| 1 | /* |
| 2 | * Copyright (c) 2000-2022 Apple Inc. All rights reserved. |
| 3 | * |
| 4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ |
| 5 | * |
| 6 | * This file contains Original Code and/or Modifications of Original Code |
| 7 | * as defined in and that are subject to the Apple Public Source License |
| 8 | * Version 2.0 (the 'License'). You may not use this file except in |
| 9 | * compliance with the License. The rights granted to you under the License |
| 10 | * may not be used to create, or enable the creation or redistribution of, |
| 11 | * unlawful or unlicensed copies of an Apple operating system, or to |
| 12 | * circumvent, violate, or enable the circumvention or violation of, any |
| 13 | * terms of an Apple operating system software license agreement. |
| 14 | * |
| 15 | * Please obtain a copy of the License at |
| 16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. |
| 17 | * |
| 18 | * The Original Code and all software distributed under the License are |
| 19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER |
| 20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
| 21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, |
| 22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
| 23 | * Please see the License for the specific language governing rights and |
| 24 | * limitations under the License. |
| 25 | * |
| 26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ |
| 27 | */ |
| 28 | |
| 29 | /* |
| 30 | * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. |
| 31 | * All rights reserved. |
| 32 | * |
| 33 | * Redistribution and use in source and binary forms, with or without |
| 34 | * modification, are permitted provided that the following conditions |
| 35 | * are met: |
| 36 | * 1. Redistributions of source code must retain the above copyright |
| 37 | * notice, this list of conditions and the following disclaimer. |
| 38 | * 2. Redistributions in binary form must reproduce the above copyright |
| 39 | * notice, this list of conditions and the following disclaimer in the |
| 40 | * documentation and/or other materials provided with the distribution. |
| 41 | * 3. Neither the name of the project nor the names of its contributors |
| 42 | * may be used to endorse or promote products derived from this software |
| 43 | * without specific prior written permission. |
| 44 | * |
| 45 | * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND |
| 46 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 47 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 48 | * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE |
| 49 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
| 50 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
| 51 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| 52 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
| 53 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
| 54 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
| 55 | * SUCH DAMAGE. |
| 56 | */ |
| 57 | |
| 58 | /* |
| 59 | * Copyright (c) 1982, 1986, 1991, 1993 |
| 60 | * The Regents of the University of California. All rights reserved. |
| 61 | * |
| 62 | * Redistribution and use in source and binary forms, with or without |
| 63 | * modification, are permitted provided that the following conditions |
| 64 | * are met: |
| 65 | * 1. Redistributions of source code must retain the above copyright |
| 66 | * notice, this list of conditions and the following disclaimer. |
| 67 | * 2. Redistributions in binary form must reproduce the above copyright |
| 68 | * notice, this list of conditions and the following disclaimer in the |
| 69 | * documentation and/or other materials provided with the distribution. |
| 70 | * 3. All advertising materials mentioning features or use of this software |
| 71 | * must display the following acknowledgement: |
| 72 | * This product includes software developed by the University of |
| 73 | * California, Berkeley and its contributors. |
| 74 | * 4. Neither the name of the University nor the names of its contributors |
| 75 | * may be used to endorse or promote products derived from this software |
| 76 | * without specific prior written permission. |
| 77 | * |
| 78 | * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND |
| 79 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 80 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 81 | * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE |
| 82 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
| 83 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
| 84 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| 85 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
| 86 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
| 87 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
| 88 | * SUCH DAMAGE. |
| 89 | * |
| 90 | * @(#)in_pcb.c 8.2 (Berkeley) 1/4/94 |
| 91 | */ |
| 92 | |
| 93 | |
| 94 | #include <sys/param.h> |
| 95 | #include <sys/systm.h> |
| 96 | #include <sys/malloc.h> |
| 97 | #include <sys/mbuf.h> |
| 98 | #include <sys/protosw.h> |
| 99 | #include <sys/socket.h> |
| 100 | #include <sys/socketvar.h> |
| 101 | #include <sys/errno.h> |
| 102 | #include <sys/time.h> |
| 103 | #include <sys/proc.h> |
| 104 | #include <sys/sysctl.h> |
| 105 | #include <sys/kauth.h> |
| 106 | #include <sys/priv.h> |
| 107 | #include <kern/locks.h> |
| 108 | #include <sys/random.h> |
| 109 | |
| 110 | #include <net/if.h> |
| 111 | #include <net/if_types.h> |
| 112 | #include <net/route.h> |
| 113 | #include <net/restricted_in_port.h> |
| 114 | |
| 115 | #include <netinet/in.h> |
| 116 | #include <netinet/in_var.h> |
| 117 | #include <netinet/in_systm.h> |
| 118 | #include <netinet/ip.h> |
| 119 | #include <netinet/in_pcb.h> |
| 120 | |
| 121 | #include <netinet6/in6_var.h> |
| 122 | #include <netinet/ip6.h> |
| 123 | #include <netinet6/in6_pcb.h> |
| 124 | #include <netinet6/ip6_var.h> |
| 125 | #include <netinet6/scope6_var.h> |
| 126 | #include <netinet6/nd6.h> |
| 127 | |
| 128 | #include <net/net_osdep.h> |
| 129 | |
| 130 | #include <net/sockaddr_utils.h> |
| 131 | |
| 132 | #include "loop.h" |
| 133 | |
| 134 | SYSCTL_DECL(_net_inet6_ip6); |
| 135 | |
| 136 | static int ip6_select_srcif_debug = 0; |
| 137 | SYSCTL_INT(_net_inet6_ip6, OID_AUTO, select_srcif_debug, |
| 138 | CTLFLAG_RW | CTLFLAG_LOCKED, &ip6_select_srcif_debug, 0, |
| 139 | "log source interface selection debug info" ); |
| 140 | |
| 141 | static int ip6_select_srcaddr_debug = 0; |
| 142 | SYSCTL_INT(_net_inet6_ip6, OID_AUTO, select_srcaddr_debug, |
| 143 | CTLFLAG_RW | CTLFLAG_LOCKED, &ip6_select_srcaddr_debug, 0, |
| 144 | "log source address selection debug info" ); |
| 145 | |
| 146 | static int ip6_select_src_expensive_secondary_if = 0; |
| 147 | SYSCTL_INT(_net_inet6_ip6, OID_AUTO, select_src_expensive_secondary_if, |
| 148 | CTLFLAG_RW | CTLFLAG_LOCKED, &ip6_select_src_expensive_secondary_if, 0, |
| 149 | "allow source interface selection to use expensive secondaries" ); |
| 150 | |
| 151 | static int ip6_select_src_strong_end = 1; |
| 152 | SYSCTL_INT(_net_inet6_ip6, OID_AUTO, select_src_strong_end, |
| 153 | CTLFLAG_RW | CTLFLAG_LOCKED, &ip6_select_src_strong_end, 0, |
| 154 | "limit source address selection to outgoing interface" ); |
| 155 | |
| 156 | #define ADDR_LABEL_NOTAPP (-1) |
| 157 | struct in6_addrpolicy defaultaddrpolicy; |
| 158 | |
| 159 | int ip6_prefer_tempaddr = 1; |
| 160 | |
| 161 | int ip6_cga_conflict_retries = IPV6_CGA_CONFLICT_RETRIES_DEFAULT; |
| 162 | |
| 163 | extern int udp_use_randomport; |
| 164 | extern int tcp_use_randomport; |
| 165 | |
| 166 | static int selectroute(struct sockaddr_in6 *, struct sockaddr_in6 *, |
| 167 | struct ip6_pktopts *, struct ip6_moptions *, struct in6_ifaddr **, |
| 168 | struct route_in6 *, struct ifnet **, struct rtentry **, int, int, |
| 169 | struct ip6_out_args *ip6oa); |
| 170 | static int in6_selectif(struct sockaddr_in6 *, struct ip6_pktopts *, |
| 171 | struct ip6_moptions *, struct route_in6 *ro, |
| 172 | struct ip6_out_args *, struct ifnet **); |
| 173 | static void init_policy_queue(void); |
| 174 | static int add_addrsel_policyent(const struct in6_addrpolicy *); |
| 175 | static int walk_addrsel_policy(int (*)(const struct in6_addrpolicy *, void *), |
| 176 | void *); |
| 177 | static int dump_addrsel_policyent(const struct in6_addrpolicy *, void *); |
| 178 | static struct in6_addrpolicy *match_addrsel_policy(struct sockaddr_in6 *); |
| 179 | void addrsel_policy_init(void); |
| 180 | |
| 181 | #define SASEL_DO_DBG(inp) \ |
| 182 | (ip6_select_srcaddr_debug && (inp) != NULL && \ |
| 183 | (inp)->inp_socket != NULL && \ |
| 184 | ((inp)->inp_socket->so_options & SO_DEBUG)) |
| 185 | |
| 186 | #define SASEL_LOG(fmt, ...) \ |
| 187 | do { \ |
| 188 | if (srcsel_debug) \ |
| 189 | os_log(OS_LOG_DEFAULT, "%s:%d " fmt,\ |
| 190 | __FUNCTION__, __LINE__, ##__VA_ARGS__); \ |
| 191 | } while (0); \ |
| 192 | |
| 193 | /* |
| 194 | * Return an IPv6 address, which is the most appropriate for a given |
| 195 | * destination and user specified options. |
| 196 | * If necessary, this function lookups the routing table and returns |
| 197 | * an entry to the caller for later use. |
| 198 | */ |
| 199 | #define REPLACE(r) do {\ |
| 200 | SASEL_LOG("REPLACE r %s ia %s ifp1 %s\n", \ |
| 201 | (#r), s_src, ifp1->if_xname); \ |
| 202 | srcrule = (r); \ |
| 203 | goto replace; \ |
| 204 | } while (0) |
| 205 | |
| 206 | #define NEXTSRC(r) do {\ |
| 207 | SASEL_LOG("NEXTSRC r %s ia %s ifp1 %s\n", \ |
| 208 | (#r), s_src, ifp1->if_xname); \ |
| 209 | goto next; /* XXX: we can't use 'continue' here */ \ |
| 210 | } while (0) |
| 211 | |
| 212 | #define BREAK(r) do { \ |
| 213 | SASEL_LOG("BREAK r %s ia %s ifp1 %s\n", \ |
| 214 | (#r), s_src, ifp1->if_xname); \ |
| 215 | srcrule = (r); \ |
| 216 | goto out; /* XXX: we can't use 'break' here */ \ |
| 217 | } while (0) |
| 218 | |
| 219 | |
| 220 | struct ifaddr * |
| 221 | in6_selectsrc_core_ifa(struct sockaddr_in6 *addr, struct ifnet *ifp, int srcsel_debug) |
| 222 | { |
| 223 | int err = 0; |
| 224 | struct ifnet *src_ifp = NULL; |
| 225 | struct in6_addr src_storage = {}; |
| 226 | struct in6_addr *in6 = NULL; |
| 227 | struct ifaddr *ifa = NULL; |
| 228 | |
| 229 | if ((in6 = in6_selectsrc_core(addr, |
| 230 | (ip6_prefer_tempaddr ? IPV6_SRCSEL_HINT_PREFER_TMPADDR : 0), |
| 231 | ifp, 0, &src_storage, &src_ifp, &err, &ifa, NULL, FALSE)) == NULL) { |
| 232 | if (err == 0) { |
| 233 | err = EADDRNOTAVAIL; |
| 234 | } |
| 235 | VERIFY(src_ifp == NULL); |
| 236 | if (ifa != NULL) { |
| 237 | ifa_remref(ifa); |
| 238 | ifa = NULL; |
| 239 | } |
| 240 | goto done; |
| 241 | } |
| 242 | |
| 243 | if (src_ifp != ifp) { |
| 244 | if (err == 0) { |
| 245 | err = ENETUNREACH; |
| 246 | } |
| 247 | if (ifa != NULL) { |
| 248 | ifa_remref(ifa); |
| 249 | ifa = NULL; |
| 250 | } |
| 251 | goto done; |
| 252 | } |
| 253 | |
| 254 | VERIFY(ifa != NULL); |
| 255 | ifnet_lock_shared(ifp); |
| 256 | if ((ifa->ifa_debug & IFD_DETACHING) != 0) { |
| 257 | err = EHOSTUNREACH; |
| 258 | ifnet_lock_done(ifp); |
| 259 | ifa_remref(ifa); |
| 260 | ifa = NULL; |
| 261 | goto done; |
| 262 | } |
| 263 | ifnet_lock_done(ifp); |
| 264 | |
| 265 | done: |
| 266 | SASEL_LOG("Returned with error: %d" , err); |
| 267 | if (src_ifp != NULL) { |
| 268 | ifnet_release(interface: src_ifp); |
| 269 | } |
| 270 | return ifa; |
| 271 | } |
| 272 | |
| 273 | struct in6_addr * |
| 274 | in6_selectsrc_core(struct sockaddr_in6 *dstsock, uint32_t hint_mask, |
| 275 | struct ifnet *ifp, int srcsel_debug, struct in6_addr *src_storage, |
| 276 | struct ifnet **sifp, int *errorp, struct ifaddr **ifapp, struct route_in6 *ro, |
| 277 | boolean_t is_for_clat46) |
| 278 | { |
| 279 | u_int32_t odstzone; |
| 280 | int bestrule = IP6S_SRCRULE_0; |
| 281 | struct in6_addrpolicy *dst_policy = NULL, *best_policy = NULL; |
| 282 | struct in6_addr dst; |
| 283 | struct in6_ifaddr *ia = NULL, *ia_best = NULL; |
| 284 | char s_src[MAX_IPv6_STR_LEN] = {0}; |
| 285 | char s_dst[MAX_IPv6_STR_LEN] = {0}; |
| 286 | const struct in6_addr *tmp = NULL; |
| 287 | int dst_scope = -1, best_scope = -1, best_matchlen = -1; |
| 288 | uint64_t secs = net_uptime(); |
| 289 | struct nd_defrouter *dr = NULL; |
| 290 | uint32_t genid = in6_ifaddrlist_genid; |
| 291 | VERIFY(dstsock != NULL); |
| 292 | VERIFY(src_storage != NULL); |
| 293 | VERIFY(ifp != NULL); |
| 294 | |
| 295 | if (sifp != NULL) { |
| 296 | *sifp = NULL; |
| 297 | } |
| 298 | |
| 299 | if (ifapp != NULL) { |
| 300 | *ifapp = NULL; |
| 301 | } |
| 302 | |
| 303 | dst = dstsock->sin6_addr; /* make a copy for local operation */ |
| 304 | |
| 305 | if (srcsel_debug) { |
| 306 | (void) inet_ntop(AF_INET6, &dst, s_dst, sizeof(s_src)); |
| 307 | |
| 308 | tmp = &in6addr_any; |
| 309 | (void) inet_ntop(AF_INET6, tmp, s_src, sizeof(s_src)); |
| 310 | os_log(OS_LOG_DEFAULT, "%s out src %s dst %s ifp %s" , |
| 311 | __func__, s_src, s_dst, ifp->if_xname); |
| 312 | } |
| 313 | |
| 314 | *errorp = in6_setscope(&dst, ifp, &odstzone); |
| 315 | if (*errorp != 0) { |
| 316 | src_storage = NULL; |
| 317 | goto done; |
| 318 | } |
| 319 | |
| 320 | /* |
| 321 | * Determine if the route is an indirect here |
| 322 | * and if it is get the default router that would be |
| 323 | * used as next hop. |
| 324 | * Later in the function it is used to apply rule 5.5 of RFC 6724. |
| 325 | */ |
| 326 | if (ro != NULL && ro->ro_rt != NULL && |
| 327 | (ro->ro_rt->rt_flags & RTF_GATEWAY) && |
| 328 | ro->ro_rt->rt_gateway != NULL) { |
| 329 | struct rtentry *rt = ro->ro_rt; |
| 330 | lck_mtx_lock(nd6_mutex); |
| 331 | dr = defrouter_lookup(NULL, |
| 332 | &SIN6(rt->rt_gateway)->sin6_addr, rt->rt_ifp); |
| 333 | lck_mtx_unlock(nd6_mutex); |
| 334 | } |
| 335 | |
| 336 | lck_rw_lock_shared(lck: &in6_ifaddr_rwlock); |
| 337 | addrloop: |
| 338 | TAILQ_FOREACH(ia, &in6_ifaddrhead, ia6_link) { |
| 339 | int new_scope = -1, new_matchlen = -1; |
| 340 | struct in6_addrpolicy *new_policy = NULL; |
| 341 | u_int32_t srczone = 0, osrczone, dstzone; |
| 342 | struct in6_addr src; |
| 343 | struct ifnet *ifp1 = ia->ia_ifp; |
| 344 | int srcrule; |
| 345 | |
| 346 | if (srcsel_debug) { |
| 347 | (void) inet_ntop(AF_INET6, &ia->ia_addr.sin6_addr, |
| 348 | s_src, sizeof(s_src)); |
| 349 | } |
| 350 | |
| 351 | IFA_LOCK(&ia->ia_ifa); |
| 352 | |
| 353 | /* |
| 354 | * Simply skip addresses reserved for CLAT46 |
| 355 | */ |
| 356 | if (!is_for_clat46 && (ia->ia6_flags & IN6_IFF_CLAT46)) { |
| 357 | SASEL_LOG("NEXT ia %s address on ifp1 %s skipped as it is " |
| 358 | "reserved for CLAT46\n" , s_src, ifp1->if_xname); |
| 359 | goto next; |
| 360 | } |
| 361 | |
| 362 | if (is_for_clat46 && !(ia->ia6_flags & IN6_IFF_CLAT46)) { |
| 363 | SASEL_LOG("CLAT46: NEXT ia %s address on ifp1 %s skipped as it is " |
| 364 | "not reserved for CLAT46\n" , s_src, ifp1->if_xname); |
| 365 | goto next; |
| 366 | } |
| 367 | |
| 368 | /* |
| 369 | * XXX By default we are strong end system and will |
| 370 | * limit candidate set of source address to the ones |
| 371 | * configured on the outgoing interface. |
| 372 | */ |
| 373 | if (ip6_select_src_strong_end && |
| 374 | ifp1 != ifp) { |
| 375 | SASEL_LOG("NEXT ia %s ifp1 %s address is not on outgoing " |
| 376 | "interface \n" , s_src, ifp1->if_xname); |
| 377 | goto next; |
| 378 | } |
| 379 | |
| 380 | /* |
| 381 | * We'll never take an address that breaks the scope zone |
| 382 | * of the destination. We also skip an address if its zone |
| 383 | * does not contain the outgoing interface. |
| 384 | * XXX: we should probably use sin6_scope_id here. |
| 385 | */ |
| 386 | if (in6_setscope(&dst, ifp1, &dstzone) || |
| 387 | odstzone != dstzone) { |
| 388 | SASEL_LOG("NEXT ia %s ifp1 %s odstzone %d != dstzone %d\n" , |
| 389 | s_src, ifp1->if_xname, odstzone, dstzone); |
| 390 | goto next; |
| 391 | } |
| 392 | src = ia->ia_addr.sin6_addr; |
| 393 | if (in6_setscope(&src, ifp, &osrczone) || |
| 394 | in6_setscope(&src, ifp1, &srczone) || |
| 395 | osrczone != srczone) { |
| 396 | SASEL_LOG("NEXT ia %s ifp1 %s osrczone %d != srczone %d\n" , |
| 397 | s_src, ifp1->if_xname, osrczone, srczone); |
| 398 | goto next; |
| 399 | } |
| 400 | /* avoid unusable addresses */ |
| 401 | if ((ia->ia6_flags & |
| 402 | (IN6_IFF_NOTREADY | IN6_IFF_ANYCAST | IN6_IFF_DETACHED))) { |
| 403 | SASEL_LOG("NEXT ia %s ifp1 %s ia6_flags 0x%x\n" , |
| 404 | s_src, ifp1->if_xname, ia->ia6_flags); |
| 405 | goto next; |
| 406 | } |
| 407 | if (!ip6_use_deprecated && IFA6_IS_DEPRECATED(ia, secs)) { |
| 408 | SASEL_LOG("NEXT ia %s ifp1 %s IFA6_IS_DEPRECATED\n" , |
| 409 | s_src, ifp1->if_xname); |
| 410 | goto next; |
| 411 | } |
| 412 | if (!nd6_optimistic_dad && |
| 413 | (ia->ia6_flags & IN6_IFF_OPTIMISTIC) != 0) { |
| 414 | SASEL_LOG("NEXT ia %s ifp1 %s IN6_IFF_OPTIMISTIC\n" , |
| 415 | s_src, ifp1->if_xname); |
| 416 | goto next; |
| 417 | } |
| 418 | /* Rule 1: Prefer same address */ |
| 419 | if (in6_are_addr_equal_scoped(&dst, &ia->ia_addr.sin6_addr, dstzone, srczone)) { |
| 420 | BREAK(IP6S_SRCRULE_1); /* there should be no better candidate */ |
| 421 | } |
| 422 | if (ia_best == NULL) { |
| 423 | REPLACE(IP6S_SRCRULE_0); |
| 424 | } |
| 425 | |
| 426 | /* Rule 2: Prefer appropriate scope */ |
| 427 | if (dst_scope < 0) { |
| 428 | dst_scope = in6_addrscope(&dst); |
| 429 | } |
| 430 | new_scope = in6_addrscope(&ia->ia_addr.sin6_addr); |
| 431 | if (IN6_ARE_SCOPE_CMP(best_scope, new_scope) < 0) { |
| 432 | if (IN6_ARE_SCOPE_CMP(best_scope, dst_scope) < 0) { |
| 433 | REPLACE(IP6S_SRCRULE_2); |
| 434 | } |
| 435 | NEXTSRC(IP6S_SRCRULE_2); |
| 436 | } else if (IN6_ARE_SCOPE_CMP(new_scope, best_scope) < 0) { |
| 437 | if (IN6_ARE_SCOPE_CMP(new_scope, dst_scope) < 0) { |
| 438 | NEXTSRC(IP6S_SRCRULE_2); |
| 439 | } |
| 440 | REPLACE(IP6S_SRCRULE_2); |
| 441 | } |
| 442 | |
| 443 | /* |
| 444 | * Rule 3: Avoid deprecated addresses. Note that the case of |
| 445 | * !ip6_use_deprecated is already rejected above. |
| 446 | */ |
| 447 | if (!IFA6_IS_DEPRECATED(ia_best, secs) && |
| 448 | IFA6_IS_DEPRECATED(ia, secs)) { |
| 449 | NEXTSRC(IP6S_SRCRULE_3); |
| 450 | } |
| 451 | if (IFA6_IS_DEPRECATED(ia_best, secs) && |
| 452 | !IFA6_IS_DEPRECATED(ia, secs)) { |
| 453 | REPLACE(IP6S_SRCRULE_3); |
| 454 | } |
| 455 | |
| 456 | /* |
| 457 | * RFC 4429 says that optimistic addresses are equivalent to |
| 458 | * deprecated addresses, so avoid them here. |
| 459 | */ |
| 460 | if ((ia_best->ia6_flags & IN6_IFF_OPTIMISTIC) == 0 && |
| 461 | (ia->ia6_flags & IN6_IFF_OPTIMISTIC) != 0) { |
| 462 | NEXTSRC(IP6S_SRCRULE_3); |
| 463 | } |
| 464 | if ((ia_best->ia6_flags & IN6_IFF_OPTIMISTIC) != 0 && |
| 465 | (ia->ia6_flags & IN6_IFF_OPTIMISTIC) == 0) { |
| 466 | REPLACE(IP6S_SRCRULE_3); |
| 467 | } |
| 468 | |
| 469 | /* Rule 4: Prefer home addresses */ |
| 470 | /* |
| 471 | * XXX: This is a TODO. We should probably merge the MIP6 |
| 472 | * case above. |
| 473 | */ |
| 474 | |
| 475 | /* Rule 5: Prefer outgoing interface */ |
| 476 | /* |
| 477 | * XXX By default we are strong end with source address |
| 478 | * selection. That means all address selection candidate |
| 479 | * addresses will be the ones hosted on the outgoing interface |
| 480 | * making the following check redundant. |
| 481 | */ |
| 482 | if (ip6_select_src_strong_end == 0) { |
| 483 | if (ia_best->ia_ifp == ifp && ia->ia_ifp != ifp) { |
| 484 | NEXTSRC(IP6S_SRCRULE_5); |
| 485 | } |
| 486 | if (ia_best->ia_ifp != ifp && ia->ia_ifp == ifp) { |
| 487 | REPLACE(IP6S_SRCRULE_5); |
| 488 | } |
| 489 | } |
| 490 | |
| 491 | /* |
| 492 | * Rule 5.5: Prefer addresses in a prefix advertised by the next-hop. |
| 493 | * If SA or SA's prefix is assigned by the selected next-hop that will |
| 494 | * be used to send to D and SB or SB's prefix is assigned by a different |
| 495 | * next-hop, then prefer SA. Similarly, if SB or SB's prefix is |
| 496 | * assigned by the next-hop that will be used to send to D and SA or |
| 497 | * SA's prefix is assigned by a different next-hop, then prefer SB. |
| 498 | */ |
| 499 | if (dr != NULL && ia_best->ia6_ndpr != ia->ia6_ndpr) { |
| 500 | boolean_t ia_best_has_prefix = FALSE; |
| 501 | boolean_t ia_has_prefix = FALSE; |
| 502 | struct nd_prefix ia_best_prefix = {}; |
| 503 | struct nd_prefix ia_prefix = {}; |
| 504 | struct nd_prefix *p_ia_best_prefix = NULL; |
| 505 | struct nd_prefix *p_ia_prefix = NULL; |
| 506 | |
| 507 | if (ia_best->ia6_ndpr) { |
| 508 | ia_best_prefix = *ia_best->ia6_ndpr; |
| 509 | } |
| 510 | |
| 511 | if (ia->ia6_ndpr) { |
| 512 | ia_prefix = *ia->ia6_ndpr; |
| 513 | } |
| 514 | |
| 515 | IFA_UNLOCK(&ia->ia_ifa); |
| 516 | lck_rw_done(lck: &in6_ifaddr_rwlock); |
| 517 | |
| 518 | p_ia_best_prefix = nd6_prefix_lookup(&ia_best_prefix, ND6_PREFIX_EXPIRY_UNSPEC); |
| 519 | p_ia_prefix = nd6_prefix_lookup(&ia_prefix, ND6_PREFIX_EXPIRY_UNSPEC); |
| 520 | |
| 521 | lck_mtx_lock(nd6_mutex); |
| 522 | if (p_ia_best_prefix != NULL) { |
| 523 | NDPR_LOCK(p_ia_best_prefix); |
| 524 | ia_best_has_prefix = (pfxrtr_lookup(p_ia_best_prefix, dr) != NULL); |
| 525 | NDPR_UNLOCK(p_ia_best_prefix); |
| 526 | NDPR_REMREF(p_ia_best_prefix); |
| 527 | } |
| 528 | if (p_ia_prefix != NULL) { |
| 529 | NDPR_LOCK(p_ia_prefix); |
| 530 | ia_has_prefix = (pfxrtr_lookup(p_ia_prefix, dr) != NULL); |
| 531 | NDPR_UNLOCK(p_ia_prefix); |
| 532 | NDPR_REMREF(p_ia_prefix); |
| 533 | } |
| 534 | lck_mtx_unlock(nd6_mutex); |
| 535 | |
| 536 | lck_rw_lock_shared(lck: &in6_ifaddr_rwlock); |
| 537 | if (genid != os_atomic_load(&in6_ifaddrlist_genid, acquire)) { |
| 538 | SASEL_LOG("Address list seems to have changed. Restarting source " |
| 539 | "address selection.\n" ); |
| 540 | genid = in6_ifaddrlist_genid; |
| 541 | /* |
| 542 | * We are starting from scratch. Free up the reference |
| 543 | * on ia_best and also reset it to NULL. |
| 544 | */ |
| 545 | ifa_remref(ifa: &ia_best->ia_ifa); |
| 546 | ia_best = NULL; |
| 547 | goto addrloop; |
| 548 | } |
| 549 | IFA_LOCK(&ia->ia_ifa); |
| 550 | |
| 551 | if (ia_best_has_prefix && !ia_has_prefix) { |
| 552 | NEXTSRC(IP6S_SRCRULE_5_5); |
| 553 | } |
| 554 | |
| 555 | if (!ia_best_has_prefix && ia_has_prefix) { |
| 556 | REPLACE(IP6S_SRCRULE_5_5); |
| 557 | } |
| 558 | } |
| 559 | |
| 560 | /* |
| 561 | * Rule 6: Prefer matching label |
| 562 | * Note that best_policy should be non-NULL here. |
| 563 | */ |
| 564 | if (dst_policy == NULL) { |
| 565 | dst_policy = in6_addrsel_lookup_policy(dstsock); |
| 566 | } |
| 567 | if (dst_policy->label != ADDR_LABEL_NOTAPP) { |
| 568 | new_policy = in6_addrsel_lookup_policy(&ia->ia_addr); |
| 569 | if (dst_policy->label == best_policy->label && |
| 570 | dst_policy->label != new_policy->label) { |
| 571 | NEXTSRC(IP6S_SRCRULE_6); |
| 572 | } |
| 573 | if (dst_policy->label != best_policy->label && |
| 574 | dst_policy->label == new_policy->label) { |
| 575 | REPLACE(IP6S_SRCRULE_6); |
| 576 | } |
| 577 | } |
| 578 | |
| 579 | /* |
| 580 | * Rule 7: Prefer temporary addresses. |
| 581 | * We allow users to reverse the logic by configuring |
| 582 | * a sysctl variable, so that transparency conscious users can |
| 583 | * always prefer stable addresses. |
| 584 | */ |
| 585 | if (!(ia_best->ia6_flags & IN6_IFF_TEMPORARY) && |
| 586 | (ia->ia6_flags & IN6_IFF_TEMPORARY)) { |
| 587 | if (hint_mask & IPV6_SRCSEL_HINT_PREFER_TMPADDR) { |
| 588 | REPLACE(IP6S_SRCRULE_7); |
| 589 | } else { |
| 590 | NEXTSRC(IP6S_SRCRULE_7); |
| 591 | } |
| 592 | } |
| 593 | if ((ia_best->ia6_flags & IN6_IFF_TEMPORARY) && |
| 594 | !(ia->ia6_flags & IN6_IFF_TEMPORARY)) { |
| 595 | if (hint_mask & IPV6_SRCSEL_HINT_PREFER_TMPADDR) { |
| 596 | NEXTSRC(IP6S_SRCRULE_7); |
| 597 | } else { |
| 598 | REPLACE(IP6S_SRCRULE_7); |
| 599 | } |
| 600 | } |
| 601 | |
| 602 | /* |
| 603 | * Rule 7x: prefer addresses on alive interfaces. |
| 604 | * This is a KAME specific rule. |
| 605 | */ |
| 606 | if ((ia_best->ia_ifp->if_flags & IFF_UP) && |
| 607 | !(ia->ia_ifp->if_flags & IFF_UP)) { |
| 608 | NEXTSRC(IP6S_SRCRULE_7x); |
| 609 | } |
| 610 | if (!(ia_best->ia_ifp->if_flags & IFF_UP) && |
| 611 | (ia->ia_ifp->if_flags & IFF_UP)) { |
| 612 | REPLACE(IP6S_SRCRULE_7x); |
| 613 | } |
| 614 | |
| 615 | /* |
| 616 | * Rule 8: Use longest matching prefix. |
| 617 | */ |
| 618 | new_matchlen = in6_matchlen(&ia->ia_addr.sin6_addr, &dst); |
| 619 | if (best_matchlen < new_matchlen) { |
| 620 | REPLACE(IP6S_SRCRULE_8); |
| 621 | } |
| 622 | if (new_matchlen < best_matchlen) { |
| 623 | NEXTSRC(IP6S_SRCRULE_8); |
| 624 | } |
| 625 | |
| 626 | /* |
| 627 | * Last resort: just keep the current candidate. |
| 628 | * Or, do we need more rules? |
| 629 | */ |
| 630 | if (ifp1 != ifp && (ifp1->if_eflags & IFEF_EXPENSIVE) && |
| 631 | ip6_select_src_expensive_secondary_if == 0) { |
| 632 | SASEL_LOG("NEXT ia %s ifp1 %s IFEF_EXPENSIVE\n" , |
| 633 | s_src, ifp1->if_xname); |
| 634 | ip6stat.ip6s_sources_skip_expensive_secondary_if++; |
| 635 | goto next; |
| 636 | } |
| 637 | SASEL_LOG("NEXT ia %s ifp1 %s last resort\n" , |
| 638 | s_src, ifp1->if_xname); |
| 639 | IFA_UNLOCK(&ia->ia_ifa); |
| 640 | continue; |
| 641 | |
| 642 | replace: |
| 643 | /* |
| 644 | * Ignore addresses on secondary interfaces that are marked |
| 645 | * expensive |
| 646 | */ |
| 647 | if (ifp1 != ifp && (ifp1->if_eflags & IFEF_EXPENSIVE) && |
| 648 | ip6_select_src_expensive_secondary_if == 0) { |
| 649 | SASEL_LOG("NEXT ia %s ifp1 %s IFEF_EXPENSIVE\n" , |
| 650 | s_src, ifp1->if_xname); |
| 651 | ip6stat.ip6s_sources_skip_expensive_secondary_if++; |
| 652 | goto next; |
| 653 | } |
| 654 | bestrule = srcrule; |
| 655 | best_scope = (new_scope >= 0 ? new_scope : |
| 656 | in6_addrscope(&ia->ia_addr.sin6_addr)); |
| 657 | best_policy = (new_policy ? new_policy : |
| 658 | in6_addrsel_lookup_policy(&ia->ia_addr)); |
| 659 | best_matchlen = (new_matchlen >= 0 ? new_matchlen : |
| 660 | in6_matchlen(&ia->ia_addr.sin6_addr, &dst)); |
| 661 | SASEL_LOG("NEXT ia %s ifp1 %s best_scope %d new_scope %d dst_scope %d\n" , |
| 662 | s_src, ifp1->if_xname, best_scope, new_scope, dst_scope); |
| 663 | ifa_addref(ifa: &ia->ia_ifa); /* for ia_best */ |
| 664 | IFA_UNLOCK(&ia->ia_ifa); |
| 665 | if (ia_best != NULL) { |
| 666 | ifa_remref(ifa: &ia_best->ia_ifa); |
| 667 | } |
| 668 | ia_best = ia; |
| 669 | continue; |
| 670 | |
| 671 | next: |
| 672 | IFA_UNLOCK(&ia->ia_ifa); |
| 673 | continue; |
| 674 | |
| 675 | out: |
| 676 | ifa_addref(ifa: &ia->ia_ifa); /* for ia_best */ |
| 677 | IFA_UNLOCK(&ia->ia_ifa); |
| 678 | if (ia_best != NULL) { |
| 679 | ifa_remref(ifa: &ia_best->ia_ifa); |
| 680 | } |
| 681 | ia_best = ia; |
| 682 | break; |
| 683 | } |
| 684 | |
| 685 | lck_rw_done(lck: &in6_ifaddr_rwlock); |
| 686 | |
| 687 | if ((ia = ia_best) == NULL) { |
| 688 | if (*errorp == 0) { |
| 689 | *errorp = EADDRNOTAVAIL; |
| 690 | } |
| 691 | src_storage = NULL; |
| 692 | goto done; |
| 693 | } |
| 694 | |
| 695 | if (sifp != NULL) { |
| 696 | *sifp = ia->ia_ifa.ifa_ifp; |
| 697 | ifnet_reference(interface: *sifp); |
| 698 | } |
| 699 | |
| 700 | IFA_LOCK_SPIN(&ia->ia_ifa); |
| 701 | if (bestrule < IP6S_SRCRULE_COUNT) { |
| 702 | ip6stat.ip6s_sources_rule[bestrule]++; |
| 703 | } |
| 704 | *src_storage = satosin6(&ia->ia_addr)->sin6_addr; |
| 705 | IFA_UNLOCK(&ia->ia_ifa); |
| 706 | |
| 707 | if (ifapp != NULL) { |
| 708 | *ifapp = &ia->ia_ifa; |
| 709 | } else { |
| 710 | ifa_remref(ifa: &ia->ia_ifa); |
| 711 | } |
| 712 | |
| 713 | done: |
| 714 | if (srcsel_debug) { |
| 715 | (void) inet_ntop(AF_INET6, &dst, s_dst, sizeof(s_src)); |
| 716 | |
| 717 | tmp = (src_storage != NULL) ? src_storage : &in6addr_any; |
| 718 | (void) inet_ntop(AF_INET6, tmp, s_src, sizeof(s_src)); |
| 719 | |
| 720 | os_log(OS_LOG_DEFAULT, "%s out src %s dst %s dst_scope %d best_scope %d" , |
| 721 | __func__, s_src, s_dst, dst_scope, best_scope); |
| 722 | } |
| 723 | |
| 724 | if (dr != NULL) { |
| 725 | NDDR_REMREF(dr); |
| 726 | } |
| 727 | |
| 728 | return src_storage; |
| 729 | } |
| 730 | |
| 731 | /* |
| 732 | * Regardless of error, it will return an ifp with a reference held if the |
| 733 | * caller provides a non-NULL ifpp. The caller is responsible for checking |
| 734 | * if the returned ifp is valid and release its reference at all times. |
| 735 | */ |
| 736 | struct in6_addr * |
| 737 | in6_selectsrc(struct sockaddr_in6 *dstsock, struct ip6_pktopts *opts, |
| 738 | struct inpcb *inp, struct route_in6 *ro, |
| 739 | struct ifnet **ifpp, struct in6_addr *src_storage, unsigned int ifscope, |
| 740 | int *errorp) |
| 741 | { |
| 742 | struct ifnet *ifp = NULL; |
| 743 | struct in6_pktinfo *pi = NULL; |
| 744 | struct ip6_moptions *mopts; |
| 745 | struct ip6_out_args ip6oa; |
| 746 | boolean_t inp_debug = FALSE; |
| 747 | uint32_t hint_mask = 0; |
| 748 | int prefer_tempaddr = 0; |
| 749 | struct ifnet *sifp = NULL; |
| 750 | |
| 751 | bzero(s: &ip6oa, n: sizeof(ip6oa)); |
| 752 | ip6oa.ip6oa_boundif = ifscope; |
| 753 | ip6oa.ip6oa_flags = IP6OAF_SELECT_SRCIF; |
| 754 | ip6oa.ip6oa_sotc = SO_TC_UNSPEC; |
| 755 | ip6oa.ip6oa_netsvctype = _NET_SERVICE_TYPE_UNSPEC; |
| 756 | |
| 757 | *errorp = 0; |
| 758 | if (ifpp != NULL) { |
| 759 | *ifpp = NULL; |
| 760 | } |
| 761 | |
| 762 | if (inp != NULL) { |
| 763 | inp_debug = SASEL_DO_DBG(inp); |
| 764 | mopts = inp->in6p_moptions; |
| 765 | if (INP_NO_CELLULAR(inp)) { |
| 766 | ip6oa.ip6oa_flags |= IP6OAF_NO_CELLULAR; |
| 767 | } |
| 768 | if (INP_NO_EXPENSIVE(inp)) { |
| 769 | ip6oa.ip6oa_flags |= IP6OAF_NO_EXPENSIVE; |
| 770 | } |
| 771 | if (INP_NO_CONSTRAINED(inp)) { |
| 772 | ip6oa.ip6oa_flags |= IP6OAF_NO_CONSTRAINED; |
| 773 | } |
| 774 | if (INP_AWDL_UNRESTRICTED(inp)) { |
| 775 | ip6oa.ip6oa_flags |= IP6OAF_AWDL_UNRESTRICTED; |
| 776 | } |
| 777 | if (INP_INTCOPROC_ALLOWED(inp)) { |
| 778 | ip6oa.ip6oa_flags |= IP6OAF_INTCOPROC_ALLOWED; |
| 779 | } |
| 780 | if (INP_MANAGEMENT_ALLOWED(inp)) { |
| 781 | ip6oa.ip6oa_flags |= IP6OAF_MANAGEMENT_ALLOWED; |
| 782 | } |
| 783 | } else { |
| 784 | mopts = NULL; |
| 785 | /* Allow the kernel to retransmit packets. */ |
| 786 | ip6oa.ip6oa_flags |= IP6OAF_INTCOPROC_ALLOWED | |
| 787 | IP6OAF_AWDL_UNRESTRICTED | IP6OAF_MANAGEMENT_ALLOWED; |
| 788 | } |
| 789 | |
| 790 | if (ip6oa.ip6oa_boundif != IFSCOPE_NONE) { |
| 791 | ip6oa.ip6oa_flags |= IP6OAF_BOUND_IF; |
| 792 | } |
| 793 | |
| 794 | /* |
| 795 | * If the source address is explicitly specified by the caller, |
| 796 | * check if the requested source address is indeed a unicast address |
| 797 | * assigned to the node, and can be used as the packet's source |
| 798 | * address. If everything is okay, use the address as source. |
| 799 | */ |
| 800 | if (opts && (pi = opts->ip6po_pktinfo) && |
| 801 | !IN6_IS_ADDR_UNSPECIFIED(&pi->ipi6_addr)) { |
| 802 | struct sockaddr_in6 srcsock; |
| 803 | struct in6_ifaddr *ia6; |
| 804 | |
| 805 | /* get the outgoing interface */ |
| 806 | if ((*errorp = in6_selectif(dstsock, opts, mopts, ro, &ip6oa, |
| 807 | &ifp)) != 0) { |
| 808 | src_storage = NULL; |
| 809 | goto done; |
| 810 | } |
| 811 | |
| 812 | /* |
| 813 | * determine the appropriate zone id of the source based on |
| 814 | * the zone of the destination and the outgoing interface. |
| 815 | * If the specified address is ambiguous wrt the scope zone, |
| 816 | * the interface must be specified; otherwise, ifa_ifwithaddr() |
| 817 | * will fail matching the address. |
| 818 | */ |
| 819 | SOCKADDR_ZERO(&srcsock, sizeof(srcsock)); |
| 820 | srcsock.sin6_family = AF_INET6; |
| 821 | srcsock.sin6_len = sizeof(srcsock); |
| 822 | srcsock.sin6_addr = pi->ipi6_addr; |
| 823 | if (ifp != NULL) { |
| 824 | *errorp = in6_setscope(&srcsock.sin6_addr, ifp, IN6_NULL_IF_EMBEDDED_SCOPE(&srcsock.sin6_scope_id)); |
| 825 | if (*errorp != 0) { |
| 826 | src_storage = NULL; |
| 827 | goto done; |
| 828 | } |
| 829 | } |
| 830 | ia6 = (struct in6_ifaddr *)ifa_ifwithaddr(SA(&srcsock)); |
| 831 | if (ia6 == NULL) { |
| 832 | *errorp = EADDRNOTAVAIL; |
| 833 | src_storage = NULL; |
| 834 | goto done; |
| 835 | } |
| 836 | IFA_LOCK_SPIN(&ia6->ia_ifa); |
| 837 | if ((ia6->ia6_flags & (IN6_IFF_ANYCAST | IN6_IFF_NOTREADY | IN6_IFF_CLAT46)) || |
| 838 | (inp && inp_restricted_send(inp, ia6->ia_ifa.ifa_ifp))) { |
| 839 | IFA_UNLOCK(&ia6->ia_ifa); |
| 840 | ifa_remref(ifa: &ia6->ia_ifa); |
| 841 | *errorp = EHOSTUNREACH; |
| 842 | src_storage = NULL; |
| 843 | goto done; |
| 844 | } |
| 845 | |
| 846 | *src_storage = satosin6(&ia6->ia_addr)->sin6_addr; |
| 847 | IFA_UNLOCK(&ia6->ia_ifa); |
| 848 | ifa_remref(ifa: &ia6->ia_ifa); |
| 849 | goto done; |
| 850 | } |
| 851 | |
| 852 | /* |
| 853 | * Otherwise, if the socket has already bound the source, just use it. |
| 854 | */ |
| 855 | if (inp != NULL && !IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr)) { |
| 856 | src_storage = &inp->in6p_laddr; |
| 857 | goto done; |
| 858 | } |
| 859 | |
| 860 | /* |
| 861 | * If the address is not specified, choose the best one based on |
| 862 | * the outgoing interface and the destination address. |
| 863 | */ |
| 864 | /* get the outgoing interface */ |
| 865 | if ((*errorp = in6_selectif(dstsock, opts, mopts, ro, &ip6oa, |
| 866 | &ifp)) != 0) { |
| 867 | src_storage = NULL; |
| 868 | goto done; |
| 869 | } |
| 870 | |
| 871 | VERIFY(ifp != NULL); |
| 872 | |
| 873 | if (opts == NULL || |
| 874 | opts->ip6po_prefer_tempaddr == IP6PO_TEMPADDR_SYSTEM) { |
| 875 | prefer_tempaddr = ip6_prefer_tempaddr; |
| 876 | } else if (opts->ip6po_prefer_tempaddr == IP6PO_TEMPADDR_NOTPREFER) { |
| 877 | prefer_tempaddr = 0; |
| 878 | } else { |
| 879 | prefer_tempaddr = 1; |
| 880 | } |
| 881 | |
| 882 | if (prefer_tempaddr) { |
| 883 | hint_mask |= IPV6_SRCSEL_HINT_PREFER_TMPADDR; |
| 884 | } |
| 885 | |
| 886 | if (in6_selectsrc_core(dstsock, hint_mask, ifp, srcsel_debug: inp_debug, src_storage, |
| 887 | sifp: &sifp, errorp, NULL, ro, FALSE) == NULL) { |
| 888 | src_storage = NULL; |
| 889 | goto done; |
| 890 | } |
| 891 | |
| 892 | VERIFY(sifp != NULL); |
| 893 | |
| 894 | if (inp && inp_restricted_send(inp, sifp)) { |
| 895 | src_storage = NULL; |
| 896 | *errorp = EHOSTUNREACH; |
| 897 | ifnet_release(interface: sifp); |
| 898 | goto done; |
| 899 | } else { |
| 900 | ifnet_release(interface: sifp); |
| 901 | } |
| 902 | |
| 903 | done: |
| 904 | if (ifpp != NULL) { |
| 905 | /* if ifp is non-NULL, refcnt held in in6_selectif() */ |
| 906 | *ifpp = ifp; |
| 907 | } else if (ifp != NULL) { |
| 908 | ifnet_release(interface: ifp); |
| 909 | } |
| 910 | return src_storage; |
| 911 | } |
| 912 | |
| 913 | /* |
| 914 | * Given a source IPv6 address (and route, if available), determine the best |
| 915 | * interface to send the packet from. Checking for (and updating) the |
| 916 | * ROF_SRCIF_SELECTED flag in the pcb-supplied route placeholder is done |
| 917 | * without any locks, based on the assumption that in the event this is |
| 918 | * called from ip6_output(), the output operation is single-threaded per-pcb, |
| 919 | * i.e. for any given pcb there can only be one thread performing output at |
| 920 | * the IPv6 layer. |
| 921 | * |
| 922 | * This routine is analogous to in_selectsrcif() for IPv4. Regardless of |
| 923 | * error, it will return an ifp with a reference held if the caller provides |
| 924 | * a non-NULL retifp. The caller is responsible for checking if the |
| 925 | * returned ifp is valid and release its reference at all times. |
| 926 | * |
| 927 | * clone - meaningful only for bsdi and freebsd |
| 928 | */ |
| 929 | static int |
| 930 | selectroute(struct sockaddr_in6 *srcsock, struct sockaddr_in6 *dstsock, |
| 931 | struct ip6_pktopts *opts, struct ip6_moptions *mopts, |
| 932 | struct in6_ifaddr **retsrcia, struct route_in6 *ro, |
| 933 | struct ifnet **retifp, struct rtentry **retrt, int clone, |
| 934 | int norouteok, struct ip6_out_args *ip6oa) |
| 935 | { |
| 936 | int error = 0; |
| 937 | struct ifnet *ifp = NULL, *ifp0 = NULL; |
| 938 | struct route_in6 *route = NULL; |
| 939 | struct sockaddr_in6 *sin6_next; |
| 940 | struct in6_pktinfo *pi = NULL; |
| 941 | struct in6_addr *dst = &dstsock->sin6_addr; |
| 942 | struct ifaddr *ifa = NULL; |
| 943 | char s_src[MAX_IPv6_STR_LEN], s_dst[MAX_IPv6_STR_LEN]; |
| 944 | boolean_t select_srcif, proxied_ifa = FALSE, local_dst = FALSE; |
| 945 | unsigned int ifscope = ((ip6oa != NULL) ? |
| 946 | ip6oa->ip6oa_boundif : IFSCOPE_NONE); |
| 947 | boolean_t is_direct = FALSE; |
| 948 | |
| 949 | if (retifp != NULL) { |
| 950 | *retifp = NULL; |
| 951 | } |
| 952 | |
| 953 | if (retrt != NULL) { |
| 954 | *retrt = NULL; |
| 955 | } |
| 956 | |
| 957 | if (ip6_select_srcif_debug) { |
| 958 | struct in6_addr src; |
| 959 | src = (srcsock != NULL) ? srcsock->sin6_addr : in6addr_any; |
| 960 | (void) inet_ntop(AF_INET6, &src, s_src, sizeof(s_src)); |
| 961 | (void) inet_ntop(AF_INET6, dst, s_dst, sizeof(s_dst)); |
| 962 | } |
| 963 | |
| 964 | /* |
| 965 | * If the destination address is UNSPECIFIED addr, bail out. |
| 966 | */ |
| 967 | if (IN6_IS_ADDR_UNSPECIFIED(dst)) { |
| 968 | error = EHOSTUNREACH; |
| 969 | goto done; |
| 970 | } |
| 971 | |
| 972 | /* |
| 973 | * Perform source interface selection if Scoped Routing |
| 974 | * is enabled and a source address that isn't unspecified. |
| 975 | */ |
| 976 | select_srcif = (srcsock != NULL && |
| 977 | !IN6_IS_ADDR_UNSPECIFIED(&srcsock->sin6_addr)); |
| 978 | |
| 979 | /* |
| 980 | * For scoped routing, if interface scope is 0 or src/dst addr is linklocal |
| 981 | * or dst addr is multicast, source interface selection should be performed even |
| 982 | * if the destination is directly reachable. |
| 983 | */ |
| 984 | if (ifscope != IFSCOPE_NONE && |
| 985 | !(srcsock != NULL && IN6_IS_ADDR_LINKLOCAL(&srcsock->sin6_addr)) && |
| 986 | !IN6_IS_ADDR_MULTICAST(dst) && !IN6_IS_ADDR_LINKLOCAL(dst)) { |
| 987 | struct rtentry *temp_rt = NULL; |
| 988 | |
| 989 | lck_mtx_lock(rnh_lock); |
| 990 | temp_rt = rt_lookup(TRUE, SA(dstsock), |
| 991 | NULL, rt_tables[AF_INET6], ifscope); |
| 992 | lck_mtx_unlock(rnh_lock); |
| 993 | |
| 994 | /* |
| 995 | * If the destination is directly reachable, relax |
| 996 | * the behavior around select_srcif, i.e. don't force |
| 997 | * the packet to go out from the interface that is hosting |
| 998 | * the source address. |
| 999 | * It happens when we share v6 with NAT66 and want |
| 1000 | * the external interface's v6 address to be reachable |
| 1001 | * to the clients we are sharing v6 connectivity with |
| 1002 | * using NAT. |
| 1003 | */ |
| 1004 | if (temp_rt != NULL) { |
| 1005 | if ((temp_rt->rt_flags & RTF_GATEWAY) == 0) { |
| 1006 | select_srcif = FALSE; |
| 1007 | is_direct = TRUE; |
| 1008 | } |
| 1009 | rtfree(temp_rt); |
| 1010 | } |
| 1011 | } |
| 1012 | |
| 1013 | if (ip6_select_srcif_debug) { |
| 1014 | os_log(OS_LOG_DEFAULT, "%s src %s dst %s ifscope %d " |
| 1015 | "is_direct %d select_srcif %d" , |
| 1016 | __func__, s_src, s_dst, ifscope, is_direct, select_srcif); |
| 1017 | } |
| 1018 | |
| 1019 | /* If the caller specified the outgoing interface explicitly, use it */ |
| 1020 | if (opts != NULL && (pi = opts->ip6po_pktinfo) != NULL && |
| 1021 | pi->ipi6_ifindex != 0) { |
| 1022 | /* |
| 1023 | * If IPV6_PKTINFO takes precedence over IPV6_BOUND_IF. |
| 1024 | */ |
| 1025 | ifscope = pi->ipi6_ifindex; |
| 1026 | ifnet_head_lock_shared(); |
| 1027 | /* ifp may be NULL if detached or out of range */ |
| 1028 | ifp = ifp0 = |
| 1029 | ((ifscope <= if_index) ? ifindex2ifnet[ifscope] : NULL); |
| 1030 | ifnet_head_done(); |
| 1031 | if (norouteok || retrt == NULL || IN6_IS_ADDR_MC_LINKLOCAL(dst)) { |
| 1032 | /* |
| 1033 | * We do not have to check or get the route for |
| 1034 | * multicast. If the caller didn't ask/care for |
| 1035 | * the route and we have no interface to use, |
| 1036 | * it's an error. |
| 1037 | */ |
| 1038 | if (ifp == NULL) { |
| 1039 | error = EHOSTUNREACH; |
| 1040 | } |
| 1041 | goto done; |
| 1042 | } else { |
| 1043 | goto getsrcif; |
| 1044 | } |
| 1045 | } |
| 1046 | |
| 1047 | /* |
| 1048 | * If the destination address is a multicast address and the outgoing |
| 1049 | * interface for the address is specified by the caller, use it. |
| 1050 | */ |
| 1051 | if (IN6_IS_ADDR_MULTICAST(dst) && mopts != NULL) { |
| 1052 | IM6O_LOCK(mopts); |
| 1053 | ifp = ifp0 = mopts->im6o_multicast_ifp; |
| 1054 | if (ifp != NULL && IN6_IS_ADDR_MC_LINKLOCAL(dst)) { |
| 1055 | IM6O_UNLOCK(mopts); |
| 1056 | goto done; /* we don't need a route for link-local multicast */ |
| 1057 | } |
| 1058 | IM6O_UNLOCK(mopts); |
| 1059 | } |
| 1060 | |
| 1061 | getsrcif: |
| 1062 | /* |
| 1063 | * If the outgoing interface was not set via IPV6_BOUND_IF or |
| 1064 | * IPV6_PKTINFO, use the scope ID in the destination address. |
| 1065 | */ |
| 1066 | if (ifscope == IFSCOPE_NONE) { |
| 1067 | ifscope = dstsock->sin6_scope_id; |
| 1068 | } |
| 1069 | |
| 1070 | /* |
| 1071 | * Perform source interface selection; the source IPv6 address |
| 1072 | * must belong to one of the addresses of the interface used |
| 1073 | * by the route. For performance reasons, do this only if |
| 1074 | * there is no route, or if the routing table has changed, |
| 1075 | * or if we haven't done source interface selection on this |
| 1076 | * route (for this PCB instance) before. |
| 1077 | */ |
| 1078 | if (!select_srcif) { |
| 1079 | goto getroute; |
| 1080 | } else if (!ROUTE_UNUSABLE(ro) && ro->ro_srcia != NULL && |
| 1081 | (ro->ro_flags & ROF_SRCIF_SELECTED)) { |
| 1082 | if (ro->ro_rt->rt_ifp->if_flags & IFF_LOOPBACK) { |
| 1083 | local_dst = TRUE; |
| 1084 | } |
| 1085 | ifa = ro->ro_srcia; |
| 1086 | ifa_addref(ifa); /* for caller */ |
| 1087 | goto getroute; |
| 1088 | } |
| 1089 | |
| 1090 | /* |
| 1091 | * Given the source IPv6 address, find a suitable source interface |
| 1092 | * to use for transmission; if a scope ID has been specified, |
| 1093 | * optimize the search by looking at the addresses only for that |
| 1094 | * interface. This is still suboptimal, however, as we need to |
| 1095 | * traverse the per-interface list. |
| 1096 | */ |
| 1097 | if (ifscope != IFSCOPE_NONE || (ro != NULL && ro->ro_rt != NULL)) { |
| 1098 | unsigned int scope = ifscope; |
| 1099 | struct ifnet *rt_ifp; |
| 1100 | |
| 1101 | rt_ifp = (ro->ro_rt != NULL) ? ro->ro_rt->rt_ifp : NULL; |
| 1102 | |
| 1103 | /* |
| 1104 | * If no scope is specified and the route is stale (pointing |
| 1105 | * to a defunct interface) use the current primary interface; |
| 1106 | * this happens when switching between interfaces configured |
| 1107 | * with the same IPv6 address. Otherwise pick up the scope |
| 1108 | * information from the route; the ULP may have looked up a |
| 1109 | * correct route and we just need to verify it here and mark |
| 1110 | * it with the ROF_SRCIF_SELECTED flag below. |
| 1111 | */ |
| 1112 | if (scope == IFSCOPE_NONE) { |
| 1113 | scope = rt_ifp->if_index; |
| 1114 | if (scope != get_primary_ifscope(AF_INET6) && |
| 1115 | ROUTE_UNUSABLE(ro)) { |
| 1116 | scope = get_primary_ifscope(AF_INET6); |
| 1117 | } |
| 1118 | } |
| 1119 | |
| 1120 | ifa = (struct ifaddr *) |
| 1121 | ifa_foraddr6_scoped(&srcsock->sin6_addr, scope); |
| 1122 | |
| 1123 | /* |
| 1124 | * If we are forwarding and proxying prefix(es), see if the |
| 1125 | * source address is one of ours and is a proxied address; |
| 1126 | * if so, use it. |
| 1127 | */ |
| 1128 | if (ifa == NULL && ip6_forwarding && nd6_prproxy) { |
| 1129 | ifa = (struct ifaddr *) |
| 1130 | ifa_foraddr6(&srcsock->sin6_addr); |
| 1131 | if (ifa != NULL && !(proxied_ifa = |
| 1132 | nd6_prproxy_ifaddr((struct in6_ifaddr *)ifa))) { |
| 1133 | ifa_remref(ifa); |
| 1134 | ifa = NULL; |
| 1135 | } |
| 1136 | } |
| 1137 | |
| 1138 | if (ip6_select_srcif_debug && ifa != NULL) { |
| 1139 | if (ro->ro_rt != NULL) { |
| 1140 | os_log(OS_LOG_DEFAULT, "%s %s->%s ifscope %d->%d ifa_if %s " |
| 1141 | "ro_if %s" , |
| 1142 | __func__, |
| 1143 | s_src, s_dst, ifscope, |
| 1144 | scope, if_name(ifa->ifa_ifp), |
| 1145 | if_name(rt_ifp)); |
| 1146 | } else { |
| 1147 | os_log(OS_LOG_DEFAULT, "%s %s->%s ifscope %d->%d ifa_if %s" , |
| 1148 | __func__, |
| 1149 | s_src, s_dst, ifscope, scope, |
| 1150 | if_name(ifa->ifa_ifp)); |
| 1151 | } |
| 1152 | } |
| 1153 | } |
| 1154 | |
| 1155 | /* |
| 1156 | * Slow path; search for an interface having the corresponding source |
| 1157 | * IPv6 address if the scope was not specified by the caller, and: |
| 1158 | * |
| 1159 | * 1) There currently isn't any route, or, |
| 1160 | * 2) The interface used by the route does not own that source |
| 1161 | * IPv6 address; in this case, the route will get blown away |
| 1162 | * and we'll do a more specific scoped search using the newly |
| 1163 | * found interface. |
| 1164 | */ |
| 1165 | if (ifa == NULL && ifscope == IFSCOPE_NONE) { |
| 1166 | struct ifaddr *ifadst; |
| 1167 | |
| 1168 | /* Check if the destination address is one of ours */ |
| 1169 | ifadst = (struct ifaddr *)ifa_foraddr6(&dstsock->sin6_addr); |
| 1170 | if (ifadst != NULL) { |
| 1171 | local_dst = TRUE; |
| 1172 | ifa_remref(ifa: ifadst); |
| 1173 | } |
| 1174 | |
| 1175 | ifa = (struct ifaddr *)ifa_foraddr6(&srcsock->sin6_addr); |
| 1176 | |
| 1177 | if (ip6_select_srcif_debug && ifa != NULL) { |
| 1178 | os_log(OS_LOG_DEFAULT, "%s %s->%s ifscope %d ifa_if %s" , |
| 1179 | __func__, |
| 1180 | s_src, s_dst, ifscope, if_name(ifa->ifa_ifp)); |
| 1181 | } else if (ip6_select_srcif_debug) { |
| 1182 | os_log(OS_LOG_DEFAULT, "%s %s->%s ifscope %d ifa_if NULL" , |
| 1183 | __func__, |
| 1184 | s_src, s_dst, ifscope); |
| 1185 | } |
| 1186 | } |
| 1187 | |
| 1188 | getroute: |
| 1189 | if (ifa != NULL && !proxied_ifa && !local_dst) { |
| 1190 | ifscope = ifa->ifa_ifp->if_index; |
| 1191 | } |
| 1192 | |
| 1193 | /* |
| 1194 | * If the next hop address for the packet is specified by the caller, |
| 1195 | * use it as the gateway. |
| 1196 | */ |
| 1197 | if (opts != NULL && opts->ip6po_nexthop != NULL) { |
| 1198 | struct route_in6 *ron; |
| 1199 | |
| 1200 | sin6_next = satosin6(opts->ip6po_nexthop); |
| 1201 | |
| 1202 | /* at this moment, we only support AF_INET6 next hops */ |
| 1203 | if (sin6_next->sin6_family != AF_INET6) { |
| 1204 | error = EAFNOSUPPORT; /* or should we proceed? */ |
| 1205 | goto done; |
| 1206 | } |
| 1207 | |
| 1208 | /* |
| 1209 | * If the next hop is an IPv6 address, then the node identified |
| 1210 | * by that address must be a neighbor of the sending host. |
| 1211 | */ |
| 1212 | ron = &opts->ip6po_nextroute; |
| 1213 | if (ron->ro_rt != NULL) { |
| 1214 | RT_LOCK(ron->ro_rt); |
| 1215 | } |
| 1216 | if (ROUTE_UNUSABLE(ron) || (ron->ro_rt != NULL && |
| 1217 | (!(ron->ro_rt->rt_flags & RTF_LLINFO) || |
| 1218 | (select_srcif && (ifa == NULL || |
| 1219 | (ifa->ifa_ifp != ron->ro_rt->rt_ifp && !proxied_ifa))))) || |
| 1220 | !in6_are_addr_equal_scoped(&satosin6(&ron->ro_dst)->sin6_addr, |
| 1221 | &sin6_next->sin6_addr, ron->ro_rt->rt_ifp->if_index, sin6_next->sin6_scope_id)) { |
| 1222 | if (ron->ro_rt != NULL) { |
| 1223 | RT_UNLOCK(ron->ro_rt); |
| 1224 | } |
| 1225 | |
| 1226 | ROUTE_RELEASE(ron); |
| 1227 | *satosin6(&ron->ro_dst) = *sin6_next; |
| 1228 | } |
| 1229 | if (ron->ro_rt == NULL) { |
| 1230 | rtalloc_scoped((struct route *)ron, ifscope); |
| 1231 | if (ron->ro_rt != NULL) { |
| 1232 | RT_LOCK(ron->ro_rt); |
| 1233 | } |
| 1234 | if (ROUTE_UNUSABLE(ron) || |
| 1235 | !(ron->ro_rt->rt_flags & RTF_LLINFO) || |
| 1236 | !in6_are_addr_equal_scoped(&satosin6(rt_key(ron->ro_rt))-> |
| 1237 | sin6_addr, &sin6_next->sin6_addr, ron->ro_rt->rt_ifp->if_index, sin6_next->sin6_scope_id)) { |
| 1238 | if (ron->ro_rt != NULL) { |
| 1239 | RT_UNLOCK(ron->ro_rt); |
| 1240 | } |
| 1241 | |
| 1242 | ROUTE_RELEASE(ron); |
| 1243 | error = EHOSTUNREACH; |
| 1244 | goto done; |
| 1245 | } |
| 1246 | } |
| 1247 | route = ron; |
| 1248 | ifp = ifp0 = ron->ro_rt->rt_ifp; |
| 1249 | |
| 1250 | /* |
| 1251 | * When cloning is required, try to allocate a route to the |
| 1252 | * destination so that the caller can store path MTU |
| 1253 | * information. |
| 1254 | */ |
| 1255 | if (!clone) { |
| 1256 | if (select_srcif) { |
| 1257 | /* Keep the route locked */ |
| 1258 | goto validateroute; |
| 1259 | } |
| 1260 | RT_UNLOCK(ron->ro_rt); |
| 1261 | goto done; |
| 1262 | } |
| 1263 | RT_UNLOCK(ron->ro_rt); |
| 1264 | } |
| 1265 | |
| 1266 | /* |
| 1267 | * Use a cached route if it exists and is valid, else try to allocate |
| 1268 | * a new one. Note that we should check the address family of the |
| 1269 | * cached destination, in case of sharing the cache with IPv4. |
| 1270 | */ |
| 1271 | if (ro == NULL) { |
| 1272 | goto done; |
| 1273 | } |
| 1274 | if (ro->ro_rt != NULL) { |
| 1275 | RT_LOCK_SPIN(ro->ro_rt); |
| 1276 | } |
| 1277 | if (ROUTE_UNUSABLE(ro) || (ro->ro_rt != NULL && |
| 1278 | (satosin6(&ro->ro_dst)->sin6_family != AF_INET6 || |
| 1279 | !in6_are_addr_equal_scoped(&satosin6(&ro->ro_dst)->sin6_addr, dst, ro->ro_rt->rt_ifp->if_index, dstsock->sin6_scope_id) || |
| 1280 | (select_srcif && (ifa == NULL || |
| 1281 | (ifa->ifa_ifp != ro->ro_rt->rt_ifp && !proxied_ifa)))))) { |
| 1282 | if (ro->ro_rt != NULL) { |
| 1283 | RT_UNLOCK(ro->ro_rt); |
| 1284 | } |
| 1285 | |
| 1286 | ROUTE_RELEASE(ro); |
| 1287 | } |
| 1288 | if (ro->ro_rt == NULL) { |
| 1289 | struct sockaddr_in6 *sa6; |
| 1290 | |
| 1291 | /* No route yet, so try to acquire one */ |
| 1292 | SOCKADDR_ZERO(&ro->ro_dst, sizeof(struct sockaddr_in6)); |
| 1293 | sa6 = SIN6(&ro->ro_dst); |
| 1294 | sa6->sin6_family = AF_INET6; |
| 1295 | sa6->sin6_len = sizeof(struct sockaddr_in6); |
| 1296 | sa6->sin6_addr = *dst; |
| 1297 | if (IN6_IS_ADDR_MC_LINKLOCAL(dst)) { |
| 1298 | ro->ro_rt = rtalloc1_scoped( |
| 1299 | SA(&((struct route *)ro)->ro_dst), 0, 0, ifscope); |
| 1300 | } else { |
| 1301 | rtalloc_scoped((struct route *)ro, ifscope); |
| 1302 | } |
| 1303 | if (ro->ro_rt != NULL) { |
| 1304 | RT_LOCK_SPIN(ro->ro_rt); |
| 1305 | } |
| 1306 | } |
| 1307 | |
| 1308 | /* |
| 1309 | * Do not care about the result if we have the nexthop |
| 1310 | * explicitly specified (in case we're asked to clone.) |
| 1311 | */ |
| 1312 | if (opts != NULL && opts->ip6po_nexthop != NULL) { |
| 1313 | if (ro->ro_rt != NULL) { |
| 1314 | RT_UNLOCK(ro->ro_rt); |
| 1315 | } |
| 1316 | goto done; |
| 1317 | } |
| 1318 | |
| 1319 | if (ro->ro_rt != NULL) { |
| 1320 | RT_LOCK_ASSERT_HELD(ro->ro_rt); |
| 1321 | ifp = ifp0 = ro->ro_rt->rt_ifp; |
| 1322 | } else { |
| 1323 | error = EHOSTUNREACH; |
| 1324 | } |
| 1325 | route = ro; |
| 1326 | |
| 1327 | validateroute: |
| 1328 | if (select_srcif) { |
| 1329 | boolean_t has_route = (route != NULL && route->ro_rt != NULL); |
| 1330 | boolean_t srcif_selected = FALSE; |
| 1331 | |
| 1332 | if (has_route) { |
| 1333 | RT_LOCK_ASSERT_HELD(route->ro_rt); |
| 1334 | } |
| 1335 | /* |
| 1336 | * If there is a non-loopback route with the wrong interface, |
| 1337 | * or if there is no interface configured with such an address, |
| 1338 | * blow it away. Except for local/loopback, we look for one |
| 1339 | * with a matching interface scope/index. |
| 1340 | */ |
| 1341 | if (has_route && (ifa == NULL || |
| 1342 | (ifa->ifa_ifp != ifp && ifp != lo_ifp) || |
| 1343 | !(route->ro_rt->rt_flags & RTF_UP))) { |
| 1344 | /* |
| 1345 | * If the destination address belongs to a proxied |
| 1346 | * prefix, relax the requirement and allow the packet |
| 1347 | * to come out of the proxy interface with the source |
| 1348 | * address of the real interface. |
| 1349 | */ |
| 1350 | if (ifa != NULL && proxied_ifa && |
| 1351 | (route->ro_rt->rt_flags & (RTF_UP | RTF_PROXY)) == |
| 1352 | (RTF_UP | RTF_PROXY)) { |
| 1353 | srcif_selected = TRUE; |
| 1354 | } else { |
| 1355 | if (ip6_select_srcif_debug) { |
| 1356 | if (ifa != NULL) { |
| 1357 | os_log(OS_LOG_DEFAULT, |
| 1358 | "%s->%s ifscope %d " |
| 1359 | "ro_if %s != ifa_if %s " |
| 1360 | "(cached route cleared)" , |
| 1361 | s_src, s_dst, |
| 1362 | ifscope, if_name(ifp), |
| 1363 | if_name(ifa->ifa_ifp)); |
| 1364 | } else { |
| 1365 | os_log(OS_LOG_DEFAULT, |
| 1366 | "%s->%s ifscope %d " |
| 1367 | "ro_if %s (no ifa_if " |
| 1368 | "found)" , s_src, s_dst, |
| 1369 | ifscope, if_name(ifp)); |
| 1370 | } |
| 1371 | } |
| 1372 | RT_UNLOCK(route->ro_rt); |
| 1373 | ROUTE_RELEASE(route); |
| 1374 | error = EHOSTUNREACH; |
| 1375 | /* Undo the settings done above */ |
| 1376 | route = NULL; |
| 1377 | ifp = NULL; /* ditch ifp; keep ifp0 */ |
| 1378 | has_route = FALSE; |
| 1379 | } |
| 1380 | } else if (has_route) { |
| 1381 | srcif_selected = TRUE; |
| 1382 | } |
| 1383 | |
| 1384 | if (srcif_selected) { |
| 1385 | VERIFY(has_route); |
| 1386 | if (ifa != route->ro_srcia || |
| 1387 | !(route->ro_flags & ROF_SRCIF_SELECTED)) { |
| 1388 | RT_CONVERT_LOCK(route->ro_rt); |
| 1389 | if (ifa != NULL) { |
| 1390 | ifa_addref(ifa); /* for route_in6 */ |
| 1391 | } |
| 1392 | if (route->ro_srcia != NULL) { |
| 1393 | ifa_remref(ifa: route->ro_srcia); |
| 1394 | } |
| 1395 | route->ro_srcia = ifa; |
| 1396 | route->ro_flags |= ROF_SRCIF_SELECTED; |
| 1397 | RT_GENID_SYNC(route->ro_rt); |
| 1398 | } |
| 1399 | RT_UNLOCK(route->ro_rt); |
| 1400 | } |
| 1401 | } else { |
| 1402 | if (ro->ro_rt != NULL) { |
| 1403 | RT_UNLOCK(ro->ro_rt); |
| 1404 | } |
| 1405 | if (ifp != NULL && opts != NULL && |
| 1406 | opts->ip6po_pktinfo != NULL && |
| 1407 | opts->ip6po_pktinfo->ipi6_ifindex != 0) { |
| 1408 | /* |
| 1409 | * Check if the outgoing interface conflicts with the |
| 1410 | * interface specified by ipi6_ifindex (if specified). |
| 1411 | * Note that loopback interface is always okay. |
| 1412 | * (this may happen when we are sending a packet to |
| 1413 | * one of our own addresses.) |
| 1414 | */ |
| 1415 | if (!(ifp->if_flags & IFF_LOOPBACK) && ifp->if_index != |
| 1416 | opts->ip6po_pktinfo->ipi6_ifindex) { |
| 1417 | error = EHOSTUNREACH; |
| 1418 | goto done; |
| 1419 | } |
| 1420 | } |
| 1421 | } |
| 1422 | |
| 1423 | done: |
| 1424 | /* |
| 1425 | * Check for interface restrictions. |
| 1426 | */ |
| 1427 | #define CHECK_RESTRICTIONS(_ip6oa, _ifp) \ |
| 1428 | ((((_ip6oa)->ip6oa_flags & IP6OAF_NO_CELLULAR) && \ |
| 1429 | IFNET_IS_CELLULAR(_ifp)) || \ |
| 1430 | (((_ip6oa)->ip6oa_flags & IP6OAF_NO_EXPENSIVE) && \ |
| 1431 | IFNET_IS_EXPENSIVE(_ifp)) || \ |
| 1432 | (((_ip6oa)->ip6oa_flags & IP6OAF_NO_CONSTRAINED) && \ |
| 1433 | IFNET_IS_CONSTRAINED(_ifp)) || \ |
| 1434 | (!((_ip6oa)->ip6oa_flags & IP6OAF_INTCOPROC_ALLOWED) && \ |
| 1435 | IFNET_IS_INTCOPROC(_ifp)) || \ |
| 1436 | (!((_ip6oa)->ip6oa_flags & IP6OAF_AWDL_UNRESTRICTED) && \ |
| 1437 | IFNET_IS_AWDL_RESTRICTED(_ifp)) && \ |
| 1438 | (!((_ip6oa)->ip6oa_flags & IP6OAF_MANAGEMENT_ALLOWED) && \ |
| 1439 | IFNET_IS_MANAGEMENT(_ifp))) |
| 1440 | |
| 1441 | if (error == 0 && ip6oa != NULL && |
| 1442 | ((ifp && CHECK_RESTRICTIONS(ip6oa, ifp)) || |
| 1443 | (route && route->ro_rt && |
| 1444 | CHECK_RESTRICTIONS(ip6oa, route->ro_rt->rt_ifp)))) { |
| 1445 | if (route != NULL && route->ro_rt != NULL) { |
| 1446 | ROUTE_RELEASE(route); |
| 1447 | route = NULL; |
| 1448 | } |
| 1449 | ifp = NULL; /* ditch ifp; keep ifp0 */ |
| 1450 | error = EHOSTUNREACH; |
| 1451 | ip6oa->ip6oa_flags |= IP6OAF_R_IFDENIED; |
| 1452 | } |
| 1453 | #undef CHECK_RESTRICTIONS |
| 1454 | |
| 1455 | /* |
| 1456 | * If the interface is disabled for IPv6, then ENETDOWN error. |
| 1457 | */ |
| 1458 | if (error == 0 && |
| 1459 | ifp != NULL && (ifp->if_eflags & IFEF_IPV6_DISABLED)) { |
| 1460 | error = ENETDOWN; |
| 1461 | } |
| 1462 | |
| 1463 | if (ifp == NULL && (route == NULL || route->ro_rt == NULL)) { |
| 1464 | /* |
| 1465 | * This can happen if the caller did not pass a cached route |
| 1466 | * nor any other hints. We treat this case an error. |
| 1467 | */ |
| 1468 | error = EHOSTUNREACH; |
| 1469 | } |
| 1470 | if (error == EHOSTUNREACH || error == ENETDOWN) { |
| 1471 | ip6stat.ip6s_noroute++; |
| 1472 | } |
| 1473 | |
| 1474 | /* |
| 1475 | * We'll return ifp regardless of error, so pick it up from ifp0 |
| 1476 | * in case it was nullified above. Caller is responsible for |
| 1477 | * releasing the ifp if it is non-NULL. |
| 1478 | */ |
| 1479 | ifp = ifp0; |
| 1480 | if (retifp != NULL) { |
| 1481 | if (ifp != NULL) { |
| 1482 | ifnet_reference(interface: ifp); /* for caller */ |
| 1483 | } |
| 1484 | *retifp = ifp; |
| 1485 | } |
| 1486 | |
| 1487 | if (retsrcia != NULL) { |
| 1488 | if (ifa != NULL) { |
| 1489 | ifa_addref(ifa); /* for caller */ |
| 1490 | } |
| 1491 | *retsrcia = (struct in6_ifaddr *)ifa; |
| 1492 | } |
| 1493 | |
| 1494 | if (error == 0) { |
| 1495 | if (retrt != NULL && route != NULL) { |
| 1496 | *retrt = route->ro_rt; /* ro_rt may be NULL */ |
| 1497 | } |
| 1498 | } |
| 1499 | if (ip6_select_srcif_debug) { |
| 1500 | os_log(OS_LOG_DEFAULT, |
| 1501 | "%s %s->%s ifscope %d ifa_if %s ro_if %s (error=%d)" , |
| 1502 | __func__, |
| 1503 | s_src, s_dst, ifscope, |
| 1504 | (ifa != NULL) ? if_name(ifa->ifa_ifp) : "NONE" , |
| 1505 | (ifp != NULL) ? if_name(ifp) : "NONE" , error); |
| 1506 | } |
| 1507 | |
| 1508 | if (ifa != NULL) { |
| 1509 | ifa_remref(ifa); |
| 1510 | } |
| 1511 | |
| 1512 | return error; |
| 1513 | } |
| 1514 | |
| 1515 | /* |
| 1516 | * Regardless of error, it will return an ifp with a reference held if the |
| 1517 | * caller provides a non-NULL retifp. The caller is responsible for checking |
| 1518 | * if the returned ifp is valid and release its reference at all times. |
| 1519 | */ |
| 1520 | int |
| 1521 | in6_selectif(struct sockaddr_in6 *dstsock, struct ip6_pktopts *opts, |
| 1522 | struct ip6_moptions *mopts, struct route_in6 *ro, |
| 1523 | struct ip6_out_args *ip6oa, struct ifnet **retifp) |
| 1524 | { |
| 1525 | int err = 0; |
| 1526 | struct route_in6 sro; |
| 1527 | struct rtentry *rt = NULL; |
| 1528 | |
| 1529 | if (ro == NULL) { |
| 1530 | bzero(s: &sro, n: sizeof(sro)); |
| 1531 | ro = &sro; |
| 1532 | } |
| 1533 | |
| 1534 | if ((err = selectroute(NULL, dstsock, opts, mopts, NULL, ro, retifp, |
| 1535 | retrt: &rt, clone: 0, norouteok: 1, ip6oa)) != 0) { |
| 1536 | goto done; |
| 1537 | } |
| 1538 | |
| 1539 | /* |
| 1540 | * do not use a rejected or black hole route. |
| 1541 | * XXX: this check should be done in the L2 output routine. |
| 1542 | * However, if we skipped this check here, we'd see the following |
| 1543 | * scenario: |
| 1544 | * - install a rejected route for a scoped address prefix |
| 1545 | * (like fe80::/10) |
| 1546 | * - send a packet to a destination that matches the scoped prefix, |
| 1547 | * with ambiguity about the scope zone. |
| 1548 | * - pick the outgoing interface from the route, and disambiguate the |
| 1549 | * scope zone with the interface. |
| 1550 | * - ip6_output() would try to get another route with the "new" |
| 1551 | * destination, which may be valid. |
| 1552 | * - we'd see no error on output. |
| 1553 | * Although this may not be very harmful, it should still be confusing. |
| 1554 | * We thus reject the case here. |
| 1555 | */ |
| 1556 | if (rt && (rt->rt_flags & (RTF_REJECT | RTF_BLACKHOLE))) { |
| 1557 | err = ((rt->rt_flags & RTF_HOST) ? EHOSTUNREACH : ENETUNREACH); |
| 1558 | goto done; |
| 1559 | } |
| 1560 | |
| 1561 | /* |
| 1562 | * Adjust the "outgoing" interface. If we're going to loop the packet |
| 1563 | * back to ourselves, the ifp would be the loopback interface. |
| 1564 | * However, we'd rather know the interface associated to the |
| 1565 | * destination address (which should probably be one of our own |
| 1566 | * addresses.) |
| 1567 | */ |
| 1568 | if (rt != NULL && rt->rt_ifa != NULL && rt->rt_ifa->ifa_ifp != NULL && |
| 1569 | retifp != NULL) { |
| 1570 | ifnet_reference(interface: rt->rt_ifa->ifa_ifp); |
| 1571 | if (*retifp != NULL) { |
| 1572 | ifnet_release(interface: *retifp); |
| 1573 | } |
| 1574 | *retifp = rt->rt_ifa->ifa_ifp; |
| 1575 | } |
| 1576 | |
| 1577 | done: |
| 1578 | if (ro == &sro) { |
| 1579 | VERIFY(rt == NULL || rt == ro->ro_rt); |
| 1580 | ROUTE_RELEASE(ro); |
| 1581 | } |
| 1582 | |
| 1583 | /* |
| 1584 | * retifp might point to a valid ifp with a reference held; |
| 1585 | * caller is responsible for releasing it if non-NULL. |
| 1586 | */ |
| 1587 | return err; |
| 1588 | } |
| 1589 | |
| 1590 | /* |
| 1591 | * Regardless of error, it will return an ifp with a reference held if the |
| 1592 | * caller provides a non-NULL retifp. The caller is responsible for checking |
| 1593 | * if the returned ifp is valid and release its reference at all times. |
| 1594 | * |
| 1595 | * clone - meaningful only for bsdi and freebsd |
| 1596 | */ |
| 1597 | int |
| 1598 | in6_selectroute(struct sockaddr_in6 *srcsock, struct sockaddr_in6 *dstsock, |
| 1599 | struct ip6_pktopts *opts, struct ip6_moptions *mopts, |
| 1600 | struct in6_ifaddr **retsrcia, struct route_in6 *ro, struct ifnet **retifp, |
| 1601 | struct rtentry **retrt, int clone, struct ip6_out_args *ip6oa) |
| 1602 | { |
| 1603 | return selectroute(srcsock, dstsock, opts, mopts, retsrcia, ro, retifp, |
| 1604 | retrt, clone, norouteok: 0, ip6oa); |
| 1605 | } |
| 1606 | |
| 1607 | /* |
| 1608 | * Default hop limit selection. The precedence is as follows: |
| 1609 | * 1. Hoplimit value specified via socket option. |
| 1610 | * 2. (If the outgoing interface is detected) the current |
| 1611 | * hop limit of the interface specified by router advertisement. |
| 1612 | * 3. The system default hoplimit. |
| 1613 | */ |
| 1614 | uint8_t |
| 1615 | in6_selecthlim(struct in6pcb *in6p, struct ifnet *ifp) |
| 1616 | { |
| 1617 | if (in6p && in6p->in6p_hops >= 0) { |
| 1618 | return (uint8_t)in6p->in6p_hops; |
| 1619 | } else if (NULL != ifp) { |
| 1620 | uint8_t chlim; |
| 1621 | struct nd_ifinfo *ndi = ND_IFINFO(ifp); |
| 1622 | if (ndi && ndi->initialized) { |
| 1623 | /* access chlim without lock, for performance */ |
| 1624 | chlim = ndi->chlim; |
| 1625 | } else { |
| 1626 | chlim = (uint8_t)ip6_defhlim; |
| 1627 | } |
| 1628 | return chlim; |
| 1629 | } |
| 1630 | |
| 1631 | return (uint8_t)ip6_defhlim; |
| 1632 | } |
| 1633 | |
| 1634 | /* |
| 1635 | * XXX: this is borrowed from in6_pcbbind(). If possible, we should |
| 1636 | * share this function by all *bsd*... |
| 1637 | */ |
| 1638 | int |
| 1639 | in6_pcbsetport(struct in6_addr *laddr, struct inpcb *inp, struct proc *p, |
| 1640 | int locked) |
| 1641 | { |
| 1642 | struct socket *so = inp->inp_socket; |
| 1643 | uint16_t lport = 0, first, last, *lastport, rand_port; |
| 1644 | int count, error = 0, wild = 0; |
| 1645 | boolean_t counting_down; |
| 1646 | bool found, randomport; |
| 1647 | struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; |
| 1648 | kauth_cred_t cred; |
| 1649 | #if SKYWALK |
| 1650 | bool laddr_unspecified = IN6_IS_ADDR_UNSPECIFIED(laddr); |
| 1651 | #else |
| 1652 | #pragma unused(laddr) |
| 1653 | #endif |
| 1654 | if (!locked) { /* Make sure we don't run into a deadlock: 4052373 */ |
| 1655 | if (!lck_rw_try_lock_exclusive(lck: &pcbinfo->ipi_lock)) { |
| 1656 | socket_unlock(so: inp->inp_socket, refcount: 0); |
| 1657 | lck_rw_lock_exclusive(lck: &pcbinfo->ipi_lock); |
| 1658 | socket_lock(so: inp->inp_socket, refcount: 0); |
| 1659 | } |
| 1660 | |
| 1661 | /* |
| 1662 | * Check if a local port was assigned to the inp while |
| 1663 | * this thread was waiting for the pcbinfo lock |
| 1664 | */ |
| 1665 | if (inp->inp_lport != 0) { |
| 1666 | VERIFY(inp->inp_flags2 & INP2_INHASHLIST); |
| 1667 | lck_rw_done(lck: &pcbinfo->ipi_lock); |
| 1668 | |
| 1669 | /* |
| 1670 | * It is not an error if another thread allocated |
| 1671 | * a port |
| 1672 | */ |
| 1673 | return 0; |
| 1674 | } |
| 1675 | } |
| 1676 | |
| 1677 | /* XXX: this is redundant when called from in6_pcbbind */ |
| 1678 | if ((so->so_options & (SO_REUSEADDR | SO_REUSEPORT)) == 0) { |
| 1679 | wild = INPLOOKUP_WILDCARD; |
| 1680 | } |
| 1681 | |
| 1682 | randomport = (so->so_flags & SOF_BINDRANDOMPORT) > 0 || |
| 1683 | (so->so_type == SOCK_STREAM ? tcp_use_randomport : |
| 1684 | udp_use_randomport) > 0; |
| 1685 | |
| 1686 | if (inp->inp_flags & INP_HIGHPORT) { |
| 1687 | first = (uint16_t)ipport_hifirstauto; /* sysctl */ |
| 1688 | last = (uint16_t)ipport_hilastauto; |
| 1689 | lastport = &pcbinfo->ipi_lasthi; |
| 1690 | } else if (inp->inp_flags & INP_LOWPORT) { |
| 1691 | cred = kauth_cred_proc_ref(procp: p); |
| 1692 | error = priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT, flags: 0); |
| 1693 | kauth_cred_unref(&cred); |
| 1694 | if (error != 0) { |
| 1695 | if (!locked) { |
| 1696 | lck_rw_done(lck: &pcbinfo->ipi_lock); |
| 1697 | } |
| 1698 | return error; |
| 1699 | } |
| 1700 | first = (uint16_t)ipport_lowfirstauto; /* 1023 */ |
| 1701 | last = (uint16_t)ipport_lowlastauto; /* 600 */ |
| 1702 | lastport = &pcbinfo->ipi_lastlow; |
| 1703 | } else { |
| 1704 | first = (uint16_t)ipport_firstauto; /* sysctl */ |
| 1705 | last = (uint16_t)ipport_lastauto; |
| 1706 | lastport = &pcbinfo->ipi_lastport; |
| 1707 | } |
| 1708 | |
| 1709 | if (first == last) { |
| 1710 | randomport = false; |
| 1711 | } |
| 1712 | /* |
| 1713 | * Simple check to ensure all ports are not used up causing |
| 1714 | * a deadlock here. |
| 1715 | */ |
| 1716 | found = false; |
| 1717 | if (first > last) { |
| 1718 | /* counting down */ |
| 1719 | if (randomport) { |
| 1720 | read_frandom(buffer: &rand_port, numBytes: sizeof(rand_port)); |
| 1721 | *lastport = first - (rand_port % (first - last)); |
| 1722 | } |
| 1723 | count = first - last; |
| 1724 | counting_down = TRUE; |
| 1725 | } else { |
| 1726 | /* counting up */ |
| 1727 | if (randomport) { |
| 1728 | read_frandom(buffer: &rand_port, numBytes: sizeof(rand_port)); |
| 1729 | *lastport = first + (rand_port % (first - last)); |
| 1730 | } |
| 1731 | count = last - first; |
| 1732 | counting_down = FALSE; |
| 1733 | } |
| 1734 | do { |
| 1735 | if (count-- < 0) { /* completely used? */ |
| 1736 | /* |
| 1737 | * Undo any address bind that may have |
| 1738 | * occurred above. |
| 1739 | */ |
| 1740 | inp->in6p_laddr = in6addr_any; |
| 1741 | inp->in6p_last_outifp = NULL; |
| 1742 | inp->inp_lifscope = IFSCOPE_NONE; |
| 1743 | #if SKYWALK |
| 1744 | if (NETNS_TOKEN_VALID(&inp->inp_netns_token)) { |
| 1745 | netns_set_ifnet(token: &inp->inp_netns_token, |
| 1746 | NULL); |
| 1747 | } |
| 1748 | #endif /* SKYWALK */ |
| 1749 | if (!locked) { |
| 1750 | lck_rw_done(lck: &pcbinfo->ipi_lock); |
| 1751 | } |
| 1752 | return EAGAIN; |
| 1753 | } |
| 1754 | if (counting_down) { |
| 1755 | --*lastport; |
| 1756 | if (*lastport > first || *lastport < last) { |
| 1757 | *lastport = first; |
| 1758 | } |
| 1759 | } else { |
| 1760 | ++*lastport; |
| 1761 | if (*lastport < first || *lastport > last) { |
| 1762 | *lastport = first; |
| 1763 | } |
| 1764 | } |
| 1765 | lport = htons(*lastport); |
| 1766 | |
| 1767 | /* |
| 1768 | * Skip if this is a restricted port as we do not want to |
| 1769 | * restricted ports as ephemeral |
| 1770 | */ |
| 1771 | if (IS_RESTRICTED_IN_PORT(lport)) { |
| 1772 | continue; |
| 1773 | } |
| 1774 | |
| 1775 | found = (in6_pcblookup_local(pcbinfo, &inp->in6p_laddr, |
| 1776 | lport, inp->inp_lifscope, wild) == NULL); |
| 1777 | #if SKYWALK |
| 1778 | if (found && |
| 1779 | (SOCK_PROTO(so) == IPPROTO_TCP || |
| 1780 | SOCK_PROTO(so) == IPPROTO_UDP) && |
| 1781 | !(inp->inp_flags2 & INP2_EXTERNAL_PORT)) { |
| 1782 | if (laddr_unspecified && |
| 1783 | (inp->inp_flags & IN6P_IPV6_V6ONLY) == 0) { |
| 1784 | struct in_addr ip_zero = { .s_addr = 0 }; |
| 1785 | |
| 1786 | netns_release(token: &inp->inp_wildcard_netns_token); |
| 1787 | if (netns_reserve_in( |
| 1788 | token: &inp->inp_wildcard_netns_token, |
| 1789 | addr: ip_zero, |
| 1790 | proto: (uint8_t)SOCK_PROTO(so), port: lport, |
| 1791 | NETNS_BSD, NULL) != 0) { |
| 1792 | /* port in use in IPv4 namespace */ |
| 1793 | found = false; |
| 1794 | } |
| 1795 | } |
| 1796 | if (found && |
| 1797 | netns_reserve_in6(token: &inp->inp_netns_token, |
| 1798 | addr: inp->in6p_laddr, proto: (uint8_t)SOCK_PROTO(so), port: lport, |
| 1799 | NETNS_BSD, NULL) != 0) { |
| 1800 | netns_release(token: &inp->inp_wildcard_netns_token); |
| 1801 | found = false; |
| 1802 | } |
| 1803 | } |
| 1804 | #endif /* SKYWALK */ |
| 1805 | } while (!found); |
| 1806 | |
| 1807 | inp->inp_lport = lport; |
| 1808 | inp->inp_flags |= INP_ANONPORT; |
| 1809 | |
| 1810 | if (in_pcbinshash(inp, 1) != 0) { |
| 1811 | inp->in6p_laddr = in6addr_any; |
| 1812 | inp->in6p_last_outifp = NULL; |
| 1813 | inp->inp_lifscope = IFSCOPE_NONE; |
| 1814 | #if SKYWALK |
| 1815 | netns_release(token: &inp->inp_netns_token); |
| 1816 | #endif /* SKYWALK */ |
| 1817 | inp->inp_lport = 0; |
| 1818 | inp->inp_flags &= ~INP_ANONPORT; |
| 1819 | if (!locked) { |
| 1820 | lck_rw_done(lck: &pcbinfo->ipi_lock); |
| 1821 | } |
| 1822 | return EAGAIN; |
| 1823 | } |
| 1824 | |
| 1825 | if (!locked) { |
| 1826 | lck_rw_done(lck: &pcbinfo->ipi_lock); |
| 1827 | } |
| 1828 | return 0; |
| 1829 | } |
| 1830 | |
| 1831 | /* |
| 1832 | * The followings are implementation of the policy table using a |
| 1833 | * simple tail queue. |
| 1834 | * XXX such details should be hidden. |
| 1835 | * XXX implementation using binary tree should be more efficient. |
| 1836 | */ |
| 1837 | struct addrsel_policyent { |
| 1838 | TAILQ_ENTRY(addrsel_policyent) ape_entry; |
| 1839 | struct in6_addrpolicy ape_policy; |
| 1840 | }; |
| 1841 | |
| 1842 | TAILQ_HEAD(addrsel_policyhead, addrsel_policyent); |
| 1843 | |
| 1844 | struct addrsel_policyhead addrsel_policytab; |
| 1845 | |
| 1846 | static void |
| 1847 | init_policy_queue(void) |
| 1848 | { |
| 1849 | TAILQ_INIT(&addrsel_policytab); |
| 1850 | } |
| 1851 | |
| 1852 | void |
| 1853 | addrsel_policy_init(void) |
| 1854 | { |
| 1855 | /* |
| 1856 | * Default address selection policy based on RFC 6724. |
| 1857 | */ |
| 1858 | static const struct in6_addrpolicy defaddrsel[] = { |
| 1859 | /* Loopback -- prefix=::1/128, precedence=50, label=0 */ |
| 1860 | { |
| 1861 | .addr = { |
| 1862 | .sin6_family = AF_INET6, |
| 1863 | .sin6_addr = IN6ADDR_LOOPBACK_INIT, |
| 1864 | .sin6_len = sizeof(struct sockaddr_in6) |
| 1865 | }, |
| 1866 | .addrmask = { |
| 1867 | .sin6_family = AF_INET6, |
| 1868 | .sin6_addr = IN6MASK128, |
| 1869 | .sin6_len = sizeof(struct sockaddr_in6) |
| 1870 | }, |
| 1871 | .preced = 50, |
| 1872 | .label = 0 |
| 1873 | }, |
| 1874 | |
| 1875 | /* Unspecified -- prefix=::/0, precedence=40, label=1 */ |
| 1876 | { |
| 1877 | .addr = { |
| 1878 | .sin6_family = AF_INET6, |
| 1879 | .sin6_addr = IN6ADDR_ANY_INIT, |
| 1880 | .sin6_len = sizeof(struct sockaddr_in6) |
| 1881 | }, |
| 1882 | .addrmask = { |
| 1883 | .sin6_family = AF_INET6, |
| 1884 | .sin6_addr = IN6MASK0, |
| 1885 | .sin6_len = sizeof(struct sockaddr_in6) |
| 1886 | }, |
| 1887 | .preced = 40, |
| 1888 | .label = 1 |
| 1889 | }, |
| 1890 | |
| 1891 | /* IPv4 Mapped -- prefix=::ffff:0:0/96, precedence=35, label=4 */ |
| 1892 | { |
| 1893 | .addr = { |
| 1894 | .sin6_family = AF_INET6, |
| 1895 | .sin6_addr = IN6ADDR_V4MAPPED_INIT, |
| 1896 | .sin6_len = sizeof(struct sockaddr_in6) |
| 1897 | }, |
| 1898 | .addrmask = { |
| 1899 | .sin6_family = AF_INET6, |
| 1900 | .sin6_addr = IN6MASK96, |
| 1901 | .sin6_len = sizeof(struct sockaddr_in6) |
| 1902 | }, |
| 1903 | .preced = 35, |
| 1904 | .label = 4 |
| 1905 | }, |
| 1906 | |
| 1907 | /* 6to4 -- prefix=2002::/16, precedence=30, label=2 */ |
| 1908 | { |
| 1909 | .addr = { |
| 1910 | .sin6_family = AF_INET6, |
| 1911 | .sin6_addr = {{{ 0x20, 0x02 }}}, |
| 1912 | .sin6_len = sizeof(struct sockaddr_in6) |
| 1913 | }, |
| 1914 | .addrmask = { |
| 1915 | .sin6_family = AF_INET6, |
| 1916 | .sin6_addr = IN6MASK16, |
| 1917 | .sin6_len = sizeof(struct sockaddr_in6) |
| 1918 | }, |
| 1919 | .preced = 30, |
| 1920 | .label = 2 |
| 1921 | }, |
| 1922 | |
| 1923 | /* Teredo -- prefix=2001::/32, precedence=5, label=5 */ |
| 1924 | { |
| 1925 | .addr = { |
| 1926 | .sin6_family = AF_INET6, |
| 1927 | .sin6_addr = {{{ 0x20, 0x01 }}}, |
| 1928 | .sin6_len = sizeof(struct sockaddr_in6) |
| 1929 | }, |
| 1930 | .addrmask = { |
| 1931 | .sin6_family = AF_INET6, |
| 1932 | .sin6_addr = IN6MASK32, |
| 1933 | .sin6_len = sizeof(struct sockaddr_in6) |
| 1934 | }, |
| 1935 | .preced = 5, |
| 1936 | .label = 5 |
| 1937 | }, |
| 1938 | |
| 1939 | /* Unique Local (ULA) -- prefix=fc00::/7, precedence=3, label=13 */ |
| 1940 | { |
| 1941 | .addr = { |
| 1942 | .sin6_family = AF_INET6, |
| 1943 | .sin6_addr = {{{ 0xfc }}}, |
| 1944 | .sin6_len = sizeof(struct sockaddr_in6) |
| 1945 | }, |
| 1946 | .addrmask = { |
| 1947 | .sin6_family = AF_INET6, |
| 1948 | .sin6_addr = IN6MASK7, |
| 1949 | .sin6_len = sizeof(struct sockaddr_in6) |
| 1950 | }, |
| 1951 | .preced = 3, |
| 1952 | .label = 13 |
| 1953 | }, |
| 1954 | |
| 1955 | /* IPv4 Compatible -- prefix=::/96, precedence=1, label=3 */ |
| 1956 | { |
| 1957 | .addr = { |
| 1958 | .sin6_family = AF_INET6, |
| 1959 | .sin6_addr = IN6ADDR_ANY_INIT, |
| 1960 | .sin6_len = sizeof(struct sockaddr_in6) |
| 1961 | }, |
| 1962 | .addrmask = { |
| 1963 | .sin6_family = AF_INET6, |
| 1964 | .sin6_addr = IN6MASK96, |
| 1965 | .sin6_len = sizeof(struct sockaddr_in6) |
| 1966 | }, |
| 1967 | .preced = 1, |
| 1968 | .label = 3 |
| 1969 | }, |
| 1970 | |
| 1971 | /* Site-local (deprecated) -- prefix=fec0::/10, precedence=1, label=11 */ |
| 1972 | { |
| 1973 | .addr = { |
| 1974 | .sin6_family = AF_INET6, |
| 1975 | .sin6_addr = {{{ 0xfe, 0xc0 }}}, |
| 1976 | .sin6_len = sizeof(struct sockaddr_in6) |
| 1977 | }, |
| 1978 | .addrmask = { |
| 1979 | .sin6_family = AF_INET6, |
| 1980 | .sin6_addr = IN6MASK16, |
| 1981 | .sin6_len = sizeof(struct sockaddr_in6) |
| 1982 | }, |
| 1983 | .preced = 1, |
| 1984 | .label = 11 |
| 1985 | }, |
| 1986 | |
| 1987 | /* 6bone (deprecated) -- prefix=3ffe::/16, precedence=1, label=12 */ |
| 1988 | { |
| 1989 | .addr = { |
| 1990 | .sin6_family = AF_INET6, |
| 1991 | .sin6_addr = {{{ 0x3f, 0xfe }}}, |
| 1992 | .sin6_len = sizeof(struct sockaddr_in6) |
| 1993 | }, |
| 1994 | .addrmask = { |
| 1995 | .sin6_family = AF_INET6, |
| 1996 | .sin6_addr = IN6MASK16, |
| 1997 | .sin6_len = sizeof(struct sockaddr_in6) |
| 1998 | }, |
| 1999 | .preced = 1, |
| 2000 | .label = 12 |
| 2001 | }, |
| 2002 | }; |
| 2003 | int i; |
| 2004 | |
| 2005 | init_policy_queue(); |
| 2006 | |
| 2007 | /* initialize the "last resort" policy */ |
| 2008 | bzero(s: &defaultaddrpolicy, n: sizeof(defaultaddrpolicy)); |
| 2009 | defaultaddrpolicy.label = ADDR_LABEL_NOTAPP; |
| 2010 | |
| 2011 | for (i = 0; i < sizeof(defaddrsel) / sizeof(defaddrsel[0]); i++) { |
| 2012 | add_addrsel_policyent(&defaddrsel[i]); |
| 2013 | } |
| 2014 | } |
| 2015 | |
| 2016 | struct in6_addrpolicy * |
| 2017 | in6_addrsel_lookup_policy(struct sockaddr_in6 *key) |
| 2018 | { |
| 2019 | struct in6_addrpolicy *match = NULL; |
| 2020 | |
| 2021 | match = match_addrsel_policy(key); |
| 2022 | |
| 2023 | if (match == NULL) { |
| 2024 | match = &defaultaddrpolicy; |
| 2025 | } else { |
| 2026 | match->use++; |
| 2027 | } |
| 2028 | |
| 2029 | return match; |
| 2030 | } |
| 2031 | |
| 2032 | static struct in6_addrpolicy * |
| 2033 | match_addrsel_policy(struct sockaddr_in6 *key) |
| 2034 | { |
| 2035 | struct addrsel_policyent *pent; |
| 2036 | struct in6_addrpolicy *bestpol = NULL, *pol; |
| 2037 | int matchlen, bestmatchlen = -1; |
| 2038 | u_char *mp, *ep, *k, *p, m; |
| 2039 | |
| 2040 | TAILQ_FOREACH(pent, &addrsel_policytab, ape_entry) { |
| 2041 | matchlen = 0; |
| 2042 | |
| 2043 | pol = &pent->ape_policy; |
| 2044 | mp = (u_char *)&pol->addrmask.sin6_addr; |
| 2045 | ep = mp + 16; /* XXX: scope field? */ |
| 2046 | k = (u_char *)&key->sin6_addr; |
| 2047 | p = (u_char *)&pol->addr.sin6_addr; |
| 2048 | for (; mp < ep && *mp; mp++, k++, p++) { |
| 2049 | m = *mp; |
| 2050 | if ((*k & m) != *p) { |
| 2051 | goto next; /* not match */ |
| 2052 | } |
| 2053 | if (m == 0xff) { /* short cut for a typical case */ |
| 2054 | matchlen += 8; |
| 2055 | } else { |
| 2056 | while (m >= 0x80) { |
| 2057 | matchlen++; |
| 2058 | m = (u_char)(m << 1); |
| 2059 | } |
| 2060 | } |
| 2061 | } |
| 2062 | |
| 2063 | /* matched. check if this is better than the current best. */ |
| 2064 | if (bestpol == NULL || |
| 2065 | matchlen > bestmatchlen) { |
| 2066 | bestpol = pol; |
| 2067 | bestmatchlen = matchlen; |
| 2068 | } |
| 2069 | |
| 2070 | next: |
| 2071 | continue; |
| 2072 | } |
| 2073 | |
| 2074 | return bestpol; |
| 2075 | } |
| 2076 | |
| 2077 | static int |
| 2078 | add_addrsel_policyent(const struct in6_addrpolicy *newpolicy) |
| 2079 | { |
| 2080 | struct addrsel_policyent *new, *pol; |
| 2081 | |
| 2082 | new = kalloc_type(struct addrsel_policyent, Z_WAITOK | Z_ZERO); |
| 2083 | |
| 2084 | /* duplication check */ |
| 2085 | TAILQ_FOREACH(pol, &addrsel_policytab, ape_entry) { |
| 2086 | if (IN6_ARE_ADDR_EQUAL(&newpolicy->addr.sin6_addr, |
| 2087 | &pol->ape_policy.addr.sin6_addr) && |
| 2088 | IN6_ARE_ADDR_EQUAL(&newpolicy->addrmask.sin6_addr, |
| 2089 | &pol->ape_policy.addrmask.sin6_addr)) { |
| 2090 | kfree_type(struct addrsel_policyent, new); |
| 2091 | return EEXIST; /* or override it? */ |
| 2092 | } |
| 2093 | } |
| 2094 | |
| 2095 | /* XXX: should validate entry */ |
| 2096 | new->ape_policy = *newpolicy; |
| 2097 | |
| 2098 | TAILQ_INSERT_TAIL(&addrsel_policytab, new, ape_entry); |
| 2099 | |
| 2100 | return 0; |
| 2101 | } |
| 2102 | |
| 2103 | int |
| 2104 | walk_addrsel_policy(int (*callback)(const struct in6_addrpolicy *, void *), |
| 2105 | void *w) |
| 2106 | { |
| 2107 | struct addrsel_policyent *pol; |
| 2108 | int error = 0; |
| 2109 | |
| 2110 | TAILQ_FOREACH(pol, &addrsel_policytab, ape_entry) { |
| 2111 | if ((error = (*callback)(&pol->ape_policy, w)) != 0) { |
| 2112 | return error; |
| 2113 | } |
| 2114 | } |
| 2115 | return error; |
| 2116 | } |
| 2117 | /* |
| 2118 | * Subroutines to manage the address selection policy table via sysctl. |
| 2119 | */ |
| 2120 | struct walkarg { |
| 2121 | struct sysctl_req *w_req; |
| 2122 | }; |
| 2123 | |
| 2124 | |
| 2125 | static int |
| 2126 | dump_addrsel_policyent(const struct in6_addrpolicy *pol, void *arg) |
| 2127 | { |
| 2128 | int error = 0; |
| 2129 | struct walkarg *w = arg; |
| 2130 | |
| 2131 | error = SYSCTL_OUT(w->w_req, pol, sizeof(*pol)); |
| 2132 | |
| 2133 | return error; |
| 2134 | } |
| 2135 | |
| 2136 | static int |
| 2137 | in6_src_sysctl SYSCTL_HANDLER_ARGS |
| 2138 | { |
| 2139 | #pragma unused(oidp, arg1, arg2) |
| 2140 | struct walkarg w; |
| 2141 | |
| 2142 | if (req->newptr) { |
| 2143 | return EPERM; |
| 2144 | } |
| 2145 | bzero(s: &w, n: sizeof(w)); |
| 2146 | w.w_req = req; |
| 2147 | |
| 2148 | return walk_addrsel_policy(callback: dump_addrsel_policyent, w: &w); |
| 2149 | } |
| 2150 | |
| 2151 | |
| 2152 | SYSCTL_NODE(_net_inet6_ip6, IPV6CTL_ADDRCTLPOLICY, addrctlpolicy, |
| 2153 | CTLFLAG_RD | CTLFLAG_LOCKED, in6_src_sysctl, "" ); |
| 2154 | int |
| 2155 | in6_src_ioctl(u_long cmd, caddr_t data) |
| 2156 | { |
| 2157 | int i; |
| 2158 | struct in6_addrpolicy ent0; |
| 2159 | |
| 2160 | if (cmd != SIOCAADDRCTL_POLICY && cmd != SIOCDADDRCTL_POLICY) { |
| 2161 | return EOPNOTSUPP; /* check for safety */ |
| 2162 | } |
| 2163 | bcopy(src: data, dst: &ent0, n: sizeof(ent0)); |
| 2164 | |
| 2165 | if (ent0.label == ADDR_LABEL_NOTAPP) { |
| 2166 | return EINVAL; |
| 2167 | } |
| 2168 | /* check if the prefix mask is consecutive. */ |
| 2169 | if (in6_mask2len(&ent0.addrmask.sin6_addr, NULL) < 0) { |
| 2170 | return EINVAL; |
| 2171 | } |
| 2172 | /* clear trailing garbages (if any) of the prefix address. */ |
| 2173 | for (i = 0; i < 4; i++) { |
| 2174 | ent0.addr.sin6_addr.s6_addr32[i] &= |
| 2175 | ent0.addrmask.sin6_addr.s6_addr32[i]; |
| 2176 | } |
| 2177 | ent0.use = 0; |
| 2178 | |
| 2179 | switch (cmd) { |
| 2180 | case SIOCAADDRCTL_POLICY: |
| 2181 | return ENOTSUP; |
| 2182 | case SIOCDADDRCTL_POLICY: |
| 2183 | return ENOTSUP; |
| 2184 | } |
| 2185 | |
| 2186 | return 0; /* XXX: compromise compilers */ |
| 2187 | } |
| 2188 | |
| 2189 | /* |
| 2190 | * generate kernel-internal form (scopeid embedded into s6_addr16[1]). |
| 2191 | * If the address scope of is link-local, embed the interface index in the |
| 2192 | * address. The routine determines our precedence |
| 2193 | * between advanced API scope/interface specification and basic API |
| 2194 | * specification. |
| 2195 | * |
| 2196 | * this function should be nuked in the future, when we get rid of |
| 2197 | * embedded scopeid thing. |
| 2198 | * |
| 2199 | * XXX actually, it is over-specification to return ifp against sin6_scope_id. |
| 2200 | * there can be multiple interfaces that belong to a particular scope zone |
| 2201 | * (in specification, we have 1:N mapping between a scope zone and interfaces). |
| 2202 | * we may want to change the function to return something other than ifp. |
| 2203 | */ |
| 2204 | int |
| 2205 | in6_embedscope(struct in6_addr *in6, const struct sockaddr_in6 *sin6, |
| 2206 | struct in6pcb *in6p, struct ifnet **ifpp, struct ip6_pktopts *opt, uint32_t *ret_ifscope) |
| 2207 | { |
| 2208 | struct ifnet *ifp = NULL; |
| 2209 | u_int32_t scopeid; |
| 2210 | struct ip6_pktopts *optp = NULL; |
| 2211 | |
| 2212 | *in6 = sin6->sin6_addr; |
| 2213 | scopeid = sin6->sin6_scope_id; |
| 2214 | if (ifpp != NULL) { |
| 2215 | *ifpp = NULL; |
| 2216 | } |
| 2217 | |
| 2218 | /* |
| 2219 | * don't try to read sin6->sin6_addr beyond here, since the caller may |
| 2220 | * ask us to overwrite existing sockaddr_in6 |
| 2221 | */ |
| 2222 | |
| 2223 | #ifdef ENABLE_DEFAULT_SCOPE |
| 2224 | if (scopeid == 0) { |
| 2225 | scopeid = scope6_addr2default(in6); |
| 2226 | } |
| 2227 | #endif |
| 2228 | |
| 2229 | if (IN6_IS_SCOPE_LINKLOCAL(in6) || IN6_IS_ADDR_MC_INTFACELOCAL(in6)) { |
| 2230 | struct in6_pktinfo *pi; |
| 2231 | struct ifnet *im6o_multicast_ifp = NULL; |
| 2232 | |
| 2233 | if (in6p != NULL && IN6_IS_ADDR_MULTICAST(in6) && |
| 2234 | in6p->in6p_moptions != NULL) { |
| 2235 | IM6O_LOCK(in6p->in6p_moptions); |
| 2236 | im6o_multicast_ifp = |
| 2237 | in6p->in6p_moptions->im6o_multicast_ifp; |
| 2238 | IM6O_UNLOCK(in6p->in6p_moptions); |
| 2239 | } |
| 2240 | |
| 2241 | if (opt != NULL) { |
| 2242 | optp = opt; |
| 2243 | } else if (in6p != NULL) { |
| 2244 | optp = in6p->in6p_outputopts; |
| 2245 | } |
| 2246 | /* |
| 2247 | * KAME assumption: link id == interface id |
| 2248 | */ |
| 2249 | if (in6p != NULL && optp != NULL && |
| 2250 | (pi = optp->ip6po_pktinfo) != NULL && |
| 2251 | pi->ipi6_ifindex != 0) { |
| 2252 | /* ifp is needed here if only we're returning it */ |
| 2253 | if (ifpp != NULL) { |
| 2254 | ifnet_head_lock_shared(); |
| 2255 | ifp = ifindex2ifnet[pi->ipi6_ifindex]; |
| 2256 | ifnet_head_done(); |
| 2257 | } |
| 2258 | |
| 2259 | if (in6_embedded_scope) { |
| 2260 | in6->s6_addr16[1] = htons((uint16_t)pi->ipi6_ifindex); |
| 2261 | } |
| 2262 | if (ret_ifscope != NULL) { |
| 2263 | *ret_ifscope = pi->ipi6_ifindex; |
| 2264 | } |
| 2265 | } else if (in6p != NULL && IN6_IS_ADDR_MULTICAST(in6) && |
| 2266 | in6p->in6p_moptions != NULL && im6o_multicast_ifp != NULL) { |
| 2267 | ifp = im6o_multicast_ifp; |
| 2268 | if (in6_embedded_scope) { |
| 2269 | in6->s6_addr16[1] = htons(ifp->if_index); |
| 2270 | } |
| 2271 | if (ret_ifscope != NULL) { |
| 2272 | *ret_ifscope = ifp->if_index; |
| 2273 | } |
| 2274 | } else if (scopeid != 0) { |
| 2275 | /* |
| 2276 | * Since scopeid is unsigned, we only have to check it |
| 2277 | * against if_index (ifnet_head_lock not needed since |
| 2278 | * if_index is an ever-increasing integer.) |
| 2279 | */ |
| 2280 | if (!IF_INDEX_IN_RANGE(scopeid)) { |
| 2281 | return ENXIO; /* XXX EINVAL? */ |
| 2282 | } |
| 2283 | /* ifp is needed here only if we're returning it */ |
| 2284 | if (ifpp != NULL) { |
| 2285 | ifnet_head_lock_shared(); |
| 2286 | ifp = ifindex2ifnet[scopeid]; |
| 2287 | ifnet_head_done(); |
| 2288 | } |
| 2289 | if (in6_embedded_scope) { |
| 2290 | /* XXX assignment to 16bit from 32bit variable */ |
| 2291 | in6->s6_addr16[1] = htons(scopeid & 0xffff); |
| 2292 | } |
| 2293 | if (ret_ifscope != NULL) { |
| 2294 | *ret_ifscope = scopeid; |
| 2295 | } |
| 2296 | } |
| 2297 | |
| 2298 | if (ifpp != NULL) { |
| 2299 | if (ifp != NULL) { |
| 2300 | ifnet_reference(interface: ifp); /* for caller */ |
| 2301 | } |
| 2302 | *ifpp = ifp; |
| 2303 | } |
| 2304 | } |
| 2305 | |
| 2306 | return 0; |
| 2307 | } |
| 2308 | |
| 2309 | /* |
| 2310 | * generate standard sockaddr_in6 from embedded form. |
| 2311 | * touches sin6_addr and sin6_scope_id only. |
| 2312 | * |
| 2313 | * this function should be nuked in the future, when we get rid of |
| 2314 | * embedded scopeid thing. |
| 2315 | */ |
| 2316 | int |
| 2317 | in6_recoverscope( |
| 2318 | struct sockaddr_in6 *sin6, |
| 2319 | const struct in6_addr *in6, |
| 2320 | struct ifnet *ifp) |
| 2321 | { |
| 2322 | u_int32_t scopeid; |
| 2323 | |
| 2324 | sin6->sin6_addr = *in6; |
| 2325 | |
| 2326 | if (!in6_embedded_scope) { |
| 2327 | if (ifp != NULL && IN6_IS_SCOPE_EMBED(in6)) { |
| 2328 | sin6->sin6_scope_id = ifp->if_index; |
| 2329 | } |
| 2330 | return 0; |
| 2331 | } |
| 2332 | /* |
| 2333 | * don't try to read *in6 beyond here, since the caller may |
| 2334 | * ask us to overwrite existing sockaddr_in6 |
| 2335 | */ |
| 2336 | |
| 2337 | sin6->sin6_scope_id = 0; |
| 2338 | if (IN6_IS_SCOPE_LINKLOCAL(in6) || IN6_IS_ADDR_MC_INTFACELOCAL(in6)) { |
| 2339 | /* |
| 2340 | * KAME assumption: link id == interface id |
| 2341 | */ |
| 2342 | scopeid = ntohs(sin6->sin6_addr.s6_addr16[1]); |
| 2343 | if (scopeid) { |
| 2344 | /* |
| 2345 | * sanity check |
| 2346 | * |
| 2347 | * Since scopeid is unsigned, we only have to check it |
| 2348 | * against if_index |
| 2349 | */ |
| 2350 | if (!IF_INDEX_IN_RANGE(scopeid)) { |
| 2351 | return ENXIO; |
| 2352 | } |
| 2353 | if (ifp && ifp->if_index != scopeid) { |
| 2354 | return ENXIO; |
| 2355 | } |
| 2356 | sin6->sin6_addr.s6_addr16[1] = 0; |
| 2357 | sin6->sin6_scope_id = scopeid; |
| 2358 | } |
| 2359 | } |
| 2360 | |
| 2361 | return 0; |
| 2362 | } |
| 2363 | |