1 | /* |
2 | * Copyright (c) 2008-2023 Apple Inc. All rights reserved. |
3 | * |
4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ |
5 | * |
6 | * This file contains Original Code and/or Modifications of Original Code |
7 | * as defined in and that are subject to the Apple Public Source License |
8 | * Version 2.0 (the 'License'). You may not use this file except in |
9 | * compliance with the License. The rights granted to you under the License |
10 | * may not be used to create, or enable the creation or redistribution of, |
11 | * unlawful or unlicensed copies of an Apple operating system, or to |
12 | * circumvent, violate, or enable the circumvention or violation of, any |
13 | * terms of an Apple operating system software license agreement. |
14 | * |
15 | * Please obtain a copy of the License at |
16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. |
17 | * |
18 | * The Original Code and all software distributed under the License are |
19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER |
20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, |
22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
23 | * Please see the License for the specific language governing rights and |
24 | * limitations under the License. |
25 | * |
26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ |
27 | */ |
28 | |
29 | /* $FreeBSD: src/sys/netkey/key.c,v 1.16.2.13 2002/07/24 18:17:40 ume Exp $ */ |
30 | /* $KAME: key.c,v 1.191 2001/06/27 10:46:49 sakane Exp $ */ |
31 | |
32 | /* |
33 | * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. |
34 | * All rights reserved. |
35 | * |
36 | * Redistribution and use in source and binary forms, with or without |
37 | * modification, are permitted provided that the following conditions |
38 | * are met: |
39 | * 1. Redistributions of source code must retain the above copyright |
40 | * notice, this list of conditions and the following disclaimer. |
41 | * 2. Redistributions in binary form must reproduce the above copyright |
42 | * notice, this list of conditions and the following disclaimer in the |
43 | * documentation and/or other materials provided with the distribution. |
44 | * 3. Neither the name of the project nor the names of its contributors |
45 | * may be used to endorse or promote products derived from this software |
46 | * without specific prior written permission. |
47 | * |
48 | * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND |
49 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
50 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
51 | * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE |
52 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
53 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
54 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
55 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
56 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
57 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
58 | * SUCH DAMAGE. |
59 | */ |
60 | |
61 | /* |
62 | * This code is referd to RFC 2367 |
63 | */ |
64 | |
65 | #include <machine/endian.h> |
66 | #include <sys/types.h> |
67 | #include <sys/param.h> |
68 | #include <sys/systm.h> |
69 | #include <sys/kernel.h> |
70 | #include <sys/mbuf.h> |
71 | #include <sys/domain.h> |
72 | #include <sys/protosw.h> |
73 | #include <sys/malloc.h> |
74 | #include <sys/socket.h> |
75 | #include <sys/socketvar.h> |
76 | #include <sys/sysctl.h> |
77 | #include <sys/errno.h> |
78 | #include <sys/proc.h> |
79 | #include <sys/queue.h> |
80 | #include <sys/syslog.h> |
81 | #include <sys/mcache.h> |
82 | |
83 | #include <kern/clock.h> |
84 | #include <kern/locks.h> |
85 | |
86 | #include <net/if.h> |
87 | #include <net/route.h> |
88 | #include <net/raw_cb.h> |
89 | |
90 | #include <netinet/in.h> |
91 | #include <netinet/in_systm.h> |
92 | #include <netinet/ip.h> |
93 | #include <netinet/in_var.h> |
94 | |
95 | #include <netinet/ip6.h> |
96 | #include <netinet6/in6_var.h> |
97 | #include <netinet6/ip6_var.h> |
98 | |
99 | #include <net/pfkeyv2.h> |
100 | #include <netkey/keydb.h> |
101 | #include <netkey/key.h> |
102 | #include <netkey/keysock.h> |
103 | #include <netkey/key_debug.h> |
104 | #include <stdarg.h> |
105 | #include <libkern/crypto/rand.h> |
106 | |
107 | #include <netinet6/ipsec.h> |
108 | #include <netinet6/ipsec6.h> |
109 | #include <netinet6/ah.h> |
110 | #include <netinet6/ah6.h> |
111 | #if IPSEC_ESP |
112 | #include <netinet6/esp.h> |
113 | #include <netinet6/esp6.h> |
114 | #endif |
115 | |
116 | |
117 | /* randomness */ |
118 | #include <sys/random.h> |
119 | |
120 | #include <net/net_osdep.h> |
121 | |
122 | #if SKYWALK |
123 | #include <skywalk/namespace/flowidns.h> |
124 | #endif /* SKYWALK */ |
125 | |
126 | #define FULLMASK 0xff |
127 | |
128 | static LCK_GRP_DECLARE(sadb_mutex_grp, "sadb" ); |
129 | LCK_MTX_DECLARE(sadb_mutex_data, &sadb_mutex_grp); |
130 | |
131 | /* |
132 | * Note on SA reference counting: |
133 | * - SAs that are not in DEAD state will have (total external reference + 1) |
134 | * following value in reference count field. they cannot be freed and are |
135 | * referenced from SA header. |
136 | * - SAs that are in DEAD state will have (total external reference) |
137 | * in reference count field. they are ready to be freed. reference from |
138 | * SA header will be removed in key_delsav(), when the reference count |
139 | * field hits 0 (= no external reference other than from SA header. |
140 | */ |
141 | |
142 | u_int32_t key_debug_level = 0; //### our sysctl is not dynamic |
143 | static int key_timehandler_running = 0; |
144 | static u_int key_spi_trycnt = 1000; |
145 | static u_int32_t key_spi_minval = 0x100; |
146 | static u_int32_t key_spi_maxval = 0x0fffffff; /* XXX */ |
147 | static u_int32_t policy_id = 0; |
148 | static u_int32_t key_int_random = 60; /*interval to initialize randseed,1(m)*/ |
149 | static u_int32_t key_larval_lifetime = 30; /* interval to expire acquiring, 30(s)*/ |
150 | static u_int32_t key_blockacq_count = 10; /* counter for blocking SADB_ACQUIRE.*/ |
151 | static u_int32_t key_blockacq_lifetime = 20; /* lifetime for blocking SADB_ACQUIRE.*/ |
152 | static int key_preferred_oldsa = 0; /* preferred old sa rather than new sa.*/ |
153 | __private_extern__ int natt_keepalive_interval = 20; /* interval between natt keepalives.*/ |
154 | static u_int32_t ipsec_policy_count = 0; |
155 | static u_int32_t ipsec_sav_count = 0; |
156 | |
157 | static u_int32_t acq_seq = 0; |
158 | static int key_tick_init_random = 0; |
159 | static u_int64_t up_time = 0; |
160 | __private_extern__ u_int64_t natt_now = 0; |
161 | |
162 | static LIST_HEAD(_sptree, secpolicy) sptree[IPSEC_DIR_MAX]; /* SPD */ |
163 | static LIST_HEAD(_sahtree, secashead) sahtree; /* SAD */ |
164 | static LIST_HEAD(_regtree, secreg) regtree[SADB_SATYPE_MAX + 1]; |
165 | static LIST_HEAD(_custom_sahtree, secashead) custom_sahtree; |
166 | /* registed list */ |
167 | |
168 | #define SPIHASHSIZE 128 |
169 | #define SPIHASH(x) (((x) ^ ((x) >> 16)) % SPIHASHSIZE) |
170 | static LIST_HEAD(_spihash, secasvar) spihash[SPIHASHSIZE]; |
171 | |
172 | #ifndef IPSEC_NONBLOCK_ACQUIRE |
173 | static LIST_HEAD(_acqtree, secacq) acqtree; /* acquiring list */ |
174 | #endif |
175 | static LIST_HEAD(_spacqtree, secspacq) spacqtree; /* SP acquiring list */ |
176 | |
177 | struct key_cb key_cb; |
178 | |
179 | /* search order for SAs */ |
180 | static const u_int saorder_state_valid_prefer_old[] = { |
181 | SADB_SASTATE_DYING, SADB_SASTATE_MATURE, |
182 | }; |
183 | static const u_int saorder_state_valid_prefer_new[] = { |
184 | SADB_SASTATE_MATURE, SADB_SASTATE_DYING, |
185 | }; |
186 | static const u_int saorder_state_alive[] = { |
187 | /* except DEAD */ |
188 | SADB_SASTATE_MATURE, SADB_SASTATE_DYING, SADB_SASTATE_LARVAL |
189 | }; |
190 | static const u_int saorder_state_any[] = { |
191 | SADB_SASTATE_MATURE, SADB_SASTATE_DYING, |
192 | SADB_SASTATE_LARVAL, SADB_SASTATE_DEAD |
193 | }; |
194 | |
195 | static const int minsize[] = { |
196 | sizeof(struct sadb_msg), /* SADB_EXT_RESERVED */ |
197 | sizeof(struct sadb_sa), /* SADB_EXT_SA */ |
198 | sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_CURRENT */ |
199 | sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_HARD */ |
200 | sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_SOFT */ |
201 | sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_SRC */ |
202 | sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_DST */ |
203 | sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_PROXY */ |
204 | sizeof(struct sadb_key), /* SADB_EXT_KEY_AUTH */ |
205 | sizeof(struct sadb_key), /* SADB_EXT_KEY_ENCRYPT */ |
206 | sizeof(struct sadb_ident), /* SADB_EXT_IDENTITY_SRC */ |
207 | sizeof(struct sadb_ident), /* SADB_EXT_IDENTITY_DST */ |
208 | sizeof(struct sadb_sens), /* SADB_EXT_SENSITIVITY */ |
209 | sizeof(struct sadb_prop), /* SADB_EXT_PROPOSAL */ |
210 | sizeof(struct sadb_supported), /* SADB_EXT_SUPPORTED_AUTH */ |
211 | sizeof(struct sadb_supported), /* SADB_EXT_SUPPORTED_ENCRYPT */ |
212 | sizeof(struct sadb_spirange), /* SADB_EXT_SPIRANGE */ |
213 | 0, /* SADB_X_EXT_KMPRIVATE */ |
214 | sizeof(struct sadb_x_policy), /* SADB_X_EXT_POLICY */ |
215 | sizeof(struct sadb_x_sa2), /* SADB_X_SA2 */ |
216 | sizeof(struct sadb_session_id), /* SADB_EXT_SESSION_ID */ |
217 | sizeof(struct sadb_sastat), /* SADB_EXT_SASTAT */ |
218 | sizeof(struct sadb_x_ipsecif), /* SADB_X_EXT_IPSECIF */ |
219 | sizeof(struct sadb_address), /* SADB_X_EXT_ADDR_RANGE_SRC_START */ |
220 | sizeof(struct sadb_address), /* SADB_X_EXT_ADDR_RANGE_SRC_END */ |
221 | sizeof(struct sadb_address), /* SADB_X_EXT_ADDR_RANGE_DST_START */ |
222 | sizeof(struct sadb_address), /* SADB_X_EXT_ADDR_RANGE_DST_END */ |
223 | sizeof(struct sadb_address), /* SADB_EXT_MIGRATE_ADDRESS_SRC */ |
224 | sizeof(struct sadb_address), /* SADB_EXT_MIGRATE_ADDRESS_DST */ |
225 | sizeof(struct sadb_x_ipsecif), /* SADB_X_EXT_MIGRATE_IPSECIF */ |
226 | }; |
227 | static const int maxsize[] = { |
228 | sizeof(struct sadb_msg), /* SADB_EXT_RESERVED */ |
229 | sizeof(struct sadb_sa_2), /* SADB_EXT_SA */ |
230 | sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_CURRENT */ |
231 | sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_HARD */ |
232 | sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_SOFT */ |
233 | 0, /* SADB_EXT_ADDRESS_SRC */ |
234 | 0, /* SADB_EXT_ADDRESS_DST */ |
235 | 0, /* SADB_EXT_ADDRESS_PROXY */ |
236 | 0, /* SADB_EXT_KEY_AUTH */ |
237 | 0, /* SADB_EXT_KEY_ENCRYPT */ |
238 | 0, /* SADB_EXT_IDENTITY_SRC */ |
239 | 0, /* SADB_EXT_IDENTITY_DST */ |
240 | 0, /* SADB_EXT_SENSITIVITY */ |
241 | 0, /* SADB_EXT_PROPOSAL */ |
242 | 0, /* SADB_EXT_SUPPORTED_AUTH */ |
243 | 0, /* SADB_EXT_SUPPORTED_ENCRYPT */ |
244 | sizeof(struct sadb_spirange), /* SADB_EXT_SPIRANGE */ |
245 | 0, /* SADB_X_EXT_KMPRIVATE */ |
246 | 0, /* SADB_X_EXT_POLICY */ |
247 | sizeof(struct sadb_x_sa2), /* SADB_X_SA2 */ |
248 | 0, /* SADB_EXT_SESSION_ID */ |
249 | 0, /* SADB_EXT_SASTAT */ |
250 | sizeof(struct sadb_x_ipsecif), /* SADB_X_EXT_IPSECIF */ |
251 | 0, /* SADB_X_EXT_ADDR_RANGE_SRC_START */ |
252 | 0, /* SADB_X_EXT_ADDR_RANGE_SRC_END */ |
253 | 0, /* SADB_X_EXT_ADDR_RANGE_DST_START */ |
254 | 0, /* SADB_X_EXT_ADDR_RANGE_DST_END */ |
255 | 0, /* SADB_EXT_MIGRATE_ADDRESS_SRC */ |
256 | 0, /* SADB_EXT_MIGRATE_ADDRESS_DST */ |
257 | sizeof(struct sadb_x_ipsecif), /* SADB_X_EXT_MIGRATE_IPSECIF */ |
258 | }; |
259 | |
260 | static int ipsec_esp_keymin = 256; |
261 | static int ipsec_esp_auth = 0; |
262 | static int ipsec_ah_keymin = 128; |
263 | |
264 | SYSCTL_DECL(_net_key); |
265 | /* Thread safe: no accumulated state */ |
266 | SYSCTL_INT(_net_key, KEYCTL_DEBUG_LEVEL, debug, CTLFLAG_RW | CTLFLAG_LOCKED, \ |
267 | &key_debug_level, 0, "" ); |
268 | |
269 | |
270 | /* max count of trial for the decision of spi value */ |
271 | SYSCTL_INT(_net_key, KEYCTL_SPI_TRY, spi_trycnt, CTLFLAG_RW | CTLFLAG_LOCKED, \ |
272 | &key_spi_trycnt, 0, "" ); |
273 | |
274 | /* minimum spi value to allocate automatically. */ |
275 | SYSCTL_INT(_net_key, KEYCTL_SPI_MIN_VALUE, spi_minval, CTLFLAG_RW | CTLFLAG_LOCKED, \ |
276 | &key_spi_minval, 0, "" ); |
277 | |
278 | /* maximun spi value to allocate automatically. */ |
279 | SYSCTL_INT(_net_key, KEYCTL_SPI_MAX_VALUE, spi_maxval, CTLFLAG_RW | CTLFLAG_LOCKED, \ |
280 | &key_spi_maxval, 0, "" ); |
281 | |
282 | /* interval to initialize randseed */ |
283 | SYSCTL_INT(_net_key, KEYCTL_RANDOM_INT, int_random, CTLFLAG_RW | CTLFLAG_LOCKED, \ |
284 | &key_int_random, 0, "" ); |
285 | |
286 | /* lifetime for larval SA; thread safe due to > compare */ |
287 | SYSCTL_INT(_net_key, KEYCTL_LARVAL_LIFETIME, larval_lifetime, CTLFLAG_RW | CTLFLAG_LOCKED, \ |
288 | &key_larval_lifetime, 0, "" ); |
289 | |
290 | /* counter for blocking to send SADB_ACQUIRE to IKEd */ |
291 | SYSCTL_INT(_net_key, KEYCTL_BLOCKACQ_COUNT, blockacq_count, CTLFLAG_RW | CTLFLAG_LOCKED, \ |
292 | &key_blockacq_count, 0, "" ); |
293 | |
294 | /* lifetime for blocking to send SADB_ACQUIRE to IKEd: Thread safe, > compare */ |
295 | SYSCTL_INT(_net_key, KEYCTL_BLOCKACQ_LIFETIME, blockacq_lifetime, CTLFLAG_RW | CTLFLAG_LOCKED, \ |
296 | &key_blockacq_lifetime, 0, "" ); |
297 | |
298 | /* ESP auth */ |
299 | SYSCTL_INT(_net_key, KEYCTL_ESP_AUTH, esp_auth, CTLFLAG_RW | CTLFLAG_LOCKED, \ |
300 | &ipsec_esp_auth, 0, "" ); |
301 | |
302 | /* minimum ESP key length */ |
303 | SYSCTL_INT(_net_key, KEYCTL_ESP_KEYMIN, esp_keymin, CTLFLAG_RW | CTLFLAG_LOCKED, \ |
304 | &ipsec_esp_keymin, 0, "" ); |
305 | |
306 | /* minimum AH key length */ |
307 | SYSCTL_INT(_net_key, KEYCTL_AH_KEYMIN, ah_keymin, CTLFLAG_RW | CTLFLAG_LOCKED, \ |
308 | &ipsec_ah_keymin, 0, "" ); |
309 | |
310 | /* perfered old SA rather than new SA */ |
311 | SYSCTL_INT(_net_key, KEYCTL_PREFERED_OLDSA, prefered_oldsa, CTLFLAG_RW | CTLFLAG_LOCKED, \ |
312 | &key_preferred_oldsa, 0, "" ); |
313 | |
314 | /* time between NATT keepalives in seconds, 0 disabled */ |
315 | SYSCTL_INT(_net_key, KEYCTL_NATT_KEEPALIVE_INTERVAL, natt_keepalive_interval, CTLFLAG_RW | CTLFLAG_LOCKED, \ |
316 | &natt_keepalive_interval, 0, "" ); |
317 | |
318 | /* PF_KEY statistics */ |
319 | SYSCTL_STRUCT(_net_key, KEYCTL_PFKEYSTAT, pfkeystat, CTLFLAG_RD | CTLFLAG_LOCKED, \ |
320 | &pfkeystat, pfkeystat, "" ); |
321 | |
322 | #ifndef LIST_FOREACH |
323 | #define LIST_FOREACH(elm, head, field) \ |
324 | for (elm = LIST_FIRST(head); elm; elm = LIST_NEXT(elm, field)) |
325 | #endif |
326 | #define __LIST_CHAINED(elm) \ |
327 | (!((elm)->chain.le_next == NULL && (elm)->chain.le_prev == NULL)) |
328 | #define LIST_INSERT_TAIL(head, elm, type, field) \ |
329 | do {\ |
330 | struct type *curelm = LIST_FIRST(head); \ |
331 | if (curelm == NULL) {\ |
332 | LIST_INSERT_HEAD(head, elm, field); \ |
333 | } else { \ |
334 | while (LIST_NEXT(curelm, field)) \ |
335 | curelm = LIST_NEXT(curelm, field);\ |
336 | LIST_INSERT_AFTER(curelm, elm, field);\ |
337 | }\ |
338 | } while (0) |
339 | |
340 | #define KEY_CHKSASTATE(head, sav, name) \ |
341 | if ((head) != (sav)) { \ |
342 | ipseclog((LOG_DEBUG, "%s: state mismatched (TREE=%d SA=%d)\n", \ |
343 | (name), (head), (sav))); \ |
344 | continue; \ |
345 | } \ |
346 | |
347 | #define KEY_CHKSPDIR(head, sp, name) \ |
348 | do { \ |
349 | if ((head) != (sp)) { \ |
350 | ipseclog((LOG_DEBUG, "%s: direction mismatched (TREE=%d SP=%d), " \ |
351 | "anyway continue.\n", \ |
352 | (name), (head), (sp))); \ |
353 | } \ |
354 | } while (0) |
355 | |
356 | /* |
357 | * set parameters into secpolicyindex buffer. |
358 | * Must allocate secpolicyindex buffer passed to this function. |
359 | */ |
360 | #define KEY_SETSECSPIDX(_dir, s, d, ps, pd, ulp, ifp, s_s, s_e, d_s, d_e, idx) \ |
361 | do { \ |
362 | bzero((idx), sizeof(struct secpolicyindex)); \ |
363 | (idx)->dir = (_dir); \ |
364 | (idx)->prefs = (ps); \ |
365 | (idx)->prefd = (pd); \ |
366 | (idx)->ul_proto = (ulp); \ |
367 | (idx)->internal_if = (ifp); \ |
368 | if (s) bcopy((s), &(idx)->src, ((struct sockaddr *)(s))->sa_len); \ |
369 | if (d) bcopy((d), &(idx)->dst, ((struct sockaddr *)(d))->sa_len); \ |
370 | if (s_s) bcopy((s_s), &(idx)->src_range.start, ((struct sockaddr *)(s_s))->sa_len); \ |
371 | if (s_e) bcopy((s_e), &(idx)->src_range.end, ((struct sockaddr *)(s_e))->sa_len); \ |
372 | if (d_s) bcopy((d_s), &(idx)->dst_range.start, ((struct sockaddr *)(d_s))->sa_len); \ |
373 | if (d_e) bcopy((d_e), &(idx)->dst_range.end, ((struct sockaddr *)(d_e))->sa_len); \ |
374 | } while (0) |
375 | |
376 | /* |
377 | * set parameters into secasindex buffer. |
378 | * Must allocate secasindex buffer before calling this function. |
379 | */ |
380 | #define KEY_SETSECASIDX(p, m, r, s, d, ifi, idx) \ |
381 | do { \ |
382 | bzero((idx), sizeof(struct secasindex)); \ |
383 | (idx)->proto = (p); \ |
384 | (idx)->mode = (m); \ |
385 | (idx)->reqid = (r); \ |
386 | bcopy((s), &(idx)->src, ((const struct sockaddr *)(s))->sa_len); \ |
387 | bcopy((d), &(idx)->dst, ((const struct sockaddr *)(d))->sa_len); \ |
388 | (idx)->ipsec_ifindex = (ifi); \ |
389 | } while (0) |
390 | |
391 | /* key statistics */ |
392 | struct _keystat { |
393 | u_int32_t getspi_count; /* the avarage of count to try to get new SPI */ |
394 | } keystat; |
395 | |
396 | struct sadb_msghdr { |
397 | struct sadb_msg *msg; |
398 | struct sadb_ext *ext[SADB_EXT_MAX + 1]; |
399 | int extoff[SADB_EXT_MAX + 1]; |
400 | int extlen[SADB_EXT_MAX + 1]; |
401 | }; |
402 | |
403 | static struct secpolicy *__key_getspbyid(u_int32_t id); |
404 | static struct secasvar *key_do_allocsa_policy(struct secashead *, u_int, u_int16_t); |
405 | static int key_do_get_translated_port(struct secashead *, struct secasvar *, u_int); |
406 | static void key_delsp(struct secpolicy *); |
407 | static struct secpolicy *key_getsp(struct secpolicyindex *); |
408 | static u_int16_t key_newreqid(void); |
409 | static struct mbuf *key_gather_mbuf(struct mbuf *, |
410 | const struct sadb_msghdr *, int, int, int *); |
411 | static int key_spdadd(struct socket *, struct mbuf *, |
412 | const struct sadb_msghdr *); |
413 | static u_int32_t key_getnewspid(void); |
414 | static int key_spddelete(struct socket *, struct mbuf *, |
415 | const struct sadb_msghdr *); |
416 | static int key_spddelete2(struct socket *, struct mbuf *, |
417 | const struct sadb_msghdr *); |
418 | static int key_spdenable(struct socket *, struct mbuf *, |
419 | const struct sadb_msghdr *); |
420 | static int key_spddisable(struct socket *, struct mbuf *, |
421 | const struct sadb_msghdr *); |
422 | static int key_spdget(struct socket *, struct mbuf *, |
423 | const struct sadb_msghdr *); |
424 | static int key_spdflush(struct socket *, struct mbuf *, |
425 | const struct sadb_msghdr *); |
426 | static int key_spddump(struct socket *, struct mbuf *, |
427 | const struct sadb_msghdr *); |
428 | static struct mbuf *key_setdumpsp(struct secpolicy *, |
429 | u_int8_t, u_int32_t, u_int32_t); |
430 | static u_int key_getspreqmsglen(struct secpolicy *); |
431 | static int key_spdexpire(struct secpolicy *); |
432 | static struct secashead *key_newsah(struct secasindex *, ifnet_t, u_int, u_int8_t, u_int16_t); |
433 | static struct secasvar *key_newsav(struct mbuf *, |
434 | const struct sadb_msghdr *, struct secashead *, int *, |
435 | struct socket *); |
436 | static struct secashead *key_getsah(struct secasindex *, u_int16_t); |
437 | static struct secasvar *key_checkspidup(struct secasindex *, u_int32_t); |
438 | static void key_setspi __P((struct secasvar *, u_int32_t)); |
439 | static struct secasvar *key_getsavbyspi(struct secashead *, u_int32_t); |
440 | static int key_setsaval(struct secasvar *, struct mbuf *, |
441 | const struct sadb_msghdr *); |
442 | static int key_mature(struct secasvar *); |
443 | static struct mbuf *key_setdumpsa(struct secasvar *, u_int8_t, |
444 | u_int8_t, u_int32_t, u_int32_t); |
445 | static struct mbuf *key_setsadbmsg(u_int8_t, u_int16_t, u_int8_t, |
446 | u_int32_t, pid_t, u_int16_t); |
447 | static struct mbuf *key_setsadbsa(struct secasvar *); |
448 | static struct mbuf *key_setsadbaddr(u_int16_t, |
449 | struct sockaddr *, size_t, u_int8_t); |
450 | static struct mbuf *key_setsadbipsecif(ifnet_t, ifnet_t, ifnet_t, u_int8_t); |
451 | static struct mbuf *key_setsadbxsa2(u_int8_t, u_int32_t, u_int32_t, u_int16_t); |
452 | static struct mbuf *key_setsadbxpolicy(u_int16_t, u_int8_t, |
453 | u_int32_t); |
454 | static struct mbuf *key_setsalifecurr(struct sadb_lifetime *); |
455 | static void *key_newbuf(const void *, u_int); |
456 | static int key_ismyaddr6(struct sockaddr_in6 *); |
457 | static void key_update_natt_keepalive_timestamp(struct secasvar *, struct secasvar *); |
458 | |
459 | /* flags for key_cmpsaidx() */ |
460 | #define CMP_HEAD 0x1 /* protocol, addresses. */ |
461 | #define CMP_PORT 0x2 /* additionally HEAD, reqid, mode. */ |
462 | #define CMP_REQID 0x4 /* additionally HEAD, reqid. */ |
463 | #define CMP_MODE 0x8 /* additionally mode. */ |
464 | #define CMP_EXACTLY 0xF /* all elements. */ |
465 | static int key_cmpsaidx(struct secasindex *, struct secasindex *, int); |
466 | |
467 | static int key_cmpspidx_exactly(struct secpolicyindex *, |
468 | struct secpolicyindex *); |
469 | static int key_cmpspidx_withmask(struct secpolicyindex *, |
470 | struct secpolicyindex *); |
471 | static int key_sockaddrcmp(struct sockaddr *, struct sockaddr *, int); |
472 | static int key_is_addr_in_range(struct sockaddr_storage *, struct secpolicyaddrrange *); |
473 | static int key_bbcmp(caddr_t, caddr_t, u_int); |
474 | static void key_srandom(void); |
475 | static u_int8_t key_satype2proto(u_int8_t); |
476 | static u_int8_t key_proto2satype(u_int16_t); |
477 | |
478 | static int key_getspi(struct socket *, struct mbuf *, |
479 | const struct sadb_msghdr *); |
480 | static u_int32_t key_do_getnewspi(struct sadb_spirange *, struct secasindex *); |
481 | static int key_update(struct socket *, struct mbuf *, |
482 | const struct sadb_msghdr *); |
483 | static int key_add(struct socket *, struct mbuf *, const struct sadb_msghdr *); |
484 | static struct mbuf *key_getmsgbuf_x1(struct mbuf *, const struct sadb_msghdr *); |
485 | static int key_delete(struct socket *, struct mbuf *, |
486 | const struct sadb_msghdr *); |
487 | static int key_get(struct socket *, struct mbuf *, const struct sadb_msghdr *); |
488 | |
489 | static void key_getcomb_setlifetime(struct sadb_comb *); |
490 | #if IPSEC_ESP |
491 | static struct mbuf *key_getcomb_esp(void); |
492 | #endif |
493 | static struct mbuf *key_getcomb_ah(void); |
494 | static struct mbuf *key_getprop(const struct secasindex *); |
495 | |
496 | static int key_acquire(struct secasindex *, struct secpolicy *); |
497 | #ifndef IPSEC_NONBLOCK_ACQUIRE |
498 | static struct secacq *key_newacq(struct secasindex *); |
499 | static struct secacq *key_getacq(struct secasindex *); |
500 | static struct secacq *key_getacqbyseq(u_int32_t); |
501 | #endif |
502 | static struct secspacq *key_newspacq(struct secpolicyindex *); |
503 | static struct secspacq *key_getspacq(struct secpolicyindex *); |
504 | static int key_acquire2(struct socket *, struct mbuf *, |
505 | const struct sadb_msghdr *); |
506 | static int key_register(struct socket *, struct mbuf *, |
507 | const struct sadb_msghdr *); |
508 | static int key_expire(struct secasvar *); |
509 | static int key_flush(struct socket *, struct mbuf *, |
510 | const struct sadb_msghdr *); |
511 | static int key_dump(struct socket *, struct mbuf *, const struct sadb_msghdr *); |
512 | static int key_promisc(struct socket *, struct mbuf *, |
513 | const struct sadb_msghdr *); |
514 | static int key_senderror(struct socket *, struct mbuf *, int); |
515 | static int key_validate_ext(const struct sadb_ext *, int); |
516 | static int key_align(struct mbuf *, struct sadb_msghdr *); |
517 | static struct mbuf *key_alloc_mbuf(int); |
518 | static int key_getsastat(struct socket *, struct mbuf *, const struct sadb_msghdr *); |
519 | static int key_migrate(struct socket *, struct mbuf *, const struct sadb_msghdr *); |
520 | static void bzero_keys(const struct sadb_msghdr *); |
521 | |
522 | extern int ipsec_bypass; |
523 | extern int esp_udp_encap_port; |
524 | int ipsec_send_natt_keepalive(struct secasvar *sav); |
525 | bool ipsec_fill_offload_frame(ifnet_t ifp, struct secasvar *sav, struct ifnet_keepalive_offload_frame *frame, size_t frame_data_offset); |
526 | |
527 | void key_init(struct protosw *, struct domain *); |
528 | |
529 | static u_int64_t |
530 | key_get_continuous_time_ns(void) |
531 | { |
532 | u_int64_t current_time_ns = 0; |
533 | absolutetime_to_nanoseconds(abstime: mach_continuous_time(), result: ¤t_time_ns); |
534 | return current_time_ns; |
535 | } |
536 | |
537 | static u_int64_t |
538 | key_convert_continuous_time_ns(u_int64_t time_value) |
539 | { |
540 | // Pass through 0 as it indicates value is not set |
541 | if (time_value == 0) { |
542 | return 0; |
543 | } |
544 | |
545 | // Get current time |
546 | clock_sec_t time_sec; |
547 | clock_usec_t time_usec; |
548 | clock_get_calendar_microtime(secs: &time_sec, microsecs: &time_usec); |
549 | |
550 | // Get time offset |
551 | const u_int64_t time_offset_ns = key_get_continuous_time_ns() - time_value; |
552 | const clock_sec_t time_offset_sec = time_offset_ns / NSEC_PER_SEC; |
553 | const clock_usec_t time_offset_usec = (u_int32_t)(time_offset_ns - (time_offset_sec * NSEC_PER_SEC)) / NSEC_PER_USEC; |
554 | |
555 | // Subtract offset from current time |
556 | time_sec -= time_offset_sec; |
557 | if (time_offset_usec > time_usec) { |
558 | time_sec--; |
559 | time_usec = USEC_PER_SEC - (time_offset_usec - time_usec); |
560 | } else { |
561 | time_usec -= time_offset_usec; |
562 | } |
563 | |
564 | // Return result rounded to nearest second |
565 | return time_sec + ((time_usec >= (USEC_PER_SEC / 2)) ? 1 : 0); |
566 | } |
567 | |
568 | static void |
569 | key_get_flowid(struct secasvar *sav) |
570 | { |
571 | #if SKYWALK |
572 | struct flowidns_flow_key fk; |
573 | struct secashead *sah = sav->sah; |
574 | |
575 | if ((sah->dir != IPSEC_DIR_OUTBOUND) && (sah->dir != IPSEC_DIR_ANY)) { |
576 | return; |
577 | } |
578 | |
579 | bzero(s: &fk, n: sizeof(fk)); |
580 | ASSERT(sah->saidx.src.ss_family == sah->saidx.dst.ss_family); |
581 | switch (sah->saidx.src.ss_family) { |
582 | case AF_INET: |
583 | ASSERT(sah->saidx.src.ss_len == sizeof(struct sockaddr_in)); |
584 | ASSERT(sah->saidx.dst.ss_len == sizeof(struct sockaddr_in)); |
585 | fk.ffk_laddr_v4 = |
586 | ((struct sockaddr_in *)&(sah->saidx.src))->sin_addr; |
587 | fk.ffk_raddr_v4 = |
588 | ((struct sockaddr_in *)&(sah->saidx.dst))->sin_addr; |
589 | break; |
590 | |
591 | case AF_INET6: |
592 | ASSERT(sah->saidx.src.ss_len == sizeof(struct sockaddr_in6)); |
593 | ASSERT(sah->saidx.dst.ss_len == sizeof(struct sockaddr_in6)); |
594 | fk.ffk_laddr_v6 = |
595 | ((struct sockaddr_in6 *)&(sah->saidx.src))->sin6_addr; |
596 | fk.ffk_raddr_v6 = |
597 | ((struct sockaddr_in6 *)&(sah->saidx.dst))->sin6_addr; |
598 | break; |
599 | |
600 | default: |
601 | VERIFY(0); |
602 | break; |
603 | } |
604 | |
605 | ASSERT(sav->spi != 0); |
606 | fk.ffk_spi = sav->spi;; |
607 | fk.ffk_af = sah->saidx.src.ss_family; |
608 | fk.ffk_proto = (uint8_t)(sah->saidx.proto); |
609 | |
610 | flowidns_allocate_flowid(domain: FLOWIDNS_DOMAIN_IPSEC, flow_key: &fk, flowid: &sav->flowid); |
611 | #else /* !SKYWALK */ |
612 | sav->flowid = 0; |
613 | #endif /* !SKYWALK */ |
614 | } |
615 | |
616 | static void |
617 | key_release_flowid(struct secasvar *sav) |
618 | { |
619 | #if SKYWALK |
620 | if (sav->flowid != 0) { |
621 | flowidns_release_flowid(flowid: sav->flowid); |
622 | sav->flowid = 0; |
623 | } |
624 | #else /* !SKYWALK */ |
625 | VERIFY(sav->flowid == 0); |
626 | #endif /* !SKYWALK */ |
627 | } |
628 | |
629 | /* |
630 | * PF_KEY init |
631 | * setup locks, and then init timer and associated data |
632 | */ |
633 | void |
634 | key_init(struct protosw *pp, struct domain *dp __unused) |
635 | { |
636 | static int key_initialized = 0; |
637 | int i; |
638 | |
639 | VERIFY((pp->pr_flags & (PR_INITIALIZED | PR_ATTACHED)) == PR_ATTACHED); |
640 | |
641 | _CASSERT(PFKEY_ALIGN8(sizeof(struct sadb_msg)) <= _MHLEN); |
642 | _CASSERT(MAX_REPLAY_WINDOWS == MBUF_TC_MAX); |
643 | |
644 | if (key_initialized) { |
645 | return; |
646 | } |
647 | key_initialized = 1; |
648 | |
649 | for (i = 0; i < SPIHASHSIZE; i++) { |
650 | LIST_INIT(&spihash[i]); |
651 | } |
652 | |
653 | bzero(s: (caddr_t)&key_cb, n: sizeof(key_cb)); |
654 | |
655 | for (i = 0; i < IPSEC_DIR_MAX; i++) { |
656 | LIST_INIT(&sptree[i]); |
657 | } |
658 | ipsec_policy_count = 0; |
659 | |
660 | LIST_INIT(&sahtree); |
661 | LIST_INIT(&custom_sahtree); |
662 | |
663 | for (i = 0; i <= SADB_SATYPE_MAX; i++) { |
664 | LIST_INIT(®tree[i]); |
665 | } |
666 | ipsec_sav_count = 0; |
667 | |
668 | #ifndef IPSEC_NONBLOCK_ACQUIRE |
669 | LIST_INIT(&acqtree); |
670 | #endif |
671 | LIST_INIT(&spacqtree); |
672 | |
673 | /* system default */ |
674 | #if INET |
675 | ip4_def_policy.policy = IPSEC_POLICY_NONE; |
676 | ip4_def_policy.refcnt++; /*never reclaim this*/ |
677 | #endif |
678 | ip6_def_policy.policy = IPSEC_POLICY_NONE; |
679 | ip6_def_policy.refcnt++; /*never reclaim this*/ |
680 | |
681 | key_timehandler_running = 0; |
682 | |
683 | /* initialize key statistics */ |
684 | keystat.getspi_count = 1; |
685 | |
686 | esp_init(); |
687 | #ifndef __APPLE__ |
688 | printf("IPsec: Initialized Security Association Processing.\n" ); |
689 | #endif |
690 | } |
691 | |
692 | static void |
693 | key_start_timehandler(void) |
694 | { |
695 | /* must be called while locked */ |
696 | LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_OWNED); |
697 | if (key_timehandler_running == 0) { |
698 | key_timehandler_running = 1; |
699 | (void)timeout((void *)key_timehandler, arg: (void *)0, ticks: hz); |
700 | } |
701 | |
702 | /* Turn off the ipsec bypass */ |
703 | if (ipsec_bypass != 0) { |
704 | ipsec_bypass = 0; |
705 | } |
706 | } |
707 | |
708 | /* %%% IPsec policy management */ |
709 | /* |
710 | * allocating a SP for OUTBOUND or INBOUND packet. |
711 | * Must call key_freesp() later. |
712 | * OUT: NULL: not found |
713 | * others: found and return the pointer. |
714 | */ |
715 | struct secpolicy * |
716 | key_allocsp( |
717 | struct secpolicyindex *spidx, |
718 | u_int dir) |
719 | { |
720 | struct secpolicy *sp; |
721 | |
722 | LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_NOTOWNED); |
723 | /* sanity check */ |
724 | if (spidx == NULL) { |
725 | panic("key_allocsp: NULL pointer is passed." ); |
726 | } |
727 | |
728 | /* check direction */ |
729 | switch (dir) { |
730 | case IPSEC_DIR_INBOUND: |
731 | case IPSEC_DIR_OUTBOUND: |
732 | break; |
733 | default: |
734 | panic("key_allocsp: Invalid direction is passed." ); |
735 | } |
736 | |
737 | /* get a SP entry */ |
738 | KEYDEBUG(KEYDEBUG_IPSEC_DATA, |
739 | printf("*** objects\n" ); |
740 | kdebug_secpolicyindex(spidx)); |
741 | |
742 | lck_mtx_lock(sadb_mutex); |
743 | LIST_FOREACH(sp, &sptree[dir], chain) { |
744 | KEYDEBUG(KEYDEBUG_IPSEC_DATA, |
745 | printf("*** in SPD\n" ); |
746 | kdebug_secpolicyindex(&sp->spidx)); |
747 | |
748 | if (sp->state == IPSEC_SPSTATE_DEAD) { |
749 | continue; |
750 | } |
751 | |
752 | /* If the policy is disabled, skip */ |
753 | if (sp->disabled > 0) { |
754 | continue; |
755 | } |
756 | |
757 | /* If the incoming spidx specifies bound if, |
758 | * ignore unbound policies*/ |
759 | if (spidx->internal_if != NULL |
760 | && (sp->spidx.internal_if == NULL || sp->ipsec_if == NULL)) { |
761 | continue; |
762 | } |
763 | |
764 | if (key_cmpspidx_withmask(&sp->spidx, spidx)) { |
765 | goto found; |
766 | } |
767 | } |
768 | lck_mtx_unlock(sadb_mutex); |
769 | return NULL; |
770 | |
771 | found: |
772 | |
773 | /* found a SPD entry */ |
774 | sp->lastused = key_get_continuous_time_ns(); |
775 | sp->refcnt++; |
776 | lck_mtx_unlock(sadb_mutex); |
777 | |
778 | /* sanity check */ |
779 | KEY_CHKSPDIR(sp->spidx.dir, dir, "key_allocsp" ); |
780 | KEYDEBUG(KEYDEBUG_IPSEC_STAMP, |
781 | printf("DP key_allocsp cause refcnt++:%d SP:0x%llx\n" , |
782 | sp->refcnt, (uint64_t)VM_KERNEL_ADDRPERM(sp))); |
783 | return sp; |
784 | } |
785 | |
786 | /* |
787 | * return a policy that matches this particular inbound packet. |
788 | * XXX slow |
789 | */ |
790 | struct secpolicy * |
791 | key_gettunnel( |
792 | struct sockaddr *osrc, |
793 | struct sockaddr *odst, |
794 | struct sockaddr *isrc, |
795 | struct sockaddr *idst) |
796 | { |
797 | struct secpolicy *sp; |
798 | const int dir = IPSEC_DIR_INBOUND; |
799 | struct ipsecrequest *r1, *r2, *p; |
800 | struct sockaddr *os, *od, *is, *id; |
801 | struct secpolicyindex spidx; |
802 | |
803 | if (isrc->sa_family != idst->sa_family) { |
804 | ipseclog((LOG_ERR, "protocol family mismatched %d != %d\n." , |
805 | isrc->sa_family, idst->sa_family)); |
806 | return NULL; |
807 | } |
808 | |
809 | lck_mtx_lock(sadb_mutex); |
810 | LIST_FOREACH(sp, &sptree[dir], chain) { |
811 | if (sp->state == IPSEC_SPSTATE_DEAD) { |
812 | continue; |
813 | } |
814 | |
815 | r1 = r2 = NULL; |
816 | for (p = sp->req; p; p = p->next) { |
817 | if (p->saidx.mode != IPSEC_MODE_TUNNEL) { |
818 | continue; |
819 | } |
820 | |
821 | r1 = r2; |
822 | r2 = p; |
823 | |
824 | if (!r1) { |
825 | /* here we look at address matches only */ |
826 | spidx = sp->spidx; |
827 | if (isrc->sa_len > sizeof(spidx.src) || |
828 | idst->sa_len > sizeof(spidx.dst)) { |
829 | continue; |
830 | } |
831 | bcopy(src: isrc, dst: &spidx.src, n: isrc->sa_len); |
832 | bcopy(src: idst, dst: &spidx.dst, n: idst->sa_len); |
833 | if (!key_cmpspidx_withmask(&sp->spidx, &spidx)) { |
834 | continue; |
835 | } |
836 | } else { |
837 | is = (struct sockaddr *)&r1->saidx.src; |
838 | id = (struct sockaddr *)&r1->saidx.dst; |
839 | if (key_sockaddrcmp(is, isrc, 0) || |
840 | key_sockaddrcmp(id, idst, 0)) { |
841 | continue; |
842 | } |
843 | } |
844 | |
845 | os = (struct sockaddr *)&r2->saidx.src; |
846 | od = (struct sockaddr *)&r2->saidx.dst; |
847 | if (key_sockaddrcmp(os, osrc, 0) || |
848 | key_sockaddrcmp(od, odst, 0)) { |
849 | continue; |
850 | } |
851 | |
852 | goto found; |
853 | } |
854 | } |
855 | lck_mtx_unlock(sadb_mutex); |
856 | return NULL; |
857 | |
858 | found: |
859 | sp->lastused = key_get_continuous_time_ns(); |
860 | sp->refcnt++; |
861 | lck_mtx_unlock(sadb_mutex); |
862 | return sp; |
863 | } |
864 | |
865 | struct secasvar * |
866 | key_alloc_outbound_sav_for_interface(ifnet_t interface, int family, |
867 | struct sockaddr *src, |
868 | struct sockaddr *dst) |
869 | { |
870 | struct secashead *sah; |
871 | struct secasvar *sav; |
872 | u_int stateidx; |
873 | u_int state; |
874 | const u_int *saorder_state_valid; |
875 | int arraysize; |
876 | struct sockaddr_in *sin; |
877 | u_int16_t dstport; |
878 | bool strict = true; |
879 | |
880 | if (interface == NULL) { |
881 | return NULL; |
882 | } |
883 | |
884 | LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_NOTOWNED); |
885 | |
886 | lck_mtx_lock(sadb_mutex); |
887 | |
888 | do { |
889 | LIST_FOREACH(sah, &sahtree, chain) { |
890 | if (sah->state == SADB_SASTATE_DEAD) { |
891 | continue; |
892 | } |
893 | if (sah->ipsec_if == interface && |
894 | (family == AF_INET6 || family == AF_INET) && |
895 | sah->dir == IPSEC_DIR_OUTBOUND) { |
896 | if (strict && |
897 | sah->saidx.mode == IPSEC_MODE_TRANSPORT && |
898 | src != NULL && dst != NULL) { |
899 | // Validate addresses for transport mode |
900 | if (key_sockaddrcmp((struct sockaddr *)&sah->saidx.src, src, 0) != 0) { |
901 | // Source doesn't match |
902 | continue; |
903 | } |
904 | |
905 | if (key_sockaddrcmp((struct sockaddr *)&sah->saidx.dst, dst, 0) != 0) { |
906 | // Destination doesn't match |
907 | continue; |
908 | } |
909 | } |
910 | |
911 | /* This SAH is linked to the IPsec interface, and the right family. We found it! */ |
912 | if (key_preferred_oldsa) { |
913 | saorder_state_valid = saorder_state_valid_prefer_old; |
914 | arraysize = _ARRAYLEN(saorder_state_valid_prefer_old); |
915 | } else { |
916 | saorder_state_valid = saorder_state_valid_prefer_new; |
917 | arraysize = _ARRAYLEN(saorder_state_valid_prefer_new); |
918 | } |
919 | |
920 | sin = (struct sockaddr_in *)&sah->saidx.dst; |
921 | dstport = sin->sin_port; |
922 | if (sah->saidx.mode == IPSEC_MODE_TRANSPORT) { |
923 | sin->sin_port = IPSEC_PORT_ANY; |
924 | } |
925 | |
926 | for (stateidx = 0; stateidx < arraysize; stateidx++) { |
927 | state = saorder_state_valid[stateidx]; |
928 | sav = key_do_allocsa_policy(sah, state, dstport); |
929 | if (sav != NULL) { |
930 | lck_mtx_unlock(sadb_mutex); |
931 | return sav; |
932 | } |
933 | } |
934 | |
935 | break; |
936 | } |
937 | } |
938 | if (strict) { |
939 | // If we didn't find anything, try again without strict |
940 | strict = false; |
941 | } else { |
942 | // We already were on the second try, bail |
943 | break; |
944 | } |
945 | } while (true); |
946 | |
947 | lck_mtx_unlock(sadb_mutex); |
948 | return NULL; |
949 | } |
950 | |
951 | /* |
952 | * allocating an SA entry for an *OUTBOUND* packet. |
953 | * checking each request entries in SP, and acquire an SA if need. |
954 | * OUT: 0: there are valid requests. |
955 | * ENOENT: policy may be valid, but SA with REQUIRE is on acquiring. |
956 | */ |
957 | int |
958 | key_checkrequest( |
959 | struct ipsecrequest *isr, |
960 | struct secasindex *saidx, |
961 | struct secasvar **sav) |
962 | { |
963 | u_int level; |
964 | int error; |
965 | struct sockaddr_in *sin; |
966 | |
967 | LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_NOTOWNED); |
968 | |
969 | *sav = NULL; |
970 | |
971 | /* sanity check */ |
972 | if (isr == NULL || saidx == NULL) { |
973 | panic("key_checkrequest: NULL pointer is passed." ); |
974 | } |
975 | |
976 | /* check mode */ |
977 | switch (saidx->mode) { |
978 | case IPSEC_MODE_TRANSPORT: |
979 | case IPSEC_MODE_TUNNEL: |
980 | break; |
981 | case IPSEC_MODE_ANY: |
982 | default: |
983 | panic("key_checkrequest: Invalid policy defined." ); |
984 | } |
985 | |
986 | /* get current level */ |
987 | level = ipsec_get_reqlevel(isr); |
988 | |
989 | |
990 | /* |
991 | * key_allocsa_policy should allocate the oldest SA available. |
992 | * See key_do_allocsa_policy(), and draft-jenkins-ipsec-rekeying-03.txt. |
993 | */ |
994 | if (*sav == NULL) { |
995 | *sav = key_allocsa_policy(saidx); |
996 | } |
997 | |
998 | /* When there is SA. */ |
999 | if (*sav != NULL) { |
1000 | return 0; |
1001 | } |
1002 | |
1003 | /* There is no SA. |
1004 | * |
1005 | * Remove dst port - used for special natt support - don't call |
1006 | * key_acquire with it. |
1007 | */ |
1008 | if (saidx->mode == IPSEC_MODE_TRANSPORT) { |
1009 | sin = (struct sockaddr_in *)&saidx->dst; |
1010 | sin->sin_port = IPSEC_PORT_ANY; |
1011 | } |
1012 | if ((error = key_acquire(saidx, isr->sp)) != 0) { |
1013 | /* XXX What should I do ? */ |
1014 | ipseclog((LOG_DEBUG, "key_checkrequest: error %d returned " |
1015 | "from key_acquire.\n" , error)); |
1016 | return error; |
1017 | } |
1018 | |
1019 | return level == IPSEC_LEVEL_REQUIRE ? ENOENT : 0; |
1020 | } |
1021 | |
1022 | /* |
1023 | * allocating a SA for policy entry from SAD. |
1024 | * NOTE: searching SAD of aliving state. |
1025 | * OUT: NULL: not found. |
1026 | * others: found and return the pointer. |
1027 | */ |
1028 | u_int32_t sah_search_calls = 0; |
1029 | u_int32_t sah_search_count = 0; |
1030 | struct secasvar * |
1031 | key_allocsa_policy( |
1032 | struct secasindex *saidx) |
1033 | { |
1034 | struct secashead *sah; |
1035 | struct secasvar *sav; |
1036 | u_int stateidx, state; |
1037 | const u_int *saorder_state_valid; |
1038 | int arraysize; |
1039 | struct sockaddr_in *sin; |
1040 | u_int16_t dstport; |
1041 | |
1042 | lck_mtx_lock(sadb_mutex); |
1043 | sah_search_calls++; |
1044 | LIST_FOREACH(sah, &sahtree, chain) { |
1045 | sah_search_count++; |
1046 | if (sah->state == SADB_SASTATE_DEAD) { |
1047 | continue; |
1048 | } |
1049 | if (key_cmpsaidx(&sah->saidx, saidx, CMP_MODE | CMP_REQID)) { |
1050 | goto found; |
1051 | } |
1052 | } |
1053 | lck_mtx_unlock(sadb_mutex); |
1054 | return NULL; |
1055 | |
1056 | found: |
1057 | |
1058 | /* |
1059 | * search a valid state list for outbound packet. |
1060 | * This search order is important. |
1061 | */ |
1062 | if (key_preferred_oldsa) { |
1063 | saorder_state_valid = saorder_state_valid_prefer_old; |
1064 | arraysize = _ARRAYLEN(saorder_state_valid_prefer_old); |
1065 | } else { |
1066 | saorder_state_valid = saorder_state_valid_prefer_new; |
1067 | arraysize = _ARRAYLEN(saorder_state_valid_prefer_new); |
1068 | } |
1069 | |
1070 | |
1071 | sin = (struct sockaddr_in *)&saidx->dst; |
1072 | dstport = sin->sin_port; |
1073 | if (saidx->mode == IPSEC_MODE_TRANSPORT) { |
1074 | sin->sin_port = IPSEC_PORT_ANY; |
1075 | } |
1076 | |
1077 | for (stateidx = 0; stateidx < arraysize; stateidx++) { |
1078 | state = saorder_state_valid[stateidx]; |
1079 | |
1080 | sav = key_do_allocsa_policy(sah, state, dstport); |
1081 | if (sav != NULL) { |
1082 | lck_mtx_unlock(sadb_mutex); |
1083 | return sav; |
1084 | } |
1085 | } |
1086 | lck_mtx_unlock(sadb_mutex); |
1087 | return NULL; |
1088 | } |
1089 | |
1090 | static void |
1091 | key_send_delete(struct secasvar *sav) |
1092 | { |
1093 | struct mbuf *m, *result; |
1094 | u_int8_t satype; |
1095 | |
1096 | key_sa_chgstate(sav, SADB_SASTATE_DEAD); |
1097 | |
1098 | if ((satype = key_proto2satype(sav->sah->saidx.proto)) == 0) { |
1099 | panic("key_do_allocsa_policy: invalid proto is passed." ); |
1100 | } |
1101 | |
1102 | m = key_setsadbmsg(SADB_DELETE, 0, |
1103 | satype, 0, 0, (u_int16_t)(sav->refcnt - 1)); |
1104 | if (!m) { |
1105 | goto msgfail; |
1106 | } |
1107 | result = m; |
1108 | |
1109 | /* set sadb_address for saidx's. */ |
1110 | m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, |
1111 | (struct sockaddr *)&sav->sah->saidx.src, |
1112 | sav->sah->saidx.src.ss_len << 3, |
1113 | IPSEC_ULPROTO_ANY); |
1114 | if (!m) { |
1115 | goto msgfail; |
1116 | } |
1117 | m_cat(result, m); |
1118 | |
1119 | /* set sadb_address for saidx's. */ |
1120 | m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, |
1121 | (struct sockaddr *)&sav->sah->saidx.dst, |
1122 | sav->sah->saidx.src.ss_len << 3, |
1123 | IPSEC_ULPROTO_ANY); |
1124 | if (!m) { |
1125 | goto msgfail; |
1126 | } |
1127 | m_cat(result, m); |
1128 | |
1129 | /* create SA extension */ |
1130 | m = key_setsadbsa(sav); |
1131 | if (!m) { |
1132 | goto msgfail; |
1133 | } |
1134 | m_cat(result, m); |
1135 | |
1136 | if (result->m_len < sizeof(struct sadb_msg)) { |
1137 | result = m_pullup(result, |
1138 | sizeof(struct sadb_msg)); |
1139 | if (result == NULL) { |
1140 | goto msgfail; |
1141 | } |
1142 | } |
1143 | |
1144 | result->m_pkthdr.len = 0; |
1145 | for (m = result; m; m = m->m_next) { |
1146 | result->m_pkthdr.len += m->m_len; |
1147 | } |
1148 | |
1149 | VERIFY(PFKEY_UNIT64(result->m_pkthdr.len) <= UINT16_MAX); |
1150 | mtod(result, struct sadb_msg *)->sadb_msg_len = |
1151 | (u_int16_t)PFKEY_UNIT64(result->m_pkthdr.len); |
1152 | |
1153 | if (key_sendup_mbuf(NULL, result, |
1154 | KEY_SENDUP_REGISTERED)) { |
1155 | goto msgfail; |
1156 | } |
1157 | msgfail: |
1158 | key_freesav(sav, KEY_SADB_LOCKED); |
1159 | } |
1160 | |
1161 | /* |
1162 | * searching SAD with direction, protocol, mode and state. |
1163 | * called by key_allocsa_policy(). |
1164 | * OUT: |
1165 | * NULL : not found |
1166 | * others : found, pointer to a SA. |
1167 | */ |
1168 | static struct secasvar * |
1169 | key_do_allocsa_policy( |
1170 | struct secashead *sah, |
1171 | u_int state, |
1172 | u_int16_t dstport) |
1173 | { |
1174 | struct secasvar *sav, *nextsav, *candidate, *natt_candidate, *no_natt_candidate, *d; |
1175 | |
1176 | LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_OWNED); |
1177 | |
1178 | /* initialize */ |
1179 | candidate = NULL; |
1180 | natt_candidate = NULL; |
1181 | no_natt_candidate = NULL; |
1182 | |
1183 | for (sav = LIST_FIRST(&sah->savtree[state]); |
1184 | sav != NULL; |
1185 | sav = nextsav) { |
1186 | nextsav = LIST_NEXT(sav, chain); |
1187 | |
1188 | /* sanity check */ |
1189 | KEY_CHKSASTATE(sav->state, state, "key_do_allocsa_policy" ); |
1190 | |
1191 | if (sah->saidx.mode == IPSEC_MODE_TUNNEL && dstport && |
1192 | ((sav->flags & SADB_X_EXT_NATT) != 0) && |
1193 | ntohs(dstport) != sav->remote_ike_port) { |
1194 | continue; |
1195 | } |
1196 | |
1197 | if (sah->saidx.mode == IPSEC_MODE_TRANSPORT && |
1198 | ((sav->flags & SADB_X_EXT_NATT_MULTIPLEUSERS) != 0) && |
1199 | ntohs(dstport) != sav->remote_ike_port) { |
1200 | continue; /* skip this one - not a match - or not UDP */ |
1201 | } |
1202 | if ((sah->saidx.mode == IPSEC_MODE_TUNNEL && |
1203 | ((sav->flags & SADB_X_EXT_NATT) != 0)) || |
1204 | (sah->saidx.mode == IPSEC_MODE_TRANSPORT && |
1205 | ((sav->flags & SADB_X_EXT_NATT_MULTIPLEUSERS) != 0))) { |
1206 | if (natt_candidate == NULL) { |
1207 | natt_candidate = sav; |
1208 | continue; |
1209 | } else { |
1210 | candidate = natt_candidate; |
1211 | } |
1212 | } else { |
1213 | if (no_natt_candidate == NULL) { |
1214 | no_natt_candidate = sav; |
1215 | continue; |
1216 | } else { |
1217 | candidate = no_natt_candidate; |
1218 | } |
1219 | } |
1220 | |
1221 | /* Which SA is the better ? */ |
1222 | |
1223 | /* sanity check 2 */ |
1224 | if (candidate->lft_c == NULL || sav->lft_c == NULL) { |
1225 | panic("key_do_allocsa_policy: " |
1226 | "lifetime_current is NULL.\n" ); |
1227 | } |
1228 | |
1229 | /* What the best method is to compare ? */ |
1230 | if (key_preferred_oldsa) { |
1231 | if (candidate->lft_c->sadb_lifetime_addtime > |
1232 | sav->lft_c->sadb_lifetime_addtime) { |
1233 | if ((sav->flags & SADB_X_EXT_NATT_MULTIPLEUSERS) != 0) { |
1234 | natt_candidate = sav; |
1235 | } else { |
1236 | no_natt_candidate = sav; |
1237 | } |
1238 | } |
1239 | continue; |
1240 | /*NOTREACHED*/ |
1241 | } |
1242 | |
1243 | /* prefered new sa rather than old sa */ |
1244 | if (candidate->lft_c->sadb_lifetime_addtime < |
1245 | sav->lft_c->sadb_lifetime_addtime) { |
1246 | d = candidate; |
1247 | if ((sah->saidx.mode == IPSEC_MODE_TUNNEL && |
1248 | ((sav->flags & SADB_X_EXT_NATT) != 0)) || |
1249 | (sah->saidx.mode == IPSEC_MODE_TRANSPORT && |
1250 | ((sav->flags & SADB_X_EXT_NATT_MULTIPLEUSERS) != 0))) { |
1251 | natt_candidate = sav; |
1252 | } else { |
1253 | no_natt_candidate = sav; |
1254 | } |
1255 | } else { |
1256 | d = sav; |
1257 | } |
1258 | |
1259 | /* |
1260 | * prepared to delete the SA when there is more |
1261 | * suitable candidate and the lifetime of the SA is not |
1262 | * permanent. |
1263 | */ |
1264 | if (d->lft_c->sadb_lifetime_addtime != 0) { |
1265 | key_send_delete(sav: d); |
1266 | } |
1267 | } |
1268 | |
1269 | /* choose latest if both types present */ |
1270 | if (natt_candidate == NULL) { |
1271 | candidate = no_natt_candidate; |
1272 | } else if (no_natt_candidate == NULL) { |
1273 | candidate = natt_candidate; |
1274 | } else if (sah->saidx.mode == IPSEC_MODE_TUNNEL && dstport) { |
1275 | candidate = natt_candidate; |
1276 | } else if (natt_candidate->lft_c->sadb_lifetime_addtime > |
1277 | no_natt_candidate->lft_c->sadb_lifetime_addtime) { |
1278 | candidate = natt_candidate; |
1279 | } else { |
1280 | candidate = no_natt_candidate; |
1281 | } |
1282 | |
1283 | if (candidate) { |
1284 | candidate->refcnt++; |
1285 | KEYDEBUG(KEYDEBUG_IPSEC_STAMP, |
1286 | printf("DP allocsa_policy cause " |
1287 | "refcnt++:%d SA:0x%llx\n" , candidate->refcnt, |
1288 | (uint64_t)VM_KERNEL_ADDRPERM(candidate))); |
1289 | } |
1290 | return candidate; |
1291 | } |
1292 | |
1293 | /* |
1294 | * allocating a SA entry for a *INBOUND* packet. |
1295 | * Must call key_freesav() later. |
1296 | * OUT: positive: pointer to a sav. |
1297 | * NULL: not found, or error occurred. |
1298 | * |
1299 | * In the comparison, source address will be ignored for RFC2401 conformance. |
1300 | * To quote, from section 4.1: |
1301 | * A security association is uniquely identified by a triple consisting |
1302 | * of a Security Parameter Index (SPI), an IP Destination Address, and a |
1303 | * security protocol (AH or ESP) identifier. |
1304 | * Note that, however, we do need to keep source address in IPsec SA. |
1305 | * IKE specification and PF_KEY specification do assume that we |
1306 | * keep source address in IPsec SA. We see a tricky situation here. |
1307 | */ |
1308 | struct secasvar * |
1309 | key_allocsa( |
1310 | u_int family, |
1311 | caddr_t src, |
1312 | caddr_t dst, |
1313 | uint32_t dst_ifscope, |
1314 | u_int proto, |
1315 | u_int32_t spi) |
1316 | { |
1317 | return key_allocsa_extended(family, src, dst, dst_ifscope, proto, spi, NULL); |
1318 | } |
1319 | |
1320 | struct secasvar * |
1321 | key_allocsa_extended(u_int family, |
1322 | caddr_t src, |
1323 | caddr_t dst, |
1324 | uint32_t dst_ifscope, |
1325 | u_int proto, |
1326 | u_int32_t spi, |
1327 | ifnet_t interface) |
1328 | { |
1329 | struct secasvar *sav, *match; |
1330 | u_int stateidx, state, tmpidx, matchidx; |
1331 | union sockaddr_in_4_6 dst_address = {}; |
1332 | const u_int *saorder_state_valid; |
1333 | int arraysize; |
1334 | bool dst_ll_address = false; |
1335 | |
1336 | LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_NOTOWNED); |
1337 | |
1338 | /* sanity check */ |
1339 | if (src == NULL || dst == NULL) { |
1340 | panic("key_allocsa: NULL pointer is passed." ); |
1341 | } |
1342 | |
1343 | /* |
1344 | * when both systems employ similar strategy to use a SA. |
1345 | * the search order is important even in the inbound case. |
1346 | */ |
1347 | if (key_preferred_oldsa) { |
1348 | saorder_state_valid = saorder_state_valid_prefer_old; |
1349 | arraysize = _ARRAYLEN(saorder_state_valid_prefer_old); |
1350 | } else { |
1351 | saorder_state_valid = saorder_state_valid_prefer_new; |
1352 | arraysize = _ARRAYLEN(saorder_state_valid_prefer_new); |
1353 | } |
1354 | |
1355 | /* check dst address */ |
1356 | switch (family) { |
1357 | case AF_INET: |
1358 | dst_address.sin.sin_family = AF_INET; |
1359 | dst_address.sin.sin_len = sizeof(dst_address.sin); |
1360 | memcpy(dst: &dst_address.sin.sin_addr, src: dst, n: sizeof(dst_address.sin.sin_addr)); |
1361 | break; |
1362 | case AF_INET6: |
1363 | dst_address.sin6.sin6_family = AF_INET6; |
1364 | dst_address.sin6.sin6_len = sizeof(dst_address.sin6); |
1365 | memcpy(dst: &dst_address.sin6.sin6_addr, src: dst, n: sizeof(dst_address.sin6.sin6_addr)); |
1366 | if (IN6_IS_SCOPE_LINKLOCAL(&dst_address.sin6.sin6_addr)) { |
1367 | dst_ll_address = true; |
1368 | /* kame fake scopeid */ |
1369 | dst_address.sin6.sin6_scope_id = dst_ifscope; |
1370 | if (in6_embedded_scope) { |
1371 | in6_verify_ifscope(&dst_address.sin6.sin6_addr, dst_address.sin6.sin6_scope_id); |
1372 | dst_address.sin6.sin6_scope_id = |
1373 | ntohs(dst_address.sin6.sin6_addr.s6_addr16[1]); |
1374 | dst_address.sin6.sin6_addr.s6_addr16[1] = 0; |
1375 | } |
1376 | } |
1377 | break; |
1378 | default: |
1379 | ipseclog((LOG_DEBUG, "key_allocsa: " |
1380 | "unknown address family=%d.\n" , family)); |
1381 | return NULL; |
1382 | } |
1383 | |
1384 | |
1385 | /* |
1386 | * searching SAD. |
1387 | * XXX: to be checked internal IP header somewhere. Also when |
1388 | * IPsec tunnel packet is received. But ESP tunnel mode is |
1389 | * encrypted so we can't check internal IP header. |
1390 | */ |
1391 | /* |
1392 | * search a valid state list for inbound packet. |
1393 | * the search order is not important. |
1394 | */ |
1395 | match = NULL; |
1396 | matchidx = arraysize; |
1397 | lck_mtx_lock(sadb_mutex); |
1398 | LIST_FOREACH(sav, &spihash[SPIHASH(spi)], spihash) { |
1399 | if (sav->spi != spi) { |
1400 | continue; |
1401 | } |
1402 | if (interface != NULL && |
1403 | sav->sah->ipsec_if != interface) { |
1404 | continue; |
1405 | } |
1406 | if (proto != sav->sah->saidx.proto) { |
1407 | continue; |
1408 | } |
1409 | if (family != sav->sah->saidx.src.ss_family || |
1410 | family != sav->sah->saidx.dst.ss_family) { |
1411 | continue; |
1412 | } |
1413 | tmpidx = arraysize; |
1414 | for (stateidx = 0; stateidx < matchidx; stateidx++) { |
1415 | state = saorder_state_valid[stateidx]; |
1416 | if (sav->state == state) { |
1417 | tmpidx = stateidx; |
1418 | break; |
1419 | } |
1420 | } |
1421 | if (tmpidx >= matchidx) { |
1422 | continue; |
1423 | } |
1424 | |
1425 | struct sockaddr_in6 tmp_sah_dst = {}; |
1426 | struct sockaddr *sah_dst = (struct sockaddr *)&sav->sah->saidx.dst; |
1427 | if (dst_ll_address) { |
1428 | if (!IN6_IS_SCOPE_LINKLOCAL(&(__DECONST(struct sockaddr_in6 *, sah_dst))->sin6_addr)) { |
1429 | continue; |
1430 | } else { |
1431 | tmp_sah_dst.sin6_family = AF_INET6; |
1432 | tmp_sah_dst.sin6_len = sizeof(tmp_sah_dst); |
1433 | memcpy(dst: &tmp_sah_dst.sin6_addr, src: &(__DECONST(struct sockaddr_in6 *, sah_dst))->sin6_addr, n: sizeof(tmp_sah_dst.sin6_addr)); |
1434 | tmp_sah_dst.sin6_scope_id = sav->sah->outgoing_if; |
1435 | sah_dst = (struct sockaddr *)&tmp_sah_dst; |
1436 | } |
1437 | } |
1438 | |
1439 | if (key_sockaddrcmp(SA(&dst_address.sa), sah_dst, 0) != 0) { |
1440 | continue; |
1441 | } |
1442 | |
1443 | match = sav; |
1444 | matchidx = tmpidx; |
1445 | } |
1446 | if (match) { |
1447 | goto found; |
1448 | } |
1449 | |
1450 | /* not found */ |
1451 | lck_mtx_unlock(sadb_mutex); |
1452 | return NULL; |
1453 | |
1454 | found: |
1455 | match->refcnt++; |
1456 | lck_mtx_unlock(sadb_mutex); |
1457 | KEYDEBUG(KEYDEBUG_IPSEC_STAMP, |
1458 | printf("DP allocsa cause refcnt++:%d SA:0x%llx\n" , |
1459 | match->refcnt, (uint64_t)VM_KERNEL_ADDRPERM(match))); |
1460 | return match; |
1461 | } |
1462 | |
1463 | /* |
1464 | * This function checks whether a UDP packet with a random local port |
1465 | * and a remote port of 4500 matches an SA in the kernel. If does match, |
1466 | * send the packet to the ESP engine. If not, send the packet to the UDP protocol. |
1467 | */ |
1468 | bool |
1469 | key_checksa_present(u_int family, |
1470 | caddr_t local_addr, |
1471 | caddr_t remote_addr, |
1472 | u_int16_t local_port, |
1473 | u_int16_t remote_port, |
1474 | uint32_t source_ifscope, |
1475 | uint32_t remote_ifscope) |
1476 | { |
1477 | LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_NOTOWNED); |
1478 | |
1479 | /* sanity check */ |
1480 | if (local_addr == NULL || remote_addr == NULL) { |
1481 | panic("key_allocsa: NULL pointer is passed." ); |
1482 | } |
1483 | |
1484 | /* |
1485 | * searching SAD. |
1486 | * XXX: to be checked internal IP header somewhere. Also when |
1487 | * IPsec tunnel packet is received. But ESP tunnel mode is |
1488 | * encrypted so we can't check internal IP header. |
1489 | */ |
1490 | /* |
1491 | * search a valid state list for inbound packet. |
1492 | * the search order is not important. |
1493 | */ |
1494 | struct secashead *sah = NULL; |
1495 | bool found_sa = false; |
1496 | |
1497 | lck_mtx_lock(sadb_mutex); |
1498 | LIST_FOREACH(sah, &sahtree, chain) { |
1499 | if (sah->state == SADB_SASTATE_DEAD) { |
1500 | continue; |
1501 | } |
1502 | |
1503 | if (sah->dir != IPSEC_DIR_OUTBOUND) { |
1504 | continue; |
1505 | } |
1506 | |
1507 | if (family != sah->saidx.src.ss_family) { |
1508 | continue; |
1509 | } |
1510 | |
1511 | struct sockaddr_in src_in = {}; |
1512 | struct sockaddr_in6 src_in6 = {}; |
1513 | |
1514 | /* check src address */ |
1515 | switch (family) { |
1516 | case AF_INET: |
1517 | src_in.sin_family = AF_INET; |
1518 | src_in.sin_len = sizeof(src_in); |
1519 | memcpy(dst: &src_in.sin_addr, src: local_addr, n: sizeof(src_in.sin_addr)); |
1520 | if (key_sockaddrcmp((struct sockaddr*)&src_in, |
1521 | (struct sockaddr *)&sah->saidx.src, 0) != 0) { |
1522 | continue; |
1523 | } |
1524 | break; |
1525 | case AF_INET6: |
1526 | src_in6.sin6_family = AF_INET6; |
1527 | src_in6.sin6_len = sizeof(src_in6); |
1528 | memcpy(dst: &src_in6.sin6_addr, src: local_addr, n: sizeof(src_in6.sin6_addr)); |
1529 | if (IN6_IS_SCOPE_LINKLOCAL(&src_in6.sin6_addr)) { |
1530 | /* kame fake scopeid */ |
1531 | src_in6.sin6_scope_id = source_ifscope; |
1532 | if (in6_embedded_scope) { |
1533 | in6_verify_ifscope(&src_in6.sin6_addr, src_in6.sin6_scope_id); |
1534 | src_in6.sin6_scope_id = |
1535 | ntohs(src_in6.sin6_addr.s6_addr16[1]); |
1536 | src_in6.sin6_addr.s6_addr16[1] = 0; |
1537 | } |
1538 | } |
1539 | if (key_sockaddrcmp((struct sockaddr*)&src_in6, |
1540 | (struct sockaddr *)&sah->saidx.src, 0) != 0) { |
1541 | continue; |
1542 | } |
1543 | break; |
1544 | default: |
1545 | ipseclog((LOG_DEBUG, "key_checksa_present: " |
1546 | "unknown address family=%d.\n" , |
1547 | family)); |
1548 | continue; |
1549 | } |
1550 | |
1551 | struct sockaddr_in dest_in = {}; |
1552 | struct sockaddr_in6 dest_in6 = {}; |
1553 | |
1554 | /* check dst address */ |
1555 | switch (family) { |
1556 | case AF_INET: |
1557 | dest_in.sin_family = AF_INET; |
1558 | dest_in.sin_len = sizeof(dest_in); |
1559 | memcpy(dst: &dest_in.sin_addr, src: remote_addr, n: sizeof(dest_in.sin_addr)); |
1560 | if (key_sockaddrcmp((struct sockaddr*)&dest_in, |
1561 | (struct sockaddr *)&sah->saidx.dst, 0) != 0) { |
1562 | continue; |
1563 | } |
1564 | |
1565 | break; |
1566 | case AF_INET6: |
1567 | dest_in6.sin6_family = AF_INET6; |
1568 | dest_in6.sin6_len = sizeof(dest_in6); |
1569 | memcpy(dst: &dest_in6.sin6_addr, src: remote_addr, n: sizeof(dest_in6.sin6_addr)); |
1570 | if (IN6_IS_SCOPE_LINKLOCAL(&dest_in6.sin6_addr)) { |
1571 | /* kame fake scopeid */ |
1572 | dest_in6.sin6_scope_id = remote_ifscope; |
1573 | if (in6_embedded_scope) { |
1574 | in6_verify_ifscope(&dest_in6.sin6_addr, dest_in6.sin6_scope_id); |
1575 | dest_in6.sin6_scope_id = ntohs(dest_in6.sin6_addr.s6_addr16[1]); |
1576 | dest_in6.sin6_addr.s6_addr16[1] = 0; |
1577 | } |
1578 | } |
1579 | if (key_sockaddrcmp((struct sockaddr*)&dest_in6, |
1580 | (struct sockaddr *)&sah->saidx.dst, 0) != 0) { |
1581 | continue; |
1582 | } |
1583 | |
1584 | break; |
1585 | default: |
1586 | ipseclog((LOG_DEBUG, "key_checksa_present: " |
1587 | "unknown address family=%d.\n" , family)); |
1588 | continue; |
1589 | } |
1590 | |
1591 | struct secasvar *nextsav = NULL; |
1592 | for (u_int stateidx = 0; stateidx < _ARRAYLEN(saorder_state_alive); stateidx++) { |
1593 | u_int state = saorder_state_alive[stateidx]; |
1594 | for (struct secasvar *sav = LIST_FIRST(&sah->savtree[state]); sav != NULL; sav = nextsav) { |
1595 | nextsav = LIST_NEXT(sav, chain); |
1596 | /* sanity check */ |
1597 | if (sav->state != state) { |
1598 | ipseclog((LOG_DEBUG, "key_checksa_present: " |
1599 | "invalid sav->state " |
1600 | "(state: %d SA: %d)\n" , |
1601 | state, sav->state)); |
1602 | continue; |
1603 | } |
1604 | |
1605 | if (sav->remote_ike_port != ntohs(remote_port)) { |
1606 | continue; |
1607 | } |
1608 | |
1609 | if (sav->natt_encapsulated_src_port != local_port) { |
1610 | continue; |
1611 | } |
1612 | found_sa = true; |
1613 | break; |
1614 | } |
1615 | } |
1616 | } |
1617 | |
1618 | /* not found */ |
1619 | lck_mtx_unlock(sadb_mutex); |
1620 | return found_sa; |
1621 | } |
1622 | |
1623 | u_int16_t |
1624 | key_natt_get_translated_port( |
1625 | struct secasvar *outsav) |
1626 | { |
1627 | struct secasindex saidx = {}; |
1628 | struct secashead *sah; |
1629 | u_int stateidx, state; |
1630 | const u_int *saorder_state_valid; |
1631 | int arraysize; |
1632 | |
1633 | /* get sa for incoming */ |
1634 | saidx.mode = outsav->sah->saidx.mode; |
1635 | saidx.reqid = 0; |
1636 | saidx.proto = outsav->sah->saidx.proto; |
1637 | bcopy(src: &outsav->sah->saidx.src, dst: &saidx.dst, n: sizeof(struct sockaddr_in)); |
1638 | bcopy(src: &outsav->sah->saidx.dst, dst: &saidx.src, n: sizeof(struct sockaddr_in)); |
1639 | |
1640 | lck_mtx_lock(sadb_mutex); |
1641 | LIST_FOREACH(sah, &sahtree, chain) { |
1642 | if (sah->state == SADB_SASTATE_DEAD) { |
1643 | continue; |
1644 | } |
1645 | if (key_cmpsaidx(&sah->saidx, &saidx, CMP_MODE)) { |
1646 | goto found; |
1647 | } |
1648 | } |
1649 | lck_mtx_unlock(sadb_mutex); |
1650 | return 0; |
1651 | |
1652 | found: |
1653 | /* |
1654 | * Found sah - now go thru list of SAs and find |
1655 | * matching remote ike port. If found - set |
1656 | * sav->natt_encapsulated_src_port and return the port. |
1657 | */ |
1658 | /* |
1659 | * search a valid state list for outbound packet. |
1660 | * This search order is important. |
1661 | */ |
1662 | if (key_preferred_oldsa) { |
1663 | saorder_state_valid = saorder_state_valid_prefer_old; |
1664 | arraysize = _ARRAYLEN(saorder_state_valid_prefer_old); |
1665 | } else { |
1666 | saorder_state_valid = saorder_state_valid_prefer_new; |
1667 | arraysize = _ARRAYLEN(saorder_state_valid_prefer_new); |
1668 | } |
1669 | |
1670 | for (stateidx = 0; stateidx < arraysize; stateidx++) { |
1671 | state = saorder_state_valid[stateidx]; |
1672 | if (key_do_get_translated_port(sah, outsav, state)) { |
1673 | lck_mtx_unlock(sadb_mutex); |
1674 | return outsav->natt_encapsulated_src_port; |
1675 | } |
1676 | } |
1677 | lck_mtx_unlock(sadb_mutex); |
1678 | return 0; |
1679 | } |
1680 | |
1681 | static int |
1682 | key_do_get_translated_port( |
1683 | struct secashead *sah, |
1684 | struct secasvar *outsav, |
1685 | u_int state) |
1686 | { |
1687 | struct secasvar *currsav, *nextsav, *candidate; |
1688 | |
1689 | |
1690 | LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_OWNED); |
1691 | |
1692 | /* initilize */ |
1693 | candidate = NULL; |
1694 | |
1695 | for (currsav = LIST_FIRST(&sah->savtree[state]); |
1696 | currsav != NULL; |
1697 | currsav = nextsav) { |
1698 | nextsav = LIST_NEXT(currsav, chain); |
1699 | |
1700 | /* sanity check */ |
1701 | KEY_CHKSASTATE(currsav->state, state, "key_do_get_translated_port" ); |
1702 | |
1703 | if ((currsav->flags & SADB_X_EXT_NATT_MULTIPLEUSERS) == 0 || |
1704 | currsav->remote_ike_port != outsav->remote_ike_port) { |
1705 | continue; |
1706 | } |
1707 | |
1708 | if (candidate == NULL) { |
1709 | candidate = currsav; |
1710 | continue; |
1711 | } |
1712 | |
1713 | /* Which SA is the better ? */ |
1714 | |
1715 | /* sanity check 2 */ |
1716 | if (candidate->lft_c == NULL || currsav->lft_c == NULL) { |
1717 | panic("key_do_get_translated_port: " |
1718 | "lifetime_current is NULL.\n" ); |
1719 | } |
1720 | |
1721 | /* What the best method is to compare ? */ |
1722 | if (key_preferred_oldsa) { |
1723 | if (candidate->lft_c->sadb_lifetime_addtime > |
1724 | currsav->lft_c->sadb_lifetime_addtime) { |
1725 | candidate = currsav; |
1726 | } |
1727 | continue; |
1728 | /*NOTREACHED*/ |
1729 | } |
1730 | |
1731 | /* prefered new sa rather than old sa */ |
1732 | if (candidate->lft_c->sadb_lifetime_addtime < |
1733 | currsav->lft_c->sadb_lifetime_addtime) { |
1734 | candidate = currsav; |
1735 | } |
1736 | } |
1737 | |
1738 | if (candidate) { |
1739 | outsav->natt_encapsulated_src_port = candidate->natt_encapsulated_src_port; |
1740 | return 1; |
1741 | } |
1742 | |
1743 | return 0; |
1744 | } |
1745 | |
1746 | /* |
1747 | * Must be called after calling key_allocsp(). |
1748 | */ |
1749 | void |
1750 | key_freesp( |
1751 | struct secpolicy *sp, |
1752 | int locked) |
1753 | { |
1754 | /* sanity check */ |
1755 | if (sp == NULL) { |
1756 | panic("key_freesp: NULL pointer is passed." ); |
1757 | } |
1758 | |
1759 | if (!locked) { |
1760 | lck_mtx_lock(sadb_mutex); |
1761 | } else { |
1762 | LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_OWNED); |
1763 | } |
1764 | sp->refcnt--; |
1765 | KEYDEBUG(KEYDEBUG_IPSEC_STAMP, |
1766 | printf("DP freesp cause refcnt--:%d SP:0x%llx\n" , |
1767 | sp->refcnt, (uint64_t)VM_KERNEL_ADDRPERM(sp))); |
1768 | |
1769 | if (sp->refcnt == 0) { |
1770 | key_delsp(sp); |
1771 | } |
1772 | if (!locked) { |
1773 | lck_mtx_unlock(sadb_mutex); |
1774 | } |
1775 | return; |
1776 | } |
1777 | |
1778 | /* |
1779 | * Must be called after calling key_allocsa(). |
1780 | * This function is called by key_freesp() to free some SA allocated |
1781 | * for a policy. |
1782 | */ |
1783 | void |
1784 | key_freesav( |
1785 | struct secasvar *sav, |
1786 | int locked) |
1787 | { |
1788 | /* sanity check */ |
1789 | if (sav == NULL) { |
1790 | panic("key_freesav: NULL pointer is passed." ); |
1791 | } |
1792 | |
1793 | if (!locked) { |
1794 | lck_mtx_lock(sadb_mutex); |
1795 | } else { |
1796 | LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_OWNED); |
1797 | } |
1798 | sav->refcnt--; |
1799 | KEYDEBUG(KEYDEBUG_IPSEC_STAMP, |
1800 | printf("DP freesav cause refcnt--:%d SA:0x%llx SPI %u\n" , |
1801 | sav->refcnt, (uint64_t)VM_KERNEL_ADDRPERM(sav), |
1802 | (u_int32_t)ntohl(sav->spi))); |
1803 | |
1804 | if (sav->refcnt == 0) { |
1805 | key_delsav(sav); |
1806 | } |
1807 | if (!locked) { |
1808 | lck_mtx_unlock(sadb_mutex); |
1809 | } |
1810 | return; |
1811 | } |
1812 | |
1813 | /* %%% SPD management */ |
1814 | /* |
1815 | * free security policy entry. |
1816 | */ |
1817 | static void |
1818 | key_delsp( |
1819 | struct secpolicy *sp) |
1820 | { |
1821 | /* sanity check */ |
1822 | if (sp == NULL) { |
1823 | panic("key_delsp: NULL pointer is passed." ); |
1824 | } |
1825 | |
1826 | LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_OWNED); |
1827 | sp->state = IPSEC_SPSTATE_DEAD; |
1828 | |
1829 | if (sp->refcnt > 0) { |
1830 | return; /* can't free */ |
1831 | } |
1832 | /* remove from SP index */ |
1833 | if (__LIST_CHAINED(sp)) { |
1834 | LIST_REMOVE(sp, chain); |
1835 | ipsec_policy_count--; |
1836 | } |
1837 | |
1838 | if (sp->spidx.internal_if) { |
1839 | ifnet_release(interface: sp->spidx.internal_if); |
1840 | sp->spidx.internal_if = NULL; |
1841 | } |
1842 | |
1843 | if (sp->ipsec_if) { |
1844 | ifnet_release(interface: sp->ipsec_if); |
1845 | sp->ipsec_if = NULL; |
1846 | } |
1847 | |
1848 | if (sp->outgoing_if) { |
1849 | ifnet_release(interface: sp->outgoing_if); |
1850 | sp->outgoing_if = NULL; |
1851 | } |
1852 | |
1853 | { |
1854 | struct ipsecrequest *isr = sp->req, *nextisr; |
1855 | |
1856 | while (isr != NULL) { |
1857 | nextisr = isr->next; |
1858 | kfree_type(struct ipsecrequest, isr); |
1859 | isr = nextisr; |
1860 | } |
1861 | } |
1862 | keydb_delsecpolicy(sp); |
1863 | |
1864 | return; |
1865 | } |
1866 | |
1867 | /* |
1868 | * search SPD |
1869 | * OUT: NULL : not found |
1870 | * others : found, pointer to a SP. |
1871 | */ |
1872 | static struct secpolicy * |
1873 | key_getsp( |
1874 | struct secpolicyindex *spidx) |
1875 | { |
1876 | struct secpolicy *sp; |
1877 | |
1878 | LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_OWNED); |
1879 | |
1880 | /* sanity check */ |
1881 | if (spidx == NULL) { |
1882 | panic("key_getsp: NULL pointer is passed." ); |
1883 | } |
1884 | |
1885 | LIST_FOREACH(sp, &sptree[spidx->dir], chain) { |
1886 | if (sp->state == IPSEC_SPSTATE_DEAD) { |
1887 | continue; |
1888 | } |
1889 | if (key_cmpspidx_exactly(spidx, &sp->spidx)) { |
1890 | sp->refcnt++; |
1891 | return sp; |
1892 | } |
1893 | } |
1894 | |
1895 | return NULL; |
1896 | } |
1897 | |
1898 | /* |
1899 | * get SP by index. |
1900 | * OUT: NULL : not found |
1901 | * others : found, pointer to a SP. |
1902 | */ |
1903 | struct secpolicy * |
1904 | key_getspbyid( |
1905 | u_int32_t id) |
1906 | { |
1907 | struct secpolicy *sp; |
1908 | |
1909 | LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_NOTOWNED); |
1910 | |
1911 | lck_mtx_lock(sadb_mutex); |
1912 | sp = __key_getspbyid(id); |
1913 | lck_mtx_unlock(sadb_mutex); |
1914 | |
1915 | return sp; |
1916 | } |
1917 | |
1918 | static struct secpolicy * |
1919 | __key_getspbyid(u_int32_t id) |
1920 | { |
1921 | struct secpolicy *sp; |
1922 | |
1923 | LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_OWNED); |
1924 | |
1925 | LIST_FOREACH(sp, &sptree[IPSEC_DIR_INBOUND], chain) { |
1926 | if (sp->state == IPSEC_SPSTATE_DEAD) { |
1927 | continue; |
1928 | } |
1929 | if (sp->id == id) { |
1930 | sp->refcnt++; |
1931 | return sp; |
1932 | } |
1933 | } |
1934 | |
1935 | LIST_FOREACH(sp, &sptree[IPSEC_DIR_OUTBOUND], chain) { |
1936 | if (sp->state == IPSEC_SPSTATE_DEAD) { |
1937 | continue; |
1938 | } |
1939 | if (sp->id == id) { |
1940 | sp->refcnt++; |
1941 | return sp; |
1942 | } |
1943 | } |
1944 | |
1945 | return NULL; |
1946 | } |
1947 | |
1948 | struct secpolicy * |
1949 | key_newsp(void) |
1950 | { |
1951 | struct secpolicy *newsp = NULL; |
1952 | |
1953 | LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_NOTOWNED); |
1954 | newsp = keydb_newsecpolicy(); |
1955 | if (!newsp) { |
1956 | return newsp; |
1957 | } |
1958 | |
1959 | newsp->refcnt = 1; |
1960 | newsp->req = NULL; |
1961 | |
1962 | return newsp; |
1963 | } |
1964 | |
1965 | /* |
1966 | * create secpolicy structure from sadb_x_policy structure. |
1967 | * NOTE: `state', `secpolicyindex' in secpolicy structure are not set, |
1968 | * so must be set properly later. |
1969 | */ |
1970 | struct secpolicy * |
1971 | key_msg2sp( |
1972 | struct sadb_x_policy *xpl0, |
1973 | size_t len, |
1974 | int *error) |
1975 | { |
1976 | struct secpolicy *newsp; |
1977 | |
1978 | LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_NOTOWNED); |
1979 | |
1980 | /* sanity check */ |
1981 | if (xpl0 == NULL) { |
1982 | panic("key_msg2sp: NULL pointer was passed." ); |
1983 | } |
1984 | if (len < sizeof(*xpl0)) { |
1985 | panic("key_msg2sp: invalid length." ); |
1986 | } |
1987 | if (len != PFKEY_EXTLEN(xpl0)) { |
1988 | ipseclog((LOG_DEBUG, "key_msg2sp: Invalid msg length.\n" )); |
1989 | *error = EINVAL; |
1990 | return NULL; |
1991 | } |
1992 | |
1993 | if ((newsp = key_newsp()) == NULL) { |
1994 | *error = ENOBUFS; |
1995 | return NULL; |
1996 | } |
1997 | |
1998 | newsp->spidx.dir = xpl0->sadb_x_policy_dir; |
1999 | newsp->policy = xpl0->sadb_x_policy_type; |
2000 | |
2001 | /* check policy */ |
2002 | switch (xpl0->sadb_x_policy_type) { |
2003 | case IPSEC_POLICY_DISCARD: |
2004 | case IPSEC_POLICY_GENERATE: |
2005 | case IPSEC_POLICY_NONE: |
2006 | case IPSEC_POLICY_ENTRUST: |
2007 | case IPSEC_POLICY_BYPASS: |
2008 | newsp->req = NULL; |
2009 | break; |
2010 | |
2011 | case IPSEC_POLICY_IPSEC: |
2012 | { |
2013 | int tlen; |
2014 | struct sadb_x_ipsecrequest *xisr; |
2015 | struct ipsecrequest **p_isr = &newsp->req; |
2016 | |
2017 | /* validity check */ |
2018 | if (PFKEY_EXTLEN(xpl0) < sizeof(*xpl0)) { |
2019 | ipseclog((LOG_DEBUG, |
2020 | "key_msg2sp: Invalid msg length.\n" )); |
2021 | key_freesp(sp: newsp, KEY_SADB_UNLOCKED); |
2022 | *error = EINVAL; |
2023 | return NULL; |
2024 | } |
2025 | |
2026 | tlen = PFKEY_EXTLEN(xpl0) - sizeof(*xpl0); |
2027 | xisr = (struct sadb_x_ipsecrequest *)(xpl0 + 1); |
2028 | |
2029 | while (tlen > 0) { |
2030 | if (tlen < sizeof(*xisr)) { |
2031 | ipseclog((LOG_DEBUG, "key_msg2sp: " |
2032 | "invalid ipsecrequest.\n" )); |
2033 | key_freesp(sp: newsp, KEY_SADB_UNLOCKED); |
2034 | *error = EINVAL; |
2035 | return NULL; |
2036 | } |
2037 | |
2038 | /* length check */ |
2039 | if (xisr->sadb_x_ipsecrequest_len < sizeof(*xisr)) { |
2040 | ipseclog((LOG_DEBUG, "key_msg2sp: " |
2041 | "invalid ipsecrequest length.\n" )); |
2042 | key_freesp(sp: newsp, KEY_SADB_UNLOCKED); |
2043 | *error = EINVAL; |
2044 | return NULL; |
2045 | } |
2046 | |
2047 | /* allocate request buffer */ |
2048 | *p_isr = kalloc_type(struct ipsecrequest, |
2049 | Z_WAITOK_ZERO_NOFAIL); |
2050 | |
2051 | switch (xisr->sadb_x_ipsecrequest_proto) { |
2052 | case IPPROTO_ESP: |
2053 | case IPPROTO_AH: |
2054 | break; |
2055 | default: |
2056 | ipseclog((LOG_DEBUG, |
2057 | "key_msg2sp: invalid proto type=%u\n" , |
2058 | xisr->sadb_x_ipsecrequest_proto)); |
2059 | key_freesp(sp: newsp, KEY_SADB_UNLOCKED); |
2060 | *error = EPROTONOSUPPORT; |
2061 | return NULL; |
2062 | } |
2063 | (*p_isr)->saidx.proto = xisr->sadb_x_ipsecrequest_proto; |
2064 | |
2065 | switch (xisr->sadb_x_ipsecrequest_mode) { |
2066 | case IPSEC_MODE_TRANSPORT: |
2067 | case IPSEC_MODE_TUNNEL: |
2068 | break; |
2069 | case IPSEC_MODE_ANY: |
2070 | default: |
2071 | ipseclog((LOG_DEBUG, |
2072 | "key_msg2sp: invalid mode=%u\n" , |
2073 | xisr->sadb_x_ipsecrequest_mode)); |
2074 | key_freesp(sp: newsp, KEY_SADB_UNLOCKED); |
2075 | *error = EINVAL; |
2076 | return NULL; |
2077 | } |
2078 | (*p_isr)->saidx.mode = xisr->sadb_x_ipsecrequest_mode; |
2079 | |
2080 | switch (xisr->sadb_x_ipsecrequest_level) { |
2081 | case IPSEC_LEVEL_DEFAULT: |
2082 | case IPSEC_LEVEL_USE: |
2083 | case IPSEC_LEVEL_REQUIRE: |
2084 | break; |
2085 | case IPSEC_LEVEL_UNIQUE: |
2086 | /* validity check */ |
2087 | /* |
2088 | * If range violation of reqid, kernel will |
2089 | * update it, don't refuse it. |
2090 | */ |
2091 | if (xisr->sadb_x_ipsecrequest_reqid |
2092 | > IPSEC_MANUAL_REQID_MAX) { |
2093 | ipseclog((LOG_DEBUG, |
2094 | "key_msg2sp: reqid=%d range " |
2095 | "violation, updated by kernel.\n" , |
2096 | xisr->sadb_x_ipsecrequest_reqid)); |
2097 | xisr->sadb_x_ipsecrequest_reqid = 0; |
2098 | } |
2099 | |
2100 | /* allocate new reqid id if reqid is zero. */ |
2101 | if (xisr->sadb_x_ipsecrequest_reqid == 0) { |
2102 | u_int16_t reqid; |
2103 | if ((reqid = key_newreqid()) == 0) { |
2104 | key_freesp(sp: newsp, KEY_SADB_UNLOCKED); |
2105 | *error = ENOBUFS; |
2106 | return NULL; |
2107 | } |
2108 | (*p_isr)->saidx.reqid = reqid; |
2109 | xisr->sadb_x_ipsecrequest_reqid = reqid; |
2110 | } else { |
2111 | /* set it for manual keying. */ |
2112 | (*p_isr)->saidx.reqid = |
2113 | xisr->sadb_x_ipsecrequest_reqid; |
2114 | } |
2115 | break; |
2116 | |
2117 | default: |
2118 | ipseclog((LOG_DEBUG, "key_msg2sp: invalid level=%u\n" , |
2119 | xisr->sadb_x_ipsecrequest_level)); |
2120 | key_freesp(sp: newsp, KEY_SADB_UNLOCKED); |
2121 | *error = EINVAL; |
2122 | return NULL; |
2123 | } |
2124 | (*p_isr)->level = xisr->sadb_x_ipsecrequest_level; |
2125 | |
2126 | /* set IP addresses if there */ |
2127 | if (xisr->sadb_x_ipsecrequest_len > sizeof(*xisr)) { |
2128 | struct sockaddr *paddr; |
2129 | |
2130 | if (tlen < xisr->sadb_x_ipsecrequest_len) { |
2131 | ipseclog((LOG_DEBUG, "key_msg2sp: invalid request " |
2132 | "address length.\n" )); |
2133 | key_freesp(sp: newsp, KEY_SADB_UNLOCKED); |
2134 | *error = EINVAL; |
2135 | return NULL; |
2136 | } |
2137 | |
2138 | paddr = (struct sockaddr *)(xisr + 1); |
2139 | uint8_t src_len = paddr->sa_len; |
2140 | |
2141 | /* +sizeof(uint8_t) for dst_len below */ |
2142 | if (xisr->sadb_x_ipsecrequest_len < sizeof(*xisr) + src_len + sizeof(uint8_t)) { |
2143 | ipseclog((LOG_DEBUG, "key_msg2sp: invalid request " |
2144 | "invalid source address length.\n" )); |
2145 | key_freesp(sp: newsp, KEY_SADB_UNLOCKED); |
2146 | *error = EINVAL; |
2147 | return NULL; |
2148 | } |
2149 | |
2150 | /* validity check */ |
2151 | if (paddr->sa_len |
2152 | > sizeof((*p_isr)->saidx.src)) { |
2153 | ipseclog((LOG_DEBUG, "key_msg2sp: invalid request " |
2154 | "address length.\n" )); |
2155 | key_freesp(sp: newsp, KEY_SADB_UNLOCKED); |
2156 | *error = EINVAL; |
2157 | return NULL; |
2158 | } |
2159 | |
2160 | bcopy(src: paddr, dst: &(*p_isr)->saidx.src, |
2161 | MIN(paddr->sa_len, sizeof((*p_isr)->saidx.src))); |
2162 | |
2163 | paddr = (struct sockaddr *)((caddr_t)paddr + paddr->sa_len); |
2164 | uint8_t dst_len = paddr->sa_len; |
2165 | |
2166 | if (xisr->sadb_x_ipsecrequest_len < sizeof(*xisr) + src_len + dst_len) { |
2167 | ipseclog((LOG_DEBUG, "key_msg2sp: invalid request " |
2168 | "invalid dest address length.\n" )); |
2169 | key_freesp(sp: newsp, KEY_SADB_UNLOCKED); |
2170 | *error = EINVAL; |
2171 | return NULL; |
2172 | } |
2173 | |
2174 | /* validity check */ |
2175 | if (paddr->sa_len |
2176 | > sizeof((*p_isr)->saidx.dst)) { |
2177 | ipseclog((LOG_DEBUG, "key_msg2sp: invalid request " |
2178 | "address length.\n" )); |
2179 | key_freesp(sp: newsp, KEY_SADB_UNLOCKED); |
2180 | *error = EINVAL; |
2181 | return NULL; |
2182 | } |
2183 | |
2184 | bcopy(src: paddr, dst: &(*p_isr)->saidx.dst, |
2185 | MIN(paddr->sa_len, sizeof((*p_isr)->saidx.dst))); |
2186 | } |
2187 | |
2188 | (*p_isr)->sp = newsp; |
2189 | |
2190 | /* initialization for the next. */ |
2191 | p_isr = &(*p_isr)->next; |
2192 | tlen -= xisr->sadb_x_ipsecrequest_len; |
2193 | |
2194 | /* validity check */ |
2195 | if (tlen < 0) { |
2196 | ipseclog((LOG_DEBUG, "key_msg2sp: becoming tlen < 0.\n" )); |
2197 | key_freesp(sp: newsp, KEY_SADB_UNLOCKED); |
2198 | *error = EINVAL; |
2199 | return NULL; |
2200 | } |
2201 | |
2202 | xisr = (struct sadb_x_ipsecrequest *)(void *) |
2203 | ((caddr_t)xisr + xisr->sadb_x_ipsecrequest_len); |
2204 | } |
2205 | } |
2206 | break; |
2207 | default: |
2208 | ipseclog((LOG_DEBUG, "key_msg2sp: invalid policy type.\n" )); |
2209 | key_freesp(sp: newsp, KEY_SADB_UNLOCKED); |
2210 | *error = EINVAL; |
2211 | return NULL; |
2212 | } |
2213 | |
2214 | *error = 0; |
2215 | return newsp; |
2216 | } |
2217 | |
2218 | static u_int16_t |
2219 | key_newreqid(void) |
2220 | { |
2221 | lck_mtx_lock(sadb_mutex); |
2222 | static u_int16_t auto_reqid = IPSEC_MANUAL_REQID_MAX + 1; |
2223 | int done = 0; |
2224 | |
2225 | /* The reqid must be limited to 16 bits because the PF_KEY message format only uses |
2226 | * 16 bits for this field. Once it becomes larger than 16 bits - ipsec fails to |
2227 | * work anymore. Changing the PF_KEY message format would introduce compatibility |
2228 | * issues. This code now tests to see if the tentative reqid is in use */ |
2229 | |
2230 | while (!done) { |
2231 | struct secpolicy *sp; |
2232 | struct ipsecrequest *isr; |
2233 | int dir; |
2234 | |
2235 | auto_reqid = (auto_reqid == 0xFFFF |
2236 | ? IPSEC_MANUAL_REQID_MAX + 1 : auto_reqid + 1); |
2237 | |
2238 | /* check for uniqueness */ |
2239 | done = 1; |
2240 | for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { |
2241 | LIST_FOREACH(sp, &sptree[dir], chain) { |
2242 | for (isr = sp->req; isr != NULL; isr = isr->next) { |
2243 | if (isr->saidx.reqid == auto_reqid) { |
2244 | done = 0; |
2245 | break; |
2246 | } |
2247 | } |
2248 | if (done == 0) { |
2249 | break; |
2250 | } |
2251 | } |
2252 | if (done == 0) { |
2253 | break; |
2254 | } |
2255 | } |
2256 | } |
2257 | |
2258 | lck_mtx_unlock(sadb_mutex); |
2259 | return auto_reqid; |
2260 | } |
2261 | |
2262 | /* |
2263 | * copy secpolicy struct to sadb_x_policy structure indicated. |
2264 | */ |
2265 | struct mbuf * |
2266 | key_sp2msg( |
2267 | struct secpolicy *sp) |
2268 | { |
2269 | struct sadb_x_policy *xpl; |
2270 | u_int tlen; |
2271 | caddr_t p; |
2272 | struct mbuf *m; |
2273 | |
2274 | /* sanity check. */ |
2275 | if (sp == NULL) { |
2276 | panic("key_sp2msg: NULL pointer was passed." ); |
2277 | } |
2278 | |
2279 | tlen = key_getspreqmsglen(sp); |
2280 | if (PFKEY_UNIT64(tlen) > UINT16_MAX) { |
2281 | ipseclog((LOG_ERR, "key_getspreqmsglen returned length %u\n" , |
2282 | tlen)); |
2283 | return NULL; |
2284 | } |
2285 | |
2286 | m = key_alloc_mbuf(tlen); |
2287 | if (!m || m->m_next) { /*XXX*/ |
2288 | if (m) { |
2289 | m_freem(m); |
2290 | } |
2291 | return NULL; |
2292 | } |
2293 | |
2294 | m->m_len = tlen; |
2295 | m->m_next = NULL; |
2296 | xpl = mtod(m, struct sadb_x_policy *); |
2297 | bzero(s: xpl, n: tlen); |
2298 | |
2299 | xpl->sadb_x_policy_len = (u_int16_t)PFKEY_UNIT64(tlen); |
2300 | xpl->sadb_x_policy_exttype = SADB_X_EXT_POLICY; |
2301 | xpl->sadb_x_policy_type = (u_int16_t)sp->policy; |
2302 | xpl->sadb_x_policy_dir = sp->spidx.dir; |
2303 | xpl->sadb_x_policy_id = sp->id; |
2304 | p = (caddr_t)xpl + sizeof(*xpl); |
2305 | |
2306 | /* if is the policy for ipsec ? */ |
2307 | if (sp->policy == IPSEC_POLICY_IPSEC) { |
2308 | struct sadb_x_ipsecrequest *xisr; |
2309 | struct ipsecrequest *isr; |
2310 | |
2311 | for (isr = sp->req; isr != NULL; isr = isr->next) { |
2312 | xisr = (struct sadb_x_ipsecrequest *)(void *)p; |
2313 | |
2314 | xisr->sadb_x_ipsecrequest_proto = isr->saidx.proto; |
2315 | xisr->sadb_x_ipsecrequest_mode = isr->saidx.mode; |
2316 | xisr->sadb_x_ipsecrequest_level = (u_int8_t)isr->level; |
2317 | xisr->sadb_x_ipsecrequest_reqid = (u_int16_t)isr->saidx.reqid; |
2318 | |
2319 | p += sizeof(*xisr); |
2320 | bcopy(src: &isr->saidx.src, dst: p, n: isr->saidx.src.ss_len); |
2321 | p += isr->saidx.src.ss_len; |
2322 | bcopy(src: &isr->saidx.dst, dst: p, n: isr->saidx.dst.ss_len); |
2323 | p += isr->saidx.src.ss_len; |
2324 | |
2325 | xisr->sadb_x_ipsecrequest_len = |
2326 | PFKEY_ALIGN8(sizeof(*xisr) |
2327 | + isr->saidx.src.ss_len |
2328 | + isr->saidx.dst.ss_len); |
2329 | } |
2330 | } |
2331 | |
2332 | return m; |
2333 | } |
2334 | |
2335 | /* m will not be freed nor modified */ |
2336 | static struct mbuf * |
2337 | key_gather_mbuf(struct mbuf *m, const struct sadb_msghdr *mhp, |
2338 | int ndeep, int nitem, int *items) |
2339 | { |
2340 | int idx; |
2341 | int i; |
2342 | struct mbuf *result = NULL, *n; |
2343 | int len; |
2344 | |
2345 | if (m == NULL || mhp == NULL) { |
2346 | panic("null pointer passed to key_gather" ); |
2347 | } |
2348 | |
2349 | for (i = 0; i < nitem; i++) { |
2350 | idx = items[i]; |
2351 | if (idx < 0 || idx > SADB_EXT_MAX) { |
2352 | goto fail; |
2353 | } |
2354 | /* don't attempt to pull empty extension */ |
2355 | if (idx == SADB_EXT_RESERVED && mhp->msg == NULL) { |
2356 | continue; |
2357 | } |
2358 | if (idx != SADB_EXT_RESERVED && |
2359 | (mhp->ext[idx] == NULL || mhp->extlen[idx] == 0)) { |
2360 | continue; |
2361 | } |
2362 | |
2363 | if (idx == SADB_EXT_RESERVED) { |
2364 | len = PFKEY_ALIGN8(sizeof(struct sadb_msg)); |
2365 | MGETHDR(n, M_WAITOK, MT_DATA); // sadb_msg len < MHLEN - enforced by _CASSERT |
2366 | if (!n) { |
2367 | goto fail; |
2368 | } |
2369 | n->m_len = len; |
2370 | n->m_next = NULL; |
2371 | m_copydata(m, 0, sizeof(struct sadb_msg), |
2372 | mtod(n, caddr_t)); |
2373 | } else if (i < ndeep) { |
2374 | len = mhp->extlen[idx]; |
2375 | n = key_alloc_mbuf(len); |
2376 | if (!n || n->m_next) { /*XXX*/ |
2377 | if (n) { |
2378 | m_freem(n); |
2379 | } |
2380 | goto fail; |
2381 | } |
2382 | m_copydata(m, mhp->extoff[idx], mhp->extlen[idx], |
2383 | mtod(n, caddr_t)); |
2384 | } else { |
2385 | n = m_copym(m, mhp->extoff[idx], mhp->extlen[idx], |
2386 | M_WAITOK); |
2387 | } |
2388 | if (n == NULL) { |
2389 | goto fail; |
2390 | } |
2391 | |
2392 | if (result) { |
2393 | m_cat(result, n); |
2394 | } else { |
2395 | result = n; |
2396 | } |
2397 | } |
2398 | |
2399 | if ((result->m_flags & M_PKTHDR) != 0) { |
2400 | result->m_pkthdr.len = 0; |
2401 | for (n = result; n; n = n->m_next) { |
2402 | result->m_pkthdr.len += n->m_len; |
2403 | } |
2404 | } |
2405 | |
2406 | return result; |
2407 | |
2408 | fail: |
2409 | m_freem(result); |
2410 | return NULL; |
2411 | } |
2412 | |
2413 | /* |
2414 | * SADB_X_SPDADD, SADB_X_SPDSETIDX or SADB_X_SPDUPDATE processing |
2415 | * add a entry to SP database, when received |
2416 | * <base, address(SD), (lifetime(H),) policy> |
2417 | * from the user(?). |
2418 | * Adding to SP database, |
2419 | * and send |
2420 | * <base, address(SD), (lifetime(H),) policy> |
2421 | * to the socket which was send. |
2422 | * |
2423 | * SPDADD set a unique policy entry. |
2424 | * SPDSETIDX like SPDADD without a part of policy requests. |
2425 | * SPDUPDATE replace a unique policy entry. |
2426 | * |
2427 | * m will always be freed. |
2428 | */ |
2429 | static int |
2430 | key_spdadd( |
2431 | struct socket *so, |
2432 | struct mbuf *m, |
2433 | const struct sadb_msghdr *mhp) |
2434 | { |
2435 | struct sadb_address *src0, *dst0, *src1 = NULL, *dst1 = NULL; |
2436 | struct sadb_x_policy *xpl0, *xpl; |
2437 | struct sadb_lifetime *lft = NULL; |
2438 | struct secpolicyindex spidx; |
2439 | struct secpolicy *newsp; |
2440 | ifnet_t internal_if = NULL; |
2441 | char *outgoing_if = NULL; |
2442 | char *ipsec_if = NULL; |
2443 | struct sadb_x_ipsecif *ipsecifopts = NULL; |
2444 | int error; |
2445 | int use_src_range = 0; |
2446 | int use_dst_range = 0; |
2447 | int init_disabled = 0; |
2448 | int address_family, address_len; |
2449 | |
2450 | LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_NOTOWNED); |
2451 | |
2452 | /* sanity check */ |
2453 | if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL) { |
2454 | panic("key_spdadd: NULL pointer is passed." ); |
2455 | } |
2456 | |
2457 | if (mhp->ext[SADB_X_EXT_ADDR_RANGE_SRC_START] != NULL && mhp->ext[SADB_X_EXT_ADDR_RANGE_SRC_END] != NULL) { |
2458 | use_src_range = 1; |
2459 | } |
2460 | if (mhp->ext[SADB_X_EXT_ADDR_RANGE_DST_START] != NULL && mhp->ext[SADB_X_EXT_ADDR_RANGE_DST_END] != NULL) { |
2461 | use_dst_range = 1; |
2462 | } |
2463 | |
2464 | if ((!use_src_range && mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL) || |
2465 | (!use_dst_range && mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) || |
2466 | mhp->ext[SADB_X_EXT_POLICY] == NULL) { |
2467 | ipseclog((LOG_DEBUG, "key_spdadd: invalid message is passed.\n" )); |
2468 | return key_senderror(so, m, EINVAL); |
2469 | } |
2470 | if ((use_src_range && (mhp->extlen[SADB_X_EXT_ADDR_RANGE_SRC_START] < sizeof(struct sadb_address) |
2471 | || mhp->extlen[SADB_X_EXT_ADDR_RANGE_SRC_END] < sizeof(struct sadb_address))) || |
2472 | (!use_src_range && mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address)) || |
2473 | (use_dst_range && (mhp->extlen[SADB_X_EXT_ADDR_RANGE_DST_START] < sizeof(struct sadb_address) |
2474 | || mhp->extlen[SADB_X_EXT_ADDR_RANGE_DST_END] < sizeof(struct sadb_address))) || |
2475 | (!use_dst_range && mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) || |
2476 | mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) { |
2477 | ipseclog((LOG_DEBUG, "key_spdadd: invalid message is passed.\n" )); |
2478 | return key_senderror(so, m, EINVAL); |
2479 | } |
2480 | if (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL) { |
2481 | if (mhp->extlen[SADB_EXT_LIFETIME_HARD] |
2482 | < sizeof(struct sadb_lifetime)) { |
2483 | ipseclog((LOG_DEBUG, "key_spdadd: invalid message is passed.\n" )); |
2484 | return key_senderror(so, m, EINVAL); |
2485 | } |
2486 | lft = (struct sadb_lifetime *) |
2487 | (void *)mhp->ext[SADB_EXT_LIFETIME_HARD]; |
2488 | } |
2489 | if (mhp->ext[SADB_X_EXT_IPSECIF] != NULL) { |
2490 | if (mhp->extlen[SADB_X_EXT_IPSECIF] < sizeof(struct sadb_x_ipsecif)) { |
2491 | ipseclog((LOG_DEBUG, "key_spdadd: invalid message is passed.\n" )); |
2492 | return key_senderror(so, m, EINVAL); |
2493 | } |
2494 | } |
2495 | |
2496 | if (use_src_range) { |
2497 | src0 = (struct sadb_address *)mhp->ext[SADB_X_EXT_ADDR_RANGE_SRC_START]; |
2498 | src1 = (struct sadb_address *)mhp->ext[SADB_X_EXT_ADDR_RANGE_SRC_END]; |
2499 | } else { |
2500 | src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC]; |
2501 | } |
2502 | if (use_dst_range) { |
2503 | dst0 = (struct sadb_address *)mhp->ext[SADB_X_EXT_ADDR_RANGE_DST_START]; |
2504 | dst1 = (struct sadb_address *)mhp->ext[SADB_X_EXT_ADDR_RANGE_DST_END]; |
2505 | } else { |
2506 | dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST]; |
2507 | } |
2508 | xpl0 = (struct sadb_x_policy *)(void *)mhp->ext[SADB_X_EXT_POLICY]; |
2509 | ipsecifopts = (struct sadb_x_ipsecif *)(void *)mhp->ext[SADB_X_EXT_IPSECIF]; |
2510 | |
2511 | /* check addresses */ |
2512 | address_family = ((struct sockaddr *)(src0 + 1))->sa_family; |
2513 | address_len = ((struct sockaddr *)(src0 + 1))->sa_len; |
2514 | if (use_src_range) { |
2515 | if (((struct sockaddr *)(src1 + 1))->sa_family != address_family || |
2516 | ((struct sockaddr *)(src1 + 1))->sa_len != address_len) { |
2517 | return key_senderror(so, m, EINVAL); |
2518 | } |
2519 | } |
2520 | if (((struct sockaddr *)(dst0 + 1))->sa_family != address_family || |
2521 | ((struct sockaddr *)(dst0 + 1))->sa_len != address_len) { |
2522 | return key_senderror(so, m, EINVAL); |
2523 | } |
2524 | if (use_dst_range) { |
2525 | if (((struct sockaddr *)(dst1 + 1))->sa_family != address_family || |
2526 | ((struct sockaddr *)(dst1 + 1))->sa_len != address_len) { |
2527 | return key_senderror(so, m, EINVAL); |
2528 | } |
2529 | } |
2530 | |
2531 | /* checking the direction. */ |
2532 | switch (xpl0->sadb_x_policy_dir) { |
2533 | case IPSEC_DIR_INBOUND: |
2534 | case IPSEC_DIR_OUTBOUND: |
2535 | break; |
2536 | default: |
2537 | ipseclog((LOG_DEBUG, "key_spdadd: Invalid SP direction.\n" )); |
2538 | return key_senderror(so, m, EINVAL); |
2539 | } |
2540 | |
2541 | /* check policy */ |
2542 | /* key_spdadd() accepts DISCARD, NONE and IPSEC. */ |
2543 | if (xpl0->sadb_x_policy_type == IPSEC_POLICY_ENTRUST |
2544 | || xpl0->sadb_x_policy_type == IPSEC_POLICY_BYPASS) { |
2545 | ipseclog((LOG_DEBUG, "key_spdadd: Invalid policy type.\n" )); |
2546 | return key_senderror(so, m, EINVAL); |
2547 | } |
2548 | |
2549 | /* policy requests are mandatory when action is ipsec. */ |
2550 | if (mhp->msg->sadb_msg_type != SADB_X_SPDSETIDX |
2551 | && xpl0->sadb_x_policy_type == IPSEC_POLICY_IPSEC |
2552 | && mhp->extlen[SADB_X_EXT_POLICY] <= sizeof(*xpl0)) { |
2553 | ipseclog((LOG_DEBUG, "key_spdadd: some policy requests part required.\n" )); |
2554 | return key_senderror(so, m, EINVAL); |
2555 | } |
2556 | |
2557 | /* Process interfaces */ |
2558 | if (ipsecifopts != NULL) { |
2559 | ipsecifopts->sadb_x_ipsecif_internal_if[IFXNAMSIZ - 1] = '\0'; |
2560 | ipsecifopts->sadb_x_ipsecif_outgoing_if[IFXNAMSIZ - 1] = '\0'; |
2561 | ipsecifopts->sadb_x_ipsecif_ipsec_if[IFXNAMSIZ - 1] = '\0'; |
2562 | |
2563 | if (ipsecifopts->sadb_x_ipsecif_internal_if[0]) { |
2564 | ifnet_find_by_name(ifname: ipsecifopts->sadb_x_ipsecif_internal_if, interface: &internal_if); |
2565 | } |
2566 | if (ipsecifopts->sadb_x_ipsecif_outgoing_if[0]) { |
2567 | outgoing_if = ipsecifopts->sadb_x_ipsecif_outgoing_if; |
2568 | } |
2569 | if (ipsecifopts->sadb_x_ipsecif_ipsec_if[0]) { |
2570 | ipsec_if = ipsecifopts->sadb_x_ipsecif_ipsec_if; |
2571 | } |
2572 | init_disabled = ipsecifopts->sadb_x_ipsecif_init_disabled; |
2573 | } |
2574 | |
2575 | /* make secindex */ |
2576 | /* XXX boundary check against sa_len */ |
2577 | KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir, |
2578 | src0 + 1, |
2579 | dst0 + 1, |
2580 | src0->sadb_address_prefixlen, |
2581 | dst0->sadb_address_prefixlen, |
2582 | src0->sadb_address_proto, |
2583 | internal_if, |
2584 | use_src_range ? src0 + 1 : NULL, |
2585 | use_src_range ? src1 + 1 : NULL, |
2586 | use_dst_range ? dst0 + 1 : NULL, |
2587 | use_dst_range ? dst1 + 1 : NULL, |
2588 | &spidx); |
2589 | |
2590 | /* |
2591 | * checking there is SP already or not. |
2592 | * SPDUPDATE doesn't depend on whether there is a SP or not. |
2593 | * If the type is either SPDADD or SPDSETIDX AND a SP is found, |
2594 | * then error. |
2595 | */ |
2596 | lck_mtx_lock(sadb_mutex); |
2597 | newsp = key_getsp(spidx: &spidx); |
2598 | if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) { |
2599 | if (newsp) { |
2600 | newsp->state = IPSEC_SPSTATE_DEAD; |
2601 | key_freesp(sp: newsp, KEY_SADB_LOCKED); |
2602 | } |
2603 | } else { |
2604 | if (newsp != NULL) { |
2605 | key_freesp(sp: newsp, KEY_SADB_LOCKED); |
2606 | ipseclog((LOG_DEBUG, "key_spdadd: a SP entry exists already.\n" )); |
2607 | lck_mtx_unlock(sadb_mutex); |
2608 | if (internal_if) { |
2609 | ifnet_release(interface: internal_if); |
2610 | internal_if = NULL; |
2611 | } |
2612 | return key_senderror(so, m, EEXIST); |
2613 | } |
2614 | } |
2615 | lck_mtx_unlock(sadb_mutex); |
2616 | |
2617 | /* allocation new SP entry */ |
2618 | if ((newsp = key_msg2sp(xpl0, PFKEY_EXTLEN(xpl0), error: &error)) == NULL) { |
2619 | if (internal_if) { |
2620 | ifnet_release(interface: internal_if); |
2621 | internal_if = NULL; |
2622 | } |
2623 | return key_senderror(so, m, error); |
2624 | } |
2625 | |
2626 | if ((newsp->id = key_getnewspid()) == 0) { |
2627 | keydb_delsecpolicy(newsp); |
2628 | if (internal_if) { |
2629 | ifnet_release(interface: internal_if); |
2630 | internal_if = NULL; |
2631 | } |
2632 | return key_senderror(so, m, ENOBUFS); |
2633 | } |
2634 | |
2635 | /* XXX boundary check against sa_len */ |
2636 | KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir, |
2637 | src0 + 1, |
2638 | dst0 + 1, |
2639 | src0->sadb_address_prefixlen, |
2640 | dst0->sadb_address_prefixlen, |
2641 | src0->sadb_address_proto, |
2642 | internal_if, |
2643 | use_src_range ? src0 + 1 : NULL, |
2644 | use_src_range ? src1 + 1 : NULL, |
2645 | use_dst_range ? dst0 + 1 : NULL, |
2646 | use_dst_range ? dst1 + 1 : NULL, |
2647 | &newsp->spidx); |
2648 | |
2649 | #if 1 |
2650 | /* |
2651 | * allow IPv6 over IPv4 or IPv4 over IPv6 tunnels using ESP - |
2652 | * otherwise reject if inner and outer address families not equal |
2653 | */ |
2654 | if (newsp->req && newsp->req->saidx.src.ss_family) { |
2655 | struct sockaddr *sa; |
2656 | sa = (struct sockaddr *)(src0 + 1); |
2657 | if (sa->sa_family != newsp->req->saidx.src.ss_family) { |
2658 | if (newsp->req->saidx.mode != IPSEC_MODE_TUNNEL || newsp->req->saidx.proto != IPPROTO_ESP) { |
2659 | keydb_delsecpolicy(newsp); |
2660 | if (internal_if) { |
2661 | ifnet_release(interface: internal_if); |
2662 | internal_if = NULL; |
2663 | } |
2664 | return key_senderror(so, m, EINVAL); |
2665 | } |
2666 | } |
2667 | } |
2668 | if (newsp->req && newsp->req->saidx.dst.ss_family) { |
2669 | struct sockaddr *sa; |
2670 | sa = (struct sockaddr *)(dst0 + 1); |
2671 | if (sa->sa_family != newsp->req->saidx.dst.ss_family) { |
2672 | if (newsp->req->saidx.mode != IPSEC_MODE_TUNNEL || newsp->req->saidx.proto != IPPROTO_ESP) { |
2673 | keydb_delsecpolicy(newsp); |
2674 | if (internal_if) { |
2675 | ifnet_release(interface: internal_if); |
2676 | internal_if = NULL; |
2677 | } |
2678 | return key_senderror(so, m, EINVAL); |
2679 | } |
2680 | } |
2681 | } |
2682 | #endif |
2683 | |
2684 | const u_int64_t current_time_ns = key_get_continuous_time_ns(); |
2685 | newsp->created = current_time_ns; |
2686 | newsp->lastused = current_time_ns; |
2687 | |
2688 | if (lft != NULL) { |
2689 | // Convert to nanoseconds |
2690 | u_int64_t lifetime_ns; |
2691 | if (__improbable(os_mul_overflow(lft->sadb_lifetime_addtime, NSEC_PER_SEC, &lifetime_ns))) { |
2692 | ipseclog((LOG_DEBUG, "key_spdadd: invalid lifetime value %llu.\n" , |
2693 | lft->sadb_lifetime_addtime)); |
2694 | return key_senderror(so, m, EINVAL); |
2695 | } |
2696 | newsp->lifetime = lifetime_ns; |
2697 | |
2698 | u_int64_t validtime_ns; |
2699 | if (__improbable(os_mul_overflow(lft->sadb_lifetime_usetime, NSEC_PER_SEC, &validtime_ns))) { |
2700 | ipseclog((LOG_DEBUG, "key_spdadd: invalid use time value %llu.\n" , |
2701 | lft->sadb_lifetime_usetime)); |
2702 | return key_senderror(so, m, EINVAL); |
2703 | } |
2704 | newsp->validtime = validtime_ns; |
2705 | } else { |
2706 | newsp->lifetime = 0; |
2707 | newsp->validtime = 0; |
2708 | } |
2709 | |
2710 | |
2711 | if (outgoing_if != NULL) { |
2712 | ifnet_find_by_name(ifname: outgoing_if, interface: &newsp->outgoing_if); |
2713 | } |
2714 | if (ipsec_if != NULL) { |
2715 | ifnet_find_by_name(ifname: ipsec_if, interface: &newsp->ipsec_if); |
2716 | } |
2717 | if (init_disabled > 0) { |
2718 | newsp->disabled = 1; |
2719 | } |
2720 | |
2721 | newsp->refcnt = 1; /* do not reclaim until I say I do */ |
2722 | newsp->state = IPSEC_SPSTATE_ALIVE; |
2723 | lck_mtx_lock(sadb_mutex); |
2724 | /* |
2725 | * policies of type generate should be at the end of the SPD |
2726 | * because they function as default discard policies |
2727 | * Don't start timehandler for generate policies |
2728 | */ |
2729 | if (newsp->policy == IPSEC_POLICY_GENERATE) { |
2730 | LIST_INSERT_TAIL(&sptree[newsp->spidx.dir], newsp, secpolicy, chain); |
2731 | } else { /* XXX until we have policy ordering in the kernel */ |
2732 | struct secpolicy *tmpsp; |
2733 | |
2734 | LIST_FOREACH(tmpsp, &sptree[newsp->spidx.dir], chain) |
2735 | if (tmpsp->policy == IPSEC_POLICY_GENERATE) { |
2736 | break; |
2737 | } |
2738 | if (tmpsp) { |
2739 | LIST_INSERT_BEFORE(tmpsp, newsp, chain); |
2740 | } else { |
2741 | LIST_INSERT_TAIL(&sptree[newsp->spidx.dir], newsp, secpolicy, chain); |
2742 | } |
2743 | key_start_timehandler(); |
2744 | } |
2745 | |
2746 | ipsec_policy_count++; |
2747 | /* Turn off the ipsec bypass */ |
2748 | if (ipsec_bypass != 0) { |
2749 | ipsec_bypass = 0; |
2750 | } |
2751 | |
2752 | /* delete the entry in spacqtree */ |
2753 | if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) { |
2754 | struct secspacq *spacq; |
2755 | if ((spacq = key_getspacq(&spidx)) != NULL) { |
2756 | /* reset counter in order to deletion by timehandler. */ |
2757 | spacq->created = key_get_continuous_time_ns(); |
2758 | spacq->count = 0; |
2759 | } |
2760 | } |
2761 | lck_mtx_unlock(sadb_mutex); |
2762 | |
2763 | { |
2764 | struct mbuf *n, *mpolicy; |
2765 | struct sadb_msg *newmsg; |
2766 | int off; |
2767 | |
2768 | /* create new sadb_msg to reply. */ |
2769 | if (lft) { |
2770 | int mbufItems[] = {SADB_EXT_RESERVED, SADB_X_EXT_POLICY, |
2771 | SADB_EXT_LIFETIME_HARD, SADB_EXT_ADDRESS_SRC, |
2772 | SADB_EXT_ADDRESS_DST, SADB_X_EXT_ADDR_RANGE_SRC_START, SADB_X_EXT_ADDR_RANGE_SRC_END, |
2773 | SADB_X_EXT_ADDR_RANGE_DST_START, SADB_X_EXT_ADDR_RANGE_DST_END}; |
2774 | n = key_gather_mbuf(m, mhp, ndeep: 2, nitem: sizeof(mbufItems) / sizeof(int), items: mbufItems); |
2775 | } else { |
2776 | int mbufItems[] = {SADB_EXT_RESERVED, SADB_X_EXT_POLICY, |
2777 | SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST, |
2778 | SADB_X_EXT_ADDR_RANGE_SRC_START, SADB_X_EXT_ADDR_RANGE_SRC_END, |
2779 | SADB_X_EXT_ADDR_RANGE_DST_START, SADB_X_EXT_ADDR_RANGE_DST_END}; |
2780 | n = key_gather_mbuf(m, mhp, ndeep: 2, nitem: sizeof(mbufItems) / sizeof(int), items: mbufItems); |
2781 | } |
2782 | if (!n) { |
2783 | return key_senderror(so, m, ENOBUFS); |
2784 | } |
2785 | |
2786 | if (n->m_len < sizeof(*newmsg)) { |
2787 | n = m_pullup(n, sizeof(*newmsg)); |
2788 | if (!n) { |
2789 | return key_senderror(so, m, ENOBUFS); |
2790 | } |
2791 | } |
2792 | newmsg = mtod(n, struct sadb_msg *); |
2793 | newmsg->sadb_msg_errno = 0; |
2794 | |
2795 | VERIFY(PFKEY_UNIT64(n->m_pkthdr.len) <= UINT16_MAX); |
2796 | newmsg->sadb_msg_len = (u_int16_t)PFKEY_UNIT64(n->m_pkthdr.len); |
2797 | |
2798 | off = 0; |
2799 | mpolicy = m_pulldown(n, PFKEY_ALIGN8(sizeof(struct sadb_msg)), |
2800 | sizeof(*xpl), &off); |
2801 | if (mpolicy == NULL) { |
2802 | /* n is already freed */ |
2803 | return key_senderror(so, m, ENOBUFS); |
2804 | } |
2805 | xpl = (struct sadb_x_policy *)(void *)(mtod(mpolicy, caddr_t) + off); |
2806 | if (xpl->sadb_x_policy_exttype != SADB_X_EXT_POLICY) { |
2807 | m_freem(n); |
2808 | return key_senderror(so, m, EINVAL); |
2809 | } |
2810 | xpl->sadb_x_policy_id = newsp->id; |
2811 | |
2812 | m_freem(m); |
2813 | return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); |
2814 | } |
2815 | } |
2816 | |
2817 | /* |
2818 | * get new policy id. |
2819 | * OUT: |
2820 | * 0: failure. |
2821 | * others: success. |
2822 | */ |
2823 | static u_int32_t |
2824 | key_getnewspid(void) |
2825 | { |
2826 | u_int32_t newid = 0; |
2827 | int count = key_spi_trycnt; /* XXX */ |
2828 | struct secpolicy *sp; |
2829 | |
2830 | /* when requesting to allocate spi ranged */ |
2831 | lck_mtx_lock(sadb_mutex); |
2832 | while (count--) { |
2833 | newid = (policy_id = (policy_id == ~0 ? 1 : policy_id + 1)); |
2834 | |
2835 | if ((sp = __key_getspbyid(id: newid)) == NULL) { |
2836 | break; |
2837 | } |
2838 | |
2839 | key_freesp(sp, KEY_SADB_LOCKED); |
2840 | } |
2841 | lck_mtx_unlock(sadb_mutex); |
2842 | if (count == 0 || newid == 0) { |
2843 | ipseclog((LOG_DEBUG, "key_getnewspid: to allocate policy id is failed.\n" )); |
2844 | return 0; |
2845 | } |
2846 | |
2847 | return newid; |
2848 | } |
2849 | |
2850 | /* |
2851 | * SADB_SPDDELETE processing |
2852 | * receive |
2853 | * <base, address(SD), policy(*)> |
2854 | * from the user(?), and set SADB_SASTATE_DEAD, |
2855 | * and send, |
2856 | * <base, address(SD), policy(*)> |
2857 | * to the ikmpd. |
2858 | * policy(*) including direction of policy. |
2859 | * |
2860 | * m will always be freed. |
2861 | */ |
2862 | static int |
2863 | key_spddelete( |
2864 | struct socket *so, |
2865 | struct mbuf *m, |
2866 | const struct sadb_msghdr *mhp) |
2867 | { |
2868 | struct sadb_address *src0, *dst0, *src1 = NULL, *dst1 = NULL; |
2869 | struct sadb_x_policy *xpl0; |
2870 | struct secpolicyindex spidx; |
2871 | struct secpolicy *sp; |
2872 | ifnet_t internal_if = NULL; |
2873 | struct sadb_x_ipsecif *ipsecifopts = NULL; |
2874 | int use_src_range = 0; |
2875 | int use_dst_range = 0; |
2876 | |
2877 | LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_NOTOWNED); |
2878 | |
2879 | /* sanity check */ |
2880 | if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL) { |
2881 | panic("key_spddelete: NULL pointer is passed." ); |
2882 | } |
2883 | |
2884 | if (mhp->ext[SADB_X_EXT_ADDR_RANGE_SRC_START] != NULL && mhp->ext[SADB_X_EXT_ADDR_RANGE_SRC_END] != NULL) { |
2885 | use_src_range = 1; |
2886 | } |
2887 | if (mhp->ext[SADB_X_EXT_ADDR_RANGE_DST_START] != NULL && mhp->ext[SADB_X_EXT_ADDR_RANGE_DST_END] != NULL) { |
2888 | use_dst_range = 1; |
2889 | } |
2890 | |
2891 | if ((!use_src_range && mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL) || |
2892 | (!use_dst_range && mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) || |
2893 | mhp->ext[SADB_X_EXT_POLICY] == NULL) { |
2894 | ipseclog((LOG_DEBUG, "key_spddelete: invalid message is passed.\n" )); |
2895 | return key_senderror(so, m, EINVAL); |
2896 | } |
2897 | if ((use_src_range && (mhp->extlen[SADB_X_EXT_ADDR_RANGE_SRC_START] < sizeof(struct sadb_address) |
2898 | || mhp->extlen[SADB_X_EXT_ADDR_RANGE_SRC_END] < sizeof(struct sadb_address))) || |
2899 | (!use_src_range && mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address)) || |
2900 | (use_dst_range && (mhp->extlen[SADB_X_EXT_ADDR_RANGE_DST_START] < sizeof(struct sadb_address) |
2901 | || mhp->extlen[SADB_X_EXT_ADDR_RANGE_DST_END] < sizeof(struct sadb_address))) || |
2902 | (!use_dst_range && mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) || |
2903 | mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) { |
2904 | ipseclog((LOG_DEBUG, "key_spddelete: invalid message is passed.\n" )); |
2905 | return key_senderror(so, m, EINVAL); |
2906 | } |
2907 | |
2908 | if (use_src_range) { |
2909 | src0 = (struct sadb_address *)mhp->ext[SADB_X_EXT_ADDR_RANGE_SRC_START]; |
2910 | src1 = (struct sadb_address *)mhp->ext[SADB_X_EXT_ADDR_RANGE_SRC_END]; |
2911 | } else { |
2912 | src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC]; |
2913 | } |
2914 | if (use_dst_range) { |
2915 | dst0 = (struct sadb_address *)mhp->ext[SADB_X_EXT_ADDR_RANGE_DST_START]; |
2916 | dst1 = (struct sadb_address *)mhp->ext[SADB_X_EXT_ADDR_RANGE_DST_END]; |
2917 | } else { |
2918 | dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST]; |
2919 | } |
2920 | xpl0 = (struct sadb_x_policy *)(void *)mhp->ext[SADB_X_EXT_POLICY]; |
2921 | ipsecifopts = (struct sadb_x_ipsecif *)(void *)mhp->ext[SADB_X_EXT_IPSECIF]; |
2922 | |
2923 | /* checking the direction. */ |
2924 | switch (xpl0->sadb_x_policy_dir) { |
2925 | case IPSEC_DIR_INBOUND: |
2926 | case IPSEC_DIR_OUTBOUND: |
2927 | break; |
2928 | default: |
2929 | ipseclog((LOG_DEBUG, "key_spddelete: Invalid SP direction.\n" )); |
2930 | return key_senderror(so, m, EINVAL); |
2931 | } |
2932 | |
2933 | /* Process interfaces */ |
2934 | if (ipsecifopts != NULL) { |
2935 | ipsecifopts->sadb_x_ipsecif_internal_if[IFXNAMSIZ - 1] = '\0'; |
2936 | ipsecifopts->sadb_x_ipsecif_outgoing_if[IFXNAMSIZ - 1] = '\0'; |
2937 | ipsecifopts->sadb_x_ipsecif_ipsec_if[IFXNAMSIZ - 1] = '\0'; |
2938 | |
2939 | if (ipsecifopts->sadb_x_ipsecif_internal_if[0]) { |
2940 | ifnet_find_by_name(ifname: ipsecifopts->sadb_x_ipsecif_internal_if, interface: &internal_if); |
2941 | } |
2942 | } |
2943 | |
2944 | /* make secindex */ |
2945 | /* XXX boundary check against sa_len */ |
2946 | KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir, |
2947 | src0 + 1, |
2948 | dst0 + 1, |
2949 | src0->sadb_address_prefixlen, |
2950 | dst0->sadb_address_prefixlen, |
2951 | src0->sadb_address_proto, |
2952 | internal_if, |
2953 | use_src_range ? src0 + 1 : NULL, |
2954 | use_src_range ? src1 + 1 : NULL, |
2955 | use_dst_range ? dst0 + 1 : NULL, |
2956 | use_dst_range ? dst1 + 1 : NULL, |
2957 | &spidx); |
2958 | |
2959 | /* Is there SP in SPD ? */ |
2960 | lck_mtx_lock(sadb_mutex); |
2961 | if ((sp = key_getsp(spidx: &spidx)) == NULL) { |
2962 | ipseclog((LOG_DEBUG, "key_spddelete: no SP found.\n" )); |
2963 | lck_mtx_unlock(sadb_mutex); |
2964 | if (internal_if) { |
2965 | ifnet_release(interface: internal_if); |
2966 | internal_if = NULL; |
2967 | } |
2968 | return key_senderror(so, m, EINVAL); |
2969 | } |
2970 | |
2971 | if (internal_if) { |
2972 | ifnet_release(interface: internal_if); |
2973 | internal_if = NULL; |
2974 | } |
2975 | |
2976 | /* save policy id to buffer to be returned. */ |
2977 | xpl0->sadb_x_policy_id = sp->id; |
2978 | |
2979 | sp->state = IPSEC_SPSTATE_DEAD; |
2980 | key_freesp(sp, KEY_SADB_LOCKED); |
2981 | lck_mtx_unlock(sadb_mutex); |
2982 | |
2983 | |
2984 | { |
2985 | struct mbuf *n; |
2986 | struct sadb_msg *newmsg; |
2987 | int mbufItems[] = {SADB_EXT_RESERVED, SADB_X_EXT_POLICY, |
2988 | SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST, |
2989 | SADB_X_EXT_ADDR_RANGE_SRC_START, SADB_X_EXT_ADDR_RANGE_SRC_END, |
2990 | SADB_X_EXT_ADDR_RANGE_DST_START, SADB_X_EXT_ADDR_RANGE_DST_END}; |
2991 | |
2992 | /* create new sadb_msg to reply. */ |
2993 | n = key_gather_mbuf(m, mhp, ndeep: 1, nitem: sizeof(mbufItems) / sizeof(int), items: mbufItems); |
2994 | if (!n) { |
2995 | return key_senderror(so, m, ENOBUFS); |
2996 | } |
2997 | |
2998 | newmsg = mtod(n, struct sadb_msg *); |
2999 | newmsg->sadb_msg_errno = 0; |
3000 | VERIFY(PFKEY_UNIT64(n->m_pkthdr.len) <= UINT16_MAX); |
3001 | newmsg->sadb_msg_len = (u_int16_t)PFKEY_UNIT64(n->m_pkthdr.len); |
3002 | |
3003 | m_freem(m); |
3004 | return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); |
3005 | } |
3006 | } |
3007 | |
3008 | /* |
3009 | * SADB_SPDDELETE2 processing |
3010 | * receive |
3011 | * <base, policy(*)> |
3012 | * from the user(?), and set SADB_SASTATE_DEAD, |
3013 | * and send, |
3014 | * <base, policy(*)> |
3015 | * to the ikmpd. |
3016 | * policy(*) including direction of policy. |
3017 | * |
3018 | * m will always be freed. |
3019 | */ |
3020 | static int |
3021 | key_spddelete2( |
3022 | struct socket *so, |
3023 | struct mbuf *m, |
3024 | const struct sadb_msghdr *mhp) |
3025 | { |
3026 | u_int32_t id; |
3027 | struct secpolicy *sp; |
3028 | |
3029 | LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_NOTOWNED); |
3030 | |
3031 | /* sanity check */ |
3032 | if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL) { |
3033 | panic("key_spddelete2: NULL pointer is passed." ); |
3034 | } |
3035 | |
3036 | if (mhp->ext[SADB_X_EXT_POLICY] == NULL || |
3037 | mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) { |
3038 | ipseclog((LOG_DEBUG, "key_spddelete2: invalid message is passed.\n" )); |
3039 | key_senderror(so, m, EINVAL); |
3040 | return 0; |
3041 | } |
3042 | |
3043 | id = ((struct sadb_x_policy *) |
3044 | (void *)mhp->ext[SADB_X_EXT_POLICY])->sadb_x_policy_id; |
3045 | |
3046 | /* Is there SP in SPD ? */ |
3047 | lck_mtx_lock(sadb_mutex); |
3048 | if ((sp = __key_getspbyid(id)) == NULL) { |
3049 | lck_mtx_unlock(sadb_mutex); |
3050 | ipseclog((LOG_DEBUG, "key_spddelete2: no SP found id:%u.\n" , id)); |
3051 | return key_senderror(so, m, EINVAL); |
3052 | } |
3053 | |
3054 | sp->state = IPSEC_SPSTATE_DEAD; |
3055 | key_freesp(sp, KEY_SADB_LOCKED); |
3056 | lck_mtx_unlock(sadb_mutex); |
3057 | |
3058 | { |
3059 | struct mbuf *n, *nn; |
3060 | struct sadb_msg *newmsg; |
3061 | int off, len; |
3062 | |
3063 | /* create new sadb_msg to reply. */ |
3064 | len = PFKEY_ALIGN8(sizeof(struct sadb_msg)); |
3065 | |
3066 | if (len > MCLBYTES) { |
3067 | return key_senderror(so, m, ENOBUFS); |
3068 | } |
3069 | MGETHDR(n, M_WAITOK, MT_DATA); |
3070 | if (n && len > MHLEN) { |
3071 | MCLGET(n, M_WAITOK); |
3072 | if ((n->m_flags & M_EXT) == 0) { |
3073 | m_freem(n); |
3074 | n = NULL; |
3075 | } |
3076 | } |
3077 | if (!n) { |
3078 | return key_senderror(so, m, ENOBUFS); |
3079 | } |
3080 | |
3081 | n->m_len = len; |
3082 | n->m_next = NULL; |
3083 | off = 0; |
3084 | |
3085 | m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, caddr_t) + off); |
3086 | off += PFKEY_ALIGN8(sizeof(struct sadb_msg)); |
3087 | |
3088 | #if DIAGNOSTIC |
3089 | if (off != len) { |
3090 | panic("length inconsistency in key_spddelete2" ); |
3091 | } |
3092 | #endif |
3093 | |
3094 | n->m_next = m_copym(m, mhp->extoff[SADB_X_EXT_POLICY], |
3095 | mhp->extlen[SADB_X_EXT_POLICY], M_WAITOK); |
3096 | if (!n->m_next) { |
3097 | m_freem(n); |
3098 | return key_senderror(so, m, ENOBUFS); |
3099 | } |
3100 | |
3101 | n->m_pkthdr.len = 0; |
3102 | for (nn = n; nn; nn = nn->m_next) { |
3103 | n->m_pkthdr.len += nn->m_len; |
3104 | } |
3105 | |
3106 | newmsg = mtod(n, struct sadb_msg *); |
3107 | newmsg->sadb_msg_errno = 0; |
3108 | VERIFY(PFKEY_UNIT64(n->m_pkthdr.len) <= UINT16_MAX); |
3109 | newmsg->sadb_msg_len = (u_int16_t)PFKEY_UNIT64(n->m_pkthdr.len); |
3110 | |
3111 | m_freem(m); |
3112 | return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); |
3113 | } |
3114 | } |
3115 | |
3116 | static int |
3117 | key_spdenable( |
3118 | struct socket *so, |
3119 | struct mbuf *m, |
3120 | const struct sadb_msghdr *mhp) |
3121 | { |
3122 | u_int32_t id; |
3123 | struct secpolicy *sp; |
3124 | |
3125 | LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_NOTOWNED); |
3126 | |
3127 | /* sanity check */ |
3128 | if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL) { |
3129 | panic("key_spdenable: NULL pointer is passed." ); |
3130 | } |
3131 | |
3132 | if (mhp->ext[SADB_X_EXT_POLICY] == NULL || |
3133 | mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) { |
3134 | ipseclog((LOG_DEBUG, "key_spdenable: invalid message is passed.\n" )); |
3135 | key_senderror(so, m, EINVAL); |
3136 | return 0; |
3137 | } |
3138 | |
3139 | id = ((struct sadb_x_policy *) |
3140 | (void *)mhp->ext[SADB_X_EXT_POLICY])->sadb_x_policy_id; |
3141 | |
3142 | /* Is there SP in SPD ? */ |
3143 | lck_mtx_lock(sadb_mutex); |
3144 | if ((sp = __key_getspbyid(id)) == NULL) { |
3145 | lck_mtx_unlock(sadb_mutex); |
3146 | ipseclog((LOG_DEBUG, "key_spdenable: no SP found id:%u.\n" , id)); |
3147 | return key_senderror(so, m, EINVAL); |
3148 | } |
3149 | |
3150 | sp->disabled = 0; |
3151 | key_freesp(sp, KEY_SADB_LOCKED); |
3152 | lck_mtx_unlock(sadb_mutex); |
3153 | |
3154 | { |
3155 | struct mbuf *n; |
3156 | struct sadb_msg *newmsg; |
3157 | int mbufItems[] = {SADB_EXT_RESERVED, SADB_X_EXT_POLICY}; |
3158 | |
3159 | /* create new sadb_msg to reply. */ |
3160 | n = key_gather_mbuf(m, mhp, ndeep: 1, nitem: sizeof(mbufItems) / sizeof(int), items: mbufItems); |
3161 | if (!n) { |
3162 | return key_senderror(so, m, ENOBUFS); |
3163 | } |
3164 | |
3165 | if (n->m_len < sizeof(struct sadb_msg)) { |
3166 | n = m_pullup(n, sizeof(struct sadb_msg)); |
3167 | if (n == NULL) { |
3168 | return key_senderror(so, m, ENOBUFS); |
3169 | } |
3170 | } |
3171 | newmsg = mtod(n, struct sadb_msg *); |
3172 | newmsg->sadb_msg_errno = 0; |
3173 | VERIFY(PFKEY_UNIT64(n->m_pkthdr.len) <= UINT16_MAX); |
3174 | newmsg->sadb_msg_len = (u_int16_t)PFKEY_UNIT64(n->m_pkthdr.len); |
3175 | |
3176 | m_freem(m); |
3177 | return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); |
3178 | } |
3179 | } |
3180 | |
3181 | static int |
3182 | key_spddisable( |
3183 | struct socket *so, |
3184 | struct mbuf *m, |
3185 | const struct sadb_msghdr *mhp) |
3186 | { |
3187 | u_int32_t id; |
3188 | struct secpolicy *sp; |
3189 | |
3190 | LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_NOTOWNED); |
3191 | |
3192 | /* sanity check */ |
3193 | if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL) { |
3194 | panic("key_spddisable: NULL pointer is passed." ); |
3195 | } |
3196 | |
3197 | if (mhp->ext[SADB_X_EXT_POLICY] == NULL || |
3198 | mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) { |
3199 | ipseclog((LOG_DEBUG, "key_spddisable: invalid message is passed.\n" )); |
3200 | key_senderror(so, m, EINVAL); |
3201 | return 0; |
3202 | } |
3203 | |
3204 | id = ((struct sadb_x_policy *) |
3205 | (void *)mhp->ext[SADB_X_EXT_POLICY])->sadb_x_policy_id; |
3206 | |
3207 | /* Is there SP in SPD ? */ |
3208 | lck_mtx_lock(sadb_mutex); |
3209 | if ((sp = __key_getspbyid(id)) == NULL) { |
3210 | lck_mtx_unlock(sadb_mutex); |
3211 | ipseclog((LOG_DEBUG, "key_spddisable: no SP found id:%u.\n" , id)); |
3212 | return key_senderror(so, m, EINVAL); |
3213 | } |
3214 | |
3215 | sp->disabled = 1; |
3216 | key_freesp(sp, KEY_SADB_LOCKED); |
3217 | lck_mtx_unlock(sadb_mutex); |
3218 | |
3219 | { |
3220 | struct mbuf *n; |
3221 | struct sadb_msg *newmsg; |
3222 | int mbufItems[] = {SADB_EXT_RESERVED, SADB_X_EXT_POLICY}; |
3223 | |
3224 | /* create new sadb_msg to reply. */ |
3225 | n = key_gather_mbuf(m, mhp, ndeep: 1, nitem: sizeof(mbufItems) / sizeof(int), items: mbufItems); |
3226 | if (!n) { |
3227 | return key_senderror(so, m, ENOBUFS); |
3228 | } |
3229 | |
3230 | if (n->m_len < sizeof(struct sadb_msg)) { |
3231 | n = m_pullup(n, sizeof(struct sadb_msg)); |
3232 | if (n == NULL) { |
3233 | return key_senderror(so, m, ENOBUFS); |
3234 | } |
3235 | } |
3236 | newmsg = mtod(n, struct sadb_msg *); |
3237 | newmsg->sadb_msg_errno = 0; |
3238 | VERIFY(PFKEY_UNIT64(n->m_pkthdr.len) <= UINT16_MAX); |
3239 | newmsg->sadb_msg_len = (u_int16_t)PFKEY_UNIT64(n->m_pkthdr.len); |
3240 | |
3241 | m_freem(m); |
3242 | return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); |
3243 | } |
3244 | } |
3245 | |
3246 | /* |
3247 | * SADB_X_GET processing |
3248 | * receive |
3249 | * <base, policy(*)> |
3250 | * from the user(?), |
3251 | * and send, |
3252 | * <base, address(SD), policy> |
3253 | * to the ikmpd. |
3254 | * policy(*) including direction of policy. |
3255 | * |
3256 | * m will always be freed. |
3257 | */ |
3258 | static int |
3259 | key_spdget( |
3260 | struct socket *so, |
3261 | struct mbuf *m, |
3262 | const struct sadb_msghdr *mhp) |
3263 | { |
3264 | u_int32_t id; |
3265 | struct secpolicy *sp; |
3266 | struct mbuf *n; |
3267 | |
3268 | LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_NOTOWNED); |
3269 | |
3270 | /* sanity check */ |
3271 | if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL) { |
3272 | panic("key_spdget: NULL pointer is passed." ); |
3273 | } |
3274 | |
3275 | if (mhp->ext[SADB_X_EXT_POLICY] == NULL || |
3276 | mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) { |
3277 | ipseclog((LOG_DEBUG, "key_spdget: invalid message is passed.\n" )); |
3278 | return key_senderror(so, m, EINVAL); |
3279 | } |
3280 | |
3281 | id = ((struct sadb_x_policy *) |
3282 | (void *)mhp->ext[SADB_X_EXT_POLICY])->sadb_x_policy_id; |
3283 | |
3284 | /* Is there SP in SPD ? */ |
3285 | lck_mtx_lock(sadb_mutex); |
3286 | if ((sp = __key_getspbyid(id)) == NULL) { |
3287 | ipseclog((LOG_DEBUG, "key_spdget: no SP found id:%u.\n" , id)); |
3288 | lck_mtx_unlock(sadb_mutex); |
3289 | return key_senderror(so, m, ENOENT); |
3290 | } |
3291 | lck_mtx_unlock(sadb_mutex); |
3292 | n = key_setdumpsp(sp, SADB_X_SPDGET, 0, mhp->msg->sadb_msg_pid); |
3293 | key_freesp(sp, KEY_SADB_UNLOCKED); |
3294 | if (n != NULL) { |
3295 | m_freem(m); |
3296 | return key_sendup_mbuf(so, n, KEY_SENDUP_ONE); |
3297 | } else { |
3298 | return key_senderror(so, m, ENOBUFS); |
3299 | } |
3300 | } |
3301 | |
3302 | /* |
3303 | * SADB_X_SPDACQUIRE processing. |
3304 | * Acquire policy and SA(s) for a *OUTBOUND* packet. |
3305 | * send |
3306 | * <base, policy(*)> |
3307 | * to KMD, and expect to receive |
3308 | * <base> with SADB_X_SPDACQUIRE if error occurred, |
3309 | * or |
3310 | * <base, policy> |
3311 | * with SADB_X_SPDUPDATE from KMD by PF_KEY. |
3312 | * policy(*) is without policy requests. |
3313 | * |
3314 | * 0 : succeed |
3315 | * others: error number |
3316 | */ |
3317 | int |
3318 | key_spdacquire( |
3319 | struct secpolicy *sp) |
3320 | { |
3321 | struct mbuf *result = NULL, *m; |
3322 | struct secspacq *newspacq; |
3323 | int error; |
3324 | |
3325 | LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_NOTOWNED); |
3326 | |
3327 | /* sanity check */ |
3328 | if (sp == NULL) { |
3329 | panic("key_spdacquire: NULL pointer is passed." ); |
3330 | } |
3331 | if (sp->req != NULL) { |
3332 | panic("key_spdacquire: called but there is request." ); |
3333 | } |
3334 | if (sp->policy != IPSEC_POLICY_IPSEC) { |
3335 | panic("key_spdacquire: policy mismathed. IPsec is expected." ); |
3336 | } |
3337 | |
3338 | /* get a entry to check whether sent message or not. */ |
3339 | lck_mtx_lock(sadb_mutex); |
3340 | sp->refcnt++; |
3341 | if ((newspacq = key_getspacq(&sp->spidx)) != NULL) { |
3342 | key_freesp(sp, KEY_SADB_LOCKED); |
3343 | if (key_blockacq_count < newspacq->count) { |
3344 | /* reset counter and do send message. */ |
3345 | newspacq->count = 0; |
3346 | } else { |
3347 | /* increment counter and do nothing. */ |
3348 | newspacq->count++; |
3349 | lck_mtx_unlock(sadb_mutex); |
3350 | return 0; |
3351 | } |
3352 | } else { |
3353 | /* make new entry for blocking to send SADB_ACQUIRE. */ |
3354 | if ((newspacq = key_newspacq(&sp->spidx)) == NULL) { |
3355 | key_freesp(sp, KEY_SADB_LOCKED); |
3356 | lck_mtx_unlock(sadb_mutex); |
3357 | return ENOBUFS; |
3358 | } |
3359 | key_freesp(sp, KEY_SADB_LOCKED); |
3360 | /* add to acqtree */ |
3361 | LIST_INSERT_HEAD(&spacqtree, newspacq, chain); |
3362 | key_start_timehandler(); |
3363 | } |
3364 | lck_mtx_unlock(sadb_mutex); |
3365 | /* create new sadb_msg to reply. */ |
3366 | m = key_setsadbmsg(SADB_X_SPDACQUIRE, 0, 0, 0, 0, 0); |
3367 | if (!m) { |
3368 | error = ENOBUFS; |
3369 | goto fail; |
3370 | } |
3371 | result = m; |
3372 | |
3373 | result->m_pkthdr.len = 0; |
3374 | for (m = result; m; m = m->m_next) { |
3375 | result->m_pkthdr.len += m->m_len; |
3376 | } |
3377 | |
3378 | VERIFY(PFKEY_UNIT64(result->m_pkthdr.len) <= UINT16_MAX); |
3379 | mtod(result, struct sadb_msg *)->sadb_msg_len = |
3380 | (u_int16_t)PFKEY_UNIT64(result->m_pkthdr.len); |
3381 | |
3382 | return key_sendup_mbuf(NULL, m, KEY_SENDUP_REGISTERED); |
3383 | |
3384 | fail: |
3385 | if (result) { |
3386 | m_freem(result); |
3387 | } |
3388 | return error; |
3389 | } |
3390 | |
3391 | /* |
3392 | * SADB_SPDFLUSH processing |
3393 | * receive |
3394 | * <base> |
3395 | * from the user, and free all entries in secpctree. |
3396 | * and send, |
3397 | * <base> |
3398 | * to the user. |
3399 | * NOTE: what to do is only marking SADB_SASTATE_DEAD. |
3400 | * |
3401 | * m will always be freed. |
3402 | */ |
3403 | static int |
3404 | key_spdflush( |
3405 | struct socket *so, |
3406 | struct mbuf *m, |
3407 | const struct sadb_msghdr *mhp) |
3408 | { |
3409 | struct sadb_msg *newmsg; |
3410 | struct secpolicy *sp; |
3411 | u_int dir; |
3412 | |
3413 | /* sanity check */ |
3414 | if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL) { |
3415 | panic("key_spdflush: NULL pointer is passed." ); |
3416 | } |
3417 | |
3418 | if (m->m_len != PFKEY_ALIGN8(sizeof(struct sadb_msg))) { |
3419 | return key_senderror(so, m, EINVAL); |
3420 | } |
3421 | |
3422 | lck_mtx_lock(sadb_mutex); |
3423 | for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { |
3424 | LIST_FOREACH(sp, &sptree[dir], chain) { |
3425 | sp->state = IPSEC_SPSTATE_DEAD; |
3426 | } |
3427 | } |
3428 | lck_mtx_unlock(sadb_mutex); |
3429 | |
3430 | if (sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) { |
3431 | ipseclog((LOG_DEBUG, "key_spdflush: No more memory.\n" )); |
3432 | return key_senderror(so, m, ENOBUFS); |
3433 | } |
3434 | |
3435 | if (m->m_next) { |
3436 | m_freem(m->m_next); |
3437 | } |
3438 | m->m_next = NULL; |
3439 | m->m_pkthdr.len = m->m_len = PFKEY_ALIGN8(sizeof(struct sadb_msg)); |
3440 | newmsg = mtod(m, struct sadb_msg *); |
3441 | newmsg->sadb_msg_errno = 0; |
3442 | newmsg->sadb_msg_len = (u_int16_t)PFKEY_UNIT64(m->m_pkthdr.len); |
3443 | |
3444 | return key_sendup_mbuf(so, m, KEY_SENDUP_ALL); |
3445 | } |
3446 | |
3447 | /* |
3448 | * SADB_SPDDUMP processing |
3449 | * receive |
3450 | * <base> |
3451 | * from the user, and dump all SP leaves |
3452 | * and send, |
3453 | * <base> ..... |
3454 | * to the ikmpd. |
3455 | * |
3456 | * m will always be freed. |
3457 | */ |
3458 | |
3459 | static int |
3460 | key_spddump( |
3461 | struct socket *so, |
3462 | struct mbuf *m, |
3463 | const struct sadb_msghdr *mhp) |
3464 | { |
3465 | struct secpolicy *sp, **spbuf = NULL, **sp_ptr; |
3466 | u_int32_t cnt = 0, bufcount = 0; |
3467 | u_int dir; |
3468 | struct mbuf *n; |
3469 | int error = 0; |
3470 | |
3471 | /* sanity check */ |
3472 | if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL) { |
3473 | panic("key_spddump: NULL pointer is passed." ); |
3474 | } |
3475 | |
3476 | if ((bufcount = ipsec_policy_count) == 0) { |
3477 | error = ENOENT; |
3478 | goto end; |
3479 | } |
3480 | |
3481 | if (os_add_overflow(bufcount, 256, &bufcount)) { |
3482 | ipseclog((LOG_DEBUG, "key_spddump: bufcount overflow, ipsec policy count %u.\n" , ipsec_policy_count)); |
3483 | bufcount = ipsec_policy_count; |
3484 | } |
3485 | |
3486 | spbuf = kalloc_type(struct secpolicy *, bufcount, Z_WAITOK); |
3487 | if (spbuf == NULL) { |
3488 | ipseclog((LOG_DEBUG, "key_spddump: No more memory.\n" )); |
3489 | error = ENOMEM; |
3490 | goto end; |
3491 | } |
3492 | lck_mtx_lock(sadb_mutex); |
3493 | /* search SPD entry, make list. */ |
3494 | sp_ptr = spbuf; |
3495 | for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { |
3496 | LIST_FOREACH(sp, &sptree[dir], chain) { |
3497 | if (cnt == bufcount) { |
3498 | break; /* buffer full */ |
3499 | } |
3500 | *sp_ptr++ = sp; |
3501 | sp->refcnt++; |
3502 | cnt++; |
3503 | } |
3504 | } |
3505 | lck_mtx_unlock(sadb_mutex); |
3506 | |
3507 | if (cnt == 0) { |
3508 | error = ENOENT; |
3509 | goto end; |
3510 | } |
3511 | |
3512 | sp_ptr = spbuf; |
3513 | while (cnt) { |
3514 | --cnt; |
3515 | n = key_setdumpsp(*sp_ptr++, SADB_X_SPDDUMP, cnt, |
3516 | mhp->msg->sadb_msg_pid); |
3517 | |
3518 | if (n) { |
3519 | key_sendup_mbuf(so, n, KEY_SENDUP_ONE); |
3520 | } |
3521 | } |
3522 | |
3523 | lck_mtx_lock(sadb_mutex); |
3524 | while (sp_ptr > spbuf) { |
3525 | key_freesp(sp: *(--sp_ptr), KEY_SADB_LOCKED); |
3526 | } |
3527 | lck_mtx_unlock(sadb_mutex); |
3528 | |
3529 | end: |
3530 | kfree_type(struct secpolicy *, bufcount, spbuf); |
3531 | if (error) { |
3532 | return key_senderror(so, m, error); |
3533 | } |
3534 | |
3535 | m_freem(m); |
3536 | return 0; |
3537 | } |
3538 | |
3539 | static struct mbuf * |
3540 | key_setdumpsp( |
3541 | struct secpolicy *sp, |
3542 | u_int8_t msg_type, |
3543 | u_int32_t seq, |
3544 | u_int32_t pid) |
3545 | { |
3546 | struct mbuf *result = NULL, *m; |
3547 | |
3548 | m = key_setsadbmsg(msg_type, 0, SADB_SATYPE_UNSPEC, seq, pid, (u_int16_t)sp->refcnt); |
3549 | if (!m) { |
3550 | goto fail; |
3551 | } |
3552 | result = m; |
3553 | |
3554 | if (sp->spidx.src_range.start.ss_len > 0) { |
3555 | m = key_setsadbaddr(SADB_X_EXT_ADDR_RANGE_SRC_START, |
3556 | (struct sockaddr *)&sp->spidx.src_range.start, sp->spidx.prefs, |
3557 | sp->spidx.ul_proto); |
3558 | if (!m) { |
3559 | goto fail; |
3560 | } |
3561 | m_cat(result, m); |
3562 | |
3563 | m = key_setsadbaddr(SADB_X_EXT_ADDR_RANGE_SRC_END, |
3564 | (struct sockaddr *)&sp->spidx.src_range.end, sp->spidx.prefs, |
3565 | sp->spidx.ul_proto); |
3566 | if (!m) { |
3567 | goto fail; |
3568 | } |
3569 | m_cat(result, m); |
3570 | } else { |
3571 | m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, |
3572 | (struct sockaddr *)&sp->spidx.src, sp->spidx.prefs, |
3573 | sp->spidx.ul_proto); |
3574 | if (!m) { |
3575 | goto fail; |
3576 | } |
3577 | m_cat(result, m); |
3578 | } |
3579 | |
3580 | if (sp->spidx.dst_range.start.ss_len > 0) { |
3581 | m = key_setsadbaddr(SADB_X_EXT_ADDR_RANGE_DST_START, |
3582 | (struct sockaddr *)&sp->spidx.dst_range.start, sp->spidx.prefd, |
3583 | sp->spidx.ul_proto); |
3584 | if (!m) { |
3585 | goto fail; |
3586 | } |
3587 | m_cat(result, m); |
3588 | |
3589 | m = key_setsadbaddr(SADB_X_EXT_ADDR_RANGE_DST_END, |
3590 | (struct sockaddr *)&sp->spidx.dst_range.end, sp->spidx.prefd, |
3591 | sp->spidx.ul_proto); |
3592 | if (!m) { |
3593 | goto fail; |
3594 | } |
3595 | m_cat(result, m); |
3596 | } else { |
3597 | m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, |
3598 | (struct sockaddr *)&sp->spidx.dst, sp->spidx.prefd, |
3599 | sp->spidx.ul_proto); |
3600 | if (!m) { |
3601 | goto fail; |
3602 | } |
3603 | m_cat(result, m); |
3604 | } |
3605 | |
3606 | if (sp->spidx.internal_if || sp->outgoing_if || sp->ipsec_if || sp->disabled) { |
3607 | m = key_setsadbipsecif(sp->spidx.internal_if, sp->outgoing_if, sp->ipsec_if, sp->disabled); |
3608 | if (!m) { |
3609 | goto fail; |
3610 | } |
3611 | m_cat(result, m); |
3612 | } |
3613 | |
3614 | m = key_sp2msg(sp); |
3615 | if (!m) { |
3616 | goto fail; |
3617 | } |
3618 | m_cat(result, m); |
3619 | |
3620 | if ((result->m_flags & M_PKTHDR) == 0) { |
3621 | goto fail; |
3622 | } |
3623 | |
3624 | if (result->m_len < sizeof(struct sadb_msg)) { |
3625 | result = m_pullup(result, sizeof(struct sadb_msg)); |
3626 | if (result == NULL) { |
3627 | goto fail; |
3628 | } |
3629 | } |
3630 | |
3631 | result->m_pkthdr.len = 0; |
3632 | for (m = result; m; m = m->m_next) { |
3633 | result->m_pkthdr.len += m->m_len; |
3634 | } |
3635 | |
3636 | if (PFKEY_UNIT64(result->m_pkthdr.len) >= UINT16_MAX) { |
3637 | ipseclog((LOG_DEBUG, "key_setdumpsp: packet header length > UINT16_MAX\n" )); |
3638 | goto fail; |
3639 | } |
3640 | |
3641 | mtod(result, struct sadb_msg *)->sadb_msg_len = |
3642 | (u_int16_t)PFKEY_UNIT64(result->m_pkthdr.len); |
3643 | |
3644 | return result; |
3645 | |
3646 | fail: |
3647 | m_freem(result); |
3648 | return NULL; |
3649 | } |
3650 | |
3651 | /* |
3652 | * get PFKEY message length for security policy and request. |
3653 | */ |
3654 | static u_int |
3655 | key_getspreqmsglen( |
3656 | struct secpolicy *sp) |
3657 | { |
3658 | u_int tlen; |
3659 | |
3660 | tlen = sizeof(struct sadb_x_policy); |
3661 | |
3662 | /* if is the policy for ipsec ? */ |
3663 | if (sp->policy != IPSEC_POLICY_IPSEC) { |
3664 | return tlen; |
3665 | } |
3666 | |
3667 | /* get length of ipsec requests */ |
3668 | { |
3669 | struct ipsecrequest *isr; |
3670 | int len; |
3671 | |
3672 | for (isr = sp->req; isr != NULL; isr = isr->next) { |
3673 | len = sizeof(struct sadb_x_ipsecrequest) |
3674 | + isr->saidx.src.ss_len |
3675 | + isr->saidx.dst.ss_len; |
3676 | |
3677 | tlen += PFKEY_ALIGN8(len); |
3678 | } |
3679 | } |
3680 | |
3681 | return tlen; |
3682 | } |
3683 | |
3684 | /* |
3685 | * SADB_SPDEXPIRE processing |
3686 | * send |
3687 | * <base, address(SD), lifetime(CH), policy> |
3688 | * to KMD by PF_KEY. |
3689 | * |
3690 | * OUT: 0 : succeed |
3691 | * others : error number |
3692 | */ |
3693 | static int |
3694 | key_spdexpire( |
3695 | struct secpolicy *sp) |
3696 | { |
3697 | struct mbuf *result = NULL, *m; |
3698 | int len; |
3699 | int error = EINVAL; |
3700 | struct sadb_lifetime *lt; |
3701 | |
3702 | LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_NOTOWNED); |
3703 | |
3704 | /* sanity check */ |
3705 | if (sp == NULL) { |
3706 | panic("key_spdexpire: NULL pointer is passed." ); |
3707 | } |
3708 | |
3709 | /* set msg header */ |
3710 | m = key_setsadbmsg(SADB_X_SPDEXPIRE, 0, 0, 0, 0, 0); |
3711 | if (!m) { |
3712 | error = ENOBUFS; |
3713 | goto fail; |
3714 | } |
3715 | result = m; |
3716 | |
3717 | /* create lifetime extension (current and hard) */ |
3718 | len = PFKEY_ALIGN8(sizeof(*lt)) * 2; |
3719 | m = key_alloc_mbuf(len); |
3720 | if (!m || m->m_next) { /*XXX*/ |
3721 | if (m) { |
3722 | m_freem(m); |
3723 | } |
3724 | error = ENOBUFS; |
3725 | goto fail; |
3726 | } |
3727 | bzero(mtod(m, caddr_t), n: len); |
3728 | lt = mtod(m, struct sadb_lifetime *); |
3729 | lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime)); |
3730 | lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT; |
3731 | lt->sadb_lifetime_allocations = 0; |
3732 | lt->sadb_lifetime_bytes = 0; |
3733 | lt->sadb_lifetime_addtime = key_convert_continuous_time_ns(time_value: sp->created); |
3734 | lt->sadb_lifetime_usetime = key_convert_continuous_time_ns(time_value: sp->lastused); |
3735 | lt = (struct sadb_lifetime *)(void *)(mtod(m, caddr_t) + len / 2); |
3736 | lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime)); |
3737 | lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD; |
3738 | lt->sadb_lifetime_allocations = 0; |
3739 | lt->sadb_lifetime_bytes = 0; |
3740 | lt->sadb_lifetime_addtime = sp->lifetime / NSEC_PER_SEC; |
3741 | lt->sadb_lifetime_usetime = sp->validtime / NSEC_PER_SEC; |
3742 | m_cat(result, m); |
3743 | |
3744 | /* set sadb_address(es) for source */ |
3745 | if (sp->spidx.src_range.start.ss_len > 0) { |
3746 | m = key_setsadbaddr(SADB_X_EXT_ADDR_RANGE_SRC_START, |
3747 | (struct sockaddr *)&sp->spidx.src_range.start, sp->spidx.prefs, |
3748 | sp->spidx.ul_proto); |
3749 | if (!m) { |
3750 | error = ENOBUFS; |
3751 | goto fail; |
3752 | } |
3753 | m_cat(result, m); |
3754 | |
3755 | m = key_setsadbaddr(SADB_X_EXT_ADDR_RANGE_SRC_END, |
3756 | (struct sockaddr *)&sp->spidx.src_range.end, sp->spidx.prefs, |
3757 | sp->spidx.ul_proto); |
3758 | if (!m) { |
3759 | error = ENOBUFS; |
3760 | goto fail; |
3761 | } |
3762 | m_cat(result, m); |
3763 | } else { |
3764 | m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, |
3765 | (struct sockaddr *)&sp->spidx.src, sp->spidx.prefs, |
3766 | sp->spidx.ul_proto); |
3767 | if (!m) { |
3768 | error = ENOBUFS; |
3769 | goto fail; |
3770 | } |
3771 | m_cat(result, m); |
3772 | } |
3773 | |
3774 | /* set sadb_address(es) for dest */ |
3775 | if (sp->spidx.dst_range.start.ss_len > 0) { |
3776 | m = key_setsadbaddr(SADB_X_EXT_ADDR_RANGE_DST_START, |
3777 | (struct sockaddr *)&sp->spidx.dst_range.start, sp->spidx.prefd, |
3778 | sp->spidx.ul_proto); |
3779 | if (!m) { |
3780 | error = ENOBUFS; |
3781 | goto fail; |
3782 | } |
3783 | m_cat(result, m); |
3784 | |
3785 | m = key_setsadbaddr(SADB_X_EXT_ADDR_RANGE_DST_END, |
3786 | (struct sockaddr *)&sp->spidx.dst_range.end, sp->spidx.prefd, |
3787 | sp->spidx.ul_proto); |
3788 | if (!m) { |
3789 | error = ENOBUFS; |
3790 | goto fail; |
3791 | } |
3792 | m_cat(result, m); |
3793 | } else { |
3794 | m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, |
3795 | (struct sockaddr *)&sp->spidx.dst, sp->spidx.prefd, |
3796 | sp->spidx.ul_proto); |
3797 | if (!m) { |
3798 | error = ENOBUFS; |
3799 | goto fail; |
3800 | } |
3801 | m_cat(result, m); |
3802 | } |
3803 | |
3804 | /* set secpolicy */ |
3805 | m = key_sp2msg(sp); |
3806 | if (!m) { |
3807 | error = ENOBUFS; |
3808 | goto fail; |
3809 | } |
3810 | m_cat(result, m); |
3811 | |
3812 | if ((result->m_flags & M_PKTHDR) == 0) { |
3813 | error = EINVAL; |
3814 | goto fail; |
3815 | } |
3816 | |
3817 | if (result->m_len < sizeof(struct sadb_msg)) { |
3818 | result = m_pullup(result, sizeof(struct sadb_msg)); |
3819 | if (result == NULL) { |
3820 | error = ENOBUFS; |
3821 | goto fail; |
3822 | } |
3823 | } |
3824 | |
3825 | result->m_pkthdr.len = 0; |
3826 | for (m = result; m; m = m->m_next) { |
3827 | result->m_pkthdr.len += m->m_len; |
3828 | } |
3829 | |
3830 | if (PFKEY_UNIT64(result->m_pkthdr.len) >= UINT16_MAX) { |
3831 | ipseclog((LOG_DEBUG, "key_setdumpsp: packet header length > UINT16_MAX\n" )); |
3832 | goto fail; |
3833 | } |
3834 | |
3835 | mtod(result, struct sadb_msg *)->sadb_msg_len = |
3836 | (u_int16_t)PFKEY_UNIT64(result->m_pkthdr.len); |
3837 | |
3838 | return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED); |
3839 | |
3840 | fail: |
3841 | if (result) { |
3842 | m_freem(result); |
3843 | } |
3844 | return error; |
3845 | } |
3846 | |
3847 | /* %%% SAD management */ |
3848 | /* |
3849 | * allocating a memory for new SA head, and copy from the values of mhp. |
3850 | * OUT: NULL : failure due to the lack of memory. |
3851 | * others : pointer to new SA head. |
3852 | */ |
3853 | static struct secashead * |
3854 | key_newsah(struct secasindex *saidx, |
3855 | ifnet_t ipsec_if, |
3856 | u_int outgoing_if, |
3857 | u_int8_t dir, |
3858 | u_int16_t flags) |
3859 | { |
3860 | struct secashead *newsah; |
3861 | |
3862 | /* sanity check */ |
3863 | if (saidx == NULL) { |
3864 | panic("key_newsaidx: NULL pointer is passed." ); |
3865 | } |
3866 | |
3867 | VERIFY(flags == SECURITY_ASSOCIATION_PFKEY || flags == SECURITY_ASSOCIATION_CUSTOM_IPSEC); |
3868 | |
3869 | newsah = keydb_newsecashead(); |
3870 | if (newsah == NULL) { |
3871 | return NULL; |
3872 | } |
3873 | |
3874 | bcopy(src: saidx, dst: &newsah->saidx, n: sizeof(newsah->saidx)); |
3875 | |
3876 | /* remove the ports */ |
3877 | switch (saidx->src.ss_family) { |
3878 | case AF_INET: |
3879 | ((struct sockaddr_in *)(&newsah->saidx.src))->sin_port = IPSEC_PORT_ANY; |
3880 | break; |
3881 | case AF_INET6: |
3882 | ((struct sockaddr_in6 *)(&newsah->saidx.src))->sin6_port = IPSEC_PORT_ANY; |
3883 | break; |
3884 | default: |
3885 | break; |
3886 | } |
3887 | switch (saidx->dst.ss_family) { |
3888 | case AF_INET: |
3889 | ((struct sockaddr_in *)(&newsah->saidx.dst))->sin_port = IPSEC_PORT_ANY; |
3890 | break; |
3891 | case AF_INET6: |
3892 | ((struct sockaddr_in6 *)(&newsah->saidx.dst))->sin6_port = IPSEC_PORT_ANY; |
3893 | break; |
3894 | default: |
3895 | break; |
3896 | } |
3897 | |
3898 | newsah->outgoing_if = outgoing_if; |
3899 | if (ipsec_if) { |
3900 | ifnet_reference(interface: ipsec_if); |
3901 | newsah->ipsec_if = ipsec_if; |
3902 | } |
3903 | newsah->dir = dir; |
3904 | /* add to saidxtree */ |
3905 | newsah->state = SADB_SASTATE_MATURE; |
3906 | newsah->flags = flags; |
3907 | |
3908 | if (flags == SECURITY_ASSOCIATION_PFKEY) { |
3909 | LIST_INSERT_HEAD(&sahtree, newsah, chain); |
3910 | } else { |
3911 | LIST_INSERT_HEAD(&custom_sahtree, newsah, chain); |
3912 | } |
3913 | key_start_timehandler(); |
3914 | |
3915 | return newsah; |
3916 | } |
3917 | |
3918 | /* |
3919 | * delete SA index and all SA registered. |
3920 | */ |
3921 | void |
3922 | key_delsah( |
3923 | struct secashead *sah) |
3924 | { |
3925 | struct secasvar *sav, *nextsav; |
3926 | u_int stateidx, state; |
3927 | int zombie = 0; |
3928 | |
3929 | LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_OWNED); |
3930 | |
3931 | /* sanity check */ |
3932 | if (sah == NULL) { |
3933 | panic("key_delsah: NULL pointer is passed." ); |
3934 | } |
3935 | |
3936 | if (sah->use_count > 0) { |
3937 | return; |
3938 | } |
3939 | |
3940 | /* searching all SA registered in the secindex. */ |
3941 | for (stateidx = 0; |
3942 | stateidx < _ARRAYLEN(saorder_state_any); |
3943 | stateidx++) { |
3944 | state = saorder_state_any[stateidx]; |
3945 | for (sav = (struct secasvar *)LIST_FIRST(&sah->savtree[state]); |
3946 | sav != NULL; |
3947 | sav = nextsav) { |
3948 | nextsav = LIST_NEXT(sav, chain); |
3949 | |
3950 | if (sav->refcnt > 0) { |
3951 | /* give up to delete this sa */ |
3952 | zombie++; |
3953 | continue; |
3954 | } |
3955 | |
3956 | /* sanity check */ |
3957 | KEY_CHKSASTATE(state, sav->state, "key_delsah" ); |
3958 | |
3959 | key_freesav(sav, KEY_SADB_LOCKED); |
3960 | |
3961 | /* remove back pointer */ |
3962 | sav->sah = NULL; |
3963 | sav = NULL; |
3964 | } |
3965 | } |
3966 | |
3967 | /* don't delete sah only if there are savs. */ |
3968 | if (zombie) { |
3969 | return; |
3970 | } |
3971 | |
3972 | ROUTE_RELEASE(&sah->sa_route); |
3973 | |
3974 | if (sah->ipsec_if) { |
3975 | ifnet_release(interface: sah->ipsec_if); |
3976 | sah->ipsec_if = NULL; |
3977 | } |
3978 | |
3979 | /* remove from tree of SA index */ |
3980 | if (__LIST_CHAINED(sah)) { |
3981 | LIST_REMOVE(sah, chain); |
3982 | } |
3983 | |
3984 | kfree_type(struct secashead, sah); |
3985 | } |
3986 | |
3987 | /* |
3988 | * allocating a new SA with LARVAL state. key_add() and key_getspi() call, |
3989 | * and copy the values of mhp into new buffer. |
3990 | * When SAD message type is GETSPI: |
3991 | * to set sequence number from acq_seq++, |
3992 | * to set zero to SPI. |
3993 | * not to call key_setsava(). |
3994 | * OUT: NULL : fail |
3995 | * others : pointer to new secasvar. |
3996 | * |
3997 | * does not modify mbuf. does not free mbuf on error. |
3998 | */ |
3999 | static struct secasvar * |
4000 | key_newsav( |
4001 | struct mbuf *m, |
4002 | const struct sadb_msghdr *mhp, |
4003 | struct secashead *sah, |
4004 | int *errp, |
4005 | struct socket *so) |
4006 | { |
4007 | struct secasvar *newsav; |
4008 | const struct sadb_sa *xsa; |
4009 | |
4010 | LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_OWNED); |
4011 | |
4012 | /* sanity check */ |
4013 | if (m == NULL || mhp == NULL || mhp->msg == NULL || sah == NULL) { |
4014 | panic("key_newsa: NULL pointer is passed." ); |
4015 | } |
4016 | |
4017 | newsav = kalloc_type(struct secasvar, Z_NOWAIT_ZERO); |
4018 | if (newsav == NULL) { |
4019 | lck_mtx_unlock(sadb_mutex); |
4020 | newsav = kalloc_type(struct secasvar, Z_WAITOK_ZERO_NOFAIL); |
4021 | lck_mtx_lock(sadb_mutex); |
4022 | } |
4023 | |
4024 | switch (mhp->msg->sadb_msg_type) { |
4025 | case SADB_GETSPI: |
4026 | key_setspi(newsav, 0); |
4027 | newsav->seq = mhp->msg->sadb_msg_seq; |
4028 | break; |
4029 | |
4030 | case SADB_ADD: |
4031 | /* sanity check */ |
4032 | if (mhp->ext[SADB_EXT_SA] == NULL) { |
4033 | key_delsav(sav: newsav); |
4034 | ipseclog((LOG_DEBUG, "key_newsa: invalid message is passed.\n" )); |
4035 | *errp = EINVAL; |
4036 | return NULL; |
4037 | } |
4038 | xsa = (struct sadb_sa *)(void *)mhp->ext[SADB_EXT_SA]; |
4039 | key_setspi(newsav, xsa->sadb_sa_spi); |
4040 | newsav->seq = mhp->msg->sadb_msg_seq; |
4041 | break; |
4042 | default: |
4043 | key_delsav(sav: newsav); |
4044 | *errp = EINVAL; |
4045 | return NULL; |
4046 | } |
4047 | |
4048 | if (mhp->ext[SADB_X_EXT_SA2] != NULL) { |
4049 | if (((struct sadb_x_sa2 *)(void *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_alwaysexpire) { |
4050 | newsav->always_expire = 1; |
4051 | } |
4052 | newsav->flags2 = ((struct sadb_x_sa2 *)(void *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_flags; |
4053 | if (newsav->flags2 & SADB_X_EXT_SA2_DELETE_ON_DETACH) { |
4054 | newsav->so = so; |
4055 | } |
4056 | } |
4057 | |
4058 | // Get current continuous time |
4059 | const u_int64_t current_time_ns = key_get_continuous_time_ns(); |
4060 | |
4061 | /* copy sav values */ |
4062 | if (mhp->msg->sadb_msg_type != SADB_GETSPI) { |
4063 | *errp = key_setsaval(newsav, m, mhp); |
4064 | if (*errp) { |
4065 | key_delsav(sav: newsav); |
4066 | return NULL; |
4067 | } |
4068 | } else { |
4069 | /* For get SPI, if has a hard lifetime, apply */ |
4070 | const struct sadb_lifetime *lft0; |
4071 | |
4072 | lft0 = (struct sadb_lifetime *)(void *)mhp->ext[SADB_EXT_LIFETIME_HARD]; |
4073 | if (lft0 != NULL) { |
4074 | /* make lifetime for CURRENT */ |
4075 | newsav->lft_c = kalloc_type(struct sadb_lifetime, Z_NOWAIT); |
4076 | if (newsav->lft_c == NULL) { |
4077 | lck_mtx_unlock(sadb_mutex); |
4078 | newsav->lft_c = kalloc_type(struct sadb_lifetime, |
4079 | Z_WAITOK | Z_NOFAIL); |
4080 | lck_mtx_lock(sadb_mutex); |
4081 | } |
4082 | |
4083 | newsav->lft_c->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime)); |
4084 | newsav->lft_c->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT; |
4085 | newsav->lft_c->sadb_lifetime_allocations = 0; |
4086 | newsav->lft_c->sadb_lifetime_bytes = 0; |
4087 | newsav->lft_c->sadb_lifetime_addtime = current_time_ns; |
4088 | newsav->lft_c->sadb_lifetime_usetime = 0; |
4089 | |
4090 | if (mhp->extlen[SADB_EXT_LIFETIME_HARD] < sizeof(*lft0)) { |
4091 | ipseclog((LOG_DEBUG, "key_newsa: invalid hard lifetime ext len.\n" )); |
4092 | key_delsav(sav: newsav); |
4093 | *errp = EINVAL; |
4094 | return NULL; |
4095 | } |
4096 | newsav->lft_h = key_newbuf(lft0, sizeof(*lft0)); |
4097 | } |
4098 | } |
4099 | |
4100 | /* reset created */ |
4101 | newsav->created = current_time_ns; |
4102 | |
4103 | newsav->pid = mhp->msg->sadb_msg_pid; |
4104 | |
4105 | /* add to satree */ |
4106 | newsav->sah = sah; |
4107 | newsav->refcnt = 1; |
4108 | newsav->state = SADB_SASTATE_LARVAL; |
4109 | LIST_INSERT_TAIL(&sah->savtree[SADB_SASTATE_LARVAL], newsav, |
4110 | secasvar, chain); |
4111 | ipsec_sav_count++; |
4112 | ipsec_monitor_sleep_wake(); |
4113 | |
4114 | return newsav; |
4115 | } |
4116 | |
4117 | static int |
4118 | key_migratesav(struct secasvar *sav, |
4119 | struct secashead *newsah) |
4120 | { |
4121 | if (sav == NULL || newsah == NULL || sav->state != SADB_SASTATE_MATURE) { |
4122 | return EINVAL; |
4123 | } |
4124 | |
4125 | /* remove from SA header */ |
4126 | if (__LIST_CHAINED(sav)) { |
4127 | LIST_REMOVE(sav, chain); |
4128 | } |
4129 | |
4130 | sav->sah = newsah; |
4131 | LIST_INSERT_TAIL(&newsah->savtree[SADB_SASTATE_MATURE], sav, secasvar, chain); |
4132 | return 0; |
4133 | } |
4134 | |
4135 | static void |
4136 | key_reset_sav(struct secasvar *sav) |
4137 | { |
4138 | LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_OWNED); |
4139 | |
4140 | /* sanity check */ |
4141 | if (sav == NULL) { |
4142 | panic("key_delsav: NULL pointer is passed." ); |
4143 | } |
4144 | |
4145 | sav->remote_ike_port = 0; |
4146 | sav->natt_encapsulated_src_port = 0; |
4147 | |
4148 | if (sav->key_auth != NULL) { |
4149 | bzero(_KEYBUF(sav->key_auth), _KEYLEN(sav->key_auth)); |
4150 | kfree_data(sav->key_auth, PFKEY_UNUNIT64(sav->key_auth->sadb_key_len)); |
4151 | sav->key_auth = NULL; |
4152 | } |
4153 | if (sav->key_enc != NULL) { |
4154 | bzero(_KEYBUF(sav->key_enc), _KEYLEN(sav->key_enc)); |
4155 | kfree_data(sav->key_enc, PFKEY_UNUNIT64(sav->key_enc->sadb_key_len)); |
4156 | sav->key_enc = NULL; |
4157 | } |
4158 | if (sav->sched_auth) { |
4159 | bzero(s: sav->sched_auth, n: sav->schedlen_auth); |
4160 | kfree_data(sav->sched_auth, sav->schedlen_auth); |
4161 | sav->sched_auth = NULL; |
4162 | sav->schedlen_auth = 0; |
4163 | } |
4164 | if (sav->sched_enc) { |
4165 | bzero(s: sav->sched_enc, n: sav->schedlen_enc); |
4166 | kfree_data(sav->sched_enc, sav->schedlen_enc); |
4167 | sav->sched_enc = NULL; |
4168 | sav->schedlen_enc = 0; |
4169 | } |
4170 | |
4171 | for (int i = 0; i < MAX_REPLAY_WINDOWS; i++) { |
4172 | if (sav->replay[i] != NULL) { |
4173 | keydb_delsecreplay(sav->replay[i]); |
4174 | sav->replay[i] = NULL; |
4175 | } |
4176 | } |
4177 | if (sav->lft_c != NULL) { |
4178 | kfree_type(struct sadb_lifetime, sav->lft_c); |
4179 | sav->lft_c = NULL; |
4180 | } |
4181 | if (sav->lft_h != NULL) { |
4182 | kfree_data(sav->lft_h, sizeof(*sav->lft_h)); |
4183 | sav->lft_h = NULL; |
4184 | } |
4185 | if (sav->lft_s != NULL) { |
4186 | kfree_data(sav->lft_s, sizeof(*sav->lft_h)); |
4187 | sav->lft_s = NULL; |
4188 | } |
4189 | if (sav->iv != NULL) { |
4190 | kfree_data(sav->iv, sav->ivlen); |
4191 | sav->iv = NULL; |
4192 | } |
4193 | key_release_flowid(sav); |
4194 | return; |
4195 | } |
4196 | |
4197 | /* |
4198 | * free() SA variable entry. |
4199 | */ |
4200 | void |
4201 | key_delsav( |
4202 | struct secasvar *sav) |
4203 | { |
4204 | LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_OWNED); |
4205 | |
4206 | /* sanity check */ |
4207 | if (sav == NULL) { |
4208 | panic("key_delsav: NULL pointer is passed." ); |
4209 | } |
4210 | |
4211 | if (sav->refcnt > 0) { |
4212 | return; /* can't free */ |
4213 | } |
4214 | /* remove from SA header */ |
4215 | if (__LIST_CHAINED(sav)) { |
4216 | LIST_REMOVE(sav, chain); |
4217 | ipsec_sav_count--; |
4218 | } |
4219 | |
4220 | if (sav->spihash.le_prev || sav->spihash.le_next) { |
4221 | LIST_REMOVE(sav, spihash); |
4222 | } |
4223 | |
4224 | key_reset_sav(sav); |
4225 | |
4226 | kfree_type(struct secasvar, sav); |
4227 | } |
4228 | |
4229 | /* |
4230 | * search SAD. |
4231 | * OUT: |
4232 | * NULL : not found |
4233 | * others : found, pointer to a SA. |
4234 | */ |
4235 | static struct secashead * |
4236 | key_getsah(struct secasindex *saidx, u_int16_t flags) |
4237 | { |
4238 | struct secashead *sah; |
4239 | |
4240 | LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_OWNED); |
4241 | |
4242 | if ((flags & SECURITY_ASSOCIATION_ANY) == SECURITY_ASSOCIATION_ANY || |
4243 | (flags & SECURITY_ASSOCIATION_PFKEY) == SECURITY_ASSOCIATION_PFKEY) { |
4244 | LIST_FOREACH(sah, &sahtree, chain) { |
4245 | if (sah->state == SADB_SASTATE_DEAD) { |
4246 | continue; |
4247 | } |
4248 | if (key_cmpsaidx(&sah->saidx, saidx, CMP_REQID)) { |
4249 | return sah; |
4250 | } |
4251 | } |
4252 | } |
4253 | |
4254 | if ((flags & SECURITY_ASSOCIATION_ANY) == SECURITY_ASSOCIATION_ANY || |
4255 | (flags & SECURITY_ASSOCIATION_PFKEY) == SECURITY_ASSOCIATION_CUSTOM_IPSEC) { |
4256 | LIST_FOREACH(sah, &custom_sahtree, chain) { |
4257 | if (sah->state == SADB_SASTATE_DEAD) { |
4258 | continue; |
4259 | } |
4260 | if (key_cmpsaidx(&sah->saidx, saidx, 0)) { |
4261 | return sah; |
4262 | } |
4263 | } |
4264 | } |
4265 | |
4266 | return NULL; |
4267 | } |
4268 | |
4269 | struct secashead * |
4270 | key_newsah2(struct secasindex *saidx, |
4271 | u_int8_t dir) |
4272 | { |
4273 | struct secashead *sah; |
4274 | |
4275 | LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_OWNED); |
4276 | |
4277 | sah = key_getsah(saidx, SECURITY_ASSOCIATION_ANY); |
4278 | if (!sah) { |
4279 | return key_newsah(saidx, NULL, outgoing_if: 0, dir, SECURITY_ASSOCIATION_PFKEY); |
4280 | } |
4281 | return sah; |
4282 | } |
4283 | |
4284 | /* |
4285 | * check not to be duplicated SPI. |
4286 | * NOTE: this function is too slow due to searching all SAD. |
4287 | * OUT: |
4288 | * NULL : not found |
4289 | * others : found, pointer to a SA. |
4290 | */ |
4291 | static struct secasvar * |
4292 | key_checkspidup( |
4293 | struct secasindex *saidx, |
4294 | u_int32_t spi) |
4295 | { |
4296 | struct secasvar *sav; |
4297 | u_int stateidx, state; |
4298 | |
4299 | LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_OWNED); |
4300 | |
4301 | /* check address family */ |
4302 | if (saidx->src.ss_family != saidx->dst.ss_family) { |
4303 | ipseclog((LOG_DEBUG, "key_checkspidup: address family mismatched.\n" )); |
4304 | return NULL; |
4305 | } |
4306 | |
4307 | /* check all SAD */ |
4308 | LIST_FOREACH(sav, &spihash[SPIHASH(spi)], spihash) { |
4309 | if (sav->spi != spi) { |
4310 | continue; |
4311 | } |
4312 | for (stateidx = 0; |
4313 | stateidx < _ARRAYLEN(saorder_state_alive); |
4314 | stateidx++) { |
4315 | state = saorder_state_alive[stateidx]; |
4316 | if (sav->state == state && |
4317 | key_ismyaddr((struct sockaddr *)&sav->sah->saidx.dst)) { |
4318 | return sav; |
4319 | } |
4320 | } |
4321 | } |
4322 | |
4323 | return NULL; |
4324 | } |
4325 | |
4326 | static void |
4327 | key_setspi( |
4328 | struct secasvar *sav, |
4329 | u_int32_t spi) |
4330 | { |
4331 | LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_OWNED); |
4332 | sav->spi = spi; |
4333 | if (sav->spihash.le_prev || sav->spihash.le_next) { |
4334 | LIST_REMOVE(sav, spihash); |
4335 | } |
4336 | LIST_INSERT_HEAD(&spihash[SPIHASH(spi)], sav, spihash); |
4337 | } |
4338 | |
4339 | |
4340 | /* |
4341 | * search SAD litmited alive SA, protocol, SPI. |
4342 | * OUT: |
4343 | * NULL : not found |
4344 | * others : found, pointer to a SA. |
4345 | */ |
4346 | static struct secasvar * |
4347 | key_getsavbyspi( |
4348 | struct secashead *sah, |
4349 | u_int32_t spi) |
4350 | { |
4351 | struct secasvar *sav, *match; |
4352 | u_int stateidx, state, matchidx; |
4353 | |
4354 | LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_OWNED); |
4355 | match = NULL; |
4356 | matchidx = _ARRAYLEN(saorder_state_alive); |
4357 | LIST_FOREACH(sav, &spihash[SPIHASH(spi)], spihash) { |
4358 | if (sav->spi != spi) { |
4359 | continue; |
4360 | } |
4361 | if (sav->sah != sah) { |
4362 | continue; |
4363 | } |
4364 | for (stateidx = 0; stateidx < matchidx; stateidx++) { |
4365 | state = saorder_state_alive[stateidx]; |
4366 | if (sav->state == state) { |
4367 | match = sav; |
4368 | matchidx = stateidx; |
4369 | break; |
4370 | } |
4371 | } |
4372 | } |
4373 | |
4374 | return match; |
4375 | } |
4376 | |
4377 | /* |
4378 | * copy SA values from PF_KEY message except *SPI, SEQ, PID, STATE and TYPE*. |
4379 | * You must update these if need. |
4380 | * OUT: 0: success. |
4381 | * !0: failure. |
4382 | * |
4383 | * does not modify mbuf. does not free mbuf on error. |
4384 | */ |
4385 | static int |
4386 | key_setsaval( |
4387 | struct secasvar *sav, |
4388 | struct mbuf *m, |
4389 | const struct sadb_msghdr *mhp) |
4390 | { |
4391 | #if IPSEC_ESP |
4392 | const struct esp_algorithm *algo; |
4393 | #endif |
4394 | int error = 0; |
4395 | |
4396 | LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_OWNED); |
4397 | |
4398 | /* sanity check */ |
4399 | if (m == NULL || mhp == NULL || mhp->msg == NULL) { |
4400 | panic("key_setsaval: NULL pointer is passed." ); |
4401 | } |
4402 | |
4403 | /* initialization */ |
4404 | key_reset_sav(sav); |
4405 | sav->natt_last_activity = natt_now; |
4406 | |
4407 | /* SA */ |
4408 | if (mhp->ext[SADB_EXT_SA] != NULL) { |
4409 | const struct sadb_sa *sa0; |
4410 | |
4411 | sa0 = (struct sadb_sa *)(void *)mhp->ext[SADB_EXT_SA]; |
4412 | if (mhp->extlen[SADB_EXT_SA] < sizeof(*sa0)) { |
4413 | ipseclog((LOG_DEBUG, "key_setsaval: invalid message size.\n" )); |
4414 | error = EINVAL; |
4415 | goto fail; |
4416 | } |
4417 | |
4418 | sav->alg_auth = sa0->sadb_sa_auth; |
4419 | sav->alg_enc = sa0->sadb_sa_encrypt; |
4420 | sav->flags = sa0->sadb_sa_flags; |
4421 | |
4422 | /* |
4423 | * Verify that a nat-traversal port was specified if |
4424 | * the nat-traversal flag is set. |
4425 | */ |
4426 | if ((sav->flags & SADB_X_EXT_NATT) != 0) { |
4427 | if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa_2) || |
4428 | ((const struct sadb_sa_2*)(sa0))->sadb_sa_natt_port == 0) { |
4429 | ipseclog((LOG_DEBUG, "key_setsaval: natt port not set.\n" )); |
4430 | error = EINVAL; |
4431 | goto fail; |
4432 | } |
4433 | sav->natt_encapsulated_src_port = ((const struct sadb_sa_2*)(sa0))->sadb_sa_natt_src_port; |
4434 | sav->remote_ike_port = ((const struct sadb_sa_2*)(sa0))->sadb_sa_natt_port; |
4435 | sav->natt_interval = ((const struct sadb_sa_2*)(sa0))->sadb_sa_natt_interval; |
4436 | sav->natt_offload_interval = ((const struct sadb_sa_2*)(sa0))->sadb_sa_natt_offload_interval; |
4437 | } |
4438 | |
4439 | /* |
4440 | * Verify if SADB_X_EXT_NATT_MULTIPLEUSERS flag is set that |
4441 | * SADB_X_EXT_NATT is set and SADB_X_EXT_NATT_KEEPALIVE is not |
4442 | * set (we're not behind nat) - otherwise clear it. |
4443 | */ |
4444 | if ((sav->flags & SADB_X_EXT_NATT_MULTIPLEUSERS) != 0) { |
4445 | if ((sav->flags & SADB_X_EXT_NATT) == 0 || |
4446 | (sav->flags & SADB_X_EXT_NATT_KEEPALIVE) != 0) { |
4447 | sav->flags &= ~SADB_X_EXT_NATT_MULTIPLEUSERS; |
4448 | } |
4449 | } |
4450 | |
4451 | /* replay window */ |
4452 | if ((sa0->sadb_sa_flags & SADB_X_EXT_OLD) == 0) { |
4453 | if ((sav->flags2 & SADB_X_EXT_SA2_SEQ_PER_TRAFFIC_CLASS) == |
4454 | SADB_X_EXT_SA2_SEQ_PER_TRAFFIC_CLASS) { |
4455 | const uint32_t range = PER_TC_REPLAY_WINDOW_RANGE; |
4456 | for (uint32_t i = 0; i < MAX_REPLAY_WINDOWS; i++) { |
4457 | sav->replay[i] = keydb_newsecreplay(sa0->sadb_sa_replay); |
4458 | /* Allowed range for sequence per traffic class */ |
4459 | const uint32_t seq = i << PER_TC_REPLAY_WINDOW_SN_SHIFT; |
4460 | sav->replay[i]->seq = seq; |
4461 | sav->replay[i]->lastseq = seq + range - 1; |
4462 | } |
4463 | } else { |
4464 | sav->replay[0] = keydb_newsecreplay(sa0->sadb_sa_replay); |
4465 | sav->replay[0]->lastseq = ~0; |
4466 | } |
4467 | } |
4468 | } |
4469 | |
4470 | /* Authentication keys */ |
4471 | if (mhp->ext[SADB_EXT_KEY_AUTH] != NULL) { |
4472 | const struct sadb_key *key0; |
4473 | int len; |
4474 | |
4475 | key0 = (const struct sadb_key *)mhp->ext[SADB_EXT_KEY_AUTH]; |
4476 | len = mhp->extlen[SADB_EXT_KEY_AUTH]; |
4477 | |
4478 | const size_t max_length = PFKEY_ALIGN8(sizeof(*key0)) + |
4479 | PFKEY_ALIGN8(IPSEC_KEY_AUTH_MAX_BYTES); |
4480 | assert(max_length < KALLOC_SAFE_ALLOC_SIZE); |
4481 | |
4482 | error = 0; |
4483 | if ((len < sizeof(*key0)) || (len > max_length)) { |
4484 | ipseclog((LOG_DEBUG, "key_setsaval: invalid auth key ext len. len = %d\n" , len)); |
4485 | error = EINVAL; |
4486 | goto fail; |
4487 | } |
4488 | switch (mhp->msg->sadb_msg_satype) { |
4489 | case SADB_SATYPE_AH: |
4490 | case SADB_SATYPE_ESP: |
4491 | if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) && |
4492 | sav->alg_auth != SADB_X_AALG_NULL) { |
4493 | error = EINVAL; |
4494 | } |
4495 | break; |
4496 | default: |
4497 | error = EINVAL; |
4498 | break; |
4499 | } |
4500 | if (error) { |
4501 | ipseclog((LOG_DEBUG, "key_setsaval: invalid key_auth values.\n" )); |
4502 | goto fail; |
4503 | } |
4504 | |
4505 | sav->key_auth = (struct sadb_key *)key_newbuf(key0, len); |
4506 | } |
4507 | |
4508 | /* Encryption key */ |
4509 | if (mhp->ext[SADB_EXT_KEY_ENCRYPT] != NULL) { |
4510 | const struct sadb_key *key0; |
4511 | int len; |
4512 | |
4513 | key0 = (const struct sadb_key *)mhp->ext[SADB_EXT_KEY_ENCRYPT]; |
4514 | len = mhp->extlen[SADB_EXT_KEY_ENCRYPT]; |
4515 | |
4516 | const size_t max_length = PFKEY_ALIGN8(sizeof(*key0)) + |
4517 | PFKEY_ALIGN8(IPSEC_KEY_ENCRYPT_MAX_BYTES); |
4518 | assert(max_length < KALLOC_SAFE_ALLOC_SIZE); |
4519 | |
4520 | error = 0; |
4521 | if ((len < sizeof(*key0)) || (len > max_length)) { |
4522 | ipseclog((LOG_DEBUG, "key_setsaval: invalid encryption key ext len. len = %d\n" , len)); |
4523 | error = EINVAL; |
4524 | goto fail; |
4525 | } |
4526 | switch (mhp->msg->sadb_msg_satype) { |
4527 | case SADB_SATYPE_ESP: |
4528 | if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) && |
4529 | sav->alg_enc != SADB_EALG_NULL) { |
4530 | ipseclog((LOG_DEBUG, "key_setsaval: invalid ESP algorithm.\n" )); |
4531 | error = EINVAL; |
4532 | break; |
4533 | } |
4534 | sav->key_enc = (struct sadb_key *)key_newbuf(key0, len); |
4535 | break; |
4536 | case SADB_SATYPE_AH: |
4537 | default: |
4538 | error = EINVAL; |
4539 | break; |
4540 | } |
4541 | if (error) { |
4542 | ipseclog((LOG_DEBUG, "key_setsaval: invalid key_enc value.\n" )); |
4543 | goto fail; |
4544 | } |
4545 | } |
4546 | |
4547 | /* set iv */ |
4548 | sav->ivlen = 0; |
4549 | |
4550 | switch (mhp->msg->sadb_msg_satype) { |
4551 | case SADB_SATYPE_ESP: |
4552 | #if IPSEC_ESP |
4553 | algo = esp_algorithm_lookup(sav->alg_enc); |
4554 | if (algo && algo->ivlen) { |
4555 | sav->ivlen = (*algo->ivlen)(algo, sav); |
4556 | } |
4557 | if (sav->ivlen == 0) { |
4558 | break; |
4559 | } |
4560 | sav->iv = (caddr_t) kalloc_data(sav->ivlen, Z_NOWAIT); |
4561 | if (sav->iv == 0) { |
4562 | lck_mtx_unlock(sadb_mutex); |
4563 | sav->iv = (caddr_t) kalloc_data(sav->ivlen, Z_WAITOK); |
4564 | lck_mtx_lock(sadb_mutex); |
4565 | if (sav->iv == 0) { |
4566 | ipseclog((LOG_DEBUG, "key_setsaval: No more memory.\n" )); |
4567 | error = ENOBUFS; |
4568 | goto fail; |
4569 | } |
4570 | } |
4571 | |
4572 | /* initialize IV with random bytes */ |
4573 | key_randomfill(sav->iv, sav->ivlen); |
4574 | #endif |
4575 | break; |
4576 | case SADB_SATYPE_AH: |
4577 | break; |
4578 | default: |
4579 | ipseclog((LOG_DEBUG, "key_setsaval: invalid SA type.\n" )); |
4580 | error = EINVAL; |
4581 | goto fail; |
4582 | } |
4583 | |
4584 | /* reset created */ |
4585 | const u_int64_t current_time_ns = key_get_continuous_time_ns(); |
4586 | sav->created = current_time_ns; |
4587 | |
4588 | /* make lifetime for CURRENT */ |
4589 | sav->lft_c = kalloc_type(struct sadb_lifetime, Z_NOWAIT); |
4590 | if (sav->lft_c == NULL) { |
4591 | lck_mtx_unlock(sadb_mutex); |
4592 | sav->lft_c = kalloc_type(struct sadb_lifetime, |
4593 | Z_WAITOK | Z_NOFAIL); |
4594 | lck_mtx_lock(sadb_mutex); |
4595 | } |
4596 | |
4597 | sav->lft_c->sadb_lifetime_len = |
4598 | PFKEY_UNIT64(sizeof(struct sadb_lifetime)); |
4599 | sav->lft_c->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT; |
4600 | sav->lft_c->sadb_lifetime_allocations = 0; |
4601 | sav->lft_c->sadb_lifetime_bytes = 0; |
4602 | sav->lft_c->sadb_lifetime_addtime = current_time_ns; |
4603 | sav->lft_c->sadb_lifetime_usetime = 0; |
4604 | |
4605 | /* lifetimes for HARD and SOFT */ |
4606 | { |
4607 | const struct sadb_lifetime *lft0; |
4608 | |
4609 | lft0 = (struct sadb_lifetime *) |
4610 | (void *)mhp->ext[SADB_EXT_LIFETIME_HARD]; |
4611 | if (lft0 != NULL) { |
4612 | if (mhp->extlen[SADB_EXT_LIFETIME_HARD] < sizeof(*lft0)) { |
4613 | ipseclog((LOG_DEBUG, "key_setsaval: invalid hard lifetime ext len.\n" )); |
4614 | error = EINVAL; |
4615 | goto fail; |
4616 | } |
4617 | sav->lft_h = (struct sadb_lifetime *)key_newbuf(lft0, sizeof(*lft0)); |
4618 | |
4619 | // Check that conversion to nanoseconds won't cause an overflow |
4620 | u_int64_t nanotime; |
4621 | if (__improbable(os_mul_overflow(sav->lft_h->sadb_lifetime_addtime, NSEC_PER_SEC, &nanotime))) { |
4622 | ipseclog((LOG_DEBUG, "key_setsaval: invalid hard lifetime value %llu.\n" , |
4623 | sav->lft_h->sadb_lifetime_addtime)); |
4624 | error = EINVAL; |
4625 | goto fail; |
4626 | } |
4627 | } |
4628 | |
4629 | lft0 = (struct sadb_lifetime *) |
4630 | (void *)mhp->ext[SADB_EXT_LIFETIME_SOFT]; |
4631 | if (lft0 != NULL) { |
4632 | if (mhp->extlen[SADB_EXT_LIFETIME_SOFT] < sizeof(*lft0)) { |
4633 | ipseclog((LOG_DEBUG, "key_setsaval: invalid soft lifetime ext len.\n" )); |
4634 | error = EINVAL; |
4635 | goto fail; |
4636 | } |
4637 | sav->lft_s = (struct sadb_lifetime *)key_newbuf(lft0, sizeof(*lft0)); |
4638 | |
4639 | // Check that conversion to nanoseconds won't cause an overflow |
4640 | u_int64_t nanotime; |
4641 | if (__improbable(os_mul_overflow(sav->lft_s->sadb_lifetime_addtime, NSEC_PER_SEC, &nanotime))) { |
4642 | ipseclog((LOG_DEBUG, "key_setsaval: invalid soft lifetime value %llu.\n" , |
4643 | sav->lft_s->sadb_lifetime_addtime)); |
4644 | error = EINVAL; |
4645 | goto fail; |
4646 | } |
4647 | } |
4648 | } |
4649 | |
4650 | return 0; |
4651 | |
4652 | fail: |
4653 | key_reset_sav(sav); |
4654 | return error; |
4655 | } |
4656 | |
4657 | /* |
4658 | * validation with a secasvar entry, and set SADB_SATYPE_MATURE. |
4659 | * OUT: 0: valid |
4660 | * other: errno |
4661 | */ |
4662 | static int |
4663 | key_mature( |
4664 | struct secasvar *sav) |
4665 | { |
4666 | int mature; |
4667 | int checkmask = 0; /* 2^0: ealg 2^1: aalg 2^2: calg */ |
4668 | int mustmask = 0; /* 2^0: ealg 2^1: aalg 2^2: calg */ |
4669 | |
4670 | mature = 0; |
4671 | |
4672 | LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_OWNED); |
4673 | |
4674 | /* check SPI value */ |
4675 | switch (sav->sah->saidx.proto) { |
4676 | case IPPROTO_ESP: |
4677 | case IPPROTO_AH: |
4678 | |
4679 | /* No reason to test if this is >= 0, because ntohl(sav->spi) is unsigned. */ |
4680 | if (ntohl(sav->spi) <= 255) { |
4681 | ipseclog((LOG_DEBUG, |
4682 | "key_mature: illegal range of SPI %u.\n" , |
4683 | (u_int32_t)ntohl(sav->spi))); |
4684 | return EINVAL; |
4685 | } |
4686 | break; |
4687 | } |
4688 | |
4689 | /* check satype */ |
4690 | switch (sav->sah->saidx.proto) { |
4691 | case IPPROTO_ESP: |
4692 | /* check flags */ |
4693 | if ((sav->flags & SADB_X_EXT_OLD) |
4694 | && (sav->flags & SADB_X_EXT_DERIV)) { |
4695 | ipseclog((LOG_DEBUG, "key_mature: " |
4696 | "invalid flag (derived) given to old-esp.\n" )); |
4697 | return EINVAL; |
4698 | } |
4699 | if (sav->alg_auth == SADB_AALG_NONE) { |
4700 | checkmask = 1; |
4701 | } else { |
4702 | checkmask = 3; |
4703 | } |
4704 | mustmask = 1; |
4705 | break; |
4706 | case IPPROTO_AH: |
4707 | /* check flags */ |
4708 | if (sav->flags & SADB_X_EXT_DERIV) { |
4709 | ipseclog((LOG_DEBUG, "key_mature: " |
4710 | "invalid flag (derived) given to AH SA.\n" )); |
4711 | return EINVAL; |
4712 | } |
4713 | if (sav->alg_enc != SADB_EALG_NONE) { |
4714 | ipseclog((LOG_DEBUG, "key_mature: " |
4715 | "protocol and algorithm mismated.\n" )); |
4716 | return EINVAL; |
4717 | } |
4718 | checkmask = 2; |
4719 | mustmask = 2; |
4720 | break; |
4721 | default: |
4722 | ipseclog((LOG_DEBUG, "key_mature: Invalid satype.\n" )); |
4723 | return EPROTONOSUPPORT; |
4724 | } |
4725 | |
4726 | /* check authentication algorithm */ |
4727 | if ((checkmask & 2) != 0) { |
4728 | const struct ah_algorithm *algo; |
4729 | int keylen; |
4730 | |
4731 | algo = ah_algorithm_lookup(sav->alg_auth); |
4732 | if (!algo) { |
4733 | ipseclog((LOG_DEBUG, "key_mature: " |
4734 | "unknown authentication algorithm.\n" )); |
4735 | return EINVAL; |
4736 | } |
4737 | |
4738 | /* algorithm-dependent check */ |
4739 | if (sav->key_auth) { |
4740 | keylen = sav->key_auth->sadb_key_bits; |
4741 | } else { |
4742 | keylen = 0; |
4743 | } |
4744 | if (keylen < algo->keymin || algo->keymax < keylen) { |
4745 | ipseclog((LOG_DEBUG, |
4746 | "key_mature: invalid AH key length %d " |
4747 | "(%d-%d allowed)\n" , |
4748 | keylen, algo->keymin, algo->keymax)); |
4749 | return EINVAL; |
4750 | } |
4751 | |
4752 | if (algo->mature) { |
4753 | if ((*algo->mature)(sav)) { |
4754 | /* message generated in per-algorithm function*/ |
4755 | return EINVAL; |
4756 | } else { |
4757 | mature = SADB_SATYPE_AH; |
4758 | } |
4759 | } |
4760 | |
4761 | if ((mustmask & 2) != 0 && mature != SADB_SATYPE_AH) { |
4762 | ipseclog((LOG_DEBUG, "key_mature: no satisfy algorithm for AH\n" )); |
4763 | return EINVAL; |
4764 | } |
4765 | } |
4766 | |
4767 | /* check encryption algorithm */ |
4768 | if ((checkmask & 1) != 0) { |
4769 | #if IPSEC_ESP |
4770 | const struct esp_algorithm *algo; |
4771 | int keylen; |
4772 | |
4773 | algo = esp_algorithm_lookup(sav->alg_enc); |
4774 | if (!algo) { |
4775 | ipseclog((LOG_DEBUG, "key_mature: unknown encryption algorithm.\n" )); |
4776 | return EINVAL; |
4777 | } |
4778 | |
4779 | /* algorithm-dependent check */ |
4780 | if (sav->key_enc) { |
4781 | keylen = sav->key_enc->sadb_key_bits; |
4782 | } else { |
4783 | keylen = 0; |
4784 | } |
4785 | if (keylen < algo->keymin || algo->keymax < keylen) { |
4786 | ipseclog((LOG_DEBUG, |
4787 | "key_mature: invalid ESP key length %d " |
4788 | "(%d-%d allowed)\n" , |
4789 | keylen, algo->keymin, algo->keymax)); |
4790 | return EINVAL; |
4791 | } |
4792 | |
4793 | if (algo->mature) { |
4794 | if ((*algo->mature)(sav)) { |
4795 | /* message generated in per-algorithm function*/ |
4796 | return EINVAL; |
4797 | } else { |
4798 | mature = SADB_SATYPE_ESP; |
4799 | } |
4800 | } |
4801 | |
4802 | if ((mustmask & 1) != 0 && mature != SADB_SATYPE_ESP) { |
4803 | ipseclog((LOG_DEBUG, "key_mature: no satisfy algorithm for ESP\n" )); |
4804 | return EINVAL; |
4805 | } |
4806 | #else /*IPSEC_ESP*/ |
4807 | ipseclog((LOG_DEBUG, "key_mature: ESP not supported in this configuration\n" )); |
4808 | return EINVAL; |
4809 | #endif |
4810 | } |
4811 | |
4812 | key_sa_chgstate(sav, SADB_SASTATE_MATURE); |
4813 | |
4814 | return 0; |
4815 | } |
4816 | |
4817 | /* |
4818 | * subroutine for SADB_GET and SADB_DUMP. |
4819 | */ |
4820 | static struct mbuf * |
4821 | key_setdumpsa( |
4822 | struct secasvar *sav, |
4823 | u_int8_t type, |
4824 | u_int8_t satype, |
4825 | u_int32_t seq, |
4826 | u_int32_t pid) |
4827 | { |
4828 | struct mbuf *result = NULL, *tres = NULL, *m; |
4829 | int l = 0; |
4830 | int i; |
4831 | void *p; |
4832 | int dumporder[] = { |
4833 | SADB_EXT_SA, SADB_X_EXT_SA2, |
4834 | SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT, |
4835 | SADB_EXT_LIFETIME_CURRENT, SADB_EXT_ADDRESS_SRC, |
4836 | SADB_EXT_ADDRESS_DST, SADB_EXT_ADDRESS_PROXY, SADB_EXT_KEY_AUTH, |
4837 | SADB_EXT_KEY_ENCRYPT, SADB_EXT_IDENTITY_SRC, |
4838 | SADB_EXT_IDENTITY_DST, SADB_EXT_SENSITIVITY, |
4839 | }; |
4840 | |
4841 | m = key_setsadbmsg(type, 0, satype, seq, pid, (u_int16_t)sav->refcnt); |
4842 | if (m == NULL) { |
4843 | goto fail; |
4844 | } |
4845 | result = m; |
4846 | |
4847 | for (i = sizeof(dumporder) / sizeof(dumporder[0]) - 1; i >= 0; i--) { |
4848 | m = NULL; |
4849 | p = NULL; |
4850 | switch (dumporder[i]) { |
4851 | case SADB_EXT_SA: |
4852 | m = key_setsadbsa(sav); |
4853 | if (!m) { |
4854 | goto fail; |
4855 | } |
4856 | break; |
4857 | |
4858 | case SADB_X_EXT_SA2: |
4859 | m = key_setsadbxsa2(sav->sah->saidx.mode, |
4860 | sav->replay[0] ? sav->replay[0]->count : 0, |
4861 | sav->sah->saidx.reqid, |
4862 | sav->flags2); |
4863 | if (!m) { |
4864 | goto fail; |
4865 | } |
4866 | break; |
4867 | |
4868 | case SADB_EXT_ADDRESS_SRC: |
4869 | m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, |
4870 | (struct sockaddr *)&sav->sah->saidx.src, |
4871 | FULLMASK, IPSEC_ULPROTO_ANY); |
4872 | if (!m) { |
4873 | goto fail; |
4874 | } |
4875 | break; |
4876 | |
4877 | case SADB_EXT_ADDRESS_DST: |
4878 | m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, |
4879 | (struct sockaddr *)&sav->sah->saidx.dst, |
4880 | FULLMASK, IPSEC_ULPROTO_ANY); |
4881 | if (!m) { |
4882 | goto fail; |
4883 | } |
4884 | break; |
4885 | |
4886 | case SADB_EXT_KEY_AUTH: |
4887 | if (!sav->key_auth) { |
4888 | continue; |
4889 | } |
4890 | l = PFKEY_UNUNIT64(sav->key_auth->sadb_key_len); |
4891 | p = sav->key_auth; |
4892 | break; |
4893 | |
4894 | case SADB_EXT_KEY_ENCRYPT: |
4895 | if (!sav->key_enc) { |
4896 | continue; |
4897 | } |
4898 | l = PFKEY_UNUNIT64(sav->key_enc->sadb_key_len); |
4899 | p = sav->key_enc; |
4900 | break; |
4901 | |
4902 | case SADB_EXT_LIFETIME_CURRENT: |
4903 | if (!sav->lft_c) { |
4904 | continue; |
4905 | } |
4906 | m = key_setsalifecurr(sav->lft_c); |
4907 | if (!m) { |
4908 | goto fail; |
4909 | } |
4910 | break; |
4911 | |
4912 | case SADB_EXT_LIFETIME_HARD: |
4913 | if (!sav->lft_h) { |
4914 | continue; |
4915 | } |
4916 | l = PFKEY_UNUNIT64(((struct sadb_ext *)sav->lft_h)->sadb_ext_len); |
4917 | p = sav->lft_h; |
4918 | break; |
4919 | |
4920 | case SADB_EXT_LIFETIME_SOFT: |
4921 | if (!sav->lft_s) { |
4922 | continue; |
4923 | } |
4924 | l = PFKEY_UNUNIT64(((struct sadb_ext *)sav->lft_s)->sadb_ext_len); |
4925 | p = sav->lft_s; |
4926 | break; |
4927 | |
4928 | case SADB_EXT_ADDRESS_PROXY: |
4929 | case SADB_EXT_IDENTITY_SRC: |
4930 | case SADB_EXT_IDENTITY_DST: |
4931 | /* XXX: should we brought from SPD ? */ |
4932 | case SADB_EXT_SENSITIVITY: |
4933 | default: |
4934 | continue; |
4935 | } |
4936 | |
4937 | if ((!m && !p) || (m && p)) { |
4938 | goto fail; |
4939 | } |
4940 | if (p && tres) { |
4941 | M_PREPEND(tres, l, M_WAITOK, 1); |
4942 | if (!tres) { |
4943 | goto fail; |
4944 | } |
4945 | bcopy(src: p, mtod(tres, caddr_t), n: l); |
4946 | continue; |
4947 | } |
4948 | if (p) { |
4949 | m = key_alloc_mbuf(l); |
4950 | if (!m) { |
4951 | goto fail; |
4952 | } |
4953 | m_copyback(m, 0, l, p); |
4954 | } |
4955 | |
4956 | if (tres) { |
4957 | m_cat(m, tres); |
4958 | } |
4959 | tres = m; |
4960 | } |
4961 | |
4962 | m_cat(result, tres); |
4963 | |
4964 | if (sav->sah && (sav->sah->outgoing_if || sav->sah->ipsec_if)) { |
4965 | m = key_setsadbipsecif(NULL, ifindex2ifnet[sav->sah->outgoing_if], sav->sah->ipsec_if, 0); |
4966 | if (!m) { |
4967 | goto fail; |
4968 | } |
4969 | m_cat(result, m); |
4970 | } |
4971 | |
4972 | if (result->m_len < sizeof(struct sadb_msg)) { |
4973 | result = m_pullup(result, sizeof(struct sadb_msg)); |
4974 | if (result == NULL) { |
4975 | goto fail; |
4976 | } |
4977 | } |
4978 | |
4979 | result->m_pkthdr.len = 0; |
4980 | for (m = result; m; m = m->m_next) { |
4981 | result->m_pkthdr.len += m->m_len; |
4982 | } |
4983 | |
4984 | VERIFY(PFKEY_UNIT64(result->m_pkthdr.len) <= UINT16_MAX); |
4985 | mtod(result, struct sadb_msg *)->sadb_msg_len = |
4986 | (u_int16_t)PFKEY_UNIT64(result->m_pkthdr.len); |
4987 | |
4988 | return result; |
4989 | |
4990 | fail: |
4991 | m_freem(result); |
4992 | m_freem(tres); |
4993 | return NULL; |
4994 | } |
4995 | |
4996 | /* |
4997 | * set data into sadb_msg. |
4998 | */ |
4999 | static struct mbuf * |
5000 | key_setsadbmsg( |
5001 | u_int8_t type, |
5002 | u_int16_t tlen, |
5003 | u_int8_t satype, |
5004 | u_int32_t seq, |
5005 | pid_t pid, |
5006 | u_int16_t reserved) |
5007 | { |
5008 | struct mbuf *m; |
5009 | struct sadb_msg *p; |
5010 | int len; |
5011 | |
5012 | len = PFKEY_ALIGN8(sizeof(struct sadb_msg)); |
5013 | if (len > MCLBYTES) { |
5014 | return NULL; |
5015 | } |
5016 | MGETHDR(m, M_DONTWAIT, MT_DATA); |
5017 | if (m && len > MHLEN) { |
5018 | MCLGET(m, M_DONTWAIT); |
5019 | if ((m->m_flags & M_EXT) == 0) { |
5020 | m_freem(m); |
5021 | m = NULL; |
5022 | } |
5023 | } |
5024 | if (!m) { |
5025 | return NULL; |
5026 | } |
5027 | m->m_pkthdr.len = m->m_len = len; |
5028 | m->m_next = NULL; |
5029 | |
5030 | p = mtod(m, struct sadb_msg *); |
5031 | |
5032 | bzero(s: p, n: len); |
5033 | p->sadb_msg_version = PF_KEY_V2; |
5034 | p->sadb_msg_type = type; |
5035 | p->sadb_msg_errno = 0; |
5036 | p->sadb_msg_satype = satype; |
5037 | p->sadb_msg_len = PFKEY_UNIT64(tlen); |
5038 | p->sadb_msg_reserved = reserved; |
5039 | p->sadb_msg_seq = seq; |
5040 | p->sadb_msg_pid = (u_int32_t)pid; |
5041 | |
5042 | return m; |
5043 | } |
5044 | |
5045 | /* |
5046 | * copy secasvar data into sadb_address. |
5047 | */ |
5048 | static struct mbuf * |
5049 | key_setsadbsa( |
5050 | struct secasvar *sav) |
5051 | { |
5052 | struct mbuf *m; |
5053 | struct sadb_sa *p; |
5054 | u_int16_t len; |
5055 | |
5056 | len = PFKEY_ALIGN8(sizeof(struct sadb_sa)); |
5057 | m = key_alloc_mbuf(len); |
5058 | if (!m || m->m_next) { /*XXX*/ |
5059 | if (m) { |
5060 | m_freem(m); |
5061 | } |
5062 | return NULL; |
5063 | } |
5064 | |
5065 | p = mtod(m, struct sadb_sa *); |
5066 | |
5067 | bzero(s: p, n: len); |
5068 | p->sadb_sa_len = PFKEY_UNIT64(len); |
5069 | p->sadb_sa_exttype = SADB_EXT_SA; |
5070 | p->sadb_sa_spi = sav->spi; |
5071 | p->sadb_sa_replay = (sav->replay[0] != NULL ? sav->replay[0]->wsize : 0); |
5072 | p->sadb_sa_state = sav->state; |
5073 | p->sadb_sa_auth = sav->alg_auth; |
5074 | p->sadb_sa_encrypt = sav->alg_enc; |
5075 | p->sadb_sa_flags = sav->flags; |
5076 | |
5077 | return m; |
5078 | } |
5079 | |
5080 | /* |
5081 | * set data into sadb_address. |
5082 | */ |
5083 | static struct mbuf * |
5084 | key_setsadbaddr( |
5085 | u_int16_t exttype, |
5086 | struct sockaddr *saddr, |
5087 | size_t prefixlen, |
5088 | u_int8_t ul_proto) |
5089 | { |
5090 | struct mbuf *m; |
5091 | struct sadb_address *p; |
5092 | u_int16_t len; |
5093 | |
5094 | len = PFKEY_ALIGN8(sizeof(struct sadb_address)) + |
5095 | PFKEY_ALIGN8(saddr->sa_len); |
5096 | m = key_alloc_mbuf(len); |
5097 | if (!m || m->m_next) { /*XXX*/ |
5098 | if (m) { |
5099 | m_freem(m); |
5100 | } |
5101 | return NULL; |
5102 | } |
5103 | |
5104 | p = mtod(m, struct sadb_address *); |
5105 | |
5106 | bzero(s: p, n: len); |
5107 | p->sadb_address_len = PFKEY_UNIT64(len); |
5108 | p->sadb_address_exttype = exttype; |
5109 | p->sadb_address_proto = ul_proto; |
5110 | if (prefixlen == FULLMASK) { |
5111 | switch (saddr->sa_family) { |
5112 | case AF_INET: |
5113 | prefixlen = sizeof(struct in_addr) << 3; |
5114 | break; |
5115 | case AF_INET6: |
5116 | prefixlen = sizeof(struct in6_addr) << 3; |
5117 | break; |
5118 | default: |
5119 | ; /*XXX*/ |
5120 | } |
5121 | } |
5122 | if (prefixlen >= UINT8_MAX) { |
5123 | ipseclog((LOG_ERR, "key_setsadbaddr: bad prefix length %zu" , prefixlen)); |
5124 | m_freem(m); |
5125 | return NULL; |
5126 | } |
5127 | p->sadb_address_prefixlen = (u_int8_t)prefixlen; |
5128 | p->sadb_address_reserved = 0; |
5129 | |
5130 | bcopy(src: saddr, |
5131 | mtod(m, caddr_t) + PFKEY_ALIGN8(sizeof(struct sadb_address)), |
5132 | n: saddr->sa_len); |
5133 | |
5134 | return m; |
5135 | } |
5136 | |
5137 | static struct mbuf * |
5138 | key_setsadbipsecif(ifnet_t internal_if, |
5139 | ifnet_t outgoing_if, |
5140 | ifnet_t ipsec_if, |
5141 | u_int8_t init_disabled) |
5142 | { |
5143 | struct mbuf *m; |
5144 | struct sadb_x_ipsecif *p; |
5145 | u_int16_t len; |
5146 | |
5147 | len = PFKEY_ALIGN8(sizeof(struct sadb_x_ipsecif)); |
5148 | m = key_alloc_mbuf(len); |
5149 | if (!m || m->m_next) { /*XXX*/ |
5150 | if (m) { |
5151 | m_freem(m); |
5152 | } |
5153 | return NULL; |
5154 | } |
5155 | |
5156 | p = mtod(m, struct sadb_x_ipsecif *); |
5157 | |
5158 | bzero(s: p, n: len); |
5159 | p->sadb_x_ipsecif_len = PFKEY_UNIT64(len); |
5160 | p->sadb_x_ipsecif_exttype = SADB_X_EXT_IPSECIF; |
5161 | |
5162 | if (internal_if && internal_if->if_xname) { |
5163 | strlcpy(dst: p->sadb_x_ipsecif_internal_if, src: internal_if->if_xname, IFXNAMSIZ); |
5164 | } |
5165 | if (outgoing_if && outgoing_if->if_xname) { |
5166 | strlcpy(dst: p->sadb_x_ipsecif_outgoing_if, src: outgoing_if->if_xname, IFXNAMSIZ); |
5167 | } |
5168 | if (ipsec_if && ipsec_if->if_xname) { |
5169 | strlcpy(dst: p->sadb_x_ipsecif_ipsec_if, src: ipsec_if->if_xname, IFXNAMSIZ); |
5170 | } |
5171 | |
5172 | p->sadb_x_ipsecif_init_disabled = init_disabled; |
5173 | |
5174 | return m; |
5175 | } |
5176 | |
5177 | /* |
5178 | * set data into sadb_session_id |
5179 | */ |
5180 | static struct mbuf * |
5181 | key_setsadbsession_id(u_int64_t session_ids[]) |
5182 | { |
5183 | struct mbuf *m; |
5184 | struct sadb_session_id *p; |
5185 | u_int16_t len; |
5186 | |
5187 | len = PFKEY_ALIGN8(sizeof(*p)); |
5188 | m = key_alloc_mbuf(len); |
5189 | if (!m || m->m_next) { /*XXX*/ |
5190 | if (m) { |
5191 | m_freem(m); |
5192 | } |
5193 | return NULL; |
5194 | } |
5195 | |
5196 | p = mtod(m, __typeof__(p)); |
5197 | |
5198 | bzero(s: p, n: len); |
5199 | p->sadb_session_id_len = PFKEY_UNIT64(len); |
5200 | p->sadb_session_id_exttype = SADB_EXT_SESSION_ID; |
5201 | p->sadb_session_id_v[0] = session_ids[0]; |
5202 | p->sadb_session_id_v[1] = session_ids[1]; |
5203 | |
5204 | return m; |
5205 | } |
5206 | |
5207 | /* |
5208 | * copy stats data into sadb_sastat type. |
5209 | */ |
5210 | static struct mbuf * |
5211 | key_setsadbsastat(u_int32_t dir, |
5212 | struct sastat *stats, |
5213 | u_int32_t max_stats) |
5214 | { |
5215 | struct mbuf *m; |
5216 | struct sadb_sastat *p; |
5217 | size_t list_len, len; |
5218 | |
5219 | if (!stats) { |
5220 | return NULL; |
5221 | } |
5222 | |
5223 | list_len = sizeof(*stats) * max_stats; |
5224 | len = PFKEY_ALIGN8(sizeof(*p)) + PFKEY_ALIGN8(list_len); |
5225 | if (PFKEY_UNIT64(len) >= UINT16_MAX) { |
5226 | ipseclog((LOG_ERR, "key_setsadbsastat: length is too big: %zu\n" , len)); |
5227 | return NULL; |
5228 | } |
5229 | |
5230 | m = key_alloc_mbuf((int)len); |
5231 | if (!m || m->m_next) { /*XXX*/ |
5232 | if (m) { |
5233 | m_freem(m); |
5234 | } |
5235 | return NULL; |
5236 | } |
5237 | |
5238 | p = mtod(m, __typeof__(p)); |
5239 | |
5240 | bzero(s: p, n: len); |
5241 | p->sadb_sastat_len = (u_int16_t)PFKEY_UNIT64(len); |
5242 | p->sadb_sastat_exttype = SADB_EXT_SASTAT; |
5243 | p->sadb_sastat_dir = dir; |
5244 | p->sadb_sastat_list_len = max_stats; |
5245 | if (list_len) { |
5246 | bcopy(src: stats, |
5247 | mtod(m, caddr_t) + PFKEY_ALIGN8(sizeof(*p)), |
5248 | n: list_len); |
5249 | } |
5250 | |
5251 | return m; |
5252 | } |
5253 | |
5254 | /* |
5255 | * set data into sadb_x_sa2. |
5256 | */ |
5257 | static struct mbuf * |
5258 | key_setsadbxsa2( |
5259 | u_int8_t mode, |
5260 | u_int32_t seq, |
5261 | u_int32_t reqid, |
5262 | u_int16_t flags) |
5263 | { |
5264 | struct mbuf *m; |
5265 | struct sadb_x_sa2 *p; |
5266 | u_int16_t len; |
5267 | |
5268 | len = PFKEY_ALIGN8(sizeof(struct sadb_x_sa2)); |
5269 | m = key_alloc_mbuf(len); |
5270 | if (!m || m->m_next) { /*XXX*/ |
5271 | if (m) { |
5272 | m_freem(m); |
5273 | } |
5274 | return NULL; |
5275 | } |
5276 | |
5277 | p = mtod(m, struct sadb_x_sa2 *); |
5278 | |
5279 | bzero(s: p, n: len); |
5280 | p->sadb_x_sa2_len = PFKEY_UNIT64(len); |
5281 | p->sadb_x_sa2_exttype = SADB_X_EXT_SA2; |
5282 | p->sadb_x_sa2_mode = mode; |
5283 | p->sadb_x_sa2_reserved1 = 0; |
5284 | p->sadb_x_sa2_reserved2 = 0; |
5285 | p->sadb_x_sa2_sequence = seq; |
5286 | p->sadb_x_sa2_reqid = reqid; |
5287 | p->sadb_x_sa2_flags = flags; |
5288 | |
5289 | return m; |
5290 | } |
5291 | |
5292 | /* |
5293 | * set data into sadb_x_policy |
5294 | */ |
5295 | static struct mbuf * |
5296 | key_setsadbxpolicy( |
5297 | u_int16_t type, |
5298 | u_int8_t dir, |
5299 | u_int32_t id) |
5300 | { |
5301 | struct mbuf *m; |
5302 | struct sadb_x_policy *p; |
5303 | u_int16_t len; |
5304 | |
5305 | len = PFKEY_ALIGN8(sizeof(struct sadb_x_policy)); |
5306 | m = key_alloc_mbuf(len); |
5307 | if (!m || m->m_next) { /*XXX*/ |
5308 | if (m) { |
5309 | m_freem(m); |
5310 | } |
5311 | return NULL; |
5312 | } |
5313 | |
5314 | p = mtod(m, struct sadb_x_policy *); |
5315 | |
5316 | bzero(s: p, n: len); |
5317 | p->sadb_x_policy_len = PFKEY_UNIT64(len); |
5318 | p->sadb_x_policy_exttype = SADB_X_EXT_POLICY; |
5319 | p->sadb_x_policy_type = type; |
5320 | p->sadb_x_policy_dir = dir; |
5321 | p->sadb_x_policy_id = id; |
5322 | |
5323 | return m; |
5324 | } |
5325 | |
5326 | /* |
5327 | * Copy current lifetime data, converting timestamps to wall clock time |
5328 | */ |
5329 | static struct mbuf * |
5330 | key_setsalifecurr( |
5331 | struct sadb_lifetime *lft_c) |
5332 | { |
5333 | struct mbuf *m; |
5334 | struct sadb_lifetime *p; |
5335 | u_int16_t len; |
5336 | |
5337 | len = PFKEY_ALIGN8(sizeof(struct sadb_lifetime)); |
5338 | m = key_alloc_mbuf(len); |
5339 | if (!m || m->m_next) { /*XXX*/ |
5340 | if (m) { |
5341 | m_freem(m); |
5342 | } |
5343 | return NULL; |
5344 | } |
5345 | |
5346 | p = mtod(m, struct sadb_lifetime *); |
5347 | bcopy(src: lft_c, dst: p, n: sizeof(struct sadb_lifetime)); |
5348 | |
5349 | // Convert timestamps |
5350 | p->sadb_lifetime_addtime = key_convert_continuous_time_ns(time_value: lft_c->sadb_lifetime_addtime); |
5351 | p->sadb_lifetime_usetime = key_convert_continuous_time_ns(time_value: lft_c->sadb_lifetime_usetime); |
5352 | |
5353 | return m; |
5354 | } |
5355 | |
5356 | /* %%% utilities */ |
5357 | /* |
5358 | * copy a buffer into the new buffer allocated. |
5359 | */ |
5360 | static void * |
5361 | key_newbuf( |
5362 | const void *src, |
5363 | u_int len) |
5364 | { |
5365 | caddr_t new; |
5366 | |
5367 | LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_OWNED); |
5368 | new = kalloc_data(len, Z_NOWAIT); |
5369 | if (new == NULL) { |
5370 | lck_mtx_unlock(sadb_mutex); |
5371 | new = kalloc_data(len, Z_WAITOK | Z_NOFAIL); |
5372 | lck_mtx_lock(sadb_mutex); |
5373 | } |
5374 | bcopy(src, dst: new, n: len); |
5375 | |
5376 | return new; |
5377 | } |
5378 | |
5379 | /* compare my own address |
5380 | * OUT: 1: true, i.e. my address. |
5381 | * 0: false |
5382 | */ |
5383 | int |
5384 | key_ismyaddr( |
5385 | struct sockaddr *sa) |
5386 | { |
5387 | #if INET |
5388 | struct sockaddr_in *sin; |
5389 | struct in_ifaddr *ia; |
5390 | #endif |
5391 | |
5392 | /* sanity check */ |
5393 | if (sa == NULL) { |
5394 | panic("key_ismyaddr: NULL pointer is passed." ); |
5395 | } |
5396 | |
5397 | switch (sa->sa_family) { |
5398 | #if INET |
5399 | case AF_INET: |
5400 | lck_rw_lock_shared(lck: &in_ifaddr_rwlock); |
5401 | sin = (struct sockaddr_in *)(void *)sa; |
5402 | for (ia = in_ifaddrhead.tqh_first; ia; |
5403 | ia = ia->ia_link.tqe_next) { |
5404 | IFA_LOCK_SPIN(&ia->ia_ifa); |
5405 | if (sin->sin_family == ia->ia_addr.sin_family && |
5406 | sin->sin_len == ia->ia_addr.sin_len && |
5407 | sin->sin_addr.s_addr == ia->ia_addr.sin_addr.s_addr) { |
5408 | IFA_UNLOCK(&ia->ia_ifa); |
5409 | lck_rw_done(lck: &in_ifaddr_rwlock); |
5410 | return 1; |
5411 | } |
5412 | IFA_UNLOCK(&ia->ia_ifa); |
5413 | } |
5414 | lck_rw_done(lck: &in_ifaddr_rwlock); |
5415 | break; |
5416 | #endif |
5417 | case AF_INET6: |
5418 | return key_ismyaddr6((struct sockaddr_in6 *)(void *)sa); |
5419 | } |
5420 | |
5421 | return 0; |
5422 | } |
5423 | |
5424 | /* |
5425 | * compare my own address for IPv6. |
5426 | * 1: ours |
5427 | * 0: other |
5428 | * NOTE: derived ip6_input() in KAME. This is necessary to modify more. |
5429 | */ |
5430 | #include <netinet6/in6_var.h> |
5431 | |
5432 | static int |
5433 | key_ismyaddr6( |
5434 | struct sockaddr_in6 *sin6) |
5435 | { |
5436 | struct in6_ifaddr *ia; |
5437 | struct in6_multi *in6m; |
5438 | |
5439 | lck_rw_lock_shared(lck: &in6_ifaddr_rwlock); |
5440 | TAILQ_FOREACH(ia, &in6_ifaddrhead, ia6_link) { |
5441 | IFA_LOCK(&ia->ia_ifa); |
5442 | if (key_sockaddrcmp((struct sockaddr *)&sin6, |
5443 | (struct sockaddr *)&ia->ia_addr, 0) == 0) { |
5444 | IFA_UNLOCK(&ia->ia_ifa); |
5445 | lck_rw_done(lck: &in6_ifaddr_rwlock); |
5446 | return 1; |
5447 | } |
5448 | IFA_UNLOCK(&ia->ia_ifa); |
5449 | |
5450 | /* |
5451 | * XXX Multicast |
5452 | * XXX why do we care about multlicast here while we don't care |
5453 | * about IPv4 multicast?? |
5454 | * XXX scope |
5455 | */ |
5456 | in6m = NULL; |
5457 | in6_multihead_lock_shared(); |
5458 | IN6_LOOKUP_MULTI(&sin6->sin6_addr, ia->ia_ifp, in6m); |
5459 | in6_multihead_lock_done(); |
5460 | if (in6m != NULL) { |
5461 | lck_rw_done(lck: &in6_ifaddr_rwlock); |
5462 | IN6M_REMREF(in6m); |
5463 | return 1; |
5464 | } |
5465 | } |
5466 | lck_rw_done(lck: &in6_ifaddr_rwlock); |
5467 | |
5468 | /* loopback, just for safety */ |
5469 | if (IN6_IS_ADDR_LOOPBACK(&sin6->sin6_addr)) { |
5470 | return 1; |
5471 | } |
5472 | |
5473 | return 0; |
5474 | } |
5475 | |
5476 | /* |
5477 | * compare two secasindex structure. |
5478 | * flag can specify to compare 2 saidxes. |
5479 | * compare two secasindex structure without both mode and reqid. |
5480 | * don't compare port. |
5481 | * IN: |
5482 | * saidx0: source, it can be in SAD. |
5483 | * saidx1: object. |
5484 | * OUT: |
5485 | * 1 : equal |
5486 | * 0 : not equal |
5487 | */ |
5488 | static int |
5489 | key_cmpsaidx( |
5490 | struct secasindex *saidx0, |
5491 | struct secasindex *saidx1, |
5492 | int flag) |
5493 | { |
5494 | /* sanity */ |
5495 | if (saidx0 == NULL && saidx1 == NULL) { |
5496 | return 1; |
5497 | } |
5498 | |
5499 | if (saidx0 == NULL || saidx1 == NULL) { |
5500 | return 0; |
5501 | } |
5502 | |
5503 | if (saidx0->ipsec_ifindex != 0 && saidx0->ipsec_ifindex != saidx1->ipsec_ifindex) { |
5504 | return 0; |
5505 | } |
5506 | |
5507 | if (saidx0->proto != saidx1->proto) { |
5508 | return 0; |
5509 | } |
5510 | |
5511 | if (flag == CMP_EXACTLY) { |
5512 | if (saidx0->mode != saidx1->mode) { |
5513 | return 0; |
5514 | } |
5515 | if (saidx0->reqid != saidx1->reqid) { |
5516 | return 0; |
5517 | } |
5518 | if (bcmp(s1: &saidx0->src, s2: &saidx1->src, n: saidx0->src.ss_len) != 0 || |
5519 | bcmp(s1: &saidx0->dst, s2: &saidx1->dst, n: saidx0->dst.ss_len) != 0) { |
5520 | return 0; |
5521 | } |
5522 | } else { |
5523 | /* CMP_MODE_REQID, CMP_REQID, CMP_HEAD */ |
5524 | if (flag & CMP_REQID) { |
5525 | /* |
5526 | * If reqid of SPD is non-zero, unique SA is required. |
5527 | * The result must be of same reqid in this case. |
5528 | */ |
5529 | if (saidx1->reqid != 0 && saidx0->reqid != saidx1->reqid) { |
5530 | return 0; |
5531 | } |
5532 | } |
5533 | |
5534 | if (flag & CMP_MODE) { |
5535 | if (saidx0->mode != IPSEC_MODE_ANY |
5536 | && saidx0->mode != saidx1->mode) { |
5537 | return 0; |
5538 | } |
5539 | } |
5540 | |
5541 | if (key_sockaddrcmp((struct sockaddr *)&saidx0->src, |
5542 | (struct sockaddr *)&saidx1->src, flag & CMP_PORT ? 1 : 0) != 0) { |
5543 | return 0; |
5544 | } |
5545 | if (key_sockaddrcmp((struct sockaddr *)&saidx0->dst, |
5546 | (struct sockaddr *)&saidx1->dst, flag & CMP_PORT ? 1 : 0) != 0) { |
5547 | return 0; |
5548 | } |
5549 | } |
5550 | |
5551 | return 1; |
5552 | } |
5553 | |
5554 | /* |
5555 | * compare two secindex structure exactly. |
5556 | * IN: |
5557 | * spidx0: source, it is often in SPD. |
5558 | * spidx1: object, it is often from PFKEY message. |
5559 | * OUT: |
5560 | * 1 : equal |
5561 | * 0 : not equal |
5562 | */ |
5563 | static int |
5564 | key_cmpspidx_exactly( |
5565 | struct secpolicyindex *spidx0, |
5566 | struct secpolicyindex *spidx1) |
5567 | { |
5568 | /* sanity */ |
5569 | if (spidx0 == NULL && spidx1 == NULL) { |
5570 | return 1; |
5571 | } |
5572 | |
5573 | if (spidx0 == NULL || spidx1 == NULL) { |
5574 | return 0; |
5575 | } |
5576 | |
5577 | if (spidx0->prefs != spidx1->prefs |
5578 | || spidx0->prefd != spidx1->prefd |
5579 | || spidx0->ul_proto != spidx1->ul_proto |
5580 | || spidx0->internal_if != spidx1->internal_if) { |
5581 | return 0; |
5582 | } |
5583 | |
5584 | if (key_sockaddrcmp((struct sockaddr *)&spidx0->src, |
5585 | (struct sockaddr *)&spidx1->src, 1) != 0) { |
5586 | return 0; |
5587 | } |
5588 | if (key_sockaddrcmp((struct sockaddr *)&spidx0->dst, |
5589 | (struct sockaddr *)&spidx1->dst, 1) != 0) { |
5590 | return 0; |
5591 | } |
5592 | |
5593 | if (key_sockaddrcmp((struct sockaddr *)&spidx0->src_range.start, |
5594 | (struct sockaddr *)&spidx1->src_range.start, 1) != 0) { |
5595 | return 0; |
5596 | } |
5597 | if (key_sockaddrcmp((struct sockaddr *)&spidx0->src_range.end, |
5598 | (struct sockaddr *)&spidx1->src_range.end, 1) != 0) { |
5599 | return 0; |
5600 | } |
5601 | if (key_sockaddrcmp((struct sockaddr *)&spidx0->dst_range.start, |
5602 | (struct sockaddr *)&spidx1->dst_range.start, 1) != 0) { |
5603 | return 0; |
5604 | } |
5605 | if (key_sockaddrcmp((struct sockaddr *)&spidx0->dst_range.end, |
5606 | (struct sockaddr *)&spidx1->dst_range.end, 1) != 0) { |
5607 | return 0; |
5608 | } |
5609 | |
5610 | return 1; |
5611 | } |
5612 | |
5613 | /* |
5614 | * compare two secindex structure with mask. |
5615 | * IN: |
5616 | * spidx0: source, it is often in SPD. |
5617 | * spidx1: object, it is often from IP header. |
5618 | * OUT: |
5619 | * 1 : equal |
5620 | * 0 : not equal |
5621 | */ |
5622 | static int |
5623 | key_cmpspidx_withmask( |
5624 | struct secpolicyindex *spidx0, |
5625 | struct secpolicyindex *spidx1) |
5626 | { |
5627 | int spidx0_src_is_range = 0; |
5628 | int spidx0_dst_is_range = 0; |
5629 | |
5630 | /* sanity */ |
5631 | if (spidx0 == NULL && spidx1 == NULL) { |
5632 | return 1; |
5633 | } |
5634 | |
5635 | if (spidx0 == NULL || spidx1 == NULL) { |
5636 | return 0; |
5637 | } |
5638 | |
5639 | if (spidx0->src_range.start.ss_len > 0) { |
5640 | spidx0_src_is_range = 1; |
5641 | } |
5642 | |
5643 | if (spidx0->dst_range.start.ss_len > 0) { |
5644 | spidx0_dst_is_range = 1; |
5645 | } |
5646 | |
5647 | if ((spidx0_src_is_range ? spidx0->src_range.start.ss_family : spidx0->src.ss_family) != spidx1->src.ss_family || |
5648 | (spidx0_dst_is_range ? spidx0->dst_range.start.ss_family : spidx0->dst.ss_family) != spidx1->dst.ss_family || |
5649 | (spidx0_src_is_range ? spidx0->src_range.start.ss_len : spidx0->src.ss_len) != spidx1->src.ss_len || |
5650 | (spidx0_dst_is_range ? spidx0->dst_range.start.ss_len : spidx0->dst.ss_len) != spidx1->dst.ss_len) { |
5651 | return 0; |
5652 | } |
5653 | |
5654 | /* if spidx.ul_proto == IPSEC_ULPROTO_ANY, ignore. */ |
5655 | if (spidx0->ul_proto != (u_int16_t)IPSEC_ULPROTO_ANY |
5656 | && spidx0->ul_proto != spidx1->ul_proto) { |
5657 | return 0; |
5658 | } |
5659 | |
5660 | /* If spidx1 specifies interface, ignore src addr */ |
5661 | if (spidx1->internal_if != NULL) { |
5662 | if (spidx0->internal_if == NULL |
5663 | || spidx0->internal_if != spidx1->internal_if) { |
5664 | return 0; |
5665 | } |
5666 | |
5667 | /* Still check ports */ |
5668 | switch (spidx0->src.ss_family) { |
5669 | case AF_INET: |
5670 | if (spidx0_src_is_range && |
5671 | (satosin(&spidx1->src)->sin_port < satosin(&spidx0->src_range.start)->sin_port |
5672 | || satosin(&spidx1->src)->sin_port > satosin(&spidx0->src_range.end)->sin_port)) { |
5673 | return 0; |
5674 | } else if (satosin(&spidx0->src)->sin_port != IPSEC_PORT_ANY |
5675 | && satosin(&spidx0->src)->sin_port != |
5676 | satosin(&spidx1->src)->sin_port) { |
5677 | return 0; |
5678 | } |
5679 | break; |
5680 | case AF_INET6: |
5681 | if (spidx0_src_is_range && |
5682 | (satosin6(&spidx1->src)->sin6_port < satosin6(&spidx0->src_range.start)->sin6_port |
5683 | || satosin6(&spidx1->src)->sin6_port > satosin6(&spidx0->src_range.end)->sin6_port)) { |
5684 | return 0; |
5685 | } else if (satosin6(&spidx0->src)->sin6_port != IPSEC_PORT_ANY |
5686 | && satosin6(&spidx0->src)->sin6_port != |
5687 | satosin6(&spidx1->src)->sin6_port) { |
5688 | return 0; |
5689 | } |
5690 | break; |
5691 | default: |
5692 | break; |
5693 | } |
5694 | } else if (spidx0_src_is_range) { |
5695 | if (!key_is_addr_in_range(&spidx1->src, &spidx0->src_range)) { |
5696 | return 0; |
5697 | } |
5698 | } else { |
5699 | switch (spidx0->src.ss_family) { |
5700 | case AF_INET: |
5701 | if (satosin(&spidx0->src)->sin_port != IPSEC_PORT_ANY |
5702 | && satosin(&spidx0->src)->sin_port != |
5703 | satosin(&spidx1->src)->sin_port) { |
5704 | return 0; |
5705 | } |
5706 | if (!key_bbcmp((caddr_t)&satosin(&spidx0->src)->sin_addr, |
5707 | (caddr_t)&satosin(&spidx1->src)->sin_addr, spidx0->prefs)) { |
5708 | return 0; |
5709 | } |
5710 | break; |
5711 | case AF_INET6: |
5712 | if (satosin6(&spidx0->src)->sin6_port != IPSEC_PORT_ANY |
5713 | && satosin6(&spidx0->src)->sin6_port != |
5714 | satosin6(&spidx1->src)->sin6_port) { |
5715 | return 0; |
5716 | } |
5717 | /* |
5718 | * scope_id check. if sin6_scope_id is 0, we regard it |
5719 | * as a wildcard scope, which matches any scope zone ID. |
5720 | */ |
5721 | if (satosin6(&spidx0->src)->sin6_scope_id && |
5722 | satosin6(&spidx1->src)->sin6_scope_id && |
5723 | satosin6(&spidx0->src)->sin6_scope_id != |
5724 | satosin6(&spidx1->src)->sin6_scope_id) { |
5725 | return 0; |
5726 | } |
5727 | if (!key_bbcmp((caddr_t)&satosin6(&spidx0->src)->sin6_addr, |
5728 | (caddr_t)&satosin6(&spidx1->src)->sin6_addr, spidx0->prefs)) { |
5729 | return 0; |
5730 | } |
5731 | break; |
5732 | default: |
5733 | /* XXX */ |
5734 | if (bcmp(s1: &spidx0->src, s2: &spidx1->src, n: spidx0->src.ss_len) != 0) { |
5735 | return 0; |
5736 | } |
5737 | break; |
5738 | } |
5739 | } |
5740 | |
5741 | if (spidx0_dst_is_range) { |
5742 | if (!key_is_addr_in_range(&spidx1->dst, &spidx0->dst_range)) { |
5743 | return 0; |
5744 | } |
5745 | } else { |
5746 | switch (spidx0->dst.ss_family) { |
5747 | case AF_INET: |
5748 | if (satosin(&spidx0->dst)->sin_port != IPSEC_PORT_ANY |
5749 | && satosin(&spidx0->dst)->sin_port != |
5750 | satosin(&spidx1->dst)->sin_port) { |
5751 | return 0; |
5752 | } |
5753 | if (!key_bbcmp((caddr_t)&satosin(&spidx0->dst)->sin_addr, |
5754 | (caddr_t)&satosin(&spidx1->dst)->sin_addr, spidx0->prefd)) { |
5755 | return 0; |
5756 | } |
5757 | break; |
5758 | case AF_INET6: |
5759 | if (satosin6(&spidx0->dst)->sin6_port != IPSEC_PORT_ANY |
5760 | && satosin6(&spidx0->dst)->sin6_port != |
5761 | satosin6(&spidx1->dst)->sin6_port) { |
5762 | return 0; |
5763 | } |
5764 | /* |
5765 | * scope_id check. if sin6_scope_id is 0, we regard it |
5766 | * as a wildcard scope, which matches any scope zone ID. |
5767 | */ |
5768 | if (satosin6(&spidx0->src)->sin6_scope_id && |
5769 | satosin6(&spidx1->src)->sin6_scope_id && |
5770 | satosin6(&spidx0->dst)->sin6_scope_id != |
5771 | satosin6(&spidx1->dst)->sin6_scope_id) { |
5772 | return 0; |
5773 | } |
5774 | if (!key_bbcmp((caddr_t)&satosin6(&spidx0->dst)->sin6_addr, |
5775 | (caddr_t)&satosin6(&spidx1->dst)->sin6_addr, spidx0->prefd)) { |
5776 | return 0; |
5777 | } |
5778 | break; |
5779 | default: |
5780 | /* XXX */ |
5781 | if (bcmp(s1: &spidx0->dst, s2: &spidx1->dst, n: spidx0->dst.ss_len) != 0) { |
5782 | return 0; |
5783 | } |
5784 | break; |
5785 | } |
5786 | } |
5787 | |
5788 | /* XXX Do we check other field ? e.g. flowinfo */ |
5789 | |
5790 | return 1; |
5791 | } |
5792 | |
5793 | static int |
5794 | key_is_addr_in_range(struct sockaddr_storage *addr, struct secpolicyaddrrange *addr_range) |
5795 | { |
5796 | int cmp = 0; |
5797 | |
5798 | if (addr == NULL || addr_range == NULL) { |
5799 | return 0; |
5800 | } |
5801 | |
5802 | /* Must be greater than or equal to start */ |
5803 | cmp = key_sockaddrcmp((struct sockaddr *)addr, (struct sockaddr *)&addr_range->start, 1); |
5804 | if (cmp != 0 && cmp != 1) { |
5805 | return 0; |
5806 | } |
5807 | |
5808 | /* Must be less than or equal to end */ |
5809 | cmp = key_sockaddrcmp((struct sockaddr *)addr, (struct sockaddr *)&addr_range->end, 1); |
5810 | if (cmp != 0 && cmp != -1) { |
5811 | return 0; |
5812 | } |
5813 | |
5814 | return 1; |
5815 | } |
5816 | |
5817 | /* |
5818 | * Return values: |
5819 | * -1: sa1 < sa2 |
5820 | * 0: sa1 == sa2 |
5821 | * 1: sa1 > sa2 |
5822 | * 2: Not comparable or error |
5823 | */ |
5824 | static int |
5825 | key_sockaddrcmp( |
5826 | struct sockaddr *sa1, |
5827 | struct sockaddr *sa2, |
5828 | int port) |
5829 | { |
5830 | int result = 0; |
5831 | int port_result = 0; |
5832 | |
5833 | if (sa1->sa_family != sa2->sa_family || sa1->sa_len != sa2->sa_len) { |
5834 | return 2; |
5835 | } |
5836 | |
5837 | if (sa1->sa_len == 0) { |
5838 | return 0; |
5839 | } |
5840 | |
5841 | switch (sa1->sa_family) { |
5842 | case AF_INET: |
5843 | if (sa1->sa_len != sizeof(struct sockaddr_in)) { |
5844 | return 2; |
5845 | } |
5846 | |
5847 | result = memcmp(s1: &satosin(sa1)->sin_addr.s_addr, s2: &satosin(sa2)->sin_addr.s_addr, n: sizeof(satosin(sa1)->sin_addr.s_addr)); |
5848 | |
5849 | if (port) { |
5850 | if (satosin(sa1)->sin_port < satosin(sa2)->sin_port) { |
5851 | port_result = -1; |
5852 | } else if (satosin(sa1)->sin_port > satosin(sa2)->sin_port) { |
5853 | port_result = 1; |
5854 | } |
5855 | |
5856 | if (result == 0) { |
5857 | result = port_result; |
5858 | } else if ((result > 0 && port_result < 0) || (result < 0 && port_result > 0)) { |
5859 | return 2; |
5860 | } |
5861 | } |
5862 | |
5863 | break; |
5864 | case AF_INET6: |
5865 | if (sa1->sa_len != sizeof(struct sockaddr_in6)) { |
5866 | return 2; /*EINVAL*/ |
5867 | } |
5868 | if (satosin6(sa1)->sin6_scope_id != |
5869 | satosin6(sa2)->sin6_scope_id) { |
5870 | return 2; |
5871 | } |
5872 | |
5873 | result = memcmp(s1: &satosin6(sa1)->sin6_addr.s6_addr[0], s2: &satosin6(sa2)->sin6_addr.s6_addr[0], n: sizeof(struct in6_addr)); |
5874 | |
5875 | if (port) { |
5876 | if (satosin6(sa1)->sin6_port < satosin6(sa2)->sin6_port) { |
5877 | port_result = -1; |
5878 | } else if (satosin6(sa1)->sin6_port > satosin6(sa2)->sin6_port) { |
5879 | port_result = 1; |
5880 | } |
5881 | |
5882 | if (result == 0) { |
5883 | result = port_result; |
5884 | } else if ((result > 0 && port_result < 0) || (result < 0 && port_result > 0)) { |
5885 | return 2; |
5886 | } |
5887 | } |
5888 | |
5889 | break; |
5890 | default: |
5891 | result = memcmp(s1: sa1, s2: sa2, n: sa1->sa_len); |
5892 | break; |
5893 | } |
5894 | |
5895 | if (result < 0) { |
5896 | result = -1; |
5897 | } else if (result > 0) { |
5898 | result = 1; |
5899 | } |
5900 | |
5901 | return result; |
5902 | } |
5903 | |
5904 | /* |
5905 | * compare two buffers with mask. |
5906 | * IN: |
5907 | * addr1: source |
5908 | * addr2: object |
5909 | * bits: Number of bits to compare |
5910 | * OUT: |
5911 | * 1 : equal |
5912 | * 0 : not equal |
5913 | */ |
5914 | static int |
5915 | key_bbcmp( |
5916 | caddr_t p1, |
5917 | caddr_t p2, |
5918 | u_int bits) |
5919 | { |
5920 | u_int8_t mask; |
5921 | |
5922 | /* XXX: This could be considerably faster if we compare a word |
5923 | * at a time, but it is complicated on LSB Endian machines */ |
5924 | |
5925 | /* Handle null pointers */ |
5926 | if (p1 == NULL || p2 == NULL) { |
5927 | return p1 == p2; |
5928 | } |
5929 | |
5930 | while (bits >= 8) { |
5931 | if (*p1++ != *p2++) { |
5932 | return 0; |
5933 | } |
5934 | bits -= 8; |
5935 | } |
5936 | |
5937 | if (bits > 0) { |
5938 | mask = (u_int8_t)(~((1 << (8 - bits)) - 1)); |
5939 | if ((*p1 & mask) != (*p2 & mask)) { |
5940 | return 0; |
5941 | } |
5942 | } |
5943 | return 1; /* Match! */ |
5944 | } |
5945 | |
5946 | /* |
5947 | * time handler. |
5948 | * scanning SPD and SAD to check status for each entries, |
5949 | * and do to remove or to expire. |
5950 | * XXX: year 2038 problem may remain. |
5951 | */ |
5952 | int key_timehandler_debug = 0; |
5953 | u_int32_t spd_count = 0, sah_count = 0, dead_sah_count = 0, empty_sah_count = 0, larval_sav_count = 0, mature_sav_count = 0, dying_sav_count = 0, dead_sav_count = 0; |
5954 | u_int64_t total_sav_count = 0; |
5955 | void |
5956 | key_timehandler(void) |
5957 | { |
5958 | u_int dir; |
5959 | struct secpolicy **spbuf = NULL, **spptr = NULL; |
5960 | struct secasvar **savexbuf = NULL, **savexptr = NULL; |
5961 | struct secasvar **savkabuf = NULL, **savkaptr = NULL; |
5962 | u_int32_t spbufcount = 0, savbufcount = 0, spcount = 0, savexcount = 0, savkacount = 0, cnt; |
5963 | int stop_handler = 1; /* stop the timehandler */ |
5964 | const u_int64_t current_time_ns = key_get_continuous_time_ns(); |
5965 | |
5966 | /* pre-allocate buffers before taking the lock */ |
5967 | /* if allocation failures occur - portions of the processing will be skipped */ |
5968 | if ((spbufcount = ipsec_policy_count) != 0) { |
5969 | if (os_add_overflow(spbufcount, 256, &spbufcount)) { |
5970 | ipseclog((LOG_DEBUG, "key_timehandler: spbufcount overflow, ipsec policy count %u.\n" , ipsec_policy_count)); |
5971 | spbufcount = ipsec_policy_count; |
5972 | } |
5973 | |
5974 | spbuf = kalloc_type(struct secpolicy *, spbufcount, Z_WAITOK); |
5975 | if (spbuf) { |
5976 | spptr = spbuf; |
5977 | } |
5978 | } |
5979 | if ((savbufcount = ipsec_sav_count) != 0) { |
5980 | if (os_add_overflow(savbufcount, 512, &savbufcount)) { |
5981 | ipseclog((LOG_DEBUG, "key_timehandler: savbufcount overflow, ipsec sa count %u.\n" , ipsec_sav_count)); |
5982 | savbufcount = ipsec_sav_count; |
5983 | } |
5984 | savexbuf = kalloc_type(struct secasvar *, savbufcount, Z_WAITOK); |
5985 | if (savexbuf) { |
5986 | savexptr = savexbuf; |
5987 | } |
5988 | savkabuf = kalloc_type(struct secasvar *, savbufcount, Z_WAITOK); |
5989 | if (savkabuf) { |
5990 | savkaptr = savkabuf; |
5991 | } |
5992 | } |
5993 | lck_mtx_lock(sadb_mutex); |
5994 | /* SPD */ |
5995 | if (spbuf) { |
5996 | struct secpolicy *sp, *nextsp; |
5997 | |
5998 | for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { |
5999 | for (sp = LIST_FIRST(&sptree[dir]); |
6000 | sp != NULL; |
6001 | sp = nextsp) { |
6002 | /* don't prevent timehandler from stopping for generate policy */ |
6003 | if (sp->policy != IPSEC_POLICY_GENERATE) { |
6004 | stop_handler = 0; |
6005 | } |
6006 | spd_count++; |
6007 | nextsp = LIST_NEXT(sp, chain); |
6008 | |
6009 | if (sp->state == IPSEC_SPSTATE_DEAD) { |
6010 | key_freesp(sp, KEY_SADB_LOCKED); |
6011 | continue; |
6012 | } |
6013 | |
6014 | if (sp->lifetime == 0 && sp->validtime == 0) { |
6015 | continue; |
6016 | } |
6017 | if (spbuf && spcount < spbufcount) { |
6018 | /* the deletion will occur next time */ |
6019 | if ((sp->lifetime |
6020 | && current_time_ns - sp->created > sp->lifetime) |
6021 | || (sp->validtime |
6022 | && current_time_ns - sp->lastused > sp->validtime)) { |
6023 | //key_spdexpire(sp); |
6024 | sp->state = IPSEC_SPSTATE_DEAD; |
6025 | sp->refcnt++; |
6026 | *spptr++ = sp; |
6027 | spcount++; |
6028 | } |
6029 | } |
6030 | } |
6031 | } |
6032 | } |
6033 | |
6034 | /* SAD */ |
6035 | { |
6036 | struct secashead *sah, *nextsah; |
6037 | struct secasvar *sav, *nextsav; |
6038 | |
6039 | for (sah = LIST_FIRST(&sahtree); |
6040 | sah != NULL; |
6041 | sah = nextsah) { |
6042 | sah_count++; |
6043 | nextsah = LIST_NEXT(sah, chain); |
6044 | |
6045 | /* if sah has been dead, then delete it and process next sah. */ |
6046 | if (sah->state == SADB_SASTATE_DEAD) { |
6047 | key_delsah(sah); |
6048 | dead_sah_count++; |
6049 | continue; |
6050 | } |
6051 | |
6052 | if (LIST_FIRST(&sah->savtree[SADB_SASTATE_LARVAL]) == NULL && |
6053 | LIST_FIRST(&sah->savtree[SADB_SASTATE_MATURE]) == NULL && |
6054 | LIST_FIRST(&sah->savtree[SADB_SASTATE_DYING]) == NULL && |
6055 | LIST_FIRST(&sah->savtree[SADB_SASTATE_DEAD]) == NULL) { |
6056 | key_delsah(sah); |
6057 | empty_sah_count++; |
6058 | continue; |
6059 | } |
6060 | |
6061 | if (savbufcount == 0) { |
6062 | continue; |
6063 | } |
6064 | |
6065 | stop_handler = 0; |
6066 | |
6067 | /* if LARVAL entry doesn't become MATURE, delete it. */ |
6068 | const u_int64_t larval_lifetime = (u_int64_t)key_larval_lifetime * NSEC_PER_SEC; |
6069 | for (sav = LIST_FIRST(&sah->savtree[SADB_SASTATE_LARVAL]); |
6070 | sav != NULL; |
6071 | sav = nextsav) { |
6072 | larval_sav_count++; |
6073 | total_sav_count++; |
6074 | nextsav = LIST_NEXT(sav, chain); |
6075 | |
6076 | if (sav->lft_h != NULL) { |
6077 | /* If a hard lifetime is defined for the LARVAL SA, use it */ |
6078 | if (sav->lft_h->sadb_lifetime_addtime != 0) { |
6079 | const u_int64_t lifetime_addtime = sav->lft_h->sadb_lifetime_addtime * NSEC_PER_SEC; |
6080 | if (current_time_ns - sav->created > lifetime_addtime) { |
6081 | if (sav->always_expire) { |
6082 | key_send_delete(sav); |
6083 | sav = NULL; |
6084 | } else { |
6085 | key_sa_chgstate(sav, SADB_SASTATE_DEAD); |
6086 | key_freesav(sav, KEY_SADB_LOCKED); |
6087 | sav = NULL; |
6088 | } |
6089 | } |
6090 | } |
6091 | } else { |
6092 | if (current_time_ns - sav->created > larval_lifetime) { |
6093 | key_freesav(sav, KEY_SADB_LOCKED); |
6094 | } |
6095 | } |
6096 | } |
6097 | |
6098 | /* |
6099 | * If this is a NAT traversal SA with no activity, |
6100 | * we need to send a keep alive. |
6101 | * |
6102 | * Performed outside of the loop before so we will |
6103 | * only ever send one keepalive. The first SA on |
6104 | * the list is the one that will be used for sending |
6105 | * traffic, so this is the one we use for determining |
6106 | * when to send the keepalive. |
6107 | */ |
6108 | if (savkabuf && savkacount < savbufcount) { |
6109 | sav = LIST_FIRST(&sah->savtree[SADB_SASTATE_MATURE]); //%%% should we check dying list if this is empty??? |
6110 | if (sav && (natt_keepalive_interval || sav->natt_interval) && |
6111 | (sav->flags & (SADB_X_EXT_NATT_KEEPALIVE | SADB_X_EXT_ESP_KEEPALIVE)) != 0) { |
6112 | sav->refcnt++; |
6113 | *savkaptr++ = sav; |
6114 | savkacount++; |
6115 | } |
6116 | } |
6117 | |
6118 | /* |
6119 | * check MATURE entry to start to send expire message |
6120 | * whether or not. |
6121 | */ |
6122 | for (sav = LIST_FIRST(&sah->savtree[SADB_SASTATE_MATURE]); |
6123 | sav != NULL; |
6124 | sav = nextsav) { |
6125 | mature_sav_count++; |
6126 | total_sav_count++; |
6127 | nextsav = LIST_NEXT(sav, chain); |
6128 | |
6129 | /* we don't need to check. */ |
6130 | if (sav->lft_s == NULL) { |
6131 | continue; |
6132 | } |
6133 | |
6134 | /* sanity check */ |
6135 | if (sav->lft_c == NULL) { |
6136 | ipseclog((LOG_DEBUG, "key_timehandler: " |
6137 | "There is no CURRENT time, why?\n" )); |
6138 | continue; |
6139 | } |
6140 | |
6141 | /* check SOFT lifetime */ |
6142 | if (sav->lft_s->sadb_lifetime_addtime != 0) { |
6143 | const u_int64_t lifetime_addtime = sav->lft_s->sadb_lifetime_addtime * NSEC_PER_SEC; |
6144 | if (current_time_ns - sav->created > lifetime_addtime) { |
6145 | /* |
6146 | * If always_expire is set, expire. Otherwise, |
6147 | * if the SA has not been used, delete immediately. |
6148 | */ |
6149 | if (sav->lft_c->sadb_lifetime_usetime == 0 |
6150 | && sav->always_expire == 0) { |
6151 | key_sa_chgstate(sav, SADB_SASTATE_DEAD); |
6152 | key_freesav(sav, KEY_SADB_LOCKED); |
6153 | sav = NULL; |
6154 | } else if (savexbuf && savexcount < savbufcount) { |
6155 | key_sa_chgstate(sav, SADB_SASTATE_DYING); |
6156 | sav->refcnt++; |
6157 | *savexptr++ = sav; |
6158 | savexcount++; |
6159 | } |
6160 | } |
6161 | } |
6162 | /* check SOFT lifetime by bytes */ |
6163 | /* |
6164 | * XXX I don't know the way to delete this SA |
6165 | * when new SA is installed. Caution when it's |
6166 | * installed too big lifetime by time. |
6167 | */ |
6168 | else if (savexbuf && savexcount < savbufcount |
6169 | && sav->lft_s->sadb_lifetime_bytes != 0 |
6170 | && sav->lft_s->sadb_lifetime_bytes < sav->lft_c->sadb_lifetime_bytes) { |
6171 | /* |
6172 | * XXX If we keep to send expire |
6173 | * message in the status of |
6174 | * DYING. Do remove below code. |
6175 | */ |
6176 | //key_expire(sav); |
6177 | key_sa_chgstate(sav, SADB_SASTATE_DYING); |
6178 | sav->refcnt++; |
6179 | *savexptr++ = sav; |
6180 | savexcount++; |
6181 | } |
6182 | } |
6183 | |
6184 | /* check DYING entry to change status to DEAD. */ |
6185 | for (sav = LIST_FIRST(&sah->savtree[SADB_SASTATE_DYING]); |
6186 | sav != NULL; |
6187 | sav = nextsav) { |
6188 | dying_sav_count++; |
6189 | total_sav_count++; |
6190 | nextsav = LIST_NEXT(sav, chain); |
6191 | |
6192 | /* we don't need to check. */ |
6193 | if (sav->lft_h == NULL) { |
6194 | continue; |
6195 | } |
6196 | |
6197 | /* sanity check */ |
6198 | if (sav->lft_c == NULL) { |
6199 | ipseclog((LOG_DEBUG, "key_timehandler: " |
6200 | "There is no CURRENT time, why?\n" )); |
6201 | continue; |
6202 | } |
6203 | |
6204 | /* check HARD lifetime */ |
6205 | if (sav->lft_h->sadb_lifetime_addtime != 0) { |
6206 | const u_int64_t lifetime_addtime = sav->lft_h->sadb_lifetime_addtime * NSEC_PER_SEC; |
6207 | if (current_time_ns - sav->created > lifetime_addtime) { |
6208 | if (sav->always_expire) { |
6209 | key_send_delete(sav); |
6210 | sav = NULL; |
6211 | } else { |
6212 | key_sa_chgstate(sav, SADB_SASTATE_DEAD); |
6213 | key_freesav(sav, KEY_SADB_LOCKED); |
6214 | sav = NULL; |
6215 | } |
6216 | } |
6217 | } |
6218 | /* check HARD lifetime by bytes */ |
6219 | else if (sav->lft_h->sadb_lifetime_bytes != 0 |
6220 | && sav->lft_h->sadb_lifetime_bytes < sav->lft_c->sadb_lifetime_bytes) { |
6221 | key_sa_chgstate(sav, SADB_SASTATE_DEAD); |
6222 | key_freesav(sav, KEY_SADB_LOCKED); |
6223 | sav = NULL; |
6224 | } |
6225 | } |
6226 | |
6227 | /* delete entry in DEAD */ |
6228 | for (sav = LIST_FIRST(&sah->savtree[SADB_SASTATE_DEAD]); |
6229 | sav != NULL; |
6230 | sav = nextsav) { |
6231 | dead_sav_count++; |
6232 | total_sav_count++; |
6233 | nextsav = LIST_NEXT(sav, chain); |
6234 | |
6235 | /* sanity check */ |
6236 | if (sav->state != SADB_SASTATE_DEAD) { |
6237 | ipseclog((LOG_DEBUG, "key_timehandler: " |
6238 | "invalid sav->state " |
6239 | "(queue: %d SA: %d): " |
6240 | "kill it anyway\n" , |
6241 | SADB_SASTATE_DEAD, sav->state)); |
6242 | } |
6243 | |
6244 | /* |
6245 | * do not call key_freesav() here. |
6246 | * sav should already be freed, and sav->refcnt |
6247 | * shows other references to sav |
6248 | * (such as from SPD). |
6249 | */ |
6250 | } |
6251 | } |
6252 | } |
6253 | |
6254 | if (++key_timehandler_debug >= 300) { |
6255 | if (key_debug_level) { |
6256 | printf("%s: total stats for %u calls\n" , __FUNCTION__, key_timehandler_debug); |
6257 | printf("%s: walked %u SPDs\n" , __FUNCTION__, spd_count); |
6258 | printf("%s: walked %llu SAs: LARVAL SAs %u, MATURE SAs %u, DYING SAs %u, DEAD SAs %u\n" , __FUNCTION__, |
6259 | total_sav_count, larval_sav_count, mature_sav_count, dying_sav_count, dead_sav_count); |
6260 | printf("%s: walked %u SAHs: DEAD SAHs %u, EMPTY SAHs %u\n" , __FUNCTION__, |
6261 | sah_count, dead_sah_count, empty_sah_count); |
6262 | if (sah_search_calls) { |
6263 | printf("%s: SAH search cost %d iters per call\n" , __FUNCTION__, |
6264 | (sah_search_count / sah_search_calls)); |
6265 | } |
6266 | } |
6267 | spd_count = 0; |
6268 | sah_count = 0; |
6269 | dead_sah_count = 0; |
6270 | empty_sah_count = 0; |
6271 | larval_sav_count = 0; |
6272 | mature_sav_count = 0; |
6273 | dying_sav_count = 0; |
6274 | dead_sav_count = 0; |
6275 | total_sav_count = 0; |
6276 | sah_search_count = 0; |
6277 | sah_search_calls = 0; |
6278 | key_timehandler_debug = 0; |
6279 | } |
6280 | |
6281 | const u_int64_t blockacq_lifetime = (u_int64_t)key_blockacq_lifetime * NSEC_PER_SEC; |
6282 | #ifndef IPSEC_NONBLOCK_ACQUIRE |
6283 | /* ACQ tree */ |
6284 | { |
6285 | struct secacq *acq, *nextacq; |
6286 | |
6287 | for (acq = LIST_FIRST(&acqtree); |
6288 | acq != NULL; |
6289 | acq = nextacq) { |
6290 | stop_handler = 0; |
6291 | nextacq = LIST_NEXT(acq, chain); |
6292 | |
6293 | if (current_time_ns - acq->created > blockacq_lifetime |
6294 | && __LIST_CHAINED(acq)) { |
6295 | LIST_REMOVE(acq, chain); |
6296 | kfree_type(struct secacq, acq); |
6297 | } |
6298 | } |
6299 | } |
6300 | #endif |
6301 | |
6302 | /* SP ACQ tree */ |
6303 | { |
6304 | struct secspacq *acq, *nextacq; |
6305 | |
6306 | for (acq = LIST_FIRST(&spacqtree); |
6307 | acq != NULL; |
6308 | acq = nextacq) { |
6309 | stop_handler = 0; |
6310 | nextacq = LIST_NEXT(acq, chain); |
6311 | |
6312 | if (current_time_ns - acq->created > blockacq_lifetime |
6313 | && __LIST_CHAINED(acq)) { |
6314 | LIST_REMOVE(acq, chain); |
6315 | struct secacq *secacq_p = (struct secacq *)acq; |
6316 | kfree_type(struct secacq, secacq_p); |
6317 | } |
6318 | } |
6319 | } |
6320 | |
6321 | /* initialize random seed */ |
6322 | if (key_tick_init_random++ > key_int_random) { |
6323 | key_tick_init_random = 0; |
6324 | key_srandom(); |
6325 | } |
6326 | |
6327 | uint64_t acc_sleep_time = 0; |
6328 | absolutetime_to_nanoseconds(abstime: mach_absolutetime_asleep, result: &acc_sleep_time); |
6329 | natt_now = ++up_time + (acc_sleep_time / NSEC_PER_SEC); |
6330 | |
6331 | lck_mtx_unlock(sadb_mutex); |
6332 | |
6333 | /* send messages outside of sadb_mutex */ |
6334 | if (spbuf && spcount > 0) { |
6335 | cnt = spcount; |
6336 | while (cnt--) { |
6337 | key_spdexpire(sp: *(--spptr)); |
6338 | } |
6339 | } |
6340 | if (savkabuf && savkacount > 0) { |
6341 | struct secasvar **savkaptr_sav = savkaptr; |
6342 | u_int32_t cnt_send = savkacount; |
6343 | |
6344 | while (cnt_send--) { |
6345 | if (ipsec_send_natt_keepalive(sav: *(--savkaptr))) { |
6346 | // <rdar://6768487> iterate (all over again) and update timestamps |
6347 | struct secasvar **savkaptr_update = savkaptr_sav; |
6348 | u_int32_t cnt_update = savkacount; |
6349 | while (cnt_update--) { |
6350 | key_update_natt_keepalive_timestamp(*savkaptr, |
6351 | *(--savkaptr_update)); |
6352 | } |
6353 | } |
6354 | } |
6355 | } |
6356 | if (savexbuf && savexcount > 0) { |
6357 | cnt = savexcount; |
6358 | while (cnt--) { |
6359 | key_expire(*(--savexptr)); |
6360 | } |
6361 | } |
6362 | |
6363 | /* decrement ref counts and free buffers */ |
6364 | lck_mtx_lock(sadb_mutex); |
6365 | if (spbuf) { |
6366 | while (spcount--) { |
6367 | key_freesp(sp: *spptr++, KEY_SADB_LOCKED); |
6368 | } |
6369 | kfree_type(struct secpolicy *, spbufcount, spbuf); |
6370 | } |
6371 | if (savkabuf) { |
6372 | while (savkacount--) { |
6373 | key_freesav(sav: *savkaptr++, KEY_SADB_LOCKED); |
6374 | } |
6375 | kfree_type(struct secasvar *, savbufcount, savkabuf); |
6376 | } |
6377 | if (savexbuf) { |
6378 | while (savexcount--) { |
6379 | key_freesav(sav: *savexptr++, KEY_SADB_LOCKED); |
6380 | } |
6381 | kfree_type(struct secasvar *, savbufcount, savexbuf); |
6382 | } |
6383 | |
6384 | if (stop_handler) { |
6385 | key_timehandler_running = 0; |
6386 | /* Turn on the ipsec bypass */ |
6387 | ipsec_bypass = 1; |
6388 | } else { |
6389 | /* do exchange to tick time !! */ |
6390 | (void)timeout((void *)key_timehandler, arg: (void *)0, ticks: hz); |
6391 | } |
6392 | |
6393 | lck_mtx_unlock(sadb_mutex); |
6394 | return; |
6395 | } |
6396 | |
6397 | /* |
6398 | * to initialize a seed for random() |
6399 | */ |
6400 | static void |
6401 | key_srandom(void) |
6402 | { |
6403 | #ifdef __APPLE__ |
6404 | /* Our PRNG is based on Yarrow and doesn't need to be seeded */ |
6405 | random(); |
6406 | #else |
6407 | struct timeval tv; |
6408 | |
6409 | microtime(&tv); |
6410 | |
6411 | srandom(tv.tv_usec); |
6412 | #endif |
6413 | |
6414 | return; |
6415 | } |
6416 | |
6417 | u_int32_t |
6418 | key_random(void) |
6419 | { |
6420 | u_int32_t value; |
6421 | |
6422 | key_randomfill(&value, sizeof(value)); |
6423 | return value; |
6424 | } |
6425 | |
6426 | void |
6427 | key_randomfill( |
6428 | void *p, |
6429 | size_t l) |
6430 | { |
6431 | #ifdef __APPLE__ |
6432 | cc_rand_generate(out: p, outlen: l); |
6433 | #else |
6434 | size_t n; |
6435 | u_int32_t v; |
6436 | static int warn = 1; |
6437 | |
6438 | n = 0; |
6439 | n = (size_t)read_random(p, (u_int)l); |
6440 | /* last resort */ |
6441 | while (n < l) { |
6442 | v = random(); |
6443 | bcopy(&v, (u_int8_t *)p + n, |
6444 | l - n < sizeof(v) ? l - n : sizeof(v)); |
6445 | n += sizeof(v); |
6446 | |
6447 | if (warn) { |
6448 | printf("WARNING: pseudo-random number generator " |
6449 | "used for IPsec processing\n" ); |
6450 | warn = 0; |
6451 | } |
6452 | } |
6453 | #endif |
6454 | } |
6455 | |
6456 | /* |
6457 | * map SADB_SATYPE_* to IPPROTO_*. |
6458 | * if satype == SADB_SATYPE then satype is mapped to ~0. |
6459 | * OUT: |
6460 | * 0: invalid satype. |
6461 | */ |
6462 | static u_int8_t |
6463 | key_satype2proto( |
6464 | u_int8_t satype) |
6465 | { |
6466 | switch (satype) { |
6467 | case SADB_SATYPE_UNSPEC: |
6468 | return IPSEC_PROTO_ANY; |
6469 | case SADB_SATYPE_AH: |
6470 | return IPPROTO_AH; |
6471 | case SADB_SATYPE_ESP: |
6472 | return IPPROTO_ESP; |
6473 | default: |
6474 | return 0; |
6475 | } |
6476 | /* NOTREACHED */ |
6477 | } |
6478 | |
6479 | /* |
6480 | * map IPPROTO_* to SADB_SATYPE_* |
6481 | * OUT: |
6482 | * 0: invalid protocol type. |
6483 | */ |
6484 | static u_int8_t |
6485 | key_proto2satype( |
6486 | u_int16_t proto) |
6487 | { |
6488 | switch (proto) { |
6489 | case IPPROTO_AH: |
6490 | return SADB_SATYPE_AH; |
6491 | case IPPROTO_ESP: |
6492 | return SADB_SATYPE_ESP; |
6493 | default: |
6494 | return 0; |
6495 | } |
6496 | /* NOTREACHED */ |
6497 | } |
6498 | |
6499 | static ifnet_t |
6500 | key_get_ipsec_if_from_message(const struct sadb_msghdr *mhp, int message_type) |
6501 | { |
6502 | struct sadb_x_ipsecif *ipsecifopts = NULL; |
6503 | ifnet_t ipsec_if = NULL; |
6504 | |
6505 | ipsecifopts = (struct sadb_x_ipsecif *)(void *)mhp->ext[message_type]; |
6506 | if (ipsecifopts != NULL) { |
6507 | if (ipsecifopts->sadb_x_ipsecif_ipsec_if[0]) { |
6508 | ipsecifopts->sadb_x_ipsecif_ipsec_if[IFXNAMSIZ - 1] = '\0'; |
6509 | ifnet_find_by_name(ifname: ipsecifopts->sadb_x_ipsecif_ipsec_if, interface: &ipsec_if); |
6510 | } |
6511 | } |
6512 | |
6513 | return ipsec_if; |
6514 | } |
6515 | |
6516 | static u_int |
6517 | key_get_outgoing_ifindex_from_message(const struct sadb_msghdr *mhp, int message_type) |
6518 | { |
6519 | struct sadb_x_ipsecif *ipsecifopts = NULL; |
6520 | ifnet_t outgoing_if = NULL; |
6521 | |
6522 | ipsecifopts = (struct sadb_x_ipsecif *)(void *)mhp->ext[message_type]; |
6523 | if (ipsecifopts != NULL) { |
6524 | if (ipsecifopts->sadb_x_ipsecif_outgoing_if[0]) { |
6525 | ipsecifopts->sadb_x_ipsecif_outgoing_if[IFXNAMSIZ - 1] = '\0'; |
6526 | ifnet_find_by_name(ifname: ipsecifopts->sadb_x_ipsecif_outgoing_if, interface: &outgoing_if); |
6527 | } |
6528 | } |
6529 | |
6530 | u_int outgoing_if_index = 0; |
6531 | if (outgoing_if != NULL) { |
6532 | outgoing_if_index = outgoing_if->if_index; |
6533 | ifnet_release(interface: outgoing_if); |
6534 | } |
6535 | |
6536 | return outgoing_if_index; |
6537 | } |
6538 | |
6539 | /* %%% PF_KEY */ |
6540 | /* |
6541 | * SADB_GETSPI processing is to receive |
6542 | * <base, (SA2), src address, dst address, (SPI range)> |
6543 | * from the IKMPd, to assign a unique spi value, to hang on the INBOUND |
6544 | * tree with the status of LARVAL, and send |
6545 | * <base, SA(*), address(SD)> |
6546 | * to the IKMPd. |
6547 | * |
6548 | * IN: mhp: pointer to the pointer to each header. |
6549 | * OUT: NULL if fail. |
6550 | * other if success, return pointer to the message to send. |
6551 | */ |
6552 | static int |
6553 | key_getspi( |
6554 | struct socket *so, |
6555 | struct mbuf *m, |
6556 | const struct sadb_msghdr *mhp) |
6557 | { |
6558 | struct sadb_address *src0, *dst0; |
6559 | struct secasindex saidx; |
6560 | struct secashead *newsah; |
6561 | struct secasvar *newsav; |
6562 | ifnet_t ipsec_if = NULL; |
6563 | u_int8_t proto; |
6564 | u_int32_t spi; |
6565 | u_int8_t mode; |
6566 | u_int32_t reqid; |
6567 | int error; |
6568 | |
6569 | LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_NOTOWNED); |
6570 | |
6571 | /* sanity check */ |
6572 | if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL) { |
6573 | panic("key_getspi: NULL pointer is passed." ); |
6574 | } |
6575 | |
6576 | if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || |
6577 | mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) { |
6578 | ipseclog((LOG_DEBUG, "key_getspi: invalid message is passed.\n" )); |
6579 | return key_senderror(so, m, EINVAL); |
6580 | } |
6581 | if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || |
6582 | mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) { |
6583 | ipseclog((LOG_DEBUG, "key_getspi: invalid message is passed.\n" )); |
6584 | return key_senderror(so, m, EINVAL); |
6585 | } |
6586 | if (mhp->ext[SADB_X_EXT_SA2] != NULL) { |
6587 | mode = ((struct sadb_x_sa2 *) |
6588 | (void *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode; |
6589 | reqid = ((struct sadb_x_sa2 *) |
6590 | (void *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid; |
6591 | } else { |
6592 | mode = IPSEC_MODE_ANY; |
6593 | reqid = 0; |
6594 | } |
6595 | |
6596 | src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]); |
6597 | dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]); |
6598 | |
6599 | /* map satype to proto */ |
6600 | if ((proto = key_satype2proto(satype: mhp->msg->sadb_msg_satype)) == 0) { |
6601 | ipseclog((LOG_DEBUG, "key_getspi: invalid satype is passed.\n" )); |
6602 | return key_senderror(so, m, EINVAL); |
6603 | } |
6604 | |
6605 | /* make sure if port number is zero. */ |
6606 | switch (((struct sockaddr *)(src0 + 1))->sa_family) { |
6607 | case AF_INET: |
6608 | if (((struct sockaddr *)(src0 + 1))->sa_len != |
6609 | sizeof(struct sockaddr_in)) { |
6610 | return key_senderror(so, m, EINVAL); |
6611 | } |
6612 | ((struct sockaddr_in *)(void *)(src0 + 1))->sin_port = 0; |
6613 | break; |
6614 | case AF_INET6: |
6615 | if (((struct sockaddr *)(src0 + 1))->sa_len != |
6616 | sizeof(struct sockaddr_in6)) { |
6617 | return key_senderror(so, m, EINVAL); |
6618 | } |
6619 | ((struct sockaddr_in6 *)(void *)(src0 + 1))->sin6_port = 0; |
6620 | break; |
6621 | default: |
6622 | ; /*???*/ |
6623 | } |
6624 | switch (((struct sockaddr *)(dst0 + 1))->sa_family) { |
6625 | case AF_INET: |
6626 | if (((struct sockaddr *)(dst0 + 1))->sa_len != |
6627 | sizeof(struct sockaddr_in)) { |
6628 | return key_senderror(so, m, EINVAL); |
6629 | } |
6630 | ((struct sockaddr_in *)(void *)(dst0 + 1))->sin_port = 0; |
6631 | break; |
6632 | case AF_INET6: |
6633 | if (((struct sockaddr *)(dst0 + 1))->sa_len != |
6634 | sizeof(struct sockaddr_in6)) { |
6635 | return key_senderror(so, m, EINVAL); |
6636 | } |
6637 | ((struct sockaddr_in6 *)(void *)(dst0 + 1))->sin6_port = 0; |
6638 | break; |
6639 | default: |
6640 | ; /*???*/ |
6641 | } |
6642 | |
6643 | ipsec_if = key_get_ipsec_if_from_message(mhp, SADB_X_EXT_IPSECIF); |
6644 | |
6645 | /* XXX boundary check against sa_len */ |
6646 | KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, ipsec_if ? ipsec_if->if_index : 0, &saidx); |
6647 | |
6648 | lck_mtx_lock(sadb_mutex); |
6649 | |
6650 | /* SPI allocation */ |
6651 | spi = key_do_getnewspi((struct sadb_spirange *) |
6652 | (void *)mhp->ext[SADB_EXT_SPIRANGE], &saidx); |
6653 | if (spi == 0) { |
6654 | lck_mtx_unlock(sadb_mutex); |
6655 | if (ipsec_if != NULL) { |
6656 | ifnet_release(interface: ipsec_if); |
6657 | } |
6658 | return key_senderror(so, m, EINVAL); |
6659 | } |
6660 | |
6661 | /* get a SA index */ |
6662 | if ((newsah = key_getsah(saidx: &saidx, SECURITY_ASSOCIATION_ANY)) == NULL) { |
6663 | /* create a new SA index: key_addspi is always used for inbound spi */ |
6664 | if ((newsah = key_newsah(saidx: &saidx, ipsec_if, outgoing_if: key_get_outgoing_ifindex_from_message(mhp, SADB_X_EXT_IPSECIF), IPSEC_DIR_INBOUND, SECURITY_ASSOCIATION_PFKEY)) == NULL) { |
6665 | lck_mtx_unlock(sadb_mutex); |
6666 | if (ipsec_if != NULL) { |
6667 | ifnet_release(interface: ipsec_if); |
6668 | } |
6669 | ipseclog((LOG_DEBUG, "key_getspi: No more memory.\n" )); |
6670 | return key_senderror(so, m, ENOBUFS); |
6671 | } |
6672 | } |
6673 | |
6674 | if (ipsec_if != NULL) { |
6675 | ifnet_release(interface: ipsec_if); |
6676 | ipsec_if = NULL; |
6677 | } |
6678 | |
6679 | // Increment use count, since key_newsav() could release sadb_mutex lock |
6680 | newsah->use_count++; |
6681 | |
6682 | if ((newsah->flags & SECURITY_ASSOCIATION_CUSTOM_IPSEC) == SECURITY_ASSOCIATION_CUSTOM_IPSEC) { |
6683 | newsah->use_count--; |
6684 | lck_mtx_unlock(sadb_mutex); |
6685 | ipseclog((LOG_ERR, "key_getspi: custom ipsec exists\n" )); |
6686 | return key_senderror(so, m, EEXIST); |
6687 | } |
6688 | |
6689 | /* get a new SA */ |
6690 | /* XXX rewrite */ |
6691 | newsav = key_newsav(m, mhp, sah: newsah, errp: &error, so); |
6692 | if (newsav == NULL) { |
6693 | /* XXX don't free new SA index allocated in above. */ |
6694 | newsah->use_count--; |
6695 | lck_mtx_unlock(sadb_mutex); |
6696 | return key_senderror(so, m, error); |
6697 | } |
6698 | |
6699 | if (newsah->state == SADB_SASTATE_DEAD) { |
6700 | newsah->use_count--; |
6701 | key_sa_chgstate(newsav, SADB_SASTATE_DEAD); |
6702 | key_freesav(sav: newsav, KEY_SADB_LOCKED); |
6703 | lck_mtx_unlock(sadb_mutex); |
6704 | ipseclog((LOG_ERR, "key_getspi: security association head is dead\n" )); |
6705 | return key_senderror(so, m, EINVAL); |
6706 | } |
6707 | |
6708 | /* set spi */ |
6709 | key_setspi(sav: newsav, htonl(spi)); |
6710 | |
6711 | #ifndef IPSEC_NONBLOCK_ACQUIRE |
6712 | /* delete the entry in acqtree */ |
6713 | if (mhp->msg->sadb_msg_seq != 0) { |
6714 | struct secacq *acq; |
6715 | if ((acq = key_getacqbyseq(mhp->msg->sadb_msg_seq)) != NULL) { |
6716 | /* reset counter in order to deletion by timehandler. */ |
6717 | acq->created = key_get_continuous_time_ns(); |
6718 | acq->count = 0; |
6719 | } |
6720 | } |
6721 | #endif |
6722 | newsah->use_count--; |
6723 | u_int32_t newsav_seq = newsav->seq; |
6724 | lck_mtx_unlock(sadb_mutex); |
6725 | |
6726 | { |
6727 | struct mbuf *n, *nn; |
6728 | struct sadb_sa *m_sa; |
6729 | struct sadb_msg *newmsg; |
6730 | int off, len; |
6731 | |
6732 | /* create new sadb_msg to reply. */ |
6733 | len = PFKEY_ALIGN8(sizeof(struct sadb_msg)) + |
6734 | PFKEY_ALIGN8(sizeof(struct sadb_sa)); |
6735 | if (len > MCLBYTES) { |
6736 | return key_senderror(so, m, ENOBUFS); |
6737 | } |
6738 | |
6739 | MGETHDR(n, M_WAITOK, MT_DATA); |
6740 | if (n && len > MHLEN) { |
6741 | MCLGET(n, M_WAITOK); |
6742 | if ((n->m_flags & M_EXT) == 0) { |
6743 | m_freem(n); |
6744 | n = NULL; |
6745 | } |
6746 | } |
6747 | if (!n) { |
6748 | return key_senderror(so, m, ENOBUFS); |
6749 | } |
6750 | |
6751 | n->m_len = len; |
6752 | n->m_next = NULL; |
6753 | off = 0; |
6754 | |
6755 | m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, caddr_t) + off); |
6756 | off += PFKEY_ALIGN8(sizeof(struct sadb_msg)); |
6757 | |
6758 | m_sa = (struct sadb_sa *)(void *)(mtod(n, caddr_t) + off); |
6759 | memset(s: m_sa, c: 0, PFKEY_ALIGN8(sizeof(struct sadb_sa))); |
6760 | m_sa->sadb_sa_len = PFKEY_UNIT64(sizeof(struct sadb_sa)); |
6761 | m_sa->sadb_sa_exttype = SADB_EXT_SA; |
6762 | m_sa->sadb_sa_spi = htonl(spi); |
6763 | off += PFKEY_ALIGN8(sizeof(struct sadb_sa)); |
6764 | |
6765 | #if DIAGNOSTIC |
6766 | if (off != len) { |
6767 | panic("length inconsistency in key_getspi" ); |
6768 | } |
6769 | #endif |
6770 | { |
6771 | int mbufItems[] = {SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST}; |
6772 | n->m_next = key_gather_mbuf(m, mhp, ndeep: 0, nitem: sizeof(mbufItems) / sizeof(int), items: mbufItems); |
6773 | if (!n->m_next) { |
6774 | m_freem(n); |
6775 | return key_senderror(so, m, ENOBUFS); |
6776 | } |
6777 | } |
6778 | |
6779 | if (n->m_len < sizeof(struct sadb_msg)) { |
6780 | n = m_pullup(n, sizeof(struct sadb_msg)); |
6781 | if (n == NULL) { |
6782 | return key_sendup_mbuf(so, m, KEY_SENDUP_ONE); |
6783 | } |
6784 | } |
6785 | |
6786 | n->m_pkthdr.len = 0; |
6787 | for (nn = n; nn; nn = nn->m_next) { |
6788 | n->m_pkthdr.len += nn->m_len; |
6789 | } |
6790 | |
6791 | newmsg = mtod(n, struct sadb_msg *); |
6792 | newmsg->sadb_msg_seq = newsav_seq; |
6793 | newmsg->sadb_msg_errno = 0; |
6794 | VERIFY(PFKEY_UNIT64(n->m_pkthdr.len) <= UINT16_MAX); |
6795 | newmsg->sadb_msg_len = (u_int16_t)PFKEY_UNIT64(n->m_pkthdr.len); |
6796 | |
6797 | m_freem(m); |
6798 | return key_sendup_mbuf(so, n, KEY_SENDUP_ONE); |
6799 | } |
6800 | } |
6801 | |
6802 | /* |
6803 | * allocating new SPI |
6804 | * called by key_getspi(). |
6805 | * OUT: |
6806 | * 0: failure. |
6807 | * others: success. |
6808 | */ |
6809 | static u_int32_t |
6810 | key_do_getnewspi( |
6811 | struct sadb_spirange *spirange, |
6812 | struct secasindex *saidx) |
6813 | { |
6814 | u_int32_t newspi; |
6815 | u_int32_t keymin, keymax; |
6816 | int count = key_spi_trycnt; |
6817 | |
6818 | LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_OWNED); |
6819 | |
6820 | /* set spi range to allocate */ |
6821 | if (spirange != NULL) { |
6822 | keymin = spirange->sadb_spirange_min; |
6823 | keymax = spirange->sadb_spirange_max; |
6824 | } else { |
6825 | keymin = key_spi_minval; |
6826 | keymax = key_spi_maxval; |
6827 | } |
6828 | if (keymin == keymax) { |
6829 | if (key_checkspidup(saidx, spi: keymin) != NULL) { |
6830 | ipseclog((LOG_DEBUG, "key_do_getnewspi: SPI %u exists already.\n" , keymin)); |
6831 | return 0; |
6832 | } |
6833 | |
6834 | count--; /* taking one cost. */ |
6835 | newspi = keymin; |
6836 | } else { |
6837 | u_int32_t range = keymax - keymin + 1; /* overflow value of zero means full range */ |
6838 | |
6839 | /* init SPI */ |
6840 | newspi = 0; |
6841 | |
6842 | /* when requesting to allocate spi ranged */ |
6843 | while (count--) { |
6844 | u_int32_t rand_val = key_random(); |
6845 | |
6846 | /* generate pseudo-random SPI value ranged. */ |
6847 | newspi = (range == 0 ? rand_val : keymin + (rand_val % range)); |
6848 | |
6849 | if (key_checkspidup(saidx, spi: newspi) == NULL) { |
6850 | break; |
6851 | } |
6852 | } |
6853 | |
6854 | if (count == 0 || newspi == 0) { |
6855 | ipseclog((LOG_DEBUG, "key_do_getnewspi: to allocate spi is failed.\n" )); |
6856 | return 0; |
6857 | } |
6858 | } |
6859 | |
6860 | /* statistics */ |
6861 | keystat.getspi_count = |
6862 | (keystat.getspi_count + key_spi_trycnt - count) / 2; |
6863 | |
6864 | return newspi; |
6865 | } |
6866 | |
6867 | /* |
6868 | * SADB_UPDATE processing |
6869 | * receive |
6870 | * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),) |
6871 | * key(AE), (identity(SD),) (sensitivity)> |
6872 | * from the ikmpd, and update a secasvar entry whose status is SADB_SASTATE_LARVAL. |
6873 | * and send |
6874 | * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),) |
6875 | * (identity(SD),) (sensitivity)> |
6876 | * to the ikmpd. |
6877 | * |
6878 | * m will always be freed. |
6879 | */ |
6880 | static int |
6881 | key_update( |
6882 | struct socket *so, |
6883 | struct mbuf *m, |
6884 | const struct sadb_msghdr *mhp) |
6885 | { |
6886 | struct sadb_sa *sa0 = NULL; |
6887 | struct sadb_address *src0 = NULL, *dst0 = NULL; |
6888 | ifnet_t ipsec_if = NULL; |
6889 | struct secasindex saidx; |
6890 | struct secashead *sah = NULL; |
6891 | struct secasvar *sav = NULL; |
6892 | u_int8_t proto; |
6893 | u_int8_t mode; |
6894 | u_int32_t reqid; |
6895 | u_int16_t flags2; |
6896 | int error; |
6897 | |
6898 | LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_NOTOWNED); |
6899 | |
6900 | /* sanity check */ |
6901 | if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL) { |
6902 | panic("key_update: NULL pointer is passed." ); |
6903 | } |
6904 | |
6905 | /* map satype to proto */ |
6906 | if ((proto = key_satype2proto(satype: mhp->msg->sadb_msg_satype)) == 0) { |
6907 | ipseclog((LOG_DEBUG, "key_update: invalid satype is passed.\n" )); |
6908 | bzero_keys(mhp); |
6909 | return key_senderror(so, m, EINVAL); |
6910 | } |
6911 | |
6912 | if (mhp->ext[SADB_EXT_SA] == NULL || |
6913 | mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || |
6914 | mhp->ext[SADB_EXT_ADDRESS_DST] == NULL || |
6915 | (mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP && |
6916 | mhp->ext[SADB_EXT_KEY_ENCRYPT] == NULL) || |
6917 | (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH && |
6918 | mhp->ext[SADB_EXT_KEY_AUTH] == NULL) || |
6919 | (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL && |
6920 | mhp->ext[SADB_EXT_LIFETIME_SOFT] == NULL) || |
6921 | (mhp->ext[SADB_EXT_LIFETIME_HARD] == NULL && |
6922 | mhp->ext[SADB_EXT_LIFETIME_SOFT] != NULL)) { |
6923 | ipseclog((LOG_DEBUG, "key_update: invalid message is passed.\n" )); |
6924 | bzero_keys(mhp); |
6925 | return key_senderror(so, m, EINVAL); |
6926 | } |
6927 | if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) || |
6928 | mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || |
6929 | mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) { |
6930 | ipseclog((LOG_DEBUG, "key_update: invalid message is passed.\n" )); |
6931 | bzero_keys(mhp); |
6932 | return key_senderror(so, m, EINVAL); |
6933 | } |
6934 | if (mhp->ext[SADB_X_EXT_SA2] != NULL) { |
6935 | mode = ((struct sadb_x_sa2 *) |
6936 | (void *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode; |
6937 | reqid = ((struct sadb_x_sa2 *) |
6938 | (void *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid; |
6939 | flags2 = ((struct sadb_x_sa2 *)(void *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_flags; |
6940 | } else { |
6941 | mode = IPSEC_MODE_ANY; |
6942 | reqid = 0; |
6943 | flags2 = 0; |
6944 | } |
6945 | /* XXX boundary checking for other extensions */ |
6946 | |
6947 | sa0 = (struct sadb_sa *)(void *)mhp->ext[SADB_EXT_SA]; |
6948 | src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]); |
6949 | dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]); |
6950 | ipsec_if = key_get_ipsec_if_from_message(mhp, SADB_X_EXT_IPSECIF); |
6951 | |
6952 | u_int ipsec_if_index = 0; |
6953 | if (ipsec_if != NULL) { |
6954 | ipsec_if_index = ipsec_if->if_index; |
6955 | ifnet_release(interface: ipsec_if); |
6956 | ipsec_if = NULL; |
6957 | } |
6958 | |
6959 | /* XXX boundary check against sa_len */ |
6960 | KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, ipsec_if_index, &saidx); |
6961 | |
6962 | lck_mtx_lock(sadb_mutex); |
6963 | |
6964 | /* get a SA header */ |
6965 | if ((sah = key_getsah(saidx: &saidx, SECURITY_ASSOCIATION_PFKEY)) == NULL) { |
6966 | lck_mtx_unlock(sadb_mutex); |
6967 | ipseclog((LOG_DEBUG, "key_update: no SA index found.\n" )); |
6968 | bzero_keys(mhp); |
6969 | return key_senderror(so, m, ENOENT); |
6970 | } |
6971 | |
6972 | // Increment use count, since key_setsaval() could release sadb_mutex lock |
6973 | sah->use_count++; |
6974 | |
6975 | if ((sav = key_getsavbyspi(sah, spi: sa0->sadb_sa_spi)) == NULL) { |
6976 | ipseclog((LOG_DEBUG, |
6977 | "key_update: no such a SA found (spi:%u)\n" , |
6978 | (u_int32_t)ntohl(sa0->sadb_sa_spi))); |
6979 | error = EINVAL; |
6980 | goto fail; |
6981 | } |
6982 | |
6983 | // Increment reference count, since key_setsaval() could release sadb_mutex lock |
6984 | sav->refcnt++; |
6985 | |
6986 | /* validity check */ |
6987 | if (sav->sah->saidx.proto != proto) { |
6988 | ipseclog((LOG_DEBUG, |
6989 | "key_update: protocol mismatched (DB=%u param=%u)\n" , |
6990 | sav->sah->saidx.proto, proto)); |
6991 | error = EINVAL; |
6992 | goto fail; |
6993 | } |
6994 | |
6995 | if (sav->pid != mhp->msg->sadb_msg_pid) { |
6996 | ipseclog((LOG_DEBUG, |
6997 | "key_update: pid mismatched (DB:%u param:%u)\n" , |
6998 | sav->pid, mhp->msg->sadb_msg_pid)); |
6999 | error = EINVAL; |
7000 | goto fail; |
7001 | } |
7002 | |
7003 | /* copy sav values */ |
7004 | sav->flags2 = flags2; |
7005 | if (flags2 & SADB_X_EXT_SA2_DELETE_ON_DETACH) { |
7006 | sav->so = so; |
7007 | } |
7008 | |
7009 | error = key_setsaval(sav, m, mhp); |
7010 | if (error) { |
7011 | goto fail; |
7012 | } |
7013 | |
7014 | if (sah->state == SADB_SASTATE_DEAD) { |
7015 | ipseclog((LOG_ERR, |
7016 | "key_update: security association head is dead\n" )); |
7017 | error = EINVAL; |
7018 | goto fail; |
7019 | } |
7020 | |
7021 | /* |
7022 | * Verify if SADB_X_EXT_NATT_MULTIPLEUSERS flag is set that |
7023 | * this SA is for transport mode - otherwise clear it. |
7024 | */ |
7025 | if ((sav->flags & SADB_X_EXT_NATT_MULTIPLEUSERS) != 0 && |
7026 | (sav->sah->saidx.mode != IPSEC_MODE_TRANSPORT || |
7027 | sav->sah->saidx.src.ss_family != AF_INET)) { |
7028 | sav->flags &= ~SADB_X_EXT_NATT_MULTIPLEUSERS; |
7029 | } |
7030 | |
7031 | /* check SA values to be mature. */ |
7032 | if ((error = key_mature(sav)) != 0) { |
7033 | goto fail; |
7034 | } |
7035 | |
7036 | key_freesav(sav, KEY_SADB_LOCKED); |
7037 | sah->use_count--; |
7038 | lck_mtx_unlock(sadb_mutex); |
7039 | |
7040 | { |
7041 | struct mbuf *n; |
7042 | |
7043 | /* set msg buf from mhp */ |
7044 | n = key_getmsgbuf_x1(m, mhp); |
7045 | if (n == NULL) { |
7046 | ipseclog((LOG_DEBUG, "key_update: No more memory.\n" )); |
7047 | return key_senderror(so, m, ENOBUFS); |
7048 | } |
7049 | |
7050 | bzero_keys(mhp); |
7051 | m_freem(m); |
7052 | return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); |
7053 | } |
7054 | fail: |
7055 | if (sav != NULL) { |
7056 | key_freesav(sav, KEY_SADB_LOCKED); |
7057 | } |
7058 | if (sah != NULL) { |
7059 | sah->use_count--; |
7060 | } |
7061 | |
7062 | lck_mtx_unlock(sadb_mutex); |
7063 | bzero_keys(mhp); |
7064 | return key_senderror(so, m, error); |
7065 | } |
7066 | |
7067 | static int |
7068 | key_migrate(struct socket *so, |
7069 | struct mbuf *m, |
7070 | const struct sadb_msghdr *mhp) |
7071 | { |
7072 | struct sadb_sa *sa0 = NULL; |
7073 | struct sadb_address *src0 = NULL; |
7074 | struct sadb_address *dst0 = NULL; |
7075 | struct sadb_address *src1 = NULL; |
7076 | struct sadb_address *dst1 = NULL; |
7077 | ifnet_t ipsec_if0 = NULL; |
7078 | ifnet_t ipsec_if1 = NULL; |
7079 | struct secasindex saidx0; |
7080 | struct secasindex saidx1; |
7081 | struct secashead *sah = NULL; |
7082 | struct secashead *newsah = NULL; |
7083 | struct secasvar *sav = NULL; |
7084 | u_int8_t proto; |
7085 | |
7086 | LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_NOTOWNED); |
7087 | |
7088 | /* sanity check */ |
7089 | if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL) { |
7090 | panic("key_migrate: NULL pointer is passed." ); |
7091 | } |
7092 | |
7093 | /* map satype to proto */ |
7094 | if ((proto = key_satype2proto(satype: mhp->msg->sadb_msg_satype)) == 0) { |
7095 | ipseclog((LOG_DEBUG, "key_migrate: invalid satype is passed.\n" )); |
7096 | return key_senderror(so, m, EINVAL); |
7097 | } |
7098 | |
7099 | if (mhp->ext[SADB_EXT_SA] == NULL || |
7100 | mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || |
7101 | mhp->ext[SADB_EXT_ADDRESS_DST] == NULL || |
7102 | mhp->ext[SADB_EXT_MIGRATE_ADDRESS_SRC] == NULL || |
7103 | mhp->ext[SADB_EXT_MIGRATE_ADDRESS_DST] == NULL) { |
7104 | ipseclog((LOG_DEBUG, "key_migrate: invalid message is passed.\n" )); |
7105 | return key_senderror(so, m, EINVAL); |
7106 | } |
7107 | |
7108 | if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) || |
7109 | mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || |
7110 | mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) || |
7111 | mhp->extlen[SADB_EXT_MIGRATE_ADDRESS_SRC] < sizeof(struct sadb_address) || |
7112 | mhp->extlen[SADB_EXT_MIGRATE_ADDRESS_DST] < sizeof(struct sadb_address)) { |
7113 | ipseclog((LOG_DEBUG, "key_migrate: invalid message is passed.\n" )); |
7114 | return key_senderror(so, m, EINVAL); |
7115 | } |
7116 | |
7117 | lck_mtx_lock(sadb_mutex); |
7118 | |
7119 | sa0 = (struct sadb_sa *)(void *)mhp->ext[SADB_EXT_SA]; |
7120 | src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]); |
7121 | dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]); |
7122 | src1 = (struct sadb_address *)(mhp->ext[SADB_EXT_MIGRATE_ADDRESS_SRC]); |
7123 | dst1 = (struct sadb_address *)(mhp->ext[SADB_EXT_MIGRATE_ADDRESS_DST]); |
7124 | ipsec_if0 = key_get_ipsec_if_from_message(mhp, SADB_X_EXT_IPSECIF); |
7125 | ipsec_if1 = key_get_ipsec_if_from_message(mhp, SADB_X_EXT_MIGRATE_IPSECIF); |
7126 | |
7127 | u_int ipsec_if0_index = 0; |
7128 | if (ipsec_if0 != NULL) { |
7129 | ipsec_if0_index = ipsec_if0->if_index; |
7130 | ifnet_release(interface: ipsec_if0); |
7131 | ipsec_if0 = NULL; |
7132 | } |
7133 | |
7134 | /* Find existing SAH and SAV */ |
7135 | KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, ipsec_if0_index, &saidx0); |
7136 | |
7137 | LIST_FOREACH(sah, &sahtree, chain) { |
7138 | if (sah->state != SADB_SASTATE_MATURE) { |
7139 | continue; |
7140 | } |
7141 | if (key_cmpsaidx(saidx0: &sah->saidx, saidx1: &saidx0, CMP_HEAD) == 0) { |
7142 | continue; |
7143 | } |
7144 | |
7145 | sav = key_getsavbyspi(sah, spi: sa0->sadb_sa_spi); |
7146 | if (sav && sav->state == SADB_SASTATE_MATURE) { |
7147 | break; |
7148 | } |
7149 | } |
7150 | if (sah == NULL) { |
7151 | lck_mtx_unlock(sadb_mutex); |
7152 | if (ipsec_if1 != NULL) { |
7153 | ifnet_release(interface: ipsec_if1); |
7154 | } |
7155 | ipseclog((LOG_DEBUG, "key_migrate: no mature SAH found.\n" )); |
7156 | return key_senderror(so, m, ENOENT); |
7157 | } |
7158 | |
7159 | if (sav == NULL) { |
7160 | lck_mtx_unlock(sadb_mutex); |
7161 | if (ipsec_if1 != NULL) { |
7162 | ifnet_release(interface: ipsec_if1); |
7163 | } |
7164 | ipseclog((LOG_DEBUG, "key_migrate: no SA found.\n" )); |
7165 | return key_senderror(so, m, ENOENT); |
7166 | } |
7167 | |
7168 | /* Find or create new SAH */ |
7169 | KEY_SETSECASIDX(proto, sah->saidx.mode, sah->saidx.reqid, src1 + 1, dst1 + 1, ipsec_if1 ? ipsec_if1->if_index : 0, &saidx1); |
7170 | |
7171 | if ((newsah = key_getsah(saidx: &saidx1, SECURITY_ASSOCIATION_ANY)) == NULL) { |
7172 | if ((newsah = key_newsah(saidx: &saidx1, ipsec_if: ipsec_if1, outgoing_if: key_get_outgoing_ifindex_from_message(mhp, SADB_X_EXT_MIGRATE_IPSECIF), dir: sah->dir, SECURITY_ASSOCIATION_PFKEY)) == NULL) { |
7173 | lck_mtx_unlock(sadb_mutex); |
7174 | if (ipsec_if1 != NULL) { |
7175 | ifnet_release(interface: ipsec_if1); |
7176 | } |
7177 | ipseclog((LOG_DEBUG, "key_migrate: No more memory.\n" )); |
7178 | return key_senderror(so, m, ENOBUFS); |
7179 | } |
7180 | } |
7181 | |
7182 | if (ipsec_if1 != NULL) { |
7183 | ifnet_release(interface: ipsec_if1); |
7184 | ipsec_if1 = NULL; |
7185 | } |
7186 | |
7187 | if ((newsah->flags & SECURITY_ASSOCIATION_CUSTOM_IPSEC) == SECURITY_ASSOCIATION_CUSTOM_IPSEC) { |
7188 | lck_mtx_unlock(sadb_mutex); |
7189 | ipseclog((LOG_ERR, "key_migrate: custom ipsec exists\n" )); |
7190 | return key_senderror(so, m, EEXIST); |
7191 | } |
7192 | |
7193 | /* Migrate SAV in to new SAH */ |
7194 | if (key_migratesav(sav, newsah) != 0) { |
7195 | lck_mtx_unlock(sadb_mutex); |
7196 | ipseclog((LOG_DEBUG, "key_migrate: Failed to migrate SA to new SAH.\n" )); |
7197 | return key_senderror(so, m, EINVAL); |
7198 | } |
7199 | |
7200 | /* Reset NAT values */ |
7201 | sav->flags = sa0->sadb_sa_flags; |
7202 | sav->natt_encapsulated_src_port = ((const struct sadb_sa_2*)(sa0))->sadb_sa_natt_src_port; |
7203 | sav->remote_ike_port = ((const struct sadb_sa_2*)(sa0))->sadb_sa_natt_port; |
7204 | sav->natt_interval = ((const struct sadb_sa_2*)(sa0))->sadb_sa_natt_interval; |
7205 | sav->natt_offload_interval = ((const struct sadb_sa_2*)(sa0))->sadb_sa_natt_offload_interval; |
7206 | sav->natt_last_activity = natt_now; |
7207 | |
7208 | /* |
7209 | * Verify if SADB_X_EXT_NATT_MULTIPLEUSERS flag is set that |
7210 | * SADB_X_EXT_NATT is set and SADB_X_EXT_NATT_KEEPALIVE is not |
7211 | * set (we're not behind nat) - otherwise clear it. |
7212 | */ |
7213 | if ((sav->flags & SADB_X_EXT_NATT_MULTIPLEUSERS) != 0) { |
7214 | if ((sav->flags & SADB_X_EXT_NATT) == 0 || |
7215 | (sav->flags & SADB_X_EXT_NATT_KEEPALIVE) != 0) { |
7216 | sav->flags &= ~SADB_X_EXT_NATT_MULTIPLEUSERS; |
7217 | } |
7218 | } |
7219 | |
7220 | lck_mtx_unlock(sadb_mutex); |
7221 | { |
7222 | struct mbuf *n; |
7223 | struct sadb_msg *newmsg; |
7224 | int mbufItems[] = {SADB_EXT_RESERVED, SADB_EXT_SA, |
7225 | SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST, SADB_X_EXT_IPSECIF, |
7226 | SADB_EXT_MIGRATE_ADDRESS_SRC, SADB_EXT_MIGRATE_ADDRESS_DST, SADB_X_EXT_MIGRATE_IPSECIF}; |
7227 | |
7228 | /* create new sadb_msg to reply. */ |
7229 | n = key_gather_mbuf(m, mhp, ndeep: 1, nitem: sizeof(mbufItems) / sizeof(int), items: mbufItems); |
7230 | if (!n) { |
7231 | return key_senderror(so, m, ENOBUFS); |
7232 | } |
7233 | |
7234 | if (n->m_len < sizeof(struct sadb_msg)) { |
7235 | n = m_pullup(n, sizeof(struct sadb_msg)); |
7236 | if (n == NULL) { |
7237 | return key_senderror(so, m, ENOBUFS); |
7238 | } |
7239 | } |
7240 | newmsg = mtod(n, struct sadb_msg *); |
7241 | newmsg->sadb_msg_errno = 0; |
7242 | VERIFY(PFKEY_UNIT64(n->m_pkthdr.len) <= UINT16_MAX); |
7243 | newmsg->sadb_msg_len = (u_int16_t)PFKEY_UNIT64(n->m_pkthdr.len); |
7244 | |
7245 | m_freem(m); |
7246 | return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); |
7247 | } |
7248 | } |
7249 | |
7250 | /* |
7251 | * SADB_ADD processing |
7252 | * add a entry to SA database, when received |
7253 | * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),) |
7254 | * key(AE), (identity(SD),) (sensitivity)> |
7255 | * from the ikmpd, |
7256 | * and send |
7257 | * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),) |
7258 | * (identity(SD),) (sensitivity)> |
7259 | * to the ikmpd. |
7260 | * |
7261 | * IGNORE identity and sensitivity messages. |
7262 | * |
7263 | * m will always be freed. |
7264 | */ |
7265 | static int |
7266 | key_add( |
7267 | struct socket *so, |
7268 | struct mbuf *m, |
7269 | const struct sadb_msghdr *mhp) |
7270 | { |
7271 | struct sadb_sa *sa0 = NULL; |
7272 | struct sadb_address *src0 = NULL, *dst0 = NULL; |
7273 | ifnet_t ipsec_if = NULL; |
7274 | struct secasindex saidx; |
7275 | struct secashead *newsah = NULL; |
7276 | struct secasvar *newsav = NULL; |
7277 | u_int8_t proto; |
7278 | u_int8_t mode; |
7279 | u_int32_t reqid; |
7280 | int error; |
7281 | |
7282 | LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_NOTOWNED); |
7283 | |
7284 | /* sanity check */ |
7285 | if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL) { |
7286 | panic("key_add: NULL pointer is passed." ); |
7287 | } |
7288 | |
7289 | /* map satype to proto */ |
7290 | if ((proto = key_satype2proto(satype: mhp->msg->sadb_msg_satype)) == 0) { |
7291 | ipseclog((LOG_DEBUG, "key_add: invalid satype is passed.\n" )); |
7292 | bzero_keys(mhp); |
7293 | return key_senderror(so, m, EINVAL); |
7294 | } |
7295 | |
7296 | if (mhp->ext[SADB_EXT_SA] == NULL || |
7297 | mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || |
7298 | mhp->ext[SADB_EXT_ADDRESS_DST] == NULL || |
7299 | (mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP && |
7300 | mhp->ext[SADB_EXT_KEY_ENCRYPT] == NULL) || |
7301 | (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH && |
7302 | mhp->ext[SADB_EXT_KEY_AUTH] == NULL) || |
7303 | (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL && |
7304 | mhp->ext[SADB_EXT_LIFETIME_SOFT] == NULL) || |
7305 | (mhp->ext[SADB_EXT_LIFETIME_HARD] == NULL && |
7306 | mhp->ext[SADB_EXT_LIFETIME_SOFT] != NULL)) { |
7307 | ipseclog((LOG_DEBUG, "key_add: invalid message is passed.\n" )); |
7308 | bzero_keys(mhp); |
7309 | return key_senderror(so, m, EINVAL); |
7310 | } |
7311 | if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) || |
7312 | mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || |
7313 | mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) { |
7314 | /* XXX need more */ |
7315 | ipseclog((LOG_DEBUG, "key_add: invalid message is passed.\n" )); |
7316 | bzero_keys(mhp); |
7317 | return key_senderror(so, m, EINVAL); |
7318 | } |
7319 | if (mhp->ext[SADB_X_EXT_SA2] != NULL) { |
7320 | mode = ((struct sadb_x_sa2 *) |
7321 | (void *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode; |
7322 | reqid = ((struct sadb_x_sa2 *) |
7323 | (void *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid; |
7324 | } else { |
7325 | mode = IPSEC_MODE_ANY; |
7326 | reqid = 0; |
7327 | } |
7328 | |
7329 | sa0 = (struct sadb_sa *)(void *)mhp->ext[SADB_EXT_SA]; |
7330 | src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC]; |
7331 | dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST]; |
7332 | ipsec_if = key_get_ipsec_if_from_message(mhp, SADB_X_EXT_IPSECIF); |
7333 | |
7334 | /* XXX boundary check against sa_len */ |
7335 | KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, ipsec_if ? ipsec_if->if_index : 0, &saidx); |
7336 | |
7337 | lck_mtx_lock(sadb_mutex); |
7338 | |
7339 | /* get a SA header */ |
7340 | if ((newsah = key_getsah(saidx: &saidx, SECURITY_ASSOCIATION_ANY)) == NULL) { |
7341 | /* create a new SA header: key_addspi is always used for outbound spi */ |
7342 | if ((newsah = key_newsah(saidx: &saidx, ipsec_if, outgoing_if: key_get_outgoing_ifindex_from_message(mhp, SADB_X_EXT_IPSECIF), IPSEC_DIR_OUTBOUND, SECURITY_ASSOCIATION_PFKEY)) == NULL) { |
7343 | ipseclog((LOG_DEBUG, "key_add: No more memory.\n" )); |
7344 | error = ENOBUFS; |
7345 | goto fail; |
7346 | } |
7347 | } |
7348 | |
7349 | if (ipsec_if != NULL) { |
7350 | ifnet_release(interface: ipsec_if); |
7351 | ipsec_if = NULL; |
7352 | } |
7353 | |
7354 | // Increment use count, since key_newsav() could release sadb_mutex lock |
7355 | newsah->use_count++; |
7356 | |
7357 | if ((newsah->flags & SECURITY_ASSOCIATION_CUSTOM_IPSEC) == SECURITY_ASSOCIATION_CUSTOM_IPSEC) { |
7358 | ipseclog((LOG_ERR, "key_add: custom ipsec exists\n" )); |
7359 | error = EEXIST; |
7360 | goto fail; |
7361 | } |
7362 | |
7363 | /* create new SA entry. */ |
7364 | /* We can create new SA only if SPI is different. */ |
7365 | if (key_getsavbyspi(sah: newsah, spi: sa0->sadb_sa_spi)) { |
7366 | ipseclog((LOG_DEBUG, "key_add: SA already exists.\n" )); |
7367 | error = EEXIST; |
7368 | goto fail; |
7369 | } |
7370 | newsav = key_newsav(m, mhp, sah: newsah, errp: &error, so); |
7371 | if (newsav == NULL) { |
7372 | goto fail; |
7373 | } |
7374 | |
7375 | if (newsah->state == SADB_SASTATE_DEAD) { |
7376 | ipseclog((LOG_ERR, "key_add: security association head is dead\n" )); |
7377 | error = EINVAL; |
7378 | goto fail; |
7379 | } |
7380 | |
7381 | /* |
7382 | * Verify if SADB_X_EXT_NATT_MULTIPLEUSERS flag is set that |
7383 | * this SA is for transport mode - otherwise clear it. |
7384 | */ |
7385 | if ((newsav->flags & SADB_X_EXT_NATT_MULTIPLEUSERS) != 0 && |
7386 | (newsah->saidx.mode != IPSEC_MODE_TRANSPORT || |
7387 | newsah->saidx.dst.ss_family != AF_INET)) { |
7388 | newsav->flags &= ~SADB_X_EXT_NATT_MULTIPLEUSERS; |
7389 | } |
7390 | |
7391 | /* check SA values to be mature. */ |
7392 | if ((error = key_mature(sav: newsav)) != 0) { |
7393 | goto fail; |
7394 | } |
7395 | |
7396 | key_get_flowid(sav: newsav); |
7397 | |
7398 | newsah->use_count--; |
7399 | lck_mtx_unlock(sadb_mutex); |
7400 | |
7401 | /* |
7402 | * don't call key_freesav() here, as we would like to keep the SA |
7403 | * in the database on success. |
7404 | */ |
7405 | |
7406 | { |
7407 | struct mbuf *n; |
7408 | |
7409 | /* set msg buf from mhp */ |
7410 | n = key_getmsgbuf_x1(m, mhp); |
7411 | if (n == NULL) { |
7412 | ipseclog((LOG_DEBUG, "key_update: No more memory.\n" )); |
7413 | bzero_keys(mhp); |
7414 | return key_senderror(so, m, ENOBUFS); |
7415 | } |
7416 | |
7417 | // mh.ext points to the mbuf content. |
7418 | // Zero out Encryption and Integrity keys if present. |
7419 | bzero_keys(mhp); |
7420 | m_freem(m); |
7421 | return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); |
7422 | } |
7423 | fail: |
7424 | if (newsav != NULL) { |
7425 | key_sa_chgstate(newsav, SADB_SASTATE_DEAD); |
7426 | key_freesav(sav: newsav, KEY_SADB_LOCKED); |
7427 | } |
7428 | if (newsah != NULL) { |
7429 | newsah->use_count--; |
7430 | } |
7431 | lck_mtx_unlock(sadb_mutex); |
7432 | if (ipsec_if != NULL) { |
7433 | ifnet_release(interface: ipsec_if); |
7434 | } |
7435 | bzero_keys(mhp); |
7436 | return key_senderror(so, m, error); |
7437 | } |
7438 | |
7439 | /* |
7440 | * m will not be freed on return. |
7441 | * it is caller's responsibility to free the result. |
7442 | */ |
7443 | static struct mbuf * |
7444 | key_getmsgbuf_x1( |
7445 | struct mbuf *m, |
7446 | const struct sadb_msghdr *mhp) |
7447 | { |
7448 | struct mbuf *n; |
7449 | int mbufItems[] = {SADB_EXT_RESERVED, SADB_EXT_SA, |
7450 | SADB_X_EXT_SA2, SADB_EXT_ADDRESS_SRC, |
7451 | SADB_EXT_ADDRESS_DST, SADB_EXT_LIFETIME_HARD, |
7452 | SADB_EXT_LIFETIME_SOFT, SADB_EXT_IDENTITY_SRC, |
7453 | SADB_EXT_IDENTITY_DST}; |
7454 | |
7455 | /* sanity check */ |
7456 | if (m == NULL || mhp == NULL || mhp->msg == NULL) { |
7457 | panic("key_getmsgbuf_x1: NULL pointer is passed." ); |
7458 | } |
7459 | |
7460 | /* create new sadb_msg to reply. */ |
7461 | n = key_gather_mbuf(m, mhp, ndeep: 1, nitem: sizeof(mbufItems) / sizeof(int), items: mbufItems); |
7462 | if (!n) { |
7463 | return NULL; |
7464 | } |
7465 | |
7466 | if (n->m_len < sizeof(struct sadb_msg)) { |
7467 | n = m_pullup(n, sizeof(struct sadb_msg)); |
7468 | if (n == NULL) { |
7469 | return NULL; |
7470 | } |
7471 | } |
7472 | mtod(n, struct sadb_msg *)->sadb_msg_errno = 0; |
7473 | VERIFY(PFKEY_UNIT64(n->m_pkthdr.len) <= UINT16_MAX); |
7474 | mtod(n, struct sadb_msg *)->sadb_msg_len = |
7475 | (u_int16_t)PFKEY_UNIT64(n->m_pkthdr.len); |
7476 | |
7477 | return n; |
7478 | } |
7479 | |
7480 | static int key_delete_all(struct socket *, struct mbuf *, |
7481 | const struct sadb_msghdr *, u_int16_t); |
7482 | |
7483 | /* |
7484 | * SADB_DELETE processing |
7485 | * receive |
7486 | * <base, SA(*), address(SD)> |
7487 | * from the ikmpd, and set SADB_SASTATE_DEAD, |
7488 | * and send, |
7489 | * <base, SA(*), address(SD)> |
7490 | * to the ikmpd. |
7491 | * |
7492 | * m will always be freed. |
7493 | */ |
7494 | static int |
7495 | key_delete( |
7496 | struct socket *so, |
7497 | struct mbuf *m, |
7498 | const struct sadb_msghdr *mhp) |
7499 | { |
7500 | struct sadb_sa *sa0; |
7501 | struct sadb_address *src0, *dst0; |
7502 | ifnet_t ipsec_if = NULL; |
7503 | struct secasindex saidx; |
7504 | struct secashead *sah; |
7505 | struct secasvar *sav = NULL; |
7506 | u_int16_t proto; |
7507 | |
7508 | LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_NOTOWNED); |
7509 | |
7510 | /* sanity check */ |
7511 | if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL) { |
7512 | panic("key_delete: NULL pointer is passed." ); |
7513 | } |
7514 | |
7515 | /* map satype to proto */ |
7516 | if ((proto = key_satype2proto(satype: mhp->msg->sadb_msg_satype)) == 0) { |
7517 | ipseclog((LOG_DEBUG, "key_delete: invalid satype is passed.\n" )); |
7518 | return key_senderror(so, m, EINVAL); |
7519 | } |
7520 | |
7521 | if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || |
7522 | mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) { |
7523 | ipseclog((LOG_DEBUG, "key_delete: invalid message is passed.\n" )); |
7524 | return key_senderror(so, m, EINVAL); |
7525 | } |
7526 | |
7527 | if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || |
7528 | mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) { |
7529 | ipseclog((LOG_DEBUG, "key_delete: invalid message is passed.\n" )); |
7530 | return key_senderror(so, m, EINVAL); |
7531 | } |
7532 | |
7533 | lck_mtx_lock(sadb_mutex); |
7534 | |
7535 | if (mhp->ext[SADB_EXT_SA] == NULL) { |
7536 | /* |
7537 | * Caller wants us to delete all non-LARVAL SAs |
7538 | * that match the src/dst. This is used during |
7539 | * IKE INITIAL-CONTACT. |
7540 | */ |
7541 | ipseclog((LOG_DEBUG, "key_delete: doing delete all.\n" )); |
7542 | /* key_delete_all will unlock sadb_mutex */ |
7543 | return key_delete_all(so, m, mhp, proto); |
7544 | } else if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa)) { |
7545 | lck_mtx_unlock(sadb_mutex); |
7546 | ipseclog((LOG_DEBUG, "key_delete: invalid message is passed.\n" )); |
7547 | return key_senderror(so, m, EINVAL); |
7548 | } |
7549 | |
7550 | sa0 = (struct sadb_sa *)(void *)mhp->ext[SADB_EXT_SA]; |
7551 | src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]); |
7552 | dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]); |
7553 | ipsec_if = key_get_ipsec_if_from_message(mhp, SADB_X_EXT_IPSECIF); |
7554 | |
7555 | u_int ipsec_if_index = 0; |
7556 | if (ipsec_if != NULL) { |
7557 | ipsec_if_index = ipsec_if->if_index; |
7558 | ifnet_release(interface: ipsec_if); |
7559 | ipsec_if = NULL; |
7560 | } |
7561 | |
7562 | /* XXX boundary check against sa_len */ |
7563 | KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, ipsec_if_index, &saidx); |
7564 | |
7565 | |
7566 | /* get a SA header */ |
7567 | LIST_FOREACH(sah, &sahtree, chain) { |
7568 | if (sah->state == SADB_SASTATE_DEAD) { |
7569 | continue; |
7570 | } |
7571 | if (key_cmpsaidx(saidx0: &sah->saidx, saidx1: &saidx, CMP_HEAD) == 0) { |
7572 | continue; |
7573 | } |
7574 | |
7575 | /* get a SA with SPI. */ |
7576 | sav = key_getsavbyspi(sah, spi: sa0->sadb_sa_spi); |
7577 | if (sav) { |
7578 | break; |
7579 | } |
7580 | } |
7581 | if (sah == NULL) { |
7582 | lck_mtx_unlock(sadb_mutex); |
7583 | ipseclog((LOG_DEBUG, "key_delete: no SA found.\n" )); |
7584 | return key_senderror(so, m, ENOENT); |
7585 | } |
7586 | |
7587 | key_sa_chgstate(sav, SADB_SASTATE_DEAD); |
7588 | key_freesav(sav, KEY_SADB_LOCKED); |
7589 | |
7590 | lck_mtx_unlock(sadb_mutex); |
7591 | sav = NULL; |
7592 | |
7593 | { |
7594 | struct mbuf *n; |
7595 | struct sadb_msg *newmsg; |
7596 | int mbufItems[] = {SADB_EXT_RESERVED, SADB_EXT_SA, |
7597 | SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST}; |
7598 | |
7599 | /* create new sadb_msg to reply. */ |
7600 | n = key_gather_mbuf(m, mhp, ndeep: 1, nitem: sizeof(mbufItems) / sizeof(int), items: mbufItems); |
7601 | if (!n) { |
7602 | return key_senderror(so, m, ENOBUFS); |
7603 | } |
7604 | |
7605 | if (n->m_len < sizeof(struct sadb_msg)) { |
7606 | n = m_pullup(n, sizeof(struct sadb_msg)); |
7607 | if (n == NULL) { |
7608 | return key_senderror(so, m, ENOBUFS); |
7609 | } |
7610 | } |
7611 | newmsg = mtod(n, struct sadb_msg *); |
7612 | newmsg->sadb_msg_errno = 0; |
7613 | VERIFY(PFKEY_UNIT64(n->m_pkthdr.len) <= UINT16_MAX); |
7614 | newmsg->sadb_msg_len = (u_int16_t)PFKEY_UNIT64(n->m_pkthdr.len); |
7615 | |
7616 | m_freem(m); |
7617 | return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); |
7618 | } |
7619 | } |
7620 | |
7621 | /* |
7622 | * delete all SAs for src/dst. Called from key_delete(). |
7623 | */ |
7624 | static int |
7625 | key_delete_all( |
7626 | struct socket *so, |
7627 | struct mbuf *m, |
7628 | const struct sadb_msghdr *mhp, |
7629 | u_int16_t proto) |
7630 | { |
7631 | struct sadb_address *src0, *dst0; |
7632 | ifnet_t ipsec_if = NULL; |
7633 | struct secasindex saidx; |
7634 | struct secashead *sah; |
7635 | struct secasvar *sav, *nextsav; |
7636 | u_int stateidx, state; |
7637 | |
7638 | LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_OWNED); |
7639 | |
7640 | src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]); |
7641 | dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]); |
7642 | ipsec_if = key_get_ipsec_if_from_message(mhp, SADB_X_EXT_IPSECIF); |
7643 | |
7644 | u_int ipsec_if_index = 0; |
7645 | if (ipsec_if != NULL) { |
7646 | ipsec_if_index = ipsec_if->if_index; |
7647 | ifnet_release(interface: ipsec_if); |
7648 | ipsec_if = NULL; |
7649 | } |
7650 | |
7651 | /* XXX boundary check against sa_len */ |
7652 | KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, ipsec_if_index, &saidx); |
7653 | |
7654 | LIST_FOREACH(sah, &sahtree, chain) { |
7655 | if (sah->state == SADB_SASTATE_DEAD) { |
7656 | continue; |
7657 | } |
7658 | if (key_cmpsaidx(saidx0: &sah->saidx, saidx1: &saidx, CMP_HEAD) == 0) { |
7659 | continue; |
7660 | } |
7661 | |
7662 | /* Delete all non-LARVAL SAs. */ |
7663 | for (stateidx = 0; |
7664 | stateidx < _ARRAYLEN(saorder_state_alive); |
7665 | stateidx++) { |
7666 | state = saorder_state_alive[stateidx]; |
7667 | if (state == SADB_SASTATE_LARVAL) { |
7668 | continue; |
7669 | } |
7670 | for (sav = LIST_FIRST(&sah->savtree[state]); |
7671 | sav != NULL; sav = nextsav) { |
7672 | nextsav = LIST_NEXT(sav, chain); |
7673 | /* sanity check */ |
7674 | if (sav->state != state) { |
7675 | ipseclog((LOG_DEBUG, "key_delete_all: " |
7676 | "invalid sav->state " |
7677 | "(queue: %d SA: %d)\n" , |
7678 | state, sav->state)); |
7679 | continue; |
7680 | } |
7681 | |
7682 | key_sa_chgstate(sav, SADB_SASTATE_DEAD); |
7683 | key_freesav(sav, KEY_SADB_LOCKED); |
7684 | } |
7685 | } |
7686 | } |
7687 | lck_mtx_unlock(sadb_mutex); |
7688 | |
7689 | { |
7690 | struct mbuf *n; |
7691 | struct sadb_msg *newmsg; |
7692 | int mbufItems[] = {SADB_EXT_RESERVED, SADB_EXT_ADDRESS_SRC, |
7693 | SADB_EXT_ADDRESS_DST}; |
7694 | |
7695 | /* create new sadb_msg to reply. */ |
7696 | n = key_gather_mbuf(m, mhp, ndeep: 1, nitem: sizeof(mbufItems) / sizeof(int), items: mbufItems); |
7697 | if (!n) { |
7698 | return key_senderror(so, m, ENOBUFS); |
7699 | } |
7700 | |
7701 | if (n->m_len < sizeof(struct sadb_msg)) { |
7702 | n = m_pullup(n, sizeof(struct sadb_msg)); |
7703 | if (n == NULL) { |
7704 | return key_senderror(so, m, ENOBUFS); |
7705 | } |
7706 | } |
7707 | newmsg = mtod(n, struct sadb_msg *); |
7708 | newmsg->sadb_msg_errno = 0; |
7709 | VERIFY(PFKEY_UNIT64(n->m_pkthdr.len) <= UINT16_MAX); |
7710 | newmsg->sadb_msg_len = (u_int16_t)PFKEY_UNIT64(n->m_pkthdr.len); |
7711 | |
7712 | m_freem(m); |
7713 | return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); |
7714 | } |
7715 | } |
7716 | |
7717 | /* |
7718 | * SADB_GET processing |
7719 | * receive |
7720 | * <base, SA(*), address(SD)> |
7721 | * from the ikmpd, and get a SP and a SA to respond, |
7722 | * and send, |
7723 | * <base, SA, (lifetime(HSC),) address(SD), (address(P),) key(AE), |
7724 | * (identity(SD),) (sensitivity)> |
7725 | * to the ikmpd. |
7726 | * |
7727 | * m will always be freed. |
7728 | */ |
7729 | static int |
7730 | key_get( |
7731 | struct socket *so, |
7732 | struct mbuf *m, |
7733 | const struct sadb_msghdr *mhp) |
7734 | { |
7735 | struct sadb_sa *sa0; |
7736 | struct sadb_address *src0, *dst0; |
7737 | ifnet_t ipsec_if = NULL; |
7738 | struct secasindex saidx; |
7739 | struct secashead *sah; |
7740 | struct secasvar *sav = NULL; |
7741 | u_int16_t proto; |
7742 | |
7743 | LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_NOTOWNED); |
7744 | |
7745 | /* sanity check */ |
7746 | if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL) { |
7747 | panic("key_get: NULL pointer is passed." ); |
7748 | } |
7749 | |
7750 | /* map satype to proto */ |
7751 | if ((proto = key_satype2proto(satype: mhp->msg->sadb_msg_satype)) == 0) { |
7752 | ipseclog((LOG_DEBUG, "key_get: invalid satype is passed.\n" )); |
7753 | return key_senderror(so, m, EINVAL); |
7754 | } |
7755 | |
7756 | if (mhp->ext[SADB_EXT_SA] == NULL || |
7757 | mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || |
7758 | mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) { |
7759 | ipseclog((LOG_DEBUG, "key_get: invalid message is passed.\n" )); |
7760 | return key_senderror(so, m, EINVAL); |
7761 | } |
7762 | if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) || |
7763 | mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || |
7764 | mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) { |
7765 | ipseclog((LOG_DEBUG, "key_get: invalid message is passed.\n" )); |
7766 | return key_senderror(so, m, EINVAL); |
7767 | } |
7768 | |
7769 | sa0 = (struct sadb_sa *)(void *)mhp->ext[SADB_EXT_SA]; |
7770 | src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC]; |
7771 | dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST]; |
7772 | ipsec_if = key_get_ipsec_if_from_message(mhp, SADB_X_EXT_IPSECIF); |
7773 | |
7774 | u_int ipsec_if_index = 0; |
7775 | if (ipsec_if != NULL) { |
7776 | ipsec_if_index = ipsec_if->if_index; |
7777 | ifnet_release(interface: ipsec_if); |
7778 | ipsec_if = NULL; |
7779 | } |
7780 | |
7781 | /* XXX boundary check against sa_len */ |
7782 | KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, ipsec_if_index, &saidx); |
7783 | |
7784 | lck_mtx_lock(sadb_mutex); |
7785 | |
7786 | /* get a SA header */ |
7787 | LIST_FOREACH(sah, &sahtree, chain) { |
7788 | if (sah->state == SADB_SASTATE_DEAD) { |
7789 | continue; |
7790 | } |
7791 | if (key_cmpsaidx(saidx0: &sah->saidx, saidx1: &saidx, CMP_HEAD) == 0) { |
7792 | continue; |
7793 | } |
7794 | |
7795 | /* get a SA with SPI. */ |
7796 | sav = key_getsavbyspi(sah, spi: sa0->sadb_sa_spi); |
7797 | if (sav) { |
7798 | break; |
7799 | } |
7800 | } |
7801 | if (sah == NULL) { |
7802 | lck_mtx_unlock(sadb_mutex); |
7803 | ipseclog((LOG_DEBUG, "key_get: no SA found.\n" )); |
7804 | return key_senderror(so, m, ENOENT); |
7805 | } |
7806 | |
7807 | { |
7808 | struct mbuf *n; |
7809 | u_int8_t satype; |
7810 | |
7811 | /* map proto to satype */ |
7812 | if ((satype = key_proto2satype(proto: sah->saidx.proto)) == 0) { |
7813 | lck_mtx_unlock(sadb_mutex); |
7814 | ipseclog((LOG_DEBUG, "key_get: there was invalid proto in SAD.\n" )); |
7815 | return key_senderror(so, m, EINVAL); |
7816 | } |
7817 | lck_mtx_unlock(sadb_mutex); |
7818 | |
7819 | /* create new sadb_msg to reply. */ |
7820 | n = key_setdumpsa(sav, SADB_GET, satype, seq: mhp->msg->sadb_msg_seq, |
7821 | pid: mhp->msg->sadb_msg_pid); |
7822 | |
7823 | |
7824 | |
7825 | if (!n) { |
7826 | return key_senderror(so, m, ENOBUFS); |
7827 | } |
7828 | |
7829 | m_freem(m); |
7830 | return key_sendup_mbuf(so, n, KEY_SENDUP_ONE); |
7831 | } |
7832 | } |
7833 | |
7834 | /* |
7835 | * get SA stats by spi. |
7836 | * OUT: -1 : not found |
7837 | * 0 : found, arg pointer to a SA stats is updated. |
7838 | */ |
7839 | static int |
7840 | key_getsastatbyspi_one(u_int32_t spi, |
7841 | struct sastat *stat) |
7842 | { |
7843 | struct secashead *sah; |
7844 | struct secasvar *sav = NULL; |
7845 | |
7846 | if ((void *)stat == NULL) { |
7847 | return -1; |
7848 | } |
7849 | |
7850 | lck_mtx_lock(sadb_mutex); |
7851 | |
7852 | /* get a SA header */ |
7853 | LIST_FOREACH(sah, &sahtree, chain) { |
7854 | if (sah->state == SADB_SASTATE_DEAD) { |
7855 | continue; |
7856 | } |
7857 | |
7858 | /* get a SA with SPI. */ |
7859 | sav = key_getsavbyspi(sah, spi); |
7860 | if (sav) { |
7861 | stat->spi = sav->spi; |
7862 | stat->created = (u_int32_t)key_convert_continuous_time_ns(time_value: sav->created); |
7863 | if (sav->lft_c) { |
7864 | bcopy(src: sav->lft_c, dst: &stat->lft_c, n: sizeof(stat->lft_c)); |
7865 | // Convert timestamps |
7866 | stat->lft_c.sadb_lifetime_addtime = |
7867 | key_convert_continuous_time_ns(time_value: sav->lft_c->sadb_lifetime_addtime); |
7868 | stat->lft_c.sadb_lifetime_usetime = |
7869 | key_convert_continuous_time_ns(time_value: sav->lft_c->sadb_lifetime_usetime); |
7870 | } else { |
7871 | bzero(s: &stat->lft_c, n: sizeof(stat->lft_c)); |
7872 | } |
7873 | lck_mtx_unlock(sadb_mutex); |
7874 | return 0; |
7875 | } |
7876 | } |
7877 | |
7878 | lck_mtx_unlock(sadb_mutex); |
7879 | |
7880 | return -1; |
7881 | } |
7882 | |
7883 | /* |
7884 | * get SA stats collection by indices. |
7885 | * OUT: -1 : not found |
7886 | * 0 : found, arg pointers to a SA stats and 'maximum stats' are updated. |
7887 | */ |
7888 | static int |
7889 | key_getsastatbyspi(struct sastat *stat_arg, |
7890 | u_int32_t max_stat_arg, |
7891 | struct sastat *stat_res, |
7892 | u_int64_t stat_res_size, |
7893 | u_int32_t *max_stat_res) |
7894 | { |
7895 | u_int32_t cur, found = 0; |
7896 | |
7897 | if (stat_arg == NULL || |
7898 | stat_res == NULL || |
7899 | max_stat_res == NULL) { |
7900 | return -1; |
7901 | } |
7902 | |
7903 | u_int64_t max_stats = stat_res_size / (sizeof(struct sastat)); |
7904 | max_stats = ((max_stat_arg <= max_stats) ? max_stat_arg : max_stats); |
7905 | |
7906 | for (cur = 0; cur < max_stats; cur++) { |
7907 | if (key_getsastatbyspi_one(spi: stat_arg[cur].spi, |
7908 | stat: &stat_res[found]) == 0) { |
7909 | found++; |
7910 | } |
7911 | } |
7912 | *max_stat_res = found; |
7913 | |
7914 | if (found) { |
7915 | return 0; |
7916 | } |
7917 | return -1; |
7918 | } |
7919 | |
7920 | /* XXX make it sysctl-configurable? */ |
7921 | static void |
7922 | key_getcomb_setlifetime( |
7923 | struct sadb_comb *comb) |
7924 | { |
7925 | comb->sadb_comb_soft_allocations = 1; |
7926 | comb->sadb_comb_hard_allocations = 1; |
7927 | comb->sadb_comb_soft_bytes = 0; |
7928 | comb->sadb_comb_hard_bytes = 0; |
7929 | comb->sadb_comb_hard_addtime = 86400; /* 1 day */ |
7930 | comb->sadb_comb_soft_addtime = comb->sadb_comb_soft_addtime * 80 / 100; |
7931 | comb->sadb_comb_soft_usetime = 28800; /* 8 hours */ |
7932 | comb->sadb_comb_hard_usetime = comb->sadb_comb_hard_usetime * 80 / 100; |
7933 | } |
7934 | |
7935 | #if IPSEC_ESP |
7936 | /* |
7937 | * XXX reorder combinations by preference |
7938 | * XXX no idea if the user wants ESP authentication or not |
7939 | */ |
7940 | static struct mbuf * |
7941 | key_getcomb_esp(void) |
7942 | { |
7943 | struct sadb_comb *comb; |
7944 | const struct esp_algorithm *algo; |
7945 | struct mbuf *result = NULL, *m, *n; |
7946 | u_int16_t encmin; |
7947 | int off, o; |
7948 | int totlen; |
7949 | u_int8_t i; |
7950 | const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb)); |
7951 | |
7952 | m = NULL; |
7953 | for (i = 1; i <= SADB_EALG_MAX; i++) { |
7954 | algo = esp_algorithm_lookup(i); |
7955 | if (!algo) { |
7956 | continue; |
7957 | } |
7958 | |
7959 | if (algo->keymax < ipsec_esp_keymin) { |
7960 | continue; |
7961 | } |
7962 | if (algo->keymin < ipsec_esp_keymin) { |
7963 | encmin = (u_int16_t)ipsec_esp_keymin; |
7964 | } else { |
7965 | encmin = algo->keymin; |
7966 | } |
7967 | |
7968 | if (ipsec_esp_auth) { |
7969 | m = key_getcomb_ah(); |
7970 | } else { |
7971 | #if DIAGNOSTIC |
7972 | if (l > MLEN) { |
7973 | panic("assumption failed in key_getcomb_esp" ); |
7974 | } |
7975 | #endif |
7976 | MGET(m, M_WAITOK, MT_DATA); |
7977 | if (m) { |
7978 | M_ALIGN(m, l); |
7979 | m->m_len = l; |
7980 | m->m_next = NULL; |
7981 | bzero(mtod(m, caddr_t), n: m->m_len); |
7982 | } |
7983 | } |
7984 | if (!m) { |
7985 | goto fail; |
7986 | } |
7987 | |
7988 | totlen = 0; |
7989 | for (n = m; n; n = n->m_next) { |
7990 | totlen += n->m_len; |
7991 | } |
7992 | #if DIAGNOSTIC |
7993 | if (totlen % l) { |
7994 | panic("assumption failed in key_getcomb_esp" ); |
7995 | } |
7996 | #endif |
7997 | |
7998 | for (off = 0; off < totlen; off += l) { |
7999 | n = m_pulldown(m, off, l, &o); |
8000 | if (!n) { |
8001 | /* m is already freed */ |
8002 | goto fail; |
8003 | } |
8004 | comb = (struct sadb_comb *) |
8005 | (void *)(mtod(n, caddr_t) + o); |
8006 | bzero(s: comb, n: sizeof(*comb)); |
8007 | key_getcomb_setlifetime(comb); |
8008 | comb->sadb_comb_encrypt = i; |
8009 | comb->sadb_comb_encrypt_minbits = encmin; |
8010 | comb->sadb_comb_encrypt_maxbits = algo->keymax; |
8011 | } |
8012 | |
8013 | if (!result) { |
8014 | result = m; |
8015 | } else { |
8016 | m_cat(result, m); |
8017 | } |
8018 | } |
8019 | |
8020 | return result; |
8021 | |
8022 | fail: |
8023 | if (result) { |
8024 | m_freem(result); |
8025 | } |
8026 | return NULL; |
8027 | } |
8028 | #endif |
8029 | |
8030 | /* |
8031 | * XXX reorder combinations by preference |
8032 | */ |
8033 | static struct mbuf * |
8034 | key_getcomb_ah(void) |
8035 | { |
8036 | struct sadb_comb *comb; |
8037 | const struct ah_algorithm *algo; |
8038 | struct mbuf *m; |
8039 | u_int16_t keymin; |
8040 | u_int8_t i; |
8041 | const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb)); |
8042 | |
8043 | m = NULL; |
8044 | for (i = 1; i <= SADB_AALG_MAX; i++) { |
8045 | #if 1 |
8046 | /* we prefer HMAC algorithms, not old algorithms */ |
8047 | if (i != SADB_AALG_SHA1HMAC && i != SADB_AALG_MD5HMAC) { |
8048 | continue; |
8049 | } |
8050 | #endif |
8051 | algo = ah_algorithm_lookup(i); |
8052 | if (!algo) { |
8053 | continue; |
8054 | } |
8055 | |
8056 | if (algo->keymax < ipsec_ah_keymin) { |
8057 | continue; |
8058 | } |
8059 | if (algo->keymin < ipsec_ah_keymin) { |
8060 | keymin = (u_int16_t)ipsec_ah_keymin; |
8061 | } else { |
8062 | keymin = algo->keymin; |
8063 | } |
8064 | |
8065 | if (!m) { |
8066 | #if DIAGNOSTIC |
8067 | if (l > MLEN) { |
8068 | panic("assumption failed in key_getcomb_ah" ); |
8069 | } |
8070 | #endif |
8071 | MGET(m, M_WAITOK, MT_DATA); |
8072 | if (m) { |
8073 | M_ALIGN(m, l); |
8074 | m->m_len = l; |
8075 | m->m_next = NULL; |
8076 | } |
8077 | } else { |
8078 | M_PREPEND(m, l, M_WAITOK, 1); |
8079 | } |
8080 | if (!m) { |
8081 | return NULL; |
8082 | } |
8083 | |
8084 | comb = mtod(m, struct sadb_comb *); |
8085 | bzero(s: comb, n: sizeof(*comb)); |
8086 | key_getcomb_setlifetime(comb); |
8087 | comb->sadb_comb_auth = i; |
8088 | comb->sadb_comb_auth_minbits = keymin; |
8089 | comb->sadb_comb_auth_maxbits = algo->keymax; |
8090 | } |
8091 | |
8092 | return m; |
8093 | } |
8094 | |
8095 | /* |
8096 | * XXX no way to pass mode (transport/tunnel) to userland |
8097 | * XXX replay checking? |
8098 | * XXX sysctl interface to ipsec_{ah,esp}_keymin |
8099 | */ |
8100 | static struct mbuf * |
8101 | key_getprop( |
8102 | const struct secasindex *saidx) |
8103 | { |
8104 | struct sadb_prop *prop; |
8105 | struct mbuf *m, *n; |
8106 | const int l = PFKEY_ALIGN8(sizeof(struct sadb_prop)); |
8107 | int totlen; |
8108 | |
8109 | switch (saidx->proto) { |
8110 | #if IPSEC_ESP |
8111 | case IPPROTO_ESP: |
8112 | m = key_getcomb_esp(); |
8113 | break; |
8114 | #endif |
8115 | case IPPROTO_AH: |
8116 | m = key_getcomb_ah(); |
8117 | break; |
8118 | default: |
8119 | return NULL; |
8120 | } |
8121 | |
8122 | if (!m) { |
8123 | return NULL; |
8124 | } |
8125 | M_PREPEND(m, l, M_WAITOK, 1); |
8126 | if (!m) { |
8127 | return NULL; |
8128 | } |
8129 | |
8130 | totlen = 0; |
8131 | for (n = m; n; n = n->m_next) { |
8132 | totlen += n->m_len; |
8133 | } |
8134 | |
8135 | prop = mtod(m, struct sadb_prop *); |
8136 | bzero(s: prop, n: sizeof(*prop)); |
8137 | VERIFY(totlen <= UINT16_MAX); |
8138 | prop->sadb_prop_len = (u_int16_t)PFKEY_UNIT64(totlen); |
8139 | prop->sadb_prop_exttype = SADB_EXT_PROPOSAL; |
8140 | prop->sadb_prop_replay = 32; /* XXX */ |
8141 | |
8142 | return m; |
8143 | } |
8144 | |
8145 | /* |
8146 | * SADB_ACQUIRE processing called by key_checkrequest() and key_acquire2(). |
8147 | * send |
8148 | * <base, SA, address(SD), (address(P)), x_policy, |
8149 | * (identity(SD),) (sensitivity,) proposal> |
8150 | * to KMD, and expect to receive |
8151 | * <base> with SADB_ACQUIRE if error occurred, |
8152 | * or |
8153 | * <base, src address, dst address, (SPI range)> with SADB_GETSPI |
8154 | * from KMD by PF_KEY. |
8155 | * |
8156 | * XXX x_policy is outside of RFC2367 (KAME extension). |
8157 | * XXX sensitivity is not supported. |
8158 | * |
8159 | * OUT: |
8160 | * 0 : succeed |
8161 | * others: error number |
8162 | */ |
8163 | static int |
8164 | key_acquire( |
8165 | struct secasindex *saidx, |
8166 | struct secpolicy *sp) |
8167 | { |
8168 | struct mbuf *result = NULL, *m; |
8169 | #ifndef IPSEC_NONBLOCK_ACQUIRE |
8170 | struct secacq *newacq; |
8171 | #endif |
8172 | u_int8_t satype; |
8173 | int error = -1; |
8174 | u_int32_t seq; |
8175 | |
8176 | LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_NOTOWNED); |
8177 | |
8178 | /* sanity check */ |
8179 | if (saidx == NULL) { |
8180 | panic("key_acquire: NULL pointer is passed." ); |
8181 | } |
8182 | if ((satype = key_proto2satype(proto: saidx->proto)) == 0) { |
8183 | panic("key_acquire: invalid proto is passed." ); |
8184 | } |
8185 | |
8186 | #ifndef IPSEC_NONBLOCK_ACQUIRE |
8187 | /* |
8188 | * We never do anything about acquirng SA. There is anather |
8189 | * solution that kernel blocks to send SADB_ACQUIRE message until |
8190 | * getting something message from IKEd. In later case, to be |
8191 | * managed with ACQUIRING list. |
8192 | */ |
8193 | /* get a entry to check whether sending message or not. */ |
8194 | lck_mtx_lock(sadb_mutex); |
8195 | if ((newacq = key_getacq(saidx)) != NULL) { |
8196 | if (key_blockacq_count < newacq->count) { |
8197 | /* reset counter and do send message. */ |
8198 | newacq->count = 0; |
8199 | } else { |
8200 | /* increment counter and do nothing. */ |
8201 | newacq->count++; |
8202 | lck_mtx_unlock(sadb_mutex); |
8203 | return 0; |
8204 | } |
8205 | } else { |
8206 | /* make new entry for blocking to send SADB_ACQUIRE. */ |
8207 | if ((newacq = key_newacq(saidx)) == NULL) { |
8208 | lck_mtx_unlock(sadb_mutex); |
8209 | return ENOBUFS; |
8210 | } |
8211 | |
8212 | /* add to acqtree */ |
8213 | LIST_INSERT_HEAD(&acqtree, newacq, chain); |
8214 | key_start_timehandler(); |
8215 | } |
8216 | seq = newacq->seq; |
8217 | lck_mtx_unlock(sadb_mutex); |
8218 | |
8219 | #else |
8220 | seq = (acq_seq = (acq_seq == ~0 ? 1 : ++acq_seq)); |
8221 | #endif |
8222 | m = key_setsadbmsg(SADB_ACQUIRE, tlen: 0, satype, seq, pid: 0, reserved: 0); |
8223 | if (!m) { |
8224 | error = ENOBUFS; |
8225 | goto fail; |
8226 | } |
8227 | result = m; |
8228 | |
8229 | /* set sadb_address for saidx's. */ |
8230 | m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, |
8231 | saddr: (struct sockaddr *)&saidx->src, FULLMASK, IPSEC_ULPROTO_ANY); |
8232 | if (!m) { |
8233 | error = ENOBUFS; |
8234 | goto fail; |
8235 | } |
8236 | m_cat(result, m); |
8237 | |
8238 | m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, |
8239 | saddr: (struct sockaddr *)&saidx->dst, FULLMASK, IPSEC_ULPROTO_ANY); |
8240 | if (!m) { |
8241 | error = ENOBUFS; |
8242 | goto fail; |
8243 | } |
8244 | m_cat(result, m); |
8245 | |
8246 | /* XXX proxy address (optional) */ |
8247 | |
8248 | /* set sadb_x_policy */ |
8249 | if (sp) { |
8250 | m = key_setsadbxpolicy(type: (u_int16_t)sp->policy, dir: sp->spidx.dir, id: sp->id); |
8251 | if (!m) { |
8252 | error = ENOBUFS; |
8253 | goto fail; |
8254 | } |
8255 | m_cat(result, m); |
8256 | } |
8257 | |
8258 | /* XXX sensitivity (optional) */ |
8259 | |
8260 | /* create proposal/combination extension */ |
8261 | m = key_getprop(saidx); |
8262 | /* |
8263 | * outside of spec; make proposal/combination extension optional. |
8264 | */ |
8265 | if (m) { |
8266 | m_cat(result, m); |
8267 | } |
8268 | |
8269 | if ((result->m_flags & M_PKTHDR) == 0) { |
8270 | error = EINVAL; |
8271 | goto fail; |
8272 | } |
8273 | |
8274 | if (result->m_len < sizeof(struct sadb_msg)) { |
8275 | result = m_pullup(result, sizeof(struct sadb_msg)); |
8276 | if (result == NULL) { |
8277 | error = ENOBUFS; |
8278 | goto fail; |
8279 | } |
8280 | } |
8281 | |
8282 | result->m_pkthdr.len = 0; |
8283 | for (m = result; m; m = m->m_next) { |
8284 | result->m_pkthdr.len += m->m_len; |
8285 | } |
8286 | |
8287 | VERIFY(PFKEY_UNIT64(result->m_pkthdr.len) <= UINT16_MAX); |
8288 | mtod(result, struct sadb_msg *)->sadb_msg_len = |
8289 | (u_int16_t)PFKEY_UNIT64(result->m_pkthdr.len); |
8290 | |
8291 | return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED); |
8292 | |
8293 | fail: |
8294 | if (result) { |
8295 | m_freem(result); |
8296 | } |
8297 | return error; |
8298 | } |
8299 | |
8300 | #ifndef IPSEC_NONBLOCK_ACQUIRE |
8301 | static struct secacq * |
8302 | key_newacq( |
8303 | struct secasindex *saidx) |
8304 | { |
8305 | struct secacq *newacq; |
8306 | |
8307 | /* get new entry */ |
8308 | newacq = kalloc_type(struct secacq, Z_NOWAIT_ZERO); |
8309 | if (newacq == NULL) { |
8310 | lck_mtx_unlock(sadb_mutex); |
8311 | newacq = kalloc_type(struct secacq, Z_WAITOK_ZERO_NOFAIL); |
8312 | lck_mtx_lock(sadb_mutex); |
8313 | } |
8314 | |
8315 | /* copy secindex */ |
8316 | bcopy(src: saidx, dst: &newacq->saidx, n: sizeof(newacq->saidx)); |
8317 | newacq->seq = (acq_seq == ~0 ? 1 : ++acq_seq); |
8318 | newacq->created = key_get_continuous_time_ns(); |
8319 | |
8320 | return newacq; |
8321 | } |
8322 | |
8323 | static struct secacq * |
8324 | key_getacq( |
8325 | struct secasindex *saidx) |
8326 | { |
8327 | struct secacq *acq; |
8328 | |
8329 | LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_OWNED); |
8330 | |
8331 | LIST_FOREACH(acq, &acqtree, chain) { |
8332 | if (key_cmpsaidx(saidx0: saidx, saidx1: &acq->saidx, CMP_EXACTLY)) { |
8333 | return acq; |
8334 | } |
8335 | } |
8336 | |
8337 | return NULL; |
8338 | } |
8339 | |
8340 | static struct secacq * |
8341 | key_getacqbyseq( |
8342 | u_int32_t seq) |
8343 | { |
8344 | struct secacq *acq; |
8345 | |
8346 | LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_OWNED); |
8347 | |
8348 | LIST_FOREACH(acq, &acqtree, chain) { |
8349 | if (acq->seq == seq) { |
8350 | return acq; |
8351 | } |
8352 | } |
8353 | |
8354 | return NULL; |
8355 | } |
8356 | #endif |
8357 | |
8358 | static struct secspacq * |
8359 | key_newspacq( |
8360 | struct secpolicyindex *spidx) |
8361 | { |
8362 | struct secspacq *acq; |
8363 | |
8364 | /* get new entry */ |
8365 | acq = kalloc_type(struct secspacq, Z_NOWAIT_ZERO); |
8366 | if (acq == NULL) { |
8367 | lck_mtx_unlock(sadb_mutex); |
8368 | acq = kalloc_type(struct secspacq, Z_WAITOK_ZERO_NOFAIL); |
8369 | lck_mtx_lock(sadb_mutex); |
8370 | } |
8371 | |
8372 | /* copy secindex */ |
8373 | bcopy(src: spidx, dst: &acq->spidx, n: sizeof(acq->spidx)); |
8374 | acq->created = key_get_continuous_time_ns(); |
8375 | |
8376 | return acq; |
8377 | } |
8378 | |
8379 | static struct secspacq * |
8380 | key_getspacq( |
8381 | struct secpolicyindex *spidx) |
8382 | { |
8383 | struct secspacq *acq; |
8384 | |
8385 | LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_OWNED); |
8386 | |
8387 | LIST_FOREACH(acq, &spacqtree, chain) { |
8388 | if (key_cmpspidx_exactly(spidx0: spidx, spidx1: &acq->spidx)) { |
8389 | return acq; |
8390 | } |
8391 | } |
8392 | |
8393 | return NULL; |
8394 | } |
8395 | |
8396 | /* |
8397 | * SADB_ACQUIRE processing, |
8398 | * in first situation, is receiving |
8399 | * <base> |
8400 | * from the ikmpd, and clear sequence of its secasvar entry. |
8401 | * |
8402 | * In second situation, is receiving |
8403 | * <base, address(SD), (address(P),) (identity(SD),) (sensitivity,) proposal> |
8404 | * from a user land process, and return |
8405 | * <base, address(SD), (address(P),) (identity(SD),) (sensitivity,) proposal> |
8406 | * to the socket. |
8407 | * |
8408 | * m will always be freed. |
8409 | */ |
8410 | static int |
8411 | key_acquire2( |
8412 | struct socket *so, |
8413 | struct mbuf *m, |
8414 | const struct sadb_msghdr *mhp) |
8415 | { |
8416 | const struct sadb_address *src0, *dst0; |
8417 | ifnet_t ipsec_if = NULL; |
8418 | struct secasindex saidx; |
8419 | struct secashead *sah; |
8420 | u_int16_t proto; |
8421 | int error; |
8422 | |
8423 | |
8424 | /* sanity check */ |
8425 | if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL) { |
8426 | panic("key_acquire2: NULL pointer is passed." ); |
8427 | } |
8428 | |
8429 | /* |
8430 | * Error message from KMd. |
8431 | * We assume that if error was occurred in IKEd, the length of PFKEY |
8432 | * message is equal to the size of sadb_msg structure. |
8433 | * We do not raise error even if error occurred in this function. |
8434 | */ |
8435 | lck_mtx_lock(sadb_mutex); |
8436 | |
8437 | if (mhp->msg->sadb_msg_len == PFKEY_UNIT64(sizeof(struct sadb_msg))) { |
8438 | #ifndef IPSEC_NONBLOCK_ACQUIRE |
8439 | struct secacq *acq; |
8440 | |
8441 | /* check sequence number */ |
8442 | if (mhp->msg->sadb_msg_seq == 0) { |
8443 | lck_mtx_unlock(sadb_mutex); |
8444 | ipseclog((LOG_DEBUG, "key_acquire2: must specify sequence number.\n" )); |
8445 | m_freem(m); |
8446 | return 0; |
8447 | } |
8448 | |
8449 | if ((acq = key_getacqbyseq(seq: mhp->msg->sadb_msg_seq)) == NULL) { |
8450 | /* |
8451 | * the specified larval SA is already gone, or we got |
8452 | * a bogus sequence number. we can silently ignore it. |
8453 | */ |
8454 | lck_mtx_unlock(sadb_mutex); |
8455 | m_freem(m); |
8456 | return 0; |
8457 | } |
8458 | |
8459 | /* reset acq counter in order to deletion by timehander. */ |
8460 | acq->created = key_get_continuous_time_ns(); |
8461 | acq->count = 0; |
8462 | #endif |
8463 | lck_mtx_unlock(sadb_mutex); |
8464 | m_freem(m); |
8465 | return 0; |
8466 | } |
8467 | |
8468 | /* |
8469 | * This message is from user land. |
8470 | */ |
8471 | |
8472 | /* map satype to proto */ |
8473 | if ((proto = key_satype2proto(satype: mhp->msg->sadb_msg_satype)) == 0) { |
8474 | lck_mtx_unlock(sadb_mutex); |
8475 | ipseclog((LOG_DEBUG, "key_acquire2: invalid satype is passed.\n" )); |
8476 | return key_senderror(so, m, EINVAL); |
8477 | } |
8478 | |
8479 | if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || |
8480 | mhp->ext[SADB_EXT_ADDRESS_DST] == NULL || |
8481 | mhp->ext[SADB_EXT_PROPOSAL] == NULL) { |
8482 | /* error */ |
8483 | lck_mtx_unlock(sadb_mutex); |
8484 | ipseclog((LOG_DEBUG, "key_acquire2: invalid message is passed.\n" )); |
8485 | return key_senderror(so, m, EINVAL); |
8486 | } |
8487 | if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || |
8488 | mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) || |
8489 | mhp->extlen[SADB_EXT_PROPOSAL] < sizeof(struct sadb_prop)) { |
8490 | /* error */ |
8491 | lck_mtx_unlock(sadb_mutex); |
8492 | ipseclog((LOG_DEBUG, "key_acquire2: invalid message is passed.\n" )); |
8493 | return key_senderror(so, m, EINVAL); |
8494 | } |
8495 | |
8496 | src0 = (const struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC]; |
8497 | dst0 = (const struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST]; |
8498 | ipsec_if = key_get_ipsec_if_from_message(mhp, SADB_X_EXT_IPSECIF); |
8499 | |
8500 | u_int ipsec_if_index = 0; |
8501 | if (ipsec_if != NULL) { |
8502 | ipsec_if_index = ipsec_if->if_index; |
8503 | ifnet_release(interface: ipsec_if); |
8504 | ipsec_if = NULL; |
8505 | } |
8506 | |
8507 | /* XXX boundary check against sa_len */ |
8508 | /* cast warnings */ |
8509 | KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, ipsec_if_index, &saidx); |
8510 | |
8511 | /* get a SA index */ |
8512 | LIST_FOREACH(sah, &sahtree, chain) { |
8513 | if (sah->state == SADB_SASTATE_DEAD) { |
8514 | continue; |
8515 | } |
8516 | if (key_cmpsaidx(saidx0: &sah->saidx, saidx1: &saidx, CMP_MODE | CMP_REQID)) { |
8517 | break; |
8518 | } |
8519 | } |
8520 | if (sah != NULL) { |
8521 | lck_mtx_unlock(sadb_mutex); |
8522 | ipseclog((LOG_DEBUG, "key_acquire2: a SA exists already.\n" )); |
8523 | return key_senderror(so, m, EEXIST); |
8524 | } |
8525 | lck_mtx_unlock(sadb_mutex); |
8526 | error = key_acquire(saidx: &saidx, NULL); |
8527 | if (error != 0) { |
8528 | ipseclog((LOG_DEBUG, "key_acquire2: error %d returned " |
8529 | "from key_acquire.\n" , mhp->msg->sadb_msg_errno)); |
8530 | return key_senderror(so, m, error); |
8531 | } |
8532 | |
8533 | return key_sendup_mbuf(so, m, KEY_SENDUP_REGISTERED); |
8534 | } |
8535 | |
8536 | /* |
8537 | * SADB_REGISTER processing. |
8538 | * If SATYPE_UNSPEC has been passed as satype, only return sadb_supported. |
8539 | * receive |
8540 | * <base> |
8541 | * from the ikmpd, and register a socket to send PF_KEY messages, |
8542 | * and send |
8543 | * <base, supported> |
8544 | * to KMD by PF_KEY. |
8545 | * If socket is detached, must free from regnode. |
8546 | * |
8547 | * m will always be freed. |
8548 | */ |
8549 | static int |
8550 | key_register( |
8551 | struct socket *so, |
8552 | struct mbuf *m, |
8553 | const struct sadb_msghdr *mhp) |
8554 | { |
8555 | struct secreg *reg, *newreg = 0; |
8556 | |
8557 | /* sanity check */ |
8558 | if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL) { |
8559 | panic("key_register: NULL pointer is passed." ); |
8560 | } |
8561 | |
8562 | /* check for invalid register message */ |
8563 | if (mhp->msg->sadb_msg_satype >= sizeof(regtree) / sizeof(regtree[0])) { |
8564 | return key_senderror(so, m, EINVAL); |
8565 | } |
8566 | |
8567 | /* When SATYPE_UNSPEC is specified, only return sadb_supported. */ |
8568 | if (mhp->msg->sadb_msg_satype == SADB_SATYPE_UNSPEC) { |
8569 | goto setmsg; |
8570 | } |
8571 | |
8572 | /* create regnode */ |
8573 | newreg = kalloc_type(struct secreg, Z_WAITOK_ZERO_NOFAIL); |
8574 | |
8575 | lck_mtx_lock(sadb_mutex); |
8576 | /* check whether existing or not */ |
8577 | LIST_FOREACH(reg, ®tree[mhp->msg->sadb_msg_satype], chain) { |
8578 | if (reg->so == so) { |
8579 | lck_mtx_unlock(sadb_mutex); |
8580 | ipseclog((LOG_DEBUG, "key_register: socket exists already.\n" )); |
8581 | kfree_type(struct secreg, newreg); |
8582 | return key_senderror(so, m, EEXIST); |
8583 | } |
8584 | } |
8585 | |
8586 | socket_lock(so, refcount: 1); |
8587 | newreg->so = so; |
8588 | ((struct keycb *)sotorawcb(so))->kp_registered++; |
8589 | socket_unlock(so, refcount: 1); |
8590 | |
8591 | /* add regnode to regtree. */ |
8592 | LIST_INSERT_HEAD(®tree[mhp->msg->sadb_msg_satype], newreg, chain); |
8593 | lck_mtx_unlock(sadb_mutex); |
8594 | setmsg: |
8595 | { |
8596 | struct mbuf *n; |
8597 | struct sadb_msg *newmsg; |
8598 | struct sadb_supported *sup; |
8599 | u_int16_t len, alen, elen; |
8600 | int off; |
8601 | u_int8_t i; |
8602 | struct sadb_alg *alg; |
8603 | |
8604 | /* create new sadb_msg to reply. */ |
8605 | alen = 0; |
8606 | for (i = 1; i <= SADB_AALG_MAX; i++) { |
8607 | if (ah_algorithm_lookup(i)) { |
8608 | alen += sizeof(struct sadb_alg); |
8609 | } |
8610 | } |
8611 | if (alen) { |
8612 | alen += sizeof(struct sadb_supported); |
8613 | } |
8614 | elen = 0; |
8615 | #if IPSEC_ESP |
8616 | for (i = 1; i <= SADB_EALG_MAX; i++) { |
8617 | if (esp_algorithm_lookup(i)) { |
8618 | elen += sizeof(struct sadb_alg); |
8619 | } |
8620 | } |
8621 | if (elen) { |
8622 | elen += sizeof(struct sadb_supported); |
8623 | } |
8624 | #endif |
8625 | |
8626 | len = sizeof(struct sadb_msg) + alen + elen; |
8627 | |
8628 | if (len > MCLBYTES) { |
8629 | return key_senderror(so, m, ENOBUFS); |
8630 | } |
8631 | |
8632 | MGETHDR(n, M_WAITOK, MT_DATA); |
8633 | if (n && len > MHLEN) { |
8634 | MCLGET(n, M_WAITOK); |
8635 | if ((n->m_flags & M_EXT) == 0) { |
8636 | m_freem(n); |
8637 | n = NULL; |
8638 | } |
8639 | } |
8640 | if (!n) { |
8641 | return key_senderror(so, m, ENOBUFS); |
8642 | } |
8643 | |
8644 | n->m_pkthdr.len = n->m_len = len; |
8645 | n->m_next = NULL; |
8646 | off = 0; |
8647 | |
8648 | m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, caddr_t) + off); |
8649 | newmsg = mtod(n, struct sadb_msg *); |
8650 | newmsg->sadb_msg_errno = 0; |
8651 | VERIFY(PFKEY_UNIT64(len) <= UINT16_MAX); |
8652 | newmsg->sadb_msg_len = (u_int16_t)PFKEY_UNIT64(len); |
8653 | off += PFKEY_ALIGN8(sizeof(struct sadb_msg)); |
8654 | |
8655 | /* for authentication algorithm */ |
8656 | if (alen) { |
8657 | sup = (struct sadb_supported *)(void *)(mtod(n, caddr_t) + off); |
8658 | sup->sadb_supported_len = (u_int16_t)PFKEY_UNIT64(alen); |
8659 | sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_AUTH; |
8660 | off += PFKEY_ALIGN8(sizeof(*sup)); |
8661 | |
8662 | for (i = 1; i <= SADB_AALG_MAX; i++) { |
8663 | const struct ah_algorithm *aalgo; |
8664 | |
8665 | aalgo = ah_algorithm_lookup(i); |
8666 | if (!aalgo) { |
8667 | continue; |
8668 | } |
8669 | alg = (struct sadb_alg *) |
8670 | (void *)(mtod(n, caddr_t) + off); |
8671 | alg->sadb_alg_id = i; |
8672 | alg->sadb_alg_ivlen = 0; |
8673 | alg->sadb_alg_minbits = aalgo->keymin; |
8674 | alg->sadb_alg_maxbits = aalgo->keymax; |
8675 | off += PFKEY_ALIGN8(sizeof(*alg)); |
8676 | } |
8677 | } |
8678 | |
8679 | #if IPSEC_ESP |
8680 | /* for encryption algorithm */ |
8681 | if (elen) { |
8682 | sup = (struct sadb_supported *)(void *)(mtod(n, caddr_t) + off); |
8683 | sup->sadb_supported_len = PFKEY_UNIT64(elen); |
8684 | sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_ENCRYPT; |
8685 | off += PFKEY_ALIGN8(sizeof(*sup)); |
8686 | |
8687 | for (i = 1; i <= SADB_EALG_MAX; i++) { |
8688 | const struct esp_algorithm *ealgo; |
8689 | |
8690 | ealgo = esp_algorithm_lookup(i); |
8691 | if (!ealgo) { |
8692 | continue; |
8693 | } |
8694 | alg = (struct sadb_alg *) |
8695 | (void *)(mtod(n, caddr_t) + off); |
8696 | alg->sadb_alg_id = i; |
8697 | if (ealgo && ealgo->ivlen) { |
8698 | /* |
8699 | * give NULL to get the value preferred by |
8700 | * algorithm XXX SADB_X_EXT_DERIV ? |
8701 | */ |
8702 | VERIFY((*ealgo->ivlen)(ealgo, NULL) <= UINT8_MAX); |
8703 | alg->sadb_alg_ivlen = |
8704 | (u_int8_t)((*ealgo->ivlen)(ealgo, NULL)); |
8705 | } else { |
8706 | alg->sadb_alg_ivlen = 0; |
8707 | } |
8708 | alg->sadb_alg_minbits = ealgo->keymin; |
8709 | alg->sadb_alg_maxbits = ealgo->keymax; |
8710 | off += PFKEY_ALIGN8(sizeof(struct sadb_alg)); |
8711 | } |
8712 | } |
8713 | #endif |
8714 | |
8715 | #if DIAGNOSTIC |
8716 | if (off != len) { |
8717 | panic("length assumption failed in key_register" ); |
8718 | } |
8719 | #endif |
8720 | |
8721 | m_freem(m); |
8722 | return key_sendup_mbuf(so, n, KEY_SENDUP_REGISTERED); |
8723 | } |
8724 | } |
8725 | |
8726 | static void |
8727 | key_delete_all_for_socket(struct socket *so) |
8728 | { |
8729 | struct secashead *sah, *nextsah; |
8730 | struct secasvar *sav, *nextsav; |
8731 | u_int stateidx; |
8732 | u_int state; |
8733 | |
8734 | for (sah = LIST_FIRST(&sahtree); |
8735 | sah != NULL; |
8736 | sah = nextsah) { |
8737 | nextsah = LIST_NEXT(sah, chain); |
8738 | for (stateidx = 0; stateidx < _ARRAYLEN(saorder_state_alive); stateidx++) { |
8739 | state = saorder_state_any[stateidx]; |
8740 | for (sav = LIST_FIRST(&sah->savtree[state]); sav != NULL; sav = nextsav) { |
8741 | nextsav = LIST_NEXT(sav, chain); |
8742 | if (sav->flags2 & SADB_X_EXT_SA2_DELETE_ON_DETACH && |
8743 | sav->so == so) { |
8744 | key_sa_chgstate(sav, SADB_SASTATE_DEAD); |
8745 | key_freesav(sav, KEY_SADB_LOCKED); |
8746 | } |
8747 | } |
8748 | } |
8749 | } |
8750 | } |
8751 | |
8752 | /* |
8753 | * free secreg entry registered. |
8754 | * XXX: I want to do free a socket marked done SADB_RESIGER to socket. |
8755 | */ |
8756 | void |
8757 | key_freereg( |
8758 | struct socket *so) |
8759 | { |
8760 | struct secreg *reg; |
8761 | int i; |
8762 | |
8763 | /* sanity check */ |
8764 | if (so == NULL) { |
8765 | panic("key_freereg: NULL pointer is passed." ); |
8766 | } |
8767 | |
8768 | /* |
8769 | * check whether existing or not. |
8770 | * check all type of SA, because there is a potential that |
8771 | * one socket is registered to multiple type of SA. |
8772 | */ |
8773 | lck_mtx_lock(sadb_mutex); |
8774 | key_delete_all_for_socket(so); |
8775 | for (i = 0; i <= SADB_SATYPE_MAX; i++) { |
8776 | LIST_FOREACH(reg, ®tree[i], chain) { |
8777 | if (reg->so == so |
8778 | && __LIST_CHAINED(reg)) { |
8779 | LIST_REMOVE(reg, chain); |
8780 | kfree_type(struct secreg, reg); |
8781 | break; |
8782 | } |
8783 | } |
8784 | } |
8785 | lck_mtx_unlock(sadb_mutex); |
8786 | return; |
8787 | } |
8788 | |
8789 | /* |
8790 | * SADB_EXPIRE processing |
8791 | * send |
8792 | * <base, SA, SA2, lifetime(C and one of HS), address(SD)> |
8793 | * to KMD by PF_KEY. |
8794 | * NOTE: We send only soft lifetime extension. |
8795 | * |
8796 | * OUT: 0 : succeed |
8797 | * others : error number |
8798 | */ |
8799 | static int |
8800 | key_expire( |
8801 | struct secasvar *sav) |
8802 | { |
8803 | u_int8_t satype; |
8804 | struct mbuf *result = NULL, *m; |
8805 | int len; |
8806 | int error = -1; |
8807 | struct sadb_lifetime *lt; |
8808 | |
8809 | LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_NOTOWNED); |
8810 | |
8811 | /* sanity check */ |
8812 | if (sav == NULL) { |
8813 | panic("key_expire: NULL pointer is passed." ); |
8814 | } |
8815 | if (sav->sah == NULL) { |
8816 | panic("key_expire: Why was SA index in SA NULL." ); |
8817 | } |
8818 | if ((satype = key_proto2satype(proto: sav->sah->saidx.proto)) == 0) { |
8819 | panic("key_expire: invalid proto is passed." ); |
8820 | } |
8821 | |
8822 | /* set msg header */ |
8823 | m = key_setsadbmsg(SADB_EXPIRE, tlen: 0, satype, seq: sav->seq, pid: 0, reserved: (u_int16_t)sav->refcnt); |
8824 | if (!m) { |
8825 | error = ENOBUFS; |
8826 | goto fail; |
8827 | } |
8828 | result = m; |
8829 | |
8830 | /* create SA extension */ |
8831 | m = key_setsadbsa(sav); |
8832 | if (!m) { |
8833 | error = ENOBUFS; |
8834 | goto fail; |
8835 | } |
8836 | m_cat(result, m); |
8837 | |
8838 | /* create SA extension */ |
8839 | m = key_setsadbxsa2(mode: sav->sah->saidx.mode, |
8840 | seq: sav->replay[0] ? sav->replay[0]->count : 0, |
8841 | reqid: sav->sah->saidx.reqid, |
8842 | flags: sav->flags2); |
8843 | if (!m) { |
8844 | error = ENOBUFS; |
8845 | goto fail; |
8846 | } |
8847 | m_cat(result, m); |
8848 | |
8849 | /* create lifetime extension (current and soft) */ |
8850 | len = PFKEY_ALIGN8(sizeof(*lt)) * 2; |
8851 | m = key_alloc_mbuf(len); |
8852 | if (!m || m->m_next) { /*XXX*/ |
8853 | if (m) { |
8854 | m_freem(m); |
8855 | } |
8856 | error = ENOBUFS; |
8857 | goto fail; |
8858 | } |
8859 | bzero(mtod(m, caddr_t), n: len); |
8860 | lt = mtod(m, struct sadb_lifetime *); |
8861 | lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime)); |
8862 | lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT; |
8863 | lt->sadb_lifetime_allocations = sav->lft_c->sadb_lifetime_allocations; |
8864 | lt->sadb_lifetime_bytes = sav->lft_c->sadb_lifetime_bytes; |
8865 | lt->sadb_lifetime_addtime = key_convert_continuous_time_ns(time_value: sav->lft_c->sadb_lifetime_addtime); |
8866 | lt->sadb_lifetime_usetime = key_convert_continuous_time_ns(time_value: sav->lft_c->sadb_lifetime_usetime); |
8867 | lt = (struct sadb_lifetime *)(void *)(mtod(m, caddr_t) + len / 2); |
8868 | bcopy(src: sav->lft_s, dst: lt, n: sizeof(*lt)); |
8869 | m_cat(result, m); |
8870 | |
8871 | /* set sadb_address for source */ |
8872 | m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, |
8873 | saddr: (struct sockaddr *)&sav->sah->saidx.src, |
8874 | FULLMASK, IPSEC_ULPROTO_ANY); |
8875 | if (!m) { |
8876 | error = ENOBUFS; |
8877 | goto fail; |
8878 | } |
8879 | m_cat(result, m); |
8880 | |
8881 | /* set sadb_address for destination */ |
8882 | m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, |
8883 | saddr: (struct sockaddr *)&sav->sah->saidx.dst, |
8884 | FULLMASK, IPSEC_ULPROTO_ANY); |
8885 | if (!m) { |
8886 | error = ENOBUFS; |
8887 | goto fail; |
8888 | } |
8889 | m_cat(result, m); |
8890 | |
8891 | if ((result->m_flags & M_PKTHDR) == 0) { |
8892 | error = EINVAL; |
8893 | goto fail; |
8894 | } |
8895 | |
8896 | if (result->m_len < sizeof(struct sadb_msg)) { |
8897 | result = m_pullup(result, sizeof(struct sadb_msg)); |
8898 | if (result == NULL) { |
8899 | error = ENOBUFS; |
8900 | goto fail; |
8901 | } |
8902 | } |
8903 | |
8904 | result->m_pkthdr.len = 0; |
8905 | for (m = result; m; m = m->m_next) { |
8906 | result->m_pkthdr.len += m->m_len; |
8907 | } |
8908 | |
8909 | VERIFY(PFKEY_UNIT64(result->m_pkthdr.len) <= UINT16_MAX); |
8910 | mtod(result, struct sadb_msg *)->sadb_msg_len = |
8911 | (u_int16_t)PFKEY_UNIT64(result->m_pkthdr.len); |
8912 | |
8913 | return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED); |
8914 | |
8915 | fail: |
8916 | if (result) { |
8917 | m_freem(result); |
8918 | } |
8919 | return error; |
8920 | } |
8921 | |
8922 | /* |
8923 | * SADB_FLUSH processing |
8924 | * receive |
8925 | * <base> |
8926 | * from the ikmpd, and free all entries in secastree. |
8927 | * and send, |
8928 | * <base> |
8929 | * to the ikmpd. |
8930 | * NOTE: to do is only marking SADB_SASTATE_DEAD. |
8931 | * |
8932 | * m will always be freed. |
8933 | */ |
8934 | static int |
8935 | key_flush( |
8936 | struct socket *so, |
8937 | struct mbuf *m, |
8938 | const struct sadb_msghdr *mhp) |
8939 | { |
8940 | struct sadb_msg *newmsg; |
8941 | struct secashead *sah, *nextsah; |
8942 | struct secasvar *sav, *nextsav; |
8943 | u_int16_t proto; |
8944 | u_int state; |
8945 | u_int stateidx; |
8946 | |
8947 | /* sanity check */ |
8948 | if (so == NULL || mhp == NULL || mhp->msg == NULL) { |
8949 | panic("key_flush: NULL pointer is passed." ); |
8950 | } |
8951 | |
8952 | /* map satype to proto */ |
8953 | if ((proto = key_satype2proto(satype: mhp->msg->sadb_msg_satype)) == 0) { |
8954 | ipseclog((LOG_DEBUG, "key_flush: invalid satype is passed.\n" )); |
8955 | return key_senderror(so, m, EINVAL); |
8956 | } |
8957 | |
8958 | lck_mtx_lock(sadb_mutex); |
8959 | |
8960 | /* no SATYPE specified, i.e. flushing all SA. */ |
8961 | for (sah = LIST_FIRST(&sahtree); |
8962 | sah != NULL; |
8963 | sah = nextsah) { |
8964 | nextsah = LIST_NEXT(sah, chain); |
8965 | |
8966 | if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC |
8967 | && proto != sah->saidx.proto) { |
8968 | continue; |
8969 | } |
8970 | |
8971 | for (stateidx = 0; |
8972 | stateidx < _ARRAYLEN(saorder_state_alive); |
8973 | stateidx++) { |
8974 | state = saorder_state_any[stateidx]; |
8975 | for (sav = LIST_FIRST(&sah->savtree[state]); |
8976 | sav != NULL; |
8977 | sav = nextsav) { |
8978 | nextsav = LIST_NEXT(sav, chain); |
8979 | |
8980 | key_sa_chgstate(sav, SADB_SASTATE_DEAD); |
8981 | key_freesav(sav, KEY_SADB_LOCKED); |
8982 | } |
8983 | } |
8984 | |
8985 | sah->state = SADB_SASTATE_DEAD; |
8986 | } |
8987 | lck_mtx_unlock(sadb_mutex); |
8988 | |
8989 | if (m->m_len < sizeof(struct sadb_msg) || |
8990 | sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) { |
8991 | ipseclog((LOG_DEBUG, "key_flush: No more memory.\n" )); |
8992 | return key_senderror(so, m, ENOBUFS); |
8993 | } |
8994 | |
8995 | if (m->m_next) { |
8996 | m_freem(m->m_next); |
8997 | } |
8998 | m->m_next = NULL; |
8999 | m->m_pkthdr.len = m->m_len = sizeof(struct sadb_msg); |
9000 | newmsg = mtod(m, struct sadb_msg *); |
9001 | newmsg->sadb_msg_errno = 0; |
9002 | VERIFY(PFKEY_UNIT64(m->m_pkthdr.len) <= UINT16_MAX); |
9003 | newmsg->sadb_msg_len = (uint16_t)PFKEY_UNIT64(m->m_pkthdr.len); |
9004 | |
9005 | return key_sendup_mbuf(so, m, KEY_SENDUP_ALL); |
9006 | } |
9007 | |
9008 | /* |
9009 | * SADB_DUMP processing |
9010 | * dump all entries including status of DEAD in SAD. |
9011 | * receive |
9012 | * <base> |
9013 | * from the ikmpd, and dump all secasvar leaves |
9014 | * and send, |
9015 | * <base> ..... |
9016 | * to the ikmpd. |
9017 | * |
9018 | * m will always be freed. |
9019 | */ |
9020 | |
9021 | struct sav_dump_elem { |
9022 | struct secasvar *sav; |
9023 | u_int8_t satype; |
9024 | }; |
9025 | |
9026 | static int |
9027 | key_dump( |
9028 | struct socket *so, |
9029 | struct mbuf *m, |
9030 | const struct sadb_msghdr *mhp) |
9031 | { |
9032 | struct secashead *sah; |
9033 | struct secasvar *sav; |
9034 | struct sav_dump_elem *savbuf = NULL, *elem_ptr; |
9035 | u_int32_t bufcount = 0, cnt = 0, cnt2 = 0; |
9036 | u_int16_t proto; |
9037 | u_int stateidx; |
9038 | u_int8_t satype; |
9039 | u_int state; |
9040 | struct mbuf *n; |
9041 | int error = 0; |
9042 | |
9043 | LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_NOTOWNED); |
9044 | |
9045 | /* sanity check */ |
9046 | if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL) { |
9047 | panic("key_dump: NULL pointer is passed." ); |
9048 | } |
9049 | |
9050 | /* map satype to proto */ |
9051 | if ((proto = key_satype2proto(satype: mhp->msg->sadb_msg_satype)) == 0) { |
9052 | ipseclog((LOG_DEBUG, "key_dump: invalid satype is passed.\n" )); |
9053 | return key_senderror(so, m, EINVAL); |
9054 | } |
9055 | |
9056 | if ((bufcount = ipsec_sav_count) == 0) { |
9057 | error = ENOENT; |
9058 | goto end; |
9059 | } |
9060 | |
9061 | if (os_add_overflow(bufcount, 512, &bufcount)) { |
9062 | ipseclog((LOG_DEBUG, "key_dump: bufcount overflow, ipsec sa count %u.\n" , ipsec_sav_count)); |
9063 | bufcount = ipsec_sav_count; |
9064 | } |
9065 | |
9066 | savbuf = kalloc_type(struct sav_dump_elem, bufcount, Z_WAITOK); |
9067 | if (savbuf == NULL) { |
9068 | ipseclog((LOG_DEBUG, "key_dump: No more memory.\n" )); |
9069 | error = ENOMEM; |
9070 | goto end; |
9071 | } |
9072 | |
9073 | /* count sav entries to be sent to the userland. */ |
9074 | lck_mtx_lock(sadb_mutex); |
9075 | elem_ptr = savbuf; |
9076 | LIST_FOREACH(sah, &sahtree, chain) { |
9077 | if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC |
9078 | && proto != sah->saidx.proto) { |
9079 | continue; |
9080 | } |
9081 | |
9082 | /* map proto to satype */ |
9083 | if ((satype = key_proto2satype(proto: sah->saidx.proto)) == 0) { |
9084 | lck_mtx_unlock(sadb_mutex); |
9085 | ipseclog((LOG_DEBUG, "key_dump: there was invalid proto in SAD.\n" )); |
9086 | error = EINVAL; |
9087 | goto end; |
9088 | } |
9089 | |
9090 | for (stateidx = 0; |
9091 | stateidx < _ARRAYLEN(saorder_state_any); |
9092 | stateidx++) { |
9093 | state = saorder_state_any[stateidx]; |
9094 | LIST_FOREACH(sav, &sah->savtree[state], chain) { |
9095 | if (cnt == bufcount) { |
9096 | break; /* out of buffer space */ |
9097 | } |
9098 | elem_ptr->sav = sav; |
9099 | elem_ptr->satype = satype; |
9100 | sav->refcnt++; |
9101 | elem_ptr++; |
9102 | cnt++; |
9103 | } |
9104 | } |
9105 | } |
9106 | lck_mtx_unlock(sadb_mutex); |
9107 | |
9108 | if (cnt == 0) { |
9109 | error = ENOENT; |
9110 | goto end; |
9111 | } |
9112 | |
9113 | /* send this to the userland, one at a time. */ |
9114 | elem_ptr = savbuf; |
9115 | cnt2 = cnt; |
9116 | while (cnt2) { |
9117 | n = key_setdumpsa(sav: elem_ptr->sav, SADB_DUMP, satype: elem_ptr->satype, |
9118 | seq: --cnt2, pid: mhp->msg->sadb_msg_pid); |
9119 | |
9120 | if (!n) { |
9121 | error = ENOBUFS; |
9122 | goto end; |
9123 | } |
9124 | |
9125 | key_sendup_mbuf(so, n, KEY_SENDUP_ONE); |
9126 | elem_ptr++; |
9127 | } |
9128 | |
9129 | end: |
9130 | if (savbuf) { |
9131 | if (cnt) { |
9132 | elem_ptr = savbuf; |
9133 | lck_mtx_lock(sadb_mutex); |
9134 | while (cnt--) { |
9135 | key_freesav(sav: (elem_ptr++)->sav, KEY_SADB_LOCKED); |
9136 | } |
9137 | lck_mtx_unlock(sadb_mutex); |
9138 | } |
9139 | kfree_type(struct sav_dump_elem, bufcount, savbuf); |
9140 | } |
9141 | |
9142 | if (error) { |
9143 | return key_senderror(so, m, error); |
9144 | } |
9145 | |
9146 | m_freem(m); |
9147 | return 0; |
9148 | } |
9149 | |
9150 | /* |
9151 | * SADB_X_PROMISC processing |
9152 | * |
9153 | * m will always be freed. |
9154 | */ |
9155 | static int |
9156 | key_promisc( |
9157 | struct socket *so, |
9158 | struct mbuf *m, |
9159 | const struct sadb_msghdr *mhp) |
9160 | { |
9161 | int olen; |
9162 | |
9163 | /* sanity check */ |
9164 | if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL) { |
9165 | panic("key_promisc: NULL pointer is passed." ); |
9166 | } |
9167 | |
9168 | olen = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len); |
9169 | |
9170 | if (olen < sizeof(struct sadb_msg)) { |
9171 | #if 1 |
9172 | return key_senderror(so, m, EINVAL); |
9173 | #else |
9174 | m_freem(m); |
9175 | return 0; |
9176 | #endif |
9177 | } else if (olen == sizeof(struct sadb_msg)) { |
9178 | /* enable/disable promisc mode */ |
9179 | struct keycb *kp; |
9180 | |
9181 | socket_lock(so, refcount: 1); |
9182 | if ((kp = (struct keycb *)sotorawcb(so)) == NULL) { |
9183 | return key_senderror(so, m, EINVAL); |
9184 | } |
9185 | mhp->msg->sadb_msg_errno = 0; |
9186 | switch (mhp->msg->sadb_msg_satype) { |
9187 | case 0: |
9188 | case 1: |
9189 | kp->kp_promisc = mhp->msg->sadb_msg_satype; |
9190 | break; |
9191 | default: |
9192 | socket_unlock(so, refcount: 1); |
9193 | return key_senderror(so, m, EINVAL); |
9194 | } |
9195 | socket_unlock(so, refcount: 1); |
9196 | |
9197 | /* send the original message back to everyone */ |
9198 | mhp->msg->sadb_msg_errno = 0; |
9199 | return key_sendup_mbuf(so, m, KEY_SENDUP_ALL); |
9200 | } else { |
9201 | /* send packet as is */ |
9202 | |
9203 | m_adj(m, PFKEY_ALIGN8(sizeof(struct sadb_msg))); |
9204 | |
9205 | /* TODO: if sadb_msg_seq is specified, send to specific pid */ |
9206 | return key_sendup_mbuf(so, m, KEY_SENDUP_ALL); |
9207 | } |
9208 | } |
9209 | |
9210 | static int(*const key_typesw[])(struct socket *, struct mbuf *, |
9211 | const struct sadb_msghdr *) = { |
9212 | NULL, /* SADB_RESERVED */ |
9213 | key_getspi, /* SADB_GETSPI */ |
9214 | key_update, /* SADB_UPDATE */ |
9215 | key_add, /* SADB_ADD */ |
9216 | key_delete, /* SADB_DELETE */ |
9217 | key_get, /* SADB_GET */ |
9218 | key_acquire2, /* SADB_ACQUIRE */ |
9219 | key_register, /* SADB_REGISTER */ |
9220 | NULL, /* SADB_EXPIRE */ |
9221 | key_flush, /* SADB_FLUSH */ |
9222 | key_dump, /* SADB_DUMP */ |
9223 | key_promisc, /* SADB_X_PROMISC */ |
9224 | NULL, /* SADB_X_PCHANGE */ |
9225 | key_spdadd, /* SADB_X_SPDUPDATE */ |
9226 | key_spdadd, /* SADB_X_SPDADD */ |
9227 | key_spddelete, /* SADB_X_SPDDELETE */ |
9228 | key_spdget, /* SADB_X_SPDGET */ |
9229 | NULL, /* SADB_X_SPDACQUIRE */ |
9230 | key_spddump, /* SADB_X_SPDDUMP */ |
9231 | key_spdflush, /* SADB_X_SPDFLUSH */ |
9232 | key_spdadd, /* SADB_X_SPDSETIDX */ |
9233 | NULL, /* SADB_X_SPDEXPIRE */ |
9234 | key_spddelete2, /* SADB_X_SPDDELETE2 */ |
9235 | key_getsastat, /* SADB_GETSASTAT */ |
9236 | key_spdenable, /* SADB_X_SPDENABLE */ |
9237 | key_spddisable, /* SADB_X_SPDDISABLE */ |
9238 | key_migrate, /* SADB_MIGRATE */ |
9239 | }; |
9240 | |
9241 | static void |
9242 | bzero_mbuf(struct mbuf *m) |
9243 | { |
9244 | struct mbuf *mptr = m; |
9245 | struct sadb_msg *msg = NULL; |
9246 | int offset = 0; |
9247 | |
9248 | if (!mptr) { |
9249 | return; |
9250 | } |
9251 | |
9252 | if (mptr->m_len >= sizeof(struct sadb_msg)) { |
9253 | msg = mtod(mptr, struct sadb_msg *); |
9254 | if (msg->sadb_msg_type != SADB_ADD && |
9255 | msg->sadb_msg_type != SADB_UPDATE) { |
9256 | return; |
9257 | } |
9258 | offset = sizeof(struct sadb_msg); |
9259 | } |
9260 | bzero(s: m_mtod_current(m: mptr) + offset, n: mptr->m_len - offset); |
9261 | mptr = mptr->m_next; |
9262 | while (mptr != NULL) { |
9263 | bzero(s: m_mtod_current(m: mptr), n: mptr->m_len); |
9264 | mptr = mptr->m_next; |
9265 | } |
9266 | } |
9267 | |
9268 | static void |
9269 | bzero_keys(const struct sadb_msghdr *mh) |
9270 | { |
9271 | int extlen = 0; |
9272 | int offset = 0; |
9273 | |
9274 | if (!mh) { |
9275 | return; |
9276 | } |
9277 | offset = sizeof(struct sadb_key); |
9278 | |
9279 | if (mh->ext[SADB_EXT_KEY_ENCRYPT]) { |
9280 | struct sadb_key *key = (struct sadb_key*)mh->ext[SADB_EXT_KEY_ENCRYPT]; |
9281 | extlen = key->sadb_key_bits >> 3; |
9282 | |
9283 | if (mh->extlen[SADB_EXT_KEY_ENCRYPT] >= offset + extlen) { |
9284 | bzero(s: (uint8_t *)mh->ext[SADB_EXT_KEY_ENCRYPT] + offset, n: extlen); |
9285 | } else { |
9286 | bzero(s: mh->ext[SADB_EXT_KEY_ENCRYPT], n: mh->extlen[SADB_EXT_KEY_ENCRYPT]); |
9287 | } |
9288 | } |
9289 | if (mh->ext[SADB_EXT_KEY_AUTH]) { |
9290 | struct sadb_key *key = (struct sadb_key*)mh->ext[SADB_EXT_KEY_AUTH]; |
9291 | extlen = key->sadb_key_bits >> 3; |
9292 | |
9293 | if (mh->extlen[SADB_EXT_KEY_AUTH] >= offset + extlen) { |
9294 | bzero(s: (uint8_t *)mh->ext[SADB_EXT_KEY_AUTH] + offset, n: extlen); |
9295 | } else { |
9296 | bzero(s: mh->ext[SADB_EXT_KEY_AUTH], n: mh->extlen[SADB_EXT_KEY_AUTH]); |
9297 | } |
9298 | } |
9299 | } |
9300 | |
9301 | static int |
9302 | key_validate_address_pair(struct sadb_address *src0, |
9303 | struct sadb_address *dst0) |
9304 | { |
9305 | u_int plen = 0; |
9306 | |
9307 | /* check upper layer protocol */ |
9308 | if (src0->sadb_address_proto != dst0->sadb_address_proto) { |
9309 | ipseclog((LOG_DEBUG, "key_parse: upper layer protocol mismatched.\n" )); |
9310 | PFKEY_STAT_INCREMENT(pfkeystat.out_invaddr); |
9311 | return EINVAL; |
9312 | } |
9313 | |
9314 | /* check family */ |
9315 | if (PFKEY_ADDR_SADDR(src0)->sa_family != |
9316 | PFKEY_ADDR_SADDR(dst0)->sa_family) { |
9317 | ipseclog((LOG_DEBUG, "key_parse: address family mismatched.\n" )); |
9318 | PFKEY_STAT_INCREMENT(pfkeystat.out_invaddr); |
9319 | return EINVAL; |
9320 | } |
9321 | if (PFKEY_ADDR_SADDR(src0)->sa_len != |
9322 | PFKEY_ADDR_SADDR(dst0)->sa_len) { |
9323 | ipseclog((LOG_DEBUG, |
9324 | "key_parse: address struct size mismatched.\n" )); |
9325 | PFKEY_STAT_INCREMENT(pfkeystat.out_invaddr); |
9326 | return EINVAL; |
9327 | } |
9328 | |
9329 | switch (PFKEY_ADDR_SADDR(src0)->sa_family) { |
9330 | case AF_INET: |
9331 | if (PFKEY_ADDR_SADDR(src0)->sa_len != sizeof(struct sockaddr_in)) { |
9332 | PFKEY_STAT_INCREMENT(pfkeystat.out_invaddr); |
9333 | return EINVAL; |
9334 | } |
9335 | break; |
9336 | case AF_INET6: |
9337 | if (PFKEY_ADDR_SADDR(src0)->sa_len != sizeof(struct sockaddr_in6)) { |
9338 | PFKEY_STAT_INCREMENT(pfkeystat.out_invaddr); |
9339 | return EINVAL; |
9340 | } |
9341 | break; |
9342 | default: |
9343 | ipseclog((LOG_DEBUG, |
9344 | "key_parse: unsupported address family.\n" )); |
9345 | PFKEY_STAT_INCREMENT(pfkeystat.out_invaddr); |
9346 | return EAFNOSUPPORT; |
9347 | } |
9348 | |
9349 | switch (PFKEY_ADDR_SADDR(src0)->sa_family) { |
9350 | case AF_INET: |
9351 | plen = sizeof(struct in_addr) << 3; |
9352 | break; |
9353 | case AF_INET6: |
9354 | plen = sizeof(struct in6_addr) << 3; |
9355 | break; |
9356 | default: |
9357 | plen = 0; /*fool gcc*/ |
9358 | break; |
9359 | } |
9360 | |
9361 | /* check max prefix length */ |
9362 | if (src0->sadb_address_prefixlen > plen || |
9363 | dst0->sadb_address_prefixlen > plen) { |
9364 | ipseclog((LOG_DEBUG, |
9365 | "key_parse: illegal prefixlen.\n" )); |
9366 | PFKEY_STAT_INCREMENT(pfkeystat.out_invaddr); |
9367 | return EINVAL; |
9368 | } |
9369 | |
9370 | /* |
9371 | * prefixlen == 0 is valid because there can be a case when |
9372 | * all addresses are matched. |
9373 | */ |
9374 | return 0; |
9375 | } |
9376 | |
9377 | /* |
9378 | * parse sadb_msg buffer to process PFKEYv2, |
9379 | * and create a data to response if needed. |
9380 | * I think to be dealed with mbuf directly. |
9381 | * IN: |
9382 | * msgp : pointer to pointer to a received buffer pulluped. |
9383 | * This is rewrited to response. |
9384 | * so : pointer to socket. |
9385 | * OUT: |
9386 | * length for buffer to send to user process. |
9387 | */ |
9388 | int |
9389 | key_parse( |
9390 | struct mbuf *m, |
9391 | struct socket *so) |
9392 | { |
9393 | struct sadb_msg *msg; |
9394 | struct sadb_msghdr mh; |
9395 | u_int orglen; |
9396 | int error; |
9397 | int target; |
9398 | Boolean keyAligned = FALSE; |
9399 | |
9400 | LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_NOTOWNED); |
9401 | |
9402 | /* sanity check */ |
9403 | if (m == NULL || so == NULL) { |
9404 | panic("key_parse: NULL pointer is passed." ); |
9405 | } |
9406 | |
9407 | #if 0 /*kdebug_sadb assumes msg in linear buffer*/ |
9408 | KEYDEBUG(KEYDEBUG_KEY_DUMP, |
9409 | ipseclog((LOG_DEBUG, "key_parse: passed sadb_msg\n" )); |
9410 | kdebug_sadb(msg)); |
9411 | #endif |
9412 | |
9413 | if (m->m_len < sizeof(struct sadb_msg)) { |
9414 | m = m_pullup(m, sizeof(struct sadb_msg)); |
9415 | if (!m) { |
9416 | return ENOBUFS; |
9417 | } |
9418 | } |
9419 | msg = mtod(m, struct sadb_msg *); |
9420 | orglen = PFKEY_UNUNIT64(msg->sadb_msg_len); |
9421 | target = KEY_SENDUP_ONE; |
9422 | |
9423 | if ((m->m_flags & M_PKTHDR) == 0 || |
9424 | m->m_pkthdr.len != orglen) { |
9425 | ipseclog((LOG_DEBUG, "key_parse: invalid message length.\n" )); |
9426 | PFKEY_STAT_INCREMENT(pfkeystat.out_invlen); |
9427 | error = EINVAL; |
9428 | goto senderror; |
9429 | } |
9430 | |
9431 | if (msg->sadb_msg_version != PF_KEY_V2) { |
9432 | ipseclog((LOG_DEBUG, |
9433 | "key_parse: PF_KEY version %u is mismatched.\n" , |
9434 | msg->sadb_msg_version)); |
9435 | PFKEY_STAT_INCREMENT(pfkeystat.out_invver); |
9436 | error = EINVAL; |
9437 | goto senderror; |
9438 | } |
9439 | |
9440 | if (msg->sadb_msg_type > SADB_MAX) { |
9441 | ipseclog((LOG_DEBUG, "key_parse: invalid type %u is passed.\n" , |
9442 | msg->sadb_msg_type)); |
9443 | PFKEY_STAT_INCREMENT(pfkeystat.out_invmsgtype); |
9444 | error = EINVAL; |
9445 | goto senderror; |
9446 | } |
9447 | |
9448 | /* for old-fashioned code - should be nuked */ |
9449 | if (m->m_pkthdr.len > MCLBYTES) { |
9450 | m_freem(m); |
9451 | return ENOBUFS; |
9452 | } |
9453 | if (m->m_next) { |
9454 | struct mbuf *n; |
9455 | |
9456 | MGETHDR(n, M_WAITOK, MT_DATA); |
9457 | if (n && m->m_pkthdr.len > MHLEN) { |
9458 | MCLGET(n, M_WAITOK); |
9459 | if ((n->m_flags & M_EXT) == 0) { |
9460 | m_free(n); |
9461 | n = NULL; |
9462 | } |
9463 | } |
9464 | if (!n) { |
9465 | bzero_mbuf(m); |
9466 | m_freem(m); |
9467 | return ENOBUFS; |
9468 | } |
9469 | m_copydata(m, 0, m->m_pkthdr.len, mtod(n, caddr_t)); |
9470 | n->m_pkthdr.len = n->m_len = m->m_pkthdr.len; |
9471 | n->m_next = NULL; |
9472 | bzero_mbuf(m); |
9473 | m_freem(m); |
9474 | m = n; |
9475 | } |
9476 | |
9477 | /* align the mbuf chain so that extensions are in contiguous region. */ |
9478 | error = key_align(m, &mh); |
9479 | if (error) { |
9480 | return error; |
9481 | } |
9482 | |
9483 | if (m->m_next) { /*XXX*/ |
9484 | bzero_mbuf(m); |
9485 | m_freem(m); |
9486 | return ENOBUFS; |
9487 | } |
9488 | |
9489 | keyAligned = TRUE; |
9490 | msg = mh.msg; |
9491 | |
9492 | /* check SA type */ |
9493 | switch (msg->sadb_msg_satype) { |
9494 | case SADB_SATYPE_UNSPEC: |
9495 | switch (msg->sadb_msg_type) { |
9496 | case SADB_GETSPI: |
9497 | case SADB_UPDATE: |
9498 | case SADB_ADD: |
9499 | case SADB_DELETE: |
9500 | case SADB_GET: |
9501 | case SADB_ACQUIRE: |
9502 | case SADB_EXPIRE: |
9503 | ipseclog((LOG_DEBUG, "key_parse: must specify satype " |
9504 | "when msg type=%u.\n" , msg->sadb_msg_type)); |
9505 | PFKEY_STAT_INCREMENT(pfkeystat.out_invsatype); |
9506 | error = EINVAL; |
9507 | goto senderror; |
9508 | } |
9509 | break; |
9510 | case SADB_SATYPE_AH: |
9511 | case SADB_SATYPE_ESP: |
9512 | switch (msg->sadb_msg_type) { |
9513 | case SADB_X_SPDADD: |
9514 | case SADB_X_SPDDELETE: |
9515 | case SADB_X_SPDGET: |
9516 | case SADB_X_SPDDUMP: |
9517 | case SADB_X_SPDFLUSH: |
9518 | case SADB_X_SPDSETIDX: |
9519 | case SADB_X_SPDUPDATE: |
9520 | case SADB_X_SPDDELETE2: |
9521 | case SADB_X_SPDENABLE: |
9522 | case SADB_X_SPDDISABLE: |
9523 | ipseclog((LOG_DEBUG, "key_parse: illegal satype=%u\n" , |
9524 | msg->sadb_msg_type)); |
9525 | PFKEY_STAT_INCREMENT(pfkeystat.out_invsatype); |
9526 | error = EINVAL; |
9527 | goto senderror; |
9528 | } |
9529 | break; |
9530 | case SADB_SATYPE_RSVP: |
9531 | case SADB_SATYPE_OSPFV2: |
9532 | case SADB_SATYPE_RIPV2: |
9533 | case SADB_SATYPE_MIP: |
9534 | ipseclog((LOG_DEBUG, "key_parse: type %u isn't supported.\n" , |
9535 | msg->sadb_msg_satype)); |
9536 | PFKEY_STAT_INCREMENT(pfkeystat.out_invsatype); |
9537 | error = EOPNOTSUPP; |
9538 | goto senderror; |
9539 | case 1: /* XXX: What does it do? */ |
9540 | if (msg->sadb_msg_type == SADB_X_PROMISC) { |
9541 | break; |
9542 | } |
9543 | OS_FALLTHROUGH; |
9544 | default: |
9545 | ipseclog((LOG_DEBUG, "key_parse: invalid type %u is passed.\n" , |
9546 | msg->sadb_msg_satype)); |
9547 | PFKEY_STAT_INCREMENT(pfkeystat.out_invsatype); |
9548 | error = EINVAL; |
9549 | goto senderror; |
9550 | } |
9551 | |
9552 | /* Validate address fields for matching families, lengths, etc. */ |
9553 | void *src0 = mh.ext[SADB_EXT_ADDRESS_SRC]; |
9554 | void *dst0 = mh.ext[SADB_EXT_ADDRESS_DST]; |
9555 | if (mh.ext[SADB_X_EXT_ADDR_RANGE_SRC_START] != NULL && |
9556 | mh.ext[SADB_X_EXT_ADDR_RANGE_SRC_END] != NULL) { |
9557 | error = key_validate_address_pair(src0: (struct sadb_address *)(mh.ext[SADB_X_EXT_ADDR_RANGE_SRC_START]), |
9558 | dst0: (struct sadb_address *)(mh.ext[SADB_X_EXT_ADDR_RANGE_SRC_END])); |
9559 | if (error != 0) { |
9560 | goto senderror; |
9561 | } |
9562 | |
9563 | if (src0 == NULL) { |
9564 | src0 = mh.ext[SADB_X_EXT_ADDR_RANGE_SRC_START]; |
9565 | } |
9566 | } |
9567 | if (mh.ext[SADB_X_EXT_ADDR_RANGE_DST_START] != NULL && |
9568 | mh.ext[SADB_X_EXT_ADDR_RANGE_DST_END] != NULL) { |
9569 | error = key_validate_address_pair(src0: (struct sadb_address *)(mh.ext[SADB_X_EXT_ADDR_RANGE_DST_START]), |
9570 | dst0: (struct sadb_address *)(mh.ext[SADB_X_EXT_ADDR_RANGE_DST_END])); |
9571 | if (error != 0) { |
9572 | goto senderror; |
9573 | } |
9574 | |
9575 | if (dst0 == NULL) { |
9576 | dst0 = mh.ext[SADB_X_EXT_ADDR_RANGE_DST_START]; |
9577 | } |
9578 | } |
9579 | if (src0 != NULL && dst0 != NULL) { |
9580 | error = key_validate_address_pair(src0: (struct sadb_address *)(src0), |
9581 | dst0: (struct sadb_address *)(dst0)); |
9582 | if (error != 0) { |
9583 | goto senderror; |
9584 | } |
9585 | } |
9586 | |
9587 | void *migrate_src = mh.ext[SADB_EXT_MIGRATE_ADDRESS_SRC]; |
9588 | void *migrate_dst = mh.ext[SADB_EXT_MIGRATE_ADDRESS_DST]; |
9589 | if (migrate_src != NULL && migrate_dst != NULL) { |
9590 | error = key_validate_address_pair(src0: (struct sadb_address *)(migrate_src), |
9591 | dst0: (struct sadb_address *)(migrate_dst)); |
9592 | if (error != 0) { |
9593 | goto senderror; |
9594 | } |
9595 | } |
9596 | |
9597 | if (msg->sadb_msg_type >= sizeof(key_typesw) / sizeof(key_typesw[0]) || |
9598 | key_typesw[msg->sadb_msg_type] == NULL) { |
9599 | PFKEY_STAT_INCREMENT(pfkeystat.out_invmsgtype); |
9600 | error = EINVAL; |
9601 | goto senderror; |
9602 | } |
9603 | |
9604 | error = (*key_typesw[msg->sadb_msg_type])(so, m, &mh); |
9605 | |
9606 | return error; |
9607 | |
9608 | senderror: |
9609 | if (keyAligned) { |
9610 | bzero_keys(mh: &mh); |
9611 | } else { |
9612 | bzero_mbuf(m); |
9613 | } |
9614 | msg->sadb_msg_errno = (u_int8_t)error; |
9615 | return key_sendup_mbuf(so, m, target); |
9616 | } |
9617 | |
9618 | static int |
9619 | key_senderror( |
9620 | struct socket *so, |
9621 | struct mbuf *m, |
9622 | int code) |
9623 | { |
9624 | struct sadb_msg *msg; |
9625 | |
9626 | LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_NOTOWNED); |
9627 | |
9628 | if (m->m_len < sizeof(struct sadb_msg)) { |
9629 | panic("invalid mbuf passed to key_senderror" ); |
9630 | } |
9631 | |
9632 | msg = mtod(m, struct sadb_msg *); |
9633 | msg->sadb_msg_errno = (u_int8_t)code; |
9634 | return key_sendup_mbuf(so, m, KEY_SENDUP_ONE); |
9635 | } |
9636 | |
9637 | /* |
9638 | * set the pointer to each header into message buffer. |
9639 | * m will be freed on error. |
9640 | * XXX larger-than-MCLBYTES extension? |
9641 | */ |
9642 | static int |
9643 | key_align( |
9644 | struct mbuf *m, |
9645 | struct sadb_msghdr *mhp) |
9646 | { |
9647 | struct mbuf *n; |
9648 | struct sadb_ext *ext; |
9649 | size_t end; |
9650 | int off, extlen; |
9651 | int toff; |
9652 | |
9653 | /* sanity check */ |
9654 | if (m == NULL || mhp == NULL) { |
9655 | panic("key_align: NULL pointer is passed." ); |
9656 | } |
9657 | if (m->m_len < sizeof(struct sadb_msg)) { |
9658 | panic("invalid mbuf passed to key_align" ); |
9659 | } |
9660 | |
9661 | /* initialize */ |
9662 | bzero(s: mhp, n: sizeof(*mhp)); |
9663 | |
9664 | mhp->msg = mtod(m, struct sadb_msg *); |
9665 | mhp->ext[0] = (struct sadb_ext *)mhp->msg; /*XXX backward compat */ |
9666 | |
9667 | end = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len); |
9668 | extlen = (int)end; /*just in case extlen is not updated*/ |
9669 | for (off = sizeof(struct sadb_msg); off < end; off += extlen) { |
9670 | n = m_pulldown(m, off, sizeof(struct sadb_ext), &toff); |
9671 | if (!n) { |
9672 | /* m is already freed */ |
9673 | return ENOBUFS; |
9674 | } |
9675 | ext = (struct sadb_ext *)(void *)(mtod(n, caddr_t) + toff); |
9676 | |
9677 | /* set pointer */ |
9678 | switch (ext->sadb_ext_type) { |
9679 | case SADB_EXT_SA: |
9680 | case SADB_EXT_ADDRESS_SRC: |
9681 | case SADB_EXT_ADDRESS_DST: |
9682 | case SADB_EXT_ADDRESS_PROXY: |
9683 | case SADB_EXT_LIFETIME_CURRENT: |
9684 | case SADB_EXT_LIFETIME_HARD: |
9685 | case SADB_EXT_LIFETIME_SOFT: |
9686 | case SADB_EXT_KEY_AUTH: |
9687 | case SADB_EXT_KEY_ENCRYPT: |
9688 | case SADB_EXT_IDENTITY_SRC: |
9689 | case SADB_EXT_IDENTITY_DST: |
9690 | case SADB_EXT_SENSITIVITY: |
9691 | case SADB_EXT_PROPOSAL: |
9692 | case SADB_EXT_SUPPORTED_AUTH: |
9693 | case SADB_EXT_SUPPORTED_ENCRYPT: |
9694 | case SADB_EXT_SPIRANGE: |
9695 | case SADB_X_EXT_POLICY: |
9696 | case SADB_X_EXT_SA2: |
9697 | case SADB_EXT_SESSION_ID: |
9698 | case SADB_EXT_SASTAT: |
9699 | case SADB_X_EXT_IPSECIF: |
9700 | case SADB_X_EXT_ADDR_RANGE_SRC_START: |
9701 | case SADB_X_EXT_ADDR_RANGE_SRC_END: |
9702 | case SADB_X_EXT_ADDR_RANGE_DST_START: |
9703 | case SADB_X_EXT_ADDR_RANGE_DST_END: |
9704 | case SADB_EXT_MIGRATE_ADDRESS_SRC: |
9705 | case SADB_EXT_MIGRATE_ADDRESS_DST: |
9706 | case SADB_X_EXT_MIGRATE_IPSECIF: |
9707 | /* duplicate check */ |
9708 | /* |
9709 | * XXX Are there duplication payloads of either |
9710 | * KEY_AUTH or KEY_ENCRYPT ? |
9711 | */ |
9712 | if (mhp->ext[ext->sadb_ext_type] != NULL) { |
9713 | ipseclog((LOG_DEBUG, |
9714 | "key_align: duplicate ext_type %u " |
9715 | "is passed.\n" , ext->sadb_ext_type)); |
9716 | bzero_mbuf(m); |
9717 | m_freem(m); |
9718 | PFKEY_STAT_INCREMENT(pfkeystat.out_dupext); |
9719 | return EINVAL; |
9720 | } |
9721 | break; |
9722 | default: |
9723 | ipseclog((LOG_DEBUG, |
9724 | "key_align: invalid ext_type %u is passed.\n" , |
9725 | ext->sadb_ext_type)); |
9726 | bzero_mbuf(m); |
9727 | m_freem(m); |
9728 | PFKEY_STAT_INCREMENT(pfkeystat.out_invexttype); |
9729 | return EINVAL; |
9730 | } |
9731 | |
9732 | extlen = PFKEY_UNUNIT64(ext->sadb_ext_len); |
9733 | if (off + extlen > end) { |
9734 | ipseclog((LOG_DEBUG, |
9735 | "key_align: ext type %u invalid ext length %d " |
9736 | "offset %d sadb message total len %zu is passed.\n" , |
9737 | ext->sadb_ext_type, extlen, off, end)); |
9738 | bzero_mbuf(m); |
9739 | m_freem(m); |
9740 | PFKEY_STAT_INCREMENT(pfkeystat.out_invlen); |
9741 | return EINVAL; |
9742 | } |
9743 | |
9744 | if (key_validate_ext(ext, extlen)) { |
9745 | bzero_mbuf(m); |
9746 | m_freem(m); |
9747 | PFKEY_STAT_INCREMENT(pfkeystat.out_invlen); |
9748 | return EINVAL; |
9749 | } |
9750 | |
9751 | n = m_pulldown(m, off, extlen, &toff); |
9752 | if (!n) { |
9753 | /* m is already freed */ |
9754 | return ENOBUFS; |
9755 | } |
9756 | ext = (struct sadb_ext *)(void *)(mtod(n, caddr_t) + toff); |
9757 | |
9758 | mhp->ext[ext->sadb_ext_type] = ext; |
9759 | mhp->extoff[ext->sadb_ext_type] = off; |
9760 | mhp->extlen[ext->sadb_ext_type] = extlen; |
9761 | } |
9762 | |
9763 | if (off != end) { |
9764 | bzero_mbuf(m); |
9765 | m_freem(m); |
9766 | PFKEY_STAT_INCREMENT(pfkeystat.out_invlen); |
9767 | return EINVAL; |
9768 | } |
9769 | |
9770 | return 0; |
9771 | } |
9772 | |
9773 | static int |
9774 | key_validate_ext( |
9775 | const struct sadb_ext *ext, |
9776 | int len) |
9777 | { |
9778 | struct sockaddr *sa; |
9779 | enum { NONE, ADDR } checktype = NONE; |
9780 | int baselen = 0; |
9781 | const int sal = offsetof(struct sockaddr, sa_len) + sizeof(sa->sa_len); |
9782 | |
9783 | if (len != PFKEY_UNUNIT64(ext->sadb_ext_len)) { |
9784 | return EINVAL; |
9785 | } |
9786 | |
9787 | /* if it does not match minimum/maximum length, bail */ |
9788 | if (ext->sadb_ext_type >= sizeof(minsize) / sizeof(minsize[0]) || |
9789 | ext->sadb_ext_type >= sizeof(maxsize) / sizeof(maxsize[0])) { |
9790 | return EINVAL; |
9791 | } |
9792 | if (!minsize[ext->sadb_ext_type] || len < minsize[ext->sadb_ext_type]) { |
9793 | return EINVAL; |
9794 | } |
9795 | if (maxsize[ext->sadb_ext_type] && len > maxsize[ext->sadb_ext_type]) { |
9796 | return EINVAL; |
9797 | } |
9798 | |
9799 | /* more checks based on sadb_ext_type XXX need more */ |
9800 | switch (ext->sadb_ext_type) { |
9801 | case SADB_EXT_ADDRESS_SRC: |
9802 | case SADB_EXT_ADDRESS_DST: |
9803 | case SADB_EXT_ADDRESS_PROXY: |
9804 | case SADB_X_EXT_ADDR_RANGE_SRC_START: |
9805 | case SADB_X_EXT_ADDR_RANGE_SRC_END: |
9806 | case SADB_X_EXT_ADDR_RANGE_DST_START: |
9807 | case SADB_X_EXT_ADDR_RANGE_DST_END: |
9808 | case SADB_EXT_MIGRATE_ADDRESS_SRC: |
9809 | case SADB_EXT_MIGRATE_ADDRESS_DST: |
9810 | baselen = PFKEY_ALIGN8(sizeof(struct sadb_address)); |
9811 | checktype = ADDR; |
9812 | break; |
9813 | case SADB_EXT_IDENTITY_SRC: |
9814 | case SADB_EXT_IDENTITY_DST: |
9815 | if (((struct sadb_ident *)(uintptr_t)(size_t)ext)-> |
9816 | sadb_ident_type == SADB_X_IDENTTYPE_ADDR) { |
9817 | baselen = PFKEY_ALIGN8(sizeof(struct sadb_ident)); |
9818 | checktype = ADDR; |
9819 | } else { |
9820 | checktype = NONE; |
9821 | } |
9822 | break; |
9823 | default: |
9824 | checktype = NONE; |
9825 | break; |
9826 | } |
9827 | |
9828 | switch (checktype) { |
9829 | case NONE: |
9830 | break; |
9831 | case ADDR: |
9832 | sa = (struct sockaddr *)((caddr_t)(uintptr_t)ext + baselen); |
9833 | |
9834 | if (len < baselen + sal) { |
9835 | return EINVAL; |
9836 | } |
9837 | if (baselen + PFKEY_ALIGN8(sa->sa_len) != len) { |
9838 | return EINVAL; |
9839 | } |
9840 | break; |
9841 | } |
9842 | |
9843 | /* check key bits length */ |
9844 | if (ext->sadb_ext_type == SADB_EXT_KEY_AUTH || |
9845 | ext->sadb_ext_type == SADB_EXT_KEY_ENCRYPT) { |
9846 | struct sadb_key *key = (struct sadb_key *)(uintptr_t)ext; |
9847 | if (len < (sizeof(struct sadb_key) + _KEYLEN(key))) { |
9848 | return EINVAL; |
9849 | } |
9850 | } |
9851 | |
9852 | return 0; |
9853 | } |
9854 | |
9855 | /* |
9856 | * XXX: maybe This function is called after INBOUND IPsec processing. |
9857 | * |
9858 | * Special check for tunnel-mode packets. |
9859 | * We must make some checks for consistency between inner and outer IP header. |
9860 | * |
9861 | * xxx more checks to be provided |
9862 | */ |
9863 | int |
9864 | key_checktunnelsanity( |
9865 | struct secasvar *sav, |
9866 | __unused u_int family, |
9867 | __unused caddr_t src, |
9868 | __unused caddr_t dst) |
9869 | { |
9870 | /* sanity check */ |
9871 | if (sav->sah == NULL) { |
9872 | panic("sav->sah == NULL at key_checktunnelsanity" ); |
9873 | } |
9874 | |
9875 | /* XXX: check inner IP header */ |
9876 | |
9877 | return 1; |
9878 | } |
9879 | |
9880 | /* record data transfer on SA, and update timestamps */ |
9881 | void |
9882 | key_sa_recordxfer( |
9883 | struct secasvar *sav, |
9884 | size_t byte_count) |
9885 | { |
9886 | if (!sav) { |
9887 | panic("key_sa_recordxfer called with sav == NULL" ); |
9888 | } |
9889 | if (!sav->lft_c) { |
9890 | return; |
9891 | } |
9892 | |
9893 | lck_mtx_lock(sadb_mutex); |
9894 | /* |
9895 | * XXX Currently, there is a difference of bytes size |
9896 | * between inbound and outbound processing. |
9897 | */ |
9898 | sav->lft_c->sadb_lifetime_bytes += byte_count; |
9899 | /* to check bytes lifetime is done in key_timehandler(). */ |
9900 | |
9901 | /* |
9902 | * We use the number of packets as the unit of |
9903 | * sadb_lifetime_allocations. We increment the variable |
9904 | * whenever {esp,ah}_{in,out}put is called. |
9905 | */ |
9906 | sav->lft_c->sadb_lifetime_allocations++; |
9907 | /* XXX check for expires? */ |
9908 | |
9909 | /* |
9910 | * NOTE: We record CURRENT sadb_lifetime_usetime by using mach_continuous_time, |
9911 | * in nanoseconds. HARD and SOFT lifetime are measured by the time difference |
9912 | * from sadb_lifetime_usetime. |
9913 | * |
9914 | * usetime |
9915 | * v expire expire |
9916 | * -----+-----+--------+---> t |
9917 | * <--------------> HARD |
9918 | * <-----> SOFT |
9919 | */ |
9920 | sav->lft_c->sadb_lifetime_usetime = key_get_continuous_time_ns(); |
9921 | /* XXX check for expires? */ |
9922 | lck_mtx_unlock(sadb_mutex); |
9923 | |
9924 | return; |
9925 | } |
9926 | |
9927 | /* dumb version */ |
9928 | void |
9929 | key_sa_routechange( |
9930 | struct sockaddr *dst) |
9931 | { |
9932 | struct secashead *sah; |
9933 | struct route *ro; |
9934 | |
9935 | lck_mtx_lock(sadb_mutex); |
9936 | LIST_FOREACH(sah, &sahtree, chain) { |
9937 | ro = (struct route *)&sah->sa_route; |
9938 | if (ro->ro_rt && dst->sa_len == ro->ro_dst.sa_len |
9939 | && bcmp(s1: dst, s2: &ro->ro_dst, n: dst->sa_len) == 0) { |
9940 | ROUTE_RELEASE(ro); |
9941 | } |
9942 | } |
9943 | lck_mtx_unlock(sadb_mutex); |
9944 | |
9945 | return; |
9946 | } |
9947 | |
9948 | void |
9949 | key_sa_chgstate( |
9950 | struct secasvar *sav, |
9951 | u_int8_t state) |
9952 | { |
9953 | if (sav == NULL) { |
9954 | panic("key_sa_chgstate called with sav == NULL" ); |
9955 | } |
9956 | |
9957 | if (sav->state == state) { |
9958 | return; |
9959 | } |
9960 | |
9961 | LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_OWNED); |
9962 | |
9963 | if (__LIST_CHAINED(sav)) { |
9964 | LIST_REMOVE(sav, chain); |
9965 | } |
9966 | |
9967 | sav->state = state; |
9968 | LIST_INSERT_HEAD(&sav->sah->savtree[state], sav, chain); |
9969 | } |
9970 | |
9971 | void |
9972 | key_sa_stir_iv( |
9973 | struct secasvar *sav) |
9974 | { |
9975 | lck_mtx_lock(sadb_mutex); |
9976 | if (!sav->iv) { |
9977 | panic("key_sa_stir_iv called with sav == NULL" ); |
9978 | } |
9979 | key_randomfill(p: sav->iv, l: sav->ivlen); |
9980 | lck_mtx_unlock(sadb_mutex); |
9981 | } |
9982 | |
9983 | /* XXX too much? */ |
9984 | static struct mbuf * |
9985 | key_alloc_mbuf( |
9986 | int l) |
9987 | { |
9988 | struct mbuf *m = NULL, *n; |
9989 | int len, t; |
9990 | |
9991 | len = l; |
9992 | while (len > 0) { |
9993 | MGET(n, M_DONTWAIT, MT_DATA); |
9994 | if (n && len > MLEN) { |
9995 | MCLGET(n, M_DONTWAIT); |
9996 | } |
9997 | if (!n) { |
9998 | m_freem(m); |
9999 | return NULL; |
10000 | } |
10001 | |
10002 | n->m_next = NULL; |
10003 | n->m_len = 0; |
10004 | n->m_len = (int)M_TRAILINGSPACE(n); |
10005 | /* use the bottom of mbuf, hoping we can prepend afterwards */ |
10006 | if (n->m_len > len) { |
10007 | t = (n->m_len - len) & ~(sizeof(long) - 1); |
10008 | n->m_data += t; |
10009 | n->m_len = len; |
10010 | } |
10011 | |
10012 | len -= n->m_len; |
10013 | |
10014 | if (m) { |
10015 | m_cat(m, n); |
10016 | } else { |
10017 | m = n; |
10018 | } |
10019 | } |
10020 | |
10021 | return m; |
10022 | } |
10023 | |
10024 | static struct mbuf * |
10025 | key_setdumpsastats(u_int32_t dir, |
10026 | struct sastat *stats, |
10027 | u_int32_t max_stats, |
10028 | u_int64_t session_ids[], |
10029 | u_int32_t seq, |
10030 | u_int32_t pid) |
10031 | { |
10032 | struct mbuf *result = NULL, *m = NULL; |
10033 | |
10034 | m = key_setsadbmsg(SADB_GETSASTAT, tlen: 0, satype: 0, seq, pid, reserved: 0); |
10035 | if (!m) { |
10036 | goto fail; |
10037 | } |
10038 | result = m; |
10039 | |
10040 | m = key_setsadbsession_id(session_ids); |
10041 | if (!m) { |
10042 | goto fail; |
10043 | } |
10044 | m_cat(result, m); |
10045 | |
10046 | m = key_setsadbsastat(dir, |
10047 | stats, |
10048 | max_stats); |
10049 | if (!m) { |
10050 | goto fail; |
10051 | } |
10052 | m_cat(result, m); |
10053 | |
10054 | if ((result->m_flags & M_PKTHDR) == 0) { |
10055 | goto fail; |
10056 | } |
10057 | |
10058 | if (result->m_len < sizeof(struct sadb_msg)) { |
10059 | result = m_pullup(result, sizeof(struct sadb_msg)); |
10060 | if (result == NULL) { |
10061 | goto fail; |
10062 | } |
10063 | } |
10064 | |
10065 | result->m_pkthdr.len = 0; |
10066 | for (m = result; m; m = m->m_next) { |
10067 | result->m_pkthdr.len += m->m_len; |
10068 | } |
10069 | |
10070 | if (PFKEY_UNIT64(result->m_pkthdr.len) > UINT16_MAX) { |
10071 | ipseclog((LOG_ERR, "key_setdumpsastats: length too nbug: %u" , result->m_pkthdr.len)); |
10072 | goto fail; |
10073 | } |
10074 | |
10075 | mtod(result, struct sadb_msg *)->sadb_msg_len = |
10076 | (u_int16_t)PFKEY_UNIT64(result->m_pkthdr.len); |
10077 | |
10078 | return result; |
10079 | |
10080 | fail: |
10081 | if (result) { |
10082 | m_freem(result); |
10083 | } |
10084 | return NULL; |
10085 | } |
10086 | |
10087 | /* |
10088 | * SADB_GETSASTAT processing |
10089 | * dump all stats for matching entries in SAD. |
10090 | * |
10091 | * m will always be freed. |
10092 | */ |
10093 | |
10094 | static int |
10095 | key_getsastat(struct socket *so, |
10096 | struct mbuf *m, |
10097 | const struct sadb_msghdr *mhp) |
10098 | { |
10099 | struct sadb_session_id *session_id; |
10100 | size_t bufsize = 0; |
10101 | u_int32_t arg_count, res_count; |
10102 | struct sadb_sastat *sa_stats_arg; |
10103 | struct sastat *sa_stats_sav = NULL; |
10104 | struct mbuf *n; |
10105 | int error = 0; |
10106 | |
10107 | /* sanity check */ |
10108 | if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL) { |
10109 | panic("%s: NULL pointer is passed." , __FUNCTION__); |
10110 | } |
10111 | |
10112 | if (mhp->ext[SADB_EXT_SESSION_ID] == NULL) { |
10113 | printf("%s: invalid message is passed. missing session-id.\n" , __FUNCTION__); |
10114 | return key_senderror(so, m, EINVAL); |
10115 | } |
10116 | if (mhp->extlen[SADB_EXT_SESSION_ID] < sizeof(struct sadb_session_id)) { |
10117 | printf("%s: invalid message is passed. short session-id.\n" , __FUNCTION__); |
10118 | return key_senderror(so, m, EINVAL); |
10119 | } |
10120 | if (mhp->ext[SADB_EXT_SASTAT] == NULL) { |
10121 | printf("%s: invalid message is passed. missing stat args.\n" , __FUNCTION__); |
10122 | return key_senderror(so, m, EINVAL); |
10123 | } |
10124 | if (mhp->extlen[SADB_EXT_SASTAT] < sizeof(*sa_stats_arg)) { |
10125 | printf("%s: invalid message is passed. short stat args.\n" , __FUNCTION__); |
10126 | return key_senderror(so, m, EINVAL); |
10127 | } |
10128 | |
10129 | LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_NOTOWNED); |
10130 | |
10131 | // exit early if there are no active SAs |
10132 | if (ipsec_sav_count == 0) { |
10133 | printf("%s: No active SAs.\n" , __FUNCTION__); |
10134 | error = ENOENT; |
10135 | goto end; |
10136 | } |
10137 | |
10138 | if (os_mul_overflow(ipsec_sav_count + 1, sizeof(*sa_stats_sav), &bufsize)) { |
10139 | panic("key_getsastat bufsize requested memory overflow %u" , ipsec_sav_count); |
10140 | } |
10141 | |
10142 | sa_stats_sav = (__typeof__(sa_stats_sav))kalloc_data(bufsize, Z_WAITOK | Z_ZERO); |
10143 | if (sa_stats_sav == NULL) { |
10144 | printf("%s: No more memory.\n" , __FUNCTION__); |
10145 | error = ENOMEM; |
10146 | goto end; |
10147 | } |
10148 | |
10149 | sa_stats_arg = (__typeof__(sa_stats_arg)) |
10150 | (void *)mhp->ext[SADB_EXT_SASTAT]; |
10151 | arg_count = sa_stats_arg->sadb_sastat_list_len; |
10152 | // exit early if there are no requested SAs |
10153 | if (arg_count == 0) { |
10154 | printf("%s: No SAs requested.\n" , __FUNCTION__); |
10155 | error = ENOENT; |
10156 | goto end; |
10157 | } |
10158 | if (PFKEY_UNUNIT64(sa_stats_arg->sadb_sastat_len) < (sizeof(*sa_stats_arg) + |
10159 | (arg_count * sizeof(struct sastat)))) { |
10160 | printf("%s: invalid message is passed. sa stat extlen shorter than requested stat length.\n" , __FUNCTION__); |
10161 | error = EINVAL; |
10162 | goto end; |
10163 | } |
10164 | |
10165 | res_count = 0; |
10166 | |
10167 | if (key_getsastatbyspi(stat_arg: (struct sastat *)(sa_stats_arg + 1), |
10168 | max_stat_arg: arg_count, |
10169 | stat_res: sa_stats_sav, |
10170 | stat_res_size: bufsize, |
10171 | max_stat_res: &res_count)) { |
10172 | printf("%s: Error finding SAs.\n" , __FUNCTION__); |
10173 | error = ENOENT; |
10174 | goto end; |
10175 | } |
10176 | if (!res_count) { |
10177 | printf("%s: No SAs found.\n" , __FUNCTION__); |
10178 | error = ENOENT; |
10179 | goto end; |
10180 | } |
10181 | |
10182 | session_id = (__typeof__(session_id)) |
10183 | (void *)mhp->ext[SADB_EXT_SESSION_ID]; |
10184 | |
10185 | /* send this to the userland. */ |
10186 | n = key_setdumpsastats(dir: sa_stats_arg->sadb_sastat_dir, |
10187 | stats: sa_stats_sav, |
10188 | max_stats: res_count, |
10189 | session_ids: session_id->sadb_session_id_v, |
10190 | seq: mhp->msg->sadb_msg_seq, |
10191 | pid: mhp->msg->sadb_msg_pid); |
10192 | if (!n) { |
10193 | printf("%s: No bufs to dump stats.\n" , __FUNCTION__); |
10194 | error = ENOBUFS; |
10195 | goto end; |
10196 | } |
10197 | |
10198 | key_sendup_mbuf(so, n, KEY_SENDUP_ALL); |
10199 | end: |
10200 | if (sa_stats_sav) { |
10201 | kfree_data(sa_stats_sav, bufsize); |
10202 | } |
10203 | |
10204 | if (error) { |
10205 | return key_senderror(so, m, code: error); |
10206 | } |
10207 | |
10208 | m_freem(m); |
10209 | return 0; |
10210 | } |
10211 | |
10212 | static void |
10213 | key_update_natt_keepalive_timestamp(struct secasvar *sav_sent, |
10214 | struct secasvar *sav_update) |
10215 | { |
10216 | struct secasindex saidx_swap_sent_addr; |
10217 | |
10218 | // exit early if two SAs are identical, or if sav_update is current |
10219 | if (sav_sent == sav_update || |
10220 | sav_update->natt_last_activity == natt_now) { |
10221 | return; |
10222 | } |
10223 | |
10224 | // assuming that (sav_update->remote_ike_port != 0 && (esp_udp_encap_port & 0xFFFF) != 0) |
10225 | |
10226 | bzero(s: &saidx_swap_sent_addr, n: sizeof(saidx_swap_sent_addr)); |
10227 | memcpy(dst: &saidx_swap_sent_addr.src, src: &sav_sent->sah->saidx.dst, n: sizeof(saidx_swap_sent_addr.src)); |
10228 | memcpy(dst: &saidx_swap_sent_addr.dst, src: &sav_sent->sah->saidx.src, n: sizeof(saidx_swap_sent_addr.dst)); |
10229 | saidx_swap_sent_addr.proto = sav_sent->sah->saidx.proto; |
10230 | saidx_swap_sent_addr.mode = sav_sent->sah->saidx.mode; |
10231 | // we ignore reqid for split-tunnel setups |
10232 | |
10233 | if (key_cmpsaidx(saidx0: &sav_sent->sah->saidx, saidx1: &sav_update->sah->saidx, CMP_MODE | CMP_PORT) || |
10234 | key_cmpsaidx(saidx0: &saidx_swap_sent_addr, saidx1: &sav_update->sah->saidx, CMP_MODE | CMP_PORT)) { |
10235 | sav_update->natt_last_activity = natt_now; |
10236 | } |
10237 | } |
10238 | |
10239 | static int |
10240 | key_send_delsp(struct secpolicy *sp) |
10241 | { |
10242 | struct mbuf *result = NULL, *m; |
10243 | |
10244 | if (sp == NULL) { |
10245 | goto fail; |
10246 | } |
10247 | |
10248 | /* set msg header */ |
10249 | m = key_setsadbmsg(SADB_X_SPDDELETE, tlen: 0, satype: 0, seq: 0, pid: 0, reserved: 0); |
10250 | if (!m) { |
10251 | goto fail; |
10252 | } |
10253 | result = m; |
10254 | |
10255 | /* set sadb_address(es) for source */ |
10256 | if (sp->spidx.src_range.start.ss_len > 0) { |
10257 | m = key_setsadbaddr(SADB_X_EXT_ADDR_RANGE_SRC_START, |
10258 | saddr: (struct sockaddr *)&sp->spidx.src_range.start, prefixlen: sp->spidx.prefs, |
10259 | ul_proto: sp->spidx.ul_proto); |
10260 | if (!m) { |
10261 | goto fail; |
10262 | } |
10263 | m_cat(result, m); |
10264 | |
10265 | m = key_setsadbaddr(SADB_X_EXT_ADDR_RANGE_SRC_END, |
10266 | saddr: (struct sockaddr *)&sp->spidx.src_range.end, prefixlen: sp->spidx.prefs, |
10267 | ul_proto: sp->spidx.ul_proto); |
10268 | if (!m) { |
10269 | goto fail; |
10270 | } |
10271 | m_cat(result, m); |
10272 | } else { |
10273 | m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, |
10274 | saddr: (struct sockaddr *)&sp->spidx.src, prefixlen: sp->spidx.prefs, |
10275 | ul_proto: sp->spidx.ul_proto); |
10276 | if (!m) { |
10277 | goto fail; |
10278 | } |
10279 | m_cat(result, m); |
10280 | } |
10281 | |
10282 | /* set sadb_address(es) for destination */ |
10283 | if (sp->spidx.dst_range.start.ss_len > 0) { |
10284 | m = key_setsadbaddr(SADB_X_EXT_ADDR_RANGE_DST_START, |
10285 | saddr: (struct sockaddr *)&sp->spidx.dst_range.start, prefixlen: sp->spidx.prefd, |
10286 | ul_proto: sp->spidx.ul_proto); |
10287 | if (!m) { |
10288 | goto fail; |
10289 | } |
10290 | m_cat(result, m); |
10291 | |
10292 | m = key_setsadbaddr(SADB_X_EXT_ADDR_RANGE_DST_END, |
10293 | saddr: (struct sockaddr *)&sp->spidx.dst_range.end, prefixlen: sp->spidx.prefd, |
10294 | ul_proto: sp->spidx.ul_proto); |
10295 | if (!m) { |
10296 | goto fail; |
10297 | } |
10298 | m_cat(result, m); |
10299 | } else { |
10300 | m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, |
10301 | saddr: (struct sockaddr *)&sp->spidx.dst, prefixlen: sp->spidx.prefd, |
10302 | ul_proto: sp->spidx.ul_proto); |
10303 | if (!m) { |
10304 | goto fail; |
10305 | } |
10306 | m_cat(result, m); |
10307 | } |
10308 | |
10309 | /* set secpolicy */ |
10310 | m = key_sp2msg(sp); |
10311 | if (!m) { |
10312 | goto fail; |
10313 | } |
10314 | m_cat(result, m); |
10315 | |
10316 | if ((result->m_flags & M_PKTHDR) == 0) { |
10317 | goto fail; |
10318 | } |
10319 | |
10320 | if (result->m_len < sizeof(struct sadb_msg)) { |
10321 | result = m_pullup(result, sizeof(struct sadb_msg)); |
10322 | if (result == NULL) { |
10323 | goto fail; |
10324 | } |
10325 | } |
10326 | |
10327 | result->m_pkthdr.len = 0; |
10328 | for (m = result; m; m = m->m_next) { |
10329 | result->m_pkthdr.len += m->m_len; |
10330 | } |
10331 | |
10332 | if (PFKEY_UNIT64(result->m_pkthdr.len) >= UINT16_MAX) { |
10333 | ipseclog((LOG_ERR, "key_send_delsp: length too big: %d" , result->m_pkthdr.len)); |
10334 | goto fail; |
10335 | } |
10336 | |
10337 | mtod(result, struct sadb_msg *)->sadb_msg_len = (u_int16_t)PFKEY_UNIT64(result->m_pkthdr.len); |
10338 | |
10339 | return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED); |
10340 | |
10341 | fail: |
10342 | if (result) { |
10343 | m_free(result); |
10344 | } |
10345 | return -1; |
10346 | } |
10347 | |
10348 | void |
10349 | key_delsp_for_ipsec_if(ifnet_t ipsec_if) |
10350 | { |
10351 | struct secashead *sah; |
10352 | struct secasvar *sav, *nextsav; |
10353 | u_int stateidx; |
10354 | u_int state; |
10355 | struct secpolicy *sp, *nextsp; |
10356 | int dir; |
10357 | |
10358 | if (ipsec_if == NULL) { |
10359 | return; |
10360 | } |
10361 | |
10362 | LCK_MTX_ASSERT(sadb_mutex, LCK_MTX_ASSERT_NOTOWNED); |
10363 | |
10364 | lck_mtx_lock(sadb_mutex); |
10365 | |
10366 | for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { |
10367 | for (sp = LIST_FIRST(&sptree[dir]); |
10368 | sp != NULL; |
10369 | sp = nextsp) { |
10370 | nextsp = LIST_NEXT(sp, chain); |
10371 | |
10372 | if (sp->ipsec_if == ipsec_if) { |
10373 | ifnet_release(interface: sp->ipsec_if); |
10374 | sp->ipsec_if = NULL; |
10375 | |
10376 | key_send_delsp(sp); |
10377 | |
10378 | sp->state = IPSEC_SPSTATE_DEAD; |
10379 | key_freesp(sp, KEY_SADB_LOCKED); |
10380 | } |
10381 | } |
10382 | } |
10383 | |
10384 | LIST_FOREACH(sah, &sahtree, chain) { |
10385 | if (sah->ipsec_if == ipsec_if) { |
10386 | /* This SAH is linked to the IPsec interface. It now needs to close. */ |
10387 | ifnet_release(interface: sah->ipsec_if); |
10388 | sah->ipsec_if = NULL; |
10389 | |
10390 | for (stateidx = 0; stateidx < _ARRAYLEN(saorder_state_alive); stateidx++) { |
10391 | state = saorder_state_any[stateidx]; |
10392 | for (sav = LIST_FIRST(&sah->savtree[state]); sav != NULL; sav = nextsav) { |
10393 | nextsav = LIST_NEXT(sav, chain); |
10394 | |
10395 | key_sa_chgstate(sav, SADB_SASTATE_DEAD); |
10396 | key_freesav(sav, KEY_SADB_LOCKED); |
10397 | } |
10398 | } |
10399 | |
10400 | sah->state = SADB_SASTATE_DEAD; |
10401 | } |
10402 | } |
10403 | |
10404 | lck_mtx_unlock(sadb_mutex); |
10405 | } |
10406 | |
10407 | __private_extern__ u_int32_t |
10408 | key_fill_offload_frames_for_savs(ifnet_t ifp, |
10409 | struct ifnet_keepalive_offload_frame *frames_array, |
10410 | u_int32_t frames_array_count, |
10411 | size_t frame_data_offset) |
10412 | { |
10413 | struct secashead *sah = NULL; |
10414 | struct secasvar *sav = NULL; |
10415 | struct ifnet_keepalive_offload_frame *frame = frames_array; |
10416 | u_int32_t frame_index = 0; |
10417 | |
10418 | if (frame == NULL || frames_array_count == 0) { |
10419 | return frame_index; |
10420 | } |
10421 | |
10422 | lck_mtx_lock(sadb_mutex); |
10423 | LIST_FOREACH(sah, &sahtree, chain) { |
10424 | LIST_FOREACH(sav, &sah->savtree[SADB_SASTATE_MATURE], chain) { |
10425 | if (ipsec_fill_offload_frame(ifp, sav, frame, frame_data_offset)) { |
10426 | frame_index++; |
10427 | if (frame_index >= frames_array_count) { |
10428 | lck_mtx_unlock(sadb_mutex); |
10429 | return frame_index; |
10430 | } |
10431 | frame = &(frames_array[frame_index]); |
10432 | } |
10433 | } |
10434 | } |
10435 | lck_mtx_unlock(sadb_mutex); |
10436 | |
10437 | return frame_index; |
10438 | } |
10439 | |
10440 | #pragma mark Custom IPsec |
10441 | |
10442 | __private_extern__ bool |
10443 | key_custom_ipsec_token_is_valid(void *ipsec_token) |
10444 | { |
10445 | if (ipsec_token == NULL) { |
10446 | return false; |
10447 | } |
10448 | |
10449 | struct secashead *sah = (struct secashead *)ipsec_token; |
10450 | |
10451 | return (sah->flags & SECURITY_ASSOCIATION_CUSTOM_IPSEC) == SECURITY_ASSOCIATION_CUSTOM_IPSEC; |
10452 | } |
10453 | |
10454 | __private_extern__ int |
10455 | key_reserve_custom_ipsec(void **ipsec_token, union sockaddr_in_4_6 *src, union sockaddr_in_4_6 *dst, |
10456 | u_int8_t proto) |
10457 | { |
10458 | if (src == NULL || dst == NULL) { |
10459 | ipseclog((LOG_ERR, "register custom ipsec: invalid address\n" )); |
10460 | return EINVAL; |
10461 | } |
10462 | |
10463 | if (src->sa.sa_family != dst->sa.sa_family) { |
10464 | ipseclog((LOG_ERR, "register custom ipsec: address family mismatched\n" )); |
10465 | return EINVAL; |
10466 | } |
10467 | |
10468 | if (src->sa.sa_len != dst->sa.sa_len) { |
10469 | ipseclog((LOG_ERR, "register custom ipsec: address struct size mismatched\n" )); |
10470 | return EINVAL; |
10471 | } |
10472 | |
10473 | if (ipsec_token == NULL) { |
10474 | ipseclog((LOG_ERR, "register custom ipsec: invalid ipsec token\n" )); |
10475 | return EINVAL; |
10476 | } |
10477 | |
10478 | switch (src->sa.sa_family) { |
10479 | case AF_INET: |
10480 | if (src->sa.sa_len != sizeof(struct sockaddr_in)) { |
10481 | ipseclog((LOG_ERR, "register custom esp: invalid address length\n" )); |
10482 | return EINVAL; |
10483 | } |
10484 | break; |
10485 | case AF_INET6: |
10486 | if (src->sa.sa_len != sizeof(struct sockaddr_in6)) { |
10487 | ipseclog((LOG_ERR, "register custom esp: invalid address length\n" )); |
10488 | return EINVAL; |
10489 | } |
10490 | break; |
10491 | default: |
10492 | ipseclog((LOG_ERR, "register custom esp: invalid address length\n" )); |
10493 | return EAFNOSUPPORT; |
10494 | } |
10495 | |
10496 | if (proto != IPPROTO_ESP && proto != IPPROTO_AH) { |
10497 | ipseclog((LOG_ERR, "register custom esp: invalid proto %u\n" , proto)); |
10498 | return EINVAL; |
10499 | } |
10500 | |
10501 | struct secasindex saidx = {}; |
10502 | KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, &src->sa, &dst->sa, 0, &saidx); |
10503 | |
10504 | lck_mtx_lock(sadb_mutex); |
10505 | |
10506 | struct secashead *sah = NULL; |
10507 | if ((sah = key_getsah(saidx: &saidx, SECURITY_ASSOCIATION_ANY)) != NULL) { |
10508 | lck_mtx_unlock(sadb_mutex); |
10509 | ipseclog((LOG_ERR, "register custom esp: SA exists\n" )); |
10510 | return EEXIST; |
10511 | } |
10512 | |
10513 | if ((sah = key_newsah(saidx: &saidx, NULL, outgoing_if: 0, IPSEC_DIR_ANY, SECURITY_ASSOCIATION_CUSTOM_IPSEC)) == NULL) { |
10514 | lck_mtx_unlock(sadb_mutex); |
10515 | ipseclog((LOG_DEBUG, "register custom esp: No more memory.\n" )); |
10516 | return ENOBUFS; |
10517 | } |
10518 | |
10519 | *ipsec_token = (void *)sah; |
10520 | |
10521 | lck_mtx_unlock(sadb_mutex); |
10522 | return 0; |
10523 | } |
10524 | |
10525 | __private_extern__ void |
10526 | key_release_custom_ipsec(void **ipsec_token) |
10527 | { |
10528 | struct secashead *sah = *ipsec_token; |
10529 | VERIFY(sah != NULL); |
10530 | |
10531 | lck_mtx_lock(sadb_mutex); |
10532 | |
10533 | VERIFY((sah->flags & SECURITY_ASSOCIATION_CUSTOM_IPSEC) == SECURITY_ASSOCIATION_CUSTOM_IPSEC); |
10534 | |
10535 | bool sa_present = true; |
10536 | if (LIST_FIRST(&sah->savtree[SADB_SASTATE_LARVAL]) == NULL && |
10537 | LIST_FIRST(&sah->savtree[SADB_SASTATE_MATURE]) == NULL && |
10538 | LIST_FIRST(&sah->savtree[SADB_SASTATE_DYING]) == NULL && |
10539 | LIST_FIRST(&sah->savtree[SADB_SASTATE_DEAD]) == NULL) { |
10540 | sa_present = false; |
10541 | } |
10542 | VERIFY(sa_present == false); |
10543 | |
10544 | key_delsah(sah); |
10545 | |
10546 | lck_mtx_unlock(sadb_mutex); |
10547 | |
10548 | *ipsec_token = NULL; |
10549 | return; |
10550 | } |
10551 | |