1 | /* |
2 | * Copyright (c) 2000-2020 Apple Inc. All rights reserved. |
3 | * |
4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ |
5 | * |
6 | * This file contains Original Code and/or Modifications of Original Code |
7 | * as defined in and that are subject to the Apple Public Source License |
8 | * Version 2.0 (the 'License'). You may not use this file except in |
9 | * compliance with the License. The rights granted to you under the License |
10 | * may not be used to create, or enable the creation or redistribution of, |
11 | * unlawful or unlicensed copies of an Apple operating system, or to |
12 | * circumvent, violate, or enable the circumvention or violation of, any |
13 | * terms of an Apple operating system software license agreement. |
14 | * |
15 | * Please obtain a copy of the License at |
16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. |
17 | * |
18 | * The Original Code and all software distributed under the License are |
19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER |
20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, |
22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
23 | * Please see the License for the specific language governing rights and |
24 | * limitations under the License. |
25 | * |
26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ |
27 | */ |
28 | /* Copyright (c) 1995-2018 Apple, Inc. All Rights Reserved */ |
29 | |
30 | #include <sys/cdefs.h> |
31 | |
32 | #include <kern/assert.h> |
33 | #include <kern/ast.h> |
34 | #include <kern/clock.h> |
35 | #include <kern/cpu_data.h> |
36 | #include <kern/kern_types.h> |
37 | #include <kern/policy_internal.h> |
38 | #include <kern/processor.h> |
39 | #include <kern/sched_prim.h> /* for thread_exception_return */ |
40 | #include <kern/task.h> |
41 | #include <kern/thread.h> |
42 | #include <kern/thread_group.h> |
43 | #include <kern/zalloc.h> |
44 | #include <mach/kern_return.h> |
45 | #include <mach/mach_param.h> |
46 | #include <mach/mach_port.h> |
47 | #include <mach/mach_types.h> |
48 | #include <mach/mach_vm.h> |
49 | #include <mach/sync_policy.h> |
50 | #include <mach/task.h> |
51 | #include <mach/thread_act.h> /* for thread_resume */ |
52 | #include <mach/thread_policy.h> |
53 | #include <mach/thread_status.h> |
54 | #include <mach/vm_prot.h> |
55 | #include <mach/vm_statistics.h> |
56 | #include <machine/atomic.h> |
57 | #include <machine/machine_routines.h> |
58 | #include <machine/smp.h> |
59 | #include <vm/vm_map.h> |
60 | #include <vm/vm_protos.h> |
61 | |
62 | #include <sys/eventvar.h> |
63 | #include <sys/kdebug.h> |
64 | #include <sys/kernel.h> |
65 | #include <sys/lock.h> |
66 | #include <sys/param.h> |
67 | #include <sys/proc_info.h> /* for fill_procworkqueue */ |
68 | #include <sys/proc_internal.h> |
69 | #include <sys/pthread_shims.h> |
70 | #include <sys/resourcevar.h> |
71 | #include <sys/signalvar.h> |
72 | #include <sys/sysctl.h> |
73 | #include <sys/sysproto.h> |
74 | #include <sys/systm.h> |
75 | #include <sys/ulock.h> /* for ulock_owner_value_to_port_name */ |
76 | |
77 | #include <pthread/bsdthread_private.h> |
78 | #include <pthread/workqueue_syscalls.h> |
79 | #include <pthread/workqueue_internal.h> |
80 | #include <pthread/workqueue_trace.h> |
81 | |
82 | #include <os/log.h> |
83 | |
84 | static void workq_unpark_continue(void *uth, wait_result_t wr) __dead2; |
85 | static void workq_schedule_creator(proc_t p, struct workqueue *wq, |
86 | workq_kern_threadreq_flags_t flags); |
87 | |
88 | static bool workq_threadreq_admissible(struct workqueue *wq, struct uthread *uth, |
89 | workq_threadreq_t req); |
90 | |
91 | static uint32_t workq_constrained_allowance(struct workqueue *wq, |
92 | thread_qos_t at_qos, struct uthread *uth, bool may_start_timer); |
93 | |
94 | static bool _wq_cooperative_queue_refresh_best_req_qos(struct workqueue *wq); |
95 | |
96 | static bool workq_thread_is_busy(uint64_t cur_ts, |
97 | _Atomic uint64_t *lastblocked_tsp); |
98 | |
99 | static int workq_sysctl_handle_usecs SYSCTL_HANDLER_ARGS; |
100 | |
101 | static bool |
102 | workq_schedule_delayed_thread_creation(struct workqueue *wq, int flags); |
103 | |
104 | static inline void |
105 | workq_lock_spin(struct workqueue *wq); |
106 | |
107 | static inline void |
108 | workq_unlock(struct workqueue *wq); |
109 | |
110 | #pragma mark globals |
111 | |
112 | struct workq_usec_var { |
113 | uint32_t usecs; |
114 | uint64_t abstime; |
115 | }; |
116 | |
117 | #define WORKQ_SYSCTL_USECS(var, init) \ |
118 | static struct workq_usec_var var = { .usecs = init }; \ |
119 | SYSCTL_OID(_kern, OID_AUTO, var##_usecs, \ |
120 | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED, &var, 0, \ |
121 | workq_sysctl_handle_usecs, "I", "") |
122 | |
123 | static LCK_GRP_DECLARE(workq_lck_grp, "workq" ); |
124 | os_refgrp_decl(static, workq_refgrp, "workq" , NULL); |
125 | |
126 | static ZONE_DEFINE(workq_zone_workqueue, "workq.wq" , |
127 | sizeof(struct workqueue), ZC_NONE); |
128 | static ZONE_DEFINE(workq_zone_threadreq, "workq.threadreq" , |
129 | sizeof(struct workq_threadreq_s), ZC_CACHING); |
130 | |
131 | static struct mpsc_daemon_queue workq_deallocate_queue; |
132 | |
133 | WORKQ_SYSCTL_USECS(wq_stalled_window, WQ_STALLED_WINDOW_USECS); |
134 | WORKQ_SYSCTL_USECS(wq_reduce_pool_window, WQ_REDUCE_POOL_WINDOW_USECS); |
135 | WORKQ_SYSCTL_USECS(wq_max_timer_interval, WQ_MAX_TIMER_INTERVAL_USECS); |
136 | static uint32_t wq_max_threads = WORKQUEUE_MAXTHREADS; |
137 | static uint32_t wq_max_constrained_threads = WORKQUEUE_MAXTHREADS / 8; |
138 | static uint32_t wq_init_constrained_limit = 1; |
139 | static uint16_t wq_death_max_load; |
140 | static uint32_t wq_max_parallelism[WORKQ_NUM_QOS_BUCKETS]; |
141 | |
142 | /* |
143 | * This is not a hard limit but the max size we want to aim to hit across the |
144 | * entire cooperative pool. We can oversubscribe the pool due to non-cooperative |
145 | * workers and the max we will oversubscribe the pool by, is a total of |
146 | * wq_max_cooperative_threads * WORKQ_NUM_QOS_BUCKETS. |
147 | */ |
148 | static uint32_t wq_max_cooperative_threads; |
149 | |
150 | static inline uint32_t |
151 | wq_cooperative_queue_max_size(struct workqueue *wq) |
152 | { |
153 | return wq->wq_cooperative_queue_has_limited_max_size ? 1 : wq_max_cooperative_threads; |
154 | } |
155 | |
156 | #pragma mark sysctls |
157 | |
158 | static int |
159 | workq_sysctl_handle_usecs SYSCTL_HANDLER_ARGS |
160 | { |
161 | #pragma unused(arg2) |
162 | struct workq_usec_var *v = arg1; |
163 | int error = sysctl_handle_int(oidp, arg1: &v->usecs, arg2: 0, req); |
164 | if (error || !req->newptr) { |
165 | return error; |
166 | } |
167 | clock_interval_to_absolutetime_interval(interval: v->usecs, NSEC_PER_USEC, |
168 | result: &v->abstime); |
169 | return 0; |
170 | } |
171 | |
172 | SYSCTL_INT(_kern, OID_AUTO, wq_max_threads, CTLFLAG_RW | CTLFLAG_LOCKED, |
173 | &wq_max_threads, 0, "" ); |
174 | |
175 | SYSCTL_INT(_kern, OID_AUTO, wq_max_constrained_threads, CTLFLAG_RW | CTLFLAG_LOCKED, |
176 | &wq_max_constrained_threads, 0, "" ); |
177 | |
178 | static int |
179 | wq_limit_cooperative_threads_for_proc SYSCTL_HANDLER_ARGS |
180 | { |
181 | #pragma unused(arg1, arg2, oidp) |
182 | int input_pool_size = 0; |
183 | int changed; |
184 | int error = 0; |
185 | |
186 | error = sysctl_io_number(req, bigValue: 0, valueSize: sizeof(int), pValue: &input_pool_size, changed: &changed); |
187 | if (error || !changed) { |
188 | return error; |
189 | } |
190 | |
191 | #define WQ_COOPERATIVE_POOL_SIZE_DEFAULT 0 |
192 | #define WQ_COOPERATIVE_POOL_SIZE_STRICT_PER_QOS -1 |
193 | /* Not available currently, but sysctl interface is designed to allow these |
194 | * extra parameters: |
195 | * WQ_COOPERATIVE_POOL_SIZE_STRICT : -2 (across all bucket) |
196 | * WQ_COOPERATIVE_POOL_SIZE_CUSTOM : [1, 512] |
197 | */ |
198 | |
199 | if (input_pool_size != WQ_COOPERATIVE_POOL_SIZE_DEFAULT |
200 | && input_pool_size != WQ_COOPERATIVE_POOL_SIZE_STRICT_PER_QOS) { |
201 | error = EINVAL; |
202 | goto out; |
203 | } |
204 | |
205 | proc_t p = req->p; |
206 | struct workqueue *wq = proc_get_wqptr(p); |
207 | |
208 | if (wq != NULL) { |
209 | workq_lock_spin(wq); |
210 | if (wq->wq_reqcount > 0 || wq->wq_nthreads > 0) { |
211 | // Hackily enforce that the workqueue is still new (no requests or |
212 | // threads) |
213 | error = ENOTSUP; |
214 | } else { |
215 | wq->wq_cooperative_queue_has_limited_max_size = (input_pool_size == WQ_COOPERATIVE_POOL_SIZE_STRICT_PER_QOS); |
216 | } |
217 | workq_unlock(wq); |
218 | } else { |
219 | /* This process has no workqueue, calling this syctl makes no sense */ |
220 | return ENOTSUP; |
221 | } |
222 | |
223 | out: |
224 | return error; |
225 | } |
226 | |
227 | SYSCTL_PROC(_kern, OID_AUTO, wq_limit_cooperative_threads, |
228 | CTLFLAG_ANYBODY | CTLFLAG_MASKED | CTLFLAG_WR | CTLFLAG_LOCKED | CTLTYPE_INT, 0, 0, |
229 | wq_limit_cooperative_threads_for_proc, |
230 | "I" , "Modify the max pool size of the cooperative pool" ); |
231 | |
232 | #pragma mark p_wqptr |
233 | |
234 | #define WQPTR_IS_INITING_VALUE ((struct workqueue *)~(uintptr_t)0) |
235 | |
236 | static struct workqueue * |
237 | proc_get_wqptr_fast(struct proc *p) |
238 | { |
239 | return os_atomic_load(&p->p_wqptr, relaxed); |
240 | } |
241 | |
242 | struct workqueue * |
243 | proc_get_wqptr(struct proc *p) |
244 | { |
245 | struct workqueue *wq = proc_get_wqptr_fast(p); |
246 | return wq == WQPTR_IS_INITING_VALUE ? NULL : wq; |
247 | } |
248 | |
249 | static void |
250 | proc_set_wqptr(struct proc *p, struct workqueue *wq) |
251 | { |
252 | wq = os_atomic_xchg(&p->p_wqptr, wq, release); |
253 | if (wq == WQPTR_IS_INITING_VALUE) { |
254 | proc_lock(p); |
255 | thread_wakeup(&p->p_wqptr); |
256 | proc_unlock(p); |
257 | } |
258 | } |
259 | |
260 | static bool |
261 | proc_init_wqptr_or_wait(struct proc *p) |
262 | { |
263 | struct workqueue *wq; |
264 | |
265 | proc_lock(p); |
266 | wq = os_atomic_load(&p->p_wqptr, relaxed); |
267 | |
268 | if (wq == NULL) { |
269 | os_atomic_store(&p->p_wqptr, WQPTR_IS_INITING_VALUE, relaxed); |
270 | proc_unlock(p); |
271 | return true; |
272 | } |
273 | |
274 | if (wq == WQPTR_IS_INITING_VALUE) { |
275 | assert_wait(event: &p->p_wqptr, THREAD_UNINT); |
276 | proc_unlock(p); |
277 | thread_block(THREAD_CONTINUE_NULL); |
278 | } else { |
279 | proc_unlock(p); |
280 | } |
281 | return false; |
282 | } |
283 | |
284 | static inline event_t |
285 | workq_parked_wait_event(struct uthread *uth) |
286 | { |
287 | return (event_t)&uth->uu_workq_stackaddr; |
288 | } |
289 | |
290 | static inline void |
291 | workq_thread_wakeup(struct uthread *uth) |
292 | { |
293 | thread_wakeup_thread(event: workq_parked_wait_event(uth), thread: get_machthread(uth)); |
294 | } |
295 | |
296 | #pragma mark wq_thactive |
297 | |
298 | #if defined(__LP64__) |
299 | // Layout is: |
300 | // 127 - 115 : 13 bits of zeroes |
301 | // 114 - 112 : best QoS among all pending constrained requests |
302 | // 111 - 0 : MGR, AUI, UI, IN, DF, UT, BG+MT buckets every 16 bits |
303 | #define WQ_THACTIVE_BUCKET_WIDTH 16 |
304 | #define WQ_THACTIVE_QOS_SHIFT (7 * WQ_THACTIVE_BUCKET_WIDTH) |
305 | #else |
306 | // Layout is: |
307 | // 63 - 61 : best QoS among all pending constrained requests |
308 | // 60 : Manager bucket (0 or 1) |
309 | // 59 - 0 : AUI, UI, IN, DF, UT, BG+MT buckets every 10 bits |
310 | #define WQ_THACTIVE_BUCKET_WIDTH 10 |
311 | #define WQ_THACTIVE_QOS_SHIFT (6 * WQ_THACTIVE_BUCKET_WIDTH + 1) |
312 | #endif |
313 | #define WQ_THACTIVE_BUCKET_MASK ((1U << WQ_THACTIVE_BUCKET_WIDTH) - 1) |
314 | #define WQ_THACTIVE_BUCKET_HALF (1U << (WQ_THACTIVE_BUCKET_WIDTH - 1)) |
315 | |
316 | static_assert(sizeof(wq_thactive_t) * CHAR_BIT - WQ_THACTIVE_QOS_SHIFT >= 3, |
317 | "Make sure we have space to encode a QoS" ); |
318 | |
319 | static inline wq_thactive_t |
320 | _wq_thactive(struct workqueue *wq) |
321 | { |
322 | return os_atomic_load_wide(&wq->wq_thactive, relaxed); |
323 | } |
324 | |
325 | static inline uint8_t |
326 | _wq_bucket(thread_qos_t qos) |
327 | { |
328 | // Map both BG and MT to the same bucket by over-shifting down and |
329 | // clamping MT and BG together. |
330 | switch (qos) { |
331 | case THREAD_QOS_MAINTENANCE: |
332 | return 0; |
333 | default: |
334 | return qos - 2; |
335 | } |
336 | } |
337 | |
338 | #define WQ_THACTIVE_BEST_CONSTRAINED_REQ_QOS(tha) \ |
339 | ((thread_qos_t)((tha) >> WQ_THACTIVE_QOS_SHIFT)) |
340 | |
341 | static inline thread_qos_t |
342 | _wq_thactive_best_constrained_req_qos(struct workqueue *wq) |
343 | { |
344 | // Avoid expensive atomic operations: the three bits we're loading are in |
345 | // a single byte, and always updated under the workqueue lock |
346 | wq_thactive_t v = *(wq_thactive_t *)&wq->wq_thactive; |
347 | return WQ_THACTIVE_BEST_CONSTRAINED_REQ_QOS(v); |
348 | } |
349 | |
350 | static void |
351 | _wq_thactive_refresh_best_constrained_req_qos(struct workqueue *wq) |
352 | { |
353 | thread_qos_t old_qos, new_qos; |
354 | workq_threadreq_t req; |
355 | |
356 | req = priority_queue_max(&wq->wq_constrained_queue, |
357 | struct workq_threadreq_s, tr_entry); |
358 | new_qos = req ? req->tr_qos : THREAD_QOS_UNSPECIFIED; |
359 | old_qos = _wq_thactive_best_constrained_req_qos(wq); |
360 | if (old_qos != new_qos) { |
361 | long delta = (long)new_qos - (long)old_qos; |
362 | wq_thactive_t v = (wq_thactive_t)delta << WQ_THACTIVE_QOS_SHIFT; |
363 | /* |
364 | * We can do an atomic add relative to the initial load because updates |
365 | * to this qos are always serialized under the workqueue lock. |
366 | */ |
367 | v = os_atomic_add(&wq->wq_thactive, v, relaxed); |
368 | #ifdef __LP64__ |
369 | WQ_TRACE_WQ(TRACE_wq_thactive_update, wq, (uint64_t)v, |
370 | (uint64_t)(v >> 64), 0); |
371 | #else |
372 | WQ_TRACE_WQ(TRACE_wq_thactive_update, wq, v, 0, 0); |
373 | #endif |
374 | } |
375 | } |
376 | |
377 | static inline wq_thactive_t |
378 | _wq_thactive_offset_for_qos(thread_qos_t qos) |
379 | { |
380 | uint8_t bucket = _wq_bucket(qos); |
381 | __builtin_assume(bucket < WORKQ_NUM_BUCKETS); |
382 | return (wq_thactive_t)1 << (bucket * WQ_THACTIVE_BUCKET_WIDTH); |
383 | } |
384 | |
385 | static inline wq_thactive_t |
386 | _wq_thactive_inc(struct workqueue *wq, thread_qos_t qos) |
387 | { |
388 | wq_thactive_t v = _wq_thactive_offset_for_qos(qos); |
389 | return os_atomic_add_orig(&wq->wq_thactive, v, relaxed); |
390 | } |
391 | |
392 | static inline wq_thactive_t |
393 | _wq_thactive_dec(struct workqueue *wq, thread_qos_t qos) |
394 | { |
395 | wq_thactive_t v = _wq_thactive_offset_for_qos(qos); |
396 | return os_atomic_sub_orig(&wq->wq_thactive, v, relaxed); |
397 | } |
398 | |
399 | static inline void |
400 | _wq_thactive_move(struct workqueue *wq, |
401 | thread_qos_t old_qos, thread_qos_t new_qos) |
402 | { |
403 | wq_thactive_t v = _wq_thactive_offset_for_qos(qos: new_qos) - |
404 | _wq_thactive_offset_for_qos(qos: old_qos); |
405 | os_atomic_add(&wq->wq_thactive, v, relaxed); |
406 | wq->wq_thscheduled_count[_wq_bucket(qos: old_qos)]--; |
407 | wq->wq_thscheduled_count[_wq_bucket(qos: new_qos)]++; |
408 | } |
409 | |
410 | static inline uint32_t |
411 | _wq_thactive_aggregate_downto_qos(struct workqueue *wq, wq_thactive_t v, |
412 | thread_qos_t qos, uint32_t *busycount, uint32_t *max_busycount) |
413 | { |
414 | uint32_t count = 0, active; |
415 | uint64_t curtime; |
416 | |
417 | assert(WORKQ_THREAD_QOS_MIN <= qos && qos <= WORKQ_THREAD_QOS_MAX); |
418 | |
419 | if (busycount) { |
420 | curtime = mach_absolute_time(); |
421 | *busycount = 0; |
422 | } |
423 | if (max_busycount) { |
424 | *max_busycount = THREAD_QOS_LAST - qos; |
425 | } |
426 | |
427 | uint8_t i = _wq_bucket(qos); |
428 | v >>= i * WQ_THACTIVE_BUCKET_WIDTH; |
429 | for (; i < WORKQ_NUM_QOS_BUCKETS; i++, v >>= WQ_THACTIVE_BUCKET_WIDTH) { |
430 | active = v & WQ_THACTIVE_BUCKET_MASK; |
431 | count += active; |
432 | |
433 | if (busycount && wq->wq_thscheduled_count[i] > active) { |
434 | if (workq_thread_is_busy(cur_ts: curtime, lastblocked_tsp: &wq->wq_lastblocked_ts[i])) { |
435 | /* |
436 | * We only consider the last blocked thread for a given bucket |
437 | * as busy because we don't want to take the list lock in each |
438 | * sched callback. However this is an approximation that could |
439 | * contribute to thread creation storms. |
440 | */ |
441 | (*busycount)++; |
442 | } |
443 | } |
444 | } |
445 | |
446 | return count; |
447 | } |
448 | |
449 | /* The input qos here should be the requested QoS of the thread, not accounting |
450 | * for any overrides */ |
451 | static inline void |
452 | _wq_cooperative_queue_scheduled_count_dec(struct workqueue *wq, thread_qos_t qos) |
453 | { |
454 | __assert_only uint8_t old_scheduled_count = wq->wq_cooperative_queue_scheduled_count[_wq_bucket(qos)]--; |
455 | assert(old_scheduled_count > 0); |
456 | } |
457 | |
458 | /* The input qos here should be the requested QoS of the thread, not accounting |
459 | * for any overrides */ |
460 | static inline void |
461 | _wq_cooperative_queue_scheduled_count_inc(struct workqueue *wq, thread_qos_t qos) |
462 | { |
463 | __assert_only uint8_t old_scheduled_count = wq->wq_cooperative_queue_scheduled_count[_wq_bucket(qos)]++; |
464 | assert(old_scheduled_count < UINT8_MAX); |
465 | } |
466 | |
467 | #pragma mark wq_flags |
468 | |
469 | static inline uint32_t |
470 | _wq_flags(struct workqueue *wq) |
471 | { |
472 | return os_atomic_load(&wq->wq_flags, relaxed); |
473 | } |
474 | |
475 | static inline bool |
476 | _wq_exiting(struct workqueue *wq) |
477 | { |
478 | return _wq_flags(wq) & WQ_EXITING; |
479 | } |
480 | |
481 | bool |
482 | workq_is_exiting(struct proc *p) |
483 | { |
484 | struct workqueue *wq = proc_get_wqptr(p); |
485 | return !wq || _wq_exiting(wq); |
486 | } |
487 | |
488 | |
489 | #pragma mark workqueue lock |
490 | |
491 | static bool |
492 | workq_lock_is_acquired_kdp(struct workqueue *wq) |
493 | { |
494 | return kdp_lck_ticket_is_acquired(tlock: &wq->wq_lock); |
495 | } |
496 | |
497 | static inline void |
498 | workq_lock_spin(struct workqueue *wq) |
499 | { |
500 | lck_ticket_lock(tlock: &wq->wq_lock, grp: &workq_lck_grp); |
501 | } |
502 | |
503 | static inline void |
504 | workq_lock_held(struct workqueue *wq) |
505 | { |
506 | LCK_TICKET_ASSERT_OWNED(&wq->wq_lock); |
507 | } |
508 | |
509 | static inline bool |
510 | workq_lock_try(struct workqueue *wq) |
511 | { |
512 | return lck_ticket_lock_try(tlock: &wq->wq_lock, grp: &workq_lck_grp); |
513 | } |
514 | |
515 | static inline void |
516 | workq_unlock(struct workqueue *wq) |
517 | { |
518 | lck_ticket_unlock(tlock: &wq->wq_lock); |
519 | } |
520 | |
521 | #pragma mark idle thread lists |
522 | |
523 | #define WORKQ_POLICY_INIT(qos) \ |
524 | (struct uu_workq_policy){ .qos_req = qos, .qos_bucket = qos } |
525 | |
526 | static inline thread_qos_t |
527 | workq_pri_bucket(struct uu_workq_policy req) |
528 | { |
529 | return MAX(MAX(req.qos_req, req.qos_max), req.qos_override); |
530 | } |
531 | |
532 | static inline thread_qos_t |
533 | workq_pri_override(struct uu_workq_policy req) |
534 | { |
535 | return MAX(workq_pri_bucket(req), req.qos_bucket); |
536 | } |
537 | |
538 | static inline bool |
539 | workq_thread_needs_params_change(workq_threadreq_t req, struct uthread *uth) |
540 | { |
541 | workq_threadreq_param_t cur_trp, req_trp = { }; |
542 | |
543 | cur_trp.trp_value = uth->uu_save.uus_workq_park_data.workloop_params; |
544 | if (req->tr_flags & WORKQ_TR_FLAG_WL_PARAMS) { |
545 | req_trp = kqueue_threadreq_workloop_param(req); |
546 | } |
547 | |
548 | /* |
549 | * CPU percent flags are handled separately to policy changes, so ignore |
550 | * them for all of these checks. |
551 | */ |
552 | uint16_t cur_flags = (cur_trp.trp_flags & ~TRP_CPUPERCENT); |
553 | uint16_t req_flags = (req_trp.trp_flags & ~TRP_CPUPERCENT); |
554 | |
555 | if (!req_flags && !cur_flags) { |
556 | return false; |
557 | } |
558 | |
559 | if (req_flags != cur_flags) { |
560 | return true; |
561 | } |
562 | |
563 | if ((req_flags & TRP_PRIORITY) && req_trp.trp_pri != cur_trp.trp_pri) { |
564 | return true; |
565 | } |
566 | |
567 | if ((req_flags & TRP_POLICY) && req_trp.trp_pol != cur_trp.trp_pol) { |
568 | return true; |
569 | } |
570 | |
571 | return false; |
572 | } |
573 | |
574 | static inline bool |
575 | workq_thread_needs_priority_change(workq_threadreq_t req, struct uthread *uth) |
576 | { |
577 | if (workq_thread_needs_params_change(req, uth)) { |
578 | return true; |
579 | } |
580 | |
581 | if (req->tr_qos != workq_pri_override(req: uth->uu_workq_pri)) { |
582 | return true; |
583 | } |
584 | |
585 | #if CONFIG_PREADOPT_TG |
586 | thread_group_qos_t tg = kqr_preadopt_thread_group(req); |
587 | if (KQWL_HAS_VALID_PREADOPTED_TG(tg)) { |
588 | /* |
589 | * Ideally, we'd add check here to see if thread's preadopt TG is same |
590 | * as the thread requests's thread group and short circuit if that is |
591 | * the case. But in the interest of keeping the code clean and not |
592 | * taking the thread lock here, we're going to skip this. We will |
593 | * eventually shortcircuit once we try to set the preadoption thread |
594 | * group on the thread. |
595 | */ |
596 | return true; |
597 | } |
598 | #endif |
599 | |
600 | return false; |
601 | } |
602 | |
603 | /* Input thread must be self. Called during self override, resetting overrides |
604 | * or while processing kevents |
605 | * |
606 | * Called with workq lock held. Sometimes also the thread mutex |
607 | */ |
608 | static void |
609 | workq_thread_update_bucket(proc_t p, struct workqueue *wq, struct uthread *uth, |
610 | struct uu_workq_policy old_pri, struct uu_workq_policy new_pri, |
611 | bool force_run) |
612 | { |
613 | assert(uth == current_uthread()); |
614 | |
615 | thread_qos_t old_bucket = old_pri.qos_bucket; |
616 | thread_qos_t new_bucket = workq_pri_bucket(req: new_pri); |
617 | |
618 | if (old_bucket != new_bucket) { |
619 | _wq_thactive_move(wq, old_qos: old_bucket, new_qos: new_bucket); |
620 | } |
621 | |
622 | new_pri.qos_bucket = new_bucket; |
623 | uth->uu_workq_pri = new_pri; |
624 | |
625 | if (old_pri.qos_override != new_pri.qos_override) { |
626 | thread_set_workq_override(thread: get_machthread(uth), qos: new_pri.qos_override); |
627 | } |
628 | |
629 | if (wq->wq_reqcount && (old_bucket > new_bucket || force_run)) { |
630 | int flags = WORKQ_THREADREQ_CAN_CREATE_THREADS; |
631 | if (old_bucket > new_bucket) { |
632 | /* |
633 | * When lowering our bucket, we may unblock a thread request, |
634 | * but we can't drop our priority before we have evaluated |
635 | * whether this is the case, and if we ever drop the workqueue lock |
636 | * that would cause a priority inversion. |
637 | * |
638 | * We hence have to disallow thread creation in that case. |
639 | */ |
640 | flags = 0; |
641 | } |
642 | workq_schedule_creator(p, wq, flags); |
643 | } |
644 | } |
645 | |
646 | /* |
647 | * Sets/resets the cpu percent limits on the current thread. We can't set |
648 | * these limits from outside of the current thread, so this function needs |
649 | * to be called when we're executing on the intended |
650 | */ |
651 | static void |
652 | workq_thread_reset_cpupercent(workq_threadreq_t req, struct uthread *uth) |
653 | { |
654 | assert(uth == current_uthread()); |
655 | workq_threadreq_param_t trp = { }; |
656 | |
657 | if (req && (req->tr_flags & WORKQ_TR_FLAG_WL_PARAMS)) { |
658 | trp = kqueue_threadreq_workloop_param(req); |
659 | } |
660 | |
661 | if (uth->uu_workq_flags & UT_WORKQ_CPUPERCENT) { |
662 | /* |
663 | * Going through disable when we have an existing CPU percent limit |
664 | * set will force the ledger to refill the token bucket of the current |
665 | * thread. Removing any penalty applied by previous thread use. |
666 | */ |
667 | thread_set_cpulimit(THREAD_CPULIMIT_DISABLE, percentage: 0, interval_ns: 0); |
668 | uth->uu_workq_flags &= ~UT_WORKQ_CPUPERCENT; |
669 | } |
670 | |
671 | if (trp.trp_flags & TRP_CPUPERCENT) { |
672 | thread_set_cpulimit(THREAD_CPULIMIT_BLOCK, percentage: trp.trp_cpupercent, |
673 | interval_ns: (uint64_t)trp.trp_refillms * NSEC_PER_SEC); |
674 | uth->uu_workq_flags |= UT_WORKQ_CPUPERCENT; |
675 | } |
676 | } |
677 | |
678 | /* Called with the workq lock held */ |
679 | static void |
680 | workq_thread_reset_pri(struct workqueue *wq, struct uthread *uth, |
681 | workq_threadreq_t req, bool unpark) |
682 | { |
683 | thread_t th = get_machthread(uth); |
684 | thread_qos_t qos = req ? req->tr_qos : WORKQ_THREAD_QOS_CLEANUP; |
685 | workq_threadreq_param_t trp = { }; |
686 | int priority = 31; |
687 | int policy = POLICY_TIMESHARE; |
688 | |
689 | if (req && (req->tr_flags & WORKQ_TR_FLAG_WL_PARAMS)) { |
690 | trp = kqueue_threadreq_workloop_param(req); |
691 | } |
692 | |
693 | uth->uu_workq_pri = WORKQ_POLICY_INIT(qos); |
694 | uth->uu_workq_flags &= ~UT_WORKQ_OUTSIDE_QOS; |
695 | |
696 | if (unpark) { |
697 | uth->uu_save.uus_workq_park_data.workloop_params = trp.trp_value; |
698 | // qos sent out to userspace (may differ from uu_workq_pri on param threads) |
699 | uth->uu_save.uus_workq_park_data.qos = qos; |
700 | } |
701 | |
702 | if (qos == WORKQ_THREAD_QOS_MANAGER) { |
703 | uint32_t mgr_pri = wq->wq_event_manager_priority; |
704 | assert(trp.trp_value == 0); // manager qos and thread policy don't mix |
705 | |
706 | if (_pthread_priority_has_sched_pri(pp: mgr_pri)) { |
707 | mgr_pri &= _PTHREAD_PRIORITY_SCHED_PRI_MASK; |
708 | thread_set_workq_pri(thread: th, THREAD_QOS_UNSPECIFIED, priority: mgr_pri, |
709 | POLICY_TIMESHARE); |
710 | return; |
711 | } |
712 | |
713 | qos = _pthread_priority_thread_qos(pp: mgr_pri); |
714 | } else { |
715 | if (trp.trp_flags & TRP_PRIORITY) { |
716 | qos = THREAD_QOS_UNSPECIFIED; |
717 | priority = trp.trp_pri; |
718 | uth->uu_workq_flags |= UT_WORKQ_OUTSIDE_QOS; |
719 | } |
720 | |
721 | if (trp.trp_flags & TRP_POLICY) { |
722 | policy = trp.trp_pol; |
723 | } |
724 | } |
725 | |
726 | #if CONFIG_PREADOPT_TG |
727 | if (req && (req->tr_flags & WORKQ_TR_FLAG_WORKLOOP)) { |
728 | /* |
729 | * For kqwl permanently configured with a thread group, we can safely borrow |
730 | * +1 ref from kqwl_preadopt_tg. A thread then takes additional +1 ref |
731 | * for itself via thread_set_preadopt_thread_group. |
732 | * |
733 | * In all other cases, we cannot safely read and borrow the reference from the kqwl |
734 | * since it can disappear from under us at any time due to the max-ing logic in |
735 | * kqueue_set_preadopted_thread_group. |
736 | * |
737 | * As such, we do the following dance: |
738 | * |
739 | * 1) cmpxchng and steal the kqwl's preadopt thread group and leave |
740 | * behind with (NULL + QoS). At this point, we have the reference |
741 | * to the thread group from the kqwl. |
742 | * 2) Have the thread set the preadoption thread group on itself. |
743 | * 3) cmpxchng from (NULL + QoS) which we set earlier in (1), back to |
744 | * thread_group + QoS. ie we try to give the reference back to the kqwl. |
745 | * If we fail, that's because a higher QoS thread group was set on the |
746 | * kqwl in kqueue_set_preadopted_thread_group in which case, we need to |
747 | * go back to (1). |
748 | */ |
749 | |
750 | _Atomic(struct thread_group *) * tg_loc = kqr_preadopt_thread_group_addr(req); |
751 | |
752 | thread_group_qos_t old_tg, new_tg; |
753 | int ret = 0; |
754 | again: |
755 | ret = os_atomic_rmw_loop(tg_loc, old_tg, new_tg, relaxed, { |
756 | if ((!KQWL_HAS_VALID_PREADOPTED_TG(old_tg)) || |
757 | KQWL_HAS_PERMANENT_PREADOPTED_TG(old_tg)) { |
758 | os_atomic_rmw_loop_give_up(break); |
759 | } |
760 | |
761 | /* |
762 | * Leave the QoS behind - kqueue_set_preadopted_thread_group will |
763 | * only modify it if there is a higher QoS thread group to attach |
764 | */ |
765 | new_tg = (thread_group_qos_t) ((uintptr_t) old_tg & KQWL_PREADOPT_TG_QOS_MASK); |
766 | }); |
767 | |
768 | if (ret) { |
769 | /* |
770 | * We successfully took the ref from the kqwl so set it on the |
771 | * thread now |
772 | */ |
773 | thread_set_preadopt_thread_group(t: th, KQWL_GET_PREADOPTED_TG(old_tg)); |
774 | |
775 | thread_group_qos_t thread_group_to_expect = new_tg; |
776 | thread_group_qos_t thread_group_to_set = old_tg; |
777 | |
778 | os_atomic_rmw_loop(tg_loc, old_tg, new_tg, relaxed, { |
779 | if (old_tg != thread_group_to_expect) { |
780 | /* |
781 | * There was an intervening write to the kqwl_preadopt_tg, |
782 | * and it has a higher QoS than what we are working with |
783 | * here. Abandon our current adopted thread group and redo |
784 | * the full dance |
785 | */ |
786 | thread_group_deallocate_safe(KQWL_GET_PREADOPTED_TG(thread_group_to_set)); |
787 | os_atomic_rmw_loop_give_up(goto again); |
788 | } |
789 | |
790 | new_tg = thread_group_to_set; |
791 | }); |
792 | } else { |
793 | if (KQWL_HAS_PERMANENT_PREADOPTED_TG(old_tg)) { |
794 | thread_set_preadopt_thread_group(t: th, KQWL_GET_PREADOPTED_TG(old_tg)); |
795 | } else { |
796 | /* Nothing valid on the kqwl, just clear what's on the thread */ |
797 | thread_set_preadopt_thread_group(t: th, NULL); |
798 | } |
799 | } |
800 | } else { |
801 | /* Not even a kqwl, clear what's on the thread */ |
802 | thread_set_preadopt_thread_group(t: th, NULL); |
803 | } |
804 | #endif |
805 | thread_set_workq_pri(thread: th, qos, priority, policy); |
806 | } |
807 | |
808 | /* |
809 | * Called by kevent with the NOTE_WL_THREAD_REQUEST knote lock held, |
810 | * every time a servicer is being told about a new max QoS. |
811 | */ |
812 | void |
813 | workq_thread_set_max_qos(struct proc *p, workq_threadreq_t kqr) |
814 | { |
815 | struct uu_workq_policy old_pri, new_pri; |
816 | struct uthread *uth = current_uthread(); |
817 | struct workqueue *wq = proc_get_wqptr_fast(p); |
818 | thread_qos_t qos = kqr->tr_kq_qos_index; |
819 | |
820 | if (uth->uu_workq_pri.qos_max == qos) { |
821 | return; |
822 | } |
823 | |
824 | workq_lock_spin(wq); |
825 | old_pri = new_pri = uth->uu_workq_pri; |
826 | new_pri.qos_max = qos; |
827 | workq_thread_update_bucket(p, wq, uth, old_pri, new_pri, false); |
828 | workq_unlock(wq); |
829 | } |
830 | |
831 | #pragma mark idle threads accounting and handling |
832 | |
833 | static inline struct uthread * |
834 | workq_oldest_killable_idle_thread(struct workqueue *wq) |
835 | { |
836 | struct uthread *uth = TAILQ_LAST(&wq->wq_thidlelist, workq_uthread_head); |
837 | |
838 | if (uth && !uth->uu_save.uus_workq_park_data.has_stack) { |
839 | uth = TAILQ_PREV(uth, workq_uthread_head, uu_workq_entry); |
840 | if (uth) { |
841 | assert(uth->uu_save.uus_workq_park_data.has_stack); |
842 | } |
843 | } |
844 | return uth; |
845 | } |
846 | |
847 | static inline uint64_t |
848 | workq_kill_delay_for_idle_thread(struct workqueue *wq) |
849 | { |
850 | uint64_t delay = wq_reduce_pool_window.abstime; |
851 | uint16_t idle = wq->wq_thidlecount; |
852 | |
853 | /* |
854 | * If we have less than wq_death_max_load threads, have a 5s timer. |
855 | * |
856 | * For the next wq_max_constrained_threads ones, decay linearly from |
857 | * from 5s to 50ms. |
858 | */ |
859 | if (idle <= wq_death_max_load) { |
860 | return delay; |
861 | } |
862 | |
863 | if (wq_max_constrained_threads > idle - wq_death_max_load) { |
864 | delay *= (wq_max_constrained_threads - (idle - wq_death_max_load)); |
865 | } |
866 | return delay / wq_max_constrained_threads; |
867 | } |
868 | |
869 | static inline bool |
870 | workq_should_kill_idle_thread(struct workqueue *wq, struct uthread *uth, |
871 | uint64_t now) |
872 | { |
873 | uint64_t delay = workq_kill_delay_for_idle_thread(wq); |
874 | return now - uth->uu_save.uus_workq_park_data.idle_stamp > delay; |
875 | } |
876 | |
877 | static void |
878 | workq_death_call_schedule(struct workqueue *wq, uint64_t deadline) |
879 | { |
880 | uint32_t wq_flags = os_atomic_load(&wq->wq_flags, relaxed); |
881 | |
882 | if (wq_flags & (WQ_EXITING | WQ_DEATH_CALL_SCHEDULED)) { |
883 | return; |
884 | } |
885 | os_atomic_or(&wq->wq_flags, WQ_DEATH_CALL_SCHEDULED, relaxed); |
886 | |
887 | WQ_TRACE_WQ(TRACE_wq_death_call | DBG_FUNC_NONE, wq, 1, 0, 0); |
888 | |
889 | /* |
890 | * <rdar://problem/13139182> Due to how long term timers work, the leeway |
891 | * can't be too short, so use 500ms which is long enough that we will not |
892 | * wake up the CPU for killing threads, but short enough that it doesn't |
893 | * fall into long-term timer list shenanigans. |
894 | */ |
895 | thread_call_enter_delayed_with_leeway(call: wq->wq_death_call, NULL, deadline, |
896 | leeway: wq_reduce_pool_window.abstime / 10, |
897 | THREAD_CALL_DELAY_LEEWAY | THREAD_CALL_DELAY_USER_BACKGROUND); |
898 | } |
899 | |
900 | /* |
901 | * `decrement` is set to the number of threads that are no longer dying: |
902 | * - because they have been resuscitated just in time (workq_pop_idle_thread) |
903 | * - or have been killed (workq_thread_terminate). |
904 | */ |
905 | static void |
906 | workq_death_policy_evaluate(struct workqueue *wq, uint16_t decrement) |
907 | { |
908 | struct uthread *uth; |
909 | |
910 | assert(wq->wq_thdying_count >= decrement); |
911 | if ((wq->wq_thdying_count -= decrement) > 0) { |
912 | return; |
913 | } |
914 | |
915 | if (wq->wq_thidlecount <= 1) { |
916 | return; |
917 | } |
918 | |
919 | if ((uth = workq_oldest_killable_idle_thread(wq)) == NULL) { |
920 | return; |
921 | } |
922 | |
923 | uint64_t now = mach_absolute_time(); |
924 | uint64_t delay = workq_kill_delay_for_idle_thread(wq); |
925 | |
926 | if (now - uth->uu_save.uus_workq_park_data.idle_stamp > delay) { |
927 | WQ_TRACE_WQ(TRACE_wq_thread_terminate | DBG_FUNC_START, |
928 | wq, wq->wq_thidlecount, 0, 0); |
929 | wq->wq_thdying_count++; |
930 | uth->uu_workq_flags |= UT_WORKQ_DYING; |
931 | if ((uth->uu_workq_flags & UT_WORKQ_IDLE_CLEANUP) == 0) { |
932 | workq_thread_wakeup(uth); |
933 | } |
934 | return; |
935 | } |
936 | |
937 | workq_death_call_schedule(wq, |
938 | deadline: uth->uu_save.uus_workq_park_data.idle_stamp + delay); |
939 | } |
940 | |
941 | void |
942 | workq_thread_terminate(struct proc *p, struct uthread *uth) |
943 | { |
944 | struct workqueue *wq = proc_get_wqptr_fast(p); |
945 | |
946 | workq_lock_spin(wq); |
947 | TAILQ_REMOVE(&wq->wq_thrunlist, uth, uu_workq_entry); |
948 | if (uth->uu_workq_flags & UT_WORKQ_DYING) { |
949 | WQ_TRACE_WQ(TRACE_wq_thread_terminate | DBG_FUNC_END, |
950 | wq, wq->wq_thidlecount, 0, 0); |
951 | workq_death_policy_evaluate(wq, decrement: 1); |
952 | } |
953 | if (wq->wq_nthreads-- == wq_max_threads) { |
954 | /* |
955 | * We got under the thread limit again, which may have prevented |
956 | * thread creation from happening, redrive if there are pending requests |
957 | */ |
958 | if (wq->wq_reqcount) { |
959 | workq_schedule_creator(p, wq, flags: WORKQ_THREADREQ_CAN_CREATE_THREADS); |
960 | } |
961 | } |
962 | workq_unlock(wq); |
963 | |
964 | thread_deallocate(thread: get_machthread(uth)); |
965 | } |
966 | |
967 | static void |
968 | workq_kill_old_threads_call(void *param0, void *param1 __unused) |
969 | { |
970 | struct workqueue *wq = param0; |
971 | |
972 | workq_lock_spin(wq); |
973 | WQ_TRACE_WQ(TRACE_wq_death_call | DBG_FUNC_START, wq, 0, 0, 0); |
974 | os_atomic_andnot(&wq->wq_flags, WQ_DEATH_CALL_SCHEDULED, relaxed); |
975 | workq_death_policy_evaluate(wq, decrement: 0); |
976 | WQ_TRACE_WQ(TRACE_wq_death_call | DBG_FUNC_END, wq, 0, 0, 0); |
977 | workq_unlock(wq); |
978 | } |
979 | |
980 | static struct uthread * |
981 | workq_pop_idle_thread(struct workqueue *wq, uint16_t uu_flags, |
982 | bool *needs_wakeup) |
983 | { |
984 | struct uthread *uth; |
985 | |
986 | if ((uth = TAILQ_FIRST(&wq->wq_thidlelist))) { |
987 | TAILQ_REMOVE(&wq->wq_thidlelist, uth, uu_workq_entry); |
988 | } else { |
989 | uth = TAILQ_FIRST(&wq->wq_thnewlist); |
990 | TAILQ_REMOVE(&wq->wq_thnewlist, uth, uu_workq_entry); |
991 | } |
992 | TAILQ_INSERT_TAIL(&wq->wq_thrunlist, uth, uu_workq_entry); |
993 | |
994 | assert((uth->uu_workq_flags & UT_WORKQ_RUNNING) == 0); |
995 | uth->uu_workq_flags |= UT_WORKQ_RUNNING | uu_flags; |
996 | |
997 | /* A thread is never woken up as part of the cooperative pool */ |
998 | assert((uu_flags & UT_WORKQ_COOPERATIVE) == 0); |
999 | |
1000 | if ((uu_flags & UT_WORKQ_OVERCOMMIT) == 0) { |
1001 | wq->wq_constrained_threads_scheduled++; |
1002 | } |
1003 | wq->wq_threads_scheduled++; |
1004 | wq->wq_thidlecount--; |
1005 | |
1006 | if (__improbable(uth->uu_workq_flags & UT_WORKQ_DYING)) { |
1007 | uth->uu_workq_flags ^= UT_WORKQ_DYING; |
1008 | workq_death_policy_evaluate(wq, decrement: 1); |
1009 | *needs_wakeup = false; |
1010 | } else if (uth->uu_workq_flags & UT_WORKQ_IDLE_CLEANUP) { |
1011 | *needs_wakeup = false; |
1012 | } else { |
1013 | *needs_wakeup = true; |
1014 | } |
1015 | return uth; |
1016 | } |
1017 | |
1018 | /* |
1019 | * Called by thread_create_workq_waiting() during thread initialization, before |
1020 | * assert_wait, before the thread has been started. |
1021 | */ |
1022 | event_t |
1023 | workq_thread_init_and_wq_lock(task_t task, thread_t th) |
1024 | { |
1025 | struct uthread *uth = get_bsdthread_info(th); |
1026 | |
1027 | uth->uu_workq_flags = UT_WORKQ_NEW; |
1028 | uth->uu_workq_pri = WORKQ_POLICY_INIT(THREAD_QOS_LEGACY); |
1029 | uth->uu_workq_thport = MACH_PORT_NULL; |
1030 | uth->uu_workq_stackaddr = 0; |
1031 | uth->uu_workq_pthread_kill_allowed = 0; |
1032 | |
1033 | thread_set_tag(thread: th, tag: THREAD_TAG_PTHREAD | THREAD_TAG_WORKQUEUE); |
1034 | thread_reset_workq_qos(thread: th, THREAD_QOS_LEGACY); |
1035 | |
1036 | workq_lock_spin(wq: proc_get_wqptr_fast(p: get_bsdtask_info(task))); |
1037 | return workq_parked_wait_event(uth); |
1038 | } |
1039 | |
1040 | /** |
1041 | * Try to add a new workqueue thread. |
1042 | * |
1043 | * - called with workq lock held |
1044 | * - dropped and retaken around thread creation |
1045 | * - return with workq lock held |
1046 | */ |
1047 | static bool |
1048 | workq_add_new_idle_thread(proc_t p, struct workqueue *wq) |
1049 | { |
1050 | mach_vm_offset_t th_stackaddr; |
1051 | kern_return_t kret; |
1052 | thread_t th; |
1053 | |
1054 | wq->wq_nthreads++; |
1055 | |
1056 | workq_unlock(wq); |
1057 | |
1058 | vm_map_t vmap = get_task_map(proc_task(p)); |
1059 | |
1060 | kret = pthread_functions->workq_create_threadstack(p, vmap, &th_stackaddr); |
1061 | if (kret != KERN_SUCCESS) { |
1062 | WQ_TRACE_WQ(TRACE_wq_thread_create_failed | DBG_FUNC_NONE, wq, |
1063 | kret, 1, 0); |
1064 | goto out; |
1065 | } |
1066 | |
1067 | kret = thread_create_workq_waiting(task: proc_task(p), thread_return: workq_unpark_continue, new_thread: &th); |
1068 | if (kret != KERN_SUCCESS) { |
1069 | WQ_TRACE_WQ(TRACE_wq_thread_create_failed | DBG_FUNC_NONE, wq, |
1070 | kret, 0, 0); |
1071 | pthread_functions->workq_destroy_threadstack(p, vmap, th_stackaddr); |
1072 | goto out; |
1073 | } |
1074 | |
1075 | // thread_create_workq_waiting() will return with the wq lock held |
1076 | // on success, because it calls workq_thread_init_and_wq_lock() above |
1077 | |
1078 | struct uthread *uth = get_bsdthread_info(th); |
1079 | |
1080 | wq->wq_creations++; |
1081 | wq->wq_thidlecount++; |
1082 | uth->uu_workq_stackaddr = (user_addr_t)th_stackaddr; |
1083 | TAILQ_INSERT_TAIL(&wq->wq_thnewlist, uth, uu_workq_entry); |
1084 | |
1085 | WQ_TRACE_WQ(TRACE_wq_thread_create | DBG_FUNC_NONE, wq, 0, 0, 0); |
1086 | return true; |
1087 | |
1088 | out: |
1089 | workq_lock_spin(wq); |
1090 | /* |
1091 | * Do not redrive here if we went under wq_max_threads again, |
1092 | * it is the responsibility of the callers of this function |
1093 | * to do so when it fails. |
1094 | */ |
1095 | wq->wq_nthreads--; |
1096 | return false; |
1097 | } |
1098 | |
1099 | static inline bool |
1100 | workq_thread_is_overcommit(struct uthread *uth) |
1101 | { |
1102 | return (uth->uu_workq_flags & UT_WORKQ_OVERCOMMIT) != 0; |
1103 | } |
1104 | |
1105 | static inline bool |
1106 | workq_thread_is_nonovercommit(struct uthread *uth) |
1107 | { |
1108 | return (uth->uu_workq_flags & (UT_WORKQ_OVERCOMMIT | UT_WORKQ_COOPERATIVE)) == 0; |
1109 | } |
1110 | |
1111 | static inline bool |
1112 | workq_thread_is_cooperative(struct uthread *uth) |
1113 | { |
1114 | return (uth->uu_workq_flags & UT_WORKQ_COOPERATIVE) != 0; |
1115 | } |
1116 | |
1117 | static inline void |
1118 | workq_thread_set_type(struct uthread *uth, uint16_t flags) |
1119 | { |
1120 | uth->uu_workq_flags &= ~(UT_WORKQ_OVERCOMMIT | UT_WORKQ_COOPERATIVE); |
1121 | uth->uu_workq_flags |= flags; |
1122 | } |
1123 | |
1124 | |
1125 | #define WORKQ_UNPARK_FOR_DEATH_WAS_IDLE 0x1 |
1126 | |
1127 | __attribute__((noreturn, noinline)) |
1128 | static void |
1129 | workq_unpark_for_death_and_unlock(proc_t p, struct workqueue *wq, |
1130 | struct uthread *uth, uint32_t death_flags, uint32_t setup_flags) |
1131 | { |
1132 | thread_qos_t qos = workq_pri_override(req: uth->uu_workq_pri); |
1133 | bool first_use = uth->uu_workq_flags & UT_WORKQ_NEW; |
1134 | |
1135 | if (qos > WORKQ_THREAD_QOS_CLEANUP) { |
1136 | workq_thread_reset_pri(wq, uth, NULL, /*unpark*/ true); |
1137 | qos = WORKQ_THREAD_QOS_CLEANUP; |
1138 | } |
1139 | |
1140 | workq_thread_reset_cpupercent(NULL, uth); |
1141 | |
1142 | if (death_flags & WORKQ_UNPARK_FOR_DEATH_WAS_IDLE) { |
1143 | wq->wq_thidlecount--; |
1144 | if (first_use) { |
1145 | TAILQ_REMOVE(&wq->wq_thnewlist, uth, uu_workq_entry); |
1146 | } else { |
1147 | TAILQ_REMOVE(&wq->wq_thidlelist, uth, uu_workq_entry); |
1148 | } |
1149 | } |
1150 | TAILQ_INSERT_TAIL(&wq->wq_thrunlist, uth, uu_workq_entry); |
1151 | |
1152 | workq_unlock(wq); |
1153 | |
1154 | if (setup_flags & WQ_SETUP_CLEAR_VOUCHER) { |
1155 | __assert_only kern_return_t kr; |
1156 | kr = thread_set_voucher_name(MACH_PORT_NULL); |
1157 | assert(kr == KERN_SUCCESS); |
1158 | } |
1159 | |
1160 | uint32_t flags = WQ_FLAG_THREAD_NEWSPI | qos | WQ_FLAG_THREAD_PRIO_QOS; |
1161 | thread_t th = get_machthread(uth); |
1162 | vm_map_t vmap = get_task_map(proc_task(p)); |
1163 | |
1164 | if (!first_use) { |
1165 | flags |= WQ_FLAG_THREAD_REUSE; |
1166 | } |
1167 | |
1168 | pthread_functions->workq_setup_thread(p, th, vmap, uth->uu_workq_stackaddr, |
1169 | uth->uu_workq_thport, 0, WQ_SETUP_EXIT_THREAD, flags); |
1170 | __builtin_unreachable(); |
1171 | } |
1172 | |
1173 | bool |
1174 | workq_is_current_thread_updating_turnstile(struct workqueue *wq) |
1175 | { |
1176 | return wq->wq_turnstile_updater == current_thread(); |
1177 | } |
1178 | |
1179 | __attribute__((always_inline)) |
1180 | static inline void |
1181 | workq_perform_turnstile_operation_locked(struct workqueue *wq, |
1182 | void (^operation)(void)) |
1183 | { |
1184 | workq_lock_held(wq); |
1185 | wq->wq_turnstile_updater = current_thread(); |
1186 | operation(); |
1187 | wq->wq_turnstile_updater = THREAD_NULL; |
1188 | } |
1189 | |
1190 | static void |
1191 | workq_turnstile_update_inheritor(struct workqueue *wq, |
1192 | turnstile_inheritor_t inheritor, |
1193 | turnstile_update_flags_t flags) |
1194 | { |
1195 | if (wq->wq_inheritor == inheritor) { |
1196 | return; |
1197 | } |
1198 | wq->wq_inheritor = inheritor; |
1199 | workq_perform_turnstile_operation_locked(wq, operation: ^{ |
1200 | turnstile_update_inheritor(turnstile: wq->wq_turnstile, new_inheritor: inheritor, |
1201 | flags: flags | TURNSTILE_IMMEDIATE_UPDATE); |
1202 | turnstile_update_inheritor_complete(turnstile: wq->wq_turnstile, |
1203 | flags: TURNSTILE_INTERLOCK_HELD); |
1204 | }); |
1205 | } |
1206 | |
1207 | static void |
1208 | workq_push_idle_thread(proc_t p, struct workqueue *wq, struct uthread *uth, |
1209 | uint32_t setup_flags) |
1210 | { |
1211 | uint64_t now = mach_absolute_time(); |
1212 | bool is_creator = (uth == wq->wq_creator); |
1213 | |
1214 | if (workq_thread_is_cooperative(uth)) { |
1215 | assert(!is_creator); |
1216 | |
1217 | thread_qos_t thread_qos = uth->uu_workq_pri.qos_req; |
1218 | _wq_cooperative_queue_scheduled_count_dec(wq, qos: thread_qos); |
1219 | |
1220 | /* Before we get here, we always go through |
1221 | * workq_select_threadreq_or_park_and_unlock. If we got here, it means |
1222 | * that we went through the logic in workq_threadreq_select which |
1223 | * did the refresh for the next best cooperative qos while |
1224 | * excluding the current thread - we shouldn't need to do it again. |
1225 | */ |
1226 | assert(_wq_cooperative_queue_refresh_best_req_qos(wq) == false); |
1227 | } else if (workq_thread_is_nonovercommit(uth)) { |
1228 | assert(!is_creator); |
1229 | |
1230 | wq->wq_constrained_threads_scheduled--; |
1231 | } |
1232 | |
1233 | uth->uu_workq_flags &= ~(UT_WORKQ_RUNNING | UT_WORKQ_OVERCOMMIT | UT_WORKQ_COOPERATIVE); |
1234 | TAILQ_REMOVE(&wq->wq_thrunlist, uth, uu_workq_entry); |
1235 | wq->wq_threads_scheduled--; |
1236 | |
1237 | if (is_creator) { |
1238 | wq->wq_creator = NULL; |
1239 | WQ_TRACE_WQ(TRACE_wq_creator_select, wq, 3, 0, |
1240 | uth->uu_save.uus_workq_park_data.yields); |
1241 | } |
1242 | |
1243 | if (wq->wq_inheritor == get_machthread(uth)) { |
1244 | assert(wq->wq_creator == NULL); |
1245 | if (wq->wq_reqcount) { |
1246 | workq_turnstile_update_inheritor(wq, inheritor: wq, flags: TURNSTILE_INHERITOR_WORKQ); |
1247 | } else { |
1248 | workq_turnstile_update_inheritor(wq, TURNSTILE_INHERITOR_NULL, flags: 0); |
1249 | } |
1250 | } |
1251 | |
1252 | if (uth->uu_workq_flags & UT_WORKQ_NEW) { |
1253 | assert(is_creator || (_wq_flags(wq) & WQ_EXITING)); |
1254 | TAILQ_INSERT_TAIL(&wq->wq_thnewlist, uth, uu_workq_entry); |
1255 | wq->wq_thidlecount++; |
1256 | return; |
1257 | } |
1258 | |
1259 | if (!is_creator) { |
1260 | _wq_thactive_dec(wq, qos: uth->uu_workq_pri.qos_bucket); |
1261 | wq->wq_thscheduled_count[_wq_bucket(qos: uth->uu_workq_pri.qos_bucket)]--; |
1262 | uth->uu_workq_flags |= UT_WORKQ_IDLE_CLEANUP; |
1263 | } |
1264 | |
1265 | uth->uu_save.uus_workq_park_data.idle_stamp = now; |
1266 | |
1267 | struct uthread *oldest = workq_oldest_killable_idle_thread(wq); |
1268 | uint16_t cur_idle = wq->wq_thidlecount; |
1269 | |
1270 | if (cur_idle >= wq_max_constrained_threads || |
1271 | (wq->wq_thdying_count == 0 && oldest && |
1272 | workq_should_kill_idle_thread(wq, uth: oldest, now))) { |
1273 | /* |
1274 | * Immediately kill threads if we have too may of them. |
1275 | * |
1276 | * And swap "place" with the oldest one we'd have woken up. |
1277 | * This is a relatively desperate situation where we really |
1278 | * need to kill threads quickly and it's best to kill |
1279 | * the one that's currently on core than context switching. |
1280 | */ |
1281 | if (oldest) { |
1282 | oldest->uu_save.uus_workq_park_data.idle_stamp = now; |
1283 | TAILQ_REMOVE(&wq->wq_thidlelist, oldest, uu_workq_entry); |
1284 | TAILQ_INSERT_HEAD(&wq->wq_thidlelist, oldest, uu_workq_entry); |
1285 | } |
1286 | |
1287 | WQ_TRACE_WQ(TRACE_wq_thread_terminate | DBG_FUNC_START, |
1288 | wq, cur_idle, 0, 0); |
1289 | wq->wq_thdying_count++; |
1290 | uth->uu_workq_flags |= UT_WORKQ_DYING; |
1291 | uth->uu_workq_flags &= ~UT_WORKQ_IDLE_CLEANUP; |
1292 | workq_unpark_for_death_and_unlock(p, wq, uth, death_flags: 0, setup_flags); |
1293 | __builtin_unreachable(); |
1294 | } |
1295 | |
1296 | struct uthread *tail = TAILQ_LAST(&wq->wq_thidlelist, workq_uthread_head); |
1297 | |
1298 | cur_idle += 1; |
1299 | wq->wq_thidlecount = cur_idle; |
1300 | |
1301 | if (cur_idle >= wq_death_max_load && tail && |
1302 | tail->uu_save.uus_workq_park_data.has_stack) { |
1303 | uth->uu_save.uus_workq_park_data.has_stack = false; |
1304 | TAILQ_INSERT_TAIL(&wq->wq_thidlelist, uth, uu_workq_entry); |
1305 | } else { |
1306 | uth->uu_save.uus_workq_park_data.has_stack = true; |
1307 | TAILQ_INSERT_HEAD(&wq->wq_thidlelist, uth, uu_workq_entry); |
1308 | } |
1309 | |
1310 | if (!tail) { |
1311 | uint64_t delay = workq_kill_delay_for_idle_thread(wq); |
1312 | workq_death_call_schedule(wq, deadline: now + delay); |
1313 | } |
1314 | } |
1315 | |
1316 | #pragma mark thread requests |
1317 | |
1318 | static inline bool |
1319 | workq_tr_is_overcommit(workq_tr_flags_t tr_flags) |
1320 | { |
1321 | return (tr_flags & WORKQ_TR_FLAG_OVERCOMMIT) != 0; |
1322 | } |
1323 | |
1324 | static inline bool |
1325 | workq_tr_is_nonovercommit(workq_tr_flags_t tr_flags) |
1326 | { |
1327 | return (tr_flags & (WORKQ_TR_FLAG_OVERCOMMIT | WORKQ_TR_FLAG_COOPERATIVE)) == 0; |
1328 | } |
1329 | |
1330 | static inline bool |
1331 | workq_tr_is_cooperative(workq_tr_flags_t tr_flags) |
1332 | { |
1333 | return (tr_flags & WORKQ_TR_FLAG_COOPERATIVE) != 0; |
1334 | } |
1335 | |
1336 | #define workq_threadreq_is_overcommit(req) workq_tr_is_overcommit((req)->tr_flags) |
1337 | #define workq_threadreq_is_nonovercommit(req) workq_tr_is_nonovercommit((req)->tr_flags) |
1338 | #define workq_threadreq_is_cooperative(req) workq_tr_is_cooperative((req)->tr_flags) |
1339 | |
1340 | static inline int |
1341 | workq_priority_for_req(workq_threadreq_t req) |
1342 | { |
1343 | thread_qos_t qos = req->tr_qos; |
1344 | |
1345 | if (req->tr_flags & WORKQ_TR_FLAG_WL_OUTSIDE_QOS) { |
1346 | workq_threadreq_param_t trp = kqueue_threadreq_workloop_param(req); |
1347 | assert(trp.trp_flags & TRP_PRIORITY); |
1348 | return trp.trp_pri; |
1349 | } |
1350 | return thread_workq_pri_for_qos(qos); |
1351 | } |
1352 | |
1353 | static inline struct priority_queue_sched_max * |
1354 | workq_priority_queue_for_req(struct workqueue *wq, workq_threadreq_t req) |
1355 | { |
1356 | assert(!workq_tr_is_cooperative(req->tr_flags)); |
1357 | |
1358 | if (req->tr_flags & WORKQ_TR_FLAG_WL_OUTSIDE_QOS) { |
1359 | return &wq->wq_special_queue; |
1360 | } else if (workq_tr_is_overcommit(tr_flags: req->tr_flags)) { |
1361 | return &wq->wq_overcommit_queue; |
1362 | } else { |
1363 | return &wq->wq_constrained_queue; |
1364 | } |
1365 | } |
1366 | |
1367 | |
1368 | /* Calculates the number of threads scheduled >= the input QoS */ |
1369 | static uint64_t |
1370 | workq_num_cooperative_threads_scheduled_to_qos(struct workqueue *wq, thread_qos_t qos) |
1371 | { |
1372 | workq_lock_held(wq); |
1373 | |
1374 | uint64_t num_cooperative_threads = 0; |
1375 | |
1376 | for (thread_qos_t cur_qos = WORKQ_THREAD_QOS_MAX; cur_qos >= qos; cur_qos--) { |
1377 | uint8_t bucket = _wq_bucket(qos: cur_qos); |
1378 | num_cooperative_threads += wq->wq_cooperative_queue_scheduled_count[bucket]; |
1379 | } |
1380 | |
1381 | return num_cooperative_threads; |
1382 | } |
1383 | |
1384 | static uint64_t |
1385 | workq_num_cooperative_threads_scheduled_total(struct workqueue *wq) |
1386 | { |
1387 | return workq_num_cooperative_threads_scheduled_to_qos(wq, WORKQ_THREAD_QOS_MIN); |
1388 | } |
1389 | |
1390 | #if DEBUG || DEVELOPMENT |
1391 | static bool |
1392 | workq_has_cooperative_thread_requests(struct workqueue *wq) |
1393 | { |
1394 | for (thread_qos_t qos = WORKQ_THREAD_QOS_MAX; qos >= WORKQ_THREAD_QOS_MIN; qos--) { |
1395 | uint8_t bucket = _wq_bucket(qos); |
1396 | if (!STAILQ_EMPTY(&wq->wq_cooperative_queue[bucket])) { |
1397 | return true; |
1398 | } |
1399 | } |
1400 | |
1401 | return false; |
1402 | } |
1403 | #endif |
1404 | |
1405 | /* |
1406 | * Determines the next QoS bucket we should service next in the cooperative |
1407 | * pool. This function will always return a QoS for cooperative pool as long as |
1408 | * there are requests to be serviced. |
1409 | * |
1410 | * Unlike the other thread pools, for the cooperative thread pool the schedule |
1411 | * counts for the various buckets in the pool affect the next best request for |
1412 | * it. |
1413 | * |
1414 | * This function is called in the following contexts: |
1415 | * |
1416 | * a) When determining the best thread QoS for cooperative bucket for the |
1417 | * creator/thread reuse |
1418 | * |
1419 | * b) Once (a) has happened and thread has bound to a thread request, figuring |
1420 | * out whether the next best request for this pool has changed so that creator |
1421 | * can be scheduled. |
1422 | * |
1423 | * Returns true if the cooperative queue's best qos changed from previous |
1424 | * value. |
1425 | */ |
1426 | static bool |
1427 | _wq_cooperative_queue_refresh_best_req_qos(struct workqueue *wq) |
1428 | { |
1429 | workq_lock_held(wq); |
1430 | |
1431 | thread_qos_t old_best_req_qos = wq->wq_cooperative_queue_best_req_qos; |
1432 | |
1433 | /* We determine the next best cooperative thread request based on the |
1434 | * following: |
1435 | * |
1436 | * 1. Take the MAX of the following: |
1437 | * a) Highest qos with pending TRs such that number of scheduled |
1438 | * threads so far with >= qos is < wq_max_cooperative_threads |
1439 | * b) Highest qos bucket with pending TRs but no scheduled threads for that bucket |
1440 | * |
1441 | * 2. If the result of (1) is UN, then we pick the highest priority amongst |
1442 | * pending thread requests in the pool. |
1443 | * |
1444 | */ |
1445 | thread_qos_t highest_qos_with_no_scheduled = THREAD_QOS_UNSPECIFIED; |
1446 | thread_qos_t highest_qos_req_with_width = THREAD_QOS_UNSPECIFIED; |
1447 | |
1448 | thread_qos_t highest_qos_req = THREAD_QOS_UNSPECIFIED; |
1449 | |
1450 | int scheduled_count_till_qos = 0; |
1451 | |
1452 | for (thread_qos_t qos = WORKQ_THREAD_QOS_MAX; qos >= WORKQ_THREAD_QOS_MIN; qos--) { |
1453 | uint8_t bucket = _wq_bucket(qos); |
1454 | uint8_t scheduled_count_for_bucket = wq->wq_cooperative_queue_scheduled_count[bucket]; |
1455 | scheduled_count_till_qos += scheduled_count_for_bucket; |
1456 | |
1457 | if (!STAILQ_EMPTY(&wq->wq_cooperative_queue[bucket])) { |
1458 | if (qos > highest_qos_req) { |
1459 | highest_qos_req = qos; |
1460 | } |
1461 | /* |
1462 | * The pool isn't saturated for threads at and above this QoS, and |
1463 | * this qos bucket has pending requests |
1464 | */ |
1465 | if (scheduled_count_till_qos < wq_cooperative_queue_max_size(wq)) { |
1466 | if (qos > highest_qos_req_with_width) { |
1467 | highest_qos_req_with_width = qos; |
1468 | } |
1469 | } |
1470 | |
1471 | /* |
1472 | * There are no threads scheduled for this bucket but there |
1473 | * is work pending, give it at least 1 thread |
1474 | */ |
1475 | if (scheduled_count_for_bucket == 0) { |
1476 | if (qos > highest_qos_with_no_scheduled) { |
1477 | highest_qos_with_no_scheduled = qos; |
1478 | } |
1479 | } |
1480 | } |
1481 | } |
1482 | |
1483 | wq->wq_cooperative_queue_best_req_qos = MAX(highest_qos_with_no_scheduled, highest_qos_req_with_width); |
1484 | if (wq->wq_cooperative_queue_best_req_qos == THREAD_QOS_UNSPECIFIED) { |
1485 | wq->wq_cooperative_queue_best_req_qos = highest_qos_req; |
1486 | } |
1487 | |
1488 | #if DEBUG || DEVELOPMENT |
1489 | /* Assert that if we are showing up the next best req as UN, then there |
1490 | * actually is no thread request in the cooperative pool buckets */ |
1491 | if (wq->wq_cooperative_queue_best_req_qos == THREAD_QOS_UNSPECIFIED) { |
1492 | assert(!workq_has_cooperative_thread_requests(wq)); |
1493 | } |
1494 | #endif |
1495 | |
1496 | return old_best_req_qos != wq->wq_cooperative_queue_best_req_qos; |
1497 | } |
1498 | |
1499 | /* |
1500 | * Returns whether or not the input thread (or creator thread if uth is NULL) |
1501 | * should be allowed to work as part of the cooperative pool for the <input qos> |
1502 | * bucket. |
1503 | * |
1504 | * This function is called in a bunch of places: |
1505 | * a) Quantum expires for a thread and it is part of the cooperative pool |
1506 | * b) When trying to pick a thread request for the creator thread to |
1507 | * represent. |
1508 | * c) When a thread is trying to pick a thread request to actually bind to |
1509 | * and service. |
1510 | * |
1511 | * Called with workq lock held. |
1512 | */ |
1513 | |
1514 | #define WQ_COOPERATIVE_POOL_UNSATURATED 1 |
1515 | #define WQ_COOPERATIVE_BUCKET_UNSERVICED 2 |
1516 | #define WQ_COOPERATIVE_POOL_SATURATED_UP_TO_QOS 3 |
1517 | |
1518 | static bool |
1519 | workq_cooperative_allowance(struct workqueue *wq, thread_qos_t qos, struct uthread *uth, |
1520 | bool may_start_timer) |
1521 | { |
1522 | workq_lock_held(wq); |
1523 | |
1524 | bool exclude_thread_as_scheduled = false; |
1525 | bool passed_admissions = false; |
1526 | uint8_t bucket = _wq_bucket(qos); |
1527 | |
1528 | if (uth && workq_thread_is_cooperative(uth)) { |
1529 | exclude_thread_as_scheduled = true; |
1530 | _wq_cooperative_queue_scheduled_count_dec(wq, qos: uth->uu_workq_pri.qos_req); |
1531 | } |
1532 | |
1533 | /* |
1534 | * We have not saturated the pool yet, let this thread continue |
1535 | */ |
1536 | uint64_t total_cooperative_threads; |
1537 | total_cooperative_threads = workq_num_cooperative_threads_scheduled_total(wq); |
1538 | if (total_cooperative_threads < wq_cooperative_queue_max_size(wq)) { |
1539 | passed_admissions = true; |
1540 | WQ_TRACE(TRACE_wq_cooperative_admission | DBG_FUNC_NONE, |
1541 | total_cooperative_threads, qos, passed_admissions, |
1542 | WQ_COOPERATIVE_POOL_UNSATURATED); |
1543 | goto out; |
1544 | } |
1545 | |
1546 | /* |
1547 | * Without this thread, nothing is servicing the bucket which has pending |
1548 | * work |
1549 | */ |
1550 | uint64_t bucket_scheduled = wq->wq_cooperative_queue_scheduled_count[bucket]; |
1551 | if (bucket_scheduled == 0 && |
1552 | !STAILQ_EMPTY(&wq->wq_cooperative_queue[bucket])) { |
1553 | passed_admissions = true; |
1554 | WQ_TRACE(TRACE_wq_cooperative_admission | DBG_FUNC_NONE, |
1555 | total_cooperative_threads, qos, passed_admissions, |
1556 | WQ_COOPERATIVE_BUCKET_UNSERVICED); |
1557 | goto out; |
1558 | } |
1559 | |
1560 | /* |
1561 | * If number of threads at the QoS bucket >= input QoS exceeds the max we want |
1562 | * for the pool, deny this thread |
1563 | */ |
1564 | uint64_t aggregate_down_to_qos = workq_num_cooperative_threads_scheduled_to_qos(wq, qos); |
1565 | passed_admissions = (aggregate_down_to_qos < wq_cooperative_queue_max_size(wq)); |
1566 | WQ_TRACE(TRACE_wq_cooperative_admission | DBG_FUNC_NONE, aggregate_down_to_qos, |
1567 | qos, passed_admissions, WQ_COOPERATIVE_POOL_SATURATED_UP_TO_QOS); |
1568 | |
1569 | if (!passed_admissions && may_start_timer) { |
1570 | workq_schedule_delayed_thread_creation(wq, flags: 0); |
1571 | } |
1572 | |
1573 | out: |
1574 | if (exclude_thread_as_scheduled) { |
1575 | _wq_cooperative_queue_scheduled_count_inc(wq, qos: uth->uu_workq_pri.qos_req); |
1576 | } |
1577 | return passed_admissions; |
1578 | } |
1579 | |
1580 | /* |
1581 | * returns true if the best request for the pool changed as a result of |
1582 | * enqueuing this thread request. |
1583 | */ |
1584 | static bool |
1585 | workq_threadreq_enqueue(struct workqueue *wq, workq_threadreq_t req) |
1586 | { |
1587 | assert(req->tr_state == WORKQ_TR_STATE_NEW); |
1588 | |
1589 | req->tr_state = WORKQ_TR_STATE_QUEUED; |
1590 | wq->wq_reqcount += req->tr_count; |
1591 | |
1592 | if (req->tr_qos == WORKQ_THREAD_QOS_MANAGER) { |
1593 | assert(wq->wq_event_manager_threadreq == NULL); |
1594 | assert(req->tr_flags & WORKQ_TR_FLAG_KEVENT); |
1595 | assert(req->tr_count == 1); |
1596 | wq->wq_event_manager_threadreq = req; |
1597 | return true; |
1598 | } |
1599 | |
1600 | if (workq_threadreq_is_cooperative(req)) { |
1601 | assert(req->tr_qos != WORKQ_THREAD_QOS_MANAGER); |
1602 | assert(req->tr_qos != WORKQ_THREAD_QOS_ABOVEUI); |
1603 | |
1604 | struct workq_threadreq_tailq *bucket = &wq->wq_cooperative_queue[_wq_bucket(qos: req->tr_qos)]; |
1605 | STAILQ_INSERT_TAIL(bucket, req, tr_link); |
1606 | |
1607 | return _wq_cooperative_queue_refresh_best_req_qos(wq); |
1608 | } |
1609 | |
1610 | struct priority_queue_sched_max *q = workq_priority_queue_for_req(wq, req); |
1611 | |
1612 | priority_queue_entry_set_sched_pri(q, &req->tr_entry, |
1613 | workq_priority_for_req(req), false); |
1614 | |
1615 | if (priority_queue_insert(que: q, elt: &req->tr_entry)) { |
1616 | if (workq_threadreq_is_nonovercommit(req)) { |
1617 | _wq_thactive_refresh_best_constrained_req_qos(wq); |
1618 | } |
1619 | return true; |
1620 | } |
1621 | return false; |
1622 | } |
1623 | |
1624 | /* |
1625 | * returns true if one of the following is true (so as to update creator if |
1626 | * needed): |
1627 | * |
1628 | * (a) the next highest request of the pool we dequeued the request from changed |
1629 | * (b) the next highest requests of the pool the current thread used to be a |
1630 | * part of, changed |
1631 | * |
1632 | * For overcommit, special and constrained pools, the next highest QoS for each |
1633 | * pool just a MAX of pending requests so tracking (a) is sufficient. |
1634 | * |
1635 | * But for cooperative thread pool, the next highest QoS for the pool depends on |
1636 | * schedule counts in the pool as well. So if the current thread used to be |
1637 | * cooperative in it's previous logical run ie (b), then that can also affect |
1638 | * cooperative pool's next best QoS requests. |
1639 | */ |
1640 | static bool |
1641 | workq_threadreq_dequeue(struct workqueue *wq, workq_threadreq_t req, |
1642 | bool cooperative_sched_count_changed) |
1643 | { |
1644 | wq->wq_reqcount--; |
1645 | |
1646 | bool next_highest_request_changed = false; |
1647 | |
1648 | if (--req->tr_count == 0) { |
1649 | if (req->tr_qos == WORKQ_THREAD_QOS_MANAGER) { |
1650 | assert(wq->wq_event_manager_threadreq == req); |
1651 | assert(req->tr_count == 0); |
1652 | wq->wq_event_manager_threadreq = NULL; |
1653 | |
1654 | /* If a cooperative thread was the one which picked up the manager |
1655 | * thread request, we need to reevaluate the cooperative pool |
1656 | * anyways. |
1657 | */ |
1658 | if (cooperative_sched_count_changed) { |
1659 | _wq_cooperative_queue_refresh_best_req_qos(wq); |
1660 | } |
1661 | return true; |
1662 | } |
1663 | |
1664 | if (workq_threadreq_is_cooperative(req)) { |
1665 | assert(req->tr_qos != WORKQ_THREAD_QOS_MANAGER); |
1666 | assert(req->tr_qos != WORKQ_THREAD_QOS_ABOVEUI); |
1667 | /* Account for the fact that BG and MT are coalesced when |
1668 | * calculating best request for cooperative pool |
1669 | */ |
1670 | assert(_wq_bucket(req->tr_qos) == _wq_bucket(wq->wq_cooperative_queue_best_req_qos)); |
1671 | |
1672 | struct workq_threadreq_tailq *bucket = &wq->wq_cooperative_queue[_wq_bucket(qos: req->tr_qos)]; |
1673 | __assert_only workq_threadreq_t head = STAILQ_FIRST(bucket); |
1674 | |
1675 | assert(head == req); |
1676 | STAILQ_REMOVE_HEAD(bucket, tr_link); |
1677 | |
1678 | /* |
1679 | * If the request we're dequeueing is cooperative, then the sched |
1680 | * counts definitely changed. |
1681 | */ |
1682 | assert(cooperative_sched_count_changed); |
1683 | } |
1684 | |
1685 | /* |
1686 | * We want to do the cooperative pool refresh after dequeueing a |
1687 | * cooperative thread request if any (to combine both effects into 1 |
1688 | * refresh operation) |
1689 | */ |
1690 | if (cooperative_sched_count_changed) { |
1691 | next_highest_request_changed = _wq_cooperative_queue_refresh_best_req_qos(wq); |
1692 | } |
1693 | |
1694 | if (!workq_threadreq_is_cooperative(req)) { |
1695 | /* |
1696 | * All other types of requests are enqueued in priority queues |
1697 | */ |
1698 | |
1699 | if (priority_queue_remove(que: workq_priority_queue_for_req(wq, req), |
1700 | elt: &req->tr_entry)) { |
1701 | next_highest_request_changed |= true; |
1702 | if (workq_threadreq_is_nonovercommit(req)) { |
1703 | _wq_thactive_refresh_best_constrained_req_qos(wq); |
1704 | } |
1705 | } |
1706 | } |
1707 | } |
1708 | |
1709 | return next_highest_request_changed; |
1710 | } |
1711 | |
1712 | static void |
1713 | workq_threadreq_destroy(proc_t p, workq_threadreq_t req) |
1714 | { |
1715 | req->tr_state = WORKQ_TR_STATE_CANCELED; |
1716 | if (req->tr_flags & (WORKQ_TR_FLAG_WORKLOOP | WORKQ_TR_FLAG_KEVENT)) { |
1717 | kqueue_threadreq_cancel(p, req); |
1718 | } else { |
1719 | zfree(workq_zone_threadreq, req); |
1720 | } |
1721 | } |
1722 | |
1723 | #pragma mark workqueue thread creation thread calls |
1724 | |
1725 | static inline bool |
1726 | workq_thread_call_prepost(struct workqueue *wq, uint32_t sched, uint32_t pend, |
1727 | uint32_t fail_mask) |
1728 | { |
1729 | uint32_t old_flags, new_flags; |
1730 | |
1731 | os_atomic_rmw_loop(&wq->wq_flags, old_flags, new_flags, acquire, { |
1732 | if (__improbable(old_flags & (WQ_EXITING | sched | pend | fail_mask))) { |
1733 | os_atomic_rmw_loop_give_up(return false); |
1734 | } |
1735 | if (__improbable(old_flags & WQ_PROC_SUSPENDED)) { |
1736 | new_flags = old_flags | pend; |
1737 | } else { |
1738 | new_flags = old_flags | sched; |
1739 | } |
1740 | }); |
1741 | |
1742 | return (old_flags & WQ_PROC_SUSPENDED) == 0; |
1743 | } |
1744 | |
1745 | #define WORKQ_SCHEDULE_DELAYED_THREAD_CREATION_RESTART 0x1 |
1746 | |
1747 | static bool |
1748 | workq_schedule_delayed_thread_creation(struct workqueue *wq, int flags) |
1749 | { |
1750 | assert(!preemption_enabled()); |
1751 | |
1752 | if (!workq_thread_call_prepost(wq, sched: WQ_DELAYED_CALL_SCHEDULED, |
1753 | pend: WQ_DELAYED_CALL_PENDED, fail_mask: WQ_IMMEDIATE_CALL_PENDED | |
1754 | WQ_IMMEDIATE_CALL_SCHEDULED)) { |
1755 | return false; |
1756 | } |
1757 | |
1758 | uint64_t now = mach_absolute_time(); |
1759 | |
1760 | if (flags & WORKQ_SCHEDULE_DELAYED_THREAD_CREATION_RESTART) { |
1761 | /* do not change the window */ |
1762 | } else if (now - wq->wq_thread_call_last_run <= wq->wq_timer_interval) { |
1763 | wq->wq_timer_interval *= 2; |
1764 | if (wq->wq_timer_interval > wq_max_timer_interval.abstime) { |
1765 | wq->wq_timer_interval = (uint32_t)wq_max_timer_interval.abstime; |
1766 | } |
1767 | } else if (now - wq->wq_thread_call_last_run > 2 * wq->wq_timer_interval) { |
1768 | wq->wq_timer_interval /= 2; |
1769 | if (wq->wq_timer_interval < wq_stalled_window.abstime) { |
1770 | wq->wq_timer_interval = (uint32_t)wq_stalled_window.abstime; |
1771 | } |
1772 | } |
1773 | |
1774 | WQ_TRACE_WQ(TRACE_wq_start_add_timer, wq, wq->wq_reqcount, |
1775 | _wq_flags(wq), wq->wq_timer_interval); |
1776 | |
1777 | thread_call_t call = wq->wq_delayed_call; |
1778 | uintptr_t arg = WQ_DELAYED_CALL_SCHEDULED; |
1779 | uint64_t deadline = now + wq->wq_timer_interval; |
1780 | if (thread_call_enter1_delayed(call, param1: (void *)arg, deadline)) { |
1781 | panic("delayed_call was already enqueued" ); |
1782 | } |
1783 | return true; |
1784 | } |
1785 | |
1786 | static void |
1787 | workq_schedule_immediate_thread_creation(struct workqueue *wq) |
1788 | { |
1789 | assert(!preemption_enabled()); |
1790 | |
1791 | if (workq_thread_call_prepost(wq, sched: WQ_IMMEDIATE_CALL_SCHEDULED, |
1792 | pend: WQ_IMMEDIATE_CALL_PENDED, fail_mask: 0)) { |
1793 | WQ_TRACE_WQ(TRACE_wq_start_add_timer, wq, wq->wq_reqcount, |
1794 | _wq_flags(wq), 0); |
1795 | |
1796 | uintptr_t arg = WQ_IMMEDIATE_CALL_SCHEDULED; |
1797 | if (thread_call_enter1(call: wq->wq_immediate_call, param1: (void *)arg)) { |
1798 | panic("immediate_call was already enqueued" ); |
1799 | } |
1800 | } |
1801 | } |
1802 | |
1803 | void |
1804 | workq_proc_suspended(struct proc *p) |
1805 | { |
1806 | struct workqueue *wq = proc_get_wqptr(p); |
1807 | |
1808 | if (wq) { |
1809 | os_atomic_or(&wq->wq_flags, WQ_PROC_SUSPENDED, relaxed); |
1810 | } |
1811 | } |
1812 | |
1813 | void |
1814 | workq_proc_resumed(struct proc *p) |
1815 | { |
1816 | struct workqueue *wq = proc_get_wqptr(p); |
1817 | uint32_t wq_flags; |
1818 | |
1819 | if (!wq) { |
1820 | return; |
1821 | } |
1822 | |
1823 | wq_flags = os_atomic_andnot_orig(&wq->wq_flags, WQ_PROC_SUSPENDED | |
1824 | WQ_DELAYED_CALL_PENDED | WQ_IMMEDIATE_CALL_PENDED, relaxed); |
1825 | if ((wq_flags & WQ_EXITING) == 0) { |
1826 | disable_preemption(); |
1827 | if (wq_flags & WQ_IMMEDIATE_CALL_PENDED) { |
1828 | workq_schedule_immediate_thread_creation(wq); |
1829 | } else if (wq_flags & WQ_DELAYED_CALL_PENDED) { |
1830 | workq_schedule_delayed_thread_creation(wq, |
1831 | WORKQ_SCHEDULE_DELAYED_THREAD_CREATION_RESTART); |
1832 | } |
1833 | enable_preemption(); |
1834 | } |
1835 | } |
1836 | |
1837 | /** |
1838 | * returns whether lastblocked_tsp is within wq_stalled_window usecs of now |
1839 | */ |
1840 | static bool |
1841 | workq_thread_is_busy(uint64_t now, _Atomic uint64_t *lastblocked_tsp) |
1842 | { |
1843 | uint64_t lastblocked_ts = os_atomic_load_wide(lastblocked_tsp, relaxed); |
1844 | if (now <= lastblocked_ts) { |
1845 | /* |
1846 | * Because the update of the timestamp when a thread blocks |
1847 | * isn't serialized against us looking at it (i.e. we don't hold |
1848 | * the workq lock), it's possible to have a timestamp that matches |
1849 | * the current time or that even looks to be in the future relative |
1850 | * to when we grabbed the current time... |
1851 | * |
1852 | * Just treat this as a busy thread since it must have just blocked. |
1853 | */ |
1854 | return true; |
1855 | } |
1856 | return (now - lastblocked_ts) < wq_stalled_window.abstime; |
1857 | } |
1858 | |
1859 | static void |
1860 | workq_add_new_threads_call(void *_p, void *flags) |
1861 | { |
1862 | proc_t p = _p; |
1863 | struct workqueue *wq = proc_get_wqptr(p); |
1864 | uint32_t my_flag = (uint32_t)(uintptr_t)flags; |
1865 | |
1866 | /* |
1867 | * workq_exit() will set the workqueue to NULL before |
1868 | * it cancels thread calls. |
1869 | */ |
1870 | if (!wq) { |
1871 | return; |
1872 | } |
1873 | |
1874 | assert((my_flag == WQ_DELAYED_CALL_SCHEDULED) || |
1875 | (my_flag == WQ_IMMEDIATE_CALL_SCHEDULED)); |
1876 | |
1877 | WQ_TRACE_WQ(TRACE_wq_add_timer | DBG_FUNC_START, wq, _wq_flags(wq), |
1878 | wq->wq_nthreads, wq->wq_thidlecount); |
1879 | |
1880 | workq_lock_spin(wq); |
1881 | |
1882 | wq->wq_thread_call_last_run = mach_absolute_time(); |
1883 | os_atomic_andnot(&wq->wq_flags, my_flag, release); |
1884 | |
1885 | /* This can drop the workqueue lock, and take it again */ |
1886 | workq_schedule_creator(p, wq, flags: WORKQ_THREADREQ_CAN_CREATE_THREADS); |
1887 | |
1888 | workq_unlock(wq); |
1889 | |
1890 | WQ_TRACE_WQ(TRACE_wq_add_timer | DBG_FUNC_END, wq, 0, |
1891 | wq->wq_nthreads, wq->wq_thidlecount); |
1892 | } |
1893 | |
1894 | #pragma mark thread state tracking |
1895 | |
1896 | static void |
1897 | workq_sched_callback(int type, thread_t thread) |
1898 | { |
1899 | thread_ro_t tro = get_thread_ro(thread); |
1900 | struct uthread *uth = get_bsdthread_info(thread); |
1901 | struct workqueue *wq = proc_get_wqptr(p: tro->tro_proc); |
1902 | thread_qos_t req_qos, qos = uth->uu_workq_pri.qos_bucket; |
1903 | wq_thactive_t old_thactive; |
1904 | bool start_timer = false; |
1905 | |
1906 | if (qos == WORKQ_THREAD_QOS_MANAGER) { |
1907 | return; |
1908 | } |
1909 | |
1910 | switch (type) { |
1911 | case SCHED_CALL_BLOCK: |
1912 | old_thactive = _wq_thactive_dec(wq, qos); |
1913 | req_qos = WQ_THACTIVE_BEST_CONSTRAINED_REQ_QOS(old_thactive); |
1914 | |
1915 | /* |
1916 | * Remember the timestamp of the last thread that blocked in this |
1917 | * bucket, it used used by admission checks to ignore one thread |
1918 | * being inactive if this timestamp is recent enough. |
1919 | * |
1920 | * If we collide with another thread trying to update the |
1921 | * last_blocked (really unlikely since another thread would have to |
1922 | * get scheduled and then block after we start down this path), it's |
1923 | * not a problem. Either timestamp is adequate, so no need to retry |
1924 | */ |
1925 | os_atomic_store_wide(&wq->wq_lastblocked_ts[_wq_bucket(qos)], |
1926 | thread_last_run_time(thread), relaxed); |
1927 | |
1928 | if (req_qos == THREAD_QOS_UNSPECIFIED) { |
1929 | /* |
1930 | * No pending request at the moment we could unblock, move on. |
1931 | */ |
1932 | } else if (qos < req_qos) { |
1933 | /* |
1934 | * The blocking thread is at a lower QoS than the highest currently |
1935 | * pending constrained request, nothing has to be redriven |
1936 | */ |
1937 | } else { |
1938 | uint32_t max_busycount, old_req_count; |
1939 | old_req_count = _wq_thactive_aggregate_downto_qos(wq, v: old_thactive, |
1940 | qos: req_qos, NULL, max_busycount: &max_busycount); |
1941 | /* |
1942 | * If it is possible that may_start_constrained_thread had refused |
1943 | * admission due to being over the max concurrency, we may need to |
1944 | * spin up a new thread. |
1945 | * |
1946 | * We take into account the maximum number of busy threads |
1947 | * that can affect may_start_constrained_thread as looking at the |
1948 | * actual number may_start_constrained_thread will see is racy. |
1949 | * |
1950 | * IOW at NCPU = 4, for IN (req_qos = 1), if the old req count is |
1951 | * between NCPU (4) and NCPU - 2 (2) we need to redrive. |
1952 | */ |
1953 | uint32_t conc = wq_max_parallelism[_wq_bucket(qos)]; |
1954 | if (old_req_count <= conc && conc <= old_req_count + max_busycount) { |
1955 | start_timer = workq_schedule_delayed_thread_creation(wq, flags: 0); |
1956 | } |
1957 | } |
1958 | if (__improbable(kdebug_enable)) { |
1959 | __unused uint32_t old = _wq_thactive_aggregate_downto_qos(wq, |
1960 | v: old_thactive, qos, NULL, NULL); |
1961 | WQ_TRACE_WQ(TRACE_wq_thread_block | DBG_FUNC_START, wq, |
1962 | old - 1, qos | (req_qos << 8), |
1963 | wq->wq_reqcount << 1 | start_timer); |
1964 | } |
1965 | break; |
1966 | |
1967 | case SCHED_CALL_UNBLOCK: |
1968 | /* |
1969 | * we cannot take the workqueue_lock here... |
1970 | * an UNBLOCK can occur from a timer event which |
1971 | * is run from an interrupt context... if the workqueue_lock |
1972 | * is already held by this processor, we'll deadlock... |
1973 | * the thread lock for the thread being UNBLOCKED |
1974 | * is also held |
1975 | */ |
1976 | old_thactive = _wq_thactive_inc(wq, qos); |
1977 | if (__improbable(kdebug_enable)) { |
1978 | __unused uint32_t old = _wq_thactive_aggregate_downto_qos(wq, |
1979 | v: old_thactive, qos, NULL, NULL); |
1980 | req_qos = WQ_THACTIVE_BEST_CONSTRAINED_REQ_QOS(old_thactive); |
1981 | WQ_TRACE_WQ(TRACE_wq_thread_block | DBG_FUNC_END, wq, |
1982 | old + 1, qos | (req_qos << 8), |
1983 | wq->wq_threads_scheduled); |
1984 | } |
1985 | break; |
1986 | } |
1987 | } |
1988 | |
1989 | #pragma mark workq lifecycle |
1990 | |
1991 | void |
1992 | workq_reference(struct workqueue *wq) |
1993 | { |
1994 | os_ref_retain(rc: &wq->wq_refcnt); |
1995 | } |
1996 | |
1997 | static void |
1998 | workq_deallocate_queue_invoke(mpsc_queue_chain_t e, |
1999 | __assert_only mpsc_daemon_queue_t dq) |
2000 | { |
2001 | struct workqueue *wq; |
2002 | struct turnstile *ts; |
2003 | |
2004 | wq = mpsc_queue_element(e, struct workqueue, wq_destroy_link); |
2005 | assert(dq == &workq_deallocate_queue); |
2006 | |
2007 | turnstile_complete(proprietor: (uintptr_t)wq, tstore: &wq->wq_turnstile, turnstile: &ts, type: TURNSTILE_WORKQS); |
2008 | assert(ts); |
2009 | turnstile_cleanup(); |
2010 | turnstile_deallocate(turnstile: ts); |
2011 | |
2012 | lck_ticket_destroy(tlock: &wq->wq_lock, grp: &workq_lck_grp); |
2013 | zfree(workq_zone_workqueue, wq); |
2014 | } |
2015 | |
2016 | static void |
2017 | workq_deallocate(struct workqueue *wq) |
2018 | { |
2019 | if (os_ref_release_relaxed(rc: &wq->wq_refcnt) == 0) { |
2020 | workq_deallocate_queue_invoke(e: &wq->wq_destroy_link, |
2021 | dq: &workq_deallocate_queue); |
2022 | } |
2023 | } |
2024 | |
2025 | void |
2026 | workq_deallocate_safe(struct workqueue *wq) |
2027 | { |
2028 | if (__improbable(os_ref_release_relaxed(&wq->wq_refcnt) == 0)) { |
2029 | mpsc_daemon_enqueue(dq: &workq_deallocate_queue, elm: &wq->wq_destroy_link, |
2030 | options: MPSC_QUEUE_DISABLE_PREEMPTION); |
2031 | } |
2032 | } |
2033 | |
2034 | /** |
2035 | * Setup per-process state for the workqueue. |
2036 | */ |
2037 | int |
2038 | workq_open(struct proc *p, __unused struct workq_open_args *uap, |
2039 | __unused int32_t *retval) |
2040 | { |
2041 | struct workqueue *wq; |
2042 | int error = 0; |
2043 | |
2044 | if ((p->p_lflag & P_LREGISTER) == 0) { |
2045 | return EINVAL; |
2046 | } |
2047 | |
2048 | if (wq_init_constrained_limit) { |
2049 | uint32_t limit, num_cpus = ml_wait_max_cpus(); |
2050 | |
2051 | /* |
2052 | * set up the limit for the constrained pool |
2053 | * this is a virtual pool in that we don't |
2054 | * maintain it on a separate idle and run list |
2055 | */ |
2056 | limit = num_cpus * WORKQUEUE_CONSTRAINED_FACTOR; |
2057 | |
2058 | if (limit > wq_max_constrained_threads) { |
2059 | wq_max_constrained_threads = limit; |
2060 | } |
2061 | |
2062 | if (wq_max_threads > WQ_THACTIVE_BUCKET_HALF) { |
2063 | wq_max_threads = WQ_THACTIVE_BUCKET_HALF; |
2064 | } |
2065 | if (wq_max_threads > CONFIG_THREAD_MAX - 20) { |
2066 | wq_max_threads = CONFIG_THREAD_MAX - 20; |
2067 | } |
2068 | |
2069 | wq_death_max_load = (uint16_t)fls(num_cpus) + 1; |
2070 | |
2071 | for (thread_qos_t qos = WORKQ_THREAD_QOS_MIN; qos <= WORKQ_THREAD_QOS_MAX; qos++) { |
2072 | wq_max_parallelism[_wq_bucket(qos)] = |
2073 | qos_max_parallelism(qos, QOS_PARALLELISM_COUNT_LOGICAL); |
2074 | } |
2075 | |
2076 | wq_max_cooperative_threads = num_cpus; |
2077 | |
2078 | wq_init_constrained_limit = 0; |
2079 | } |
2080 | |
2081 | if (proc_get_wqptr(p) == NULL) { |
2082 | if (proc_init_wqptr_or_wait(p) == FALSE) { |
2083 | assert(proc_get_wqptr(p) != NULL); |
2084 | goto out; |
2085 | } |
2086 | |
2087 | wq = zalloc_flags(workq_zone_workqueue, Z_WAITOK | Z_ZERO); |
2088 | |
2089 | os_ref_init_count(&wq->wq_refcnt, &workq_refgrp, 1); |
2090 | |
2091 | // Start the event manager at the priority hinted at by the policy engine |
2092 | thread_qos_t mgr_priority_hint = task_get_default_manager_qos(task: current_task()); |
2093 | pthread_priority_t pp = _pthread_priority_make_from_thread_qos(qos: mgr_priority_hint, relpri: 0, flags: 0); |
2094 | wq->wq_event_manager_priority = (uint32_t)pp; |
2095 | wq->wq_timer_interval = (uint32_t)wq_stalled_window.abstime; |
2096 | wq->wq_proc = p; |
2097 | turnstile_prepare(proprietor: (uintptr_t)wq, tstore: &wq->wq_turnstile, turnstile: turnstile_alloc(), |
2098 | type: TURNSTILE_WORKQS); |
2099 | |
2100 | TAILQ_INIT(&wq->wq_thrunlist); |
2101 | TAILQ_INIT(&wq->wq_thnewlist); |
2102 | TAILQ_INIT(&wq->wq_thidlelist); |
2103 | priority_queue_init(que: &wq->wq_overcommit_queue); |
2104 | priority_queue_init(que: &wq->wq_constrained_queue); |
2105 | priority_queue_init(que: &wq->wq_special_queue); |
2106 | for (int bucket = 0; bucket < WORKQ_NUM_QOS_BUCKETS; bucket++) { |
2107 | STAILQ_INIT(&wq->wq_cooperative_queue[bucket]); |
2108 | } |
2109 | |
2110 | /* We are only using the delayed thread call for the constrained pool |
2111 | * which can't have work at >= UI QoS and so we can be fine with a |
2112 | * UI QoS thread call. |
2113 | */ |
2114 | wq->wq_delayed_call = thread_call_allocate_with_qos( |
2115 | func: workq_add_new_threads_call, param0: p, THREAD_QOS_USER_INTERACTIVE, |
2116 | options: THREAD_CALL_OPTIONS_ONCE); |
2117 | wq->wq_immediate_call = thread_call_allocate_with_options( |
2118 | func: workq_add_new_threads_call, param0: p, pri: THREAD_CALL_PRIORITY_KERNEL, |
2119 | options: THREAD_CALL_OPTIONS_ONCE); |
2120 | wq->wq_death_call = thread_call_allocate_with_options( |
2121 | func: workq_kill_old_threads_call, param0: wq, |
2122 | pri: THREAD_CALL_PRIORITY_USER, options: THREAD_CALL_OPTIONS_ONCE); |
2123 | |
2124 | lck_ticket_init(tlock: &wq->wq_lock, grp: &workq_lck_grp); |
2125 | |
2126 | WQ_TRACE_WQ(TRACE_wq_create | DBG_FUNC_NONE, wq, |
2127 | VM_KERNEL_ADDRHIDE(wq), 0, 0); |
2128 | proc_set_wqptr(p, wq); |
2129 | } |
2130 | out: |
2131 | |
2132 | return error; |
2133 | } |
2134 | |
2135 | /* |
2136 | * Routine: workq_mark_exiting |
2137 | * |
2138 | * Function: Mark the work queue such that new threads will not be added to the |
2139 | * work queue after we return. |
2140 | * |
2141 | * Conditions: Called against the current process. |
2142 | */ |
2143 | void |
2144 | workq_mark_exiting(struct proc *p) |
2145 | { |
2146 | struct workqueue *wq = proc_get_wqptr(p); |
2147 | uint32_t wq_flags; |
2148 | workq_threadreq_t mgr_req; |
2149 | |
2150 | if (!wq) { |
2151 | return; |
2152 | } |
2153 | |
2154 | WQ_TRACE_WQ(TRACE_wq_pthread_exit | DBG_FUNC_START, wq, 0, 0, 0); |
2155 | |
2156 | workq_lock_spin(wq); |
2157 | |
2158 | wq_flags = os_atomic_or_orig(&wq->wq_flags, WQ_EXITING, relaxed); |
2159 | if (__improbable(wq_flags & WQ_EXITING)) { |
2160 | panic("workq_mark_exiting called twice" ); |
2161 | } |
2162 | |
2163 | /* |
2164 | * Opportunistically try to cancel thread calls that are likely in flight. |
2165 | * workq_exit() will do the proper cleanup. |
2166 | */ |
2167 | if (wq_flags & WQ_IMMEDIATE_CALL_SCHEDULED) { |
2168 | thread_call_cancel(call: wq->wq_immediate_call); |
2169 | } |
2170 | if (wq_flags & WQ_DELAYED_CALL_SCHEDULED) { |
2171 | thread_call_cancel(call: wq->wq_delayed_call); |
2172 | } |
2173 | if (wq_flags & WQ_DEATH_CALL_SCHEDULED) { |
2174 | thread_call_cancel(call: wq->wq_death_call); |
2175 | } |
2176 | |
2177 | mgr_req = wq->wq_event_manager_threadreq; |
2178 | wq->wq_event_manager_threadreq = NULL; |
2179 | wq->wq_reqcount = 0; /* workq_schedule_creator must not look at queues */ |
2180 | wq->wq_creator = NULL; |
2181 | workq_turnstile_update_inheritor(wq, TURNSTILE_INHERITOR_NULL, flags: 0); |
2182 | |
2183 | workq_unlock(wq); |
2184 | |
2185 | if (mgr_req) { |
2186 | kqueue_threadreq_cancel(p, req: mgr_req); |
2187 | } |
2188 | /* |
2189 | * No one touches the priority queues once WQ_EXITING is set. |
2190 | * It is hence safe to do the tear down without holding any lock. |
2191 | */ |
2192 | priority_queue_destroy(&wq->wq_overcommit_queue, |
2193 | struct workq_threadreq_s, tr_entry, ^(workq_threadreq_t e){ |
2194 | workq_threadreq_destroy(p, e); |
2195 | }); |
2196 | priority_queue_destroy(&wq->wq_constrained_queue, |
2197 | struct workq_threadreq_s, tr_entry, ^(workq_threadreq_t e){ |
2198 | workq_threadreq_destroy(p, e); |
2199 | }); |
2200 | priority_queue_destroy(&wq->wq_special_queue, |
2201 | struct workq_threadreq_s, tr_entry, ^(workq_threadreq_t e){ |
2202 | workq_threadreq_destroy(p, e); |
2203 | }); |
2204 | |
2205 | WQ_TRACE(TRACE_wq_pthread_exit | DBG_FUNC_END, 0, 0, 0, 0); |
2206 | } |
2207 | |
2208 | /* |
2209 | * Routine: workq_exit |
2210 | * |
2211 | * Function: clean up the work queue structure(s) now that there are no threads |
2212 | * left running inside the work queue (except possibly current_thread). |
2213 | * |
2214 | * Conditions: Called by the last thread in the process. |
2215 | * Called against current process. |
2216 | */ |
2217 | void |
2218 | workq_exit(struct proc *p) |
2219 | { |
2220 | struct workqueue *wq; |
2221 | struct uthread *uth, *tmp; |
2222 | |
2223 | wq = os_atomic_xchg(&p->p_wqptr, NULL, relaxed); |
2224 | if (wq != NULL) { |
2225 | thread_t th = current_thread(); |
2226 | |
2227 | WQ_TRACE_WQ(TRACE_wq_workqueue_exit | DBG_FUNC_START, wq, 0, 0, 0); |
2228 | |
2229 | if (thread_get_tag(thread: th) & THREAD_TAG_WORKQUEUE) { |
2230 | /* |
2231 | * <rdar://problem/40111515> Make sure we will no longer call the |
2232 | * sched call, if we ever block this thread, which the cancel_wait |
2233 | * below can do. |
2234 | */ |
2235 | thread_sched_call(thread: th, NULL); |
2236 | } |
2237 | |
2238 | /* |
2239 | * Thread calls are always scheduled by the proc itself or under the |
2240 | * workqueue spinlock if WQ_EXITING is not yet set. |
2241 | * |
2242 | * Either way, when this runs, the proc has no threads left beside |
2243 | * the one running this very code, so we know no thread call can be |
2244 | * dispatched anymore. |
2245 | */ |
2246 | thread_call_cancel_wait(call: wq->wq_delayed_call); |
2247 | thread_call_cancel_wait(call: wq->wq_immediate_call); |
2248 | thread_call_cancel_wait(call: wq->wq_death_call); |
2249 | thread_call_free(call: wq->wq_delayed_call); |
2250 | thread_call_free(call: wq->wq_immediate_call); |
2251 | thread_call_free(call: wq->wq_death_call); |
2252 | |
2253 | /* |
2254 | * Clean up workqueue data structures for threads that exited and |
2255 | * didn't get a chance to clean up after themselves. |
2256 | * |
2257 | * idle/new threads should have been interrupted and died on their own |
2258 | */ |
2259 | TAILQ_FOREACH_SAFE(uth, &wq->wq_thrunlist, uu_workq_entry, tmp) { |
2260 | thread_t mth = get_machthread(uth); |
2261 | thread_sched_call(thread: mth, NULL); |
2262 | thread_deallocate(thread: mth); |
2263 | } |
2264 | assert(TAILQ_EMPTY(&wq->wq_thnewlist)); |
2265 | assert(TAILQ_EMPTY(&wq->wq_thidlelist)); |
2266 | |
2267 | WQ_TRACE_WQ(TRACE_wq_destroy | DBG_FUNC_END, wq, |
2268 | VM_KERNEL_ADDRHIDE(wq), 0, 0); |
2269 | |
2270 | workq_deallocate(wq); |
2271 | |
2272 | WQ_TRACE(TRACE_wq_workqueue_exit | DBG_FUNC_END, 0, 0, 0, 0); |
2273 | } |
2274 | } |
2275 | |
2276 | |
2277 | #pragma mark bsd thread control |
2278 | |
2279 | bool |
2280 | bsdthread_part_of_cooperative_workqueue(struct uthread *uth) |
2281 | { |
2282 | return (workq_thread_is_cooperative(uth) || workq_thread_is_nonovercommit(uth)) && |
2283 | (uth->uu_workq_pri.qos_bucket != WORKQ_THREAD_QOS_MANAGER); |
2284 | } |
2285 | |
2286 | static bool |
2287 | _pthread_priority_to_policy(pthread_priority_t priority, |
2288 | thread_qos_policy_data_t *data) |
2289 | { |
2290 | data->qos_tier = _pthread_priority_thread_qos(pp: priority); |
2291 | data->tier_importance = _pthread_priority_relpri(pp: priority); |
2292 | if (data->qos_tier == THREAD_QOS_UNSPECIFIED || data->tier_importance > 0 || |
2293 | data->tier_importance < THREAD_QOS_MIN_TIER_IMPORTANCE) { |
2294 | return false; |
2295 | } |
2296 | return true; |
2297 | } |
2298 | |
2299 | static int |
2300 | bsdthread_set_self(proc_t p, thread_t th, pthread_priority_t priority, |
2301 | mach_port_name_t voucher, enum workq_set_self_flags flags) |
2302 | { |
2303 | struct uthread *uth = get_bsdthread_info(th); |
2304 | struct workqueue *wq = proc_get_wqptr(p); |
2305 | |
2306 | kern_return_t kr; |
2307 | int unbind_rv = 0, qos_rv = 0, voucher_rv = 0, fixedpri_rv = 0; |
2308 | bool is_wq_thread = (thread_get_tag(thread: th) & THREAD_TAG_WORKQUEUE); |
2309 | |
2310 | assert(th == current_thread()); |
2311 | if (flags & WORKQ_SET_SELF_WQ_KEVENT_UNBIND) { |
2312 | if (!is_wq_thread) { |
2313 | unbind_rv = EINVAL; |
2314 | goto qos; |
2315 | } |
2316 | |
2317 | if (uth->uu_workq_pri.qos_bucket == WORKQ_THREAD_QOS_MANAGER) { |
2318 | unbind_rv = EINVAL; |
2319 | goto qos; |
2320 | } |
2321 | |
2322 | workq_threadreq_t kqr = uth->uu_kqr_bound; |
2323 | if (kqr == NULL) { |
2324 | unbind_rv = EALREADY; |
2325 | goto qos; |
2326 | } |
2327 | |
2328 | if (kqr->tr_flags & WORKQ_TR_FLAG_WORKLOOP) { |
2329 | unbind_rv = EINVAL; |
2330 | goto qos; |
2331 | } |
2332 | |
2333 | kqueue_threadreq_unbind(p, kqr); |
2334 | } |
2335 | |
2336 | qos: |
2337 | if (flags & (WORKQ_SET_SELF_QOS_FLAG | WORKQ_SET_SELF_QOS_OVERRIDE_FLAG)) { |
2338 | assert(flags & WORKQ_SET_SELF_QOS_FLAG); |
2339 | |
2340 | thread_qos_policy_data_t new_policy; |
2341 | thread_qos_t qos_override = THREAD_QOS_UNSPECIFIED; |
2342 | |
2343 | if (!_pthread_priority_to_policy(priority, data: &new_policy)) { |
2344 | qos_rv = EINVAL; |
2345 | goto voucher; |
2346 | } |
2347 | |
2348 | if (flags & WORKQ_SET_SELF_QOS_OVERRIDE_FLAG) { |
2349 | /* |
2350 | * If the WORKQ_SET_SELF_QOS_OVERRIDE_FLAG is set, we definitely |
2351 | * should have an override QoS in the pthread_priority_t and we should |
2352 | * only come into this path for cooperative thread requests |
2353 | */ |
2354 | if (!_pthread_priority_has_override_qos(pp: priority) || |
2355 | !_pthread_priority_is_cooperative(pp: priority)) { |
2356 | qos_rv = EINVAL; |
2357 | goto voucher; |
2358 | } |
2359 | qos_override = _pthread_priority_thread_override_qos(pp: priority); |
2360 | } else { |
2361 | /* |
2362 | * If the WORKQ_SET_SELF_QOS_OVERRIDE_FLAG is not set, we definitely |
2363 | * should not have an override QoS in the pthread_priority_t |
2364 | */ |
2365 | if (_pthread_priority_has_override_qos(pp: priority)) { |
2366 | qos_rv = EINVAL; |
2367 | goto voucher; |
2368 | } |
2369 | } |
2370 | |
2371 | if (!is_wq_thread) { |
2372 | /* |
2373 | * Threads opted out of QoS can't change QoS |
2374 | */ |
2375 | if (!thread_has_qos_policy(thread: th)) { |
2376 | qos_rv = EPERM; |
2377 | goto voucher; |
2378 | } |
2379 | } else if (uth->uu_workq_pri.qos_bucket == WORKQ_THREAD_QOS_MANAGER || |
2380 | uth->uu_workq_pri.qos_bucket == WORKQ_THREAD_QOS_ABOVEUI) { |
2381 | /* |
2382 | * Workqueue manager threads or threads above UI can't change QoS |
2383 | */ |
2384 | qos_rv = EINVAL; |
2385 | goto voucher; |
2386 | } else { |
2387 | /* |
2388 | * For workqueue threads, possibly adjust buckets and redrive thread |
2389 | * requests. |
2390 | * |
2391 | * Transitions allowed: |
2392 | * |
2393 | * overcommit --> non-overcommit |
2394 | * overcommit --> overcommit |
2395 | * non-overcommit --> non-overcommit |
2396 | * non-overcommit --> overcommit (to be deprecated later) |
2397 | * cooperative --> cooperative |
2398 | * |
2399 | * All other transitions aren't allowed so reject them. |
2400 | */ |
2401 | if (workq_thread_is_overcommit(uth) && _pthread_priority_is_cooperative(pp: priority)) { |
2402 | qos_rv = EINVAL; |
2403 | goto voucher; |
2404 | } else if (workq_thread_is_cooperative(uth) && !_pthread_priority_is_cooperative(pp: priority)) { |
2405 | qos_rv = EINVAL; |
2406 | goto voucher; |
2407 | } else if (workq_thread_is_nonovercommit(uth) && _pthread_priority_is_cooperative(pp: priority)) { |
2408 | qos_rv = EINVAL; |
2409 | goto voucher; |
2410 | } |
2411 | |
2412 | struct uu_workq_policy old_pri, new_pri; |
2413 | bool force_run = false; |
2414 | |
2415 | if (qos_override) { |
2416 | /* |
2417 | * We're in the case of a thread clarifying that it is for eg. not IN |
2418 | * req QoS but rather, UT req QoS with IN override. However, this can |
2419 | * race with a concurrent override happening to the thread via |
2420 | * workq_thread_add_dispatch_override so this needs to be |
2421 | * synchronized with the thread mutex. |
2422 | */ |
2423 | thread_mtx_lock(thread: th); |
2424 | } |
2425 | |
2426 | workq_lock_spin(wq); |
2427 | |
2428 | old_pri = new_pri = uth->uu_workq_pri; |
2429 | new_pri.qos_req = (thread_qos_t)new_policy.qos_tier; |
2430 | |
2431 | if (old_pri.qos_override < qos_override) { |
2432 | /* |
2433 | * Since this can race with a concurrent override via |
2434 | * workq_thread_add_dispatch_override, only adjust override value if we |
2435 | * are higher - this is a saturating function. |
2436 | * |
2437 | * We should not be changing the final override values, we should simply |
2438 | * be redistributing the current value with a different breakdown of req |
2439 | * vs override QoS - assert to that effect. Therefore, buckets should |
2440 | * not change. |
2441 | */ |
2442 | new_pri.qos_override = qos_override; |
2443 | assert(workq_pri_override(new_pri) == workq_pri_override(old_pri)); |
2444 | assert(workq_pri_bucket(new_pri) == workq_pri_bucket(old_pri)); |
2445 | } |
2446 | |
2447 | /* Adjust schedule counts for various types of transitions */ |
2448 | |
2449 | /* overcommit -> non-overcommit */ |
2450 | if (workq_thread_is_overcommit(uth) && _pthread_priority_is_nonovercommit(pp: priority)) { |
2451 | workq_thread_set_type(uth, flags: 0); |
2452 | wq->wq_constrained_threads_scheduled++; |
2453 | |
2454 | /* non-overcommit -> overcommit */ |
2455 | } else if (workq_thread_is_nonovercommit(uth) && _pthread_priority_is_overcommit(pp: priority)) { |
2456 | workq_thread_set_type(uth, UT_WORKQ_OVERCOMMIT); |
2457 | force_run = (wq->wq_constrained_threads_scheduled-- == wq_max_constrained_threads); |
2458 | |
2459 | /* cooperative -> cooperative */ |
2460 | } else if (workq_thread_is_cooperative(uth)) { |
2461 | _wq_cooperative_queue_scheduled_count_dec(wq, qos: old_pri.qos_req); |
2462 | _wq_cooperative_queue_scheduled_count_inc(wq, qos: new_pri.qos_req); |
2463 | |
2464 | /* We're changing schedule counts within cooperative pool, we |
2465 | * need to refresh best cooperative QoS logic again */ |
2466 | force_run = _wq_cooperative_queue_refresh_best_req_qos(wq); |
2467 | } |
2468 | |
2469 | /* |
2470 | * This will set up an override on the thread if any and will also call |
2471 | * schedule_creator if needed |
2472 | */ |
2473 | workq_thread_update_bucket(p, wq, uth, old_pri, new_pri, force_run); |
2474 | workq_unlock(wq); |
2475 | |
2476 | if (qos_override) { |
2477 | thread_mtx_unlock(thread: th); |
2478 | } |
2479 | |
2480 | if (workq_thread_is_overcommit(uth)) { |
2481 | thread_disarm_workqueue_quantum(thread: th); |
2482 | } else { |
2483 | /* If the thread changed QoS buckets, the quantum duration |
2484 | * may have changed too */ |
2485 | thread_arm_workqueue_quantum(thread: th); |
2486 | } |
2487 | } |
2488 | |
2489 | kr = thread_policy_set_internal(thread: th, THREAD_QOS_POLICY, |
2490 | policy_info: (thread_policy_t)&new_policy, THREAD_QOS_POLICY_COUNT); |
2491 | if (kr != KERN_SUCCESS) { |
2492 | qos_rv = EINVAL; |
2493 | } |
2494 | } |
2495 | |
2496 | voucher: |
2497 | if (flags & WORKQ_SET_SELF_VOUCHER_FLAG) { |
2498 | kr = thread_set_voucher_name(name: voucher); |
2499 | if (kr != KERN_SUCCESS) { |
2500 | voucher_rv = ENOENT; |
2501 | goto fixedpri; |
2502 | } |
2503 | } |
2504 | |
2505 | fixedpri: |
2506 | if (qos_rv) { |
2507 | goto done; |
2508 | } |
2509 | if (flags & WORKQ_SET_SELF_FIXEDPRIORITY_FLAG) { |
2510 | thread_extended_policy_data_t extpol = {.timeshare = 0}; |
2511 | |
2512 | if (is_wq_thread) { |
2513 | /* Not allowed on workqueue threads */ |
2514 | fixedpri_rv = ENOTSUP; |
2515 | goto done; |
2516 | } |
2517 | |
2518 | kr = thread_policy_set_internal(thread: th, THREAD_EXTENDED_POLICY, |
2519 | policy_info: (thread_policy_t)&extpol, THREAD_EXTENDED_POLICY_COUNT); |
2520 | if (kr != KERN_SUCCESS) { |
2521 | fixedpri_rv = EINVAL; |
2522 | goto done; |
2523 | } |
2524 | } else if (flags & WORKQ_SET_SELF_TIMESHARE_FLAG) { |
2525 | thread_extended_policy_data_t extpol = {.timeshare = 1}; |
2526 | |
2527 | if (is_wq_thread) { |
2528 | /* Not allowed on workqueue threads */ |
2529 | fixedpri_rv = ENOTSUP; |
2530 | goto done; |
2531 | } |
2532 | |
2533 | kr = thread_policy_set_internal(thread: th, THREAD_EXTENDED_POLICY, |
2534 | policy_info: (thread_policy_t)&extpol, THREAD_EXTENDED_POLICY_COUNT); |
2535 | if (kr != KERN_SUCCESS) { |
2536 | fixedpri_rv = EINVAL; |
2537 | goto done; |
2538 | } |
2539 | } |
2540 | |
2541 | done: |
2542 | if (qos_rv && voucher_rv) { |
2543 | /* Both failed, give that a unique error. */ |
2544 | return EBADMSG; |
2545 | } |
2546 | |
2547 | if (unbind_rv) { |
2548 | return unbind_rv; |
2549 | } |
2550 | |
2551 | if (qos_rv) { |
2552 | return qos_rv; |
2553 | } |
2554 | |
2555 | if (voucher_rv) { |
2556 | return voucher_rv; |
2557 | } |
2558 | |
2559 | if (fixedpri_rv) { |
2560 | return fixedpri_rv; |
2561 | } |
2562 | |
2563 | |
2564 | return 0; |
2565 | } |
2566 | |
2567 | static int |
2568 | bsdthread_add_explicit_override(proc_t p, mach_port_name_t kport, |
2569 | pthread_priority_t pp, user_addr_t resource) |
2570 | { |
2571 | thread_qos_t qos = _pthread_priority_thread_qos(pp); |
2572 | if (qos == THREAD_QOS_UNSPECIFIED) { |
2573 | return EINVAL; |
2574 | } |
2575 | |
2576 | thread_t th = port_name_to_thread(port_name: kport, |
2577 | options: PORT_INTRANS_THREAD_IN_CURRENT_TASK); |
2578 | if (th == THREAD_NULL) { |
2579 | return ESRCH; |
2580 | } |
2581 | |
2582 | int rv = proc_thread_qos_add_override(task: proc_task(p), thread: th, tid: 0, override_qos: qos, TRUE, |
2583 | resource, THREAD_QOS_OVERRIDE_TYPE_PTHREAD_EXPLICIT_OVERRIDE); |
2584 | |
2585 | thread_deallocate(thread: th); |
2586 | return rv; |
2587 | } |
2588 | |
2589 | static int |
2590 | bsdthread_remove_explicit_override(proc_t p, mach_port_name_t kport, |
2591 | user_addr_t resource) |
2592 | { |
2593 | thread_t th = port_name_to_thread(port_name: kport, |
2594 | options: PORT_INTRANS_THREAD_IN_CURRENT_TASK); |
2595 | if (th == THREAD_NULL) { |
2596 | return ESRCH; |
2597 | } |
2598 | |
2599 | int rv = proc_thread_qos_remove_override(task: proc_task(p), thread: th, tid: 0, resource, |
2600 | THREAD_QOS_OVERRIDE_TYPE_PTHREAD_EXPLICIT_OVERRIDE); |
2601 | |
2602 | thread_deallocate(thread: th); |
2603 | return rv; |
2604 | } |
2605 | |
2606 | static int |
2607 | workq_thread_add_dispatch_override(proc_t p, mach_port_name_t kport, |
2608 | pthread_priority_t pp, user_addr_t ulock_addr) |
2609 | { |
2610 | struct uu_workq_policy old_pri, new_pri; |
2611 | struct workqueue *wq = proc_get_wqptr(p); |
2612 | |
2613 | thread_qos_t qos_override = _pthread_priority_thread_qos(pp); |
2614 | if (qos_override == THREAD_QOS_UNSPECIFIED) { |
2615 | return EINVAL; |
2616 | } |
2617 | |
2618 | thread_t thread = port_name_to_thread(port_name: kport, |
2619 | options: PORT_INTRANS_THREAD_IN_CURRENT_TASK); |
2620 | if (thread == THREAD_NULL) { |
2621 | return ESRCH; |
2622 | } |
2623 | |
2624 | struct uthread *uth = get_bsdthread_info(thread); |
2625 | if ((thread_get_tag(thread) & THREAD_TAG_WORKQUEUE) == 0) { |
2626 | thread_deallocate(thread); |
2627 | return EPERM; |
2628 | } |
2629 | |
2630 | WQ_TRACE_WQ(TRACE_wq_override_dispatch | DBG_FUNC_NONE, |
2631 | wq, thread_tid(thread), 1, pp); |
2632 | |
2633 | thread_mtx_lock(thread); |
2634 | |
2635 | if (ulock_addr) { |
2636 | uint32_t val; |
2637 | int rc; |
2638 | /* |
2639 | * Workaround lack of explicit support for 'no-fault copyin' |
2640 | * <rdar://problem/24999882>, as disabling preemption prevents paging in |
2641 | */ |
2642 | disable_preemption(); |
2643 | rc = copyin_atomic32(user_addr: ulock_addr, u32: &val); |
2644 | enable_preemption(); |
2645 | if (rc == 0 && ulock_owner_value_to_port_name(uval: val) != kport) { |
2646 | goto out; |
2647 | } |
2648 | } |
2649 | |
2650 | workq_lock_spin(wq); |
2651 | |
2652 | old_pri = uth->uu_workq_pri; |
2653 | if (old_pri.qos_override >= qos_override) { |
2654 | /* Nothing to do */ |
2655 | } else if (thread == current_thread()) { |
2656 | new_pri = old_pri; |
2657 | new_pri.qos_override = qos_override; |
2658 | workq_thread_update_bucket(p, wq, uth, old_pri, new_pri, false); |
2659 | } else { |
2660 | uth->uu_workq_pri.qos_override = qos_override; |
2661 | if (qos_override > workq_pri_override(req: old_pri)) { |
2662 | thread_set_workq_override(thread, qos: qos_override); |
2663 | } |
2664 | } |
2665 | |
2666 | workq_unlock(wq); |
2667 | |
2668 | out: |
2669 | thread_mtx_unlock(thread); |
2670 | thread_deallocate(thread); |
2671 | return 0; |
2672 | } |
2673 | |
2674 | static int |
2675 | workq_thread_reset_dispatch_override(proc_t p, thread_t thread) |
2676 | { |
2677 | struct uu_workq_policy old_pri, new_pri; |
2678 | struct workqueue *wq = proc_get_wqptr(p); |
2679 | struct uthread *uth = get_bsdthread_info(thread); |
2680 | |
2681 | if ((thread_get_tag(thread) & THREAD_TAG_WORKQUEUE) == 0) { |
2682 | return EPERM; |
2683 | } |
2684 | |
2685 | WQ_TRACE_WQ(TRACE_wq_override_reset | DBG_FUNC_NONE, wq, 0, 0, 0); |
2686 | |
2687 | /* |
2688 | * workq_thread_add_dispatch_override takes the thread mutex before doing the |
2689 | * copyin to validate the drainer and apply the override. We need to do the |
2690 | * same here. See rdar://84472518 |
2691 | */ |
2692 | thread_mtx_lock(thread); |
2693 | |
2694 | workq_lock_spin(wq); |
2695 | old_pri = new_pri = uth->uu_workq_pri; |
2696 | new_pri.qos_override = THREAD_QOS_UNSPECIFIED; |
2697 | workq_thread_update_bucket(p, wq, uth, old_pri, new_pri, false); |
2698 | workq_unlock(wq); |
2699 | |
2700 | thread_mtx_unlock(thread); |
2701 | return 0; |
2702 | } |
2703 | |
2704 | static int |
2705 | workq_thread_allow_kill(__unused proc_t p, thread_t thread, bool enable) |
2706 | { |
2707 | if (!(thread_get_tag(thread) & THREAD_TAG_WORKQUEUE)) { |
2708 | // If the thread isn't a workqueue thread, don't set the |
2709 | // kill_allowed bit; however, we still need to return 0 |
2710 | // instead of an error code since this code is executed |
2711 | // on the abort path which needs to not depend on the |
2712 | // pthread_t (returning an error depends on pthread_t via |
2713 | // cerror_nocancel) |
2714 | return 0; |
2715 | } |
2716 | struct uthread *uth = get_bsdthread_info(thread); |
2717 | uth->uu_workq_pthread_kill_allowed = enable; |
2718 | return 0; |
2719 | } |
2720 | |
2721 | static int |
2722 | workq_allow_sigmask(proc_t p, sigset_t mask) |
2723 | { |
2724 | if (mask & workq_threadmask) { |
2725 | return EINVAL; |
2726 | } |
2727 | |
2728 | proc_lock(p); |
2729 | p->p_workq_allow_sigmask |= mask; |
2730 | proc_unlock(p); |
2731 | |
2732 | return 0; |
2733 | } |
2734 | |
2735 | static int |
2736 | bsdthread_get_max_parallelism(thread_qos_t qos, unsigned long flags, |
2737 | int *retval) |
2738 | { |
2739 | static_assert(QOS_PARALLELISM_COUNT_LOGICAL == |
2740 | _PTHREAD_QOS_PARALLELISM_COUNT_LOGICAL, "logical" ); |
2741 | static_assert(QOS_PARALLELISM_REALTIME == |
2742 | _PTHREAD_QOS_PARALLELISM_REALTIME, "realtime" ); |
2743 | static_assert(QOS_PARALLELISM_CLUSTER_SHARED_RESOURCE == |
2744 | _PTHREAD_QOS_PARALLELISM_CLUSTER_SHARED_RSRC, "cluster shared resource" ); |
2745 | |
2746 | if (flags & ~(QOS_PARALLELISM_REALTIME | QOS_PARALLELISM_COUNT_LOGICAL | QOS_PARALLELISM_CLUSTER_SHARED_RESOURCE)) { |
2747 | return EINVAL; |
2748 | } |
2749 | |
2750 | /* No units are present */ |
2751 | if (flags & QOS_PARALLELISM_CLUSTER_SHARED_RESOURCE) { |
2752 | return ENOTSUP; |
2753 | } |
2754 | |
2755 | if (flags & QOS_PARALLELISM_REALTIME) { |
2756 | if (qos) { |
2757 | return EINVAL; |
2758 | } |
2759 | } else if (qos == THREAD_QOS_UNSPECIFIED || qos >= THREAD_QOS_LAST) { |
2760 | return EINVAL; |
2761 | } |
2762 | |
2763 | *retval = qos_max_parallelism(qos, options: flags); |
2764 | return 0; |
2765 | } |
2766 | |
2767 | static int |
2768 | bsdthread_dispatch_apply_attr(__unused struct proc *p, thread_t thread, |
2769 | unsigned long flags, uint64_t value1, __unused uint64_t value2) |
2770 | { |
2771 | uint32_t apply_worker_index; |
2772 | kern_return_t kr; |
2773 | |
2774 | switch (flags) { |
2775 | case _PTHREAD_DISPATCH_APPLY_ATTR_CLUSTER_SHARED_RSRC_SET: |
2776 | apply_worker_index = (uint32_t)value1; |
2777 | kr = thread_shared_rsrc_policy_set(thread, index: apply_worker_index, type: CLUSTER_SHARED_RSRC_TYPE_RR, agent: SHARED_RSRC_POLICY_AGENT_DISPATCH); |
2778 | /* |
2779 | * KERN_INVALID_POLICY indicates that the thread was trying to bind to a |
2780 | * cluster which it was not eligible to execute on. |
2781 | */ |
2782 | return (kr == KERN_SUCCESS) ? 0 : ((kr == KERN_INVALID_POLICY) ? ENOTSUP : EINVAL); |
2783 | case _PTHREAD_DISPATCH_APPLY_ATTR_CLUSTER_SHARED_RSRC_CLEAR: |
2784 | kr = thread_shared_rsrc_policy_clear(thread, type: CLUSTER_SHARED_RSRC_TYPE_RR, agent: SHARED_RSRC_POLICY_AGENT_DISPATCH); |
2785 | return (kr == KERN_SUCCESS) ? 0 : EINVAL; |
2786 | default: |
2787 | return EINVAL; |
2788 | } |
2789 | } |
2790 | |
2791 | #define ENSURE_UNUSED(arg) \ |
2792 | ({ if ((arg) != 0) { return EINVAL; } }) |
2793 | |
2794 | int |
2795 | bsdthread_ctl(struct proc *p, struct bsdthread_ctl_args *uap, int *retval) |
2796 | { |
2797 | switch (uap->cmd) { |
2798 | case BSDTHREAD_CTL_QOS_OVERRIDE_START: |
2799 | return bsdthread_add_explicit_override(p, kport: (mach_port_name_t)uap->arg1, |
2800 | pp: (pthread_priority_t)uap->arg2, resource: uap->arg3); |
2801 | case BSDTHREAD_CTL_QOS_OVERRIDE_END: |
2802 | ENSURE_UNUSED(uap->arg3); |
2803 | return bsdthread_remove_explicit_override(p, kport: (mach_port_name_t)uap->arg1, |
2804 | resource: (user_addr_t)uap->arg2); |
2805 | |
2806 | case BSDTHREAD_CTL_QOS_OVERRIDE_DISPATCH: |
2807 | return workq_thread_add_dispatch_override(p, kport: (mach_port_name_t)uap->arg1, |
2808 | pp: (pthread_priority_t)uap->arg2, ulock_addr: uap->arg3); |
2809 | case BSDTHREAD_CTL_QOS_OVERRIDE_RESET: |
2810 | return workq_thread_reset_dispatch_override(p, thread: current_thread()); |
2811 | |
2812 | case BSDTHREAD_CTL_SET_SELF: |
2813 | return bsdthread_set_self(p, th: current_thread(), |
2814 | priority: (pthread_priority_t)uap->arg1, voucher: (mach_port_name_t)uap->arg2, |
2815 | flags: (enum workq_set_self_flags)uap->arg3); |
2816 | |
2817 | case BSDTHREAD_CTL_QOS_MAX_PARALLELISM: |
2818 | ENSURE_UNUSED(uap->arg3); |
2819 | return bsdthread_get_max_parallelism(qos: (thread_qos_t)uap->arg1, |
2820 | flags: (unsigned long)uap->arg2, retval); |
2821 | case BSDTHREAD_CTL_WORKQ_ALLOW_KILL: |
2822 | ENSURE_UNUSED(uap->arg2); |
2823 | ENSURE_UNUSED(uap->arg3); |
2824 | return workq_thread_allow_kill(p, thread: current_thread(), enable: (bool)uap->arg1); |
2825 | case BSDTHREAD_CTL_DISPATCH_APPLY_ATTR: |
2826 | return bsdthread_dispatch_apply_attr(p, thread: current_thread(), |
2827 | flags: (unsigned long)uap->arg1, value1: (uint64_t)uap->arg2, |
2828 | value2: (uint64_t)uap->arg3); |
2829 | case BSDTHREAD_CTL_WORKQ_ALLOW_SIGMASK: |
2830 | return workq_allow_sigmask(p, mask: (int)uap->arg1); |
2831 | case BSDTHREAD_CTL_SET_QOS: |
2832 | case BSDTHREAD_CTL_QOS_DISPATCH_ASYNCHRONOUS_OVERRIDE_ADD: |
2833 | case BSDTHREAD_CTL_QOS_DISPATCH_ASYNCHRONOUS_OVERRIDE_RESET: |
2834 | /* no longer supported */ |
2835 | return ENOTSUP; |
2836 | |
2837 | default: |
2838 | return EINVAL; |
2839 | } |
2840 | } |
2841 | |
2842 | #pragma mark workqueue thread manipulation |
2843 | |
2844 | static void __dead2 |
2845 | workq_unpark_select_threadreq_or_park_and_unlock(proc_t p, struct workqueue *wq, |
2846 | struct uthread *uth, uint32_t setup_flags); |
2847 | |
2848 | static void __dead2 |
2849 | workq_select_threadreq_or_park_and_unlock(proc_t p, struct workqueue *wq, |
2850 | struct uthread *uth, uint32_t setup_flags); |
2851 | |
2852 | static void workq_setup_and_run(proc_t p, struct uthread *uth, int flags) __dead2; |
2853 | |
2854 | #if KDEBUG_LEVEL >= KDEBUG_LEVEL_STANDARD |
2855 | static inline uint64_t |
2856 | workq_trace_req_id(workq_threadreq_t req) |
2857 | { |
2858 | struct kqworkloop *kqwl; |
2859 | if (req->tr_flags & WORKQ_TR_FLAG_WORKLOOP) { |
2860 | kqwl = __container_of(req, struct kqworkloop, kqwl_request); |
2861 | return kqwl->kqwl_dynamicid; |
2862 | } |
2863 | |
2864 | return VM_KERNEL_ADDRHIDE(req); |
2865 | } |
2866 | #endif |
2867 | |
2868 | /** |
2869 | * Entry point for libdispatch to ask for threads |
2870 | */ |
2871 | static int |
2872 | workq_reqthreads(struct proc *p, uint32_t reqcount, pthread_priority_t pp, bool cooperative) |
2873 | { |
2874 | thread_qos_t qos = _pthread_priority_thread_qos(pp); |
2875 | struct workqueue *wq = proc_get_wqptr(p); |
2876 | uint32_t unpaced, upcall_flags = WQ_FLAG_THREAD_NEWSPI; |
2877 | int ret = 0; |
2878 | |
2879 | if (wq == NULL || reqcount <= 0 || reqcount > UINT16_MAX || |
2880 | qos == THREAD_QOS_UNSPECIFIED) { |
2881 | ret = EINVAL; |
2882 | goto exit; |
2883 | } |
2884 | |
2885 | WQ_TRACE_WQ(TRACE_wq_wqops_reqthreads | DBG_FUNC_NONE, |
2886 | wq, reqcount, pp, cooperative); |
2887 | |
2888 | workq_threadreq_t req = zalloc(zone: workq_zone_threadreq); |
2889 | priority_queue_entry_init(&req->tr_entry); |
2890 | req->tr_state = WORKQ_TR_STATE_NEW; |
2891 | req->tr_qos = qos; |
2892 | workq_tr_flags_t tr_flags = 0; |
2893 | |
2894 | if (pp & _PTHREAD_PRIORITY_OVERCOMMIT_FLAG) { |
2895 | tr_flags |= WORKQ_TR_FLAG_OVERCOMMIT; |
2896 | upcall_flags |= WQ_FLAG_THREAD_OVERCOMMIT; |
2897 | } |
2898 | |
2899 | if (cooperative) { |
2900 | tr_flags |= WORKQ_TR_FLAG_COOPERATIVE; |
2901 | upcall_flags |= WQ_FLAG_THREAD_COOPERATIVE; |
2902 | |
2903 | if (reqcount > 1) { |
2904 | ret = ENOTSUP; |
2905 | goto free_and_exit; |
2906 | } |
2907 | } |
2908 | |
2909 | /* A thread request cannot be both overcommit and cooperative */ |
2910 | if (workq_tr_is_cooperative(tr_flags) && |
2911 | workq_tr_is_overcommit(tr_flags)) { |
2912 | ret = EINVAL; |
2913 | goto free_and_exit; |
2914 | } |
2915 | req->tr_flags = tr_flags; |
2916 | |
2917 | WQ_TRACE_WQ(TRACE_wq_thread_request_initiate | DBG_FUNC_NONE, |
2918 | wq, workq_trace_req_id(req), req->tr_qos, reqcount); |
2919 | |
2920 | workq_lock_spin(wq); |
2921 | do { |
2922 | if (_wq_exiting(wq)) { |
2923 | goto unlock_and_exit; |
2924 | } |
2925 | |
2926 | /* |
2927 | * When userspace is asking for parallelism, wakeup up to (reqcount - 1) |
2928 | * threads without pacing, to inform the scheduler of that workload. |
2929 | * |
2930 | * The last requests, or the ones that failed the admission checks are |
2931 | * enqueued and go through the regular creator codepath. |
2932 | * |
2933 | * If there aren't enough threads, add one, but re-evaluate everything |
2934 | * as conditions may now have changed. |
2935 | */ |
2936 | unpaced = reqcount - 1; |
2937 | |
2938 | if (reqcount > 1) { |
2939 | /* We don't handle asking for parallelism on the cooperative |
2940 | * workqueue just yet */ |
2941 | assert(!workq_threadreq_is_cooperative(req)); |
2942 | |
2943 | if (workq_threadreq_is_nonovercommit(req)) { |
2944 | unpaced = workq_constrained_allowance(wq, at_qos: qos, NULL, false); |
2945 | if (unpaced >= reqcount - 1) { |
2946 | unpaced = reqcount - 1; |
2947 | } |
2948 | } |
2949 | } |
2950 | |
2951 | /* |
2952 | * This path does not currently handle custom workloop parameters |
2953 | * when creating threads for parallelism. |
2954 | */ |
2955 | assert(!(req->tr_flags & WORKQ_TR_FLAG_WL_PARAMS)); |
2956 | |
2957 | /* |
2958 | * This is a trimmed down version of workq_threadreq_bind_and_unlock() |
2959 | */ |
2960 | while (unpaced > 0 && wq->wq_thidlecount) { |
2961 | struct uthread *uth; |
2962 | bool needs_wakeup; |
2963 | uint8_t uu_flags = UT_WORKQ_EARLY_BOUND; |
2964 | |
2965 | if (workq_tr_is_overcommit(tr_flags: req->tr_flags)) { |
2966 | uu_flags |= UT_WORKQ_OVERCOMMIT; |
2967 | } |
2968 | |
2969 | uth = workq_pop_idle_thread(wq, uu_flags, needs_wakeup: &needs_wakeup); |
2970 | |
2971 | _wq_thactive_inc(wq, qos); |
2972 | wq->wq_thscheduled_count[_wq_bucket(qos)]++; |
2973 | workq_thread_reset_pri(wq, uth, req, /*unpark*/ true); |
2974 | wq->wq_fulfilled++; |
2975 | |
2976 | uth->uu_save.uus_workq_park_data.upcall_flags = upcall_flags; |
2977 | uth->uu_save.uus_workq_park_data.thread_request = req; |
2978 | if (needs_wakeup) { |
2979 | workq_thread_wakeup(uth); |
2980 | } |
2981 | unpaced--; |
2982 | reqcount--; |
2983 | } |
2984 | } while (unpaced && wq->wq_nthreads < wq_max_threads && |
2985 | workq_add_new_idle_thread(p, wq)); |
2986 | |
2987 | if (_wq_exiting(wq)) { |
2988 | goto unlock_and_exit; |
2989 | } |
2990 | |
2991 | req->tr_count = (uint16_t)reqcount; |
2992 | if (workq_threadreq_enqueue(wq, req)) { |
2993 | /* This can drop the workqueue lock, and take it again */ |
2994 | workq_schedule_creator(p, wq, flags: WORKQ_THREADREQ_CAN_CREATE_THREADS); |
2995 | } |
2996 | workq_unlock(wq); |
2997 | return 0; |
2998 | |
2999 | unlock_and_exit: |
3000 | workq_unlock(wq); |
3001 | free_and_exit: |
3002 | zfree(workq_zone_threadreq, req); |
3003 | exit: |
3004 | return ret; |
3005 | } |
3006 | |
3007 | bool |
3008 | workq_kern_threadreq_initiate(struct proc *p, workq_threadreq_t req, |
3009 | struct turnstile *workloop_ts, thread_qos_t qos, |
3010 | workq_kern_threadreq_flags_t flags) |
3011 | { |
3012 | struct workqueue *wq = proc_get_wqptr_fast(p); |
3013 | struct uthread *uth = NULL; |
3014 | |
3015 | assert(req->tr_flags & (WORKQ_TR_FLAG_WORKLOOP | WORKQ_TR_FLAG_KEVENT)); |
3016 | |
3017 | if (req->tr_flags & WORKQ_TR_FLAG_WL_OUTSIDE_QOS) { |
3018 | workq_threadreq_param_t trp = kqueue_threadreq_workloop_param(req); |
3019 | qos = thread_workq_qos_for_pri(priority: trp.trp_pri); |
3020 | if (qos == THREAD_QOS_UNSPECIFIED) { |
3021 | qos = WORKQ_THREAD_QOS_ABOVEUI; |
3022 | } |
3023 | } |
3024 | |
3025 | assert(req->tr_state == WORKQ_TR_STATE_IDLE); |
3026 | priority_queue_entry_init(&req->tr_entry); |
3027 | req->tr_count = 1; |
3028 | req->tr_state = WORKQ_TR_STATE_NEW; |
3029 | req->tr_qos = qos; |
3030 | |
3031 | WQ_TRACE_WQ(TRACE_wq_thread_request_initiate | DBG_FUNC_NONE, wq, |
3032 | workq_trace_req_id(req), qos, 1); |
3033 | |
3034 | if (flags & WORKQ_THREADREQ_ATTEMPT_REBIND) { |
3035 | /* |
3036 | * we're called back synchronously from the context of |
3037 | * kqueue_threadreq_unbind from within workq_thread_return() |
3038 | * we can try to match up this thread with this request ! |
3039 | */ |
3040 | uth = current_uthread(); |
3041 | assert(uth->uu_kqr_bound == NULL); |
3042 | } |
3043 | |
3044 | workq_lock_spin(wq); |
3045 | if (_wq_exiting(wq)) { |
3046 | req->tr_state = WORKQ_TR_STATE_IDLE; |
3047 | workq_unlock(wq); |
3048 | return false; |
3049 | } |
3050 | |
3051 | if (uth && workq_threadreq_admissible(wq, uth, req)) { |
3052 | /* This is the case of the rebind - we were about to park and unbind |
3053 | * when more events came so keep the binding. |
3054 | */ |
3055 | assert(uth != wq->wq_creator); |
3056 | |
3057 | if (uth->uu_workq_pri.qos_bucket != req->tr_qos) { |
3058 | _wq_thactive_move(wq, old_qos: uth->uu_workq_pri.qos_bucket, new_qos: req->tr_qos); |
3059 | workq_thread_reset_pri(wq, uth, req, /*unpark*/ false); |
3060 | } |
3061 | /* |
3062 | * We're called from workq_kern_threadreq_initiate() |
3063 | * due to an unbind, with the kq req held. |
3064 | */ |
3065 | WQ_TRACE_WQ(TRACE_wq_thread_logical_run | DBG_FUNC_START, wq, |
3066 | workq_trace_req_id(req), req->tr_flags, 0); |
3067 | wq->wq_fulfilled++; |
3068 | |
3069 | kqueue_threadreq_bind(p, req, thread: get_machthread(uth), flags: 0); |
3070 | } else { |
3071 | if (workloop_ts) { |
3072 | workq_perform_turnstile_operation_locked(wq, operation: ^{ |
3073 | turnstile_update_inheritor(turnstile: workloop_ts, new_inheritor: wq->wq_turnstile, |
3074 | flags: TURNSTILE_IMMEDIATE_UPDATE | TURNSTILE_INHERITOR_TURNSTILE); |
3075 | turnstile_update_inheritor_complete(turnstile: workloop_ts, |
3076 | flags: TURNSTILE_INTERLOCK_HELD); |
3077 | }); |
3078 | } |
3079 | |
3080 | bool reevaluate_creator_thread_group = false; |
3081 | #if CONFIG_PREADOPT_TG |
3082 | reevaluate_creator_thread_group = (flags & WORKQ_THREADREQ_REEVALUATE_PREADOPT_TG); |
3083 | #endif |
3084 | /* We enqueued the highest priority item or we may need to reevaluate if |
3085 | * the creator needs a thread group pre-adoption */ |
3086 | if (workq_threadreq_enqueue(wq, req) || reevaluate_creator_thread_group) { |
3087 | workq_schedule_creator(p, wq, flags); |
3088 | } |
3089 | } |
3090 | |
3091 | workq_unlock(wq); |
3092 | |
3093 | return true; |
3094 | } |
3095 | |
3096 | void |
3097 | workq_kern_threadreq_modify(struct proc *p, workq_threadreq_t req, |
3098 | thread_qos_t qos, workq_kern_threadreq_flags_t flags) |
3099 | { |
3100 | struct workqueue *wq = proc_get_wqptr_fast(p); |
3101 | bool make_overcommit = false; |
3102 | |
3103 | if (req->tr_flags & WORKQ_TR_FLAG_WL_OUTSIDE_QOS) { |
3104 | /* Requests outside-of-QoS shouldn't accept modify operations */ |
3105 | return; |
3106 | } |
3107 | |
3108 | workq_lock_spin(wq); |
3109 | |
3110 | assert(req->tr_qos != WORKQ_THREAD_QOS_MANAGER); |
3111 | assert(req->tr_flags & (WORKQ_TR_FLAG_KEVENT | WORKQ_TR_FLAG_WORKLOOP)); |
3112 | |
3113 | if (req->tr_state == WORKQ_TR_STATE_BINDING) { |
3114 | kqueue_threadreq_bind(p, req, thread: req->tr_thread, flags: 0); |
3115 | workq_unlock(wq); |
3116 | return; |
3117 | } |
3118 | |
3119 | if (flags & WORKQ_THREADREQ_MAKE_OVERCOMMIT) { |
3120 | /* TODO (rokhinip): We come into this code path for kqwl thread |
3121 | * requests. kqwl requests cannot be cooperative. |
3122 | */ |
3123 | assert(!workq_threadreq_is_cooperative(req)); |
3124 | |
3125 | make_overcommit = workq_threadreq_is_nonovercommit(req); |
3126 | } |
3127 | |
3128 | if (_wq_exiting(wq) || (req->tr_qos == qos && !make_overcommit)) { |
3129 | workq_unlock(wq); |
3130 | return; |
3131 | } |
3132 | |
3133 | assert(req->tr_count == 1); |
3134 | if (req->tr_state != WORKQ_TR_STATE_QUEUED) { |
3135 | panic("Invalid thread request (%p) state %d" , req, req->tr_state); |
3136 | } |
3137 | |
3138 | WQ_TRACE_WQ(TRACE_wq_thread_request_modify | DBG_FUNC_NONE, wq, |
3139 | workq_trace_req_id(req), qos, 0); |
3140 | |
3141 | struct priority_queue_sched_max *pq = workq_priority_queue_for_req(wq, req); |
3142 | workq_threadreq_t req_max; |
3143 | |
3144 | /* |
3145 | * Stage 1: Dequeue the request from its priority queue. |
3146 | * |
3147 | * If we dequeue the root item of the constrained priority queue, |
3148 | * maintain the best constrained request qos invariant. |
3149 | */ |
3150 | if (priority_queue_remove(que: pq, elt: &req->tr_entry)) { |
3151 | if (workq_threadreq_is_nonovercommit(req)) { |
3152 | _wq_thactive_refresh_best_constrained_req_qos(wq); |
3153 | } |
3154 | } |
3155 | |
3156 | /* |
3157 | * Stage 2: Apply changes to the thread request |
3158 | * |
3159 | * If the item will not become the root of the priority queue it belongs to, |
3160 | * then we need to wait in line, just enqueue and return quickly. |
3161 | */ |
3162 | if (__improbable(make_overcommit)) { |
3163 | req->tr_flags ^= WORKQ_TR_FLAG_OVERCOMMIT; |
3164 | pq = workq_priority_queue_for_req(wq, req); |
3165 | } |
3166 | req->tr_qos = qos; |
3167 | |
3168 | req_max = priority_queue_max(pq, struct workq_threadreq_s, tr_entry); |
3169 | if (req_max && req_max->tr_qos >= qos) { |
3170 | priority_queue_entry_set_sched_pri(pq, &req->tr_entry, |
3171 | workq_priority_for_req(req), false); |
3172 | priority_queue_insert(que: pq, elt: &req->tr_entry); |
3173 | workq_unlock(wq); |
3174 | return; |
3175 | } |
3176 | |
3177 | /* |
3178 | * Stage 3: Reevaluate whether we should run the thread request. |
3179 | * |
3180 | * Pretend the thread request is new again: |
3181 | * - adjust wq_reqcount to not count it anymore. |
3182 | * - make its state WORKQ_TR_STATE_NEW (so that workq_threadreq_bind_and_unlock |
3183 | * properly attempts a synchronous bind) |
3184 | */ |
3185 | wq->wq_reqcount--; |
3186 | req->tr_state = WORKQ_TR_STATE_NEW; |
3187 | |
3188 | /* We enqueued the highest priority item or we may need to reevaluate if |
3189 | * the creator needs a thread group pre-adoption if the request got a new TG */ |
3190 | bool reevaluate_creator_tg = false; |
3191 | |
3192 | #if CONFIG_PREADOPT_TG |
3193 | reevaluate_creator_tg = (flags & WORKQ_THREADREQ_REEVALUATE_PREADOPT_TG); |
3194 | #endif |
3195 | |
3196 | if (workq_threadreq_enqueue(wq, req) || reevaluate_creator_tg) { |
3197 | workq_schedule_creator(p, wq, flags); |
3198 | } |
3199 | workq_unlock(wq); |
3200 | } |
3201 | |
3202 | void |
3203 | workq_kern_threadreq_lock(struct proc *p) |
3204 | { |
3205 | workq_lock_spin(wq: proc_get_wqptr_fast(p)); |
3206 | } |
3207 | |
3208 | void |
3209 | workq_kern_threadreq_unlock(struct proc *p) |
3210 | { |
3211 | workq_unlock(wq: proc_get_wqptr_fast(p)); |
3212 | } |
3213 | |
3214 | void |
3215 | workq_kern_threadreq_update_inheritor(struct proc *p, workq_threadreq_t req, |
3216 | thread_t owner, struct turnstile *wl_ts, |
3217 | turnstile_update_flags_t flags) |
3218 | { |
3219 | struct workqueue *wq = proc_get_wqptr_fast(p); |
3220 | turnstile_inheritor_t inheritor; |
3221 | |
3222 | assert(req->tr_qos != WORKQ_THREAD_QOS_MANAGER); |
3223 | assert(req->tr_flags & WORKQ_TR_FLAG_WORKLOOP); |
3224 | workq_lock_held(wq); |
3225 | |
3226 | if (req->tr_state == WORKQ_TR_STATE_BINDING) { |
3227 | kqueue_threadreq_bind(p, req, thread: req->tr_thread, |
3228 | KQUEUE_THREADERQ_BIND_NO_INHERITOR_UPDATE); |
3229 | return; |
3230 | } |
3231 | |
3232 | if (_wq_exiting(wq)) { |
3233 | inheritor = TURNSTILE_INHERITOR_NULL; |
3234 | } else { |
3235 | if (req->tr_state != WORKQ_TR_STATE_QUEUED) { |
3236 | panic("Invalid thread request (%p) state %d" , req, req->tr_state); |
3237 | } |
3238 | |
3239 | if (owner) { |
3240 | inheritor = owner; |
3241 | flags |= TURNSTILE_INHERITOR_THREAD; |
3242 | } else { |
3243 | inheritor = wq->wq_turnstile; |
3244 | flags |= TURNSTILE_INHERITOR_TURNSTILE; |
3245 | } |
3246 | } |
3247 | |
3248 | workq_perform_turnstile_operation_locked(wq, operation: ^{ |
3249 | turnstile_update_inheritor(turnstile: wl_ts, new_inheritor: inheritor, flags); |
3250 | }); |
3251 | } |
3252 | |
3253 | void |
3254 | workq_kern_threadreq_redrive(struct proc *p, workq_kern_threadreq_flags_t flags) |
3255 | { |
3256 | struct workqueue *wq = proc_get_wqptr_fast(p); |
3257 | |
3258 | workq_lock_spin(wq); |
3259 | workq_schedule_creator(p, wq, flags); |
3260 | workq_unlock(wq); |
3261 | } |
3262 | |
3263 | /* |
3264 | * Always called at AST by the thread on itself |
3265 | * |
3266 | * Upon quantum expiry, the workqueue subsystem evaluates its state and decides |
3267 | * on what the thread should do next. The TSD value is always set by the thread |
3268 | * on itself in the kernel and cleared either by userspace when it acks the TSD |
3269 | * value and takes action, or by the thread in the kernel when the quantum |
3270 | * expires again. |
3271 | */ |
3272 | void |
3273 | workq_kern_quantum_expiry_reevaluate(proc_t proc, thread_t thread) |
3274 | { |
3275 | struct uthread *uth = get_bsdthread_info(thread); |
3276 | |
3277 | if (uth->uu_workq_flags & UT_WORKQ_DYING) { |
3278 | return; |
3279 | } |
3280 | |
3281 | if (!thread_supports_cooperative_workqueue(thread)) { |
3282 | panic("Quantum expired for thread that doesn't support cooperative workqueue" ); |
3283 | } |
3284 | |
3285 | thread_qos_t qos = uth->uu_workq_pri.qos_bucket; |
3286 | if (qos == THREAD_QOS_UNSPECIFIED) { |
3287 | panic("Thread should not have workq bucket of QoS UN" ); |
3288 | } |
3289 | |
3290 | assert(thread_has_expired_workqueue_quantum(thread, false)); |
3291 | |
3292 | struct workqueue *wq = proc_get_wqptr(p: proc); |
3293 | assert(wq != NULL); |
3294 | |
3295 | /* |
3296 | * For starters, we're just going to evaluate and see if we need to narrow |
3297 | * the pool and tell this thread to park if needed. In the future, we'll |
3298 | * evaluate and convey other workqueue state information like needing to |
3299 | * pump kevents, etc. |
3300 | */ |
3301 | uint64_t flags = 0; |
3302 | |
3303 | workq_lock_spin(wq); |
3304 | |
3305 | if (workq_thread_is_cooperative(uth)) { |
3306 | if (!workq_cooperative_allowance(wq, qos, uth, false)) { |
3307 | flags |= PTHREAD_WQ_QUANTUM_EXPIRY_NARROW; |
3308 | } else { |
3309 | /* In the future, when we have kevent hookups for the cooperative |
3310 | * pool, we need fancier logic for what userspace should do. But |
3311 | * right now, only userspace thread requests exist - so we'll just |
3312 | * tell userspace to shuffle work items */ |
3313 | flags |= PTHREAD_WQ_QUANTUM_EXPIRY_SHUFFLE; |
3314 | } |
3315 | } else if (workq_thread_is_nonovercommit(uth)) { |
3316 | if (!workq_constrained_allowance(wq, at_qos: qos, uth, false)) { |
3317 | flags |= PTHREAD_WQ_QUANTUM_EXPIRY_NARROW; |
3318 | } |
3319 | } |
3320 | workq_unlock(wq); |
3321 | |
3322 | WQ_TRACE(TRACE_wq_quantum_expiry_reevaluate, flags, 0, 0, 0); |
3323 | |
3324 | kevent_set_workq_quantum_expiry_user_tsd(p: proc, t: thread, flags); |
3325 | |
3326 | /* We have conveyed to userspace about what it needs to do upon quantum |
3327 | * expiry, now rearm the workqueue quantum again */ |
3328 | thread_arm_workqueue_quantum(thread: get_machthread(uth)); |
3329 | } |
3330 | |
3331 | void |
3332 | workq_schedule_creator_turnstile_redrive(struct workqueue *wq, bool locked) |
3333 | { |
3334 | if (locked) { |
3335 | workq_schedule_creator(NULL, wq, flags: WORKQ_THREADREQ_NONE); |
3336 | } else { |
3337 | workq_schedule_immediate_thread_creation(wq); |
3338 | } |
3339 | } |
3340 | |
3341 | static int |
3342 | workq_thread_return(struct proc *p, struct workq_kernreturn_args *uap, |
3343 | struct workqueue *wq) |
3344 | { |
3345 | thread_t th = current_thread(); |
3346 | struct uthread *uth = get_bsdthread_info(th); |
3347 | workq_threadreq_t kqr = uth->uu_kqr_bound; |
3348 | workq_threadreq_param_t trp = { }; |
3349 | int nevents = uap->affinity, error; |
3350 | user_addr_t eventlist = uap->item; |
3351 | |
3352 | if (((thread_get_tag(thread: th) & THREAD_TAG_WORKQUEUE) == 0) || |
3353 | (uth->uu_workq_flags & UT_WORKQ_DYING)) { |
3354 | return EINVAL; |
3355 | } |
3356 | |
3357 | if (eventlist && nevents && kqr == NULL) { |
3358 | return EINVAL; |
3359 | } |
3360 | |
3361 | /* |
3362 | * Reset signal mask on the workqueue thread to default state, |
3363 | * but do not touch any signals that are marked for preservation. |
3364 | */ |
3365 | sigset_t resettable = uth->uu_sigmask & ~p->p_workq_allow_sigmask; |
3366 | if (resettable != (sigset_t)~workq_threadmask) { |
3367 | proc_lock(p); |
3368 | uth->uu_sigmask |= ~workq_threadmask & ~p->p_workq_allow_sigmask; |
3369 | proc_unlock(p); |
3370 | } |
3371 | |
3372 | if (kqr && kqr->tr_flags & WORKQ_TR_FLAG_WL_PARAMS) { |
3373 | /* |
3374 | * Ensure we store the threadreq param before unbinding |
3375 | * the kqr from this thread. |
3376 | */ |
3377 | trp = kqueue_threadreq_workloop_param(req: kqr); |
3378 | } |
3379 | |
3380 | /* |
3381 | * Freeze the base pri while we decide the fate of this thread. |
3382 | * |
3383 | * Either: |
3384 | * - we return to user and kevent_cleanup will have unfrozen the base pri, |
3385 | * - or we proceed to workq_select_threadreq_or_park_and_unlock() who will. |
3386 | */ |
3387 | thread_freeze_base_pri(thread: th); |
3388 | |
3389 | if (kqr) { |
3390 | uint32_t upcall_flags = WQ_FLAG_THREAD_NEWSPI | WQ_FLAG_THREAD_REUSE; |
3391 | if (kqr->tr_flags & WORKQ_TR_FLAG_WORKLOOP) { |
3392 | upcall_flags |= WQ_FLAG_THREAD_WORKLOOP | WQ_FLAG_THREAD_KEVENT; |
3393 | } else { |
3394 | upcall_flags |= WQ_FLAG_THREAD_KEVENT; |
3395 | } |
3396 | if (uth->uu_workq_pri.qos_bucket == WORKQ_THREAD_QOS_MANAGER) { |
3397 | upcall_flags |= WQ_FLAG_THREAD_EVENT_MANAGER; |
3398 | } else { |
3399 | if (workq_thread_is_overcommit(uth)) { |
3400 | upcall_flags |= WQ_FLAG_THREAD_OVERCOMMIT; |
3401 | } |
3402 | if (uth->uu_workq_flags & UT_WORKQ_OUTSIDE_QOS) { |
3403 | upcall_flags |= WQ_FLAG_THREAD_OUTSIDEQOS; |
3404 | } else { |
3405 | upcall_flags |= uth->uu_workq_pri.qos_req | |
3406 | WQ_FLAG_THREAD_PRIO_QOS; |
3407 | } |
3408 | } |
3409 | error = pthread_functions->workq_handle_stack_events(p, th, |
3410 | get_task_map(proc_task(p)), uth->uu_workq_stackaddr, |
3411 | uth->uu_workq_thport, eventlist, nevents, upcall_flags); |
3412 | if (error) { |
3413 | assert(uth->uu_kqr_bound == kqr); |
3414 | return error; |
3415 | } |
3416 | |
3417 | // pthread is supposed to pass KEVENT_FLAG_PARKING here |
3418 | // which should cause the above call to either: |
3419 | // - not return |
3420 | // - return an error |
3421 | // - return 0 and have unbound properly |
3422 | assert(uth->uu_kqr_bound == NULL); |
3423 | } |
3424 | |
3425 | WQ_TRACE_WQ(TRACE_wq_runthread | DBG_FUNC_END, wq, uap->options, 0, 0); |
3426 | |
3427 | thread_sched_call(thread: th, NULL); |
3428 | thread_will_park_or_terminate(thread: th); |
3429 | #if CONFIG_WORKLOOP_DEBUG |
3430 | UU_KEVENT_HISTORY_WRITE_ENTRY(uth, { .uu_error = -1, }); |
3431 | #endif |
3432 | |
3433 | workq_lock_spin(wq); |
3434 | WQ_TRACE_WQ(TRACE_wq_thread_logical_run | DBG_FUNC_END, wq, 0, 0, 0); |
3435 | uth->uu_save.uus_workq_park_data.workloop_params = trp.trp_value; |
3436 | workq_select_threadreq_or_park_and_unlock(p, wq, uth, |
3437 | WQ_SETUP_CLEAR_VOUCHER); |
3438 | __builtin_unreachable(); |
3439 | } |
3440 | |
3441 | /** |
3442 | * Multiplexed call to interact with the workqueue mechanism |
3443 | */ |
3444 | int |
3445 | workq_kernreturn(struct proc *p, struct workq_kernreturn_args *uap, int32_t *retval) |
3446 | { |
3447 | int options = uap->options; |
3448 | int arg2 = uap->affinity; |
3449 | int arg3 = uap->prio; |
3450 | struct workqueue *wq = proc_get_wqptr(p); |
3451 | int error = 0; |
3452 | |
3453 | if ((p->p_lflag & P_LREGISTER) == 0) { |
3454 | return EINVAL; |
3455 | } |
3456 | |
3457 | switch (options) { |
3458 | case WQOPS_QUEUE_NEWSPISUPP: { |
3459 | /* |
3460 | * arg2 = offset of serialno into dispatch queue |
3461 | * arg3 = kevent support |
3462 | */ |
3463 | int offset = arg2; |
3464 | if (arg3 & 0x01) { |
3465 | // If we get here, then userspace has indicated support for kevent delivery. |
3466 | } |
3467 | |
3468 | p->p_dispatchqueue_serialno_offset = (uint64_t)offset; |
3469 | break; |
3470 | } |
3471 | case WQOPS_QUEUE_REQTHREADS: { |
3472 | /* |
3473 | * arg2 = number of threads to start |
3474 | * arg3 = priority |
3475 | */ |
3476 | error = workq_reqthreads(p, reqcount: arg2, pp: arg3, false); |
3477 | break; |
3478 | } |
3479 | /* For requesting threads for the cooperative pool */ |
3480 | case WQOPS_QUEUE_REQTHREADS2: { |
3481 | /* |
3482 | * arg2 = number of threads to start |
3483 | * arg3 = priority |
3484 | */ |
3485 | error = workq_reqthreads(p, reqcount: arg2, pp: arg3, true); |
3486 | break; |
3487 | } |
3488 | case WQOPS_SET_EVENT_MANAGER_PRIORITY: { |
3489 | /* |
3490 | * arg2 = priority for the manager thread |
3491 | * |
3492 | * if _PTHREAD_PRIORITY_SCHED_PRI_FLAG is set, |
3493 | * the low bits of the value contains a scheduling priority |
3494 | * instead of a QOS value |
3495 | */ |
3496 | pthread_priority_t pri = arg2; |
3497 | |
3498 | if (wq == NULL) { |
3499 | error = EINVAL; |
3500 | break; |
3501 | } |
3502 | |
3503 | /* |
3504 | * Normalize the incoming priority so that it is ordered numerically. |
3505 | */ |
3506 | if (_pthread_priority_has_sched_pri(pp: pri)) { |
3507 | pri &= (_PTHREAD_PRIORITY_SCHED_PRI_MASK | |
3508 | _PTHREAD_PRIORITY_SCHED_PRI_FLAG); |
3509 | } else { |
3510 | thread_qos_t qos = _pthread_priority_thread_qos(pp: pri); |
3511 | int relpri = _pthread_priority_relpri(pp: pri); |
3512 | if (relpri > 0 || relpri < THREAD_QOS_MIN_TIER_IMPORTANCE || |
3513 | qos == THREAD_QOS_UNSPECIFIED) { |
3514 | error = EINVAL; |
3515 | break; |
3516 | } |
3517 | pri &= ~_PTHREAD_PRIORITY_FLAGS_MASK; |
3518 | } |
3519 | |
3520 | /* |
3521 | * If userspace passes a scheduling priority, that wins over any QoS. |
3522 | * Userspace should takes care not to lower the priority this way. |
3523 | */ |
3524 | workq_lock_spin(wq); |
3525 | if (wq->wq_event_manager_priority < (uint32_t)pri) { |
3526 | wq->wq_event_manager_priority = (uint32_t)pri; |
3527 | } |
3528 | workq_unlock(wq); |
3529 | break; |
3530 | } |
3531 | case WQOPS_THREAD_KEVENT_RETURN: |
3532 | case WQOPS_THREAD_WORKLOOP_RETURN: |
3533 | case WQOPS_THREAD_RETURN: { |
3534 | error = workq_thread_return(p, uap, wq); |
3535 | break; |
3536 | } |
3537 | |
3538 | case WQOPS_SHOULD_NARROW: { |
3539 | /* |
3540 | * arg2 = priority to test |
3541 | * arg3 = unused |
3542 | */ |
3543 | thread_t th = current_thread(); |
3544 | struct uthread *uth = get_bsdthread_info(th); |
3545 | if (((thread_get_tag(thread: th) & THREAD_TAG_WORKQUEUE) == 0) || |
3546 | (uth->uu_workq_flags & (UT_WORKQ_DYING | UT_WORKQ_OVERCOMMIT))) { |
3547 | error = EINVAL; |
3548 | break; |
3549 | } |
3550 | |
3551 | thread_qos_t qos = _pthread_priority_thread_qos(pp: arg2); |
3552 | if (qos == THREAD_QOS_UNSPECIFIED) { |
3553 | error = EINVAL; |
3554 | break; |
3555 | } |
3556 | workq_lock_spin(wq); |
3557 | bool should_narrow = !workq_constrained_allowance(wq, at_qos: qos, uth, false); |
3558 | workq_unlock(wq); |
3559 | |
3560 | *retval = should_narrow; |
3561 | break; |
3562 | } |
3563 | case WQOPS_SETUP_DISPATCH: { |
3564 | /* |
3565 | * item = pointer to workq_dispatch_config structure |
3566 | * arg2 = sizeof(item) |
3567 | */ |
3568 | struct workq_dispatch_config cfg; |
3569 | bzero(s: &cfg, n: sizeof(cfg)); |
3570 | |
3571 | error = copyin(uap->item, &cfg, MIN(sizeof(cfg), (unsigned long) arg2)); |
3572 | if (error) { |
3573 | break; |
3574 | } |
3575 | |
3576 | if (cfg.wdc_flags & ~WORKQ_DISPATCH_SUPPORTED_FLAGS || |
3577 | cfg.wdc_version < WORKQ_DISPATCH_MIN_SUPPORTED_VERSION) { |
3578 | error = ENOTSUP; |
3579 | break; |
3580 | } |
3581 | |
3582 | /* Load fields from version 1 */ |
3583 | p->p_dispatchqueue_serialno_offset = cfg.wdc_queue_serialno_offs; |
3584 | |
3585 | /* Load fields from version 2 */ |
3586 | if (cfg.wdc_version >= 2) { |
3587 | p->p_dispatchqueue_label_offset = cfg.wdc_queue_label_offs; |
3588 | } |
3589 | |
3590 | break; |
3591 | } |
3592 | default: |
3593 | error = EINVAL; |
3594 | break; |
3595 | } |
3596 | |
3597 | return error; |
3598 | } |
3599 | |
3600 | /* |
3601 | * We have no work to do, park ourselves on the idle list. |
3602 | * |
3603 | * Consumes the workqueue lock and does not return. |
3604 | */ |
3605 | __attribute__((noreturn, noinline)) |
3606 | static void |
3607 | workq_park_and_unlock(proc_t p, struct workqueue *wq, struct uthread *uth, |
3608 | uint32_t setup_flags) |
3609 | { |
3610 | assert(uth == current_uthread()); |
3611 | assert(uth->uu_kqr_bound == NULL); |
3612 | workq_push_idle_thread(p, wq, uth, setup_flags); // may not return |
3613 | |
3614 | workq_thread_reset_cpupercent(NULL, uth); |
3615 | |
3616 | #if CONFIG_PREADOPT_TG |
3617 | /* Clear the preadoption thread group on the thread. |
3618 | * |
3619 | * Case 1: |
3620 | * Creator thread which never picked up a thread request. We set a |
3621 | * preadoption thread group on creator threads but if it never picked |
3622 | * up a thread request and didn't go to userspace, then the thread will |
3623 | * park with a preadoption thread group but no explicitly adopted |
3624 | * voucher or work interval. |
3625 | * |
3626 | * We drop the preadoption thread group here before proceeding to park. |
3627 | * Note - we may get preempted when we drop the workq lock below. |
3628 | * |
3629 | * Case 2: |
3630 | * Thread picked up a thread request and bound to it and returned back |
3631 | * from userspace and is parking. At this point, preadoption thread |
3632 | * group should be NULL since the thread has unbound from the thread |
3633 | * request. So this operation should be a no-op. |
3634 | */ |
3635 | thread_set_preadopt_thread_group(t: get_machthread(uth), NULL); |
3636 | #endif |
3637 | |
3638 | if ((uth->uu_workq_flags & UT_WORKQ_IDLE_CLEANUP) && |
3639 | !(uth->uu_workq_flags & UT_WORKQ_DYING)) { |
3640 | workq_unlock(wq); |
3641 | |
3642 | /* |
3643 | * workq_push_idle_thread() will unset `has_stack` |
3644 | * if it wants us to free the stack before parking. |
3645 | */ |
3646 | if (!uth->uu_save.uus_workq_park_data.has_stack) { |
3647 | pthread_functions->workq_markfree_threadstack(p, |
3648 | get_machthread(uth), get_task_map(proc_task(p)), |
3649 | uth->uu_workq_stackaddr); |
3650 | } |
3651 | |
3652 | /* |
3653 | * When we remove the voucher from the thread, we may lose our importance |
3654 | * causing us to get preempted, so we do this after putting the thread on |
3655 | * the idle list. Then, when we get our importance back we'll be able to |
3656 | * use this thread from e.g. the kevent call out to deliver a boosting |
3657 | * message. |
3658 | * |
3659 | * Note that setting the voucher to NULL will not clear the preadoption |
3660 | * thread since this thread could have become the creator again and |
3661 | * perhaps acquired a preadoption thread group. |
3662 | */ |
3663 | __assert_only kern_return_t kr; |
3664 | kr = thread_set_voucher_name(MACH_PORT_NULL); |
3665 | assert(kr == KERN_SUCCESS); |
3666 | |
3667 | workq_lock_spin(wq); |
3668 | uth->uu_workq_flags &= ~UT_WORKQ_IDLE_CLEANUP; |
3669 | setup_flags &= ~WQ_SETUP_CLEAR_VOUCHER; |
3670 | } |
3671 | |
3672 | WQ_TRACE_WQ(TRACE_wq_thread_logical_run | DBG_FUNC_END, wq, 0, 0, 0); |
3673 | |
3674 | if (uth->uu_workq_flags & UT_WORKQ_RUNNING) { |
3675 | /* |
3676 | * While we'd dropped the lock to unset our voucher, someone came |
3677 | * around and made us runnable. But because we weren't waiting on the |
3678 | * event their thread_wakeup() was ineffectual. To correct for that, |
3679 | * we just run the continuation ourselves. |
3680 | */ |
3681 | workq_unpark_select_threadreq_or_park_and_unlock(p, wq, uth, setup_flags); |
3682 | __builtin_unreachable(); |
3683 | } |
3684 | |
3685 | if (uth->uu_workq_flags & UT_WORKQ_DYING) { |
3686 | workq_unpark_for_death_and_unlock(p, wq, uth, |
3687 | WORKQ_UNPARK_FOR_DEATH_WAS_IDLE, setup_flags); |
3688 | __builtin_unreachable(); |
3689 | } |
3690 | |
3691 | /* Disarm the workqueue quantum since the thread is now idle */ |
3692 | thread_disarm_workqueue_quantum(thread: get_machthread(uth)); |
3693 | |
3694 | thread_set_pending_block_hint(thread: get_machthread(uth), block_hint: kThreadWaitParkedWorkQueue); |
3695 | assert_wait(event: workq_parked_wait_event(uth), THREAD_INTERRUPTIBLE); |
3696 | workq_unlock(wq); |
3697 | thread_block(continuation: workq_unpark_continue); |
3698 | __builtin_unreachable(); |
3699 | } |
3700 | |
3701 | static inline bool |
3702 | workq_may_start_event_mgr_thread(struct workqueue *wq, struct uthread *uth) |
3703 | { |
3704 | /* |
3705 | * There's an event manager request and either: |
3706 | * - no event manager currently running |
3707 | * - we are re-using the event manager |
3708 | */ |
3709 | return wq->wq_thscheduled_count[_wq_bucket(WORKQ_THREAD_QOS_MANAGER)] == 0 || |
3710 | (uth && uth->uu_workq_pri.qos_bucket == WORKQ_THREAD_QOS_MANAGER); |
3711 | } |
3712 | |
3713 | static uint32_t |
3714 | workq_constrained_allowance(struct workqueue *wq, thread_qos_t at_qos, |
3715 | struct uthread *uth, bool may_start_timer) |
3716 | { |
3717 | assert(at_qos != WORKQ_THREAD_QOS_MANAGER); |
3718 | uint32_t count = 0; |
3719 | |
3720 | uint32_t max_count = wq->wq_constrained_threads_scheduled; |
3721 | if (uth && workq_thread_is_nonovercommit(uth)) { |
3722 | /* |
3723 | * don't count the current thread as scheduled |
3724 | */ |
3725 | assert(max_count > 0); |
3726 | max_count--; |
3727 | } |
3728 | if (max_count >= wq_max_constrained_threads) { |
3729 | WQ_TRACE_WQ(TRACE_wq_constrained_admission | DBG_FUNC_NONE, wq, 1, |
3730 | wq->wq_constrained_threads_scheduled, |
3731 | wq_max_constrained_threads); |
3732 | /* |
3733 | * we need 1 or more constrained threads to return to the kernel before |
3734 | * we can dispatch additional work |
3735 | */ |
3736 | return 0; |
3737 | } |
3738 | max_count -= wq_max_constrained_threads; |
3739 | |
3740 | /* |
3741 | * Compute a metric for many how many threads are active. We find the |
3742 | * highest priority request outstanding and then add up the number of active |
3743 | * threads in that and all higher-priority buckets. We'll also add any |
3744 | * "busy" threads which are not currently active but blocked recently enough |
3745 | * that we can't be sure that they won't be unblocked soon and start |
3746 | * being active again. |
3747 | * |
3748 | * We'll then compare this metric to our max concurrency to decide whether |
3749 | * to add a new thread. |
3750 | */ |
3751 | |
3752 | uint32_t busycount, thactive_count; |
3753 | |
3754 | thactive_count = _wq_thactive_aggregate_downto_qos(wq, v: _wq_thactive(wq), |
3755 | qos: at_qos, busycount: &busycount, NULL); |
3756 | |
3757 | if (uth && uth->uu_workq_pri.qos_bucket != WORKQ_THREAD_QOS_MANAGER && |
3758 | at_qos <= uth->uu_workq_pri.qos_bucket) { |
3759 | /* |
3760 | * Don't count this thread as currently active, but only if it's not |
3761 | * a manager thread, as _wq_thactive_aggregate_downto_qos ignores active |
3762 | * managers. |
3763 | */ |
3764 | assert(thactive_count > 0); |
3765 | thactive_count--; |
3766 | } |
3767 | |
3768 | count = wq_max_parallelism[_wq_bucket(qos: at_qos)]; |
3769 | if (count > thactive_count + busycount) { |
3770 | count -= thactive_count + busycount; |
3771 | WQ_TRACE_WQ(TRACE_wq_constrained_admission | DBG_FUNC_NONE, wq, 2, |
3772 | thactive_count, busycount); |
3773 | return MIN(count, max_count); |
3774 | } else { |
3775 | WQ_TRACE_WQ(TRACE_wq_constrained_admission | DBG_FUNC_NONE, wq, 3, |
3776 | thactive_count, busycount); |
3777 | } |
3778 | |
3779 | if (may_start_timer) { |
3780 | /* |
3781 | * If this is called from the add timer, we won't have another timer |
3782 | * fire when the thread exits the "busy" state, so rearm the timer. |
3783 | */ |
3784 | workq_schedule_delayed_thread_creation(wq, flags: 0); |
3785 | } |
3786 | |
3787 | return 0; |
3788 | } |
3789 | |
3790 | static bool |
3791 | workq_threadreq_admissible(struct workqueue *wq, struct uthread *uth, |
3792 | workq_threadreq_t req) |
3793 | { |
3794 | if (req->tr_qos == WORKQ_THREAD_QOS_MANAGER) { |
3795 | return workq_may_start_event_mgr_thread(wq, uth); |
3796 | } |
3797 | if (workq_threadreq_is_cooperative(req)) { |
3798 | return workq_cooperative_allowance(wq, qos: req->tr_qos, uth, true); |
3799 | } |
3800 | if (workq_threadreq_is_nonovercommit(req)) { |
3801 | return workq_constrained_allowance(wq, at_qos: req->tr_qos, uth, true); |
3802 | } |
3803 | |
3804 | return true; |
3805 | } |
3806 | |
3807 | /* |
3808 | * Called from the context of selecting thread requests for threads returning |
3809 | * from userspace or creator thread |
3810 | */ |
3811 | static workq_threadreq_t |
3812 | workq_cooperative_queue_best_req(struct workqueue *wq, struct uthread *uth) |
3813 | { |
3814 | workq_lock_held(wq); |
3815 | |
3816 | /* |
3817 | * If the current thread is cooperative, we need to exclude it as part of |
3818 | * cooperative schedule count since this thread is looking for a new |
3819 | * request. Change in the schedule count for cooperative pool therefore |
3820 | * requires us to reeevaluate the next best request for it. |
3821 | */ |
3822 | if (uth && workq_thread_is_cooperative(uth)) { |
3823 | _wq_cooperative_queue_scheduled_count_dec(wq, qos: uth->uu_workq_pri.qos_req); |
3824 | |
3825 | (void) _wq_cooperative_queue_refresh_best_req_qos(wq); |
3826 | |
3827 | _wq_cooperative_queue_scheduled_count_inc(wq, qos: uth->uu_workq_pri.qos_req); |
3828 | } else { |
3829 | /* |
3830 | * The old value that was already precomputed should be safe to use - |
3831 | * add an assert that asserts that the best req QoS doesn't change in |
3832 | * this case |
3833 | */ |
3834 | assert(_wq_cooperative_queue_refresh_best_req_qos(wq) == false); |
3835 | } |
3836 | |
3837 | thread_qos_t qos = wq->wq_cooperative_queue_best_req_qos; |
3838 | |
3839 | /* There are no eligible requests in the cooperative pool */ |
3840 | if (qos == THREAD_QOS_UNSPECIFIED) { |
3841 | return NULL; |
3842 | } |
3843 | assert(qos != WORKQ_THREAD_QOS_ABOVEUI); |
3844 | assert(qos != WORKQ_THREAD_QOS_MANAGER); |
3845 | |
3846 | uint8_t bucket = _wq_bucket(qos); |
3847 | assert(!STAILQ_EMPTY(&wq->wq_cooperative_queue[bucket])); |
3848 | |
3849 | return STAILQ_FIRST(&wq->wq_cooperative_queue[bucket]); |
3850 | } |
3851 | |
3852 | static workq_threadreq_t |
3853 | workq_threadreq_select_for_creator(struct workqueue *wq) |
3854 | { |
3855 | workq_threadreq_t req_qos, req_pri, req_tmp, req_mgr; |
3856 | thread_qos_t qos = THREAD_QOS_UNSPECIFIED; |
3857 | uint8_t pri = 0; |
3858 | |
3859 | /* |
3860 | * Compute the best priority request, and ignore the turnstile for now |
3861 | */ |
3862 | |
3863 | req_pri = priority_queue_max(&wq->wq_special_queue, |
3864 | struct workq_threadreq_s, tr_entry); |
3865 | if (req_pri) { |
3866 | pri = (uint8_t)priority_queue_entry_sched_pri(&wq->wq_special_queue, |
3867 | &req_pri->tr_entry); |
3868 | } |
3869 | |
3870 | /* |
3871 | * Handle the manager thread request. The special queue might yield |
3872 | * a higher priority, but the manager always beats the QoS world. |
3873 | */ |
3874 | |
3875 | req_mgr = wq->wq_event_manager_threadreq; |
3876 | if (req_mgr && workq_may_start_event_mgr_thread(wq, NULL)) { |
3877 | uint32_t mgr_pri = wq->wq_event_manager_priority; |
3878 | |
3879 | if (mgr_pri & _PTHREAD_PRIORITY_SCHED_PRI_FLAG) { |
3880 | mgr_pri &= _PTHREAD_PRIORITY_SCHED_PRI_MASK; |
3881 | } else { |
3882 | mgr_pri = thread_workq_pri_for_qos( |
3883 | qos: _pthread_priority_thread_qos(pp: mgr_pri)); |
3884 | } |
3885 | |
3886 | return mgr_pri >= pri ? req_mgr : req_pri; |
3887 | } |
3888 | |
3889 | /* |
3890 | * Compute the best QoS Request, and check whether it beats the "pri" one |
3891 | * |
3892 | * Start by comparing the overcommit and the cooperative pool |
3893 | */ |
3894 | req_qos = priority_queue_max(&wq->wq_overcommit_queue, |
3895 | struct workq_threadreq_s, tr_entry); |
3896 | if (req_qos) { |
3897 | qos = req_qos->tr_qos; |
3898 | } |
3899 | |
3900 | req_tmp = workq_cooperative_queue_best_req(wq, NULL); |
3901 | if (req_tmp && qos <= req_tmp->tr_qos) { |
3902 | /* |
3903 | * Cooperative TR is better between overcommit and cooperative. Note |
3904 | * that if qos is same between overcommit and cooperative, we choose |
3905 | * cooperative. |
3906 | * |
3907 | * Pick cooperative pool if it passes the admissions check |
3908 | */ |
3909 | if (workq_cooperative_allowance(wq, qos: req_tmp->tr_qos, NULL, true)) { |
3910 | req_qos = req_tmp; |
3911 | qos = req_qos->tr_qos; |
3912 | } |
3913 | } |
3914 | |
3915 | /* |
3916 | * Compare the best QoS so far - either from overcommit or from cooperative |
3917 | * pool - and compare it with the constrained pool |
3918 | */ |
3919 | req_tmp = priority_queue_max(&wq->wq_constrained_queue, |
3920 | struct workq_threadreq_s, tr_entry); |
3921 | |
3922 | if (req_tmp && qos < req_tmp->tr_qos) { |
3923 | /* |
3924 | * Constrained pool is best in QoS between overcommit, cooperative |
3925 | * and constrained. Now check how it fairs against the priority case |
3926 | */ |
3927 | if (pri && pri >= thread_workq_pri_for_qos(qos: req_tmp->tr_qos)) { |
3928 | return req_pri; |
3929 | } |
3930 | |
3931 | if (workq_constrained_allowance(wq, at_qos: req_tmp->tr_qos, NULL, true)) { |
3932 | /* |
3933 | * If the constrained thread request is the best one and passes |
3934 | * the admission check, pick it. |
3935 | */ |
3936 | return req_tmp; |
3937 | } |
3938 | } |
3939 | |
3940 | /* |
3941 | * Compare the best of the QoS world with the priority |
3942 | */ |
3943 | if (pri && (!qos || pri >= thread_workq_pri_for_qos(qos))) { |
3944 | return req_pri; |
3945 | } |
3946 | |
3947 | if (req_qos) { |
3948 | return req_qos; |
3949 | } |
3950 | |
3951 | /* |
3952 | * If we had no eligible request but we have a turnstile push, |
3953 | * it must be a non overcommit thread request that failed |
3954 | * the admission check. |
3955 | * |
3956 | * Just fake a BG thread request so that if the push stops the creator |
3957 | * priority just drops to 4. |
3958 | */ |
3959 | if (turnstile_workq_proprietor_of_max_turnstile(turnstile: wq->wq_turnstile, NULL)) { |
3960 | static struct workq_threadreq_s workq_sync_push_fake_req = { |
3961 | .tr_qos = THREAD_QOS_BACKGROUND, |
3962 | }; |
3963 | |
3964 | return &workq_sync_push_fake_req; |
3965 | } |
3966 | |
3967 | return NULL; |
3968 | } |
3969 | |
3970 | /* |
3971 | * Returns true if this caused a change in the schedule counts of the |
3972 | * cooperative pool |
3973 | */ |
3974 | static bool |
3975 | workq_adjust_cooperative_constrained_schedule_counts(struct workqueue *wq, |
3976 | struct uthread *uth, thread_qos_t old_thread_qos, workq_tr_flags_t tr_flags) |
3977 | { |
3978 | workq_lock_held(wq); |
3979 | |
3980 | /* |
3981 | * Row: thread type |
3982 | * Column: Request type |
3983 | * |
3984 | * overcommit non-overcommit cooperative |
3985 | * overcommit X case 1 case 2 |
3986 | * cooperative case 3 case 4 case 5 |
3987 | * non-overcommit case 6 X case 7 |
3988 | * |
3989 | * Move the thread to the right bucket depending on what state it currently |
3990 | * has and what state the thread req it picks, is going to have. |
3991 | * |
3992 | * Note that the creator thread is an overcommit thread. |
3993 | */ |
3994 | thread_qos_t new_thread_qos = uth->uu_workq_pri.qos_req; |
3995 | |
3996 | /* |
3997 | * Anytime a cooperative bucket's schedule count changes, we need to |
3998 | * potentially refresh the next best QoS for that pool when we determine |
3999 | * the next request for the creator |
4000 | */ |
4001 | bool cooperative_pool_sched_count_changed = false; |
4002 | |
4003 | if (workq_thread_is_overcommit(uth)) { |
4004 | if (workq_tr_is_nonovercommit(tr_flags)) { |
4005 | // Case 1: thread is overcommit, req is non-overcommit |
4006 | wq->wq_constrained_threads_scheduled++; |
4007 | } else if (workq_tr_is_cooperative(tr_flags)) { |
4008 | // Case 2: thread is overcommit, req is cooperative |
4009 | _wq_cooperative_queue_scheduled_count_inc(wq, qos: new_thread_qos); |
4010 | cooperative_pool_sched_count_changed = true; |
4011 | } |
4012 | } else if (workq_thread_is_cooperative(uth)) { |
4013 | if (workq_tr_is_overcommit(tr_flags)) { |
4014 | // Case 3: thread is cooperative, req is overcommit |
4015 | _wq_cooperative_queue_scheduled_count_dec(wq, qos: old_thread_qos); |
4016 | } else if (workq_tr_is_nonovercommit(tr_flags)) { |
4017 | // Case 4: thread is cooperative, req is non-overcommit |
4018 | _wq_cooperative_queue_scheduled_count_dec(wq, qos: old_thread_qos); |
4019 | wq->wq_constrained_threads_scheduled++; |
4020 | } else { |
4021 | // Case 5: thread is cooperative, req is also cooperative |
4022 | assert(workq_tr_is_cooperative(tr_flags)); |
4023 | _wq_cooperative_queue_scheduled_count_dec(wq, qos: old_thread_qos); |
4024 | _wq_cooperative_queue_scheduled_count_inc(wq, qos: new_thread_qos); |
4025 | } |
4026 | cooperative_pool_sched_count_changed = true; |
4027 | } else { |
4028 | if (workq_tr_is_overcommit(tr_flags)) { |
4029 | // Case 6: Thread is non-overcommit, req is overcommit |
4030 | wq->wq_constrained_threads_scheduled--; |
4031 | } else if (workq_tr_is_cooperative(tr_flags)) { |
4032 | // Case 7: Thread is non-overcommit, req is cooperative |
4033 | wq->wq_constrained_threads_scheduled--; |
4034 | _wq_cooperative_queue_scheduled_count_inc(wq, qos: new_thread_qos); |
4035 | cooperative_pool_sched_count_changed = true; |
4036 | } |
4037 | } |
4038 | |
4039 | return cooperative_pool_sched_count_changed; |
4040 | } |
4041 | |
4042 | static workq_threadreq_t |
4043 | workq_threadreq_select(struct workqueue *wq, struct uthread *uth) |
4044 | { |
4045 | workq_threadreq_t req_qos, req_pri, req_tmp, req_mgr; |
4046 | uintptr_t proprietor; |
4047 | thread_qos_t qos = THREAD_QOS_UNSPECIFIED; |
4048 | uint8_t pri = 0; |
4049 | |
4050 | if (uth == wq->wq_creator) { |
4051 | uth = NULL; |
4052 | } |
4053 | |
4054 | /* |
4055 | * Compute the best priority request (special or turnstile) |
4056 | */ |
4057 | |
4058 | pri = (uint8_t)turnstile_workq_proprietor_of_max_turnstile(turnstile: wq->wq_turnstile, |
4059 | proprietor: &proprietor); |
4060 | if (pri) { |
4061 | struct kqworkloop *kqwl = (struct kqworkloop *)proprietor; |
4062 | req_pri = &kqwl->kqwl_request; |
4063 | if (req_pri->tr_state != WORKQ_TR_STATE_QUEUED) { |
4064 | panic("Invalid thread request (%p) state %d" , |
4065 | req_pri, req_pri->tr_state); |
4066 | } |
4067 | } else { |
4068 | req_pri = NULL; |
4069 | } |
4070 | |
4071 | req_tmp = priority_queue_max(&wq->wq_special_queue, |
4072 | struct workq_threadreq_s, tr_entry); |
4073 | if (req_tmp && pri < priority_queue_entry_sched_pri(&wq->wq_special_queue, |
4074 | &req_tmp->tr_entry)) { |
4075 | req_pri = req_tmp; |
4076 | pri = (uint8_t)priority_queue_entry_sched_pri(&wq->wq_special_queue, |
4077 | &req_tmp->tr_entry); |
4078 | } |
4079 | |
4080 | /* |
4081 | * Handle the manager thread request. The special queue might yield |
4082 | * a higher priority, but the manager always beats the QoS world. |
4083 | */ |
4084 | |
4085 | req_mgr = wq->wq_event_manager_threadreq; |
4086 | if (req_mgr && workq_may_start_event_mgr_thread(wq, uth)) { |
4087 | uint32_t mgr_pri = wq->wq_event_manager_priority; |
4088 | |
4089 | if (mgr_pri & _PTHREAD_PRIORITY_SCHED_PRI_FLAG) { |
4090 | mgr_pri &= _PTHREAD_PRIORITY_SCHED_PRI_MASK; |
4091 | } else { |
4092 | mgr_pri = thread_workq_pri_for_qos( |
4093 | qos: _pthread_priority_thread_qos(pp: mgr_pri)); |
4094 | } |
4095 | |
4096 | return mgr_pri >= pri ? req_mgr : req_pri; |
4097 | } |
4098 | |
4099 | /* |
4100 | * Compute the best QoS Request, and check whether it beats the "pri" one |
4101 | */ |
4102 | |
4103 | req_qos = priority_queue_max(&wq->wq_overcommit_queue, |
4104 | struct workq_threadreq_s, tr_entry); |
4105 | if (req_qos) { |
4106 | qos = req_qos->tr_qos; |
4107 | } |
4108 | |
4109 | req_tmp = workq_cooperative_queue_best_req(wq, uth); |
4110 | if (req_tmp && qos <= req_tmp->tr_qos) { |
4111 | /* |
4112 | * Cooperative TR is better between overcommit and cooperative. Note |
4113 | * that if qos is same between overcommit and cooperative, we choose |
4114 | * cooperative. |
4115 | * |
4116 | * Pick cooperative pool if it passes the admissions check |
4117 | */ |
4118 | if (workq_cooperative_allowance(wq, qos: req_tmp->tr_qos, uth, true)) { |
4119 | req_qos = req_tmp; |
4120 | qos = req_qos->tr_qos; |
4121 | } |
4122 | } |
4123 | |
4124 | /* |
4125 | * Compare the best QoS so far - either from overcommit or from cooperative |
4126 | * pool - and compare it with the constrained pool |
4127 | */ |
4128 | req_tmp = priority_queue_max(&wq->wq_constrained_queue, |
4129 | struct workq_threadreq_s, tr_entry); |
4130 | |
4131 | if (req_tmp && qos < req_tmp->tr_qos) { |
4132 | /* |
4133 | * Constrained pool is best in QoS between overcommit, cooperative |
4134 | * and constrained. Now check how it fairs against the priority case |
4135 | */ |
4136 | if (pri && pri >= thread_workq_pri_for_qos(qos: req_tmp->tr_qos)) { |
4137 | return req_pri; |
4138 | } |
4139 | |
4140 | if (workq_constrained_allowance(wq, at_qos: req_tmp->tr_qos, uth, true)) { |
4141 | /* |
4142 | * If the constrained thread request is the best one and passes |
4143 | * the admission check, pick it. |
4144 | */ |
4145 | return req_tmp; |
4146 | } |
4147 | } |
4148 | |
4149 | if (req_pri && (!qos || pri >= thread_workq_pri_for_qos(qos))) { |
4150 | return req_pri; |
4151 | } |
4152 | |
4153 | return req_qos; |
4154 | } |
4155 | |
4156 | /* |
4157 | * The creator is an anonymous thread that is counted as scheduled, |
4158 | * but otherwise without its scheduler callback set or tracked as active |
4159 | * that is used to make other threads. |
4160 | * |
4161 | * When more requests are added or an existing one is hurried along, |
4162 | * a creator is elected and setup, or the existing one overridden accordingly. |
4163 | * |
4164 | * While this creator is in flight, because no request has been dequeued, |
4165 | * already running threads have a chance at stealing thread requests avoiding |
4166 | * useless context switches, and the creator once scheduled may not find any |
4167 | * work to do and will then just park again. |
4168 | * |
4169 | * The creator serves the dual purpose of informing the scheduler of work that |
4170 | * hasn't be materialized as threads yet, and also as a natural pacing mechanism |
4171 | * for thread creation. |
4172 | * |
4173 | * By being anonymous (and not bound to anything) it means that thread requests |
4174 | * can be stolen from this creator by threads already on core yielding more |
4175 | * efficient scheduling and reduced context switches. |
4176 | */ |
4177 | static void |
4178 | workq_schedule_creator(proc_t p, struct workqueue *wq, |
4179 | workq_kern_threadreq_flags_t flags) |
4180 | { |
4181 | workq_threadreq_t req; |
4182 | struct uthread *uth; |
4183 | bool needs_wakeup; |
4184 | |
4185 | workq_lock_held(wq); |
4186 | assert(p || (flags & WORKQ_THREADREQ_CAN_CREATE_THREADS) == 0); |
4187 | |
4188 | again: |
4189 | uth = wq->wq_creator; |
4190 | |
4191 | if (!wq->wq_reqcount) { |
4192 | /* |
4193 | * There is no thread request left. |
4194 | * |
4195 | * If there is a creator, leave everything in place, so that it cleans |
4196 | * up itself in workq_push_idle_thread(). |
4197 | * |
4198 | * Else, make sure the turnstile state is reset to no inheritor. |
4199 | */ |
4200 | if (uth == NULL) { |
4201 | workq_turnstile_update_inheritor(wq, TURNSTILE_INHERITOR_NULL, flags: 0); |
4202 | } |
4203 | return; |
4204 | } |
4205 | |
4206 | req = workq_threadreq_select_for_creator(wq); |
4207 | if (req == NULL) { |
4208 | /* |
4209 | * There isn't a thread request that passes the admission check. |
4210 | * |
4211 | * If there is a creator, do not touch anything, the creator will sort |
4212 | * it out when it runs. |
4213 | * |
4214 | * Else, set the inheritor to "WORKQ" so that the turnstile propagation |
4215 | * code calls us if anything changes. |
4216 | */ |
4217 | if (uth == NULL) { |
4218 | workq_turnstile_update_inheritor(wq, inheritor: wq, flags: TURNSTILE_INHERITOR_WORKQ); |
4219 | } |
4220 | return; |
4221 | } |
4222 | |
4223 | |
4224 | if (uth) { |
4225 | /* |
4226 | * We need to maybe override the creator we already have |
4227 | */ |
4228 | if (workq_thread_needs_priority_change(req, uth)) { |
4229 | WQ_TRACE_WQ(TRACE_wq_creator_select | DBG_FUNC_NONE, |
4230 | wq, 1, uthread_tid(uth), req->tr_qos); |
4231 | workq_thread_reset_pri(wq, uth, req, /*unpark*/ true); |
4232 | } |
4233 | assert(wq->wq_inheritor == get_machthread(uth)); |
4234 | } else if (wq->wq_thidlecount) { |
4235 | /* |
4236 | * We need to unpark a creator thread |
4237 | */ |
4238 | wq->wq_creator = uth = workq_pop_idle_thread(wq, UT_WORKQ_OVERCOMMIT, |
4239 | needs_wakeup: &needs_wakeup); |
4240 | /* Always reset the priorities on the newly chosen creator */ |
4241 | workq_thread_reset_pri(wq, uth, req, /*unpark*/ true); |
4242 | workq_turnstile_update_inheritor(wq, inheritor: get_machthread(uth), |
4243 | flags: TURNSTILE_INHERITOR_THREAD); |
4244 | WQ_TRACE_WQ(TRACE_wq_creator_select | DBG_FUNC_NONE, |
4245 | wq, 2, uthread_tid(uth), req->tr_qos); |
4246 | uth->uu_save.uus_workq_park_data.fulfilled_snapshot = wq->wq_fulfilled; |
4247 | uth->uu_save.uus_workq_park_data.yields = 0; |
4248 | if (needs_wakeup) { |
4249 | workq_thread_wakeup(uth); |
4250 | } |
4251 | } else { |
4252 | /* |
4253 | * We need to allocate a thread... |
4254 | */ |
4255 | if (__improbable(wq->wq_nthreads >= wq_max_threads)) { |
4256 | /* out of threads, just go away */ |
4257 | flags = WORKQ_THREADREQ_NONE; |
4258 | } else if (flags & WORKQ_THREADREQ_SET_AST_ON_FAILURE) { |
4259 | act_set_astkevent(thread: current_thread(), AST_KEVENT_REDRIVE_THREADREQ); |
4260 | } else if (!(flags & WORKQ_THREADREQ_CAN_CREATE_THREADS)) { |
4261 | /* This can drop the workqueue lock, and take it again */ |
4262 | workq_schedule_immediate_thread_creation(wq); |
4263 | } else if (workq_add_new_idle_thread(p, wq)) { |
4264 | goto again; |
4265 | } else { |
4266 | workq_schedule_delayed_thread_creation(wq, flags: 0); |
4267 | } |
4268 | |
4269 | /* |
4270 | * If the current thread is the inheritor: |
4271 | * |
4272 | * If we set the AST, then the thread will stay the inheritor until |
4273 | * either the AST calls workq_kern_threadreq_redrive(), or it parks |
4274 | * and calls workq_push_idle_thread(). |
4275 | * |
4276 | * Else, the responsibility of the thread creation is with a thread-call |
4277 | * and we need to clear the inheritor. |
4278 | */ |
4279 | if ((flags & WORKQ_THREADREQ_SET_AST_ON_FAILURE) == 0 && |
4280 | wq->wq_inheritor == current_thread()) { |
4281 | workq_turnstile_update_inheritor(wq, TURNSTILE_INHERITOR_NULL, flags: 0); |
4282 | } |
4283 | } |
4284 | } |
4285 | |
4286 | /** |
4287 | * Same as workq_unpark_select_threadreq_or_park_and_unlock, |
4288 | * but do not allow early binds. |
4289 | * |
4290 | * Called with the base pri frozen, will unfreeze it. |
4291 | */ |
4292 | __attribute__((noreturn, noinline)) |
4293 | static void |
4294 | workq_select_threadreq_or_park_and_unlock(proc_t p, struct workqueue *wq, |
4295 | struct uthread *uth, uint32_t setup_flags) |
4296 | { |
4297 | workq_threadreq_t req = NULL; |
4298 | bool is_creator = (wq->wq_creator == uth); |
4299 | bool schedule_creator = false; |
4300 | |
4301 | if (__improbable(_wq_exiting(wq))) { |
4302 | WQ_TRACE_WQ(TRACE_wq_select_threadreq | DBG_FUNC_NONE, wq, 0, 0, 0); |
4303 | goto park; |
4304 | } |
4305 | |
4306 | if (wq->wq_reqcount == 0) { |
4307 | WQ_TRACE_WQ(TRACE_wq_select_threadreq | DBG_FUNC_NONE, wq, 1, 0, 0); |
4308 | goto park; |
4309 | } |
4310 | |
4311 | req = workq_threadreq_select(wq, uth); |
4312 | if (__improbable(req == NULL)) { |
4313 | WQ_TRACE_WQ(TRACE_wq_select_threadreq | DBG_FUNC_NONE, wq, 2, 0, 0); |
4314 | goto park; |
4315 | } |
4316 | |
4317 | struct uu_workq_policy old_pri = uth->uu_workq_pri; |
4318 | uint8_t tr_flags = req->tr_flags; |
4319 | struct turnstile *req_ts = kqueue_threadreq_get_turnstile(kqr: req); |
4320 | |
4321 | /* |
4322 | * Attempt to setup ourselves as the new thing to run, moving all priority |
4323 | * pushes to ourselves. |
4324 | * |
4325 | * If the current thread is the creator, then the fact that we are presently |
4326 | * running is proof that we'll do something useful, so keep going. |
4327 | * |
4328 | * For other cases, peek at the AST to know whether the scheduler wants |
4329 | * to preempt us, if yes, park instead, and move the thread request |
4330 | * turnstile back to the workqueue. |
4331 | */ |
4332 | if (req_ts) { |
4333 | workq_perform_turnstile_operation_locked(wq, operation: ^{ |
4334 | turnstile_update_inheritor(turnstile: req_ts, new_inheritor: get_machthread(uth), |
4335 | flags: TURNSTILE_IMMEDIATE_UPDATE | TURNSTILE_INHERITOR_THREAD); |
4336 | turnstile_update_inheritor_complete(turnstile: req_ts, |
4337 | flags: TURNSTILE_INTERLOCK_HELD); |
4338 | }); |
4339 | } |
4340 | |
4341 | /* accounting changes of aggregate thscheduled_count and thactive which has |
4342 | * to be paired with the workq_thread_reset_pri below so that we have |
4343 | * uth->uu_workq_pri match with thactive. |
4344 | * |
4345 | * This is undone when the thread parks */ |
4346 | if (is_creator) { |
4347 | WQ_TRACE_WQ(TRACE_wq_creator_select, wq, 4, 0, |
4348 | uth->uu_save.uus_workq_park_data.yields); |
4349 | wq->wq_creator = NULL; |
4350 | _wq_thactive_inc(wq, qos: req->tr_qos); |
4351 | wq->wq_thscheduled_count[_wq_bucket(qos: req->tr_qos)]++; |
4352 | } else if (old_pri.qos_bucket != req->tr_qos) { |
4353 | _wq_thactive_move(wq, old_qos: old_pri.qos_bucket, new_qos: req->tr_qos); |
4354 | } |
4355 | workq_thread_reset_pri(wq, uth, req, /*unpark*/ true); |
4356 | |
4357 | /* |
4358 | * Make relevant accounting changes for pool specific counts. |
4359 | * |
4360 | * The schedule counts changing can affect what the next best request |
4361 | * for cooperative thread pool is if this request is dequeued. |
4362 | */ |
4363 | bool cooperative_sched_count_changed = |
4364 | workq_adjust_cooperative_constrained_schedule_counts(wq, uth, |
4365 | old_thread_qos: old_pri.qos_req, tr_flags); |
4366 | |
4367 | if (workq_tr_is_overcommit(tr_flags)) { |
4368 | workq_thread_set_type(uth, UT_WORKQ_OVERCOMMIT); |
4369 | } else if (workq_tr_is_cooperative(tr_flags)) { |
4370 | workq_thread_set_type(uth, UT_WORKQ_COOPERATIVE); |
4371 | } else { |
4372 | workq_thread_set_type(uth, flags: 0); |
4373 | } |
4374 | |
4375 | if (__improbable(thread_unfreeze_base_pri(get_machthread(uth)) && !is_creator)) { |
4376 | if (req_ts) { |
4377 | workq_perform_turnstile_operation_locked(wq, operation: ^{ |
4378 | turnstile_update_inheritor(turnstile: req_ts, new_inheritor: wq->wq_turnstile, |
4379 | flags: TURNSTILE_IMMEDIATE_UPDATE | TURNSTILE_INHERITOR_TURNSTILE); |
4380 | turnstile_update_inheritor_complete(turnstile: req_ts, |
4381 | flags: TURNSTILE_INTERLOCK_HELD); |
4382 | }); |
4383 | } |
4384 | WQ_TRACE_WQ(TRACE_wq_select_threadreq | DBG_FUNC_NONE, wq, 3, 0, 0); |
4385 | goto park_thawed; |
4386 | } |
4387 | |
4388 | /* |
4389 | * We passed all checks, dequeue the request, bind to it, and set it up |
4390 | * to return to user. |
4391 | */ |
4392 | WQ_TRACE_WQ(TRACE_wq_thread_logical_run | DBG_FUNC_START, wq, |
4393 | workq_trace_req_id(req), tr_flags, 0); |
4394 | wq->wq_fulfilled++; |
4395 | schedule_creator = workq_threadreq_dequeue(wq, req, |
4396 | cooperative_sched_count_changed); |
4397 | |
4398 | workq_thread_reset_cpupercent(req, uth); |
4399 | |
4400 | if (tr_flags & (WORKQ_TR_FLAG_KEVENT | WORKQ_TR_FLAG_WORKLOOP)) { |
4401 | kqueue_threadreq_bind_prepost(p, req, uth); |
4402 | req = NULL; |
4403 | } else if (req->tr_count > 0) { |
4404 | req = NULL; |
4405 | } |
4406 | |
4407 | if (uth->uu_workq_flags & UT_WORKQ_NEW) { |
4408 | uth->uu_workq_flags ^= UT_WORKQ_NEW; |
4409 | setup_flags |= WQ_SETUP_FIRST_USE; |
4410 | } |
4411 | |
4412 | /* If one of the following is true, call workq_schedule_creator (which also |
4413 | * adjusts priority of existing creator): |
4414 | * |
4415 | * - We are the creator currently so the wq may need a new creator |
4416 | * - The request we're binding to is the highest priority one, existing |
4417 | * creator's priority might need to be adjusted to reflect the next |
4418 | * highest TR |
4419 | */ |
4420 | if (is_creator || schedule_creator) { |
4421 | /* This can drop the workqueue lock, and take it again */ |
4422 | workq_schedule_creator(p, wq, flags: WORKQ_THREADREQ_CAN_CREATE_THREADS); |
4423 | } |
4424 | |
4425 | workq_unlock(wq); |
4426 | |
4427 | if (req) { |
4428 | zfree(workq_zone_threadreq, req); |
4429 | } |
4430 | |
4431 | /* |
4432 | * Run Thread, Run! |
4433 | */ |
4434 | uint32_t upcall_flags = WQ_FLAG_THREAD_NEWSPI; |
4435 | if (uth->uu_workq_pri.qos_bucket == WORKQ_THREAD_QOS_MANAGER) { |
4436 | upcall_flags |= WQ_FLAG_THREAD_EVENT_MANAGER; |
4437 | } else if (workq_tr_is_overcommit(tr_flags)) { |
4438 | upcall_flags |= WQ_FLAG_THREAD_OVERCOMMIT; |
4439 | } else if (workq_tr_is_cooperative(tr_flags)) { |
4440 | upcall_flags |= WQ_FLAG_THREAD_COOPERATIVE; |
4441 | } |
4442 | if (tr_flags & WORKQ_TR_FLAG_KEVENT) { |
4443 | upcall_flags |= WQ_FLAG_THREAD_KEVENT; |
4444 | assert((upcall_flags & WQ_FLAG_THREAD_COOPERATIVE) == 0); |
4445 | } |
4446 | |
4447 | if (tr_flags & WORKQ_TR_FLAG_WORKLOOP) { |
4448 | upcall_flags |= WQ_FLAG_THREAD_WORKLOOP | WQ_FLAG_THREAD_KEVENT; |
4449 | } |
4450 | uth->uu_save.uus_workq_park_data.upcall_flags = upcall_flags; |
4451 | |
4452 | if (tr_flags & (WORKQ_TR_FLAG_KEVENT | WORKQ_TR_FLAG_WORKLOOP)) { |
4453 | kqueue_threadreq_bind_commit(p, thread: get_machthread(uth)); |
4454 | } else { |
4455 | #if CONFIG_PREADOPT_TG |
4456 | /* |
4457 | * The thread may have a preadopt thread group on it already because it |
4458 | * got tagged with it as a creator thread. So we need to make sure to |
4459 | * clear that since we don't have preadoption for anonymous thread |
4460 | * requests |
4461 | */ |
4462 | thread_set_preadopt_thread_group(t: get_machthread(uth), NULL); |
4463 | #endif |
4464 | } |
4465 | |
4466 | workq_setup_and_run(p, uth, flags: setup_flags); |
4467 | __builtin_unreachable(); |
4468 | |
4469 | park: |
4470 | thread_unfreeze_base_pri(thread: get_machthread(uth)); |
4471 | park_thawed: |
4472 | workq_park_and_unlock(p, wq, uth, setup_flags); |
4473 | } |
4474 | |
4475 | /** |
4476 | * Runs a thread request on a thread |
4477 | * |
4478 | * - if thread is THREAD_NULL, will find a thread and run the request there. |
4479 | * Otherwise, the thread must be the current thread. |
4480 | * |
4481 | * - if req is NULL, will find the highest priority request and run that. If |
4482 | * it is not NULL, it must be a threadreq object in state NEW. If it can not |
4483 | * be run immediately, it will be enqueued and moved to state QUEUED. |
4484 | * |
4485 | * Either way, the thread request object serviced will be moved to state |
4486 | * BINDING and attached to the uthread. |
4487 | * |
4488 | * Should be called with the workqueue lock held. Will drop it. |
4489 | * Should be called with the base pri not frozen. |
4490 | */ |
4491 | __attribute__((noreturn, noinline)) |
4492 | static void |
4493 | workq_unpark_select_threadreq_or_park_and_unlock(proc_t p, struct workqueue *wq, |
4494 | struct uthread *uth, uint32_t setup_flags) |
4495 | { |
4496 | if (uth->uu_workq_flags & UT_WORKQ_EARLY_BOUND) { |
4497 | if (uth->uu_workq_flags & UT_WORKQ_NEW) { |
4498 | setup_flags |= WQ_SETUP_FIRST_USE; |
4499 | } |
4500 | uth->uu_workq_flags &= ~(UT_WORKQ_NEW | UT_WORKQ_EARLY_BOUND); |
4501 | /* |
4502 | * This pointer is possibly freed and only used for tracing purposes. |
4503 | */ |
4504 | workq_threadreq_t req = uth->uu_save.uus_workq_park_data.thread_request; |
4505 | workq_unlock(wq); |
4506 | WQ_TRACE_WQ(TRACE_wq_thread_logical_run | DBG_FUNC_START, wq, |
4507 | VM_KERNEL_ADDRHIDE(req), 0, 0); |
4508 | (void)req; |
4509 | |
4510 | workq_setup_and_run(p, uth, flags: setup_flags); |
4511 | __builtin_unreachable(); |
4512 | } |
4513 | |
4514 | thread_freeze_base_pri(thread: get_machthread(uth)); |
4515 | workq_select_threadreq_or_park_and_unlock(p, wq, uth, setup_flags); |
4516 | } |
4517 | |
4518 | static bool |
4519 | workq_creator_should_yield(struct workqueue *wq, struct uthread *uth) |
4520 | { |
4521 | thread_qos_t qos = workq_pri_override(req: uth->uu_workq_pri); |
4522 | |
4523 | if (qos >= THREAD_QOS_USER_INTERACTIVE) { |
4524 | return false; |
4525 | } |
4526 | |
4527 | uint32_t snapshot = uth->uu_save.uus_workq_park_data.fulfilled_snapshot; |
4528 | if (wq->wq_fulfilled == snapshot) { |
4529 | return false; |
4530 | } |
4531 | |
4532 | uint32_t cnt = 0, conc = wq_max_parallelism[_wq_bucket(qos)]; |
4533 | if (wq->wq_fulfilled - snapshot > conc) { |
4534 | /* we fulfilled more than NCPU requests since being dispatched */ |
4535 | WQ_TRACE_WQ(TRACE_wq_creator_yield, wq, 1, |
4536 | wq->wq_fulfilled, snapshot); |
4537 | return true; |
4538 | } |
4539 | |
4540 | for (uint8_t i = _wq_bucket(qos); i < WORKQ_NUM_QOS_BUCKETS; i++) { |
4541 | cnt += wq->wq_thscheduled_count[i]; |
4542 | } |
4543 | if (conc <= cnt) { |
4544 | /* We fulfilled requests and have more than NCPU scheduled threads */ |
4545 | WQ_TRACE_WQ(TRACE_wq_creator_yield, wq, 2, |
4546 | wq->wq_fulfilled, snapshot); |
4547 | return true; |
4548 | } |
4549 | |
4550 | return false; |
4551 | } |
4552 | |
4553 | /** |
4554 | * parked thread wakes up |
4555 | */ |
4556 | __attribute__((noreturn, noinline)) |
4557 | static void |
4558 | workq_unpark_continue(void *parameter __unused, wait_result_t wr __unused) |
4559 | { |
4560 | thread_t th = current_thread(); |
4561 | struct uthread *uth = get_bsdthread_info(th); |
4562 | proc_t p = current_proc(); |
4563 | struct workqueue *wq = proc_get_wqptr_fast(p); |
4564 | |
4565 | workq_lock_spin(wq); |
4566 | |
4567 | if (wq->wq_creator == uth && workq_creator_should_yield(wq, uth)) { |
4568 | /* |
4569 | * If the number of threads we have out are able to keep up with the |
4570 | * demand, then we should avoid sending this creator thread to |
4571 | * userspace. |
4572 | */ |
4573 | uth->uu_save.uus_workq_park_data.fulfilled_snapshot = wq->wq_fulfilled; |
4574 | uth->uu_save.uus_workq_park_data.yields++; |
4575 | workq_unlock(wq); |
4576 | thread_yield_with_continuation(continuation: workq_unpark_continue, NULL); |
4577 | __builtin_unreachable(); |
4578 | } |
4579 | |
4580 | if (__probable(uth->uu_workq_flags & UT_WORKQ_RUNNING)) { |
4581 | workq_unpark_select_threadreq_or_park_and_unlock(p, wq, uth, WQ_SETUP_NONE); |
4582 | __builtin_unreachable(); |
4583 | } |
4584 | |
4585 | if (__probable(wr == THREAD_AWAKENED)) { |
4586 | /* |
4587 | * We were set running, but for the purposes of dying. |
4588 | */ |
4589 | assert(uth->uu_workq_flags & UT_WORKQ_DYING); |
4590 | assert((uth->uu_workq_flags & UT_WORKQ_NEW) == 0); |
4591 | } else { |
4592 | /* |
4593 | * workaround for <rdar://problem/38647347>, |
4594 | * in case we do hit userspace, make sure calling |
4595 | * workq_thread_terminate() does the right thing here, |
4596 | * and if we never call it, that workq_exit() will too because it sees |
4597 | * this thread on the runlist. |
4598 | */ |
4599 | assert(wr == THREAD_INTERRUPTED); |
4600 | wq->wq_thdying_count++; |
4601 | uth->uu_workq_flags |= UT_WORKQ_DYING; |
4602 | } |
4603 | |
4604 | workq_unpark_for_death_and_unlock(p, wq, uth, |
4605 | WORKQ_UNPARK_FOR_DEATH_WAS_IDLE, WQ_SETUP_NONE); |
4606 | __builtin_unreachable(); |
4607 | } |
4608 | |
4609 | __attribute__((noreturn, noinline)) |
4610 | static void |
4611 | workq_setup_and_run(proc_t p, struct uthread *uth, int setup_flags) |
4612 | { |
4613 | thread_t th = get_machthread(uth); |
4614 | vm_map_t vmap = get_task_map(proc_task(p)); |
4615 | |
4616 | if (setup_flags & WQ_SETUP_CLEAR_VOUCHER) { |
4617 | /* |
4618 | * For preemption reasons, we want to reset the voucher as late as |
4619 | * possible, so we do it in two places: |
4620 | * - Just before parking (i.e. in workq_park_and_unlock()) |
4621 | * - Prior to doing the setup for the next workitem (i.e. here) |
4622 | * |
4623 | * Those two places are sufficient to ensure we always reset it before |
4624 | * it goes back out to user space, but be careful to not break that |
4625 | * guarantee. |
4626 | * |
4627 | * Note that setting the voucher to NULL will not clear the preadoption |
4628 | * thread group on this thread |
4629 | */ |
4630 | __assert_only kern_return_t kr; |
4631 | kr = thread_set_voucher_name(MACH_PORT_NULL); |
4632 | assert(kr == KERN_SUCCESS); |
4633 | } |
4634 | |
4635 | uint32_t upcall_flags = uth->uu_save.uus_workq_park_data.upcall_flags; |
4636 | if (!(setup_flags & WQ_SETUP_FIRST_USE)) { |
4637 | upcall_flags |= WQ_FLAG_THREAD_REUSE; |
4638 | } |
4639 | |
4640 | if (uth->uu_workq_flags & UT_WORKQ_OUTSIDE_QOS) { |
4641 | /* |
4642 | * For threads that have an outside-of-QoS thread priority, indicate |
4643 | * to userspace that setting QoS should only affect the TSD and not |
4644 | * change QOS in the kernel. |
4645 | */ |
4646 | upcall_flags |= WQ_FLAG_THREAD_OUTSIDEQOS; |
4647 | } else { |
4648 | /* |
4649 | * Put the QoS class value into the lower bits of the reuse_thread |
4650 | * register, this is where the thread priority used to be stored |
4651 | * anyway. |
4652 | */ |
4653 | upcall_flags |= uth->uu_save.uus_workq_park_data.qos | |
4654 | WQ_FLAG_THREAD_PRIO_QOS; |
4655 | } |
4656 | |
4657 | if (uth->uu_workq_thport == MACH_PORT_NULL) { |
4658 | /* convert_thread_to_port_pinned() consumes a reference */ |
4659 | thread_reference(thread: th); |
4660 | /* Convert to immovable/pinned thread port, but port is not pinned yet */ |
4661 | ipc_port_t port = convert_thread_to_port_pinned(th); |
4662 | /* Atomically, pin and copy out the port */ |
4663 | uth->uu_workq_thport = ipc_port_copyout_send_pinned(sright: port, space: get_task_ipcspace(t: proc_task(p))); |
4664 | } |
4665 | |
4666 | /* Thread has been set up to run, arm its next workqueue quantum or disarm |
4667 | * if it is no longer supporting that */ |
4668 | if (thread_supports_cooperative_workqueue(thread: th)) { |
4669 | thread_arm_workqueue_quantum(thread: th); |
4670 | } else { |
4671 | thread_disarm_workqueue_quantum(thread: th); |
4672 | } |
4673 | |
4674 | /* |
4675 | * Call out to pthread, this sets up the thread, pulls in kevent structs |
4676 | * onto the stack, sets up the thread state and then returns to userspace. |
4677 | */ |
4678 | WQ_TRACE_WQ(TRACE_wq_runthread | DBG_FUNC_START, |
4679 | proc_get_wqptr_fast(p), 0, 0, 0); |
4680 | |
4681 | if (workq_thread_is_cooperative(uth)) { |
4682 | thread_sched_call(thread: th, NULL); |
4683 | } else { |
4684 | thread_sched_call(thread: th, call: workq_sched_callback); |
4685 | } |
4686 | |
4687 | pthread_functions->workq_setup_thread(p, th, vmap, uth->uu_workq_stackaddr, |
4688 | uth->uu_workq_thport, 0, setup_flags, upcall_flags); |
4689 | |
4690 | __builtin_unreachable(); |
4691 | } |
4692 | |
4693 | #pragma mark misc |
4694 | |
4695 | int |
4696 | fill_procworkqueue(proc_t p, struct proc_workqueueinfo * pwqinfo) |
4697 | { |
4698 | struct workqueue *wq = proc_get_wqptr(p); |
4699 | int error = 0; |
4700 | int activecount; |
4701 | |
4702 | if (wq == NULL) { |
4703 | return EINVAL; |
4704 | } |
4705 | |
4706 | /* |
4707 | * This is sometimes called from interrupt context by the kperf sampler. |
4708 | * In that case, it's not safe to spin trying to take the lock since we |
4709 | * might already hold it. So, we just try-lock it and error out if it's |
4710 | * already held. Since this is just a debugging aid, and all our callers |
4711 | * are able to handle an error, that's fine. |
4712 | */ |
4713 | bool locked = workq_lock_try(wq); |
4714 | if (!locked) { |
4715 | return EBUSY; |
4716 | } |
4717 | |
4718 | wq_thactive_t act = _wq_thactive(wq); |
4719 | activecount = _wq_thactive_aggregate_downto_qos(wq, v: act, |
4720 | WORKQ_THREAD_QOS_MIN, NULL, NULL); |
4721 | if (act & _wq_thactive_offset_for_qos(WORKQ_THREAD_QOS_MANAGER)) { |
4722 | activecount++; |
4723 | } |
4724 | pwqinfo->pwq_nthreads = wq->wq_nthreads; |
4725 | pwqinfo->pwq_runthreads = activecount; |
4726 | pwqinfo->pwq_blockedthreads = wq->wq_threads_scheduled - activecount; |
4727 | pwqinfo->pwq_state = 0; |
4728 | |
4729 | if (wq->wq_constrained_threads_scheduled >= wq_max_constrained_threads) { |
4730 | pwqinfo->pwq_state |= WQ_EXCEEDED_CONSTRAINED_THREAD_LIMIT; |
4731 | } |
4732 | |
4733 | if (wq->wq_nthreads >= wq_max_threads) { |
4734 | pwqinfo->pwq_state |= WQ_EXCEEDED_TOTAL_THREAD_LIMIT; |
4735 | } |
4736 | |
4737 | workq_unlock(wq); |
4738 | return error; |
4739 | } |
4740 | |
4741 | boolean_t |
4742 | workqueue_get_pwq_exceeded(void *v, boolean_t *exceeded_total, |
4743 | boolean_t *exceeded_constrained) |
4744 | { |
4745 | proc_t p = v; |
4746 | struct proc_workqueueinfo pwqinfo; |
4747 | int err; |
4748 | |
4749 | assert(p != NULL); |
4750 | assert(exceeded_total != NULL); |
4751 | assert(exceeded_constrained != NULL); |
4752 | |
4753 | err = fill_procworkqueue(p, pwqinfo: &pwqinfo); |
4754 | if (err) { |
4755 | return FALSE; |
4756 | } |
4757 | if (!(pwqinfo.pwq_state & WQ_FLAGS_AVAILABLE)) { |
4758 | return FALSE; |
4759 | } |
4760 | |
4761 | *exceeded_total = (pwqinfo.pwq_state & WQ_EXCEEDED_TOTAL_THREAD_LIMIT); |
4762 | *exceeded_constrained = (pwqinfo.pwq_state & WQ_EXCEEDED_CONSTRAINED_THREAD_LIMIT); |
4763 | |
4764 | return TRUE; |
4765 | } |
4766 | |
4767 | uint32_t |
4768 | workqueue_get_pwq_state_kdp(void * v) |
4769 | { |
4770 | static_assert((WQ_EXCEEDED_CONSTRAINED_THREAD_LIMIT << 17) == |
4771 | kTaskWqExceededConstrainedThreadLimit); |
4772 | static_assert((WQ_EXCEEDED_TOTAL_THREAD_LIMIT << 17) == |
4773 | kTaskWqExceededTotalThreadLimit); |
4774 | static_assert((WQ_FLAGS_AVAILABLE << 17) == kTaskWqFlagsAvailable); |
4775 | static_assert((WQ_FLAGS_AVAILABLE | WQ_EXCEEDED_TOTAL_THREAD_LIMIT | |
4776 | WQ_EXCEEDED_CONSTRAINED_THREAD_LIMIT) == 0x7); |
4777 | |
4778 | if (v == NULL) { |
4779 | return 0; |
4780 | } |
4781 | |
4782 | proc_t p = v; |
4783 | struct workqueue *wq = proc_get_wqptr(p); |
4784 | |
4785 | if (wq == NULL || workq_lock_is_acquired_kdp(wq)) { |
4786 | return 0; |
4787 | } |
4788 | |
4789 | uint32_t pwq_state = WQ_FLAGS_AVAILABLE; |
4790 | |
4791 | if (wq->wq_constrained_threads_scheduled >= wq_max_constrained_threads) { |
4792 | pwq_state |= WQ_EXCEEDED_CONSTRAINED_THREAD_LIMIT; |
4793 | } |
4794 | |
4795 | if (wq->wq_nthreads >= wq_max_threads) { |
4796 | pwq_state |= WQ_EXCEEDED_TOTAL_THREAD_LIMIT; |
4797 | } |
4798 | |
4799 | return pwq_state; |
4800 | } |
4801 | |
4802 | void |
4803 | workq_init(void) |
4804 | { |
4805 | clock_interval_to_absolutetime_interval(interval: wq_stalled_window.usecs, |
4806 | NSEC_PER_USEC, result: &wq_stalled_window.abstime); |
4807 | clock_interval_to_absolutetime_interval(interval: wq_reduce_pool_window.usecs, |
4808 | NSEC_PER_USEC, result: &wq_reduce_pool_window.abstime); |
4809 | clock_interval_to_absolutetime_interval(interval: wq_max_timer_interval.usecs, |
4810 | NSEC_PER_USEC, result: &wq_max_timer_interval.abstime); |
4811 | |
4812 | thread_deallocate_daemon_register_queue(dq: &workq_deallocate_queue, |
4813 | invoke: workq_deallocate_queue_invoke); |
4814 | } |
4815 | |