| 1 | /* |
| 2 | * Copyright (c) 2015 Apple Inc. All rights reserved. |
| 3 | * |
| 4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ |
| 5 | * |
| 6 | * This file contains Original Code and/or Modifications of Original Code |
| 7 | * as defined in and that are subject to the Apple Public Source License |
| 8 | * Version 2.0 (the 'License'). You may not use this file except in |
| 9 | * compliance with the License. The rights granted to you under the License |
| 10 | * may not be used to create, or enable the creation or redistribution of, |
| 11 | * unlawful or unlicensed copies of an Apple operating system, or to |
| 12 | * circumvent, violate, or enable the circumvention or violation of, any |
| 13 | * terms of an Apple operating system software license agreement. |
| 14 | * |
| 15 | * Please obtain a copy of the License at |
| 16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. |
| 17 | * |
| 18 | * The Original Code and all software distributed under the License are |
| 19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER |
| 20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
| 21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, |
| 22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
| 23 | * Please see the License for the specific language governing rights and |
| 24 | * limitations under the License. |
| 25 | * |
| 26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ |
| 27 | */ |
| 28 | |
| 29 | /* |
| 30 | * Copyright (c) 1999 Kungliga Tekniska Högskolan |
| 31 | * (Royal Institute of Technology, Stockholm, Sweden). |
| 32 | * All rights reserved. |
| 33 | * |
| 34 | * Redistribution and use in source and binary forms, with or without |
| 35 | * modification, are permitted provided that the following conditions |
| 36 | * are met: |
| 37 | * |
| 38 | * 1. Redistributions of source code must retain the above copyright |
| 39 | * notice, this list of conditions and the following disclaimer. |
| 40 | * |
| 41 | * 2. Redistributions in binary form must reproduce the above copyright |
| 42 | * notice, this list of conditions and the following disclaimer in the |
| 43 | * documentation and/or other materials provided with the distribution. |
| 44 | * |
| 45 | * 3. Neither the name of KTH nor the names of its contributors may be |
| 46 | * used to endorse or promote products derived from this software without |
| 47 | * specific prior written permission. |
| 48 | * |
| 49 | * THIS SOFTWARE IS PROVIDED BY KTH AND ITS CONTRIBUTORS ``AS IS'' AND ANY |
| 50 | * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 51 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| 52 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL KTH OR ITS CONTRIBUTORS BE |
| 53 | * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| 54 | * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| 55 | * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR |
| 56 | * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, |
| 57 | * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR |
| 58 | * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF |
| 59 | * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| 60 | */ |
| 61 | |
| 62 | #include <stdint.h> |
| 63 | #include <sys/param.h> |
| 64 | #include <sys/systm.h> |
| 65 | #include <sys/kernel.h> |
| 66 | #include <sys/malloc.h> |
| 67 | #include <sys/kpi_mbuf.h> |
| 68 | #include <sys/random.h> |
| 69 | #include <mach_assert.h> |
| 70 | #include <kern/assert.h> |
| 71 | #include <libkern/OSAtomic.h> |
| 72 | #include <IOKit/IOLib.h> |
| 73 | #include "gss_krb5_mech.h" |
| 74 | |
| 75 | LCK_GRP_DECLARE(gss_krb5_mech_grp, "gss_krb5_mech" ); |
| 76 | |
| 77 | typedef struct crypt_walker_ctx { |
| 78 | size_t length; |
| 79 | const struct ccmode_cbc *ccmode; |
| 80 | cccbc_ctx *crypt_ctx; |
| 81 | cccbc_iv *iv; |
| 82 | } *crypt_walker_ctx_t; |
| 83 | |
| 84 | typedef struct hmac_walker_ctx { |
| 85 | const struct ccdigest_info *di; |
| 86 | struct cchmac_ctx *hmac_ctx; |
| 87 | } *hmac_walker_ctx_t; |
| 88 | |
| 89 | typedef size_t (*ccpad_func)(const struct ccmode_cbc *, cccbc_ctx *, cccbc_iv *, |
| 90 | size_t nbytes, const void *, void *); |
| 91 | |
| 92 | static int krb5_n_fold(const void *instr, size_t len, void *foldstr, size_t size); |
| 93 | |
| 94 | size_t gss_mbuf_len(mbuf_t, size_t); |
| 95 | errno_t gss_prepend_mbuf(mbuf_t *, uint8_t *, size_t); |
| 96 | errno_t gss_append_mbuf(mbuf_t, uint8_t *, size_t); |
| 97 | errno_t gss_strip_mbuf(mbuf_t, int); |
| 98 | int mbuf_walk(mbuf_t, size_t, size_t, size_t, int (*)(void *, uint8_t *, size_t), void *); |
| 99 | |
| 100 | void do_crypt_init(crypt_walker_ctx_t, int, crypto_ctx_t, cccbc_ctx *); |
| 101 | int do_crypt(void *, uint8_t *, size_t); |
| 102 | void do_hmac_init(hmac_walker_ctx_t, crypto_ctx_t, void *); |
| 103 | int do_hmac(void *, uint8_t *, size_t); |
| 104 | void do_hmac_destroy(hmac_walker_ctx_t, crypto_ctx_t); |
| 105 | |
| 106 | void krb5_make_usage(uint32_t, uint8_t, uint8_t[KRB5_USAGE_LEN]); |
| 107 | void krb5_key_derivation(crypto_ctx_t, const void *, size_t, krb5_key_t *, size_t); |
| 108 | void cc_key_schedule_create(crypto_ctx_t); |
| 109 | void gss_crypto_ctx_free(crypto_ctx_t); |
| 110 | int gss_crypto_ctx_init(struct crypto_ctx *, lucid_context_t); |
| 111 | |
| 112 | errno_t krb5_crypt_mbuf(crypto_ctx_t, mbuf_t *, size_t, int, cccbc_ctx *); |
| 113 | int krb5_mic(crypto_ctx_t, gss_buffer_t, gss_buffer_t, gss_buffer_t, uint8_t *, int *, int, int); |
| 114 | int krb5_mic_mbuf(crypto_ctx_t, gss_buffer_t, mbuf_t, size_t, size_t, gss_buffer_t, uint8_t *, int *, int, int); |
| 115 | |
| 116 | uint32_t gss_krb5_cfx_get_mic(uint32_t *, gss_ctx_id_t, gss_qop_t, gss_buffer_t, gss_buffer_t); |
| 117 | uint32_t gss_krb5_cfx_get_mic_mbuf(uint32_t *, gss_ctx_id_t, gss_qop_t, mbuf_t, size_t, size_t, gss_buffer_t); |
| 118 | uint32_t gss_krb5_cfx_verify_mic_mbuf(uint32_t *, gss_ctx_id_t, mbuf_t, size_t, size_t, gss_buffer_t, gss_qop_t *); |
| 119 | errno_t krb5_cfx_crypt_mbuf(crypto_ctx_t, mbuf_t *, size_t *, int, int); |
| 120 | uint32_t gss_krb5_cfx_wrap_mbuf(uint32_t *, gss_ctx_id_t, int, gss_qop_t, mbuf_t *, size_t, int *); |
| 121 | uint32_t gss_krb5_cfx_unwrap_mbuf(uint32_t *, gss_ctx_id_t, mbuf_t *, size_t, int *, gss_qop_t *); |
| 122 | |
| 123 | int gss_krb5_mech_is_initialized(void); |
| 124 | void gss_krb5_mech_init(void); |
| 125 | |
| 126 | /* Debugging routines */ |
| 127 | void |
| 128 | printmbuf(const char *str, mbuf_t mb, uint32_t offset, uint32_t len) |
| 129 | { |
| 130 | size_t i; |
| 131 | int cout = 1; |
| 132 | |
| 133 | len = len ? len : ~0; |
| 134 | printf("%s mbuf = %p offset = %d len = %d:\n" , str ? str : "mbuf" , mb, offset, len); |
| 135 | for (; mb && len; mb = mbuf_next(mbuf: mb)) { |
| 136 | if (offset >= mbuf_len(mbuf: mb)) { |
| 137 | offset -= mbuf_len(mbuf: mb); |
| 138 | continue; |
| 139 | } |
| 140 | for (i = offset; len && i < mbuf_len(mbuf: mb); i++) { |
| 141 | const char *s = (cout % 8) ? " " : (cout % 16) ? " " : "\n" ; |
| 142 | printf("%02x%s" , ((uint8_t *)mbuf_data(mbuf: mb))[i], s); |
| 143 | len--; |
| 144 | cout++; |
| 145 | } |
| 146 | offset = 0; |
| 147 | } |
| 148 | if ((cout - 1) % 16) { |
| 149 | printf("\n" ); |
| 150 | } |
| 151 | printf("Count chars %d\n" , cout - 1); |
| 152 | } |
| 153 | |
| 154 | void |
| 155 | printgbuf(const char *str, gss_buffer_t buf) |
| 156 | { |
| 157 | size_t i; |
| 158 | size_t len = buf->length > 128 ? 128 : buf->length; |
| 159 | |
| 160 | printf("%s: len = %d value = %p\n" , str ? str : "buffer" , (int)buf->length, buf->value); |
| 161 | for (i = 0; i < len; i++) { |
| 162 | const char *s = ((i + 1) % 8) ? " " : ((i + 1) % 16) ? " " : "\n" ; |
| 163 | printf("%02x%s" , ((uint8_t *)buf->value)[i], s); |
| 164 | } |
| 165 | if (i % 16) { |
| 166 | printf("\n" ); |
| 167 | } |
| 168 | } |
| 169 | |
| 170 | /* |
| 171 | * Initialize the data structures for the gss kerberos mech. |
| 172 | */ |
| 173 | #define GSS_KRB5_NOT_INITIALIZED 0 |
| 174 | #define GSS_KRB5_INITIALIZING 1 |
| 175 | #define GSS_KRB5_INITIALIZED 2 |
| 176 | static volatile uint32_t gss_krb5_mech_initted = GSS_KRB5_NOT_INITIALIZED; |
| 177 | |
| 178 | int |
| 179 | gss_krb5_mech_is_initialized(void) |
| 180 | { |
| 181 | return gss_krb5_mech_initted == GSS_KRB5_NOT_INITIALIZED; |
| 182 | } |
| 183 | |
| 184 | static void |
| 185 | gss_krb5_key_set(krb5_key_t *krb_key, void *key, size_t len) |
| 186 | { |
| 187 | krb_key->key_val = key; |
| 188 | krb_key->key_len = len; |
| 189 | } |
| 190 | |
| 191 | static void |
| 192 | gss_krb5_key_free(krb5_key_t *krb_key, int free) |
| 193 | { |
| 194 | if (free) { |
| 195 | cc_clear(len: krb_key->key_len, dst: krb_key->key_val); |
| 196 | kfree_data(krb_key->key_val, krb_key->key_len); |
| 197 | } |
| 198 | memset(s: krb_key, c: 0, n: sizeof(krb5_key_t)); |
| 199 | } |
| 200 | |
| 201 | static void |
| 202 | gss_krb5_key_ctx_free(krb5_key_t *krb_key, void *ctx_key) |
| 203 | { |
| 204 | gss_krb5_key_free(krb_key, free: krb_key->key_val && ctx_key != krb_key->key_val); |
| 205 | } |
| 206 | |
| 207 | void |
| 208 | gss_krb5_mech_init(void) |
| 209 | { |
| 210 | /* Once initted always initted */ |
| 211 | if (gss_krb5_mech_initted == GSS_KRB5_INITIALIZED) { |
| 212 | return; |
| 213 | } |
| 214 | |
| 215 | /* make sure we init only once */ |
| 216 | if (!OSCompareAndSwap(GSS_KRB5_NOT_INITIALIZED, GSS_KRB5_INITIALIZING, &gss_krb5_mech_initted)) { |
| 217 | /* wait until initialization is complete */ |
| 218 | while (!gss_krb5_mech_is_initialized()) { |
| 219 | IOSleep(milliseconds: 10); |
| 220 | } |
| 221 | return; |
| 222 | } |
| 223 | gss_krb5_mech_initted = GSS_KRB5_INITIALIZED; |
| 224 | } |
| 225 | |
| 226 | uint32_t |
| 227 | gss_release_buffer(uint32_t *minor, gss_buffer_t buf) |
| 228 | { |
| 229 | if (minor) { |
| 230 | *minor = 0; |
| 231 | } |
| 232 | if (buf->value) { |
| 233 | kfree_data(buf->value, buf->length); |
| 234 | } |
| 235 | buf->value = NULL; |
| 236 | buf->length = 0; |
| 237 | return GSS_S_COMPLETE; |
| 238 | } |
| 239 | |
| 240 | /* |
| 241 | * GSS mbuf routines |
| 242 | */ |
| 243 | |
| 244 | size_t |
| 245 | gss_mbuf_len(mbuf_t mb, size_t offset) |
| 246 | { |
| 247 | size_t len; |
| 248 | |
| 249 | for (len = 0; mb; mb = mbuf_next(mbuf: mb)) { |
| 250 | len += mbuf_len(mbuf: mb); |
| 251 | } |
| 252 | return (offset > len) ? 0 : len - offset; |
| 253 | } |
| 254 | |
| 255 | /* |
| 256 | * Split an mbuf in a chain into two mbufs such that the original mbuf |
| 257 | * points to the original mbuf and the new mbuf points to the rest of the |
| 258 | * chain. The first mbuf length is the first len bytes and the second |
| 259 | * mbuf contains the remaining bytes. if len is zero or equals |
| 260 | * mbuf_len(mb) the don't create a new mbuf. We are already at an mbuf |
| 261 | * boundary. Return the mbuf that starts at the offset. |
| 262 | */ |
| 263 | static errno_t |
| 264 | split_one_mbuf(mbuf_t mb, size_t offset, mbuf_t *nmb, int join) |
| 265 | { |
| 266 | errno_t error; |
| 267 | |
| 268 | *nmb = mb; |
| 269 | /* We don't have an mbuf or we're alread on an mbuf boundary */ |
| 270 | if (mb == NULL || offset == 0) { |
| 271 | return 0; |
| 272 | } |
| 273 | |
| 274 | /* If the mbuf length is offset then the next mbuf is the one we want */ |
| 275 | if (mbuf_len(mbuf: mb) == offset) { |
| 276 | *nmb = mbuf_next(mbuf: mb); |
| 277 | if (!join) { |
| 278 | mbuf_setnext(mbuf: mb, NULL); |
| 279 | } |
| 280 | return 0; |
| 281 | } |
| 282 | |
| 283 | if (offset > mbuf_len(mbuf: mb)) { |
| 284 | return EINVAL; |
| 285 | } |
| 286 | |
| 287 | error = mbuf_split(src: mb, offset, how: MBUF_WAITOK, new_mbuf: nmb); |
| 288 | if (error) { |
| 289 | return error; |
| 290 | } |
| 291 | |
| 292 | if (mbuf_flags(mbuf: *nmb) & MBUF_PKTHDR) { |
| 293 | /* We don't want to copy the pkthdr. mbuf_split does that. */ |
| 294 | error = mbuf_setflags_mask(mbuf: *nmb, flags: ~MBUF_PKTHDR, mask: MBUF_PKTHDR); |
| 295 | } |
| 296 | |
| 297 | if (join) { |
| 298 | /* Join the chain again */ |
| 299 | mbuf_setnext(mbuf: mb, next: *nmb); |
| 300 | } |
| 301 | |
| 302 | return 0; |
| 303 | } |
| 304 | |
| 305 | /* |
| 306 | * Given an mbuf with an offset and length return the chain such that |
| 307 | * offset and offset + *subchain_length are on mbuf boundaries. If |
| 308 | * *mbuf_length is less that the length of the chain after offset |
| 309 | * return that length in *mbuf_length. The mbuf sub chain starting at |
| 310 | * offset is returned in *subchain. If an error occurs return the |
| 311 | * corresponding errno. Note if there are less than offset bytes then |
| 312 | * subchain will be set to NULL and *subchain_length will be set to |
| 313 | * zero. If *subchain_length is 0; then set it to the length of the |
| 314 | * chain starting at offset. Join parameter is used to indicate whether |
| 315 | * the mbuf chain will be joined again as on chain, just rearranged so |
| 316 | * that offset and subchain_length are on mbuf boundaries. |
| 317 | */ |
| 318 | |
| 319 | errno_t |
| 320 | gss_normalize_mbuf(mbuf_t chain, size_t offset, size_t *subchain_length, mbuf_t *subchain, mbuf_t *tail, int join) |
| 321 | { |
| 322 | size_t length = *subchain_length ? *subchain_length : ~0; |
| 323 | size_t len; |
| 324 | mbuf_t mb, nmb; |
| 325 | errno_t error; |
| 326 | |
| 327 | if (tail == NULL) { |
| 328 | tail = &nmb; |
| 329 | } |
| 330 | *tail = NULL; |
| 331 | *subchain = NULL; |
| 332 | |
| 333 | for (len = offset, mb = chain; mb && len > mbuf_len(mbuf: mb); mb = mbuf_next(mbuf: mb)) { |
| 334 | len -= mbuf_len(mbuf: mb); |
| 335 | } |
| 336 | |
| 337 | /* if we don't have offset bytes just return */ |
| 338 | if (mb == NULL) { |
| 339 | return 0; |
| 340 | } |
| 341 | |
| 342 | error = split_one_mbuf(mb, offset: len, nmb: subchain, join); |
| 343 | if (error) { |
| 344 | return error; |
| 345 | } |
| 346 | |
| 347 | assert(subchain != NULL && *subchain != NULL); |
| 348 | assert(offset == 0 ? mb == *subchain : 1); |
| 349 | |
| 350 | len = gss_mbuf_len(mb: *subchain, offset: 0); |
| 351 | length = (length > len) ? len : length; |
| 352 | *subchain_length = length; |
| 353 | |
| 354 | for (len = length, mb = *subchain; mb && len > mbuf_len(mbuf: mb); mb = mbuf_next(mbuf: mb)) { |
| 355 | len -= mbuf_len(mbuf: mb); |
| 356 | } |
| 357 | |
| 358 | error = split_one_mbuf(mb, offset: len, nmb: tail, join); |
| 359 | |
| 360 | return error; |
| 361 | } |
| 362 | |
| 363 | mbuf_t |
| 364 | gss_join_mbuf(mbuf_t head, mbuf_t body, mbuf_t tail) |
| 365 | { |
| 366 | mbuf_t mb; |
| 367 | |
| 368 | for (mb = head; mb && mbuf_next(mbuf: mb); mb = mbuf_next(mbuf: mb)) { |
| 369 | ; |
| 370 | } |
| 371 | if (mb) { |
| 372 | mbuf_setnext(mbuf: mb, next: body); |
| 373 | } |
| 374 | for (mb = body; mb && mbuf_next(mbuf: mb); mb = mbuf_next(mbuf: mb)) { |
| 375 | ; |
| 376 | } |
| 377 | if (mb) { |
| 378 | mbuf_setnext(mbuf: mb, next: tail); |
| 379 | } |
| 380 | mb = head ? head : (body ? body : tail); |
| 381 | return mb; |
| 382 | } |
| 383 | |
| 384 | /* |
| 385 | * Prepend size bytes to the mbuf chain. |
| 386 | */ |
| 387 | errno_t |
| 388 | gss_prepend_mbuf(mbuf_t *chain, uint8_t *bytes, size_t size) |
| 389 | { |
| 390 | uint8_t *data = mbuf_data(mbuf: *chain); |
| 391 | size_t leading = mbuf_leadingspace(mbuf: *chain); |
| 392 | size_t trailing = mbuf_trailingspace(mbuf: *chain); |
| 393 | size_t mlen = mbuf_len(mbuf: *chain); |
| 394 | errno_t error; |
| 395 | |
| 396 | if (size > leading && size <= leading + trailing) { |
| 397 | data = memmove(dst: data + size - leading, src: data, n: mlen); |
| 398 | mbuf_setdata(mbuf: *chain, data, len: mlen); |
| 399 | } |
| 400 | |
| 401 | error = mbuf_prepend(mbuf: chain, len: size, how: MBUF_WAITOK); |
| 402 | if (error) { |
| 403 | return error; |
| 404 | } |
| 405 | data = mbuf_data(mbuf: *chain); |
| 406 | memcpy(dst: data, src: bytes, n: size); |
| 407 | |
| 408 | return 0; |
| 409 | } |
| 410 | |
| 411 | errno_t |
| 412 | gss_append_mbuf(mbuf_t chain, uint8_t *bytes, size_t size) |
| 413 | { |
| 414 | size_t len = 0; |
| 415 | mbuf_t mb; |
| 416 | |
| 417 | if (chain == NULL) { |
| 418 | return EINVAL; |
| 419 | } |
| 420 | |
| 421 | for (mb = chain; mb; mb = mbuf_next(mbuf: mb)) { |
| 422 | len += mbuf_len(mbuf: mb); |
| 423 | } |
| 424 | |
| 425 | return mbuf_copyback(mbuf: chain, offset: len, length: size, data: bytes, how: MBUF_WAITOK); |
| 426 | } |
| 427 | |
| 428 | errno_t |
| 429 | gss_strip_mbuf(mbuf_t chain, int size) |
| 430 | { |
| 431 | if (chain == NULL) { |
| 432 | return EINVAL; |
| 433 | } |
| 434 | |
| 435 | mbuf_adj(mbuf: chain, len: size); |
| 436 | |
| 437 | return 0; |
| 438 | } |
| 439 | |
| 440 | |
| 441 | /* |
| 442 | * Kerberos mech generic crypto support for mbufs |
| 443 | */ |
| 444 | |
| 445 | /* |
| 446 | * Walk the mbuf after the given offset calling the passed in crypto function |
| 447 | * for len bytes. Note the length, len should be a multiple of the blocksize and |
| 448 | * there should be at least len bytes available after the offset in the mbuf chain. |
| 449 | * padding should be done before calling this routine. |
| 450 | */ |
| 451 | int |
| 452 | mbuf_walk(mbuf_t mbp, size_t offset, size_t len, size_t blocksize, int (*crypto_fn)(void *, uint8_t *data, size_t length), void *ctx) |
| 453 | { |
| 454 | mbuf_t mb; |
| 455 | size_t mlen, residue; |
| 456 | uint8_t *ptr; |
| 457 | int error = 0; |
| 458 | |
| 459 | /* Move to the start of the chain */ |
| 460 | for (mb = mbp; mb && len > 0; mb = mbuf_next(mbuf: mb)) { |
| 461 | ptr = mbuf_data(mbuf: mb); |
| 462 | mlen = mbuf_len(mbuf: mb); |
| 463 | if (offset >= mlen) { |
| 464 | /* Offset not yet reached */ |
| 465 | offset -= mlen; |
| 466 | continue; |
| 467 | } |
| 468 | /* Found starting point in chain */ |
| 469 | ptr += offset; |
| 470 | mlen -= offset; |
| 471 | offset = 0; |
| 472 | |
| 473 | /* |
| 474 | * Handle the data in this mbuf. If the length to |
| 475 | * walk is less than the data in the mbuf, set |
| 476 | * the mbuf length left to be the length left |
| 477 | */ |
| 478 | mlen = mlen < len ? mlen : len; |
| 479 | /* Figure out how much is a multple of blocksize */ |
| 480 | residue = mlen % blocksize; |
| 481 | /* And addjust the mleft length to be the largest multiple of blocksized */ |
| 482 | mlen -= residue; |
| 483 | /* run our hash/encrypt/decrpyt function */ |
| 484 | if (mlen > 0) { |
| 485 | error = crypto_fn(ctx, ptr, mlen); |
| 486 | if (error) { |
| 487 | break; |
| 488 | } |
| 489 | ptr += mlen; |
| 490 | len -= mlen; |
| 491 | } |
| 492 | /* |
| 493 | * If we have a residue then to get a full block for our crypto |
| 494 | * function, we need to copy the residue into our block size |
| 495 | * block and use the next mbuf to get the rest of the data for |
| 496 | * the block. N.B. We generally assume that from the offset |
| 497 | * passed in, that the total length, len, is a multple of |
| 498 | * blocksize and that there are at least len bytes in the chain |
| 499 | * from the offset. We also assume there is at least (blocksize |
| 500 | * - residue) size data in any next mbuf for residue > 0. If not |
| 501 | * we attemp to pullup bytes from down the chain. |
| 502 | */ |
| 503 | if (residue) { |
| 504 | mbuf_t nmb = mbuf_next(mbuf: mb); |
| 505 | uint8_t *nptr = NULL, *block = NULL; |
| 506 | |
| 507 | block = kalloc_data(blocksize, Z_WAITOK | Z_ZERO); |
| 508 | if (block == NULL) { |
| 509 | return ENOMEM; |
| 510 | } |
| 511 | assert(nmb); |
| 512 | len -= residue; |
| 513 | offset = blocksize - residue; |
| 514 | if (len < offset) { |
| 515 | offset = len; |
| 516 | /* |
| 517 | * We don't have enough bytes so zero the block |
| 518 | * so that any trailing bytes will be zero. |
| 519 | */ |
| 520 | cc_clear(len: blocksize, dst: block); |
| 521 | } |
| 522 | memcpy(dst: block, src: ptr, n: residue); |
| 523 | if (len && nmb) { |
| 524 | mlen = mbuf_len(mbuf: nmb); |
| 525 | if (mlen < offset) { |
| 526 | error = mbuf_pullup(mbuf: &nmb, len: offset - mlen); |
| 527 | if (error) { |
| 528 | mbuf_setnext(mbuf: mb, NULL); |
| 529 | kfree_data(block, blocksize); |
| 530 | return error; |
| 531 | } |
| 532 | } |
| 533 | nptr = mbuf_data(mbuf: nmb); |
| 534 | memcpy(dst: block + residue, src: nptr, n: offset); |
| 535 | } |
| 536 | len -= offset; |
| 537 | error = crypto_fn(ctx, block, blocksize); |
| 538 | if (error) { |
| 539 | kfree_data(block, blocksize); |
| 540 | break; |
| 541 | } |
| 542 | memcpy(dst: ptr, src: block, n: residue); |
| 543 | if (nptr) { |
| 544 | memcpy(dst: nptr, src: block + residue, n: offset); |
| 545 | } |
| 546 | kfree_data(block, blocksize); |
| 547 | } |
| 548 | } |
| 549 | |
| 550 | return error; |
| 551 | } |
| 552 | |
| 553 | void |
| 554 | do_crypt_init(crypt_walker_ctx_t wctx, int encrypt, crypto_ctx_t cctx, cccbc_ctx *ks) |
| 555 | { |
| 556 | memset(s: wctx, c: 0, n: sizeof(*wctx)); |
| 557 | wctx->length = 0; |
| 558 | wctx->ccmode = encrypt ? cctx->enc_mode : cctx->dec_mode; |
| 559 | wctx->crypt_ctx = ks; |
| 560 | wctx->iv = kalloc_data(wctx->ccmode->block_size, Z_WAITOK | Z_ZERO); |
| 561 | cccbc_set_iv(mode: wctx->ccmode, iv_ctx: wctx->iv, NULL); |
| 562 | } |
| 563 | |
| 564 | int |
| 565 | do_crypt(void *walker, uint8_t *data, size_t len) |
| 566 | { |
| 567 | struct crypt_walker_ctx *wctx = (crypt_walker_ctx_t)walker; |
| 568 | size_t nblocks; |
| 569 | |
| 570 | nblocks = len / wctx->ccmode->block_size; |
| 571 | assert(len % wctx->ccmode->block_size == 0); |
| 572 | cccbc_update(mode: wctx->ccmode, ctx: wctx->crypt_ctx, iv: wctx->iv, nblocks, in: data, out: data); |
| 573 | wctx->length += len; |
| 574 | |
| 575 | return 0; |
| 576 | } |
| 577 | |
| 578 | void |
| 579 | do_hmac_init(hmac_walker_ctx_t wctx, crypto_ctx_t cctx, void *key) |
| 580 | { |
| 581 | size_t alloc_size = cchmac_di_size(cctx->di); |
| 582 | |
| 583 | wctx->di = cctx->di; |
| 584 | wctx->hmac_ctx = kalloc_data(alloc_size, Z_WAITOK | Z_ZERO); |
| 585 | cchmac_init(di: cctx->di, ctx: wctx->hmac_ctx, key_len: cctx->keylen, key); |
| 586 | } |
| 587 | |
| 588 | int |
| 589 | do_hmac(void *walker, uint8_t *data, size_t len) |
| 590 | { |
| 591 | hmac_walker_ctx_t wctx = (hmac_walker_ctx_t)walker; |
| 592 | |
| 593 | cchmac_update(di: wctx->di, ctx: wctx->hmac_ctx, data_len: len, data); |
| 594 | |
| 595 | return 0; |
| 596 | } |
| 597 | |
| 598 | void |
| 599 | do_hmac_destroy(hmac_walker_ctx_t wctx, crypto_ctx_t cctx) |
| 600 | { |
| 601 | size_t alloc_size = cchmac_di_size(cctx->di); |
| 602 | kfree_data(wctx->hmac_ctx, alloc_size); |
| 603 | } |
| 604 | |
| 605 | int |
| 606 | krb5_mic(crypto_ctx_t ctx, gss_buffer_t , gss_buffer_t bp, gss_buffer_t trailer, uint8_t *mic, int *verify, int ikey, int reverse) |
| 607 | { |
| 608 | uint8_t *digest = NULL; |
| 609 | cchmac_di_decl(ctx->di, hmac_ctx); |
| 610 | int kdx = (verify == NULL) ? (reverse ? GSS_RCV : GSS_SND) : (reverse ? GSS_SND : GSS_RCV); |
| 611 | void *key2use; |
| 612 | |
| 613 | digest = kalloc_data(ctx->di->output_size, Z_WAITOK | Z_ZERO); |
| 614 | if (digest == NULL) { |
| 615 | return ENOMEM; |
| 616 | } |
| 617 | if (ikey) { |
| 618 | if (!(ctx->flags & CRYPTO_KS_ALLOCED)) { |
| 619 | lck_mtx_lock(lck: &ctx->lock); |
| 620 | if (!(ctx->flags & CRYPTO_KS_ALLOCED)) { |
| 621 | cc_key_schedule_create(ctx); |
| 622 | } |
| 623 | ctx->flags |= CRYPTO_KS_ALLOCED; |
| 624 | lck_mtx_unlock(lck: &ctx->lock); |
| 625 | } |
| 626 | key2use = ctx->ks.ikeys[kdx].key_val; |
| 627 | } else { |
| 628 | key2use = ctx->ckeys[kdx].key_val; |
| 629 | } |
| 630 | |
| 631 | cchmac_init(di: ctx->di, ctx: hmac_ctx, key_len: ctx->keylen, key: key2use); |
| 632 | |
| 633 | if (header) { |
| 634 | cchmac_update(di: ctx->di, ctx: hmac_ctx, data_len: header->length, data: header->value); |
| 635 | } |
| 636 | |
| 637 | cchmac_update(di: ctx->di, ctx: hmac_ctx, data_len: bp->length, data: bp->value); |
| 638 | |
| 639 | if (trailer) { |
| 640 | cchmac_update(di: ctx->di, ctx: hmac_ctx, data_len: trailer->length, data: trailer->value); |
| 641 | } |
| 642 | |
| 643 | cchmac_final(di: ctx->di, ctx: hmac_ctx, mac: digest); |
| 644 | |
| 645 | if (verify) { |
| 646 | *verify = (memcmp(s1: mic, s2: digest, n: ctx->digest_size) == 0); |
| 647 | } else { |
| 648 | memcpy(dst: mic, src: digest, n: ctx->digest_size); |
| 649 | } |
| 650 | |
| 651 | kfree_data(digest, ctx->di->output_size); |
| 652 | return 0; |
| 653 | } |
| 654 | |
| 655 | int |
| 656 | krb5_mic_mbuf(crypto_ctx_t ctx, gss_buffer_t , |
| 657 | mbuf_t mbp, size_t offset, size_t len, gss_buffer_t trailer, uint8_t *mic, int *verify, int ikey, int reverse) |
| 658 | { |
| 659 | struct hmac_walker_ctx wctx; |
| 660 | uint8_t *digest = NULL; |
| 661 | int error; |
| 662 | int kdx = (verify == NULL) ? (reverse ? GSS_RCV : GSS_SND) : (reverse ? GSS_SND : GSS_RCV); |
| 663 | void *key2use; |
| 664 | |
| 665 | digest = kalloc_data(ctx->di->output_size, Z_WAITOK | Z_ZERO); |
| 666 | if (digest == NULL) { |
| 667 | return ENOMEM; |
| 668 | } |
| 669 | if (ikey) { |
| 670 | if (!(ctx->flags & CRYPTO_KS_ALLOCED)) { |
| 671 | lck_mtx_lock(lck: &ctx->lock); |
| 672 | if (!(ctx->flags & CRYPTO_KS_ALLOCED)) { |
| 673 | cc_key_schedule_create(ctx); |
| 674 | } |
| 675 | ctx->flags |= CRYPTO_KS_ALLOCED; |
| 676 | lck_mtx_unlock(lck: &ctx->lock); |
| 677 | } |
| 678 | key2use = ctx->ks.ikeys[kdx].key_val; |
| 679 | } else { |
| 680 | key2use = ctx->ckeys[kdx].key_val; |
| 681 | } |
| 682 | |
| 683 | do_hmac_init(wctx: &wctx, cctx: ctx, key: key2use); |
| 684 | |
| 685 | if (header) { |
| 686 | cchmac_update(di: ctx->di, ctx: wctx.hmac_ctx, data_len: header->length, data: header->value); |
| 687 | } |
| 688 | |
| 689 | error = mbuf_walk(mbp, offset, len, blocksize: 1, crypto_fn: do_hmac, ctx: &wctx); |
| 690 | |
| 691 | if (error) { |
| 692 | kfree_data(digest, ctx->di->output_size); |
| 693 | return error; |
| 694 | } |
| 695 | if (trailer) { |
| 696 | cchmac_update(di: ctx->di, ctx: wctx.hmac_ctx, data_len: trailer->length, data: trailer->value); |
| 697 | } |
| 698 | |
| 699 | cchmac_final(di: ctx->di, ctx: wctx.hmac_ctx, mac: digest); |
| 700 | do_hmac_destroy(wctx: &wctx, cctx: ctx); |
| 701 | |
| 702 | if (verify) { |
| 703 | *verify = (memcmp(s1: mic, s2: digest, n: ctx->digest_size) == 0); |
| 704 | if (!*verify) { |
| 705 | kfree_data(digest, ctx->di->output_size); |
| 706 | return EBADRPC; |
| 707 | } |
| 708 | } else { |
| 709 | memcpy(dst: mic, src: digest, n: ctx->digest_size); |
| 710 | } |
| 711 | |
| 712 | kfree_data(digest, ctx->di->output_size); |
| 713 | return 0; |
| 714 | } |
| 715 | |
| 716 | errno_t |
| 717 | /* __attribute__((optnone)) */ |
| 718 | krb5_crypt_mbuf(crypto_ctx_t ctx, mbuf_t *mbp, size_t len, int encrypt, cccbc_ctx *ks) |
| 719 | { |
| 720 | struct crypt_walker_ctx wctx; |
| 721 | const struct ccmode_cbc *ccmode = encrypt ? ctx->enc_mode : ctx->dec_mode; |
| 722 | size_t plen = len; |
| 723 | size_t cts_len = 0; |
| 724 | mbuf_t mb, lmb = NULL; |
| 725 | int error; |
| 726 | |
| 727 | if (!(ctx->flags & CRYPTO_KS_ALLOCED)) { |
| 728 | lck_mtx_lock(lck: &ctx->lock); |
| 729 | if (!(ctx->flags & CRYPTO_KS_ALLOCED)) { |
| 730 | cc_key_schedule_create(ctx); |
| 731 | } |
| 732 | ctx->flags |= CRYPTO_KS_ALLOCED; |
| 733 | lck_mtx_unlock(lck: &ctx->lock); |
| 734 | } |
| 735 | if (!ks) { |
| 736 | ks = encrypt ? ctx->ks.enc : ctx->ks.dec; |
| 737 | } |
| 738 | |
| 739 | if ((ctx->flags & CRYPTO_CTS_ENABLE) && ctx->mpad == 1) { |
| 740 | uint8_t *block = NULL; |
| 741 | |
| 742 | block = kalloc_data(ccmode->block_size, Z_WAITOK | Z_ZERO); |
| 743 | if (block == NULL) { |
| 744 | return ENOMEM; |
| 745 | } |
| 746 | /* if the length is less than or equal to a blocksize. We just encrypt the block */ |
| 747 | if (len <= ccmode->block_size) { |
| 748 | if (len < ccmode->block_size) { |
| 749 | gss_append_mbuf(chain: *mbp, bytes: block, size: ccmode->block_size); |
| 750 | } |
| 751 | plen = ccmode->block_size; |
| 752 | } else { |
| 753 | /* determine where the last two blocks are */ |
| 754 | size_t r = len % ccmode->block_size; |
| 755 | |
| 756 | cts_len = r ? r + ccmode->block_size : 2 * ccmode->block_size; |
| 757 | plen = len - cts_len; |
| 758 | /* If plen is 0 we only have two blocks to crypt with ccpad below */ |
| 759 | if (plen == 0) { |
| 760 | lmb = *mbp; |
| 761 | } else { |
| 762 | gss_normalize_mbuf(chain: *mbp, offset: 0, subchain_length: &plen, subchain: &mb, tail: &lmb, join: 0); |
| 763 | assert(*mbp == mb); |
| 764 | assert(plen == len - cts_len); |
| 765 | assert(gss_mbuf_len(mb, 0) == plen); |
| 766 | assert(gss_mbuf_len(lmb, 0) == cts_len); |
| 767 | } |
| 768 | } |
| 769 | kfree_data(block, ccmode->block_size); |
| 770 | } else if (len % ctx->mpad) { |
| 771 | uint8_t *pad_block = NULL; |
| 772 | size_t padlen = ctx->mpad - (len % ctx->mpad); |
| 773 | |
| 774 | pad_block = kalloc_data(ctx->mpad, Z_WAITOK | Z_ZERO); |
| 775 | if (pad_block == NULL) { |
| 776 | return ENOMEM; |
| 777 | } |
| 778 | error = gss_append_mbuf(chain: *mbp, bytes: pad_block, size: padlen); |
| 779 | if (error) { |
| 780 | kfree_data(pad_block, ctx->mpad); |
| 781 | return error; |
| 782 | } |
| 783 | plen = len + padlen; |
| 784 | kfree_data(pad_block, ctx->mpad); |
| 785 | } |
| 786 | do_crypt_init(wctx: &wctx, encrypt, cctx: ctx, ks); |
| 787 | if (plen) { |
| 788 | error = mbuf_walk(mbp: *mbp, offset: 0, len: plen, blocksize: ccmode->block_size, crypto_fn: do_crypt, ctx: &wctx); |
| 789 | if (error) { |
| 790 | return error; |
| 791 | } |
| 792 | } |
| 793 | |
| 794 | if ((ctx->flags & CRYPTO_CTS_ENABLE) && cts_len) { |
| 795 | uint8_t *cts_pad = NULL; |
| 796 | ccpad_func do_ccpad = encrypt ? ccpad_cts3_encrypt : ccpad_cts3_decrypt; |
| 797 | |
| 798 | cts_pad = kalloc_data(2 * ccmode->block_size, Z_WAITOK | Z_ZERO); |
| 799 | if (cts_pad == NULL) { |
| 800 | return ENOMEM; |
| 801 | } |
| 802 | assert(cts_len <= 2 * ccmode->block_size && cts_len > ccmode->block_size); |
| 803 | mbuf_copydata(mbuf: lmb, offset: 0, length: cts_len, out_data: cts_pad); |
| 804 | mbuf_freem(mbuf: lmb); |
| 805 | do_ccpad(ccmode, wctx.crypt_ctx, wctx.iv, cts_len, cts_pad, cts_pad); |
| 806 | gss_append_mbuf(chain: *mbp, bytes: cts_pad, size: cts_len); |
| 807 | kfree_data(cts_pad, 2 * ccmode->block_size); |
| 808 | } |
| 809 | kfree_data(wctx.iv, wctx.ccmode->block_size); |
| 810 | |
| 811 | return 0; |
| 812 | } |
| 813 | |
| 814 | /* |
| 815 | * Key derivation routines |
| 816 | */ |
| 817 | |
| 818 | static int |
| 819 | rr13(unsigned char *buf, size_t len) |
| 820 | { |
| 821 | size_t bytes = (len + 7) / 8; |
| 822 | unsigned char *tmp = NULL; |
| 823 | size_t i; |
| 824 | |
| 825 | if (len == 0) { |
| 826 | return 0; |
| 827 | } |
| 828 | |
| 829 | tmp = kalloc_data(bytes, Z_WAITOK | Z_ZERO); |
| 830 | |
| 831 | { |
| 832 | const int bits = 13 % len; |
| 833 | const int lbit = len % 8; |
| 834 | |
| 835 | memcpy(dst: tmp, src: buf, n: bytes); |
| 836 | if (lbit) { |
| 837 | /* pad final byte with inital bits */ |
| 838 | tmp[bytes - 1] &= 0xff << (8 - lbit); |
| 839 | for (i = lbit; i < 8; i += len) { |
| 840 | tmp[bytes - 1] |= buf[0] >> i; |
| 841 | } |
| 842 | } |
| 843 | for (i = 0; i < bytes; i++) { |
| 844 | ssize_t bb; |
| 845 | ssize_t b1, s1, b2, s2; |
| 846 | |
| 847 | /* calculate first bit position of this byte */ |
| 848 | bb = 8 * i - bits; |
| 849 | while (bb < 0) { |
| 850 | bb += len; |
| 851 | } |
| 852 | /* byte offset and shift count */ |
| 853 | b1 = bb / 8; |
| 854 | s1 = bb % 8; |
| 855 | if ((size_t)bb + 8 > bytes * 8) { |
| 856 | /* watch for wraparound */ |
| 857 | s2 = (len + 8 - s1) % 8; |
| 858 | } else { |
| 859 | s2 = 8 - s1; |
| 860 | } |
| 861 | b2 = (b1 + 1) % bytes; |
| 862 | buf[i] = 0xff & ((tmp[b1] << s1) | (tmp[b2] >> s2)); |
| 863 | } |
| 864 | } |
| 865 | kfree_data(tmp, bytes); |
| 866 | return 0; |
| 867 | } |
| 868 | |
| 869 | |
| 870 | /* Add `b' to `a', both being one's complement numbers. */ |
| 871 | static void |
| 872 | add1(unsigned char *a, unsigned char *b, size_t len) |
| 873 | { |
| 874 | ssize_t i; |
| 875 | int carry = 0; |
| 876 | |
| 877 | for (i = len - 1; i >= 0; i--) { |
| 878 | int x = a[i] + b[i] + carry; |
| 879 | carry = x > 0xff; |
| 880 | a[i] = x & 0xff; |
| 881 | } |
| 882 | for (i = len - 1; carry && i >= 0; i--) { |
| 883 | int x = a[i] + carry; |
| 884 | carry = x > 0xff; |
| 885 | a[i] = x & 0xff; |
| 886 | } |
| 887 | } |
| 888 | |
| 889 | |
| 890 | static int |
| 891 | krb5_n_fold(const void *instr, size_t len, void *foldstr, size_t size) |
| 892 | { |
| 893 | /* if len < size we need at most N * len bytes, ie < 2 * size; |
| 894 | * if len > size we need at most 2 * len */ |
| 895 | int ret = 0; |
| 896 | size_t maxlen = 2 * lmax(a: size, b: len); |
| 897 | size_t l = 0; |
| 898 | unsigned char *tmp = NULL; |
| 899 | unsigned char *buf = NULL; |
| 900 | |
| 901 | tmp = kalloc_data(maxlen, Z_WAITOK | Z_ZERO); |
| 902 | buf = kalloc_data(len, Z_WAITOK | Z_ZERO); |
| 903 | |
| 904 | memcpy(dst: buf, src: instr, n: len); |
| 905 | memset(s: foldstr, c: 0, n: size); |
| 906 | do { |
| 907 | memcpy(dst: tmp + l, src: buf, n: len); |
| 908 | l += len; |
| 909 | ret = rr13(buf, len: len * 8); |
| 910 | if (ret) { |
| 911 | goto out; |
| 912 | } |
| 913 | while (l >= size) { |
| 914 | add1(a: foldstr, b: tmp, len: size); |
| 915 | l -= size; |
| 916 | if (l == 0) { |
| 917 | break; |
| 918 | } |
| 919 | memmove(dst: tmp, src: tmp + size, n: l); |
| 920 | } |
| 921 | } while (l != 0); |
| 922 | out: |
| 923 | |
| 924 | kfree_data(tmp, maxlen); |
| 925 | kfree_data(buf, len); |
| 926 | return ret; |
| 927 | } |
| 928 | |
| 929 | void |
| 930 | krb5_make_usage(uint32_t usage_no, uint8_t suffix, uint8_t usage_string[KRB5_USAGE_LEN]) |
| 931 | { |
| 932 | uint32_t i; |
| 933 | |
| 934 | for (i = 0; i < 4; i++) { |
| 935 | usage_string[i] = ((usage_no >> 8 * (3 - i)) & 0xff); |
| 936 | } |
| 937 | usage_string[i] = suffix; |
| 938 | } |
| 939 | |
| 940 | void |
| 941 | krb5_key_derivation(crypto_ctx_t ctx, const void *cons, size_t conslen, krb5_key_t *dkey, size_t dklen) |
| 942 | { |
| 943 | size_t blocksize = ctx->enc_mode->block_size; |
| 944 | cccbc_iv_decl(blocksize, iv); |
| 945 | cccbc_ctx_decl(ctx->enc_mode->size, enc_ctx); |
| 946 | size_t ksize = 8 * dklen; |
| 947 | size_t nblocks = (ksize + 8 * blocksize - 1) / (8 * blocksize); |
| 948 | uint8_t *dkptr; |
| 949 | uint8_t *block = NULL; |
| 950 | |
| 951 | block = kalloc_data(blocksize, Z_WAITOK | Z_ZERO); |
| 952 | gss_krb5_key_set(krb_key: dkey, kalloc_data(nblocks * blocksize, Z_WAITOK | Z_ZERO), len: nblocks * blocksize); |
| 953 | dkptr = dkey->key_val; |
| 954 | |
| 955 | krb5_n_fold(instr: cons, len: conslen, foldstr: block, size: blocksize); |
| 956 | cccbc_init(mode: ctx->enc_mode, ctx: enc_ctx, key_len: ctx->keylen, key: ctx->key); |
| 957 | for (size_t i = 0; i < nblocks; i++) { |
| 958 | cccbc_set_iv(mode: ctx->enc_mode, iv_ctx: iv, NULL); |
| 959 | cccbc_update(mode: ctx->enc_mode, ctx: enc_ctx, iv, nblocks: 1, in: block, out: block); |
| 960 | memcpy(dst: dkptr, src: block, n: blocksize); |
| 961 | dkptr += blocksize; |
| 962 | } |
| 963 | kfree_data(block, blocksize); |
| 964 | } |
| 965 | |
| 966 | static void |
| 967 | des_make_key(const uint8_t rawkey[7], uint8_t deskey[8]) |
| 968 | { |
| 969 | uint8_t val = 0; |
| 970 | |
| 971 | memcpy(dst: deskey, src: rawkey, n: 7); |
| 972 | for (int i = 0; i < 7; i++) { |
| 973 | val |= ((deskey[i] & 1) << (i + 1)); |
| 974 | } |
| 975 | deskey[7] = val; |
| 976 | ccdes_key_set_odd_parity(key: deskey, length: 8); |
| 977 | } |
| 978 | |
| 979 | static void |
| 980 | krb5_3des_key_derivation(crypto_ctx_t ctx, const void *cons, size_t conslen, krb5_key_t *des3key) |
| 981 | { |
| 982 | const struct ccmode_cbc *cbcmode = ctx->enc_mode; |
| 983 | krb5_key_t rawkey; |
| 984 | size_t rawkey_len; |
| 985 | uint8_t *kptr, *rptr; |
| 986 | |
| 987 | gss_krb5_key_set(krb_key: des3key, kalloc_data(3 * cbcmode->block_size, Z_WAITOK | Z_ZERO), len: 3 * cbcmode->block_size); |
| 988 | rawkey_len = 3 * (cbcmode->block_size - 1); |
| 989 | krb5_key_derivation(ctx, cons, conslen, dkey: &rawkey, dklen: rawkey_len); |
| 990 | kptr = des3key->key_val; |
| 991 | rptr = rawkey.key_val; |
| 992 | |
| 993 | for (int i = 0; i < 3; i++) { |
| 994 | des_make_key(rawkey: rptr, deskey: kptr); |
| 995 | rptr += cbcmode->block_size - 1; |
| 996 | kptr += cbcmode->block_size; |
| 997 | } |
| 998 | |
| 999 | gss_krb5_key_free(krb_key: &rawkey, free: 1); |
| 1000 | } |
| 1001 | |
| 1002 | /* |
| 1003 | * Create a key schecule |
| 1004 | * |
| 1005 | */ |
| 1006 | void |
| 1007 | cc_key_schedule_create(crypto_ctx_t ctx) |
| 1008 | { |
| 1009 | uint8_t usage_string[KRB5_USAGE_LEN]; |
| 1010 | lucid_context_t lctx = ctx->gss_ctx; |
| 1011 | krb5_key_t ekey; |
| 1012 | |
| 1013 | switch (lctx->key_data.proto) { |
| 1014 | case 0: { |
| 1015 | if (ctx->ks.enc == NULL) { |
| 1016 | ctx->ks.enc = kalloc_data(ctx->enc_mode->size, Z_WAITOK | Z_ZERO); |
| 1017 | cccbc_init(mode: ctx->enc_mode, ctx: ctx->ks.enc, key_len: ctx->keylen, key: ctx->key); |
| 1018 | } |
| 1019 | if (ctx->ks.dec == NULL) { |
| 1020 | ctx->ks.dec = kalloc_data(ctx->dec_mode->size, Z_WAITOK | Z_ZERO); |
| 1021 | cccbc_init(mode: ctx->dec_mode, ctx: ctx->ks.dec, key_len: ctx->keylen, key: ctx->key); |
| 1022 | } |
| 1023 | } |
| 1024 | OS_FALLTHROUGH; |
| 1025 | case 1: { |
| 1026 | if (ctx->ks.enc == NULL) { |
| 1027 | krb5_make_usage(usage_no: lctx->initiate ? |
| 1028 | KRB5_USAGE_INITIATOR_SEAL : KRB5_USAGE_ACCEPTOR_SEAL, |
| 1029 | suffix: 0xAA, usage_string); |
| 1030 | krb5_key_derivation(ctx, cons: usage_string, KRB5_USAGE_LEN, dkey: &ekey, dklen: ctx->keylen); |
| 1031 | ctx->ks.enc = kalloc_data(ctx->enc_mode->size, Z_WAITOK | Z_ZERO); |
| 1032 | cccbc_init(mode: ctx->enc_mode, ctx: ctx->ks.enc, key_len: ctx->keylen, key: ekey.key_val); |
| 1033 | gss_krb5_key_free(krb_key: &ekey, free: 1); |
| 1034 | } |
| 1035 | if (ctx->ks.dec == NULL) { |
| 1036 | krb5_make_usage(usage_no: lctx->initiate ? |
| 1037 | KRB5_USAGE_ACCEPTOR_SEAL : KRB5_USAGE_INITIATOR_SEAL, |
| 1038 | suffix: 0xAA, usage_string); |
| 1039 | krb5_key_derivation(ctx, cons: usage_string, KRB5_USAGE_LEN, dkey: &ekey, dklen: ctx->keylen); |
| 1040 | ctx->ks.dec = kalloc_data(ctx->dec_mode->size, Z_WAITOK | Z_ZERO); |
| 1041 | cccbc_init(mode: ctx->dec_mode, ctx: ctx->ks.dec, key_len: ctx->keylen, key: ekey.key_val); |
| 1042 | gss_krb5_key_free(krb_key: &ekey, free: 1); |
| 1043 | } |
| 1044 | if (ctx->ks.ikeys[GSS_SND].key_val == NULL) { |
| 1045 | krb5_make_usage(usage_no: lctx->initiate ? |
| 1046 | KRB5_USAGE_INITIATOR_SEAL : KRB5_USAGE_ACCEPTOR_SEAL, |
| 1047 | suffix: 0x55, usage_string); |
| 1048 | krb5_key_derivation(ctx, cons: usage_string, KRB5_USAGE_LEN, dkey: &ctx->ks.ikeys[GSS_SND], dklen: ctx->keylen); |
| 1049 | } |
| 1050 | if (ctx->ks.ikeys[GSS_RCV].key_val == NULL) { |
| 1051 | krb5_make_usage(usage_no: lctx->initiate ? |
| 1052 | KRB5_USAGE_ACCEPTOR_SEAL : KRB5_USAGE_INITIATOR_SEAL, |
| 1053 | suffix: 0x55, usage_string); |
| 1054 | krb5_key_derivation(ctx, cons: usage_string, KRB5_USAGE_LEN, dkey: &ctx->ks.ikeys[GSS_RCV], dklen: ctx->keylen); |
| 1055 | } |
| 1056 | } |
| 1057 | } |
| 1058 | } |
| 1059 | |
| 1060 | void |
| 1061 | gss_crypto_ctx_free(crypto_ctx_t ctx) |
| 1062 | { |
| 1063 | lck_mtx_destroy(lck: &ctx->lock, grp: &gss_krb5_mech_grp); |
| 1064 | |
| 1065 | gss_krb5_key_ctx_free(krb_key: &ctx->ks.ikeys[GSS_SND], ctx_key: ctx->key); |
| 1066 | gss_krb5_key_ctx_free(krb_key: &ctx->ks.ikeys[GSS_RCV], ctx_key: ctx->key); |
| 1067 | if (ctx->ks.enc) { |
| 1068 | cccbc_ctx_clear(ctx->enc_mode->size, ctx->ks.enc); |
| 1069 | kfree_data(ctx->ks.enc, ctx->enc_mode->size); |
| 1070 | } |
| 1071 | if (ctx->ks.dec) { |
| 1072 | cccbc_ctx_clear(ctx->dec_mode->size, ctx->ks.dec); |
| 1073 | kfree_data(ctx->ks.dec, ctx->dec_mode->size); |
| 1074 | } |
| 1075 | gss_krb5_key_ctx_free(krb_key: &ctx->ckeys[GSS_SND], ctx_key: ctx->key); |
| 1076 | gss_krb5_key_ctx_free(krb_key: &ctx->ckeys[GSS_RCV], ctx_key: ctx->key); |
| 1077 | ctx->key = NULL; |
| 1078 | ctx->keylen = 0; |
| 1079 | } |
| 1080 | |
| 1081 | int |
| 1082 | gss_crypto_ctx_init(struct crypto_ctx *ctx, lucid_context_t lucid) |
| 1083 | { |
| 1084 | ctx->gss_ctx = lucid; |
| 1085 | void *key; |
| 1086 | uint8_t usage_string[KRB5_USAGE_LEN]; |
| 1087 | |
| 1088 | ctx->keylen = ctx->gss_ctx->ctx_key.key.key_len; |
| 1089 | key = ctx->gss_ctx->ctx_key.key.key_val; |
| 1090 | ctx->etype = ctx->gss_ctx->ctx_key.etype; |
| 1091 | ctx->key = key; |
| 1092 | |
| 1093 | switch (ctx->etype) { |
| 1094 | case AES128_CTS_HMAC_SHA1_96: |
| 1095 | case AES256_CTS_HMAC_SHA1_96: |
| 1096 | ctx->enc_mode = ccaes_cbc_encrypt_mode(); |
| 1097 | assert(ctx->enc_mode); |
| 1098 | ctx->dec_mode = ccaes_cbc_decrypt_mode(); |
| 1099 | assert(ctx->dec_mode); |
| 1100 | ctx->ks.enc = NULL; |
| 1101 | ctx->ks.dec = NULL; |
| 1102 | ctx->di = ccsha1_di(); |
| 1103 | assert(ctx->di); |
| 1104 | ctx->flags = CRYPTO_CTS_ENABLE; |
| 1105 | ctx->mpad = 1; |
| 1106 | ctx->digest_size = 12; /* 96 bits */ |
| 1107 | krb5_make_usage(usage_no: ctx->gss_ctx->initiate ? |
| 1108 | KRB5_USAGE_INITIATOR_SIGN : KRB5_USAGE_ACCEPTOR_SIGN, |
| 1109 | suffix: 0x99, usage_string); |
| 1110 | krb5_key_derivation(ctx, cons: usage_string, KRB5_USAGE_LEN, dkey: &ctx->ckeys[GSS_SND], dklen: ctx->keylen); |
| 1111 | krb5_make_usage(usage_no: ctx->gss_ctx->initiate ? |
| 1112 | KRB5_USAGE_ACCEPTOR_SIGN : KRB5_USAGE_INITIATOR_SIGN, |
| 1113 | suffix: 0x99, usage_string); |
| 1114 | krb5_key_derivation(ctx, cons: usage_string, KRB5_USAGE_LEN, dkey: &ctx->ckeys[GSS_RCV], dklen: ctx->keylen); |
| 1115 | break; |
| 1116 | case DES3_CBC_SHA1_KD: |
| 1117 | ctx->enc_mode = ccdes3_cbc_encrypt_mode(); |
| 1118 | assert(ctx->enc_mode); |
| 1119 | ctx->dec_mode = ccdes3_cbc_decrypt_mode(); |
| 1120 | assert(ctx->dec_mode); |
| 1121 | gss_krb5_key_set(krb_key: &ctx->ks.ikeys[GSS_SND], key: ctx->key, len: ctx->keylen); |
| 1122 | gss_krb5_key_set(krb_key: &ctx->ks.ikeys[GSS_RCV], key: ctx->key, len: ctx->keylen); |
| 1123 | ctx->di = ccsha1_di(); |
| 1124 | assert(ctx->di); |
| 1125 | ctx->flags = 0; |
| 1126 | ctx->mpad = ctx->enc_mode->block_size; |
| 1127 | ctx->digest_size = 20; /* 160 bits */ |
| 1128 | krb5_make_usage(KRB5_USAGE_ACCEPTOR_SIGN, suffix: 0x99, usage_string); |
| 1129 | krb5_3des_key_derivation(ctx, cons: usage_string, KRB5_USAGE_LEN, des3key: &ctx->ckeys[GSS_SND]); |
| 1130 | krb5_3des_key_derivation(ctx, cons: usage_string, KRB5_USAGE_LEN, des3key: &ctx->ckeys[GSS_RCV]); |
| 1131 | break; |
| 1132 | default: |
| 1133 | return ENOTSUP; |
| 1134 | } |
| 1135 | |
| 1136 | lck_mtx_init(lck: &ctx->lock, grp: &gss_krb5_mech_grp, LCK_ATTR_NULL); |
| 1137 | |
| 1138 | return 0; |
| 1139 | } |
| 1140 | |
| 1141 | /* |
| 1142 | * CFX gss support routines |
| 1143 | */ |
| 1144 | /* From Heimdal cfx.h file RFC 4121 Cryptoo framework extensions */ |
| 1145 | typedef struct gss_cfx_mic_token_desc_struct { |
| 1146 | uint8_t TOK_ID[2]; /* 04 04 */ |
| 1147 | uint8_t Flags; |
| 1148 | uint8_t Filler[5]; |
| 1149 | uint8_t SND_SEQ[8]; |
| 1150 | } gss_cfx_mic_token_desc, *gss_cfx_mic_token; |
| 1151 | |
| 1152 | typedef struct gss_cfx_wrap_token_desc_struct { |
| 1153 | uint8_t TOK_ID[2]; /* 05 04 */ |
| 1154 | uint8_t Flags; |
| 1155 | uint8_t Filler; |
| 1156 | uint8_t EC[2]; |
| 1157 | uint8_t RRC[2]; |
| 1158 | uint8_t SND_SEQ[8]; |
| 1159 | } gss_cfx_wrap_token_desc, *gss_cfx_wrap_token; |
| 1160 | |
| 1161 | /* End of cfx.h file */ |
| 1162 | |
| 1163 | #define CFXSentByAcceptor (1 << 0) |
| 1164 | #define CFXSealed (1 << 1) |
| 1165 | #define CFXAcceptorSubkey (1 << 2) |
| 1166 | |
| 1167 | const gss_cfx_mic_token_desc mic_cfx_token = { |
| 1168 | .TOK_ID = "\x04\x04" , |
| 1169 | .Flags = 0, |
| 1170 | .Filler = "\xff\xff\xff\xff\xff" , |
| 1171 | .SND_SEQ = "\x00\x00\x00\x00\x00\x00\x00\x00" |
| 1172 | }; |
| 1173 | |
| 1174 | const gss_cfx_wrap_token_desc wrap_cfx_token = { |
| 1175 | .TOK_ID = "\x05\04" , |
| 1176 | .Flags = 0, |
| 1177 | .Filler = '\xff', |
| 1178 | .EC = "\x00\x00" , |
| 1179 | .RRC = "\x00\x00" , |
| 1180 | .SND_SEQ = "\x00\x00\x00\x00\x00\x00\x00\x00" |
| 1181 | }; |
| 1182 | |
| 1183 | static int |
| 1184 | gss_krb5_cfx_verify_mic_token(gss_ctx_id_t ctx, gss_cfx_mic_token token) |
| 1185 | { |
| 1186 | int i; |
| 1187 | lucid_context_t lctx = &ctx->gss_lucid_ctx; |
| 1188 | uint8_t flags = 0; |
| 1189 | |
| 1190 | if (token->TOK_ID[0] != mic_cfx_token.TOK_ID[0] || token->TOK_ID[1] != mic_cfx_token.TOK_ID[1]) { |
| 1191 | printf("Bad mic TOK_ID %x %x\n" , token->TOK_ID[0], token->TOK_ID[1]); |
| 1192 | return EBADRPC; |
| 1193 | } |
| 1194 | if (lctx->initiate) { |
| 1195 | flags |= CFXSentByAcceptor; |
| 1196 | } |
| 1197 | if (lctx->key_data.lucid_protocol_u.data_4121.acceptor_subkey) { |
| 1198 | flags |= CFXAcceptorSubkey; |
| 1199 | } |
| 1200 | if (token->Flags != flags) { |
| 1201 | printf("Bad flags received %x exptect %x\n" , token->Flags, flags); |
| 1202 | return EBADRPC; |
| 1203 | } |
| 1204 | for (i = 0; i < 5; i++) { |
| 1205 | if (token->Filler[i] != mic_cfx_token.Filler[i]) { |
| 1206 | break; |
| 1207 | } |
| 1208 | } |
| 1209 | |
| 1210 | if (i != 5) { |
| 1211 | printf("Bad mic filler %x @ %d\n" , token->Filler[i], i); |
| 1212 | return EBADRPC; |
| 1213 | } |
| 1214 | |
| 1215 | return 0; |
| 1216 | } |
| 1217 | |
| 1218 | uint32_t |
| 1219 | gss_krb5_cfx_get_mic(uint32_t *minor, /* minor_status */ |
| 1220 | gss_ctx_id_t ctx, /* context_handle */ |
| 1221 | gss_qop_t qop __unused, /* qop_req (ignored) */ |
| 1222 | gss_buffer_t mbp, /* message mbuf */ |
| 1223 | gss_buffer_t mic /* message_token */) |
| 1224 | { |
| 1225 | gss_cfx_mic_token_desc token; |
| 1226 | lucid_context_t lctx = &ctx->gss_lucid_ctx; |
| 1227 | crypto_ctx_t cctx = &ctx->gss_cryptor; |
| 1228 | gss_buffer_desc ; |
| 1229 | uint32_t rv; |
| 1230 | uint64_t seq = htonll(lctx->send_seq); |
| 1231 | |
| 1232 | if (minor == NULL) { |
| 1233 | minor = &rv; |
| 1234 | } |
| 1235 | *minor = 0; |
| 1236 | token = mic_cfx_token; |
| 1237 | mic->length = sizeof(token) + cctx->digest_size; |
| 1238 | mic->value = kalloc_data(mic->length, Z_WAITOK | Z_ZERO); |
| 1239 | if (!lctx->initiate) { |
| 1240 | token.Flags |= CFXSentByAcceptor; |
| 1241 | } |
| 1242 | if (lctx->key_data.lucid_protocol_u.data_4121.acceptor_subkey) { |
| 1243 | token.Flags |= CFXAcceptorSubkey; |
| 1244 | } |
| 1245 | memcpy(dst: &token.SND_SEQ, src: &seq, n: sizeof(lctx->send_seq)); |
| 1246 | lctx->send_seq++; //XXX should only update this below on success? Heimdal seems to do it this way |
| 1247 | header.value = &token; |
| 1248 | header.length = sizeof(gss_cfx_mic_token_desc); |
| 1249 | |
| 1250 | *minor = krb5_mic(ctx: cctx, NULL, bp: mbp, trailer: &header, mic: (uint8_t *)mic->value + sizeof(token), NULL, ikey: 0, reverse: 0); |
| 1251 | |
| 1252 | if (*minor) { |
| 1253 | mic->length = 0; |
| 1254 | kfree_data(mic->value, mic->length); |
| 1255 | } else { |
| 1256 | memcpy(dst: mic->value, src: &token, n: sizeof(token)); |
| 1257 | } |
| 1258 | |
| 1259 | return *minor ? GSS_S_FAILURE : GSS_S_COMPLETE; |
| 1260 | } |
| 1261 | |
| 1262 | uint32_t |
| 1263 | gss_krb5_cfx_get_mic_mbuf(uint32_t *minor, /* minor_status */ |
| 1264 | gss_ctx_id_t ctx, /* context_handle */ |
| 1265 | gss_qop_t qop __unused, /* qop_req (ignored) */ |
| 1266 | mbuf_t mbp, /* message mbuf */ |
| 1267 | size_t offset, /* offest */ |
| 1268 | size_t len, /* length */ |
| 1269 | gss_buffer_t mic /* message_token */) |
| 1270 | { |
| 1271 | gss_cfx_mic_token_desc token; |
| 1272 | lucid_context_t lctx = &ctx->gss_lucid_ctx; |
| 1273 | crypto_ctx_t cctx = &ctx->gss_cryptor; |
| 1274 | uint32_t rv; |
| 1275 | uint64_t seq = htonll(lctx->send_seq); |
| 1276 | gss_buffer_desc ; |
| 1277 | |
| 1278 | if (minor == NULL) { |
| 1279 | minor = &rv; |
| 1280 | } |
| 1281 | *minor = 0; |
| 1282 | |
| 1283 | token = mic_cfx_token; |
| 1284 | mic->length = sizeof(token) + cctx->digest_size; |
| 1285 | mic->value = kalloc_data(mic->length, Z_WAITOK | Z_ZERO); |
| 1286 | if (!lctx->initiate) { |
| 1287 | token.Flags |= CFXSentByAcceptor; |
| 1288 | } |
| 1289 | if (lctx->key_data.lucid_protocol_u.data_4121.acceptor_subkey) { |
| 1290 | token.Flags |= CFXAcceptorSubkey; |
| 1291 | } |
| 1292 | |
| 1293 | memcpy(dst: &token.SND_SEQ, src: &seq, n: sizeof(lctx->send_seq)); |
| 1294 | lctx->send_seq++; //XXX should only update this below on success? Heimdal seems to do it this way |
| 1295 | |
| 1296 | header.length = sizeof(token); |
| 1297 | header.value = &token; |
| 1298 | |
| 1299 | len = len ? len : gss_mbuf_len(mb: mbp, offset); |
| 1300 | *minor = krb5_mic_mbuf(ctx: cctx, NULL, mbp, offset, len, trailer: &header, mic: (uint8_t *)mic->value + sizeof(token), NULL, ikey: 0, reverse: 0); |
| 1301 | |
| 1302 | if (*minor) { |
| 1303 | mic->length = 0; |
| 1304 | kfree_data(mic->value, mic->length); |
| 1305 | } else { |
| 1306 | memcpy(dst: mic->value, src: &token, n: sizeof(token)); |
| 1307 | } |
| 1308 | |
| 1309 | return *minor ? GSS_S_FAILURE : GSS_S_COMPLETE; |
| 1310 | } |
| 1311 | |
| 1312 | |
| 1313 | uint32_t |
| 1314 | gss_krb5_cfx_verify_mic_mbuf(uint32_t *minor, /* minor_status */ |
| 1315 | gss_ctx_id_t ctx, /* context_handle */ |
| 1316 | mbuf_t mbp, /* message_buffer */ |
| 1317 | size_t offset, /* offset */ |
| 1318 | size_t len, /* length */ |
| 1319 | gss_buffer_t mic, /* message_token */ |
| 1320 | gss_qop_t *qop /* qop_state */) |
| 1321 | { |
| 1322 | gss_cfx_mic_token token = mic->value; |
| 1323 | lucid_context_t lctx = &ctx->gss_lucid_ctx; |
| 1324 | crypto_ctx_t cctx = &ctx->gss_cryptor; |
| 1325 | uint8_t *digest = (uint8_t *)mic->value + sizeof(gss_cfx_mic_token_desc); |
| 1326 | int verified; |
| 1327 | uint64_t seq; |
| 1328 | uint32_t rv; |
| 1329 | gss_buffer_desc ; |
| 1330 | |
| 1331 | if (qop) { |
| 1332 | *qop = GSS_C_QOP_DEFAULT; |
| 1333 | } |
| 1334 | |
| 1335 | if (minor == NULL) { |
| 1336 | minor = &rv; |
| 1337 | } |
| 1338 | |
| 1339 | *minor = gss_krb5_cfx_verify_mic_token(ctx, token); |
| 1340 | if (*minor) { |
| 1341 | return GSS_S_FAILURE; |
| 1342 | } |
| 1343 | |
| 1344 | header.length = sizeof(gss_cfx_mic_token_desc); |
| 1345 | header.value = mic->value; |
| 1346 | |
| 1347 | *minor = krb5_mic_mbuf(ctx: cctx, NULL, mbp, offset, len, trailer: &header, mic: digest, verify: &verified, ikey: 0, reverse: 0); |
| 1348 | if (*minor) { |
| 1349 | return GSS_S_FAILURE; |
| 1350 | } |
| 1351 | |
| 1352 | //XXX errors and such? Sequencing and replay? Not Supported RPCSEC_GSS |
| 1353 | memcpy(dst: &seq, src: token->SND_SEQ, n: sizeof(uint64_t)); |
| 1354 | seq = ntohll(seq); |
| 1355 | lctx->recv_seq = seq; |
| 1356 | |
| 1357 | return verified ? GSS_S_COMPLETE : GSS_S_BAD_SIG; |
| 1358 | } |
| 1359 | |
| 1360 | errno_t |
| 1361 | krb5_cfx_crypt_mbuf(crypto_ctx_t ctx, mbuf_t *mbp, size_t *len, int encrypt, int reverse) |
| 1362 | { |
| 1363 | const struct ccmode_cbc *ccmode = encrypt ? ctx->enc_mode : ctx->dec_mode; |
| 1364 | uint8_t *confounder = NULL; |
| 1365 | uint8_t *mpad = NULL; |
| 1366 | uint8_t digest[CRYPTO_MAX_DIGSET_SIZE]; |
| 1367 | size_t tlen, r = 0; |
| 1368 | errno_t error; |
| 1369 | |
| 1370 | confounder = kalloc_data(ccmode->block_size, Z_WAITOK | Z_ZERO); |
| 1371 | if (confounder == NULL) { |
| 1372 | error = ENOMEM; |
| 1373 | goto out; |
| 1374 | } |
| 1375 | if (encrypt) { |
| 1376 | assert(ccmode->block_size <= UINT_MAX); |
| 1377 | read_random(buffer: confounder, numBytes: (u_int)ccmode->block_size); |
| 1378 | error = gss_prepend_mbuf(chain: mbp, bytes: confounder, size: ccmode->block_size); |
| 1379 | if (error) { |
| 1380 | goto out; |
| 1381 | } |
| 1382 | tlen = *len + ccmode->block_size; |
| 1383 | if (ctx->mpad > 1) { |
| 1384 | r = ctx->mpad - (tlen % ctx->mpad); |
| 1385 | } |
| 1386 | /* We expect that r == 0 from krb5_cfx_wrap */ |
| 1387 | if (r != 0) { |
| 1388 | mpad = kalloc_data(r, Z_WAITOK | Z_ZERO); |
| 1389 | if (mpad == NULL) { |
| 1390 | error = ENOMEM; |
| 1391 | goto out; |
| 1392 | } |
| 1393 | error = gss_append_mbuf(chain: *mbp, bytes: mpad, size: r); |
| 1394 | if (error) { |
| 1395 | goto out; |
| 1396 | } |
| 1397 | } |
| 1398 | tlen += r; |
| 1399 | error = krb5_mic_mbuf(ctx, NULL, mbp: *mbp, offset: 0, len: tlen, NULL, mic: digest, NULL, ikey: 1, reverse: 0); |
| 1400 | if (error) { |
| 1401 | goto out; |
| 1402 | } |
| 1403 | error = krb5_crypt_mbuf(ctx, mbp, len: tlen, encrypt: 1, NULL); |
| 1404 | if (error) { |
| 1405 | goto out; |
| 1406 | } |
| 1407 | error = gss_append_mbuf(chain: *mbp, bytes: digest, size: ctx->digest_size); |
| 1408 | if (error) { |
| 1409 | goto out; |
| 1410 | } |
| 1411 | *len = tlen + ctx->digest_size; |
| 1412 | error = 0; |
| 1413 | goto out; |
| 1414 | } else { |
| 1415 | int verf; |
| 1416 | cccbc_ctx *ks = NULL; |
| 1417 | |
| 1418 | if (*len < ctx->digest_size + sizeof(confounder)) { |
| 1419 | error = EBADRPC; |
| 1420 | goto out; |
| 1421 | } |
| 1422 | tlen = *len - ctx->digest_size; |
| 1423 | /* get the digest */ |
| 1424 | error = mbuf_copydata(mbuf: *mbp, offset: tlen, length: ctx->digest_size, out_data: digest); |
| 1425 | /* Remove the digest from the mbuffer */ |
| 1426 | error = gss_strip_mbuf(chain: *mbp, size: -ctx->digest_size); |
| 1427 | if (error) { |
| 1428 | goto out; |
| 1429 | } |
| 1430 | |
| 1431 | if (reverse) { |
| 1432 | /* |
| 1433 | * Derive a key schedule that the sender can unwrap with. This |
| 1434 | * is so that RPCSEC_GSS can restore encrypted arguments for |
| 1435 | * resending. We do that because the RPCSEC_GSS sequence number in |
| 1436 | * the rpc header is prepended to the body of the message before wrapping. |
| 1437 | */ |
| 1438 | krb5_key_t ekey; |
| 1439 | uint8_t usage_string[KRB5_USAGE_LEN]; |
| 1440 | lucid_context_t lctx = ctx->gss_ctx; |
| 1441 | |
| 1442 | krb5_make_usage(usage_no: lctx->initiate ? |
| 1443 | KRB5_USAGE_INITIATOR_SEAL : KRB5_USAGE_ACCEPTOR_SEAL, |
| 1444 | suffix: 0xAA, usage_string); |
| 1445 | krb5_key_derivation(ctx, cons: usage_string, KRB5_USAGE_LEN, dkey: &ekey, dklen: ctx->keylen); |
| 1446 | ks = kalloc_data(ctx->dec_mode->size, Z_WAITOK | Z_ZERO); |
| 1447 | cccbc_init(mode: ctx->dec_mode, ctx: ks, key_len: ctx->keylen, key: ekey.key_val); |
| 1448 | gss_krb5_key_free(krb_key: &ekey, free: 1); |
| 1449 | } |
| 1450 | error = krb5_crypt_mbuf(ctx, mbp, len: tlen, encrypt: 0, ks); |
| 1451 | kfree_data(ks, ctx->dec_mode->size); |
| 1452 | if (error) { |
| 1453 | goto out; |
| 1454 | } |
| 1455 | error = krb5_mic_mbuf(ctx, NULL, mbp: *mbp, offset: 0, len: tlen, NULL, mic: digest, verify: &verf, ikey: 1, reverse); |
| 1456 | if (error) { |
| 1457 | goto out; |
| 1458 | } |
| 1459 | if (!verf) { |
| 1460 | error = EBADRPC; |
| 1461 | goto out; |
| 1462 | } |
| 1463 | /* strip off the confounder */ |
| 1464 | assert(ccmode->block_size <= INT_MAX); |
| 1465 | error = gss_strip_mbuf(chain: *mbp, size: (int)ccmode->block_size); |
| 1466 | if (error) { |
| 1467 | goto out; |
| 1468 | } |
| 1469 | *len = tlen - ccmode->block_size; |
| 1470 | } |
| 1471 | |
| 1472 | error = 0; |
| 1473 | out: |
| 1474 | kfree_data(mpad, r); |
| 1475 | kfree_data(confounder, ccmode->block_size); |
| 1476 | return error; |
| 1477 | } |
| 1478 | |
| 1479 | uint32_t |
| 1480 | gss_krb5_cfx_wrap_mbuf(uint32_t *minor, /* minor_status */ |
| 1481 | gss_ctx_id_t ctx, /* context_handle */ |
| 1482 | int conf_flag, /* conf_req_flag */ |
| 1483 | gss_qop_t qop __unused, /* qop_req */ |
| 1484 | mbuf_t *mbp, /* input/output message_buffer */ |
| 1485 | size_t len, /* mbuf chain length */ |
| 1486 | int *conf /* conf_state */) |
| 1487 | { |
| 1488 | gss_cfx_wrap_token_desc token; |
| 1489 | lucid_context_t lctx = &ctx->gss_lucid_ctx; |
| 1490 | crypto_ctx_t cctx = &ctx->gss_cryptor; |
| 1491 | int error = 0; |
| 1492 | uint32_t mv; |
| 1493 | uint64_t seq = htonll(lctx->send_seq); |
| 1494 | |
| 1495 | if (minor == NULL) { |
| 1496 | minor = &mv; |
| 1497 | } |
| 1498 | if (conf) { |
| 1499 | *conf = conf_flag; |
| 1500 | } |
| 1501 | |
| 1502 | *minor = 0; |
| 1503 | token = wrap_cfx_token; |
| 1504 | if (!lctx->initiate) { |
| 1505 | token.Flags |= CFXSentByAcceptor; |
| 1506 | } |
| 1507 | if (lctx->key_data.lucid_protocol_u.data_4121.acceptor_subkey) { |
| 1508 | token.Flags |= CFXAcceptorSubkey; |
| 1509 | } |
| 1510 | memcpy(dst: &token.SND_SEQ, src: &seq, n: sizeof(uint64_t)); |
| 1511 | lctx->send_seq++; |
| 1512 | if (conf_flag) { |
| 1513 | uint8_t *pad = NULL; |
| 1514 | size_t plen = 0; |
| 1515 | |
| 1516 | pad = kalloc_data(cctx->mpad, Z_WAITOK | Z_ZERO); |
| 1517 | if (pad == NULL) { |
| 1518 | *minor = ENOMEM; |
| 1519 | return GSS_S_FAILURE; |
| 1520 | } |
| 1521 | token.Flags |= CFXSealed; |
| 1522 | if (cctx->mpad > 1) { |
| 1523 | size_t val = cctx->mpad - ((len + sizeof(gss_cfx_wrap_token_desc)) % cctx->mpad); |
| 1524 | plen = sizeof(val) > sizeof(uint32_t) ? htonll(val) : htonl(val); |
| 1525 | token.EC[0] = ((plen >> 8) & 0xff); |
| 1526 | token.EC[1] = (plen & 0xff); |
| 1527 | } |
| 1528 | if (plen) { |
| 1529 | error = gss_append_mbuf(chain: *mbp, bytes: pad, size: plen); |
| 1530 | len += plen; |
| 1531 | } |
| 1532 | if (error == 0) { |
| 1533 | error = gss_append_mbuf(chain: *mbp, bytes: (uint8_t *)&token, size: sizeof(gss_cfx_wrap_token_desc)); |
| 1534 | len += sizeof(gss_cfx_wrap_token_desc); |
| 1535 | } |
| 1536 | if (error == 0) { |
| 1537 | error = krb5_cfx_crypt_mbuf(ctx: cctx, mbp, len: &len, encrypt: 1, reverse: 0); |
| 1538 | } |
| 1539 | if (error == 0) { |
| 1540 | error = gss_prepend_mbuf(chain: mbp, bytes: (uint8_t *)&token, size: sizeof(gss_cfx_wrap_token_desc)); |
| 1541 | } |
| 1542 | kfree_data(pad, cctx->mpad); |
| 1543 | } else { |
| 1544 | uint8_t digest[CRYPTO_MAX_DIGSET_SIZE]; |
| 1545 | gss_buffer_desc ; |
| 1546 | |
| 1547 | header.length = sizeof(token); |
| 1548 | header.value = &token; |
| 1549 | |
| 1550 | error = krb5_mic_mbuf(ctx: cctx, NULL, mbp: *mbp, offset: 0, len, trailer: &header, mic: digest, NULL, ikey: 1, reverse: 0); |
| 1551 | if (error == 0) { |
| 1552 | error = gss_append_mbuf(chain: *mbp, bytes: digest, size: cctx->digest_size); |
| 1553 | if (error == 0) { |
| 1554 | uint32_t plen = htonl(cctx->digest_size); |
| 1555 | memcpy(dst: token.EC, src: &plen, n: 2); |
| 1556 | error = gss_prepend_mbuf(chain: mbp, bytes: (uint8_t *)&token, size: sizeof(gss_cfx_wrap_token_desc)); |
| 1557 | } |
| 1558 | } |
| 1559 | } |
| 1560 | if (error) { |
| 1561 | *minor = error; |
| 1562 | return GSS_S_FAILURE; |
| 1563 | } |
| 1564 | |
| 1565 | return GSS_S_COMPLETE; |
| 1566 | } |
| 1567 | |
| 1568 | /* |
| 1569 | * Given a wrap token the has a rrc, move the trailer back to the end. |
| 1570 | */ |
| 1571 | static void |
| 1572 | gss_krb5_cfx_unwrap_rrc_mbuf(mbuf_t , size_t rrc) |
| 1573 | { |
| 1574 | mbuf_t body, trailer; |
| 1575 | |
| 1576 | gss_normalize_mbuf(chain: header, offset: sizeof(gss_cfx_wrap_token_desc), subchain_length: &rrc, subchain: &trailer, tail: &body, join: 0); |
| 1577 | gss_join_mbuf(head: header, body, tail: trailer); |
| 1578 | } |
| 1579 | |
| 1580 | uint32_t |
| 1581 | gss_krb5_cfx_unwrap_mbuf(uint32_t * minor, /* minor_status */ |
| 1582 | gss_ctx_id_t ctx, /* context_handle */ |
| 1583 | mbuf_t *mbp, /* input/output message_buffer */ |
| 1584 | size_t len, /* mbuf chain length */ |
| 1585 | int *conf_flag, /* conf_state */ |
| 1586 | gss_qop_t *qop /* qop state */) |
| 1587 | { |
| 1588 | gss_cfx_wrap_token_desc token; |
| 1589 | lucid_context_t lctx = &ctx->gss_lucid_ctx; |
| 1590 | crypto_ctx_t cctx = &ctx->gss_cryptor; |
| 1591 | int error, conf; |
| 1592 | uint32_t ec = 0, rrc = 0; |
| 1593 | uint64_t seq; |
| 1594 | int reverse = (*qop == GSS_C_QOP_REVERSE); |
| 1595 | int initiate = lctx->initiate ? (reverse ? 0 : 1) : (reverse ? 1 : 0); |
| 1596 | |
| 1597 | error = mbuf_copydata(mbuf: *mbp, offset: 0, length: sizeof(gss_cfx_wrap_token_desc), out_data: &token); |
| 1598 | gss_strip_mbuf(chain: *mbp, size: sizeof(gss_cfx_wrap_token_desc)); |
| 1599 | len -= sizeof(gss_cfx_wrap_token_desc); |
| 1600 | |
| 1601 | /* Check for valid token */ |
| 1602 | if (token.TOK_ID[0] != wrap_cfx_token.TOK_ID[0] || |
| 1603 | token.TOK_ID[1] != wrap_cfx_token.TOK_ID[1] || |
| 1604 | token.Filler != wrap_cfx_token.Filler) { |
| 1605 | printf("Token id does not match\n" ); |
| 1606 | goto badrpc; |
| 1607 | } |
| 1608 | if ((initiate && !(token.Flags & CFXSentByAcceptor)) || |
| 1609 | (lctx->key_data.lucid_protocol_u.data_4121.acceptor_subkey && !(token.Flags & CFXAcceptorSubkey))) { |
| 1610 | printf("Bad flags %x\n" , token.Flags); |
| 1611 | goto badrpc; |
| 1612 | } |
| 1613 | |
| 1614 | /* XXX Sequence replay detection */ |
| 1615 | memcpy(dst: &seq, src: token.SND_SEQ, n: sizeof(seq)); |
| 1616 | seq = ntohll(seq); |
| 1617 | lctx->recv_seq = seq; |
| 1618 | |
| 1619 | ec = (token.EC[0] << 8) | token.EC[1]; |
| 1620 | rrc = (token.RRC[0] << 8) | token.RRC[1]; |
| 1621 | *qop = GSS_C_QOP_DEFAULT; |
| 1622 | conf = ((token.Flags & CFXSealed) == CFXSealed); |
| 1623 | if (conf_flag) { |
| 1624 | *conf_flag = conf; |
| 1625 | } |
| 1626 | if (conf) { |
| 1627 | gss_cfx_wrap_token_desc etoken; |
| 1628 | |
| 1629 | if (rrc) { /* Handle Right rotation count */ |
| 1630 | gss_krb5_cfx_unwrap_rrc_mbuf(header: *mbp, rrc); |
| 1631 | } |
| 1632 | error = krb5_cfx_crypt_mbuf(ctx: cctx, mbp, len: &len, encrypt: 0, reverse); |
| 1633 | if (error) { |
| 1634 | printf("krb5_cfx_crypt_mbuf %d\n" , error); |
| 1635 | *minor = error; |
| 1636 | return GSS_S_FAILURE; |
| 1637 | } |
| 1638 | if (len >= sizeof(gss_cfx_wrap_token_desc)) { |
| 1639 | len -= sizeof(gss_cfx_wrap_token_desc); |
| 1640 | } else { |
| 1641 | goto badrpc; |
| 1642 | } |
| 1643 | mbuf_copydata(mbuf: *mbp, offset: len, length: sizeof(gss_cfx_wrap_token_desc), out_data: &etoken); |
| 1644 | /* Verify etoken with the token wich should be the same, except the rc field is always zero */ |
| 1645 | token.RRC[0] = token.RRC[1] = 0; |
| 1646 | if (memcmp(s1: &token, s2: &etoken, n: sizeof(gss_cfx_wrap_token_desc)) != 0) { |
| 1647 | printf("Encrypted token mismach\n" ); |
| 1648 | goto badrpc; |
| 1649 | } |
| 1650 | /* strip the encrypted token and any pad bytes */ |
| 1651 | gss_strip_mbuf(chain: *mbp, size: -(sizeof(gss_cfx_wrap_token_desc) + ec)); |
| 1652 | len -= (sizeof(gss_cfx_wrap_token_desc) + ec); |
| 1653 | } else { |
| 1654 | uint8_t digest[CRYPTO_MAX_DIGSET_SIZE]; |
| 1655 | int verf; |
| 1656 | gss_buffer_desc ; |
| 1657 | |
| 1658 | if (ec != cctx->digest_size || len >= cctx->digest_size) { |
| 1659 | goto badrpc; |
| 1660 | } |
| 1661 | len -= cctx->digest_size; |
| 1662 | mbuf_copydata(mbuf: *mbp, offset: len, length: cctx->digest_size, out_data: digest); |
| 1663 | gss_strip_mbuf(chain: *mbp, size: -cctx->digest_size); |
| 1664 | /* When calculating the mic header fields ec and rcc must be zero */ |
| 1665 | token.EC[0] = token.EC[1] = token.RRC[0] = token.RRC[1] = 0; |
| 1666 | header.value = &token; |
| 1667 | header.length = sizeof(gss_cfx_wrap_token_desc); |
| 1668 | error = krb5_mic_mbuf(ctx: cctx, NULL, mbp: *mbp, offset: 0, len, trailer: &header, mic: digest, verify: &verf, ikey: 1, reverse); |
| 1669 | if (error) { |
| 1670 | goto badrpc; |
| 1671 | } |
| 1672 | } |
| 1673 | return GSS_S_COMPLETE; |
| 1674 | |
| 1675 | badrpc: |
| 1676 | *minor = EBADRPC; |
| 1677 | return GSS_S_FAILURE; |
| 1678 | } |
| 1679 | |
| 1680 | /* |
| 1681 | * RFC 1964 3DES support |
| 1682 | */ |
| 1683 | |
| 1684 | typedef struct gss_1964_mic_token_desc_struct { |
| 1685 | uint8_t TOK_ID[2]; /* 01 01 */ |
| 1686 | uint8_t Sign_Alg[2]; |
| 1687 | uint8_t Filler[4]; /* ff ff ff ff */ |
| 1688 | } gss_1964_mic_token_desc, *gss_1964_mic_token; |
| 1689 | |
| 1690 | typedef struct gss_1964_wrap_token_desc_struct { |
| 1691 | uint8_t TOK_ID[2]; /* 02 01 */ |
| 1692 | uint8_t Sign_Alg[2]; |
| 1693 | uint8_t Seal_Alg[2]; |
| 1694 | uint8_t Filler[2]; /* ff ff */ |
| 1695 | } gss_1964_wrap_token_desc, *gss_1964_wrap_token; |
| 1696 | |
| 1697 | typedef struct gss_1964_delete_token_desc_struct { |
| 1698 | uint8_t TOK_ID[2]; /* 01 02 */ |
| 1699 | uint8_t Sign_Alg[2]; |
| 1700 | uint8_t Filler[4]; /* ff ff ff ff */ |
| 1701 | } gss_1964_delete_token_desc, *gss_1964_delete_token; |
| 1702 | |
| 1703 | typedef struct { |
| 1704 | uint8_t ; /* 0x60 Application 0 constructed */ |
| 1705 | uint8_t []; /* Variable Der length */ |
| 1706 | } , *; |
| 1707 | |
| 1708 | typedef union { |
| 1709 | gss_1964_mic_token_desc mic_tok; |
| 1710 | gss_1964_wrap_token_desc wrap_tok; |
| 1711 | gss_1964_delete_token_desc del_tok; |
| 1712 | } gss_1964_tok_type __attribute__((transparent_union)); |
| 1713 | |
| 1714 | typedef struct gss_1964_token_body_struct { |
| 1715 | uint8_t OIDType; /* 0x06 */ |
| 1716 | uint8_t OIDLen; /* 0x09 */ |
| 1717 | uint8_t kerb_mech[9]; /* Der Encode kerberos mech 1.2.840.113554.1.2.2 |
| 1718 | * 0x2a, 0x86, 0x48, 0x86, 0xf7, 0x12, 0x01, 0x02, 0x02 */ |
| 1719 | gss_1964_tok_type body; |
| 1720 | uint8_t SND_SEQ[8]; |
| 1721 | uint8_t Hash[]; /* Mic */ |
| 1722 | } gss_1964_token_body_desc, *gss_1964_token_body; |
| 1723 | |
| 1724 | |
| 1725 | gss_1964_header_desc = { |
| 1726 | .App0 = 0x60 |
| 1727 | }; |
| 1728 | |
| 1729 | gss_1964_mic_token_desc mic_1964_token = { |
| 1730 | .TOK_ID = "\x01\x01" , |
| 1731 | .Filler = "\xff\xff\xff\xff" |
| 1732 | }; |
| 1733 | |
| 1734 | gss_1964_wrap_token_desc wrap_1964_token = { |
| 1735 | .TOK_ID = "\x02\x01" , |
| 1736 | .Filler = "\xff\xff" |
| 1737 | }; |
| 1738 | |
| 1739 | gss_1964_delete_token_desc del_1964_token = { |
| 1740 | .TOK_ID = "\x01\x01" , |
| 1741 | .Filler = "\xff\xff\xff\xff" |
| 1742 | }; |
| 1743 | |
| 1744 | gss_1964_token_body_desc body_1964_token = { |
| 1745 | .OIDType = 0x06, |
| 1746 | .OIDLen = 0x09, |
| 1747 | .kerb_mech = "\x2a\x86\x48\x86\xf7\x12\x01\x02\x02" , |
| 1748 | }; |
| 1749 | |
| 1750 | #define GSS_KRB5_3DES_MAXTOKSZ (sizeof(gss_1964_header_desc) + 5 /* max der length supported */ + sizeof(gss_1964_token_body_desc)) |
| 1751 | |
| 1752 | uint32_t gss_krb5_3des_get_mic(uint32_t *, gss_ctx_id_t, gss_qop_t, gss_buffer_t, gss_buffer_t); |
| 1753 | uint32_t gss_krb5_3des_get_mic_mbuf(uint32_t *, gss_ctx_id_t, gss_qop_t, mbuf_t, size_t, size_t, gss_buffer_t); |
| 1754 | uint32_t gss_krb5_3des_verify_mic_mbuf(uint32_t *, gss_ctx_id_t, mbuf_t, size_t, size_t, gss_buffer_t, gss_qop_t *); |
| 1755 | uint32_t gss_krb5_3des_wrap_mbuf(uint32_t *, gss_ctx_id_t, int, gss_qop_t, mbuf_t *, size_t, int *); |
| 1756 | uint32_t gss_krb5_3des_unwrap_mbuf(uint32_t *, gss_ctx_id_t, mbuf_t *, size_t, int *, gss_qop_t *); |
| 1757 | |
| 1758 | /* |
| 1759 | * Decode an ASN.1 DER length field |
| 1760 | */ |
| 1761 | static ssize_t |
| 1762 | gss_krb5_der_length_get(uint8_t **pp) |
| 1763 | { |
| 1764 | uint8_t *p = *pp; |
| 1765 | uint32_t flen, len = 0; |
| 1766 | |
| 1767 | flen = *p & 0x7f; |
| 1768 | |
| 1769 | if (*p++ & 0x80) { |
| 1770 | if (flen > sizeof(uint32_t)) { |
| 1771 | return -1; |
| 1772 | } |
| 1773 | while (flen--) { |
| 1774 | len = (len << 8) + *p++; |
| 1775 | } |
| 1776 | } else { |
| 1777 | len = flen; |
| 1778 | } |
| 1779 | *pp = p; |
| 1780 | return len; |
| 1781 | } |
| 1782 | |
| 1783 | /* |
| 1784 | * Determine size of ASN.1 DER length |
| 1785 | */ |
| 1786 | static int |
| 1787 | gss_krb5_der_length_size(size_t len) |
| 1788 | { |
| 1789 | return |
| 1790 | len < (1 << 7) ? 1 : |
| 1791 | len < (1 << 8) ? 2 : |
| 1792 | len < (1 << 16) ? 3 : |
| 1793 | len < (1 << 24) ? 4 : 5; |
| 1794 | } |
| 1795 | |
| 1796 | /* |
| 1797 | * Encode an ASN.1 DER length field |
| 1798 | */ |
| 1799 | static void |
| 1800 | gss_krb5_der_length_put(uint8_t **pp, size_t len) |
| 1801 | { |
| 1802 | int sz = gss_krb5_der_length_size(len); |
| 1803 | uint8_t *p = *pp; |
| 1804 | |
| 1805 | if (sz == 1) { |
| 1806 | *p++ = (uint8_t) len; |
| 1807 | } else { |
| 1808 | *p++ = (uint8_t) ((sz - 1) | 0x80); |
| 1809 | sz -= 1; |
| 1810 | while (sz--) { |
| 1811 | *p++ = (uint8_t) ((len >> (sz * 8)) & 0xff); |
| 1812 | } |
| 1813 | } |
| 1814 | |
| 1815 | *pp = p; |
| 1816 | } |
| 1817 | |
| 1818 | static void |
| 1819 | gss_krb5_3des_token_put(gss_ctx_id_t ctx, gss_1964_tok_type body, gss_buffer_t hash, size_t datalen, gss_buffer_t des3_token) |
| 1820 | { |
| 1821 | gss_1964_header token; |
| 1822 | gss_1964_token_body tokbody; |
| 1823 | lucid_context_t lctx = &ctx->gss_lucid_ctx; |
| 1824 | crypto_ctx_t cctx = &ctx->gss_cryptor; |
| 1825 | uint32_t seq = (uint32_t) (lctx->send_seq++ & 0xffff); |
| 1826 | size_t toklen = sizeof(gss_1964_token_body_desc) + cctx->digest_size; |
| 1827 | size_t alloclen = toklen + sizeof(gss_1964_header_desc) + gss_krb5_der_length_size(len: toklen + datalen); |
| 1828 | uint8_t *tokptr; |
| 1829 | |
| 1830 | token = kalloc_data(alloclen, Z_WAITOK | Z_ZERO); |
| 1831 | *token = tok_1964_header; |
| 1832 | tokptr = token->AppLen; |
| 1833 | gss_krb5_der_length_put(pp: &tokptr, len: toklen + datalen); |
| 1834 | tokbody = (gss_1964_token_body)tokptr; |
| 1835 | *tokbody = body_1964_token; /* Initalize the token body */ |
| 1836 | tokbody->body = body; /* and now set the body to the token type passed in */ |
| 1837 | seq = htonl(seq); |
| 1838 | for (int i = 0; i < 4; i++) { |
| 1839 | tokbody->SND_SEQ[i] = (uint8_t)((seq >> (i * 8)) & 0xff); |
| 1840 | } |
| 1841 | for (int i = 4; i < 8; i++) { |
| 1842 | tokbody->SND_SEQ[i] = lctx->initiate ? 0x00 : 0xff; |
| 1843 | } |
| 1844 | |
| 1845 | size_t blocksize = cctx->enc_mode->block_size; |
| 1846 | cccbc_iv_decl(blocksize, iv); |
| 1847 | cccbc_ctx_decl(cctx->enc_mode->size, enc_ctx); |
| 1848 | cccbc_set_iv(mode: cctx->enc_mode, iv_ctx: iv, iv: hash->value); |
| 1849 | cccbc_init(mode: cctx->enc_mode, ctx: enc_ctx, key_len: cctx->keylen, key: cctx->key); |
| 1850 | cccbc_update(mode: cctx->enc_mode, ctx: enc_ctx, iv, nblocks: 1, in: tokbody->SND_SEQ, out: tokbody->SND_SEQ); |
| 1851 | |
| 1852 | assert(hash->length == cctx->digest_size); |
| 1853 | memcpy(dst: tokbody->Hash, src: hash->value, n: hash->length); |
| 1854 | des3_token->length = alloclen; |
| 1855 | des3_token->value = token; |
| 1856 | } |
| 1857 | |
| 1858 | static int |
| 1859 | gss_krb5_3des_token_get(gss_ctx_id_t ctx, gss_buffer_t intok, |
| 1860 | gss_1964_tok_type body, gss_buffer_t hash, size_t *offset, size_t *len, int reverse) |
| 1861 | { |
| 1862 | gss_1964_header token = intok->value; |
| 1863 | gss_1964_token_body tokbody; |
| 1864 | lucid_context_t lctx = &ctx->gss_lucid_ctx; |
| 1865 | crypto_ctx_t cctx = &ctx->gss_cryptor; |
| 1866 | ssize_t length; |
| 1867 | size_t toklen; |
| 1868 | uint8_t *tokptr; |
| 1869 | uint32_t seq; |
| 1870 | int initiate; |
| 1871 | |
| 1872 | if (token->App0 != tok_1964_header.App0) { |
| 1873 | printf("%s: bad framing\n" , __func__); |
| 1874 | printgbuf(str: __func__, buf: intok); |
| 1875 | return EBADRPC; |
| 1876 | } |
| 1877 | tokptr = token->AppLen; |
| 1878 | length = gss_krb5_der_length_get(pp: &tokptr); |
| 1879 | if (length < 0) { |
| 1880 | printf("%s: invalid length\n" , __func__); |
| 1881 | printgbuf(str: __func__, buf: intok); |
| 1882 | return EBADRPC; |
| 1883 | } |
| 1884 | toklen = sizeof(gss_1964_header_desc) + gss_krb5_der_length_size(len: length) |
| 1885 | + sizeof(gss_1964_token_body_desc); |
| 1886 | |
| 1887 | if (intok->length < toklen + cctx->digest_size) { |
| 1888 | printf("%s: token to short" , __func__); |
| 1889 | printf("toklen = %d, length = %d\n" , (int)toklen, (int)length); |
| 1890 | printgbuf(str: __func__, buf: intok); |
| 1891 | return EBADRPC; |
| 1892 | } |
| 1893 | |
| 1894 | if (offset) { |
| 1895 | *offset = toklen + cctx->digest_size; |
| 1896 | } |
| 1897 | |
| 1898 | if (len) { |
| 1899 | *len = length - sizeof(gss_1964_token_body_desc) - cctx->digest_size; |
| 1900 | } |
| 1901 | |
| 1902 | tokbody = (gss_1964_token_body)tokptr; |
| 1903 | if (tokbody->OIDType != body_1964_token.OIDType || |
| 1904 | tokbody->OIDLen != body_1964_token.OIDLen || |
| 1905 | memcmp(s1: tokbody->kerb_mech, s2: body_1964_token.kerb_mech, n: tokbody->OIDLen) != 0) { |
| 1906 | printf("%s: Invalid mechanism\n" , __func__); |
| 1907 | printgbuf(str: __func__, buf: intok); |
| 1908 | return EBADRPC; |
| 1909 | } |
| 1910 | if (memcmp(s1: &tokbody->body, s2: &body, n: sizeof(gss_1964_tok_type)) != 0) { |
| 1911 | printf("%s: Invalid body\n" , __func__); |
| 1912 | printgbuf(str: __func__, buf: intok); |
| 1913 | return EBADRPC; |
| 1914 | } |
| 1915 | size_t blocksize = cctx->enc_mode->block_size; |
| 1916 | uint8_t *block = tokbody->SND_SEQ; |
| 1917 | |
| 1918 | assert(blocksize == sizeof(tokbody->SND_SEQ)); |
| 1919 | cccbc_iv_decl(blocksize, iv); |
| 1920 | cccbc_ctx_decl(cctx->dec_mode->size, dec_ctx); |
| 1921 | cccbc_set_iv(mode: cctx->dec_mode, iv_ctx: iv, iv: tokbody->Hash); |
| 1922 | cccbc_init(mode: cctx->dec_mode, ctx: dec_ctx, key_len: cctx->keylen, key: cctx->key); |
| 1923 | cccbc_update(mode: cctx->dec_mode, ctx: dec_ctx, iv, nblocks: 1, in: block, out: block); |
| 1924 | |
| 1925 | initiate = lctx->initiate ? (reverse ? 0 : 1) : (reverse ? 1 : 0); |
| 1926 | for (int i = 4; i < 8; i++) { |
| 1927 | if (tokbody->SND_SEQ[i] != (initiate ? 0xff : 0x00)) { |
| 1928 | printf("%s: Invalid des mac\n" , __func__); |
| 1929 | printgbuf(str: __func__, buf: intok); |
| 1930 | return EAUTH; |
| 1931 | } |
| 1932 | } |
| 1933 | |
| 1934 | memcpy(dst: &seq, src: tokbody->SND_SEQ, n: sizeof(uint32_t)); |
| 1935 | |
| 1936 | lctx->recv_seq = ntohl(seq); |
| 1937 | |
| 1938 | assert(hash->length >= cctx->digest_size); |
| 1939 | memcpy(dst: hash->value, src: tokbody->Hash, n: cctx->digest_size); |
| 1940 | |
| 1941 | return 0; |
| 1942 | } |
| 1943 | |
| 1944 | uint32_t |
| 1945 | gss_krb5_3des_get_mic(uint32_t *minor, /* minor status */ |
| 1946 | gss_ctx_id_t ctx, /* krb5 context id */ |
| 1947 | gss_qop_t qop __unused, /* qop_req (ignored) */ |
| 1948 | gss_buffer_t mbp, /* message buffer in */ |
| 1949 | gss_buffer_t mic) /* mic token out */ |
| 1950 | { |
| 1951 | gss_1964_mic_token_desc tokbody = mic_1964_token; |
| 1952 | crypto_ctx_t cctx = &ctx->gss_cryptor; |
| 1953 | gss_buffer_desc hash; |
| 1954 | gss_buffer_desc ; |
| 1955 | uint8_t hashval[CRYPTO_MAX_DIGSET_SIZE]; |
| 1956 | |
| 1957 | hash.length = cctx->digest_size; |
| 1958 | hash.value = hashval; |
| 1959 | tokbody.Sign_Alg[0] = 0x04; /* lctx->keydata.lucid_protocol_u.data_1964.sign_alg */ |
| 1960 | tokbody.Sign_Alg[1] = 0x00; |
| 1961 | header.length = sizeof(gss_1964_mic_token_desc); |
| 1962 | header.value = &tokbody; |
| 1963 | |
| 1964 | /* Hash the data */ |
| 1965 | *minor = krb5_mic(ctx: cctx, header: &header, bp: mbp, NULL, mic: hashval, NULL, ikey: 0, reverse: 0); |
| 1966 | if (*minor) { |
| 1967 | return GSS_S_FAILURE; |
| 1968 | } |
| 1969 | |
| 1970 | /* Make the token */ |
| 1971 | gss_krb5_3des_token_put(ctx, body: tokbody, hash: &hash, datalen: 0, des3_token: mic); |
| 1972 | |
| 1973 | return GSS_S_COMPLETE; |
| 1974 | } |
| 1975 | |
| 1976 | uint32_t |
| 1977 | gss_krb5_3des_get_mic_mbuf(uint32_t *minor, |
| 1978 | gss_ctx_id_t ctx, |
| 1979 | gss_qop_t qop __unused, |
| 1980 | mbuf_t mbp, |
| 1981 | size_t offset, |
| 1982 | size_t len, |
| 1983 | gss_buffer_t mic) |
| 1984 | { |
| 1985 | gss_1964_mic_token_desc tokbody = mic_1964_token; |
| 1986 | crypto_ctx_t cctx = &ctx->gss_cryptor; |
| 1987 | gss_buffer_desc ; |
| 1988 | gss_buffer_desc hash; |
| 1989 | uint8_t hashval[CRYPTO_MAX_DIGSET_SIZE]; |
| 1990 | |
| 1991 | hash.length = cctx->digest_size; |
| 1992 | hash.value = hashval; |
| 1993 | tokbody.Sign_Alg[0] = 0x04; /* lctx->key_data.lucid_protocol_u.data_4121.sign_alg */ |
| 1994 | tokbody.Sign_Alg[1] = 0x00; |
| 1995 | header.length = sizeof(gss_1964_mic_token_desc); |
| 1996 | header.value = &tokbody; |
| 1997 | |
| 1998 | /* Hash the data */ |
| 1999 | *minor = krb5_mic_mbuf(ctx: cctx, header: &header, mbp, offset, len, NULL, mic: hashval, NULL, ikey: 0, reverse: 0); |
| 2000 | if (*minor) { |
| 2001 | return GSS_S_FAILURE; |
| 2002 | } |
| 2003 | |
| 2004 | /* Make the token */ |
| 2005 | gss_krb5_3des_token_put(ctx, body: tokbody, hash: &hash, datalen: 0, des3_token: mic); |
| 2006 | |
| 2007 | return GSS_S_COMPLETE; |
| 2008 | } |
| 2009 | |
| 2010 | uint32_t |
| 2011 | gss_krb5_3des_verify_mic_mbuf(uint32_t *minor, |
| 2012 | gss_ctx_id_t ctx, |
| 2013 | mbuf_t mbp, |
| 2014 | size_t offset, |
| 2015 | size_t len, |
| 2016 | gss_buffer_t mic, |
| 2017 | gss_qop_t *qop) |
| 2018 | { |
| 2019 | crypto_ctx_t cctx = &ctx->gss_cryptor; |
| 2020 | uint8_t hashval[CRYPTO_MAX_DIGSET_SIZE]; |
| 2021 | gss_buffer_desc ; |
| 2022 | gss_buffer_desc hash; |
| 2023 | gss_1964_mic_token_desc mtok = mic_1964_token; |
| 2024 | int verf; |
| 2025 | |
| 2026 | mtok.Sign_Alg[0] = 0x04; /* lctx->key_data.lucic_protocol_u.data1964.sign_alg */ |
| 2027 | mtok.Sign_Alg[1] = 0x00; |
| 2028 | hash.length = cctx->digest_size; |
| 2029 | hash.value = hashval; |
| 2030 | header.length = sizeof(gss_1964_mic_token_desc); |
| 2031 | header.value = &mtok; |
| 2032 | |
| 2033 | if (qop) { |
| 2034 | *qop = GSS_C_QOP_DEFAULT; |
| 2035 | } |
| 2036 | |
| 2037 | *minor = gss_krb5_3des_token_get(ctx, intok: mic, body: mtok, hash: &hash, NULL, NULL, reverse: 0); |
| 2038 | if (*minor) { |
| 2039 | return GSS_S_FAILURE; |
| 2040 | } |
| 2041 | |
| 2042 | *minor = krb5_mic_mbuf(ctx: cctx, header: &header, mbp, offset, len, NULL, mic: hashval, verify: &verf, ikey: 0, reverse: 0); |
| 2043 | if (*minor) { |
| 2044 | return GSS_S_FAILURE; |
| 2045 | } |
| 2046 | |
| 2047 | return verf ? GSS_S_COMPLETE : GSS_S_BAD_SIG; |
| 2048 | } |
| 2049 | |
| 2050 | uint32_t |
| 2051 | gss_krb5_3des_wrap_mbuf(uint32_t *minor, |
| 2052 | gss_ctx_id_t ctx, |
| 2053 | int conf_flag, |
| 2054 | gss_qop_t qop __unused, |
| 2055 | mbuf_t *mbp, |
| 2056 | size_t len, |
| 2057 | int *conf_state) |
| 2058 | { |
| 2059 | crypto_ctx_t cctx = &ctx->gss_cryptor; |
| 2060 | const struct ccmode_cbc *ccmode = cctx->enc_mode; |
| 2061 | uint8_t padlen; |
| 2062 | uint8_t pad[8]; |
| 2063 | uint8_t *confounder = NULL; |
| 2064 | gss_1964_wrap_token_desc tokbody = wrap_1964_token; |
| 2065 | gss_buffer_desc ; |
| 2066 | gss_buffer_desc mic; |
| 2067 | gss_buffer_desc hash; |
| 2068 | uint8_t hashval[CRYPTO_MAX_DIGSET_SIZE]; |
| 2069 | |
| 2070 | confounder = kalloc_data(ccmode->block_size, Z_WAITOK | Z_ZERO); |
| 2071 | if (confounder == NULL) { |
| 2072 | *minor = ENOMEM; |
| 2073 | goto out; |
| 2074 | } |
| 2075 | if (conf_state) { |
| 2076 | *conf_state = conf_flag; |
| 2077 | } |
| 2078 | |
| 2079 | hash.length = cctx->digest_size; |
| 2080 | hash.value = hashval; |
| 2081 | tokbody.Sign_Alg[0] = 0x04; /* lctx->key_data.lucid_protocol_u.data_1964.sign_alg */ |
| 2082 | tokbody.Sign_Alg[1] = 0x00; |
| 2083 | /* conf_flag ? lctx->key_data.lucid_protocol_u.data_1964.seal_alg : 0xffff */ |
| 2084 | tokbody.Seal_Alg[0] = conf_flag ? 0x02 : 0xff; |
| 2085 | tokbody.Seal_Alg[1] = conf_flag ? 0x00 : 0xff; |
| 2086 | header.length = sizeof(gss_1964_wrap_token_desc); |
| 2087 | header.value = &tokbody; |
| 2088 | |
| 2089 | /* Prepend confounder */ |
| 2090 | assert(ccmode->block_size <= UINT_MAX); |
| 2091 | read_random(buffer: confounder, numBytes: (u_int)ccmode->block_size); |
| 2092 | *minor = gss_prepend_mbuf(chain: mbp, bytes: confounder, size: ccmode->block_size); |
| 2093 | if (*minor) { |
| 2094 | goto out; |
| 2095 | } |
| 2096 | |
| 2097 | /* Append trailer of up to 8 bytes and set pad length in each trailer byte */ |
| 2098 | padlen = 8 - len % 8; |
| 2099 | for (int i = 0; i < padlen; i++) { |
| 2100 | pad[i] = padlen; |
| 2101 | } |
| 2102 | *minor = gss_append_mbuf(chain: *mbp, bytes: pad, size: padlen); |
| 2103 | if (*minor) { |
| 2104 | goto out; |
| 2105 | } |
| 2106 | |
| 2107 | len += ccmode->block_size + padlen; |
| 2108 | |
| 2109 | /* Hash the data */ |
| 2110 | *minor = krb5_mic_mbuf(ctx: cctx, header: &header, mbp: *mbp, offset: 0, len, NULL, mic: hashval, NULL, ikey: 0, reverse: 0); |
| 2111 | if (*minor) { |
| 2112 | goto out; |
| 2113 | } |
| 2114 | |
| 2115 | /* Make the token */ |
| 2116 | gss_krb5_3des_token_put(ctx, body: tokbody, hash: &hash, datalen: len, des3_token: &mic); |
| 2117 | |
| 2118 | if (conf_flag) { |
| 2119 | *minor = krb5_crypt_mbuf(ctx: cctx, mbp, len, encrypt: 1, ks: 0); |
| 2120 | if (*minor) { |
| 2121 | goto out; |
| 2122 | } |
| 2123 | } |
| 2124 | |
| 2125 | *minor = gss_prepend_mbuf(chain: mbp, bytes: mic.value, size: mic.length); |
| 2126 | |
| 2127 | out: |
| 2128 | kfree_data(confounder, ccmode->block_size); |
| 2129 | return *minor ? GSS_S_FAILURE : GSS_S_COMPLETE; |
| 2130 | } |
| 2131 | |
| 2132 | uint32_t |
| 2133 | gss_krb5_3des_unwrap_mbuf(uint32_t *minor, |
| 2134 | gss_ctx_id_t ctx, |
| 2135 | mbuf_t *mbp, |
| 2136 | size_t len, |
| 2137 | int *conf_state, |
| 2138 | gss_qop_t *qop) |
| 2139 | { |
| 2140 | crypto_ctx_t cctx = &ctx->gss_cryptor; |
| 2141 | const struct ccmode_cbc *ccmode = cctx->dec_mode; |
| 2142 | size_t length = 0, offset = 0; |
| 2143 | gss_buffer_desc hash; |
| 2144 | uint8_t hashval[CRYPTO_MAX_DIGSET_SIZE]; |
| 2145 | gss_buffer_desc itoken; |
| 2146 | uint8_t tbuffer[GSS_KRB5_3DES_MAXTOKSZ + CRYPTO_MAX_DIGSET_SIZE]; |
| 2147 | itoken.length = GSS_KRB5_3DES_MAXTOKSZ + cctx->digest_size; |
| 2148 | itoken.value = tbuffer; |
| 2149 | gss_1964_wrap_token_desc wrap = wrap_1964_token; |
| 2150 | gss_buffer_desc ; |
| 2151 | uint8_t padlen; |
| 2152 | mbuf_t smb, tmb; |
| 2153 | int cflag, verified, reverse = 0; |
| 2154 | |
| 2155 | if (len < GSS_KRB5_3DES_MAXTOKSZ) { |
| 2156 | *minor = EBADRPC; |
| 2157 | return GSS_S_FAILURE; |
| 2158 | } |
| 2159 | |
| 2160 | if (*qop == GSS_C_QOP_REVERSE) { |
| 2161 | reverse = 1; |
| 2162 | } |
| 2163 | *qop = GSS_C_QOP_DEFAULT; |
| 2164 | |
| 2165 | *minor = mbuf_copydata(mbuf: *mbp, offset: 0, length: itoken.length, out_data: itoken.value); |
| 2166 | if (*minor) { |
| 2167 | return GSS_S_FAILURE; |
| 2168 | } |
| 2169 | |
| 2170 | hash.length = cctx->digest_size; |
| 2171 | hash.value = hashval; |
| 2172 | wrap.Sign_Alg[0] = 0x04; |
| 2173 | wrap.Sign_Alg[1] = 0x00; |
| 2174 | wrap.Seal_Alg[0] = 0x02; |
| 2175 | wrap.Seal_Alg[1] = 0x00; |
| 2176 | |
| 2177 | for (cflag = 1; cflag >= 0; cflag--) { |
| 2178 | *minor = gss_krb5_3des_token_get(ctx, intok: &itoken, body: wrap, hash: &hash, offset: &offset, len: &length, reverse); |
| 2179 | if (*minor == 0) { |
| 2180 | break; |
| 2181 | } |
| 2182 | wrap.Seal_Alg[0] = 0xff; |
| 2183 | wrap.Seal_Alg[1] = 0xff; |
| 2184 | } |
| 2185 | if (*minor) { |
| 2186 | return GSS_S_FAILURE; |
| 2187 | } |
| 2188 | |
| 2189 | if (conf_state) { |
| 2190 | *conf_state = cflag; |
| 2191 | } |
| 2192 | |
| 2193 | /* |
| 2194 | * Seperate off the header |
| 2195 | */ |
| 2196 | *minor = gss_normalize_mbuf(chain: *mbp, offset, subchain_length: &length, subchain: &smb, tail: &tmb, join: 0); |
| 2197 | if (*minor) { |
| 2198 | return GSS_S_FAILURE; |
| 2199 | } |
| 2200 | |
| 2201 | assert(tmb == NULL); |
| 2202 | |
| 2203 | /* Decrypt the chain if needed */ |
| 2204 | if (cflag) { |
| 2205 | *minor = krb5_crypt_mbuf(ctx: cctx, mbp: &smb, len: length, encrypt: 0, NULL); |
| 2206 | if (*minor) { |
| 2207 | return GSS_S_FAILURE; |
| 2208 | } |
| 2209 | } |
| 2210 | |
| 2211 | /* Verify the mic */ |
| 2212 | header.length = sizeof(gss_1964_wrap_token_desc); |
| 2213 | header.value = &wrap; |
| 2214 | |
| 2215 | *minor = krb5_mic_mbuf(ctx: cctx, header: &header, mbp: smb, offset: 0, len: length, NULL, mic: hashval, verify: &verified, ikey: 0, reverse: 0); |
| 2216 | if (*minor) { |
| 2217 | return GSS_S_FAILURE; |
| 2218 | } |
| 2219 | if (!verified) { |
| 2220 | return GSS_S_BAD_SIG; |
| 2221 | } |
| 2222 | |
| 2223 | /* Get the pad bytes */ |
| 2224 | *minor = mbuf_copydata(mbuf: smb, offset: length - 1, length: 1, out_data: &padlen); |
| 2225 | if (*minor) { |
| 2226 | return GSS_S_FAILURE; |
| 2227 | } |
| 2228 | |
| 2229 | /* Strip the confounder and trailing pad bytes */ |
| 2230 | gss_strip_mbuf(chain: smb, size: -padlen); |
| 2231 | assert(ccmode->block_size <= INT_MAX); |
| 2232 | gss_strip_mbuf(chain: smb, size: (int)ccmode->block_size); |
| 2233 | |
| 2234 | if (*mbp != smb) { |
| 2235 | mbuf_freem(mbuf: *mbp); |
| 2236 | *mbp = smb; |
| 2237 | } |
| 2238 | |
| 2239 | return GSS_S_COMPLETE; |
| 2240 | } |
| 2241 | |
| 2242 | static const char * |
| 2243 | etype_name(etypes etype) |
| 2244 | { |
| 2245 | switch (etype) { |
| 2246 | case DES3_CBC_SHA1_KD: |
| 2247 | return "des3-cbc-sha1" ; |
| 2248 | case AES128_CTS_HMAC_SHA1_96: |
| 2249 | return "aes128-cts-hmac-sha1-96" ; |
| 2250 | case AES256_CTS_HMAC_SHA1_96: |
| 2251 | return "aes-cts-hmac-sha1-96" ; |
| 2252 | default: |
| 2253 | return "unknown enctype" ; |
| 2254 | } |
| 2255 | } |
| 2256 | |
| 2257 | static int |
| 2258 | supported_etype(uint32_t proto, etypes etype) |
| 2259 | { |
| 2260 | const char *proto_name; |
| 2261 | |
| 2262 | switch (proto) { |
| 2263 | case 0: |
| 2264 | /* RFC 1964 */ |
| 2265 | proto_name = "RFC 1964 krb5 gss mech" ; |
| 2266 | switch (etype) { |
| 2267 | case DES3_CBC_SHA1_KD: |
| 2268 | return 1; |
| 2269 | default: |
| 2270 | break; |
| 2271 | } |
| 2272 | break; |
| 2273 | case 1: |
| 2274 | /* RFC 4121 */ |
| 2275 | proto_name = "RFC 4121 krb5 gss mech" ; |
| 2276 | switch (etype) { |
| 2277 | case AES256_CTS_HMAC_SHA1_96: |
| 2278 | case AES128_CTS_HMAC_SHA1_96: |
| 2279 | return 1; |
| 2280 | default: |
| 2281 | break; |
| 2282 | } |
| 2283 | break; |
| 2284 | default: |
| 2285 | proto_name = "Unknown krb5 gss mech" ; |
| 2286 | break; |
| 2287 | } |
| 2288 | printf("%s: Non supported encryption %s (%d) type for protocol %s (%d)\n" , |
| 2289 | __func__, etype_name(etype), etype, proto_name, proto); |
| 2290 | return 0; |
| 2291 | } |
| 2292 | |
| 2293 | /* |
| 2294 | * Kerberos gss mech entry points |
| 2295 | */ |
| 2296 | uint32_t |
| 2297 | gss_krb5_get_mic(uint32_t *minor, /* minor_status */ |
| 2298 | gss_ctx_id_t ctx, /* context_handle */ |
| 2299 | gss_qop_t qop, /* qop_req */ |
| 2300 | gss_buffer_t mbp, /* message buffer */ |
| 2301 | gss_buffer_t mic /* message_token */) |
| 2302 | { |
| 2303 | uint32_t minor_stat = 0; |
| 2304 | |
| 2305 | if (minor == NULL) { |
| 2306 | minor = &minor_stat; |
| 2307 | } |
| 2308 | *minor = 0; |
| 2309 | |
| 2310 | /* Validate context */ |
| 2311 | if (ctx == NULL || ((lucid_context_version_t)ctx)->version != 1) { |
| 2312 | return GSS_S_NO_CONTEXT; |
| 2313 | } |
| 2314 | |
| 2315 | if (!supported_etype(proto: ctx->gss_lucid_ctx.key_data.proto, etype: ctx->gss_cryptor.etype)) { |
| 2316 | *minor = ENOTSUP; |
| 2317 | return GSS_S_FAILURE; |
| 2318 | } |
| 2319 | |
| 2320 | switch (ctx->gss_lucid_ctx.key_data.proto) { |
| 2321 | case 0: |
| 2322 | /* RFC 1964 DES3 case */ |
| 2323 | return gss_krb5_3des_get_mic(minor, ctx, qop, mbp, mic); |
| 2324 | case 1: |
| 2325 | /* RFC 4121 CFX case */ |
| 2326 | return gss_krb5_cfx_get_mic(minor, ctx, qop, mbp, mic); |
| 2327 | } |
| 2328 | |
| 2329 | return GSS_S_COMPLETE; |
| 2330 | } |
| 2331 | |
| 2332 | uint32_t |
| 2333 | gss_krb5_get_mic_mbuf(uint32_t *minor, /* minor_status */ |
| 2334 | gss_ctx_id_t ctx, /* context_handle */ |
| 2335 | gss_qop_t qop, /* qop_req */ |
| 2336 | mbuf_t mbp, /* message mbuf */ |
| 2337 | size_t offset, /* offest */ |
| 2338 | size_t len, /* length */ |
| 2339 | gss_buffer_t mic /* message_token */) |
| 2340 | { |
| 2341 | uint32_t minor_stat = 0; |
| 2342 | |
| 2343 | if (minor == NULL) { |
| 2344 | minor = &minor_stat; |
| 2345 | } |
| 2346 | *minor = 0; |
| 2347 | |
| 2348 | if (len == 0) { |
| 2349 | len = ~(size_t)0; |
| 2350 | } |
| 2351 | |
| 2352 | /* Validate context */ |
| 2353 | if (ctx == NULL || ((lucid_context_version_t)ctx)->version != 1) { |
| 2354 | return GSS_S_NO_CONTEXT; |
| 2355 | } |
| 2356 | |
| 2357 | if (!supported_etype(proto: ctx->gss_lucid_ctx.key_data.proto, etype: ctx->gss_cryptor.etype)) { |
| 2358 | *minor = ENOTSUP; |
| 2359 | return GSS_S_FAILURE; |
| 2360 | } |
| 2361 | |
| 2362 | switch (ctx->gss_lucid_ctx.key_data.proto) { |
| 2363 | case 0: |
| 2364 | /* RFC 1964 DES3 case */ |
| 2365 | return gss_krb5_3des_get_mic_mbuf(minor, ctx, qop, mbp, offset, len, mic); |
| 2366 | case 1: |
| 2367 | /* RFC 4121 CFX case */ |
| 2368 | return gss_krb5_cfx_get_mic_mbuf(minor, ctx, qop, mbp, offset, len, mic); |
| 2369 | } |
| 2370 | |
| 2371 | return GSS_S_COMPLETE; |
| 2372 | } |
| 2373 | |
| 2374 | uint32_t |
| 2375 | gss_krb5_verify_mic_mbuf(uint32_t *minor, /* minor_status */ |
| 2376 | gss_ctx_id_t ctx, /* context_handle */ |
| 2377 | mbuf_t mbp, /* message_buffer */ |
| 2378 | size_t offset, /* offset */ |
| 2379 | size_t len, /* length */ |
| 2380 | gss_buffer_t mic, /* message_token */ |
| 2381 | gss_qop_t *qop /* qop_state */) |
| 2382 | { |
| 2383 | uint32_t minor_stat = 0; |
| 2384 | gss_qop_t qop_val = GSS_C_QOP_DEFAULT; |
| 2385 | |
| 2386 | if (minor == NULL) { |
| 2387 | minor = &minor_stat; |
| 2388 | } |
| 2389 | if (qop == NULL) { |
| 2390 | qop = &qop_val; |
| 2391 | } |
| 2392 | |
| 2393 | *minor = 0; |
| 2394 | |
| 2395 | if (len == 0) { |
| 2396 | len = ~(size_t)0; |
| 2397 | } |
| 2398 | |
| 2399 | /* Validate context */ |
| 2400 | if (ctx == NULL || ((lucid_context_version_t)ctx)->version != 1) { |
| 2401 | return GSS_S_NO_CONTEXT; |
| 2402 | } |
| 2403 | |
| 2404 | if (!supported_etype(proto: ctx->gss_lucid_ctx.key_data.proto, etype: ctx->gss_cryptor.etype)) { |
| 2405 | *minor = ENOTSUP; |
| 2406 | return GSS_S_FAILURE; |
| 2407 | } |
| 2408 | |
| 2409 | switch (ctx->gss_lucid_ctx.key_data.proto) { |
| 2410 | case 0: |
| 2411 | /* RFC 1964 DES3 case */ |
| 2412 | return gss_krb5_3des_verify_mic_mbuf(minor, ctx, mbp, offset, len, mic, qop); |
| 2413 | case 1: |
| 2414 | /* RFC 4121 CFX case */ |
| 2415 | return gss_krb5_cfx_verify_mic_mbuf(minor, ctx, mbp, offset, len, mic, qop); |
| 2416 | } |
| 2417 | |
| 2418 | return GSS_S_COMPLETE; |
| 2419 | } |
| 2420 | |
| 2421 | uint32_t |
| 2422 | gss_krb5_wrap_mbuf(uint32_t *minor, /* minor_status */ |
| 2423 | gss_ctx_id_t ctx, /* context_handle */ |
| 2424 | int conf_flag, /* conf_req_flag */ |
| 2425 | gss_qop_t qop, /* qop_req */ |
| 2426 | mbuf_t *mbp, /* input/output message_buffer */ |
| 2427 | size_t offset, /* offset */ |
| 2428 | size_t len, /* length */ |
| 2429 | int *conf_state /* conf state */) |
| 2430 | { |
| 2431 | uint32_t major = GSS_S_FAILURE, minor_stat = 0; |
| 2432 | mbuf_t smb, tmb; |
| 2433 | int conf_val = 0; |
| 2434 | |
| 2435 | if (minor == NULL) { |
| 2436 | minor = &minor_stat; |
| 2437 | } |
| 2438 | if (conf_state == NULL) { |
| 2439 | conf_state = &conf_val; |
| 2440 | } |
| 2441 | |
| 2442 | *minor = 0; |
| 2443 | |
| 2444 | /* Validate context */ |
| 2445 | if (ctx == NULL || ((lucid_context_version_t)ctx)->version != 1) { |
| 2446 | return GSS_S_NO_CONTEXT; |
| 2447 | } |
| 2448 | |
| 2449 | if (!supported_etype(proto: ctx->gss_lucid_ctx.key_data.proto, etype: ctx->gss_cryptor.etype)) { |
| 2450 | *minor = ENOTSUP; |
| 2451 | return GSS_S_FAILURE; |
| 2452 | } |
| 2453 | |
| 2454 | gss_normalize_mbuf(chain: *mbp, offset, subchain_length: &len, subchain: &smb, tail: &tmb, join: 0); |
| 2455 | |
| 2456 | switch (ctx->gss_lucid_ctx.key_data.proto) { |
| 2457 | case 0: |
| 2458 | /* RFC 1964 DES3 case */ |
| 2459 | major = gss_krb5_3des_wrap_mbuf(minor, ctx, conf_flag, qop, mbp: &smb, len, conf_state); |
| 2460 | break; |
| 2461 | case 1: |
| 2462 | /* RFC 4121 CFX case */ |
| 2463 | major = gss_krb5_cfx_wrap_mbuf(minor, ctx, conf_flag, qop, mbp: &smb, len, conf: conf_state); |
| 2464 | break; |
| 2465 | } |
| 2466 | |
| 2467 | if (offset) { |
| 2468 | gss_join_mbuf(head: *mbp, body: smb, tail: tmb); |
| 2469 | } else { |
| 2470 | *mbp = smb; |
| 2471 | gss_join_mbuf(head: smb, body: tmb, NULL); |
| 2472 | } |
| 2473 | |
| 2474 | return major; |
| 2475 | } |
| 2476 | |
| 2477 | uint32_t |
| 2478 | gss_krb5_unwrap_mbuf(uint32_t * minor, /* minor_status */ |
| 2479 | gss_ctx_id_t ctx, /* context_handle */ |
| 2480 | mbuf_t *mbp, /* input/output message_buffer */ |
| 2481 | size_t offset, /* offset */ |
| 2482 | size_t len, /* length */ |
| 2483 | int *conf_flag, /* conf_state */ |
| 2484 | gss_qop_t *qop /* qop state */) |
| 2485 | { |
| 2486 | uint32_t major = GSS_S_FAILURE, minor_stat = 0; |
| 2487 | gss_qop_t qop_val = GSS_C_QOP_DEFAULT; |
| 2488 | int conf_val = 0; |
| 2489 | mbuf_t smb, tmb; |
| 2490 | |
| 2491 | if (minor == NULL) { |
| 2492 | minor = &minor_stat; |
| 2493 | } |
| 2494 | if (qop == NULL) { |
| 2495 | qop = &qop_val; |
| 2496 | } |
| 2497 | if (conf_flag == NULL) { |
| 2498 | conf_flag = &conf_val; |
| 2499 | } |
| 2500 | |
| 2501 | /* Validate context */ |
| 2502 | if (ctx == NULL || ((lucid_context_version_t)ctx)->version != 1) { |
| 2503 | return GSS_S_NO_CONTEXT; |
| 2504 | } |
| 2505 | |
| 2506 | if (!supported_etype(proto: ctx->gss_lucid_ctx.key_data.proto, etype: ctx->gss_cryptor.etype)) { |
| 2507 | *minor = ENOTSUP; |
| 2508 | return GSS_S_FAILURE; |
| 2509 | } |
| 2510 | |
| 2511 | gss_normalize_mbuf(chain: *mbp, offset, subchain_length: &len, subchain: &smb, tail: &tmb, join: 0); |
| 2512 | |
| 2513 | switch (ctx->gss_lucid_ctx.key_data.proto) { |
| 2514 | case 0: |
| 2515 | /* RFC 1964 DES3 case */ |
| 2516 | major = gss_krb5_3des_unwrap_mbuf(minor, ctx, mbp: &smb, len, conf_state: conf_flag, qop); |
| 2517 | break; |
| 2518 | case 1: |
| 2519 | /* RFC 4121 CFX case */ |
| 2520 | major = gss_krb5_cfx_unwrap_mbuf(minor, ctx, mbp: &smb, len, conf_flag, qop); |
| 2521 | break; |
| 2522 | } |
| 2523 | |
| 2524 | if (offset) { |
| 2525 | gss_join_mbuf(head: *mbp, body: smb, tail: tmb); |
| 2526 | } else { |
| 2527 | *mbp = smb; |
| 2528 | gss_join_mbuf(head: smb, body: tmb, NULL); |
| 2529 | } |
| 2530 | |
| 2531 | return major; |
| 2532 | } |
| 2533 | |
| 2534 | #include <nfs/xdr_subs.h> |
| 2535 | |
| 2536 | static int |
| 2537 | xdr_lucid_context(void *data, uint32_t length, lucid_context_t lctx) |
| 2538 | { |
| 2539 | struct xdrbuf xb; |
| 2540 | int error = 0; |
| 2541 | uint32_t keylen = 0; |
| 2542 | |
| 2543 | xb_init_buffer(&xb, data, length); |
| 2544 | xb_get_32(error, &xb, lctx->vers); |
| 2545 | if (!error && lctx->vers != 1) { |
| 2546 | error = EINVAL; |
| 2547 | printf("%s: invalid version %d\n" , __func__, (int)lctx->vers); |
| 2548 | goto out; |
| 2549 | } |
| 2550 | xb_get_32(error, &xb, lctx->initiate); |
| 2551 | if (error) { |
| 2552 | printf("%s: Could not decode initiate\n" , __func__); |
| 2553 | goto out; |
| 2554 | } |
| 2555 | xb_get_32(error, &xb, lctx->endtime); |
| 2556 | if (error) { |
| 2557 | printf("%s: Could not decode endtime\n" , __func__); |
| 2558 | goto out; |
| 2559 | } |
| 2560 | xb_get_64(error, &xb, lctx->send_seq); |
| 2561 | if (error) { |
| 2562 | printf("%s: Could not decode send_seq\n" , __func__); |
| 2563 | goto out; |
| 2564 | } |
| 2565 | xb_get_64(error, &xb, lctx->recv_seq); |
| 2566 | if (error) { |
| 2567 | printf("%s: Could not decode recv_seq\n" , __func__); |
| 2568 | goto out; |
| 2569 | } |
| 2570 | xb_get_32(error, &xb, lctx->key_data.proto); |
| 2571 | if (error) { |
| 2572 | printf("%s: Could not decode mech protocol\n" , __func__); |
| 2573 | goto out; |
| 2574 | } |
| 2575 | switch (lctx->key_data.proto) { |
| 2576 | case 0: |
| 2577 | xb_get_32(error, &xb, lctx->key_data.lucid_protocol_u.data_1964.sign_alg); |
| 2578 | xb_get_32(error, &xb, lctx->key_data.lucid_protocol_u.data_1964.seal_alg); |
| 2579 | if (error) { |
| 2580 | printf("%s: Could not decode rfc1964 sign and seal\n" , __func__); |
| 2581 | } |
| 2582 | break; |
| 2583 | case 1: |
| 2584 | xb_get_32(error, &xb, lctx->key_data.lucid_protocol_u.data_4121.acceptor_subkey); |
| 2585 | if (error) { |
| 2586 | printf("%s: Could not decode rfc4121 acceptor_subkey" , __func__); |
| 2587 | } |
| 2588 | break; |
| 2589 | default: |
| 2590 | printf("%s: Invalid mech protocol %d\n" , __func__, (int)lctx->key_data.proto); |
| 2591 | error = EINVAL; |
| 2592 | } |
| 2593 | if (error) { |
| 2594 | goto out; |
| 2595 | } |
| 2596 | xb_get_32(error, &xb, lctx->ctx_key.etype); |
| 2597 | if (error) { |
| 2598 | printf("%s: Could not decode key enctype\n" , __func__); |
| 2599 | goto out; |
| 2600 | } |
| 2601 | switch (lctx->ctx_key.etype) { |
| 2602 | case DES3_CBC_SHA1_KD: |
| 2603 | keylen = 24; |
| 2604 | break; |
| 2605 | case AES128_CTS_HMAC_SHA1_96: |
| 2606 | keylen = 16; |
| 2607 | break; |
| 2608 | case AES256_CTS_HMAC_SHA1_96: |
| 2609 | keylen = 32; |
| 2610 | break; |
| 2611 | default: |
| 2612 | error = ENOTSUP; |
| 2613 | goto out; |
| 2614 | } |
| 2615 | xb_get_32(error, &xb, lctx->ctx_key.key.key_len); |
| 2616 | if (error) { |
| 2617 | printf("%s: could not decode key length\n" , __func__); |
| 2618 | goto out; |
| 2619 | } |
| 2620 | if (lctx->ctx_key.key.key_len != keylen) { |
| 2621 | error = EINVAL; |
| 2622 | printf("%s: etype = %d keylen = %d expected keylen = %d\n" , __func__, |
| 2623 | lctx->ctx_key.etype, lctx->ctx_key.key.key_len, keylen); |
| 2624 | goto out; |
| 2625 | } |
| 2626 | |
| 2627 | lctx->ctx_key.key.key_val = xb_malloc(keylen); |
| 2628 | if (lctx->ctx_key.key.key_val == NULL) { |
| 2629 | printf("%s: could not get memory for key\n" , __func__); |
| 2630 | error = ENOMEM; |
| 2631 | goto out; |
| 2632 | } |
| 2633 | error = xb_get_bytes(&xb, (char *)lctx->ctx_key.key.key_val, keylen, 1); |
| 2634 | if (error) { |
| 2635 | printf("%s: could get key value\n" , __func__); |
| 2636 | xb_free_size(lctx->ctx_key.key.key_val, keylen); |
| 2637 | } |
| 2638 | out: |
| 2639 | return error; |
| 2640 | } |
| 2641 | |
| 2642 | gss_ctx_id_t |
| 2643 | gss_krb5_make_context(void *data, uint32_t datalen) |
| 2644 | { |
| 2645 | gss_ctx_id_t ctx; |
| 2646 | |
| 2647 | if (!corecrypto_available()) { |
| 2648 | return NULL; |
| 2649 | } |
| 2650 | |
| 2651 | gss_krb5_mech_init(); |
| 2652 | ctx = kalloc_type(struct gss_ctx_id_desc, Z_WAITOK | Z_ZERO); |
| 2653 | if (xdr_lucid_context(data, length: datalen, lctx: &ctx->gss_lucid_ctx) || |
| 2654 | !supported_etype(proto: ctx->gss_lucid_ctx.key_data.proto, etype: ctx->gss_lucid_ctx.ctx_key.etype)) { |
| 2655 | kfree_type(struct gss_ctx_id_desc, ctx); |
| 2656 | return NULL; |
| 2657 | } |
| 2658 | |
| 2659 | /* Set up crypto context */ |
| 2660 | gss_crypto_ctx_init(ctx: &ctx->gss_cryptor, lucid: &ctx->gss_lucid_ctx); |
| 2661 | return ctx; |
| 2662 | } |
| 2663 | |
| 2664 | void |
| 2665 | gss_krb5_destroy_context(gss_ctx_id_t ctx) |
| 2666 | { |
| 2667 | if (ctx == NULL) { |
| 2668 | return; |
| 2669 | } |
| 2670 | gss_crypto_ctx_free(ctx: &ctx->gss_cryptor); |
| 2671 | xb_free(ctx->gss_lucid_ctx.ctx_key.key.key_val); |
| 2672 | cc_clear(len: sizeof(lucid_context_t), dst: &ctx->gss_lucid_ctx); |
| 2673 | kfree_type(struct gss_ctx_id_desc, ctx); |
| 2674 | } |
| 2675 | |