| 1 | /* |
| 2 | * Copyright (c) 2018-2021 Apple Inc. All rights reserved. |
| 3 | * |
| 4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ |
| 5 | * |
| 6 | * This file contains Original Code and/or Modifications of Original Code |
| 7 | * as defined in and that are subject to the Apple Public Source License |
| 8 | * Version 2.0 (the 'License'). You may not use this file except in |
| 9 | * compliance with the License. The rights granted to you under the License |
| 10 | * may not be used to create, or enable the creation or redistribution of, |
| 11 | * unlawful or unlicensed copies of an Apple operating system, or to |
| 12 | * circumvent, violate, or enable the circumvention or violation of, any |
| 13 | * terms of an Apple operating system software license agreement. |
| 14 | * |
| 15 | * Please obtain a copy of the License at |
| 16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. |
| 17 | * |
| 18 | * The Original Code and all software distributed under the License are |
| 19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER |
| 20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
| 21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, |
| 22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
| 23 | * Please see the License for the specific language governing rights and |
| 24 | * limitations under the License. |
| 25 | * |
| 26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ |
| 27 | */ |
| 28 | |
| 29 | #if (DEVELOPMENT || DEBUG) /* XXX make this whole file a config option? */ |
| 30 | |
| 31 | #include <skywalk/os_skywalk_private.h> |
| 32 | |
| 33 | /* |
| 34 | * Ignore -Wxnu-typed-allocators for this file, because |
| 35 | * this is test-only code |
| 36 | */ |
| 37 | __typed_allocators_ignore_push |
| 38 | |
| 39 | #define SKMEM_TEST_BUFSIZE 2048 |
| 40 | |
| 41 | #if XNU_TARGET_OS_OSX && defined(__arm64__) |
| 42 | #define TEST_OPTION_INHIBIT_CACHE 0 |
| 43 | #else /* !(XNU_TARGET_OS_OSX && defined(__arm64__)) */ |
| 44 | #define TEST_OPTION_INHIBIT_CACHE KBIF_INHIBIT_CACHE |
| 45 | #endif /* XNU_TARGET_OS_OSX && defined(__arm64__) */ |
| 46 | |
| 47 | static void skmem_test_start(void *, wait_result_t); |
| 48 | static void skmem_test_stop(void *, wait_result_t); |
| 49 | static void skmem_test_func(void *v, wait_result_t w); |
| 50 | static void skmem_test_mbfreecb(caddr_t cl, uint32_t size, caddr_t arg); |
| 51 | static void skmem_test_alloccb(kern_packet_t, uint32_t, const void *); |
| 52 | |
| 53 | extern unsigned int ml_wait_max_cpus(void); |
| 54 | extern kern_return_t thread_terminate(thread_t); |
| 55 | |
| 56 | static int skmt_enabled; |
| 57 | static int skmt_busy; |
| 58 | static int skmt_mbcnt; |
| 59 | |
| 60 | decl_lck_mtx_data(static, skmt_lock); |
| 61 | |
| 62 | struct skmt_alloc_ctx { |
| 63 | uint32_t stc_req; /* # of objects requested */ |
| 64 | uint32_t stc_idx; /* expected index */ |
| 65 | }; |
| 66 | |
| 67 | static struct skmt_alloc_ctx skmt_alloccb_ctx; |
| 68 | |
| 69 | struct skmt_thread_info { |
| 70 | kern_packet_t sti_mph; /* master packet */ |
| 71 | kern_packet_t sti_mpc; /* cloned packet */ |
| 72 | thread_t sti_thread; /* thread instance */ |
| 73 | boolean_t sti_nosleep; /* non-sleeping allocation */ |
| 74 | } __attribute__((aligned(CHANNEL_CACHE_ALIGN_MAX))); |
| 75 | |
| 76 | static struct skmt_thread_info *skmth_info; |
| 77 | static uint32_t skmth_info_size; |
| 78 | static int32_t skmth_cnt; |
| 79 | static boolean_t skmth_run; |
| 80 | static kern_pbufpool_t skmth_pp; |
| 81 | |
| 82 | void |
| 83 | skmem_test_init(void) |
| 84 | { |
| 85 | lck_mtx_init(&skmt_lock, &sk_lock_group, &sk_lock_attr); |
| 86 | } |
| 87 | |
| 88 | void |
| 89 | skmem_test_fini(void) |
| 90 | { |
| 91 | lck_mtx_destroy(&skmt_lock, &sk_lock_group); |
| 92 | } |
| 93 | |
| 94 | bool |
| 95 | skmem_test_enabled(void) |
| 96 | { |
| 97 | bool enabled; |
| 98 | lck_mtx_lock(&skmt_lock); |
| 99 | enabled = (skmt_busy != 0); |
| 100 | lck_mtx_unlock(&skmt_lock); |
| 101 | return enabled; |
| 102 | } |
| 103 | |
| 104 | typedef union { |
| 105 | char c[2]; |
| 106 | uint16_t s; |
| 107 | } short_union_t; |
| 108 | |
| 109 | typedef union { |
| 110 | uint16_t s[2]; |
| 111 | long l; |
| 112 | } long_union_t; |
| 113 | |
| 114 | static void |
| 115 | _reduce(int *sum) |
| 116 | { |
| 117 | long_union_t l_util; |
| 118 | |
| 119 | l_util.l = *sum; |
| 120 | *sum = l_util.s[0] + l_util.s[1]; |
| 121 | if (*sum > 65535) { |
| 122 | *sum -= 65535; |
| 123 | } |
| 124 | } |
| 125 | |
| 126 | static uint16_t |
| 127 | skmem_reference_sum(void *buffer, int len, int sum0) |
| 128 | { |
| 129 | uint16_t *w; |
| 130 | int sum = sum0; |
| 131 | |
| 132 | w = (uint16_t *)buffer; |
| 133 | while ((len -= 32) >= 0) { |
| 134 | sum += w[0]; sum += w[1]; |
| 135 | sum += w[2]; sum += w[3]; |
| 136 | sum += w[4]; sum += w[5]; |
| 137 | sum += w[6]; sum += w[7]; |
| 138 | sum += w[8]; sum += w[9]; |
| 139 | sum += w[10]; sum += w[11]; |
| 140 | sum += w[12]; sum += w[13]; |
| 141 | sum += w[14]; sum += w[15]; |
| 142 | w += 16; |
| 143 | } |
| 144 | len += 32; |
| 145 | while ((len -= 8) >= 0) { |
| 146 | sum += w[0]; sum += w[1]; |
| 147 | sum += w[2]; sum += w[3]; |
| 148 | w += 4; |
| 149 | } |
| 150 | len += 8; |
| 151 | if (len) { |
| 152 | _reduce(&sum); |
| 153 | while ((len -= 2) >= 0) { |
| 154 | sum += *w++; |
| 155 | } |
| 156 | } |
| 157 | if (len == -1) { /* odd-length packet */ |
| 158 | short_union_t s_util; |
| 159 | |
| 160 | s_util.s = 0; |
| 161 | s_util.c[0] = *((char *)w); |
| 162 | s_util.c[1] = 0; |
| 163 | sum += s_util.s; |
| 164 | } |
| 165 | _reduce(&sum); |
| 166 | return sum & 0xffff; |
| 167 | } |
| 168 | |
| 169 | /* |
| 170 | * At present, the number of objects created in the pool will be |
| 171 | * higher than the requested amount, if the pool is allowed to use |
| 172 | * the magazines layer. Round up a bit to accomodate any rounding |
| 173 | * ups done by the pool allocator. |
| 174 | */ |
| 175 | #define MAX_PH_ARY P2ROUNDUP(skmem_cache_magazine_max(1) + 129, 256) |
| 176 | |
| 177 | struct skmem_pp_ctx_s { |
| 178 | os_refcnt_t skmem_pp_ctx_refcnt; |
| 179 | }; |
| 180 | |
| 181 | static struct skmem_pp_ctx_s skmem_pp_ctx; |
| 182 | |
| 183 | static uint32_t |
| 184 | skmem_pp_ctx_refcnt(void *ctx) |
| 185 | { |
| 186 | struct skmem_pp_ctx_s *pp_ctx = ctx; |
| 187 | VERIFY(pp_ctx == &skmem_pp_ctx); |
| 188 | return os_ref_get_count(&pp_ctx->skmem_pp_ctx_refcnt); |
| 189 | } |
| 190 | |
| 191 | static void |
| 192 | skmem_pp_ctx_retain(void *ctx) |
| 193 | { |
| 194 | struct skmem_pp_ctx_s *pp_ctx = ctx; |
| 195 | VERIFY(pp_ctx == &skmem_pp_ctx); |
| 196 | os_ref_retain(&pp_ctx->skmem_pp_ctx_refcnt); |
| 197 | } |
| 198 | |
| 199 | static void |
| 200 | skmem_pp_ctx_release(void *ctx) |
| 201 | { |
| 202 | struct skmem_pp_ctx_s *pp_ctx = ctx; |
| 203 | VERIFY(pp_ctx == &skmem_pp_ctx); |
| 204 | (void)os_ref_release(&pp_ctx->skmem_pp_ctx_refcnt); |
| 205 | } |
| 206 | |
| 207 | #define BUFLEN 2048 |
| 208 | |
| 209 | static void |
| 210 | skmem_buflet_tests(uint32_t flags) |
| 211 | { |
| 212 | struct kern_pbufpool_init pp_init; |
| 213 | struct kern_pbufpool_memory_info pp_mem_info; |
| 214 | kern_pbufpool_t pp = NULL; |
| 215 | struct kern_pbufpool_init pp_init_mb; |
| 216 | kern_pbufpool_t pp_mb = NULL; |
| 217 | mach_vm_address_t baddr = 0; |
| 218 | kern_obj_idx_seg_t sg_idx; |
| 219 | kern_segment_t sg; |
| 220 | kern_packet_t *phary = NULL; |
| 221 | kern_packet_t *phary2 = NULL; |
| 222 | kern_packet_t *pharyc = NULL; |
| 223 | struct mbuf **mbary = NULL; |
| 224 | uint32_t mbcnt = 0; |
| 225 | uint32_t phcnt = 0, maxphcnt = 0; |
| 226 | uint32_t phcloned = 0; |
| 227 | size_t mblen = BUFLEN; |
| 228 | kern_packet_t ph, ph_mb; |
| 229 | uint32_t i; |
| 230 | errno_t err; |
| 231 | |
| 232 | /* packets only */ |
| 233 | VERIFY(!(flags & KBIF_QUANTUM)); |
| 234 | |
| 235 | SK_ERR("flags 0x%x" , flags); |
| 236 | |
| 237 | phary = (kern_packet_t *) kalloc_data(sizeof(kern_packet_t) * MAX_PH_ARY, |
| 238 | Z_WAITOK | Z_ZERO); |
| 239 | phary2 = (kern_packet_t *) kalloc_data(sizeof(kern_packet_t) * MAX_PH_ARY, |
| 240 | Z_WAITOK | Z_ZERO); |
| 241 | pharyc = (kern_packet_t *) kalloc_data(sizeof(kern_packet_t) * MAX_PH_ARY, |
| 242 | Z_WAITOK | Z_ZERO); |
| 243 | mbary = kalloc_type(struct mbuf *, MAX_PH_ARY, Z_WAITOK | Z_ZERO); |
| 244 | |
| 245 | os_ref_init(&skmem_pp_ctx.skmem_pp_ctx_refcnt, NULL); |
| 246 | bzero(&pp_init, sizeof(pp_init)); |
| 247 | pp_init.kbi_version = KERN_PBUFPOOL_CURRENT_VERSION; |
| 248 | pp_init.kbi_buf_seg_size = skmem_usr_buf_seg_size; |
| 249 | (void) snprintf((char *)pp_init.kbi_name, sizeof(pp_init.kbi_name), |
| 250 | "%s" , "skmem_buflet_tests" ); |
| 251 | pp_init.kbi_flags = flags; |
| 252 | pp_init.kbi_ctx = &skmem_pp_ctx; |
| 253 | pp_init.kbi_ctx_retain = skmem_pp_ctx_retain; |
| 254 | pp_init.kbi_ctx_release = skmem_pp_ctx_release; |
| 255 | |
| 256 | /* must fail if packets is 0 */ |
| 257 | VERIFY(kern_pbufpool_create(&pp_init, &pp, NULL) == EINVAL); |
| 258 | pp_init.kbi_packets = 64; |
| 259 | /* must fail if bufsize is 0 */ |
| 260 | VERIFY(kern_pbufpool_create(&pp_init, &pp, NULL) == EINVAL); |
| 261 | pp_init.kbi_bufsize = SKMEM_TEST_BUFSIZE; |
| 262 | /* must fail if max_frags is 0 */ |
| 263 | VERIFY(kern_pbufpool_create(&pp_init, &pp, NULL) == EINVAL); |
| 264 | |
| 265 | pp_init.kbi_max_frags = 1; |
| 266 | VERIFY(kern_pbufpool_create(&pp_init, &pp, NULL) == 0); |
| 267 | VERIFY(skmem_pp_ctx_refcnt(&skmem_pp_ctx) == 2); |
| 268 | void *ctx = kern_pbufpool_get_context(pp); |
| 269 | VERIFY(ctx == &skmem_pp_ctx); |
| 270 | VERIFY(skmem_pp_ctx_refcnt(&skmem_pp_ctx) == 3); |
| 271 | skmem_pp_ctx_release(ctx); |
| 272 | VERIFY(skmem_pp_ctx_refcnt(&skmem_pp_ctx) == 2); |
| 273 | bzero(&pp_mem_info, sizeof(pp_mem_info)); |
| 274 | VERIFY(kern_pbufpool_get_memory_info(pp, NULL) == EINVAL); |
| 275 | VERIFY(kern_pbufpool_get_memory_info(pp, &pp_mem_info) == 0); |
| 276 | VERIFY(pp_mem_info.kpm_flags & KPMF_EXTERNAL); |
| 277 | VERIFY(pp_mem_info.kpm_buflets >= pp_mem_info.kpm_packets); |
| 278 | VERIFY(pp_mem_info.kpm_packets >= 64); |
| 279 | VERIFY(pp_mem_info.kpm_packets <= MAX_PH_ARY); |
| 280 | VERIFY(pp_mem_info.kpm_max_frags == 1); |
| 281 | VERIFY(pp_mem_info.kpm_buflets >= 64); |
| 282 | VERIFY(pp_mem_info.kpm_bufsize == SKMEM_TEST_BUFSIZE); |
| 283 | VERIFY(kern_pbufpool_alloc(pp, 0, &ph) == EINVAL || |
| 284 | (flags & KBIF_BUFFER_ON_DEMAND)); |
| 285 | if (ph != 0) { |
| 286 | kern_packet_t phc = 0; |
| 287 | kern_buflet_t buflet; |
| 288 | |
| 289 | VERIFY(flags & KBIF_BUFFER_ON_DEMAND); |
| 290 | VERIFY((buflet = kern_packet_get_next_buflet(ph, NULL)) == NULL); |
| 291 | VERIFY(kern_packet_clone(ph, &phc, KPKT_COPY_LIGHT) == EINVAL); |
| 292 | VERIFY(kern_packet_clone(ph, &phc, KPKT_COPY_HEAVY) == EINVAL); |
| 293 | kern_pbufpool_free(pp, ph); |
| 294 | ph = 0; |
| 295 | } |
| 296 | maxphcnt = 32; |
| 297 | VERIFY(kern_pbufpool_alloc(pp, 5, &ph) == EINVAL); |
| 298 | if (flags & KBIF_BUFFER_ON_DEMAND) { |
| 299 | /* allocate and free one at a time (no buflet) */ |
| 300 | for (i = 0, phcnt = 0; i < maxphcnt; i++) { |
| 301 | boolean_t stop = FALSE; |
| 302 | /* |
| 303 | * This may fail if skmem_region_mtbf is set, or if |
| 304 | * the system is short on memory. Perform retries at |
| 305 | * this layer to get at least 32 packets. |
| 306 | */ |
| 307 | while ((err = kern_pbufpool_alloc_nosleep(pp, 0, &ph)) != 0) { |
| 308 | VERIFY(err == ENOMEM); |
| 309 | if (phcnt < 32) { |
| 310 | SK_ERR("[a] retrying alloc for packet %u" , |
| 311 | phcnt); |
| 312 | delay(250 * NSEC_PER_USEC); /* 1/4 sec */ |
| 313 | continue; |
| 314 | } |
| 315 | stop = TRUE; |
| 316 | break; |
| 317 | } |
| 318 | if (stop) { |
| 319 | break; |
| 320 | } |
| 321 | VERIFY(ph != 0); |
| 322 | VERIFY(kern_packet_get_data_length(ph) == 0); |
| 323 | VERIFY(kern_packet_get_buflet_count(ph) == 0); |
| 324 | phary[phcnt++] = ph; |
| 325 | } |
| 326 | VERIFY(phcnt >= 32); |
| 327 | for (i = 0; i < phcnt; i++) { |
| 328 | kern_pbufpool_free(pp, phary[i]); |
| 329 | phary[i] = 0; |
| 330 | } |
| 331 | } |
| 332 | /* allocate and free one at a time (1 buflet) */ |
| 333 | for (i = 0, phcnt = 0; i < maxphcnt; i++) { |
| 334 | boolean_t stop = FALSE; |
| 335 | /* |
| 336 | * This may fail if skmem_region_mtbf is set, or if |
| 337 | * the system is short on memory. Perform retries at |
| 338 | * this layer to get at least 32 packets. |
| 339 | */ |
| 340 | while ((err = kern_pbufpool_alloc_nosleep(pp, 1, &ph)) != 0) { |
| 341 | VERIFY(err == ENOMEM); |
| 342 | if (phcnt < 32) { |
| 343 | SK_ERR("[a] retrying alloc for packet %u" , |
| 344 | phcnt); |
| 345 | delay(250 * NSEC_PER_USEC); /* 1/4 sec */ |
| 346 | continue; |
| 347 | } |
| 348 | stop = TRUE; |
| 349 | break; |
| 350 | } |
| 351 | if (stop) { |
| 352 | break; |
| 353 | } |
| 354 | VERIFY(ph != 0); |
| 355 | VERIFY(kern_packet_get_data_length(ph) == 0); |
| 356 | VERIFY(kern_packet_get_buflet_count(ph) == 1); |
| 357 | phary[phcnt++] = ph; |
| 358 | } |
| 359 | VERIFY(phcnt >= 32); |
| 360 | for (i = 0; i < phcnt; i++) { |
| 361 | kern_pbufpool_free(pp, phary[i]); |
| 362 | phary[i] = 0; |
| 363 | } |
| 364 | /* allocate and free in batch */ |
| 365 | phcnt = maxphcnt; |
| 366 | for (;;) { |
| 367 | err = kern_pbufpool_alloc_batch_nosleep(pp, 1, phary, &phcnt); |
| 368 | VERIFY(err != EINVAL); |
| 369 | if (err == ENOMEM) { |
| 370 | phcnt = maxphcnt; |
| 371 | SK_ERR("retrying batch alloc for %u packets" , phcnt); |
| 372 | delay(250 * NSEC_PER_USEC); /* 1/4 sec */ |
| 373 | } else if (err == EAGAIN) { |
| 374 | SK_ERR("batch alloc for %u packets only returned %u" , |
| 375 | maxphcnt, phcnt); |
| 376 | break; |
| 377 | } else { |
| 378 | VERIFY(err == 0); |
| 379 | break; |
| 380 | } |
| 381 | } |
| 382 | VERIFY(phcnt > 0); |
| 383 | for (i = 0; i < phcnt; i++) { |
| 384 | VERIFY(phary[i] != 0); |
| 385 | VERIFY(kern_packet_get_data_length(phary[i]) == 0); |
| 386 | VERIFY(kern_packet_get_buflet_count(phary[i]) == 1); |
| 387 | } |
| 388 | kern_pbufpool_free_batch(pp, phary, phcnt); |
| 389 | /* allocate and free one at a time (blocking) */ |
| 390 | for (i = 0, phcnt = 0; i < maxphcnt; i++) { |
| 391 | VERIFY(kern_pbufpool_alloc(pp, 1, &ph) == 0); |
| 392 | VERIFY(ph != 0); |
| 393 | VERIFY(kern_packet_get_data_length(ph) == 0); |
| 394 | VERIFY(kern_packet_get_buflet_count(ph) == 1); |
| 395 | phary[phcnt++] = ph; |
| 396 | } |
| 397 | VERIFY(phcnt >= 32); |
| 398 | for (i = 0; i < phcnt; i++) { |
| 399 | kern_pbufpool_free(pp, phary[i]); |
| 400 | phary[i] = 0; |
| 401 | } |
| 402 | /* allocate with callback */ |
| 403 | bzero(&skmt_alloccb_ctx, sizeof(skmt_alloccb_ctx)); |
| 404 | skmt_alloccb_ctx.stc_req = phcnt; |
| 405 | VERIFY(kern_pbufpool_alloc_batch_callback(pp, 1, phary, &phcnt, |
| 406 | NULL, &skmt_alloccb_ctx) == EINVAL); |
| 407 | VERIFY(kern_pbufpool_alloc_batch_callback(pp, 1, phary, &phcnt, |
| 408 | skmem_test_alloccb, &skmt_alloccb_ctx) == 0); |
| 409 | VERIFY(skmt_alloccb_ctx.stc_idx == phcnt); |
| 410 | kern_pbufpool_free_batch(pp, phary, phcnt); |
| 411 | |
| 412 | /* |
| 413 | * Allocate and free test |
| 414 | * Case 1: Packet has an mbuf attached |
| 415 | */ |
| 416 | mbcnt = phcnt; |
| 417 | VERIFY(kern_pbufpool_alloc_batch(pp, 1, phary, &phcnt) == 0); |
| 418 | /* clone packets (lightweight, without mbufs) */ |
| 419 | for (i = 0; i < phcnt; i++) { |
| 420 | kern_buflet_t buflet, buflet2; |
| 421 | kern_obj_idx_seg_t buf_idx_seg, buf2_idx_seg; |
| 422 | |
| 423 | VERIFY((buflet = kern_packet_get_next_buflet(phary[i], |
| 424 | NULL)) != NULL); |
| 425 | VERIFY(kern_buflet_set_data_length(buflet, BUFLEN) == 0); |
| 426 | VERIFY(__packet_finalize(phary[i]) == 0); |
| 427 | VERIFY(kern_packet_get_data_length(phary[i]) == BUFLEN); |
| 428 | (void) memset(kern_buflet_get_data_address(buflet), i, BUFLEN); |
| 429 | kern_packet_set_trace_id(phary[i], i); |
| 430 | VERIFY(kern_packet_get_trace_id(phary[i]) == i); |
| 431 | VERIFY(kern_packet_clone(phary[i], &pharyc[i], |
| 432 | KPKT_COPY_LIGHT) == 0 || !(flags & KBIF_BUFFER_ON_DEMAND)); |
| 433 | if (pharyc[i] != 0) { |
| 434 | struct __kern_packet *kpkt2 = SK_PTR_ADDR_KPKT(pharyc[i]); |
| 435 | /* |
| 436 | * Source packet was allocated with 1 buffer, so |
| 437 | * validate that the clone packet points to that |
| 438 | * same buffer, and that the buffer's usecnt is 2. |
| 439 | */ |
| 440 | VERIFY(!(QUM_ADDR(pharyc[i])->qum_qflags & QUM_F_FINALIZED)); |
| 441 | VERIFY(kpkt2->pkt_mbuf == NULL); |
| 442 | VERIFY(!(kpkt2->pkt_pflags & PKT_F_MBUF_MASK)); |
| 443 | VERIFY((buflet2 = kern_packet_get_next_buflet(pharyc[i], |
| 444 | NULL)) != NULL); |
| 445 | VERIFY(kern_buflet_get_object_address(buflet) == |
| 446 | kern_buflet_get_object_address(buflet2)); |
| 447 | VERIFY(kern_buflet_get_data_address(buflet) == |
| 448 | kern_buflet_get_data_address(buflet2)); |
| 449 | VERIFY(kern_buflet_get_data_limit(buflet) == |
| 450 | kern_buflet_get_data_limit(buflet2)); |
| 451 | VERIFY(kern_buflet_get_data_offset(buflet) == |
| 452 | kern_buflet_get_data_offset(buflet2)); |
| 453 | VERIFY(kern_buflet_get_data_length(buflet) == |
| 454 | kern_buflet_get_data_length(buflet2)); |
| 455 | VERIFY(kern_buflet_set_data_limit(buflet2, |
| 456 | (uint16_t)kern_buflet_get_object_limit(buflet2) + 1) |
| 457 | == ERANGE); |
| 458 | VERIFY(kern_buflet_set_data_limit(buflet2, |
| 459 | (uint16_t)kern_buflet_get_object_limit(buflet2) - 16) |
| 460 | == 0); |
| 461 | VERIFY(kern_buflet_set_data_address(buflet2, |
| 462 | (const void *)((uintptr_t)kern_buflet_get_object_address(buflet2) - 1)) |
| 463 | == ERANGE); |
| 464 | VERIFY(kern_buflet_set_data_address(buflet2, |
| 465 | (const void *)((uintptr_t)kern_buflet_get_object_address(buflet2) + 16)) |
| 466 | == 0); |
| 467 | VERIFY(kern_buflet_set_data_length(buflet2, |
| 468 | kern_buflet_get_data_length(buflet2) - 32) == 0); |
| 469 | VERIFY(kern_buflet_get_object_segment(buflet, |
| 470 | &buf_idx_seg) == |
| 471 | kern_buflet_get_object_segment(buflet2, |
| 472 | &buf2_idx_seg)); |
| 473 | VERIFY(buf_idx_seg == buf2_idx_seg); |
| 474 | VERIFY(buflet->buf_ctl == buflet2->buf_ctl); |
| 475 | VERIFY(buflet->buf_ctl->bc_usecnt == 2); |
| 476 | ++phcloned; |
| 477 | VERIFY(__packet_finalize(pharyc[i]) == 0); |
| 478 | /* verify trace id isn't reused */ |
| 479 | VERIFY(kern_packet_get_trace_id(pharyc[i]) == 0); |
| 480 | kern_packet_set_trace_id(pharyc[i], phcnt - i); |
| 481 | VERIFY(kern_packet_get_trace_id(pharyc[i]) == (phcnt - i)); |
| 482 | VERIFY(kern_packet_get_trace_id(phary[i]) == i); |
| 483 | } |
| 484 | } |
| 485 | VERIFY(phcloned == phcnt || phcloned == 0); |
| 486 | if (phcloned != 0) { |
| 487 | kern_pbufpool_free_batch(pp, pharyc, phcloned); |
| 488 | phcloned = 0; |
| 489 | } |
| 490 | kern_pbufpool_free_batch(pp, phary, phcnt); |
| 491 | VERIFY(kern_pbufpool_alloc_batch(pp, 1, phary, &phcnt) == 0); |
| 492 | VERIFY(phcnt == mbcnt); |
| 493 | VERIFY(skmt_mbcnt == 0); |
| 494 | for (i = 0; i < mbcnt; i++) { |
| 495 | struct __kern_packet *kpkt = SK_PTR_ADDR_KPKT(phary[i]); |
| 496 | kern_buflet_t buflet; |
| 497 | |
| 498 | VERIFY((buflet = kern_packet_get_next_buflet(phary[i], |
| 499 | NULL)) != NULL); |
| 500 | VERIFY(kern_buflet_set_data_length(buflet, BUFLEN) == 0); |
| 501 | (void) memset(kern_buflet_get_data_address(buflet), i, BUFLEN); |
| 502 | /* attach mbuf to packets and initialize packets */ |
| 503 | mblen = BUFLEN; |
| 504 | VERIFY(mbuf_ring_cluster_alloc(MBUF_WAITOK, MBUF_TYPE_HEADER, |
| 505 | &mbary[i], skmem_test_mbfreecb, &mblen) == 0); |
| 506 | VERIFY(mblen == BUFLEN); |
| 507 | VERIFY(mbary[i] != NULL); |
| 508 | VERIFY(mbary[i]->m_nextpkt == NULL); |
| 509 | mbuf_setlen(mbary[i], mblen); |
| 510 | mbuf_pkthdr_setlen(mbary[i], mblen); |
| 511 | VERIFY((size_t)m_pktlen(mbary[i]) == mblen); |
| 512 | (void) memset(mbuf_data(mbary[i]), i, mblen); |
| 513 | kpkt->pkt_mbuf = mbary[i]; |
| 514 | kpkt->pkt_pflags |= PKT_F_MBUF_DATA; |
| 515 | VERIFY(__packet_finalize_with_mbuf(kpkt) == 0); |
| 516 | VERIFY(kern_packet_get_data_length(phary[i]) == BUFLEN); |
| 517 | VERIFY(mbuf_ring_cluster_activate(kpkt->pkt_mbuf) == 0); |
| 518 | } |
| 519 | /* clone packets (heavyweight) */ |
| 520 | for (i = 0; i < phcnt; i++) { |
| 521 | VERIFY(kern_packet_clone(phary[i], &pharyc[i], |
| 522 | KPKT_COPY_HEAVY) == 0); |
| 523 | struct __kern_packet *kpkt = SK_PTR_ADDR_KPKT(phary[i]); |
| 524 | struct __kern_packet *kpkt2 = SK_PTR_ADDR_KPKT(pharyc[i]); |
| 525 | kern_buflet_t buflet, buflet2; |
| 526 | /* |
| 527 | * Source packet was allocated with 1 buffer, so |
| 528 | * validate that the clone packet points to different |
| 529 | * buffer, and that the clone's attached mbuf is also |
| 530 | * different than the source's. |
| 531 | */ |
| 532 | VERIFY(!(QUM_ADDR(pharyc[i])->qum_qflags & QUM_F_FINALIZED)); |
| 533 | VERIFY((buflet = kern_packet_get_next_buflet(phary[i], |
| 534 | NULL)) != NULL); |
| 535 | VERIFY((buflet2 = kern_packet_get_next_buflet(pharyc[i], |
| 536 | NULL)) != NULL); |
| 537 | VERIFY(kern_buflet_get_object_address(buflet) != |
| 538 | kern_buflet_get_object_address(buflet2)); |
| 539 | VERIFY(kern_buflet_get_data_address(buflet) != |
| 540 | kern_buflet_get_data_address(buflet2)); |
| 541 | VERIFY(kern_buflet_get_data_limit(buflet) == |
| 542 | kern_buflet_get_data_limit(buflet2)); |
| 543 | VERIFY(kern_buflet_get_data_offset(buflet) == |
| 544 | kern_buflet_get_data_offset(buflet2)); |
| 545 | VERIFY(kern_buflet_get_data_length(buflet) == BUFLEN); |
| 546 | VERIFY(kern_buflet_get_data_length(buflet) == |
| 547 | kern_buflet_get_data_length(buflet2)); |
| 548 | VERIFY(kpkt->pkt_pflags & PKT_F_MBUF_DATA); |
| 549 | VERIFY(kpkt2->pkt_pflags & PKT_F_MBUF_DATA); |
| 550 | VERIFY(m_pktlen(kpkt2->pkt_mbuf) == m_pktlen(kpkt->pkt_mbuf)); |
| 551 | VERIFY(kern_packet_get_data_length(phary[i]) == BUFLEN); |
| 552 | VERIFY(kern_packet_get_data_length(phary[i]) == |
| 553 | kern_packet_get_data_length(pharyc[i])); |
| 554 | VERIFY(buflet->buf_ctl != buflet2->buf_ctl); |
| 555 | VERIFY(buflet->buf_ctl->bc_usecnt == 1); |
| 556 | VERIFY(buflet2->buf_ctl->bc_usecnt == 1); |
| 557 | VERIFY(memcmp(kern_buflet_get_data_address(buflet), |
| 558 | kern_buflet_get_data_address(buflet2), |
| 559 | kern_buflet_get_data_length(buflet)) == 0); |
| 560 | VERIFY(kpkt->pkt_mbuf != NULL); |
| 561 | VERIFY(kpkt2->pkt_mbuf != NULL); |
| 562 | VERIFY(mbuf_data(kpkt->pkt_mbuf) != mbuf_data(kpkt2->pkt_mbuf)); |
| 563 | VERIFY(mbuf_len(kpkt->pkt_mbuf) == mbuf_len(kpkt2->pkt_mbuf)); |
| 564 | /* mbuf contents must have been copied */ |
| 565 | VERIFY(memcmp(mbuf_data(kpkt->pkt_mbuf), |
| 566 | mbuf_data(kpkt2->pkt_mbuf), mbuf_len(kpkt->pkt_mbuf)) == 0); |
| 567 | VERIFY(__packet_finalize(pharyc[i]) == 0); |
| 568 | ++phcloned; |
| 569 | } |
| 570 | VERIFY(phcloned == phcnt); |
| 571 | kern_pbufpool_free_batch(pp, pharyc, phcloned); |
| 572 | phcloned = 0; |
| 573 | skmt_mbcnt = mbcnt; |
| 574 | kern_pbufpool_free_batch(pp, phary, phcnt); |
| 575 | /* skmem_test_mbfreecb() should have been called for all mbufs by now */ |
| 576 | VERIFY(skmt_mbcnt == 0); |
| 577 | for (i = 0; i < mbcnt; i++) { |
| 578 | VERIFY(mbary[i] != NULL); |
| 579 | m_freem(mbary[i]); |
| 580 | mbary[i] = NULL; |
| 581 | } |
| 582 | mbcnt = 0; |
| 583 | |
| 584 | /* |
| 585 | * Allocate and free test |
| 586 | * Case 2: Packet has a packet attached |
| 587 | */ |
| 588 | VERIFY(pp_mem_info.kpm_packets >= 64); |
| 589 | phcnt = 32; |
| 590 | VERIFY(kern_pbufpool_alloc_batch(pp, 1, phary, &phcnt) == 0); |
| 591 | VERIFY(phcnt == 32); |
| 592 | VERIFY(kern_pbufpool_alloc_batch(pp, 1, phary2, &phcnt) == 0); |
| 593 | VERIFY(phcnt == 32); |
| 594 | /* attach each packet to a packet */ |
| 595 | for (i = 0; i < phcnt; i++) { |
| 596 | struct __kern_packet *kpkt = SK_PTR_ADDR_KPKT(phary[i]); |
| 597 | struct __kern_packet *kpkt2 = SK_PTR_ADDR_KPKT(phary2[i]); |
| 598 | |
| 599 | kpkt->pkt_pkt = kpkt2; |
| 600 | kpkt->pkt_pflags |= PKT_F_PKT_DATA; |
| 601 | } |
| 602 | /* free the batch of packets (also free the attached packets) */ |
| 603 | kern_pbufpool_free_batch(pp, phary, phcnt); |
| 604 | |
| 605 | /* |
| 606 | * Allocate and free test |
| 607 | * Case 3: Packet has a packet attached. The attached packet itself has |
| 608 | * an mbuf attached. |
| 609 | */ |
| 610 | VERIFY(pp_mem_info.kpm_packets >= 64); |
| 611 | phcnt = 32; |
| 612 | mbcnt = 32; |
| 613 | VERIFY(kern_pbufpool_alloc_batch(pp, 1, phary, &phcnt) == 0); |
| 614 | VERIFY(phcnt == 32); |
| 615 | VERIFY(kern_pbufpool_alloc_batch(pp, 1, phary2, &phcnt) == 0); |
| 616 | VERIFY(phcnt == 32); |
| 617 | VERIFY(skmt_mbcnt == 0); |
| 618 | for (i = 0; i < mbcnt; i++) { |
| 619 | mblen = BUFLEN; |
| 620 | VERIFY(mbuf_ring_cluster_alloc(MBUF_WAITOK, MBUF_TYPE_HEADER, |
| 621 | &mbary[i], skmem_test_mbfreecb, &mblen) == 0); |
| 622 | VERIFY(mbary[i] != NULL); |
| 623 | VERIFY(mbary[i]->m_nextpkt == NULL); |
| 624 | } |
| 625 | /* attach each packet to a packet */ |
| 626 | for (i = 0; i < phcnt; i++) { |
| 627 | struct __kern_packet *kpkt = SK_PTR_ADDR_KPKT(phary[i]); |
| 628 | struct __kern_packet *kpkt2 = SK_PTR_ADDR_KPKT(phary2[i]); |
| 629 | |
| 630 | VERIFY(mbary[i] != NULL); |
| 631 | VERIFY(__packet_initialize_with_mbuf(kpkt2, |
| 632 | mbary[i], 0, 0) == 0); |
| 633 | VERIFY(mbuf_ring_cluster_activate(kpkt2->pkt_mbuf) == 0); |
| 634 | kpkt->pkt_pkt = kpkt2; |
| 635 | kpkt->pkt_pflags |= PKT_F_PKT_DATA; |
| 636 | } |
| 637 | skmt_mbcnt = mbcnt; |
| 638 | /* free the batch of packets (also free the attached packets) */ |
| 639 | kern_pbufpool_free_batch(pp, phary, phcnt); |
| 640 | /* skmem_test_mbfreecb() should have been called for all mbufs by now */ |
| 641 | VERIFY(skmt_mbcnt == 0); |
| 642 | for (i = 0; i < mbcnt; i++) { |
| 643 | VERIFY(mbary[i] != NULL); |
| 644 | m_freem(mbary[i]); |
| 645 | mbary[i] = NULL; |
| 646 | } |
| 647 | mbcnt = 0; |
| 648 | |
| 649 | kern_pbufpool_destroy(pp); |
| 650 | pp = NULL; |
| 651 | /* check that ctx_release has been called */ |
| 652 | VERIFY(skmem_pp_ctx_refcnt(&skmem_pp_ctx) == 1); |
| 653 | |
| 654 | pp_init.kbi_ctx = NULL; |
| 655 | pp_init.kbi_ctx_retain = NULL; |
| 656 | pp_init.kbi_ctx_release = NULL; |
| 657 | pp_init.kbi_buflets = 1; |
| 658 | /* must fail if buflets is non-zero and less than packets */ |
| 659 | if (!(flags & KBIF_BUFFER_ON_DEMAND)) { |
| 660 | VERIFY(kern_pbufpool_create(&pp_init, &pp, NULL) == EINVAL); |
| 661 | } else { |
| 662 | VERIFY(kern_pbufpool_create(&pp_init, &pp, NULL) == 0); |
| 663 | kern_pbufpool_destroy(pp); |
| 664 | pp = NULL; |
| 665 | } |
| 666 | pp_init.kbi_buflets = (64 * 2); |
| 667 | VERIFY(kern_pbufpool_create(&pp_init, &pp, NULL) == 0); |
| 668 | bzero(&pp_mem_info, sizeof(pp_mem_info)); |
| 669 | VERIFY(kern_pbufpool_get_memory_info(pp, &pp_mem_info) == 0); |
| 670 | VERIFY(pp_mem_info.kpm_flags & KPMF_EXTERNAL); |
| 671 | VERIFY(pp_mem_info.kpm_buflets >= pp_mem_info.kpm_packets); |
| 672 | VERIFY(pp_mem_info.kpm_packets >= 64); |
| 673 | VERIFY(pp_mem_info.kpm_max_frags == 1); |
| 674 | VERIFY(pp_mem_info.kpm_buflets >= (64 * 2)); |
| 675 | VERIFY(pp_mem_info.kpm_bufsize == SKMEM_TEST_BUFSIZE); |
| 676 | VERIFY(kern_pbufpool_alloc(pp, 1, &ph) == 0); |
| 677 | VERIFY(kern_packet_get_buflet_count(ph) == 1); |
| 678 | kern_pbufpool_free(pp, ph); |
| 679 | ph = 0; |
| 680 | phcnt = 4; |
| 681 | VERIFY(kern_pbufpool_alloc_batch(pp, 4, phary, &phcnt) == EINVAL); |
| 682 | VERIFY(kern_pbufpool_alloc_batch(pp, 1, phary, &phcnt) == 0); |
| 683 | VERIFY(kern_packet_get_buflet_count(phary[0]) == 1); |
| 684 | VERIFY(kern_packet_get_buflet_count(phary[1]) == 1); |
| 685 | VERIFY(kern_packet_get_buflet_count(phary[2]) == 1); |
| 686 | VERIFY(kern_packet_get_buflet_count(phary[3]) == 1); |
| 687 | kern_pbufpool_free_batch(pp, phary, phcnt); |
| 688 | kern_pbufpool_destroy(pp); |
| 689 | pp = NULL; |
| 690 | |
| 691 | /* check multi-buflet KPIs */ |
| 692 | bzero(&pp_init_mb, sizeof(pp_init_mb)); |
| 693 | pp_init_mb.kbi_version = KERN_PBUFPOOL_CURRENT_VERSION; |
| 694 | pp_init_mb.kbi_buf_seg_size = skmem_usr_buf_seg_size; |
| 695 | (void) snprintf((char *)pp_init_mb.kbi_name, |
| 696 | sizeof(pp_init_mb.kbi_name), "%s" , "skmem_buflet_tests_mb" ); |
| 697 | pp_init_mb.kbi_flags = flags; |
| 698 | pp_init_mb.kbi_max_frags = 4; |
| 699 | pp_init_mb.kbi_packets = 64; |
| 700 | pp_init_mb.kbi_bufsize = 512; |
| 701 | pp_init_mb.kbi_buflets = |
| 702 | pp_init_mb.kbi_packets * pp_init_mb.kbi_max_frags; |
| 703 | |
| 704 | VERIFY((kern_pbufpool_create(&pp_init_mb, &pp_mb, NULL) == EINVAL) || |
| 705 | (flags & KBIF_BUFFER_ON_DEMAND)); |
| 706 | |
| 707 | if (pp_mb != NULL) { |
| 708 | bzero(&pp_mem_info, sizeof(pp_mem_info)); |
| 709 | VERIFY(kern_pbufpool_get_memory_info(pp_mb, &pp_mem_info) == 0); |
| 710 | VERIFY(kern_pbufpool_alloc(pp_mb, 0, &ph_mb) == 0 || |
| 711 | !(flags & KBIF_BUFFER_ON_DEMAND)); |
| 712 | if (ph_mb != 0) { |
| 713 | VERIFY(flags & KBIF_BUFFER_ON_DEMAND); |
| 714 | kern_pbufpool_free(pp_mb, ph_mb); |
| 715 | ph_mb = 0; |
| 716 | } |
| 717 | VERIFY(kern_pbufpool_alloc_buffer(pp_mb, &baddr, &sg, |
| 718 | &sg_idx) == 0 || !(flags & KBIF_BUFFER_ON_DEMAND)); |
| 719 | if (baddr != 0) { |
| 720 | VERIFY(flags & KBIF_BUFFER_ON_DEMAND); |
| 721 | kern_pbufpool_free_buffer(pp_mb, baddr); |
| 722 | baddr = 0; |
| 723 | } |
| 724 | kern_pbufpool_destroy(pp_mb); |
| 725 | pp_mb = NULL; |
| 726 | } |
| 727 | |
| 728 | kfree_type(struct mbuf *, MAX_PH_ARY, mbary); |
| 729 | mbary = NULL; |
| 730 | |
| 731 | kfree_data(phary, sizeof(kern_packet_t) * MAX_PH_ARY); |
| 732 | phary = NULL; |
| 733 | |
| 734 | kfree_data(phary2, sizeof(kern_packet_t) * MAX_PH_ARY); |
| 735 | phary2 = NULL; |
| 736 | |
| 737 | kfree_data(pharyc, sizeof(kern_packet_t) * MAX_PH_ARY); |
| 738 | pharyc = NULL; |
| 739 | } |
| 740 | |
| 741 | static void |
| 742 | skmem_test_mbfreecb(caddr_t cl, uint32_t size, caddr_t arg) |
| 743 | { |
| 744 | #pragma unused(cl, size) |
| 745 | struct mbuf *m = (void *)arg; |
| 746 | |
| 747 | VERIFY(!mbuf_ring_cluster_is_active(m)); |
| 748 | VERIFY(skmt_mbcnt > 0); |
| 749 | os_atomic_dec(&skmt_mbcnt, relaxed); |
| 750 | } |
| 751 | |
| 752 | static void |
| 753 | skmem_test_alloccb(kern_packet_t ph, uint32_t idx, const void *ctx) |
| 754 | { |
| 755 | VERIFY(ph != 0); |
| 756 | VERIFY(ctx == &skmt_alloccb_ctx); |
| 757 | VERIFY(idx < skmt_alloccb_ctx.stc_req); |
| 758 | VERIFY(idx == os_atomic_inc_orig(&skmt_alloccb_ctx.stc_idx, relaxed)); |
| 759 | } |
| 760 | static void |
| 761 | skmem_packet_tests(uint32_t flags) |
| 762 | { |
| 763 | struct kern_pbufpool_memory_info pp_mb_mem_info; |
| 764 | struct kern_pbufpool_memory_info pp_mem_info; |
| 765 | struct kern_pbufpool_init pp_init; |
| 766 | kern_pbufpool_t pp = NULL; |
| 767 | struct kern_pbufpool_init pp_init_mb; |
| 768 | kern_pbufpool_t pp_mb = NULL; |
| 769 | mach_vm_address_t baddr = 0; |
| 770 | uint8_t *buffer, *ref_buffer; |
| 771 | kern_obj_idx_seg_t sg_idx; |
| 772 | kern_buflet_t buflet; |
| 773 | kern_segment_t sg; |
| 774 | kern_packet_t ph = 0, ph_mb = 0; |
| 775 | struct mbuf *m = NULL; |
| 776 | uint16_t len; |
| 777 | uint32_t i; |
| 778 | uint32_t csum_eee_ref, csum_eeo_ref, csum_eoe_ref, csum_eoo_ref; |
| 779 | uint32_t csum_oee_ref, csum_oeo_ref, csum_ooe_ref, csum_ooo_ref, csum; |
| 780 | boolean_t test_unaligned; |
| 781 | kern_buflet_t bft0, bft1; |
| 782 | |
| 783 | SK_ERR("flags 0x%x" , flags); |
| 784 | |
| 785 | /* |
| 786 | * XXX: Skip packet tests involving unaligned addresses when |
| 787 | * KBIF_INHIBIT_CACHE is set, as the copy-and-checksum routine |
| 788 | * currently assumes normal memory, rather than device memory. |
| 789 | */ |
| 790 | test_unaligned = !(flags & KBIF_INHIBIT_CACHE); |
| 791 | |
| 792 | /* allocate separately in case pool is setup for device memory */ |
| 793 | ref_buffer = (uint8_t *) kalloc_data(SKMEM_TEST_BUFSIZE, |
| 794 | Z_WAITOK | Z_ZERO); |
| 795 | |
| 796 | bzero(&pp_init_mb, sizeof(pp_init_mb)); |
| 797 | pp_init_mb.kbi_version = KERN_PBUFPOOL_CURRENT_VERSION; |
| 798 | pp_init_mb.kbi_buf_seg_size = skmem_usr_buf_seg_size; |
| 799 | (void) snprintf((char *)pp_init_mb.kbi_name, |
| 800 | sizeof(pp_init_mb.kbi_name), "%s" , "skmem_packet_tests_mb" ); |
| 801 | pp_init_mb.kbi_flags = flags | KBIF_BUFFER_ON_DEMAND; |
| 802 | pp_init_mb.kbi_max_frags = 4; |
| 803 | pp_init_mb.kbi_packets = 64; |
| 804 | pp_init_mb.kbi_bufsize = 512; |
| 805 | pp_init_mb.kbi_buflets = |
| 806 | pp_init_mb.kbi_packets * pp_init_mb.kbi_max_frags; |
| 807 | pp_init_mb.kbi_ctx = NULL; |
| 808 | pp_init_mb.kbi_ctx_retain = NULL; |
| 809 | pp_init_mb.kbi_ctx_release = NULL; |
| 810 | |
| 811 | VERIFY(kern_pbufpool_create(&pp_init_mb, &pp_mb, &pp_mb_mem_info) == 0); |
| 812 | VERIFY(kern_pbufpool_alloc_buffer(pp_mb, &baddr, NULL, NULL) == 0); |
| 813 | kern_pbufpool_free_buffer(pp_mb, baddr); |
| 814 | VERIFY(kern_pbufpool_alloc_buffer(pp_mb, &baddr, &sg, &sg_idx) == 0); |
| 815 | VERIFY(sg != NULL); |
| 816 | VERIFY(sg->sg_region != NULL); |
| 817 | VERIFY(sg->sg_md != NULL); |
| 818 | VERIFY(sg->sg_start != 0); |
| 819 | VERIFY(sg->sg_end != 0); |
| 820 | VERIFY(sg->sg_type == SKSEG_TYPE_ALLOC); |
| 821 | kern_pbufpool_free_buffer(pp_mb, baddr); |
| 822 | baddr = 0; |
| 823 | |
| 824 | /* add buflet to a packet with buf count 1 */ |
| 825 | VERIFY(kern_pbufpool_alloc(pp_mb, 1, &ph_mb) == 0); |
| 826 | VERIFY(kern_pbufpool_alloc_buflet(pp_mb, &bft1) == 0); |
| 827 | VERIFY(bft1 != NULL); |
| 828 | VERIFY(kern_buflet_get_data_address(bft1) != NULL); |
| 829 | VERIFY(kern_buflet_get_object_address(bft1) != NULL); |
| 830 | VERIFY((bft0 = kern_packet_get_next_buflet(ph_mb, NULL)) != NULL); |
| 831 | VERIFY(kern_packet_add_buflet(ph_mb, bft0, bft1) == 0); |
| 832 | VERIFY(kern_packet_get_buflet_count(ph_mb) == 2); |
| 833 | VERIFY(kern_packet_get_next_buflet(ph_mb, NULL) == bft0); |
| 834 | VERIFY(kern_packet_get_next_buflet(ph_mb, bft0) == bft1); |
| 835 | VERIFY(kern_packet_get_next_buflet(ph_mb, bft1) == NULL); |
| 836 | VERIFY(kern_packet_finalize(ph_mb) == 0); |
| 837 | kern_pbufpool_free(pp_mb, ph_mb); |
| 838 | ph_mb = 0; |
| 839 | |
| 840 | /* add buflet to a packet with buf count 0 */ |
| 841 | VERIFY(kern_pbufpool_alloc(pp_mb, 0, &ph_mb) == 0); |
| 842 | VERIFY(kern_packet_get_buflet_count(ph_mb) == 0); |
| 843 | VERIFY((bft0 = kern_packet_get_next_buflet(ph_mb, NULL)) == NULL); |
| 844 | VERIFY(kern_pbufpool_alloc_buflet(pp_mb, &bft1) == 0); |
| 845 | VERIFY(bft1 != NULL); |
| 846 | VERIFY(kern_packet_add_buflet(ph_mb, bft0, bft1) == 0); |
| 847 | VERIFY(kern_packet_get_buflet_count(ph_mb) == 1); |
| 848 | VERIFY(kern_packet_get_next_buflet(ph_mb, bft0) == bft1); |
| 849 | VERIFY(kern_packet_get_next_buflet(ph_mb, bft1) == NULL); |
| 850 | VERIFY(kern_buflet_get_data_address(bft1) != NULL); |
| 851 | VERIFY(kern_buflet_get_object_address(bft1) != NULL); |
| 852 | VERIFY(kern_buflet_get_data_limit(bft1) != 0); |
| 853 | VERIFY(kern_buflet_get_data_length(bft1) == 0); |
| 854 | VERIFY(kern_packet_finalize(ph_mb) == 0); |
| 855 | kern_pbufpool_free(pp_mb, ph_mb); |
| 856 | ph_mb = 0; |
| 857 | |
| 858 | bzero(&pp_init, sizeof(pp_init)); |
| 859 | pp_init.kbi_version = KERN_PBUFPOOL_CURRENT_VERSION; |
| 860 | pp_init.kbi_buf_seg_size = skmem_usr_buf_seg_size; |
| 861 | (void) snprintf((char *)pp_init.kbi_name, sizeof(pp_init.kbi_name), |
| 862 | "%s" , "skmem_packet_tests" ); |
| 863 | pp_init.kbi_flags = flags; |
| 864 | pp_init.kbi_packets = 64; |
| 865 | pp_init.kbi_bufsize = SKMEM_TEST_BUFSIZE; |
| 866 | pp_init.kbi_max_frags = 1; |
| 867 | pp_init.kbi_buflets = (64 * 2); |
| 868 | pp_init.kbi_ctx = NULL; |
| 869 | pp_init.kbi_ctx_retain = NULL; |
| 870 | pp_init.kbi_ctx_release = NULL; |
| 871 | |
| 872 | /* validate multi-buflet packet checksum/copy+checksum routines */ |
| 873 | VERIFY(kern_pbufpool_create(&pp_init, &pp, &pp_mem_info) == 0); |
| 874 | VERIFY(kern_pbufpool_alloc(pp, 1, &ph) == 0); |
| 875 | VERIFY(kern_packet_get_buflet_count(ph) == 1); |
| 876 | |
| 877 | VERIFY((buflet = kern_packet_get_next_buflet(ph, NULL)) != NULL); |
| 878 | VERIFY((buffer = kern_buflet_get_data_address(buflet)) != NULL); |
| 879 | len = SKMEM_TEST_BUFSIZE; |
| 880 | for (i = 0; i < len; i++) { |
| 881 | ref_buffer[i] = (i & 0xff); |
| 882 | } |
| 883 | /* enforce load/store byte for device memory case */ |
| 884 | volatile uint8_t *bufp = buffer; |
| 885 | for (i = 0; i < len; i++) { |
| 886 | bufp[i] = ref_buffer[i]; |
| 887 | } |
| 888 | VERIFY(kern_buflet_set_data_length(buflet, len) == 0); |
| 889 | VERIFY(__packet_finalize(ph) == 0); |
| 890 | |
| 891 | /* calculate and validate reference value */ |
| 892 | csum_eee_ref = __packet_cksum(buffer, len, 0); |
| 893 | VERIFY(skmem_reference_sum(ref_buffer, len, 0) == csum_eee_ref); |
| 894 | csum_eoe_ref = __packet_cksum(buffer, len - 2, 0); |
| 895 | VERIFY(skmem_reference_sum(ref_buffer, len - 2, 0) == csum_eoe_ref); |
| 896 | csum_eoo_ref = csum_eeo_ref = __packet_cksum(buffer, len - 1, 0); |
| 897 | VERIFY(skmem_reference_sum(ref_buffer, len - 1, 0) == csum_eoo_ref); |
| 898 | csum_oeo_ref = csum_ooo_ref = __packet_cksum(buffer + 1, len - 1, 0); |
| 899 | VERIFY(skmem_reference_sum(ref_buffer + 1, len - 1, 0) == csum_oeo_ref); |
| 900 | csum_ooe_ref = csum_oee_ref = __packet_cksum(buffer + 1, len - 2, 0); |
| 901 | VERIFY(skmem_reference_sum(ref_buffer + 1, len - 2, 0) == csum_ooe_ref); |
| 902 | |
| 903 | /* sanity tests */ |
| 904 | VERIFY(skmem_reference_sum(ref_buffer + 2, len - 2, 0) == |
| 905 | __packet_cksum(buffer + 2, len - 2, 0)); |
| 906 | VERIFY(skmem_reference_sum(ref_buffer + 3, len - 3, 0) == |
| 907 | __packet_cksum(buffer + 3, len - 3, 0)); |
| 908 | VERIFY(skmem_reference_sum(ref_buffer + 4, len - 4, 0) == |
| 909 | __packet_cksum(buffer + 4, len - 4, 0)); |
| 910 | VERIFY(skmem_reference_sum(ref_buffer + 5, len - 5, 0) == |
| 911 | __packet_cksum(buffer + 5, len - 5, 0)); |
| 912 | VERIFY(skmem_reference_sum(ref_buffer + 6, len - 6, 0) == |
| 913 | __packet_cksum(buffer + 6, len - 6, 0)); |
| 914 | VERIFY(skmem_reference_sum(ref_buffer + 7, len - 7, 0) == |
| 915 | __packet_cksum(buffer + 7, len - 7, 0)); |
| 916 | |
| 917 | VERIFY(mbuf_gethdr(MBUF_WAITOK, MBUF_TYPE_HEADER, &m) == 0); |
| 918 | VERIFY(mbuf_copyback(m, 0, len, buffer, MBUF_WAITOK) == 0); |
| 919 | |
| 920 | /* verify copy-checksum between packets */ |
| 921 | VERIFY(kern_pbufpool_alloc(pp_mb, 4, &ph_mb) == 0); |
| 922 | VERIFY(kern_packet_get_buflet_count(ph_mb) == 4); |
| 923 | pkt_copypkt_sum(ph, 0, ph_mb, 0, len - 1, &csum, TRUE); |
| 924 | METADATA_ADJUST_LEN(SK_PTR_ADDR_KQUM(ph_mb), 0, 0); |
| 925 | VERIFY(__packet_finalize(ph_mb) == 0); |
| 926 | if (csum_eeo_ref != csum) { |
| 927 | SK_ERR("pkt_copypkt_sum: csum_eeo_mismatch 0x%x, " |
| 928 | "0x%x, 0x%llx" , csum_eeo_ref, csum, |
| 929 | SK_KVA(SK_PTR_ADDR_KQUM(ph_mb))); |
| 930 | } |
| 931 | VERIFY(csum_eeo_ref == csum); |
| 932 | kern_pbufpool_free(pp_mb, ph_mb); |
| 933 | ph_mb = 0; |
| 934 | |
| 935 | if (test_unaligned) { |
| 936 | VERIFY(kern_pbufpool_alloc(pp_mb, 4, &ph_mb) == 0); |
| 937 | pkt_copypkt_sum(ph, 0, ph_mb, 1, len - 2, &csum, TRUE); |
| 938 | METADATA_ADJUST_LEN(SK_PTR_ADDR_KQUM(ph_mb), 0, 1); |
| 939 | SK_PTR_ADDR_KPKT(ph_mb)->pkt_headroom = 1; |
| 940 | SK_PTR_ADDR_KPKT(ph_mb)->pkt_l2_len = 0; |
| 941 | VERIFY(__packet_finalize(ph_mb) == 0); |
| 942 | if (csum_eoe_ref != csum) { |
| 943 | SK_ERR("pkt_copypkt_sum: csum_eoe_mismatch 0x%x, " |
| 944 | "0x%x, 0x%llx" , csum_eoe_ref, csum, |
| 945 | SK_KVA(SK_PTR_ADDR_KQUM(ph_mb))); |
| 946 | } |
| 947 | VERIFY(csum_eoe_ref == csum); |
| 948 | kern_pbufpool_free(pp_mb, ph_mb); |
| 949 | ph_mb = 0; |
| 950 | |
| 951 | VERIFY(kern_pbufpool_alloc(pp_mb, 4, &ph_mb) == 0); |
| 952 | pkt_copypkt_sum(ph, 0, ph_mb, 1, len - 1, &csum, TRUE); |
| 953 | METADATA_ADJUST_LEN(SK_PTR_ADDR_KQUM(ph_mb), 0, 1); |
| 954 | SK_PTR_ADDR_KPKT(ph_mb)->pkt_headroom = 1; |
| 955 | SK_PTR_ADDR_KPKT(ph_mb)->pkt_l2_len = 0; |
| 956 | VERIFY(__packet_finalize(ph_mb) == 0); |
| 957 | if (csum_eoo_ref != csum) { |
| 958 | SK_ERR("pkt_copypkt_sum: csum_eoo_mismatch 0x%x, " |
| 959 | "0x%x, 0x%llx" , csum_eoo_ref, csum, |
| 960 | SK_KVA(SK_PTR_ADDR_KQUM(ph_mb))); |
| 961 | } |
| 962 | VERIFY(csum_eoo_ref == csum); |
| 963 | kern_pbufpool_free(pp_mb, ph_mb); |
| 964 | ph_mb = 0; |
| 965 | |
| 966 | VERIFY(kern_pbufpool_alloc(pp_mb, 4, &ph_mb) == 0); |
| 967 | pkt_copypkt_sum(ph, 1, ph_mb, 0, len - 1, &csum, TRUE); |
| 968 | METADATA_ADJUST_LEN(SK_PTR_ADDR_KQUM(ph_mb), 0, 0); |
| 969 | SK_PTR_ADDR_KPKT(ph_mb)->pkt_headroom = 0; |
| 970 | SK_PTR_ADDR_KPKT(ph_mb)->pkt_l2_len = 0; |
| 971 | VERIFY(__packet_finalize(ph_mb) == 0); |
| 972 | if (csum_oeo_ref != csum) { |
| 973 | SK_ERR("pkt_copypkt_sum: csum_oeo_mismatch 0x%x, " |
| 974 | "0x%x, 0x%llx" , csum_oeo_ref, csum, |
| 975 | SK_KVA(SK_PTR_ADDR_KQUM(ph_mb))); |
| 976 | } |
| 977 | VERIFY(csum_oeo_ref == csum); |
| 978 | kern_pbufpool_free(pp_mb, ph_mb); |
| 979 | ph_mb = 0; |
| 980 | |
| 981 | VERIFY(kern_pbufpool_alloc(pp_mb, 4, &ph_mb) == 0); |
| 982 | pkt_copypkt_sum(ph, 1, ph_mb, 1, len - 1, &csum, TRUE); |
| 983 | METADATA_ADJUST_LEN(SK_PTR_ADDR_KQUM(ph_mb), 0, 1); |
| 984 | SK_PTR_ADDR_KPKT(ph_mb)->pkt_headroom = 1; |
| 985 | VERIFY(__packet_finalize(ph_mb) == 0); |
| 986 | if (csum_ooo_ref != csum) { |
| 987 | SK_ERR("pkt_copypkt_sum: csum_ooo_mismatch 0x%x, " |
| 988 | "0x%x, 0x%llx" , csum_ooo_ref, csum, |
| 989 | SK_KVA(SK_PTR_ADDR_KQUM(ph_mb))); |
| 990 | } |
| 991 | VERIFY(csum_ooo_ref == csum); |
| 992 | kern_pbufpool_free(pp_mb, ph_mb); |
| 993 | ph_mb = 0; |
| 994 | |
| 995 | VERIFY(kern_pbufpool_alloc(pp_mb, 4, &ph_mb) == 0); |
| 996 | pkt_copypkt_sum(ph, 1, ph_mb, 1, len - 2, &csum, TRUE); |
| 997 | METADATA_ADJUST_LEN(SK_PTR_ADDR_KQUM(ph_mb), 0, 1); |
| 998 | SK_PTR_ADDR_KPKT(ph_mb)->pkt_headroom = 1; |
| 999 | VERIFY(__packet_finalize(ph_mb) == 0); |
| 1000 | if (csum_ooe_ref != csum) { |
| 1001 | SK_ERR("pkt_copypkt_sum: csum_ooe_mismatch 0x%x, " |
| 1002 | "0x%x, 0x%llx" , csum_ooe_ref, csum, |
| 1003 | SK_KVA(SK_PTR_ADDR_KQUM(ph_mb))); |
| 1004 | } |
| 1005 | VERIFY(csum_ooe_ref == csum); |
| 1006 | kern_pbufpool_free(pp_mb, ph_mb); |
| 1007 | ph_mb = 0; |
| 1008 | |
| 1009 | VERIFY(kern_pbufpool_alloc(pp_mb, 4, &ph_mb) == 0); |
| 1010 | pkt_copypkt_sum(ph, 1, ph_mb, 0, len - 2, &csum, TRUE); |
| 1011 | METADATA_ADJUST_LEN(SK_PTR_ADDR_KQUM(ph_mb), 0, 0); |
| 1012 | SK_PTR_ADDR_KPKT(ph_mb)->pkt_headroom = 0; |
| 1013 | SK_PTR_ADDR_KPKT(ph_mb)->pkt_l2_len = 0; |
| 1014 | VERIFY(__packet_finalize(ph_mb) == 0); |
| 1015 | if (csum_ooe_ref != csum) { |
| 1016 | SK_ERR("pkt_copypkt_sum: csum_oee_mismatch 0x%x, " |
| 1017 | "0x%x, 0x%llx" , csum_oee_ref, csum, |
| 1018 | SK_KVA(SK_PTR_ADDR_KQUM(ph_mb))); |
| 1019 | } |
| 1020 | VERIFY(csum_oee_ref == csum); |
| 1021 | kern_pbufpool_free(pp_mb, ph_mb); |
| 1022 | ph_mb = 0; |
| 1023 | } |
| 1024 | |
| 1025 | VERIFY(kern_pbufpool_alloc(pp_mb, 4, &ph_mb) == 0); |
| 1026 | VERIFY(kern_packet_get_buflet_count(ph_mb) == 4); |
| 1027 | pkt_copypkt_sum(ph, 0, ph_mb, 0, len, &csum, TRUE); |
| 1028 | METADATA_ADJUST_LEN(SK_PTR_ADDR_KQUM(ph_mb), 0, 0); |
| 1029 | SK_PTR_ADDR_KPKT(ph_mb)->pkt_headroom = 0; |
| 1030 | SK_PTR_ADDR_KPKT(ph_mb)->pkt_l2_len = 0; |
| 1031 | VERIFY(__packet_finalize(ph_mb) == 0); |
| 1032 | if (csum_eee_ref != csum) { |
| 1033 | SK_ERR("pkt_copypkt_sum: csum_eee_mismatch 0x%x, " |
| 1034 | "0x%x, 0x%llx" , csum_eee_ref, csum, |
| 1035 | SK_KVA(SK_PTR_ADDR_KQUM(ph_mb))); |
| 1036 | } |
| 1037 | VERIFY(csum_eee_ref == csum); |
| 1038 | |
| 1039 | /* verify copy-checksum from packet to buffer */ |
| 1040 | csum = pkt_copyaddr_sum(ph_mb, 0, buffer, len - 1, TRUE, 0, NULL); |
| 1041 | if (csum_eeo_ref != csum) { |
| 1042 | SK_ERR("pkt_copyaddr_sum: csum_eeo_mismatch " |
| 1043 | "0x%x, 0x%x, 0x%llx, 0x%llx" , csum_eeo_ref, |
| 1044 | csum, SK_KVA(SK_PTR_ADDR_KQUM(ph_mb)), |
| 1045 | SK_KVA(buffer)); |
| 1046 | } |
| 1047 | VERIFY(csum_eeo_ref == csum); |
| 1048 | |
| 1049 | if (test_unaligned) { |
| 1050 | csum = pkt_copyaddr_sum(ph_mb, 0, buffer + 1, len - 1, TRUE, 0, NULL); |
| 1051 | if (csum_eoo_ref != csum) { |
| 1052 | SK_ERR("pkt_copyaddr_sum: csum_eoo_mismatch " |
| 1053 | "0x%x, 0x%x, 0x%llx, 0x%llx" , csum_eoo_ref, |
| 1054 | csum, SK_KVA(SK_PTR_ADDR_KQUM(ph_mb)), |
| 1055 | SK_KVA(buffer)); |
| 1056 | } |
| 1057 | VERIFY(csum_eoo_ref == csum); |
| 1058 | |
| 1059 | csum = pkt_copyaddr_sum(ph_mb, 0, buffer + 1, len - 2, TRUE, 0, NULL); |
| 1060 | if (csum_eoe_ref != csum) { |
| 1061 | SK_ERR("pkt_copyaddr_sum: csum_eoe_mismatch " |
| 1062 | "0x%x, 0x%x, 0x%llx, 0x%llx" , csum_eoe_ref, |
| 1063 | csum, SK_KVA(SK_PTR_ADDR_KQUM(ph_mb)), |
| 1064 | SK_KVA(buffer)); |
| 1065 | } |
| 1066 | VERIFY(csum_eoe_ref == csum); |
| 1067 | |
| 1068 | csum = pkt_copyaddr_sum(ph_mb, 1, buffer + 1, len - 2, TRUE, 0, NULL); |
| 1069 | if (csum_ooe_ref != csum) { |
| 1070 | SK_ERR("pkt_copyaddr_sum: csum_ooe_mismatch " |
| 1071 | "0x%x, 0x%x, 0x%llx, 0x%llx" , csum_ooe_ref, |
| 1072 | csum, SK_KVA(SK_PTR_ADDR_KQUM(ph_mb)), |
| 1073 | SK_KVA(buffer)); |
| 1074 | } |
| 1075 | VERIFY(csum_ooe_ref == csum); |
| 1076 | |
| 1077 | csum = pkt_copyaddr_sum(ph_mb, 1, buffer, len - 2, TRUE, 0, NULL); |
| 1078 | if (csum_oee_ref != csum) { |
| 1079 | SK_ERR("pkt_copyaddr_sum: csum_oee_mismatch " |
| 1080 | "0x%x, 0x%x, 0x%llx, 0x%llx" , csum_oee_ref, |
| 1081 | csum, SK_KVA(SK_PTR_ADDR_KQUM(ph_mb)), |
| 1082 | SK_KVA(buffer)); |
| 1083 | } |
| 1084 | VERIFY(csum_oee_ref == csum); |
| 1085 | |
| 1086 | csum = pkt_copyaddr_sum(ph_mb, 1, buffer, len - 1, TRUE, 0, NULL); |
| 1087 | if (csum_oeo_ref != csum) { |
| 1088 | SK_ERR("pkt_copyaddr_sum: csum_oeo_mismatch " |
| 1089 | "0x%x, 0x%x, 0x%llx, 0x%llx" , csum_oeo_ref, |
| 1090 | csum, SK_KVA(SK_PTR_ADDR_KQUM(ph_mb)), |
| 1091 | SK_KVA(buffer)); |
| 1092 | } |
| 1093 | VERIFY(csum_oeo_ref == csum); |
| 1094 | |
| 1095 | csum = pkt_copyaddr_sum(ph_mb, 1, buffer + 1, len - 1, TRUE, 0, NULL); |
| 1096 | if (csum_ooo_ref != csum) { |
| 1097 | SK_ERR("pkt_copyaddr_sum: csum_ooo_mismatch " |
| 1098 | "0x%x, 0x%x, 0x%llx, 0x%llx" , csum_ooo_ref, |
| 1099 | csum, SK_KVA(SK_PTR_ADDR_KQUM(ph_mb)), |
| 1100 | SK_KVA(buffer)); |
| 1101 | } |
| 1102 | VERIFY(csum_ooo_ref == csum); |
| 1103 | } |
| 1104 | |
| 1105 | csum = pkt_copyaddr_sum(ph_mb, 0, buffer, len, TRUE, 0, NULL); |
| 1106 | if (csum_eee_ref != csum) { |
| 1107 | SK_ERR("pkt_copyaddr_sum: csum_eee_mismatch " |
| 1108 | "0x%x, 0x%x, 0x%llx, 0x%llx" , csum_eee_ref, |
| 1109 | csum, SK_KVA(SK_PTR_ADDR_KQUM(ph_mb)), |
| 1110 | SK_KVA(buffer)); |
| 1111 | } |
| 1112 | VERIFY(csum_eee_ref == csum); |
| 1113 | |
| 1114 | for (i = 0; i < len; i++) { |
| 1115 | VERIFY(buffer[i] == (i & 0xff)); |
| 1116 | } |
| 1117 | kern_pbufpool_free(pp_mb, ph_mb); |
| 1118 | ph_mb = 0; |
| 1119 | |
| 1120 | if (test_unaligned) { |
| 1121 | /* verify copy-checksum from mbuf to packet */ |
| 1122 | VERIFY(kern_pbufpool_alloc(pp_mb, 4, &ph_mb) == 0); |
| 1123 | VERIFY(kern_packet_get_buflet_count(ph_mb) == 4); |
| 1124 | csum = pkt_mcopypkt_sum(m, 0, ph_mb, 0, len, TRUE); |
| 1125 | METADATA_ADJUST_LEN(SK_PTR_ADDR_KQUM(ph_mb), 0, 0); |
| 1126 | SK_PTR_ADDR_KPKT(ph_mb)->pkt_headroom = 0; |
| 1127 | SK_PTR_ADDR_KPKT(ph_mb)->pkt_l2_len = 0; |
| 1128 | VERIFY(__packet_finalize(ph_mb) == 0); |
| 1129 | if (csum_eee_ref != csum) { |
| 1130 | SK_ERR("pkt_mcopypkt_sum: csum_eee_mismatch " |
| 1131 | "0x%x, 0x%x, 0x%llx, 0x%llx" , csum_eee_ref, |
| 1132 | csum, SK_KVA(SK_PTR_ADDR_KQUM(ph_mb)), |
| 1133 | SK_KVA(m)); |
| 1134 | } |
| 1135 | VERIFY(csum_eee_ref == csum); |
| 1136 | kern_pbufpool_free(pp_mb, ph_mb); |
| 1137 | ph_mb = 0; |
| 1138 | |
| 1139 | VERIFY(kern_pbufpool_alloc(pp_mb, 4, &ph_mb) == 0); |
| 1140 | VERIFY(kern_packet_get_buflet_count(ph_mb) == 4); |
| 1141 | csum = pkt_mcopypkt_sum(m, 0, ph_mb, 1, len - 2, TRUE); |
| 1142 | METADATA_ADJUST_LEN(SK_PTR_ADDR_KQUM(ph_mb), 0, 1); |
| 1143 | SK_PTR_ADDR_KPKT(ph_mb)->pkt_headroom = 1; |
| 1144 | SK_PTR_ADDR_KPKT(ph_mb)->pkt_l2_len = 0; |
| 1145 | VERIFY(__packet_finalize(ph_mb) == 0); |
| 1146 | if (csum_eoe_ref != csum) { |
| 1147 | SK_ERR("pkt_mcopypkt_sum: csum_eoe_mismatch " |
| 1148 | "0x%x, 0x%x, 0x%llx, 0x%llx" , csum_eoe_ref, |
| 1149 | csum, SK_KVA(SK_PTR_ADDR_KQUM(ph_mb)), |
| 1150 | SK_KVA(m)); |
| 1151 | } |
| 1152 | VERIFY(csum_eoe_ref == csum); |
| 1153 | kern_pbufpool_free(pp_mb, ph_mb); |
| 1154 | ph_mb = 0; |
| 1155 | |
| 1156 | VERIFY(kern_pbufpool_alloc(pp_mb, 4, &ph_mb) == 0); |
| 1157 | VERIFY(kern_packet_get_buflet_count(ph_mb) == 4); |
| 1158 | csum = pkt_mcopypkt_sum(m, 0, ph_mb, 1, len - 1, TRUE); |
| 1159 | METADATA_ADJUST_LEN(SK_PTR_ADDR_KQUM(ph_mb), 0, 1); |
| 1160 | SK_PTR_ADDR_KPKT(ph_mb)->pkt_headroom = 1; |
| 1161 | SK_PTR_ADDR_KPKT(ph_mb)->pkt_l2_len = 0; |
| 1162 | VERIFY(__packet_finalize(ph_mb) == 0); |
| 1163 | if (csum_eoo_ref != csum) { |
| 1164 | SK_ERR("pkt_mcopypkt_sum: csum_eoo_mismatch " |
| 1165 | "0x%x, 0x%x, 0x%llx, 0x%llx" , csum_eoo_ref, |
| 1166 | csum, SK_KVA(SK_PTR_ADDR_KQUM(ph_mb)), |
| 1167 | SK_KVA(m)); |
| 1168 | } |
| 1169 | VERIFY(csum_eoo_ref == csum); |
| 1170 | kern_pbufpool_free(pp_mb, ph_mb); |
| 1171 | ph_mb = 0; |
| 1172 | } |
| 1173 | |
| 1174 | VERIFY(kern_pbufpool_alloc(pp_mb, 4, &ph_mb) == 0); |
| 1175 | VERIFY(kern_packet_get_buflet_count(ph_mb) == 4); |
| 1176 | csum = pkt_mcopypkt_sum(m, 0, ph_mb, 0, len - 1, TRUE); |
| 1177 | METADATA_ADJUST_LEN(SK_PTR_ADDR_KQUM(ph_mb), 0, 0); |
| 1178 | SK_PTR_ADDR_KPKT(ph_mb)->pkt_headroom = 0; |
| 1179 | SK_PTR_ADDR_KPKT(ph_mb)->pkt_l2_len = 0; |
| 1180 | VERIFY(__packet_finalize(ph_mb) == 0); |
| 1181 | if (csum_eeo_ref != csum) { |
| 1182 | SK_ERR("pkt_mcopypkt_sum: csum_eeo_mismatch " |
| 1183 | "0x%x, 0x%x, 0x%llx, 0x%llx" , csum_eeo_ref, |
| 1184 | csum, SK_KVA(SK_PTR_ADDR_KQUM(ph_mb)), |
| 1185 | SK_KVA(m)); |
| 1186 | } |
| 1187 | VERIFY(csum_eeo_ref == csum); |
| 1188 | kern_pbufpool_free(pp_mb, ph_mb); |
| 1189 | ph_mb = 0; |
| 1190 | |
| 1191 | if (test_unaligned) { |
| 1192 | VERIFY(kern_pbufpool_alloc(pp_mb, 4, &ph_mb) == 0); |
| 1193 | VERIFY(kern_packet_get_buflet_count(ph_mb) == 4); |
| 1194 | csum = pkt_mcopypkt_sum(m, 1, ph_mb, 0, len - 1, TRUE); |
| 1195 | METADATA_ADJUST_LEN(SK_PTR_ADDR_KQUM(ph_mb), 0, 0); |
| 1196 | SK_PTR_ADDR_KPKT(ph_mb)->pkt_headroom = 0; |
| 1197 | SK_PTR_ADDR_KPKT(ph_mb)->pkt_l2_len = 0; |
| 1198 | VERIFY(__packet_finalize(ph_mb) == 0); |
| 1199 | if (csum_oeo_ref != csum) { |
| 1200 | SK_ERR("pkt_mcopypkt_sum: csum_oeo_mismatch " |
| 1201 | "0x%x, 0x%x, 0x%llx, 0x%llx" , csum_oeo_ref, |
| 1202 | csum, SK_KVA(SK_PTR_ADDR_KQUM(ph_mb)), |
| 1203 | SK_KVA(m)); |
| 1204 | } |
| 1205 | VERIFY(csum_oeo_ref == csum); |
| 1206 | kern_pbufpool_free(pp_mb, ph_mb); |
| 1207 | ph_mb = 0; |
| 1208 | |
| 1209 | VERIFY(kern_pbufpool_alloc(pp_mb, 4, &ph_mb) == 0); |
| 1210 | VERIFY(kern_packet_get_buflet_count(ph_mb) == 4); |
| 1211 | csum = pkt_mcopypkt_sum(m, 1, ph_mb, 0, len - 2, TRUE); |
| 1212 | METADATA_ADJUST_LEN(SK_PTR_ADDR_KQUM(ph_mb), 0, 0); |
| 1213 | SK_PTR_ADDR_KPKT(ph_mb)->pkt_headroom = 0; |
| 1214 | SK_PTR_ADDR_KPKT(ph_mb)->pkt_l2_len = 0; |
| 1215 | VERIFY(__packet_finalize(ph_mb) == 0); |
| 1216 | if (csum_oee_ref != csum) { |
| 1217 | SK_ERR("pkt_mcopypkt_sum: csum_oee_mismatch " |
| 1218 | "0x%x, 0x%x, 0x%llx, 0x%llx" , csum_oee_ref, |
| 1219 | csum, SK_KVA(SK_PTR_ADDR_KQUM(ph_mb)), |
| 1220 | SK_KVA(m)); |
| 1221 | } |
| 1222 | VERIFY(csum_oee_ref == csum); |
| 1223 | kern_pbufpool_free(pp_mb, ph_mb); |
| 1224 | ph_mb = 0; |
| 1225 | |
| 1226 | VERIFY(kern_pbufpool_alloc(pp_mb, 4, &ph_mb) == 0); |
| 1227 | VERIFY(kern_packet_get_buflet_count(ph_mb) == 4); |
| 1228 | csum = pkt_mcopypkt_sum(m, 1, ph_mb, 1, len - 2, TRUE); |
| 1229 | METADATA_ADJUST_LEN(SK_PTR_ADDR_KQUM(ph_mb), 0, 1); |
| 1230 | SK_PTR_ADDR_KPKT(ph_mb)->pkt_headroom = 1; |
| 1231 | SK_PTR_ADDR_KPKT(ph_mb)->pkt_l2_len = 0; |
| 1232 | VERIFY(__packet_finalize(ph_mb) == 0); |
| 1233 | if (csum_ooe_ref != csum) { |
| 1234 | SK_ERR("pkt_mcopypkt_sum: csum_ooe_mismatch " |
| 1235 | "0x%x, 0x%x, 0x%llx, 0x%llx" , csum_ooe_ref, |
| 1236 | csum, SK_KVA(SK_PTR_ADDR_KQUM(ph_mb)), |
| 1237 | SK_KVA(m)); |
| 1238 | } |
| 1239 | VERIFY(csum_ooe_ref == csum); |
| 1240 | kern_pbufpool_free(pp_mb, ph_mb); |
| 1241 | ph_mb = 0; |
| 1242 | |
| 1243 | VERIFY(kern_pbufpool_alloc(pp_mb, 4, &ph_mb) == 0); |
| 1244 | VERIFY(kern_packet_get_buflet_count(ph_mb) == 4); |
| 1245 | csum = pkt_mcopypkt_sum(m, 1, ph_mb, 1, len - 1, TRUE); |
| 1246 | METADATA_ADJUST_LEN(SK_PTR_ADDR_KQUM(ph_mb), 0, 1); |
| 1247 | SK_PTR_ADDR_KPKT(ph_mb)->pkt_headroom = 1; |
| 1248 | SK_PTR_ADDR_KPKT(ph_mb)->pkt_l2_len = 0; |
| 1249 | VERIFY(__packet_finalize(ph_mb) == 0); |
| 1250 | if (csum_ooo_ref != csum) { |
| 1251 | SK_ERR("pkt_mcopypkt_sum: csum_ooo_mismatch " |
| 1252 | "0x%x, 0x%x, 0x%llx, 0x%llx" , csum_ooo_ref, |
| 1253 | csum, SK_KVA(SK_PTR_ADDR_KQUM(ph_mb)), |
| 1254 | SK_KVA(m)); |
| 1255 | } |
| 1256 | VERIFY(csum_ooo_ref == csum); |
| 1257 | kern_pbufpool_free(pp_mb, ph_mb); |
| 1258 | ph_mb = 0; |
| 1259 | } |
| 1260 | |
| 1261 | kern_pbufpool_free(pp, ph); |
| 1262 | ph = 0; |
| 1263 | m_freem(m); |
| 1264 | m = NULL; |
| 1265 | kern_pbufpool_destroy(pp_mb); |
| 1266 | pp_mb = NULL; |
| 1267 | kern_pbufpool_destroy(pp); |
| 1268 | pp = NULL; |
| 1269 | |
| 1270 | kfree_data(ref_buffer, SKMEM_TEST_BUFSIZE); |
| 1271 | ref_buffer = NULL; |
| 1272 | } |
| 1273 | |
| 1274 | static void |
| 1275 | skmem_quantum_tests(uint32_t flags) |
| 1276 | { |
| 1277 | struct kern_pbufpool_init pp_init; |
| 1278 | struct kern_pbufpool_memory_info pp_mem_info; |
| 1279 | kern_pbufpool_t pp = NULL; |
| 1280 | kern_packet_t *phary = NULL; |
| 1281 | uint32_t phcnt = 0; |
| 1282 | kern_packet_t ph = 0; |
| 1283 | uint32_t i; |
| 1284 | errno_t err; |
| 1285 | |
| 1286 | flags |= KBIF_QUANTUM; |
| 1287 | |
| 1288 | SK_ERR("flags 0x%x" , flags); |
| 1289 | |
| 1290 | phary = (kern_packet_t *) kalloc_data(sizeof(kern_packet_t) * MAX_PH_ARY, |
| 1291 | Z_WAITOK | Z_ZERO); |
| 1292 | |
| 1293 | bzero(&pp_init, sizeof(pp_init)); |
| 1294 | pp_init.kbi_version = KERN_PBUFPOOL_CURRENT_VERSION; |
| 1295 | pp_init.kbi_buf_seg_size = skmem_usr_buf_seg_size; |
| 1296 | (void) snprintf((char *)pp_init.kbi_name, sizeof(pp_init.kbi_name), |
| 1297 | "%s" , "skmem_quantum_tests" ); |
| 1298 | pp_init.kbi_flags = (KBIF_QUANTUM | flags); |
| 1299 | pp_init.kbi_packets = 64; |
| 1300 | pp_init.kbi_bufsize = SKMEM_TEST_BUFSIZE; |
| 1301 | pp_init.kbi_buflets = (64 * 2); |
| 1302 | pp_init.kbi_ctx = NULL; |
| 1303 | pp_init.kbi_ctx_retain = NULL; |
| 1304 | pp_init.kbi_ctx_release = NULL; |
| 1305 | |
| 1306 | pp_init.kbi_max_frags = 4; |
| 1307 | /* max_frags must be 1 for quantum type */ |
| 1308 | VERIFY(kern_pbufpool_create(&pp_init, &pp, NULL) == EINVAL); |
| 1309 | pp_init.kbi_max_frags = 1; |
| 1310 | if ((flags & KBIF_QUANTUM) && (flags & KBIF_BUFFER_ON_DEMAND)) { |
| 1311 | VERIFY(kern_pbufpool_create(&pp_init, &pp, NULL) == EINVAL); |
| 1312 | goto done; |
| 1313 | } |
| 1314 | VERIFY(kern_pbufpool_create(&pp_init, &pp, NULL) == 0); |
| 1315 | bzero(&pp_mem_info, sizeof(pp_mem_info)); |
| 1316 | VERIFY(kern_pbufpool_get_memory_info(pp, &pp_mem_info) == 0); |
| 1317 | VERIFY(pp_mem_info.kpm_flags & KPMF_EXTERNAL); |
| 1318 | VERIFY(pp_mem_info.kpm_buflets >= pp_mem_info.kpm_packets); |
| 1319 | VERIFY(pp_mem_info.kpm_packets >= 64); |
| 1320 | VERIFY(pp_mem_info.kpm_packets <= MAX_PH_ARY); |
| 1321 | VERIFY(pp_mem_info.kpm_max_frags == 1); |
| 1322 | VERIFY(pp_mem_info.kpm_buflets >= 64); |
| 1323 | VERIFY(pp_mem_info.kpm_bufsize == SKMEM_TEST_BUFSIZE); |
| 1324 | VERIFY(kern_pbufpool_alloc(pp, 4, &ph) == EINVAL); |
| 1325 | /* allocate and free one at a time */ |
| 1326 | for (i = 0, phcnt = 0; i < pp_mem_info.kpm_packets; i++) { |
| 1327 | boolean_t stop = FALSE; |
| 1328 | /* |
| 1329 | * This may fail if skmem_region_mtbf is set, or if |
| 1330 | * the system is short on memory. Perform retries |
| 1331 | * at this layer to get at least 64 packets. |
| 1332 | */ |
| 1333 | while ((err = kern_pbufpool_alloc_nosleep(pp, 1, &ph)) != 0) { |
| 1334 | VERIFY(err == ENOMEM); |
| 1335 | if (phcnt < 64) { |
| 1336 | SK_ERR("retrying alloc for quantum %u" , phcnt); |
| 1337 | delay(250 * NSEC_PER_USEC); /* 1/4 sec */ |
| 1338 | continue; |
| 1339 | } |
| 1340 | stop = TRUE; |
| 1341 | break; |
| 1342 | } |
| 1343 | if (stop) { |
| 1344 | break; |
| 1345 | } |
| 1346 | VERIFY(ph != 0); |
| 1347 | VERIFY(kern_packet_get_data_length(ph) == 0); |
| 1348 | VERIFY(kern_packet_get_buflet_count(ph) == 1); |
| 1349 | phary[phcnt++] = ph; |
| 1350 | } |
| 1351 | VERIFY(phcnt >= 64); |
| 1352 | for (i = 0; i < phcnt; i++) { |
| 1353 | kern_pbufpool_free(pp, phary[i]); |
| 1354 | phary[i] = 0; |
| 1355 | } |
| 1356 | /* allocate and free in batch */ |
| 1357 | phcnt = pp_mem_info.kpm_packets; |
| 1358 | for (;;) { |
| 1359 | err = kern_pbufpool_alloc_batch_nosleep(pp, 1, phary, &phcnt); |
| 1360 | VERIFY(err != EINVAL && err != ENOTSUP); |
| 1361 | if (err == ENOMEM) { |
| 1362 | phcnt = pp_mem_info.kpm_packets; |
| 1363 | SK_ERR("retrying batch alloc for %u quantums" , phcnt); |
| 1364 | delay(250 * NSEC_PER_USEC); /* 1/4 sec */ |
| 1365 | } else if (err == EAGAIN) { |
| 1366 | SK_ERR("batch alloc for %u quantums only returned %u" , |
| 1367 | pp_mem_info.kpm_packets, phcnt); |
| 1368 | break; |
| 1369 | } else { |
| 1370 | VERIFY(err == 0); |
| 1371 | break; |
| 1372 | } |
| 1373 | } |
| 1374 | VERIFY(phcnt > 0); |
| 1375 | for (i = 0; i < phcnt; i++) { |
| 1376 | VERIFY(phary[i] != 0); |
| 1377 | VERIFY(kern_packet_get_data_length(phary[i]) == 0); |
| 1378 | VERIFY(kern_packet_get_buflet_count(phary[i]) == 1); |
| 1379 | } |
| 1380 | kern_pbufpool_free_batch(pp, phary, phcnt); |
| 1381 | /* allocate and free one at a time (blocking) */ |
| 1382 | for (i = 0, phcnt = 0; i < pp_mem_info.kpm_packets; i++) { |
| 1383 | VERIFY(kern_pbufpool_alloc(pp, 1, &ph) == 0); |
| 1384 | VERIFY(ph != 0); |
| 1385 | VERIFY(kern_packet_get_data_length(ph) == 0); |
| 1386 | VERIFY(kern_packet_get_buflet_count(ph) == 1); |
| 1387 | phary[phcnt++] = ph; |
| 1388 | } |
| 1389 | VERIFY(phcnt >= 64); |
| 1390 | for (i = 0; i < phcnt; i++) { |
| 1391 | kern_pbufpool_free(pp, phary[i]); |
| 1392 | phary[i] = 0; |
| 1393 | } |
| 1394 | /* allocate and free in batch (blocking) */ |
| 1395 | bzero(&skmt_alloccb_ctx, sizeof(skmt_alloccb_ctx)); |
| 1396 | skmt_alloccb_ctx.stc_req = phcnt; |
| 1397 | VERIFY(kern_pbufpool_alloc_batch_callback(pp, 1, phary, &phcnt, |
| 1398 | skmem_test_alloccb, &skmt_alloccb_ctx) == 0); |
| 1399 | VERIFY(skmt_alloccb_ctx.stc_idx == phcnt); |
| 1400 | kern_pbufpool_free_batch(pp, phary, phcnt); |
| 1401 | kern_pbufpool_destroy(pp); |
| 1402 | pp = NULL; |
| 1403 | done: |
| 1404 | kfree_data(phary, sizeof(kern_packet_t) * MAX_PH_ARY); |
| 1405 | phary = NULL; |
| 1406 | } |
| 1407 | |
| 1408 | static void |
| 1409 | skmem_basic_tests(void) |
| 1410 | { |
| 1411 | /* basic sanity (alloc/free) tests on packet buflet KPIs */ |
| 1412 | skmem_buflet_tests(0); |
| 1413 | skmem_buflet_tests(KBIF_PERSISTENT); |
| 1414 | skmem_buflet_tests(KBIF_PERSISTENT | KBIF_NO_MAGAZINES); |
| 1415 | skmem_buflet_tests(KBIF_PERSISTENT | KBIF_PHYS_CONTIGUOUS); |
| 1416 | skmem_buflet_tests(KBIF_PERSISTENT | KBIF_PHYS_CONTIGUOUS | |
| 1417 | KBIF_USER_ACCESS); |
| 1418 | skmem_buflet_tests(KBIF_PERSISTENT | KBIF_MONOLITHIC | |
| 1419 | KBIF_USER_ACCESS); |
| 1420 | skmem_buflet_tests(KBIF_PERSISTENT | KBIF_BUFFER_ON_DEMAND); |
| 1421 | skmem_buflet_tests(KBIF_PERSISTENT | TEST_OPTION_INHIBIT_CACHE); |
| 1422 | skmem_buflet_tests(KBIF_PERSISTENT | KBIF_MONOLITHIC | |
| 1423 | KBIF_BUFFER_ON_DEMAND); |
| 1424 | skmem_buflet_tests(KBIF_PERSISTENT | KBIF_MONOLITHIC | |
| 1425 | KBIF_USER_ACCESS | TEST_OPTION_INHIBIT_CACHE); |
| 1426 | skmem_buflet_tests(KBIF_PERSISTENT | KBIF_MONOLITHIC | |
| 1427 | KBIF_BUFFER_ON_DEMAND | TEST_OPTION_INHIBIT_CACHE); |
| 1428 | skmem_buflet_tests(KBIF_MONOLITHIC | KBIF_PHYS_CONTIGUOUS); |
| 1429 | skmem_buflet_tests(KBIF_MONOLITHIC | KBIF_USER_ACCESS); |
| 1430 | skmem_buflet_tests(KBIF_MONOLITHIC | KBIF_USER_ACCESS | |
| 1431 | KBIF_NO_MAGAZINES); |
| 1432 | skmem_buflet_tests(KBIF_MONOLITHIC | KBIF_PHYS_CONTIGUOUS | |
| 1433 | KBIF_USER_ACCESS); |
| 1434 | skmem_buflet_tests(KBIF_MONOLITHIC | KBIF_BUFFER_ON_DEMAND); |
| 1435 | skmem_buflet_tests(KBIF_MONOLITHIC | KBIF_USER_ACCESS | |
| 1436 | TEST_OPTION_INHIBIT_CACHE); |
| 1437 | skmem_buflet_tests(KBIF_MONOLITHIC | KBIF_BUFFER_ON_DEMAND | |
| 1438 | TEST_OPTION_INHIBIT_CACHE); |
| 1439 | skmem_buflet_tests(KBIF_BUFFER_ON_DEMAND | KBIF_NO_MAGAZINES); |
| 1440 | skmem_buflet_tests(KBIF_BUFFER_ON_DEMAND | TEST_OPTION_INHIBIT_CACHE); |
| 1441 | |
| 1442 | /* basic sanity (alloc/free) tests on packet buflet KPIs (vdev) */ |
| 1443 | skmem_buflet_tests(KBIF_VIRTUAL_DEVICE); |
| 1444 | skmem_buflet_tests(KBIF_VIRTUAL_DEVICE | KBIF_NO_MAGAZINES); |
| 1445 | skmem_buflet_tests(KBIF_VIRTUAL_DEVICE | KBIF_PERSISTENT); |
| 1446 | skmem_buflet_tests(KBIF_VIRTUAL_DEVICE | KBIF_PHYS_CONTIGUOUS); |
| 1447 | skmem_buflet_tests(KBIF_VIRTUAL_DEVICE | KBIF_PERSISTENT | |
| 1448 | KBIF_PHYS_CONTIGUOUS); |
| 1449 | skmem_buflet_tests(KBIF_VIRTUAL_DEVICE | KBIF_PERSISTENT | |
| 1450 | KBIF_MONOLITHIC | KBIF_USER_ACCESS | KBIF_PHYS_CONTIGUOUS); |
| 1451 | skmem_buflet_tests(KBIF_VIRTUAL_DEVICE | KBIF_PERSISTENT | |
| 1452 | KBIF_MONOLITHIC | KBIF_USER_ACCESS); |
| 1453 | skmem_buflet_tests(KBIF_VIRTUAL_DEVICE | KBIF_PERSISTENT | |
| 1454 | KBIF_BUFFER_ON_DEMAND); |
| 1455 | skmem_buflet_tests(KBIF_VIRTUAL_DEVICE | KBIF_PERSISTENT | |
| 1456 | TEST_OPTION_INHIBIT_CACHE); |
| 1457 | skmem_buflet_tests(KBIF_VIRTUAL_DEVICE | KBIF_PERSISTENT | |
| 1458 | KBIF_MONOLITHIC | KBIF_BUFFER_ON_DEMAND); |
| 1459 | skmem_buflet_tests(KBIF_VIRTUAL_DEVICE | KBIF_PERSISTENT | |
| 1460 | KBIF_MONOLITHIC | KBIF_USER_ACCESS | TEST_OPTION_INHIBIT_CACHE); |
| 1461 | skmem_buflet_tests(KBIF_VIRTUAL_DEVICE | KBIF_PERSISTENT | |
| 1462 | KBIF_MONOLITHIC | KBIF_BUFFER_ON_DEMAND | TEST_OPTION_INHIBIT_CACHE); |
| 1463 | skmem_buflet_tests(KBIF_VIRTUAL_DEVICE | KBIF_MONOLITHIC | |
| 1464 | KBIF_USER_ACCESS); |
| 1465 | skmem_buflet_tests(KBIF_VIRTUAL_DEVICE | KBIF_MONOLITHIC | |
| 1466 | KBIF_PHYS_CONTIGUOUS); |
| 1467 | skmem_buflet_tests(KBIF_VIRTUAL_DEVICE | KBIF_MONOLITHIC | |
| 1468 | KBIF_USER_ACCESS | KBIF_PHYS_CONTIGUOUS); |
| 1469 | skmem_buflet_tests(KBIF_VIRTUAL_DEVICE | KBIF_MONOLITHIC | |
| 1470 | KBIF_BUFFER_ON_DEMAND); |
| 1471 | skmem_buflet_tests(KBIF_VIRTUAL_DEVICE | KBIF_MONOLITHIC | |
| 1472 | KBIF_USER_ACCESS | TEST_OPTION_INHIBIT_CACHE); |
| 1473 | skmem_buflet_tests(KBIF_VIRTUAL_DEVICE | KBIF_MONOLITHIC | |
| 1474 | KBIF_BUFFER_ON_DEMAND | TEST_OPTION_INHIBIT_CACHE); |
| 1475 | skmem_buflet_tests(KBIF_VIRTUAL_DEVICE | KBIF_BUFFER_ON_DEMAND); |
| 1476 | skmem_buflet_tests(KBIF_VIRTUAL_DEVICE | KBIF_BUFFER_ON_DEMAND | |
| 1477 | TEST_OPTION_INHIBIT_CACHE); |
| 1478 | |
| 1479 | /* check packet KPIs (also touches data) */ |
| 1480 | skmem_packet_tests(0); |
| 1481 | skmem_packet_tests(KBIF_PHYS_CONTIGUOUS); |
| 1482 | skmem_packet_tests(KBIF_PERSISTENT); |
| 1483 | skmem_packet_tests(KBIF_PERSISTENT | KBIF_NO_MAGAZINES); |
| 1484 | skmem_packet_tests(KBIF_PERSISTENT | KBIF_PHYS_CONTIGUOUS); |
| 1485 | skmem_packet_tests(KBIF_PERSISTENT | KBIF_MONOLITHIC | |
| 1486 | KBIF_PHYS_CONTIGUOUS | KBIF_USER_ACCESS); |
| 1487 | skmem_packet_tests(KBIF_PERSISTENT | KBIF_MONOLITHIC | |
| 1488 | KBIF_USER_ACCESS); |
| 1489 | skmem_packet_tests(KBIF_PERSISTENT | KBIF_BUFFER_ON_DEMAND); |
| 1490 | skmem_packet_tests(KBIF_PERSISTENT | TEST_OPTION_INHIBIT_CACHE); |
| 1491 | skmem_packet_tests(KBIF_PERSISTENT | KBIF_MONOLITHIC | |
| 1492 | KBIF_BUFFER_ON_DEMAND); |
| 1493 | skmem_packet_tests(KBIF_PERSISTENT | KBIF_MONOLITHIC | |
| 1494 | KBIF_USER_ACCESS | TEST_OPTION_INHIBIT_CACHE); |
| 1495 | skmem_packet_tests(KBIF_PERSISTENT | KBIF_MONOLITHIC | |
| 1496 | KBIF_BUFFER_ON_DEMAND | TEST_OPTION_INHIBIT_CACHE); |
| 1497 | skmem_packet_tests(KBIF_MONOLITHIC | KBIF_PHYS_CONTIGUOUS); |
| 1498 | skmem_packet_tests(KBIF_MONOLITHIC | KBIF_USER_ACCESS); |
| 1499 | skmem_packet_tests(KBIF_MONOLITHIC | KBIF_USER_ACCESS | |
| 1500 | KBIF_NO_MAGAZINES); |
| 1501 | skmem_packet_tests(KBIF_MONOLITHIC | KBIF_USER_ACCESS | |
| 1502 | KBIF_PHYS_CONTIGUOUS); |
| 1503 | skmem_packet_tests(KBIF_MONOLITHIC | KBIF_BUFFER_ON_DEMAND); |
| 1504 | #if 0 |
| 1505 | /* XXX: commented out failed tests on ARM64e platforms */ |
| 1506 | skmem_packet_tests(KBIF_MONOLITHIC | KBIF_USER_ACCESS | |
| 1507 | TEST_OPTION_INHIBIT_CACHE); |
| 1508 | skmem_packet_tests(KBIF_MONOLITHIC | KBIF_BUFFER_ON_DEMAND | |
| 1509 | TEST_OPTION_INHIBIT_CACHE); |
| 1510 | skmem_packet_tests(KBIF_BUFFER_ON_DEMAND); |
| 1511 | skmem_packet_tests(KBIF_BUFFER_ON_DEMAND | TEST_OPTION_INHIBIT_CACHE); |
| 1512 | #endif |
| 1513 | |
| 1514 | /* check packet KPIs (also touches data) (vdev) */ |
| 1515 | skmem_packet_tests(KBIF_VIRTUAL_DEVICE); |
| 1516 | skmem_packet_tests(KBIF_VIRTUAL_DEVICE | KBIF_NO_MAGAZINES); |
| 1517 | skmem_packet_tests(KBIF_VIRTUAL_DEVICE | KBIF_PERSISTENT); |
| 1518 | skmem_packet_tests(KBIF_VIRTUAL_DEVICE | KBIF_PHYS_CONTIGUOUS); |
| 1519 | skmem_packet_tests(KBIF_VIRTUAL_DEVICE | KBIF_PERSISTENT | |
| 1520 | KBIF_PHYS_CONTIGUOUS); |
| 1521 | skmem_packet_tests(KBIF_VIRTUAL_DEVICE | KBIF_PERSISTENT | |
| 1522 | KBIF_MONOLITHIC | KBIF_USER_ACCESS); |
| 1523 | skmem_packet_tests(KBIF_VIRTUAL_DEVICE | KBIF_PERSISTENT | |
| 1524 | KBIF_BUFFER_ON_DEMAND); |
| 1525 | skmem_packet_tests(KBIF_VIRTUAL_DEVICE | KBIF_PERSISTENT | |
| 1526 | TEST_OPTION_INHIBIT_CACHE); |
| 1527 | skmem_packet_tests(KBIF_VIRTUAL_DEVICE | KBIF_PERSISTENT | |
| 1528 | KBIF_MONOLITHIC | KBIF_BUFFER_ON_DEMAND); |
| 1529 | skmem_packet_tests(KBIF_VIRTUAL_DEVICE | KBIF_PERSISTENT | |
| 1530 | KBIF_MONOLITHIC | KBIF_USER_ACCESS | TEST_OPTION_INHIBIT_CACHE); |
| 1531 | skmem_packet_tests(KBIF_VIRTUAL_DEVICE | KBIF_PERSISTENT | |
| 1532 | KBIF_MONOLITHIC | KBIF_BUFFER_ON_DEMAND | TEST_OPTION_INHIBIT_CACHE); |
| 1533 | skmem_packet_tests(KBIF_VIRTUAL_DEVICE | KBIF_MONOLITHIC | |
| 1534 | KBIF_PHYS_CONTIGUOUS); |
| 1535 | skmem_packet_tests(KBIF_VIRTUAL_DEVICE | KBIF_MONOLITHIC | |
| 1536 | KBIF_USER_ACCESS | KBIF_PHYS_CONTIGUOUS); |
| 1537 | skmem_packet_tests(KBIF_VIRTUAL_DEVICE | KBIF_MONOLITHIC | |
| 1538 | KBIF_USER_ACCESS); |
| 1539 | skmem_packet_tests(KBIF_VIRTUAL_DEVICE | KBIF_MONOLITHIC | |
| 1540 | KBIF_BUFFER_ON_DEMAND); |
| 1541 | skmem_packet_tests(KBIF_VIRTUAL_DEVICE | KBIF_MONOLITHIC | |
| 1542 | KBIF_BUFFER_ON_DEMAND | KBIF_PHYS_CONTIGUOUS); |
| 1543 | #if 0 |
| 1544 | /* XXX: commented out failed tests on ARM64e platforms */ |
| 1545 | skmem_packet_tests(KBIF_VIRTUAL_DEVICE | KBIF_MONOLITHIC | |
| 1546 | KBIF_USER_ACCESS | TEST_OPTION_INHIBIT_CACHE); |
| 1547 | skmem_packet_tests(KBIF_VIRTUAL_DEVICE | KBIF_MONOLITHIC | |
| 1548 | KBIF_BUFFER_ON_DEMAND | TEST_OPTION_INHIBIT_CACHE); |
| 1549 | skmem_packet_tests(KBIF_VIRTUAL_DEVICE | KBIF_BUFFER_ON_DEMAND); |
| 1550 | skmem_packet_tests(KBIF_VIRTUAL_DEVICE | KBIF_BUFFER_ON_DEMAND | |
| 1551 | TEST_OPTION_INHIBIT_CACHE); |
| 1552 | #endif |
| 1553 | |
| 1554 | /* check quantum KPIs */ |
| 1555 | skmem_quantum_tests(0); |
| 1556 | skmem_quantum_tests(KBIF_PHYS_CONTIGUOUS); |
| 1557 | skmem_quantum_tests(KBIF_PERSISTENT); |
| 1558 | skmem_quantum_tests(KBIF_PERSISTENT | KBIF_NO_MAGAZINES); |
| 1559 | skmem_quantum_tests(KBIF_PERSISTENT | KBIF_PHYS_CONTIGUOUS); |
| 1560 | skmem_quantum_tests(KBIF_PERSISTENT | KBIF_MONOLITHIC | |
| 1561 | KBIF_USER_ACCESS); |
| 1562 | skmem_quantum_tests(KBIF_PERSISTENT | KBIF_BUFFER_ON_DEMAND); |
| 1563 | skmem_quantum_tests(KBIF_PERSISTENT | TEST_OPTION_INHIBIT_CACHE); |
| 1564 | skmem_quantum_tests(KBIF_PERSISTENT | KBIF_MONOLITHIC | |
| 1565 | KBIF_BUFFER_ON_DEMAND); |
| 1566 | skmem_quantum_tests(KBIF_PERSISTENT | KBIF_MONOLITHIC | |
| 1567 | KBIF_USER_ACCESS | TEST_OPTION_INHIBIT_CACHE); |
| 1568 | skmem_quantum_tests(KBIF_PERSISTENT | KBIF_MONOLITHIC | |
| 1569 | KBIF_BUFFER_ON_DEMAND | TEST_OPTION_INHIBIT_CACHE); |
| 1570 | skmem_quantum_tests(KBIF_MONOLITHIC | KBIF_PHYS_CONTIGUOUS); |
| 1571 | skmem_quantum_tests(KBIF_MONOLITHIC | KBIF_USER_ACCESS); |
| 1572 | skmem_quantum_tests(KBIF_MONOLITHIC | KBIF_USER_ACCESS | |
| 1573 | KBIF_PHYS_CONTIGUOUS); |
| 1574 | skmem_quantum_tests(KBIF_MONOLITHIC | KBIF_BUFFER_ON_DEMAND); |
| 1575 | skmem_quantum_tests(KBIF_MONOLITHIC | KBIF_USER_ACCESS | |
| 1576 | TEST_OPTION_INHIBIT_CACHE); |
| 1577 | skmem_quantum_tests(KBIF_MONOLITHIC | KBIF_BUFFER_ON_DEMAND | |
| 1578 | TEST_OPTION_INHIBIT_CACHE); |
| 1579 | skmem_quantum_tests(KBIF_BUFFER_ON_DEMAND); |
| 1580 | skmem_quantum_tests(KBIF_BUFFER_ON_DEMAND | KBIF_NO_MAGAZINES); |
| 1581 | skmem_quantum_tests(KBIF_BUFFER_ON_DEMAND | KBIF_PHYS_CONTIGUOUS); |
| 1582 | skmem_quantum_tests(KBIF_BUFFER_ON_DEMAND | TEST_OPTION_INHIBIT_CACHE); |
| 1583 | |
| 1584 | /* check quantum KPIs (vdev) */ |
| 1585 | skmem_quantum_tests(KBIF_VIRTUAL_DEVICE); |
| 1586 | skmem_quantum_tests(KBIF_VIRTUAL_DEVICE | KBIF_NO_MAGAZINES); |
| 1587 | skmem_quantum_tests(KBIF_VIRTUAL_DEVICE | KBIF_PHYS_CONTIGUOUS); |
| 1588 | skmem_quantum_tests(KBIF_VIRTUAL_DEVICE | KBIF_PERSISTENT); |
| 1589 | skmem_quantum_tests(KBIF_VIRTUAL_DEVICE | KBIF_PERSISTENT | |
| 1590 | KBIF_MONOLITHIC | KBIF_USER_ACCESS); |
| 1591 | skmem_quantum_tests(KBIF_VIRTUAL_DEVICE | KBIF_PERSISTENT | |
| 1592 | KBIF_BUFFER_ON_DEMAND); |
| 1593 | skmem_quantum_tests(KBIF_VIRTUAL_DEVICE | KBIF_PERSISTENT | |
| 1594 | TEST_OPTION_INHIBIT_CACHE); |
| 1595 | skmem_quantum_tests(KBIF_VIRTUAL_DEVICE | KBIF_PERSISTENT | |
| 1596 | KBIF_MONOLITHIC | KBIF_BUFFER_ON_DEMAND); |
| 1597 | skmem_quantum_tests(KBIF_VIRTUAL_DEVICE | KBIF_PERSISTENT | |
| 1598 | KBIF_MONOLITHIC | KBIF_USER_ACCESS | TEST_OPTION_INHIBIT_CACHE); |
| 1599 | skmem_quantum_tests(KBIF_VIRTUAL_DEVICE | KBIF_PERSISTENT | |
| 1600 | KBIF_MONOLITHIC | KBIF_BUFFER_ON_DEMAND | TEST_OPTION_INHIBIT_CACHE); |
| 1601 | skmem_quantum_tests(KBIF_VIRTUAL_DEVICE | KBIF_MONOLITHIC | |
| 1602 | KBIF_PHYS_CONTIGUOUS); |
| 1603 | skmem_quantum_tests(KBIF_VIRTUAL_DEVICE | KBIF_MONOLITHIC | |
| 1604 | KBIF_USER_ACCESS | KBIF_PHYS_CONTIGUOUS); |
| 1605 | skmem_quantum_tests(KBIF_VIRTUAL_DEVICE | KBIF_MONOLITHIC | |
| 1606 | KBIF_USER_ACCESS); |
| 1607 | skmem_quantum_tests(KBIF_VIRTUAL_DEVICE | KBIF_MONOLITHIC | |
| 1608 | KBIF_BUFFER_ON_DEMAND); |
| 1609 | skmem_quantum_tests(KBIF_VIRTUAL_DEVICE | KBIF_MONOLITHIC | |
| 1610 | KBIF_USER_ACCESS | TEST_OPTION_INHIBIT_CACHE); |
| 1611 | skmem_quantum_tests(KBIF_VIRTUAL_DEVICE | KBIF_MONOLITHIC | |
| 1612 | KBIF_BUFFER_ON_DEMAND | TEST_OPTION_INHIBIT_CACHE); |
| 1613 | skmem_quantum_tests(KBIF_VIRTUAL_DEVICE | KBIF_BUFFER_ON_DEMAND); |
| 1614 | skmem_quantum_tests(KBIF_VIRTUAL_DEVICE | KBIF_BUFFER_ON_DEMAND | |
| 1615 | KBIF_PHYS_CONTIGUOUS); |
| 1616 | skmem_quantum_tests(KBIF_VIRTUAL_DEVICE | KBIF_BUFFER_ON_DEMAND | |
| 1617 | TEST_OPTION_INHIBIT_CACHE); |
| 1618 | } |
| 1619 | |
| 1620 | static void |
| 1621 | skmem_advanced_tests(int n, int32_t th_max, uint32_t mode, boolean_t nosleep, |
| 1622 | uint32_t flags) |
| 1623 | { |
| 1624 | struct kern_pbufpool_init pp_init; |
| 1625 | kern_packet_t mph = 0; |
| 1626 | kern_buflet_t buflet = 0; |
| 1627 | int i; |
| 1628 | |
| 1629 | VERIFY(skmth_pp == NULL); |
| 1630 | VERIFY(skmth_cnt == 0); |
| 1631 | |
| 1632 | bzero(&pp_init, sizeof(pp_init)); |
| 1633 | pp_init.kbi_version = KERN_PBUFPOOL_CURRENT_VERSION; |
| 1634 | pp_init.kbi_buf_seg_size = skmem_usr_buf_seg_size; |
| 1635 | pp_init.kbi_flags |= flags; |
| 1636 | (void) snprintf((char *)pp_init.kbi_name, |
| 1637 | sizeof(pp_init.kbi_name), "%s" , "skmem_advanced" ); |
| 1638 | |
| 1639 | /* prepare */ |
| 1640 | switch (mode) { |
| 1641 | case 0: |
| 1642 | pp_init.kbi_packets = th_max; |
| 1643 | pp_init.kbi_bufsize = SKMEM_TEST_BUFSIZE; |
| 1644 | pp_init.kbi_max_frags = 1; |
| 1645 | pp_init.kbi_flags |= KBIF_MONOLITHIC | KBIF_USER_ACCESS; |
| 1646 | VERIFY(kern_pbufpool_create(&pp_init, |
| 1647 | &skmth_pp, NULL) == 0); |
| 1648 | break; |
| 1649 | |
| 1650 | case 1: |
| 1651 | pp_init.kbi_packets = th_max; |
| 1652 | pp_init.kbi_bufsize = SKMEM_TEST_BUFSIZE; |
| 1653 | pp_init.kbi_max_frags = 1; |
| 1654 | pp_init.kbi_flags |= KBIF_MONOLITHIC | KBIF_USER_ACCESS | |
| 1655 | KBIF_VIRTUAL_DEVICE; |
| 1656 | VERIFY(kern_pbufpool_create(&pp_init, |
| 1657 | &skmth_pp, NULL) == 0); |
| 1658 | break; |
| 1659 | |
| 1660 | case 2: |
| 1661 | pp_init.kbi_packets = th_max; |
| 1662 | pp_init.kbi_bufsize = SKMEM_TEST_BUFSIZE; |
| 1663 | pp_init.kbi_max_frags = 1; |
| 1664 | pp_init.kbi_flags |= KBIF_MONOLITHIC | KBIF_USER_ACCESS | |
| 1665 | KBIF_PERSISTENT; |
| 1666 | VERIFY(kern_pbufpool_create(&pp_init, |
| 1667 | &skmth_pp, NULL) == 0); |
| 1668 | break; |
| 1669 | |
| 1670 | case 3: |
| 1671 | pp_init.kbi_packets = th_max; |
| 1672 | pp_init.kbi_bufsize = SKMEM_TEST_BUFSIZE; |
| 1673 | pp_init.kbi_max_frags = 1; |
| 1674 | pp_init.kbi_flags |= KBIF_MONOLITHIC | KBIF_USER_ACCESS | |
| 1675 | KBIF_PERSISTENT | KBIF_VIRTUAL_DEVICE; |
| 1676 | VERIFY(kern_pbufpool_create(&pp_init, |
| 1677 | &skmth_pp, NULL) == 0); |
| 1678 | break; |
| 1679 | |
| 1680 | case 4: |
| 1681 | pp_init.kbi_packets = th_max; |
| 1682 | pp_init.kbi_bufsize = SKMEM_TEST_BUFSIZE; |
| 1683 | pp_init.kbi_max_frags = 1; |
| 1684 | pp_init.kbi_flags |= KBIF_PERSISTENT | KBIF_USER_ACCESS; |
| 1685 | VERIFY(kern_pbufpool_create(&pp_init, |
| 1686 | &skmth_pp, NULL) == 0); |
| 1687 | break; |
| 1688 | |
| 1689 | case 5: |
| 1690 | pp_init.kbi_packets = th_max; |
| 1691 | pp_init.kbi_bufsize = SKMEM_TEST_BUFSIZE; |
| 1692 | pp_init.kbi_max_frags = 1; |
| 1693 | pp_init.kbi_flags |= KBIF_PERSISTENT | KBIF_VIRTUAL_DEVICE; |
| 1694 | VERIFY(kern_pbufpool_create(&pp_init, |
| 1695 | &skmth_pp, NULL) == 0); |
| 1696 | break; |
| 1697 | |
| 1698 | case 6: |
| 1699 | pp_init.kbi_packets = th_max; |
| 1700 | pp_init.kbi_bufsize = SKMEM_TEST_BUFSIZE; |
| 1701 | pp_init.kbi_max_frags = 1; |
| 1702 | pp_init.kbi_flags |= 0; |
| 1703 | VERIFY(kern_pbufpool_create(&pp_init, |
| 1704 | &skmth_pp, NULL) == 0); |
| 1705 | break; |
| 1706 | |
| 1707 | case 7: |
| 1708 | pp_init.kbi_packets = th_max; |
| 1709 | pp_init.kbi_bufsize = SKMEM_TEST_BUFSIZE; |
| 1710 | pp_init.kbi_max_frags = 1; |
| 1711 | pp_init.kbi_flags |= KBIF_VIRTUAL_DEVICE; |
| 1712 | VERIFY(kern_pbufpool_create(&pp_init, |
| 1713 | &skmth_pp, NULL) == 0); |
| 1714 | break; |
| 1715 | |
| 1716 | case 8: |
| 1717 | pp_init.kbi_packets = (th_max * 2) + 1; |
| 1718 | pp_init.kbi_bufsize = SKMEM_TEST_BUFSIZE; |
| 1719 | pp_init.kbi_max_frags = 1; |
| 1720 | pp_init.kbi_flags |= KBIF_BUFFER_ON_DEMAND; |
| 1721 | VERIFY(kern_pbufpool_create(&pp_init, |
| 1722 | &skmth_pp, NULL) == 0); |
| 1723 | break; |
| 1724 | |
| 1725 | default: |
| 1726 | VERIFY(0); |
| 1727 | /* NOTREACHED */ |
| 1728 | __builtin_unreachable(); |
| 1729 | } |
| 1730 | |
| 1731 | SK_ERR("%d: th_max %d mode %u nosleep %u nomagazines %u" , |
| 1732 | n, th_max, mode, nosleep, !!(flags & KBIF_NO_MAGAZINES)); |
| 1733 | |
| 1734 | if (pp_init.kbi_flags & KBIF_BUFFER_ON_DEMAND) { |
| 1735 | /* create 1 master packet to clone */ |
| 1736 | VERIFY(kern_pbufpool_alloc(skmth_pp, 1, &mph) == 0); |
| 1737 | VERIFY((buflet = kern_packet_get_next_buflet(mph, NULL)) != NULL); |
| 1738 | VERIFY(kern_buflet_set_data_length(buflet, SKMEM_TEST_BUFSIZE) == 0); |
| 1739 | VERIFY(__packet_finalize(mph) == 0); |
| 1740 | } |
| 1741 | |
| 1742 | bzero(skmth_info, skmth_info_size); |
| 1743 | |
| 1744 | /* spawn as many threads as there are CPUs */ |
| 1745 | for (i = 0; i < th_max; i++) { |
| 1746 | skmth_info[i].sti_mph = mph; |
| 1747 | skmth_info[i].sti_nosleep = nosleep; |
| 1748 | if (kernel_thread_start(skmem_test_func, (void *)(uintptr_t)i, |
| 1749 | &skmth_info[i].sti_thread) != KERN_SUCCESS) { |
| 1750 | panic("Failed to create skmem test thread" ); |
| 1751 | /* NOTREACHED */ |
| 1752 | __builtin_unreachable(); |
| 1753 | } |
| 1754 | } |
| 1755 | |
| 1756 | lck_mtx_lock(&skmt_lock); |
| 1757 | do { |
| 1758 | struct timespec ts = { .tv_sec = 0, .tv_nsec = 100 * USEC_PER_SEC }; |
| 1759 | (void) msleep(&skmth_cnt, &skmt_lock, (PZERO - 1), |
| 1760 | "skmtstartw" , &ts); |
| 1761 | } while (skmth_cnt < th_max); |
| 1762 | VERIFY(skmth_cnt == th_max); |
| 1763 | lck_mtx_unlock(&skmt_lock); |
| 1764 | |
| 1765 | lck_mtx_lock(&skmt_lock); |
| 1766 | VERIFY(!skmth_run); |
| 1767 | skmth_run = TRUE; |
| 1768 | wakeup((caddr_t)&skmth_run); |
| 1769 | lck_mtx_unlock(&skmt_lock); |
| 1770 | |
| 1771 | /* wait until all threads are done */ |
| 1772 | lck_mtx_lock(&skmt_lock); |
| 1773 | do { |
| 1774 | struct timespec ts = { .tv_sec = 0, .tv_nsec = 100 * USEC_PER_SEC }; |
| 1775 | (void) msleep(&skmth_cnt, &skmt_lock, (PZERO - 1), |
| 1776 | "skmtstopw" , &ts); |
| 1777 | } while (skmth_cnt != 0); |
| 1778 | skmth_run = FALSE; |
| 1779 | lck_mtx_unlock(&skmt_lock); |
| 1780 | |
| 1781 | if (mph != 0) { |
| 1782 | VERIFY((buflet = kern_packet_get_next_buflet( mph, NULL)) != NULL); |
| 1783 | VERIFY(buflet->buf_ctl->bc_usecnt == 1); |
| 1784 | kern_pbufpool_free(skmth_pp, mph); |
| 1785 | mph = 0; |
| 1786 | } |
| 1787 | kern_pbufpool_destroy(skmth_pp); |
| 1788 | skmth_pp = NULL; |
| 1789 | } |
| 1790 | |
| 1791 | __attribute__((noreturn)) |
| 1792 | static void |
| 1793 | skmem_test_func(void *v, wait_result_t w) |
| 1794 | { |
| 1795 | #pragma unused(w) |
| 1796 | int i = (int)(uintptr_t)v, c; |
| 1797 | kern_packet_t ph = 0; |
| 1798 | |
| 1799 | /* let skmem_test_start() know we're ready */ |
| 1800 | lck_mtx_lock(&skmt_lock); |
| 1801 | os_atomic_inc(&skmth_cnt, relaxed); |
| 1802 | wakeup((caddr_t)&skmth_cnt); |
| 1803 | do { |
| 1804 | (void) msleep(&skmth_run, &skmt_lock, (PZERO - 1), |
| 1805 | "skmtfuncw" , NULL); |
| 1806 | } while (!skmth_run); |
| 1807 | lck_mtx_unlock(&skmt_lock); |
| 1808 | |
| 1809 | for (c = 0; c < 41; c++) { |
| 1810 | /* run alloc tests */ |
| 1811 | VERIFY(skmth_pp != NULL); |
| 1812 | if (skmth_info[i].sti_nosleep) { |
| 1813 | errno_t err = kern_pbufpool_alloc_nosleep(skmth_pp, |
| 1814 | 1, &ph); |
| 1815 | VERIFY(ph != 0 || err != 0); |
| 1816 | } else { |
| 1817 | VERIFY(kern_pbufpool_alloc(skmth_pp, 1, &ph) == 0); |
| 1818 | } |
| 1819 | |
| 1820 | if (ph != 0) { |
| 1821 | kern_pbufpool_free(skmth_pp, ph); |
| 1822 | ph = 0; |
| 1823 | } |
| 1824 | |
| 1825 | /* run clone tests */ |
| 1826 | if (skmth_info[i].sti_mph != 0) { |
| 1827 | kern_buflet_t buflet, buflet2; |
| 1828 | kern_obj_idx_seg_t buf_idx_seg, buf2_idx_seg; |
| 1829 | |
| 1830 | if (skmth_info[i].sti_nosleep) { |
| 1831 | errno_t err; |
| 1832 | err = kern_packet_clone_nosleep(skmth_info[i].sti_mph, |
| 1833 | &skmth_info[i].sti_mpc, KPKT_COPY_LIGHT); |
| 1834 | VERIFY(skmth_info[i].sti_mpc != 0 || err != 0); |
| 1835 | } else { |
| 1836 | VERIFY(kern_packet_clone(skmth_info[i].sti_mph, |
| 1837 | &skmth_info[i].sti_mpc, KPKT_COPY_LIGHT) == 0); |
| 1838 | } |
| 1839 | if (skmth_info[i].sti_mpc != 0) { |
| 1840 | VERIFY(!(QUM_ADDR(skmth_info[i].sti_mpc)->qum_qflags & QUM_F_FINALIZED)); |
| 1841 | VERIFY((buflet = kern_packet_get_next_buflet( |
| 1842 | skmth_info[i].sti_mph, NULL)) != NULL); |
| 1843 | VERIFY((buflet2 = kern_packet_get_next_buflet( |
| 1844 | skmth_info[i].sti_mpc, NULL)) != NULL); |
| 1845 | VERIFY(kern_buflet_get_object_address(buflet) == |
| 1846 | kern_buflet_get_object_address(buflet2)); |
| 1847 | VERIFY(kern_buflet_get_data_address(buflet) == |
| 1848 | kern_buflet_get_data_address(buflet2)); |
| 1849 | VERIFY(kern_buflet_get_data_limit(buflet) == |
| 1850 | kern_buflet_get_data_limit(buflet2)); |
| 1851 | VERIFY(kern_buflet_get_data_offset(buflet) == |
| 1852 | kern_buflet_get_data_offset(buflet2)); |
| 1853 | VERIFY(kern_buflet_get_data_length(buflet) == |
| 1854 | kern_buflet_get_data_length(buflet2)); |
| 1855 | VERIFY(kern_buflet_get_object_segment(buflet, |
| 1856 | &buf_idx_seg) == |
| 1857 | kern_buflet_get_object_segment(buflet2, |
| 1858 | &buf2_idx_seg)); |
| 1859 | VERIFY(buf_idx_seg == buf2_idx_seg); |
| 1860 | VERIFY(buflet->buf_ctl == buflet2->buf_ctl); |
| 1861 | VERIFY(__packet_finalize(skmth_info[i].sti_mpc) == 0); |
| 1862 | kern_pbufpool_free(skmth_pp, skmth_info[i].sti_mpc); |
| 1863 | skmth_info[i].sti_mpc = 0; |
| 1864 | } |
| 1865 | skmth_info[i].sti_mph = 0; |
| 1866 | } |
| 1867 | |
| 1868 | /* force cache purges to exercise related code paths */ |
| 1869 | if (skmth_pp->pp_kmd_cache != NULL) { |
| 1870 | skmem_cache_reap_now(skmth_pp->pp_kmd_cache, TRUE); |
| 1871 | } |
| 1872 | if (PP_BUF_CACHE_DEF(skmth_pp) != NULL) { |
| 1873 | skmem_cache_reap_now(PP_BUF_CACHE_DEF(skmth_pp), TRUE); |
| 1874 | } |
| 1875 | if (PP_KBFT_CACHE_DEF(skmth_pp) != NULL) { |
| 1876 | skmem_cache_reap_now(PP_KBFT_CACHE_DEF(skmth_pp), TRUE); |
| 1877 | } |
| 1878 | } |
| 1879 | |
| 1880 | /* let skmem_test_start() know we're finished */ |
| 1881 | lck_mtx_lock(&skmt_lock); |
| 1882 | VERIFY(os_atomic_dec_orig(&skmth_cnt, relaxed) != 0); |
| 1883 | wakeup((caddr_t)&skmth_cnt); |
| 1884 | lck_mtx_unlock(&skmt_lock); |
| 1885 | |
| 1886 | /* for the extra refcnt from kernel_thread_start() */ |
| 1887 | thread_deallocate(current_thread()); |
| 1888 | |
| 1889 | thread_terminate(current_thread()); |
| 1890 | __builtin_unreachable(); |
| 1891 | /* NOTREACHED */ |
| 1892 | } |
| 1893 | |
| 1894 | static int skmem_test_objs; |
| 1895 | |
| 1896 | struct skmem_test_obj { |
| 1897 | uint64_t sto_val[2]; |
| 1898 | }; |
| 1899 | |
| 1900 | static int |
| 1901 | skmem_test_ctor(struct skmem_obj_info *oi, struct skmem_obj_info *oim, |
| 1902 | void *arg, uint32_t skmflag) |
| 1903 | { |
| 1904 | #pragma unused(skmflag) |
| 1905 | struct skmem_test_obj *sto = SKMEM_OBJ_ADDR(oi); |
| 1906 | |
| 1907 | VERIFY(oim == NULL); |
| 1908 | VERIFY(arg == &skmem_test_init); |
| 1909 | VERIFY(SKMEM_OBJ_SIZE(oi) >= sizeof(struct skmem_test_obj)); |
| 1910 | sto->sto_val[0] = (uint64_t)(void *)sto ^ |
| 1911 | (uint64_t)(void *)&sto->sto_val[0]; |
| 1912 | sto->sto_val[1] = (uint64_t)(void *)sto ^ |
| 1913 | (uint64_t)(void *)&sto->sto_val[1]; |
| 1914 | os_atomic_inc(&skmem_test_objs, relaxed); |
| 1915 | |
| 1916 | return 0; |
| 1917 | } |
| 1918 | |
| 1919 | static void |
| 1920 | skmem_test_dtor(void *addr, void *arg) |
| 1921 | { |
| 1922 | struct skmem_test_obj *sto = addr; |
| 1923 | |
| 1924 | VERIFY(arg == &skmem_test_init); |
| 1925 | VERIFY((sto->sto_val[0] ^ (uint64_t)(void *)&sto->sto_val[0]) == |
| 1926 | (uint64_t)(void *)sto); |
| 1927 | VERIFY((sto->sto_val[1] ^ (uint64_t)(void *)&sto->sto_val[1]) == |
| 1928 | (uint64_t)(void *)sto); |
| 1929 | VERIFY(skmem_test_objs > 0); |
| 1930 | os_atomic_dec(&skmem_test_objs, relaxed); |
| 1931 | } |
| 1932 | |
| 1933 | static void |
| 1934 | skmem_tests(uint32_t align) |
| 1935 | { |
| 1936 | struct skmem_cache *skm; |
| 1937 | uint32_t bufsize = sizeof(struct skmem_test_obj); |
| 1938 | |
| 1939 | uint32_t objary_max = (uint32_t)MAX_PH_ARY; |
| 1940 | void **objary = NULL; |
| 1941 | char name[64]; |
| 1942 | |
| 1943 | VERIFY(align != 0); |
| 1944 | |
| 1945 | SK_ERR("bufsize %u align %u" , bufsize, align); |
| 1946 | |
| 1947 | objary = kalloc_type(void *, objary_max, Z_WAITOK | Z_ZERO); |
| 1948 | |
| 1949 | (void) snprintf(name, sizeof(name), "skmem_test.%u.%u" , bufsize, align); |
| 1950 | |
| 1951 | skm = skmem_cache_create(name, bufsize, align, skmem_test_ctor, |
| 1952 | skmem_test_dtor, NULL, &skmem_test_init, NULL, 0); |
| 1953 | |
| 1954 | VERIFY(skmem_test_objs == 0); |
| 1955 | for (int i = 0; i < objary_max; i++) { |
| 1956 | objary[i] = skmem_cache_alloc(skm, SKMEM_SLEEP); |
| 1957 | VERIFY(objary[i] != NULL); |
| 1958 | VERIFY(IS_P2ALIGNED(objary[i], align)); |
| 1959 | } |
| 1960 | for (int i = 0; i < objary_max; i++) { |
| 1961 | VERIFY(objary[i] != NULL); |
| 1962 | skmem_cache_free(skm, objary[i]); |
| 1963 | objary[i] = NULL; |
| 1964 | } |
| 1965 | skmem_cache_destroy(skm); |
| 1966 | VERIFY(skmem_test_objs == 0); |
| 1967 | |
| 1968 | kfree_type(void *, objary_max, objary); |
| 1969 | objary = NULL; |
| 1970 | } |
| 1971 | |
| 1972 | static void |
| 1973 | skmem_test_start(void *v, wait_result_t w) |
| 1974 | { |
| 1975 | int32_t ncpus = ml_wait_max_cpus(); |
| 1976 | int error = 0, n; |
| 1977 | uint32_t flags; |
| 1978 | uint64_t mtbf_saved; |
| 1979 | |
| 1980 | lck_mtx_lock(&skmt_lock); |
| 1981 | VERIFY(!skmt_busy); |
| 1982 | skmt_busy = 1; |
| 1983 | skmem_cache_test_start(1); /* 1 second update interval */ |
| 1984 | lck_mtx_unlock(&skmt_lock); |
| 1985 | |
| 1986 | VERIFY(skmth_info == NULL); |
| 1987 | skmth_info_size = sizeof(struct skmt_thread_info) * ncpus; |
| 1988 | skmth_info = (struct skmt_thread_info *) kalloc_data(skmth_info_size, |
| 1989 | Z_WAITOK | Z_ZERO); |
| 1990 | |
| 1991 | /* |
| 1992 | * Sanity tests. |
| 1993 | */ |
| 1994 | (void) skmem_cache_magazine_max(1); |
| 1995 | (void) skmem_cache_magazine_max(32); |
| 1996 | (void) skmem_cache_magazine_max(64); |
| 1997 | (void) skmem_cache_magazine_max(128); |
| 1998 | (void) skmem_cache_magazine_max(256); |
| 1999 | (void) skmem_cache_magazine_max(512); |
| 2000 | (void) skmem_cache_magazine_max(1024); |
| 2001 | (void) skmem_cache_magazine_max(2048); |
| 2002 | (void) skmem_cache_magazine_max(4096); |
| 2003 | (void) skmem_cache_magazine_max(8192); |
| 2004 | (void) skmem_cache_magazine_max(16384); |
| 2005 | (void) skmem_cache_magazine_max(32768); |
| 2006 | (void) skmem_cache_magazine_max(65536); |
| 2007 | |
| 2008 | /* |
| 2009 | * skmem allocator tests |
| 2010 | */ |
| 2011 | skmem_tests(8); |
| 2012 | skmem_tests(16); |
| 2013 | skmem_tests(32); |
| 2014 | skmem_tests(64); |
| 2015 | skmem_tests(128); |
| 2016 | |
| 2017 | /* |
| 2018 | * Basic packet buffer pool sanity tests |
| 2019 | */ |
| 2020 | skmem_basic_tests(); |
| 2021 | |
| 2022 | /* |
| 2023 | * Multi-threaded alloc and free tests (blocking). |
| 2024 | */ |
| 2025 | for (n = 0; n < 7; n++) { |
| 2026 | flags = ((n & 1) ? KBIF_NO_MAGAZINES : 0); |
| 2027 | skmem_advanced_tests(n, ncpus, 0, FALSE, flags); |
| 2028 | } |
| 2029 | for (n = 0; n < 7; n++) { |
| 2030 | flags = ((n & 1) ? KBIF_NO_MAGAZINES : 0); |
| 2031 | skmem_advanced_tests(n, ncpus, 0, TRUE, flags); |
| 2032 | } |
| 2033 | for (n = 0; n < 7; n++) { |
| 2034 | flags = ((n & 1) ? KBIF_NO_MAGAZINES : 0); |
| 2035 | skmem_advanced_tests(n, ncpus, 1, FALSE, flags); |
| 2036 | } |
| 2037 | for (n = 0; n < 7; n++) { |
| 2038 | flags = ((n & 1) ? KBIF_NO_MAGAZINES : 0); |
| 2039 | skmem_advanced_tests(n, ncpus, 1, TRUE, flags); |
| 2040 | } |
| 2041 | for (n = 0; n < 7; n++) { |
| 2042 | flags = ((n & 1) ? KBIF_NO_MAGAZINES : 0); |
| 2043 | skmem_advanced_tests(n, ncpus, 2, FALSE, flags); |
| 2044 | } |
| 2045 | for (n = 0; n < 7; n++) { |
| 2046 | flags = ((n & 1) ? KBIF_NO_MAGAZINES : 0); |
| 2047 | skmem_advanced_tests(n, ncpus, 2, TRUE, flags); |
| 2048 | } |
| 2049 | for (n = 0; n < 7; n++) { |
| 2050 | flags = ((n & 1) ? KBIF_NO_MAGAZINES : 0); |
| 2051 | skmem_advanced_tests(n, ncpus, 3, FALSE, flags); |
| 2052 | } |
| 2053 | for (n = 0; n < 7; n++) { |
| 2054 | flags = ((n & 1) ? KBIF_NO_MAGAZINES : 0); |
| 2055 | skmem_advanced_tests(n, ncpus, 3, TRUE, flags); |
| 2056 | } |
| 2057 | for (n = 0; n < 7; n++) { |
| 2058 | flags = ((n & 1) ? KBIF_NO_MAGAZINES : 0); |
| 2059 | skmem_advanced_tests(n, ncpus, 4, FALSE, flags); |
| 2060 | } |
| 2061 | for (n = 0; n < 7; n++) { |
| 2062 | flags = ((n & 1) ? KBIF_NO_MAGAZINES : 0); |
| 2063 | skmem_advanced_tests(n, ncpus, 5, FALSE, flags); |
| 2064 | } |
| 2065 | |
| 2066 | /* |
| 2067 | * Modes 4-5 deal with persistent/mirrored regions, and to |
| 2068 | * maximize the chance of exercising the allocation failures |
| 2069 | * handling we lower the MTBF (if set) to the minimum possible, |
| 2070 | * and restore it to the saved value later. |
| 2071 | */ |
| 2072 | mtbf_saved = skmem_region_get_mtbf(); |
| 2073 | if (mtbf_saved != 0) { |
| 2074 | skmem_region_set_mtbf(SKMEM_REGION_MTBF_MIN); |
| 2075 | } |
| 2076 | |
| 2077 | /* |
| 2078 | * Multi-threaded alloc and free tests (non-blocking). |
| 2079 | */ |
| 2080 | |
| 2081 | for (n = 0; n < 7; n++) { |
| 2082 | flags = ((n & 1) ? KBIF_NO_MAGAZINES : 0); |
| 2083 | skmem_advanced_tests(n, ncpus, 4, TRUE, flags); |
| 2084 | } |
| 2085 | for (n = 0; n < 7; n++) { |
| 2086 | flags = ((n & 1) ? KBIF_NO_MAGAZINES : 0); |
| 2087 | skmem_advanced_tests(n, ncpus, 5, TRUE, flags); |
| 2088 | } |
| 2089 | |
| 2090 | /* |
| 2091 | * Restore MTBF to previous set value. |
| 2092 | */ |
| 2093 | if (mtbf_saved != 0) { |
| 2094 | skmem_region_set_mtbf(mtbf_saved); |
| 2095 | } |
| 2096 | |
| 2097 | for (n = 0; n < 7; n++) { |
| 2098 | flags = ((n & 1) ? KBIF_NO_MAGAZINES : 0); |
| 2099 | skmem_advanced_tests(n, ncpus, 6, FALSE, flags); |
| 2100 | } |
| 2101 | for (n = 0; n < 7; n++) { |
| 2102 | flags = ((n & 1) ? KBIF_NO_MAGAZINES : 0); |
| 2103 | skmem_advanced_tests(n, ncpus, 6, TRUE, flags); |
| 2104 | } |
| 2105 | for (n = 0; n < 7; n++) { |
| 2106 | flags = ((n & 1) ? KBIF_NO_MAGAZINES : 0); |
| 2107 | skmem_advanced_tests(n, ncpus, 7, FALSE, flags); |
| 2108 | } |
| 2109 | for (n = 0; n < 7; n++) { |
| 2110 | flags = ((n & 1) ? KBIF_NO_MAGAZINES : 0); |
| 2111 | skmem_advanced_tests(n, ncpus, 7, TRUE, flags); |
| 2112 | } |
| 2113 | for (n = 0; n < 7; n++) { |
| 2114 | flags = ((n & 1) ? KBIF_NO_MAGAZINES : 0); |
| 2115 | skmem_advanced_tests(n, ncpus, 8, FALSE, flags); |
| 2116 | } |
| 2117 | for (n = 0; n < 7; n++) { |
| 2118 | flags = ((n & 1) ? KBIF_NO_MAGAZINES : 0); |
| 2119 | skmem_advanced_tests(n, ncpus, 8, TRUE, flags); |
| 2120 | } |
| 2121 | |
| 2122 | lck_mtx_lock(&skmt_lock); |
| 2123 | skmt_enabled = 1; |
| 2124 | wakeup((caddr_t)&skmt_enabled); |
| 2125 | lck_mtx_unlock(&skmt_lock); |
| 2126 | |
| 2127 | if (error != 0) { |
| 2128 | skmem_test_stop(v, w); |
| 2129 | } |
| 2130 | } |
| 2131 | |
| 2132 | static void |
| 2133 | skmem_test_stop(void *v, wait_result_t w) |
| 2134 | { |
| 2135 | #pragma unused(v, w) |
| 2136 | |
| 2137 | if (skmth_info != NULL) { |
| 2138 | kfree_data(skmth_info, skmth_info_size); |
| 2139 | skmth_info = NULL; |
| 2140 | } |
| 2141 | |
| 2142 | lck_mtx_lock(&skmt_lock); |
| 2143 | skmem_cache_test_stop(); |
| 2144 | VERIFY(skmt_busy); |
| 2145 | skmt_busy = 0; |
| 2146 | skmt_enabled = 0; |
| 2147 | wakeup((caddr_t)&skmt_enabled); |
| 2148 | lck_mtx_unlock(&skmt_lock); |
| 2149 | } |
| 2150 | |
| 2151 | static int |
| 2152 | sysctl_skmem_test(__unused struct sysctl_oid *oidp, |
| 2153 | __unused void *arg1, __unused int arg2, struct sysctl_req *req) |
| 2154 | { |
| 2155 | int error, newvalue, changed; |
| 2156 | |
| 2157 | lck_mtx_lock(&skmt_lock); |
| 2158 | if ((error = sysctl_io_number(req, skmt_enabled, sizeof(int), |
| 2159 | &newvalue, &changed)) != 0) { |
| 2160 | goto done; |
| 2161 | } |
| 2162 | |
| 2163 | if (changed && skmt_enabled != newvalue) { |
| 2164 | thread_t th; |
| 2165 | thread_continue_t func; |
| 2166 | |
| 2167 | if (newvalue && skmt_busy) { |
| 2168 | SK_ERR("Older skmem test instance is still active" ); |
| 2169 | error = EBUSY; |
| 2170 | goto done; |
| 2171 | } |
| 2172 | |
| 2173 | if (newvalue) { |
| 2174 | func = skmem_test_start; |
| 2175 | } else { |
| 2176 | func = skmem_test_stop; |
| 2177 | } |
| 2178 | |
| 2179 | if (kernel_thread_start(func, NULL, &th) != KERN_SUCCESS) { |
| 2180 | SK_ERR("Failed to create skmem test action thread" ); |
| 2181 | error = EBUSY; |
| 2182 | goto done; |
| 2183 | } |
| 2184 | do { |
| 2185 | SK_DF(SK_VERB_MEM, "Waiting for %s to complete" , |
| 2186 | newvalue ? "startup" : "shutdown" ); |
| 2187 | error = msleep(&skmt_enabled, &skmt_lock, |
| 2188 | PWAIT | PCATCH, "skmtw" , NULL); |
| 2189 | /* BEGIN CSTYLED */ |
| 2190 | /* |
| 2191 | * Loop exit conditions: |
| 2192 | * - we were interrupted |
| 2193 | * OR |
| 2194 | * - we are starting up and are enabled |
| 2195 | * (Startup complete) |
| 2196 | * OR |
| 2197 | * - we are starting up and are not busy |
| 2198 | * (Failed startup) |
| 2199 | * OR |
| 2200 | * - we are shutting down and are not busy |
| 2201 | * (Shutdown complete) |
| 2202 | */ |
| 2203 | /* END CSTYLED */ |
| 2204 | } while (!((error == EINTR) || (newvalue && skmt_enabled) || |
| 2205 | (newvalue && !skmt_busy) || (!newvalue && !skmt_busy))); |
| 2206 | |
| 2207 | thread_deallocate(th); |
| 2208 | } |
| 2209 | |
| 2210 | done: |
| 2211 | lck_mtx_unlock(&skmt_lock); |
| 2212 | return error; |
| 2213 | } |
| 2214 | |
| 2215 | SYSCTL_PROC(_kern_skywalk_mem, OID_AUTO, test, |
| 2216 | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED, NULL, 0, |
| 2217 | sysctl_skmem_test, "I" , "Start Skywalk memory test" ); |
| 2218 | |
| 2219 | __typed_allocators_ignore_pop |
| 2220 | |
| 2221 | #endif /* DEVELOPMENT || DEBUG */ |
| 2222 | |