| 1 | /* |
| 2 | * Copyright (c) 2018-2021 Apple Inc. All rights reserved. |
| 3 | * |
| 4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ |
| 5 | * |
| 6 | * This file contains Original Code and/or Modifications of Original Code |
| 7 | * as defined in and that are subject to the Apple Public Source License |
| 8 | * Version 2.0 (the 'License'). You may not use this file except in |
| 9 | * compliance with the License. The rights granted to you under the License |
| 10 | * may not be used to create, or enable the creation or redistribution of, |
| 11 | * unlawful or unlicensed copies of an Apple operating system, or to |
| 12 | * circumvent, violate, or enable the circumvention or violation of, any |
| 13 | * terms of an Apple operating system software license agreement. |
| 14 | * |
| 15 | * Please obtain a copy of the License at |
| 16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. |
| 17 | * |
| 18 | * The Original Code and all software distributed under the License are |
| 19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER |
| 20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
| 21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, |
| 22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
| 23 | * Please see the License for the specific language governing rights and |
| 24 | * limitations under the License. |
| 25 | * |
| 26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ |
| 27 | */ |
| 28 | #include <skywalk/os_skywalk_private.h> |
| 29 | |
| 30 | #include "cuckoo_hashtable.h" |
| 31 | |
| 32 | #define CUCKOO_TAG "com.apple.skywalk.libcuckoo" |
| 33 | SKMEM_TAG_DEFINE(cuckoo_tag, CUCKOO_TAG); |
| 34 | |
| 35 | |
| 36 | SYSCTL_NODE(_kern_skywalk, OID_AUTO, libcuckoo, CTLFLAG_RW | CTLFLAG_LOCKED, |
| 37 | 0, "Skywalk Cuckoo Hashtable Library" ); |
| 38 | |
| 39 | uint32_t cuckoo_verbose = 0; |
| 40 | #if (DEVELOPMENT || DEBUG) |
| 41 | SYSCTL_UINT(_kern_skywalk_libcuckoo, OID_AUTO, verbose, |
| 42 | CTLFLAG_RW | CTLFLAG_LOCKED, &cuckoo_verbose, 0, "" ); |
| 43 | #endif /* DEVELOPMENT || DEBUG */ |
| 44 | |
| 45 | typedef enum cht_verb { |
| 46 | CHTV_ERR = 0, |
| 47 | CHTV_WARN = 1, |
| 48 | CHTV_INFO = 2, |
| 49 | CHTV_DEBUG = 3, |
| 50 | } cht_verb_t; |
| 51 | |
| 52 | static LCK_GRP_DECLARE(cht_lock_group, "CHT_LOCK" ); |
| 53 | static LCK_ATTR_DECLARE(cht_lock_attr, 0, 0); |
| 54 | |
| 55 | #if SK_LOG |
| 56 | #define cht_log(level, _fmt, ...) \ |
| 57 | do { \ |
| 58 | if (level <= cuckoo_verbose) { \ |
| 59 | kprintf("Cuckoo: thread %p %-30s " _fmt "\n", \ |
| 60 | current_thread(), __FUNCTION__, ##__VA_ARGS__); \ |
| 61 | } \ |
| 62 | } while (0); |
| 63 | #else /* !SK_LOG */ |
| 64 | #define cht_log(_flag, _fmt, ...) do { ((void)0); } while (0) |
| 65 | #endif /* !SK_LOG */ |
| 66 | |
| 67 | #define cht_err(_fmt, ...) cht_log(CHTV_ERR, _fmt, ##__VA_ARGS__) |
| 68 | #define cht_warn(_fmt, ...) cht_log(CHTV_WARN, _fmt, ##__VA_ARGS__) |
| 69 | #define cht_info(_fmt, ...) cht_log(CHTV_INFO, _fmt, ##__VA_ARGS__) |
| 70 | #define cht_debug(_fmt, ...) cht_log(CHTV_DEBUG, _fmt, ##__VA_ARGS__) |
| 71 | |
| 72 | static inline int |
| 73 | cuckoo_node_chain(struct cuckoo_node *node, |
| 74 | struct cuckoo_node *new_node) |
| 75 | { |
| 76 | struct cuckoo_node *prev_node = node; |
| 77 | |
| 78 | /* new node must be zero initialized */ |
| 79 | ASSERT(new_node->next == NULL); |
| 80 | |
| 81 | /* use tail insert to check for duplicate along list */ |
| 82 | while (__improbable(node != NULL)) { |
| 83 | if (node == new_node) { |
| 84 | return EEXIST; |
| 85 | } |
| 86 | prev_node = node; |
| 87 | node = node->next; |
| 88 | } |
| 89 | |
| 90 | prev_node->next = new_node; |
| 91 | |
| 92 | return 0; |
| 93 | } |
| 94 | |
| 95 | static inline bool |
| 96 | cuckoo_node_del(struct cuckoo_node **pnode, |
| 97 | struct cuckoo_node *del_node) |
| 98 | { |
| 99 | ASSERT(pnode != NULL); |
| 100 | |
| 101 | struct cuckoo_node *node = *pnode; |
| 102 | while (node != NULL && node != del_node) { |
| 103 | pnode = &node->next; |
| 104 | node = node->next; |
| 105 | } |
| 106 | if (__probable(node != NULL)) { |
| 107 | *pnode = node->next; |
| 108 | node->next = NULL; |
| 109 | return true; |
| 110 | } |
| 111 | |
| 112 | return false; |
| 113 | } |
| 114 | |
| 115 | static inline void |
| 116 | cuckoo_node_set_next(struct cuckoo_node *node, struct cuckoo_node *next_node) |
| 117 | { |
| 118 | node->next = next_node; |
| 119 | } |
| 120 | |
| 121 | /* We probably won't add RCU soon so use simple pointer reference for now */ |
| 122 | static inline struct cuckoo_node * |
| 123 | cuckoo_node_next(struct cuckoo_node *node) |
| 124 | { |
| 125 | return node->next; |
| 126 | } |
| 127 | |
| 128 | #define _CHT_MAX_LOAD_SHRINK 40 /* at least below 40% load to shrink */ |
| 129 | #define _CHT_MIN_LOAD_EXPAND 85 /* cuckoo could hold 85% full table */ |
| 130 | |
| 131 | enum cuckoo_resize_ops { |
| 132 | _CHT_RESIZE_EXPAND = 0, |
| 133 | _CHT_RESIZE_SHRINK = 1, |
| 134 | }; |
| 135 | |
| 136 | /* |
| 137 | * Following classic Cuckoo hash table design, cuckoo_hashtable use k hash |
| 138 | * functions to derive multiple candidate hash table bucket indexes. |
| 139 | * Here cuckoo_hashtable use k=2. |
| 140 | * prim_bkt_idx = bkt_idx[1] = hash[1](key) % N_BUCKETS |
| 141 | * alt_bkt_idx = bkt_idx[2] = hash[2](key) % N_BUCKETS |
| 142 | * |
| 143 | * Currently, we let the caller pass in the actual key's hash value, because |
| 144 | * in most of the use cases, caller probably have already calculated the hash |
| 145 | * value of actual key (e.g. using hardware offloading or copy+hash). This also |
| 146 | * save us from storing the key in the table (or any side data structure). So |
| 147 | * |
| 148 | * hash[1] = hash // hash(hash value) passed in from caller |
| 149 | * hash[2] = __alt_hash(hash[1]) |
| 150 | * |
| 151 | * __alt_hash derives h2 using h1's high bits, since calculating primary |
| 152 | * bucket index uses its low bits. So alt_hash is still a uniformly distributed |
| 153 | * random variable (but not independent of h1, but is fine for hashtable usage). |
| 154 | * |
| 155 | * There is option to store h2 in the table bucket as well but cuckoo_hashtable |
| 156 | * is not doing this to use less memory usage with the small price of a few |
| 157 | * more cpu cycles during add/del operation. Assuming that the hashtable is |
| 158 | * read-heavy rather than write-heavy, this is reasonable. |
| 159 | * |
| 160 | * In the rare case of full hash value collision, where |
| 161 | * hash[1] == hash[1]' |
| 162 | * , there is no way for the hash table to differentiate two objects, thus we |
| 163 | * need to chain the fully collided objects under the same bucket slot. |
| 164 | * The caller need to walk the chain to explicitly compare the full length key |
| 165 | * to find the correct object. |
| 166 | * |
| 167 | * Reference Counting |
| 168 | * The hashtable assumes all objects are reference counted. It takes function |
| 169 | * pointers that retain and release the object. |
| 170 | * Adding to the table will call its retain function. |
| 171 | * Deleting from the table will call its release function. |
| 172 | * |
| 173 | */ |
| 174 | |
| 175 | /* hash might be zero, so always use _node == NULL to test empty slot */ |
| 176 | struct _slot { |
| 177 | uint32_t _hash; |
| 178 | struct cuckoo_node *_node; |
| 179 | }; |
| 180 | |
| 181 | /* |
| 182 | * Cuckoo hashtable cache line awareness: |
| 183 | * - ARM platform has 128B CPU cache line. |
| 184 | * - Intel platform has 64B CPU cache line. However, hardware prefetcher |
| 185 | * treats cache lines as 128B chunk and prefetch the other 64B cache line. |
| 186 | * |
| 187 | * Thus cuckoo_hashtable use 128B as bucket size to make best use CPU cache |
| 188 | * resource. |
| 189 | */ |
| 190 | #define _CHT_CACHELINE_CHUNK 128 |
| 191 | #define _CHT_SLOT_INVAL UINT8_MAX |
| 192 | static const uint8_t _CHT_BUCKET_SLOTS = |
| 193 | ((_CHT_CACHELINE_CHUNK - sizeof(lck_mtx_t) - sizeof(uint8_t)) / |
| 194 | sizeof(struct _slot)); |
| 195 | |
| 196 | struct _bucket { |
| 197 | struct _slot _slots[_CHT_BUCKET_SLOTS]; |
| 198 | decl_lck_mtx_data(, _lock); |
| 199 | uint8_t _inuse; |
| 200 | } __attribute__((aligned(_CHT_CACHELINE_CHUNK))); |
| 201 | |
| 202 | struct cuckoo_hashtable { |
| 203 | uint32_t _bitmask; /* 1s' mask for quick MOD */ |
| 204 | uint32_t _n_buckets; /* number of buckets */ |
| 205 | |
| 206 | volatile uint32_t _n_entries; /* number of entires in table */ |
| 207 | uint32_t _capacity; /* max number of entires */ |
| 208 | uint32_t _rcapacity; /* requested capacity */ |
| 209 | |
| 210 | bool _busy; |
| 211 | uint32_t _resize_waiters; |
| 212 | decl_lck_rw_data(, _resize_lock); |
| 213 | decl_lck_mtx_data(, _lock); |
| 214 | |
| 215 | struct _bucket *_buckets; |
| 216 | |
| 217 | int (*_obj_cmp)(struct cuckoo_node *node, void *key); |
| 218 | void (*_obj_retain)(struct cuckoo_node *); |
| 219 | void (*_obj_release)(struct cuckoo_node *); |
| 220 | } __attribute__((aligned(_CHT_CACHELINE_CHUNK))); |
| 221 | |
| 222 | static_assert(sizeof(struct _bucket) <= _CHT_CACHELINE_CHUNK); |
| 223 | |
| 224 | static inline void |
| 225 | __slot_set(struct _slot *slt, uint32_t hash, struct cuckoo_node *node) |
| 226 | { |
| 227 | slt->_hash = hash; |
| 228 | slt->_node = node; |
| 229 | } |
| 230 | |
| 231 | static inline void |
| 232 | __slot_reset(struct _slot *slt) |
| 233 | { |
| 234 | slt->_hash = 0; |
| 235 | slt->_node = NULL; |
| 236 | } |
| 237 | |
| 238 | static inline uint32_t |
| 239 | __alt_hash(uint32_t hash) |
| 240 | { |
| 241 | #define _CHT_ALT_HASH_MIX 0x5bd1e995 /* Murmur hash mix */ |
| 242 | uint32_t tag = hash >> 16; |
| 243 | uint32_t alt_hash = hash ^ ((tag + 1) * _CHT_ALT_HASH_MIX); |
| 244 | return alt_hash; |
| 245 | } |
| 246 | |
| 247 | static inline struct _bucket * |
| 248 | __get_bucket(struct cuckoo_hashtable *h, uint32_t b_i) |
| 249 | { |
| 250 | return &h->_buckets[b_i]; |
| 251 | } |
| 252 | |
| 253 | static inline struct _bucket * |
| 254 | __prim_bucket(struct cuckoo_hashtable *h, uint32_t hash) |
| 255 | { |
| 256 | return __get_bucket(h, b_i: hash & h->_bitmask); |
| 257 | } |
| 258 | |
| 259 | static inline struct _bucket * |
| 260 | __alt_bucket(struct cuckoo_hashtable *h, uint32_t hash) |
| 261 | { |
| 262 | return __get_bucket(h, b_i: __alt_hash(hash) & h->_bitmask); |
| 263 | } |
| 264 | |
| 265 | #if SK_LOG |
| 266 | static inline size_t |
| 267 | __bucket_idx(struct cuckoo_hashtable *h, struct _bucket *b) |
| 268 | { |
| 269 | return ((uintptr_t)b - (uintptr_t)&h->_buckets[0]) / sizeof(struct _bucket); |
| 270 | } |
| 271 | #endif /* SK_LOG */ |
| 272 | |
| 273 | static inline struct _slot * |
| 274 | __bucket_slot(struct _bucket *b, uint32_t slot_idx) |
| 275 | { |
| 276 | return &b->_slots[slot_idx]; |
| 277 | } |
| 278 | |
| 279 | static inline bool |
| 280 | __slot_empty(struct _slot *s) |
| 281 | { |
| 282 | return s->_node == NULL; |
| 283 | } |
| 284 | |
| 285 | static inline uint32_t |
| 286 | __align32pow2(uint32_t v) |
| 287 | { |
| 288 | v--; |
| 289 | v |= v >> 1; |
| 290 | v |= v >> 2; |
| 291 | v |= v >> 4; |
| 292 | v |= v >> 8; |
| 293 | v |= v >> 16; |
| 294 | v++; |
| 295 | |
| 296 | return v; |
| 297 | } |
| 298 | |
| 299 | uint32_t |
| 300 | cuckoo_hashtable_load_factor(struct cuckoo_hashtable *h) |
| 301 | { |
| 302 | return (100 * h->_n_entries) / (h->_n_buckets * _CHT_BUCKET_SLOTS); |
| 303 | } |
| 304 | |
| 305 | /* |
| 306 | * Cuckoo hashtable uses regular mutex. Most operations(find/add) should |
| 307 | * finish faster than a context switch. It avoids using the spin lock since |
| 308 | * it might cause issues on certain platforms (e.g. x86_64) where the trap |
| 309 | * handler for dealing with FP/SIMD use would be invoked to perform thread- |
| 310 | * specific allocations; the use of FP/SIMD here is related to the memory |
| 311 | * compare with mask routines. Even in case of another thread holding a |
| 312 | * bucket lock and went asleep, cuckoo path search would try to find another |
| 313 | * path without blockers. |
| 314 | * |
| 315 | * The only exception is table expansion, which could take a long time, we use |
| 316 | * read/write lock to protect the whole table against any read/write in that |
| 317 | * case. |
| 318 | */ |
| 319 | |
| 320 | /* find/add only acquires table rlock, and serialize with bucket lock */ |
| 321 | #define __lock_bucket(b) lck_mtx_lock(&b->_lock) |
| 322 | #define __unlock_bucket(b) lck_mtx_unlock(&b->_lock) |
| 323 | |
| 324 | #define _CHT_DEADLOCK_THRESHOLD 20 |
| 325 | static inline bool |
| 326 | __lock_bucket_with_backoff(struct _bucket *b) |
| 327 | { |
| 328 | uint32_t try_counter = 0; |
| 329 | while (!lck_mtx_try_lock(lck: &b->_lock)) { |
| 330 | if (try_counter++ > _CHT_DEADLOCK_THRESHOLD) { |
| 331 | return false; |
| 332 | } |
| 333 | } |
| 334 | return true; |
| 335 | } |
| 336 | |
| 337 | #define __rlock_table(h) lck_rw_lock_shared(&h->_resize_lock) |
| 338 | #define __unrlock_table(h) lck_rw_unlock_shared(&h->_resize_lock) |
| 339 | #define __r2wlock_table(h) lck_rw_lock_shared_to_exclusive(&h->_resize_lock) |
| 340 | #define __wlock_table(h) lck_rw_lock_exclusive(&h->_resize_lock) |
| 341 | #define __unwlock_table(h) lck_rw_unlock_exclusive(&h->_resize_lock) |
| 342 | |
| 343 | static inline int |
| 344 | __resize_begin(struct cuckoo_hashtable *h) |
| 345 | { |
| 346 | // takes care of concurrent resize |
| 347 | lck_mtx_lock(lck: &h->_lock); |
| 348 | while (h->_busy) { |
| 349 | if (++(h->_resize_waiters) == 0) { /* wraparound */ |
| 350 | h->_resize_waiters++; |
| 351 | } |
| 352 | int error = msleep(chan: &h->_resize_waiters, mtx: &h->_lock, |
| 353 | pri: (PZERO + 1), wmesg: __FUNCTION__, NULL); |
| 354 | if (error == EINTR) { |
| 355 | cht_warn("resize waiter was interrupted" ); |
| 356 | ASSERT(h->_resize_waiters > 0); |
| 357 | h->_resize_waiters--; |
| 358 | lck_mtx_unlock(lck: &h->_lock); |
| 359 | return EINTR; |
| 360 | } |
| 361 | // resizer finished |
| 362 | lck_mtx_unlock(lck: &h->_lock); |
| 363 | return EAGAIN; |
| 364 | } |
| 365 | |
| 366 | h->_busy = true; |
| 367 | lck_mtx_unlock(lck: &h->_lock); |
| 368 | |
| 369 | // takes other readers offline |
| 370 | __wlock_table(h); |
| 371 | return 0; |
| 372 | } |
| 373 | |
| 374 | static inline void |
| 375 | __resize_end(struct cuckoo_hashtable *h) |
| 376 | { |
| 377 | __unwlock_table(h); |
| 378 | lck_mtx_lock(lck: &h->_lock); |
| 379 | h->_busy = false; |
| 380 | if (__improbable(h->_resize_waiters > 0)) { |
| 381 | h->_resize_waiters = 0; |
| 382 | wakeup(chan: &h->_resize_waiters); |
| 383 | } |
| 384 | lck_mtx_unlock(lck: &h->_lock); |
| 385 | } |
| 386 | |
| 387 | struct cuckoo_hashtable * |
| 388 | cuckoo_hashtable_create(struct cuckoo_hashtable_params *p) |
| 389 | { |
| 390 | struct cuckoo_hashtable *h = NULL; |
| 391 | uint32_t n = 0; |
| 392 | uint32_t n_buckets = 0; |
| 393 | struct _bucket *buckets = NULL; |
| 394 | uint32_t i; |
| 395 | |
| 396 | if (p->cht_capacity > CUCKOO_HASHTABLE_ENTRIES_MAX || |
| 397 | p->cht_capacity < _CHT_BUCKET_SLOTS) { |
| 398 | return NULL; |
| 399 | } |
| 400 | |
| 401 | ASSERT(p->cht_capacity < UINT32_MAX); |
| 402 | n = (uint32_t)p->cht_capacity; |
| 403 | h = sk_alloc_type(struct cuckoo_hashtable, Z_WAITOK | Z_NOFAIL, cuckoo_tag); |
| 404 | |
| 405 | n_buckets = __align32pow2(v: n / _CHT_BUCKET_SLOTS); |
| 406 | buckets = sk_alloc_type_array(struct _bucket, n_buckets, Z_WAITOK, cuckoo_tag); |
| 407 | if (buckets == NULL) { |
| 408 | sk_free_type(struct cuckoo_hashtable, h); |
| 409 | return NULL; |
| 410 | } |
| 411 | |
| 412 | for (i = 0; i < n_buckets; i++) { |
| 413 | lck_mtx_init(lck: &buckets[i]._lock, grp: &cht_lock_group, attr: &cht_lock_attr); |
| 414 | } |
| 415 | |
| 416 | lck_mtx_init(lck: &h->_lock, grp: &cht_lock_group, attr: &cht_lock_attr); |
| 417 | |
| 418 | h->_n_entries = 0; |
| 419 | h->_n_buckets = n_buckets; |
| 420 | h->_capacity = h->_rcapacity = h->_n_buckets * _CHT_BUCKET_SLOTS; |
| 421 | h->_bitmask = n_buckets - 1; |
| 422 | h->_buckets = buckets; |
| 423 | lck_rw_init(lck: &h->_resize_lock, grp: &cht_lock_group, attr: &cht_lock_attr); |
| 424 | h->_busy = false; |
| 425 | h->_resize_waiters = 0; |
| 426 | |
| 427 | ASSERT(p->cht_obj_retain != NULL); |
| 428 | ASSERT(p->cht_obj_release != NULL); |
| 429 | ASSERT(p->cht_obj_cmp != NULL); |
| 430 | h->_obj_cmp = p->cht_obj_cmp; |
| 431 | h->_obj_retain = p->cht_obj_retain; |
| 432 | h->_obj_release = p->cht_obj_release; |
| 433 | |
| 434 | return h; |
| 435 | } |
| 436 | |
| 437 | void |
| 438 | cuckoo_hashtable_free(struct cuckoo_hashtable *h) |
| 439 | { |
| 440 | uint32_t i; |
| 441 | |
| 442 | if (h == NULL) { |
| 443 | return; |
| 444 | } |
| 445 | |
| 446 | ASSERT(h->_n_entries == 0); |
| 447 | |
| 448 | if (h->_buckets != NULL) { |
| 449 | for (i = 0; i < h->_n_buckets; i++) { |
| 450 | lck_mtx_destroy(lck: &h->_buckets[i]._lock, grp: &cht_lock_group); |
| 451 | } |
| 452 | sk_free_type_array(struct _bucket, h->_n_buckets, h->_buckets); |
| 453 | } |
| 454 | sk_free_type(struct cuckoo_hashtable, h); |
| 455 | } |
| 456 | |
| 457 | size_t |
| 458 | cuckoo_hashtable_entries(struct cuckoo_hashtable *h) |
| 459 | { |
| 460 | return h->_n_entries; |
| 461 | } |
| 462 | |
| 463 | size_t |
| 464 | cuckoo_hashtable_capacity(struct cuckoo_hashtable *h) |
| 465 | { |
| 466 | return h->_n_buckets * _CHT_BUCKET_SLOTS; |
| 467 | } |
| 468 | |
| 469 | size_t |
| 470 | (struct cuckoo_hashtable *h) |
| 471 | { |
| 472 | size_t total_meminuse = sizeof(struct cuckoo_hashtable) + |
| 473 | (h->_n_buckets * sizeof(struct _bucket)); |
| 474 | return total_meminuse; |
| 475 | } |
| 476 | |
| 477 | static inline struct cuckoo_node * |
| 478 | __find_in_bucket(struct cuckoo_hashtable *h, struct _bucket *b, void *key, |
| 479 | uint32_t hash) |
| 480 | { |
| 481 | uint32_t i; |
| 482 | struct cuckoo_node *node = NULL; |
| 483 | |
| 484 | __lock_bucket(b); |
| 485 | if (b->_inuse == 0) { |
| 486 | goto done; |
| 487 | } |
| 488 | for (i = 0; i < _CHT_BUCKET_SLOTS; i++) { |
| 489 | if (b->_slots[i]._hash == hash) { |
| 490 | node = b->_slots[i]._node; |
| 491 | while (node != NULL) { |
| 492 | if (h->_obj_cmp(node, key) == 0) { |
| 493 | h->_obj_retain(node); |
| 494 | goto done; |
| 495 | } |
| 496 | node = cuckoo_node_next(node); |
| 497 | } |
| 498 | } |
| 499 | } |
| 500 | |
| 501 | done: |
| 502 | __unlock_bucket(b); |
| 503 | return node; |
| 504 | } |
| 505 | |
| 506 | /* will return node retained */ |
| 507 | struct cuckoo_node * |
| 508 | cuckoo_hashtable_find_with_hash(struct cuckoo_hashtable *h, void *key, |
| 509 | uint32_t hash) |
| 510 | { |
| 511 | struct _bucket *b1, *b2; |
| 512 | struct cuckoo_node *node = NULL; |
| 513 | |
| 514 | __rlock_table(h); |
| 515 | |
| 516 | b1 = __prim_bucket(h, hash); |
| 517 | if ((node = __find_in_bucket(h, b: b1, key, hash)) != NULL) { |
| 518 | goto done; |
| 519 | } |
| 520 | |
| 521 | b2 = __alt_bucket(h, hash); |
| 522 | if ((node = __find_in_bucket(h, b: b2, key, hash)) != NULL) { |
| 523 | goto done; |
| 524 | } |
| 525 | |
| 526 | done: |
| 527 | __unrlock_table(h); |
| 528 | return node; |
| 529 | } |
| 530 | |
| 531 | /* |
| 532 | * To add a key into cuckoo_hashtable: |
| 533 | * 1. First it searches the key's two candidate buckets b1, b2 |
| 534 | * 2. If there are slots available in b1 or b2, we place the key there |
| 535 | * 3. Otherwise cuckoo_hashtable will have to probe and make space |
| 536 | * |
| 537 | * To move keys around (open addressing hash table), cuckoo_hashtable needs to |
| 538 | * first find available slot via Cuckoo search. Here it uses bread-first-search |
| 539 | * to find the shorted path towards an empty bucket slot. |
| 540 | * |
| 541 | */ |
| 542 | static inline int |
| 543 | __add_to_bucket(struct cuckoo_hashtable *h, struct _bucket *b, |
| 544 | struct cuckoo_node *node, uint32_t hash) |
| 545 | { |
| 546 | int ret = -1; |
| 547 | uint8_t avail_i = _CHT_SLOT_INVAL; |
| 548 | |
| 549 | __lock_bucket(b); |
| 550 | if (b->_inuse == _CHT_BUCKET_SLOTS) { |
| 551 | goto done; |
| 552 | } |
| 553 | for (uint8_t i = 0; i < _CHT_BUCKET_SLOTS; i++) { |
| 554 | struct _slot *s = __bucket_slot(b, slot_idx: i); |
| 555 | if (__slot_empty(s)) { |
| 556 | if (avail_i == _CHT_SLOT_INVAL) { |
| 557 | avail_i = i; |
| 558 | } |
| 559 | } else { |
| 560 | /* chain to existing slot with same hash */ |
| 561 | if (__improbable(s->_hash == hash)) { |
| 562 | ASSERT(s->_node != NULL); |
| 563 | ret = cuckoo_node_chain(node: s->_node, new_node: node); |
| 564 | if (ret != 0) { |
| 565 | goto done; |
| 566 | } |
| 567 | cht_debug("hash %x node %p inserted [%zu][%d]" , |
| 568 | hash, node, __bucket_idx(h, b), i); |
| 569 | OSAddAtomic(1, &h->_n_entries); |
| 570 | h->_obj_retain(node); |
| 571 | goto done; |
| 572 | } |
| 573 | } |
| 574 | } |
| 575 | if (avail_i != _CHT_SLOT_INVAL) { |
| 576 | h->_obj_retain(node); |
| 577 | b->_slots[avail_i]._hash = hash; |
| 578 | b->_slots[avail_i]._node = node; |
| 579 | b->_inuse++; |
| 580 | cht_debug("hash %x node %p inserted [%zu][%d]" , hash, node, |
| 581 | __bucket_idx(h, b), avail_i); |
| 582 | OSAddAtomic(1, &h->_n_entries); |
| 583 | ret = 0; |
| 584 | } |
| 585 | done: |
| 586 | __unlock_bucket(b); |
| 587 | return ret; |
| 588 | } |
| 589 | |
| 590 | #define _CHT_BFS_QUEUE_LEN UINT8_MAX |
| 591 | #define _CHT_BFS_QUEUE_END (_CHT_BFS_QUEUE_LEN - _CHT_BUCKET_SLOTS) |
| 592 | |
| 593 | struct _bfs_node { |
| 594 | uint32_t bkt_idx; |
| 595 | uint8_t prev_node_idx; |
| 596 | uint8_t prev_slot_idx; |
| 597 | }; |
| 598 | |
| 599 | /* |
| 600 | * Move slots backwards on cuckoo path |
| 601 | * |
| 602 | * cuckoo_move would hold at most 2 locks at any time, moving from |
| 603 | * the end of cuckoo path toward the bucket where new keys should be |
| 604 | * stored. There could be chances of dead lock in case of multiple |
| 605 | * writers have overlapping cuckoo path. We could arrange the order of |
| 606 | * locking to avoid that but then we have to take all locks upfront, |
| 607 | * which is not friendly to concurrent readers. So instead, we try to |
| 608 | * take one by one(but still at most 2 locks holding at any time), |
| 609 | * with backoff in mind. |
| 610 | */ |
| 611 | static int |
| 612 | cuckoo_move(struct cuckoo_hashtable *h, struct cuckoo_node *node, |
| 613 | uint32_t hash, struct _bfs_node *queue, uint8_t leaf_node_idx, |
| 614 | uint8_t leaf_slot) |
| 615 | { |
| 616 | struct _bfs_node *prev_node, *curr_node; |
| 617 | struct _bucket *from_bkt, *to_bkt, *alt_bkt; |
| 618 | uint8_t from_slot, to_slot; |
| 619 | |
| 620 | curr_node = &queue[leaf_node_idx]; |
| 621 | to_bkt = __get_bucket(h, b_i: curr_node->bkt_idx); |
| 622 | to_slot = leaf_slot; |
| 623 | |
| 624 | __lock_bucket(to_bkt); |
| 625 | |
| 626 | while (__probable(curr_node->prev_node_idx != _CHT_BFS_QUEUE_LEN)) { |
| 627 | prev_node = &queue[curr_node->prev_node_idx]; |
| 628 | from_bkt = __get_bucket(h, b_i: prev_node->bkt_idx); |
| 629 | from_slot = curr_node->prev_slot_idx; |
| 630 | |
| 631 | if (!__lock_bucket_with_backoff(b: from_bkt)) { |
| 632 | /* a dead lock or a sleeping-thread holding the lock */ |
| 633 | __unlock_bucket(to_bkt); |
| 634 | cht_warn("cuckoo move deadlock detected" ); |
| 635 | return EINVAL; |
| 636 | } |
| 637 | |
| 638 | /* |
| 639 | * Verify cuckoo path by checking: |
| 640 | * 1. from_bkt[from_slot]'s alternative bucket is still to_bkt |
| 641 | * 3. to_bkt[to_slot] is still vacant |
| 642 | */ |
| 643 | alt_bkt = __alt_bucket(h, hash: from_bkt->_slots[from_slot]._hash); |
| 644 | if (alt_bkt != to_bkt || |
| 645 | !__slot_empty(s: __bucket_slot(b: to_bkt, slot_idx: to_slot))) { |
| 646 | __unlock_bucket(from_bkt); |
| 647 | __unlock_bucket(to_bkt); |
| 648 | cht_warn("cuckoo move path invalid: %s %s" , |
| 649 | alt_bkt != to_bkt ? "alt_bkt != to_bkt" : "" , |
| 650 | !__slot_empty(__bucket_slot(to_bkt, to_slot)) ? |
| 651 | "!slot_empty(to_bkt, to_slot)" : "" ); |
| 652 | return EINVAL; |
| 653 | } |
| 654 | |
| 655 | cht_log(CHTV_DEBUG, "Move [0x%lx][%d] to [0x%lx][%d]" , |
| 656 | from_bkt - h->_buckets, from_slot, to_bkt - h->_buckets, |
| 657 | to_slot); |
| 658 | |
| 659 | ASSERT(to_bkt->_slots[to_slot]._node == NULL); |
| 660 | ASSERT(to_bkt->_slots[to_slot]._hash == 0); |
| 661 | |
| 662 | /* move entry backward */ |
| 663 | to_bkt->_slots[to_slot] = from_bkt->_slots[from_slot]; |
| 664 | to_bkt->_inuse++; |
| 665 | __slot_reset(slt: &from_bkt->_slots[from_slot]); |
| 666 | from_bkt->_inuse--; |
| 667 | |
| 668 | __unlock_bucket(to_bkt); |
| 669 | |
| 670 | curr_node = prev_node; |
| 671 | to_bkt = from_bkt; |
| 672 | to_slot = from_slot; |
| 673 | } |
| 674 | |
| 675 | ASSERT(curr_node->prev_node_idx == _CHT_BFS_QUEUE_LEN); |
| 676 | ASSERT(curr_node->prev_slot_idx == _CHT_SLOT_INVAL); |
| 677 | |
| 678 | /* if root slot is no longer valid */ |
| 679 | if (to_bkt->_slots[to_slot]._node != NULL) { |
| 680 | __unlock_bucket(to_bkt); |
| 681 | return EINVAL; |
| 682 | } |
| 683 | |
| 684 | to_bkt->_inuse++; |
| 685 | __slot_set(slt: &to_bkt->_slots[to_slot], hash, node); |
| 686 | h->_obj_retain(node); |
| 687 | __unlock_bucket(to_bkt); |
| 688 | |
| 689 | OSAddAtomic(1, &h->_n_entries); |
| 690 | |
| 691 | cht_debug("hash %x node %p inserted at [%zu][%d]" , hash, node, |
| 692 | __bucket_idx(h, to_bkt), to_slot); |
| 693 | |
| 694 | return 0; |
| 695 | } |
| 696 | |
| 697 | static int |
| 698 | cuckoo_probe(struct cuckoo_hashtable *h, struct cuckoo_node *node, |
| 699 | uint32_t hash) |
| 700 | { |
| 701 | struct _bfs_node queue[_CHT_BFS_QUEUE_LEN]; |
| 702 | uint8_t head, tail; |
| 703 | struct _bucket *b; |
| 704 | uint8_t avail_i; |
| 705 | int ret = ENOMEM; |
| 706 | |
| 707 | /* probe starts from its primary bucket */ |
| 708 | queue[0].bkt_idx = hash & h->_bitmask; |
| 709 | queue[0].prev_node_idx = _CHT_BFS_QUEUE_LEN; |
| 710 | queue[0].prev_slot_idx = _CHT_SLOT_INVAL; |
| 711 | |
| 712 | head = 0; |
| 713 | tail = 1; |
| 714 | |
| 715 | while (__probable(tail != head && tail < _CHT_BFS_QUEUE_END)) { |
| 716 | b = __get_bucket(h, b_i: queue[head].bkt_idx); |
| 717 | avail_i = _CHT_SLOT_INVAL; |
| 718 | for (uint8_t i = 0; i < _CHT_BUCKET_SLOTS; i++) { |
| 719 | struct _slot *s = __bucket_slot(b, slot_idx: i); |
| 720 | if (__slot_empty(s)) { |
| 721 | if (avail_i == _CHT_SLOT_INVAL) { |
| 722 | avail_i = i; |
| 723 | } |
| 724 | continue; |
| 725 | } |
| 726 | |
| 727 | /* |
| 728 | * Another node with same hash could have been probed |
| 729 | * into this bucket, chain to it. |
| 730 | */ |
| 731 | if (__improbable(s->_hash == hash)) { |
| 732 | ASSERT(s->_node != NULL); |
| 733 | ret = cuckoo_node_chain(node: s->_node, new_node: node); |
| 734 | if (ret != 0) { |
| 735 | goto done; |
| 736 | } |
| 737 | cht_debug("hash %x node %p inserted [%zu][%d]" , |
| 738 | hash, node, __bucket_idx(h, b), i); |
| 739 | OSAddAtomic(1, &h->_n_entries); |
| 740 | h->_obj_retain(node); |
| 741 | goto done; |
| 742 | } |
| 743 | |
| 744 | queue[tail].bkt_idx = __alt_hash(hash: s->_hash) & h->_bitmask; |
| 745 | queue[tail].prev_node_idx = head; |
| 746 | queue[tail].prev_slot_idx = i; |
| 747 | tail++; |
| 748 | } |
| 749 | |
| 750 | if (avail_i != _CHT_SLOT_INVAL) { |
| 751 | ret = cuckoo_move(h, node, hash, queue, leaf_node_idx: head, leaf_slot: avail_i); |
| 752 | if (ret == 0) { |
| 753 | goto done; |
| 754 | } else if (ret == EINVAL) { |
| 755 | cht_warn("cukoo path invalidated" ); |
| 756 | goto skip; |
| 757 | } else { |
| 758 | cht_err("faild: unknown err %d" , ret); |
| 759 | goto done; |
| 760 | } |
| 761 | } |
| 762 | skip: |
| 763 | head++; |
| 764 | } |
| 765 | |
| 766 | if (tail == head || tail >= _CHT_BFS_QUEUE_END) { |
| 767 | cht_warn("failed: cuckoo probe out of search space " |
| 768 | "head %d tail %d (%d/%d, load factor %d%%)" , head, tail, |
| 769 | h->_n_entries, h->_capacity, |
| 770 | cuckoo_hashtable_load_factor(h)); |
| 771 | ret = ENOSPC; |
| 772 | } else { |
| 773 | cht_warn("failed: cuckoo probe path invalidated " |
| 774 | " (%d/%d, load factor %d%%)" , h->_n_entries, h->_capacity, |
| 775 | cuckoo_hashtable_load_factor(h)); |
| 776 | ret = EAGAIN; |
| 777 | } |
| 778 | done: |
| 779 | return ret; |
| 780 | } |
| 781 | |
| 782 | static inline void |
| 783 | __foreach_node(struct cuckoo_hashtable *h, bool wlocked, |
| 784 | void (^node_handler)(struct cuckoo_node *, uint32_t hash)) |
| 785 | { |
| 786 | if (!wlocked) { |
| 787 | __rlock_table(h); |
| 788 | } |
| 789 | for (uint32_t i = 0; i < h->_n_buckets; i++) { |
| 790 | struct _bucket *b = &h->_buckets[i]; |
| 791 | if (b->_inuse == 0) { |
| 792 | continue; |
| 793 | } |
| 794 | if (!wlocked) { |
| 795 | __lock_bucket(b); |
| 796 | } |
| 797 | for (uint32_t j = 0; j < _CHT_BUCKET_SLOTS; j++) { |
| 798 | struct _slot *s = __bucket_slot(b, slot_idx: j); |
| 799 | struct cuckoo_node *node = NULL, *next_node = NULL; |
| 800 | node = s->_node; |
| 801 | while (node != NULL) { |
| 802 | next_node = cuckoo_node_next(node); |
| 803 | node_handler(node, s->_hash); |
| 804 | node = next_node; |
| 805 | } |
| 806 | } |
| 807 | if (!wlocked) { |
| 808 | __unlock_bucket(b); |
| 809 | } |
| 810 | } |
| 811 | if (!wlocked) { |
| 812 | __unrlock_table(h); |
| 813 | } |
| 814 | } |
| 815 | |
| 816 | void |
| 817 | cuckoo_hashtable_foreach(struct cuckoo_hashtable *h, |
| 818 | void (^node_handler)(struct cuckoo_node *, uint32_t hash)) |
| 819 | { |
| 820 | __foreach_node(h, false, node_handler); |
| 821 | } |
| 822 | |
| 823 | static void |
| 824 | cuckoo_dummy_retain(struct cuckoo_node *node) |
| 825 | { |
| 826 | #pragma unused(node) |
| 827 | } |
| 828 | |
| 829 | static void |
| 830 | cuckoo_dummy_release(struct cuckoo_node *node) |
| 831 | { |
| 832 | #pragma unused(node) |
| 833 | } |
| 834 | |
| 835 | static int |
| 836 | cuckoo_resize(struct cuckoo_hashtable *h, enum cuckoo_resize_ops option) |
| 837 | { |
| 838 | int ret = 0; |
| 839 | |
| 840 | /* backoff from concurrent expansion */ |
| 841 | do { |
| 842 | ret = __resize_begin(h); |
| 843 | if (ret == EAGAIN) { |
| 844 | cht_info("resize done by peer" ); |
| 845 | return EAGAIN; |
| 846 | } |
| 847 | } while (ret == EINTR); |
| 848 | |
| 849 | uint32_t curr_capacity = h->_n_buckets * _CHT_BUCKET_SLOTS; |
| 850 | uint32_t curr_load = (100 * h->_n_entries) / curr_capacity; |
| 851 | uint32_t curr_buckets = h->_n_buckets; |
| 852 | uint32_t new_capacity; |
| 853 | __block size_t add_called = 0; |
| 854 | |
| 855 | /* check load factor to ensure we are not hitting something else */ |
| 856 | if (option == _CHT_RESIZE_EXPAND) { |
| 857 | if (curr_load < _CHT_MIN_LOAD_EXPAND) { |
| 858 | cht_warn("Warning: early expand at %d load" , curr_load); |
| 859 | } |
| 860 | new_capacity = curr_capacity * 2; |
| 861 | } else { |
| 862 | if (curr_load > _CHT_MAX_LOAD_SHRINK || |
| 863 | curr_capacity == h->_rcapacity) { |
| 864 | goto done; |
| 865 | } |
| 866 | new_capacity = curr_capacity / 2; |
| 867 | } |
| 868 | |
| 869 | cht_info("resize %d/(%d -> %d)" , h->_n_entries, |
| 870 | curr_capacity, new_capacity); |
| 871 | |
| 872 | struct cuckoo_hashtable_params new_p = { |
| 873 | .cht_capacity = new_capacity, |
| 874 | .cht_obj_cmp = h->_obj_cmp, |
| 875 | .cht_obj_retain = cuckoo_dummy_retain, |
| 876 | .cht_obj_release = cuckoo_dummy_release, |
| 877 | }; |
| 878 | struct cuckoo_hashtable *tmp_h; |
| 879 | tmp_h = cuckoo_hashtable_create(p: &new_p); |
| 880 | if (tmp_h == NULL) { |
| 881 | ret = ENOMEM; |
| 882 | goto done; |
| 883 | } |
| 884 | |
| 885 | __foreach_node(h, true, node_handler: ^(struct cuckoo_node *node, uint32_t hash) { |
| 886 | int error = 0; |
| 887 | cuckoo_node_set_next(node, NULL); |
| 888 | error = cuckoo_hashtable_add_with_hash(h: tmp_h, node, key: hash); |
| 889 | ASSERT(error == 0); |
| 890 | add_called++; |
| 891 | }); |
| 892 | |
| 893 | if (__improbable(cuckoo_hashtable_entries(h) != |
| 894 | cuckoo_hashtable_entries(tmp_h))) { |
| 895 | panic("h %zu add_called %zu tmp_h %zu" , |
| 896 | cuckoo_hashtable_entries(h), add_called, |
| 897 | cuckoo_hashtable_entries(tmp_h)); |
| 898 | } |
| 899 | |
| 900 | for (uint32_t i = 0; i < h->_n_buckets; i++) { |
| 901 | lck_mtx_destroy(lck: &h->_buckets[i]._lock, grp: &cht_lock_group); |
| 902 | } |
| 903 | h->_n_buckets = tmp_h->_n_buckets; |
| 904 | h->_capacity = h->_n_buckets * _CHT_BUCKET_SLOTS; |
| 905 | h->_bitmask = tmp_h->_bitmask; |
| 906 | sk_free_type_array(struct _bucket, curr_buckets, h->_buckets); |
| 907 | |
| 908 | h->_buckets = tmp_h->_buckets; |
| 909 | lck_rw_destroy(lck: &tmp_h->_resize_lock, grp: &cht_lock_group); |
| 910 | lck_mtx_destroy(lck: &tmp_h->_lock, grp: &cht_lock_group); |
| 911 | sk_free_type(struct cuckoo_hashtable, tmp_h); |
| 912 | |
| 913 | done: |
| 914 | __resize_end(h); |
| 915 | |
| 916 | return ret; |
| 917 | } |
| 918 | |
| 919 | static inline int |
| 920 | cuckoo_add_no_expand(struct cuckoo_hashtable *h, |
| 921 | struct cuckoo_node *node, uint32_t hash) |
| 922 | { |
| 923 | struct _bucket *b1, *b2; |
| 924 | int ret = -1; |
| 925 | |
| 926 | __rlock_table(h); |
| 927 | |
| 928 | b1 = __prim_bucket(h, hash); |
| 929 | if ((ret = __add_to_bucket(h, b: b1, node, hash)) == 0) { |
| 930 | goto done; |
| 931 | } |
| 932 | |
| 933 | b2 = __alt_bucket(h, hash); |
| 934 | if ((ret = __add_to_bucket(h, b: b2, node, hash)) == 0) { |
| 935 | goto done; |
| 936 | } |
| 937 | |
| 938 | ret = cuckoo_probe(h, node, hash); |
| 939 | done: |
| 940 | __unrlock_table(h); |
| 941 | return ret; |
| 942 | } |
| 943 | |
| 944 | int |
| 945 | cuckoo_hashtable_add_with_hash(struct cuckoo_hashtable *h, |
| 946 | struct cuckoo_node *node, uint32_t hash) |
| 947 | { |
| 948 | int ret; |
| 949 | |
| 950 | /* neutralize node to avoid non-terminating tail */ |
| 951 | ASSERT(cuckoo_node_next(node) == NULL); |
| 952 | |
| 953 | ret = cuckoo_add_no_expand(h, node, hash); |
| 954 | if (ret == ENOSPC) { |
| 955 | do { |
| 956 | ret = cuckoo_resize(h, option: _CHT_RESIZE_EXPAND); |
| 957 | if (ret != 0 && ret != EAGAIN) { |
| 958 | break; |
| 959 | } |
| 960 | // this could still fail, when other threads added |
| 961 | // enough objs that another resize is needed |
| 962 | ret = cuckoo_add_no_expand(h, node, hash); |
| 963 | } while (ret == ENOSPC); |
| 964 | } |
| 965 | |
| 966 | return ret; |
| 967 | } |
| 968 | |
| 969 | static inline int |
| 970 | __del_from_bucket(struct cuckoo_hashtable *h, struct _bucket *b, |
| 971 | struct cuckoo_node *node, uint32_t hash) |
| 972 | { |
| 973 | uint32_t i; |
| 974 | |
| 975 | __lock_bucket(b); |
| 976 | for (i = 0; i < _CHT_BUCKET_SLOTS; i++) { |
| 977 | if (b->_slots[i]._hash == hash) { |
| 978 | if (cuckoo_node_del(pnode: &b->_slots[i]._node, del_node: node)) { |
| 979 | h->_obj_release(node); |
| 980 | OSAddAtomic(-1, &h->_n_entries); |
| 981 | if (__slot_empty(s: __bucket_slot(b, slot_idx: i))) { |
| 982 | b->_slots[i]._hash = 0; |
| 983 | b->_inuse--; |
| 984 | } |
| 985 | __unlock_bucket(b); |
| 986 | return 0; |
| 987 | } |
| 988 | } |
| 989 | } |
| 990 | __unlock_bucket(b); |
| 991 | return ENOENT; |
| 992 | } |
| 993 | |
| 994 | int |
| 995 | cuckoo_hashtable_del(struct cuckoo_hashtable *h, |
| 996 | struct cuckoo_node *node, uint32_t hash) |
| 997 | { |
| 998 | struct _bucket *b1, *b2; |
| 999 | int ret = -1; |
| 1000 | |
| 1001 | __rlock_table(h); |
| 1002 | |
| 1003 | b1 = __prim_bucket(h, hash); |
| 1004 | if ((ret = __del_from_bucket(h, b: b1, node, hash)) == 0) { |
| 1005 | goto done; |
| 1006 | } |
| 1007 | |
| 1008 | b2 = __alt_bucket(h, hash); |
| 1009 | if ((ret = __del_from_bucket(h, b: b2, node, hash)) == 0) { |
| 1010 | goto done; |
| 1011 | } |
| 1012 | |
| 1013 | done: |
| 1014 | if (ret == 0) { |
| 1015 | cuckoo_node_set_next(node, NULL); |
| 1016 | } |
| 1017 | __unrlock_table(h); |
| 1018 | return ret; |
| 1019 | } |
| 1020 | |
| 1021 | void |
| 1022 | cuckoo_hashtable_try_shrink(struct cuckoo_hashtable *h) |
| 1023 | { |
| 1024 | cuckoo_resize(h, option: _CHT_RESIZE_SHRINK); |
| 1025 | } |
| 1026 | |
| 1027 | #if (DEVELOPMENT || DEBUG) |
| 1028 | |
| 1029 | static inline bool |
| 1030 | cuckoo_node_looped(struct cuckoo_node *node) |
| 1031 | { |
| 1032 | struct cuckoo_node *runner = node; |
| 1033 | |
| 1034 | if (node == NULL) { |
| 1035 | return false; |
| 1036 | } |
| 1037 | |
| 1038 | while (runner->next && runner->next->next) { |
| 1039 | runner = runner->next->next; |
| 1040 | node = node->next; |
| 1041 | |
| 1042 | if (runner == node) { |
| 1043 | return true; |
| 1044 | } |
| 1045 | } |
| 1046 | return false; |
| 1047 | } |
| 1048 | |
| 1049 | int |
| 1050 | cuckoo_hashtable_health_check(struct cuckoo_hashtable *h) |
| 1051 | { |
| 1052 | uint32_t hash; |
| 1053 | uint32_t i, j; |
| 1054 | struct _bucket *b; |
| 1055 | struct cuckoo_node *node; |
| 1056 | bool healthy = true; |
| 1057 | uint32_t seen = 0; |
| 1058 | |
| 1059 | __wlock_table(h); |
| 1060 | |
| 1061 | for (i = 0; i < h->_n_buckets; i++) { |
| 1062 | b = &h->_buckets[i]; |
| 1063 | uint8_t inuse = 0; |
| 1064 | for (j = 0; j < _CHT_BUCKET_SLOTS; j++) { |
| 1065 | hash = b->_slots[j]._hash; |
| 1066 | node = b->_slots[j]._node; |
| 1067 | if (node != NULL) { |
| 1068 | inuse++; |
| 1069 | } |
| 1070 | while (node != NULL) { |
| 1071 | seen++; |
| 1072 | if ((__prim_bucket(h, hash) != b) && |
| 1073 | (__alt_bucket(h, hash) != b)) { |
| 1074 | panic("[%d][%d] stray hash %x node %p" , |
| 1075 | i, j, hash, node); |
| 1076 | healthy = false; |
| 1077 | } |
| 1078 | |
| 1079 | if (cuckoo_node_looped(node)) { |
| 1080 | panic("[%d][%d] looped hash %x node %p" , |
| 1081 | i, j, hash, node); |
| 1082 | healthy = false; |
| 1083 | } |
| 1084 | node = cuckoo_node_next(node); |
| 1085 | } |
| 1086 | } |
| 1087 | ASSERT(inuse == b->_inuse); |
| 1088 | } |
| 1089 | |
| 1090 | if (seen != h->_n_entries) { |
| 1091 | panic("seen %d != n_entries %d" , seen, h->_n_entries); |
| 1092 | } |
| 1093 | |
| 1094 | __unwlock_table(h); |
| 1095 | |
| 1096 | if (!healthy) { |
| 1097 | cht_err("table unhealthy" ); |
| 1098 | return -1; |
| 1099 | } else { |
| 1100 | return 0; |
| 1101 | } |
| 1102 | } |
| 1103 | |
| 1104 | void |
| 1105 | cuckoo_hashtable_dump(struct cuckoo_hashtable *h) |
| 1106 | { |
| 1107 | uint32_t hash; |
| 1108 | struct cuckoo_node *node; |
| 1109 | uint32_t i, j; |
| 1110 | struct _bucket *b; |
| 1111 | |
| 1112 | cuckoo_hashtable_health_check(h); |
| 1113 | |
| 1114 | for (i = 0; i < h->_n_buckets; i++) { |
| 1115 | printf("%d\t" , i); |
| 1116 | b = &h->_buckets[i]; |
| 1117 | for (j = 0; j < _CHT_BUCKET_SLOTS; j++) { |
| 1118 | hash = b->_slots[j]._hash; |
| 1119 | node = b->_slots[j]._node; |
| 1120 | printf("0x%08x(%p) " , hash, node); |
| 1121 | } |
| 1122 | printf("\n" ); |
| 1123 | } |
| 1124 | } |
| 1125 | #endif /* !DEVELOPMENT && !DEBUG */ |
| 1126 | |