncr->nc_cmd, &nsr, p); |
| 774 | if (err != 0) { |
| 775 | goto done; |
| 776 | } |
| 777 | |
| 778 | /* XXX: adi@apple.com -- can this copyout fail? */ |
| 779 | (void) sooptcopyout(sopt: &sopt, data: &nsr, len: sizeof(nsr)); |
| 780 | break; |
| 781 | } |
| 782 | case NXCFG_CMD_FLOW_ADD: |
| 783 | case NXCFG_CMD_FLOW_DEL: { |
| 784 | _CASSERT(offsetof(struct nx_flow_req, _nfr_kernel_field_end) == |
| 785 | offsetof(struct nx_flow_req, _nfr_common_field_end)); |
| 786 | struct nx_flow_req nfr; |
| 787 | |
| 788 | bzero(s: &nfr, n: sizeof(nfr)); |
| 789 | err = sooptcopyin(sopt: &sopt, &nfr, len: sizeof(nfr), minlen: sizeof(nfr)); |
| 790 | if (err != 0) { |
| 791 | goto done; |
| 792 | } |
| 793 | |
| 794 | err = nx_netif_ctl(nx, ncr->nc_cmd, &nfr, p); |
| 795 | if (err != 0) { |
| 796 | goto done; |
| 797 | } |
| 798 | |
| 799 | /* XXX: adi@apple.com -- can this copyout fail? */ |
| 800 | (void) sooptcopyout(sopt: &sopt, data: &nfr, len: sizeof(nfr)); |
| 801 | break; |
| 802 | } |
| 803 | case NXCFG_CMD_GET_LLINK_INFO: { |
| 804 | err = nx_netif_get_llink_info(sopt: &sopt, nx); |
| 805 | break; |
| 806 | } |
| 807 | default: |
| 808 | err = EINVAL; |
| 809 | goto done; |
| 810 | } |
| 811 | done: |
| 812 | SK_DF(err ? SK_VERB_ERROR : SK_VERB_NETIF, |
| 813 | "nexus 0x%llx (%s) cmd %d err %d" , SK_KVA(nx), |
| 814 | NX_DOM_PROV(nx)->nxdom_prov_name, ncr->nc_cmd, err); |
| 815 | return err; |
| 816 | } |
| 817 | |
| 818 | void |
| 819 | nx_netif_prov_fini(struct kern_nexus_domain_provider *nxdom_prov) |
| 820 | { |
| 821 | #pragma unused(nxdom_prov) |
| 822 | SK_D("destroying %s" , nxdom_prov->nxdom_prov_name); |
| 823 | } |
| 824 | |
| 825 | int |
| 826 | nx_netif_prov_nx_ctor(struct kern_nexus *nx) |
| 827 | { |
| 828 | struct nx_netif *n; |
| 829 | char name[64]; |
| 830 | int error; |
| 831 | |
| 832 | SK_LOCK_ASSERT_HELD(); |
| 833 | ASSERT(nx->nx_arg == NULL); |
| 834 | |
| 835 | SK_D("nexus 0x%llx (%s)" , SK_KVA(nx), NX_DOM_PROV(nx)->nxdom_prov_name); |
| 836 | |
| 837 | nx->nx_arg = nx_netif_alloc(Z_WAITOK); |
| 838 | n = NX_NETIF_PRIVATE(nx); |
| 839 | if (NX_USER_CHANNEL_PROV(nx) && |
| 840 | NX_PROV(nx)->nxprov_params->nxp_nexusadv_size != 0) { |
| 841 | (void) snprintf(name, count: sizeof(name), "netif_%llu" , nx->nx_id); |
| 842 | error = nx_advisory_alloc(nx, name, |
| 843 | &NX_PROV(nx)->nxprov_region_params[SKMEM_REGION_NEXUSADV], |
| 844 | NEXUS_ADVISORY_TYPE_NETIF); |
| 845 | if (error != 0) { |
| 846 | nx_netif_free(n); |
| 847 | return error; |
| 848 | } |
| 849 | } |
| 850 | n->nif_nx = nx; |
| 851 | SK_D("create new netif 0x%llx for nexus 0x%llx" , |
| 852 | SK_KVA(NX_NETIF_PRIVATE(nx)), SK_KVA(nx)); |
| 853 | return 0; |
| 854 | } |
| 855 | |
| 856 | void |
| 857 | nx_netif_prov_nx_dtor(struct kern_nexus *nx) |
| 858 | { |
| 859 | struct nx_netif *n = NX_NETIF_PRIVATE(nx); |
| 860 | |
| 861 | SK_LOCK_ASSERT_HELD(); |
| 862 | |
| 863 | SK_D("nexus 0x%llx (%s) netif 0x%llx" , SK_KVA(nx), |
| 864 | NX_DOM_PROV(nx)->nxdom_prov_name, SK_KVA(n)); |
| 865 | |
| 866 | /* |
| 867 | * XXX |
| 868 | * detach should be done separately to be symmetrical with attach. |
| 869 | */ |
| 870 | nx_advisory_free(nx); |
| 871 | if (nx_port_get_na(nx, NEXUS_PORT_NET_IF_DEV) != NULL) { |
| 872 | /* we're called by nx_detach(), so this cannot fail */ |
| 873 | int err = nx_netif_ctl_detach(nx, NULL); |
| 874 | VERIFY(err == 0); |
| 875 | } |
| 876 | if (n->nif_dev_nxb != NULL) { |
| 877 | nxb_free(n->nif_dev_nxb); |
| 878 | n->nif_dev_nxb = NULL; |
| 879 | } |
| 880 | if (n->nif_host_nxb != NULL) { |
| 881 | nxb_free(n->nif_host_nxb); |
| 882 | n->nif_host_nxb = NULL; |
| 883 | } |
| 884 | SK_DF(SK_VERB_NETIF, "marking netif 0x%llx as free" , SK_KVA(n)); |
| 885 | nx_netif_free(n); |
| 886 | nx->nx_arg = NULL; |
| 887 | } |
| 888 | |
| 889 | int |
| 890 | nx_netif_prov_nx_mem_info(struct kern_nexus *nx, struct kern_pbufpool **tpp, |
| 891 | struct kern_pbufpool **rpp) |
| 892 | { |
| 893 | ASSERT(nx->nx_tx_pp != NULL); |
| 894 | ASSERT(nx->nx_rx_pp != NULL); |
| 895 | |
| 896 | if (tpp != NULL) { |
| 897 | *tpp = nx->nx_tx_pp; |
| 898 | } |
| 899 | if (rpp != NULL) { |
| 900 | *rpp = nx->nx_rx_pp; |
| 901 | } |
| 902 | |
| 903 | return 0; |
| 904 | } |
| 905 | |
| 906 | static size_t |
| 907 | __netif_mib_get_stats(struct kern_nexus *nx, void *out, size_t len) |
| 908 | { |
| 909 | struct nx_netif *nif = NX_NETIF_PRIVATE(nx); |
| 910 | struct ifnet *ifp = nif->nif_ifp; |
| 911 | struct sk_stats_net_if *sns = out; |
| 912 | size_t actual_space = sizeof(struct sk_stats_net_if); |
| 913 | |
| 914 | if (out != NULL && actual_space <= len) { |
| 915 | uuid_copy(dst: sns->sns_nx_uuid, src: nx->nx_uuid); |
| 916 | if (ifp != NULL) { |
| 917 | (void) strlcpy(dst: sns->sns_if_name, if_name(ifp), IFNAMSIZ); |
| 918 | } |
| 919 | sns->sns_nifs = nif->nif_stats; |
| 920 | } |
| 921 | |
| 922 | return actual_space; |
| 923 | } |
| 924 | |
| 925 | static size_t |
| 926 | __netif_mib_get_llinks(struct kern_nexus *nx, void *out, size_t len) |
| 927 | { |
| 928 | struct nx_netif *nif = NX_NETIF_PRIVATE(nx); |
| 929 | struct nx_llink_info *nli_list = out; |
| 930 | size_t actual_space = 0; |
| 931 | if (NETIF_LLINK_ENABLED(nif)) { |
| 932 | lck_rw_lock_shared(lck: &nif->nif_llink_lock); |
| 933 | actual_space += nif->nif_llink_cnt * sizeof(struct nx_llink_info); |
| 934 | |
| 935 | if (out != NULL && actual_space <= len) { |
| 936 | struct netif_llink *llink; |
| 937 | int i = 0; |
| 938 | STAILQ_FOREACH(llink, &nif->nif_llink_list, nll_link) { |
| 939 | struct nx_llink_info *nli; |
| 940 | struct netif_qset *qset; |
| 941 | uint16_t qset_cnt; |
| 942 | int j; |
| 943 | |
| 944 | nli = &nli_list[i]; |
| 945 | uuid_copy(dst: nli->nli_netif_uuid, src: nx->nx_uuid); |
| 946 | nli->nli_link_id = llink->nll_link_id; |
| 947 | nli->nli_link_id_internal = llink->nll_link_id_internal; |
| 948 | nli->nli_state = llink->nll_state; |
| 949 | nli->nli_flags = llink->nll_flags; |
| 950 | |
| 951 | qset_cnt = llink->nll_qset_cnt; |
| 952 | ASSERT(qset_cnt <= NETIF_LLINK_MAX_QSETS); |
| 953 | nli->nli_qset_cnt = qset_cnt; |
| 954 | |
| 955 | j = 0; |
| 956 | SLIST_FOREACH(qset, &llink->nll_qset_list, nqs_list) { |
| 957 | struct nx_qset_info *nqi; |
| 958 | |
| 959 | nqi = &nli->nli_qset[j]; |
| 960 | nqi->nqi_id = qset->nqs_id; |
| 961 | nqi->nqi_flags = qset->nqs_flags; |
| 962 | nqi->nqi_num_rx_queues = qset->nqs_num_rx_queues; |
| 963 | nqi->nqi_num_tx_queues = qset->nqs_num_tx_queues; |
| 964 | j++; |
| 965 | } |
| 966 | ASSERT(j == qset_cnt); |
| 967 | i++; |
| 968 | } |
| 969 | ASSERT(i == nif->nif_llink_cnt); |
| 970 | } |
| 971 | lck_rw_unlock_shared(lck: &nif->nif_llink_lock); |
| 972 | } |
| 973 | |
| 974 | return actual_space; |
| 975 | } |
| 976 | |
| 977 | static size_t |
| 978 | __netif_mib_get_queue_stats(struct kern_nexus *nx, void *out, size_t len) |
| 979 | { |
| 980 | struct nx_netif *nif = NX_NETIF_PRIVATE(nx); |
| 981 | uint8_t *itr = out; |
| 982 | size_t actual_space = 0; |
| 983 | if (!NETIF_LLINK_ENABLED(nif)) { |
| 984 | return actual_space; |
| 985 | } |
| 986 | |
| 987 | lck_rw_lock_shared(lck: &nif->nif_llink_lock); |
| 988 | struct netif_llink *llink; |
| 989 | struct netif_qset *qset; |
| 990 | STAILQ_FOREACH(llink, &nif->nif_llink_list, nll_link) { |
| 991 | SLIST_FOREACH(qset, &llink->nll_qset_list, nqs_list) { |
| 992 | actual_space += sizeof(struct netif_qstats_info) * |
| 993 | (qset->nqs_num_rx_queues + qset->nqs_num_tx_queues); |
| 994 | } |
| 995 | } |
| 996 | if (out == NULL || actual_space > len) { |
| 997 | lck_rw_unlock_shared(lck: &nif->nif_llink_lock); |
| 998 | return actual_space; |
| 999 | } |
| 1000 | |
| 1001 | llink = NULL; |
| 1002 | qset = NULL; |
| 1003 | uint16_t i = 0, j = 0; |
| 1004 | STAILQ_FOREACH(llink, &nif->nif_llink_list, nll_link) { |
| 1005 | uint16_t qset_cnt; |
| 1006 | j = 0; |
| 1007 | qset_cnt = llink->nll_qset_cnt; |
| 1008 | ASSERT(qset_cnt <= NETIF_LLINK_MAX_QSETS); |
| 1009 | SLIST_FOREACH(qset, &llink->nll_qset_list, nqs_list) { |
| 1010 | int queue_cnt = qset->nqs_num_rx_queues + |
| 1011 | qset->nqs_num_tx_queues; |
| 1012 | for (uint16_t k = 0; k < queue_cnt; k++) { |
| 1013 | struct netif_qstats_info *nqi = |
| 1014 | (struct netif_qstats_info *)(void *)itr; |
| 1015 | struct netif_queue *nq = &qset->nqs_driver_queues[k]; |
| 1016 | nqi->nqi_qset_id = qset->nqs_id; |
| 1017 | nqi->nqi_queue_idx = k; |
| 1018 | if (KPKT_VALID_SVC(nq->nq_svc)) { |
| 1019 | nqi->nqi_svc = (packet_svc_class_t)nq->nq_svc; |
| 1020 | } |
| 1021 | if (nq->nq_flags & NETIF_QUEUE_IS_RX) { |
| 1022 | nqi->nqi_queue_flag = NQI_QUEUE_FLAG_IS_RX; |
| 1023 | } |
| 1024 | |
| 1025 | struct netif_qstats *nq_out = &nqi->nqi_stats; |
| 1026 | struct netif_qstats *nq_src = &nq->nq_stats; |
| 1027 | memcpy(dst: nq_out, src: nq_src, n: sizeof(struct netif_qstats)); |
| 1028 | |
| 1029 | itr += sizeof(struct netif_qstats_info); |
| 1030 | } |
| 1031 | j++; |
| 1032 | } |
| 1033 | ASSERT(j == qset_cnt); |
| 1034 | i++; |
| 1035 | } |
| 1036 | ASSERT(i == nif->nif_llink_cnt); |
| 1037 | |
| 1038 | lck_rw_unlock_shared(lck: &nif->nif_llink_lock); |
| 1039 | return actual_space; |
| 1040 | } |
| 1041 | |
| 1042 | size_t |
| 1043 | nx_netif_prov_nx_mib_get(struct kern_nexus *nx, struct nexus_mib_filter *filter, |
| 1044 | void *out, size_t len, struct proc *p) |
| 1045 | { |
| 1046 | #pragma unused(p) |
| 1047 | size_t ret; |
| 1048 | |
| 1049 | if ((filter->nmf_bitmap & NXMIB_FILTER_NX_UUID) && |
| 1050 | (uuid_compare(uu1: filter->nmf_nx_uuid, uu2: nx->nx_uuid)) != 0) { |
| 1051 | return 0; |
| 1052 | } |
| 1053 | |
| 1054 | switch (filter->nmf_type) { |
| 1055 | case NXMIB_NETIF_STATS: |
| 1056 | ret = __netif_mib_get_stats(nx, out, len); |
| 1057 | break; |
| 1058 | case NXMIB_LLINK_LIST: |
| 1059 | ret = __netif_mib_get_llinks(nx, out, len); |
| 1060 | break; |
| 1061 | case NXMIB_NETIF_QUEUE_STATS: |
| 1062 | ret = __netif_mib_get_queue_stats(nx, out, len); |
| 1063 | break; |
| 1064 | default: |
| 1065 | ret = 0; |
| 1066 | break; |
| 1067 | } |
| 1068 | return ret; |
| 1069 | } |
| 1070 | |
| 1071 | static int |
| 1072 | nx_netif_dom_bind_port(struct kern_nexus *nx, nexus_port_t *nx_port, |
| 1073 | struct nxbind *nxb, void *info) |
| 1074 | { |
| 1075 | struct nx_netif *nif = NX_NETIF_PRIVATE(nx); |
| 1076 | nexus_port_t first, last, port; |
| 1077 | int error; |
| 1078 | |
| 1079 | ASSERT(nx_port != NULL); |
| 1080 | ASSERT(nxb != NULL); |
| 1081 | |
| 1082 | port = *nx_port; |
| 1083 | |
| 1084 | /* |
| 1085 | * If port is: |
| 1086 | * != NEXUS_PORT_ANY: attempt to bind to the specified port |
| 1087 | * == NEXUS_PORT_ANY: find an available port, bind to it, and |
| 1088 | * return back the assigned port. |
| 1089 | */ |
| 1090 | first = NEXUS_PORT_NET_IF_CLIENT; |
| 1091 | ASSERT(NXDOM_MAX(NX_DOM(nx), ports) <= NEXUS_PORT_MAX); |
| 1092 | last = (nexus_port_size_t)NXDOM_MAX(NX_DOM(nx), ports); |
| 1093 | ASSERT(first <= last); |
| 1094 | |
| 1095 | NETIF_WLOCK(nif); |
| 1096 | |
| 1097 | if (__improbable(first == last)) { |
| 1098 | error = ENOMEM; |
| 1099 | } else if (port != NEXUS_PORT_ANY) { |
| 1100 | error = nx_port_bind_info(nx, port, nxb, info); |
| 1101 | SK_DF(SK_VERB_NETIF, "port %d, bind err %d" , port, error); |
| 1102 | } else { |
| 1103 | error = nx_port_find(nx, first, last - 1, &port); |
| 1104 | ASSERT(error != 0 || (port >= first && port < last)); |
| 1105 | if (error == 0) { |
| 1106 | error = nx_port_bind_info(nx, port, nxb, info); |
| 1107 | SK_DF(SK_VERB_NETIF, "found port %d, bind err %d" , |
| 1108 | port, error); |
| 1109 | } |
| 1110 | } |
| 1111 | NETIF_WUNLOCK(nif); |
| 1112 | |
| 1113 | ASSERT(*nx_port == NEXUS_PORT_ANY || *nx_port == port); |
| 1114 | if (error == 0) { |
| 1115 | *nx_port = port; |
| 1116 | } |
| 1117 | |
| 1118 | SK_DF(error ? SK_VERB_ERROR : SK_VERB_NETIF, |
| 1119 | "+++ netif 0x%llx nx_port %d, total %u active %u (err %d)" , |
| 1120 | SK_KVA(nif), (int)*nx_port, NX_NETIF_MAXPORTS, |
| 1121 | nx->nx_active_ports, error); |
| 1122 | |
| 1123 | return error; |
| 1124 | } |
| 1125 | |
| 1126 | static int |
| 1127 | nx_netif_dom_unbind_port(struct kern_nexus *nx, nexus_port_t nx_port) |
| 1128 | { |
| 1129 | struct nx_netif *nif = NX_NETIF_PRIVATE(nx); |
| 1130 | int error = 0; |
| 1131 | |
| 1132 | ASSERT(nx_port != NEXUS_PORT_ANY); |
| 1133 | |
| 1134 | NETIF_WLOCK(nif); |
| 1135 | error = nx_port_unbind(nx, nx_port); |
| 1136 | NETIF_WUNLOCK(nif); |
| 1137 | |
| 1138 | return error; |
| 1139 | } |
| 1140 | |
| 1141 | static int |
| 1142 | nx_netif_dom_connect(struct kern_nexus_domain_provider *nxdom_prov, |
| 1143 | struct kern_nexus *nx, struct kern_channel *ch, struct chreq *chr, |
| 1144 | struct kern_channel *ch0, struct nxbind *nxb, struct proc *p) |
| 1145 | { |
| 1146 | #pragma unused(nxdom_prov) |
| 1147 | int err = 0; |
| 1148 | |
| 1149 | SK_LOCK_ASSERT_HELD(); |
| 1150 | |
| 1151 | ASSERT(NX_DOM_PROV(nx) == nxdom_prov); |
| 1152 | ASSERT(nx->nx_prov->nxprov_params->nxp_type == |
| 1153 | nxdom_prov->nxdom_prov_dom->nxdom_type && |
| 1154 | nx->nx_prov->nxprov_params->nxp_type == NEXUS_TYPE_NET_IF); |
| 1155 | ASSERT(!(ch->ch_flags & CHANF_HOST)); |
| 1156 | |
| 1157 | switch (chr->cr_port) { |
| 1158 | case NEXUS_PORT_NET_IF_DEV: |
| 1159 | if (chr->cr_mode & CHMODE_HOST) { |
| 1160 | err = EINVAL; |
| 1161 | goto done; |
| 1162 | } |
| 1163 | break; |
| 1164 | |
| 1165 | case NEXUS_PORT_NET_IF_HOST: |
| 1166 | if (!(chr->cr_mode & CHMODE_HOST)) { |
| 1167 | if (ch->ch_flags & CHANF_KERNEL) { |
| 1168 | err = EINVAL; |
| 1169 | goto done; |
| 1170 | } |
| 1171 | chr->cr_mode |= CHMODE_HOST; |
| 1172 | } |
| 1173 | /* |
| 1174 | * This channel is exclusively opened to the host |
| 1175 | * rings; don't notify the external provider. |
| 1176 | */ |
| 1177 | os_atomic_or(&ch->ch_flags, CHANF_HOST | CHANF_EXT_SKIP, relaxed); |
| 1178 | break; |
| 1179 | |
| 1180 | default: |
| 1181 | /* |
| 1182 | * This channel is shared between netif and user process; |
| 1183 | * don't notify the external provider. |
| 1184 | */ |
| 1185 | os_atomic_or(&ch->ch_flags, CHANF_EXT_SKIP, relaxed); |
| 1186 | break; |
| 1187 | } |
| 1188 | |
| 1189 | chr->cr_ring_set = RING_SET_DEFAULT; |
| 1190 | chr->cr_real_endpoint = chr->cr_endpoint = CH_ENDPOINT_NET_IF; |
| 1191 | (void) snprintf(chr->cr_name, count: sizeof(chr->cr_name), "netif:%llu:%.*s" , |
| 1192 | nx->nx_id, (int)nx->nx_prov->nxprov_params->nxp_namelen, |
| 1193 | nx->nx_prov->nxprov_params->nxp_name); |
| 1194 | |
| 1195 | if (ch->ch_flags & CHANF_KERNEL) { |
| 1196 | err = na_connect_spec(nx, ch, chr, p); |
| 1197 | } else { |
| 1198 | err = na_connect(nx, ch, chr, ch0, nxb, p); |
| 1199 | } |
| 1200 | |
| 1201 | if (err == 0) { |
| 1202 | /* |
| 1203 | * Mark the kernel slot descriptor region as busy; this |
| 1204 | * prevents it from being torn-down at channel defunct |
| 1205 | * time, as the (external) nexus owner may be calling |
| 1206 | * KPIs that require accessing the slots. |
| 1207 | */ |
| 1208 | skmem_arena_nexus_sd_set_noidle( |
| 1209 | skmem_arena_nexus(ar: ch->ch_na->na_arena), 1); |
| 1210 | } |
| 1211 | |
| 1212 | done: |
| 1213 | return err; |
| 1214 | } |
| 1215 | |
| 1216 | static void |
| 1217 | nx_netif_dom_disconnect(struct kern_nexus_domain_provider *nxdom_prov, |
| 1218 | struct kern_nexus *nx, struct kern_channel *ch) |
| 1219 | { |
| 1220 | #pragma unused(nxdom_prov) |
| 1221 | SK_LOCK_ASSERT_HELD(); |
| 1222 | |
| 1223 | SK_D("channel 0x%llx -!- nexus 0x%llx (%s:\"%s\":%u:%d)" , SK_KVA(ch), |
| 1224 | SK_KVA(nx), nxdom_prov->nxdom_prov_name, ch->ch_na->na_name, |
| 1225 | ch->ch_info->cinfo_nx_port, (int)ch->ch_info->cinfo_ch_ring_id); |
| 1226 | |
| 1227 | /* |
| 1228 | * Release busy assertion held earlier in nx_netif_dom_connect(); |
| 1229 | * this allows for the final arena teardown to succeed. |
| 1230 | */ |
| 1231 | skmem_arena_nexus_sd_set_noidle( |
| 1232 | skmem_arena_nexus(ar: ch->ch_na->na_arena), -1); |
| 1233 | |
| 1234 | if (ch->ch_flags & CHANF_KERNEL) { |
| 1235 | na_disconnect_spec(nx, ch); |
| 1236 | } else { |
| 1237 | na_disconnect(nx, ch); |
| 1238 | } |
| 1239 | } |
| 1240 | |
| 1241 | static void |
| 1242 | nx_netif_dom_defunct(struct kern_nexus_domain_provider *nxdom_prov, |
| 1243 | struct kern_nexus *nx, struct kern_channel *ch, struct proc *p) |
| 1244 | { |
| 1245 | #pragma unused(nxdom_prov, nx) |
| 1246 | LCK_MTX_ASSERT(&ch->ch_lock, LCK_MTX_ASSERT_OWNED); |
| 1247 | ASSERT(!(ch->ch_flags & CHANF_KERNEL)); |
| 1248 | ASSERT(ch->ch_na->na_type == NA_NETIF_DEV || |
| 1249 | ch->ch_na->na_type == NA_NETIF_HOST || |
| 1250 | ch->ch_na->na_type == NA_NETIF_COMPAT_DEV || |
| 1251 | ch->ch_na->na_type == NA_NETIF_COMPAT_HOST || |
| 1252 | ch->ch_na->na_type == NA_NETIF_VP); |
| 1253 | |
| 1254 | na_ch_rings_defunct(ch, p); |
| 1255 | } |
| 1256 | |
| 1257 | static void |
| 1258 | nx_netif_dom_defunct_finalize(struct kern_nexus_domain_provider *nxdom_prov, |
| 1259 | struct kern_nexus *nx, struct kern_channel *ch, boolean_t locked) |
| 1260 | { |
| 1261 | #pragma unused(nxdom_prov) |
| 1262 | struct ifnet *ifp; |
| 1263 | |
| 1264 | if (!locked) { |
| 1265 | SK_LOCK_ASSERT_NOTHELD(); |
| 1266 | SK_LOCK(); |
| 1267 | LCK_MTX_ASSERT(&ch->ch_lock, LCK_MTX_ASSERT_NOTOWNED); |
| 1268 | } else { |
| 1269 | SK_LOCK_ASSERT_HELD(); |
| 1270 | LCK_MTX_ASSERT(&ch->ch_lock, LCK_MTX_ASSERT_OWNED); |
| 1271 | } |
| 1272 | |
| 1273 | ASSERT(ch->ch_na->na_type == NA_NETIF_DEV || |
| 1274 | ch->ch_na->na_type == NA_NETIF_HOST || |
| 1275 | ch->ch_na->na_type == NA_NETIF_COMPAT_DEV || |
| 1276 | ch->ch_na->na_type == NA_NETIF_COMPAT_HOST || |
| 1277 | ch->ch_na->na_type == NA_NETIF_VP); |
| 1278 | |
| 1279 | na_defunct(nx, ch, ch->ch_na, locked); |
| 1280 | ifp = ch->ch_na->na_ifp; |
| 1281 | if (ch->ch_na->na_type == NA_NETIF_VP && ifp != NULL && |
| 1282 | ifnet_is_low_latency(ifp)) { |
| 1283 | /* |
| 1284 | * We release the VPNA's ifp here instead of waiting for the |
| 1285 | * application to close the channel to trigger the release. |
| 1286 | */ |
| 1287 | DTRACE_SKYWALK2(release__vpna__ifp, struct nexus_adapter *, |
| 1288 | ch->ch_na, struct ifnet *, ifp); |
| 1289 | ifnet_decr_iorefcnt(ifp); |
| 1290 | ch->ch_na->na_ifp = NULL; |
| 1291 | } |
| 1292 | SK_D("%s(%d): ch 0x%llx -/- nx 0x%llx (%s:\"%s\":%u:%d)" , |
| 1293 | ch->ch_name, ch->ch_pid, SK_KVA(ch), SK_KVA(nx), |
| 1294 | nxdom_prov->nxdom_prov_name, ch->ch_na->na_name, |
| 1295 | ch->ch_info->cinfo_nx_port, (int)ch->ch_info->cinfo_ch_ring_id); |
| 1296 | |
| 1297 | if (!locked) { |
| 1298 | LCK_MTX_ASSERT(&ch->ch_lock, LCK_MTX_ASSERT_NOTOWNED); |
| 1299 | SK_UNLOCK(); |
| 1300 | } else { |
| 1301 | LCK_MTX_ASSERT(&ch->ch_lock, LCK_MTX_ASSERT_OWNED); |
| 1302 | SK_LOCK_ASSERT_HELD(); |
| 1303 | } |
| 1304 | } |
| 1305 | |
| 1306 | struct nexus_netif_adapter * |
| 1307 | na_netif_alloc(zalloc_flags_t how) |
| 1308 | { |
| 1309 | _CASSERT(offsetof(struct nexus_netif_adapter, nifna_up) == 0); |
| 1310 | |
| 1311 | return zalloc_flags(na_netif_zone, how | Z_ZERO); |
| 1312 | } |
| 1313 | |
| 1314 | void |
| 1315 | na_netif_free(struct nexus_adapter *na) |
| 1316 | { |
| 1317 | struct nexus_netif_adapter *nifna = (struct nexus_netif_adapter *)na; |
| 1318 | |
| 1319 | SK_LOCK_ASSERT_HELD(); |
| 1320 | SK_DF(SK_VERB_MEM, "nifna 0x%llx FREE" , SK_KVA(nifna)); |
| 1321 | |
| 1322 | ASSERT(na->na_refcount == 0); |
| 1323 | ASSERT(nifna->nifna_tx_mit == NULL); |
| 1324 | ASSERT(nifna->nifna_rx_mit == NULL); |
| 1325 | bzero(s: nifna, n: sizeof(*nifna)); |
| 1326 | |
| 1327 | zfree(na_netif_zone, nifna); |
| 1328 | } |
| 1329 | |
| 1330 | /* Process NXCFG_CMD_ATTACH */ |
| 1331 | SK_NO_INLINE_ATTRIBUTE |
| 1332 | static int |
| 1333 | nx_netif_ctl_attach(struct kern_nexus *nx, struct nx_spec_req *nsr, |
| 1334 | struct proc *p) |
| 1335 | { |
| 1336 | struct nx_netif *n = NX_NETIF_PRIVATE(nx); |
| 1337 | struct ifnet *ifp = NULL; |
| 1338 | boolean_t compat; |
| 1339 | int err = 0; |
| 1340 | |
| 1341 | SK_LOCK_ASSERT_HELD(); |
| 1342 | |
| 1343 | ASSERT(NX_DOM(nx)->nxdom_type == NEXUS_TYPE_NET_IF); |
| 1344 | compat = (strcmp(NX_DOM_PROV(nx)->nxdom_prov_name, |
| 1345 | NEXUS_PROVIDER_NET_IF_COMPAT) == 0); |
| 1346 | |
| 1347 | uuid_clear(uu: nsr->nsr_if_uuid); |
| 1348 | /* |
| 1349 | * The netif accepts either an interface name or a pointer to |
| 1350 | * an ifnet, but never a UUID. |
| 1351 | */ |
| 1352 | if (nsr->nsr_flags & NXSPECREQ_UUID) { |
| 1353 | err = EINVAL; |
| 1354 | goto done; |
| 1355 | } |
| 1356 | if (nsr->nsr_flags & NXSPECREQ_IFP) { |
| 1357 | if (p != kernproc || (ifp = nsr->nsr_ifp) == NULL) { |
| 1358 | err = EINVAL; |
| 1359 | goto done; |
| 1360 | } |
| 1361 | } else if ((ifp = ifunit_ref(nsr->nsr_name)) == NULL) { |
| 1362 | err = ENXIO; |
| 1363 | goto done; |
| 1364 | } |
| 1365 | |
| 1366 | if ((compat && SKYWALK_NATIVE(ifp)) || |
| 1367 | (!compat && !SKYWALK_NATIVE(ifp))) { |
| 1368 | /* native driver for netif; non-native for netif_compat */ |
| 1369 | err = ENODEV; |
| 1370 | } else if (ifp->if_na != NULL || !uuid_is_null(uu: n->nif_uuid)) { |
| 1371 | err = EBUSY; |
| 1372 | } else { |
| 1373 | ASSERT(uuid_is_null(n->nif_uuid)); |
| 1374 | /* |
| 1375 | * Upon success, callee will hold its own ifnet iorefcnt |
| 1376 | * as well as a retain count on the nexus adapter. |
| 1377 | */ |
| 1378 | if (compat) { |
| 1379 | err = nx_netif_compat_attach(nx, ifp); |
| 1380 | } else { |
| 1381 | err = nx_netif_attach(nx, ifp); |
| 1382 | } |
| 1383 | |
| 1384 | if (err == 0) { |
| 1385 | /* return the adapter UUID */ |
| 1386 | uuid_generate_random(out: n->nif_uuid); |
| 1387 | uuid_copy(dst: nsr->nsr_if_uuid, src: n->nif_uuid); |
| 1388 | #if (DEVELOPMENT || DEBUG) |
| 1389 | skoid_create(&n->nif_skoid, |
| 1390 | SKOID_SNODE(_kern_skywalk_netif), if_name(ifp), |
| 1391 | CTLFLAG_RW); |
| 1392 | #endif /* !DEVELOPMENT && !DEBUG */ |
| 1393 | } |
| 1394 | } |
| 1395 | done: |
| 1396 | /* drop I/O refcnt from ifunit_ref() */ |
| 1397 | if (ifp != NULL && !(nsr->nsr_flags & NXSPECREQ_IFP)) { |
| 1398 | ifnet_decr_iorefcnt(ifp); |
| 1399 | } |
| 1400 | |
| 1401 | #if SK_LOG |
| 1402 | uuid_string_t uuidstr, ifuuidstr; |
| 1403 | const char *nustr; |
| 1404 | if (nsr->nsr_flags & NXSPECREQ_UUID) { |
| 1405 | nustr = sk_uuid_unparse(nsr->nsr_uuid, uuidstr); |
| 1406 | } else if (nsr->nsr_flags & NXSPECREQ_IFP) { |
| 1407 | (void) snprintf((char *)uuidstr, sizeof(uuidstr), "0x%llx" , |
| 1408 | SK_KVA(nsr->nsr_ifp)); |
| 1409 | nustr = uuidstr; |
| 1410 | } else { |
| 1411 | nustr = nsr->nsr_name; |
| 1412 | } |
| 1413 | SK_DF(err ? SK_VERB_ERROR : SK_VERB_NETIF, |
| 1414 | "nexus 0x%llx (%s) name/uuid \"%s\" if_uuid %s flags 0x%x err %d" , |
| 1415 | SK_KVA(nx), NX_DOM_PROV(nx)->nxdom_prov_name, nustr, |
| 1416 | sk_uuid_unparse(nsr->nsr_if_uuid, ifuuidstr), nsr->nsr_flags, err); |
| 1417 | #endif /* SK_LOG */ |
| 1418 | |
| 1419 | return err; |
| 1420 | } |
| 1421 | |
| 1422 | SK_NO_INLINE_ATTRIBUTE |
| 1423 | static int |
| 1424 | nx_netif_clean(struct nx_netif *nif, boolean_t quiesce_needed) |
| 1425 | { |
| 1426 | struct kern_nexus *nx = nif->nif_nx; |
| 1427 | struct ifnet *ifp; |
| 1428 | boolean_t suspended = FALSE; |
| 1429 | |
| 1430 | ifp = nif->nif_ifp; |
| 1431 | if (ifp == NULL) { |
| 1432 | return EALREADY; |
| 1433 | } |
| 1434 | /* |
| 1435 | * For regular kernel-attached interfaces, quiescing is handled by |
| 1436 | * the ifnet detach thread, which calls dlil_quiesce_and_detach_nexuses(). |
| 1437 | * For interfaces created by skywalk test cases, flowswitch/netif nexuses |
| 1438 | * are constructed on the fly and can also be torn down on the fly. |
| 1439 | * dlil_quiesce_and_detach_nexuses() won't help here because any nexus |
| 1440 | * can be detached while the interface is still attached. |
| 1441 | */ |
| 1442 | if (quiesce_needed && ifnet_datamov_suspend_if_needed(ifp)) { |
| 1443 | SK_UNLOCK(); |
| 1444 | suspended = TRUE; |
| 1445 | ifnet_datamov_drain(ifp); |
| 1446 | SK_LOCK(); |
| 1447 | } |
| 1448 | nx_netif_callbacks_fini(nif); |
| 1449 | nx_netif_agent_fini(nif); |
| 1450 | nx_netif_capabilities_fini(nif); |
| 1451 | nx_netif_flow_fini(nif); |
| 1452 | nx_netif_filter_fini(nif); |
| 1453 | nx_netif_llink_fini(nif); |
| 1454 | nx_netif_flags_fini(nif); |
| 1455 | |
| 1456 | uuid_clear(uu: nif->nif_uuid); |
| 1457 | /* nx_netif_{compat_}attach() held both references */ |
| 1458 | na_release_locked(na: nx_port_get_na(nx, NEXUS_PORT_NET_IF_DEV)); |
| 1459 | na_release_locked(na: nx_port_get_na(nx, NEXUS_PORT_NET_IF_HOST)); |
| 1460 | nx_port_free(nx, NEXUS_PORT_NET_IF_DEV); |
| 1461 | nx_port_free(nx, NEXUS_PORT_NET_IF_HOST); |
| 1462 | |
| 1463 | ifp->if_na_ops = NULL; |
| 1464 | ifp->if_na = NULL; |
| 1465 | nif->nif_ifp = NULL; |
| 1466 | nif->nif_netif_nxadv = NULL; |
| 1467 | SKYWALK_CLEAR_CAPABLE(ifp); |
| 1468 | if (suspended) { |
| 1469 | ifnet_datamov_resume(ifp); |
| 1470 | } |
| 1471 | |
| 1472 | #if (DEVELOPMENT || DEBUG) |
| 1473 | skoid_destroy(&nif->nif_skoid); |
| 1474 | #endif /* !DEVELOPMENT && !DEBUG */ |
| 1475 | return 0; |
| 1476 | } |
| 1477 | |
| 1478 | /* process NXCFG_CMD_DETACH */ |
| 1479 | SK_NO_INLINE_ATTRIBUTE |
| 1480 | static int |
| 1481 | nx_netif_ctl_detach(struct kern_nexus *nx, struct nx_spec_req *nsr) |
| 1482 | { |
| 1483 | struct nx_netif *nif = NX_NETIF_PRIVATE(nx); |
| 1484 | int err = 0; |
| 1485 | |
| 1486 | SK_LOCK_ASSERT_HELD(); |
| 1487 | |
| 1488 | /* |
| 1489 | * nsr is NULL when we're called from the destructor, and it |
| 1490 | * implies that we'll detach whatever that is attached. |
| 1491 | */ |
| 1492 | if (nsr != NULL && uuid_is_null(uu: nsr->nsr_if_uuid)) { |
| 1493 | err = EINVAL; |
| 1494 | } else if (nsr != NULL && uuid_compare(uu1: nsr->nsr_if_uuid, |
| 1495 | uu2: nif->nif_uuid) != 0) { |
| 1496 | err = ESRCH; |
| 1497 | } else if (nx_port_get_na(nx, NEXUS_PORT_NET_IF_DEV) == NULL) { |
| 1498 | /* nx_netif_ctl_attach() not yet done or already detached */ |
| 1499 | err = ENXIO; |
| 1500 | } else if (nx->nx_ch_count != 0) { |
| 1501 | /* |
| 1502 | * There's at least a channel opened; we can't |
| 1503 | * yank the interface from underneath the nexus |
| 1504 | * since our dlil input/output handler may be |
| 1505 | * running now. Bail out and come back here |
| 1506 | * again when the nexus detaches. |
| 1507 | */ |
| 1508 | err = EBUSY; |
| 1509 | } else { |
| 1510 | err = nx_netif_clean(nif, TRUE); |
| 1511 | } |
| 1512 | |
| 1513 | #if SK_LOG |
| 1514 | if (nsr != NULL) { |
| 1515 | uuid_string_t ifuuidstr; |
| 1516 | SK_DF(err ? SK_VERB_ERROR : SK_VERB_NETIF, |
| 1517 | "nexus 0x%llx (%s) if_uuid %s flags 0x%x err %d" , |
| 1518 | SK_KVA(nx), NX_DOM_PROV(nx)->nxdom_prov_name, |
| 1519 | sk_uuid_unparse(nsr->nsr_if_uuid, ifuuidstr), |
| 1520 | nsr->nsr_flags, err); |
| 1521 | } else { |
| 1522 | SK_DF(err ? SK_VERB_ERROR : SK_VERB_NETIF, |
| 1523 | "nexus 0x%llx (%s) err %d" , SK_KVA(nx), |
| 1524 | NX_DOM_PROV(nx)->nxdom_prov_name, err); |
| 1525 | } |
| 1526 | #endif /* SK_LOG */ |
| 1527 | |
| 1528 | return err; |
| 1529 | } |
| 1530 | |
| 1531 | /* |
| 1532 | * XXX |
| 1533 | * These checks are copied from fsw.c |
| 1534 | * There are no tests exercising this code. Do we still need this? |
| 1535 | */ |
| 1536 | SK_NO_INLINE_ATTRIBUTE |
| 1537 | static int |
| 1538 | nx_netif_ctl_flow_check(struct nx_netif *nif, nxcfg_cmd_t cmd, |
| 1539 | struct proc *p, struct nx_flow_req *req) |
| 1540 | { |
| 1541 | #pragma unused(nif) |
| 1542 | boolean_t need_check; |
| 1543 | int error; |
| 1544 | |
| 1545 | if (uuid_is_null(uu: req->nfr_flow_uuid)) { |
| 1546 | return EINVAL; |
| 1547 | } |
| 1548 | req->nfr_flags &= NXFLOWREQF_MASK; |
| 1549 | req->nfr_flowadv_idx = FLOWADV_IDX_NONE; |
| 1550 | |
| 1551 | if (cmd == NXCFG_CMD_FLOW_DEL) { |
| 1552 | return 0; |
| 1553 | } |
| 1554 | need_check = FALSE; |
| 1555 | if (req->nfr_epid != -1 && proc_pid(p) != req->nfr_epid) { |
| 1556 | need_check = TRUE; |
| 1557 | } else if (!uuid_is_null(uu: req->nfr_euuid)) { |
| 1558 | uuid_t uuid; |
| 1559 | |
| 1560 | /* get the UUID of the issuing process */ |
| 1561 | proc_getexecutableuuid(p, uuid, sizeof(uuid)); |
| 1562 | |
| 1563 | /* |
| 1564 | * If this is not issued by a process for its own |
| 1565 | * executable UUID and if the process does not have |
| 1566 | * the necessary privilege, reject the request. |
| 1567 | * The logic is similar to so_set_effective_uuid(). |
| 1568 | */ |
| 1569 | if (uuid_compare(uu1: req->nfr_euuid, uu2: uuid) != 0) { |
| 1570 | need_check = TRUE; |
| 1571 | } |
| 1572 | } |
| 1573 | if (need_check) { |
| 1574 | kauth_cred_t cred = kauth_cred_proc_ref(procp: p); |
| 1575 | error = priv_check_cred(cred, |
| 1576 | PRIV_NET_PRIVILEGED_SOCKET_DELEGATE, flags: 0); |
| 1577 | kauth_cred_unref(&cred); |
| 1578 | if (error != 0) { |
| 1579 | return error; |
| 1580 | } |
| 1581 | } |
| 1582 | return 0; |
| 1583 | } |
| 1584 | |
| 1585 | SK_NO_INLINE_ATTRIBUTE |
| 1586 | static int |
| 1587 | nx_netif_ctl_flow_add(struct nx_netif *nif, struct proc *p, |
| 1588 | struct nx_flow_req *req) |
| 1589 | { |
| 1590 | int err; |
| 1591 | |
| 1592 | ASSERT(p != PROC_NULL); |
| 1593 | err = nx_netif_ctl_flow_check(nif, cmd: NXCFG_CMD_FLOW_ADD, p, req); |
| 1594 | if (err != 0) { |
| 1595 | return err; |
| 1596 | } |
| 1597 | |
| 1598 | /* init kernel only fields */ |
| 1599 | nx_flow_req_internalize(req); |
| 1600 | req->nfr_context = NULL; |
| 1601 | req->nfr_flow_stats = NULL; |
| 1602 | req->nfr_port_reservation = NULL; |
| 1603 | req->nfr_pid = proc_pid(p); |
| 1604 | |
| 1605 | err = nx_netif_netagent_flow_add(nif, req); |
| 1606 | nx_flow_req_externalize(req); |
| 1607 | return err; |
| 1608 | } |
| 1609 | |
| 1610 | SK_NO_INLINE_ATTRIBUTE |
| 1611 | static int |
| 1612 | nx_netif_ctl_flow_del(struct nx_netif *nif, struct proc *p, |
| 1613 | struct nx_flow_req *req) |
| 1614 | { |
| 1615 | int err; |
| 1616 | |
| 1617 | err = nx_netif_ctl_flow_check(nif, cmd: NXCFG_CMD_FLOW_DEL, p, req); |
| 1618 | if (err != 0) { |
| 1619 | return err; |
| 1620 | } |
| 1621 | |
| 1622 | nx_flow_req_internalize(req); |
| 1623 | req->nfr_pid = proc_pid(p); |
| 1624 | |
| 1625 | err = nx_netif_netagent_flow_del(nif, req); |
| 1626 | nx_flow_req_externalize(req); |
| 1627 | return err; |
| 1628 | } |
| 1629 | |
| 1630 | SK_NO_INLINE_ATTRIBUTE |
| 1631 | static int |
| 1632 | nx_netif_ctl(struct kern_nexus *nx, nxcfg_cmd_t nc_cmd, void *data, |
| 1633 | struct proc *p) |
| 1634 | { |
| 1635 | struct nx_netif *nif = NX_NETIF_PRIVATE(nx); |
| 1636 | struct nx_spec_req *nsr = data; |
| 1637 | struct nx_flow_req *nfr = data; |
| 1638 | int error = 0; |
| 1639 | |
| 1640 | SK_LOCK_ASSERT_HELD(); |
| 1641 | |
| 1642 | switch (nc_cmd) { |
| 1643 | case NXCFG_CMD_ATTACH: |
| 1644 | error = nx_netif_ctl_attach(nx, nsr, p); |
| 1645 | break; |
| 1646 | |
| 1647 | case NXCFG_CMD_DETACH: |
| 1648 | error = nx_netif_ctl_detach(nx, nsr); |
| 1649 | break; |
| 1650 | |
| 1651 | case NXCFG_CMD_FLOW_ADD: |
| 1652 | error = nx_netif_ctl_flow_add(nif, p, req: nfr); |
| 1653 | break; |
| 1654 | |
| 1655 | case NXCFG_CMD_FLOW_DEL: |
| 1656 | error = nx_netif_ctl_flow_del(nif, p, req: nfr); |
| 1657 | break; |
| 1658 | |
| 1659 | default: |
| 1660 | SK_ERR("invalid cmd %u" , nc_cmd); |
| 1661 | error = EINVAL; |
| 1662 | break; |
| 1663 | } |
| 1664 | return error; |
| 1665 | } |
| 1666 | |
| 1667 | static void |
| 1668 | nx_netif_llink_notify(struct kern_nexus *nx, struct netif_llink *llink, |
| 1669 | uint32_t flags) |
| 1670 | { |
| 1671 | #pragma unused(flags) |
| 1672 | struct netif_qset *qset; |
| 1673 | |
| 1674 | SLIST_FOREACH(qset, &llink->nll_qset_list, nqs_list) { |
| 1675 | (void) nx_tx_qset_notify(nx, qset_ctx: qset->nqs_ctx); |
| 1676 | } |
| 1677 | } |
| 1678 | |
| 1679 | static void |
| 1680 | nx_netif_llink_notify_all(struct kern_nexus *nx, uint32_t flags) |
| 1681 | { |
| 1682 | struct nx_netif *nif; |
| 1683 | struct netif_llink *llink; |
| 1684 | |
| 1685 | nif = NX_NETIF_PRIVATE(nx); |
| 1686 | |
| 1687 | lck_rw_lock_shared(lck: &nif->nif_llink_lock); |
| 1688 | STAILQ_FOREACH(llink, &nif->nif_llink_list, nll_link) { |
| 1689 | nx_netif_llink_notify(nx, llink, flags); |
| 1690 | } |
| 1691 | lck_rw_unlock_shared(lck: &nif->nif_llink_lock); |
| 1692 | } |
| 1693 | |
| 1694 | /* |
| 1695 | * if_start() callback for native Skywalk interfaces, registered |
| 1696 | * at ifnet_allocate_extended() time, and invoked by the ifnet |
| 1697 | * starter thread. |
| 1698 | */ |
| 1699 | static void |
| 1700 | nx_netif_doorbell_internal(struct ifnet *ifp, uint32_t flags) |
| 1701 | { |
| 1702 | if (__improbable(ifp->if_na == NULL)) { |
| 1703 | return; |
| 1704 | } |
| 1705 | |
| 1706 | /* |
| 1707 | * Do this only if the nexus adapter is active, i.e. a channel |
| 1708 | * has been opened to it by the module above (flowswitch, etc.) |
| 1709 | */ |
| 1710 | struct nexus_adapter *hwna = &NA(ifp)->nifna_up; |
| 1711 | if (__probable(NA_IS_ACTIVE(hwna))) { |
| 1712 | struct kern_nexus *nx = hwna->na_nx; |
| 1713 | |
| 1714 | /* update our work timestamp */ |
| 1715 | hwna->na_work_ts = _net_uptime; |
| 1716 | |
| 1717 | if (NX_LLINK_PROV(nx)) { |
| 1718 | nx_netif_llink_notify_all(nx, flags); |
| 1719 | } else { |
| 1720 | struct __kern_channel_ring *kring; |
| 1721 | |
| 1722 | /* for doorbell purposes, use TX ring 0 */ |
| 1723 | kring = &hwna->na_tx_rings[0]; |
| 1724 | |
| 1725 | /* Issue a synchronous TX doorbell on the netif device ring */ |
| 1726 | kring->ckr_na_sync(kring, PROC_NULL, |
| 1727 | (NA_SYNCF_NETIF_DOORBELL | NA_SYNCF_NETIF_IFSTART)); |
| 1728 | } |
| 1729 | } else { |
| 1730 | struct netif_stats *nifs = |
| 1731 | &NX_NETIF_PRIVATE(hwna->na_nx)->nif_stats; |
| 1732 | STATS_INC(nifs, NETIF_STATS_DROP_NA_INACTIVE); |
| 1733 | } |
| 1734 | } |
| 1735 | |
| 1736 | static void |
| 1737 | nx_netif_doorbell(struct ifnet *ifp) |
| 1738 | { |
| 1739 | nx_netif_doorbell_internal(ifp, NETIF_XMIT_FLAG_HOST); |
| 1740 | } |
| 1741 | |
| 1742 | /* |
| 1743 | * TX sync callback, called from nx_netif_doorbell() where we'd expect to |
| 1744 | * perform synchronous TX doorbell to the driver, by invoking the driver's |
| 1745 | * doorbell callback directly in the same thread context. It is also called |
| 1746 | * when the layer above performs a TX sync operation, where we might need |
| 1747 | * to do an asynchronous doorbell instead, by simply calling ifnet_start(). |
| 1748 | */ |
| 1749 | static int |
| 1750 | nx_netif_na_txsync(struct __kern_channel_ring *kring, struct proc *p, |
| 1751 | uint32_t flags) |
| 1752 | { |
| 1753 | #pragma unused(p) |
| 1754 | struct ifnet *ifp = KRNA(kring)->na_ifp; |
| 1755 | boolean_t sync_only; |
| 1756 | int ret = 0; |
| 1757 | |
| 1758 | ASSERT(ifp != NULL); |
| 1759 | |
| 1760 | SK_DF(SK_VERB_NETIF | SK_VERB_SYNC | SK_VERB_TX, |
| 1761 | "%s(%d) kr \"%s\" (0x%llx) krflags 0x%b ring %u flags 0%x" , |
| 1762 | sk_proc_name_address(p), sk_proc_pid(p), kring->ckr_name, |
| 1763 | SK_KVA(kring), kring->ckr_flags, CKRF_BITS, kring->ckr_ring_id, |
| 1764 | flags); |
| 1765 | |
| 1766 | if (__improbable(!IF_FULLY_ATTACHED(ifp))) { |
| 1767 | SK_ERR("kr 0x%llx ifp %s (0x%llx), interface not attached" , |
| 1768 | SK_KVA(kring), if_name(ifp), SK_KVA(ifp)); |
| 1769 | return ENXIO; |
| 1770 | } |
| 1771 | |
| 1772 | if (__improbable((ifp->if_start_flags & IFSF_FLOW_CONTROLLED) != 0)) { |
| 1773 | SK_DF(SK_VERB_SYNC | SK_VERB_TX, "kr 0x%llx ifp %s (0x%llx), " |
| 1774 | "flow control ON" , SK_KVA(kring), if_name(ifp), |
| 1775 | SK_KVA(ifp)); |
| 1776 | return ENXIO; |
| 1777 | } |
| 1778 | |
| 1779 | /* update our work timestamp */ |
| 1780 | KRNA(kring)->na_work_ts = _net_uptime; |
| 1781 | |
| 1782 | sync_only = ((flags & NA_SYNCF_SYNC_ONLY) != 0) || |
| 1783 | !KR_KERNEL_ONLY(kring); |
| 1784 | /* regular sync (reclaim) */ |
| 1785 | if ((flags & NA_SYNCF_NETIF) != 0 || __improbable(sync_only)) { |
| 1786 | ret = nx_sync_tx(kring, commit: (flags & NA_SYNCF_FORCE_RECLAIM) || |
| 1787 | kring->ckr_pending_intr != 0); |
| 1788 | kring->ckr_pending_intr = 0; |
| 1789 | |
| 1790 | /* direct user channels do not need to use the doorbell */ |
| 1791 | if (__improbable(sync_only)) { |
| 1792 | return ret; |
| 1793 | } |
| 1794 | } |
| 1795 | |
| 1796 | /* |
| 1797 | * Doorbell call. Here we do doorbell explicitly if the flag is |
| 1798 | * set or implicitly if we're opened directly by a user channel. |
| 1799 | * Synchronous vs. asynchronous depending on the context. |
| 1800 | */ |
| 1801 | if (__probable((flags & NA_SYNCF_NETIF_DOORBELL) != 0)) { |
| 1802 | if ((flags & NA_SYNCF_NETIF_IFSTART) != 0) { |
| 1803 | ASSERT(!(flags & NA_SYNCF_NETIF_IFSTART) || |
| 1804 | !(flags & NA_SYNCF_NETIF_ASYNC)); |
| 1805 | nx_tx_doorbell(kring, async: (flags & NA_SYNCF_NETIF_ASYNC)); |
| 1806 | } else { |
| 1807 | ifnet_start(interface: ifp); |
| 1808 | } |
| 1809 | } |
| 1810 | |
| 1811 | return ret; |
| 1812 | } |
| 1813 | |
| 1814 | static int |
| 1815 | nx_netif_na_rxsync(struct __kern_channel_ring *kring, struct proc *p, |
| 1816 | uint32_t flags) |
| 1817 | { |
| 1818 | #pragma unused(p) |
| 1819 | int ret; |
| 1820 | |
| 1821 | SK_DF(SK_VERB_NETIF | SK_VERB_SYNC | SK_VERB_RX, |
| 1822 | "%s(%d) kr \"%s\" (0x%llx) krflags 0x%b ring %u flags 0%x" , |
| 1823 | sk_proc_name_address(p), sk_proc_pid(p), kring->ckr_name, |
| 1824 | SK_KVA(kring), kring->ckr_flags, CKRF_BITS, kring->ckr_ring_id, |
| 1825 | flags); |
| 1826 | |
| 1827 | ASSERT(kring->ckr_rhead <= kring->ckr_lim); |
| 1828 | |
| 1829 | /* update our work timestamp */ |
| 1830 | KRNA(kring)->na_work_ts = _net_uptime; |
| 1831 | |
| 1832 | ret = nx_sync_rx(kring, commit: (flags & NA_SYNCF_FORCE_READ) || |
| 1833 | kring->ckr_pending_intr != 0); |
| 1834 | kring->ckr_pending_intr = 0; |
| 1835 | |
| 1836 | return ret; |
| 1837 | } |
| 1838 | |
| 1839 | static void |
| 1840 | nx_netif_na_dtor(struct nexus_adapter *na) |
| 1841 | { |
| 1842 | struct ifnet *ifp; |
| 1843 | struct nexus_netif_adapter *nifna = NIFNA(na); |
| 1844 | |
| 1845 | SK_LOCK_ASSERT_HELD(); |
| 1846 | ASSERT(na->na_type == NA_NETIF_DEV || na->na_type == NA_NETIF_HOST); |
| 1847 | |
| 1848 | SK_DF(SK_VERB_NETIF, "na \"%s\" (0x%llx)" , na->na_name, SK_KVA(na)); |
| 1849 | |
| 1850 | /* |
| 1851 | * If the finalizer callback hasn't been called for whatever |
| 1852 | * reasons, pick up the embryonic ifnet stored in na_private. |
| 1853 | * Otherwise, release the I/O refcnt of a non-NULL na_ifp. |
| 1854 | */ |
| 1855 | if ((ifp = na->na_ifp) == NULL) { |
| 1856 | ifp = na->na_private; |
| 1857 | na->na_private = NULL; |
| 1858 | } else { |
| 1859 | ifnet_decr_iorefcnt(ifp); |
| 1860 | na->na_ifp = NULL; |
| 1861 | } |
| 1862 | |
| 1863 | if (nifna->nifna_netif != NULL) { |
| 1864 | nx_netif_release(nifna->nifna_netif); |
| 1865 | nifna->nifna_netif = NULL; |
| 1866 | } |
| 1867 | ASSERT(SKYWALK_NATIVE(ifp)); |
| 1868 | } |
| 1869 | |
| 1870 | /* |
| 1871 | * Dispatch rx/tx interrupts to the channel rings. |
| 1872 | * |
| 1873 | * The 'notify' routine depends on what the ring is attached to. |
| 1874 | * - for a channel file descriptor, do an event wakeup on the individual |
| 1875 | * waitqueue, plus one on the global one if needed (see na_notify) |
| 1876 | * - for a device port connected to a FlowSwitch, call the proper |
| 1877 | * forwarding routine; see nx_fsw_tx_hwna_notify() |
| 1878 | * or nx_fsw_rx_hwna_notify(). |
| 1879 | */ |
| 1880 | int |
| 1881 | nx_netif_common_intr(struct __kern_channel_ring *kring, struct proc *p, |
| 1882 | uint32_t flags, uint32_t *work_done) |
| 1883 | { |
| 1884 | struct netif_stats *nifs = |
| 1885 | &NX_NETIF_PRIVATE(KRNA(kring)->na_nx)->nif_stats; |
| 1886 | int (*notify)(struct __kern_channel_ring *kring, |
| 1887 | struct proc *, uint32_t flags); |
| 1888 | int ret; |
| 1889 | |
| 1890 | KDBG((SK_KTRACE_NETIF_COMMON_INTR | DBG_FUNC_START), SK_KVA(kring)); |
| 1891 | |
| 1892 | SK_DF(SK_VERB_NETIF | SK_VERB_INTR | |
| 1893 | ((kring->ckr_tx == NR_RX) ? SK_VERB_RX : SK_VERB_TX), |
| 1894 | "na \"%s\" (0x%llx) kr \"%s\" (0x%llx) krflags 0x%b" , |
| 1895 | KRNA(kring)->na_name, SK_KVA(KRNA(kring)), kring->ckr_name, |
| 1896 | SK_KVA(kring), kring->ckr_flags, CKRF_BITS); |
| 1897 | |
| 1898 | /* update our work timestamp */ |
| 1899 | KRNA(kring)->na_work_ts = _net_uptime; |
| 1900 | |
| 1901 | kring->ckr_pending_intr++; |
| 1902 | if (work_done != NULL) { |
| 1903 | *work_done = 1; /* do not fire again */ |
| 1904 | } |
| 1905 | /* |
| 1906 | * We can't be calling ckr_na_notify here since we could already be |
| 1907 | * intercepting it, else we'd end up recursively calling ourselves. |
| 1908 | * Use the original na_notify callback saved during na_activate, or in |
| 1909 | * the case when the module above us is the flowswitch, the notify |
| 1910 | * routine that it has installed in place of our original one. |
| 1911 | */ |
| 1912 | if (__probable(!KR_DROP(kring) && |
| 1913 | (notify = kring->ckr_netif_notify) != NULL)) { |
| 1914 | ret = notify(kring, p, flags); |
| 1915 | } else { |
| 1916 | /* |
| 1917 | * If the ring is in drop mode, pretend as if it's busy. |
| 1918 | * This allows the mitigation thread to pause for a while |
| 1919 | * before attempting again. |
| 1920 | */ |
| 1921 | ret = EBUSY; |
| 1922 | } |
| 1923 | if (__improbable(ret != 0)) { |
| 1924 | switch (kring->ckr_tx) { |
| 1925 | case NR_RX: |
| 1926 | if (ret == EBUSY) { |
| 1927 | STATS_INC(nifs, NETIF_STATS_RX_IRQ_BUSY); |
| 1928 | } else if (ret == EAGAIN) { |
| 1929 | STATS_INC(nifs, NETIF_STATS_RX_IRQ_AGAIN); |
| 1930 | } else { |
| 1931 | STATS_INC(nifs, NETIF_STATS_RX_IRQ_ERR); |
| 1932 | } |
| 1933 | break; |
| 1934 | |
| 1935 | case NR_TX: |
| 1936 | if (ret == EBUSY) { |
| 1937 | STATS_INC(nifs, NETIF_STATS_TX_IRQ_BUSY); |
| 1938 | } else if (ret == EAGAIN) { |
| 1939 | STATS_INC(nifs, NETIF_STATS_TX_IRQ_AGAIN); |
| 1940 | } else { |
| 1941 | STATS_INC(nifs, NETIF_STATS_TX_IRQ_ERR); |
| 1942 | } |
| 1943 | break; |
| 1944 | |
| 1945 | default: |
| 1946 | break; |
| 1947 | } |
| 1948 | } |
| 1949 | |
| 1950 | KDBG((SK_KTRACE_NETIF_COMMON_INTR | DBG_FUNC_END), SK_KVA(kring), ret); |
| 1951 | |
| 1952 | return ret; |
| 1953 | } |
| 1954 | |
| 1955 | static int |
| 1956 | nx_netif_na_notify_tx(struct __kern_channel_ring *kring, struct proc *p, |
| 1957 | uint32_t flags) |
| 1958 | { |
| 1959 | return nx_netif_mit_tx_intr(kring, p, flags, NULL); |
| 1960 | } |
| 1961 | |
| 1962 | static int |
| 1963 | nx_netif_na_notify_rx(struct __kern_channel_ring *kring, struct proc *p, |
| 1964 | uint32_t flags) |
| 1965 | { |
| 1966 | int ret; |
| 1967 | |
| 1968 | /* |
| 1969 | * In the event the mitigation thread is disabled, protect |
| 1970 | * against recursion by detecting if we're already in the |
| 1971 | * context of an RX notify. IOSkywalkFamily may invoke the |
| 1972 | * notify callback as part of its RX sync callback. |
| 1973 | */ |
| 1974 | if (__probable(!sk_is_rx_notify_protected())) { |
| 1975 | sk_protect_t protect; |
| 1976 | uint32_t work_done; |
| 1977 | |
| 1978 | protect = sk_rx_notify_protect(); |
| 1979 | ret = nx_netif_mit_rx_intr(kring, p, flags, &work_done); |
| 1980 | sk_sync_unprotect(protect); |
| 1981 | } else { |
| 1982 | ret = EAGAIN; |
| 1983 | } |
| 1984 | |
| 1985 | return ret; |
| 1986 | } |
| 1987 | |
| 1988 | static int |
| 1989 | nx_netif_na_notify_rx_redirect(struct __kern_channel_ring *kring, struct proc *p, |
| 1990 | uint32_t flags) |
| 1991 | { |
| 1992 | struct netif_stats *nifs = |
| 1993 | &NX_NETIF_PRIVATE(KRNA(kring)->na_nx)->nif_stats; |
| 1994 | uint32_t work_done; |
| 1995 | |
| 1996 | ASSERT(kring->ckr_tx == NR_RX); |
| 1997 | STATS_INC(nifs, NETIF_STATS_RX_IRQ); |
| 1998 | return nx_netif_common_intr(kring, p, flags, work_done: &work_done); |
| 1999 | } |
| 2000 | |
| 2001 | void |
| 2002 | nx_netif_mit_config(struct nexus_netif_adapter *nifna, |
| 2003 | boolean_t *tx_mit, boolean_t *tx_mit_simple, |
| 2004 | boolean_t *rx_mit, boolean_t *rx_mit_simple) |
| 2005 | { |
| 2006 | struct nx_netif *nif = nifna->nifna_netif; |
| 2007 | |
| 2008 | /* |
| 2009 | * TX mitigation is disabled by default, but can be |
| 2010 | * overridden via "sk_netif_tx_mit=N" boot-arg, where |
| 2011 | * N is one of SK_NETIF_MIT_FORCE_* values. |
| 2012 | */ |
| 2013 | *tx_mit = *tx_mit_simple = FALSE; |
| 2014 | switch (sk_netif_tx_mit) { |
| 2015 | case SK_NETIF_MIT_FORCE_SIMPLE: |
| 2016 | *tx_mit_simple = TRUE; |
| 2017 | OS_FALLTHROUGH; |
| 2018 | case SK_NETIF_MIT_FORCE_ADVANCED: |
| 2019 | *tx_mit = TRUE; |
| 2020 | break; |
| 2021 | case SK_NETIF_MIT_FORCE_OFF: |
| 2022 | case SK_NETIF_MIT_AUTO: |
| 2023 | ASSERT(*tx_mit == FALSE); |
| 2024 | break; |
| 2025 | default: |
| 2026 | VERIFY(0); |
| 2027 | /* NOTREACHED */ |
| 2028 | __builtin_unreachable(); |
| 2029 | } |
| 2030 | |
| 2031 | /* |
| 2032 | * RX mitigation is enabled by default only for BSD-style |
| 2033 | * virtual network interfaces, but can be overridden |
| 2034 | * via "sk_netif_rx_mit=N" boot-arg, where N is one of |
| 2035 | * SK_NETIF_MIT_FORCE_* values. |
| 2036 | */ |
| 2037 | *rx_mit = *rx_mit_simple = FALSE; |
| 2038 | switch (sk_netif_rx_mit) { |
| 2039 | case SK_NETIF_MIT_FORCE_OFF: |
| 2040 | ASSERT(*rx_mit == FALSE); |
| 2041 | break; |
| 2042 | case SK_NETIF_MIT_FORCE_SIMPLE: |
| 2043 | *rx_mit_simple = TRUE; |
| 2044 | OS_FALLTHROUGH; |
| 2045 | case SK_NETIF_MIT_FORCE_ADVANCED: |
| 2046 | *rx_mit = TRUE; |
| 2047 | break; |
| 2048 | case SK_NETIF_MIT_AUTO: |
| 2049 | *rx_mit_simple = TRUE; |
| 2050 | /* |
| 2051 | * Enable RX mitigation thread only for BSD-style virtual (and |
| 2052 | * regular) interfaces, since otherwise we may run out of stack |
| 2053 | * when subjected to IPsec processing, etc. |
| 2054 | */ |
| 2055 | *rx_mit = (NX_PROV(nifna->nifna_up.na_nx)->nxprov_flags & |
| 2056 | NXPROVF_VIRTUAL_DEVICE) && !NETIF_IS_LOW_LATENCY(nif); |
| 2057 | break; |
| 2058 | default: |
| 2059 | VERIFY(0); |
| 2060 | /* NOTREACHED */ |
| 2061 | __builtin_unreachable(); |
| 2062 | } |
| 2063 | } |
| 2064 | |
| 2065 | static int |
| 2066 | nx_netif_na_activate(struct nexus_adapter *na, na_activate_mode_t mode) |
| 2067 | { |
| 2068 | struct nexus_netif_adapter *nifna = (struct nexus_netif_adapter *)na; |
| 2069 | boolean_t tx_mit, rx_mit, tx_mit_simple, rx_mit_simple; |
| 2070 | struct nx_netif *nif = nifna->nifna_netif; |
| 2071 | struct ifnet *ifp = na->na_ifp; |
| 2072 | int error = 0; |
| 2073 | uint32_t r; |
| 2074 | |
| 2075 | ASSERT(na->na_type == NA_NETIF_DEV); |
| 2076 | ASSERT(!(na->na_flags & NAF_HOST_ONLY)); |
| 2077 | |
| 2078 | SK_DF(SK_VERB_NETIF, "na \"%s\" (0x%llx) %s [%s]" , na->na_name, |
| 2079 | SK_KVA(na), ifp->if_xname, na_activate_mode2str(mode)); |
| 2080 | |
| 2081 | switch (mode) { |
| 2082 | case NA_ACTIVATE_MODE_ON: |
| 2083 | ASSERT(SKYWALK_CAPABLE(ifp)); |
| 2084 | |
| 2085 | nx_netif_mit_config(nifna, tx_mit: &tx_mit, tx_mit_simple: &tx_mit_simple, |
| 2086 | rx_mit: &rx_mit, rx_mit_simple: &rx_mit_simple); |
| 2087 | |
| 2088 | /* |
| 2089 | * Init the mitigation support on all the dev TX rings. |
| 2090 | */ |
| 2091 | if (tx_mit) { |
| 2092 | nifna->nifna_tx_mit = |
| 2093 | skn_alloc_type_array(tx_on, struct nx_netif_mit, |
| 2094 | na_get_nrings(na, NR_TX), Z_WAITOK, |
| 2095 | skmem_tag_netif_mit); |
| 2096 | if (nifna->nifna_tx_mit == NULL) { |
| 2097 | SK_ERR("TX mitigation allocation failed" ); |
| 2098 | error = ENOMEM; |
| 2099 | goto out; |
| 2100 | } |
| 2101 | } else { |
| 2102 | ASSERT(nifna->nifna_tx_mit == NULL); |
| 2103 | } |
| 2104 | |
| 2105 | /* |
| 2106 | * Init the mitigation support on all the dev RX rings. |
| 2107 | */ |
| 2108 | if (rx_mit) { |
| 2109 | nifna->nifna_rx_mit = |
| 2110 | skn_alloc_type_array(rx_on, struct nx_netif_mit, |
| 2111 | na_get_nrings(na, NR_RX), Z_WAITOK, |
| 2112 | skmem_tag_netif_mit); |
| 2113 | if (nifna->nifna_rx_mit == NULL) { |
| 2114 | SK_ERR("RX mitigation allocation failed" ); |
| 2115 | if (nifna->nifna_tx_mit != NULL) { |
| 2116 | skn_free_type_array(rx_fail, |
| 2117 | struct nx_netif_mit, |
| 2118 | na_get_nrings(na, NR_TX), |
| 2119 | nifna->nifna_tx_mit); |
| 2120 | nifna->nifna_tx_mit = NULL; |
| 2121 | } |
| 2122 | error = ENOMEM; |
| 2123 | goto out; |
| 2124 | } |
| 2125 | } else { |
| 2126 | ASSERT(nifna->nifna_rx_mit == NULL); |
| 2127 | } |
| 2128 | |
| 2129 | /* intercept na_notify callback on the TX rings */ |
| 2130 | for (r = 0; r < na_get_nrings(na, t: NR_TX); r++) { |
| 2131 | na->na_tx_rings[r].ckr_netif_notify = |
| 2132 | na->na_tx_rings[r].ckr_na_notify; |
| 2133 | na->na_tx_rings[r].ckr_na_notify = |
| 2134 | nx_netif_na_notify_tx; |
| 2135 | if (nifna->nifna_tx_mit != NULL) { |
| 2136 | nx_netif_mit_init(nif, ifp, |
| 2137 | &nifna->nifna_tx_mit[r], |
| 2138 | &na->na_tx_rings[r], tx_mit_simple); |
| 2139 | } |
| 2140 | } |
| 2141 | |
| 2142 | /* intercept na_notify callback on the RX rings */ |
| 2143 | for (r = 0; r < na_get_nrings(na, t: NR_RX); r++) { |
| 2144 | na->na_rx_rings[r].ckr_netif_notify = |
| 2145 | na->na_rx_rings[r].ckr_na_notify; |
| 2146 | na->na_rx_rings[r].ckr_na_notify = IFNET_IS_REDIRECT(ifp) ? |
| 2147 | nx_netif_na_notify_rx_redirect : nx_netif_na_notify_rx; |
| 2148 | if (nifna->nifna_rx_mit != NULL) { |
| 2149 | nx_netif_mit_init(nif, ifp, |
| 2150 | &nifna->nifna_rx_mit[r], |
| 2151 | &na->na_rx_rings[r], rx_mit_simple); |
| 2152 | } |
| 2153 | } |
| 2154 | nx_netif_filter_enable(nif); |
| 2155 | nx_netif_flow_enable(nif); |
| 2156 | os_atomic_or(&na->na_flags, NAF_ACTIVE, relaxed); |
| 2157 | |
| 2158 | /* steer all start requests to netif; this must not fail */ |
| 2159 | lck_mtx_lock(lck: &ifp->if_start_lock); |
| 2160 | error = ifnet_set_start_handler(ifp, nx_netif_doorbell); |
| 2161 | VERIFY(error == 0); |
| 2162 | lck_mtx_unlock(lck: &ifp->if_start_lock); |
| 2163 | break; |
| 2164 | |
| 2165 | case NA_ACTIVATE_MODE_DEFUNCT: |
| 2166 | ASSERT(SKYWALK_CAPABLE(ifp)); |
| 2167 | break; |
| 2168 | |
| 2169 | case NA_ACTIVATE_MODE_OFF: |
| 2170 | /* |
| 2171 | * Note that here we cannot assert SKYWALK_CAPABLE() |
| 2172 | * as we're called in the destructor path. |
| 2173 | */ |
| 2174 | os_atomic_andnot(&na->na_flags, NAF_ACTIVE, relaxed); |
| 2175 | nx_netif_flow_disable(nif); |
| 2176 | nx_netif_filter_disable(nif); |
| 2177 | |
| 2178 | /* |
| 2179 | * Here we may block while holding sk_lock, but because |
| 2180 | * we've cleared NAF_ACTIVE above, kern_channel_tx_refill() |
| 2181 | * should immediately return. A better approach would be |
| 2182 | * to drop sk_lock and add a monitor for this routine. |
| 2183 | */ |
| 2184 | lck_mtx_lock(lck: &ifp->if_start_lock); |
| 2185 | while (ifp->if_start_active != 0) { |
| 2186 | ++ifp->if_start_waiters; |
| 2187 | (void) msleep(chan: &ifp->if_start_waiters, |
| 2188 | mtx: &ifp->if_start_lock, pri: (PZERO - 1), |
| 2189 | wmesg: na->na_name, NULL); |
| 2190 | } |
| 2191 | /* steer all start requests to default handler */ |
| 2192 | ifnet_reset_start_handler(ifp); |
| 2193 | lck_mtx_unlock(lck: &ifp->if_start_lock); |
| 2194 | |
| 2195 | /* reset all TX notify callbacks */ |
| 2196 | for (r = 0; r < na_get_nrings(na, t: NR_TX); r++) { |
| 2197 | na->na_tx_rings[r].ckr_na_notify = |
| 2198 | na->na_tx_rings[r].ckr_netif_notify; |
| 2199 | na->na_tx_rings[r].ckr_netif_notify = NULL; |
| 2200 | if (nifna->nifna_tx_mit != NULL) { |
| 2201 | na->na_tx_rings[r].ckr_netif_mit_stats = NULL; |
| 2202 | nx_netif_mit_cleanup(&nifna->nifna_tx_mit[r]); |
| 2203 | } |
| 2204 | } |
| 2205 | |
| 2206 | if (nifna->nifna_tx_mit != NULL) { |
| 2207 | skn_free_type_array(tx_off, struct nx_netif_mit, |
| 2208 | na_get_nrings(na, NR_TX), nifna->nifna_tx_mit); |
| 2209 | nifna->nifna_tx_mit = NULL; |
| 2210 | } |
| 2211 | |
| 2212 | /* reset all RX notify callbacks */ |
| 2213 | for (r = 0; r < na_get_nrings(na, t: NR_RX); r++) { |
| 2214 | na->na_rx_rings[r].ckr_na_notify = |
| 2215 | na->na_rx_rings[r].ckr_netif_notify; |
| 2216 | na->na_rx_rings[r].ckr_netif_notify = NULL; |
| 2217 | if (nifna->nifna_rx_mit != NULL) { |
| 2218 | na->na_rx_rings[r].ckr_netif_mit_stats = NULL; |
| 2219 | nx_netif_mit_cleanup(&nifna->nifna_rx_mit[r]); |
| 2220 | } |
| 2221 | } |
| 2222 | if (nifna->nifna_rx_mit != NULL) { |
| 2223 | skn_free_type_array(rx_off, struct nx_netif_mit, |
| 2224 | na_get_nrings(na, NR_RX), nifna->nifna_rx_mit); |
| 2225 | nifna->nifna_rx_mit = NULL; |
| 2226 | } |
| 2227 | break; |
| 2228 | |
| 2229 | default: |
| 2230 | VERIFY(0); |
| 2231 | /* NOTREACHED */ |
| 2232 | __builtin_unreachable(); |
| 2233 | } |
| 2234 | out: |
| 2235 | return error; |
| 2236 | } |
| 2237 | |
| 2238 | SK_NO_INLINE_ATTRIBUTE |
| 2239 | static int |
| 2240 | nx_netif_attach(struct kern_nexus *nx, struct ifnet *ifp) |
| 2241 | __attribute__((optnone)) |
| 2242 | { |
| 2243 | struct nx_netif *nif = NX_NETIF_PRIVATE(nx); |
| 2244 | struct nxprov_params *nxp = NX_PROV(nx)->nxprov_params; |
| 2245 | struct nexus_netif_adapter *devnifna = NULL; |
| 2246 | struct nexus_netif_adapter *hostnifna = NULL; |
| 2247 | struct nexus_adapter *devna = NULL; |
| 2248 | struct nexus_adapter *hostna = NULL; |
| 2249 | boolean_t embryonic = FALSE; |
| 2250 | int retval = 0; |
| 2251 | uint32_t na_flags; |
| 2252 | |
| 2253 | SK_LOCK_ASSERT_HELD(); |
| 2254 | ASSERT(SKYWALK_NATIVE(ifp)); |
| 2255 | ASSERT(!SKYWALK_CAPABLE(ifp)); |
| 2256 | ASSERT(ifp->if_na == NULL); |
| 2257 | ASSERT(ifp->if_na_ops == NULL); |
| 2258 | |
| 2259 | devnifna = na_netif_alloc(how: Z_WAITOK); |
| 2260 | hostnifna = na_netif_alloc(how: Z_WAITOK); |
| 2261 | |
| 2262 | /* |
| 2263 | * We can be called for two different interface states: |
| 2264 | * |
| 2265 | * Fully attached: get an io ref count; upon success, this |
| 2266 | * holds a reference to the ifnet for the ifp pointer stored |
| 2267 | * in 'na_ifp' down below for both adapters. |
| 2268 | * |
| 2269 | * Embryonic: temporary hold the ifnet in na_private, which |
| 2270 | * upon a successful ifnet_attach(), will be moved over to |
| 2271 | * the 'na_ifp' with an io ref count held. |
| 2272 | * |
| 2273 | * The ifnet in 'na_ifp' will be released by na_release_locked(). |
| 2274 | */ |
| 2275 | if (!ifnet_is_attached(ifp, refio: 1)) { |
| 2276 | if (!(ifp->if_refflags & IFRF_EMBRYONIC)) { |
| 2277 | ifp = NULL; |
| 2278 | retval = ENXIO; |
| 2279 | goto err; |
| 2280 | } |
| 2281 | embryonic = TRUE; |
| 2282 | } |
| 2283 | |
| 2284 | /* initialize the device netif adapter */ |
| 2285 | devnifna->nifna_netif = nif; |
| 2286 | nx_netif_retain(nif); |
| 2287 | devna = &devnifna->nifna_up; |
| 2288 | devna->na_type = NA_NETIF_DEV; |
| 2289 | devna->na_free = na_netif_free; |
| 2290 | (void) strncpy(devna->na_name, ifp->if_xname, sizeof(devna->na_name) - 1); |
| 2291 | devna->na_name[sizeof(devna->na_name) - 1] = '\0'; |
| 2292 | uuid_generate_random(out: devna->na_uuid); |
| 2293 | if (embryonic) { |
| 2294 | /* |
| 2295 | * We will move this over to na_ifp once |
| 2296 | * the interface is fully attached. |
| 2297 | */ |
| 2298 | devna->na_private = ifp; |
| 2299 | ASSERT(devna->na_ifp == NULL); |
| 2300 | } else { |
| 2301 | ASSERT(devna->na_private == NULL); |
| 2302 | /* use I/O refcnt from ifnet_is_attached() */ |
| 2303 | devna->na_ifp = ifp; |
| 2304 | } |
| 2305 | devna->na_activate = nx_netif_na_activate; |
| 2306 | devna->na_txsync = nx_netif_na_txsync; |
| 2307 | devna->na_rxsync = nx_netif_na_rxsync; |
| 2308 | devna->na_dtor = nx_netif_na_dtor; |
| 2309 | devna->na_krings_create = nx_netif_dev_krings_create; |
| 2310 | devna->na_krings_delete = nx_netif_dev_krings_delete; |
| 2311 | devna->na_special = nx_netif_na_special; |
| 2312 | |
| 2313 | na_flags = NAF_NATIVE; |
| 2314 | if (NX_PROV(nx)->nxprov_flags & NXPROVF_VIRTUAL_DEVICE) { |
| 2315 | na_flags |= NAF_VIRTUAL_DEVICE; |
| 2316 | } |
| 2317 | if (NX_LLINK_PROV(nx)) { |
| 2318 | /* |
| 2319 | * while operating in logical link mode, we don't need to |
| 2320 | * create backing memory regions for the rings as they are |
| 2321 | * not used. |
| 2322 | */ |
| 2323 | na_flags |= NAF_MEM_NO_INIT; |
| 2324 | } |
| 2325 | os_atomic_or(&devna->na_flags, na_flags, relaxed); |
| 2326 | *(nexus_stats_type_t *)(uintptr_t)&devna->na_stats_type = |
| 2327 | NEXUS_STATS_TYPE_INVALID; |
| 2328 | |
| 2329 | na_set_nrings(na: devna, t: NR_TX, v: nxp->nxp_tx_rings); |
| 2330 | na_set_nrings(na: devna, t: NR_RX, v: nxp->nxp_rx_rings); |
| 2331 | na_set_nslots(na: devna, t: NR_TX, v: nxp->nxp_tx_slots); |
| 2332 | na_set_nslots(na: devna, t: NR_RX, v: nxp->nxp_rx_slots); |
| 2333 | /* |
| 2334 | * Verify upper bounds; the parameters must have already been |
| 2335 | * validated by nxdom_prov_params() by the time we get here. |
| 2336 | */ |
| 2337 | ASSERT(na_get_nrings(devna, NR_TX) <= NX_DOM(nx)->nxdom_tx_rings.nb_max); |
| 2338 | ASSERT(na_get_nrings(devna, NR_RX) <= NX_DOM(nx)->nxdom_rx_rings.nb_max); |
| 2339 | ASSERT(na_get_nslots(devna, NR_TX) <= NX_DOM(nx)->nxdom_tx_slots.nb_max); |
| 2340 | ASSERT(na_get_nslots(devna, NR_RX) <= NX_DOM(nx)->nxdom_rx_slots.nb_max); |
| 2341 | |
| 2342 | na_attach_common(devna, nx, &nx_netif_prov_s); |
| 2343 | |
| 2344 | if ((retval = NX_DOM_PROV(nx)->nxdom_prov_mem_new(NX_DOM_PROV(nx), |
| 2345 | nx, devna)) != 0) { |
| 2346 | ASSERT(devna->na_arena == NULL); |
| 2347 | goto err; |
| 2348 | } |
| 2349 | ASSERT(devna->na_arena != NULL); |
| 2350 | |
| 2351 | *(uint32_t *)(uintptr_t)&devna->na_flowadv_max = nxp->nxp_flowadv_max; |
| 2352 | ASSERT(devna->na_flowadv_max == 0 || |
| 2353 | skmem_arena_nexus(devna->na_arena)->arn_flowadv_obj != NULL); |
| 2354 | |
| 2355 | /* setup packet copy routines */ |
| 2356 | if (skmem_arena_nexus(ar: devna->na_arena)->arn_rx_pp->pp_max_frags > 1) { |
| 2357 | nif->nif_pkt_copy_from_mbuf = pkt_copy_multi_buflet_from_mbuf; |
| 2358 | nif->nif_pkt_copy_to_mbuf = pkt_copy_multi_buflet_to_mbuf; |
| 2359 | nif->nif_pkt_copy_from_pkt = pkt_copy_multi_buflet_from_pkt; |
| 2360 | } else { |
| 2361 | nif->nif_pkt_copy_from_mbuf = pkt_copy_from_mbuf; |
| 2362 | nif->nif_pkt_copy_to_mbuf = pkt_copy_to_mbuf; |
| 2363 | nif->nif_pkt_copy_from_pkt = pkt_copy_from_pkt; |
| 2364 | } |
| 2365 | |
| 2366 | /* initialize the host netif adapter */ |
| 2367 | hostnifna->nifna_netif = nif; |
| 2368 | nx_netif_retain(nif); |
| 2369 | hostna = &hostnifna->nifna_up; |
| 2370 | (void) snprintf(hostna->na_name, count: sizeof(hostna->na_name), |
| 2371 | "%s^" , devna->na_name); |
| 2372 | uuid_generate_random(out: hostna->na_uuid); |
| 2373 | if (embryonic) { |
| 2374 | /* |
| 2375 | * We will move this over to na_ifp once |
| 2376 | * the interface is fully attached. |
| 2377 | */ |
| 2378 | hostna->na_private = ifp; |
| 2379 | ASSERT(hostna->na_ifp == NULL); |
| 2380 | } else { |
| 2381 | ASSERT(hostna->na_private == NULL); |
| 2382 | hostna->na_ifp = devna->na_ifp; |
| 2383 | ifnet_incr_iorefcnt(hostna->na_ifp); |
| 2384 | } |
| 2385 | hostna->na_type = NA_NETIF_HOST; |
| 2386 | hostna->na_free = na_netif_free; |
| 2387 | hostna->na_activate = nx_netif_host_na_activate; |
| 2388 | hostna->na_txsync = nx_netif_host_na_txsync; |
| 2389 | hostna->na_rxsync = nx_netif_host_na_rxsync; |
| 2390 | hostna->na_dtor = nx_netif_na_dtor; |
| 2391 | hostna->na_krings_create = nx_netif_host_krings_create; |
| 2392 | hostna->na_krings_delete = nx_netif_host_krings_delete; |
| 2393 | hostna->na_special = nx_netif_host_na_special; |
| 2394 | |
| 2395 | na_flags = NAF_HOST_ONLY | NAF_NATIVE; |
| 2396 | if (NX_LLINK_PROV(nx)) { |
| 2397 | /* |
| 2398 | * while operating in logical link mode, we don't need to |
| 2399 | * create backing memory regions for the rings as they are |
| 2400 | * not used. |
| 2401 | */ |
| 2402 | na_flags |= NAF_MEM_NO_INIT; |
| 2403 | } |
| 2404 | os_atomic_or(&hostna->na_flags, na_flags, relaxed); |
| 2405 | *(nexus_stats_type_t *)(uintptr_t)&hostna->na_stats_type = |
| 2406 | NEXUS_STATS_TYPE_INVALID; |
| 2407 | |
| 2408 | na_set_nrings(na: hostna, t: NR_TX, v: 1); |
| 2409 | na_set_nrings(na: hostna, t: NR_RX, v: 1); |
| 2410 | na_set_nslots(na: hostna, t: NR_TX, v: nxp->nxp_tx_slots); |
| 2411 | na_set_nslots(na: hostna, t: NR_RX, v: nxp->nxp_rx_slots); |
| 2412 | |
| 2413 | na_attach_common(hostna, nx, &nx_netif_prov_s); |
| 2414 | |
| 2415 | if ((retval = NX_DOM_PROV(nx)->nxdom_prov_mem_new(NX_DOM_PROV(nx), |
| 2416 | nx, hostna)) != 0) { |
| 2417 | ASSERT(hostna->na_arena == NULL); |
| 2418 | goto err; |
| 2419 | } |
| 2420 | ASSERT(hostna->na_arena != NULL); |
| 2421 | |
| 2422 | *(uint32_t *)(uintptr_t)&hostna->na_flowadv_max = nxp->nxp_flowadv_max; |
| 2423 | ASSERT(hostna->na_flowadv_max == 0 || |
| 2424 | skmem_arena_nexus(hostna->na_arena)->arn_flowadv_obj != NULL); |
| 2425 | |
| 2426 | /* adjust the classq packet drop limit */ |
| 2427 | if (embryonic) { |
| 2428 | uint32_t drop_lim; |
| 2429 | struct kern_pbufpool_memory_info pp_info; |
| 2430 | |
| 2431 | retval = kern_pbufpool_get_memory_info(pbufpool: nx->nx_tx_pp, pbufpool_mem_ref: &pp_info); |
| 2432 | VERIFY(retval == 0); |
| 2433 | |
| 2434 | /* set the drop limit as 80% of size of packet pool */ |
| 2435 | drop_lim = (pp_info.kpm_packets * 4) / 5; |
| 2436 | VERIFY(drop_lim != 0); |
| 2437 | IFCQ_PKT_DROP_LIMIT(ifp->if_snd) = drop_lim; |
| 2438 | } |
| 2439 | |
| 2440 | /* these will be undone by destructor */ |
| 2441 | ifp->if_na_ops = &na_netif_ops; |
| 2442 | ifp->if_na = devnifna; |
| 2443 | na_retain_locked(na: devna); |
| 2444 | na_retain_locked(na: hostna); |
| 2445 | |
| 2446 | SKYWALK_SET_CAPABLE(ifp); |
| 2447 | |
| 2448 | NETIF_WLOCK(nif); |
| 2449 | nif->nif_ifp = ifp; |
| 2450 | nif->nif_netif_nxadv = nx->nx_adv.netif_nxv_adv; |
| 2451 | retval = nx_port_alloc(nx, NEXUS_PORT_NET_IF_DEV, NULL, &devna, |
| 2452 | kernproc); |
| 2453 | ASSERT(retval == 0); |
| 2454 | retval = nx_port_alloc(nx, NEXUS_PORT_NET_IF_HOST, NULL, &hostna, |
| 2455 | kernproc); |
| 2456 | ASSERT(retval == 0); |
| 2457 | NETIF_WUNLOCK(nif); |
| 2458 | |
| 2459 | #if SK_LOG |
| 2460 | uuid_string_t uuidstr; |
| 2461 | SK_DF(SK_VERB_NETIF, "devna: \"%s\"" , devna->na_name); |
| 2462 | SK_DF(SK_VERB_NETIF, " UUID: %s" , |
| 2463 | sk_uuid_unparse(devna->na_uuid, uuidstr)); |
| 2464 | SK_DF(SK_VERB_NETIF, " nx: 0x%llx (\"%s\":\"%s\")" , |
| 2465 | SK_KVA(devna->na_nx), NX_DOM(devna->na_nx)->nxdom_name, |
| 2466 | NX_DOM_PROV(devna->na_nx)->nxdom_prov_name); |
| 2467 | SK_DF(SK_VERB_NETIF, " flags: 0x%b" , devna->na_flags, NAF_BITS); |
| 2468 | SK_DF(SK_VERB_NETIF, " flowadv_max: %u" , devna->na_flowadv_max); |
| 2469 | SK_DF(SK_VERB_NETIF, " rings: tx %u rx %u" , |
| 2470 | na_get_nrings(devna, NR_TX), na_get_nrings(devna, NR_RX)); |
| 2471 | SK_DF(SK_VERB_NETIF, " slots: tx %u rx %u" , |
| 2472 | na_get_nslots(devna, NR_TX), na_get_nslots(devna, NR_RX)); |
| 2473 | #if CONFIG_NEXUS_USER_PIPE |
| 2474 | SK_DF(SK_VERB_NETIF, " next_pipe: %u" , devna->na_next_pipe); |
| 2475 | SK_DF(SK_VERB_NETIF, " max_pipes: %u" , devna->na_max_pipes); |
| 2476 | #endif /* CONFIG_NEXUS_USER_PIPE */ |
| 2477 | SK_DF(SK_VERB_NETIF, " ifp: 0x%llx %s [ioref %u]" , |
| 2478 | SK_KVA(ifp), ifp->if_xname, ifp->if_refio); |
| 2479 | SK_DF(SK_VERB_NETIF, "hostna: \"%s\"" , hostna->na_name); |
| 2480 | SK_DF(SK_VERB_NETIF, " UUID: %s" , |
| 2481 | sk_uuid_unparse(hostna->na_uuid, uuidstr)); |
| 2482 | SK_DF(SK_VERB_NETIF, " nx: 0x%llx (\"%s\":\"%s\")" , |
| 2483 | SK_KVA(hostna->na_nx), NX_DOM(hostna->na_nx)->nxdom_name, |
| 2484 | NX_DOM_PROV(hostna->na_nx)->nxdom_prov_name); |
| 2485 | SK_DF(SK_VERB_NETIF, " flags: 0x%b" , |
| 2486 | hostna->na_flags, NAF_BITS); |
| 2487 | SK_DF(SK_VERB_NETIF, " flowadv_max: %u" , hostna->na_flowadv_max); |
| 2488 | SK_DF(SK_VERB_NETIF, " rings: tx %u rx %u" , |
| 2489 | na_get_nrings(hostna, NR_TX), na_get_nrings(hostna, NR_RX)); |
| 2490 | SK_DF(SK_VERB_NETIF, " slots: tx %u rx %u" , |
| 2491 | na_get_nslots(hostna, NR_TX), na_get_nslots(hostna, NR_RX)); |
| 2492 | #if CONFIG_NEXUS_USER_PIPE |
| 2493 | SK_DF(SK_VERB_NETIF, " next_pipe: %u" , hostna->na_next_pipe); |
| 2494 | SK_DF(SK_VERB_NETIF, " max_pipes: %u" , hostna->na_max_pipes); |
| 2495 | #endif /* CONFIG_NEXUS_USER_PIPE */ |
| 2496 | SK_DF(SK_VERB_NETIF, " ifp: 0x%llx %s [ioref %u]" , |
| 2497 | SK_KVA(ifp), ifp->if_xname, ifp->if_refio); |
| 2498 | #endif /* SK_LOG */ |
| 2499 | |
| 2500 | err: |
| 2501 | if (retval != 0) { |
| 2502 | if (ifp != NULL) { |
| 2503 | if (!embryonic) { |
| 2504 | ifnet_decr_iorefcnt(ifp); |
| 2505 | } |
| 2506 | ifp = NULL; |
| 2507 | } |
| 2508 | if (devna != NULL) { |
| 2509 | if (devna->na_arena != NULL) { |
| 2510 | skmem_arena_release(devna->na_arena); |
| 2511 | devna->na_arena = NULL; |
| 2512 | } |
| 2513 | if (devna->na_ifp != NULL) { |
| 2514 | ifnet_decr_iorefcnt(devna->na_ifp); |
| 2515 | devna->na_ifp = NULL; |
| 2516 | } |
| 2517 | devna->na_private = NULL; |
| 2518 | } |
| 2519 | if (hostna != NULL) { |
| 2520 | if (hostna->na_arena != NULL) { |
| 2521 | skmem_arena_release(hostna->na_arena); |
| 2522 | hostna->na_arena = NULL; |
| 2523 | } |
| 2524 | if (hostna->na_ifp != NULL) { |
| 2525 | ifnet_decr_iorefcnt(hostna->na_ifp); |
| 2526 | hostna->na_ifp = NULL; |
| 2527 | } |
| 2528 | hostna->na_private = NULL; |
| 2529 | } |
| 2530 | if (devnifna != NULL) { |
| 2531 | if (devnifna->nifna_netif != NULL) { |
| 2532 | nx_netif_release(devnifna->nifna_netif); |
| 2533 | devnifna->nifna_netif = NULL; |
| 2534 | } |
| 2535 | na_netif_free(na: (struct nexus_adapter *)devnifna); |
| 2536 | } |
| 2537 | if (hostnifna != NULL) { |
| 2538 | if (hostnifna->nifna_netif != NULL) { |
| 2539 | nx_netif_release(hostnifna->nifna_netif); |
| 2540 | hostnifna->nifna_netif = NULL; |
| 2541 | } |
| 2542 | na_netif_free(na: (struct nexus_adapter *)hostnifna); |
| 2543 | } |
| 2544 | } |
| 2545 | return retval; |
| 2546 | } |
| 2547 | |
| 2548 | /* |
| 2549 | * Any per-netif state that can be discovered at attach time should be |
| 2550 | * initialized here. |
| 2551 | */ |
| 2552 | static void |
| 2553 | nx_netif_flags_init(struct nx_netif *nif) |
| 2554 | { |
| 2555 | ifnet_t ifp = nif->nif_ifp; |
| 2556 | struct kern_nexus *nx = nif->nif_nx; |
| 2557 | struct nexus_adapter *devna = nx_port_get_na(nx, NEXUS_PORT_NET_IF_DEV); |
| 2558 | |
| 2559 | switch (devna->na_type) { |
| 2560 | case NA_NETIF_DEV: |
| 2561 | if (strcmp(s1: ifp->if_name, s2: sk_ll_prefix) == 0) { |
| 2562 | nif->nif_flags |= NETIF_FLAG_LOW_LATENCY; |
| 2563 | if_set_xflags(ifp, IFXF_LOW_LATENCY); |
| 2564 | } |
| 2565 | break; |
| 2566 | case NA_NETIF_COMPAT_DEV: |
| 2567 | nif->nif_flags |= NETIF_FLAG_COMPAT; |
| 2568 | break; |
| 2569 | default: |
| 2570 | break; |
| 2571 | } |
| 2572 | } |
| 2573 | |
| 2574 | /* |
| 2575 | * This is also supposed to check for any inconsistent state at detach time. |
| 2576 | */ |
| 2577 | static void |
| 2578 | nx_netif_flags_fini(struct nx_netif *nif) |
| 2579 | { |
| 2580 | ifnet_t ifp = nif->nif_ifp; |
| 2581 | |
| 2582 | if (ifp != NULL) { |
| 2583 | if_clear_xflags(ifp, IFXF_LOW_LATENCY); |
| 2584 | } |
| 2585 | nif->nif_flags = 0; |
| 2586 | } |
| 2587 | |
| 2588 | SK_NO_INLINE_ATTRIBUTE |
| 2589 | static void |
| 2590 | nx_netif_callbacks_init(struct nx_netif *nif) |
| 2591 | { |
| 2592 | ifnet_t ifp = nif->nif_ifp; |
| 2593 | |
| 2594 | /* |
| 2595 | * XXX |
| 2596 | * This function is meant to be called by na_netif_finalize(), which is |
| 2597 | * called by ifnet_attach() while holding if_lock exclusively. |
| 2598 | */ |
| 2599 | ifnet_lock_assert(ifp, IFNET_LCK_ASSERT_EXCLUSIVE); |
| 2600 | if (ifnet_is_low_latency(ifp)) { |
| 2601 | ifnet_set_detach_notify_locked(ifp, |
| 2602 | cb: nx_netif_llw_detach_notify, arg: ifp->if_na); |
| 2603 | } |
| 2604 | } |
| 2605 | |
| 2606 | SK_NO_INLINE_ATTRIBUTE |
| 2607 | static void |
| 2608 | nx_netif_callbacks_fini(struct nx_netif *nif) |
| 2609 | { |
| 2610 | ifnet_t ifp = nif->nif_ifp; |
| 2611 | |
| 2612 | if (ifnet_is_low_latency(ifp)) { |
| 2613 | ifnet_set_detach_notify(ifp, NULL, NULL); |
| 2614 | } |
| 2615 | } |
| 2616 | |
| 2617 | static void |
| 2618 | configure_capab_interface_advisory(struct nx_netif *nif, |
| 2619 | nxprov_capab_config_fn_t capab_fn) |
| 2620 | { |
| 2621 | struct kern_nexus_capab_interface_advisory capab; |
| 2622 | struct kern_nexus *nx = nif->nif_nx; |
| 2623 | uint32_t capab_len; |
| 2624 | int error; |
| 2625 | |
| 2626 | /* check/configure interface advisory notifications */ |
| 2627 | if ((nif->nif_ifp->if_eflags & IFEF_ADV_REPORT) == 0) { |
| 2628 | return; |
| 2629 | } |
| 2630 | bzero(s: &capab, n: sizeof(capab)); |
| 2631 | capab.kncia_version = |
| 2632 | KERN_NEXUS_CAPAB_INTERFACE_ADVISORY_VERSION_1; |
| 2633 | *__DECONST(kern_nexus_capab_interface_advisory_notify_fn_t *, |
| 2634 | &(capab.kncia_notify)) = nx_netif_interface_advisory_notify; |
| 2635 | *__DECONST(void **, &(capab.kncia_kern_context)) = nx; |
| 2636 | capab_len = sizeof(capab); |
| 2637 | error = capab_fn(NX_PROV(nx), nx, |
| 2638 | KERN_NEXUS_CAPAB_INTERFACE_ADVISORY, &capab, &capab_len); |
| 2639 | if (error != 0) { |
| 2640 | DTRACE_SKYWALK2(interface__advisory__capab__error, |
| 2641 | struct nx_netif *, nif, int, error); |
| 2642 | return; |
| 2643 | } |
| 2644 | VERIFY(capab.kncia_config != NULL); |
| 2645 | VERIFY(capab.kncia_provider_context != NULL); |
| 2646 | nif->nif_intf_adv_config = capab.kncia_config; |
| 2647 | nif->nif_intf_adv_prov_ctx = capab.kncia_provider_context; |
| 2648 | nif->nif_extended_capabilities |= NETIF_CAPAB_INTERFACE_ADVISORY; |
| 2649 | } |
| 2650 | |
| 2651 | static void |
| 2652 | unconfigure_capab_interface_advisory(struct nx_netif *nif) |
| 2653 | { |
| 2654 | if ((nif->nif_extended_capabilities & NETIF_CAPAB_INTERFACE_ADVISORY) == 0) { |
| 2655 | return; |
| 2656 | } |
| 2657 | nif->nif_intf_adv_config = NULL; |
| 2658 | nif->nif_intf_adv_prov_ctx = NULL; |
| 2659 | nif->nif_extended_capabilities &= ~NETIF_CAPAB_INTERFACE_ADVISORY; |
| 2660 | } |
| 2661 | |
| 2662 | static void |
| 2663 | configure_capab_qset_extensions(struct nx_netif *nif, |
| 2664 | nxprov_capab_config_fn_t capab_fn) |
| 2665 | { |
| 2666 | struct kern_nexus_capab_qset_extensions capab; |
| 2667 | struct kern_nexus *nx = nif->nif_nx; |
| 2668 | uint32_t capab_len; |
| 2669 | int error; |
| 2670 | |
| 2671 | if (!NX_LLINK_PROV(nx)) { |
| 2672 | DTRACE_SKYWALK1(not__llink__prov, struct nx_netif *, nif); |
| 2673 | return; |
| 2674 | } |
| 2675 | bzero(s: &capab, n: sizeof(capab)); |
| 2676 | capab.cqe_version = KERN_NEXUS_CAPAB_QSET_EXTENSIONS_VERSION_1; |
| 2677 | capab_len = sizeof(capab); |
| 2678 | error = capab_fn(NX_PROV(nx), nx, |
| 2679 | KERN_NEXUS_CAPAB_QSET_EXTENSIONS, &capab, &capab_len); |
| 2680 | if (error != 0) { |
| 2681 | DTRACE_SKYWALK2(qset__extensions__capab__error, |
| 2682 | struct nx_netif *, nif, int, error); |
| 2683 | return; |
| 2684 | } |
| 2685 | VERIFY(capab.cqe_notify_steering_info != NULL); |
| 2686 | VERIFY(capab.cqe_prov_ctx != NULL); |
| 2687 | nif->nif_qset_extensions.qe_notify_steering_info = |
| 2688 | capab.cqe_notify_steering_info; |
| 2689 | nif->nif_qset_extensions.qe_prov_ctx = capab.cqe_prov_ctx; |
| 2690 | nif->nif_extended_capabilities |= NETIF_CAPAB_QSET_EXTENSIONS; |
| 2691 | } |
| 2692 | |
| 2693 | static void |
| 2694 | unconfigure_capab_qset_extensions(struct nx_netif *nif) |
| 2695 | { |
| 2696 | if ((nif->nif_extended_capabilities & NETIF_CAPAB_QSET_EXTENSIONS) == 0) { |
| 2697 | return; |
| 2698 | } |
| 2699 | bzero(s: &nif->nif_qset_extensions, n: sizeof(nif->nif_qset_extensions)); |
| 2700 | nif->nif_extended_capabilities &= ~NETIF_CAPAB_QSET_EXTENSIONS; |
| 2701 | } |
| 2702 | |
| 2703 | int |
| 2704 | nx_netif_notify_steering_info(struct nx_netif *nif, struct netif_qset *qset, |
| 2705 | struct ifnet_traffic_descriptor_common *td, bool add) |
| 2706 | { |
| 2707 | struct netif_qset_extensions *qset_ext; |
| 2708 | int err; |
| 2709 | |
| 2710 | if ((nif->nif_extended_capabilities & NETIF_CAPAB_QSET_EXTENSIONS) == 0) { |
| 2711 | return ENOTSUP; |
| 2712 | } |
| 2713 | qset_ext = &nif->nif_qset_extensions; |
| 2714 | VERIFY(qset_ext->qe_prov_ctx != NULL); |
| 2715 | VERIFY(qset_ext->qe_notify_steering_info != NULL); |
| 2716 | err = qset_ext->qe_notify_steering_info(qset_ext->qe_prov_ctx, |
| 2717 | qset->nqs_ctx, td, add); |
| 2718 | return err; |
| 2719 | } |
| 2720 | |
| 2721 | static void |
| 2722 | nx_netif_capabilities_init(struct nx_netif *nif) |
| 2723 | { |
| 2724 | struct kern_nexus *nx = nif->nif_nx; |
| 2725 | nxprov_capab_config_fn_t capab_fn; |
| 2726 | |
| 2727 | if ((NX_PROV(nx)->nxprov_netif_ext.nxnpi_version) == |
| 2728 | KERN_NEXUS_PROVIDER_VERSION_NETIF) { |
| 2729 | capab_fn = NX_PROV(nx)->nxprov_netif_ext.nxnpi_config_capab; |
| 2730 | ASSERT(capab_fn != NULL); |
| 2731 | } else { |
| 2732 | capab_fn = NX_PROV(nx)->nxprov_ext.nxpi_config_capab; |
| 2733 | } |
| 2734 | if (capab_fn == NULL) { |
| 2735 | return; |
| 2736 | } |
| 2737 | configure_capab_interface_advisory(nif, capab_fn); |
| 2738 | configure_capab_qset_extensions(nif, capab_fn); |
| 2739 | } |
| 2740 | |
| 2741 | static void |
| 2742 | nx_netif_capabilities_fini(struct nx_netif *nif) |
| 2743 | { |
| 2744 | unconfigure_capab_interface_advisory(nif); |
| 2745 | unconfigure_capab_qset_extensions(nif); |
| 2746 | } |
| 2747 | |
| 2748 | static void |
| 2749 | nx_netif_verify_tso_config(struct nx_netif *nif) |
| 2750 | { |
| 2751 | ifnet_t ifp = nif->nif_ifp; |
| 2752 | uint32_t tso_v4_mtu = 0; |
| 2753 | uint32_t tso_v6_mtu = 0; |
| 2754 | |
| 2755 | /* |
| 2756 | * compat interfaces always use 128-byte buffers on the device packet |
| 2757 | * pool side (for holding headers for classification) so no need to check |
| 2758 | * the size here. |
| 2759 | */ |
| 2760 | if (!SKYWALK_NATIVE(ifp)) { |
| 2761 | return; |
| 2762 | } |
| 2763 | |
| 2764 | if ((ifp->if_hwassist & IFNET_TSO_IPV4) != 0) { |
| 2765 | tso_v4_mtu = ifp->if_tso_v4_mtu; |
| 2766 | } |
| 2767 | if ((ifp->if_hwassist & IFNET_TSO_IPV6) != 0) { |
| 2768 | tso_v6_mtu = ifp->if_tso_v6_mtu; |
| 2769 | } |
| 2770 | VERIFY(PP_BUF_SIZE_DEF(nif->nif_nx->nx_tx_pp) >= |
| 2771 | max(tso_v4_mtu, tso_v6_mtu)); |
| 2772 | } |
| 2773 | |
| 2774 | void |
| 2775 | na_netif_finalize(struct nexus_netif_adapter *nifna, struct ifnet *ifp) |
| 2776 | { |
| 2777 | struct nx_netif *nif = nifna->nifna_netif; |
| 2778 | struct kern_nexus *nx = nif->nif_nx; |
| 2779 | struct nexus_adapter *devna = nx_port_get_na(nx, NEXUS_PORT_NET_IF_DEV); |
| 2780 | struct nexus_adapter *hostna = nx_port_get_na(nx, |
| 2781 | NEXUS_PORT_NET_IF_HOST); |
| 2782 | |
| 2783 | ASSERT(devna != NULL); |
| 2784 | ASSERT(hostna != NULL); |
| 2785 | |
| 2786 | if (!ifnet_is_attached(ifp, refio: 1)) { |
| 2787 | VERIFY(0); |
| 2788 | /* NOTREACHED */ |
| 2789 | __builtin_unreachable(); |
| 2790 | } |
| 2791 | |
| 2792 | ASSERT(devna->na_private == ifp); |
| 2793 | ASSERT(devna->na_ifp == NULL); |
| 2794 | /* use I/O refcnt held by ifnet_is_attached() above */ |
| 2795 | devna->na_ifp = devna->na_private; |
| 2796 | devna->na_private = NULL; |
| 2797 | |
| 2798 | ASSERT(hostna->na_private == ifp); |
| 2799 | ASSERT(hostna->na_ifp == NULL); |
| 2800 | hostna->na_ifp = hostna->na_private; |
| 2801 | hostna->na_private = NULL; |
| 2802 | ifnet_incr_iorefcnt(hostna->na_ifp); |
| 2803 | |
| 2804 | nx_netif_flags_init(nif); |
| 2805 | nx_netif_llink_init(nif); |
| 2806 | nx_netif_filter_init(nif); |
| 2807 | nx_netif_flow_init(nif); |
| 2808 | nx_netif_capabilities_init(nif); |
| 2809 | nx_netif_agent_init(nif); |
| 2810 | (void) nxctl_inet_traffic_rule_get_count(ifp->if_xname, |
| 2811 | &ifp->if_traffic_rule_count); |
| 2812 | nx_netif_verify_tso_config(nif); |
| 2813 | nx_netif_callbacks_init(nif); |
| 2814 | } |
| 2815 | |
| 2816 | void |
| 2817 | nx_netif_reap(struct nexus_netif_adapter *nifna, struct ifnet *ifp, |
| 2818 | uint32_t thres, boolean_t low) |
| 2819 | { |
| 2820 | #pragma unused(ifp) |
| 2821 | struct nx_netif *nif = nifna->nifna_netif; |
| 2822 | struct kern_nexus *nx = nif->nif_nx; |
| 2823 | struct nexus_adapter *devna = nx_port_get_na(nx, NEXUS_PORT_NET_IF_DEV); |
| 2824 | uint64_t now = _net_uptime; |
| 2825 | boolean_t purge; |
| 2826 | |
| 2827 | ASSERT(thres != 0); |
| 2828 | |
| 2829 | if (devna->na_work_ts == 0) { |
| 2830 | return; |
| 2831 | } |
| 2832 | |
| 2833 | /* |
| 2834 | * Purge if it's has been inactive for some time (twice the drain |
| 2835 | * threshold), and clear the work timestamp to temporarily skip this |
| 2836 | * adapter until it's active again. Purging cached objects can be |
| 2837 | * expensive since we'd need to allocate and construct them again, |
| 2838 | * so we do it only when necessary. |
| 2839 | */ |
| 2840 | if (low || (now - devna->na_work_ts) >= (thres << 1)) { |
| 2841 | devna->na_work_ts = 0; |
| 2842 | purge = TRUE; |
| 2843 | } else { |
| 2844 | purge = FALSE; |
| 2845 | } |
| 2846 | |
| 2847 | SK_DF(SK_VERB_NETIF, "%s: %s na %s" , ifp->if_xname, |
| 2848 | (purge ? "purging" : "pruning" ), devna->na_name); |
| 2849 | |
| 2850 | /* |
| 2851 | * Device and host adapters share the same packet buffer pool, |
| 2852 | * so just reap the arena belonging to the device instance. |
| 2853 | */ |
| 2854 | skmem_arena_reap(devna->na_arena, purge); |
| 2855 | } |
| 2856 | |
| 2857 | /* |
| 2858 | * The purpose of this callback is to forceably remove resources held by VPNAs |
| 2859 | * in event of an interface detach. Without this callback an application can |
| 2860 | * prevent the detach from completing indefinitely. Note that this is only needed |
| 2861 | * for low latency VPNAs. Userspace do get notified about interface detach events |
| 2862 | * for other NA types (custom ether and filter) and will do the necessary cleanup. |
| 2863 | * The cleanup is done in two phases: |
| 2864 | * 1) VPNAs channels are defuncted. This releases the resources held by VPNAs and |
| 2865 | * causes the device channel to be closed. All ifnet references held by VPNAs |
| 2866 | * are also released. |
| 2867 | * 2) This cleans up the netif nexus and releases the two remaining ifnet |
| 2868 | * references held by the device and host ports (nx_netif_clean()). |
| 2869 | */ |
| 2870 | void |
| 2871 | nx_netif_llw_detach_notify(void *arg) |
| 2872 | { |
| 2873 | struct nexus_netif_adapter *nifna = arg; |
| 2874 | struct nx_netif *nif = nifna->nifna_netif; |
| 2875 | struct kern_nexus *nx = nif->nif_nx; |
| 2876 | struct kern_channel **ch_list = NULL; |
| 2877 | struct kern_channel *ch; |
| 2878 | int err, i, all_ch_cnt = 0, vp_ch_cnt = 0; |
| 2879 | struct proc *p; |
| 2880 | |
| 2881 | ASSERT(NETIF_IS_LOW_LATENCY(nif)); |
| 2882 | /* |
| 2883 | * kern_channel_defunct() requires sk_lock to be not held. We |
| 2884 | * will first find the list of channels we want to defunct and |
| 2885 | * then call kern_channel_defunct() on each of them. The number |
| 2886 | * of channels cannot increase after sk_lock is released since |
| 2887 | * this interface is being detached. |
| 2888 | */ |
| 2889 | SK_LOCK(); |
| 2890 | all_ch_cnt = nx->nx_ch_count; |
| 2891 | if (all_ch_cnt == 0) { |
| 2892 | DTRACE_SKYWALK1(no__channel, struct kern_nexus *, nx); |
| 2893 | SK_UNLOCK(); |
| 2894 | return; |
| 2895 | } |
| 2896 | ch_list = sk_alloc_type_array(struct kern_channel *, all_ch_cnt, |
| 2897 | Z_WAITOK | Z_NOFAIL, skmem_tag_netif_temp); |
| 2898 | |
| 2899 | STAILQ_FOREACH(ch, &nx->nx_ch_head, ch_link) { |
| 2900 | struct nexus_adapter *na = ch->ch_na; |
| 2901 | |
| 2902 | if (na != NULL && na->na_type == NA_NETIF_VP) { |
| 2903 | ASSERT(vp_ch_cnt < all_ch_cnt); |
| 2904 | |
| 2905 | /* retain channel to prevent it from being freed */ |
| 2906 | ch_retain_locked(ch); |
| 2907 | ch_list[vp_ch_cnt] = ch; |
| 2908 | DTRACE_SKYWALK3(vp__ch__found, struct kern_nexus *, nx, |
| 2909 | struct kern_channel *, ch, struct nexus_adapter *, na); |
| 2910 | vp_ch_cnt++; |
| 2911 | } |
| 2912 | } |
| 2913 | if (vp_ch_cnt == 0) { |
| 2914 | DTRACE_SKYWALK1(vp__ch__not__found, struct kern_nexus *, nx); |
| 2915 | sk_free_type_array(struct kern_channel *, all_ch_cnt, ch_list); |
| 2916 | SK_UNLOCK(); |
| 2917 | return; |
| 2918 | } |
| 2919 | /* prevents the netif from being freed */ |
| 2920 | nx_netif_retain(nif); |
| 2921 | SK_UNLOCK(); |
| 2922 | |
| 2923 | for (i = 0; i < vp_ch_cnt; i++) { |
| 2924 | ch = ch_list[i]; |
| 2925 | p = proc_find(pid: ch->ch_pid); |
| 2926 | if (p == NULL) { |
| 2927 | SK_ERR("ch 0x%llx pid %d not found" , SK_KVA(ch), ch->ch_pid); |
| 2928 | DTRACE_SKYWALK3(ch__pid__not__found, struct kern_nexus *, nx, |
| 2929 | struct kern_channel *, ch, pid_t, ch->ch_pid); |
| 2930 | ch_release(ch); |
| 2931 | continue; |
| 2932 | } |
| 2933 | /* |
| 2934 | * It is possible for the channel to be closed before defunct gets |
| 2935 | * called. We need to get the fd lock here to ensure that the check |
| 2936 | * for the closed state and the calling of channel defunct are done |
| 2937 | * atomically. |
| 2938 | */ |
| 2939 | proc_fdlock(p); |
| 2940 | if ((ch->ch_flags & CHANF_ATTACHED) != 0) { |
| 2941 | kern_channel_defunct(p, ch); |
| 2942 | } |
| 2943 | proc_fdunlock(p); |
| 2944 | proc_rele(p); |
| 2945 | ch_release(ch); |
| 2946 | } |
| 2947 | sk_free_type_array(struct kern_channel *, all_ch_cnt, ch_list); |
| 2948 | |
| 2949 | SK_LOCK(); |
| 2950 | /* |
| 2951 | * Quiescing is not needed because: |
| 2952 | * The defuncting above ensures that no more tx syncs could enter. |
| 2953 | * The driver layer ensures that ifnet_detach() (this path) does not get |
| 2954 | * called until RX upcalls have returned. |
| 2955 | * |
| 2956 | * Before sk_lock is reacquired above, userspace could close its channels |
| 2957 | * and cause the nexus's destructor to be called. This is fine because we |
| 2958 | * have retained the nif so it can't disappear. |
| 2959 | */ |
| 2960 | err = nx_netif_clean(nif, FALSE); |
| 2961 | if (err != 0) { |
| 2962 | SK_ERR("netif clean failed: err %d" , err); |
| 2963 | DTRACE_SKYWALK2(nif__clean__failed, struct nx_netif *, nif, int, err); |
| 2964 | } |
| 2965 | nx_netif_release(nif); |
| 2966 | SK_UNLOCK(); |
| 2967 | } |
| 2968 | |
| 2969 | void |
| 2970 | nx_netif_copy_stats(struct nexus_netif_adapter *nifna, |
| 2971 | struct if_netif_stats *if_ns) |
| 2972 | { |
| 2973 | struct nx_netif_mit *mit; |
| 2974 | struct mit_cfg_tbl *mit_cfg; |
| 2975 | |
| 2976 | if ((mit = nifna->nifna_rx_mit) == NULL) { |
| 2977 | return; |
| 2978 | } |
| 2979 | |
| 2980 | if ((mit->mit_flags & NETIF_MITF_INITIALIZED) == 0) { |
| 2981 | return; |
| 2982 | } |
| 2983 | |
| 2984 | if_ns->ifn_rx_mit_interval = mit->mit_interval; |
| 2985 | if_ns->ifn_rx_mit_mode = mit->mit_mode; |
| 2986 | if_ns->ifn_rx_mit_packets_avg = mit->mit_packets_avg; |
| 2987 | if_ns->ifn_rx_mit_packets_min = mit->mit_packets_min; |
| 2988 | if_ns->ifn_rx_mit_packets_max = mit->mit_packets_max; |
| 2989 | if_ns->ifn_rx_mit_bytes_avg = mit->mit_bytes_avg; |
| 2990 | if_ns->ifn_rx_mit_bytes_min = mit->mit_bytes_min; |
| 2991 | if_ns->ifn_rx_mit_bytes_max = mit->mit_bytes_max; |
| 2992 | if_ns->ifn_rx_mit_cfg_idx = mit->mit_cfg_idx; |
| 2993 | |
| 2994 | VERIFY(if_ns->ifn_rx_mit_cfg_idx < mit->mit_cfg_idx_max); |
| 2995 | mit_cfg = &mit->mit_tbl[if_ns->ifn_rx_mit_cfg_idx]; |
| 2996 | if_ns->ifn_rx_mit_cfg_packets_lowat = mit_cfg->cfg_plowat; |
| 2997 | if_ns->ifn_rx_mit_cfg_packets_hiwat = mit_cfg->cfg_phiwat; |
| 2998 | if_ns->ifn_rx_mit_cfg_bytes_lowat = mit_cfg->cfg_blowat; |
| 2999 | if_ns->ifn_rx_mit_cfg_bytes_hiwat = mit_cfg->cfg_bhiwat; |
| 3000 | if_ns->ifn_rx_mit_cfg_interval = mit_cfg->cfg_ival; |
| 3001 | } |
| 3002 | |
| 3003 | int |
| 3004 | nx_netif_na_special(struct nexus_adapter *na, struct kern_channel *ch, |
| 3005 | struct chreq *chr, nxspec_cmd_t spec_cmd) |
| 3006 | { |
| 3007 | ASSERT(na->na_type == NA_NETIF_DEV || |
| 3008 | na->na_type == NA_NETIF_COMPAT_DEV); |
| 3009 | return nx_netif_na_special_common(na, ch, chr, spec_cmd); |
| 3010 | } |
| 3011 | |
| 3012 | int |
| 3013 | nx_netif_na_special_common(struct nexus_adapter *na, struct kern_channel *ch, |
| 3014 | struct chreq *chr, nxspec_cmd_t spec_cmd) |
| 3015 | { |
| 3016 | int error = 0; |
| 3017 | |
| 3018 | ASSERT(na->na_type == NA_NETIF_DEV || na->na_type == NA_NETIF_HOST || |
| 3019 | na->na_type == NA_NETIF_COMPAT_DEV || |
| 3020 | na->na_type == NA_NETIF_COMPAT_HOST); |
| 3021 | SK_LOCK_ASSERT_HELD(); |
| 3022 | |
| 3023 | switch (spec_cmd) { |
| 3024 | case NXSPEC_CMD_CONNECT: |
| 3025 | /* |
| 3026 | * netif adapter isn't created exclusively for kernel. |
| 3027 | * We mark (and clear) NAF_KERNEL_ONLY flag upon a succesful |
| 3028 | * na_special() connect and disconnect. |
| 3029 | */ |
| 3030 | if (NA_KERNEL_ONLY(na)) { |
| 3031 | error = EBUSY; |
| 3032 | goto done; |
| 3033 | } |
| 3034 | ASSERT(!(na->na_flags & NAF_SPEC_INIT)); |
| 3035 | |
| 3036 | os_atomic_or(&na->na_flags, NAF_KERNEL_ONLY, relaxed); |
| 3037 | error = na_bind_channel(na, ch, chr); |
| 3038 | if (error != 0) { |
| 3039 | os_atomic_andnot(&na->na_flags, NAF_KERNEL_ONLY, relaxed); |
| 3040 | goto done; |
| 3041 | } |
| 3042 | os_atomic_or(&na->na_flags, NAF_SPEC_INIT, relaxed); |
| 3043 | break; |
| 3044 | |
| 3045 | case NXSPEC_CMD_DISCONNECT: |
| 3046 | ASSERT(NA_KERNEL_ONLY(na)); |
| 3047 | ASSERT(na->na_channels > 0); |
| 3048 | ASSERT(na->na_flags & NAF_SPEC_INIT); |
| 3049 | na_unbind_channel(ch); |
| 3050 | os_atomic_andnot(&na->na_flags, (NAF_SPEC_INIT | NAF_KERNEL_ONLY), relaxed); |
| 3051 | break; |
| 3052 | |
| 3053 | case NXSPEC_CMD_START: |
| 3054 | na_kr_drop(na, FALSE); |
| 3055 | break; |
| 3056 | |
| 3057 | case NXSPEC_CMD_STOP: |
| 3058 | na_kr_drop(na, TRUE); |
| 3059 | LCK_MTX_ASSERT(&ch->ch_lock, LCK_MTX_ASSERT_NOTOWNED); |
| 3060 | lck_mtx_lock(lck: &ch->ch_lock); |
| 3061 | nxprov_advise_disconnect(na->na_nx, ch); |
| 3062 | lck_mtx_unlock(lck: &ch->ch_lock); |
| 3063 | break; |
| 3064 | |
| 3065 | default: |
| 3066 | error = EINVAL; |
| 3067 | break; |
| 3068 | } |
| 3069 | |
| 3070 | done: |
| 3071 | SK_DF(error ? SK_VERB_ERROR : SK_VERB_NETIF, |
| 3072 | "ch 0x%llx from na \"%s\" (0x%llx) naflags %b nx 0x%llx " |
| 3073 | "spec_cmd %u (err %d)" , SK_KVA(ch), na->na_name, SK_KVA(na), |
| 3074 | na->na_flags, NAF_BITS, SK_KVA(ch->ch_nexus), spec_cmd, error); |
| 3075 | |
| 3076 | return error; |
| 3077 | } |
| 3078 | |
| 3079 | /* |
| 3080 | * Get a skywalk netif adapter for the port. |
| 3081 | */ |
| 3082 | int |
| 3083 | nx_netif_na_find(struct kern_nexus *nx, struct kern_channel *ch, |
| 3084 | struct chreq *chr, struct nxbind *nxb, struct proc *p, |
| 3085 | struct nexus_adapter **nap, boolean_t create) |
| 3086 | { |
| 3087 | #pragma unused(ch) |
| 3088 | struct nx_netif *nif = NX_NETIF_PRIVATE(nx); |
| 3089 | boolean_t anon = NX_ANONYMOUS_PROV(nx); |
| 3090 | ch_endpoint_t ep = chr->cr_endpoint; |
| 3091 | nexus_port_t nx_port = chr->cr_port; |
| 3092 | struct nexus_adapter *na = NULL; |
| 3093 | struct ifnet *ifp; |
| 3094 | int err = 0; |
| 3095 | |
| 3096 | SK_LOCK_ASSERT_HELD(); |
| 3097 | *nap = NULL; /* default */ |
| 3098 | |
| 3099 | #if SK_LOG |
| 3100 | uuid_string_t uuidstr; |
| 3101 | SK_D("name \"%s\" spec_uuid \"%s\" port %d mode 0x%b pipe_id %u " |
| 3102 | "ring_id %d ring_set %u ep_type %u:%u create %u%s" , |
| 3103 | chr->cr_name, sk_uuid_unparse(chr->cr_spec_uuid, uuidstr), |
| 3104 | (int)chr->cr_port, chr->cr_mode, CHMODE_BITS, |
| 3105 | chr->cr_pipe_id, (int)chr->cr_ring_id, chr->cr_ring_set, |
| 3106 | chr->cr_real_endpoint, chr->cr_endpoint, create, |
| 3107 | (ep != CH_ENDPOINT_NET_IF) ? " (skipped)" : "" ); |
| 3108 | #endif /* SK_LOG */ |
| 3109 | |
| 3110 | if (!create || ep != CH_ENDPOINT_NET_IF) { |
| 3111 | err = ENODEV; |
| 3112 | goto done; |
| 3113 | } |
| 3114 | |
| 3115 | ASSERT(NX_DOM(nx)->nxdom_type == NEXUS_TYPE_NET_IF); |
| 3116 | if (nx_port_get_na(nx, NEXUS_PORT_NET_IF_DEV) == NULL) { |
| 3117 | err = ENXIO; |
| 3118 | goto done; |
| 3119 | } |
| 3120 | ifp = nif->nif_ifp; |
| 3121 | if (!(SKYWALK_CAPABLE(ifp))) { |
| 3122 | SK_ERR("interface %s is no longer usable" , if_name(ifp)); |
| 3123 | err = ENOTSUP; |
| 3124 | goto done; |
| 3125 | } |
| 3126 | |
| 3127 | if (chr->cr_mode & CHMODE_LOW_LATENCY) { |
| 3128 | SK_ERR("low latency is not supported for netif channel" ); |
| 3129 | err = ENOTSUP; |
| 3130 | goto done; |
| 3131 | } |
| 3132 | |
| 3133 | switch (nx_port) { |
| 3134 | case NEXUS_PORT_NET_IF_DEV: |
| 3135 | /* |
| 3136 | * We have to reject direct user open that's not explicitly |
| 3137 | * allowed because netif nexuses do not by default have |
| 3138 | * user memory regions. |
| 3139 | */ |
| 3140 | if (p != kernproc && |
| 3141 | (!skywalk_netif_direct_allowed(ifp->if_xname) || |
| 3142 | (kauth_cred_issuser(cred: kauth_cred_get()) == 0 && |
| 3143 | (anon || nif->nif_dev_nxb == NULL || nxb == NULL || |
| 3144 | !nxb_is_equal(nif->nif_dev_nxb, nxb))))) { |
| 3145 | DTRACE_SKYWALK2(direct__not__allowed, struct ifnet *, |
| 3146 | ifp, struct chreq *, chr); |
| 3147 | err = ENOTSUP; |
| 3148 | goto done; |
| 3149 | } |
| 3150 | if (chr->cr_mode & CHMODE_EVENT_RING) { |
| 3151 | SK_ERR("event ring is not supported for netif dev port channel" ); |
| 3152 | err = ENOTSUP; |
| 3153 | goto done; |
| 3154 | } |
| 3155 | na = nx_port_get_na(nx, NEXUS_PORT_NET_IF_DEV); |
| 3156 | break; |
| 3157 | |
| 3158 | case NEXUS_PORT_NET_IF_HOST: |
| 3159 | if (p != kernproc) { |
| 3160 | err = ENOTSUP; |
| 3161 | goto done; |
| 3162 | } |
| 3163 | if (chr->cr_mode & CHMODE_EVENT_RING) { |
| 3164 | SK_ERR("event ring is not supported for netif host port channel" ); |
| 3165 | err = ENOTSUP; |
| 3166 | goto done; |
| 3167 | } |
| 3168 | na = nx_port_get_na(nx, NEXUS_PORT_NET_IF_HOST); |
| 3169 | break; |
| 3170 | |
| 3171 | default: |
| 3172 | ASSERT(!(chr->cr_mode & CHMODE_CONFIG)); |
| 3173 | |
| 3174 | NETIF_WLOCK(nif); |
| 3175 | err = nx_port_alloc(nx, nx_port, nxb, &na, p); |
| 3176 | if (err != 0) { |
| 3177 | NETIF_WUNLOCK(nif); |
| 3178 | goto done; |
| 3179 | } |
| 3180 | |
| 3181 | if (na == NULL) { |
| 3182 | if (chr->cr_mode & CHMODE_FILTER) { |
| 3183 | err = netif_filter_na_create(nx, chr, &na); |
| 3184 | } else { |
| 3185 | err = netif_vp_na_create(nx, chr, &na); |
| 3186 | } |
| 3187 | if (err != 0) { |
| 3188 | NETIF_WUNLOCK(nif); |
| 3189 | goto done; |
| 3190 | } |
| 3191 | err = nx_port_alloc(nx, nx_port, nxb, &na, p); |
| 3192 | if (err != 0) { |
| 3193 | NETIF_WUNLOCK(nif); |
| 3194 | goto done; |
| 3195 | } |
| 3196 | } |
| 3197 | NETIF_WUNLOCK(nif); |
| 3198 | |
| 3199 | break; |
| 3200 | } |
| 3201 | |
| 3202 | ASSERT(err == 0); |
| 3203 | ASSERT(na != NULL); |
| 3204 | |
| 3205 | #if CONFIG_NEXUS_USER_PIPE |
| 3206 | if (NA_OWNED_BY_ANY(na) || na->na_next_pipe > 0) { |
| 3207 | #else /* !CONFIG_NEXUS_USER_PIPE */ |
| 3208 | if (NA_OWNED_BY_ANY(na)) { |
| 3209 | #endif /* !CONFIG_NEXUS_USER_PIPE */ |
| 3210 | err = EBUSY; |
| 3211 | na = NULL; |
| 3212 | goto done; |
| 3213 | } |
| 3214 | |
| 3215 | *nap = na; |
| 3216 | na_retain_locked(na); |
| 3217 | |
| 3218 | done: |
| 3219 | ASSERT(err != 0 || na != NULL); |
| 3220 | if (err) { |
| 3221 | SK_ERR("na not found, err(%d)" , err); |
| 3222 | } else { |
| 3223 | SK_DF(SK_VERB_NETIF, "found na 0x%llu" , na); |
| 3224 | } |
| 3225 | return err; |
| 3226 | } |
| 3227 | |
| 3228 | /* na_krings_create callback for all netif device adapters */ |
| 3229 | int |
| 3230 | nx_netif_dev_krings_create(struct nexus_adapter *na, struct kern_channel *ch) |
| 3231 | { |
| 3232 | int ret; |
| 3233 | |
| 3234 | ASSERT(na->na_type == NA_NETIF_DEV || |
| 3235 | na->na_type == NA_NETIF_COMPAT_DEV); |
| 3236 | /* |
| 3237 | * Allocate context structures for native netif only, for |
| 3238 | * IOSkywalkFamily to store its object references. |
| 3239 | */ |
| 3240 | ret = na_rings_mem_setup(na, (na->na_flags & NAF_NATIVE), ch); |
| 3241 | |
| 3242 | /* |
| 3243 | * We mark CKRF_DROP for kernel-only rings (kernel channel |
| 3244 | * opened by the flowswitch, etc.) to prevent packets from |
| 3245 | * going thru until after the client of the kernel channel |
| 3246 | * has fully plumbed things on its side. For userland-facing |
| 3247 | * rings (regular channel opened to netif), this is not |
| 3248 | * required, and so don't mark CKRF_DROP there. |
| 3249 | */ |
| 3250 | if (ret == 0 && NA_KERNEL_ONLY(na)) { |
| 3251 | na_kr_drop(na, TRUE); |
| 3252 | } |
| 3253 | |
| 3254 | return ret; |
| 3255 | } |
| 3256 | |
| 3257 | /* call with SK_LOCK held */ |
| 3258 | void |
| 3259 | nx_netif_dev_krings_delete(struct nexus_adapter *na, struct kern_channel *ch, |
| 3260 | boolean_t defunct) |
| 3261 | { |
| 3262 | ASSERT(na->na_type == NA_NETIF_DEV || |
| 3263 | na->na_type == NA_NETIF_COMPAT_DEV); |
| 3264 | |
| 3265 | /* see comments in nx_netif_dev_krings_create() */ |
| 3266 | if (NA_KERNEL_ONLY(na)) { |
| 3267 | na_kr_drop(na, TRUE); |
| 3268 | } |
| 3269 | |
| 3270 | na_rings_mem_teardown(na, ch, defunct); |
| 3271 | } |
| 3272 | |
| 3273 | struct nx_netif * |
| 3274 | nx_netif_alloc(zalloc_flags_t how) |
| 3275 | { |
| 3276 | struct nx_netif *n; |
| 3277 | |
| 3278 | SK_LOCK_ASSERT_HELD(); |
| 3279 | |
| 3280 | n = zalloc_flags(nx_netif_zone, how | Z_ZERO); |
| 3281 | if (n == NULL) { |
| 3282 | return NULL; |
| 3283 | } |
| 3284 | |
| 3285 | NETIF_RWINIT(n); |
| 3286 | os_ref_init(&n->nif_refcnt, NULL); |
| 3287 | SK_DF(SK_VERB_MEM, "netif 0x%llx" , SK_KVA(n)); |
| 3288 | |
| 3289 | return n; |
| 3290 | } |
| 3291 | |
| 3292 | static void |
| 3293 | nx_netif_destroy(struct nx_netif *n) |
| 3294 | { |
| 3295 | ASSERT(n->nif_dev_nxb == NULL); |
| 3296 | ASSERT(n->nif_host_nxb == NULL); |
| 3297 | ASSERT(os_ref_get_count(&n->nif_refcnt) == 0); |
| 3298 | nx_netif_llink_config_free(n); |
| 3299 | SK_DF(SK_VERB_MEM, "netif 0x%llx" , SK_KVA(n)); |
| 3300 | NETIF_RWDESTROY(n); |
| 3301 | zfree(nx_netif_zone, n); |
| 3302 | } |
| 3303 | |
| 3304 | void |
| 3305 | nx_netif_release(struct nx_netif *n) |
| 3306 | { |
| 3307 | SK_LOCK_ASSERT_HELD(); |
| 3308 | |
| 3309 | SK_DF(SK_VERB_MEM, "netif 0x%llx, refcnt %d" , SK_KVA(n), |
| 3310 | os_ref_get_count(&n->nif_refcnt)); |
| 3311 | if (os_ref_release(rc: &n->nif_refcnt) == 0) { |
| 3312 | nx_netif_destroy(n); |
| 3313 | } |
| 3314 | } |
| 3315 | |
| 3316 | void |
| 3317 | nx_netif_retain(struct nx_netif *n) |
| 3318 | { |
| 3319 | SK_LOCK_ASSERT_HELD(); |
| 3320 | |
| 3321 | /* retaining an object with a zero refcount is not allowed */ |
| 3322 | ASSERT(os_ref_get_count(&n->nif_refcnt) >= 1); |
| 3323 | os_ref_retain(rc: &n->nif_refcnt); |
| 3324 | SK_DF(SK_VERB_MEM, "netif 0x%llx, refcnt %d" , SK_KVA(n), |
| 3325 | os_ref_get_count(&n->nif_refcnt)); |
| 3326 | } |
| 3327 | |
| 3328 | void |
| 3329 | nx_netif_free(struct nx_netif *n) |
| 3330 | { |
| 3331 | nx_netif_release(n); |
| 3332 | } |
| 3333 | |
| 3334 | static int |
| 3335 | nx_netif_interface_advisory_report(struct kern_nexus *nx, |
| 3336 | const struct ifnet_interface_advisory *advisory) |
| 3337 | { |
| 3338 | struct kern_nexus *notify_nx; |
| 3339 | struct __kern_netif_intf_advisory *intf_adv; |
| 3340 | struct nx_netif *nif = NX_NETIF_PRIVATE(nx); |
| 3341 | ifnet_t difp = nif->nif_ifp, parent = NULL; |
| 3342 | |
| 3343 | /* If we are a delegate, notify the parent instead */ |
| 3344 | if (ifnet_get_delegate_parent(difp, parent: &parent) == 0) { |
| 3345 | nif = parent->if_na->nifna_netif; |
| 3346 | } |
| 3347 | if (nif->nif_fsw_nxadv != NULL) { |
| 3348 | ASSERT(nif->nif_fsw != NULL); |
| 3349 | intf_adv = &nif->nif_fsw_nxadv->_nxadv_intf_adv; |
| 3350 | notify_nx = nif->nif_fsw->fsw_nx; |
| 3351 | } else { |
| 3352 | intf_adv = &nif->nif_netif_nxadv->__kern_intf_adv; |
| 3353 | notify_nx = nif->nif_nx; |
| 3354 | } |
| 3355 | /* |
| 3356 | * copy the advisory report in shared memory |
| 3357 | */ |
| 3358 | intf_adv->cksum = os_cpu_copy_in_cksum(advisory, &intf_adv->adv, |
| 3359 | sizeof(*advisory), 0); |
| 3360 | STATS_INC(&nif->nif_stats, NETIF_STATS_IF_ADV_UPD_RECV); |
| 3361 | /* |
| 3362 | * notify user channels on advisory report availability |
| 3363 | */ |
| 3364 | nx_interface_advisory_notify(notify_nx); |
| 3365 | if (parent != NULL) { |
| 3366 | ifnet_release_delegate_parent(difp); |
| 3367 | } |
| 3368 | return 0; |
| 3369 | } |
| 3370 | |
| 3371 | static errno_t |
| 3372 | nx_netif_interface_advisory_notify(void *kern_ctx, |
| 3373 | const struct ifnet_interface_advisory *advisory) |
| 3374 | { |
| 3375 | _CASSERT(offsetof(struct ifnet_interface_advisory, version) == |
| 3376 | offsetof(struct ifnet_interface_advisory, header.version)); |
| 3377 | _CASSERT(offsetof(struct ifnet_interface_advisory, direction) == |
| 3378 | offsetof(struct ifnet_interface_advisory, header.direction)); |
| 3379 | _CASSERT(offsetof(struct ifnet_interface_advisory, _reserved) == |
| 3380 | offsetof(struct ifnet_interface_advisory, header.interface_type)); |
| 3381 | |
| 3382 | if (__improbable(kern_ctx == NULL || advisory == NULL)) { |
| 3383 | return EINVAL; |
| 3384 | } |
| 3385 | if (__improbable((advisory->header.version < |
| 3386 | IF_INTERFACE_ADVISORY_VERSION_MIN) || |
| 3387 | (advisory->header.version > IF_INTERFACE_ADVISORY_VERSION_MAX))) { |
| 3388 | SK_ERR("Invalid advisory version %d" , advisory->header.version); |
| 3389 | return EINVAL; |
| 3390 | } |
| 3391 | if (__improbable((advisory->header.direction != |
| 3392 | IF_INTERFACE_ADVISORY_DIRECTION_TX) && |
| 3393 | (advisory->header.direction != |
| 3394 | IF_INTERFACE_ADVISORY_DIRECTION_RX))) { |
| 3395 | SK_ERR("Invalid advisory direction %d" , |
| 3396 | advisory->header.direction); |
| 3397 | return EINVAL; |
| 3398 | } |
| 3399 | if (__improbable(((advisory->header.interface_type < |
| 3400 | IF_INTERFACE_ADVISORY_INTERFACE_TYPE_MIN) || |
| 3401 | (advisory->header.interface_type > |
| 3402 | IF_INTERFACE_ADVISORY_INTERFACE_TYPE_MAX)) && |
| 3403 | (advisory->header.version >= IF_INTERFACE_ADVISORY_VERSION_2))) { |
| 3404 | SK_ERR("Invalid advisory interface type %d" , |
| 3405 | advisory->header.interface_type); |
| 3406 | return EINVAL; |
| 3407 | } |
| 3408 | return nx_netif_interface_advisory_report(nx: kern_ctx, advisory); |
| 3409 | } |
| 3410 | |
| 3411 | void |
| 3412 | nx_netif_config_interface_advisory(struct kern_nexus *nx, bool enable) |
| 3413 | { |
| 3414 | struct kern_nexus *nx_netif; |
| 3415 | struct nx_netif *nif; |
| 3416 | |
| 3417 | if (NX_REJECT_ACT(nx) || (nx->nx_flags & NXF_CLOSED) != 0) { |
| 3418 | return; |
| 3419 | } |
| 3420 | if (NX_PROV(nx)->nxprov_params->nxp_type == NEXUS_TYPE_FLOW_SWITCH) { |
| 3421 | struct nx_flowswitch *fsw = NX_FSW_PRIVATE(nx); |
| 3422 | nx_netif = fsw->fsw_nifna->na_nx; |
| 3423 | } else { |
| 3424 | nx_netif = nx; |
| 3425 | } |
| 3426 | ASSERT(NX_PROV(nx_netif)->nxprov_params->nxp_type == NEXUS_TYPE_NET_IF); |
| 3427 | nif = NX_NETIF_PRIVATE(nx_netif); |
| 3428 | if (nif->nif_intf_adv_config != NULL) { |
| 3429 | nif->nif_intf_adv_config(nif->nif_intf_adv_prov_ctx, enable); |
| 3430 | } |
| 3431 | } |
| 3432 | |
| 3433 | /* |
| 3434 | * This function has no use anymore since we are now passing truncated packets |
| 3435 | * to filters. We keep this logic just in case we need to prevent certain |
| 3436 | * packets from being passed to filters. |
| 3437 | */ |
| 3438 | static boolean_t |
| 3439 | packet_is_filterable(struct nexus_netif_adapter *nifna, |
| 3440 | struct __kern_packet *pkt) |
| 3441 | { |
| 3442 | #pragma unused (nifna, pkt) |
| 3443 | return TRUE; |
| 3444 | } |
| 3445 | |
| 3446 | /* |
| 3447 | * This function is only meant for supporting the RX path because the TX path |
| 3448 | * will not send packets > MTU size due to the disabling of TSO when filters |
| 3449 | * are enabled. |
| 3450 | */ |
| 3451 | static void |
| 3452 | get_filterable_packets(struct nexus_netif_adapter *nifna, |
| 3453 | struct __kern_packet *pkt_chain, struct __kern_packet **fpkt_chain, |
| 3454 | struct __kern_packet **passthrough_chain) |
| 3455 | { |
| 3456 | struct nx_netif *nif = nifna->nifna_netif; |
| 3457 | struct netif_stats *nifs = &nif->nif_stats; |
| 3458 | struct __kern_packet *pkt = pkt_chain, *next, *fpkt; |
| 3459 | struct __kern_packet *fpkt_head = NULL, *passthrough_head = NULL; |
| 3460 | struct __kern_packet **fpkt_tailp = &fpkt_head; |
| 3461 | struct __kern_packet **passthrough_tailp = &passthrough_head; |
| 3462 | int fcnt = 0, pcnt = 0, dcnt = 0; |
| 3463 | |
| 3464 | while (pkt != NULL) { |
| 3465 | next = pkt->pkt_nextpkt; |
| 3466 | pkt->pkt_nextpkt = NULL; |
| 3467 | |
| 3468 | if (!packet_is_filterable(nifna, pkt)) { |
| 3469 | pcnt++; |
| 3470 | *passthrough_tailp = pkt; |
| 3471 | passthrough_tailp = &pkt->pkt_nextpkt; |
| 3472 | pkt = next; |
| 3473 | continue; |
| 3474 | } |
| 3475 | fpkt = nx_netif_pkt_to_filter_pkt(nifna, pkt, NETIF_CONVERT_RX); |
| 3476 | if (fpkt != NULL) { |
| 3477 | fcnt++; |
| 3478 | *fpkt_tailp = fpkt; |
| 3479 | fpkt_tailp = &fpkt->pkt_nextpkt; |
| 3480 | } else { |
| 3481 | dcnt++; |
| 3482 | } |
| 3483 | pkt = next; |
| 3484 | } |
| 3485 | *fpkt_chain = fpkt_head; |
| 3486 | *passthrough_chain = passthrough_head; |
| 3487 | |
| 3488 | /* |
| 3489 | * No need to increment drop stats because that's already |
| 3490 | * done in nx_netif_pkt_to_filter_pkt. |
| 3491 | */ |
| 3492 | STATS_ADD(nifs, NETIF_STATS_FILTER_RX_NOT_FILTERABLE, pcnt); |
| 3493 | DTRACE_SKYWALK6(filterable, struct nexus_netif_adapter *, nifna, |
| 3494 | int, fcnt, int, pcnt, int, dcnt, struct __kern_packet *, |
| 3495 | fpkt_head, struct __kern_packet *, passthrough_head); |
| 3496 | } |
| 3497 | |
| 3498 | /* |
| 3499 | * This is only used by ring-based notify functions for now. |
| 3500 | * When a qset-based notify becomes available, this function can be used |
| 3501 | * unmodified. |
| 3502 | */ |
| 3503 | void |
| 3504 | netif_receive(struct nexus_netif_adapter *nifna, |
| 3505 | struct __kern_packet *pkt_chain, struct nexus_pkt_stats *stats) |
| 3506 | { |
| 3507 | struct nx_netif *nif = nifna->nifna_netif; |
| 3508 | struct nexus_adapter *na = &nifna->nifna_up; |
| 3509 | struct netif_stats *nifs = &nif->nif_stats; |
| 3510 | int err, dropcnt, dropstat = -1; |
| 3511 | |
| 3512 | /* update our work timestamp */ |
| 3513 | na->na_work_ts = _net_uptime; |
| 3514 | |
| 3515 | if (nif->nif_filter_cnt > 0) { |
| 3516 | struct __kern_packet *fpkt_chain = NULL; |
| 3517 | struct __kern_packet *passthrough_chain = NULL; |
| 3518 | |
| 3519 | get_filterable_packets(nifna, pkt_chain, fpkt_chain: &fpkt_chain, |
| 3520 | passthrough_chain: &passthrough_chain); |
| 3521 | if (fpkt_chain != NULL) { |
| 3522 | (void) nx_netif_filter_inject(nifna, NULL, fpkt_chain, |
| 3523 | NETIF_FILTER_RX | NETIF_FILTER_SOURCE); |
| 3524 | } |
| 3525 | if (passthrough_chain != NULL) { |
| 3526 | pkt_chain = passthrough_chain; |
| 3527 | } else { |
| 3528 | return; |
| 3529 | } |
| 3530 | } else if (nx_netif_filter_default_drop != 0) { |
| 3531 | DTRACE_SKYWALK2(rx__default__drop, struct nx_netif *, nif, |
| 3532 | struct __kern_packet *, pkt_chain); |
| 3533 | dropstat = NETIF_STATS_FILTER_DROP_DEFAULT; |
| 3534 | goto drop; |
| 3535 | } |
| 3536 | if (nif->nif_flow_cnt > 0) { |
| 3537 | struct __kern_packet *remain = NULL; |
| 3538 | |
| 3539 | err = nx_netif_demux(nifna, pkt_chain, &remain, |
| 3540 | NETIF_FLOW_SOURCE); |
| 3541 | if (remain == NULL) { |
| 3542 | return; |
| 3543 | } |
| 3544 | pkt_chain = remain; |
| 3545 | } |
| 3546 | if (na->na_rx != NULL) { |
| 3547 | na->na_rx(na, pkt_chain, stats); |
| 3548 | } else { |
| 3549 | DTRACE_SKYWALK2(no__rx__cb, struct nx_netif *, nif, |
| 3550 | struct __kern_packet *, pkt_chain); |
| 3551 | dropstat = NETIF_STATS_DROP_NO_RX_CB; |
| 3552 | goto drop; |
| 3553 | } |
| 3554 | return; |
| 3555 | drop: |
| 3556 | dropcnt = 0; |
| 3557 | nx_netif_free_packet_chain(pkt_chain, &dropcnt); |
| 3558 | if (dropstat != -1) { |
| 3559 | STATS_ADD(nifs, dropstat, dropcnt); |
| 3560 | } |
| 3561 | STATS_ADD(nifs, NETIF_STATS_DROP, dropcnt); |
| 3562 | } |
| 3563 | |
| 3564 | static slot_idx_t |
| 3565 | netif_rate_limit(struct __kern_channel_ring *r, uint64_t rate, |
| 3566 | slot_idx_t begin, slot_idx_t end, boolean_t *rate_limited) |
| 3567 | { |
| 3568 | uint64_t elapsed; |
| 3569 | uint64_t now; |
| 3570 | struct __kern_packet *pkt; |
| 3571 | clock_sec_t sec; |
| 3572 | clock_usec_t usec; |
| 3573 | slot_idx_t i; |
| 3574 | |
| 3575 | if (__probable(rate == 0)) { |
| 3576 | return end; |
| 3577 | } |
| 3578 | |
| 3579 | /* init tbr if not so */ |
| 3580 | if (__improbable(r->ckr_tbr_token == CKR_TBR_TOKEN_INVALID)) { |
| 3581 | r->ckr_tbr_token = rate; |
| 3582 | r->ckr_tbr_depth = rate; |
| 3583 | r->ckr_tbr_last = mach_absolute_time(); |
| 3584 | } else { |
| 3585 | now = mach_absolute_time(); |
| 3586 | elapsed = now - r->ckr_tbr_last; |
| 3587 | absolutetime_to_microtime(abstime: elapsed, secs: &sec, microsecs: &usec); |
| 3588 | r->ckr_tbr_token += |
| 3589 | ((sec * USEC_PER_SEC + usec) * rate / USEC_PER_SEC); |
| 3590 | if (__improbable(r->ckr_tbr_token > r->ckr_tbr_depth)) { |
| 3591 | r->ckr_tbr_token = r->ckr_tbr_depth; |
| 3592 | } |
| 3593 | r->ckr_tbr_last = now; |
| 3594 | } |
| 3595 | |
| 3596 | *rate_limited = FALSE; |
| 3597 | for (i = begin; i != end; i = SLOT_NEXT(i, lim: r->ckr_lim)) { |
| 3598 | pkt = KR_KSD(r, i)->sd_pkt; |
| 3599 | if (__improbable(pkt == NULL)) { |
| 3600 | continue; |
| 3601 | } |
| 3602 | if (__improbable(r->ckr_tbr_token <= 0)) { |
| 3603 | end = i; |
| 3604 | *rate_limited = TRUE; |
| 3605 | break; |
| 3606 | } |
| 3607 | r->ckr_tbr_token -= pkt->pkt_length * 8; |
| 3608 | } |
| 3609 | |
| 3610 | SK_DF(SK_VERB_FSW | SK_VERB_RX, "ckr %p %s rate limited at %d" , |
| 3611 | r, r->ckr_name, i); |
| 3612 | |
| 3613 | return end; |
| 3614 | } |
| 3615 | |
| 3616 | SK_NO_INLINE_ATTRIBUTE |
| 3617 | static struct __kern_packet * |
| 3618 | consume_pkts(struct __kern_channel_ring *ring, slot_idx_t end) |
| 3619 | { |
| 3620 | struct __kern_packet *pkt_chain = NULL, **tailp = &pkt_chain; |
| 3621 | slot_idx_t idx = ring->ckr_rhead; |
| 3622 | |
| 3623 | while (idx != end) { |
| 3624 | struct __kern_slot_desc *ksd = KR_KSD(ring, idx); |
| 3625 | struct __kern_packet *pkt = ksd->sd_pkt; |
| 3626 | |
| 3627 | ASSERT(pkt->pkt_nextpkt == NULL); |
| 3628 | KR_SLOT_DETACH_METADATA(kring: ring, ksd); |
| 3629 | *tailp = pkt; |
| 3630 | tailp = &pkt->pkt_nextpkt; |
| 3631 | idx = SLOT_NEXT(i: idx, lim: ring->ckr_lim); |
| 3632 | } |
| 3633 | ring->ckr_rhead = end; |
| 3634 | ring->ckr_rtail = ring->ckr_ktail; |
| 3635 | return pkt_chain; |
| 3636 | } |
| 3637 | |
| 3638 | int |
| 3639 | netif_rx_notify_default(struct __kern_channel_ring *ring, struct proc *p, |
| 3640 | uint32_t flags) |
| 3641 | { |
| 3642 | struct nexus_adapter *hwna; |
| 3643 | struct nexus_netif_adapter *nifna; |
| 3644 | struct nx_netif *nif; |
| 3645 | struct __kern_packet *pkt_chain; |
| 3646 | struct nexus_pkt_stats stats; |
| 3647 | sk_protect_t protect; |
| 3648 | slot_idx_t ktail; |
| 3649 | int err = 0; |
| 3650 | |
| 3651 | KDBG((SK_KTRACE_NETIF_RX_NOTIFY_DEFAULT | DBG_FUNC_START), |
| 3652 | SK_KVA(ring)); |
| 3653 | |
| 3654 | ASSERT(ring->ckr_tx == NR_RX); |
| 3655 | ASSERT(!NA_KERNEL_ONLY(KRNA(ring)) || KR_KERNEL_ONLY(ring)); |
| 3656 | |
| 3657 | err = kr_enter(ring, ((flags & NA_NOTEF_CAN_SLEEP) != 0)); |
| 3658 | if (err != 0) { |
| 3659 | /* not a serious error, so no need to be chatty here */ |
| 3660 | SK_DF(SK_VERB_FSW, |
| 3661 | "hwna \"%s\" (0x%llx) kr \"%s\" (0x%llx) krflags 0x%b " |
| 3662 | "(%d)" , KRNA(ring)->na_name, SK_KVA(KRNA(ring)), |
| 3663 | ring->ckr_name, SK_KVA(ring), ring->ckr_flags, |
| 3664 | CKRF_BITS, err); |
| 3665 | goto out; |
| 3666 | } |
| 3667 | if (__improbable(KR_DROP(ring))) { |
| 3668 | kr_exit(ring); |
| 3669 | err = ENODEV; |
| 3670 | goto out; |
| 3671 | } |
| 3672 | hwna = KRNA(ring); |
| 3673 | nifna = NIFNA(hwna); |
| 3674 | nif = nifna->nifna_netif; |
| 3675 | if (__improbable(hwna->na_ifp == NULL)) { |
| 3676 | kr_exit(ring); |
| 3677 | err = ENODEV; |
| 3678 | goto out; |
| 3679 | } |
| 3680 | protect = sk_sync_protect(); |
| 3681 | err = ring->ckr_na_sync(ring, p, 0); |
| 3682 | if (err != 0 && err != EAGAIN) { |
| 3683 | goto put_out; |
| 3684 | } |
| 3685 | |
| 3686 | /* read the tail pointer once */ |
| 3687 | ktail = ring->ckr_ktail; |
| 3688 | if (__improbable(ring->ckr_khead == ktail)) { |
| 3689 | SK_DF(SK_VERB_FSW | SK_VERB_NOTIFY | SK_VERB_RX, |
| 3690 | "how strange, interrupt with no packets on hwna " |
| 3691 | "\"%s\" (0x%llx)" , KRNA(ring)->na_name, SK_KVA(KRNA(ring))); |
| 3692 | goto put_out; |
| 3693 | } |
| 3694 | ktail = netif_rate_limit(r: ring, rate: nif->nif_input_rate, begin: ring->ckr_rhead, |
| 3695 | end: ktail, rate_limited: &ring->ckr_rate_limited); |
| 3696 | |
| 3697 | pkt_chain = consume_pkts(ring, end: ktail); |
| 3698 | if (pkt_chain != NULL) { |
| 3699 | netif_receive(nifna, pkt_chain, stats: &stats); |
| 3700 | |
| 3701 | if (ring->ckr_netif_mit_stats != NULL && |
| 3702 | stats.nps_pkts != 0 && stats.nps_bytes != 0) { |
| 3703 | ring->ckr_netif_mit_stats(ring, stats.nps_pkts, |
| 3704 | stats.nps_bytes); |
| 3705 | } |
| 3706 | } |
| 3707 | |
| 3708 | put_out: |
| 3709 | sk_sync_unprotect(protect); |
| 3710 | kr_exit(ring); |
| 3711 | |
| 3712 | out: |
| 3713 | KDBG((SK_KTRACE_NETIF_RX_NOTIFY_DEFAULT | DBG_FUNC_END), |
| 3714 | SK_KVA(ring), err); |
| 3715 | return err; |
| 3716 | } |
| 3717 | |
| 3718 | int |
| 3719 | netif_rx_notify_fast(struct __kern_channel_ring *ring, struct proc *p, |
| 3720 | uint32_t flags) |
| 3721 | { |
| 3722 | #pragma unused(p, flags) |
| 3723 | sk_protect_t protect; |
| 3724 | struct nexus_adapter *hwna; |
| 3725 | struct nexus_pkt_stats stats = {}; |
| 3726 | uint32_t i, count; |
| 3727 | int err = 0; |
| 3728 | |
| 3729 | KDBG((SK_KTRACE_NETIF_RX_NOTIFY_FAST | DBG_FUNC_START), |
| 3730 | SK_KVA(ring)); |
| 3731 | |
| 3732 | /* XXX |
| 3733 | * sk_sync_protect() is not needed for this case because |
| 3734 | * we are not using the dev ring. Unfortunately lots of |
| 3735 | * macros used by fsw still require this. |
| 3736 | */ |
| 3737 | protect = sk_sync_protect(); |
| 3738 | hwna = KRNA(ring); |
| 3739 | count = na_get_nslots(na: hwna, t: NR_RX); |
| 3740 | err = nx_rx_sync_packets(kring: ring, packets: ring->ckr_scratch, count: &count); |
| 3741 | if (__improbable(err != 0)) { |
| 3742 | SK_ERR("nx_rx_sync_packets failed: %d" , err); |
| 3743 | DTRACE_SKYWALK2(rx__sync__packets__failed, |
| 3744 | struct __kern_channel_ring *, ring, int, err); |
| 3745 | goto out; |
| 3746 | } |
| 3747 | DTRACE_SKYWALK1(chain__count, uint32_t, count); |
| 3748 | for (i = 0; i < count; i++) { |
| 3749 | struct __kern_packet *pkt_chain; |
| 3750 | |
| 3751 | pkt_chain = SK_PTR_ADDR_KPKT(ring->ckr_scratch[i]); |
| 3752 | ASSERT(pkt_chain != NULL); |
| 3753 | netif_receive(NIFNA(KRNA(ring)), pkt_chain, stats: &stats); |
| 3754 | |
| 3755 | if (ring->ckr_netif_mit_stats != NULL && |
| 3756 | stats.nps_pkts != 0 && stats.nps_bytes != 0) { |
| 3757 | ring->ckr_netif_mit_stats(ring, stats.nps_pkts, |
| 3758 | stats.nps_bytes); |
| 3759 | } |
| 3760 | } |
| 3761 | out: |
| 3762 | sk_sync_unprotect(protect); |
| 3763 | KDBG((SK_KTRACE_NETIF_RX_NOTIFY_FAST | DBG_FUNC_END), |
| 3764 | SK_KVA(ring), err); |
| 3765 | return err; |
| 3766 | } |
| 3767 | |
| 3768 | |
| 3769 | /* |
| 3770 | * Configure the NA to operate in a particular mode. |
| 3771 | */ |
| 3772 | static channel_ring_notify_t |
| 3773 | netif_hwna_get_notify(struct __kern_channel_ring *ring, netif_mode_t mode) |
| 3774 | { |
| 3775 | channel_ring_notify_t notify = NULL; |
| 3776 | boolean_t has_sync_pkts = (sk_rx_sync_packets != 0 && |
| 3777 | nx_has_rx_sync_packets(kring: ring)); |
| 3778 | |
| 3779 | if (mode == NETIF_MODE_FSW) { |
| 3780 | notify = (has_sync_pkts ? netif_rx_notify_fast : |
| 3781 | netif_rx_notify_default); |
| 3782 | } else if (mode == NETIF_MODE_LLW) { |
| 3783 | notify = (has_sync_pkts ? netif_llw_rx_notify_fast : |
| 3784 | netif_llw_rx_notify_default); |
| 3785 | } |
| 3786 | return notify; |
| 3787 | } |
| 3788 | |
| 3789 | |
| 3790 | static uint32_t |
| 3791 | netif_mode_to_flag(netif_mode_t mode) |
| 3792 | { |
| 3793 | uint32_t flag = 0; |
| 3794 | |
| 3795 | if (mode == NETIF_MODE_FSW) { |
| 3796 | flag = NAF_MODE_FSW; |
| 3797 | } else if (mode == NETIF_MODE_LLW) { |
| 3798 | flag = NAF_MODE_LLW; |
| 3799 | } |
| 3800 | return flag; |
| 3801 | } |
| 3802 | |
| 3803 | static void |
| 3804 | netif_hwna_config_mode(struct nexus_adapter *hwna, netif_mode_t mode, |
| 3805 | void (*rx)(struct nexus_adapter *, struct __kern_packet *, |
| 3806 | struct nexus_pkt_stats *), boolean_t set) |
| 3807 | { |
| 3808 | uint32_t i; |
| 3809 | uint32_t flag; |
| 3810 | |
| 3811 | ASSERT(hwna->na_type == NA_NETIF_DEV || |
| 3812 | hwna->na_type == NA_NETIF_COMPAT_DEV); |
| 3813 | |
| 3814 | for (i = 0; i < na_get_nrings(na: hwna, t: NR_RX); i++) { |
| 3815 | struct __kern_channel_ring *kr = &NAKR(na: hwna, t: NR_RX)[i]; |
| 3816 | channel_ring_notify_t notify = netif_hwna_get_notify(ring: kr, mode); |
| 3817 | |
| 3818 | if (set) { |
| 3819 | kr->ckr_save_notify = kr->ckr_netif_notify; |
| 3820 | kr->ckr_netif_notify = notify; |
| 3821 | } else { |
| 3822 | kr->ckr_netif_notify = kr->ckr_save_notify; |
| 3823 | kr->ckr_save_notify = NULL; |
| 3824 | } |
| 3825 | } |
| 3826 | if (set) { |
| 3827 | hwna->na_rx = rx; |
| 3828 | flag = netif_mode_to_flag(mode); |
| 3829 | os_atomic_or(&hwna->na_flags, flag, relaxed); |
| 3830 | } else { |
| 3831 | hwna->na_rx = NULL; |
| 3832 | os_atomic_andnot(&hwna->na_flags, (NAF_MODE_FSW | NAF_MODE_LLW), relaxed); |
| 3833 | } |
| 3834 | } |
| 3835 | |
| 3836 | void |
| 3837 | netif_hwna_set_mode(struct nexus_adapter *hwna, netif_mode_t mode, |
| 3838 | void (*rx)(struct nexus_adapter *, struct __kern_packet *, |
| 3839 | struct nexus_pkt_stats *)) |
| 3840 | { |
| 3841 | return netif_hwna_config_mode(hwna, mode, rx, TRUE); |
| 3842 | } |
| 3843 | |
| 3844 | void |
| 3845 | netif_hwna_clear_mode(struct nexus_adapter *hwna) |
| 3846 | { |
| 3847 | return netif_hwna_config_mode(hwna, mode: NETIF_MODE_NONE, NULL, FALSE); |
| 3848 | } |
| 3849 | |
| 3850 | static void |
| 3851 | netif_inject_rx(struct nexus_adapter *na, struct __kern_packet *pkt_chain) |
| 3852 | { |
| 3853 | struct nexus_netif_adapter *nifna = NIFNA(na); |
| 3854 | struct nx_netif *nif = nifna->nifna_netif; |
| 3855 | struct netif_stats *nifs = &nif->nif_stats; |
| 3856 | struct __kern_channel_ring *r; |
| 3857 | struct nexus_pkt_stats stats; |
| 3858 | sk_protect_t protect; |
| 3859 | boolean_t ring_drop = FALSE; |
| 3860 | int err, dropcnt; |
| 3861 | |
| 3862 | if (!NA_OWNED_BY_FSW(na)) { |
| 3863 | DTRACE_SKYWALK1(fsw__disabled, struct nexus_adapter *, na); |
| 3864 | goto fail; |
| 3865 | } |
| 3866 | ASSERT(na->na_rx != NULL); |
| 3867 | |
| 3868 | /* |
| 3869 | * XXX |
| 3870 | * This function is called when a filter injects a packet back to the |
| 3871 | * regular RX path. We can assume the ring is 0 for now because RSS |
| 3872 | * is not supported. This needs to be revisited when we add support for |
| 3873 | * RSS. |
| 3874 | */ |
| 3875 | r = &na->na_rx_rings[0]; |
| 3876 | ASSERT(r->ckr_tx == NR_RX); |
| 3877 | err = kr_enter(r, TRUE); |
| 3878 | VERIFY(err == 0); |
| 3879 | |
| 3880 | if (__improbable(KR_DROP(r))) { |
| 3881 | kr_exit(r); |
| 3882 | DTRACE_SKYWALK2(ring__drop, struct nexus_adapter *, na, |
| 3883 | struct __kern_channel_ring *, r); |
| 3884 | ring_drop = TRUE; |
| 3885 | goto fail; |
| 3886 | } |
| 3887 | protect = sk_sync_protect(); |
| 3888 | na->na_rx(na, pkt_chain, &stats); |
| 3889 | |
| 3890 | if (r->ckr_netif_mit_stats != NULL && |
| 3891 | stats.nps_pkts != 0 && stats.nps_bytes != 0) { |
| 3892 | r->ckr_netif_mit_stats(r, stats.nps_pkts, stats.nps_bytes); |
| 3893 | } |
| 3894 | sk_sync_unprotect(protect); |
| 3895 | |
| 3896 | kr_exit(r); |
| 3897 | return; |
| 3898 | |
| 3899 | fail: |
| 3900 | dropcnt = 0; |
| 3901 | nx_netif_free_packet_chain(pkt_chain, &dropcnt); |
| 3902 | if (ring_drop) { |
| 3903 | STATS_ADD(nifs, NETIF_STATS_DROP_KRDROP_MODE, dropcnt); |
| 3904 | } |
| 3905 | STATS_ADD(nifs, NETIF_STATS_DROP, dropcnt); |
| 3906 | } |
| 3907 | |
| 3908 | /* |
| 3909 | * This is called when an inbound packet has traversed all filters. |
| 3910 | */ |
| 3911 | errno_t |
| 3912 | nx_netif_filter_rx_cb(struct nexus_netif_adapter *nifna, |
| 3913 | struct __kern_packet *fpkt_chain, uint32_t flags) |
| 3914 | { |
| 3915 | #pragma unused (flags) |
| 3916 | struct nx_netif *nif = nifna->nifna_netif; |
| 3917 | struct netif_stats *nifs = &nif->nif_stats; |
| 3918 | struct nexus_adapter *na = &nifna->nifna_up; |
| 3919 | struct __kern_packet *pkt_chain; |
| 3920 | int err; |
| 3921 | |
| 3922 | pkt_chain = nx_netif_filter_pkt_to_pkt_chain(nifna, |
| 3923 | fpkt_chain, NETIF_CONVERT_RX); |
| 3924 | if (pkt_chain == NULL) { |
| 3925 | return ENOMEM; |
| 3926 | } |
| 3927 | if (nif->nif_flow_cnt > 0) { |
| 3928 | struct __kern_packet *remain = NULL; |
| 3929 | |
| 3930 | err = nx_netif_demux(nifna, pkt_chain, &remain, |
| 3931 | NETIF_FLOW_INJECT); |
| 3932 | if (remain == NULL) { |
| 3933 | return err; |
| 3934 | } |
| 3935 | pkt_chain = remain; |
| 3936 | } |
| 3937 | if (na->na_rx != NULL) { |
| 3938 | netif_inject_rx(na, pkt_chain); |
| 3939 | } else { |
| 3940 | int dropcnt = 0; |
| 3941 | nx_netif_free_packet_chain(pkt_chain, &dropcnt); |
| 3942 | STATS_ADD(nifs, |
| 3943 | NETIF_STATS_FILTER_DROP_NO_RX_CB, dropcnt); |
| 3944 | STATS_ADD(nifs, NETIF_STATS_DROP, dropcnt); |
| 3945 | } |
| 3946 | return 0; |
| 3947 | } |
| 3948 | |
| 3949 | /* |
| 3950 | * This is called when an outbound packet has traversed all filters. |
| 3951 | */ |
| 3952 | errno_t |
| 3953 | nx_netif_filter_tx_cb(struct nexus_netif_adapter *nifna, |
| 3954 | struct __kern_packet *fpkt_chain, uint32_t flags) |
| 3955 | { |
| 3956 | #pragma unused (flags) |
| 3957 | struct nx_netif *nif = nifna->nifna_netif; |
| 3958 | struct nexus_adapter *na = &nifna->nifna_up; |
| 3959 | int err; |
| 3960 | |
| 3961 | if (NETIF_IS_COMPAT(nif)) { |
| 3962 | struct mbuf *m_chain; |
| 3963 | mbuf_svc_class_t sc; |
| 3964 | |
| 3965 | m_chain = nx_netif_filter_pkt_to_mbuf_chain(nifna, |
| 3966 | fpkt_chain, NETIF_CONVERT_TX); |
| 3967 | if (m_chain == NULL) { |
| 3968 | return ENOMEM; |
| 3969 | } |
| 3970 | /* |
| 3971 | * All packets in the chain have the same service class. |
| 3972 | * If the sc is missing or invalid, a valid value will be |
| 3973 | * returned. |
| 3974 | */ |
| 3975 | sc = mbuf_get_service_class(mbuf: m_chain); |
| 3976 | err = nx_netif_filter_tx_processed_mbuf_enqueue(nifna, |
| 3977 | sc, m_chain); |
| 3978 | } else { |
| 3979 | struct __kern_packet *pkt_chain; |
| 3980 | kern_packet_svc_class_t sc; |
| 3981 | |
| 3982 | pkt_chain = nx_netif_filter_pkt_to_pkt_chain(nifna, |
| 3983 | fpkt_chain, NETIF_CONVERT_TX); |
| 3984 | if (pkt_chain == NULL) { |
| 3985 | return ENOMEM; |
| 3986 | } |
| 3987 | /* |
| 3988 | * All packets in the chain have the same service class. |
| 3989 | * If the sc is missing or invalid, a valid value will be |
| 3990 | * returned. |
| 3991 | */ |
| 3992 | sc = kern_packet_get_service_class(SK_PKT2PH(pkt_chain)); |
| 3993 | err = nx_netif_filter_tx_processed_pkt_enqueue(nifna, |
| 3994 | sc, pkt_chain); |
| 3995 | } |
| 3996 | /* Tell driver to resume dequeuing */ |
| 3997 | ifnet_start(interface: na->na_ifp); |
| 3998 | return err; |
| 3999 | } |
| 4000 | |
| 4001 | void |
| 4002 | nx_netif_vp_region_params_adjust(struct nexus_adapter *na, |
| 4003 | struct skmem_region_params *srp) |
| 4004 | { |
| 4005 | #pragma unused(na, srp) |
| 4006 | return; |
| 4007 | } |
| 4008 | |
| 4009 | /* returns true, if starter thread is utilized */ |
| 4010 | static bool |
| 4011 | netif_use_starter_thread(struct ifnet *ifp, uint32_t flags) |
| 4012 | { |
| 4013 | #if (DEVELOPMENT || DEBUG) |
| 4014 | if (__improbable(nx_netif_force_ifnet_start != 0)) { |
| 4015 | ifnet_start(ifp); |
| 4016 | return true; |
| 4017 | } |
| 4018 | #endif /* !DEVELOPMENT && !DEBUG */ |
| 4019 | /* |
| 4020 | * use starter thread in following conditions: |
| 4021 | * - interface is not skywalk native |
| 4022 | * - interface attached to virtual driver (ipsec, utun) |
| 4023 | * - TBR is enabled |
| 4024 | * - delayed start mechanism is in use |
| 4025 | * - remaining stack space on the thread is not enough for driver |
| 4026 | * - caller is in rx workloop context |
| 4027 | * - caller is from the flowswitch path doing ARP resolving |
| 4028 | * - caller requires the use of starter thread (stack usage) |
| 4029 | * - caller requires starter thread for pacing |
| 4030 | */ |
| 4031 | if (!SKYWALK_NATIVE(ifp) || NA(ifp) == NULL || |
| 4032 | !NA_IS_ACTIVE(&NA(ifp)->nifna_up) || |
| 4033 | ((NA(ifp)->nifna_up.na_flags & NAF_VIRTUAL_DEVICE) != 0) || |
| 4034 | IFCQ_TBR_IS_ENABLED(ifp->if_snd) || |
| 4035 | (ifp->if_eflags & IFEF_ENQUEUE_MULTI) || |
| 4036 | (flags & NETIF_XMIT_FLAG_PACING) != 0 || |
| 4037 | sk_is_rx_notify_protected() || |
| 4038 | sk_is_async_transmit_protected() || |
| 4039 | (sk_is_sync_protected() && (flags & NETIF_XMIT_FLAG_HOST) != 0)) { |
| 4040 | DTRACE_SKYWALK2(use__starter__thread, struct ifnet *, ifp, |
| 4041 | uint32_t, flags); |
| 4042 | ifnet_start(interface: ifp); |
| 4043 | return true; |
| 4044 | } |
| 4045 | lck_mtx_lock_spin(lck: &ifp->if_start_lock); |
| 4046 | /* interface is flow controlled */ |
| 4047 | if (__improbable(ifp->if_start_flags & IFSF_FLOW_CONTROLLED)) { |
| 4048 | lck_mtx_unlock(lck: &ifp->if_start_lock); |
| 4049 | return true; |
| 4050 | } |
| 4051 | /* if starter thread is active, utilize it */ |
| 4052 | if (ifp->if_start_active) { |
| 4053 | ifp->if_start_req++; |
| 4054 | lck_mtx_unlock(lck: &ifp->if_start_lock); |
| 4055 | return true; |
| 4056 | } |
| 4057 | lck_mtx_unlock(lck: &ifp->if_start_lock); |
| 4058 | /* Check remaining stack space */ |
| 4059 | if ((OSKernelStackRemaining() < NX_NETIF_MIN_DRIVER_STACK_SIZE)) { |
| 4060 | ifnet_start(interface: ifp); |
| 4061 | return true; |
| 4062 | } |
| 4063 | return false; |
| 4064 | } |
| 4065 | |
| 4066 | void |
| 4067 | netif_transmit(struct ifnet *ifp, uint32_t flags) |
| 4068 | { |
| 4069 | if (netif_use_starter_thread(ifp, flags)) { |
| 4070 | return; |
| 4071 | } |
| 4072 | nx_netif_doorbell_internal(ifp, flags); |
| 4073 | } |
| 4074 | |
| 4075 | static struct ifclassq * |
| 4076 | netif_get_default_ifcq(struct nexus_adapter *hwna) |
| 4077 | { |
| 4078 | struct nx_netif *nif; |
| 4079 | struct ifclassq *ifcq; |
| 4080 | |
| 4081 | nif = NX_NETIF_PRIVATE(hwna->na_nx); |
| 4082 | if (NETIF_LLINK_ENABLED(nif)) { |
| 4083 | struct netif_qset *qset; |
| 4084 | |
| 4085 | /* |
| 4086 | * Use the default ifcq for now. |
| 4087 | * In the future this could be chosen by the caller. |
| 4088 | */ |
| 4089 | qset = nx_netif_get_default_qset_noref(nif); |
| 4090 | ASSERT(qset != NULL); |
| 4091 | ifcq = qset->nqs_ifcq; |
| 4092 | } else { |
| 4093 | ifcq = nif->nif_ifp->if_snd; |
| 4094 | } |
| 4095 | return ifcq; |
| 4096 | } |
| 4097 | |
| 4098 | static errno_t |
| 4099 | netif_deq_packets(struct nexus_adapter *hwna, struct ifclassq *ifcq, |
| 4100 | uint32_t pkt_limit, uint32_t byte_limit, struct __kern_packet **head, |
| 4101 | boolean_t *pkts_pending, kern_packet_svc_class_t sc, |
| 4102 | uint32_t *pkt_cnt, uint32_t *bytes, uint8_t qset_idx) |
| 4103 | { |
| 4104 | classq_pkt_t pkt_head = CLASSQ_PKT_INITIALIZER(pkt_head); |
| 4105 | struct ifnet *ifp = hwna->na_ifp; |
| 4106 | uint32_t pkts_cnt; |
| 4107 | uint32_t bytes_cnt; |
| 4108 | errno_t rc; |
| 4109 | |
| 4110 | ASSERT(ifp != NULL); |
| 4111 | ASSERT(ifp->if_output_sched_model < IFNET_SCHED_MODEL_MAX); |
| 4112 | ASSERT((pkt_limit != 0) && (byte_limit != 0)); |
| 4113 | |
| 4114 | if (ifcq == NULL) { |
| 4115 | ifcq = netif_get_default_ifcq(hwna); |
| 4116 | } |
| 4117 | if (ifp->if_output_sched_model == IFNET_SCHED_MODEL_DRIVER_MANAGED) { |
| 4118 | rc = ifclassq_dequeue_sc(ifcq, (mbuf_svc_class_t)sc, |
| 4119 | pkt_limit, byte_limit, &pkt_head, NULL, pkt_cnt, bytes, qset_idx); |
| 4120 | } else { |
| 4121 | rc = ifclassq_dequeue(ifcq, pkt_limit, byte_limit, |
| 4122 | &pkt_head, NULL, pkt_cnt, bytes, qset_idx); |
| 4123 | } |
| 4124 | ASSERT((rc == 0) || (rc == EAGAIN)); |
| 4125 | ASSERT((pkt_head.cp_ptype == QP_PACKET) || (pkt_head.cp_kpkt == NULL)); |
| 4126 | |
| 4127 | ifclassq_get_len(ifcq, (mbuf_svc_class_t)sc, qset_idx, |
| 4128 | &pkts_cnt, &bytes_cnt); |
| 4129 | *pkts_pending = pkts_cnt > 0; |
| 4130 | |
| 4131 | *head = pkt_head.cp_kpkt; |
| 4132 | return rc; |
| 4133 | } |
| 4134 | |
| 4135 | #if SK_LOG |
| 4136 | /* Hoisted out of line to reduce kernel stack footprint */ |
| 4137 | SK_LOG_ATTRIBUTE |
| 4138 | static void |
| 4139 | netif_no_ring_space_log(const struct nexus_adapter *na, |
| 4140 | const kern_channel_ring_t ring) |
| 4141 | { |
| 4142 | SK_DF(SK_VERB_SYNC | SK_VERB_TX, |
| 4143 | "no ring space: na \"%s\" [%u] " |
| 4144 | "\"%s\"(kh %u kt %u kl %u | rh %u rt %u)" |
| 4145 | "\"%s\"(kh %u kt %u kl %u | rh %u rt %u)" , |
| 4146 | na->na_name, ring->ckr_ring_id, |
| 4147 | ring->ckr_name, ring->ckr_khead, |
| 4148 | ring->ckr_ktail, ring->ckr_klease, |
| 4149 | ring->ckr_rhead, ring->ckr_rtail); |
| 4150 | } |
| 4151 | #endif /* SK_LOG */ |
| 4152 | |
| 4153 | /* |
| 4154 | * netif refill function for rings |
| 4155 | */ |
| 4156 | errno_t |
| 4157 | netif_ring_tx_refill(const kern_channel_ring_t ring, uint32_t pkt_limit, |
| 4158 | uint32_t byte_limit, boolean_t tx_doorbell_ctxt, boolean_t *pkts_pending, |
| 4159 | boolean_t canblock) |
| 4160 | { |
| 4161 | struct nexus_adapter *hwna; |
| 4162 | struct ifnet *ifp; |
| 4163 | struct __kern_packet *head = NULL; |
| 4164 | sk_protect_t protect; |
| 4165 | errno_t rc = 0; |
| 4166 | errno_t sync_err = 0; |
| 4167 | uint32_t npkts = 0, consumed = 0; |
| 4168 | uint32_t flags; |
| 4169 | slot_idx_t idx, ktail; |
| 4170 | int ring_space = 0; |
| 4171 | |
| 4172 | KDBG((SK_KTRACE_NETIF_RING_TX_REFILL | DBG_FUNC_START), SK_KVA(ring)); |
| 4173 | |
| 4174 | VERIFY(ring != NULL); |
| 4175 | hwna = KRNA(ring); |
| 4176 | ifp = hwna->na_ifp; |
| 4177 | |
| 4178 | ASSERT(hwna->na_type == NA_NETIF_DEV); |
| 4179 | ASSERT(ring->ckr_tx == NR_TX); |
| 4180 | *pkts_pending = FALSE; |
| 4181 | |
| 4182 | if (__improbable(pkt_limit == 0 || byte_limit == 0)) { |
| 4183 | SK_ERR("invalid limits plim %d, blim %d" , |
| 4184 | pkt_limit, byte_limit); |
| 4185 | rc = EINVAL; |
| 4186 | goto out; |
| 4187 | } |
| 4188 | |
| 4189 | if (__improbable(!IF_FULLY_ATTACHED(ifp))) { |
| 4190 | SK_ERR("hwna 0x%llx ifp %s (0x%llx), interface not attached" , |
| 4191 | SK_KVA(hwna), if_name(ifp), SK_KVA(ifp)); |
| 4192 | rc = ENXIO; |
| 4193 | goto out; |
| 4194 | } |
| 4195 | |
| 4196 | if (__improbable((ifp->if_start_flags & IFSF_FLOW_CONTROLLED) != 0)) { |
| 4197 | SK_DF(SK_VERB_SYNC | SK_VERB_TX, "hwna 0x%llx ifp %s (0x%llx), " |
| 4198 | "flow control ON" , SK_KVA(hwna), if_name(ifp), SK_KVA(ifp)); |
| 4199 | rc = ENXIO; |
| 4200 | goto out; |
| 4201 | } |
| 4202 | |
| 4203 | /* |
| 4204 | * if the ring is busy, it means another dequeue is in |
| 4205 | * progress, so ignore this request and return success. |
| 4206 | */ |
| 4207 | if (kr_enter(ring, canblock) != 0) { |
| 4208 | rc = 0; |
| 4209 | goto out; |
| 4210 | } |
| 4211 | /* mark thread with sync-in-progress flag */ |
| 4212 | protect = sk_sync_protect(); |
| 4213 | |
| 4214 | if (__improbable(KR_DROP(ring) || |
| 4215 | !NA_IS_ACTIVE(ring->ckr_na))) { |
| 4216 | SK_ERR("hw-kr 0x%llx stopped" , SK_KVA(ring)); |
| 4217 | rc = ENXIO; |
| 4218 | goto done; |
| 4219 | } |
| 4220 | |
| 4221 | idx = ring->ckr_rhead; |
| 4222 | ktail = ring->ckr_ktail; |
| 4223 | /* calculate available space on tx ring */ |
| 4224 | ring_space = ktail - idx; |
| 4225 | if (ring_space < 0) { |
| 4226 | ring_space += ring->ckr_num_slots; |
| 4227 | } |
| 4228 | if (ring_space == 0) { |
| 4229 | struct ifclassq *ifcq; |
| 4230 | |
| 4231 | /* no space in ring, driver should retry */ |
| 4232 | #if SK_LOG |
| 4233 | if (__improbable((sk_verbose & |
| 4234 | (SK_VERB_SYNC | SK_VERB_TX)) != 0)) { |
| 4235 | netif_no_ring_space_log(hwna, ring); |
| 4236 | } |
| 4237 | #endif /* SK_LOG */ |
| 4238 | ifcq = netif_get_default_ifcq(hwna); |
| 4239 | if (IFCQ_LEN(ifcq) != 0) { |
| 4240 | *pkts_pending = TRUE; |
| 4241 | } |
| 4242 | /* |
| 4243 | * We ran out of space in ring, most probably |
| 4244 | * because the driver is slow to drain its TX queue. |
| 4245 | * We want another doorbell to be generated as soon |
| 4246 | * as the TX notify completion happens; mark this |
| 4247 | * through ckr_pending_doorbell counter. Do this |
| 4248 | * regardless of whether there's any pending packet. |
| 4249 | */ |
| 4250 | ring->ckr_pending_doorbell++; |
| 4251 | rc = EAGAIN; |
| 4252 | goto sync_ring; |
| 4253 | } |
| 4254 | |
| 4255 | if ((uint32_t)ring_space < pkt_limit) { |
| 4256 | pkt_limit = ring_space; |
| 4257 | } |
| 4258 | |
| 4259 | if (tx_doorbell_ctxt && |
| 4260 | ((hwna->na_flags & NAF_VIRTUAL_DEVICE) == 0)) { |
| 4261 | pkt_limit = MIN(pkt_limit, |
| 4262 | nx_netif_doorbell_max_dequeue); |
| 4263 | } |
| 4264 | |
| 4265 | rc = netif_deq_packets(hwna, NULL, pkt_limit, byte_limit, |
| 4266 | head: &head, pkts_pending, sc: ring->ckr_svc, NULL, NULL, qset_idx: 0); |
| 4267 | |
| 4268 | /* |
| 4269 | * There's room in ring; if we haven't dequeued everything, |
| 4270 | * mark ckr_pending_doorbell for the next TX notify to issue |
| 4271 | * a TX door bell; otherwise, clear it. The next packet that |
| 4272 | * gets enqueued will trigger a door bell again. |
| 4273 | */ |
| 4274 | if (*pkts_pending) { |
| 4275 | ring->ckr_pending_doorbell++; |
| 4276 | } else if (ring->ckr_pending_doorbell != 0) { |
| 4277 | ring->ckr_pending_doorbell = 0; |
| 4278 | } |
| 4279 | |
| 4280 | if (rc != 0) { |
| 4281 | /* |
| 4282 | * This is expected sometimes as the IOSkywalkFamily |
| 4283 | * errs on the side of caution to perform an extra |
| 4284 | * dequeue when multiple doorbells are pending; |
| 4285 | * nothing to dequeue, do a sync if there are slots |
| 4286 | * to reclaim else just return. |
| 4287 | */ |
| 4288 | SK_DF(SK_VERB_SYNC | SK_VERB_TX, |
| 4289 | "nothing to dequeue, err %d" , rc); |
| 4290 | |
| 4291 | if ((uint32_t)ring_space == ring->ckr_lim) { |
| 4292 | goto done; |
| 4293 | } else { |
| 4294 | goto sync_ring; |
| 4295 | } |
| 4296 | } |
| 4297 | /* move the dequeued packets to tx ring */ |
| 4298 | while (head != NULL && idx != ktail) { |
| 4299 | ASSERT(npkts <= pkt_limit); |
| 4300 | struct __kern_packet *pkt = head; |
| 4301 | KR_SLOT_ATTACH_METADATA(kring: ring, KR_KSD(ring, idx), |
| 4302 | kqum: (struct __kern_quantum *)pkt); |
| 4303 | npkts++; |
| 4304 | if (__improbable(pkt->pkt_trace_id != 0)) { |
| 4305 | KDBG(SK_KTRACE_PKT_TX_AQM | DBG_FUNC_END, pkt->pkt_trace_id); |
| 4306 | KDBG(SK_KTRACE_PKT_TX_DRV | DBG_FUNC_START, pkt->pkt_trace_id); |
| 4307 | } |
| 4308 | idx = SLOT_NEXT(i: idx, lim: ring->ckr_lim); |
| 4309 | head = pkt->pkt_nextpkt; |
| 4310 | pkt->pkt_nextpkt = NULL; |
| 4311 | } |
| 4312 | |
| 4313 | /* |
| 4314 | * We checked for ring space earlier so the ring should have enough |
| 4315 | * space for the entire chain. |
| 4316 | */ |
| 4317 | ASSERT(head == NULL); |
| 4318 | ring->ckr_rhead = idx; |
| 4319 | |
| 4320 | sync_ring: |
| 4321 | flags = NA_SYNCF_NETIF; |
| 4322 | if (ring->ckr_pending_doorbell != 0) { |
| 4323 | flags |= (NA_SYNCF_NETIF_DOORBELL | NA_SYNCF_NETIF_ASYNC); |
| 4324 | } |
| 4325 | |
| 4326 | ring->ckr_khead_pre = ring->ckr_khead; |
| 4327 | sync_err = ring->ckr_na_sync(ring, kernproc, flags); |
| 4328 | if (sync_err != 0 && sync_err != EAGAIN) { |
| 4329 | SK_ERR("unexpected sync err %d" , sync_err); |
| 4330 | if (rc == 0) { |
| 4331 | rc = sync_err; |
| 4332 | } |
| 4333 | goto done; |
| 4334 | } |
| 4335 | /* |
| 4336 | * Verify that the driver has detached packets from the consumed slots. |
| 4337 | */ |
| 4338 | idx = ring->ckr_khead_pre; |
| 4339 | consumed = 0; |
| 4340 | while (idx != ring->ckr_khead) { |
| 4341 | struct __kern_slot_desc *ksd = KR_KSD(ring, idx); |
| 4342 | |
| 4343 | consumed++; |
| 4344 | VERIFY(!KSD_VALID_METADATA(ksd)); |
| 4345 | idx = SLOT_NEXT(i: idx, lim: ring->ckr_lim); |
| 4346 | } |
| 4347 | ring->ckr_khead_pre = ring->ckr_khead; |
| 4348 | |
| 4349 | done: |
| 4350 | sk_sync_unprotect(protect); |
| 4351 | kr_exit(ring); |
| 4352 | out: |
| 4353 | KDBG((SK_KTRACE_NETIF_RING_TX_REFILL | DBG_FUNC_END), |
| 4354 | SK_KVA(ring), rc, 0, npkts); |
| 4355 | |
| 4356 | return rc; |
| 4357 | } |
| 4358 | |
| 4359 | #define NQ_EWMA(old, new, decay) do { \ |
| 4360 | u_int64_t _avg; \ |
| 4361 | if (__probable((_avg = (old)) > 0)) \ |
| 4362 | _avg = (((_avg << (decay)) - _avg) + (new)) >> (decay); \ |
| 4363 | else \ |
| 4364 | _avg = (new); \ |
| 4365 | (old) = _avg; \ |
| 4366 | } while (0) |
| 4367 | |
| 4368 | static void |
| 4369 | kern_netif_increment_queue_stats(kern_netif_queue_t queue, |
| 4370 | uint32_t pkt_count, uint32_t byte_count) |
| 4371 | { |
| 4372 | struct netif_llink *llink = queue->nq_qset->nqs_llink; |
| 4373 | struct ifnet *ifp = llink->nll_nif->nif_ifp; |
| 4374 | if ((queue->nq_flags & NETIF_QUEUE_IS_RX) == 0) { |
| 4375 | os_atomic_add(&ifp->if_data.ifi_opackets, pkt_count, relaxed); |
| 4376 | os_atomic_add(&ifp->if_data.ifi_obytes, byte_count, relaxed); |
| 4377 | } else { |
| 4378 | os_atomic_add(&ifp->if_data.ifi_ipackets, pkt_count, relaxed); |
| 4379 | os_atomic_add(&ifp->if_data.ifi_ibytes, byte_count, relaxed); |
| 4380 | } |
| 4381 | |
| 4382 | if (ifp->if_data_threshold != 0) { |
| 4383 | ifnet_notify_data_threshold(ifp); |
| 4384 | } |
| 4385 | |
| 4386 | uint64_t now; |
| 4387 | uint64_t diff_secs; |
| 4388 | struct netif_qstats *stats = &queue->nq_stats; |
| 4389 | |
| 4390 | if (nq_stat_enable == 0) { |
| 4391 | return; |
| 4392 | } |
| 4393 | |
| 4394 | if (__improbable(pkt_count == 0)) { |
| 4395 | return; |
| 4396 | } |
| 4397 | |
| 4398 | stats->nq_num_xfers++; |
| 4399 | stats->nq_total_bytes += byte_count; |
| 4400 | stats->nq_total_pkts += pkt_count; |
| 4401 | if (pkt_count > stats->nq_max_pkts) { |
| 4402 | stats->nq_max_pkts = pkt_count; |
| 4403 | } |
| 4404 | if (stats->nq_min_pkts == 0 || |
| 4405 | pkt_count < stats->nq_min_pkts) { |
| 4406 | stats->nq_min_pkts = pkt_count; |
| 4407 | } |
| 4408 | |
| 4409 | now = net_uptime(); |
| 4410 | if (__probable(queue->nq_accumulate_start != 0)) { |
| 4411 | diff_secs = now - queue->nq_accumulate_start; |
| 4412 | if (diff_secs >= nq_accumulate_interval) { |
| 4413 | uint64_t bps; |
| 4414 | uint64_t pps; |
| 4415 | uint64_t pps_ma; |
| 4416 | |
| 4417 | /* bytes per second */ |
| 4418 | bps = queue->nq_accumulated_bytes / diff_secs; |
| 4419 | NQ_EWMA(stats->nq_bytes_ps_ma, |
| 4420 | bps, nq_transfer_decay); |
| 4421 | stats->nq_bytes_ps = bps; |
| 4422 | |
| 4423 | /* pkts per second */ |
| 4424 | pps = queue->nq_accumulated_pkts / diff_secs; |
| 4425 | pps_ma = stats->nq_pkts_ps_ma; |
| 4426 | NQ_EWMA(pps_ma, pps, nq_transfer_decay); |
| 4427 | stats->nq_pkts_ps_ma = (uint32_t)pps_ma; |
| 4428 | stats->nq_pkts_ps = (uint32_t)pps; |
| 4429 | |
| 4430 | /* start over */ |
| 4431 | queue->nq_accumulate_start = now; |
| 4432 | queue->nq_accumulated_bytes = 0; |
| 4433 | queue->nq_accumulated_pkts = 0; |
| 4434 | |
| 4435 | stats->nq_min_pkts = 0; |
| 4436 | stats->nq_max_pkts = 0; |
| 4437 | } |
| 4438 | } else { |
| 4439 | queue->nq_accumulate_start = now; |
| 4440 | } |
| 4441 | queue->nq_accumulated_bytes += byte_count; |
| 4442 | queue->nq_accumulated_pkts += pkt_count; |
| 4443 | } |
| 4444 | |
| 4445 | void |
| 4446 | kern_netif_queue_rx_enqueue(kern_netif_queue_t queue, kern_packet_t ph_chain, |
| 4447 | uint32_t count, uint32_t flags) |
| 4448 | { |
| 4449 | #pragma unused (count) |
| 4450 | struct netif_queue *q = queue; |
| 4451 | struct netif_llink *llink = q->nq_qset->nqs_llink; |
| 4452 | struct __kern_packet *pkt_chain = SK_PTR_ADDR_KPKT(ph_chain); |
| 4453 | bool flush = ((flags & KERN_NETIF_QUEUE_RX_ENQUEUE_FLAG_FLUSH) != 0); |
| 4454 | struct pktq *pktq = &q->nq_pktq; |
| 4455 | struct netif_stats *nifs = &llink->nll_nif->nif_stats; |
| 4456 | struct nexus_pkt_stats stats; |
| 4457 | sk_protect_t protect; |
| 4458 | |
| 4459 | ASSERT((q->nq_flags & NETIF_QUEUE_IS_RX) != 0); |
| 4460 | if (llink->nll_state == NETIF_LLINK_STATE_DESTROYED) { |
| 4461 | int drop_cnt = 0; |
| 4462 | |
| 4463 | pp_free_packet_chain(pkt_chain, &drop_cnt); |
| 4464 | STATS_ADD(nifs, NETIF_STATS_LLINK_RX_DROP_BAD_STATE, drop_cnt); |
| 4465 | return; |
| 4466 | } |
| 4467 | KPKTQ_ENQUEUE_LIST(pktq, pkt_chain); |
| 4468 | if (flush) { |
| 4469 | pkt_chain = KPKTQ_FIRST(pktq); |
| 4470 | KPKTQ_INIT(pktq); |
| 4471 | |
| 4472 | protect = sk_sync_protect(); |
| 4473 | netif_receive(NA(llink->nll_nif->nif_ifp), pkt_chain, stats: &stats); |
| 4474 | sk_sync_unprotect(protect); |
| 4475 | kern_netif_increment_queue_stats(queue, pkt_count: (uint32_t)stats.nps_pkts, |
| 4476 | byte_count: (uint32_t)stats.nps_bytes); |
| 4477 | } |
| 4478 | } |
| 4479 | |
| 4480 | errno_t |
| 4481 | kern_netif_queue_tx_dequeue(kern_netif_queue_t queue, uint32_t pkt_limit, |
| 4482 | uint32_t byte_limit, boolean_t *pending, kern_packet_t *ph_chain) |
| 4483 | { |
| 4484 | struct netif_queue *q = queue; |
| 4485 | struct netif_llink *llink = q->nq_qset->nqs_llink; |
| 4486 | struct netif_stats *nifs = &llink->nll_nif->nif_stats; |
| 4487 | struct nexus_adapter *hwna; |
| 4488 | struct __kern_packet *pkt_chain = NULL; |
| 4489 | uint32_t bytes = 0, pkt_cnt = 0; |
| 4490 | errno_t rc; |
| 4491 | |
| 4492 | ASSERT((q->nq_flags & NETIF_QUEUE_IS_RX) == 0); |
| 4493 | if (llink->nll_state == NETIF_LLINK_STATE_DESTROYED) { |
| 4494 | STATS_INC(nifs, NETIF_STATS_LLINK_AQM_DEQ_BAD_STATE); |
| 4495 | return ENXIO; |
| 4496 | } |
| 4497 | hwna = &NA(llink->nll_nif->nif_ifp)->nifna_up; |
| 4498 | |
| 4499 | if (((hwna->na_flags & NAF_VIRTUAL_DEVICE) == 0) && |
| 4500 | sk_is_tx_notify_protected()) { |
| 4501 | pkt_limit = MIN(pkt_limit, nx_netif_doorbell_max_dequeue); |
| 4502 | } |
| 4503 | rc = netif_deq_packets(hwna, ifcq: q->nq_qset->nqs_ifcq, pkt_limit, |
| 4504 | byte_limit, head: &pkt_chain, pkts_pending: pending, sc: q->nq_svc, pkt_cnt: &pkt_cnt, bytes: &bytes, |
| 4505 | qset_idx: q->nq_qset->nqs_idx); |
| 4506 | |
| 4507 | if (pkt_cnt > 0) { |
| 4508 | kern_netif_increment_queue_stats(queue, pkt_count: pkt_cnt, byte_count: bytes); |
| 4509 | } |
| 4510 | if (pkt_chain != NULL) { |
| 4511 | *ph_chain = SK_PKT2PH(pkt_chain); |
| 4512 | } |
| 4513 | return rc; |
| 4514 | } |
| 4515 | |
| 4516 | errno_t |
| 4517 | kern_netif_qset_tx_queue_len(kern_netif_qset_t qset, uint32_t svc, |
| 4518 | uint32_t * pkts_cnt, uint32_t * bytes_cnt) |
| 4519 | { |
| 4520 | VERIFY(qset != NULL); |
| 4521 | VERIFY(pkts_cnt != NULL); |
| 4522 | VERIFY(bytes_cnt != NULL); |
| 4523 | |
| 4524 | return ifclassq_get_len(qset->nqs_ifcq, svc, qset->nqs_idx, pkts_cnt, |
| 4525 | bytes_cnt); |
| 4526 | } |
| 4527 | |
| 4528 | void |
| 4529 | kern_netif_set_qset_combined(kern_netif_qset_t qset) |
| 4530 | { |
| 4531 | VERIFY(qset != NULL); |
| 4532 | VERIFY(qset->nqs_ifcq != NULL); |
| 4533 | |
| 4534 | ifclassq_set_grp_combined(ifcq: qset->nqs_ifcq, grp_idx: qset->nqs_idx); |
| 4535 | } |
| 4536 | |
| 4537 | void |
| 4538 | kern_netif_set_qset_separate(kern_netif_qset_t qset) |
| 4539 | { |
| 4540 | VERIFY(qset != NULL); |
| 4541 | VERIFY(qset->nqs_ifcq != NULL); |
| 4542 | |
| 4543 | ifclassq_set_grp_separated(ifcq: qset->nqs_ifcq, grp_idx: qset->nqs_idx); |
| 4544 | } |
| 4545 | |
| 4546 | errno_t |
| 4547 | kern_nexus_netif_llink_add(struct kern_nexus *nx, |
| 4548 | struct kern_nexus_netif_llink_init *llink_init) |
| 4549 | { |
| 4550 | errno_t err; |
| 4551 | struct nx_netif *nif; |
| 4552 | struct netif_llink *llink; |
| 4553 | struct netif_stats *nifs; |
| 4554 | |
| 4555 | VERIFY(nx != NULL); |
| 4556 | VERIFY(llink_init != NULL); |
| 4557 | VERIFY((nx->nx_flags & NXF_ATTACHED) != 0); |
| 4558 | |
| 4559 | nif = NX_NETIF_PRIVATE(nx); |
| 4560 | nifs = &nif->nif_stats; |
| 4561 | |
| 4562 | err = nx_netif_validate_llink_config(llink_init, false); |
| 4563 | if (err != 0) { |
| 4564 | SK_ERR("Invalid llink init params" ); |
| 4565 | STATS_INC(nifs, NETIF_STATS_LLINK_ADD_BAD_PARAMS); |
| 4566 | return err; |
| 4567 | } |
| 4568 | |
| 4569 | err = nx_netif_llink_add(nif, llink_init, &llink); |
| 4570 | return err; |
| 4571 | } |
| 4572 | |
| 4573 | errno_t |
| 4574 | kern_nexus_netif_llink_remove(struct kern_nexus *nx, |
| 4575 | kern_nexus_netif_llink_id_t llink_id) |
| 4576 | { |
| 4577 | struct nx_netif *nif; |
| 4578 | |
| 4579 | VERIFY(nx != NULL); |
| 4580 | VERIFY((nx->nx_flags & NXF_ATTACHED) != 0); |
| 4581 | |
| 4582 | nif = NX_NETIF_PRIVATE(nx); |
| 4583 | return nx_netif_llink_remove(nif, llink_id); |
| 4584 | } |
| 4585 | |
| 4586 | errno_t |
| 4587 | kern_netif_queue_get_service_class(kern_netif_queue_t queue, |
| 4588 | kern_packet_svc_class_t *svc) |
| 4589 | { |
| 4590 | *svc = queue->nq_svc; |
| 4591 | return 0; |
| 4592 | } |
| 4593 | |