1 | /* |
2 | * Copyright (c) 2000-2022 Apple Inc. All rights reserved. |
3 | * |
4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ |
5 | * |
6 | * This file contains Original Code and/or Modifications of Original Code |
7 | * as defined in and that are subject to the Apple Public Source License |
8 | * Version 2.0 (the 'License'). You may not use this file except in |
9 | * compliance with the License. The rights granted to you under the License |
10 | * may not be used to create, or enable the creation or redistribution of, |
11 | * unlawful or unlicensed copies of an Apple operating system, or to |
12 | * circumvent, violate, or enable the circumvention or violation of, any |
13 | * terms of an Apple operating system software license agreement. |
14 | * |
15 | * Please obtain a copy of the License at |
16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. |
17 | * |
18 | * The Original Code and all software distributed under the License are |
19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER |
20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, |
22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
23 | * Please see the License for the specific language governing rights and |
24 | * limitations under the License. |
25 | * |
26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ |
27 | */ |
28 | |
29 | /* $FreeBSD: src/sys/netinet6/udp6_usrreq.c,v 1.6.2.6 2001/07/29 19:32:40 ume Exp $ */ |
30 | /* $KAME: udp6_usrreq.c,v 1.27 2001/05/21 05:45:10 jinmei Exp $ */ |
31 | |
32 | /* |
33 | * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. |
34 | * All rights reserved. |
35 | * |
36 | * Redistribution and use in source and binary forms, with or without |
37 | * modification, are permitted provided that the following conditions |
38 | * are met: |
39 | * 1. Redistributions of source code must retain the above copyright |
40 | * notice, this list of conditions and the following disclaimer. |
41 | * 2. Redistributions in binary form must reproduce the above copyright |
42 | * notice, this list of conditions and the following disclaimer in the |
43 | * documentation and/or other materials provided with the distribution. |
44 | * 3. Neither the name of the project nor the names of its contributors |
45 | * may be used to endorse or promote products derived from this software |
46 | * without specific prior written permission. |
47 | * |
48 | * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND |
49 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
50 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
51 | * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE |
52 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
53 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
54 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
55 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
56 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
57 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
58 | * SUCH DAMAGE. |
59 | */ |
60 | |
61 | /* |
62 | * Copyright (c) 1982, 1986, 1989, 1993 |
63 | * The Regents of the University of California. All rights reserved. |
64 | * |
65 | * Redistribution and use in source and binary forms, with or without |
66 | * modification, are permitted provided that the following conditions |
67 | * are met: |
68 | * 1. Redistributions of source code must retain the above copyright |
69 | * notice, this list of conditions and the following disclaimer. |
70 | * 2. Redistributions in binary form must reproduce the above copyright |
71 | * notice, this list of conditions and the following disclaimer in the |
72 | * documentation and/or other materials provided with the distribution. |
73 | * 3. All advertising materials mentioning features or use of this software |
74 | * must display the following acknowledgement: |
75 | * This product includes software developed by the University of |
76 | * California, Berkeley and its contributors. |
77 | * 4. Neither the name of the University nor the names of its contributors |
78 | * may be used to endorse or promote products derived from this software |
79 | * without specific prior written permission. |
80 | * |
81 | * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND |
82 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
83 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
84 | * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE |
85 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
86 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
87 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
88 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
89 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
90 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
91 | * SUCH DAMAGE. |
92 | * |
93 | * @(#)udp_var.h 8.1 (Berkeley) 6/10/93 |
94 | */ |
95 | #include <sys/kernel.h> |
96 | #include <sys/malloc.h> |
97 | #include <sys/mbuf.h> |
98 | #include <sys/param.h> |
99 | #include <sys/protosw.h> |
100 | #include <sys/socket.h> |
101 | #include <sys/socketvar.h> |
102 | #include <sys/sysctl.h> |
103 | #include <sys/errno.h> |
104 | #include <sys/stat.h> |
105 | #include <sys/systm.h> |
106 | #include <sys/syslog.h> |
107 | #include <sys/proc.h> |
108 | #include <sys/kauth.h> |
109 | |
110 | #include <net/if.h> |
111 | #include <net/route.h> |
112 | #include <net/if_types.h> |
113 | #include <net/ntstat.h> |
114 | #include <net/dlil.h> |
115 | #include <net/net_api_stats.h> |
116 | |
117 | #include <netinet/in.h> |
118 | #include <netinet/in_systm.h> |
119 | #include <netinet/ip.h> |
120 | #include <netinet/in_pcb.h> |
121 | #include <netinet/in_var.h> |
122 | #include <netinet/ip_var.h> |
123 | #include <netinet/udp.h> |
124 | #include <netinet/udp_var.h> |
125 | #include <netinet/udp_log.h> |
126 | |
127 | #include <netinet/ip6.h> |
128 | #include <netinet6/ip6_var.h> |
129 | #include <netinet6/in6_pcb.h> |
130 | #include <netinet/icmp6.h> |
131 | #include <netinet6/udp6_var.h> |
132 | #include <netinet6/ip6protosw.h> |
133 | |
134 | #if IPSEC |
135 | #include <netinet6/ipsec.h> |
136 | #include <netinet6/ipsec6.h> |
137 | #include <netinet6/esp6.h> |
138 | #include <netkey/key.h> |
139 | extern int ipsec_bypass; |
140 | extern int esp_udp_encap_port; |
141 | #endif /* IPSEC */ |
142 | |
143 | #if NECP |
144 | #include <net/necp.h> |
145 | #endif /* NECP */ |
146 | |
147 | #if FLOW_DIVERT |
148 | #include <netinet/flow_divert.h> |
149 | #endif /* FLOW_DIVERT */ |
150 | |
151 | #if CONTENT_FILTER |
152 | #include <net/content_filter.h> |
153 | #endif /* CONTENT_FILTER */ |
154 | |
155 | #if SKYWALK |
156 | #include <skywalk/core/skywalk_var.h> |
157 | #endif /* SKYWALK */ |
158 | |
159 | #include <net/sockaddr_utils.h> |
160 | |
161 | /* |
162 | * UDP protocol inplementation. |
163 | * Per RFC 768, August, 1980. |
164 | */ |
165 | |
166 | static int udp6_abort(struct socket *); |
167 | static int udp6_attach(struct socket *, int, struct proc *); |
168 | static int udp6_bind(struct socket *, struct sockaddr *, struct proc *); |
169 | static int udp6_connectx(struct socket *, struct sockaddr *, |
170 | struct sockaddr *, struct proc *, uint32_t, sae_associd_t, |
171 | sae_connid_t *, uint32_t, void *, uint32_t, struct uio *, user_ssize_t *); |
172 | static int udp6_detach(struct socket *); |
173 | static int udp6_disconnect(struct socket *); |
174 | static int udp6_disconnectx(struct socket *, sae_associd_t, sae_connid_t); |
175 | static int udp6_send(struct socket *, int, struct mbuf *, struct sockaddr *, |
176 | struct mbuf *, struct proc *); |
177 | static void udp6_append(struct inpcb *, struct ip6_hdr *, |
178 | struct sockaddr_in6 *, struct mbuf *, int, struct ifnet *); |
179 | static int udp6_input_checksum(struct mbuf *, struct udphdr *, int, int); |
180 | static int udp6_defunct(struct socket *); |
181 | |
182 | struct pr_usrreqs udp6_usrreqs = { |
183 | .pru_abort = udp6_abort, |
184 | .pru_attach = udp6_attach, |
185 | .pru_bind = udp6_bind, |
186 | .pru_connect = udp6_connect, |
187 | .pru_connectx = udp6_connectx, |
188 | .pru_control = in6_control, |
189 | .pru_detach = udp6_detach, |
190 | .pru_disconnect = udp6_disconnect, |
191 | .pru_disconnectx = udp6_disconnectx, |
192 | .pru_peeraddr = in6_mapped_peeraddr, |
193 | .pru_send = udp6_send, |
194 | .pru_shutdown = udp_shutdown, |
195 | .pru_sockaddr = in6_mapped_sockaddr, |
196 | .pru_sosend = sosend, |
197 | .pru_soreceive = soreceive, |
198 | .pru_defunct = udp6_defunct, |
199 | }; |
200 | |
201 | /* |
202 | * subroutine of udp6_input(), mainly for source code readability. |
203 | */ |
204 | static void |
205 | udp6_append(struct inpcb *last, struct ip6_hdr *ip6, |
206 | struct sockaddr_in6 *udp_in6, struct mbuf *n, int off, struct ifnet *ifp) |
207 | { |
208 | #pragma unused(ip6) |
209 | struct mbuf *opts = NULL; |
210 | int ret = 0; |
211 | boolean_t cell = IFNET_IS_CELLULAR(ifp); |
212 | boolean_t wifi = (!cell && IFNET_IS_WIFI(ifp)); |
213 | boolean_t wired = (!wifi && IFNET_IS_WIRED(ifp)); |
214 | |
215 | if ((last->in6p_flags & INP_CONTROLOPTS) != 0 || |
216 | SOFLOW_ENABLED(last->in6p_socket) || |
217 | SO_RECV_CONTROL_OPTS(last->in6p_socket)) { |
218 | ret = ip6_savecontrol(last, n, &opts); |
219 | if (ret != 0) { |
220 | m_freem(n); |
221 | m_freem(opts); |
222 | return; |
223 | } |
224 | } |
225 | m_adj(n, off); |
226 | if (nstat_collect) { |
227 | INP_ADD_STAT(last, cell, wifi, wired, rxpackets, 1); |
228 | INP_ADD_STAT(last, cell, wifi, wired, rxbytes, n->m_pkthdr.len); |
229 | inp_set_activity_bitmap(inp: last); |
230 | } |
231 | so_recv_data_stat(last->in6p_socket, n, 0); |
232 | if (sbappendaddr(sb: &last->in6p_socket->so_rcv, |
233 | SA(udp_in6), m0: n, control: opts, NULL) == 0) { |
234 | udpstat.udps_fullsock++; |
235 | } else { |
236 | sorwakeup(so: last->in6p_socket); |
237 | } |
238 | } |
239 | |
240 | int |
241 | udp6_input(struct mbuf **mp, int *offp, int proto) |
242 | { |
243 | #pragma unused(proto) |
244 | struct mbuf *m = *mp; |
245 | struct ifnet *ifp; |
246 | struct ip6_hdr *ip6; |
247 | struct udphdr *uh; |
248 | struct inpcb *in6p; |
249 | struct mbuf *opts = NULL; |
250 | int off = *offp; |
251 | int plen, ulen, ret = 0; |
252 | boolean_t cell, wifi, wired; |
253 | struct sockaddr_in6 udp_in6; |
254 | struct inpcbinfo *pcbinfo = &udbinfo; |
255 | struct sockaddr_in6 fromsa; |
256 | u_int16_t pf_tag = 0; |
257 | boolean_t is_wake_pkt = false; |
258 | |
259 | IP6_EXTHDR_CHECK(m, off, sizeof(struct udphdr), return IPPROTO_DONE); |
260 | |
261 | /* Expect 32-bit aligned data pointer on strict-align platforms */ |
262 | MBUF_STRICT_DATA_ALIGNMENT_CHECK_32(m); |
263 | |
264 | ifp = m->m_pkthdr.rcvif; |
265 | ip6 = mtod(m, struct ip6_hdr *); |
266 | cell = IFNET_IS_CELLULAR(ifp); |
267 | wifi = (!cell && IFNET_IS_WIFI(ifp)); |
268 | wired = (!wifi && IFNET_IS_WIRED(ifp)); |
269 | |
270 | if (m->m_flags & M_PKTHDR) { |
271 | pf_tag = m_pftag(m)->pftag_tag; |
272 | if (m->m_pkthdr.pkt_flags & PKTF_WAKE_PKT) { |
273 | is_wake_pkt = true; |
274 | } |
275 | } |
276 | |
277 | udpstat.udps_ipackets++; |
278 | |
279 | plen = ntohs(ip6->ip6_plen) - off + sizeof(*ip6); |
280 | uh = (struct udphdr *)(void *)((caddr_t)ip6 + off); |
281 | ulen = ntohs((u_short)uh->uh_ulen); |
282 | |
283 | if (plen != ulen) { |
284 | udpstat.udps_badlen++; |
285 | IF_UDP_STATINC(ifp, badlength); |
286 | goto bad; |
287 | } |
288 | |
289 | /* destination port of 0 is illegal, based on RFC768. */ |
290 | if (uh->uh_dport == 0) { |
291 | IF_UDP_STATINC(ifp, port0); |
292 | goto bad; |
293 | } |
294 | |
295 | /* |
296 | * Checksum extended UDP header and data. |
297 | */ |
298 | if (udp6_input_checksum(m, uh, off, ulen)) { |
299 | goto bad; |
300 | } |
301 | |
302 | /* |
303 | * Construct sockaddr format source address. |
304 | */ |
305 | init_sin6(sin6: &fromsa, m); |
306 | fromsa.sin6_port = uh->uh_sport; |
307 | |
308 | if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { |
309 | int reuse_sock = 0, mcast_delivered = 0; |
310 | struct ip6_moptions *imo; |
311 | |
312 | /* |
313 | * Deliver a multicast datagram to all sockets |
314 | * for which the local and remote addresses and ports match |
315 | * those of the incoming datagram. This allows more than |
316 | * one process to receive multicasts on the same port. |
317 | * (This really ought to be done for unicast datagrams as |
318 | * well, but that would cause problems with existing |
319 | * applications that open both address-specific sockets and |
320 | * a wildcard socket listening to the same port -- they would |
321 | * end up receiving duplicates of every unicast datagram. |
322 | * Those applications open the multiple sockets to overcome an |
323 | * inadequacy of the UDP socket interface, but for backwards |
324 | * compatibility we avoid the problem here rather than |
325 | * fixing the interface. Maybe 4.5BSD will remedy this?) |
326 | */ |
327 | |
328 | /* |
329 | * In a case that laddr should be set to the link-local |
330 | * address (this happens in RIPng), the multicast address |
331 | * specified in the received packet does not match with |
332 | * laddr. To cure this situation, the matching is relaxed |
333 | * if the receiving interface is the same as one specified |
334 | * in the socket and if the destination multicast address |
335 | * matches one of the multicast groups specified in the socket. |
336 | */ |
337 | |
338 | /* |
339 | * Construct sockaddr format source address. |
340 | */ |
341 | init_sin6(sin6: &udp_in6, m); /* general init */ |
342 | udp_in6.sin6_port = uh->uh_sport; |
343 | /* |
344 | * KAME note: usually we drop udphdr from mbuf here. |
345 | * We need udphdr for IPsec processing so we do that later. |
346 | */ |
347 | |
348 | /* |
349 | * Locate pcb(s) for datagram. |
350 | * (Algorithm copied from raw_intr().) |
351 | */ |
352 | lck_rw_lock_shared(lck: &pcbinfo->ipi_lock); |
353 | |
354 | LIST_FOREACH(in6p, &udb, inp_list) { |
355 | #if IPSEC |
356 | int skipit; |
357 | #endif /* IPSEC */ |
358 | |
359 | if ((in6p->inp_vflag & INP_IPV6) == 0) { |
360 | continue; |
361 | } |
362 | |
363 | if (inp_restricted_recv(in6p, ifp)) { |
364 | continue; |
365 | } |
366 | /* |
367 | * Skip unbound sockets before taking the lock on the socket as |
368 | * the test with the destination port in the header will fail |
369 | */ |
370 | if (in6p->in6p_lport == 0) { |
371 | continue; |
372 | } |
373 | |
374 | if (in_pcb_checkstate(in6p, WNT_ACQUIRE, 0) == |
375 | WNT_STOPUSING) { |
376 | continue; |
377 | } |
378 | |
379 | udp_lock(in6p->in6p_socket, 1, 0); |
380 | |
381 | if (in_pcb_checkstate(in6p, WNT_RELEASE, 1) == |
382 | WNT_STOPUSING) { |
383 | udp_unlock(in6p->in6p_socket, 1, 0); |
384 | continue; |
385 | } |
386 | if (in6p->in6p_lport != uh->uh_dport) { |
387 | udp_unlock(in6p->in6p_socket, 1, 0); |
388 | continue; |
389 | } |
390 | |
391 | /* |
392 | * Handle socket delivery policy for any-source |
393 | * and source-specific multicast. [RFC3678] |
394 | */ |
395 | imo = in6p->in6p_moptions; |
396 | if (imo && IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { |
397 | struct sockaddr_in6 mcaddr; |
398 | int blocked; |
399 | |
400 | IM6O_LOCK(imo); |
401 | SOCKADDR_ZERO(&mcaddr, sizeof(struct sockaddr_in6)); |
402 | mcaddr.sin6_len = sizeof(struct sockaddr_in6); |
403 | mcaddr.sin6_family = AF_INET6; |
404 | mcaddr.sin6_addr = ip6->ip6_dst; |
405 | |
406 | blocked = im6o_mc_filter(imo, ifp, |
407 | &mcaddr, &fromsa); |
408 | IM6O_UNLOCK(imo); |
409 | if (blocked != MCAST_PASS) { |
410 | udp_unlock(in6p->in6p_socket, 1, 0); |
411 | if (blocked == MCAST_NOTSMEMBER || |
412 | blocked == MCAST_MUTED) { |
413 | udpstat.udps_filtermcast++; |
414 | } |
415 | continue; |
416 | } |
417 | } |
418 | if (!IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_faddr) && |
419 | (!in6_are_addr_equal_scoped(&in6p->in6p_faddr, |
420 | &ip6->ip6_src, in6p->inp_fifscope, ifp->if_index) || |
421 | in6p->in6p_fport != uh->uh_sport)) { |
422 | udp_unlock(in6p->in6p_socket, 1, 0); |
423 | continue; |
424 | } |
425 | |
426 | reuse_sock = in6p->inp_socket->so_options & |
427 | (SO_REUSEPORT | SO_REUSEADDR); |
428 | |
429 | #if NECP |
430 | skipit = 0; |
431 | if (!necp_socket_is_allowed_to_send_recv_v6(inp: in6p, |
432 | local_port: uh->uh_dport, remote_port: uh->uh_sport, local_addr: &ip6->ip6_dst, |
433 | remote_addr: &ip6->ip6_src, input_interface: ifp, pf_tag, NULL, NULL, NULL, NULL)) { |
434 | /* do not inject data to pcb */ |
435 | skipit = 1; |
436 | } |
437 | if (skipit == 0) |
438 | #endif /* NECP */ |
439 | { |
440 | struct mbuf *n = NULL; |
441 | /* |
442 | * KAME NOTE: do not |
443 | * m_copy(m, offset, ...) below. |
444 | * sbappendaddr() expects M_PKTHDR, |
445 | * and m_copy() will copy M_PKTHDR |
446 | * only if offset is 0. |
447 | */ |
448 | if (reuse_sock) { |
449 | n = m_copy(m, 0, M_COPYALL); |
450 | } |
451 | udp6_append(last: in6p, ip6, udp_in6: &udp_in6, n: m, |
452 | off: off + sizeof(struct udphdr), ifp); |
453 | mcast_delivered++; |
454 | m = n; |
455 | } |
456 | if (is_wake_pkt) { |
457 | soevent(so: in6p->in6p_socket, |
458 | SO_FILT_HINT_LOCKED | SO_FILT_HINT_WAKE_PKT); |
459 | } |
460 | udp_unlock(in6p->in6p_socket, 1, 0); |
461 | |
462 | /* |
463 | * Don't look for additional matches if this one does |
464 | * not have either the SO_REUSEPORT or SO_REUSEADDR |
465 | * socket options set. This heuristic avoids searching |
466 | * through all pcbs in the common case of a non-shared |
467 | * port. It assumes that an application will never |
468 | * clear these options after setting them. |
469 | */ |
470 | if (reuse_sock == 0 || m == NULL) { |
471 | break; |
472 | } |
473 | |
474 | /* |
475 | * Expect 32-bit aligned data pointer on strict-align |
476 | * platforms. |
477 | */ |
478 | MBUF_STRICT_DATA_ALIGNMENT_CHECK_32(m); |
479 | |
480 | /* |
481 | * Recompute IP and UDP header pointers for new mbuf |
482 | */ |
483 | ip6 = mtod(m, struct ip6_hdr *); |
484 | uh = (struct udphdr *)(void *)((caddr_t)ip6 + off); |
485 | } |
486 | lck_rw_done(lck: &pcbinfo->ipi_lock); |
487 | |
488 | if (mcast_delivered == 0) { |
489 | /* |
490 | * No matching pcb found; discard datagram. |
491 | * (No need to send an ICMP Port Unreachable |
492 | * for a broadcast or multicast datgram.) |
493 | */ |
494 | udpstat.udps_noport++; |
495 | udpstat.udps_noportmcast++; |
496 | IF_UDP_STATINC(ifp, port_unreach); |
497 | goto bad; |
498 | } |
499 | |
500 | /* free the extra copy of mbuf or skipped by NECP */ |
501 | if (m != NULL) { |
502 | m_freem(m); |
503 | } |
504 | return IPPROTO_DONE; |
505 | } |
506 | |
507 | #if IPSEC |
508 | /* |
509 | * UDP to port 4500 with a payload where the first four bytes are |
510 | * not zero is a UDP encapsulated IPsec packet. Packets where |
511 | * the payload is one byte and that byte is 0xFF are NAT keepalive |
512 | * packets. Decapsulate the ESP packet and carry on with IPsec input |
513 | * or discard the NAT keep-alive. |
514 | */ |
515 | if (ipsec_bypass == 0 && (esp_udp_encap_port & 0xFFFF) != 0 && |
516 | (uh->uh_dport == ntohs((u_short)esp_udp_encap_port) || |
517 | uh->uh_sport == ntohs((u_short)esp_udp_encap_port))) { |
518 | /* |
519 | * Check if ESP or keepalive: |
520 | * 1. If the destination port of the incoming packet is 4500. |
521 | * 2. If the source port of the incoming packet is 4500, |
522 | * then check the SADB to match IP address and port. |
523 | */ |
524 | bool check_esp = true; |
525 | if (uh->uh_dport != ntohs((u_short)esp_udp_encap_port)) { |
526 | check_esp = key_checksa_present(AF_INET6, src: (caddr_t)&ip6->ip6_dst, |
527 | dst: (caddr_t)&ip6->ip6_src, src_port: uh->uh_dport, |
528 | dst_port: uh->uh_sport, src_ifscope: ip6_input_getdstifscope(m), dst_ifscope: ip6_input_getsrcifscope(m)); |
529 | } |
530 | |
531 | if (check_esp) { |
532 | int payload_len = ulen - sizeof(struct udphdr) > 4 ? 4 : |
533 | ulen - sizeof(struct udphdr); |
534 | |
535 | if (m->m_len < off + sizeof(struct udphdr) + payload_len) { |
536 | if ((m = m_pullup(m, off + sizeof(struct udphdr) + |
537 | payload_len)) == NULL) { |
538 | udpstat.udps_hdrops++; |
539 | goto bad; |
540 | } |
541 | /* |
542 | * Expect 32-bit aligned data pointer on strict-align |
543 | * platforms. |
544 | */ |
545 | MBUF_STRICT_DATA_ALIGNMENT_CHECK_32(m); |
546 | |
547 | ip6 = mtod(m, struct ip6_hdr *); |
548 | uh = (struct udphdr *)(void *)((caddr_t)ip6 + off); |
549 | } |
550 | /* Check for NAT keepalive packet */ |
551 | if (payload_len == 1 && *(u_int8_t*) |
552 | ((caddr_t)uh + sizeof(struct udphdr)) == 0xFF) { |
553 | goto bad; |
554 | } else if (payload_len == 4 && *(u_int32_t*)(void *) |
555 | ((caddr_t)uh + sizeof(struct udphdr)) != 0) { |
556 | /* UDP encapsulated IPsec packet to pass through NAT */ |
557 | /* preserve the udp header */ |
558 | *offp = off + sizeof(struct udphdr); |
559 | return esp6_input(mp, offp, IPPROTO_UDP); |
560 | } |
561 | } |
562 | } |
563 | #endif /* IPSEC */ |
564 | |
565 | /* |
566 | * Locate pcb for datagram. |
567 | */ |
568 | in6p = in6_pcblookup_hash(&udbinfo, &ip6->ip6_src, uh->uh_sport, ip6_input_getsrcifscope(m), |
569 | &ip6->ip6_dst, uh->uh_dport, ip6_input_getdstifscope(m), 1, m->m_pkthdr.rcvif); |
570 | if (in6p == NULL) { |
571 | IF_UDP_STATINC(ifp, port_unreach); |
572 | |
573 | if (udp_log_in_vain) { |
574 | char buf[INET6_ADDRSTRLEN]; |
575 | |
576 | strlcpy(dst: buf, src: ip6_sprintf(&ip6->ip6_dst), n: sizeof(buf)); |
577 | if (udp_log_in_vain < 3) { |
578 | log(LOG_INFO, "Connection attempt to UDP " |
579 | "%s:%d from %s:%d\n" , buf, |
580 | ntohs(uh->uh_dport), |
581 | ip6_sprintf(&ip6->ip6_src), |
582 | ntohs(uh->uh_sport)); |
583 | } else if (!(m->m_flags & (M_BCAST | M_MCAST)) && |
584 | !in6_are_addr_equal_scoped(&ip6->ip6_dst, &ip6->ip6_src, ip6_input_getdstifscope(m), ip6_input_getsrcifscope(m))) { |
585 | log(LOG_INFO, "Connection attempt " |
586 | "to UDP %s:%d from %s:%d\n" , buf, |
587 | ntohs(uh->uh_dport), |
588 | ip6_sprintf(&ip6->ip6_src), |
589 | ntohs(uh->uh_sport)); |
590 | } |
591 | } |
592 | udpstat.udps_noport++; |
593 | if (m->m_flags & M_MCAST) { |
594 | printf("UDP6: M_MCAST is set in a unicast packet.\n" ); |
595 | udpstat.udps_noportmcast++; |
596 | IF_UDP_STATINC(ifp, badmcast); |
597 | goto bad; |
598 | } |
599 | icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_NOPORT, 0); |
600 | return IPPROTO_DONE; |
601 | } |
602 | |
603 | /* |
604 | * Construct sockaddr format source address. |
605 | * Stuff source address and datagram in user buffer. |
606 | */ |
607 | udp_lock(in6p->in6p_socket, 1, 0); |
608 | |
609 | #if NECP |
610 | if (!necp_socket_is_allowed_to_send_recv_v6(inp: in6p, local_port: uh->uh_dport, |
611 | remote_port: uh->uh_sport, local_addr: &ip6->ip6_dst, remote_addr: &ip6->ip6_src, input_interface: ifp, pf_tag, NULL, NULL, NULL, NULL)) { |
612 | in_pcb_checkstate(in6p, WNT_RELEASE, 1); |
613 | udp_unlock(in6p->in6p_socket, 1, 0); |
614 | IF_UDP_STATINC(ifp, badipsec); |
615 | goto bad; |
616 | } |
617 | #endif /* NECP */ |
618 | |
619 | if (in_pcb_checkstate(in6p, WNT_RELEASE, 1) == WNT_STOPUSING) { |
620 | udp_unlock(in6p->in6p_socket, 1, 0); |
621 | IF_UDP_STATINC(ifp, cleanup); |
622 | goto bad; |
623 | } |
624 | |
625 | init_sin6(sin6: &udp_in6, m); /* general init */ |
626 | udp_in6.sin6_port = uh->uh_sport; |
627 | if ((in6p->in6p_flags & INP_CONTROLOPTS) != 0 || |
628 | SOFLOW_ENABLED(in6p->in6p_socket) || |
629 | SO_RECV_CONTROL_OPTS(in6p->in6p_socket)) { |
630 | ret = ip6_savecontrol(in6p, m, &opts); |
631 | if (ret != 0) { |
632 | udp_unlock(in6p->in6p_socket, 1, 0); |
633 | goto bad; |
634 | } |
635 | } |
636 | m_adj(m, off + sizeof(struct udphdr)); |
637 | if (nstat_collect) { |
638 | INP_ADD_STAT(in6p, cell, wifi, wired, rxpackets, 1); |
639 | INP_ADD_STAT(in6p, cell, wifi, wired, rxbytes, m->m_pkthdr.len); |
640 | inp_set_activity_bitmap(inp: in6p); |
641 | } |
642 | so_recv_data_stat(in6p->in6p_socket, m, 0); |
643 | if (sbappendaddr(sb: &in6p->in6p_socket->so_rcv, |
644 | SA(&udp_in6), m0: m, control: opts, NULL) == 0) { |
645 | m = NULL; |
646 | opts = NULL; |
647 | udpstat.udps_fullsock++; |
648 | udp_unlock(in6p->in6p_socket, 1, 0); |
649 | goto bad; |
650 | } |
651 | if (is_wake_pkt) { |
652 | soevent(so: in6p->in6p_socket, SO_FILT_HINT_LOCKED | SO_FILT_HINT_WAKE_PKT); |
653 | } |
654 | sorwakeup(so: in6p->in6p_socket); |
655 | udp_unlock(in6p->in6p_socket, 1, 0); |
656 | return IPPROTO_DONE; |
657 | bad: |
658 | if (m != NULL) { |
659 | m_freem(m); |
660 | } |
661 | if (opts != NULL) { |
662 | m_freem(opts); |
663 | } |
664 | return IPPROTO_DONE; |
665 | } |
666 | |
667 | void |
668 | udp6_ctlinput(int cmd, struct sockaddr *sa, void *d, __unused struct ifnet *ifp) |
669 | { |
670 | struct udphdr uh; |
671 | struct ip6_hdr *ip6; |
672 | struct mbuf *m; |
673 | int off = 0; |
674 | struct ip6ctlparam *ip6cp = NULL; |
675 | struct icmp6_hdr *icmp6 = NULL; |
676 | const struct sockaddr_in6 *sa6_src = NULL; |
677 | void *cmdarg = NULL; |
678 | void (*notify)(struct inpcb *, int) = udp_notify; |
679 | struct inpcb *in6p; |
680 | struct udp_portonly { |
681 | u_int16_t uh_sport; |
682 | u_int16_t uh_dport; |
683 | } *uhp; |
684 | |
685 | if (sa->sa_family != AF_INET6 || |
686 | sa->sa_len != sizeof(struct sockaddr_in6)) { |
687 | return; |
688 | } |
689 | |
690 | if ((unsigned)cmd >= PRC_NCMDS) { |
691 | return; |
692 | } |
693 | if (PRC_IS_REDIRECT(cmd)) { |
694 | notify = in6_rtchange; |
695 | d = NULL; |
696 | } else if (cmd == PRC_HOSTDEAD) { |
697 | d = NULL; |
698 | } else if (inet6ctlerrmap[cmd] == 0) { |
699 | return; |
700 | } |
701 | |
702 | /* if the parameter is from icmp6, decode it. */ |
703 | if (d != NULL) { |
704 | ip6cp = (struct ip6ctlparam *)d; |
705 | icmp6 = ip6cp->ip6c_icmp6; |
706 | m = ip6cp->ip6c_m; |
707 | ip6 = ip6cp->ip6c_ip6; |
708 | off = ip6cp->ip6c_off; |
709 | cmdarg = ip6cp->ip6c_cmdarg; |
710 | sa6_src = ip6cp->ip6c_src; |
711 | } else { |
712 | m = NULL; |
713 | ip6 = NULL; |
714 | cmdarg = NULL; |
715 | sa6_src = &sa6_any; |
716 | } |
717 | |
718 | if (ip6 != NULL) { |
719 | #if SKYWALK |
720 | union sockaddr_in_4_6 sock_laddr; |
721 | struct protoctl_ev_val prctl_ev_val; |
722 | #endif /* SKYWALK */ |
723 | /* |
724 | * XXX: We assume that when IPV6 is non NULL, |
725 | * M and OFF are valid. |
726 | */ |
727 | /* check if we can safely examine src and dst ports */ |
728 | if (m->m_pkthdr.len < off + sizeof(*uhp)) { |
729 | return; |
730 | } |
731 | |
732 | bzero(s: &uh, n: sizeof(uh)); |
733 | m_copydata(m, off, sizeof(*uhp), (caddr_t)&uh); |
734 | |
735 | in6p = in6_pcblookup_hash(&udbinfo, &ip6->ip6_dst, uh.uh_dport, ip6_input_getdstifscope(m), |
736 | &ip6->ip6_src, uh.uh_sport, ip6_input_getsrcifscope(m), 0, NULL); |
737 | if (cmd == PRC_MSGSIZE && in6p != NULL && !uuid_is_null(uu: in6p->necp_client_uuid)) { |
738 | uuid_t null_uuid; |
739 | uuid_clear(uu: null_uuid); |
740 | necp_update_flow_protoctl_event(netagent_uuid: null_uuid, client_id: in6p->necp_client_uuid, |
741 | PRC_MSGSIZE, ntohl(icmp6->icmp6_mtu), protoctl_event_tcp_seq_num: 0); |
742 | /* |
743 | * Avoid setting so_error when using Network.framework |
744 | * since the notification of PRC_MSGSIZE has been delivered |
745 | * through NECP. |
746 | */ |
747 | in6_pcbnotify(&udbinfo, sa, uh.uh_dport, |
748 | SA(ip6cp->ip6c_src), uh.uh_sport, |
749 | cmd, cmdarg, NULL); |
750 | } else { |
751 | in6_pcbnotify(&udbinfo, sa, uh.uh_dport, |
752 | SA(ip6cp->ip6c_src), uh.uh_sport, |
753 | cmd, cmdarg, notify); |
754 | } |
755 | #if SKYWALK |
756 | bzero(s: &prctl_ev_val, n: sizeof(prctl_ev_val)); |
757 | bzero(s: &sock_laddr, n: sizeof(sock_laddr)); |
758 | |
759 | if (cmd == PRC_MSGSIZE && icmp6 != NULL) { |
760 | prctl_ev_val.val = ntohl(icmp6->icmp6_mtu); |
761 | } |
762 | sock_laddr.sin6.sin6_family = AF_INET6; |
763 | sock_laddr.sin6.sin6_len = sizeof(sock_laddr.sin6); |
764 | sock_laddr.sin6.sin6_addr = ip6->ip6_src; |
765 | |
766 | protoctl_event_enqueue_nwk_wq_entry(ifp, |
767 | SA(&sock_laddr), p_raddr: sa, |
768 | lport: uh.uh_sport, rport: uh.uh_dport, IPPROTO_UDP, |
769 | protoctl_event_code: cmd, p_protoctl_ev_val: &prctl_ev_val); |
770 | #endif /* SKYWALK */ |
771 | } |
772 | /* |
773 | * XXX The else condition here was broken for a long time. |
774 | * Fixing it made us deliver notification correctly but broke |
775 | * some frameworks that didn't handle it well. |
776 | * For now we have removed it and will revisit it later. |
777 | */ |
778 | } |
779 | |
780 | static int |
781 | udp6_abort(struct socket *so) |
782 | { |
783 | struct inpcb *inp; |
784 | |
785 | inp = sotoinpcb(so); |
786 | if (inp == NULL) { |
787 | panic("%s: so=%p null inp" , __func__, so); |
788 | /* NOTREACHED */ |
789 | } |
790 | soisdisconnected(so); |
791 | in6_pcbdetach(inp); |
792 | return 0; |
793 | } |
794 | |
795 | static int |
796 | udp6_attach(struct socket *so, int proto, struct proc *p) |
797 | { |
798 | #pragma unused(proto) |
799 | struct inpcb *inp; |
800 | int error; |
801 | |
802 | if (so->so_snd.sb_hiwat == 0 || so->so_rcv.sb_hiwat == 0) { |
803 | error = soreserve(so, sndcc: udp_sendspace, rcvcc: udp_recvspace); |
804 | if (error) { |
805 | return error; |
806 | } |
807 | } |
808 | |
809 | inp = sotoinpcb(so); |
810 | if (inp != NULL) { |
811 | return EINVAL; |
812 | } |
813 | |
814 | error = in_pcballoc(so, &udbinfo, p); |
815 | if (error) { |
816 | return error; |
817 | } |
818 | |
819 | inp = (struct inpcb *)so->so_pcb; |
820 | inp->inp_vflag |= INP_IPV6; |
821 | if (ip6_mapped_addr_on) { |
822 | inp->inp_vflag |= INP_IPV4; |
823 | } |
824 | inp->in6p_hops = -1; /* use kernel default */ |
825 | inp->in6p_cksum = -1; /* just to be sure */ |
826 | /* |
827 | * XXX: ugly!! |
828 | * IPv4 TTL initialization is necessary for an IPv6 socket as well, |
829 | * because the socket may be bound to an IPv6 wildcard address, |
830 | * which may match an IPv4-mapped IPv6 address. |
831 | */ |
832 | inp->inp_ip_ttl = (u_char)ip_defttl; |
833 | if (nstat_collect) { |
834 | nstat_udp_new_pcb(inp); |
835 | } |
836 | return 0; |
837 | } |
838 | |
839 | static int |
840 | udp6_bind(struct socket *so, struct sockaddr *nam, struct proc *p) |
841 | { |
842 | struct inpcb *inp; |
843 | int error; |
844 | |
845 | inp = sotoinpcb(so); |
846 | if (inp == NULL) { |
847 | return EINVAL; |
848 | } |
849 | /* |
850 | * Another thread won the binding race so do not change inp_vflag |
851 | */ |
852 | if (inp->inp_flags2 & INP2_BIND_IN_PROGRESS) { |
853 | return EINVAL; |
854 | } |
855 | |
856 | const uint8_t old_flags = inp->inp_vflag; |
857 | inp->inp_vflag &= ~INP_IPV4; |
858 | inp->inp_vflag |= INP_IPV6; |
859 | |
860 | if ((inp->inp_flags & IN6P_IPV6_V6ONLY) == 0) { |
861 | struct sockaddr_in6 *sin6_p; |
862 | |
863 | sin6_p = SIN6(nam); |
864 | |
865 | if (IN6_IS_ADDR_UNSPECIFIED(&sin6_p->sin6_addr)) { |
866 | inp->inp_vflag |= INP_IPV4; |
867 | inp->inp_vflag &= ~INP_V4MAPPEDV6; |
868 | } else if (IN6_IS_ADDR_V4MAPPED(&sin6_p->sin6_addr)) { |
869 | struct sockaddr_in sin; |
870 | |
871 | in6_sin6_2_sin(sin: &sin, sin6: sin6_p); |
872 | inp->inp_vflag |= INP_IPV4; |
873 | inp->inp_vflag &= ~INP_IPV6; |
874 | inp->inp_vflag |= INP_V4MAPPEDV6; |
875 | |
876 | error = in_pcbbind(inp, SA(&sin), p); |
877 | if (error != 0) { |
878 | inp->inp_vflag = old_flags; |
879 | } |
880 | return error; |
881 | } |
882 | } |
883 | |
884 | error = in6_pcbbind(inp, nam, p); |
885 | if (error != 0) { |
886 | inp->inp_vflag = old_flags; |
887 | } |
888 | |
889 | UDP_LOG_BIND(inp, error); |
890 | |
891 | return error; |
892 | } |
893 | |
894 | int |
895 | udp6_connect(struct socket *so, struct sockaddr *nam, struct proc *p) |
896 | { |
897 | struct inpcb *inp; |
898 | int error; |
899 | struct sockaddr_in6 *sin6_p = SIN6(nam); |
900 | |
901 | #if defined(NECP) && defined(FLOW_DIVERT) |
902 | int should_use_flow_divert = 0; |
903 | #endif /* defined(NECP) && defined(FLOW_DIVERT) */ |
904 | |
905 | inp = sotoinpcb(so); |
906 | if (inp == NULL) { |
907 | return EINVAL; |
908 | } |
909 | |
910 | #if defined(NECP) && defined(FLOW_DIVERT) |
911 | should_use_flow_divert = necp_socket_should_use_flow_divert(inp); |
912 | #endif /* defined(NECP) && defined(FLOW_DIVERT) */ |
913 | |
914 | /* |
915 | * It is possible that the socket is bound to v4 mapped v6 address. |
916 | * Post that do not allow connect to a v6 endpoint. |
917 | */ |
918 | if (inp->inp_vflag & INP_V4MAPPEDV6 && |
919 | !IN6_IS_ADDR_V4MAPPED(&sin6_p->sin6_addr)) { |
920 | if (IN6_IS_ADDR_UNSPECIFIED(&sin6_p->sin6_addr)) { |
921 | sin6_p->sin6_addr.s6_addr[10] = 0xff; |
922 | sin6_p->sin6_addr.s6_addr[11] = 0xff; |
923 | } else { |
924 | return EINVAL; |
925 | } |
926 | } |
927 | |
928 | if ((inp->inp_flags & IN6P_IPV6_V6ONLY) == 0) { |
929 | if (IN6_IS_ADDR_V4MAPPED(&sin6_p->sin6_addr)) { |
930 | struct sockaddr_in sin; |
931 | const uint8_t old_flags = inp->inp_vflag; |
932 | |
933 | if (inp->inp_faddr.s_addr != INADDR_ANY) { |
934 | return EISCONN; |
935 | } |
936 | |
937 | if (!(so->so_flags1 & SOF1_CONNECT_COUNTED)) { |
938 | so->so_flags1 |= SOF1_CONNECT_COUNTED; |
939 | INC_ATOMIC_INT64_LIM(net_api_stats.nas_socket_inet_dgram_connected); |
940 | } |
941 | |
942 | in6_sin6_2_sin(sin: &sin, sin6: sin6_p); |
943 | #if defined(NECP) && defined(FLOW_DIVERT) |
944 | if (should_use_flow_divert) { |
945 | goto do_flow_divert; |
946 | } |
947 | #endif /* defined(NECP) && defined(FLOW_DIVERT) */ |
948 | inp->inp_vflag |= INP_IPV4; |
949 | inp->inp_vflag &= ~INP_IPV6; |
950 | inp->inp_vflag |= INP_V4MAPPEDV6; |
951 | |
952 | error = in_pcbconnect(inp, SA(&sin), p, IFSCOPE_NONE, NULL); |
953 | if (error == 0) { |
954 | #if NECP |
955 | /* Update NECP client with connected five-tuple */ |
956 | if (!uuid_is_null(uu: inp->necp_client_uuid)) { |
957 | socket_unlock(so, refcount: 0); |
958 | necp_client_assign_from_socket(pid: so->last_pid, client_id: inp->necp_client_uuid, inp); |
959 | socket_lock(so, refcount: 0); |
960 | } |
961 | #endif /* NECP */ |
962 | soisconnected(so); |
963 | } else { |
964 | inp->inp_vflag = old_flags; |
965 | } |
966 | UDP_LOG_CONNECT(inp, error); |
967 | return error; |
968 | } |
969 | } |
970 | |
971 | if (!IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_faddr)) { |
972 | return EISCONN; |
973 | } |
974 | |
975 | if (!(so->so_flags1 & SOF1_CONNECT_COUNTED)) { |
976 | so->so_flags1 |= SOF1_CONNECT_COUNTED; |
977 | INC_ATOMIC_INT64_LIM(net_api_stats.nas_socket_inet6_dgram_connected); |
978 | } |
979 | |
980 | #if defined(NECP) && defined(FLOW_DIVERT) |
981 | do_flow_divert: |
982 | if (should_use_flow_divert) { |
983 | error = flow_divert_pcb_init(so); |
984 | if (error == 0) { |
985 | error = flow_divert_connect_out(so, to: nam, p); |
986 | } |
987 | return error; |
988 | } |
989 | #endif /* defined(NECP) && defined(FLOW_DIVERT) */ |
990 | |
991 | error = in6_pcbconnect(inp, nam, p); |
992 | if (error == 0) { |
993 | /* should be non mapped addr */ |
994 | if (ip6_mapped_addr_on || |
995 | (inp->inp_flags & IN6P_IPV6_V6ONLY) == 0) { |
996 | inp->inp_vflag &= ~INP_IPV4; |
997 | inp->inp_vflag |= INP_IPV6; |
998 | } |
999 | #if NECP |
1000 | /* Update NECP client with connected five-tuple */ |
1001 | if (!uuid_is_null(uu: inp->necp_client_uuid)) { |
1002 | socket_unlock(so, refcount: 0); |
1003 | necp_client_assign_from_socket(pid: so->last_pid, client_id: inp->necp_client_uuid, inp); |
1004 | socket_lock(so, refcount: 0); |
1005 | } |
1006 | #endif /* NECP */ |
1007 | soisconnected(so); |
1008 | if (inp->inp_flowhash == 0) { |
1009 | inp_calc_flowhash(inp); |
1010 | ASSERT(inp->inp_flowhash != 0); |
1011 | } |
1012 | /* update flowinfo - RFC 6437 */ |
1013 | if (inp->inp_flow == 0 && |
1014 | inp->in6p_flags & IN6P_AUTOFLOWLABEL) { |
1015 | inp->inp_flow &= ~IPV6_FLOWLABEL_MASK; |
1016 | inp->inp_flow |= |
1017 | (htonl(ip6_randomflowlabel()) & IPV6_FLOWLABEL_MASK); |
1018 | } |
1019 | inp->inp_connect_timestamp = mach_continuous_time(); |
1020 | } |
1021 | UDP_LOG_CONNECT(inp, error); |
1022 | return error; |
1023 | } |
1024 | |
1025 | static int |
1026 | udp6_connectx(struct socket *so, struct sockaddr *src, |
1027 | struct sockaddr *dst, struct proc *p, uint32_t ifscope, |
1028 | sae_associd_t aid, sae_connid_t *pcid, uint32_t flags, void *arg, |
1029 | uint32_t arglen, struct uio *uio, user_ssize_t *bytes_written) |
1030 | { |
1031 | return udp_connectx_common(so, AF_INET6, src, dst, |
1032 | p, ifscope, aid, pcid, flags, arg, arglen, uio, bytes_written); |
1033 | } |
1034 | |
1035 | static int |
1036 | udp6_detach(struct socket *so) |
1037 | { |
1038 | struct inpcb *inp; |
1039 | |
1040 | inp = sotoinpcb(so); |
1041 | if (inp == NULL) { |
1042 | return EINVAL; |
1043 | } |
1044 | |
1045 | UDP_LOG_CONNECTION_SUMMARY(inp); |
1046 | |
1047 | in6_pcbdetach(inp); |
1048 | return 0; |
1049 | } |
1050 | |
1051 | static int |
1052 | udp6_disconnect(struct socket *so) |
1053 | { |
1054 | struct inpcb *inp; |
1055 | |
1056 | inp = sotoinpcb(so); |
1057 | if (inp == NULL |
1058 | #if NECP |
1059 | || (necp_socket_should_use_flow_divert(inp)) |
1060 | #endif /* NECP */ |
1061 | ) { |
1062 | return inp == NULL ? EINVAL : EPROTOTYPE; |
1063 | } |
1064 | |
1065 | if (inp->inp_vflag & INP_IPV4) { |
1066 | struct pr_usrreqs *pru; |
1067 | |
1068 | pru = ip_protox[IPPROTO_UDP]->pr_usrreqs; |
1069 | return (*pru->pru_disconnect)(so); |
1070 | } |
1071 | |
1072 | if (IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_faddr)) { |
1073 | return ENOTCONN; |
1074 | } |
1075 | |
1076 | UDP_LOG_CONNECTION_SUMMARY(inp); |
1077 | |
1078 | in6_pcbdisconnect(inp); |
1079 | |
1080 | /* reset flow-controlled state, just in case */ |
1081 | inp_reset_fc_state(inp); |
1082 | |
1083 | inp->in6p_laddr = in6addr_any; |
1084 | inp->inp_lifscope = IFSCOPE_NONE; |
1085 | inp->in6p_last_outifp = NULL; |
1086 | #if SKYWALK |
1087 | if (NETNS_TOKEN_VALID(&inp->inp_netns_token)) { |
1088 | netns_set_ifnet(token: &inp->inp_netns_token, NULL); |
1089 | } |
1090 | #endif /* SKYWALK */ |
1091 | |
1092 | so->so_state &= ~SS_ISCONNECTED; /* XXX */ |
1093 | return 0; |
1094 | } |
1095 | |
1096 | static int |
1097 | udp6_disconnectx(struct socket *so, sae_associd_t aid, sae_connid_t cid) |
1098 | { |
1099 | #pragma unused(cid) |
1100 | if (aid != SAE_ASSOCID_ANY && aid != SAE_ASSOCID_ALL) { |
1101 | return EINVAL; |
1102 | } |
1103 | |
1104 | return udp6_disconnect(so); |
1105 | } |
1106 | |
1107 | static int |
1108 | udp6_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *addr, |
1109 | struct mbuf *control, struct proc *p) |
1110 | { |
1111 | struct inpcb *inp; |
1112 | int error = 0; |
1113 | #if defined(NECP) && defined(FLOW_DIVERT) |
1114 | int should_use_flow_divert = 0; |
1115 | #endif /* defined(NECP) && defined(FLOW_DIVERT) */ |
1116 | #if CONTENT_FILTER |
1117 | struct m_tag *cfil_tag = NULL; |
1118 | struct sockaddr *cfil_faddr = NULL; |
1119 | #endif |
1120 | |
1121 | inp = sotoinpcb(so); |
1122 | if (inp == NULL) { |
1123 | error = EINVAL; |
1124 | goto bad; |
1125 | } |
1126 | |
1127 | #if CONTENT_FILTER |
1128 | //If socket is subject to UDP Content Filter and unconnected, get addr from tag. |
1129 | if (CFIL_DGRAM_FILTERED(so) && !addr && IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_faddr)) { |
1130 | cfil_tag = cfil_dgram_get_socket_state(m, NULL, NULL, faddr: &cfil_faddr, NULL); |
1131 | if (cfil_tag) { |
1132 | addr = SA(cfil_faddr); |
1133 | } |
1134 | } |
1135 | #endif |
1136 | |
1137 | #if defined(NECP) && defined(FLOW_DIVERT) |
1138 | should_use_flow_divert = necp_socket_should_use_flow_divert(inp); |
1139 | #endif /* defined(NECP) && defined(FLOW_DIVERT) */ |
1140 | |
1141 | if (addr != NULL) { |
1142 | if (addr->sa_len != sizeof(struct sockaddr_in6)) { |
1143 | error = EINVAL; |
1144 | goto bad; |
1145 | } |
1146 | if (addr->sa_family != AF_INET6) { |
1147 | error = EAFNOSUPPORT; |
1148 | goto bad; |
1149 | } |
1150 | } |
1151 | |
1152 | if (ip6_mapped_addr_on || (inp->inp_flags & IN6P_IPV6_V6ONLY) == 0) { |
1153 | int hasv4addr; |
1154 | struct sockaddr_in6 *sin6 = NULL; |
1155 | |
1156 | if (addr == NULL) { |
1157 | hasv4addr = (inp->inp_vflag & INP_IPV4); |
1158 | } else { |
1159 | sin6 = SIN6(addr); |
1160 | hasv4addr = |
1161 | IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr) ? 1 : 0; |
1162 | } |
1163 | if (hasv4addr) { |
1164 | struct pr_usrreqs *pru; |
1165 | |
1166 | if (sin6 != NULL) { |
1167 | in6_sin6_2_sin_in_sock(nam: addr); |
1168 | } |
1169 | #if defined(NECP) && defined(FLOW_DIVERT) |
1170 | if (should_use_flow_divert) { |
1171 | goto do_flow_divert; |
1172 | } |
1173 | #endif /* defined(NECP) && defined(FLOW_DIVERT) */ |
1174 | pru = ip_protox[IPPROTO_UDP]->pr_usrreqs; |
1175 | error = ((*pru->pru_send)(so, flags, m, addr, |
1176 | control, p)); |
1177 | #if CONTENT_FILTER |
1178 | if (cfil_tag) { |
1179 | m_tag_free(cfil_tag); |
1180 | } |
1181 | #endif |
1182 | /* addr will just be freed in sendit(). */ |
1183 | return error; |
1184 | } |
1185 | } |
1186 | |
1187 | #if defined(NECP) && defined(FLOW_DIVERT) |
1188 | do_flow_divert: |
1189 | if (should_use_flow_divert) { |
1190 | /* Implicit connect */ |
1191 | error = flow_divert_implicit_data_out(so, flags, data: m, to: addr, control, p); |
1192 | #if CONTENT_FILTER |
1193 | if (cfil_tag) { |
1194 | m_tag_free(cfil_tag); |
1195 | } |
1196 | #endif |
1197 | return error; |
1198 | } |
1199 | #endif /* defined(NECP) && defined(FLOW_DIVERT) */ |
1200 | |
1201 | #if SKYWALK |
1202 | sk_protect_t protect = sk_async_transmit_protect(); |
1203 | #endif /* SKYWALK */ |
1204 | error = udp6_output(inp, m, addr, control, p); |
1205 | #if SKYWALK |
1206 | sk_async_transmit_unprotect(protect); |
1207 | #endif /* SKYWALK */ |
1208 | |
1209 | #if CONTENT_FILTER |
1210 | if (cfil_tag) { |
1211 | m_tag_free(cfil_tag); |
1212 | } |
1213 | #endif |
1214 | return error; |
1215 | |
1216 | bad: |
1217 | VERIFY(error != 0); |
1218 | |
1219 | if (m != NULL) { |
1220 | m_freem(m); |
1221 | } |
1222 | if (control != NULL) { |
1223 | m_freem(control); |
1224 | } |
1225 | #if CONTENT_FILTER |
1226 | if (cfil_tag) { |
1227 | m_tag_free(cfil_tag); |
1228 | } |
1229 | #endif |
1230 | return error; |
1231 | } |
1232 | |
1233 | /* |
1234 | * Checksum extended UDP header and data. |
1235 | */ |
1236 | static int |
1237 | udp6_input_checksum(struct mbuf *m, struct udphdr *uh, int off, int ulen) |
1238 | { |
1239 | struct ifnet *ifp = m->m_pkthdr.rcvif; |
1240 | struct ip6_hdr *ip6 = mtod(m, struct ip6_hdr *); |
1241 | |
1242 | if (!(m->m_pkthdr.csum_flags & CSUM_DATA_VALID) && |
1243 | uh->uh_sum == 0) { |
1244 | /* UDP/IPv6 checksum is mandatory (RFC2460) */ |
1245 | |
1246 | /* |
1247 | * If checksum was already validated, ignore this check. |
1248 | * This is necessary for transport-mode ESP, which may be |
1249 | * getting UDP payloads without checksums when the network |
1250 | * has a NAT64. |
1251 | */ |
1252 | udpstat.udps_nosum++; |
1253 | goto badsum; |
1254 | } |
1255 | |
1256 | if ((hwcksum_rx || (ifp->if_flags & IFF_LOOPBACK) || |
1257 | (m->m_pkthdr.pkt_flags & PKTF_LOOP)) && |
1258 | (m->m_pkthdr.csum_flags & CSUM_DATA_VALID)) { |
1259 | if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) { |
1260 | uh->uh_sum = m->m_pkthdr.csum_rx_val; |
1261 | } else { |
1262 | uint32_t sum = m->m_pkthdr.csum_rx_val; |
1263 | uint32_t start = m->m_pkthdr.csum_rx_start; |
1264 | int32_t trailer = (m_pktlen(m) - (off + ulen)); |
1265 | |
1266 | /* |
1267 | * Perform 1's complement adjustment of octets |
1268 | * that got included/excluded in the hardware- |
1269 | * calculated checksum value. Also take care |
1270 | * of any trailing bytes and subtract out |
1271 | * their partial sum. |
1272 | */ |
1273 | ASSERT(trailer >= 0); |
1274 | if ((m->m_pkthdr.csum_flags & CSUM_PARTIAL) && |
1275 | (start != off || trailer != 0)) { |
1276 | uint32_t swbytes = (uint32_t)trailer; |
1277 | uint16_t s = 0, d = 0; |
1278 | |
1279 | if (IN6_IS_SCOPE_EMBED(&ip6->ip6_src)) { |
1280 | s = ip6->ip6_src.s6_addr16[1]; |
1281 | ip6->ip6_src.s6_addr16[1] = 0; |
1282 | } |
1283 | if (IN6_IS_SCOPE_EMBED(&ip6->ip6_dst)) { |
1284 | d = ip6->ip6_dst.s6_addr16[1]; |
1285 | ip6->ip6_dst.s6_addr16[1] = 0; |
1286 | } |
1287 | |
1288 | /* callee folds in sum */ |
1289 | sum = m_adj_sum16(m, start, off, ulen, sum); |
1290 | if (off > start) { |
1291 | swbytes += (off - start); |
1292 | } else { |
1293 | swbytes += (start - off); |
1294 | } |
1295 | |
1296 | if (IN6_IS_SCOPE_EMBED(&ip6->ip6_src)) { |
1297 | ip6->ip6_src.s6_addr16[1] = s; |
1298 | } |
1299 | if (IN6_IS_SCOPE_EMBED(&ip6->ip6_dst)) { |
1300 | ip6->ip6_dst.s6_addr16[1] = d; |
1301 | } |
1302 | |
1303 | if (swbytes != 0) { |
1304 | udp_in_cksum_stats(swbytes); |
1305 | } |
1306 | if (trailer != 0) { |
1307 | m_adj(m, -trailer); |
1308 | } |
1309 | } |
1310 | |
1311 | uh->uh_sum = in6_pseudo(&ip6->ip6_src, &ip6->ip6_dst, |
1312 | sum + htonl(ulen + IPPROTO_UDP)); |
1313 | } |
1314 | uh->uh_sum ^= 0xffff; |
1315 | } else { |
1316 | udp_in6_cksum_stats(ulen); |
1317 | uh->uh_sum = in6_cksum(m, IPPROTO_UDP, off, ulen); |
1318 | } |
1319 | |
1320 | if (uh->uh_sum != 0) { |
1321 | badsum: |
1322 | udpstat.udps_badsum++; |
1323 | IF_UDP_STATINC(ifp, badchksum); |
1324 | return -1; |
1325 | } |
1326 | |
1327 | return 0; |
1328 | } |
1329 | |
1330 | int |
1331 | udp6_defunct(struct socket *so) |
1332 | { |
1333 | struct ip_moptions *imo; |
1334 | struct ip6_moptions *im6o; |
1335 | struct inpcb *inp; |
1336 | |
1337 | inp = sotoinpcb(so); |
1338 | if (inp == NULL) { |
1339 | return EINVAL; |
1340 | } |
1341 | |
1342 | im6o = inp->in6p_moptions; |
1343 | inp->in6p_moptions = NULL; |
1344 | if (im6o != NULL) { |
1345 | struct proc *p = current_proc(); |
1346 | |
1347 | SODEFUNCTLOG("%s[%d, %s]: defuncting so 0x%llu drop ipv6 multicast memberships" , |
1348 | __func__, proc_pid(p), proc_best_name(p), |
1349 | so->so_gencnt); |
1350 | IM6O_REMREF(im6o); |
1351 | } |
1352 | imo = inp->inp_moptions; |
1353 | if (imo != NULL) { |
1354 | struct proc *p = current_proc(); |
1355 | |
1356 | SODEFUNCTLOG("%s[%d, %s]: defuncting so 0x%llu drop ipv4 multicast memberships" , |
1357 | __func__, proc_pid(p), proc_best_name(p), |
1358 | so->so_gencnt); |
1359 | |
1360 | inp->inp_moptions = NULL; |
1361 | |
1362 | IMO_REMREF(imo); |
1363 | } |
1364 | |
1365 | return 0; |
1366 | } |
1367 | |