1 | /* |
2 | * Copyright (c) 2016-2021 Apple Inc. All rights reserved. |
3 | * |
4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ |
5 | * |
6 | * This file contains Original Code and/or Modifications of Original Code |
7 | * as defined in and that are subject to the Apple Public Source License |
8 | * Version 2.0 (the 'License'). You may not use this file except in |
9 | * compliance with the License. The rights granted to you under the License |
10 | * may not be used to create, or enable the creation or redistribution of, |
11 | * unlawful or unlicensed copies of an Apple operating system, or to |
12 | * circumvent, violate, or enable the circumvention or violation of, any |
13 | * terms of an Apple operating system software license agreement. |
14 | * |
15 | * Please obtain a copy of the License at |
16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. |
17 | * |
18 | * The Original Code and all software distributed under the License are |
19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER |
20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, |
22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
23 | * Please see the License for the specific language governing rights and |
24 | * limitations under the License. |
25 | * |
26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ |
27 | */ |
28 | |
29 | #include <skywalk/os_skywalk_private.h> |
30 | #define _FN_KPRINTF |
31 | #include <pexpert/pexpert.h> /* for PE_parse_boot_argn */ |
32 | #include <libkern/OSDebug.h> /* for OSBacktrace */ |
33 | #include <kern/sched_prim.h> /* for assert_wait */ |
34 | #include <vm/vm_memtag.h> |
35 | |
36 | /* |
37 | * Memory allocator with per-CPU caching (magazines), derived from the kmem |
38 | * magazine concept and implementation as described in the following paper: |
39 | * http://www.usenix.org/events/usenix01/full_papers/bonwick/bonwick.pdf |
40 | * |
41 | * That implementation is Copyright 2006 Sun Microsystems, Inc. All rights |
42 | * reserved. Use is subject to license terms. |
43 | * |
44 | * This derivative differs from the original kmem slab allocator, in that: |
45 | * |
46 | * a) There is always a discrete bufctl per object, even for small sizes. |
47 | * This increases the overhead, but is necessary as Skywalk objects |
48 | * coming from the slab may be shared (RO or RW) with userland; therefore |
49 | * embedding the KVA pointer linkage in freed objects is a non-starter. |
50 | * |
51 | * b) Writing patterns to the slab at slab creation or destruction time |
52 | * (when debugging is enabled) is not implemented, as the object may |
53 | * be shared (RW) with userland and thus we cannot panic upon pattern |
54 | * mismatch episodes. This can be relaxed so that we conditionally |
55 | * verify the pattern for kernel-only memory. |
56 | * |
57 | * This derivative also differs from Darwin's mcache allocator (which itself |
58 | * is a derivative of the original kmem slab allocator), in that: |
59 | * |
60 | * 1) The slab layer is internal to skmem_cache, unlike mcache's external |
61 | * slab layer required to support mbufs. skmem_cache also supports |
62 | * constructing and deconstructing objects, while mcache does not. |
63 | * This brings skmem_cache's model closer to that of the original |
64 | * kmem slab allocator. |
65 | * |
66 | * 2) mcache allows for batch allocation and free by way of chaining the |
67 | * objects together using a linked list. This requires using a part |
68 | * of the object to act as the linkage, which is against Skywalk's |
69 | * requirements of not exposing any KVA pointer to userland. Although |
70 | * this is supported by skmem_cache, chaining is only possible if the |
71 | * region is not mapped to userland. That implies that kernel-only |
72 | * objects can be chained provided the cache is created with batching |
73 | * mode enabled, and that the object is large enough to contain the |
74 | * skmem_obj structure. |
75 | * |
76 | * In other words, skmem_cache is a hybrid of a hybrid custom allocator that |
77 | * implements features that are required by Skywalk. In addition to being |
78 | * aware of userland access on the buffers, in also supports mirrored backend |
79 | * memory regions. This allows a cache to manage two independent memory |
80 | * regions, such that allocating/freeing an object from/to one results in |
81 | * allocating/freeing a shadow object in another, thus guaranteeing that both |
82 | * objects share the same lifetime. |
83 | */ |
84 | |
85 | static uint32_t ncpu; /* total # of initialized CPUs */ |
86 | |
87 | static LCK_MTX_DECLARE_ATTR(skmem_cache_lock, &skmem_lock_grp, &skmem_lock_attr); |
88 | static struct thread *skmem_lock_owner = THREAD_NULL; |
89 | |
90 | static LCK_GRP_DECLARE(skmem_sl_lock_grp, "skmem_slab" ); |
91 | static LCK_GRP_DECLARE(skmem_dp_lock_grp, "skmem_depot" ); |
92 | static LCK_GRP_DECLARE(skmem_cpu_lock_grp, "skmem_cpu_cache" ); |
93 | |
94 | #define SKMEM_CACHE_LOCK() do { \ |
95 | lck_mtx_lock(&skmem_cache_lock); \ |
96 | skmem_lock_owner = current_thread(); \ |
97 | } while (0) |
98 | #define SKMEM_CACHE_UNLOCK() do { \ |
99 | skmem_lock_owner = THREAD_NULL; \ |
100 | lck_mtx_unlock(&skmem_cache_lock); \ |
101 | } while (0) |
102 | #define SKMEM_CACHE_LOCK_ASSERT_HELD() \ |
103 | LCK_MTX_ASSERT(&skmem_cache_lock, LCK_MTX_ASSERT_OWNED) |
104 | #define SKMEM_CACHE_LOCK_ASSERT_NOTHELD() \ |
105 | LCK_MTX_ASSERT(&skmem_cache_lock, LCK_MTX_ASSERT_NOTOWNED) |
106 | |
107 | #define SKM_SLAB_LOCK(_skm) \ |
108 | lck_mtx_lock(&(_skm)->skm_sl_lock) |
109 | #define SKM_SLAB_LOCK_ASSERT_HELD(_skm) \ |
110 | LCK_MTX_ASSERT(&(_skm)->skm_sl_lock, LCK_MTX_ASSERT_OWNED) |
111 | #define SKM_SLAB_LOCK_ASSERT_NOTHELD(_skm) \ |
112 | LCK_MTX_ASSERT(&(_skm)->skm_sl_lock, LCK_MTX_ASSERT_NOTOWNED) |
113 | #define SKM_SLAB_UNLOCK(_skm) \ |
114 | lck_mtx_unlock(&(_skm)->skm_sl_lock) |
115 | |
116 | #define SKM_DEPOT_LOCK(_skm) \ |
117 | lck_mtx_lock(&(_skm)->skm_dp_lock) |
118 | #define SKM_DEPOT_LOCK_SPIN(_skm) \ |
119 | lck_mtx_lock_spin(&(_skm)->skm_dp_lock) |
120 | #define SKM_DEPOT_CONVERT_LOCK(_skm) \ |
121 | lck_mtx_convert_spin(&(_skm)->skm_dp_lock) |
122 | #define SKM_DEPOT_LOCK_TRY(_skm) \ |
123 | lck_mtx_try_lock(&(_skm)->skm_dp_lock) |
124 | #define SKM_DEPOT_LOCK_ASSERT_HELD(_skm) \ |
125 | LCK_MTX_ASSERT(&(_skm)->skm_dp_lock, LCK_MTX_ASSERT_OWNED) |
126 | #define SKM_DEPOT_LOCK_ASSERT_NOTHELD(_skm) \ |
127 | LCK_MTX_ASSERT(&(_skm)->skm_dp_lock, LCK_MTX_ASSERT_NOTOWNED) |
128 | #define SKM_DEPOT_UNLOCK(_skm) \ |
129 | lck_mtx_unlock(&(_skm)->skm_dp_lock) |
130 | |
131 | #define SKM_RESIZE_LOCK(_skm) \ |
132 | lck_mtx_lock(&(_skm)->skm_rs_lock) |
133 | #define SKM_RESIZE_LOCK_ASSERT_HELD(_skm) \ |
134 | LCK_MTX_ASSERT(&(_skm)->skm_rs_lock, LCK_MTX_ASSERT_OWNED) |
135 | #define SKM_RESIZE_LOCK_ASSERT_NOTHELD(_skm) \ |
136 | LCK_MTX_ASSERT(&(_skm)->skm_rs_lock, LCK_MTX_ASSERT_NOTOWNED) |
137 | #define SKM_RESIZE_UNLOCK(_skm) \ |
138 | lck_mtx_unlock(&(_skm)->skm_rs_lock) |
139 | |
140 | #define SKM_CPU_LOCK(_cp) \ |
141 | lck_mtx_lock(&(_cp)->cp_lock) |
142 | #define SKM_CPU_LOCK_SPIN(_cp) \ |
143 | lck_mtx_lock_spin(&(_cp)->cp_lock) |
144 | #define SKM_CPU_CONVERT_LOCK(_cp) \ |
145 | lck_mtx_convert_spin(&(_cp)->cp_lock) |
146 | #define SKM_CPU_LOCK_ASSERT_HELD(_cp) \ |
147 | LCK_MTX_ASSERT(&(_cp)->cp_lock, LCK_MTX_ASSERT_OWNED) |
148 | #define SKM_CPU_LOCK_ASSERT_NOTHELD(_cp) \ |
149 | LCK_MTX_ASSERT(&(_cp)->cp_lock, LCK_MTX_ASSERT_NOTOWNED) |
150 | #define SKM_CPU_UNLOCK(_cp) \ |
151 | lck_mtx_unlock(&(_cp)->cp_lock) |
152 | |
153 | #define SKM_ZONE_MAX 256 |
154 | |
155 | static struct zone *skm_zone; /* zone for skmem_cache */ |
156 | |
157 | static struct skmem_cache *skmem_slab_cache; /* cache for skmem_slab */ |
158 | static struct skmem_cache *skmem_bufctl_cache; /* cache for skmem_bufctl */ |
159 | static unsigned int bc_size; /* size of bufctl */ |
160 | |
161 | /* |
162 | * Magazine types (one per row.) |
163 | * |
164 | * The first column defines the number of objects that the magazine can hold. |
165 | * Using that number, we derive the effective number: the aggregate count of |
166 | * object pointers, plus 2 pointers (skmem_mag linkage + magazine type). |
167 | * This would result in an object size that is aligned on the CPU cache |
168 | * size boundary; the exception to this is the KASAN mode where the size |
169 | * would be larger due to the redzone regions. |
170 | * |
171 | * The second column defines the alignment of the magazine. Because each |
172 | * magazine is used at the CPU-layer cache, we need to ensure there is no |
173 | * false sharing across the CPUs, and align the magazines to the maximum |
174 | * cache alignment size, for simplicity. The value of 0 may be used to |
175 | * indicate natural pointer size alignment. |
176 | * |
177 | * The third column defines the starting magazine type for a given cache, |
178 | * determined at the cache's creation time based on its chunk size. |
179 | * |
180 | * The fourth column defines the magazine type limit for a given cache. |
181 | * Magazine resizing will only occur if the chunk size is less than this. |
182 | */ |
183 | static struct skmem_magtype skmem_magtype[] = { |
184 | #if defined(__LP64__) |
185 | { .mt_magsize = 14, .mt_align = 0, .mt_minbuf = 128, .mt_maxbuf = 512, |
186 | .mt_cache = NULL, .mt_cname = "" }, |
187 | { .mt_magsize = 30, .mt_align = 0, .mt_minbuf = 96, .mt_maxbuf = 256, |
188 | .mt_cache = NULL, .mt_cname = "" }, |
189 | { .mt_magsize = 46, .mt_align = 0, .mt_minbuf = 64, .mt_maxbuf = 128, |
190 | .mt_cache = NULL, .mt_cname = "" }, |
191 | { .mt_magsize = 62, .mt_align = 0, .mt_minbuf = 32, .mt_maxbuf = 64, |
192 | .mt_cache = NULL, .mt_cname = "" }, |
193 | { .mt_magsize = 94, .mt_align = 0, .mt_minbuf = 16, .mt_maxbuf = 32, |
194 | .mt_cache = NULL, .mt_cname = "" }, |
195 | { .mt_magsize = 126, .mt_align = 0, .mt_minbuf = 8, .mt_maxbuf = 16, |
196 | .mt_cache = NULL, .mt_cname = "" }, |
197 | { .mt_magsize = 142, .mt_align = 0, .mt_minbuf = 0, .mt_maxbuf = 8, |
198 | .mt_cache = NULL, .mt_cname = "" }, |
199 | { .mt_magsize = 158, .mt_align = 0, .mt_minbuf = 0, .mt_maxbuf = 0, |
200 | .mt_cache = NULL, .mt_cname = "" }, |
201 | #else /* !__LP64__ */ |
202 | { .mt_magsize = 14, .mt_align = 0, .mt_minbuf = 0, .mt_maxbuf = 0, |
203 | .mt_cache = NULL, .mt_cname = "" }, |
204 | #endif /* !__LP64__ */ |
205 | }; |
206 | |
207 | /* |
208 | * Hash table bounds. Start with the initial value, and rescale up to |
209 | * the specified limit. Ideally we don't need a limit, but in practice |
210 | * this helps guard against runaways. These values should be revisited |
211 | * in future and be adjusted as needed. |
212 | */ |
213 | #define SKMEM_CACHE_HASH_INITIAL 64 /* initial hash table size */ |
214 | #define SKMEM_CACHE_HASH_LIMIT 8192 /* hash table size limit */ |
215 | |
216 | #define SKMEM_CACHE_HASH_INDEX(_a, _s, _m) (((_a) >> (_s)) & (_m)) |
217 | #define SKMEM_CACHE_HASH(_skm, _buf) \ |
218 | (&(_skm)->skm_hash_table[SKMEM_CACHE_HASH_INDEX((uintptr_t)_buf, \ |
219 | (_skm)->skm_hash_shift, (_skm)->skm_hash_mask)]) |
220 | |
221 | /* |
222 | * The last magazine type. |
223 | */ |
224 | static struct skmem_magtype *skmem_cache_magsize_last; |
225 | |
226 | static TAILQ_HEAD(, skmem_cache) skmem_cache_head; |
227 | static boolean_t skmem_cache_ready; |
228 | |
229 | static int skmem_slab_alloc_locked(struct skmem_cache *, |
230 | struct skmem_obj_info *, struct skmem_obj_info *, uint32_t); |
231 | static void skmem_slab_free_locked(struct skmem_cache *, void *); |
232 | static int skmem_slab_alloc_pseudo_locked(struct skmem_cache *, |
233 | struct skmem_obj_info *, struct skmem_obj_info *, uint32_t); |
234 | static void skmem_slab_free_pseudo_locked(struct skmem_cache *, void *); |
235 | static struct skmem_slab *skmem_slab_create(struct skmem_cache *, uint32_t); |
236 | static void skmem_slab_destroy(struct skmem_cache *, struct skmem_slab *); |
237 | static int skmem_magazine_ctor(struct skmem_obj_info *, |
238 | struct skmem_obj_info *, void *, uint32_t); |
239 | static void skmem_magazine_destroy(struct skmem_cache *, struct skmem_mag *, |
240 | int); |
241 | static uint32_t skmem_depot_batch_alloc(struct skmem_cache *, |
242 | struct skmem_maglist *, uint32_t *, struct skmem_mag **, uint32_t); |
243 | static void skmem_depot_batch_free(struct skmem_cache *, struct skmem_maglist *, |
244 | uint32_t *, struct skmem_mag *); |
245 | static void skmem_depot_ws_update(struct skmem_cache *); |
246 | static void skmem_depot_ws_zero(struct skmem_cache *); |
247 | static void skmem_depot_ws_reap(struct skmem_cache *); |
248 | static void skmem_cache_magazine_purge(struct skmem_cache *); |
249 | static void skmem_cache_magazine_enable(struct skmem_cache *, uint32_t); |
250 | static void skmem_cache_magazine_resize(struct skmem_cache *); |
251 | static void skmem_cache_hash_rescale(struct skmem_cache *); |
252 | static void skmem_cpu_reload(struct skmem_cpu_cache *, struct skmem_mag *, int); |
253 | static void skmem_cpu_batch_reload(struct skmem_cpu_cache *, |
254 | struct skmem_mag *, int); |
255 | static void skmem_cache_applyall(void (*)(struct skmem_cache *, uint32_t), |
256 | uint32_t); |
257 | static void skmem_cache_reclaim(struct skmem_cache *, uint32_t); |
258 | static void skmem_cache_reap_start(void); |
259 | static void skmem_cache_reap_done(void); |
260 | static void skmem_cache_reap_func(thread_call_param_t, thread_call_param_t); |
261 | static void skmem_cache_update_func(thread_call_param_t, thread_call_param_t); |
262 | static int skmem_cache_resize_enter(struct skmem_cache *, boolean_t); |
263 | static void skmem_cache_resize_exit(struct skmem_cache *); |
264 | static void skmem_audit_bufctl(struct skmem_bufctl *); |
265 | static void skmem_audit_buf(struct skmem_cache *, struct skmem_obj *); |
266 | static int skmem_cache_mib_get_sysctl SYSCTL_HANDLER_ARGS; |
267 | |
268 | SYSCTL_PROC(_kern_skywalk_stats, OID_AUTO, cache, |
269 | CTLTYPE_STRUCT | CTLFLAG_RD | CTLFLAG_LOCKED, |
270 | 0, 0, skmem_cache_mib_get_sysctl, "S,sk_stats_cache" , |
271 | "Skywalk cache statistics" ); |
272 | |
273 | static volatile uint32_t skmem_cache_reaping; |
274 | static thread_call_t skmem_cache_reap_tc; |
275 | static thread_call_t skmem_cache_update_tc; |
276 | |
277 | extern kern_return_t thread_terminate(thread_t); |
278 | extern unsigned int ml_wait_max_cpus(void); |
279 | |
280 | #define SKMEM_DEBUG_NOMAGAZINES 0x1 /* disable magazines layer */ |
281 | #define SKMEM_DEBUG_AUDIT 0x2 /* audit transactions */ |
282 | #define SKMEM_DEBUG_MASK (SKMEM_DEBUG_NOMAGAZINES|SKMEM_DEBUG_AUDIT) |
283 | |
284 | #if DEBUG |
285 | static uint32_t skmem_debug = SKMEM_DEBUG_AUDIT; |
286 | #else /* !DEBUG */ |
287 | static uint32_t skmem_debug = 0; |
288 | #endif /* !DEBUG */ |
289 | |
290 | static uint32_t skmem_clear_min = 0; /* clear on free threshold */ |
291 | |
292 | #define SKMEM_CACHE_UPDATE_INTERVAL 11 /* 11 seconds */ |
293 | static uint32_t skmem_cache_update_interval = SKMEM_CACHE_UPDATE_INTERVAL; |
294 | |
295 | #define SKMEM_DEPOT_CONTENTION 3 /* max failed trylock per interval */ |
296 | static int skmem_cache_depot_contention = SKMEM_DEPOT_CONTENTION; |
297 | |
298 | /* |
299 | * Too big a value will cause overflow and thus trip the assertion; the |
300 | * idea here is to set an upper limit for the time that a particular |
301 | * thread is allowed to perform retries before we give up and panic. |
302 | */ |
303 | #define SKMEM_SLAB_MAX_BACKOFF (20 * USEC_PER_SEC) /* seconds */ |
304 | |
305 | /* |
306 | * Threshold (in msec) after which we reset the exponential backoff value |
307 | * back to its (random) initial value. Note that we allow the actual delay |
308 | * to be at most twice this value. |
309 | */ |
310 | #define SKMEM_SLAB_BACKOFF_THRES 1024 /* up to ~2 sec (2048 msec) */ |
311 | |
312 | /* |
313 | * To reduce the likelihood of global synchronization between threads, |
314 | * we use some random value to start the exponential backoff. |
315 | */ |
316 | #define SKMEM_SLAB_BACKOFF_RANDOM 4 /* range is [1,4] msec */ |
317 | |
318 | #if (DEVELOPMENT || DEBUG) |
319 | SYSCTL_UINT(_kern_skywalk_mem, OID_AUTO, cache_update_interval, |
320 | CTLFLAG_RW | CTLFLAG_LOCKED, &skmem_cache_update_interval, |
321 | SKMEM_CACHE_UPDATE_INTERVAL, "Cache update interval" ); |
322 | SYSCTL_INT(_kern_skywalk_mem, OID_AUTO, cache_depot_contention, |
323 | CTLFLAG_RW | CTLFLAG_LOCKED, &skmem_cache_depot_contention, |
324 | SKMEM_DEPOT_CONTENTION, "Depot contention" ); |
325 | |
326 | static uint32_t skmem_cache_update_interval_saved = SKMEM_CACHE_UPDATE_INTERVAL; |
327 | |
328 | /* |
329 | * Called by skmem_test_start() to set the update interval. |
330 | */ |
331 | void |
332 | skmem_cache_test_start(uint32_t i) |
333 | { |
334 | skmem_cache_update_interval_saved = skmem_cache_update_interval; |
335 | skmem_cache_update_interval = i; |
336 | } |
337 | |
338 | /* |
339 | * Called by skmem_test_stop() to restore the update interval. |
340 | */ |
341 | void |
342 | skmem_cache_test_stop(void) |
343 | { |
344 | skmem_cache_update_interval = skmem_cache_update_interval_saved; |
345 | } |
346 | #endif /* (DEVELOPMENT || DEBUG) */ |
347 | |
348 | #define SKMEM_TAG_BUFCTL_HASH "com.apple.skywalk.bufctl.hash" |
349 | static SKMEM_TAG_DEFINE(skmem_tag_bufctl_hash, SKMEM_TAG_BUFCTL_HASH); |
350 | |
351 | #define SKMEM_TAG_CACHE_MIB "com.apple.skywalk.cache.mib" |
352 | static SKMEM_TAG_DEFINE(skmem_tag_cache_mib, SKMEM_TAG_CACHE_MIB); |
353 | |
354 | static int __skmem_cache_pre_inited = 0; |
355 | static int __skmem_cache_inited = 0; |
356 | |
357 | /* |
358 | * Called before skmem_region_init(). |
359 | */ |
360 | void |
361 | skmem_cache_pre_init(void) |
362 | { |
363 | vm_size_t skm_size; |
364 | |
365 | ASSERT(!__skmem_cache_pre_inited); |
366 | |
367 | ncpu = ml_wait_max_cpus(); |
368 | |
369 | /* allocate extra in case we need to manually align the pointer */ |
370 | if (skm_zone == NULL) { |
371 | skm_size = SKMEM_CACHE_SIZE(ncpu); |
372 | #if KASAN |
373 | /* |
374 | * When KASAN is enabled, the zone allocator adjusts the |
375 | * element size to include the redzone regions, in which |
376 | * case we assume that the elements won't start on the |
377 | * alignment boundary and thus need to do some fix-ups. |
378 | * These include increasing the effective object size |
379 | * which adds at least 136 bytes to the original size, |
380 | * as computed by skmem_region_params_config() above. |
381 | */ |
382 | skm_size += (sizeof(void *) + CHANNEL_CACHE_ALIGN_MAX); |
383 | #endif /* KASAN */ |
384 | skm_size = P2ROUNDUP(skm_size, CHANNEL_CACHE_ALIGN_MAX); |
385 | skm_zone = zone_create(SKMEM_ZONE_PREFIX ".skm" , size: skm_size, |
386 | flags: ZC_PGZ_USE_GUARDS | ZC_ZFREE_CLEARMEM | ZC_DESTRUCTIBLE); |
387 | } |
388 | |
389 | TAILQ_INIT(&skmem_cache_head); |
390 | |
391 | __skmem_cache_pre_inited = 1; |
392 | } |
393 | |
394 | /* |
395 | * Called after skmem_region_init(). |
396 | */ |
397 | void |
398 | skmem_cache_init(void) |
399 | { |
400 | uint32_t cpu_cache_line_size = skmem_cpu_cache_line_size(); |
401 | struct skmem_magtype *mtp; |
402 | uint32_t i; |
403 | |
404 | _CASSERT(SKMEM_CACHE_HASH_LIMIT >= SKMEM_CACHE_HASH_INITIAL); |
405 | |
406 | _CASSERT(SKM_MODE_NOMAGAZINES == SCA_MODE_NOMAGAZINES); |
407 | _CASSERT(SKM_MODE_AUDIT == SCA_MODE_AUDIT); |
408 | _CASSERT(SKM_MODE_NOREDIRECT == SCA_MODE_NOREDIRECT); |
409 | _CASSERT(SKM_MODE_BATCH == SCA_MODE_BATCH); |
410 | _CASSERT(SKM_MODE_DYNAMIC == SCA_MODE_DYNAMIC); |
411 | _CASSERT(SKM_MODE_CLEARONFREE == SCA_MODE_CLEARONFREE); |
412 | _CASSERT(SKM_MODE_PSEUDO == SCA_MODE_PSEUDO); |
413 | |
414 | ASSERT(__skmem_cache_pre_inited); |
415 | ASSERT(!__skmem_cache_inited); |
416 | |
417 | PE_parse_boot_argn(arg_string: "skmem_debug" , arg_ptr: &skmem_debug, max_arg: sizeof(skmem_debug)); |
418 | skmem_debug &= SKMEM_DEBUG_MASK; |
419 | |
420 | #if (DEVELOPMENT || DEBUG) |
421 | PE_parse_boot_argn("skmem_clear_min" , &skmem_clear_min, |
422 | sizeof(skmem_clear_min)); |
423 | #endif /* (DEVELOPMENT || DEBUG) */ |
424 | if (skmem_clear_min == 0) { |
425 | /* zeroing 2 CPU cache lines practically comes for free */ |
426 | skmem_clear_min = 2 * cpu_cache_line_size; |
427 | } else { |
428 | /* round it up to CPU cache line size */ |
429 | skmem_clear_min = (uint32_t)P2ROUNDUP(skmem_clear_min, |
430 | cpu_cache_line_size); |
431 | } |
432 | |
433 | /* create a cache for buffer control structures */ |
434 | if (skmem_debug & SKMEM_DEBUG_AUDIT) { |
435 | bc_size = sizeof(struct skmem_bufctl_audit); |
436 | skmem_bufctl_cache = skmem_cache_create("bufctl.audit" , |
437 | bc_size, sizeof(uint64_t), NULL, NULL, |
438 | NULL, NULL, NULL, 0); |
439 | } else { |
440 | bc_size = sizeof(struct skmem_bufctl); |
441 | skmem_bufctl_cache = skmem_cache_create("bufctl" , |
442 | bc_size, sizeof(uint64_t), NULL, NULL, |
443 | NULL, NULL, NULL, 0); |
444 | } |
445 | |
446 | /* create a cache for slab structures */ |
447 | skmem_slab_cache = skmem_cache_create("slab" , |
448 | sizeof(struct skmem_slab), sizeof(uint64_t), NULL, NULL, NULL, |
449 | NULL, NULL, 0); |
450 | |
451 | /* |
452 | * Go thru the magazine type table and create an cache for each. |
453 | */ |
454 | for (i = 0; i < sizeof(skmem_magtype) / sizeof(*mtp); i++) { |
455 | mtp = &skmem_magtype[i]; |
456 | |
457 | if (mtp->mt_align != 0 && |
458 | ((mtp->mt_align & (mtp->mt_align - 1)) != 0 || |
459 | mtp->mt_align < (int)cpu_cache_line_size)) { |
460 | panic("%s: bad alignment %d" , __func__, mtp->mt_align); |
461 | /* NOTREACHED */ |
462 | __builtin_unreachable(); |
463 | } |
464 | (void) snprintf(mtp->mt_cname, count: sizeof(mtp->mt_cname), |
465 | "mg.%d" , mtp->mt_magsize); |
466 | |
467 | /* create an cache for this magazine type */ |
468 | mtp->mt_cache = skmem_cache_create(mtp->mt_cname, |
469 | SKMEM_MAG_SIZE(mtp->mt_magsize), mtp->mt_align, |
470 | skmem_magazine_ctor, NULL, NULL, mtp, NULL, 0); |
471 | |
472 | /* remember the last magazine type */ |
473 | skmem_cache_magsize_last = mtp; |
474 | } |
475 | |
476 | VERIFY(skmem_cache_magsize_last != NULL); |
477 | VERIFY(skmem_cache_magsize_last->mt_minbuf == 0); |
478 | VERIFY(skmem_cache_magsize_last->mt_maxbuf == 0); |
479 | |
480 | /* |
481 | * Allocate thread calls for cache reap and update operations. |
482 | */ |
483 | skmem_cache_reap_tc = |
484 | thread_call_allocate_with_options(func: skmem_cache_reap_func, |
485 | NULL, pri: THREAD_CALL_PRIORITY_KERNEL, options: THREAD_CALL_OPTIONS_ONCE); |
486 | skmem_cache_update_tc = |
487 | thread_call_allocate_with_options(func: skmem_cache_update_func, |
488 | NULL, pri: THREAD_CALL_PRIORITY_KERNEL, options: THREAD_CALL_OPTIONS_ONCE); |
489 | if (skmem_cache_reap_tc == NULL || skmem_cache_update_tc == NULL) { |
490 | panic("%s: thread_call_allocate failed" , __func__); |
491 | /* NOTREACHED */ |
492 | __builtin_unreachable(); |
493 | } |
494 | |
495 | /* |
496 | * We're ready; go through existing skmem_cache entries |
497 | * (if any) and enable the magazines layer for each. |
498 | */ |
499 | skmem_cache_applyall(skmem_cache_magazine_enable, 0); |
500 | skmem_cache_ready = TRUE; |
501 | |
502 | /* and start the periodic cache update machinery */ |
503 | skmem_dispatch(skmem_cache_update_tc, NULL, |
504 | (skmem_cache_update_interval * NSEC_PER_SEC)); |
505 | |
506 | __skmem_cache_inited = 1; |
507 | } |
508 | |
509 | void |
510 | skmem_cache_fini(void) |
511 | { |
512 | struct skmem_magtype *mtp; |
513 | uint32_t i; |
514 | |
515 | if (__skmem_cache_inited) { |
516 | ASSERT(TAILQ_EMPTY(&skmem_cache_head)); |
517 | |
518 | for (i = 0; i < sizeof(skmem_magtype) / sizeof(*mtp); i++) { |
519 | mtp = &skmem_magtype[i]; |
520 | skmem_cache_destroy(mtp->mt_cache); |
521 | mtp->mt_cache = NULL; |
522 | } |
523 | skmem_cache_destroy(skmem_slab_cache); |
524 | skmem_slab_cache = NULL; |
525 | skmem_cache_destroy(skmem_bufctl_cache); |
526 | skmem_bufctl_cache = NULL; |
527 | |
528 | if (skmem_cache_reap_tc != NULL) { |
529 | (void) thread_call_cancel_wait(call: skmem_cache_reap_tc); |
530 | (void) thread_call_free(call: skmem_cache_reap_tc); |
531 | skmem_cache_reap_tc = NULL; |
532 | } |
533 | if (skmem_cache_update_tc != NULL) { |
534 | (void) thread_call_cancel_wait(call: skmem_cache_update_tc); |
535 | (void) thread_call_free(call: skmem_cache_update_tc); |
536 | skmem_cache_update_tc = NULL; |
537 | } |
538 | |
539 | __skmem_cache_inited = 0; |
540 | } |
541 | |
542 | if (__skmem_cache_pre_inited) { |
543 | if (skm_zone != NULL) { |
544 | zdestroy(zone: skm_zone); |
545 | skm_zone = NULL; |
546 | } |
547 | |
548 | __skmem_cache_pre_inited = 0; |
549 | } |
550 | } |
551 | |
552 | /* |
553 | * Create a cache. |
554 | */ |
555 | struct skmem_cache * |
556 | skmem_cache_create(const char *name, size_t bufsize, size_t bufalign, |
557 | skmem_ctor_fn_t ctor, skmem_dtor_fn_t dtor, skmem_reclaim_fn_t reclaim, |
558 | void *private, struct skmem_region *region, uint32_t cflags) |
559 | { |
560 | boolean_t pseudo = (region == NULL); |
561 | struct skmem_magtype *mtp; |
562 | struct skmem_cache *skm; |
563 | void *buf; |
564 | size_t segsize; |
565 | size_t chunksize; |
566 | size_t objsize; |
567 | size_t objalign; |
568 | uint32_t i, cpuid; |
569 | |
570 | /* enforce 64-bit minimum alignment for buffers */ |
571 | if (bufalign == 0) { |
572 | bufalign = SKMEM_CACHE_ALIGN; |
573 | } |
574 | bufalign = P2ROUNDUP(bufalign, SKMEM_CACHE_ALIGN); |
575 | |
576 | /* enforce alignment to be a power of 2 */ |
577 | VERIFY(powerof2(bufalign)); |
578 | |
579 | if (region == NULL) { |
580 | struct skmem_region_params srp; |
581 | |
582 | /* batching is currently not supported on pseudo regions */ |
583 | VERIFY(!(cflags & SKMEM_CR_BATCH)); |
584 | |
585 | srp = *skmem_get_default(SKMEM_REGION_INTRINSIC); |
586 | ASSERT(srp.srp_cflags == SKMEM_REGION_CR_PSEUDO); |
587 | |
588 | /* objalign is always equal to bufalign */ |
589 | srp.srp_align = objalign = bufalign; |
590 | srp.srp_r_obj_cnt = 1; |
591 | srp.srp_r_obj_size = (uint32_t)bufsize; |
592 | skmem_region_params_config(&srp); |
593 | |
594 | /* allocate region for intrinsics */ |
595 | region = skmem_region_create(name, &srp, NULL, NULL, NULL); |
596 | VERIFY(region->skr_c_obj_size >= P2ROUNDUP(bufsize, bufalign)); |
597 | VERIFY(objalign == region->skr_align); |
598 | #if KASAN |
599 | /* |
600 | * When KASAN is enabled, the zone allocator adjusts the |
601 | * element size to include the redzone regions, in which |
602 | * case we assume that the elements won't start on the |
603 | * alignment boundary and thus need to do some fix-ups. |
604 | * These include increasing the effective object size |
605 | * which adds at least 16 bytes to the original size, |
606 | * as computed by skmem_region_params_config() above. |
607 | */ |
608 | VERIFY(region->skr_c_obj_size >= |
609 | (bufsize + sizeof(uint64_t) + bufalign)); |
610 | #endif /* KASAN */ |
611 | /* enable magazine resizing by default */ |
612 | cflags |= SKMEM_CR_DYNAMIC; |
613 | |
614 | /* |
615 | * For consistency with ZC_ZFREE_CLEARMEM on skr->zreg, |
616 | * even though it's a no-op since the work is done |
617 | * at the zone layer instead. |
618 | */ |
619 | cflags |= SKMEM_CR_CLEARONFREE; |
620 | } else { |
621 | objalign = region->skr_align; |
622 | } |
623 | |
624 | ASSERT(region != NULL); |
625 | ASSERT(!(region->skr_mode & SKR_MODE_MIRRORED)); |
626 | segsize = region->skr_seg_size; |
627 | ASSERT(bufalign <= segsize); |
628 | |
629 | buf = zalloc_flags(skm_zone, Z_WAITOK | Z_ZERO); |
630 | #if KASAN |
631 | /* |
632 | * In case we didn't get a cache-aligned memory, round it up |
633 | * accordingly. This is needed in order to get the rest of |
634 | * structure members aligned properly. It also means that |
635 | * the memory span gets shifted due to the round up, but it |
636 | * is okay since we've allocated extra space for this. |
637 | */ |
638 | skm = (struct skmem_cache *) |
639 | P2ROUNDUP((intptr_t)buf + sizeof(void *), CHANNEL_CACHE_ALIGN_MAX); |
640 | void **pbuf = (void **)((intptr_t)skm - sizeof(void *)); |
641 | *pbuf = buf; |
642 | #else /* !KASAN */ |
643 | /* |
644 | * We expect that the zone allocator would allocate elements |
645 | * rounded up to the requested alignment based on the object |
646 | * size computed in skmem_cache_pre_init() earlier, and |
647 | * 'skm' is therefore the element address itself. |
648 | */ |
649 | skm = buf; |
650 | #endif /* !KASAN */ |
651 | VERIFY(IS_P2ALIGNED(skm, CHANNEL_CACHE_ALIGN_MAX)); |
652 | |
653 | if ((skmem_debug & SKMEM_DEBUG_NOMAGAZINES) || |
654 | (cflags & SKMEM_CR_NOMAGAZINES)) { |
655 | /* |
656 | * Either the caller insists that this cache should not |
657 | * utilize magazines layer, or that the system override |
658 | * to disable magazines layer on all caches has been set. |
659 | */ |
660 | skm->skm_mode |= SKM_MODE_NOMAGAZINES; |
661 | } else { |
662 | /* |
663 | * Region must be configured with enough objects |
664 | * to take into account objects at the CPU layer. |
665 | */ |
666 | ASSERT(!(region->skr_mode & SKR_MODE_NOMAGAZINES)); |
667 | } |
668 | |
669 | if (cflags & SKMEM_CR_DYNAMIC) { |
670 | /* |
671 | * Enable per-CPU cache magazine resizing. |
672 | */ |
673 | skm->skm_mode |= SKM_MODE_DYNAMIC; |
674 | } |
675 | |
676 | /* region stays around after defunct? */ |
677 | if (region->skr_mode & SKR_MODE_NOREDIRECT) { |
678 | skm->skm_mode |= SKM_MODE_NOREDIRECT; |
679 | } |
680 | |
681 | if (cflags & SKMEM_CR_BATCH) { |
682 | /* |
683 | * Batch alloc/free involves storing the next object |
684 | * pointer at the beginning of each object; this is |
685 | * okay for kernel-only regions, but not those that |
686 | * are mappable to user space (we can't leak kernel |
687 | * addresses). |
688 | */ |
689 | _CASSERT(offsetof(struct skmem_obj, mo_next) == 0); |
690 | VERIFY(!(region->skr_mode & SKR_MODE_MMAPOK)); |
691 | |
692 | /* batching is currently not supported on pseudo regions */ |
693 | VERIFY(!(region->skr_mode & SKR_MODE_PSEUDO)); |
694 | |
695 | /* validate object size */ |
696 | VERIFY(region->skr_c_obj_size >= sizeof(struct skmem_obj)); |
697 | |
698 | skm->skm_mode |= SKM_MODE_BATCH; |
699 | } |
700 | |
701 | uuid_generate_random(out: skm->skm_uuid); |
702 | (void) snprintf(skm->skm_name, count: sizeof(skm->skm_name), |
703 | "%s.%s" , SKMEM_CACHE_PREFIX, name); |
704 | skm->skm_bufsize = bufsize; |
705 | skm->skm_bufalign = bufalign; |
706 | skm->skm_objalign = objalign; |
707 | skm->skm_ctor = ctor; |
708 | skm->skm_dtor = dtor; |
709 | skm->skm_reclaim = reclaim; |
710 | skm->skm_private = private; |
711 | skm->skm_slabsize = segsize; |
712 | |
713 | skm->skm_region = region; |
714 | /* callee holds reference */ |
715 | skmem_region_slab_config(region, skm, true); |
716 | objsize = region->skr_c_obj_size; |
717 | skm->skm_objsize = objsize; |
718 | |
719 | if (pseudo) { |
720 | /* |
721 | * Release reference from skmem_region_create() |
722 | * since skm->skm_region holds one now. |
723 | */ |
724 | ASSERT(region->skr_mode & SKR_MODE_PSEUDO); |
725 | skmem_region_release(region); |
726 | |
727 | skm->skm_mode |= SKM_MODE_PSEUDO; |
728 | |
729 | skm->skm_slab_alloc = skmem_slab_alloc_pseudo_locked; |
730 | skm->skm_slab_free = skmem_slab_free_pseudo_locked; |
731 | } else { |
732 | skm->skm_slab_alloc = skmem_slab_alloc_locked; |
733 | skm->skm_slab_free = skmem_slab_free_locked; |
734 | |
735 | /* auditing was requested? (normal regions only) */ |
736 | if (skmem_debug & SKMEM_DEBUG_AUDIT) { |
737 | ASSERT(bc_size == sizeof(struct skmem_bufctl_audit)); |
738 | skm->skm_mode |= SKM_MODE_AUDIT; |
739 | } |
740 | } |
741 | |
742 | /* |
743 | * Clear upon free (to slab layer) as long as the region is |
744 | * not marked as read-only for kernel, and if the chunk size |
745 | * is within the threshold or if the caller had requested it. |
746 | */ |
747 | if (!(region->skr_mode & SKR_MODE_KREADONLY)) { |
748 | if (skm->skm_objsize <= skmem_clear_min || |
749 | (cflags & SKMEM_CR_CLEARONFREE)) { |
750 | skm->skm_mode |= SKM_MODE_CLEARONFREE; |
751 | } |
752 | } |
753 | |
754 | chunksize = bufsize; |
755 | if (bufalign >= SKMEM_CACHE_ALIGN) { |
756 | chunksize = P2ROUNDUP(chunksize, SKMEM_CACHE_ALIGN); |
757 | } |
758 | |
759 | chunksize = P2ROUNDUP(chunksize, bufalign); |
760 | if (chunksize > objsize) { |
761 | panic("%s: (bufsize %lu, chunksize %lu) > objsize %lu" , |
762 | __func__, bufsize, chunksize, objsize); |
763 | /* NOTREACHED */ |
764 | __builtin_unreachable(); |
765 | } |
766 | ASSERT(chunksize != 0); |
767 | skm->skm_chunksize = chunksize; |
768 | |
769 | lck_mtx_init(lck: &skm->skm_sl_lock, grp: &skmem_sl_lock_grp, attr: &skmem_lock_attr); |
770 | TAILQ_INIT(&skm->skm_sl_partial_list); |
771 | TAILQ_INIT(&skm->skm_sl_empty_list); |
772 | |
773 | /* allocated-address hash table */ |
774 | skm->skm_hash_initial = SKMEM_CACHE_HASH_INITIAL; |
775 | skm->skm_hash_limit = SKMEM_CACHE_HASH_LIMIT; |
776 | skm->skm_hash_table = sk_alloc_type_array(struct skmem_bufctl_bkt, |
777 | skm->skm_hash_initial, Z_WAITOK | Z_NOFAIL, skmem_tag_bufctl_hash); |
778 | |
779 | skm->skm_hash_mask = (skm->skm_hash_initial - 1); |
780 | skm->skm_hash_shift = flsll(chunksize) - 1; |
781 | |
782 | for (i = 0; i < (skm->skm_hash_mask + 1); i++) { |
783 | SLIST_INIT(&skm->skm_hash_table[i].bcb_head); |
784 | } |
785 | |
786 | lck_mtx_init(lck: &skm->skm_dp_lock, grp: &skmem_dp_lock_grp, attr: &skmem_lock_attr); |
787 | |
788 | /* find a suitable magazine type for this chunk size */ |
789 | for (mtp = skmem_magtype; chunksize <= mtp->mt_minbuf; mtp++) { |
790 | continue; |
791 | } |
792 | |
793 | skm->skm_magtype = mtp; |
794 | if (!(skm->skm_mode & SKM_MODE_NOMAGAZINES)) { |
795 | skm->skm_cpu_mag_size = skm->skm_magtype->mt_magsize; |
796 | } |
797 | |
798 | /* |
799 | * Initialize the CPU layer. Each per-CPU structure is aligned |
800 | * on the CPU cache line boundary to prevent false sharing. |
801 | */ |
802 | lck_mtx_init(lck: &skm->skm_rs_lock, grp: &skmem_cpu_lock_grp, attr: &skmem_lock_attr); |
803 | for (cpuid = 0; cpuid < ncpu; cpuid++) { |
804 | struct skmem_cpu_cache *ccp = &skm->skm_cpu_cache[cpuid]; |
805 | |
806 | VERIFY(IS_P2ALIGNED(ccp, CHANNEL_CACHE_ALIGN_MAX)); |
807 | lck_mtx_init(lck: &ccp->cp_lock, grp: &skmem_cpu_lock_grp, |
808 | attr: &skmem_lock_attr); |
809 | ccp->cp_rounds = -1; |
810 | ccp->cp_prounds = -1; |
811 | } |
812 | |
813 | SKMEM_CACHE_LOCK(); |
814 | TAILQ_INSERT_TAIL(&skmem_cache_head, skm, skm_link); |
815 | SKMEM_CACHE_UNLOCK(); |
816 | |
817 | SK_DF(SK_VERB_MEM_CACHE, "\"%s\": skm 0x%llx mode 0x%b" , |
818 | skm->skm_name, SK_KVA(skm), skm->skm_mode, SKM_MODE_BITS); |
819 | SK_DF(SK_VERB_MEM_CACHE, |
820 | " bufsz %u bufalign %u chunksz %u objsz %u slabsz %u" , |
821 | (uint32_t)skm->skm_bufsize, (uint32_t)skm->skm_bufalign, |
822 | (uint32_t)skm->skm_chunksize, (uint32_t)skm->skm_objsize, |
823 | (uint32_t)skm->skm_slabsize); |
824 | |
825 | if (skmem_cache_ready) { |
826 | skmem_cache_magazine_enable(skm, 0); |
827 | } |
828 | |
829 | if (cflags & SKMEM_CR_RECLAIM) { |
830 | skm->skm_mode |= SKM_MODE_RECLAIM; |
831 | } |
832 | |
833 | return skm; |
834 | } |
835 | |
836 | /* |
837 | * Destroy a cache. |
838 | */ |
839 | void |
840 | skmem_cache_destroy(struct skmem_cache *skm) |
841 | { |
842 | uint32_t cpuid; |
843 | |
844 | SKMEM_CACHE_LOCK(); |
845 | TAILQ_REMOVE(&skmem_cache_head, skm, skm_link); |
846 | SKMEM_CACHE_UNLOCK(); |
847 | |
848 | ASSERT(skm->skm_rs_busy == 0); |
849 | ASSERT(skm->skm_rs_want == 0); |
850 | |
851 | /* purge all cached objects for this cache */ |
852 | skmem_cache_magazine_purge(skm); |
853 | |
854 | /* |
855 | * Panic if we detect there are unfreed objects; the caller |
856 | * destroying this cache is responsible for ensuring that all |
857 | * allocated objects have been freed prior to getting here. |
858 | */ |
859 | SKM_SLAB_LOCK(skm); |
860 | if (skm->skm_sl_bufinuse != 0) { |
861 | panic("%s: '%s' (%p) not empty (%llu unfreed)" , __func__, |
862 | skm->skm_name, (void *)skm, skm->skm_sl_bufinuse); |
863 | /* NOTREACHED */ |
864 | __builtin_unreachable(); |
865 | } |
866 | ASSERT(TAILQ_EMPTY(&skm->skm_sl_partial_list)); |
867 | ASSERT(skm->skm_sl_partial == 0); |
868 | ASSERT(TAILQ_EMPTY(&skm->skm_sl_empty_list)); |
869 | ASSERT(skm->skm_sl_empty == 0); |
870 | skm->skm_reclaim = NULL; |
871 | skm->skm_ctor = NULL; |
872 | skm->skm_dtor = NULL; |
873 | SKM_SLAB_UNLOCK(skm); |
874 | |
875 | if (skm->skm_hash_table != NULL) { |
876 | #if (DEBUG || DEVELOPMENT) |
877 | for (uint32_t i = 0; i < (skm->skm_hash_mask + 1); i++) { |
878 | ASSERT(SLIST_EMPTY(&skm->skm_hash_table[i].bcb_head)); |
879 | } |
880 | #endif /* DEBUG || DEVELOPMENT */ |
881 | |
882 | sk_free_type_array(struct skmem_bufctl_bkt, |
883 | skm->skm_hash_mask + 1, skm->skm_hash_table); |
884 | skm->skm_hash_table = NULL; |
885 | } |
886 | |
887 | for (cpuid = 0; cpuid < ncpu; cpuid++) { |
888 | lck_mtx_destroy(lck: &skm->skm_cpu_cache[cpuid].cp_lock, |
889 | grp: &skmem_cpu_lock_grp); |
890 | } |
891 | lck_mtx_destroy(lck: &skm->skm_rs_lock, grp: &skmem_cpu_lock_grp); |
892 | lck_mtx_destroy(lck: &skm->skm_dp_lock, grp: &skmem_dp_lock_grp); |
893 | lck_mtx_destroy(lck: &skm->skm_sl_lock, grp: &skmem_sl_lock_grp); |
894 | |
895 | SK_DF(SK_VERB_MEM_CACHE, "\"%s\": skm 0x%llx" , |
896 | skm->skm_name, SK_KVA(skm)); |
897 | |
898 | /* callee releases reference */ |
899 | skmem_region_slab_config(skm->skm_region, skm, false); |
900 | skm->skm_region = NULL; |
901 | |
902 | #if KASAN |
903 | /* get the original address since we're about to free it */ |
904 | void **pbuf = (void **)((intptr_t)skm - sizeof(void *)); |
905 | skm = *pbuf; |
906 | #endif /* KASAN */ |
907 | |
908 | zfree(skm_zone, skm); |
909 | } |
910 | |
911 | /* |
912 | * Create a slab. |
913 | */ |
914 | static struct skmem_slab * |
915 | skmem_slab_create(struct skmem_cache *skm, uint32_t skmflag) |
916 | { |
917 | struct skmem_region *skr = skm->skm_region; |
918 | uint32_t objsize, chunks; |
919 | size_t slabsize = skm->skm_slabsize; |
920 | struct skmem_slab *sl; |
921 | struct sksegment *sg, *sgm; |
922 | char *buf, *bufm, *slab, *slabm; |
923 | |
924 | /* |
925 | * Allocate a segment (a slab at our layer) from the region. |
926 | */ |
927 | slab = skmem_region_alloc(skr, (void **)&slabm, &sg, &sgm, skmflag); |
928 | if (slab == NULL) { |
929 | goto rg_alloc_failure; |
930 | } |
931 | |
932 | if ((sl = skmem_cache_alloc(skmem_slab_cache, SKMEM_SLEEP)) == NULL) { |
933 | goto slab_alloc_failure; |
934 | } |
935 | |
936 | ASSERT(sg != NULL); |
937 | ASSERT(sgm == NULL || sgm->sg_index == sg->sg_index); |
938 | |
939 | bzero(s: sl, n: sizeof(*sl)); |
940 | sl->sl_cache = skm; |
941 | sl->sl_base = buf = slab; |
942 | sl->sl_basem = bufm = slabm; |
943 | ASSERT(skr->skr_c_obj_size <= UINT32_MAX); |
944 | objsize = (uint32_t)skr->skr_c_obj_size; |
945 | ASSERT(skm->skm_objsize == objsize); |
946 | ASSERT((slabsize / objsize) <= UINT32_MAX); |
947 | sl->sl_chunks = chunks = (uint32_t)(slabsize / objsize); |
948 | sl->sl_seg = sg; |
949 | sl->sl_segm = sgm; |
950 | |
951 | /* |
952 | * Create one or more buffer control structures for the slab, |
953 | * each one tracking a chunk of raw object from the segment, |
954 | * and insert these into the slab's list of buffer controls. |
955 | */ |
956 | ASSERT(chunks > 0); |
957 | while (chunks != 0) { |
958 | struct skmem_bufctl *bc; |
959 | |
960 | bc = skmem_cache_alloc(skmem_bufctl_cache, SKMEM_SLEEP); |
961 | if (bc == NULL) { |
962 | goto bufctl_alloc_failure; |
963 | } |
964 | |
965 | bzero(s: bc, n: bc_size); |
966 | bc->bc_addr = buf; |
967 | bc->bc_addrm = bufm; |
968 | bc->bc_slab = sl; |
969 | bc->bc_idx = (sl->sl_chunks - chunks); |
970 | if (skr->skr_mode & SKR_MODE_SHAREOK) { |
971 | bc->bc_flags |= SKMEM_BUFCTL_SHAREOK; |
972 | } |
973 | SLIST_INSERT_HEAD(&sl->sl_head, bc, bc_link); |
974 | bc->bc_lim = objsize; |
975 | buf += objsize; |
976 | if (bufm != NULL) { |
977 | bufm += objsize; |
978 | } |
979 | --chunks; |
980 | } |
981 | |
982 | SK_DF(SK_VERB_MEM_CACHE, "skm 0x%llx sl 0x%llx" , |
983 | SK_KVA(skm), SK_KVA(sl)); |
984 | SK_DF(SK_VERB_MEM_CACHE, " [%u] [0x%llx-0x%llx)" , sl->sl_seg->sg_index, |
985 | SK_KVA(slab), SK_KVA(slab + objsize)); |
986 | |
987 | return sl; |
988 | |
989 | bufctl_alloc_failure: |
990 | skmem_slab_destroy(skm, sl); |
991 | |
992 | slab_alloc_failure: |
993 | skmem_region_free(skr, slab, slabm); |
994 | |
995 | rg_alloc_failure: |
996 | os_atomic_inc(&skm->skm_sl_alloc_fail, relaxed); |
997 | |
998 | return NULL; |
999 | } |
1000 | |
1001 | /* |
1002 | * Destroy a slab. |
1003 | */ |
1004 | static void |
1005 | skmem_slab_destroy(struct skmem_cache *skm, struct skmem_slab *sl) |
1006 | { |
1007 | struct skmem_bufctl *bc, *tbc; |
1008 | void *slab = sl->sl_base; |
1009 | void *slabm = sl->sl_basem; |
1010 | |
1011 | ASSERT(sl->sl_refcnt == 0); |
1012 | |
1013 | SK_DF(SK_VERB_MEM_CACHE, "skm 0x%llx sl 0x%llx" , |
1014 | SK_KVA(skm), SK_KVA(sl)); |
1015 | SK_DF(SK_VERB_MEM_CACHE, " [%u] [0x%llx-0x%llx)" , sl->sl_seg->sg_index, |
1016 | SK_KVA(slab), SK_KVA((uintptr_t)slab + skm->skm_objsize)); |
1017 | |
1018 | /* |
1019 | * Go through the slab's list of buffer controls and free |
1020 | * them, and then free the slab itself back to its cache. |
1021 | */ |
1022 | SLIST_FOREACH_SAFE(bc, &sl->sl_head, bc_link, tbc) { |
1023 | SLIST_REMOVE(&sl->sl_head, bc, skmem_bufctl, bc_link); |
1024 | skmem_cache_free(skmem_bufctl_cache, bc); |
1025 | } |
1026 | skmem_cache_free(skmem_slab_cache, sl); |
1027 | |
1028 | /* and finally free the segment back to the backing region */ |
1029 | skmem_region_free(skm->skm_region, slab, slabm); |
1030 | } |
1031 | |
1032 | /* |
1033 | * Allocate a raw object from the (locked) slab layer. Normal region variant. |
1034 | */ |
1035 | static int |
1036 | skmem_slab_alloc_locked(struct skmem_cache *skm, struct skmem_obj_info *oi, |
1037 | struct skmem_obj_info *oim, uint32_t skmflag) |
1038 | { |
1039 | struct skmem_bufctl_bkt *bcb; |
1040 | struct skmem_bufctl *bc; |
1041 | struct skmem_slab *sl; |
1042 | uint32_t retries = 0; |
1043 | uint64_t boff_total = 0; /* in usec */ |
1044 | uint64_t boff = 0; /* in msec */ |
1045 | boolean_t new_slab; |
1046 | void *buf; |
1047 | #if CONFIG_KERNEL_TAGGING && !defined(KASAN_LIGHT) |
1048 | vm_offset_t tagged_address; /* address tagging */ |
1049 | struct skmem_region *region; /* region source for this slab */ |
1050 | #endif /* CONFIG_KERNEL_TAGGING && !defined(KASAN_LIGHT) */ |
1051 | |
1052 | /* this flag is not for the caller to set */ |
1053 | VERIFY(!(skmflag & SKMEM_FAILOK)); |
1054 | |
1055 | /* |
1056 | * A slab is either in a partially-allocated list (at least it has |
1057 | * a free object available), or is in the empty list (everything |
1058 | * has been allocated.) If we can't find a partially-allocated |
1059 | * slab, then we need to allocate a slab (segment) from the region. |
1060 | */ |
1061 | again: |
1062 | SKM_SLAB_LOCK_ASSERT_HELD(skm); |
1063 | sl = TAILQ_FIRST(&skm->skm_sl_partial_list); |
1064 | if (sl == NULL) { |
1065 | uint32_t flags = skmflag; |
1066 | boolean_t retry; |
1067 | |
1068 | ASSERT(skm->skm_sl_partial == 0); |
1069 | SKM_SLAB_UNLOCK(skm); |
1070 | if (!(flags & SKMEM_NOSLEEP)) { |
1071 | /* |
1072 | * Pick up a random value to start the exponential |
1073 | * backoff, if this is the first round, or if the |
1074 | * current value is over the threshold. Otherwise, |
1075 | * double the backoff value. |
1076 | */ |
1077 | if (boff == 0 || boff > SKMEM_SLAB_BACKOFF_THRES) { |
1078 | read_frandom(buffer: &boff, numBytes: sizeof(boff)); |
1079 | boff = (boff % SKMEM_SLAB_BACKOFF_RANDOM) + 1; |
1080 | ASSERT(boff > 0); |
1081 | } else if (os_mul_overflow(boff, 2, &boff)) { |
1082 | panic_plain("\"%s\": boff counter " |
1083 | "overflows\n" , skm->skm_name); |
1084 | /* NOTREACHED */ |
1085 | __builtin_unreachable(); |
1086 | } |
1087 | /* add this value (in msec) to the total (in usec) */ |
1088 | if (os_add_overflow(boff_total, |
1089 | (boff * NSEC_PER_USEC), &boff_total)) { |
1090 | panic_plain("\"%s\": boff_total counter " |
1091 | "overflows\n" , skm->skm_name); |
1092 | /* NOTREACHED */ |
1093 | __builtin_unreachable(); |
1094 | } |
1095 | } |
1096 | /* |
1097 | * In the event of a race between multiple threads trying |
1098 | * to create the last remaining (or the only) slab, let the |
1099 | * loser(s) attempt to retry after waiting a bit. The winner |
1100 | * would have inserted the newly-created slab into the list. |
1101 | */ |
1102 | if (!(flags & SKMEM_NOSLEEP) && |
1103 | boff_total <= SKMEM_SLAB_MAX_BACKOFF) { |
1104 | retry = TRUE; |
1105 | ++retries; |
1106 | flags |= SKMEM_FAILOK; |
1107 | } else { |
1108 | if (!(flags & SKMEM_NOSLEEP)) { |
1109 | panic_plain("\"%s\": failed to allocate " |
1110 | "slab (sleeping mode) after %llu " |
1111 | "msec, %u retries\n\n%s" , skm->skm_name, |
1112 | (boff_total / NSEC_PER_USEC), retries, |
1113 | skmem_dump(skm->skm_region)); |
1114 | /* NOTREACHED */ |
1115 | __builtin_unreachable(); |
1116 | } |
1117 | retry = FALSE; |
1118 | } |
1119 | |
1120 | /* |
1121 | * Create a new slab. |
1122 | */ |
1123 | if ((sl = skmem_slab_create(skm, skmflag: flags)) == NULL) { |
1124 | if (retry) { |
1125 | SK_ERR("\"%s\": failed to allocate " |
1126 | "slab (%ssleeping mode): waiting for %llu " |
1127 | "msec, total %llu msec, %u retries" , |
1128 | skm->skm_name, |
1129 | (flags & SKMEM_NOSLEEP) ? "non-" : "" , |
1130 | boff, (boff_total / NSEC_PER_USEC), retries); |
1131 | VERIFY(boff > 0 && ((uint32_t)boff <= |
1132 | (SKMEM_SLAB_BACKOFF_THRES * 2))); |
1133 | delay(usec: (uint32_t)boff * NSEC_PER_USEC); |
1134 | SKM_SLAB_LOCK(skm); |
1135 | goto again; |
1136 | } else { |
1137 | SK_RDERR(4, "\"%s\": failed to allocate slab " |
1138 | "(%ssleeping mode)" , skm->skm_name, |
1139 | (flags & SKMEM_NOSLEEP) ? "non-" : "" ); |
1140 | SKM_SLAB_LOCK(skm); |
1141 | } |
1142 | return ENOMEM; |
1143 | } |
1144 | |
1145 | SKM_SLAB_LOCK(skm); |
1146 | skm->skm_sl_create++; |
1147 | if ((skm->skm_sl_bufinuse += sl->sl_chunks) > |
1148 | skm->skm_sl_bufmax) { |
1149 | skm->skm_sl_bufmax = skm->skm_sl_bufinuse; |
1150 | } |
1151 | } |
1152 | skm->skm_sl_alloc++; |
1153 | |
1154 | new_slab = (sl->sl_refcnt == 0); |
1155 | ASSERT(new_slab || SKMEM_SLAB_IS_PARTIAL(sl)); |
1156 | |
1157 | sl->sl_refcnt++; |
1158 | ASSERT(sl->sl_refcnt <= sl->sl_chunks); |
1159 | |
1160 | /* |
1161 | * We either have a new slab, or a partially-allocated one. |
1162 | * Remove a buffer control from the slab, and insert it to |
1163 | * the allocated-address hash chain. |
1164 | */ |
1165 | bc = SLIST_FIRST(&sl->sl_head); |
1166 | ASSERT(bc != NULL); |
1167 | SLIST_REMOVE(&sl->sl_head, bc, skmem_bufctl, bc_link); |
1168 | |
1169 | /* sanity check */ |
1170 | VERIFY(bc->bc_usecnt == 0); |
1171 | |
1172 | /* |
1173 | * Also store the master object's region info for the caller. |
1174 | */ |
1175 | bzero(s: oi, n: sizeof(*oi)); |
1176 | #if CONFIG_KERNEL_TAGGING && !defined(KASAN_LIGHT) |
1177 | region = sl->sl_cache->skm_region; |
1178 | if (region->skr_mode & SKR_MODE_MEMTAG) { |
1179 | /* |
1180 | * If this region is configured to be tagged, we generate a |
1181 | * unique tag for the object address, and return this tagged |
1182 | * address to the caller. vm_memtag_assign_tag generates a |
1183 | * unique tag for the given address and size, and |
1184 | * vm_memtag_set_tag commits the tag to the backing memory |
1185 | * metadata. This tagged address is returned back to the client, |
1186 | * and when the client frees the address, we "re-tag" the |
1187 | * address to prevent against use-after-free attacks (more on |
1188 | * this in skmem_cache_batch_free). |
1189 | */ |
1190 | tagged_address = vm_memtag_assign_tag((vm_offset_t)bc->bc_addr, |
1191 | skm->skm_objsize); |
1192 | vm_memtag_set_tag(tagged_address, skm->skm_objsize); |
1193 | buf = (void *)tagged_address; |
1194 | } else { |
1195 | buf = bc->bc_addr; |
1196 | } |
1197 | #else /* !CONFIG_KERNEL_TAGGING && !defined(KASAN_LIGHT) */ |
1198 | buf = bc->bc_addr; |
1199 | #endif /* CONFIG_KERNEL_TAGGING && !defined(KASAN_LIGHT) */ |
1200 | SKMEM_OBJ_ADDR(oi) = buf; |
1201 | SKMEM_OBJ_BUFCTL(oi) = bc; /* master only; NULL for slave */ |
1202 | ASSERT(skm->skm_objsize <= UINT32_MAX); |
1203 | SKMEM_OBJ_SIZE(oi) = (uint32_t)skm->skm_objsize; |
1204 | SKMEM_OBJ_IDX_REG(oi) = |
1205 | ((sl->sl_seg->sg_index * sl->sl_chunks) + bc->bc_idx); |
1206 | SKMEM_OBJ_IDX_SEG(oi) = bc->bc_idx; |
1207 | /* |
1208 | * And for slave object. |
1209 | */ |
1210 | if (oim != NULL) { |
1211 | bzero(s: oim, n: sizeof(*oim)); |
1212 | if (bc->bc_addrm != NULL) { |
1213 | SKMEM_OBJ_ADDR(oim) = bc->bc_addrm; |
1214 | SKMEM_OBJ_SIZE(oim) = SKMEM_OBJ_SIZE(oi); |
1215 | SKMEM_OBJ_IDX_REG(oim) = SKMEM_OBJ_IDX_REG(oi); |
1216 | SKMEM_OBJ_IDX_SEG(oim) = SKMEM_OBJ_IDX_SEG(oi); |
1217 | } |
1218 | } |
1219 | |
1220 | if (skm->skm_mode & SKM_MODE_BATCH) { |
1221 | ((struct skmem_obj *)buf)->mo_next = NULL; |
1222 | } |
1223 | |
1224 | /* insert to allocated-address hash chain */ |
1225 | bcb = SKMEM_CACHE_HASH(skm, buf); |
1226 | SLIST_INSERT_HEAD(&bcb->bcb_head, bc, bc_link); |
1227 | |
1228 | if (SLIST_EMPTY(&sl->sl_head)) { |
1229 | /* |
1230 | * If that was the last buffer control from this slab, |
1231 | * insert the slab into the empty list. If it was in |
1232 | * the partially-allocated list, then remove the slab |
1233 | * from there as well. |
1234 | */ |
1235 | ASSERT(sl->sl_refcnt == sl->sl_chunks); |
1236 | if (new_slab) { |
1237 | ASSERT(sl->sl_chunks == 1); |
1238 | } else { |
1239 | ASSERT(sl->sl_chunks > 1); |
1240 | ASSERT(skm->skm_sl_partial > 0); |
1241 | skm->skm_sl_partial--; |
1242 | TAILQ_REMOVE(&skm->skm_sl_partial_list, sl, sl_link); |
1243 | } |
1244 | skm->skm_sl_empty++; |
1245 | ASSERT(skm->skm_sl_empty != 0); |
1246 | TAILQ_INSERT_HEAD(&skm->skm_sl_empty_list, sl, sl_link); |
1247 | } else { |
1248 | /* |
1249 | * The slab is not empty; if it was newly allocated |
1250 | * above, then it's not in the partially-allocated |
1251 | * list and so we insert it there. |
1252 | */ |
1253 | ASSERT(SKMEM_SLAB_IS_PARTIAL(sl)); |
1254 | if (new_slab) { |
1255 | skm->skm_sl_partial++; |
1256 | ASSERT(skm->skm_sl_partial != 0); |
1257 | TAILQ_INSERT_HEAD(&skm->skm_sl_partial_list, |
1258 | sl, sl_link); |
1259 | } |
1260 | } |
1261 | |
1262 | /* if auditing is enabled, record this transaction */ |
1263 | if (__improbable((skm->skm_mode & SKM_MODE_AUDIT) != 0)) { |
1264 | skmem_audit_bufctl(bc); |
1265 | } |
1266 | |
1267 | return 0; |
1268 | } |
1269 | |
1270 | /* |
1271 | * Allocate a raw object from the (locked) slab layer. Pseudo region variant. |
1272 | */ |
1273 | static int |
1274 | skmem_slab_alloc_pseudo_locked(struct skmem_cache *skm, |
1275 | struct skmem_obj_info *oi, struct skmem_obj_info *oim, uint32_t skmflag) |
1276 | { |
1277 | zalloc_flags_t zflags = (skmflag & SKMEM_NOSLEEP) ? Z_NOWAIT : Z_WAITOK; |
1278 | struct skmem_region *skr = skm->skm_region; |
1279 | void *obj, *buf; |
1280 | |
1281 | /* this flag is not for the caller to set */ |
1282 | VERIFY(!(skmflag & SKMEM_FAILOK)); |
1283 | |
1284 | SKM_SLAB_LOCK_ASSERT_HELD(skm); |
1285 | |
1286 | ASSERT(skr->skr_reg == NULL && skr->skr_zreg != NULL); |
1287 | /* mirrored region is not applicable */ |
1288 | ASSERT(!(skr->skr_mode & SKR_MODE_MIRRORED)); |
1289 | /* batching is not yet supported */ |
1290 | ASSERT(!(skm->skm_mode & SKM_MODE_BATCH)); |
1291 | |
1292 | if ((obj = zalloc_flags(skr->skr_zreg, zflags | Z_ZERO)) == NULL) { |
1293 | os_atomic_inc(&skm->skm_sl_alloc_fail, relaxed); |
1294 | return ENOMEM; |
1295 | } |
1296 | |
1297 | #if KASAN |
1298 | /* |
1299 | * Perform some fix-ups since the zone element isn't guaranteed |
1300 | * to be on the aligned boundary. The effective object size |
1301 | * has been adjusted accordingly by skmem_region_create() earlier |
1302 | * at cache creation time. |
1303 | * |
1304 | * 'buf' is get the aligned address for this object. |
1305 | */ |
1306 | buf = (void *)P2ROUNDUP((intptr_t)obj + sizeof(u_int64_t), |
1307 | skm->skm_bufalign); |
1308 | |
1309 | /* |
1310 | * Wind back a pointer size from the aligned address and |
1311 | * save the original address so we can free it later. |
1312 | */ |
1313 | void **pbuf = (void **)((intptr_t)buf - sizeof(void *)); |
1314 | *pbuf = obj; |
1315 | |
1316 | VERIFY(((intptr_t)buf + skm->skm_bufsize) <= |
1317 | ((intptr_t)obj + skm->skm_objsize)); |
1318 | #else /* !KASAN */ |
1319 | /* |
1320 | * We expect that the zone allocator would allocate elements |
1321 | * rounded up to the requested alignment based on the effective |
1322 | * object size computed in skmem_region_create() earlier, and |
1323 | * 'buf' is therefore the element address itself. |
1324 | */ |
1325 | buf = obj; |
1326 | #endif /* !KASAN */ |
1327 | |
1328 | /* make sure the object is aligned */ |
1329 | VERIFY(IS_P2ALIGNED(buf, skm->skm_bufalign)); |
1330 | |
1331 | /* |
1332 | * Return the object's info to the caller. |
1333 | */ |
1334 | bzero(s: oi, n: sizeof(*oi)); |
1335 | SKMEM_OBJ_ADDR(oi) = buf; |
1336 | ASSERT(skm->skm_objsize <= UINT32_MAX); |
1337 | SKMEM_OBJ_SIZE(oi) = (uint32_t)skm->skm_objsize; |
1338 | if (oim != NULL) { |
1339 | bzero(s: oim, n: sizeof(*oim)); |
1340 | } |
1341 | |
1342 | skm->skm_sl_alloc++; |
1343 | skm->skm_sl_bufinuse++; |
1344 | if (skm->skm_sl_bufinuse > skm->skm_sl_bufmax) { |
1345 | skm->skm_sl_bufmax = skm->skm_sl_bufinuse; |
1346 | } |
1347 | |
1348 | return 0; |
1349 | } |
1350 | |
1351 | /* |
1352 | * Allocate a raw object from the slab layer. |
1353 | */ |
1354 | static int |
1355 | skmem_slab_alloc(struct skmem_cache *skm, struct skmem_obj_info *oi, |
1356 | struct skmem_obj_info *oim, uint32_t skmflag) |
1357 | { |
1358 | int err; |
1359 | |
1360 | SKM_SLAB_LOCK(skm); |
1361 | err = skm->skm_slab_alloc(skm, oi, oim, skmflag); |
1362 | SKM_SLAB_UNLOCK(skm); |
1363 | |
1364 | return err; |
1365 | } |
1366 | |
1367 | /* |
1368 | * Allocate raw object(s) from the slab layer. |
1369 | */ |
1370 | static uint32_t |
1371 | skmem_slab_batch_alloc(struct skmem_cache *skm, struct skmem_obj **list, |
1372 | uint32_t num, uint32_t skmflag) |
1373 | { |
1374 | uint32_t need = num; |
1375 | |
1376 | ASSERT(list != NULL && (skm->skm_mode & SKM_MODE_BATCH)); |
1377 | *list = NULL; |
1378 | |
1379 | SKM_SLAB_LOCK(skm); |
1380 | for (;;) { |
1381 | struct skmem_obj_info oi, oim; |
1382 | |
1383 | /* |
1384 | * Get a single raw object from the slab layer. |
1385 | */ |
1386 | if (skm->skm_slab_alloc(skm, &oi, &oim, skmflag) != 0) { |
1387 | break; |
1388 | } |
1389 | |
1390 | *list = SKMEM_OBJ_ADDR(&oi); |
1391 | ASSERT((*list)->mo_next == NULL); |
1392 | /* store these inside the object itself */ |
1393 | (*list)->mo_info = oi; |
1394 | (*list)->mo_minfo = oim; |
1395 | list = &(*list)->mo_next; |
1396 | |
1397 | ASSERT(need != 0); |
1398 | if (--need == 0) { |
1399 | break; |
1400 | } |
1401 | } |
1402 | SKM_SLAB_UNLOCK(skm); |
1403 | |
1404 | return num - need; |
1405 | } |
1406 | |
1407 | /* |
1408 | * Free a raw object to the (locked) slab layer. Normal region variant. |
1409 | */ |
1410 | static void |
1411 | skmem_slab_free_locked(struct skmem_cache *skm, void *buf) |
1412 | { |
1413 | struct skmem_bufctl *bc, *tbc; |
1414 | struct skmem_bufctl_bkt *bcb; |
1415 | struct skmem_slab *sl = NULL; |
1416 | #if CONFIG_KERNEL_TAGGING && !defined(KASAN_LIGHT) |
1417 | struct skmem_region *region; |
1418 | vm_offset_t tagged_addr; |
1419 | /* |
1420 | * If buf is tagged, then addr would have the canonicalized address. |
1421 | * If buf is untagged, then addr is same as buf. |
1422 | */ |
1423 | void *addr = (void *)vm_memtag_canonicalize_address((vm_offset_t)buf); |
1424 | #endif /* CONFIG_KERNEL_TAGGING && !defined(KASAN_LIGHT) */ |
1425 | |
1426 | SKM_SLAB_LOCK_ASSERT_HELD(skm); |
1427 | ASSERT(buf != NULL); |
1428 | /* caller is expected to clear mo_next */ |
1429 | ASSERT(!(skm->skm_mode & SKM_MODE_BATCH) || |
1430 | ((struct skmem_obj *)buf)->mo_next == NULL); |
1431 | |
1432 | /* |
1433 | * Search the hash chain to find a matching buffer control for the |
1434 | * given object address. If found, remove the buffer control from |
1435 | * the hash chain and insert it into the freelist. Otherwise, we |
1436 | * panic since the caller has given us a bogus address. |
1437 | */ |
1438 | skm->skm_sl_free++; |
1439 | bcb = SKMEM_CACHE_HASH(skm, buf); |
1440 | |
1441 | #if CONFIG_KERNEL_TAGGING && !defined(KASAN_LIGHT) |
1442 | /* |
1443 | * If this region is configured to tag memory addresses, then buf is a |
1444 | * tagged address. When we search for the buffer control from the hash |
1445 | * table, we need to use the untagged address, because buffer control |
1446 | * maintains untagged address (bc_addr). vm_memtag_canonicalize_address |
1447 | * returns the untagged address. |
1448 | */ |
1449 | SLIST_FOREACH_SAFE(bc, &bcb->bcb_head, bc_link, tbc) { |
1450 | if (bc->bc_addr == addr) { |
1451 | SLIST_REMOVE(&bcb->bcb_head, bc, skmem_bufctl, bc_link); |
1452 | sl = bc->bc_slab; |
1453 | break; |
1454 | } |
1455 | } |
1456 | #else /* !CONFIG_KERNEL_TAGGING && !defined(KASAN_LIGHT) */ |
1457 | SLIST_FOREACH_SAFE(bc, &bcb->bcb_head, bc_link, tbc) { |
1458 | if (bc->bc_addr == buf) { |
1459 | SLIST_REMOVE(&bcb->bcb_head, bc, skmem_bufctl, bc_link); |
1460 | sl = bc->bc_slab; |
1461 | break; |
1462 | } |
1463 | } |
1464 | #endif /* CONFIG_KERNEL_TAGGING && !defined(KASAN_LIGHT) */ |
1465 | |
1466 | if (bc == NULL) { |
1467 | panic("%s: attempt to free invalid or already-freed obj %p " |
1468 | "on skm %p" , __func__, buf, skm); |
1469 | /* NOTREACHED */ |
1470 | __builtin_unreachable(); |
1471 | } |
1472 | ASSERT(sl != NULL && sl->sl_cache == skm); |
1473 | |
1474 | #if CONFIG_KERNEL_TAGGING && !defined(KASAN_LIGHT) |
1475 | /* |
1476 | * We use untagged address here, because SKMEM_SLAB_MEMBER compares the |
1477 | * address against sl_base, which is untagged. |
1478 | */ |
1479 | VERIFY(SKMEM_SLAB_MEMBER(sl, addr)); |
1480 | #else /* !CONFIG_KERNEL_TAGGING && !defined(KASAN_LIGHT) */ |
1481 | VERIFY(SKMEM_SLAB_MEMBER(sl, buf)); |
1482 | #endif /* CONFIG_KERNEL_TAGGING && !defined(KASAN_LIGHT) */ |
1483 | |
1484 | /* make sure this object is not currently in use by another object */ |
1485 | VERIFY(bc->bc_usecnt == 0); |
1486 | |
1487 | /* if auditing is enabled, record this transaction */ |
1488 | if (__improbable((skm->skm_mode & SKM_MODE_AUDIT) != 0)) { |
1489 | skmem_audit_bufctl(bc); |
1490 | } |
1491 | |
1492 | /* if clear on free is requested, zero out the object */ |
1493 | if (skm->skm_mode & SKM_MODE_CLEARONFREE) { |
1494 | bzero(s: buf, n: skm->skm_objsize); |
1495 | } |
1496 | |
1497 | #if CONFIG_KERNEL_TAGGING && !defined(KASAN_LIGHT) |
1498 | /* |
1499 | * If this region is configured to tag memory addresses, we re-tag this |
1500 | * address as the object is freed. We do the re-tagging in the magazine |
1501 | * layer too, but in case we need to free raw objects to the slab layer |
1502 | * (either becasue SKM_MODE_NOMAGAZINES is set, or the magazine layer |
1503 | * was not able to allocate empty magazines), we re-tag the addresses |
1504 | * here in the slab layer. Freeing to the slab layer is symmetrical to |
1505 | * allocating from the slab layer - when we allocate from slab layer, we |
1506 | * tag the address, and then construct the object; when we free to the |
1507 | * slab layer, we destruct the object, and retag the address. |
1508 | * We do the re-tagging here, because this is right after the last usage |
1509 | * of the buf variable (which is tagged). |
1510 | */ |
1511 | region = skm->skm_region; |
1512 | if (region->skr_mode & SKR_MODE_MEMTAG) { |
1513 | tagged_addr = vm_memtag_assign_tag((vm_offset_t)buf, |
1514 | skm->skm_objsize); |
1515 | vm_memtag_set_tag(tagged_addr, skm->skm_objsize); |
1516 | } |
1517 | #endif /* CONFIG_KERNEL_TAGGING && !defined(KASAN_LIGHT) */ |
1518 | |
1519 | /* insert the buffer control to the slab's freelist */ |
1520 | SLIST_INSERT_HEAD(&sl->sl_head, bc, bc_link); |
1521 | |
1522 | ASSERT(sl->sl_refcnt >= 1); |
1523 | if (--sl->sl_refcnt == 0) { |
1524 | /* |
1525 | * If this was the last outstanding object for the slab, |
1526 | * remove the slab from the partially-allocated or empty |
1527 | * list, and destroy the slab (segment) back to the region. |
1528 | */ |
1529 | if (sl->sl_chunks == 1) { |
1530 | ASSERT(skm->skm_sl_empty > 0); |
1531 | skm->skm_sl_empty--; |
1532 | TAILQ_REMOVE(&skm->skm_sl_empty_list, sl, sl_link); |
1533 | } else { |
1534 | ASSERT(skm->skm_sl_partial > 0); |
1535 | skm->skm_sl_partial--; |
1536 | TAILQ_REMOVE(&skm->skm_sl_partial_list, sl, sl_link); |
1537 | } |
1538 | ASSERT((int64_t)(skm->skm_sl_bufinuse - sl->sl_chunks) >= 0); |
1539 | skm->skm_sl_bufinuse -= sl->sl_chunks; |
1540 | skm->skm_sl_destroy++; |
1541 | SKM_SLAB_UNLOCK(skm); |
1542 | skmem_slab_destroy(skm, sl); |
1543 | SKM_SLAB_LOCK(skm); |
1544 | return; |
1545 | } |
1546 | |
1547 | ASSERT(bc == SLIST_FIRST(&sl->sl_head)); |
1548 | if (SLIST_NEXT(bc, bc_link) == NULL) { |
1549 | /* |
1550 | * If this is the first (potentially amongst many) object |
1551 | * that's returned to the slab, remove the slab from the |
1552 | * empty list and insert to end of the partially-allocated |
1553 | * list. This should help avoid thrashing the partial slab |
1554 | * since we avoid disturbing what's already at the front. |
1555 | */ |
1556 | ASSERT(sl->sl_refcnt == (sl->sl_chunks - 1)); |
1557 | ASSERT(sl->sl_chunks > 1); |
1558 | ASSERT(skm->skm_sl_empty > 0); |
1559 | skm->skm_sl_empty--; |
1560 | TAILQ_REMOVE(&skm->skm_sl_empty_list, sl, sl_link); |
1561 | skm->skm_sl_partial++; |
1562 | ASSERT(skm->skm_sl_partial != 0); |
1563 | TAILQ_INSERT_TAIL(&skm->skm_sl_partial_list, sl, sl_link); |
1564 | } |
1565 | } |
1566 | |
1567 | /* |
1568 | * Free a raw object to the (locked) slab layer. Pseudo region variant. |
1569 | */ |
1570 | static void |
1571 | skmem_slab_free_pseudo_locked(struct skmem_cache *skm, void *buf) |
1572 | { |
1573 | struct skmem_region *skr = skm->skm_region; |
1574 | void *obj = buf; |
1575 | |
1576 | ASSERT(skr->skr_reg == NULL && skr->skr_zreg != NULL); |
1577 | |
1578 | SKM_SLAB_LOCK_ASSERT_HELD(skm); |
1579 | |
1580 | VERIFY(IS_P2ALIGNED(obj, skm->skm_bufalign)); |
1581 | |
1582 | #if KASAN |
1583 | /* |
1584 | * Since we stuffed the original zone element address before |
1585 | * the buffer address in KASAN mode, get it back since we're |
1586 | * about to free it. |
1587 | */ |
1588 | void **pbuf = (void **)((intptr_t)obj - sizeof(void *)); |
1589 | |
1590 | VERIFY(((intptr_t)obj + skm->skm_bufsize) <= |
1591 | ((intptr_t)*pbuf + skm->skm_objsize)); |
1592 | |
1593 | obj = *pbuf; |
1594 | #endif /* KASAN */ |
1595 | |
1596 | /* free it to zone */ |
1597 | zfree(skr->skr_zreg, obj); |
1598 | |
1599 | skm->skm_sl_free++; |
1600 | ASSERT(skm->skm_sl_bufinuse > 0); |
1601 | skm->skm_sl_bufinuse--; |
1602 | } |
1603 | |
1604 | /* |
1605 | * Free a raw object to the slab layer. |
1606 | */ |
1607 | static void |
1608 | skmem_slab_free(struct skmem_cache *skm, void *buf) |
1609 | { |
1610 | if (skm->skm_mode & SKM_MODE_BATCH) { |
1611 | ((struct skmem_obj *)buf)->mo_next = NULL; |
1612 | } |
1613 | |
1614 | SKM_SLAB_LOCK(skm); |
1615 | skm->skm_slab_free(skm, buf); |
1616 | SKM_SLAB_UNLOCK(skm); |
1617 | } |
1618 | |
1619 | /* |
1620 | * Free raw object(s) to the slab layer. |
1621 | */ |
1622 | static void |
1623 | skmem_slab_batch_free(struct skmem_cache *skm, struct skmem_obj *list) |
1624 | { |
1625 | struct skmem_obj *listn; |
1626 | |
1627 | ASSERT(list != NULL && (skm->skm_mode & SKM_MODE_BATCH)); |
1628 | |
1629 | SKM_SLAB_LOCK(skm); |
1630 | for (;;) { |
1631 | listn = list->mo_next; |
1632 | list->mo_next = NULL; |
1633 | |
1634 | /* |
1635 | * Free a single object to the slab layer. |
1636 | */ |
1637 | skm->skm_slab_free(skm, (void *)list); |
1638 | |
1639 | /* if no more objects to free, we're done */ |
1640 | if ((list = listn) == NULL) { |
1641 | break; |
1642 | } |
1643 | } |
1644 | SKM_SLAB_UNLOCK(skm); |
1645 | } |
1646 | |
1647 | /* |
1648 | * Return the object's region info. |
1649 | */ |
1650 | void |
1651 | skmem_cache_get_obj_info(struct skmem_cache *skm, void *buf, |
1652 | struct skmem_obj_info *oi, struct skmem_obj_info *oim) |
1653 | { |
1654 | struct skmem_bufctl_bkt *bcb; |
1655 | struct skmem_bufctl *bc; |
1656 | struct skmem_slab *sl; |
1657 | |
1658 | /* |
1659 | * Search the hash chain to find a matching buffer control for the |
1660 | * given object address. If not found, panic since the caller has |
1661 | * given us a bogus address. |
1662 | */ |
1663 | SKM_SLAB_LOCK(skm); |
1664 | bcb = SKMEM_CACHE_HASH(skm, buf); |
1665 | SLIST_FOREACH(bc, &bcb->bcb_head, bc_link) { |
1666 | if (bc->bc_addr == buf) { |
1667 | break; |
1668 | } |
1669 | } |
1670 | |
1671 | if (__improbable(bc == NULL)) { |
1672 | panic("%s: %s failed to get object info for %p" , |
1673 | __func__, skm->skm_name, buf); |
1674 | /* NOTREACHED */ |
1675 | __builtin_unreachable(); |
1676 | } |
1677 | |
1678 | /* |
1679 | * Return the master object's info to the caller. |
1680 | */ |
1681 | sl = bc->bc_slab; |
1682 | SKMEM_OBJ_ADDR(oi) = bc->bc_addr; |
1683 | SKMEM_OBJ_BUFCTL(oi) = bc; /* master only; NULL for slave */ |
1684 | ASSERT(skm->skm_objsize <= UINT32_MAX); |
1685 | SKMEM_OBJ_SIZE(oi) = (uint32_t)skm->skm_objsize; |
1686 | SKMEM_OBJ_IDX_REG(oi) = |
1687 | (sl->sl_seg->sg_index * sl->sl_chunks) + bc->bc_idx; |
1688 | SKMEM_OBJ_IDX_SEG(oi) = bc->bc_idx; |
1689 | /* |
1690 | * And for slave object. |
1691 | */ |
1692 | if (oim != NULL) { |
1693 | bzero(s: oim, n: sizeof(*oim)); |
1694 | if (bc->bc_addrm != NULL) { |
1695 | SKMEM_OBJ_ADDR(oim) = bc->bc_addrm; |
1696 | SKMEM_OBJ_SIZE(oim) = oi->oi_size; |
1697 | SKMEM_OBJ_IDX_REG(oim) = oi->oi_idx_reg; |
1698 | SKMEM_OBJ_IDX_SEG(oim) = oi->oi_idx_seg; |
1699 | } |
1700 | } |
1701 | SKM_SLAB_UNLOCK(skm); |
1702 | } |
1703 | |
1704 | /* |
1705 | * Magazine constructor. |
1706 | */ |
1707 | static int |
1708 | skmem_magazine_ctor(struct skmem_obj_info *oi, struct skmem_obj_info *oim, |
1709 | void *arg, uint32_t skmflag) |
1710 | { |
1711 | #pragma unused(oim, skmflag) |
1712 | struct skmem_mag *mg = SKMEM_OBJ_ADDR(oi); |
1713 | |
1714 | ASSERT(oim == NULL); |
1715 | ASSERT(arg != NULL); |
1716 | |
1717 | /* |
1718 | * Store it in the magazine object since we'll |
1719 | * need to refer to it during magazine destroy; |
1720 | * we can't safely refer to skm_magtype as the |
1721 | * depot lock may not be acquired then. |
1722 | */ |
1723 | mg->mg_magtype = arg; |
1724 | |
1725 | return 0; |
1726 | } |
1727 | |
1728 | /* |
1729 | * Destroy a magazine (free each object to the slab layer). |
1730 | */ |
1731 | static void |
1732 | skmem_magazine_destroy(struct skmem_cache *skm, struct skmem_mag *mg, |
1733 | int nrounds) |
1734 | { |
1735 | int round; |
1736 | |
1737 | for (round = 0; round < nrounds; round++) { |
1738 | void *buf = mg->mg_round[round]; |
1739 | struct skmem_obj *next; |
1740 | |
1741 | if (skm->skm_mode & SKM_MODE_BATCH) { |
1742 | next = ((struct skmem_obj *)buf)->mo_next; |
1743 | ((struct skmem_obj *)buf)->mo_next = NULL; |
1744 | } |
1745 | |
1746 | /* deconstruct the object */ |
1747 | if (skm->skm_dtor != NULL) { |
1748 | skm->skm_dtor(buf, skm->skm_private); |
1749 | } |
1750 | |
1751 | /* |
1752 | * In non-batching mode, each object in the magazine has |
1753 | * no linkage to its neighbor, so free individual object |
1754 | * to the slab layer now. |
1755 | */ |
1756 | if (!(skm->skm_mode & SKM_MODE_BATCH)) { |
1757 | skmem_slab_free(skm, buf); |
1758 | } else { |
1759 | ((struct skmem_obj *)buf)->mo_next = next; |
1760 | } |
1761 | } |
1762 | |
1763 | /* |
1764 | * In batching mode, each object is linked to its neighbor at free |
1765 | * time, and so take the bottom-most object and free it to the slab |
1766 | * layer. Because of the way the list is reversed during free, this |
1767 | * will bring along the rest of objects above it. |
1768 | */ |
1769 | if (nrounds > 0 && (skm->skm_mode & SKM_MODE_BATCH)) { |
1770 | skmem_slab_batch_free(skm, list: mg->mg_round[nrounds - 1]); |
1771 | } |
1772 | |
1773 | /* free the magazine itself back to cache */ |
1774 | skmem_cache_free(mg->mg_magtype->mt_cache, mg); |
1775 | } |
1776 | |
1777 | /* |
1778 | * Get one or more magazines from the depot. |
1779 | */ |
1780 | static uint32_t |
1781 | skmem_depot_batch_alloc(struct skmem_cache *skm, struct skmem_maglist *ml, |
1782 | uint32_t *count, struct skmem_mag **list, uint32_t num) |
1783 | { |
1784 | SLIST_HEAD(, skmem_mag) mg_list = SLIST_HEAD_INITIALIZER(mg_list); |
1785 | struct skmem_mag *mg; |
1786 | uint32_t need = num, c = 0; |
1787 | |
1788 | ASSERT(list != NULL && need > 0); |
1789 | |
1790 | if (!SKM_DEPOT_LOCK_TRY(skm)) { |
1791 | /* |
1792 | * Track the amount of lock contention here; if the contention |
1793 | * level is high (more than skmem_cache_depot_contention per a |
1794 | * given skmem_cache_update_interval interval), then we treat |
1795 | * it as a sign that the per-CPU layer is not using the right |
1796 | * magazine type, and that we'd need to resize it. |
1797 | */ |
1798 | SKM_DEPOT_LOCK(skm); |
1799 | if (skm->skm_mode & SKM_MODE_DYNAMIC) { |
1800 | skm->skm_depot_contention++; |
1801 | } |
1802 | } |
1803 | |
1804 | while ((mg = SLIST_FIRST(&ml->ml_list)) != NULL) { |
1805 | SLIST_REMOVE_HEAD(&ml->ml_list, mg_link); |
1806 | SLIST_INSERT_HEAD(&mg_list, mg, mg_link); |
1807 | ASSERT(ml->ml_total != 0); |
1808 | if (--ml->ml_total < ml->ml_min) { |
1809 | ml->ml_min = ml->ml_total; |
1810 | } |
1811 | c++; |
1812 | ml->ml_alloc++; |
1813 | if (--need == 0) { |
1814 | break; |
1815 | } |
1816 | } |
1817 | *count -= c; |
1818 | |
1819 | SKM_DEPOT_UNLOCK(skm); |
1820 | |
1821 | *list = SLIST_FIRST(&mg_list); |
1822 | |
1823 | return num - need; |
1824 | } |
1825 | |
1826 | /* |
1827 | * Return one or more magazines to the depot. |
1828 | */ |
1829 | static void |
1830 | skmem_depot_batch_free(struct skmem_cache *skm, struct skmem_maglist *ml, |
1831 | uint32_t *count, struct skmem_mag *mg) |
1832 | { |
1833 | struct skmem_mag *nmg; |
1834 | uint32_t c = 0; |
1835 | |
1836 | SKM_DEPOT_LOCK(skm); |
1837 | while (mg != NULL) { |
1838 | nmg = SLIST_NEXT(mg, mg_link); |
1839 | SLIST_INSERT_HEAD(&ml->ml_list, mg, mg_link); |
1840 | ml->ml_total++; |
1841 | c++; |
1842 | mg = nmg; |
1843 | } |
1844 | *count += c; |
1845 | SKM_DEPOT_UNLOCK(skm); |
1846 | } |
1847 | |
1848 | /* |
1849 | * Update the depot's working state statistics. |
1850 | */ |
1851 | static void |
1852 | skmem_depot_ws_update(struct skmem_cache *skm) |
1853 | { |
1854 | SKM_DEPOT_LOCK_SPIN(skm); |
1855 | skm->skm_full.ml_reaplimit = skm->skm_full.ml_min; |
1856 | skm->skm_full.ml_min = skm->skm_full.ml_total; |
1857 | skm->skm_empty.ml_reaplimit = skm->skm_empty.ml_min; |
1858 | skm->skm_empty.ml_min = skm->skm_empty.ml_total; |
1859 | SKM_DEPOT_UNLOCK(skm); |
1860 | } |
1861 | |
1862 | /* |
1863 | * Empty the depot's working state statistics (everything's reapable.) |
1864 | */ |
1865 | static void |
1866 | skmem_depot_ws_zero(struct skmem_cache *skm) |
1867 | { |
1868 | SKM_DEPOT_LOCK_SPIN(skm); |
1869 | if (skm->skm_full.ml_reaplimit != skm->skm_full.ml_total || |
1870 | skm->skm_full.ml_min != skm->skm_full.ml_total || |
1871 | skm->skm_empty.ml_reaplimit != skm->skm_empty.ml_total || |
1872 | skm->skm_empty.ml_min != skm->skm_empty.ml_total) { |
1873 | skm->skm_full.ml_reaplimit = skm->skm_full.ml_total; |
1874 | skm->skm_full.ml_min = skm->skm_full.ml_total; |
1875 | skm->skm_empty.ml_reaplimit = skm->skm_empty.ml_total; |
1876 | skm->skm_empty.ml_min = skm->skm_empty.ml_total; |
1877 | skm->skm_depot_ws_zero++; |
1878 | } |
1879 | SKM_DEPOT_UNLOCK(skm); |
1880 | } |
1881 | |
1882 | /* |
1883 | * Reap magazines that's outside of the working set. |
1884 | */ |
1885 | static void |
1886 | skmem_depot_ws_reap(struct skmem_cache *skm) |
1887 | { |
1888 | struct skmem_mag *mg, *nmg; |
1889 | uint32_t f, e, reap; |
1890 | |
1891 | reap = f = MIN(skm->skm_full.ml_reaplimit, skm->skm_full.ml_min); |
1892 | if (reap != 0) { |
1893 | (void) skmem_depot_batch_alloc(skm, ml: &skm->skm_full, |
1894 | count: &skm->skm_depot_full, list: &mg, num: reap); |
1895 | while (mg != NULL) { |
1896 | nmg = SLIST_NEXT(mg, mg_link); |
1897 | SLIST_NEXT(mg, mg_link) = NULL; |
1898 | skmem_magazine_destroy(skm, mg, |
1899 | nrounds: mg->mg_magtype->mt_magsize); |
1900 | mg = nmg; |
1901 | } |
1902 | } |
1903 | |
1904 | reap = e = MIN(skm->skm_empty.ml_reaplimit, skm->skm_empty.ml_min); |
1905 | if (reap != 0) { |
1906 | (void) skmem_depot_batch_alloc(skm, ml: &skm->skm_empty, |
1907 | count: &skm->skm_depot_empty, list: &mg, num: reap); |
1908 | while (mg != NULL) { |
1909 | nmg = SLIST_NEXT(mg, mg_link); |
1910 | SLIST_NEXT(mg, mg_link) = NULL; |
1911 | skmem_magazine_destroy(skm, mg, nrounds: 0); |
1912 | mg = nmg; |
1913 | } |
1914 | } |
1915 | |
1916 | if (f != 0 || e != 0) { |
1917 | os_atomic_inc(&skm->skm_cpu_mag_reap, relaxed); |
1918 | } |
1919 | } |
1920 | |
1921 | /* |
1922 | * Performs periodic maintenance on a cache. This is serialized |
1923 | * through the update thread call, and so we guarantee there's at |
1924 | * most one update episode in the system at any given time. |
1925 | */ |
1926 | static void |
1927 | skmem_cache_update(struct skmem_cache *skm, uint32_t arg) |
1928 | { |
1929 | #pragma unused(arg) |
1930 | boolean_t resize_mag = FALSE; |
1931 | boolean_t rescale_hash = FALSE; |
1932 | |
1933 | SKMEM_CACHE_LOCK_ASSERT_HELD(); |
1934 | |
1935 | /* insist that we are executing in the update thread call context */ |
1936 | ASSERT(sk_is_cache_update_protected()); |
1937 | |
1938 | /* |
1939 | * If the cache has become much larger or smaller than the |
1940 | * allocated-address hash table, rescale the hash table. |
1941 | */ |
1942 | SKM_SLAB_LOCK(skm); |
1943 | if ((skm->skm_sl_bufinuse > (skm->skm_hash_mask << 1) && |
1944 | (skm->skm_hash_mask + 1) < skm->skm_hash_limit) || |
1945 | (skm->skm_sl_bufinuse < (skm->skm_hash_mask >> 1) && |
1946 | skm->skm_hash_mask > skm->skm_hash_initial)) { |
1947 | rescale_hash = TRUE; |
1948 | } |
1949 | SKM_SLAB_UNLOCK(skm); |
1950 | |
1951 | /* |
1952 | * Update the working set. |
1953 | */ |
1954 | skmem_depot_ws_update(skm); |
1955 | |
1956 | /* |
1957 | * If the contention count is greater than the threshold during |
1958 | * the update interval, and if we are not already at the maximum |
1959 | * magazine size, increase it. |
1960 | */ |
1961 | SKM_DEPOT_LOCK_SPIN(skm); |
1962 | if (skm->skm_chunksize < skm->skm_magtype->mt_maxbuf && |
1963 | (int)(skm->skm_depot_contention - skm->skm_depot_contention_prev) > |
1964 | skmem_cache_depot_contention) { |
1965 | ASSERT(skm->skm_mode & SKM_MODE_DYNAMIC); |
1966 | resize_mag = TRUE; |
1967 | } |
1968 | skm->skm_depot_contention_prev = skm->skm_depot_contention; |
1969 | SKM_DEPOT_UNLOCK(skm); |
1970 | |
1971 | if (rescale_hash) { |
1972 | skmem_cache_hash_rescale(skm); |
1973 | } |
1974 | |
1975 | if (resize_mag) { |
1976 | skmem_cache_magazine_resize(skm); |
1977 | } |
1978 | } |
1979 | |
1980 | /* |
1981 | * Reload the CPU's magazines with mg and its follower (if any). |
1982 | */ |
1983 | static void |
1984 | skmem_cpu_batch_reload(struct skmem_cpu_cache *cp, struct skmem_mag *mg, |
1985 | int rounds) |
1986 | { |
1987 | ASSERT((cp->cp_loaded == NULL && cp->cp_rounds == -1) || |
1988 | (cp->cp_loaded && cp->cp_rounds + rounds == cp->cp_magsize)); |
1989 | ASSERT(cp->cp_magsize > 0); |
1990 | |
1991 | cp->cp_loaded = mg; |
1992 | cp->cp_rounds = rounds; |
1993 | if (__probable(SLIST_NEXT(mg, mg_link) != NULL)) { |
1994 | cp->cp_ploaded = SLIST_NEXT(mg, mg_link); |
1995 | cp->cp_prounds = rounds; |
1996 | SLIST_NEXT(mg, mg_link) = NULL; |
1997 | } else { |
1998 | ASSERT(SLIST_NEXT(mg, mg_link) == NULL); |
1999 | cp->cp_ploaded = NULL; |
2000 | cp->cp_prounds = -1; |
2001 | } |
2002 | } |
2003 | |
2004 | /* |
2005 | * Reload the CPU's magazine with mg and save the previous one. |
2006 | */ |
2007 | static void |
2008 | skmem_cpu_reload(struct skmem_cpu_cache *cp, struct skmem_mag *mg, int rounds) |
2009 | { |
2010 | ASSERT((cp->cp_loaded == NULL && cp->cp_rounds == -1) || |
2011 | (cp->cp_loaded && cp->cp_rounds + rounds == cp->cp_magsize)); |
2012 | ASSERT(cp->cp_magsize > 0); |
2013 | |
2014 | cp->cp_ploaded = cp->cp_loaded; |
2015 | cp->cp_prounds = cp->cp_rounds; |
2016 | cp->cp_loaded = mg; |
2017 | cp->cp_rounds = rounds; |
2018 | } |
2019 | |
2020 | /* |
2021 | * Allocate a constructed object from the cache. |
2022 | */ |
2023 | void * |
2024 | skmem_cache_alloc(struct skmem_cache *skm, uint32_t skmflag) |
2025 | { |
2026 | struct skmem_obj *buf; |
2027 | |
2028 | (void) skmem_cache_batch_alloc(skm, list: &buf, 1, skmflag); |
2029 | return buf; |
2030 | } |
2031 | |
2032 | /* |
2033 | * Allocate constructed object(s) from the cache. |
2034 | */ |
2035 | uint32_t |
2036 | skmem_cache_batch_alloc(struct skmem_cache *skm, struct skmem_obj **list, |
2037 | uint32_t num, uint32_t skmflag) |
2038 | { |
2039 | struct skmem_cpu_cache *cp = SKMEM_CPU_CACHE(skm); |
2040 | struct skmem_obj **top = &(*list); |
2041 | struct skmem_mag *mg; |
2042 | uint32_t need = num; |
2043 | |
2044 | ASSERT(list != NULL); |
2045 | *list = NULL; |
2046 | |
2047 | if (need == 0) { |
2048 | return 0; |
2049 | } |
2050 | ASSERT(need == 1 || (skm->skm_mode & SKM_MODE_BATCH)); |
2051 | |
2052 | SKM_CPU_LOCK(cp); |
2053 | for (;;) { |
2054 | /* |
2055 | * If we have an object in the current CPU's loaded |
2056 | * magazine, return it and we're done. |
2057 | */ |
2058 | if (cp->cp_rounds > 0) { |
2059 | int objs = MIN((unsigned int)cp->cp_rounds, need); |
2060 | /* |
2061 | * In the SKM_MODE_BATCH case, objects in are already |
2062 | * linked together with the most recently freed object |
2063 | * at the head of the list; grab as many objects as we |
2064 | * can. Otherwise we'll just grab 1 object at most. |
2065 | */ |
2066 | *list = cp->cp_loaded->mg_round[cp->cp_rounds - 1]; |
2067 | cp->cp_rounds -= objs; |
2068 | cp->cp_alloc += objs; |
2069 | |
2070 | if (skm->skm_mode & SKM_MODE_BATCH) { |
2071 | struct skmem_obj *tail = |
2072 | cp->cp_loaded->mg_round[cp->cp_rounds]; |
2073 | list = &tail->mo_next; |
2074 | *list = NULL; |
2075 | } |
2076 | |
2077 | /* if we got them all, return to caller */ |
2078 | if ((need -= objs) == 0) { |
2079 | SKM_CPU_UNLOCK(cp); |
2080 | goto done; |
2081 | } |
2082 | } |
2083 | |
2084 | /* |
2085 | * The CPU's loaded magazine is empty. If the previously |
2086 | * loaded magazine was full, exchange and try again. |
2087 | */ |
2088 | if (cp->cp_prounds > 0) { |
2089 | skmem_cpu_reload(cp, mg: cp->cp_ploaded, rounds: cp->cp_prounds); |
2090 | continue; |
2091 | } |
2092 | |
2093 | /* |
2094 | * If the magazine layer is disabled, allocate from slab. |
2095 | * This can happen either because SKM_MODE_NOMAGAZINES is |
2096 | * set, or because we are resizing the magazine now. |
2097 | */ |
2098 | if (cp->cp_magsize == 0) { |
2099 | break; |
2100 | } |
2101 | |
2102 | /* |
2103 | * Both of the CPU's magazines are empty; try to get |
2104 | * full magazine(s) from the depot layer. Upon success, |
2105 | * reload and try again. To prevent potential thrashing, |
2106 | * replace both empty magazines only if the requested |
2107 | * count exceeds a magazine's worth of objects. |
2108 | */ |
2109 | (void) skmem_depot_batch_alloc(skm, ml: &skm->skm_full, |
2110 | count: &skm->skm_depot_full, list: &mg, num: (need <= cp->cp_magsize) ? 1 : 2); |
2111 | if (mg != NULL) { |
2112 | SLIST_HEAD(, skmem_mag) mg_list = |
2113 | SLIST_HEAD_INITIALIZER(mg_list); |
2114 | |
2115 | if (cp->cp_ploaded != NULL) { |
2116 | SLIST_INSERT_HEAD(&mg_list, cp->cp_ploaded, |
2117 | mg_link); |
2118 | } |
2119 | if (SLIST_NEXT(mg, mg_link) == NULL) { |
2120 | /* |
2121 | * Depot allocation returns only 1 magazine; |
2122 | * retain current empty magazine. |
2123 | */ |
2124 | skmem_cpu_reload(cp, mg, rounds: cp->cp_magsize); |
2125 | } else { |
2126 | /* |
2127 | * We got 2 full magazines from depot; |
2128 | * release the current empty magazine |
2129 | * back to the depot layer. |
2130 | */ |
2131 | if (cp->cp_loaded != NULL) { |
2132 | SLIST_INSERT_HEAD(&mg_list, |
2133 | cp->cp_loaded, mg_link); |
2134 | } |
2135 | skmem_cpu_batch_reload(cp, mg, rounds: cp->cp_magsize); |
2136 | } |
2137 | skmem_depot_batch_free(skm, ml: &skm->skm_empty, |
2138 | count: &skm->skm_depot_empty, SLIST_FIRST(&mg_list)); |
2139 | continue; |
2140 | } |
2141 | |
2142 | /* |
2143 | * The depot layer doesn't have any full magazines; |
2144 | * allocate directly from the slab layer. |
2145 | */ |
2146 | break; |
2147 | } |
2148 | SKM_CPU_UNLOCK(cp); |
2149 | |
2150 | if (__probable(num > 1 && (skm->skm_mode & SKM_MODE_BATCH) != 0)) { |
2151 | struct skmem_obj *rtop, *rlist, *rlistp = NULL; |
2152 | uint32_t rlistc, c = 0; |
2153 | |
2154 | /* |
2155 | * Get a list of raw objects from the slab layer. |
2156 | */ |
2157 | rlistc = skmem_slab_batch_alloc(skm, list: &rlist, num: need, skmflag); |
2158 | ASSERT(rlistc == 0 || rlist != NULL); |
2159 | rtop = rlist; |
2160 | |
2161 | /* |
2162 | * Construct each object in the raw list. Upon failure, |
2163 | * free any remaining objects in the list back to the slab |
2164 | * layer, and keep the ones that were successfully constructed. |
2165 | * Here, "oi" and "oim" in each skmem_obj refer to the objects |
2166 | * coming from the master and slave regions (on mirrored |
2167 | * regions), respectively. They are stored inside the object |
2168 | * temporarily so that we can pass them to the constructor. |
2169 | */ |
2170 | while (skm->skm_ctor != NULL && rlist != NULL) { |
2171 | struct skmem_obj_info *oi = &rlist->mo_info; |
2172 | struct skmem_obj_info *oim = &rlist->mo_minfo; |
2173 | struct skmem_obj *rlistn = rlist->mo_next; |
2174 | |
2175 | /* |
2176 | * Note that the constructor guarantees at least |
2177 | * the size of a pointer at the top of the object |
2178 | * and no more than that. That means we must not |
2179 | * refer to "oi" and "oim" any longer after the |
2180 | * object goes thru the constructor. |
2181 | */ |
2182 | if (skm->skm_ctor(oi, ((SKMEM_OBJ_ADDR(oim) != NULL) ? |
2183 | oim : NULL), skm->skm_private, skmflag) != 0) { |
2184 | VERIFY(rlist->mo_next == rlistn); |
2185 | os_atomic_add(&skm->skm_sl_alloc_fail, |
2186 | rlistc - c, relaxed); |
2187 | if (rlistp != NULL) { |
2188 | rlistp->mo_next = NULL; |
2189 | } |
2190 | if (rlist == rtop) { |
2191 | rtop = NULL; |
2192 | ASSERT(c == 0); |
2193 | } |
2194 | skmem_slab_batch_free(skm, list: rlist); |
2195 | rlist = NULL; |
2196 | rlistc = c; |
2197 | break; |
2198 | } |
2199 | VERIFY(rlist->mo_next == rlistn); |
2200 | |
2201 | ++c; /* # of constructed objs */ |
2202 | rlistp = rlist; |
2203 | if ((rlist = rlist->mo_next) == NULL) { |
2204 | ASSERT(rlistc == c); |
2205 | break; |
2206 | } |
2207 | } |
2208 | |
2209 | /* |
2210 | * At this point "top" points to the head of the chain we're |
2211 | * going to return to caller; "list" points to the tail of that |
2212 | * chain. The second chain begins at "rtop", and we append |
2213 | * that after "list" to form a single chain. "rlistc" is the |
2214 | * number of objects in "rtop" originated from the slab layer |
2215 | * that have been successfully constructed (if applicable). |
2216 | */ |
2217 | ASSERT(c == 0 || rtop != NULL); |
2218 | need -= rlistc; |
2219 | *list = rtop; |
2220 | } else { |
2221 | struct skmem_obj_info oi, oim; |
2222 | void *buf; |
2223 | |
2224 | ASSERT(*top == NULL && num == 1 && need == 1); |
2225 | |
2226 | /* |
2227 | * Get a single raw object from the slab layer. |
2228 | */ |
2229 | if (skmem_slab_alloc(skm, oi: &oi, oim: &oim, skmflag) != 0) { |
2230 | goto done; |
2231 | } |
2232 | |
2233 | buf = SKMEM_OBJ_ADDR(&oi); |
2234 | ASSERT(buf != NULL); |
2235 | |
2236 | /* |
2237 | * Construct the raw object. Here, "oi" and "oim" refer to |
2238 | * the objects coming from the master and slave regions (on |
2239 | * mirrored regions), respectively. |
2240 | */ |
2241 | if (skm->skm_ctor != NULL && |
2242 | skm->skm_ctor(&oi, ((SKMEM_OBJ_ADDR(&oim) != NULL) ? |
2243 | &oim : NULL), skm->skm_private, skmflag) != 0) { |
2244 | os_atomic_inc(&skm->skm_sl_alloc_fail, relaxed); |
2245 | skmem_slab_free(skm, buf); |
2246 | goto done; |
2247 | } |
2248 | |
2249 | need = 0; |
2250 | *list = buf; |
2251 | ASSERT(!(skm->skm_mode & SKM_MODE_BATCH) || |
2252 | (*list)->mo_next == NULL); |
2253 | } |
2254 | |
2255 | done: |
2256 | /* if auditing is enabled, record this transaction */ |
2257 | if (__improbable(*top != NULL && |
2258 | (skm->skm_mode & SKM_MODE_AUDIT) != 0)) { |
2259 | skmem_audit_buf(skm, *top); |
2260 | } |
2261 | |
2262 | return num - need; |
2263 | } |
2264 | |
2265 | /* |
2266 | * Free a constructed object to the cache. |
2267 | */ |
2268 | void |
2269 | skmem_cache_free(struct skmem_cache *skm, void *buf) |
2270 | { |
2271 | if (skm->skm_mode & SKM_MODE_BATCH) { |
2272 | ((struct skmem_obj *)buf)->mo_next = NULL; |
2273 | } |
2274 | skmem_cache_batch_free(skm, (struct skmem_obj *)buf); |
2275 | } |
2276 | |
2277 | void |
2278 | skmem_cache_batch_free(struct skmem_cache *skm, struct skmem_obj *list) |
2279 | { |
2280 | struct skmem_cpu_cache *cp = SKMEM_CPU_CACHE(skm); |
2281 | struct skmem_magtype *mtp; |
2282 | struct skmem_mag *mg; |
2283 | struct skmem_obj *listn; |
2284 | #if CONFIG_KERNEL_TAGGING && !defined(KASAN_LIGHT) |
2285 | vm_offset_t tagged_address; /* address tagging */ |
2286 | struct skmem_region *region; /* region source for this cache */ |
2287 | #endif /* CONFIG_KERNEL_TAGGING && !defined(KASAN_LIGHT) */ |
2288 | |
2289 | /* if auditing is enabled, record this transaction */ |
2290 | if (__improbable((skm->skm_mode & SKM_MODE_AUDIT) != 0)) { |
2291 | skmem_audit_buf(skm, list); |
2292 | } |
2293 | |
2294 | SKM_CPU_LOCK(cp); |
2295 | for (;;) { |
2296 | /* |
2297 | * If there's an available space in the current CPU's |
2298 | * loaded magazine, place it there and we're done. |
2299 | */ |
2300 | if ((unsigned int)cp->cp_rounds < |
2301 | (unsigned int)cp->cp_magsize) { |
2302 | /* |
2303 | * In the SKM_MODE_BATCH case, reverse the list |
2304 | * while we place each object into the magazine; |
2305 | * this effectively causes the most recently |
2306 | * freed object to be reused during allocation. |
2307 | */ |
2308 | if (skm->skm_mode & SKM_MODE_BATCH) { |
2309 | listn = list->mo_next; |
2310 | list->mo_next = (cp->cp_rounds == 0) ? NULL : |
2311 | cp->cp_loaded->mg_round[cp->cp_rounds - 1]; |
2312 | } else { |
2313 | listn = NULL; |
2314 | } |
2315 | #if CONFIG_KERNEL_TAGGING && !defined(KASAN_LIGHT) |
2316 | /* |
2317 | * If this region is configured to be tagged, we re-tag |
2318 | * the address that's being freed, to protect against |
2319 | * use-after-free bugs. This "re-tagged" address will |
2320 | * reside in the CPU's loaded magazine, and when cache |
2321 | * alloc is called, it is returned to client as is. At |
2322 | * this point, we know that this object will be freed to |
2323 | * the CPU's loaded magazine and not down to the slab |
2324 | * layer, so we won't be double tagging the same address |
2325 | * in the magazine layer and slab layer. |
2326 | */ |
2327 | region = skm->skm_region; |
2328 | if (region->skr_mode & SKR_MODE_MEMTAG) { |
2329 | tagged_address = vm_memtag_assign_tag( |
2330 | (vm_offset_t)list, skm->skm_objsize); |
2331 | vm_memtag_set_tag(tagged_address, |
2332 | skm->skm_objsize); |
2333 | cp->cp_loaded->mg_round[cp->cp_rounds++] = |
2334 | (void *)tagged_address; |
2335 | } else { |
2336 | cp->cp_loaded->mg_round[cp->cp_rounds++] = list; |
2337 | } |
2338 | #else /* !CONFIG_KERNEL_TAGGING && !defined(KASAN_LIGHT) */ |
2339 | cp->cp_loaded->mg_round[cp->cp_rounds++] = list; |
2340 | #endif /* CONFIG_KERNEL_TAGGING && !defined(KASAN_LIGHT) */ |
2341 | cp->cp_free++; |
2342 | |
2343 | if ((list = listn) != NULL) { |
2344 | continue; |
2345 | } |
2346 | |
2347 | SKM_CPU_UNLOCK(cp); |
2348 | return; |
2349 | } |
2350 | |
2351 | /* |
2352 | * The loaded magazine is full. If the previously |
2353 | * loaded magazine was empty, exchange and try again. |
2354 | */ |
2355 | if (cp->cp_prounds == 0) { |
2356 | skmem_cpu_reload(cp, mg: cp->cp_ploaded, rounds: cp->cp_prounds); |
2357 | continue; |
2358 | } |
2359 | |
2360 | /* |
2361 | * If the magazine layer is disabled, free to slab. |
2362 | * This can happen either because SKM_MODE_NOMAGAZINES |
2363 | * is set, or because we are resizing the magazine now. |
2364 | */ |
2365 | if (cp->cp_magsize == 0) { |
2366 | break; |
2367 | } |
2368 | |
2369 | /* |
2370 | * Both magazines for the CPU are full; try to get |
2371 | * empty magazine(s) from the depot. If we get one, |
2372 | * exchange a full magazine with it and place the |
2373 | * object in there. |
2374 | * |
2375 | * TODO: Because the caller currently doesn't indicate |
2376 | * the number of objects in the list, we choose the more |
2377 | * conservative approach of allocating only 1 empty |
2378 | * magazine (to prevent potential thrashing). Once we |
2379 | * have the object count, we can replace 1 with similar |
2380 | * logic as used in skmem_cache_batch_alloc(). |
2381 | */ |
2382 | (void) skmem_depot_batch_alloc(skm, ml: &skm->skm_empty, |
2383 | count: &skm->skm_depot_empty, list: &mg, num: 1); |
2384 | if (mg != NULL) { |
2385 | SLIST_HEAD(, skmem_mag) mg_list = |
2386 | SLIST_HEAD_INITIALIZER(mg_list); |
2387 | |
2388 | if (cp->cp_ploaded != NULL) { |
2389 | SLIST_INSERT_HEAD(&mg_list, cp->cp_ploaded, |
2390 | mg_link); |
2391 | } |
2392 | if (SLIST_NEXT(mg, mg_link) == NULL) { |
2393 | /* |
2394 | * Depot allocation returns only 1 magazine; |
2395 | * retain current full magazine. |
2396 | */ |
2397 | skmem_cpu_reload(cp, mg, rounds: 0); |
2398 | } else { |
2399 | /* |
2400 | * We got 2 empty magazines from depot; |
2401 | * release the current full magazine back |
2402 | * to the depot layer. |
2403 | */ |
2404 | if (cp->cp_loaded != NULL) { |
2405 | SLIST_INSERT_HEAD(&mg_list, |
2406 | cp->cp_loaded, mg_link); |
2407 | } |
2408 | skmem_cpu_batch_reload(cp, mg, rounds: 0); |
2409 | } |
2410 | skmem_depot_batch_free(skm, ml: &skm->skm_full, |
2411 | count: &skm->skm_depot_full, SLIST_FIRST(&mg_list)); |
2412 | continue; |
2413 | } |
2414 | |
2415 | /* |
2416 | * We can't get any empty magazine from the depot, and |
2417 | * so we need to allocate one. If the allocation fails, |
2418 | * just fall through, deconstruct and free the object |
2419 | * to the slab layer. |
2420 | */ |
2421 | mtp = skm->skm_magtype; |
2422 | SKM_CPU_UNLOCK(cp); |
2423 | mg = skmem_cache_alloc(skm: mtp->mt_cache, SKMEM_NOSLEEP); |
2424 | SKM_CPU_LOCK(cp); |
2425 | |
2426 | if (mg != NULL) { |
2427 | /* |
2428 | * We allocated an empty magazine, but since we |
2429 | * dropped the CPU lock above the magazine size |
2430 | * may have changed. If that's the case free |
2431 | * the magazine and try again. |
2432 | */ |
2433 | if (cp->cp_magsize != mtp->mt_magsize) { |
2434 | SKM_CPU_UNLOCK(cp); |
2435 | skmem_cache_free(skm: mtp->mt_cache, buf: mg); |
2436 | SKM_CPU_LOCK(cp); |
2437 | continue; |
2438 | } |
2439 | |
2440 | /* |
2441 | * We have a magazine with the right size; |
2442 | * add it to the depot and try again. |
2443 | */ |
2444 | ASSERT(SLIST_NEXT(mg, mg_link) == NULL); |
2445 | skmem_depot_batch_free(skm, ml: &skm->skm_empty, |
2446 | count: &skm->skm_depot_empty, mg); |
2447 | continue; |
2448 | } |
2449 | |
2450 | /* |
2451 | * We can't get an empty magazine, so free to slab. |
2452 | */ |
2453 | break; |
2454 | } |
2455 | SKM_CPU_UNLOCK(cp); |
2456 | |
2457 | /* |
2458 | * We weren't able to free the constructed object(s) to the |
2459 | * magazine layer, so deconstruct them and free to the slab. |
2460 | */ |
2461 | if (__probable((skm->skm_mode & SKM_MODE_BATCH) && |
2462 | list->mo_next != NULL)) { |
2463 | /* whatever is left from original list */ |
2464 | struct skmem_obj *top = list; |
2465 | |
2466 | while (list != NULL && skm->skm_dtor != NULL) { |
2467 | listn = list->mo_next; |
2468 | list->mo_next = NULL; |
2469 | |
2470 | /* deconstruct the object */ |
2471 | if (skm->skm_dtor != NULL) { |
2472 | skm->skm_dtor((void *)list, skm->skm_private); |
2473 | } |
2474 | |
2475 | list->mo_next = listn; |
2476 | list = listn; |
2477 | } |
2478 | |
2479 | skmem_slab_batch_free(skm, list: top); |
2480 | } else { |
2481 | /* deconstruct the object */ |
2482 | if (skm->skm_dtor != NULL) { |
2483 | skm->skm_dtor((void *)list, skm->skm_private); |
2484 | } |
2485 | |
2486 | skmem_slab_free(skm, buf: (void *)list); |
2487 | } |
2488 | } |
2489 | |
2490 | /* |
2491 | * Return the maximum number of objects cached at the magazine layer |
2492 | * based on the chunk size. This takes into account the starting |
2493 | * magazine type as well as the final magazine type used in resizing. |
2494 | */ |
2495 | uint32_t |
2496 | skmem_cache_magazine_max(uint32_t chunksize) |
2497 | { |
2498 | struct skmem_magtype *mtp; |
2499 | uint32_t magsize_max; |
2500 | |
2501 | VERIFY(ncpu != 0); |
2502 | VERIFY(chunksize > 0); |
2503 | |
2504 | /* find a suitable magazine type for this chunk size */ |
2505 | for (mtp = skmem_magtype; chunksize <= mtp->mt_minbuf; mtp++) { |
2506 | continue; |
2507 | } |
2508 | |
2509 | /* and find the last magazine type */ |
2510 | for (;;) { |
2511 | magsize_max = mtp->mt_magsize; |
2512 | if (mtp == skmem_cache_magsize_last || |
2513 | chunksize >= mtp->mt_maxbuf) { |
2514 | break; |
2515 | } |
2516 | ++mtp; |
2517 | VERIFY(mtp <= skmem_cache_magsize_last); |
2518 | } |
2519 | |
2520 | return ncpu * magsize_max * 2; /* two magazines per CPU */ |
2521 | } |
2522 | |
2523 | /* |
2524 | * Return true if SKMEM_DEBUG_NOMAGAZINES is not set on skmem_debug. |
2525 | */ |
2526 | boolean_t |
2527 | skmem_allow_magazines(void) |
2528 | { |
2529 | return !(skmem_debug & SKMEM_DEBUG_NOMAGAZINES); |
2530 | } |
2531 | |
2532 | /* |
2533 | * Purge all magazines from a cache and disable its per-CPU magazines layer. |
2534 | */ |
2535 | static void |
2536 | skmem_cache_magazine_purge(struct skmem_cache *skm) |
2537 | { |
2538 | struct skmem_cpu_cache *cp; |
2539 | struct skmem_mag *mg, *pmg; |
2540 | int rounds, prounds; |
2541 | uint32_t cpuid, mg_cnt = 0, pmg_cnt = 0; |
2542 | |
2543 | SKM_SLAB_LOCK_ASSERT_NOTHELD(skm); |
2544 | |
2545 | SK_DF(SK_VERB_MEM_CACHE, "skm 0x%llx" , SK_KVA(skm)); |
2546 | |
2547 | for (cpuid = 0; cpuid < ncpu; cpuid++) { |
2548 | cp = &skm->skm_cpu_cache[cpuid]; |
2549 | |
2550 | SKM_CPU_LOCK_SPIN(cp); |
2551 | mg = cp->cp_loaded; |
2552 | pmg = cp->cp_ploaded; |
2553 | rounds = cp->cp_rounds; |
2554 | prounds = cp->cp_prounds; |
2555 | cp->cp_loaded = NULL; |
2556 | cp->cp_ploaded = NULL; |
2557 | cp->cp_rounds = -1; |
2558 | cp->cp_prounds = -1; |
2559 | cp->cp_magsize = 0; |
2560 | SKM_CPU_UNLOCK(cp); |
2561 | |
2562 | if (mg != NULL) { |
2563 | skmem_magazine_destroy(skm, mg, nrounds: rounds); |
2564 | ++mg_cnt; |
2565 | } |
2566 | if (pmg != NULL) { |
2567 | skmem_magazine_destroy(skm, mg: pmg, nrounds: prounds); |
2568 | ++pmg_cnt; |
2569 | } |
2570 | } |
2571 | |
2572 | if (mg_cnt != 0 || pmg_cnt != 0) { |
2573 | os_atomic_inc(&skm->skm_cpu_mag_purge, relaxed); |
2574 | } |
2575 | |
2576 | skmem_depot_ws_zero(skm); |
2577 | skmem_depot_ws_reap(skm); |
2578 | } |
2579 | |
2580 | /* |
2581 | * Enable magazines on a cache. Must only be called on a cache with |
2582 | * its per-CPU magazines layer disabled (e.g. due to purge). |
2583 | */ |
2584 | static void |
2585 | skmem_cache_magazine_enable(struct skmem_cache *skm, uint32_t arg) |
2586 | { |
2587 | #pragma unused(arg) |
2588 | struct skmem_cpu_cache *cp; |
2589 | uint32_t cpuid; |
2590 | |
2591 | if (skm->skm_mode & SKM_MODE_NOMAGAZINES) { |
2592 | return; |
2593 | } |
2594 | |
2595 | for (cpuid = 0; cpuid < ncpu; cpuid++) { |
2596 | cp = &skm->skm_cpu_cache[cpuid]; |
2597 | SKM_CPU_LOCK_SPIN(cp); |
2598 | /* the magazines layer must be disabled at this point */ |
2599 | ASSERT(cp->cp_loaded == NULL); |
2600 | ASSERT(cp->cp_ploaded == NULL); |
2601 | ASSERT(cp->cp_rounds == -1); |
2602 | ASSERT(cp->cp_prounds == -1); |
2603 | ASSERT(cp->cp_magsize == 0); |
2604 | cp->cp_magsize = skm->skm_magtype->mt_magsize; |
2605 | SKM_CPU_UNLOCK(cp); |
2606 | } |
2607 | |
2608 | SK_DF(SK_VERB_MEM_CACHE, "skm 0x%llx chunksize %u magsize %d" , |
2609 | SK_KVA(skm), (uint32_t)skm->skm_chunksize, |
2610 | SKMEM_CPU_CACHE(skm)->cp_magsize); |
2611 | } |
2612 | |
2613 | /* |
2614 | * Enter the cache resize perimeter. Upon success, claim exclusivity |
2615 | * on the perimeter and return 0, else EBUSY. Caller may indicate |
2616 | * whether or not they're willing to wait. |
2617 | */ |
2618 | static int |
2619 | skmem_cache_resize_enter(struct skmem_cache *skm, boolean_t can_sleep) |
2620 | { |
2621 | SKM_RESIZE_LOCK(skm); |
2622 | if (skm->skm_rs_owner == current_thread()) { |
2623 | ASSERT(skm->skm_rs_busy != 0); |
2624 | skm->skm_rs_busy++; |
2625 | goto done; |
2626 | } |
2627 | if (!can_sleep) { |
2628 | if (skm->skm_rs_busy != 0) { |
2629 | SKM_RESIZE_UNLOCK(skm); |
2630 | return EBUSY; |
2631 | } |
2632 | } else { |
2633 | while (skm->skm_rs_busy != 0) { |
2634 | skm->skm_rs_want++; |
2635 | (void) assert_wait(event: &skm->skm_rs_busy, THREAD_UNINT); |
2636 | SKM_RESIZE_UNLOCK(skm); |
2637 | (void) thread_block(THREAD_CONTINUE_NULL); |
2638 | SK_DF(SK_VERB_MEM_CACHE, "waited for skm \"%s\" " |
2639 | "(0x%llx) busy=%u" , skm->skm_name, |
2640 | SK_KVA(skm), skm->skm_rs_busy); |
2641 | SKM_RESIZE_LOCK(skm); |
2642 | } |
2643 | } |
2644 | SKM_RESIZE_LOCK_ASSERT_HELD(skm); |
2645 | ASSERT(skm->skm_rs_busy == 0); |
2646 | skm->skm_rs_busy++; |
2647 | skm->skm_rs_owner = current_thread(); |
2648 | done: |
2649 | SKM_RESIZE_UNLOCK(skm); |
2650 | return 0; |
2651 | } |
2652 | |
2653 | /* |
2654 | * Exit the cache resize perimeter and unblock any waiters. |
2655 | */ |
2656 | static void |
2657 | skmem_cache_resize_exit(struct skmem_cache *skm) |
2658 | { |
2659 | uint32_t want; |
2660 | |
2661 | SKM_RESIZE_LOCK(skm); |
2662 | ASSERT(skm->skm_rs_busy != 0); |
2663 | ASSERT(skm->skm_rs_owner == current_thread()); |
2664 | if (--skm->skm_rs_busy == 0) { |
2665 | skm->skm_rs_owner = NULL; |
2666 | /* |
2667 | * We're done; notify anyone that has lost the race. |
2668 | */ |
2669 | if ((want = skm->skm_rs_want) != 0) { |
2670 | skm->skm_rs_want = 0; |
2671 | wakeup(chan: (void *)&skm->skm_rs_busy); |
2672 | SKM_RESIZE_UNLOCK(skm); |
2673 | } else { |
2674 | SKM_RESIZE_UNLOCK(skm); |
2675 | } |
2676 | } else { |
2677 | SKM_RESIZE_UNLOCK(skm); |
2678 | } |
2679 | } |
2680 | |
2681 | /* |
2682 | * Recompute a cache's magazine size. This is an expensive operation |
2683 | * and should not be done frequently; larger magazines provide for a |
2684 | * higher transfer rate with the depot while smaller magazines reduce |
2685 | * the memory consumption. |
2686 | */ |
2687 | static void |
2688 | skmem_cache_magazine_resize(struct skmem_cache *skm) |
2689 | { |
2690 | struct skmem_magtype *mtp = skm->skm_magtype; |
2691 | |
2692 | /* insist that we are executing in the update thread call context */ |
2693 | ASSERT(sk_is_cache_update_protected()); |
2694 | ASSERT(!(skm->skm_mode & SKM_MODE_NOMAGAZINES)); |
2695 | /* depot contention only applies to dynamic mode */ |
2696 | ASSERT(skm->skm_mode & SKM_MODE_DYNAMIC); |
2697 | |
2698 | /* |
2699 | * Although we're executing in the context of the update thread |
2700 | * call, we need to protect the per-CPU states during resizing |
2701 | * against other synchronous cache purge/reenable requests that |
2702 | * could take place in parallel. |
2703 | */ |
2704 | if (skm->skm_chunksize < mtp->mt_maxbuf) { |
2705 | (void) skmem_cache_resize_enter(skm, TRUE); |
2706 | skmem_cache_magazine_purge(skm); |
2707 | |
2708 | /* |
2709 | * Upgrade to the next magazine type with larger size. |
2710 | */ |
2711 | SKM_DEPOT_LOCK_SPIN(skm); |
2712 | skm->skm_cpu_mag_resize++; |
2713 | skm->skm_magtype = ++mtp; |
2714 | skm->skm_cpu_mag_size = skm->skm_magtype->mt_magsize; |
2715 | skm->skm_depot_contention_prev = |
2716 | skm->skm_depot_contention + INT_MAX; |
2717 | SKM_DEPOT_UNLOCK(skm); |
2718 | |
2719 | skmem_cache_magazine_enable(skm, arg: 0); |
2720 | skmem_cache_resize_exit(skm); |
2721 | } |
2722 | } |
2723 | |
2724 | /* |
2725 | * Rescale the cache's allocated-address hash table. |
2726 | */ |
2727 | static void |
2728 | skmem_cache_hash_rescale(struct skmem_cache *skm) |
2729 | { |
2730 | struct skmem_bufctl_bkt *old_table, *new_table; |
2731 | size_t old_size, new_size; |
2732 | uint32_t i, moved = 0; |
2733 | |
2734 | /* insist that we are executing in the update thread call context */ |
2735 | ASSERT(sk_is_cache_update_protected()); |
2736 | |
2737 | /* |
2738 | * To get small average lookup time (lookup depth near 1.0), the hash |
2739 | * table size should be roughly the same (not necessarily equivalent) |
2740 | * as the cache size. |
2741 | */ |
2742 | new_size = MAX(skm->skm_hash_initial, |
2743 | (1 << (flsll(3 * skm->skm_sl_bufinuse + 4) - 2))); |
2744 | new_size = MIN(skm->skm_hash_limit, new_size); |
2745 | old_size = (skm->skm_hash_mask + 1); |
2746 | |
2747 | if ((old_size >> 1) <= new_size && new_size <= (old_size << 1)) { |
2748 | return; |
2749 | } |
2750 | |
2751 | new_table = sk_alloc_type_array(struct skmem_bufctl_bkt, new_size, |
2752 | Z_NOWAIT, skmem_tag_bufctl_hash); |
2753 | if (__improbable(new_table == NULL)) { |
2754 | return; |
2755 | } |
2756 | |
2757 | for (i = 0; i < new_size; i++) { |
2758 | SLIST_INIT(&new_table[i].bcb_head); |
2759 | } |
2760 | |
2761 | SKM_SLAB_LOCK(skm); |
2762 | |
2763 | old_size = (skm->skm_hash_mask + 1); |
2764 | old_table = skm->skm_hash_table; |
2765 | |
2766 | skm->skm_hash_mask = (new_size - 1); |
2767 | skm->skm_hash_table = new_table; |
2768 | skm->skm_sl_rescale++; |
2769 | |
2770 | for (i = 0; i < old_size; i++) { |
2771 | struct skmem_bufctl_bkt *bcb = &old_table[i]; |
2772 | struct skmem_bufctl_bkt *new_bcb; |
2773 | struct skmem_bufctl *bc; |
2774 | |
2775 | while ((bc = SLIST_FIRST(&bcb->bcb_head)) != NULL) { |
2776 | SLIST_REMOVE_HEAD(&bcb->bcb_head, bc_link); |
2777 | new_bcb = SKMEM_CACHE_HASH(skm, bc->bc_addr); |
2778 | /* |
2779 | * Ideally we want to insert tail here, but simple |
2780 | * list doesn't give us that. The fact that we are |
2781 | * essentially reversing the order is not a big deal |
2782 | * here vis-a-vis the new table size. |
2783 | */ |
2784 | SLIST_INSERT_HEAD(&new_bcb->bcb_head, bc, bc_link); |
2785 | ++moved; |
2786 | } |
2787 | ASSERT(SLIST_EMPTY(&bcb->bcb_head)); |
2788 | } |
2789 | |
2790 | SK_DF(SK_VERB_MEM_CACHE, |
2791 | "skm 0x%llx old_size %u new_size %u [%u moved]" , SK_KVA(skm), |
2792 | (uint32_t)old_size, (uint32_t)new_size, moved); |
2793 | |
2794 | SKM_SLAB_UNLOCK(skm); |
2795 | |
2796 | sk_free_type_array(struct skmem_bufctl_bkt, old_size, old_table); |
2797 | } |
2798 | |
2799 | /* |
2800 | * Apply a function to operate on all caches. |
2801 | */ |
2802 | static void |
2803 | skmem_cache_applyall(void (*func)(struct skmem_cache *, uint32_t), uint32_t arg) |
2804 | { |
2805 | struct skmem_cache *skm; |
2806 | |
2807 | net_update_uptime(); |
2808 | |
2809 | SKMEM_CACHE_LOCK(); |
2810 | TAILQ_FOREACH(skm, &skmem_cache_head, skm_link) { |
2811 | func(skm, arg); |
2812 | } |
2813 | SKMEM_CACHE_UNLOCK(); |
2814 | } |
2815 | |
2816 | /* |
2817 | * Reclaim unused memory from a cache. |
2818 | */ |
2819 | static void |
2820 | skmem_cache_reclaim(struct skmem_cache *skm, uint32_t lowmem) |
2821 | { |
2822 | /* |
2823 | * Inform the owner to free memory if possible; the reclaim |
2824 | * policy is left to the owner. This is just an advisory. |
2825 | */ |
2826 | if (skm->skm_reclaim != NULL) { |
2827 | skm->skm_reclaim(skm->skm_private); |
2828 | } |
2829 | |
2830 | if (lowmem) { |
2831 | /* |
2832 | * If another thread is in the process of purging or |
2833 | * resizing, bail out and let the currently-ongoing |
2834 | * purging take its natural course. |
2835 | */ |
2836 | if (skmem_cache_resize_enter(skm, FALSE) == 0) { |
2837 | skmem_cache_magazine_purge(skm); |
2838 | skmem_cache_magazine_enable(skm, arg: 0); |
2839 | skmem_cache_resize_exit(skm); |
2840 | } |
2841 | } else { |
2842 | skmem_depot_ws_reap(skm); |
2843 | } |
2844 | } |
2845 | |
2846 | /* |
2847 | * Thread call callback for reap. |
2848 | */ |
2849 | static void |
2850 | skmem_cache_reap_func(thread_call_param_t dummy, thread_call_param_t arg) |
2851 | { |
2852 | #pragma unused(dummy) |
2853 | void (*func)(void) = arg; |
2854 | |
2855 | ASSERT(func == skmem_cache_reap_start || func == skmem_cache_reap_done); |
2856 | func(); |
2857 | } |
2858 | |
2859 | /* |
2860 | * Start reaping all caches; this is serialized via thread call. |
2861 | */ |
2862 | static void |
2863 | skmem_cache_reap_start(void) |
2864 | { |
2865 | SK_DF(SK_VERB_MEM_CACHE, "now running" ); |
2866 | skmem_cache_applyall(func: skmem_cache_reclaim, arg: skmem_lowmem_check()); |
2867 | skmem_dispatch(skmem_cache_reap_tc, func: skmem_cache_reap_done, |
2868 | (skmem_cache_update_interval * NSEC_PER_SEC)); |
2869 | } |
2870 | |
2871 | /* |
2872 | * Stop reaping; this would allow another reap request to occur. |
2873 | */ |
2874 | static void |
2875 | skmem_cache_reap_done(void) |
2876 | { |
2877 | volatile uint32_t *flag = &skmem_cache_reaping; |
2878 | |
2879 | *flag = 0; |
2880 | os_atomic_thread_fence(seq_cst); |
2881 | } |
2882 | |
2883 | /* |
2884 | * Immediately reap all unused memory of a cache. If purging, |
2885 | * also purge the cached objects at the CPU layer. |
2886 | */ |
2887 | void |
2888 | skmem_cache_reap_now(struct skmem_cache *skm, boolean_t purge) |
2889 | { |
2890 | /* if SKM_MODE_RECLIAM flag is set for this cache, we purge */ |
2891 | if (purge || (skm->skm_mode & SKM_MODE_RECLAIM)) { |
2892 | /* |
2893 | * If another thread is in the process of purging or |
2894 | * resizing, bail out and let the currently-ongoing |
2895 | * purging take its natural course. |
2896 | */ |
2897 | if (skmem_cache_resize_enter(skm, FALSE) == 0) { |
2898 | skmem_cache_magazine_purge(skm); |
2899 | skmem_cache_magazine_enable(skm, arg: 0); |
2900 | skmem_cache_resize_exit(skm); |
2901 | } |
2902 | } else { |
2903 | skmem_depot_ws_zero(skm); |
2904 | skmem_depot_ws_reap(skm); |
2905 | |
2906 | /* clean up cp_ploaded magazines from each CPU */ |
2907 | SKM_SLAB_LOCK_ASSERT_NOTHELD(skm); |
2908 | |
2909 | struct skmem_cpu_cache *cp; |
2910 | struct skmem_mag *pmg; |
2911 | int prounds; |
2912 | uint32_t cpuid; |
2913 | |
2914 | for (cpuid = 0; cpuid < ncpu; cpuid++) { |
2915 | cp = &skm->skm_cpu_cache[cpuid]; |
2916 | |
2917 | SKM_CPU_LOCK_SPIN(cp); |
2918 | pmg = cp->cp_ploaded; |
2919 | prounds = cp->cp_prounds; |
2920 | |
2921 | cp->cp_ploaded = NULL; |
2922 | cp->cp_prounds = -1; |
2923 | SKM_CPU_UNLOCK(cp); |
2924 | |
2925 | if (pmg != NULL) { |
2926 | skmem_magazine_destroy(skm, mg: pmg, nrounds: prounds); |
2927 | } |
2928 | } |
2929 | } |
2930 | } |
2931 | |
2932 | /* |
2933 | * Request a global reap operation to be dispatched. |
2934 | */ |
2935 | void |
2936 | skmem_cache_reap(void) |
2937 | { |
2938 | /* only one reaping episode is allowed at a time */ |
2939 | if (skmem_lock_owner == current_thread() || |
2940 | !os_atomic_cmpxchg(&skmem_cache_reaping, 0, 1, acq_rel)) { |
2941 | return; |
2942 | } |
2943 | |
2944 | skmem_dispatch(skmem_cache_reap_tc, func: skmem_cache_reap_start, 0); |
2945 | } |
2946 | |
2947 | /* |
2948 | * Reap internal caches. |
2949 | */ |
2950 | void |
2951 | skmem_reap_caches(boolean_t purge) |
2952 | { |
2953 | skmem_cache_reap_now(skm: skmem_slab_cache, purge); |
2954 | skmem_cache_reap_now(skm: skmem_bufctl_cache, purge); |
2955 | |
2956 | /* packet buffer pool objects */ |
2957 | pp_reap_caches(purge); |
2958 | |
2959 | /* also handle the region cache(s) */ |
2960 | skmem_region_reap_caches(purge); |
2961 | } |
2962 | |
2963 | /* |
2964 | * Thread call callback for update. |
2965 | */ |
2966 | static void |
2967 | skmem_cache_update_func(thread_call_param_t dummy, thread_call_param_t arg) |
2968 | { |
2969 | #pragma unused(dummy, arg) |
2970 | sk_protect_t protect; |
2971 | |
2972 | protect = sk_cache_update_protect(); |
2973 | skmem_cache_applyall(func: skmem_cache_update, arg: 0); |
2974 | sk_cache_update_unprotect(protect); |
2975 | |
2976 | skmem_dispatch(skmem_cache_update_tc, NULL, |
2977 | (skmem_cache_update_interval * NSEC_PER_SEC)); |
2978 | } |
2979 | |
2980 | /* |
2981 | * Given a buffer control, record the current transaction. |
2982 | */ |
2983 | __attribute__((noinline, cold, not_tail_called)) |
2984 | static inline void |
2985 | skmem_audit_bufctl(struct skmem_bufctl *bc) |
2986 | { |
2987 | struct skmem_bufctl_audit *bca = (struct skmem_bufctl_audit *)bc; |
2988 | struct timeval tv; |
2989 | |
2990 | microuptime(tv: &tv); |
2991 | bca->bc_thread = current_thread(); |
2992 | bca->bc_timestamp = (uint32_t)((tv.tv_sec * 1000) + (tv.tv_usec / 1000)); |
2993 | bca->bc_depth = OSBacktrace(bt: bca->bc_stack, SKMEM_STACK_DEPTH); |
2994 | } |
2995 | |
2996 | /* |
2997 | * Given an object, find its buffer control and record the transaction. |
2998 | */ |
2999 | __attribute__((noinline, cold, not_tail_called)) |
3000 | static inline void |
3001 | skmem_audit_buf(struct skmem_cache *skm, struct skmem_obj *list) |
3002 | { |
3003 | struct skmem_bufctl_bkt *bcb; |
3004 | struct skmem_bufctl *bc; |
3005 | |
3006 | ASSERT(!(skm->skm_mode & SKM_MODE_PSEUDO)); |
3007 | |
3008 | SKM_SLAB_LOCK(skm); |
3009 | while (list != NULL) { |
3010 | void *buf = list; |
3011 | |
3012 | bcb = SKMEM_CACHE_HASH(skm, buf); |
3013 | SLIST_FOREACH(bc, &bcb->bcb_head, bc_link) { |
3014 | if (bc->bc_addr == buf) { |
3015 | break; |
3016 | } |
3017 | } |
3018 | |
3019 | if (__improbable(bc == NULL)) { |
3020 | panic("%s: %s failed to get bufctl for %p" , |
3021 | __func__, skm->skm_name, buf); |
3022 | /* NOTREACHED */ |
3023 | __builtin_unreachable(); |
3024 | } |
3025 | |
3026 | skmem_audit_bufctl(bc); |
3027 | |
3028 | if (!(skm->skm_mode & SKM_MODE_BATCH)) { |
3029 | break; |
3030 | } |
3031 | |
3032 | list = list->mo_next; |
3033 | } |
3034 | SKM_SLAB_UNLOCK(skm); |
3035 | } |
3036 | |
3037 | static size_t |
3038 | skmem_cache_mib_get_stats(struct skmem_cache *skm, void *out, size_t len) |
3039 | { |
3040 | size_t actual_space = sizeof(struct sk_stats_cache); |
3041 | struct sk_stats_cache *sca = out; |
3042 | int contention; |
3043 | |
3044 | if (out == NULL || len < actual_space) { |
3045 | goto done; |
3046 | } |
3047 | |
3048 | bzero(s: sca, n: sizeof(*sca)); |
3049 | (void) snprintf(sca->sca_name, count: sizeof(sca->sca_name), "%s" , |
3050 | skm->skm_name); |
3051 | uuid_copy(dst: sca->sca_uuid, src: skm->skm_uuid); |
3052 | uuid_copy(dst: sca->sca_ruuid, src: skm->skm_region->skr_uuid); |
3053 | sca->sca_mode = skm->skm_mode; |
3054 | sca->sca_bufsize = (uint64_t)skm->skm_bufsize; |
3055 | sca->sca_objsize = (uint64_t)skm->skm_objsize; |
3056 | sca->sca_chunksize = (uint64_t)skm->skm_chunksize; |
3057 | sca->sca_slabsize = (uint64_t)skm->skm_slabsize; |
3058 | sca->sca_bufalign = (uint64_t)skm->skm_bufalign; |
3059 | sca->sca_objalign = (uint64_t)skm->skm_objalign; |
3060 | |
3061 | sca->sca_cpu_mag_size = skm->skm_cpu_mag_size; |
3062 | sca->sca_cpu_mag_resize = skm->skm_cpu_mag_resize; |
3063 | sca->sca_cpu_mag_purge = skm->skm_cpu_mag_purge; |
3064 | sca->sca_cpu_mag_reap = skm->skm_cpu_mag_reap; |
3065 | sca->sca_depot_full = skm->skm_depot_full; |
3066 | sca->sca_depot_empty = skm->skm_depot_empty; |
3067 | sca->sca_depot_ws_zero = skm->skm_depot_ws_zero; |
3068 | /* in case of a race this might be a negative value, turn it into 0 */ |
3069 | if ((contention = (int)(skm->skm_depot_contention - |
3070 | skm->skm_depot_contention_prev)) < 0) { |
3071 | contention = 0; |
3072 | } |
3073 | sca->sca_depot_contention_factor = contention; |
3074 | |
3075 | sca->sca_cpu_rounds = 0; |
3076 | sca->sca_cpu_prounds = 0; |
3077 | for (int cpuid = 0; cpuid < ncpu; cpuid++) { |
3078 | struct skmem_cpu_cache *ccp = &skm->skm_cpu_cache[cpuid]; |
3079 | |
3080 | SKM_CPU_LOCK(ccp); |
3081 | if (ccp->cp_rounds > -1) { |
3082 | sca->sca_cpu_rounds += ccp->cp_rounds; |
3083 | } |
3084 | if (ccp->cp_prounds > -1) { |
3085 | sca->sca_cpu_prounds += ccp->cp_prounds; |
3086 | } |
3087 | SKM_CPU_UNLOCK(ccp); |
3088 | } |
3089 | |
3090 | sca->sca_sl_create = skm->skm_sl_create; |
3091 | sca->sca_sl_destroy = skm->skm_sl_destroy; |
3092 | sca->sca_sl_alloc = skm->skm_sl_alloc; |
3093 | sca->sca_sl_free = skm->skm_sl_free; |
3094 | sca->sca_sl_alloc_fail = skm->skm_sl_alloc_fail; |
3095 | sca->sca_sl_partial = skm->skm_sl_partial; |
3096 | sca->sca_sl_empty = skm->skm_sl_empty; |
3097 | sca->sca_sl_bufinuse = skm->skm_sl_bufinuse; |
3098 | sca->sca_sl_rescale = skm->skm_sl_rescale; |
3099 | sca->sca_sl_hash_size = (skm->skm_hash_mask + 1); |
3100 | |
3101 | done: |
3102 | return actual_space; |
3103 | } |
3104 | |
3105 | static int |
3106 | skmem_cache_mib_get_sysctl SYSCTL_HANDLER_ARGS |
3107 | { |
3108 | #pragma unused(arg1, arg2, oidp) |
3109 | struct skmem_cache *skm; |
3110 | size_t actual_space; |
3111 | size_t buffer_space; |
3112 | size_t allocated_space; |
3113 | caddr_t buffer = NULL; |
3114 | caddr_t scan; |
3115 | int error = 0; |
3116 | |
3117 | if (!kauth_cred_issuser(cred: kauth_cred_get())) { |
3118 | return EPERM; |
3119 | } |
3120 | |
3121 | net_update_uptime(); |
3122 | buffer_space = req->oldlen; |
3123 | if (req->oldptr != USER_ADDR_NULL && buffer_space != 0) { |
3124 | if (buffer_space > SK_SYSCTL_ALLOC_MAX) { |
3125 | buffer_space = SK_SYSCTL_ALLOC_MAX; |
3126 | } |
3127 | allocated_space = buffer_space; |
3128 | buffer = sk_alloc_data(allocated_space, Z_WAITOK, skmem_tag_cache_mib); |
3129 | if (__improbable(buffer == NULL)) { |
3130 | return ENOBUFS; |
3131 | } |
3132 | } else if (req->oldptr == USER_ADDR_NULL) { |
3133 | buffer_space = 0; |
3134 | } |
3135 | actual_space = 0; |
3136 | scan = buffer; |
3137 | |
3138 | SKMEM_CACHE_LOCK(); |
3139 | TAILQ_FOREACH(skm, &skmem_cache_head, skm_link) { |
3140 | size_t size = skmem_cache_mib_get_stats(skm, out: scan, len: buffer_space); |
3141 | if (scan != NULL) { |
3142 | if (buffer_space < size) { |
3143 | /* supplied buffer too small, stop copying */ |
3144 | error = ENOMEM; |
3145 | break; |
3146 | } |
3147 | scan += size; |
3148 | buffer_space -= size; |
3149 | } |
3150 | actual_space += size; |
3151 | } |
3152 | SKMEM_CACHE_UNLOCK(); |
3153 | |
3154 | if (actual_space != 0) { |
3155 | int out_error = SYSCTL_OUT(req, buffer, actual_space); |
3156 | if (out_error != 0) { |
3157 | error = out_error; |
3158 | } |
3159 | } |
3160 | if (buffer != NULL) { |
3161 | sk_free_data(buffer, allocated_space); |
3162 | } |
3163 | |
3164 | return error; |
3165 | } |
3166 | |