| 1 | /* |
| 2 | * Copyright (c) 2008-2023 Apple Inc. All rights reserved. |
| 3 | * |
| 4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ |
| 5 | * |
| 6 | * This file contains Original Code and/or Modifications of Original Code |
| 7 | * as defined in and that are subject to the Apple Public Source License |
| 8 | * Version 2.0 (the 'License'). You may not use this file except in |
| 9 | * compliance with the License. The rights granted to you under the License |
| 10 | * may not be used to create, or enable the creation or redistribution of, |
| 11 | * unlawful or unlicensed copies of an Apple operating system, or to |
| 12 | * circumvent, violate, or enable the circumvention or violation of, any |
| 13 | * terms of an Apple operating system software license agreement. |
| 14 | * |
| 15 | * Please obtain a copy of the License at |
| 16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. |
| 17 | * |
| 18 | * The Original Code and all software distributed under the License are |
| 19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER |
| 20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
| 21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, |
| 22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
| 23 | * Please see the License for the specific language governing rights and |
| 24 | * limitations under the License. |
| 25 | * |
| 26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ |
| 27 | */ |
| 28 | |
| 29 | /* $FreeBSD: src/sys/netkey/key.c,v 1.16.2.13 2002/07/24 18:17:40 ume Exp $ */ |
| 30 | /* $KAME: key.c,v 1.191 2001/06/27 10:46:49 sakane Exp $ */ |
| 31 | |
| 32 | /* |
| 33 | * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. |
| 34 | * All rights reserved. |
| 35 | * |
| 36 | * Redistribution and use in source and binary forms, with or without |
| 37 | * modification, are permitted provided that the following conditions |
| 38 | * are met: |
| 39 | * 1. Redistributions of source code must retain the above copyright |
| 40 | * notice, this list of conditions and the following disclaimer. |
| 41 | * 2. Redistributions in binary form must reproduce the above copyright |
| 42 | * notice, this list of conditions and the following disclaimer in the |
| 43 | * documentation and/or other materials provided with the distribution. |
| 44 | * 3. Neither the name of the project nor the names of its contributors |
| 45 | * may be used to endorse or promote products derived from this software |
| 46 | * without specific prior written permission. |
| 47 | * |
| 48 | * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND |
| 49 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 50 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 51 | * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE |
| 52 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
| 53 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
| 54 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| 55 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
| 56 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
| 57 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
| 58 | * SUCH DAMAGE. |
| 59 | */ |
| 60 | |
| 61 | /* |
| 62 | * This code is referd to RFC 2367 |
| 63 | */ |
| 64 | |
| 65 | #include <machine/endian.h> |
| 66 | #include <sys/types.h> |
| 67 | #include <sys/param.h> |
| 68 | #include <sys/systm.h> |
| 69 | #include <sys/kernel.h> |
| 70 | #include <sys/mbuf.h> |
| 71 | #include <sys/domain.h> |
| 72 | #include <sys/protosw.h> |
| 73 | #include <sys/malloc.h> |
| 74 | #include <sys/socket.h> |
| 75 | #include <sys/socketvar.h> |
| 76 | #include <sys/sysctl.h> |
| 77 | #include <sys/errno.h> |
| 78 | #include <sys/proc.h> |
| 79 | #include <sys/queue.h> |
| 80 | #include <sys/syslog.h> |
| 81 | #include <sys/mcache.h> |
| 82 | |
| 83 | #include <kern/clock.h> |
| 84 | #include <kern/locks.h> |
| 85 | |
| 86 | #include <net/if.h> |
| 87 | #include <net/route.h> |
| 88 | #include <net/raw_cb.h> |
| 89 | |
| 90 | #include <netinet/in.h> |
| 91 | #include <netinet/in_systm.h> |
| 92 | #include <netinet/ip.h> |
| 93 | #include <netinet/in_var.h> |
| 94 | |
| 95 | #include <netinet/ip6.h> |
| 96 | #include <netinet6/in6_var.h> |
| 97 | #include <netinet6/ip6_var.h> |
| 98 | |
| 99 | #include <net/pfkeyv2.h> |
| 100 | #include <netkey/keydb.h> |
| 101 | #include <netkey/key.h> |
| 102 | #include <netkey/keysock.h> |
| 103 | #include <netkey/key_debug.h> |
| 104 | #include <stdarg.h> |
| 105 | #include <libkern/crypto/rand.h> |
| 106 | |
| 107 | #include <netinet6/ipsec.h> |
| 108 | #include <netinet6/ipsec6.h> |
| 109 | #include <netinet6/ah.h> |
| 110 | #include <netinet6/ah6.h> |
| 111 | #if IPSEC_ESP |
| 112 | #include <netinet6/esp.h> |
| 113 | #include <netinet6/esp6.h> |
| 114 | #endif |
| 115 | |
| 116 | |
| 117 | /* randomness */ |
| 118 | #include <sys/random.h> |
| 119 | |
| 120 | #include <net/net_osdep.h> |
| 121 | |
| 122 | #if SKYWALK |
| 123 | #include <skywalk/namespace/flowidns.h> |
| 124 | #endif /* SKYWALK */ |
| 125 | |
| 126 | #define FULLMASK 0xff |
| 127 | |
| 128 | static LCK_GRP_DECLARE(sadb_mutex_grp, "sadb" ); |
| 129 | LCK_MTX_DECLARE(sadb_mutex_data, &sadb_mutex_grp); |
| 130 | |
| 131 | /* |
| 132 | * Note on SA reference counting: |
| 133 | * - SAs that are not in DEAD state will have (total external reference + 1) |
| 134 | * following value in reference count field. they cannot be freed and are |
| 135 | * referenced from SA header. |
| 136 | * - SAs that are in DEAD state will have (total external reference) |
| 137 | * in reference count field. they are ready to be freed. reference from |
| 138 | * SA header will be removed in key_delsav(), when the reference count |
| 139 | * field hits 0 (= no external reference other than from SA header. |
| 140 | */ |
| 141 | |
| 142 | u_int32_t key_debug_level = 0; //### our sysctl is not dynamic |
| 143 | static int key_timehandler_running = 0; |
| 144 | static u_int key_spi_trycnt = 1000; |
| 145 | static u_int32_t key_spi_minval = 0x100; |
| 146 | static u_int32_t key_spi_maxval = 0x0fffffff; /* XXX */ |
| 147 | static u_int32_t policy_id = 0; |
| 148 | static u_int32_t key_int_random = 60; /*interval to initialize randseed,1(m)*/ |
| 149 | static u_int32_t key_larval_lifetime = 30; /* interval to expire acquiring, 30(s)*/ |
| 150 | static u_int32_t key_blockacq_count = 10; /* counter for blocking SADB_ACQUIRE.*/ |
| 151 | static u_int32_t key_blockacq_lifetime = 20; /* lifetime for blocking SADB_ACQUIRE.*/ |
| 152 | static int key_preferred_oldsa = 0; /* preferred old sa rather than new sa.*/ |
| 153 | __private_extern__ int natt_keepalive_interval = 20; /* interval between natt keepalives.*/ |
| 154 | static u_int32_t ipsec_policy_count = 0; |
| 155 | static u_int32_t ipsec_sav_count = 0; |
| 156 | |
| 157 | static u_int32_t acq_seq = 0; |
| 158 | static int key_tick_init_random = 0; |
| 159 | static u_int64_t up_time = 0; |
| 160 | __private_extern__ u_int64_t natt_now = 0; |
| 161 | |
| 162 | static LIST_HEAD(_sptree, secpolicy) sptree[IPSEC_DIR_MAX]; /* SPD */ |
| 163 | static LIST_HEAD(_sahtree, secashead) sahtree; /* SAD */ |
| 164 | static LIST_HEAD(_regtree, secreg) regtree[SADB_SATYPE_MAX + 1]; |
| 165 | static LIST_HEAD(_custom_sahtree, secashead) custom_sahtree; |
| 166 | /* registed list */ |
| 167 | |
| 168 | #define SPIHASHSIZE 128 |
| 169 | #define SPIHASH(x) (((x) ^ ((x) >> 16)) % SPIHASHSIZE) |
| 170 | static LIST_HEAD(_spihash, secasvar) spihash[SPIHASHSIZE]; |
| 171 | |
| 172 | #ifndef IPSEC_NONBLOCK_ACQUIRE |
| 173 | static LIST_HEAD(_acqtree, secacq) acqtree; /* acquiring list */ |
| 174 | #endif |
| 175 | static LIST_HEAD(_spacqtree, secspacq) spacqtree; /* SP acquiring list */ |
| 176 | |
| 177 | struct key_cb key_cb; |
| 178 | |
| 179 | /* search order for SAs */ |
| 180 | static const u_int saorder_state_valid_prefer_old[] = { |
| 181 | SADB_SASTATE_DYING, SADB_SASTATE_MATURE, |
| 182 | }; |
| 183 | static const u_int saorder_state_valid_prefer_new[] = { |
| 184 | SADB_SASTATE_MATURE, SADB_SASTATE_DYING, |
| 185 | }; |
| 186 | static const u_int saorder_state_alive[] = { |
| 187 | /* except DEAD */ |
| 188 | SADB_SASTATE_MATURE, SADB_SASTATE_DYING, SADB_SASTATE_LARVAL |
| 189 | }; |
| 190 | static const u_int saorder_state_any[] = { |
| 191 | SADB_SASTATE_MATURE, SADB_SASTATE_DYING, |
| 192 | SADB_SASTATE_LARVAL, SADB_SASTATE_DEAD |
| 193 | }; |
| 194 | |
| 195 | static const int minsize[] = { |
| 196 | sizeof(struct sadb_msg), /* SADB_EXT_RESERVED */ |
| 197 | sizeof(struct sadb_sa), /* SADB_EXT_SA */ |
| 198 | sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_CURRENT */ |
| 199 | sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_HARD */ |
| 200 | sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_SOFT */ |
| 201 | sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_SRC */ |
| 202 | sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_DST */ |
| 203 | sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_PROXY */ |
| 204 | sizeof(struct sadb_key), /* SADB_EXT_KEY_AUTH */ |
| 205 | sizeof(struct sadb_key), /* SADB_EXT_KEY_ENCRYPT */ |
| 206 | sizeof(struct sadb_ident), /* SADB_EXT_IDENTITY_SRC */ |
| 207 | sizeof(struct sadb_ident), /* SADB_EXT_IDENTITY_DST */ |
| 208 | sizeof(struct sadb_sens), /* SADB_EXT_SENSITIVITY */ |
| 209 | sizeof(struct sadb_prop), /* SADB_EXT_PROPOSAL */ |
| 210 | sizeof(struct sadb_supported), /* SADB_EXT_SUPPORTED_AUTH */ |
| 211 | sizeof(struct sadb_supported), /* SADB_EXT_SUPPORTED_ENCRYPT */ |
| 212 | sizeof(struct sadb_spirange), /* SADB_EXT_SPIRANGE */ |
| 213 | 0, /* SADB_X_EXT_KMPRIVATE */ |
| 214 | sizeof(struct sadb_x_policy), /* SADB_X_EXT_POLICY */ |
| 215 | sizeof(struct sadb_x_sa2), /* SADB_X_SA2 */ |
| 216 | sizeof(struct sadb_session_id), /* SADB_EXT_SESSION_ID */ |
| 217 | sizeof(struct sadb_sastat), /* SADB_EXT_SASTAT */ |
| 218 | sizeof(struct sadb_x_ipsecif), /* SADB_X_EXT_IPSECIF */ |
| 219 | sizeof(struct sadb_address), /* SADB_X_EXT_ADDR_RANGE_SRC_START */ |
| 220 | sizeof(struct sadb_address), /* SADB_X_EXT_ADDR_RANGE_SRC_END */ |
| 221 | sizeof(struct sadb_address), /* SADB_X_EXT_ADDR_RANGE_DST_START */ |
| 222 | sizeof(struct sadb_address), /* SADB_X_EXT_ADDR_RANGE_DST_END */ |
| 223 | sizeof(struct sadb_address), /* SADB_EXT_MIGRATE_ADDRESS_SRC */ |
| 224 | sizeof(struct sadb_address), /* SADB_EXT_MIGRATE_ADDRESS_DST */ |
| 225 | sizeof(struct sadb_x_ipsecif), /* SADB_X_EXT_MIGRATE_IPSECIF */ |
| 226 | }; |
| 227 | static const int maxsize[] = { |
| 228 | sizeof(struct sadb_msg), /* SADB_EXT_RESERVED */ |
| 229 | sizeof(struct sadb_sa_2), /* SADB_EXT_SA */ |
| 230 | sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_CURRENT */ |
| 231 | sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_HARD */ |
| 232 | sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_SOFT */ |
| 233 | 0, /* SADB_EXT_ADDRESS_SRC */ |
| 234 | 0, /* SADB_EXT_ADDRESS_DST */ |
| 235 | 0, /* SADB_EXT_ADDRESS_PROXY */ |
| 236 | 0, /* SADB_EXT_KEY_AUTH */ |
| 237 | 0, /* SADB_EXT_KEY_ENCRYPT */ |
| 238 | 0, /* SADB_EXT_IDENTITY_SRC */ |
| 239 | 0, /* SADB_EXT_IDENTITY_DST */ |
| 240 | 0, /* SADB_EXT_SENSITIVITY */ |
| 241 | 0, /* SADB_EXT_PROPOSAL */ |
| 242 | 0, /* SADB_EXT_SUPPORTED_AUTH */ |
| 243 | 0, /* SADB_EXT_SUPPORTED_ENCRYPT */ |
| 244 | sizeof(struct sadb_spirange), /* SADB_EXT_SPIRANGE */ |
| 245 | 0, /* SADB_X_EXT_KMPRIVATE */ |
| 246 | 0, /* SADB_X_EXT_POLICY */ |
| 247 | sizeof(struct sadb_x_sa2), /* SADB_X_SA2 */ |
| 248 | 0, /* SADB_EXT_SESSION_ID */ |
| 249 | 0, /* SADB_EXT_SASTAT */ |
| 250 | sizeof(struct sadb_x_ipsecif), /* SADB_X_EXT_IPSECIF */ |
| 251 | 0, /* SADB_X_EXT_ADDR_RANGE_SRC_START */ |
| 252 | 0, /* SADB_X_EXT_ADDR_RANGE_SRC_END */ |
| 253 | 0, /* SADB_X_EXT_ADDR_RANGE_DST_START */ |
| 254 | 0, /* SADB_X_EXT_ADDR_RANGE_DST_END */ |
| 255 | 0, /* SADB_EXT_MIGRATE_ADDRESS_SRC */ |
| 256 | 0, /* SADB_EXT_MIGRATE_ADDRESS_DST */ |
| 257 | sizeof(struct sadb_x_ipsecif), /* SADB_X_EXT_MIGRATE_IPSECIF */ |
| 258 | }; |
| 259 | |
| 260 | static int ipsec_esp_keymin = 256; |
| 261 | static int ipsec_esp_auth = 0; |
| 262 | static int ipsec_ah_keymin = 128; |
| 263 | |
| 264 | SYSCTL_DECL(_net_key); |
| 265 | /* Thread safe: no accumulated state */ |
| 266 | SYSCTL_INT(_net_key, KEYCTL_DEBUG_LEVEL, debug, CTLFLAG_RW | CTLFLAG_LOCKED, \ |
| 267 | &key_debug_level, 0, "" ); |
| 268 | |
| 269 | |
| 270 | /* max count of trial for the decision of spi value */ |
| 271 | SYSCTL_INT(_net_key, KEYCTL_SPI_TRY, spi_trycnt, CTLFLAG_RW | CTLFLAG_LOCKED, \ |
| 272 | &key_spi_trycnt, 0, "" ); |
| 273 | |
| 274 | /* minimum spi value to allocate automatically. */ |
| 275 | SYSCTL_INT(_net_key, KEYCTL_SPI_MIN_VALUE, spi_minval, CTLFLAG_RW | CTLFLAG_LOCKED, \ |
| 276 | &key_spi_minval, 0, "" ); |
| 277 | |
| 278 | /* maximun spi value to allocate automatically. */ |
| 279 | SYSCTL_INT(_net_key, KEYCTL_SPI_MAX_VALUE, spi_maxval, CTLFLAG_RW | CTLFLAG_LOCKED, \ |
| 280 | &key_spi_maxval, 0, "" ); |
| 281 | |
| 282 | /* interval to initialize randseed */ |
| 283 | SYSCTL_INT(_net_key, KEYCTL_RANDOM_INT, int_random, CTLFLAG_RW | CTLFLAG_LOCKED, \ |
| 284 | &key_int_random, 0, "" ); |
| 285 | |
| 286 | /* lifetime for larval SA; thread safe due to > compare */ |
| 287 | SYSCTL_INT(_net_key, KEYCTL_LARVAL_LIFETIME, larval_lifetime, CTLFLAG_RW | CTLFLAG_LOCKED, \ |
| 288 | &key_larval_lifetime, 0, "" ); |
| 289 | |
| 290 | /* counter for blocking to send SADB_ACQUIRE to IKEd */ |
| 291 | SYSCTL_INT(_net_key, KEYCTL_BLOCKACQ_COUNT, blockacq_count, CTLFLAG_RW | CTLFLAG_LOCKED, \ |
| 292 | &key_blockacq_count, 0, "" ); |
| 293 | |
| 294 | /* lifetime for blocking to send SADB_ACQUIRE to IKEd: Thread safe, > compare */ |
| 295 | SYSCTL_INT(_net_key, KEYCTL_BLOCKACQ_LIFETIME, blockacq_lifetime, CTLFLAG_RW | CTLFLAG_LOCKED, \ |
| 296 | &key_blockacq_lifetime, 0, "" ); |
| 297 | |
| 298 | /* ESP auth */ |
| 299 | SYSCTL_INT(_net_key, KEYCTL_ESP_AUTH, esp_auth, CTLFLAG_RW | CTLFLAG_LOCKED, \ |
| 300 | &ipsec_esp_auth, 0, "" ); |
| 301 | |
| 302 | /* minimum ESP key length */ |
| 303 | SYSCTL_INT(_net_key, KEYCTL_ESP_KEYMIN, esp_keymin, CTLFLAG_RW | CTLFLAG_LOCKED, \ |
| 304 | &ipsec_esp_keymin, 0, "" ); |
| 305 | |
| 306 | /* minimum AH key length */ |
| 307 | SYSCTL_INT(_net_key, KEYCTL_AH_KEYMIN, ah_keymin, CTLFLAG_RW | CTLFLAG_LOCKED, \ |
| 308 | &ipsec_ah_keymin, 0, "" ); |
| 309 | |
| 310 | /* perfered old SA rather than new SA */ |
| 311 | SYSCTL_INT(_net_key, KEYCTL_PREFERED_OLDSA, prefered_oldsa, CTLFLAG_RW | CTLFLAG_LOCKED, \ |
| 312 | &key_preferred_oldsa, 0, "" ); |
| 313 | |
| 314 | /* time between NATT keepalives in seconds, 0 disabled */ |
| 315 | SYSCTL_INT(_net_key, KEYCTL_NATT_KEEPALIVE_INTERVAL, natt_keepalive_interval, CTLFLAG_RW | CTLFLAG_LOCKED, \ |
| 316 | &natt_keepalive_interval, 0, "" ); |
| 317 | |
| 318 | /* PF_KEY statistics */ |
| 319 | SYSCTL_STRUCT(_net_key, KEYCTL_PFKEYSTAT, pfkeystat, CTLFLAG_RD | CTLFLAG_LOCKED, \ |
| 320 | &pfkeystat, pfkeystat, "" ); |
| 321 | |
| 322 | #ifndef LIST_FOREACH |
| 323 | #define LIST_FOREACH(elm, head, field) \ |
| 324 | for (elm = LIST_FIRST(head); elm; elm = LIST_NEXT(elm, field)) |
| 325 | #endif |
| 326 | #define __LIST_CHAINED(elm) \ |
| 327 | (!((elm)->chain.le_next == NULL && (elm)->chain.le_prev == NULL)) |
| 328 | #define LIST_INSERT_TAIL(head, elm, type, field) \ |
| 329 | do {\ |
| 330 | struct type *curelm = LIST_FIRST(head); \ |
| 331 | if (curelm == NULL) {\ |
| 332 | LIST_INSERT_HEAD(head, elm, field); \ |
| 333 | } else { \ |
| 334 | while (LIST_NEXT(curelm, field)) \ |
| 335 | curelm = LIST_NEXT(curelm, field);\ |
| 336 | LIST_INSERT_AFTER(curelm, elm, field);\ |
| 337 | }\ |
| 338 | } while (0) |
| 339 | |
| 340 | #define KEY_CHKSASTATE(head, sav, name) \ |
| 341 | if ((head) != (sav)) { \ |
| 342 | ipseclog((LOG_DEBUG, "%s: state mismatched (TREE=%d SA=%d)\n", \ |
| 343 | (name), (head), (sav))); \ |
| 344 | continue; \ |
| 345 | } \ |
| 346 | |
| 347 | #define KEY_CHKSPDIR(head, sp, name) \ |
| 348 | do { \ |
| 349 | if ((head) != (sp)) { \ |
| 350 | ipseclog((LOG_DEBUG, "%s: direction mismatched (TREE=%d SP=%d), " \ |
| 351 | "anyway continue.\n", \ |
| 352 | (name), (head), (sp))); \ |
| 353 | } \ |
| 354 | } while (0) |
| 355 | |
| 356 | /* |
| 357 | * set parameters into secpolicyindex buffer. |
| 358 | * Must allocate secpolicyindex buffer passed to this function. |
| 359 | */ |
| 360 | #define KEY_SETSECSPIDX(_dir, s, d, ps, pd, ulp, ifp, s_s, s_e, d_s, d_e, idx) \ |
| 361 | do { \ |
| 362 | bzero((idx), sizeof(struct secpolicyindex)); \ |
| 363 | (idx)->dir = (_dir); \ |
| 364 | (idx)->prefs = (ps); \ |
| 365 | (idx)->prefd = (pd); \ |
| 366 | (idx)->ul_proto = (ulp); \ |
| 367 | (idx)->internal_if = (ifp); \ |
| 368 | if (s) bcopy((s), &(idx)->src, ((struct sockaddr *)(s))->sa_len); \ |
| 369 | if (d) bcopy((d), &(idx)->dst, ((struct sockaddr *)(d))->sa_len); \ |
| 370 | if (s_s) bcopy((s_s), &(idx)->src_range.start, ((struct sockaddr *)(s_s))->sa_len); \ |
| 371 | if (s_e) bcopy((s_e), &(idx)->src_range.end, ((struct sockaddr *)(s_e))->sa_len); \ |
| 372 | if (d_s) bcopy((d_s), &(idx)->dst_range.start, ((struct sockaddr *)(d_s))->sa_len); \ |
| 373 | if (d_e) bcopy((d_e), &(idx)->dst_range.end, ((struct sockaddr *)(d_e))->sa_len); \ |
| 374 | } while (0) |
| 375 | |
| 376 | /* |
| 377 | * set parameters into secasindex buffer. |
| 378 | * Must allocate secasindex buffer before calling this function. |
| 379 | */ |
| 380 | #define KEY_SETSECASIDX(p, m, r, s, d, ifi, idx) \ |
| 381 | do { \ |
| 382 | bzero((idx), sizeof(struct secasindex)); \ |
| 383 | (idx)->proto = (p); \ |
| 384 | (idx)->mode = (m); \ |
| 385 | (idx)->reqid = (r); \ |
| 386 | bcopy((s), &(idx)->src, ((const struct sockaddr *)(s))->sa_len); \ |
| 387 | bcopy((d), &(idx)->dst, ((const struct sockaddr *)(d))->sa_len); \ |
| 388 | (idx)->ipsec_ifindex = (ifi); \ |
| 389 | } while (0) |
| 390 | |
| 391 | /* key statistics */ |
| 392 | struct _keystat { |
| 393 | u_int32_t getspi_count; /* the avarage of count to try to get new SPI */ |
| 394 | } keystat; |
| 395 | |
| 396 | struct sadb_msghdr { |
| 397 | struct sadb_msg *msg; |
| 398 | struct sadb_ext *ext[SADB_EXT_MAX + 1]; |
| 399 | int extoff[SADB_EXT_MAX + 1]; |
| 400 | int extlen[SADB_EXT_MAX + 1]; |
| 401 | }; |
| 402 | |
| 403 | static struct secpolicy *__key_getspbyid(u_int32_t id); |
| 404 | static struct secasvar *key_do_allocsa_policy(struct secashead *, u_int, u_int16_t); |
| 405 | static int key_do_get_translated_port(struct secashead *, struct secasvar *, u_int); |
| 406 | static void key_delsp(struct secpolicy *); |
| 407 | static struct secpolicy *key_getsp(struct secpolicyindex *); |
| 408 | static u_int16_t key_newreqid(void); |
| 409 | static struct mbuf *key_gather_mbuf(struct mbuf *, |
| 410 | const struct sadb_msghdr *, int, int, int *); |
| 411 | static int key_spdadd(struct socket *, struct mbuf *, |
| 412 | const struct sadb_msghdr *); |
| 413 | static u_int32_t key_getnewspid(void); |
| 414 | static int key_spddelete(struct socket *, struct mbuf *, |
| 415 | const struct sadb_msghdr *); |
| 416 | static int key_spddelete2(struct socket *, struct mbuf *, |
| 417 | const struct sadb_msghdr *); |
| 418 | static int key_spdenable(struct socket *, struct mbuf *, |
| 419 | const struct sadb_msghdr *); |
| 420 | static int key_spddisable(struct socket *, struct mbuf *, |
| 421 | const struct sadb_msghdr *); |
| 422 | static int key_spdget(struct socket *, struct mbuf *, |
| 423 | const struct sadb_msghdr *); |
| 424 | static int key_spdflush(struct socket *, struct mbuf *, |
| 425 | const struct sadb_msghdr *); |
| 426 | static int key_spddump(struct socket *, struct mbuf *, |
| 427 | const struct sadb_msghdr *); |
| 428 | static struct mbuf *key_setdumpsp(struct secpolicy *, |
| 429 | u_int8_t, u_int32_t, u_int32_t); |
| 430 | static u_int key_getspreqmsglen(struct secpolicy *); |
| 431 | static int key_spdexpire(struct secpolicy *); |
| 432 | static struct secashead *key_newsah(struct secasindex *, ifnet_t, u_int, u_int8_t, u_int16_t); |
| 433 | static struct secasvar *key_newsav(struct mbuf *, |
| 434 | const struct sadb_msghdr *, struct secashead *, int *, |
| 435 | struct socket *); |
| 436 | static struct secashead *key_getsah(struct secasindex *, u_int16_t); |
| 437 | static struct secasvar *key_checkspidup(struct secasindex *, u_int32_t); |
| 438 | static void key_setspi __P((struct secasvar *, u_int32_t)); |
| 439 | static struct secasvar *key_getsavbyspi(struct secashead *, u_int32_t); |
| 440 | static int key_setsaval(struct secasvar *, struct mbuf *, |
| 441 | const struct sadb_msghdr *); |
| 442 | static int key_mature(struct secasvar *); |
| 443 | static struct mbuf *key_setdumpsa(struct secasvar *, u_int8_t, |
| 444 | u_int8_t, u_int32_t, u_int32_t); |
| 445 | static struct mbuf *key_setsadbmsg(u_int8_t, u_int16_t, u_int8_t, |
| 446 | u_int32_t, pid_t, u_int16_t); |
| 447 | static struct mbuf *key_setsadbsa(struct secasvar *); |
| 448 | static struct mbuf *key_setsadbaddr(u_int16_t, |
| 449 | struct sockaddr *, size_t, u_int8_t); |
| 450 | static struct mbuf *key_setsadbipsecif(ifnet_t, ifnet_t, ifnet_t, u_int8_t); |
| 451 | static struct mbuf *key_setsadbxsa2(u_int8_t, u_int32_t, u_int32_t, u_int16_t); |
| 452 | static struct mbuf *key_setsadbxpolicy(u_int16_t, u_int8_t, |
| 453 | u_int32_t); |
| 454 | static struct mbuf *key_setsalifecurr(struct sadb_lifetime *); |
| 455 | static void *key_newbuf(const void *, u_int); |
| 456 | static int key_ismyaddr6(struct sockaddr_in6 *); |
| 457 | static void key_update_natt_keepalive_timestamp(struct secasvar *, struct secasvar *); |
| 458 | |
| 459 | /* flags for key_cmpsaidx() */ |
| 460 | #define CMP_HEAD 0x1 /* protocol, addresses. */ |
| 461 | #define CMP_PORT 0x2 /* additionally HEAD, reqid, mode. */ |
| 462 | #define CMP_REQID 0x4 /* additionally HEAD, reqid. */ |
| 463 | #define CMP_MODE 0x8 /* additionally mode. */ |
| 464 | #define CMP_EXACTLY 0xF /* all elements. */ |
| 465 | static int key_cmpsaidx(struct secasindex *, struct secasindex *, int); |
| 466 | |
| 467 | static int key_cmpspidx_exactly(struct secpolicyindex *, |
| 468 | struct secpolicyindex *); |
| 469 | static int key_cmpspidx_withmask(struct secpolicyindex *, |
| 470 | struct secpolicyindex *); |
| 471 | static int key_sockaddrcmp(struct sockaddr *, struct sockaddr *, int); |
| 472 | static int key_is_addr_in_range(struct sockaddr_storage *, struct secpolicyaddrrange *); |
| 473 | static int key_bbcmp(caddr_t, caddr_t, u_int); |
| 474 | static void key_srandom(void); |
| 475 | static u_int8_t key_satype2proto(u_int8_t); |
| 476 | static u_int8_t key_proto2satype(u_int16_t); |
| 477 | |
| 478 | static int key_getspi(struct socket *, struct mbuf *, |
| 479 | const struct sadb_msghdr *); |
| 480 | static u_int32_t key_do_getnewspi(struct sadb_spirange *, struct secasindex *); |
| 481 | static int key_update(struct socket *, struct mbuf *, |
| 482 | const struct sadb_msghdr *); |
| 483 | static int key_add(struct socket *, struct mbuf *, const struct sadb_msghdr *); |
| 484 | static struct mbuf *key_getmsgbuf_x1(struct mbuf *, const struct sadb_msghdr *); |
| 485 | static int key_delete(struct socket *, struct mbuf *, |
| 486 | const struct sadb_msghdr *); |
| 487 | static int key_get(struct socket *, struct mbuf *, const struct sadb_msghdr *); |
| 488 | |
| 489 | static void key_getcomb_setlifetime(struct sadb_comb *); |
| 490 | #if IPSEC_ESP |
| 491 | static struct mbuf *key_getcomb_esp(void); |
| 492 | #endif |
| 493 | static struct mbuf *key_getcomb_ah(void); |
| 494 | static struct mbuf *key_getprop(const struct secasindex *); |
| 495 | |
| 496 | static int key_acquire(struct secasindex *, struct secpolicy *); |
| 497 | #ifndef IPSEC_NONBLOCK_ACQUIRE |
| 498 | static struct secacq *key_newacq(struct secasindex *); |
| 499 | static struct secacq *key_getacq(struct secasindex *); |
| 500 | static struct secacq *key_getacqbyseq(u_int32_t); |
| 501 | #endif |
| 502 | static struct secspacq *key_newspacq(struct secpolicyindex *); |
| 503 | static struct secspacq *key_getspacq(struct secpolicyindex *); |
| 504 | static int key_acquire2(struct socket *, struct mbuf *, |
| 505 | const struct sadb_msghdr *); |
| 506 | static int key_register(struct socket *, struct mbuf *, |
| 507 | const struct sadb_msghdr *); |
| 508 | static int key_expire(struct secasvar *); |
| 509 | static int key_flush(struct socket *, struct mbuf *, |
| 510 | const struct sadb_msghdr *); |
| 511 | static int key_dump(struct socket *, struct mbuf *, const struct sadb_msghdr *); |
| 512 | static int key_promisc(struct socket *, struct mbuf *, |
| 513 | const struct sadb_msghdr *); |
| 514 | static int key_senderror(struct socket *, struct mbuf *, int); |
| 515 | static int key_validate_ext(const struct sadb_ext *, int); |
| 516 | static int key_align(struct mbuf *, struct sadb_msghdr *); |
| 517 | static struct mbuf *key_alloc_mbuf(int); |
| 518 | static int key_getsastat(struct socket *, struct mbuf *, const struct sadb_msghdr *); |
| 519 | static int key_migrate(struct socket *, struct mbuf *, const struct sadb_msghdr *); |
| 520 | static void bzero_keys(const struct sadb_msghdr *); |
| 521 | |
| 522 | extern int ipsec_bypass; |
| 523 | extern int esp_udp_encap_port; |
| 524 | int ipsec_send_natt_keepalive(struct secasvar *sav); |
| 525 | bool ipsec_fill_offload_frame(ifnet_t ifp, struct secasvar *sav, struct ifnet_keepalive_offload_frame *frame, size_t frame_data_offset); |
| 526 | |
| 527 | void key_init(struct protosw *, struct domain *); |
| 528 | |
| 529 | static u_int64_t |
| 530 | key_get_continuous_time_ns(void) |
| 531 | { |
| 532 | u_int64_t current_time_ns = 0; |
| 533 | absolutetime_to_nanoseconds(abstime: mach_continuous_time(), result: ¤t_time_ns); |
| 534 | return current_time_ns; |
| 535 | } |
| 536 | |
| 537 | static u_int64_t |
| 538 | key_convert_continuous_time_ns(u_int64_t time_value) |
| 539 | { |
| 540 | // Pass through 0 as it indicates value is not set |
| 541 | if (time_value == 0) { |
| 542 | return 0; |
| 543 | } |
| 544 | |
| 545 | // Get current time |
| 546 | clock_sec_t time_sec; |
| 547 | clock_usec_t time_usec; |
| 548 | clock_get_calendar_microtime(secs: &time_sec, microsecs: &time_usec); |
| 549 | |
| 550 | // Get time offset |
| 551 | const u_int64_t time_offset_ns = key_get_continuous_time_ns() - time_value; |
| 552 | const clock_sec_t time_offset_sec = time_offset_ns / NSEC_PER_SEC; |
| 553 | const clock_usec_t time_offset_usec = (u_int32_t)(time_offset_ns - (time_offset_sec * NSEC_PER_SEC)) / NSEC_PER_USEC; |
| 554 | |
| 555 | // Subtract offset from current time |
| 556 | time_sec -= time_offset_sec; |
| 557 | if (time_offset_usec > time_usec) { |
| 558 | time_sec--; |
| 559 | time_usec = USEC_PER_SEC - (time_offset_usec - time_usec); |
| 560 | } else { |
| 561 | time_usec -= time_offset_usec; |
| 562 | } |
| 563 | |
| 564 | // Return result rounded to nearest second |
| 565 | return time_sec + ((time_usec >= (USEC_PER_SEC / 2)) ? 1 : 0); |
| 566 | } |
| 567 | |
| 568 | static void |
| 569 | key_get_flowid(struct secasvar *sav) |
| 570 | { |
| 571 | #if SKYWALK |
| 572 | struct flowidns_flow_key fk; |
| 573 | struct secashead *sah = sav->sah; |
| 574 | |
| 575 | if ((sah->dir != IPSEC_DIR_OUTBOUND) && (sah->dir != IPSEC_DIR_ANY)) { |
| 576 | return; |
| 577 | } |
| 578 | |
| 579 | bzero(s: &fk, n: sizeof(fk)); |
| 580 | ASSERT(sah->saidx.src.ss_family == sah->saidx.dst.ss_family); |
| 581 | switch (sah->saidx.src.ss_family) { |
| 582 | case AF_INET: |
| 583 | ASSERT(sah->saidx.src.ss_len == sizeof(struct sockaddr_in)); |
| 584 | ASSERT(sah->saidx.dst.ss_len == sizeof(struct sockaddr_in)); |
| 585 | fk.ffk_laddr_v4 = |
| 586 | ((struct sockaddr_in *)&(sah->saidx.src))->sin_addr; |
| 587 | fk.ffk_raddr_v4 = |
| 588 | ((struct sockaddr_in *)&(sah->saidx.dst))->sin_addr; |
| 589 | break; |
| 590 | |
| 591 | case AF_INET6: |
| 592 | ASSERT(sah->saidx.src.ss_len == sizeof(struct sockaddr_in6)); |
| 593 | ASSERT(sah->saidx.dst.ss_len == sizeof(struct sockaddr_in6)); |
| 594 | fk.ffk_laddr_v6 = |
| 595 | ((struct sockaddr_in6 *)&(sah->saidx.src))->sin6_addr; |
| 596 | fk.ffk_raddr_v6 = |
| 597 | ((struct sockaddr_in6 *)&(sah->saidx.dst))->sin6_addr; |
| 598 | break; |
| 599 | |
| 600 | default: |
| 601 | VERIFY(0); |
| 602 | break; |
| 603 | } |
| 604 | |
| 605 | ASSERT(sav->spi != 0); |
| 606 | fk.ffk_spi = sav->spi;; |
| 607 | fk.ffk_af = sah->saidx.src.ss_family; |
| 608 | fk.ffk_proto = (uint8_t)(sah->saidx.proto); |
| 609 | |
| 610 | flowidns_allocate_flowid(domain: FLOWIDNS_DOMAIN_IPSEC, flow_key: &fk, flowid: &sav->flowid); |
| 611 | #else /* !SKYWALK */ |
| 612 | sav->flowid = 0; |
| 613 | #endif /* !SKYWALK */ |
| 614 | } |
| 615 | |
| 616 | static void |
| 617 | key_release_flowid(struct secasvar *sav) |
| 618 | { |
| 619 | #if SKYWALK |
| 620 | if (sav->flowid != 0) { |
| 621 | flowidns_release_flowid(flowid: sav->flowid); |
| 622 | sav->flowid = 0; |
| 623 | } |
| 624 | #else /* !SKYWALK */ |
| 625 | VERIFY(sav->flowid == 0); |
| 626 | #endif /* !SKYWALK */ |
| 627 | } |
| 628 | |
| 629 | /* |
| 630 | * PF_KEY init |
| 631 | * setup locks, and then init timer and associated data |
| 632 | */ |
| 633 | void |
| 634 | key_init(struct protosw *pp, struct domain *dp __unused) |
| 635 | { |
| 636 | static int key_initialized = 0; |
| 637 | int i; |
| 638 | |
| 639 | VERIFY((pp->pr_flags & (PR_INITIALIZED | PR_ATTACHED)) == PR_ATTACHED); |
| 640 | |
| 641 | _CASSERT(PFKEY_ALIGN8(sizeof(struct sadb_msg)) <= _MHLEN); |
| 642 | _CASSERT(MAX_REPLAY_WINDOWS == MBUF_TC_MAX); |
| 643 | |
| 644 | if (key_initialized) { |
| 645 | return; |
| 646 | } |
| 647 | key_initialized = 1; |
| 648 | |
| 649 | for (i = 0; i < SPIHASHSIZE; i++) { |
| 650 | LIST_INIT(&spihash[i]); |
| 651 | } |
| 652 | |
| 653 | bzero(s: (caddr_t)&key_cb, n: sizeof(key_cb)); |
| 654 | |
| 655 | for (i = 0; i < IPSEC_DIR_MAX; i++) { |
| 656 | LIST_INIT(&sptree[i]); |
| 657 | } |
| 658 | ipsec_policy_count = 0; |
| 659 | |
| 660 | LIST_INIT(&sahtree); |
| 661 | LIST_INIT(&custom_sahtree); |
| 662 | |
| 663 | for (i = 0; i <= SADB_SATYPE_MAX; i++) { |
| 664 | LIST_INIT(®tree[i]); |
| 665 | } |
| 666 | ipsec_sav_count = 0; |
| 667 | |
| 668 | #ifndef IPSEC_NONBLOCK_ACQUIRE |
| 669 | LIST_INIT(&acqtree); |
| 670 | #endif |
| 671 | LIST_INIT(&spacqtree); |
| 672 | |
| 673 | /* system default */ |
| 674 | #if INET |
| 675 | ip4_def_policy.policy = IPSEC_POLICY_NONE; |
| 676 | ip4_def_policy.refcnt++; /*never reclaim this*/ |
| 677 | #endif |
| 678 | ip6_def_policy.policy = IPSEC_POLICY_NONE; |
| 679 | ip6_def_policy.refcnt++; /*never reclaim this*/ |
| 680 | |
| 681 | key_timehandler_running = 0; |
| 682 | |
| 683 | /* initialize key statistics */ |
| 684 | keystat.getspi_count = 1; |
| 685 | |
| 686 | esp_init(); |
| 687 | #ifndef __APPLE__ |
| 688 | printf("IPsec: Initialized Security Association Processing.\n" ); |
| 689 | #endif |
| 690 | } |
| 691 | |
| 692 | static void |
| 693 | key_start_timehandler(void) |
| 694 | { |
| 695 | /* must be called while locked */ |
| 696 | LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_OWNED); |
| 697 | if (key_timehandler_running == 0) { |
| 698 | key_timehandler_running = 1; |
| 699 | (void)timeout((void *)key_timehandler, arg: (void *)0, ticks: hz); |
| 700 | } |
| 701 | |
| 702 | /* Turn off the ipsec bypass */ |
| 703 | if (ipsec_bypass != 0) { |
| 704 | ipsec_bypass = 0; |
| 705 | } |
| 706 | } |
| 707 | |
| 708 | /* %%% IPsec policy management */ |
| 709 | /* |
| 710 | * allocating a SP for OUTBOUND or INBOUND packet. |
| 711 | * Must call key_freesp() later. |
| 712 | * OUT: NULL: not found |
| 713 | * others: found and return the pointer. |
| 714 | */ |
| 715 | struct secpolicy * |
| 716 | key_allocsp( |
| 717 | struct secpolicyindex *spidx, |
| 718 | u_int dir) |
| 719 | { |
| 720 | struct secpolicy *sp; |
| 721 | |
| 722 | LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_NOTOWNED); |
| 723 | /* sanity check */ |
| 724 | if (spidx == NULL) { |
| 725 | panic("key_allocsp: NULL pointer is passed." ); |
| 726 | } |
| 727 | |
| 728 | /* check direction */ |
| 729 | switch (dir) { |
| 730 | case IPSEC_DIR_INBOUND: |
| 731 | case IPSEC_DIR_OUTBOUND: |
| 732 | break; |
| 733 | default: |
| 734 | panic("key_allocsp: Invalid direction is passed." ); |
| 735 | } |
| 736 | |
| 737 | /* get a SP entry */ |
| 738 | KEYDEBUG(KEYDEBUG_IPSEC_DATA, |
| 739 | printf("*** objects\n" ); |
| 740 | kdebug_secpolicyindex(spidx)); |
| 741 | |
| 742 | lck_mtx_lock(sadb_mutex); |
| 743 | LIST_FOREACH(sp, &sptree[dir], chain) { |
| 744 | KEYDEBUG(KEYDEBUG_IPSEC_DATA, |
| 745 | printf("*** in SPD\n" ); |
| 746 | kdebug_secpolicyindex(&sp->spidx)); |
| 747 | |
| 748 | if (sp->state == IPSEC_SPSTATE_DEAD) { |
| 749 | continue; |
| 750 | } |
| 751 | |
| 752 | /* If the policy is disabled, skip */ |
| 753 | if (sp->disabled > 0) { |
| 754 | continue; |
| 755 | } |
| 756 | |
| 757 | /* If the incoming spidx specifies bound if, |
| 758 | * ignore unbound policies*/ |
| 759 | if (spidx->internal_if != NULL |
| 760 | && (sp->spidx.internal_if == NULL || sp->ipsec_if == NULL)) { |
| 761 | continue; |
| 762 | } |
| 763 | |
| 764 | if (key_cmpspidx_withmask(&sp->spidx, spidx)) { |
| 765 | goto found; |
| 766 | } |
| 767 | } |
| 768 | lck_mtx_unlock(sadb_mutex); |
| 769 | return NULL; |
| 770 | |
| 771 | found: |
| 772 | |
| 773 | /* found a SPD entry */ |
| 774 | sp->lastused = key_get_continuous_time_ns(); |
| 775 | sp->refcnt++; |
| 776 | lck_mtx_unlock(sadb_mutex); |
| 777 | |
| 778 | /* sanity check */ |
| 779 | KEY_CHKSPDIR(sp->spidx.dir, dir, "key_allocsp" ); |
| 780 | KEYDEBUG(KEYDEBUG_IPSEC_STAMP, |
| 781 | printf("DP key_allocsp cause refcnt++:%d SP:0x%llx\n" , |
| 782 | sp->refcnt, (uint64_t)VM_KERNEL_ADDRPERM(sp))); |
| 783 | return sp; |
| 784 | } |
| 785 | |
| 786 | /* |
| 787 | * return a policy that matches this particular inbound packet. |
| 788 | * XXX slow |
| 789 | */ |
| 790 | struct secpolicy * |
| 791 | key_gettunnel( |
| 792 | struct sockaddr *osrc, |
| 793 | struct sockaddr *odst, |
| 794 | struct sockaddr *isrc, |
| 795 | struct sockaddr *idst) |
| 796 | { |
| 797 | struct secpolicy *sp; |
| 798 | const int dir = IPSEC_DIR_INBOUND; |
| 799 | struct ipsecrequest *r1, *r2, *p; |
| 800 | struct sockaddr *os, *od, *is, *id; |
| 801 | struct secpolicyindex spidx; |
| 802 | |
| 803 | if (isrc->sa_family != idst->sa_family) { |
| 804 | ipseclog((LOG_ERR, "protocol family mismatched %d != %d\n." , |
| 805 | isrc->sa_family, idst->sa_family)); |
| 806 | return NULL; |
| 807 | } |
| 808 | |
| 809 | lck_mtx_lock(sadb_mutex); |
| 810 | LIST_FOREACH(sp, &sptree[dir], chain) { |
| 811 | if (sp->state == IPSEC_SPSTATE_DEAD) { |
| 812 | continue; |
| 813 | } |
| 814 | |
| 815 | r1 = r2 = NULL; |
| 816 | for (p = sp->req; p; p = p->next) { |
| 817 | if (p->saidx.mode != IPSEC_MODE_TUNNEL) { |
| 818 | continue; |
| 819 | } |
| 820 | |
| 821 | r1 = r2; |
| 822 | r2 = p; |
| 823 | |
| 824 | if (!r1) { |
| 825 | /* here we look at address matches only */ |
| 826 | spidx = sp->spidx; |
| 827 | if (isrc->sa_len > sizeof(spidx.src) || |
| 828 | idst->sa_len > sizeof(spidx.dst)) { |
| 829 | continue; |
| 830 | } |
| 831 | bcopy(src: isrc, dst: &spidx.src, n: isrc->sa_len); |
| 832 | bcopy(src: idst, dst: &spidx.dst, n: idst->sa_len); |
| 833 | if (!key_cmpspidx_withmask(&sp->spidx, &spidx)) { |
| 834 | continue; |
| 835 | } |
| 836 | } else { |
| 837 | is = (struct sockaddr *)&r1->saidx.src; |
| 838 | id = (struct sockaddr *)&r1->saidx.dst; |
| 839 | if (key_sockaddrcmp(is, isrc, 0) || |
| 840 | key_sockaddrcmp(id, idst, 0)) { |
| 841 | continue; |
| 842 | } |
| 843 | } |
| 844 | |
| 845 | os = (struct sockaddr *)&r2->saidx.src; |
| 846 | od = (struct sockaddr *)&r2->saidx.dst; |
| 847 | if (key_sockaddrcmp(os, osrc, 0) || |
| 848 | key_sockaddrcmp(od, odst, 0)) { |
| 849 | continue; |
| 850 | } |
| 851 | |
| 852 | goto found; |
| 853 | } |
| 854 | } |
| 855 | lck_mtx_unlock(sadb_mutex); |
| 856 | return NULL; |
| 857 | |
| 858 | found: |
| 859 | sp->lastused = key_get_continuous_time_ns(); |
| 860 | sp->refcnt++; |
| 861 | lck_mtx_unlock(sadb_mutex); |
| 862 | return sp; |
| 863 | } |
| 864 | |
| 865 | struct secasvar * |
| 866 | key_alloc_outbound_sav_for_interface(ifnet_t interface, int family, |
| 867 | struct sockaddr *src, |
| 868 | struct sockaddr *dst) |
| 869 | { |
| 870 | struct secashead *sah; |
| 871 | struct secasvar *sav; |
| 872 | u_int stateidx; |
| 873 | u_int state; |
| 874 | const u_int *saorder_state_valid; |
| 875 | int arraysize; |
| 876 | struct sockaddr_in *sin; |
| 877 | u_int16_t dstport; |
| 878 | bool strict = true; |
| 879 | |
| 880 | if (interface == NULL) { |
| 881 | return NULL; |
| 882 | } |
| 883 | |
| 884 | LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_NOTOWNED); |
| 885 | |
| 886 | lck_mtx_lock(sadb_mutex); |
| 887 | |
| 888 | do { |
| 889 | LIST_FOREACH(sah, &sahtree, chain) { |
| 890 | if (sah->state == SADB_SASTATE_DEAD) { |
| 891 | continue; |
| 892 | } |
| 893 | if (sah->ipsec_if == interface && |
| 894 | (family == AF_INET6 || family == AF_INET) && |
| 895 | sah->dir == IPSEC_DIR_OUTBOUND) { |
| 896 | if (strict && |
| 897 | sah->saidx.mode == IPSEC_MODE_TRANSPORT && |
| 898 | src != NULL && dst != NULL) { |
| 899 | // Validate addresses for transport mode |
| 900 | if (key_sockaddrcmp((struct sockaddr *)&sah->saidx.src, src, 0) != 0) { |
| 901 | // Source doesn't match |
| 902 | continue; |
| 903 | } |
| 904 | |
| 905 | if (key_sockaddrcmp((struct sockaddr *)&sah->saidx.dst, dst, 0) != 0) { |
| 906 | // Destination doesn't match |
| 907 | continue; |
| 908 | } |
| 909 | } |
| 910 | |
| 911 | /* This SAH is linked to the IPsec interface, and the right family. We found it! */ |
| 912 | if (key_preferred_oldsa) { |
| 913 | saorder_state_valid = saorder_state_valid_prefer_old; |
| 914 | arraysize = _ARRAYLEN(saorder_state_valid_prefer_old); |
| 915 | } else { |
| 916 | saorder_state_valid = saorder_state_valid_prefer_new; |
| 917 | arraysize = _ARRAYLEN(saorder_state_valid_prefer_new); |
| 918 | } |
| 919 | |
| 920 | sin = (struct sockaddr_in *)&sah->saidx.dst; |
| 921 | dstport = sin->sin_port; |
| 922 | if (sah->saidx.mode == IPSEC_MODE_TRANSPORT) { |
| 923 | sin->sin_port = IPSEC_PORT_ANY; |
| 924 | } |
| 925 | |
| 926 | for (stateidx = 0; stateidx < arraysize; stateidx++) { |
| 927 | state = saorder_state_valid[stateidx]; |
| 928 | sav = key_do_allocsa_policy(sah, state, dstport); |
| 929 | if (sav != NULL) { |
| 930 | lck_mtx_unlock(sadb_mutex); |
| 931 | return sav; |
| 932 | } |
| 933 | } |
| 934 | |
| 935 | break; |
| 936 | } |
| 937 | } |
| 938 | if (strict) { |
| 939 | // If we didn't find anything, try again without strict |
| 940 | strict = false; |
| 941 | } else { |
| 942 | // We already were on the second try, bail |
| 943 | break; |
| 944 | } |
| 945 | } while (true); |
| 946 | |
| 947 | lck_mtx_unlock(sadb_mutex); |
| 948 | return NULL; |
| 949 | } |
| 950 | |
| 951 | /* |
| 952 | * allocating an SA entry for an *OUTBOUND* packet. |
| 953 | * checking each request entries in SP, and acquire an SA if need. |
| 954 | * OUT: 0: there are valid requests. |
| 955 | * ENOENT: policy may be valid, but SA with REQUIRE is on acquiring. |
| 956 | */ |
| 957 | int |
| 958 | key_checkrequest( |
| 959 | struct ipsecrequest *isr, |
| 960 | struct secasindex *saidx, |
| 961 | struct secasvar **sav) |
| 962 | { |
| 963 | u_int level; |
| 964 | int error; |
| 965 | struct sockaddr_in *sin; |
| 966 | |
| 967 | LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_NOTOWNED); |
| 968 | |
| 969 | *sav = NULL; |
| 970 | |
| 971 | /* sanity check */ |
| 972 | if (isr == NULL || saidx == NULL) { |
| 973 | panic("key_checkrequest: NULL pointer is passed." ); |
| 974 | } |
| 975 | |
| 976 | /* check mode */ |
| 977 | switch (saidx->mode) { |
| 978 | case IPSEC_MODE_TRANSPORT: |
| 979 | case IPSEC_MODE_TUNNEL: |
| 980 | break; |
| 981 | case IPSEC_MODE_ANY: |
| 982 | default: |
| 983 | panic("key_checkrequest: Invalid policy defined." ); |
| 984 | } |
| 985 | |
| 986 | /* get current level */ |
| 987 | level = ipsec_get_reqlevel(isr); |
| 988 | |
| 989 | |
| 990 | /* |
| 991 | * key_allocsa_policy should allocate the oldest SA available. |
| 992 | * See key_do_allocsa_policy(), and draft-jenkins-ipsec-rekeying-03.txt. |
| 993 | */ |
| 994 | if (*sav == NULL) { |
| 995 | *sav = key_allocsa_policy(saidx); |
| 996 | } |
| 997 | |
| 998 | /* When there is SA. */ |
| 999 | if (*sav != NULL) { |
| 1000 | return 0; |
| 1001 | } |
| 1002 | |
| 1003 | /* There is no SA. |
| 1004 | * |
| 1005 | * Remove dst port - used for special natt support - don't call |
| 1006 | * key_acquire with it. |
| 1007 | */ |
| 1008 | if (saidx->mode == IPSEC_MODE_TRANSPORT) { |
| 1009 | sin = (struct sockaddr_in *)&saidx->dst; |
| 1010 | sin->sin_port = IPSEC_PORT_ANY; |
| 1011 | } |
| 1012 | if ((error = key_acquire(saidx, isr->sp)) != 0) { |
| 1013 | /* XXX What should I do ? */ |
| 1014 | ipseclog((LOG_DEBUG, "key_checkrequest: error %d returned " |
| 1015 | "from key_acquire.\n" , error)); |
| 1016 | return error; |
| 1017 | } |
| 1018 | |
| 1019 | return level == IPSEC_LEVEL_REQUIRE ? ENOENT : 0; |
| 1020 | } |
| 1021 | |
| 1022 | /* |
| 1023 | * allocating a SA for policy entry from SAD. |
| 1024 | * NOTE: searching SAD of aliving state. |
| 1025 | * OUT: NULL: not found. |
| 1026 | * others: found and return the pointer. |
| 1027 | */ |
| 1028 | u_int32_t sah_search_calls = 0; |
| 1029 | u_int32_t sah_search_count = 0; |
| 1030 | struct secasvar * |
| 1031 | key_allocsa_policy( |
| 1032 | struct secasindex *saidx) |
| 1033 | { |
| 1034 | struct secashead *sah; |
| 1035 | struct secasvar *sav; |
| 1036 | u_int stateidx, state; |
| 1037 | const u_int *saorder_state_valid; |
| 1038 | int arraysize; |
| 1039 | struct sockaddr_in *sin; |
| 1040 | u_int16_t dstport; |
| 1041 | |
| 1042 | lck_mtx_lock(sadb_mutex); |
| 1043 | sah_search_calls++; |
| 1044 | LIST_FOREACH(sah, &sahtree, chain) { |
| 1045 | sah_search_count++; |
| 1046 | if (sah->state == SADB_SASTATE_DEAD) { |
| 1047 | continue; |
| 1048 | } |
| 1049 | if (key_cmpsaidx(&sah->saidx, saidx, CMP_MODE | CMP_REQID)) { |
| 1050 | goto found; |
| 1051 | } |
| 1052 | } |
| 1053 | lck_mtx_unlock(sadb_mutex); |
| 1054 | return NULL; |
| 1055 | |
| 1056 | found: |
| 1057 | |
| 1058 | /* |
| 1059 | * search a valid state list for outbound packet. |
| 1060 | * This search order is important. |
| 1061 | */ |
| 1062 | if (key_preferred_oldsa) { |
| 1063 | saorder_state_valid = saorder_state_valid_prefer_old; |
| 1064 | arraysize = _ARRAYLEN(saorder_state_valid_prefer_old); |
| 1065 | } else { |
| 1066 | saorder_state_valid = saorder_state_valid_prefer_new; |
| 1067 | arraysize = _ARRAYLEN(saorder_state_valid_prefer_new); |
| 1068 | } |
| 1069 | |
| 1070 | |
| 1071 | sin = (struct sockaddr_in *)&saidx->dst; |
| 1072 | dstport = sin->sin_port; |
| 1073 | if (saidx->mode == IPSEC_MODE_TRANSPORT) { |
| 1074 | sin->sin_port = IPSEC_PORT_ANY; |
| 1075 | } |
| 1076 | |
| 1077 | for (stateidx = 0; stateidx < arraysize; stateidx++) { |
| 1078 | state = saorder_state_valid[stateidx]; |
| 1079 | |
| 1080 | sav = key_do_allocsa_policy(sah, state, dstport); |
| 1081 | if (sav != NULL) { |
| 1082 | lck_mtx_unlock(sadb_mutex); |
| 1083 | return sav; |
| 1084 | } |
| 1085 | } |
| 1086 | lck_mtx_unlock(sadb_mutex); |
| 1087 | return NULL; |
| 1088 | } |
| 1089 | |
| 1090 | static void |
| 1091 | key_send_delete(struct secasvar *sav) |
| 1092 | { |
| 1093 | struct mbuf *m, *result; |
| 1094 | u_int8_t satype; |
| 1095 | |
| 1096 | key_sa_chgstate(sav, SADB_SASTATE_DEAD); |
| 1097 | |
| 1098 | if ((satype = key_proto2satype(sav->sah->saidx.proto)) == 0) { |
| 1099 | panic("key_do_allocsa_policy: invalid proto is passed." ); |
| 1100 | } |
| 1101 | |
| 1102 | m = key_setsadbmsg(SADB_DELETE, 0, |
| 1103 | satype, 0, 0, (u_int16_t)(sav->refcnt - 1)); |
| 1104 | if (!m) { |
| 1105 | goto msgfail; |
| 1106 | } |
| 1107 | result = m; |
| 1108 | |
| 1109 | /* set sadb_address for saidx's. */ |
| 1110 | m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, |
| 1111 | (struct sockaddr *)&sav->sah->saidx.src, |
| 1112 | sav->sah->saidx.src.ss_len << 3, |
| 1113 | IPSEC_ULPROTO_ANY); |
| 1114 | if (!m) { |
| 1115 | goto msgfail; |
| 1116 | } |
| 1117 | m_cat(result, m); |
| 1118 | |
| 1119 | /* set sadb_address for saidx's. */ |
| 1120 | m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, |
| 1121 | (struct sockaddr *)&sav->sah->saidx.dst, |
| 1122 | sav->sah->saidx.src.ss_len << 3, |
| 1123 | IPSEC_ULPROTO_ANY); |
| 1124 | if (!m) { |
| 1125 | goto msgfail; |
| 1126 | } |
| 1127 | m_cat(result, m); |
| 1128 | |
| 1129 | /* create SA extension */ |
| 1130 | m = key_setsadbsa(sav); |
| 1131 | if (!m) { |
| 1132 | goto msgfail; |
| 1133 | } |
| 1134 | m_cat(result, m); |
| 1135 | |
| 1136 | if (result->m_len < sizeof(struct sadb_msg)) { |
| 1137 | result = m_pullup(result, |
| 1138 | sizeof(struct sadb_msg)); |
| 1139 | if (result == NULL) { |
| 1140 | goto msgfail; |
| 1141 | } |
| 1142 | } |
| 1143 | |
| 1144 | result->m_pkthdr.len = 0; |
| 1145 | for (m = result; m; m = m->m_next) { |
| 1146 | result->m_pkthdr.len += m->m_len; |
| 1147 | } |
| 1148 | |
| 1149 | VERIFY(PFKEY_UNIT64(result->m_pkthdr.len) <= UINT16_MAX); |
| 1150 | mtod(result, struct sadb_msg *)->sadb_msg_len = |
| 1151 | (u_int16_t)PFKEY_UNIT64(result->m_pkthdr.len); |
| 1152 | |
| 1153 | if (key_sendup_mbuf(NULL, result, |
| 1154 | KEY_SENDUP_REGISTERED)) { |
| 1155 | goto msgfail; |
| 1156 | } |
| 1157 | msgfail: |
| 1158 | key_freesav(sav, KEY_SADB_LOCKED); |
| 1159 | } |
| 1160 | |
| 1161 | /* |
| 1162 | * searching SAD with direction, protocol, mode and state. |
| 1163 | * called by key_allocsa_policy(). |
| 1164 | * OUT: |
| 1165 | * NULL : not found |
| 1166 | * others : found, pointer to a SA. |
| 1167 | */ |
| 1168 | static struct secasvar * |
| 1169 | key_do_allocsa_policy( |
| 1170 | struct secashead *sah, |
| 1171 | u_int state, |
| 1172 | u_int16_t dstport) |
| 1173 | { |
| 1174 | struct secasvar *sav, *nextsav, *candidate, *natt_candidate, *no_natt_candidate, *d; |
| 1175 | |
| 1176 | LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_OWNED); |
| 1177 | |
| 1178 | /* initialize */ |
| 1179 | candidate = NULL; |
| 1180 | natt_candidate = NULL; |
| 1181 | no_natt_candidate = NULL; |
| 1182 | |
| 1183 | for (sav = LIST_FIRST(&sah->savtree[state]); |
| 1184 | sav != NULL; |
| 1185 | sav = nextsav) { |
| 1186 | nextsav = LIST_NEXT(sav, chain); |
| 1187 | |
| 1188 | /* sanity check */ |
| 1189 | KEY_CHKSASTATE(sav->state, state, "key_do_allocsa_policy" ); |
| 1190 | |
| 1191 | if (sah->saidx.mode == IPSEC_MODE_TUNNEL && dstport && |
| 1192 | ((sav->flags & SADB_X_EXT_NATT) != 0) && |
| 1193 | ntohs(dstport) != sav->remote_ike_port) { |
| 1194 | continue; |
| 1195 | } |
| 1196 | |
| 1197 | if (sah->saidx.mode == IPSEC_MODE_TRANSPORT && |
| 1198 | ((sav->flags & SADB_X_EXT_NATT_MULTIPLEUSERS) != 0) && |
| 1199 | ntohs(dstport) != sav->remote_ike_port) { |
| 1200 | continue; /* skip this one - not a match - or not UDP */ |
| 1201 | } |
| 1202 | if ((sah->saidx.mode == IPSEC_MODE_TUNNEL && |
| 1203 | ((sav->flags & SADB_X_EXT_NATT) != 0)) || |
| 1204 | (sah->saidx.mode == IPSEC_MODE_TRANSPORT && |
| 1205 | ((sav->flags & SADB_X_EXT_NATT_MULTIPLEUSERS) != 0))) { |
| 1206 | if (natt_candidate == NULL) { |
| 1207 | natt_candidate = sav; |
| 1208 | continue; |
| 1209 | } else { |
| 1210 | candidate = natt_candidate; |
| 1211 | } |
| 1212 | } else { |
| 1213 | if (no_natt_candidate == NULL) { |
| 1214 | no_natt_candidate = sav; |
| 1215 | continue; |
| 1216 | } else { |
| 1217 | candidate = no_natt_candidate; |
| 1218 | } |
| 1219 | } |
| 1220 | |
| 1221 | /* Which SA is the better ? */ |
| 1222 | |
| 1223 | /* sanity check 2 */ |
| 1224 | if (candidate->lft_c == NULL || sav->lft_c == NULL) { |
| 1225 | panic("key_do_allocsa_policy: " |
| 1226 | "lifetime_current is NULL.\n" ); |
| 1227 | } |
| 1228 | |
| 1229 | /* What the best method is to compare ? */ |
| 1230 | if (key_preferred_oldsa) { |
| 1231 | if (candidate->lft_c->sadb_lifetime_addtime > |
| 1232 | sav->lft_c->sadb_lifetime_addtime) { |
| 1233 | if ((sav->flags & SADB_X_EXT_NATT_MULTIPLEUSERS) != 0) { |
| 1234 | natt_candidate = sav; |
| 1235 | } else { |
| 1236 | no_natt_candidate = sav; |
| 1237 | } |
| 1238 | } |
| 1239 | continue; |
| 1240 | /*NOTREACHED*/ |
| 1241 | } |
| 1242 | |
| 1243 | /* prefered new sa rather than old sa */ |
| 1244 | if (candidate->lft_c->sadb_lifetime_addtime < |
| 1245 | sav->lft_c->sadb_lifetime_addtime) { |
| 1246 | d = candidate; |
| 1247 | if ((sah->saidx.mode == IPSEC_MODE_TUNNEL && |
| 1248 | ((sav->flags & SADB_X_EXT_NATT) != 0)) || |
| 1249 | (sah->saidx.mode == IPSEC_MODE_TRANSPORT && |
| 1250 | ((sav->flags & SADB_X_EXT_NATT_MULTIPLEUSERS) != 0))) { |
| 1251 | natt_candidate = sav; |
| 1252 | } else { |
| 1253 | no_natt_candidate = sav; |
| 1254 | } |
| 1255 | } else { |
| 1256 | d = sav; |
| 1257 | } |
| 1258 | |
| 1259 | /* |
| 1260 | * prepared to delete the SA when there is more |
| 1261 | * suitable candidate and the lifetime of the SA is not |
| 1262 | * permanent. |
| 1263 | */ |
| 1264 | if (d->lft_c->sadb_lifetime_addtime != 0) { |
| 1265 | key_send_delete(sav: d); |
| 1266 | } |
| 1267 | } |
| 1268 | |
| 1269 | /* choose latest if both types present */ |
| 1270 | if (natt_candidate == NULL) { |
| 1271 | candidate = no_natt_candidate; |
| 1272 | } else if (no_natt_candidate == NULL) { |
| 1273 | candidate = natt_candidate; |
| 1274 | } else if (sah->saidx.mode == IPSEC_MODE_TUNNEL && dstport) { |
| 1275 | candidate = natt_candidate; |
| 1276 | } else if (natt_candidate->lft_c->sadb_lifetime_addtime > |
| 1277 | no_natt_candidate->lft_c->sadb_lifetime_addtime) { |
| 1278 | candidate = natt_candidate; |
| 1279 | } else { |
| 1280 | candidate = no_natt_candidate; |
| 1281 | } |
| 1282 | |
| 1283 | if (candidate) { |
| 1284 | candidate->refcnt++; |
| 1285 | KEYDEBUG(KEYDEBUG_IPSEC_STAMP, |
| 1286 | printf("DP allocsa_policy cause " |
| 1287 | "refcnt++:%d SA:0x%llx\n" , candidate->refcnt, |
| 1288 | (uint64_t)VM_KERNEL_ADDRPERM(candidate))); |
| 1289 | } |
| 1290 | return candidate; |
| 1291 | } |
| 1292 | |
| 1293 | /* |
| 1294 | * allocating a SA entry for a *INBOUND* packet. |
| 1295 | * Must call key_freesav() later. |
| 1296 | * OUT: positive: pointer to a sav. |
| 1297 | * NULL: not found, or error occurred. |
| 1298 | * |
| 1299 | * In the comparison, source address will be ignored for RFC2401 conformance. |
| 1300 | * To quote, from section 4.1: |
| 1301 | * A security association is uniquely identified by a triple consisting |
| 1302 | * of a Security Parameter Index (SPI), an IP Destination Address, and a |
| 1303 | * security protocol (AH or ESP) identifier. |
| 1304 | * Note that, however, we do need to keep source address in IPsec SA. |
| 1305 | * IKE specification and PF_KEY specification do assume that we |
| 1306 | * keep source address in IPsec SA. We see a tricky situation here. |
| 1307 | */ |
| 1308 | struct secasvar * |
| 1309 | key_allocsa( |
| 1310 | u_int family, |
| 1311 | caddr_t src, |
| 1312 | caddr_t dst, |
| 1313 | uint32_t dst_ifscope, |
| 1314 | u_int proto, |
| 1315 | u_int32_t spi) |
| 1316 | { |
| 1317 | return key_allocsa_extended(family, src, dst, dst_ifscope, proto, spi, NULL); |
| 1318 | } |
| 1319 | |
| 1320 | struct secasvar * |
| 1321 | key_allocsa_extended(u_int family, |
| 1322 | caddr_t src, |
| 1323 | caddr_t dst, |
| 1324 | uint32_t dst_ifscope, |
| 1325 | u_int proto, |
| 1326 | u_int32_t spi, |
| 1327 | ifnet_t interface) |
| 1328 | { |
| 1329 | struct secasvar *sav, *match; |
| 1330 | u_int stateidx, state, tmpidx, matchidx; |
| 1331 | union sockaddr_in_4_6 dst_address = {}; |
| 1332 | const u_int *saorder_state_valid; |
| 1333 | int arraysize; |
| 1334 | bool dst_ll_address = false; |
| 1335 | |
| 1336 | LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_NOTOWNED); |
| 1337 | |
| 1338 | /* sanity check */ |
| 1339 | if (src == NULL || dst == NULL) { |
| 1340 | panic("key_allocsa: NULL pointer is passed." ); |
| 1341 | } |
| 1342 | |
| 1343 | /* |
| 1344 | * when both systems employ similar strategy to use a SA. |
| 1345 | * the search order is important even in the inbound case. |
| 1346 | */ |
| 1347 | if (key_preferred_oldsa) { |
| 1348 | saorder_state_valid = saorder_state_valid_prefer_old; |
| 1349 | arraysize = _ARRAYLEN(saorder_state_valid_prefer_old); |
| 1350 | } else { |
| 1351 | saorder_state_valid = saorder_state_valid_prefer_new; |
| 1352 | arraysize = _ARRAYLEN(saorder_state_valid_prefer_new); |
| 1353 | } |
| 1354 | |
| 1355 | /* check dst address */ |
| 1356 | switch (family) { |
| 1357 | case AF_INET: |
| 1358 | dst_address.sin.sin_family = AF_INET; |
| 1359 | dst_address.sin.sin_len = sizeof(dst_address.sin); |
| 1360 | memcpy(dst: &dst_address.sin.sin_addr, src: dst, n: sizeof(dst_address.sin.sin_addr)); |
| 1361 | break; |
| 1362 | case AF_INET6: |
| 1363 | dst_address.sin6.sin6_family = AF_INET6; |
| 1364 | dst_address.sin6.sin6_len = sizeof(dst_address.sin6); |
| 1365 | memcpy(dst: &dst_address.sin6.sin6_addr, src: dst, n: sizeof(dst_address.sin6.sin6_addr)); |
| 1366 | if (IN6_IS_SCOPE_LINKLOCAL(&dst_address.sin6.sin6_addr)) { |
| 1367 | dst_ll_address = true; |
| 1368 | /* kame fake scopeid */ |
| 1369 | dst_address.sin6.sin6_scope_id = dst_ifscope; |
| 1370 | if (in6_embedded_scope) { |
| 1371 | in6_verify_ifscope(&dst_address.sin6.sin6_addr, dst_address.sin6.sin6_scope_id); |
| 1372 | dst_address.sin6.sin6_scope_id = |
| 1373 | ntohs(dst_address.sin6.sin6_addr.s6_addr16[1]); |
| 1374 | dst_address.sin6.sin6_addr.s6_addr16[1] = 0; |
| 1375 | } |
| 1376 | } |
| 1377 | break; |
| 1378 | default: |
| 1379 | ipseclog((LOG_DEBUG, "key_allocsa: " |
| 1380 | "unknown address family=%d.\n" , family)); |
| 1381 | return NULL; |
| 1382 | } |
| 1383 | |
| 1384 | |
| 1385 | /* |
| 1386 | * searching SAD. |
| 1387 | * XXX: to be checked internal IP header somewhere. Also when |
| 1388 | * IPsec tunnel packet is received. But ESP tunnel mode is |
| 1389 | * encrypted so we can't check internal IP header. |
| 1390 | */ |
| 1391 | /* |
| 1392 | * search a valid state list for inbound packet. |
| 1393 | * the search order is not important. |
| 1394 | */ |
| 1395 | match = NULL; |
| 1396 | matchidx = arraysize; |
| 1397 | lck_mtx_lock(sadb_mutex); |
| 1398 | LIST_FOREACH(sav, &spihash[SPIHASH(spi)], spihash) { |
| 1399 | if (sav->spi != spi) { |
| 1400 | continue; |
| 1401 | } |
| 1402 | if (interface != NULL && |
| 1403 | sav->sah->ipsec_if != interface) { |
| 1404 | continue; |
| 1405 | } |
| 1406 | if (proto != sav->sah->saidx.proto) { |
| 1407 | continue; |
| 1408 | } |
| 1409 | if (family != sav->sah->saidx.src.ss_family || |
| 1410 | family != sav->sah->saidx.dst.ss_family) { |
| 1411 | continue; |
| 1412 | } |
| 1413 | tmpidx = arraysize; |
| 1414 | for (stateidx = 0; stateidx < matchidx; stateidx++) { |
| 1415 | state = saorder_state_valid[stateidx]; |
| 1416 | if (sav->state == state) { |
| 1417 | tmpidx = stateidx; |
| 1418 | break; |
| 1419 | } |
| 1420 | } |
| 1421 | if (tmpidx >= matchidx) { |
| 1422 | continue; |
| 1423 | } |
| 1424 | |
| 1425 | struct sockaddr_in6 tmp_sah_dst = {}; |
| 1426 | struct sockaddr *sah_dst = (struct sockaddr *)&sav->sah->saidx.dst; |
| 1427 | if (dst_ll_address) { |
| 1428 | if (!IN6_IS_SCOPE_LINKLOCAL(&(__DECONST(struct sockaddr_in6 *, sah_dst))->sin6_addr)) { |
| 1429 | continue; |
| 1430 | } else { |
| 1431 | tmp_sah_dst.sin6_family = AF_INET6; |
| 1432 | tmp_sah_dst.sin6_len = sizeof(tmp_sah_dst); |
| 1433 | memcpy(dst: &tmp_sah_dst.sin6_addr, src: &(__DECONST(struct sockaddr_in6 *, sah_dst))->sin6_addr, n: sizeof(tmp_sah_dst.sin6_addr)); |
| 1434 | tmp_sah_dst.sin6_scope_id = sav->sah->outgoing_if; |
| 1435 | sah_dst = (struct sockaddr *)&tmp_sah_dst; |
| 1436 | } |
| 1437 | } |
| 1438 | |
| 1439 | if (key_sockaddrcmp(SA(&dst_address.sa), sah_dst, 0) != 0) { |
| 1440 | continue; |
| 1441 | } |
| 1442 | |
| 1443 | match = sav; |
| 1444 | matchidx = tmpidx; |
| 1445 | } |
| 1446 | if (match) { |
| 1447 | goto found; |
| 1448 | } |
| 1449 | |
| 1450 | /* not found */ |
| 1451 | lck_mtx_unlock(sadb_mutex); |
| 1452 | return NULL; |
| 1453 | |
| 1454 | found: |
| 1455 | match->refcnt++; |
| 1456 | lck_mtx_unlock(sadb_mutex); |
| 1457 | KEYDEBUG(KEYDEBUG_IPSEC_STAMP, |
| 1458 | printf("DP allocsa cause refcnt++:%d SA:0x%llx\n" , |
| 1459 | match->refcnt, (uint64_t)VM_KERNEL_ADDRPERM(match))); |
| 1460 | return match; |
| 1461 | } |
| 1462 | |
| 1463 | /* |
| 1464 | * This function checks whether a UDP packet with a random local port |
| 1465 | * and a remote port of 4500 matches an SA in the kernel. If does match, |
| 1466 | * send the packet to the ESP engine. If not, send the packet to the UDP protocol. |
| 1467 | */ |
| 1468 | bool |
| 1469 | key_checksa_present(u_int family, |
| 1470 | caddr_t local_addr, |
| 1471 | caddr_t remote_addr, |
| 1472 | u_int16_t local_port, |
| 1473 | u_int16_t remote_port, |
| 1474 | uint32_t source_ifscope, |
| 1475 | uint32_t remote_ifscope) |
| 1476 | { |
| 1477 | LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_NOTOWNED); |
| 1478 | |
| 1479 | /* sanity check */ |
| 1480 | if (local_addr == NULL || remote_addr == NULL) { |
| 1481 | panic("key_allocsa: NULL pointer is passed." ); |
| 1482 | } |
| 1483 | |
| 1484 | /* |
| 1485 | * searching SAD. |
| 1486 | * XXX: to be checked internal IP header somewhere. Also when |
| 1487 | * IPsec tunnel packet is received. But ESP tunnel mode is |
| 1488 | * encrypted so we can't check internal IP header. |
| 1489 | */ |
| 1490 | /* |
| 1491 | * search a valid state list for inbound packet. |
| 1492 | * the search order is not important. |
| 1493 | */ |
| 1494 | struct secashead *sah = NULL; |
| 1495 | bool found_sa = false; |
| 1496 | |
| 1497 | lck_mtx_lock(sadb_mutex); |
| 1498 | LIST_FOREACH(sah, &sahtree, chain) { |
| 1499 | if (sah->state == SADB_SASTATE_DEAD) { |
| 1500 | continue; |
| 1501 | } |
| 1502 | |
| 1503 | if (sah->dir != IPSEC_DIR_OUTBOUND) { |
| 1504 | continue; |
| 1505 | } |
| 1506 | |
| 1507 | if (family != sah->saidx.src.ss_family) { |
| 1508 | continue; |
| 1509 | } |
| 1510 | |
| 1511 | struct sockaddr_in src_in = {}; |
| 1512 | struct sockaddr_in6 src_in6 = {}; |
| 1513 | |
| 1514 | /* check src address */ |
| 1515 | switch (family) { |
| 1516 | case AF_INET: |
| 1517 | src_in.sin_family = AF_INET; |
| 1518 | src_in.sin_len = sizeof(src_in); |
| 1519 | memcpy(dst: &src_in.sin_addr, src: local_addr, n: sizeof(src_in.sin_addr)); |
| 1520 | if (key_sockaddrcmp((struct sockaddr*)&src_in, |
| 1521 | (struct sockaddr *)&sah->saidx.src, 0) != 0) { |
| 1522 | continue; |
| 1523 | } |
| 1524 | break; |
| 1525 | case AF_INET6: |
| 1526 | src_in6.sin6_family = AF_INET6; |
| 1527 | src_in6.sin6_len = sizeof(src_in6); |
| 1528 | memcpy(dst: &src_in6.sin6_addr, src: local_addr, n: sizeof(src_in6.sin6_addr)); |
| 1529 | if (IN6_IS_SCOPE_LINKLOCAL(&src_in6.sin6_addr)) { |
| 1530 | /* kame fake scopeid */ |
| 1531 | src_in6.sin6_scope_id = source_ifscope; |
| 1532 | if (in6_embedded_scope) { |
| 1533 | in6_verify_ifscope(&src_in6.sin6_addr, src_in6.sin6_scope_id); |
| 1534 | src_in6.sin6_scope_id = |
| 1535 | ntohs(src_in6.sin6_addr.s6_addr16[1]); |
| 1536 | src_in6.sin6_addr.s6_addr16[1] = 0; |
| 1537 | } |
| 1538 | } |
| 1539 | if (key_sockaddrcmp((struct sockaddr*)&src_in6, |
| 1540 | (struct sockaddr *)&sah->saidx.src, 0) != 0) { |
| 1541 | continue; |
| 1542 | } |
| 1543 | break; |
| 1544 | default: |
| 1545 | ipseclog((LOG_DEBUG, "key_checksa_present: " |
| 1546 | "unknown address family=%d.\n" , |
| 1547 | family)); |
| 1548 | continue; |
| 1549 | } |
| 1550 | |
| 1551 | struct sockaddr_in dest_in = {}; |
| 1552 | struct sockaddr_in6 dest_in6 = {}; |
| 1553 | |
| 1554 | /* check dst address */ |
| 1555 | switch (family) { |
| 1556 | case AF_INET: |
| 1557 | dest_in.sin_family = AF_INET; |
| 1558 | dest_in.sin_len = sizeof(dest_in); |
| 1559 | memcpy(dst: &dest_in.sin_addr, src: remote_addr, n: sizeof(dest_in.sin_addr)); |
| 1560 | if (key_sockaddrcmp((struct sockaddr*)&dest_in, |
| 1561 | (struct sockaddr *)&sah->saidx.dst, 0) != 0) { |
| 1562 | continue; |
| 1563 | } |
| 1564 | |
| 1565 | break; |
| 1566 | case AF_INET6: |
| 1567 | dest_in6.sin6_family = AF_INET6; |
| 1568 | dest_in6.sin6_len = sizeof(dest_in6); |
| 1569 | memcpy(dst: &dest_in6.sin6_addr, src: remote_addr, n: sizeof(dest_in6.sin6_addr)); |
| 1570 | if (IN6_IS_SCOPE_LINKLOCAL(&dest_in6.sin6_addr)) { |
| 1571 | /* kame fake scopeid */ |
| 1572 | dest_in6.sin6_scope_id = remote_ifscope; |
| 1573 | if (in6_embedded_scope) { |
| 1574 | in6_verify_ifscope(&dest_in6.sin6_addr, dest_in6.sin6_scope_id); |
| 1575 | dest_in6.sin6_scope_id = ntohs(dest_in6.sin6_addr.s6_addr16[1]); |
| 1576 | dest_in6.sin6_addr.s6_addr16[1] = 0; |
| 1577 | } |
| 1578 | } |
| 1579 | if (key_sockaddrcmp((struct sockaddr*)&dest_in6, |
| 1580 | (struct sockaddr *)&sah->saidx.dst, 0) != 0) { |
| 1581 | continue; |
| 1582 | } |
| 1583 | |
| 1584 | break; |
| 1585 | default: |
| 1586 | ipseclog((LOG_DEBUG, "key_checksa_present: " |
| 1587 | "unknown address family=%d.\n" , family)); |
| 1588 | continue; |
| 1589 | } |
| 1590 | |
| 1591 | struct secasvar *nextsav = NULL; |
| 1592 | for (u_int stateidx = 0; stateidx < _ARRAYLEN(saorder_state_alive); stateidx++) { |
| 1593 | u_int state = saorder_state_alive[stateidx]; |
| 1594 | for (struct secasvar *sav = LIST_FIRST(&sah->savtree[state]); sav != NULL; sav = nextsav) { |
| 1595 | nextsav = LIST_NEXT(sav, chain); |
| 1596 | /* sanity check */ |
| 1597 | if (sav->state != state) { |
| 1598 | ipseclog((LOG_DEBUG, "key_checksa_present: " |
| 1599 | "invalid sav->state " |
| 1600 | "(state: %d SA: %d)\n" , |
| 1601 | state, sav->state)); |
| 1602 | continue; |
| 1603 | } |
| 1604 | |
| 1605 | if (sav->remote_ike_port != ntohs(remote_port)) { |
| 1606 | continue; |
| 1607 | } |
| 1608 | |
| 1609 | if (sav->natt_encapsulated_src_port != local_port) { |
| 1610 | continue; |
| 1611 | } |
| 1612 | found_sa = true; |
| 1613 | break; |
| 1614 | } |
| 1615 | } |
| 1616 | } |
| 1617 | |
| 1618 | /* not found */ |
| 1619 | lck_mtx_unlock(sadb_mutex); |
| 1620 | return found_sa; |
| 1621 | } |
| 1622 | |
| 1623 | u_int16_t |
| 1624 | key_natt_get_translated_port( |
| 1625 | struct secasvar *outsav) |
| 1626 | { |
| 1627 | struct secasindex saidx = {}; |
| 1628 | struct secashead *sah; |
| 1629 | u_int stateidx, state; |
| 1630 | const u_int *saorder_state_valid; |
| 1631 | int arraysize; |
| 1632 | |
| 1633 | /* get sa for incoming */ |
| 1634 | saidx.mode = outsav->sah->saidx.mode; |
| 1635 | saidx.reqid = 0; |
| 1636 | saidx.proto = outsav->sah->saidx.proto; |
| 1637 | bcopy(src: &outsav->sah->saidx.src, dst: &saidx.dst, n: sizeof(struct sockaddr_in)); |
| 1638 | bcopy(src: &outsav->sah->saidx.dst, dst: &saidx.src, n: sizeof(struct sockaddr_in)); |
| 1639 | |
| 1640 | lck_mtx_lock(sadb_mutex); |
| 1641 | LIST_FOREACH(sah, &sahtree, chain) { |
| 1642 | if (sah->state == SADB_SASTATE_DEAD) { |
| 1643 | continue; |
| 1644 | } |
| 1645 | if (key_cmpsaidx(&sah->saidx, &saidx, CMP_MODE)) { |
| 1646 | goto found; |
| 1647 | } |
| 1648 | } |
| 1649 | lck_mtx_unlock(sadb_mutex); |
| 1650 | return 0; |
| 1651 | |
| 1652 | found: |
| 1653 | /* |
| 1654 | * Found sah - now go thru list of SAs and find |
| 1655 | * matching remote ike port. If found - set |
| 1656 | * sav->natt_encapsulated_src_port and return the port. |
| 1657 | */ |
| 1658 | /* |
| 1659 | * search a valid state list for outbound packet. |
| 1660 | * This search order is important. |
| 1661 | */ |
| 1662 | if (key_preferred_oldsa) { |
| 1663 | saorder_state_valid = saorder_state_valid_prefer_old; |
| 1664 | arraysize = _ARRAYLEN(saorder_state_valid_prefer_old); |
| 1665 | } else { |
| 1666 | saorder_state_valid = saorder_state_valid_prefer_new; |
| 1667 | arraysize = _ARRAYLEN(saorder_state_valid_prefer_new); |
| 1668 | } |
| 1669 | |
| 1670 | for (stateidx = 0; stateidx < arraysize; stateidx++) { |
| 1671 | state = saorder_state_valid[stateidx]; |
| 1672 | if (key_do_get_translated_port(sah, outsav, state)) { |
| 1673 | lck_mtx_unlock(sadb_mutex); |
| 1674 | return outsav->natt_encapsulated_src_port; |
| 1675 | } |
| 1676 | } |
| 1677 | lck_mtx_unlock(sadb_mutex); |
| 1678 | return 0; |
| 1679 | } |
| 1680 | |
| 1681 | static int |
| 1682 | key_do_get_translated_port( |
| 1683 | struct secashead *sah, |
| 1684 | struct secasvar *outsav, |
| 1685 | u_int state) |
| 1686 | { |
| 1687 | struct secasvar *currsav, *nextsav, *candidate; |
| 1688 | |
| 1689 | |
| 1690 | LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_OWNED); |
| 1691 | |
| 1692 | /* initilize */ |
| 1693 | candidate = NULL; |
| 1694 | |
| 1695 | for (currsav = LIST_FIRST(&sah->savtree[state]); |
| 1696 | currsav != NULL; |
| 1697 | currsav = nextsav) { |
| 1698 | nextsav = LIST_NEXT(currsav, chain); |
| 1699 | |
| 1700 | /* sanity check */ |
| 1701 | KEY_CHKSASTATE(currsav->state, state, "key_do_get_translated_port" ); |
| 1702 | |
| 1703 | if ((currsav->flags & SADB_X_EXT_NATT_MULTIPLEUSERS) == 0 || |
| 1704 | currsav->remote_ike_port != outsav->remote_ike_port) { |
| 1705 | continue; |
| 1706 | } |
| 1707 | |
| 1708 | if (candidate == NULL) { |
| 1709 | candidate = currsav; |
| 1710 | continue; |
| 1711 | } |
| 1712 | |
| 1713 | /* Which SA is the better ? */ |
| 1714 | |
| 1715 | /* sanity check 2 */ |
| 1716 | if (candidate->lft_c == NULL || currsav->lft_c == NULL) { |
| 1717 | panic("key_do_get_translated_port: " |
| 1718 | "lifetime_current is NULL.\n" ); |
| 1719 | } |
| 1720 | |
| 1721 | /* What the best method is to compare ? */ |
| 1722 | if (key_preferred_oldsa) { |
| 1723 | if (candidate->lft_c->sadb_lifetime_addtime > |
| 1724 | currsav->lft_c->sadb_lifetime_addtime) { |
| 1725 | candidate = currsav; |
| 1726 | } |
| 1727 | continue; |
| 1728 | /*NOTREACHED*/ |
| 1729 | } |
| 1730 | |
| 1731 | /* prefered new sa rather than old sa */ |
| 1732 | if (candidate->lft_c->sadb_lifetime_addtime < |
| 1733 | currsav->lft_c->sadb_lifetime_addtime) { |
| 1734 | candidate = currsav; |
| 1735 | } |
| 1736 | } |
| 1737 | |
| 1738 | if (candidate) { |
| 1739 | outsav->natt_encapsulated_src_port = candidate->natt_encapsulated_src_port; |
| 1740 | return 1; |
| 1741 | } |
| 1742 | |
| 1743 | return 0; |
| 1744 | } |
| 1745 | |
| 1746 | /* |
| 1747 | * Must be called after calling key_allocsp(). |
| 1748 | */ |
| 1749 | void |
| 1750 | key_freesp( |
| 1751 | struct secpolicy *sp, |
| 1752 | int locked) |
| 1753 | { |
| 1754 | /* sanity check */ |
| 1755 | if (sp == NULL) { |
| 1756 | panic("key_freesp: NULL pointer is passed." ); |
| 1757 | } |
| 1758 | |
| 1759 | if (!locked) { |
| 1760 | lck_mtx_lock(sadb_mutex); |
| 1761 | } else { |
| 1762 | LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_OWNED); |
| 1763 | } |
| 1764 | sp->refcnt--; |
| 1765 | KEYDEBUG(KEYDEBUG_IPSEC_STAMP, |
| 1766 | printf("DP freesp cause refcnt--:%d SP:0x%llx\n" , |
| 1767 | sp->refcnt, (uint64_t)VM_KERNEL_ADDRPERM(sp))); |
| 1768 | |
| 1769 | if (sp->refcnt == 0) { |
| 1770 | key_delsp(sp); |
| 1771 | } |
| 1772 | if (!locked) { |
| 1773 | lck_mtx_unlock(sadb_mutex); |
| 1774 | } |
| 1775 | return; |
| 1776 | } |
| 1777 | |
| 1778 | /* |
| 1779 | * Must be called after calling key_allocsa(). |
| 1780 | * This function is called by key_freesp() to free some SA allocated |
| 1781 | * for a policy. |
| 1782 | */ |
| 1783 | void |
| 1784 | key_freesav( |
| 1785 | struct secasvar *sav, |
| 1786 | int locked) |
| 1787 | { |
| 1788 | /* sanity check */ |
| 1789 | if (sav == NULL) { |
| 1790 | panic("key_freesav: NULL pointer is passed." ); |
| 1791 | } |
| 1792 | |
| 1793 | if (!locked) { |
| 1794 | lck_mtx_lock(sadb_mutex); |
| 1795 | } else { |
| 1796 | LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_OWNED); |
| 1797 | } |
| 1798 | sav->refcnt--; |
| 1799 | KEYDEBUG(KEYDEBUG_IPSEC_STAMP, |
| 1800 | printf("DP freesav cause refcnt--:%d SA:0x%llx SPI %u\n" , |
| 1801 | sav->refcnt, (uint64_t)VM_KERNEL_ADDRPERM(sav), |
| 1802 | (u_int32_t)ntohl(sav->spi))); |
| 1803 | |
| 1804 | if (sav->refcnt == 0) { |
| 1805 | key_delsav(sav); |
| 1806 | } |
| 1807 | if (!locked) { |
| 1808 | lck_mtx_unlock(sadb_mutex); |
| 1809 | } |
| 1810 | return; |
| 1811 | } |
| 1812 | |
| 1813 | /* %%% SPD management */ |
| 1814 | /* |
| 1815 | * free security policy entry. |
| 1816 | */ |
| 1817 | static void |
| 1818 | key_delsp( |
| 1819 | struct secpolicy *sp) |
| 1820 | { |
| 1821 | /* sanity check */ |
| 1822 | if (sp == NULL) { |
| 1823 | panic("key_delsp: NULL pointer is passed." ); |
| 1824 | } |
| 1825 | |
| 1826 | LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_OWNED); |
| 1827 | sp->state = IPSEC_SPSTATE_DEAD; |
| 1828 | |
| 1829 | if (sp->refcnt > 0) { |
| 1830 | return; /* can't free */ |
| 1831 | } |
| 1832 | /* remove from SP index */ |
| 1833 | if (__LIST_CHAINED(sp)) { |
| 1834 | LIST_REMOVE(sp, chain); |
| 1835 | ipsec_policy_count--; |
| 1836 | } |
| 1837 | |
| 1838 | if (sp->spidx.internal_if) { |
| 1839 | ifnet_release(interface: sp->spidx.internal_if); |
| 1840 | sp->spidx.internal_if = NULL; |
| 1841 | } |
| 1842 | |
| 1843 | if (sp->ipsec_if) { |
| 1844 | ifnet_release(interface: sp->ipsec_if); |
| 1845 | sp->ipsec_if = NULL; |
| 1846 | } |
| 1847 | |
| 1848 | if (sp->outgoing_if) { |
| 1849 | ifnet_release(interface: sp->outgoing_if); |
| 1850 | sp->outgoing_if = NULL; |
| 1851 | } |
| 1852 | |
| 1853 | { |
| 1854 | struct ipsecrequest *isr = sp->req, *nextisr; |
| 1855 | |
| 1856 | while (isr != NULL) { |
| 1857 | nextisr = isr->next; |
| 1858 | kfree_type(struct ipsecrequest, isr); |
| 1859 | isr = nextisr; |
| 1860 | } |
| 1861 | } |
| 1862 | keydb_delsecpolicy(sp); |
| 1863 | |
| 1864 | return; |
| 1865 | } |
| 1866 | |
| 1867 | /* |
| 1868 | * search SPD |
| 1869 | * OUT: NULL : not found |
| 1870 | * others : found, pointer to a SP. |
| 1871 | */ |
| 1872 | static struct secpolicy * |
| 1873 | key_getsp( |
| 1874 | struct secpolicyindex *spidx) |
| 1875 | { |
| 1876 | struct secpolicy *sp; |
| 1877 | |
| 1878 | LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_OWNED); |
| 1879 | |
| 1880 | /* sanity check */ |
| 1881 | if (spidx == NULL) { |
| 1882 | panic("key_getsp: NULL pointer is passed." ); |
| 1883 | } |
| 1884 | |
| 1885 | LIST_FOREACH(sp, &sptree[spidx->dir], chain) { |
| 1886 | if (sp->state == IPSEC_SPSTATE_DEAD) { |
| 1887 | continue; |
| 1888 | } |
| 1889 | if (key_cmpspidx_exactly(spidx, &sp->spidx)) { |
| 1890 | sp->refcnt++; |
| 1891 | return sp; |
| 1892 | } |
| 1893 | } |
| 1894 | |
| 1895 | return NULL; |
| 1896 | } |
| 1897 | |
| 1898 | /* |
| 1899 | * get SP by index. |
| 1900 | * OUT: NULL : not found |
| 1901 | * others : found, pointer to a SP. |
| 1902 | */ |
| 1903 | struct secpolicy * |
| 1904 | key_getspbyid( |
| 1905 | u_int32_t id) |
| 1906 | { |
| 1907 | struct secpolicy *sp; |
| 1908 | |
| 1909 | LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_NOTOWNED); |
| 1910 | |
| 1911 | lck_mtx_lock(sadb_mutex); |
| 1912 | sp = __key_getspbyid(id); |
| 1913 | lck_mtx_unlock(sadb_mutex); |
| 1914 | |
| 1915 | return sp; |
| 1916 | } |
| 1917 | |
| 1918 | static struct secpolicy * |
| 1919 | __key_getspbyid(u_int32_t id) |
| 1920 | { |
| 1921 | struct secpolicy *sp; |
| 1922 | |
| 1923 | LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_OWNED); |
| 1924 | |
| 1925 | LIST_FOREACH(sp, &sptree[IPSEC_DIR_INBOUND], chain) { |
| 1926 | if (sp->state == IPSEC_SPSTATE_DEAD) { |
| 1927 | continue; |
| 1928 | } |
| 1929 | if (sp->id == id) { |
| 1930 | sp->refcnt++; |
| 1931 | return sp; |
| 1932 | } |
| 1933 | } |
| 1934 | |
| 1935 | LIST_FOREACH(sp, &sptree[IPSEC_DIR_OUTBOUND], chain) { |
| 1936 | if (sp->state == IPSEC_SPSTATE_DEAD) { |
| 1937 | continue; |
| 1938 | } |
| 1939 | if (sp->id == id) { |
| 1940 | sp->refcnt++; |
| 1941 | return sp; |
| 1942 | } |
| 1943 | } |
| 1944 | |
| 1945 | return NULL; |
| 1946 | } |
| 1947 | |
| 1948 | struct secpolicy * |
| 1949 | key_newsp(void) |
| 1950 | { |
| 1951 | struct secpolicy *newsp = NULL; |
| 1952 | |
| 1953 | LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_NOTOWNED); |
| 1954 | newsp = keydb_newsecpolicy(); |
| 1955 | if (!newsp) { |
| 1956 | return newsp; |
| 1957 | } |
| 1958 | |
| 1959 | newsp->refcnt = 1; |
| 1960 | newsp->req = NULL; |
| 1961 | |
| 1962 | return newsp; |
| 1963 | } |
| 1964 | |
| 1965 | /* |
| 1966 | * create secpolicy structure from sadb_x_policy structure. |
| 1967 | * NOTE: `state', `secpolicyindex' in secpolicy structure are not set, |
| 1968 | * so must be set properly later. |
| 1969 | */ |
| 1970 | struct secpolicy * |
| 1971 | key_msg2sp( |
| 1972 | struct sadb_x_policy *xpl0, |
| 1973 | size_t len, |
| 1974 | int *error) |
| 1975 | { |
| 1976 | struct secpolicy *newsp; |
| 1977 | |
| 1978 | LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_NOTOWNED); |
| 1979 | |
| 1980 | /* sanity check */ |
| 1981 | if (xpl0 == NULL) { |
| 1982 | panic("key_msg2sp: NULL pointer was passed." ); |
| 1983 | } |
| 1984 | if (len < sizeof(*xpl0)) { |
| 1985 | panic("key_msg2sp: invalid length." ); |
| 1986 | } |
| 1987 | if (len != PFKEY_EXTLEN(xpl0)) { |
| 1988 | ipseclog((LOG_DEBUG, "key_msg2sp: Invalid msg length.\n" )); |
| 1989 | *error = EINVAL; |
| 1990 | return NULL; |
| 1991 | } |
| 1992 | |
| 1993 | if ((newsp = key_newsp()) == NULL) { |
| 1994 | *error = ENOBUFS; |
| 1995 | return NULL; |
| 1996 | } |
| 1997 | |
| 1998 | newsp->spidx.dir = xpl0->sadb_x_policy_dir; |
| 1999 | newsp->policy = xpl0->sadb_x_policy_type; |
| 2000 | |
| 2001 | /* check policy */ |
| 2002 | switch (xpl0->sadb_x_policy_type) { |
| 2003 | case IPSEC_POLICY_DISCARD: |
| 2004 | case IPSEC_POLICY_GENERATE: |
| 2005 | case IPSEC_POLICY_NONE: |
| 2006 | case IPSEC_POLICY_ENTRUST: |
| 2007 | case IPSEC_POLICY_BYPASS: |
| 2008 | newsp->req = NULL; |
| 2009 | break; |
| 2010 | |
| 2011 | case IPSEC_POLICY_IPSEC: |
| 2012 | { |
| 2013 | int tlen; |
| 2014 | struct sadb_x_ipsecrequest *xisr; |
| 2015 | struct ipsecrequest **p_isr = &newsp->req; |
| 2016 | |
| 2017 | /* validity check */ |
| 2018 | if (PFKEY_EXTLEN(xpl0) < sizeof(*xpl0)) { |
| 2019 | ipseclog((LOG_DEBUG, |
| 2020 | "key_msg2sp: Invalid msg length.\n" )); |
| 2021 | key_freesp(sp: newsp, KEY_SADB_UNLOCKED); |
| 2022 | *error = EINVAL; |
| 2023 | return NULL; |
| 2024 | } |
| 2025 | |
| 2026 | tlen = PFKEY_EXTLEN(xpl0) - sizeof(*xpl0); |
| 2027 | xisr = (struct sadb_x_ipsecrequest *)(xpl0 + 1); |
| 2028 | |
| 2029 | while (tlen > 0) { |
| 2030 | if (tlen < sizeof(*xisr)) { |
| 2031 | ipseclog((LOG_DEBUG, "key_msg2sp: " |
| 2032 | "invalid ipsecrequest.\n" )); |
| 2033 | key_freesp(sp: newsp, KEY_SADB_UNLOCKED); |
| 2034 | *error = EINVAL; |
| 2035 | return NULL; |
| 2036 | } |
| 2037 | |
| 2038 | /* length check */ |
| 2039 | if (xisr->sadb_x_ipsecrequest_len < sizeof(*xisr)) { |
| 2040 | ipseclog((LOG_DEBUG, "key_msg2sp: " |
| 2041 | "invalid ipsecrequest length.\n" )); |
| 2042 | key_freesp(sp: newsp, KEY_SADB_UNLOCKED); |
| 2043 | *error = EINVAL; |
| 2044 | return NULL; |
| 2045 | } |
| 2046 | |
| 2047 | /* allocate request buffer */ |
| 2048 | *p_isr = kalloc_type(struct ipsecrequest, |
| 2049 | Z_WAITOK_ZERO_NOFAIL); |
| 2050 | |
| 2051 | switch (xisr->sadb_x_ipsecrequest_proto) { |
| 2052 | case IPPROTO_ESP: |
| 2053 | case IPPROTO_AH: |
| 2054 | break; |
| 2055 | default: |
| 2056 | ipseclog((LOG_DEBUG, |
| 2057 | "key_msg2sp: invalid proto type=%u\n" , |
| 2058 | xisr->sadb_x_ipsecrequest_proto)); |
| 2059 | key_freesp(sp: newsp, KEY_SADB_UNLOCKED); |
| 2060 | *error = EPROTONOSUPPORT; |
| 2061 | return NULL; |
| 2062 | } |
| 2063 | (*p_isr)->saidx.proto = xisr->sadb_x_ipsecrequest_proto; |
| 2064 | |
| 2065 | switch (xisr->sadb_x_ipsecrequest_mode) { |
| 2066 | case IPSEC_MODE_TRANSPORT: |
| 2067 | case IPSEC_MODE_TUNNEL: |
| 2068 | break; |
| 2069 | case IPSEC_MODE_ANY: |
| 2070 | default: |
| 2071 | ipseclog((LOG_DEBUG, |
| 2072 | "key_msg2sp: invalid mode=%u\n" , |
| 2073 | xisr->sadb_x_ipsecrequest_mode)); |
| 2074 | key_freesp(sp: newsp, KEY_SADB_UNLOCKED); |
| 2075 | *error = EINVAL; |
| 2076 | return NULL; |
| 2077 | } |
| 2078 | (*p_isr)->saidx.mode = xisr->sadb_x_ipsecrequest_mode; |
| 2079 | |
| 2080 | switch (xisr->sadb_x_ipsecrequest_level) { |
| 2081 | case IPSEC_LEVEL_DEFAULT: |
| 2082 | case IPSEC_LEVEL_USE: |
| 2083 | case IPSEC_LEVEL_REQUIRE: |
| 2084 | break; |
| 2085 | case IPSEC_LEVEL_UNIQUE: |
| 2086 | /* validity check */ |
| 2087 | /* |
| 2088 | * If range violation of reqid, kernel will |
| 2089 | * update it, don't refuse it. |
| 2090 | */ |
| 2091 | if (xisr->sadb_x_ipsecrequest_reqid |
| 2092 | > IPSEC_MANUAL_REQID_MAX) { |
| 2093 | ipseclog((LOG_DEBUG, |
| 2094 | "key_msg2sp: reqid=%d range " |
| 2095 | "violation, updated by kernel.\n" , |
| 2096 | xisr->sadb_x_ipsecrequest_reqid)); |
| 2097 | xisr->sadb_x_ipsecrequest_reqid = 0; |
| 2098 | } |
| 2099 | |
| 2100 | /* allocate new reqid id if reqid is zero. */ |
| 2101 | if (xisr->sadb_x_ipsecrequest_reqid == 0) { |
| 2102 | u_int16_t reqid; |
| 2103 | if ((reqid = key_newreqid()) == 0) { |
| 2104 | key_freesp(sp: newsp, KEY_SADB_UNLOCKED); |
| 2105 | *error = ENOBUFS; |
| 2106 | return NULL; |
| 2107 | } |
| 2108 | (*p_isr)->saidx.reqid = reqid; |
| 2109 | xisr->sadb_x_ipsecrequest_reqid = reqid; |
| 2110 | } else { |
| 2111 | /* set it for manual keying. */ |
| 2112 | (*p_isr)->saidx.reqid = |
| 2113 | xisr->sadb_x_ipsecrequest_reqid; |
| 2114 | } |
| 2115 | break; |
| 2116 | |
| 2117 | default: |
| 2118 | ipseclog((LOG_DEBUG, "key_msg2sp: invalid level=%u\n" , |
| 2119 | xisr->sadb_x_ipsecrequest_level)); |
| 2120 | key_freesp(sp: newsp, KEY_SADB_UNLOCKED); |
| 2121 | *error = EINVAL; |
| 2122 | return NULL; |
| 2123 | } |
| 2124 | (*p_isr)->level = xisr->sadb_x_ipsecrequest_level; |
| 2125 | |
| 2126 | /* set IP addresses if there */ |
| 2127 | if (xisr->sadb_x_ipsecrequest_len > sizeof(*xisr)) { |
| 2128 | struct sockaddr *paddr; |
| 2129 | |
| 2130 | if (tlen < xisr->sadb_x_ipsecrequest_len) { |
| 2131 | ipseclog((LOG_DEBUG, "key_msg2sp: invalid request " |
| 2132 | "address length.\n" )); |
| 2133 | key_freesp(sp: newsp, KEY_SADB_UNLOCKED); |
| 2134 | *error = EINVAL; |
| 2135 | return NULL; |
| 2136 | } |
| 2137 | |
| 2138 | paddr = (struct sockaddr *)(xisr + 1); |
| 2139 | uint8_t src_len = paddr->sa_len; |
| 2140 | |
| 2141 | /* +sizeof(uint8_t) for dst_len below */ |
| 2142 | if (xisr->sadb_x_ipsecrequest_len < sizeof(*xisr) + src_len + sizeof(uint8_t)) { |
| 2143 | ipseclog((LOG_DEBUG, "key_msg2sp: invalid request " |
| 2144 | "invalid source address length.\n" )); |
| 2145 | key_freesp(sp: newsp, KEY_SADB_UNLOCKED); |
| 2146 | *error = EINVAL; |
| 2147 | return NULL; |
| 2148 | } |
| 2149 | |
| 2150 | /* validity check */ |
| 2151 | if (paddr->sa_len |
| 2152 | > sizeof((*p_isr)->saidx.src)) { |
| 2153 | ipseclog((LOG_DEBUG, "key_msg2sp: invalid request " |
| 2154 | "address length.\n" )); |
| 2155 | key_freesp(sp: newsp, KEY_SADB_UNLOCKED); |
| 2156 | *error = EINVAL; |
| 2157 | return NULL; |
| 2158 | } |
| 2159 | |
| 2160 | bcopy(src: paddr, dst: &(*p_isr)->saidx.src, |
| 2161 | MIN(paddr->sa_len, sizeof((*p_isr)->saidx.src))); |
| 2162 | |
| 2163 | paddr = (struct sockaddr *)((caddr_t)paddr + paddr->sa_len); |
| 2164 | uint8_t dst_len = paddr->sa_len; |
| 2165 | |
| 2166 | if (xisr->sadb_x_ipsecrequest_len < sizeof(*xisr) + src_len + dst_len) { |
| 2167 | ipseclog((LOG_DEBUG, "key_msg2sp: invalid request " |
| 2168 | "invalid dest address length.\n" )); |
| 2169 | key_freesp(sp: newsp, KEY_SADB_UNLOCKED); |
| 2170 | *error = EINVAL; |
| 2171 | return NULL; |
| 2172 | } |
| 2173 | |
| 2174 | /* validity check */ |
| 2175 | if (paddr->sa_len |
| 2176 | > sizeof((*p_isr)->saidx.dst)) { |
| 2177 | ipseclog((LOG_DEBUG, "key_msg2sp: invalid request " |
| 2178 | "address length.\n" )); |
| 2179 | key_freesp(sp: newsp, KEY_SADB_UNLOCKED); |
| 2180 | *error = EINVAL; |
| 2181 | return NULL; |
| 2182 | } |
| 2183 | |
| 2184 | bcopy(src: paddr, dst: &(*p_isr)->saidx.dst, |
| 2185 | MIN(paddr->sa_len, sizeof((*p_isr)->saidx.dst))); |
| 2186 | } |
| 2187 | |
| 2188 | (*p_isr)->sp = newsp; |
| 2189 | |
| 2190 | /* initialization for the next. */ |
| 2191 | p_isr = &(*p_isr)->next; |
| 2192 | tlen -= xisr->sadb_x_ipsecrequest_len; |
| 2193 | |
| 2194 | /* validity check */ |
| 2195 | if (tlen < 0) { |
| 2196 | ipseclog((LOG_DEBUG, "key_msg2sp: becoming tlen < 0.\n" )); |
| 2197 | key_freesp(sp: newsp, KEY_SADB_UNLOCKED); |
| 2198 | *error = EINVAL; |
| 2199 | return NULL; |
| 2200 | } |
| 2201 | |
| 2202 | xisr = (struct sadb_x_ipsecrequest *)(void *) |
| 2203 | ((caddr_t)xisr + xisr->sadb_x_ipsecrequest_len); |
| 2204 | } |
| 2205 | } |
| 2206 | break; |
| 2207 | default: |
| 2208 | ipseclog((LOG_DEBUG, "key_msg2sp: invalid policy type.\n" )); |
| 2209 | key_freesp(sp: newsp, KEY_SADB_UNLOCKED); |
| 2210 | *error = EINVAL; |
| 2211 | return NULL; |
| 2212 | } |
| 2213 | |
| 2214 | *error = 0; |
| 2215 | return newsp; |
| 2216 | } |
| 2217 | |
| 2218 | static u_int16_t |
| 2219 | key_newreqid(void) |
| 2220 | { |
| 2221 | lck_mtx_lock(sadb_mutex); |
| 2222 | static u_int16_t auto_reqid = IPSEC_MANUAL_REQID_MAX + 1; |
| 2223 | int done = 0; |
| 2224 | |
| 2225 | /* The reqid must be limited to 16 bits because the PF_KEY message format only uses |
| 2226 | * 16 bits for this field. Once it becomes larger than 16 bits - ipsec fails to |
| 2227 | * work anymore. Changing the PF_KEY message format would introduce compatibility |
| 2228 | * issues. This code now tests to see if the tentative reqid is in use */ |
| 2229 | |
| 2230 | while (!done) { |
| 2231 | struct secpolicy *sp; |
| 2232 | struct ipsecrequest *isr; |
| 2233 | int dir; |
| 2234 | |
| 2235 | auto_reqid = (auto_reqid == 0xFFFF |
| 2236 | ? IPSEC_MANUAL_REQID_MAX + 1 : auto_reqid + 1); |
| 2237 | |
| 2238 | /* check for uniqueness */ |
| 2239 | done = 1; |
| 2240 | for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { |
| 2241 | LIST_FOREACH(sp, &sptree[dir], chain) { |
| 2242 | for (isr = sp->req; isr != NULL; isr = isr->next) { |
| 2243 | if (isr->saidx.reqid == auto_reqid) { |
| 2244 | done = 0; |
| 2245 | break; |
| 2246 | } |
| 2247 | } |
| 2248 | if (done == 0) { |
| 2249 | break; |
| 2250 | } |
| 2251 | } |
| 2252 | if (done == 0) { |
| 2253 | break; |
| 2254 | } |
| 2255 | } |
| 2256 | } |
| 2257 | |
| 2258 | lck_mtx_unlock(sadb_mutex); |
| 2259 | return auto_reqid; |
| 2260 | } |
| 2261 | |
| 2262 | /* |
| 2263 | * copy secpolicy struct to sadb_x_policy structure indicated. |
| 2264 | */ |
| 2265 | struct mbuf * |
| 2266 | key_sp2msg( |
| 2267 | struct secpolicy *sp) |
| 2268 | { |
| 2269 | struct sadb_x_policy *xpl; |
| 2270 | u_int tlen; |
| 2271 | caddr_t p; |
| 2272 | struct mbuf *m; |
| 2273 | |
| 2274 | /* sanity check. */ |
| 2275 | if (sp == NULL) { |
| 2276 | panic("key_sp2msg: NULL pointer was passed." ); |
| 2277 | } |
| 2278 | |
| 2279 | tlen = key_getspreqmsglen(sp); |
| 2280 | if (PFKEY_UNIT64(tlen) > UINT16_MAX) { |
| 2281 | ipseclog((LOG_ERR, "key_getspreqmsglen returned length %u\n" , |
| 2282 | tlen)); |
| 2283 | return NULL; |
| 2284 | } |
| 2285 | |
| 2286 | m = key_alloc_mbuf(tlen); |
| 2287 | if (!m || m->m_next) { /*XXX*/ |
| 2288 | if (m) { |
| 2289 | m_freem(m); |
| 2290 | } |
| 2291 | return NULL; |
| 2292 | } |
| 2293 | |
| 2294 | m->m_len = tlen; |
| 2295 | m->m_next = NULL; |
| 2296 | xpl = mtod(m, struct sadb_x_policy *); |
| 2297 | bzero(s: xpl, n: tlen); |
| 2298 | |
| 2299 | xpl->sadb_x_policy_len = (u_int16_t)PFKEY_UNIT64(tlen); |
| 2300 | xpl->sadb_x_policy_exttype = SADB_X_EXT_POLICY; |
| 2301 | xpl->sadb_x_policy_type = (u_int16_t)sp->policy; |
| 2302 | xpl->sadb_x_policy_dir = sp->spidx.dir; |
| 2303 | xpl->sadb_x_policy_id = sp->id; |
| 2304 | p = (caddr_t)xpl + sizeof(*xpl); |
| 2305 | |
| 2306 | /* if is the policy for ipsec ? */ |
| 2307 | if (sp->policy == IPSEC_POLICY_IPSEC) { |
| 2308 | struct sadb_x_ipsecrequest *xisr; |
| 2309 | struct ipsecrequest *isr; |
| 2310 | |
| 2311 | for (isr = sp->req; isr != NULL; isr = isr->next) { |
| 2312 | xisr = (struct sadb_x_ipsecrequest *)(void *)p; |
| 2313 | |
| 2314 | xisr->sadb_x_ipsecrequest_proto = isr->saidx.proto; |
| 2315 | xisr->sadb_x_ipsecrequest_mode = isr->saidx.mode; |
| 2316 | xisr->sadb_x_ipsecrequest_level = (u_int8_t)isr->level; |
| 2317 | xisr->sadb_x_ipsecrequest_reqid = (u_int16_t)isr->saidx.reqid; |
| 2318 | |
| 2319 | p += sizeof(*xisr); |
| 2320 | bcopy(src: &isr->saidx.src, dst: p, n: isr->saidx.src.ss_len); |
| 2321 | p += isr->saidx.src.ss_len; |
| 2322 | bcopy(src: &isr->saidx.dst, dst: p, n: isr->saidx.dst.ss_len); |
| 2323 | p += isr->saidx.src.ss_len; |
| 2324 | |
| 2325 | xisr->sadb_x_ipsecrequest_len = |
| 2326 | PFKEY_ALIGN8(sizeof(*xisr) |
| 2327 | + isr->saidx.src.ss_len |
| 2328 | + isr->saidx.dst.ss_len); |
| 2329 | } |
| 2330 | } |
| 2331 | |
| 2332 | return m; |
| 2333 | } |
| 2334 | |
| 2335 | /* m will not be freed nor modified */ |
| 2336 | static struct mbuf * |
| 2337 | key_gather_mbuf(struct mbuf *m, const struct sadb_msghdr *mhp, |
| 2338 | int ndeep, int nitem, int *items) |
| 2339 | { |
| 2340 | int idx; |
| 2341 | int i; |
| 2342 | struct mbuf *result = NULL, *n; |
| 2343 | int len; |
| 2344 | |
| 2345 | if (m == NULL || mhp == NULL) { |
| 2346 | panic("null pointer passed to key_gather" ); |
| 2347 | } |
| 2348 | |
| 2349 | for (i = 0; i < nitem; i++) { |
| 2350 | idx = items[i]; |
| 2351 | if (idx < 0 || idx > SADB_EXT_MAX) { |
| 2352 | goto fail; |
| 2353 | } |
| 2354 | /* don't attempt to pull empty extension */ |
| 2355 | if (idx == SADB_EXT_RESERVED && mhp->msg == NULL) { |
| 2356 | continue; |
| 2357 | } |
| 2358 | if (idx != SADB_EXT_RESERVED && |
| 2359 | (mhp->ext[idx] == NULL || mhp->extlen[idx] == 0)) { |
| 2360 | continue; |
| 2361 | } |
| 2362 | |
| 2363 | if (idx == SADB_EXT_RESERVED) { |
| 2364 | len = PFKEY_ALIGN8(sizeof(struct sadb_msg)); |
| 2365 | MGETHDR(n, M_WAITOK, MT_DATA); // sadb_msg len < MHLEN - enforced by _CASSERT |
| 2366 | if (!n) { |
| 2367 | goto fail; |
| 2368 | } |
| 2369 | n->m_len = len; |
| 2370 | n->m_next = NULL; |
| 2371 | m_copydata(m, 0, sizeof(struct sadb_msg), |
| 2372 | mtod(n, caddr_t)); |
| 2373 | } else if (i < ndeep) { |
| 2374 | len = mhp->extlen[idx]; |
| 2375 | n = key_alloc_mbuf(len); |
| 2376 | if (!n || n->m_next) { /*XXX*/ |
| 2377 | if (n) { |
| 2378 | m_freem(n); |
| 2379 | } |
| 2380 | goto fail; |
| 2381 | } |
| 2382 | m_copydata(m, mhp->extoff[idx], mhp->extlen[idx], |
| 2383 | mtod(n, caddr_t)); |
| 2384 | } else { |
| 2385 | n = m_copym(m, mhp->extoff[idx], mhp->extlen[idx], |
| 2386 | M_WAITOK); |
| 2387 | } |
| 2388 | if (n == NULL) { |
| 2389 | goto fail; |
| 2390 | } |
| 2391 | |
| 2392 | if (result) { |
| 2393 | m_cat(result, n); |
| 2394 | } else { |
| 2395 | result = n; |
| 2396 | } |
| 2397 | } |
| 2398 | |
| 2399 | if ((result->m_flags & M_PKTHDR) != 0) { |
| 2400 | result->m_pkthdr.len = 0; |
| 2401 | for (n = result; n; n = n->m_next) { |
| 2402 | result->m_pkthdr.len += n->m_len; |
| 2403 | } |
| 2404 | } |
| 2405 | |
| 2406 | return result; |
| 2407 | |
| 2408 | fail: |
| 2409 | m_freem(result); |
| 2410 | return NULL; |
| 2411 | } |
| 2412 | |
| 2413 | /* |
| 2414 | * SADB_X_SPDADD, SADB_X_SPDSETIDX or SADB_X_SPDUPDATE processing |
| 2415 | * add a entry to SP database, when received |
| 2416 | * <base, address(SD), (lifetime(H),) policy> |
| 2417 | * from the user(?). |
| 2418 | * Adding to SP database, |
| 2419 | * and send |
| 2420 | * <base, address(SD), (lifetime(H),) policy> |
| 2421 | * to the socket which was send. |
| 2422 | * |
| 2423 | * SPDADD set a unique policy entry. |
| 2424 | * SPDSETIDX like SPDADD without a part of policy requests. |
| 2425 | * SPDUPDATE replace a unique policy entry. |
| 2426 | * |
| 2427 | * m will always be freed. |
| 2428 | */ |
| 2429 | static int |
| 2430 | key_spdadd( |
| 2431 | struct socket *so, |
| 2432 | struct mbuf *m, |
| 2433 | const struct sadb_msghdr *mhp) |
| 2434 | { |
| 2435 | struct sadb_address *src0, *dst0, *src1 = NULL, *dst1 = NULL; |
| 2436 | struct sadb_x_policy *xpl0, *xpl; |
| 2437 | struct sadb_lifetime *lft = NULL; |
| 2438 | struct secpolicyindex spidx; |
| 2439 | struct secpolicy *newsp; |
| 2440 | ifnet_t internal_if = NULL; |
| 2441 | char *outgoing_if = NULL; |
| 2442 | char *ipsec_if = NULL; |
| 2443 | struct sadb_x_ipsecif *ipsecifopts = NULL; |
| 2444 | int error; |
| 2445 | int use_src_range = 0; |
| 2446 | int use_dst_range = 0; |
| 2447 | int init_disabled = 0; |
| 2448 | int address_family, address_len; |
| 2449 | |
| 2450 | LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_NOTOWNED); |
| 2451 | |
| 2452 | /* sanity check */ |
| 2453 | if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL) { |
| 2454 | panic("key_spdadd: NULL pointer is passed." ); |
| 2455 | } |
| 2456 | |
| 2457 | if (mhp->ext[SADB_X_EXT_ADDR_RANGE_SRC_START] != NULL && mhp->ext[SADB_X_EXT_ADDR_RANGE_SRC_END] != NULL) { |
| 2458 | use_src_range = 1; |
| 2459 | } |
| 2460 | if (mhp->ext[SADB_X_EXT_ADDR_RANGE_DST_START] != NULL && mhp->ext[SADB_X_EXT_ADDR_RANGE_DST_END] != NULL) { |
| 2461 | use_dst_range = 1; |
| 2462 | } |
| 2463 | |
| 2464 | if ((!use_src_range && mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL) || |
| 2465 | (!use_dst_range && mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) || |
| 2466 | mhp->ext[SADB_X_EXT_POLICY] == NULL) { |
| 2467 | ipseclog((LOG_DEBUG, "key_spdadd: invalid message is passed.\n" )); |
| 2468 | return key_senderror(so, m, EINVAL); |
| 2469 | } |
| 2470 | if ((use_src_range && (mhp->extlen[SADB_X_EXT_ADDR_RANGE_SRC_START] < sizeof(struct sadb_address) |
| 2471 | || mhp->extlen[SADB_X_EXT_ADDR_RANGE_SRC_END] < sizeof(struct sadb_address))) || |
| 2472 | (!use_src_range && mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address)) || |
| 2473 | (use_dst_range && (mhp->extlen[SADB_X_EXT_ADDR_RANGE_DST_START] < sizeof(struct sadb_address) |
| 2474 | || mhp->extlen[SADB_X_EXT_ADDR_RANGE_DST_END] < sizeof(struct sadb_address))) || |
| 2475 | (!use_dst_range && mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) || |
| 2476 | mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) { |
| 2477 | ipseclog((LOG_DEBUG, "key_spdadd: invalid message is passed.\n" )); |
| 2478 | return key_senderror(so, m, EINVAL); |
| 2479 | } |
| 2480 | if (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL) { |
| 2481 | if (mhp->extlen[SADB_EXT_LIFETIME_HARD] |
| 2482 | < sizeof(struct sadb_lifetime)) { |
| 2483 | ipseclog((LOG_DEBUG, "key_spdadd: invalid message is passed.\n" )); |
| 2484 | return key_senderror(so, m, EINVAL); |
| 2485 | } |
| 2486 | lft = (struct sadb_lifetime *) |
| 2487 | (void *)mhp->ext[SADB_EXT_LIFETIME_HARD]; |
| 2488 | } |
| 2489 | if (mhp->ext[SADB_X_EXT_IPSECIF] != NULL) { |
| 2490 | if (mhp->extlen[SADB_X_EXT_IPSECIF] < sizeof(struct sadb_x_ipsecif)) { |
| 2491 | ipseclog((LOG_DEBUG, "key_spdadd: invalid message is passed.\n" )); |
| 2492 | return key_senderror(so, m, EINVAL); |
| 2493 | } |
| 2494 | } |
| 2495 | |
| 2496 | if (use_src_range) { |
| 2497 | src0 = (struct sadb_address *)mhp->ext[SADB_X_EXT_ADDR_RANGE_SRC_START]; |
| 2498 | src1 = (struct sadb_address *)mhp->ext[SADB_X_EXT_ADDR_RANGE_SRC_END]; |
| 2499 | } else { |
| 2500 | src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC]; |
| 2501 | } |
| 2502 | if (use_dst_range) { |
| 2503 | dst0 = (struct sadb_address *)mhp->ext[SADB_X_EXT_ADDR_RANGE_DST_START]; |
| 2504 | dst1 = (struct sadb_address *)mhp->ext[SADB_X_EXT_ADDR_RANGE_DST_END]; |
| 2505 | } else { |
| 2506 | dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST]; |
| 2507 | } |
| 2508 | xpl0 = (struct sadb_x_policy *)(void *)mhp->ext[SADB_X_EXT_POLICY]; |
| 2509 | ipsecifopts = (struct sadb_x_ipsecif *)(void *)mhp->ext[SADB_X_EXT_IPSECIF]; |
| 2510 | |
| 2511 | /* check addresses */ |
| 2512 | address_family = ((struct sockaddr *)(src0 + 1))->sa_family; |
| 2513 | address_len = ((struct sockaddr *)(src0 + 1))->sa_len; |
| 2514 | if (use_src_range) { |
| 2515 | if (((struct sockaddr *)(src1 + 1))->sa_family != address_family || |
| 2516 | ((struct sockaddr *)(src1 + 1))->sa_len != address_len) { |
| 2517 | return key_senderror(so, m, EINVAL); |
| 2518 | } |
| 2519 | } |
| 2520 | if (((struct sockaddr *)(dst0 + 1))->sa_family != address_family || |
| 2521 | ((struct sockaddr *)(dst0 + 1))->sa_len != address_len) { |
| 2522 | return key_senderror(so, m, EINVAL); |
| 2523 | } |
| 2524 | if (use_dst_range) { |
| 2525 | if (((struct sockaddr *)(dst1 + 1))->sa_family != address_family || |
| 2526 | ((struct sockaddr *)(dst1 + 1))->sa_len != address_len) { |
| 2527 | return key_senderror(so, m, EINVAL); |
| 2528 | } |
| 2529 | } |
| 2530 | |
| 2531 | /* checking the direction. */ |
| 2532 | switch (xpl0->sadb_x_policy_dir) { |
| 2533 | case IPSEC_DIR_INBOUND: |
| 2534 | case IPSEC_DIR_OUTBOUND: |
| 2535 | break; |
| 2536 | default: |
| 2537 | ipseclog((LOG_DEBUG, "key_spdadd: Invalid SP direction.\n" )); |
| 2538 | return key_senderror(so, m, EINVAL); |
| 2539 | } |
| 2540 | |
| 2541 | /* check policy */ |
| 2542 | /* key_spdadd() accepts DISCARD, NONE and IPSEC. */ |
| 2543 | if (xpl0->sadb_x_policy_type == IPSEC_POLICY_ENTRUST |
| 2544 | || xpl0->sadb_x_policy_type == IPSEC_POLICY_BYPASS) { |
| 2545 | ipseclog((LOG_DEBUG, "key_spdadd: Invalid policy type.\n" )); |
| 2546 | return key_senderror(so, m, EINVAL); |
| 2547 | } |
| 2548 | |
| 2549 | /* policy requests are mandatory when action is ipsec. */ |
| 2550 | if (mhp->msg->sadb_msg_type != SADB_X_SPDSETIDX |
| 2551 | && xpl0->sadb_x_policy_type == IPSEC_POLICY_IPSEC |
| 2552 | && mhp->extlen[SADB_X_EXT_POLICY] <= sizeof(*xpl0)) { |
| 2553 | ipseclog((LOG_DEBUG, "key_spdadd: some policy requests part required.\n" )); |
| 2554 | return key_senderror(so, m, EINVAL); |
| 2555 | } |
| 2556 | |
| 2557 | /* Process interfaces */ |
| 2558 | if (ipsecifopts != NULL) { |
| 2559 | ipsecifopts->sadb_x_ipsecif_internal_if[IFXNAMSIZ - 1] = '\0'; |
| 2560 | ipsecifopts->sadb_x_ipsecif_outgoing_if[IFXNAMSIZ - 1] = '\0'; |
| 2561 | ipsecifopts->sadb_x_ipsecif_ipsec_if[IFXNAMSIZ - 1] = '\0'; |
| 2562 | |
| 2563 | if (ipsecifopts->sadb_x_ipsecif_internal_if[0]) { |
| 2564 | ifnet_find_by_name(ifname: ipsecifopts->sadb_x_ipsecif_internal_if, interface: &internal_if); |
| 2565 | } |
| 2566 | if (ipsecifopts->sadb_x_ipsecif_outgoing_if[0]) { |
| 2567 | outgoing_if = ipsecifopts->sadb_x_ipsecif_outgoing_if; |
| 2568 | } |
| 2569 | if (ipsecifopts->sadb_x_ipsecif_ipsec_if[0]) { |
| 2570 | ipsec_if = ipsecifopts->sadb_x_ipsecif_ipsec_if; |
| 2571 | } |
| 2572 | init_disabled = ipsecifopts->sadb_x_ipsecif_init_disabled; |
| 2573 | } |
| 2574 | |
| 2575 | /* make secindex */ |
| 2576 | /* XXX boundary check against sa_len */ |
| 2577 | KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir, |
| 2578 | src0 + 1, |
| 2579 | dst0 + 1, |
| 2580 | src0->sadb_address_prefixlen, |
| 2581 | dst0->sadb_address_prefixlen, |
| 2582 | src0->sadb_address_proto, |
| 2583 | internal_if, |
| 2584 | use_src_range ? src0 + 1 : NULL, |
| 2585 | use_src_range ? src1 + 1 : NULL, |
| 2586 | use_dst_range ? dst0 + 1 : NULL, |
| 2587 | use_dst_range ? dst1 + 1 : NULL, |
| 2588 | &spidx); |
| 2589 | |
| 2590 | /* |
| 2591 | * checking there is SP already or not. |
| 2592 | * SPDUPDATE doesn't depend on whether there is a SP or not. |
| 2593 | * If the type is either SPDADD or SPDSETIDX AND a SP is found, |
| 2594 | * then error. |
| 2595 | */ |
| 2596 | lck_mtx_lock(sadb_mutex); |
| 2597 | newsp = key_getsp(spidx: &spidx); |
| 2598 | if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) { |
| 2599 | if (newsp) { |
| 2600 | newsp->state = IPSEC_SPSTATE_DEAD; |
| 2601 | key_freesp(sp: newsp, KEY_SADB_LOCKED); |
| 2602 | } |
| 2603 | } else { |
| 2604 | if (newsp != NULL) { |
| 2605 | key_freesp(sp: newsp, KEY_SADB_LOCKED); |
| 2606 | ipseclog((LOG_DEBUG, "key_spdadd: a SP entry exists already.\n" )); |
| 2607 | lck_mtx_unlock(sadb_mutex); |
| 2608 | if (internal_if) { |
| 2609 | ifnet_release(interface: internal_if); |
| 2610 | internal_if = NULL; |
| 2611 | } |
| 2612 | return key_senderror(so, m, EEXIST); |
| 2613 | } |
| 2614 | } |
| 2615 | lck_mtx_unlock(sadb_mutex); |
| 2616 | |
| 2617 | /* allocation new SP entry */ |
| 2618 | if ((newsp = key_msg2sp(xpl0, PFKEY_EXTLEN(xpl0), error: &error)) == NULL) { |
| 2619 | if (internal_if) { |
| 2620 | ifnet_release(interface: internal_if); |
| 2621 | internal_if = NULL; |
| 2622 | } |
| 2623 | return key_senderror(so, m, error); |
| 2624 | } |
| 2625 | |
| 2626 | if ((newsp->id = key_getnewspid()) == 0) { |
| 2627 | keydb_delsecpolicy(newsp); |
| 2628 | if (internal_if) { |
| 2629 | ifnet_release(interface: internal_if); |
| 2630 | internal_if = NULL; |
| 2631 | } |
| 2632 | return key_senderror(so, m, ENOBUFS); |
| 2633 | } |
| 2634 | |
| 2635 | /* XXX boundary check against sa_len */ |
| 2636 | KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir, |
| 2637 | src0 + 1, |
| 2638 | dst0 + 1, |
| 2639 | src0->sadb_address_prefixlen, |
| 2640 | dst0->sadb_address_prefixlen, |
| 2641 | src0->sadb_address_proto, |
| 2642 | internal_if, |
| 2643 | use_src_range ? src0 + 1 : NULL, |
| 2644 | use_src_range ? src1 + 1 : NULL, |
| 2645 | use_dst_range ? dst0 + 1 : NULL, |
| 2646 | use_dst_range ? dst1 + 1 : NULL, |
| 2647 | &newsp->spidx); |
| 2648 | |
| 2649 | #if 1 |
| 2650 | /* |
| 2651 | * allow IPv6 over IPv4 or IPv4 over IPv6 tunnels using ESP - |
| 2652 | * otherwise reject if inner and outer address families not equal |
| 2653 | */ |
| 2654 | if (newsp->req && newsp->req->saidx.src.ss_family) { |
| 2655 | struct sockaddr *sa; |
| 2656 | sa = (struct sockaddr *)(src0 + 1); |
| 2657 | if (sa->sa_family != newsp->req->saidx.src.ss_family) { |
| 2658 | if (newsp->req->saidx.mode != IPSEC_MODE_TUNNEL || newsp->req->saidx.proto != IPPROTO_ESP) { |
| 2659 | keydb_delsecpolicy(newsp); |
| 2660 | if (internal_if) { |
| 2661 | ifnet_release(interface: internal_if); |
| 2662 | internal_if = NULL; |
| 2663 | } |
| 2664 | return key_senderror(so, m, EINVAL); |
| 2665 | } |
| 2666 | } |
| 2667 | } |
| 2668 | if (newsp->req && newsp->req->saidx.dst.ss_family) { |
| 2669 | struct sockaddr *sa; |
| 2670 | sa = (struct sockaddr *)(dst0 + 1); |
| 2671 | if (sa->sa_family != newsp->req->saidx.dst.ss_family) { |
| 2672 | if (newsp->req->saidx.mode != IPSEC_MODE_TUNNEL || newsp->req->saidx.proto != IPPROTO_ESP) { |
| 2673 | keydb_delsecpolicy(newsp); |
| 2674 | if (internal_if) { |
| 2675 | ifnet_release(interface: internal_if); |
| 2676 | internal_if = NULL; |
| 2677 | } |
| 2678 | return key_senderror(so, m, EINVAL); |
| 2679 | } |
| 2680 | } |
| 2681 | } |
| 2682 | #endif |
| 2683 | |
| 2684 | const u_int64_t current_time_ns = key_get_continuous_time_ns(); |
| 2685 | newsp->created = current_time_ns; |
| 2686 | newsp->lastused = current_time_ns; |
| 2687 | |
| 2688 | if (lft != NULL) { |
| 2689 | // Convert to nanoseconds |
| 2690 | u_int64_t lifetime_ns; |
| 2691 | if (__improbable(os_mul_overflow(lft->sadb_lifetime_addtime, NSEC_PER_SEC, &lifetime_ns))) { |
| 2692 | ipseclog((LOG_DEBUG, "key_spdadd: invalid lifetime value %llu.\n" , |
| 2693 | lft->sadb_lifetime_addtime)); |
| 2694 | return key_senderror(so, m, EINVAL); |
| 2695 | } |
| 2696 | newsp->lifetime = lifetime_ns; |
| 2697 | |
| 2698 | u_int64_t validtime_ns; |
| 2699 | if (__improbable(os_mul_overflow(lft->sadb_lifetime_usetime, NSEC_PER_SEC, &validtime_ns))) { |
| 2700 | ipseclog((LOG_DEBUG, "key_spdadd: invalid use time value %llu.\n" , |
| 2701 | lft->sadb_lifetime_usetime)); |
| 2702 | return key_senderror(so, m, EINVAL); |
| 2703 | } |
| 2704 | newsp->validtime = validtime_ns; |
| 2705 | } else { |
| 2706 | newsp->lifetime = 0; |
| 2707 | newsp->validtime = 0; |
| 2708 | } |
| 2709 | |
| 2710 | |
| 2711 | if (outgoing_if != NULL) { |
| 2712 | ifnet_find_by_name(ifname: outgoing_if, interface: &newsp->outgoing_if); |
| 2713 | } |
| 2714 | if (ipsec_if != NULL) { |
| 2715 | ifnet_find_by_name(ifname: ipsec_if, interface: &newsp->ipsec_if); |
| 2716 | } |
| 2717 | if (init_disabled > 0) { |
| 2718 | newsp->disabled = 1; |
| 2719 | } |
| 2720 | |
| 2721 | newsp->refcnt = 1; /* do not reclaim until I say I do */ |
| 2722 | newsp->state = IPSEC_SPSTATE_ALIVE; |
| 2723 | lck_mtx_lock(sadb_mutex); |
| 2724 | /* |
| 2725 | * policies of type generate should be at the end of the SPD |
| 2726 | * because they function as default discard policies |
| 2727 | * Don't start timehandler for generate policies |
| 2728 | */ |
| 2729 | if (newsp->policy == IPSEC_POLICY_GENERATE) { |
| 2730 | LIST_INSERT_TAIL(&sptree[newsp->spidx.dir], newsp, secpolicy, chain); |
| 2731 | } else { /* XXX until we have policy ordering in the kernel */ |
| 2732 | struct secpolicy *tmpsp; |
| 2733 | |
| 2734 | LIST_FOREACH(tmpsp, &sptree[newsp->spidx.dir], chain) |
| 2735 | if (tmpsp->policy == IPSEC_POLICY_GENERATE) { |
| 2736 | break; |
| 2737 | } |
| 2738 | if (tmpsp) { |
| 2739 | LIST_INSERT_BEFORE(tmpsp, newsp, chain); |
| 2740 | } else { |
| 2741 | LIST_INSERT_TAIL(&sptree[newsp->spidx.dir], newsp, secpolicy, chain); |
| 2742 | } |
| 2743 | key_start_timehandler(); |
| 2744 | } |
| 2745 | |
| 2746 | ipsec_policy_count++; |
| 2747 | /* Turn off the ipsec bypass */ |
| 2748 | if (ipsec_bypass != 0) { |
| 2749 | ipsec_bypass = 0; |
| 2750 | } |
| 2751 | |
| 2752 | /* delete the entry in spacqtree */ |
| 2753 | if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) { |
| 2754 | struct secspacq *spacq; |
| 2755 | if ((spacq = key_getspacq(&spidx)) != NULL) { |
| 2756 | /* reset counter in order to deletion by timehandler. */ |
| 2757 | spacq->created = key_get_continuous_time_ns(); |
| 2758 | spacq->count = 0; |
| 2759 | } |
| 2760 | } |
| 2761 | lck_mtx_unlock(sadb_mutex); |
| 2762 | |
| 2763 | { |
| 2764 | struct mbuf *n, *mpolicy; |
| 2765 | struct sadb_msg *newmsg; |
| 2766 | int off; |
| 2767 | |
| 2768 | /* create new sadb_msg to reply. */ |
| 2769 | if (lft) { |
| 2770 | int mbufItems[] = {SADB_EXT_RESERVED, SADB_X_EXT_POLICY, |
| 2771 | SADB_EXT_LIFETIME_HARD, SADB_EXT_ADDRESS_SRC, |
| 2772 | SADB_EXT_ADDRESS_DST, SADB_X_EXT_ADDR_RANGE_SRC_START, SADB_X_EXT_ADDR_RANGE_SRC_END, |
| 2773 | SADB_X_EXT_ADDR_RANGE_DST_START, SADB_X_EXT_ADDR_RANGE_DST_END}; |
| 2774 | n = key_gather_mbuf(m, mhp, ndeep: 2, nitem: sizeof(mbufItems) / sizeof(int), items: mbufItems); |
| 2775 | } else { |
| 2776 | int mbufItems[] = {SADB_EXT_RESERVED, SADB_X_EXT_POLICY, |
| 2777 | SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST, |
| 2778 | SADB_X_EXT_ADDR_RANGE_SRC_START, SADB_X_EXT_ADDR_RANGE_SRC_END, |
| 2779 | SADB_X_EXT_ADDR_RANGE_DST_START, SADB_X_EXT_ADDR_RANGE_DST_END}; |
| 2780 | n = key_gather_mbuf(m, mhp, ndeep: 2, nitem: sizeof(mbufItems) / sizeof(int), items: mbufItems); |
| 2781 | } |
| 2782 | if (!n) { |
| 2783 | return key_senderror(so, m, ENOBUFS); |
| 2784 | } |
| 2785 | |
| 2786 | if (n->m_len < sizeof(*newmsg)) { |
| 2787 | n = m_pullup(n, sizeof(*newmsg)); |
| 2788 | if (!n) { |
| 2789 | return key_senderror(so, m, ENOBUFS); |
| 2790 | } |
| 2791 | } |
| 2792 | newmsg = mtod(n, struct sadb_msg *); |
| 2793 | newmsg->sadb_msg_errno = 0; |
| 2794 | |
| 2795 | VERIFY(PFKEY_UNIT64(n->m_pkthdr.len) <= UINT16_MAX); |
| 2796 | newmsg->sadb_msg_len = (u_int16_t)PFKEY_UNIT64(n->m_pkthdr.len); |
| 2797 | |
| 2798 | off = 0; |
| 2799 | mpolicy = m_pulldown(n, PFKEY_ALIGN8(sizeof(struct sadb_msg)), |
| 2800 | sizeof(*xpl), &off); |
| 2801 | if (mpolicy == NULL) { |
| 2802 | /* n is already freed */ |
| 2803 | return key_senderror(so, m, ENOBUFS); |
| 2804 | } |
| 2805 | xpl = (struct sadb_x_policy *)(void *)(mtod(mpolicy, caddr_t) + off); |
| 2806 | if (xpl->sadb_x_policy_exttype != SADB_X_EXT_POLICY) { |
| 2807 | m_freem(n); |
| 2808 | return key_senderror(so, m, EINVAL); |
| 2809 | } |
| 2810 | xpl->sadb_x_policy_id = newsp->id; |
| 2811 | |
| 2812 | m_freem(m); |
| 2813 | return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); |
| 2814 | } |
| 2815 | } |
| 2816 | |
| 2817 | /* |
| 2818 | * get new policy id. |
| 2819 | * OUT: |
| 2820 | * 0: failure. |
| 2821 | * others: success. |
| 2822 | */ |
| 2823 | static u_int32_t |
| 2824 | key_getnewspid(void) |
| 2825 | { |
| 2826 | u_int32_t newid = 0; |
| 2827 | int count = key_spi_trycnt; /* XXX */ |
| 2828 | struct secpolicy *sp; |
| 2829 | |
| 2830 | /* when requesting to allocate spi ranged */ |
| 2831 | lck_mtx_lock(sadb_mutex); |
| 2832 | while (count--) { |
| 2833 | newid = (policy_id = (policy_id == ~0 ? 1 : policy_id + 1)); |
| 2834 | |
| 2835 | if ((sp = __key_getspbyid(id: newid)) == NULL) { |
| 2836 | break; |
| 2837 | } |
| 2838 | |
| 2839 | key_freesp(sp, KEY_SADB_LOCKED); |
| 2840 | } |
| 2841 | lck_mtx_unlock(sadb_mutex); |
| 2842 | if (count == 0 || newid == 0) { |
| 2843 | ipseclog((LOG_DEBUG, "key_getnewspid: to allocate policy id is failed.\n" )); |
| 2844 | return 0; |
| 2845 | } |
| 2846 | |
| 2847 | return newid; |
| 2848 | } |
| 2849 | |
| 2850 | /* |
| 2851 | * SADB_SPDDELETE processing |
| 2852 | * receive |
| 2853 | * <base, address(SD), policy(*)> |
| 2854 | * from the user(?), and set SADB_SASTATE_DEAD, |
| 2855 | * and send, |
| 2856 | * <base, address(SD), policy(*)> |
| 2857 | * to the ikmpd. |
| 2858 | * policy(*) including direction of policy. |
| 2859 | * |
| 2860 | * m will always be freed. |
| 2861 | */ |
| 2862 | static int |
| 2863 | key_spddelete( |
| 2864 | struct socket *so, |
| 2865 | struct mbuf *m, |
| 2866 | const struct sadb_msghdr *mhp) |
| 2867 | { |
| 2868 | struct sadb_address *src0, *dst0, *src1 = NULL, *dst1 = NULL; |
| 2869 | struct sadb_x_policy *xpl0; |
| 2870 | struct secpolicyindex spidx; |
| 2871 | struct secpolicy *sp; |
| 2872 | ifnet_t internal_if = NULL; |
| 2873 | struct sadb_x_ipsecif *ipsecifopts = NULL; |
| 2874 | int use_src_range = 0; |
| 2875 | int use_dst_range = 0; |
| 2876 | |
| 2877 | LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_NOTOWNED); |
| 2878 | |
| 2879 | /* sanity check */ |
| 2880 | if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL) { |
| 2881 | panic("key_spddelete: NULL pointer is passed." ); |
| 2882 | } |
| 2883 | |
| 2884 | if (mhp->ext[SADB_X_EXT_ADDR_RANGE_SRC_START] != NULL && mhp->ext[SADB_X_EXT_ADDR_RANGE_SRC_END] != NULL) { |
| 2885 | use_src_range = 1; |
| 2886 | } |
| 2887 | if (mhp->ext[SADB_X_EXT_ADDR_RANGE_DST_START] != NULL && mhp->ext[SADB_X_EXT_ADDR_RANGE_DST_END] != NULL) { |
| 2888 | use_dst_range = 1; |
| 2889 | } |
| 2890 | |
| 2891 | if ((!use_src_range && mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL) || |
| 2892 | (!use_dst_range && mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) || |
| 2893 | mhp->ext[SADB_X_EXT_POLICY] == NULL) { |
| 2894 | ipseclog((LOG_DEBUG, "key_spddelete: invalid message is passed.\n" )); |
| 2895 | return key_senderror(so, m, EINVAL); |
| 2896 | } |
| 2897 | if ((use_src_range && (mhp->extlen[SADB_X_EXT_ADDR_RANGE_SRC_START] < sizeof(struct sadb_address) |
| 2898 | || mhp->extlen[SADB_X_EXT_ADDR_RANGE_SRC_END] < sizeof(struct sadb_address))) || |
| 2899 | (!use_src_range && mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address)) || |
| 2900 | (use_dst_range && (mhp->extlen[SADB_X_EXT_ADDR_RANGE_DST_START] < sizeof(struct sadb_address) |
| 2901 | || mhp->extlen[SADB_X_EXT_ADDR_RANGE_DST_END] < sizeof(struct sadb_address))) || |
| 2902 | (!use_dst_range && mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) || |
| 2903 | mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) { |
| 2904 | ipseclog((LOG_DEBUG, "key_spddelete: invalid message is passed.\n" )); |
| 2905 | return key_senderror(so, m, EINVAL); |
| 2906 | } |
| 2907 | |
| 2908 | if (use_src_range) { |
| 2909 | src0 = (struct sadb_address *)mhp->ext[SADB_X_EXT_ADDR_RANGE_SRC_START]; |
| 2910 | src1 = (struct sadb_address *)mhp->ext[SADB_X_EXT_ADDR_RANGE_SRC_END]; |
| 2911 | } else { |
| 2912 | src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC]; |
| 2913 | } |
| 2914 | if (use_dst_range) { |
| 2915 | dst0 = (struct sadb_address *)mhp->ext[SADB_X_EXT_ADDR_RANGE_DST_START]; |
| 2916 | dst1 = (struct sadb_address *)mhp->ext[SADB_X_EXT_ADDR_RANGE_DST_END]; |
| 2917 | } else { |
| 2918 | dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST]; |
| 2919 | } |
| 2920 | xpl0 = (struct sadb_x_policy *)(void *)mhp->ext[SADB_X_EXT_POLICY]; |
| 2921 | ipsecifopts = (struct sadb_x_ipsecif *)(void *)mhp->ext[SADB_X_EXT_IPSECIF]; |
| 2922 | |
| 2923 | /* checking the direction. */ |
| 2924 | switch (xpl0->sadb_x_policy_dir) { |
| 2925 | case IPSEC_DIR_INBOUND: |
| 2926 | case IPSEC_DIR_OUTBOUND: |
| 2927 | break; |
| 2928 | default: |
| 2929 | ipseclog((LOG_DEBUG, "key_spddelete: Invalid SP direction.\n" )); |
| 2930 | return key_senderror(so, m, EINVAL); |
| 2931 | } |
| 2932 | |
| 2933 | /* Process interfaces */ |
| 2934 | if (ipsecifopts != NULL) { |
| 2935 | ipsecifopts->sadb_x_ipsecif_internal_if[IFXNAMSIZ - 1] = '\0'; |
| 2936 | ipsecifopts->sadb_x_ipsecif_outgoing_if[IFXNAMSIZ - 1] = '\0'; |
| 2937 | ipsecifopts->sadb_x_ipsecif_ipsec_if[IFXNAMSIZ - 1] = '\0'; |
| 2938 | |
| 2939 | if (ipsecifopts->sadb_x_ipsecif_internal_if[0]) { |
| 2940 | ifnet_find_by_name(ifname: ipsecifopts->sadb_x_ipsecif_internal_if, interface: &internal_if); |
| 2941 | } |
| 2942 | } |
| 2943 | |
| 2944 | /* make secindex */ |
| 2945 | /* XXX boundary check against sa_len */ |
| 2946 | KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir, |
| 2947 | src0 + 1, |
| 2948 | dst0 + 1, |
| 2949 | src0->sadb_address_prefixlen, |
| 2950 | dst0->sadb_address_prefixlen, |
| 2951 | src0->sadb_address_proto, |
| 2952 | internal_if, |
| 2953 | use_src_range ? src0 + 1 : NULL, |
| 2954 | use_src_range ? src1 + 1 : NULL, |
| 2955 | use_dst_range ? dst0 + 1 : NULL, |
| 2956 | use_dst_range ? dst1 + 1 : NULL, |
| 2957 | &spidx); |
| 2958 | |
| 2959 | /* Is there SP in SPD ? */ |
| 2960 | lck_mtx_lock(sadb_mutex); |
| 2961 | if ((sp = key_getsp(spidx: &spidx)) == NULL) { |
| 2962 | ipseclog((LOG_DEBUG, "key_spddelete: no SP found.\n" )); |
| 2963 | lck_mtx_unlock(sadb_mutex); |
| 2964 | if (internal_if) { |
| 2965 | ifnet_release(interface: internal_if); |
| 2966 | internal_if = NULL; |
| 2967 | } |
| 2968 | return key_senderror(so, m, EINVAL); |
| 2969 | } |
| 2970 | |
| 2971 | if (internal_if) { |
| 2972 | ifnet_release(interface: internal_if); |
| 2973 | internal_if = NULL; |
| 2974 | } |
| 2975 | |
| 2976 | /* save policy id to buffer to be returned. */ |
| 2977 | xpl0->sadb_x_policy_id = sp->id; |
| 2978 | |
| 2979 | sp->state = IPSEC_SPSTATE_DEAD; |
| 2980 | key_freesp(sp, KEY_SADB_LOCKED); |
| 2981 | lck_mtx_unlock(sadb_mutex); |
| 2982 | |
| 2983 | |
| 2984 | { |
| 2985 | struct mbuf *n; |
| 2986 | struct sadb_msg *newmsg; |
| 2987 | int mbufItems[] = {SADB_EXT_RESERVED, SADB_X_EXT_POLICY, |
| 2988 | SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST, |
| 2989 | SADB_X_EXT_ADDR_RANGE_SRC_START, SADB_X_EXT_ADDR_RANGE_SRC_END, |
| 2990 | SADB_X_EXT_ADDR_RANGE_DST_START, SADB_X_EXT_ADDR_RANGE_DST_END}; |
| 2991 | |
| 2992 | /* create new sadb_msg to reply. */ |
| 2993 | n = key_gather_mbuf(m, mhp, ndeep: 1, nitem: sizeof(mbufItems) / sizeof(int), items: mbufItems); |
| 2994 | if (!n) { |
| 2995 | return key_senderror(so, m, ENOBUFS); |
| 2996 | } |
| 2997 | |
| 2998 | newmsg = mtod(n, struct sadb_msg *); |
| 2999 | newmsg->sadb_msg_errno = 0; |
| 3000 | VERIFY(PFKEY_UNIT64(n->m_pkthdr.len) <= UINT16_MAX); |
| 3001 | newmsg->sadb_msg_len = (u_int16_t)PFKEY_UNIT64(n->m_pkthdr.len); |
| 3002 | |
| 3003 | m_freem(m); |
| 3004 | return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); |
| 3005 | } |
| 3006 | } |
| 3007 | |
| 3008 | /* |
| 3009 | * SADB_SPDDELETE2 processing |
| 3010 | * receive |
| 3011 | * <base, policy(*)> |
| 3012 | * from the user(?), and set SADB_SASTATE_DEAD, |
| 3013 | * and send, |
| 3014 | * <base, policy(*)> |
| 3015 | * to the ikmpd. |
| 3016 | * policy(*) including direction of policy. |
| 3017 | * |
| 3018 | * m will always be freed. |
| 3019 | */ |
| 3020 | static int |
| 3021 | key_spddelete2( |
| 3022 | struct socket *so, |
| 3023 | struct mbuf *m, |
| 3024 | const struct sadb_msghdr *mhp) |
| 3025 | { |
| 3026 | u_int32_t id; |
| 3027 | struct secpolicy *sp; |
| 3028 | |
| 3029 | LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_NOTOWNED); |
| 3030 | |
| 3031 | /* sanity check */ |
| 3032 | if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL) { |
| 3033 | panic("key_spddelete2: NULL pointer is passed." ); |
| 3034 | } |
| 3035 | |
| 3036 | if (mhp->ext[SADB_X_EXT_POLICY] == NULL || |
| 3037 | mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) { |
| 3038 | ipseclog((LOG_DEBUG, "key_spddelete2: invalid message is passed.\n" )); |
| 3039 | key_senderror(so, m, EINVAL); |
| 3040 | return 0; |
| 3041 | } |
| 3042 | |
| 3043 | id = ((struct sadb_x_policy *) |
| 3044 | (void *)mhp->ext[SADB_X_EXT_POLICY])->sadb_x_policy_id; |
| 3045 | |
| 3046 | /* Is there SP in SPD ? */ |
| 3047 | lck_mtx_lock(sadb_mutex); |
| 3048 | if ((sp = __key_getspbyid(id)) == NULL) { |
| 3049 | lck_mtx_unlock(sadb_mutex); |
| 3050 | ipseclog((LOG_DEBUG, "key_spddelete2: no SP found id:%u.\n" , id)); |
| 3051 | return key_senderror(so, m, EINVAL); |
| 3052 | } |
| 3053 | |
| 3054 | sp->state = IPSEC_SPSTATE_DEAD; |
| 3055 | key_freesp(sp, KEY_SADB_LOCKED); |
| 3056 | lck_mtx_unlock(sadb_mutex); |
| 3057 | |
| 3058 | { |
| 3059 | struct mbuf *n, *nn; |
| 3060 | struct sadb_msg *newmsg; |
| 3061 | int off, len; |
| 3062 | |
| 3063 | /* create new sadb_msg to reply. */ |
| 3064 | len = PFKEY_ALIGN8(sizeof(struct sadb_msg)); |
| 3065 | |
| 3066 | if (len > MCLBYTES) { |
| 3067 | return key_senderror(so, m, ENOBUFS); |
| 3068 | } |
| 3069 | MGETHDR(n, M_WAITOK, MT_DATA); |
| 3070 | if (n && len > MHLEN) { |
| 3071 | MCLGET(n, M_WAITOK); |
| 3072 | if ((n->m_flags & M_EXT) == 0) { |
| 3073 | m_freem(n); |
| 3074 | n = NULL; |
| 3075 | } |
| 3076 | } |
| 3077 | if (!n) { |
| 3078 | return key_senderror(so, m, ENOBUFS); |
| 3079 | } |
| 3080 | |
| 3081 | n->m_len = len; |
| 3082 | n->m_next = NULL; |
| 3083 | off = 0; |
| 3084 | |
| 3085 | m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, caddr_t) + off); |
| 3086 | off += PFKEY_ALIGN8(sizeof(struct sadb_msg)); |
| 3087 | |
| 3088 | #if DIAGNOSTIC |
| 3089 | if (off != len) { |
| 3090 | panic("length inconsistency in key_spddelete2" ); |
| 3091 | } |
| 3092 | #endif |
| 3093 | |
| 3094 | n->m_next = m_copym(m, mhp->extoff[SADB_X_EXT_POLICY], |
| 3095 | mhp->extlen[SADB_X_EXT_POLICY], M_WAITOK); |
| 3096 | if (!n->m_next) { |
| 3097 | m_freem(n); |
| 3098 | return key_senderror(so, m, ENOBUFS); |
| 3099 | } |
| 3100 | |
| 3101 | n->m_pkthdr.len = 0; |
| 3102 | for (nn = n; nn; nn = nn->m_next) { |
| 3103 | n->m_pkthdr.len += nn->m_len; |
| 3104 | } |
| 3105 | |
| 3106 | newmsg = mtod(n, struct sadb_msg *); |
| 3107 | newmsg->sadb_msg_errno = 0; |
| 3108 | VERIFY(PFKEY_UNIT64(n->m_pkthdr.len) <= UINT16_MAX); |
| 3109 | newmsg->sadb_msg_len = (u_int16_t)PFKEY_UNIT64(n->m_pkthdr.len); |
| 3110 | |
| 3111 | m_freem(m); |
| 3112 | return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); |
| 3113 | } |
| 3114 | } |
| 3115 | |
| 3116 | static int |
| 3117 | key_spdenable( |
| 3118 | struct socket *so, |
| 3119 | struct mbuf *m, |
| 3120 | const struct sadb_msghdr *mhp) |
| 3121 | { |
| 3122 | u_int32_t id; |
| 3123 | struct secpolicy *sp; |
| 3124 | |
| 3125 | LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_NOTOWNED); |
| 3126 | |
| 3127 | /* sanity check */ |
| 3128 | if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL) { |
| 3129 | panic("key_spdenable: NULL pointer is passed." ); |
| 3130 | } |
| 3131 | |
| 3132 | if (mhp->ext[SADB_X_EXT_POLICY] == NULL || |
| 3133 | mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) { |
| 3134 | ipseclog((LOG_DEBUG, "key_spdenable: invalid message is passed.\n" )); |
| 3135 | key_senderror(so, m, EINVAL); |
| 3136 | return 0; |
| 3137 | } |
| 3138 | |
| 3139 | id = ((struct sadb_x_policy *) |
| 3140 | (void *)mhp->ext[SADB_X_EXT_POLICY])->sadb_x_policy_id; |
| 3141 | |
| 3142 | /* Is there SP in SPD ? */ |
| 3143 | lck_mtx_lock(sadb_mutex); |
| 3144 | if ((sp = __key_getspbyid(id)) == NULL) { |
| 3145 | lck_mtx_unlock(sadb_mutex); |
| 3146 | ipseclog((LOG_DEBUG, "key_spdenable: no SP found id:%u.\n" , id)); |
| 3147 | return key_senderror(so, m, EINVAL); |
| 3148 | } |
| 3149 | |
| 3150 | sp->disabled = 0; |
| 3151 | key_freesp(sp, KEY_SADB_LOCKED); |
| 3152 | lck_mtx_unlock(sadb_mutex); |
| 3153 | |
| 3154 | { |
| 3155 | struct mbuf *n; |
| 3156 | struct sadb_msg *newmsg; |
| 3157 | int mbufItems[] = {SADB_EXT_RESERVED, SADB_X_EXT_POLICY}; |
| 3158 | |
| 3159 | /* create new sadb_msg to reply. */ |
| 3160 | n = key_gather_mbuf(m, mhp, ndeep: 1, nitem: sizeof(mbufItems) / sizeof(int), items: mbufItems); |
| 3161 | if (!n) { |
| 3162 | return key_senderror(so, m, ENOBUFS); |
| 3163 | } |
| 3164 | |
| 3165 | if (n->m_len < sizeof(struct sadb_msg)) { |
| 3166 | n = m_pullup(n, sizeof(struct sadb_msg)); |
| 3167 | if (n == NULL) { |
| 3168 | return key_senderror(so, m, ENOBUFS); |
| 3169 | } |
| 3170 | } |
| 3171 | newmsg = mtod(n, struct sadb_msg *); |
| 3172 | newmsg->sadb_msg_errno = 0; |
| 3173 | VERIFY(PFKEY_UNIT64(n->m_pkthdr.len) <= UINT16_MAX); |
| 3174 | newmsg->sadb_msg_len = (u_int16_t)PFKEY_UNIT64(n->m_pkthdr.len); |
| 3175 | |
| 3176 | m_freem(m); |
| 3177 | return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); |
| 3178 | } |
| 3179 | } |
| 3180 | |
| 3181 | static int |
| 3182 | key_spddisable( |
| 3183 | struct socket *so, |
| 3184 | struct mbuf *m, |
| 3185 | const struct sadb_msghdr *mhp) |
| 3186 | { |
| 3187 | u_int32_t id; |
| 3188 | struct secpolicy *sp; |
| 3189 | |
| 3190 | LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_NOTOWNED); |
| 3191 | |
| 3192 | /* sanity check */ |
| 3193 | if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL) { |
| 3194 | panic("key_spddisable: NULL pointer is passed." ); |
| 3195 | } |
| 3196 | |
| 3197 | if (mhp->ext[SADB_X_EXT_POLICY] == NULL || |
| 3198 | mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) { |
| 3199 | ipseclog((LOG_DEBUG, "key_spddisable: invalid message is passed.\n" )); |
| 3200 | key_senderror(so, m, EINVAL); |
| 3201 | return 0; |
| 3202 | } |
| 3203 | |
| 3204 | id = ((struct sadb_x_policy *) |
| 3205 | (void *)mhp->ext[SADB_X_EXT_POLICY])->sadb_x_policy_id; |
| 3206 | |
| 3207 | /* Is there SP in SPD ? */ |
| 3208 | lck_mtx_lock(sadb_mutex); |
| 3209 | if ((sp = __key_getspbyid(id)) == NULL) { |
| 3210 | lck_mtx_unlock(sadb_mutex); |
| 3211 | ipseclog((LOG_DEBUG, "key_spddisable: no SP found id:%u.\n" , id)); |
| 3212 | return key_senderror(so, m, EINVAL); |
| 3213 | } |
| 3214 | |
| 3215 | sp->disabled = 1; |
| 3216 | key_freesp(sp, KEY_SADB_LOCKED); |
| 3217 | lck_mtx_unlock(sadb_mutex); |
| 3218 | |
| 3219 | { |
| 3220 | struct mbuf *n; |
| 3221 | struct sadb_msg *newmsg; |
| 3222 | int mbufItems[] = {SADB_EXT_RESERVED, SADB_X_EXT_POLICY}; |
| 3223 | |
| 3224 | /* create new sadb_msg to reply. */ |
| 3225 | n = key_gather_mbuf(m, mhp, ndeep: 1, nitem: sizeof(mbufItems) / sizeof(int), items: mbufItems); |
| 3226 | if (!n) { |
| 3227 | return key_senderror(so, m, ENOBUFS); |
| 3228 | } |
| 3229 | |
| 3230 | if (n->m_len < sizeof(struct sadb_msg)) { |
| 3231 | n = m_pullup(n, sizeof(struct sadb_msg)); |
| 3232 | if (n == NULL) { |
| 3233 | return key_senderror(so, m, ENOBUFS); |
| 3234 | } |
| 3235 | } |
| 3236 | newmsg = mtod(n, struct sadb_msg *); |
| 3237 | newmsg->sadb_msg_errno = 0; |
| 3238 | VERIFY(PFKEY_UNIT64(n->m_pkthdr.len) <= UINT16_MAX); |
| 3239 | newmsg->sadb_msg_len = (u_int16_t)PFKEY_UNIT64(n->m_pkthdr.len); |
| 3240 | |
| 3241 | m_freem(m); |
| 3242 | return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); |
| 3243 | } |
| 3244 | } |
| 3245 | |
| 3246 | /* |
| 3247 | * SADB_X_GET processing |
| 3248 | * receive |
| 3249 | * <base, policy(*)> |
| 3250 | * from the user(?), |
| 3251 | * and send, |
| 3252 | * <base, address(SD), policy> |
| 3253 | * to the ikmpd. |
| 3254 | * policy(*) including direction of policy. |
| 3255 | * |
| 3256 | * m will always be freed. |
| 3257 | */ |
| 3258 | static int |
| 3259 | key_spdget( |
| 3260 | struct socket *so, |
| 3261 | struct mbuf *m, |
| 3262 | const struct sadb_msghdr *mhp) |
| 3263 | { |
| 3264 | u_int32_t id; |
| 3265 | struct secpolicy *sp; |
| 3266 | struct mbuf *n; |
| 3267 | |
| 3268 | LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_NOTOWNED); |
| 3269 | |
| 3270 | /* sanity check */ |
| 3271 | if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL) { |
| 3272 | panic("key_spdget: NULL pointer is passed." ); |
| 3273 | } |
| 3274 | |
| 3275 | if (mhp->ext[SADB_X_EXT_POLICY] == NULL || |
| 3276 | mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) { |
| 3277 | ipseclog((LOG_DEBUG, "key_spdget: invalid message is passed.\n" )); |
| 3278 | return key_senderror(so, m, EINVAL); |
| 3279 | } |
| 3280 | |
| 3281 | id = ((struct sadb_x_policy *) |
| 3282 | (void *)mhp->ext[SADB_X_EXT_POLICY])->sadb_x_policy_id; |
| 3283 | |
| 3284 | /* Is there SP in SPD ? */ |
| 3285 | lck_mtx_lock(sadb_mutex); |
| 3286 | if ((sp = __key_getspbyid(id)) == NULL) { |
| 3287 | ipseclog((LOG_DEBUG, "key_spdget: no SP found id:%u.\n" , id)); |
| 3288 | lck_mtx_unlock(sadb_mutex); |
| 3289 | return key_senderror(so, m, ENOENT); |
| 3290 | } |
| 3291 | lck_mtx_unlock(sadb_mutex); |
| 3292 | n = key_setdumpsp(sp, SADB_X_SPDGET, 0, mhp->msg->sadb_msg_pid); |
| 3293 | key_freesp(sp, KEY_SADB_UNLOCKED); |
| 3294 | if (n != NULL) { |
| 3295 | m_freem(m); |
| 3296 | return key_sendup_mbuf(so, n, KEY_SENDUP_ONE); |
| 3297 | } else { |
| 3298 | return key_senderror(so, m, ENOBUFS); |
| 3299 | } |
| 3300 | } |
| 3301 | |
| 3302 | /* |
| 3303 | * SADB_X_SPDACQUIRE processing. |
| 3304 | * Acquire policy and SA(s) for a *OUTBOUND* packet. |
| 3305 | * send |
| 3306 | * <base, policy(*)> |
| 3307 | * to KMD, and expect to receive |
| 3308 | * <base> with SADB_X_SPDACQUIRE if error occurred, |
| 3309 | * or |
| 3310 | * <base, policy> |
| 3311 | * with SADB_X_SPDUPDATE from KMD by PF_KEY. |
| 3312 | * policy(*) is without policy requests. |
| 3313 | * |
| 3314 | * 0 : succeed |
| 3315 | * others: error number |
| 3316 | */ |
| 3317 | int |
| 3318 | key_spdacquire( |
| 3319 | struct secpolicy *sp) |
| 3320 | { |
| 3321 | struct mbuf *result = NULL, *m; |
| 3322 | struct secspacq *newspacq; |
| 3323 | int error; |
| 3324 | |
| 3325 | LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_NOTOWNED); |
| 3326 | |
| 3327 | /* sanity check */ |
| 3328 | if (sp == NULL) { |
| 3329 | panic("key_spdacquire: NULL pointer is passed." ); |
| 3330 | } |
| 3331 | if (sp->req != NULL) { |
| 3332 | panic("key_spdacquire: called but there is request." ); |
| 3333 | } |
| 3334 | if (sp->policy != IPSEC_POLICY_IPSEC) { |
| 3335 | panic("key_spdacquire: policy mismathed. IPsec is expected." ); |
| 3336 | } |
| 3337 | |
| 3338 | /* get a entry to check whether sent message or not. */ |
| 3339 | lck_mtx_lock(sadb_mutex); |
| 3340 | sp->refcnt++; |
| 3341 | if ((newspacq = key_getspacq(&sp->spidx)) != NULL) { |
| 3342 | key_freesp(sp, KEY_SADB_LOCKED); |
| 3343 | if (key_blockacq_count < newspacq->count) { |
| 3344 | /* reset counter and do send message. */ |
| 3345 | newspacq->count = 0; |
| 3346 | } else { |
| 3347 | /* increment counter and do nothing. */ |
| 3348 | newspacq->count++; |
| 3349 | lck_mtx_unlock(sadb_mutex); |
| 3350 | return 0; |
| 3351 | } |
| 3352 | } else { |
| 3353 | /* make new entry for blocking to send SADB_ACQUIRE. */ |
| 3354 | if ((newspacq = key_newspacq(&sp->spidx)) == NULL) { |
| 3355 | key_freesp(sp, KEY_SADB_LOCKED); |
| 3356 | lck_mtx_unlock(sadb_mutex); |
| 3357 | return ENOBUFS; |
| 3358 | } |
| 3359 | key_freesp(sp, KEY_SADB_LOCKED); |
| 3360 | /* add to acqtree */ |
| 3361 | LIST_INSERT_HEAD(&spacqtree, newspacq, chain); |
| 3362 | key_start_timehandler(); |
| 3363 | } |
| 3364 | lck_mtx_unlock(sadb_mutex); |
| 3365 | /* create new sadb_msg to reply. */ |
| 3366 | m = key_setsadbmsg(SADB_X_SPDACQUIRE, 0, 0, 0, 0, 0); |
| 3367 | if (!m) { |
| 3368 | error = ENOBUFS; |
| 3369 | goto fail; |
| 3370 | } |
| 3371 | result = m; |
| 3372 | |
| 3373 | result->m_pkthdr.len = 0; |
| 3374 | for (m = result; m; m = m->m_next) { |
| 3375 | result->m_pkthdr.len += m->m_len; |
| 3376 | } |
| 3377 | |
| 3378 | VERIFY(PFKEY_UNIT64(result->m_pkthdr.len) <= UINT16_MAX); |
| 3379 | mtod(result, struct sadb_msg *)->sadb_msg_len = |
| 3380 | (u_int16_t)PFKEY_UNIT64(result->m_pkthdr.len); |
| 3381 | |
| 3382 | return key_sendup_mbuf(NULL, m, KEY_SENDUP_REGISTERED); |
| 3383 | |
| 3384 | fail: |
| 3385 | if (result) { |
| 3386 | m_freem(result); |
| 3387 | } |
| 3388 | return error; |
| 3389 | } |
| 3390 | |
| 3391 | /* |
| 3392 | * SADB_SPDFLUSH processing |
| 3393 | * receive |
| 3394 | * <base> |
| 3395 | * from the user, and free all entries in secpctree. |
| 3396 | * and send, |
| 3397 | * <base> |
| 3398 | * to the user. |
| 3399 | * NOTE: what to do is only marking SADB_SASTATE_DEAD. |
| 3400 | * |
| 3401 | * m will always be freed. |
| 3402 | */ |
| 3403 | static int |
| 3404 | key_spdflush( |
| 3405 | struct socket *so, |
| 3406 | struct mbuf *m, |
| 3407 | const struct sadb_msghdr *mhp) |
| 3408 | { |
| 3409 | struct sadb_msg *newmsg; |
| 3410 | struct secpolicy *sp; |
| 3411 | u_int dir; |
| 3412 | |
| 3413 | /* sanity check */ |
| 3414 | if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL) { |
| 3415 | panic("key_spdflush: NULL pointer is passed." ); |
| 3416 | } |
| 3417 | |
| 3418 | if (m->m_len != PFKEY_ALIGN8(sizeof(struct sadb_msg))) { |
| 3419 | return key_senderror(so, m, EINVAL); |
| 3420 | } |
| 3421 | |
| 3422 | lck_mtx_lock(sadb_mutex); |
| 3423 | for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { |
| 3424 | LIST_FOREACH(sp, &sptree[dir], chain) { |
| 3425 | sp->state = IPSEC_SPSTATE_DEAD; |
| 3426 | } |
| 3427 | } |
| 3428 | lck_mtx_unlock(sadb_mutex); |
| 3429 | |
| 3430 | if (sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) { |
| 3431 | ipseclog((LOG_DEBUG, "key_spdflush: No more memory.\n" )); |
| 3432 | return key_senderror(so, m, ENOBUFS); |
| 3433 | } |
| 3434 | |
| 3435 | if (m->m_next) { |
| 3436 | m_freem(m->m_next); |
| 3437 | } |
| 3438 | m->m_next = NULL; |
| 3439 | m->m_pkthdr.len = m->m_len = PFKEY_ALIGN8(sizeof(struct sadb_msg)); |
| 3440 | newmsg = mtod(m, struct sadb_msg *); |
| 3441 | newmsg->sadb_msg_errno = 0; |
| 3442 | newmsg->sadb_msg_len = (u_int16_t)PFKEY_UNIT64(m->m_pkthdr.len); |
| 3443 | |
| 3444 | return key_sendup_mbuf(so, m, KEY_SENDUP_ALL); |
| 3445 | } |
| 3446 | |
| 3447 | /* |
| 3448 | * SADB_SPDDUMP processing |
| 3449 | * receive |
| 3450 | * <base> |
| 3451 | * from the user, and dump all SP leaves |
| 3452 | * and send, |
| 3453 | * <base> ..... |
| 3454 | * to the ikmpd. |
| 3455 | * |
| 3456 | * m will always be freed. |
| 3457 | */ |
| 3458 | |
| 3459 | static int |
| 3460 | key_spddump( |
| 3461 | struct socket *so, |
| 3462 | struct mbuf *m, |
| 3463 | const struct sadb_msghdr *mhp) |
| 3464 | { |
| 3465 | struct secpolicy *sp, **spbuf = NULL, **sp_ptr; |
| 3466 | u_int32_t cnt = 0, bufcount = 0; |
| 3467 | u_int dir; |
| 3468 | struct mbuf *n; |
| 3469 | int error = 0; |
| 3470 | |
| 3471 | /* sanity check */ |
| 3472 | if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL) { |
| 3473 | panic("key_spddump: NULL pointer is passed." ); |
| 3474 | } |
| 3475 | |
| 3476 | if ((bufcount = ipsec_policy_count) == 0) { |
| 3477 | error = ENOENT; |
| 3478 | goto end; |
| 3479 | } |
| 3480 | |
| 3481 | if (os_add_overflow(bufcount, 256, &bufcount)) { |
| 3482 | ipseclog((LOG_DEBUG, "key_spddump: bufcount overflow, ipsec policy count %u.\n" , ipsec_policy_count)); |
| 3483 | bufcount = ipsec_policy_count; |
| 3484 | } |
| 3485 | |
| 3486 | spbuf = kalloc_type(struct secpolicy *, bufcount, Z_WAITOK); |
| 3487 | if (spbuf == NULL) { |
| 3488 | ipseclog((LOG_DEBUG, "key_spddump: No more memory.\n" )); |
| 3489 | error = ENOMEM; |
| 3490 | goto end; |
| 3491 | } |
| 3492 | lck_mtx_lock(sadb_mutex); |
| 3493 | /* search SPD entry, make list. */ |
| 3494 | sp_ptr = spbuf; |
| 3495 | for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { |
| 3496 | LIST_FOREACH(sp, &sptree[dir], chain) { |
| 3497 | if (cnt == bufcount) { |
| 3498 | break; /* buffer full */ |
| 3499 | } |
| 3500 | *sp_ptr++ = sp; |
| 3501 | sp->refcnt++; |
| 3502 | cnt++; |
| 3503 | } |
| 3504 | } |
| 3505 | lck_mtx_unlock(sadb_mutex); |
| 3506 | |
| 3507 | if (cnt == 0) { |
| 3508 | error = ENOENT; |
| 3509 | goto end; |
| 3510 | } |
| 3511 | |
| 3512 | sp_ptr = spbuf; |
| 3513 | while (cnt) { |
| 3514 | --cnt; |
| 3515 | n = key_setdumpsp(*sp_ptr++, SADB_X_SPDDUMP, cnt, |
| 3516 | mhp->msg->sadb_msg_pid); |
| 3517 | |
| 3518 | if (n) { |
| 3519 | key_sendup_mbuf(so, n, KEY_SENDUP_ONE); |
| 3520 | } |
| 3521 | } |
| 3522 | |
| 3523 | lck_mtx_lock(sadb_mutex); |
| 3524 | while (sp_ptr > spbuf) { |
| 3525 | key_freesp(sp: *(--sp_ptr), KEY_SADB_LOCKED); |
| 3526 | } |
| 3527 | lck_mtx_unlock(sadb_mutex); |
| 3528 | |
| 3529 | end: |
| 3530 | kfree_type(struct secpolicy *, bufcount, spbuf); |
| 3531 | if (error) { |
| 3532 | return key_senderror(so, m, error); |
| 3533 | } |
| 3534 | |
| 3535 | m_freem(m); |
| 3536 | return 0; |
| 3537 | } |
| 3538 | |
| 3539 | static struct mbuf * |
| 3540 | key_setdumpsp( |
| 3541 | struct secpolicy *sp, |
| 3542 | u_int8_t msg_type, |
| 3543 | u_int32_t seq, |
| 3544 | u_int32_t pid) |
| 3545 | { |
| 3546 | struct mbuf *result = NULL, *m; |
| 3547 | |
| 3548 | m = key_setsadbmsg(msg_type, 0, SADB_SATYPE_UNSPEC, seq, pid, (u_int16_t)sp->refcnt); |
| 3549 | if (!m) { |
| 3550 | goto fail; |
| 3551 | } |
| 3552 | result = m; |
| 3553 | |
| 3554 | if (sp->spidx.src_range.start.ss_len > 0) { |
| 3555 | m = key_setsadbaddr(SADB_X_EXT_ADDR_RANGE_SRC_START, |
| 3556 | (struct sockaddr *)&sp->spidx.src_range.start, sp->spidx.prefs, |
| 3557 | sp->spidx.ul_proto); |
| 3558 | if (!m) { |
| 3559 | goto fail; |
| 3560 | } |
| 3561 | m_cat(result, m); |
| 3562 | |
| 3563 | m = key_setsadbaddr(SADB_X_EXT_ADDR_RANGE_SRC_END, |
| 3564 | (struct sockaddr *)&sp->spidx.src_range.end, sp->spidx.prefs, |
| 3565 | sp->spidx.ul_proto); |
| 3566 | if (!m) { |
| 3567 | goto fail; |
| 3568 | } |
| 3569 | m_cat(result, m); |
| 3570 | } else { |
| 3571 | m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, |
| 3572 | (struct sockaddr *)&sp->spidx.src, sp->spidx.prefs, |
| 3573 | sp->spidx.ul_proto); |
| 3574 | if (!m) { |
| 3575 | goto fail; |
| 3576 | } |
| 3577 | m_cat(result, m); |
| 3578 | } |
| 3579 | |
| 3580 | if (sp->spidx.dst_range.start.ss_len > 0) { |
| 3581 | m = key_setsadbaddr(SADB_X_EXT_ADDR_RANGE_DST_START, |
| 3582 | (struct sockaddr *)&sp->spidx.dst_range.start, sp->spidx.prefd, |
| 3583 | sp->spidx.ul_proto); |
| 3584 | if (!m) { |
| 3585 | goto fail; |
| 3586 | } |
| 3587 | m_cat(result, m); |
| 3588 | |
| 3589 | m = key_setsadbaddr(SADB_X_EXT_ADDR_RANGE_DST_END, |
| 3590 | (struct sockaddr *)&sp->spidx.dst_range.end, sp->spidx.prefd, |
| 3591 | sp->spidx.ul_proto); |
| 3592 | if (!m) { |
| 3593 | goto fail; |
| 3594 | } |
| 3595 | m_cat(result, m); |
| 3596 | } else { |
| 3597 | m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, |
| 3598 | (struct sockaddr *)&sp->spidx.dst, sp->spidx.prefd, |
| 3599 | sp->spidx.ul_proto); |
| 3600 | if (!m) { |
| 3601 | goto fail; |
| 3602 | } |
| 3603 | m_cat(result, m); |
| 3604 | } |
| 3605 | |
| 3606 | if (sp->spidx.internal_if || sp->outgoing_if || sp->ipsec_if || sp->disabled) { |
| 3607 | m = key_setsadbipsecif(sp->spidx.internal_if, sp->outgoing_if, sp->ipsec_if, sp->disabled); |
| 3608 | if (!m) { |
| 3609 | goto fail; |
| 3610 | } |
| 3611 | m_cat(result, m); |
| 3612 | } |
| 3613 | |
| 3614 | m = key_sp2msg(sp); |
| 3615 | if (!m) { |
| 3616 | goto fail; |
| 3617 | } |
| 3618 | m_cat(result, m); |
| 3619 | |
| 3620 | if ((result->m_flags & M_PKTHDR) == 0) { |
| 3621 | goto fail; |
| 3622 | } |
| 3623 | |
| 3624 | if (result->m_len < sizeof(struct sadb_msg)) { |
| 3625 | result = m_pullup(result, sizeof(struct sadb_msg)); |
| 3626 | if (result == NULL) { |
| 3627 | goto fail; |
| 3628 | } |
| 3629 | } |
| 3630 | |
| 3631 | result->m_pkthdr.len = 0; |
| 3632 | for (m = result; m; m = m->m_next) { |
| 3633 | result->m_pkthdr.len += m->m_len; |
| 3634 | } |
| 3635 | |
| 3636 | if (PFKEY_UNIT64(result->m_pkthdr.len) >= UINT16_MAX) { |
| 3637 | ipseclog((LOG_DEBUG, "key_setdumpsp: packet header length > UINT16_MAX\n" )); |
| 3638 | goto fail; |
| 3639 | } |
| 3640 | |
| 3641 | mtod(result, struct sadb_msg *)->sadb_msg_len = |
| 3642 | (u_int16_t)PFKEY_UNIT64(result->m_pkthdr.len); |
| 3643 | |
| 3644 | return result; |
| 3645 | |
| 3646 | fail: |
| 3647 | m_freem(result); |
| 3648 | return NULL; |
| 3649 | } |
| 3650 | |
| 3651 | /* |
| 3652 | * get PFKEY message length for security policy and request. |
| 3653 | */ |
| 3654 | static u_int |
| 3655 | key_getspreqmsglen( |
| 3656 | struct secpolicy *sp) |
| 3657 | { |
| 3658 | u_int tlen; |
| 3659 | |
| 3660 | tlen = sizeof(struct sadb_x_policy); |
| 3661 | |
| 3662 | /* if is the policy for ipsec ? */ |
| 3663 | if (sp->policy != IPSEC_POLICY_IPSEC) { |
| 3664 | return tlen; |
| 3665 | } |
| 3666 | |
| 3667 | /* get length of ipsec requests */ |
| 3668 | { |
| 3669 | struct ipsecrequest *isr; |
| 3670 | int len; |
| 3671 | |
| 3672 | for (isr = sp->req; isr != NULL; isr = isr->next) { |
| 3673 | len = sizeof(struct sadb_x_ipsecrequest) |
| 3674 | + isr->saidx.src.ss_len |
| 3675 | + isr->saidx.dst.ss_len; |
| 3676 | |
| 3677 | tlen += PFKEY_ALIGN8(len); |
| 3678 | } |
| 3679 | } |
| 3680 | |
| 3681 | return tlen; |
| 3682 | } |
| 3683 | |
| 3684 | /* |
| 3685 | * SADB_SPDEXPIRE processing |
| 3686 | * send |
| 3687 | * <base, address(SD), lifetime(CH), policy> |
| 3688 | * to KMD by PF_KEY. |
| 3689 | * |
| 3690 | * OUT: 0 : succeed |
| 3691 | * others : error number |
| 3692 | */ |
| 3693 | static int |
| 3694 | key_spdexpire( |
| 3695 | struct secpolicy *sp) |
| 3696 | { |
| 3697 | struct mbuf *result = NULL, *m; |
| 3698 | int len; |
| 3699 | int error = EINVAL; |
| 3700 | struct sadb_lifetime *lt; |
| 3701 | |
| 3702 | LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_NOTOWNED); |
| 3703 | |
| 3704 | /* sanity check */ |
| 3705 | if (sp == NULL) { |
| 3706 | panic("key_spdexpire: NULL pointer is passed." ); |
| 3707 | } |
| 3708 | |
| 3709 | /* set msg header */ |
| 3710 | m = key_setsadbmsg(SADB_X_SPDEXPIRE, 0, 0, 0, 0, 0); |
| 3711 | if (!m) { |
| 3712 | error = ENOBUFS; |
| 3713 | goto fail; |
| 3714 | } |
| 3715 | result = m; |
| 3716 | |
| 3717 | /* create lifetime extension (current and hard) */ |
| 3718 | len = PFKEY_ALIGN8(sizeof(*lt)) * 2; |
| 3719 | m = key_alloc_mbuf(len); |
| 3720 | if (!m || m->m_next) { /*XXX*/ |
| 3721 | if (m) { |
| 3722 | m_freem(m); |
| 3723 | } |
| 3724 | error = ENOBUFS; |
| 3725 | goto fail; |
| 3726 | } |
| 3727 | bzero(mtod(m, caddr_t), n: len); |
| 3728 | lt = mtod(m, struct sadb_lifetime *); |
| 3729 | lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime)); |
| 3730 | lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT; |
| 3731 | lt->sadb_lifetime_allocations = 0; |
| 3732 | lt->sadb_lifetime_bytes = 0; |
| 3733 | lt->sadb_lifetime_addtime = key_convert_continuous_time_ns(time_value: sp->created); |
| 3734 | lt->sadb_lifetime_usetime = key_convert_continuous_time_ns(time_value: sp->lastused); |
| 3735 | lt = (struct sadb_lifetime *)(void *)(mtod(m, caddr_t) + len / 2); |
| 3736 | lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime)); |
| 3737 | lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD; |
| 3738 | lt->sadb_lifetime_allocations = 0; |
| 3739 | lt->sadb_lifetime_bytes = 0; |
| 3740 | lt->sadb_lifetime_addtime = sp->lifetime / NSEC_PER_SEC; |
| 3741 | lt->sadb_lifetime_usetime = sp->validtime / NSEC_PER_SEC; |
| 3742 | m_cat(result, m); |
| 3743 | |
| 3744 | /* set sadb_address(es) for source */ |
| 3745 | if (sp->spidx.src_range.start.ss_len > 0) { |
| 3746 | m = key_setsadbaddr(SADB_X_EXT_ADDR_RANGE_SRC_START, |
| 3747 | (struct sockaddr *)&sp->spidx.src_range.start, sp->spidx.prefs, |
| 3748 | sp->spidx.ul_proto); |
| 3749 | if (!m) { |
| 3750 | error = ENOBUFS; |
| 3751 | goto fail; |
| 3752 | } |
| 3753 | m_cat(result, m); |
| 3754 | |
| 3755 | m = key_setsadbaddr(SADB_X_EXT_ADDR_RANGE_SRC_END, |
| 3756 | (struct sockaddr *)&sp->spidx.src_range.end, sp->spidx.prefs, |
| 3757 | sp->spidx.ul_proto); |
| 3758 | if (!m) { |
| 3759 | error = ENOBUFS; |
| 3760 | goto fail; |
| 3761 | } |
| 3762 | m_cat(result, m); |
| 3763 | } else { |
| 3764 | m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, |
| 3765 | (struct sockaddr *)&sp->spidx.src, sp->spidx.prefs, |
| 3766 | sp->spidx.ul_proto); |
| 3767 | if (!m) { |
| 3768 | error = ENOBUFS; |
| 3769 | goto fail; |
| 3770 | } |
| 3771 | m_cat(result, m); |
| 3772 | } |
| 3773 | |
| 3774 | /* set sadb_address(es) for dest */ |
| 3775 | if (sp->spidx.dst_range.start.ss_len > 0) { |
| 3776 | m = key_setsadbaddr(SADB_X_EXT_ADDR_RANGE_DST_START, |
| 3777 | (struct sockaddr *)&sp->spidx.dst_range.start, sp->spidx.prefd, |
| 3778 | sp->spidx.ul_proto); |
| 3779 | if (!m) { |
| 3780 | error = ENOBUFS; |
| 3781 | goto fail; |
| 3782 | } |
| 3783 | m_cat(result, m); |
| 3784 | |
| 3785 | m = key_setsadbaddr(SADB_X_EXT_ADDR_RANGE_DST_END, |
| 3786 | (struct sockaddr *)&sp->spidx.dst_range.end, sp->spidx.prefd, |
| 3787 | sp->spidx.ul_proto); |
| 3788 | if (!m) { |
| 3789 | error = ENOBUFS; |
| 3790 | goto fail; |
| 3791 | } |
| 3792 | m_cat(result, m); |
| 3793 | } else { |
| 3794 | m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, |
| 3795 | (struct sockaddr *)&sp->spidx.dst, sp->spidx.prefd, |
| 3796 | sp->spidx.ul_proto); |
| 3797 | if (!m) { |
| 3798 | error = ENOBUFS; |
| 3799 | goto fail; |
| 3800 | } |
| 3801 | m_cat(result, m); |
| 3802 | } |
| 3803 | |
| 3804 | /* set secpolicy */ |
| 3805 | m = key_sp2msg(sp); |
| 3806 | if (!m) { |
| 3807 | error = ENOBUFS; |
| 3808 | goto fail; |
| 3809 | } |
| 3810 | m_cat(result, m); |
| 3811 | |
| 3812 | if ((result->m_flags & M_PKTHDR) == 0) { |
| 3813 | error = EINVAL; |
| 3814 | goto fail; |
| 3815 | } |
| 3816 | |
| 3817 | if (result->m_len < sizeof(struct sadb_msg)) { |
| 3818 | result = m_pullup(result, sizeof(struct sadb_msg)); |
| 3819 | if (result == NULL) { |
| 3820 | error = ENOBUFS; |
| 3821 | goto fail; |
| 3822 | } |
| 3823 | } |
| 3824 | |
| 3825 | result->m_pkthdr.len = 0; |
| 3826 | for (m = result; m; m = m->m_next) { |
| 3827 | result->m_pkthdr.len += m->m_len; |
| 3828 | } |
| 3829 | |
| 3830 | if (PFKEY_UNIT64(result->m_pkthdr.len) >= UINT16_MAX) { |
| 3831 | ipseclog((LOG_DEBUG, "key_setdumpsp: packet header length > UINT16_MAX\n" )); |
| 3832 | goto fail; |
| 3833 | } |
| 3834 | |
| 3835 | mtod(result, struct sadb_msg *)->sadb_msg_len = |
| 3836 | (u_int16_t)PFKEY_UNIT64(result->m_pkthdr.len); |
| 3837 | |
| 3838 | return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED); |
| 3839 | |
| 3840 | fail: |
| 3841 | if (result) { |
| 3842 | m_freem(result); |
| 3843 | } |
| 3844 | return error; |
| 3845 | } |
| 3846 | |
| 3847 | /* %%% SAD management */ |
| 3848 | /* |
| 3849 | * allocating a memory for new SA head, and copy from the values of mhp. |
| 3850 | * OUT: NULL : failure due to the lack of memory. |
| 3851 | * others : pointer to new SA head. |
| 3852 | */ |
| 3853 | static struct secashead * |
| 3854 | key_newsah(struct secasindex *saidx, |
| 3855 | ifnet_t ipsec_if, |
| 3856 | u_int outgoing_if, |
| 3857 | u_int8_t dir, |
| 3858 | u_int16_t flags) |
| 3859 | { |
| 3860 | struct secashead *newsah; |
| 3861 | |
| 3862 | /* sanity check */ |
| 3863 | if (saidx == NULL) { |
| 3864 | panic("key_newsaidx: NULL pointer is passed." ); |
| 3865 | } |
| 3866 | |
| 3867 | VERIFY(flags == SECURITY_ASSOCIATION_PFKEY || flags == SECURITY_ASSOCIATION_CUSTOM_IPSEC); |
| 3868 | |
| 3869 | newsah = keydb_newsecashead(); |
| 3870 | if (newsah == NULL) { |
| 3871 | return NULL; |
| 3872 | } |
| 3873 | |
| 3874 | bcopy(src: saidx, dst: &newsah->saidx, n: sizeof(newsah->saidx)); |
| 3875 | |
| 3876 | /* remove the ports */ |
| 3877 | switch (saidx->src.ss_family) { |
| 3878 | case AF_INET: |
| 3879 | ((struct sockaddr_in *)(&newsah->saidx.src))->sin_port = IPSEC_PORT_ANY; |
| 3880 | break; |
| 3881 | case AF_INET6: |
| 3882 | ((struct sockaddr_in6 *)(&newsah->saidx.src))->sin6_port = IPSEC_PORT_ANY; |
| 3883 | break; |
| 3884 | default: |
| 3885 | break; |
| 3886 | } |
| 3887 | switch (saidx->dst.ss_family) { |
| 3888 | case AF_INET: |
| 3889 | ((struct sockaddr_in *)(&newsah->saidx.dst))->sin_port = IPSEC_PORT_ANY; |
| 3890 | break; |
| 3891 | case AF_INET6: |
| 3892 | ((struct sockaddr_in6 *)(&newsah->saidx.dst))->sin6_port = IPSEC_PORT_ANY; |
| 3893 | break; |
| 3894 | default: |
| 3895 | break; |
| 3896 | } |
| 3897 | |
| 3898 | newsah->outgoing_if = outgoing_if; |
| 3899 | if (ipsec_if) { |
| 3900 | ifnet_reference(interface: ipsec_if); |
| 3901 | newsah->ipsec_if = ipsec_if; |
| 3902 | } |
| 3903 | newsah->dir = dir; |
| 3904 | /* add to saidxtree */ |
| 3905 | newsah->state = SADB_SASTATE_MATURE; |
| 3906 | newsah->flags = flags; |
| 3907 | |
| 3908 | if (flags == SECURITY_ASSOCIATION_PFKEY) { |
| 3909 | LIST_INSERT_HEAD(&sahtree, newsah, chain); |
| 3910 | } else { |
| 3911 | LIST_INSERT_HEAD(&custom_sahtree, newsah, chain); |
| 3912 | } |
| 3913 | key_start_timehandler(); |
| 3914 | |
| 3915 | return newsah; |
| 3916 | } |
| 3917 | |
| 3918 | /* |
| 3919 | * delete SA index and all SA registered. |
| 3920 | */ |
| 3921 | void |
| 3922 | key_delsah( |
| 3923 | struct secashead *sah) |
| 3924 | { |
| 3925 | struct secasvar *sav, *nextsav; |
| 3926 | u_int stateidx, state; |
| 3927 | int zombie = 0; |
| 3928 | |
| 3929 | LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_OWNED); |
| 3930 | |
| 3931 | /* sanity check */ |
| 3932 | if (sah == NULL) { |
| 3933 | panic("key_delsah: NULL pointer is passed." ); |
| 3934 | } |
| 3935 | |
| 3936 | if (sah->use_count > 0) { |
| 3937 | return; |
| 3938 | } |
| 3939 | |
| 3940 | /* searching all SA registered in the secindex. */ |
| 3941 | for (stateidx = 0; |
| 3942 | stateidx < _ARRAYLEN(saorder_state_any); |
| 3943 | stateidx++) { |
| 3944 | state = saorder_state_any[stateidx]; |
| 3945 | for (sav = (struct secasvar *)LIST_FIRST(&sah->savtree[state]); |
| 3946 | sav != NULL; |
| 3947 | sav = nextsav) { |
| 3948 | nextsav = LIST_NEXT(sav, chain); |
| 3949 | |
| 3950 | if (sav->refcnt > 0) { |
| 3951 | /* give up to delete this sa */ |
| 3952 | zombie++; |
| 3953 | continue; |
| 3954 | } |
| 3955 | |
| 3956 | /* sanity check */ |
| 3957 | KEY_CHKSASTATE(state, sav->state, "key_delsah" ); |
| 3958 | |
| 3959 | key_freesav(sav, KEY_SADB_LOCKED); |
| 3960 | |
| 3961 | /* remove back pointer */ |
| 3962 | sav->sah = NULL; |
| 3963 | sav = NULL; |
| 3964 | } |
| 3965 | } |
| 3966 | |
| 3967 | /* don't delete sah only if there are savs. */ |
| 3968 | if (zombie) { |
| 3969 | return; |
| 3970 | } |
| 3971 | |
| 3972 | ROUTE_RELEASE(&sah->sa_route); |
| 3973 | |
| 3974 | if (sah->ipsec_if) { |
| 3975 | ifnet_release(interface: sah->ipsec_if); |
| 3976 | sah->ipsec_if = NULL; |
| 3977 | } |
| 3978 | |
| 3979 | /* remove from tree of SA index */ |
| 3980 | if (__LIST_CHAINED(sah)) { |
| 3981 | LIST_REMOVE(sah, chain); |
| 3982 | } |
| 3983 | |
| 3984 | kfree_type(struct secashead, sah); |
| 3985 | } |
| 3986 | |
| 3987 | /* |
| 3988 | * allocating a new SA with LARVAL state. key_add() and key_getspi() call, |
| 3989 | * and copy the values of mhp into new buffer. |
| 3990 | * When SAD message type is GETSPI: |
| 3991 | * to set sequence number from acq_seq++, |
| 3992 | * to set zero to SPI. |
| 3993 | * not to call key_setsava(). |
| 3994 | * OUT: NULL : fail |
| 3995 | * others : pointer to new secasvar. |
| 3996 | * |
| 3997 | * does not modify mbuf. does not free mbuf on error. |
| 3998 | */ |
| 3999 | static struct secasvar * |
| 4000 | key_newsav( |
| 4001 | struct mbuf *m, |
| 4002 | const struct sadb_msghdr *mhp, |
| 4003 | struct secashead *sah, |
| 4004 | int *errp, |
| 4005 | struct socket *so) |
| 4006 | { |
| 4007 | struct secasvar *newsav; |
| 4008 | const struct sadb_sa *xsa; |
| 4009 | |
| 4010 | LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_OWNED); |
| 4011 | |
| 4012 | /* sanity check */ |
| 4013 | if (m == NULL || mhp == NULL || mhp->msg == NULL || sah == NULL) { |
| 4014 | panic("key_newsa: NULL pointer is passed." ); |
| 4015 | } |
| 4016 | |
| 4017 | newsav = kalloc_type(struct secasvar, Z_NOWAIT_ZERO); |
| 4018 | if (newsav == NULL) { |
| 4019 | lck_mtx_unlock(sadb_mutex); |
| 4020 | newsav = kalloc_type(struct secasvar, Z_WAITOK_ZERO_NOFAIL); |
| 4021 | lck_mtx_lock(sadb_mutex); |
| 4022 | } |
| 4023 | |
| 4024 | switch (mhp->msg->sadb_msg_type) { |
| 4025 | case SADB_GETSPI: |
| 4026 | key_setspi(newsav, 0); |
| 4027 | newsav->seq = mhp->msg->sadb_msg_seq; |
| 4028 | break; |
| 4029 | |
| 4030 | case SADB_ADD: |
| 4031 | /* sanity check */ |
| 4032 | if (mhp->ext[SADB_EXT_SA] == NULL) { |
| 4033 | key_delsav(sav: newsav); |
| 4034 | ipseclog((LOG_DEBUG, "key_newsa: invalid message is passed.\n" )); |
| 4035 | *errp = EINVAL; |
| 4036 | return NULL; |
| 4037 | } |
| 4038 | xsa = (struct sadb_sa *)(void *)mhp->ext[SADB_EXT_SA]; |
| 4039 | key_setspi(newsav, xsa->sadb_sa_spi); |
| 4040 | newsav->seq = mhp->msg->sadb_msg_seq; |
| 4041 | break; |
| 4042 | default: |
| 4043 | key_delsav(sav: newsav); |
| 4044 | *errp = EINVAL; |
| 4045 | return NULL; |
| 4046 | } |
| 4047 | |
| 4048 | if (mhp->ext[SADB_X_EXT_SA2] != NULL) { |
| 4049 | if (((struct sadb_x_sa2 *)(void *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_alwaysexpire) { |
| 4050 | newsav->always_expire = 1; |
| 4051 | } |
| 4052 | newsav->flags2 = ((struct sadb_x_sa2 *)(void *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_flags; |
| 4053 | if (newsav->flags2 & SADB_X_EXT_SA2_DELETE_ON_DETACH) { |
| 4054 | newsav->so = so; |
| 4055 | } |
| 4056 | } |
| 4057 | |
| 4058 | // Get current continuous time |
| 4059 | const u_int64_t current_time_ns = key_get_continuous_time_ns(); |
| 4060 | |
| 4061 | /* copy sav values */ |
| 4062 | if (mhp->msg->sadb_msg_type != SADB_GETSPI) { |
| 4063 | *errp = key_setsaval(newsav, m, mhp); |
| 4064 | if (*errp) { |
| 4065 | key_delsav(sav: newsav); |
| 4066 | return NULL; |
| 4067 | } |
| 4068 | } else { |
| 4069 | /* For get SPI, if has a hard lifetime, apply */ |
| 4070 | const struct sadb_lifetime *lft0; |
| 4071 | |
| 4072 | lft0 = (struct sadb_lifetime *)(void *)mhp->ext[SADB_EXT_LIFETIME_HARD]; |
| 4073 | if (lft0 != NULL) { |
| 4074 | /* make lifetime for CURRENT */ |
| 4075 | newsav->lft_c = kalloc_type(struct sadb_lifetime, Z_NOWAIT); |
| 4076 | if (newsav->lft_c == NULL) { |
| 4077 | lck_mtx_unlock(sadb_mutex); |
| 4078 | newsav->lft_c = kalloc_type(struct sadb_lifetime, |
| 4079 | Z_WAITOK | Z_NOFAIL); |
| 4080 | lck_mtx_lock(sadb_mutex); |
| 4081 | } |
| 4082 | |
| 4083 | newsav->lft_c->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime)); |
| 4084 | newsav->lft_c->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT; |
| 4085 | newsav->lft_c->sadb_lifetime_allocations = 0; |
| 4086 | newsav->lft_c->sadb_lifetime_bytes = 0; |
| 4087 | newsav->lft_c->sadb_lifetime_addtime = current_time_ns; |
| 4088 | newsav->lft_c->sadb_lifetime_usetime = 0; |
| 4089 | |
| 4090 | if (mhp->extlen[SADB_EXT_LIFETIME_HARD] < sizeof(*lft0)) { |
| 4091 | ipseclog((LOG_DEBUG, "key_newsa: invalid hard lifetime ext len.\n" )); |
| 4092 | key_delsav(sav: newsav); |
| 4093 | *errp = EINVAL; |
| 4094 | return NULL; |
| 4095 | } |
| 4096 | newsav->lft_h = key_newbuf(lft0, sizeof(*lft0)); |
| 4097 | } |
| 4098 | } |
| 4099 | |
| 4100 | /* reset created */ |
| 4101 | newsav->created = current_time_ns; |
| 4102 | |
| 4103 | newsav->pid = mhp->msg->sadb_msg_pid; |
| 4104 | |
| 4105 | /* add to satree */ |
| 4106 | newsav->sah = sah; |
| 4107 | newsav->refcnt = 1; |
| 4108 | newsav->state = SADB_SASTATE_LARVAL; |
| 4109 | LIST_INSERT_TAIL(&sah->savtree[SADB_SASTATE_LARVAL], newsav, |
| 4110 | secasvar, chain); |
| 4111 | ipsec_sav_count++; |
| 4112 | ipsec_monitor_sleep_wake(); |
| 4113 | |
| 4114 | return newsav; |
| 4115 | } |
| 4116 | |
| 4117 | static int |
| 4118 | key_migratesav(struct secasvar *sav, |
| 4119 | struct secashead *newsah) |
| 4120 | { |
| 4121 | if (sav == NULL || newsah == NULL || sav->state != SADB_SASTATE_MATURE) { |
| 4122 | return EINVAL; |
| 4123 | } |
| 4124 | |
| 4125 | /* remove from SA header */ |
| 4126 | if (__LIST_CHAINED(sav)) { |
| 4127 | LIST_REMOVE(sav, chain); |
| 4128 | } |
| 4129 | |
| 4130 | sav->sah = newsah; |
| 4131 | LIST_INSERT_TAIL(&newsah->savtree[SADB_SASTATE_MATURE], sav, secasvar, chain); |
| 4132 | return 0; |
| 4133 | } |
| 4134 | |
| 4135 | static void |
| 4136 | key_reset_sav(struct secasvar *sav) |
| 4137 | { |
| 4138 | LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_OWNED); |
| 4139 | |
| 4140 | /* sanity check */ |
| 4141 | if (sav == NULL) { |
| 4142 | panic("key_delsav: NULL pointer is passed." ); |
| 4143 | } |
| 4144 | |
| 4145 | sav->remote_ike_port = 0; |
| 4146 | sav->natt_encapsulated_src_port = 0; |
| 4147 | |
| 4148 | if (sav->key_auth != NULL) { |
| 4149 | bzero(_KEYBUF(sav->key_auth), _KEYLEN(sav->key_auth)); |
| 4150 | kfree_data(sav->key_auth, PFKEY_UNUNIT64(sav->key_auth->sadb_key_len)); |
| 4151 | sav->key_auth = NULL; |
| 4152 | } |
| 4153 | if (sav->key_enc != NULL) { |
| 4154 | bzero(_KEYBUF(sav->key_enc), _KEYLEN(sav->key_enc)); |
| 4155 | kfree_data(sav->key_enc, PFKEY_UNUNIT64(sav->key_enc->sadb_key_len)); |
| 4156 | sav->key_enc = NULL; |
| 4157 | } |
| 4158 | if (sav->sched_auth) { |
| 4159 | bzero(s: sav->sched_auth, n: sav->schedlen_auth); |
| 4160 | kfree_data(sav->sched_auth, sav->schedlen_auth); |
| 4161 | sav->sched_auth = NULL; |
| 4162 | sav->schedlen_auth = 0; |
| 4163 | } |
| 4164 | if (sav->sched_enc) { |
| 4165 | bzero(s: sav->sched_enc, n: sav->schedlen_enc); |
| 4166 | kfree_data(sav->sched_enc, sav->schedlen_enc); |
| 4167 | sav->sched_enc = NULL; |
| 4168 | sav->schedlen_enc = 0; |
| 4169 | } |
| 4170 | |
| 4171 | for (int i = 0; i < MAX_REPLAY_WINDOWS; i++) { |
| 4172 | if (sav->replay[i] != NULL) { |
| 4173 | keydb_delsecreplay(sav->replay[i]); |
| 4174 | sav->replay[i] = NULL; |
| 4175 | } |
| 4176 | } |
| 4177 | if (sav->lft_c != NULL) { |
| 4178 | kfree_type(struct sadb_lifetime, sav->lft_c); |
| 4179 | sav->lft_c = NULL; |
| 4180 | } |
| 4181 | if (sav->lft_h != NULL) { |
| 4182 | kfree_data(sav->lft_h, sizeof(*sav->lft_h)); |
| 4183 | sav->lft_h = NULL; |
| 4184 | } |
| 4185 | if (sav->lft_s != NULL) { |
| 4186 | kfree_data(sav->lft_s, sizeof(*sav->lft_h)); |
| 4187 | sav->lft_s = NULL; |
| 4188 | } |
| 4189 | if (sav->iv != NULL) { |
| 4190 | kfree_data(sav->iv, sav->ivlen); |
| 4191 | sav->iv = NULL; |
| 4192 | } |
| 4193 | key_release_flowid(sav); |
| 4194 | return; |
| 4195 | } |
| 4196 | |
| 4197 | /* |
| 4198 | * free() SA variable entry. |
| 4199 | */ |
| 4200 | void |
| 4201 | key_delsav( |
| 4202 | struct secasvar *sav) |
| 4203 | { |
| 4204 | LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_OWNED); |
| 4205 | |
| 4206 | /* sanity check */ |
| 4207 | if (sav == NULL) { |
| 4208 | panic("key_delsav: NULL pointer is passed." ); |
| 4209 | } |
| 4210 | |
| 4211 | if (sav->refcnt > 0) { |
| 4212 | return; /* can't free */ |
| 4213 | } |
| 4214 | /* remove from SA header */ |
| 4215 | if (__LIST_CHAINED(sav)) { |
| 4216 | LIST_REMOVE(sav, chain); |
| 4217 | ipsec_sav_count--; |
| 4218 | } |
| 4219 | |
| 4220 | if (sav->spihash.le_prev || sav->spihash.le_next) { |
| 4221 | LIST_REMOVE(sav, spihash); |
| 4222 | } |
| 4223 | |
| 4224 | key_reset_sav(sav); |
| 4225 | |
| 4226 | kfree_type(struct secasvar, sav); |
| 4227 | } |
| 4228 | |
| 4229 | /* |
| 4230 | * search SAD. |
| 4231 | * OUT: |
| 4232 | * NULL : not found |
| 4233 | * others : found, pointer to a SA. |
| 4234 | */ |
| 4235 | static struct secashead * |
| 4236 | key_getsah(struct secasindex *saidx, u_int16_t flags) |
| 4237 | { |
| 4238 | struct secashead *sah; |
| 4239 | |
| 4240 | LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_OWNED); |
| 4241 | |
| 4242 | if ((flags & SECURITY_ASSOCIATION_ANY) == SECURITY_ASSOCIATION_ANY || |
| 4243 | (flags & SECURITY_ASSOCIATION_PFKEY) == SECURITY_ASSOCIATION_PFKEY) { |
| 4244 | LIST_FOREACH(sah, &sahtree, chain) { |
| 4245 | if (sah->state == SADB_SASTATE_DEAD) { |
| 4246 | continue; |
| 4247 | } |
| 4248 | if (key_cmpsaidx(&sah->saidx, saidx, CMP_REQID)) { |
| 4249 | return sah; |
| 4250 | } |
| 4251 | } |
| 4252 | } |
| 4253 | |
| 4254 | if ((flags & SECURITY_ASSOCIATION_ANY) == SECURITY_ASSOCIATION_ANY || |
| 4255 | (flags & SECURITY_ASSOCIATION_PFKEY) == SECURITY_ASSOCIATION_CUSTOM_IPSEC) { |
| 4256 | LIST_FOREACH(sah, &custom_sahtree, chain) { |
| 4257 | if (sah->state == SADB_SASTATE_DEAD) { |
| 4258 | continue; |
| 4259 | } |
| 4260 | if (key_cmpsaidx(&sah->saidx, saidx, 0)) { |
| 4261 | return sah; |
| 4262 | } |
| 4263 | } |
| 4264 | } |
| 4265 | |
| 4266 | return NULL; |
| 4267 | } |
| 4268 | |
| 4269 | struct secashead * |
| 4270 | key_newsah2(struct secasindex *saidx, |
| 4271 | u_int8_t dir) |
| 4272 | { |
| 4273 | struct secashead *sah; |
| 4274 | |
| 4275 | LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_OWNED); |
| 4276 | |
| 4277 | sah = key_getsah(saidx, SECURITY_ASSOCIATION_ANY); |
| 4278 | if (!sah) { |
| 4279 | return key_newsah(saidx, NULL, outgoing_if: 0, dir, SECURITY_ASSOCIATION_PFKEY); |
| 4280 | } |
| 4281 | return sah; |
| 4282 | } |
| 4283 | |
| 4284 | /* |
| 4285 | * check not to be duplicated SPI. |
| 4286 | * NOTE: this function is too slow due to searching all SAD. |
| 4287 | * OUT: |
| 4288 | * NULL : not found |
| 4289 | * others : found, pointer to a SA. |
| 4290 | */ |
| 4291 | static struct secasvar * |
| 4292 | key_checkspidup( |
| 4293 | struct secasindex *saidx, |
| 4294 | u_int32_t spi) |
| 4295 | { |
| 4296 | struct secasvar *sav; |
| 4297 | u_int stateidx, state; |
| 4298 | |
| 4299 | LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_OWNED); |
| 4300 | |
| 4301 | /* check address family */ |
| 4302 | if (saidx->src.ss_family != saidx->dst.ss_family) { |
| 4303 | ipseclog((LOG_DEBUG, "key_checkspidup: address family mismatched.\n" )); |
| 4304 | return NULL; |
| 4305 | } |
| 4306 | |
| 4307 | /* check all SAD */ |
| 4308 | LIST_FOREACH(sav, &spihash[SPIHASH(spi)], spihash) { |
| 4309 | if (sav->spi != spi) { |
| 4310 | continue; |
| 4311 | } |
| 4312 | for (stateidx = 0; |
| 4313 | stateidx < _ARRAYLEN(saorder_state_alive); |
| 4314 | stateidx++) { |
| 4315 | state = saorder_state_alive[stateidx]; |
| 4316 | if (sav->state == state && |
| 4317 | key_ismyaddr((struct sockaddr *)&sav->sah->saidx.dst)) { |
| 4318 | return sav; |
| 4319 | } |
| 4320 | } |
| 4321 | } |
| 4322 | |
| 4323 | return NULL; |
| 4324 | } |
| 4325 | |
| 4326 | static void |
| 4327 | key_setspi( |
| 4328 | struct secasvar *sav, |
| 4329 | u_int32_t spi) |
| 4330 | { |
| 4331 | LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_OWNED); |
| 4332 | sav->spi = spi; |
| 4333 | if (sav->spihash.le_prev || sav->spihash.le_next) { |
| 4334 | LIST_REMOVE(sav, spihash); |
| 4335 | } |
| 4336 | LIST_INSERT_HEAD(&spihash[SPIHASH(spi)], sav, spihash); |
| 4337 | } |
| 4338 | |
| 4339 | |
| 4340 | /* |
| 4341 | * search SAD litmited alive SA, protocol, SPI. |
| 4342 | * OUT: |
| 4343 | * NULL : not found |
| 4344 | * others : found, pointer to a SA. |
| 4345 | */ |
| 4346 | static struct secasvar * |
| 4347 | key_getsavbyspi( |
| 4348 | struct secashead *sah, |
| 4349 | u_int32_t spi) |
| 4350 | { |
| 4351 | struct secasvar *sav, *match; |
| 4352 | u_int stateidx, state, matchidx; |
| 4353 | |
| 4354 | LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_OWNED); |
| 4355 | match = NULL; |
| 4356 | matchidx = _ARRAYLEN(saorder_state_alive); |
| 4357 | LIST_FOREACH(sav, &spihash[SPIHASH(spi)], spihash) { |
| 4358 | if (sav->spi != spi) { |
| 4359 | continue; |
| 4360 | } |
| 4361 | if (sav->sah != sah) { |
| 4362 | continue; |
| 4363 | } |
| 4364 | for (stateidx = 0; stateidx < matchidx; stateidx++) { |
| 4365 | state = saorder_state_alive[stateidx]; |
| 4366 | if (sav->state == state) { |
| 4367 | match = sav; |
| 4368 | matchidx = stateidx; |
| 4369 | break; |
| 4370 | } |
| 4371 | } |
| 4372 | } |
| 4373 | |
| 4374 | return match; |
| 4375 | } |
| 4376 | |
| 4377 | /* |
| 4378 | * copy SA values from PF_KEY message except *SPI, SEQ, PID, STATE and TYPE*. |
| 4379 | * You must update these if need. |
| 4380 | * OUT: 0: success. |
| 4381 | * !0: failure. |
| 4382 | * |
| 4383 | * does not modify mbuf. does not free mbuf on error. |
| 4384 | */ |
| 4385 | static int |
| 4386 | key_setsaval( |
| 4387 | struct secasvar *sav, |
| 4388 | struct mbuf *m, |
| 4389 | const struct sadb_msghdr *mhp) |
| 4390 | { |
| 4391 | #if IPSEC_ESP |
| 4392 | const struct esp_algorithm *algo; |
| 4393 | #endif |
| 4394 | int error = 0; |
| 4395 | |
| 4396 | LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_OWNED); |
| 4397 | |
| 4398 | /* sanity check */ |
| 4399 | if (m == NULL || mhp == NULL || mhp->msg == NULL) { |
| 4400 | panic("key_setsaval: NULL pointer is passed." ); |
| 4401 | } |
| 4402 | |
| 4403 | /* initialization */ |
| 4404 | key_reset_sav(sav); |
| 4405 | sav->natt_last_activity = natt_now; |
| 4406 | |
| 4407 | /* SA */ |
| 4408 | if (mhp->ext[SADB_EXT_SA] != NULL) { |
| 4409 | const struct sadb_sa *sa0; |
| 4410 | |
| 4411 | sa0 = (struct sadb_sa *)(void *)mhp->ext[SADB_EXT_SA]; |
| 4412 | if (mhp->extlen[SADB_EXT_SA] < sizeof(*sa0)) { |
| 4413 | ipseclog((LOG_DEBUG, "key_setsaval: invalid message size.\n" )); |
| 4414 | error = EINVAL; |
| 4415 | goto fail; |
| 4416 | } |
| 4417 | |
| 4418 | sav->alg_auth = sa0->sadb_sa_auth; |
| 4419 | sav->alg_enc = sa0->sadb_sa_encrypt; |
| 4420 | sav->flags = sa0->sadb_sa_flags; |
| 4421 | |
| 4422 | /* |
| 4423 | * Verify that a nat-traversal port was specified if |
| 4424 | * the nat-traversal flag is set. |
| 4425 | */ |
| 4426 | if ((sav->flags & SADB_X_EXT_NATT) != 0) { |
| 4427 | if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa_2) || |
| 4428 | ((const struct sadb_sa_2*)(sa0))->sadb_sa_natt_port == 0) { |
| 4429 | ipseclog((LOG_DEBUG, "key_setsaval: natt port not set.\n" )); |
| 4430 | error = EINVAL; |
| 4431 | goto fail; |
| 4432 | } |
| 4433 | sav->natt_encapsulated_src_port = ((const struct sadb_sa_2*)(sa0))->sadb_sa_natt_src_port; |
| 4434 | sav->remote_ike_port = ((const struct sadb_sa_2*)(sa0))->sadb_sa_natt_port; |
| 4435 | sav->natt_interval = ((const struct sadb_sa_2*)(sa0))->sadb_sa_natt_interval; |
| 4436 | sav->natt_offload_interval = ((const struct sadb_sa_2*)(sa0))->sadb_sa_natt_offload_interval; |
| 4437 | } |
| 4438 | |
| 4439 | /* |
| 4440 | * Verify if SADB_X_EXT_NATT_MULTIPLEUSERS flag is set that |
| 4441 | * SADB_X_EXT_NATT is set and SADB_X_EXT_NATT_KEEPALIVE is not |
| 4442 | * set (we're not behind nat) - otherwise clear it. |
| 4443 | */ |
| 4444 | if ((sav->flags & SADB_X_EXT_NATT_MULTIPLEUSERS) != 0) { |
| 4445 | if ((sav->flags & SADB_X_EXT_NATT) == 0 || |
| 4446 | (sav->flags & SADB_X_EXT_NATT_KEEPALIVE) != 0) { |
| 4447 | sav->flags &= ~SADB_X_EXT_NATT_MULTIPLEUSERS; |
| 4448 | } |
| 4449 | } |
| 4450 | |
| 4451 | /* replay window */ |
| 4452 | if ((sa0->sadb_sa_flags & SADB_X_EXT_OLD) == 0) { |
| 4453 | if ((sav->flags2 & SADB_X_EXT_SA2_SEQ_PER_TRAFFIC_CLASS) == |
| 4454 | SADB_X_EXT_SA2_SEQ_PER_TRAFFIC_CLASS) { |
| 4455 | const uint32_t range = PER_TC_REPLAY_WINDOW_RANGE; |
| 4456 | for (uint32_t i = 0; i < MAX_REPLAY_WINDOWS; i++) { |
| 4457 | sav->replay[i] = keydb_newsecreplay(sa0->sadb_sa_replay); |
| 4458 | /* Allowed range for sequence per traffic class */ |
| 4459 | const uint32_t seq = i << PER_TC_REPLAY_WINDOW_SN_SHIFT; |
| 4460 | sav->replay[i]->seq = seq; |
| 4461 | sav->replay[i]->lastseq = seq + range - 1; |
| 4462 | } |
| 4463 | } else { |
| 4464 | sav->replay[0] = keydb_newsecreplay(sa0->sadb_sa_replay); |
| 4465 | sav->replay[0]->lastseq = ~0; |
| 4466 | } |
| 4467 | } |
| 4468 | } |
| 4469 | |
| 4470 | /* Authentication keys */ |
| 4471 | if (mhp->ext[SADB_EXT_KEY_AUTH] != NULL) { |
| 4472 | const struct sadb_key *key0; |
| 4473 | int len; |
| 4474 | |
| 4475 | key0 = (const struct sadb_key *)mhp->ext[SADB_EXT_KEY_AUTH]; |
| 4476 | len = mhp->extlen[SADB_EXT_KEY_AUTH]; |
| 4477 | |
| 4478 | const size_t max_length = PFKEY_ALIGN8(sizeof(*key0)) + |
| 4479 | PFKEY_ALIGN8(IPSEC_KEY_AUTH_MAX_BYTES); |
| 4480 | assert(max_length < KALLOC_SAFE_ALLOC_SIZE); |
| 4481 | |
| 4482 | error = 0; |
| 4483 | if ((len < sizeof(*key0)) || (len > max_length)) { |
| 4484 | ipseclog((LOG_DEBUG, "key_setsaval: invalid auth key ext len. len = %d\n" , len)); |
| 4485 | error = EINVAL; |
| 4486 | goto fail; |
| 4487 | } |
| 4488 | switch (mhp->msg->sadb_msg_satype) { |
| 4489 | case SADB_SATYPE_AH: |
| 4490 | case SADB_SATYPE_ESP: |
| 4491 | if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) && |
| 4492 | sav->alg_auth != SADB_X_AALG_NULL) { |
| 4493 | error = EINVAL; |
| 4494 | } |
| 4495 | break; |
| 4496 | default: |
| 4497 | error = EINVAL; |
| 4498 | break; |
| 4499 | } |
| 4500 | if (error) { |
| 4501 | ipseclog((LOG_DEBUG, "key_setsaval: invalid key_auth values.\n" )); |
| 4502 | goto fail; |
| 4503 | } |
| 4504 | |
| 4505 | sav->key_auth = (struct sadb_key *)key_newbuf(key0, len); |
| 4506 | } |
| 4507 | |
| 4508 | /* Encryption key */ |
| 4509 | if (mhp->ext[SADB_EXT_KEY_ENCRYPT] != NULL) { |
| 4510 | const struct sadb_key *key0; |
| 4511 | int len; |
| 4512 | |
| 4513 | key0 = (const struct sadb_key *)mhp->ext[SADB_EXT_KEY_ENCRYPT]; |
| 4514 | len = mhp->extlen[SADB_EXT_KEY_ENCRYPT]; |
| 4515 | |
| 4516 | const size_t max_length = PFKEY_ALIGN8(sizeof(*key0)) + |
| 4517 | PFKEY_ALIGN8(IPSEC_KEY_ENCRYPT_MAX_BYTES); |
| 4518 | assert(max_length < KALLOC_SAFE_ALLOC_SIZE); |
| 4519 | |
| 4520 | error = 0; |
| 4521 | if ((len < sizeof(*key0)) || (len > max_length)) { |
| 4522 | ipseclog((LOG_DEBUG, "key_setsaval: invalid encryption key ext len. len = %d\n" , len)); |
| 4523 | error = EINVAL; |
| 4524 | goto fail; |
| 4525 | } |
| 4526 | switch (mhp->msg->sadb_msg_satype) { |
| 4527 | case SADB_SATYPE_ESP: |
| 4528 | if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) && |
| 4529 | sav->alg_enc != SADB_EALG_NULL) { |
| 4530 | ipseclog((LOG_DEBUG, "key_setsaval: invalid ESP algorithm.\n" )); |
| 4531 | error = EINVAL; |
| 4532 | break; |
| 4533 | } |
| 4534 | sav->key_enc = (struct sadb_key *)key_newbuf(key0, len); |
| 4535 | break; |
| 4536 | case SADB_SATYPE_AH: |
| 4537 | default: |
| 4538 | error = EINVAL; |
| 4539 | break; |
| 4540 | } |
| 4541 | if (error) { |
| 4542 | ipseclog((LOG_DEBUG, "key_setsaval: invalid key_enc value.\n" )); |
| 4543 | goto fail; |
| 4544 | } |
| 4545 | } |
| 4546 | |
| 4547 | /* set iv */ |
| 4548 | sav->ivlen = 0; |
| 4549 | |
| 4550 | switch (mhp->msg->sadb_msg_satype) { |
| 4551 | case SADB_SATYPE_ESP: |
| 4552 | #if IPSEC_ESP |
| 4553 | algo = esp_algorithm_lookup(sav->alg_enc); |
| 4554 | if (algo && algo->ivlen) { |
| 4555 | sav->ivlen = (*algo->ivlen)(algo, sav); |
| 4556 | } |
| 4557 | if (sav->ivlen == 0) { |
| 4558 | break; |
| 4559 | } |
| 4560 | sav->iv = (caddr_t) kalloc_data(sav->ivlen, Z_NOWAIT); |
| 4561 | if (sav->iv == 0) { |
| 4562 | lck_mtx_unlock(sadb_mutex); |
| 4563 | sav->iv = (caddr_t) kalloc_data(sav->ivlen, Z_WAITOK); |
| 4564 | lck_mtx_lock(sadb_mutex); |
| 4565 | if (sav->iv == 0) { |
| 4566 | ipseclog((LOG_DEBUG, "key_setsaval: No more memory.\n" )); |
| 4567 | error = ENOBUFS; |
| 4568 | goto fail; |
| 4569 | } |
| 4570 | } |
| 4571 | |
| 4572 | /* initialize IV with random bytes */ |
| 4573 | key_randomfill(sav->iv, sav->ivlen); |
| 4574 | #endif |
| 4575 | break; |
| 4576 | case SADB_SATYPE_AH: |
| 4577 | break; |
| 4578 | default: |
| 4579 | ipseclog((LOG_DEBUG, "key_setsaval: invalid SA type.\n" )); |
| 4580 | error = EINVAL; |
| 4581 | goto fail; |
| 4582 | } |
| 4583 | |
| 4584 | /* reset created */ |
| 4585 | const u_int64_t current_time_ns = key_get_continuous_time_ns(); |
| 4586 | sav->created = current_time_ns; |
| 4587 | |
| 4588 | /* make lifetime for CURRENT */ |
| 4589 | sav->lft_c = kalloc_type(struct sadb_lifetime, Z_NOWAIT); |
| 4590 | if (sav->lft_c == NULL) { |
| 4591 | lck_mtx_unlock(sadb_mutex); |
| 4592 | sav->lft_c = kalloc_type(struct sadb_lifetime, |
| 4593 | Z_WAITOK | Z_NOFAIL); |
| 4594 | lck_mtx_lock(sadb_mutex); |
| 4595 | } |
| 4596 | |
| 4597 | sav->lft_c->sadb_lifetime_len = |
| 4598 | PFKEY_UNIT64(sizeof(struct sadb_lifetime)); |
| 4599 | sav->lft_c->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT; |
| 4600 | sav->lft_c->sadb_lifetime_allocations = 0; |
| 4601 | sav->lft_c->sadb_lifetime_bytes = 0; |
| 4602 | sav->lft_c->sadb_lifetime_addtime = current_time_ns; |
| 4603 | sav->lft_c->sadb_lifetime_usetime = 0; |
| 4604 | |
| 4605 | /* lifetimes for HARD and SOFT */ |
| 4606 | { |
| 4607 | const struct sadb_lifetime *lft0; |
| 4608 | |
| 4609 | lft0 = (struct sadb_lifetime *) |
| 4610 | (void *)mhp->ext[SADB_EXT_LIFETIME_HARD]; |
| 4611 | if (lft0 != NULL) { |
| 4612 | if (mhp->extlen[SADB_EXT_LIFETIME_HARD] < sizeof(*lft0)) { |
| 4613 | ipseclog((LOG_DEBUG, "key_setsaval: invalid hard lifetime ext len.\n" )); |
| 4614 | error = EINVAL; |
| 4615 | goto fail; |
| 4616 | } |
| 4617 | sav->lft_h = (struct sadb_lifetime *)key_newbuf(lft0, sizeof(*lft0)); |
| 4618 | |
| 4619 | // Check that conversion to nanoseconds won't cause an overflow |
| 4620 | u_int64_t nanotime; |
| 4621 | if (__improbable(os_mul_overflow(sav->lft_h->sadb_lifetime_addtime, NSEC_PER_SEC, &nanotime))) { |
| 4622 | ipseclog((LOG_DEBUG, "key_setsaval: invalid hard lifetime value %llu.\n" , |
| 4623 | sav->lft_h->sadb_lifetime_addtime)); |
| 4624 | error = EINVAL; |
| 4625 | goto fail; |
| 4626 | } |
| 4627 | } |
| 4628 | |
| 4629 | lft0 = (struct sadb_lifetime *) |
| 4630 | (void *)mhp->ext[SADB_EXT_LIFETIME_SOFT]; |
| 4631 | if (lft0 != NULL) { |
| 4632 | if (mhp->extlen[SADB_EXT_LIFETIME_SOFT] < sizeof(*lft0)) { |
| 4633 | ipseclog((LOG_DEBUG, "key_setsaval: invalid soft lifetime ext len.\n" )); |
| 4634 | error = EINVAL; |
| 4635 | goto fail; |
| 4636 | } |
| 4637 | sav->lft_s = (struct sadb_lifetime *)key_newbuf(lft0, sizeof(*lft0)); |
| 4638 | |
| 4639 | // Check that conversion to nanoseconds won't cause an overflow |
| 4640 | u_int64_t nanotime; |
| 4641 | if (__improbable(os_mul_overflow(sav->lft_s->sadb_lifetime_addtime, NSEC_PER_SEC, &nanotime))) { |
| 4642 | ipseclog((LOG_DEBUG, "key_setsaval: invalid soft lifetime value %llu.\n" , |
| 4643 | sav->lft_s->sadb_lifetime_addtime)); |
| 4644 | error = EINVAL; |
| 4645 | goto fail; |
| 4646 | } |
| 4647 | } |
| 4648 | } |
| 4649 | |
| 4650 | return 0; |
| 4651 | |
| 4652 | fail: |
| 4653 | key_reset_sav(sav); |
| 4654 | return error; |
| 4655 | } |
| 4656 | |
| 4657 | /* |
| 4658 | * validation with a secasvar entry, and set SADB_SATYPE_MATURE. |
| 4659 | * OUT: 0: valid |
| 4660 | * other: errno |
| 4661 | */ |
| 4662 | static int |
| 4663 | key_mature( |
| 4664 | struct secasvar *sav) |
| 4665 | { |
| 4666 | int mature; |
| 4667 | int checkmask = 0; /* 2^0: ealg 2^1: aalg 2^2: calg */ |
| 4668 | int mustmask = 0; /* 2^0: ealg 2^1: aalg 2^2: calg */ |
| 4669 | |
| 4670 | mature = 0; |
| 4671 | |
| 4672 | LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_OWNED); |
| 4673 | |
| 4674 | /* check SPI value */ |
| 4675 | switch (sav->sah->saidx.proto) { |
| 4676 | case IPPROTO_ESP: |
| 4677 | case IPPROTO_AH: |
| 4678 | |
| 4679 | /* No reason to test if this is >= 0, because ntohl(sav->spi) is unsigned. */ |
| 4680 | if (ntohl(sav->spi) <= 255) { |
| 4681 | ipseclog((LOG_DEBUG, |
| 4682 | "key_mature: illegal range of SPI %u.\n" , |
| 4683 | (u_int32_t)ntohl(sav->spi))); |
| 4684 | return EINVAL; |
| 4685 | } |
| 4686 | break; |
| 4687 | } |
| 4688 | |
| 4689 | /* check satype */ |
| 4690 | switch (sav->sah->saidx.proto) { |
| 4691 | case IPPROTO_ESP: |
| 4692 | /* check flags */ |
| 4693 | if ((sav->flags & SADB_X_EXT_OLD) |
| 4694 | && (sav->flags & SADB_X_EXT_DERIV)) { |
| 4695 | ipseclog((LOG_DEBUG, "key_mature: " |
| 4696 | "invalid flag (derived) given to old-esp.\n" )); |
| 4697 | return EINVAL; |
| 4698 | } |
| 4699 | if (sav->alg_auth == SADB_AALG_NONE) { |
| 4700 | checkmask = 1; |
| 4701 | } else { |
| 4702 | checkmask = 3; |
| 4703 | } |
| 4704 | mustmask = 1; |
| 4705 | break; |
| 4706 | case IPPROTO_AH: |
| 4707 | /* check flags */ |
| 4708 | if (sav->flags & SADB_X_EXT_DERIV) { |
| 4709 | ipseclog((LOG_DEBUG, "key_mature: " |
| 4710 | "invalid flag (derived) given to AH SA.\n" )); |
| 4711 | return EINVAL; |
| 4712 | } |
| 4713 | if (sav->alg_enc != SADB_EALG_NONE) { |
| 4714 | ipseclog((LOG_DEBUG, "key_mature: " |
| 4715 | "protocol and algorithm mismated.\n" )); |
| 4716 | return EINVAL; |
| 4717 | } |
| 4718 | checkmask = 2; |
| 4719 | mustmask = 2; |
| 4720 | break; |
| 4721 | default: |
| 4722 | ipseclog((LOG_DEBUG, "key_mature: Invalid satype.\n" )); |
| 4723 | return EPROTONOSUPPORT; |
| 4724 | } |
| 4725 | |
| 4726 | /* check authentication algorithm */ |
| 4727 | if ((checkmask & 2) != 0) { |
| 4728 | const struct ah_algorithm *algo; |
| 4729 | int keylen; |
| 4730 | |
| 4731 | algo = ah_algorithm_lookup(sav->alg_auth); |
| 4732 | if (!algo) { |
| 4733 | ipseclog((LOG_DEBUG, "key_mature: " |
| 4734 | "unknown authentication algorithm.\n" )); |
| 4735 | return EINVAL; |
| 4736 | } |
| 4737 | |
| 4738 | /* algorithm-dependent check */ |
| 4739 | if (sav->key_auth) { |
| 4740 | keylen = sav->key_auth->sadb_key_bits; |
| 4741 | } else { |
| 4742 | keylen = 0; |
| 4743 | } |
| 4744 | if (keylen < algo->keymin || algo->keymax < keylen) { |
| 4745 | ipseclog((LOG_DEBUG, |
| 4746 | "key_mature: invalid AH key length %d " |
| 4747 | "(%d-%d allowed)\n" , |
| 4748 | keylen, algo->keymin, algo->keymax)); |
| 4749 | return EINVAL; |
| 4750 | } |
| 4751 | |
| 4752 | if (algo->mature) { |
| 4753 | if ((*algo->mature)(sav)) { |
| 4754 | /* message generated in per-algorithm function*/ |
| 4755 | return EINVAL; |
| 4756 | } else { |
| 4757 | mature = SADB_SATYPE_AH; |
| 4758 | } |
| 4759 | } |
| 4760 | |
| 4761 | if ((mustmask & 2) != 0 && mature != SADB_SATYPE_AH) { |
| 4762 | ipseclog((LOG_DEBUG, "key_mature: no satisfy algorithm for AH\n" )); |
| 4763 | return EINVAL; |
| 4764 | } |
| 4765 | } |
| 4766 | |
| 4767 | /* check encryption algorithm */ |
| 4768 | if ((checkmask & 1) != 0) { |
| 4769 | #if IPSEC_ESP |
| 4770 | const struct esp_algorithm *algo; |
| 4771 | int keylen; |
| 4772 | |
| 4773 | algo = esp_algorithm_lookup(sav->alg_enc); |
| 4774 | if (!algo) { |
| 4775 | ipseclog((LOG_DEBUG, "key_mature: unknown encryption algorithm.\n" )); |
| 4776 | return EINVAL; |
| 4777 | } |
| 4778 | |
| 4779 | /* algorithm-dependent check */ |
| 4780 | if (sav->key_enc) { |
| 4781 | keylen = sav->key_enc->sadb_key_bits; |
| 4782 | } else { |
| 4783 | keylen = 0; |
| 4784 | } |
| 4785 | if (keylen < algo->keymin || algo->keymax < keylen) { |
| 4786 | ipseclog((LOG_DEBUG, |
| 4787 | "key_mature: invalid ESP key length %d " |
| 4788 | "(%d-%d allowed)\n" , |
| 4789 | keylen, algo->keymin, algo->keymax)); |
| 4790 | return EINVAL; |
| 4791 | } |
| 4792 | |
| 4793 | if (algo->mature) { |
| 4794 | if ((*algo->mature)(sav)) { |
| 4795 | /* message generated in per-algorithm function*/ |
| 4796 | return EINVAL; |
| 4797 | } else { |
| 4798 | mature = SADB_SATYPE_ESP; |
| 4799 | } |
| 4800 | } |
| 4801 | |
| 4802 | if ((mustmask & 1) != 0 && mature != SADB_SATYPE_ESP) { |
| 4803 | ipseclog((LOG_DEBUG, "key_mature: no satisfy algorithm for ESP\n" )); |
| 4804 | return EINVAL; |
| 4805 | } |
| 4806 | #else /*IPSEC_ESP*/ |
| 4807 | ipseclog((LOG_DEBUG, "key_mature: ESP not supported in this configuration\n" )); |
| 4808 | return EINVAL; |
| 4809 | #endif |
| 4810 | } |
| 4811 | |
| 4812 | key_sa_chgstate(sav, SADB_SASTATE_MATURE); |
| 4813 | |
| 4814 | return 0; |
| 4815 | } |
| 4816 | |
| 4817 | /* |
| 4818 | * subroutine for SADB_GET and SADB_DUMP. |
| 4819 | */ |
| 4820 | static struct mbuf * |
| 4821 | key_setdumpsa( |
| 4822 | struct secasvar *sav, |
| 4823 | u_int8_t type, |
| 4824 | u_int8_t satype, |
| 4825 | u_int32_t seq, |
| 4826 | u_int32_t pid) |
| 4827 | { |
| 4828 | struct mbuf *result = NULL, *tres = NULL, *m; |
| 4829 | int l = 0; |
| 4830 | int i; |
| 4831 | void *p; |
| 4832 | int dumporder[] = { |
| 4833 | SADB_EXT_SA, SADB_X_EXT_SA2, |
| 4834 | SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT, |
| 4835 | SADB_EXT_LIFETIME_CURRENT, SADB_EXT_ADDRESS_SRC, |
| 4836 | SADB_EXT_ADDRESS_DST, SADB_EXT_ADDRESS_PROXY, SADB_EXT_KEY_AUTH, |
| 4837 | SADB_EXT_KEY_ENCRYPT, SADB_EXT_IDENTITY_SRC, |
| 4838 | SADB_EXT_IDENTITY_DST, SADB_EXT_SENSITIVITY, |
| 4839 | }; |
| 4840 | |
| 4841 | m = key_setsadbmsg(type, 0, satype, seq, pid, (u_int16_t)sav->refcnt); |
| 4842 | if (m == NULL) { |
| 4843 | goto fail; |
| 4844 | } |
| 4845 | result = m; |
| 4846 | |
| 4847 | for (i = sizeof(dumporder) / sizeof(dumporder[0]) - 1; i >= 0; i--) { |
| 4848 | m = NULL; |
| 4849 | p = NULL; |
| 4850 | switch (dumporder[i]) { |
| 4851 | case SADB_EXT_SA: |
| 4852 | m = key_setsadbsa(sav); |
| 4853 | if (!m) { |
| 4854 | goto fail; |
| 4855 | } |
| 4856 | break; |
| 4857 | |
| 4858 | case SADB_X_EXT_SA2: |
| 4859 | m = key_setsadbxsa2(sav->sah->saidx.mode, |
| 4860 | sav->replay[0] ? sav->replay[0]->count : 0, |
| 4861 | sav->sah->saidx.reqid, |
| 4862 | sav->flags2); |
| 4863 | if (!m) { |
| 4864 | goto fail; |
| 4865 | } |
| 4866 | break; |
| 4867 | |
| 4868 | case SADB_EXT_ADDRESS_SRC: |
| 4869 | m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, |
| 4870 | (struct sockaddr *)&sav->sah->saidx.src, |
| 4871 | FULLMASK, IPSEC_ULPROTO_ANY); |
| 4872 | if (!m) { |
| 4873 | goto fail; |
| 4874 | } |
| 4875 | break; |
| 4876 | |
| 4877 | case SADB_EXT_ADDRESS_DST: |
| 4878 | m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, |
| 4879 | (struct sockaddr *)&sav->sah->saidx.dst, |
| 4880 | FULLMASK, IPSEC_ULPROTO_ANY); |
| 4881 | if (!m) { |
| 4882 | goto fail; |
| 4883 | } |
| 4884 | break; |
| 4885 | |
| 4886 | case SADB_EXT_KEY_AUTH: |
| 4887 | if (!sav->key_auth) { |
| 4888 | continue; |
| 4889 | } |
| 4890 | l = PFKEY_UNUNIT64(sav->key_auth->sadb_key_len); |
| 4891 | p = sav->key_auth; |
| 4892 | break; |
| 4893 | |
| 4894 | case SADB_EXT_KEY_ENCRYPT: |
| 4895 | if (!sav->key_enc) { |
| 4896 | continue; |
| 4897 | } |
| 4898 | l = PFKEY_UNUNIT64(sav->key_enc->sadb_key_len); |
| 4899 | p = sav->key_enc; |
| 4900 | break; |
| 4901 | |
| 4902 | case SADB_EXT_LIFETIME_CURRENT: |
| 4903 | if (!sav->lft_c) { |
| 4904 | continue; |
| 4905 | } |
| 4906 | m = key_setsalifecurr(sav->lft_c); |
| 4907 | if (!m) { |
| 4908 | goto fail; |
| 4909 | } |
| 4910 | break; |
| 4911 | |
| 4912 | case SADB_EXT_LIFETIME_HARD: |
| 4913 | if (!sav->lft_h) { |
| 4914 | continue; |
| 4915 | } |
| 4916 | l = PFKEY_UNUNIT64(((struct sadb_ext *)sav->lft_h)->sadb_ext_len); |
| 4917 | p = sav->lft_h; |
| 4918 | break; |
| 4919 | |
| 4920 | case SADB_EXT_LIFETIME_SOFT: |
| 4921 | if (!sav->lft_s) { |
| 4922 | continue; |
| 4923 | } |
| 4924 | l = PFKEY_UNUNIT64(((struct sadb_ext *)sav->lft_s)->sadb_ext_len); |
| 4925 | p = sav->lft_s; |
| 4926 | break; |
| 4927 | |
| 4928 | case SADB_EXT_ADDRESS_PROXY: |
| 4929 | case SADB_EXT_IDENTITY_SRC: |
| 4930 | case SADB_EXT_IDENTITY_DST: |
| 4931 | /* XXX: should we brought from SPD ? */ |
| 4932 | case SADB_EXT_SENSITIVITY: |
| 4933 | default: |
| 4934 | continue; |
| 4935 | } |
| 4936 | |
| 4937 | if ((!m && !p) || (m && p)) { |
| 4938 | goto fail; |
| 4939 | } |
| 4940 | if (p && tres) { |
| 4941 | M_PREPEND(tres, l, M_WAITOK, 1); |
| 4942 | if (!tres) { |
| 4943 | goto fail; |
| 4944 | } |
| 4945 | bcopy(src: p, mtod(tres, caddr_t), n: l); |
| 4946 | continue; |
| 4947 | } |
| 4948 | if (p) { |
| 4949 | m = key_alloc_mbuf(l); |
| 4950 | if (!m) { |
| 4951 | goto fail; |
| 4952 | } |
| 4953 | m_copyback(m, 0, l, p); |
| 4954 | } |
| 4955 | |
| 4956 | if (tres) { |
| 4957 | m_cat(m, tres); |
| 4958 | } |
| 4959 | tres = m; |
| 4960 | } |
| 4961 | |
| 4962 | m_cat(result, tres); |
| 4963 | |
| 4964 | if (sav->sah && (sav->sah->outgoing_if || sav->sah->ipsec_if)) { |
| 4965 | m = key_setsadbipsecif(NULL, ifindex2ifnet[sav->sah->outgoing_if], sav->sah->ipsec_if, 0); |
| 4966 | if (!m) { |
| 4967 | goto fail; |
| 4968 | } |
| 4969 | m_cat(result, m); |
| 4970 | } |
| 4971 | |
| 4972 | if (result->m_len < sizeof(struct sadb_msg)) { |
| 4973 | result = m_pullup(result, sizeof(struct sadb_msg)); |
| 4974 | if (result == NULL) { |
| 4975 | goto fail; |
| 4976 | } |
| 4977 | } |
| 4978 | |
| 4979 | result->m_pkthdr.len = 0; |
| 4980 | for (m = result; m; m = m->m_next) { |
| 4981 | result->m_pkthdr.len += m->m_len; |
| 4982 | } |
| 4983 | |
| 4984 | VERIFY(PFKEY_UNIT64(result->m_pkthdr.len) <= UINT16_MAX); |
| 4985 | mtod(result, struct sadb_msg *)->sadb_msg_len = |
| 4986 | (u_int16_t)PFKEY_UNIT64(result->m_pkthdr.len); |
| 4987 | |
| 4988 | return result; |
| 4989 | |
| 4990 | fail: |
| 4991 | m_freem(result); |
| 4992 | m_freem(tres); |
| 4993 | return NULL; |
| 4994 | } |
| 4995 | |
| 4996 | /* |
| 4997 | * set data into sadb_msg. |
| 4998 | */ |
| 4999 | static struct mbuf * |
| 5000 | key_setsadbmsg( |
| 5001 | u_int8_t type, |
| 5002 | u_int16_t tlen, |
| 5003 | u_int8_t satype, |
| 5004 | u_int32_t seq, |
| 5005 | pid_t pid, |
| 5006 | u_int16_t reserved) |
| 5007 | { |
| 5008 | struct mbuf *m; |
| 5009 | struct sadb_msg *p; |
| 5010 | int len; |
| 5011 | |
| 5012 | len = PFKEY_ALIGN8(sizeof(struct sadb_msg)); |
| 5013 | if (len > MCLBYTES) { |
| 5014 | return NULL; |
| 5015 | } |
| 5016 | MGETHDR(m, M_DONTWAIT, MT_DATA); |
| 5017 | if (m && len > MHLEN) { |
| 5018 | MCLGET(m, M_DONTWAIT); |
| 5019 | if ((m->m_flags & M_EXT) == 0) { |
| 5020 | m_freem(m); |
| 5021 | m = NULL; |
| 5022 | } |
| 5023 | } |
| 5024 | if (!m) { |
| 5025 | return NULL; |
| 5026 | } |
| 5027 | m->m_pkthdr.len = m->m_len = len; |
| 5028 | m->m_next = NULL; |
| 5029 | |
| 5030 | p = mtod(m, struct sadb_msg *); |
| 5031 | |
| 5032 | bzero(s: p, n: len); |
| 5033 | p->sadb_msg_version = PF_KEY_V2; |
| 5034 | p->sadb_msg_type = type; |
| 5035 | p->sadb_msg_errno = 0; |
| 5036 | p->sadb_msg_satype = satype; |
| 5037 | p->sadb_msg_len = PFKEY_UNIT64(tlen); |
| 5038 | p->sadb_msg_reserved = reserved; |
| 5039 | p->sadb_msg_seq = seq; |
| 5040 | p->sadb_msg_pid = (u_int32_t)pid; |
| 5041 | |
| 5042 | return m; |
| 5043 | } |
| 5044 | |
| 5045 | /* |
| 5046 | * copy secasvar data into sadb_address. |
| 5047 | */ |
| 5048 | static struct mbuf * |
| 5049 | key_setsadbsa( |
| 5050 | struct secasvar *sav) |
| 5051 | { |
| 5052 | struct mbuf *m; |
| 5053 | struct sadb_sa *p; |
| 5054 | u_int16_t len; |
| 5055 | |
| 5056 | len = PFKEY_ALIGN8(sizeof(struct sadb_sa)); |
| 5057 | m = key_alloc_mbuf(len); |
| 5058 | if (!m || m->m_next) { /*XXX*/ |
| 5059 | if (m) { |
| 5060 | m_freem(m); |
| 5061 | } |
| 5062 | return NULL; |
| 5063 | } |
| 5064 | |
| 5065 | p = mtod(m, struct sadb_sa *); |
| 5066 | |
| 5067 | bzero(s: p, n: len); |
| 5068 | p->sadb_sa_len = PFKEY_UNIT64(len); |
| 5069 | p->sadb_sa_exttype = SADB_EXT_SA; |
| 5070 | p->sadb_sa_spi = sav->spi; |
| 5071 | p->sadb_sa_replay = (sav->replay[0] != NULL ? sav->replay[0]->wsize : 0); |
| 5072 | p->sadb_sa_state = sav->state; |
| 5073 | p->sadb_sa_auth = sav->alg_auth; |
| 5074 | p->sadb_sa_encrypt = sav->alg_enc; |
| 5075 | p->sadb_sa_flags = sav->flags; |
| 5076 | |
| 5077 | return m; |
| 5078 | } |
| 5079 | |
| 5080 | /* |
| 5081 | * set data into sadb_address. |
| 5082 | */ |
| 5083 | static struct mbuf * |
| 5084 | key_setsadbaddr( |
| 5085 | u_int16_t exttype, |
| 5086 | struct sockaddr *saddr, |
| 5087 | size_t prefixlen, |
| 5088 | u_int8_t ul_proto) |
| 5089 | { |
| 5090 | struct mbuf *m; |
| 5091 | struct sadb_address *p; |
| 5092 | u_int16_t len; |
| 5093 | |
| 5094 | len = PFKEY_ALIGN8(sizeof(struct sadb_address)) + |
| 5095 | PFKEY_ALIGN8(saddr->sa_len); |
| 5096 | m = key_alloc_mbuf(len); |
| 5097 | if (!m || m->m_next) { /*XXX*/ |
| 5098 | if (m) { |
| 5099 | m_freem(m); |
| 5100 | } |
| 5101 | return NULL; |
| 5102 | } |
| 5103 | |
| 5104 | p = mtod(m, struct sadb_address *); |
| 5105 | |
| 5106 | bzero(s: p, n: len); |
| 5107 | p->sadb_address_len = PFKEY_UNIT64(len); |
| 5108 | p->sadb_address_exttype = exttype; |
| 5109 | p->sadb_address_proto = ul_proto; |
| 5110 | if (prefixlen == FULLMASK) { |
| 5111 | switch (saddr->sa_family) { |
| 5112 | case AF_INET: |
| 5113 | prefixlen = sizeof(struct in_addr) << 3; |
| 5114 | break; |
| 5115 | case AF_INET6: |
| 5116 | prefixlen = sizeof(struct in6_addr) << 3; |
| 5117 | break; |
| 5118 | default: |
| 5119 | ; /*XXX*/ |
| 5120 | } |
| 5121 | } |
| 5122 | if (prefixlen >= UINT8_MAX) { |
| 5123 | ipseclog((LOG_ERR, "key_setsadbaddr: bad prefix length %zu" , prefixlen)); |
| 5124 | m_freem(m); |
| 5125 | return NULL; |
| 5126 | } |
| 5127 | p->sadb_address_prefixlen = (u_int8_t)prefixlen; |
| 5128 | p->sadb_address_reserved = 0; |
| 5129 | |
| 5130 | bcopy(src: saddr, |
| 5131 | mtod(m, caddr_t) + PFKEY_ALIGN8(sizeof(struct sadb_address)), |
| 5132 | n: saddr->sa_len); |
| 5133 | |
| 5134 | return m; |
| 5135 | } |
| 5136 | |
| 5137 | static struct mbuf * |
| 5138 | key_setsadbipsecif(ifnet_t internal_if, |
| 5139 | ifnet_t outgoing_if, |
| 5140 | ifnet_t ipsec_if, |
| 5141 | u_int8_t init_disabled) |
| 5142 | { |
| 5143 | struct mbuf *m; |
| 5144 | struct sadb_x_ipsecif *p; |
| 5145 | u_int16_t len; |
| 5146 | |
| 5147 | len = PFKEY_ALIGN8(sizeof(struct sadb_x_ipsecif)); |
| 5148 | m = key_alloc_mbuf(len); |
| 5149 | if (!m || m->m_next) { /*XXX*/ |
| 5150 | if (m) { |
| 5151 | m_freem(m); |
| 5152 | } |
| 5153 | return NULL; |
| 5154 | } |
| 5155 | |
| 5156 | p = mtod(m, struct sadb_x_ipsecif *); |
| 5157 | |
| 5158 | bzero(s: p, n: len); |
| 5159 | p->sadb_x_ipsecif_len = PFKEY_UNIT64(len); |
| 5160 | p->sadb_x_ipsecif_exttype = SADB_X_EXT_IPSECIF; |
| 5161 | |
| 5162 | if (internal_if && internal_if->if_xname) { |
| 5163 | strlcpy(dst: p->sadb_x_ipsecif_internal_if, src: internal_if->if_xname, IFXNAMSIZ); |
| 5164 | } |
| 5165 | if (outgoing_if && outgoing_if->if_xname) { |
| 5166 | strlcpy(dst: p->sadb_x_ipsecif_outgoing_if, src: outgoing_if->if_xname, IFXNAMSIZ); |
| 5167 | } |
| 5168 | if (ipsec_if && ipsec_if->if_xname) { |
| 5169 | strlcpy(dst: p->sadb_x_ipsecif_ipsec_if, src: ipsec_if->if_xname, IFXNAMSIZ); |
| 5170 | } |
| 5171 | |
| 5172 | p->sadb_x_ipsecif_init_disabled = init_disabled; |
| 5173 | |
| 5174 | return m; |
| 5175 | } |
| 5176 | |
| 5177 | /* |
| 5178 | * set data into sadb_session_id |
| 5179 | */ |
| 5180 | static struct mbuf * |
| 5181 | key_setsadbsession_id(u_int64_t session_ids[]) |
| 5182 | { |
| 5183 | struct mbuf *m; |
| 5184 | struct sadb_session_id *p; |
| 5185 | u_int16_t len; |
| 5186 | |
| 5187 | len = PFKEY_ALIGN8(sizeof(*p)); |
| 5188 | m = key_alloc_mbuf(len); |
| 5189 | if (!m || m->m_next) { /*XXX*/ |
| 5190 | if (m) { |
| 5191 | m_freem(m); |
| 5192 | } |
| 5193 | return NULL; |
| 5194 | } |
| 5195 | |
| 5196 | p = mtod(m, __typeof__(p)); |
| 5197 | |
| 5198 | bzero(s: p, n: len); |
| 5199 | p->sadb_session_id_len = PFKEY_UNIT64(len); |
| 5200 | p->sadb_session_id_exttype = SADB_EXT_SESSION_ID; |
| 5201 | p->sadb_session_id_v[0] = session_ids[0]; |
| 5202 | p->sadb_session_id_v[1] = session_ids[1]; |
| 5203 | |
| 5204 | return m; |
| 5205 | } |
| 5206 | |
| 5207 | /* |
| 5208 | * copy stats data into sadb_sastat type. |
| 5209 | */ |
| 5210 | static struct mbuf * |
| 5211 | key_setsadbsastat(u_int32_t dir, |
| 5212 | struct sastat *stats, |
| 5213 | u_int32_t max_stats) |
| 5214 | { |
| 5215 | struct mbuf *m; |
| 5216 | struct sadb_sastat *p; |
| 5217 | size_t list_len, len; |
| 5218 | |
| 5219 | if (!stats) { |
| 5220 | return NULL; |
| 5221 | } |
| 5222 | |
| 5223 | list_len = sizeof(*stats) * max_stats; |
| 5224 | len = PFKEY_ALIGN8(sizeof(*p)) + PFKEY_ALIGN8(list_len); |
| 5225 | if (PFKEY_UNIT64(len) >= UINT16_MAX) { |
| 5226 | ipseclog((LOG_ERR, "key_setsadbsastat: length is too big: %zu\n" , len)); |
| 5227 | return NULL; |
| 5228 | } |
| 5229 | |
| 5230 | m = key_alloc_mbuf((int)len); |
| 5231 | if (!m || m->m_next) { /*XXX*/ |
| 5232 | if (m) { |
| 5233 | m_freem(m); |
| 5234 | } |
| 5235 | return NULL; |
| 5236 | } |
| 5237 | |
| 5238 | p = mtod(m, __typeof__(p)); |
| 5239 | |
| 5240 | bzero(s: p, n: len); |
| 5241 | p->sadb_sastat_len = (u_int16_t)PFKEY_UNIT64(len); |
| 5242 | p->sadb_sastat_exttype = SADB_EXT_SASTAT; |
| 5243 | p->sadb_sastat_dir = dir; |
| 5244 | p->sadb_sastat_list_len = max_stats; |
| 5245 | if (list_len) { |
| 5246 | bcopy(src: stats, |
| 5247 | mtod(m, caddr_t) + PFKEY_ALIGN8(sizeof(*p)), |
| 5248 | n: list_len); |
| 5249 | } |
| 5250 | |
| 5251 | return m; |
| 5252 | } |
| 5253 | |
| 5254 | /* |
| 5255 | * set data into sadb_x_sa2. |
| 5256 | */ |
| 5257 | static struct mbuf * |
| 5258 | key_setsadbxsa2( |
| 5259 | u_int8_t mode, |
| 5260 | u_int32_t seq, |
| 5261 | u_int32_t reqid, |
| 5262 | u_int16_t flags) |
| 5263 | { |
| 5264 | struct mbuf *m; |
| 5265 | struct sadb_x_sa2 *p; |
| 5266 | u_int16_t len; |
| 5267 | |
| 5268 | len = PFKEY_ALIGN8(sizeof(struct sadb_x_sa2)); |
| 5269 | m = key_alloc_mbuf(len); |
| 5270 | if (!m || m->m_next) { /*XXX*/ |
| 5271 | if (m) { |
| 5272 | m_freem(m); |
| 5273 | } |
| 5274 | return NULL; |
| 5275 | } |
| 5276 | |
| 5277 | p = mtod(m, struct sadb_x_sa2 *); |
| 5278 | |
| 5279 | bzero(s: p, n: len); |
| 5280 | p->sadb_x_sa2_len = PFKEY_UNIT64(len); |
| 5281 | p->sadb_x_sa2_exttype = SADB_X_EXT_SA2; |
| 5282 | p->sadb_x_sa2_mode = mode; |
| 5283 | p->sadb_x_sa2_reserved1 = 0; |
| 5284 | p->sadb_x_sa2_reserved2 = 0; |
| 5285 | p->sadb_x_sa2_sequence = seq; |
| 5286 | p->sadb_x_sa2_reqid = reqid; |
| 5287 | p->sadb_x_sa2_flags = flags; |
| 5288 | |
| 5289 | return m; |
| 5290 | } |
| 5291 | |
| 5292 | /* |
| 5293 | * set data into sadb_x_policy |
| 5294 | */ |
| 5295 | static struct mbuf * |
| 5296 | key_setsadbxpolicy( |
| 5297 | u_int16_t type, |
| 5298 | u_int8_t dir, |
| 5299 | u_int32_t id) |
| 5300 | { |
| 5301 | struct mbuf *m; |
| 5302 | struct sadb_x_policy *p; |
| 5303 | u_int16_t len; |
| 5304 | |
| 5305 | len = PFKEY_ALIGN8(sizeof(struct sadb_x_policy)); |
| 5306 | m = key_alloc_mbuf(len); |
| 5307 | if (!m || m->m_next) { /*XXX*/ |
| 5308 | if (m) { |
| 5309 | m_freem(m); |
| 5310 | } |
| 5311 | return NULL; |
| 5312 | } |
| 5313 | |
| 5314 | p = mtod(m, struct sadb_x_policy *); |
| 5315 | |
| 5316 | bzero(s: p, n: len); |
| 5317 | p->sadb_x_policy_len = PFKEY_UNIT64(len); |
| 5318 | p->sadb_x_policy_exttype = SADB_X_EXT_POLICY; |
| 5319 | p->sadb_x_policy_type = type; |
| 5320 | p->sadb_x_policy_dir = dir; |
| 5321 | p->sadb_x_policy_id = id; |
| 5322 | |
| 5323 | return m; |
| 5324 | } |
| 5325 | |
| 5326 | /* |
| 5327 | * Copy current lifetime data, converting timestamps to wall clock time |
| 5328 | */ |
| 5329 | static struct mbuf * |
| 5330 | key_setsalifecurr( |
| 5331 | struct sadb_lifetime *lft_c) |
| 5332 | { |
| 5333 | struct mbuf *m; |
| 5334 | struct sadb_lifetime *p; |
| 5335 | u_int16_t len; |
| 5336 | |
| 5337 | len = PFKEY_ALIGN8(sizeof(struct sadb_lifetime)); |
| 5338 | m = key_alloc_mbuf(len); |
| 5339 | if (!m || m->m_next) { /*XXX*/ |
| 5340 | if (m) { |
| 5341 | m_freem(m); |
| 5342 | } |
| 5343 | return NULL; |
| 5344 | } |
| 5345 | |
| 5346 | p = mtod(m, struct sadb_lifetime *); |
| 5347 | bcopy(src: lft_c, dst: p, n: sizeof(struct sadb_lifetime)); |
| 5348 | |
| 5349 | // Convert timestamps |
| 5350 | p->sadb_lifetime_addtime = key_convert_continuous_time_ns(time_value: lft_c->sadb_lifetime_addtime); |
| 5351 | p->sadb_lifetime_usetime = key_convert_continuous_time_ns(time_value: lft_c->sadb_lifetime_usetime); |
| 5352 | |
| 5353 | return m; |
| 5354 | } |
| 5355 | |
| 5356 | /* %%% utilities */ |
| 5357 | /* |
| 5358 | * copy a buffer into the new buffer allocated. |
| 5359 | */ |
| 5360 | static void * |
| 5361 | key_newbuf( |
| 5362 | const void *src, |
| 5363 | u_int len) |
| 5364 | { |
| 5365 | caddr_t new; |
| 5366 | |
| 5367 | LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_OWNED); |
| 5368 | new = kalloc_data(len, Z_NOWAIT); |
| 5369 | if (new == NULL) { |
| 5370 | lck_mtx_unlock(sadb_mutex); |
| 5371 | new = kalloc_data(len, Z_WAITOK | Z_NOFAIL); |
| 5372 | lck_mtx_lock(sadb_mutex); |
| 5373 | } |
| 5374 | bcopy(src, dst: new, n: len); |
| 5375 | |
| 5376 | return new; |
| 5377 | } |
| 5378 | |
| 5379 | /* compare my own address |
| 5380 | * OUT: 1: true, i.e. my address. |
| 5381 | * 0: false |
| 5382 | */ |
| 5383 | int |
| 5384 | key_ismyaddr( |
| 5385 | struct sockaddr *sa) |
| 5386 | { |
| 5387 | #if INET |
| 5388 | struct sockaddr_in *sin; |
| 5389 | struct in_ifaddr *ia; |
| 5390 | #endif |
| 5391 | |
| 5392 | /* sanity check */ |
| 5393 | if (sa == NULL) { |
| 5394 | panic("key_ismyaddr: NULL pointer is passed." ); |
| 5395 | } |
| 5396 | |
| 5397 | switch (sa->sa_family) { |
| 5398 | #if INET |
| 5399 | case AF_INET: |
| 5400 | lck_rw_lock_shared(lck: &in_ifaddr_rwlock); |
| 5401 | sin = (struct sockaddr_in *)(void *)sa; |
| 5402 | for (ia = in_ifaddrhead.tqh_first; ia; |
| 5403 | ia = ia->ia_link.tqe_next) { |
| 5404 | IFA_LOCK_SPIN(&ia->ia_ifa); |
| 5405 | if (sin->sin_family == ia->ia_addr.sin_family && |
| 5406 | sin->sin_len == ia->ia_addr.sin_len && |
| 5407 | sin->sin_addr.s_addr == ia->ia_addr.sin_addr.s_addr) { |
| 5408 | IFA_UNLOCK(&ia->ia_ifa); |
| 5409 | lck_rw_done(lck: &in_ifaddr_rwlock); |
| 5410 | return 1; |
| 5411 | } |
| 5412 | IFA_UNLOCK(&ia->ia_ifa); |
| 5413 | } |
| 5414 | lck_rw_done(lck: &in_ifaddr_rwlock); |
| 5415 | break; |
| 5416 | #endif |
| 5417 | case AF_INET6: |
| 5418 | return key_ismyaddr6((struct sockaddr_in6 *)(void *)sa); |
| 5419 | } |
| 5420 | |
| 5421 | return 0; |
| 5422 | } |
| 5423 | |
| 5424 | /* |
| 5425 | * compare my own address for IPv6. |
| 5426 | * 1: ours |
| 5427 | * 0: other |
| 5428 | * NOTE: derived ip6_input() in KAME. This is necessary to modify more. |
| 5429 | */ |
| 5430 | #include <netinet6/in6_var.h> |
| 5431 | |
| 5432 | static int |
| 5433 | key_ismyaddr6( |
| 5434 | struct sockaddr_in6 *sin6) |
| 5435 | { |
| 5436 | struct in6_ifaddr *ia; |
| 5437 | struct in6_multi *in6m; |
| 5438 | |
| 5439 | lck_rw_lock_shared(lck: &in6_ifaddr_rwlock); |
| 5440 | TAILQ_FOREACH(ia, &in6_ifaddrhead, ia6_link) { |
| 5441 | IFA_LOCK(&ia->ia_ifa); |
| 5442 | if (key_sockaddrcmp((struct sockaddr *)&sin6, |
| 5443 | (struct sockaddr *)&ia->ia_addr, 0) == 0) { |
| 5444 | IFA_UNLOCK(&ia->ia_ifa); |
| 5445 | lck_rw_done(lck: &in6_ifaddr_rwlock); |
| 5446 | return 1; |
| 5447 | } |
| 5448 | IFA_UNLOCK(&ia->ia_ifa); |
| 5449 | |
| 5450 | /* |
| 5451 | * XXX Multicast |
| 5452 | * XXX why do we care about multlicast here while we don't care |
| 5453 | * about IPv4 multicast?? |
| 5454 | * XXX scope |
| 5455 | */ |
| 5456 | in6m = NULL; |
| 5457 | in6_multihead_lock_shared(); |
| 5458 | IN6_LOOKUP_MULTI(&sin6->sin6_addr, ia->ia_ifp, in6m); |
| 5459 | in6_multihead_lock_done(); |
| 5460 | if (in6m != NULL) { |
| 5461 | lck_rw_done(lck: &in6_ifaddr_rwlock); |
| 5462 | IN6M_REMREF(in6m); |
| 5463 | return 1; |
| 5464 | } |
| 5465 | } |
| 5466 | lck_rw_done(lck: &in6_ifaddr_rwlock); |
| 5467 | |
| 5468 | /* loopback, just for safety */ |
| 5469 | if (IN6_IS_ADDR_LOOPBACK(&sin6->sin6_addr)) { |
| 5470 | return 1; |
| 5471 | } |
| 5472 | |
| 5473 | return 0; |
| 5474 | } |
| 5475 | |
| 5476 | /* |
| 5477 | * compare two secasindex structure. |
| 5478 | * flag can specify to compare 2 saidxes. |
| 5479 | * compare two secasindex structure without both mode and reqid. |
| 5480 | * don't compare port. |
| 5481 | * IN: |
| 5482 | * saidx0: source, it can be in SAD. |
| 5483 | * saidx1: object. |
| 5484 | * OUT: |
| 5485 | * 1 : equal |
| 5486 | * 0 : not equal |
| 5487 | */ |
| 5488 | static int |
| 5489 | key_cmpsaidx( |
| 5490 | struct secasindex *saidx0, |
| 5491 | struct secasindex *saidx1, |
| 5492 | int flag) |
| 5493 | { |
| 5494 | /* sanity */ |
| 5495 | if (saidx0 == NULL && saidx1 == NULL) { |
| 5496 | return 1; |
| 5497 | } |
| 5498 | |
| 5499 | if (saidx0 == NULL || saidx1 == NULL) { |
| 5500 | return 0; |
| 5501 | } |
| 5502 | |
| 5503 | if (saidx0->ipsec_ifindex != 0 && saidx0->ipsec_ifindex != saidx1->ipsec_ifindex) { |
| 5504 | return 0; |
| 5505 | } |
| 5506 | |
| 5507 | if (saidx0->proto != saidx1->proto) { |
| 5508 | return 0; |
| 5509 | } |
| 5510 | |
| 5511 | if (flag == CMP_EXACTLY) { |
| 5512 | if (saidx0->mode != saidx1->mode) { |
| 5513 | return 0; |
| 5514 | } |
| 5515 | if (saidx0->reqid != saidx1->reqid) { |
| 5516 | return 0; |
| 5517 | } |
| 5518 | if (bcmp(s1: &saidx0->src, s2: &saidx1->src, n: saidx0->src.ss_len) != 0 || |
| 5519 | bcmp(s1: &saidx0->dst, s2: &saidx1->dst, n: saidx0->dst.ss_len) != 0) { |
| 5520 | return 0; |
| 5521 | } |
| 5522 | } else { |
| 5523 | /* CMP_MODE_REQID, CMP_REQID, CMP_HEAD */ |
| 5524 | if (flag & CMP_REQID) { |
| 5525 | /* |
| 5526 | * If reqid of SPD is non-zero, unique SA is required. |
| 5527 | * The result must be of same reqid in this case. |
| 5528 | */ |
| 5529 | if (saidx1->reqid != 0 && saidx0->reqid != saidx1->reqid) { |
| 5530 | return 0; |
| 5531 | } |
| 5532 | } |
| 5533 | |
| 5534 | if (flag & CMP_MODE) { |
| 5535 | if (saidx0->mode != IPSEC_MODE_ANY |
| 5536 | && saidx0->mode != saidx1->mode) { |
| 5537 | return 0; |
| 5538 | } |
| 5539 | } |
| 5540 | |
| 5541 | if (key_sockaddrcmp((struct sockaddr *)&saidx0->src, |
| 5542 | (struct sockaddr *)&saidx1->src, flag & CMP_PORT ? 1 : 0) != 0) { |
| 5543 | return 0; |
| 5544 | } |
| 5545 | if (key_sockaddrcmp((struct sockaddr *)&saidx0->dst, |
| 5546 | (struct sockaddr *)&saidx1->dst, flag & CMP_PORT ? 1 : 0) != 0) { |
| 5547 | return 0; |
| 5548 | } |
| 5549 | } |
| 5550 | |
| 5551 | return 1; |
| 5552 | } |
| 5553 | |
| 5554 | /* |
| 5555 | * compare two secindex structure exactly. |
| 5556 | * IN: |
| 5557 | * spidx0: source, it is often in SPD. |
| 5558 | * spidx1: object, it is often from PFKEY message. |
| 5559 | * OUT: |
| 5560 | * 1 : equal |
| 5561 | * 0 : not equal |
| 5562 | */ |
| 5563 | static int |
| 5564 | key_cmpspidx_exactly( |
| 5565 | struct secpolicyindex *spidx0, |
| 5566 | struct secpolicyindex *spidx1) |
| 5567 | { |
| 5568 | /* sanity */ |
| 5569 | if (spidx0 == NULL && spidx1 == NULL) { |
| 5570 | return 1; |
| 5571 | } |
| 5572 | |
| 5573 | if (spidx0 == NULL || spidx1 == NULL) { |
| 5574 | return 0; |
| 5575 | } |
| 5576 | |
| 5577 | if (spidx0->prefs != spidx1->prefs |
| 5578 | || spidx0->prefd != spidx1->prefd |
| 5579 | || spidx0->ul_proto != spidx1->ul_proto |
| 5580 | || spidx0->internal_if != spidx1->internal_if) { |
| 5581 | return 0; |
| 5582 | } |
| 5583 | |
| 5584 | if (key_sockaddrcmp((struct sockaddr *)&spidx0->src, |
| 5585 | (struct sockaddr *)&spidx1->src, 1) != 0) { |
| 5586 | return 0; |
| 5587 | } |
| 5588 | if (key_sockaddrcmp((struct sockaddr *)&spidx0->dst, |
| 5589 | (struct sockaddr *)&spidx1->dst, 1) != 0) { |
| 5590 | return 0; |
| 5591 | } |
| 5592 | |
| 5593 | if (key_sockaddrcmp((struct sockaddr *)&spidx0->src_range.start, |
| 5594 | (struct sockaddr *)&spidx1->src_range.start, 1) != 0) { |
| 5595 | return 0; |
| 5596 | } |
| 5597 | if (key_sockaddrcmp((struct sockaddr *)&spidx0->src_range.end, |
| 5598 | (struct sockaddr *)&spidx1->src_range.end, 1) != 0) { |
| 5599 | return 0; |
| 5600 | } |
| 5601 | if (key_sockaddrcmp((struct sockaddr *)&spidx0->dst_range.start, |
| 5602 | (struct sockaddr *)&spidx1->dst_range.start, 1) != 0) { |
| 5603 | return 0; |
| 5604 | } |
| 5605 | if (key_sockaddrcmp((struct sockaddr *)&spidx0->dst_range.end, |
| 5606 | (struct sockaddr *)&spidx1->dst_range.end, 1) != 0) { |
| 5607 | return 0; |
| 5608 | } |
| 5609 | |
| 5610 | return 1; |
| 5611 | } |
| 5612 | |
| 5613 | /* |
| 5614 | * compare two secindex structure with mask. |
| 5615 | * IN: |
| 5616 | * spidx0: source, it is often in SPD. |
| 5617 | * spidx1: object, it is often from IP header. |
| 5618 | * OUT: |
| 5619 | * 1 : equal |
| 5620 | * 0 : not equal |
| 5621 | */ |
| 5622 | static int |
| 5623 | key_cmpspidx_withmask( |
| 5624 | struct secpolicyindex *spidx0, |
| 5625 | struct secpolicyindex *spidx1) |
| 5626 | { |
| 5627 | int spidx0_src_is_range = 0; |
| 5628 | int spidx0_dst_is_range = 0; |
| 5629 | |
| 5630 | /* sanity */ |
| 5631 | if (spidx0 == NULL && spidx1 == NULL) { |
| 5632 | return 1; |
| 5633 | } |
| 5634 | |
| 5635 | if (spidx0 == NULL || spidx1 == NULL) { |
| 5636 | return 0; |
| 5637 | } |
| 5638 | |
| 5639 | if (spidx0->src_range.start.ss_len > 0) { |
| 5640 | spidx0_src_is_range = 1; |
| 5641 | } |
| 5642 | |
| 5643 | if (spidx0->dst_range.start.ss_len > 0) { |
| 5644 | spidx0_dst_is_range = 1; |
| 5645 | } |
| 5646 | |
| 5647 | if ((spidx0_src_is_range ? spidx0->src_range.start.ss_family : spidx0->src.ss_family) != spidx1->src.ss_family || |
| 5648 | (spidx0_dst_is_range ? spidx0->dst_range.start.ss_family : spidx0->dst.ss_family) != spidx1->dst.ss_family || |
| 5649 | (spidx0_src_is_range ? spidx0->src_range.start.ss_len : spidx0->src.ss_len) != spidx1->src.ss_len || |
| 5650 | (spidx0_dst_is_range ? spidx0->dst_range.start.ss_len : spidx0->dst.ss_len) != spidx1->dst.ss_len) { |
| 5651 | return 0; |
| 5652 | } |
| 5653 | |
| 5654 | /* if spidx.ul_proto == IPSEC_ULPROTO_ANY, ignore. */ |
| 5655 | if (spidx0->ul_proto != (u_int16_t)IPSEC_ULPROTO_ANY |
| 5656 | && spidx0->ul_proto != spidx1->ul_proto) { |
| 5657 | return 0; |
| 5658 | } |
| 5659 | |
| 5660 | /* If spidx1 specifies interface, ignore src addr */ |
| 5661 | if (spidx1->internal_if != NULL) { |
| 5662 | if (spidx0->internal_if == NULL |
| 5663 | || spidx0->internal_if != spidx1->internal_if) { |
| 5664 | return 0; |
| 5665 | } |
| 5666 | |
| 5667 | /* Still check ports */ |
| 5668 | switch (spidx0->src.ss_family) { |
| 5669 | case AF_INET: |
| 5670 | if (spidx0_src_is_range && |
| 5671 | (satosin(&spidx1->src)->sin_port < satosin(&spidx0->src_range.start)->sin_port |
| 5672 | || satosin(&spidx1->src)->sin_port > satosin(&spidx0->src_range.end)->sin_port)) { |
| 5673 | return 0; |
| 5674 | } else if (satosin(&spidx0->src)->sin_port != IPSEC_PORT_ANY |
| 5675 | && satosin(&spidx0->src)->sin_port != |
| 5676 | satosin(&spidx1->src)->sin_port) { |
| 5677 | return 0; |
| 5678 | } |
| 5679 | break; |
| 5680 | case AF_INET6: |
| 5681 | if (spidx0_src_is_range && |
| 5682 | (satosin6(&spidx1->src)->sin6_port < satosin6(&spidx0->src_range.start)->sin6_port |
| 5683 | || satosin6(&spidx1->src)->sin6_port > satosin6(&spidx0->src_range.end)->sin6_port)) { |
| 5684 | return 0; |
| 5685 | } else if (satosin6(&spidx0->src)->sin6_port != IPSEC_PORT_ANY |
| 5686 | && satosin6(&spidx0->src)->sin6_port != |
| 5687 | satosin6(&spidx1->src)->sin6_port) { |
| 5688 | return 0; |
| 5689 | } |
| 5690 | break; |
| 5691 | default: |
| 5692 | break; |
| 5693 | } |
| 5694 | } else if (spidx0_src_is_range) { |
| 5695 | if (!key_is_addr_in_range(&spidx1->src, &spidx0->src_range)) { |
| 5696 | return 0; |
| 5697 | } |
| 5698 | } else { |
| 5699 | switch (spidx0->src.ss_family) { |
| 5700 | case AF_INET: |
| 5701 | if (satosin(&spidx0->src)->sin_port != IPSEC_PORT_ANY |
| 5702 | && satosin(&spidx0->src)->sin_port != |
| 5703 | satosin(&spidx1->src)->sin_port) { |
| 5704 | return 0; |
| 5705 | } |
| 5706 | if (!key_bbcmp((caddr_t)&satosin(&spidx0->src)->sin_addr, |
| 5707 | (caddr_t)&satosin(&spidx1->src)->sin_addr, spidx0->prefs)) { |
| 5708 | return 0; |
| 5709 | } |
| 5710 | break; |
| 5711 | case AF_INET6: |
| 5712 | if (satosin6(&spidx0->src)->sin6_port != IPSEC_PORT_ANY |
| 5713 | && satosin6(&spidx0->src)->sin6_port != |
| 5714 | satosin6(&spidx1->src)->sin6_port) { |
| 5715 | return 0; |
| 5716 | } |
| 5717 | /* |
| 5718 | * scope_id check. if sin6_scope_id is 0, we regard it |
| 5719 | * as a wildcard scope, which matches any scope zone ID. |
| 5720 | */ |
| 5721 | if (satosin6(&spidx0->src)->sin6_scope_id && |
| 5722 | satosin6(&spidx1->src)->sin6_scope_id && |
| 5723 | satosin6(&spidx0->src)->sin6_scope_id != |
| 5724 | satosin6(&spidx1->src)->sin6_scope_id) { |
| 5725 | return 0; |
| 5726 | } |
| 5727 | if (!key_bbcmp((caddr_t)&satosin6(&spidx0->src)->sin6_addr, |
| 5728 | (caddr_t)&satosin6(&spidx1->src)->sin6_addr, spidx0->prefs)) { |
| 5729 | return 0; |
| 5730 | } |
| 5731 | break; |
| 5732 | default: |
| 5733 | /* XXX */ |
| 5734 | if (bcmp(s1: &spidx0->src, s2: &spidx1->src, n: spidx0->src.ss_len) != 0) { |
| 5735 | return 0; |
| 5736 | } |
| 5737 | break; |
| 5738 | } |
| 5739 | } |
| 5740 | |
| 5741 | if (spidx0_dst_is_range) { |
| 5742 | if (!key_is_addr_in_range(&spidx1->dst, &spidx0->dst_range)) { |
| 5743 | return 0; |
| 5744 | } |
| 5745 | } else { |
| 5746 | switch (spidx0->dst.ss_family) { |
| 5747 | case AF_INET: |
| 5748 | if (satosin(&spidx0->dst)->sin_port != IPSEC_PORT_ANY |
| 5749 | && satosin(&spidx0->dst)->sin_port != |
| 5750 | satosin(&spidx1->dst)->sin_port) { |
| 5751 | return 0; |
| 5752 | } |
| 5753 | if (!key_bbcmp((caddr_t)&satosin(&spidx0->dst)->sin_addr, |
| 5754 | (caddr_t)&satosin(&spidx1->dst)->sin_addr, spidx0->prefd)) { |
| 5755 | return 0; |
| 5756 | } |
| 5757 | break; |
| 5758 | case AF_INET6: |
| 5759 | if (satosin6(&spidx0->dst)->sin6_port != IPSEC_PORT_ANY |
| 5760 | && satosin6(&spidx0->dst)->sin6_port != |
| 5761 | satosin6(&spidx1->dst)->sin6_port) { |
| 5762 | return 0; |
| 5763 | } |
| 5764 | /* |
| 5765 | * scope_id check. if sin6_scope_id is 0, we regard it |
| 5766 | * as a wildcard scope, which matches any scope zone ID. |
| 5767 | */ |
| 5768 | if (satosin6(&spidx0->src)->sin6_scope_id && |
| 5769 | satosin6(&spidx1->src)->sin6_scope_id && |
| 5770 | satosin6(&spidx0->dst)->sin6_scope_id != |
| 5771 | satosin6(&spidx1->dst)->sin6_scope_id) { |
| 5772 | return 0; |
| 5773 | } |
| 5774 | if (!key_bbcmp((caddr_t)&satosin6(&spidx0->dst)->sin6_addr, |
| 5775 | (caddr_t)&satosin6(&spidx1->dst)->sin6_addr, spidx0->prefd)) { |
| 5776 | return 0; |
| 5777 | } |
| 5778 | break; |
| 5779 | default: |
| 5780 | /* XXX */ |
| 5781 | if (bcmp(s1: &spidx0->dst, s2: &spidx1->dst, n: spidx0->dst.ss_len) != 0) { |
| 5782 | return 0; |
| 5783 | } |
| 5784 | break; |
| 5785 | } |
| 5786 | } |
| 5787 | |
| 5788 | /* XXX Do we check other field ? e.g. flowinfo */ |
| 5789 | |
| 5790 | return 1; |
| 5791 | } |
| 5792 | |
| 5793 | static int |
| 5794 | key_is_addr_in_range(struct sockaddr_storage *addr, struct secpolicyaddrrange *addr_range) |
| 5795 | { |
| 5796 | int cmp = 0; |
| 5797 | |
| 5798 | if (addr == NULL || addr_range == NULL) { |
| 5799 | return 0; |
| 5800 | } |
| 5801 | |
| 5802 | /* Must be greater than or equal to start */ |
| 5803 | cmp = key_sockaddrcmp((struct sockaddr *)addr, (struct sockaddr *)&addr_range->start, 1); |
| 5804 | if (cmp != 0 && cmp != 1) { |
| 5805 | return 0; |
| 5806 | } |
| 5807 | |
| 5808 | /* Must be less than or equal to end */ |
| 5809 | cmp = key_sockaddrcmp((struct sockaddr *)addr, (struct sockaddr *)&addr_range->end, 1); |
| 5810 | if (cmp != 0 && cmp != -1) { |
| 5811 | return 0; |
| 5812 | } |
| 5813 | |
| 5814 | return 1; |
| 5815 | } |
| 5816 | |
| 5817 | /* |
| 5818 | * Return values: |
| 5819 | * -1: sa1 < sa2 |
| 5820 | * 0: sa1 == sa2 |
| 5821 | * 1: sa1 > sa2 |
| 5822 | * 2: Not comparable or error |
| 5823 | */ |
| 5824 | static int |
| 5825 | key_sockaddrcmp( |
| 5826 | struct sockaddr *sa1, |
| 5827 | struct sockaddr *sa2, |
| 5828 | int port) |
| 5829 | { |
| 5830 | int result = 0; |
| 5831 | int port_result = 0; |
| 5832 | |
| 5833 | if (sa1->sa_family != sa2->sa_family || sa1->sa_len != sa2->sa_len) { |
| 5834 | return 2; |
| 5835 | } |
| 5836 | |
| 5837 | if (sa1->sa_len == 0) { |
| 5838 | return 0; |
| 5839 | } |
| 5840 | |
| 5841 | switch (sa1->sa_family) { |
| 5842 | case AF_INET: |
| 5843 | if (sa1->sa_len != sizeof(struct sockaddr_in)) { |
| 5844 | return 2; |
| 5845 | } |
| 5846 | |
| 5847 | result = memcmp(s1: &satosin(sa1)->sin_addr.s_addr, s2: &satosin(sa2)->sin_addr.s_addr, n: sizeof(satosin(sa1)->sin_addr.s_addr)); |
| 5848 | |
| 5849 | if (port) { |
| 5850 | if (satosin(sa1)->sin_port < satosin(sa2)->sin_port) { |
| 5851 | port_result = -1; |
| 5852 | } else if (satosin(sa1)->sin_port > satosin(sa2)->sin_port) { |
| 5853 | port_result = 1; |
| 5854 | } |
| 5855 | |
| 5856 | if (result == 0) { |
| 5857 | result = port_result; |
| 5858 | } else if ((result > 0 && port_result < 0) || (result < 0 && port_result > 0)) { |
| 5859 | return 2; |
| 5860 | } |
| 5861 | } |
| 5862 | |
| 5863 | break; |
| 5864 | case AF_INET6: |
| 5865 | if (sa1->sa_len != sizeof(struct sockaddr_in6)) { |
| 5866 | return 2; /*EINVAL*/ |
| 5867 | } |
| 5868 | if (satosin6(sa1)->sin6_scope_id != |
| 5869 | satosin6(sa2)->sin6_scope_id) { |
| 5870 | return 2; |
| 5871 | } |
| 5872 | |
| 5873 | result = memcmp(s1: &satosin6(sa1)->sin6_addr.s6_addr[0], s2: &satosin6(sa2)->sin6_addr.s6_addr[0], n: sizeof(struct in6_addr)); |
| 5874 | |
| 5875 | if (port) { |
| 5876 | if (satosin6(sa1)->sin6_port < satosin6(sa2)->sin6_port) { |
| 5877 | port_result = -1; |
| 5878 | } else if (satosin6(sa1)->sin6_port > satosin6(sa2)->sin6_port) { |
| 5879 | port_result = 1; |
| 5880 | } |
| 5881 | |
| 5882 | if (result == 0) { |
| 5883 | result = port_result; |
| 5884 | } else if ((result > 0 && port_result < 0) || (result < 0 && port_result > 0)) { |
| 5885 | return 2; |
| 5886 | } |
| 5887 | } |
| 5888 | |
| 5889 | break; |
| 5890 | default: |
| 5891 | result = memcmp(s1: sa1, s2: sa2, n: sa1->sa_len); |
| 5892 | break; |
| 5893 | } |
| 5894 | |
| 5895 | if (result < 0) { |
| 5896 | result = -1; |
| 5897 | } else if (result > 0) { |
| 5898 | result = 1; |
| 5899 | } |
| 5900 | |
| 5901 | return result; |
| 5902 | } |
| 5903 | |
| 5904 | /* |
| 5905 | * compare two buffers with mask. |
| 5906 | * IN: |
| 5907 | * addr1: source |
| 5908 | * addr2: object |
| 5909 | * bits: Number of bits to compare |
| 5910 | * OUT: |
| 5911 | * 1 : equal |
| 5912 | * 0 : not equal |
| 5913 | */ |
| 5914 | static int |
| 5915 | key_bbcmp( |
| 5916 | caddr_t p1, |
| 5917 | caddr_t p2, |
| 5918 | u_int bits) |
| 5919 | { |
| 5920 | u_int8_t mask; |
| 5921 | |
| 5922 | /* XXX: This could be considerably faster if we compare a word |
| 5923 | * at a time, but it is complicated on LSB Endian machines */ |
| 5924 | |
| 5925 | /* Handle null pointers */ |
| 5926 | if (p1 == NULL || p2 == NULL) { |
| 5927 | return p1 == p2; |
| 5928 | } |
| 5929 | |
| 5930 | while (bits >= 8) { |
| 5931 | if (*p1++ != *p2++) { |
| 5932 | return 0; |
| 5933 | } |
| 5934 | bits -= 8; |
| 5935 | } |
| 5936 | |
| 5937 | if (bits > 0) { |
| 5938 | mask = (u_int8_t)(~((1 << (8 - bits)) - 1)); |
| 5939 | if ((*p1 & mask) != (*p2 & mask)) { |
| 5940 | return 0; |
| 5941 | } |
| 5942 | } |
| 5943 | return 1; /* Match! */ |
| 5944 | } |
| 5945 | |
| 5946 | /* |
| 5947 | * time handler. |
| 5948 | * scanning SPD and SAD to check status for each entries, |
| 5949 | * and do to remove or to expire. |
| 5950 | * XXX: year 2038 problem may remain. |
| 5951 | */ |
| 5952 | int key_timehandler_debug = 0; |
| 5953 | u_int32_t spd_count = 0, sah_count = 0, dead_sah_count = 0, empty_sah_count = 0, larval_sav_count = 0, mature_sav_count = 0, dying_sav_count = 0, dead_sav_count = 0; |
| 5954 | u_int64_t total_sav_count = 0; |
| 5955 | void |
| 5956 | key_timehandler(void) |
| 5957 | { |
| 5958 | u_int dir; |
| 5959 | struct secpolicy **spbuf = NULL, **spptr = NULL; |
| 5960 | struct secasvar **savexbuf = NULL, **savexptr = NULL; |
| 5961 | struct secasvar **savkabuf = NULL, **savkaptr = NULL; |
| 5962 | u_int32_t spbufcount = 0, savbufcount = 0, spcount = 0, savexcount = 0, savkacount = 0, cnt; |
| 5963 | int stop_handler = 1; /* stop the timehandler */ |
| 5964 | const u_int64_t current_time_ns = key_get_continuous_time_ns(); |
| 5965 | |
| 5966 | /* pre-allocate buffers before taking the lock */ |
| 5967 | /* if allocation failures occur - portions of the processing will be skipped */ |
| 5968 | if ((spbufcount = ipsec_policy_count) != 0) { |
| 5969 | if (os_add_overflow(spbufcount, 256, &spbufcount)) { |
| 5970 | ipseclog((LOG_DEBUG, "key_timehandler: spbufcount overflow, ipsec policy count %u.\n" , ipsec_policy_count)); |
| 5971 | spbufcount = ipsec_policy_count; |
| 5972 | } |
| 5973 | |
| 5974 | spbuf = kalloc_type(struct secpolicy *, spbufcount, Z_WAITOK); |
| 5975 | if (spbuf) { |
| 5976 | spptr = spbuf; |
| 5977 | } |
| 5978 | } |
| 5979 | if ((savbufcount = ipsec_sav_count) != 0) { |
| 5980 | if (os_add_overflow(savbufcount, 512, &savbufcount)) { |
| 5981 | ipseclog((LOG_DEBUG, "key_timehandler: savbufcount overflow, ipsec sa count %u.\n" , ipsec_sav_count)); |
| 5982 | savbufcount = ipsec_sav_count; |
| 5983 | } |
| 5984 | savexbuf = kalloc_type(struct secasvar *, savbufcount, Z_WAITOK); |
| 5985 | if (savexbuf) { |
| 5986 | savexptr = savexbuf; |
| 5987 | } |
| 5988 | savkabuf = kalloc_type(struct secasvar *, savbufcount, Z_WAITOK); |
| 5989 | if (savkabuf) { |
| 5990 | savkaptr = savkabuf; |
| 5991 | } |
| 5992 | } |
| 5993 | lck_mtx_lock(sadb_mutex); |
| 5994 | /* SPD */ |
| 5995 | if (spbuf) { |
| 5996 | struct secpolicy *sp, *nextsp; |
| 5997 | |
| 5998 | for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { |
| 5999 | for (sp = LIST_FIRST(&sptree[dir]); |
| 6000 | sp != NULL; |
| 6001 | sp = nextsp) { |
| 6002 | /* don't prevent timehandler from stopping for generate policy */ |
| 6003 | if (sp->policy != IPSEC_POLICY_GENERATE) { |
| 6004 | stop_handler = 0; |
| 6005 | } |
| 6006 | spd_count++; |
| 6007 | nextsp = LIST_NEXT(sp, chain); |
| 6008 | |
| 6009 | if (sp->state == IPSEC_SPSTATE_DEAD) { |
| 6010 | key_freesp(sp, KEY_SADB_LOCKED); |
| 6011 | continue; |
| 6012 | } |
| 6013 | |
| 6014 | if (sp->lifetime == 0 && sp->validtime == 0) { |
| 6015 | continue; |
| 6016 | } |
| 6017 | if (spbuf && spcount < spbufcount) { |
| 6018 | /* the deletion will occur next time */ |
| 6019 | if ((sp->lifetime |
| 6020 | && current_time_ns - sp->created > sp->lifetime) |
| 6021 | || (sp->validtime |
| 6022 | && current_time_ns - sp->lastused > sp->validtime)) { |
| 6023 | //key_spdexpire(sp); |
| 6024 | sp->state = IPSEC_SPSTATE_DEAD; |
| 6025 | sp->refcnt++; |
| 6026 | *spptr++ = sp; |
| 6027 | spcount++; |
| 6028 | } |
| 6029 | } |
| 6030 | } |
| 6031 | } |
| 6032 | } |
| 6033 | |
| 6034 | /* SAD */ |
| 6035 | { |
| 6036 | struct secashead *sah, *nextsah; |
| 6037 | struct secasvar *sav, *nextsav; |
| 6038 | |
| 6039 | for (sah = LIST_FIRST(&sahtree); |
| 6040 | sah != NULL; |
| 6041 | sah = nextsah) { |
| 6042 | sah_count++; |
| 6043 | nextsah = LIST_NEXT(sah, chain); |
| 6044 | |
| 6045 | /* if sah has been dead, then delete it and process next sah. */ |
| 6046 | if (sah->state == SADB_SASTATE_DEAD) { |
| 6047 | key_delsah(sah); |
| 6048 | dead_sah_count++; |
| 6049 | continue; |
| 6050 | } |
| 6051 | |
| 6052 | if (LIST_FIRST(&sah->savtree[SADB_SASTATE_LARVAL]) == NULL && |
| 6053 | LIST_FIRST(&sah->savtree[SADB_SASTATE_MATURE]) == NULL && |
| 6054 | LIST_FIRST(&sah->savtree[SADB_SASTATE_DYING]) == NULL && |
| 6055 | LIST_FIRST(&sah->savtree[SADB_SASTATE_DEAD]) == NULL) { |
| 6056 | key_delsah(sah); |
| 6057 | empty_sah_count++; |
| 6058 | continue; |
| 6059 | } |
| 6060 | |
| 6061 | if (savbufcount == 0) { |
| 6062 | continue; |
| 6063 | } |
| 6064 | |
| 6065 | stop_handler = 0; |
| 6066 | |
| 6067 | /* if LARVAL entry doesn't become MATURE, delete it. */ |
| 6068 | const u_int64_t larval_lifetime = (u_int64_t)key_larval_lifetime * NSEC_PER_SEC; |
| 6069 | for (sav = LIST_FIRST(&sah->savtree[SADB_SASTATE_LARVAL]); |
| 6070 | sav != NULL; |
| 6071 | sav = nextsav) { |
| 6072 | larval_sav_count++; |
| 6073 | total_sav_count++; |
| 6074 | nextsav = LIST_NEXT(sav, chain); |
| 6075 | |
| 6076 | if (sav->lft_h != NULL) { |
| 6077 | /* If a hard lifetime is defined for the LARVAL SA, use it */ |
| 6078 | if (sav->lft_h->sadb_lifetime_addtime != 0) { |
| 6079 | const u_int64_t lifetime_addtime = sav->lft_h->sadb_lifetime_addtime * NSEC_PER_SEC; |
| 6080 | if (current_time_ns - sav->created > lifetime_addtime) { |
| 6081 | if (sav->always_expire) { |
| 6082 | key_send_delete(sav); |
| 6083 | sav = NULL; |
| 6084 | } else { |
| 6085 | key_sa_chgstate(sav, SADB_SASTATE_DEAD); |
| 6086 | key_freesav(sav, KEY_SADB_LOCKED); |
| 6087 | sav = NULL; |
| 6088 | } |
| 6089 | } |
| 6090 | } |
| 6091 | } else { |
| 6092 | if (current_time_ns - sav->created > larval_lifetime) { |
| 6093 | key_freesav(sav, KEY_SADB_LOCKED); |
| 6094 | } |
| 6095 | } |
| 6096 | } |
| 6097 | |
| 6098 | /* |
| 6099 | * If this is a NAT traversal SA with no activity, |
| 6100 | * we need to send a keep alive. |
| 6101 | * |
| 6102 | * Performed outside of the loop before so we will |
| 6103 | * only ever send one keepalive. The first SA on |
| 6104 | * the list is the one that will be used for sending |
| 6105 | * traffic, so this is the one we use for determining |
| 6106 | * when to send the keepalive. |
| 6107 | */ |
| 6108 | if (savkabuf && savkacount < savbufcount) { |
| 6109 | sav = LIST_FIRST(&sah->savtree[SADB_SASTATE_MATURE]); //%%% should we check dying list if this is empty??? |
| 6110 | if (sav && (natt_keepalive_interval || sav->natt_interval) && |
| 6111 | (sav->flags & (SADB_X_EXT_NATT_KEEPALIVE | SADB_X_EXT_ESP_KEEPALIVE)) != 0) { |
| 6112 | sav->refcnt++; |
| 6113 | *savkaptr++ = sav; |
| 6114 | savkacount++; |
| 6115 | } |
| 6116 | } |
| 6117 | |
| 6118 | /* |
| 6119 | * check MATURE entry to start to send expire message |
| 6120 | * whether or not. |
| 6121 | */ |
| 6122 | for (sav = LIST_FIRST(&sah->savtree[SADB_SASTATE_MATURE]); |
| 6123 | sav != NULL; |
| 6124 | sav = nextsav) { |
| 6125 | mature_sav_count++; |
| 6126 | total_sav_count++; |
| 6127 | nextsav = LIST_NEXT(sav, chain); |
| 6128 | |
| 6129 | /* we don't need to check. */ |
| 6130 | if (sav->lft_s == NULL) { |
| 6131 | continue; |
| 6132 | } |
| 6133 | |
| 6134 | /* sanity check */ |
| 6135 | if (sav->lft_c == NULL) { |
| 6136 | ipseclog((LOG_DEBUG, "key_timehandler: " |
| 6137 | "There is no CURRENT time, why?\n" )); |
| 6138 | continue; |
| 6139 | } |
| 6140 | |
| 6141 | /* check SOFT lifetime */ |
| 6142 | if (sav->lft_s->sadb_lifetime_addtime != 0) { |
| 6143 | const u_int64_t lifetime_addtime = sav->lft_s->sadb_lifetime_addtime * NSEC_PER_SEC; |
| 6144 | if (current_time_ns - sav->created > lifetime_addtime) { |
| 6145 | /* |
| 6146 | * If always_expire is set, expire. Otherwise, |
| 6147 | * if the SA has not been used, delete immediately. |
| 6148 | */ |
| 6149 | if (sav->lft_c->sadb_lifetime_usetime == 0 |
| 6150 | && sav->always_expire == 0) { |
| 6151 | key_sa_chgstate(sav, SADB_SASTATE_DEAD); |
| 6152 | key_freesav(sav, KEY_SADB_LOCKED); |
| 6153 | sav = NULL; |
| 6154 | } else if (savexbuf && savexcount < savbufcount) { |
| 6155 | key_sa_chgstate(sav, SADB_SASTATE_DYING); |
| 6156 | sav->refcnt++; |
| 6157 | *savexptr++ = sav; |
| 6158 | savexcount++; |
| 6159 | } |
| 6160 | } |
| 6161 | } |
| 6162 | /* check SOFT lifetime by bytes */ |
| 6163 | /* |
| 6164 | * XXX I don't know the way to delete this SA |
| 6165 | * when new SA is installed. Caution when it's |
| 6166 | * installed too big lifetime by time. |
| 6167 | */ |
| 6168 | else if (savexbuf && savexcount < savbufcount |
| 6169 | && sav->lft_s->sadb_lifetime_bytes != 0 |
| 6170 | && sav->lft_s->sadb_lifetime_bytes < sav->lft_c->sadb_lifetime_bytes) { |
| 6171 | /* |
| 6172 | * XXX If we keep to send expire |
| 6173 | * message in the status of |
| 6174 | * DYING. Do remove below code. |
| 6175 | */ |
| 6176 | //key_expire(sav); |
| 6177 | key_sa_chgstate(sav, SADB_SASTATE_DYING); |
| 6178 | sav->refcnt++; |
| 6179 | *savexptr++ = sav; |
| 6180 | savexcount++; |
| 6181 | } |
| 6182 | } |
| 6183 | |
| 6184 | /* check DYING entry to change status to DEAD. */ |
| 6185 | for (sav = LIST_FIRST(&sah->savtree[SADB_SASTATE_DYING]); |
| 6186 | sav != NULL; |
| 6187 | sav = nextsav) { |
| 6188 | dying_sav_count++; |
| 6189 | total_sav_count++; |
| 6190 | nextsav = LIST_NEXT(sav, chain); |
| 6191 | |
| 6192 | /* we don't need to check. */ |
| 6193 | if (sav->lft_h == NULL) { |
| 6194 | continue; |
| 6195 | } |
| 6196 | |
| 6197 | /* sanity check */ |
| 6198 | if (sav->lft_c == NULL) { |
| 6199 | ipseclog((LOG_DEBUG, "key_timehandler: " |
| 6200 | "There is no CURRENT time, why?\n" )); |
| 6201 | continue; |
| 6202 | } |
| 6203 | |
| 6204 | /* check HARD lifetime */ |
| 6205 | if (sav->lft_h->sadb_lifetime_addtime != 0) { |
| 6206 | const u_int64_t lifetime_addtime = sav->lft_h->sadb_lifetime_addtime * NSEC_PER_SEC; |
| 6207 | if (current_time_ns - sav->created > lifetime_addtime) { |
| 6208 | if (sav->always_expire) { |
| 6209 | key_send_delete(sav); |
| 6210 | sav = NULL; |
| 6211 | } else { |
| 6212 | key_sa_chgstate(sav, SADB_SASTATE_DEAD); |
| 6213 | key_freesav(sav, KEY_SADB_LOCKED); |
| 6214 | sav = NULL; |
| 6215 | } |
| 6216 | } |
| 6217 | } |
| 6218 | /* check HARD lifetime by bytes */ |
| 6219 | else if (sav->lft_h->sadb_lifetime_bytes != 0 |
| 6220 | && sav->lft_h->sadb_lifetime_bytes < sav->lft_c->sadb_lifetime_bytes) { |
| 6221 | key_sa_chgstate(sav, SADB_SASTATE_DEAD); |
| 6222 | key_freesav(sav, KEY_SADB_LOCKED); |
| 6223 | sav = NULL; |
| 6224 | } |
| 6225 | } |
| 6226 | |
| 6227 | /* delete entry in DEAD */ |
| 6228 | for (sav = LIST_FIRST(&sah->savtree[SADB_SASTATE_DEAD]); |
| 6229 | sav != NULL; |
| 6230 | sav = nextsav) { |
| 6231 | dead_sav_count++; |
| 6232 | total_sav_count++; |
| 6233 | nextsav = LIST_NEXT(sav, chain); |
| 6234 | |
| 6235 | /* sanity check */ |
| 6236 | if (sav->state != SADB_SASTATE_DEAD) { |
| 6237 | ipseclog((LOG_DEBUG, "key_timehandler: " |
| 6238 | "invalid sav->state " |
| 6239 | "(queue: %d SA: %d): " |
| 6240 | "kill it anyway\n" , |
| 6241 | SADB_SASTATE_DEAD, sav->state)); |
| 6242 | } |
| 6243 | |
| 6244 | /* |
| 6245 | * do not call key_freesav() here. |
| 6246 | * sav should already be freed, and sav->refcnt |
| 6247 | * shows other references to sav |
| 6248 | * (such as from SPD). |
| 6249 | */ |
| 6250 | } |
| 6251 | } |
| 6252 | } |
| 6253 | |
| 6254 | if (++key_timehandler_debug >= 300) { |
| 6255 | if (key_debug_level) { |
| 6256 | printf("%s: total stats for %u calls\n" , __FUNCTION__, key_timehandler_debug); |
| 6257 | printf("%s: walked %u SPDs\n" , __FUNCTION__, spd_count); |
| 6258 | printf("%s: walked %llu SAs: LARVAL SAs %u, MATURE SAs %u, DYING SAs %u, DEAD SAs %u\n" , __FUNCTION__, |
| 6259 | total_sav_count, larval_sav_count, mature_sav_count, dying_sav_count, dead_sav_count); |
| 6260 | printf("%s: walked %u SAHs: DEAD SAHs %u, EMPTY SAHs %u\n" , __FUNCTION__, |
| 6261 | sah_count, dead_sah_count, empty_sah_count); |
| 6262 | if (sah_search_calls) { |
| 6263 | printf("%s: SAH search cost %d iters per call\n" , __FUNCTION__, |
| 6264 | (sah_search_count / sah_search_calls)); |
| 6265 | } |
| 6266 | } |
| 6267 | spd_count = 0; |
| 6268 | sah_count = 0; |
| 6269 | dead_sah_count = 0; |
| 6270 | empty_sah_count = 0; |
| 6271 | larval_sav_count = 0; |
| 6272 | mature_sav_count = 0; |
| 6273 | dying_sav_count = 0; |
| 6274 | dead_sav_count = 0; |
| 6275 | total_sav_count = 0; |
| 6276 | sah_search_count = 0; |
| 6277 | sah_search_calls = 0; |
| 6278 | key_timehandler_debug = 0; |
| 6279 | } |
| 6280 | |
| 6281 | const u_int64_t blockacq_lifetime = (u_int64_t)key_blockacq_lifetime * NSEC_PER_SEC; |
| 6282 | #ifndef IPSEC_NONBLOCK_ACQUIRE |
| 6283 | /* ACQ tree */ |
| 6284 | { |
| 6285 | struct secacq *acq, *nextacq; |
| 6286 | |
| 6287 | for (acq = LIST_FIRST(&acqtree); |
| 6288 | acq != NULL; |
| 6289 | acq = nextacq) { |
| 6290 | stop_handler = 0; |
| 6291 | nextacq = LIST_NEXT(acq, chain); |
| 6292 | |
| 6293 | if (current_time_ns - acq->created > blockacq_lifetime |
| 6294 | && __LIST_CHAINED(acq)) { |
| 6295 | LIST_REMOVE(acq, chain); |
| 6296 | kfree_type(struct secacq, acq); |
| 6297 | } |
| 6298 | } |
| 6299 | } |
| 6300 | #endif |
| 6301 | |
| 6302 | /* SP ACQ tree */ |
| 6303 | { |
| 6304 | struct secspacq *acq, *nextacq; |
| 6305 | |
| 6306 | for (acq = LIST_FIRST(&spacqtree); |
| 6307 | acq != NULL; |
| 6308 | acq = nextacq) { |
| 6309 | stop_handler = 0; |
| 6310 | nextacq = LIST_NEXT(acq, chain); |
| 6311 | |
| 6312 | if (current_time_ns - acq->created > blockacq_lifetime |
| 6313 | && __LIST_CHAINED(acq)) { |
| 6314 | LIST_REMOVE(acq, chain); |
| 6315 | struct secacq *secacq_p = (struct secacq *)acq; |
| 6316 | kfree_type(struct secacq, secacq_p); |
| 6317 | } |
| 6318 | } |
| 6319 | } |
| 6320 | |
| 6321 | /* initialize random seed */ |
| 6322 | if (key_tick_init_random++ > key_int_random) { |
| 6323 | key_tick_init_random = 0; |
| 6324 | key_srandom(); |
| 6325 | } |
| 6326 | |
| 6327 | uint64_t acc_sleep_time = 0; |
| 6328 | absolutetime_to_nanoseconds(abstime: mach_absolutetime_asleep, result: &acc_sleep_time); |
| 6329 | natt_now = ++up_time + (acc_sleep_time / NSEC_PER_SEC); |
| 6330 | |
| 6331 | lck_mtx_unlock(sadb_mutex); |
| 6332 | |
| 6333 | /* send messages outside of sadb_mutex */ |
| 6334 | if (spbuf && spcount > 0) { |
| 6335 | cnt = spcount; |
| 6336 | while (cnt--) { |
| 6337 | key_spdexpire(sp: *(--spptr)); |
| 6338 | } |
| 6339 | } |
| 6340 | if (savkabuf && savkacount > 0) { |
| 6341 | struct secasvar **savkaptr_sav = savkaptr; |
| 6342 | u_int32_t cnt_send = savkacount; |
| 6343 | |
| 6344 | while (cnt_send--) { |
| 6345 | if (ipsec_send_natt_keepalive(sav: *(--savkaptr))) { |
| 6346 | // <rdar://6768487> iterate (all over again) and update timestamps |
| 6347 | struct secasvar **savkaptr_update = savkaptr_sav; |
| 6348 | u_int32_t cnt_update = savkacount; |
| 6349 | while (cnt_update--) { |
| 6350 | key_update_natt_keepalive_timestamp(*savkaptr, |
| 6351 | *(--savkaptr_update)); |
| 6352 | } |
| 6353 | } |
| 6354 | } |
| 6355 | } |
| 6356 | if (savexbuf && savexcount > 0) { |
| 6357 | cnt = savexcount; |
| 6358 | while (cnt--) { |
| 6359 | key_expire(*(--savexptr)); |
| 6360 | } |
| 6361 | } |
| 6362 | |
| 6363 | /* decrement ref counts and free buffers */ |
| 6364 | lck_mtx_lock(sadb_mutex); |
| 6365 | if (spbuf) { |
| 6366 | while (spcount--) { |
| 6367 | key_freesp(sp: *spptr++, KEY_SADB_LOCKED); |
| 6368 | } |
| 6369 | kfree_type(struct secpolicy *, spbufcount, spbuf); |
| 6370 | } |
| 6371 | if (savkabuf) { |
| 6372 | while (savkacount--) { |
| 6373 | key_freesav(sav: *savkaptr++, KEY_SADB_LOCKED); |
| 6374 | } |
| 6375 | kfree_type(struct secasvar *, savbufcount, savkabuf); |
| 6376 | } |
| 6377 | if (savexbuf) { |
| 6378 | while (savexcount--) { |
| 6379 | key_freesav(sav: *savexptr++, KEY_SADB_LOCKED); |
| 6380 | } |
| 6381 | kfree_type(struct secasvar *, savbufcount, savexbuf); |
| 6382 | } |
| 6383 | |
| 6384 | if (stop_handler) { |
| 6385 | key_timehandler_running = 0; |
| 6386 | /* Turn on the ipsec bypass */ |
| 6387 | ipsec_bypass = 1; |
| 6388 | } else { |
| 6389 | /* do exchange to tick time !! */ |
| 6390 | (void)timeout((void *)key_timehandler, arg: (void *)0, ticks: hz); |
| 6391 | } |
| 6392 | |
| 6393 | lck_mtx_unlock(sadb_mutex); |
| 6394 | return; |
| 6395 | } |
| 6396 | |
| 6397 | /* |
| 6398 | * to initialize a seed for random() |
| 6399 | */ |
| 6400 | static void |
| 6401 | key_srandom(void) |
| 6402 | { |
| 6403 | #ifdef __APPLE__ |
| 6404 | /* Our PRNG is based on Yarrow and doesn't need to be seeded */ |
| 6405 | random(); |
| 6406 | #else |
| 6407 | struct timeval tv; |
| 6408 | |
| 6409 | microtime(&tv); |
| 6410 | |
| 6411 | srandom(tv.tv_usec); |
| 6412 | #endif |
| 6413 | |
| 6414 | return; |
| 6415 | } |
| 6416 | |
| 6417 | u_int32_t |
| 6418 | key_random(void) |
| 6419 | { |
| 6420 | u_int32_t value; |
| 6421 | |
| 6422 | key_randomfill(&value, sizeof(value)); |
| 6423 | return value; |
| 6424 | } |
| 6425 | |
| 6426 | void |
| 6427 | key_randomfill( |
| 6428 | void *p, |
| 6429 | size_t l) |
| 6430 | { |
| 6431 | #ifdef __APPLE__ |
| 6432 | cc_rand_generate(out: p, outlen: l); |
| 6433 | #else |
| 6434 | size_t n; |
| 6435 | u_int32_t v; |
| 6436 | static int warn = 1; |
| 6437 | |
| 6438 | n = 0; |
| 6439 | n = (size_t)read_random(p, (u_int)l); |
| 6440 | /* last resort */ |
| 6441 | while (n < l) { |
| 6442 | v = random(); |
| 6443 | bcopy(&v, (u_int8_t *)p + n, |
| 6444 | l - n < sizeof(v) ? l - n : sizeof(v)); |
| 6445 | n += sizeof(v); |
| 6446 | |
| 6447 | if (warn) { |
| 6448 | printf("WARNING: pseudo-random number generator " |
| 6449 | "used for IPsec processing\n" ); |
| 6450 | warn = 0; |
| 6451 | } |
| 6452 | } |
| 6453 | #endif |
| 6454 | } |
| 6455 | |
| 6456 | /* |
| 6457 | * map SADB_SATYPE_* to IPPROTO_*. |
| 6458 | * if satype == SADB_SATYPE then satype is mapped to ~0. |
| 6459 | * OUT: |
| 6460 | * 0: invalid satype. |
| 6461 | */ |
| 6462 | static u_int8_t |
| 6463 | key_satype2proto( |
| 6464 | u_int8_t satype) |
| 6465 | { |
| 6466 | switch (satype) { |
| 6467 | case SADB_SATYPE_UNSPEC: |
| 6468 | return IPSEC_PROTO_ANY; |
| 6469 | case SADB_SATYPE_AH: |
| 6470 | return IPPROTO_AH; |
| 6471 | case SADB_SATYPE_ESP: |
| 6472 | return IPPROTO_ESP; |
| 6473 | default: |
| 6474 | return 0; |
| 6475 | } |
| 6476 | /* NOTREACHED */ |
| 6477 | } |
| 6478 | |
| 6479 | /* |
| 6480 | * map IPPROTO_* to SADB_SATYPE_* |
| 6481 | * OUT: |
| 6482 | * 0: invalid protocol type. |
| 6483 | */ |
| 6484 | static u_int8_t |
| 6485 | key_proto2satype( |
| 6486 | u_int16_t proto) |
| 6487 | { |
| 6488 | switch (proto) { |
| 6489 | case IPPROTO_AH: |
| 6490 | return SADB_SATYPE_AH; |
| 6491 | case IPPROTO_ESP: |
| 6492 | return SADB_SATYPE_ESP; |
| 6493 | default: |
| 6494 | return 0; |
| 6495 | } |
| 6496 | /* NOTREACHED */ |
| 6497 | } |
| 6498 | |
| 6499 | static ifnet_t |
| 6500 | key_get_ipsec_if_from_message(const struct sadb_msghdr *mhp, int message_type) |
| 6501 | { |
| 6502 | struct sadb_x_ipsecif *ipsecifopts = NULL; |
| 6503 | ifnet_t ipsec_if = NULL; |
| 6504 | |
| 6505 | ipsecifopts = (struct sadb_x_ipsecif *)(void *)mhp->ext[message_type]; |
| 6506 | if (ipsecifopts != NULL) { |
| 6507 | if (ipsecifopts->sadb_x_ipsecif_ipsec_if[0]) { |
| 6508 | ipsecifopts->sadb_x_ipsecif_ipsec_if[IFXNAMSIZ - 1] = '\0'; |
| 6509 | ifnet_find_by_name(ifname: ipsecifopts->sadb_x_ipsecif_ipsec_if, interface: &ipsec_if); |
| 6510 | } |
| 6511 | } |
| 6512 | |
| 6513 | return ipsec_if; |
| 6514 | } |
| 6515 | |
| 6516 | static u_int |
| 6517 | key_get_outgoing_ifindex_from_message(const struct sadb_msghdr *mhp, int message_type) |
| 6518 | { |
| 6519 | struct sadb_x_ipsecif *ipsecifopts = NULL; |
| 6520 | ifnet_t outgoing_if = NULL; |
| 6521 | |
| 6522 | ipsecifopts = (struct sadb_x_ipsecif *)(void *)mhp->ext[message_type]; |
| 6523 | if (ipsecifopts != NULL) { |
| 6524 | if (ipsecifopts->sadb_x_ipsecif_outgoing_if[0]) { |
| 6525 | ipsecifopts->sadb_x_ipsecif_outgoing_if[IFXNAMSIZ - 1] = '\0'; |
| 6526 | ifnet_find_by_name(ifname: ipsecifopts->sadb_x_ipsecif_outgoing_if, interface: &outgoing_if); |
| 6527 | } |
| 6528 | } |
| 6529 | |
| 6530 | u_int outgoing_if_index = 0; |
| 6531 | if (outgoing_if != NULL) { |
| 6532 | outgoing_if_index = outgoing_if->if_index; |
| 6533 | ifnet_release(interface: outgoing_if); |
| 6534 | } |
| 6535 | |
| 6536 | return outgoing_if_index; |
| 6537 | } |
| 6538 | |
| 6539 | /* %%% PF_KEY */ |
| 6540 | /* |
| 6541 | * SADB_GETSPI processing is to receive |
| 6542 | * <base, (SA2), src address, dst address, (SPI range)> |
| 6543 | * from the IKMPd, to assign a unique spi value, to hang on the INBOUND |
| 6544 | * tree with the status of LARVAL, and send |
| 6545 | * <base, SA(*), address(SD)> |
| 6546 | * to the IKMPd. |
| 6547 | * |
| 6548 | * IN: mhp: pointer to the pointer to each header. |
| 6549 | * OUT: NULL if fail. |
| 6550 | * other if success, return pointer to the message to send. |
| 6551 | */ |
| 6552 | static int |
| 6553 | key_getspi( |
| 6554 | struct socket *so, |
| 6555 | struct mbuf *m, |
| 6556 | const struct sadb_msghdr *mhp) |
| 6557 | { |
| 6558 | struct sadb_address *src0, *dst0; |
| 6559 | struct secasindex saidx; |
| 6560 | struct secashead *newsah; |
| 6561 | struct secasvar *newsav; |
| 6562 | ifnet_t ipsec_if = NULL; |
| 6563 | u_int8_t proto; |
| 6564 | u_int32_t spi; |
| 6565 | u_int8_t mode; |
| 6566 | u_int32_t reqid; |
| 6567 | int error; |
| 6568 | |
| 6569 | LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_NOTOWNED); |
| 6570 | |
| 6571 | /* sanity check */ |
| 6572 | if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL) { |
| 6573 | panic("key_getspi: NULL pointer is passed." ); |
| 6574 | } |
| 6575 | |
| 6576 | if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || |
| 6577 | mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) { |
| 6578 | ipseclog((LOG_DEBUG, "key_getspi: invalid message is passed.\n" )); |
| 6579 | return key_senderror(so, m, EINVAL); |
| 6580 | } |
| 6581 | if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || |
| 6582 | mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) { |
| 6583 | ipseclog((LOG_DEBUG, "key_getspi: invalid message is passed.\n" )); |
| 6584 | return key_senderror(so, m, EINVAL); |
| 6585 | } |
| 6586 | if (mhp->ext[SADB_X_EXT_SA2] != NULL) { |
| 6587 | mode = ((struct sadb_x_sa2 *) |
| 6588 | (void *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode; |
| 6589 | reqid = ((struct sadb_x_sa2 *) |
| 6590 | (void *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid; |
| 6591 | } else { |
| 6592 | mode = IPSEC_MODE_ANY; |
| 6593 | reqid = 0; |
| 6594 | } |
| 6595 | |
| 6596 | src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]); |
| 6597 | dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]); |
| 6598 | |
| 6599 | /* map satype to proto */ |
| 6600 | if ((proto = key_satype2proto(satype: mhp->msg->sadb_msg_satype)) == 0) { |
| 6601 | ipseclog((LOG_DEBUG, "key_getspi: invalid satype is passed.\n" )); |
| 6602 | return key_senderror(so, m, EINVAL); |
| 6603 | } |
| 6604 | |
| 6605 | /* make sure if port number is zero. */ |
| 6606 | switch (((struct sockaddr *)(src0 + 1))->sa_family) { |
| 6607 | case AF_INET: |
| 6608 | if (((struct sockaddr *)(src0 + 1))->sa_len != |
| 6609 | sizeof(struct sockaddr_in)) { |
| 6610 | return key_senderror(so, m, EINVAL); |
| 6611 | } |
| 6612 | ((struct sockaddr_in *)(void *)(src0 + 1))->sin_port = 0; |
| 6613 | break; |
| 6614 | case AF_INET6: |
| 6615 | if (((struct sockaddr *)(src0 + 1))->sa_len != |
| 6616 | sizeof(struct sockaddr_in6)) { |
| 6617 | return key_senderror(so, m, EINVAL); |
| 6618 | } |
| 6619 | ((struct sockaddr_in6 *)(void *)(src0 + 1))->sin6_port = 0; |
| 6620 | break; |
| 6621 | default: |
| 6622 | ; /*???*/ |
| 6623 | } |
| 6624 | switch (((struct sockaddr *)(dst0 + 1))->sa_family) { |
| 6625 | case AF_INET: |
| 6626 | if (((struct sockaddr *)(dst0 + 1))->sa_len != |
| 6627 | sizeof(struct sockaddr_in)) { |
| 6628 | return key_senderror(so, m, EINVAL); |
| 6629 | } |
| 6630 | ((struct sockaddr_in *)(void *)(dst0 + 1))->sin_port = 0; |
| 6631 | break; |
| 6632 | case AF_INET6: |
| 6633 | if (((struct sockaddr *)(dst0 + 1))->sa_len != |
| 6634 | sizeof(struct sockaddr_in6)) { |
| 6635 | return key_senderror(so, m, EINVAL); |
| 6636 | } |
| 6637 | ((struct sockaddr_in6 *)(void *)(dst0 + 1))->sin6_port = 0; |
| 6638 | break; |
| 6639 | default: |
| 6640 | ; /*???*/ |
| 6641 | } |
| 6642 | |
| 6643 | ipsec_if = key_get_ipsec_if_from_message(mhp, SADB_X_EXT_IPSECIF); |
| 6644 | |
| 6645 | /* XXX boundary check against sa_len */ |
| 6646 | KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, ipsec_if ? ipsec_if->if_index : 0, &saidx); |
| 6647 | |
| 6648 | lck_mtx_lock(sadb_mutex); |
| 6649 | |
| 6650 | /* SPI allocation */ |
| 6651 | spi = key_do_getnewspi((struct sadb_spirange *) |
| 6652 | (void *)mhp->ext[SADB_EXT_SPIRANGE], &saidx); |
| 6653 | if (spi == 0) { |
| 6654 | lck_mtx_unlock(sadb_mutex); |
| 6655 | if (ipsec_if != NULL) { |
| 6656 | ifnet_release(interface: ipsec_if); |
| 6657 | } |
| 6658 | return key_senderror(so, m, EINVAL); |
| 6659 | } |
| 6660 | |
| 6661 | /* get a SA index */ |
| 6662 | if ((newsah = key_getsah(saidx: &saidx, SECURITY_ASSOCIATION_ANY)) == NULL) { |
| 6663 | /* create a new SA index: key_addspi is always used for inbound spi */ |
| 6664 | if ((newsah = key_newsah(saidx: &saidx, ipsec_if, outgoing_if: key_get_outgoing_ifindex_from_message(mhp, SADB_X_EXT_IPSECIF), IPSEC_DIR_INBOUND, SECURITY_ASSOCIATION_PFKEY)) == NULL) { |
| 6665 | lck_mtx_unlock(sadb_mutex); |
| 6666 | if (ipsec_if != NULL) { |
| 6667 | ifnet_release(interface: ipsec_if); |
| 6668 | } |
| 6669 | ipseclog((LOG_DEBUG, "key_getspi: No more memory.\n" )); |
| 6670 | return key_senderror(so, m, ENOBUFS); |
| 6671 | } |
| 6672 | } |
| 6673 | |
| 6674 | if (ipsec_if != NULL) { |
| 6675 | ifnet_release(interface: ipsec_if); |
| 6676 | ipsec_if = NULL; |
| 6677 | } |
| 6678 | |
| 6679 | // Increment use count, since key_newsav() could release sadb_mutex lock |
| 6680 | newsah->use_count++; |
| 6681 | |
| 6682 | if ((newsah->flags & SECURITY_ASSOCIATION_CUSTOM_IPSEC) == SECURITY_ASSOCIATION_CUSTOM_IPSEC) { |
| 6683 | newsah->use_count--; |
| 6684 | lck_mtx_unlock(sadb_mutex); |
| 6685 | ipseclog((LOG_ERR, "key_getspi: custom ipsec exists\n" )); |
| 6686 | return key_senderror(so, m, EEXIST); |
| 6687 | } |
| 6688 | |
| 6689 | /* get a new SA */ |
| 6690 | /* XXX rewrite */ |
| 6691 | newsav = key_newsav(m, mhp, sah: newsah, errp: &error, so); |
| 6692 | if (newsav == NULL) { |
| 6693 | /* XXX don't free new SA index allocated in above. */ |
| 6694 | newsah->use_count--; |
| 6695 | lck_mtx_unlock(sadb_mutex); |
| 6696 | return key_senderror(so, m, error); |
| 6697 | } |
| 6698 | |
| 6699 | if (newsah->state == SADB_SASTATE_DEAD) { |
| 6700 | newsah->use_count--; |
| 6701 | key_sa_chgstate(newsav, SADB_SASTATE_DEAD); |
| 6702 | key_freesav(sav: newsav, KEY_SADB_LOCKED); |
| 6703 | lck_mtx_unlock(sadb_mutex); |
| 6704 | ipseclog((LOG_ERR, "key_getspi: security association head is dead\n" )); |
| 6705 | return key_senderror(so, m, EINVAL); |
| 6706 | } |
| 6707 | |
| 6708 | /* set spi */ |
| 6709 | key_setspi(sav: newsav, htonl(spi)); |
| 6710 | |
| 6711 | #ifndef IPSEC_NONBLOCK_ACQUIRE |
| 6712 | /* delete the entry in acqtree */ |
| 6713 | if (mhp->msg->sadb_msg_seq != 0) { |
| 6714 | struct secacq *acq; |
| 6715 | if ((acq = key_getacqbyseq(mhp->msg->sadb_msg_seq)) != NULL) { |
| 6716 | /* reset counter in order to deletion by timehandler. */ |
| 6717 | acq->created = key_get_continuous_time_ns(); |
| 6718 | acq->count = 0; |
| 6719 | } |
| 6720 | } |
| 6721 | #endif |
| 6722 | newsah->use_count--; |
| 6723 | u_int32_t newsav_seq = newsav->seq; |
| 6724 | lck_mtx_unlock(sadb_mutex); |
| 6725 | |
| 6726 | { |
| 6727 | struct mbuf *n, *nn; |
| 6728 | struct sadb_sa *m_sa; |
| 6729 | struct sadb_msg *newmsg; |
| 6730 | int off, len; |
| 6731 | |
| 6732 | /* create new sadb_msg to reply. */ |
| 6733 | len = PFKEY_ALIGN8(sizeof(struct sadb_msg)) + |
| 6734 | PFKEY_ALIGN8(sizeof(struct sadb_sa)); |
| 6735 | if (len > MCLBYTES) { |
| 6736 | return key_senderror(so, m, ENOBUFS); |
| 6737 | } |
| 6738 | |
| 6739 | MGETHDR(n, M_WAITOK, MT_DATA); |
| 6740 | if (n && len > MHLEN) { |
| 6741 | MCLGET(n, M_WAITOK); |
| 6742 | if ((n->m_flags & M_EXT) == 0) { |
| 6743 | m_freem(n); |
| 6744 | n = NULL; |
| 6745 | } |
| 6746 | } |
| 6747 | if (!n) { |
| 6748 | return key_senderror(so, m, ENOBUFS); |
| 6749 | } |
| 6750 | |
| 6751 | n->m_len = len; |
| 6752 | n->m_next = NULL; |
| 6753 | off = 0; |
| 6754 | |
| 6755 | m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, caddr_t) + off); |
| 6756 | off += PFKEY_ALIGN8(sizeof(struct sadb_msg)); |
| 6757 | |
| 6758 | m_sa = (struct sadb_sa *)(void *)(mtod(n, caddr_t) + off); |
| 6759 | memset(s: m_sa, c: 0, PFKEY_ALIGN8(sizeof(struct sadb_sa))); |
| 6760 | m_sa->sadb_sa_len = PFKEY_UNIT64(sizeof(struct sadb_sa)); |
| 6761 | m_sa->sadb_sa_exttype = SADB_EXT_SA; |
| 6762 | m_sa->sadb_sa_spi = htonl(spi); |
| 6763 | off += PFKEY_ALIGN8(sizeof(struct sadb_sa)); |
| 6764 | |
| 6765 | #if DIAGNOSTIC |
| 6766 | if (off != len) { |
| 6767 | panic("length inconsistency in key_getspi" ); |
| 6768 | } |
| 6769 | #endif |
| 6770 | { |
| 6771 | int mbufItems[] = {SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST}; |
| 6772 | n->m_next = key_gather_mbuf(m, mhp, ndeep: 0, nitem: sizeof(mbufItems) / sizeof(int), items: mbufItems); |
| 6773 | if (!n->m_next) { |
| 6774 | m_freem(n); |
| 6775 | return key_senderror(so, m, ENOBUFS); |
| 6776 | } |
| 6777 | } |
| 6778 | |
| 6779 | if (n->m_len < sizeof(struct sadb_msg)) { |
| 6780 | n = m_pullup(n, sizeof(struct sadb_msg)); |
| 6781 | if (n == NULL) { |
| 6782 | return key_sendup_mbuf(so, m, KEY_SENDUP_ONE); |
| 6783 | } |
| 6784 | } |
| 6785 | |
| 6786 | n->m_pkthdr.len = 0; |
| 6787 | for (nn = n; nn; nn = nn->m_next) { |
| 6788 | n->m_pkthdr.len += nn->m_len; |
| 6789 | } |
| 6790 | |
| 6791 | newmsg = mtod(n, struct sadb_msg *); |
| 6792 | newmsg->sadb_msg_seq = newsav_seq; |
| 6793 | newmsg->sadb_msg_errno = 0; |
| 6794 | VERIFY(PFKEY_UNIT64(n->m_pkthdr.len) <= UINT16_MAX); |
| 6795 | newmsg->sadb_msg_len = (u_int16_t)PFKEY_UNIT64(n->m_pkthdr.len); |
| 6796 | |
| 6797 | m_freem(m); |
| 6798 | return key_sendup_mbuf(so, n, KEY_SENDUP_ONE); |
| 6799 | } |
| 6800 | } |
| 6801 | |
| 6802 | /* |
| 6803 | * allocating new SPI |
| 6804 | * called by key_getspi(). |
| 6805 | * OUT: |
| 6806 | * 0: failure. |
| 6807 | * others: success. |
| 6808 | */ |
| 6809 | static u_int32_t |
| 6810 | key_do_getnewspi( |
| 6811 | struct sadb_spirange *spirange, |
| 6812 | struct secasindex *saidx) |
| 6813 | { |
| 6814 | u_int32_t newspi; |
| 6815 | u_int32_t keymin, keymax; |
| 6816 | int count = key_spi_trycnt; |
| 6817 | |
| 6818 | LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_OWNED); |
| 6819 | |
| 6820 | /* set spi range to allocate */ |
| 6821 | if (spirange != NULL) { |
| 6822 | keymin = spirange->sadb_spirange_min; |
| 6823 | keymax = spirange->sadb_spirange_max; |
| 6824 | } else { |
| 6825 | keymin = key_spi_minval; |
| 6826 | keymax = key_spi_maxval; |
| 6827 | } |
| 6828 | if (keymin == keymax) { |
| 6829 | if (key_checkspidup(saidx, spi: keymin) != NULL) { |
| 6830 | ipseclog((LOG_DEBUG, "key_do_getnewspi: SPI %u exists already.\n" , keymin)); |
| 6831 | return 0; |
| 6832 | } |
| 6833 | |
| 6834 | count--; /* taking one cost. */ |
| 6835 | newspi = keymin; |
| 6836 | } else { |
| 6837 | u_int32_t range = keymax - keymin + 1; /* overflow value of zero means full range */ |
| 6838 | |
| 6839 | /* init SPI */ |
| 6840 | newspi = 0; |
| 6841 | |
| 6842 | /* when requesting to allocate spi ranged */ |
| 6843 | while (count--) { |
| 6844 | u_int32_t rand_val = key_random(); |
| 6845 | |
| 6846 | /* generate pseudo-random SPI value ranged. */ |
| 6847 | newspi = (range == 0 ? rand_val : keymin + (rand_val % range)); |
| 6848 | |
| 6849 | if (key_checkspidup(saidx, spi: newspi) == NULL) { |
| 6850 | break; |
| 6851 | } |
| 6852 | } |
| 6853 | |
| 6854 | if (count == 0 || newspi == 0) { |
| 6855 | ipseclog((LOG_DEBUG, "key_do_getnewspi: to allocate spi is failed.\n" )); |
| 6856 | return 0; |
| 6857 | } |
| 6858 | } |
| 6859 | |
| 6860 | /* statistics */ |
| 6861 | keystat.getspi_count = |
| 6862 | (keystat.getspi_count + key_spi_trycnt - count) / 2; |
| 6863 | |
| 6864 | return newspi; |
| 6865 | } |
| 6866 | |
| 6867 | /* |
| 6868 | * SADB_UPDATE processing |
| 6869 | * receive |
| 6870 | * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),) |
| 6871 | * key(AE), (identity(SD),) (sensitivity)> |
| 6872 | * from the ikmpd, and update a secasvar entry whose status is SADB_SASTATE_LARVAL. |
| 6873 | * and send |
| 6874 | * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),) |
| 6875 | * (identity(SD),) (sensitivity)> |
| 6876 | * to the ikmpd. |
| 6877 | * |
| 6878 | * m will always be freed. |
| 6879 | */ |
| 6880 | static int |
| 6881 | key_update( |
| 6882 | struct socket *so, |
| 6883 | struct mbuf *m, |
| 6884 | const struct sadb_msghdr *mhp) |
| 6885 | { |
| 6886 | struct sadb_sa *sa0 = NULL; |
| 6887 | struct sadb_address *src0 = NULL, *dst0 = NULL; |
| 6888 | ifnet_t ipsec_if = NULL; |
| 6889 | struct secasindex saidx; |
| 6890 | struct secashead *sah = NULL; |
| 6891 | struct secasvar *sav = NULL; |
| 6892 | u_int8_t proto; |
| 6893 | u_int8_t mode; |
| 6894 | u_int32_t reqid; |
| 6895 | u_int16_t flags2; |
| 6896 | int error; |
| 6897 | |
| 6898 | LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_NOTOWNED); |
| 6899 | |
| 6900 | /* sanity check */ |
| 6901 | if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL) { |
| 6902 | panic("key_update: NULL pointer is passed." ); |
| 6903 | } |
| 6904 | |
| 6905 | /* map satype to proto */ |
| 6906 | if ((proto = key_satype2proto(satype: mhp->msg->sadb_msg_satype)) == 0) { |
| 6907 | ipseclog((LOG_DEBUG, "key_update: invalid satype is passed.\n" )); |
| 6908 | bzero_keys(mhp); |
| 6909 | return key_senderror(so, m, EINVAL); |
| 6910 | } |
| 6911 | |
| 6912 | if (mhp->ext[SADB_EXT_SA] == NULL || |
| 6913 | mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || |
| 6914 | mhp->ext[SADB_EXT_ADDRESS_DST] == NULL || |
| 6915 | (mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP && |
| 6916 | mhp->ext[SADB_EXT_KEY_ENCRYPT] == NULL) || |
| 6917 | (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH && |
| 6918 | mhp->ext[SADB_EXT_KEY_AUTH] == NULL) || |
| 6919 | (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL && |
| 6920 | mhp->ext[SADB_EXT_LIFETIME_SOFT] == NULL) || |
| 6921 | (mhp->ext[SADB_EXT_LIFETIME_HARD] == NULL && |
| 6922 | mhp->ext[SADB_EXT_LIFETIME_SOFT] != NULL)) { |
| 6923 | ipseclog((LOG_DEBUG, "key_update: invalid message is passed.\n" )); |
| 6924 | bzero_keys(mhp); |
| 6925 | return key_senderror(so, m, EINVAL); |
| 6926 | } |
| 6927 | if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) || |
| 6928 | mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || |
| 6929 | mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) { |
| 6930 | ipseclog((LOG_DEBUG, "key_update: invalid message is passed.\n" )); |
| 6931 | bzero_keys(mhp); |
| 6932 | return key_senderror(so, m, EINVAL); |
| 6933 | } |
| 6934 | if (mhp->ext[SADB_X_EXT_SA2] != NULL) { |
| 6935 | mode = ((struct sadb_x_sa2 *) |
| 6936 | (void *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode; |
| 6937 | reqid = ((struct sadb_x_sa2 *) |
| 6938 | (void *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid; |
| 6939 | flags2 = ((struct sadb_x_sa2 *)(void *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_flags; |
| 6940 | } else { |
| 6941 | mode = IPSEC_MODE_ANY; |
| 6942 | reqid = 0; |
| 6943 | flags2 = 0; |
| 6944 | } |
| 6945 | /* XXX boundary checking for other extensions */ |
| 6946 | |
| 6947 | sa0 = (struct sadb_sa *)(void *)mhp->ext[SADB_EXT_SA]; |
| 6948 | src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]); |
| 6949 | dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]); |
| 6950 | ipsec_if = key_get_ipsec_if_from_message(mhp, SADB_X_EXT_IPSECIF); |
| 6951 | |
| 6952 | u_int ipsec_if_index = 0; |
| 6953 | if (ipsec_if != NULL) { |
| 6954 | ipsec_if_index = ipsec_if->if_index; |
| 6955 | ifnet_release(interface: ipsec_if); |
| 6956 | ipsec_if = NULL; |
| 6957 | } |
| 6958 | |
| 6959 | /* XXX boundary check against sa_len */ |
| 6960 | KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, ipsec_if_index, &saidx); |
| 6961 | |
| 6962 | lck_mtx_lock(sadb_mutex); |
| 6963 | |
| 6964 | /* get a SA header */ |
| 6965 | if ((sah = key_getsah(saidx: &saidx, SECURITY_ASSOCIATION_PFKEY)) == NULL) { |
| 6966 | lck_mtx_unlock(sadb_mutex); |
| 6967 | ipseclog((LOG_DEBUG, "key_update: no SA index found.\n" )); |
| 6968 | bzero_keys(mhp); |
| 6969 | return key_senderror(so, m, ENOENT); |
| 6970 | } |
| 6971 | |
| 6972 | // Increment use count, since key_setsaval() could release sadb_mutex lock |
| 6973 | sah->use_count++; |
| 6974 | |
| 6975 | if ((sav = key_getsavbyspi(sah, spi: sa0->sadb_sa_spi)) == NULL) { |
| 6976 | ipseclog((LOG_DEBUG, |
| 6977 | "key_update: no such a SA found (spi:%u)\n" , |
| 6978 | (u_int32_t)ntohl(sa0->sadb_sa_spi))); |
| 6979 | error = EINVAL; |
| 6980 | goto fail; |
| 6981 | } |
| 6982 | |
| 6983 | // Increment reference count, since key_setsaval() could release sadb_mutex lock |
| 6984 | sav->refcnt++; |
| 6985 | |
| 6986 | /* validity check */ |
| 6987 | if (sav->sah->saidx.proto != proto) { |
| 6988 | ipseclog((LOG_DEBUG, |
| 6989 | "key_update: protocol mismatched (DB=%u param=%u)\n" , |
| 6990 | sav->sah->saidx.proto, proto)); |
| 6991 | error = EINVAL; |
| 6992 | goto fail; |
| 6993 | } |
| 6994 | |
| 6995 | if (sav->pid != mhp->msg->sadb_msg_pid) { |
| 6996 | ipseclog((LOG_DEBUG, |
| 6997 | "key_update: pid mismatched (DB:%u param:%u)\n" , |
| 6998 | sav->pid, mhp->msg->sadb_msg_pid)); |
| 6999 | error = EINVAL; |
| 7000 | goto fail; |
| 7001 | } |
| 7002 | |
| 7003 | /* copy sav values */ |
| 7004 | sav->flags2 = flags2; |
| 7005 | if (flags2 & SADB_X_EXT_SA2_DELETE_ON_DETACH) { |
| 7006 | sav->so = so; |
| 7007 | } |
| 7008 | |
| 7009 | error = key_setsaval(sav, m, mhp); |
| 7010 | if (error) { |
| 7011 | goto fail; |
| 7012 | } |
| 7013 | |
| 7014 | if (sah->state == SADB_SASTATE_DEAD) { |
| 7015 | ipseclog((LOG_ERR, |
| 7016 | "key_update: security association head is dead\n" )); |
| 7017 | error = EINVAL; |
| 7018 | goto fail; |
| 7019 | } |
| 7020 | |
| 7021 | /* |
| 7022 | * Verify if SADB_X_EXT_NATT_MULTIPLEUSERS flag is set that |
| 7023 | * this SA is for transport mode - otherwise clear it. |
| 7024 | */ |
| 7025 | if ((sav->flags & SADB_X_EXT_NATT_MULTIPLEUSERS) != 0 && |
| 7026 | (sav->sah->saidx.mode != IPSEC_MODE_TRANSPORT || |
| 7027 | sav->sah->saidx.src.ss_family != AF_INET)) { |
| 7028 | sav->flags &= ~SADB_X_EXT_NATT_MULTIPLEUSERS; |
| 7029 | } |
| 7030 | |
| 7031 | /* check SA values to be mature. */ |
| 7032 | if ((error = key_mature(sav)) != 0) { |
| 7033 | goto fail; |
| 7034 | } |
| 7035 | |
| 7036 | key_freesav(sav, KEY_SADB_LOCKED); |
| 7037 | sah->use_count--; |
| 7038 | lck_mtx_unlock(sadb_mutex); |
| 7039 | |
| 7040 | { |
| 7041 | struct mbuf *n; |
| 7042 | |
| 7043 | /* set msg buf from mhp */ |
| 7044 | n = key_getmsgbuf_x1(m, mhp); |
| 7045 | if (n == NULL) { |
| 7046 | ipseclog((LOG_DEBUG, "key_update: No more memory.\n" )); |
| 7047 | return key_senderror(so, m, ENOBUFS); |
| 7048 | } |
| 7049 | |
| 7050 | bzero_keys(mhp); |
| 7051 | m_freem(m); |
| 7052 | return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); |
| 7053 | } |
| 7054 | fail: |
| 7055 | if (sav != NULL) { |
| 7056 | key_freesav(sav, KEY_SADB_LOCKED); |
| 7057 | } |
| 7058 | if (sah != NULL) { |
| 7059 | sah->use_count--; |
| 7060 | } |
| 7061 | |
| 7062 | lck_mtx_unlock(sadb_mutex); |
| 7063 | bzero_keys(mhp); |
| 7064 | return key_senderror(so, m, error); |
| 7065 | } |
| 7066 | |
| 7067 | static int |
| 7068 | key_migrate(struct socket *so, |
| 7069 | struct mbuf *m, |
| 7070 | const struct sadb_msghdr *mhp) |
| 7071 | { |
| 7072 | struct sadb_sa *sa0 = NULL; |
| 7073 | struct sadb_address *src0 = NULL; |
| 7074 | struct sadb_address *dst0 = NULL; |
| 7075 | struct sadb_address *src1 = NULL; |
| 7076 | struct sadb_address *dst1 = NULL; |
| 7077 | ifnet_t ipsec_if0 = NULL; |
| 7078 | ifnet_t ipsec_if1 = NULL; |
| 7079 | struct secasindex saidx0; |
| 7080 | struct secasindex saidx1; |
| 7081 | struct secashead *sah = NULL; |
| 7082 | struct secashead *newsah = NULL; |
| 7083 | struct secasvar *sav = NULL; |
| 7084 | u_int8_t proto; |
| 7085 | |
| 7086 | LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_NOTOWNED); |
| 7087 | |
| 7088 | /* sanity check */ |
| 7089 | if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL) { |
| 7090 | panic("key_migrate: NULL pointer is passed." ); |
| 7091 | } |
| 7092 | |
| 7093 | /* map satype to proto */ |
| 7094 | if ((proto = key_satype2proto(satype: mhp->msg->sadb_msg_satype)) == 0) { |
| 7095 | ipseclog((LOG_DEBUG, "key_migrate: invalid satype is passed.\n" )); |
| 7096 | return key_senderror(so, m, EINVAL); |
| 7097 | } |
| 7098 | |
| 7099 | if (mhp->ext[SADB_EXT_SA] == NULL || |
| 7100 | mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || |
| 7101 | mhp->ext[SADB_EXT_ADDRESS_DST] == NULL || |
| 7102 | mhp->ext[SADB_EXT_MIGRATE_ADDRESS_SRC] == NULL || |
| 7103 | mhp->ext[SADB_EXT_MIGRATE_ADDRESS_DST] == NULL) { |
| 7104 | ipseclog((LOG_DEBUG, "key_migrate: invalid message is passed.\n" )); |
| 7105 | return key_senderror(so, m, EINVAL); |
| 7106 | } |
| 7107 | |
| 7108 | if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) || |
| 7109 | mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || |
| 7110 | mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) || |
| 7111 | mhp->extlen[SADB_EXT_MIGRATE_ADDRESS_SRC] < sizeof(struct sadb_address) || |
| 7112 | mhp->extlen[SADB_EXT_MIGRATE_ADDRESS_DST] < sizeof(struct sadb_address)) { |
| 7113 | ipseclog((LOG_DEBUG, "key_migrate: invalid message is passed.\n" )); |
| 7114 | return key_senderror(so, m, EINVAL); |
| 7115 | } |
| 7116 | |
| 7117 | lck_mtx_lock(sadb_mutex); |
| 7118 | |
| 7119 | sa0 = (struct sadb_sa *)(void *)mhp->ext[SADB_EXT_SA]; |
| 7120 | src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]); |
| 7121 | dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]); |
| 7122 | src1 = (struct sadb_address *)(mhp->ext[SADB_EXT_MIGRATE_ADDRESS_SRC]); |
| 7123 | dst1 = (struct sadb_address *)(mhp->ext[SADB_EXT_MIGRATE_ADDRESS_DST]); |
| 7124 | ipsec_if0 = key_get_ipsec_if_from_message(mhp, SADB_X_EXT_IPSECIF); |
| 7125 | ipsec_if1 = key_get_ipsec_if_from_message(mhp, SADB_X_EXT_MIGRATE_IPSECIF); |
| 7126 | |
| 7127 | u_int ipsec_if0_index = 0; |
| 7128 | if (ipsec_if0 != NULL) { |
| 7129 | ipsec_if0_index = ipsec_if0->if_index; |
| 7130 | ifnet_release(interface: ipsec_if0); |
| 7131 | ipsec_if0 = NULL; |
| 7132 | } |
| 7133 | |
| 7134 | /* Find existing SAH and SAV */ |
| 7135 | KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, ipsec_if0_index, &saidx0); |
| 7136 | |
| 7137 | LIST_FOREACH(sah, &sahtree, chain) { |
| 7138 | if (sah->state != SADB_SASTATE_MATURE) { |
| 7139 | continue; |
| 7140 | } |
| 7141 | if (key_cmpsaidx(saidx0: &sah->saidx, saidx1: &saidx0, CMP_HEAD) == 0) { |
| 7142 | continue; |
| 7143 | } |
| 7144 | |
| 7145 | sav = key_getsavbyspi(sah, spi: sa0->sadb_sa_spi); |
| 7146 | if (sav && sav->state == SADB_SASTATE_MATURE) { |
| 7147 | break; |
| 7148 | } |
| 7149 | } |
| 7150 | if (sah == NULL) { |
| 7151 | lck_mtx_unlock(sadb_mutex); |
| 7152 | if (ipsec_if1 != NULL) { |
| 7153 | ifnet_release(interface: ipsec_if1); |
| 7154 | } |
| 7155 | ipseclog((LOG_DEBUG, "key_migrate: no mature SAH found.\n" )); |
| 7156 | return key_senderror(so, m, ENOENT); |
| 7157 | } |
| 7158 | |
| 7159 | if (sav == NULL) { |
| 7160 | lck_mtx_unlock(sadb_mutex); |
| 7161 | if (ipsec_if1 != NULL) { |
| 7162 | ifnet_release(interface: ipsec_if1); |
| 7163 | } |
| 7164 | ipseclog((LOG_DEBUG, "key_migrate: no SA found.\n" )); |
| 7165 | return key_senderror(so, m, ENOENT); |
| 7166 | } |
| 7167 | |
| 7168 | /* Find or create new SAH */ |
| 7169 | KEY_SETSECASIDX(proto, sah->saidx.mode, sah->saidx.reqid, src1 + 1, dst1 + 1, ipsec_if1 ? ipsec_if1->if_index : 0, &saidx1); |
| 7170 | |
| 7171 | if ((newsah = key_getsah(saidx: &saidx1, SECURITY_ASSOCIATION_ANY)) == NULL) { |
| 7172 | if ((newsah = key_newsah(saidx: &saidx1, ipsec_if: ipsec_if1, outgoing_if: key_get_outgoing_ifindex_from_message(mhp, SADB_X_EXT_MIGRATE_IPSECIF), dir: sah->dir, SECURITY_ASSOCIATION_PFKEY)) == NULL) { |
| 7173 | lck_mtx_unlock(sadb_mutex); |
| 7174 | if (ipsec_if1 != NULL) { |
| 7175 | ifnet_release(interface: ipsec_if1); |
| 7176 | } |
| 7177 | ipseclog((LOG_DEBUG, "key_migrate: No more memory.\n" )); |
| 7178 | return key_senderror(so, m, ENOBUFS); |
| 7179 | } |
| 7180 | } |
| 7181 | |
| 7182 | if (ipsec_if1 != NULL) { |
| 7183 | ifnet_release(interface: ipsec_if1); |
| 7184 | ipsec_if1 = NULL; |
| 7185 | } |
| 7186 | |
| 7187 | if ((newsah->flags & SECURITY_ASSOCIATION_CUSTOM_IPSEC) == SECURITY_ASSOCIATION_CUSTOM_IPSEC) { |
| 7188 | lck_mtx_unlock(sadb_mutex); |
| 7189 | ipseclog((LOG_ERR, "key_migrate: custom ipsec exists\n" )); |
| 7190 | return key_senderror(so, m, EEXIST); |
| 7191 | } |
| 7192 | |
| 7193 | /* Migrate SAV in to new SAH */ |
| 7194 | if (key_migratesav(sav, newsah) != 0) { |
| 7195 | lck_mtx_unlock(sadb_mutex); |
| 7196 | ipseclog((LOG_DEBUG, "key_migrate: Failed to migrate SA to new SAH.\n" )); |
| 7197 | return key_senderror(so, m, EINVAL); |
| 7198 | } |
| 7199 | |
| 7200 | /* Reset NAT values */ |
| 7201 | sav->flags = sa0->sadb_sa_flags; |
| 7202 | sav->natt_encapsulated_src_port = ((const struct sadb_sa_2*)(sa0))->sadb_sa_natt_src_port; |
| 7203 | sav->remote_ike_port = ((const struct sadb_sa_2*)(sa0))->sadb_sa_natt_port; |
| 7204 | sav->natt_interval = ((const struct sadb_sa_2*)(sa0))->sadb_sa_natt_interval; |
| 7205 | sav->natt_offload_interval = ((const struct sadb_sa_2*)(sa0))->sadb_sa_natt_offload_interval; |
| 7206 | sav->natt_last_activity = natt_now; |
| 7207 | |
| 7208 | /* |
| 7209 | * Verify if SADB_X_EXT_NATT_MULTIPLEUSERS flag is set that |
| 7210 | * SADB_X_EXT_NATT is set and SADB_X_EXT_NATT_KEEPALIVE is not |
| 7211 | * set (we're not behind nat) - otherwise clear it. |
| 7212 | */ |
| 7213 | if ((sav->flags & SADB_X_EXT_NATT_MULTIPLEUSERS) != 0) { |
| 7214 | if ((sav->flags & SADB_X_EXT_NATT) == 0 || |
| 7215 | (sav->flags & SADB_X_EXT_NATT_KEEPALIVE) != 0) { |
| 7216 | sav->flags &= ~SADB_X_EXT_NATT_MULTIPLEUSERS; |
| 7217 | } |
| 7218 | } |
| 7219 | |
| 7220 | lck_mtx_unlock(sadb_mutex); |
| 7221 | { |
| 7222 | struct mbuf *n; |
| 7223 | struct sadb_msg *newmsg; |
| 7224 | int mbufItems[] = {SADB_EXT_RESERVED, SADB_EXT_SA, |
| 7225 | SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST, SADB_X_EXT_IPSECIF, |
| 7226 | SADB_EXT_MIGRATE_ADDRESS_SRC, SADB_EXT_MIGRATE_ADDRESS_DST, SADB_X_EXT_MIGRATE_IPSECIF}; |
| 7227 | |
| 7228 | /* create new sadb_msg to reply. */ |
| 7229 | n = key_gather_mbuf(m, mhp, ndeep: 1, nitem: sizeof(mbufItems) / sizeof(int), items: mbufItems); |
| 7230 | if (!n) { |
| 7231 | return key_senderror(so, m, ENOBUFS); |
| 7232 | } |
| 7233 | |
| 7234 | if (n->m_len < sizeof(struct sadb_msg)) { |
| 7235 | n = m_pullup(n, sizeof(struct sadb_msg)); |
| 7236 | if (n == NULL) { |
| 7237 | return key_senderror(so, m, ENOBUFS); |
| 7238 | } |
| 7239 | } |
| 7240 | newmsg = mtod(n, struct sadb_msg *); |
| 7241 | newmsg->sadb_msg_errno = 0; |
| 7242 | VERIFY(PFKEY_UNIT64(n->m_pkthdr.len) <= UINT16_MAX); |
| 7243 | newmsg->sadb_msg_len = (u_int16_t)PFKEY_UNIT64(n->m_pkthdr.len); |
| 7244 | |
| 7245 | m_freem(m); |
| 7246 | return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); |
| 7247 | } |
| 7248 | } |
| 7249 | |
| 7250 | /* |
| 7251 | * SADB_ADD processing |
| 7252 | * add a entry to SA database, when received |
| 7253 | * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),) |
| 7254 | * key(AE), (identity(SD),) (sensitivity)> |
| 7255 | * from the ikmpd, |
| 7256 | * and send |
| 7257 | * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),) |
| 7258 | * (identity(SD),) (sensitivity)> |
| 7259 | * to the ikmpd. |
| 7260 | * |
| 7261 | * IGNORE identity and sensitivity messages. |
| 7262 | * |
| 7263 | * m will always be freed. |
| 7264 | */ |
| 7265 | static int |
| 7266 | key_add( |
| 7267 | struct socket *so, |
| 7268 | struct mbuf *m, |
| 7269 | const struct sadb_msghdr *mhp) |
| 7270 | { |
| 7271 | struct sadb_sa *sa0 = NULL; |
| 7272 | struct sadb_address *src0 = NULL, *dst0 = NULL; |
| 7273 | ifnet_t ipsec_if = NULL; |
| 7274 | struct secasindex saidx; |
| 7275 | struct secashead *newsah = NULL; |
| 7276 | struct secasvar *newsav = NULL; |
| 7277 | u_int8_t proto; |
| 7278 | u_int8_t mode; |
| 7279 | u_int32_t reqid; |
| 7280 | int error; |
| 7281 | |
| 7282 | LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_NOTOWNED); |
| 7283 | |
| 7284 | /* sanity check */ |
| 7285 | if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL) { |
| 7286 | panic("key_add: NULL pointer is passed." ); |
| 7287 | } |
| 7288 | |
| 7289 | /* map satype to proto */ |
| 7290 | if ((proto = key_satype2proto(satype: mhp->msg->sadb_msg_satype)) == 0) { |
| 7291 | ipseclog((LOG_DEBUG, "key_add: invalid satype is passed.\n" )); |
| 7292 | bzero_keys(mhp); |
| 7293 | return key_senderror(so, m, EINVAL); |
| 7294 | } |
| 7295 | |
| 7296 | if (mhp->ext[SADB_EXT_SA] == NULL || |
| 7297 | mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || |
| 7298 | mhp->ext[SADB_EXT_ADDRESS_DST] == NULL || |
| 7299 | (mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP && |
| 7300 | mhp->ext[SADB_EXT_KEY_ENCRYPT] == NULL) || |
| 7301 | (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH && |
| 7302 | mhp->ext[SADB_EXT_KEY_AUTH] == NULL) || |
| 7303 | (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL && |
| 7304 | mhp->ext[SADB_EXT_LIFETIME_SOFT] == NULL) || |
| 7305 | (mhp->ext[SADB_EXT_LIFETIME_HARD] == NULL && |
| 7306 | mhp->ext[SADB_EXT_LIFETIME_SOFT] != NULL)) { |
| 7307 | ipseclog((LOG_DEBUG, "key_add: invalid message is passed.\n" )); |
| 7308 | bzero_keys(mhp); |
| 7309 | return key_senderror(so, m, EINVAL); |
| 7310 | } |
| 7311 | if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) || |
| 7312 | mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || |
| 7313 | mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) { |
| 7314 | /* XXX need more */ |
| 7315 | ipseclog((LOG_DEBUG, "key_add: invalid message is passed.\n" )); |
| 7316 | bzero_keys(mhp); |
| 7317 | return key_senderror(so, m, EINVAL); |
| 7318 | } |
| 7319 | if (mhp->ext[SADB_X_EXT_SA2] != NULL) { |
| 7320 | mode = ((struct sadb_x_sa2 *) |
| 7321 | (void *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode; |
| 7322 | reqid = ((struct sadb_x_sa2 *) |
| 7323 | (void *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid; |
| 7324 | } else { |
| 7325 | mode = IPSEC_MODE_ANY; |
| 7326 | reqid = 0; |
| 7327 | } |
| 7328 | |
| 7329 | sa0 = (struct sadb_sa *)(void *)mhp->ext[SADB_EXT_SA]; |
| 7330 | src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC]; |
| 7331 | dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST]; |
| 7332 | ipsec_if = key_get_ipsec_if_from_message(mhp, SADB_X_EXT_IPSECIF); |
| 7333 | |
| 7334 | /* XXX boundary check against sa_len */ |
| 7335 | KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, ipsec_if ? ipsec_if->if_index : 0, &saidx); |
| 7336 | |
| 7337 | lck_mtx_lock(sadb_mutex); |
| 7338 | |
| 7339 | /* get a SA header */ |
| 7340 | if ((newsah = key_getsah(saidx: &saidx, SECURITY_ASSOCIATION_ANY)) == NULL) { |
| 7341 | /* create a new SA header: key_addspi is always used for outbound spi */ |
| 7342 | if ((newsah = key_newsah(saidx: &saidx, ipsec_if, outgoing_if: key_get_outgoing_ifindex_from_message(mhp, SADB_X_EXT_IPSECIF), IPSEC_DIR_OUTBOUND, SECURITY_ASSOCIATION_PFKEY)) == NULL) { |
| 7343 | ipseclog((LOG_DEBUG, "key_add: No more memory.\n" )); |
| 7344 | error = ENOBUFS; |
| 7345 | goto fail; |
| 7346 | } |
| 7347 | } |
| 7348 | |
| 7349 | if (ipsec_if != NULL) { |
| 7350 | ifnet_release(interface: ipsec_if); |
| 7351 | ipsec_if = NULL; |
| 7352 | } |
| 7353 | |
| 7354 | // Increment use count, since key_newsav() could release sadb_mutex lock |
| 7355 | newsah->use_count++; |
| 7356 | |
| 7357 | if ((newsah->flags & SECURITY_ASSOCIATION_CUSTOM_IPSEC) == SECURITY_ASSOCIATION_CUSTOM_IPSEC) { |
| 7358 | ipseclog((LOG_ERR, "key_add: custom ipsec exists\n" )); |
| 7359 | error = EEXIST; |
| 7360 | goto fail; |
| 7361 | } |
| 7362 | |
| 7363 | /* create new SA entry. */ |
| 7364 | /* We can create new SA only if SPI is different. */ |
| 7365 | if (key_getsavbyspi(sah: newsah, spi: sa0->sadb_sa_spi)) { |
| 7366 | ipseclog((LOG_DEBUG, "key_add: SA already exists.\n" )); |
| 7367 | error = EEXIST; |
| 7368 | goto fail; |
| 7369 | } |
| 7370 | newsav = key_newsav(m, mhp, sah: newsah, errp: &error, so); |
| 7371 | if (newsav == NULL) { |
| 7372 | goto fail; |
| 7373 | } |
| 7374 | |
| 7375 | if (newsah->state == SADB_SASTATE_DEAD) { |
| 7376 | ipseclog((LOG_ERR, "key_add: security association head is dead\n" )); |
| 7377 | error = EINVAL; |
| 7378 | goto fail; |
| 7379 | } |
| 7380 | |
| 7381 | /* |
| 7382 | * Verify if SADB_X_EXT_NATT_MULTIPLEUSERS flag is set that |
| 7383 | * this SA is for transport mode - otherwise clear it. |
| 7384 | */ |
| 7385 | if ((newsav->flags & SADB_X_EXT_NATT_MULTIPLEUSERS) != 0 && |
| 7386 | (newsah->saidx.mode != IPSEC_MODE_TRANSPORT || |
| 7387 | newsah->saidx.dst.ss_family != AF_INET)) { |
| 7388 | newsav->flags &= ~SADB_X_EXT_NATT_MULTIPLEUSERS; |
| 7389 | } |
| 7390 | |
| 7391 | /* check SA values to be mature. */ |
| 7392 | if ((error = key_mature(sav: newsav)) != 0) { |
| 7393 | goto fail; |
| 7394 | } |
| 7395 | |
| 7396 | key_get_flowid(sav: newsav); |
| 7397 | |
| 7398 | newsah->use_count--; |
| 7399 | lck_mtx_unlock(sadb_mutex); |
| 7400 | |
| 7401 | /* |
| 7402 | * don't call key_freesav() here, as we would like to keep the SA |
| 7403 | * in the database on success. |
| 7404 | */ |
| 7405 | |
| 7406 | { |
| 7407 | struct mbuf *n; |
| 7408 | |
| 7409 | /* set msg buf from mhp */ |
| 7410 | n = key_getmsgbuf_x1(m, mhp); |
| 7411 | if (n == NULL) { |
| 7412 | ipseclog((LOG_DEBUG, "key_update: No more memory.\n" )); |
| 7413 | bzero_keys(mhp); |
| 7414 | return key_senderror(so, m, ENOBUFS); |
| 7415 | } |
| 7416 | |
| 7417 | // mh.ext points to the mbuf content. |
| 7418 | // Zero out Encryption and Integrity keys if present. |
| 7419 | bzero_keys(mhp); |
| 7420 | m_freem(m); |
| 7421 | return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); |
| 7422 | } |
| 7423 | fail: |
| 7424 | if (newsav != NULL) { |
| 7425 | key_sa_chgstate(newsav, SADB_SASTATE_DEAD); |
| 7426 | key_freesav(sav: newsav, KEY_SADB_LOCKED); |
| 7427 | } |
| 7428 | if (newsah != NULL) { |
| 7429 | newsah->use_count--; |
| 7430 | } |
| 7431 | lck_mtx_unlock(sadb_mutex); |
| 7432 | if (ipsec_if != NULL) { |
| 7433 | ifnet_release(interface: ipsec_if); |
| 7434 | } |
| 7435 | bzero_keys(mhp); |
| 7436 | return key_senderror(so, m, error); |
| 7437 | } |
| 7438 | |
| 7439 | /* |
| 7440 | * m will not be freed on return. |
| 7441 | * it is caller's responsibility to free the result. |
| 7442 | */ |
| 7443 | static struct mbuf * |
| 7444 | key_getmsgbuf_x1( |
| 7445 | struct mbuf *m, |
| 7446 | const struct sadb_msghdr *mhp) |
| 7447 | { |
| 7448 | struct mbuf *n; |
| 7449 | int mbufItems[] = {SADB_EXT_RESERVED, SADB_EXT_SA, |
| 7450 | SADB_X_EXT_SA2, SADB_EXT_ADDRESS_SRC, |
| 7451 | SADB_EXT_ADDRESS_DST, SADB_EXT_LIFETIME_HARD, |
| 7452 | SADB_EXT_LIFETIME_SOFT, SADB_EXT_IDENTITY_SRC, |
| 7453 | SADB_EXT_IDENTITY_DST}; |
| 7454 | |
| 7455 | /* sanity check */ |
| 7456 | if (m == NULL || mhp == NULL || mhp->msg == NULL) { |
| 7457 | panic("key_getmsgbuf_x1: NULL pointer is passed." ); |
| 7458 | } |
| 7459 | |
| 7460 | /* create new sadb_msg to reply. */ |
| 7461 | n = key_gather_mbuf(m, mhp, ndeep: 1, nitem: sizeof(mbufItems) / sizeof(int), items: mbufItems); |
| 7462 | if (!n) { |
| 7463 | return NULL; |
| 7464 | } |
| 7465 | |
| 7466 | if (n->m_len < sizeof(struct sadb_msg)) { |
| 7467 | n = m_pullup(n, sizeof(struct sadb_msg)); |
| 7468 | if (n == NULL) { |
| 7469 | return NULL; |
| 7470 | } |
| 7471 | } |
| 7472 | mtod(n, struct sadb_msg *)->sadb_msg_errno = 0; |
| 7473 | VERIFY(PFKEY_UNIT64(n->m_pkthdr.len) <= UINT16_MAX); |
| 7474 | mtod(n, struct sadb_msg *)->sadb_msg_len = |
| 7475 | (u_int16_t)PFKEY_UNIT64(n->m_pkthdr.len); |
| 7476 | |
| 7477 | return n; |
| 7478 | } |
| 7479 | |
| 7480 | static int key_delete_all(struct socket *, struct mbuf *, |
| 7481 | const struct sadb_msghdr *, u_int16_t); |
| 7482 | |
| 7483 | /* |
| 7484 | * SADB_DELETE processing |
| 7485 | * receive |
| 7486 | * <base, SA(*), address(SD)> |
| 7487 | * from the ikmpd, and set SADB_SASTATE_DEAD, |
| 7488 | * and send, |
| 7489 | * <base, SA(*), address(SD)> |
| 7490 | * to the ikmpd. |
| 7491 | * |
| 7492 | * m will always be freed. |
| 7493 | */ |
| 7494 | static int |
| 7495 | key_delete( |
| 7496 | struct socket *so, |
| 7497 | struct mbuf *m, |
| 7498 | const struct sadb_msghdr *mhp) |
| 7499 | { |
| 7500 | struct sadb_sa *sa0; |
| 7501 | struct sadb_address *src0, *dst0; |
| 7502 | ifnet_t ipsec_if = NULL; |
| 7503 | struct secasindex saidx; |
| 7504 | struct secashead *sah; |
| 7505 | struct secasvar *sav = NULL; |
| 7506 | u_int16_t proto; |
| 7507 | |
| 7508 | LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_NOTOWNED); |
| 7509 | |
| 7510 | /* sanity check */ |
| 7511 | if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL) { |
| 7512 | panic("key_delete: NULL pointer is passed." ); |
| 7513 | } |
| 7514 | |
| 7515 | /* map satype to proto */ |
| 7516 | if ((proto = key_satype2proto(satype: mhp->msg->sadb_msg_satype)) == 0) { |
| 7517 | ipseclog((LOG_DEBUG, "key_delete: invalid satype is passed.\n" )); |
| 7518 | return key_senderror(so, m, EINVAL); |
| 7519 | } |
| 7520 | |
| 7521 | if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || |
| 7522 | mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) { |
| 7523 | ipseclog((LOG_DEBUG, "key_delete: invalid message is passed.\n" )); |
| 7524 | return key_senderror(so, m, EINVAL); |
| 7525 | } |
| 7526 | |
| 7527 | if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || |
| 7528 | mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) { |
| 7529 | ipseclog((LOG_DEBUG, "key_delete: invalid message is passed.\n" )); |
| 7530 | return key_senderror(so, m, EINVAL); |
| 7531 | } |
| 7532 | |
| 7533 | lck_mtx_lock(sadb_mutex); |
| 7534 | |
| 7535 | if (mhp->ext[SADB_EXT_SA] == NULL) { |
| 7536 | /* |
| 7537 | * Caller wants us to delete all non-LARVAL SAs |
| 7538 | * that match the src/dst. This is used during |
| 7539 | * IKE INITIAL-CONTACT. |
| 7540 | */ |
| 7541 | ipseclog((LOG_DEBUG, "key_delete: doing delete all.\n" )); |
| 7542 | /* key_delete_all will unlock sadb_mutex */ |
| 7543 | return key_delete_all(so, m, mhp, proto); |
| 7544 | } else if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa)) { |
| 7545 | lck_mtx_unlock(sadb_mutex); |
| 7546 | ipseclog((LOG_DEBUG, "key_delete: invalid message is passed.\n" )); |
| 7547 | return key_senderror(so, m, EINVAL); |
| 7548 | } |
| 7549 | |
| 7550 | sa0 = (struct sadb_sa *)(void *)mhp->ext[SADB_EXT_SA]; |
| 7551 | src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]); |
| 7552 | dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]); |
| 7553 | ipsec_if = key_get_ipsec_if_from_message(mhp, SADB_X_EXT_IPSECIF); |
| 7554 | |
| 7555 | u_int ipsec_if_index = 0; |
| 7556 | if (ipsec_if != NULL) { |
| 7557 | ipsec_if_index = ipsec_if->if_index; |
| 7558 | ifnet_release(interface: ipsec_if); |
| 7559 | ipsec_if = NULL; |
| 7560 | } |
| 7561 | |
| 7562 | /* XXX boundary check against sa_len */ |
| 7563 | KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, ipsec_if_index, &saidx); |
| 7564 | |
| 7565 | |
| 7566 | /* get a SA header */ |
| 7567 | LIST_FOREACH(sah, &sahtree, chain) { |
| 7568 | if (sah->state == SADB_SASTATE_DEAD) { |
| 7569 | continue; |
| 7570 | } |
| 7571 | if (key_cmpsaidx(saidx0: &sah->saidx, saidx1: &saidx, CMP_HEAD) == 0) { |
| 7572 | continue; |
| 7573 | } |
| 7574 | |
| 7575 | /* get a SA with SPI. */ |
| 7576 | sav = key_getsavbyspi(sah, spi: sa0->sadb_sa_spi); |
| 7577 | if (sav) { |
| 7578 | break; |
| 7579 | } |
| 7580 | } |
| 7581 | if (sah == NULL) { |
| 7582 | lck_mtx_unlock(sadb_mutex); |
| 7583 | ipseclog((LOG_DEBUG, "key_delete: no SA found.\n" )); |
| 7584 | return key_senderror(so, m, ENOENT); |
| 7585 | } |
| 7586 | |
| 7587 | key_sa_chgstate(sav, SADB_SASTATE_DEAD); |
| 7588 | key_freesav(sav, KEY_SADB_LOCKED); |
| 7589 | |
| 7590 | lck_mtx_unlock(sadb_mutex); |
| 7591 | sav = NULL; |
| 7592 | |
| 7593 | { |
| 7594 | struct mbuf *n; |
| 7595 | struct sadb_msg *newmsg; |
| 7596 | int mbufItems[] = {SADB_EXT_RESERVED, SADB_EXT_SA, |
| 7597 | SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST}; |
| 7598 | |
| 7599 | /* create new sadb_msg to reply. */ |
| 7600 | n = key_gather_mbuf(m, mhp, ndeep: 1, nitem: sizeof(mbufItems) / sizeof(int), items: mbufItems); |
| 7601 | if (!n) { |
| 7602 | return key_senderror(so, m, ENOBUFS); |
| 7603 | } |
| 7604 | |
| 7605 | if (n->m_len < sizeof(struct sadb_msg)) { |
| 7606 | n = m_pullup(n, sizeof(struct sadb_msg)); |
| 7607 | if (n == NULL) { |
| 7608 | return key_senderror(so, m, ENOBUFS); |
| 7609 | } |
| 7610 | } |
| 7611 | newmsg = mtod(n, struct sadb_msg *); |
| 7612 | newmsg->sadb_msg_errno = 0; |
| 7613 | VERIFY(PFKEY_UNIT64(n->m_pkthdr.len) <= UINT16_MAX); |
| 7614 | newmsg->sadb_msg_len = (u_int16_t)PFKEY_UNIT64(n->m_pkthdr.len); |
| 7615 | |
| 7616 | m_freem(m); |
| 7617 | return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); |
| 7618 | } |
| 7619 | } |
| 7620 | |
| 7621 | /* |
| 7622 | * delete all SAs for src/dst. Called from key_delete(). |
| 7623 | */ |
| 7624 | static int |
| 7625 | key_delete_all( |
| 7626 | struct socket *so, |
| 7627 | struct mbuf *m, |
| 7628 | const struct sadb_msghdr *mhp, |
| 7629 | u_int16_t proto) |
| 7630 | { |
| 7631 | struct sadb_address *src0, *dst0; |
| 7632 | ifnet_t ipsec_if = NULL; |
| 7633 | struct secasindex saidx; |
| 7634 | struct secashead *sah; |
| 7635 | struct secasvar *sav, *nextsav; |
| 7636 | u_int stateidx, state; |
| 7637 | |
| 7638 | LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_OWNED); |
| 7639 | |
| 7640 | src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]); |
| 7641 | dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]); |
| 7642 | ipsec_if = key_get_ipsec_if_from_message(mhp, SADB_X_EXT_IPSECIF); |
| 7643 | |
| 7644 | u_int ipsec_if_index = 0; |
| 7645 | if (ipsec_if != NULL) { |
| 7646 | ipsec_if_index = ipsec_if->if_index; |
| 7647 | ifnet_release(interface: ipsec_if); |
| 7648 | ipsec_if = NULL; |
| 7649 | } |
| 7650 | |
| 7651 | /* XXX boundary check against sa_len */ |
| 7652 | KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, ipsec_if_index, &saidx); |
| 7653 | |
| 7654 | LIST_FOREACH(sah, &sahtree, chain) { |
| 7655 | if (sah->state == SADB_SASTATE_DEAD) { |
| 7656 | continue; |
| 7657 | } |
| 7658 | if (key_cmpsaidx(saidx0: &sah->saidx, saidx1: &saidx, CMP_HEAD) == 0) { |
| 7659 | continue; |
| 7660 | } |
| 7661 | |
| 7662 | /* Delete all non-LARVAL SAs. */ |
| 7663 | for (stateidx = 0; |
| 7664 | stateidx < _ARRAYLEN(saorder_state_alive); |
| 7665 | stateidx++) { |
| 7666 | state = saorder_state_alive[stateidx]; |
| 7667 | if (state == SADB_SASTATE_LARVAL) { |
| 7668 | continue; |
| 7669 | } |
| 7670 | for (sav = LIST_FIRST(&sah->savtree[state]); |
| 7671 | sav != NULL; sav = nextsav) { |
| 7672 | nextsav = LIST_NEXT(sav, chain); |
| 7673 | /* sanity check */ |
| 7674 | if (sav->state != state) { |
| 7675 | ipseclog((LOG_DEBUG, "key_delete_all: " |
| 7676 | "invalid sav->state " |
| 7677 | "(queue: %d SA: %d)\n" , |
| 7678 | state, sav->state)); |
| 7679 | continue; |
| 7680 | } |
| 7681 | |
| 7682 | key_sa_chgstate(sav, SADB_SASTATE_DEAD); |
| 7683 | key_freesav(sav, KEY_SADB_LOCKED); |
| 7684 | } |
| 7685 | } |
| 7686 | } |
| 7687 | lck_mtx_unlock(sadb_mutex); |
| 7688 | |
| 7689 | { |
| 7690 | struct mbuf *n; |
| 7691 | struct sadb_msg *newmsg; |
| 7692 | int mbufItems[] = {SADB_EXT_RESERVED, SADB_EXT_ADDRESS_SRC, |
| 7693 | SADB_EXT_ADDRESS_DST}; |
| 7694 | |
| 7695 | /* create new sadb_msg to reply. */ |
| 7696 | n = key_gather_mbuf(m, mhp, ndeep: 1, nitem: sizeof(mbufItems) / sizeof(int), items: mbufItems); |
| 7697 | if (!n) { |
| 7698 | return key_senderror(so, m, ENOBUFS); |
| 7699 | } |
| 7700 | |
| 7701 | if (n->m_len < sizeof(struct sadb_msg)) { |
| 7702 | n = m_pullup(n, sizeof(struct sadb_msg)); |
| 7703 | if (n == NULL) { |
| 7704 | return key_senderror(so, m, ENOBUFS); |
| 7705 | } |
| 7706 | } |
| 7707 | newmsg = mtod(n, struct sadb_msg *); |
| 7708 | newmsg->sadb_msg_errno = 0; |
| 7709 | VERIFY(PFKEY_UNIT64(n->m_pkthdr.len) <= UINT16_MAX); |
| 7710 | newmsg->sadb_msg_len = (u_int16_t)PFKEY_UNIT64(n->m_pkthdr.len); |
| 7711 | |
| 7712 | m_freem(m); |
| 7713 | return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); |
| 7714 | } |
| 7715 | } |
| 7716 | |
| 7717 | /* |
| 7718 | * SADB_GET processing |
| 7719 | * receive |
| 7720 | * <base, SA(*), address(SD)> |
| 7721 | * from the ikmpd, and get a SP and a SA to respond, |
| 7722 | * and send, |
| 7723 | * <base, SA, (lifetime(HSC),) address(SD), (address(P),) key(AE), |
| 7724 | * (identity(SD),) (sensitivity)> |
| 7725 | * to the ikmpd. |
| 7726 | * |
| 7727 | * m will always be freed. |
| 7728 | */ |
| 7729 | static int |
| 7730 | key_get( |
| 7731 | struct socket *so, |
| 7732 | struct mbuf *m, |
| 7733 | const struct sadb_msghdr *mhp) |
| 7734 | { |
| 7735 | struct sadb_sa *sa0; |
| 7736 | struct sadb_address *src0, *dst0; |
| 7737 | ifnet_t ipsec_if = NULL; |
| 7738 | struct secasindex saidx; |
| 7739 | struct secashead *sah; |
| 7740 | struct secasvar *sav = NULL; |
| 7741 | u_int16_t proto; |
| 7742 | |
| 7743 | LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_NOTOWNED); |
| 7744 | |
| 7745 | /* sanity check */ |
| 7746 | if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL) { |
| 7747 | panic("key_get: NULL pointer is passed." ); |
| 7748 | } |
| 7749 | |
| 7750 | /* map satype to proto */ |
| 7751 | if ((proto = key_satype2proto(satype: mhp->msg->sadb_msg_satype)) == 0) { |
| 7752 | ipseclog((LOG_DEBUG, "key_get: invalid satype is passed.\n" )); |
| 7753 | return key_senderror(so, m, EINVAL); |
| 7754 | } |
| 7755 | |
| 7756 | if (mhp->ext[SADB_EXT_SA] == NULL || |
| 7757 | mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || |
| 7758 | mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) { |
| 7759 | ipseclog((LOG_DEBUG, "key_get: invalid message is passed.\n" )); |
| 7760 | return key_senderror(so, m, EINVAL); |
| 7761 | } |
| 7762 | if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) || |
| 7763 | mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || |
| 7764 | mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) { |
| 7765 | ipseclog((LOG_DEBUG, "key_get: invalid message is passed.\n" )); |
| 7766 | return key_senderror(so, m, EINVAL); |
| 7767 | } |
| 7768 | |
| 7769 | sa0 = (struct sadb_sa *)(void *)mhp->ext[SADB_EXT_SA]; |
| 7770 | src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC]; |
| 7771 | dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST]; |
| 7772 | ipsec_if = key_get_ipsec_if_from_message(mhp, SADB_X_EXT_IPSECIF); |
| 7773 | |
| 7774 | u_int ipsec_if_index = 0; |
| 7775 | if (ipsec_if != NULL) { |
| 7776 | ipsec_if_index = ipsec_if->if_index; |
| 7777 | ifnet_release(interface: ipsec_if); |
| 7778 | ipsec_if = NULL; |
| 7779 | } |
| 7780 | |
| 7781 | /* XXX boundary check against sa_len */ |
| 7782 | KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, ipsec_if_index, &saidx); |
| 7783 | |
| 7784 | lck_mtx_lock(sadb_mutex); |
| 7785 | |
| 7786 | /* get a SA header */ |
| 7787 | LIST_FOREACH(sah, &sahtree, chain) { |
| 7788 | if (sah->state == SADB_SASTATE_DEAD) { |
| 7789 | continue; |
| 7790 | } |
| 7791 | if (key_cmpsaidx(saidx0: &sah->saidx, saidx1: &saidx, CMP_HEAD) == 0) { |
| 7792 | continue; |
| 7793 | } |
| 7794 | |
| 7795 | /* get a SA with SPI. */ |
| 7796 | sav = key_getsavbyspi(sah, spi: sa0->sadb_sa_spi); |
| 7797 | if (sav) { |
| 7798 | break; |
| 7799 | } |
| 7800 | } |
| 7801 | if (sah == NULL) { |
| 7802 | lck_mtx_unlock(sadb_mutex); |
| 7803 | ipseclog((LOG_DEBUG, "key_get: no SA found.\n" )); |
| 7804 | return key_senderror(so, m, ENOENT); |
| 7805 | } |
| 7806 | |
| 7807 | { |
| 7808 | struct mbuf *n; |
| 7809 | u_int8_t satype; |
| 7810 | |
| 7811 | /* map proto to satype */ |
| 7812 | if ((satype = key_proto2satype(proto: sah->saidx.proto)) == 0) { |
| 7813 | lck_mtx_unlock(sadb_mutex); |
| 7814 | ipseclog((LOG_DEBUG, "key_get: there was invalid proto in SAD.\n" )); |
| 7815 | return key_senderror(so, m, EINVAL); |
| 7816 | } |
| 7817 | lck_mtx_unlock(sadb_mutex); |
| 7818 | |
| 7819 | /* create new sadb_msg to reply. */ |
| 7820 | n = key_setdumpsa(sav, SADB_GET, satype, seq: mhp->msg->sadb_msg_seq, |
| 7821 | pid: mhp->msg->sadb_msg_pid); |
| 7822 | |
| 7823 | |
| 7824 | |
| 7825 | if (!n) { |
| 7826 | return key_senderror(so, m, ENOBUFS); |
| 7827 | } |
| 7828 | |
| 7829 | m_freem(m); |
| 7830 | return key_sendup_mbuf(so, n, KEY_SENDUP_ONE); |
| 7831 | } |
| 7832 | } |
| 7833 | |
| 7834 | /* |
| 7835 | * get SA stats by spi. |
| 7836 | * OUT: -1 : not found |
| 7837 | * 0 : found, arg pointer to a SA stats is updated. |
| 7838 | */ |
| 7839 | static int |
| 7840 | key_getsastatbyspi_one(u_int32_t spi, |
| 7841 | struct sastat *stat) |
| 7842 | { |
| 7843 | struct secashead *sah; |
| 7844 | struct secasvar *sav = NULL; |
| 7845 | |
| 7846 | if ((void *)stat == NULL) { |
| 7847 | return -1; |
| 7848 | } |
| 7849 | |
| 7850 | lck_mtx_lock(sadb_mutex); |
| 7851 | |
| 7852 | /* get a SA header */ |
| 7853 | LIST_FOREACH(sah, &sahtree, chain) { |
| 7854 | if (sah->state == SADB_SASTATE_DEAD) { |
| 7855 | continue; |
| 7856 | } |
| 7857 | |
| 7858 | /* get a SA with SPI. */ |
| 7859 | sav = key_getsavbyspi(sah, spi); |
| 7860 | if (sav) { |
| 7861 | stat->spi = sav->spi; |
| 7862 | stat->created = (u_int32_t)key_convert_continuous_time_ns(time_value: sav->created); |
| 7863 | if (sav->lft_c) { |
| 7864 | bcopy(src: sav->lft_c, dst: &stat->lft_c, n: sizeof(stat->lft_c)); |
| 7865 | // Convert timestamps |
| 7866 | stat->lft_c.sadb_lifetime_addtime = |
| 7867 | key_convert_continuous_time_ns(time_value: sav->lft_c->sadb_lifetime_addtime); |
| 7868 | stat->lft_c.sadb_lifetime_usetime = |
| 7869 | key_convert_continuous_time_ns(time_value: sav->lft_c->sadb_lifetime_usetime); |
| 7870 | } else { |
| 7871 | bzero(s: &stat->lft_c, n: sizeof(stat->lft_c)); |
| 7872 | } |
| 7873 | lck_mtx_unlock(sadb_mutex); |
| 7874 | return 0; |
| 7875 | } |
| 7876 | } |
| 7877 | |
| 7878 | lck_mtx_unlock(sadb_mutex); |
| 7879 | |
| 7880 | return -1; |
| 7881 | } |
| 7882 | |
| 7883 | /* |
| 7884 | * get SA stats collection by indices. |
| 7885 | * OUT: -1 : not found |
| 7886 | * 0 : found, arg pointers to a SA stats and 'maximum stats' are updated. |
| 7887 | */ |
| 7888 | static int |
| 7889 | key_getsastatbyspi(struct sastat *stat_arg, |
| 7890 | u_int32_t max_stat_arg, |
| 7891 | struct sastat *stat_res, |
| 7892 | u_int64_t stat_res_size, |
| 7893 | u_int32_t *max_stat_res) |
| 7894 | { |
| 7895 | u_int32_t cur, found = 0; |
| 7896 | |
| 7897 | if (stat_arg == NULL || |
| 7898 | stat_res == NULL || |
| 7899 | max_stat_res == NULL) { |
| 7900 | return -1; |
| 7901 | } |
| 7902 | |
| 7903 | u_int64_t max_stats = stat_res_size / (sizeof(struct sastat)); |
| 7904 | max_stats = ((max_stat_arg <= max_stats) ? max_stat_arg : max_stats); |
| 7905 | |
| 7906 | for (cur = 0; cur < max_stats; cur++) { |
| 7907 | if (key_getsastatbyspi_one(spi: stat_arg[cur].spi, |
| 7908 | stat: &stat_res[found]) == 0) { |
| 7909 | found++; |
| 7910 | } |
| 7911 | } |
| 7912 | *max_stat_res = found; |
| 7913 | |
| 7914 | if (found) { |
| 7915 | return 0; |
| 7916 | } |
| 7917 | return -1; |
| 7918 | } |
| 7919 | |
| 7920 | /* XXX make it sysctl-configurable? */ |
| 7921 | static void |
| 7922 | key_getcomb_setlifetime( |
| 7923 | struct sadb_comb *comb) |
| 7924 | { |
| 7925 | comb->sadb_comb_soft_allocations = 1; |
| 7926 | comb->sadb_comb_hard_allocations = 1; |
| 7927 | comb->sadb_comb_soft_bytes = 0; |
| 7928 | comb->sadb_comb_hard_bytes = 0; |
| 7929 | comb->sadb_comb_hard_addtime = 86400; /* 1 day */ |
| 7930 | comb->sadb_comb_soft_addtime = comb->sadb_comb_soft_addtime * 80 / 100; |
| 7931 | comb->sadb_comb_soft_usetime = 28800; /* 8 hours */ |
| 7932 | comb->sadb_comb_hard_usetime = comb->sadb_comb_hard_usetime * 80 / 100; |
| 7933 | } |
| 7934 | |
| 7935 | #if IPSEC_ESP |
| 7936 | /* |
| 7937 | * XXX reorder combinations by preference |
| 7938 | * XXX no idea if the user wants ESP authentication or not |
| 7939 | */ |
| 7940 | static struct mbuf * |
| 7941 | key_getcomb_esp(void) |
| 7942 | { |
| 7943 | struct sadb_comb *comb; |
| 7944 | const struct esp_algorithm *algo; |
| 7945 | struct mbuf *result = NULL, *m, *n; |
| 7946 | u_int16_t encmin; |
| 7947 | int off, o; |
| 7948 | int totlen; |
| 7949 | u_int8_t i; |
| 7950 | const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb)); |
| 7951 | |
| 7952 | m = NULL; |
| 7953 | for (i = 1; i <= SADB_EALG_MAX; i++) { |
| 7954 | algo = esp_algorithm_lookup(i); |
| 7955 | if (!algo) { |
| 7956 | continue; |
| 7957 | } |
| 7958 | |
| 7959 | if (algo->keymax < ipsec_esp_keymin) { |
| 7960 | continue; |
| 7961 | } |
| 7962 | if (algo->keymin < ipsec_esp_keymin) { |
| 7963 | encmin = (u_int16_t)ipsec_esp_keymin; |
| 7964 | } else { |
| 7965 | encmin = algo->keymin; |
| 7966 | } |
| 7967 | |
| 7968 | if (ipsec_esp_auth) { |
| 7969 | m = key_getcomb_ah(); |
| 7970 | } else { |
| 7971 | #if DIAGNOSTIC |
| 7972 | if (l > MLEN) { |
| 7973 | panic("assumption failed in key_getcomb_esp" ); |
| 7974 | } |
| 7975 | #endif |
| 7976 | MGET(m, M_WAITOK, MT_DATA); |
| 7977 | if (m) { |
| 7978 | M_ALIGN(m, l); |
| 7979 | m->m_len = l; |
| 7980 | m->m_next = NULL; |
| 7981 | bzero(mtod(m, caddr_t), n: m->m_len); |
| 7982 | } |
| 7983 | } |
| 7984 | if (!m) { |
| 7985 | goto fail; |
| 7986 | } |
| 7987 | |
| 7988 | totlen = 0; |
| 7989 | for (n = m; n; n = n->m_next) { |
| 7990 | totlen += n->m_len; |
| 7991 | } |
| 7992 | #if DIAGNOSTIC |
| 7993 | if (totlen % l) { |
| 7994 | panic("assumption failed in key_getcomb_esp" ); |
| 7995 | } |
| 7996 | #endif |
| 7997 | |
| 7998 | for (off = 0; off < totlen; off += l) { |
| 7999 | n = m_pulldown(m, off, l, &o); |
| 8000 | if (!n) { |
| 8001 | /* m is already freed */ |
| 8002 | goto fail; |
| 8003 | } |
| 8004 | comb = (struct sadb_comb *) |
| 8005 | (void *)(mtod(n, caddr_t) + o); |
| 8006 | bzero(s: comb, n: sizeof(*comb)); |
| 8007 | key_getcomb_setlifetime(comb); |
| 8008 | comb->sadb_comb_encrypt = i; |
| 8009 | comb->sadb_comb_encrypt_minbits = encmin; |
| 8010 | comb->sadb_comb_encrypt_maxbits = algo->keymax; |
| 8011 | } |
| 8012 | |
| 8013 | if (!result) { |
| 8014 | result = m; |
| 8015 | } else { |
| 8016 | m_cat(result, m); |
| 8017 | } |
| 8018 | } |
| 8019 | |
| 8020 | return result; |
| 8021 | |
| 8022 | fail: |
| 8023 | if (result) { |
| 8024 | m_freem(result); |
| 8025 | } |
| 8026 | return NULL; |
| 8027 | } |
| 8028 | #endif |
| 8029 | |
| 8030 | /* |
| 8031 | * XXX reorder combinations by preference |
| 8032 | */ |
| 8033 | static struct mbuf * |
| 8034 | key_getcomb_ah(void) |
| 8035 | { |
| 8036 | struct sadb_comb *comb; |
| 8037 | const struct ah_algorithm *algo; |
| 8038 | struct mbuf *m; |
| 8039 | u_int16_t keymin; |
| 8040 | u_int8_t i; |
| 8041 | const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb)); |
| 8042 | |
| 8043 | m = NULL; |
| 8044 | for (i = 1; i <= SADB_AALG_MAX; i++) { |
| 8045 | #if 1 |
| 8046 | /* we prefer HMAC algorithms, not old algorithms */ |
| 8047 | if (i != SADB_AALG_SHA1HMAC && i != SADB_AALG_MD5HMAC) { |
| 8048 | continue; |
| 8049 | } |
| 8050 | #endif |
| 8051 | algo = ah_algorithm_lookup(i); |
| 8052 | if (!algo) { |
| 8053 | continue; |
| 8054 | } |
| 8055 | |
| 8056 | if (algo->keymax < ipsec_ah_keymin) { |
| 8057 | continue; |
| 8058 | } |
| 8059 | if (algo->keymin < ipsec_ah_keymin) { |
| 8060 | keymin = (u_int16_t)ipsec_ah_keymin; |
| 8061 | } else { |
| 8062 | keymin = algo->keymin; |
| 8063 | } |
| 8064 | |
| 8065 | if (!m) { |
| 8066 | #if DIAGNOSTIC |
| 8067 | if (l > MLEN) { |
| 8068 | panic("assumption failed in key_getcomb_ah" ); |
| 8069 | } |
| 8070 | #endif |
| 8071 | MGET(m, M_WAITOK, MT_DATA); |
| 8072 | if (m) { |
| 8073 | M_ALIGN(m, l); |
| 8074 | m->m_len = l; |
| 8075 | m->m_next = NULL; |
| 8076 | } |
| 8077 | } else { |
| 8078 | M_PREPEND(m, l, M_WAITOK, 1); |
| 8079 | } |
| 8080 | if (!m) { |
| 8081 | return NULL; |
| 8082 | } |
| 8083 | |
| 8084 | comb = mtod(m, struct sadb_comb *); |
| 8085 | bzero(s: comb, n: sizeof(*comb)); |
| 8086 | key_getcomb_setlifetime(comb); |
| 8087 | comb->sadb_comb_auth = i; |
| 8088 | comb->sadb_comb_auth_minbits = keymin; |
| 8089 | comb->sadb_comb_auth_maxbits = algo->keymax; |
| 8090 | } |
| 8091 | |
| 8092 | return m; |
| 8093 | } |
| 8094 | |
| 8095 | /* |
| 8096 | * XXX no way to pass mode (transport/tunnel) to userland |
| 8097 | * XXX replay checking? |
| 8098 | * XXX sysctl interface to ipsec_{ah,esp}_keymin |
| 8099 | */ |
| 8100 | static struct mbuf * |
| 8101 | key_getprop( |
| 8102 | const struct secasindex *saidx) |
| 8103 | { |
| 8104 | struct sadb_prop *prop; |
| 8105 | struct mbuf *m, *n; |
| 8106 | const int l = PFKEY_ALIGN8(sizeof(struct sadb_prop)); |
| 8107 | int totlen; |
| 8108 | |
| 8109 | switch (saidx->proto) { |
| 8110 | #if IPSEC_ESP |
| 8111 | case IPPROTO_ESP: |
| 8112 | m = key_getcomb_esp(); |
| 8113 | break; |
| 8114 | #endif |
| 8115 | case IPPROTO_AH: |
| 8116 | m = key_getcomb_ah(); |
| 8117 | break; |
| 8118 | default: |
| 8119 | return NULL; |
| 8120 | } |
| 8121 | |
| 8122 | if (!m) { |
| 8123 | return NULL; |
| 8124 | } |
| 8125 | M_PREPEND(m, l, M_WAITOK, 1); |
| 8126 | if (!m) { |
| 8127 | return NULL; |
| 8128 | } |
| 8129 | |
| 8130 | totlen = 0; |
| 8131 | for (n = m; n; n = n->m_next) { |
| 8132 | totlen += n->m_len; |
| 8133 | } |
| 8134 | |
| 8135 | prop = mtod(m, struct sadb_prop *); |
| 8136 | bzero(s: prop, n: sizeof(*prop)); |
| 8137 | VERIFY(totlen <= UINT16_MAX); |
| 8138 | prop->sadb_prop_len = (u_int16_t)PFKEY_UNIT64(totlen); |
| 8139 | prop->sadb_prop_exttype = SADB_EXT_PROPOSAL; |
| 8140 | prop->sadb_prop_replay = 32; /* XXX */ |
| 8141 | |
| 8142 | return m; |
| 8143 | } |
| 8144 | |
| 8145 | /* |
| 8146 | * SADB_ACQUIRE processing called by key_checkrequest() and key_acquire2(). |
| 8147 | * send |
| 8148 | * <base, SA, address(SD), (address(P)), x_policy, |
| 8149 | * (identity(SD),) (sensitivity,) proposal> |
| 8150 | * to KMD, and expect to receive |
| 8151 | * <base> with SADB_ACQUIRE if error occurred, |
| 8152 | * or |
| 8153 | * <base, src address, dst address, (SPI range)> with SADB_GETSPI |
| 8154 | * from KMD by PF_KEY. |
| 8155 | * |
| 8156 | * XXX x_policy is outside of RFC2367 (KAME extension). |
| 8157 | * XXX sensitivity is not supported. |
| 8158 | * |
| 8159 | * OUT: |
| 8160 | * 0 : succeed |
| 8161 | * others: error number |
| 8162 | */ |
| 8163 | static int |
| 8164 | key_acquire( |
| 8165 | struct secasindex *saidx, |
| 8166 | struct secpolicy *sp) |
| 8167 | { |
| 8168 | struct mbuf *result = NULL, *m; |
| 8169 | #ifndef IPSEC_NONBLOCK_ACQUIRE |
| 8170 | struct secacq *newacq; |
| 8171 | #endif |
| 8172 | u_int8_t satype; |
| 8173 | int error = -1; |
| 8174 | u_int32_t seq; |
| 8175 | |
| 8176 | LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_NOTOWNED); |
| 8177 | |
| 8178 | /* sanity check */ |
| 8179 | if (saidx == NULL) { |
| 8180 | panic("key_acquire: NULL pointer is passed." ); |
| 8181 | } |
| 8182 | if ((satype = key_proto2satype(proto: saidx->proto)) == 0) { |
| 8183 | panic("key_acquire: invalid proto is passed." ); |
| 8184 | } |
| 8185 | |
| 8186 | #ifndef IPSEC_NONBLOCK_ACQUIRE |
| 8187 | /* |
| 8188 | * We never do anything about acquirng SA. There is anather |
| 8189 | * solution that kernel blocks to send SADB_ACQUIRE message until |
| 8190 | * getting something message from IKEd. In later case, to be |
| 8191 | * managed with ACQUIRING list. |
| 8192 | */ |
| 8193 | /* get a entry to check whether sending message or not. */ |
| 8194 | lck_mtx_lock(sadb_mutex); |
| 8195 | if ((newacq = key_getacq(saidx)) != NULL) { |
| 8196 | if (key_blockacq_count < newacq->count) { |
| 8197 | /* reset counter and do send message. */ |
| 8198 | newacq->count = 0; |
| 8199 | } else { |
| 8200 | /* increment counter and do nothing. */ |
| 8201 | newacq->count++; |
| 8202 | lck_mtx_unlock(sadb_mutex); |
| 8203 | return 0; |
| 8204 | } |
| 8205 | } else { |
| 8206 | /* make new entry for blocking to send SADB_ACQUIRE. */ |
| 8207 | if ((newacq = key_newacq(saidx)) == NULL) { |
| 8208 | lck_mtx_unlock(sadb_mutex); |
| 8209 | return ENOBUFS; |
| 8210 | } |
| 8211 | |
| 8212 | /* add to acqtree */ |
| 8213 | LIST_INSERT_HEAD(&acqtree, newacq, chain); |
| 8214 | key_start_timehandler(); |
| 8215 | } |
| 8216 | seq = newacq->seq; |
| 8217 | lck_mtx_unlock(sadb_mutex); |
| 8218 | |
| 8219 | #else |
| 8220 | seq = (acq_seq = (acq_seq == ~0 ? 1 : ++acq_seq)); |
| 8221 | #endif |
| 8222 | m = key_setsadbmsg(SADB_ACQUIRE, tlen: 0, satype, seq, pid: 0, reserved: 0); |
| 8223 | if (!m) { |
| 8224 | error = ENOBUFS; |
| 8225 | goto fail; |
| 8226 | } |
| 8227 | result = m; |
| 8228 | |
| 8229 | /* set sadb_address for saidx's. */ |
| 8230 | m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, |
| 8231 | saddr: (struct sockaddr *)&saidx->src, FULLMASK, IPSEC_ULPROTO_ANY); |
| 8232 | if (!m) { |
| 8233 | error = ENOBUFS; |
| 8234 | goto fail; |
| 8235 | } |
| 8236 | m_cat(result, m); |
| 8237 | |
| 8238 | m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, |
| 8239 | saddr: (struct sockaddr *)&saidx->dst, FULLMASK, IPSEC_ULPROTO_ANY); |
| 8240 | if (!m) { |
| 8241 | error = ENOBUFS; |
| 8242 | goto fail; |
| 8243 | } |
| 8244 | m_cat(result, m); |
| 8245 | |
| 8246 | /* XXX proxy address (optional) */ |
| 8247 | |
| 8248 | /* set sadb_x_policy */ |
| 8249 | if (sp) { |
| 8250 | m = key_setsadbxpolicy(type: (u_int16_t)sp->policy, dir: sp->spidx.dir, id: sp->id); |
| 8251 | if (!m) { |
| 8252 | error = ENOBUFS; |
| 8253 | goto fail; |
| 8254 | } |
| 8255 | m_cat(result, m); |
| 8256 | } |
| 8257 | |
| 8258 | /* XXX sensitivity (optional) */ |
| 8259 | |
| 8260 | /* create proposal/combination extension */ |
| 8261 | m = key_getprop(saidx); |
| 8262 | /* |
| 8263 | * outside of spec; make proposal/combination extension optional. |
| 8264 | */ |
| 8265 | if (m) { |
| 8266 | m_cat(result, m); |
| 8267 | } |
| 8268 | |
| 8269 | if ((result->m_flags & M_PKTHDR) == 0) { |
| 8270 | error = EINVAL; |
| 8271 | goto fail; |
| 8272 | } |
| 8273 | |
| 8274 | if (result->m_len < sizeof(struct sadb_msg)) { |
| 8275 | result = m_pullup(result, sizeof(struct sadb_msg)); |
| 8276 | if (result == NULL) { |
| 8277 | error = ENOBUFS; |
| 8278 | goto fail; |
| 8279 | } |
| 8280 | } |
| 8281 | |
| 8282 | result->m_pkthdr.len = 0; |
| 8283 | for (m = result; m; m = m->m_next) { |
| 8284 | result->m_pkthdr.len += m->m_len; |
| 8285 | } |
| 8286 | |
| 8287 | VERIFY(PFKEY_UNIT64(result->m_pkthdr.len) <= UINT16_MAX); |
| 8288 | mtod(result, struct sadb_msg *)->sadb_msg_len = |
| 8289 | (u_int16_t)PFKEY_UNIT64(result->m_pkthdr.len); |
| 8290 | |
| 8291 | return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED); |
| 8292 | |
| 8293 | fail: |
| 8294 | if (result) { |
| 8295 | m_freem(result); |
| 8296 | } |
| 8297 | return error; |
| 8298 | } |
| 8299 | |
| 8300 | #ifndef IPSEC_NONBLOCK_ACQUIRE |
| 8301 | static struct secacq * |
| 8302 | key_newacq( |
| 8303 | struct secasindex *saidx) |
| 8304 | { |
| 8305 | struct secacq *newacq; |
| 8306 | |
| 8307 | /* get new entry */ |
| 8308 | newacq = kalloc_type(struct secacq, Z_NOWAIT_ZERO); |
| 8309 | if (newacq == NULL) { |
| 8310 | lck_mtx_unlock(sadb_mutex); |
| 8311 | newacq = kalloc_type(struct secacq, Z_WAITOK_ZERO_NOFAIL); |
| 8312 | lck_mtx_lock(sadb_mutex); |
| 8313 | } |
| 8314 | |
| 8315 | /* copy secindex */ |
| 8316 | bcopy(src: saidx, dst: &newacq->saidx, n: sizeof(newacq->saidx)); |
| 8317 | newacq->seq = (acq_seq == ~0 ? 1 : ++acq_seq); |
| 8318 | newacq->created = key_get_continuous_time_ns(); |
| 8319 | |
| 8320 | return newacq; |
| 8321 | } |
| 8322 | |
| 8323 | static struct secacq * |
| 8324 | key_getacq( |
| 8325 | struct secasindex *saidx) |
| 8326 | { |
| 8327 | struct secacq *acq; |
| 8328 | |
| 8329 | LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_OWNED); |
| 8330 | |
| 8331 | LIST_FOREACH(acq, &acqtree, chain) { |
| 8332 | if (key_cmpsaidx(saidx0: saidx, saidx1: &acq->saidx, CMP_EXACTLY)) { |
| 8333 | return acq; |
| 8334 | } |
| 8335 | } |
| 8336 | |
| 8337 | return NULL; |
| 8338 | } |
| 8339 | |
| 8340 | static struct secacq * |
| 8341 | key_getacqbyseq( |
| 8342 | u_int32_t seq) |
| 8343 | { |
| 8344 | struct secacq *acq; |
| 8345 | |
| 8346 | LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_OWNED); |
| 8347 | |
| 8348 | LIST_FOREACH(acq, &acqtree, chain) { |
| 8349 | if (acq->seq == seq) { |
| 8350 | return acq; |
| 8351 | } |
| 8352 | } |
| 8353 | |
| 8354 | return NULL; |
| 8355 | } |
| 8356 | #endif |
| 8357 | |
| 8358 | static struct secspacq * |
| 8359 | key_newspacq( |
| 8360 | struct secpolicyindex *spidx) |
| 8361 | { |
| 8362 | struct secspacq *acq; |
| 8363 | |
| 8364 | /* get new entry */ |
| 8365 | acq = kalloc_type(struct secspacq, Z_NOWAIT_ZERO); |
| 8366 | if (acq == NULL) { |
| 8367 | lck_mtx_unlock(sadb_mutex); |
| 8368 | acq = kalloc_type(struct secspacq, Z_WAITOK_ZERO_NOFAIL); |
| 8369 | lck_mtx_lock(sadb_mutex); |
| 8370 | } |
| 8371 | |
| 8372 | /* copy secindex */ |
| 8373 | bcopy(src: spidx, dst: &acq->spidx, n: sizeof(acq->spidx)); |
| 8374 | acq->created = key_get_continuous_time_ns(); |
| 8375 | |
| 8376 | return acq; |
| 8377 | } |
| 8378 | |
| 8379 | static struct secspacq * |
| 8380 | key_getspacq( |
| 8381 | struct secpolicyindex *spidx) |
| 8382 | { |
| 8383 | struct secspacq *acq; |
| 8384 | |
| 8385 | LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_OWNED); |
| 8386 | |
| 8387 | LIST_FOREACH(acq, &spacqtree, chain) { |
| 8388 | if (key_cmpspidx_exactly(spidx0: spidx, spidx1: &acq->spidx)) { |
| 8389 | return acq; |
| 8390 | } |
| 8391 | } |
| 8392 | |
| 8393 | return NULL; |
| 8394 | } |
| 8395 | |
| 8396 | /* |
| 8397 | * SADB_ACQUIRE processing, |
| 8398 | * in first situation, is receiving |
| 8399 | * <base> |
| 8400 | * from the ikmpd, and clear sequence of its secasvar entry. |
| 8401 | * |
| 8402 | * In second situation, is receiving |
| 8403 | * <base, address(SD), (address(P),) (identity(SD),) (sensitivity,) proposal> |
| 8404 | * from a user land process, and return |
| 8405 | * <base, address(SD), (address(P),) (identity(SD),) (sensitivity,) proposal> |
| 8406 | * to the socket. |
| 8407 | * |
| 8408 | * m will always be freed. |
| 8409 | */ |
| 8410 | static int |
| 8411 | key_acquire2( |
| 8412 | struct socket *so, |
| 8413 | struct mbuf *m, |
| 8414 | const struct sadb_msghdr *mhp) |
| 8415 | { |
| 8416 | const struct sadb_address *src0, *dst0; |
| 8417 | ifnet_t ipsec_if = NULL; |
| 8418 | struct secasindex saidx; |
| 8419 | struct secashead *sah; |
| 8420 | u_int16_t proto; |
| 8421 | int error; |
| 8422 | |
| 8423 | |
| 8424 | /* sanity check */ |
| 8425 | if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL) { |
| 8426 | panic("key_acquire2: NULL pointer is passed." ); |
| 8427 | } |
| 8428 | |
| 8429 | /* |
| 8430 | * Error message from KMd. |
| 8431 | * We assume that if error was occurred in IKEd, the length of PFKEY |
| 8432 | * message is equal to the size of sadb_msg structure. |
| 8433 | * We do not raise error even if error occurred in this function. |
| 8434 | */ |
| 8435 | lck_mtx_lock(sadb_mutex); |
| 8436 | |
| 8437 | if (mhp->msg->sadb_msg_len == PFKEY_UNIT64(sizeof(struct sadb_msg))) { |
| 8438 | #ifndef IPSEC_NONBLOCK_ACQUIRE |
| 8439 | struct secacq *acq; |
| 8440 | |
| 8441 | /* check sequence number */ |
| 8442 | if (mhp->msg->sadb_msg_seq == 0) { |
| 8443 | lck_mtx_unlock(sadb_mutex); |
| 8444 | ipseclog((LOG_DEBUG, "key_acquire2: must specify sequence number.\n" )); |
| 8445 | m_freem(m); |
| 8446 | return 0; |
| 8447 | } |
| 8448 | |
| 8449 | if ((acq = key_getacqbyseq(seq: mhp->msg->sadb_msg_seq)) == NULL) { |
| 8450 | /* |
| 8451 | * the specified larval SA is already gone, or we got |
| 8452 | * a bogus sequence number. we can silently ignore it. |
| 8453 | */ |
| 8454 | lck_mtx_unlock(sadb_mutex); |
| 8455 | m_freem(m); |
| 8456 | return 0; |
| 8457 | } |
| 8458 | |
| 8459 | /* reset acq counter in order to deletion by timehander. */ |
| 8460 | acq->created = key_get_continuous_time_ns(); |
| 8461 | acq->count = 0; |
| 8462 | #endif |
| 8463 | lck_mtx_unlock(sadb_mutex); |
| 8464 | m_freem(m); |
| 8465 | return 0; |
| 8466 | } |
| 8467 | |
| 8468 | /* |
| 8469 | * This message is from user land. |
| 8470 | */ |
| 8471 | |
| 8472 | /* map satype to proto */ |
| 8473 | if ((proto = key_satype2proto(satype: mhp->msg->sadb_msg_satype)) == 0) { |
| 8474 | lck_mtx_unlock(sadb_mutex); |
| 8475 | ipseclog((LOG_DEBUG, "key_acquire2: invalid satype is passed.\n" )); |
| 8476 | return key_senderror(so, m, EINVAL); |
| 8477 | } |
| 8478 | |
| 8479 | if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || |
| 8480 | mhp->ext[SADB_EXT_ADDRESS_DST] == NULL || |
| 8481 | mhp->ext[SADB_EXT_PROPOSAL] == NULL) { |
| 8482 | /* error */ |
| 8483 | lck_mtx_unlock(sadb_mutex); |
| 8484 | ipseclog((LOG_DEBUG, "key_acquire2: invalid message is passed.\n" )); |
| 8485 | return key_senderror(so, m, EINVAL); |
| 8486 | } |
| 8487 | if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || |
| 8488 | mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) || |
| 8489 | mhp->extlen[SADB_EXT_PROPOSAL] < sizeof(struct sadb_prop)) { |
| 8490 | /* error */ |
| 8491 | lck_mtx_unlock(sadb_mutex); |
| 8492 | ipseclog((LOG_DEBUG, "key_acquire2: invalid message is passed.\n" )); |
| 8493 | return key_senderror(so, m, EINVAL); |
| 8494 | } |
| 8495 | |
| 8496 | src0 = (const struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC]; |
| 8497 | dst0 = (const struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST]; |
| 8498 | ipsec_if = key_get_ipsec_if_from_message(mhp, SADB_X_EXT_IPSECIF); |
| 8499 | |
| 8500 | u_int ipsec_if_index = 0; |
| 8501 | if (ipsec_if != NULL) { |
| 8502 | ipsec_if_index = ipsec_if->if_index; |
| 8503 | ifnet_release(interface: ipsec_if); |
| 8504 | ipsec_if = NULL; |
| 8505 | } |
| 8506 | |
| 8507 | /* XXX boundary check against sa_len */ |
| 8508 | /* cast warnings */ |
| 8509 | KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, ipsec_if_index, &saidx); |
| 8510 | |
| 8511 | /* get a SA index */ |
| 8512 | LIST_FOREACH(sah, &sahtree, chain) { |
| 8513 | if (sah->state == SADB_SASTATE_DEAD) { |
| 8514 | continue; |
| 8515 | } |
| 8516 | if (key_cmpsaidx(saidx0: &sah->saidx, saidx1: &saidx, CMP_MODE | CMP_REQID)) { |
| 8517 | break; |
| 8518 | } |
| 8519 | } |
| 8520 | if (sah != NULL) { |
| 8521 | lck_mtx_unlock(sadb_mutex); |
| 8522 | ipseclog((LOG_DEBUG, "key_acquire2: a SA exists already.\n" )); |
| 8523 | return key_senderror(so, m, EEXIST); |
| 8524 | } |
| 8525 | lck_mtx_unlock(sadb_mutex); |
| 8526 | error = key_acquire(saidx: &saidx, NULL); |
| 8527 | if (error != 0) { |
| 8528 | ipseclog((LOG_DEBUG, "key_acquire2: error %d returned " |
| 8529 | "from key_acquire.\n" , mhp->msg->sadb_msg_errno)); |
| 8530 | return key_senderror(so, m, error); |
| 8531 | } |
| 8532 | |
| 8533 | return key_sendup_mbuf(so, m, KEY_SENDUP_REGISTERED); |
| 8534 | } |
| 8535 | |
| 8536 | /* |
| 8537 | * SADB_REGISTER processing. |
| 8538 | * If SATYPE_UNSPEC has been passed as satype, only return sadb_supported. |
| 8539 | * receive |
| 8540 | * <base> |
| 8541 | * from the ikmpd, and register a socket to send PF_KEY messages, |
| 8542 | * and send |
| 8543 | * <base, supported> |
| 8544 | * to KMD by PF_KEY. |
| 8545 | * If socket is detached, must free from regnode. |
| 8546 | * |
| 8547 | * m will always be freed. |
| 8548 | */ |
| 8549 | static int |
| 8550 | key_register( |
| 8551 | struct socket *so, |
| 8552 | struct mbuf *m, |
| 8553 | const struct sadb_msghdr *mhp) |
| 8554 | { |
| 8555 | struct secreg *reg, *newreg = 0; |
| 8556 | |
| 8557 | /* sanity check */ |
| 8558 | if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL) { |
| 8559 | panic("key_register: NULL pointer is passed." ); |
| 8560 | } |
| 8561 | |
| 8562 | /* check for invalid register message */ |
| 8563 | if (mhp->msg->sadb_msg_satype >= sizeof(regtree) / sizeof(regtree[0])) { |
| 8564 | return key_senderror(so, m, EINVAL); |
| 8565 | } |
| 8566 | |
| 8567 | /* When SATYPE_UNSPEC is specified, only return sadb_supported. */ |
| 8568 | if (mhp->msg->sadb_msg_satype == SADB_SATYPE_UNSPEC) { |
| 8569 | goto setmsg; |
| 8570 | } |
| 8571 | |
| 8572 | /* create regnode */ |
| 8573 | newreg = kalloc_type(struct secreg, Z_WAITOK_ZERO_NOFAIL); |
| 8574 | |
| 8575 | lck_mtx_lock(sadb_mutex); |
| 8576 | /* check whether existing or not */ |
| 8577 | LIST_FOREACH(reg, ®tree[mhp->msg->sadb_msg_satype], chain) { |
| 8578 | if (reg->so == so) { |
| 8579 | lck_mtx_unlock(sadb_mutex); |
| 8580 | ipseclog((LOG_DEBUG, "key_register: socket exists already.\n" )); |
| 8581 | kfree_type(struct secreg, newreg); |
| 8582 | return key_senderror(so, m, EEXIST); |
| 8583 | } |
| 8584 | } |
| 8585 | |
| 8586 | socket_lock(so, refcount: 1); |
| 8587 | newreg->so = so; |
| 8588 | ((struct keycb *)sotorawcb(so))->kp_registered++; |
| 8589 | socket_unlock(so, refcount: 1); |
| 8590 | |
| 8591 | /* add regnode to regtree. */ |
| 8592 | LIST_INSERT_HEAD(®tree[mhp->msg->sadb_msg_satype], newreg, chain); |
| 8593 | lck_mtx_unlock(sadb_mutex); |
| 8594 | setmsg: |
| 8595 | { |
| 8596 | struct mbuf *n; |
| 8597 | struct sadb_msg *newmsg; |
| 8598 | struct sadb_supported *sup; |
| 8599 | u_int16_t len, alen, elen; |
| 8600 | int off; |
| 8601 | u_int8_t i; |
| 8602 | struct sadb_alg *alg; |
| 8603 | |
| 8604 | /* create new sadb_msg to reply. */ |
| 8605 | alen = 0; |
| 8606 | for (i = 1; i <= SADB_AALG_MAX; i++) { |
| 8607 | if (ah_algorithm_lookup(i)) { |
| 8608 | alen += sizeof(struct sadb_alg); |
| 8609 | } |
| 8610 | } |
| 8611 | if (alen) { |
| 8612 | alen += sizeof(struct sadb_supported); |
| 8613 | } |
| 8614 | elen = 0; |
| 8615 | #if IPSEC_ESP |
| 8616 | for (i = 1; i <= SADB_EALG_MAX; i++) { |
| 8617 | if (esp_algorithm_lookup(i)) { |
| 8618 | elen += sizeof(struct sadb_alg); |
| 8619 | } |
| 8620 | } |
| 8621 | if (elen) { |
| 8622 | elen += sizeof(struct sadb_supported); |
| 8623 | } |
| 8624 | #endif |
| 8625 | |
| 8626 | len = sizeof(struct sadb_msg) + alen + elen; |
| 8627 | |
| 8628 | if (len > MCLBYTES) { |
| 8629 | return key_senderror(so, m, ENOBUFS); |
| 8630 | } |
| 8631 | |
| 8632 | MGETHDR(n, M_WAITOK, MT_DATA); |
| 8633 | if (n && len > MHLEN) { |
| 8634 | MCLGET(n, M_WAITOK); |
| 8635 | if ((n->m_flags & M_EXT) == 0) { |
| 8636 | m_freem(n); |
| 8637 | n = NULL; |
| 8638 | } |
| 8639 | } |
| 8640 | if (!n) { |
| 8641 | return key_senderror(so, m, ENOBUFS); |
| 8642 | } |
| 8643 | |
| 8644 | n->m_pkthdr.len = n->m_len = len; |
| 8645 | n->m_next = NULL; |
| 8646 | off = 0; |
| 8647 | |
| 8648 | m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, caddr_t) + off); |
| 8649 | newmsg = mtod(n, struct sadb_msg *); |
| 8650 | newmsg->sadb_msg_errno = 0; |
| 8651 | VERIFY(PFKEY_UNIT64(len) <= UINT16_MAX); |
| 8652 | newmsg->sadb_msg_len = (u_int16_t)PFKEY_UNIT64(len); |
| 8653 | off += PFKEY_ALIGN8(sizeof(struct sadb_msg)); |
| 8654 | |
| 8655 | /* for authentication algorithm */ |
| 8656 | if (alen) { |
| 8657 | sup = (struct sadb_supported *)(void *)(mtod(n, caddr_t) + off); |
| 8658 | sup->sadb_supported_len = (u_int16_t)PFKEY_UNIT64(alen); |
| 8659 | sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_AUTH; |
| 8660 | off += PFKEY_ALIGN8(sizeof(*sup)); |
| 8661 | |
| 8662 | for (i = 1; i <= SADB_AALG_MAX; i++) { |
| 8663 | const struct ah_algorithm *aalgo; |
| 8664 | |
| 8665 | aalgo = ah_algorithm_lookup(i); |
| 8666 | if (!aalgo) { |
| 8667 | continue; |
| 8668 | } |
| 8669 | alg = (struct sadb_alg *) |
| 8670 | (void *)(mtod(n, caddr_t) + off); |
| 8671 | alg->sadb_alg_id = i; |
| 8672 | alg->sadb_alg_ivlen = 0; |
| 8673 | alg->sadb_alg_minbits = aalgo->keymin; |
| 8674 | alg->sadb_alg_maxbits = aalgo->keymax; |
| 8675 | off += PFKEY_ALIGN8(sizeof(*alg)); |
| 8676 | } |
| 8677 | } |
| 8678 | |
| 8679 | #if IPSEC_ESP |
| 8680 | /* for encryption algorithm */ |
| 8681 | if (elen) { |
| 8682 | sup = (struct sadb_supported *)(void *)(mtod(n, caddr_t) + off); |
| 8683 | sup->sadb_supported_len = PFKEY_UNIT64(elen); |
| 8684 | sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_ENCRYPT; |
| 8685 | off += PFKEY_ALIGN8(sizeof(*sup)); |
| 8686 | |
| 8687 | for (i = 1; i <= SADB_EALG_MAX; i++) { |
| 8688 | const struct esp_algorithm *ealgo; |
| 8689 | |
| 8690 | ealgo = esp_algorithm_lookup(i); |
| 8691 | if (!ealgo) { |
| 8692 | continue; |
| 8693 | } |
| 8694 | alg = (struct sadb_alg *) |
| 8695 | (void *)(mtod(n, caddr_t) + off); |
| 8696 | alg->sadb_alg_id = i; |
| 8697 | if (ealgo && ealgo->ivlen) { |
| 8698 | /* |
| 8699 | * give NULL to get the value preferred by |
| 8700 | * algorithm XXX SADB_X_EXT_DERIV ? |
| 8701 | */ |
| 8702 | VERIFY((*ealgo->ivlen)(ealgo, NULL) <= UINT8_MAX); |
| 8703 | alg->sadb_alg_ivlen = |
| 8704 | (u_int8_t)((*ealgo->ivlen)(ealgo, NULL)); |
| 8705 | } else { |
| 8706 | alg->sadb_alg_ivlen = 0; |
| 8707 | } |
| 8708 | alg->sadb_alg_minbits = ealgo->keymin; |
| 8709 | alg->sadb_alg_maxbits = ealgo->keymax; |
| 8710 | off += PFKEY_ALIGN8(sizeof(struct sadb_alg)); |
| 8711 | } |
| 8712 | } |
| 8713 | #endif |
| 8714 | |
| 8715 | #if DIAGNOSTIC |
| 8716 | if (off != len) { |
| 8717 | panic("length assumption failed in key_register" ); |
| 8718 | } |
| 8719 | #endif |
| 8720 | |
| 8721 | m_freem(m); |
| 8722 | return key_sendup_mbuf(so, n, KEY_SENDUP_REGISTERED); |
| 8723 | } |
| 8724 | } |
| 8725 | |
| 8726 | static void |
| 8727 | key_delete_all_for_socket(struct socket *so) |
| 8728 | { |
| 8729 | struct secashead *sah, *nextsah; |
| 8730 | struct secasvar *sav, *nextsav; |
| 8731 | u_int stateidx; |
| 8732 | u_int state; |
| 8733 | |
| 8734 | for (sah = LIST_FIRST(&sahtree); |
| 8735 | sah != NULL; |
| 8736 | sah = nextsah) { |
| 8737 | nextsah = LIST_NEXT(sah, chain); |
| 8738 | for (stateidx = 0; stateidx < _ARRAYLEN(saorder_state_alive); stateidx++) { |
| 8739 | state = saorder_state_any[stateidx]; |
| 8740 | for (sav = LIST_FIRST(&sah->savtree[state]); sav != NULL; sav = nextsav) { |
| 8741 | nextsav = LIST_NEXT(sav, chain); |
| 8742 | if (sav->flags2 & SADB_X_EXT_SA2_DELETE_ON_DETACH && |
| 8743 | sav->so == so) { |
| 8744 | key_sa_chgstate(sav, SADB_SASTATE_DEAD); |
| 8745 | key_freesav(sav, KEY_SADB_LOCKED); |
| 8746 | } |
| 8747 | } |
| 8748 | } |
| 8749 | } |
| 8750 | } |
| 8751 | |
| 8752 | /* |
| 8753 | * free secreg entry registered. |
| 8754 | * XXX: I want to do free a socket marked done SADB_RESIGER to socket. |
| 8755 | */ |
| 8756 | void |
| 8757 | key_freereg( |
| 8758 | struct socket *so) |
| 8759 | { |
| 8760 | struct secreg *reg; |
| 8761 | int i; |
| 8762 | |
| 8763 | /* sanity check */ |
| 8764 | if (so == NULL) { |
| 8765 | panic("key_freereg: NULL pointer is passed." ); |
| 8766 | } |
| 8767 | |
| 8768 | /* |
| 8769 | * check whether existing or not. |
| 8770 | * check all type of SA, because there is a potential that |
| 8771 | * one socket is registered to multiple type of SA. |
| 8772 | */ |
| 8773 | lck_mtx_lock(sadb_mutex); |
| 8774 | key_delete_all_for_socket(so); |
| 8775 | for (i = 0; i <= SADB_SATYPE_MAX; i++) { |
| 8776 | LIST_FOREACH(reg, ®tree[i], chain) { |
| 8777 | if (reg->so == so |
| 8778 | && __LIST_CHAINED(reg)) { |
| 8779 | LIST_REMOVE(reg, chain); |
| 8780 | kfree_type(struct secreg, reg); |
| 8781 | break; |
| 8782 | } |
| 8783 | } |
| 8784 | } |
| 8785 | lck_mtx_unlock(sadb_mutex); |
| 8786 | return; |
| 8787 | } |
| 8788 | |
| 8789 | /* |
| 8790 | * SADB_EXPIRE processing |
| 8791 | * send |
| 8792 | * <base, SA, SA2, lifetime(C and one of HS), address(SD)> |
| 8793 | * to KMD by PF_KEY. |
| 8794 | * NOTE: We send only soft lifetime extension. |
| 8795 | * |
| 8796 | * OUT: 0 : succeed |
| 8797 | * others : error number |
| 8798 | */ |
| 8799 | static int |
| 8800 | key_expire( |
| 8801 | struct secasvar *sav) |
| 8802 | { |
| 8803 | u_int8_t satype; |
| 8804 | struct mbuf *result = NULL, *m; |
| 8805 | int len; |
| 8806 | int error = -1; |
| 8807 | struct sadb_lifetime *lt; |
| 8808 | |
| 8809 | LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_NOTOWNED); |
| 8810 | |
| 8811 | /* sanity check */ |
| 8812 | if (sav == NULL) { |
| 8813 | panic("key_expire: NULL pointer is passed." ); |
| 8814 | } |
| 8815 | if (sav->sah == NULL) { |
| 8816 | panic("key_expire: Why was SA index in SA NULL." ); |
| 8817 | } |
| 8818 | if ((satype = key_proto2satype(proto: sav->sah->saidx.proto)) == 0) { |
| 8819 | panic("key_expire: invalid proto is passed." ); |
| 8820 | } |
| 8821 | |
| 8822 | /* set msg header */ |
| 8823 | m = key_setsadbmsg(SADB_EXPIRE, tlen: 0, satype, seq: sav->seq, pid: 0, reserved: (u_int16_t)sav->refcnt); |
| 8824 | if (!m) { |
| 8825 | error = ENOBUFS; |
| 8826 | goto fail; |
| 8827 | } |
| 8828 | result = m; |
| 8829 | |
| 8830 | /* create SA extension */ |
| 8831 | m = key_setsadbsa(sav); |
| 8832 | if (!m) { |
| 8833 | error = ENOBUFS; |
| 8834 | goto fail; |
| 8835 | } |
| 8836 | m_cat(result, m); |
| 8837 | |
| 8838 | /* create SA extension */ |
| 8839 | m = key_setsadbxsa2(mode: sav->sah->saidx.mode, |
| 8840 | seq: sav->replay[0] ? sav->replay[0]->count : 0, |
| 8841 | reqid: sav->sah->saidx.reqid, |
| 8842 | flags: sav->flags2); |
| 8843 | if (!m) { |
| 8844 | error = ENOBUFS; |
| 8845 | goto fail; |
| 8846 | } |
| 8847 | m_cat(result, m); |
| 8848 | |
| 8849 | /* create lifetime extension (current and soft) */ |
| 8850 | len = PFKEY_ALIGN8(sizeof(*lt)) * 2; |
| 8851 | m = key_alloc_mbuf(len); |
| 8852 | if (!m || m->m_next) { /*XXX*/ |
| 8853 | if (m) { |
| 8854 | m_freem(m); |
| 8855 | } |
| 8856 | error = ENOBUFS; |
| 8857 | goto fail; |
| 8858 | } |
| 8859 | bzero(mtod(m, caddr_t), n: len); |
| 8860 | lt = mtod(m, struct sadb_lifetime *); |
| 8861 | lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime)); |
| 8862 | lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT; |
| 8863 | lt->sadb_lifetime_allocations = sav->lft_c->sadb_lifetime_allocations; |
| 8864 | lt->sadb_lifetime_bytes = sav->lft_c->sadb_lifetime_bytes; |
| 8865 | lt->sadb_lifetime_addtime = key_convert_continuous_time_ns(time_value: sav->lft_c->sadb_lifetime_addtime); |
| 8866 | lt->sadb_lifetime_usetime = key_convert_continuous_time_ns(time_value: sav->lft_c->sadb_lifetime_usetime); |
| 8867 | lt = (struct sadb_lifetime *)(void *)(mtod(m, caddr_t) + len / 2); |
| 8868 | bcopy(src: sav->lft_s, dst: lt, n: sizeof(*lt)); |
| 8869 | m_cat(result, m); |
| 8870 | |
| 8871 | /* set sadb_address for source */ |
| 8872 | m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, |
| 8873 | saddr: (struct sockaddr *)&sav->sah->saidx.src, |
| 8874 | FULLMASK, IPSEC_ULPROTO_ANY); |
| 8875 | if (!m) { |
| 8876 | error = ENOBUFS; |
| 8877 | goto fail; |
| 8878 | } |
| 8879 | m_cat(result, m); |
| 8880 | |
| 8881 | /* set sadb_address for destination */ |
| 8882 | m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, |
| 8883 | saddr: (struct sockaddr *)&sav->sah->saidx.dst, |
| 8884 | FULLMASK, IPSEC_ULPROTO_ANY); |
| 8885 | if (!m) { |
| 8886 | error = ENOBUFS; |
| 8887 | goto fail; |
| 8888 | } |
| 8889 | m_cat(result, m); |
| 8890 | |
| 8891 | if ((result->m_flags & M_PKTHDR) == 0) { |
| 8892 | error = EINVAL; |
| 8893 | goto fail; |
| 8894 | } |
| 8895 | |
| 8896 | if (result->m_len < sizeof(struct sadb_msg)) { |
| 8897 | result = m_pullup(result, sizeof(struct sadb_msg)); |
| 8898 | if (result == NULL) { |
| 8899 | error = ENOBUFS; |
| 8900 | goto fail; |
| 8901 | } |
| 8902 | } |
| 8903 | |
| 8904 | result->m_pkthdr.len = 0; |
| 8905 | for (m = result; m; m = m->m_next) { |
| 8906 | result->m_pkthdr.len += m->m_len; |
| 8907 | } |
| 8908 | |
| 8909 | VERIFY(PFKEY_UNIT64(result->m_pkthdr.len) <= UINT16_MAX); |
| 8910 | mtod(result, struct sadb_msg *)->sadb_msg_len = |
| 8911 | (u_int16_t)PFKEY_UNIT64(result->m_pkthdr.len); |
| 8912 | |
| 8913 | return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED); |
| 8914 | |
| 8915 | fail: |
| 8916 | if (result) { |
| 8917 | m_freem(result); |
| 8918 | } |
| 8919 | return error; |
| 8920 | } |
| 8921 | |
| 8922 | /* |
| 8923 | * SADB_FLUSH processing |
| 8924 | * receive |
| 8925 | * <base> |
| 8926 | * from the ikmpd, and free all entries in secastree. |
| 8927 | * and send, |
| 8928 | * <base> |
| 8929 | * to the ikmpd. |
| 8930 | * NOTE: to do is only marking SADB_SASTATE_DEAD. |
| 8931 | * |
| 8932 | * m will always be freed. |
| 8933 | */ |
| 8934 | static int |
| 8935 | key_flush( |
| 8936 | struct socket *so, |
| 8937 | struct mbuf *m, |
| 8938 | const struct sadb_msghdr *mhp) |
| 8939 | { |
| 8940 | struct sadb_msg *newmsg; |
| 8941 | struct secashead *sah, *nextsah; |
| 8942 | struct secasvar *sav, *nextsav; |
| 8943 | u_int16_t proto; |
| 8944 | u_int state; |
| 8945 | u_int stateidx; |
| 8946 | |
| 8947 | /* sanity check */ |
| 8948 | if (so == NULL || mhp == NULL || mhp->msg == NULL) { |
| 8949 | panic("key_flush: NULL pointer is passed." ); |
| 8950 | } |
| 8951 | |
| 8952 | /* map satype to proto */ |
| 8953 | if ((proto = key_satype2proto(satype: mhp->msg->sadb_msg_satype)) == 0) { |
| 8954 | ipseclog((LOG_DEBUG, "key_flush: invalid satype is passed.\n" )); |
| 8955 | return key_senderror(so, m, EINVAL); |
| 8956 | } |
| 8957 | |
| 8958 | lck_mtx_lock(sadb_mutex); |
| 8959 | |
| 8960 | /* no SATYPE specified, i.e. flushing all SA. */ |
| 8961 | for (sah = LIST_FIRST(&sahtree); |
| 8962 | sah != NULL; |
| 8963 | sah = nextsah) { |
| 8964 | nextsah = LIST_NEXT(sah, chain); |
| 8965 | |
| 8966 | if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC |
| 8967 | && proto != sah->saidx.proto) { |
| 8968 | continue; |
| 8969 | } |
| 8970 | |
| 8971 | for (stateidx = 0; |
| 8972 | stateidx < _ARRAYLEN(saorder_state_alive); |
| 8973 | stateidx++) { |
| 8974 | state = saorder_state_any[stateidx]; |
| 8975 | for (sav = LIST_FIRST(&sah->savtree[state]); |
| 8976 | sav != NULL; |
| 8977 | sav = nextsav) { |
| 8978 | nextsav = LIST_NEXT(sav, chain); |
| 8979 | |
| 8980 | key_sa_chgstate(sav, SADB_SASTATE_DEAD); |
| 8981 | key_freesav(sav, KEY_SADB_LOCKED); |
| 8982 | } |
| 8983 | } |
| 8984 | |
| 8985 | sah->state = SADB_SASTATE_DEAD; |
| 8986 | } |
| 8987 | lck_mtx_unlock(sadb_mutex); |
| 8988 | |
| 8989 | if (m->m_len < sizeof(struct sadb_msg) || |
| 8990 | sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) { |
| 8991 | ipseclog((LOG_DEBUG, "key_flush: No more memory.\n" )); |
| 8992 | return key_senderror(so, m, ENOBUFS); |
| 8993 | } |
| 8994 | |
| 8995 | if (m->m_next) { |
| 8996 | m_freem(m->m_next); |
| 8997 | } |
| 8998 | m->m_next = NULL; |
| 8999 | m->m_pkthdr.len = m->m_len = sizeof(struct sadb_msg); |
| 9000 | newmsg = mtod(m, struct sadb_msg *); |
| 9001 | newmsg->sadb_msg_errno = 0; |
| 9002 | VERIFY(PFKEY_UNIT64(m->m_pkthdr.len) <= UINT16_MAX); |
| 9003 | newmsg->sadb_msg_len = (uint16_t)PFKEY_UNIT64(m->m_pkthdr.len); |
| 9004 | |
| 9005 | return key_sendup_mbuf(so, m, KEY_SENDUP_ALL); |
| 9006 | } |
| 9007 | |
| 9008 | /* |
| 9009 | * SADB_DUMP processing |
| 9010 | * dump all entries including status of DEAD in SAD. |
| 9011 | * receive |
| 9012 | * <base> |
| 9013 | * from the ikmpd, and dump all secasvar leaves |
| 9014 | * and send, |
| 9015 | * <base> ..... |
| 9016 | * to the ikmpd. |
| 9017 | * |
| 9018 | * m will always be freed. |
| 9019 | */ |
| 9020 | |
| 9021 | struct sav_dump_elem { |
| 9022 | struct secasvar *sav; |
| 9023 | u_int8_t satype; |
| 9024 | }; |
| 9025 | |
| 9026 | static int |
| 9027 | key_dump( |
| 9028 | struct socket *so, |
| 9029 | struct mbuf *m, |
| 9030 | const struct sadb_msghdr *mhp) |
| 9031 | { |
| 9032 | struct secashead *sah; |
| 9033 | struct secasvar *sav; |
| 9034 | struct sav_dump_elem *savbuf = NULL, *elem_ptr; |
| 9035 | u_int32_t bufcount = 0, cnt = 0, cnt2 = 0; |
| 9036 | u_int16_t proto; |
| 9037 | u_int stateidx; |
| 9038 | u_int8_t satype; |
| 9039 | u_int state; |
| 9040 | struct mbuf *n; |
| 9041 | int error = 0; |
| 9042 | |
| 9043 | LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_NOTOWNED); |
| 9044 | |
| 9045 | /* sanity check */ |
| 9046 | if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL) { |
| 9047 | panic("key_dump: NULL pointer is passed." ); |
| 9048 | } |
| 9049 | |
| 9050 | /* map satype to proto */ |
| 9051 | if ((proto = key_satype2proto(satype: mhp->msg->sadb_msg_satype)) == 0) { |
| 9052 | ipseclog((LOG_DEBUG, "key_dump: invalid satype is passed.\n" )); |
| 9053 | return key_senderror(so, m, EINVAL); |
| 9054 | } |
| 9055 | |
| 9056 | if ((bufcount = ipsec_sav_count) == 0) { |
| 9057 | error = ENOENT; |
| 9058 | goto end; |
| 9059 | } |
| 9060 | |
| 9061 | if (os_add_overflow(bufcount, 512, &bufcount)) { |
| 9062 | ipseclog((LOG_DEBUG, "key_dump: bufcount overflow, ipsec sa count %u.\n" , ipsec_sav_count)); |
| 9063 | bufcount = ipsec_sav_count; |
| 9064 | } |
| 9065 | |
| 9066 | savbuf = kalloc_type(struct sav_dump_elem, bufcount, Z_WAITOK); |
| 9067 | if (savbuf == NULL) { |
| 9068 | ipseclog((LOG_DEBUG, "key_dump: No more memory.\n" )); |
| 9069 | error = ENOMEM; |
| 9070 | goto end; |
| 9071 | } |
| 9072 | |
| 9073 | /* count sav entries to be sent to the userland. */ |
| 9074 | lck_mtx_lock(sadb_mutex); |
| 9075 | elem_ptr = savbuf; |
| 9076 | LIST_FOREACH(sah, &sahtree, chain) { |
| 9077 | if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC |
| 9078 | && proto != sah->saidx.proto) { |
| 9079 | continue; |
| 9080 | } |
| 9081 | |
| 9082 | /* map proto to satype */ |
| 9083 | if ((satype = key_proto2satype(proto: sah->saidx.proto)) == 0) { |
| 9084 | lck_mtx_unlock(sadb_mutex); |
| 9085 | ipseclog((LOG_DEBUG, "key_dump: there was invalid proto in SAD.\n" )); |
| 9086 | error = EINVAL; |
| 9087 | goto end; |
| 9088 | } |
| 9089 | |
| 9090 | for (stateidx = 0; |
| 9091 | stateidx < _ARRAYLEN(saorder_state_any); |
| 9092 | stateidx++) { |
| 9093 | state = saorder_state_any[stateidx]; |
| 9094 | LIST_FOREACH(sav, &sah->savtree[state], chain) { |
| 9095 | if (cnt == bufcount) { |
| 9096 | break; /* out of buffer space */ |
| 9097 | } |
| 9098 | elem_ptr->sav = sav; |
| 9099 | elem_ptr->satype = satype; |
| 9100 | sav->refcnt++; |
| 9101 | elem_ptr++; |
| 9102 | cnt++; |
| 9103 | } |
| 9104 | } |
| 9105 | } |
| 9106 | lck_mtx_unlock(sadb_mutex); |
| 9107 | |
| 9108 | if (cnt == 0) { |
| 9109 | error = ENOENT; |
| 9110 | goto end; |
| 9111 | } |
| 9112 | |
| 9113 | /* send this to the userland, one at a time. */ |
| 9114 | elem_ptr = savbuf; |
| 9115 | cnt2 = cnt; |
| 9116 | while (cnt2) { |
| 9117 | n = key_setdumpsa(sav: elem_ptr->sav, SADB_DUMP, satype: elem_ptr->satype, |
| 9118 | seq: --cnt2, pid: mhp->msg->sadb_msg_pid); |
| 9119 | |
| 9120 | if (!n) { |
| 9121 | error = ENOBUFS; |
| 9122 | goto end; |
| 9123 | } |
| 9124 | |
| 9125 | key_sendup_mbuf(so, n, KEY_SENDUP_ONE); |
| 9126 | elem_ptr++; |
| 9127 | } |
| 9128 | |
| 9129 | end: |
| 9130 | if (savbuf) { |
| 9131 | if (cnt) { |
| 9132 | elem_ptr = savbuf; |
| 9133 | lck_mtx_lock(sadb_mutex); |
| 9134 | while (cnt--) { |
| 9135 | key_freesav(sav: (elem_ptr++)->sav, KEY_SADB_LOCKED); |
| 9136 | } |
| 9137 | lck_mtx_unlock(sadb_mutex); |
| 9138 | } |
| 9139 | kfree_type(struct sav_dump_elem, bufcount, savbuf); |
| 9140 | } |
| 9141 | |
| 9142 | if (error) { |
| 9143 | return key_senderror(so, m, error); |
| 9144 | } |
| 9145 | |
| 9146 | m_freem(m); |
| 9147 | return 0; |
| 9148 | } |
| 9149 | |
| 9150 | /* |
| 9151 | * SADB_X_PROMISC processing |
| 9152 | * |
| 9153 | * m will always be freed. |
| 9154 | */ |
| 9155 | static int |
| 9156 | key_promisc( |
| 9157 | struct socket *so, |
| 9158 | struct mbuf *m, |
| 9159 | const struct sadb_msghdr *mhp) |
| 9160 | { |
| 9161 | int olen; |
| 9162 | |
| 9163 | /* sanity check */ |
| 9164 | if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL) { |
| 9165 | panic("key_promisc: NULL pointer is passed." ); |
| 9166 | } |
| 9167 | |
| 9168 | olen = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len); |
| 9169 | |
| 9170 | if (olen < sizeof(struct sadb_msg)) { |
| 9171 | #if 1 |
| 9172 | return key_senderror(so, m, EINVAL); |
| 9173 | #else |
| 9174 | m_freem(m); |
| 9175 | return 0; |
| 9176 | #endif |
| 9177 | } else if (olen == sizeof(struct sadb_msg)) { |
| 9178 | /* enable/disable promisc mode */ |
| 9179 | struct keycb *kp; |
| 9180 | |
| 9181 | socket_lock(so, refcount: 1); |
| 9182 | if ((kp = (struct keycb *)sotorawcb(so)) == NULL) { |
| 9183 | return key_senderror(so, m, EINVAL); |
| 9184 | } |
| 9185 | mhp->msg->sadb_msg_errno = 0; |
| 9186 | switch (mhp->msg->sadb_msg_satype) { |
| 9187 | case 0: |
| 9188 | case 1: |
| 9189 | kp->kp_promisc = mhp->msg->sadb_msg_satype; |
| 9190 | break; |
| 9191 | default: |
| 9192 | socket_unlock(so, refcount: 1); |
| 9193 | return key_senderror(so, m, EINVAL); |
| 9194 | } |
| 9195 | socket_unlock(so, refcount: 1); |
| 9196 | |
| 9197 | /* send the original message back to everyone */ |
| 9198 | mhp->msg->sadb_msg_errno = 0; |
| 9199 | return key_sendup_mbuf(so, m, KEY_SENDUP_ALL); |
| 9200 | } else { |
| 9201 | /* send packet as is */ |
| 9202 | |
| 9203 | m_adj(m, PFKEY_ALIGN8(sizeof(struct sadb_msg))); |
| 9204 | |
| 9205 | /* TODO: if sadb_msg_seq is specified, send to specific pid */ |
| 9206 | return key_sendup_mbuf(so, m, KEY_SENDUP_ALL); |
| 9207 | } |
| 9208 | } |
| 9209 | |
| 9210 | static int(*const key_typesw[])(struct socket *, struct mbuf *, |
| 9211 | const struct sadb_msghdr *) = { |
| 9212 | NULL, /* SADB_RESERVED */ |
| 9213 | key_getspi, /* SADB_GETSPI */ |
| 9214 | key_update, /* SADB_UPDATE */ |
| 9215 | key_add, /* SADB_ADD */ |
| 9216 | key_delete, /* SADB_DELETE */ |
| 9217 | key_get, /* SADB_GET */ |
| 9218 | key_acquire2, /* SADB_ACQUIRE */ |
| 9219 | key_register, /* SADB_REGISTER */ |
| 9220 | NULL, /* SADB_EXPIRE */ |
| 9221 | key_flush, /* SADB_FLUSH */ |
| 9222 | key_dump, /* SADB_DUMP */ |
| 9223 | key_promisc, /* SADB_X_PROMISC */ |
| 9224 | NULL, /* SADB_X_PCHANGE */ |
| 9225 | key_spdadd, /* SADB_X_SPDUPDATE */ |
| 9226 | key_spdadd, /* SADB_X_SPDADD */ |
| 9227 | key_spddelete, /* SADB_X_SPDDELETE */ |
| 9228 | key_spdget, /* SADB_X_SPDGET */ |
| 9229 | NULL, /* SADB_X_SPDACQUIRE */ |
| 9230 | key_spddump, /* SADB_X_SPDDUMP */ |
| 9231 | key_spdflush, /* SADB_X_SPDFLUSH */ |
| 9232 | key_spdadd, /* SADB_X_SPDSETIDX */ |
| 9233 | NULL, /* SADB_X_SPDEXPIRE */ |
| 9234 | key_spddelete2, /* SADB_X_SPDDELETE2 */ |
| 9235 | key_getsastat, /* SADB_GETSASTAT */ |
| 9236 | key_spdenable, /* SADB_X_SPDENABLE */ |
| 9237 | key_spddisable, /* SADB_X_SPDDISABLE */ |
| 9238 | key_migrate, /* SADB_MIGRATE */ |
| 9239 | }; |
| 9240 | |
| 9241 | static void |
| 9242 | bzero_mbuf(struct mbuf *m) |
| 9243 | { |
| 9244 | struct mbuf *mptr = m; |
| 9245 | struct sadb_msg *msg = NULL; |
| 9246 | int offset = 0; |
| 9247 | |
| 9248 | if (!mptr) { |
| 9249 | return; |
| 9250 | } |
| 9251 | |
| 9252 | if (mptr->m_len >= sizeof(struct sadb_msg)) { |
| 9253 | msg = mtod(mptr, struct sadb_msg *); |
| 9254 | if (msg->sadb_msg_type != SADB_ADD && |
| 9255 | msg->sadb_msg_type != SADB_UPDATE) { |
| 9256 | return; |
| 9257 | } |
| 9258 | offset = sizeof(struct sadb_msg); |
| 9259 | } |
| 9260 | bzero(s: m_mtod_current(m: mptr) + offset, n: mptr->m_len - offset); |
| 9261 | mptr = mptr->m_next; |
| 9262 | while (mptr != NULL) { |
| 9263 | bzero(s: m_mtod_current(m: mptr), n: mptr->m_len); |
| 9264 | mptr = mptr->m_next; |
| 9265 | } |
| 9266 | } |
| 9267 | |
| 9268 | static void |
| 9269 | bzero_keys(const struct sadb_msghdr *mh) |
| 9270 | { |
| 9271 | int extlen = 0; |
| 9272 | int offset = 0; |
| 9273 | |
| 9274 | if (!mh) { |
| 9275 | return; |
| 9276 | } |
| 9277 | offset = sizeof(struct sadb_key); |
| 9278 | |
| 9279 | if (mh->ext[SADB_EXT_KEY_ENCRYPT]) { |
| 9280 | struct sadb_key *key = (struct sadb_key*)mh->ext[SADB_EXT_KEY_ENCRYPT]; |
| 9281 | extlen = key->sadb_key_bits >> 3; |
| 9282 | |
| 9283 | if (mh->extlen[SADB_EXT_KEY_ENCRYPT] >= offset + extlen) { |
| 9284 | bzero(s: (uint8_t *)mh->ext[SADB_EXT_KEY_ENCRYPT] + offset, n: extlen); |
| 9285 | } else { |
| 9286 | bzero(s: mh->ext[SADB_EXT_KEY_ENCRYPT], n: mh->extlen[SADB_EXT_KEY_ENCRYPT]); |
| 9287 | } |
| 9288 | } |
| 9289 | if (mh->ext[SADB_EXT_KEY_AUTH]) { |
| 9290 | struct sadb_key *key = (struct sadb_key*)mh->ext[SADB_EXT_KEY_AUTH]; |
| 9291 | extlen = key->sadb_key_bits >> 3; |
| 9292 | |
| 9293 | if (mh->extlen[SADB_EXT_KEY_AUTH] >= offset + extlen) { |
| 9294 | bzero(s: (uint8_t *)mh->ext[SADB_EXT_KEY_AUTH] + offset, n: extlen); |
| 9295 | } else { |
| 9296 | bzero(s: mh->ext[SADB_EXT_KEY_AUTH], n: mh->extlen[SADB_EXT_KEY_AUTH]); |
| 9297 | } |
| 9298 | } |
| 9299 | } |
| 9300 | |
| 9301 | static int |
| 9302 | key_validate_address_pair(struct sadb_address *src0, |
| 9303 | struct sadb_address *dst0) |
| 9304 | { |
| 9305 | u_int plen = 0; |
| 9306 | |
| 9307 | /* check upper layer protocol */ |
| 9308 | if (src0->sadb_address_proto != dst0->sadb_address_proto) { |
| 9309 | ipseclog((LOG_DEBUG, "key_parse: upper layer protocol mismatched.\n" )); |
| 9310 | PFKEY_STAT_INCREMENT(pfkeystat.out_invaddr); |
| 9311 | return EINVAL; |
| 9312 | } |
| 9313 | |
| 9314 | /* check family */ |
| 9315 | if (PFKEY_ADDR_SADDR(src0)->sa_family != |
| 9316 | PFKEY_ADDR_SADDR(dst0)->sa_family) { |
| 9317 | ipseclog((LOG_DEBUG, "key_parse: address family mismatched.\n" )); |
| 9318 | PFKEY_STAT_INCREMENT(pfkeystat.out_invaddr); |
| 9319 | return EINVAL; |
| 9320 | } |
| 9321 | if (PFKEY_ADDR_SADDR(src0)->sa_len != |
| 9322 | PFKEY_ADDR_SADDR(dst0)->sa_len) { |
| 9323 | ipseclog((LOG_DEBUG, |
| 9324 | "key_parse: address struct size mismatched.\n" )); |
| 9325 | PFKEY_STAT_INCREMENT(pfkeystat.out_invaddr); |
| 9326 | return EINVAL; |
| 9327 | } |
| 9328 | |
| 9329 | switch (PFKEY_ADDR_SADDR(src0)->sa_family) { |
| 9330 | case AF_INET: |
| 9331 | if (PFKEY_ADDR_SADDR(src0)->sa_len != sizeof(struct sockaddr_in)) { |
| 9332 | PFKEY_STAT_INCREMENT(pfkeystat.out_invaddr); |
| 9333 | return EINVAL; |
| 9334 | } |
| 9335 | break; |
| 9336 | case AF_INET6: |
| 9337 | if (PFKEY_ADDR_SADDR(src0)->sa_len != sizeof(struct sockaddr_in6)) { |
| 9338 | PFKEY_STAT_INCREMENT(pfkeystat.out_invaddr); |
| 9339 | return EINVAL; |
| 9340 | } |
| 9341 | break; |
| 9342 | default: |
| 9343 | ipseclog((LOG_DEBUG, |
| 9344 | "key_parse: unsupported address family.\n" )); |
| 9345 | PFKEY_STAT_INCREMENT(pfkeystat.out_invaddr); |
| 9346 | return EAFNOSUPPORT; |
| 9347 | } |
| 9348 | |
| 9349 | switch (PFKEY_ADDR_SADDR(src0)->sa_family) { |
| 9350 | case AF_INET: |
| 9351 | plen = sizeof(struct in_addr) << 3; |
| 9352 | break; |
| 9353 | case AF_INET6: |
| 9354 | plen = sizeof(struct in6_addr) << 3; |
| 9355 | break; |
| 9356 | default: |
| 9357 | plen = 0; /*fool gcc*/ |
| 9358 | break; |
| 9359 | } |
| 9360 | |
| 9361 | /* check max prefix length */ |
| 9362 | if (src0->sadb_address_prefixlen > plen || |
| 9363 | dst0->sadb_address_prefixlen > plen) { |
| 9364 | ipseclog((LOG_DEBUG, |
| 9365 | "key_parse: illegal prefixlen.\n" )); |
| 9366 | PFKEY_STAT_INCREMENT(pfkeystat.out_invaddr); |
| 9367 | return EINVAL; |
| 9368 | } |
| 9369 | |
| 9370 | /* |
| 9371 | * prefixlen == 0 is valid because there can be a case when |
| 9372 | * all addresses are matched. |
| 9373 | */ |
| 9374 | return 0; |
| 9375 | } |
| 9376 | |
| 9377 | /* |
| 9378 | * parse sadb_msg buffer to process PFKEYv2, |
| 9379 | * and create a data to response if needed. |
| 9380 | * I think to be dealed with mbuf directly. |
| 9381 | * IN: |
| 9382 | * msgp : pointer to pointer to a received buffer pulluped. |
| 9383 | * This is rewrited to response. |
| 9384 | * so : pointer to socket. |
| 9385 | * OUT: |
| 9386 | * length for buffer to send to user process. |
| 9387 | */ |
| 9388 | int |
| 9389 | key_parse( |
| 9390 | struct mbuf *m, |
| 9391 | struct socket *so) |
| 9392 | { |
| 9393 | struct sadb_msg *msg; |
| 9394 | struct sadb_msghdr mh; |
| 9395 | u_int orglen; |
| 9396 | int error; |
| 9397 | int target; |
| 9398 | Boolean keyAligned = FALSE; |
| 9399 | |
| 9400 | LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_NOTOWNED); |
| 9401 | |
| 9402 | /* sanity check */ |
| 9403 | if (m == NULL || so == NULL) { |
| 9404 | panic("key_parse: NULL pointer is passed." ); |
| 9405 | } |
| 9406 | |
| 9407 | #if 0 /*kdebug_sadb assumes msg in linear buffer*/ |
| 9408 | KEYDEBUG(KEYDEBUG_KEY_DUMP, |
| 9409 | ipseclog((LOG_DEBUG, "key_parse: passed sadb_msg\n" )); |
| 9410 | kdebug_sadb(msg)); |
| 9411 | #endif |
| 9412 | |
| 9413 | if (m->m_len < sizeof(struct sadb_msg)) { |
| 9414 | m = m_pullup(m, sizeof(struct sadb_msg)); |
| 9415 | if (!m) { |
| 9416 | return ENOBUFS; |
| 9417 | } |
| 9418 | } |
| 9419 | msg = mtod(m, struct sadb_msg *); |
| 9420 | orglen = PFKEY_UNUNIT64(msg->sadb_msg_len); |
| 9421 | target = KEY_SENDUP_ONE; |
| 9422 | |
| 9423 | if ((m->m_flags & M_PKTHDR) == 0 || |
| 9424 | m->m_pkthdr.len != orglen) { |
| 9425 | ipseclog((LOG_DEBUG, "key_parse: invalid message length.\n" )); |
| 9426 | PFKEY_STAT_INCREMENT(pfkeystat.out_invlen); |
| 9427 | error = EINVAL; |
| 9428 | goto senderror; |
| 9429 | } |
| 9430 | |
| 9431 | if (msg->sadb_msg_version != PF_KEY_V2) { |
| 9432 | ipseclog((LOG_DEBUG, |
| 9433 | "key_parse: PF_KEY version %u is mismatched.\n" , |
| 9434 | msg->sadb_msg_version)); |
| 9435 | PFKEY_STAT_INCREMENT(pfkeystat.out_invver); |
| 9436 | error = EINVAL; |
| 9437 | goto senderror; |
| 9438 | } |
| 9439 | |
| 9440 | if (msg->sadb_msg_type > SADB_MAX) { |
| 9441 | ipseclog((LOG_DEBUG, "key_parse: invalid type %u is passed.\n" , |
| 9442 | msg->sadb_msg_type)); |
| 9443 | PFKEY_STAT_INCREMENT(pfkeystat.out_invmsgtype); |
| 9444 | error = EINVAL; |
| 9445 | goto senderror; |
| 9446 | } |
| 9447 | |
| 9448 | /* for old-fashioned code - should be nuked */ |
| 9449 | if (m->m_pkthdr.len > MCLBYTES) { |
| 9450 | m_freem(m); |
| 9451 | return ENOBUFS; |
| 9452 | } |
| 9453 | if (m->m_next) { |
| 9454 | struct mbuf *n; |
| 9455 | |
| 9456 | MGETHDR(n, M_WAITOK, MT_DATA); |
| 9457 | if (n && m->m_pkthdr.len > MHLEN) { |
| 9458 | MCLGET(n, M_WAITOK); |
| 9459 | if ((n->m_flags & M_EXT) == 0) { |
| 9460 | m_free(n); |
| 9461 | n = NULL; |
| 9462 | } |
| 9463 | } |
| 9464 | if (!n) { |
| 9465 | bzero_mbuf(m); |
| 9466 | m_freem(m); |
| 9467 | return ENOBUFS; |
| 9468 | } |
| 9469 | m_copydata(m, 0, m->m_pkthdr.len, mtod(n, caddr_t)); |
| 9470 | n->m_pkthdr.len = n->m_len = m->m_pkthdr.len; |
| 9471 | n->m_next = NULL; |
| 9472 | bzero_mbuf(m); |
| 9473 | m_freem(m); |
| 9474 | m = n; |
| 9475 | } |
| 9476 | |
| 9477 | /* align the mbuf chain so that extensions are in contiguous region. */ |
| 9478 | error = key_align(m, &mh); |
| 9479 | if (error) { |
| 9480 | return error; |
| 9481 | } |
| 9482 | |
| 9483 | if (m->m_next) { /*XXX*/ |
| 9484 | bzero_mbuf(m); |
| 9485 | m_freem(m); |
| 9486 | return ENOBUFS; |
| 9487 | } |
| 9488 | |
| 9489 | keyAligned = TRUE; |
| 9490 | msg = mh.msg; |
| 9491 | |
| 9492 | /* check SA type */ |
| 9493 | switch (msg->sadb_msg_satype) { |
| 9494 | case SADB_SATYPE_UNSPEC: |
| 9495 | switch (msg->sadb_msg_type) { |
| 9496 | case SADB_GETSPI: |
| 9497 | case SADB_UPDATE: |
| 9498 | case SADB_ADD: |
| 9499 | case SADB_DELETE: |
| 9500 | case SADB_GET: |
| 9501 | case SADB_ACQUIRE: |
| 9502 | case SADB_EXPIRE: |
| 9503 | ipseclog((LOG_DEBUG, "key_parse: must specify satype " |
| 9504 | "when msg type=%u.\n" , msg->sadb_msg_type)); |
| 9505 | PFKEY_STAT_INCREMENT(pfkeystat.out_invsatype); |
| 9506 | error = EINVAL; |
| 9507 | goto senderror; |
| 9508 | } |
| 9509 | break; |
| 9510 | case SADB_SATYPE_AH: |
| 9511 | case SADB_SATYPE_ESP: |
| 9512 | switch (msg->sadb_msg_type) { |
| 9513 | case SADB_X_SPDADD: |
| 9514 | case SADB_X_SPDDELETE: |
| 9515 | case SADB_X_SPDGET: |
| 9516 | case SADB_X_SPDDUMP: |
| 9517 | case SADB_X_SPDFLUSH: |
| 9518 | case SADB_X_SPDSETIDX: |
| 9519 | case SADB_X_SPDUPDATE: |
| 9520 | case SADB_X_SPDDELETE2: |
| 9521 | case SADB_X_SPDENABLE: |
| 9522 | case SADB_X_SPDDISABLE: |
| 9523 | ipseclog((LOG_DEBUG, "key_parse: illegal satype=%u\n" , |
| 9524 | msg->sadb_msg_type)); |
| 9525 | PFKEY_STAT_INCREMENT(pfkeystat.out_invsatype); |
| 9526 | error = EINVAL; |
| 9527 | goto senderror; |
| 9528 | } |
| 9529 | break; |
| 9530 | case SADB_SATYPE_RSVP: |
| 9531 | case SADB_SATYPE_OSPFV2: |
| 9532 | case SADB_SATYPE_RIPV2: |
| 9533 | case SADB_SATYPE_MIP: |
| 9534 | ipseclog((LOG_DEBUG, "key_parse: type %u isn't supported.\n" , |
| 9535 | msg->sadb_msg_satype)); |
| 9536 | PFKEY_STAT_INCREMENT(pfkeystat.out_invsatype); |
| 9537 | error = EOPNOTSUPP; |
| 9538 | goto senderror; |
| 9539 | case 1: /* XXX: What does it do? */ |
| 9540 | if (msg->sadb_msg_type == SADB_X_PROMISC) { |
| 9541 | break; |
| 9542 | } |
| 9543 | OS_FALLTHROUGH; |
| 9544 | default: |
| 9545 | ipseclog((LOG_DEBUG, "key_parse: invalid type %u is passed.\n" , |
| 9546 | msg->sadb_msg_satype)); |
| 9547 | PFKEY_STAT_INCREMENT(pfkeystat.out_invsatype); |
| 9548 | error = EINVAL; |
| 9549 | goto senderror; |
| 9550 | } |
| 9551 | |
| 9552 | /* Validate address fields for matching families, lengths, etc. */ |
| 9553 | void *src0 = mh.ext[SADB_EXT_ADDRESS_SRC]; |
| 9554 | void *dst0 = mh.ext[SADB_EXT_ADDRESS_DST]; |
| 9555 | if (mh.ext[SADB_X_EXT_ADDR_RANGE_SRC_START] != NULL && |
| 9556 | mh.ext[SADB_X_EXT_ADDR_RANGE_SRC_END] != NULL) { |
| 9557 | error = key_validate_address_pair(src0: (struct sadb_address *)(mh.ext[SADB_X_EXT_ADDR_RANGE_SRC_START]), |
| 9558 | dst0: (struct sadb_address *)(mh.ext[SADB_X_EXT_ADDR_RANGE_SRC_END])); |
| 9559 | if (error != 0) { |
| 9560 | goto senderror; |
| 9561 | } |
| 9562 | |
| 9563 | if (src0 == NULL) { |
| 9564 | src0 = mh.ext[SADB_X_EXT_ADDR_RANGE_SRC_START]; |
| 9565 | } |
| 9566 | } |
| 9567 | if (mh.ext[SADB_X_EXT_ADDR_RANGE_DST_START] != NULL && |
| 9568 | mh.ext[SADB_X_EXT_ADDR_RANGE_DST_END] != NULL) { |
| 9569 | error = key_validate_address_pair(src0: (struct sadb_address *)(mh.ext[SADB_X_EXT_ADDR_RANGE_DST_START]), |
| 9570 | dst0: (struct sadb_address *)(mh.ext[SADB_X_EXT_ADDR_RANGE_DST_END])); |
| 9571 | if (error != 0) { |
| 9572 | goto senderror; |
| 9573 | } |
| 9574 | |
| 9575 | if (dst0 == NULL) { |
| 9576 | dst0 = mh.ext[SADB_X_EXT_ADDR_RANGE_DST_START]; |
| 9577 | } |
| 9578 | } |
| 9579 | if (src0 != NULL && dst0 != NULL) { |
| 9580 | error = key_validate_address_pair(src0: (struct sadb_address *)(src0), |
| 9581 | dst0: (struct sadb_address *)(dst0)); |
| 9582 | if (error != 0) { |
| 9583 | goto senderror; |
| 9584 | } |
| 9585 | } |
| 9586 | |
| 9587 | void *migrate_src = mh.ext[SADB_EXT_MIGRATE_ADDRESS_SRC]; |
| 9588 | void *migrate_dst = mh.ext[SADB_EXT_MIGRATE_ADDRESS_DST]; |
| 9589 | if (migrate_src != NULL && migrate_dst != NULL) { |
| 9590 | error = key_validate_address_pair(src0: (struct sadb_address *)(migrate_src), |
| 9591 | dst0: (struct sadb_address *)(migrate_dst)); |
| 9592 | if (error != 0) { |
| 9593 | goto senderror; |
| 9594 | } |
| 9595 | } |
| 9596 | |
| 9597 | if (msg->sadb_msg_type >= sizeof(key_typesw) / sizeof(key_typesw[0]) || |
| 9598 | key_typesw[msg->sadb_msg_type] == NULL) { |
| 9599 | PFKEY_STAT_INCREMENT(pfkeystat.out_invmsgtype); |
| 9600 | error = EINVAL; |
| 9601 | goto senderror; |
| 9602 | } |
| 9603 | |
| 9604 | error = (*key_typesw[msg->sadb_msg_type])(so, m, &mh); |
| 9605 | |
| 9606 | return error; |
| 9607 | |
| 9608 | senderror: |
| 9609 | if (keyAligned) { |
| 9610 | bzero_keys(mh: &mh); |
| 9611 | } else { |
| 9612 | bzero_mbuf(m); |
| 9613 | } |
| 9614 | msg->sadb_msg_errno = (u_int8_t)error; |
| 9615 | return key_sendup_mbuf(so, m, target); |
| 9616 | } |
| 9617 | |
| 9618 | static int |
| 9619 | key_senderror( |
| 9620 | struct socket *so, |
| 9621 | struct mbuf *m, |
| 9622 | int code) |
| 9623 | { |
| 9624 | struct sadb_msg *msg; |
| 9625 | |
| 9626 | LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_NOTOWNED); |
| 9627 | |
| 9628 | if (m->m_len < sizeof(struct sadb_msg)) { |
| 9629 | panic("invalid mbuf passed to key_senderror" ); |
| 9630 | } |
| 9631 | |
| 9632 | msg = mtod(m, struct sadb_msg *); |
| 9633 | msg->sadb_msg_errno = (u_int8_t)code; |
| 9634 | return key_sendup_mbuf(so, m, KEY_SENDUP_ONE); |
| 9635 | } |
| 9636 | |
| 9637 | /* |
| 9638 | * set the pointer to each header into message buffer. |
| 9639 | * m will be freed on error. |
| 9640 | * XXX larger-than-MCLBYTES extension? |
| 9641 | */ |
| 9642 | static int |
| 9643 | key_align( |
| 9644 | struct mbuf *m, |
| 9645 | struct sadb_msghdr *mhp) |
| 9646 | { |
| 9647 | struct mbuf *n; |
| 9648 | struct sadb_ext *ext; |
| 9649 | size_t end; |
| 9650 | int off, extlen; |
| 9651 | int toff; |
| 9652 | |
| 9653 | /* sanity check */ |
| 9654 | if (m == NULL || mhp == NULL) { |
| 9655 | panic("key_align: NULL pointer is passed." ); |
| 9656 | } |
| 9657 | if (m->m_len < sizeof(struct sadb_msg)) { |
| 9658 | panic("invalid mbuf passed to key_align" ); |
| 9659 | } |
| 9660 | |
| 9661 | /* initialize */ |
| 9662 | bzero(s: mhp, n: sizeof(*mhp)); |
| 9663 | |
| 9664 | mhp->msg = mtod(m, struct sadb_msg *); |
| 9665 | mhp->ext[0] = (struct sadb_ext *)mhp->msg; /*XXX backward compat */ |
| 9666 | |
| 9667 | end = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len); |
| 9668 | extlen = (int)end; /*just in case extlen is not updated*/ |
| 9669 | for (off = sizeof(struct sadb_msg); off < end; off += extlen) { |
| 9670 | n = m_pulldown(m, off, sizeof(struct sadb_ext), &toff); |
| 9671 | if (!n) { |
| 9672 | /* m is already freed */ |
| 9673 | return ENOBUFS; |
| 9674 | } |
| 9675 | ext = (struct sadb_ext *)(void *)(mtod(n, caddr_t) + toff); |
| 9676 | |
| 9677 | /* set pointer */ |
| 9678 | switch (ext->sadb_ext_type) { |
| 9679 | case SADB_EXT_SA: |
| 9680 | case SADB_EXT_ADDRESS_SRC: |
| 9681 | case SADB_EXT_ADDRESS_DST: |
| 9682 | case SADB_EXT_ADDRESS_PROXY: |
| 9683 | case SADB_EXT_LIFETIME_CURRENT: |
| 9684 | case SADB_EXT_LIFETIME_HARD: |
| 9685 | case SADB_EXT_LIFETIME_SOFT: |
| 9686 | case SADB_EXT_KEY_AUTH: |
| 9687 | case SADB_EXT_KEY_ENCRYPT: |
| 9688 | case SADB_EXT_IDENTITY_SRC: |
| 9689 | case SADB_EXT_IDENTITY_DST: |
| 9690 | case SADB_EXT_SENSITIVITY: |
| 9691 | case SADB_EXT_PROPOSAL: |
| 9692 | case SADB_EXT_SUPPORTED_AUTH: |
| 9693 | case SADB_EXT_SUPPORTED_ENCRYPT: |
| 9694 | case SADB_EXT_SPIRANGE: |
| 9695 | case SADB_X_EXT_POLICY: |
| 9696 | case SADB_X_EXT_SA2: |
| 9697 | case SADB_EXT_SESSION_ID: |
| 9698 | case SADB_EXT_SASTAT: |
| 9699 | case SADB_X_EXT_IPSECIF: |
| 9700 | case SADB_X_EXT_ADDR_RANGE_SRC_START: |
| 9701 | case SADB_X_EXT_ADDR_RANGE_SRC_END: |
| 9702 | case SADB_X_EXT_ADDR_RANGE_DST_START: |
| 9703 | case SADB_X_EXT_ADDR_RANGE_DST_END: |
| 9704 | case SADB_EXT_MIGRATE_ADDRESS_SRC: |
| 9705 | case SADB_EXT_MIGRATE_ADDRESS_DST: |
| 9706 | case SADB_X_EXT_MIGRATE_IPSECIF: |
| 9707 | /* duplicate check */ |
| 9708 | /* |
| 9709 | * XXX Are there duplication payloads of either |
| 9710 | * KEY_AUTH or KEY_ENCRYPT ? |
| 9711 | */ |
| 9712 | if (mhp->ext[ext->sadb_ext_type] != NULL) { |
| 9713 | ipseclog((LOG_DEBUG, |
| 9714 | "key_align: duplicate ext_type %u " |
| 9715 | "is passed.\n" , ext->sadb_ext_type)); |
| 9716 | bzero_mbuf(m); |
| 9717 | m_freem(m); |
| 9718 | PFKEY_STAT_INCREMENT(pfkeystat.out_dupext); |
| 9719 | return EINVAL; |
| 9720 | } |
| 9721 | break; |
| 9722 | default: |
| 9723 | ipseclog((LOG_DEBUG, |
| 9724 | "key_align: invalid ext_type %u is passed.\n" , |
| 9725 | ext->sadb_ext_type)); |
| 9726 | bzero_mbuf(m); |
| 9727 | m_freem(m); |
| 9728 | PFKEY_STAT_INCREMENT(pfkeystat.out_invexttype); |
| 9729 | return EINVAL; |
| 9730 | } |
| 9731 | |
| 9732 | extlen = PFKEY_UNUNIT64(ext->sadb_ext_len); |
| 9733 | if (off + extlen > end) { |
| 9734 | ipseclog((LOG_DEBUG, |
| 9735 | "key_align: ext type %u invalid ext length %d " |
| 9736 | "offset %d sadb message total len %zu is passed.\n" , |
| 9737 | ext->sadb_ext_type, extlen, off, end)); |
| 9738 | bzero_mbuf(m); |
| 9739 | m_freem(m); |
| 9740 | PFKEY_STAT_INCREMENT(pfkeystat.out_invlen); |
| 9741 | return EINVAL; |
| 9742 | } |
| 9743 | |
| 9744 | if (key_validate_ext(ext, extlen)) { |
| 9745 | bzero_mbuf(m); |
| 9746 | m_freem(m); |
| 9747 | PFKEY_STAT_INCREMENT(pfkeystat.out_invlen); |
| 9748 | return EINVAL; |
| 9749 | } |
| 9750 | |
| 9751 | n = m_pulldown(m, off, extlen, &toff); |
| 9752 | if (!n) { |
| 9753 | /* m is already freed */ |
| 9754 | return ENOBUFS; |
| 9755 | } |
| 9756 | ext = (struct sadb_ext *)(void *)(mtod(n, caddr_t) + toff); |
| 9757 | |
| 9758 | mhp->ext[ext->sadb_ext_type] = ext; |
| 9759 | mhp->extoff[ext->sadb_ext_type] = off; |
| 9760 | mhp->extlen[ext->sadb_ext_type] = extlen; |
| 9761 | } |
| 9762 | |
| 9763 | if (off != end) { |
| 9764 | bzero_mbuf(m); |
| 9765 | m_freem(m); |
| 9766 | PFKEY_STAT_INCREMENT(pfkeystat.out_invlen); |
| 9767 | return EINVAL; |
| 9768 | } |
| 9769 | |
| 9770 | return 0; |
| 9771 | } |
| 9772 | |
| 9773 | static int |
| 9774 | key_validate_ext( |
| 9775 | const struct sadb_ext *ext, |
| 9776 | int len) |
| 9777 | { |
| 9778 | struct sockaddr *sa; |
| 9779 | enum { NONE, ADDR } checktype = NONE; |
| 9780 | int baselen = 0; |
| 9781 | const int sal = offsetof(struct sockaddr, sa_len) + sizeof(sa->sa_len); |
| 9782 | |
| 9783 | if (len != PFKEY_UNUNIT64(ext->sadb_ext_len)) { |
| 9784 | return EINVAL; |
| 9785 | } |
| 9786 | |
| 9787 | /* if it does not match minimum/maximum length, bail */ |
| 9788 | if (ext->sadb_ext_type >= sizeof(minsize) / sizeof(minsize[0]) || |
| 9789 | ext->sadb_ext_type >= sizeof(maxsize) / sizeof(maxsize[0])) { |
| 9790 | return EINVAL; |
| 9791 | } |
| 9792 | if (!minsize[ext->sadb_ext_type] || len < minsize[ext->sadb_ext_type]) { |
| 9793 | return EINVAL; |
| 9794 | } |
| 9795 | if (maxsize[ext->sadb_ext_type] && len > maxsize[ext->sadb_ext_type]) { |
| 9796 | return EINVAL; |
| 9797 | } |
| 9798 | |
| 9799 | /* more checks based on sadb_ext_type XXX need more */ |
| 9800 | switch (ext->sadb_ext_type) { |
| 9801 | case SADB_EXT_ADDRESS_SRC: |
| 9802 | case SADB_EXT_ADDRESS_DST: |
| 9803 | case SADB_EXT_ADDRESS_PROXY: |
| 9804 | case SADB_X_EXT_ADDR_RANGE_SRC_START: |
| 9805 | case SADB_X_EXT_ADDR_RANGE_SRC_END: |
| 9806 | case SADB_X_EXT_ADDR_RANGE_DST_START: |
| 9807 | case SADB_X_EXT_ADDR_RANGE_DST_END: |
| 9808 | case SADB_EXT_MIGRATE_ADDRESS_SRC: |
| 9809 | case SADB_EXT_MIGRATE_ADDRESS_DST: |
| 9810 | baselen = PFKEY_ALIGN8(sizeof(struct sadb_address)); |
| 9811 | checktype = ADDR; |
| 9812 | break; |
| 9813 | case SADB_EXT_IDENTITY_SRC: |
| 9814 | case SADB_EXT_IDENTITY_DST: |
| 9815 | if (((struct sadb_ident *)(uintptr_t)(size_t)ext)-> |
| 9816 | sadb_ident_type == SADB_X_IDENTTYPE_ADDR) { |
| 9817 | baselen = PFKEY_ALIGN8(sizeof(struct sadb_ident)); |
| 9818 | checktype = ADDR; |
| 9819 | } else { |
| 9820 | checktype = NONE; |
| 9821 | } |
| 9822 | break; |
| 9823 | default: |
| 9824 | checktype = NONE; |
| 9825 | break; |
| 9826 | } |
| 9827 | |
| 9828 | switch (checktype) { |
| 9829 | case NONE: |
| 9830 | break; |
| 9831 | case ADDR: |
| 9832 | sa = (struct sockaddr *)((caddr_t)(uintptr_t)ext + baselen); |
| 9833 | |
| 9834 | if (len < baselen + sal) { |
| 9835 | return EINVAL; |
| 9836 | } |
| 9837 | if (baselen + PFKEY_ALIGN8(sa->sa_len) != len) { |
| 9838 | return EINVAL; |
| 9839 | } |
| 9840 | break; |
| 9841 | } |
| 9842 | |
| 9843 | /* check key bits length */ |
| 9844 | if (ext->sadb_ext_type == SADB_EXT_KEY_AUTH || |
| 9845 | ext->sadb_ext_type == SADB_EXT_KEY_ENCRYPT) { |
| 9846 | struct sadb_key *key = (struct sadb_key *)(uintptr_t)ext; |
| 9847 | if (len < (sizeof(struct sadb_key) + _KEYLEN(key))) { |
| 9848 | return EINVAL; |
| 9849 | } |
| 9850 | } |
| 9851 | |
| 9852 | return 0; |
| 9853 | } |
| 9854 | |
| 9855 | /* |
| 9856 | * XXX: maybe This function is called after INBOUND IPsec processing. |
| 9857 | * |
| 9858 | * Special check for tunnel-mode packets. |
| 9859 | * We must make some checks for consistency between inner and outer IP header. |
| 9860 | * |
| 9861 | * xxx more checks to be provided |
| 9862 | */ |
| 9863 | int |
| 9864 | key_checktunnelsanity( |
| 9865 | struct secasvar *sav, |
| 9866 | __unused u_int family, |
| 9867 | __unused caddr_t src, |
| 9868 | __unused caddr_t dst) |
| 9869 | { |
| 9870 | /* sanity check */ |
| 9871 | if (sav->sah == NULL) { |
| 9872 | panic("sav->sah == NULL at key_checktunnelsanity" ); |
| 9873 | } |
| 9874 | |
| 9875 | /* XXX: check inner IP header */ |
| 9876 | |
| 9877 | return 1; |
| 9878 | } |
| 9879 | |
| 9880 | /* record data transfer on SA, and update timestamps */ |
| 9881 | void |
| 9882 | key_sa_recordxfer( |
| 9883 | struct secasvar *sav, |
| 9884 | size_t byte_count) |
| 9885 | { |
| 9886 | if (!sav) { |
| 9887 | panic("key_sa_recordxfer called with sav == NULL" ); |
| 9888 | } |
| 9889 | if (!sav->lft_c) { |
| 9890 | return; |
| 9891 | } |
| 9892 | |
| 9893 | lck_mtx_lock(sadb_mutex); |
| 9894 | /* |
| 9895 | * XXX Currently, there is a difference of bytes size |
| 9896 | * between inbound and outbound processing. |
| 9897 | */ |
| 9898 | sav->lft_c->sadb_lifetime_bytes += byte_count; |
| 9899 | /* to check bytes lifetime is done in key_timehandler(). */ |
| 9900 | |
| 9901 | /* |
| 9902 | * We use the number of packets as the unit of |
| 9903 | * sadb_lifetime_allocations. We increment the variable |
| 9904 | * whenever {esp,ah}_{in,out}put is called. |
| 9905 | */ |
| 9906 | sav->lft_c->sadb_lifetime_allocations++; |
| 9907 | /* XXX check for expires? */ |
| 9908 | |
| 9909 | /* |
| 9910 | * NOTE: We record CURRENT sadb_lifetime_usetime by using mach_continuous_time, |
| 9911 | * in nanoseconds. HARD and SOFT lifetime are measured by the time difference |
| 9912 | * from sadb_lifetime_usetime. |
| 9913 | * |
| 9914 | * usetime |
| 9915 | * v expire expire |
| 9916 | * -----+-----+--------+---> t |
| 9917 | * <--------------> HARD |
| 9918 | * <-----> SOFT |
| 9919 | */ |
| 9920 | sav->lft_c->sadb_lifetime_usetime = key_get_continuous_time_ns(); |
| 9921 | /* XXX check for expires? */ |
| 9922 | lck_mtx_unlock(sadb_mutex); |
| 9923 | |
| 9924 | return; |
| 9925 | } |
| 9926 | |
| 9927 | /* dumb version */ |
| 9928 | void |
| 9929 | key_sa_routechange( |
| 9930 | struct sockaddr *dst) |
| 9931 | { |
| 9932 | struct secashead *sah; |
| 9933 | struct route *ro; |
| 9934 | |
| 9935 | lck_mtx_lock(sadb_mutex); |
| 9936 | LIST_FOREACH(sah, &sahtree, chain) { |
| 9937 | ro = (struct route *)&sah->sa_route; |
| 9938 | if (ro->ro_rt && dst->sa_len == ro->ro_dst.sa_len |
| 9939 | && bcmp(s1: dst, s2: &ro->ro_dst, n: dst->sa_len) == 0) { |
| 9940 | ROUTE_RELEASE(ro); |
| 9941 | } |
| 9942 | } |
| 9943 | lck_mtx_unlock(sadb_mutex); |
| 9944 | |
| 9945 | return; |
| 9946 | } |
| 9947 | |
| 9948 | void |
| 9949 | key_sa_chgstate( |
| 9950 | struct secasvar *sav, |
| 9951 | u_int8_t state) |
| 9952 | { |
| 9953 | if (sav == NULL) { |
| 9954 | panic("key_sa_chgstate called with sav == NULL" ); |
| 9955 | } |
| 9956 | |
| 9957 | if (sav->state == state) { |
| 9958 | return; |
| 9959 | } |
| 9960 | |
| 9961 | LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_OWNED); |
| 9962 | |
| 9963 | if (__LIST_CHAINED(sav)) { |
| 9964 | LIST_REMOVE(sav, chain); |
| 9965 | } |
| 9966 | |
| 9967 | sav->state = state; |
| 9968 | LIST_INSERT_HEAD(&sav->sah->savtree[state], sav, chain); |
| 9969 | } |
| 9970 | |
| 9971 | void |
| 9972 | key_sa_stir_iv( |
| 9973 | struct secasvar *sav) |
| 9974 | { |
| 9975 | lck_mtx_lock(sadb_mutex); |
| 9976 | if (!sav->iv) { |
| 9977 | panic("key_sa_stir_iv called with sav == NULL" ); |
| 9978 | } |
| 9979 | key_randomfill(p: sav->iv, l: sav->ivlen); |
| 9980 | lck_mtx_unlock(sadb_mutex); |
| 9981 | } |
| 9982 | |
| 9983 | /* XXX too much? */ |
| 9984 | static struct mbuf * |
| 9985 | key_alloc_mbuf( |
| 9986 | int l) |
| 9987 | { |
| 9988 | struct mbuf *m = NULL, *n; |
| 9989 | int len, t; |
| 9990 | |
| 9991 | len = l; |
| 9992 | while (len > 0) { |
| 9993 | MGET(n, M_DONTWAIT, MT_DATA); |
| 9994 | if (n && len > MLEN) { |
| 9995 | MCLGET(n, M_DONTWAIT); |
| 9996 | } |
| 9997 | if (!n) { |
| 9998 | m_freem(m); |
| 9999 | return NULL; |
| 10000 | } |
| 10001 | |
| 10002 | n->m_next = NULL; |
| 10003 | n->m_len = 0; |
| 10004 | n->m_len = (int)M_TRAILINGSPACE(n); |
| 10005 | /* use the bottom of mbuf, hoping we can prepend afterwards */ |
| 10006 | if (n->m_len > len) { |
| 10007 | t = (n->m_len - len) & ~(sizeof(long) - 1); |
| 10008 | n->m_data += t; |
| 10009 | n->m_len = len; |
| 10010 | } |
| 10011 | |
| 10012 | len -= n->m_len; |
| 10013 | |
| 10014 | if (m) { |
| 10015 | m_cat(m, n); |
| 10016 | } else { |
| 10017 | m = n; |
| 10018 | } |
| 10019 | } |
| 10020 | |
| 10021 | return m; |
| 10022 | } |
| 10023 | |
| 10024 | static struct mbuf * |
| 10025 | key_setdumpsastats(u_int32_t dir, |
| 10026 | struct sastat *stats, |
| 10027 | u_int32_t max_stats, |
| 10028 | u_int64_t session_ids[], |
| 10029 | u_int32_t seq, |
| 10030 | u_int32_t pid) |
| 10031 | { |
| 10032 | struct mbuf *result = NULL, *m = NULL; |
| 10033 | |
| 10034 | m = key_setsadbmsg(SADB_GETSASTAT, tlen: 0, satype: 0, seq, pid, reserved: 0); |
| 10035 | if (!m) { |
| 10036 | goto fail; |
| 10037 | } |
| 10038 | result = m; |
| 10039 | |
| 10040 | m = key_setsadbsession_id(session_ids); |
| 10041 | if (!m) { |
| 10042 | goto fail; |
| 10043 | } |
| 10044 | m_cat(result, m); |
| 10045 | |
| 10046 | m = key_setsadbsastat(dir, |
| 10047 | stats, |
| 10048 | max_stats); |
| 10049 | if (!m) { |
| 10050 | goto fail; |
| 10051 | } |
| 10052 | m_cat(result, m); |
| 10053 | |
| 10054 | if ((result->m_flags & M_PKTHDR) == 0) { |
| 10055 | goto fail; |
| 10056 | } |
| 10057 | |
| 10058 | if (result->m_len < sizeof(struct sadb_msg)) { |
| 10059 | result = m_pullup(result, sizeof(struct sadb_msg)); |
| 10060 | if (result == NULL) { |
| 10061 | goto fail; |
| 10062 | } |
| 10063 | } |
| 10064 | |
| 10065 | result->m_pkthdr.len = 0; |
| 10066 | for (m = result; m; m = m->m_next) { |
| 10067 | result->m_pkthdr.len += m->m_len; |
| 10068 | } |
| 10069 | |
| 10070 | if (PFKEY_UNIT64(result->m_pkthdr.len) > UINT16_MAX) { |
| 10071 | ipseclog((LOG_ERR, "key_setdumpsastats: length too nbug: %u" , result->m_pkthdr.len)); |
| 10072 | goto fail; |
| 10073 | } |
| 10074 | |
| 10075 | mtod(result, struct sadb_msg *)->sadb_msg_len = |
| 10076 | (u_int16_t)PFKEY_UNIT64(result->m_pkthdr.len); |
| 10077 | |
| 10078 | return result; |
| 10079 | |
| 10080 | fail: |
| 10081 | if (result) { |
| 10082 | m_freem(result); |
| 10083 | } |
| 10084 | return NULL; |
| 10085 | } |
| 10086 | |
| 10087 | /* |
| 10088 | * SADB_GETSASTAT processing |
| 10089 | * dump all stats for matching entries in SAD. |
| 10090 | * |
| 10091 | * m will always be freed. |
| 10092 | */ |
| 10093 | |
| 10094 | static int |
| 10095 | key_getsastat(struct socket *so, |
| 10096 | struct mbuf *m, |
| 10097 | const struct sadb_msghdr *mhp) |
| 10098 | { |
| 10099 | struct sadb_session_id *session_id; |
| 10100 | size_t bufsize = 0; |
| 10101 | u_int32_t arg_count, res_count; |
| 10102 | struct sadb_sastat *sa_stats_arg; |
| 10103 | struct sastat *sa_stats_sav = NULL; |
| 10104 | struct mbuf *n; |
| 10105 | int error = 0; |
| 10106 | |
| 10107 | /* sanity check */ |
| 10108 | if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL) { |
| 10109 | panic("%s: NULL pointer is passed." , __FUNCTION__); |
| 10110 | } |
| 10111 | |
| 10112 | if (mhp->ext[SADB_EXT_SESSION_ID] == NULL) { |
| 10113 | printf("%s: invalid message is passed. missing session-id.\n" , __FUNCTION__); |
| 10114 | return key_senderror(so, m, EINVAL); |
| 10115 | } |
| 10116 | if (mhp->extlen[SADB_EXT_SESSION_ID] < sizeof(struct sadb_session_id)) { |
| 10117 | printf("%s: invalid message is passed. short session-id.\n" , __FUNCTION__); |
| 10118 | return key_senderror(so, m, EINVAL); |
| 10119 | } |
| 10120 | if (mhp->ext[SADB_EXT_SASTAT] == NULL) { |
| 10121 | printf("%s: invalid message is passed. missing stat args.\n" , __FUNCTION__); |
| 10122 | return key_senderror(so, m, EINVAL); |
| 10123 | } |
| 10124 | if (mhp->extlen[SADB_EXT_SASTAT] < sizeof(*sa_stats_arg)) { |
| 10125 | printf("%s: invalid message is passed. short stat args.\n" , __FUNCTION__); |
| 10126 | return key_senderror(so, m, EINVAL); |
| 10127 | } |
| 10128 | |
| 10129 | LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_NOTOWNED); |
| 10130 | |
| 10131 | // exit early if there are no active SAs |
| 10132 | if (ipsec_sav_count == 0) { |
| 10133 | printf("%s: No active SAs.\n" , __FUNCTION__); |
| 10134 | error = ENOENT; |
| 10135 | goto end; |
| 10136 | } |
| 10137 | |
| 10138 | if (os_mul_overflow(ipsec_sav_count + 1, sizeof(*sa_stats_sav), &bufsize)) { |
| 10139 | panic("key_getsastat bufsize requested memory overflow %u" , ipsec_sav_count); |
| 10140 | } |
| 10141 | |
| 10142 | sa_stats_sav = (__typeof__(sa_stats_sav))kalloc_data(bufsize, Z_WAITOK | Z_ZERO); |
| 10143 | if (sa_stats_sav == NULL) { |
| 10144 | printf("%s: No more memory.\n" , __FUNCTION__); |
| 10145 | error = ENOMEM; |
| 10146 | goto end; |
| 10147 | } |
| 10148 | |
| 10149 | sa_stats_arg = (__typeof__(sa_stats_arg)) |
| 10150 | (void *)mhp->ext[SADB_EXT_SASTAT]; |
| 10151 | arg_count = sa_stats_arg->sadb_sastat_list_len; |
| 10152 | // exit early if there are no requested SAs |
| 10153 | if (arg_count == 0) { |
| 10154 | printf("%s: No SAs requested.\n" , __FUNCTION__); |
| 10155 | error = ENOENT; |
| 10156 | goto end; |
| 10157 | } |
| 10158 | if (PFKEY_UNUNIT64(sa_stats_arg->sadb_sastat_len) < (sizeof(*sa_stats_arg) + |
| 10159 | (arg_count * sizeof(struct sastat)))) { |
| 10160 | printf("%s: invalid message is passed. sa stat extlen shorter than requested stat length.\n" , __FUNCTION__); |
| 10161 | error = EINVAL; |
| 10162 | goto end; |
| 10163 | } |
| 10164 | |
| 10165 | res_count = 0; |
| 10166 | |
| 10167 | if (key_getsastatbyspi(stat_arg: (struct sastat *)(sa_stats_arg + 1), |
| 10168 | max_stat_arg: arg_count, |
| 10169 | stat_res: sa_stats_sav, |
| 10170 | stat_res_size: bufsize, |
| 10171 | max_stat_res: &res_count)) { |
| 10172 | printf("%s: Error finding SAs.\n" , __FUNCTION__); |
| 10173 | error = ENOENT; |
| 10174 | goto end; |
| 10175 | } |
| 10176 | if (!res_count) { |
| 10177 | printf("%s: No SAs found.\n" , __FUNCTION__); |
| 10178 | error = ENOENT; |
| 10179 | goto end; |
| 10180 | } |
| 10181 | |
| 10182 | session_id = (__typeof__(session_id)) |
| 10183 | (void *)mhp->ext[SADB_EXT_SESSION_ID]; |
| 10184 | |
| 10185 | /* send this to the userland. */ |
| 10186 | n = key_setdumpsastats(dir: sa_stats_arg->sadb_sastat_dir, |
| 10187 | stats: sa_stats_sav, |
| 10188 | max_stats: res_count, |
| 10189 | session_ids: session_id->sadb_session_id_v, |
| 10190 | seq: mhp->msg->sadb_msg_seq, |
| 10191 | pid: mhp->msg->sadb_msg_pid); |
| 10192 | if (!n) { |
| 10193 | printf("%s: No bufs to dump stats.\n" , __FUNCTION__); |
| 10194 | error = ENOBUFS; |
| 10195 | goto end; |
| 10196 | } |
| 10197 | |
| 10198 | key_sendup_mbuf(so, n, KEY_SENDUP_ALL); |
| 10199 | end: |
| 10200 | if (sa_stats_sav) { |
| 10201 | kfree_data(sa_stats_sav, bufsize); |
| 10202 | } |
| 10203 | |
| 10204 | if (error) { |
| 10205 | return key_senderror(so, m, code: error); |
| 10206 | } |
| 10207 | |
| 10208 | m_freem(m); |
| 10209 | return 0; |
| 10210 | } |
| 10211 | |
| 10212 | static void |
| 10213 | key_update_natt_keepalive_timestamp(struct secasvar *sav_sent, |
| 10214 | struct secasvar *sav_update) |
| 10215 | { |
| 10216 | struct secasindex saidx_swap_sent_addr; |
| 10217 | |
| 10218 | // exit early if two SAs are identical, or if sav_update is current |
| 10219 | if (sav_sent == sav_update || |
| 10220 | sav_update->natt_last_activity == natt_now) { |
| 10221 | return; |
| 10222 | } |
| 10223 | |
| 10224 | // assuming that (sav_update->remote_ike_port != 0 && (esp_udp_encap_port & 0xFFFF) != 0) |
| 10225 | |
| 10226 | bzero(s: &saidx_swap_sent_addr, n: sizeof(saidx_swap_sent_addr)); |
| 10227 | memcpy(dst: &saidx_swap_sent_addr.src, src: &sav_sent->sah->saidx.dst, n: sizeof(saidx_swap_sent_addr.src)); |
| 10228 | memcpy(dst: &saidx_swap_sent_addr.dst, src: &sav_sent->sah->saidx.src, n: sizeof(saidx_swap_sent_addr.dst)); |
| 10229 | saidx_swap_sent_addr.proto = sav_sent->sah->saidx.proto; |
| 10230 | saidx_swap_sent_addr.mode = sav_sent->sah->saidx.mode; |
| 10231 | // we ignore reqid for split-tunnel setups |
| 10232 | |
| 10233 | if (key_cmpsaidx(saidx0: &sav_sent->sah->saidx, saidx1: &sav_update->sah->saidx, CMP_MODE | CMP_PORT) || |
| 10234 | key_cmpsaidx(saidx0: &saidx_swap_sent_addr, saidx1: &sav_update->sah->saidx, CMP_MODE | CMP_PORT)) { |
| 10235 | sav_update->natt_last_activity = natt_now; |
| 10236 | } |
| 10237 | } |
| 10238 | |
| 10239 | static int |
| 10240 | key_send_delsp(struct secpolicy *sp) |
| 10241 | { |
| 10242 | struct mbuf *result = NULL, *m; |
| 10243 | |
| 10244 | if (sp == NULL) { |
| 10245 | goto fail; |
| 10246 | } |
| 10247 | |
| 10248 | /* set msg header */ |
| 10249 | m = key_setsadbmsg(SADB_X_SPDDELETE, tlen: 0, satype: 0, seq: 0, pid: 0, reserved: 0); |
| 10250 | if (!m) { |
| 10251 | goto fail; |
| 10252 | } |
| 10253 | result = m; |
| 10254 | |
| 10255 | /* set sadb_address(es) for source */ |
| 10256 | if (sp->spidx.src_range.start.ss_len > 0) { |
| 10257 | m = key_setsadbaddr(SADB_X_EXT_ADDR_RANGE_SRC_START, |
| 10258 | saddr: (struct sockaddr *)&sp->spidx.src_range.start, prefixlen: sp->spidx.prefs, |
| 10259 | ul_proto: sp->spidx.ul_proto); |
| 10260 | if (!m) { |
| 10261 | goto fail; |
| 10262 | } |
| 10263 | m_cat(result, m); |
| 10264 | |
| 10265 | m = key_setsadbaddr(SADB_X_EXT_ADDR_RANGE_SRC_END, |
| 10266 | saddr: (struct sockaddr *)&sp->spidx.src_range.end, prefixlen: sp->spidx.prefs, |
| 10267 | ul_proto: sp->spidx.ul_proto); |
| 10268 | if (!m) { |
| 10269 | goto fail; |
| 10270 | } |
| 10271 | m_cat(result, m); |
| 10272 | } else { |
| 10273 | m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, |
| 10274 | saddr: (struct sockaddr *)&sp->spidx.src, prefixlen: sp->spidx.prefs, |
| 10275 | ul_proto: sp->spidx.ul_proto); |
| 10276 | if (!m) { |
| 10277 | goto fail; |
| 10278 | } |
| 10279 | m_cat(result, m); |
| 10280 | } |
| 10281 | |
| 10282 | /* set sadb_address(es) for destination */ |
| 10283 | if (sp->spidx.dst_range.start.ss_len > 0) { |
| 10284 | m = key_setsadbaddr(SADB_X_EXT_ADDR_RANGE_DST_START, |
| 10285 | saddr: (struct sockaddr *)&sp->spidx.dst_range.start, prefixlen: sp->spidx.prefd, |
| 10286 | ul_proto: sp->spidx.ul_proto); |
| 10287 | if (!m) { |
| 10288 | goto fail; |
| 10289 | } |
| 10290 | m_cat(result, m); |
| 10291 | |
| 10292 | m = key_setsadbaddr(SADB_X_EXT_ADDR_RANGE_DST_END, |
| 10293 | saddr: (struct sockaddr *)&sp->spidx.dst_range.end, prefixlen: sp->spidx.prefd, |
| 10294 | ul_proto: sp->spidx.ul_proto); |
| 10295 | if (!m) { |
| 10296 | goto fail; |
| 10297 | } |
| 10298 | m_cat(result, m); |
| 10299 | } else { |
| 10300 | m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, |
| 10301 | saddr: (struct sockaddr *)&sp->spidx.dst, prefixlen: sp->spidx.prefd, |
| 10302 | ul_proto: sp->spidx.ul_proto); |
| 10303 | if (!m) { |
| 10304 | goto fail; |
| 10305 | } |
| 10306 | m_cat(result, m); |
| 10307 | } |
| 10308 | |
| 10309 | /* set secpolicy */ |
| 10310 | m = key_sp2msg(sp); |
| 10311 | if (!m) { |
| 10312 | goto fail; |
| 10313 | } |
| 10314 | m_cat(result, m); |
| 10315 | |
| 10316 | if ((result->m_flags & M_PKTHDR) == 0) { |
| 10317 | goto fail; |
| 10318 | } |
| 10319 | |
| 10320 | if (result->m_len < sizeof(struct sadb_msg)) { |
| 10321 | result = m_pullup(result, sizeof(struct sadb_msg)); |
| 10322 | if (result == NULL) { |
| 10323 | goto fail; |
| 10324 | } |
| 10325 | } |
| 10326 | |
| 10327 | result->m_pkthdr.len = 0; |
| 10328 | for (m = result; m; m = m->m_next) { |
| 10329 | result->m_pkthdr.len += m->m_len; |
| 10330 | } |
| 10331 | |
| 10332 | if (PFKEY_UNIT64(result->m_pkthdr.len) >= UINT16_MAX) { |
| 10333 | ipseclog((LOG_ERR, "key_send_delsp: length too big: %d" , result->m_pkthdr.len)); |
| 10334 | goto fail; |
| 10335 | } |
| 10336 | |
| 10337 | mtod(result, struct sadb_msg *)->sadb_msg_len = (u_int16_t)PFKEY_UNIT64(result->m_pkthdr.len); |
| 10338 | |
| 10339 | return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED); |
| 10340 | |
| 10341 | fail: |
| 10342 | if (result) { |
| 10343 | m_free(result); |
| 10344 | } |
| 10345 | return -1; |
| 10346 | } |
| 10347 | |
| 10348 | void |
| 10349 | key_delsp_for_ipsec_if(ifnet_t ipsec_if) |
| 10350 | { |
| 10351 | struct secashead *sah; |
| 10352 | struct secasvar *sav, *nextsav; |
| 10353 | u_int stateidx; |
| 10354 | u_int state; |
| 10355 | struct secpolicy *sp, *nextsp; |
| 10356 | int dir; |
| 10357 | |
| 10358 | if (ipsec_if == NULL) { |
| 10359 | return; |
| 10360 | } |
| 10361 | |
| 10362 | LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_NOTOWNED); |
| 10363 | |
| 10364 | lck_mtx_lock(sadb_mutex); |
| 10365 | |
| 10366 | for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { |
| 10367 | for (sp = LIST_FIRST(&sptree[dir]); |
| 10368 | sp != NULL; |
| 10369 | sp = nextsp) { |
| 10370 | nextsp = LIST_NEXT(sp, chain); |
| 10371 | |
| 10372 | if (sp->ipsec_if == ipsec_if) { |
| 10373 | ifnet_release(interface: sp->ipsec_if); |
| 10374 | sp->ipsec_if = NULL; |
| 10375 | |
| 10376 | key_send_delsp(sp); |
| 10377 | |
| 10378 | sp->state = IPSEC_SPSTATE_DEAD; |
| 10379 | key_freesp(sp, KEY_SADB_LOCKED); |
| 10380 | } |
| 10381 | } |
| 10382 | } |
| 10383 | |
| 10384 | LIST_FOREACH(sah, &sahtree, chain) { |
| 10385 | if (sah->ipsec_if == ipsec_if) { |
| 10386 | /* This SAH is linked to the IPsec interface. It now needs to close. */ |
| 10387 | ifnet_release(interface: sah->ipsec_if); |
| 10388 | sah->ipsec_if = NULL; |
| 10389 | |
| 10390 | for (stateidx = 0; stateidx < _ARRAYLEN(saorder_state_alive); stateidx++) { |
| 10391 | state = saorder_state_any[stateidx]; |
| 10392 | for (sav = LIST_FIRST(&sah->savtree[state]); sav != NULL; sav = nextsav) { |
| 10393 | nextsav = LIST_NEXT(sav, chain); |
| 10394 | |
| 10395 | key_sa_chgstate(sav, SADB_SASTATE_DEAD); |
| 10396 | key_freesav(sav, KEY_SADB_LOCKED); |
| 10397 | } |
| 10398 | } |
| 10399 | |
| 10400 | sah->state = SADB_SASTATE_DEAD; |
| 10401 | } |
| 10402 | } |
| 10403 | |
| 10404 | lck_mtx_unlock(sadb_mutex); |
| 10405 | } |
| 10406 | |
| 10407 | __private_extern__ u_int32_t |
| 10408 | key_fill_offload_frames_for_savs(ifnet_t ifp, |
| 10409 | struct ifnet_keepalive_offload_frame *frames_array, |
| 10410 | u_int32_t frames_array_count, |
| 10411 | size_t frame_data_offset) |
| 10412 | { |
| 10413 | struct secashead *sah = NULL; |
| 10414 | struct secasvar *sav = NULL; |
| 10415 | struct ifnet_keepalive_offload_frame *frame = frames_array; |
| 10416 | u_int32_t frame_index = 0; |
| 10417 | |
| 10418 | if (frame == NULL || frames_array_count == 0) { |
| 10419 | return frame_index; |
| 10420 | } |
| 10421 | |
| 10422 | lck_mtx_lock(sadb_mutex); |
| 10423 | LIST_FOREACH(sah, &sahtree, chain) { |
| 10424 | LIST_FOREACH(sav, &sah->savtree[SADB_SASTATE_MATURE], chain) { |
| 10425 | if (ipsec_fill_offload_frame(ifp, sav, frame, frame_data_offset)) { |
| 10426 | frame_index++; |
| 10427 | if (frame_index >= frames_array_count) { |
| 10428 | lck_mtx_unlock(sadb_mutex); |
| 10429 | return frame_index; |
| 10430 | } |
| 10431 | frame = &(frames_array[frame_index]); |
| 10432 | } |
| 10433 | } |
| 10434 | } |
| 10435 | lck_mtx_unlock(sadb_mutex); |
| 10436 | |
| 10437 | return frame_index; |
| 10438 | } |
| 10439 | |
| 10440 | #pragma mark Custom IPsec |
| 10441 | |
| 10442 | __private_extern__ bool |
| 10443 | key_custom_ipsec_token_is_valid(void *ipsec_token) |
| 10444 | { |
| 10445 | if (ipsec_token == NULL) { |
| 10446 | return false; |
| 10447 | } |
| 10448 | |
| 10449 | struct secashead *sah = (struct secashead *)ipsec_token; |
| 10450 | |
| 10451 | return (sah->flags & SECURITY_ASSOCIATION_CUSTOM_IPSEC) == SECURITY_ASSOCIATION_CUSTOM_IPSEC; |
| 10452 | } |
| 10453 | |
| 10454 | __private_extern__ int |
| 10455 | key_reserve_custom_ipsec(void **ipsec_token, union sockaddr_in_4_6 *src, union sockaddr_in_4_6 *dst, |
| 10456 | u_int8_t proto) |
| 10457 | { |
| 10458 | if (src == NULL || dst == NULL) { |
| 10459 | ipseclog((LOG_ERR, "register custom ipsec: invalid address\n" )); |
| 10460 | return EINVAL; |
| 10461 | } |
| 10462 | |
| 10463 | if (src->sa.sa_family != dst->sa.sa_family) { |
| 10464 | ipseclog((LOG_ERR, "register custom ipsec: address family mismatched\n" )); |
| 10465 | return EINVAL; |
| 10466 | } |
| 10467 | |
| 10468 | if (src->sa.sa_len != dst->sa.sa_len) { |
| 10469 | ipseclog((LOG_ERR, "register custom ipsec: address struct size mismatched\n" )); |
| 10470 | return EINVAL; |
| 10471 | } |
| 10472 | |
| 10473 | if (ipsec_token == NULL) { |
| 10474 | ipseclog((LOG_ERR, "register custom ipsec: invalid ipsec token\n" )); |
| 10475 | return EINVAL; |
| 10476 | } |
| 10477 | |
| 10478 | switch (src->sa.sa_family) { |
| 10479 | case AF_INET: |
| 10480 | if (src->sa.sa_len != sizeof(struct sockaddr_in)) { |
| 10481 | ipseclog((LOG_ERR, "register custom esp: invalid address length\n" )); |
| 10482 | return EINVAL; |
| 10483 | } |
| 10484 | break; |
| 10485 | case AF_INET6: |
| 10486 | if (src->sa.sa_len != sizeof(struct sockaddr_in6)) { |
| 10487 | ipseclog((LOG_ERR, "register custom esp: invalid address length\n" )); |
| 10488 | return EINVAL; |
| 10489 | } |
| 10490 | break; |
| 10491 | default: |
| 10492 | ipseclog((LOG_ERR, "register custom esp: invalid address length\n" )); |
| 10493 | return EAFNOSUPPORT; |
| 10494 | } |
| 10495 | |
| 10496 | if (proto != IPPROTO_ESP && proto != IPPROTO_AH) { |
| 10497 | ipseclog((LOG_ERR, "register custom esp: invalid proto %u\n" , proto)); |
| 10498 | return EINVAL; |
| 10499 | } |
| 10500 | |
| 10501 | struct secasindex saidx = {}; |
| 10502 | KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, &src->sa, &dst->sa, 0, &saidx); |
| 10503 | |
| 10504 | lck_mtx_lock(sadb_mutex); |
| 10505 | |
| 10506 | struct secashead *sah = NULL; |
| 10507 | if ((sah = key_getsah(saidx: &saidx, SECURITY_ASSOCIATION_ANY)) != NULL) { |
| 10508 | lck_mtx_unlock(sadb_mutex); |
| 10509 | ipseclog((LOG_ERR, "register custom esp: SA exists\n" )); |
| 10510 | return EEXIST; |
| 10511 | } |
| 10512 | |
| 10513 | if ((sah = key_newsah(saidx: &saidx, NULL, outgoing_if: 0, IPSEC_DIR_ANY, SECURITY_ASSOCIATION_CUSTOM_IPSEC)) == NULL) { |
| 10514 | lck_mtx_unlock(sadb_mutex); |
| 10515 | ipseclog((LOG_DEBUG, "register custom esp: No more memory.\n" )); |
| 10516 | return ENOBUFS; |
| 10517 | } |
| 10518 | |
| 10519 | *ipsec_token = (void *)sah; |
| 10520 | |
| 10521 | lck_mtx_unlock(sadb_mutex); |
| 10522 | return 0; |
| 10523 | } |
| 10524 | |
| 10525 | __private_extern__ void |
| 10526 | key_release_custom_ipsec(void **ipsec_token) |
| 10527 | { |
| 10528 | struct secashead *sah = *ipsec_token; |
| 10529 | VERIFY(sah != NULL); |
| 10530 | |
| 10531 | lck_mtx_lock(sadb_mutex); |
| 10532 | |
| 10533 | VERIFY((sah->flags & SECURITY_ASSOCIATION_CUSTOM_IPSEC) == SECURITY_ASSOCIATION_CUSTOM_IPSEC); |
| 10534 | |
| 10535 | bool sa_present = true; |
| 10536 | if (LIST_FIRST(&sah->savtree[SADB_SASTATE_LARVAL]) == NULL && |
| 10537 | LIST_FIRST(&sah->savtree[SADB_SASTATE_MATURE]) == NULL && |
| 10538 | LIST_FIRST(&sah->savtree[SADB_SASTATE_DYING]) == NULL && |
| 10539 | LIST_FIRST(&sah->savtree[SADB_SASTATE_DEAD]) == NULL) { |
| 10540 | sa_present = false; |
| 10541 | } |
| 10542 | VERIFY(sa_present == false); |
| 10543 | |
| 10544 | key_delsah(sah); |
| 10545 | |
| 10546 | lck_mtx_unlock(sadb_mutex); |
| 10547 | |
| 10548 | *ipsec_token = NULL; |
| 10549 | return; |
| 10550 | } |
| 10551 | |