1 | /* |
2 | * Copyright (c) 2015-2021 Apple Inc. All rights reserved. |
3 | * |
4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ |
5 | * |
6 | * This file contains Original Code and/or Modifications of Original Code |
7 | * as defined in and that are subject to the Apple Public Source License |
8 | * Version 2.0 (the 'License'). You may not use this file except in |
9 | * compliance with the License. The rights granted to you under the License |
10 | * may not be used to create, or enable the creation or redistribution of, |
11 | * unlawful or unlicensed copies of an Apple operating system, or to |
12 | * circumvent, violate, or enable the circumvention or violation of, any |
13 | * terms of an Apple operating system software license agreement. |
14 | * |
15 | * Please obtain a copy of the License at |
16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. |
17 | * |
18 | * The Original Code and all software distributed under the License are |
19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER |
20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, |
22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
23 | * Please see the License for the specific language governing rights and |
24 | * limitations under the License. |
25 | * |
26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ |
27 | */ |
28 | |
29 | /* |
30 | * Copyright (C) 2012-2014 Matteo Landi, Luigi Rizzo, Giuseppe Lettieri. |
31 | * All rights reserved. |
32 | * Copyright (C) 2013-2014 Universita` di Pisa. All rights reserved. |
33 | * |
34 | * Redistribution and use in source and binary forms, with or without |
35 | * modification, are permitted provided that the following conditions |
36 | * are met: |
37 | * 1. Redistributions of source code must retain the above copyright |
38 | * notice, this list of conditions and the following disclaimer. |
39 | * 2. Redistributions in binary form must reproduce the above copyright |
40 | * notice, this list of conditions and the following disclaimer in the |
41 | * documentation and/or other materials provided with the distribution. |
42 | * |
43 | * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND |
44 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
45 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
46 | * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE |
47 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
48 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
49 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
50 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
51 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
52 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
53 | * SUCH DAMAGE. |
54 | */ |
55 | |
56 | #include <sys/eventvar.h> |
57 | #include <sys/kdebug.h> |
58 | #include <sys/sdt.h> |
59 | #include <skywalk/os_skywalk_private.h> |
60 | #include <skywalk/nexus/netif/nx_netif.h> |
61 | |
62 | #define KEV_EVTID(code) BSDDBG_CODE(DBG_BSD_KEVENT, (code)) |
63 | |
64 | struct ch_event_result { |
65 | uint32_t tx_data; |
66 | uint32_t rx_data; |
67 | }; |
68 | |
69 | static LCK_GRP_DECLARE(channel_lock_group, "sk_ch_lock" ); |
70 | static LCK_GRP_DECLARE(channel_kn_lock_group, "sk_ch_kn_lock" ); |
71 | LCK_ATTR_DECLARE(channel_lock_attr, 0, 0); |
72 | |
73 | static void csi_selrecord(struct ch_selinfo *, struct proc *, void *); |
74 | static void csi_selwakeup(struct ch_selinfo *, boolean_t, boolean_t, uint32_t); |
75 | static inline void csi_selwakeup_delayed(struct ch_selinfo *); |
76 | static inline void csi_selwakeup_common(struct ch_selinfo *, boolean_t, |
77 | boolean_t, boolean_t, uint32_t); |
78 | static boolean_t csi_tcall_start(struct ch_selinfo *); |
79 | static void csi_tcall(thread_call_param_t, thread_call_param_t); |
80 | static uint64_t csi_tcall_update_interval(struct ch_selinfo *); |
81 | |
82 | static void ch_redzone_init(void); |
83 | static void ch_close_common(struct kern_channel *, boolean_t, boolean_t); |
84 | static struct kern_channel *ch_find(struct kern_nexus *, nexus_port_t, |
85 | ring_id_t); |
86 | static int ch_ev_thresh_validate(struct kern_nexus *, enum txrx, |
87 | struct ch_ev_thresh *); |
88 | static struct kern_channel *ch_connect(struct kern_nexus *, struct chreq *, |
89 | struct kern_channel *, struct nxbind *, struct proc *, int, int *); |
90 | static void ch_disconnect(struct kern_channel *); |
91 | static int ch_set_lowat_thresh(struct kern_channel *, enum txrx, |
92 | struct sockopt *); |
93 | static int ch_get_lowat_thresh(struct kern_channel *, enum txrx, |
94 | struct sockopt *); |
95 | static struct kern_channel *ch_alloc(zalloc_flags_t); |
96 | static void ch_free(struct kern_channel *); |
97 | static int ch_configure_interface_advisory_event(struct kern_channel *ch, |
98 | struct sockopt *sopt); |
99 | |
100 | static int filt_chrwattach(struct knote *, struct kevent_qos_s *kev); |
101 | static void filt_chrwdetach(struct knote *, boolean_t); |
102 | static void filt_chrdetach(struct knote *); |
103 | static void filt_chwdetach(struct knote *); |
104 | static int filt_chrw(struct knote *, long, int); |
105 | static int filt_chread(struct knote *, long); |
106 | static int filt_chwrite(struct knote *, long); |
107 | |
108 | static int filt_chtouch(struct knote *, struct kevent_qos_s *, int); |
109 | static int filt_chrtouch(struct knote *, struct kevent_qos_s *); |
110 | static int filt_chwtouch(struct knote *, struct kevent_qos_s *); |
111 | static int filt_chprocess(struct knote *, struct kevent_qos_s *, int); |
112 | static int filt_chrprocess(struct knote *, struct kevent_qos_s *); |
113 | static int filt_chwprocess(struct knote *, struct kevent_qos_s *); |
114 | static int filt_che_attach(struct knote *, struct kevent_qos_s *kev); |
115 | static void filt_che_detach(struct knote *); |
116 | static int filt_che_event(struct knote *, long); |
117 | static int filt_che_touch(struct knote *, struct kevent_qos_s *); |
118 | static int filt_che_process(struct knote *, struct kevent_qos_s *); |
119 | static int filt_chan_extended_common(struct knote *, long); |
120 | |
121 | static int ch_event(struct kern_channel *ch, int events, |
122 | void *wql, struct proc *p, struct ch_event_result *, |
123 | const boolean_t is_kevent, int *errno, const boolean_t); |
124 | |
125 | const struct filterops skywalk_channel_rfiltops = { |
126 | .f_isfd = 1, |
127 | .f_attach = filt_chrwattach, |
128 | .f_detach = filt_chrdetach, |
129 | .f_event = filt_chread, |
130 | .f_touch = filt_chrtouch, |
131 | .f_process = filt_chrprocess, |
132 | }; |
133 | |
134 | const struct filterops skywalk_channel_wfiltops = { |
135 | .f_isfd = 1, |
136 | .f_attach = filt_chrwattach, |
137 | .f_detach = filt_chwdetach, |
138 | .f_event = filt_chwrite, |
139 | .f_touch = filt_chwtouch, |
140 | .f_process = filt_chwprocess, |
141 | }; |
142 | |
143 | const struct filterops skywalk_channel_efiltops = { |
144 | .f_isfd = 1, |
145 | .f_attach = filt_che_attach, |
146 | .f_detach = filt_che_detach, |
147 | .f_event = filt_che_event, |
148 | .f_touch = filt_che_touch, |
149 | .f_process = filt_che_process, |
150 | }; |
151 | |
152 | /* mitigation intervals in ns */ |
153 | #define CH_MIT_IVAL_MIN NSEC_PER_USEC |
154 | |
155 | static uint64_t ch_mit_ival = CH_MIT_IVAL_DEFAULT; |
156 | |
157 | #if (DEVELOPMENT || DEBUG) |
158 | SYSCTL_NODE(_kern_skywalk, OID_AUTO, channel, |
159 | CTLFLAG_RW | CTLFLAG_LOCKED, 0, "Skywalk channel parameters" ); |
160 | SYSCTL_QUAD(_kern_skywalk_channel, OID_AUTO, mit_ival, |
161 | CTLFLAG_RW | CTLFLAG_LOCKED, &ch_mit_ival, "" ); |
162 | #endif /* !DEVELOPMENT && !DEBUG */ |
163 | |
164 | static SKMEM_TYPE_DEFINE(ch_zone, struct kern_channel); |
165 | |
166 | static SKMEM_TYPE_DEFINE(ch_info_zone, struct ch_info); |
167 | |
168 | static int __ch_inited = 0; |
169 | |
170 | /* |
171 | * Global cookies to hold the random numbers used for verifying |
172 | * user metadata red zone violations. |
173 | */ |
174 | uint64_t __ch_umd_redzone_cookie = 0; |
175 | |
176 | #define SKMEM_TAG_CH_KEY "com.apple.skywalk.channel.key" |
177 | SKMEM_TAG_DEFINE(skmem_tag_ch_key, SKMEM_TAG_CH_KEY); |
178 | |
179 | static void |
180 | ch_redzone_init(void) |
181 | { |
182 | _CASSERT(sizeof(__ch_umd_redzone_cookie) == |
183 | sizeof(((struct __metadata_preamble *)0)->mdp_redzone)); |
184 | _CASSERT(METADATA_PREAMBLE_SZ == sizeof(struct __metadata_preamble)); |
185 | _CASSERT(sizeof(struct __slot_desc) == 8); |
186 | |
187 | /* Initialize random user red zone cookie values */ |
188 | do { |
189 | read_random(buffer: &__ch_umd_redzone_cookie, |
190 | numBytes: sizeof(__ch_umd_redzone_cookie)); |
191 | } while (__ch_umd_redzone_cookie == 0); |
192 | |
193 | SK_D("__ch_umd_redzone_cookie: 0x%llx" , __ch_umd_redzone_cookie); |
194 | } |
195 | |
196 | int |
197 | channel_init(void) |
198 | { |
199 | int error = 0; |
200 | |
201 | SK_LOCK_ASSERT_HELD(); |
202 | ASSERT(!__ch_inited); |
203 | |
204 | _CASSERT(offsetof(struct __user_packet, pkt_qum) == 0); |
205 | _CASSERT(offsetof(struct __kern_packet, pkt_qum) == 0); |
206 | |
207 | ch_redzone_init(); |
208 | |
209 | __ch_inited = 1; |
210 | |
211 | return error; |
212 | } |
213 | |
214 | void |
215 | channel_fini(void) |
216 | { |
217 | SK_LOCK_ASSERT_HELD(); |
218 | |
219 | if (__ch_inited) { |
220 | __ch_umd_redzone_cookie = 0; |
221 | __ch_inited = 0; |
222 | } |
223 | } |
224 | |
225 | void |
226 | csi_init(struct ch_selinfo *csi, boolean_t mitigation, uint64_t mit_ival) |
227 | { |
228 | csi->csi_flags = 0; |
229 | csi->csi_pending = 0; |
230 | if (mitigation) { |
231 | csi->csi_interval = mit_ival; |
232 | csi->csi_eff_interval = ch_mit_ival; /* global override */ |
233 | os_atomic_or(&csi->csi_flags, CSI_MITIGATION, relaxed); |
234 | csi->csi_tcall = thread_call_allocate_with_options(func: csi_tcall, |
235 | param0: csi, pri: THREAD_CALL_PRIORITY_KERNEL, options: THREAD_CALL_OPTIONS_ONCE); |
236 | /* this must not fail */ |
237 | VERIFY(csi->csi_tcall != NULL); |
238 | } else { |
239 | csi->csi_interval = 0; |
240 | csi->csi_eff_interval = 0; |
241 | csi->csi_tcall = NULL; |
242 | } |
243 | lck_mtx_init(lck: &csi->csi_lock, grp: &channel_kn_lock_group, attr: &channel_lock_attr); |
244 | klist_init(list: &csi->csi_si.si_note); |
245 | } |
246 | |
247 | void |
248 | csi_destroy(struct ch_selinfo *csi) |
249 | { |
250 | /* check if not already destroyed, else do it now */ |
251 | if ((os_atomic_or_orig(&csi->csi_flags, CSI_DESTROYED, relaxed) & |
252 | CSI_DESTROYED) == 0) { |
253 | CSI_LOCK(csi); |
254 | /* must have been set by above atomic op */ |
255 | VERIFY(csi->csi_flags & CSI_DESTROYED); |
256 | if (csi->csi_flags & CSI_MITIGATION) { |
257 | thread_call_t tcall = csi->csi_tcall; |
258 | VERIFY(tcall != NULL); |
259 | CSI_UNLOCK(csi); |
260 | |
261 | (void) thread_call_cancel_wait(call: tcall); |
262 | if (!thread_call_free(call: tcall)) { |
263 | boolean_t freed; |
264 | (void) thread_call_cancel_wait(call: tcall); |
265 | freed = thread_call_free(call: tcall); |
266 | VERIFY(freed); |
267 | } |
268 | |
269 | CSI_LOCK(csi); |
270 | csi->csi_tcall = NULL; |
271 | os_atomic_andnot(&csi->csi_flags, CSI_MITIGATION, |
272 | relaxed); |
273 | } |
274 | csi->csi_pending = 0; |
275 | CSI_UNLOCK(csi); |
276 | |
277 | selthreadclear(&csi->csi_si); |
278 | /* now we don't need the mutex anymore */ |
279 | lck_mtx_destroy(lck: &csi->csi_lock, grp: &channel_kn_lock_group); |
280 | } |
281 | } |
282 | |
283 | /* |
284 | * Called only for select(2). |
285 | */ |
286 | __attribute__((always_inline)) |
287 | static inline void |
288 | csi_selrecord(struct ch_selinfo *csi, struct proc *p, void *wql) |
289 | { |
290 | struct selinfo *si = &csi->csi_si; |
291 | |
292 | CSI_LOCK_ASSERT_HELD(csi); |
293 | selrecord(selector: p, si, wql); |
294 | } |
295 | |
296 | void |
297 | csi_selrecord_one(struct __kern_channel_ring *kring, struct proc *p, void *wql) |
298 | { |
299 | struct ch_selinfo *csi = &kring->ckr_si; |
300 | |
301 | CSI_LOCK(csi); |
302 | SK_DF(SK_VERB_EVENTS, "[%s] na \"%s\" (0x%llx) kr %s (0x%llx) " |
303 | "si 0x%llx si_flags 0x%x" , (kring->ckr_tx == NR_TX) ? "W" : "R" , |
304 | KRNA(kring)->na_name, SK_KVA(KRNA(kring)), kring->ckr_name, |
305 | SK_KVA(kring), SK_KVA(&csi->csi_si), csi->csi_si.si_flags); |
306 | |
307 | csi_selrecord(csi, p, wql); |
308 | CSI_UNLOCK(csi); |
309 | } |
310 | |
311 | void |
312 | csi_selrecord_all(struct nexus_adapter *na, enum txrx t, struct proc *p, |
313 | void *wql) |
314 | { |
315 | struct ch_selinfo *csi = &na->na_si[t]; |
316 | |
317 | CSI_LOCK(csi); |
318 | SK_DF(SK_VERB_EVENTS, "[%s] na \"%s\" (0x%llx) si 0x%llx si_flags 0x%x" , |
319 | (t == NR_TX) ? "W" : "R" , na->na_name, SK_KVA(na), |
320 | SK_KVA(&csi->csi_si), csi->csi_si.si_flags); |
321 | |
322 | csi_selrecord(csi, p, wql); |
323 | CSI_UNLOCK(csi); |
324 | } |
325 | |
326 | /* |
327 | * Called from na_post_event(). |
328 | */ |
329 | __attribute__((always_inline)) |
330 | static inline void |
331 | csi_selwakeup(struct ch_selinfo *csi, boolean_t within_kevent, |
332 | boolean_t selwake, uint32_t hint) |
333 | { |
334 | struct selinfo *si = &csi->csi_si; |
335 | |
336 | CSI_LOCK_ASSERT_HELD(csi); |
337 | csi->csi_pending = 0; |
338 | if (selwake) { |
339 | selwakeup(si); |
340 | } |
341 | if ((csi->csi_flags & CSI_KNOTE) && !within_kevent) { |
342 | KNOTE(&si->si_note, hint); |
343 | } |
344 | } |
345 | |
346 | __attribute__((always_inline)) |
347 | static inline void |
348 | csi_selwakeup_delayed(struct ch_selinfo *csi) |
349 | { |
350 | CSI_LOCK_ASSERT_HELD(csi); |
351 | ASSERT(csi->csi_flags & CSI_MITIGATION); |
352 | ASSERT(csi->csi_tcall != NULL); |
353 | |
354 | if (thread_call_isactive(call: csi->csi_tcall)) { |
355 | csi->csi_pending++; |
356 | } else if (!csi_tcall_start(csi)) { |
357 | csi_selwakeup(csi, FALSE, FALSE, hint: 0); |
358 | } |
359 | } |
360 | |
361 | __attribute__((always_inline)) |
362 | static inline void |
363 | csi_selwakeup_common(struct ch_selinfo *csi, boolean_t nodelay, |
364 | boolean_t within_kevent, boolean_t selwake, uint32_t hint) |
365 | { |
366 | CSI_LOCK_ASSERT_HELD(csi); |
367 | |
368 | if (nodelay || within_kevent || !selwake || hint != 0 || |
369 | !(csi->csi_flags & CSI_MITIGATION)) { |
370 | csi_selwakeup(csi, within_kevent, selwake, hint); |
371 | } else { |
372 | csi_selwakeup_delayed(csi); |
373 | } |
374 | } |
375 | |
376 | void |
377 | csi_selwakeup_one(struct __kern_channel_ring *kring, boolean_t nodelay, |
378 | boolean_t within_kevent, boolean_t selwake, uint32_t hint) |
379 | { |
380 | struct ch_selinfo *csi = &kring->ckr_si; |
381 | |
382 | CSI_LOCK(csi); |
383 | SK_DF(SK_VERB_EVENTS, "[%s] na \"%s\" (0x%llx) kr %s (0x%llx) " |
384 | "si 0x%llx si_flags 0x%x nodelay %u kev %u sel %u hint 0x%b" , |
385 | (kring->ckr_tx == NR_TX) ? "W" : "R" , KRNA(kring)->na_name, |
386 | SK_KVA(KRNA(kring)), kring->ckr_name, SK_KVA(kring), |
387 | SK_KVA(&csi->csi_si), csi->csi_si.si_flags, nodelay, |
388 | within_kevent, selwake, hint, CHAN_FILT_HINT_BITS); |
389 | |
390 | csi_selwakeup_common(csi, nodelay, within_kevent, selwake, hint); |
391 | CSI_UNLOCK(csi); |
392 | } |
393 | |
394 | void |
395 | csi_selwakeup_all(struct nexus_adapter *na, enum txrx t, boolean_t nodelay, |
396 | boolean_t within_kevent, boolean_t selwake, uint32_t hint) |
397 | { |
398 | struct ch_selinfo *csi = &na->na_si[t]; |
399 | |
400 | CSI_LOCK(csi); |
401 | SK_DF(SK_VERB_EVENTS, "[%s] na \"%s\" (0x%llx) si 0x%llx " |
402 | "si_flags 0x%x nodelay %u kev %u sel %u hint 0x%b" , |
403 | (t == NR_TX) ? "W" : "R" , na->na_name, SK_KVA(na), |
404 | SK_KVA(&csi->csi_si), csi->csi_si.si_flags, nodelay, |
405 | within_kevent, selwake, hint, CHAN_FILT_HINT_BITS); |
406 | |
407 | switch (t) { |
408 | case NR_RX: |
409 | if (!(na->na_flags & NAF_RX_MITIGATION)) { |
410 | nodelay = TRUE; |
411 | } |
412 | break; |
413 | |
414 | case NR_TX: |
415 | if (!(na->na_flags & NAF_TX_MITIGATION)) { |
416 | nodelay = TRUE; |
417 | } |
418 | break; |
419 | |
420 | default: |
421 | nodelay = TRUE; |
422 | break; |
423 | } |
424 | csi_selwakeup_common(csi, nodelay, within_kevent, selwake, hint); |
425 | CSI_UNLOCK(csi); |
426 | } |
427 | |
428 | static boolean_t |
429 | csi_tcall_start(struct ch_selinfo *csi) |
430 | { |
431 | uint64_t now, ival, deadline; |
432 | |
433 | CSI_LOCK_ASSERT_HELD(csi); |
434 | ASSERT(csi->csi_flags & CSI_MITIGATION); |
435 | ASSERT(csi->csi_tcall != NULL); |
436 | |
437 | /* pick up latest value */ |
438 | ival = csi_tcall_update_interval(csi); |
439 | |
440 | /* if no mitigation, pass notification up now */ |
441 | if (__improbable(ival == 0)) { |
442 | return FALSE; |
443 | } |
444 | |
445 | deadline = now = mach_absolute_time(); |
446 | clock_deadline_for_periodic_event(interval: ival, abstime: now, deadline: &deadline); |
447 | (void) thread_call_enter_delayed(call: csi->csi_tcall, deadline); |
448 | |
449 | return TRUE; |
450 | } |
451 | |
452 | static void |
453 | csi_tcall(thread_call_param_t arg0, thread_call_param_t arg1) |
454 | { |
455 | #pragma unused(arg1) |
456 | struct ch_selinfo *csi = arg0; |
457 | |
458 | CSI_LOCK(csi); |
459 | csi_selwakeup(csi, FALSE, FALSE, hint: 0); |
460 | CSI_UNLOCK(csi); |
461 | |
462 | CSI_LOCK(csi); |
463 | if (__improbable((csi->csi_flags & CSI_DESTROYED) == 0 && |
464 | csi->csi_pending != 0 && !csi_tcall_start(csi))) { |
465 | csi_selwakeup(csi, FALSE, FALSE, hint: 0); |
466 | } |
467 | CSI_UNLOCK(csi); |
468 | } |
469 | |
470 | __attribute__((always_inline)) |
471 | static inline uint64_t |
472 | csi_tcall_update_interval(struct ch_selinfo *csi) |
473 | { |
474 | uint64_t i = ch_mit_ival; |
475 | |
476 | /* if global override was adjusted, update local copies */ |
477 | if (__improbable(csi->csi_eff_interval != i)) { |
478 | ASSERT(csi->csi_flags & CSI_MITIGATION); |
479 | csi->csi_interval = csi->csi_eff_interval = |
480 | ((i == 0) ? 0 : MAX(i, CH_MIT_IVAL_MIN)); |
481 | } |
482 | |
483 | return csi->csi_interval; |
484 | } |
485 | |
486 | /* return EV_EOF if the channel is defunct */ |
487 | static inline boolean_t |
488 | ch_filt_check_defunct(struct kern_channel *ch, struct knote *kn) |
489 | { |
490 | if (__improbable((ch->ch_flags & CHANF_DEFUNCT) != 0)) { |
491 | if (kn) { |
492 | kn->kn_flags |= EV_EOF; |
493 | } |
494 | return TRUE; |
495 | } |
496 | return FALSE; |
497 | } |
498 | |
499 | static void |
500 | filt_chrwdetach(struct knote *kn, boolean_t write) |
501 | { |
502 | struct kern_channel *ch = (struct kern_channel *)knote_kn_hook_get_raw(kn); |
503 | struct ch_selinfo *csi; |
504 | struct selinfo *si; |
505 | |
506 | lck_mtx_lock(lck: &ch->ch_lock); |
507 | csi = ch->ch_si[write ? NR_TX : NR_RX]; |
508 | si = &csi->csi_si; |
509 | |
510 | CSI_LOCK(csi); |
511 | SK_DF(SK_VERB_EVENTS, "na \"%s\" (0x%llx) ch 0x%llx kn 0x%llx (%s%s) " |
512 | "si_flags 0x%x" , ch->ch_na->na_name, SK_KVA(ch->ch_na), |
513 | SK_KVA(ch), SK_KVA(kn), (kn->kn_flags & EV_POLL) ? "poll," : "" , |
514 | write ? "write" : "read" , si->si_flags); |
515 | |
516 | if (KNOTE_DETACH(&si->si_note, kn)) { |
517 | os_atomic_andnot(&csi->csi_flags, CSI_KNOTE, relaxed); |
518 | } |
519 | |
520 | CSI_UNLOCK(csi); |
521 | lck_mtx_unlock(lck: &ch->ch_lock); |
522 | } |
523 | |
524 | static void |
525 | filt_chrdetach(struct knote *kn) |
526 | { |
527 | ASSERT(kn->kn_filter == EVFILT_READ); |
528 | filt_chrwdetach(kn, FALSE); |
529 | } |
530 | |
531 | static void |
532 | filt_chwdetach(struct knote *kn) |
533 | { |
534 | ASSERT(kn->kn_filter == EVFILT_WRITE); |
535 | filt_chrwdetach(kn, TRUE); |
536 | } |
537 | |
538 | /* |
539 | * callback from notifies (generated externally). |
540 | * This always marks the knote activated, so always |
541 | * return 1. |
542 | */ |
543 | static int |
544 | filt_chrw(struct knote *kn, long hint, int events) |
545 | { |
546 | #if SK_LOG |
547 | struct kern_channel *ch = knote_kn_hook_get_raw(kn); |
548 | #else |
549 | #pragma unused(kn) |
550 | #pragma unused(hint) |
551 | #pragma unused(events) |
552 | #endif |
553 | SK_DF(SK_VERB_EVENTS, "na \"%s\" (0x%llx) ch 0x%llx " |
554 | "kn 0x%llx (%s%s) hint 0x%x" , ch->ch_na->na_name, |
555 | SK_KVA(ch->ch_na), SK_KVA(ch), SK_KVA(kn), |
556 | (kn->kn_flags & EV_POLL) ? "poll," : "" , |
557 | (events == POLLOUT) ? "write" : "read" , |
558 | (uint32_t)hint); |
559 | |
560 | /* assume we are ready */ |
561 | return 1; |
562 | } |
563 | |
564 | static int |
565 | filt_chread(struct knote *kn, long hint) |
566 | { |
567 | ASSERT(kn->kn_filter == EVFILT_READ); |
568 | /* There is no hint for read/write event */ |
569 | if (hint != 0) { |
570 | return 0; |
571 | } |
572 | return filt_chrw(kn, hint, POLLIN); |
573 | } |
574 | |
575 | static int |
576 | filt_chwrite(struct knote *kn, long hint) |
577 | { |
578 | ASSERT(kn->kn_filter == EVFILT_WRITE); |
579 | /* There is no hint for read/write event */ |
580 | if (hint != 0) { |
581 | return 0; |
582 | } |
583 | return filt_chrw(kn, hint, POLLOUT); |
584 | } |
585 | |
586 | static int |
587 | filt_chtouch(struct knote *kn, struct kevent_qos_s *kev, int events) |
588 | { |
589 | #pragma unused(kev) |
590 | struct kern_channel *ch = knote_kn_hook_get_raw(kn); |
591 | int ev = kn->kn_filter; |
592 | enum txrx dir = (ev == EVFILT_WRITE) ? NR_TX : NR_RX; |
593 | int event_error = 0; |
594 | int revents; |
595 | |
596 | /* save off the new input fflags and data */ |
597 | kn->kn_sfflags = kev->fflags; |
598 | kn->kn_sdata = kev->data; |
599 | |
600 | lck_mtx_lock(lck: &ch->ch_lock); |
601 | if (__improbable(ch_filt_check_defunct(ch, kn))) { |
602 | lck_mtx_unlock(lck: &ch->ch_lock); |
603 | return 1; |
604 | } |
605 | |
606 | /* if a note-specific low watermark is given, validate it */ |
607 | if (kn->kn_sfflags & NOTE_LOWAT) { |
608 | struct ch_ev_thresh note_thresh = { |
609 | .cet_unit = (dir == NR_TX) ? |
610 | ch->ch_info->cinfo_tx_lowat.cet_unit : |
611 | ch->ch_info->cinfo_rx_lowat.cet_unit, |
612 | .cet_value = (uint32_t)kn->kn_sdata |
613 | }; |
614 | if (ch_ev_thresh_validate(ch->ch_na->na_nx, dir, |
615 | ¬e_thresh) != 0) { |
616 | SK_ERR("invalid NOTE_LOWAT threshold %u" , |
617 | note_thresh.cet_value); |
618 | knote_set_error(kn, EINVAL); |
619 | lck_mtx_unlock(lck: &ch->ch_lock); |
620 | return 1; |
621 | } |
622 | } |
623 | |
624 | /* capture new state just so we can return it */ |
625 | revents = ch_event(ch, events, NULL, p: knote_get_kq(kn)->kq_p, NULL, TRUE, |
626 | errno: &event_error, FALSE); |
627 | lck_mtx_unlock(lck: &ch->ch_lock); |
628 | |
629 | if (revents & POLLERR) { |
630 | ASSERT(event_error != 0); |
631 | /* |
632 | * Setting a knote error here will confuse libdispatch, so we |
633 | * use EV_EOF instead. |
634 | */ |
635 | kn->kn_flags |= EV_EOF; |
636 | return 1; |
637 | } else { |
638 | return (events & revents) != 0; |
639 | } |
640 | } |
641 | |
642 | static int |
643 | filt_chrtouch(struct knote *kn, struct kevent_qos_s *kev) |
644 | { |
645 | ASSERT(kn->kn_filter == EVFILT_READ); |
646 | |
647 | if (kev->flags & EV_ENABLE) { |
648 | KDBG_DEBUG(KEV_EVTID(BSD_KEVENT_KNOTE_ENABLE), |
649 | kn->kn_udata, kn->kn_status | (kn->kn_id << 32), |
650 | kn->kn_filtid, VM_KERNEL_UNSLIDE_OR_PERM( |
651 | ((struct kern_channel *)knote_kn_hook_get_raw(kn))->ch_na)); |
652 | } |
653 | |
654 | return filt_chtouch(kn, kev, POLLIN); |
655 | } |
656 | |
657 | static int |
658 | filt_chwtouch(struct knote *kn, struct kevent_qos_s *kev) |
659 | { |
660 | ASSERT(kn->kn_filter == EVFILT_WRITE); |
661 | return filt_chtouch(kn, kev, POLLOUT); |
662 | } |
663 | |
664 | |
665 | /* |
666 | * Called from kevent. We call ch_event(POLL[IN|OUT]) and |
667 | * return 0/1 accordingly. |
668 | */ |
669 | static int |
670 | filt_chprocess(struct knote *kn, struct kevent_qos_s *kev, int events) |
671 | { |
672 | struct kern_channel *ch = knote_kn_hook_get_raw(kn); |
673 | struct ch_event_result result; |
674 | uint32_t lowat; |
675 | int trigger_event = 1; |
676 | int revents; |
677 | int event_error; |
678 | int64_t data; |
679 | |
680 | lck_mtx_lock(lck: &ch->ch_lock); |
681 | if (__improbable(ch_filt_check_defunct(ch, kn))) { |
682 | knote_fill_kevent(kn, kev, data: 0); |
683 | lck_mtx_unlock(lck: &ch->ch_lock); |
684 | return 1; |
685 | } |
686 | |
687 | revents = ch_event(ch, events, NULL, p: knote_get_kq(kn)->kq_p, &result, |
688 | TRUE, errno: &event_error, FALSE); |
689 | |
690 | if (revents & POLLERR) { |
691 | ASSERT(event_error != 0); |
692 | lck_mtx_unlock(lck: &ch->ch_lock); |
693 | /* |
694 | * Setting a knote error here will confuse libdispatch, so we |
695 | * use EV_EOF instead. |
696 | */ |
697 | kn->kn_flags |= EV_EOF; |
698 | knote_fill_kevent_with_sdata(kn, kev); |
699 | return 1; |
700 | } |
701 | |
702 | trigger_event = (events & revents) != 0; |
703 | |
704 | if (events == POLLOUT) { |
705 | lowat = ch->ch_info->cinfo_tx_lowat.cet_value; |
706 | if ((kn->kn_sfflags & NOTE_LOWAT) && |
707 | kn->kn_sdata > lowat) { |
708 | lowat = (uint32_t)kn->kn_sdata; |
709 | } |
710 | |
711 | data = result.tx_data; |
712 | |
713 | if (result.tx_data < lowat) { |
714 | trigger_event = 0; |
715 | } |
716 | } else { |
717 | lowat = ch->ch_info->cinfo_rx_lowat.cet_value; |
718 | if ((kn->kn_sfflags & NOTE_LOWAT) && |
719 | kn->kn_sdata > lowat) { |
720 | lowat = (uint32_t)kn->kn_sdata; |
721 | } |
722 | |
723 | data = result.rx_data; |
724 | |
725 | if (result.rx_data < lowat) { |
726 | trigger_event = 0; |
727 | } |
728 | } |
729 | |
730 | if (trigger_event) { |
731 | knote_fill_kevent(kn, kev, data); |
732 | } |
733 | |
734 | lck_mtx_unlock(lck: &ch->ch_lock); |
735 | |
736 | return trigger_event; |
737 | } |
738 | |
739 | static int |
740 | filt_chrprocess(struct knote *kn, struct kevent_qos_s *kev) |
741 | { |
742 | ASSERT(kn->kn_filter == EVFILT_READ); |
743 | return filt_chprocess(kn, kev, POLLIN); |
744 | } |
745 | |
746 | static int |
747 | filt_chwprocess(struct knote *kn, struct kevent_qos_s *kev) |
748 | { |
749 | ASSERT(kn->kn_filter == EVFILT_WRITE); |
750 | return filt_chprocess(kn, kev, POLLOUT); |
751 | } |
752 | |
753 | static int |
754 | filt_chrwattach(struct knote *kn, __unused struct kevent_qos_s *kev) |
755 | { |
756 | struct kern_channel *ch = (struct kern_channel *)knote_kn_hook_get_raw(kn); |
757 | struct nexus_adapter *na; |
758 | struct ch_selinfo *csi; |
759 | int ev = kn->kn_filter; |
760 | enum txrx dir = (ev == EVFILT_WRITE) ? NR_TX : NR_RX; |
761 | int revents; |
762 | int events; |
763 | int event_error = 0; |
764 | |
765 | ASSERT((kn->kn_filter == EVFILT_READ) || |
766 | (kn->kn_filter == EVFILT_WRITE)); |
767 | |
768 | /* ch_kqfilter() should have acquired the lock */ |
769 | LCK_MTX_ASSERT(&ch->ch_lock, LCK_MTX_ASSERT_OWNED); |
770 | |
771 | na = ch->ch_na; |
772 | /* if a note-specific low watermark is given, validate it */ |
773 | if (kn->kn_sfflags & NOTE_LOWAT) { |
774 | struct ch_ev_thresh note_thresh = { |
775 | .cet_unit = (dir == NR_TX) ? |
776 | ch->ch_info->cinfo_tx_lowat.cet_unit : |
777 | ch->ch_info->cinfo_rx_lowat.cet_unit, |
778 | .cet_value = (uint32_t)kn->kn_sdata |
779 | }; |
780 | if (ch_ev_thresh_validate(ch->ch_na->na_nx, dir, |
781 | ¬e_thresh) != 0) { |
782 | SK_ERR("invalid NOTE_LOWAT threshold %u" , |
783 | note_thresh.cet_value); |
784 | knote_set_error(kn, EINVAL); |
785 | return 0; |
786 | } |
787 | } |
788 | |
789 | /* the si is indicated in the channel */ |
790 | csi = ch->ch_si[dir]; |
791 | CSI_LOCK(csi); |
792 | |
793 | if (KNOTE_ATTACH(&csi->csi_si.si_note, kn)) { |
794 | os_atomic_or(&csi->csi_flags, CSI_KNOTE, relaxed); |
795 | } |
796 | |
797 | CSI_UNLOCK(csi); |
798 | |
799 | SK_DF(SK_VERB_EVENTS, "na \"%s\" (0x%llx) ch 0x%llx kn 0x%llx (%s%s)" , |
800 | na->na_name, SK_KVA(na), SK_KVA(ch), SK_KVA(kn), |
801 | (kn->kn_flags & EV_POLL) ? "poll," : "" , |
802 | (ev == EVFILT_WRITE) ? "write" : "read" ); |
803 | |
804 | /* capture current state */ |
805 | events = (ev == EVFILT_WRITE) ? POLLOUT : POLLIN; |
806 | |
807 | if (__improbable(ch_filt_check_defunct(ch, kn))) { |
808 | revents = events; |
809 | } else { |
810 | /* filt_chprocess() will fill in the kn_sdata field */ |
811 | revents = ch_event(ch, events, NULL, p: knote_get_kq(kn)->kq_p, |
812 | NULL, TRUE, errno: &event_error, FALSE); |
813 | } |
814 | |
815 | if (revents & POLLERR) { |
816 | ASSERT(event_error != 0); |
817 | kn->kn_flags |= EV_EOF; |
818 | return 1; |
819 | } else { |
820 | return (events & revents) != 0; |
821 | } |
822 | } |
823 | |
824 | static int |
825 | filt_chan_extended_common(struct knote *kn, long ev_hint) |
826 | { |
827 | /* |
828 | * This function is not always called with the same set of locks held, |
829 | * hence it is only allowed to manipulate kn_fflags, with atomics. |
830 | * |
831 | * the f_event / f_process functions may run concurrently. |
832 | */ |
833 | uint32_t add_fflags = 0; |
834 | |
835 | if ((ev_hint & CHAN_FILT_HINT_FLOW_ADV_UPD) != 0) { |
836 | add_fflags |= NOTE_FLOW_ADV_UPDATE; |
837 | } |
838 | if ((ev_hint & CHAN_FILT_HINT_CHANNEL_EVENT) != 0) { |
839 | add_fflags |= NOTE_CHANNEL_EVENT; |
840 | } |
841 | if ((ev_hint & CHAN_FILT_HINT_IF_ADV_UPD) != 0) { |
842 | add_fflags |= NOTE_IF_ADV_UPD; |
843 | } |
844 | if (add_fflags) { |
845 | /* Reset any events that are not requested on this knote */ |
846 | add_fflags &= (kn->kn_sfflags & EVFILT_NW_CHANNEL_ALL_MASK); |
847 | os_atomic_or(&kn->kn_fflags, add_fflags, relaxed); |
848 | return add_fflags != 0; |
849 | } |
850 | return os_atomic_load(&kn->kn_fflags, relaxed) != 0; |
851 | } |
852 | |
853 | static inline void |
854 | che_process_channel_event(struct kern_channel *ch, struct knote *kn, |
855 | uint32_t fflags, long *hint) |
856 | { |
857 | int revents, event_error = 0; |
858 | |
859 | LCK_MTX_ASSERT(&ch->ch_lock, LCK_MTX_ASSERT_OWNED); |
860 | *hint &= ~CHAN_FILT_HINT_CHANNEL_EVENT; |
861 | |
862 | if (((ch->ch_flags & CHANF_EVENT_RING) != 0) && |
863 | ((fflags & NOTE_CHANNEL_EVENT) != 0)) { |
864 | /* capture new state to return */ |
865 | revents = ch_event(ch, POLLIN, NULL, p: knote_get_kq(kn)->kq_p, |
866 | NULL, TRUE, errno: &event_error, TRUE); |
867 | if (revents & POLLERR) { |
868 | ASSERT(event_error != 0); |
869 | /* |
870 | * Setting a knote error here will confuse libdispatch, |
871 | * so we use EV_EOF instead. |
872 | */ |
873 | kn->kn_flags |= EV_EOF; |
874 | } else if ((revents & POLLIN) != 0) { |
875 | *hint |= CHAN_FILT_HINT_CHANNEL_EVENT; |
876 | } |
877 | } |
878 | /* |
879 | * if the sync operation on event ring didn't find any events |
880 | * then indicate that the channel event is not active. |
881 | */ |
882 | if ((*hint & CHAN_FILT_HINT_CHANNEL_EVENT) == 0) { |
883 | /* |
884 | * Avoid a costly atomic when the bit is already cleared. |
885 | */ |
886 | uint32_t knfflags = os_atomic_load(&kn->kn_fflags, relaxed); |
887 | if (knfflags & CHAN_FILT_HINT_CHANNEL_EVENT) { |
888 | os_atomic_andnot(&kn->kn_fflags, |
889 | CHAN_FILT_HINT_CHANNEL_EVENT, relaxed); |
890 | } |
891 | } |
892 | } |
893 | |
894 | static int |
895 | filt_che_attach(struct knote *kn, __unused struct kevent_qos_s *kev) |
896 | { |
897 | struct kern_channel *ch = (struct kern_channel *)knote_kn_hook_get_raw(kn); |
898 | struct ch_selinfo *csi; |
899 | long hint = 0; |
900 | |
901 | _CASSERT(CHAN_FILT_HINT_FLOW_ADV_UPD == NOTE_FLOW_ADV_UPDATE); |
902 | _CASSERT(CHAN_FILT_HINT_CHANNEL_EVENT == NOTE_CHANNEL_EVENT); |
903 | _CASSERT(CHAN_FILT_HINT_IF_ADV_UPD == NOTE_IF_ADV_UPD); |
904 | |
905 | ASSERT(kn->kn_filter == EVFILT_NW_CHANNEL); |
906 | |
907 | /* ch_kqfilter() should have acquired the lock */ |
908 | LCK_MTX_ASSERT(&ch->ch_lock, LCK_MTX_ASSERT_OWNED); |
909 | |
910 | csi = ch->ch_si[NR_TX]; |
911 | CSI_LOCK(csi); |
912 | if (KNOTE_ATTACH(&csi->csi_si.si_note, kn)) { |
913 | os_atomic_or(&csi->csi_flags, CSI_KNOTE, relaxed); |
914 | } |
915 | CSI_UNLOCK(csi); |
916 | |
917 | if (__improbable(ch_filt_check_defunct(ch, kn))) { |
918 | return 1; |
919 | } |
920 | if ((kn->kn_sfflags & NOTE_CHANNEL_EVENT) != 0) { |
921 | os_atomic_or(&ch->ch_na->na_flags, NAF_CHANNEL_EVENT_ATTACHED, relaxed); |
922 | } |
923 | che_process_channel_event(ch, kn, fflags: kn->kn_sfflags, hint: &hint); |
924 | if ((kn->kn_sfflags & NOTE_FLOW_ADV_UPDATE) != 0) { |
925 | /* on registration force an event */ |
926 | hint |= CHAN_FILT_HINT_FLOW_ADV_UPD; |
927 | } |
928 | SK_DF(SK_VERB_EVENTS, "na \"%s\" (0x%llx) ch 0x%llx kn 0x%llx (%s)" , |
929 | ch->ch_na->na_name, SK_KVA(ch->ch_na), SK_KVA(ch), SK_KVA(kn), |
930 | "EVFILT_NW_CHANNEL" ); |
931 | return filt_chan_extended_common(kn, ev_hint: hint); |
932 | } |
933 | |
934 | static void |
935 | filt_che_detach(struct knote *kn) |
936 | { |
937 | struct kern_channel *ch = (struct kern_channel *)knote_kn_hook_get_raw(kn); |
938 | struct ch_selinfo *csi; |
939 | |
940 | ASSERT(kn->kn_filter == EVFILT_NW_CHANNEL); |
941 | |
942 | lck_mtx_lock(lck: &ch->ch_lock); |
943 | if ((kn->kn_sfflags & NOTE_CHANNEL_EVENT) != 0) { |
944 | os_atomic_andnot(&ch->ch_na->na_flags, |
945 | NAF_CHANNEL_EVENT_ATTACHED, relaxed); |
946 | } |
947 | csi = ch->ch_si[NR_TX]; |
948 | CSI_LOCK(csi); |
949 | if (KNOTE_DETACH(&csi->csi_si.si_note, kn)) { |
950 | os_atomic_andnot(&csi->csi_flags, CSI_KNOTE, relaxed); |
951 | } |
952 | CSI_UNLOCK(csi); |
953 | lck_mtx_unlock(lck: &ch->ch_lock); |
954 | |
955 | SK_DF(SK_VERB_EVENTS, "na \"%s\" (0x%llx) ch 0x%llx kn 0x%llx (%s)" , |
956 | ch->ch_na->na_name, SK_KVA(ch->ch_na), SK_KVA(ch), SK_KVA(kn), |
957 | "EVFILT_NW_CHANNEL" ); |
958 | } |
959 | |
960 | static int |
961 | filt_che_event(struct knote *kn, long hint) |
962 | { |
963 | struct kern_channel *ch = (struct kern_channel *)knote_kn_hook_get_raw(kn); |
964 | |
965 | ASSERT(kn->kn_filter == EVFILT_NW_CHANNEL); |
966 | if (hint == 0) { |
967 | return 0; |
968 | } |
969 | if (__improbable(ch_filt_check_defunct(ch, NULL))) { |
970 | return 1; |
971 | } |
972 | if ((hint & CHAN_FILT_HINT_CHANNEL_EVENT) != 0) { |
973 | VERIFY((ch->ch_flags & CHANF_EVENT_RING) != 0); |
974 | } |
975 | SK_DF(SK_VERB_EVENTS, "na \"%s\" (0x%llx) ch 0x%llx hint 0x%b)" , |
976 | ch->ch_na->na_name, SK_KVA(ch->ch_na), SK_KVA(ch), hint, |
977 | CHAN_FILT_HINT_BITS); |
978 | return filt_chan_extended_common(kn, ev_hint: hint); |
979 | } |
980 | |
981 | static int |
982 | filt_che_touch(struct knote *kn, struct kevent_qos_s *kev) |
983 | { |
984 | int ret; |
985 | long hint = 0; |
986 | struct kern_channel *ch = (struct kern_channel *)knote_kn_hook_get_raw(kn); |
987 | |
988 | ASSERT(kn->kn_filter == EVFILT_NW_CHANNEL); |
989 | /* save off the new input fflags and data */ |
990 | kn->kn_sfflags = kev->fflags; |
991 | kn->kn_sdata = kev->data; |
992 | |
993 | lck_mtx_lock(lck: &ch->ch_lock); |
994 | if (__improbable(ch_filt_check_defunct(ch, kn))) { |
995 | ret = 1; |
996 | goto done; |
997 | } |
998 | if ((kn->kn_sfflags & NOTE_CHANNEL_EVENT) != 0) { |
999 | if (kev->flags & EV_ENABLE) { |
1000 | os_atomic_or(&ch->ch_na->na_flags, |
1001 | NAF_CHANNEL_EVENT_ATTACHED, relaxed); |
1002 | } else if (kev->flags & EV_DISABLE) { |
1003 | os_atomic_andnot(&ch->ch_na->na_flags, |
1004 | NAF_CHANNEL_EVENT_ATTACHED, relaxed); |
1005 | } |
1006 | } |
1007 | che_process_channel_event(ch, kn, fflags: kn->kn_sfflags, hint: &hint); |
1008 | ret = filt_chan_extended_common(kn, ev_hint: hint); |
1009 | done: |
1010 | lck_mtx_unlock(lck: &ch->ch_lock); |
1011 | return ret; |
1012 | } |
1013 | |
1014 | static int |
1015 | filt_che_process(struct knote *kn, struct kevent_qos_s *kev) |
1016 | { |
1017 | int ret; |
1018 | long hint = 0; |
1019 | struct kern_channel *ch = knote_kn_hook_get_raw(kn); |
1020 | |
1021 | ASSERT(kn->kn_filter == EVFILT_NW_CHANNEL); |
1022 | lck_mtx_lock(lck: &ch->ch_lock); |
1023 | if (__improbable(ch_filt_check_defunct(ch, kn))) { |
1024 | ret = 1; |
1025 | goto done; |
1026 | } |
1027 | che_process_channel_event(ch, kn, fflags: kn->kn_sfflags, hint: &hint); |
1028 | ret = filt_chan_extended_common(kn, ev_hint: hint); |
1029 | done: |
1030 | lck_mtx_unlock(lck: &ch->ch_lock); |
1031 | if (ret != 0) { |
1032 | /* |
1033 | * This filter historically behaves like EV_CLEAR, |
1034 | * even when EV_CLEAR wasn't set. |
1035 | */ |
1036 | knote_fill_kevent(kn, kev, data: 0); |
1037 | kn->kn_fflags = 0; |
1038 | } |
1039 | return ret; |
1040 | } |
1041 | |
1042 | int |
1043 | ch_kqfilter(struct kern_channel *ch, struct knote *kn, |
1044 | struct kevent_qos_s *kev) |
1045 | { |
1046 | int result; |
1047 | |
1048 | lck_mtx_lock(lck: &ch->ch_lock); |
1049 | VERIFY(!(ch->ch_flags & CHANF_KERNEL)); |
1050 | |
1051 | if (__improbable(ch->ch_na == NULL || !NA_IS_ACTIVE(ch->ch_na) || |
1052 | na_reject_channel(ch, ch->ch_na))) { |
1053 | SK_ERR("%s(%d): channel is non-permissive, flags 0x%b" , ch->ch_name, |
1054 | ch->ch_pid, ch->ch_flags, CHANF_BITS); |
1055 | knote_set_error(kn, ENXIO); |
1056 | lck_mtx_unlock(lck: &ch->ch_lock); |
1057 | return 0; |
1058 | } |
1059 | |
1060 | switch (kn->kn_filter) { |
1061 | case EVFILT_READ: |
1062 | kn->kn_filtid = EVFILTID_SKYWALK_CHANNEL_R; |
1063 | break; |
1064 | |
1065 | case EVFILT_WRITE: |
1066 | kn->kn_filtid = EVFILTID_SKYWALK_CHANNEL_W; |
1067 | break; |
1068 | |
1069 | case EVFILT_NW_CHANNEL: |
1070 | kn->kn_filtid = EVFILTID_SKYWALK_CHANNEL_E; |
1071 | break; |
1072 | |
1073 | default: |
1074 | lck_mtx_unlock(lck: &ch->ch_lock); |
1075 | SK_ERR("%s(%d): bad filter request %d" , ch->ch_name, |
1076 | ch->ch_pid, kn->kn_filter); |
1077 | knote_set_error(kn, EINVAL); |
1078 | return 0; |
1079 | } |
1080 | |
1081 | knote_kn_hook_set_raw(kn, kn_hook: ch); |
1082 | /* call the appropriate sub-filter attach with the channel lock held */ |
1083 | result = knote_fops(kn)->f_attach(kn, kev); |
1084 | lck_mtx_unlock(lck: &ch->ch_lock); |
1085 | return result; |
1086 | } |
1087 | |
1088 | boolean_t |
1089 | ch_is_multiplex(struct kern_channel *ch, enum txrx t) |
1090 | { |
1091 | return ch->ch_na != NULL && (ch->ch_last[t] - ch->ch_first[t] > 1); |
1092 | } |
1093 | |
1094 | int |
1095 | ch_select(struct kern_channel *ch, int events, void *wql, struct proc *p) |
1096 | { |
1097 | int revents; |
1098 | int event_error = 0; |
1099 | |
1100 | lck_mtx_lock(lck: &ch->ch_lock); |
1101 | revents = ch_event(ch, events, wql, p, NULL, FALSE, errno: &event_error, |
1102 | FALSE); |
1103 | lck_mtx_unlock(lck: &ch->ch_lock); |
1104 | |
1105 | ASSERT((revents & POLLERR) == 0 || event_error != 0); |
1106 | |
1107 | return revents; |
1108 | } |
1109 | |
1110 | #if SK_LOG |
1111 | /* Hoisted out of line to reduce kernel stack footprint */ |
1112 | SK_LOG_ATTRIBUTE |
1113 | static void |
1114 | ch_event_log(const char *prefix, const struct kern_channel *ch, |
1115 | struct proc *p, const struct nexus_adapter *na, |
1116 | int events, int revents) |
1117 | { |
1118 | SK_DF(SK_VERB_EVENTS, "%s: na \"%s\" (0x%llx) ch 0x%llx %s(%d) " |
1119 | "th 0x%llx ev 0x%x rev 0x%x" , prefix, na->na_name, SK_KVA(na), |
1120 | SK_KVA(ch), sk_proc_name_address(p), sk_proc_pid(p), |
1121 | SK_KVA(current_thread()), events, revents); |
1122 | } |
1123 | #endif /* SK_LOG */ |
1124 | |
1125 | /* |
1126 | * select(2), poll(2) and kevent(2) handlers for channels. |
1127 | * |
1128 | * Can be called for one or more rings. Return true the event mask |
1129 | * corresponding to ready events. If there are no ready events, do |
1130 | * a selrecord on either individual selinfo or on the global one. |
1131 | * Device-dependent parts (locking and sync of tx/rx rings) |
1132 | * are done through callbacks. |
1133 | */ |
1134 | static int |
1135 | ch_event(struct kern_channel *ch, int events, void *wql, |
1136 | struct proc *p, struct ch_event_result *result, |
1137 | const boolean_t is_kevent, int *errno, const boolean_t is_ch_event) |
1138 | { |
1139 | struct nexus_adapter *na; |
1140 | struct __kern_channel_ring *kring; |
1141 | uint32_t i, check_all_tx, check_all_rx, want[NR_TXRX], revents = 0; |
1142 | uint32_t ready_tx_data = 0, ready_rx_data = 0; |
1143 | sk_protect_t protect = NULL; |
1144 | |
1145 | #define want_tx want[NR_TX] |
1146 | #define want_rx want[NR_RX] |
1147 | /* |
1148 | * In order to avoid nested locks, we need to "double check" |
1149 | * txsync and rxsync if we decide to do a selrecord(). |
1150 | * retry_tx (and retry_rx, later) prevent looping forever. |
1151 | */ |
1152 | boolean_t retry_tx = TRUE, retry_rx = TRUE; |
1153 | int found, error = 0; |
1154 | int s; |
1155 | |
1156 | net_update_uptime(); |
1157 | |
1158 | LCK_MTX_ASSERT(&ch->ch_lock, LCK_MTX_ASSERT_OWNED); |
1159 | ASSERT(!(ch->ch_flags & CHANF_KERNEL)); |
1160 | |
1161 | *errno = 0; |
1162 | |
1163 | if (__improbable((ch->ch_flags & CHANF_DEFUNCT) || |
1164 | ch->ch_schema == NULL)) { |
1165 | SK_ERR("%s(%d): channel is defunct or no longer bound" , |
1166 | ch->ch_name, ch->ch_pid); |
1167 | revents = POLLERR; |
1168 | *errno = ENXIO; |
1169 | goto done; |
1170 | } |
1171 | |
1172 | /* clear CHANF_DEFUNCT_SKIP if it was set during defunct last time */ |
1173 | if (__improbable(ch->ch_flags & CHANF_DEFUNCT_SKIP)) { |
1174 | os_atomic_andnot(&ch->ch_flags, CHANF_DEFUNCT_SKIP, relaxed); |
1175 | } |
1176 | |
1177 | na = ch->ch_na; |
1178 | if (__improbable(na == NULL || |
1179 | !NA_IS_ACTIVE(na) || na_reject_channel(ch, na))) { |
1180 | SK_ERR("%s(%d): channel is non-permissive" , |
1181 | ch->ch_name, ch->ch_pid); |
1182 | revents = POLLERR; |
1183 | *errno = ENXIO; |
1184 | goto done; |
1185 | } |
1186 | |
1187 | /* mark thread with sync-in-progress flag */ |
1188 | protect = sk_sync_protect(); |
1189 | |
1190 | /* update our work timestamp */ |
1191 | na->na_work_ts = _net_uptime; |
1192 | |
1193 | /* and make this channel eligible for draining again */ |
1194 | if (na->na_flags & NAF_DRAINING) { |
1195 | os_atomic_andnot(&na->na_flags, NAF_DRAINING, relaxed); |
1196 | } |
1197 | |
1198 | #if SK_LOG |
1199 | if (__improbable((sk_verbose & SK_VERB_EVENTS) != 0)) { |
1200 | ch_event_log("enter" , ch, p, na, events, revents); |
1201 | } |
1202 | #endif |
1203 | if (is_ch_event) { |
1204 | goto process_channel_event; |
1205 | } |
1206 | |
1207 | want_tx = (events & (POLLOUT | POLLWRNORM)); |
1208 | want_rx = (events & (POLLIN | POLLRDNORM)); |
1209 | |
1210 | /* |
1211 | * check_all_{tx|rx} are set if the channel has more than one ring |
1212 | * AND the file descriptor is bound to all of them. If so, we sleep |
1213 | * on the "global" selinfo, otherwise we sleep on individual selinfo |
1214 | * The interrupt routine in the driver wake one or the other (or both) |
1215 | * depending on which clients are active. |
1216 | * |
1217 | * rxsync() is only called if we run out of buffers on a POLLIN. |
1218 | * txsync() is called if we run out of buffers on POLLOUT. |
1219 | */ |
1220 | check_all_tx = ch_is_multiplex(ch, t: NR_TX); |
1221 | check_all_rx = ch_is_multiplex(ch, t: NR_RX); |
1222 | |
1223 | /* |
1224 | * If want_tx is still set, we must issue txsync calls |
1225 | * (on all rings, to avoid that the tx rings stall). |
1226 | * XXX should also check head != khead on the tx rings. |
1227 | */ |
1228 | if (want_tx) { |
1229 | ring_id_t first_tx = ch->ch_first[NR_TX]; |
1230 | ring_id_t last_tx = ch->ch_last[NR_TX]; |
1231 | |
1232 | channel_threshold_unit_t tx_unit = |
1233 | ch->ch_info->cinfo_tx_lowat.cet_unit; |
1234 | |
1235 | /* |
1236 | * The first round checks if anyone is ready, if not |
1237 | * do a selrecord and another round to handle races. |
1238 | * want_tx goes to 0 if any space is found, and is |
1239 | * used to skip rings with no pending transmissions. |
1240 | */ |
1241 | flush_tx: |
1242 | for (i = first_tx, ready_tx_data = 0; i < last_tx; i++) { |
1243 | kring = &na->na_tx_rings[i]; |
1244 | if (!want_tx && |
1245 | kring->ckr_ring->ring_head == kring->ckr_khead) { |
1246 | continue; |
1247 | } |
1248 | |
1249 | /* only one thread does txsync */ |
1250 | s = kr_enter(kring, TRUE); |
1251 | ASSERT(s == 0); |
1252 | |
1253 | error = 0; |
1254 | DTRACE_SKYWALK2(pretxprologue, struct kern_channel *, |
1255 | ch, struct __kern_channel_ring *, kring); |
1256 | if (kr_txsync_prologue(ch, kring, p) >= |
1257 | kring->ckr_num_slots) { |
1258 | kr_log_bad_ring(kring); |
1259 | revents |= POLLERR; |
1260 | error = EFAULT; |
1261 | if (*errno == 0) { |
1262 | *errno = EFAULT; |
1263 | } |
1264 | } else { |
1265 | if (kring->ckr_na_sync(kring, p, 0)) { |
1266 | revents |= POLLERR; |
1267 | error = EIO; |
1268 | if (*errno == 0) { |
1269 | *errno = EIO; |
1270 | } |
1271 | } else { |
1272 | kr_txsync_finalize(ch, kring, p); |
1273 | } |
1274 | } |
1275 | DTRACE_SKYWALK3(posttxfinalize, struct kern_channel *, |
1276 | ch, struct __kern_channel_ring *, kring, int, |
1277 | error); |
1278 | |
1279 | /* |
1280 | * If we found new slots, notify potential listeners on |
1281 | * the same ring. Since we just did a txsync, look at |
1282 | * the copies of cur,tail in the kring. |
1283 | */ |
1284 | found = kring->ckr_rhead != kring->ckr_rtail; |
1285 | kr_exit(kring); |
1286 | if (found) { /* notify other listeners */ |
1287 | revents |= want_tx; |
1288 | want_tx = 0; |
1289 | (void) kring->ckr_na_notify(kring, p, |
1290 | (is_kevent ? NA_NOTEF_IN_KEVENT : 0)); |
1291 | } |
1292 | |
1293 | /* |
1294 | * Add this ring's free data to our running |
1295 | * tally for userspace. |
1296 | */ |
1297 | if (result != NULL) { |
1298 | switch (tx_unit) { |
1299 | case CHANNEL_THRESHOLD_UNIT_BYTES: |
1300 | ready_tx_data += kring->ckr_ready_bytes; |
1301 | break; |
1302 | case CHANNEL_THRESHOLD_UNIT_SLOTS: |
1303 | ready_tx_data += kring->ckr_ready_slots; |
1304 | break; |
1305 | } |
1306 | } |
1307 | } |
1308 | if (want_tx && retry_tx && !is_kevent) { |
1309 | if (check_all_tx) { |
1310 | csi_selrecord_all(na, t: NR_TX, p, wql); |
1311 | } else { |
1312 | csi_selrecord_one(kring: &na->na_tx_rings[first_tx], |
1313 | p, wql); |
1314 | } |
1315 | retry_tx = FALSE; |
1316 | goto flush_tx; |
1317 | } |
1318 | } |
1319 | |
1320 | /* |
1321 | * If want_rx is still set scan receive rings. |
1322 | * Do it on all rings because otherwise we starve. |
1323 | */ |
1324 | if (want_rx) { |
1325 | ring_id_t first_rx = ch->ch_first[NR_RX]; |
1326 | ring_id_t last_rx = ch->ch_last[NR_RX]; |
1327 | channel_threshold_unit_t rx_unit = |
1328 | ch->ch_info->cinfo_rx_lowat.cet_unit; |
1329 | |
1330 | /* two rounds here for race avoidance */ |
1331 | do_retry_rx: |
1332 | for (i = first_rx, ready_rx_data = 0; i < last_rx; i++) { |
1333 | kring = &na->na_rx_rings[i]; |
1334 | |
1335 | /* only one thread does rxsync */ |
1336 | s = kr_enter(kring, TRUE); |
1337 | ASSERT(s == 0); |
1338 | |
1339 | error = 0; |
1340 | DTRACE_SKYWALK2(prerxprologue, struct kern_channel *, |
1341 | ch, struct __kern_channel_ring *, kring); |
1342 | if (kr_rxsync_prologue(ch, kring, p) >= |
1343 | kring->ckr_num_slots) { |
1344 | kr_log_bad_ring(kring); |
1345 | revents |= POLLERR; |
1346 | error = EFAULT; |
1347 | if (*errno == 0) { |
1348 | *errno = EFAULT; |
1349 | } |
1350 | } else { |
1351 | /* now we can use kring->rhead, rtail */ |
1352 | if (kring->ckr_na_sync(kring, p, 0)) { |
1353 | revents |= POLLERR; |
1354 | error = EIO; |
1355 | if (*errno == 0) { |
1356 | *errno = EIO; |
1357 | } |
1358 | } else { |
1359 | kr_rxsync_finalize(ch, kring, p); |
1360 | } |
1361 | } |
1362 | |
1363 | DTRACE_SKYWALK3(postrxfinalize, struct kern_channel *, |
1364 | ch, struct __kern_channel_ring *, kring, int, |
1365 | error); |
1366 | |
1367 | found = kring->ckr_rhead != kring->ckr_rtail; |
1368 | kr_exit(kring); |
1369 | if (found) { |
1370 | revents |= want_rx; |
1371 | retry_rx = FALSE; |
1372 | (void) kring->ckr_na_notify(kring, p, |
1373 | (is_kevent ? NA_NOTEF_IN_KEVENT : 0)); |
1374 | } |
1375 | |
1376 | /* |
1377 | * Add this ring's readable data to our running |
1378 | * tally for userspace. |
1379 | */ |
1380 | if (result != NULL) { |
1381 | switch (rx_unit) { |
1382 | case CHANNEL_THRESHOLD_UNIT_BYTES: |
1383 | ready_rx_data += kring->ckr_ready_bytes; |
1384 | break; |
1385 | case CHANNEL_THRESHOLD_UNIT_SLOTS: |
1386 | ready_rx_data += kring->ckr_ready_slots; |
1387 | break; |
1388 | } |
1389 | } |
1390 | } |
1391 | |
1392 | if (retry_rx && !is_kevent) { |
1393 | if (check_all_rx) { |
1394 | csi_selrecord_all(na, t: NR_RX, p, wql); |
1395 | } else { |
1396 | csi_selrecord_one(kring: &na->na_rx_rings[first_rx], |
1397 | p, wql); |
1398 | } |
1399 | } |
1400 | if (retry_rx) { |
1401 | retry_rx = FALSE; |
1402 | goto do_retry_rx; |
1403 | } |
1404 | } |
1405 | |
1406 | if (result != NULL) { |
1407 | result->tx_data = ready_tx_data; |
1408 | result->rx_data = ready_rx_data; |
1409 | } |
1410 | goto skip_channel_event; |
1411 | |
1412 | process_channel_event: |
1413 | /* |
1414 | * perform sync operation on the event ring to make the channel |
1415 | * events enqueued in the ring visible to user-space. |
1416 | */ |
1417 | |
1418 | /* select() and poll() not supported for event ring */ |
1419 | ASSERT(is_kevent); |
1420 | VERIFY((ch->ch_last[NR_EV] - ch->ch_first[NR_EV]) == 1); |
1421 | kring = &na->na_event_rings[ch->ch_first[NR_EV]]; |
1422 | |
1423 | /* only one thread does the sync */ |
1424 | s = kr_enter(kring, TRUE); |
1425 | ASSERT(s == 0); |
1426 | if (kr_event_sync_prologue(kring, p) >= kring->ckr_num_slots) { |
1427 | kr_log_bad_ring(kring); |
1428 | revents |= POLLERR; |
1429 | if (*errno == 0) { |
1430 | *errno = EFAULT; |
1431 | } |
1432 | } else { |
1433 | if (kring->ckr_na_sync(kring, p, 0)) { |
1434 | revents |= POLLERR; |
1435 | if (*errno == 0) { |
1436 | *errno = EIO; |
1437 | } |
1438 | } else { |
1439 | kr_event_sync_finalize(ch, kring, p); |
1440 | } |
1441 | } |
1442 | found = (kring->ckr_rhead != kring->ckr_rtail); |
1443 | kr_exit(kring); |
1444 | if (found) { |
1445 | revents |= (events & POLLIN); |
1446 | } |
1447 | |
1448 | skip_channel_event: |
1449 | #if SK_LOG |
1450 | if (__improbable((sk_verbose & SK_VERB_EVENTS) != 0)) { |
1451 | ch_event_log("exit" , ch, p, na, events, revents); |
1452 | } |
1453 | #endif /* SK_LOG */ |
1454 | |
1455 | /* unmark thread with sync-in-progress flag */ |
1456 | sk_sync_unprotect(protect); |
1457 | |
1458 | done: |
1459 | ASSERT(!sk_is_sync_protected()); |
1460 | |
1461 | return revents; |
1462 | #undef want_tx |
1463 | #undef want_rx |
1464 | } |
1465 | |
1466 | static struct kern_channel * |
1467 | ch_find(struct kern_nexus *nx, nexus_port_t port, ring_id_t ring_id) |
1468 | { |
1469 | struct kern_channel *ch; |
1470 | |
1471 | SK_LOCK_ASSERT_HELD(); |
1472 | |
1473 | STAILQ_FOREACH(ch, &nx->nx_ch_head, ch_link) { |
1474 | struct ch_info *cinfo = ch->ch_info; |
1475 | |
1476 | /* see comments in ch_open() */ |
1477 | if (cinfo->cinfo_nx_port != port) { |
1478 | continue; |
1479 | } else if (cinfo->cinfo_ch_mode & CHMODE_MONITOR) { |
1480 | continue; |
1481 | } else if (cinfo->cinfo_ch_ring_id != CHANNEL_RING_ID_ANY && |
1482 | ring_id != cinfo->cinfo_ch_ring_id && |
1483 | ring_id != CHANNEL_RING_ID_ANY) { |
1484 | continue; |
1485 | } |
1486 | |
1487 | /* found a match */ |
1488 | break; |
1489 | } |
1490 | |
1491 | if (ch != NULL) { |
1492 | ch_retain_locked(ch); |
1493 | } |
1494 | |
1495 | return ch; |
1496 | } |
1497 | |
1498 | #if SK_LOG |
1499 | /* Hoisted out of line to reduce kernel stack footprint */ |
1500 | SK_LOG_ATTRIBUTE |
1501 | static void |
1502 | ch_open_log1(const uuid_t p_uuid, struct proc *p, nexus_port_t port) |
1503 | { |
1504 | uuid_string_t uuidstr; |
1505 | |
1506 | SK_D("%s(%d) uniqueid %llu exec_uuid %s port %u" , |
1507 | sk_proc_name_address(p), sk_proc_pid(p), proc_uniqueid(p), |
1508 | sk_uuid_unparse(p_uuid, uuidstr), port); |
1509 | } |
1510 | |
1511 | SK_LOG_ATTRIBUTE |
1512 | static void |
1513 | ch_open_log2(struct proc *p, nexus_port_t port, ring_id_t ring, |
1514 | uint32_t mode, const char *mode_bits, int err) |
1515 | { |
1516 | SK_D("%s(%d) port %u ring %d mode 0x%b err %d" , |
1517 | sk_proc_name_address(p), sk_proc_pid(p), port, (int)ring, |
1518 | mode, mode_bits, err); |
1519 | } |
1520 | #endif /* SK_LOG */ |
1521 | |
1522 | struct kern_channel * |
1523 | ch_open(struct ch_init *init, struct proc *p, int fd, int *err) |
1524 | { |
1525 | uint32_t mode = init->ci_ch_mode; |
1526 | nexus_port_t port = init->ci_nx_port; |
1527 | ring_id_t ring = init->ci_ch_ring_id; |
1528 | struct kern_channel *ch = NULL, *ch0 = NULL; |
1529 | struct nxbind *nxb = NULL; |
1530 | struct kern_nexus *nx; |
1531 | struct chreq chr; |
1532 | uuid_t p_uuid; |
1533 | kauth_cred_t cred; |
1534 | |
1535 | cred = kauth_cred_get(); |
1536 | ASSERT(!uuid_is_null(init->ci_nx_uuid)); |
1537 | proc_getexecutableuuid(p, p_uuid, sizeof(p_uuid)); |
1538 | *err = 0; |
1539 | |
1540 | /* make sure we don't allow userland to set kernel-only flags */ |
1541 | mode &= CHMODE_MASK; |
1542 | |
1543 | SK_LOCK(); |
1544 | |
1545 | nx = nx_find(init->ci_nx_uuid, TRUE); |
1546 | if (nx == NULL) { |
1547 | *err = ENOENT; |
1548 | goto done; |
1549 | } |
1550 | |
1551 | /* port (zero-based) must be within the domain's range */ |
1552 | if (port >= NXDOM_MAX(NX_DOM(nx), ports)) { |
1553 | *err = EDOM; |
1554 | goto done; |
1555 | } |
1556 | VERIFY(port != NEXUS_PORT_ANY); |
1557 | |
1558 | if (mode & CHMODE_LOW_LATENCY) { |
1559 | if ((*err = skywalk_priv_check_cred(p, cred, |
1560 | PRIV_SKYWALK_LOW_LATENCY_CHANNEL)) != 0) { |
1561 | goto done; |
1562 | } |
1563 | } |
1564 | |
1565 | /* "no copy" is valid only when at least one tx/rx mon flag is set */ |
1566 | if (!(mode & CHMODE_MONITOR) && (mode & CHMODE_MONITOR_NO_COPY)) { |
1567 | mode &= ~CHMODE_MONITOR_NO_COPY; |
1568 | } |
1569 | |
1570 | if (mode & CHMODE_MONITOR) { |
1571 | if ((*err = skywalk_priv_check_cred(p, cred, |
1572 | PRIV_SKYWALK_OBSERVE_ALL)) != 0) { |
1573 | goto done; |
1574 | } |
1575 | /* Don't allow non-root processes to monitor channels. */ |
1576 | if (kauth_cred_issuser(cred: cred) == 0) { |
1577 | *err = EPERM; |
1578 | goto done; |
1579 | } |
1580 | } |
1581 | |
1582 | /* |
1583 | * Check with the nexus to see if the port is bound; if so, prepare |
1584 | * our nxbind structure that we'll need to pass down to the nexus |
1585 | * for it compare. If the caller provides a key, we take it over |
1586 | * and will free it ourselves (as part of freeing nxbind.) |
1587 | * |
1588 | * If this is a monitor channel, skip this altogether since the check |
1589 | * for PRIV_SKYWALK_OBSERVE_ALL privilege has been done above. |
1590 | */ |
1591 | if (!(mode & CHMODE_MONITOR) && !NX_ANONYMOUS_PROV(nx)) { |
1592 | void *key = (void *)(init->ci_key); |
1593 | |
1594 | #if SK_LOG |
1595 | if (__improbable(sk_verbose != 0)) { |
1596 | ch_open_log1(p_uuid, p, port); |
1597 | } |
1598 | #endif /* SK_LOG */ |
1599 | |
1600 | nxb = nxb_alloc(Z_WAITOK); |
1601 | nxb->nxb_flags |= NXBF_MATCH_UNIQUEID; |
1602 | nxb->nxb_uniqueid = proc_uniqueid(p); |
1603 | nxb->nxb_pid = proc_pid(p); |
1604 | nxb->nxb_flags |= NXBF_MATCH_EXEC_UUID; |
1605 | uuid_copy(dst: nxb->nxb_exec_uuid, src: p_uuid); |
1606 | if (key != NULL) { |
1607 | nxb->nxb_flags |= NXBF_MATCH_KEY; |
1608 | nxb->nxb_key_len = init->ci_key_len; |
1609 | nxb->nxb_key = key; |
1610 | init->ci_key = USER_ADDR_NULL; /* take over */ |
1611 | } |
1612 | } |
1613 | |
1614 | /* |
1615 | * There can only be one owner of {port,ring_id} tuple. Once |
1616 | * owned, this can be made available among multiple monitors. |
1617 | * CHANNEL_RING_ID_ANY (-1) ring_id gives exclusive rights over |
1618 | * all rings. Further attempts to own any or all of the rings |
1619 | * will be declined. |
1620 | * |
1621 | * Multiple monitors are allowed to exist. If a channel has been |
1622 | * bound to CHANNEL_RING_ID_ANY, any or all of its rings can be |
1623 | * monitored. If an owning channel has been bound to an individual |
1624 | * ring, only that ring can be monitored, either by specifying the |
1625 | * equivalent ring_id or CHANNEL_RING_ID_ANY at monitor open time. |
1626 | * |
1627 | * For example, assuming a 2-rings setup for port 'p': |
1628 | * |
1629 | * owner{p,-1} |
1630 | * will allow: |
1631 | * monitor{p,-1}, monitor{p,0}, monitor{p,1} |
1632 | * will not allow: |
1633 | * owner{p,-1}, owner{p,0}, owner{p,1} |
1634 | * |
1635 | * owner{p,0} |
1636 | * will allow: |
1637 | * owner{p,1}, monitor{p,-1}, monitor{p,0} |
1638 | * will not allow: |
1639 | * owner{p,-1}, owner{p,0}, monitor{p,1} |
1640 | */ |
1641 | if ((ch0 = ch_find(nx, port, ring_id: ring)) != NULL) { |
1642 | SK_D("found ch0 0x%llx" , SK_KVA(ch0)); |
1643 | /* |
1644 | * Unless this is a monitor channel, allow only at |
1645 | * most one owner of the {port,ring_id} tuple. |
1646 | */ |
1647 | if (!(mode & CHMODE_MONITOR)) { |
1648 | #if SK_LOG |
1649 | uuid_string_t uuidstr; |
1650 | char *na_name = (ch0->ch_na != NULL) ? |
1651 | ch0->ch_na->na_name : "" ; |
1652 | |
1653 | SK_DSC(p, "ch %s flags (0x%x) exists on port %d on " |
1654 | "nx %s, owner %s(%d)" , na_name, ch0->ch_flags, port, |
1655 | sk_uuid_unparse(nx->nx_uuid, uuidstr), |
1656 | ch0->ch_name, ch0->ch_pid); |
1657 | #endif /* SK_LOG */ |
1658 | *err = EBUSY; |
1659 | goto done; |
1660 | } |
1661 | } else if (mode & CHMODE_MONITOR) { |
1662 | *err = ENXIO; |
1663 | goto done; |
1664 | } |
1665 | |
1666 | bzero(s: &chr, n: sizeof(chr)); |
1667 | chr.cr_tx_lowat = init->ci_tx_lowat; |
1668 | chr.cr_rx_lowat = init->ci_rx_lowat; |
1669 | chr.cr_port = port; |
1670 | chr.cr_mode = mode; |
1671 | chr.cr_ring_id = ring; |
1672 | |
1673 | /* upon success, returns a channel with reference held */ |
1674 | ch = ch_connect(nx, &chr, ch0, nxb, p, fd, err); |
1675 | |
1676 | done: |
1677 | |
1678 | #if SK_LOG |
1679 | if (__improbable(sk_verbose != 0)) { |
1680 | ch_open_log2(p, port, ring, mode, CHMODE_BITS, *err); |
1681 | } |
1682 | #endif /* SK_LOG */ |
1683 | |
1684 | if (ch0 != NULL) { |
1685 | (void) ch_release_locked(ch0); |
1686 | } |
1687 | |
1688 | if (nx != NULL) { |
1689 | (void) nx_release_locked(nx); |
1690 | } |
1691 | |
1692 | if (nxb != NULL) { |
1693 | nxb_free(nxb); |
1694 | } |
1695 | |
1696 | SK_UNLOCK(); |
1697 | |
1698 | return ch; |
1699 | } |
1700 | |
1701 | struct kern_channel * |
1702 | ch_open_special(struct kern_nexus *nx, struct chreq *chr, boolean_t nonxref, |
1703 | int *err) |
1704 | { |
1705 | struct kern_channel *ch = NULL; |
1706 | |
1707 | SK_LOCK_ASSERT_HELD(); |
1708 | *err = 0; |
1709 | |
1710 | ASSERT((chr->cr_mode & CHMODE_USER_PACKET_POOL) == 0); |
1711 | ASSERT((chr->cr_mode & CHMODE_EVENT_RING) == 0); |
1712 | ASSERT((chr->cr_mode & CHMODE_LOW_LATENCY) == 0); |
1713 | ASSERT(!uuid_is_null(chr->cr_spec_uuid)); |
1714 | chr->cr_mode |= CHMODE_KERNEL; |
1715 | if (nonxref) { |
1716 | chr->cr_mode |= CHMODE_NO_NXREF; |
1717 | } else { |
1718 | chr->cr_mode &= ~CHMODE_NO_NXREF; |
1719 | } |
1720 | |
1721 | /* upon success, returns a channel with reference held */ |
1722 | ch = ch_connect(nx, chr, NULL, NULL, kernproc, -1, err); |
1723 | if (ch != NULL) { |
1724 | /* |
1725 | * nonxref channels don't hold any reference to the nexus, |
1726 | * since otherwise we'll never be able to close them when |
1727 | * the last regular channel of the nexus is closed, as part |
1728 | * of the nexus's destructor operation. Release the nonxref |
1729 | * channel reference now, but make sure the nexus has at |
1730 | * least 3 refs: global list, provider list and the nonxref |
1731 | * channel itself, before doing that. |
1732 | */ |
1733 | if (nonxref) { |
1734 | ASSERT(ch->ch_flags & (CHANF_KERNEL | CHANF_NONXREF)); |
1735 | ASSERT(nx->nx_refcnt > 3); |
1736 | (void) nx_release_locked(nx); |
1737 | } |
1738 | } |
1739 | |
1740 | #if SK_LOG |
1741 | uuid_string_t uuidstr; |
1742 | SK_D("nx 0x%llx (%s:\"%s\":%d:%d) spec_uuid \"%s\" mode 0x%b err %d" , |
1743 | SK_KVA(nx), NX_DOM_PROV(nx)->nxdom_prov_name, (ch != NULL ? |
1744 | ch->ch_na->na_name : "" ), (int)chr->cr_port, (int)chr->cr_ring_id, |
1745 | sk_uuid_unparse(chr->cr_spec_uuid, uuidstr), chr->cr_mode, |
1746 | CHMODE_BITS, *err); |
1747 | #endif /* SK_LOG */ |
1748 | |
1749 | return ch; |
1750 | } |
1751 | |
1752 | static void |
1753 | ch_close_common(struct kern_channel *ch, boolean_t locked, boolean_t special) |
1754 | { |
1755 | #pragma unused(special) |
1756 | #if SK_LOG |
1757 | uuid_string_t uuidstr; |
1758 | const char *na_name = (ch->ch_na != NULL) ? |
1759 | ch->ch_na->na_name : "" ; |
1760 | const char *nxdom_name = (ch->ch_nexus != NULL) ? |
1761 | NX_DOM(ch->ch_nexus)->nxdom_name : "" ; |
1762 | const char *nxdom_prov_name = (ch->ch_nexus != NULL) ? |
1763 | NX_DOM_PROV(ch->ch_nexus)->nxdom_prov_name : "" ; |
1764 | |
1765 | SK_D("ch 0x%llx (%s:%s:\"%s\":%u:%d)" , |
1766 | SK_KVA(ch), nxdom_name, nxdom_prov_name, na_name, |
1767 | ch->ch_info->cinfo_nx_port, (int)ch->ch_info->cinfo_ch_ring_id); |
1768 | SK_D(" UUID: %s" , sk_uuid_unparse(ch->ch_info->cinfo_ch_id, |
1769 | uuidstr)); |
1770 | SK_D(" flags: 0x%b" , ch->ch_flags, CHANF_BITS); |
1771 | #endif /* SK_LOG */ |
1772 | struct kern_nexus *nx = ch->ch_nexus; |
1773 | |
1774 | if (!locked) { |
1775 | SK_LOCK(); |
1776 | } |
1777 | |
1778 | SK_LOCK_ASSERT_HELD(); |
1779 | /* |
1780 | * If the channel is participating in the interface advisory |
1781 | * notification, remove it from the nexus. |
1782 | * CHANF_IF_ADV is set and cleared only when nx_ch_if_adv_lock |
1783 | * is held in exclusive mode. |
1784 | */ |
1785 | lck_rw_lock_exclusive(lck: &nx->nx_ch_if_adv_lock); |
1786 | if ((ch->ch_flags & CHANF_IF_ADV) != 0) { |
1787 | STAILQ_REMOVE(&nx->nx_ch_if_adv_head, ch, |
1788 | kern_channel, ch_link_if_adv); |
1789 | os_atomic_andnot(&ch->ch_flags, CHANF_IF_ADV, relaxed); |
1790 | if (STAILQ_EMPTY(&nx->nx_ch_if_adv_head)) { |
1791 | nx_netif_config_interface_advisory(nx, false); |
1792 | } |
1793 | lck_rw_done(lck: &nx->nx_ch_if_adv_lock); |
1794 | lck_mtx_lock(lck: &ch->ch_lock); |
1795 | (void) ch_release_locked(ch); |
1796 | } else { |
1797 | lck_rw_done(lck: &nx->nx_ch_if_adv_lock); |
1798 | lck_mtx_lock(lck: &ch->ch_lock); |
1799 | } |
1800 | LCK_MTX_ASSERT(&ch->ch_lock, LCK_MTX_ASSERT_OWNED); |
1801 | /* |
1802 | * Mark the channel as closing to prevent further setopt requests; |
1803 | * this flag is set once here and never gets cleared. |
1804 | */ |
1805 | ASSERT(!(ch->ch_flags & CHANF_CLOSING)); |
1806 | os_atomic_or(&ch->ch_flags, CHANF_CLOSING, relaxed); |
1807 | |
1808 | if (special) { |
1809 | VERIFY(ch->ch_flags & CHANF_KERNEL); |
1810 | } else { |
1811 | VERIFY(!(ch->ch_flags & CHANF_KERNEL)); |
1812 | } |
1813 | |
1814 | ch->ch_fd = -1; |
1815 | |
1816 | /* may be called as part of failure cleanup, so check */ |
1817 | if (ch->ch_flags & CHANF_ATTACHED) { |
1818 | boolean_t nonxref = !!(ch->ch_flags & CHANF_NONXREF); |
1819 | |
1820 | /* caller must hold an extra ref */ |
1821 | ASSERT(ch->ch_refcnt > 1); |
1822 | |
1823 | /* disconnect from nexus */ |
1824 | ch_disconnect(ch); |
1825 | |
1826 | /* |
1827 | * If this was the last regular channel and the nexus |
1828 | * has been closed, detach it and finish up the job. |
1829 | * If this was a nonxref channel, there is nothing |
1830 | * left to do; see comments in ch_open_special(). |
1831 | */ |
1832 | if (!nonxref) { |
1833 | STAILQ_REMOVE(&nx->nx_ch_head, ch, |
1834 | kern_channel, ch_link); |
1835 | nx->nx_ch_count--; |
1836 | if (STAILQ_EMPTY(&nx->nx_ch_head) && |
1837 | (nx->nx_flags & NXF_CLOSED)) { |
1838 | ASSERT(STAILQ_EMPTY(&nx->nx_ch_if_adv_head)); |
1839 | nx_detach(nx); |
1840 | } |
1841 | (void) nx_release_locked(nx); |
1842 | } else { |
1843 | ASSERT(ch->ch_flags & CHANF_KERNEL); |
1844 | STAILQ_REMOVE(&nx->nx_ch_nonxref_head, ch, |
1845 | kern_channel, ch_link); |
1846 | } |
1847 | |
1848 | os_atomic_andnot(&ch->ch_flags, CHANF_ATTACHED, relaxed); |
1849 | ch->ch_nexus = NULL; |
1850 | |
1851 | (void) ch_release_locked(ch); /* for the list */ |
1852 | } |
1853 | |
1854 | lck_mtx_unlock(lck: &ch->ch_lock); |
1855 | if (!locked) { |
1856 | SK_UNLOCK(); |
1857 | } |
1858 | } |
1859 | |
1860 | void |
1861 | ch_close(struct kern_channel *ch, boolean_t locked) |
1862 | { |
1863 | ch_close_common(ch, locked, FALSE); |
1864 | } |
1865 | |
1866 | void |
1867 | ch_close_special(struct kern_channel *ch) |
1868 | { |
1869 | ch_close_common(ch, TRUE, TRUE); |
1870 | } |
1871 | |
1872 | static int |
1873 | ch_ev_thresh_validate(struct kern_nexus *nx, enum txrx t, |
1874 | struct ch_ev_thresh *cet) |
1875 | { |
1876 | struct nxprov_params *nxp = NX_PROV(nx)->nxprov_params; |
1877 | uint32_t bmin, bmax, smin, smax; |
1878 | int err = 0; |
1879 | |
1880 | if (cet->cet_unit != CHANNEL_THRESHOLD_UNIT_BYTES && |
1881 | cet->cet_unit != CHANNEL_THRESHOLD_UNIT_SLOTS) { |
1882 | err = EINVAL; |
1883 | goto done; |
1884 | } |
1885 | |
1886 | smin = 1; /* minimum 1 slot */ |
1887 | bmin = 1; /* minimum 1 byte */ |
1888 | |
1889 | if (t == NR_TX) { |
1890 | ASSERT(nxp->nxp_tx_slots > 0); |
1891 | smax = (nxp->nxp_tx_slots - 1); |
1892 | } else { |
1893 | ASSERT(nxp->nxp_rx_slots > 0); |
1894 | smax = (nxp->nxp_rx_slots - 1); |
1895 | } |
1896 | bmax = (smax * nxp->nxp_buf_size); |
1897 | |
1898 | switch (cet->cet_unit) { |
1899 | case CHANNEL_THRESHOLD_UNIT_BYTES: |
1900 | if (cet->cet_value < bmin) { |
1901 | cet->cet_value = bmin; |
1902 | } else if (cet->cet_value > bmax) { |
1903 | cet->cet_value = bmax; |
1904 | } |
1905 | break; |
1906 | |
1907 | case CHANNEL_THRESHOLD_UNIT_SLOTS: |
1908 | if (cet->cet_value < smin) { |
1909 | cet->cet_value = smin; |
1910 | } else if (cet->cet_value > smax) { |
1911 | cet->cet_value = smax; |
1912 | } |
1913 | break; |
1914 | } |
1915 | |
1916 | done: |
1917 | return err; |
1918 | } |
1919 | |
1920 | #if SK_LOG |
1921 | /* Hoisted out of line to reduce kernel stack footprint */ |
1922 | SK_LOG_ATTRIBUTE |
1923 | static void |
1924 | ch_connect_log1(const struct kern_nexus *nx, const struct ch_info *cinfo, |
1925 | const struct chreq *chr, const struct kern_channel *ch, |
1926 | const struct kern_nexus_domain_provider *nxdom_prov, |
1927 | struct proc *p) |
1928 | { |
1929 | struct __user_channel_schema *ch_schema = ch->ch_schema; |
1930 | uuid_string_t uuidstr; |
1931 | unsigned int n; |
1932 | ring_id_t i, j; |
1933 | |
1934 | ASSERT(ch_schema != NULL || (ch->ch_flags & CHANF_KERNEL)); |
1935 | if (ch_schema != NULL) { |
1936 | SK_D("channel_schema at 0x%llx" , SK_KVA(ch_schema)); |
1937 | SK_D(" kern_name: \"%s\"" , ch_schema->csm_kern_name); |
1938 | SK_D(" kern_uuid: %s" , |
1939 | sk_uuid_unparse(ch_schema->csm_kern_uuid, uuidstr)); |
1940 | SK_D(" flags: 0x%b" , ch_schema->csm_flags, CSM_BITS); |
1941 | SK_D(" tx_rings: %u [%u,%u]" , ch_schema->csm_tx_rings, |
1942 | cinfo->cinfo_first_tx_ring, cinfo->cinfo_last_tx_ring); |
1943 | SK_D(" rx_rings: %u [%u,%u]" , ch_schema->csm_rx_rings, |
1944 | cinfo->cinfo_first_rx_ring, cinfo->cinfo_last_rx_ring); |
1945 | |
1946 | j = ch->ch_last[NR_TX]; |
1947 | for (n = 0, i = ch->ch_first[NR_TX]; i < j; n++, i++) { |
1948 | SK_D(" tx_ring_%u_off: 0x%llx" , i, |
1949 | (uint64_t)ch_schema->csm_ring_ofs[n].ring_off); |
1950 | SK_D(" tx_sd_%u_off: 0x%llx" , i, |
1951 | (uint64_t)ch_schema->csm_ring_ofs[n].sd_off); |
1952 | } |
1953 | j = n; |
1954 | for (n = 0, i = ch->ch_first[NR_RX]; |
1955 | i < ch->ch_last[NR_RX]; n++, i++) { |
1956 | SK_D(" rx_ring_%u_off: 0x%llx" , i, |
1957 | (uint64_t)ch_schema->csm_ring_ofs[n + j].ring_off); |
1958 | SK_D(" rx_sd_%u_off: 0x%llx" , i, |
1959 | (uint64_t)ch_schema->csm_ring_ofs[n + j].sd_off); |
1960 | } |
1961 | SK_D(" md_type: %u" , ch_schema->csm_md_type); |
1962 | SK_D(" md_subtype: %u" , ch_schema->csm_md_subtype); |
1963 | SK_D(" stats_ofs: 0x%llx" , ch_schema->csm_stats_ofs); |
1964 | SK_D(" stats_type: %u" , ch_schema->csm_stats_type); |
1965 | SK_D(" flowadv_ofs: 0x%llx" , ch_schema->csm_flowadv_ofs); |
1966 | SK_D(" flowadv_max: %u" , ch_schema->csm_flowadv_max); |
1967 | SK_D(" nexusadv_ofs: 0x%llx" , ch_schema->csm_nexusadv_ofs); |
1968 | } |
1969 | |
1970 | SK_D("ch 0x%llx (%s:%s:\"%s\":%u:%d)" , |
1971 | SK_KVA(ch), nxdom_prov->nxdom_prov_dom->nxdom_name, |
1972 | nxdom_prov->nxdom_prov_name, ch->ch_na->na_name, |
1973 | cinfo->cinfo_nx_port, (int)cinfo->cinfo_ch_ring_id); |
1974 | SK_D(" ch UUID: %s" , sk_uuid_unparse(cinfo->cinfo_ch_id, uuidstr)); |
1975 | SK_D(" nx UUID: %s" , sk_uuid_unparse(nx->nx_uuid, uuidstr)); |
1976 | SK_D(" flags: 0x%b" , ch->ch_flags, CHANF_BITS); |
1977 | SK_D(" task: 0x%llx %s(%d)" , SK_KVA(ch->ch_mmap.ami_maptask), |
1978 | sk_proc_name_address(p), sk_proc_pid(p)); |
1979 | SK_D(" txlowat: %u (%s)" , cinfo->cinfo_tx_lowat.cet_value, |
1980 | ((cinfo->cinfo_tx_lowat.cet_unit == CHANNEL_THRESHOLD_UNIT_BYTES) ? |
1981 | "bytes" : "slots" )); |
1982 | SK_D(" rxlowat: %u (%s)" , cinfo->cinfo_rx_lowat.cet_value, |
1983 | ((cinfo->cinfo_rx_lowat.cet_unit == CHANNEL_THRESHOLD_UNIT_BYTES) ? |
1984 | "bytes" : "slots" )); |
1985 | SK_D(" mmapref: 0x%llx" , SK_KVA(ch->ch_mmap.ami_mapref)); |
1986 | SK_D(" mapaddr: 0x%llx" , (uint64_t)cinfo->cinfo_mem_base); |
1987 | SK_D(" mapsize: 0x%llx (%llu KB)" , |
1988 | (uint64_t)cinfo->cinfo_mem_map_size, |
1989 | (uint64_t)cinfo->cinfo_mem_map_size >> 10); |
1990 | SK_D(" memsize: 0x%llx (%llu KB)" , |
1991 | (uint64_t)chr->cr_memsize, (uint64_t)chr->cr_memsize >> 10); |
1992 | SK_D(" offset: 0x%llx" , (uint64_t)cinfo->cinfo_schema_offset); |
1993 | } |
1994 | |
1995 | SK_LOG_ATTRIBUTE |
1996 | static void |
1997 | ch_connect_log2(const struct kern_nexus *nx, int err) |
1998 | { |
1999 | uuid_string_t nx_uuidstr; |
2000 | |
2001 | SK_ERR("Error connecting to nexus UUID %s: %d" , |
2002 | sk_uuid_unparse(nx->nx_uuid, nx_uuidstr), err); |
2003 | } |
2004 | #endif /* SK_LOG */ |
2005 | |
2006 | static struct kern_channel * |
2007 | ch_connect(struct kern_nexus *nx, struct chreq *chr, struct kern_channel *ch0, |
2008 | struct nxbind *nxb, struct proc *p, int fd, int *err) |
2009 | { |
2010 | struct kern_nexus_domain_provider *nxdom_prov; |
2011 | struct kern_channel *ch = NULL; |
2012 | struct ch_info *cinfo = NULL; |
2013 | uint32_t ch_mode = chr->cr_mode; |
2014 | boolean_t config = FALSE; |
2015 | struct nxdom *nxdom; |
2016 | boolean_t reserved_port = FALSE; |
2017 | |
2018 | ASSERT(!(ch_mode & CHMODE_KERNEL) || p == kernproc); |
2019 | ASSERT(chr->cr_port != NEXUS_PORT_ANY || (ch_mode & CHMODE_KERNEL)); |
2020 | SK_LOCK_ASSERT_HELD(); |
2021 | |
2022 | /* validate thresholds before we proceed any further */ |
2023 | if ((*err = ch_ev_thresh_validate(nx, t: NR_TX, cet: &chr->cr_tx_lowat)) != 0 || |
2024 | (*err = ch_ev_thresh_validate(nx, t: NR_RX, cet: &chr->cr_rx_lowat)) != 0) { |
2025 | goto done; |
2026 | } |
2027 | |
2028 | if (!(ch_mode & CHMODE_KERNEL) && !NX_USER_CHANNEL_PROV(nx)) { |
2029 | *err = ENOTSUP; |
2030 | goto done; |
2031 | } |
2032 | |
2033 | ch = ch_alloc(Z_WAITOK); |
2034 | |
2035 | lck_mtx_lock(lck: &ch->ch_lock); |
2036 | |
2037 | uuid_generate_random(out: ch->ch_info->cinfo_ch_id); |
2038 | ch->ch_fd = fd; |
2039 | ch->ch_pid = proc_pid(p); |
2040 | (void) snprintf(ch->ch_name, count: sizeof(ch->ch_name), "%s" , |
2041 | proc_name_address(p)); |
2042 | |
2043 | nxdom_prov = NX_DOM_PROV(nx); |
2044 | nxdom = NX_DOM(nx); |
2045 | |
2046 | if (ch_mode & (CHMODE_KERNEL | CHMODE_NO_NXREF)) { |
2047 | /* |
2048 | * CHANF_KERNEL implies a channel opened by a kernel |
2049 | * subsystem, and is triggered by the CHMODE_KERNEL |
2050 | * flag which (only ever) set by ch_open_special(). |
2051 | * |
2052 | * CHANF_NONXREF can be optionally set based on the |
2053 | * CHMODE_NO_NXREF request flag. This must only be |
2054 | * set by ch_open_special() as well, hence we verify. |
2055 | */ |
2056 | ASSERT(p == kernproc); |
2057 | ASSERT(ch_mode & CHMODE_KERNEL); |
2058 | os_atomic_or(&ch->ch_flags, CHANF_KERNEL, relaxed); |
2059 | if (ch_mode & CHMODE_NO_NXREF) { |
2060 | os_atomic_or(&ch->ch_flags, CHANF_NONXREF, relaxed); |
2061 | } |
2062 | |
2063 | config = (ch_mode & CHMODE_CONFIG) != 0; |
2064 | if (chr->cr_port == NEXUS_PORT_ANY) { |
2065 | if (nxdom->nxdom_find_port == NULL) { |
2066 | *err = ENOTSUP; |
2067 | goto done; |
2068 | } |
2069 | |
2070 | /* |
2071 | * If ephemeral port request, find one for client; |
2072 | * we ask for the reserved port range if this is |
2073 | * a configuration request (CHMODE_CONFIG). |
2074 | */ |
2075 | if ((*err = nxdom->nxdom_find_port(nx, |
2076 | config, &chr->cr_port)) != 0) { |
2077 | goto done; |
2078 | } |
2079 | } |
2080 | } |
2081 | |
2082 | if (skywalk_check_platform_binary(p)) { |
2083 | os_atomic_or(&ch->ch_flags, CHANF_PLATFORM, relaxed); |
2084 | } |
2085 | |
2086 | ASSERT(chr->cr_port != NEXUS_PORT_ANY); |
2087 | |
2088 | reserved_port = (nxdom->nxdom_port_is_reserved != NULL && |
2089 | (*nxdom->nxdom_port_is_reserved)(nx, chr->cr_port)); |
2090 | if (!config && reserved_port) { |
2091 | *err = EDOM; |
2092 | goto done; |
2093 | } |
2094 | |
2095 | SK_D("%s(%d) %snexus port %u requested" , sk_proc_name_address(p), |
2096 | sk_proc_pid(p), reserved_port ? "[reserved] " : "" , chr->cr_port); |
2097 | |
2098 | if ((*err = nxdom_prov->nxdom_prov_dom->nxdom_connect(nxdom_prov, |
2099 | nx, ch, chr, ch0, nxb, p)) != 0) { |
2100 | goto done; |
2101 | } |
2102 | |
2103 | cinfo = ch->ch_info; |
2104 | uuid_copy(dst: cinfo->cinfo_nx_uuid, src: nx->nx_uuid); |
2105 | /* for easy access to immutables */ |
2106 | bcopy(src: (void *)nx->nx_prov->nxprov_params, |
2107 | dst: (void *)&cinfo->cinfo_nxprov_params, n: sizeof(struct nxprov_params)); |
2108 | cinfo->cinfo_ch_mode = ch_mode; |
2109 | cinfo->cinfo_ch_ring_id = chr->cr_ring_id; |
2110 | cinfo->cinfo_nx_port = chr->cr_port; |
2111 | cinfo->cinfo_mem_base = ch->ch_mmap.ami_mapaddr; |
2112 | cinfo->cinfo_mem_map_size = ch->ch_mmap.ami_mapsize; |
2113 | cinfo->cinfo_schema_offset = chr->cr_memoffset; |
2114 | cinfo->cinfo_num_bufs = |
2115 | PP_BUF_REGION_DEF(skmem_arena_nexus(ch->ch_na->na_arena)->arn_rx_pp)->skr_params.srp_c_obj_cnt; |
2116 | /* |
2117 | * ch_last is really the number of rings, but we need to return |
2118 | * the actual zero-based ring ID to the client. Make sure that |
2119 | * is the case here and adjust last_{tx,rx}_ring accordingly. |
2120 | */ |
2121 | ASSERT((ch->ch_last[NR_TX] > 0) || |
2122 | (ch->ch_na->na_type == NA_NETIF_COMPAT_DEV)); |
2123 | ASSERT((ch->ch_last[NR_RX] > 0) || |
2124 | (ch->ch_na->na_type == NA_NETIF_COMPAT_HOST)); |
2125 | cinfo->cinfo_first_tx_ring = ch->ch_first[NR_TX]; |
2126 | cinfo->cinfo_last_tx_ring = ch->ch_last[NR_TX] - 1; |
2127 | cinfo->cinfo_first_rx_ring = ch->ch_first[NR_RX]; |
2128 | cinfo->cinfo_last_rx_ring = ch->ch_last[NR_RX] - 1; |
2129 | cinfo->cinfo_tx_lowat = chr->cr_tx_lowat; |
2130 | cinfo->cinfo_rx_lowat = chr->cr_rx_lowat; |
2131 | |
2132 | if (ch_mode & CHMODE_NO_NXREF) { |
2133 | ASSERT(ch_mode & CHMODE_KERNEL); |
2134 | STAILQ_INSERT_TAIL(&nx->nx_ch_nonxref_head, ch, ch_link); |
2135 | } else { |
2136 | STAILQ_INSERT_TAIL(&nx->nx_ch_head, ch, ch_link); |
2137 | nx->nx_ch_count++; |
2138 | } |
2139 | os_atomic_or(&ch->ch_flags, CHANF_ATTACHED, relaxed); |
2140 | ch->ch_nexus = nx; |
2141 | nx_retain_locked(nx); /* hold a ref on the nexus */ |
2142 | |
2143 | ch_retain_locked(ch); /* one for being in the list */ |
2144 | ch_retain_locked(ch); /* one for the caller */ |
2145 | |
2146 | /* |
2147 | * Now that we've successfully created the nexus adapter, inform the |
2148 | * nexus provider about the rings and the slots within each ring. |
2149 | * This is a no-op for internal nexus providers. |
2150 | */ |
2151 | if ((*err = nxprov_advise_connect(nx, ch, p)) != 0) { |
2152 | lck_mtx_unlock(lck: &ch->ch_lock); |
2153 | |
2154 | /* gracefully close this fully-formed channel */ |
2155 | if (ch->ch_flags & CHANF_KERNEL) { |
2156 | ch_close_special(ch); |
2157 | } else { |
2158 | ch_close(ch, TRUE); |
2159 | } |
2160 | (void) ch_release_locked(ch); |
2161 | ch = NULL; |
2162 | goto done; |
2163 | } |
2164 | |
2165 | ASSERT(ch->ch_schema == NULL || |
2166 | (ch->ch_schema->csm_flags & CSM_ACTIVE)); |
2167 | |
2168 | #if SK_LOG |
2169 | if (__improbable(sk_verbose != 0)) { |
2170 | ch_connect_log1(nx, cinfo, chr, ch, nxdom_prov, p); |
2171 | } |
2172 | #endif /* SK_LOG */ |
2173 | |
2174 | done: |
2175 | if (ch != NULL) { |
2176 | lck_mtx_unlock(lck: &ch->ch_lock); |
2177 | } |
2178 | if (*err != 0) { |
2179 | #if SK_LOG |
2180 | if (__improbable(sk_verbose != 0)) { |
2181 | ch_connect_log2(nx, *err); |
2182 | } |
2183 | #endif /* SK_LOG */ |
2184 | if (ch != NULL) { |
2185 | ch_free(ch); |
2186 | ch = NULL; |
2187 | } |
2188 | } |
2189 | return ch; |
2190 | } |
2191 | |
2192 | static void |
2193 | ch_disconnect(struct kern_channel *ch) |
2194 | { |
2195 | struct kern_nexus *nx = ch->ch_nexus; |
2196 | struct kern_nexus_domain_provider *nxdom_prov = NX_DOM_PROV(nx); |
2197 | |
2198 | SK_LOCK_ASSERT_HELD(); |
2199 | LCK_MTX_ASSERT(&ch->ch_lock, LCK_MTX_ASSERT_OWNED); |
2200 | |
2201 | /* |
2202 | * Inform the nexus provider that the channel has been quiesced |
2203 | * and disconnected from the nexus port. This is a no-op for |
2204 | * internal nexus providers. |
2205 | */ |
2206 | nxprov_advise_disconnect(nx, ch); |
2207 | |
2208 | /* Finally, let the domain provider tear down the instance */ |
2209 | nxdom_prov->nxdom_prov_dom->nxdom_disconnect(nxdom_prov, nx, ch); |
2210 | } |
2211 | |
2212 | void |
2213 | ch_deactivate(struct kern_channel *ch) |
2214 | { |
2215 | /* |
2216 | * This is a trapdoor flag; once CSM_ACTIVE is cleared, |
2217 | * it will never be set again. Doing this will cause |
2218 | * os_channel_is_defunct() to indicate that the channel |
2219 | * is defunct and is no longer usable (thus should be |
2220 | * immediately closed). |
2221 | */ |
2222 | if (ch->ch_schema != NULL && |
2223 | (ch->ch_schema->csm_flags & CSM_ACTIVE)) { |
2224 | os_atomic_andnot(__DECONST(uint32_t *, &ch->ch_schema->csm_flags), |
2225 | CSM_ACTIVE, relaxed); |
2226 | /* make this globally visible */ |
2227 | os_atomic_thread_fence(seq_cst); |
2228 | } |
2229 | } |
2230 | |
2231 | int |
2232 | ch_set_opt(struct kern_channel *ch, struct sockopt *sopt) |
2233 | { |
2234 | #pragma unused(ch) |
2235 | int err = 0; |
2236 | |
2237 | if (sopt->sopt_dir != SOPT_SET) { |
2238 | sopt->sopt_dir = SOPT_SET; |
2239 | } |
2240 | |
2241 | switch (sopt->sopt_name) { |
2242 | case CHOPT_TX_LOWAT_THRESH: |
2243 | err = ch_set_lowat_thresh(ch, NR_TX, sopt); |
2244 | break; |
2245 | |
2246 | case CHOPT_RX_LOWAT_THRESH: |
2247 | err = ch_set_lowat_thresh(ch, NR_RX, sopt); |
2248 | break; |
2249 | |
2250 | case CHOPT_IF_ADV_CONF: |
2251 | err = ch_configure_interface_advisory_event(ch, sopt); |
2252 | break; |
2253 | |
2254 | default: |
2255 | err = ENOPROTOOPT; |
2256 | break; |
2257 | } |
2258 | |
2259 | return err; |
2260 | } |
2261 | |
2262 | int |
2263 | ch_get_opt(struct kern_channel *ch, struct sockopt *sopt) |
2264 | { |
2265 | #pragma unused(ch) |
2266 | int err = 0; |
2267 | |
2268 | if (sopt->sopt_dir != SOPT_GET) { |
2269 | sopt->sopt_dir = SOPT_GET; |
2270 | } |
2271 | |
2272 | switch (sopt->sopt_name) { |
2273 | case CHOPT_TX_LOWAT_THRESH: |
2274 | err = ch_get_lowat_thresh(ch, NR_TX, sopt); |
2275 | break; |
2276 | |
2277 | case CHOPT_RX_LOWAT_THRESH: |
2278 | err = ch_get_lowat_thresh(ch, NR_RX, sopt); |
2279 | break; |
2280 | |
2281 | default: |
2282 | err = ENOPROTOOPT; |
2283 | break; |
2284 | } |
2285 | |
2286 | return err; |
2287 | } |
2288 | |
2289 | static int |
2290 | ch_configure_interface_advisory_event(struct kern_channel *ch, |
2291 | struct sockopt *sopt) |
2292 | { |
2293 | int err = 0; |
2294 | boolean_t enable = 0; |
2295 | struct kern_nexus *nx = ch->ch_nexus; |
2296 | |
2297 | LCK_MTX_ASSERT(&ch->ch_lock, LCK_MTX_ASSERT_OWNED); |
2298 | SK_LOCK_ASSERT_NOTHELD(); |
2299 | |
2300 | if (sopt->sopt_val == USER_ADDR_NULL) { |
2301 | return EINVAL; |
2302 | } |
2303 | if (nx->nx_adv.nxv_adv == NULL) { |
2304 | return ENOTSUP; |
2305 | } |
2306 | err = sooptcopyin(sopt, &enable, len: sizeof(enable), minlen: sizeof(enable)); |
2307 | if (err != 0) { |
2308 | return err; |
2309 | } |
2310 | |
2311 | /* |
2312 | * Drop ch_lock to acquire sk_lock and nx_ch_if_adv_lock due to lock |
2313 | * ordering requirement; check if the channel is closing once ch_lock |
2314 | * is reacquired and bail if so. |
2315 | */ |
2316 | lck_mtx_unlock(lck: &ch->ch_lock); |
2317 | SK_LOCK(); |
2318 | lck_rw_lock_exclusive(lck: &nx->nx_ch_if_adv_lock); |
2319 | lck_mtx_lock(lck: &ch->ch_lock); |
2320 | if (ch->ch_flags & CHANF_CLOSING) { |
2321 | err = ENXIO; |
2322 | goto done; |
2323 | } |
2324 | |
2325 | /* |
2326 | * if interface advisory reporting is enabled on the channel then |
2327 | * add the channel to the list of channels eligible for interface |
2328 | * advisory update on the nexus. If disabled, remove from the list. |
2329 | */ |
2330 | if (enable) { |
2331 | if ((ch->ch_flags & CHANF_IF_ADV) != 0) { |
2332 | ASSERT(err == 0); |
2333 | goto done; |
2334 | } |
2335 | bool enable_adv = STAILQ_EMPTY(&nx->nx_ch_if_adv_head); |
2336 | os_atomic_or(&ch->ch_flags, CHANF_IF_ADV, relaxed); |
2337 | STAILQ_INSERT_TAIL(&nx->nx_ch_if_adv_head, ch, ch_link_if_adv); |
2338 | if (enable_adv) { |
2339 | nx_netif_config_interface_advisory(nx, true); |
2340 | } |
2341 | ch_retain_locked(ch); /* for being in the IF ADV list */ |
2342 | } else { |
2343 | if ((ch->ch_flags & CHANF_IF_ADV) == 0) { |
2344 | ASSERT(err == 0); |
2345 | goto done; |
2346 | } |
2347 | STAILQ_REMOVE(&nx->nx_ch_if_adv_head, ch, kern_channel, |
2348 | ch_link_if_adv); |
2349 | os_atomic_andnot(&ch->ch_flags, CHANF_IF_ADV, relaxed); |
2350 | if (STAILQ_EMPTY(&nx->nx_ch_if_adv_head)) { |
2351 | nx_netif_config_interface_advisory(nx, false); |
2352 | } |
2353 | (void) ch_release_locked(ch); |
2354 | } |
2355 | |
2356 | done: |
2357 | lck_mtx_unlock(lck: &ch->ch_lock); |
2358 | lck_rw_done(lck: &nx->nx_ch_if_adv_lock); |
2359 | SK_UNLOCK(); |
2360 | lck_mtx_lock(lck: &ch->ch_lock); |
2361 | |
2362 | return err; |
2363 | } |
2364 | |
2365 | static int |
2366 | ch_set_lowat_thresh(struct kern_channel *ch, enum txrx t, |
2367 | struct sockopt *sopt) |
2368 | { |
2369 | struct ch_ev_thresh cet, *ocet; |
2370 | int err = 0; |
2371 | |
2372 | LCK_MTX_ASSERT(&ch->ch_lock, LCK_MTX_ASSERT_OWNED); |
2373 | |
2374 | if (sopt->sopt_val == USER_ADDR_NULL) { |
2375 | return EINVAL; |
2376 | } |
2377 | |
2378 | bzero(s: &cet, n: sizeof(cet)); |
2379 | err = sooptcopyin(sopt, &cet, len: sizeof(cet), minlen: sizeof(cet)); |
2380 | if (err == 0) { |
2381 | err = ch_ev_thresh_validate(nx: ch->ch_nexus, t, cet: &cet); |
2382 | if (err == 0) { |
2383 | if (t == NR_TX) { |
2384 | ocet = &ch->ch_info->cinfo_tx_lowat; |
2385 | } else { |
2386 | ocet = &ch->ch_info->cinfo_rx_lowat; |
2387 | } |
2388 | |
2389 | /* if there is no change, we're done */ |
2390 | if (ocet->cet_unit == cet.cet_unit && |
2391 | ocet->cet_value == cet.cet_value) { |
2392 | return 0; |
2393 | } |
2394 | |
2395 | *ocet = cet; |
2396 | |
2397 | for_rx_tx(t) { |
2398 | ring_id_t qfirst = ch->ch_first[t]; |
2399 | ring_id_t qlast = ch->ch_last[t]; |
2400 | uint32_t i; |
2401 | |
2402 | for (i = qfirst; i < qlast; i++) { |
2403 | struct __kern_channel_ring *kring = |
2404 | &NAKR(na: ch->ch_na, t)[i]; |
2405 | |
2406 | (void) kring->ckr_na_notify(kring, |
2407 | sopt->sopt_p, 0); |
2408 | } |
2409 | } |
2410 | |
2411 | (void) sooptcopyout(sopt, data: &cet, len: sizeof(cet)); |
2412 | } |
2413 | } |
2414 | |
2415 | return err; |
2416 | } |
2417 | |
2418 | static int |
2419 | ch_get_lowat_thresh(struct kern_channel *ch, enum txrx t, |
2420 | struct sockopt *sopt) |
2421 | { |
2422 | struct ch_ev_thresh cet; |
2423 | |
2424 | LCK_MTX_ASSERT(&ch->ch_lock, LCK_MTX_ASSERT_OWNED); |
2425 | |
2426 | if (sopt->sopt_val == USER_ADDR_NULL) { |
2427 | return EINVAL; |
2428 | } |
2429 | |
2430 | if (t == NR_TX) { |
2431 | cet = ch->ch_info->cinfo_tx_lowat; |
2432 | } else { |
2433 | cet = ch->ch_info->cinfo_rx_lowat; |
2434 | } |
2435 | |
2436 | return sooptcopyout(sopt, data: &cet, len: sizeof(cet)); |
2437 | } |
2438 | |
2439 | static struct kern_channel * |
2440 | ch_alloc(zalloc_flags_t how) |
2441 | { |
2442 | struct kern_channel *ch; |
2443 | |
2444 | ch = zalloc_flags(ch_zone, how | Z_ZERO); |
2445 | if (ch) { |
2446 | lck_mtx_init(lck: &ch->ch_lock, grp: &channel_lock_group, attr: &channel_lock_attr); |
2447 | ch->ch_info = zalloc_flags(ch_info_zone, how | Z_ZERO); |
2448 | } |
2449 | return ch; |
2450 | } |
2451 | |
2452 | static void |
2453 | ch_free(struct kern_channel *ch) |
2454 | { |
2455 | ASSERT(ch->ch_refcnt == 0); |
2456 | ASSERT(ch->ch_pp == NULL); |
2457 | ASSERT(!(ch->ch_flags & (CHANF_ATTACHED | CHANF_EXT_CONNECTED | |
2458 | CHANF_EXT_PRECONNECT | CHANF_IF_ADV))); |
2459 | lck_mtx_destroy(lck: &ch->ch_lock, grp: &channel_lock_group); |
2460 | SK_DF(SK_VERB_MEM, "ch 0x%llx FREE" , SK_KVA(ch)); |
2461 | ASSERT(ch->ch_info != NULL); |
2462 | zfree(ch_info_zone, ch->ch_info); |
2463 | ch->ch_info = NULL; |
2464 | zfree(ch_zone, ch); |
2465 | } |
2466 | |
2467 | void |
2468 | ch_retain_locked(struct kern_channel *ch) |
2469 | { |
2470 | SK_LOCK_ASSERT_HELD(); |
2471 | |
2472 | ch->ch_refcnt++; |
2473 | VERIFY(ch->ch_refcnt != 0); |
2474 | } |
2475 | |
2476 | void |
2477 | ch_retain(struct kern_channel *ch) |
2478 | { |
2479 | SK_LOCK(); |
2480 | ch_retain_locked(ch); |
2481 | SK_UNLOCK(); |
2482 | } |
2483 | |
2484 | int |
2485 | ch_release_locked(struct kern_channel *ch) |
2486 | { |
2487 | int oldref = ch->ch_refcnt; |
2488 | |
2489 | SK_LOCK_ASSERT_HELD(); |
2490 | |
2491 | VERIFY(ch->ch_refcnt != 0); |
2492 | if (--ch->ch_refcnt == 0) { |
2493 | ch_free(ch); |
2494 | } |
2495 | |
2496 | return oldref == 1; |
2497 | } |
2498 | |
2499 | int |
2500 | ch_release(struct kern_channel *ch) |
2501 | { |
2502 | int lastref; |
2503 | |
2504 | SK_LOCK(); |
2505 | lastref = ch_release_locked(ch); |
2506 | SK_UNLOCK(); |
2507 | |
2508 | return lastref; |
2509 | } |
2510 | |
2511 | void |
2512 | ch_dtor(void *arg) |
2513 | { |
2514 | struct kern_channel *ch = arg; |
2515 | |
2516 | SK_LOCK(); |
2517 | ch_close(ch, TRUE); |
2518 | (void) ch_release_locked(ch); |
2519 | SK_UNLOCK(); |
2520 | } |
2521 | |