| 1 | /* |
| 2 | * Copyright (c) 2016-2022 Apple Inc. All rights reserved. |
| 3 | * |
| 4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ |
| 5 | * |
| 6 | * This file contains Original Code and/or Modifications of Original Code |
| 7 | * as defined in and that are subject to the Apple Public Source License |
| 8 | * Version 2.0 (the 'License'). You may not use this file except in |
| 9 | * compliance with the License. The rights granted to you under the License |
| 10 | * may not be used to create, or enable the creation or redistribution of, |
| 11 | * unlawful or unlicensed copies of an Apple operating system, or to |
| 12 | * circumvent, violate, or enable the circumvention or violation of, any |
| 13 | * terms of an Apple operating system software license agreement. |
| 14 | * |
| 15 | * Please obtain a copy of the License at |
| 16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. |
| 17 | * |
| 18 | * The Original Code and all software distributed under the License are |
| 19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER |
| 20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
| 21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, |
| 22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
| 23 | * Please see the License for the specific language governing rights and |
| 24 | * limitations under the License. |
| 25 | * |
| 26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ |
| 27 | */ |
| 28 | |
| 29 | /* BEGIN CSTYLED */ |
| 30 | /* |
| 31 | * A region represents a collection of one or more similarly-sized memory |
| 32 | * segments, each of which is a contiguous range of integers. A segment |
| 33 | * is either allocated or free, and is treated as disjoint from all other |
| 34 | * segments. That is, the contiguity applies only at the segment level, |
| 35 | * and a region with multiple segments is not contiguous at the region level. |
| 36 | * A segment always belongs to the segment freelist, or the allocated-address |
| 37 | * hash chain, as described below. |
| 38 | * |
| 39 | * The optional SKMEM_REGION_CR_NOREDIRECT flag indicates that the region |
| 40 | * stays intact even after a defunct. Otherwise, the segments belonging |
| 41 | * to the region will be freed at defunct time, and the span covered by |
| 42 | * the region will be redirected to zero-filled anonymous memory. |
| 43 | * |
| 44 | * Memory for a region is always created as pageable and purgeable. It is |
| 45 | * the client's responsibility to prepare (wire) it, and optionally insert |
| 46 | * it to the IOMMU, at segment construction time. When the segment is |
| 47 | * freed, the client is responsible for removing it from IOMMU (if needed), |
| 48 | * and complete (unwire) it. |
| 49 | * |
| 50 | * When the region is created with SKMEM_REGION_CR_PERSISTENT, the memory |
| 51 | * is immediately wired upon allocation (segment removed from freelist). |
| 52 | * It gets unwired when memory is discarded (segment inserted to freelist). |
| 53 | * |
| 54 | * The chronological life cycle of a segment is as such: |
| 55 | * |
| 56 | * SKSEG_STATE_DETACHED |
| 57 | * SKSEG_STATE_{MAPPED,MAPPED_WIRED} |
| 58 | * [segment allocated, useable by client] |
| 59 | * ... |
| 60 | * [client frees segment] |
| 61 | * SKSEG_STATE_{MAPPED,MAPPED_WIRED} |
| 62 | * [reclaim] |
| 63 | * SKSEG_STATE_DETACHED |
| 64 | * |
| 65 | * The region can also be marked as user-mappable (SKMEM_REGION_CR_MMAPOK); |
| 66 | * this allows it to be further marked with SKMEM_REGION_CR_UREADONLY to |
| 67 | * prevent modifications by the user task. Only user-mappable regions will |
| 68 | * be considered for inclusion during skmem_arena_mmap(). |
| 69 | * |
| 70 | * Every skmem allocator has a region as its slab supplier. Each slab is |
| 71 | * exactly a segment. The allocator uses skmem_region_{alloc,free}() to |
| 72 | * create and destroy slabs. |
| 73 | * |
| 74 | * A region may be mirrored by another region; the latter acts as the master |
| 75 | * controller for both regions. Mirrored (slave) regions cannot be used |
| 76 | * directly by the skmem allocator. Region mirroring technique is used for |
| 77 | * managing shadow objects {umd,kmd} and {usd,ksd}, where an object in one |
| 78 | * region has the same size and lifetime as its shadow counterpart. |
| 79 | * |
| 80 | * CREATION/DESTRUCTION: |
| 81 | * |
| 82 | * At creation time, all segments are allocated and are immediately inserted |
| 83 | * into the freelist. Allocating a purgeable segment has very little cost, |
| 84 | * as it is not backed by physical memory until it is accessed. Immediate |
| 85 | * insertion into the freelist causes the mapping to be further torn down. |
| 86 | * |
| 87 | * At destruction time, the freelist is emptied, and each segment is then |
| 88 | * destroyed. The system will assert if it detects there are outstanding |
| 89 | * segments not yet returned to the region (not freed by the client.) |
| 90 | * |
| 91 | * ALLOCATION: |
| 92 | * |
| 93 | * Allocating involves searching the freelist for a segment; if found, the |
| 94 | * segment is removed from the freelist and is inserted into the allocated- |
| 95 | * address hash chain. The address of the memory object represented by |
| 96 | * the segment is used as hash key. The use of allocated-address hash chain |
| 97 | * is needed since we return the address of the memory object, and not the |
| 98 | * segment's itself, to the client. |
| 99 | * |
| 100 | * DEALLOCATION: |
| 101 | * |
| 102 | * Freeing a memory object causes the chain to be searched for a matching |
| 103 | * segment. The system will assert if a segment cannot be found, since |
| 104 | * that indicates that the memory object address is invalid. Once found, |
| 105 | * the segment is removed from the allocated-address hash chain, and is |
| 106 | * inserted to the freelist. |
| 107 | * |
| 108 | * Segment allocation and deallocation can be expensive. Because of this, |
| 109 | * we expect that most clients will utilize the skmem_cache slab allocator |
| 110 | * as the frontend instead. |
| 111 | */ |
| 112 | /* END CSTYLED */ |
| 113 | |
| 114 | #include <skywalk/os_skywalk_private.h> |
| 115 | #define _FN_KPRINTF /* don't redefine kprintf() */ |
| 116 | #include <pexpert/pexpert.h> /* for PE_parse_boot_argn */ |
| 117 | |
| 118 | static void skmem_region_destroy(struct skmem_region *skr); |
| 119 | static void skmem_region_depopulate(struct skmem_region *); |
| 120 | static int sksegment_cmp(const struct sksegment *, const struct sksegment *); |
| 121 | static struct sksegment *sksegment_create(struct skmem_region *, uint32_t); |
| 122 | static void sksegment_destroy(struct skmem_region *, struct sksegment *); |
| 123 | static void sksegment_freelist_insert(struct skmem_region *, |
| 124 | struct sksegment *, boolean_t); |
| 125 | static struct sksegment *sksegment_freelist_remove(struct skmem_region *, |
| 126 | struct sksegment *, uint32_t, boolean_t); |
| 127 | static struct sksegment *sksegment_freelist_grow(struct skmem_region *); |
| 128 | static struct sksegment *sksegment_alloc_with_idx(struct skmem_region *, |
| 129 | uint32_t); |
| 130 | static void *skmem_region_alloc_common(struct skmem_region *, |
| 131 | struct sksegment *); |
| 132 | static void *skmem_region_mirror_alloc(struct skmem_region *, |
| 133 | struct sksegment *, struct sksegment **); |
| 134 | static void skmem_region_applyall(void (*)(struct skmem_region *)); |
| 135 | static void skmem_region_update(struct skmem_region *); |
| 136 | static void skmem_region_update_func(thread_call_param_t, thread_call_param_t); |
| 137 | static inline void skmem_region_retain_locked(struct skmem_region *); |
| 138 | static inline boolean_t skmem_region_release_locked(struct skmem_region *); |
| 139 | static int skmem_region_mib_get_sysctl SYSCTL_HANDLER_ARGS; |
| 140 | |
| 141 | RB_PROTOTYPE_PREV(segtfreehead, sksegment, sg_node, sksegment_cmp); |
| 142 | RB_GENERATE_PREV(segtfreehead, sksegment, sg_node, sksegment_cmp); |
| 143 | |
| 144 | SYSCTL_PROC(_kern_skywalk_stats, OID_AUTO, region, |
| 145 | CTLTYPE_STRUCT | CTLFLAG_RD | CTLFLAG_LOCKED, |
| 146 | 0, 0, skmem_region_mib_get_sysctl, "S,sk_stats_region" , |
| 147 | "Skywalk region statistics" ); |
| 148 | |
| 149 | static LCK_ATTR_DECLARE(skmem_region_lock_attr, 0, 0); |
| 150 | static LCK_GRP_DECLARE(skmem_region_lock_grp, "skmem_region" ); |
| 151 | static LCK_MTX_DECLARE_ATTR(skmem_region_lock, &skmem_region_lock_grp, |
| 152 | &skmem_region_lock_attr); |
| 153 | |
| 154 | /* protected by skmem_region_lock */ |
| 155 | static TAILQ_HEAD(, skmem_region) skmem_region_head; |
| 156 | |
| 157 | static thread_call_t skmem_region_update_tc; |
| 158 | |
| 159 | #define SKMEM_REGION_UPDATE_INTERVAL 13 /* 13 seconds */ |
| 160 | static uint32_t skmem_region_update_interval = SKMEM_REGION_UPDATE_INTERVAL; |
| 161 | |
| 162 | #define SKMEM_WDT_MAXTIME 30 /* # of secs before watchdog */ |
| 163 | #define SKMEM_WDT_PURGE 3 /* retry purge threshold */ |
| 164 | |
| 165 | #if (DEVELOPMENT || DEBUG) |
| 166 | /* Mean Time Between Failures (ms) */ |
| 167 | static volatile uint64_t skmem_region_mtbf; |
| 168 | |
| 169 | static int skmem_region_mtbf_sysctl(struct sysctl_oid *, void *, int, |
| 170 | struct sysctl_req *); |
| 171 | |
| 172 | SYSCTL_PROC(_kern_skywalk_mem, OID_AUTO, region_mtbf, |
| 173 | CTLTYPE_QUAD | CTLFLAG_RW | CTLFLAG_LOCKED, NULL, 0, |
| 174 | skmem_region_mtbf_sysctl, "Q" , "Region MTBF (ms)" ); |
| 175 | |
| 176 | SYSCTL_UINT(_kern_skywalk_mem, OID_AUTO, region_update_interval, |
| 177 | CTLFLAG_RW | CTLFLAG_LOCKED, &skmem_region_update_interval, |
| 178 | SKMEM_REGION_UPDATE_INTERVAL, "Region update interval (sec)" ); |
| 179 | #endif /* (DEVELOPMENT || DEBUG) */ |
| 180 | |
| 181 | #define SKMEM_REGION_LOCK() \ |
| 182 | lck_mtx_lock(&skmem_region_lock) |
| 183 | #define SKMEM_REGION_LOCK_ASSERT_HELD() \ |
| 184 | LCK_MTX_ASSERT(&skmem_region_lock, LCK_MTX_ASSERT_OWNED) |
| 185 | #define SKMEM_REGION_LOCK_ASSERT_NOTHELD() \ |
| 186 | LCK_MTX_ASSERT(&skmem_region_lock, LCK_MTX_ASSERT_NOTOWNED) |
| 187 | #define SKMEM_REGION_UNLOCK() \ |
| 188 | lck_mtx_unlock(&skmem_region_lock) |
| 189 | |
| 190 | /* |
| 191 | * Hash table bounds. Start with the initial value, and rescale up to |
| 192 | * the specified limit. Ideally we don't need a limit, but in practice |
| 193 | * this helps guard against runaways. These values should be revisited |
| 194 | * in future and be adjusted as needed. |
| 195 | */ |
| 196 | #define SKMEM_REGION_HASH_INITIAL 32 /* initial hash table size */ |
| 197 | #define SKMEM_REGION_HASH_LIMIT 4096 /* hash table size limit */ |
| 198 | |
| 199 | #define SKMEM_REGION_HASH_INDEX(_a, _s, _m) \ |
| 200 | (((_a) + ((_a) >> (_s)) + ((_a) >> ((_s) << 1))) & (_m)) |
| 201 | #define SKMEM_REGION_HASH(_skr, _addr) \ |
| 202 | (&(_skr)->skr_hash_table[SKMEM_REGION_HASH_INDEX((uintptr_t)_addr, \ |
| 203 | (_skr)->skr_hash_shift, (_skr)->skr_hash_mask)]) |
| 204 | |
| 205 | static SKMEM_TYPE_DEFINE(skr_zone, struct skmem_region); |
| 206 | |
| 207 | static unsigned int sg_size; /* size of zone element */ |
| 208 | static struct skmem_cache *skmem_sg_cache; /* cache for sksegment */ |
| 209 | |
| 210 | static uint32_t skmem_seg_size = SKMEM_SEG_SIZE; |
| 211 | static uint32_t skmem_md_seg_size = SKMEM_MD_SEG_SIZE; |
| 212 | static uint32_t skmem_drv_buf_seg_size = SKMEM_DRV_BUF_SEG_SIZE; |
| 213 | static uint32_t skmem_drv_buf_seg_eff_size = SKMEM_DRV_BUF_SEG_SIZE; |
| 214 | uint32_t skmem_usr_buf_seg_size = SKMEM_USR_BUF_SEG_SIZE; |
| 215 | |
| 216 | #define SKMEM_TAG_SEGMENT_BMAP "com.apple.skywalk.segment.bmap" |
| 217 | static SKMEM_TAG_DEFINE(skmem_tag_segment_bmap, SKMEM_TAG_SEGMENT_BMAP); |
| 218 | |
| 219 | #define SKMEM_TAG_SEGMENT_HASH "com.apple.skywalk.segment.hash" |
| 220 | static SKMEM_TAG_DEFINE(skmem_tag_segment_hash, SKMEM_TAG_SEGMENT_HASH); |
| 221 | |
| 222 | #define SKMEM_TAG_REGION_MIB "com.apple.skywalk.region.mib" |
| 223 | static SKMEM_TAG_DEFINE(skmem_tag_region_mib, SKMEM_TAG_REGION_MIB); |
| 224 | |
| 225 | #define BMAPSZ 64 |
| 226 | |
| 227 | /* 64-bit mask with range */ |
| 228 | #define BMASK64(_beg, _end) \ |
| 229 | ((((uint64_t)-1) >> ((BMAPSZ - 1) - (_end))) & ~((1ULL << (_beg)) - 1)) |
| 230 | |
| 231 | static int __skmem_region_inited = 0; |
| 232 | |
| 233 | void |
| 234 | skmem_region_init(void) |
| 235 | { |
| 236 | boolean_t randomize_seg_size; |
| 237 | |
| 238 | _CASSERT(sizeof(bitmap_t) == sizeof(uint64_t)); |
| 239 | _CASSERT(BMAPSZ == (sizeof(bitmap_t) << 3)); |
| 240 | _CASSERT((SKMEM_SEG_SIZE % SKMEM_PAGE_SIZE) == 0); |
| 241 | _CASSERT(SKMEM_REGION_HASH_LIMIT >= SKMEM_REGION_HASH_INITIAL); |
| 242 | ASSERT(!__skmem_region_inited); |
| 243 | |
| 244 | /* enforce the ordering here */ |
| 245 | _CASSERT(SKMEM_REGION_GUARD_HEAD == 0); |
| 246 | _CASSERT(SKMEM_REGION_SCHEMA == 1); |
| 247 | _CASSERT(SKMEM_REGION_RING == 2); |
| 248 | _CASSERT(SKMEM_REGION_BUF_DEF == 3); |
| 249 | _CASSERT(SKMEM_REGION_BUF_LARGE == 4); |
| 250 | _CASSERT(SKMEM_REGION_RXBUF_DEF == 5); |
| 251 | _CASSERT(SKMEM_REGION_RXBUF_LARGE == 6); |
| 252 | _CASSERT(SKMEM_REGION_TXBUF_DEF == 7); |
| 253 | _CASSERT(SKMEM_REGION_TXBUF_LARGE == 8); |
| 254 | _CASSERT(SKMEM_REGION_UMD == 9); |
| 255 | _CASSERT(SKMEM_REGION_TXAUSD == 10); |
| 256 | _CASSERT(SKMEM_REGION_RXFUSD == 11); |
| 257 | _CASSERT(SKMEM_REGION_UBFT == 12); |
| 258 | _CASSERT(SKMEM_REGION_USTATS == 13); |
| 259 | _CASSERT(SKMEM_REGION_FLOWADV == 14); |
| 260 | _CASSERT(SKMEM_REGION_NEXUSADV == 15); |
| 261 | _CASSERT(SKMEM_REGION_SYSCTLS == 16); |
| 262 | _CASSERT(SKMEM_REGION_GUARD_TAIL == 17); |
| 263 | _CASSERT(SKMEM_REGION_KMD == 18); |
| 264 | _CASSERT(SKMEM_REGION_RXKMD == 19); |
| 265 | _CASSERT(SKMEM_REGION_TXKMD == 20); |
| 266 | _CASSERT(SKMEM_REGION_KBFT == 21); |
| 267 | _CASSERT(SKMEM_REGION_RXKBFT == 22); |
| 268 | _CASSERT(SKMEM_REGION_TXKBFT == 23); |
| 269 | _CASSERT(SKMEM_REGION_TXAKSD == 24); |
| 270 | _CASSERT(SKMEM_REGION_RXFKSD == 25); |
| 271 | _CASSERT(SKMEM_REGION_KSTATS == 26); |
| 272 | _CASSERT(SKMEM_REGION_INTRINSIC == 27); |
| 273 | |
| 274 | _CASSERT(SREG_GUARD_HEAD == SKMEM_REGION_GUARD_HEAD); |
| 275 | _CASSERT(SREG_SCHEMA == SKMEM_REGION_SCHEMA); |
| 276 | _CASSERT(SREG_RING == SKMEM_REGION_RING); |
| 277 | _CASSERT(SREG_BUF_DEF == SKMEM_REGION_BUF_DEF); |
| 278 | _CASSERT(SREG_BUF_LARGE == SKMEM_REGION_BUF_LARGE); |
| 279 | _CASSERT(SREG_RXBUF_DEF == SKMEM_REGION_RXBUF_DEF); |
| 280 | _CASSERT(SREG_RXBUF_LARGE == SKMEM_REGION_RXBUF_LARGE); |
| 281 | _CASSERT(SREG_TXBUF_DEF == SKMEM_REGION_TXBUF_DEF); |
| 282 | _CASSERT(SREG_TXBUF_LARGE == SKMEM_REGION_TXBUF_LARGE); |
| 283 | _CASSERT(SREG_UMD == SKMEM_REGION_UMD); |
| 284 | _CASSERT(SREG_TXAUSD == SKMEM_REGION_TXAUSD); |
| 285 | _CASSERT(SREG_RXFUSD == SKMEM_REGION_RXFUSD); |
| 286 | _CASSERT(SREG_UBFT == SKMEM_REGION_UBFT); |
| 287 | _CASSERT(SREG_USTATS == SKMEM_REGION_USTATS); |
| 288 | _CASSERT(SREG_FLOWADV == SKMEM_REGION_FLOWADV); |
| 289 | _CASSERT(SREG_NEXUSADV == SKMEM_REGION_NEXUSADV); |
| 290 | _CASSERT(SREG_SYSCTLS == SKMEM_REGION_SYSCTLS); |
| 291 | _CASSERT(SREG_GUARD_TAIL == SKMEM_REGION_GUARD_TAIL); |
| 292 | _CASSERT(SREG_KMD == SKMEM_REGION_KMD); |
| 293 | _CASSERT(SREG_RXKMD == SKMEM_REGION_RXKMD); |
| 294 | _CASSERT(SREG_TXKMD == SKMEM_REGION_TXKMD); |
| 295 | _CASSERT(SREG_KBFT == SKMEM_REGION_KBFT); |
| 296 | _CASSERT(SREG_RXKBFT == SKMEM_REGION_RXKBFT); |
| 297 | _CASSERT(SREG_TXKBFT == SKMEM_REGION_TXKBFT); |
| 298 | _CASSERT(SREG_TXAKSD == SKMEM_REGION_TXAKSD); |
| 299 | _CASSERT(SREG_RXFKSD == SKMEM_REGION_RXFKSD); |
| 300 | _CASSERT(SREG_KSTATS == SKMEM_REGION_KSTATS); |
| 301 | |
| 302 | _CASSERT(SKR_MODE_NOREDIRECT == SREG_MODE_NOREDIRECT); |
| 303 | _CASSERT(SKR_MODE_MMAPOK == SREG_MODE_MMAPOK); |
| 304 | _CASSERT(SKR_MODE_UREADONLY == SREG_MODE_UREADONLY); |
| 305 | _CASSERT(SKR_MODE_KREADONLY == SREG_MODE_KREADONLY); |
| 306 | _CASSERT(SKR_MODE_PERSISTENT == SREG_MODE_PERSISTENT); |
| 307 | _CASSERT(SKR_MODE_MONOLITHIC == SREG_MODE_MONOLITHIC); |
| 308 | _CASSERT(SKR_MODE_NOMAGAZINES == SREG_MODE_NOMAGAZINES); |
| 309 | _CASSERT(SKR_MODE_NOCACHE == SREG_MODE_NOCACHE); |
| 310 | _CASSERT(SKR_MODE_IODIR_IN == SREG_MODE_IODIR_IN); |
| 311 | _CASSERT(SKR_MODE_IODIR_OUT == SREG_MODE_IODIR_OUT); |
| 312 | _CASSERT(SKR_MODE_GUARD == SREG_MODE_GUARD); |
| 313 | _CASSERT(SKR_MODE_SEGPHYSCONTIG == SREG_MODE_SEGPHYSCONTIG); |
| 314 | _CASSERT(SKR_MODE_SHAREOK == SREG_MODE_SHAREOK); |
| 315 | _CASSERT(SKR_MODE_PUREDATA == SREG_MODE_PUREDATA); |
| 316 | _CASSERT(SKR_MODE_PSEUDO == SREG_MODE_PSEUDO); |
| 317 | _CASSERT(SKR_MODE_THREADSAFE == SREG_MODE_THREADSAFE); |
| 318 | _CASSERT(SKR_MODE_SLAB == SREG_MODE_SLAB); |
| 319 | _CASSERT(SKR_MODE_MIRRORED == SREG_MODE_MIRRORED); |
| 320 | |
| 321 | (void) PE_parse_boot_argn(arg_string: "skmem_seg_size" , arg_ptr: &skmem_seg_size, |
| 322 | max_arg: sizeof(skmem_seg_size)); |
| 323 | if (skmem_seg_size < SKMEM_MIN_SEG_SIZE) { |
| 324 | skmem_seg_size = SKMEM_MIN_SEG_SIZE; |
| 325 | } |
| 326 | skmem_seg_size = (uint32_t)P2ROUNDUP(skmem_seg_size, |
| 327 | SKMEM_MIN_SEG_SIZE); |
| 328 | VERIFY(skmem_seg_size != 0 && (skmem_seg_size % SKMEM_PAGE_SIZE) == 0); |
| 329 | |
| 330 | (void) PE_parse_boot_argn(arg_string: "skmem_md_seg_size" , arg_ptr: &skmem_md_seg_size, |
| 331 | max_arg: sizeof(skmem_md_seg_size)); |
| 332 | if (skmem_md_seg_size < skmem_seg_size) { |
| 333 | skmem_md_seg_size = skmem_seg_size; |
| 334 | } |
| 335 | skmem_md_seg_size = (uint32_t)P2ROUNDUP(skmem_md_seg_size, |
| 336 | SKMEM_MIN_SEG_SIZE); |
| 337 | VERIFY((skmem_md_seg_size % SKMEM_PAGE_SIZE) == 0); |
| 338 | |
| 339 | /* |
| 340 | * If set via boot-args, honor it and don't randomize. |
| 341 | */ |
| 342 | randomize_seg_size = !PE_parse_boot_argn(arg_string: "skmem_drv_buf_seg_size" , |
| 343 | arg_ptr: &skmem_drv_buf_seg_size, max_arg: sizeof(skmem_drv_buf_seg_size)); |
| 344 | if (skmem_drv_buf_seg_size < skmem_seg_size) { |
| 345 | skmem_drv_buf_seg_size = skmem_seg_size; |
| 346 | } |
| 347 | skmem_drv_buf_seg_size = skmem_drv_buf_seg_eff_size = |
| 348 | (uint32_t)P2ROUNDUP(skmem_drv_buf_seg_size, SKMEM_MIN_SEG_SIZE); |
| 349 | VERIFY((skmem_drv_buf_seg_size % SKMEM_PAGE_SIZE) == 0); |
| 350 | |
| 351 | /* |
| 352 | * Randomize the driver buffer segment size; here we choose |
| 353 | * a SKMEM_MIN_SEG_SIZE multiplier to bump up the value to. |
| 354 | * Set this as the effective driver buffer segment size. |
| 355 | */ |
| 356 | if (randomize_seg_size) { |
| 357 | uint32_t sm; |
| 358 | read_frandom(buffer: &sm, numBytes: sizeof(sm)); |
| 359 | skmem_drv_buf_seg_eff_size += |
| 360 | (SKMEM_MIN_SEG_SIZE * (sm % SKMEM_DRV_BUF_SEG_MULTIPLIER)); |
| 361 | VERIFY((skmem_drv_buf_seg_eff_size % SKMEM_MIN_SEG_SIZE) == 0); |
| 362 | } |
| 363 | VERIFY(skmem_drv_buf_seg_eff_size >= skmem_drv_buf_seg_size); |
| 364 | |
| 365 | (void) PE_parse_boot_argn(arg_string: "skmem_usr_buf_seg_size" , |
| 366 | arg_ptr: &skmem_usr_buf_seg_size, max_arg: sizeof(skmem_usr_buf_seg_size)); |
| 367 | if (skmem_usr_buf_seg_size < skmem_seg_size) { |
| 368 | skmem_usr_buf_seg_size = skmem_seg_size; |
| 369 | } |
| 370 | skmem_usr_buf_seg_size = (uint32_t)P2ROUNDUP(skmem_usr_buf_seg_size, |
| 371 | SKMEM_MIN_SEG_SIZE); |
| 372 | VERIFY((skmem_usr_buf_seg_size % SKMEM_PAGE_SIZE) == 0); |
| 373 | |
| 374 | SK_ERR("seg_size %u, md_seg_size %u, drv_buf_seg_size %u [eff %u], " |
| 375 | "usr_buf_seg_size %u" , skmem_seg_size, skmem_md_seg_size, |
| 376 | skmem_drv_buf_seg_size, skmem_drv_buf_seg_eff_size, |
| 377 | skmem_usr_buf_seg_size); |
| 378 | |
| 379 | TAILQ_INIT(&skmem_region_head); |
| 380 | |
| 381 | skmem_region_update_tc = |
| 382 | thread_call_allocate_with_options(func: skmem_region_update_func, |
| 383 | NULL, pri: THREAD_CALL_PRIORITY_KERNEL, options: THREAD_CALL_OPTIONS_ONCE); |
| 384 | if (skmem_region_update_tc == NULL) { |
| 385 | panic("%s: thread_call_allocate failed" , __func__); |
| 386 | /* NOTREACHED */ |
| 387 | __builtin_unreachable(); |
| 388 | } |
| 389 | |
| 390 | sg_size = sizeof(struct sksegment); |
| 391 | skmem_sg_cache = skmem_cache_create("sg" , sg_size, |
| 392 | sizeof(uint64_t), NULL, NULL, NULL, NULL, NULL, 0); |
| 393 | |
| 394 | /* and start the periodic region update machinery */ |
| 395 | skmem_dispatch(skmem_region_update_tc, NULL, |
| 396 | (skmem_region_update_interval * NSEC_PER_SEC)); |
| 397 | |
| 398 | __skmem_region_inited = 1; |
| 399 | } |
| 400 | |
| 401 | void |
| 402 | skmem_region_fini(void) |
| 403 | { |
| 404 | if (__skmem_region_inited) { |
| 405 | ASSERT(TAILQ_EMPTY(&skmem_region_head)); |
| 406 | |
| 407 | if (skmem_region_update_tc != NULL) { |
| 408 | (void) thread_call_cancel_wait(call: skmem_region_update_tc); |
| 409 | (void) thread_call_free(call: skmem_region_update_tc); |
| 410 | skmem_region_update_tc = NULL; |
| 411 | } |
| 412 | |
| 413 | if (skmem_sg_cache != NULL) { |
| 414 | skmem_cache_destroy(skmem_sg_cache); |
| 415 | skmem_sg_cache = NULL; |
| 416 | } |
| 417 | |
| 418 | __skmem_region_inited = 0; |
| 419 | } |
| 420 | } |
| 421 | |
| 422 | /* |
| 423 | * Reap internal caches. |
| 424 | */ |
| 425 | void |
| 426 | skmem_region_reap_caches(boolean_t purge) |
| 427 | { |
| 428 | skmem_cache_reap_now(skmem_sg_cache, purge); |
| 429 | } |
| 430 | |
| 431 | /* |
| 432 | * Configure and compute the parameters of a region. |
| 433 | */ |
| 434 | void |
| 435 | skmem_region_params_config(struct skmem_region_params *srp) |
| 436 | { |
| 437 | uint32_t cache_line_size = skmem_cpu_cache_line_size(); |
| 438 | size_t seglim, segsize, segcnt; |
| 439 | size_t objsize, objcnt; |
| 440 | |
| 441 | ASSERT(srp->srp_id < SKMEM_REGIONS); |
| 442 | |
| 443 | /* |
| 444 | * If magazines layer is disabled system-wide, override |
| 445 | * the region parameter here. This will effectively reduce |
| 446 | * the number of requested objects computed below. Note that |
| 447 | * the region may have already been configured to exclude |
| 448 | * magazines in the default skmem_regions[] array. |
| 449 | */ |
| 450 | if (!skmem_allow_magazines()) { |
| 451 | srp->srp_cflags |= SKMEM_REGION_CR_NOMAGAZINES; |
| 452 | } |
| 453 | |
| 454 | objsize = srp->srp_r_obj_size; |
| 455 | ASSERT(objsize != 0); |
| 456 | objcnt = srp->srp_r_obj_cnt; |
| 457 | ASSERT(objcnt != 0); |
| 458 | |
| 459 | if (srp->srp_cflags & SKMEM_REGION_CR_PSEUDO) { |
| 460 | size_t align = srp->srp_align; |
| 461 | |
| 462 | VERIFY(align != 0 && (align % SKMEM_CACHE_ALIGN) == 0); |
| 463 | VERIFY(powerof2(align)); |
| 464 | objsize = MAX(objsize, sizeof(uint64_t)); |
| 465 | #if KASAN |
| 466 | /* |
| 467 | * When KASAN is enabled, the zone allocator adjusts the |
| 468 | * element size to include the redzone regions, in which |
| 469 | * case we assume that the elements won't start on the |
| 470 | * alignment boundary and thus need to do some fix-ups. |
| 471 | * These include increasing the effective object size |
| 472 | * which adds at least 16 bytes to the original size. |
| 473 | */ |
| 474 | objsize += sizeof(uint64_t) + align; |
| 475 | #endif /* KASAN */ |
| 476 | objsize = P2ROUNDUP(objsize, align); |
| 477 | |
| 478 | segsize = objsize; |
| 479 | srp->srp_r_seg_size = (uint32_t)segsize; |
| 480 | segcnt = objcnt; |
| 481 | goto done; |
| 482 | } else { |
| 483 | /* objects are always aligned at CPU cache line size */ |
| 484 | srp->srp_align = cache_line_size; |
| 485 | } |
| 486 | |
| 487 | /* |
| 488 | * Start with default segment size for the region, and compute the |
| 489 | * effective segment size (to nearest SKMEM_MIN_SEG_SIZE). If the |
| 490 | * object size is greater, then we adjust the segment size to next |
| 491 | * multiple of the effective size larger than the object size. |
| 492 | */ |
| 493 | if (srp->srp_r_seg_size == 0) { |
| 494 | switch (srp->srp_id) { |
| 495 | case SKMEM_REGION_UMD: |
| 496 | case SKMEM_REGION_KMD: |
| 497 | case SKMEM_REGION_RXKMD: |
| 498 | case SKMEM_REGION_TXKMD: |
| 499 | srp->srp_r_seg_size = skmem_md_seg_size; |
| 500 | break; |
| 501 | |
| 502 | case SKMEM_REGION_BUF_DEF: |
| 503 | case SKMEM_REGION_RXBUF_DEF: |
| 504 | case SKMEM_REGION_TXBUF_DEF: |
| 505 | /* |
| 506 | * Use the effective driver buffer segment size, |
| 507 | * since it reflects any randomization done at |
| 508 | * skmem_region_init() time. |
| 509 | */ |
| 510 | srp->srp_r_seg_size = skmem_drv_buf_seg_eff_size; |
| 511 | break; |
| 512 | |
| 513 | default: |
| 514 | srp->srp_r_seg_size = skmem_seg_size; |
| 515 | break; |
| 516 | } |
| 517 | } else { |
| 518 | srp->srp_r_seg_size = (uint32_t)P2ROUNDUP(srp->srp_r_seg_size, |
| 519 | SKMEM_MIN_SEG_SIZE); |
| 520 | } |
| 521 | |
| 522 | seglim = srp->srp_r_seg_size; |
| 523 | VERIFY(seglim != 0 && (seglim % SKMEM_PAGE_SIZE) == 0); |
| 524 | |
| 525 | SK_DF(SK_VERB_MEM, "%s: seglim %zu objsize %zu objcnt %zu" , |
| 526 | srp->srp_name, seglim, objsize, objcnt); |
| 527 | |
| 528 | /* |
| 529 | * Make sure object size is multiple of CPU cache line |
| 530 | * size, and that we can evenly divide the segment size. |
| 531 | */ |
| 532 | if (!((objsize < cache_line_size) && (objsize < seglim) && |
| 533 | ((cache_line_size % objsize) == 0) && ((seglim % objsize) == 0))) { |
| 534 | objsize = P2ROUNDUP(objsize, cache_line_size); |
| 535 | while (objsize < seglim && (seglim % objsize) != 0) { |
| 536 | SK_DF(SK_VERB_MEM, "%s: objsize %zu -> %zu" , |
| 537 | srp->srp_name, objsize, objsize + cache_line_size); |
| 538 | objsize += cache_line_size; |
| 539 | } |
| 540 | } |
| 541 | |
| 542 | /* segment must be larger than object */ |
| 543 | while (objsize > seglim) { |
| 544 | SK_DF(SK_VERB_MEM, "%s: seglim %zu -> %zu" , srp->srp_name, |
| 545 | seglim, seglim + SKMEM_MIN_SEG_SIZE); |
| 546 | seglim += SKMEM_MIN_SEG_SIZE; |
| 547 | } |
| 548 | |
| 549 | /* |
| 550 | * Take into account worst-case per-CPU cached |
| 551 | * objects if this region is configured for it. |
| 552 | */ |
| 553 | if (!(srp->srp_cflags & SKMEM_REGION_CR_NOMAGAZINES)) { |
| 554 | uint32_t magazine_max_objs = |
| 555 | skmem_cache_magazine_max((uint32_t)objsize); |
| 556 | SK_DF(SK_VERB_MEM, "%s: objcnt %zu -> %zu" , srp->srp_name, |
| 557 | objcnt, objcnt + magazine_max_objs); |
| 558 | objcnt += magazine_max_objs; |
| 559 | } |
| 560 | |
| 561 | SK_DF(SK_VERB_MEM, "%s: seglim %zu objsize %zu " |
| 562 | "objcnt %zu" , srp->srp_name, seglim, objsize, objcnt); |
| 563 | |
| 564 | segsize = P2ROUNDUP(objsize * objcnt, SKMEM_MIN_SEG_SIZE); |
| 565 | if (seglim > segsize) { |
| 566 | /* |
| 567 | * If the segment limit is larger than what we need, |
| 568 | * avoid memory wastage by shrinking it. |
| 569 | */ |
| 570 | while (seglim > segsize && seglim > SKMEM_MIN_SEG_SIZE) { |
| 571 | VERIFY(seglim >= SKMEM_MIN_SEG_SIZE); |
| 572 | SK_DF(SK_VERB_MEM, |
| 573 | "%s: segsize %zu (%zu*%zu) seglim [-] %zu -> %zu" , |
| 574 | srp->srp_name, segsize, objsize, objcnt, seglim, |
| 575 | P2ROUNDUP(seglim - SKMEM_MIN_SEG_SIZE, |
| 576 | SKMEM_MIN_SEG_SIZE)); |
| 577 | seglim = P2ROUNDUP(seglim - SKMEM_MIN_SEG_SIZE, |
| 578 | SKMEM_MIN_SEG_SIZE); |
| 579 | } |
| 580 | |
| 581 | /* adjust segment size */ |
| 582 | segsize = seglim; |
| 583 | } else if (seglim < segsize) { |
| 584 | size_t oseglim = seglim; |
| 585 | /* |
| 586 | * If the segment limit is less than the segment size, |
| 587 | * see if increasing it slightly (up to 1.5x the segment |
| 588 | * size) would allow us to avoid allocating too many |
| 589 | * extra objects (due to excessive segment count). |
| 590 | */ |
| 591 | while (seglim < segsize && (segsize % seglim) != 0) { |
| 592 | SK_DF(SK_VERB_MEM, |
| 593 | "%s: segsize %zu (%zu*%zu) seglim [+] %zu -> %zu" , |
| 594 | srp->srp_name, segsize, objsize, objcnt, seglim, |
| 595 | (seglim + SKMEM_MIN_SEG_SIZE)); |
| 596 | seglim += SKMEM_MIN_SEG_SIZE; |
| 597 | if (seglim >= (oseglim + (oseglim >> 1))) { |
| 598 | break; |
| 599 | } |
| 600 | } |
| 601 | |
| 602 | /* can't use P2ROUNDUP since seglim may not be power of 2 */ |
| 603 | segsize = SK_ROUNDUP(segsize, seglim); |
| 604 | } |
| 605 | ASSERT(segsize != 0 && (segsize % seglim) == 0); |
| 606 | |
| 607 | SK_DF(SK_VERB_MEM, "%s: segsize %zu seglim %zu" , |
| 608 | srp->srp_name, segsize, seglim); |
| 609 | |
| 610 | /* compute segment count, and recompute segment size */ |
| 611 | if (srp->srp_cflags & SKMEM_REGION_CR_MONOLITHIC) { |
| 612 | segcnt = 1; |
| 613 | } else { |
| 614 | /* |
| 615 | * The adjustments above were done in increments of |
| 616 | * SKMEM_MIN_SEG_SIZE. If the object size is greater |
| 617 | * than that, ensure that the segment size is a multiple |
| 618 | * of the object size. |
| 619 | */ |
| 620 | if (objsize > SKMEM_MIN_SEG_SIZE) { |
| 621 | ASSERT(seglim >= objsize); |
| 622 | if ((seglim % objsize) != 0) { |
| 623 | seglim += (seglim - objsize); |
| 624 | } |
| 625 | /* recompute segsize; see SK_ROUNDUP comment above */ |
| 626 | segsize = SK_ROUNDUP(segsize, seglim); |
| 627 | } |
| 628 | |
| 629 | segcnt = MAX(1, (segsize / seglim)); |
| 630 | segsize /= segcnt; |
| 631 | } |
| 632 | |
| 633 | SK_DF(SK_VERB_MEM, "%s: segcnt %zu segsize %zu" , |
| 634 | srp->srp_name, segcnt, segsize); |
| 635 | |
| 636 | /* recompute object count to avoid wastage */ |
| 637 | objcnt = (segsize * segcnt) / objsize; |
| 638 | ASSERT(objcnt != 0); |
| 639 | done: |
| 640 | srp->srp_c_obj_size = (uint32_t)objsize; |
| 641 | srp->srp_c_obj_cnt = (uint32_t)objcnt; |
| 642 | srp->srp_c_seg_size = (uint32_t)segsize; |
| 643 | srp->srp_seg_cnt = (uint32_t)segcnt; |
| 644 | |
| 645 | SK_DF(SK_VERB_MEM, "%s: objsize %zu objcnt %zu segcnt %zu segsize %zu" , |
| 646 | srp->srp_name, objsize, objcnt, segcnt, segsize); |
| 647 | |
| 648 | #if SK_LOG |
| 649 | if (__improbable(sk_verbose != 0)) { |
| 650 | char label[32]; |
| 651 | (void) snprintf(label, sizeof(label), "REGION_%s:" , |
| 652 | skmem_region_id2name(srp->srp_id)); |
| 653 | SK_D("%-16s o:[%4u x %6u -> %4u x %6u]" , label, |
| 654 | (uint32_t)srp->srp_r_obj_cnt, |
| 655 | (uint32_t)srp->srp_r_obj_size, |
| 656 | (uint32_t)srp->srp_c_obj_cnt, |
| 657 | (uint32_t)srp->srp_c_obj_size); |
| 658 | } |
| 659 | #endif /* SK_LOG */ |
| 660 | } |
| 661 | |
| 662 | /* |
| 663 | * Create a region. |
| 664 | */ |
| 665 | struct skmem_region * |
| 666 | skmem_region_create(const char *name, struct skmem_region_params *srp, |
| 667 | sksegment_ctor_fn_t ctor, sksegment_dtor_fn_t dtor, void *private) |
| 668 | { |
| 669 | boolean_t pseudo = (srp->srp_cflags & SKMEM_REGION_CR_PSEUDO); |
| 670 | uint32_t cflags = srp->srp_cflags; |
| 671 | struct skmem_region *skr; |
| 672 | uint32_t i; |
| 673 | |
| 674 | ASSERT(srp->srp_id < SKMEM_REGIONS); |
| 675 | ASSERT(srp->srp_c_seg_size != 0 && |
| 676 | (pseudo || (srp->srp_c_seg_size % SKMEM_PAGE_SIZE) == 0)); |
| 677 | ASSERT(srp->srp_seg_cnt != 0); |
| 678 | ASSERT(srp->srp_c_obj_cnt == 1 || |
| 679 | (srp->srp_c_seg_size % srp->srp_c_obj_size) == 0); |
| 680 | ASSERT(srp->srp_c_obj_size <= srp->srp_c_seg_size); |
| 681 | |
| 682 | skr = zalloc_flags(skr_zone, Z_WAITOK | Z_ZERO); |
| 683 | skr->skr_params.srp_r_seg_size = srp->srp_r_seg_size; |
| 684 | skr->skr_seg_size = srp->srp_c_seg_size; |
| 685 | skr->skr_size = (srp->srp_c_seg_size * srp->srp_seg_cnt); |
| 686 | skr->skr_seg_objs = (srp->srp_c_seg_size / srp->srp_c_obj_size); |
| 687 | |
| 688 | if (!pseudo) { |
| 689 | skr->skr_seg_max_cnt = srp->srp_seg_cnt; |
| 690 | |
| 691 | /* set alignment to CPU cache line size */ |
| 692 | skr->skr_params.srp_align = skmem_cpu_cache_line_size(); |
| 693 | |
| 694 | /* allocate the allocated-address hash chain */ |
| 695 | skr->skr_hash_initial = SKMEM_REGION_HASH_INITIAL; |
| 696 | skr->skr_hash_limit = SKMEM_REGION_HASH_LIMIT; |
| 697 | skr->skr_hash_table = sk_alloc_type_array(struct sksegment_bkt, |
| 698 | skr->skr_hash_initial, Z_WAITOK | Z_NOFAIL, |
| 699 | skmem_tag_segment_hash); |
| 700 | skr->skr_hash_mask = (skr->skr_hash_initial - 1); |
| 701 | skr->skr_hash_shift = flsll(srp->srp_c_seg_size) - 1; |
| 702 | |
| 703 | for (i = 0; i < (skr->skr_hash_mask + 1); i++) { |
| 704 | TAILQ_INIT(&skr->skr_hash_table[i].sgb_head); |
| 705 | } |
| 706 | } else { |
| 707 | /* this upper bound doesn't apply */ |
| 708 | skr->skr_seg_max_cnt = 0; |
| 709 | |
| 710 | /* pick up value set by skmem_regions_params_config() */ |
| 711 | skr->skr_params.srp_align = srp->srp_align; |
| 712 | } |
| 713 | |
| 714 | skr->skr_r_obj_size = srp->srp_r_obj_size; |
| 715 | skr->skr_r_obj_cnt = srp->srp_r_obj_cnt; |
| 716 | skr->skr_c_obj_size = srp->srp_c_obj_size; |
| 717 | skr->skr_c_obj_cnt = srp->srp_c_obj_cnt; |
| 718 | |
| 719 | skr->skr_params.srp_md_type = srp->srp_md_type; |
| 720 | skr->skr_params.srp_md_subtype = srp->srp_md_subtype; |
| 721 | skr->skr_params.srp_max_frags = srp->srp_max_frags; |
| 722 | |
| 723 | skr->skr_seg_ctor = ctor; |
| 724 | skr->skr_seg_dtor = dtor; |
| 725 | skr->skr_private = private; |
| 726 | |
| 727 | lck_mtx_init(lck: &skr->skr_lock, grp: &skmem_region_lock_grp, |
| 728 | attr: &skmem_region_lock_attr); |
| 729 | |
| 730 | TAILQ_INIT(&skr->skr_seg_free); |
| 731 | RB_INIT(&skr->skr_seg_tfree); |
| 732 | |
| 733 | skr->skr_id = srp->srp_id; |
| 734 | uuid_generate_random(out: skr->skr_uuid); |
| 735 | (void) snprintf(skr->skr_name, count: sizeof(skr->skr_name), |
| 736 | "%s.%s.%s" , SKMEM_REGION_PREFIX, srp->srp_name, name); |
| 737 | |
| 738 | SK_DF(SK_VERB_MEM_REGION, "\"%s\": skr 0x%llx " , |
| 739 | skr->skr_name, SK_KVA(skr)); |
| 740 | |
| 741 | /* sanity check */ |
| 742 | ASSERT(!(cflags & SKMEM_REGION_CR_GUARD) || |
| 743 | !(cflags & (SKMEM_REGION_CR_KREADONLY | SKMEM_REGION_CR_UREADONLY | |
| 744 | SKMEM_REGION_CR_PERSISTENT | SKMEM_REGION_CR_SHAREOK | |
| 745 | SKMEM_REGION_CR_IODIR_IN | SKMEM_REGION_CR_IODIR_OUT | |
| 746 | SKMEM_REGION_CR_PUREDATA))); |
| 747 | |
| 748 | skr->skr_cflags = cflags; |
| 749 | if (cflags & SKMEM_REGION_CR_NOREDIRECT) { |
| 750 | skr->skr_mode |= SKR_MODE_NOREDIRECT; |
| 751 | } |
| 752 | if (cflags & SKMEM_REGION_CR_MMAPOK) { |
| 753 | skr->skr_mode |= SKR_MODE_MMAPOK; |
| 754 | } |
| 755 | if ((cflags & SKMEM_REGION_CR_MMAPOK) && |
| 756 | (cflags & SKMEM_REGION_CR_UREADONLY)) { |
| 757 | skr->skr_mode |= SKR_MODE_UREADONLY; |
| 758 | } |
| 759 | if (cflags & SKMEM_REGION_CR_KREADONLY) { |
| 760 | skr->skr_mode |= SKR_MODE_KREADONLY; |
| 761 | } |
| 762 | if (cflags & SKMEM_REGION_CR_PERSISTENT) { |
| 763 | skr->skr_mode |= SKR_MODE_PERSISTENT; |
| 764 | } |
| 765 | if (cflags & SKMEM_REGION_CR_MONOLITHIC) { |
| 766 | skr->skr_mode |= SKR_MODE_MONOLITHIC; |
| 767 | } |
| 768 | if (cflags & SKMEM_REGION_CR_NOMAGAZINES) { |
| 769 | skr->skr_mode |= SKR_MODE_NOMAGAZINES; |
| 770 | } |
| 771 | if (cflags & SKMEM_REGION_CR_NOCACHE) { |
| 772 | skr->skr_mode |= SKR_MODE_NOCACHE; |
| 773 | } |
| 774 | if (cflags & SKMEM_REGION_CR_SEGPHYSCONTIG) { |
| 775 | skr->skr_mode |= SKR_MODE_SEGPHYSCONTIG; |
| 776 | } |
| 777 | if (cflags & SKMEM_REGION_CR_SHAREOK) { |
| 778 | skr->skr_mode |= SKR_MODE_SHAREOK; |
| 779 | } |
| 780 | if (cflags & SKMEM_REGION_CR_IODIR_IN) { |
| 781 | skr->skr_mode |= SKR_MODE_IODIR_IN; |
| 782 | } |
| 783 | if (cflags & SKMEM_REGION_CR_IODIR_OUT) { |
| 784 | skr->skr_mode |= SKR_MODE_IODIR_OUT; |
| 785 | } |
| 786 | if (cflags & SKMEM_REGION_CR_GUARD) { |
| 787 | skr->skr_mode |= SKR_MODE_GUARD; |
| 788 | } |
| 789 | if (cflags & SKMEM_REGION_CR_PUREDATA) { |
| 790 | skr->skr_mode |= SKR_MODE_PUREDATA; |
| 791 | } |
| 792 | if (cflags & SKMEM_REGION_CR_PSEUDO) { |
| 793 | skr->skr_mode |= SKR_MODE_PSEUDO; |
| 794 | } |
| 795 | if (cflags & SKMEM_REGION_CR_THREADSAFE) { |
| 796 | skr->skr_mode |= SKR_MODE_THREADSAFE; |
| 797 | } |
| 798 | if (cflags & SKMEM_REGION_CR_MEMTAG) { |
| 799 | skr->skr_mode |= SKR_MODE_MEMTAG; |
| 800 | } |
| 801 | |
| 802 | #if XNU_TARGET_OS_OSX |
| 803 | /* |
| 804 | * Mark all regions as persistent except for the guard and Intrinsic |
| 805 | * regions. |
| 806 | * This is to ensure that kernel threads won't be faulting-in while |
| 807 | * accessing these memory regions. We have observed various kinds of |
| 808 | * kernel panics due to kernel threads faulting on non-wired memory |
| 809 | * access when the VM subsystem is not in a state to swap-in the page. |
| 810 | */ |
| 811 | if (!((skr->skr_mode & SKR_MODE_PSEUDO) || |
| 812 | (skr->skr_mode & SKR_MODE_GUARD))) { |
| 813 | skr->skr_mode |= SKR_MODE_PERSISTENT; |
| 814 | } |
| 815 | #endif /* XNU_TARGET_OS_OSX */ |
| 816 | |
| 817 | /* SKR_MODE_UREADONLY only takes effect for user task mapping */ |
| 818 | skr->skr_bufspec.user_writable = !(skr->skr_mode & SKR_MODE_UREADONLY); |
| 819 | skr->skr_bufspec.kernel_writable = !(skr->skr_mode & SKR_MODE_KREADONLY); |
| 820 | skr->skr_bufspec.purgeable = TRUE; |
| 821 | skr->skr_bufspec.inhibitCache = !!(skr->skr_mode & SKR_MODE_NOCACHE); |
| 822 | skr->skr_bufspec.physcontig = (skr->skr_mode & SKR_MODE_SEGPHYSCONTIG); |
| 823 | skr->skr_bufspec.iodir_in = !!(skr->skr_mode & SKR_MODE_IODIR_IN); |
| 824 | skr->skr_bufspec.iodir_out = !!(skr->skr_mode & SKR_MODE_IODIR_OUT); |
| 825 | skr->skr_bufspec.puredata = !!(skr->skr_mode & SKR_MODE_PUREDATA); |
| 826 | skr->skr_bufspec.threadSafe = !!(skr->skr_mode & SKR_MODE_THREADSAFE); |
| 827 | skr->skr_regspec.noRedirect = !!(skr->skr_mode & SKR_MODE_NOREDIRECT); |
| 828 | |
| 829 | /* allocate segment bitmaps */ |
| 830 | if (!(skr->skr_mode & SKR_MODE_PSEUDO)) { |
| 831 | ASSERT(skr->skr_seg_max_cnt != 0); |
| 832 | skr->skr_seg_bmap_len = BITMAP_LEN(skr->skr_seg_max_cnt); |
| 833 | skr->skr_seg_bmap = sk_alloc_data(BITMAP_SIZE(skr->skr_seg_max_cnt), |
| 834 | Z_WAITOK | Z_NOFAIL, skmem_tag_segment_bmap); |
| 835 | ASSERT(BITMAP_SIZE(skr->skr_seg_max_cnt) == |
| 836 | (skr->skr_seg_bmap_len * sizeof(*skr->skr_seg_bmap))); |
| 837 | |
| 838 | /* mark all bitmaps as free (bit set) */ |
| 839 | bitmap_full(map: skr->skr_seg_bmap, nbits: skr->skr_seg_max_cnt); |
| 840 | } |
| 841 | |
| 842 | /* |
| 843 | * Populate the freelist by allocating all segments for the |
| 844 | * region, which will be mapped but not faulted-in, and then |
| 845 | * immediately insert each to the freelist. That will in |
| 846 | * turn unmap the segment's memory object. |
| 847 | */ |
| 848 | SKR_LOCK(skr); |
| 849 | if (skr->skr_mode & SKR_MODE_PSEUDO) { |
| 850 | char zone_name[64]; |
| 851 | (void) snprintf(zone_name, count: sizeof(zone_name), "%s.reg.%s" , |
| 852 | SKMEM_ZONE_PREFIX, name); |
| 853 | skr->skr_zreg = zone_create(name: zone_name, size: skr->skr_c_obj_size, |
| 854 | flags: ZC_ZFREE_CLEARMEM | ZC_DESTRUCTIBLE); |
| 855 | } else { |
| 856 | /* create a backing IOSKRegion object */ |
| 857 | if ((skr->skr_reg = IOSKRegionCreate(regionSpec: &skr->skr_regspec, |
| 858 | segmentSize: (IOSKSize)skr->skr_seg_size, |
| 859 | segmentCount: (IOSKCount)skr->skr_seg_max_cnt)) == NULL) { |
| 860 | SK_ERR("\%s\": [%u * %u] cflags 0x%b skr_reg failed" , |
| 861 | skr->skr_name, (uint32_t)skr->skr_seg_size, |
| 862 | (uint32_t)skr->skr_seg_max_cnt, skr->skr_cflags, |
| 863 | SKMEM_REGION_CR_BITS); |
| 864 | goto failed; |
| 865 | } |
| 866 | } |
| 867 | |
| 868 | ASSERT(skr->skr_seg_objs != 0); |
| 869 | |
| 870 | ++skr->skr_refcnt; /* for caller */ |
| 871 | SKR_UNLOCK(skr); |
| 872 | |
| 873 | SKMEM_REGION_LOCK(); |
| 874 | TAILQ_INSERT_TAIL(&skmem_region_head, skr, skr_link); |
| 875 | SKMEM_REGION_UNLOCK(); |
| 876 | |
| 877 | SK_DF(SK_VERB_MEM_REGION, |
| 878 | " [TOTAL] seg (%u*%u) obj (%u*%u) cflags 0x%b" , |
| 879 | (uint32_t)skr->skr_seg_size, (uint32_t)skr->skr_seg_max_cnt, |
| 880 | (uint32_t)skr->skr_c_obj_size, (uint32_t)skr->skr_c_obj_cnt, |
| 881 | skr->skr_cflags, SKMEM_REGION_CR_BITS); |
| 882 | |
| 883 | return skr; |
| 884 | |
| 885 | failed: |
| 886 | SKR_LOCK_ASSERT_HELD(skr); |
| 887 | skmem_region_destroy(skr); |
| 888 | |
| 889 | return NULL; |
| 890 | } |
| 891 | |
| 892 | /* |
| 893 | * Destroy a region. |
| 894 | */ |
| 895 | static void |
| 896 | skmem_region_destroy(struct skmem_region *skr) |
| 897 | { |
| 898 | struct skmem_region *mskr; |
| 899 | |
| 900 | SKR_LOCK_ASSERT_HELD(skr); |
| 901 | |
| 902 | SK_DF(SK_VERB_MEM_REGION, "\"%s\": skr 0x%llx" , |
| 903 | skr->skr_name, SK_KVA(skr)); |
| 904 | |
| 905 | /* |
| 906 | * Panic if we detect there are unfreed segments; the caller |
| 907 | * destroying this region is responsible for ensuring that all |
| 908 | * allocated segments have been freed prior to getting here. |
| 909 | */ |
| 910 | ASSERT(skr->skr_refcnt == 0); |
| 911 | if (skr->skr_seginuse != 0) { |
| 912 | panic("%s: '%s' (%p) not empty (%u unfreed)" , |
| 913 | __func__, skr->skr_name, (void *)skr, skr->skr_seginuse); |
| 914 | /* NOTREACHED */ |
| 915 | __builtin_unreachable(); |
| 916 | } |
| 917 | |
| 918 | if (skr->skr_link.tqe_next != NULL || skr->skr_link.tqe_prev != NULL) { |
| 919 | SKR_UNLOCK(skr); |
| 920 | SKMEM_REGION_LOCK(); |
| 921 | TAILQ_REMOVE(&skmem_region_head, skr, skr_link); |
| 922 | SKMEM_REGION_UNLOCK(); |
| 923 | SKR_LOCK(skr); |
| 924 | ASSERT(skr->skr_refcnt == 0); |
| 925 | } |
| 926 | |
| 927 | /* |
| 928 | * Undo what's done earlier at region creation time. |
| 929 | */ |
| 930 | skmem_region_depopulate(skr); |
| 931 | ASSERT(TAILQ_EMPTY(&skr->skr_seg_free)); |
| 932 | ASSERT(RB_EMPTY(&skr->skr_seg_tfree)); |
| 933 | ASSERT(skr->skr_seg_free_cnt == 0); |
| 934 | |
| 935 | if (skr->skr_reg != NULL) { |
| 936 | ASSERT(!(skr->skr_mode & SKR_MODE_PSEUDO)); |
| 937 | IOSKRegionDestroy(region: skr->skr_reg); |
| 938 | skr->skr_reg = NULL; |
| 939 | } |
| 940 | |
| 941 | if (skr->skr_zreg != NULL) { |
| 942 | ASSERT(skr->skr_mode & SKR_MODE_PSEUDO); |
| 943 | zdestroy(zone: skr->skr_zreg); |
| 944 | skr->skr_zreg = NULL; |
| 945 | } |
| 946 | |
| 947 | if (skr->skr_seg_bmap != NULL) { |
| 948 | ASSERT(!(skr->skr_mode & SKR_MODE_PSEUDO)); |
| 949 | #if (DEBUG || DEVELOPMENT) |
| 950 | ASSERT(skr->skr_seg_bmap_len != 0); |
| 951 | /* must have been set to vacant (bit set) by now */ |
| 952 | assert(bitmap_is_full(skr->skr_seg_bmap, skr->skr_seg_max_cnt)); |
| 953 | #endif /* DEBUG || DEVELOPMENT */ |
| 954 | |
| 955 | sk_free_data(skr->skr_seg_bmap, BITMAP_SIZE(skr->skr_seg_max_cnt)); |
| 956 | skr->skr_seg_bmap = NULL; |
| 957 | skr->skr_seg_bmap_len = 0; |
| 958 | } |
| 959 | ASSERT(skr->skr_seg_bmap_len == 0); |
| 960 | |
| 961 | if (skr->skr_hash_table != NULL) { |
| 962 | ASSERT(!(skr->skr_mode & SKR_MODE_PSEUDO)); |
| 963 | #if (DEBUG || DEVELOPMENT) |
| 964 | for (uint32_t i = 0; i < (skr->skr_hash_mask + 1); i++) { |
| 965 | ASSERT(TAILQ_EMPTY(&skr->skr_hash_table[i].sgb_head)); |
| 966 | } |
| 967 | #endif /* DEBUG || DEVELOPMENT */ |
| 968 | |
| 969 | sk_free_type_array(struct sksegment_bkt, skr->skr_hash_mask + 1, |
| 970 | skr->skr_hash_table); |
| 971 | skr->skr_hash_table = NULL; |
| 972 | } |
| 973 | if ((mskr = skr->skr_mirror) != NULL) { |
| 974 | ASSERT(!(skr->skr_mode & SKR_MODE_PSEUDO)); |
| 975 | skr->skr_mirror = NULL; |
| 976 | mskr->skr_mode &= ~SKR_MODE_MIRRORED; |
| 977 | } |
| 978 | SKR_UNLOCK(skr); |
| 979 | |
| 980 | if (mskr != NULL) { |
| 981 | skmem_region_release(mskr); |
| 982 | } |
| 983 | |
| 984 | lck_mtx_destroy(lck: &skr->skr_lock, grp: &skmem_region_lock_grp); |
| 985 | |
| 986 | zfree(skr_zone, skr); |
| 987 | } |
| 988 | |
| 989 | /* |
| 990 | * Mirror mskr (slave) to skr (master). |
| 991 | */ |
| 992 | void |
| 993 | skmem_region_mirror(struct skmem_region *skr, struct skmem_region *mskr) |
| 994 | { |
| 995 | SK_DF(SK_VERB_MEM_REGION, "skr master 0x%llx, slave 0x%llx " , |
| 996 | SK_KVA(skr), SK_KVA(mskr)); |
| 997 | |
| 998 | SKR_LOCK(skr); |
| 999 | ASSERT(!(skr->skr_mode & SKR_MODE_MIRRORED)); |
| 1000 | ASSERT(!(mskr->skr_mode & SKR_MODE_MIRRORED)); |
| 1001 | ASSERT(skr->skr_mirror == NULL); |
| 1002 | |
| 1003 | /* both regions must share identical parameters */ |
| 1004 | ASSERT(skr->skr_size == mskr->skr_size); |
| 1005 | ASSERT(skr->skr_seg_size == mskr->skr_seg_size); |
| 1006 | ASSERT(skr->skr_seg_free_cnt == mskr->skr_seg_free_cnt); |
| 1007 | |
| 1008 | skr->skr_mirror = mskr; |
| 1009 | skmem_region_retain(mskr); |
| 1010 | mskr->skr_mode |= SKR_MODE_MIRRORED; |
| 1011 | SKR_UNLOCK(skr); |
| 1012 | } |
| 1013 | |
| 1014 | void |
| 1015 | skmem_region_slab_config(struct skmem_region *skr, struct skmem_cache *skm, |
| 1016 | bool attach) |
| 1017 | { |
| 1018 | int i; |
| 1019 | |
| 1020 | SKR_LOCK(skr); |
| 1021 | if (attach) { |
| 1022 | for (i = 0; i < SKR_MAX_CACHES && skr->skr_cache[i] != NULL; |
| 1023 | i++) { |
| 1024 | ; |
| 1025 | } |
| 1026 | VERIFY(i < SKR_MAX_CACHES); |
| 1027 | ASSERT(skr->skr_cache[i] == NULL); |
| 1028 | skr->skr_mode |= SKR_MODE_SLAB; |
| 1029 | skr->skr_cache[i] = skm; |
| 1030 | skmem_region_retain_locked(skr); |
| 1031 | SKR_UNLOCK(skr); |
| 1032 | } else { |
| 1033 | ASSERT(skr->skr_mode & SKR_MODE_SLAB); |
| 1034 | for (i = 0; i < SKR_MAX_CACHES && skr->skr_cache[i] != skm; |
| 1035 | i++) { |
| 1036 | ; |
| 1037 | } |
| 1038 | VERIFY(i < SKR_MAX_CACHES); |
| 1039 | ASSERT(skr->skr_cache[i] == skm); |
| 1040 | skr->skr_cache[i] = NULL; |
| 1041 | for (i = 0; i < SKR_MAX_CACHES && skr->skr_cache[i] == NULL; |
| 1042 | i++) { |
| 1043 | ; |
| 1044 | } |
| 1045 | if (i == SKR_MAX_CACHES) { |
| 1046 | skr->skr_mode &= ~SKR_MODE_SLAB; |
| 1047 | } |
| 1048 | if (!skmem_region_release_locked(skr)) { |
| 1049 | SKR_UNLOCK(skr); |
| 1050 | } |
| 1051 | } |
| 1052 | } |
| 1053 | |
| 1054 | /* |
| 1055 | * Common routines for skmem_region_{alloc,mirror_alloc}. |
| 1056 | */ |
| 1057 | static void * |
| 1058 | skmem_region_alloc_common(struct skmem_region *skr, struct sksegment *sg) |
| 1059 | { |
| 1060 | struct sksegment_bkt *sgb; |
| 1061 | void *addr; |
| 1062 | |
| 1063 | SKR_LOCK_ASSERT_HELD(skr); |
| 1064 | |
| 1065 | ASSERT(sg->sg_md != NULL); |
| 1066 | ASSERT(sg->sg_start != 0 && sg->sg_end != 0); |
| 1067 | addr = (void *)sg->sg_start; |
| 1068 | sgb = SKMEM_REGION_HASH(skr, addr); |
| 1069 | ASSERT(sg->sg_link.tqe_next == NULL); |
| 1070 | ASSERT(sg->sg_link.tqe_prev == NULL); |
| 1071 | TAILQ_INSERT_HEAD(&sgb->sgb_head, sg, sg_link); |
| 1072 | |
| 1073 | skr->skr_seginuse++; |
| 1074 | skr->skr_meminuse += skr->skr_seg_size; |
| 1075 | if (sg->sg_state == SKSEG_STATE_MAPPED_WIRED) { |
| 1076 | skr->skr_w_meminuse += skr->skr_seg_size; |
| 1077 | } |
| 1078 | skr->skr_alloc++; |
| 1079 | |
| 1080 | return addr; |
| 1081 | } |
| 1082 | |
| 1083 | /* |
| 1084 | * Allocate a segment from the region. |
| 1085 | */ |
| 1086 | void * |
| 1087 | skmem_region_alloc(struct skmem_region *skr, void **maddr, |
| 1088 | struct sksegment **retsg, struct sksegment **retsgm, uint32_t skmflag) |
| 1089 | { |
| 1090 | struct sksegment *sg = NULL; |
| 1091 | struct sksegment *sg1 = NULL; |
| 1092 | void *addr = NULL, *addr1 = NULL; |
| 1093 | uint32_t retries = 0; |
| 1094 | |
| 1095 | VERIFY(!(skr->skr_mode & SKR_MODE_GUARD)); |
| 1096 | |
| 1097 | if (retsg != NULL) { |
| 1098 | *retsg = NULL; |
| 1099 | } |
| 1100 | if (retsgm != NULL) { |
| 1101 | *retsgm = NULL; |
| 1102 | } |
| 1103 | |
| 1104 | /* SKMEM_NOSLEEP and SKMEM_FAILOK are mutually exclusive */ |
| 1105 | VERIFY((skmflag & (SKMEM_NOSLEEP | SKMEM_FAILOK)) != |
| 1106 | (SKMEM_NOSLEEP | SKMEM_FAILOK)); |
| 1107 | |
| 1108 | SKR_LOCK(skr); |
| 1109 | while (sg == NULL) { |
| 1110 | /* see if there's a segment in the freelist */ |
| 1111 | sg = TAILQ_FIRST(&skr->skr_seg_free); |
| 1112 | if (sg == NULL) { |
| 1113 | /* see if we can grow the freelist */ |
| 1114 | sg = sksegment_freelist_grow(skr); |
| 1115 | if (sg != NULL) { |
| 1116 | break; |
| 1117 | } |
| 1118 | |
| 1119 | if (skr->skr_mode & SKR_MODE_SLAB) { |
| 1120 | SKR_UNLOCK(skr); |
| 1121 | /* |
| 1122 | * None found; it's possible that the slab |
| 1123 | * layer is caching extra amount, so ask |
| 1124 | * skmem_cache to reap/purge its caches. |
| 1125 | */ |
| 1126 | for (int i = 0; i < SKR_MAX_CACHES; i++) { |
| 1127 | if (skr->skr_cache[i] == NULL) { |
| 1128 | continue; |
| 1129 | } |
| 1130 | skmem_cache_reap_now(skr->skr_cache[i], |
| 1131 | TRUE); |
| 1132 | } |
| 1133 | SKR_LOCK(skr); |
| 1134 | /* |
| 1135 | * If we manage to get some freed, try again. |
| 1136 | */ |
| 1137 | if (TAILQ_FIRST(&skr->skr_seg_free) != NULL) { |
| 1138 | continue; |
| 1139 | } |
| 1140 | } |
| 1141 | |
| 1142 | /* |
| 1143 | * Give up if this is a non-blocking allocation, |
| 1144 | * or if this is a blocking allocation but the |
| 1145 | * caller is willing to retry. |
| 1146 | */ |
| 1147 | if (skmflag & (SKMEM_NOSLEEP | SKMEM_FAILOK)) { |
| 1148 | break; |
| 1149 | } |
| 1150 | |
| 1151 | /* otherwise we wait until one is available */ |
| 1152 | ++skr->skr_seg_waiters; |
| 1153 | (void) msleep(chan: &skr->skr_seg_free, mtx: &skr->skr_lock, |
| 1154 | pri: (PZERO - 1), wmesg: skr->skr_name, NULL); |
| 1155 | } |
| 1156 | } |
| 1157 | |
| 1158 | SKR_LOCK_ASSERT_HELD(skr); |
| 1159 | |
| 1160 | if (sg != NULL) { |
| 1161 | retry: |
| 1162 | /* |
| 1163 | * We have a segment; remove it from the freelist and |
| 1164 | * insert it into the allocated-address hash chain. |
| 1165 | * Note that this may return NULL if we can't allocate |
| 1166 | * the memory descriptor. |
| 1167 | */ |
| 1168 | if (sksegment_freelist_remove(skr, sg, skmflag, |
| 1169 | FALSE) == NULL) { |
| 1170 | ASSERT(sg->sg_state == SKSEG_STATE_DETACHED); |
| 1171 | ASSERT(sg->sg_md == NULL); |
| 1172 | ASSERT(sg->sg_start == 0 && sg->sg_end == 0); |
| 1173 | |
| 1174 | /* |
| 1175 | * If it's non-blocking allocation, simply just give |
| 1176 | * up and let the caller decide when to retry. Else, |
| 1177 | * it gets a bit complicated due to the contract we |
| 1178 | * have for blocking allocations with the client; the |
| 1179 | * most sensible thing to do here is to retry the |
| 1180 | * allocation ourselves. Note that we keep using the |
| 1181 | * same segment we originally got, since we only need |
| 1182 | * the memory descriptor to be allocated for it; thus |
| 1183 | * we make sure we don't release the region lock when |
| 1184 | * retrying allocation. Doing so is crucial when the |
| 1185 | * region is mirrored, since the segment indices on |
| 1186 | * both regions need to match. |
| 1187 | */ |
| 1188 | if (skmflag & SKMEM_NOSLEEP) { |
| 1189 | SK_ERR("\"%s\": failed to allocate segment " |
| 1190 | "(non-sleeping mode)" , skr->skr_name); |
| 1191 | sg = NULL; |
| 1192 | } else { |
| 1193 | if (++retries > SKMEM_WDT_MAXTIME) { |
| 1194 | panic_plain("\"%s\": failed to " |
| 1195 | "allocate segment (sleeping mode) " |
| 1196 | "after %u retries\n\n%s" , |
| 1197 | skr->skr_name, SKMEM_WDT_MAXTIME, |
| 1198 | skmem_dump(skr)); |
| 1199 | /* NOTREACHED */ |
| 1200 | __builtin_unreachable(); |
| 1201 | } else { |
| 1202 | SK_ERR("\"%s\": failed to allocate " |
| 1203 | "segment (sleeping mode): %u " |
| 1204 | "retries" , skr->skr_name, retries); |
| 1205 | } |
| 1206 | if (skr->skr_mode & SKR_MODE_SLAB) { |
| 1207 | /* |
| 1208 | * We can't get any memory descriptor |
| 1209 | * for this segment; reap extra cached |
| 1210 | * objects from the slab layer and hope |
| 1211 | * that we get lucky next time around. |
| 1212 | * |
| 1213 | * XXX adi@apple.com: perhaps also |
| 1214 | * trigger the zone allocator to do |
| 1215 | * its garbage collection here? |
| 1216 | */ |
| 1217 | skmem_cache_reap(); |
| 1218 | } |
| 1219 | delay(usec: 1 * USEC_PER_SEC); /* 1 sec */ |
| 1220 | goto retry; |
| 1221 | } |
| 1222 | } |
| 1223 | |
| 1224 | if (sg != NULL) { |
| 1225 | /* insert to allocated-address hash chain */ |
| 1226 | addr = skmem_region_alloc_common(skr, sg); |
| 1227 | } |
| 1228 | } |
| 1229 | |
| 1230 | if (sg == NULL) { |
| 1231 | VERIFY(skmflag & (SKMEM_NOSLEEP | SKMEM_FAILOK)); |
| 1232 | if (skmflag & SKMEM_PANIC) { |
| 1233 | VERIFY((skmflag & (SKMEM_NOSLEEP | SKMEM_FAILOK)) == |
| 1234 | SKMEM_NOSLEEP); |
| 1235 | /* |
| 1236 | * If is a failed non-blocking alloc and the caller |
| 1237 | * insists that it must be successful, then panic. |
| 1238 | */ |
| 1239 | panic_plain("\"%s\": skr 0x%p unable to satisfy " |
| 1240 | "mandatory allocation\n" , skr->skr_name, skr); |
| 1241 | /* NOTREACHED */ |
| 1242 | __builtin_unreachable(); |
| 1243 | } else { |
| 1244 | /* |
| 1245 | * Give up if this is a non-blocking allocation, |
| 1246 | * or one where the caller is willing to handle |
| 1247 | * allocation failures. |
| 1248 | */ |
| 1249 | goto done; |
| 1250 | } |
| 1251 | } |
| 1252 | |
| 1253 | ASSERT((mach_vm_address_t)addr == sg->sg_start); |
| 1254 | |
| 1255 | #if SK_LOG |
| 1256 | SK_DF(SK_VERB_MEM_REGION, "skr 0x%llx sg 0x%llx" , |
| 1257 | SK_KVA(skr), SK_KVA(sg)); |
| 1258 | if (skr->skr_mirror == NULL || |
| 1259 | !(skr->skr_mirror->skr_mode & SKR_MODE_MIRRORED)) { |
| 1260 | SK_DF(SK_VERB_MEM_REGION, " [%u] [0x%llx-0x%llx)" , |
| 1261 | sg->sg_index, SK_KVA(sg->sg_start), SK_KVA(sg->sg_end)); |
| 1262 | } else { |
| 1263 | SK_DF(SK_VERB_MEM_REGION, " [%u] [0x%llx-0x%llx) mirrored" , |
| 1264 | sg->sg_index, SK_KVA(sg), SK_KVA(sg->sg_start), |
| 1265 | SK_KVA(sg->sg_end)); |
| 1266 | } |
| 1267 | #endif /* SK_LOG */ |
| 1268 | |
| 1269 | /* |
| 1270 | * If mirroring, allocate shadow object from slave region. |
| 1271 | */ |
| 1272 | if (skr->skr_mirror != NULL) { |
| 1273 | ASSERT(skr->skr_mirror != skr); |
| 1274 | ASSERT(!(skr->skr_mode & SKR_MODE_MIRRORED)); |
| 1275 | ASSERT(skr->skr_mirror->skr_mode & SKR_MODE_MIRRORED); |
| 1276 | addr1 = skmem_region_mirror_alloc(skr->skr_mirror, sg, &sg1); |
| 1277 | ASSERT(addr1 != NULL); |
| 1278 | ASSERT(sg1 != NULL && sg1 != sg); |
| 1279 | ASSERT(sg1->sg_index == sg->sg_index); |
| 1280 | } |
| 1281 | |
| 1282 | done: |
| 1283 | SKR_UNLOCK(skr); |
| 1284 | |
| 1285 | /* return segment metadata to caller if asked (reference not needed) */ |
| 1286 | if (addr != NULL) { |
| 1287 | if (retsg != NULL) { |
| 1288 | *retsg = sg; |
| 1289 | } |
| 1290 | if (retsgm != NULL) { |
| 1291 | *retsgm = sg1; |
| 1292 | } |
| 1293 | } |
| 1294 | |
| 1295 | if (maddr != NULL) { |
| 1296 | *maddr = addr1; |
| 1297 | } |
| 1298 | |
| 1299 | return addr; |
| 1300 | } |
| 1301 | |
| 1302 | /* |
| 1303 | * Allocate a segment from a mirror region at the same index. While it |
| 1304 | * is somewhat a simplified variant of skmem_region_alloc, keeping it |
| 1305 | * separate allows us to avoid further convoluting that routine. |
| 1306 | */ |
| 1307 | static void * |
| 1308 | skmem_region_mirror_alloc(struct skmem_region *skr, struct sksegment *sg0, |
| 1309 | struct sksegment **retsg) |
| 1310 | { |
| 1311 | struct sksegment sg_key = { .sg_index = sg0->sg_index }; |
| 1312 | struct sksegment *sg = NULL; |
| 1313 | void *addr = NULL; |
| 1314 | |
| 1315 | ASSERT(skr->skr_mode & SKR_MODE_MIRRORED); |
| 1316 | ASSERT(skr->skr_mirror == NULL); |
| 1317 | ASSERT(sg0->sg_type == SKSEG_TYPE_ALLOC); |
| 1318 | |
| 1319 | if (retsg != NULL) { |
| 1320 | *retsg = NULL; |
| 1321 | } |
| 1322 | |
| 1323 | SKR_LOCK(skr); |
| 1324 | |
| 1325 | /* |
| 1326 | * See if we can find one in the freelist first. Otherwise, |
| 1327 | * create a new segment of the same index and add that to the |
| 1328 | * freelist. We would always get a segment since both regions |
| 1329 | * are synchronized when it comes to the indices of allocated |
| 1330 | * segments. |
| 1331 | */ |
| 1332 | sg = RB_FIND(segtfreehead, &skr->skr_seg_tfree, &sg_key); |
| 1333 | if (sg == NULL) { |
| 1334 | sg = sksegment_alloc_with_idx(skr, sg0->sg_index); |
| 1335 | VERIFY(sg != NULL); |
| 1336 | } |
| 1337 | VERIFY(sg->sg_index == sg0->sg_index); |
| 1338 | |
| 1339 | /* |
| 1340 | * We have a segment; remove it from the freelist and insert |
| 1341 | * it into the allocated-address hash chain. This either |
| 1342 | * succeeds or panics (SKMEM_PANIC) when a memory descriptor |
| 1343 | * can't be allocated. |
| 1344 | * |
| 1345 | * TODO: consider retrying IOBMD allocation attempts if needed. |
| 1346 | */ |
| 1347 | sg = sksegment_freelist_remove(skr, sg, SKMEM_PANIC, FALSE); |
| 1348 | VERIFY(sg != NULL); |
| 1349 | |
| 1350 | /* insert to allocated-address hash chain */ |
| 1351 | addr = skmem_region_alloc_common(skr, sg); |
| 1352 | |
| 1353 | #if SK_LOG |
| 1354 | SK_DF(SK_VERB_MEM_REGION, "skr 0x%llx sg 0x%llx" , |
| 1355 | SK_KVA(skr), SK_KVA(sg)); |
| 1356 | SK_DF(SK_VERB_MEM_REGION, " [%u] [0x%llx-0x%llx)" , |
| 1357 | sg->sg_index, SK_KVA(sg->sg_start), SK_KVA(sg->sg_end)); |
| 1358 | #endif /* SK_LOG */ |
| 1359 | |
| 1360 | SKR_UNLOCK(skr); |
| 1361 | |
| 1362 | /* return segment metadata to caller if asked (reference not needed) */ |
| 1363 | if (retsg != NULL) { |
| 1364 | *retsg = sg; |
| 1365 | } |
| 1366 | |
| 1367 | return addr; |
| 1368 | } |
| 1369 | |
| 1370 | /* |
| 1371 | * Free a segment to the region. |
| 1372 | */ |
| 1373 | void |
| 1374 | skmem_region_free(struct skmem_region *skr, void *addr, void *maddr) |
| 1375 | { |
| 1376 | struct sksegment_bkt *sgb; |
| 1377 | struct sksegment *sg, *tsg; |
| 1378 | |
| 1379 | VERIFY(!(skr->skr_mode & SKR_MODE_GUARD)); |
| 1380 | |
| 1381 | /* |
| 1382 | * Search the hash chain to find a matching segment for the |
| 1383 | * given address. If found, remove the segment from the |
| 1384 | * hash chain and insert it into the freelist. Otherwise, |
| 1385 | * we panic since the caller has given us a bogus address. |
| 1386 | */ |
| 1387 | SKR_LOCK(skr); |
| 1388 | sgb = SKMEM_REGION_HASH(skr, addr); |
| 1389 | TAILQ_FOREACH_SAFE(sg, &sgb->sgb_head, sg_link, tsg) { |
| 1390 | ASSERT(sg->sg_start != 0 && sg->sg_end != 0); |
| 1391 | if (sg->sg_start == (mach_vm_address_t)addr) { |
| 1392 | TAILQ_REMOVE(&sgb->sgb_head, sg, sg_link); |
| 1393 | sg->sg_link.tqe_next = NULL; |
| 1394 | sg->sg_link.tqe_prev = NULL; |
| 1395 | break; |
| 1396 | } |
| 1397 | } |
| 1398 | |
| 1399 | ASSERT(sg != NULL); |
| 1400 | if (sg->sg_state == SKSEG_STATE_MAPPED_WIRED) { |
| 1401 | ASSERT(skr->skr_w_meminuse >= skr->skr_seg_size); |
| 1402 | skr->skr_w_meminuse -= skr->skr_seg_size; |
| 1403 | } |
| 1404 | sksegment_freelist_insert(skr, sg, FALSE); |
| 1405 | |
| 1406 | ASSERT(skr->skr_seginuse != 0); |
| 1407 | skr->skr_seginuse--; |
| 1408 | skr->skr_meminuse -= skr->skr_seg_size; |
| 1409 | skr->skr_free++; |
| 1410 | |
| 1411 | #if SK_LOG |
| 1412 | SK_DF(SK_VERB_MEM_REGION, "skr 0x%llx sg 0x%llx" , |
| 1413 | SK_KVA(skr), SK_KVA(sg)); |
| 1414 | if (skr->skr_mirror == NULL || |
| 1415 | !(skr->skr_mirror->skr_mode & SKR_MODE_MIRRORED)) { |
| 1416 | SK_DF(SK_VERB_MEM_REGION, " [%u] [0x%llx-0x%llx)" , |
| 1417 | sg->sg_index, SK_KVA(addr), |
| 1418 | SK_KVA((uintptr_t)addr + skr->skr_seg_size)); |
| 1419 | } else { |
| 1420 | SK_DF(SK_VERB_MEM_REGION, " [%u] [0x%llx-0x%llx) mirrored" , |
| 1421 | sg->sg_index, SK_KVA(sg), SK_KVA(addr), |
| 1422 | SK_KVA((uintptr_t)addr + skr->skr_seg_size)); |
| 1423 | } |
| 1424 | #endif /* SK_LOG */ |
| 1425 | |
| 1426 | /* |
| 1427 | * If mirroring, also free shadow object in slave region. |
| 1428 | */ |
| 1429 | if (skr->skr_mirror != NULL) { |
| 1430 | ASSERT(maddr != NULL); |
| 1431 | ASSERT(skr->skr_mirror != skr); |
| 1432 | ASSERT(!(skr->skr_mode & SKR_MODE_MIRRORED)); |
| 1433 | ASSERT(skr->skr_mirror->skr_mode & SKR_MODE_MIRRORED); |
| 1434 | skmem_region_free(skr: skr->skr_mirror, addr: maddr, NULL); |
| 1435 | } |
| 1436 | |
| 1437 | /* wake up any blocked threads waiting for a segment */ |
| 1438 | if (skr->skr_seg_waiters != 0) { |
| 1439 | SK_DF(SK_VERB_MEM_REGION, |
| 1440 | "sg 0x%llx waking up %u waiters" , SK_KVA(sg), |
| 1441 | skr->skr_seg_waiters); |
| 1442 | skr->skr_seg_waiters = 0; |
| 1443 | wakeup(chan: &skr->skr_seg_free); |
| 1444 | } |
| 1445 | SKR_UNLOCK(skr); |
| 1446 | } |
| 1447 | |
| 1448 | __attribute__((always_inline)) |
| 1449 | static inline void |
| 1450 | skmem_region_retain_locked(struct skmem_region *skr) |
| 1451 | { |
| 1452 | SKR_LOCK_ASSERT_HELD(skr); |
| 1453 | skr->skr_refcnt++; |
| 1454 | ASSERT(skr->skr_refcnt != 0); |
| 1455 | } |
| 1456 | |
| 1457 | /* |
| 1458 | * Retain a segment. |
| 1459 | */ |
| 1460 | void |
| 1461 | skmem_region_retain(struct skmem_region *skr) |
| 1462 | { |
| 1463 | SKR_LOCK(skr); |
| 1464 | skmem_region_retain_locked(skr); |
| 1465 | SKR_UNLOCK(skr); |
| 1466 | } |
| 1467 | |
| 1468 | __attribute__((always_inline)) |
| 1469 | static inline boolean_t |
| 1470 | skmem_region_release_locked(struct skmem_region *skr) |
| 1471 | { |
| 1472 | SKR_LOCK_ASSERT_HELD(skr); |
| 1473 | ASSERT(skr->skr_refcnt != 0); |
| 1474 | if (--skr->skr_refcnt == 0) { |
| 1475 | skmem_region_destroy(skr); |
| 1476 | return TRUE; |
| 1477 | } |
| 1478 | return FALSE; |
| 1479 | } |
| 1480 | |
| 1481 | /* |
| 1482 | * Release (and potentially destroy) a segment. |
| 1483 | */ |
| 1484 | boolean_t |
| 1485 | skmem_region_release(struct skmem_region *skr) |
| 1486 | { |
| 1487 | boolean_t lastref; |
| 1488 | |
| 1489 | SKR_LOCK(skr); |
| 1490 | if (!(lastref = skmem_region_release_locked(skr))) { |
| 1491 | SKR_UNLOCK(skr); |
| 1492 | } |
| 1493 | |
| 1494 | return lastref; |
| 1495 | } |
| 1496 | |
| 1497 | /* |
| 1498 | * Depopulate the segment freelist. |
| 1499 | */ |
| 1500 | static void |
| 1501 | skmem_region_depopulate(struct skmem_region *skr) |
| 1502 | { |
| 1503 | struct sksegment *sg, *tsg; |
| 1504 | |
| 1505 | SK_DF(SK_VERB_MEM_REGION, "\"%s\": skr 0x%llx " , |
| 1506 | skr->skr_name, SK_KVA(skr)); |
| 1507 | |
| 1508 | SKR_LOCK_ASSERT_HELD(skr); |
| 1509 | ASSERT(skr->skr_seg_bmap_len != 0 || (skr->skr_mode & SKR_MODE_PSEUDO)); |
| 1510 | |
| 1511 | TAILQ_FOREACH_SAFE(sg, &skr->skr_seg_free, sg_link, tsg) { |
| 1512 | struct sksegment *sg0; |
| 1513 | uint32_t i; |
| 1514 | |
| 1515 | i = sg->sg_index; |
| 1516 | sg0 = sksegment_freelist_remove(skr, sg, 0, TRUE); |
| 1517 | VERIFY(sg0 == sg); |
| 1518 | |
| 1519 | sksegment_destroy(skr, sg); |
| 1520 | ASSERT(bit_test(skr->skr_seg_bmap[i / BMAPSZ], i % BMAPSZ)); |
| 1521 | } |
| 1522 | } |
| 1523 | |
| 1524 | /* |
| 1525 | * Free tree segment compare routine. |
| 1526 | */ |
| 1527 | static int |
| 1528 | sksegment_cmp(const struct sksegment *sg1, const struct sksegment *sg2) |
| 1529 | { |
| 1530 | return sg1->sg_index - sg2->sg_index; |
| 1531 | } |
| 1532 | |
| 1533 | /* |
| 1534 | * Create a segment. |
| 1535 | * |
| 1536 | * Upon success, clear the bit for the segment's index in skr_seg_bmap bitmap. |
| 1537 | */ |
| 1538 | static struct sksegment * |
| 1539 | sksegment_create(struct skmem_region *skr, uint32_t i) |
| 1540 | { |
| 1541 | struct sksegment *sg = NULL; |
| 1542 | bitmap_t *bmap; |
| 1543 | |
| 1544 | SKR_LOCK_ASSERT_HELD(skr); |
| 1545 | |
| 1546 | ASSERT(!(skr->skr_mode & SKR_MODE_PSEUDO)); |
| 1547 | ASSERT(i < skr->skr_seg_max_cnt); |
| 1548 | ASSERT(skr->skr_reg != NULL); |
| 1549 | ASSERT(skr->skr_seg_size == round_page(skr->skr_seg_size)); |
| 1550 | |
| 1551 | bmap = &skr->skr_seg_bmap[i / BMAPSZ]; |
| 1552 | ASSERT(bit_test(*bmap, i % BMAPSZ)); |
| 1553 | |
| 1554 | sg = skmem_cache_alloc(skmem_sg_cache, SKMEM_SLEEP); |
| 1555 | bzero(s: sg, n: sg_size); |
| 1556 | |
| 1557 | sg->sg_region = skr; |
| 1558 | sg->sg_index = i; |
| 1559 | sg->sg_state = SKSEG_STATE_DETACHED; |
| 1560 | |
| 1561 | /* claim it (clear bit) */ |
| 1562 | bit_clear(*bmap, i % BMAPSZ); |
| 1563 | |
| 1564 | SK_DF(SK_VERB_MEM_REGION, " [%u] [0x%llx-0x%llx) 0x%b" , i, |
| 1565 | SK_KVA(sg->sg_start), SK_KVA(sg->sg_end), skr->skr_mode, |
| 1566 | SKR_MODE_BITS); |
| 1567 | |
| 1568 | return sg; |
| 1569 | } |
| 1570 | |
| 1571 | /* |
| 1572 | * Destroy a segment. |
| 1573 | * |
| 1574 | * Set the bit for the segment's index in skr_seg_bmap bitmap, |
| 1575 | * indicating that it is now vacant. |
| 1576 | */ |
| 1577 | static void |
| 1578 | sksegment_destroy(struct skmem_region *skr, struct sksegment *sg) |
| 1579 | { |
| 1580 | uint32_t i = sg->sg_index; |
| 1581 | bitmap_t *bmap; |
| 1582 | |
| 1583 | SKR_LOCK_ASSERT_HELD(skr); |
| 1584 | |
| 1585 | ASSERT(!(skr->skr_mode & SKR_MODE_PSEUDO)); |
| 1586 | ASSERT(skr == sg->sg_region); |
| 1587 | ASSERT(skr->skr_reg != NULL); |
| 1588 | ASSERT(sg->sg_type == SKSEG_TYPE_DESTROYED); |
| 1589 | ASSERT(i < skr->skr_seg_max_cnt); |
| 1590 | |
| 1591 | bmap = &skr->skr_seg_bmap[i / BMAPSZ]; |
| 1592 | ASSERT(!bit_test(*bmap, i % BMAPSZ)); |
| 1593 | |
| 1594 | SK_DF(SK_VERB_MEM_REGION, " [%u] [0x%llx-0x%llx) 0x%b" , |
| 1595 | i, SK_KVA(sg->sg_start), SK_KVA(sg->sg_end), |
| 1596 | skr->skr_mode, SKR_MODE_BITS); |
| 1597 | |
| 1598 | /* |
| 1599 | * Undo what's done earlier at segment creation time. |
| 1600 | */ |
| 1601 | |
| 1602 | ASSERT(sg->sg_md == NULL); |
| 1603 | ASSERT(sg->sg_start == 0 && sg->sg_end == 0); |
| 1604 | ASSERT(sg->sg_state == SKSEG_STATE_DETACHED); |
| 1605 | |
| 1606 | /* release it (set bit) */ |
| 1607 | bit_set(*bmap, i % BMAPSZ); |
| 1608 | |
| 1609 | skmem_cache_free(skmem_sg_cache, sg); |
| 1610 | } |
| 1611 | |
| 1612 | /* |
| 1613 | * Insert a segment into freelist (freeing the segment). |
| 1614 | */ |
| 1615 | static void |
| 1616 | sksegment_freelist_insert(struct skmem_region *skr, struct sksegment *sg, |
| 1617 | boolean_t populating) |
| 1618 | { |
| 1619 | SKR_LOCK_ASSERT_HELD(skr); |
| 1620 | |
| 1621 | ASSERT(!(skr->skr_mode & SKR_MODE_PSEUDO)); |
| 1622 | ASSERT(sg->sg_type != SKSEG_TYPE_FREE); |
| 1623 | ASSERT(skr == sg->sg_region); |
| 1624 | ASSERT(skr->skr_reg != NULL); |
| 1625 | ASSERT(sg->sg_index < skr->skr_seg_max_cnt); |
| 1626 | |
| 1627 | /* |
| 1628 | * If the region is being populated, then we're done. |
| 1629 | */ |
| 1630 | if (__improbable(populating)) { |
| 1631 | ASSERT(sg->sg_md == NULL); |
| 1632 | ASSERT(sg->sg_start == 0 && sg->sg_end == 0); |
| 1633 | ASSERT(sg->sg_state == SKSEG_STATE_DETACHED); |
| 1634 | } else { |
| 1635 | IOSKMemoryBufferRef md; |
| 1636 | IOReturn err; |
| 1637 | |
| 1638 | ASSERT(sg->sg_md != NULL); |
| 1639 | ASSERT(sg->sg_start != 0 && sg->sg_end != 0); |
| 1640 | |
| 1641 | /* |
| 1642 | * Let the client remove the memory from IOMMU, and unwire it. |
| 1643 | */ |
| 1644 | if (skr->skr_seg_dtor != NULL) { |
| 1645 | skr->skr_seg_dtor(sg, sg->sg_md, skr->skr_private); |
| 1646 | } |
| 1647 | |
| 1648 | ASSERT(sg->sg_state == SKSEG_STATE_MAPPED || |
| 1649 | sg->sg_state == SKSEG_STATE_MAPPED_WIRED); |
| 1650 | |
| 1651 | IOSKRegionClearBufferDebug(region: skr->skr_reg, segmentIndex: sg->sg_index, prevBufferRef: &md); |
| 1652 | VERIFY(sg->sg_md == md); |
| 1653 | |
| 1654 | /* if persistent, unwire this memory now */ |
| 1655 | if (skr->skr_mode & SKR_MODE_PERSISTENT) { |
| 1656 | err = IOSKMemoryUnwire(reference: md); |
| 1657 | if (err != kIOReturnSuccess) { |
| 1658 | panic("Fail to unwire md %p, err %d" , md, err); |
| 1659 | } |
| 1660 | } |
| 1661 | |
| 1662 | /* mark memory as empty/discarded for consistency */ |
| 1663 | err = IOSKMemoryDiscard(reference: md); |
| 1664 | if (err != kIOReturnSuccess) { |
| 1665 | panic("Fail to discard md %p, err %d" , md, err); |
| 1666 | } |
| 1667 | |
| 1668 | IOSKMemoryDestroy(reference: md); |
| 1669 | sg->sg_md = NULL; |
| 1670 | sg->sg_start = sg->sg_end = 0; |
| 1671 | sg->sg_state = SKSEG_STATE_DETACHED; |
| 1672 | |
| 1673 | ASSERT(skr->skr_memtotal >= skr->skr_seg_size); |
| 1674 | skr->skr_memtotal -= skr->skr_seg_size; |
| 1675 | } |
| 1676 | |
| 1677 | sg->sg_type = SKSEG_TYPE_FREE; |
| 1678 | ASSERT(sg->sg_link.tqe_next == NULL); |
| 1679 | ASSERT(sg->sg_link.tqe_prev == NULL); |
| 1680 | TAILQ_INSERT_TAIL(&skr->skr_seg_free, sg, sg_link); |
| 1681 | ASSERT(sg->sg_node.rbe_left == NULL); |
| 1682 | ASSERT(sg->sg_node.rbe_right == NULL); |
| 1683 | ASSERT(sg->sg_node.rbe_parent == NULL); |
| 1684 | RB_INSERT(segtfreehead, &skr->skr_seg_tfree, sg); |
| 1685 | ++skr->skr_seg_free_cnt; |
| 1686 | ASSERT(skr->skr_seg_free_cnt <= skr->skr_seg_max_cnt); |
| 1687 | } |
| 1688 | |
| 1689 | /* |
| 1690 | * Remove a segment from the freelist (allocating the segment). |
| 1691 | */ |
| 1692 | static struct sksegment * |
| 1693 | sksegment_freelist_remove(struct skmem_region *skr, struct sksegment *sg, |
| 1694 | uint32_t skmflag, boolean_t purging) |
| 1695 | { |
| 1696 | #pragma unused(skmflag) |
| 1697 | mach_vm_address_t segstart; |
| 1698 | IOReturn err; |
| 1699 | |
| 1700 | SKR_LOCK_ASSERT_HELD(skr); |
| 1701 | |
| 1702 | ASSERT(!(skr->skr_mode & SKR_MODE_PSEUDO)); |
| 1703 | ASSERT(sg != NULL); |
| 1704 | ASSERT(skr == sg->sg_region); |
| 1705 | ASSERT(skr->skr_reg != NULL); |
| 1706 | ASSERT(sg->sg_type == SKSEG_TYPE_FREE); |
| 1707 | ASSERT(sg->sg_index < skr->skr_seg_max_cnt); |
| 1708 | |
| 1709 | #if (DEVELOPMENT || DEBUG) |
| 1710 | uint64_t mtbf = skmem_region_get_mtbf(); |
| 1711 | /* |
| 1712 | * MTBF doesn't apply when SKMEM_PANIC is set as caller would assert. |
| 1713 | */ |
| 1714 | if (__improbable(mtbf != 0 && !purging && |
| 1715 | (net_uptime_ms() % mtbf) == 0 && |
| 1716 | !(skmflag & SKMEM_PANIC))) { |
| 1717 | SK_ERR("skr \"%s\" 0x%llx sg 0x%llx MTBF failure" , |
| 1718 | skr->skr_name, SK_KVA(skr), SK_KVA(sg)); |
| 1719 | net_update_uptime(); |
| 1720 | return NULL; |
| 1721 | } |
| 1722 | #endif /* (DEVELOPMENT || DEBUG) */ |
| 1723 | |
| 1724 | TAILQ_REMOVE(&skr->skr_seg_free, sg, sg_link); |
| 1725 | sg->sg_link.tqe_next = NULL; |
| 1726 | sg->sg_link.tqe_prev = NULL; |
| 1727 | RB_REMOVE(segtfreehead, &skr->skr_seg_tfree, sg); |
| 1728 | sg->sg_node.rbe_left = NULL; |
| 1729 | sg->sg_node.rbe_right = NULL; |
| 1730 | sg->sg_node.rbe_parent = NULL; |
| 1731 | |
| 1732 | ASSERT(skr->skr_seg_free_cnt != 0); |
| 1733 | --skr->skr_seg_free_cnt; |
| 1734 | |
| 1735 | /* |
| 1736 | * If the region is being depopulated, then we're done. |
| 1737 | */ |
| 1738 | if (__improbable(purging)) { |
| 1739 | ASSERT(sg->sg_md == NULL); |
| 1740 | ASSERT(sg->sg_start == 0 && sg->sg_end == 0); |
| 1741 | ASSERT(sg->sg_state == SKSEG_STATE_DETACHED); |
| 1742 | sg->sg_type = SKSEG_TYPE_DESTROYED; |
| 1743 | return sg; |
| 1744 | } |
| 1745 | |
| 1746 | ASSERT(sg->sg_md == NULL); |
| 1747 | ASSERT(sg->sg_start == 0 && sg->sg_end == 0); |
| 1748 | ASSERT(sg->sg_state == SKSEG_STATE_DETACHED); |
| 1749 | |
| 1750 | /* created as non-volatile (mapped) upon success */ |
| 1751 | if ((sg->sg_md = IOSKMemoryBufferCreate(capacity: skr->skr_seg_size, |
| 1752 | spec: &skr->skr_bufspec, kvaddr: &segstart)) == NULL) { |
| 1753 | ASSERT(sg->sg_type == SKSEG_TYPE_FREE); |
| 1754 | if (skmflag & SKMEM_PANIC) { |
| 1755 | /* if the caller insists for a success then panic */ |
| 1756 | panic_plain("\"%s\": skr 0x%p sg 0x%p (idx %u) unable " |
| 1757 | "to satisfy mandatory allocation\n" , skr->skr_name, |
| 1758 | skr, sg, sg->sg_index); |
| 1759 | /* NOTREACHED */ |
| 1760 | __builtin_unreachable(); |
| 1761 | } |
| 1762 | /* reinsert this segment to freelist */ |
| 1763 | ASSERT(sg->sg_link.tqe_next == NULL); |
| 1764 | ASSERT(sg->sg_link.tqe_prev == NULL); |
| 1765 | TAILQ_INSERT_HEAD(&skr->skr_seg_free, sg, sg_link); |
| 1766 | ASSERT(sg->sg_node.rbe_left == NULL); |
| 1767 | ASSERT(sg->sg_node.rbe_right == NULL); |
| 1768 | ASSERT(sg->sg_node.rbe_parent == NULL); |
| 1769 | RB_INSERT(segtfreehead, &skr->skr_seg_tfree, sg); |
| 1770 | ++skr->skr_seg_free_cnt; |
| 1771 | return NULL; |
| 1772 | } |
| 1773 | |
| 1774 | sg->sg_start = segstart; |
| 1775 | sg->sg_end = (segstart + skr->skr_seg_size); |
| 1776 | ASSERT(sg->sg_start != 0 && sg->sg_end != 0); |
| 1777 | |
| 1778 | /* mark memory as non-volatile just to be consistent */ |
| 1779 | err = IOSKMemoryReclaim(reference: sg->sg_md); |
| 1780 | if (err != kIOReturnSuccess) { |
| 1781 | panic("Fail to reclaim md %p, err %d" , sg->sg_md, err); |
| 1782 | } |
| 1783 | |
| 1784 | /* if persistent, wire down its memory now */ |
| 1785 | if (skr->skr_mode & SKR_MODE_PERSISTENT) { |
| 1786 | err = IOSKMemoryWire(reference: sg->sg_md); |
| 1787 | if (err != kIOReturnSuccess) { |
| 1788 | panic("Fail to wire md %p, err %d" , sg->sg_md, err); |
| 1789 | } |
| 1790 | } |
| 1791 | |
| 1792 | err = IOSKRegionSetBuffer(region: skr->skr_reg, segmentIndex: sg->sg_index, buffer: sg->sg_md); |
| 1793 | if (err != kIOReturnSuccess) { |
| 1794 | panic("Fail to set md %p, err %d" , sg->sg_md, err); |
| 1795 | } |
| 1796 | |
| 1797 | /* |
| 1798 | * Let the client wire it and insert to IOMMU, if applicable. |
| 1799 | * Try to find out if it's wired and set the right state. |
| 1800 | */ |
| 1801 | if (skr->skr_seg_ctor != NULL) { |
| 1802 | skr->skr_seg_ctor(sg, sg->sg_md, skr->skr_private); |
| 1803 | } |
| 1804 | |
| 1805 | sg->sg_state = IOSKBufferIsWired(buffer: sg->sg_md) ? |
| 1806 | SKSEG_STATE_MAPPED_WIRED : SKSEG_STATE_MAPPED; |
| 1807 | |
| 1808 | skr->skr_memtotal += skr->skr_seg_size; |
| 1809 | |
| 1810 | ASSERT(sg->sg_md != NULL); |
| 1811 | ASSERT(sg->sg_start != 0 && sg->sg_end != 0); |
| 1812 | |
| 1813 | sg->sg_type = SKSEG_TYPE_ALLOC; |
| 1814 | return sg; |
| 1815 | } |
| 1816 | |
| 1817 | /* |
| 1818 | * Find the first available index and allocate a segment at that index. |
| 1819 | */ |
| 1820 | static struct sksegment * |
| 1821 | sksegment_freelist_grow(struct skmem_region *skr) |
| 1822 | { |
| 1823 | struct sksegment *sg = NULL; |
| 1824 | uint32_t i, j, idx; |
| 1825 | |
| 1826 | SKR_LOCK_ASSERT_HELD(skr); |
| 1827 | |
| 1828 | ASSERT(!(skr->skr_mode & SKR_MODE_PSEUDO)); |
| 1829 | ASSERT(skr->skr_seg_bmap_len != 0); |
| 1830 | ASSERT(skr->skr_seg_max_cnt != 0); |
| 1831 | |
| 1832 | for (i = 0; i < skr->skr_seg_bmap_len; i++) { |
| 1833 | bitmap_t *bmap, mask; |
| 1834 | uint32_t end = (BMAPSZ - 1); |
| 1835 | |
| 1836 | if (i == (skr->skr_seg_bmap_len - 1)) { |
| 1837 | end = (skr->skr_seg_max_cnt - 1) % BMAPSZ; |
| 1838 | } |
| 1839 | |
| 1840 | bmap = &skr->skr_seg_bmap[i]; |
| 1841 | mask = BMASK64(0, end); |
| 1842 | |
| 1843 | j = ffsll((*bmap) & mask); |
| 1844 | if (j == 0) { |
| 1845 | continue; |
| 1846 | } |
| 1847 | |
| 1848 | --j; |
| 1849 | idx = (i * BMAPSZ) + j; |
| 1850 | |
| 1851 | sg = sksegment_alloc_with_idx(skr, idx); |
| 1852 | |
| 1853 | /* we're done */ |
| 1854 | break; |
| 1855 | } |
| 1856 | |
| 1857 | ASSERT((sg != NULL) || (skr->skr_seginuse == skr->skr_seg_max_cnt)); |
| 1858 | return sg; |
| 1859 | } |
| 1860 | |
| 1861 | /* |
| 1862 | * Create a single segment at a specific index and add it to the freelist. |
| 1863 | */ |
| 1864 | static struct sksegment * |
| 1865 | sksegment_alloc_with_idx(struct skmem_region *skr, uint32_t idx) |
| 1866 | { |
| 1867 | struct sksegment *sg; |
| 1868 | |
| 1869 | SKR_LOCK_ASSERT_HELD(skr); |
| 1870 | |
| 1871 | if (!bit_test(skr->skr_seg_bmap[idx / BMAPSZ], idx % BMAPSZ)) { |
| 1872 | panic("%s: '%s' (%p) idx %u (out of %u) is already allocated" , |
| 1873 | __func__, skr->skr_name, (void *)skr, idx, |
| 1874 | (skr->skr_seg_max_cnt - 1)); |
| 1875 | /* NOTREACHED */ |
| 1876 | __builtin_unreachable(); |
| 1877 | } |
| 1878 | |
| 1879 | /* must not fail, blocking alloc */ |
| 1880 | sg = sksegment_create(skr, i: idx); |
| 1881 | VERIFY(sg != NULL); |
| 1882 | VERIFY(!bit_test(skr->skr_seg_bmap[idx / BMAPSZ], idx % BMAPSZ)); |
| 1883 | |
| 1884 | /* populate the freelist */ |
| 1885 | sksegment_freelist_insert(skr, sg, TRUE); |
| 1886 | ASSERT(sg == TAILQ_LAST(&skr->skr_seg_free, segfreehead)); |
| 1887 | #if (DEVELOPMENT || DEBUG) |
| 1888 | struct sksegment sg_key = { .sg_index = sg->sg_index }; |
| 1889 | ASSERT(sg == RB_FIND(segtfreehead, &skr->skr_seg_tfree, &sg_key)); |
| 1890 | #endif /* (DEVELOPMENT || DEBUG) */ |
| 1891 | |
| 1892 | SK_DF(SK_VERB_MEM_REGION, "sg %u/%u" , (idx + 1), skr->skr_seg_max_cnt); |
| 1893 | |
| 1894 | return sg; |
| 1895 | } |
| 1896 | |
| 1897 | /* |
| 1898 | * Rescale the regions's allocated-address hash table. |
| 1899 | */ |
| 1900 | static void |
| 1901 | skmem_region_hash_rescale(struct skmem_region *skr) |
| 1902 | { |
| 1903 | struct sksegment_bkt *old_table, *new_table; |
| 1904 | size_t old_size, new_size; |
| 1905 | uint32_t i, moved = 0; |
| 1906 | |
| 1907 | if (skr->skr_mode & SKR_MODE_PSEUDO) { |
| 1908 | ASSERT(skr->skr_hash_table == NULL); |
| 1909 | /* this is no-op for pseudo region */ |
| 1910 | return; |
| 1911 | } |
| 1912 | |
| 1913 | ASSERT(skr->skr_hash_table != NULL); |
| 1914 | /* insist that we are executing in the update thread call context */ |
| 1915 | ASSERT(sk_is_region_update_protected()); |
| 1916 | |
| 1917 | /* |
| 1918 | * To get small average lookup time (lookup depth near 1.0), the hash |
| 1919 | * table size should be roughly the same (not necessarily equivalent) |
| 1920 | * as the region size. |
| 1921 | */ |
| 1922 | new_size = MAX(skr->skr_hash_initial, |
| 1923 | (1 << (flsll(3 * skr->skr_seginuse + 4) - 2))); |
| 1924 | new_size = MIN(skr->skr_hash_limit, new_size); |
| 1925 | old_size = (skr->skr_hash_mask + 1); |
| 1926 | |
| 1927 | if ((old_size >> 1) <= new_size && new_size <= (old_size << 1)) { |
| 1928 | return; |
| 1929 | } |
| 1930 | |
| 1931 | new_table = sk_alloc_type_array(struct sksegment_bkt, new_size, |
| 1932 | Z_NOWAIT, skmem_tag_segment_hash); |
| 1933 | if (__improbable(new_table == NULL)) { |
| 1934 | return; |
| 1935 | } |
| 1936 | |
| 1937 | for (i = 0; i < new_size; i++) { |
| 1938 | TAILQ_INIT(&new_table[i].sgb_head); |
| 1939 | } |
| 1940 | |
| 1941 | SKR_LOCK(skr); |
| 1942 | |
| 1943 | old_size = (skr->skr_hash_mask + 1); |
| 1944 | old_table = skr->skr_hash_table; |
| 1945 | |
| 1946 | skr->skr_hash_mask = (uint32_t)(new_size - 1); |
| 1947 | skr->skr_hash_table = new_table; |
| 1948 | skr->skr_rescale++; |
| 1949 | |
| 1950 | for (i = 0; i < old_size; i++) { |
| 1951 | struct sksegment_bkt *sgb = &old_table[i]; |
| 1952 | struct sksegment_bkt *new_sgb; |
| 1953 | struct sksegment *sg; |
| 1954 | |
| 1955 | while ((sg = TAILQ_FIRST(&sgb->sgb_head)) != NULL) { |
| 1956 | TAILQ_REMOVE(&sgb->sgb_head, sg, sg_link); |
| 1957 | ASSERT(sg->sg_start != 0 && sg->sg_end != 0); |
| 1958 | new_sgb = SKMEM_REGION_HASH(skr, sg->sg_start); |
| 1959 | TAILQ_INSERT_TAIL(&new_sgb->sgb_head, sg, sg_link); |
| 1960 | ++moved; |
| 1961 | } |
| 1962 | ASSERT(TAILQ_EMPTY(&sgb->sgb_head)); |
| 1963 | } |
| 1964 | |
| 1965 | SK_DF(SK_VERB_MEM_REGION, |
| 1966 | "skr 0x%llx old_size %u new_size %u [%u moved]" , SK_KVA(skr), |
| 1967 | (uint32_t)old_size, (uint32_t)new_size, moved); |
| 1968 | |
| 1969 | SKR_UNLOCK(skr); |
| 1970 | |
| 1971 | sk_free_type_array(struct sksegment_bkt, old_size, old_table); |
| 1972 | } |
| 1973 | |
| 1974 | /* |
| 1975 | * Apply a function to operate on all regions. |
| 1976 | */ |
| 1977 | static void |
| 1978 | skmem_region_applyall(void (*func)(struct skmem_region *)) |
| 1979 | { |
| 1980 | struct skmem_region *skr; |
| 1981 | |
| 1982 | net_update_uptime(); |
| 1983 | |
| 1984 | SKMEM_REGION_LOCK(); |
| 1985 | TAILQ_FOREACH(skr, &skmem_region_head, skr_link) { |
| 1986 | func(skr); |
| 1987 | } |
| 1988 | SKMEM_REGION_UNLOCK(); |
| 1989 | } |
| 1990 | |
| 1991 | static void |
| 1992 | skmem_region_update(struct skmem_region *skr) |
| 1993 | { |
| 1994 | SKMEM_REGION_LOCK_ASSERT_HELD(); |
| 1995 | |
| 1996 | /* insist that we are executing in the update thread call context */ |
| 1997 | ASSERT(sk_is_region_update_protected()); |
| 1998 | |
| 1999 | SKR_LOCK(skr); |
| 2000 | /* |
| 2001 | * If there are threads blocked waiting for an available |
| 2002 | * segment, wake them up periodically so they can issue |
| 2003 | * another skmem_cache_reap() to reclaim resources cached |
| 2004 | * by skmem_cache. |
| 2005 | */ |
| 2006 | if (skr->skr_seg_waiters != 0) { |
| 2007 | SK_DF(SK_VERB_MEM_REGION, |
| 2008 | "waking up %u waiters to reclaim" , skr->skr_seg_waiters); |
| 2009 | skr->skr_seg_waiters = 0; |
| 2010 | wakeup(chan: &skr->skr_seg_free); |
| 2011 | } |
| 2012 | SKR_UNLOCK(skr); |
| 2013 | |
| 2014 | /* |
| 2015 | * Rescale the hash table if needed. |
| 2016 | */ |
| 2017 | skmem_region_hash_rescale(skr); |
| 2018 | } |
| 2019 | |
| 2020 | /* |
| 2021 | * Thread call callback for update. |
| 2022 | */ |
| 2023 | static void |
| 2024 | skmem_region_update_func(thread_call_param_t dummy, thread_call_param_t arg) |
| 2025 | { |
| 2026 | #pragma unused(dummy, arg) |
| 2027 | sk_protect_t protect; |
| 2028 | |
| 2029 | protect = sk_region_update_protect(); |
| 2030 | skmem_region_applyall(func: skmem_region_update); |
| 2031 | sk_region_update_unprotect(protect); |
| 2032 | |
| 2033 | skmem_dispatch(skmem_region_update_tc, NULL, |
| 2034 | (skmem_region_update_interval * NSEC_PER_SEC)); |
| 2035 | } |
| 2036 | |
| 2037 | boolean_t |
| 2038 | skmem_region_for_pp(skmem_region_id_t id) |
| 2039 | { |
| 2040 | int i; |
| 2041 | |
| 2042 | for (i = 0; i < SKMEM_PP_REGIONS; i++) { |
| 2043 | if (id == skmem_pp_region_ids[i]) { |
| 2044 | return TRUE; |
| 2045 | } |
| 2046 | } |
| 2047 | return FALSE; |
| 2048 | } |
| 2049 | |
| 2050 | void |
| 2051 | skmem_region_get_stats(struct skmem_region *skr, struct sk_stats_region *sreg) |
| 2052 | { |
| 2053 | bzero(s: sreg, n: sizeof(*sreg)); |
| 2054 | |
| 2055 | (void) snprintf(sreg->sreg_name, count: sizeof(sreg->sreg_name), |
| 2056 | "%s" , skr->skr_name); |
| 2057 | uuid_copy(dst: sreg->sreg_uuid, src: skr->skr_uuid); |
| 2058 | sreg->sreg_id = (sk_stats_region_id_t)skr->skr_id; |
| 2059 | sreg->sreg_mode = skr->skr_mode; |
| 2060 | |
| 2061 | sreg->sreg_r_seg_size = skr->skr_params.srp_r_seg_size; |
| 2062 | sreg->sreg_c_seg_size = skr->skr_seg_size; |
| 2063 | sreg->sreg_seg_cnt = skr->skr_seg_max_cnt; |
| 2064 | sreg->sreg_seg_objs = skr->skr_seg_objs; |
| 2065 | sreg->sreg_r_obj_size = skr->skr_r_obj_size; |
| 2066 | sreg->sreg_r_obj_cnt = skr->skr_r_obj_cnt; |
| 2067 | sreg->sreg_c_obj_size = skr->skr_c_obj_size; |
| 2068 | sreg->sreg_c_obj_cnt = skr->skr_c_obj_cnt; |
| 2069 | sreg->sreg_align = skr->skr_align; |
| 2070 | sreg->sreg_max_frags = skr->skr_max_frags; |
| 2071 | |
| 2072 | sreg->sreg_meminuse = skr->skr_meminuse; |
| 2073 | sreg->sreg_w_meminuse = skr->skr_w_meminuse; |
| 2074 | sreg->sreg_memtotal = skr->skr_memtotal; |
| 2075 | sreg->sreg_seginuse = skr->skr_seginuse; |
| 2076 | sreg->sreg_rescale = skr->skr_rescale; |
| 2077 | sreg->sreg_hash_size = (skr->skr_hash_mask + 1); |
| 2078 | sreg->sreg_alloc = skr->skr_alloc; |
| 2079 | sreg->sreg_free = skr->skr_free; |
| 2080 | } |
| 2081 | |
| 2082 | static size_t |
| 2083 | skmem_region_mib_get_stats(struct skmem_region *skr, void *out, size_t len) |
| 2084 | { |
| 2085 | size_t actual_space = sizeof(struct sk_stats_region); |
| 2086 | struct sk_stats_region *sreg = out; |
| 2087 | |
| 2088 | if (out == NULL || len < actual_space) { |
| 2089 | goto done; |
| 2090 | } |
| 2091 | |
| 2092 | skmem_region_get_stats(skr, sreg); |
| 2093 | |
| 2094 | done: |
| 2095 | return actual_space; |
| 2096 | } |
| 2097 | |
| 2098 | static int |
| 2099 | skmem_region_mib_get_sysctl SYSCTL_HANDLER_ARGS |
| 2100 | { |
| 2101 | #pragma unused(arg1, arg2, oidp) |
| 2102 | struct skmem_region *skr; |
| 2103 | size_t actual_space; |
| 2104 | size_t buffer_space; |
| 2105 | size_t allocated_space; |
| 2106 | caddr_t buffer = NULL; |
| 2107 | caddr_t scan; |
| 2108 | int error = 0; |
| 2109 | |
| 2110 | if (!kauth_cred_issuser(cred: kauth_cred_get())) { |
| 2111 | return EPERM; |
| 2112 | } |
| 2113 | |
| 2114 | net_update_uptime(); |
| 2115 | buffer_space = req->oldlen; |
| 2116 | if (req->oldptr != USER_ADDR_NULL && buffer_space != 0) { |
| 2117 | if (buffer_space > SK_SYSCTL_ALLOC_MAX) { |
| 2118 | buffer_space = SK_SYSCTL_ALLOC_MAX; |
| 2119 | } |
| 2120 | allocated_space = buffer_space; |
| 2121 | buffer = sk_alloc_data(allocated_space, Z_WAITOK, skmem_tag_region_mib); |
| 2122 | if (__improbable(buffer == NULL)) { |
| 2123 | return ENOBUFS; |
| 2124 | } |
| 2125 | } else if (req->oldptr == USER_ADDR_NULL) { |
| 2126 | buffer_space = 0; |
| 2127 | } |
| 2128 | actual_space = 0; |
| 2129 | scan = buffer; |
| 2130 | |
| 2131 | SKMEM_REGION_LOCK(); |
| 2132 | TAILQ_FOREACH(skr, &skmem_region_head, skr_link) { |
| 2133 | size_t size = skmem_region_mib_get_stats(skr, out: scan, len: buffer_space); |
| 2134 | if (scan != NULL) { |
| 2135 | if (buffer_space < size) { |
| 2136 | /* supplied buffer too small, stop copying */ |
| 2137 | error = ENOMEM; |
| 2138 | break; |
| 2139 | } |
| 2140 | scan += size; |
| 2141 | buffer_space -= size; |
| 2142 | } |
| 2143 | actual_space += size; |
| 2144 | } |
| 2145 | SKMEM_REGION_UNLOCK(); |
| 2146 | |
| 2147 | if (actual_space != 0) { |
| 2148 | int out_error = SYSCTL_OUT(req, buffer, actual_space); |
| 2149 | if (out_error != 0) { |
| 2150 | error = out_error; |
| 2151 | } |
| 2152 | } |
| 2153 | if (buffer != NULL) { |
| 2154 | sk_free_data(buffer, allocated_space); |
| 2155 | } |
| 2156 | |
| 2157 | return error; |
| 2158 | } |
| 2159 | |
| 2160 | #if SK_LOG |
| 2161 | const char * |
| 2162 | skmem_region_id2name(skmem_region_id_t id) |
| 2163 | { |
| 2164 | const char *name; |
| 2165 | switch (id) { |
| 2166 | case SKMEM_REGION_SCHEMA: |
| 2167 | name = "SCHEMA" ; |
| 2168 | break; |
| 2169 | |
| 2170 | case SKMEM_REGION_RING: |
| 2171 | name = "RING" ; |
| 2172 | break; |
| 2173 | |
| 2174 | case SKMEM_REGION_BUF_DEF: |
| 2175 | name = "BUF_DEF" ; |
| 2176 | break; |
| 2177 | |
| 2178 | case SKMEM_REGION_BUF_LARGE: |
| 2179 | name = "BUF_LARGE" ; |
| 2180 | break; |
| 2181 | |
| 2182 | case SKMEM_REGION_RXBUF_DEF: |
| 2183 | name = "RXBUF_DEF" ; |
| 2184 | break; |
| 2185 | |
| 2186 | case SKMEM_REGION_RXBUF_LARGE: |
| 2187 | name = "RXBUF_LARGE" ; |
| 2188 | break; |
| 2189 | |
| 2190 | case SKMEM_REGION_TXBUF_DEF: |
| 2191 | name = "TXBUF_DEF" ; |
| 2192 | break; |
| 2193 | |
| 2194 | case SKMEM_REGION_TXBUF_LARGE: |
| 2195 | name = "TXBUF_LARGE" ; |
| 2196 | break; |
| 2197 | |
| 2198 | case SKMEM_REGION_UMD: |
| 2199 | name = "UMD" ; |
| 2200 | break; |
| 2201 | |
| 2202 | case SKMEM_REGION_TXAUSD: |
| 2203 | name = "TXAUSD" ; |
| 2204 | break; |
| 2205 | |
| 2206 | case SKMEM_REGION_RXFUSD: |
| 2207 | name = "RXFUSD" ; |
| 2208 | break; |
| 2209 | |
| 2210 | case SKMEM_REGION_USTATS: |
| 2211 | name = "USTATS" ; |
| 2212 | break; |
| 2213 | |
| 2214 | case SKMEM_REGION_FLOWADV: |
| 2215 | name = "FLOWADV" ; |
| 2216 | break; |
| 2217 | |
| 2218 | case SKMEM_REGION_NEXUSADV: |
| 2219 | name = "NEXUSADV" ; |
| 2220 | break; |
| 2221 | |
| 2222 | case SKMEM_REGION_SYSCTLS: |
| 2223 | name = "SYSCTLS" ; |
| 2224 | break; |
| 2225 | |
| 2226 | case SKMEM_REGION_GUARD_HEAD: |
| 2227 | name = "HEADGUARD" ; |
| 2228 | break; |
| 2229 | |
| 2230 | case SKMEM_REGION_GUARD_TAIL: |
| 2231 | name = "TAILGUARD" ; |
| 2232 | break; |
| 2233 | |
| 2234 | case SKMEM_REGION_KMD: |
| 2235 | name = "KMD" ; |
| 2236 | break; |
| 2237 | |
| 2238 | case SKMEM_REGION_RXKMD: |
| 2239 | name = "RXKMD" ; |
| 2240 | break; |
| 2241 | |
| 2242 | case SKMEM_REGION_TXKMD: |
| 2243 | name = "TXKMD" ; |
| 2244 | break; |
| 2245 | |
| 2246 | case SKMEM_REGION_TXAKSD: |
| 2247 | name = "TXAKSD" ; |
| 2248 | break; |
| 2249 | |
| 2250 | case SKMEM_REGION_RXFKSD: |
| 2251 | name = "RXFKSD" ; |
| 2252 | break; |
| 2253 | |
| 2254 | case SKMEM_REGION_KSTATS: |
| 2255 | name = "KSTATS" ; |
| 2256 | break; |
| 2257 | |
| 2258 | case SKMEM_REGION_KBFT: |
| 2259 | name = "KBFT" ; |
| 2260 | break; |
| 2261 | |
| 2262 | case SKMEM_REGION_UBFT: |
| 2263 | name = "UBFT" ; |
| 2264 | break; |
| 2265 | |
| 2266 | case SKMEM_REGION_RXKBFT: |
| 2267 | name = "RXKBFT" ; |
| 2268 | break; |
| 2269 | |
| 2270 | case SKMEM_REGION_TXKBFT: |
| 2271 | name = "TXKBFT" ; |
| 2272 | break; |
| 2273 | |
| 2274 | case SKMEM_REGION_INTRINSIC: |
| 2275 | name = "INTRINSIC" ; |
| 2276 | break; |
| 2277 | |
| 2278 | default: |
| 2279 | name = "UNKNOWN" ; |
| 2280 | break; |
| 2281 | } |
| 2282 | |
| 2283 | return name; |
| 2284 | } |
| 2285 | #endif /* SK_LOG */ |
| 2286 | |
| 2287 | #if (DEVELOPMENT || DEBUG) |
| 2288 | uint64_t |
| 2289 | skmem_region_get_mtbf(void) |
| 2290 | { |
| 2291 | return skmem_region_mtbf; |
| 2292 | } |
| 2293 | |
| 2294 | void |
| 2295 | skmem_region_set_mtbf(uint64_t newval) |
| 2296 | { |
| 2297 | if (newval < SKMEM_REGION_MTBF_MIN) { |
| 2298 | if (newval != 0) { |
| 2299 | newval = SKMEM_REGION_MTBF_MIN; |
| 2300 | } |
| 2301 | } else if (newval > SKMEM_REGION_MTBF_MAX) { |
| 2302 | newval = SKMEM_REGION_MTBF_MAX; |
| 2303 | } |
| 2304 | |
| 2305 | if (skmem_region_mtbf != newval) { |
| 2306 | os_atomic_store(&skmem_region_mtbf, newval, release); |
| 2307 | SK_ERR("MTBF set to %llu msec" , skmem_region_mtbf); |
| 2308 | } |
| 2309 | } |
| 2310 | |
| 2311 | static int |
| 2312 | skmem_region_mtbf_sysctl(struct sysctl_oid *oidp, void *arg1, int arg2, |
| 2313 | struct sysctl_req *req) |
| 2314 | { |
| 2315 | #pragma unused(oidp, arg1, arg2) |
| 2316 | int changed, error; |
| 2317 | uint64_t newval; |
| 2318 | |
| 2319 | _CASSERT(sizeof(skmem_region_mtbf) == sizeof(uint64_t)); |
| 2320 | if ((error = sysctl_io_number(req, skmem_region_mtbf, |
| 2321 | sizeof(uint64_t), &newval, &changed)) == 0) { |
| 2322 | if (changed) { |
| 2323 | skmem_region_set_mtbf(newval); |
| 2324 | } |
| 2325 | } |
| 2326 | return error; |
| 2327 | } |
| 2328 | #endif /* (DEVELOPMENT || DEBUG) */ |
| 2329 | |