| 1 | /* |
| 2 | * Copyright (c) 2017-2023 Apple Inc. All rights reserved. |
| 3 | * |
| 4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ |
| 5 | * |
| 6 | * This file contains Original Code and/or Modifications of Original Code |
| 7 | * as defined in and that are subject to the Apple Public Source License |
| 8 | * Version 2.0 (the 'License'). You may not use this file except in |
| 9 | * compliance with the License. The rights granted to you under the License |
| 10 | * may not be used to create, or enable the creation or redistribution of, |
| 11 | * unlawful or unlicensed copies of an Apple operating system, or to |
| 12 | * circumvent, violate, or enable the circumvention or violation of, any |
| 13 | * terms of an Apple operating system software license agreement. |
| 14 | * |
| 15 | * Please obtain a copy of the License at |
| 16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. |
| 17 | * |
| 18 | * The Original Code and all software distributed under the License are |
| 19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER |
| 20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
| 21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, |
| 22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
| 23 | * Please see the License for the specific language governing rights and |
| 24 | * limitations under the License. |
| 25 | * |
| 26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ |
| 27 | */ |
| 28 | |
| 29 | /* $FreeBSD: src/sys/netinet6/frag6.c,v 1.2.2.5 2001/07/03 11:01:50 ume Exp $ */ |
| 30 | /* $KAME: frag6.c,v 1.31 2001/05/17 13:45:34 jinmei Exp $ */ |
| 31 | |
| 32 | /* |
| 33 | * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. |
| 34 | * All rights reserved. |
| 35 | * |
| 36 | * Redistribution and use in source and binary forms, with or without |
| 37 | * modification, are permitted provided that the following conditions |
| 38 | * are met: |
| 39 | * 1. Redistributions of source code must retain the above copyright |
| 40 | * notice, this list of conditions and the following disclaimer. |
| 41 | * 2. Redistributions in binary form must reproduce the above copyright |
| 42 | * notice, this list of conditions and the following disclaimer in the |
| 43 | * documentation and/or other materials provided with the distribution. |
| 44 | * 3. Neither the name of the project nor the names of its contributors |
| 45 | * may be used to endorse or promote products derived from this software |
| 46 | * without specific prior written permission. |
| 47 | * |
| 48 | * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND |
| 49 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 50 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 51 | * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE |
| 52 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
| 53 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
| 54 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| 55 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
| 56 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
| 57 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
| 58 | * SUCH DAMAGE. |
| 59 | */ |
| 60 | |
| 61 | /* |
| 62 | * @file |
| 63 | * flowswitch IP Reassembly for both v4 and v6 |
| 64 | * |
| 65 | * Implementation of IP packet fragmentation and reassembly. |
| 66 | * |
| 67 | */ |
| 68 | |
| 69 | #include <sys/domain.h> |
| 70 | #include <netinet/in.h> |
| 71 | #include <netinet/ip6.h> |
| 72 | #include <netinet/icmp6.h> |
| 73 | #include <skywalk/os_skywalk_private.h> |
| 74 | #include <skywalk/nexus/flowswitch/nx_flowswitch.h> |
| 75 | #include <skywalk/nexus/flowswitch/fsw_var.h> |
| 76 | |
| 77 | #define IPFM_MAX_FRAGS_PER_QUEUE 128 /* RFC 791 64K/(512 min MTU) */ |
| 78 | #define IPFM_MAX_QUEUES 1024 /* same as ip/ip6 */ |
| 79 | #define IPFM_FRAG_TTL 60 /* RFC 2460 */ |
| 80 | #define IPFM_TIMEOUT_TCALL_INTERVAL 1 |
| 81 | |
| 82 | static uint32_t ipfm_max_frags_per_queue = IPFM_MAX_FRAGS_PER_QUEUE; |
| 83 | static uint32_t ipfm_frag_ttl = IPFM_FRAG_TTL; |
| 84 | static uint32_t ipfm_timeout_tcall_ival = IPFM_TIMEOUT_TCALL_INTERVAL; |
| 85 | |
| 86 | #if (DEVELOPMENT || DEBUG) |
| 87 | SYSCTL_INT(_kern_skywalk_flowswitch, OID_AUTO, |
| 88 | ipfm_max_frags_per_queue, CTLFLAG_RW | CTLFLAG_LOCKED, |
| 89 | &ipfm_max_frags_per_queue, 0, "" ); |
| 90 | #endif /* !DEVELOPMENT && !DEBUG */ |
| 91 | |
| 92 | SYSCTL_INT(_kern_skywalk_flowswitch, OID_AUTO, ipfm_frag_ttl, |
| 93 | CTLFLAG_RW | CTLFLAG_LOCKED, &ipfm_frag_ttl, 0, "" ); |
| 94 | SYSCTL_INT(_kern_skywalk_flowswitch, OID_AUTO, |
| 95 | ipfm_timeout_tcall_ival, CTLFLAG_RW | CTLFLAG_LOCKED, |
| 96 | &ipfm_timeout_tcall_ival, 0, "" ); |
| 97 | |
| 98 | static LCK_GRP_DECLARE(fsw_ipfm_lock_group, "sk_fsw_ipfm_lock" ); |
| 99 | static LCK_ATTR_DECLARE(fsw_ipfm_lock_attr, 0, 0); |
| 100 | |
| 101 | /* @internal ip fragment wrapper (chained in an ipfq) for __kern_packet */ |
| 102 | struct ipf { |
| 103 | struct ipf *ipf_down; |
| 104 | struct ipf *ipf_up; |
| 105 | struct __kern_packet *ipf_pkt; |
| 106 | int ipf_len; /* fragmentable part length */ |
| 107 | int ipf_off; /* fragment offset */ |
| 108 | uint16_t ipf_mff; /* more fragment bit in frag off */ |
| 109 | }; |
| 110 | |
| 111 | /* @internal ip fragment lookup key */ |
| 112 | struct ipf_key { |
| 113 | uint64_t ipfk_addr[4]; /* src + dst ip addr (v4/v6) */ |
| 114 | uint32_t ipfk_ident; /* IP identification */ |
| 115 | uint16_t ipfk_len; /* len of ipfk_addr field */ |
| 116 | }; |
| 117 | |
| 118 | enum { |
| 119 | IPFK_LEN_V4 = 2 * sizeof(struct in_addr), |
| 120 | IPFK_LEN_V6 = 2 * sizeof(struct in6_addr), |
| 121 | }; |
| 122 | |
| 123 | /* |
| 124 | * @internal |
| 125 | * IP reassembly queue structure. Each fragment (struct ipf) |
| 126 | * being reassembled is attached to one of these structures. |
| 127 | */ |
| 128 | struct ipfq { |
| 129 | struct ipf *ipfq_down; /* fragment chain */ |
| 130 | struct ipf *ipfq_up; |
| 131 | struct ipfq *ipfq_next; /* queue chain */ |
| 132 | struct ipfq *ipfq_prev; |
| 133 | uint64_t ipfq_timestamp; /* time of creation */ |
| 134 | struct ipf_key ipfq_key; /* ipfq search key */ |
| 135 | uint16_t ipfq_nfrag; /* # of fragments in queue */ |
| 136 | int ipfq_unfraglen; /* len of unfragmentable part */ |
| 137 | bool ipfq_is_dirty; /* q is dirty, don't use */ |
| 138 | }; |
| 139 | |
| 140 | /* |
| 141 | * @internal (externally opaque) |
| 142 | * flowswitch IP Fragment Manager |
| 143 | */ |
| 144 | struct fsw_ip_frag_mgr { |
| 145 | struct skoid ipfm_skoid; |
| 146 | struct ipfq ipfm_q; /* ip reassembly queues */ |
| 147 | uint32_t ipfm_q_limit; /* limit # of reass queues */ |
| 148 | uint32_t ipfm_q_count; /* # of allocated reass queues */ |
| 149 | uint32_t ipfm_f_limit; /* limit # of ipfs */ |
| 150 | uint32_t ipfm_f_count; /* current # of allocated ipfs */ |
| 151 | decl_lck_mtx_data(, ipfm_lock); /* guard reass and timeout cleanup */ |
| 152 | thread_call_t ipfm_timeout_tcall; /* frag timeout thread */ |
| 153 | |
| 154 | struct ifnet *ipfm_ifp; |
| 155 | struct fsw_stats *ipfm_stats; /* indirect stats in fsw */ |
| 156 | }; |
| 157 | |
| 158 | static int ipf_process(struct fsw_ip_frag_mgr *, struct __kern_packet **, |
| 159 | struct ipf_key *, uint16_t, uint16_t, uint16_t, uint16_t, uint16_t *, |
| 160 | uint16_t *); |
| 161 | static int ipf_key_cmp(struct ipf_key *, struct ipf_key *); |
| 162 | static void ipf_enq(struct ipf *, struct ipf *); |
| 163 | static void ipf_deq(struct ipf *); |
| 164 | static void ipfq_insque(struct ipfq *, struct ipfq *); |
| 165 | static void ipfq_remque(struct ipfq *); |
| 166 | static uint32_t ipfq_freef(struct fsw_ip_frag_mgr *mgr, struct ipfq *, |
| 167 | void (*)(struct fsw_ip_frag_mgr *, struct ipf *)); |
| 168 | |
| 169 | static void ipfq_timeout(thread_call_param_t, thread_call_param_t); |
| 170 | static void ipfq_sched_timeout(struct fsw_ip_frag_mgr *, boolean_t); |
| 171 | |
| 172 | static struct ipfq *ipfq_alloc(struct fsw_ip_frag_mgr *mgr); |
| 173 | static void ipfq_free(struct fsw_ip_frag_mgr *mgr, struct ipfq *q); |
| 174 | static uint32_t ipfq_freefq(struct fsw_ip_frag_mgr *mgr, struct ipfq *q, |
| 175 | void (*ipf_cb)(struct fsw_ip_frag_mgr *, struct ipf *)); |
| 176 | static struct ipf *ipf_alloc(struct fsw_ip_frag_mgr *mgr); |
| 177 | static void ipf_free(struct fsw_ip_frag_mgr *mgr, struct ipf *f); |
| 178 | static void ipf_free_pkt(struct ipf *f); |
| 179 | static void ipfq_drain(struct fsw_ip_frag_mgr *mgr); |
| 180 | static void ipfq_reap(struct fsw_ip_frag_mgr *mgr); |
| 181 | static int ipfq_drain_sysctl SYSCTL_HANDLER_ARGS; |
| 182 | void ipf_icmp_param_err(struct fsw_ip_frag_mgr *, struct __kern_packet *pkt, |
| 183 | int param); |
| 184 | void ipf_icmp_timeout_err(struct fsw_ip_frag_mgr *, struct ipf *f); |
| 185 | |
| 186 | /* Create a flowswitch IP fragment manager. */ |
| 187 | struct fsw_ip_frag_mgr * |
| 188 | fsw_ip_frag_mgr_create(struct nx_flowswitch *fsw, struct ifnet *ifp, |
| 189 | size_t f_limit) |
| 190 | { |
| 191 | struct fsw_ip_frag_mgr *mgr; |
| 192 | |
| 193 | ASSERT(ifp != NULL); |
| 194 | |
| 195 | mgr = sk_alloc_type(struct fsw_ip_frag_mgr, Z_WAITOK | Z_NOFAIL, |
| 196 | skmem_tag_fsw_frag_mgr); |
| 197 | |
| 198 | mgr->ipfm_q.ipfq_next = mgr->ipfm_q.ipfq_prev = &mgr->ipfm_q; |
| 199 | lck_mtx_init(lck: &mgr->ipfm_lock, grp: &fsw_ipfm_lock_group, attr: &fsw_ipfm_lock_attr); |
| 200 | |
| 201 | mgr->ipfm_timeout_tcall = |
| 202 | thread_call_allocate_with_options(func: ipfq_timeout, param0: mgr, |
| 203 | pri: THREAD_CALL_PRIORITY_KERNEL, options: THREAD_CALL_OPTIONS_ONCE); |
| 204 | VERIFY(mgr->ipfm_timeout_tcall != NULL); |
| 205 | |
| 206 | mgr->ipfm_ifp = ifp; |
| 207 | mgr->ipfm_stats = &fsw->fsw_stats; |
| 208 | |
| 209 | /* Use caller provided limit (caller knows pool size) */ |
| 210 | ASSERT(f_limit >= 2 && f_limit < UINT32_MAX); |
| 211 | mgr->ipfm_f_limit = (uint32_t)f_limit; |
| 212 | mgr->ipfm_f_count = 0; |
| 213 | mgr->ipfm_q_limit = MIN(IPFM_MAX_QUEUES, mgr->ipfm_f_limit / 2); |
| 214 | mgr->ipfm_q_count = 0; |
| 215 | |
| 216 | skoid_create(skoid: &mgr->ipfm_skoid, SKOID_DNODE(fsw->fsw_skoid), name: "ipfm" , kind: 0); |
| 217 | skoid_add_uint(skoid: &mgr->ipfm_skoid, name: "frag_limit" , CTLFLAG_RW, |
| 218 | ptr: &mgr->ipfm_f_limit); |
| 219 | skoid_add_uint(skoid: &mgr->ipfm_skoid, name: "frag_count" , CTLFLAG_RD, |
| 220 | ptr: &mgr->ipfm_f_count); |
| 221 | skoid_add_uint(skoid: &mgr->ipfm_skoid, name: "queue_limit" , CTLFLAG_RW, |
| 222 | ptr: &mgr->ipfm_q_limit); |
| 223 | skoid_add_uint(skoid: &mgr->ipfm_skoid, name: "queue_count" , CTLFLAG_RD, |
| 224 | ptr: &mgr->ipfm_q_count); |
| 225 | skoid_add_handler(skoid: &mgr->ipfm_skoid, name: "drain" , CTLFLAG_RW, |
| 226 | handler: ipfq_drain_sysctl, arg1: mgr, arg2: 0); |
| 227 | |
| 228 | return mgr; |
| 229 | } |
| 230 | |
| 231 | /* Free a flowswitch IP fragment manager. */ |
| 232 | void |
| 233 | fsw_ip_frag_mgr_destroy(struct fsw_ip_frag_mgr *mgr) |
| 234 | { |
| 235 | thread_call_t tcall; |
| 236 | |
| 237 | lck_mtx_lock(lck: &mgr->ipfm_lock); |
| 238 | if ((tcall = mgr->ipfm_timeout_tcall) != NULL) { |
| 239 | lck_mtx_unlock(lck: &mgr->ipfm_lock); |
| 240 | (void) thread_call_cancel_wait(call: tcall); |
| 241 | (void) thread_call_free(call: tcall); |
| 242 | mgr->ipfm_timeout_tcall = NULL; |
| 243 | lck_mtx_lock(lck: &mgr->ipfm_lock); |
| 244 | } |
| 245 | |
| 246 | ipfq_drain(mgr); |
| 247 | |
| 248 | lck_mtx_unlock(lck: &mgr->ipfm_lock); |
| 249 | lck_mtx_destroy(lck: &mgr->ipfm_lock, grp: &fsw_ipfm_lock_group); |
| 250 | |
| 251 | skoid_destroy(skoid: &mgr->ipfm_skoid); |
| 252 | sk_free_type(struct fsw_ip_frag_mgr, mgr); |
| 253 | } |
| 254 | |
| 255 | /* |
| 256 | * Reassemble a received IPv4 fragment. |
| 257 | * |
| 258 | * @param mgr |
| 259 | * fragment manager |
| 260 | * @param pkt |
| 261 | * received packet (must have ipv4 header validated) |
| 262 | * @param ip4 |
| 263 | * pointer to the packet's IPv4 header |
| 264 | * @param nfrags |
| 265 | * number of fragments reassembled |
| 266 | * @return |
| 267 | * Successfully processed (not fully reassembled) |
| 268 | * ret = 0, *pkt = NULL(ipfm owns it), *nfrags=0 |
| 269 | * Successfully reassembled |
| 270 | * ret = 0, *pkt = 1st fragment(fragments chained in order by pkt_nextpkt) |
| 271 | * *nfrags = number of all fragments (>0) |
| 272 | * Error |
| 273 | * ret != 0 && *pkt unmodified (caller to decide what to do with *pkt) |
| 274 | * *nfrags = 0 |
| 275 | */ |
| 276 | int |
| 277 | fsw_ip_frag_reass_v4(struct fsw_ip_frag_mgr *mgr, struct __kern_packet **pkt, |
| 278 | struct ip *ip4, uint16_t *nfrags, uint16_t *tlen) |
| 279 | { |
| 280 | struct ipf_key key; |
| 281 | uint16_t unfragpartlen, offflag, fragoff, fragpartlen, fragflag; |
| 282 | int err; |
| 283 | |
| 284 | STATS_INC(mgr->ipfm_stats, FSW_STATS_RX_FRAG_V4); |
| 285 | |
| 286 | bcopy(src: (void *)&ip4->ip_src, dst: (void *)key.ipfk_addr, n: IPFK_LEN_V4); |
| 287 | key.ipfk_len = IPFK_LEN_V4; |
| 288 | key.ipfk_ident = (uint32_t)ip4->ip_id; |
| 289 | |
| 290 | unfragpartlen = (uint16_t)(ip4->ip_hl << 2); |
| 291 | offflag = ntohs(ip4->ip_off); |
| 292 | fragoff = (uint16_t)(offflag << 3); |
| 293 | fragpartlen = ntohs(ip4->ip_len) - (uint16_t)(ip4->ip_hl << 2); |
| 294 | fragflag = offflag & IP_MF; |
| 295 | |
| 296 | err = ipf_process(mgr, pkt, &key, unfragpartlen, fragoff, fragpartlen, |
| 297 | fragflag, nfrags, tlen); |
| 298 | |
| 299 | /* |
| 300 | * If packet has been reassembled compute the user data length. |
| 301 | */ |
| 302 | if (*pkt != NULL) { |
| 303 | struct __kern_packet *p = *pkt; |
| 304 | struct ip *iph = (struct ip *)p->pkt_flow_ip_hdr; |
| 305 | |
| 306 | p->pkt_flow_ulen = ntohs(iph->ip_len) - |
| 307 | p->pkt_flow_ip_hlen - p->pkt_flow->flow_l4._l4_hlen; |
| 308 | } |
| 309 | return err; |
| 310 | } |
| 311 | |
| 312 | /* |
| 313 | * Reassemble a received IPv6 fragment. |
| 314 | * |
| 315 | * @param mgr |
| 316 | * fragment manager |
| 317 | * @param pkt |
| 318 | * received packet (must have ipv6 header validated) |
| 319 | * @param ip6 |
| 320 | * pointer to the packet's IPv6 header |
| 321 | * @param ip6f |
| 322 | * pointer to the packet's IPv6 Fragment Header |
| 323 | * @param nfrags |
| 324 | * number of fragments reassembled |
| 325 | * @return |
| 326 | * Successfully processed (not fully reassembled) |
| 327 | * ret = 0, *pkt = NULL(ipfm owns it), *nfrags=0 |
| 328 | * Successfully reassembled |
| 329 | * ret = 0, *pkt = 1st fragment(fragments chained in ordrer by pkt_nextpkt) |
| 330 | * *nfrags = number of all fragments (>0) |
| 331 | * Error |
| 332 | * ret != 0 && *pkt unmodified (caller to decide what to do with *pkt) |
| 333 | * *nfrags = 0 |
| 334 | */ |
| 335 | int |
| 336 | fsw_ip_frag_reass_v6(struct fsw_ip_frag_mgr *mgr, struct __kern_packet **pkt, |
| 337 | struct ip6_hdr *ip6, struct ip6_frag *ip6f, uint16_t *nfrags, |
| 338 | uint16_t *tlen) |
| 339 | { |
| 340 | struct ipf_key key; |
| 341 | ptrdiff_t ip6f_ptroff = (uintptr_t)ip6f - (uintptr_t)ip6; |
| 342 | uint16_t ip6f_off, fragoff, fragpartlen, unfragpartlen, fragflag; |
| 343 | int err; |
| 344 | |
| 345 | STATS_INC(mgr->ipfm_stats, FSW_STATS_RX_FRAG_V6); |
| 346 | |
| 347 | /* jumbo payload can't contain a fragment header */ |
| 348 | if (ip6->ip6_plen == 0) { |
| 349 | *nfrags = 0; |
| 350 | return ERANGE; |
| 351 | } |
| 352 | |
| 353 | ASSERT(ip6f_ptroff < UINT16_MAX); |
| 354 | ip6f_off = (uint16_t)ip6f_ptroff; |
| 355 | fragoff = ntohs(ip6f->ip6f_offlg & IP6F_OFF_MASK); |
| 356 | fragpartlen = ntohs(ip6->ip6_plen) - |
| 357 | (ip6f_off + sizeof(struct ip6_frag) - sizeof(struct ip6_hdr)); |
| 358 | unfragpartlen = ip6f_off; |
| 359 | fragflag = ip6f->ip6f_offlg & IP6F_MORE_FRAG; |
| 360 | |
| 361 | /* |
| 362 | * RFC 6946: Handle "atomic" fragments (offset and m bit set to 0) |
| 363 | * upfront, unrelated to any reassembly. |
| 364 | * |
| 365 | * Flow classifier should process those as non-frag, ipfm shouldn't see |
| 366 | * them. |
| 367 | */ |
| 368 | ASSERT((ip6f->ip6f_offlg & ~IP6F_RESERVED_MASK) != 0); |
| 369 | |
| 370 | bcopy(src: (void *)&ip6->ip6_src, dst: (void *)key.ipfk_addr, n: IPFK_LEN_V6); |
| 371 | key.ipfk_len = IPFK_LEN_V6; |
| 372 | key.ipfk_ident = ip6f->ip6f_ident; |
| 373 | |
| 374 | err = ipf_process(mgr, pkt, &key, unfragpartlen, fragoff, fragpartlen, |
| 375 | fragflag, nfrags, tlen); |
| 376 | |
| 377 | /* |
| 378 | * If packet has been reassembled compute the user data length. |
| 379 | */ |
| 380 | if (*pkt != NULL) { |
| 381 | struct __kern_packet *p = *pkt; |
| 382 | struct ip6_hdr *ip6h = (struct ip6_hdr *)p->pkt_flow_ip_hdr; |
| 383 | |
| 384 | p->pkt_flow_ulen = ntohs(ip6h->ip6_plen) - |
| 385 | p->pkt_flow->flow_l4._l4_hlen; |
| 386 | } |
| 387 | return err; |
| 388 | } |
| 389 | |
| 390 | static struct mbuf * |
| 391 | ipf_pkt2mbuf(struct fsw_ip_frag_mgr *mgr, struct __kern_packet *pkt) |
| 392 | { |
| 393 | unsigned int one = 1; |
| 394 | struct mbuf *m = NULL; |
| 395 | uint8_t *buf; |
| 396 | struct ip6_hdr *ip6; |
| 397 | uint32_t l3t_len; |
| 398 | int err; |
| 399 | |
| 400 | l3t_len = pkt->pkt_length - pkt->pkt_l2_len; |
| 401 | if (pkt->pkt_link_flags & PKT_LINKF_ETHFCS) { |
| 402 | l3t_len -= ETHER_CRC_LEN; |
| 403 | } |
| 404 | |
| 405 | err = mbuf_allocpacket(how: MBUF_WAITOK, packetlen: l3t_len, maxchunks: &one, mbuf: &m); |
| 406 | VERIFY(err == 0); |
| 407 | ASSERT(l3t_len <= mbuf_maxlen(m)); |
| 408 | |
| 409 | if (pkt->pkt_pflags & PKT_F_MBUF_DATA) { |
| 410 | bcopy(src: m_mtod_current(m: pkt->pkt_mbuf) + pkt->pkt_l2_len, |
| 411 | dst: m_mtod_current(m), n: l3t_len); |
| 412 | } else { |
| 413 | MD_BUFLET_ADDR_ABS(pkt, buf); |
| 414 | buf += (pkt->pkt_headroom + pkt->pkt_l2_len); |
| 415 | bcopy(src: buf, dst: m_mtod_current(m), n: l3t_len); |
| 416 | } |
| 417 | m->m_pkthdr.len = m->m_len = l3t_len; |
| 418 | |
| 419 | ip6 = mtod(m, struct ip6_hdr *); |
| 420 | /* note for casting: IN6_IS_SCOPE_ doesn't need alignment */ |
| 421 | if (IN6_IS_SCOPE_LINKLOCAL((struct in6_addr *)(uintptr_t)&ip6->ip6_src)) { |
| 422 | if (in6_embedded_scope) { |
| 423 | ip6->ip6_src.s6_addr16[1] = htons(mgr->ipfm_ifp->if_index); |
| 424 | } |
| 425 | ip6_output_setsrcifscope(m, mgr->ipfm_ifp->if_index, NULL); |
| 426 | } |
| 427 | if (IN6_IS_SCOPE_EMBED((struct in6_addr *)(uintptr_t)&ip6->ip6_dst)) { |
| 428 | if (in6_embedded_scope) { |
| 429 | ip6->ip6_dst.s6_addr16[1] = htons(mgr->ipfm_ifp->if_index); |
| 430 | } |
| 431 | ip6_output_setdstifscope(m, mgr->ipfm_ifp->if_index, NULL); |
| 432 | } |
| 433 | |
| 434 | return m; |
| 435 | } |
| 436 | |
| 437 | /* |
| 438 | * Since this function can be called while holding fsw_ip_frag_mgr.ipfm_lock, |
| 439 | * we need to ensure we don't enter the driver directly because a deadlock |
| 440 | * can happen if this same thread tries to get the workloop lock. |
| 441 | */ |
| 442 | static void |
| 443 | ipf_icmp6_error_flag(struct mbuf *m, int type, int code, int param, int flags) |
| 444 | { |
| 445 | sk_protect_t protect = sk_async_transmit_protect(); |
| 446 | icmp6_error_flag(m, type, code, param, flags); |
| 447 | sk_async_transmit_unprotect(protect); |
| 448 | } |
| 449 | |
| 450 | /* |
| 451 | * @internal IP fragment ICMP parameter problem error handling |
| 452 | * |
| 453 | * @param param |
| 454 | * offending parameter offset, only applicable to ICMPv6 |
| 455 | */ |
| 456 | void |
| 457 | ipf_icmp_param_err(struct fsw_ip_frag_mgr *mgr, struct __kern_packet *pkt, |
| 458 | int param_offset) |
| 459 | { |
| 460 | if (pkt->pkt_flow_ip_ver != IPV6_VERSION) { |
| 461 | return; |
| 462 | } |
| 463 | |
| 464 | struct mbuf *m = NULL; |
| 465 | m = ipf_pkt2mbuf(mgr, pkt); |
| 466 | if (__probable(m != NULL)) { |
| 467 | ipf_icmp6_error_flag(m, ICMP6_PARAM_PROB, ICMP6_PARAMPROB_HEADER, |
| 468 | param: param_offset, flags: 0); |
| 469 | } |
| 470 | |
| 471 | /* m would be free by icmp6_error_flag function */ |
| 472 | } |
| 473 | |
| 474 | /* @internal IP fragment ICMP timeout error handling */ |
| 475 | void |
| 476 | ipf_icmp_timeout_err(struct fsw_ip_frag_mgr *mgr, struct ipf *f) |
| 477 | { |
| 478 | struct __kern_packet *pkt = f->ipf_pkt; |
| 479 | ASSERT(pkt != NULL); |
| 480 | |
| 481 | /* no icmp error packet for ipv4 */ |
| 482 | if (pkt->pkt_flow_ip_ver != IPV6_VERSION) { |
| 483 | return; |
| 484 | } |
| 485 | |
| 486 | /* only for the first fragment */ |
| 487 | if (f->ipf_off != 0) { |
| 488 | return; |
| 489 | } |
| 490 | |
| 491 | struct mbuf *m = NULL; |
| 492 | m = ipf_pkt2mbuf(mgr, pkt); |
| 493 | if (__probable(m != NULL)) { |
| 494 | ipf_icmp6_error_flag(m, ICMP6_TIME_EXCEEDED, |
| 495 | ICMP6_TIME_EXCEED_REASSEMBLY, param: 0, flags: 0); |
| 496 | } |
| 497 | |
| 498 | /* m would be free by icmp6_error_flag function */ |
| 499 | } |
| 500 | |
| 501 | /* @internal IP fragment processing, v4/v6 agonistic */ |
| 502 | int |
| 503 | ipf_process(struct fsw_ip_frag_mgr *mgr, struct __kern_packet **pkt_ptr, |
| 504 | struct ipf_key *key, uint16_t unfraglen, uint16_t fragoff, |
| 505 | uint16_t fragpartlen, uint16_t fragflag, uint16_t *nfrags, uint16_t *tlen) |
| 506 | { |
| 507 | struct __kern_packet *pkt = *pkt_ptr; |
| 508 | struct __kern_packet *pkt_reassed = NULL; |
| 509 | struct ipfq *q, *mq = &mgr->ipfm_q; |
| 510 | struct ipf *f, *f_new, *f_down; |
| 511 | uint32_t nfrags_freed; |
| 512 | int next; |
| 513 | int first_frag = 0; |
| 514 | int err = 0; |
| 515 | int local_ipfq_unfraglen; |
| 516 | |
| 517 | *nfrags = 0; |
| 518 | |
| 519 | SK_DF(SK_VERB_IP_FRAG, "id %5d fragoff %5d fragpartlen %5d " |
| 520 | "fragflag 0x%x" , key->ipfk_ident, fragoff, fragpartlen, fragflag); |
| 521 | |
| 522 | /* |
| 523 | * Make sure that all fragments except last one have a data length |
| 524 | * that's a non-zero multiple of 8 bytes. |
| 525 | */ |
| 526 | if (fragflag && (fragpartlen == 0 || (fragpartlen & 0x7) != 0)) { |
| 527 | SK_DF(SK_VERB_IP_FRAG, "frag not multiple of 8 bytes" ); |
| 528 | STATS_INC(mgr->ipfm_stats, FSW_STATS_RX_FRAG_DROP_BAD_LEN); |
| 529 | ipf_icmp_param_err(mgr, pkt, |
| 530 | offsetof(struct ip6_hdr, ip6_plen)); |
| 531 | return ERANGE; |
| 532 | } |
| 533 | |
| 534 | lck_mtx_lock(lck: &mgr->ipfm_lock); |
| 535 | |
| 536 | /* find ipfq */ |
| 537 | for (q = mq->ipfq_next; q != mq; q = q->ipfq_next) { |
| 538 | if (ipf_key_cmp(key, &q->ipfq_key) == 0) { |
| 539 | if (q->ipfq_is_dirty) { |
| 540 | SK_DF(SK_VERB_IP_FRAG, "found dirty q, skip" ); |
| 541 | err = EINVAL; |
| 542 | goto done; |
| 543 | } |
| 544 | break; |
| 545 | } |
| 546 | } |
| 547 | |
| 548 | /* not found, create new ipfq */ |
| 549 | if (q == mq) { |
| 550 | first_frag = 1; |
| 551 | |
| 552 | q = ipfq_alloc(mgr); |
| 553 | if (q == NULL) { |
| 554 | STATS_INC(mgr->ipfm_stats, |
| 555 | FSW_STATS_RX_FRAG_DROP_NOMEM); |
| 556 | err = ENOMEM; |
| 557 | goto done; |
| 558 | } |
| 559 | |
| 560 | ipfq_insque(q, mq); |
| 561 | net_update_uptime(); |
| 562 | |
| 563 | bcopy(src: key, dst: &q->ipfq_key, n: sizeof(struct ipf_key)); |
| 564 | q->ipfq_down = q->ipfq_up = (struct ipf *)q; |
| 565 | q->ipfq_unfraglen = -1; /* The 1st fragment has not arrived. */ |
| 566 | q->ipfq_nfrag = 0; |
| 567 | q->ipfq_timestamp = _net_uptime; |
| 568 | } |
| 569 | |
| 570 | ASSERT(!q->ipfq_is_dirty); |
| 571 | |
| 572 | /* this queue has reached per queue frag limit */ |
| 573 | if (q->ipfq_nfrag > ipfm_max_frags_per_queue) { |
| 574 | nfrags_freed = ipfq_freefq(mgr, q, NULL); |
| 575 | STATS_ADD(mgr->ipfm_stats, |
| 576 | FSW_STATS_RX_FRAG_DROP_PER_QUEUE_LIMIT, nfrags_freed); |
| 577 | err = ENOMEM; |
| 578 | goto done; |
| 579 | } |
| 580 | |
| 581 | local_ipfq_unfraglen = q->ipfq_unfraglen; |
| 582 | |
| 583 | /* |
| 584 | * If it's the 1st fragment, record the length of the |
| 585 | * unfragmentable part and the next header of the fragment header. |
| 586 | * Assume the first fragement to arrive will be correct. |
| 587 | * We do not have any duplicate checks here yet so another packet |
| 588 | * with fragoff == 0 could come and overwrite the ipfq_unfraglen |
| 589 | * and worse, the next header, at any time. |
| 590 | */ |
| 591 | if (fragoff == 0 && local_ipfq_unfraglen == -1) { |
| 592 | local_ipfq_unfraglen = unfraglen; |
| 593 | } |
| 594 | |
| 595 | /* Check that the reassembled packet would not exceed 65535 bytes. */ |
| 596 | if (local_ipfq_unfraglen + fragoff + fragpartlen > IP_MAXPACKET) { |
| 597 | SK_DF(SK_VERB_IP_FRAG, "frag too big" ); |
| 598 | STATS_INC(mgr->ipfm_stats, FSW_STATS_RX_FRAG_BAD); |
| 599 | ipf_icmp_param_err(mgr, pkt, param_offset: sizeof(struct ip6_hdr) + |
| 600 | offsetof(struct ip6_frag, ip6f_offlg)); |
| 601 | err = ERANGE; |
| 602 | goto done; |
| 603 | } |
| 604 | |
| 605 | /* |
| 606 | * If it's the 1st fragment, do the above check for each |
| 607 | * fragment already stored in the reassembly queue. |
| 608 | * If an error is found, still return 0, since we don't return |
| 609 | * ownership of a chain of offending packets back to caller. |
| 610 | */ |
| 611 | if (fragoff == 0) { |
| 612 | for (f = q->ipfq_down; f != (struct ipf *)q; f = f_down) { |
| 613 | f_down = f->ipf_down; |
| 614 | if (local_ipfq_unfraglen + f->ipf_off + f->ipf_len > |
| 615 | IP_MAXPACKET) { |
| 616 | SK_DF(SK_VERB_IP_FRAG, "frag too big" ); |
| 617 | STATS_INC(mgr->ipfm_stats, |
| 618 | FSW_STATS_RX_FRAG_BAD); |
| 619 | ipf_deq(f); |
| 620 | ipf_free_pkt(f); |
| 621 | ipf_free(mgr, f); |
| 622 | } |
| 623 | } |
| 624 | } |
| 625 | |
| 626 | f_new = ipf_alloc(mgr); |
| 627 | if (f_new == NULL) { |
| 628 | STATS_INC(mgr->ipfm_stats, FSW_STATS_RX_FRAG_DROP_NOMEM); |
| 629 | err = ENOMEM; |
| 630 | goto done; |
| 631 | } |
| 632 | |
| 633 | f_new->ipf_mff = fragflag; |
| 634 | f_new->ipf_off = fragoff; |
| 635 | f_new->ipf_len = fragpartlen; |
| 636 | f_new->ipf_pkt = pkt; |
| 637 | |
| 638 | if (first_frag) { |
| 639 | f = (struct ipf *)q; |
| 640 | goto insert; |
| 641 | } |
| 642 | |
| 643 | /* Find a segment which begins after this one does. */ |
| 644 | for (f = q->ipfq_down; f != (struct ipf *)q; f = f->ipf_down) { |
| 645 | if (f->ipf_off > f_new->ipf_off) { |
| 646 | break; |
| 647 | } |
| 648 | } |
| 649 | |
| 650 | /* |
| 651 | * If any of the fragments being reassembled overlap with any |
| 652 | * other fragments being reassembled for the same packet, |
| 653 | * reassembly of that packet must be abandoned and all the |
| 654 | * fragments that have been received for that packet must be |
| 655 | * discarded, and no ICMP error messages should be sent. |
| 656 | * |
| 657 | * It should be noted that fragments may be duplicated in the |
| 658 | * network. Instead of treating these exact duplicate fragments |
| 659 | * as overlapping fragments, an implementation may choose to |
| 660 | * detect this case and drop exact duplicate fragments while |
| 661 | * keeping the other fragments belonging to the same packet. |
| 662 | * |
| 663 | * https://tools.ietf.org/html/rfc8200#appendix-B |
| 664 | * |
| 665 | * We apply this rule for both for IPv4 and IPv6 here. |
| 666 | */ |
| 667 | if (((f->ipf_up != (struct ipf *)q) && /* prev frag spans into f_new */ |
| 668 | (f->ipf_up->ipf_off + f->ipf_up->ipf_len - f_new->ipf_off > 0)) || |
| 669 | ((f != (struct ipf *)q) && /* f_new spans into next */ |
| 670 | (f_new->ipf_off + f_new->ipf_len - f->ipf_off > 0))) { |
| 671 | STATS_INC(mgr->ipfm_stats, FSW_STATS_RX_FRAG_BAD); |
| 672 | /* Check for exact duplicate offset/length */ |
| 673 | if (((f->ipf_up != (struct ipf *)q) && |
| 674 | ((f->ipf_up->ipf_off != f_new->ipf_off) || |
| 675 | (f->ipf_up->ipf_len != f_new->ipf_len))) || |
| 676 | ((f != (struct ipf *)q) && |
| 677 | ((f->ipf_off != f_new->ipf_off) || |
| 678 | (f->ipf_len != f_new->ipf_len)))) { |
| 679 | SK_DF(SK_VERB_IP_FRAG, "frag overlap" ); |
| 680 | ipf_free(mgr, f: f_new); |
| 681 | /* give up over-lapping fragments queue */ |
| 682 | SK_DF(SK_VERB_IP_FRAG, "free overlapping queue" ); |
| 683 | ipfq_freef(mgr, q, NULL); |
| 684 | q->ipfq_is_dirty = true; |
| 685 | } else { |
| 686 | ipf_free(mgr, f: f_new); |
| 687 | SK_DF(SK_VERB_IP_FRAG, "frag dup" ); |
| 688 | } |
| 689 | err = ERANGE; |
| 690 | goto done; |
| 691 | } |
| 692 | |
| 693 | insert: |
| 694 | q->ipfq_unfraglen = local_ipfq_unfraglen; |
| 695 | |
| 696 | /* |
| 697 | * Stick new segment in its place; |
| 698 | * check for complete reassembly. |
| 699 | * Move to front of packet queue, as we are |
| 700 | * the most recently active fragmented packet. |
| 701 | */ |
| 702 | ipf_enq(f_new, f->ipf_up); |
| 703 | q->ipfq_nfrag++; |
| 704 | next = 0; |
| 705 | for (f = q->ipfq_down; f != (struct ipf *)q; f = f->ipf_down) { |
| 706 | /* there is a hole */ |
| 707 | if (f->ipf_off != next) { |
| 708 | goto done; |
| 709 | } |
| 710 | next += f->ipf_len; |
| 711 | } |
| 712 | /* we haven't got last frag yet */ |
| 713 | if (f->ipf_up->ipf_mff) { |
| 714 | goto done; |
| 715 | } |
| 716 | |
| 717 | /* |
| 718 | * Reassembly is complete; concatenate fragments. |
| 719 | */ |
| 720 | f = q->ipfq_down; |
| 721 | f_down = f->ipf_down; |
| 722 | pkt_reassed = f->ipf_pkt; |
| 723 | *nfrags = 1; |
| 724 | while (f_down != (struct ipf *)q) { |
| 725 | /* chain __kern_packet with pkt_nextpkt ptr */ |
| 726 | f->ipf_pkt->pkt_nextpkt = f_down->ipf_pkt; |
| 727 | (*nfrags)++; |
| 728 | (*tlen) += f_down->ipf_len; |
| 729 | f_down = f->ipf_down; |
| 730 | ipf_deq(f); |
| 731 | ipf_free(mgr, f); |
| 732 | f = f_down; |
| 733 | f_down = f->ipf_down; |
| 734 | } |
| 735 | ipf_free(mgr, f); |
| 736 | |
| 737 | err = 0; |
| 738 | STATS_INC(mgr->ipfm_stats, FSW_STATS_RX_FRAG_REASSED); |
| 739 | ipfq_remque(q); |
| 740 | ipfq_free(mgr, q); |
| 741 | |
| 742 | done: |
| 743 | /* ipfm take ownership of, or return assembled packet, if no error */ |
| 744 | if (err == 0) { |
| 745 | /* reass'ed packet if done; NULL otherwise */ |
| 746 | *pkt_ptr = pkt_reassed; |
| 747 | } |
| 748 | ipfq_sched_timeout(mgr, FALSE); |
| 749 | lck_mtx_unlock(lck: &mgr->ipfm_lock); |
| 750 | return err; |
| 751 | } |
| 752 | |
| 753 | static int |
| 754 | ipf_key_cmp(struct ipf_key *a, struct ipf_key *b) |
| 755 | { |
| 756 | int d; |
| 757 | |
| 758 | if ((d = (a->ipfk_len - b->ipfk_len)) != 0) { |
| 759 | return d; |
| 760 | } |
| 761 | |
| 762 | if ((d = (a->ipfk_ident - b->ipfk_ident)) != 0) { |
| 763 | return d; |
| 764 | } |
| 765 | |
| 766 | return memcmp(s1: a->ipfk_addr, s2: b->ipfk_addr, n: a->ipfk_len); |
| 767 | } |
| 768 | |
| 769 | /* |
| 770 | * Put an ip fragment on a reassembly chain. |
| 771 | * Like insque, but pointers in middle of structure. |
| 772 | */ |
| 773 | static void |
| 774 | ipf_enq(struct ipf *f, struct ipf *up6) |
| 775 | { |
| 776 | f->ipf_up = up6; |
| 777 | f->ipf_down = up6->ipf_down; |
| 778 | up6->ipf_down->ipf_up = f; |
| 779 | up6->ipf_down = f; |
| 780 | } |
| 781 | |
| 782 | /* |
| 783 | * To ipf_enq as remque is to insque. |
| 784 | */ |
| 785 | static void |
| 786 | ipf_deq(struct ipf *f) |
| 787 | { |
| 788 | f->ipf_up->ipf_down = f->ipf_down; |
| 789 | f->ipf_down->ipf_up = f->ipf_up; |
| 790 | } |
| 791 | |
| 792 | static void |
| 793 | ipfq_insque(struct ipfq *new, struct ipfq *old) |
| 794 | { |
| 795 | new->ipfq_prev = old; |
| 796 | new->ipfq_next = old->ipfq_next; |
| 797 | old->ipfq_next->ipfq_prev = new; |
| 798 | old->ipfq_next = new; |
| 799 | } |
| 800 | |
| 801 | static void |
| 802 | ipfq_remque(struct ipfq *p6) |
| 803 | { |
| 804 | p6->ipfq_prev->ipfq_next = p6->ipfq_next; |
| 805 | p6->ipfq_next->ipfq_prev = p6->ipfq_prev; |
| 806 | } |
| 807 | |
| 808 | /* |
| 809 | * @internal drain reassembly queue till reaching target q count. |
| 810 | */ |
| 811 | static void |
| 812 | _ipfq_reap(struct fsw_ip_frag_mgr *mgr, uint32_t target_q_count, |
| 813 | void (*ipf_cb)(struct fsw_ip_frag_mgr *, struct ipf *)) |
| 814 | { |
| 815 | uint32_t n_freed = 0; |
| 816 | |
| 817 | LCK_MTX_ASSERT(&mgr->ipfm_lock, LCK_MTX_ASSERT_OWNED); |
| 818 | |
| 819 | SK_DF(SK_VERB_IP_FRAG, "draining (frag %d/%d queue %d/%d)" , |
| 820 | mgr->ipfm_f_count, mgr->ipfm_f_limit, mgr->ipfm_q_count, |
| 821 | mgr->ipfm_q_limit); |
| 822 | |
| 823 | while (mgr->ipfm_q.ipfq_next != &mgr->ipfm_q && |
| 824 | mgr->ipfm_q_count > target_q_count) { |
| 825 | n_freed += ipfq_freefq(mgr, q: mgr->ipfm_q.ipfq_prev, |
| 826 | ipf_cb: mgr->ipfm_q.ipfq_prev->ipfq_is_dirty ? NULL : ipf_cb); |
| 827 | } |
| 828 | |
| 829 | STATS_ADD(mgr->ipfm_stats, FSW_STATS_RX_FRAG_DROP_REAPED, n_freed); |
| 830 | } |
| 831 | |
| 832 | /* |
| 833 | * @internal reap half reassembly queues to allow newer fragment assembly. |
| 834 | */ |
| 835 | static void |
| 836 | ipfq_reap(struct fsw_ip_frag_mgr *mgr) |
| 837 | { |
| 838 | _ipfq_reap(mgr, target_q_count: mgr->ipfm_q_count / 2, ipf_cb: ipf_icmp_timeout_err); |
| 839 | } |
| 840 | |
| 841 | /* |
| 842 | * @internal reap all reassembly queues, for shutdown etc. |
| 843 | */ |
| 844 | static void |
| 845 | ipfq_drain(struct fsw_ip_frag_mgr *mgr) |
| 846 | { |
| 847 | _ipfq_reap(mgr, target_q_count: 0, NULL); |
| 848 | } |
| 849 | |
| 850 | static void |
| 851 | ipfq_timeout(thread_call_param_t arg0, thread_call_param_t arg1) |
| 852 | { |
| 853 | #pragma unused(arg1) |
| 854 | struct fsw_ip_frag_mgr *mgr = arg0; |
| 855 | struct ipfq *q; |
| 856 | uint64_t now, elapsed; |
| 857 | uint32_t n_freed = 0; |
| 858 | |
| 859 | net_update_uptime(); |
| 860 | now = _net_uptime; |
| 861 | |
| 862 | SK_DF(SK_VERB_IP_FRAG, "run" ); |
| 863 | lck_mtx_lock(lck: &mgr->ipfm_lock); |
| 864 | q = mgr->ipfm_q.ipfq_next; |
| 865 | if (q) { |
| 866 | while (q != &mgr->ipfm_q) { |
| 867 | q = q->ipfq_next; |
| 868 | elapsed = now - q->ipfq_prev->ipfq_timestamp; |
| 869 | if (elapsed > ipfm_frag_ttl) { |
| 870 | SK_DF(SK_VERB_IP_FRAG, "timing out q id %5d" , |
| 871 | q->ipfq_prev->ipfq_key.ipfk_ident); |
| 872 | n_freed = ipfq_freefq(mgr, q: q->ipfq_prev, |
| 873 | ipf_cb: q->ipfq_is_dirty ? NULL : |
| 874 | ipf_icmp_timeout_err); |
| 875 | } |
| 876 | } |
| 877 | } |
| 878 | STATS_ADD(mgr->ipfm_stats, FSW_STATS_RX_FRAG_DROP_TIMEOUT, n_freed); |
| 879 | |
| 880 | /* If running out of resources, drain ipfm queues (oldest one first) */ |
| 881 | if (mgr->ipfm_f_count >= mgr->ipfm_f_limit || |
| 882 | mgr->ipfm_q_count >= mgr->ipfm_q_limit) { |
| 883 | ipfq_reap(mgr); |
| 884 | } |
| 885 | |
| 886 | /* re-arm the purge timer if there's work to do */ |
| 887 | if (mgr->ipfm_q_count > 0) { |
| 888 | ipfq_sched_timeout(mgr, TRUE); |
| 889 | } |
| 890 | lck_mtx_unlock(lck: &mgr->ipfm_lock); |
| 891 | } |
| 892 | |
| 893 | static void |
| 894 | ipfq_sched_timeout(struct fsw_ip_frag_mgr *mgr, boolean_t in_tcall) |
| 895 | { |
| 896 | uint32_t delay = MAX(1, ipfm_timeout_tcall_ival); /* seconds */ |
| 897 | thread_call_t tcall = mgr->ipfm_timeout_tcall; |
| 898 | uint64_t now = mach_absolute_time(); |
| 899 | uint64_t ival, deadline = now; |
| 900 | |
| 901 | LCK_MTX_ASSERT(&mgr->ipfm_lock, LCK_MTX_ASSERT_OWNED); |
| 902 | |
| 903 | ASSERT(tcall != NULL); |
| 904 | if (mgr->ipfm_q_count > 0 && |
| 905 | (!thread_call_isactive(call: tcall) || in_tcall)) { |
| 906 | nanoseconds_to_absolutetime(nanoseconds: delay * NSEC_PER_SEC, result: &ival); |
| 907 | clock_deadline_for_periodic_event(interval: ival, abstime: now, deadline: &deadline); |
| 908 | (void) thread_call_enter_delayed(call: tcall, deadline); |
| 909 | } |
| 910 | } |
| 911 | |
| 912 | static int |
| 913 | ipfq_drain_sysctl SYSCTL_HANDLER_ARGS |
| 914 | { |
| 915 | #pragma unused(oidp, arg2) |
| 916 | struct fsw_ip_frag_mgr *mgr = arg1; |
| 917 | |
| 918 | SKOID_PROC_CALL_GUARD; |
| 919 | |
| 920 | lck_mtx_lock(lck: &mgr->ipfm_lock); |
| 921 | ipfq_drain(mgr); |
| 922 | lck_mtx_unlock(lck: &mgr->ipfm_lock); |
| 923 | |
| 924 | return 0; |
| 925 | } |
| 926 | |
| 927 | static struct ipfq * |
| 928 | ipfq_alloc(struct fsw_ip_frag_mgr *mgr) |
| 929 | { |
| 930 | struct ipfq *q; |
| 931 | |
| 932 | if (mgr->ipfm_q_count > mgr->ipfm_q_limit) { |
| 933 | ipfq_reap(mgr); |
| 934 | } |
| 935 | ASSERT(mgr->ipfm_q_count <= mgr->ipfm_q_limit); |
| 936 | |
| 937 | q = kalloc_type(struct ipfq, Z_WAITOK | Z_ZERO); |
| 938 | if (q != NULL) { |
| 939 | mgr->ipfm_q_count++; |
| 940 | q->ipfq_is_dirty = false; |
| 941 | } |
| 942 | return q; |
| 943 | } |
| 944 | |
| 945 | /* free q */ |
| 946 | static void |
| 947 | ipfq_free(struct fsw_ip_frag_mgr *mgr, struct ipfq *q) |
| 948 | { |
| 949 | kfree_type(struct ipfq, q); |
| 950 | mgr->ipfm_q_count--; |
| 951 | } |
| 952 | |
| 953 | /* |
| 954 | * Free all fragments, keep q. |
| 955 | * @return: number of frags freed |
| 956 | */ |
| 957 | static uint32_t |
| 958 | ipfq_freef(struct fsw_ip_frag_mgr *mgr, struct ipfq *q, |
| 959 | void (*ipf_cb)(struct fsw_ip_frag_mgr *, struct ipf *)) |
| 960 | { |
| 961 | struct ipf *f, *down6; |
| 962 | uint32_t nfrags = 0; |
| 963 | |
| 964 | for (f = q->ipfq_down; f != (struct ipf *)q; f = down6) { |
| 965 | nfrags++; |
| 966 | down6 = f->ipf_down; |
| 967 | ipf_deq(f); |
| 968 | if (ipf_cb != NULL) { |
| 969 | (*ipf_cb)(mgr, f); |
| 970 | } |
| 971 | ipf_free_pkt(f); |
| 972 | ipf_free(mgr, f); |
| 973 | } |
| 974 | |
| 975 | return nfrags; |
| 976 | } |
| 977 | |
| 978 | /* Free both all fragments and q |
| 979 | * @return: number of frags freed |
| 980 | */ |
| 981 | static uint32_t |
| 982 | ipfq_freefq(struct fsw_ip_frag_mgr *mgr, struct ipfq *q, |
| 983 | void (*ipf_cb)(struct fsw_ip_frag_mgr *, struct ipf *)) |
| 984 | { |
| 985 | uint32_t freed_count; |
| 986 | freed_count = ipfq_freef(mgr, q, ipf_cb); |
| 987 | ipfq_remque(p6: q); |
| 988 | ipfq_free(mgr, q); |
| 989 | return freed_count; |
| 990 | } |
| 991 | |
| 992 | static struct ipf * |
| 993 | ipf_alloc(struct fsw_ip_frag_mgr *mgr) |
| 994 | { |
| 995 | struct ipf *f; |
| 996 | |
| 997 | if (mgr->ipfm_f_count > mgr->ipfm_f_limit) { |
| 998 | STATS_INC(mgr->ipfm_stats, FSW_STATS_RX_FRAG_DROP_FRAG_LIMIT); |
| 999 | return NULL; |
| 1000 | } |
| 1001 | |
| 1002 | f = kalloc_type(struct ipf, Z_WAITOK | Z_ZERO); |
| 1003 | if (f != NULL) { |
| 1004 | mgr->ipfm_f_count++; |
| 1005 | } |
| 1006 | return f; |
| 1007 | } |
| 1008 | |
| 1009 | static void |
| 1010 | ipf_free_pkt(struct ipf *f) |
| 1011 | { |
| 1012 | struct __kern_packet *pkt = f->ipf_pkt; |
| 1013 | ASSERT(pkt != NULL); |
| 1014 | pp_free_packet(__DECONST(struct kern_pbufpool *, pkt->pkt_qum.qum_pp), |
| 1015 | SK_PTR_ADDR(pkt)); |
| 1016 | } |
| 1017 | |
| 1018 | static void |
| 1019 | ipf_free(struct fsw_ip_frag_mgr *mgr, struct ipf *f) |
| 1020 | { |
| 1021 | kfree_type(struct ipf, f); |
| 1022 | mgr->ipfm_f_count--; |
| 1023 | } |
| 1024 | |