1 | /* |
2 | * Copyright (c) 2017-2020 Apple Inc. All rights reserved. |
3 | * |
4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ |
5 | * |
6 | * This file contains Original Code and/or Modifications of Original Code |
7 | * as defined in and that are subject to the Apple Public Source License |
8 | * Version 2.0 (the 'License'). You may not use this file except in |
9 | * compliance with the License. The rights granted to you under the License |
10 | * may not be used to create, or enable the creation or redistribution of, |
11 | * unlawful or unlicensed copies of an Apple operating system, or to |
12 | * circumvent, violate, or enable the circumvention or violation of, any |
13 | * terms of an Apple operating system software license agreement. |
14 | * |
15 | * Please obtain a copy of the License at |
16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. |
17 | * |
18 | * The Original Code and all software distributed under the License are |
19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER |
20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, |
22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
23 | * Please see the License for the specific language governing rights and |
24 | * limitations under the License. |
25 | * |
26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ |
27 | */ |
28 | |
29 | #include <skywalk/os_skywalk_private.h> |
30 | #include <skywalk/nexus/flowswitch/fsw_var.h> |
31 | #include <skywalk/nexus/flowswitch/flow/flow_var.h> |
32 | #include <netinet/tcp.h> |
33 | #include <netinet/tcp_fsm.h> |
34 | #include <netinet/tcp_seq.h> |
35 | #include <netinet/tcp_timer.h> |
36 | #include <netinet/tcp_var.h> |
37 | #include <netinet/udp.h> |
38 | #include <netinet/in_stat.h> |
39 | #include <netinet/ip.h> |
40 | #include <netinet/ip6.h> |
41 | #include <sys/kdebug.h> |
42 | |
43 | /* min/max linger time (in seconds */ |
44 | #define FLOWTRACK_LINGER_MIN 1 |
45 | #define FLOWTRACK_LINGER_MAX 120 |
46 | |
47 | /* maximum allowed rate of SYNs per second */ |
48 | #define FLOWTRACK_SYN_RATE 20 |
49 | |
50 | static int flow_track_tcp(struct flow_entry *, struct flow_track *, |
51 | struct flow_track *, struct __kern_packet *, bool); |
52 | static int flow_track_udp(struct flow_entry *, struct flow_track *, |
53 | struct flow_track *, struct __kern_packet *, bool); |
54 | |
55 | static void |
56 | flow_track_tcp_get_wscale(struct flow_track *s, struct __kern_packet *pkt) |
57 | { |
58 | const uint8_t *hdr = (uint8_t *)(void *)pkt->pkt_flow_tcp_hdr; |
59 | int hlen = pkt->pkt_flow_tcp_hlen; |
60 | uint8_t optlen, wscale = 0; |
61 | const uint8_t *opt; |
62 | |
63 | _CASSERT(sizeof(s->fse_flags) == sizeof(uint16_t)); |
64 | ASSERT(hlen >= (int)sizeof(struct tcphdr)); |
65 | |
66 | opt = hdr + sizeof(struct tcphdr); |
67 | hlen -= sizeof(struct tcphdr); |
68 | while (hlen >= 3) { |
69 | switch (*opt) { |
70 | case TCPOPT_EOL: |
71 | case TCPOPT_NOP: |
72 | ++opt; |
73 | --hlen; |
74 | break; |
75 | case TCPOPT_WINDOW: |
76 | wscale = opt[2]; |
77 | if (wscale > TCP_MAX_WINSHIFT) { |
78 | wscale = TCP_MAX_WINSHIFT; |
79 | } |
80 | os_atomic_or(&s->fse_flags, FLOWSTATEF_WSCALE, relaxed); |
81 | OS_FALLTHROUGH; |
82 | default: |
83 | optlen = opt[1]; |
84 | if (optlen < 2) { |
85 | optlen = 2; |
86 | } |
87 | hlen -= optlen; |
88 | opt += optlen; |
89 | break; |
90 | } |
91 | } |
92 | s->fse_wscale = wscale; |
93 | } |
94 | |
95 | static void |
96 | flow_track_tcp_init(struct flow_entry *fe, struct flow_track *src, |
97 | struct flow_track *dst, struct __kern_packet *pkt) |
98 | { |
99 | #pragma unused(dst) |
100 | const uint8_t tcp_flags = pkt->pkt_flow_tcp_flags; |
101 | |
102 | /* |
103 | * Source state initialization. |
104 | */ |
105 | src->fse_state = TCPS_SYN_SENT; |
106 | src->fse_seqlo = ntohl(pkt->pkt_flow_tcp_seq); |
107 | src->fse_seqhi = (src->fse_seqlo + pkt->pkt_flow_ulen + 1); |
108 | if (tcp_flags & TH_SYN) { |
109 | src->fse_seqhi++; |
110 | flow_track_tcp_get_wscale(s: src, pkt); |
111 | } |
112 | if (tcp_flags & TH_FIN) { |
113 | src->fse_seqhi++; |
114 | } |
115 | |
116 | src->fse_max_win = MAX(ntohs(pkt->pkt_flow_tcp_win), 1); |
117 | if (src->fse_flags & FLOWSTATEF_WSCALE) { |
118 | /* remove scale factor from initial window */ |
119 | int win = src->fse_max_win; |
120 | ASSERT(src->fse_wscale <= TCP_MAX_WINSHIFT); |
121 | win += (1 << src->fse_wscale); |
122 | src->fse_max_win = (uint16_t)((win - 1) >> src->fse_wscale); |
123 | } |
124 | |
125 | /* |
126 | * Destination state initialization. |
127 | */ |
128 | dst->fse_state = TCPS_CLOSED; |
129 | dst->fse_seqhi = 1; |
130 | dst->fse_max_win = 1; |
131 | |
132 | /* |
133 | * Linger time (in seconds). |
134 | */ |
135 | fe->fe_linger_wait = (2 * tcp_msl) / TCP_RETRANSHZ; |
136 | if (fe->fe_linger_wait < FLOWTRACK_LINGER_MIN) { |
137 | fe->fe_linger_wait = FLOWTRACK_LINGER_MIN; |
138 | } else if (fe->fe_linger_wait > FLOWTRACK_LINGER_MAX) { |
139 | fe->fe_linger_wait = FLOWTRACK_LINGER_MAX; |
140 | } |
141 | |
142 | os_atomic_or(&fe->fe_flags, FLOWENTF_INITED, relaxed); |
143 | } |
144 | |
145 | /* |
146 | * The TCP ACK RTT tracking is a coarse grain measurement of the time it takes |
147 | * for a endpoint to process incoming segment and generate ACK, at the point of |
148 | * observation. For flowswitch, it means that: |
149 | * |
150 | * local end RTT = local stack processing time |
151 | * remote end RTT = driver + network + remote endpoint's processing time |
152 | * |
153 | * Since the measurement is lightweight and sampling based, it won't learn and |
154 | * distinguish lost segment's ACK. So we could occasionally get large RTT |
155 | * sample from an ACK to a retransmitted segment. Thus rtt_max is not any |
156 | * meaningful to us. |
157 | */ |
158 | __attribute__((always_inline)) |
159 | static inline void |
160 | flow_track_tcp_rtt(struct flow_entry *fe, boolean_t input, |
161 | struct flow_track *src, struct flow_track *dst, uint8_t tcp_flags, |
162 | uint32_t seq, uint32_t ack, uint32_t ulen) |
163 | { |
164 | #pragma unused(fe, input) /* KDBG defined as noop in release build */ |
165 | uint64_t dst_last, src_last; |
166 | uint64_t now, time_diff; |
167 | uint32_t curval, oldval; |
168 | clock_sec_t tv_sec; |
169 | clock_usec_t tv_usec; |
170 | |
171 | src_last = src->fse_rtt.frtt_last; |
172 | dst_last = dst->fse_rtt.frtt_last; |
173 | |
174 | /* start a new RTT tracking session under sampling rate limit */ |
175 | if (dst_last == 0 || |
176 | _net_uptime - dst_last > FLOWTRACK_RTT_SAMPLE_INTERVAL) { |
177 | if (ulen > 0 && |
178 | dst->fse_rtt.frtt_timestamp == 0) { |
179 | dst->fse_rtt.frtt_timestamp = mach_absolute_time(); |
180 | dst->fse_rtt.frtt_last = _net_uptime; |
181 | dst->fse_rtt.frtt_seg_begin = seq; |
182 | dst->fse_rtt.frtt_seg_end = seq + ulen; |
183 | KDBG((SK_KTRACE_FSW_FLOW_TRACK_RTT | DBG_FUNC_START), |
184 | SK_KVA(fe), fe->fe_pid, ntohs(fe->fe_key.fk_sport), |
185 | input ? 1 : 0); |
186 | } |
187 | } |
188 | |
189 | /* we have an ACK, see if current tracking session matches it */ |
190 | if (tcp_flags & TH_ACK) { |
191 | if (src->fse_rtt.frtt_timestamp != 0 && |
192 | src->fse_rtt.frtt_seg_begin <= ack) { |
193 | now = mach_absolute_time(); |
194 | time_diff = now - src->fse_rtt.frtt_timestamp; |
195 | |
196 | absolutetime_to_microtime(abstime: time_diff, secs: &tv_sec, microsecs: &tv_usec); |
197 | curval = (uint32_t)(tv_usec + tv_sec * 1000 * 1000); |
198 | oldval = src->fse_rtt.frtt_usec; |
199 | if (oldval == 0) { |
200 | src->fse_rtt.frtt_usec = curval; |
201 | } else { |
202 | /* same EWMA decay as TCP RTT */ |
203 | src->fse_rtt.frtt_usec = |
204 | ((oldval << 4) - oldval + curval) >> 4; |
205 | } |
206 | |
207 | /* reset RTT tracking session */ |
208 | src->fse_rtt.frtt_timestamp = 0; |
209 | src->fse_rtt.frtt_last = 0; |
210 | KDBG((SK_KTRACE_FSW_FLOW_TRACK_RTT | DBG_FUNC_END), |
211 | SK_KVA(fe), fe->fe_pid, ntohs(fe->fe_key.fk_sport), |
212 | input ? 0 : 1); |
213 | |
214 | /* publish rtt stats into flow_stats object */ |
215 | /* just store both to avoid branch prediction etc. */ |
216 | fe->fe_stats->fs_lrtt = fe->fe_ltrack.fse_rtt_usec; |
217 | fe->fe_stats->fs_rrtt = fe->fe_rtrack.fse_rtt_usec; |
218 | } |
219 | } |
220 | } |
221 | |
222 | /* |
223 | * The TCP connection tracking logic is based on Guido van Rooij's paper: |
224 | * http://www.sane.nl/events/sane2000/papers/rooij.pdf |
225 | * |
226 | * In some ways, we act as a middlebox that passively tracks the TCP windows |
227 | * of each connection on flows marked with FLOWENTF_TRACK. We never modify |
228 | * the packet or generate any response (e.g. RST) to the sender; thus we are |
229 | * simply a silent observer. The information we gather here is used later |
230 | * if we need to generate a valid {FIN|RST} segment when the flow is nonviable. |
231 | * |
232 | * The implementation is borrowed from Packet Filter, and is further |
233 | * simplified to cater for our use cases. |
234 | */ |
235 | #define FTF_HALFCLOSED 0x1 /* want flow to be marked as half closed */ |
236 | #define FTF_WAITCLOSE 0x2 /* want flow to linger after close */ |
237 | #define FTF_CLOSENOTIFY 0x4 /* want to notify NECP upon torn down */ |
238 | #define FTF_WITHDRAWN 0x8 /* want flow to be torn down */ |
239 | #define FTF_SYN_RLIM 0x10 /* want flow to rate limit SYN */ |
240 | #define FTF_RST_RLIM 0x20 /* want flow to rate limit RST */ |
241 | __attribute__((always_inline)) |
242 | static inline int |
243 | flow_track_tcp(struct flow_entry *fe, struct flow_track *src, |
244 | struct flow_track *dst, struct __kern_packet *pkt, bool input) |
245 | { |
246 | const uint8_t tcp_flags = pkt->pkt_flow_tcp_flags; |
247 | uint16_t win = ntohs(pkt->pkt_flow_tcp_win); |
248 | uint32_t ack, end, seq, orig_seq; |
249 | uint32_t ftflags = 0; |
250 | uint8_t sws, dws; |
251 | int ackskew, err = 0; |
252 | |
253 | if (__improbable((fe->fe_flags & FLOWENTF_INITED) == 0)) { |
254 | flow_track_tcp_init(fe, src, dst, pkt); |
255 | } |
256 | |
257 | flow_track_tcp_rtt(fe, input, src, dst, tcp_flags, |
258 | ntohl(pkt->pkt_flow_tcp_seq), ntohl(pkt->pkt_flow_tcp_ack), |
259 | ulen: pkt->pkt_flow_ulen); |
260 | |
261 | if (__improbable(dst->fse_state >= TCPS_FIN_WAIT_2 && |
262 | src->fse_state >= TCPS_FIN_WAIT_2)) { |
263 | if ((tcp_flags & (TH_SYN | TH_ACK)) == TH_SYN) { |
264 | src->fse_state = dst->fse_state = TCPS_CLOSED; |
265 | ftflags |= FTF_SYN_RLIM; |
266 | } |
267 | if (tcp_flags & TH_RST) { |
268 | ftflags |= FTF_RST_RLIM; |
269 | } |
270 | if (input) { |
271 | err = ENETRESET; |
272 | } |
273 | goto done; |
274 | } |
275 | |
276 | if (__probable((tcp_flags & TH_SYN) == 0 && |
277 | src->fse_wscale != 0 && dst->fse_wscale != 0)) { |
278 | sws = src->fse_wscale; |
279 | dws = dst->fse_wscale; |
280 | } else { |
281 | sws = dws = 0; |
282 | } |
283 | |
284 | orig_seq = seq = ntohl(pkt->pkt_flow_tcp_seq); |
285 | if (__probable(src->fse_seqlo != 0)) { |
286 | ack = ntohl(pkt->pkt_flow_tcp_ack); |
287 | end = seq + pkt->pkt_flow_ulen; |
288 | if (tcp_flags & TH_SYN) { |
289 | if ((tcp_flags & (TH_SYN | TH_ACK)) == TH_SYN) { |
290 | ftflags |= FTF_SYN_RLIM; |
291 | } |
292 | end++; |
293 | } |
294 | if (tcp_flags & TH_FIN) { |
295 | end++; |
296 | } |
297 | if (tcp_flags & TH_RST) { |
298 | ftflags |= FTF_RST_RLIM; |
299 | } |
300 | } else { |
301 | /* first packet from this end; set its state */ |
302 | ack = ntohl(pkt->pkt_flow_tcp_ack); |
303 | |
304 | /* We saw the first SYN, but stack does not reply with a SYN */ |
305 | if (dst->fse_state == TCPS_SYN_SENT && ((tcp_flags & TH_SYN) == 0)) { |
306 | /* Act as if no sequence number is set */ |
307 | seq = 0; |
308 | /* Pretend the outgoing SYN was not ACK'ed */ |
309 | ack = dst->fse_seqlo; |
310 | } |
311 | |
312 | end = seq + pkt->pkt_flow_ulen; |
313 | if (tcp_flags & TH_SYN) { |
314 | if ((tcp_flags & (TH_SYN | TH_ACK)) == TH_SYN) { |
315 | ftflags |= FTF_SYN_RLIM; |
316 | } |
317 | end++; |
318 | if (dst->fse_flags & FLOWSTATEF_WSCALE) { |
319 | flow_track_tcp_get_wscale(s: src, pkt); |
320 | if (src->fse_flags & FLOWSTATEF_WSCALE) { |
321 | /* |
322 | * Remove scale factor from |
323 | * initial window. |
324 | */ |
325 | sws = src->fse_wscale; |
326 | win = (uint16_t)(((u_int32_t)win + (1 << sws) - 1) |
327 | >> sws); |
328 | dws = dst->fse_wscale; |
329 | } else { |
330 | /* fixup other window */ |
331 | dst->fse_max_win = (uint16_t)(dst->fse_max_win << dst->fse_wscale); |
332 | /* in case of a retrans SYN|ACK */ |
333 | dst->fse_wscale = 0; |
334 | } |
335 | } |
336 | } |
337 | if (tcp_flags & TH_FIN) { |
338 | end++; |
339 | } |
340 | if (tcp_flags & TH_RST) { |
341 | ftflags |= FTF_RST_RLIM; |
342 | } |
343 | |
344 | src->fse_seqlo = seq; |
345 | if (src->fse_state < TCPS_SYN_SENT) { |
346 | if (tcp_flags & TH_SYN) { |
347 | src->fse_state = TCPS_SYN_SENT; |
348 | } else { |
349 | /* Picking up the connection in the middle */ |
350 | src->fse_state = TCPS_ESTABLISHED; |
351 | } |
352 | } |
353 | |
354 | /* |
355 | * May need to slide the window (seqhi may have been set by |
356 | * the crappy stack check or if we picked up the connection |
357 | * after establishment). |
358 | */ |
359 | if (src->fse_seqhi == 1 || SEQ_GEQ(end + |
360 | MAX(1, dst->fse_max_win << dws), src->fse_seqhi)) { |
361 | src->fse_seqhi = end + MAX(1, dst->fse_max_win << dws); |
362 | } |
363 | if (win > src->fse_max_win) { |
364 | src->fse_max_win = win; |
365 | } |
366 | } |
367 | |
368 | if (!(tcp_flags & TH_ACK)) { |
369 | /* let it pass through the ack skew check */ |
370 | ack = dst->fse_seqlo; |
371 | } else if ((ack == 0 && |
372 | (tcp_flags & (TH_ACK | TH_RST)) == (TH_ACK | TH_RST)) || |
373 | /* broken tcp stacks do not set ack */ |
374 | (dst->fse_state < TCPS_SYN_SENT)) { |
375 | /* |
376 | * Many stacks (ours included) will set the ACK number in an |
377 | * FIN|ACK if the SYN times out -- no sequence to ACK. |
378 | */ |
379 | ack = dst->fse_seqlo; |
380 | } |
381 | |
382 | if (seq == end) { |
383 | /* ease sequencing restrictions on no data packets */ |
384 | seq = src->fse_seqlo; |
385 | end = seq; |
386 | } |
387 | |
388 | ackskew = dst->fse_seqlo - ack; |
389 | |
390 | #define MAXACKWINDOW (0xffff + 1500) /* 1500 is an arbitrary fudge factor */ |
391 | if (SEQ_GEQ(src->fse_seqhi, end) && |
392 | /* last octet inside other's window space */ |
393 | SEQ_GEQ(seq, src->fse_seqlo - (dst->fse_max_win << dws)) && |
394 | /* retrans: not more than one window back */ |
395 | (ackskew >= -MAXACKWINDOW) && |
396 | /* acking not more than one reassembled fragment backwards */ |
397 | (ackskew <= (MAXACKWINDOW << sws)) && |
398 | /* acking not more than one window forward */ |
399 | (!(tcp_flags & TH_RST) || orig_seq == src->fse_seqlo || |
400 | (orig_seq == src->fse_seqlo + 1) || |
401 | (orig_seq + 1 == src->fse_seqlo))) { |
402 | /* require an exact/+1 sequence match on resets when possible */ |
403 | |
404 | /* update max window */ |
405 | if (src->fse_max_win < win) { |
406 | src->fse_max_win = win; |
407 | } |
408 | /* synchronize sequencing */ |
409 | if (SEQ_GT(end, src->fse_seqlo)) { |
410 | src->fse_seqlo = end; |
411 | } |
412 | /* slide the window of what the other end can send */ |
413 | if (SEQ_GEQ(ack + (win << sws), dst->fse_seqhi)) { |
414 | dst->fse_seqhi = ack + MAX((win << sws), 1); |
415 | } |
416 | |
417 | /* update states */ |
418 | if (tcp_flags & TH_SYN) { |
419 | if (src->fse_state < TCPS_SYN_SENT) { |
420 | src->fse_state = TCPS_SYN_SENT; |
421 | } |
422 | } |
423 | if (tcp_flags & TH_FIN) { |
424 | if (src->fse_state < TCPS_CLOSING) { |
425 | src->fse_seqlast = orig_seq + pkt->pkt_flow_ulen; |
426 | src->fse_state = TCPS_CLOSING; |
427 | } |
428 | } |
429 | if (tcp_flags & TH_ACK) { |
430 | /* |
431 | * Avoid transitioning to ESTABLISHED when our SYN |
432 | * is ACK'd along with a RST. The sending TCP may |
433 | * still retransmit the SYN (after dropping some |
434 | * options like ECN, etc.) |
435 | */ |
436 | if (dst->fse_state == TCPS_SYN_SENT && |
437 | !(tcp_flags & TH_RST)) { |
438 | dst->fse_state = TCPS_ESTABLISHED; |
439 | ftflags |= (FTF_WAITCLOSE | FTF_CLOSENOTIFY); |
440 | } else if (dst->fse_state == TCPS_CLOSING && |
441 | ack == dst->fse_seqlast + 1) { |
442 | dst->fse_state = TCPS_FIN_WAIT_2; |
443 | ftflags |= FTF_WAITCLOSE; |
444 | if (src->fse_state >= TCPS_FIN_WAIT_2) { |
445 | ftflags |= FTF_WITHDRAWN; |
446 | } else { |
447 | ftflags |= FTF_HALFCLOSED; |
448 | } |
449 | } |
450 | } |
451 | if ((tcp_flags & TH_RST) && |
452 | (src->fse_state == TCPS_ESTABLISHED || |
453 | dst->fse_state == TCPS_ESTABLISHED)) { |
454 | /* |
455 | * If either endpoint is in ESTABLISHED, transition |
456 | * both to TIME_WAIT. Otherwise, keep the existing |
457 | * state as is, e.g. SYN_SENT. |
458 | */ |
459 | src->fse_state = dst->fse_state = TCPS_TIME_WAIT; |
460 | ftflags |= (FTF_WITHDRAWN | FTF_WAITCLOSE); |
461 | } |
462 | } else if ((dst->fse_state < TCPS_SYN_SENT || |
463 | dst->fse_state >= TCPS_FIN_WAIT_2 || |
464 | src->fse_state >= TCPS_FIN_WAIT_2) && |
465 | SEQ_GEQ(src->fse_seqhi + MAXACKWINDOW, end) && |
466 | /* within a window forward of the originating packet */ |
467 | SEQ_GEQ(seq, src->fse_seqlo - MAXACKWINDOW)) { |
468 | /* within a window backward of the originating packet */ |
469 | |
470 | /* BEGIN CSTYLED */ |
471 | /* |
472 | * This currently handles three situations: |
473 | * 1) Stupid stacks will shotgun SYNs before their peer |
474 | * replies. |
475 | * 2) When flow tracking catches an already established |
476 | * stream (the flow states are cleared, etc.) |
477 | * 3) Packets get funky immediately after the connection |
478 | * closes (this should catch spurious ACK|FINs that |
479 | * web servers like to spew after a close). |
480 | * |
481 | * This must be a little more careful than the above code |
482 | * since packet floods will also be caught here. |
483 | */ |
484 | /* END CSTYLED */ |
485 | |
486 | /* update max window */ |
487 | if (src->fse_max_win < win) { |
488 | src->fse_max_win = win; |
489 | } |
490 | /* synchronize sequencing */ |
491 | if (SEQ_GT(end, src->fse_seqlo)) { |
492 | src->fse_seqlo = end; |
493 | } |
494 | /* slide the window of what the other end can send */ |
495 | if (SEQ_GEQ(ack + (win << sws), dst->fse_seqhi)) { |
496 | dst->fse_seqhi = ack + MAX((win << sws), 1); |
497 | } |
498 | |
499 | /* |
500 | * Cannot set dst->fse_seqhi here since this could be a |
501 | * shotgunned SYN and not an already established connection. |
502 | */ |
503 | |
504 | if (tcp_flags & TH_FIN) { |
505 | if (src->fse_state < TCPS_CLOSING) { |
506 | src->fse_seqlast = orig_seq + pkt->pkt_flow_ulen; |
507 | src->fse_state = TCPS_CLOSING; |
508 | } |
509 | } |
510 | if (tcp_flags & TH_RST) { |
511 | src->fse_state = dst->fse_state = TCPS_TIME_WAIT; |
512 | ftflags |= FTF_WAITCLOSE; |
513 | } |
514 | } else { |
515 | if (dst->fse_state == TCPS_SYN_SENT && |
516 | src->fse_state == TCPS_SYN_SENT) { |
517 | src->fse_seqlo = 0; |
518 | src->fse_seqhi = 1; |
519 | src->fse_max_win = 1; |
520 | } |
521 | } |
522 | |
523 | done: |
524 | if (__improbable((ftflags & FTF_HALFCLOSED) != 0)) { |
525 | os_atomic_or(&fe->fe_flags, FLOWENTF_HALF_CLOSED, relaxed); |
526 | ftflags &= ~FTF_HALFCLOSED; |
527 | } |
528 | |
529 | /* |
530 | * Hold on to namespace for a while after the flow is closed. |
531 | */ |
532 | if (__improbable((ftflags & FTF_WAITCLOSE) != 0 && |
533 | (fe->fe_flags & FLOWENTF_WAIT_CLOSE) == 0)) { |
534 | os_atomic_or(&fe->fe_flags, FLOWENTF_WAIT_CLOSE, relaxed); |
535 | ftflags &= ~FTF_WAITCLOSE; |
536 | } |
537 | |
538 | /* |
539 | * Notify NECP upon tear down (for established flows). |
540 | */ |
541 | if (__improbable((ftflags & FTF_CLOSENOTIFY) != 0 && |
542 | (fe->fe_flags & FLOWENTF_CLOSE_NOTIFY) == 0)) { |
543 | os_atomic_or(&fe->fe_flags, FLOWENTF_CLOSE_NOTIFY, relaxed); |
544 | ftflags &= ~FTF_CLOSENOTIFY; |
545 | } |
546 | |
547 | /* |
548 | * Flow is withdrawn; the port we have should not be included in |
549 | * the list of offloaded ports, as the connection is no longer |
550 | * usable (we're not expecting any more data). |
551 | * Also clear FLOWENTF_HALF_CLOSED flag here. It's fine if reaper |
552 | * thread hadn't pickedup FLOWENTF_HALF_CLOSED, as it will pick up |
553 | * FLOWENTF_WITHDRAWN and notify netns of full withdrawn. |
554 | */ |
555 | if (__improbable((ftflags & FTF_WITHDRAWN) != 0)) { |
556 | ftflags &= ~FTF_WITHDRAWN; |
557 | if (fe->fe_flags & FLOWENTF_HALF_CLOSED) { |
558 | os_atomic_andnot(&fe->fe_flags, FLOWENTF_HALF_CLOSED, relaxed); |
559 | } |
560 | fe->fe_want_withdraw = 1; |
561 | } |
562 | |
563 | /* |
564 | * If no other work is needed, we're done. |
565 | */ |
566 | if (ftflags == 0 || input) { |
567 | return err; |
568 | } |
569 | |
570 | /* |
571 | * If we're over the rate limit for outbound SYNs, drop packet. |
572 | */ |
573 | if (__improbable((ftflags & FTF_SYN_RLIM) != 0)) { |
574 | uint32_t now = (uint32_t)_net_uptime; |
575 | if ((now - src->fse_syn_ts) > 1) { |
576 | src->fse_syn_ts = now; |
577 | src->fse_syn_cnt = 0; |
578 | } |
579 | if (++src->fse_syn_cnt > FLOWTRACK_SYN_RATE) { |
580 | err = EPROTO; |
581 | } |
582 | } |
583 | |
584 | return err; |
585 | } |
586 | #undef FTF_WAITCLOSE |
587 | #undef FTF_CLOSENOTIFY |
588 | #undef FTF_WITHDRAWN |
589 | #undef FTF_SYN_RLIM |
590 | #undef FTF_RST_RLIM |
591 | |
592 | boolean_t |
593 | flow_track_tcp_want_abort(struct flow_entry *fe) |
594 | { |
595 | struct flow_track *src = &fe->fe_ltrack; |
596 | struct flow_track *dst = &fe->fe_rtrack; |
597 | |
598 | if (fe->fe_key.fk_proto != IPPROTO_TCP || |
599 | (fe->fe_flags & FLOWENTF_ABORTED)) { |
600 | goto done; |
601 | } |
602 | |
603 | /* this can be enhanced; for now rely on established state */ |
604 | if (src->fse_state == TCPS_ESTABLISHED || |
605 | dst->fse_state == TCPS_ESTABLISHED) { |
606 | src->fse_state = dst->fse_state = TCPS_TIME_WAIT; |
607 | /* don't process more than once */ |
608 | os_atomic_or(&fe->fe_flags, FLOWENTF_ABORTED, relaxed); |
609 | return TRUE; |
610 | } |
611 | done: |
612 | return FALSE; |
613 | } |
614 | |
615 | static void |
616 | flow_track_udp_init(struct flow_entry *fe, struct flow_track *src, |
617 | struct flow_track *dst, struct __kern_packet *pkt) |
618 | { |
619 | #pragma unused(pkt) |
620 | /* |
621 | * Source state initialization. |
622 | */ |
623 | src->fse_state = FT_STATE_NO_TRAFFIC; |
624 | |
625 | /* |
626 | * Destination state initialization. |
627 | */ |
628 | dst->fse_state = FT_STATE_NO_TRAFFIC; |
629 | |
630 | os_atomic_or(&fe->fe_flags, FLOWENTF_INITED, relaxed); |
631 | } |
632 | |
633 | __attribute__((always_inline)) |
634 | static inline int |
635 | flow_track_udp(struct flow_entry *fe, struct flow_track *src, |
636 | struct flow_track *dst, struct __kern_packet *pkt, bool input) |
637 | { |
638 | #pragma unused(input) |
639 | if (__improbable((fe->fe_flags & FLOWENTF_INITED) == 0)) { |
640 | flow_track_udp_init(fe, src, dst, pkt); |
641 | } |
642 | |
643 | if (__improbable(src->fse_state == FT_STATE_NO_TRAFFIC)) { |
644 | src->fse_state = FT_STATE_SINGLE; |
645 | } |
646 | if (__improbable(dst->fse_state == FT_STATE_SINGLE)) { |
647 | dst->fse_state = FT_STATE_MULTIPLE; |
648 | } |
649 | |
650 | return 0; |
651 | } |
652 | |
653 | void |
654 | flow_track_stats(struct flow_entry *fe, uint64_t bytes, uint64_t packets, |
655 | bool active, bool in) |
656 | { |
657 | volatile struct sk_stats_flow_track *fst; |
658 | |
659 | if (in) { |
660 | fst = &fe->fe_stats->fs_rtrack; |
661 | } else { |
662 | fst = &fe->fe_stats->fs_ltrack; |
663 | } |
664 | |
665 | fst->sft_bytes += bytes; |
666 | fst->sft_packets += packets; |
667 | |
668 | if (__probable(active)) { |
669 | in_stat_set_activity_bitmap(activity: &fe->fe_stats->fs_activity, |
670 | now: _net_uptime); |
671 | } |
672 | } |
673 | |
674 | int |
675 | flow_pkt_track(struct flow_entry *fe, struct __kern_packet *pkt, bool in) |
676 | { |
677 | struct flow_track *src, *dst; |
678 | int ret = 0; |
679 | |
680 | _CASSERT(SFT_STATE_CLOSED == FT_STATE_CLOSED); |
681 | _CASSERT(SFT_STATE_LISTEN == FT_STATE_LISTEN); |
682 | _CASSERT(SFT_STATE_SYN_SENT == FT_STATE_SYN_SENT); |
683 | _CASSERT(SFT_STATE_SYN_RECEIVED == FT_STATE_SYN_RECEIVED); |
684 | _CASSERT(SFT_STATE_ESTABLISHED == FT_STATE_ESTABLISHED); |
685 | _CASSERT(SFT_STATE_CLOSE_WAIT == FT_STATE_CLOSE_WAIT); |
686 | _CASSERT(SFT_STATE_FIN_WAIT_1 == FT_STATE_FIN_WAIT_1); |
687 | _CASSERT(SFT_STATE_CLOSING == FT_STATE_CLOSING); |
688 | _CASSERT(SFT_STATE_LAST_ACK == FT_STATE_LAST_ACK); |
689 | _CASSERT(SFT_STATE_FIN_WAIT_2 == FT_STATE_FIN_WAIT_2); |
690 | _CASSERT(SFT_STATE_TIME_WAIT == FT_STATE_TIME_WAIT); |
691 | _CASSERT(SFT_STATE_NO_TRAFFIC == FT_STATE_NO_TRAFFIC); |
692 | _CASSERT(SFT_STATE_SINGLE == FT_STATE_SINGLE); |
693 | _CASSERT(SFT_STATE_MULTIPLE == FT_STATE_MULTIPLE); |
694 | _CASSERT(SFT_STATE_MAX == FT_STATE_MAX); |
695 | |
696 | _CASSERT(FT_STATE_CLOSED == TCPS_CLOSED); |
697 | _CASSERT(FT_STATE_LISTEN == TCPS_LISTEN); |
698 | _CASSERT(FT_STATE_SYN_SENT == TCPS_SYN_SENT); |
699 | _CASSERT(FT_STATE_SYN_RECEIVED == TCPS_SYN_RECEIVED); |
700 | _CASSERT(FT_STATE_ESTABLISHED == TCPS_ESTABLISHED); |
701 | _CASSERT(FT_STATE_CLOSE_WAIT == TCPS_CLOSE_WAIT); |
702 | _CASSERT(FT_STATE_FIN_WAIT_1 == TCPS_FIN_WAIT_1); |
703 | _CASSERT(FT_STATE_CLOSING == TCPS_CLOSING); |
704 | _CASSERT(FT_STATE_LAST_ACK == TCPS_LAST_ACK); |
705 | _CASSERT(FT_STATE_FIN_WAIT_2 == TCPS_FIN_WAIT_2); |
706 | _CASSERT(FT_STATE_TIME_WAIT == TCPS_TIME_WAIT); |
707 | |
708 | ASSERT(pkt->pkt_qum_qflags & QUM_F_FLOW_CLASSIFIED); |
709 | |
710 | if (in) { |
711 | src = &fe->fe_rtrack; |
712 | dst = &fe->fe_ltrack; |
713 | } else { |
714 | src = &fe->fe_ltrack; |
715 | dst = &fe->fe_rtrack; |
716 | } |
717 | |
718 | flow_track_stats(fe, bytes: (pkt->pkt_length - pkt->pkt_l2_len), packets: 1, |
719 | active: (pkt->pkt_flow_ulen != 0), in); |
720 | |
721 | /* skip flow state tracking on non-initial fragments */ |
722 | if (pkt->pkt_flow_ip_is_frag && !pkt->pkt_flow_ip_is_first_frag) { |
723 | return 0; |
724 | } |
725 | |
726 | switch (pkt->pkt_flow_ip_proto) { |
727 | case IPPROTO_TCP: |
728 | if (__probable((fe->fe_flags & FLOWENTF_TRACK) != 0)) { |
729 | ret = flow_track_tcp(fe, src, dst, pkt, input: in); |
730 | } |
731 | break; |
732 | |
733 | case IPPROTO_UDP: |
734 | if (__probable((fe->fe_flags & FLOWENTF_TRACK) != 0)) { |
735 | ret = flow_track_udp(fe, src, dst, pkt, input: in); |
736 | } |
737 | break; |
738 | } |
739 | |
740 | return ret; |
741 | } |
742 | |
743 | /* |
744 | * @function flow_track_abort_tcp |
745 | * @abstract send RST for a given TCP flow. |
746 | * @param in_pkt incoming packet that triggers RST. |
747 | * @param rst_pkt use as RST template for SEQ/ACK information. |
748 | */ |
749 | void |
750 | flow_track_abort_tcp(struct flow_entry *fe, struct __kern_packet *in_pkt, |
751 | struct __kern_packet *rst_pkt) |
752 | { |
753 | struct nx_flowswitch *fsw = fe->fe_fsw; |
754 | struct flow_track *src, *dst; |
755 | struct ip *ip; |
756 | struct ip6_hdr *ip6; |
757 | struct tcphdr *th; |
758 | uint16_t len, tlen; |
759 | struct mbuf *m; |
760 | |
761 | /* guaranteed by caller */ |
762 | ASSERT(fsw->fsw_ifp != NULL); |
763 | ASSERT(in_pkt == NULL || rst_pkt == NULL); |
764 | |
765 | src = &fe->fe_ltrack; |
766 | dst = &fe->fe_rtrack; |
767 | |
768 | tlen = sizeof(struct tcphdr); |
769 | if (fe->fe_key.fk_ipver == IPVERSION) { |
770 | len = sizeof(struct ip) + tlen; |
771 | } else { |
772 | ASSERT(fe->fe_key.fk_ipver == IPV6_VERSION); |
773 | len = sizeof(struct ip6_hdr) + tlen; |
774 | } |
775 | |
776 | m = m_gethdr(M_NOWAIT, MT_HEADER); |
777 | if (__improbable(m == NULL)) { |
778 | return; |
779 | } |
780 | |
781 | m->m_pkthdr.pkt_proto = IPPROTO_TCP; |
782 | m->m_data += max_linkhdr; /* 32-bit aligned */ |
783 | m->m_pkthdr.len = m->m_len = len; |
784 | |
785 | /* zero out for checksum */ |
786 | bzero(s: m_mtod_current(m), n: len); |
787 | |
788 | if (fe->fe_key.fk_ipver == IPVERSION) { |
789 | ip = mtod(m, struct ip *); |
790 | |
791 | /* IP header fields included in the TCP checksum */ |
792 | ip->ip_p = IPPROTO_TCP; |
793 | ip->ip_len = htons(tlen); |
794 | if (rst_pkt == NULL) { |
795 | ip->ip_src = fe->fe_key.fk_src4; |
796 | ip->ip_dst = fe->fe_key.fk_dst4; |
797 | } else { |
798 | ip->ip_src = rst_pkt->pkt_flow_ipv4_src; |
799 | ip->ip_dst = rst_pkt->pkt_flow_ipv4_dst; |
800 | } |
801 | |
802 | th = (struct tcphdr *)(void *)((char *)ip + sizeof(*ip)); |
803 | } else { |
804 | ip6 = mtod(m, struct ip6_hdr *); |
805 | |
806 | /* IP header fields included in the TCP checksum */ |
807 | ip6->ip6_nxt = IPPROTO_TCP; |
808 | ip6->ip6_plen = htons(tlen); |
809 | if (rst_pkt == NULL) { |
810 | ip6->ip6_src = fe->fe_key.fk_src6; |
811 | ip6->ip6_dst = fe->fe_key.fk_dst6; |
812 | } else { |
813 | ip6->ip6_src = rst_pkt->pkt_flow_ipv6_src; |
814 | ip6->ip6_dst = rst_pkt->pkt_flow_ipv6_dst; |
815 | } |
816 | |
817 | th = (struct tcphdr *)(void *)((char *)ip6 + sizeof(*ip6)); |
818 | } |
819 | |
820 | /* |
821 | * TCP header (fabricate a pure RST). |
822 | */ |
823 | if (in_pkt != NULL) { |
824 | th->th_sport = in_pkt->pkt_flow_tcp_dst; |
825 | th->th_dport = in_pkt->pkt_flow_tcp_src; |
826 | if (__probable(in_pkt->pkt_flow_tcp_flags | TH_ACK)) { |
827 | /* <SEQ=SEG.ACK><CTL=RST> */ |
828 | th->th_seq = in_pkt->pkt_flow_tcp_ack; |
829 | th->th_ack = 0; |
830 | th->th_flags = TH_RST; |
831 | } else { |
832 | /* <SEQ=0><ACK=SEG.SEQ+SEG.LEN><CTL=RST,ACK> */ |
833 | th->th_seq = 0; |
834 | th->th_ack = in_pkt->pkt_flow_tcp_seq + |
835 | in_pkt->pkt_flow_ulen; |
836 | th->th_flags = TH_RST | TH_ACK; |
837 | } |
838 | } else if (rst_pkt != NULL) { |
839 | th->th_sport = rst_pkt->pkt_flow_tcp_src; |
840 | th->th_dport = rst_pkt->pkt_flow_tcp_dst; |
841 | th->th_seq = rst_pkt->pkt_flow_tcp_seq; |
842 | th->th_ack = rst_pkt->pkt_flow_tcp_ack; |
843 | th->th_flags = rst_pkt->pkt_flow_tcp_flags; |
844 | } else { |
845 | th->th_sport = fe->fe_key.fk_sport; |
846 | th->th_dport = fe->fe_key.fk_dport; |
847 | th->th_seq = htonl(src->fse_seqlo); /* peer's last ACK */ |
848 | th->th_ack = 0; |
849 | th->th_flags = TH_RST; |
850 | } |
851 | th->th_off = (tlen >> 2); |
852 | th->th_win = 0; |
853 | |
854 | FSW_STATS_INC(FSW_STATS_FLOWS_ABORTED); |
855 | |
856 | if (fe->fe_key.fk_ipver == IPVERSION) { |
857 | struct ip_out_args ipoa; |
858 | struct route ro; |
859 | |
860 | bzero(s: &ipoa, n: sizeof(ipoa)); |
861 | ipoa.ipoa_boundif = fsw->fsw_ifp->if_index; |
862 | ipoa.ipoa_flags = (IPOAF_SELECT_SRCIF | IPOAF_BOUND_IF | |
863 | IPOAF_BOUND_SRCADDR); |
864 | ipoa.ipoa_sotc = SO_TC_UNSPEC; |
865 | ipoa.ipoa_netsvctype = _NET_SERVICE_TYPE_UNSPEC; |
866 | |
867 | /* TCP checksum */ |
868 | th->th_sum = in_cksum(m, len); |
869 | |
870 | ip->ip_v = IPVERSION; |
871 | ip->ip_hl = sizeof(*ip) >> 2; |
872 | ip->ip_tos = 0; |
873 | /* |
874 | * ip_output() expects ip_len and ip_off to be in host order. |
875 | */ |
876 | ip->ip_len = len; |
877 | ip->ip_off = IP_DF; |
878 | ip->ip_ttl = (uint8_t)ip_defttl; |
879 | ip->ip_sum = 0; |
880 | |
881 | bzero(s: &ro, n: sizeof(ro)); |
882 | (void) ip_output(m, NULL, &ro, IP_OUTARGS, NULL, &ipoa); |
883 | ROUTE_RELEASE(&ro); |
884 | } else { |
885 | struct ip6_out_args ip6oa; |
886 | struct route_in6 ro6; |
887 | |
888 | bzero(s: &ip6oa, n: sizeof(ip6oa)); |
889 | ip6oa.ip6oa_boundif = fsw->fsw_ifp->if_index; |
890 | ip6oa.ip6oa_flags = (IP6OAF_SELECT_SRCIF | IP6OAF_BOUND_IF | |
891 | IP6OAF_BOUND_SRCADDR); |
892 | ip6oa.ip6oa_sotc = SO_TC_UNSPEC; |
893 | ip6oa.ip6oa_netsvctype = _NET_SERVICE_TYPE_UNSPEC; |
894 | |
895 | /* TCP checksum */ |
896 | th->th_sum = in6_cksum(m, IPPROTO_TCP, |
897 | sizeof(struct ip6_hdr), tlen); |
898 | |
899 | ip6->ip6_vfc |= IPV6_VERSION; |
900 | ip6->ip6_hlim = IPV6_DEFHLIM; |
901 | |
902 | bzero(s: &ro6, n: sizeof(ro6)); |
903 | (void) ip6_output(m, NULL, &ro6, IPV6_OUTARGS, |
904 | NULL, NULL, &ip6oa); |
905 | ROUTE_RELEASE(&ro6); |
906 | } |
907 | } |
908 | |
909 | void |
910 | flow_track_abort_quic(struct flow_entry *fe, uint8_t *token) |
911 | { |
912 | struct quic_stateless_reset { |
913 | uint8_t [30]; |
914 | uint8_t ssr_token[QUIC_STATELESS_RESET_TOKEN_SIZE]; |
915 | }; |
916 | struct nx_flowswitch *fsw = fe->fe_fsw; |
917 | struct ip *ip; |
918 | struct ip6_hdr *ip6; |
919 | struct udphdr *uh; |
920 | struct quic_stateless_reset *qssr; |
921 | uint16_t len, l3hlen, ulen; |
922 | struct mbuf *m; |
923 | unsigned int one = 1; |
924 | int error; |
925 | |
926 | /* guaranteed by caller */ |
927 | ASSERT(fsw->fsw_ifp != NULL); |
928 | |
929 | /* skip zero token */ |
930 | bool is_zero_token = true; |
931 | for (size_t i = 0; i < QUIC_STATELESS_RESET_TOKEN_SIZE; i++) { |
932 | if (token[i] != 0) { |
933 | is_zero_token = false; |
934 | break; |
935 | } |
936 | } |
937 | if (is_zero_token) { |
938 | return; |
939 | } |
940 | |
941 | ulen = sizeof(struct udphdr) + sizeof(struct quic_stateless_reset); |
942 | if (fe->fe_key.fk_ipver == IPVERSION) { |
943 | l3hlen = sizeof(struct ip); |
944 | } else { |
945 | ASSERT(fe->fe_key.fk_ipver == IPV6_VERSION); |
946 | l3hlen = sizeof(struct ip6_hdr); |
947 | } |
948 | |
949 | len = l3hlen + ulen; |
950 | |
951 | error = mbuf_allocpacket(how: MBUF_DONTWAIT, packetlen: max_linkhdr + len, maxchunks: &one, mbuf: &m); |
952 | if (__improbable(error != 0)) { |
953 | return; |
954 | } |
955 | VERIFY(m != 0); |
956 | |
957 | m->m_pkthdr.pkt_proto = IPPROTO_UDP; |
958 | m->m_data += max_linkhdr; /* 32-bit aligned */ |
959 | m->m_pkthdr.len = m->m_len = len; |
960 | |
961 | /* zero out for checksum */ |
962 | bzero(s: m_mtod_current(m), n: len); |
963 | |
964 | if (fe->fe_key.fk_ipver == IPVERSION) { |
965 | ip = mtod(m, struct ip *); |
966 | ip->ip_p = IPPROTO_UDP; |
967 | ip->ip_len = htons(ulen); |
968 | ip->ip_src = fe->fe_key.fk_src4; |
969 | ip->ip_dst = fe->fe_key.fk_dst4; |
970 | uh = (struct udphdr *)(void *)((char *)ip + sizeof(*ip)); |
971 | } else { |
972 | ip6 = mtod(m, struct ip6_hdr *); |
973 | ip6->ip6_nxt = IPPROTO_UDP; |
974 | ip6->ip6_plen = htons(ulen); |
975 | ip6->ip6_src = fe->fe_key.fk_src6; |
976 | ip6->ip6_dst = fe->fe_key.fk_dst6; |
977 | uh = (struct udphdr *)(void *)((char *)ip6 + sizeof(*ip6)); |
978 | } |
979 | |
980 | /* UDP header */ |
981 | uh->uh_sport = fe->fe_key.fk_sport; |
982 | uh->uh_dport = fe->fe_key.fk_dport; |
983 | uh->uh_ulen = htons(ulen); |
984 | |
985 | /* QUIC stateless reset */ |
986 | qssr = (struct quic_stateless_reset *)(uh + 1); |
987 | read_frandom(buffer: &qssr->ssr_header, numBytes: sizeof(qssr->ssr_header)); |
988 | qssr->ssr_header[0] = (qssr->ssr_header[0] & 0x3f) | 0x40; |
989 | memcpy(dst: qssr->ssr_token, src: token, QUIC_STATELESS_RESET_TOKEN_SIZE); |
990 | |
991 | FSW_STATS_INC(FSW_STATS_FLOWS_ABORTED); |
992 | |
993 | if (fe->fe_key.fk_ipver == IPVERSION) { |
994 | struct ip_out_args ipoa; |
995 | struct route ro; |
996 | |
997 | bzero(s: &ipoa, n: sizeof(ipoa)); |
998 | ipoa.ipoa_boundif = fsw->fsw_ifp->if_index; |
999 | ipoa.ipoa_flags = (IPOAF_SELECT_SRCIF | IPOAF_BOUND_IF | |
1000 | IPOAF_BOUND_SRCADDR); |
1001 | ipoa.ipoa_sotc = SO_TC_UNSPEC; |
1002 | ipoa.ipoa_netsvctype = _NET_SERVICE_TYPE_UNSPEC; |
1003 | |
1004 | uh->uh_sum = in_cksum(m, len); |
1005 | if (uh->uh_sum == 0) { |
1006 | uh->uh_sum = 0xffff; |
1007 | } |
1008 | |
1009 | ip->ip_v = IPVERSION; |
1010 | ip->ip_hl = sizeof(*ip) >> 2; |
1011 | ip->ip_tos = 0; |
1012 | /* |
1013 | * ip_output() expects ip_len and ip_off to be in host order. |
1014 | */ |
1015 | ip->ip_len = len; |
1016 | ip->ip_off = IP_DF; |
1017 | ip->ip_ttl = (uint8_t)ip_defttl; |
1018 | ip->ip_sum = 0; |
1019 | |
1020 | bzero(s: &ro, n: sizeof(ro)); |
1021 | (void) ip_output(m, NULL, &ro, IP_OUTARGS, NULL, &ipoa); |
1022 | ROUTE_RELEASE(&ro); |
1023 | } else { |
1024 | struct ip6_out_args ip6oa; |
1025 | struct route_in6 ro6; |
1026 | |
1027 | bzero(s: &ip6oa, n: sizeof(ip6oa)); |
1028 | ip6oa.ip6oa_boundif = fsw->fsw_ifp->if_index; |
1029 | ip6oa.ip6oa_flags = (IP6OAF_SELECT_SRCIF | IP6OAF_BOUND_IF | |
1030 | IP6OAF_BOUND_SRCADDR); |
1031 | ip6oa.ip6oa_sotc = SO_TC_UNSPEC; |
1032 | ip6oa.ip6oa_netsvctype = _NET_SERVICE_TYPE_UNSPEC; |
1033 | |
1034 | uh->uh_sum = in6_cksum(m, IPPROTO_UDP, sizeof(struct ip6_hdr), |
1035 | ulen); |
1036 | if (uh->uh_sum == 0) { |
1037 | uh->uh_sum = 0xffff; |
1038 | } |
1039 | |
1040 | ip6->ip6_vfc |= IPV6_VERSION; |
1041 | ip6->ip6_hlim = IPV6_DEFHLIM; |
1042 | |
1043 | bzero(s: &ro6, n: sizeof(ro6)); |
1044 | (void) ip6_output(m, NULL, &ro6, IPV6_OUTARGS, |
1045 | NULL, NULL, &ip6oa); |
1046 | ROUTE_RELEASE(&ro6); |
1047 | } |
1048 | } |
1049 | |