| 1 | /* |
| 2 | * Copyright (c) 2016-2021 Apple Inc. All rights reserved. |
| 3 | * |
| 4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ |
| 5 | * |
| 6 | * This file contains Original Code and/or Modifications of Original Code |
| 7 | * as defined in and that are subject to the Apple Public Source License |
| 8 | * Version 2.0 (the 'License'). You may not use this file except in |
| 9 | * compliance with the License. The rights granted to you under the License |
| 10 | * may not be used to create, or enable the creation or redistribution of, |
| 11 | * unlawful or unlicensed copies of an Apple operating system, or to |
| 12 | * circumvent, violate, or enable the circumvention or violation of, any |
| 13 | * terms of an Apple operating system software license agreement. |
| 14 | * |
| 15 | * Please obtain a copy of the License at |
| 16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. |
| 17 | * |
| 18 | * The Original Code and all software distributed under the License are |
| 19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER |
| 20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
| 21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, |
| 22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
| 23 | * Please see the License for the specific language governing rights and |
| 24 | * limitations under the License. |
| 25 | * |
| 26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ |
| 27 | */ |
| 28 | |
| 29 | #include <skywalk/os_skywalk_private.h> |
| 30 | #define _FN_KPRINTF |
| 31 | #include <pexpert/pexpert.h> /* for PE_parse_boot_argn */ |
| 32 | #include <libkern/OSDebug.h> /* for OSBacktrace */ |
| 33 | #include <kern/sched_prim.h> /* for assert_wait */ |
| 34 | #include <vm/vm_memtag.h> |
| 35 | |
| 36 | /* |
| 37 | * Memory allocator with per-CPU caching (magazines), derived from the kmem |
| 38 | * magazine concept and implementation as described in the following paper: |
| 39 | * http://www.usenix.org/events/usenix01/full_papers/bonwick/bonwick.pdf |
| 40 | * |
| 41 | * That implementation is Copyright 2006 Sun Microsystems, Inc. All rights |
| 42 | * reserved. Use is subject to license terms. |
| 43 | * |
| 44 | * This derivative differs from the original kmem slab allocator, in that: |
| 45 | * |
| 46 | * a) There is always a discrete bufctl per object, even for small sizes. |
| 47 | * This increases the overhead, but is necessary as Skywalk objects |
| 48 | * coming from the slab may be shared (RO or RW) with userland; therefore |
| 49 | * embedding the KVA pointer linkage in freed objects is a non-starter. |
| 50 | * |
| 51 | * b) Writing patterns to the slab at slab creation or destruction time |
| 52 | * (when debugging is enabled) is not implemented, as the object may |
| 53 | * be shared (RW) with userland and thus we cannot panic upon pattern |
| 54 | * mismatch episodes. This can be relaxed so that we conditionally |
| 55 | * verify the pattern for kernel-only memory. |
| 56 | * |
| 57 | * This derivative also differs from Darwin's mcache allocator (which itself |
| 58 | * is a derivative of the original kmem slab allocator), in that: |
| 59 | * |
| 60 | * 1) The slab layer is internal to skmem_cache, unlike mcache's external |
| 61 | * slab layer required to support mbufs. skmem_cache also supports |
| 62 | * constructing and deconstructing objects, while mcache does not. |
| 63 | * This brings skmem_cache's model closer to that of the original |
| 64 | * kmem slab allocator. |
| 65 | * |
| 66 | * 2) mcache allows for batch allocation and free by way of chaining the |
| 67 | * objects together using a linked list. This requires using a part |
| 68 | * of the object to act as the linkage, which is against Skywalk's |
| 69 | * requirements of not exposing any KVA pointer to userland. Although |
| 70 | * this is supported by skmem_cache, chaining is only possible if the |
| 71 | * region is not mapped to userland. That implies that kernel-only |
| 72 | * objects can be chained provided the cache is created with batching |
| 73 | * mode enabled, and that the object is large enough to contain the |
| 74 | * skmem_obj structure. |
| 75 | * |
| 76 | * In other words, skmem_cache is a hybrid of a hybrid custom allocator that |
| 77 | * implements features that are required by Skywalk. In addition to being |
| 78 | * aware of userland access on the buffers, in also supports mirrored backend |
| 79 | * memory regions. This allows a cache to manage two independent memory |
| 80 | * regions, such that allocating/freeing an object from/to one results in |
| 81 | * allocating/freeing a shadow object in another, thus guaranteeing that both |
| 82 | * objects share the same lifetime. |
| 83 | */ |
| 84 | |
| 85 | static uint32_t ncpu; /* total # of initialized CPUs */ |
| 86 | |
| 87 | static LCK_MTX_DECLARE_ATTR(skmem_cache_lock, &skmem_lock_grp, &skmem_lock_attr); |
| 88 | static struct thread *skmem_lock_owner = THREAD_NULL; |
| 89 | |
| 90 | static LCK_GRP_DECLARE(skmem_sl_lock_grp, "skmem_slab" ); |
| 91 | static LCK_GRP_DECLARE(skmem_dp_lock_grp, "skmem_depot" ); |
| 92 | static LCK_GRP_DECLARE(skmem_cpu_lock_grp, "skmem_cpu_cache" ); |
| 93 | |
| 94 | #define SKMEM_CACHE_LOCK() do { \ |
| 95 | lck_mtx_lock(&skmem_cache_lock); \ |
| 96 | skmem_lock_owner = current_thread(); \ |
| 97 | } while (0) |
| 98 | #define SKMEM_CACHE_UNLOCK() do { \ |
| 99 | skmem_lock_owner = THREAD_NULL; \ |
| 100 | lck_mtx_unlock(&skmem_cache_lock); \ |
| 101 | } while (0) |
| 102 | #define SKMEM_CACHE_LOCK_ASSERT_HELD() \ |
| 103 | LCK_MTX_ASSERT(&skmem_cache_lock, LCK_MTX_ASSERT_OWNED) |
| 104 | #define SKMEM_CACHE_LOCK_ASSERT_NOTHELD() \ |
| 105 | LCK_MTX_ASSERT(&skmem_cache_lock, LCK_MTX_ASSERT_NOTOWNED) |
| 106 | |
| 107 | #define SKM_SLAB_LOCK(_skm) \ |
| 108 | lck_mtx_lock(&(_skm)->skm_sl_lock) |
| 109 | #define SKM_SLAB_LOCK_ASSERT_HELD(_skm) \ |
| 110 | LCK_MTX_ASSERT(&(_skm)->skm_sl_lock, LCK_MTX_ASSERT_OWNED) |
| 111 | #define SKM_SLAB_LOCK_ASSERT_NOTHELD(_skm) \ |
| 112 | LCK_MTX_ASSERT(&(_skm)->skm_sl_lock, LCK_MTX_ASSERT_NOTOWNED) |
| 113 | #define SKM_SLAB_UNLOCK(_skm) \ |
| 114 | lck_mtx_unlock(&(_skm)->skm_sl_lock) |
| 115 | |
| 116 | #define SKM_DEPOT_LOCK(_skm) \ |
| 117 | lck_mtx_lock(&(_skm)->skm_dp_lock) |
| 118 | #define SKM_DEPOT_LOCK_SPIN(_skm) \ |
| 119 | lck_mtx_lock_spin(&(_skm)->skm_dp_lock) |
| 120 | #define SKM_DEPOT_CONVERT_LOCK(_skm) \ |
| 121 | lck_mtx_convert_spin(&(_skm)->skm_dp_lock) |
| 122 | #define SKM_DEPOT_LOCK_TRY(_skm) \ |
| 123 | lck_mtx_try_lock(&(_skm)->skm_dp_lock) |
| 124 | #define SKM_DEPOT_LOCK_ASSERT_HELD(_skm) \ |
| 125 | LCK_MTX_ASSERT(&(_skm)->skm_dp_lock, LCK_MTX_ASSERT_OWNED) |
| 126 | #define SKM_DEPOT_LOCK_ASSERT_NOTHELD(_skm) \ |
| 127 | LCK_MTX_ASSERT(&(_skm)->skm_dp_lock, LCK_MTX_ASSERT_NOTOWNED) |
| 128 | #define SKM_DEPOT_UNLOCK(_skm) \ |
| 129 | lck_mtx_unlock(&(_skm)->skm_dp_lock) |
| 130 | |
| 131 | #define SKM_RESIZE_LOCK(_skm) \ |
| 132 | lck_mtx_lock(&(_skm)->skm_rs_lock) |
| 133 | #define SKM_RESIZE_LOCK_ASSERT_HELD(_skm) \ |
| 134 | LCK_MTX_ASSERT(&(_skm)->skm_rs_lock, LCK_MTX_ASSERT_OWNED) |
| 135 | #define SKM_RESIZE_LOCK_ASSERT_NOTHELD(_skm) \ |
| 136 | LCK_MTX_ASSERT(&(_skm)->skm_rs_lock, LCK_MTX_ASSERT_NOTOWNED) |
| 137 | #define SKM_RESIZE_UNLOCK(_skm) \ |
| 138 | lck_mtx_unlock(&(_skm)->skm_rs_lock) |
| 139 | |
| 140 | #define SKM_CPU_LOCK(_cp) \ |
| 141 | lck_mtx_lock(&(_cp)->cp_lock) |
| 142 | #define SKM_CPU_LOCK_SPIN(_cp) \ |
| 143 | lck_mtx_lock_spin(&(_cp)->cp_lock) |
| 144 | #define SKM_CPU_CONVERT_LOCK(_cp) \ |
| 145 | lck_mtx_convert_spin(&(_cp)->cp_lock) |
| 146 | #define SKM_CPU_LOCK_ASSERT_HELD(_cp) \ |
| 147 | LCK_MTX_ASSERT(&(_cp)->cp_lock, LCK_MTX_ASSERT_OWNED) |
| 148 | #define SKM_CPU_LOCK_ASSERT_NOTHELD(_cp) \ |
| 149 | LCK_MTX_ASSERT(&(_cp)->cp_lock, LCK_MTX_ASSERT_NOTOWNED) |
| 150 | #define SKM_CPU_UNLOCK(_cp) \ |
| 151 | lck_mtx_unlock(&(_cp)->cp_lock) |
| 152 | |
| 153 | #define SKM_ZONE_MAX 256 |
| 154 | |
| 155 | static struct zone *skm_zone; /* zone for skmem_cache */ |
| 156 | |
| 157 | static struct skmem_cache *skmem_slab_cache; /* cache for skmem_slab */ |
| 158 | static struct skmem_cache *skmem_bufctl_cache; /* cache for skmem_bufctl */ |
| 159 | static unsigned int bc_size; /* size of bufctl */ |
| 160 | |
| 161 | /* |
| 162 | * Magazine types (one per row.) |
| 163 | * |
| 164 | * The first column defines the number of objects that the magazine can hold. |
| 165 | * Using that number, we derive the effective number: the aggregate count of |
| 166 | * object pointers, plus 2 pointers (skmem_mag linkage + magazine type). |
| 167 | * This would result in an object size that is aligned on the CPU cache |
| 168 | * size boundary; the exception to this is the KASAN mode where the size |
| 169 | * would be larger due to the redzone regions. |
| 170 | * |
| 171 | * The second column defines the alignment of the magazine. Because each |
| 172 | * magazine is used at the CPU-layer cache, we need to ensure there is no |
| 173 | * false sharing across the CPUs, and align the magazines to the maximum |
| 174 | * cache alignment size, for simplicity. The value of 0 may be used to |
| 175 | * indicate natural pointer size alignment. |
| 176 | * |
| 177 | * The third column defines the starting magazine type for a given cache, |
| 178 | * determined at the cache's creation time based on its chunk size. |
| 179 | * |
| 180 | * The fourth column defines the magazine type limit for a given cache. |
| 181 | * Magazine resizing will only occur if the chunk size is less than this. |
| 182 | */ |
| 183 | static struct skmem_magtype skmem_magtype[] = { |
| 184 | #if defined(__LP64__) |
| 185 | { .mt_magsize = 14, .mt_align = 0, .mt_minbuf = 128, .mt_maxbuf = 512, |
| 186 | .mt_cache = NULL, .mt_cname = "" }, |
| 187 | { .mt_magsize = 30, .mt_align = 0, .mt_minbuf = 96, .mt_maxbuf = 256, |
| 188 | .mt_cache = NULL, .mt_cname = "" }, |
| 189 | { .mt_magsize = 46, .mt_align = 0, .mt_minbuf = 64, .mt_maxbuf = 128, |
| 190 | .mt_cache = NULL, .mt_cname = "" }, |
| 191 | { .mt_magsize = 62, .mt_align = 0, .mt_minbuf = 32, .mt_maxbuf = 64, |
| 192 | .mt_cache = NULL, .mt_cname = "" }, |
| 193 | { .mt_magsize = 94, .mt_align = 0, .mt_minbuf = 16, .mt_maxbuf = 32, |
| 194 | .mt_cache = NULL, .mt_cname = "" }, |
| 195 | { .mt_magsize = 126, .mt_align = 0, .mt_minbuf = 8, .mt_maxbuf = 16, |
| 196 | .mt_cache = NULL, .mt_cname = "" }, |
| 197 | { .mt_magsize = 142, .mt_align = 0, .mt_minbuf = 0, .mt_maxbuf = 8, |
| 198 | .mt_cache = NULL, .mt_cname = "" }, |
| 199 | { .mt_magsize = 158, .mt_align = 0, .mt_minbuf = 0, .mt_maxbuf = 0, |
| 200 | .mt_cache = NULL, .mt_cname = "" }, |
| 201 | #else /* !__LP64__ */ |
| 202 | { .mt_magsize = 14, .mt_align = 0, .mt_minbuf = 0, .mt_maxbuf = 0, |
| 203 | .mt_cache = NULL, .mt_cname = "" }, |
| 204 | #endif /* !__LP64__ */ |
| 205 | }; |
| 206 | |
| 207 | /* |
| 208 | * Hash table bounds. Start with the initial value, and rescale up to |
| 209 | * the specified limit. Ideally we don't need a limit, but in practice |
| 210 | * this helps guard against runaways. These values should be revisited |
| 211 | * in future and be adjusted as needed. |
| 212 | */ |
| 213 | #define SKMEM_CACHE_HASH_INITIAL 64 /* initial hash table size */ |
| 214 | #define SKMEM_CACHE_HASH_LIMIT 8192 /* hash table size limit */ |
| 215 | |
| 216 | #define SKMEM_CACHE_HASH_INDEX(_a, _s, _m) (((_a) >> (_s)) & (_m)) |
| 217 | #define SKMEM_CACHE_HASH(_skm, _buf) \ |
| 218 | (&(_skm)->skm_hash_table[SKMEM_CACHE_HASH_INDEX((uintptr_t)_buf, \ |
| 219 | (_skm)->skm_hash_shift, (_skm)->skm_hash_mask)]) |
| 220 | |
| 221 | /* |
| 222 | * The last magazine type. |
| 223 | */ |
| 224 | static struct skmem_magtype *skmem_cache_magsize_last; |
| 225 | |
| 226 | static TAILQ_HEAD(, skmem_cache) skmem_cache_head; |
| 227 | static boolean_t skmem_cache_ready; |
| 228 | |
| 229 | static int skmem_slab_alloc_locked(struct skmem_cache *, |
| 230 | struct skmem_obj_info *, struct skmem_obj_info *, uint32_t); |
| 231 | static void skmem_slab_free_locked(struct skmem_cache *, void *); |
| 232 | static int skmem_slab_alloc_pseudo_locked(struct skmem_cache *, |
| 233 | struct skmem_obj_info *, struct skmem_obj_info *, uint32_t); |
| 234 | static void skmem_slab_free_pseudo_locked(struct skmem_cache *, void *); |
| 235 | static struct skmem_slab *skmem_slab_create(struct skmem_cache *, uint32_t); |
| 236 | static void skmem_slab_destroy(struct skmem_cache *, struct skmem_slab *); |
| 237 | static int skmem_magazine_ctor(struct skmem_obj_info *, |
| 238 | struct skmem_obj_info *, void *, uint32_t); |
| 239 | static void skmem_magazine_destroy(struct skmem_cache *, struct skmem_mag *, |
| 240 | int); |
| 241 | static uint32_t skmem_depot_batch_alloc(struct skmem_cache *, |
| 242 | struct skmem_maglist *, uint32_t *, struct skmem_mag **, uint32_t); |
| 243 | static void skmem_depot_batch_free(struct skmem_cache *, struct skmem_maglist *, |
| 244 | uint32_t *, struct skmem_mag *); |
| 245 | static void skmem_depot_ws_update(struct skmem_cache *); |
| 246 | static void skmem_depot_ws_zero(struct skmem_cache *); |
| 247 | static void skmem_depot_ws_reap(struct skmem_cache *); |
| 248 | static void skmem_cache_magazine_purge(struct skmem_cache *); |
| 249 | static void skmem_cache_magazine_enable(struct skmem_cache *, uint32_t); |
| 250 | static void skmem_cache_magazine_resize(struct skmem_cache *); |
| 251 | static void skmem_cache_hash_rescale(struct skmem_cache *); |
| 252 | static void skmem_cpu_reload(struct skmem_cpu_cache *, struct skmem_mag *, int); |
| 253 | static void skmem_cpu_batch_reload(struct skmem_cpu_cache *, |
| 254 | struct skmem_mag *, int); |
| 255 | static void skmem_cache_applyall(void (*)(struct skmem_cache *, uint32_t), |
| 256 | uint32_t); |
| 257 | static void skmem_cache_reclaim(struct skmem_cache *, uint32_t); |
| 258 | static void skmem_cache_reap_start(void); |
| 259 | static void skmem_cache_reap_done(void); |
| 260 | static void skmem_cache_reap_func(thread_call_param_t, thread_call_param_t); |
| 261 | static void skmem_cache_update_func(thread_call_param_t, thread_call_param_t); |
| 262 | static int skmem_cache_resize_enter(struct skmem_cache *, boolean_t); |
| 263 | static void skmem_cache_resize_exit(struct skmem_cache *); |
| 264 | static void skmem_audit_bufctl(struct skmem_bufctl *); |
| 265 | static void skmem_audit_buf(struct skmem_cache *, struct skmem_obj *); |
| 266 | static int skmem_cache_mib_get_sysctl SYSCTL_HANDLER_ARGS; |
| 267 | |
| 268 | SYSCTL_PROC(_kern_skywalk_stats, OID_AUTO, cache, |
| 269 | CTLTYPE_STRUCT | CTLFLAG_RD | CTLFLAG_LOCKED, |
| 270 | 0, 0, skmem_cache_mib_get_sysctl, "S,sk_stats_cache" , |
| 271 | "Skywalk cache statistics" ); |
| 272 | |
| 273 | static volatile uint32_t skmem_cache_reaping; |
| 274 | static thread_call_t skmem_cache_reap_tc; |
| 275 | static thread_call_t skmem_cache_update_tc; |
| 276 | |
| 277 | extern kern_return_t thread_terminate(thread_t); |
| 278 | extern unsigned int ml_wait_max_cpus(void); |
| 279 | |
| 280 | #define SKMEM_DEBUG_NOMAGAZINES 0x1 /* disable magazines layer */ |
| 281 | #define SKMEM_DEBUG_AUDIT 0x2 /* audit transactions */ |
| 282 | #define SKMEM_DEBUG_MASK (SKMEM_DEBUG_NOMAGAZINES|SKMEM_DEBUG_AUDIT) |
| 283 | |
| 284 | #if DEBUG |
| 285 | static uint32_t skmem_debug = SKMEM_DEBUG_AUDIT; |
| 286 | #else /* !DEBUG */ |
| 287 | static uint32_t skmem_debug = 0; |
| 288 | #endif /* !DEBUG */ |
| 289 | |
| 290 | static uint32_t skmem_clear_min = 0; /* clear on free threshold */ |
| 291 | |
| 292 | #define SKMEM_CACHE_UPDATE_INTERVAL 11 /* 11 seconds */ |
| 293 | static uint32_t skmem_cache_update_interval = SKMEM_CACHE_UPDATE_INTERVAL; |
| 294 | |
| 295 | #define SKMEM_DEPOT_CONTENTION 3 /* max failed trylock per interval */ |
| 296 | static int skmem_cache_depot_contention = SKMEM_DEPOT_CONTENTION; |
| 297 | |
| 298 | /* |
| 299 | * Too big a value will cause overflow and thus trip the assertion; the |
| 300 | * idea here is to set an upper limit for the time that a particular |
| 301 | * thread is allowed to perform retries before we give up and panic. |
| 302 | */ |
| 303 | #define SKMEM_SLAB_MAX_BACKOFF (20 * USEC_PER_SEC) /* seconds */ |
| 304 | |
| 305 | /* |
| 306 | * Threshold (in msec) after which we reset the exponential backoff value |
| 307 | * back to its (random) initial value. Note that we allow the actual delay |
| 308 | * to be at most twice this value. |
| 309 | */ |
| 310 | #define SKMEM_SLAB_BACKOFF_THRES 1024 /* up to ~2 sec (2048 msec) */ |
| 311 | |
| 312 | /* |
| 313 | * To reduce the likelihood of global synchronization between threads, |
| 314 | * we use some random value to start the exponential backoff. |
| 315 | */ |
| 316 | #define SKMEM_SLAB_BACKOFF_RANDOM 4 /* range is [1,4] msec */ |
| 317 | |
| 318 | #if (DEVELOPMENT || DEBUG) |
| 319 | SYSCTL_UINT(_kern_skywalk_mem, OID_AUTO, cache_update_interval, |
| 320 | CTLFLAG_RW | CTLFLAG_LOCKED, &skmem_cache_update_interval, |
| 321 | SKMEM_CACHE_UPDATE_INTERVAL, "Cache update interval" ); |
| 322 | SYSCTL_INT(_kern_skywalk_mem, OID_AUTO, cache_depot_contention, |
| 323 | CTLFLAG_RW | CTLFLAG_LOCKED, &skmem_cache_depot_contention, |
| 324 | SKMEM_DEPOT_CONTENTION, "Depot contention" ); |
| 325 | |
| 326 | static uint32_t skmem_cache_update_interval_saved = SKMEM_CACHE_UPDATE_INTERVAL; |
| 327 | |
| 328 | /* |
| 329 | * Called by skmem_test_start() to set the update interval. |
| 330 | */ |
| 331 | void |
| 332 | skmem_cache_test_start(uint32_t i) |
| 333 | { |
| 334 | skmem_cache_update_interval_saved = skmem_cache_update_interval; |
| 335 | skmem_cache_update_interval = i; |
| 336 | } |
| 337 | |
| 338 | /* |
| 339 | * Called by skmem_test_stop() to restore the update interval. |
| 340 | */ |
| 341 | void |
| 342 | skmem_cache_test_stop(void) |
| 343 | { |
| 344 | skmem_cache_update_interval = skmem_cache_update_interval_saved; |
| 345 | } |
| 346 | #endif /* (DEVELOPMENT || DEBUG) */ |
| 347 | |
| 348 | #define SKMEM_TAG_BUFCTL_HASH "com.apple.skywalk.bufctl.hash" |
| 349 | static SKMEM_TAG_DEFINE(skmem_tag_bufctl_hash, SKMEM_TAG_BUFCTL_HASH); |
| 350 | |
| 351 | #define SKMEM_TAG_CACHE_MIB "com.apple.skywalk.cache.mib" |
| 352 | static SKMEM_TAG_DEFINE(skmem_tag_cache_mib, SKMEM_TAG_CACHE_MIB); |
| 353 | |
| 354 | static int __skmem_cache_pre_inited = 0; |
| 355 | static int __skmem_cache_inited = 0; |
| 356 | |
| 357 | /* |
| 358 | * Called before skmem_region_init(). |
| 359 | */ |
| 360 | void |
| 361 | skmem_cache_pre_init(void) |
| 362 | { |
| 363 | vm_size_t skm_size; |
| 364 | |
| 365 | ASSERT(!__skmem_cache_pre_inited); |
| 366 | |
| 367 | ncpu = ml_wait_max_cpus(); |
| 368 | |
| 369 | /* allocate extra in case we need to manually align the pointer */ |
| 370 | if (skm_zone == NULL) { |
| 371 | skm_size = SKMEM_CACHE_SIZE(ncpu); |
| 372 | #if KASAN |
| 373 | /* |
| 374 | * When KASAN is enabled, the zone allocator adjusts the |
| 375 | * element size to include the redzone regions, in which |
| 376 | * case we assume that the elements won't start on the |
| 377 | * alignment boundary and thus need to do some fix-ups. |
| 378 | * These include increasing the effective object size |
| 379 | * which adds at least 136 bytes to the original size, |
| 380 | * as computed by skmem_region_params_config() above. |
| 381 | */ |
| 382 | skm_size += (sizeof(void *) + CHANNEL_CACHE_ALIGN_MAX); |
| 383 | #endif /* KASAN */ |
| 384 | skm_size = P2ROUNDUP(skm_size, CHANNEL_CACHE_ALIGN_MAX); |
| 385 | skm_zone = zone_create(SKMEM_ZONE_PREFIX ".skm" , size: skm_size, |
| 386 | flags: ZC_PGZ_USE_GUARDS | ZC_ZFREE_CLEARMEM | ZC_DESTRUCTIBLE); |
| 387 | } |
| 388 | |
| 389 | TAILQ_INIT(&skmem_cache_head); |
| 390 | |
| 391 | __skmem_cache_pre_inited = 1; |
| 392 | } |
| 393 | |
| 394 | /* |
| 395 | * Called after skmem_region_init(). |
| 396 | */ |
| 397 | void |
| 398 | skmem_cache_init(void) |
| 399 | { |
| 400 | uint32_t cpu_cache_line_size = skmem_cpu_cache_line_size(); |
| 401 | struct skmem_magtype *mtp; |
| 402 | uint32_t i; |
| 403 | |
| 404 | _CASSERT(SKMEM_CACHE_HASH_LIMIT >= SKMEM_CACHE_HASH_INITIAL); |
| 405 | |
| 406 | _CASSERT(SKM_MODE_NOMAGAZINES == SCA_MODE_NOMAGAZINES); |
| 407 | _CASSERT(SKM_MODE_AUDIT == SCA_MODE_AUDIT); |
| 408 | _CASSERT(SKM_MODE_NOREDIRECT == SCA_MODE_NOREDIRECT); |
| 409 | _CASSERT(SKM_MODE_BATCH == SCA_MODE_BATCH); |
| 410 | _CASSERT(SKM_MODE_DYNAMIC == SCA_MODE_DYNAMIC); |
| 411 | _CASSERT(SKM_MODE_CLEARONFREE == SCA_MODE_CLEARONFREE); |
| 412 | _CASSERT(SKM_MODE_PSEUDO == SCA_MODE_PSEUDO); |
| 413 | |
| 414 | ASSERT(__skmem_cache_pre_inited); |
| 415 | ASSERT(!__skmem_cache_inited); |
| 416 | |
| 417 | PE_parse_boot_argn(arg_string: "skmem_debug" , arg_ptr: &skmem_debug, max_arg: sizeof(skmem_debug)); |
| 418 | skmem_debug &= SKMEM_DEBUG_MASK; |
| 419 | |
| 420 | #if (DEVELOPMENT || DEBUG) |
| 421 | PE_parse_boot_argn("skmem_clear_min" , &skmem_clear_min, |
| 422 | sizeof(skmem_clear_min)); |
| 423 | #endif /* (DEVELOPMENT || DEBUG) */ |
| 424 | if (skmem_clear_min == 0) { |
| 425 | /* zeroing 2 CPU cache lines practically comes for free */ |
| 426 | skmem_clear_min = 2 * cpu_cache_line_size; |
| 427 | } else { |
| 428 | /* round it up to CPU cache line size */ |
| 429 | skmem_clear_min = (uint32_t)P2ROUNDUP(skmem_clear_min, |
| 430 | cpu_cache_line_size); |
| 431 | } |
| 432 | |
| 433 | /* create a cache for buffer control structures */ |
| 434 | if (skmem_debug & SKMEM_DEBUG_AUDIT) { |
| 435 | bc_size = sizeof(struct skmem_bufctl_audit); |
| 436 | skmem_bufctl_cache = skmem_cache_create("bufctl.audit" , |
| 437 | bc_size, sizeof(uint64_t), NULL, NULL, |
| 438 | NULL, NULL, NULL, 0); |
| 439 | } else { |
| 440 | bc_size = sizeof(struct skmem_bufctl); |
| 441 | skmem_bufctl_cache = skmem_cache_create("bufctl" , |
| 442 | bc_size, sizeof(uint64_t), NULL, NULL, |
| 443 | NULL, NULL, NULL, 0); |
| 444 | } |
| 445 | |
| 446 | /* create a cache for slab structures */ |
| 447 | skmem_slab_cache = skmem_cache_create("slab" , |
| 448 | sizeof(struct skmem_slab), sizeof(uint64_t), NULL, NULL, NULL, |
| 449 | NULL, NULL, 0); |
| 450 | |
| 451 | /* |
| 452 | * Go thru the magazine type table and create an cache for each. |
| 453 | */ |
| 454 | for (i = 0; i < sizeof(skmem_magtype) / sizeof(*mtp); i++) { |
| 455 | mtp = &skmem_magtype[i]; |
| 456 | |
| 457 | if (mtp->mt_align != 0 && |
| 458 | ((mtp->mt_align & (mtp->mt_align - 1)) != 0 || |
| 459 | mtp->mt_align < (int)cpu_cache_line_size)) { |
| 460 | panic("%s: bad alignment %d" , __func__, mtp->mt_align); |
| 461 | /* NOTREACHED */ |
| 462 | __builtin_unreachable(); |
| 463 | } |
| 464 | (void) snprintf(mtp->mt_cname, count: sizeof(mtp->mt_cname), |
| 465 | "mg.%d" , mtp->mt_magsize); |
| 466 | |
| 467 | /* create an cache for this magazine type */ |
| 468 | mtp->mt_cache = skmem_cache_create(mtp->mt_cname, |
| 469 | SKMEM_MAG_SIZE(mtp->mt_magsize), mtp->mt_align, |
| 470 | skmem_magazine_ctor, NULL, NULL, mtp, NULL, 0); |
| 471 | |
| 472 | /* remember the last magazine type */ |
| 473 | skmem_cache_magsize_last = mtp; |
| 474 | } |
| 475 | |
| 476 | VERIFY(skmem_cache_magsize_last != NULL); |
| 477 | VERIFY(skmem_cache_magsize_last->mt_minbuf == 0); |
| 478 | VERIFY(skmem_cache_magsize_last->mt_maxbuf == 0); |
| 479 | |
| 480 | /* |
| 481 | * Allocate thread calls for cache reap and update operations. |
| 482 | */ |
| 483 | skmem_cache_reap_tc = |
| 484 | thread_call_allocate_with_options(func: skmem_cache_reap_func, |
| 485 | NULL, pri: THREAD_CALL_PRIORITY_KERNEL, options: THREAD_CALL_OPTIONS_ONCE); |
| 486 | skmem_cache_update_tc = |
| 487 | thread_call_allocate_with_options(func: skmem_cache_update_func, |
| 488 | NULL, pri: THREAD_CALL_PRIORITY_KERNEL, options: THREAD_CALL_OPTIONS_ONCE); |
| 489 | if (skmem_cache_reap_tc == NULL || skmem_cache_update_tc == NULL) { |
| 490 | panic("%s: thread_call_allocate failed" , __func__); |
| 491 | /* NOTREACHED */ |
| 492 | __builtin_unreachable(); |
| 493 | } |
| 494 | |
| 495 | /* |
| 496 | * We're ready; go through existing skmem_cache entries |
| 497 | * (if any) and enable the magazines layer for each. |
| 498 | */ |
| 499 | skmem_cache_applyall(skmem_cache_magazine_enable, 0); |
| 500 | skmem_cache_ready = TRUE; |
| 501 | |
| 502 | /* and start the periodic cache update machinery */ |
| 503 | skmem_dispatch(skmem_cache_update_tc, NULL, |
| 504 | (skmem_cache_update_interval * NSEC_PER_SEC)); |
| 505 | |
| 506 | __skmem_cache_inited = 1; |
| 507 | } |
| 508 | |
| 509 | void |
| 510 | skmem_cache_fini(void) |
| 511 | { |
| 512 | struct skmem_magtype *mtp; |
| 513 | uint32_t i; |
| 514 | |
| 515 | if (__skmem_cache_inited) { |
| 516 | ASSERT(TAILQ_EMPTY(&skmem_cache_head)); |
| 517 | |
| 518 | for (i = 0; i < sizeof(skmem_magtype) / sizeof(*mtp); i++) { |
| 519 | mtp = &skmem_magtype[i]; |
| 520 | skmem_cache_destroy(mtp->mt_cache); |
| 521 | mtp->mt_cache = NULL; |
| 522 | } |
| 523 | skmem_cache_destroy(skmem_slab_cache); |
| 524 | skmem_slab_cache = NULL; |
| 525 | skmem_cache_destroy(skmem_bufctl_cache); |
| 526 | skmem_bufctl_cache = NULL; |
| 527 | |
| 528 | if (skmem_cache_reap_tc != NULL) { |
| 529 | (void) thread_call_cancel_wait(call: skmem_cache_reap_tc); |
| 530 | (void) thread_call_free(call: skmem_cache_reap_tc); |
| 531 | skmem_cache_reap_tc = NULL; |
| 532 | } |
| 533 | if (skmem_cache_update_tc != NULL) { |
| 534 | (void) thread_call_cancel_wait(call: skmem_cache_update_tc); |
| 535 | (void) thread_call_free(call: skmem_cache_update_tc); |
| 536 | skmem_cache_update_tc = NULL; |
| 537 | } |
| 538 | |
| 539 | __skmem_cache_inited = 0; |
| 540 | } |
| 541 | |
| 542 | if (__skmem_cache_pre_inited) { |
| 543 | if (skm_zone != NULL) { |
| 544 | zdestroy(zone: skm_zone); |
| 545 | skm_zone = NULL; |
| 546 | } |
| 547 | |
| 548 | __skmem_cache_pre_inited = 0; |
| 549 | } |
| 550 | } |
| 551 | |
| 552 | /* |
| 553 | * Create a cache. |
| 554 | */ |
| 555 | struct skmem_cache * |
| 556 | skmem_cache_create(const char *name, size_t bufsize, size_t bufalign, |
| 557 | skmem_ctor_fn_t ctor, skmem_dtor_fn_t dtor, skmem_reclaim_fn_t reclaim, |
| 558 | void *private, struct skmem_region *region, uint32_t cflags) |
| 559 | { |
| 560 | boolean_t pseudo = (region == NULL); |
| 561 | struct skmem_magtype *mtp; |
| 562 | struct skmem_cache *skm; |
| 563 | void *buf; |
| 564 | size_t segsize; |
| 565 | size_t chunksize; |
| 566 | size_t objsize; |
| 567 | size_t objalign; |
| 568 | uint32_t i, cpuid; |
| 569 | |
| 570 | /* enforce 64-bit minimum alignment for buffers */ |
| 571 | if (bufalign == 0) { |
| 572 | bufalign = SKMEM_CACHE_ALIGN; |
| 573 | } |
| 574 | bufalign = P2ROUNDUP(bufalign, SKMEM_CACHE_ALIGN); |
| 575 | |
| 576 | /* enforce alignment to be a power of 2 */ |
| 577 | VERIFY(powerof2(bufalign)); |
| 578 | |
| 579 | if (region == NULL) { |
| 580 | struct skmem_region_params srp; |
| 581 | |
| 582 | /* batching is currently not supported on pseudo regions */ |
| 583 | VERIFY(!(cflags & SKMEM_CR_BATCH)); |
| 584 | |
| 585 | srp = *skmem_get_default(SKMEM_REGION_INTRINSIC); |
| 586 | ASSERT(srp.srp_cflags == SKMEM_REGION_CR_PSEUDO); |
| 587 | |
| 588 | /* objalign is always equal to bufalign */ |
| 589 | srp.srp_align = objalign = bufalign; |
| 590 | srp.srp_r_obj_cnt = 1; |
| 591 | srp.srp_r_obj_size = (uint32_t)bufsize; |
| 592 | skmem_region_params_config(&srp); |
| 593 | |
| 594 | /* allocate region for intrinsics */ |
| 595 | region = skmem_region_create(name, &srp, NULL, NULL, NULL); |
| 596 | VERIFY(region->skr_c_obj_size >= P2ROUNDUP(bufsize, bufalign)); |
| 597 | VERIFY(objalign == region->skr_align); |
| 598 | #if KASAN |
| 599 | /* |
| 600 | * When KASAN is enabled, the zone allocator adjusts the |
| 601 | * element size to include the redzone regions, in which |
| 602 | * case we assume that the elements won't start on the |
| 603 | * alignment boundary and thus need to do some fix-ups. |
| 604 | * These include increasing the effective object size |
| 605 | * which adds at least 16 bytes to the original size, |
| 606 | * as computed by skmem_region_params_config() above. |
| 607 | */ |
| 608 | VERIFY(region->skr_c_obj_size >= |
| 609 | (bufsize + sizeof(uint64_t) + bufalign)); |
| 610 | #endif /* KASAN */ |
| 611 | /* enable magazine resizing by default */ |
| 612 | cflags |= SKMEM_CR_DYNAMIC; |
| 613 | |
| 614 | /* |
| 615 | * For consistency with ZC_ZFREE_CLEARMEM on skr->zreg, |
| 616 | * even though it's a no-op since the work is done |
| 617 | * at the zone layer instead. |
| 618 | */ |
| 619 | cflags |= SKMEM_CR_CLEARONFREE; |
| 620 | } else { |
| 621 | objalign = region->skr_align; |
| 622 | } |
| 623 | |
| 624 | ASSERT(region != NULL); |
| 625 | ASSERT(!(region->skr_mode & SKR_MODE_MIRRORED)); |
| 626 | segsize = region->skr_seg_size; |
| 627 | ASSERT(bufalign <= segsize); |
| 628 | |
| 629 | buf = zalloc_flags(skm_zone, Z_WAITOK | Z_ZERO); |
| 630 | #if KASAN |
| 631 | /* |
| 632 | * In case we didn't get a cache-aligned memory, round it up |
| 633 | * accordingly. This is needed in order to get the rest of |
| 634 | * structure members aligned properly. It also means that |
| 635 | * the memory span gets shifted due to the round up, but it |
| 636 | * is okay since we've allocated extra space for this. |
| 637 | */ |
| 638 | skm = (struct skmem_cache *) |
| 639 | P2ROUNDUP((intptr_t)buf + sizeof(void *), CHANNEL_CACHE_ALIGN_MAX); |
| 640 | void **pbuf = (void **)((intptr_t)skm - sizeof(void *)); |
| 641 | *pbuf = buf; |
| 642 | #else /* !KASAN */ |
| 643 | /* |
| 644 | * We expect that the zone allocator would allocate elements |
| 645 | * rounded up to the requested alignment based on the object |
| 646 | * size computed in skmem_cache_pre_init() earlier, and |
| 647 | * 'skm' is therefore the element address itself. |
| 648 | */ |
| 649 | skm = buf; |
| 650 | #endif /* !KASAN */ |
| 651 | VERIFY(IS_P2ALIGNED(skm, CHANNEL_CACHE_ALIGN_MAX)); |
| 652 | |
| 653 | if ((skmem_debug & SKMEM_DEBUG_NOMAGAZINES) || |
| 654 | (cflags & SKMEM_CR_NOMAGAZINES)) { |
| 655 | /* |
| 656 | * Either the caller insists that this cache should not |
| 657 | * utilize magazines layer, or that the system override |
| 658 | * to disable magazines layer on all caches has been set. |
| 659 | */ |
| 660 | skm->skm_mode |= SKM_MODE_NOMAGAZINES; |
| 661 | } else { |
| 662 | /* |
| 663 | * Region must be configured with enough objects |
| 664 | * to take into account objects at the CPU layer. |
| 665 | */ |
| 666 | ASSERT(!(region->skr_mode & SKR_MODE_NOMAGAZINES)); |
| 667 | } |
| 668 | |
| 669 | if (cflags & SKMEM_CR_DYNAMIC) { |
| 670 | /* |
| 671 | * Enable per-CPU cache magazine resizing. |
| 672 | */ |
| 673 | skm->skm_mode |= SKM_MODE_DYNAMIC; |
| 674 | } |
| 675 | |
| 676 | /* region stays around after defunct? */ |
| 677 | if (region->skr_mode & SKR_MODE_NOREDIRECT) { |
| 678 | skm->skm_mode |= SKM_MODE_NOREDIRECT; |
| 679 | } |
| 680 | |
| 681 | if (cflags & SKMEM_CR_BATCH) { |
| 682 | /* |
| 683 | * Batch alloc/free involves storing the next object |
| 684 | * pointer at the beginning of each object; this is |
| 685 | * okay for kernel-only regions, but not those that |
| 686 | * are mappable to user space (we can't leak kernel |
| 687 | * addresses). |
| 688 | */ |
| 689 | _CASSERT(offsetof(struct skmem_obj, mo_next) == 0); |
| 690 | VERIFY(!(region->skr_mode & SKR_MODE_MMAPOK)); |
| 691 | |
| 692 | /* batching is currently not supported on pseudo regions */ |
| 693 | VERIFY(!(region->skr_mode & SKR_MODE_PSEUDO)); |
| 694 | |
| 695 | /* validate object size */ |
| 696 | VERIFY(region->skr_c_obj_size >= sizeof(struct skmem_obj)); |
| 697 | |
| 698 | skm->skm_mode |= SKM_MODE_BATCH; |
| 699 | } |
| 700 | |
| 701 | uuid_generate_random(out: skm->skm_uuid); |
| 702 | (void) snprintf(skm->skm_name, count: sizeof(skm->skm_name), |
| 703 | "%s.%s" , SKMEM_CACHE_PREFIX, name); |
| 704 | skm->skm_bufsize = bufsize; |
| 705 | skm->skm_bufalign = bufalign; |
| 706 | skm->skm_objalign = objalign; |
| 707 | skm->skm_ctor = ctor; |
| 708 | skm->skm_dtor = dtor; |
| 709 | skm->skm_reclaim = reclaim; |
| 710 | skm->skm_private = private; |
| 711 | skm->skm_slabsize = segsize; |
| 712 | |
| 713 | skm->skm_region = region; |
| 714 | /* callee holds reference */ |
| 715 | skmem_region_slab_config(region, skm, true); |
| 716 | objsize = region->skr_c_obj_size; |
| 717 | skm->skm_objsize = objsize; |
| 718 | |
| 719 | if (pseudo) { |
| 720 | /* |
| 721 | * Release reference from skmem_region_create() |
| 722 | * since skm->skm_region holds one now. |
| 723 | */ |
| 724 | ASSERT(region->skr_mode & SKR_MODE_PSEUDO); |
| 725 | skmem_region_release(region); |
| 726 | |
| 727 | skm->skm_mode |= SKM_MODE_PSEUDO; |
| 728 | |
| 729 | skm->skm_slab_alloc = skmem_slab_alloc_pseudo_locked; |
| 730 | skm->skm_slab_free = skmem_slab_free_pseudo_locked; |
| 731 | } else { |
| 732 | skm->skm_slab_alloc = skmem_slab_alloc_locked; |
| 733 | skm->skm_slab_free = skmem_slab_free_locked; |
| 734 | |
| 735 | /* auditing was requested? (normal regions only) */ |
| 736 | if (skmem_debug & SKMEM_DEBUG_AUDIT) { |
| 737 | ASSERT(bc_size == sizeof(struct skmem_bufctl_audit)); |
| 738 | skm->skm_mode |= SKM_MODE_AUDIT; |
| 739 | } |
| 740 | } |
| 741 | |
| 742 | /* |
| 743 | * Clear upon free (to slab layer) as long as the region is |
| 744 | * not marked as read-only for kernel, and if the chunk size |
| 745 | * is within the threshold or if the caller had requested it. |
| 746 | */ |
| 747 | if (!(region->skr_mode & SKR_MODE_KREADONLY)) { |
| 748 | if (skm->skm_objsize <= skmem_clear_min || |
| 749 | (cflags & SKMEM_CR_CLEARONFREE)) { |
| 750 | skm->skm_mode |= SKM_MODE_CLEARONFREE; |
| 751 | } |
| 752 | } |
| 753 | |
| 754 | chunksize = bufsize; |
| 755 | if (bufalign >= SKMEM_CACHE_ALIGN) { |
| 756 | chunksize = P2ROUNDUP(chunksize, SKMEM_CACHE_ALIGN); |
| 757 | } |
| 758 | |
| 759 | chunksize = P2ROUNDUP(chunksize, bufalign); |
| 760 | if (chunksize > objsize) { |
| 761 | panic("%s: (bufsize %lu, chunksize %lu) > objsize %lu" , |
| 762 | __func__, bufsize, chunksize, objsize); |
| 763 | /* NOTREACHED */ |
| 764 | __builtin_unreachable(); |
| 765 | } |
| 766 | ASSERT(chunksize != 0); |
| 767 | skm->skm_chunksize = chunksize; |
| 768 | |
| 769 | lck_mtx_init(lck: &skm->skm_sl_lock, grp: &skmem_sl_lock_grp, attr: &skmem_lock_attr); |
| 770 | TAILQ_INIT(&skm->skm_sl_partial_list); |
| 771 | TAILQ_INIT(&skm->skm_sl_empty_list); |
| 772 | |
| 773 | /* allocated-address hash table */ |
| 774 | skm->skm_hash_initial = SKMEM_CACHE_HASH_INITIAL; |
| 775 | skm->skm_hash_limit = SKMEM_CACHE_HASH_LIMIT; |
| 776 | skm->skm_hash_table = sk_alloc_type_array(struct skmem_bufctl_bkt, |
| 777 | skm->skm_hash_initial, Z_WAITOK | Z_NOFAIL, skmem_tag_bufctl_hash); |
| 778 | |
| 779 | skm->skm_hash_mask = (skm->skm_hash_initial - 1); |
| 780 | skm->skm_hash_shift = flsll(chunksize) - 1; |
| 781 | |
| 782 | for (i = 0; i < (skm->skm_hash_mask + 1); i++) { |
| 783 | SLIST_INIT(&skm->skm_hash_table[i].bcb_head); |
| 784 | } |
| 785 | |
| 786 | lck_mtx_init(lck: &skm->skm_dp_lock, grp: &skmem_dp_lock_grp, attr: &skmem_lock_attr); |
| 787 | |
| 788 | /* find a suitable magazine type for this chunk size */ |
| 789 | for (mtp = skmem_magtype; chunksize <= mtp->mt_minbuf; mtp++) { |
| 790 | continue; |
| 791 | } |
| 792 | |
| 793 | skm->skm_magtype = mtp; |
| 794 | if (!(skm->skm_mode & SKM_MODE_NOMAGAZINES)) { |
| 795 | skm->skm_cpu_mag_size = skm->skm_magtype->mt_magsize; |
| 796 | } |
| 797 | |
| 798 | /* |
| 799 | * Initialize the CPU layer. Each per-CPU structure is aligned |
| 800 | * on the CPU cache line boundary to prevent false sharing. |
| 801 | */ |
| 802 | lck_mtx_init(lck: &skm->skm_rs_lock, grp: &skmem_cpu_lock_grp, attr: &skmem_lock_attr); |
| 803 | for (cpuid = 0; cpuid < ncpu; cpuid++) { |
| 804 | struct skmem_cpu_cache *ccp = &skm->skm_cpu_cache[cpuid]; |
| 805 | |
| 806 | VERIFY(IS_P2ALIGNED(ccp, CHANNEL_CACHE_ALIGN_MAX)); |
| 807 | lck_mtx_init(lck: &ccp->cp_lock, grp: &skmem_cpu_lock_grp, |
| 808 | attr: &skmem_lock_attr); |
| 809 | ccp->cp_rounds = -1; |
| 810 | ccp->cp_prounds = -1; |
| 811 | } |
| 812 | |
| 813 | SKMEM_CACHE_LOCK(); |
| 814 | TAILQ_INSERT_TAIL(&skmem_cache_head, skm, skm_link); |
| 815 | SKMEM_CACHE_UNLOCK(); |
| 816 | |
| 817 | SK_DF(SK_VERB_MEM_CACHE, "\"%s\": skm 0x%llx mode 0x%b" , |
| 818 | skm->skm_name, SK_KVA(skm), skm->skm_mode, SKM_MODE_BITS); |
| 819 | SK_DF(SK_VERB_MEM_CACHE, |
| 820 | " bufsz %u bufalign %u chunksz %u objsz %u slabsz %u" , |
| 821 | (uint32_t)skm->skm_bufsize, (uint32_t)skm->skm_bufalign, |
| 822 | (uint32_t)skm->skm_chunksize, (uint32_t)skm->skm_objsize, |
| 823 | (uint32_t)skm->skm_slabsize); |
| 824 | |
| 825 | if (skmem_cache_ready) { |
| 826 | skmem_cache_magazine_enable(skm, 0); |
| 827 | } |
| 828 | |
| 829 | if (cflags & SKMEM_CR_RECLAIM) { |
| 830 | skm->skm_mode |= SKM_MODE_RECLAIM; |
| 831 | } |
| 832 | |
| 833 | return skm; |
| 834 | } |
| 835 | |
| 836 | /* |
| 837 | * Destroy a cache. |
| 838 | */ |
| 839 | void |
| 840 | skmem_cache_destroy(struct skmem_cache *skm) |
| 841 | { |
| 842 | uint32_t cpuid; |
| 843 | |
| 844 | SKMEM_CACHE_LOCK(); |
| 845 | TAILQ_REMOVE(&skmem_cache_head, skm, skm_link); |
| 846 | SKMEM_CACHE_UNLOCK(); |
| 847 | |
| 848 | ASSERT(skm->skm_rs_busy == 0); |
| 849 | ASSERT(skm->skm_rs_want == 0); |
| 850 | |
| 851 | /* purge all cached objects for this cache */ |
| 852 | skmem_cache_magazine_purge(skm); |
| 853 | |
| 854 | /* |
| 855 | * Panic if we detect there are unfreed objects; the caller |
| 856 | * destroying this cache is responsible for ensuring that all |
| 857 | * allocated objects have been freed prior to getting here. |
| 858 | */ |
| 859 | SKM_SLAB_LOCK(skm); |
| 860 | if (skm->skm_sl_bufinuse != 0) { |
| 861 | panic("%s: '%s' (%p) not empty (%llu unfreed)" , __func__, |
| 862 | skm->skm_name, (void *)skm, skm->skm_sl_bufinuse); |
| 863 | /* NOTREACHED */ |
| 864 | __builtin_unreachable(); |
| 865 | } |
| 866 | ASSERT(TAILQ_EMPTY(&skm->skm_sl_partial_list)); |
| 867 | ASSERT(skm->skm_sl_partial == 0); |
| 868 | ASSERT(TAILQ_EMPTY(&skm->skm_sl_empty_list)); |
| 869 | ASSERT(skm->skm_sl_empty == 0); |
| 870 | skm->skm_reclaim = NULL; |
| 871 | skm->skm_ctor = NULL; |
| 872 | skm->skm_dtor = NULL; |
| 873 | SKM_SLAB_UNLOCK(skm); |
| 874 | |
| 875 | if (skm->skm_hash_table != NULL) { |
| 876 | #if (DEBUG || DEVELOPMENT) |
| 877 | for (uint32_t i = 0; i < (skm->skm_hash_mask + 1); i++) { |
| 878 | ASSERT(SLIST_EMPTY(&skm->skm_hash_table[i].bcb_head)); |
| 879 | } |
| 880 | #endif /* DEBUG || DEVELOPMENT */ |
| 881 | |
| 882 | sk_free_type_array(struct skmem_bufctl_bkt, |
| 883 | skm->skm_hash_mask + 1, skm->skm_hash_table); |
| 884 | skm->skm_hash_table = NULL; |
| 885 | } |
| 886 | |
| 887 | for (cpuid = 0; cpuid < ncpu; cpuid++) { |
| 888 | lck_mtx_destroy(lck: &skm->skm_cpu_cache[cpuid].cp_lock, |
| 889 | grp: &skmem_cpu_lock_grp); |
| 890 | } |
| 891 | lck_mtx_destroy(lck: &skm->skm_rs_lock, grp: &skmem_cpu_lock_grp); |
| 892 | lck_mtx_destroy(lck: &skm->skm_dp_lock, grp: &skmem_dp_lock_grp); |
| 893 | lck_mtx_destroy(lck: &skm->skm_sl_lock, grp: &skmem_sl_lock_grp); |
| 894 | |
| 895 | SK_DF(SK_VERB_MEM_CACHE, "\"%s\": skm 0x%llx" , |
| 896 | skm->skm_name, SK_KVA(skm)); |
| 897 | |
| 898 | /* callee releases reference */ |
| 899 | skmem_region_slab_config(skm->skm_region, skm, false); |
| 900 | skm->skm_region = NULL; |
| 901 | |
| 902 | #if KASAN |
| 903 | /* get the original address since we're about to free it */ |
| 904 | void **pbuf = (void **)((intptr_t)skm - sizeof(void *)); |
| 905 | skm = *pbuf; |
| 906 | #endif /* KASAN */ |
| 907 | |
| 908 | zfree(skm_zone, skm); |
| 909 | } |
| 910 | |
| 911 | /* |
| 912 | * Create a slab. |
| 913 | */ |
| 914 | static struct skmem_slab * |
| 915 | skmem_slab_create(struct skmem_cache *skm, uint32_t skmflag) |
| 916 | { |
| 917 | struct skmem_region *skr = skm->skm_region; |
| 918 | uint32_t objsize, chunks; |
| 919 | size_t slabsize = skm->skm_slabsize; |
| 920 | struct skmem_slab *sl; |
| 921 | struct sksegment *sg, *sgm; |
| 922 | char *buf, *bufm, *slab, *slabm; |
| 923 | |
| 924 | /* |
| 925 | * Allocate a segment (a slab at our layer) from the region. |
| 926 | */ |
| 927 | slab = skmem_region_alloc(skr, (void **)&slabm, &sg, &sgm, skmflag); |
| 928 | if (slab == NULL) { |
| 929 | goto rg_alloc_failure; |
| 930 | } |
| 931 | |
| 932 | if ((sl = skmem_cache_alloc(skmem_slab_cache, SKMEM_SLEEP)) == NULL) { |
| 933 | goto slab_alloc_failure; |
| 934 | } |
| 935 | |
| 936 | ASSERT(sg != NULL); |
| 937 | ASSERT(sgm == NULL || sgm->sg_index == sg->sg_index); |
| 938 | |
| 939 | bzero(s: sl, n: sizeof(*sl)); |
| 940 | sl->sl_cache = skm; |
| 941 | sl->sl_base = buf = slab; |
| 942 | sl->sl_basem = bufm = slabm; |
| 943 | ASSERT(skr->skr_c_obj_size <= UINT32_MAX); |
| 944 | objsize = (uint32_t)skr->skr_c_obj_size; |
| 945 | ASSERT(skm->skm_objsize == objsize); |
| 946 | ASSERT((slabsize / objsize) <= UINT32_MAX); |
| 947 | sl->sl_chunks = chunks = (uint32_t)(slabsize / objsize); |
| 948 | sl->sl_seg = sg; |
| 949 | sl->sl_segm = sgm; |
| 950 | |
| 951 | /* |
| 952 | * Create one or more buffer control structures for the slab, |
| 953 | * each one tracking a chunk of raw object from the segment, |
| 954 | * and insert these into the slab's list of buffer controls. |
| 955 | */ |
| 956 | ASSERT(chunks > 0); |
| 957 | while (chunks != 0) { |
| 958 | struct skmem_bufctl *bc; |
| 959 | |
| 960 | bc = skmem_cache_alloc(skmem_bufctl_cache, SKMEM_SLEEP); |
| 961 | if (bc == NULL) { |
| 962 | goto bufctl_alloc_failure; |
| 963 | } |
| 964 | |
| 965 | bzero(s: bc, n: bc_size); |
| 966 | bc->bc_addr = buf; |
| 967 | bc->bc_addrm = bufm; |
| 968 | bc->bc_slab = sl; |
| 969 | bc->bc_idx = (sl->sl_chunks - chunks); |
| 970 | if (skr->skr_mode & SKR_MODE_SHAREOK) { |
| 971 | bc->bc_flags |= SKMEM_BUFCTL_SHAREOK; |
| 972 | } |
| 973 | SLIST_INSERT_HEAD(&sl->sl_head, bc, bc_link); |
| 974 | bc->bc_lim = objsize; |
| 975 | buf += objsize; |
| 976 | if (bufm != NULL) { |
| 977 | bufm += objsize; |
| 978 | } |
| 979 | --chunks; |
| 980 | } |
| 981 | |
| 982 | SK_DF(SK_VERB_MEM_CACHE, "skm 0x%llx sl 0x%llx" , |
| 983 | SK_KVA(skm), SK_KVA(sl)); |
| 984 | SK_DF(SK_VERB_MEM_CACHE, " [%u] [0x%llx-0x%llx)" , sl->sl_seg->sg_index, |
| 985 | SK_KVA(slab), SK_KVA(slab + objsize)); |
| 986 | |
| 987 | return sl; |
| 988 | |
| 989 | bufctl_alloc_failure: |
| 990 | skmem_slab_destroy(skm, sl); |
| 991 | |
| 992 | slab_alloc_failure: |
| 993 | skmem_region_free(skr, slab, slabm); |
| 994 | |
| 995 | rg_alloc_failure: |
| 996 | os_atomic_inc(&skm->skm_sl_alloc_fail, relaxed); |
| 997 | |
| 998 | return NULL; |
| 999 | } |
| 1000 | |
| 1001 | /* |
| 1002 | * Destroy a slab. |
| 1003 | */ |
| 1004 | static void |
| 1005 | skmem_slab_destroy(struct skmem_cache *skm, struct skmem_slab *sl) |
| 1006 | { |
| 1007 | struct skmem_bufctl *bc, *tbc; |
| 1008 | void *slab = sl->sl_base; |
| 1009 | void *slabm = sl->sl_basem; |
| 1010 | |
| 1011 | ASSERT(sl->sl_refcnt == 0); |
| 1012 | |
| 1013 | SK_DF(SK_VERB_MEM_CACHE, "skm 0x%llx sl 0x%llx" , |
| 1014 | SK_KVA(skm), SK_KVA(sl)); |
| 1015 | SK_DF(SK_VERB_MEM_CACHE, " [%u] [0x%llx-0x%llx)" , sl->sl_seg->sg_index, |
| 1016 | SK_KVA(slab), SK_KVA((uintptr_t)slab + skm->skm_objsize)); |
| 1017 | |
| 1018 | /* |
| 1019 | * Go through the slab's list of buffer controls and free |
| 1020 | * them, and then free the slab itself back to its cache. |
| 1021 | */ |
| 1022 | SLIST_FOREACH_SAFE(bc, &sl->sl_head, bc_link, tbc) { |
| 1023 | SLIST_REMOVE(&sl->sl_head, bc, skmem_bufctl, bc_link); |
| 1024 | skmem_cache_free(skmem_bufctl_cache, bc); |
| 1025 | } |
| 1026 | skmem_cache_free(skmem_slab_cache, sl); |
| 1027 | |
| 1028 | /* and finally free the segment back to the backing region */ |
| 1029 | skmem_region_free(skm->skm_region, slab, slabm); |
| 1030 | } |
| 1031 | |
| 1032 | /* |
| 1033 | * Allocate a raw object from the (locked) slab layer. Normal region variant. |
| 1034 | */ |
| 1035 | static int |
| 1036 | skmem_slab_alloc_locked(struct skmem_cache *skm, struct skmem_obj_info *oi, |
| 1037 | struct skmem_obj_info *oim, uint32_t skmflag) |
| 1038 | { |
| 1039 | struct skmem_bufctl_bkt *bcb; |
| 1040 | struct skmem_bufctl *bc; |
| 1041 | struct skmem_slab *sl; |
| 1042 | uint32_t retries = 0; |
| 1043 | uint64_t boff_total = 0; /* in usec */ |
| 1044 | uint64_t boff = 0; /* in msec */ |
| 1045 | boolean_t new_slab; |
| 1046 | void *buf; |
| 1047 | #if CONFIG_KERNEL_TAGGING && !defined(KASAN_LIGHT) |
| 1048 | vm_offset_t tagged_address; /* address tagging */ |
| 1049 | struct skmem_region *region; /* region source for this slab */ |
| 1050 | #endif /* CONFIG_KERNEL_TAGGING && !defined(KASAN_LIGHT) */ |
| 1051 | |
| 1052 | /* this flag is not for the caller to set */ |
| 1053 | VERIFY(!(skmflag & SKMEM_FAILOK)); |
| 1054 | |
| 1055 | /* |
| 1056 | * A slab is either in a partially-allocated list (at least it has |
| 1057 | * a free object available), or is in the empty list (everything |
| 1058 | * has been allocated.) If we can't find a partially-allocated |
| 1059 | * slab, then we need to allocate a slab (segment) from the region. |
| 1060 | */ |
| 1061 | again: |
| 1062 | SKM_SLAB_LOCK_ASSERT_HELD(skm); |
| 1063 | sl = TAILQ_FIRST(&skm->skm_sl_partial_list); |
| 1064 | if (sl == NULL) { |
| 1065 | uint32_t flags = skmflag; |
| 1066 | boolean_t retry; |
| 1067 | |
| 1068 | ASSERT(skm->skm_sl_partial == 0); |
| 1069 | SKM_SLAB_UNLOCK(skm); |
| 1070 | if (!(flags & SKMEM_NOSLEEP)) { |
| 1071 | /* |
| 1072 | * Pick up a random value to start the exponential |
| 1073 | * backoff, if this is the first round, or if the |
| 1074 | * current value is over the threshold. Otherwise, |
| 1075 | * double the backoff value. |
| 1076 | */ |
| 1077 | if (boff == 0 || boff > SKMEM_SLAB_BACKOFF_THRES) { |
| 1078 | read_frandom(buffer: &boff, numBytes: sizeof(boff)); |
| 1079 | boff = (boff % SKMEM_SLAB_BACKOFF_RANDOM) + 1; |
| 1080 | ASSERT(boff > 0); |
| 1081 | } else if (os_mul_overflow(boff, 2, &boff)) { |
| 1082 | panic_plain("\"%s\": boff counter " |
| 1083 | "overflows\n" , skm->skm_name); |
| 1084 | /* NOTREACHED */ |
| 1085 | __builtin_unreachable(); |
| 1086 | } |
| 1087 | /* add this value (in msec) to the total (in usec) */ |
| 1088 | if (os_add_overflow(boff_total, |
| 1089 | (boff * NSEC_PER_USEC), &boff_total)) { |
| 1090 | panic_plain("\"%s\": boff_total counter " |
| 1091 | "overflows\n" , skm->skm_name); |
| 1092 | /* NOTREACHED */ |
| 1093 | __builtin_unreachable(); |
| 1094 | } |
| 1095 | } |
| 1096 | /* |
| 1097 | * In the event of a race between multiple threads trying |
| 1098 | * to create the last remaining (or the only) slab, let the |
| 1099 | * loser(s) attempt to retry after waiting a bit. The winner |
| 1100 | * would have inserted the newly-created slab into the list. |
| 1101 | */ |
| 1102 | if (!(flags & SKMEM_NOSLEEP) && |
| 1103 | boff_total <= SKMEM_SLAB_MAX_BACKOFF) { |
| 1104 | retry = TRUE; |
| 1105 | ++retries; |
| 1106 | flags |= SKMEM_FAILOK; |
| 1107 | } else { |
| 1108 | if (!(flags & SKMEM_NOSLEEP)) { |
| 1109 | panic_plain("\"%s\": failed to allocate " |
| 1110 | "slab (sleeping mode) after %llu " |
| 1111 | "msec, %u retries\n\n%s" , skm->skm_name, |
| 1112 | (boff_total / NSEC_PER_USEC), retries, |
| 1113 | skmem_dump(skm->skm_region)); |
| 1114 | /* NOTREACHED */ |
| 1115 | __builtin_unreachable(); |
| 1116 | } |
| 1117 | retry = FALSE; |
| 1118 | } |
| 1119 | |
| 1120 | /* |
| 1121 | * Create a new slab. |
| 1122 | */ |
| 1123 | if ((sl = skmem_slab_create(skm, skmflag: flags)) == NULL) { |
| 1124 | if (retry) { |
| 1125 | SK_ERR("\"%s\": failed to allocate " |
| 1126 | "slab (%ssleeping mode): waiting for %llu " |
| 1127 | "msec, total %llu msec, %u retries" , |
| 1128 | skm->skm_name, |
| 1129 | (flags & SKMEM_NOSLEEP) ? "non-" : "" , |
| 1130 | boff, (boff_total / NSEC_PER_USEC), retries); |
| 1131 | VERIFY(boff > 0 && ((uint32_t)boff <= |
| 1132 | (SKMEM_SLAB_BACKOFF_THRES * 2))); |
| 1133 | delay(usec: (uint32_t)boff * NSEC_PER_USEC); |
| 1134 | SKM_SLAB_LOCK(skm); |
| 1135 | goto again; |
| 1136 | } else { |
| 1137 | SK_RDERR(4, "\"%s\": failed to allocate slab " |
| 1138 | "(%ssleeping mode)" , skm->skm_name, |
| 1139 | (flags & SKMEM_NOSLEEP) ? "non-" : "" ); |
| 1140 | SKM_SLAB_LOCK(skm); |
| 1141 | } |
| 1142 | return ENOMEM; |
| 1143 | } |
| 1144 | |
| 1145 | SKM_SLAB_LOCK(skm); |
| 1146 | skm->skm_sl_create++; |
| 1147 | if ((skm->skm_sl_bufinuse += sl->sl_chunks) > |
| 1148 | skm->skm_sl_bufmax) { |
| 1149 | skm->skm_sl_bufmax = skm->skm_sl_bufinuse; |
| 1150 | } |
| 1151 | } |
| 1152 | skm->skm_sl_alloc++; |
| 1153 | |
| 1154 | new_slab = (sl->sl_refcnt == 0); |
| 1155 | ASSERT(new_slab || SKMEM_SLAB_IS_PARTIAL(sl)); |
| 1156 | |
| 1157 | sl->sl_refcnt++; |
| 1158 | ASSERT(sl->sl_refcnt <= sl->sl_chunks); |
| 1159 | |
| 1160 | /* |
| 1161 | * We either have a new slab, or a partially-allocated one. |
| 1162 | * Remove a buffer control from the slab, and insert it to |
| 1163 | * the allocated-address hash chain. |
| 1164 | */ |
| 1165 | bc = SLIST_FIRST(&sl->sl_head); |
| 1166 | ASSERT(bc != NULL); |
| 1167 | SLIST_REMOVE(&sl->sl_head, bc, skmem_bufctl, bc_link); |
| 1168 | |
| 1169 | /* sanity check */ |
| 1170 | VERIFY(bc->bc_usecnt == 0); |
| 1171 | |
| 1172 | /* |
| 1173 | * Also store the master object's region info for the caller. |
| 1174 | */ |
| 1175 | bzero(s: oi, n: sizeof(*oi)); |
| 1176 | #if CONFIG_KERNEL_TAGGING && !defined(KASAN_LIGHT) |
| 1177 | region = sl->sl_cache->skm_region; |
| 1178 | if (region->skr_mode & SKR_MODE_MEMTAG) { |
| 1179 | /* |
| 1180 | * If this region is configured to be tagged, we generate a |
| 1181 | * unique tag for the object address, and return this tagged |
| 1182 | * address to the caller. vm_memtag_assign_tag generates a |
| 1183 | * unique tag for the given address and size, and |
| 1184 | * vm_memtag_set_tag commits the tag to the backing memory |
| 1185 | * metadata. This tagged address is returned back to the client, |
| 1186 | * and when the client frees the address, we "re-tag" the |
| 1187 | * address to prevent against use-after-free attacks (more on |
| 1188 | * this in skmem_cache_batch_free). |
| 1189 | */ |
| 1190 | tagged_address = vm_memtag_assign_tag((vm_offset_t)bc->bc_addr, |
| 1191 | skm->skm_objsize); |
| 1192 | vm_memtag_set_tag(tagged_address, skm->skm_objsize); |
| 1193 | buf = (void *)tagged_address; |
| 1194 | } else { |
| 1195 | buf = bc->bc_addr; |
| 1196 | } |
| 1197 | #else /* !CONFIG_KERNEL_TAGGING && !defined(KASAN_LIGHT) */ |
| 1198 | buf = bc->bc_addr; |
| 1199 | #endif /* CONFIG_KERNEL_TAGGING && !defined(KASAN_LIGHT) */ |
| 1200 | SKMEM_OBJ_ADDR(oi) = buf; |
| 1201 | SKMEM_OBJ_BUFCTL(oi) = bc; /* master only; NULL for slave */ |
| 1202 | ASSERT(skm->skm_objsize <= UINT32_MAX); |
| 1203 | SKMEM_OBJ_SIZE(oi) = (uint32_t)skm->skm_objsize; |
| 1204 | SKMEM_OBJ_IDX_REG(oi) = |
| 1205 | ((sl->sl_seg->sg_index * sl->sl_chunks) + bc->bc_idx); |
| 1206 | SKMEM_OBJ_IDX_SEG(oi) = bc->bc_idx; |
| 1207 | /* |
| 1208 | * And for slave object. |
| 1209 | */ |
| 1210 | if (oim != NULL) { |
| 1211 | bzero(s: oim, n: sizeof(*oim)); |
| 1212 | if (bc->bc_addrm != NULL) { |
| 1213 | SKMEM_OBJ_ADDR(oim) = bc->bc_addrm; |
| 1214 | SKMEM_OBJ_SIZE(oim) = SKMEM_OBJ_SIZE(oi); |
| 1215 | SKMEM_OBJ_IDX_REG(oim) = SKMEM_OBJ_IDX_REG(oi); |
| 1216 | SKMEM_OBJ_IDX_SEG(oim) = SKMEM_OBJ_IDX_SEG(oi); |
| 1217 | } |
| 1218 | } |
| 1219 | |
| 1220 | if (skm->skm_mode & SKM_MODE_BATCH) { |
| 1221 | ((struct skmem_obj *)buf)->mo_next = NULL; |
| 1222 | } |
| 1223 | |
| 1224 | /* insert to allocated-address hash chain */ |
| 1225 | bcb = SKMEM_CACHE_HASH(skm, buf); |
| 1226 | SLIST_INSERT_HEAD(&bcb->bcb_head, bc, bc_link); |
| 1227 | |
| 1228 | if (SLIST_EMPTY(&sl->sl_head)) { |
| 1229 | /* |
| 1230 | * If that was the last buffer control from this slab, |
| 1231 | * insert the slab into the empty list. If it was in |
| 1232 | * the partially-allocated list, then remove the slab |
| 1233 | * from there as well. |
| 1234 | */ |
| 1235 | ASSERT(sl->sl_refcnt == sl->sl_chunks); |
| 1236 | if (new_slab) { |
| 1237 | ASSERT(sl->sl_chunks == 1); |
| 1238 | } else { |
| 1239 | ASSERT(sl->sl_chunks > 1); |
| 1240 | ASSERT(skm->skm_sl_partial > 0); |
| 1241 | skm->skm_sl_partial--; |
| 1242 | TAILQ_REMOVE(&skm->skm_sl_partial_list, sl, sl_link); |
| 1243 | } |
| 1244 | skm->skm_sl_empty++; |
| 1245 | ASSERT(skm->skm_sl_empty != 0); |
| 1246 | TAILQ_INSERT_HEAD(&skm->skm_sl_empty_list, sl, sl_link); |
| 1247 | } else { |
| 1248 | /* |
| 1249 | * The slab is not empty; if it was newly allocated |
| 1250 | * above, then it's not in the partially-allocated |
| 1251 | * list and so we insert it there. |
| 1252 | */ |
| 1253 | ASSERT(SKMEM_SLAB_IS_PARTIAL(sl)); |
| 1254 | if (new_slab) { |
| 1255 | skm->skm_sl_partial++; |
| 1256 | ASSERT(skm->skm_sl_partial != 0); |
| 1257 | TAILQ_INSERT_HEAD(&skm->skm_sl_partial_list, |
| 1258 | sl, sl_link); |
| 1259 | } |
| 1260 | } |
| 1261 | |
| 1262 | /* if auditing is enabled, record this transaction */ |
| 1263 | if (__improbable((skm->skm_mode & SKM_MODE_AUDIT) != 0)) { |
| 1264 | skmem_audit_bufctl(bc); |
| 1265 | } |
| 1266 | |
| 1267 | return 0; |
| 1268 | } |
| 1269 | |
| 1270 | /* |
| 1271 | * Allocate a raw object from the (locked) slab layer. Pseudo region variant. |
| 1272 | */ |
| 1273 | static int |
| 1274 | skmem_slab_alloc_pseudo_locked(struct skmem_cache *skm, |
| 1275 | struct skmem_obj_info *oi, struct skmem_obj_info *oim, uint32_t skmflag) |
| 1276 | { |
| 1277 | zalloc_flags_t zflags = (skmflag & SKMEM_NOSLEEP) ? Z_NOWAIT : Z_WAITOK; |
| 1278 | struct skmem_region *skr = skm->skm_region; |
| 1279 | void *obj, *buf; |
| 1280 | |
| 1281 | /* this flag is not for the caller to set */ |
| 1282 | VERIFY(!(skmflag & SKMEM_FAILOK)); |
| 1283 | |
| 1284 | SKM_SLAB_LOCK_ASSERT_HELD(skm); |
| 1285 | |
| 1286 | ASSERT(skr->skr_reg == NULL && skr->skr_zreg != NULL); |
| 1287 | /* mirrored region is not applicable */ |
| 1288 | ASSERT(!(skr->skr_mode & SKR_MODE_MIRRORED)); |
| 1289 | /* batching is not yet supported */ |
| 1290 | ASSERT(!(skm->skm_mode & SKM_MODE_BATCH)); |
| 1291 | |
| 1292 | if ((obj = zalloc_flags(skr->skr_zreg, zflags | Z_ZERO)) == NULL) { |
| 1293 | os_atomic_inc(&skm->skm_sl_alloc_fail, relaxed); |
| 1294 | return ENOMEM; |
| 1295 | } |
| 1296 | |
| 1297 | #if KASAN |
| 1298 | /* |
| 1299 | * Perform some fix-ups since the zone element isn't guaranteed |
| 1300 | * to be on the aligned boundary. The effective object size |
| 1301 | * has been adjusted accordingly by skmem_region_create() earlier |
| 1302 | * at cache creation time. |
| 1303 | * |
| 1304 | * 'buf' is get the aligned address for this object. |
| 1305 | */ |
| 1306 | buf = (void *)P2ROUNDUP((intptr_t)obj + sizeof(u_int64_t), |
| 1307 | skm->skm_bufalign); |
| 1308 | |
| 1309 | /* |
| 1310 | * Wind back a pointer size from the aligned address and |
| 1311 | * save the original address so we can free it later. |
| 1312 | */ |
| 1313 | void **pbuf = (void **)((intptr_t)buf - sizeof(void *)); |
| 1314 | *pbuf = obj; |
| 1315 | |
| 1316 | VERIFY(((intptr_t)buf + skm->skm_bufsize) <= |
| 1317 | ((intptr_t)obj + skm->skm_objsize)); |
| 1318 | #else /* !KASAN */ |
| 1319 | /* |
| 1320 | * We expect that the zone allocator would allocate elements |
| 1321 | * rounded up to the requested alignment based on the effective |
| 1322 | * object size computed in skmem_region_create() earlier, and |
| 1323 | * 'buf' is therefore the element address itself. |
| 1324 | */ |
| 1325 | buf = obj; |
| 1326 | #endif /* !KASAN */ |
| 1327 | |
| 1328 | /* make sure the object is aligned */ |
| 1329 | VERIFY(IS_P2ALIGNED(buf, skm->skm_bufalign)); |
| 1330 | |
| 1331 | /* |
| 1332 | * Return the object's info to the caller. |
| 1333 | */ |
| 1334 | bzero(s: oi, n: sizeof(*oi)); |
| 1335 | SKMEM_OBJ_ADDR(oi) = buf; |
| 1336 | ASSERT(skm->skm_objsize <= UINT32_MAX); |
| 1337 | SKMEM_OBJ_SIZE(oi) = (uint32_t)skm->skm_objsize; |
| 1338 | if (oim != NULL) { |
| 1339 | bzero(s: oim, n: sizeof(*oim)); |
| 1340 | } |
| 1341 | |
| 1342 | skm->skm_sl_alloc++; |
| 1343 | skm->skm_sl_bufinuse++; |
| 1344 | if (skm->skm_sl_bufinuse > skm->skm_sl_bufmax) { |
| 1345 | skm->skm_sl_bufmax = skm->skm_sl_bufinuse; |
| 1346 | } |
| 1347 | |
| 1348 | return 0; |
| 1349 | } |
| 1350 | |
| 1351 | /* |
| 1352 | * Allocate a raw object from the slab layer. |
| 1353 | */ |
| 1354 | static int |
| 1355 | skmem_slab_alloc(struct skmem_cache *skm, struct skmem_obj_info *oi, |
| 1356 | struct skmem_obj_info *oim, uint32_t skmflag) |
| 1357 | { |
| 1358 | int err; |
| 1359 | |
| 1360 | SKM_SLAB_LOCK(skm); |
| 1361 | err = skm->skm_slab_alloc(skm, oi, oim, skmflag); |
| 1362 | SKM_SLAB_UNLOCK(skm); |
| 1363 | |
| 1364 | return err; |
| 1365 | } |
| 1366 | |
| 1367 | /* |
| 1368 | * Allocate raw object(s) from the slab layer. |
| 1369 | */ |
| 1370 | static uint32_t |
| 1371 | skmem_slab_batch_alloc(struct skmem_cache *skm, struct skmem_obj **list, |
| 1372 | uint32_t num, uint32_t skmflag) |
| 1373 | { |
| 1374 | uint32_t need = num; |
| 1375 | |
| 1376 | ASSERT(list != NULL && (skm->skm_mode & SKM_MODE_BATCH)); |
| 1377 | *list = NULL; |
| 1378 | |
| 1379 | SKM_SLAB_LOCK(skm); |
| 1380 | for (;;) { |
| 1381 | struct skmem_obj_info oi, oim; |
| 1382 | |
| 1383 | /* |
| 1384 | * Get a single raw object from the slab layer. |
| 1385 | */ |
| 1386 | if (skm->skm_slab_alloc(skm, &oi, &oim, skmflag) != 0) { |
| 1387 | break; |
| 1388 | } |
| 1389 | |
| 1390 | *list = SKMEM_OBJ_ADDR(&oi); |
| 1391 | ASSERT((*list)->mo_next == NULL); |
| 1392 | /* store these inside the object itself */ |
| 1393 | (*list)->mo_info = oi; |
| 1394 | (*list)->mo_minfo = oim; |
| 1395 | list = &(*list)->mo_next; |
| 1396 | |
| 1397 | ASSERT(need != 0); |
| 1398 | if (--need == 0) { |
| 1399 | break; |
| 1400 | } |
| 1401 | } |
| 1402 | SKM_SLAB_UNLOCK(skm); |
| 1403 | |
| 1404 | return num - need; |
| 1405 | } |
| 1406 | |
| 1407 | /* |
| 1408 | * Free a raw object to the (locked) slab layer. Normal region variant. |
| 1409 | */ |
| 1410 | static void |
| 1411 | skmem_slab_free_locked(struct skmem_cache *skm, void *buf) |
| 1412 | { |
| 1413 | struct skmem_bufctl *bc, *tbc; |
| 1414 | struct skmem_bufctl_bkt *bcb; |
| 1415 | struct skmem_slab *sl = NULL; |
| 1416 | #if CONFIG_KERNEL_TAGGING && !defined(KASAN_LIGHT) |
| 1417 | struct skmem_region *region; |
| 1418 | vm_offset_t tagged_addr; |
| 1419 | /* |
| 1420 | * If buf is tagged, then addr would have the canonicalized address. |
| 1421 | * If buf is untagged, then addr is same as buf. |
| 1422 | */ |
| 1423 | void *addr = (void *)vm_memtag_canonicalize_address((vm_offset_t)buf); |
| 1424 | #endif /* CONFIG_KERNEL_TAGGING && !defined(KASAN_LIGHT) */ |
| 1425 | |
| 1426 | SKM_SLAB_LOCK_ASSERT_HELD(skm); |
| 1427 | ASSERT(buf != NULL); |
| 1428 | /* caller is expected to clear mo_next */ |
| 1429 | ASSERT(!(skm->skm_mode & SKM_MODE_BATCH) || |
| 1430 | ((struct skmem_obj *)buf)->mo_next == NULL); |
| 1431 | |
| 1432 | /* |
| 1433 | * Search the hash chain to find a matching buffer control for the |
| 1434 | * given object address. If found, remove the buffer control from |
| 1435 | * the hash chain and insert it into the freelist. Otherwise, we |
| 1436 | * panic since the caller has given us a bogus address. |
| 1437 | */ |
| 1438 | skm->skm_sl_free++; |
| 1439 | bcb = SKMEM_CACHE_HASH(skm, buf); |
| 1440 | |
| 1441 | #if CONFIG_KERNEL_TAGGING && !defined(KASAN_LIGHT) |
| 1442 | /* |
| 1443 | * If this region is configured to tag memory addresses, then buf is a |
| 1444 | * tagged address. When we search for the buffer control from the hash |
| 1445 | * table, we need to use the untagged address, because buffer control |
| 1446 | * maintains untagged address (bc_addr). vm_memtag_canonicalize_address |
| 1447 | * returns the untagged address. |
| 1448 | */ |
| 1449 | SLIST_FOREACH_SAFE(bc, &bcb->bcb_head, bc_link, tbc) { |
| 1450 | if (bc->bc_addr == addr) { |
| 1451 | SLIST_REMOVE(&bcb->bcb_head, bc, skmem_bufctl, bc_link); |
| 1452 | sl = bc->bc_slab; |
| 1453 | break; |
| 1454 | } |
| 1455 | } |
| 1456 | #else /* !CONFIG_KERNEL_TAGGING && !defined(KASAN_LIGHT) */ |
| 1457 | SLIST_FOREACH_SAFE(bc, &bcb->bcb_head, bc_link, tbc) { |
| 1458 | if (bc->bc_addr == buf) { |
| 1459 | SLIST_REMOVE(&bcb->bcb_head, bc, skmem_bufctl, bc_link); |
| 1460 | sl = bc->bc_slab; |
| 1461 | break; |
| 1462 | } |
| 1463 | } |
| 1464 | #endif /* CONFIG_KERNEL_TAGGING && !defined(KASAN_LIGHT) */ |
| 1465 | |
| 1466 | if (bc == NULL) { |
| 1467 | panic("%s: attempt to free invalid or already-freed obj %p " |
| 1468 | "on skm %p" , __func__, buf, skm); |
| 1469 | /* NOTREACHED */ |
| 1470 | __builtin_unreachable(); |
| 1471 | } |
| 1472 | ASSERT(sl != NULL && sl->sl_cache == skm); |
| 1473 | |
| 1474 | #if CONFIG_KERNEL_TAGGING && !defined(KASAN_LIGHT) |
| 1475 | /* |
| 1476 | * We use untagged address here, because SKMEM_SLAB_MEMBER compares the |
| 1477 | * address against sl_base, which is untagged. |
| 1478 | */ |
| 1479 | VERIFY(SKMEM_SLAB_MEMBER(sl, addr)); |
| 1480 | #else /* !CONFIG_KERNEL_TAGGING && !defined(KASAN_LIGHT) */ |
| 1481 | VERIFY(SKMEM_SLAB_MEMBER(sl, buf)); |
| 1482 | #endif /* CONFIG_KERNEL_TAGGING && !defined(KASAN_LIGHT) */ |
| 1483 | |
| 1484 | /* make sure this object is not currently in use by another object */ |
| 1485 | VERIFY(bc->bc_usecnt == 0); |
| 1486 | |
| 1487 | /* if auditing is enabled, record this transaction */ |
| 1488 | if (__improbable((skm->skm_mode & SKM_MODE_AUDIT) != 0)) { |
| 1489 | skmem_audit_bufctl(bc); |
| 1490 | } |
| 1491 | |
| 1492 | /* if clear on free is requested, zero out the object */ |
| 1493 | if (skm->skm_mode & SKM_MODE_CLEARONFREE) { |
| 1494 | bzero(s: buf, n: skm->skm_objsize); |
| 1495 | } |
| 1496 | |
| 1497 | #if CONFIG_KERNEL_TAGGING && !defined(KASAN_LIGHT) |
| 1498 | /* |
| 1499 | * If this region is configured to tag memory addresses, we re-tag this |
| 1500 | * address as the object is freed. We do the re-tagging in the magazine |
| 1501 | * layer too, but in case we need to free raw objects to the slab layer |
| 1502 | * (either becasue SKM_MODE_NOMAGAZINES is set, or the magazine layer |
| 1503 | * was not able to allocate empty magazines), we re-tag the addresses |
| 1504 | * here in the slab layer. Freeing to the slab layer is symmetrical to |
| 1505 | * allocating from the slab layer - when we allocate from slab layer, we |
| 1506 | * tag the address, and then construct the object; when we free to the |
| 1507 | * slab layer, we destruct the object, and retag the address. |
| 1508 | * We do the re-tagging here, because this is right after the last usage |
| 1509 | * of the buf variable (which is tagged). |
| 1510 | */ |
| 1511 | region = skm->skm_region; |
| 1512 | if (region->skr_mode & SKR_MODE_MEMTAG) { |
| 1513 | tagged_addr = vm_memtag_assign_tag((vm_offset_t)buf, |
| 1514 | skm->skm_objsize); |
| 1515 | vm_memtag_set_tag(tagged_addr, skm->skm_objsize); |
| 1516 | } |
| 1517 | #endif /* CONFIG_KERNEL_TAGGING && !defined(KASAN_LIGHT) */ |
| 1518 | |
| 1519 | /* insert the buffer control to the slab's freelist */ |
| 1520 | SLIST_INSERT_HEAD(&sl->sl_head, bc, bc_link); |
| 1521 | |
| 1522 | ASSERT(sl->sl_refcnt >= 1); |
| 1523 | if (--sl->sl_refcnt == 0) { |
| 1524 | /* |
| 1525 | * If this was the last outstanding object for the slab, |
| 1526 | * remove the slab from the partially-allocated or empty |
| 1527 | * list, and destroy the slab (segment) back to the region. |
| 1528 | */ |
| 1529 | if (sl->sl_chunks == 1) { |
| 1530 | ASSERT(skm->skm_sl_empty > 0); |
| 1531 | skm->skm_sl_empty--; |
| 1532 | TAILQ_REMOVE(&skm->skm_sl_empty_list, sl, sl_link); |
| 1533 | } else { |
| 1534 | ASSERT(skm->skm_sl_partial > 0); |
| 1535 | skm->skm_sl_partial--; |
| 1536 | TAILQ_REMOVE(&skm->skm_sl_partial_list, sl, sl_link); |
| 1537 | } |
| 1538 | ASSERT((int64_t)(skm->skm_sl_bufinuse - sl->sl_chunks) >= 0); |
| 1539 | skm->skm_sl_bufinuse -= sl->sl_chunks; |
| 1540 | skm->skm_sl_destroy++; |
| 1541 | SKM_SLAB_UNLOCK(skm); |
| 1542 | skmem_slab_destroy(skm, sl); |
| 1543 | SKM_SLAB_LOCK(skm); |
| 1544 | return; |
| 1545 | } |
| 1546 | |
| 1547 | ASSERT(bc == SLIST_FIRST(&sl->sl_head)); |
| 1548 | if (SLIST_NEXT(bc, bc_link) == NULL) { |
| 1549 | /* |
| 1550 | * If this is the first (potentially amongst many) object |
| 1551 | * that's returned to the slab, remove the slab from the |
| 1552 | * empty list and insert to end of the partially-allocated |
| 1553 | * list. This should help avoid thrashing the partial slab |
| 1554 | * since we avoid disturbing what's already at the front. |
| 1555 | */ |
| 1556 | ASSERT(sl->sl_refcnt == (sl->sl_chunks - 1)); |
| 1557 | ASSERT(sl->sl_chunks > 1); |
| 1558 | ASSERT(skm->skm_sl_empty > 0); |
| 1559 | skm->skm_sl_empty--; |
| 1560 | TAILQ_REMOVE(&skm->skm_sl_empty_list, sl, sl_link); |
| 1561 | skm->skm_sl_partial++; |
| 1562 | ASSERT(skm->skm_sl_partial != 0); |
| 1563 | TAILQ_INSERT_TAIL(&skm->skm_sl_partial_list, sl, sl_link); |
| 1564 | } |
| 1565 | } |
| 1566 | |
| 1567 | /* |
| 1568 | * Free a raw object to the (locked) slab layer. Pseudo region variant. |
| 1569 | */ |
| 1570 | static void |
| 1571 | skmem_slab_free_pseudo_locked(struct skmem_cache *skm, void *buf) |
| 1572 | { |
| 1573 | struct skmem_region *skr = skm->skm_region; |
| 1574 | void *obj = buf; |
| 1575 | |
| 1576 | ASSERT(skr->skr_reg == NULL && skr->skr_zreg != NULL); |
| 1577 | |
| 1578 | SKM_SLAB_LOCK_ASSERT_HELD(skm); |
| 1579 | |
| 1580 | VERIFY(IS_P2ALIGNED(obj, skm->skm_bufalign)); |
| 1581 | |
| 1582 | #if KASAN |
| 1583 | /* |
| 1584 | * Since we stuffed the original zone element address before |
| 1585 | * the buffer address in KASAN mode, get it back since we're |
| 1586 | * about to free it. |
| 1587 | */ |
| 1588 | void **pbuf = (void **)((intptr_t)obj - sizeof(void *)); |
| 1589 | |
| 1590 | VERIFY(((intptr_t)obj + skm->skm_bufsize) <= |
| 1591 | ((intptr_t)*pbuf + skm->skm_objsize)); |
| 1592 | |
| 1593 | obj = *pbuf; |
| 1594 | #endif /* KASAN */ |
| 1595 | |
| 1596 | /* free it to zone */ |
| 1597 | zfree(skr->skr_zreg, obj); |
| 1598 | |
| 1599 | skm->skm_sl_free++; |
| 1600 | ASSERT(skm->skm_sl_bufinuse > 0); |
| 1601 | skm->skm_sl_bufinuse--; |
| 1602 | } |
| 1603 | |
| 1604 | /* |
| 1605 | * Free a raw object to the slab layer. |
| 1606 | */ |
| 1607 | static void |
| 1608 | skmem_slab_free(struct skmem_cache *skm, void *buf) |
| 1609 | { |
| 1610 | if (skm->skm_mode & SKM_MODE_BATCH) { |
| 1611 | ((struct skmem_obj *)buf)->mo_next = NULL; |
| 1612 | } |
| 1613 | |
| 1614 | SKM_SLAB_LOCK(skm); |
| 1615 | skm->skm_slab_free(skm, buf); |
| 1616 | SKM_SLAB_UNLOCK(skm); |
| 1617 | } |
| 1618 | |
| 1619 | /* |
| 1620 | * Free raw object(s) to the slab layer. |
| 1621 | */ |
| 1622 | static void |
| 1623 | skmem_slab_batch_free(struct skmem_cache *skm, struct skmem_obj *list) |
| 1624 | { |
| 1625 | struct skmem_obj *listn; |
| 1626 | |
| 1627 | ASSERT(list != NULL && (skm->skm_mode & SKM_MODE_BATCH)); |
| 1628 | |
| 1629 | SKM_SLAB_LOCK(skm); |
| 1630 | for (;;) { |
| 1631 | listn = list->mo_next; |
| 1632 | list->mo_next = NULL; |
| 1633 | |
| 1634 | /* |
| 1635 | * Free a single object to the slab layer. |
| 1636 | */ |
| 1637 | skm->skm_slab_free(skm, (void *)list); |
| 1638 | |
| 1639 | /* if no more objects to free, we're done */ |
| 1640 | if ((list = listn) == NULL) { |
| 1641 | break; |
| 1642 | } |
| 1643 | } |
| 1644 | SKM_SLAB_UNLOCK(skm); |
| 1645 | } |
| 1646 | |
| 1647 | /* |
| 1648 | * Return the object's region info. |
| 1649 | */ |
| 1650 | void |
| 1651 | skmem_cache_get_obj_info(struct skmem_cache *skm, void *buf, |
| 1652 | struct skmem_obj_info *oi, struct skmem_obj_info *oim) |
| 1653 | { |
| 1654 | struct skmem_bufctl_bkt *bcb; |
| 1655 | struct skmem_bufctl *bc; |
| 1656 | struct skmem_slab *sl; |
| 1657 | |
| 1658 | /* |
| 1659 | * Search the hash chain to find a matching buffer control for the |
| 1660 | * given object address. If not found, panic since the caller has |
| 1661 | * given us a bogus address. |
| 1662 | */ |
| 1663 | SKM_SLAB_LOCK(skm); |
| 1664 | bcb = SKMEM_CACHE_HASH(skm, buf); |
| 1665 | SLIST_FOREACH(bc, &bcb->bcb_head, bc_link) { |
| 1666 | if (bc->bc_addr == buf) { |
| 1667 | break; |
| 1668 | } |
| 1669 | } |
| 1670 | |
| 1671 | if (__improbable(bc == NULL)) { |
| 1672 | panic("%s: %s failed to get object info for %p" , |
| 1673 | __func__, skm->skm_name, buf); |
| 1674 | /* NOTREACHED */ |
| 1675 | __builtin_unreachable(); |
| 1676 | } |
| 1677 | |
| 1678 | /* |
| 1679 | * Return the master object's info to the caller. |
| 1680 | */ |
| 1681 | sl = bc->bc_slab; |
| 1682 | SKMEM_OBJ_ADDR(oi) = bc->bc_addr; |
| 1683 | SKMEM_OBJ_BUFCTL(oi) = bc; /* master only; NULL for slave */ |
| 1684 | ASSERT(skm->skm_objsize <= UINT32_MAX); |
| 1685 | SKMEM_OBJ_SIZE(oi) = (uint32_t)skm->skm_objsize; |
| 1686 | SKMEM_OBJ_IDX_REG(oi) = |
| 1687 | (sl->sl_seg->sg_index * sl->sl_chunks) + bc->bc_idx; |
| 1688 | SKMEM_OBJ_IDX_SEG(oi) = bc->bc_idx; |
| 1689 | /* |
| 1690 | * And for slave object. |
| 1691 | */ |
| 1692 | if (oim != NULL) { |
| 1693 | bzero(s: oim, n: sizeof(*oim)); |
| 1694 | if (bc->bc_addrm != NULL) { |
| 1695 | SKMEM_OBJ_ADDR(oim) = bc->bc_addrm; |
| 1696 | SKMEM_OBJ_SIZE(oim) = oi->oi_size; |
| 1697 | SKMEM_OBJ_IDX_REG(oim) = oi->oi_idx_reg; |
| 1698 | SKMEM_OBJ_IDX_SEG(oim) = oi->oi_idx_seg; |
| 1699 | } |
| 1700 | } |
| 1701 | SKM_SLAB_UNLOCK(skm); |
| 1702 | } |
| 1703 | |
| 1704 | /* |
| 1705 | * Magazine constructor. |
| 1706 | */ |
| 1707 | static int |
| 1708 | skmem_magazine_ctor(struct skmem_obj_info *oi, struct skmem_obj_info *oim, |
| 1709 | void *arg, uint32_t skmflag) |
| 1710 | { |
| 1711 | #pragma unused(oim, skmflag) |
| 1712 | struct skmem_mag *mg = SKMEM_OBJ_ADDR(oi); |
| 1713 | |
| 1714 | ASSERT(oim == NULL); |
| 1715 | ASSERT(arg != NULL); |
| 1716 | |
| 1717 | /* |
| 1718 | * Store it in the magazine object since we'll |
| 1719 | * need to refer to it during magazine destroy; |
| 1720 | * we can't safely refer to skm_magtype as the |
| 1721 | * depot lock may not be acquired then. |
| 1722 | */ |
| 1723 | mg->mg_magtype = arg; |
| 1724 | |
| 1725 | return 0; |
| 1726 | } |
| 1727 | |
| 1728 | /* |
| 1729 | * Destroy a magazine (free each object to the slab layer). |
| 1730 | */ |
| 1731 | static void |
| 1732 | skmem_magazine_destroy(struct skmem_cache *skm, struct skmem_mag *mg, |
| 1733 | int nrounds) |
| 1734 | { |
| 1735 | int round; |
| 1736 | |
| 1737 | for (round = 0; round < nrounds; round++) { |
| 1738 | void *buf = mg->mg_round[round]; |
| 1739 | struct skmem_obj *next; |
| 1740 | |
| 1741 | if (skm->skm_mode & SKM_MODE_BATCH) { |
| 1742 | next = ((struct skmem_obj *)buf)->mo_next; |
| 1743 | ((struct skmem_obj *)buf)->mo_next = NULL; |
| 1744 | } |
| 1745 | |
| 1746 | /* deconstruct the object */ |
| 1747 | if (skm->skm_dtor != NULL) { |
| 1748 | skm->skm_dtor(buf, skm->skm_private); |
| 1749 | } |
| 1750 | |
| 1751 | /* |
| 1752 | * In non-batching mode, each object in the magazine has |
| 1753 | * no linkage to its neighbor, so free individual object |
| 1754 | * to the slab layer now. |
| 1755 | */ |
| 1756 | if (!(skm->skm_mode & SKM_MODE_BATCH)) { |
| 1757 | skmem_slab_free(skm, buf); |
| 1758 | } else { |
| 1759 | ((struct skmem_obj *)buf)->mo_next = next; |
| 1760 | } |
| 1761 | } |
| 1762 | |
| 1763 | /* |
| 1764 | * In batching mode, each object is linked to its neighbor at free |
| 1765 | * time, and so take the bottom-most object and free it to the slab |
| 1766 | * layer. Because of the way the list is reversed during free, this |
| 1767 | * will bring along the rest of objects above it. |
| 1768 | */ |
| 1769 | if (nrounds > 0 && (skm->skm_mode & SKM_MODE_BATCH)) { |
| 1770 | skmem_slab_batch_free(skm, list: mg->mg_round[nrounds - 1]); |
| 1771 | } |
| 1772 | |
| 1773 | /* free the magazine itself back to cache */ |
| 1774 | skmem_cache_free(mg->mg_magtype->mt_cache, mg); |
| 1775 | } |
| 1776 | |
| 1777 | /* |
| 1778 | * Get one or more magazines from the depot. |
| 1779 | */ |
| 1780 | static uint32_t |
| 1781 | skmem_depot_batch_alloc(struct skmem_cache *skm, struct skmem_maglist *ml, |
| 1782 | uint32_t *count, struct skmem_mag **list, uint32_t num) |
| 1783 | { |
| 1784 | SLIST_HEAD(, skmem_mag) mg_list = SLIST_HEAD_INITIALIZER(mg_list); |
| 1785 | struct skmem_mag *mg; |
| 1786 | uint32_t need = num, c = 0; |
| 1787 | |
| 1788 | ASSERT(list != NULL && need > 0); |
| 1789 | |
| 1790 | if (!SKM_DEPOT_LOCK_TRY(skm)) { |
| 1791 | /* |
| 1792 | * Track the amount of lock contention here; if the contention |
| 1793 | * level is high (more than skmem_cache_depot_contention per a |
| 1794 | * given skmem_cache_update_interval interval), then we treat |
| 1795 | * it as a sign that the per-CPU layer is not using the right |
| 1796 | * magazine type, and that we'd need to resize it. |
| 1797 | */ |
| 1798 | SKM_DEPOT_LOCK(skm); |
| 1799 | if (skm->skm_mode & SKM_MODE_DYNAMIC) { |
| 1800 | skm->skm_depot_contention++; |
| 1801 | } |
| 1802 | } |
| 1803 | |
| 1804 | while ((mg = SLIST_FIRST(&ml->ml_list)) != NULL) { |
| 1805 | SLIST_REMOVE_HEAD(&ml->ml_list, mg_link); |
| 1806 | SLIST_INSERT_HEAD(&mg_list, mg, mg_link); |
| 1807 | ASSERT(ml->ml_total != 0); |
| 1808 | if (--ml->ml_total < ml->ml_min) { |
| 1809 | ml->ml_min = ml->ml_total; |
| 1810 | } |
| 1811 | c++; |
| 1812 | ml->ml_alloc++; |
| 1813 | if (--need == 0) { |
| 1814 | break; |
| 1815 | } |
| 1816 | } |
| 1817 | *count -= c; |
| 1818 | |
| 1819 | SKM_DEPOT_UNLOCK(skm); |
| 1820 | |
| 1821 | *list = SLIST_FIRST(&mg_list); |
| 1822 | |
| 1823 | return num - need; |
| 1824 | } |
| 1825 | |
| 1826 | /* |
| 1827 | * Return one or more magazines to the depot. |
| 1828 | */ |
| 1829 | static void |
| 1830 | skmem_depot_batch_free(struct skmem_cache *skm, struct skmem_maglist *ml, |
| 1831 | uint32_t *count, struct skmem_mag *mg) |
| 1832 | { |
| 1833 | struct skmem_mag *nmg; |
| 1834 | uint32_t c = 0; |
| 1835 | |
| 1836 | SKM_DEPOT_LOCK(skm); |
| 1837 | while (mg != NULL) { |
| 1838 | nmg = SLIST_NEXT(mg, mg_link); |
| 1839 | SLIST_INSERT_HEAD(&ml->ml_list, mg, mg_link); |
| 1840 | ml->ml_total++; |
| 1841 | c++; |
| 1842 | mg = nmg; |
| 1843 | } |
| 1844 | *count += c; |
| 1845 | SKM_DEPOT_UNLOCK(skm); |
| 1846 | } |
| 1847 | |
| 1848 | /* |
| 1849 | * Update the depot's working state statistics. |
| 1850 | */ |
| 1851 | static void |
| 1852 | skmem_depot_ws_update(struct skmem_cache *skm) |
| 1853 | { |
| 1854 | SKM_DEPOT_LOCK_SPIN(skm); |
| 1855 | skm->skm_full.ml_reaplimit = skm->skm_full.ml_min; |
| 1856 | skm->skm_full.ml_min = skm->skm_full.ml_total; |
| 1857 | skm->skm_empty.ml_reaplimit = skm->skm_empty.ml_min; |
| 1858 | skm->skm_empty.ml_min = skm->skm_empty.ml_total; |
| 1859 | SKM_DEPOT_UNLOCK(skm); |
| 1860 | } |
| 1861 | |
| 1862 | /* |
| 1863 | * Empty the depot's working state statistics (everything's reapable.) |
| 1864 | */ |
| 1865 | static void |
| 1866 | skmem_depot_ws_zero(struct skmem_cache *skm) |
| 1867 | { |
| 1868 | SKM_DEPOT_LOCK_SPIN(skm); |
| 1869 | if (skm->skm_full.ml_reaplimit != skm->skm_full.ml_total || |
| 1870 | skm->skm_full.ml_min != skm->skm_full.ml_total || |
| 1871 | skm->skm_empty.ml_reaplimit != skm->skm_empty.ml_total || |
| 1872 | skm->skm_empty.ml_min != skm->skm_empty.ml_total) { |
| 1873 | skm->skm_full.ml_reaplimit = skm->skm_full.ml_total; |
| 1874 | skm->skm_full.ml_min = skm->skm_full.ml_total; |
| 1875 | skm->skm_empty.ml_reaplimit = skm->skm_empty.ml_total; |
| 1876 | skm->skm_empty.ml_min = skm->skm_empty.ml_total; |
| 1877 | skm->skm_depot_ws_zero++; |
| 1878 | } |
| 1879 | SKM_DEPOT_UNLOCK(skm); |
| 1880 | } |
| 1881 | |
| 1882 | /* |
| 1883 | * Reap magazines that's outside of the working set. |
| 1884 | */ |
| 1885 | static void |
| 1886 | skmem_depot_ws_reap(struct skmem_cache *skm) |
| 1887 | { |
| 1888 | struct skmem_mag *mg, *nmg; |
| 1889 | uint32_t f, e, reap; |
| 1890 | |
| 1891 | reap = f = MIN(skm->skm_full.ml_reaplimit, skm->skm_full.ml_min); |
| 1892 | if (reap != 0) { |
| 1893 | (void) skmem_depot_batch_alloc(skm, ml: &skm->skm_full, |
| 1894 | count: &skm->skm_depot_full, list: &mg, num: reap); |
| 1895 | while (mg != NULL) { |
| 1896 | nmg = SLIST_NEXT(mg, mg_link); |
| 1897 | SLIST_NEXT(mg, mg_link) = NULL; |
| 1898 | skmem_magazine_destroy(skm, mg, |
| 1899 | nrounds: mg->mg_magtype->mt_magsize); |
| 1900 | mg = nmg; |
| 1901 | } |
| 1902 | } |
| 1903 | |
| 1904 | reap = e = MIN(skm->skm_empty.ml_reaplimit, skm->skm_empty.ml_min); |
| 1905 | if (reap != 0) { |
| 1906 | (void) skmem_depot_batch_alloc(skm, ml: &skm->skm_empty, |
| 1907 | count: &skm->skm_depot_empty, list: &mg, num: reap); |
| 1908 | while (mg != NULL) { |
| 1909 | nmg = SLIST_NEXT(mg, mg_link); |
| 1910 | SLIST_NEXT(mg, mg_link) = NULL; |
| 1911 | skmem_magazine_destroy(skm, mg, nrounds: 0); |
| 1912 | mg = nmg; |
| 1913 | } |
| 1914 | } |
| 1915 | |
| 1916 | if (f != 0 || e != 0) { |
| 1917 | os_atomic_inc(&skm->skm_cpu_mag_reap, relaxed); |
| 1918 | } |
| 1919 | } |
| 1920 | |
| 1921 | /* |
| 1922 | * Performs periodic maintenance on a cache. This is serialized |
| 1923 | * through the update thread call, and so we guarantee there's at |
| 1924 | * most one update episode in the system at any given time. |
| 1925 | */ |
| 1926 | static void |
| 1927 | skmem_cache_update(struct skmem_cache *skm, uint32_t arg) |
| 1928 | { |
| 1929 | #pragma unused(arg) |
| 1930 | boolean_t resize_mag = FALSE; |
| 1931 | boolean_t rescale_hash = FALSE; |
| 1932 | |
| 1933 | SKMEM_CACHE_LOCK_ASSERT_HELD(); |
| 1934 | |
| 1935 | /* insist that we are executing in the update thread call context */ |
| 1936 | ASSERT(sk_is_cache_update_protected()); |
| 1937 | |
| 1938 | /* |
| 1939 | * If the cache has become much larger or smaller than the |
| 1940 | * allocated-address hash table, rescale the hash table. |
| 1941 | */ |
| 1942 | SKM_SLAB_LOCK(skm); |
| 1943 | if ((skm->skm_sl_bufinuse > (skm->skm_hash_mask << 1) && |
| 1944 | (skm->skm_hash_mask + 1) < skm->skm_hash_limit) || |
| 1945 | (skm->skm_sl_bufinuse < (skm->skm_hash_mask >> 1) && |
| 1946 | skm->skm_hash_mask > skm->skm_hash_initial)) { |
| 1947 | rescale_hash = TRUE; |
| 1948 | } |
| 1949 | SKM_SLAB_UNLOCK(skm); |
| 1950 | |
| 1951 | /* |
| 1952 | * Update the working set. |
| 1953 | */ |
| 1954 | skmem_depot_ws_update(skm); |
| 1955 | |
| 1956 | /* |
| 1957 | * If the contention count is greater than the threshold during |
| 1958 | * the update interval, and if we are not already at the maximum |
| 1959 | * magazine size, increase it. |
| 1960 | */ |
| 1961 | SKM_DEPOT_LOCK_SPIN(skm); |
| 1962 | if (skm->skm_chunksize < skm->skm_magtype->mt_maxbuf && |
| 1963 | (int)(skm->skm_depot_contention - skm->skm_depot_contention_prev) > |
| 1964 | skmem_cache_depot_contention) { |
| 1965 | ASSERT(skm->skm_mode & SKM_MODE_DYNAMIC); |
| 1966 | resize_mag = TRUE; |
| 1967 | } |
| 1968 | skm->skm_depot_contention_prev = skm->skm_depot_contention; |
| 1969 | SKM_DEPOT_UNLOCK(skm); |
| 1970 | |
| 1971 | if (rescale_hash) { |
| 1972 | skmem_cache_hash_rescale(skm); |
| 1973 | } |
| 1974 | |
| 1975 | if (resize_mag) { |
| 1976 | skmem_cache_magazine_resize(skm); |
| 1977 | } |
| 1978 | } |
| 1979 | |
| 1980 | /* |
| 1981 | * Reload the CPU's magazines with mg and its follower (if any). |
| 1982 | */ |
| 1983 | static void |
| 1984 | skmem_cpu_batch_reload(struct skmem_cpu_cache *cp, struct skmem_mag *mg, |
| 1985 | int rounds) |
| 1986 | { |
| 1987 | ASSERT((cp->cp_loaded == NULL && cp->cp_rounds == -1) || |
| 1988 | (cp->cp_loaded && cp->cp_rounds + rounds == cp->cp_magsize)); |
| 1989 | ASSERT(cp->cp_magsize > 0); |
| 1990 | |
| 1991 | cp->cp_loaded = mg; |
| 1992 | cp->cp_rounds = rounds; |
| 1993 | if (__probable(SLIST_NEXT(mg, mg_link) != NULL)) { |
| 1994 | cp->cp_ploaded = SLIST_NEXT(mg, mg_link); |
| 1995 | cp->cp_prounds = rounds; |
| 1996 | SLIST_NEXT(mg, mg_link) = NULL; |
| 1997 | } else { |
| 1998 | ASSERT(SLIST_NEXT(mg, mg_link) == NULL); |
| 1999 | cp->cp_ploaded = NULL; |
| 2000 | cp->cp_prounds = -1; |
| 2001 | } |
| 2002 | } |
| 2003 | |
| 2004 | /* |
| 2005 | * Reload the CPU's magazine with mg and save the previous one. |
| 2006 | */ |
| 2007 | static void |
| 2008 | skmem_cpu_reload(struct skmem_cpu_cache *cp, struct skmem_mag *mg, int rounds) |
| 2009 | { |
| 2010 | ASSERT((cp->cp_loaded == NULL && cp->cp_rounds == -1) || |
| 2011 | (cp->cp_loaded && cp->cp_rounds + rounds == cp->cp_magsize)); |
| 2012 | ASSERT(cp->cp_magsize > 0); |
| 2013 | |
| 2014 | cp->cp_ploaded = cp->cp_loaded; |
| 2015 | cp->cp_prounds = cp->cp_rounds; |
| 2016 | cp->cp_loaded = mg; |
| 2017 | cp->cp_rounds = rounds; |
| 2018 | } |
| 2019 | |
| 2020 | /* |
| 2021 | * Allocate a constructed object from the cache. |
| 2022 | */ |
| 2023 | void * |
| 2024 | skmem_cache_alloc(struct skmem_cache *skm, uint32_t skmflag) |
| 2025 | { |
| 2026 | struct skmem_obj *buf; |
| 2027 | |
| 2028 | (void) skmem_cache_batch_alloc(skm, list: &buf, 1, skmflag); |
| 2029 | return buf; |
| 2030 | } |
| 2031 | |
| 2032 | /* |
| 2033 | * Allocate constructed object(s) from the cache. |
| 2034 | */ |
| 2035 | uint32_t |
| 2036 | skmem_cache_batch_alloc(struct skmem_cache *skm, struct skmem_obj **list, |
| 2037 | uint32_t num, uint32_t skmflag) |
| 2038 | { |
| 2039 | struct skmem_cpu_cache *cp = SKMEM_CPU_CACHE(skm); |
| 2040 | struct skmem_obj **top = &(*list); |
| 2041 | struct skmem_mag *mg; |
| 2042 | uint32_t need = num; |
| 2043 | |
| 2044 | ASSERT(list != NULL); |
| 2045 | *list = NULL; |
| 2046 | |
| 2047 | if (need == 0) { |
| 2048 | return 0; |
| 2049 | } |
| 2050 | ASSERT(need == 1 || (skm->skm_mode & SKM_MODE_BATCH)); |
| 2051 | |
| 2052 | SKM_CPU_LOCK(cp); |
| 2053 | for (;;) { |
| 2054 | /* |
| 2055 | * If we have an object in the current CPU's loaded |
| 2056 | * magazine, return it and we're done. |
| 2057 | */ |
| 2058 | if (cp->cp_rounds > 0) { |
| 2059 | int objs = MIN((unsigned int)cp->cp_rounds, need); |
| 2060 | /* |
| 2061 | * In the SKM_MODE_BATCH case, objects in are already |
| 2062 | * linked together with the most recently freed object |
| 2063 | * at the head of the list; grab as many objects as we |
| 2064 | * can. Otherwise we'll just grab 1 object at most. |
| 2065 | */ |
| 2066 | *list = cp->cp_loaded->mg_round[cp->cp_rounds - 1]; |
| 2067 | cp->cp_rounds -= objs; |
| 2068 | cp->cp_alloc += objs; |
| 2069 | |
| 2070 | if (skm->skm_mode & SKM_MODE_BATCH) { |
| 2071 | struct skmem_obj *tail = |
| 2072 | cp->cp_loaded->mg_round[cp->cp_rounds]; |
| 2073 | list = &tail->mo_next; |
| 2074 | *list = NULL; |
| 2075 | } |
| 2076 | |
| 2077 | /* if we got them all, return to caller */ |
| 2078 | if ((need -= objs) == 0) { |
| 2079 | SKM_CPU_UNLOCK(cp); |
| 2080 | goto done; |
| 2081 | } |
| 2082 | } |
| 2083 | |
| 2084 | /* |
| 2085 | * The CPU's loaded magazine is empty. If the previously |
| 2086 | * loaded magazine was full, exchange and try again. |
| 2087 | */ |
| 2088 | if (cp->cp_prounds > 0) { |
| 2089 | skmem_cpu_reload(cp, mg: cp->cp_ploaded, rounds: cp->cp_prounds); |
| 2090 | continue; |
| 2091 | } |
| 2092 | |
| 2093 | /* |
| 2094 | * If the magazine layer is disabled, allocate from slab. |
| 2095 | * This can happen either because SKM_MODE_NOMAGAZINES is |
| 2096 | * set, or because we are resizing the magazine now. |
| 2097 | */ |
| 2098 | if (cp->cp_magsize == 0) { |
| 2099 | break; |
| 2100 | } |
| 2101 | |
| 2102 | /* |
| 2103 | * Both of the CPU's magazines are empty; try to get |
| 2104 | * full magazine(s) from the depot layer. Upon success, |
| 2105 | * reload and try again. To prevent potential thrashing, |
| 2106 | * replace both empty magazines only if the requested |
| 2107 | * count exceeds a magazine's worth of objects. |
| 2108 | */ |
| 2109 | (void) skmem_depot_batch_alloc(skm, ml: &skm->skm_full, |
| 2110 | count: &skm->skm_depot_full, list: &mg, num: (need <= cp->cp_magsize) ? 1 : 2); |
| 2111 | if (mg != NULL) { |
| 2112 | SLIST_HEAD(, skmem_mag) mg_list = |
| 2113 | SLIST_HEAD_INITIALIZER(mg_list); |
| 2114 | |
| 2115 | if (cp->cp_ploaded != NULL) { |
| 2116 | SLIST_INSERT_HEAD(&mg_list, cp->cp_ploaded, |
| 2117 | mg_link); |
| 2118 | } |
| 2119 | if (SLIST_NEXT(mg, mg_link) == NULL) { |
| 2120 | /* |
| 2121 | * Depot allocation returns only 1 magazine; |
| 2122 | * retain current empty magazine. |
| 2123 | */ |
| 2124 | skmem_cpu_reload(cp, mg, rounds: cp->cp_magsize); |
| 2125 | } else { |
| 2126 | /* |
| 2127 | * We got 2 full magazines from depot; |
| 2128 | * release the current empty magazine |
| 2129 | * back to the depot layer. |
| 2130 | */ |
| 2131 | if (cp->cp_loaded != NULL) { |
| 2132 | SLIST_INSERT_HEAD(&mg_list, |
| 2133 | cp->cp_loaded, mg_link); |
| 2134 | } |
| 2135 | skmem_cpu_batch_reload(cp, mg, rounds: cp->cp_magsize); |
| 2136 | } |
| 2137 | skmem_depot_batch_free(skm, ml: &skm->skm_empty, |
| 2138 | count: &skm->skm_depot_empty, SLIST_FIRST(&mg_list)); |
| 2139 | continue; |
| 2140 | } |
| 2141 | |
| 2142 | /* |
| 2143 | * The depot layer doesn't have any full magazines; |
| 2144 | * allocate directly from the slab layer. |
| 2145 | */ |
| 2146 | break; |
| 2147 | } |
| 2148 | SKM_CPU_UNLOCK(cp); |
| 2149 | |
| 2150 | if (__probable(num > 1 && (skm->skm_mode & SKM_MODE_BATCH) != 0)) { |
| 2151 | struct skmem_obj *rtop, *rlist, *rlistp = NULL; |
| 2152 | uint32_t rlistc, c = 0; |
| 2153 | |
| 2154 | /* |
| 2155 | * Get a list of raw objects from the slab layer. |
| 2156 | */ |
| 2157 | rlistc = skmem_slab_batch_alloc(skm, list: &rlist, num: need, skmflag); |
| 2158 | ASSERT(rlistc == 0 || rlist != NULL); |
| 2159 | rtop = rlist; |
| 2160 | |
| 2161 | /* |
| 2162 | * Construct each object in the raw list. Upon failure, |
| 2163 | * free any remaining objects in the list back to the slab |
| 2164 | * layer, and keep the ones that were successfully constructed. |
| 2165 | * Here, "oi" and "oim" in each skmem_obj refer to the objects |
| 2166 | * coming from the master and slave regions (on mirrored |
| 2167 | * regions), respectively. They are stored inside the object |
| 2168 | * temporarily so that we can pass them to the constructor. |
| 2169 | */ |
| 2170 | while (skm->skm_ctor != NULL && rlist != NULL) { |
| 2171 | struct skmem_obj_info *oi = &rlist->mo_info; |
| 2172 | struct skmem_obj_info *oim = &rlist->mo_minfo; |
| 2173 | struct skmem_obj *rlistn = rlist->mo_next; |
| 2174 | |
| 2175 | /* |
| 2176 | * Note that the constructor guarantees at least |
| 2177 | * the size of a pointer at the top of the object |
| 2178 | * and no more than that. That means we must not |
| 2179 | * refer to "oi" and "oim" any longer after the |
| 2180 | * object goes thru the constructor. |
| 2181 | */ |
| 2182 | if (skm->skm_ctor(oi, ((SKMEM_OBJ_ADDR(oim) != NULL) ? |
| 2183 | oim : NULL), skm->skm_private, skmflag) != 0) { |
| 2184 | VERIFY(rlist->mo_next == rlistn); |
| 2185 | os_atomic_add(&skm->skm_sl_alloc_fail, |
| 2186 | rlistc - c, relaxed); |
| 2187 | if (rlistp != NULL) { |
| 2188 | rlistp->mo_next = NULL; |
| 2189 | } |
| 2190 | if (rlist == rtop) { |
| 2191 | rtop = NULL; |
| 2192 | ASSERT(c == 0); |
| 2193 | } |
| 2194 | skmem_slab_batch_free(skm, list: rlist); |
| 2195 | rlist = NULL; |
| 2196 | rlistc = c; |
| 2197 | break; |
| 2198 | } |
| 2199 | VERIFY(rlist->mo_next == rlistn); |
| 2200 | |
| 2201 | ++c; /* # of constructed objs */ |
| 2202 | rlistp = rlist; |
| 2203 | if ((rlist = rlist->mo_next) == NULL) { |
| 2204 | ASSERT(rlistc == c); |
| 2205 | break; |
| 2206 | } |
| 2207 | } |
| 2208 | |
| 2209 | /* |
| 2210 | * At this point "top" points to the head of the chain we're |
| 2211 | * going to return to caller; "list" points to the tail of that |
| 2212 | * chain. The second chain begins at "rtop", and we append |
| 2213 | * that after "list" to form a single chain. "rlistc" is the |
| 2214 | * number of objects in "rtop" originated from the slab layer |
| 2215 | * that have been successfully constructed (if applicable). |
| 2216 | */ |
| 2217 | ASSERT(c == 0 || rtop != NULL); |
| 2218 | need -= rlistc; |
| 2219 | *list = rtop; |
| 2220 | } else { |
| 2221 | struct skmem_obj_info oi, oim; |
| 2222 | void *buf; |
| 2223 | |
| 2224 | ASSERT(*top == NULL && num == 1 && need == 1); |
| 2225 | |
| 2226 | /* |
| 2227 | * Get a single raw object from the slab layer. |
| 2228 | */ |
| 2229 | if (skmem_slab_alloc(skm, oi: &oi, oim: &oim, skmflag) != 0) { |
| 2230 | goto done; |
| 2231 | } |
| 2232 | |
| 2233 | buf = SKMEM_OBJ_ADDR(&oi); |
| 2234 | ASSERT(buf != NULL); |
| 2235 | |
| 2236 | /* |
| 2237 | * Construct the raw object. Here, "oi" and "oim" refer to |
| 2238 | * the objects coming from the master and slave regions (on |
| 2239 | * mirrored regions), respectively. |
| 2240 | */ |
| 2241 | if (skm->skm_ctor != NULL && |
| 2242 | skm->skm_ctor(&oi, ((SKMEM_OBJ_ADDR(&oim) != NULL) ? |
| 2243 | &oim : NULL), skm->skm_private, skmflag) != 0) { |
| 2244 | os_atomic_inc(&skm->skm_sl_alloc_fail, relaxed); |
| 2245 | skmem_slab_free(skm, buf); |
| 2246 | goto done; |
| 2247 | } |
| 2248 | |
| 2249 | need = 0; |
| 2250 | *list = buf; |
| 2251 | ASSERT(!(skm->skm_mode & SKM_MODE_BATCH) || |
| 2252 | (*list)->mo_next == NULL); |
| 2253 | } |
| 2254 | |
| 2255 | done: |
| 2256 | /* if auditing is enabled, record this transaction */ |
| 2257 | if (__improbable(*top != NULL && |
| 2258 | (skm->skm_mode & SKM_MODE_AUDIT) != 0)) { |
| 2259 | skmem_audit_buf(skm, *top); |
| 2260 | } |
| 2261 | |
| 2262 | return num - need; |
| 2263 | } |
| 2264 | |
| 2265 | /* |
| 2266 | * Free a constructed object to the cache. |
| 2267 | */ |
| 2268 | void |
| 2269 | skmem_cache_free(struct skmem_cache *skm, void *buf) |
| 2270 | { |
| 2271 | if (skm->skm_mode & SKM_MODE_BATCH) { |
| 2272 | ((struct skmem_obj *)buf)->mo_next = NULL; |
| 2273 | } |
| 2274 | skmem_cache_batch_free(skm, (struct skmem_obj *)buf); |
| 2275 | } |
| 2276 | |
| 2277 | void |
| 2278 | skmem_cache_batch_free(struct skmem_cache *skm, struct skmem_obj *list) |
| 2279 | { |
| 2280 | struct skmem_cpu_cache *cp = SKMEM_CPU_CACHE(skm); |
| 2281 | struct skmem_magtype *mtp; |
| 2282 | struct skmem_mag *mg; |
| 2283 | struct skmem_obj *listn; |
| 2284 | #if CONFIG_KERNEL_TAGGING && !defined(KASAN_LIGHT) |
| 2285 | vm_offset_t tagged_address; /* address tagging */ |
| 2286 | struct skmem_region *region; /* region source for this cache */ |
| 2287 | #endif /* CONFIG_KERNEL_TAGGING && !defined(KASAN_LIGHT) */ |
| 2288 | |
| 2289 | /* if auditing is enabled, record this transaction */ |
| 2290 | if (__improbable((skm->skm_mode & SKM_MODE_AUDIT) != 0)) { |
| 2291 | skmem_audit_buf(skm, list); |
| 2292 | } |
| 2293 | |
| 2294 | SKM_CPU_LOCK(cp); |
| 2295 | for (;;) { |
| 2296 | /* |
| 2297 | * If there's an available space in the current CPU's |
| 2298 | * loaded magazine, place it there and we're done. |
| 2299 | */ |
| 2300 | if ((unsigned int)cp->cp_rounds < |
| 2301 | (unsigned int)cp->cp_magsize) { |
| 2302 | /* |
| 2303 | * In the SKM_MODE_BATCH case, reverse the list |
| 2304 | * while we place each object into the magazine; |
| 2305 | * this effectively causes the most recently |
| 2306 | * freed object to be reused during allocation. |
| 2307 | */ |
| 2308 | if (skm->skm_mode & SKM_MODE_BATCH) { |
| 2309 | listn = list->mo_next; |
| 2310 | list->mo_next = (cp->cp_rounds == 0) ? NULL : |
| 2311 | cp->cp_loaded->mg_round[cp->cp_rounds - 1]; |
| 2312 | } else { |
| 2313 | listn = NULL; |
| 2314 | } |
| 2315 | #if CONFIG_KERNEL_TAGGING && !defined(KASAN_LIGHT) |
| 2316 | /* |
| 2317 | * If this region is configured to be tagged, we re-tag |
| 2318 | * the address that's being freed, to protect against |
| 2319 | * use-after-free bugs. This "re-tagged" address will |
| 2320 | * reside in the CPU's loaded magazine, and when cache |
| 2321 | * alloc is called, it is returned to client as is. At |
| 2322 | * this point, we know that this object will be freed to |
| 2323 | * the CPU's loaded magazine and not down to the slab |
| 2324 | * layer, so we won't be double tagging the same address |
| 2325 | * in the magazine layer and slab layer. |
| 2326 | */ |
| 2327 | region = skm->skm_region; |
| 2328 | if (region->skr_mode & SKR_MODE_MEMTAG) { |
| 2329 | tagged_address = vm_memtag_assign_tag( |
| 2330 | (vm_offset_t)list, skm->skm_objsize); |
| 2331 | vm_memtag_set_tag(tagged_address, |
| 2332 | skm->skm_objsize); |
| 2333 | cp->cp_loaded->mg_round[cp->cp_rounds++] = |
| 2334 | (void *)tagged_address; |
| 2335 | } else { |
| 2336 | cp->cp_loaded->mg_round[cp->cp_rounds++] = list; |
| 2337 | } |
| 2338 | #else /* !CONFIG_KERNEL_TAGGING && !defined(KASAN_LIGHT) */ |
| 2339 | cp->cp_loaded->mg_round[cp->cp_rounds++] = list; |
| 2340 | #endif /* CONFIG_KERNEL_TAGGING && !defined(KASAN_LIGHT) */ |
| 2341 | cp->cp_free++; |
| 2342 | |
| 2343 | if ((list = listn) != NULL) { |
| 2344 | continue; |
| 2345 | } |
| 2346 | |
| 2347 | SKM_CPU_UNLOCK(cp); |
| 2348 | return; |
| 2349 | } |
| 2350 | |
| 2351 | /* |
| 2352 | * The loaded magazine is full. If the previously |
| 2353 | * loaded magazine was empty, exchange and try again. |
| 2354 | */ |
| 2355 | if (cp->cp_prounds == 0) { |
| 2356 | skmem_cpu_reload(cp, mg: cp->cp_ploaded, rounds: cp->cp_prounds); |
| 2357 | continue; |
| 2358 | } |
| 2359 | |
| 2360 | /* |
| 2361 | * If the magazine layer is disabled, free to slab. |
| 2362 | * This can happen either because SKM_MODE_NOMAGAZINES |
| 2363 | * is set, or because we are resizing the magazine now. |
| 2364 | */ |
| 2365 | if (cp->cp_magsize == 0) { |
| 2366 | break; |
| 2367 | } |
| 2368 | |
| 2369 | /* |
| 2370 | * Both magazines for the CPU are full; try to get |
| 2371 | * empty magazine(s) from the depot. If we get one, |
| 2372 | * exchange a full magazine with it and place the |
| 2373 | * object in there. |
| 2374 | * |
| 2375 | * TODO: Because the caller currently doesn't indicate |
| 2376 | * the number of objects in the list, we choose the more |
| 2377 | * conservative approach of allocating only 1 empty |
| 2378 | * magazine (to prevent potential thrashing). Once we |
| 2379 | * have the object count, we can replace 1 with similar |
| 2380 | * logic as used in skmem_cache_batch_alloc(). |
| 2381 | */ |
| 2382 | (void) skmem_depot_batch_alloc(skm, ml: &skm->skm_empty, |
| 2383 | count: &skm->skm_depot_empty, list: &mg, num: 1); |
| 2384 | if (mg != NULL) { |
| 2385 | SLIST_HEAD(, skmem_mag) mg_list = |
| 2386 | SLIST_HEAD_INITIALIZER(mg_list); |
| 2387 | |
| 2388 | if (cp->cp_ploaded != NULL) { |
| 2389 | SLIST_INSERT_HEAD(&mg_list, cp->cp_ploaded, |
| 2390 | mg_link); |
| 2391 | } |
| 2392 | if (SLIST_NEXT(mg, mg_link) == NULL) { |
| 2393 | /* |
| 2394 | * Depot allocation returns only 1 magazine; |
| 2395 | * retain current full magazine. |
| 2396 | */ |
| 2397 | skmem_cpu_reload(cp, mg, rounds: 0); |
| 2398 | } else { |
| 2399 | /* |
| 2400 | * We got 2 empty magazines from depot; |
| 2401 | * release the current full magazine back |
| 2402 | * to the depot layer. |
| 2403 | */ |
| 2404 | if (cp->cp_loaded != NULL) { |
| 2405 | SLIST_INSERT_HEAD(&mg_list, |
| 2406 | cp->cp_loaded, mg_link); |
| 2407 | } |
| 2408 | skmem_cpu_batch_reload(cp, mg, rounds: 0); |
| 2409 | } |
| 2410 | skmem_depot_batch_free(skm, ml: &skm->skm_full, |
| 2411 | count: &skm->skm_depot_full, SLIST_FIRST(&mg_list)); |
| 2412 | continue; |
| 2413 | } |
| 2414 | |
| 2415 | /* |
| 2416 | * We can't get any empty magazine from the depot, and |
| 2417 | * so we need to allocate one. If the allocation fails, |
| 2418 | * just fall through, deconstruct and free the object |
| 2419 | * to the slab layer. |
| 2420 | */ |
| 2421 | mtp = skm->skm_magtype; |
| 2422 | SKM_CPU_UNLOCK(cp); |
| 2423 | mg = skmem_cache_alloc(skm: mtp->mt_cache, SKMEM_NOSLEEP); |
| 2424 | SKM_CPU_LOCK(cp); |
| 2425 | |
| 2426 | if (mg != NULL) { |
| 2427 | /* |
| 2428 | * We allocated an empty magazine, but since we |
| 2429 | * dropped the CPU lock above the magazine size |
| 2430 | * may have changed. If that's the case free |
| 2431 | * the magazine and try again. |
| 2432 | */ |
| 2433 | if (cp->cp_magsize != mtp->mt_magsize) { |
| 2434 | SKM_CPU_UNLOCK(cp); |
| 2435 | skmem_cache_free(skm: mtp->mt_cache, buf: mg); |
| 2436 | SKM_CPU_LOCK(cp); |
| 2437 | continue; |
| 2438 | } |
| 2439 | |
| 2440 | /* |
| 2441 | * We have a magazine with the right size; |
| 2442 | * add it to the depot and try again. |
| 2443 | */ |
| 2444 | ASSERT(SLIST_NEXT(mg, mg_link) == NULL); |
| 2445 | skmem_depot_batch_free(skm, ml: &skm->skm_empty, |
| 2446 | count: &skm->skm_depot_empty, mg); |
| 2447 | continue; |
| 2448 | } |
| 2449 | |
| 2450 | /* |
| 2451 | * We can't get an empty magazine, so free to slab. |
| 2452 | */ |
| 2453 | break; |
| 2454 | } |
| 2455 | SKM_CPU_UNLOCK(cp); |
| 2456 | |
| 2457 | /* |
| 2458 | * We weren't able to free the constructed object(s) to the |
| 2459 | * magazine layer, so deconstruct them and free to the slab. |
| 2460 | */ |
| 2461 | if (__probable((skm->skm_mode & SKM_MODE_BATCH) && |
| 2462 | list->mo_next != NULL)) { |
| 2463 | /* whatever is left from original list */ |
| 2464 | struct skmem_obj *top = list; |
| 2465 | |
| 2466 | while (list != NULL && skm->skm_dtor != NULL) { |
| 2467 | listn = list->mo_next; |
| 2468 | list->mo_next = NULL; |
| 2469 | |
| 2470 | /* deconstruct the object */ |
| 2471 | if (skm->skm_dtor != NULL) { |
| 2472 | skm->skm_dtor((void *)list, skm->skm_private); |
| 2473 | } |
| 2474 | |
| 2475 | list->mo_next = listn; |
| 2476 | list = listn; |
| 2477 | } |
| 2478 | |
| 2479 | skmem_slab_batch_free(skm, list: top); |
| 2480 | } else { |
| 2481 | /* deconstruct the object */ |
| 2482 | if (skm->skm_dtor != NULL) { |
| 2483 | skm->skm_dtor((void *)list, skm->skm_private); |
| 2484 | } |
| 2485 | |
| 2486 | skmem_slab_free(skm, buf: (void *)list); |
| 2487 | } |
| 2488 | } |
| 2489 | |
| 2490 | /* |
| 2491 | * Return the maximum number of objects cached at the magazine layer |
| 2492 | * based on the chunk size. This takes into account the starting |
| 2493 | * magazine type as well as the final magazine type used in resizing. |
| 2494 | */ |
| 2495 | uint32_t |
| 2496 | skmem_cache_magazine_max(uint32_t chunksize) |
| 2497 | { |
| 2498 | struct skmem_magtype *mtp; |
| 2499 | uint32_t magsize_max; |
| 2500 | |
| 2501 | VERIFY(ncpu != 0); |
| 2502 | VERIFY(chunksize > 0); |
| 2503 | |
| 2504 | /* find a suitable magazine type for this chunk size */ |
| 2505 | for (mtp = skmem_magtype; chunksize <= mtp->mt_minbuf; mtp++) { |
| 2506 | continue; |
| 2507 | } |
| 2508 | |
| 2509 | /* and find the last magazine type */ |
| 2510 | for (;;) { |
| 2511 | magsize_max = mtp->mt_magsize; |
| 2512 | if (mtp == skmem_cache_magsize_last || |
| 2513 | chunksize >= mtp->mt_maxbuf) { |
| 2514 | break; |
| 2515 | } |
| 2516 | ++mtp; |
| 2517 | VERIFY(mtp <= skmem_cache_magsize_last); |
| 2518 | } |
| 2519 | |
| 2520 | return ncpu * magsize_max * 2; /* two magazines per CPU */ |
| 2521 | } |
| 2522 | |
| 2523 | /* |
| 2524 | * Return true if SKMEM_DEBUG_NOMAGAZINES is not set on skmem_debug. |
| 2525 | */ |
| 2526 | boolean_t |
| 2527 | skmem_allow_magazines(void) |
| 2528 | { |
| 2529 | return !(skmem_debug & SKMEM_DEBUG_NOMAGAZINES); |
| 2530 | } |
| 2531 | |
| 2532 | /* |
| 2533 | * Purge all magazines from a cache and disable its per-CPU magazines layer. |
| 2534 | */ |
| 2535 | static void |
| 2536 | skmem_cache_magazine_purge(struct skmem_cache *skm) |
| 2537 | { |
| 2538 | struct skmem_cpu_cache *cp; |
| 2539 | struct skmem_mag *mg, *pmg; |
| 2540 | int rounds, prounds; |
| 2541 | uint32_t cpuid, mg_cnt = 0, pmg_cnt = 0; |
| 2542 | |
| 2543 | SKM_SLAB_LOCK_ASSERT_NOTHELD(skm); |
| 2544 | |
| 2545 | SK_DF(SK_VERB_MEM_CACHE, "skm 0x%llx" , SK_KVA(skm)); |
| 2546 | |
| 2547 | for (cpuid = 0; cpuid < ncpu; cpuid++) { |
| 2548 | cp = &skm->skm_cpu_cache[cpuid]; |
| 2549 | |
| 2550 | SKM_CPU_LOCK_SPIN(cp); |
| 2551 | mg = cp->cp_loaded; |
| 2552 | pmg = cp->cp_ploaded; |
| 2553 | rounds = cp->cp_rounds; |
| 2554 | prounds = cp->cp_prounds; |
| 2555 | cp->cp_loaded = NULL; |
| 2556 | cp->cp_ploaded = NULL; |
| 2557 | cp->cp_rounds = -1; |
| 2558 | cp->cp_prounds = -1; |
| 2559 | cp->cp_magsize = 0; |
| 2560 | SKM_CPU_UNLOCK(cp); |
| 2561 | |
| 2562 | if (mg != NULL) { |
| 2563 | skmem_magazine_destroy(skm, mg, nrounds: rounds); |
| 2564 | ++mg_cnt; |
| 2565 | } |
| 2566 | if (pmg != NULL) { |
| 2567 | skmem_magazine_destroy(skm, mg: pmg, nrounds: prounds); |
| 2568 | ++pmg_cnt; |
| 2569 | } |
| 2570 | } |
| 2571 | |
| 2572 | if (mg_cnt != 0 || pmg_cnt != 0) { |
| 2573 | os_atomic_inc(&skm->skm_cpu_mag_purge, relaxed); |
| 2574 | } |
| 2575 | |
| 2576 | skmem_depot_ws_zero(skm); |
| 2577 | skmem_depot_ws_reap(skm); |
| 2578 | } |
| 2579 | |
| 2580 | /* |
| 2581 | * Enable magazines on a cache. Must only be called on a cache with |
| 2582 | * its per-CPU magazines layer disabled (e.g. due to purge). |
| 2583 | */ |
| 2584 | static void |
| 2585 | skmem_cache_magazine_enable(struct skmem_cache *skm, uint32_t arg) |
| 2586 | { |
| 2587 | #pragma unused(arg) |
| 2588 | struct skmem_cpu_cache *cp; |
| 2589 | uint32_t cpuid; |
| 2590 | |
| 2591 | if (skm->skm_mode & SKM_MODE_NOMAGAZINES) { |
| 2592 | return; |
| 2593 | } |
| 2594 | |
| 2595 | for (cpuid = 0; cpuid < ncpu; cpuid++) { |
| 2596 | cp = &skm->skm_cpu_cache[cpuid]; |
| 2597 | SKM_CPU_LOCK_SPIN(cp); |
| 2598 | /* the magazines layer must be disabled at this point */ |
| 2599 | ASSERT(cp->cp_loaded == NULL); |
| 2600 | ASSERT(cp->cp_ploaded == NULL); |
| 2601 | ASSERT(cp->cp_rounds == -1); |
| 2602 | ASSERT(cp->cp_prounds == -1); |
| 2603 | ASSERT(cp->cp_magsize == 0); |
| 2604 | cp->cp_magsize = skm->skm_magtype->mt_magsize; |
| 2605 | SKM_CPU_UNLOCK(cp); |
| 2606 | } |
| 2607 | |
| 2608 | SK_DF(SK_VERB_MEM_CACHE, "skm 0x%llx chunksize %u magsize %d" , |
| 2609 | SK_KVA(skm), (uint32_t)skm->skm_chunksize, |
| 2610 | SKMEM_CPU_CACHE(skm)->cp_magsize); |
| 2611 | } |
| 2612 | |
| 2613 | /* |
| 2614 | * Enter the cache resize perimeter. Upon success, claim exclusivity |
| 2615 | * on the perimeter and return 0, else EBUSY. Caller may indicate |
| 2616 | * whether or not they're willing to wait. |
| 2617 | */ |
| 2618 | static int |
| 2619 | skmem_cache_resize_enter(struct skmem_cache *skm, boolean_t can_sleep) |
| 2620 | { |
| 2621 | SKM_RESIZE_LOCK(skm); |
| 2622 | if (skm->skm_rs_owner == current_thread()) { |
| 2623 | ASSERT(skm->skm_rs_busy != 0); |
| 2624 | skm->skm_rs_busy++; |
| 2625 | goto done; |
| 2626 | } |
| 2627 | if (!can_sleep) { |
| 2628 | if (skm->skm_rs_busy != 0) { |
| 2629 | SKM_RESIZE_UNLOCK(skm); |
| 2630 | return EBUSY; |
| 2631 | } |
| 2632 | } else { |
| 2633 | while (skm->skm_rs_busy != 0) { |
| 2634 | skm->skm_rs_want++; |
| 2635 | (void) assert_wait(event: &skm->skm_rs_busy, THREAD_UNINT); |
| 2636 | SKM_RESIZE_UNLOCK(skm); |
| 2637 | (void) thread_block(THREAD_CONTINUE_NULL); |
| 2638 | SK_DF(SK_VERB_MEM_CACHE, "waited for skm \"%s\" " |
| 2639 | "(0x%llx) busy=%u" , skm->skm_name, |
| 2640 | SK_KVA(skm), skm->skm_rs_busy); |
| 2641 | SKM_RESIZE_LOCK(skm); |
| 2642 | } |
| 2643 | } |
| 2644 | SKM_RESIZE_LOCK_ASSERT_HELD(skm); |
| 2645 | ASSERT(skm->skm_rs_busy == 0); |
| 2646 | skm->skm_rs_busy++; |
| 2647 | skm->skm_rs_owner = current_thread(); |
| 2648 | done: |
| 2649 | SKM_RESIZE_UNLOCK(skm); |
| 2650 | return 0; |
| 2651 | } |
| 2652 | |
| 2653 | /* |
| 2654 | * Exit the cache resize perimeter and unblock any waiters. |
| 2655 | */ |
| 2656 | static void |
| 2657 | skmem_cache_resize_exit(struct skmem_cache *skm) |
| 2658 | { |
| 2659 | uint32_t want; |
| 2660 | |
| 2661 | SKM_RESIZE_LOCK(skm); |
| 2662 | ASSERT(skm->skm_rs_busy != 0); |
| 2663 | ASSERT(skm->skm_rs_owner == current_thread()); |
| 2664 | if (--skm->skm_rs_busy == 0) { |
| 2665 | skm->skm_rs_owner = NULL; |
| 2666 | /* |
| 2667 | * We're done; notify anyone that has lost the race. |
| 2668 | */ |
| 2669 | if ((want = skm->skm_rs_want) != 0) { |
| 2670 | skm->skm_rs_want = 0; |
| 2671 | wakeup(chan: (void *)&skm->skm_rs_busy); |
| 2672 | SKM_RESIZE_UNLOCK(skm); |
| 2673 | } else { |
| 2674 | SKM_RESIZE_UNLOCK(skm); |
| 2675 | } |
| 2676 | } else { |
| 2677 | SKM_RESIZE_UNLOCK(skm); |
| 2678 | } |
| 2679 | } |
| 2680 | |
| 2681 | /* |
| 2682 | * Recompute a cache's magazine size. This is an expensive operation |
| 2683 | * and should not be done frequently; larger magazines provide for a |
| 2684 | * higher transfer rate with the depot while smaller magazines reduce |
| 2685 | * the memory consumption. |
| 2686 | */ |
| 2687 | static void |
| 2688 | skmem_cache_magazine_resize(struct skmem_cache *skm) |
| 2689 | { |
| 2690 | struct skmem_magtype *mtp = skm->skm_magtype; |
| 2691 | |
| 2692 | /* insist that we are executing in the update thread call context */ |
| 2693 | ASSERT(sk_is_cache_update_protected()); |
| 2694 | ASSERT(!(skm->skm_mode & SKM_MODE_NOMAGAZINES)); |
| 2695 | /* depot contention only applies to dynamic mode */ |
| 2696 | ASSERT(skm->skm_mode & SKM_MODE_DYNAMIC); |
| 2697 | |
| 2698 | /* |
| 2699 | * Although we're executing in the context of the update thread |
| 2700 | * call, we need to protect the per-CPU states during resizing |
| 2701 | * against other synchronous cache purge/reenable requests that |
| 2702 | * could take place in parallel. |
| 2703 | */ |
| 2704 | if (skm->skm_chunksize < mtp->mt_maxbuf) { |
| 2705 | (void) skmem_cache_resize_enter(skm, TRUE); |
| 2706 | skmem_cache_magazine_purge(skm); |
| 2707 | |
| 2708 | /* |
| 2709 | * Upgrade to the next magazine type with larger size. |
| 2710 | */ |
| 2711 | SKM_DEPOT_LOCK_SPIN(skm); |
| 2712 | skm->skm_cpu_mag_resize++; |
| 2713 | skm->skm_magtype = ++mtp; |
| 2714 | skm->skm_cpu_mag_size = skm->skm_magtype->mt_magsize; |
| 2715 | skm->skm_depot_contention_prev = |
| 2716 | skm->skm_depot_contention + INT_MAX; |
| 2717 | SKM_DEPOT_UNLOCK(skm); |
| 2718 | |
| 2719 | skmem_cache_magazine_enable(skm, arg: 0); |
| 2720 | skmem_cache_resize_exit(skm); |
| 2721 | } |
| 2722 | } |
| 2723 | |
| 2724 | /* |
| 2725 | * Rescale the cache's allocated-address hash table. |
| 2726 | */ |
| 2727 | static void |
| 2728 | skmem_cache_hash_rescale(struct skmem_cache *skm) |
| 2729 | { |
| 2730 | struct skmem_bufctl_bkt *old_table, *new_table; |
| 2731 | size_t old_size, new_size; |
| 2732 | uint32_t i, moved = 0; |
| 2733 | |
| 2734 | /* insist that we are executing in the update thread call context */ |
| 2735 | ASSERT(sk_is_cache_update_protected()); |
| 2736 | |
| 2737 | /* |
| 2738 | * To get small average lookup time (lookup depth near 1.0), the hash |
| 2739 | * table size should be roughly the same (not necessarily equivalent) |
| 2740 | * as the cache size. |
| 2741 | */ |
| 2742 | new_size = MAX(skm->skm_hash_initial, |
| 2743 | (1 << (flsll(3 * skm->skm_sl_bufinuse + 4) - 2))); |
| 2744 | new_size = MIN(skm->skm_hash_limit, new_size); |
| 2745 | old_size = (skm->skm_hash_mask + 1); |
| 2746 | |
| 2747 | if ((old_size >> 1) <= new_size && new_size <= (old_size << 1)) { |
| 2748 | return; |
| 2749 | } |
| 2750 | |
| 2751 | new_table = sk_alloc_type_array(struct skmem_bufctl_bkt, new_size, |
| 2752 | Z_NOWAIT, skmem_tag_bufctl_hash); |
| 2753 | if (__improbable(new_table == NULL)) { |
| 2754 | return; |
| 2755 | } |
| 2756 | |
| 2757 | for (i = 0; i < new_size; i++) { |
| 2758 | SLIST_INIT(&new_table[i].bcb_head); |
| 2759 | } |
| 2760 | |
| 2761 | SKM_SLAB_LOCK(skm); |
| 2762 | |
| 2763 | old_size = (skm->skm_hash_mask + 1); |
| 2764 | old_table = skm->skm_hash_table; |
| 2765 | |
| 2766 | skm->skm_hash_mask = (new_size - 1); |
| 2767 | skm->skm_hash_table = new_table; |
| 2768 | skm->skm_sl_rescale++; |
| 2769 | |
| 2770 | for (i = 0; i < old_size; i++) { |
| 2771 | struct skmem_bufctl_bkt *bcb = &old_table[i]; |
| 2772 | struct skmem_bufctl_bkt *new_bcb; |
| 2773 | struct skmem_bufctl *bc; |
| 2774 | |
| 2775 | while ((bc = SLIST_FIRST(&bcb->bcb_head)) != NULL) { |
| 2776 | SLIST_REMOVE_HEAD(&bcb->bcb_head, bc_link); |
| 2777 | new_bcb = SKMEM_CACHE_HASH(skm, bc->bc_addr); |
| 2778 | /* |
| 2779 | * Ideally we want to insert tail here, but simple |
| 2780 | * list doesn't give us that. The fact that we are |
| 2781 | * essentially reversing the order is not a big deal |
| 2782 | * here vis-a-vis the new table size. |
| 2783 | */ |
| 2784 | SLIST_INSERT_HEAD(&new_bcb->bcb_head, bc, bc_link); |
| 2785 | ++moved; |
| 2786 | } |
| 2787 | ASSERT(SLIST_EMPTY(&bcb->bcb_head)); |
| 2788 | } |
| 2789 | |
| 2790 | SK_DF(SK_VERB_MEM_CACHE, |
| 2791 | "skm 0x%llx old_size %u new_size %u [%u moved]" , SK_KVA(skm), |
| 2792 | (uint32_t)old_size, (uint32_t)new_size, moved); |
| 2793 | |
| 2794 | SKM_SLAB_UNLOCK(skm); |
| 2795 | |
| 2796 | sk_free_type_array(struct skmem_bufctl_bkt, old_size, old_table); |
| 2797 | } |
| 2798 | |
| 2799 | /* |
| 2800 | * Apply a function to operate on all caches. |
| 2801 | */ |
| 2802 | static void |
| 2803 | skmem_cache_applyall(void (*func)(struct skmem_cache *, uint32_t), uint32_t arg) |
| 2804 | { |
| 2805 | struct skmem_cache *skm; |
| 2806 | |
| 2807 | net_update_uptime(); |
| 2808 | |
| 2809 | SKMEM_CACHE_LOCK(); |
| 2810 | TAILQ_FOREACH(skm, &skmem_cache_head, skm_link) { |
| 2811 | func(skm, arg); |
| 2812 | } |
| 2813 | SKMEM_CACHE_UNLOCK(); |
| 2814 | } |
| 2815 | |
| 2816 | /* |
| 2817 | * Reclaim unused memory from a cache. |
| 2818 | */ |
| 2819 | static void |
| 2820 | skmem_cache_reclaim(struct skmem_cache *skm, uint32_t lowmem) |
| 2821 | { |
| 2822 | /* |
| 2823 | * Inform the owner to free memory if possible; the reclaim |
| 2824 | * policy is left to the owner. This is just an advisory. |
| 2825 | */ |
| 2826 | if (skm->skm_reclaim != NULL) { |
| 2827 | skm->skm_reclaim(skm->skm_private); |
| 2828 | } |
| 2829 | |
| 2830 | if (lowmem) { |
| 2831 | /* |
| 2832 | * If another thread is in the process of purging or |
| 2833 | * resizing, bail out and let the currently-ongoing |
| 2834 | * purging take its natural course. |
| 2835 | */ |
| 2836 | if (skmem_cache_resize_enter(skm, FALSE) == 0) { |
| 2837 | skmem_cache_magazine_purge(skm); |
| 2838 | skmem_cache_magazine_enable(skm, arg: 0); |
| 2839 | skmem_cache_resize_exit(skm); |
| 2840 | } |
| 2841 | } else { |
| 2842 | skmem_depot_ws_reap(skm); |
| 2843 | } |
| 2844 | } |
| 2845 | |
| 2846 | /* |
| 2847 | * Thread call callback for reap. |
| 2848 | */ |
| 2849 | static void |
| 2850 | skmem_cache_reap_func(thread_call_param_t dummy, thread_call_param_t arg) |
| 2851 | { |
| 2852 | #pragma unused(dummy) |
| 2853 | void (*func)(void) = arg; |
| 2854 | |
| 2855 | ASSERT(func == skmem_cache_reap_start || func == skmem_cache_reap_done); |
| 2856 | func(); |
| 2857 | } |
| 2858 | |
| 2859 | /* |
| 2860 | * Start reaping all caches; this is serialized via thread call. |
| 2861 | */ |
| 2862 | static void |
| 2863 | skmem_cache_reap_start(void) |
| 2864 | { |
| 2865 | SK_DF(SK_VERB_MEM_CACHE, "now running" ); |
| 2866 | skmem_cache_applyall(func: skmem_cache_reclaim, arg: skmem_lowmem_check()); |
| 2867 | skmem_dispatch(skmem_cache_reap_tc, func: skmem_cache_reap_done, |
| 2868 | (skmem_cache_update_interval * NSEC_PER_SEC)); |
| 2869 | } |
| 2870 | |
| 2871 | /* |
| 2872 | * Stop reaping; this would allow another reap request to occur. |
| 2873 | */ |
| 2874 | static void |
| 2875 | skmem_cache_reap_done(void) |
| 2876 | { |
| 2877 | volatile uint32_t *flag = &skmem_cache_reaping; |
| 2878 | |
| 2879 | *flag = 0; |
| 2880 | os_atomic_thread_fence(seq_cst); |
| 2881 | } |
| 2882 | |
| 2883 | /* |
| 2884 | * Immediately reap all unused memory of a cache. If purging, |
| 2885 | * also purge the cached objects at the CPU layer. |
| 2886 | */ |
| 2887 | void |
| 2888 | skmem_cache_reap_now(struct skmem_cache *skm, boolean_t purge) |
| 2889 | { |
| 2890 | /* if SKM_MODE_RECLIAM flag is set for this cache, we purge */ |
| 2891 | if (purge || (skm->skm_mode & SKM_MODE_RECLAIM)) { |
| 2892 | /* |
| 2893 | * If another thread is in the process of purging or |
| 2894 | * resizing, bail out and let the currently-ongoing |
| 2895 | * purging take its natural course. |
| 2896 | */ |
| 2897 | if (skmem_cache_resize_enter(skm, FALSE) == 0) { |
| 2898 | skmem_cache_magazine_purge(skm); |
| 2899 | skmem_cache_magazine_enable(skm, arg: 0); |
| 2900 | skmem_cache_resize_exit(skm); |
| 2901 | } |
| 2902 | } else { |
| 2903 | skmem_depot_ws_zero(skm); |
| 2904 | skmem_depot_ws_reap(skm); |
| 2905 | |
| 2906 | /* clean up cp_ploaded magazines from each CPU */ |
| 2907 | SKM_SLAB_LOCK_ASSERT_NOTHELD(skm); |
| 2908 | |
| 2909 | struct skmem_cpu_cache *cp; |
| 2910 | struct skmem_mag *pmg; |
| 2911 | int prounds; |
| 2912 | uint32_t cpuid; |
| 2913 | |
| 2914 | for (cpuid = 0; cpuid < ncpu; cpuid++) { |
| 2915 | cp = &skm->skm_cpu_cache[cpuid]; |
| 2916 | |
| 2917 | SKM_CPU_LOCK_SPIN(cp); |
| 2918 | pmg = cp->cp_ploaded; |
| 2919 | prounds = cp->cp_prounds; |
| 2920 | |
| 2921 | cp->cp_ploaded = NULL; |
| 2922 | cp->cp_prounds = -1; |
| 2923 | SKM_CPU_UNLOCK(cp); |
| 2924 | |
| 2925 | if (pmg != NULL) { |
| 2926 | skmem_magazine_destroy(skm, mg: pmg, nrounds: prounds); |
| 2927 | } |
| 2928 | } |
| 2929 | } |
| 2930 | } |
| 2931 | |
| 2932 | /* |
| 2933 | * Request a global reap operation to be dispatched. |
| 2934 | */ |
| 2935 | void |
| 2936 | skmem_cache_reap(void) |
| 2937 | { |
| 2938 | /* only one reaping episode is allowed at a time */ |
| 2939 | if (skmem_lock_owner == current_thread() || |
| 2940 | !os_atomic_cmpxchg(&skmem_cache_reaping, 0, 1, acq_rel)) { |
| 2941 | return; |
| 2942 | } |
| 2943 | |
| 2944 | skmem_dispatch(skmem_cache_reap_tc, func: skmem_cache_reap_start, 0); |
| 2945 | } |
| 2946 | |
| 2947 | /* |
| 2948 | * Reap internal caches. |
| 2949 | */ |
| 2950 | void |
| 2951 | skmem_reap_caches(boolean_t purge) |
| 2952 | { |
| 2953 | skmem_cache_reap_now(skm: skmem_slab_cache, purge); |
| 2954 | skmem_cache_reap_now(skm: skmem_bufctl_cache, purge); |
| 2955 | |
| 2956 | /* packet buffer pool objects */ |
| 2957 | pp_reap_caches(purge); |
| 2958 | |
| 2959 | /* also handle the region cache(s) */ |
| 2960 | skmem_region_reap_caches(purge); |
| 2961 | } |
| 2962 | |
| 2963 | /* |
| 2964 | * Thread call callback for update. |
| 2965 | */ |
| 2966 | static void |
| 2967 | skmem_cache_update_func(thread_call_param_t dummy, thread_call_param_t arg) |
| 2968 | { |
| 2969 | #pragma unused(dummy, arg) |
| 2970 | sk_protect_t protect; |
| 2971 | |
| 2972 | protect = sk_cache_update_protect(); |
| 2973 | skmem_cache_applyall(func: skmem_cache_update, arg: 0); |
| 2974 | sk_cache_update_unprotect(protect); |
| 2975 | |
| 2976 | skmem_dispatch(skmem_cache_update_tc, NULL, |
| 2977 | (skmem_cache_update_interval * NSEC_PER_SEC)); |
| 2978 | } |
| 2979 | |
| 2980 | /* |
| 2981 | * Given a buffer control, record the current transaction. |
| 2982 | */ |
| 2983 | __attribute__((noinline, cold, not_tail_called)) |
| 2984 | static inline void |
| 2985 | skmem_audit_bufctl(struct skmem_bufctl *bc) |
| 2986 | { |
| 2987 | struct skmem_bufctl_audit *bca = (struct skmem_bufctl_audit *)bc; |
| 2988 | struct timeval tv; |
| 2989 | |
| 2990 | microuptime(tv: &tv); |
| 2991 | bca->bc_thread = current_thread(); |
| 2992 | bca->bc_timestamp = (uint32_t)((tv.tv_sec * 1000) + (tv.tv_usec / 1000)); |
| 2993 | bca->bc_depth = OSBacktrace(bt: bca->bc_stack, SKMEM_STACK_DEPTH); |
| 2994 | } |
| 2995 | |
| 2996 | /* |
| 2997 | * Given an object, find its buffer control and record the transaction. |
| 2998 | */ |
| 2999 | __attribute__((noinline, cold, not_tail_called)) |
| 3000 | static inline void |
| 3001 | skmem_audit_buf(struct skmem_cache *skm, struct skmem_obj *list) |
| 3002 | { |
| 3003 | struct skmem_bufctl_bkt *bcb; |
| 3004 | struct skmem_bufctl *bc; |
| 3005 | |
| 3006 | ASSERT(!(skm->skm_mode & SKM_MODE_PSEUDO)); |
| 3007 | |
| 3008 | SKM_SLAB_LOCK(skm); |
| 3009 | while (list != NULL) { |
| 3010 | void *buf = list; |
| 3011 | |
| 3012 | bcb = SKMEM_CACHE_HASH(skm, buf); |
| 3013 | SLIST_FOREACH(bc, &bcb->bcb_head, bc_link) { |
| 3014 | if (bc->bc_addr == buf) { |
| 3015 | break; |
| 3016 | } |
| 3017 | } |
| 3018 | |
| 3019 | if (__improbable(bc == NULL)) { |
| 3020 | panic("%s: %s failed to get bufctl for %p" , |
| 3021 | __func__, skm->skm_name, buf); |
| 3022 | /* NOTREACHED */ |
| 3023 | __builtin_unreachable(); |
| 3024 | } |
| 3025 | |
| 3026 | skmem_audit_bufctl(bc); |
| 3027 | |
| 3028 | if (!(skm->skm_mode & SKM_MODE_BATCH)) { |
| 3029 | break; |
| 3030 | } |
| 3031 | |
| 3032 | list = list->mo_next; |
| 3033 | } |
| 3034 | SKM_SLAB_UNLOCK(skm); |
| 3035 | } |
| 3036 | |
| 3037 | static size_t |
| 3038 | skmem_cache_mib_get_stats(struct skmem_cache *skm, void *out, size_t len) |
| 3039 | { |
| 3040 | size_t actual_space = sizeof(struct sk_stats_cache); |
| 3041 | struct sk_stats_cache *sca = out; |
| 3042 | int contention; |
| 3043 | |
| 3044 | if (out == NULL || len < actual_space) { |
| 3045 | goto done; |
| 3046 | } |
| 3047 | |
| 3048 | bzero(s: sca, n: sizeof(*sca)); |
| 3049 | (void) snprintf(sca->sca_name, count: sizeof(sca->sca_name), "%s" , |
| 3050 | skm->skm_name); |
| 3051 | uuid_copy(dst: sca->sca_uuid, src: skm->skm_uuid); |
| 3052 | uuid_copy(dst: sca->sca_ruuid, src: skm->skm_region->skr_uuid); |
| 3053 | sca->sca_mode = skm->skm_mode; |
| 3054 | sca->sca_bufsize = (uint64_t)skm->skm_bufsize; |
| 3055 | sca->sca_objsize = (uint64_t)skm->skm_objsize; |
| 3056 | sca->sca_chunksize = (uint64_t)skm->skm_chunksize; |
| 3057 | sca->sca_slabsize = (uint64_t)skm->skm_slabsize; |
| 3058 | sca->sca_bufalign = (uint64_t)skm->skm_bufalign; |
| 3059 | sca->sca_objalign = (uint64_t)skm->skm_objalign; |
| 3060 | |
| 3061 | sca->sca_cpu_mag_size = skm->skm_cpu_mag_size; |
| 3062 | sca->sca_cpu_mag_resize = skm->skm_cpu_mag_resize; |
| 3063 | sca->sca_cpu_mag_purge = skm->skm_cpu_mag_purge; |
| 3064 | sca->sca_cpu_mag_reap = skm->skm_cpu_mag_reap; |
| 3065 | sca->sca_depot_full = skm->skm_depot_full; |
| 3066 | sca->sca_depot_empty = skm->skm_depot_empty; |
| 3067 | sca->sca_depot_ws_zero = skm->skm_depot_ws_zero; |
| 3068 | /* in case of a race this might be a negative value, turn it into 0 */ |
| 3069 | if ((contention = (int)(skm->skm_depot_contention - |
| 3070 | skm->skm_depot_contention_prev)) < 0) { |
| 3071 | contention = 0; |
| 3072 | } |
| 3073 | sca->sca_depot_contention_factor = contention; |
| 3074 | |
| 3075 | sca->sca_cpu_rounds = 0; |
| 3076 | sca->sca_cpu_prounds = 0; |
| 3077 | for (int cpuid = 0; cpuid < ncpu; cpuid++) { |
| 3078 | struct skmem_cpu_cache *ccp = &skm->skm_cpu_cache[cpuid]; |
| 3079 | |
| 3080 | SKM_CPU_LOCK(ccp); |
| 3081 | if (ccp->cp_rounds > -1) { |
| 3082 | sca->sca_cpu_rounds += ccp->cp_rounds; |
| 3083 | } |
| 3084 | if (ccp->cp_prounds > -1) { |
| 3085 | sca->sca_cpu_prounds += ccp->cp_prounds; |
| 3086 | } |
| 3087 | SKM_CPU_UNLOCK(ccp); |
| 3088 | } |
| 3089 | |
| 3090 | sca->sca_sl_create = skm->skm_sl_create; |
| 3091 | sca->sca_sl_destroy = skm->skm_sl_destroy; |
| 3092 | sca->sca_sl_alloc = skm->skm_sl_alloc; |
| 3093 | sca->sca_sl_free = skm->skm_sl_free; |
| 3094 | sca->sca_sl_alloc_fail = skm->skm_sl_alloc_fail; |
| 3095 | sca->sca_sl_partial = skm->skm_sl_partial; |
| 3096 | sca->sca_sl_empty = skm->skm_sl_empty; |
| 3097 | sca->sca_sl_bufinuse = skm->skm_sl_bufinuse; |
| 3098 | sca->sca_sl_rescale = skm->skm_sl_rescale; |
| 3099 | sca->sca_sl_hash_size = (skm->skm_hash_mask + 1); |
| 3100 | |
| 3101 | done: |
| 3102 | return actual_space; |
| 3103 | } |
| 3104 | |
| 3105 | static int |
| 3106 | skmem_cache_mib_get_sysctl SYSCTL_HANDLER_ARGS |
| 3107 | { |
| 3108 | #pragma unused(arg1, arg2, oidp) |
| 3109 | struct skmem_cache *skm; |
| 3110 | size_t actual_space; |
| 3111 | size_t buffer_space; |
| 3112 | size_t allocated_space; |
| 3113 | caddr_t buffer = NULL; |
| 3114 | caddr_t scan; |
| 3115 | int error = 0; |
| 3116 | |
| 3117 | if (!kauth_cred_issuser(cred: kauth_cred_get())) { |
| 3118 | return EPERM; |
| 3119 | } |
| 3120 | |
| 3121 | net_update_uptime(); |
| 3122 | buffer_space = req->oldlen; |
| 3123 | if (req->oldptr != USER_ADDR_NULL && buffer_space != 0) { |
| 3124 | if (buffer_space > SK_SYSCTL_ALLOC_MAX) { |
| 3125 | buffer_space = SK_SYSCTL_ALLOC_MAX; |
| 3126 | } |
| 3127 | allocated_space = buffer_space; |
| 3128 | buffer = sk_alloc_data(allocated_space, Z_WAITOK, skmem_tag_cache_mib); |
| 3129 | if (__improbable(buffer == NULL)) { |
| 3130 | return ENOBUFS; |
| 3131 | } |
| 3132 | } else if (req->oldptr == USER_ADDR_NULL) { |
| 3133 | buffer_space = 0; |
| 3134 | } |
| 3135 | actual_space = 0; |
| 3136 | scan = buffer; |
| 3137 | |
| 3138 | SKMEM_CACHE_LOCK(); |
| 3139 | TAILQ_FOREACH(skm, &skmem_cache_head, skm_link) { |
| 3140 | size_t size = skmem_cache_mib_get_stats(skm, out: scan, len: buffer_space); |
| 3141 | if (scan != NULL) { |
| 3142 | if (buffer_space < size) { |
| 3143 | /* supplied buffer too small, stop copying */ |
| 3144 | error = ENOMEM; |
| 3145 | break; |
| 3146 | } |
| 3147 | scan += size; |
| 3148 | buffer_space -= size; |
| 3149 | } |
| 3150 | actual_space += size; |
| 3151 | } |
| 3152 | SKMEM_CACHE_UNLOCK(); |
| 3153 | |
| 3154 | if (actual_space != 0) { |
| 3155 | int out_error = SYSCTL_OUT(req, buffer, actual_space); |
| 3156 | if (out_error != 0) { |
| 3157 | error = out_error; |
| 3158 | } |
| 3159 | } |
| 3160 | if (buffer != NULL) { |
| 3161 | sk_free_data(buffer, allocated_space); |
| 3162 | } |
| 3163 | |
| 3164 | return error; |
| 3165 | } |
| 3166 | |