| 1 | /* |
| 2 | * Copyright (c) 2000-2020 Apple Inc. All rights reserved. |
| 3 | * |
| 4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ |
| 5 | * |
| 6 | * This file contains Original Code and/or Modifications of Original Code |
| 7 | * as defined in and that are subject to the Apple Public Source License |
| 8 | * Version 2.0 (the 'License'). You may not use this file except in |
| 9 | * compliance with the License. The rights granted to you under the License |
| 10 | * may not be used to create, or enable the creation or redistribution of, |
| 11 | * unlawful or unlicensed copies of an Apple operating system, or to |
| 12 | * circumvent, violate, or enable the circumvention or violation of, any |
| 13 | * terms of an Apple operating system software license agreement. |
| 14 | * |
| 15 | * Please obtain a copy of the License at |
| 16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. |
| 17 | * |
| 18 | * The Original Code and all software distributed under the License are |
| 19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER |
| 20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
| 21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, |
| 22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
| 23 | * Please see the License for the specific language governing rights and |
| 24 | * limitations under the License. |
| 25 | * |
| 26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ |
| 27 | */ |
| 28 | /* Copyright (c) 1995-2018 Apple, Inc. All Rights Reserved */ |
| 29 | |
| 30 | #include <sys/cdefs.h> |
| 31 | |
| 32 | #include <kern/assert.h> |
| 33 | #include <kern/ast.h> |
| 34 | #include <kern/clock.h> |
| 35 | #include <kern/cpu_data.h> |
| 36 | #include <kern/kern_types.h> |
| 37 | #include <kern/policy_internal.h> |
| 38 | #include <kern/processor.h> |
| 39 | #include <kern/sched_prim.h> /* for thread_exception_return */ |
| 40 | #include <kern/task.h> |
| 41 | #include <kern/thread.h> |
| 42 | #include <kern/thread_group.h> |
| 43 | #include <kern/zalloc.h> |
| 44 | #include <mach/kern_return.h> |
| 45 | #include <mach/mach_param.h> |
| 46 | #include <mach/mach_port.h> |
| 47 | #include <mach/mach_types.h> |
| 48 | #include <mach/mach_vm.h> |
| 49 | #include <mach/sync_policy.h> |
| 50 | #include <mach/task.h> |
| 51 | #include <mach/thread_act.h> /* for thread_resume */ |
| 52 | #include <mach/thread_policy.h> |
| 53 | #include <mach/thread_status.h> |
| 54 | #include <mach/vm_prot.h> |
| 55 | #include <mach/vm_statistics.h> |
| 56 | #include <machine/atomic.h> |
| 57 | #include <machine/machine_routines.h> |
| 58 | #include <machine/smp.h> |
| 59 | #include <vm/vm_map.h> |
| 60 | #include <vm/vm_protos.h> |
| 61 | |
| 62 | #include <sys/eventvar.h> |
| 63 | #include <sys/kdebug.h> |
| 64 | #include <sys/kernel.h> |
| 65 | #include <sys/lock.h> |
| 66 | #include <sys/param.h> |
| 67 | #include <sys/proc_info.h> /* for fill_procworkqueue */ |
| 68 | #include <sys/proc_internal.h> |
| 69 | #include <sys/pthread_shims.h> |
| 70 | #include <sys/resourcevar.h> |
| 71 | #include <sys/signalvar.h> |
| 72 | #include <sys/sysctl.h> |
| 73 | #include <sys/sysproto.h> |
| 74 | #include <sys/systm.h> |
| 75 | #include <sys/ulock.h> /* for ulock_owner_value_to_port_name */ |
| 76 | |
| 77 | #include <pthread/bsdthread_private.h> |
| 78 | #include <pthread/workqueue_syscalls.h> |
| 79 | #include <pthread/workqueue_internal.h> |
| 80 | #include <pthread/workqueue_trace.h> |
| 81 | |
| 82 | #include <os/log.h> |
| 83 | |
| 84 | static void workq_unpark_continue(void *uth, wait_result_t wr) __dead2; |
| 85 | static void workq_schedule_creator(proc_t p, struct workqueue *wq, |
| 86 | workq_kern_threadreq_flags_t flags); |
| 87 | |
| 88 | static bool workq_threadreq_admissible(struct workqueue *wq, struct uthread *uth, |
| 89 | workq_threadreq_t req); |
| 90 | |
| 91 | static uint32_t workq_constrained_allowance(struct workqueue *wq, |
| 92 | thread_qos_t at_qos, struct uthread *uth, bool may_start_timer); |
| 93 | |
| 94 | static bool _wq_cooperative_queue_refresh_best_req_qos(struct workqueue *wq); |
| 95 | |
| 96 | static bool workq_thread_is_busy(uint64_t cur_ts, |
| 97 | _Atomic uint64_t *lastblocked_tsp); |
| 98 | |
| 99 | static int workq_sysctl_handle_usecs SYSCTL_HANDLER_ARGS; |
| 100 | |
| 101 | static bool |
| 102 | workq_schedule_delayed_thread_creation(struct workqueue *wq, int flags); |
| 103 | |
| 104 | static inline void |
| 105 | workq_lock_spin(struct workqueue *wq); |
| 106 | |
| 107 | static inline void |
| 108 | workq_unlock(struct workqueue *wq); |
| 109 | |
| 110 | #pragma mark globals |
| 111 | |
| 112 | struct workq_usec_var { |
| 113 | uint32_t usecs; |
| 114 | uint64_t abstime; |
| 115 | }; |
| 116 | |
| 117 | #define WORKQ_SYSCTL_USECS(var, init) \ |
| 118 | static struct workq_usec_var var = { .usecs = init }; \ |
| 119 | SYSCTL_OID(_kern, OID_AUTO, var##_usecs, \ |
| 120 | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED, &var, 0, \ |
| 121 | workq_sysctl_handle_usecs, "I", "") |
| 122 | |
| 123 | static LCK_GRP_DECLARE(workq_lck_grp, "workq" ); |
| 124 | os_refgrp_decl(static, workq_refgrp, "workq" , NULL); |
| 125 | |
| 126 | static ZONE_DEFINE(workq_zone_workqueue, "workq.wq" , |
| 127 | sizeof(struct workqueue), ZC_NONE); |
| 128 | static ZONE_DEFINE(workq_zone_threadreq, "workq.threadreq" , |
| 129 | sizeof(struct workq_threadreq_s), ZC_CACHING); |
| 130 | |
| 131 | static struct mpsc_daemon_queue workq_deallocate_queue; |
| 132 | |
| 133 | WORKQ_SYSCTL_USECS(wq_stalled_window, WQ_STALLED_WINDOW_USECS); |
| 134 | WORKQ_SYSCTL_USECS(wq_reduce_pool_window, WQ_REDUCE_POOL_WINDOW_USECS); |
| 135 | WORKQ_SYSCTL_USECS(wq_max_timer_interval, WQ_MAX_TIMER_INTERVAL_USECS); |
| 136 | static uint32_t wq_max_threads = WORKQUEUE_MAXTHREADS; |
| 137 | static uint32_t wq_max_constrained_threads = WORKQUEUE_MAXTHREADS / 8; |
| 138 | static uint32_t wq_init_constrained_limit = 1; |
| 139 | static uint16_t wq_death_max_load; |
| 140 | static uint32_t wq_max_parallelism[WORKQ_NUM_QOS_BUCKETS]; |
| 141 | |
| 142 | /* |
| 143 | * This is not a hard limit but the max size we want to aim to hit across the |
| 144 | * entire cooperative pool. We can oversubscribe the pool due to non-cooperative |
| 145 | * workers and the max we will oversubscribe the pool by, is a total of |
| 146 | * wq_max_cooperative_threads * WORKQ_NUM_QOS_BUCKETS. |
| 147 | */ |
| 148 | static uint32_t wq_max_cooperative_threads; |
| 149 | |
| 150 | static inline uint32_t |
| 151 | wq_cooperative_queue_max_size(struct workqueue *wq) |
| 152 | { |
| 153 | return wq->wq_cooperative_queue_has_limited_max_size ? 1 : wq_max_cooperative_threads; |
| 154 | } |
| 155 | |
| 156 | #pragma mark sysctls |
| 157 | |
| 158 | static int |
| 159 | workq_sysctl_handle_usecs SYSCTL_HANDLER_ARGS |
| 160 | { |
| 161 | #pragma unused(arg2) |
| 162 | struct workq_usec_var *v = arg1; |
| 163 | int error = sysctl_handle_int(oidp, arg1: &v->usecs, arg2: 0, req); |
| 164 | if (error || !req->newptr) { |
| 165 | return error; |
| 166 | } |
| 167 | clock_interval_to_absolutetime_interval(interval: v->usecs, NSEC_PER_USEC, |
| 168 | result: &v->abstime); |
| 169 | return 0; |
| 170 | } |
| 171 | |
| 172 | SYSCTL_INT(_kern, OID_AUTO, wq_max_threads, CTLFLAG_RW | CTLFLAG_LOCKED, |
| 173 | &wq_max_threads, 0, "" ); |
| 174 | |
| 175 | SYSCTL_INT(_kern, OID_AUTO, wq_max_constrained_threads, CTLFLAG_RW | CTLFLAG_LOCKED, |
| 176 | &wq_max_constrained_threads, 0, "" ); |
| 177 | |
| 178 | static int |
| 179 | wq_limit_cooperative_threads_for_proc SYSCTL_HANDLER_ARGS |
| 180 | { |
| 181 | #pragma unused(arg1, arg2, oidp) |
| 182 | int input_pool_size = 0; |
| 183 | int changed; |
| 184 | int error = 0; |
| 185 | |
| 186 | error = sysctl_io_number(req, bigValue: 0, valueSize: sizeof(int), pValue: &input_pool_size, changed: &changed); |
| 187 | if (error || !changed) { |
| 188 | return error; |
| 189 | } |
| 190 | |
| 191 | #define WQ_COOPERATIVE_POOL_SIZE_DEFAULT 0 |
| 192 | #define WQ_COOPERATIVE_POOL_SIZE_STRICT_PER_QOS -1 |
| 193 | /* Not available currently, but sysctl interface is designed to allow these |
| 194 | * extra parameters: |
| 195 | * WQ_COOPERATIVE_POOL_SIZE_STRICT : -2 (across all bucket) |
| 196 | * WQ_COOPERATIVE_POOL_SIZE_CUSTOM : [1, 512] |
| 197 | */ |
| 198 | |
| 199 | if (input_pool_size != WQ_COOPERATIVE_POOL_SIZE_DEFAULT |
| 200 | && input_pool_size != WQ_COOPERATIVE_POOL_SIZE_STRICT_PER_QOS) { |
| 201 | error = EINVAL; |
| 202 | goto out; |
| 203 | } |
| 204 | |
| 205 | proc_t p = req->p; |
| 206 | struct workqueue *wq = proc_get_wqptr(p); |
| 207 | |
| 208 | if (wq != NULL) { |
| 209 | workq_lock_spin(wq); |
| 210 | if (wq->wq_reqcount > 0 || wq->wq_nthreads > 0) { |
| 211 | // Hackily enforce that the workqueue is still new (no requests or |
| 212 | // threads) |
| 213 | error = ENOTSUP; |
| 214 | } else { |
| 215 | wq->wq_cooperative_queue_has_limited_max_size = (input_pool_size == WQ_COOPERATIVE_POOL_SIZE_STRICT_PER_QOS); |
| 216 | } |
| 217 | workq_unlock(wq); |
| 218 | } else { |
| 219 | /* This process has no workqueue, calling this syctl makes no sense */ |
| 220 | return ENOTSUP; |
| 221 | } |
| 222 | |
| 223 | out: |
| 224 | return error; |
| 225 | } |
| 226 | |
| 227 | SYSCTL_PROC(_kern, OID_AUTO, wq_limit_cooperative_threads, |
| 228 | CTLFLAG_ANYBODY | CTLFLAG_MASKED | CTLFLAG_WR | CTLFLAG_LOCKED | CTLTYPE_INT, 0, 0, |
| 229 | wq_limit_cooperative_threads_for_proc, |
| 230 | "I" , "Modify the max pool size of the cooperative pool" ); |
| 231 | |
| 232 | #pragma mark p_wqptr |
| 233 | |
| 234 | #define WQPTR_IS_INITING_VALUE ((struct workqueue *)~(uintptr_t)0) |
| 235 | |
| 236 | static struct workqueue * |
| 237 | proc_get_wqptr_fast(struct proc *p) |
| 238 | { |
| 239 | return os_atomic_load(&p->p_wqptr, relaxed); |
| 240 | } |
| 241 | |
| 242 | struct workqueue * |
| 243 | proc_get_wqptr(struct proc *p) |
| 244 | { |
| 245 | struct workqueue *wq = proc_get_wqptr_fast(p); |
| 246 | return wq == WQPTR_IS_INITING_VALUE ? NULL : wq; |
| 247 | } |
| 248 | |
| 249 | static void |
| 250 | proc_set_wqptr(struct proc *p, struct workqueue *wq) |
| 251 | { |
| 252 | wq = os_atomic_xchg(&p->p_wqptr, wq, release); |
| 253 | if (wq == WQPTR_IS_INITING_VALUE) { |
| 254 | proc_lock(p); |
| 255 | thread_wakeup(&p->p_wqptr); |
| 256 | proc_unlock(p); |
| 257 | } |
| 258 | } |
| 259 | |
| 260 | static bool |
| 261 | proc_init_wqptr_or_wait(struct proc *p) |
| 262 | { |
| 263 | struct workqueue *wq; |
| 264 | |
| 265 | proc_lock(p); |
| 266 | wq = os_atomic_load(&p->p_wqptr, relaxed); |
| 267 | |
| 268 | if (wq == NULL) { |
| 269 | os_atomic_store(&p->p_wqptr, WQPTR_IS_INITING_VALUE, relaxed); |
| 270 | proc_unlock(p); |
| 271 | return true; |
| 272 | } |
| 273 | |
| 274 | if (wq == WQPTR_IS_INITING_VALUE) { |
| 275 | assert_wait(event: &p->p_wqptr, THREAD_UNINT); |
| 276 | proc_unlock(p); |
| 277 | thread_block(THREAD_CONTINUE_NULL); |
| 278 | } else { |
| 279 | proc_unlock(p); |
| 280 | } |
| 281 | return false; |
| 282 | } |
| 283 | |
| 284 | static inline event_t |
| 285 | workq_parked_wait_event(struct uthread *uth) |
| 286 | { |
| 287 | return (event_t)&uth->uu_workq_stackaddr; |
| 288 | } |
| 289 | |
| 290 | static inline void |
| 291 | workq_thread_wakeup(struct uthread *uth) |
| 292 | { |
| 293 | thread_wakeup_thread(event: workq_parked_wait_event(uth), thread: get_machthread(uth)); |
| 294 | } |
| 295 | |
| 296 | #pragma mark wq_thactive |
| 297 | |
| 298 | #if defined(__LP64__) |
| 299 | // Layout is: |
| 300 | // 127 - 115 : 13 bits of zeroes |
| 301 | // 114 - 112 : best QoS among all pending constrained requests |
| 302 | // 111 - 0 : MGR, AUI, UI, IN, DF, UT, BG+MT buckets every 16 bits |
| 303 | #define WQ_THACTIVE_BUCKET_WIDTH 16 |
| 304 | #define WQ_THACTIVE_QOS_SHIFT (7 * WQ_THACTIVE_BUCKET_WIDTH) |
| 305 | #else |
| 306 | // Layout is: |
| 307 | // 63 - 61 : best QoS among all pending constrained requests |
| 308 | // 60 : Manager bucket (0 or 1) |
| 309 | // 59 - 0 : AUI, UI, IN, DF, UT, BG+MT buckets every 10 bits |
| 310 | #define WQ_THACTIVE_BUCKET_WIDTH 10 |
| 311 | #define WQ_THACTIVE_QOS_SHIFT (6 * WQ_THACTIVE_BUCKET_WIDTH + 1) |
| 312 | #endif |
| 313 | #define WQ_THACTIVE_BUCKET_MASK ((1U << WQ_THACTIVE_BUCKET_WIDTH) - 1) |
| 314 | #define WQ_THACTIVE_BUCKET_HALF (1U << (WQ_THACTIVE_BUCKET_WIDTH - 1)) |
| 315 | |
| 316 | static_assert(sizeof(wq_thactive_t) * CHAR_BIT - WQ_THACTIVE_QOS_SHIFT >= 3, |
| 317 | "Make sure we have space to encode a QoS" ); |
| 318 | |
| 319 | static inline wq_thactive_t |
| 320 | _wq_thactive(struct workqueue *wq) |
| 321 | { |
| 322 | return os_atomic_load_wide(&wq->wq_thactive, relaxed); |
| 323 | } |
| 324 | |
| 325 | static inline uint8_t |
| 326 | _wq_bucket(thread_qos_t qos) |
| 327 | { |
| 328 | // Map both BG and MT to the same bucket by over-shifting down and |
| 329 | // clamping MT and BG together. |
| 330 | switch (qos) { |
| 331 | case THREAD_QOS_MAINTENANCE: |
| 332 | return 0; |
| 333 | default: |
| 334 | return qos - 2; |
| 335 | } |
| 336 | } |
| 337 | |
| 338 | #define WQ_THACTIVE_BEST_CONSTRAINED_REQ_QOS(tha) \ |
| 339 | ((thread_qos_t)((tha) >> WQ_THACTIVE_QOS_SHIFT)) |
| 340 | |
| 341 | static inline thread_qos_t |
| 342 | _wq_thactive_best_constrained_req_qos(struct workqueue *wq) |
| 343 | { |
| 344 | // Avoid expensive atomic operations: the three bits we're loading are in |
| 345 | // a single byte, and always updated under the workqueue lock |
| 346 | wq_thactive_t v = *(wq_thactive_t *)&wq->wq_thactive; |
| 347 | return WQ_THACTIVE_BEST_CONSTRAINED_REQ_QOS(v); |
| 348 | } |
| 349 | |
| 350 | static void |
| 351 | _wq_thactive_refresh_best_constrained_req_qos(struct workqueue *wq) |
| 352 | { |
| 353 | thread_qos_t old_qos, new_qos; |
| 354 | workq_threadreq_t req; |
| 355 | |
| 356 | req = priority_queue_max(&wq->wq_constrained_queue, |
| 357 | struct workq_threadreq_s, tr_entry); |
| 358 | new_qos = req ? req->tr_qos : THREAD_QOS_UNSPECIFIED; |
| 359 | old_qos = _wq_thactive_best_constrained_req_qos(wq); |
| 360 | if (old_qos != new_qos) { |
| 361 | long delta = (long)new_qos - (long)old_qos; |
| 362 | wq_thactive_t v = (wq_thactive_t)delta << WQ_THACTIVE_QOS_SHIFT; |
| 363 | /* |
| 364 | * We can do an atomic add relative to the initial load because updates |
| 365 | * to this qos are always serialized under the workqueue lock. |
| 366 | */ |
| 367 | v = os_atomic_add(&wq->wq_thactive, v, relaxed); |
| 368 | #ifdef __LP64__ |
| 369 | WQ_TRACE_WQ(TRACE_wq_thactive_update, wq, (uint64_t)v, |
| 370 | (uint64_t)(v >> 64), 0); |
| 371 | #else |
| 372 | WQ_TRACE_WQ(TRACE_wq_thactive_update, wq, v, 0, 0); |
| 373 | #endif |
| 374 | } |
| 375 | } |
| 376 | |
| 377 | static inline wq_thactive_t |
| 378 | _wq_thactive_offset_for_qos(thread_qos_t qos) |
| 379 | { |
| 380 | uint8_t bucket = _wq_bucket(qos); |
| 381 | __builtin_assume(bucket < WORKQ_NUM_BUCKETS); |
| 382 | return (wq_thactive_t)1 << (bucket * WQ_THACTIVE_BUCKET_WIDTH); |
| 383 | } |
| 384 | |
| 385 | static inline wq_thactive_t |
| 386 | _wq_thactive_inc(struct workqueue *wq, thread_qos_t qos) |
| 387 | { |
| 388 | wq_thactive_t v = _wq_thactive_offset_for_qos(qos); |
| 389 | return os_atomic_add_orig(&wq->wq_thactive, v, relaxed); |
| 390 | } |
| 391 | |
| 392 | static inline wq_thactive_t |
| 393 | _wq_thactive_dec(struct workqueue *wq, thread_qos_t qos) |
| 394 | { |
| 395 | wq_thactive_t v = _wq_thactive_offset_for_qos(qos); |
| 396 | return os_atomic_sub_orig(&wq->wq_thactive, v, relaxed); |
| 397 | } |
| 398 | |
| 399 | static inline void |
| 400 | _wq_thactive_move(struct workqueue *wq, |
| 401 | thread_qos_t old_qos, thread_qos_t new_qos) |
| 402 | { |
| 403 | wq_thactive_t v = _wq_thactive_offset_for_qos(qos: new_qos) - |
| 404 | _wq_thactive_offset_for_qos(qos: old_qos); |
| 405 | os_atomic_add(&wq->wq_thactive, v, relaxed); |
| 406 | wq->wq_thscheduled_count[_wq_bucket(qos: old_qos)]--; |
| 407 | wq->wq_thscheduled_count[_wq_bucket(qos: new_qos)]++; |
| 408 | } |
| 409 | |
| 410 | static inline uint32_t |
| 411 | _wq_thactive_aggregate_downto_qos(struct workqueue *wq, wq_thactive_t v, |
| 412 | thread_qos_t qos, uint32_t *busycount, uint32_t *max_busycount) |
| 413 | { |
| 414 | uint32_t count = 0, active; |
| 415 | uint64_t curtime; |
| 416 | |
| 417 | assert(WORKQ_THREAD_QOS_MIN <= qos && qos <= WORKQ_THREAD_QOS_MAX); |
| 418 | |
| 419 | if (busycount) { |
| 420 | curtime = mach_absolute_time(); |
| 421 | *busycount = 0; |
| 422 | } |
| 423 | if (max_busycount) { |
| 424 | *max_busycount = THREAD_QOS_LAST - qos; |
| 425 | } |
| 426 | |
| 427 | uint8_t i = _wq_bucket(qos); |
| 428 | v >>= i * WQ_THACTIVE_BUCKET_WIDTH; |
| 429 | for (; i < WORKQ_NUM_QOS_BUCKETS; i++, v >>= WQ_THACTIVE_BUCKET_WIDTH) { |
| 430 | active = v & WQ_THACTIVE_BUCKET_MASK; |
| 431 | count += active; |
| 432 | |
| 433 | if (busycount && wq->wq_thscheduled_count[i] > active) { |
| 434 | if (workq_thread_is_busy(cur_ts: curtime, lastblocked_tsp: &wq->wq_lastblocked_ts[i])) { |
| 435 | /* |
| 436 | * We only consider the last blocked thread for a given bucket |
| 437 | * as busy because we don't want to take the list lock in each |
| 438 | * sched callback. However this is an approximation that could |
| 439 | * contribute to thread creation storms. |
| 440 | */ |
| 441 | (*busycount)++; |
| 442 | } |
| 443 | } |
| 444 | } |
| 445 | |
| 446 | return count; |
| 447 | } |
| 448 | |
| 449 | /* The input qos here should be the requested QoS of the thread, not accounting |
| 450 | * for any overrides */ |
| 451 | static inline void |
| 452 | _wq_cooperative_queue_scheduled_count_dec(struct workqueue *wq, thread_qos_t qos) |
| 453 | { |
| 454 | __assert_only uint8_t old_scheduled_count = wq->wq_cooperative_queue_scheduled_count[_wq_bucket(qos)]--; |
| 455 | assert(old_scheduled_count > 0); |
| 456 | } |
| 457 | |
| 458 | /* The input qos here should be the requested QoS of the thread, not accounting |
| 459 | * for any overrides */ |
| 460 | static inline void |
| 461 | _wq_cooperative_queue_scheduled_count_inc(struct workqueue *wq, thread_qos_t qos) |
| 462 | { |
| 463 | __assert_only uint8_t old_scheduled_count = wq->wq_cooperative_queue_scheduled_count[_wq_bucket(qos)]++; |
| 464 | assert(old_scheduled_count < UINT8_MAX); |
| 465 | } |
| 466 | |
| 467 | #pragma mark wq_flags |
| 468 | |
| 469 | static inline uint32_t |
| 470 | _wq_flags(struct workqueue *wq) |
| 471 | { |
| 472 | return os_atomic_load(&wq->wq_flags, relaxed); |
| 473 | } |
| 474 | |
| 475 | static inline bool |
| 476 | _wq_exiting(struct workqueue *wq) |
| 477 | { |
| 478 | return _wq_flags(wq) & WQ_EXITING; |
| 479 | } |
| 480 | |
| 481 | bool |
| 482 | workq_is_exiting(struct proc *p) |
| 483 | { |
| 484 | struct workqueue *wq = proc_get_wqptr(p); |
| 485 | return !wq || _wq_exiting(wq); |
| 486 | } |
| 487 | |
| 488 | |
| 489 | #pragma mark workqueue lock |
| 490 | |
| 491 | static bool |
| 492 | workq_lock_is_acquired_kdp(struct workqueue *wq) |
| 493 | { |
| 494 | return kdp_lck_ticket_is_acquired(tlock: &wq->wq_lock); |
| 495 | } |
| 496 | |
| 497 | static inline void |
| 498 | workq_lock_spin(struct workqueue *wq) |
| 499 | { |
| 500 | lck_ticket_lock(tlock: &wq->wq_lock, grp: &workq_lck_grp); |
| 501 | } |
| 502 | |
| 503 | static inline void |
| 504 | workq_lock_held(struct workqueue *wq) |
| 505 | { |
| 506 | LCK_TICKET_ASSERT_OWNED(&wq->wq_lock); |
| 507 | } |
| 508 | |
| 509 | static inline bool |
| 510 | workq_lock_try(struct workqueue *wq) |
| 511 | { |
| 512 | return lck_ticket_lock_try(tlock: &wq->wq_lock, grp: &workq_lck_grp); |
| 513 | } |
| 514 | |
| 515 | static inline void |
| 516 | workq_unlock(struct workqueue *wq) |
| 517 | { |
| 518 | lck_ticket_unlock(tlock: &wq->wq_lock); |
| 519 | } |
| 520 | |
| 521 | #pragma mark idle thread lists |
| 522 | |
| 523 | #define WORKQ_POLICY_INIT(qos) \ |
| 524 | (struct uu_workq_policy){ .qos_req = qos, .qos_bucket = qos } |
| 525 | |
| 526 | static inline thread_qos_t |
| 527 | workq_pri_bucket(struct uu_workq_policy req) |
| 528 | { |
| 529 | return MAX(MAX(req.qos_req, req.qos_max), req.qos_override); |
| 530 | } |
| 531 | |
| 532 | static inline thread_qos_t |
| 533 | workq_pri_override(struct uu_workq_policy req) |
| 534 | { |
| 535 | return MAX(workq_pri_bucket(req), req.qos_bucket); |
| 536 | } |
| 537 | |
| 538 | static inline bool |
| 539 | workq_thread_needs_params_change(workq_threadreq_t req, struct uthread *uth) |
| 540 | { |
| 541 | workq_threadreq_param_t cur_trp, req_trp = { }; |
| 542 | |
| 543 | cur_trp.trp_value = uth->uu_save.uus_workq_park_data.workloop_params; |
| 544 | if (req->tr_flags & WORKQ_TR_FLAG_WL_PARAMS) { |
| 545 | req_trp = kqueue_threadreq_workloop_param(req); |
| 546 | } |
| 547 | |
| 548 | /* |
| 549 | * CPU percent flags are handled separately to policy changes, so ignore |
| 550 | * them for all of these checks. |
| 551 | */ |
| 552 | uint16_t cur_flags = (cur_trp.trp_flags & ~TRP_CPUPERCENT); |
| 553 | uint16_t req_flags = (req_trp.trp_flags & ~TRP_CPUPERCENT); |
| 554 | |
| 555 | if (!req_flags && !cur_flags) { |
| 556 | return false; |
| 557 | } |
| 558 | |
| 559 | if (req_flags != cur_flags) { |
| 560 | return true; |
| 561 | } |
| 562 | |
| 563 | if ((req_flags & TRP_PRIORITY) && req_trp.trp_pri != cur_trp.trp_pri) { |
| 564 | return true; |
| 565 | } |
| 566 | |
| 567 | if ((req_flags & TRP_POLICY) && req_trp.trp_pol != cur_trp.trp_pol) { |
| 568 | return true; |
| 569 | } |
| 570 | |
| 571 | return false; |
| 572 | } |
| 573 | |
| 574 | static inline bool |
| 575 | workq_thread_needs_priority_change(workq_threadreq_t req, struct uthread *uth) |
| 576 | { |
| 577 | if (workq_thread_needs_params_change(req, uth)) { |
| 578 | return true; |
| 579 | } |
| 580 | |
| 581 | if (req->tr_qos != workq_pri_override(req: uth->uu_workq_pri)) { |
| 582 | return true; |
| 583 | } |
| 584 | |
| 585 | #if CONFIG_PREADOPT_TG |
| 586 | thread_group_qos_t tg = kqr_preadopt_thread_group(req); |
| 587 | if (KQWL_HAS_VALID_PREADOPTED_TG(tg)) { |
| 588 | /* |
| 589 | * Ideally, we'd add check here to see if thread's preadopt TG is same |
| 590 | * as the thread requests's thread group and short circuit if that is |
| 591 | * the case. But in the interest of keeping the code clean and not |
| 592 | * taking the thread lock here, we're going to skip this. We will |
| 593 | * eventually shortcircuit once we try to set the preadoption thread |
| 594 | * group on the thread. |
| 595 | */ |
| 596 | return true; |
| 597 | } |
| 598 | #endif |
| 599 | |
| 600 | return false; |
| 601 | } |
| 602 | |
| 603 | /* Input thread must be self. Called during self override, resetting overrides |
| 604 | * or while processing kevents |
| 605 | * |
| 606 | * Called with workq lock held. Sometimes also the thread mutex |
| 607 | */ |
| 608 | static void |
| 609 | workq_thread_update_bucket(proc_t p, struct workqueue *wq, struct uthread *uth, |
| 610 | struct uu_workq_policy old_pri, struct uu_workq_policy new_pri, |
| 611 | bool force_run) |
| 612 | { |
| 613 | assert(uth == current_uthread()); |
| 614 | |
| 615 | thread_qos_t old_bucket = old_pri.qos_bucket; |
| 616 | thread_qos_t new_bucket = workq_pri_bucket(req: new_pri); |
| 617 | |
| 618 | if (old_bucket != new_bucket) { |
| 619 | _wq_thactive_move(wq, old_qos: old_bucket, new_qos: new_bucket); |
| 620 | } |
| 621 | |
| 622 | new_pri.qos_bucket = new_bucket; |
| 623 | uth->uu_workq_pri = new_pri; |
| 624 | |
| 625 | if (old_pri.qos_override != new_pri.qos_override) { |
| 626 | thread_set_workq_override(thread: get_machthread(uth), qos: new_pri.qos_override); |
| 627 | } |
| 628 | |
| 629 | if (wq->wq_reqcount && (old_bucket > new_bucket || force_run)) { |
| 630 | int flags = WORKQ_THREADREQ_CAN_CREATE_THREADS; |
| 631 | if (old_bucket > new_bucket) { |
| 632 | /* |
| 633 | * When lowering our bucket, we may unblock a thread request, |
| 634 | * but we can't drop our priority before we have evaluated |
| 635 | * whether this is the case, and if we ever drop the workqueue lock |
| 636 | * that would cause a priority inversion. |
| 637 | * |
| 638 | * We hence have to disallow thread creation in that case. |
| 639 | */ |
| 640 | flags = 0; |
| 641 | } |
| 642 | workq_schedule_creator(p, wq, flags); |
| 643 | } |
| 644 | } |
| 645 | |
| 646 | /* |
| 647 | * Sets/resets the cpu percent limits on the current thread. We can't set |
| 648 | * these limits from outside of the current thread, so this function needs |
| 649 | * to be called when we're executing on the intended |
| 650 | */ |
| 651 | static void |
| 652 | workq_thread_reset_cpupercent(workq_threadreq_t req, struct uthread *uth) |
| 653 | { |
| 654 | assert(uth == current_uthread()); |
| 655 | workq_threadreq_param_t trp = { }; |
| 656 | |
| 657 | if (req && (req->tr_flags & WORKQ_TR_FLAG_WL_PARAMS)) { |
| 658 | trp = kqueue_threadreq_workloop_param(req); |
| 659 | } |
| 660 | |
| 661 | if (uth->uu_workq_flags & UT_WORKQ_CPUPERCENT) { |
| 662 | /* |
| 663 | * Going through disable when we have an existing CPU percent limit |
| 664 | * set will force the ledger to refill the token bucket of the current |
| 665 | * thread. Removing any penalty applied by previous thread use. |
| 666 | */ |
| 667 | thread_set_cpulimit(THREAD_CPULIMIT_DISABLE, percentage: 0, interval_ns: 0); |
| 668 | uth->uu_workq_flags &= ~UT_WORKQ_CPUPERCENT; |
| 669 | } |
| 670 | |
| 671 | if (trp.trp_flags & TRP_CPUPERCENT) { |
| 672 | thread_set_cpulimit(THREAD_CPULIMIT_BLOCK, percentage: trp.trp_cpupercent, |
| 673 | interval_ns: (uint64_t)trp.trp_refillms * NSEC_PER_SEC); |
| 674 | uth->uu_workq_flags |= UT_WORKQ_CPUPERCENT; |
| 675 | } |
| 676 | } |
| 677 | |
| 678 | /* Called with the workq lock held */ |
| 679 | static void |
| 680 | workq_thread_reset_pri(struct workqueue *wq, struct uthread *uth, |
| 681 | workq_threadreq_t req, bool unpark) |
| 682 | { |
| 683 | thread_t th = get_machthread(uth); |
| 684 | thread_qos_t qos = req ? req->tr_qos : WORKQ_THREAD_QOS_CLEANUP; |
| 685 | workq_threadreq_param_t trp = { }; |
| 686 | int priority = 31; |
| 687 | int policy = POLICY_TIMESHARE; |
| 688 | |
| 689 | if (req && (req->tr_flags & WORKQ_TR_FLAG_WL_PARAMS)) { |
| 690 | trp = kqueue_threadreq_workloop_param(req); |
| 691 | } |
| 692 | |
| 693 | uth->uu_workq_pri = WORKQ_POLICY_INIT(qos); |
| 694 | uth->uu_workq_flags &= ~UT_WORKQ_OUTSIDE_QOS; |
| 695 | |
| 696 | if (unpark) { |
| 697 | uth->uu_save.uus_workq_park_data.workloop_params = trp.trp_value; |
| 698 | // qos sent out to userspace (may differ from uu_workq_pri on param threads) |
| 699 | uth->uu_save.uus_workq_park_data.qos = qos; |
| 700 | } |
| 701 | |
| 702 | if (qos == WORKQ_THREAD_QOS_MANAGER) { |
| 703 | uint32_t mgr_pri = wq->wq_event_manager_priority; |
| 704 | assert(trp.trp_value == 0); // manager qos and thread policy don't mix |
| 705 | |
| 706 | if (_pthread_priority_has_sched_pri(pp: mgr_pri)) { |
| 707 | mgr_pri &= _PTHREAD_PRIORITY_SCHED_PRI_MASK; |
| 708 | thread_set_workq_pri(thread: th, THREAD_QOS_UNSPECIFIED, priority: mgr_pri, |
| 709 | POLICY_TIMESHARE); |
| 710 | return; |
| 711 | } |
| 712 | |
| 713 | qos = _pthread_priority_thread_qos(pp: mgr_pri); |
| 714 | } else { |
| 715 | if (trp.trp_flags & TRP_PRIORITY) { |
| 716 | qos = THREAD_QOS_UNSPECIFIED; |
| 717 | priority = trp.trp_pri; |
| 718 | uth->uu_workq_flags |= UT_WORKQ_OUTSIDE_QOS; |
| 719 | } |
| 720 | |
| 721 | if (trp.trp_flags & TRP_POLICY) { |
| 722 | policy = trp.trp_pol; |
| 723 | } |
| 724 | } |
| 725 | |
| 726 | #if CONFIG_PREADOPT_TG |
| 727 | if (req && (req->tr_flags & WORKQ_TR_FLAG_WORKLOOP)) { |
| 728 | /* |
| 729 | * For kqwl permanently configured with a thread group, we can safely borrow |
| 730 | * +1 ref from kqwl_preadopt_tg. A thread then takes additional +1 ref |
| 731 | * for itself via thread_set_preadopt_thread_group. |
| 732 | * |
| 733 | * In all other cases, we cannot safely read and borrow the reference from the kqwl |
| 734 | * since it can disappear from under us at any time due to the max-ing logic in |
| 735 | * kqueue_set_preadopted_thread_group. |
| 736 | * |
| 737 | * As such, we do the following dance: |
| 738 | * |
| 739 | * 1) cmpxchng and steal the kqwl's preadopt thread group and leave |
| 740 | * behind with (NULL + QoS). At this point, we have the reference |
| 741 | * to the thread group from the kqwl. |
| 742 | * 2) Have the thread set the preadoption thread group on itself. |
| 743 | * 3) cmpxchng from (NULL + QoS) which we set earlier in (1), back to |
| 744 | * thread_group + QoS. ie we try to give the reference back to the kqwl. |
| 745 | * If we fail, that's because a higher QoS thread group was set on the |
| 746 | * kqwl in kqueue_set_preadopted_thread_group in which case, we need to |
| 747 | * go back to (1). |
| 748 | */ |
| 749 | |
| 750 | _Atomic(struct thread_group *) * tg_loc = kqr_preadopt_thread_group_addr(req); |
| 751 | |
| 752 | thread_group_qos_t old_tg, new_tg; |
| 753 | int ret = 0; |
| 754 | again: |
| 755 | ret = os_atomic_rmw_loop(tg_loc, old_tg, new_tg, relaxed, { |
| 756 | if ((!KQWL_HAS_VALID_PREADOPTED_TG(old_tg)) || |
| 757 | KQWL_HAS_PERMANENT_PREADOPTED_TG(old_tg)) { |
| 758 | os_atomic_rmw_loop_give_up(break); |
| 759 | } |
| 760 | |
| 761 | /* |
| 762 | * Leave the QoS behind - kqueue_set_preadopted_thread_group will |
| 763 | * only modify it if there is a higher QoS thread group to attach |
| 764 | */ |
| 765 | new_tg = (thread_group_qos_t) ((uintptr_t) old_tg & KQWL_PREADOPT_TG_QOS_MASK); |
| 766 | }); |
| 767 | |
| 768 | if (ret) { |
| 769 | /* |
| 770 | * We successfully took the ref from the kqwl so set it on the |
| 771 | * thread now |
| 772 | */ |
| 773 | thread_set_preadopt_thread_group(t: th, KQWL_GET_PREADOPTED_TG(old_tg)); |
| 774 | |
| 775 | thread_group_qos_t thread_group_to_expect = new_tg; |
| 776 | thread_group_qos_t thread_group_to_set = old_tg; |
| 777 | |
| 778 | os_atomic_rmw_loop(tg_loc, old_tg, new_tg, relaxed, { |
| 779 | if (old_tg != thread_group_to_expect) { |
| 780 | /* |
| 781 | * There was an intervening write to the kqwl_preadopt_tg, |
| 782 | * and it has a higher QoS than what we are working with |
| 783 | * here. Abandon our current adopted thread group and redo |
| 784 | * the full dance |
| 785 | */ |
| 786 | thread_group_deallocate_safe(KQWL_GET_PREADOPTED_TG(thread_group_to_set)); |
| 787 | os_atomic_rmw_loop_give_up(goto again); |
| 788 | } |
| 789 | |
| 790 | new_tg = thread_group_to_set; |
| 791 | }); |
| 792 | } else { |
| 793 | if (KQWL_HAS_PERMANENT_PREADOPTED_TG(old_tg)) { |
| 794 | thread_set_preadopt_thread_group(t: th, KQWL_GET_PREADOPTED_TG(old_tg)); |
| 795 | } else { |
| 796 | /* Nothing valid on the kqwl, just clear what's on the thread */ |
| 797 | thread_set_preadopt_thread_group(t: th, NULL); |
| 798 | } |
| 799 | } |
| 800 | } else { |
| 801 | /* Not even a kqwl, clear what's on the thread */ |
| 802 | thread_set_preadopt_thread_group(t: th, NULL); |
| 803 | } |
| 804 | #endif |
| 805 | thread_set_workq_pri(thread: th, qos, priority, policy); |
| 806 | } |
| 807 | |
| 808 | /* |
| 809 | * Called by kevent with the NOTE_WL_THREAD_REQUEST knote lock held, |
| 810 | * every time a servicer is being told about a new max QoS. |
| 811 | */ |
| 812 | void |
| 813 | workq_thread_set_max_qos(struct proc *p, workq_threadreq_t kqr) |
| 814 | { |
| 815 | struct uu_workq_policy old_pri, new_pri; |
| 816 | struct uthread *uth = current_uthread(); |
| 817 | struct workqueue *wq = proc_get_wqptr_fast(p); |
| 818 | thread_qos_t qos = kqr->tr_kq_qos_index; |
| 819 | |
| 820 | if (uth->uu_workq_pri.qos_max == qos) { |
| 821 | return; |
| 822 | } |
| 823 | |
| 824 | workq_lock_spin(wq); |
| 825 | old_pri = new_pri = uth->uu_workq_pri; |
| 826 | new_pri.qos_max = qos; |
| 827 | workq_thread_update_bucket(p, wq, uth, old_pri, new_pri, false); |
| 828 | workq_unlock(wq); |
| 829 | } |
| 830 | |
| 831 | #pragma mark idle threads accounting and handling |
| 832 | |
| 833 | static inline struct uthread * |
| 834 | workq_oldest_killable_idle_thread(struct workqueue *wq) |
| 835 | { |
| 836 | struct uthread *uth = TAILQ_LAST(&wq->wq_thidlelist, workq_uthread_head); |
| 837 | |
| 838 | if (uth && !uth->uu_save.uus_workq_park_data.has_stack) { |
| 839 | uth = TAILQ_PREV(uth, workq_uthread_head, uu_workq_entry); |
| 840 | if (uth) { |
| 841 | assert(uth->uu_save.uus_workq_park_data.has_stack); |
| 842 | } |
| 843 | } |
| 844 | return uth; |
| 845 | } |
| 846 | |
| 847 | static inline uint64_t |
| 848 | workq_kill_delay_for_idle_thread(struct workqueue *wq) |
| 849 | { |
| 850 | uint64_t delay = wq_reduce_pool_window.abstime; |
| 851 | uint16_t idle = wq->wq_thidlecount; |
| 852 | |
| 853 | /* |
| 854 | * If we have less than wq_death_max_load threads, have a 5s timer. |
| 855 | * |
| 856 | * For the next wq_max_constrained_threads ones, decay linearly from |
| 857 | * from 5s to 50ms. |
| 858 | */ |
| 859 | if (idle <= wq_death_max_load) { |
| 860 | return delay; |
| 861 | } |
| 862 | |
| 863 | if (wq_max_constrained_threads > idle - wq_death_max_load) { |
| 864 | delay *= (wq_max_constrained_threads - (idle - wq_death_max_load)); |
| 865 | } |
| 866 | return delay / wq_max_constrained_threads; |
| 867 | } |
| 868 | |
| 869 | static inline bool |
| 870 | workq_should_kill_idle_thread(struct workqueue *wq, struct uthread *uth, |
| 871 | uint64_t now) |
| 872 | { |
| 873 | uint64_t delay = workq_kill_delay_for_idle_thread(wq); |
| 874 | return now - uth->uu_save.uus_workq_park_data.idle_stamp > delay; |
| 875 | } |
| 876 | |
| 877 | static void |
| 878 | workq_death_call_schedule(struct workqueue *wq, uint64_t deadline) |
| 879 | { |
| 880 | uint32_t wq_flags = os_atomic_load(&wq->wq_flags, relaxed); |
| 881 | |
| 882 | if (wq_flags & (WQ_EXITING | WQ_DEATH_CALL_SCHEDULED)) { |
| 883 | return; |
| 884 | } |
| 885 | os_atomic_or(&wq->wq_flags, WQ_DEATH_CALL_SCHEDULED, relaxed); |
| 886 | |
| 887 | WQ_TRACE_WQ(TRACE_wq_death_call | DBG_FUNC_NONE, wq, 1, 0, 0); |
| 888 | |
| 889 | /* |
| 890 | * <rdar://problem/13139182> Due to how long term timers work, the leeway |
| 891 | * can't be too short, so use 500ms which is long enough that we will not |
| 892 | * wake up the CPU for killing threads, but short enough that it doesn't |
| 893 | * fall into long-term timer list shenanigans. |
| 894 | */ |
| 895 | thread_call_enter_delayed_with_leeway(call: wq->wq_death_call, NULL, deadline, |
| 896 | leeway: wq_reduce_pool_window.abstime / 10, |
| 897 | THREAD_CALL_DELAY_LEEWAY | THREAD_CALL_DELAY_USER_BACKGROUND); |
| 898 | } |
| 899 | |
| 900 | /* |
| 901 | * `decrement` is set to the number of threads that are no longer dying: |
| 902 | * - because they have been resuscitated just in time (workq_pop_idle_thread) |
| 903 | * - or have been killed (workq_thread_terminate). |
| 904 | */ |
| 905 | static void |
| 906 | workq_death_policy_evaluate(struct workqueue *wq, uint16_t decrement) |
| 907 | { |
| 908 | struct uthread *uth; |
| 909 | |
| 910 | assert(wq->wq_thdying_count >= decrement); |
| 911 | if ((wq->wq_thdying_count -= decrement) > 0) { |
| 912 | return; |
| 913 | } |
| 914 | |
| 915 | if (wq->wq_thidlecount <= 1) { |
| 916 | return; |
| 917 | } |
| 918 | |
| 919 | if ((uth = workq_oldest_killable_idle_thread(wq)) == NULL) { |
| 920 | return; |
| 921 | } |
| 922 | |
| 923 | uint64_t now = mach_absolute_time(); |
| 924 | uint64_t delay = workq_kill_delay_for_idle_thread(wq); |
| 925 | |
| 926 | if (now - uth->uu_save.uus_workq_park_data.idle_stamp > delay) { |
| 927 | WQ_TRACE_WQ(TRACE_wq_thread_terminate | DBG_FUNC_START, |
| 928 | wq, wq->wq_thidlecount, 0, 0); |
| 929 | wq->wq_thdying_count++; |
| 930 | uth->uu_workq_flags |= UT_WORKQ_DYING; |
| 931 | if ((uth->uu_workq_flags & UT_WORKQ_IDLE_CLEANUP) == 0) { |
| 932 | workq_thread_wakeup(uth); |
| 933 | } |
| 934 | return; |
| 935 | } |
| 936 | |
| 937 | workq_death_call_schedule(wq, |
| 938 | deadline: uth->uu_save.uus_workq_park_data.idle_stamp + delay); |
| 939 | } |
| 940 | |
| 941 | void |
| 942 | workq_thread_terminate(struct proc *p, struct uthread *uth) |
| 943 | { |
| 944 | struct workqueue *wq = proc_get_wqptr_fast(p); |
| 945 | |
| 946 | workq_lock_spin(wq); |
| 947 | TAILQ_REMOVE(&wq->wq_thrunlist, uth, uu_workq_entry); |
| 948 | if (uth->uu_workq_flags & UT_WORKQ_DYING) { |
| 949 | WQ_TRACE_WQ(TRACE_wq_thread_terminate | DBG_FUNC_END, |
| 950 | wq, wq->wq_thidlecount, 0, 0); |
| 951 | workq_death_policy_evaluate(wq, decrement: 1); |
| 952 | } |
| 953 | if (wq->wq_nthreads-- == wq_max_threads) { |
| 954 | /* |
| 955 | * We got under the thread limit again, which may have prevented |
| 956 | * thread creation from happening, redrive if there are pending requests |
| 957 | */ |
| 958 | if (wq->wq_reqcount) { |
| 959 | workq_schedule_creator(p, wq, flags: WORKQ_THREADREQ_CAN_CREATE_THREADS); |
| 960 | } |
| 961 | } |
| 962 | workq_unlock(wq); |
| 963 | |
| 964 | thread_deallocate(thread: get_machthread(uth)); |
| 965 | } |
| 966 | |
| 967 | static void |
| 968 | workq_kill_old_threads_call(void *param0, void *param1 __unused) |
| 969 | { |
| 970 | struct workqueue *wq = param0; |
| 971 | |
| 972 | workq_lock_spin(wq); |
| 973 | WQ_TRACE_WQ(TRACE_wq_death_call | DBG_FUNC_START, wq, 0, 0, 0); |
| 974 | os_atomic_andnot(&wq->wq_flags, WQ_DEATH_CALL_SCHEDULED, relaxed); |
| 975 | workq_death_policy_evaluate(wq, decrement: 0); |
| 976 | WQ_TRACE_WQ(TRACE_wq_death_call | DBG_FUNC_END, wq, 0, 0, 0); |
| 977 | workq_unlock(wq); |
| 978 | } |
| 979 | |
| 980 | static struct uthread * |
| 981 | workq_pop_idle_thread(struct workqueue *wq, uint16_t uu_flags, |
| 982 | bool *needs_wakeup) |
| 983 | { |
| 984 | struct uthread *uth; |
| 985 | |
| 986 | if ((uth = TAILQ_FIRST(&wq->wq_thidlelist))) { |
| 987 | TAILQ_REMOVE(&wq->wq_thidlelist, uth, uu_workq_entry); |
| 988 | } else { |
| 989 | uth = TAILQ_FIRST(&wq->wq_thnewlist); |
| 990 | TAILQ_REMOVE(&wq->wq_thnewlist, uth, uu_workq_entry); |
| 991 | } |
| 992 | TAILQ_INSERT_TAIL(&wq->wq_thrunlist, uth, uu_workq_entry); |
| 993 | |
| 994 | assert((uth->uu_workq_flags & UT_WORKQ_RUNNING) == 0); |
| 995 | uth->uu_workq_flags |= UT_WORKQ_RUNNING | uu_flags; |
| 996 | |
| 997 | /* A thread is never woken up as part of the cooperative pool */ |
| 998 | assert((uu_flags & UT_WORKQ_COOPERATIVE) == 0); |
| 999 | |
| 1000 | if ((uu_flags & UT_WORKQ_OVERCOMMIT) == 0) { |
| 1001 | wq->wq_constrained_threads_scheduled++; |
| 1002 | } |
| 1003 | wq->wq_threads_scheduled++; |
| 1004 | wq->wq_thidlecount--; |
| 1005 | |
| 1006 | if (__improbable(uth->uu_workq_flags & UT_WORKQ_DYING)) { |
| 1007 | uth->uu_workq_flags ^= UT_WORKQ_DYING; |
| 1008 | workq_death_policy_evaluate(wq, decrement: 1); |
| 1009 | *needs_wakeup = false; |
| 1010 | } else if (uth->uu_workq_flags & UT_WORKQ_IDLE_CLEANUP) { |
| 1011 | *needs_wakeup = false; |
| 1012 | } else { |
| 1013 | *needs_wakeup = true; |
| 1014 | } |
| 1015 | return uth; |
| 1016 | } |
| 1017 | |
| 1018 | /* |
| 1019 | * Called by thread_create_workq_waiting() during thread initialization, before |
| 1020 | * assert_wait, before the thread has been started. |
| 1021 | */ |
| 1022 | event_t |
| 1023 | workq_thread_init_and_wq_lock(task_t task, thread_t th) |
| 1024 | { |
| 1025 | struct uthread *uth = get_bsdthread_info(th); |
| 1026 | |
| 1027 | uth->uu_workq_flags = UT_WORKQ_NEW; |
| 1028 | uth->uu_workq_pri = WORKQ_POLICY_INIT(THREAD_QOS_LEGACY); |
| 1029 | uth->uu_workq_thport = MACH_PORT_NULL; |
| 1030 | uth->uu_workq_stackaddr = 0; |
| 1031 | uth->uu_workq_pthread_kill_allowed = 0; |
| 1032 | |
| 1033 | thread_set_tag(thread: th, tag: THREAD_TAG_PTHREAD | THREAD_TAG_WORKQUEUE); |
| 1034 | thread_reset_workq_qos(thread: th, THREAD_QOS_LEGACY); |
| 1035 | |
| 1036 | workq_lock_spin(wq: proc_get_wqptr_fast(p: get_bsdtask_info(task))); |
| 1037 | return workq_parked_wait_event(uth); |
| 1038 | } |
| 1039 | |
| 1040 | /** |
| 1041 | * Try to add a new workqueue thread. |
| 1042 | * |
| 1043 | * - called with workq lock held |
| 1044 | * - dropped and retaken around thread creation |
| 1045 | * - return with workq lock held |
| 1046 | */ |
| 1047 | static bool |
| 1048 | workq_add_new_idle_thread(proc_t p, struct workqueue *wq) |
| 1049 | { |
| 1050 | mach_vm_offset_t th_stackaddr; |
| 1051 | kern_return_t kret; |
| 1052 | thread_t th; |
| 1053 | |
| 1054 | wq->wq_nthreads++; |
| 1055 | |
| 1056 | workq_unlock(wq); |
| 1057 | |
| 1058 | vm_map_t vmap = get_task_map(proc_task(p)); |
| 1059 | |
| 1060 | kret = pthread_functions->workq_create_threadstack(p, vmap, &th_stackaddr); |
| 1061 | if (kret != KERN_SUCCESS) { |
| 1062 | WQ_TRACE_WQ(TRACE_wq_thread_create_failed | DBG_FUNC_NONE, wq, |
| 1063 | kret, 1, 0); |
| 1064 | goto out; |
| 1065 | } |
| 1066 | |
| 1067 | kret = thread_create_workq_waiting(task: proc_task(p), thread_return: workq_unpark_continue, new_thread: &th); |
| 1068 | if (kret != KERN_SUCCESS) { |
| 1069 | WQ_TRACE_WQ(TRACE_wq_thread_create_failed | DBG_FUNC_NONE, wq, |
| 1070 | kret, 0, 0); |
| 1071 | pthread_functions->workq_destroy_threadstack(p, vmap, th_stackaddr); |
| 1072 | goto out; |
| 1073 | } |
| 1074 | |
| 1075 | // thread_create_workq_waiting() will return with the wq lock held |
| 1076 | // on success, because it calls workq_thread_init_and_wq_lock() above |
| 1077 | |
| 1078 | struct uthread *uth = get_bsdthread_info(th); |
| 1079 | |
| 1080 | wq->wq_creations++; |
| 1081 | wq->wq_thidlecount++; |
| 1082 | uth->uu_workq_stackaddr = (user_addr_t)th_stackaddr; |
| 1083 | TAILQ_INSERT_TAIL(&wq->wq_thnewlist, uth, uu_workq_entry); |
| 1084 | |
| 1085 | WQ_TRACE_WQ(TRACE_wq_thread_create | DBG_FUNC_NONE, wq, 0, 0, 0); |
| 1086 | return true; |
| 1087 | |
| 1088 | out: |
| 1089 | workq_lock_spin(wq); |
| 1090 | /* |
| 1091 | * Do not redrive here if we went under wq_max_threads again, |
| 1092 | * it is the responsibility of the callers of this function |
| 1093 | * to do so when it fails. |
| 1094 | */ |
| 1095 | wq->wq_nthreads--; |
| 1096 | return false; |
| 1097 | } |
| 1098 | |
| 1099 | static inline bool |
| 1100 | workq_thread_is_overcommit(struct uthread *uth) |
| 1101 | { |
| 1102 | return (uth->uu_workq_flags & UT_WORKQ_OVERCOMMIT) != 0; |
| 1103 | } |
| 1104 | |
| 1105 | static inline bool |
| 1106 | workq_thread_is_nonovercommit(struct uthread *uth) |
| 1107 | { |
| 1108 | return (uth->uu_workq_flags & (UT_WORKQ_OVERCOMMIT | UT_WORKQ_COOPERATIVE)) == 0; |
| 1109 | } |
| 1110 | |
| 1111 | static inline bool |
| 1112 | workq_thread_is_cooperative(struct uthread *uth) |
| 1113 | { |
| 1114 | return (uth->uu_workq_flags & UT_WORKQ_COOPERATIVE) != 0; |
| 1115 | } |
| 1116 | |
| 1117 | static inline void |
| 1118 | workq_thread_set_type(struct uthread *uth, uint16_t flags) |
| 1119 | { |
| 1120 | uth->uu_workq_flags &= ~(UT_WORKQ_OVERCOMMIT | UT_WORKQ_COOPERATIVE); |
| 1121 | uth->uu_workq_flags |= flags; |
| 1122 | } |
| 1123 | |
| 1124 | |
| 1125 | #define WORKQ_UNPARK_FOR_DEATH_WAS_IDLE 0x1 |
| 1126 | |
| 1127 | __attribute__((noreturn, noinline)) |
| 1128 | static void |
| 1129 | workq_unpark_for_death_and_unlock(proc_t p, struct workqueue *wq, |
| 1130 | struct uthread *uth, uint32_t death_flags, uint32_t setup_flags) |
| 1131 | { |
| 1132 | thread_qos_t qos = workq_pri_override(req: uth->uu_workq_pri); |
| 1133 | bool first_use = uth->uu_workq_flags & UT_WORKQ_NEW; |
| 1134 | |
| 1135 | if (qos > WORKQ_THREAD_QOS_CLEANUP) { |
| 1136 | workq_thread_reset_pri(wq, uth, NULL, /*unpark*/ true); |
| 1137 | qos = WORKQ_THREAD_QOS_CLEANUP; |
| 1138 | } |
| 1139 | |
| 1140 | workq_thread_reset_cpupercent(NULL, uth); |
| 1141 | |
| 1142 | if (death_flags & WORKQ_UNPARK_FOR_DEATH_WAS_IDLE) { |
| 1143 | wq->wq_thidlecount--; |
| 1144 | if (first_use) { |
| 1145 | TAILQ_REMOVE(&wq->wq_thnewlist, uth, uu_workq_entry); |
| 1146 | } else { |
| 1147 | TAILQ_REMOVE(&wq->wq_thidlelist, uth, uu_workq_entry); |
| 1148 | } |
| 1149 | } |
| 1150 | TAILQ_INSERT_TAIL(&wq->wq_thrunlist, uth, uu_workq_entry); |
| 1151 | |
| 1152 | workq_unlock(wq); |
| 1153 | |
| 1154 | if (setup_flags & WQ_SETUP_CLEAR_VOUCHER) { |
| 1155 | __assert_only kern_return_t kr; |
| 1156 | kr = thread_set_voucher_name(MACH_PORT_NULL); |
| 1157 | assert(kr == KERN_SUCCESS); |
| 1158 | } |
| 1159 | |
| 1160 | uint32_t flags = WQ_FLAG_THREAD_NEWSPI | qos | WQ_FLAG_THREAD_PRIO_QOS; |
| 1161 | thread_t th = get_machthread(uth); |
| 1162 | vm_map_t vmap = get_task_map(proc_task(p)); |
| 1163 | |
| 1164 | if (!first_use) { |
| 1165 | flags |= WQ_FLAG_THREAD_REUSE; |
| 1166 | } |
| 1167 | |
| 1168 | pthread_functions->workq_setup_thread(p, th, vmap, uth->uu_workq_stackaddr, |
| 1169 | uth->uu_workq_thport, 0, WQ_SETUP_EXIT_THREAD, flags); |
| 1170 | __builtin_unreachable(); |
| 1171 | } |
| 1172 | |
| 1173 | bool |
| 1174 | workq_is_current_thread_updating_turnstile(struct workqueue *wq) |
| 1175 | { |
| 1176 | return wq->wq_turnstile_updater == current_thread(); |
| 1177 | } |
| 1178 | |
| 1179 | __attribute__((always_inline)) |
| 1180 | static inline void |
| 1181 | workq_perform_turnstile_operation_locked(struct workqueue *wq, |
| 1182 | void (^operation)(void)) |
| 1183 | { |
| 1184 | workq_lock_held(wq); |
| 1185 | wq->wq_turnstile_updater = current_thread(); |
| 1186 | operation(); |
| 1187 | wq->wq_turnstile_updater = THREAD_NULL; |
| 1188 | } |
| 1189 | |
| 1190 | static void |
| 1191 | workq_turnstile_update_inheritor(struct workqueue *wq, |
| 1192 | turnstile_inheritor_t inheritor, |
| 1193 | turnstile_update_flags_t flags) |
| 1194 | { |
| 1195 | if (wq->wq_inheritor == inheritor) { |
| 1196 | return; |
| 1197 | } |
| 1198 | wq->wq_inheritor = inheritor; |
| 1199 | workq_perform_turnstile_operation_locked(wq, operation: ^{ |
| 1200 | turnstile_update_inheritor(turnstile: wq->wq_turnstile, new_inheritor: inheritor, |
| 1201 | flags: flags | TURNSTILE_IMMEDIATE_UPDATE); |
| 1202 | turnstile_update_inheritor_complete(turnstile: wq->wq_turnstile, |
| 1203 | flags: TURNSTILE_INTERLOCK_HELD); |
| 1204 | }); |
| 1205 | } |
| 1206 | |
| 1207 | static void |
| 1208 | workq_push_idle_thread(proc_t p, struct workqueue *wq, struct uthread *uth, |
| 1209 | uint32_t setup_flags) |
| 1210 | { |
| 1211 | uint64_t now = mach_absolute_time(); |
| 1212 | bool is_creator = (uth == wq->wq_creator); |
| 1213 | |
| 1214 | if (workq_thread_is_cooperative(uth)) { |
| 1215 | assert(!is_creator); |
| 1216 | |
| 1217 | thread_qos_t thread_qos = uth->uu_workq_pri.qos_req; |
| 1218 | _wq_cooperative_queue_scheduled_count_dec(wq, qos: thread_qos); |
| 1219 | |
| 1220 | /* Before we get here, we always go through |
| 1221 | * workq_select_threadreq_or_park_and_unlock. If we got here, it means |
| 1222 | * that we went through the logic in workq_threadreq_select which |
| 1223 | * did the refresh for the next best cooperative qos while |
| 1224 | * excluding the current thread - we shouldn't need to do it again. |
| 1225 | */ |
| 1226 | assert(_wq_cooperative_queue_refresh_best_req_qos(wq) == false); |
| 1227 | } else if (workq_thread_is_nonovercommit(uth)) { |
| 1228 | assert(!is_creator); |
| 1229 | |
| 1230 | wq->wq_constrained_threads_scheduled--; |
| 1231 | } |
| 1232 | |
| 1233 | uth->uu_workq_flags &= ~(UT_WORKQ_RUNNING | UT_WORKQ_OVERCOMMIT | UT_WORKQ_COOPERATIVE); |
| 1234 | TAILQ_REMOVE(&wq->wq_thrunlist, uth, uu_workq_entry); |
| 1235 | wq->wq_threads_scheduled--; |
| 1236 | |
| 1237 | if (is_creator) { |
| 1238 | wq->wq_creator = NULL; |
| 1239 | WQ_TRACE_WQ(TRACE_wq_creator_select, wq, 3, 0, |
| 1240 | uth->uu_save.uus_workq_park_data.yields); |
| 1241 | } |
| 1242 | |
| 1243 | if (wq->wq_inheritor == get_machthread(uth)) { |
| 1244 | assert(wq->wq_creator == NULL); |
| 1245 | if (wq->wq_reqcount) { |
| 1246 | workq_turnstile_update_inheritor(wq, inheritor: wq, flags: TURNSTILE_INHERITOR_WORKQ); |
| 1247 | } else { |
| 1248 | workq_turnstile_update_inheritor(wq, TURNSTILE_INHERITOR_NULL, flags: 0); |
| 1249 | } |
| 1250 | } |
| 1251 | |
| 1252 | if (uth->uu_workq_flags & UT_WORKQ_NEW) { |
| 1253 | assert(is_creator || (_wq_flags(wq) & WQ_EXITING)); |
| 1254 | TAILQ_INSERT_TAIL(&wq->wq_thnewlist, uth, uu_workq_entry); |
| 1255 | wq->wq_thidlecount++; |
| 1256 | return; |
| 1257 | } |
| 1258 | |
| 1259 | if (!is_creator) { |
| 1260 | _wq_thactive_dec(wq, qos: uth->uu_workq_pri.qos_bucket); |
| 1261 | wq->wq_thscheduled_count[_wq_bucket(qos: uth->uu_workq_pri.qos_bucket)]--; |
| 1262 | uth->uu_workq_flags |= UT_WORKQ_IDLE_CLEANUP; |
| 1263 | } |
| 1264 | |
| 1265 | uth->uu_save.uus_workq_park_data.idle_stamp = now; |
| 1266 | |
| 1267 | struct uthread *oldest = workq_oldest_killable_idle_thread(wq); |
| 1268 | uint16_t cur_idle = wq->wq_thidlecount; |
| 1269 | |
| 1270 | if (cur_idle >= wq_max_constrained_threads || |
| 1271 | (wq->wq_thdying_count == 0 && oldest && |
| 1272 | workq_should_kill_idle_thread(wq, uth: oldest, now))) { |
| 1273 | /* |
| 1274 | * Immediately kill threads if we have too may of them. |
| 1275 | * |
| 1276 | * And swap "place" with the oldest one we'd have woken up. |
| 1277 | * This is a relatively desperate situation where we really |
| 1278 | * need to kill threads quickly and it's best to kill |
| 1279 | * the one that's currently on core than context switching. |
| 1280 | */ |
| 1281 | if (oldest) { |
| 1282 | oldest->uu_save.uus_workq_park_data.idle_stamp = now; |
| 1283 | TAILQ_REMOVE(&wq->wq_thidlelist, oldest, uu_workq_entry); |
| 1284 | TAILQ_INSERT_HEAD(&wq->wq_thidlelist, oldest, uu_workq_entry); |
| 1285 | } |
| 1286 | |
| 1287 | WQ_TRACE_WQ(TRACE_wq_thread_terminate | DBG_FUNC_START, |
| 1288 | wq, cur_idle, 0, 0); |
| 1289 | wq->wq_thdying_count++; |
| 1290 | uth->uu_workq_flags |= UT_WORKQ_DYING; |
| 1291 | uth->uu_workq_flags &= ~UT_WORKQ_IDLE_CLEANUP; |
| 1292 | workq_unpark_for_death_and_unlock(p, wq, uth, death_flags: 0, setup_flags); |
| 1293 | __builtin_unreachable(); |
| 1294 | } |
| 1295 | |
| 1296 | struct uthread *tail = TAILQ_LAST(&wq->wq_thidlelist, workq_uthread_head); |
| 1297 | |
| 1298 | cur_idle += 1; |
| 1299 | wq->wq_thidlecount = cur_idle; |
| 1300 | |
| 1301 | if (cur_idle >= wq_death_max_load && tail && |
| 1302 | tail->uu_save.uus_workq_park_data.has_stack) { |
| 1303 | uth->uu_save.uus_workq_park_data.has_stack = false; |
| 1304 | TAILQ_INSERT_TAIL(&wq->wq_thidlelist, uth, uu_workq_entry); |
| 1305 | } else { |
| 1306 | uth->uu_save.uus_workq_park_data.has_stack = true; |
| 1307 | TAILQ_INSERT_HEAD(&wq->wq_thidlelist, uth, uu_workq_entry); |
| 1308 | } |
| 1309 | |
| 1310 | if (!tail) { |
| 1311 | uint64_t delay = workq_kill_delay_for_idle_thread(wq); |
| 1312 | workq_death_call_schedule(wq, deadline: now + delay); |
| 1313 | } |
| 1314 | } |
| 1315 | |
| 1316 | #pragma mark thread requests |
| 1317 | |
| 1318 | static inline bool |
| 1319 | workq_tr_is_overcommit(workq_tr_flags_t tr_flags) |
| 1320 | { |
| 1321 | return (tr_flags & WORKQ_TR_FLAG_OVERCOMMIT) != 0; |
| 1322 | } |
| 1323 | |
| 1324 | static inline bool |
| 1325 | workq_tr_is_nonovercommit(workq_tr_flags_t tr_flags) |
| 1326 | { |
| 1327 | return (tr_flags & (WORKQ_TR_FLAG_OVERCOMMIT | WORKQ_TR_FLAG_COOPERATIVE)) == 0; |
| 1328 | } |
| 1329 | |
| 1330 | static inline bool |
| 1331 | workq_tr_is_cooperative(workq_tr_flags_t tr_flags) |
| 1332 | { |
| 1333 | return (tr_flags & WORKQ_TR_FLAG_COOPERATIVE) != 0; |
| 1334 | } |
| 1335 | |
| 1336 | #define workq_threadreq_is_overcommit(req) workq_tr_is_overcommit((req)->tr_flags) |
| 1337 | #define workq_threadreq_is_nonovercommit(req) workq_tr_is_nonovercommit((req)->tr_flags) |
| 1338 | #define workq_threadreq_is_cooperative(req) workq_tr_is_cooperative((req)->tr_flags) |
| 1339 | |
| 1340 | static inline int |
| 1341 | workq_priority_for_req(workq_threadreq_t req) |
| 1342 | { |
| 1343 | thread_qos_t qos = req->tr_qos; |
| 1344 | |
| 1345 | if (req->tr_flags & WORKQ_TR_FLAG_WL_OUTSIDE_QOS) { |
| 1346 | workq_threadreq_param_t trp = kqueue_threadreq_workloop_param(req); |
| 1347 | assert(trp.trp_flags & TRP_PRIORITY); |
| 1348 | return trp.trp_pri; |
| 1349 | } |
| 1350 | return thread_workq_pri_for_qos(qos); |
| 1351 | } |
| 1352 | |
| 1353 | static inline struct priority_queue_sched_max * |
| 1354 | workq_priority_queue_for_req(struct workqueue *wq, workq_threadreq_t req) |
| 1355 | { |
| 1356 | assert(!workq_tr_is_cooperative(req->tr_flags)); |
| 1357 | |
| 1358 | if (req->tr_flags & WORKQ_TR_FLAG_WL_OUTSIDE_QOS) { |
| 1359 | return &wq->wq_special_queue; |
| 1360 | } else if (workq_tr_is_overcommit(tr_flags: req->tr_flags)) { |
| 1361 | return &wq->wq_overcommit_queue; |
| 1362 | } else { |
| 1363 | return &wq->wq_constrained_queue; |
| 1364 | } |
| 1365 | } |
| 1366 | |
| 1367 | |
| 1368 | /* Calculates the number of threads scheduled >= the input QoS */ |
| 1369 | static uint64_t |
| 1370 | workq_num_cooperative_threads_scheduled_to_qos(struct workqueue *wq, thread_qos_t qos) |
| 1371 | { |
| 1372 | workq_lock_held(wq); |
| 1373 | |
| 1374 | uint64_t num_cooperative_threads = 0; |
| 1375 | |
| 1376 | for (thread_qos_t cur_qos = WORKQ_THREAD_QOS_MAX; cur_qos >= qos; cur_qos--) { |
| 1377 | uint8_t bucket = _wq_bucket(qos: cur_qos); |
| 1378 | num_cooperative_threads += wq->wq_cooperative_queue_scheduled_count[bucket]; |
| 1379 | } |
| 1380 | |
| 1381 | return num_cooperative_threads; |
| 1382 | } |
| 1383 | |
| 1384 | static uint64_t |
| 1385 | workq_num_cooperative_threads_scheduled_total(struct workqueue *wq) |
| 1386 | { |
| 1387 | return workq_num_cooperative_threads_scheduled_to_qos(wq, WORKQ_THREAD_QOS_MIN); |
| 1388 | } |
| 1389 | |
| 1390 | #if DEBUG || DEVELOPMENT |
| 1391 | static bool |
| 1392 | workq_has_cooperative_thread_requests(struct workqueue *wq) |
| 1393 | { |
| 1394 | for (thread_qos_t qos = WORKQ_THREAD_QOS_MAX; qos >= WORKQ_THREAD_QOS_MIN; qos--) { |
| 1395 | uint8_t bucket = _wq_bucket(qos); |
| 1396 | if (!STAILQ_EMPTY(&wq->wq_cooperative_queue[bucket])) { |
| 1397 | return true; |
| 1398 | } |
| 1399 | } |
| 1400 | |
| 1401 | return false; |
| 1402 | } |
| 1403 | #endif |
| 1404 | |
| 1405 | /* |
| 1406 | * Determines the next QoS bucket we should service next in the cooperative |
| 1407 | * pool. This function will always return a QoS for cooperative pool as long as |
| 1408 | * there are requests to be serviced. |
| 1409 | * |
| 1410 | * Unlike the other thread pools, for the cooperative thread pool the schedule |
| 1411 | * counts for the various buckets in the pool affect the next best request for |
| 1412 | * it. |
| 1413 | * |
| 1414 | * This function is called in the following contexts: |
| 1415 | * |
| 1416 | * a) When determining the best thread QoS for cooperative bucket for the |
| 1417 | * creator/thread reuse |
| 1418 | * |
| 1419 | * b) Once (a) has happened and thread has bound to a thread request, figuring |
| 1420 | * out whether the next best request for this pool has changed so that creator |
| 1421 | * can be scheduled. |
| 1422 | * |
| 1423 | * Returns true if the cooperative queue's best qos changed from previous |
| 1424 | * value. |
| 1425 | */ |
| 1426 | static bool |
| 1427 | _wq_cooperative_queue_refresh_best_req_qos(struct workqueue *wq) |
| 1428 | { |
| 1429 | workq_lock_held(wq); |
| 1430 | |
| 1431 | thread_qos_t old_best_req_qos = wq->wq_cooperative_queue_best_req_qos; |
| 1432 | |
| 1433 | /* We determine the next best cooperative thread request based on the |
| 1434 | * following: |
| 1435 | * |
| 1436 | * 1. Take the MAX of the following: |
| 1437 | * a) Highest qos with pending TRs such that number of scheduled |
| 1438 | * threads so far with >= qos is < wq_max_cooperative_threads |
| 1439 | * b) Highest qos bucket with pending TRs but no scheduled threads for that bucket |
| 1440 | * |
| 1441 | * 2. If the result of (1) is UN, then we pick the highest priority amongst |
| 1442 | * pending thread requests in the pool. |
| 1443 | * |
| 1444 | */ |
| 1445 | thread_qos_t highest_qos_with_no_scheduled = THREAD_QOS_UNSPECIFIED; |
| 1446 | thread_qos_t highest_qos_req_with_width = THREAD_QOS_UNSPECIFIED; |
| 1447 | |
| 1448 | thread_qos_t highest_qos_req = THREAD_QOS_UNSPECIFIED; |
| 1449 | |
| 1450 | int scheduled_count_till_qos = 0; |
| 1451 | |
| 1452 | for (thread_qos_t qos = WORKQ_THREAD_QOS_MAX; qos >= WORKQ_THREAD_QOS_MIN; qos--) { |
| 1453 | uint8_t bucket = _wq_bucket(qos); |
| 1454 | uint8_t scheduled_count_for_bucket = wq->wq_cooperative_queue_scheduled_count[bucket]; |
| 1455 | scheduled_count_till_qos += scheduled_count_for_bucket; |
| 1456 | |
| 1457 | if (!STAILQ_EMPTY(&wq->wq_cooperative_queue[bucket])) { |
| 1458 | if (qos > highest_qos_req) { |
| 1459 | highest_qos_req = qos; |
| 1460 | } |
| 1461 | /* |
| 1462 | * The pool isn't saturated for threads at and above this QoS, and |
| 1463 | * this qos bucket has pending requests |
| 1464 | */ |
| 1465 | if (scheduled_count_till_qos < wq_cooperative_queue_max_size(wq)) { |
| 1466 | if (qos > highest_qos_req_with_width) { |
| 1467 | highest_qos_req_with_width = qos; |
| 1468 | } |
| 1469 | } |
| 1470 | |
| 1471 | /* |
| 1472 | * There are no threads scheduled for this bucket but there |
| 1473 | * is work pending, give it at least 1 thread |
| 1474 | */ |
| 1475 | if (scheduled_count_for_bucket == 0) { |
| 1476 | if (qos > highest_qos_with_no_scheduled) { |
| 1477 | highest_qos_with_no_scheduled = qos; |
| 1478 | } |
| 1479 | } |
| 1480 | } |
| 1481 | } |
| 1482 | |
| 1483 | wq->wq_cooperative_queue_best_req_qos = MAX(highest_qos_with_no_scheduled, highest_qos_req_with_width); |
| 1484 | if (wq->wq_cooperative_queue_best_req_qos == THREAD_QOS_UNSPECIFIED) { |
| 1485 | wq->wq_cooperative_queue_best_req_qos = highest_qos_req; |
| 1486 | } |
| 1487 | |
| 1488 | #if DEBUG || DEVELOPMENT |
| 1489 | /* Assert that if we are showing up the next best req as UN, then there |
| 1490 | * actually is no thread request in the cooperative pool buckets */ |
| 1491 | if (wq->wq_cooperative_queue_best_req_qos == THREAD_QOS_UNSPECIFIED) { |
| 1492 | assert(!workq_has_cooperative_thread_requests(wq)); |
| 1493 | } |
| 1494 | #endif |
| 1495 | |
| 1496 | return old_best_req_qos != wq->wq_cooperative_queue_best_req_qos; |
| 1497 | } |
| 1498 | |
| 1499 | /* |
| 1500 | * Returns whether or not the input thread (or creator thread if uth is NULL) |
| 1501 | * should be allowed to work as part of the cooperative pool for the <input qos> |
| 1502 | * bucket. |
| 1503 | * |
| 1504 | * This function is called in a bunch of places: |
| 1505 | * a) Quantum expires for a thread and it is part of the cooperative pool |
| 1506 | * b) When trying to pick a thread request for the creator thread to |
| 1507 | * represent. |
| 1508 | * c) When a thread is trying to pick a thread request to actually bind to |
| 1509 | * and service. |
| 1510 | * |
| 1511 | * Called with workq lock held. |
| 1512 | */ |
| 1513 | |
| 1514 | #define WQ_COOPERATIVE_POOL_UNSATURATED 1 |
| 1515 | #define WQ_COOPERATIVE_BUCKET_UNSERVICED 2 |
| 1516 | #define WQ_COOPERATIVE_POOL_SATURATED_UP_TO_QOS 3 |
| 1517 | |
| 1518 | static bool |
| 1519 | workq_cooperative_allowance(struct workqueue *wq, thread_qos_t qos, struct uthread *uth, |
| 1520 | bool may_start_timer) |
| 1521 | { |
| 1522 | workq_lock_held(wq); |
| 1523 | |
| 1524 | bool exclude_thread_as_scheduled = false; |
| 1525 | bool passed_admissions = false; |
| 1526 | uint8_t bucket = _wq_bucket(qos); |
| 1527 | |
| 1528 | if (uth && workq_thread_is_cooperative(uth)) { |
| 1529 | exclude_thread_as_scheduled = true; |
| 1530 | _wq_cooperative_queue_scheduled_count_dec(wq, qos: uth->uu_workq_pri.qos_req); |
| 1531 | } |
| 1532 | |
| 1533 | /* |
| 1534 | * We have not saturated the pool yet, let this thread continue |
| 1535 | */ |
| 1536 | uint64_t total_cooperative_threads; |
| 1537 | total_cooperative_threads = workq_num_cooperative_threads_scheduled_total(wq); |
| 1538 | if (total_cooperative_threads < wq_cooperative_queue_max_size(wq)) { |
| 1539 | passed_admissions = true; |
| 1540 | WQ_TRACE(TRACE_wq_cooperative_admission | DBG_FUNC_NONE, |
| 1541 | total_cooperative_threads, qos, passed_admissions, |
| 1542 | WQ_COOPERATIVE_POOL_UNSATURATED); |
| 1543 | goto out; |
| 1544 | } |
| 1545 | |
| 1546 | /* |
| 1547 | * Without this thread, nothing is servicing the bucket which has pending |
| 1548 | * work |
| 1549 | */ |
| 1550 | uint64_t bucket_scheduled = wq->wq_cooperative_queue_scheduled_count[bucket]; |
| 1551 | if (bucket_scheduled == 0 && |
| 1552 | !STAILQ_EMPTY(&wq->wq_cooperative_queue[bucket])) { |
| 1553 | passed_admissions = true; |
| 1554 | WQ_TRACE(TRACE_wq_cooperative_admission | DBG_FUNC_NONE, |
| 1555 | total_cooperative_threads, qos, passed_admissions, |
| 1556 | WQ_COOPERATIVE_BUCKET_UNSERVICED); |
| 1557 | goto out; |
| 1558 | } |
| 1559 | |
| 1560 | /* |
| 1561 | * If number of threads at the QoS bucket >= input QoS exceeds the max we want |
| 1562 | * for the pool, deny this thread |
| 1563 | */ |
| 1564 | uint64_t aggregate_down_to_qos = workq_num_cooperative_threads_scheduled_to_qos(wq, qos); |
| 1565 | passed_admissions = (aggregate_down_to_qos < wq_cooperative_queue_max_size(wq)); |
| 1566 | WQ_TRACE(TRACE_wq_cooperative_admission | DBG_FUNC_NONE, aggregate_down_to_qos, |
| 1567 | qos, passed_admissions, WQ_COOPERATIVE_POOL_SATURATED_UP_TO_QOS); |
| 1568 | |
| 1569 | if (!passed_admissions && may_start_timer) { |
| 1570 | workq_schedule_delayed_thread_creation(wq, flags: 0); |
| 1571 | } |
| 1572 | |
| 1573 | out: |
| 1574 | if (exclude_thread_as_scheduled) { |
| 1575 | _wq_cooperative_queue_scheduled_count_inc(wq, qos: uth->uu_workq_pri.qos_req); |
| 1576 | } |
| 1577 | return passed_admissions; |
| 1578 | } |
| 1579 | |
| 1580 | /* |
| 1581 | * returns true if the best request for the pool changed as a result of |
| 1582 | * enqueuing this thread request. |
| 1583 | */ |
| 1584 | static bool |
| 1585 | workq_threadreq_enqueue(struct workqueue *wq, workq_threadreq_t req) |
| 1586 | { |
| 1587 | assert(req->tr_state == WORKQ_TR_STATE_NEW); |
| 1588 | |
| 1589 | req->tr_state = WORKQ_TR_STATE_QUEUED; |
| 1590 | wq->wq_reqcount += req->tr_count; |
| 1591 | |
| 1592 | if (req->tr_qos == WORKQ_THREAD_QOS_MANAGER) { |
| 1593 | assert(wq->wq_event_manager_threadreq == NULL); |
| 1594 | assert(req->tr_flags & WORKQ_TR_FLAG_KEVENT); |
| 1595 | assert(req->tr_count == 1); |
| 1596 | wq->wq_event_manager_threadreq = req; |
| 1597 | return true; |
| 1598 | } |
| 1599 | |
| 1600 | if (workq_threadreq_is_cooperative(req)) { |
| 1601 | assert(req->tr_qos != WORKQ_THREAD_QOS_MANAGER); |
| 1602 | assert(req->tr_qos != WORKQ_THREAD_QOS_ABOVEUI); |
| 1603 | |
| 1604 | struct workq_threadreq_tailq *bucket = &wq->wq_cooperative_queue[_wq_bucket(qos: req->tr_qos)]; |
| 1605 | STAILQ_INSERT_TAIL(bucket, req, tr_link); |
| 1606 | |
| 1607 | return _wq_cooperative_queue_refresh_best_req_qos(wq); |
| 1608 | } |
| 1609 | |
| 1610 | struct priority_queue_sched_max *q = workq_priority_queue_for_req(wq, req); |
| 1611 | |
| 1612 | priority_queue_entry_set_sched_pri(q, &req->tr_entry, |
| 1613 | workq_priority_for_req(req), false); |
| 1614 | |
| 1615 | if (priority_queue_insert(que: q, elt: &req->tr_entry)) { |
| 1616 | if (workq_threadreq_is_nonovercommit(req)) { |
| 1617 | _wq_thactive_refresh_best_constrained_req_qos(wq); |
| 1618 | } |
| 1619 | return true; |
| 1620 | } |
| 1621 | return false; |
| 1622 | } |
| 1623 | |
| 1624 | /* |
| 1625 | * returns true if one of the following is true (so as to update creator if |
| 1626 | * needed): |
| 1627 | * |
| 1628 | * (a) the next highest request of the pool we dequeued the request from changed |
| 1629 | * (b) the next highest requests of the pool the current thread used to be a |
| 1630 | * part of, changed |
| 1631 | * |
| 1632 | * For overcommit, special and constrained pools, the next highest QoS for each |
| 1633 | * pool just a MAX of pending requests so tracking (a) is sufficient. |
| 1634 | * |
| 1635 | * But for cooperative thread pool, the next highest QoS for the pool depends on |
| 1636 | * schedule counts in the pool as well. So if the current thread used to be |
| 1637 | * cooperative in it's previous logical run ie (b), then that can also affect |
| 1638 | * cooperative pool's next best QoS requests. |
| 1639 | */ |
| 1640 | static bool |
| 1641 | workq_threadreq_dequeue(struct workqueue *wq, workq_threadreq_t req, |
| 1642 | bool cooperative_sched_count_changed) |
| 1643 | { |
| 1644 | wq->wq_reqcount--; |
| 1645 | |
| 1646 | bool next_highest_request_changed = false; |
| 1647 | |
| 1648 | if (--req->tr_count == 0) { |
| 1649 | if (req->tr_qos == WORKQ_THREAD_QOS_MANAGER) { |
| 1650 | assert(wq->wq_event_manager_threadreq == req); |
| 1651 | assert(req->tr_count == 0); |
| 1652 | wq->wq_event_manager_threadreq = NULL; |
| 1653 | |
| 1654 | /* If a cooperative thread was the one which picked up the manager |
| 1655 | * thread request, we need to reevaluate the cooperative pool |
| 1656 | * anyways. |
| 1657 | */ |
| 1658 | if (cooperative_sched_count_changed) { |
| 1659 | _wq_cooperative_queue_refresh_best_req_qos(wq); |
| 1660 | } |
| 1661 | return true; |
| 1662 | } |
| 1663 | |
| 1664 | if (workq_threadreq_is_cooperative(req)) { |
| 1665 | assert(req->tr_qos != WORKQ_THREAD_QOS_MANAGER); |
| 1666 | assert(req->tr_qos != WORKQ_THREAD_QOS_ABOVEUI); |
| 1667 | /* Account for the fact that BG and MT are coalesced when |
| 1668 | * calculating best request for cooperative pool |
| 1669 | */ |
| 1670 | assert(_wq_bucket(req->tr_qos) == _wq_bucket(wq->wq_cooperative_queue_best_req_qos)); |
| 1671 | |
| 1672 | struct workq_threadreq_tailq *bucket = &wq->wq_cooperative_queue[_wq_bucket(qos: req->tr_qos)]; |
| 1673 | __assert_only workq_threadreq_t head = STAILQ_FIRST(bucket); |
| 1674 | |
| 1675 | assert(head == req); |
| 1676 | STAILQ_REMOVE_HEAD(bucket, tr_link); |
| 1677 | |
| 1678 | /* |
| 1679 | * If the request we're dequeueing is cooperative, then the sched |
| 1680 | * counts definitely changed. |
| 1681 | */ |
| 1682 | assert(cooperative_sched_count_changed); |
| 1683 | } |
| 1684 | |
| 1685 | /* |
| 1686 | * We want to do the cooperative pool refresh after dequeueing a |
| 1687 | * cooperative thread request if any (to combine both effects into 1 |
| 1688 | * refresh operation) |
| 1689 | */ |
| 1690 | if (cooperative_sched_count_changed) { |
| 1691 | next_highest_request_changed = _wq_cooperative_queue_refresh_best_req_qos(wq); |
| 1692 | } |
| 1693 | |
| 1694 | if (!workq_threadreq_is_cooperative(req)) { |
| 1695 | /* |
| 1696 | * All other types of requests are enqueued in priority queues |
| 1697 | */ |
| 1698 | |
| 1699 | if (priority_queue_remove(que: workq_priority_queue_for_req(wq, req), |
| 1700 | elt: &req->tr_entry)) { |
| 1701 | next_highest_request_changed |= true; |
| 1702 | if (workq_threadreq_is_nonovercommit(req)) { |
| 1703 | _wq_thactive_refresh_best_constrained_req_qos(wq); |
| 1704 | } |
| 1705 | } |
| 1706 | } |
| 1707 | } |
| 1708 | |
| 1709 | return next_highest_request_changed; |
| 1710 | } |
| 1711 | |
| 1712 | static void |
| 1713 | workq_threadreq_destroy(proc_t p, workq_threadreq_t req) |
| 1714 | { |
| 1715 | req->tr_state = WORKQ_TR_STATE_CANCELED; |
| 1716 | if (req->tr_flags & (WORKQ_TR_FLAG_WORKLOOP | WORKQ_TR_FLAG_KEVENT)) { |
| 1717 | kqueue_threadreq_cancel(p, req); |
| 1718 | } else { |
| 1719 | zfree(workq_zone_threadreq, req); |
| 1720 | } |
| 1721 | } |
| 1722 | |
| 1723 | #pragma mark workqueue thread creation thread calls |
| 1724 | |
| 1725 | static inline bool |
| 1726 | workq_thread_call_prepost(struct workqueue *wq, uint32_t sched, uint32_t pend, |
| 1727 | uint32_t fail_mask) |
| 1728 | { |
| 1729 | uint32_t old_flags, new_flags; |
| 1730 | |
| 1731 | os_atomic_rmw_loop(&wq->wq_flags, old_flags, new_flags, acquire, { |
| 1732 | if (__improbable(old_flags & (WQ_EXITING | sched | pend | fail_mask))) { |
| 1733 | os_atomic_rmw_loop_give_up(return false); |
| 1734 | } |
| 1735 | if (__improbable(old_flags & WQ_PROC_SUSPENDED)) { |
| 1736 | new_flags = old_flags | pend; |
| 1737 | } else { |
| 1738 | new_flags = old_flags | sched; |
| 1739 | } |
| 1740 | }); |
| 1741 | |
| 1742 | return (old_flags & WQ_PROC_SUSPENDED) == 0; |
| 1743 | } |
| 1744 | |
| 1745 | #define WORKQ_SCHEDULE_DELAYED_THREAD_CREATION_RESTART 0x1 |
| 1746 | |
| 1747 | static bool |
| 1748 | workq_schedule_delayed_thread_creation(struct workqueue *wq, int flags) |
| 1749 | { |
| 1750 | assert(!preemption_enabled()); |
| 1751 | |
| 1752 | if (!workq_thread_call_prepost(wq, sched: WQ_DELAYED_CALL_SCHEDULED, |
| 1753 | pend: WQ_DELAYED_CALL_PENDED, fail_mask: WQ_IMMEDIATE_CALL_PENDED | |
| 1754 | WQ_IMMEDIATE_CALL_SCHEDULED)) { |
| 1755 | return false; |
| 1756 | } |
| 1757 | |
| 1758 | uint64_t now = mach_absolute_time(); |
| 1759 | |
| 1760 | if (flags & WORKQ_SCHEDULE_DELAYED_THREAD_CREATION_RESTART) { |
| 1761 | /* do not change the window */ |
| 1762 | } else if (now - wq->wq_thread_call_last_run <= wq->wq_timer_interval) { |
| 1763 | wq->wq_timer_interval *= 2; |
| 1764 | if (wq->wq_timer_interval > wq_max_timer_interval.abstime) { |
| 1765 | wq->wq_timer_interval = (uint32_t)wq_max_timer_interval.abstime; |
| 1766 | } |
| 1767 | } else if (now - wq->wq_thread_call_last_run > 2 * wq->wq_timer_interval) { |
| 1768 | wq->wq_timer_interval /= 2; |
| 1769 | if (wq->wq_timer_interval < wq_stalled_window.abstime) { |
| 1770 | wq->wq_timer_interval = (uint32_t)wq_stalled_window.abstime; |
| 1771 | } |
| 1772 | } |
| 1773 | |
| 1774 | WQ_TRACE_WQ(TRACE_wq_start_add_timer, wq, wq->wq_reqcount, |
| 1775 | _wq_flags(wq), wq->wq_timer_interval); |
| 1776 | |
| 1777 | thread_call_t call = wq->wq_delayed_call; |
| 1778 | uintptr_t arg = WQ_DELAYED_CALL_SCHEDULED; |
| 1779 | uint64_t deadline = now + wq->wq_timer_interval; |
| 1780 | if (thread_call_enter1_delayed(call, param1: (void *)arg, deadline)) { |
| 1781 | panic("delayed_call was already enqueued" ); |
| 1782 | } |
| 1783 | return true; |
| 1784 | } |
| 1785 | |
| 1786 | static void |
| 1787 | workq_schedule_immediate_thread_creation(struct workqueue *wq) |
| 1788 | { |
| 1789 | assert(!preemption_enabled()); |
| 1790 | |
| 1791 | if (workq_thread_call_prepost(wq, sched: WQ_IMMEDIATE_CALL_SCHEDULED, |
| 1792 | pend: WQ_IMMEDIATE_CALL_PENDED, fail_mask: 0)) { |
| 1793 | WQ_TRACE_WQ(TRACE_wq_start_add_timer, wq, wq->wq_reqcount, |
| 1794 | _wq_flags(wq), 0); |
| 1795 | |
| 1796 | uintptr_t arg = WQ_IMMEDIATE_CALL_SCHEDULED; |
| 1797 | if (thread_call_enter1(call: wq->wq_immediate_call, param1: (void *)arg)) { |
| 1798 | panic("immediate_call was already enqueued" ); |
| 1799 | } |
| 1800 | } |
| 1801 | } |
| 1802 | |
| 1803 | void |
| 1804 | workq_proc_suspended(struct proc *p) |
| 1805 | { |
| 1806 | struct workqueue *wq = proc_get_wqptr(p); |
| 1807 | |
| 1808 | if (wq) { |
| 1809 | os_atomic_or(&wq->wq_flags, WQ_PROC_SUSPENDED, relaxed); |
| 1810 | } |
| 1811 | } |
| 1812 | |
| 1813 | void |
| 1814 | workq_proc_resumed(struct proc *p) |
| 1815 | { |
| 1816 | struct workqueue *wq = proc_get_wqptr(p); |
| 1817 | uint32_t wq_flags; |
| 1818 | |
| 1819 | if (!wq) { |
| 1820 | return; |
| 1821 | } |
| 1822 | |
| 1823 | wq_flags = os_atomic_andnot_orig(&wq->wq_flags, WQ_PROC_SUSPENDED | |
| 1824 | WQ_DELAYED_CALL_PENDED | WQ_IMMEDIATE_CALL_PENDED, relaxed); |
| 1825 | if ((wq_flags & WQ_EXITING) == 0) { |
| 1826 | disable_preemption(); |
| 1827 | if (wq_flags & WQ_IMMEDIATE_CALL_PENDED) { |
| 1828 | workq_schedule_immediate_thread_creation(wq); |
| 1829 | } else if (wq_flags & WQ_DELAYED_CALL_PENDED) { |
| 1830 | workq_schedule_delayed_thread_creation(wq, |
| 1831 | WORKQ_SCHEDULE_DELAYED_THREAD_CREATION_RESTART); |
| 1832 | } |
| 1833 | enable_preemption(); |
| 1834 | } |
| 1835 | } |
| 1836 | |
| 1837 | /** |
| 1838 | * returns whether lastblocked_tsp is within wq_stalled_window usecs of now |
| 1839 | */ |
| 1840 | static bool |
| 1841 | workq_thread_is_busy(uint64_t now, _Atomic uint64_t *lastblocked_tsp) |
| 1842 | { |
| 1843 | uint64_t lastblocked_ts = os_atomic_load_wide(lastblocked_tsp, relaxed); |
| 1844 | if (now <= lastblocked_ts) { |
| 1845 | /* |
| 1846 | * Because the update of the timestamp when a thread blocks |
| 1847 | * isn't serialized against us looking at it (i.e. we don't hold |
| 1848 | * the workq lock), it's possible to have a timestamp that matches |
| 1849 | * the current time or that even looks to be in the future relative |
| 1850 | * to when we grabbed the current time... |
| 1851 | * |
| 1852 | * Just treat this as a busy thread since it must have just blocked. |
| 1853 | */ |
| 1854 | return true; |
| 1855 | } |
| 1856 | return (now - lastblocked_ts) < wq_stalled_window.abstime; |
| 1857 | } |
| 1858 | |
| 1859 | static void |
| 1860 | workq_add_new_threads_call(void *_p, void *flags) |
| 1861 | { |
| 1862 | proc_t p = _p; |
| 1863 | struct workqueue *wq = proc_get_wqptr(p); |
| 1864 | uint32_t my_flag = (uint32_t)(uintptr_t)flags; |
| 1865 | |
| 1866 | /* |
| 1867 | * workq_exit() will set the workqueue to NULL before |
| 1868 | * it cancels thread calls. |
| 1869 | */ |
| 1870 | if (!wq) { |
| 1871 | return; |
| 1872 | } |
| 1873 | |
| 1874 | assert((my_flag == WQ_DELAYED_CALL_SCHEDULED) || |
| 1875 | (my_flag == WQ_IMMEDIATE_CALL_SCHEDULED)); |
| 1876 | |
| 1877 | WQ_TRACE_WQ(TRACE_wq_add_timer | DBG_FUNC_START, wq, _wq_flags(wq), |
| 1878 | wq->wq_nthreads, wq->wq_thidlecount); |
| 1879 | |
| 1880 | workq_lock_spin(wq); |
| 1881 | |
| 1882 | wq->wq_thread_call_last_run = mach_absolute_time(); |
| 1883 | os_atomic_andnot(&wq->wq_flags, my_flag, release); |
| 1884 | |
| 1885 | /* This can drop the workqueue lock, and take it again */ |
| 1886 | workq_schedule_creator(p, wq, flags: WORKQ_THREADREQ_CAN_CREATE_THREADS); |
| 1887 | |
| 1888 | workq_unlock(wq); |
| 1889 | |
| 1890 | WQ_TRACE_WQ(TRACE_wq_add_timer | DBG_FUNC_END, wq, 0, |
| 1891 | wq->wq_nthreads, wq->wq_thidlecount); |
| 1892 | } |
| 1893 | |
| 1894 | #pragma mark thread state tracking |
| 1895 | |
| 1896 | static void |
| 1897 | workq_sched_callback(int type, thread_t thread) |
| 1898 | { |
| 1899 | thread_ro_t tro = get_thread_ro(thread); |
| 1900 | struct uthread *uth = get_bsdthread_info(thread); |
| 1901 | struct workqueue *wq = proc_get_wqptr(p: tro->tro_proc); |
| 1902 | thread_qos_t req_qos, qos = uth->uu_workq_pri.qos_bucket; |
| 1903 | wq_thactive_t old_thactive; |
| 1904 | bool start_timer = false; |
| 1905 | |
| 1906 | if (qos == WORKQ_THREAD_QOS_MANAGER) { |
| 1907 | return; |
| 1908 | } |
| 1909 | |
| 1910 | switch (type) { |
| 1911 | case SCHED_CALL_BLOCK: |
| 1912 | old_thactive = _wq_thactive_dec(wq, qos); |
| 1913 | req_qos = WQ_THACTIVE_BEST_CONSTRAINED_REQ_QOS(old_thactive); |
| 1914 | |
| 1915 | /* |
| 1916 | * Remember the timestamp of the last thread that blocked in this |
| 1917 | * bucket, it used used by admission checks to ignore one thread |
| 1918 | * being inactive if this timestamp is recent enough. |
| 1919 | * |
| 1920 | * If we collide with another thread trying to update the |
| 1921 | * last_blocked (really unlikely since another thread would have to |
| 1922 | * get scheduled and then block after we start down this path), it's |
| 1923 | * not a problem. Either timestamp is adequate, so no need to retry |
| 1924 | */ |
| 1925 | os_atomic_store_wide(&wq->wq_lastblocked_ts[_wq_bucket(qos)], |
| 1926 | thread_last_run_time(thread), relaxed); |
| 1927 | |
| 1928 | if (req_qos == THREAD_QOS_UNSPECIFIED) { |
| 1929 | /* |
| 1930 | * No pending request at the moment we could unblock, move on. |
| 1931 | */ |
| 1932 | } else if (qos < req_qos) { |
| 1933 | /* |
| 1934 | * The blocking thread is at a lower QoS than the highest currently |
| 1935 | * pending constrained request, nothing has to be redriven |
| 1936 | */ |
| 1937 | } else { |
| 1938 | uint32_t max_busycount, old_req_count; |
| 1939 | old_req_count = _wq_thactive_aggregate_downto_qos(wq, v: old_thactive, |
| 1940 | qos: req_qos, NULL, max_busycount: &max_busycount); |
| 1941 | /* |
| 1942 | * If it is possible that may_start_constrained_thread had refused |
| 1943 | * admission due to being over the max concurrency, we may need to |
| 1944 | * spin up a new thread. |
| 1945 | * |
| 1946 | * We take into account the maximum number of busy threads |
| 1947 | * that can affect may_start_constrained_thread as looking at the |
| 1948 | * actual number may_start_constrained_thread will see is racy. |
| 1949 | * |
| 1950 | * IOW at NCPU = 4, for IN (req_qos = 1), if the old req count is |
| 1951 | * between NCPU (4) and NCPU - 2 (2) we need to redrive. |
| 1952 | */ |
| 1953 | uint32_t conc = wq_max_parallelism[_wq_bucket(qos)]; |
| 1954 | if (old_req_count <= conc && conc <= old_req_count + max_busycount) { |
| 1955 | start_timer = workq_schedule_delayed_thread_creation(wq, flags: 0); |
| 1956 | } |
| 1957 | } |
| 1958 | if (__improbable(kdebug_enable)) { |
| 1959 | __unused uint32_t old = _wq_thactive_aggregate_downto_qos(wq, |
| 1960 | v: old_thactive, qos, NULL, NULL); |
| 1961 | WQ_TRACE_WQ(TRACE_wq_thread_block | DBG_FUNC_START, wq, |
| 1962 | old - 1, qos | (req_qos << 8), |
| 1963 | wq->wq_reqcount << 1 | start_timer); |
| 1964 | } |
| 1965 | break; |
| 1966 | |
| 1967 | case SCHED_CALL_UNBLOCK: |
| 1968 | /* |
| 1969 | * we cannot take the workqueue_lock here... |
| 1970 | * an UNBLOCK can occur from a timer event which |
| 1971 | * is run from an interrupt context... if the workqueue_lock |
| 1972 | * is already held by this processor, we'll deadlock... |
| 1973 | * the thread lock for the thread being UNBLOCKED |
| 1974 | * is also held |
| 1975 | */ |
| 1976 | old_thactive = _wq_thactive_inc(wq, qos); |
| 1977 | if (__improbable(kdebug_enable)) { |
| 1978 | __unused uint32_t old = _wq_thactive_aggregate_downto_qos(wq, |
| 1979 | v: old_thactive, qos, NULL, NULL); |
| 1980 | req_qos = WQ_THACTIVE_BEST_CONSTRAINED_REQ_QOS(old_thactive); |
| 1981 | WQ_TRACE_WQ(TRACE_wq_thread_block | DBG_FUNC_END, wq, |
| 1982 | old + 1, qos | (req_qos << 8), |
| 1983 | wq->wq_threads_scheduled); |
| 1984 | } |
| 1985 | break; |
| 1986 | } |
| 1987 | } |
| 1988 | |
| 1989 | #pragma mark workq lifecycle |
| 1990 | |
| 1991 | void |
| 1992 | workq_reference(struct workqueue *wq) |
| 1993 | { |
| 1994 | os_ref_retain(rc: &wq->wq_refcnt); |
| 1995 | } |
| 1996 | |
| 1997 | static void |
| 1998 | workq_deallocate_queue_invoke(mpsc_queue_chain_t e, |
| 1999 | __assert_only mpsc_daemon_queue_t dq) |
| 2000 | { |
| 2001 | struct workqueue *wq; |
| 2002 | struct turnstile *ts; |
| 2003 | |
| 2004 | wq = mpsc_queue_element(e, struct workqueue, wq_destroy_link); |
| 2005 | assert(dq == &workq_deallocate_queue); |
| 2006 | |
| 2007 | turnstile_complete(proprietor: (uintptr_t)wq, tstore: &wq->wq_turnstile, turnstile: &ts, type: TURNSTILE_WORKQS); |
| 2008 | assert(ts); |
| 2009 | turnstile_cleanup(); |
| 2010 | turnstile_deallocate(turnstile: ts); |
| 2011 | |
| 2012 | lck_ticket_destroy(tlock: &wq->wq_lock, grp: &workq_lck_grp); |
| 2013 | zfree(workq_zone_workqueue, wq); |
| 2014 | } |
| 2015 | |
| 2016 | static void |
| 2017 | workq_deallocate(struct workqueue *wq) |
| 2018 | { |
| 2019 | if (os_ref_release_relaxed(rc: &wq->wq_refcnt) == 0) { |
| 2020 | workq_deallocate_queue_invoke(e: &wq->wq_destroy_link, |
| 2021 | dq: &workq_deallocate_queue); |
| 2022 | } |
| 2023 | } |
| 2024 | |
| 2025 | void |
| 2026 | workq_deallocate_safe(struct workqueue *wq) |
| 2027 | { |
| 2028 | if (__improbable(os_ref_release_relaxed(&wq->wq_refcnt) == 0)) { |
| 2029 | mpsc_daemon_enqueue(dq: &workq_deallocate_queue, elm: &wq->wq_destroy_link, |
| 2030 | options: MPSC_QUEUE_DISABLE_PREEMPTION); |
| 2031 | } |
| 2032 | } |
| 2033 | |
| 2034 | /** |
| 2035 | * Setup per-process state for the workqueue. |
| 2036 | */ |
| 2037 | int |
| 2038 | workq_open(struct proc *p, __unused struct workq_open_args *uap, |
| 2039 | __unused int32_t *retval) |
| 2040 | { |
| 2041 | struct workqueue *wq; |
| 2042 | int error = 0; |
| 2043 | |
| 2044 | if ((p->p_lflag & P_LREGISTER) == 0) { |
| 2045 | return EINVAL; |
| 2046 | } |
| 2047 | |
| 2048 | if (wq_init_constrained_limit) { |
| 2049 | uint32_t limit, num_cpus = ml_wait_max_cpus(); |
| 2050 | |
| 2051 | /* |
| 2052 | * set up the limit for the constrained pool |
| 2053 | * this is a virtual pool in that we don't |
| 2054 | * maintain it on a separate idle and run list |
| 2055 | */ |
| 2056 | limit = num_cpus * WORKQUEUE_CONSTRAINED_FACTOR; |
| 2057 | |
| 2058 | if (limit > wq_max_constrained_threads) { |
| 2059 | wq_max_constrained_threads = limit; |
| 2060 | } |
| 2061 | |
| 2062 | if (wq_max_threads > WQ_THACTIVE_BUCKET_HALF) { |
| 2063 | wq_max_threads = WQ_THACTIVE_BUCKET_HALF; |
| 2064 | } |
| 2065 | if (wq_max_threads > CONFIG_THREAD_MAX - 20) { |
| 2066 | wq_max_threads = CONFIG_THREAD_MAX - 20; |
| 2067 | } |
| 2068 | |
| 2069 | wq_death_max_load = (uint16_t)fls(num_cpus) + 1; |
| 2070 | |
| 2071 | for (thread_qos_t qos = WORKQ_THREAD_QOS_MIN; qos <= WORKQ_THREAD_QOS_MAX; qos++) { |
| 2072 | wq_max_parallelism[_wq_bucket(qos)] = |
| 2073 | qos_max_parallelism(qos, QOS_PARALLELISM_COUNT_LOGICAL); |
| 2074 | } |
| 2075 | |
| 2076 | wq_max_cooperative_threads = num_cpus; |
| 2077 | |
| 2078 | wq_init_constrained_limit = 0; |
| 2079 | } |
| 2080 | |
| 2081 | if (proc_get_wqptr(p) == NULL) { |
| 2082 | if (proc_init_wqptr_or_wait(p) == FALSE) { |
| 2083 | assert(proc_get_wqptr(p) != NULL); |
| 2084 | goto out; |
| 2085 | } |
| 2086 | |
| 2087 | wq = zalloc_flags(workq_zone_workqueue, Z_WAITOK | Z_ZERO); |
| 2088 | |
| 2089 | os_ref_init_count(&wq->wq_refcnt, &workq_refgrp, 1); |
| 2090 | |
| 2091 | // Start the event manager at the priority hinted at by the policy engine |
| 2092 | thread_qos_t mgr_priority_hint = task_get_default_manager_qos(task: current_task()); |
| 2093 | pthread_priority_t pp = _pthread_priority_make_from_thread_qos(qos: mgr_priority_hint, relpri: 0, flags: 0); |
| 2094 | wq->wq_event_manager_priority = (uint32_t)pp; |
| 2095 | wq->wq_timer_interval = (uint32_t)wq_stalled_window.abstime; |
| 2096 | wq->wq_proc = p; |
| 2097 | turnstile_prepare(proprietor: (uintptr_t)wq, tstore: &wq->wq_turnstile, turnstile: turnstile_alloc(), |
| 2098 | type: TURNSTILE_WORKQS); |
| 2099 | |
| 2100 | TAILQ_INIT(&wq->wq_thrunlist); |
| 2101 | TAILQ_INIT(&wq->wq_thnewlist); |
| 2102 | TAILQ_INIT(&wq->wq_thidlelist); |
| 2103 | priority_queue_init(que: &wq->wq_overcommit_queue); |
| 2104 | priority_queue_init(que: &wq->wq_constrained_queue); |
| 2105 | priority_queue_init(que: &wq->wq_special_queue); |
| 2106 | for (int bucket = 0; bucket < WORKQ_NUM_QOS_BUCKETS; bucket++) { |
| 2107 | STAILQ_INIT(&wq->wq_cooperative_queue[bucket]); |
| 2108 | } |
| 2109 | |
| 2110 | /* We are only using the delayed thread call for the constrained pool |
| 2111 | * which can't have work at >= UI QoS and so we can be fine with a |
| 2112 | * UI QoS thread call. |
| 2113 | */ |
| 2114 | wq->wq_delayed_call = thread_call_allocate_with_qos( |
| 2115 | func: workq_add_new_threads_call, param0: p, THREAD_QOS_USER_INTERACTIVE, |
| 2116 | options: THREAD_CALL_OPTIONS_ONCE); |
| 2117 | wq->wq_immediate_call = thread_call_allocate_with_options( |
| 2118 | func: workq_add_new_threads_call, param0: p, pri: THREAD_CALL_PRIORITY_KERNEL, |
| 2119 | options: THREAD_CALL_OPTIONS_ONCE); |
| 2120 | wq->wq_death_call = thread_call_allocate_with_options( |
| 2121 | func: workq_kill_old_threads_call, param0: wq, |
| 2122 | pri: THREAD_CALL_PRIORITY_USER, options: THREAD_CALL_OPTIONS_ONCE); |
| 2123 | |
| 2124 | lck_ticket_init(tlock: &wq->wq_lock, grp: &workq_lck_grp); |
| 2125 | |
| 2126 | WQ_TRACE_WQ(TRACE_wq_create | DBG_FUNC_NONE, wq, |
| 2127 | VM_KERNEL_ADDRHIDE(wq), 0, 0); |
| 2128 | proc_set_wqptr(p, wq); |
| 2129 | } |
| 2130 | out: |
| 2131 | |
| 2132 | return error; |
| 2133 | } |
| 2134 | |
| 2135 | /* |
| 2136 | * Routine: workq_mark_exiting |
| 2137 | * |
| 2138 | * Function: Mark the work queue such that new threads will not be added to the |
| 2139 | * work queue after we return. |
| 2140 | * |
| 2141 | * Conditions: Called against the current process. |
| 2142 | */ |
| 2143 | void |
| 2144 | workq_mark_exiting(struct proc *p) |
| 2145 | { |
| 2146 | struct workqueue *wq = proc_get_wqptr(p); |
| 2147 | uint32_t wq_flags; |
| 2148 | workq_threadreq_t mgr_req; |
| 2149 | |
| 2150 | if (!wq) { |
| 2151 | return; |
| 2152 | } |
| 2153 | |
| 2154 | WQ_TRACE_WQ(TRACE_wq_pthread_exit | DBG_FUNC_START, wq, 0, 0, 0); |
| 2155 | |
| 2156 | workq_lock_spin(wq); |
| 2157 | |
| 2158 | wq_flags = os_atomic_or_orig(&wq->wq_flags, WQ_EXITING, relaxed); |
| 2159 | if (__improbable(wq_flags & WQ_EXITING)) { |
| 2160 | panic("workq_mark_exiting called twice" ); |
| 2161 | } |
| 2162 | |
| 2163 | /* |
| 2164 | * Opportunistically try to cancel thread calls that are likely in flight. |
| 2165 | * workq_exit() will do the proper cleanup. |
| 2166 | */ |
| 2167 | if (wq_flags & WQ_IMMEDIATE_CALL_SCHEDULED) { |
| 2168 | thread_call_cancel(call: wq->wq_immediate_call); |
| 2169 | } |
| 2170 | if (wq_flags & WQ_DELAYED_CALL_SCHEDULED) { |
| 2171 | thread_call_cancel(call: wq->wq_delayed_call); |
| 2172 | } |
| 2173 | if (wq_flags & WQ_DEATH_CALL_SCHEDULED) { |
| 2174 | thread_call_cancel(call: wq->wq_death_call); |
| 2175 | } |
| 2176 | |
| 2177 | mgr_req = wq->wq_event_manager_threadreq; |
| 2178 | wq->wq_event_manager_threadreq = NULL; |
| 2179 | wq->wq_reqcount = 0; /* workq_schedule_creator must not look at queues */ |
| 2180 | wq->wq_creator = NULL; |
| 2181 | workq_turnstile_update_inheritor(wq, TURNSTILE_INHERITOR_NULL, flags: 0); |
| 2182 | |
| 2183 | workq_unlock(wq); |
| 2184 | |
| 2185 | if (mgr_req) { |
| 2186 | kqueue_threadreq_cancel(p, req: mgr_req); |
| 2187 | } |
| 2188 | /* |
| 2189 | * No one touches the priority queues once WQ_EXITING is set. |
| 2190 | * It is hence safe to do the tear down without holding any lock. |
| 2191 | */ |
| 2192 | priority_queue_destroy(&wq->wq_overcommit_queue, |
| 2193 | struct workq_threadreq_s, tr_entry, ^(workq_threadreq_t e){ |
| 2194 | workq_threadreq_destroy(p, e); |
| 2195 | }); |
| 2196 | priority_queue_destroy(&wq->wq_constrained_queue, |
| 2197 | struct workq_threadreq_s, tr_entry, ^(workq_threadreq_t e){ |
| 2198 | workq_threadreq_destroy(p, e); |
| 2199 | }); |
| 2200 | priority_queue_destroy(&wq->wq_special_queue, |
| 2201 | struct workq_threadreq_s, tr_entry, ^(workq_threadreq_t e){ |
| 2202 | workq_threadreq_destroy(p, e); |
| 2203 | }); |
| 2204 | |
| 2205 | WQ_TRACE(TRACE_wq_pthread_exit | DBG_FUNC_END, 0, 0, 0, 0); |
| 2206 | } |
| 2207 | |
| 2208 | /* |
| 2209 | * Routine: workq_exit |
| 2210 | * |
| 2211 | * Function: clean up the work queue structure(s) now that there are no threads |
| 2212 | * left running inside the work queue (except possibly current_thread). |
| 2213 | * |
| 2214 | * Conditions: Called by the last thread in the process. |
| 2215 | * Called against current process. |
| 2216 | */ |
| 2217 | void |
| 2218 | workq_exit(struct proc *p) |
| 2219 | { |
| 2220 | struct workqueue *wq; |
| 2221 | struct uthread *uth, *tmp; |
| 2222 | |
| 2223 | wq = os_atomic_xchg(&p->p_wqptr, NULL, relaxed); |
| 2224 | if (wq != NULL) { |
| 2225 | thread_t th = current_thread(); |
| 2226 | |
| 2227 | WQ_TRACE_WQ(TRACE_wq_workqueue_exit | DBG_FUNC_START, wq, 0, 0, 0); |
| 2228 | |
| 2229 | if (thread_get_tag(thread: th) & THREAD_TAG_WORKQUEUE) { |
| 2230 | /* |
| 2231 | * <rdar://problem/40111515> Make sure we will no longer call the |
| 2232 | * sched call, if we ever block this thread, which the cancel_wait |
| 2233 | * below can do. |
| 2234 | */ |
| 2235 | thread_sched_call(thread: th, NULL); |
| 2236 | } |
| 2237 | |
| 2238 | /* |
| 2239 | * Thread calls are always scheduled by the proc itself or under the |
| 2240 | * workqueue spinlock if WQ_EXITING is not yet set. |
| 2241 | * |
| 2242 | * Either way, when this runs, the proc has no threads left beside |
| 2243 | * the one running this very code, so we know no thread call can be |
| 2244 | * dispatched anymore. |
| 2245 | */ |
| 2246 | thread_call_cancel_wait(call: wq->wq_delayed_call); |
| 2247 | thread_call_cancel_wait(call: wq->wq_immediate_call); |
| 2248 | thread_call_cancel_wait(call: wq->wq_death_call); |
| 2249 | thread_call_free(call: wq->wq_delayed_call); |
| 2250 | thread_call_free(call: wq->wq_immediate_call); |
| 2251 | thread_call_free(call: wq->wq_death_call); |
| 2252 | |
| 2253 | /* |
| 2254 | * Clean up workqueue data structures for threads that exited and |
| 2255 | * didn't get a chance to clean up after themselves. |
| 2256 | * |
| 2257 | * idle/new threads should have been interrupted and died on their own |
| 2258 | */ |
| 2259 | TAILQ_FOREACH_SAFE(uth, &wq->wq_thrunlist, uu_workq_entry, tmp) { |
| 2260 | thread_t mth = get_machthread(uth); |
| 2261 | thread_sched_call(thread: mth, NULL); |
| 2262 | thread_deallocate(thread: mth); |
| 2263 | } |
| 2264 | assert(TAILQ_EMPTY(&wq->wq_thnewlist)); |
| 2265 | assert(TAILQ_EMPTY(&wq->wq_thidlelist)); |
| 2266 | |
| 2267 | WQ_TRACE_WQ(TRACE_wq_destroy | DBG_FUNC_END, wq, |
| 2268 | VM_KERNEL_ADDRHIDE(wq), 0, 0); |
| 2269 | |
| 2270 | workq_deallocate(wq); |
| 2271 | |
| 2272 | WQ_TRACE(TRACE_wq_workqueue_exit | DBG_FUNC_END, 0, 0, 0, 0); |
| 2273 | } |
| 2274 | } |
| 2275 | |
| 2276 | |
| 2277 | #pragma mark bsd thread control |
| 2278 | |
| 2279 | bool |
| 2280 | bsdthread_part_of_cooperative_workqueue(struct uthread *uth) |
| 2281 | { |
| 2282 | return (workq_thread_is_cooperative(uth) || workq_thread_is_nonovercommit(uth)) && |
| 2283 | (uth->uu_workq_pri.qos_bucket != WORKQ_THREAD_QOS_MANAGER); |
| 2284 | } |
| 2285 | |
| 2286 | static bool |
| 2287 | _pthread_priority_to_policy(pthread_priority_t priority, |
| 2288 | thread_qos_policy_data_t *data) |
| 2289 | { |
| 2290 | data->qos_tier = _pthread_priority_thread_qos(pp: priority); |
| 2291 | data->tier_importance = _pthread_priority_relpri(pp: priority); |
| 2292 | if (data->qos_tier == THREAD_QOS_UNSPECIFIED || data->tier_importance > 0 || |
| 2293 | data->tier_importance < THREAD_QOS_MIN_TIER_IMPORTANCE) { |
| 2294 | return false; |
| 2295 | } |
| 2296 | return true; |
| 2297 | } |
| 2298 | |
| 2299 | static int |
| 2300 | bsdthread_set_self(proc_t p, thread_t th, pthread_priority_t priority, |
| 2301 | mach_port_name_t voucher, enum workq_set_self_flags flags) |
| 2302 | { |
| 2303 | struct uthread *uth = get_bsdthread_info(th); |
| 2304 | struct workqueue *wq = proc_get_wqptr(p); |
| 2305 | |
| 2306 | kern_return_t kr; |
| 2307 | int unbind_rv = 0, qos_rv = 0, voucher_rv = 0, fixedpri_rv = 0; |
| 2308 | bool is_wq_thread = (thread_get_tag(thread: th) & THREAD_TAG_WORKQUEUE); |
| 2309 | |
| 2310 | assert(th == current_thread()); |
| 2311 | if (flags & WORKQ_SET_SELF_WQ_KEVENT_UNBIND) { |
| 2312 | if (!is_wq_thread) { |
| 2313 | unbind_rv = EINVAL; |
| 2314 | goto qos; |
| 2315 | } |
| 2316 | |
| 2317 | if (uth->uu_workq_pri.qos_bucket == WORKQ_THREAD_QOS_MANAGER) { |
| 2318 | unbind_rv = EINVAL; |
| 2319 | goto qos; |
| 2320 | } |
| 2321 | |
| 2322 | workq_threadreq_t kqr = uth->uu_kqr_bound; |
| 2323 | if (kqr == NULL) { |
| 2324 | unbind_rv = EALREADY; |
| 2325 | goto qos; |
| 2326 | } |
| 2327 | |
| 2328 | if (kqr->tr_flags & WORKQ_TR_FLAG_WORKLOOP) { |
| 2329 | unbind_rv = EINVAL; |
| 2330 | goto qos; |
| 2331 | } |
| 2332 | |
| 2333 | kqueue_threadreq_unbind(p, kqr); |
| 2334 | } |
| 2335 | |
| 2336 | qos: |
| 2337 | if (flags & (WORKQ_SET_SELF_QOS_FLAG | WORKQ_SET_SELF_QOS_OVERRIDE_FLAG)) { |
| 2338 | assert(flags & WORKQ_SET_SELF_QOS_FLAG); |
| 2339 | |
| 2340 | thread_qos_policy_data_t new_policy; |
| 2341 | thread_qos_t qos_override = THREAD_QOS_UNSPECIFIED; |
| 2342 | |
| 2343 | if (!_pthread_priority_to_policy(priority, data: &new_policy)) { |
| 2344 | qos_rv = EINVAL; |
| 2345 | goto voucher; |
| 2346 | } |
| 2347 | |
| 2348 | if (flags & WORKQ_SET_SELF_QOS_OVERRIDE_FLAG) { |
| 2349 | /* |
| 2350 | * If the WORKQ_SET_SELF_QOS_OVERRIDE_FLAG is set, we definitely |
| 2351 | * should have an override QoS in the pthread_priority_t and we should |
| 2352 | * only come into this path for cooperative thread requests |
| 2353 | */ |
| 2354 | if (!_pthread_priority_has_override_qos(pp: priority) || |
| 2355 | !_pthread_priority_is_cooperative(pp: priority)) { |
| 2356 | qos_rv = EINVAL; |
| 2357 | goto voucher; |
| 2358 | } |
| 2359 | qos_override = _pthread_priority_thread_override_qos(pp: priority); |
| 2360 | } else { |
| 2361 | /* |
| 2362 | * If the WORKQ_SET_SELF_QOS_OVERRIDE_FLAG is not set, we definitely |
| 2363 | * should not have an override QoS in the pthread_priority_t |
| 2364 | */ |
| 2365 | if (_pthread_priority_has_override_qos(pp: priority)) { |
| 2366 | qos_rv = EINVAL; |
| 2367 | goto voucher; |
| 2368 | } |
| 2369 | } |
| 2370 | |
| 2371 | if (!is_wq_thread) { |
| 2372 | /* |
| 2373 | * Threads opted out of QoS can't change QoS |
| 2374 | */ |
| 2375 | if (!thread_has_qos_policy(thread: th)) { |
| 2376 | qos_rv = EPERM; |
| 2377 | goto voucher; |
| 2378 | } |
| 2379 | } else if (uth->uu_workq_pri.qos_bucket == WORKQ_THREAD_QOS_MANAGER || |
| 2380 | uth->uu_workq_pri.qos_bucket == WORKQ_THREAD_QOS_ABOVEUI) { |
| 2381 | /* |
| 2382 | * Workqueue manager threads or threads above UI can't change QoS |
| 2383 | */ |
| 2384 | qos_rv = EINVAL; |
| 2385 | goto voucher; |
| 2386 | } else { |
| 2387 | /* |
| 2388 | * For workqueue threads, possibly adjust buckets and redrive thread |
| 2389 | * requests. |
| 2390 | * |
| 2391 | * Transitions allowed: |
| 2392 | * |
| 2393 | * overcommit --> non-overcommit |
| 2394 | * overcommit --> overcommit |
| 2395 | * non-overcommit --> non-overcommit |
| 2396 | * non-overcommit --> overcommit (to be deprecated later) |
| 2397 | * cooperative --> cooperative |
| 2398 | * |
| 2399 | * All other transitions aren't allowed so reject them. |
| 2400 | */ |
| 2401 | if (workq_thread_is_overcommit(uth) && _pthread_priority_is_cooperative(pp: priority)) { |
| 2402 | qos_rv = EINVAL; |
| 2403 | goto voucher; |
| 2404 | } else if (workq_thread_is_cooperative(uth) && !_pthread_priority_is_cooperative(pp: priority)) { |
| 2405 | qos_rv = EINVAL; |
| 2406 | goto voucher; |
| 2407 | } else if (workq_thread_is_nonovercommit(uth) && _pthread_priority_is_cooperative(pp: priority)) { |
| 2408 | qos_rv = EINVAL; |
| 2409 | goto voucher; |
| 2410 | } |
| 2411 | |
| 2412 | struct uu_workq_policy old_pri, new_pri; |
| 2413 | bool force_run = false; |
| 2414 | |
| 2415 | if (qos_override) { |
| 2416 | /* |
| 2417 | * We're in the case of a thread clarifying that it is for eg. not IN |
| 2418 | * req QoS but rather, UT req QoS with IN override. However, this can |
| 2419 | * race with a concurrent override happening to the thread via |
| 2420 | * workq_thread_add_dispatch_override so this needs to be |
| 2421 | * synchronized with the thread mutex. |
| 2422 | */ |
| 2423 | thread_mtx_lock(thread: th); |
| 2424 | } |
| 2425 | |
| 2426 | workq_lock_spin(wq); |
| 2427 | |
| 2428 | old_pri = new_pri = uth->uu_workq_pri; |
| 2429 | new_pri.qos_req = (thread_qos_t)new_policy.qos_tier; |
| 2430 | |
| 2431 | if (old_pri.qos_override < qos_override) { |
| 2432 | /* |
| 2433 | * Since this can race with a concurrent override via |
| 2434 | * workq_thread_add_dispatch_override, only adjust override value if we |
| 2435 | * are higher - this is a saturating function. |
| 2436 | * |
| 2437 | * We should not be changing the final override values, we should simply |
| 2438 | * be redistributing the current value with a different breakdown of req |
| 2439 | * vs override QoS - assert to that effect. Therefore, buckets should |
| 2440 | * not change. |
| 2441 | */ |
| 2442 | new_pri.qos_override = qos_override; |
| 2443 | assert(workq_pri_override(new_pri) == workq_pri_override(old_pri)); |
| 2444 | assert(workq_pri_bucket(new_pri) == workq_pri_bucket(old_pri)); |
| 2445 | } |
| 2446 | |
| 2447 | /* Adjust schedule counts for various types of transitions */ |
| 2448 | |
| 2449 | /* overcommit -> non-overcommit */ |
| 2450 | if (workq_thread_is_overcommit(uth) && _pthread_priority_is_nonovercommit(pp: priority)) { |
| 2451 | workq_thread_set_type(uth, flags: 0); |
| 2452 | wq->wq_constrained_threads_scheduled++; |
| 2453 | |
| 2454 | /* non-overcommit -> overcommit */ |
| 2455 | } else if (workq_thread_is_nonovercommit(uth) && _pthread_priority_is_overcommit(pp: priority)) { |
| 2456 | workq_thread_set_type(uth, UT_WORKQ_OVERCOMMIT); |
| 2457 | force_run = (wq->wq_constrained_threads_scheduled-- == wq_max_constrained_threads); |
| 2458 | |
| 2459 | /* cooperative -> cooperative */ |
| 2460 | } else if (workq_thread_is_cooperative(uth)) { |
| 2461 | _wq_cooperative_queue_scheduled_count_dec(wq, qos: old_pri.qos_req); |
| 2462 | _wq_cooperative_queue_scheduled_count_inc(wq, qos: new_pri.qos_req); |
| 2463 | |
| 2464 | /* We're changing schedule counts within cooperative pool, we |
| 2465 | * need to refresh best cooperative QoS logic again */ |
| 2466 | force_run = _wq_cooperative_queue_refresh_best_req_qos(wq); |
| 2467 | } |
| 2468 | |
| 2469 | /* |
| 2470 | * This will set up an override on the thread if any and will also call |
| 2471 | * schedule_creator if needed |
| 2472 | */ |
| 2473 | workq_thread_update_bucket(p, wq, uth, old_pri, new_pri, force_run); |
| 2474 | workq_unlock(wq); |
| 2475 | |
| 2476 | if (qos_override) { |
| 2477 | thread_mtx_unlock(thread: th); |
| 2478 | } |
| 2479 | |
| 2480 | if (workq_thread_is_overcommit(uth)) { |
| 2481 | thread_disarm_workqueue_quantum(thread: th); |
| 2482 | } else { |
| 2483 | /* If the thread changed QoS buckets, the quantum duration |
| 2484 | * may have changed too */ |
| 2485 | thread_arm_workqueue_quantum(thread: th); |
| 2486 | } |
| 2487 | } |
| 2488 | |
| 2489 | kr = thread_policy_set_internal(thread: th, THREAD_QOS_POLICY, |
| 2490 | policy_info: (thread_policy_t)&new_policy, THREAD_QOS_POLICY_COUNT); |
| 2491 | if (kr != KERN_SUCCESS) { |
| 2492 | qos_rv = EINVAL; |
| 2493 | } |
| 2494 | } |
| 2495 | |
| 2496 | voucher: |
| 2497 | if (flags & WORKQ_SET_SELF_VOUCHER_FLAG) { |
| 2498 | kr = thread_set_voucher_name(name: voucher); |
| 2499 | if (kr != KERN_SUCCESS) { |
| 2500 | voucher_rv = ENOENT; |
| 2501 | goto fixedpri; |
| 2502 | } |
| 2503 | } |
| 2504 | |
| 2505 | fixedpri: |
| 2506 | if (qos_rv) { |
| 2507 | goto done; |
| 2508 | } |
| 2509 | if (flags & WORKQ_SET_SELF_FIXEDPRIORITY_FLAG) { |
| 2510 | thread_extended_policy_data_t extpol = {.timeshare = 0}; |
| 2511 | |
| 2512 | if (is_wq_thread) { |
| 2513 | /* Not allowed on workqueue threads */ |
| 2514 | fixedpri_rv = ENOTSUP; |
| 2515 | goto done; |
| 2516 | } |
| 2517 | |
| 2518 | kr = thread_policy_set_internal(thread: th, THREAD_EXTENDED_POLICY, |
| 2519 | policy_info: (thread_policy_t)&extpol, THREAD_EXTENDED_POLICY_COUNT); |
| 2520 | if (kr != KERN_SUCCESS) { |
| 2521 | fixedpri_rv = EINVAL; |
| 2522 | goto done; |
| 2523 | } |
| 2524 | } else if (flags & WORKQ_SET_SELF_TIMESHARE_FLAG) { |
| 2525 | thread_extended_policy_data_t extpol = {.timeshare = 1}; |
| 2526 | |
| 2527 | if (is_wq_thread) { |
| 2528 | /* Not allowed on workqueue threads */ |
| 2529 | fixedpri_rv = ENOTSUP; |
| 2530 | goto done; |
| 2531 | } |
| 2532 | |
| 2533 | kr = thread_policy_set_internal(thread: th, THREAD_EXTENDED_POLICY, |
| 2534 | policy_info: (thread_policy_t)&extpol, THREAD_EXTENDED_POLICY_COUNT); |
| 2535 | if (kr != KERN_SUCCESS) { |
| 2536 | fixedpri_rv = EINVAL; |
| 2537 | goto done; |
| 2538 | } |
| 2539 | } |
| 2540 | |
| 2541 | done: |
| 2542 | if (qos_rv && voucher_rv) { |
| 2543 | /* Both failed, give that a unique error. */ |
| 2544 | return EBADMSG; |
| 2545 | } |
| 2546 | |
| 2547 | if (unbind_rv) { |
| 2548 | return unbind_rv; |
| 2549 | } |
| 2550 | |
| 2551 | if (qos_rv) { |
| 2552 | return qos_rv; |
| 2553 | } |
| 2554 | |
| 2555 | if (voucher_rv) { |
| 2556 | return voucher_rv; |
| 2557 | } |
| 2558 | |
| 2559 | if (fixedpri_rv) { |
| 2560 | return fixedpri_rv; |
| 2561 | } |
| 2562 | |
| 2563 | |
| 2564 | return 0; |
| 2565 | } |
| 2566 | |
| 2567 | static int |
| 2568 | bsdthread_add_explicit_override(proc_t p, mach_port_name_t kport, |
| 2569 | pthread_priority_t pp, user_addr_t resource) |
| 2570 | { |
| 2571 | thread_qos_t qos = _pthread_priority_thread_qos(pp); |
| 2572 | if (qos == THREAD_QOS_UNSPECIFIED) { |
| 2573 | return EINVAL; |
| 2574 | } |
| 2575 | |
| 2576 | thread_t th = port_name_to_thread(port_name: kport, |
| 2577 | options: PORT_INTRANS_THREAD_IN_CURRENT_TASK); |
| 2578 | if (th == THREAD_NULL) { |
| 2579 | return ESRCH; |
| 2580 | } |
| 2581 | |
| 2582 | int rv = proc_thread_qos_add_override(task: proc_task(p), thread: th, tid: 0, override_qos: qos, TRUE, |
| 2583 | resource, THREAD_QOS_OVERRIDE_TYPE_PTHREAD_EXPLICIT_OVERRIDE); |
| 2584 | |
| 2585 | thread_deallocate(thread: th); |
| 2586 | return rv; |
| 2587 | } |
| 2588 | |
| 2589 | static int |
| 2590 | bsdthread_remove_explicit_override(proc_t p, mach_port_name_t kport, |
| 2591 | user_addr_t resource) |
| 2592 | { |
| 2593 | thread_t th = port_name_to_thread(port_name: kport, |
| 2594 | options: PORT_INTRANS_THREAD_IN_CURRENT_TASK); |
| 2595 | if (th == THREAD_NULL) { |
| 2596 | return ESRCH; |
| 2597 | } |
| 2598 | |
| 2599 | int rv = proc_thread_qos_remove_override(task: proc_task(p), thread: th, tid: 0, resource, |
| 2600 | THREAD_QOS_OVERRIDE_TYPE_PTHREAD_EXPLICIT_OVERRIDE); |
| 2601 | |
| 2602 | thread_deallocate(thread: th); |
| 2603 | return rv; |
| 2604 | } |
| 2605 | |
| 2606 | static int |
| 2607 | workq_thread_add_dispatch_override(proc_t p, mach_port_name_t kport, |
| 2608 | pthread_priority_t pp, user_addr_t ulock_addr) |
| 2609 | { |
| 2610 | struct uu_workq_policy old_pri, new_pri; |
| 2611 | struct workqueue *wq = proc_get_wqptr(p); |
| 2612 | |
| 2613 | thread_qos_t qos_override = _pthread_priority_thread_qos(pp); |
| 2614 | if (qos_override == THREAD_QOS_UNSPECIFIED) { |
| 2615 | return EINVAL; |
| 2616 | } |
| 2617 | |
| 2618 | thread_t thread = port_name_to_thread(port_name: kport, |
| 2619 | options: PORT_INTRANS_THREAD_IN_CURRENT_TASK); |
| 2620 | if (thread == THREAD_NULL) { |
| 2621 | return ESRCH; |
| 2622 | } |
| 2623 | |
| 2624 | struct uthread *uth = get_bsdthread_info(thread); |
| 2625 | if ((thread_get_tag(thread) & THREAD_TAG_WORKQUEUE) == 0) { |
| 2626 | thread_deallocate(thread); |
| 2627 | return EPERM; |
| 2628 | } |
| 2629 | |
| 2630 | WQ_TRACE_WQ(TRACE_wq_override_dispatch | DBG_FUNC_NONE, |
| 2631 | wq, thread_tid(thread), 1, pp); |
| 2632 | |
| 2633 | thread_mtx_lock(thread); |
| 2634 | |
| 2635 | if (ulock_addr) { |
| 2636 | uint32_t val; |
| 2637 | int rc; |
| 2638 | /* |
| 2639 | * Workaround lack of explicit support for 'no-fault copyin' |
| 2640 | * <rdar://problem/24999882>, as disabling preemption prevents paging in |
| 2641 | */ |
| 2642 | disable_preemption(); |
| 2643 | rc = copyin_atomic32(user_addr: ulock_addr, u32: &val); |
| 2644 | enable_preemption(); |
| 2645 | if (rc == 0 && ulock_owner_value_to_port_name(uval: val) != kport) { |
| 2646 | goto out; |
| 2647 | } |
| 2648 | } |
| 2649 | |
| 2650 | workq_lock_spin(wq); |
| 2651 | |
| 2652 | old_pri = uth->uu_workq_pri; |
| 2653 | if (old_pri.qos_override >= qos_override) { |
| 2654 | /* Nothing to do */ |
| 2655 | } else if (thread == current_thread()) { |
| 2656 | new_pri = old_pri; |
| 2657 | new_pri.qos_override = qos_override; |
| 2658 | workq_thread_update_bucket(p, wq, uth, old_pri, new_pri, false); |
| 2659 | } else { |
| 2660 | uth->uu_workq_pri.qos_override = qos_override; |
| 2661 | if (qos_override > workq_pri_override(req: old_pri)) { |
| 2662 | thread_set_workq_override(thread, qos: qos_override); |
| 2663 | } |
| 2664 | } |
| 2665 | |
| 2666 | workq_unlock(wq); |
| 2667 | |
| 2668 | out: |
| 2669 | thread_mtx_unlock(thread); |
| 2670 | thread_deallocate(thread); |
| 2671 | return 0; |
| 2672 | } |
| 2673 | |
| 2674 | static int |
| 2675 | workq_thread_reset_dispatch_override(proc_t p, thread_t thread) |
| 2676 | { |
| 2677 | struct uu_workq_policy old_pri, new_pri; |
| 2678 | struct workqueue *wq = proc_get_wqptr(p); |
| 2679 | struct uthread *uth = get_bsdthread_info(thread); |
| 2680 | |
| 2681 | if ((thread_get_tag(thread) & THREAD_TAG_WORKQUEUE) == 0) { |
| 2682 | return EPERM; |
| 2683 | } |
| 2684 | |
| 2685 | WQ_TRACE_WQ(TRACE_wq_override_reset | DBG_FUNC_NONE, wq, 0, 0, 0); |
| 2686 | |
| 2687 | /* |
| 2688 | * workq_thread_add_dispatch_override takes the thread mutex before doing the |
| 2689 | * copyin to validate the drainer and apply the override. We need to do the |
| 2690 | * same here. See rdar://84472518 |
| 2691 | */ |
| 2692 | thread_mtx_lock(thread); |
| 2693 | |
| 2694 | workq_lock_spin(wq); |
| 2695 | old_pri = new_pri = uth->uu_workq_pri; |
| 2696 | new_pri.qos_override = THREAD_QOS_UNSPECIFIED; |
| 2697 | workq_thread_update_bucket(p, wq, uth, old_pri, new_pri, false); |
| 2698 | workq_unlock(wq); |
| 2699 | |
| 2700 | thread_mtx_unlock(thread); |
| 2701 | return 0; |
| 2702 | } |
| 2703 | |
| 2704 | static int |
| 2705 | workq_thread_allow_kill(__unused proc_t p, thread_t thread, bool enable) |
| 2706 | { |
| 2707 | if (!(thread_get_tag(thread) & THREAD_TAG_WORKQUEUE)) { |
| 2708 | // If the thread isn't a workqueue thread, don't set the |
| 2709 | // kill_allowed bit; however, we still need to return 0 |
| 2710 | // instead of an error code since this code is executed |
| 2711 | // on the abort path which needs to not depend on the |
| 2712 | // pthread_t (returning an error depends on pthread_t via |
| 2713 | // cerror_nocancel) |
| 2714 | return 0; |
| 2715 | } |
| 2716 | struct uthread *uth = get_bsdthread_info(thread); |
| 2717 | uth->uu_workq_pthread_kill_allowed = enable; |
| 2718 | return 0; |
| 2719 | } |
| 2720 | |
| 2721 | static int |
| 2722 | workq_allow_sigmask(proc_t p, sigset_t mask) |
| 2723 | { |
| 2724 | if (mask & workq_threadmask) { |
| 2725 | return EINVAL; |
| 2726 | } |
| 2727 | |
| 2728 | proc_lock(p); |
| 2729 | p->p_workq_allow_sigmask |= mask; |
| 2730 | proc_unlock(p); |
| 2731 | |
| 2732 | return 0; |
| 2733 | } |
| 2734 | |
| 2735 | static int |
| 2736 | bsdthread_get_max_parallelism(thread_qos_t qos, unsigned long flags, |
| 2737 | int *retval) |
| 2738 | { |
| 2739 | static_assert(QOS_PARALLELISM_COUNT_LOGICAL == |
| 2740 | _PTHREAD_QOS_PARALLELISM_COUNT_LOGICAL, "logical" ); |
| 2741 | static_assert(QOS_PARALLELISM_REALTIME == |
| 2742 | _PTHREAD_QOS_PARALLELISM_REALTIME, "realtime" ); |
| 2743 | static_assert(QOS_PARALLELISM_CLUSTER_SHARED_RESOURCE == |
| 2744 | _PTHREAD_QOS_PARALLELISM_CLUSTER_SHARED_RSRC, "cluster shared resource" ); |
| 2745 | |
| 2746 | if (flags & ~(QOS_PARALLELISM_REALTIME | QOS_PARALLELISM_COUNT_LOGICAL | QOS_PARALLELISM_CLUSTER_SHARED_RESOURCE)) { |
| 2747 | return EINVAL; |
| 2748 | } |
| 2749 | |
| 2750 | /* No units are present */ |
| 2751 | if (flags & QOS_PARALLELISM_CLUSTER_SHARED_RESOURCE) { |
| 2752 | return ENOTSUP; |
| 2753 | } |
| 2754 | |
| 2755 | if (flags & QOS_PARALLELISM_REALTIME) { |
| 2756 | if (qos) { |
| 2757 | return EINVAL; |
| 2758 | } |
| 2759 | } else if (qos == THREAD_QOS_UNSPECIFIED || qos >= THREAD_QOS_LAST) { |
| 2760 | return EINVAL; |
| 2761 | } |
| 2762 | |
| 2763 | *retval = qos_max_parallelism(qos, options: flags); |
| 2764 | return 0; |
| 2765 | } |
| 2766 | |
| 2767 | static int |
| 2768 | bsdthread_dispatch_apply_attr(__unused struct proc *p, thread_t thread, |
| 2769 | unsigned long flags, uint64_t value1, __unused uint64_t value2) |
| 2770 | { |
| 2771 | uint32_t apply_worker_index; |
| 2772 | kern_return_t kr; |
| 2773 | |
| 2774 | switch (flags) { |
| 2775 | case _PTHREAD_DISPATCH_APPLY_ATTR_CLUSTER_SHARED_RSRC_SET: |
| 2776 | apply_worker_index = (uint32_t)value1; |
| 2777 | kr = thread_shared_rsrc_policy_set(thread, index: apply_worker_index, type: CLUSTER_SHARED_RSRC_TYPE_RR, agent: SHARED_RSRC_POLICY_AGENT_DISPATCH); |
| 2778 | /* |
| 2779 | * KERN_INVALID_POLICY indicates that the thread was trying to bind to a |
| 2780 | * cluster which it was not eligible to execute on. |
| 2781 | */ |
| 2782 | return (kr == KERN_SUCCESS) ? 0 : ((kr == KERN_INVALID_POLICY) ? ENOTSUP : EINVAL); |
| 2783 | case _PTHREAD_DISPATCH_APPLY_ATTR_CLUSTER_SHARED_RSRC_CLEAR: |
| 2784 | kr = thread_shared_rsrc_policy_clear(thread, type: CLUSTER_SHARED_RSRC_TYPE_RR, agent: SHARED_RSRC_POLICY_AGENT_DISPATCH); |
| 2785 | return (kr == KERN_SUCCESS) ? 0 : EINVAL; |
| 2786 | default: |
| 2787 | return EINVAL; |
| 2788 | } |
| 2789 | } |
| 2790 | |
| 2791 | #define ENSURE_UNUSED(arg) \ |
| 2792 | ({ if ((arg) != 0) { return EINVAL; } }) |
| 2793 | |
| 2794 | int |
| 2795 | bsdthread_ctl(struct proc *p, struct bsdthread_ctl_args *uap, int *retval) |
| 2796 | { |
| 2797 | switch (uap->cmd) { |
| 2798 | case BSDTHREAD_CTL_QOS_OVERRIDE_START: |
| 2799 | return bsdthread_add_explicit_override(p, kport: (mach_port_name_t)uap->arg1, |
| 2800 | pp: (pthread_priority_t)uap->arg2, resource: uap->arg3); |
| 2801 | case BSDTHREAD_CTL_QOS_OVERRIDE_END: |
| 2802 | ENSURE_UNUSED(uap->arg3); |
| 2803 | return bsdthread_remove_explicit_override(p, kport: (mach_port_name_t)uap->arg1, |
| 2804 | resource: (user_addr_t)uap->arg2); |
| 2805 | |
| 2806 | case BSDTHREAD_CTL_QOS_OVERRIDE_DISPATCH: |
| 2807 | return workq_thread_add_dispatch_override(p, kport: (mach_port_name_t)uap->arg1, |
| 2808 | pp: (pthread_priority_t)uap->arg2, ulock_addr: uap->arg3); |
| 2809 | case BSDTHREAD_CTL_QOS_OVERRIDE_RESET: |
| 2810 | return workq_thread_reset_dispatch_override(p, thread: current_thread()); |
| 2811 | |
| 2812 | case BSDTHREAD_CTL_SET_SELF: |
| 2813 | return bsdthread_set_self(p, th: current_thread(), |
| 2814 | priority: (pthread_priority_t)uap->arg1, voucher: (mach_port_name_t)uap->arg2, |
| 2815 | flags: (enum workq_set_self_flags)uap->arg3); |
| 2816 | |
| 2817 | case BSDTHREAD_CTL_QOS_MAX_PARALLELISM: |
| 2818 | ENSURE_UNUSED(uap->arg3); |
| 2819 | return bsdthread_get_max_parallelism(qos: (thread_qos_t)uap->arg1, |
| 2820 | flags: (unsigned long)uap->arg2, retval); |
| 2821 | case BSDTHREAD_CTL_WORKQ_ALLOW_KILL: |
| 2822 | ENSURE_UNUSED(uap->arg2); |
| 2823 | ENSURE_UNUSED(uap->arg3); |
| 2824 | return workq_thread_allow_kill(p, thread: current_thread(), enable: (bool)uap->arg1); |
| 2825 | case BSDTHREAD_CTL_DISPATCH_APPLY_ATTR: |
| 2826 | return bsdthread_dispatch_apply_attr(p, thread: current_thread(), |
| 2827 | flags: (unsigned long)uap->arg1, value1: (uint64_t)uap->arg2, |
| 2828 | value2: (uint64_t)uap->arg3); |
| 2829 | case BSDTHREAD_CTL_WORKQ_ALLOW_SIGMASK: |
| 2830 | return workq_allow_sigmask(p, mask: (int)uap->arg1); |
| 2831 | case BSDTHREAD_CTL_SET_QOS: |
| 2832 | case BSDTHREAD_CTL_QOS_DISPATCH_ASYNCHRONOUS_OVERRIDE_ADD: |
| 2833 | case BSDTHREAD_CTL_QOS_DISPATCH_ASYNCHRONOUS_OVERRIDE_RESET: |
| 2834 | /* no longer supported */ |
| 2835 | return ENOTSUP; |
| 2836 | |
| 2837 | default: |
| 2838 | return EINVAL; |
| 2839 | } |
| 2840 | } |
| 2841 | |
| 2842 | #pragma mark workqueue thread manipulation |
| 2843 | |
| 2844 | static void __dead2 |
| 2845 | workq_unpark_select_threadreq_or_park_and_unlock(proc_t p, struct workqueue *wq, |
| 2846 | struct uthread *uth, uint32_t setup_flags); |
| 2847 | |
| 2848 | static void __dead2 |
| 2849 | workq_select_threadreq_or_park_and_unlock(proc_t p, struct workqueue *wq, |
| 2850 | struct uthread *uth, uint32_t setup_flags); |
| 2851 | |
| 2852 | static void workq_setup_and_run(proc_t p, struct uthread *uth, int flags) __dead2; |
| 2853 | |
| 2854 | #if KDEBUG_LEVEL >= KDEBUG_LEVEL_STANDARD |
| 2855 | static inline uint64_t |
| 2856 | workq_trace_req_id(workq_threadreq_t req) |
| 2857 | { |
| 2858 | struct kqworkloop *kqwl; |
| 2859 | if (req->tr_flags & WORKQ_TR_FLAG_WORKLOOP) { |
| 2860 | kqwl = __container_of(req, struct kqworkloop, kqwl_request); |
| 2861 | return kqwl->kqwl_dynamicid; |
| 2862 | } |
| 2863 | |
| 2864 | return VM_KERNEL_ADDRHIDE(req); |
| 2865 | } |
| 2866 | #endif |
| 2867 | |
| 2868 | /** |
| 2869 | * Entry point for libdispatch to ask for threads |
| 2870 | */ |
| 2871 | static int |
| 2872 | workq_reqthreads(struct proc *p, uint32_t reqcount, pthread_priority_t pp, bool cooperative) |
| 2873 | { |
| 2874 | thread_qos_t qos = _pthread_priority_thread_qos(pp); |
| 2875 | struct workqueue *wq = proc_get_wqptr(p); |
| 2876 | uint32_t unpaced, upcall_flags = WQ_FLAG_THREAD_NEWSPI; |
| 2877 | int ret = 0; |
| 2878 | |
| 2879 | if (wq == NULL || reqcount <= 0 || reqcount > UINT16_MAX || |
| 2880 | qos == THREAD_QOS_UNSPECIFIED) { |
| 2881 | ret = EINVAL; |
| 2882 | goto exit; |
| 2883 | } |
| 2884 | |
| 2885 | WQ_TRACE_WQ(TRACE_wq_wqops_reqthreads | DBG_FUNC_NONE, |
| 2886 | wq, reqcount, pp, cooperative); |
| 2887 | |
| 2888 | workq_threadreq_t req = zalloc(zone: workq_zone_threadreq); |
| 2889 | priority_queue_entry_init(&req->tr_entry); |
| 2890 | req->tr_state = WORKQ_TR_STATE_NEW; |
| 2891 | req->tr_qos = qos; |
| 2892 | workq_tr_flags_t tr_flags = 0; |
| 2893 | |
| 2894 | if (pp & _PTHREAD_PRIORITY_OVERCOMMIT_FLAG) { |
| 2895 | tr_flags |= WORKQ_TR_FLAG_OVERCOMMIT; |
| 2896 | upcall_flags |= WQ_FLAG_THREAD_OVERCOMMIT; |
| 2897 | } |
| 2898 | |
| 2899 | if (cooperative) { |
| 2900 | tr_flags |= WORKQ_TR_FLAG_COOPERATIVE; |
| 2901 | upcall_flags |= WQ_FLAG_THREAD_COOPERATIVE; |
| 2902 | |
| 2903 | if (reqcount > 1) { |
| 2904 | ret = ENOTSUP; |
| 2905 | goto free_and_exit; |
| 2906 | } |
| 2907 | } |
| 2908 | |
| 2909 | /* A thread request cannot be both overcommit and cooperative */ |
| 2910 | if (workq_tr_is_cooperative(tr_flags) && |
| 2911 | workq_tr_is_overcommit(tr_flags)) { |
| 2912 | ret = EINVAL; |
| 2913 | goto free_and_exit; |
| 2914 | } |
| 2915 | req->tr_flags = tr_flags; |
| 2916 | |
| 2917 | WQ_TRACE_WQ(TRACE_wq_thread_request_initiate | DBG_FUNC_NONE, |
| 2918 | wq, workq_trace_req_id(req), req->tr_qos, reqcount); |
| 2919 | |
| 2920 | workq_lock_spin(wq); |
| 2921 | do { |
| 2922 | if (_wq_exiting(wq)) { |
| 2923 | goto unlock_and_exit; |
| 2924 | } |
| 2925 | |
| 2926 | /* |
| 2927 | * When userspace is asking for parallelism, wakeup up to (reqcount - 1) |
| 2928 | * threads without pacing, to inform the scheduler of that workload. |
| 2929 | * |
| 2930 | * The last requests, or the ones that failed the admission checks are |
| 2931 | * enqueued and go through the regular creator codepath. |
| 2932 | * |
| 2933 | * If there aren't enough threads, add one, but re-evaluate everything |
| 2934 | * as conditions may now have changed. |
| 2935 | */ |
| 2936 | unpaced = reqcount - 1; |
| 2937 | |
| 2938 | if (reqcount > 1) { |
| 2939 | /* We don't handle asking for parallelism on the cooperative |
| 2940 | * workqueue just yet */ |
| 2941 | assert(!workq_threadreq_is_cooperative(req)); |
| 2942 | |
| 2943 | if (workq_threadreq_is_nonovercommit(req)) { |
| 2944 | unpaced = workq_constrained_allowance(wq, at_qos: qos, NULL, false); |
| 2945 | if (unpaced >= reqcount - 1) { |
| 2946 | unpaced = reqcount - 1; |
| 2947 | } |
| 2948 | } |
| 2949 | } |
| 2950 | |
| 2951 | /* |
| 2952 | * This path does not currently handle custom workloop parameters |
| 2953 | * when creating threads for parallelism. |
| 2954 | */ |
| 2955 | assert(!(req->tr_flags & WORKQ_TR_FLAG_WL_PARAMS)); |
| 2956 | |
| 2957 | /* |
| 2958 | * This is a trimmed down version of workq_threadreq_bind_and_unlock() |
| 2959 | */ |
| 2960 | while (unpaced > 0 && wq->wq_thidlecount) { |
| 2961 | struct uthread *uth; |
| 2962 | bool needs_wakeup; |
| 2963 | uint8_t uu_flags = UT_WORKQ_EARLY_BOUND; |
| 2964 | |
| 2965 | if (workq_tr_is_overcommit(tr_flags: req->tr_flags)) { |
| 2966 | uu_flags |= UT_WORKQ_OVERCOMMIT; |
| 2967 | } |
| 2968 | |
| 2969 | uth = workq_pop_idle_thread(wq, uu_flags, needs_wakeup: &needs_wakeup); |
| 2970 | |
| 2971 | _wq_thactive_inc(wq, qos); |
| 2972 | wq->wq_thscheduled_count[_wq_bucket(qos)]++; |
| 2973 | workq_thread_reset_pri(wq, uth, req, /*unpark*/ true); |
| 2974 | wq->wq_fulfilled++; |
| 2975 | |
| 2976 | uth->uu_save.uus_workq_park_data.upcall_flags = upcall_flags; |
| 2977 | uth->uu_save.uus_workq_park_data.thread_request = req; |
| 2978 | if (needs_wakeup) { |
| 2979 | workq_thread_wakeup(uth); |
| 2980 | } |
| 2981 | unpaced--; |
| 2982 | reqcount--; |
| 2983 | } |
| 2984 | } while (unpaced && wq->wq_nthreads < wq_max_threads && |
| 2985 | workq_add_new_idle_thread(p, wq)); |
| 2986 | |
| 2987 | if (_wq_exiting(wq)) { |
| 2988 | goto unlock_and_exit; |
| 2989 | } |
| 2990 | |
| 2991 | req->tr_count = (uint16_t)reqcount; |
| 2992 | if (workq_threadreq_enqueue(wq, req)) { |
| 2993 | /* This can drop the workqueue lock, and take it again */ |
| 2994 | workq_schedule_creator(p, wq, flags: WORKQ_THREADREQ_CAN_CREATE_THREADS); |
| 2995 | } |
| 2996 | workq_unlock(wq); |
| 2997 | return 0; |
| 2998 | |
| 2999 | unlock_and_exit: |
| 3000 | workq_unlock(wq); |
| 3001 | free_and_exit: |
| 3002 | zfree(workq_zone_threadreq, req); |
| 3003 | exit: |
| 3004 | return ret; |
| 3005 | } |
| 3006 | |
| 3007 | bool |
| 3008 | workq_kern_threadreq_initiate(struct proc *p, workq_threadreq_t req, |
| 3009 | struct turnstile *workloop_ts, thread_qos_t qos, |
| 3010 | workq_kern_threadreq_flags_t flags) |
| 3011 | { |
| 3012 | struct workqueue *wq = proc_get_wqptr_fast(p); |
| 3013 | struct uthread *uth = NULL; |
| 3014 | |
| 3015 | assert(req->tr_flags & (WORKQ_TR_FLAG_WORKLOOP | WORKQ_TR_FLAG_KEVENT)); |
| 3016 | |
| 3017 | if (req->tr_flags & WORKQ_TR_FLAG_WL_OUTSIDE_QOS) { |
| 3018 | workq_threadreq_param_t trp = kqueue_threadreq_workloop_param(req); |
| 3019 | qos = thread_workq_qos_for_pri(priority: trp.trp_pri); |
| 3020 | if (qos == THREAD_QOS_UNSPECIFIED) { |
| 3021 | qos = WORKQ_THREAD_QOS_ABOVEUI; |
| 3022 | } |
| 3023 | } |
| 3024 | |
| 3025 | assert(req->tr_state == WORKQ_TR_STATE_IDLE); |
| 3026 | priority_queue_entry_init(&req->tr_entry); |
| 3027 | req->tr_count = 1; |
| 3028 | req->tr_state = WORKQ_TR_STATE_NEW; |
| 3029 | req->tr_qos = qos; |
| 3030 | |
| 3031 | WQ_TRACE_WQ(TRACE_wq_thread_request_initiate | DBG_FUNC_NONE, wq, |
| 3032 | workq_trace_req_id(req), qos, 1); |
| 3033 | |
| 3034 | if (flags & WORKQ_THREADREQ_ATTEMPT_REBIND) { |
| 3035 | /* |
| 3036 | * we're called back synchronously from the context of |
| 3037 | * kqueue_threadreq_unbind from within workq_thread_return() |
| 3038 | * we can try to match up this thread with this request ! |
| 3039 | */ |
| 3040 | uth = current_uthread(); |
| 3041 | assert(uth->uu_kqr_bound == NULL); |
| 3042 | } |
| 3043 | |
| 3044 | workq_lock_spin(wq); |
| 3045 | if (_wq_exiting(wq)) { |
| 3046 | req->tr_state = WORKQ_TR_STATE_IDLE; |
| 3047 | workq_unlock(wq); |
| 3048 | return false; |
| 3049 | } |
| 3050 | |
| 3051 | if (uth && workq_threadreq_admissible(wq, uth, req)) { |
| 3052 | /* This is the case of the rebind - we were about to park and unbind |
| 3053 | * when more events came so keep the binding. |
| 3054 | */ |
| 3055 | assert(uth != wq->wq_creator); |
| 3056 | |
| 3057 | if (uth->uu_workq_pri.qos_bucket != req->tr_qos) { |
| 3058 | _wq_thactive_move(wq, old_qos: uth->uu_workq_pri.qos_bucket, new_qos: req->tr_qos); |
| 3059 | workq_thread_reset_pri(wq, uth, req, /*unpark*/ false); |
| 3060 | } |
| 3061 | /* |
| 3062 | * We're called from workq_kern_threadreq_initiate() |
| 3063 | * due to an unbind, with the kq req held. |
| 3064 | */ |
| 3065 | WQ_TRACE_WQ(TRACE_wq_thread_logical_run | DBG_FUNC_START, wq, |
| 3066 | workq_trace_req_id(req), req->tr_flags, 0); |
| 3067 | wq->wq_fulfilled++; |
| 3068 | |
| 3069 | kqueue_threadreq_bind(p, req, thread: get_machthread(uth), flags: 0); |
| 3070 | } else { |
| 3071 | if (workloop_ts) { |
| 3072 | workq_perform_turnstile_operation_locked(wq, operation: ^{ |
| 3073 | turnstile_update_inheritor(turnstile: workloop_ts, new_inheritor: wq->wq_turnstile, |
| 3074 | flags: TURNSTILE_IMMEDIATE_UPDATE | TURNSTILE_INHERITOR_TURNSTILE); |
| 3075 | turnstile_update_inheritor_complete(turnstile: workloop_ts, |
| 3076 | flags: TURNSTILE_INTERLOCK_HELD); |
| 3077 | }); |
| 3078 | } |
| 3079 | |
| 3080 | bool reevaluate_creator_thread_group = false; |
| 3081 | #if CONFIG_PREADOPT_TG |
| 3082 | reevaluate_creator_thread_group = (flags & WORKQ_THREADREQ_REEVALUATE_PREADOPT_TG); |
| 3083 | #endif |
| 3084 | /* We enqueued the highest priority item or we may need to reevaluate if |
| 3085 | * the creator needs a thread group pre-adoption */ |
| 3086 | if (workq_threadreq_enqueue(wq, req) || reevaluate_creator_thread_group) { |
| 3087 | workq_schedule_creator(p, wq, flags); |
| 3088 | } |
| 3089 | } |
| 3090 | |
| 3091 | workq_unlock(wq); |
| 3092 | |
| 3093 | return true; |
| 3094 | } |
| 3095 | |
| 3096 | void |
| 3097 | workq_kern_threadreq_modify(struct proc *p, workq_threadreq_t req, |
| 3098 | thread_qos_t qos, workq_kern_threadreq_flags_t flags) |
| 3099 | { |
| 3100 | struct workqueue *wq = proc_get_wqptr_fast(p); |
| 3101 | bool make_overcommit = false; |
| 3102 | |
| 3103 | if (req->tr_flags & WORKQ_TR_FLAG_WL_OUTSIDE_QOS) { |
| 3104 | /* Requests outside-of-QoS shouldn't accept modify operations */ |
| 3105 | return; |
| 3106 | } |
| 3107 | |
| 3108 | workq_lock_spin(wq); |
| 3109 | |
| 3110 | assert(req->tr_qos != WORKQ_THREAD_QOS_MANAGER); |
| 3111 | assert(req->tr_flags & (WORKQ_TR_FLAG_KEVENT | WORKQ_TR_FLAG_WORKLOOP)); |
| 3112 | |
| 3113 | if (req->tr_state == WORKQ_TR_STATE_BINDING) { |
| 3114 | kqueue_threadreq_bind(p, req, thread: req->tr_thread, flags: 0); |
| 3115 | workq_unlock(wq); |
| 3116 | return; |
| 3117 | } |
| 3118 | |
| 3119 | if (flags & WORKQ_THREADREQ_MAKE_OVERCOMMIT) { |
| 3120 | /* TODO (rokhinip): We come into this code path for kqwl thread |
| 3121 | * requests. kqwl requests cannot be cooperative. |
| 3122 | */ |
| 3123 | assert(!workq_threadreq_is_cooperative(req)); |
| 3124 | |
| 3125 | make_overcommit = workq_threadreq_is_nonovercommit(req); |
| 3126 | } |
| 3127 | |
| 3128 | if (_wq_exiting(wq) || (req->tr_qos == qos && !make_overcommit)) { |
| 3129 | workq_unlock(wq); |
| 3130 | return; |
| 3131 | } |
| 3132 | |
| 3133 | assert(req->tr_count == 1); |
| 3134 | if (req->tr_state != WORKQ_TR_STATE_QUEUED) { |
| 3135 | panic("Invalid thread request (%p) state %d" , req, req->tr_state); |
| 3136 | } |
| 3137 | |
| 3138 | WQ_TRACE_WQ(TRACE_wq_thread_request_modify | DBG_FUNC_NONE, wq, |
| 3139 | workq_trace_req_id(req), qos, 0); |
| 3140 | |
| 3141 | struct priority_queue_sched_max *pq = workq_priority_queue_for_req(wq, req); |
| 3142 | workq_threadreq_t req_max; |
| 3143 | |
| 3144 | /* |
| 3145 | * Stage 1: Dequeue the request from its priority queue. |
| 3146 | * |
| 3147 | * If we dequeue the root item of the constrained priority queue, |
| 3148 | * maintain the best constrained request qos invariant. |
| 3149 | */ |
| 3150 | if (priority_queue_remove(que: pq, elt: &req->tr_entry)) { |
| 3151 | if (workq_threadreq_is_nonovercommit(req)) { |
| 3152 | _wq_thactive_refresh_best_constrained_req_qos(wq); |
| 3153 | } |
| 3154 | } |
| 3155 | |
| 3156 | /* |
| 3157 | * Stage 2: Apply changes to the thread request |
| 3158 | * |
| 3159 | * If the item will not become the root of the priority queue it belongs to, |
| 3160 | * then we need to wait in line, just enqueue and return quickly. |
| 3161 | */ |
| 3162 | if (__improbable(make_overcommit)) { |
| 3163 | req->tr_flags ^= WORKQ_TR_FLAG_OVERCOMMIT; |
| 3164 | pq = workq_priority_queue_for_req(wq, req); |
| 3165 | } |
| 3166 | req->tr_qos = qos; |
| 3167 | |
| 3168 | req_max = priority_queue_max(pq, struct workq_threadreq_s, tr_entry); |
| 3169 | if (req_max && req_max->tr_qos >= qos) { |
| 3170 | priority_queue_entry_set_sched_pri(pq, &req->tr_entry, |
| 3171 | workq_priority_for_req(req), false); |
| 3172 | priority_queue_insert(que: pq, elt: &req->tr_entry); |
| 3173 | workq_unlock(wq); |
| 3174 | return; |
| 3175 | } |
| 3176 | |
| 3177 | /* |
| 3178 | * Stage 3: Reevaluate whether we should run the thread request. |
| 3179 | * |
| 3180 | * Pretend the thread request is new again: |
| 3181 | * - adjust wq_reqcount to not count it anymore. |
| 3182 | * - make its state WORKQ_TR_STATE_NEW (so that workq_threadreq_bind_and_unlock |
| 3183 | * properly attempts a synchronous bind) |
| 3184 | */ |
| 3185 | wq->wq_reqcount--; |
| 3186 | req->tr_state = WORKQ_TR_STATE_NEW; |
| 3187 | |
| 3188 | /* We enqueued the highest priority item or we may need to reevaluate if |
| 3189 | * the creator needs a thread group pre-adoption if the request got a new TG */ |
| 3190 | bool reevaluate_creator_tg = false; |
| 3191 | |
| 3192 | #if CONFIG_PREADOPT_TG |
| 3193 | reevaluate_creator_tg = (flags & WORKQ_THREADREQ_REEVALUATE_PREADOPT_TG); |
| 3194 | #endif |
| 3195 | |
| 3196 | if (workq_threadreq_enqueue(wq, req) || reevaluate_creator_tg) { |
| 3197 | workq_schedule_creator(p, wq, flags); |
| 3198 | } |
| 3199 | workq_unlock(wq); |
| 3200 | } |
| 3201 | |
| 3202 | void |
| 3203 | workq_kern_threadreq_lock(struct proc *p) |
| 3204 | { |
| 3205 | workq_lock_spin(wq: proc_get_wqptr_fast(p)); |
| 3206 | } |
| 3207 | |
| 3208 | void |
| 3209 | workq_kern_threadreq_unlock(struct proc *p) |
| 3210 | { |
| 3211 | workq_unlock(wq: proc_get_wqptr_fast(p)); |
| 3212 | } |
| 3213 | |
| 3214 | void |
| 3215 | workq_kern_threadreq_update_inheritor(struct proc *p, workq_threadreq_t req, |
| 3216 | thread_t owner, struct turnstile *wl_ts, |
| 3217 | turnstile_update_flags_t flags) |
| 3218 | { |
| 3219 | struct workqueue *wq = proc_get_wqptr_fast(p); |
| 3220 | turnstile_inheritor_t inheritor; |
| 3221 | |
| 3222 | assert(req->tr_qos != WORKQ_THREAD_QOS_MANAGER); |
| 3223 | assert(req->tr_flags & WORKQ_TR_FLAG_WORKLOOP); |
| 3224 | workq_lock_held(wq); |
| 3225 | |
| 3226 | if (req->tr_state == WORKQ_TR_STATE_BINDING) { |
| 3227 | kqueue_threadreq_bind(p, req, thread: req->tr_thread, |
| 3228 | KQUEUE_THREADERQ_BIND_NO_INHERITOR_UPDATE); |
| 3229 | return; |
| 3230 | } |
| 3231 | |
| 3232 | if (_wq_exiting(wq)) { |
| 3233 | inheritor = TURNSTILE_INHERITOR_NULL; |
| 3234 | } else { |
| 3235 | if (req->tr_state != WORKQ_TR_STATE_QUEUED) { |
| 3236 | panic("Invalid thread request (%p) state %d" , req, req->tr_state); |
| 3237 | } |
| 3238 | |
| 3239 | if (owner) { |
| 3240 | inheritor = owner; |
| 3241 | flags |= TURNSTILE_INHERITOR_THREAD; |
| 3242 | } else { |
| 3243 | inheritor = wq->wq_turnstile; |
| 3244 | flags |= TURNSTILE_INHERITOR_TURNSTILE; |
| 3245 | } |
| 3246 | } |
| 3247 | |
| 3248 | workq_perform_turnstile_operation_locked(wq, operation: ^{ |
| 3249 | turnstile_update_inheritor(turnstile: wl_ts, new_inheritor: inheritor, flags); |
| 3250 | }); |
| 3251 | } |
| 3252 | |
| 3253 | void |
| 3254 | workq_kern_threadreq_redrive(struct proc *p, workq_kern_threadreq_flags_t flags) |
| 3255 | { |
| 3256 | struct workqueue *wq = proc_get_wqptr_fast(p); |
| 3257 | |
| 3258 | workq_lock_spin(wq); |
| 3259 | workq_schedule_creator(p, wq, flags); |
| 3260 | workq_unlock(wq); |
| 3261 | } |
| 3262 | |
| 3263 | /* |
| 3264 | * Always called at AST by the thread on itself |
| 3265 | * |
| 3266 | * Upon quantum expiry, the workqueue subsystem evaluates its state and decides |
| 3267 | * on what the thread should do next. The TSD value is always set by the thread |
| 3268 | * on itself in the kernel and cleared either by userspace when it acks the TSD |
| 3269 | * value and takes action, or by the thread in the kernel when the quantum |
| 3270 | * expires again. |
| 3271 | */ |
| 3272 | void |
| 3273 | workq_kern_quantum_expiry_reevaluate(proc_t proc, thread_t thread) |
| 3274 | { |
| 3275 | struct uthread *uth = get_bsdthread_info(thread); |
| 3276 | |
| 3277 | if (uth->uu_workq_flags & UT_WORKQ_DYING) { |
| 3278 | return; |
| 3279 | } |
| 3280 | |
| 3281 | if (!thread_supports_cooperative_workqueue(thread)) { |
| 3282 | panic("Quantum expired for thread that doesn't support cooperative workqueue" ); |
| 3283 | } |
| 3284 | |
| 3285 | thread_qos_t qos = uth->uu_workq_pri.qos_bucket; |
| 3286 | if (qos == THREAD_QOS_UNSPECIFIED) { |
| 3287 | panic("Thread should not have workq bucket of QoS UN" ); |
| 3288 | } |
| 3289 | |
| 3290 | assert(thread_has_expired_workqueue_quantum(thread, false)); |
| 3291 | |
| 3292 | struct workqueue *wq = proc_get_wqptr(p: proc); |
| 3293 | assert(wq != NULL); |
| 3294 | |
| 3295 | /* |
| 3296 | * For starters, we're just going to evaluate and see if we need to narrow |
| 3297 | * the pool and tell this thread to park if needed. In the future, we'll |
| 3298 | * evaluate and convey other workqueue state information like needing to |
| 3299 | * pump kevents, etc. |
| 3300 | */ |
| 3301 | uint64_t flags = 0; |
| 3302 | |
| 3303 | workq_lock_spin(wq); |
| 3304 | |
| 3305 | if (workq_thread_is_cooperative(uth)) { |
| 3306 | if (!workq_cooperative_allowance(wq, qos, uth, false)) { |
| 3307 | flags |= PTHREAD_WQ_QUANTUM_EXPIRY_NARROW; |
| 3308 | } else { |
| 3309 | /* In the future, when we have kevent hookups for the cooperative |
| 3310 | * pool, we need fancier logic for what userspace should do. But |
| 3311 | * right now, only userspace thread requests exist - so we'll just |
| 3312 | * tell userspace to shuffle work items */ |
| 3313 | flags |= PTHREAD_WQ_QUANTUM_EXPIRY_SHUFFLE; |
| 3314 | } |
| 3315 | } else if (workq_thread_is_nonovercommit(uth)) { |
| 3316 | if (!workq_constrained_allowance(wq, at_qos: qos, uth, false)) { |
| 3317 | flags |= PTHREAD_WQ_QUANTUM_EXPIRY_NARROW; |
| 3318 | } |
| 3319 | } |
| 3320 | workq_unlock(wq); |
| 3321 | |
| 3322 | WQ_TRACE(TRACE_wq_quantum_expiry_reevaluate, flags, 0, 0, 0); |
| 3323 | |
| 3324 | kevent_set_workq_quantum_expiry_user_tsd(p: proc, t: thread, flags); |
| 3325 | |
| 3326 | /* We have conveyed to userspace about what it needs to do upon quantum |
| 3327 | * expiry, now rearm the workqueue quantum again */ |
| 3328 | thread_arm_workqueue_quantum(thread: get_machthread(uth)); |
| 3329 | } |
| 3330 | |
| 3331 | void |
| 3332 | workq_schedule_creator_turnstile_redrive(struct workqueue *wq, bool locked) |
| 3333 | { |
| 3334 | if (locked) { |
| 3335 | workq_schedule_creator(NULL, wq, flags: WORKQ_THREADREQ_NONE); |
| 3336 | } else { |
| 3337 | workq_schedule_immediate_thread_creation(wq); |
| 3338 | } |
| 3339 | } |
| 3340 | |
| 3341 | static int |
| 3342 | workq_thread_return(struct proc *p, struct workq_kernreturn_args *uap, |
| 3343 | struct workqueue *wq) |
| 3344 | { |
| 3345 | thread_t th = current_thread(); |
| 3346 | struct uthread *uth = get_bsdthread_info(th); |
| 3347 | workq_threadreq_t kqr = uth->uu_kqr_bound; |
| 3348 | workq_threadreq_param_t trp = { }; |
| 3349 | int nevents = uap->affinity, error; |
| 3350 | user_addr_t eventlist = uap->item; |
| 3351 | |
| 3352 | if (((thread_get_tag(thread: th) & THREAD_TAG_WORKQUEUE) == 0) || |
| 3353 | (uth->uu_workq_flags & UT_WORKQ_DYING)) { |
| 3354 | return EINVAL; |
| 3355 | } |
| 3356 | |
| 3357 | if (eventlist && nevents && kqr == NULL) { |
| 3358 | return EINVAL; |
| 3359 | } |
| 3360 | |
| 3361 | /* |
| 3362 | * Reset signal mask on the workqueue thread to default state, |
| 3363 | * but do not touch any signals that are marked for preservation. |
| 3364 | */ |
| 3365 | sigset_t resettable = uth->uu_sigmask & ~p->p_workq_allow_sigmask; |
| 3366 | if (resettable != (sigset_t)~workq_threadmask) { |
| 3367 | proc_lock(p); |
| 3368 | uth->uu_sigmask |= ~workq_threadmask & ~p->p_workq_allow_sigmask; |
| 3369 | proc_unlock(p); |
| 3370 | } |
| 3371 | |
| 3372 | if (kqr && kqr->tr_flags & WORKQ_TR_FLAG_WL_PARAMS) { |
| 3373 | /* |
| 3374 | * Ensure we store the threadreq param before unbinding |
| 3375 | * the kqr from this thread. |
| 3376 | */ |
| 3377 | trp = kqueue_threadreq_workloop_param(req: kqr); |
| 3378 | } |
| 3379 | |
| 3380 | /* |
| 3381 | * Freeze the base pri while we decide the fate of this thread. |
| 3382 | * |
| 3383 | * Either: |
| 3384 | * - we return to user and kevent_cleanup will have unfrozen the base pri, |
| 3385 | * - or we proceed to workq_select_threadreq_or_park_and_unlock() who will. |
| 3386 | */ |
| 3387 | thread_freeze_base_pri(thread: th); |
| 3388 | |
| 3389 | if (kqr) { |
| 3390 | uint32_t upcall_flags = WQ_FLAG_THREAD_NEWSPI | WQ_FLAG_THREAD_REUSE; |
| 3391 | if (kqr->tr_flags & WORKQ_TR_FLAG_WORKLOOP) { |
| 3392 | upcall_flags |= WQ_FLAG_THREAD_WORKLOOP | WQ_FLAG_THREAD_KEVENT; |
| 3393 | } else { |
| 3394 | upcall_flags |= WQ_FLAG_THREAD_KEVENT; |
| 3395 | } |
| 3396 | if (uth->uu_workq_pri.qos_bucket == WORKQ_THREAD_QOS_MANAGER) { |
| 3397 | upcall_flags |= WQ_FLAG_THREAD_EVENT_MANAGER; |
| 3398 | } else { |
| 3399 | if (workq_thread_is_overcommit(uth)) { |
| 3400 | upcall_flags |= WQ_FLAG_THREAD_OVERCOMMIT; |
| 3401 | } |
| 3402 | if (uth->uu_workq_flags & UT_WORKQ_OUTSIDE_QOS) { |
| 3403 | upcall_flags |= WQ_FLAG_THREAD_OUTSIDEQOS; |
| 3404 | } else { |
| 3405 | upcall_flags |= uth->uu_workq_pri.qos_req | |
| 3406 | WQ_FLAG_THREAD_PRIO_QOS; |
| 3407 | } |
| 3408 | } |
| 3409 | error = pthread_functions->workq_handle_stack_events(p, th, |
| 3410 | get_task_map(proc_task(p)), uth->uu_workq_stackaddr, |
| 3411 | uth->uu_workq_thport, eventlist, nevents, upcall_flags); |
| 3412 | if (error) { |
| 3413 | assert(uth->uu_kqr_bound == kqr); |
| 3414 | return error; |
| 3415 | } |
| 3416 | |
| 3417 | // pthread is supposed to pass KEVENT_FLAG_PARKING here |
| 3418 | // which should cause the above call to either: |
| 3419 | // - not return |
| 3420 | // - return an error |
| 3421 | // - return 0 and have unbound properly |
| 3422 | assert(uth->uu_kqr_bound == NULL); |
| 3423 | } |
| 3424 | |
| 3425 | WQ_TRACE_WQ(TRACE_wq_runthread | DBG_FUNC_END, wq, uap->options, 0, 0); |
| 3426 | |
| 3427 | thread_sched_call(thread: th, NULL); |
| 3428 | thread_will_park_or_terminate(thread: th); |
| 3429 | #if CONFIG_WORKLOOP_DEBUG |
| 3430 | UU_KEVENT_HISTORY_WRITE_ENTRY(uth, { .uu_error = -1, }); |
| 3431 | #endif |
| 3432 | |
| 3433 | workq_lock_spin(wq); |
| 3434 | WQ_TRACE_WQ(TRACE_wq_thread_logical_run | DBG_FUNC_END, wq, 0, 0, 0); |
| 3435 | uth->uu_save.uus_workq_park_data.workloop_params = trp.trp_value; |
| 3436 | workq_select_threadreq_or_park_and_unlock(p, wq, uth, |
| 3437 | WQ_SETUP_CLEAR_VOUCHER); |
| 3438 | __builtin_unreachable(); |
| 3439 | } |
| 3440 | |
| 3441 | /** |
| 3442 | * Multiplexed call to interact with the workqueue mechanism |
| 3443 | */ |
| 3444 | int |
| 3445 | workq_kernreturn(struct proc *p, struct workq_kernreturn_args *uap, int32_t *retval) |
| 3446 | { |
| 3447 | int options = uap->options; |
| 3448 | int arg2 = uap->affinity; |
| 3449 | int arg3 = uap->prio; |
| 3450 | struct workqueue *wq = proc_get_wqptr(p); |
| 3451 | int error = 0; |
| 3452 | |
| 3453 | if ((p->p_lflag & P_LREGISTER) == 0) { |
| 3454 | return EINVAL; |
| 3455 | } |
| 3456 | |
| 3457 | switch (options) { |
| 3458 | case WQOPS_QUEUE_NEWSPISUPP: { |
| 3459 | /* |
| 3460 | * arg2 = offset of serialno into dispatch queue |
| 3461 | * arg3 = kevent support |
| 3462 | */ |
| 3463 | int offset = arg2; |
| 3464 | if (arg3 & 0x01) { |
| 3465 | // If we get here, then userspace has indicated support for kevent delivery. |
| 3466 | } |
| 3467 | |
| 3468 | p->p_dispatchqueue_serialno_offset = (uint64_t)offset; |
| 3469 | break; |
| 3470 | } |
| 3471 | case WQOPS_QUEUE_REQTHREADS: { |
| 3472 | /* |
| 3473 | * arg2 = number of threads to start |
| 3474 | * arg3 = priority |
| 3475 | */ |
| 3476 | error = workq_reqthreads(p, reqcount: arg2, pp: arg3, false); |
| 3477 | break; |
| 3478 | } |
| 3479 | /* For requesting threads for the cooperative pool */ |
| 3480 | case WQOPS_QUEUE_REQTHREADS2: { |
| 3481 | /* |
| 3482 | * arg2 = number of threads to start |
| 3483 | * arg3 = priority |
| 3484 | */ |
| 3485 | error = workq_reqthreads(p, reqcount: arg2, pp: arg3, true); |
| 3486 | break; |
| 3487 | } |
| 3488 | case WQOPS_SET_EVENT_MANAGER_PRIORITY: { |
| 3489 | /* |
| 3490 | * arg2 = priority for the manager thread |
| 3491 | * |
| 3492 | * if _PTHREAD_PRIORITY_SCHED_PRI_FLAG is set, |
| 3493 | * the low bits of the value contains a scheduling priority |
| 3494 | * instead of a QOS value |
| 3495 | */ |
| 3496 | pthread_priority_t pri = arg2; |
| 3497 | |
| 3498 | if (wq == NULL) { |
| 3499 | error = EINVAL; |
| 3500 | break; |
| 3501 | } |
| 3502 | |
| 3503 | /* |
| 3504 | * Normalize the incoming priority so that it is ordered numerically. |
| 3505 | */ |
| 3506 | if (_pthread_priority_has_sched_pri(pp: pri)) { |
| 3507 | pri &= (_PTHREAD_PRIORITY_SCHED_PRI_MASK | |
| 3508 | _PTHREAD_PRIORITY_SCHED_PRI_FLAG); |
| 3509 | } else { |
| 3510 | thread_qos_t qos = _pthread_priority_thread_qos(pp: pri); |
| 3511 | int relpri = _pthread_priority_relpri(pp: pri); |
| 3512 | if (relpri > 0 || relpri < THREAD_QOS_MIN_TIER_IMPORTANCE || |
| 3513 | qos == THREAD_QOS_UNSPECIFIED) { |
| 3514 | error = EINVAL; |
| 3515 | break; |
| 3516 | } |
| 3517 | pri &= ~_PTHREAD_PRIORITY_FLAGS_MASK; |
| 3518 | } |
| 3519 | |
| 3520 | /* |
| 3521 | * If userspace passes a scheduling priority, that wins over any QoS. |
| 3522 | * Userspace should takes care not to lower the priority this way. |
| 3523 | */ |
| 3524 | workq_lock_spin(wq); |
| 3525 | if (wq->wq_event_manager_priority < (uint32_t)pri) { |
| 3526 | wq->wq_event_manager_priority = (uint32_t)pri; |
| 3527 | } |
| 3528 | workq_unlock(wq); |
| 3529 | break; |
| 3530 | } |
| 3531 | case WQOPS_THREAD_KEVENT_RETURN: |
| 3532 | case WQOPS_THREAD_WORKLOOP_RETURN: |
| 3533 | case WQOPS_THREAD_RETURN: { |
| 3534 | error = workq_thread_return(p, uap, wq); |
| 3535 | break; |
| 3536 | } |
| 3537 | |
| 3538 | case WQOPS_SHOULD_NARROW: { |
| 3539 | /* |
| 3540 | * arg2 = priority to test |
| 3541 | * arg3 = unused |
| 3542 | */ |
| 3543 | thread_t th = current_thread(); |
| 3544 | struct uthread *uth = get_bsdthread_info(th); |
| 3545 | if (((thread_get_tag(thread: th) & THREAD_TAG_WORKQUEUE) == 0) || |
| 3546 | (uth->uu_workq_flags & (UT_WORKQ_DYING | UT_WORKQ_OVERCOMMIT))) { |
| 3547 | error = EINVAL; |
| 3548 | break; |
| 3549 | } |
| 3550 | |
| 3551 | thread_qos_t qos = _pthread_priority_thread_qos(pp: arg2); |
| 3552 | if (qos == THREAD_QOS_UNSPECIFIED) { |
| 3553 | error = EINVAL; |
| 3554 | break; |
| 3555 | } |
| 3556 | workq_lock_spin(wq); |
| 3557 | bool should_narrow = !workq_constrained_allowance(wq, at_qos: qos, uth, false); |
| 3558 | workq_unlock(wq); |
| 3559 | |
| 3560 | *retval = should_narrow; |
| 3561 | break; |
| 3562 | } |
| 3563 | case WQOPS_SETUP_DISPATCH: { |
| 3564 | /* |
| 3565 | * item = pointer to workq_dispatch_config structure |
| 3566 | * arg2 = sizeof(item) |
| 3567 | */ |
| 3568 | struct workq_dispatch_config cfg; |
| 3569 | bzero(s: &cfg, n: sizeof(cfg)); |
| 3570 | |
| 3571 | error = copyin(uap->item, &cfg, MIN(sizeof(cfg), (unsigned long) arg2)); |
| 3572 | if (error) { |
| 3573 | break; |
| 3574 | } |
| 3575 | |
| 3576 | if (cfg.wdc_flags & ~WORKQ_DISPATCH_SUPPORTED_FLAGS || |
| 3577 | cfg.wdc_version < WORKQ_DISPATCH_MIN_SUPPORTED_VERSION) { |
| 3578 | error = ENOTSUP; |
| 3579 | break; |
| 3580 | } |
| 3581 | |
| 3582 | /* Load fields from version 1 */ |
| 3583 | p->p_dispatchqueue_serialno_offset = cfg.wdc_queue_serialno_offs; |
| 3584 | |
| 3585 | /* Load fields from version 2 */ |
| 3586 | if (cfg.wdc_version >= 2) { |
| 3587 | p->p_dispatchqueue_label_offset = cfg.wdc_queue_label_offs; |
| 3588 | } |
| 3589 | |
| 3590 | break; |
| 3591 | } |
| 3592 | default: |
| 3593 | error = EINVAL; |
| 3594 | break; |
| 3595 | } |
| 3596 | |
| 3597 | return error; |
| 3598 | } |
| 3599 | |
| 3600 | /* |
| 3601 | * We have no work to do, park ourselves on the idle list. |
| 3602 | * |
| 3603 | * Consumes the workqueue lock and does not return. |
| 3604 | */ |
| 3605 | __attribute__((noreturn, noinline)) |
| 3606 | static void |
| 3607 | workq_park_and_unlock(proc_t p, struct workqueue *wq, struct uthread *uth, |
| 3608 | uint32_t setup_flags) |
| 3609 | { |
| 3610 | assert(uth == current_uthread()); |
| 3611 | assert(uth->uu_kqr_bound == NULL); |
| 3612 | workq_push_idle_thread(p, wq, uth, setup_flags); // may not return |
| 3613 | |
| 3614 | workq_thread_reset_cpupercent(NULL, uth); |
| 3615 | |
| 3616 | #if CONFIG_PREADOPT_TG |
| 3617 | /* Clear the preadoption thread group on the thread. |
| 3618 | * |
| 3619 | * Case 1: |
| 3620 | * Creator thread which never picked up a thread request. We set a |
| 3621 | * preadoption thread group on creator threads but if it never picked |
| 3622 | * up a thread request and didn't go to userspace, then the thread will |
| 3623 | * park with a preadoption thread group but no explicitly adopted |
| 3624 | * voucher or work interval. |
| 3625 | * |
| 3626 | * We drop the preadoption thread group here before proceeding to park. |
| 3627 | * Note - we may get preempted when we drop the workq lock below. |
| 3628 | * |
| 3629 | * Case 2: |
| 3630 | * Thread picked up a thread request and bound to it and returned back |
| 3631 | * from userspace and is parking. At this point, preadoption thread |
| 3632 | * group should be NULL since the thread has unbound from the thread |
| 3633 | * request. So this operation should be a no-op. |
| 3634 | */ |
| 3635 | thread_set_preadopt_thread_group(t: get_machthread(uth), NULL); |
| 3636 | #endif |
| 3637 | |
| 3638 | if ((uth->uu_workq_flags & UT_WORKQ_IDLE_CLEANUP) && |
| 3639 | !(uth->uu_workq_flags & UT_WORKQ_DYING)) { |
| 3640 | workq_unlock(wq); |
| 3641 | |
| 3642 | /* |
| 3643 | * workq_push_idle_thread() will unset `has_stack` |
| 3644 | * if it wants us to free the stack before parking. |
| 3645 | */ |
| 3646 | if (!uth->uu_save.uus_workq_park_data.has_stack) { |
| 3647 | pthread_functions->workq_markfree_threadstack(p, |
| 3648 | get_machthread(uth), get_task_map(proc_task(p)), |
| 3649 | uth->uu_workq_stackaddr); |
| 3650 | } |
| 3651 | |
| 3652 | /* |
| 3653 | * When we remove the voucher from the thread, we may lose our importance |
| 3654 | * causing us to get preempted, so we do this after putting the thread on |
| 3655 | * the idle list. Then, when we get our importance back we'll be able to |
| 3656 | * use this thread from e.g. the kevent call out to deliver a boosting |
| 3657 | * message. |
| 3658 | * |
| 3659 | * Note that setting the voucher to NULL will not clear the preadoption |
| 3660 | * thread since this thread could have become the creator again and |
| 3661 | * perhaps acquired a preadoption thread group. |
| 3662 | */ |
| 3663 | __assert_only kern_return_t kr; |
| 3664 | kr = thread_set_voucher_name(MACH_PORT_NULL); |
| 3665 | assert(kr == KERN_SUCCESS); |
| 3666 | |
| 3667 | workq_lock_spin(wq); |
| 3668 | uth->uu_workq_flags &= ~UT_WORKQ_IDLE_CLEANUP; |
| 3669 | setup_flags &= ~WQ_SETUP_CLEAR_VOUCHER; |
| 3670 | } |
| 3671 | |
| 3672 | WQ_TRACE_WQ(TRACE_wq_thread_logical_run | DBG_FUNC_END, wq, 0, 0, 0); |
| 3673 | |
| 3674 | if (uth->uu_workq_flags & UT_WORKQ_RUNNING) { |
| 3675 | /* |
| 3676 | * While we'd dropped the lock to unset our voucher, someone came |
| 3677 | * around and made us runnable. But because we weren't waiting on the |
| 3678 | * event their thread_wakeup() was ineffectual. To correct for that, |
| 3679 | * we just run the continuation ourselves. |
| 3680 | */ |
| 3681 | workq_unpark_select_threadreq_or_park_and_unlock(p, wq, uth, setup_flags); |
| 3682 | __builtin_unreachable(); |
| 3683 | } |
| 3684 | |
| 3685 | if (uth->uu_workq_flags & UT_WORKQ_DYING) { |
| 3686 | workq_unpark_for_death_and_unlock(p, wq, uth, |
| 3687 | WORKQ_UNPARK_FOR_DEATH_WAS_IDLE, setup_flags); |
| 3688 | __builtin_unreachable(); |
| 3689 | } |
| 3690 | |
| 3691 | /* Disarm the workqueue quantum since the thread is now idle */ |
| 3692 | thread_disarm_workqueue_quantum(thread: get_machthread(uth)); |
| 3693 | |
| 3694 | thread_set_pending_block_hint(thread: get_machthread(uth), block_hint: kThreadWaitParkedWorkQueue); |
| 3695 | assert_wait(event: workq_parked_wait_event(uth), THREAD_INTERRUPTIBLE); |
| 3696 | workq_unlock(wq); |
| 3697 | thread_block(continuation: workq_unpark_continue); |
| 3698 | __builtin_unreachable(); |
| 3699 | } |
| 3700 | |
| 3701 | static inline bool |
| 3702 | workq_may_start_event_mgr_thread(struct workqueue *wq, struct uthread *uth) |
| 3703 | { |
| 3704 | /* |
| 3705 | * There's an event manager request and either: |
| 3706 | * - no event manager currently running |
| 3707 | * - we are re-using the event manager |
| 3708 | */ |
| 3709 | return wq->wq_thscheduled_count[_wq_bucket(WORKQ_THREAD_QOS_MANAGER)] == 0 || |
| 3710 | (uth && uth->uu_workq_pri.qos_bucket == WORKQ_THREAD_QOS_MANAGER); |
| 3711 | } |
| 3712 | |
| 3713 | static uint32_t |
| 3714 | workq_constrained_allowance(struct workqueue *wq, thread_qos_t at_qos, |
| 3715 | struct uthread *uth, bool may_start_timer) |
| 3716 | { |
| 3717 | assert(at_qos != WORKQ_THREAD_QOS_MANAGER); |
| 3718 | uint32_t count = 0; |
| 3719 | |
| 3720 | uint32_t max_count = wq->wq_constrained_threads_scheduled; |
| 3721 | if (uth && workq_thread_is_nonovercommit(uth)) { |
| 3722 | /* |
| 3723 | * don't count the current thread as scheduled |
| 3724 | */ |
| 3725 | assert(max_count > 0); |
| 3726 | max_count--; |
| 3727 | } |
| 3728 | if (max_count >= wq_max_constrained_threads) { |
| 3729 | WQ_TRACE_WQ(TRACE_wq_constrained_admission | DBG_FUNC_NONE, wq, 1, |
| 3730 | wq->wq_constrained_threads_scheduled, |
| 3731 | wq_max_constrained_threads); |
| 3732 | /* |
| 3733 | * we need 1 or more constrained threads to return to the kernel before |
| 3734 | * we can dispatch additional work |
| 3735 | */ |
| 3736 | return 0; |
| 3737 | } |
| 3738 | max_count -= wq_max_constrained_threads; |
| 3739 | |
| 3740 | /* |
| 3741 | * Compute a metric for many how many threads are active. We find the |
| 3742 | * highest priority request outstanding and then add up the number of active |
| 3743 | * threads in that and all higher-priority buckets. We'll also add any |
| 3744 | * "busy" threads which are not currently active but blocked recently enough |
| 3745 | * that we can't be sure that they won't be unblocked soon and start |
| 3746 | * being active again. |
| 3747 | * |
| 3748 | * We'll then compare this metric to our max concurrency to decide whether |
| 3749 | * to add a new thread. |
| 3750 | */ |
| 3751 | |
| 3752 | uint32_t busycount, thactive_count; |
| 3753 | |
| 3754 | thactive_count = _wq_thactive_aggregate_downto_qos(wq, v: _wq_thactive(wq), |
| 3755 | qos: at_qos, busycount: &busycount, NULL); |
| 3756 | |
| 3757 | if (uth && uth->uu_workq_pri.qos_bucket != WORKQ_THREAD_QOS_MANAGER && |
| 3758 | at_qos <= uth->uu_workq_pri.qos_bucket) { |
| 3759 | /* |
| 3760 | * Don't count this thread as currently active, but only if it's not |
| 3761 | * a manager thread, as _wq_thactive_aggregate_downto_qos ignores active |
| 3762 | * managers. |
| 3763 | */ |
| 3764 | assert(thactive_count > 0); |
| 3765 | thactive_count--; |
| 3766 | } |
| 3767 | |
| 3768 | count = wq_max_parallelism[_wq_bucket(qos: at_qos)]; |
| 3769 | if (count > thactive_count + busycount) { |
| 3770 | count -= thactive_count + busycount; |
| 3771 | WQ_TRACE_WQ(TRACE_wq_constrained_admission | DBG_FUNC_NONE, wq, 2, |
| 3772 | thactive_count, busycount); |
| 3773 | return MIN(count, max_count); |
| 3774 | } else { |
| 3775 | WQ_TRACE_WQ(TRACE_wq_constrained_admission | DBG_FUNC_NONE, wq, 3, |
| 3776 | thactive_count, busycount); |
| 3777 | } |
| 3778 | |
| 3779 | if (may_start_timer) { |
| 3780 | /* |
| 3781 | * If this is called from the add timer, we won't have another timer |
| 3782 | * fire when the thread exits the "busy" state, so rearm the timer. |
| 3783 | */ |
| 3784 | workq_schedule_delayed_thread_creation(wq, flags: 0); |
| 3785 | } |
| 3786 | |
| 3787 | return 0; |
| 3788 | } |
| 3789 | |
| 3790 | static bool |
| 3791 | workq_threadreq_admissible(struct workqueue *wq, struct uthread *uth, |
| 3792 | workq_threadreq_t req) |
| 3793 | { |
| 3794 | if (req->tr_qos == WORKQ_THREAD_QOS_MANAGER) { |
| 3795 | return workq_may_start_event_mgr_thread(wq, uth); |
| 3796 | } |
| 3797 | if (workq_threadreq_is_cooperative(req)) { |
| 3798 | return workq_cooperative_allowance(wq, qos: req->tr_qos, uth, true); |
| 3799 | } |
| 3800 | if (workq_threadreq_is_nonovercommit(req)) { |
| 3801 | return workq_constrained_allowance(wq, at_qos: req->tr_qos, uth, true); |
| 3802 | } |
| 3803 | |
| 3804 | return true; |
| 3805 | } |
| 3806 | |
| 3807 | /* |
| 3808 | * Called from the context of selecting thread requests for threads returning |
| 3809 | * from userspace or creator thread |
| 3810 | */ |
| 3811 | static workq_threadreq_t |
| 3812 | workq_cooperative_queue_best_req(struct workqueue *wq, struct uthread *uth) |
| 3813 | { |
| 3814 | workq_lock_held(wq); |
| 3815 | |
| 3816 | /* |
| 3817 | * If the current thread is cooperative, we need to exclude it as part of |
| 3818 | * cooperative schedule count since this thread is looking for a new |
| 3819 | * request. Change in the schedule count for cooperative pool therefore |
| 3820 | * requires us to reeevaluate the next best request for it. |
| 3821 | */ |
| 3822 | if (uth && workq_thread_is_cooperative(uth)) { |
| 3823 | _wq_cooperative_queue_scheduled_count_dec(wq, qos: uth->uu_workq_pri.qos_req); |
| 3824 | |
| 3825 | (void) _wq_cooperative_queue_refresh_best_req_qos(wq); |
| 3826 | |
| 3827 | _wq_cooperative_queue_scheduled_count_inc(wq, qos: uth->uu_workq_pri.qos_req); |
| 3828 | } else { |
| 3829 | /* |
| 3830 | * The old value that was already precomputed should be safe to use - |
| 3831 | * add an assert that asserts that the best req QoS doesn't change in |
| 3832 | * this case |
| 3833 | */ |
| 3834 | assert(_wq_cooperative_queue_refresh_best_req_qos(wq) == false); |
| 3835 | } |
| 3836 | |
| 3837 | thread_qos_t qos = wq->wq_cooperative_queue_best_req_qos; |
| 3838 | |
| 3839 | /* There are no eligible requests in the cooperative pool */ |
| 3840 | if (qos == THREAD_QOS_UNSPECIFIED) { |
| 3841 | return NULL; |
| 3842 | } |
| 3843 | assert(qos != WORKQ_THREAD_QOS_ABOVEUI); |
| 3844 | assert(qos != WORKQ_THREAD_QOS_MANAGER); |
| 3845 | |
| 3846 | uint8_t bucket = _wq_bucket(qos); |
| 3847 | assert(!STAILQ_EMPTY(&wq->wq_cooperative_queue[bucket])); |
| 3848 | |
| 3849 | return STAILQ_FIRST(&wq->wq_cooperative_queue[bucket]); |
| 3850 | } |
| 3851 | |
| 3852 | static workq_threadreq_t |
| 3853 | workq_threadreq_select_for_creator(struct workqueue *wq) |
| 3854 | { |
| 3855 | workq_threadreq_t req_qos, req_pri, req_tmp, req_mgr; |
| 3856 | thread_qos_t qos = THREAD_QOS_UNSPECIFIED; |
| 3857 | uint8_t pri = 0; |
| 3858 | |
| 3859 | /* |
| 3860 | * Compute the best priority request, and ignore the turnstile for now |
| 3861 | */ |
| 3862 | |
| 3863 | req_pri = priority_queue_max(&wq->wq_special_queue, |
| 3864 | struct workq_threadreq_s, tr_entry); |
| 3865 | if (req_pri) { |
| 3866 | pri = (uint8_t)priority_queue_entry_sched_pri(&wq->wq_special_queue, |
| 3867 | &req_pri->tr_entry); |
| 3868 | } |
| 3869 | |
| 3870 | /* |
| 3871 | * Handle the manager thread request. The special queue might yield |
| 3872 | * a higher priority, but the manager always beats the QoS world. |
| 3873 | */ |
| 3874 | |
| 3875 | req_mgr = wq->wq_event_manager_threadreq; |
| 3876 | if (req_mgr && workq_may_start_event_mgr_thread(wq, NULL)) { |
| 3877 | uint32_t mgr_pri = wq->wq_event_manager_priority; |
| 3878 | |
| 3879 | if (mgr_pri & _PTHREAD_PRIORITY_SCHED_PRI_FLAG) { |
| 3880 | mgr_pri &= _PTHREAD_PRIORITY_SCHED_PRI_MASK; |
| 3881 | } else { |
| 3882 | mgr_pri = thread_workq_pri_for_qos( |
| 3883 | qos: _pthread_priority_thread_qos(pp: mgr_pri)); |
| 3884 | } |
| 3885 | |
| 3886 | return mgr_pri >= pri ? req_mgr : req_pri; |
| 3887 | } |
| 3888 | |
| 3889 | /* |
| 3890 | * Compute the best QoS Request, and check whether it beats the "pri" one |
| 3891 | * |
| 3892 | * Start by comparing the overcommit and the cooperative pool |
| 3893 | */ |
| 3894 | req_qos = priority_queue_max(&wq->wq_overcommit_queue, |
| 3895 | struct workq_threadreq_s, tr_entry); |
| 3896 | if (req_qos) { |
| 3897 | qos = req_qos->tr_qos; |
| 3898 | } |
| 3899 | |
| 3900 | req_tmp = workq_cooperative_queue_best_req(wq, NULL); |
| 3901 | if (req_tmp && qos <= req_tmp->tr_qos) { |
| 3902 | /* |
| 3903 | * Cooperative TR is better between overcommit and cooperative. Note |
| 3904 | * that if qos is same between overcommit and cooperative, we choose |
| 3905 | * cooperative. |
| 3906 | * |
| 3907 | * Pick cooperative pool if it passes the admissions check |
| 3908 | */ |
| 3909 | if (workq_cooperative_allowance(wq, qos: req_tmp->tr_qos, NULL, true)) { |
| 3910 | req_qos = req_tmp; |
| 3911 | qos = req_qos->tr_qos; |
| 3912 | } |
| 3913 | } |
| 3914 | |
| 3915 | /* |
| 3916 | * Compare the best QoS so far - either from overcommit or from cooperative |
| 3917 | * pool - and compare it with the constrained pool |
| 3918 | */ |
| 3919 | req_tmp = priority_queue_max(&wq->wq_constrained_queue, |
| 3920 | struct workq_threadreq_s, tr_entry); |
| 3921 | |
| 3922 | if (req_tmp && qos < req_tmp->tr_qos) { |
| 3923 | /* |
| 3924 | * Constrained pool is best in QoS between overcommit, cooperative |
| 3925 | * and constrained. Now check how it fairs against the priority case |
| 3926 | */ |
| 3927 | if (pri && pri >= thread_workq_pri_for_qos(qos: req_tmp->tr_qos)) { |
| 3928 | return req_pri; |
| 3929 | } |
| 3930 | |
| 3931 | if (workq_constrained_allowance(wq, at_qos: req_tmp->tr_qos, NULL, true)) { |
| 3932 | /* |
| 3933 | * If the constrained thread request is the best one and passes |
| 3934 | * the admission check, pick it. |
| 3935 | */ |
| 3936 | return req_tmp; |
| 3937 | } |
| 3938 | } |
| 3939 | |
| 3940 | /* |
| 3941 | * Compare the best of the QoS world with the priority |
| 3942 | */ |
| 3943 | if (pri && (!qos || pri >= thread_workq_pri_for_qos(qos))) { |
| 3944 | return req_pri; |
| 3945 | } |
| 3946 | |
| 3947 | if (req_qos) { |
| 3948 | return req_qos; |
| 3949 | } |
| 3950 | |
| 3951 | /* |
| 3952 | * If we had no eligible request but we have a turnstile push, |
| 3953 | * it must be a non overcommit thread request that failed |
| 3954 | * the admission check. |
| 3955 | * |
| 3956 | * Just fake a BG thread request so that if the push stops the creator |
| 3957 | * priority just drops to 4. |
| 3958 | */ |
| 3959 | if (turnstile_workq_proprietor_of_max_turnstile(turnstile: wq->wq_turnstile, NULL)) { |
| 3960 | static struct workq_threadreq_s workq_sync_push_fake_req = { |
| 3961 | .tr_qos = THREAD_QOS_BACKGROUND, |
| 3962 | }; |
| 3963 | |
| 3964 | return &workq_sync_push_fake_req; |
| 3965 | } |
| 3966 | |
| 3967 | return NULL; |
| 3968 | } |
| 3969 | |
| 3970 | /* |
| 3971 | * Returns true if this caused a change in the schedule counts of the |
| 3972 | * cooperative pool |
| 3973 | */ |
| 3974 | static bool |
| 3975 | workq_adjust_cooperative_constrained_schedule_counts(struct workqueue *wq, |
| 3976 | struct uthread *uth, thread_qos_t old_thread_qos, workq_tr_flags_t tr_flags) |
| 3977 | { |
| 3978 | workq_lock_held(wq); |
| 3979 | |
| 3980 | /* |
| 3981 | * Row: thread type |
| 3982 | * Column: Request type |
| 3983 | * |
| 3984 | * overcommit non-overcommit cooperative |
| 3985 | * overcommit X case 1 case 2 |
| 3986 | * cooperative case 3 case 4 case 5 |
| 3987 | * non-overcommit case 6 X case 7 |
| 3988 | * |
| 3989 | * Move the thread to the right bucket depending on what state it currently |
| 3990 | * has and what state the thread req it picks, is going to have. |
| 3991 | * |
| 3992 | * Note that the creator thread is an overcommit thread. |
| 3993 | */ |
| 3994 | thread_qos_t new_thread_qos = uth->uu_workq_pri.qos_req; |
| 3995 | |
| 3996 | /* |
| 3997 | * Anytime a cooperative bucket's schedule count changes, we need to |
| 3998 | * potentially refresh the next best QoS for that pool when we determine |
| 3999 | * the next request for the creator |
| 4000 | */ |
| 4001 | bool cooperative_pool_sched_count_changed = false; |
| 4002 | |
| 4003 | if (workq_thread_is_overcommit(uth)) { |
| 4004 | if (workq_tr_is_nonovercommit(tr_flags)) { |
| 4005 | // Case 1: thread is overcommit, req is non-overcommit |
| 4006 | wq->wq_constrained_threads_scheduled++; |
| 4007 | } else if (workq_tr_is_cooperative(tr_flags)) { |
| 4008 | // Case 2: thread is overcommit, req is cooperative |
| 4009 | _wq_cooperative_queue_scheduled_count_inc(wq, qos: new_thread_qos); |
| 4010 | cooperative_pool_sched_count_changed = true; |
| 4011 | } |
| 4012 | } else if (workq_thread_is_cooperative(uth)) { |
| 4013 | if (workq_tr_is_overcommit(tr_flags)) { |
| 4014 | // Case 3: thread is cooperative, req is overcommit |
| 4015 | _wq_cooperative_queue_scheduled_count_dec(wq, qos: old_thread_qos); |
| 4016 | } else if (workq_tr_is_nonovercommit(tr_flags)) { |
| 4017 | // Case 4: thread is cooperative, req is non-overcommit |
| 4018 | _wq_cooperative_queue_scheduled_count_dec(wq, qos: old_thread_qos); |
| 4019 | wq->wq_constrained_threads_scheduled++; |
| 4020 | } else { |
| 4021 | // Case 5: thread is cooperative, req is also cooperative |
| 4022 | assert(workq_tr_is_cooperative(tr_flags)); |
| 4023 | _wq_cooperative_queue_scheduled_count_dec(wq, qos: old_thread_qos); |
| 4024 | _wq_cooperative_queue_scheduled_count_inc(wq, qos: new_thread_qos); |
| 4025 | } |
| 4026 | cooperative_pool_sched_count_changed = true; |
| 4027 | } else { |
| 4028 | if (workq_tr_is_overcommit(tr_flags)) { |
| 4029 | // Case 6: Thread is non-overcommit, req is overcommit |
| 4030 | wq->wq_constrained_threads_scheduled--; |
| 4031 | } else if (workq_tr_is_cooperative(tr_flags)) { |
| 4032 | // Case 7: Thread is non-overcommit, req is cooperative |
| 4033 | wq->wq_constrained_threads_scheduled--; |
| 4034 | _wq_cooperative_queue_scheduled_count_inc(wq, qos: new_thread_qos); |
| 4035 | cooperative_pool_sched_count_changed = true; |
| 4036 | } |
| 4037 | } |
| 4038 | |
| 4039 | return cooperative_pool_sched_count_changed; |
| 4040 | } |
| 4041 | |
| 4042 | static workq_threadreq_t |
| 4043 | workq_threadreq_select(struct workqueue *wq, struct uthread *uth) |
| 4044 | { |
| 4045 | workq_threadreq_t req_qos, req_pri, req_tmp, req_mgr; |
| 4046 | uintptr_t proprietor; |
| 4047 | thread_qos_t qos = THREAD_QOS_UNSPECIFIED; |
| 4048 | uint8_t pri = 0; |
| 4049 | |
| 4050 | if (uth == wq->wq_creator) { |
| 4051 | uth = NULL; |
| 4052 | } |
| 4053 | |
| 4054 | /* |
| 4055 | * Compute the best priority request (special or turnstile) |
| 4056 | */ |
| 4057 | |
| 4058 | pri = (uint8_t)turnstile_workq_proprietor_of_max_turnstile(turnstile: wq->wq_turnstile, |
| 4059 | proprietor: &proprietor); |
| 4060 | if (pri) { |
| 4061 | struct kqworkloop *kqwl = (struct kqworkloop *)proprietor; |
| 4062 | req_pri = &kqwl->kqwl_request; |
| 4063 | if (req_pri->tr_state != WORKQ_TR_STATE_QUEUED) { |
| 4064 | panic("Invalid thread request (%p) state %d" , |
| 4065 | req_pri, req_pri->tr_state); |
| 4066 | } |
| 4067 | } else { |
| 4068 | req_pri = NULL; |
| 4069 | } |
| 4070 | |
| 4071 | req_tmp = priority_queue_max(&wq->wq_special_queue, |
| 4072 | struct workq_threadreq_s, tr_entry); |
| 4073 | if (req_tmp && pri < priority_queue_entry_sched_pri(&wq->wq_special_queue, |
| 4074 | &req_tmp->tr_entry)) { |
| 4075 | req_pri = req_tmp; |
| 4076 | pri = (uint8_t)priority_queue_entry_sched_pri(&wq->wq_special_queue, |
| 4077 | &req_tmp->tr_entry); |
| 4078 | } |
| 4079 | |
| 4080 | /* |
| 4081 | * Handle the manager thread request. The special queue might yield |
| 4082 | * a higher priority, but the manager always beats the QoS world. |
| 4083 | */ |
| 4084 | |
| 4085 | req_mgr = wq->wq_event_manager_threadreq; |
| 4086 | if (req_mgr && workq_may_start_event_mgr_thread(wq, uth)) { |
| 4087 | uint32_t mgr_pri = wq->wq_event_manager_priority; |
| 4088 | |
| 4089 | if (mgr_pri & _PTHREAD_PRIORITY_SCHED_PRI_FLAG) { |
| 4090 | mgr_pri &= _PTHREAD_PRIORITY_SCHED_PRI_MASK; |
| 4091 | } else { |
| 4092 | mgr_pri = thread_workq_pri_for_qos( |
| 4093 | qos: _pthread_priority_thread_qos(pp: mgr_pri)); |
| 4094 | } |
| 4095 | |
| 4096 | return mgr_pri >= pri ? req_mgr : req_pri; |
| 4097 | } |
| 4098 | |
| 4099 | /* |
| 4100 | * Compute the best QoS Request, and check whether it beats the "pri" one |
| 4101 | */ |
| 4102 | |
| 4103 | req_qos = priority_queue_max(&wq->wq_overcommit_queue, |
| 4104 | struct workq_threadreq_s, tr_entry); |
| 4105 | if (req_qos) { |
| 4106 | qos = req_qos->tr_qos; |
| 4107 | } |
| 4108 | |
| 4109 | req_tmp = workq_cooperative_queue_best_req(wq, uth); |
| 4110 | if (req_tmp && qos <= req_tmp->tr_qos) { |
| 4111 | /* |
| 4112 | * Cooperative TR is better between overcommit and cooperative. Note |
| 4113 | * that if qos is same between overcommit and cooperative, we choose |
| 4114 | * cooperative. |
| 4115 | * |
| 4116 | * Pick cooperative pool if it passes the admissions check |
| 4117 | */ |
| 4118 | if (workq_cooperative_allowance(wq, qos: req_tmp->tr_qos, uth, true)) { |
| 4119 | req_qos = req_tmp; |
| 4120 | qos = req_qos->tr_qos; |
| 4121 | } |
| 4122 | } |
| 4123 | |
| 4124 | /* |
| 4125 | * Compare the best QoS so far - either from overcommit or from cooperative |
| 4126 | * pool - and compare it with the constrained pool |
| 4127 | */ |
| 4128 | req_tmp = priority_queue_max(&wq->wq_constrained_queue, |
| 4129 | struct workq_threadreq_s, tr_entry); |
| 4130 | |
| 4131 | if (req_tmp && qos < req_tmp->tr_qos) { |
| 4132 | /* |
| 4133 | * Constrained pool is best in QoS between overcommit, cooperative |
| 4134 | * and constrained. Now check how it fairs against the priority case |
| 4135 | */ |
| 4136 | if (pri && pri >= thread_workq_pri_for_qos(qos: req_tmp->tr_qos)) { |
| 4137 | return req_pri; |
| 4138 | } |
| 4139 | |
| 4140 | if (workq_constrained_allowance(wq, at_qos: req_tmp->tr_qos, uth, true)) { |
| 4141 | /* |
| 4142 | * If the constrained thread request is the best one and passes |
| 4143 | * the admission check, pick it. |
| 4144 | */ |
| 4145 | return req_tmp; |
| 4146 | } |
| 4147 | } |
| 4148 | |
| 4149 | if (req_pri && (!qos || pri >= thread_workq_pri_for_qos(qos))) { |
| 4150 | return req_pri; |
| 4151 | } |
| 4152 | |
| 4153 | return req_qos; |
| 4154 | } |
| 4155 | |
| 4156 | /* |
| 4157 | * The creator is an anonymous thread that is counted as scheduled, |
| 4158 | * but otherwise without its scheduler callback set or tracked as active |
| 4159 | * that is used to make other threads. |
| 4160 | * |
| 4161 | * When more requests are added or an existing one is hurried along, |
| 4162 | * a creator is elected and setup, or the existing one overridden accordingly. |
| 4163 | * |
| 4164 | * While this creator is in flight, because no request has been dequeued, |
| 4165 | * already running threads have a chance at stealing thread requests avoiding |
| 4166 | * useless context switches, and the creator once scheduled may not find any |
| 4167 | * work to do and will then just park again. |
| 4168 | * |
| 4169 | * The creator serves the dual purpose of informing the scheduler of work that |
| 4170 | * hasn't be materialized as threads yet, and also as a natural pacing mechanism |
| 4171 | * for thread creation. |
| 4172 | * |
| 4173 | * By being anonymous (and not bound to anything) it means that thread requests |
| 4174 | * can be stolen from this creator by threads already on core yielding more |
| 4175 | * efficient scheduling and reduced context switches. |
| 4176 | */ |
| 4177 | static void |
| 4178 | workq_schedule_creator(proc_t p, struct workqueue *wq, |
| 4179 | workq_kern_threadreq_flags_t flags) |
| 4180 | { |
| 4181 | workq_threadreq_t req; |
| 4182 | struct uthread *uth; |
| 4183 | bool needs_wakeup; |
| 4184 | |
| 4185 | workq_lock_held(wq); |
| 4186 | assert(p || (flags & WORKQ_THREADREQ_CAN_CREATE_THREADS) == 0); |
| 4187 | |
| 4188 | again: |
| 4189 | uth = wq->wq_creator; |
| 4190 | |
| 4191 | if (!wq->wq_reqcount) { |
| 4192 | /* |
| 4193 | * There is no thread request left. |
| 4194 | * |
| 4195 | * If there is a creator, leave everything in place, so that it cleans |
| 4196 | * up itself in workq_push_idle_thread(). |
| 4197 | * |
| 4198 | * Else, make sure the turnstile state is reset to no inheritor. |
| 4199 | */ |
| 4200 | if (uth == NULL) { |
| 4201 | workq_turnstile_update_inheritor(wq, TURNSTILE_INHERITOR_NULL, flags: 0); |
| 4202 | } |
| 4203 | return; |
| 4204 | } |
| 4205 | |
| 4206 | req = workq_threadreq_select_for_creator(wq); |
| 4207 | if (req == NULL) { |
| 4208 | /* |
| 4209 | * There isn't a thread request that passes the admission check. |
| 4210 | * |
| 4211 | * If there is a creator, do not touch anything, the creator will sort |
| 4212 | * it out when it runs. |
| 4213 | * |
| 4214 | * Else, set the inheritor to "WORKQ" so that the turnstile propagation |
| 4215 | * code calls us if anything changes. |
| 4216 | */ |
| 4217 | if (uth == NULL) { |
| 4218 | workq_turnstile_update_inheritor(wq, inheritor: wq, flags: TURNSTILE_INHERITOR_WORKQ); |
| 4219 | } |
| 4220 | return; |
| 4221 | } |
| 4222 | |
| 4223 | |
| 4224 | if (uth) { |
| 4225 | /* |
| 4226 | * We need to maybe override the creator we already have |
| 4227 | */ |
| 4228 | if (workq_thread_needs_priority_change(req, uth)) { |
| 4229 | WQ_TRACE_WQ(TRACE_wq_creator_select | DBG_FUNC_NONE, |
| 4230 | wq, 1, uthread_tid(uth), req->tr_qos); |
| 4231 | workq_thread_reset_pri(wq, uth, req, /*unpark*/ true); |
| 4232 | } |
| 4233 | assert(wq->wq_inheritor == get_machthread(uth)); |
| 4234 | } else if (wq->wq_thidlecount) { |
| 4235 | /* |
| 4236 | * We need to unpark a creator thread |
| 4237 | */ |
| 4238 | wq->wq_creator = uth = workq_pop_idle_thread(wq, UT_WORKQ_OVERCOMMIT, |
| 4239 | needs_wakeup: &needs_wakeup); |
| 4240 | /* Always reset the priorities on the newly chosen creator */ |
| 4241 | workq_thread_reset_pri(wq, uth, req, /*unpark*/ true); |
| 4242 | workq_turnstile_update_inheritor(wq, inheritor: get_machthread(uth), |
| 4243 | flags: TURNSTILE_INHERITOR_THREAD); |
| 4244 | WQ_TRACE_WQ(TRACE_wq_creator_select | DBG_FUNC_NONE, |
| 4245 | wq, 2, uthread_tid(uth), req->tr_qos); |
| 4246 | uth->uu_save.uus_workq_park_data.fulfilled_snapshot = wq->wq_fulfilled; |
| 4247 | uth->uu_save.uus_workq_park_data.yields = 0; |
| 4248 | if (needs_wakeup) { |
| 4249 | workq_thread_wakeup(uth); |
| 4250 | } |
| 4251 | } else { |
| 4252 | /* |
| 4253 | * We need to allocate a thread... |
| 4254 | */ |
| 4255 | if (__improbable(wq->wq_nthreads >= wq_max_threads)) { |
| 4256 | /* out of threads, just go away */ |
| 4257 | flags = WORKQ_THREADREQ_NONE; |
| 4258 | } else if (flags & WORKQ_THREADREQ_SET_AST_ON_FAILURE) { |
| 4259 | act_set_astkevent(thread: current_thread(), AST_KEVENT_REDRIVE_THREADREQ); |
| 4260 | } else if (!(flags & WORKQ_THREADREQ_CAN_CREATE_THREADS)) { |
| 4261 | /* This can drop the workqueue lock, and take it again */ |
| 4262 | workq_schedule_immediate_thread_creation(wq); |
| 4263 | } else if (workq_add_new_idle_thread(p, wq)) { |
| 4264 | goto again; |
| 4265 | } else { |
| 4266 | workq_schedule_delayed_thread_creation(wq, flags: 0); |
| 4267 | } |
| 4268 | |
| 4269 | /* |
| 4270 | * If the current thread is the inheritor: |
| 4271 | * |
| 4272 | * If we set the AST, then the thread will stay the inheritor until |
| 4273 | * either the AST calls workq_kern_threadreq_redrive(), or it parks |
| 4274 | * and calls workq_push_idle_thread(). |
| 4275 | * |
| 4276 | * Else, the responsibility of the thread creation is with a thread-call |
| 4277 | * and we need to clear the inheritor. |
| 4278 | */ |
| 4279 | if ((flags & WORKQ_THREADREQ_SET_AST_ON_FAILURE) == 0 && |
| 4280 | wq->wq_inheritor == current_thread()) { |
| 4281 | workq_turnstile_update_inheritor(wq, TURNSTILE_INHERITOR_NULL, flags: 0); |
| 4282 | } |
| 4283 | } |
| 4284 | } |
| 4285 | |
| 4286 | /** |
| 4287 | * Same as workq_unpark_select_threadreq_or_park_and_unlock, |
| 4288 | * but do not allow early binds. |
| 4289 | * |
| 4290 | * Called with the base pri frozen, will unfreeze it. |
| 4291 | */ |
| 4292 | __attribute__((noreturn, noinline)) |
| 4293 | static void |
| 4294 | workq_select_threadreq_or_park_and_unlock(proc_t p, struct workqueue *wq, |
| 4295 | struct uthread *uth, uint32_t setup_flags) |
| 4296 | { |
| 4297 | workq_threadreq_t req = NULL; |
| 4298 | bool is_creator = (wq->wq_creator == uth); |
| 4299 | bool schedule_creator = false; |
| 4300 | |
| 4301 | if (__improbable(_wq_exiting(wq))) { |
| 4302 | WQ_TRACE_WQ(TRACE_wq_select_threadreq | DBG_FUNC_NONE, wq, 0, 0, 0); |
| 4303 | goto park; |
| 4304 | } |
| 4305 | |
| 4306 | if (wq->wq_reqcount == 0) { |
| 4307 | WQ_TRACE_WQ(TRACE_wq_select_threadreq | DBG_FUNC_NONE, wq, 1, 0, 0); |
| 4308 | goto park; |
| 4309 | } |
| 4310 | |
| 4311 | req = workq_threadreq_select(wq, uth); |
| 4312 | if (__improbable(req == NULL)) { |
| 4313 | WQ_TRACE_WQ(TRACE_wq_select_threadreq | DBG_FUNC_NONE, wq, 2, 0, 0); |
| 4314 | goto park; |
| 4315 | } |
| 4316 | |
| 4317 | struct uu_workq_policy old_pri = uth->uu_workq_pri; |
| 4318 | uint8_t tr_flags = req->tr_flags; |
| 4319 | struct turnstile *req_ts = kqueue_threadreq_get_turnstile(kqr: req); |
| 4320 | |
| 4321 | /* |
| 4322 | * Attempt to setup ourselves as the new thing to run, moving all priority |
| 4323 | * pushes to ourselves. |
| 4324 | * |
| 4325 | * If the current thread is the creator, then the fact that we are presently |
| 4326 | * running is proof that we'll do something useful, so keep going. |
| 4327 | * |
| 4328 | * For other cases, peek at the AST to know whether the scheduler wants |
| 4329 | * to preempt us, if yes, park instead, and move the thread request |
| 4330 | * turnstile back to the workqueue. |
| 4331 | */ |
| 4332 | if (req_ts) { |
| 4333 | workq_perform_turnstile_operation_locked(wq, operation: ^{ |
| 4334 | turnstile_update_inheritor(turnstile: req_ts, new_inheritor: get_machthread(uth), |
| 4335 | flags: TURNSTILE_IMMEDIATE_UPDATE | TURNSTILE_INHERITOR_THREAD); |
| 4336 | turnstile_update_inheritor_complete(turnstile: req_ts, |
| 4337 | flags: TURNSTILE_INTERLOCK_HELD); |
| 4338 | }); |
| 4339 | } |
| 4340 | |
| 4341 | /* accounting changes of aggregate thscheduled_count and thactive which has |
| 4342 | * to be paired with the workq_thread_reset_pri below so that we have |
| 4343 | * uth->uu_workq_pri match with thactive. |
| 4344 | * |
| 4345 | * This is undone when the thread parks */ |
| 4346 | if (is_creator) { |
| 4347 | WQ_TRACE_WQ(TRACE_wq_creator_select, wq, 4, 0, |
| 4348 | uth->uu_save.uus_workq_park_data.yields); |
| 4349 | wq->wq_creator = NULL; |
| 4350 | _wq_thactive_inc(wq, qos: req->tr_qos); |
| 4351 | wq->wq_thscheduled_count[_wq_bucket(qos: req->tr_qos)]++; |
| 4352 | } else if (old_pri.qos_bucket != req->tr_qos) { |
| 4353 | _wq_thactive_move(wq, old_qos: old_pri.qos_bucket, new_qos: req->tr_qos); |
| 4354 | } |
| 4355 | workq_thread_reset_pri(wq, uth, req, /*unpark*/ true); |
| 4356 | |
| 4357 | /* |
| 4358 | * Make relevant accounting changes for pool specific counts. |
| 4359 | * |
| 4360 | * The schedule counts changing can affect what the next best request |
| 4361 | * for cooperative thread pool is if this request is dequeued. |
| 4362 | */ |
| 4363 | bool cooperative_sched_count_changed = |
| 4364 | workq_adjust_cooperative_constrained_schedule_counts(wq, uth, |
| 4365 | old_thread_qos: old_pri.qos_req, tr_flags); |
| 4366 | |
| 4367 | if (workq_tr_is_overcommit(tr_flags)) { |
| 4368 | workq_thread_set_type(uth, UT_WORKQ_OVERCOMMIT); |
| 4369 | } else if (workq_tr_is_cooperative(tr_flags)) { |
| 4370 | workq_thread_set_type(uth, UT_WORKQ_COOPERATIVE); |
| 4371 | } else { |
| 4372 | workq_thread_set_type(uth, flags: 0); |
| 4373 | } |
| 4374 | |
| 4375 | if (__improbable(thread_unfreeze_base_pri(get_machthread(uth)) && !is_creator)) { |
| 4376 | if (req_ts) { |
| 4377 | workq_perform_turnstile_operation_locked(wq, operation: ^{ |
| 4378 | turnstile_update_inheritor(turnstile: req_ts, new_inheritor: wq->wq_turnstile, |
| 4379 | flags: TURNSTILE_IMMEDIATE_UPDATE | TURNSTILE_INHERITOR_TURNSTILE); |
| 4380 | turnstile_update_inheritor_complete(turnstile: req_ts, |
| 4381 | flags: TURNSTILE_INTERLOCK_HELD); |
| 4382 | }); |
| 4383 | } |
| 4384 | WQ_TRACE_WQ(TRACE_wq_select_threadreq | DBG_FUNC_NONE, wq, 3, 0, 0); |
| 4385 | goto park_thawed; |
| 4386 | } |
| 4387 | |
| 4388 | /* |
| 4389 | * We passed all checks, dequeue the request, bind to it, and set it up |
| 4390 | * to return to user. |
| 4391 | */ |
| 4392 | WQ_TRACE_WQ(TRACE_wq_thread_logical_run | DBG_FUNC_START, wq, |
| 4393 | workq_trace_req_id(req), tr_flags, 0); |
| 4394 | wq->wq_fulfilled++; |
| 4395 | schedule_creator = workq_threadreq_dequeue(wq, req, |
| 4396 | cooperative_sched_count_changed); |
| 4397 | |
| 4398 | workq_thread_reset_cpupercent(req, uth); |
| 4399 | |
| 4400 | if (tr_flags & (WORKQ_TR_FLAG_KEVENT | WORKQ_TR_FLAG_WORKLOOP)) { |
| 4401 | kqueue_threadreq_bind_prepost(p, req, uth); |
| 4402 | req = NULL; |
| 4403 | } else if (req->tr_count > 0) { |
| 4404 | req = NULL; |
| 4405 | } |
| 4406 | |
| 4407 | if (uth->uu_workq_flags & UT_WORKQ_NEW) { |
| 4408 | uth->uu_workq_flags ^= UT_WORKQ_NEW; |
| 4409 | setup_flags |= WQ_SETUP_FIRST_USE; |
| 4410 | } |
| 4411 | |
| 4412 | /* If one of the following is true, call workq_schedule_creator (which also |
| 4413 | * adjusts priority of existing creator): |
| 4414 | * |
| 4415 | * - We are the creator currently so the wq may need a new creator |
| 4416 | * - The request we're binding to is the highest priority one, existing |
| 4417 | * creator's priority might need to be adjusted to reflect the next |
| 4418 | * highest TR |
| 4419 | */ |
| 4420 | if (is_creator || schedule_creator) { |
| 4421 | /* This can drop the workqueue lock, and take it again */ |
| 4422 | workq_schedule_creator(p, wq, flags: WORKQ_THREADREQ_CAN_CREATE_THREADS); |
| 4423 | } |
| 4424 | |
| 4425 | workq_unlock(wq); |
| 4426 | |
| 4427 | if (req) { |
| 4428 | zfree(workq_zone_threadreq, req); |
| 4429 | } |
| 4430 | |
| 4431 | /* |
| 4432 | * Run Thread, Run! |
| 4433 | */ |
| 4434 | uint32_t upcall_flags = WQ_FLAG_THREAD_NEWSPI; |
| 4435 | if (uth->uu_workq_pri.qos_bucket == WORKQ_THREAD_QOS_MANAGER) { |
| 4436 | upcall_flags |= WQ_FLAG_THREAD_EVENT_MANAGER; |
| 4437 | } else if (workq_tr_is_overcommit(tr_flags)) { |
| 4438 | upcall_flags |= WQ_FLAG_THREAD_OVERCOMMIT; |
| 4439 | } else if (workq_tr_is_cooperative(tr_flags)) { |
| 4440 | upcall_flags |= WQ_FLAG_THREAD_COOPERATIVE; |
| 4441 | } |
| 4442 | if (tr_flags & WORKQ_TR_FLAG_KEVENT) { |
| 4443 | upcall_flags |= WQ_FLAG_THREAD_KEVENT; |
| 4444 | assert((upcall_flags & WQ_FLAG_THREAD_COOPERATIVE) == 0); |
| 4445 | } |
| 4446 | |
| 4447 | if (tr_flags & WORKQ_TR_FLAG_WORKLOOP) { |
| 4448 | upcall_flags |= WQ_FLAG_THREAD_WORKLOOP | WQ_FLAG_THREAD_KEVENT; |
| 4449 | } |
| 4450 | uth->uu_save.uus_workq_park_data.upcall_flags = upcall_flags; |
| 4451 | |
| 4452 | if (tr_flags & (WORKQ_TR_FLAG_KEVENT | WORKQ_TR_FLAG_WORKLOOP)) { |
| 4453 | kqueue_threadreq_bind_commit(p, thread: get_machthread(uth)); |
| 4454 | } else { |
| 4455 | #if CONFIG_PREADOPT_TG |
| 4456 | /* |
| 4457 | * The thread may have a preadopt thread group on it already because it |
| 4458 | * got tagged with it as a creator thread. So we need to make sure to |
| 4459 | * clear that since we don't have preadoption for anonymous thread |
| 4460 | * requests |
| 4461 | */ |
| 4462 | thread_set_preadopt_thread_group(t: get_machthread(uth), NULL); |
| 4463 | #endif |
| 4464 | } |
| 4465 | |
| 4466 | workq_setup_and_run(p, uth, flags: setup_flags); |
| 4467 | __builtin_unreachable(); |
| 4468 | |
| 4469 | park: |
| 4470 | thread_unfreeze_base_pri(thread: get_machthread(uth)); |
| 4471 | park_thawed: |
| 4472 | workq_park_and_unlock(p, wq, uth, setup_flags); |
| 4473 | } |
| 4474 | |
| 4475 | /** |
| 4476 | * Runs a thread request on a thread |
| 4477 | * |
| 4478 | * - if thread is THREAD_NULL, will find a thread and run the request there. |
| 4479 | * Otherwise, the thread must be the current thread. |
| 4480 | * |
| 4481 | * - if req is NULL, will find the highest priority request and run that. If |
| 4482 | * it is not NULL, it must be a threadreq object in state NEW. If it can not |
| 4483 | * be run immediately, it will be enqueued and moved to state QUEUED. |
| 4484 | * |
| 4485 | * Either way, the thread request object serviced will be moved to state |
| 4486 | * BINDING and attached to the uthread. |
| 4487 | * |
| 4488 | * Should be called with the workqueue lock held. Will drop it. |
| 4489 | * Should be called with the base pri not frozen. |
| 4490 | */ |
| 4491 | __attribute__((noreturn, noinline)) |
| 4492 | static void |
| 4493 | workq_unpark_select_threadreq_or_park_and_unlock(proc_t p, struct workqueue *wq, |
| 4494 | struct uthread *uth, uint32_t setup_flags) |
| 4495 | { |
| 4496 | if (uth->uu_workq_flags & UT_WORKQ_EARLY_BOUND) { |
| 4497 | if (uth->uu_workq_flags & UT_WORKQ_NEW) { |
| 4498 | setup_flags |= WQ_SETUP_FIRST_USE; |
| 4499 | } |
| 4500 | uth->uu_workq_flags &= ~(UT_WORKQ_NEW | UT_WORKQ_EARLY_BOUND); |
| 4501 | /* |
| 4502 | * This pointer is possibly freed and only used for tracing purposes. |
| 4503 | */ |
| 4504 | workq_threadreq_t req = uth->uu_save.uus_workq_park_data.thread_request; |
| 4505 | workq_unlock(wq); |
| 4506 | WQ_TRACE_WQ(TRACE_wq_thread_logical_run | DBG_FUNC_START, wq, |
| 4507 | VM_KERNEL_ADDRHIDE(req), 0, 0); |
| 4508 | (void)req; |
| 4509 | |
| 4510 | workq_setup_and_run(p, uth, flags: setup_flags); |
| 4511 | __builtin_unreachable(); |
| 4512 | } |
| 4513 | |
| 4514 | thread_freeze_base_pri(thread: get_machthread(uth)); |
| 4515 | workq_select_threadreq_or_park_and_unlock(p, wq, uth, setup_flags); |
| 4516 | } |
| 4517 | |
| 4518 | static bool |
| 4519 | workq_creator_should_yield(struct workqueue *wq, struct uthread *uth) |
| 4520 | { |
| 4521 | thread_qos_t qos = workq_pri_override(req: uth->uu_workq_pri); |
| 4522 | |
| 4523 | if (qos >= THREAD_QOS_USER_INTERACTIVE) { |
| 4524 | return false; |
| 4525 | } |
| 4526 | |
| 4527 | uint32_t snapshot = uth->uu_save.uus_workq_park_data.fulfilled_snapshot; |
| 4528 | if (wq->wq_fulfilled == snapshot) { |
| 4529 | return false; |
| 4530 | } |
| 4531 | |
| 4532 | uint32_t cnt = 0, conc = wq_max_parallelism[_wq_bucket(qos)]; |
| 4533 | if (wq->wq_fulfilled - snapshot > conc) { |
| 4534 | /* we fulfilled more than NCPU requests since being dispatched */ |
| 4535 | WQ_TRACE_WQ(TRACE_wq_creator_yield, wq, 1, |
| 4536 | wq->wq_fulfilled, snapshot); |
| 4537 | return true; |
| 4538 | } |
| 4539 | |
| 4540 | for (uint8_t i = _wq_bucket(qos); i < WORKQ_NUM_QOS_BUCKETS; i++) { |
| 4541 | cnt += wq->wq_thscheduled_count[i]; |
| 4542 | } |
| 4543 | if (conc <= cnt) { |
| 4544 | /* We fulfilled requests and have more than NCPU scheduled threads */ |
| 4545 | WQ_TRACE_WQ(TRACE_wq_creator_yield, wq, 2, |
| 4546 | wq->wq_fulfilled, snapshot); |
| 4547 | return true; |
| 4548 | } |
| 4549 | |
| 4550 | return false; |
| 4551 | } |
| 4552 | |
| 4553 | /** |
| 4554 | * parked thread wakes up |
| 4555 | */ |
| 4556 | __attribute__((noreturn, noinline)) |
| 4557 | static void |
| 4558 | workq_unpark_continue(void *parameter __unused, wait_result_t wr __unused) |
| 4559 | { |
| 4560 | thread_t th = current_thread(); |
| 4561 | struct uthread *uth = get_bsdthread_info(th); |
| 4562 | proc_t p = current_proc(); |
| 4563 | struct workqueue *wq = proc_get_wqptr_fast(p); |
| 4564 | |
| 4565 | workq_lock_spin(wq); |
| 4566 | |
| 4567 | if (wq->wq_creator == uth && workq_creator_should_yield(wq, uth)) { |
| 4568 | /* |
| 4569 | * If the number of threads we have out are able to keep up with the |
| 4570 | * demand, then we should avoid sending this creator thread to |
| 4571 | * userspace. |
| 4572 | */ |
| 4573 | uth->uu_save.uus_workq_park_data.fulfilled_snapshot = wq->wq_fulfilled; |
| 4574 | uth->uu_save.uus_workq_park_data.yields++; |
| 4575 | workq_unlock(wq); |
| 4576 | thread_yield_with_continuation(continuation: workq_unpark_continue, NULL); |
| 4577 | __builtin_unreachable(); |
| 4578 | } |
| 4579 | |
| 4580 | if (__probable(uth->uu_workq_flags & UT_WORKQ_RUNNING)) { |
| 4581 | workq_unpark_select_threadreq_or_park_and_unlock(p, wq, uth, WQ_SETUP_NONE); |
| 4582 | __builtin_unreachable(); |
| 4583 | } |
| 4584 | |
| 4585 | if (__probable(wr == THREAD_AWAKENED)) { |
| 4586 | /* |
| 4587 | * We were set running, but for the purposes of dying. |
| 4588 | */ |
| 4589 | assert(uth->uu_workq_flags & UT_WORKQ_DYING); |
| 4590 | assert((uth->uu_workq_flags & UT_WORKQ_NEW) == 0); |
| 4591 | } else { |
| 4592 | /* |
| 4593 | * workaround for <rdar://problem/38647347>, |
| 4594 | * in case we do hit userspace, make sure calling |
| 4595 | * workq_thread_terminate() does the right thing here, |
| 4596 | * and if we never call it, that workq_exit() will too because it sees |
| 4597 | * this thread on the runlist. |
| 4598 | */ |
| 4599 | assert(wr == THREAD_INTERRUPTED); |
| 4600 | wq->wq_thdying_count++; |
| 4601 | uth->uu_workq_flags |= UT_WORKQ_DYING; |
| 4602 | } |
| 4603 | |
| 4604 | workq_unpark_for_death_and_unlock(p, wq, uth, |
| 4605 | WORKQ_UNPARK_FOR_DEATH_WAS_IDLE, WQ_SETUP_NONE); |
| 4606 | __builtin_unreachable(); |
| 4607 | } |
| 4608 | |
| 4609 | __attribute__((noreturn, noinline)) |
| 4610 | static void |
| 4611 | workq_setup_and_run(proc_t p, struct uthread *uth, int setup_flags) |
| 4612 | { |
| 4613 | thread_t th = get_machthread(uth); |
| 4614 | vm_map_t vmap = get_task_map(proc_task(p)); |
| 4615 | |
| 4616 | if (setup_flags & WQ_SETUP_CLEAR_VOUCHER) { |
| 4617 | /* |
| 4618 | * For preemption reasons, we want to reset the voucher as late as |
| 4619 | * possible, so we do it in two places: |
| 4620 | * - Just before parking (i.e. in workq_park_and_unlock()) |
| 4621 | * - Prior to doing the setup for the next workitem (i.e. here) |
| 4622 | * |
| 4623 | * Those two places are sufficient to ensure we always reset it before |
| 4624 | * it goes back out to user space, but be careful to not break that |
| 4625 | * guarantee. |
| 4626 | * |
| 4627 | * Note that setting the voucher to NULL will not clear the preadoption |
| 4628 | * thread group on this thread |
| 4629 | */ |
| 4630 | __assert_only kern_return_t kr; |
| 4631 | kr = thread_set_voucher_name(MACH_PORT_NULL); |
| 4632 | assert(kr == KERN_SUCCESS); |
| 4633 | } |
| 4634 | |
| 4635 | uint32_t upcall_flags = uth->uu_save.uus_workq_park_data.upcall_flags; |
| 4636 | if (!(setup_flags & WQ_SETUP_FIRST_USE)) { |
| 4637 | upcall_flags |= WQ_FLAG_THREAD_REUSE; |
| 4638 | } |
| 4639 | |
| 4640 | if (uth->uu_workq_flags & UT_WORKQ_OUTSIDE_QOS) { |
| 4641 | /* |
| 4642 | * For threads that have an outside-of-QoS thread priority, indicate |
| 4643 | * to userspace that setting QoS should only affect the TSD and not |
| 4644 | * change QOS in the kernel. |
| 4645 | */ |
| 4646 | upcall_flags |= WQ_FLAG_THREAD_OUTSIDEQOS; |
| 4647 | } else { |
| 4648 | /* |
| 4649 | * Put the QoS class value into the lower bits of the reuse_thread |
| 4650 | * register, this is where the thread priority used to be stored |
| 4651 | * anyway. |
| 4652 | */ |
| 4653 | upcall_flags |= uth->uu_save.uus_workq_park_data.qos | |
| 4654 | WQ_FLAG_THREAD_PRIO_QOS; |
| 4655 | } |
| 4656 | |
| 4657 | if (uth->uu_workq_thport == MACH_PORT_NULL) { |
| 4658 | /* convert_thread_to_port_pinned() consumes a reference */ |
| 4659 | thread_reference(thread: th); |
| 4660 | /* Convert to immovable/pinned thread port, but port is not pinned yet */ |
| 4661 | ipc_port_t port = convert_thread_to_port_pinned(th); |
| 4662 | /* Atomically, pin and copy out the port */ |
| 4663 | uth->uu_workq_thport = ipc_port_copyout_send_pinned(sright: port, space: get_task_ipcspace(t: proc_task(p))); |
| 4664 | } |
| 4665 | |
| 4666 | /* Thread has been set up to run, arm its next workqueue quantum or disarm |
| 4667 | * if it is no longer supporting that */ |
| 4668 | if (thread_supports_cooperative_workqueue(thread: th)) { |
| 4669 | thread_arm_workqueue_quantum(thread: th); |
| 4670 | } else { |
| 4671 | thread_disarm_workqueue_quantum(thread: th); |
| 4672 | } |
| 4673 | |
| 4674 | /* |
| 4675 | * Call out to pthread, this sets up the thread, pulls in kevent structs |
| 4676 | * onto the stack, sets up the thread state and then returns to userspace. |
| 4677 | */ |
| 4678 | WQ_TRACE_WQ(TRACE_wq_runthread | DBG_FUNC_START, |
| 4679 | proc_get_wqptr_fast(p), 0, 0, 0); |
| 4680 | |
| 4681 | if (workq_thread_is_cooperative(uth)) { |
| 4682 | thread_sched_call(thread: th, NULL); |
| 4683 | } else { |
| 4684 | thread_sched_call(thread: th, call: workq_sched_callback); |
| 4685 | } |
| 4686 | |
| 4687 | pthread_functions->workq_setup_thread(p, th, vmap, uth->uu_workq_stackaddr, |
| 4688 | uth->uu_workq_thport, 0, setup_flags, upcall_flags); |
| 4689 | |
| 4690 | __builtin_unreachable(); |
| 4691 | } |
| 4692 | |
| 4693 | #pragma mark misc |
| 4694 | |
| 4695 | int |
| 4696 | fill_procworkqueue(proc_t p, struct proc_workqueueinfo * pwqinfo) |
| 4697 | { |
| 4698 | struct workqueue *wq = proc_get_wqptr(p); |
| 4699 | int error = 0; |
| 4700 | int activecount; |
| 4701 | |
| 4702 | if (wq == NULL) { |
| 4703 | return EINVAL; |
| 4704 | } |
| 4705 | |
| 4706 | /* |
| 4707 | * This is sometimes called from interrupt context by the kperf sampler. |
| 4708 | * In that case, it's not safe to spin trying to take the lock since we |
| 4709 | * might already hold it. So, we just try-lock it and error out if it's |
| 4710 | * already held. Since this is just a debugging aid, and all our callers |
| 4711 | * are able to handle an error, that's fine. |
| 4712 | */ |
| 4713 | bool locked = workq_lock_try(wq); |
| 4714 | if (!locked) { |
| 4715 | return EBUSY; |
| 4716 | } |
| 4717 | |
| 4718 | wq_thactive_t act = _wq_thactive(wq); |
| 4719 | activecount = _wq_thactive_aggregate_downto_qos(wq, v: act, |
| 4720 | WORKQ_THREAD_QOS_MIN, NULL, NULL); |
| 4721 | if (act & _wq_thactive_offset_for_qos(WORKQ_THREAD_QOS_MANAGER)) { |
| 4722 | activecount++; |
| 4723 | } |
| 4724 | pwqinfo->pwq_nthreads = wq->wq_nthreads; |
| 4725 | pwqinfo->pwq_runthreads = activecount; |
| 4726 | pwqinfo->pwq_blockedthreads = wq->wq_threads_scheduled - activecount; |
| 4727 | pwqinfo->pwq_state = 0; |
| 4728 | |
| 4729 | if (wq->wq_constrained_threads_scheduled >= wq_max_constrained_threads) { |
| 4730 | pwqinfo->pwq_state |= WQ_EXCEEDED_CONSTRAINED_THREAD_LIMIT; |
| 4731 | } |
| 4732 | |
| 4733 | if (wq->wq_nthreads >= wq_max_threads) { |
| 4734 | pwqinfo->pwq_state |= WQ_EXCEEDED_TOTAL_THREAD_LIMIT; |
| 4735 | } |
| 4736 | |
| 4737 | workq_unlock(wq); |
| 4738 | return error; |
| 4739 | } |
| 4740 | |
| 4741 | boolean_t |
| 4742 | workqueue_get_pwq_exceeded(void *v, boolean_t *exceeded_total, |
| 4743 | boolean_t *exceeded_constrained) |
| 4744 | { |
| 4745 | proc_t p = v; |
| 4746 | struct proc_workqueueinfo pwqinfo; |
| 4747 | int err; |
| 4748 | |
| 4749 | assert(p != NULL); |
| 4750 | assert(exceeded_total != NULL); |
| 4751 | assert(exceeded_constrained != NULL); |
| 4752 | |
| 4753 | err = fill_procworkqueue(p, pwqinfo: &pwqinfo); |
| 4754 | if (err) { |
| 4755 | return FALSE; |
| 4756 | } |
| 4757 | if (!(pwqinfo.pwq_state & WQ_FLAGS_AVAILABLE)) { |
| 4758 | return FALSE; |
| 4759 | } |
| 4760 | |
| 4761 | *exceeded_total = (pwqinfo.pwq_state & WQ_EXCEEDED_TOTAL_THREAD_LIMIT); |
| 4762 | *exceeded_constrained = (pwqinfo.pwq_state & WQ_EXCEEDED_CONSTRAINED_THREAD_LIMIT); |
| 4763 | |
| 4764 | return TRUE; |
| 4765 | } |
| 4766 | |
| 4767 | uint32_t |
| 4768 | workqueue_get_pwq_state_kdp(void * v) |
| 4769 | { |
| 4770 | static_assert((WQ_EXCEEDED_CONSTRAINED_THREAD_LIMIT << 17) == |
| 4771 | kTaskWqExceededConstrainedThreadLimit); |
| 4772 | static_assert((WQ_EXCEEDED_TOTAL_THREAD_LIMIT << 17) == |
| 4773 | kTaskWqExceededTotalThreadLimit); |
| 4774 | static_assert((WQ_FLAGS_AVAILABLE << 17) == kTaskWqFlagsAvailable); |
| 4775 | static_assert((WQ_FLAGS_AVAILABLE | WQ_EXCEEDED_TOTAL_THREAD_LIMIT | |
| 4776 | WQ_EXCEEDED_CONSTRAINED_THREAD_LIMIT) == 0x7); |
| 4777 | |
| 4778 | if (v == NULL) { |
| 4779 | return 0; |
| 4780 | } |
| 4781 | |
| 4782 | proc_t p = v; |
| 4783 | struct workqueue *wq = proc_get_wqptr(p); |
| 4784 | |
| 4785 | if (wq == NULL || workq_lock_is_acquired_kdp(wq)) { |
| 4786 | return 0; |
| 4787 | } |
| 4788 | |
| 4789 | uint32_t pwq_state = WQ_FLAGS_AVAILABLE; |
| 4790 | |
| 4791 | if (wq->wq_constrained_threads_scheduled >= wq_max_constrained_threads) { |
| 4792 | pwq_state |= WQ_EXCEEDED_CONSTRAINED_THREAD_LIMIT; |
| 4793 | } |
| 4794 | |
| 4795 | if (wq->wq_nthreads >= wq_max_threads) { |
| 4796 | pwq_state |= WQ_EXCEEDED_TOTAL_THREAD_LIMIT; |
| 4797 | } |
| 4798 | |
| 4799 | return pwq_state; |
| 4800 | } |
| 4801 | |
| 4802 | void |
| 4803 | workq_init(void) |
| 4804 | { |
| 4805 | clock_interval_to_absolutetime_interval(interval: wq_stalled_window.usecs, |
| 4806 | NSEC_PER_USEC, result: &wq_stalled_window.abstime); |
| 4807 | clock_interval_to_absolutetime_interval(interval: wq_reduce_pool_window.usecs, |
| 4808 | NSEC_PER_USEC, result: &wq_reduce_pool_window.abstime); |
| 4809 | clock_interval_to_absolutetime_interval(interval: wq_max_timer_interval.usecs, |
| 4810 | NSEC_PER_USEC, result: &wq_max_timer_interval.abstime); |
| 4811 | |
| 4812 | thread_deallocate_daemon_register_queue(dq: &workq_deallocate_queue, |
| 4813 | invoke: workq_deallocate_queue_invoke); |
| 4814 | } |
| 4815 | |