1 | /* |
2 | * Copyright (c) 2000-2022 Apple Inc. All rights reserved. |
3 | * |
4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ |
5 | * |
6 | * This file contains Original Code and/or Modifications of Original Code |
7 | * as defined in and that are subject to the Apple Public Source License |
8 | * Version 2.0 (the 'License'). You may not use this file except in |
9 | * compliance with the License. The rights granted to you under the License |
10 | * may not be used to create, or enable the creation or redistribution of, |
11 | * unlawful or unlicensed copies of an Apple operating system, or to |
12 | * circumvent, violate, or enable the circumvention or violation of, any |
13 | * terms of an Apple operating system software license agreement. |
14 | * |
15 | * Please obtain a copy of the License at |
16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. |
17 | * |
18 | * The Original Code and all software distributed under the License are |
19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER |
20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, |
22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
23 | * Please see the License for the specific language governing rights and |
24 | * limitations under the License. |
25 | * |
26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ |
27 | */ |
28 | |
29 | /* |
30 | * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. |
31 | * All rights reserved. |
32 | * |
33 | * Redistribution and use in source and binary forms, with or without |
34 | * modification, are permitted provided that the following conditions |
35 | * are met: |
36 | * 1. Redistributions of source code must retain the above copyright |
37 | * notice, this list of conditions and the following disclaimer. |
38 | * 2. Redistributions in binary form must reproduce the above copyright |
39 | * notice, this list of conditions and the following disclaimer in the |
40 | * documentation and/or other materials provided with the distribution. |
41 | * 3. Neither the name of the project nor the names of its contributors |
42 | * may be used to endorse or promote products derived from this software |
43 | * without specific prior written permission. |
44 | * |
45 | * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND |
46 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
47 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
48 | * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE |
49 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
50 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
51 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
52 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
53 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
54 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
55 | * SUCH DAMAGE. |
56 | */ |
57 | |
58 | /* |
59 | * Copyright (c) 1982, 1986, 1991, 1993 |
60 | * The Regents of the University of California. All rights reserved. |
61 | * |
62 | * Redistribution and use in source and binary forms, with or without |
63 | * modification, are permitted provided that the following conditions |
64 | * are met: |
65 | * 1. Redistributions of source code must retain the above copyright |
66 | * notice, this list of conditions and the following disclaimer. |
67 | * 2. Redistributions in binary form must reproduce the above copyright |
68 | * notice, this list of conditions and the following disclaimer in the |
69 | * documentation and/or other materials provided with the distribution. |
70 | * 3. All advertising materials mentioning features or use of this software |
71 | * must display the following acknowledgement: |
72 | * This product includes software developed by the University of |
73 | * California, Berkeley and its contributors. |
74 | * 4. Neither the name of the University nor the names of its contributors |
75 | * may be used to endorse or promote products derived from this software |
76 | * without specific prior written permission. |
77 | * |
78 | * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND |
79 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
80 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
81 | * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE |
82 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
83 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
84 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
85 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
86 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
87 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
88 | * SUCH DAMAGE. |
89 | * |
90 | * @(#)in_pcb.c 8.2 (Berkeley) 1/4/94 |
91 | */ |
92 | |
93 | |
94 | #include <sys/param.h> |
95 | #include <sys/systm.h> |
96 | #include <sys/malloc.h> |
97 | #include <sys/mbuf.h> |
98 | #include <sys/protosw.h> |
99 | #include <sys/socket.h> |
100 | #include <sys/socketvar.h> |
101 | #include <sys/errno.h> |
102 | #include <sys/time.h> |
103 | #include <sys/proc.h> |
104 | #include <sys/sysctl.h> |
105 | #include <sys/kauth.h> |
106 | #include <sys/priv.h> |
107 | #include <kern/locks.h> |
108 | #include <sys/random.h> |
109 | |
110 | #include <net/if.h> |
111 | #include <net/if_types.h> |
112 | #include <net/route.h> |
113 | #include <net/restricted_in_port.h> |
114 | |
115 | #include <netinet/in.h> |
116 | #include <netinet/in_var.h> |
117 | #include <netinet/in_systm.h> |
118 | #include <netinet/ip.h> |
119 | #include <netinet/in_pcb.h> |
120 | |
121 | #include <netinet6/in6_var.h> |
122 | #include <netinet/ip6.h> |
123 | #include <netinet6/in6_pcb.h> |
124 | #include <netinet6/ip6_var.h> |
125 | #include <netinet6/scope6_var.h> |
126 | #include <netinet6/nd6.h> |
127 | |
128 | #include <net/net_osdep.h> |
129 | |
130 | #include <net/sockaddr_utils.h> |
131 | |
132 | #include "loop.h" |
133 | |
134 | SYSCTL_DECL(_net_inet6_ip6); |
135 | |
136 | static int ip6_select_srcif_debug = 0; |
137 | SYSCTL_INT(_net_inet6_ip6, OID_AUTO, select_srcif_debug, |
138 | CTLFLAG_RW | CTLFLAG_LOCKED, &ip6_select_srcif_debug, 0, |
139 | "log source interface selection debug info" ); |
140 | |
141 | static int ip6_select_srcaddr_debug = 0; |
142 | SYSCTL_INT(_net_inet6_ip6, OID_AUTO, select_srcaddr_debug, |
143 | CTLFLAG_RW | CTLFLAG_LOCKED, &ip6_select_srcaddr_debug, 0, |
144 | "log source address selection debug info" ); |
145 | |
146 | static int ip6_select_src_expensive_secondary_if = 0; |
147 | SYSCTL_INT(_net_inet6_ip6, OID_AUTO, select_src_expensive_secondary_if, |
148 | CTLFLAG_RW | CTLFLAG_LOCKED, &ip6_select_src_expensive_secondary_if, 0, |
149 | "allow source interface selection to use expensive secondaries" ); |
150 | |
151 | static int ip6_select_src_strong_end = 1; |
152 | SYSCTL_INT(_net_inet6_ip6, OID_AUTO, select_src_strong_end, |
153 | CTLFLAG_RW | CTLFLAG_LOCKED, &ip6_select_src_strong_end, 0, |
154 | "limit source address selection to outgoing interface" ); |
155 | |
156 | #define ADDR_LABEL_NOTAPP (-1) |
157 | struct in6_addrpolicy defaultaddrpolicy; |
158 | |
159 | int ip6_prefer_tempaddr = 1; |
160 | |
161 | int ip6_cga_conflict_retries = IPV6_CGA_CONFLICT_RETRIES_DEFAULT; |
162 | |
163 | extern int udp_use_randomport; |
164 | extern int tcp_use_randomport; |
165 | |
166 | static int selectroute(struct sockaddr_in6 *, struct sockaddr_in6 *, |
167 | struct ip6_pktopts *, struct ip6_moptions *, struct in6_ifaddr **, |
168 | struct route_in6 *, struct ifnet **, struct rtentry **, int, int, |
169 | struct ip6_out_args *ip6oa); |
170 | static int in6_selectif(struct sockaddr_in6 *, struct ip6_pktopts *, |
171 | struct ip6_moptions *, struct route_in6 *ro, |
172 | struct ip6_out_args *, struct ifnet **); |
173 | static void init_policy_queue(void); |
174 | static int add_addrsel_policyent(const struct in6_addrpolicy *); |
175 | static int walk_addrsel_policy(int (*)(const struct in6_addrpolicy *, void *), |
176 | void *); |
177 | static int dump_addrsel_policyent(const struct in6_addrpolicy *, void *); |
178 | static struct in6_addrpolicy *match_addrsel_policy(struct sockaddr_in6 *); |
179 | void addrsel_policy_init(void); |
180 | |
181 | #define SASEL_DO_DBG(inp) \ |
182 | (ip6_select_srcaddr_debug && (inp) != NULL && \ |
183 | (inp)->inp_socket != NULL && \ |
184 | ((inp)->inp_socket->so_options & SO_DEBUG)) |
185 | |
186 | #define SASEL_LOG(fmt, ...) \ |
187 | do { \ |
188 | if (srcsel_debug) \ |
189 | os_log(OS_LOG_DEFAULT, "%s:%d " fmt,\ |
190 | __FUNCTION__, __LINE__, ##__VA_ARGS__); \ |
191 | } while (0); \ |
192 | |
193 | /* |
194 | * Return an IPv6 address, which is the most appropriate for a given |
195 | * destination and user specified options. |
196 | * If necessary, this function lookups the routing table and returns |
197 | * an entry to the caller for later use. |
198 | */ |
199 | #define REPLACE(r) do {\ |
200 | SASEL_LOG("REPLACE r %s ia %s ifp1 %s\n", \ |
201 | (#r), s_src, ifp1->if_xname); \ |
202 | srcrule = (r); \ |
203 | goto replace; \ |
204 | } while (0) |
205 | |
206 | #define NEXTSRC(r) do {\ |
207 | SASEL_LOG("NEXTSRC r %s ia %s ifp1 %s\n", \ |
208 | (#r), s_src, ifp1->if_xname); \ |
209 | goto next; /* XXX: we can't use 'continue' here */ \ |
210 | } while (0) |
211 | |
212 | #define BREAK(r) do { \ |
213 | SASEL_LOG("BREAK r %s ia %s ifp1 %s\n", \ |
214 | (#r), s_src, ifp1->if_xname); \ |
215 | srcrule = (r); \ |
216 | goto out; /* XXX: we can't use 'break' here */ \ |
217 | } while (0) |
218 | |
219 | |
220 | struct ifaddr * |
221 | in6_selectsrc_core_ifa(struct sockaddr_in6 *addr, struct ifnet *ifp, int srcsel_debug) |
222 | { |
223 | int err = 0; |
224 | struct ifnet *src_ifp = NULL; |
225 | struct in6_addr src_storage = {}; |
226 | struct in6_addr *in6 = NULL; |
227 | struct ifaddr *ifa = NULL; |
228 | |
229 | if ((in6 = in6_selectsrc_core(addr, |
230 | (ip6_prefer_tempaddr ? IPV6_SRCSEL_HINT_PREFER_TMPADDR : 0), |
231 | ifp, 0, &src_storage, &src_ifp, &err, &ifa, NULL, FALSE)) == NULL) { |
232 | if (err == 0) { |
233 | err = EADDRNOTAVAIL; |
234 | } |
235 | VERIFY(src_ifp == NULL); |
236 | if (ifa != NULL) { |
237 | ifa_remref(ifa); |
238 | ifa = NULL; |
239 | } |
240 | goto done; |
241 | } |
242 | |
243 | if (src_ifp != ifp) { |
244 | if (err == 0) { |
245 | err = ENETUNREACH; |
246 | } |
247 | if (ifa != NULL) { |
248 | ifa_remref(ifa); |
249 | ifa = NULL; |
250 | } |
251 | goto done; |
252 | } |
253 | |
254 | VERIFY(ifa != NULL); |
255 | ifnet_lock_shared(ifp); |
256 | if ((ifa->ifa_debug & IFD_DETACHING) != 0) { |
257 | err = EHOSTUNREACH; |
258 | ifnet_lock_done(ifp); |
259 | ifa_remref(ifa); |
260 | ifa = NULL; |
261 | goto done; |
262 | } |
263 | ifnet_lock_done(ifp); |
264 | |
265 | done: |
266 | SASEL_LOG("Returned with error: %d" , err); |
267 | if (src_ifp != NULL) { |
268 | ifnet_release(interface: src_ifp); |
269 | } |
270 | return ifa; |
271 | } |
272 | |
273 | struct in6_addr * |
274 | in6_selectsrc_core(struct sockaddr_in6 *dstsock, uint32_t hint_mask, |
275 | struct ifnet *ifp, int srcsel_debug, struct in6_addr *src_storage, |
276 | struct ifnet **sifp, int *errorp, struct ifaddr **ifapp, struct route_in6 *ro, |
277 | boolean_t is_for_clat46) |
278 | { |
279 | u_int32_t odstzone; |
280 | int bestrule = IP6S_SRCRULE_0; |
281 | struct in6_addrpolicy *dst_policy = NULL, *best_policy = NULL; |
282 | struct in6_addr dst; |
283 | struct in6_ifaddr *ia = NULL, *ia_best = NULL; |
284 | char s_src[MAX_IPv6_STR_LEN] = {0}; |
285 | char s_dst[MAX_IPv6_STR_LEN] = {0}; |
286 | const struct in6_addr *tmp = NULL; |
287 | int dst_scope = -1, best_scope = -1, best_matchlen = -1; |
288 | uint64_t secs = net_uptime(); |
289 | struct nd_defrouter *dr = NULL; |
290 | uint32_t genid = in6_ifaddrlist_genid; |
291 | VERIFY(dstsock != NULL); |
292 | VERIFY(src_storage != NULL); |
293 | VERIFY(ifp != NULL); |
294 | |
295 | if (sifp != NULL) { |
296 | *sifp = NULL; |
297 | } |
298 | |
299 | if (ifapp != NULL) { |
300 | *ifapp = NULL; |
301 | } |
302 | |
303 | dst = dstsock->sin6_addr; /* make a copy for local operation */ |
304 | |
305 | if (srcsel_debug) { |
306 | (void) inet_ntop(AF_INET6, &dst, s_dst, sizeof(s_src)); |
307 | |
308 | tmp = &in6addr_any; |
309 | (void) inet_ntop(AF_INET6, tmp, s_src, sizeof(s_src)); |
310 | os_log(OS_LOG_DEFAULT, "%s out src %s dst %s ifp %s" , |
311 | __func__, s_src, s_dst, ifp->if_xname); |
312 | } |
313 | |
314 | *errorp = in6_setscope(&dst, ifp, &odstzone); |
315 | if (*errorp != 0) { |
316 | src_storage = NULL; |
317 | goto done; |
318 | } |
319 | |
320 | /* |
321 | * Determine if the route is an indirect here |
322 | * and if it is get the default router that would be |
323 | * used as next hop. |
324 | * Later in the function it is used to apply rule 5.5 of RFC 6724. |
325 | */ |
326 | if (ro != NULL && ro->ro_rt != NULL && |
327 | (ro->ro_rt->rt_flags & RTF_GATEWAY) && |
328 | ro->ro_rt->rt_gateway != NULL) { |
329 | struct rtentry *rt = ro->ro_rt; |
330 | lck_mtx_lock(nd6_mutex); |
331 | dr = defrouter_lookup(NULL, |
332 | &SIN6(rt->rt_gateway)->sin6_addr, rt->rt_ifp); |
333 | lck_mtx_unlock(nd6_mutex); |
334 | } |
335 | |
336 | lck_rw_lock_shared(lck: &in6_ifaddr_rwlock); |
337 | addrloop: |
338 | TAILQ_FOREACH(ia, &in6_ifaddrhead, ia6_link) { |
339 | int new_scope = -1, new_matchlen = -1; |
340 | struct in6_addrpolicy *new_policy = NULL; |
341 | u_int32_t srczone = 0, osrczone, dstzone; |
342 | struct in6_addr src; |
343 | struct ifnet *ifp1 = ia->ia_ifp; |
344 | int srcrule; |
345 | |
346 | if (srcsel_debug) { |
347 | (void) inet_ntop(AF_INET6, &ia->ia_addr.sin6_addr, |
348 | s_src, sizeof(s_src)); |
349 | } |
350 | |
351 | IFA_LOCK(&ia->ia_ifa); |
352 | |
353 | /* |
354 | * Simply skip addresses reserved for CLAT46 |
355 | */ |
356 | if (!is_for_clat46 && (ia->ia6_flags & IN6_IFF_CLAT46)) { |
357 | SASEL_LOG("NEXT ia %s address on ifp1 %s skipped as it is " |
358 | "reserved for CLAT46\n" , s_src, ifp1->if_xname); |
359 | goto next; |
360 | } |
361 | |
362 | if (is_for_clat46 && !(ia->ia6_flags & IN6_IFF_CLAT46)) { |
363 | SASEL_LOG("CLAT46: NEXT ia %s address on ifp1 %s skipped as it is " |
364 | "not reserved for CLAT46\n" , s_src, ifp1->if_xname); |
365 | goto next; |
366 | } |
367 | |
368 | /* |
369 | * XXX By default we are strong end system and will |
370 | * limit candidate set of source address to the ones |
371 | * configured on the outgoing interface. |
372 | */ |
373 | if (ip6_select_src_strong_end && |
374 | ifp1 != ifp) { |
375 | SASEL_LOG("NEXT ia %s ifp1 %s address is not on outgoing " |
376 | "interface \n" , s_src, ifp1->if_xname); |
377 | goto next; |
378 | } |
379 | |
380 | /* |
381 | * We'll never take an address that breaks the scope zone |
382 | * of the destination. We also skip an address if its zone |
383 | * does not contain the outgoing interface. |
384 | * XXX: we should probably use sin6_scope_id here. |
385 | */ |
386 | if (in6_setscope(&dst, ifp1, &dstzone) || |
387 | odstzone != dstzone) { |
388 | SASEL_LOG("NEXT ia %s ifp1 %s odstzone %d != dstzone %d\n" , |
389 | s_src, ifp1->if_xname, odstzone, dstzone); |
390 | goto next; |
391 | } |
392 | src = ia->ia_addr.sin6_addr; |
393 | if (in6_setscope(&src, ifp, &osrczone) || |
394 | in6_setscope(&src, ifp1, &srczone) || |
395 | osrczone != srczone) { |
396 | SASEL_LOG("NEXT ia %s ifp1 %s osrczone %d != srczone %d\n" , |
397 | s_src, ifp1->if_xname, osrczone, srczone); |
398 | goto next; |
399 | } |
400 | /* avoid unusable addresses */ |
401 | if ((ia->ia6_flags & |
402 | (IN6_IFF_NOTREADY | IN6_IFF_ANYCAST | IN6_IFF_DETACHED))) { |
403 | SASEL_LOG("NEXT ia %s ifp1 %s ia6_flags 0x%x\n" , |
404 | s_src, ifp1->if_xname, ia->ia6_flags); |
405 | goto next; |
406 | } |
407 | if (!ip6_use_deprecated && IFA6_IS_DEPRECATED(ia, secs)) { |
408 | SASEL_LOG("NEXT ia %s ifp1 %s IFA6_IS_DEPRECATED\n" , |
409 | s_src, ifp1->if_xname); |
410 | goto next; |
411 | } |
412 | if (!nd6_optimistic_dad && |
413 | (ia->ia6_flags & IN6_IFF_OPTIMISTIC) != 0) { |
414 | SASEL_LOG("NEXT ia %s ifp1 %s IN6_IFF_OPTIMISTIC\n" , |
415 | s_src, ifp1->if_xname); |
416 | goto next; |
417 | } |
418 | /* Rule 1: Prefer same address */ |
419 | if (in6_are_addr_equal_scoped(&dst, &ia->ia_addr.sin6_addr, dstzone, srczone)) { |
420 | BREAK(IP6S_SRCRULE_1); /* there should be no better candidate */ |
421 | } |
422 | if (ia_best == NULL) { |
423 | REPLACE(IP6S_SRCRULE_0); |
424 | } |
425 | |
426 | /* Rule 2: Prefer appropriate scope */ |
427 | if (dst_scope < 0) { |
428 | dst_scope = in6_addrscope(&dst); |
429 | } |
430 | new_scope = in6_addrscope(&ia->ia_addr.sin6_addr); |
431 | if (IN6_ARE_SCOPE_CMP(best_scope, new_scope) < 0) { |
432 | if (IN6_ARE_SCOPE_CMP(best_scope, dst_scope) < 0) { |
433 | REPLACE(IP6S_SRCRULE_2); |
434 | } |
435 | NEXTSRC(IP6S_SRCRULE_2); |
436 | } else if (IN6_ARE_SCOPE_CMP(new_scope, best_scope) < 0) { |
437 | if (IN6_ARE_SCOPE_CMP(new_scope, dst_scope) < 0) { |
438 | NEXTSRC(IP6S_SRCRULE_2); |
439 | } |
440 | REPLACE(IP6S_SRCRULE_2); |
441 | } |
442 | |
443 | /* |
444 | * Rule 3: Avoid deprecated addresses. Note that the case of |
445 | * !ip6_use_deprecated is already rejected above. |
446 | */ |
447 | if (!IFA6_IS_DEPRECATED(ia_best, secs) && |
448 | IFA6_IS_DEPRECATED(ia, secs)) { |
449 | NEXTSRC(IP6S_SRCRULE_3); |
450 | } |
451 | if (IFA6_IS_DEPRECATED(ia_best, secs) && |
452 | !IFA6_IS_DEPRECATED(ia, secs)) { |
453 | REPLACE(IP6S_SRCRULE_3); |
454 | } |
455 | |
456 | /* |
457 | * RFC 4429 says that optimistic addresses are equivalent to |
458 | * deprecated addresses, so avoid them here. |
459 | */ |
460 | if ((ia_best->ia6_flags & IN6_IFF_OPTIMISTIC) == 0 && |
461 | (ia->ia6_flags & IN6_IFF_OPTIMISTIC) != 0) { |
462 | NEXTSRC(IP6S_SRCRULE_3); |
463 | } |
464 | if ((ia_best->ia6_flags & IN6_IFF_OPTIMISTIC) != 0 && |
465 | (ia->ia6_flags & IN6_IFF_OPTIMISTIC) == 0) { |
466 | REPLACE(IP6S_SRCRULE_3); |
467 | } |
468 | |
469 | /* Rule 4: Prefer home addresses */ |
470 | /* |
471 | * XXX: This is a TODO. We should probably merge the MIP6 |
472 | * case above. |
473 | */ |
474 | |
475 | /* Rule 5: Prefer outgoing interface */ |
476 | /* |
477 | * XXX By default we are strong end with source address |
478 | * selection. That means all address selection candidate |
479 | * addresses will be the ones hosted on the outgoing interface |
480 | * making the following check redundant. |
481 | */ |
482 | if (ip6_select_src_strong_end == 0) { |
483 | if (ia_best->ia_ifp == ifp && ia->ia_ifp != ifp) { |
484 | NEXTSRC(IP6S_SRCRULE_5); |
485 | } |
486 | if (ia_best->ia_ifp != ifp && ia->ia_ifp == ifp) { |
487 | REPLACE(IP6S_SRCRULE_5); |
488 | } |
489 | } |
490 | |
491 | /* |
492 | * Rule 5.5: Prefer addresses in a prefix advertised by the next-hop. |
493 | * If SA or SA's prefix is assigned by the selected next-hop that will |
494 | * be used to send to D and SB or SB's prefix is assigned by a different |
495 | * next-hop, then prefer SA. Similarly, if SB or SB's prefix is |
496 | * assigned by the next-hop that will be used to send to D and SA or |
497 | * SA's prefix is assigned by a different next-hop, then prefer SB. |
498 | */ |
499 | if (dr != NULL && ia_best->ia6_ndpr != ia->ia6_ndpr) { |
500 | boolean_t ia_best_has_prefix = FALSE; |
501 | boolean_t ia_has_prefix = FALSE; |
502 | struct nd_prefix ia_best_prefix = {}; |
503 | struct nd_prefix ia_prefix = {}; |
504 | struct nd_prefix *p_ia_best_prefix = NULL; |
505 | struct nd_prefix *p_ia_prefix = NULL; |
506 | |
507 | if (ia_best->ia6_ndpr) { |
508 | ia_best_prefix = *ia_best->ia6_ndpr; |
509 | } |
510 | |
511 | if (ia->ia6_ndpr) { |
512 | ia_prefix = *ia->ia6_ndpr; |
513 | } |
514 | |
515 | IFA_UNLOCK(&ia->ia_ifa); |
516 | lck_rw_done(lck: &in6_ifaddr_rwlock); |
517 | |
518 | p_ia_best_prefix = nd6_prefix_lookup(&ia_best_prefix, ND6_PREFIX_EXPIRY_UNSPEC); |
519 | p_ia_prefix = nd6_prefix_lookup(&ia_prefix, ND6_PREFIX_EXPIRY_UNSPEC); |
520 | |
521 | lck_mtx_lock(nd6_mutex); |
522 | if (p_ia_best_prefix != NULL) { |
523 | NDPR_LOCK(p_ia_best_prefix); |
524 | ia_best_has_prefix = (pfxrtr_lookup(p_ia_best_prefix, dr) != NULL); |
525 | NDPR_UNLOCK(p_ia_best_prefix); |
526 | NDPR_REMREF(p_ia_best_prefix); |
527 | } |
528 | if (p_ia_prefix != NULL) { |
529 | NDPR_LOCK(p_ia_prefix); |
530 | ia_has_prefix = (pfxrtr_lookup(p_ia_prefix, dr) != NULL); |
531 | NDPR_UNLOCK(p_ia_prefix); |
532 | NDPR_REMREF(p_ia_prefix); |
533 | } |
534 | lck_mtx_unlock(nd6_mutex); |
535 | |
536 | lck_rw_lock_shared(lck: &in6_ifaddr_rwlock); |
537 | if (genid != os_atomic_load(&in6_ifaddrlist_genid, acquire)) { |
538 | SASEL_LOG("Address list seems to have changed. Restarting source " |
539 | "address selection.\n" ); |
540 | genid = in6_ifaddrlist_genid; |
541 | /* |
542 | * We are starting from scratch. Free up the reference |
543 | * on ia_best and also reset it to NULL. |
544 | */ |
545 | ifa_remref(ifa: &ia_best->ia_ifa); |
546 | ia_best = NULL; |
547 | goto addrloop; |
548 | } |
549 | IFA_LOCK(&ia->ia_ifa); |
550 | |
551 | if (ia_best_has_prefix && !ia_has_prefix) { |
552 | NEXTSRC(IP6S_SRCRULE_5_5); |
553 | } |
554 | |
555 | if (!ia_best_has_prefix && ia_has_prefix) { |
556 | REPLACE(IP6S_SRCRULE_5_5); |
557 | } |
558 | } |
559 | |
560 | /* |
561 | * Rule 6: Prefer matching label |
562 | * Note that best_policy should be non-NULL here. |
563 | */ |
564 | if (dst_policy == NULL) { |
565 | dst_policy = in6_addrsel_lookup_policy(dstsock); |
566 | } |
567 | if (dst_policy->label != ADDR_LABEL_NOTAPP) { |
568 | new_policy = in6_addrsel_lookup_policy(&ia->ia_addr); |
569 | if (dst_policy->label == best_policy->label && |
570 | dst_policy->label != new_policy->label) { |
571 | NEXTSRC(IP6S_SRCRULE_6); |
572 | } |
573 | if (dst_policy->label != best_policy->label && |
574 | dst_policy->label == new_policy->label) { |
575 | REPLACE(IP6S_SRCRULE_6); |
576 | } |
577 | } |
578 | |
579 | /* |
580 | * Rule 7: Prefer temporary addresses. |
581 | * We allow users to reverse the logic by configuring |
582 | * a sysctl variable, so that transparency conscious users can |
583 | * always prefer stable addresses. |
584 | */ |
585 | if (!(ia_best->ia6_flags & IN6_IFF_TEMPORARY) && |
586 | (ia->ia6_flags & IN6_IFF_TEMPORARY)) { |
587 | if (hint_mask & IPV6_SRCSEL_HINT_PREFER_TMPADDR) { |
588 | REPLACE(IP6S_SRCRULE_7); |
589 | } else { |
590 | NEXTSRC(IP6S_SRCRULE_7); |
591 | } |
592 | } |
593 | if ((ia_best->ia6_flags & IN6_IFF_TEMPORARY) && |
594 | !(ia->ia6_flags & IN6_IFF_TEMPORARY)) { |
595 | if (hint_mask & IPV6_SRCSEL_HINT_PREFER_TMPADDR) { |
596 | NEXTSRC(IP6S_SRCRULE_7); |
597 | } else { |
598 | REPLACE(IP6S_SRCRULE_7); |
599 | } |
600 | } |
601 | |
602 | /* |
603 | * Rule 7x: prefer addresses on alive interfaces. |
604 | * This is a KAME specific rule. |
605 | */ |
606 | if ((ia_best->ia_ifp->if_flags & IFF_UP) && |
607 | !(ia->ia_ifp->if_flags & IFF_UP)) { |
608 | NEXTSRC(IP6S_SRCRULE_7x); |
609 | } |
610 | if (!(ia_best->ia_ifp->if_flags & IFF_UP) && |
611 | (ia->ia_ifp->if_flags & IFF_UP)) { |
612 | REPLACE(IP6S_SRCRULE_7x); |
613 | } |
614 | |
615 | /* |
616 | * Rule 8: Use longest matching prefix. |
617 | */ |
618 | new_matchlen = in6_matchlen(&ia->ia_addr.sin6_addr, &dst); |
619 | if (best_matchlen < new_matchlen) { |
620 | REPLACE(IP6S_SRCRULE_8); |
621 | } |
622 | if (new_matchlen < best_matchlen) { |
623 | NEXTSRC(IP6S_SRCRULE_8); |
624 | } |
625 | |
626 | /* |
627 | * Last resort: just keep the current candidate. |
628 | * Or, do we need more rules? |
629 | */ |
630 | if (ifp1 != ifp && (ifp1->if_eflags & IFEF_EXPENSIVE) && |
631 | ip6_select_src_expensive_secondary_if == 0) { |
632 | SASEL_LOG("NEXT ia %s ifp1 %s IFEF_EXPENSIVE\n" , |
633 | s_src, ifp1->if_xname); |
634 | ip6stat.ip6s_sources_skip_expensive_secondary_if++; |
635 | goto next; |
636 | } |
637 | SASEL_LOG("NEXT ia %s ifp1 %s last resort\n" , |
638 | s_src, ifp1->if_xname); |
639 | IFA_UNLOCK(&ia->ia_ifa); |
640 | continue; |
641 | |
642 | replace: |
643 | /* |
644 | * Ignore addresses on secondary interfaces that are marked |
645 | * expensive |
646 | */ |
647 | if (ifp1 != ifp && (ifp1->if_eflags & IFEF_EXPENSIVE) && |
648 | ip6_select_src_expensive_secondary_if == 0) { |
649 | SASEL_LOG("NEXT ia %s ifp1 %s IFEF_EXPENSIVE\n" , |
650 | s_src, ifp1->if_xname); |
651 | ip6stat.ip6s_sources_skip_expensive_secondary_if++; |
652 | goto next; |
653 | } |
654 | bestrule = srcrule; |
655 | best_scope = (new_scope >= 0 ? new_scope : |
656 | in6_addrscope(&ia->ia_addr.sin6_addr)); |
657 | best_policy = (new_policy ? new_policy : |
658 | in6_addrsel_lookup_policy(&ia->ia_addr)); |
659 | best_matchlen = (new_matchlen >= 0 ? new_matchlen : |
660 | in6_matchlen(&ia->ia_addr.sin6_addr, &dst)); |
661 | SASEL_LOG("NEXT ia %s ifp1 %s best_scope %d new_scope %d dst_scope %d\n" , |
662 | s_src, ifp1->if_xname, best_scope, new_scope, dst_scope); |
663 | ifa_addref(ifa: &ia->ia_ifa); /* for ia_best */ |
664 | IFA_UNLOCK(&ia->ia_ifa); |
665 | if (ia_best != NULL) { |
666 | ifa_remref(ifa: &ia_best->ia_ifa); |
667 | } |
668 | ia_best = ia; |
669 | continue; |
670 | |
671 | next: |
672 | IFA_UNLOCK(&ia->ia_ifa); |
673 | continue; |
674 | |
675 | out: |
676 | ifa_addref(ifa: &ia->ia_ifa); /* for ia_best */ |
677 | IFA_UNLOCK(&ia->ia_ifa); |
678 | if (ia_best != NULL) { |
679 | ifa_remref(ifa: &ia_best->ia_ifa); |
680 | } |
681 | ia_best = ia; |
682 | break; |
683 | } |
684 | |
685 | lck_rw_done(lck: &in6_ifaddr_rwlock); |
686 | |
687 | if ((ia = ia_best) == NULL) { |
688 | if (*errorp == 0) { |
689 | *errorp = EADDRNOTAVAIL; |
690 | } |
691 | src_storage = NULL; |
692 | goto done; |
693 | } |
694 | |
695 | if (sifp != NULL) { |
696 | *sifp = ia->ia_ifa.ifa_ifp; |
697 | ifnet_reference(interface: *sifp); |
698 | } |
699 | |
700 | IFA_LOCK_SPIN(&ia->ia_ifa); |
701 | if (bestrule < IP6S_SRCRULE_COUNT) { |
702 | ip6stat.ip6s_sources_rule[bestrule]++; |
703 | } |
704 | *src_storage = satosin6(&ia->ia_addr)->sin6_addr; |
705 | IFA_UNLOCK(&ia->ia_ifa); |
706 | |
707 | if (ifapp != NULL) { |
708 | *ifapp = &ia->ia_ifa; |
709 | } else { |
710 | ifa_remref(ifa: &ia->ia_ifa); |
711 | } |
712 | |
713 | done: |
714 | if (srcsel_debug) { |
715 | (void) inet_ntop(AF_INET6, &dst, s_dst, sizeof(s_src)); |
716 | |
717 | tmp = (src_storage != NULL) ? src_storage : &in6addr_any; |
718 | (void) inet_ntop(AF_INET6, tmp, s_src, sizeof(s_src)); |
719 | |
720 | os_log(OS_LOG_DEFAULT, "%s out src %s dst %s dst_scope %d best_scope %d" , |
721 | __func__, s_src, s_dst, dst_scope, best_scope); |
722 | } |
723 | |
724 | if (dr != NULL) { |
725 | NDDR_REMREF(dr); |
726 | } |
727 | |
728 | return src_storage; |
729 | } |
730 | |
731 | /* |
732 | * Regardless of error, it will return an ifp with a reference held if the |
733 | * caller provides a non-NULL ifpp. The caller is responsible for checking |
734 | * if the returned ifp is valid and release its reference at all times. |
735 | */ |
736 | struct in6_addr * |
737 | in6_selectsrc(struct sockaddr_in6 *dstsock, struct ip6_pktopts *opts, |
738 | struct inpcb *inp, struct route_in6 *ro, |
739 | struct ifnet **ifpp, struct in6_addr *src_storage, unsigned int ifscope, |
740 | int *errorp) |
741 | { |
742 | struct ifnet *ifp = NULL; |
743 | struct in6_pktinfo *pi = NULL; |
744 | struct ip6_moptions *mopts; |
745 | struct ip6_out_args ip6oa; |
746 | boolean_t inp_debug = FALSE; |
747 | uint32_t hint_mask = 0; |
748 | int prefer_tempaddr = 0; |
749 | struct ifnet *sifp = NULL; |
750 | |
751 | bzero(s: &ip6oa, n: sizeof(ip6oa)); |
752 | ip6oa.ip6oa_boundif = ifscope; |
753 | ip6oa.ip6oa_flags = IP6OAF_SELECT_SRCIF; |
754 | ip6oa.ip6oa_sotc = SO_TC_UNSPEC; |
755 | ip6oa.ip6oa_netsvctype = _NET_SERVICE_TYPE_UNSPEC; |
756 | |
757 | *errorp = 0; |
758 | if (ifpp != NULL) { |
759 | *ifpp = NULL; |
760 | } |
761 | |
762 | if (inp != NULL) { |
763 | inp_debug = SASEL_DO_DBG(inp); |
764 | mopts = inp->in6p_moptions; |
765 | if (INP_NO_CELLULAR(inp)) { |
766 | ip6oa.ip6oa_flags |= IP6OAF_NO_CELLULAR; |
767 | } |
768 | if (INP_NO_EXPENSIVE(inp)) { |
769 | ip6oa.ip6oa_flags |= IP6OAF_NO_EXPENSIVE; |
770 | } |
771 | if (INP_NO_CONSTRAINED(inp)) { |
772 | ip6oa.ip6oa_flags |= IP6OAF_NO_CONSTRAINED; |
773 | } |
774 | if (INP_AWDL_UNRESTRICTED(inp)) { |
775 | ip6oa.ip6oa_flags |= IP6OAF_AWDL_UNRESTRICTED; |
776 | } |
777 | if (INP_INTCOPROC_ALLOWED(inp)) { |
778 | ip6oa.ip6oa_flags |= IP6OAF_INTCOPROC_ALLOWED; |
779 | } |
780 | if (INP_MANAGEMENT_ALLOWED(inp)) { |
781 | ip6oa.ip6oa_flags |= IP6OAF_MANAGEMENT_ALLOWED; |
782 | } |
783 | } else { |
784 | mopts = NULL; |
785 | /* Allow the kernel to retransmit packets. */ |
786 | ip6oa.ip6oa_flags |= IP6OAF_INTCOPROC_ALLOWED | |
787 | IP6OAF_AWDL_UNRESTRICTED | IP6OAF_MANAGEMENT_ALLOWED; |
788 | } |
789 | |
790 | if (ip6oa.ip6oa_boundif != IFSCOPE_NONE) { |
791 | ip6oa.ip6oa_flags |= IP6OAF_BOUND_IF; |
792 | } |
793 | |
794 | /* |
795 | * If the source address is explicitly specified by the caller, |
796 | * check if the requested source address is indeed a unicast address |
797 | * assigned to the node, and can be used as the packet's source |
798 | * address. If everything is okay, use the address as source. |
799 | */ |
800 | if (opts && (pi = opts->ip6po_pktinfo) && |
801 | !IN6_IS_ADDR_UNSPECIFIED(&pi->ipi6_addr)) { |
802 | struct sockaddr_in6 srcsock; |
803 | struct in6_ifaddr *ia6; |
804 | |
805 | /* get the outgoing interface */ |
806 | if ((*errorp = in6_selectif(dstsock, opts, mopts, ro, &ip6oa, |
807 | &ifp)) != 0) { |
808 | src_storage = NULL; |
809 | goto done; |
810 | } |
811 | |
812 | /* |
813 | * determine the appropriate zone id of the source based on |
814 | * the zone of the destination and the outgoing interface. |
815 | * If the specified address is ambiguous wrt the scope zone, |
816 | * the interface must be specified; otherwise, ifa_ifwithaddr() |
817 | * will fail matching the address. |
818 | */ |
819 | SOCKADDR_ZERO(&srcsock, sizeof(srcsock)); |
820 | srcsock.sin6_family = AF_INET6; |
821 | srcsock.sin6_len = sizeof(srcsock); |
822 | srcsock.sin6_addr = pi->ipi6_addr; |
823 | if (ifp != NULL) { |
824 | *errorp = in6_setscope(&srcsock.sin6_addr, ifp, IN6_NULL_IF_EMBEDDED_SCOPE(&srcsock.sin6_scope_id)); |
825 | if (*errorp != 0) { |
826 | src_storage = NULL; |
827 | goto done; |
828 | } |
829 | } |
830 | ia6 = (struct in6_ifaddr *)ifa_ifwithaddr(SA(&srcsock)); |
831 | if (ia6 == NULL) { |
832 | *errorp = EADDRNOTAVAIL; |
833 | src_storage = NULL; |
834 | goto done; |
835 | } |
836 | IFA_LOCK_SPIN(&ia6->ia_ifa); |
837 | if ((ia6->ia6_flags & (IN6_IFF_ANYCAST | IN6_IFF_NOTREADY | IN6_IFF_CLAT46)) || |
838 | (inp && inp_restricted_send(inp, ia6->ia_ifa.ifa_ifp))) { |
839 | IFA_UNLOCK(&ia6->ia_ifa); |
840 | ifa_remref(ifa: &ia6->ia_ifa); |
841 | *errorp = EHOSTUNREACH; |
842 | src_storage = NULL; |
843 | goto done; |
844 | } |
845 | |
846 | *src_storage = satosin6(&ia6->ia_addr)->sin6_addr; |
847 | IFA_UNLOCK(&ia6->ia_ifa); |
848 | ifa_remref(ifa: &ia6->ia_ifa); |
849 | goto done; |
850 | } |
851 | |
852 | /* |
853 | * Otherwise, if the socket has already bound the source, just use it. |
854 | */ |
855 | if (inp != NULL && !IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr)) { |
856 | src_storage = &inp->in6p_laddr; |
857 | goto done; |
858 | } |
859 | |
860 | /* |
861 | * If the address is not specified, choose the best one based on |
862 | * the outgoing interface and the destination address. |
863 | */ |
864 | /* get the outgoing interface */ |
865 | if ((*errorp = in6_selectif(dstsock, opts, mopts, ro, &ip6oa, |
866 | &ifp)) != 0) { |
867 | src_storage = NULL; |
868 | goto done; |
869 | } |
870 | |
871 | VERIFY(ifp != NULL); |
872 | |
873 | if (opts == NULL || |
874 | opts->ip6po_prefer_tempaddr == IP6PO_TEMPADDR_SYSTEM) { |
875 | prefer_tempaddr = ip6_prefer_tempaddr; |
876 | } else if (opts->ip6po_prefer_tempaddr == IP6PO_TEMPADDR_NOTPREFER) { |
877 | prefer_tempaddr = 0; |
878 | } else { |
879 | prefer_tempaddr = 1; |
880 | } |
881 | |
882 | if (prefer_tempaddr) { |
883 | hint_mask |= IPV6_SRCSEL_HINT_PREFER_TMPADDR; |
884 | } |
885 | |
886 | if (in6_selectsrc_core(dstsock, hint_mask, ifp, srcsel_debug: inp_debug, src_storage, |
887 | sifp: &sifp, errorp, NULL, ro, FALSE) == NULL) { |
888 | src_storage = NULL; |
889 | goto done; |
890 | } |
891 | |
892 | VERIFY(sifp != NULL); |
893 | |
894 | if (inp && inp_restricted_send(inp, sifp)) { |
895 | src_storage = NULL; |
896 | *errorp = EHOSTUNREACH; |
897 | ifnet_release(interface: sifp); |
898 | goto done; |
899 | } else { |
900 | ifnet_release(interface: sifp); |
901 | } |
902 | |
903 | done: |
904 | if (ifpp != NULL) { |
905 | /* if ifp is non-NULL, refcnt held in in6_selectif() */ |
906 | *ifpp = ifp; |
907 | } else if (ifp != NULL) { |
908 | ifnet_release(interface: ifp); |
909 | } |
910 | return src_storage; |
911 | } |
912 | |
913 | /* |
914 | * Given a source IPv6 address (and route, if available), determine the best |
915 | * interface to send the packet from. Checking for (and updating) the |
916 | * ROF_SRCIF_SELECTED flag in the pcb-supplied route placeholder is done |
917 | * without any locks, based on the assumption that in the event this is |
918 | * called from ip6_output(), the output operation is single-threaded per-pcb, |
919 | * i.e. for any given pcb there can only be one thread performing output at |
920 | * the IPv6 layer. |
921 | * |
922 | * This routine is analogous to in_selectsrcif() for IPv4. Regardless of |
923 | * error, it will return an ifp with a reference held if the caller provides |
924 | * a non-NULL retifp. The caller is responsible for checking if the |
925 | * returned ifp is valid and release its reference at all times. |
926 | * |
927 | * clone - meaningful only for bsdi and freebsd |
928 | */ |
929 | static int |
930 | selectroute(struct sockaddr_in6 *srcsock, struct sockaddr_in6 *dstsock, |
931 | struct ip6_pktopts *opts, struct ip6_moptions *mopts, |
932 | struct in6_ifaddr **retsrcia, struct route_in6 *ro, |
933 | struct ifnet **retifp, struct rtentry **retrt, int clone, |
934 | int norouteok, struct ip6_out_args *ip6oa) |
935 | { |
936 | int error = 0; |
937 | struct ifnet *ifp = NULL, *ifp0 = NULL; |
938 | struct route_in6 *route = NULL; |
939 | struct sockaddr_in6 *sin6_next; |
940 | struct in6_pktinfo *pi = NULL; |
941 | struct in6_addr *dst = &dstsock->sin6_addr; |
942 | struct ifaddr *ifa = NULL; |
943 | char s_src[MAX_IPv6_STR_LEN], s_dst[MAX_IPv6_STR_LEN]; |
944 | boolean_t select_srcif, proxied_ifa = FALSE, local_dst = FALSE; |
945 | unsigned int ifscope = ((ip6oa != NULL) ? |
946 | ip6oa->ip6oa_boundif : IFSCOPE_NONE); |
947 | boolean_t is_direct = FALSE; |
948 | |
949 | if (retifp != NULL) { |
950 | *retifp = NULL; |
951 | } |
952 | |
953 | if (retrt != NULL) { |
954 | *retrt = NULL; |
955 | } |
956 | |
957 | if (ip6_select_srcif_debug) { |
958 | struct in6_addr src; |
959 | src = (srcsock != NULL) ? srcsock->sin6_addr : in6addr_any; |
960 | (void) inet_ntop(AF_INET6, &src, s_src, sizeof(s_src)); |
961 | (void) inet_ntop(AF_INET6, dst, s_dst, sizeof(s_dst)); |
962 | } |
963 | |
964 | /* |
965 | * If the destination address is UNSPECIFIED addr, bail out. |
966 | */ |
967 | if (IN6_IS_ADDR_UNSPECIFIED(dst)) { |
968 | error = EHOSTUNREACH; |
969 | goto done; |
970 | } |
971 | |
972 | /* |
973 | * Perform source interface selection if Scoped Routing |
974 | * is enabled and a source address that isn't unspecified. |
975 | */ |
976 | select_srcif = (srcsock != NULL && |
977 | !IN6_IS_ADDR_UNSPECIFIED(&srcsock->sin6_addr)); |
978 | |
979 | /* |
980 | * For scoped routing, if interface scope is 0 or src/dst addr is linklocal |
981 | * or dst addr is multicast, source interface selection should be performed even |
982 | * if the destination is directly reachable. |
983 | */ |
984 | if (ifscope != IFSCOPE_NONE && |
985 | !(srcsock != NULL && IN6_IS_ADDR_LINKLOCAL(&srcsock->sin6_addr)) && |
986 | !IN6_IS_ADDR_MULTICAST(dst) && !IN6_IS_ADDR_LINKLOCAL(dst)) { |
987 | struct rtentry *temp_rt = NULL; |
988 | |
989 | lck_mtx_lock(rnh_lock); |
990 | temp_rt = rt_lookup(TRUE, SA(dstsock), |
991 | NULL, rt_tables[AF_INET6], ifscope); |
992 | lck_mtx_unlock(rnh_lock); |
993 | |
994 | /* |
995 | * If the destination is directly reachable, relax |
996 | * the behavior around select_srcif, i.e. don't force |
997 | * the packet to go out from the interface that is hosting |
998 | * the source address. |
999 | * It happens when we share v6 with NAT66 and want |
1000 | * the external interface's v6 address to be reachable |
1001 | * to the clients we are sharing v6 connectivity with |
1002 | * using NAT. |
1003 | */ |
1004 | if (temp_rt != NULL) { |
1005 | if ((temp_rt->rt_flags & RTF_GATEWAY) == 0) { |
1006 | select_srcif = FALSE; |
1007 | is_direct = TRUE; |
1008 | } |
1009 | rtfree(temp_rt); |
1010 | } |
1011 | } |
1012 | |
1013 | if (ip6_select_srcif_debug) { |
1014 | os_log(OS_LOG_DEFAULT, "%s src %s dst %s ifscope %d " |
1015 | "is_direct %d select_srcif %d" , |
1016 | __func__, s_src, s_dst, ifscope, is_direct, select_srcif); |
1017 | } |
1018 | |
1019 | /* If the caller specified the outgoing interface explicitly, use it */ |
1020 | if (opts != NULL && (pi = opts->ip6po_pktinfo) != NULL && |
1021 | pi->ipi6_ifindex != 0) { |
1022 | /* |
1023 | * If IPV6_PKTINFO takes precedence over IPV6_BOUND_IF. |
1024 | */ |
1025 | ifscope = pi->ipi6_ifindex; |
1026 | ifnet_head_lock_shared(); |
1027 | /* ifp may be NULL if detached or out of range */ |
1028 | ifp = ifp0 = |
1029 | ((ifscope <= if_index) ? ifindex2ifnet[ifscope] : NULL); |
1030 | ifnet_head_done(); |
1031 | if (norouteok || retrt == NULL || IN6_IS_ADDR_MC_LINKLOCAL(dst)) { |
1032 | /* |
1033 | * We do not have to check or get the route for |
1034 | * multicast. If the caller didn't ask/care for |
1035 | * the route and we have no interface to use, |
1036 | * it's an error. |
1037 | */ |
1038 | if (ifp == NULL) { |
1039 | error = EHOSTUNREACH; |
1040 | } |
1041 | goto done; |
1042 | } else { |
1043 | goto getsrcif; |
1044 | } |
1045 | } |
1046 | |
1047 | /* |
1048 | * If the destination address is a multicast address and the outgoing |
1049 | * interface for the address is specified by the caller, use it. |
1050 | */ |
1051 | if (IN6_IS_ADDR_MULTICAST(dst) && mopts != NULL) { |
1052 | IM6O_LOCK(mopts); |
1053 | ifp = ifp0 = mopts->im6o_multicast_ifp; |
1054 | if (ifp != NULL && IN6_IS_ADDR_MC_LINKLOCAL(dst)) { |
1055 | IM6O_UNLOCK(mopts); |
1056 | goto done; /* we don't need a route for link-local multicast */ |
1057 | } |
1058 | IM6O_UNLOCK(mopts); |
1059 | } |
1060 | |
1061 | getsrcif: |
1062 | /* |
1063 | * If the outgoing interface was not set via IPV6_BOUND_IF or |
1064 | * IPV6_PKTINFO, use the scope ID in the destination address. |
1065 | */ |
1066 | if (ifscope == IFSCOPE_NONE) { |
1067 | ifscope = dstsock->sin6_scope_id; |
1068 | } |
1069 | |
1070 | /* |
1071 | * Perform source interface selection; the source IPv6 address |
1072 | * must belong to one of the addresses of the interface used |
1073 | * by the route. For performance reasons, do this only if |
1074 | * there is no route, or if the routing table has changed, |
1075 | * or if we haven't done source interface selection on this |
1076 | * route (for this PCB instance) before. |
1077 | */ |
1078 | if (!select_srcif) { |
1079 | goto getroute; |
1080 | } else if (!ROUTE_UNUSABLE(ro) && ro->ro_srcia != NULL && |
1081 | (ro->ro_flags & ROF_SRCIF_SELECTED)) { |
1082 | if (ro->ro_rt->rt_ifp->if_flags & IFF_LOOPBACK) { |
1083 | local_dst = TRUE; |
1084 | } |
1085 | ifa = ro->ro_srcia; |
1086 | ifa_addref(ifa); /* for caller */ |
1087 | goto getroute; |
1088 | } |
1089 | |
1090 | /* |
1091 | * Given the source IPv6 address, find a suitable source interface |
1092 | * to use for transmission; if a scope ID has been specified, |
1093 | * optimize the search by looking at the addresses only for that |
1094 | * interface. This is still suboptimal, however, as we need to |
1095 | * traverse the per-interface list. |
1096 | */ |
1097 | if (ifscope != IFSCOPE_NONE || (ro != NULL && ro->ro_rt != NULL)) { |
1098 | unsigned int scope = ifscope; |
1099 | struct ifnet *rt_ifp; |
1100 | |
1101 | rt_ifp = (ro->ro_rt != NULL) ? ro->ro_rt->rt_ifp : NULL; |
1102 | |
1103 | /* |
1104 | * If no scope is specified and the route is stale (pointing |
1105 | * to a defunct interface) use the current primary interface; |
1106 | * this happens when switching between interfaces configured |
1107 | * with the same IPv6 address. Otherwise pick up the scope |
1108 | * information from the route; the ULP may have looked up a |
1109 | * correct route and we just need to verify it here and mark |
1110 | * it with the ROF_SRCIF_SELECTED flag below. |
1111 | */ |
1112 | if (scope == IFSCOPE_NONE) { |
1113 | scope = rt_ifp->if_index; |
1114 | if (scope != get_primary_ifscope(AF_INET6) && |
1115 | ROUTE_UNUSABLE(ro)) { |
1116 | scope = get_primary_ifscope(AF_INET6); |
1117 | } |
1118 | } |
1119 | |
1120 | ifa = (struct ifaddr *) |
1121 | ifa_foraddr6_scoped(&srcsock->sin6_addr, scope); |
1122 | |
1123 | /* |
1124 | * If we are forwarding and proxying prefix(es), see if the |
1125 | * source address is one of ours and is a proxied address; |
1126 | * if so, use it. |
1127 | */ |
1128 | if (ifa == NULL && ip6_forwarding && nd6_prproxy) { |
1129 | ifa = (struct ifaddr *) |
1130 | ifa_foraddr6(&srcsock->sin6_addr); |
1131 | if (ifa != NULL && !(proxied_ifa = |
1132 | nd6_prproxy_ifaddr((struct in6_ifaddr *)ifa))) { |
1133 | ifa_remref(ifa); |
1134 | ifa = NULL; |
1135 | } |
1136 | } |
1137 | |
1138 | if (ip6_select_srcif_debug && ifa != NULL) { |
1139 | if (ro->ro_rt != NULL) { |
1140 | os_log(OS_LOG_DEFAULT, "%s %s->%s ifscope %d->%d ifa_if %s " |
1141 | "ro_if %s" , |
1142 | __func__, |
1143 | s_src, s_dst, ifscope, |
1144 | scope, if_name(ifa->ifa_ifp), |
1145 | if_name(rt_ifp)); |
1146 | } else { |
1147 | os_log(OS_LOG_DEFAULT, "%s %s->%s ifscope %d->%d ifa_if %s" , |
1148 | __func__, |
1149 | s_src, s_dst, ifscope, scope, |
1150 | if_name(ifa->ifa_ifp)); |
1151 | } |
1152 | } |
1153 | } |
1154 | |
1155 | /* |
1156 | * Slow path; search for an interface having the corresponding source |
1157 | * IPv6 address if the scope was not specified by the caller, and: |
1158 | * |
1159 | * 1) There currently isn't any route, or, |
1160 | * 2) The interface used by the route does not own that source |
1161 | * IPv6 address; in this case, the route will get blown away |
1162 | * and we'll do a more specific scoped search using the newly |
1163 | * found interface. |
1164 | */ |
1165 | if (ifa == NULL && ifscope == IFSCOPE_NONE) { |
1166 | struct ifaddr *ifadst; |
1167 | |
1168 | /* Check if the destination address is one of ours */ |
1169 | ifadst = (struct ifaddr *)ifa_foraddr6(&dstsock->sin6_addr); |
1170 | if (ifadst != NULL) { |
1171 | local_dst = TRUE; |
1172 | ifa_remref(ifa: ifadst); |
1173 | } |
1174 | |
1175 | ifa = (struct ifaddr *)ifa_foraddr6(&srcsock->sin6_addr); |
1176 | |
1177 | if (ip6_select_srcif_debug && ifa != NULL) { |
1178 | os_log(OS_LOG_DEFAULT, "%s %s->%s ifscope %d ifa_if %s" , |
1179 | __func__, |
1180 | s_src, s_dst, ifscope, if_name(ifa->ifa_ifp)); |
1181 | } else if (ip6_select_srcif_debug) { |
1182 | os_log(OS_LOG_DEFAULT, "%s %s->%s ifscope %d ifa_if NULL" , |
1183 | __func__, |
1184 | s_src, s_dst, ifscope); |
1185 | } |
1186 | } |
1187 | |
1188 | getroute: |
1189 | if (ifa != NULL && !proxied_ifa && !local_dst) { |
1190 | ifscope = ifa->ifa_ifp->if_index; |
1191 | } |
1192 | |
1193 | /* |
1194 | * If the next hop address for the packet is specified by the caller, |
1195 | * use it as the gateway. |
1196 | */ |
1197 | if (opts != NULL && opts->ip6po_nexthop != NULL) { |
1198 | struct route_in6 *ron; |
1199 | |
1200 | sin6_next = satosin6(opts->ip6po_nexthop); |
1201 | |
1202 | /* at this moment, we only support AF_INET6 next hops */ |
1203 | if (sin6_next->sin6_family != AF_INET6) { |
1204 | error = EAFNOSUPPORT; /* or should we proceed? */ |
1205 | goto done; |
1206 | } |
1207 | |
1208 | /* |
1209 | * If the next hop is an IPv6 address, then the node identified |
1210 | * by that address must be a neighbor of the sending host. |
1211 | */ |
1212 | ron = &opts->ip6po_nextroute; |
1213 | if (ron->ro_rt != NULL) { |
1214 | RT_LOCK(ron->ro_rt); |
1215 | } |
1216 | if (ROUTE_UNUSABLE(ron) || (ron->ro_rt != NULL && |
1217 | (!(ron->ro_rt->rt_flags & RTF_LLINFO) || |
1218 | (select_srcif && (ifa == NULL || |
1219 | (ifa->ifa_ifp != ron->ro_rt->rt_ifp && !proxied_ifa))))) || |
1220 | !in6_are_addr_equal_scoped(&satosin6(&ron->ro_dst)->sin6_addr, |
1221 | &sin6_next->sin6_addr, ron->ro_rt->rt_ifp->if_index, sin6_next->sin6_scope_id)) { |
1222 | if (ron->ro_rt != NULL) { |
1223 | RT_UNLOCK(ron->ro_rt); |
1224 | } |
1225 | |
1226 | ROUTE_RELEASE(ron); |
1227 | *satosin6(&ron->ro_dst) = *sin6_next; |
1228 | } |
1229 | if (ron->ro_rt == NULL) { |
1230 | rtalloc_scoped((struct route *)ron, ifscope); |
1231 | if (ron->ro_rt != NULL) { |
1232 | RT_LOCK(ron->ro_rt); |
1233 | } |
1234 | if (ROUTE_UNUSABLE(ron) || |
1235 | !(ron->ro_rt->rt_flags & RTF_LLINFO) || |
1236 | !in6_are_addr_equal_scoped(&satosin6(rt_key(ron->ro_rt))-> |
1237 | sin6_addr, &sin6_next->sin6_addr, ron->ro_rt->rt_ifp->if_index, sin6_next->sin6_scope_id)) { |
1238 | if (ron->ro_rt != NULL) { |
1239 | RT_UNLOCK(ron->ro_rt); |
1240 | } |
1241 | |
1242 | ROUTE_RELEASE(ron); |
1243 | error = EHOSTUNREACH; |
1244 | goto done; |
1245 | } |
1246 | } |
1247 | route = ron; |
1248 | ifp = ifp0 = ron->ro_rt->rt_ifp; |
1249 | |
1250 | /* |
1251 | * When cloning is required, try to allocate a route to the |
1252 | * destination so that the caller can store path MTU |
1253 | * information. |
1254 | */ |
1255 | if (!clone) { |
1256 | if (select_srcif) { |
1257 | /* Keep the route locked */ |
1258 | goto validateroute; |
1259 | } |
1260 | RT_UNLOCK(ron->ro_rt); |
1261 | goto done; |
1262 | } |
1263 | RT_UNLOCK(ron->ro_rt); |
1264 | } |
1265 | |
1266 | /* |
1267 | * Use a cached route if it exists and is valid, else try to allocate |
1268 | * a new one. Note that we should check the address family of the |
1269 | * cached destination, in case of sharing the cache with IPv4. |
1270 | */ |
1271 | if (ro == NULL) { |
1272 | goto done; |
1273 | } |
1274 | if (ro->ro_rt != NULL) { |
1275 | RT_LOCK_SPIN(ro->ro_rt); |
1276 | } |
1277 | if (ROUTE_UNUSABLE(ro) || (ro->ro_rt != NULL && |
1278 | (satosin6(&ro->ro_dst)->sin6_family != AF_INET6 || |
1279 | !in6_are_addr_equal_scoped(&satosin6(&ro->ro_dst)->sin6_addr, dst, ro->ro_rt->rt_ifp->if_index, dstsock->sin6_scope_id) || |
1280 | (select_srcif && (ifa == NULL || |
1281 | (ifa->ifa_ifp != ro->ro_rt->rt_ifp && !proxied_ifa)))))) { |
1282 | if (ro->ro_rt != NULL) { |
1283 | RT_UNLOCK(ro->ro_rt); |
1284 | } |
1285 | |
1286 | ROUTE_RELEASE(ro); |
1287 | } |
1288 | if (ro->ro_rt == NULL) { |
1289 | struct sockaddr_in6 *sa6; |
1290 | |
1291 | /* No route yet, so try to acquire one */ |
1292 | SOCKADDR_ZERO(&ro->ro_dst, sizeof(struct sockaddr_in6)); |
1293 | sa6 = SIN6(&ro->ro_dst); |
1294 | sa6->sin6_family = AF_INET6; |
1295 | sa6->sin6_len = sizeof(struct sockaddr_in6); |
1296 | sa6->sin6_addr = *dst; |
1297 | if (IN6_IS_ADDR_MC_LINKLOCAL(dst)) { |
1298 | ro->ro_rt = rtalloc1_scoped( |
1299 | SA(&((struct route *)ro)->ro_dst), 0, 0, ifscope); |
1300 | } else { |
1301 | rtalloc_scoped((struct route *)ro, ifscope); |
1302 | } |
1303 | if (ro->ro_rt != NULL) { |
1304 | RT_LOCK_SPIN(ro->ro_rt); |
1305 | } |
1306 | } |
1307 | |
1308 | /* |
1309 | * Do not care about the result if we have the nexthop |
1310 | * explicitly specified (in case we're asked to clone.) |
1311 | */ |
1312 | if (opts != NULL && opts->ip6po_nexthop != NULL) { |
1313 | if (ro->ro_rt != NULL) { |
1314 | RT_UNLOCK(ro->ro_rt); |
1315 | } |
1316 | goto done; |
1317 | } |
1318 | |
1319 | if (ro->ro_rt != NULL) { |
1320 | RT_LOCK_ASSERT_HELD(ro->ro_rt); |
1321 | ifp = ifp0 = ro->ro_rt->rt_ifp; |
1322 | } else { |
1323 | error = EHOSTUNREACH; |
1324 | } |
1325 | route = ro; |
1326 | |
1327 | validateroute: |
1328 | if (select_srcif) { |
1329 | boolean_t has_route = (route != NULL && route->ro_rt != NULL); |
1330 | boolean_t srcif_selected = FALSE; |
1331 | |
1332 | if (has_route) { |
1333 | RT_LOCK_ASSERT_HELD(route->ro_rt); |
1334 | } |
1335 | /* |
1336 | * If there is a non-loopback route with the wrong interface, |
1337 | * or if there is no interface configured with such an address, |
1338 | * blow it away. Except for local/loopback, we look for one |
1339 | * with a matching interface scope/index. |
1340 | */ |
1341 | if (has_route && (ifa == NULL || |
1342 | (ifa->ifa_ifp != ifp && ifp != lo_ifp) || |
1343 | !(route->ro_rt->rt_flags & RTF_UP))) { |
1344 | /* |
1345 | * If the destination address belongs to a proxied |
1346 | * prefix, relax the requirement and allow the packet |
1347 | * to come out of the proxy interface with the source |
1348 | * address of the real interface. |
1349 | */ |
1350 | if (ifa != NULL && proxied_ifa && |
1351 | (route->ro_rt->rt_flags & (RTF_UP | RTF_PROXY)) == |
1352 | (RTF_UP | RTF_PROXY)) { |
1353 | srcif_selected = TRUE; |
1354 | } else { |
1355 | if (ip6_select_srcif_debug) { |
1356 | if (ifa != NULL) { |
1357 | os_log(OS_LOG_DEFAULT, |
1358 | "%s->%s ifscope %d " |
1359 | "ro_if %s != ifa_if %s " |
1360 | "(cached route cleared)" , |
1361 | s_src, s_dst, |
1362 | ifscope, if_name(ifp), |
1363 | if_name(ifa->ifa_ifp)); |
1364 | } else { |
1365 | os_log(OS_LOG_DEFAULT, |
1366 | "%s->%s ifscope %d " |
1367 | "ro_if %s (no ifa_if " |
1368 | "found)" , s_src, s_dst, |
1369 | ifscope, if_name(ifp)); |
1370 | } |
1371 | } |
1372 | RT_UNLOCK(route->ro_rt); |
1373 | ROUTE_RELEASE(route); |
1374 | error = EHOSTUNREACH; |
1375 | /* Undo the settings done above */ |
1376 | route = NULL; |
1377 | ifp = NULL; /* ditch ifp; keep ifp0 */ |
1378 | has_route = FALSE; |
1379 | } |
1380 | } else if (has_route) { |
1381 | srcif_selected = TRUE; |
1382 | } |
1383 | |
1384 | if (srcif_selected) { |
1385 | VERIFY(has_route); |
1386 | if (ifa != route->ro_srcia || |
1387 | !(route->ro_flags & ROF_SRCIF_SELECTED)) { |
1388 | RT_CONVERT_LOCK(route->ro_rt); |
1389 | if (ifa != NULL) { |
1390 | ifa_addref(ifa); /* for route_in6 */ |
1391 | } |
1392 | if (route->ro_srcia != NULL) { |
1393 | ifa_remref(ifa: route->ro_srcia); |
1394 | } |
1395 | route->ro_srcia = ifa; |
1396 | route->ro_flags |= ROF_SRCIF_SELECTED; |
1397 | RT_GENID_SYNC(route->ro_rt); |
1398 | } |
1399 | RT_UNLOCK(route->ro_rt); |
1400 | } |
1401 | } else { |
1402 | if (ro->ro_rt != NULL) { |
1403 | RT_UNLOCK(ro->ro_rt); |
1404 | } |
1405 | if (ifp != NULL && opts != NULL && |
1406 | opts->ip6po_pktinfo != NULL && |
1407 | opts->ip6po_pktinfo->ipi6_ifindex != 0) { |
1408 | /* |
1409 | * Check if the outgoing interface conflicts with the |
1410 | * interface specified by ipi6_ifindex (if specified). |
1411 | * Note that loopback interface is always okay. |
1412 | * (this may happen when we are sending a packet to |
1413 | * one of our own addresses.) |
1414 | */ |
1415 | if (!(ifp->if_flags & IFF_LOOPBACK) && ifp->if_index != |
1416 | opts->ip6po_pktinfo->ipi6_ifindex) { |
1417 | error = EHOSTUNREACH; |
1418 | goto done; |
1419 | } |
1420 | } |
1421 | } |
1422 | |
1423 | done: |
1424 | /* |
1425 | * Check for interface restrictions. |
1426 | */ |
1427 | #define CHECK_RESTRICTIONS(_ip6oa, _ifp) \ |
1428 | ((((_ip6oa)->ip6oa_flags & IP6OAF_NO_CELLULAR) && \ |
1429 | IFNET_IS_CELLULAR(_ifp)) || \ |
1430 | (((_ip6oa)->ip6oa_flags & IP6OAF_NO_EXPENSIVE) && \ |
1431 | IFNET_IS_EXPENSIVE(_ifp)) || \ |
1432 | (((_ip6oa)->ip6oa_flags & IP6OAF_NO_CONSTRAINED) && \ |
1433 | IFNET_IS_CONSTRAINED(_ifp)) || \ |
1434 | (!((_ip6oa)->ip6oa_flags & IP6OAF_INTCOPROC_ALLOWED) && \ |
1435 | IFNET_IS_INTCOPROC(_ifp)) || \ |
1436 | (!((_ip6oa)->ip6oa_flags & IP6OAF_AWDL_UNRESTRICTED) && \ |
1437 | IFNET_IS_AWDL_RESTRICTED(_ifp)) && \ |
1438 | (!((_ip6oa)->ip6oa_flags & IP6OAF_MANAGEMENT_ALLOWED) && \ |
1439 | IFNET_IS_MANAGEMENT(_ifp))) |
1440 | |
1441 | if (error == 0 && ip6oa != NULL && |
1442 | ((ifp && CHECK_RESTRICTIONS(ip6oa, ifp)) || |
1443 | (route && route->ro_rt && |
1444 | CHECK_RESTRICTIONS(ip6oa, route->ro_rt->rt_ifp)))) { |
1445 | if (route != NULL && route->ro_rt != NULL) { |
1446 | ROUTE_RELEASE(route); |
1447 | route = NULL; |
1448 | } |
1449 | ifp = NULL; /* ditch ifp; keep ifp0 */ |
1450 | error = EHOSTUNREACH; |
1451 | ip6oa->ip6oa_flags |= IP6OAF_R_IFDENIED; |
1452 | } |
1453 | #undef CHECK_RESTRICTIONS |
1454 | |
1455 | /* |
1456 | * If the interface is disabled for IPv6, then ENETDOWN error. |
1457 | */ |
1458 | if (error == 0 && |
1459 | ifp != NULL && (ifp->if_eflags & IFEF_IPV6_DISABLED)) { |
1460 | error = ENETDOWN; |
1461 | } |
1462 | |
1463 | if (ifp == NULL && (route == NULL || route->ro_rt == NULL)) { |
1464 | /* |
1465 | * This can happen if the caller did not pass a cached route |
1466 | * nor any other hints. We treat this case an error. |
1467 | */ |
1468 | error = EHOSTUNREACH; |
1469 | } |
1470 | if (error == EHOSTUNREACH || error == ENETDOWN) { |
1471 | ip6stat.ip6s_noroute++; |
1472 | } |
1473 | |
1474 | /* |
1475 | * We'll return ifp regardless of error, so pick it up from ifp0 |
1476 | * in case it was nullified above. Caller is responsible for |
1477 | * releasing the ifp if it is non-NULL. |
1478 | */ |
1479 | ifp = ifp0; |
1480 | if (retifp != NULL) { |
1481 | if (ifp != NULL) { |
1482 | ifnet_reference(interface: ifp); /* for caller */ |
1483 | } |
1484 | *retifp = ifp; |
1485 | } |
1486 | |
1487 | if (retsrcia != NULL) { |
1488 | if (ifa != NULL) { |
1489 | ifa_addref(ifa); /* for caller */ |
1490 | } |
1491 | *retsrcia = (struct in6_ifaddr *)ifa; |
1492 | } |
1493 | |
1494 | if (error == 0) { |
1495 | if (retrt != NULL && route != NULL) { |
1496 | *retrt = route->ro_rt; /* ro_rt may be NULL */ |
1497 | } |
1498 | } |
1499 | if (ip6_select_srcif_debug) { |
1500 | os_log(OS_LOG_DEFAULT, |
1501 | "%s %s->%s ifscope %d ifa_if %s ro_if %s (error=%d)" , |
1502 | __func__, |
1503 | s_src, s_dst, ifscope, |
1504 | (ifa != NULL) ? if_name(ifa->ifa_ifp) : "NONE" , |
1505 | (ifp != NULL) ? if_name(ifp) : "NONE" , error); |
1506 | } |
1507 | |
1508 | if (ifa != NULL) { |
1509 | ifa_remref(ifa); |
1510 | } |
1511 | |
1512 | return error; |
1513 | } |
1514 | |
1515 | /* |
1516 | * Regardless of error, it will return an ifp with a reference held if the |
1517 | * caller provides a non-NULL retifp. The caller is responsible for checking |
1518 | * if the returned ifp is valid and release its reference at all times. |
1519 | */ |
1520 | int |
1521 | in6_selectif(struct sockaddr_in6 *dstsock, struct ip6_pktopts *opts, |
1522 | struct ip6_moptions *mopts, struct route_in6 *ro, |
1523 | struct ip6_out_args *ip6oa, struct ifnet **retifp) |
1524 | { |
1525 | int err = 0; |
1526 | struct route_in6 sro; |
1527 | struct rtentry *rt = NULL; |
1528 | |
1529 | if (ro == NULL) { |
1530 | bzero(s: &sro, n: sizeof(sro)); |
1531 | ro = &sro; |
1532 | } |
1533 | |
1534 | if ((err = selectroute(NULL, dstsock, opts, mopts, NULL, ro, retifp, |
1535 | retrt: &rt, clone: 0, norouteok: 1, ip6oa)) != 0) { |
1536 | goto done; |
1537 | } |
1538 | |
1539 | /* |
1540 | * do not use a rejected or black hole route. |
1541 | * XXX: this check should be done in the L2 output routine. |
1542 | * However, if we skipped this check here, we'd see the following |
1543 | * scenario: |
1544 | * - install a rejected route for a scoped address prefix |
1545 | * (like fe80::/10) |
1546 | * - send a packet to a destination that matches the scoped prefix, |
1547 | * with ambiguity about the scope zone. |
1548 | * - pick the outgoing interface from the route, and disambiguate the |
1549 | * scope zone with the interface. |
1550 | * - ip6_output() would try to get another route with the "new" |
1551 | * destination, which may be valid. |
1552 | * - we'd see no error on output. |
1553 | * Although this may not be very harmful, it should still be confusing. |
1554 | * We thus reject the case here. |
1555 | */ |
1556 | if (rt && (rt->rt_flags & (RTF_REJECT | RTF_BLACKHOLE))) { |
1557 | err = ((rt->rt_flags & RTF_HOST) ? EHOSTUNREACH : ENETUNREACH); |
1558 | goto done; |
1559 | } |
1560 | |
1561 | /* |
1562 | * Adjust the "outgoing" interface. If we're going to loop the packet |
1563 | * back to ourselves, the ifp would be the loopback interface. |
1564 | * However, we'd rather know the interface associated to the |
1565 | * destination address (which should probably be one of our own |
1566 | * addresses.) |
1567 | */ |
1568 | if (rt != NULL && rt->rt_ifa != NULL && rt->rt_ifa->ifa_ifp != NULL && |
1569 | retifp != NULL) { |
1570 | ifnet_reference(interface: rt->rt_ifa->ifa_ifp); |
1571 | if (*retifp != NULL) { |
1572 | ifnet_release(interface: *retifp); |
1573 | } |
1574 | *retifp = rt->rt_ifa->ifa_ifp; |
1575 | } |
1576 | |
1577 | done: |
1578 | if (ro == &sro) { |
1579 | VERIFY(rt == NULL || rt == ro->ro_rt); |
1580 | ROUTE_RELEASE(ro); |
1581 | } |
1582 | |
1583 | /* |
1584 | * retifp might point to a valid ifp with a reference held; |
1585 | * caller is responsible for releasing it if non-NULL. |
1586 | */ |
1587 | return err; |
1588 | } |
1589 | |
1590 | /* |
1591 | * Regardless of error, it will return an ifp with a reference held if the |
1592 | * caller provides a non-NULL retifp. The caller is responsible for checking |
1593 | * if the returned ifp is valid and release its reference at all times. |
1594 | * |
1595 | * clone - meaningful only for bsdi and freebsd |
1596 | */ |
1597 | int |
1598 | in6_selectroute(struct sockaddr_in6 *srcsock, struct sockaddr_in6 *dstsock, |
1599 | struct ip6_pktopts *opts, struct ip6_moptions *mopts, |
1600 | struct in6_ifaddr **retsrcia, struct route_in6 *ro, struct ifnet **retifp, |
1601 | struct rtentry **retrt, int clone, struct ip6_out_args *ip6oa) |
1602 | { |
1603 | return selectroute(srcsock, dstsock, opts, mopts, retsrcia, ro, retifp, |
1604 | retrt, clone, norouteok: 0, ip6oa); |
1605 | } |
1606 | |
1607 | /* |
1608 | * Default hop limit selection. The precedence is as follows: |
1609 | * 1. Hoplimit value specified via socket option. |
1610 | * 2. (If the outgoing interface is detected) the current |
1611 | * hop limit of the interface specified by router advertisement. |
1612 | * 3. The system default hoplimit. |
1613 | */ |
1614 | uint8_t |
1615 | in6_selecthlim(struct in6pcb *in6p, struct ifnet *ifp) |
1616 | { |
1617 | if (in6p && in6p->in6p_hops >= 0) { |
1618 | return (uint8_t)in6p->in6p_hops; |
1619 | } else if (NULL != ifp) { |
1620 | uint8_t chlim; |
1621 | struct nd_ifinfo *ndi = ND_IFINFO(ifp); |
1622 | if (ndi && ndi->initialized) { |
1623 | /* access chlim without lock, for performance */ |
1624 | chlim = ndi->chlim; |
1625 | } else { |
1626 | chlim = (uint8_t)ip6_defhlim; |
1627 | } |
1628 | return chlim; |
1629 | } |
1630 | |
1631 | return (uint8_t)ip6_defhlim; |
1632 | } |
1633 | |
1634 | /* |
1635 | * XXX: this is borrowed from in6_pcbbind(). If possible, we should |
1636 | * share this function by all *bsd*... |
1637 | */ |
1638 | int |
1639 | in6_pcbsetport(struct in6_addr *laddr, struct inpcb *inp, struct proc *p, |
1640 | int locked) |
1641 | { |
1642 | struct socket *so = inp->inp_socket; |
1643 | uint16_t lport = 0, first, last, *lastport, rand_port; |
1644 | int count, error = 0, wild = 0; |
1645 | boolean_t counting_down; |
1646 | bool found, randomport; |
1647 | struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; |
1648 | kauth_cred_t cred; |
1649 | #if SKYWALK |
1650 | bool laddr_unspecified = IN6_IS_ADDR_UNSPECIFIED(laddr); |
1651 | #else |
1652 | #pragma unused(laddr) |
1653 | #endif |
1654 | if (!locked) { /* Make sure we don't run into a deadlock: 4052373 */ |
1655 | if (!lck_rw_try_lock_exclusive(lck: &pcbinfo->ipi_lock)) { |
1656 | socket_unlock(so: inp->inp_socket, refcount: 0); |
1657 | lck_rw_lock_exclusive(lck: &pcbinfo->ipi_lock); |
1658 | socket_lock(so: inp->inp_socket, refcount: 0); |
1659 | } |
1660 | |
1661 | /* |
1662 | * Check if a local port was assigned to the inp while |
1663 | * this thread was waiting for the pcbinfo lock |
1664 | */ |
1665 | if (inp->inp_lport != 0) { |
1666 | VERIFY(inp->inp_flags2 & INP2_INHASHLIST); |
1667 | lck_rw_done(lck: &pcbinfo->ipi_lock); |
1668 | |
1669 | /* |
1670 | * It is not an error if another thread allocated |
1671 | * a port |
1672 | */ |
1673 | return 0; |
1674 | } |
1675 | } |
1676 | |
1677 | /* XXX: this is redundant when called from in6_pcbbind */ |
1678 | if ((so->so_options & (SO_REUSEADDR | SO_REUSEPORT)) == 0) { |
1679 | wild = INPLOOKUP_WILDCARD; |
1680 | } |
1681 | |
1682 | randomport = (so->so_flags & SOF_BINDRANDOMPORT) > 0 || |
1683 | (so->so_type == SOCK_STREAM ? tcp_use_randomport : |
1684 | udp_use_randomport) > 0; |
1685 | |
1686 | if (inp->inp_flags & INP_HIGHPORT) { |
1687 | first = (uint16_t)ipport_hifirstauto; /* sysctl */ |
1688 | last = (uint16_t)ipport_hilastauto; |
1689 | lastport = &pcbinfo->ipi_lasthi; |
1690 | } else if (inp->inp_flags & INP_LOWPORT) { |
1691 | cred = kauth_cred_proc_ref(procp: p); |
1692 | error = priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT, flags: 0); |
1693 | kauth_cred_unref(&cred); |
1694 | if (error != 0) { |
1695 | if (!locked) { |
1696 | lck_rw_done(lck: &pcbinfo->ipi_lock); |
1697 | } |
1698 | return error; |
1699 | } |
1700 | first = (uint16_t)ipport_lowfirstauto; /* 1023 */ |
1701 | last = (uint16_t)ipport_lowlastauto; /* 600 */ |
1702 | lastport = &pcbinfo->ipi_lastlow; |
1703 | } else { |
1704 | first = (uint16_t)ipport_firstauto; /* sysctl */ |
1705 | last = (uint16_t)ipport_lastauto; |
1706 | lastport = &pcbinfo->ipi_lastport; |
1707 | } |
1708 | |
1709 | if (first == last) { |
1710 | randomport = false; |
1711 | } |
1712 | /* |
1713 | * Simple check to ensure all ports are not used up causing |
1714 | * a deadlock here. |
1715 | */ |
1716 | found = false; |
1717 | if (first > last) { |
1718 | /* counting down */ |
1719 | if (randomport) { |
1720 | read_frandom(buffer: &rand_port, numBytes: sizeof(rand_port)); |
1721 | *lastport = first - (rand_port % (first - last)); |
1722 | } |
1723 | count = first - last; |
1724 | counting_down = TRUE; |
1725 | } else { |
1726 | /* counting up */ |
1727 | if (randomport) { |
1728 | read_frandom(buffer: &rand_port, numBytes: sizeof(rand_port)); |
1729 | *lastport = first + (rand_port % (first - last)); |
1730 | } |
1731 | count = last - first; |
1732 | counting_down = FALSE; |
1733 | } |
1734 | do { |
1735 | if (count-- < 0) { /* completely used? */ |
1736 | /* |
1737 | * Undo any address bind that may have |
1738 | * occurred above. |
1739 | */ |
1740 | inp->in6p_laddr = in6addr_any; |
1741 | inp->in6p_last_outifp = NULL; |
1742 | inp->inp_lifscope = IFSCOPE_NONE; |
1743 | #if SKYWALK |
1744 | if (NETNS_TOKEN_VALID(&inp->inp_netns_token)) { |
1745 | netns_set_ifnet(token: &inp->inp_netns_token, |
1746 | NULL); |
1747 | } |
1748 | #endif /* SKYWALK */ |
1749 | if (!locked) { |
1750 | lck_rw_done(lck: &pcbinfo->ipi_lock); |
1751 | } |
1752 | return EAGAIN; |
1753 | } |
1754 | if (counting_down) { |
1755 | --*lastport; |
1756 | if (*lastport > first || *lastport < last) { |
1757 | *lastport = first; |
1758 | } |
1759 | } else { |
1760 | ++*lastport; |
1761 | if (*lastport < first || *lastport > last) { |
1762 | *lastport = first; |
1763 | } |
1764 | } |
1765 | lport = htons(*lastport); |
1766 | |
1767 | /* |
1768 | * Skip if this is a restricted port as we do not want to |
1769 | * restricted ports as ephemeral |
1770 | */ |
1771 | if (IS_RESTRICTED_IN_PORT(lport)) { |
1772 | continue; |
1773 | } |
1774 | |
1775 | found = (in6_pcblookup_local(pcbinfo, &inp->in6p_laddr, |
1776 | lport, inp->inp_lifscope, wild) == NULL); |
1777 | #if SKYWALK |
1778 | if (found && |
1779 | (SOCK_PROTO(so) == IPPROTO_TCP || |
1780 | SOCK_PROTO(so) == IPPROTO_UDP) && |
1781 | !(inp->inp_flags2 & INP2_EXTERNAL_PORT)) { |
1782 | if (laddr_unspecified && |
1783 | (inp->inp_flags & IN6P_IPV6_V6ONLY) == 0) { |
1784 | struct in_addr ip_zero = { .s_addr = 0 }; |
1785 | |
1786 | netns_release(token: &inp->inp_wildcard_netns_token); |
1787 | if (netns_reserve_in( |
1788 | token: &inp->inp_wildcard_netns_token, |
1789 | addr: ip_zero, |
1790 | proto: (uint8_t)SOCK_PROTO(so), port: lport, |
1791 | NETNS_BSD, NULL) != 0) { |
1792 | /* port in use in IPv4 namespace */ |
1793 | found = false; |
1794 | } |
1795 | } |
1796 | if (found && |
1797 | netns_reserve_in6(token: &inp->inp_netns_token, |
1798 | addr: inp->in6p_laddr, proto: (uint8_t)SOCK_PROTO(so), port: lport, |
1799 | NETNS_BSD, NULL) != 0) { |
1800 | netns_release(token: &inp->inp_wildcard_netns_token); |
1801 | found = false; |
1802 | } |
1803 | } |
1804 | #endif /* SKYWALK */ |
1805 | } while (!found); |
1806 | |
1807 | inp->inp_lport = lport; |
1808 | inp->inp_flags |= INP_ANONPORT; |
1809 | |
1810 | if (in_pcbinshash(inp, 1) != 0) { |
1811 | inp->in6p_laddr = in6addr_any; |
1812 | inp->in6p_last_outifp = NULL; |
1813 | inp->inp_lifscope = IFSCOPE_NONE; |
1814 | #if SKYWALK |
1815 | netns_release(token: &inp->inp_netns_token); |
1816 | #endif /* SKYWALK */ |
1817 | inp->inp_lport = 0; |
1818 | inp->inp_flags &= ~INP_ANONPORT; |
1819 | if (!locked) { |
1820 | lck_rw_done(lck: &pcbinfo->ipi_lock); |
1821 | } |
1822 | return EAGAIN; |
1823 | } |
1824 | |
1825 | if (!locked) { |
1826 | lck_rw_done(lck: &pcbinfo->ipi_lock); |
1827 | } |
1828 | return 0; |
1829 | } |
1830 | |
1831 | /* |
1832 | * The followings are implementation of the policy table using a |
1833 | * simple tail queue. |
1834 | * XXX such details should be hidden. |
1835 | * XXX implementation using binary tree should be more efficient. |
1836 | */ |
1837 | struct addrsel_policyent { |
1838 | TAILQ_ENTRY(addrsel_policyent) ape_entry; |
1839 | struct in6_addrpolicy ape_policy; |
1840 | }; |
1841 | |
1842 | TAILQ_HEAD(addrsel_policyhead, addrsel_policyent); |
1843 | |
1844 | struct addrsel_policyhead addrsel_policytab; |
1845 | |
1846 | static void |
1847 | init_policy_queue(void) |
1848 | { |
1849 | TAILQ_INIT(&addrsel_policytab); |
1850 | } |
1851 | |
1852 | void |
1853 | addrsel_policy_init(void) |
1854 | { |
1855 | /* |
1856 | * Default address selection policy based on RFC 6724. |
1857 | */ |
1858 | static const struct in6_addrpolicy defaddrsel[] = { |
1859 | /* Loopback -- prefix=::1/128, precedence=50, label=0 */ |
1860 | { |
1861 | .addr = { |
1862 | .sin6_family = AF_INET6, |
1863 | .sin6_addr = IN6ADDR_LOOPBACK_INIT, |
1864 | .sin6_len = sizeof(struct sockaddr_in6) |
1865 | }, |
1866 | .addrmask = { |
1867 | .sin6_family = AF_INET6, |
1868 | .sin6_addr = IN6MASK128, |
1869 | .sin6_len = sizeof(struct sockaddr_in6) |
1870 | }, |
1871 | .preced = 50, |
1872 | .label = 0 |
1873 | }, |
1874 | |
1875 | /* Unspecified -- prefix=::/0, precedence=40, label=1 */ |
1876 | { |
1877 | .addr = { |
1878 | .sin6_family = AF_INET6, |
1879 | .sin6_addr = IN6ADDR_ANY_INIT, |
1880 | .sin6_len = sizeof(struct sockaddr_in6) |
1881 | }, |
1882 | .addrmask = { |
1883 | .sin6_family = AF_INET6, |
1884 | .sin6_addr = IN6MASK0, |
1885 | .sin6_len = sizeof(struct sockaddr_in6) |
1886 | }, |
1887 | .preced = 40, |
1888 | .label = 1 |
1889 | }, |
1890 | |
1891 | /* IPv4 Mapped -- prefix=::ffff:0:0/96, precedence=35, label=4 */ |
1892 | { |
1893 | .addr = { |
1894 | .sin6_family = AF_INET6, |
1895 | .sin6_addr = IN6ADDR_V4MAPPED_INIT, |
1896 | .sin6_len = sizeof(struct sockaddr_in6) |
1897 | }, |
1898 | .addrmask = { |
1899 | .sin6_family = AF_INET6, |
1900 | .sin6_addr = IN6MASK96, |
1901 | .sin6_len = sizeof(struct sockaddr_in6) |
1902 | }, |
1903 | .preced = 35, |
1904 | .label = 4 |
1905 | }, |
1906 | |
1907 | /* 6to4 -- prefix=2002::/16, precedence=30, label=2 */ |
1908 | { |
1909 | .addr = { |
1910 | .sin6_family = AF_INET6, |
1911 | .sin6_addr = {{{ 0x20, 0x02 }}}, |
1912 | .sin6_len = sizeof(struct sockaddr_in6) |
1913 | }, |
1914 | .addrmask = { |
1915 | .sin6_family = AF_INET6, |
1916 | .sin6_addr = IN6MASK16, |
1917 | .sin6_len = sizeof(struct sockaddr_in6) |
1918 | }, |
1919 | .preced = 30, |
1920 | .label = 2 |
1921 | }, |
1922 | |
1923 | /* Teredo -- prefix=2001::/32, precedence=5, label=5 */ |
1924 | { |
1925 | .addr = { |
1926 | .sin6_family = AF_INET6, |
1927 | .sin6_addr = {{{ 0x20, 0x01 }}}, |
1928 | .sin6_len = sizeof(struct sockaddr_in6) |
1929 | }, |
1930 | .addrmask = { |
1931 | .sin6_family = AF_INET6, |
1932 | .sin6_addr = IN6MASK32, |
1933 | .sin6_len = sizeof(struct sockaddr_in6) |
1934 | }, |
1935 | .preced = 5, |
1936 | .label = 5 |
1937 | }, |
1938 | |
1939 | /* Unique Local (ULA) -- prefix=fc00::/7, precedence=3, label=13 */ |
1940 | { |
1941 | .addr = { |
1942 | .sin6_family = AF_INET6, |
1943 | .sin6_addr = {{{ 0xfc }}}, |
1944 | .sin6_len = sizeof(struct sockaddr_in6) |
1945 | }, |
1946 | .addrmask = { |
1947 | .sin6_family = AF_INET6, |
1948 | .sin6_addr = IN6MASK7, |
1949 | .sin6_len = sizeof(struct sockaddr_in6) |
1950 | }, |
1951 | .preced = 3, |
1952 | .label = 13 |
1953 | }, |
1954 | |
1955 | /* IPv4 Compatible -- prefix=::/96, precedence=1, label=3 */ |
1956 | { |
1957 | .addr = { |
1958 | .sin6_family = AF_INET6, |
1959 | .sin6_addr = IN6ADDR_ANY_INIT, |
1960 | .sin6_len = sizeof(struct sockaddr_in6) |
1961 | }, |
1962 | .addrmask = { |
1963 | .sin6_family = AF_INET6, |
1964 | .sin6_addr = IN6MASK96, |
1965 | .sin6_len = sizeof(struct sockaddr_in6) |
1966 | }, |
1967 | .preced = 1, |
1968 | .label = 3 |
1969 | }, |
1970 | |
1971 | /* Site-local (deprecated) -- prefix=fec0::/10, precedence=1, label=11 */ |
1972 | { |
1973 | .addr = { |
1974 | .sin6_family = AF_INET6, |
1975 | .sin6_addr = {{{ 0xfe, 0xc0 }}}, |
1976 | .sin6_len = sizeof(struct sockaddr_in6) |
1977 | }, |
1978 | .addrmask = { |
1979 | .sin6_family = AF_INET6, |
1980 | .sin6_addr = IN6MASK16, |
1981 | .sin6_len = sizeof(struct sockaddr_in6) |
1982 | }, |
1983 | .preced = 1, |
1984 | .label = 11 |
1985 | }, |
1986 | |
1987 | /* 6bone (deprecated) -- prefix=3ffe::/16, precedence=1, label=12 */ |
1988 | { |
1989 | .addr = { |
1990 | .sin6_family = AF_INET6, |
1991 | .sin6_addr = {{{ 0x3f, 0xfe }}}, |
1992 | .sin6_len = sizeof(struct sockaddr_in6) |
1993 | }, |
1994 | .addrmask = { |
1995 | .sin6_family = AF_INET6, |
1996 | .sin6_addr = IN6MASK16, |
1997 | .sin6_len = sizeof(struct sockaddr_in6) |
1998 | }, |
1999 | .preced = 1, |
2000 | .label = 12 |
2001 | }, |
2002 | }; |
2003 | int i; |
2004 | |
2005 | init_policy_queue(); |
2006 | |
2007 | /* initialize the "last resort" policy */ |
2008 | bzero(s: &defaultaddrpolicy, n: sizeof(defaultaddrpolicy)); |
2009 | defaultaddrpolicy.label = ADDR_LABEL_NOTAPP; |
2010 | |
2011 | for (i = 0; i < sizeof(defaddrsel) / sizeof(defaddrsel[0]); i++) { |
2012 | add_addrsel_policyent(&defaddrsel[i]); |
2013 | } |
2014 | } |
2015 | |
2016 | struct in6_addrpolicy * |
2017 | in6_addrsel_lookup_policy(struct sockaddr_in6 *key) |
2018 | { |
2019 | struct in6_addrpolicy *match = NULL; |
2020 | |
2021 | match = match_addrsel_policy(key); |
2022 | |
2023 | if (match == NULL) { |
2024 | match = &defaultaddrpolicy; |
2025 | } else { |
2026 | match->use++; |
2027 | } |
2028 | |
2029 | return match; |
2030 | } |
2031 | |
2032 | static struct in6_addrpolicy * |
2033 | match_addrsel_policy(struct sockaddr_in6 *key) |
2034 | { |
2035 | struct addrsel_policyent *pent; |
2036 | struct in6_addrpolicy *bestpol = NULL, *pol; |
2037 | int matchlen, bestmatchlen = -1; |
2038 | u_char *mp, *ep, *k, *p, m; |
2039 | |
2040 | TAILQ_FOREACH(pent, &addrsel_policytab, ape_entry) { |
2041 | matchlen = 0; |
2042 | |
2043 | pol = &pent->ape_policy; |
2044 | mp = (u_char *)&pol->addrmask.sin6_addr; |
2045 | ep = mp + 16; /* XXX: scope field? */ |
2046 | k = (u_char *)&key->sin6_addr; |
2047 | p = (u_char *)&pol->addr.sin6_addr; |
2048 | for (; mp < ep && *mp; mp++, k++, p++) { |
2049 | m = *mp; |
2050 | if ((*k & m) != *p) { |
2051 | goto next; /* not match */ |
2052 | } |
2053 | if (m == 0xff) { /* short cut for a typical case */ |
2054 | matchlen += 8; |
2055 | } else { |
2056 | while (m >= 0x80) { |
2057 | matchlen++; |
2058 | m = (u_char)(m << 1); |
2059 | } |
2060 | } |
2061 | } |
2062 | |
2063 | /* matched. check if this is better than the current best. */ |
2064 | if (bestpol == NULL || |
2065 | matchlen > bestmatchlen) { |
2066 | bestpol = pol; |
2067 | bestmatchlen = matchlen; |
2068 | } |
2069 | |
2070 | next: |
2071 | continue; |
2072 | } |
2073 | |
2074 | return bestpol; |
2075 | } |
2076 | |
2077 | static int |
2078 | add_addrsel_policyent(const struct in6_addrpolicy *newpolicy) |
2079 | { |
2080 | struct addrsel_policyent *new, *pol; |
2081 | |
2082 | new = kalloc_type(struct addrsel_policyent, Z_WAITOK | Z_ZERO); |
2083 | |
2084 | /* duplication check */ |
2085 | TAILQ_FOREACH(pol, &addrsel_policytab, ape_entry) { |
2086 | if (IN6_ARE_ADDR_EQUAL(&newpolicy->addr.sin6_addr, |
2087 | &pol->ape_policy.addr.sin6_addr) && |
2088 | IN6_ARE_ADDR_EQUAL(&newpolicy->addrmask.sin6_addr, |
2089 | &pol->ape_policy.addrmask.sin6_addr)) { |
2090 | kfree_type(struct addrsel_policyent, new); |
2091 | return EEXIST; /* or override it? */ |
2092 | } |
2093 | } |
2094 | |
2095 | /* XXX: should validate entry */ |
2096 | new->ape_policy = *newpolicy; |
2097 | |
2098 | TAILQ_INSERT_TAIL(&addrsel_policytab, new, ape_entry); |
2099 | |
2100 | return 0; |
2101 | } |
2102 | |
2103 | int |
2104 | walk_addrsel_policy(int (*callback)(const struct in6_addrpolicy *, void *), |
2105 | void *w) |
2106 | { |
2107 | struct addrsel_policyent *pol; |
2108 | int error = 0; |
2109 | |
2110 | TAILQ_FOREACH(pol, &addrsel_policytab, ape_entry) { |
2111 | if ((error = (*callback)(&pol->ape_policy, w)) != 0) { |
2112 | return error; |
2113 | } |
2114 | } |
2115 | return error; |
2116 | } |
2117 | /* |
2118 | * Subroutines to manage the address selection policy table via sysctl. |
2119 | */ |
2120 | struct walkarg { |
2121 | struct sysctl_req *w_req; |
2122 | }; |
2123 | |
2124 | |
2125 | static int |
2126 | dump_addrsel_policyent(const struct in6_addrpolicy *pol, void *arg) |
2127 | { |
2128 | int error = 0; |
2129 | struct walkarg *w = arg; |
2130 | |
2131 | error = SYSCTL_OUT(w->w_req, pol, sizeof(*pol)); |
2132 | |
2133 | return error; |
2134 | } |
2135 | |
2136 | static int |
2137 | in6_src_sysctl SYSCTL_HANDLER_ARGS |
2138 | { |
2139 | #pragma unused(oidp, arg1, arg2) |
2140 | struct walkarg w; |
2141 | |
2142 | if (req->newptr) { |
2143 | return EPERM; |
2144 | } |
2145 | bzero(s: &w, n: sizeof(w)); |
2146 | w.w_req = req; |
2147 | |
2148 | return walk_addrsel_policy(callback: dump_addrsel_policyent, w: &w); |
2149 | } |
2150 | |
2151 | |
2152 | SYSCTL_NODE(_net_inet6_ip6, IPV6CTL_ADDRCTLPOLICY, addrctlpolicy, |
2153 | CTLFLAG_RD | CTLFLAG_LOCKED, in6_src_sysctl, "" ); |
2154 | int |
2155 | in6_src_ioctl(u_long cmd, caddr_t data) |
2156 | { |
2157 | int i; |
2158 | struct in6_addrpolicy ent0; |
2159 | |
2160 | if (cmd != SIOCAADDRCTL_POLICY && cmd != SIOCDADDRCTL_POLICY) { |
2161 | return EOPNOTSUPP; /* check for safety */ |
2162 | } |
2163 | bcopy(src: data, dst: &ent0, n: sizeof(ent0)); |
2164 | |
2165 | if (ent0.label == ADDR_LABEL_NOTAPP) { |
2166 | return EINVAL; |
2167 | } |
2168 | /* check if the prefix mask is consecutive. */ |
2169 | if (in6_mask2len(&ent0.addrmask.sin6_addr, NULL) < 0) { |
2170 | return EINVAL; |
2171 | } |
2172 | /* clear trailing garbages (if any) of the prefix address. */ |
2173 | for (i = 0; i < 4; i++) { |
2174 | ent0.addr.sin6_addr.s6_addr32[i] &= |
2175 | ent0.addrmask.sin6_addr.s6_addr32[i]; |
2176 | } |
2177 | ent0.use = 0; |
2178 | |
2179 | switch (cmd) { |
2180 | case SIOCAADDRCTL_POLICY: |
2181 | return ENOTSUP; |
2182 | case SIOCDADDRCTL_POLICY: |
2183 | return ENOTSUP; |
2184 | } |
2185 | |
2186 | return 0; /* XXX: compromise compilers */ |
2187 | } |
2188 | |
2189 | /* |
2190 | * generate kernel-internal form (scopeid embedded into s6_addr16[1]). |
2191 | * If the address scope of is link-local, embed the interface index in the |
2192 | * address. The routine determines our precedence |
2193 | * between advanced API scope/interface specification and basic API |
2194 | * specification. |
2195 | * |
2196 | * this function should be nuked in the future, when we get rid of |
2197 | * embedded scopeid thing. |
2198 | * |
2199 | * XXX actually, it is over-specification to return ifp against sin6_scope_id. |
2200 | * there can be multiple interfaces that belong to a particular scope zone |
2201 | * (in specification, we have 1:N mapping between a scope zone and interfaces). |
2202 | * we may want to change the function to return something other than ifp. |
2203 | */ |
2204 | int |
2205 | in6_embedscope(struct in6_addr *in6, const struct sockaddr_in6 *sin6, |
2206 | struct in6pcb *in6p, struct ifnet **ifpp, struct ip6_pktopts *opt, uint32_t *ret_ifscope) |
2207 | { |
2208 | struct ifnet *ifp = NULL; |
2209 | u_int32_t scopeid; |
2210 | struct ip6_pktopts *optp = NULL; |
2211 | |
2212 | *in6 = sin6->sin6_addr; |
2213 | scopeid = sin6->sin6_scope_id; |
2214 | if (ifpp != NULL) { |
2215 | *ifpp = NULL; |
2216 | } |
2217 | |
2218 | /* |
2219 | * don't try to read sin6->sin6_addr beyond here, since the caller may |
2220 | * ask us to overwrite existing sockaddr_in6 |
2221 | */ |
2222 | |
2223 | #ifdef ENABLE_DEFAULT_SCOPE |
2224 | if (scopeid == 0) { |
2225 | scopeid = scope6_addr2default(in6); |
2226 | } |
2227 | #endif |
2228 | |
2229 | if (IN6_IS_SCOPE_LINKLOCAL(in6) || IN6_IS_ADDR_MC_INTFACELOCAL(in6)) { |
2230 | struct in6_pktinfo *pi; |
2231 | struct ifnet *im6o_multicast_ifp = NULL; |
2232 | |
2233 | if (in6p != NULL && IN6_IS_ADDR_MULTICAST(in6) && |
2234 | in6p->in6p_moptions != NULL) { |
2235 | IM6O_LOCK(in6p->in6p_moptions); |
2236 | im6o_multicast_ifp = |
2237 | in6p->in6p_moptions->im6o_multicast_ifp; |
2238 | IM6O_UNLOCK(in6p->in6p_moptions); |
2239 | } |
2240 | |
2241 | if (opt != NULL) { |
2242 | optp = opt; |
2243 | } else if (in6p != NULL) { |
2244 | optp = in6p->in6p_outputopts; |
2245 | } |
2246 | /* |
2247 | * KAME assumption: link id == interface id |
2248 | */ |
2249 | if (in6p != NULL && optp != NULL && |
2250 | (pi = optp->ip6po_pktinfo) != NULL && |
2251 | pi->ipi6_ifindex != 0) { |
2252 | /* ifp is needed here if only we're returning it */ |
2253 | if (ifpp != NULL) { |
2254 | ifnet_head_lock_shared(); |
2255 | ifp = ifindex2ifnet[pi->ipi6_ifindex]; |
2256 | ifnet_head_done(); |
2257 | } |
2258 | |
2259 | if (in6_embedded_scope) { |
2260 | in6->s6_addr16[1] = htons((uint16_t)pi->ipi6_ifindex); |
2261 | } |
2262 | if (ret_ifscope != NULL) { |
2263 | *ret_ifscope = pi->ipi6_ifindex; |
2264 | } |
2265 | } else if (in6p != NULL && IN6_IS_ADDR_MULTICAST(in6) && |
2266 | in6p->in6p_moptions != NULL && im6o_multicast_ifp != NULL) { |
2267 | ifp = im6o_multicast_ifp; |
2268 | if (in6_embedded_scope) { |
2269 | in6->s6_addr16[1] = htons(ifp->if_index); |
2270 | } |
2271 | if (ret_ifscope != NULL) { |
2272 | *ret_ifscope = ifp->if_index; |
2273 | } |
2274 | } else if (scopeid != 0) { |
2275 | /* |
2276 | * Since scopeid is unsigned, we only have to check it |
2277 | * against if_index (ifnet_head_lock not needed since |
2278 | * if_index is an ever-increasing integer.) |
2279 | */ |
2280 | if (!IF_INDEX_IN_RANGE(scopeid)) { |
2281 | return ENXIO; /* XXX EINVAL? */ |
2282 | } |
2283 | /* ifp is needed here only if we're returning it */ |
2284 | if (ifpp != NULL) { |
2285 | ifnet_head_lock_shared(); |
2286 | ifp = ifindex2ifnet[scopeid]; |
2287 | ifnet_head_done(); |
2288 | } |
2289 | if (in6_embedded_scope) { |
2290 | /* XXX assignment to 16bit from 32bit variable */ |
2291 | in6->s6_addr16[1] = htons(scopeid & 0xffff); |
2292 | } |
2293 | if (ret_ifscope != NULL) { |
2294 | *ret_ifscope = scopeid; |
2295 | } |
2296 | } |
2297 | |
2298 | if (ifpp != NULL) { |
2299 | if (ifp != NULL) { |
2300 | ifnet_reference(interface: ifp); /* for caller */ |
2301 | } |
2302 | *ifpp = ifp; |
2303 | } |
2304 | } |
2305 | |
2306 | return 0; |
2307 | } |
2308 | |
2309 | /* |
2310 | * generate standard sockaddr_in6 from embedded form. |
2311 | * touches sin6_addr and sin6_scope_id only. |
2312 | * |
2313 | * this function should be nuked in the future, when we get rid of |
2314 | * embedded scopeid thing. |
2315 | */ |
2316 | int |
2317 | in6_recoverscope( |
2318 | struct sockaddr_in6 *sin6, |
2319 | const struct in6_addr *in6, |
2320 | struct ifnet *ifp) |
2321 | { |
2322 | u_int32_t scopeid; |
2323 | |
2324 | sin6->sin6_addr = *in6; |
2325 | |
2326 | if (!in6_embedded_scope) { |
2327 | if (ifp != NULL && IN6_IS_SCOPE_EMBED(in6)) { |
2328 | sin6->sin6_scope_id = ifp->if_index; |
2329 | } |
2330 | return 0; |
2331 | } |
2332 | /* |
2333 | * don't try to read *in6 beyond here, since the caller may |
2334 | * ask us to overwrite existing sockaddr_in6 |
2335 | */ |
2336 | |
2337 | sin6->sin6_scope_id = 0; |
2338 | if (IN6_IS_SCOPE_LINKLOCAL(in6) || IN6_IS_ADDR_MC_INTFACELOCAL(in6)) { |
2339 | /* |
2340 | * KAME assumption: link id == interface id |
2341 | */ |
2342 | scopeid = ntohs(sin6->sin6_addr.s6_addr16[1]); |
2343 | if (scopeid) { |
2344 | /* |
2345 | * sanity check |
2346 | * |
2347 | * Since scopeid is unsigned, we only have to check it |
2348 | * against if_index |
2349 | */ |
2350 | if (!IF_INDEX_IN_RANGE(scopeid)) { |
2351 | return ENXIO; |
2352 | } |
2353 | if (ifp && ifp->if_index != scopeid) { |
2354 | return ENXIO; |
2355 | } |
2356 | sin6->sin6_addr.s6_addr16[1] = 0; |
2357 | sin6->sin6_scope_id = scopeid; |
2358 | } |
2359 | } |
2360 | |
2361 | return 0; |
2362 | } |
2363 | |