| 1 | /* |
| 2 | * Copyright (c) 2015-2021 Apple Inc. All rights reserved. |
| 3 | * |
| 4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ |
| 5 | * |
| 6 | * This file contains Original Code and/or Modifications of Original Code |
| 7 | * as defined in and that are subject to the Apple Public Source License |
| 8 | * Version 2.0 (the 'License'). You may not use this file except in |
| 9 | * compliance with the License. The rights granted to you under the License |
| 10 | * may not be used to create, or enable the creation or redistribution of, |
| 11 | * unlawful or unlicensed copies of an Apple operating system, or to |
| 12 | * circumvent, violate, or enable the circumvention or violation of, any |
| 13 | * terms of an Apple operating system software license agreement. |
| 14 | * |
| 15 | * Please obtain a copy of the License at |
| 16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. |
| 17 | * |
| 18 | * The Original Code and all software distributed under the License are |
| 19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER |
| 20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
| 21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, |
| 22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
| 23 | * Please see the License for the specific language governing rights and |
| 24 | * limitations under the License. |
| 25 | * |
| 26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ |
| 27 | */ |
| 28 | |
| 29 | #include <sys/kdebug.h> |
| 30 | #include <skywalk/os_skywalk_private.h> |
| 31 | #include <net/ntstat.h> |
| 32 | #include <skywalk/nexus/flowswitch/nx_flowswitch.h> |
| 33 | #include <skywalk/nexus/netif/nx_netif.h> |
| 34 | #include <skywalk/nexus/upipe/nx_user_pipe.h> |
| 35 | |
| 36 | #define KRING_EMPTY_TX(_kring, _index) \ |
| 37 | ((_kring)->ckr_rhead == (_index)) |
| 38 | |
| 39 | #define KRING_FULL_RX(_kring, _index) \ |
| 40 | ((_kring)->ckr_khead == SLOT_NEXT((_index), (_kring)->ckr_lim)) |
| 41 | |
| 42 | uint32_t |
| 43 | kern_channel_notify(const kern_channel_ring_t kring, uint32_t flags) |
| 44 | { |
| 45 | #pragma unused(flags) |
| 46 | if (__improbable(KR_DROP(kring))) { |
| 47 | return ENXIO; |
| 48 | } |
| 49 | |
| 50 | return kring->ckr_na_notify(kring, kernproc, 0); |
| 51 | } |
| 52 | |
| 53 | uint32_t |
| 54 | kern_channel_reclaim(const kern_channel_ring_t kring) |
| 55 | { |
| 56 | return kr_reclaim(kr: kring); |
| 57 | } |
| 58 | |
| 59 | static inline uint32_t |
| 60 | _kern_channel_available_slot_count_tx(const kern_channel_ring_t kring, |
| 61 | slot_idx_t index) |
| 62 | { |
| 63 | ASSERT(kring->ckr_tx == NR_TX); |
| 64 | |
| 65 | if (kring->ckr_rhead < index) { |
| 66 | return kring->ckr_num_slots + kring->ckr_rhead - index; |
| 67 | } |
| 68 | |
| 69 | return kring->ckr_rhead - index; |
| 70 | } |
| 71 | |
| 72 | static inline uint32_t |
| 73 | _kern_channel_available_slot_count_rx(const kern_channel_ring_t kring, |
| 74 | slot_idx_t index) |
| 75 | { |
| 76 | uint32_t busy; |
| 77 | slot_idx_t lim = kring->ckr_lim; |
| 78 | |
| 79 | ASSERT(kring->ckr_tx == NR_RX); |
| 80 | |
| 81 | if (index < kring->ckr_khead) { |
| 82 | busy = kring->ckr_num_slots + index - kring->ckr_khead; |
| 83 | } else { |
| 84 | busy = index - kring->ckr_khead; |
| 85 | } |
| 86 | |
| 87 | ASSERT(lim >= busy); |
| 88 | return lim - busy; |
| 89 | } |
| 90 | |
| 91 | uint32_t |
| 92 | kern_channel_available_slot_count(const kern_channel_ring_t kring) |
| 93 | { |
| 94 | if (kring->ckr_tx == NR_TX) { |
| 95 | return _kern_channel_available_slot_count_tx(kring, |
| 96 | index: kring->ckr_khead); |
| 97 | } else { |
| 98 | return _kern_channel_available_slot_count_rx(kring, |
| 99 | index: kring->ckr_ktail); |
| 100 | } |
| 101 | } |
| 102 | |
| 103 | kern_channel_slot_t |
| 104 | kern_channel_get_next_slot(const kern_channel_ring_t kring, |
| 105 | const kern_channel_slot_t slot0, struct kern_slot_prop *prop) |
| 106 | { |
| 107 | kern_channel_slot_t slot; |
| 108 | slot_idx_t slot_idx; |
| 109 | |
| 110 | /* Ensure this is only done by the thread doing a sync syscall */ |
| 111 | VERIFY(sk_is_sync_protected()); |
| 112 | |
| 113 | if (__improbable(slot0 == NULL)) { |
| 114 | if (kring->ckr_tx == NR_TX) { |
| 115 | slot_idx = kring->ckr_khead; |
| 116 | } else { |
| 117 | slot_idx = kring->ckr_ktail; |
| 118 | } |
| 119 | } else { |
| 120 | slot_idx = SLOT_NEXT(i: KR_SLOT_INDEX(kr: kring, slot: slot0), |
| 121 | lim: kring->ckr_lim); |
| 122 | } |
| 123 | |
| 124 | ASSERT(slot_idx < kring->ckr_num_slots); |
| 125 | |
| 126 | if (kring->ckr_tx == NR_TX) { |
| 127 | if (__improbable(KRING_EMPTY_TX(kring, slot_idx))) { |
| 128 | SK_DF(SK_VERB_SYNC | SK_VERB_TX, |
| 129 | "EMPTY_TX: na \"%s\" kr \"%s\" " |
| 130 | "i %u (kc %u kt %u kl %u | rh %u rt %u)" , |
| 131 | KRNA(kring)->na_name, |
| 132 | kring->ckr_name, slot_idx, kring->ckr_khead, |
| 133 | kring->ckr_ktail, kring->ckr_klease, |
| 134 | kring->ckr_rhead, kring->ckr_rtail); |
| 135 | slot = NULL; |
| 136 | } else { |
| 137 | slot = &kring->ckr_ksds[slot_idx]; |
| 138 | } |
| 139 | } else { |
| 140 | if (__improbable(KRING_FULL_RX(kring, slot_idx))) { |
| 141 | SK_DF(SK_VERB_SYNC | SK_VERB_RX, |
| 142 | "FULL_RX: na \"%s\" kr \"%s\" " |
| 143 | "i %u (kc %u kt %u kl %u | rh %u rt %u)" , |
| 144 | KRNA(kring)->na_name, |
| 145 | kring->ckr_name, slot_idx, kring->ckr_khead, |
| 146 | kring->ckr_ktail, kring->ckr_klease, |
| 147 | kring->ckr_rhead, kring->ckr_rtail); |
| 148 | slot = NULL; |
| 149 | } else { |
| 150 | slot = &kring->ckr_ksds[slot_idx]; |
| 151 | } |
| 152 | } |
| 153 | |
| 154 | if (prop != NULL) { |
| 155 | bzero(s: prop, n: sizeof(*prop)); |
| 156 | } |
| 157 | |
| 158 | return slot; |
| 159 | } |
| 160 | |
| 161 | static inline void |
| 162 | _kern_channel_advance_slot_tx(const kern_channel_ring_t kring, slot_idx_t index) |
| 163 | { |
| 164 | /* Ensure this is only done by the thread doing a sync syscall */ |
| 165 | VERIFY(sk_is_sync_protected()); |
| 166 | kr_txkring_reclaim_and_refill(kring, index); |
| 167 | } |
| 168 | |
| 169 | static inline void |
| 170 | _kern_channel_advance_slot_rx(const kern_channel_ring_t kring, slot_idx_t index) |
| 171 | { |
| 172 | ASSERT(kring->ckr_tx == NR_RX || kring->ckr_tx == NR_EV); |
| 173 | /* Ensure this is only done by the thread doing a sync syscall */ |
| 174 | VERIFY(sk_is_sync_protected()); |
| 175 | |
| 176 | kring->ckr_ktail = SLOT_NEXT(i: index, lim: kring->ckr_lim); |
| 177 | } |
| 178 | |
| 179 | void |
| 180 | kern_channel_advance_slot(const kern_channel_ring_t kring, |
| 181 | kern_channel_slot_t slot) |
| 182 | { |
| 183 | slot_idx_t index = KR_SLOT_INDEX(kr: kring, slot); |
| 184 | ASSERT(index < kring->ckr_num_slots); |
| 185 | |
| 186 | if (kring->ckr_tx == NR_TX) { |
| 187 | _kern_channel_advance_slot_tx(kring, index); |
| 188 | } else { |
| 189 | _kern_channel_advance_slot_rx(kring, index); |
| 190 | } |
| 191 | } |
| 192 | |
| 193 | void * |
| 194 | kern_channel_get_context(const kern_channel_t ch) |
| 195 | { |
| 196 | return ch->ch_ctx; |
| 197 | } |
| 198 | |
| 199 | void * |
| 200 | kern_channel_ring_get_context(const kern_channel_ring_t kring) |
| 201 | { |
| 202 | return kring->ckr_ctx; |
| 203 | } |
| 204 | |
| 205 | errno_t |
| 206 | kern_channel_ring_get_container(const kern_channel_ring_t kring, |
| 207 | kern_packet_t **array, uint32_t *count) |
| 208 | { |
| 209 | /* Ensure this is only done by the thread doing a sync syscall */ |
| 210 | VERIFY(sk_is_sync_protected()); |
| 211 | |
| 212 | if (array == NULL) { |
| 213 | return EINVAL; |
| 214 | } |
| 215 | |
| 216 | *array = kring->ckr_scratch; |
| 217 | if (count != NULL) { |
| 218 | *count = na_get_nslots(na: kring->ckr_na, t: kring->ckr_tx); |
| 219 | } |
| 220 | |
| 221 | return 0; |
| 222 | } |
| 223 | |
| 224 | void * |
| 225 | kern_channel_slot_get_context(const kern_channel_ring_t kring, |
| 226 | const kern_channel_slot_t slot) |
| 227 | { |
| 228 | slot_idx_t i = KR_SLOT_INDEX(kr: kring, slot); |
| 229 | void *slot_ctx = NULL; |
| 230 | |
| 231 | if (kring->ckr_slot_ctxs != NULL) { |
| 232 | slot_ctx = (void *)(kring->ckr_slot_ctxs[i].slot_ctx_arg); |
| 233 | } |
| 234 | |
| 235 | return slot_ctx; |
| 236 | } |
| 237 | |
| 238 | void |
| 239 | kern_channel_increment_ring_stats(kern_channel_ring_t kring, |
| 240 | struct kern_channel_ring_stat_increment *stats) |
| 241 | { |
| 242 | kr_update_stats(kring, slot_count: stats->kcrsi_slots_transferred, |
| 243 | byte_count: stats->kcrsi_bytes_transferred); |
| 244 | } |
| 245 | |
| 246 | void |
| 247 | kern_channel_increment_ring_net_stats(kern_channel_ring_t kring, |
| 248 | struct ifnet *ifp, struct kern_channel_ring_stat_increment *stats) |
| 249 | { |
| 250 | if (kring->ckr_tx == NR_TX) { |
| 251 | os_atomic_add(&ifp->if_data.ifi_opackets, stats->kcrsi_slots_transferred, relaxed); |
| 252 | os_atomic_add(&ifp->if_data.ifi_obytes, stats->kcrsi_bytes_transferred, relaxed); |
| 253 | } else { |
| 254 | os_atomic_add(&ifp->if_data.ifi_ipackets, stats->kcrsi_slots_transferred, relaxed); |
| 255 | os_atomic_add(&ifp->if_data.ifi_ibytes, stats->kcrsi_bytes_transferred, relaxed); |
| 256 | } |
| 257 | |
| 258 | if (ifp->if_data_threshold != 0) { |
| 259 | ifnet_notify_data_threshold(ifp); |
| 260 | } |
| 261 | |
| 262 | kr_update_stats(kring, slot_count: stats->kcrsi_slots_transferred, |
| 263 | byte_count: stats->kcrsi_bytes_transferred); |
| 264 | } |
| 265 | |
| 266 | kern_packet_t |
| 267 | kern_channel_slot_get_packet(const kern_channel_ring_t kring, |
| 268 | const kern_channel_slot_t slot) |
| 269 | { |
| 270 | #if (DEVELOPMENT || DEBUG) |
| 271 | /* catch invalid slot */ |
| 272 | slot_idx_t idx = KR_SLOT_INDEX(kring, slot); |
| 273 | struct __kern_slot_desc *ksd = KR_KSD(kring, idx); |
| 274 | #else |
| 275 | #pragma unused(kring) |
| 276 | struct __kern_slot_desc *ksd = SLOT_DESC_KSD(slot); |
| 277 | #endif /* (DEVELOPMENT || DEBUG) */ |
| 278 | struct __kern_quantum *kqum = ksd->sd_qum; |
| 279 | |
| 280 | if (__improbable(kqum == NULL || |
| 281 | (kqum->qum_qflags & QUM_F_DROPPED) != 0)) { |
| 282 | return 0; |
| 283 | } |
| 284 | |
| 285 | return SD_GET_TAGGED_METADATA(ksd); |
| 286 | } |
| 287 | |
| 288 | errno_t |
| 289 | kern_channel_slot_attach_packet(const kern_channel_ring_t kring, |
| 290 | const kern_channel_slot_t slot, kern_packet_t ph) |
| 291 | { |
| 292 | #if (DEVELOPMENT || DEBUG) |
| 293 | /* catch invalid slot */ |
| 294 | slot_idx_t idx = KR_SLOT_INDEX(kring, slot); |
| 295 | struct __kern_slot_desc *ksd = KR_KSD(kring, idx); |
| 296 | #else |
| 297 | #pragma unused(kring) |
| 298 | struct __kern_slot_desc *ksd = SLOT_DESC_KSD(slot); |
| 299 | #endif /* (DEVELOPMENT || DEBUG) */ |
| 300 | |
| 301 | return KR_SLOT_ATTACH_METADATA(kring, ksd, SK_PTR_ADDR_KQUM(ph)); |
| 302 | } |
| 303 | |
| 304 | errno_t |
| 305 | kern_channel_slot_detach_packet(const kern_channel_ring_t kring, |
| 306 | const kern_channel_slot_t slot, kern_packet_t ph) |
| 307 | { |
| 308 | #pragma unused(ph) |
| 309 | #if (DEVELOPMENT || DEBUG) |
| 310 | /* catch invalid slot */ |
| 311 | slot_idx_t idx = KR_SLOT_INDEX(kring, slot); |
| 312 | struct __kern_slot_desc *ksd = KR_KSD(kring, idx); |
| 313 | #else |
| 314 | struct __kern_slot_desc *ksd = SLOT_DESC_KSD(slot); |
| 315 | #endif /* (DEVELOPMENT || DEBUG) */ |
| 316 | |
| 317 | ASSERT(SK_PTR_ADDR_KQUM(ph) == |
| 318 | SK_PTR_ADDR_KQUM(SD_GET_TAGGED_METADATA(ksd))); |
| 319 | (void) KR_SLOT_DETACH_METADATA(kring, ksd); |
| 320 | |
| 321 | return 0; |
| 322 | } |
| 323 | |
| 324 | static errno_t |
| 325 | kern_channel_tx_refill_common(const kern_channel_ring_t hw_kring, |
| 326 | uint32_t pkt_limit, uint32_t byte_limit, boolean_t tx_doorbell_ctxt, |
| 327 | boolean_t *pkts_pending, boolean_t canblock) |
| 328 | { |
| 329 | #pragma unused(tx_doorbell_ctxt) |
| 330 | struct nexus_adapter *hwna; |
| 331 | struct ifnet *ifp; |
| 332 | sk_protect_t protect; |
| 333 | errno_t rc = 0; |
| 334 | errno_t sync_err = 0; |
| 335 | |
| 336 | KDBG((SK_KTRACE_CHANNEL_TX_REFILL | DBG_FUNC_START), SK_KVA(hw_kring)); |
| 337 | |
| 338 | VERIFY(hw_kring != NULL); |
| 339 | hwna = KRNA(hw_kring); |
| 340 | ifp = hwna->na_ifp; |
| 341 | |
| 342 | ASSERT(hwna->na_type == NA_NETIF_DEV); |
| 343 | ASSERT(hw_kring->ckr_tx == NR_TX); |
| 344 | *pkts_pending = FALSE; |
| 345 | |
| 346 | if (__improbable(pkt_limit == 0 || byte_limit == 0)) { |
| 347 | SK_ERR("invalid limits plim %d, blim %d" , |
| 348 | pkt_limit, byte_limit); |
| 349 | rc = EINVAL; |
| 350 | goto out; |
| 351 | } |
| 352 | |
| 353 | if (__improbable(!IF_FULLY_ATTACHED(ifp))) { |
| 354 | SK_ERR("hwna 0x%llx ifp %s (0x%llx), interface not attached" , |
| 355 | SK_KVA(hwna), if_name(ifp), SK_KVA(ifp)); |
| 356 | rc = ENXIO; |
| 357 | goto out; |
| 358 | } |
| 359 | |
| 360 | if (__improbable((ifp->if_start_flags & IFSF_FLOW_CONTROLLED) != 0)) { |
| 361 | SK_DF(SK_VERB_SYNC | SK_VERB_TX, "hwna 0x%llx ifp %s (0x%llx), " |
| 362 | "flow control ON" , SK_KVA(hwna), if_name(ifp), SK_KVA(ifp)); |
| 363 | rc = ENXIO; |
| 364 | goto out; |
| 365 | } |
| 366 | |
| 367 | /* |
| 368 | * if the ring is busy, it means another dequeue is in |
| 369 | * progress, so ignore this request and return success. |
| 370 | */ |
| 371 | if (kr_enter(hw_kring, canblock) != 0) { |
| 372 | rc = 0; |
| 373 | goto out; |
| 374 | } |
| 375 | |
| 376 | if (__improbable(KR_DROP(hw_kring) || |
| 377 | !NA_IS_ACTIVE(hw_kring->ckr_na))) { |
| 378 | kr_exit(hw_kring); |
| 379 | SK_ERR("hw-kr 0x%llx stopped" , SK_KVA(hw_kring)); |
| 380 | rc = ENXIO; |
| 381 | goto out; |
| 382 | } |
| 383 | |
| 384 | /* |
| 385 | * Unlikely to get here, unless a channel is opened by |
| 386 | * a user process directly to the netif. Issue a TX sync |
| 387 | * on the netif device TX ring. |
| 388 | */ |
| 389 | protect = sk_sync_protect(); |
| 390 | sync_err = hw_kring->ckr_na_sync(hw_kring, kernproc, |
| 391 | NA_SYNCF_NETIF); |
| 392 | sk_sync_unprotect(protect); |
| 393 | kr_exit(hw_kring); |
| 394 | |
| 395 | if (rc == 0) { |
| 396 | rc = sync_err; |
| 397 | } |
| 398 | |
| 399 | out: |
| 400 | KDBG((SK_KTRACE_CHANNEL_TX_REFILL | DBG_FUNC_END), SK_KVA(hw_kring), |
| 401 | rc, 0, 0); |
| 402 | |
| 403 | return rc; |
| 404 | } |
| 405 | |
| 406 | errno_t |
| 407 | kern_channel_tx_refill(const kern_channel_ring_t hw_kring, |
| 408 | uint32_t pkt_limit, uint32_t byte_limit, boolean_t tx_doorbell_ctxt, |
| 409 | boolean_t *pkts_pending) |
| 410 | { |
| 411 | if (NA_OWNED_BY_FSW(hw_kring->ckr_na)) { |
| 412 | return netif_ring_tx_refill(hw_kring, pkt_limit, |
| 413 | byte_limit, tx_doorbell_ctxt, pkts_pending, FALSE); |
| 414 | } else { |
| 415 | return kern_channel_tx_refill_common(hw_kring, pkt_limit, |
| 416 | byte_limit, tx_doorbell_ctxt, pkts_pending, FALSE); |
| 417 | } |
| 418 | } |
| 419 | |
| 420 | errno_t |
| 421 | kern_channel_tx_refill_canblock(const kern_channel_ring_t hw_kring, |
| 422 | uint32_t pkt_limit, uint32_t byte_limit, boolean_t tx_doorbell_ctxt, |
| 423 | boolean_t *pkts_pending) |
| 424 | { |
| 425 | if (NA_OWNED_BY_FSW(hw_kring->ckr_na)) { |
| 426 | return netif_ring_tx_refill(hw_kring, pkt_limit, |
| 427 | byte_limit, tx_doorbell_ctxt, pkts_pending, TRUE); |
| 428 | } else { |
| 429 | return kern_channel_tx_refill_common(hw_kring, pkt_limit, |
| 430 | byte_limit, tx_doorbell_ctxt, pkts_pending, TRUE); |
| 431 | } |
| 432 | } |
| 433 | |
| 434 | errno_t |
| 435 | kern_channel_get_service_class(const kern_channel_ring_t kring, |
| 436 | kern_packet_svc_class_t *svc) |
| 437 | { |
| 438 | if ((KRNA(kring)->na_type != NA_NETIF_DEV) || |
| 439 | (kring->ckr_tx == NR_RX) || (kring->ckr_svc == KPKT_SC_UNSPEC)) { |
| 440 | return ENOTSUP; |
| 441 | } |
| 442 | *svc = kring->ckr_svc; |
| 443 | return 0; |
| 444 | } |
| 445 | |
| 446 | void |
| 447 | kern_channel_flowadv_clear(struct flowadv_fcentry *fce) |
| 448 | { |
| 449 | const flowadv_token_t ch_token = fce->fce_flowsrc_token; |
| 450 | const flowadv_token_t flow_token = fce->fce_flowid; |
| 451 | const flowadv_idx_t flow_fidx = fce->fce_flowsrc_fidx; |
| 452 | struct ifnet *ifp = fce->fce_ifp; |
| 453 | struct nexus_adapter *hwna; |
| 454 | struct kern_nexus *fsw_nx; |
| 455 | struct kern_channel *ch = NULL; |
| 456 | struct nx_flowswitch *fsw; |
| 457 | |
| 458 | _CASSERT(sizeof(ch->ch_info->cinfo_ch_token) == sizeof(ch_token)); |
| 459 | |
| 460 | SK_LOCK(); |
| 461 | if (ifnet_is_attached(ifp, refio: 0) == 0 || ifp->if_na == NULL) { |
| 462 | goto done; |
| 463 | } |
| 464 | |
| 465 | hwna = &ifp->if_na->nifna_up; |
| 466 | VERIFY((hwna->na_type == NA_NETIF_DEV) || |
| 467 | (hwna->na_type == NA_NETIF_COMPAT_DEV)); |
| 468 | |
| 469 | if (!NA_IS_ACTIVE(hwna) || (fsw = fsw_ifp_to_fsw(ifp)) == NULL) { |
| 470 | goto done; |
| 471 | } |
| 472 | |
| 473 | fsw_nx = fsw->fsw_nx; |
| 474 | VERIFY(fsw_nx != NULL); |
| 475 | |
| 476 | /* find the channel */ |
| 477 | STAILQ_FOREACH(ch, &fsw_nx->nx_ch_head, ch_link) { |
| 478 | if (ch_token == ch->ch_info->cinfo_ch_token) { |
| 479 | break; |
| 480 | } |
| 481 | } |
| 482 | |
| 483 | if (ch != NULL) { |
| 484 | if (ch->ch_na != NULL && |
| 485 | na_flowadv_clear(ch, flow_fidx, flow_token)) { |
| 486 | /* trigger flow advisory kevent */ |
| 487 | na_flowadv_event( |
| 488 | &ch->ch_na->na_tx_rings[ch->ch_first[NR_TX]]); |
| 489 | SK_DF(SK_VERB_FLOW_ADVISORY, |
| 490 | "%s(%d) notified of flow update" , |
| 491 | ch->ch_name, ch->ch_pid); |
| 492 | } else if (ch->ch_na == NULL) { |
| 493 | SK_DF(SK_VERB_FLOW_ADVISORY, |
| 494 | "%s(%d) is closing (flow update ignored)" , |
| 495 | ch->ch_name, ch->ch_pid); |
| 496 | } |
| 497 | } else { |
| 498 | SK_ERR("channel token 0x%x fidx %u on %s not found" , |
| 499 | ch_token, flow_fidx, ifp->if_xname); |
| 500 | } |
| 501 | done: |
| 502 | SK_UNLOCK(); |
| 503 | } |
| 504 | |
| 505 | void |
| 506 | kern_channel_flowadv_report_ce_event(struct flowadv_fcentry *fce, |
| 507 | uint32_t ce_cnt, uint32_t total_pkt_cnt) |
| 508 | { |
| 509 | const flowadv_token_t ch_token = fce->fce_flowsrc_token; |
| 510 | const flowadv_token_t flow_token = fce->fce_flowid; |
| 511 | const flowadv_idx_t flow_fidx = fce->fce_flowsrc_fidx; |
| 512 | struct ifnet *ifp = fce->fce_ifp; |
| 513 | struct nexus_adapter *hwna; |
| 514 | struct kern_nexus *fsw_nx; |
| 515 | struct kern_channel *ch = NULL; |
| 516 | struct nx_flowswitch *fsw; |
| 517 | |
| 518 | _CASSERT(sizeof(ch->ch_info->cinfo_ch_token) == sizeof(ch_token)); |
| 519 | |
| 520 | SK_LOCK(); |
| 521 | if (ifnet_is_attached(ifp, refio: 0) == 0 || ifp->if_na == NULL) { |
| 522 | goto done; |
| 523 | } |
| 524 | |
| 525 | hwna = &ifp->if_na->nifna_up; |
| 526 | VERIFY((hwna->na_type == NA_NETIF_DEV) || |
| 527 | (hwna->na_type == NA_NETIF_COMPAT_DEV)); |
| 528 | |
| 529 | if (!NA_IS_ACTIVE(hwna) || (fsw = fsw_ifp_to_fsw(ifp)) == NULL) { |
| 530 | goto done; |
| 531 | } |
| 532 | |
| 533 | fsw_nx = fsw->fsw_nx; |
| 534 | VERIFY(fsw_nx != NULL); |
| 535 | |
| 536 | /* find the channel */ |
| 537 | STAILQ_FOREACH(ch, &fsw_nx->nx_ch_head, ch_link) { |
| 538 | if (ch_token == ch->ch_info->cinfo_ch_token) { |
| 539 | break; |
| 540 | } |
| 541 | } |
| 542 | |
| 543 | if (ch != NULL) { |
| 544 | if (ch->ch_na != NULL && |
| 545 | na_flowadv_report_ce_event(ch, fe_idx: flow_fidx, flow_token, |
| 546 | ce_cnt, total_pkt_cnt)) { |
| 547 | SK_DF(SK_VERB_FLOW_ADVISORY, |
| 548 | "%s(%d) notified of flow update" , |
| 549 | ch->ch_name, ch->ch_pid); |
| 550 | } else if (ch->ch_na == NULL) { |
| 551 | SK_DF(SK_VERB_FLOW_ADVISORY, |
| 552 | "%s(%d) is closing (flow update ignored)" , |
| 553 | ch->ch_name, ch->ch_pid); |
| 554 | } |
| 555 | } else { |
| 556 | SK_ERR("channel token 0x%x fidx %u on %s not found" , |
| 557 | ch_token, flow_fidx, ifp->if_xname); |
| 558 | } |
| 559 | done: |
| 560 | SK_UNLOCK(); |
| 561 | } |
| 562 | |
| 563 | |
| 564 | void |
| 565 | kern_channel_memstatus(struct proc *p, uint32_t status, |
| 566 | struct kern_channel *ch) |
| 567 | { |
| 568 | #pragma unused(p, status) |
| 569 | SK_LOCK_ASSERT_NOTHELD(); |
| 570 | |
| 571 | ASSERT(!(ch->ch_flags & CHANF_KERNEL)); |
| 572 | ASSERT(proc_pid(p) == ch->ch_pid); |
| 573 | /* |
| 574 | * If we're already draining, then bail. Otherwise, check it |
| 575 | * again via na_drain() with the channel lock held. |
| 576 | */ |
| 577 | if (ch->ch_na->na_flags & NAF_DRAINING) { |
| 578 | return; |
| 579 | } |
| 580 | |
| 581 | SK_DF(SK_VERB_CHANNEL, "%s(%d) ch 0x%llx flags 0x%b status %s" , |
| 582 | sk_proc_name_address(p), sk_proc_pid(p), SK_KVA(ch), |
| 583 | ch->ch_flags, CHANF_BITS, sk_memstatus2str(status)); |
| 584 | |
| 585 | /* serialize accesses against channel syscalls */ |
| 586 | lck_mtx_lock(lck: &ch->ch_lock); |
| 587 | na_drain(ch->ch_na, TRUE); /* purge caches */ |
| 588 | lck_mtx_unlock(lck: &ch->ch_lock); |
| 589 | } |
| 590 | |
| 591 | static bool |
| 592 | _kern_channel_defunct_eligible(struct kern_channel *ch) |
| 593 | { |
| 594 | struct nexus_upipe_adapter *pna; |
| 595 | |
| 596 | if ((ch->ch_info->cinfo_ch_mode & CHMODE_DEFUNCT_OK) == 0) { |
| 597 | return false; |
| 598 | } |
| 599 | if (ch->ch_na->na_type != NA_USER_PIPE) { |
| 600 | return true; |
| 601 | } |
| 602 | pna = (struct nexus_upipe_adapter *)ch->ch_na; |
| 603 | if ((pna->pna_parent->na_flags & NAF_DEFUNCT_OK) == 0) { |
| 604 | return false; |
| 605 | } |
| 606 | return true; |
| 607 | } |
| 608 | |
| 609 | void |
| 610 | kern_channel_defunct(struct proc *p, struct kern_channel *ch) |
| 611 | { |
| 612 | #pragma unused(p) |
| 613 | uint32_t ch_mode = ch->ch_info->cinfo_ch_mode; |
| 614 | |
| 615 | SK_LOCK_ASSERT_NOTHELD(); |
| 616 | |
| 617 | ASSERT(!(ch->ch_flags & CHANF_KERNEL)); |
| 618 | ASSERT(proc_pid(p) == ch->ch_pid); |
| 619 | /* |
| 620 | * If the channel is eligible for defunct, mark it as such. |
| 621 | * Otherwise, set the draining flag which tells the reaper |
| 622 | * thread to purge any cached objects associated with it. |
| 623 | * That draining flag will be cleared then, which allows the |
| 624 | * channel to cache objects again once the process is resumed. |
| 625 | */ |
| 626 | if (_kern_channel_defunct_eligible(ch)) { |
| 627 | struct kern_nexus *nx = ch->ch_nexus; |
| 628 | struct kern_nexus_domain_provider *nxdom_prov = NX_DOM_PROV(nx); |
| 629 | boolean_t need_defunct; |
| 630 | int err; |
| 631 | |
| 632 | /* |
| 633 | * This may be called often, so check first (without lock) if |
| 634 | * the trapdoor flag CHANF_DEFUNCT has been set and bail if so, |
| 635 | * for performance reasons. This check is repeated below with |
| 636 | * the channel lock held. |
| 637 | */ |
| 638 | if (ch->ch_flags & CHANF_DEFUNCT) { |
| 639 | return; |
| 640 | } |
| 641 | |
| 642 | SK_DF(SK_VERB_CHANNEL, "%s(%d) ch 0x%llx flags 0x%b" , |
| 643 | sk_proc_name_address(p), sk_proc_pid(p), SK_KVA(ch), |
| 644 | ch->ch_flags, CHANF_BITS); |
| 645 | |
| 646 | /* serialize accesses against channel syscalls */ |
| 647 | lck_mtx_lock(lck: &ch->ch_lock); |
| 648 | |
| 649 | /* |
| 650 | * If opportunistic defunct is in effect, skip the rest of |
| 651 | * the defunct work based on two cases: |
| 652 | * |
| 653 | * a) if the channel isn't using user packet pool; or |
| 654 | * b) if the channel is using user packet pool and we |
| 655 | * detect that there are outstanding allocations. |
| 656 | * |
| 657 | * Note that for case (a) above we essentially treat the |
| 658 | * channel as ineligible for defunct, and although it may |
| 659 | * be idle we'd leave the memory mapping intact. This |
| 660 | * should not be a concern as the majority of channels are |
| 661 | * on flowswitches where user packet pool is mandatory. |
| 662 | * |
| 663 | * If skipping, mark the channel with CHANF_DEFUNCT_SKIP |
| 664 | * and increment the stats (for flowswitch only). |
| 665 | */ |
| 666 | if (sk_opp_defunct && (!(ch_mode & CHMODE_USER_PACKET_POOL) || |
| 667 | !pp_isempty_upp(ch->ch_pp))) { |
| 668 | if (ch->ch_na->na_type == NA_FLOWSWITCH_VP) { |
| 669 | struct nx_flowswitch *fsw = |
| 670 | VPNA(ch->ch_na)->vpna_fsw; |
| 671 | STATS_INC(&fsw->fsw_stats, |
| 672 | FSW_STATS_CHAN_DEFUNCT_SKIP); |
| 673 | } |
| 674 | os_atomic_or(&ch->ch_flags, CHANF_DEFUNCT_SKIP, |
| 675 | relaxed); |
| 676 | /* skip defunct */ |
| 677 | lck_mtx_unlock(lck: &ch->ch_lock); |
| 678 | return; |
| 679 | } |
| 680 | os_atomic_andnot(&ch->ch_flags, CHANF_DEFUNCT_SKIP, relaxed); |
| 681 | |
| 682 | /* |
| 683 | * Proceed with the rest of the defunct work. |
| 684 | */ |
| 685 | if (os_atomic_or_orig(&ch->ch_flags, CHANF_DEFUNCT, relaxed) & |
| 686 | CHANF_DEFUNCT) { |
| 687 | /* already defunct; nothing to do */ |
| 688 | lck_mtx_unlock(lck: &ch->ch_lock); |
| 689 | return; |
| 690 | } |
| 691 | |
| 692 | /* mark this channel as inactive */ |
| 693 | ch_deactivate(ch); |
| 694 | |
| 695 | /* |
| 696 | * Redirect memory regions for the map; upon success, instruct |
| 697 | * the nexus to finalize the defunct and teardown the respective |
| 698 | * memory regions. It's crucial that the redirection happens |
| 699 | * first before freeing the objects, since the page protection |
| 700 | * flags get inherited only from unfreed segments. Freed ones |
| 701 | * will cause VM_PROT_NONE to be used for the segment span, to |
| 702 | * catch use-after-free cases. For unfreed objects, doing so |
| 703 | * may cause an exception when the process is later resumed |
| 704 | * and touches an address within the span; hence the ordering. |
| 705 | */ |
| 706 | if ((err = skmem_arena_mredirect(ch->ch_na->na_arena, |
| 707 | &ch->ch_mmap, p, &need_defunct)) == 0 && need_defunct) { |
| 708 | /* |
| 709 | * Let the domain provider handle the initial tasks of |
| 710 | * the defunct that are specific to this channel. It |
| 711 | * may safely free objects as the redirection is done. |
| 712 | */ |
| 713 | nxdom_prov->nxdom_prov_dom->nxdom_defunct(nxdom_prov, |
| 714 | nx, ch, p); |
| 715 | /* |
| 716 | * Let the domain provider complete the defunct; |
| 717 | * do this after dropping the channel lock, as |
| 718 | * the nexus may end up acquiring other locks |
| 719 | * that would otherwise violate lock ordering. |
| 720 | * The channel refcnt is still held by virtue |
| 721 | * of the caller holding the process's file |
| 722 | * table lock. |
| 723 | */ |
| 724 | lck_mtx_unlock(lck: &ch->ch_lock); |
| 725 | nxdom_prov->nxdom_prov_dom->nxdom_defunct_finalize( |
| 726 | nxdom_prov, nx, ch, FALSE); |
| 727 | } else if (err == 0) { |
| 728 | /* |
| 729 | * Let the domain provider handle the initial tasks of |
| 730 | * the defunct that are specific to this channel. It |
| 731 | * may sadely free objects as the redirection is done. |
| 732 | */ |
| 733 | nxdom_prov->nxdom_prov_dom->nxdom_defunct(nxdom_prov, |
| 734 | nx, ch, p); |
| 735 | lck_mtx_unlock(lck: &ch->ch_lock); |
| 736 | } else { |
| 737 | /* already redirected; nothing to do */ |
| 738 | lck_mtx_unlock(lck: &ch->ch_lock); |
| 739 | } |
| 740 | } else { |
| 741 | lck_mtx_lock(lck: &ch->ch_lock); |
| 742 | na_drain(ch->ch_na, FALSE); /* prune caches */ |
| 743 | lck_mtx_unlock(lck: &ch->ch_lock); |
| 744 | } |
| 745 | } |
| 746 | |