| 1 | /* |
| 2 | * Copyright (c) 2000-2021, 2023 Apple Inc. All rights reserved. |
| 3 | * |
| 4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ |
| 5 | * |
| 6 | * This file contains Original Code and/or Modifications of Original Code |
| 7 | * as defined in and that are subject to the Apple Public Source License |
| 8 | * Version 2.0 (the 'License'). You may not use this file except in |
| 9 | * compliance with the License. The rights granted to you under the License |
| 10 | * may not be used to create, or enable the creation or redistribution of, |
| 11 | * unlawful or unlicensed copies of an Apple operating system, or to |
| 12 | * circumvent, violate, or enable the circumvention or violation of, any |
| 13 | * terms of an Apple operating system software license agreement. |
| 14 | * |
| 15 | * Please obtain a copy of the License at |
| 16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. |
| 17 | * |
| 18 | * The Original Code and all software distributed under the License are |
| 19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER |
| 20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
| 21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, |
| 22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
| 23 | * Please see the License for the specific language governing rights and |
| 24 | * limitations under the License. |
| 25 | * |
| 26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ |
| 27 | */ |
| 28 | /* |
| 29 | * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995 |
| 30 | * The Regents of the University of California. All rights reserved. |
| 31 | * |
| 32 | * Redistribution and use in source and binary forms, with or without |
| 33 | * modification, are permitted provided that the following conditions |
| 34 | * are met: |
| 35 | * 1. Redistributions of source code must retain the above copyright |
| 36 | * notice, this list of conditions and the following disclaimer. |
| 37 | * 2. Redistributions in binary form must reproduce the above copyright |
| 38 | * notice, this list of conditions and the following disclaimer in the |
| 39 | * documentation and/or other materials provided with the distribution. |
| 40 | * 3. All advertising materials mentioning features or use of this software |
| 41 | * must display the following acknowledgement: |
| 42 | * This product includes software developed by the University of |
| 43 | * California, Berkeley and its contributors. |
| 44 | * 4. Neither the name of the University nor the names of its contributors |
| 45 | * may be used to endorse or promote products derived from this software |
| 46 | * without specific prior written permission. |
| 47 | * |
| 48 | * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND |
| 49 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 50 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 51 | * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE |
| 52 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
| 53 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
| 54 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| 55 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
| 56 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
| 57 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
| 58 | * SUCH DAMAGE. |
| 59 | * |
| 60 | * @(#)udp_usrreq.c 8.6 (Berkeley) 5/23/95 |
| 61 | */ |
| 62 | |
| 63 | #include <sys/param.h> |
| 64 | #include <sys/systm.h> |
| 65 | #include <sys/kernel.h> |
| 66 | #include <sys/malloc.h> |
| 67 | #include <sys/mbuf.h> |
| 68 | #include <sys/domain.h> |
| 69 | #include <sys/protosw.h> |
| 70 | #include <sys/socket.h> |
| 71 | #include <sys/socketvar.h> |
| 72 | #include <sys/sysctl.h> |
| 73 | #include <sys/syslog.h> |
| 74 | #include <sys/mcache.h> |
| 75 | #include <net/ntstat.h> |
| 76 | |
| 77 | #include <kern/zalloc.h> |
| 78 | #include <mach/boolean.h> |
| 79 | #include <pexpert/pexpert.h> |
| 80 | |
| 81 | #include <net/if.h> |
| 82 | #include <net/if_types.h> |
| 83 | #include <net/route.h> |
| 84 | #include <net/dlil.h> |
| 85 | #include <net/net_api_stats.h> |
| 86 | |
| 87 | #include <netinet/in.h> |
| 88 | #include <netinet/in_systm.h> |
| 89 | #include <netinet/in_tclass.h> |
| 90 | #include <netinet/ip.h> |
| 91 | #include <netinet/ip6.h> |
| 92 | #include <netinet/in_pcb.h> |
| 93 | #include <netinet/in_var.h> |
| 94 | #include <netinet/ip_var.h> |
| 95 | #include <netinet6/in6_pcb.h> |
| 96 | #include <netinet6/ip6_var.h> |
| 97 | #include <netinet6/udp6_var.h> |
| 98 | #include <netinet/ip_icmp.h> |
| 99 | #include <netinet/icmp_var.h> |
| 100 | #include <netinet/udp.h> |
| 101 | #include <netinet/udp_var.h> |
| 102 | #include <netinet/udp_log.h> |
| 103 | #include <sys/kdebug.h> |
| 104 | |
| 105 | #if IPSEC |
| 106 | #include <netinet6/ipsec.h> |
| 107 | #include <netinet6/esp.h> |
| 108 | #include <netkey/key.h> |
| 109 | extern int ipsec_bypass; |
| 110 | extern int esp_udp_encap_port; |
| 111 | #endif /* IPSEC */ |
| 112 | |
| 113 | #if NECP |
| 114 | #include <net/necp.h> |
| 115 | #endif /* NECP */ |
| 116 | |
| 117 | #if FLOW_DIVERT |
| 118 | #include <netinet/flow_divert.h> |
| 119 | #endif /* FLOW_DIVERT */ |
| 120 | |
| 121 | #if CONTENT_FILTER |
| 122 | #include <net/content_filter.h> |
| 123 | #endif /* CONTENT_FILTER */ |
| 124 | |
| 125 | #if SKYWALK |
| 126 | #include <skywalk/core/skywalk_var.h> |
| 127 | #endif /* SKYWALK */ |
| 128 | |
| 129 | #include <net/sockaddr_utils.h> |
| 130 | |
| 131 | #define DBG_LAYER_IN_BEG NETDBG_CODE(DBG_NETUDP, 0) |
| 132 | #define DBG_LAYER_IN_END NETDBG_CODE(DBG_NETUDP, 2) |
| 133 | #define DBG_LAYER_OUT_BEG NETDBG_CODE(DBG_NETUDP, 1) |
| 134 | #define DBG_LAYER_OUT_END NETDBG_CODE(DBG_NETUDP, 3) |
| 135 | #define DBG_FNC_UDP_INPUT NETDBG_CODE(DBG_NETUDP, (5 << 8)) |
| 136 | #define DBG_FNC_UDP_OUTPUT NETDBG_CODE(DBG_NETUDP, (6 << 8) | 1) |
| 137 | |
| 138 | /* |
| 139 | * UDP protocol implementation. |
| 140 | * Per RFC 768, August, 1980. |
| 141 | */ |
| 142 | #ifndef COMPAT_42 |
| 143 | static int udpcksum = 1; |
| 144 | #else |
| 145 | static int udpcksum = 0; /* XXX */ |
| 146 | #endif |
| 147 | SYSCTL_INT(_net_inet_udp, UDPCTL_CHECKSUM, checksum, |
| 148 | CTLFLAG_RW | CTLFLAG_LOCKED, &udpcksum, 0, "" ); |
| 149 | |
| 150 | int udp_log_in_vain = 0; |
| 151 | SYSCTL_INT(_net_inet_udp, OID_AUTO, log_in_vain, CTLFLAG_RW | CTLFLAG_LOCKED, |
| 152 | &udp_log_in_vain, 0, "Log all incoming UDP packets" ); |
| 153 | |
| 154 | static int blackhole = 0; |
| 155 | SYSCTL_INT(_net_inet_udp, OID_AUTO, blackhole, CTLFLAG_RW | CTLFLAG_LOCKED, |
| 156 | &blackhole, 0, "Do not send port unreachables for refused connects" ); |
| 157 | |
| 158 | static KALLOC_TYPE_DEFINE(inpcbzone, struct inpcb, NET_KT_DEFAULT); |
| 159 | |
| 160 | struct inpcbhead udb; /* from udp_var.h */ |
| 161 | #define udb6 udb /* for KAME src sync over BSD*'s */ |
| 162 | struct inpcbinfo udbinfo; |
| 163 | |
| 164 | #ifndef UDBHASHSIZE |
| 165 | #define UDBHASHSIZE 16 |
| 166 | #endif |
| 167 | |
| 168 | /* Garbage collection performed during most recent udp_gc() run */ |
| 169 | static boolean_t udp_gc_done = FALSE; |
| 170 | |
| 171 | #define log_in_vain_log(a) { log a; } |
| 172 | |
| 173 | static int udp_getstat SYSCTL_HANDLER_ARGS; |
| 174 | struct udpstat udpstat; /* from udp_var.h */ |
| 175 | SYSCTL_PROC(_net_inet_udp, UDPCTL_STATS, stats, |
| 176 | CTLTYPE_STRUCT | CTLFLAG_RD | CTLFLAG_LOCKED, |
| 177 | 0, 0, udp_getstat, "S,udpstat" , |
| 178 | "UDP statistics (struct udpstat, netinet/udp_var.h)" ); |
| 179 | |
| 180 | SYSCTL_INT(_net_inet_udp, OID_AUTO, pcbcount, |
| 181 | CTLFLAG_RD | CTLFLAG_LOCKED, &udbinfo.ipi_count, 0, |
| 182 | "Number of active PCBs" ); |
| 183 | |
| 184 | __private_extern__ int udp_use_randomport = 1; |
| 185 | SYSCTL_INT(_net_inet_udp, OID_AUTO, randomize_ports, |
| 186 | CTLFLAG_RW | CTLFLAG_LOCKED, &udp_use_randomport, 0, |
| 187 | "Randomize UDP port numbers" ); |
| 188 | |
| 189 | struct udp_in6 { |
| 190 | struct sockaddr_in6 uin6_sin; |
| 191 | u_char uin6_init_done : 1; |
| 192 | }; |
| 193 | struct udp_ip6 { |
| 194 | struct ip6_hdr uip6_ip6; |
| 195 | u_char uip6_init_done : 1; |
| 196 | }; |
| 197 | |
| 198 | int udp_abort(struct socket *); |
| 199 | int udp_attach(struct socket *, int, struct proc *); |
| 200 | int udp_bind(struct socket *, struct sockaddr *, struct proc *); |
| 201 | int udp_connect(struct socket *, struct sockaddr *, struct proc *); |
| 202 | int udp_connectx(struct socket *, struct sockaddr *, |
| 203 | struct sockaddr *, struct proc *, uint32_t, sae_associd_t, |
| 204 | sae_connid_t *, uint32_t, void *, uint32_t, struct uio *, user_ssize_t *); |
| 205 | int udp_detach(struct socket *); |
| 206 | int udp_disconnect(struct socket *); |
| 207 | int udp_disconnectx(struct socket *, sae_associd_t, sae_connid_t); |
| 208 | int udp_send(struct socket *, int, struct mbuf *, struct sockaddr *, |
| 209 | struct mbuf *, struct proc *); |
| 210 | static void udp_append(struct inpcb *, struct ip *, struct mbuf *, int, |
| 211 | struct sockaddr_in *, struct udp_in6 *, struct udp_ip6 *, struct ifnet *); |
| 212 | static int udp_input_checksum(struct mbuf *, struct udphdr *, int, int); |
| 213 | int udp_output(struct inpcb *, struct mbuf *, struct sockaddr *, |
| 214 | struct mbuf *, struct proc *); |
| 215 | static void ip_2_ip6_hdr(struct ip6_hdr *ip6, struct ip *ip); |
| 216 | static void udp_gc(struct inpcbinfo *); |
| 217 | static int udp_defunct(struct socket *); |
| 218 | |
| 219 | struct pr_usrreqs udp_usrreqs = { |
| 220 | .pru_abort = udp_abort, |
| 221 | .pru_attach = udp_attach, |
| 222 | .pru_bind = udp_bind, |
| 223 | .pru_connect = udp_connect, |
| 224 | .pru_connectx = udp_connectx, |
| 225 | .pru_control = in_control, |
| 226 | .pru_detach = udp_detach, |
| 227 | .pru_disconnect = udp_disconnect, |
| 228 | .pru_disconnectx = udp_disconnectx, |
| 229 | .pru_peeraddr = in_getpeeraddr, |
| 230 | .pru_send = udp_send, |
| 231 | .pru_shutdown = udp_shutdown, |
| 232 | .pru_sockaddr = in_getsockaddr, |
| 233 | .pru_sosend = sosend, |
| 234 | .pru_soreceive = soreceive, |
| 235 | .pru_defunct = udp_defunct, |
| 236 | }; |
| 237 | |
| 238 | void |
| 239 | udp_init(struct protosw *pp, struct domain *dp) |
| 240 | { |
| 241 | #pragma unused(dp) |
| 242 | static int udp_initialized = 0; |
| 243 | struct inpcbinfo *pcbinfo; |
| 244 | |
| 245 | VERIFY((pp->pr_flags & (PR_INITIALIZED | PR_ATTACHED)) == PR_ATTACHED); |
| 246 | |
| 247 | if (udp_initialized) { |
| 248 | return; |
| 249 | } |
| 250 | udp_initialized = 1; |
| 251 | uint32_t pool_size = (nmbclusters << MCLSHIFT) >> MBSHIFT; |
| 252 | if (pool_size >= 96) { |
| 253 | /* Improves 10GbE UDP performance. */ |
| 254 | udp_recvspace = 786896; |
| 255 | } |
| 256 | |
| 257 | if (PE_parse_boot_argn(arg_string: "udp_log" , arg_ptr: &udp_log_enable_flags, max_arg: sizeof(udp_log_enable_flags))) { |
| 258 | os_log(OS_LOG_DEFAULT, "udp_init: set udp_log_enable_flags to 0x%x" , udp_log_enable_flags); |
| 259 | } |
| 260 | |
| 261 | LIST_INIT(&udb); |
| 262 | udbinfo.ipi_listhead = &udb; |
| 263 | udbinfo.ipi_hashbase = hashinit(UDBHASHSIZE, M_PCB, |
| 264 | hashmask: &udbinfo.ipi_hashmask); |
| 265 | udbinfo.ipi_porthashbase = hashinit(UDBHASHSIZE, M_PCB, |
| 266 | hashmask: &udbinfo.ipi_porthashmask); |
| 267 | udbinfo.ipi_zone = inpcbzone; |
| 268 | |
| 269 | pcbinfo = &udbinfo; |
| 270 | /* |
| 271 | * allocate lock group and attribute for udp pcb mutexes |
| 272 | */ |
| 273 | pcbinfo->ipi_lock_grp = lck_grp_alloc_init(grp_name: "udppcb" , |
| 274 | LCK_GRP_ATTR_NULL); |
| 275 | lck_attr_setdefault(attr: &pcbinfo->ipi_lock_attr); |
| 276 | lck_rw_init(lck: &pcbinfo->ipi_lock, grp: pcbinfo->ipi_lock_grp, |
| 277 | attr: &pcbinfo->ipi_lock_attr); |
| 278 | |
| 279 | udbinfo.ipi_gc = udp_gc; |
| 280 | in_pcbinfo_attach(&udbinfo); |
| 281 | } |
| 282 | |
| 283 | void |
| 284 | udp_input(struct mbuf *m, int iphlen) |
| 285 | { |
| 286 | struct ip *ip; |
| 287 | struct udphdr *uh; |
| 288 | struct inpcb *inp; |
| 289 | struct mbuf *opts = NULL; |
| 290 | int len, isbroadcast; |
| 291 | struct ip save_ip; |
| 292 | struct sockaddr *append_sa = NULL; |
| 293 | struct sockaddr *append_da = NULL; |
| 294 | struct inpcbinfo *pcbinfo = &udbinfo; |
| 295 | struct sockaddr_in udp_in; |
| 296 | struct sockaddr_in udp_dst; |
| 297 | struct ip_moptions *imo = NULL; |
| 298 | int foundmembership = 0, ret = 0; |
| 299 | struct udp_in6 udp_in6; |
| 300 | struct udp_in6 udp_dst6; |
| 301 | struct udp_ip6 udp_ip6; |
| 302 | struct ifnet *ifp = m->m_pkthdr.rcvif; |
| 303 | boolean_t cell = IFNET_IS_CELLULAR(ifp); |
| 304 | boolean_t wifi = (!cell && IFNET_IS_WIFI(ifp)); |
| 305 | boolean_t wired = (!wifi && IFNET_IS_WIRED(ifp)); |
| 306 | u_int16_t pf_tag = 0; |
| 307 | boolean_t is_wake_pkt = false; |
| 308 | boolean_t check_cfil = cfil_filter_present(); |
| 309 | |
| 310 | SOCKADDR_ZERO(&udp_in, sizeof(udp_in)); |
| 311 | udp_in.sin_len = sizeof(struct sockaddr_in); |
| 312 | udp_in.sin_family = AF_INET; |
| 313 | bzero(s: &udp_in6, n: sizeof(udp_in6)); |
| 314 | udp_in6.uin6_sin.sin6_len = sizeof(struct sockaddr_in6); |
| 315 | udp_in6.uin6_sin.sin6_family = AF_INET6; |
| 316 | |
| 317 | if (m->m_flags & M_PKTHDR) { |
| 318 | pf_tag = m_pftag(m)->pftag_tag; |
| 319 | if (m->m_pkthdr.pkt_flags & PKTF_WAKE_PKT) { |
| 320 | is_wake_pkt = true; |
| 321 | } |
| 322 | } |
| 323 | |
| 324 | udpstat.udps_ipackets++; |
| 325 | |
| 326 | KERNEL_DEBUG(DBG_FNC_UDP_INPUT | DBG_FUNC_START, 0, 0, 0, 0, 0); |
| 327 | |
| 328 | /* Expect 32-bit aligned data pointer on strict-align platforms */ |
| 329 | MBUF_STRICT_DATA_ALIGNMENT_CHECK_32(m); |
| 330 | |
| 331 | m_add_crumb(m, PKT_CRUMB_UDP_INPUT); |
| 332 | |
| 333 | /* |
| 334 | * Strip IP options, if any; should skip this, |
| 335 | * make available to user, and use on returned packets, |
| 336 | * but we don't yet have a way to check the checksum |
| 337 | * with options still present. |
| 338 | */ |
| 339 | if (iphlen > sizeof(struct ip)) { |
| 340 | ip_stripoptions(m); |
| 341 | iphlen = sizeof(struct ip); |
| 342 | } |
| 343 | |
| 344 | /* |
| 345 | * Get IP and UDP header together in first mbuf. |
| 346 | */ |
| 347 | ip = mtod(m, struct ip *); |
| 348 | if (m->m_len < iphlen + sizeof(struct udphdr)) { |
| 349 | m = m_pullup(m, iphlen + sizeof(struct udphdr)); |
| 350 | if (m == NULL) { |
| 351 | udpstat.udps_hdrops++; |
| 352 | KERNEL_DEBUG(DBG_FNC_UDP_INPUT | DBG_FUNC_END, |
| 353 | 0, 0, 0, 0, 0); |
| 354 | return; |
| 355 | } |
| 356 | ip = mtod(m, struct ip *); |
| 357 | } |
| 358 | uh = (struct udphdr *)(void *)((caddr_t)ip + iphlen); |
| 359 | |
| 360 | /* destination port of 0 is illegal, based on RFC768. */ |
| 361 | if (uh->uh_dport == 0) { |
| 362 | IF_UDP_STATINC(ifp, port0); |
| 363 | goto bad; |
| 364 | } |
| 365 | |
| 366 | KERNEL_DEBUG(DBG_LAYER_IN_BEG, uh->uh_dport, uh->uh_sport, |
| 367 | ip->ip_src.s_addr, ip->ip_dst.s_addr, uh->uh_ulen); |
| 368 | |
| 369 | /* |
| 370 | * Make mbuf data length reflect UDP length. |
| 371 | * If not enough data to reflect UDP length, drop. |
| 372 | */ |
| 373 | len = ntohs((u_short)uh->uh_ulen); |
| 374 | if (ip->ip_len != len) { |
| 375 | if (len > ip->ip_len || len < sizeof(struct udphdr)) { |
| 376 | udpstat.udps_badlen++; |
| 377 | IF_UDP_STATINC(ifp, badlength); |
| 378 | goto bad; |
| 379 | } |
| 380 | m_adj(m, len - ip->ip_len); |
| 381 | /* ip->ip_len = len; */ |
| 382 | } |
| 383 | /* |
| 384 | * Save a copy of the IP header in case we want restore it |
| 385 | * for sending an ICMP error message in response. |
| 386 | */ |
| 387 | save_ip = *ip; |
| 388 | |
| 389 | /* |
| 390 | * Checksum extended UDP header and data. |
| 391 | */ |
| 392 | if (udp_input_checksum(m, uh, iphlen, len)) { |
| 393 | goto bad; |
| 394 | } |
| 395 | |
| 396 | isbroadcast = in_broadcast(ip->ip_dst, ifp); |
| 397 | |
| 398 | if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) || isbroadcast) { |
| 399 | int reuse_sock = 0, mcast_delivered = 0; |
| 400 | |
| 401 | lck_rw_lock_shared(lck: &pcbinfo->ipi_lock); |
| 402 | /* |
| 403 | * Deliver a multicast or broadcast datagram to *all* sockets |
| 404 | * for which the local and remote addresses and ports match |
| 405 | * those of the incoming datagram. This allows more than |
| 406 | * one process to receive multi/broadcasts on the same port. |
| 407 | * (This really ought to be done for unicast datagrams as |
| 408 | * well, but that would cause problems with existing |
| 409 | * applications that open both address-specific sockets and |
| 410 | * a wildcard socket listening to the same port -- they would |
| 411 | * end up receiving duplicates of every unicast datagram. |
| 412 | * Those applications open the multiple sockets to overcome an |
| 413 | * inadequacy of the UDP socket interface, but for backwards |
| 414 | * compatibility we avoid the problem here rather than |
| 415 | * fixing the interface. Maybe 4.5BSD will remedy this?) |
| 416 | */ |
| 417 | |
| 418 | /* |
| 419 | * Construct sockaddr format source address. |
| 420 | */ |
| 421 | udp_in.sin_port = uh->uh_sport; |
| 422 | udp_in.sin_addr = ip->ip_src; |
| 423 | /* |
| 424 | * Locate pcb(s) for datagram. |
| 425 | * (Algorithm copied from raw_intr().) |
| 426 | */ |
| 427 | udp_in6.uin6_init_done = udp_ip6.uip6_init_done = 0; |
| 428 | LIST_FOREACH(inp, &udb, inp_list) { |
| 429 | #if IPSEC |
| 430 | int skipit; |
| 431 | #endif /* IPSEC */ |
| 432 | |
| 433 | if (inp->inp_socket == NULL) { |
| 434 | continue; |
| 435 | } |
| 436 | if (inp != sotoinpcb(inp->inp_socket)) { |
| 437 | panic("%s: bad so back ptr inp=%p" , |
| 438 | __func__, inp); |
| 439 | /* NOTREACHED */ |
| 440 | } |
| 441 | if ((inp->inp_vflag & INP_IPV4) == 0) { |
| 442 | continue; |
| 443 | } |
| 444 | if (inp_restricted_recv(inp, ifp)) { |
| 445 | continue; |
| 446 | } |
| 447 | |
| 448 | if ((inp->inp_moptions == NULL) && |
| 449 | (ntohl(ip->ip_dst.s_addr) != |
| 450 | INADDR_ALLHOSTS_GROUP) && (isbroadcast == 0)) { |
| 451 | continue; |
| 452 | } |
| 453 | /* |
| 454 | * Skip unbound sockets before taking the lock on the socket as |
| 455 | * the test with the destination port in the header will fail |
| 456 | */ |
| 457 | if (inp->inp_lport == 0) { |
| 458 | continue; |
| 459 | } |
| 460 | |
| 461 | if (in_pcb_checkstate(inp, WNT_ACQUIRE, 0) == |
| 462 | WNT_STOPUSING) { |
| 463 | continue; |
| 464 | } |
| 465 | |
| 466 | udp_lock(inp->inp_socket, 1, 0); |
| 467 | |
| 468 | if (in_pcb_checkstate(inp, WNT_RELEASE, 1) == |
| 469 | WNT_STOPUSING) { |
| 470 | udp_unlock(inp->inp_socket, 1, 0); |
| 471 | continue; |
| 472 | } |
| 473 | |
| 474 | if (inp->inp_lport != uh->uh_dport) { |
| 475 | udp_unlock(inp->inp_socket, 1, 0); |
| 476 | continue; |
| 477 | } |
| 478 | if (inp->inp_laddr.s_addr != INADDR_ANY) { |
| 479 | if (inp->inp_laddr.s_addr != |
| 480 | ip->ip_dst.s_addr) { |
| 481 | udp_unlock(inp->inp_socket, 1, 0); |
| 482 | continue; |
| 483 | } |
| 484 | } |
| 485 | if (inp->inp_faddr.s_addr != INADDR_ANY) { |
| 486 | if (inp->inp_faddr.s_addr != |
| 487 | ip->ip_src.s_addr || |
| 488 | inp->inp_fport != uh->uh_sport) { |
| 489 | udp_unlock(inp->inp_socket, 1, 0); |
| 490 | continue; |
| 491 | } |
| 492 | } |
| 493 | |
| 494 | if (isbroadcast == 0 && (ntohl(ip->ip_dst.s_addr) != |
| 495 | INADDR_ALLHOSTS_GROUP)) { |
| 496 | struct sockaddr_in group; |
| 497 | int blocked; |
| 498 | |
| 499 | if ((imo = inp->inp_moptions) == NULL) { |
| 500 | udp_unlock(inp->inp_socket, 1, 0); |
| 501 | continue; |
| 502 | } |
| 503 | IMO_LOCK(imo); |
| 504 | |
| 505 | SOCKADDR_ZERO(&group, sizeof(struct sockaddr_in)); |
| 506 | group.sin_len = sizeof(struct sockaddr_in); |
| 507 | group.sin_family = AF_INET; |
| 508 | group.sin_addr = ip->ip_dst; |
| 509 | |
| 510 | blocked = imo_multi_filter(imo, ifp, |
| 511 | &group, &udp_in); |
| 512 | if (blocked == MCAST_PASS) { |
| 513 | foundmembership = 1; |
| 514 | } |
| 515 | |
| 516 | IMO_UNLOCK(imo); |
| 517 | if (!foundmembership) { |
| 518 | udp_unlock(inp->inp_socket, 1, 0); |
| 519 | if (blocked == MCAST_NOTSMEMBER || |
| 520 | blocked == MCAST_MUTED) { |
| 521 | udpstat.udps_filtermcast++; |
| 522 | } |
| 523 | continue; |
| 524 | } |
| 525 | foundmembership = 0; |
| 526 | } |
| 527 | |
| 528 | reuse_sock = (inp->inp_socket->so_options & |
| 529 | (SO_REUSEPORT | SO_REUSEADDR)); |
| 530 | |
| 531 | #if NECP |
| 532 | skipit = 0; |
| 533 | if (!necp_socket_is_allowed_to_send_recv_v4(inp, |
| 534 | local_port: uh->uh_dport, remote_port: uh->uh_sport, local_addr: &ip->ip_dst, |
| 535 | remote_addr: &ip->ip_src, input_interface: ifp, pf_tag, NULL, NULL, NULL, NULL)) { |
| 536 | /* do not inject data to pcb */ |
| 537 | skipit = 1; |
| 538 | } |
| 539 | if (skipit == 0) |
| 540 | #endif /* NECP */ |
| 541 | { |
| 542 | struct mbuf *n = NULL; |
| 543 | |
| 544 | if (reuse_sock) { |
| 545 | n = m_copy(m, 0, M_COPYALL); |
| 546 | } |
| 547 | udp_append(inp, ip, m, |
| 548 | iphlen + sizeof(struct udphdr), |
| 549 | &udp_in, &udp_in6, &udp_ip6, ifp); |
| 550 | mcast_delivered++; |
| 551 | |
| 552 | m = n; |
| 553 | } |
| 554 | if (is_wake_pkt) { |
| 555 | soevent(so: inp->inp_socket, SO_FILT_HINT_LOCKED | SO_FILT_HINT_WAKE_PKT); |
| 556 | } |
| 557 | |
| 558 | udp_unlock(inp->inp_socket, 1, 0); |
| 559 | |
| 560 | |
| 561 | /* |
| 562 | * Don't look for additional matches if this one does |
| 563 | * not have either the SO_REUSEPORT or SO_REUSEADDR |
| 564 | * socket options set. This heuristic avoids searching |
| 565 | * through all pcbs in the common case of a non-shared |
| 566 | * port. It assumes that an application will never |
| 567 | * clear these options after setting them. |
| 568 | */ |
| 569 | if (reuse_sock == 0 || m == NULL) { |
| 570 | break; |
| 571 | } |
| 572 | |
| 573 | /* |
| 574 | * Expect 32-bit aligned data pointer on strict-align |
| 575 | * platforms. |
| 576 | */ |
| 577 | MBUF_STRICT_DATA_ALIGNMENT_CHECK_32(m); |
| 578 | /* |
| 579 | * Recompute IP and UDP header pointers for new mbuf |
| 580 | */ |
| 581 | ip = mtod(m, struct ip *); |
| 582 | uh = (struct udphdr *)(void *)((caddr_t)ip + iphlen); |
| 583 | } |
| 584 | lck_rw_done(lck: &pcbinfo->ipi_lock); |
| 585 | |
| 586 | if (mcast_delivered == 0) { |
| 587 | /* |
| 588 | * No matching pcb found; discard datagram. |
| 589 | * (No need to send an ICMP Port Unreachable |
| 590 | * for a broadcast or multicast datgram.) |
| 591 | */ |
| 592 | udpstat.udps_noportbcast++; |
| 593 | IF_UDP_STATINC(ifp, port_unreach); |
| 594 | goto bad; |
| 595 | } |
| 596 | |
| 597 | /* free the extra copy of mbuf or skipped by IPsec */ |
| 598 | if (m != NULL) { |
| 599 | m_freem(m); |
| 600 | } |
| 601 | KERNEL_DEBUG(DBG_FNC_UDP_INPUT | DBG_FUNC_END, 0, 0, 0, 0, 0); |
| 602 | return; |
| 603 | } |
| 604 | |
| 605 | #if IPSEC |
| 606 | /* |
| 607 | * UDP to port 4500 with a payload where the first four bytes are |
| 608 | * not zero is a UDP encapsulated IPsec packet. Packets where |
| 609 | * the payload is one byte and that byte is 0xFF are NAT keepalive |
| 610 | * packets. Decapsulate the ESP packet and carry on with IPsec input |
| 611 | * or discard the NAT keep-alive. |
| 612 | */ |
| 613 | if (ipsec_bypass == 0 && (esp_udp_encap_port & 0xFFFF) != 0 && |
| 614 | (uh->uh_dport == ntohs((u_short)esp_udp_encap_port) || |
| 615 | uh->uh_sport == ntohs((u_short)esp_udp_encap_port))) { |
| 616 | /* |
| 617 | * Check if ESP or keepalive: |
| 618 | * 1. If the destination port of the incoming packet is 4500. |
| 619 | * 2. If the source port of the incoming packet is 4500, |
| 620 | * then check the SADB to match IP address and port. |
| 621 | */ |
| 622 | bool check_esp = true; |
| 623 | if (uh->uh_dport != ntohs((u_short)esp_udp_encap_port)) { |
| 624 | check_esp = key_checksa_present(AF_INET, src: (caddr_t)&ip->ip_dst, |
| 625 | dst: (caddr_t)&ip->ip_src, src_port: uh->uh_dport, |
| 626 | dst_port: uh->uh_sport, IFSCOPE_NONE, IFSCOPE_NONE); |
| 627 | } |
| 628 | |
| 629 | if (check_esp) { |
| 630 | int payload_len = len - sizeof(struct udphdr) > 4 ? 4 : |
| 631 | len - sizeof(struct udphdr); |
| 632 | |
| 633 | if (m->m_len < iphlen + sizeof(struct udphdr) + payload_len) { |
| 634 | if ((m = m_pullup(m, iphlen + sizeof(struct udphdr) + |
| 635 | payload_len)) == NULL) { |
| 636 | udpstat.udps_hdrops++; |
| 637 | KERNEL_DEBUG(DBG_FNC_UDP_INPUT | DBG_FUNC_END, |
| 638 | 0, 0, 0, 0, 0); |
| 639 | return; |
| 640 | } |
| 641 | /* |
| 642 | * Expect 32-bit aligned data pointer on strict-align |
| 643 | * platforms. |
| 644 | */ |
| 645 | MBUF_STRICT_DATA_ALIGNMENT_CHECK_32(m); |
| 646 | |
| 647 | ip = mtod(m, struct ip *); |
| 648 | uh = (struct udphdr *)(void *)((caddr_t)ip + iphlen); |
| 649 | } |
| 650 | /* Check for NAT keepalive packet */ |
| 651 | if (payload_len == 1 && *(u_int8_t *) |
| 652 | ((caddr_t)uh + sizeof(struct udphdr)) == 0xFF) { |
| 653 | m_freem(m); |
| 654 | KERNEL_DEBUG(DBG_FNC_UDP_INPUT | DBG_FUNC_END, |
| 655 | 0, 0, 0, 0, 0); |
| 656 | return; |
| 657 | } else if (payload_len == 4 && *(u_int32_t *)(void *) |
| 658 | ((caddr_t)uh + sizeof(struct udphdr)) != 0) { |
| 659 | /* UDP encapsulated IPsec packet to pass through NAT */ |
| 660 | KERNEL_DEBUG(DBG_FNC_UDP_INPUT | DBG_FUNC_END, |
| 661 | 0, 0, 0, 0, 0); |
| 662 | /* preserve the udp header */ |
| 663 | esp4_input(m, off: iphlen + sizeof(struct udphdr)); |
| 664 | return; |
| 665 | } |
| 666 | } |
| 667 | } |
| 668 | #endif /* IPSEC */ |
| 669 | |
| 670 | /* |
| 671 | * Locate pcb for datagram. |
| 672 | */ |
| 673 | inp = in_pcblookup_hash(&udbinfo, ip->ip_src, uh->uh_sport, |
| 674 | ip->ip_dst, uh->uh_dport, 1, ifp); |
| 675 | if (inp == NULL) { |
| 676 | IF_UDP_STATINC(ifp, port_unreach); |
| 677 | |
| 678 | if (udp_log_in_vain) { |
| 679 | char buf[MAX_IPv4_STR_LEN]; |
| 680 | char buf2[MAX_IPv4_STR_LEN]; |
| 681 | |
| 682 | /* check src and dst address */ |
| 683 | if (udp_log_in_vain < 3) { |
| 684 | log(LOG_INFO, "Connection attempt to " |
| 685 | "UDP %s:%d from %s:%d\n" , inet_ntop(AF_INET, |
| 686 | &ip->ip_dst, buf, sizeof(buf)), |
| 687 | ntohs(uh->uh_dport), inet_ntop(AF_INET, |
| 688 | &ip->ip_src, buf2, sizeof(buf2)), |
| 689 | ntohs(uh->uh_sport)); |
| 690 | } else if (!(m->m_flags & (M_BCAST | M_MCAST)) && |
| 691 | ip->ip_dst.s_addr != ip->ip_src.s_addr) { |
| 692 | log_in_vain_log((LOG_INFO, |
| 693 | "Stealth Mode connection attempt to " |
| 694 | "UDP %s:%d from %s:%d\n" , inet_ntop(AF_INET, |
| 695 | &ip->ip_dst, buf, sizeof(buf)), |
| 696 | ntohs(uh->uh_dport), inet_ntop(AF_INET, |
| 697 | &ip->ip_src, buf2, sizeof(buf2)), |
| 698 | ntohs(uh->uh_sport))) |
| 699 | } |
| 700 | } |
| 701 | udpstat.udps_noport++; |
| 702 | if (m->m_flags & (M_BCAST | M_MCAST)) { |
| 703 | udpstat.udps_noportbcast++; |
| 704 | goto bad; |
| 705 | } |
| 706 | if (blackhole) { |
| 707 | if (ifp && ifp->if_type != IFT_LOOP) { |
| 708 | goto bad; |
| 709 | } |
| 710 | } |
| 711 | *ip = save_ip; |
| 712 | ip->ip_len += iphlen; |
| 713 | icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_PORT, 0, 0); |
| 714 | KERNEL_DEBUG(DBG_FNC_UDP_INPUT | DBG_FUNC_END, 0, 0, 0, 0, 0); |
| 715 | return; |
| 716 | } |
| 717 | udp_lock(inp->inp_socket, 1, 0); |
| 718 | |
| 719 | if (in_pcb_checkstate(inp, WNT_RELEASE, 1) == WNT_STOPUSING) { |
| 720 | udp_unlock(inp->inp_socket, 1, 0); |
| 721 | IF_UDP_STATINC(ifp, cleanup); |
| 722 | goto bad; |
| 723 | } |
| 724 | #if NECP |
| 725 | if (!necp_socket_is_allowed_to_send_recv_v4(inp, local_port: uh->uh_dport, |
| 726 | remote_port: uh->uh_sport, local_addr: &ip->ip_dst, remote_addr: &ip->ip_src, input_interface: ifp, pf_tag, NULL, NULL, NULL, NULL)) { |
| 727 | udp_unlock(inp->inp_socket, 1, 0); |
| 728 | IF_UDP_STATINC(ifp, badipsec); |
| 729 | goto bad; |
| 730 | } |
| 731 | #endif /* NECP */ |
| 732 | |
| 733 | /* |
| 734 | * Construct sockaddr format source address. |
| 735 | * Stuff source address and datagram in user buffer. |
| 736 | */ |
| 737 | udp_in.sin_port = uh->uh_sport; |
| 738 | udp_in.sin_addr = ip->ip_src; |
| 739 | if ((inp->inp_flags & INP_CONTROLOPTS) != 0 || |
| 740 | SOFLOW_ENABLED(inp->inp_socket) || |
| 741 | SO_RECV_CONTROL_OPTS(inp->inp_socket)) { |
| 742 | if (inp->inp_vflag & INP_IPV6 || inp->inp_vflag & INP_V4MAPPEDV6) { |
| 743 | int savedflags; |
| 744 | |
| 745 | ip_2_ip6_hdr(ip6: &udp_ip6.uip6_ip6, ip); |
| 746 | savedflags = inp->inp_flags; |
| 747 | inp->inp_flags &= ~INP_UNMAPPABLEOPTS; |
| 748 | ret = ip6_savecontrol(inp, m, &opts); |
| 749 | inp->inp_flags = savedflags; |
| 750 | } else { |
| 751 | ret = ip_savecontrol(inp, &opts, ip, m); |
| 752 | } |
| 753 | if (ret != 0) { |
| 754 | udp_unlock(inp->inp_socket, 1, 0); |
| 755 | goto bad; |
| 756 | } |
| 757 | } |
| 758 | m_adj(m, iphlen + sizeof(struct udphdr)); |
| 759 | |
| 760 | KERNEL_DEBUG(DBG_LAYER_IN_END, uh->uh_dport, uh->uh_sport, |
| 761 | save_ip.ip_src.s_addr, save_ip.ip_dst.s_addr, uh->uh_ulen); |
| 762 | |
| 763 | if (inp->inp_vflag & INP_IPV6) { |
| 764 | in6_sin_2_v4mapsin6(sin: &udp_in, sin6: &udp_in6.uin6_sin); |
| 765 | append_sa = SA(&udp_in6.uin6_sin); |
| 766 | } else { |
| 767 | append_sa = SA(&udp_in); |
| 768 | } |
| 769 | if (nstat_collect) { |
| 770 | INP_ADD_STAT(inp, cell, wifi, wired, rxpackets, 1); |
| 771 | INP_ADD_STAT(inp, cell, wifi, wired, rxbytes, m->m_pkthdr.len); |
| 772 | inp_set_activity_bitmap(inp); |
| 773 | } |
| 774 | #if CONTENT_FILTER && NECP |
| 775 | if (check_cfil && inp != NULL && inp->inp_policyresult.results.filter_control_unit == 0) { |
| 776 | if (inp->inp_vflag & INP_IPV6) { |
| 777 | bzero(s: &udp_dst6, n: sizeof(udp_dst6)); |
| 778 | udp_dst6.uin6_sin.sin6_len = sizeof(struct sockaddr_in6); |
| 779 | udp_dst6.uin6_sin.sin6_family = AF_INET6; |
| 780 | in6_sin_2_v4mapsin6(sin: &udp_dst, sin6: &udp_dst6.uin6_sin); |
| 781 | append_da = SA(&udp_dst6.uin6_sin); |
| 782 | } else { |
| 783 | SOCKADDR_ZERO(&udp_dst, sizeof(udp_dst)); |
| 784 | udp_dst.sin_len = sizeof(struct sockaddr_in); |
| 785 | udp_dst.sin_family = AF_INET; |
| 786 | udp_dst.sin_port = uh->uh_dport; |
| 787 | udp_dst.sin_addr = ip->ip_dst; |
| 788 | append_da = SA(&udp_dst); |
| 789 | } |
| 790 | // Override the dst input here so NECP can pick up the policy |
| 791 | // and CFIL can find an existing control socket. |
| 792 | necp_socket_find_policy_match(inp, override_local_addr: append_da, override_remote_addr: append_sa, override_bound_interface: 0); |
| 793 | } |
| 794 | #endif /* CONTENT_FILTER and NECP */ |
| 795 | so_recv_data_stat(inp->inp_socket, m, 0); |
| 796 | if (sbappendaddr(sb: &inp->inp_socket->so_rcv, asa: append_sa, |
| 797 | m0: m, control: opts, NULL) == 0) { |
| 798 | udpstat.udps_fullsock++; |
| 799 | } else { |
| 800 | sorwakeup(so: inp->inp_socket); |
| 801 | } |
| 802 | if (is_wake_pkt) { |
| 803 | soevent(so: inp->inp_socket, SO_FILT_HINT_LOCKED | SO_FILT_HINT_WAKE_PKT); |
| 804 | } |
| 805 | udp_unlock(inp->inp_socket, 1, 0); |
| 806 | KERNEL_DEBUG(DBG_FNC_UDP_INPUT | DBG_FUNC_END, 0, 0, 0, 0, 0); |
| 807 | return; |
| 808 | bad: |
| 809 | m_freem(m); |
| 810 | if (opts) { |
| 811 | m_freem(opts); |
| 812 | } |
| 813 | KERNEL_DEBUG(DBG_FNC_UDP_INPUT | DBG_FUNC_END, 0, 0, 0, 0, 0); |
| 814 | } |
| 815 | |
| 816 | static void |
| 817 | ip_2_ip6_hdr(struct ip6_hdr *ip6, struct ip *ip) |
| 818 | { |
| 819 | bzero(s: ip6, n: sizeof(*ip6)); |
| 820 | |
| 821 | ip6->ip6_vfc = IPV6_VERSION; |
| 822 | ip6->ip6_plen = ip->ip_len; |
| 823 | ip6->ip6_nxt = ip->ip_p; |
| 824 | ip6->ip6_hlim = ip->ip_ttl; |
| 825 | if (ip->ip_src.s_addr) { |
| 826 | ip6->ip6_src.s6_addr32[2] = IPV6_ADDR_INT32_SMP; |
| 827 | ip6->ip6_src.s6_addr32[3] = ip->ip_src.s_addr; |
| 828 | } |
| 829 | if (ip->ip_dst.s_addr) { |
| 830 | ip6->ip6_dst.s6_addr32[2] = IPV6_ADDR_INT32_SMP; |
| 831 | ip6->ip6_dst.s6_addr32[3] = ip->ip_dst.s_addr; |
| 832 | } |
| 833 | } |
| 834 | |
| 835 | /* |
| 836 | * subroutine of udp_input(), mainly for source code readability. |
| 837 | */ |
| 838 | static void |
| 839 | udp_append(struct inpcb *last, struct ip *ip, struct mbuf *n, int off, |
| 840 | struct sockaddr_in *pudp_in, struct udp_in6 *pudp_in6, |
| 841 | struct udp_ip6 *pudp_ip6, struct ifnet *ifp) |
| 842 | { |
| 843 | struct sockaddr *append_sa; |
| 844 | struct mbuf *opts = 0; |
| 845 | boolean_t cell = IFNET_IS_CELLULAR(ifp); |
| 846 | boolean_t wifi = (!cell && IFNET_IS_WIFI(ifp)); |
| 847 | boolean_t wired = (!wifi && IFNET_IS_WIRED(ifp)); |
| 848 | int ret = 0; |
| 849 | |
| 850 | if ((last->inp_flags & INP_CONTROLOPTS) != 0 || |
| 851 | SOFLOW_ENABLED(last->inp_socket) || |
| 852 | SO_RECV_CONTROL_OPTS(last->inp_socket)) { |
| 853 | if (last->inp_vflag & INP_IPV6 || last->inp_vflag & INP_V4MAPPEDV6) { |
| 854 | int savedflags; |
| 855 | |
| 856 | if (pudp_ip6->uip6_init_done == 0) { |
| 857 | ip_2_ip6_hdr(ip6: &pudp_ip6->uip6_ip6, ip); |
| 858 | pudp_ip6->uip6_init_done = 1; |
| 859 | } |
| 860 | savedflags = last->inp_flags; |
| 861 | last->inp_flags &= ~INP_UNMAPPABLEOPTS; |
| 862 | ret = ip6_savecontrol(last, n, &opts); |
| 863 | if (ret != 0) { |
| 864 | last->inp_flags = savedflags; |
| 865 | goto error; |
| 866 | } |
| 867 | last->inp_flags = savedflags; |
| 868 | } else { |
| 869 | ret = ip_savecontrol(last, &opts, ip, n); |
| 870 | if (ret != 0) { |
| 871 | goto error; |
| 872 | } |
| 873 | } |
| 874 | } |
| 875 | if (last->inp_vflag & INP_IPV6) { |
| 876 | if (pudp_in6->uin6_init_done == 0) { |
| 877 | in6_sin_2_v4mapsin6(sin: pudp_in, sin6: &pudp_in6->uin6_sin); |
| 878 | pudp_in6->uin6_init_done = 1; |
| 879 | } |
| 880 | append_sa = SA(&pudp_in6->uin6_sin); |
| 881 | } else { |
| 882 | append_sa = SA(pudp_in); |
| 883 | } |
| 884 | if (nstat_collect) { |
| 885 | INP_ADD_STAT(last, cell, wifi, wired, rxpackets, 1); |
| 886 | INP_ADD_STAT(last, cell, wifi, wired, rxbytes, |
| 887 | n->m_pkthdr.len); |
| 888 | inp_set_activity_bitmap(inp: last); |
| 889 | } |
| 890 | so_recv_data_stat(last->inp_socket, n, 0); |
| 891 | m_adj(n, off); |
| 892 | if (sbappendaddr(sb: &last->inp_socket->so_rcv, asa: append_sa, |
| 893 | m0: n, control: opts, NULL) == 0) { |
| 894 | udpstat.udps_fullsock++; |
| 895 | } else { |
| 896 | sorwakeup(so: last->inp_socket); |
| 897 | } |
| 898 | return; |
| 899 | error: |
| 900 | m_freem(n); |
| 901 | m_freem(opts); |
| 902 | } |
| 903 | |
| 904 | /* |
| 905 | * Notify a udp user of an asynchronous error; |
| 906 | * just wake up so that he can collect error status. |
| 907 | */ |
| 908 | void |
| 909 | udp_notify(struct inpcb *inp, int errno) |
| 910 | { |
| 911 | inp->inp_socket->so_error = (u_short)errno; |
| 912 | sorwakeup(so: inp->inp_socket); |
| 913 | sowwakeup(so: inp->inp_socket); |
| 914 | } |
| 915 | |
| 916 | void |
| 917 | udp_ctlinput(int cmd, struct sockaddr *sa, void *vip, __unused struct ifnet * ifp) |
| 918 | { |
| 919 | struct ipctlparam *ctl_param = vip; |
| 920 | struct ip *ip = NULL; |
| 921 | struct mbuf *m = NULL; |
| 922 | void (*notify)(struct inpcb *, int) = udp_notify; |
| 923 | struct in_addr faddr; |
| 924 | struct inpcb *inp = NULL; |
| 925 | struct icmp *icp = NULL; |
| 926 | size_t off; |
| 927 | |
| 928 | if (ctl_param != NULL) { |
| 929 | ip = ctl_param->ipc_icmp_ip; |
| 930 | icp = ctl_param->ipc_icmp; |
| 931 | m = ctl_param->ipc_m; |
| 932 | off = ctl_param->ipc_off; |
| 933 | } else { |
| 934 | ip = NULL; |
| 935 | icp = NULL; |
| 936 | m = NULL; |
| 937 | off = 0; |
| 938 | } |
| 939 | |
| 940 | faddr = SIN(sa)->sin_addr; |
| 941 | if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY) { |
| 942 | return; |
| 943 | } |
| 944 | |
| 945 | if (PRC_IS_REDIRECT(cmd)) { |
| 946 | ip = 0; |
| 947 | notify = in_rtchange; |
| 948 | } else if (cmd == PRC_HOSTDEAD) { |
| 949 | ip = 0; |
| 950 | } else if ((unsigned)cmd >= PRC_NCMDS || inetctlerrmap[cmd] == 0) { |
| 951 | return; |
| 952 | } |
| 953 | if (ip) { |
| 954 | struct udphdr uh; |
| 955 | |
| 956 | /* Check if we can safely get the ports from the UDP header */ |
| 957 | if (m == NULL || |
| 958 | (m->m_len < off + sizeof(uh))) { |
| 959 | /* Insufficient length */ |
| 960 | return; |
| 961 | } |
| 962 | |
| 963 | bcopy(src: m_mtod_current(m) + off, dst: &uh, n: sizeof(uh)); |
| 964 | inp = in_pcblookup_hash(&udbinfo, faddr, uh.uh_dport, |
| 965 | ip->ip_src, uh.uh_sport, 0, NULL); |
| 966 | |
| 967 | if (inp != NULL && inp->inp_socket != NULL) { |
| 968 | udp_lock(inp->inp_socket, 1, 0); |
| 969 | if (in_pcb_checkstate(inp, WNT_RELEASE, 1) == |
| 970 | WNT_STOPUSING) { |
| 971 | udp_unlock(inp->inp_socket, 1, 0); |
| 972 | return; |
| 973 | } |
| 974 | if (cmd == PRC_MSGSIZE && !uuid_is_null(uu: inp->necp_client_uuid)) { |
| 975 | uuid_t null_uuid; |
| 976 | uuid_clear(uu: null_uuid); |
| 977 | necp_update_flow_protoctl_event(netagent_uuid: null_uuid, client_id: inp->necp_client_uuid, |
| 978 | PRC_MSGSIZE, ntohs(icp->icmp_nextmtu), protoctl_event_tcp_seq_num: 0); |
| 979 | /* |
| 980 | * Avoid calling udp_notify() to set so_error |
| 981 | * when using Network.framework since the notification |
| 982 | * of PRC_MSGSIZE has been delivered through NECP. |
| 983 | */ |
| 984 | } else { |
| 985 | (*notify)(inp, inetctlerrmap[cmd]); |
| 986 | } |
| 987 | udp_unlock(inp->inp_socket, 1, 0); |
| 988 | } |
| 989 | #if SKYWALK |
| 990 | else { |
| 991 | union sockaddr_in_4_6 sock_laddr; |
| 992 | struct protoctl_ev_val prctl_ev_val; |
| 993 | bzero(s: &prctl_ev_val, n: sizeof(prctl_ev_val)); |
| 994 | bzero(s: &sock_laddr, n: sizeof(sock_laddr)); |
| 995 | |
| 996 | if (cmd == PRC_MSGSIZE) { |
| 997 | prctl_ev_val.val = ntohs(icp->icmp_nextmtu); |
| 998 | } |
| 999 | |
| 1000 | sock_laddr.sin.sin_family = AF_INET; |
| 1001 | sock_laddr.sin.sin_len = sizeof(sock_laddr.sin); |
| 1002 | sock_laddr.sin.sin_addr = ip->ip_src; |
| 1003 | |
| 1004 | protoctl_event_enqueue_nwk_wq_entry(ifp, |
| 1005 | SA(&sock_laddr), p_raddr: sa, |
| 1006 | lport: uh.uh_sport, rport: uh.uh_dport, IPPROTO_UDP, |
| 1007 | protoctl_event_code: cmd, p_protoctl_ev_val: &prctl_ev_val); |
| 1008 | } |
| 1009 | #endif /* SKYWALK */ |
| 1010 | } else { |
| 1011 | in_pcbnotifyall(&udbinfo, faddr, inetctlerrmap[cmd], notify); |
| 1012 | } |
| 1013 | } |
| 1014 | |
| 1015 | int |
| 1016 | udp_ctloutput(struct socket *so, struct sockopt *sopt) |
| 1017 | { |
| 1018 | int error = 0, optval = 0; |
| 1019 | struct inpcb *inp; |
| 1020 | |
| 1021 | /* Allow <SOL_SOCKET,SO_FLUSH> at this level */ |
| 1022 | if (sopt->sopt_level != IPPROTO_UDP && |
| 1023 | !(sopt->sopt_level == SOL_SOCKET && sopt->sopt_name == SO_FLUSH)) { |
| 1024 | if (SOCK_CHECK_DOM(so, PF_INET6)) { |
| 1025 | error = ip6_ctloutput(so, sopt); |
| 1026 | } else { |
| 1027 | error = ip_ctloutput(so, sopt); |
| 1028 | } |
| 1029 | return error; |
| 1030 | } |
| 1031 | |
| 1032 | inp = sotoinpcb(so); |
| 1033 | |
| 1034 | switch (sopt->sopt_dir) { |
| 1035 | case SOPT_SET: |
| 1036 | switch (sopt->sopt_name) { |
| 1037 | case UDP_NOCKSUM: |
| 1038 | /* This option is settable only for UDP over IPv4 */ |
| 1039 | if (!(inp->inp_vflag & INP_IPV4)) { |
| 1040 | error = EINVAL; |
| 1041 | break; |
| 1042 | } |
| 1043 | |
| 1044 | if ((error = sooptcopyin(sopt, &optval, len: sizeof(optval), |
| 1045 | minlen: sizeof(optval))) != 0) { |
| 1046 | break; |
| 1047 | } |
| 1048 | |
| 1049 | if (optval != 0) { |
| 1050 | inp->inp_flags |= INP_UDP_NOCKSUM; |
| 1051 | } else { |
| 1052 | inp->inp_flags &= ~INP_UDP_NOCKSUM; |
| 1053 | } |
| 1054 | break; |
| 1055 | case UDP_KEEPALIVE_OFFLOAD: |
| 1056 | { |
| 1057 | struct udp_keepalive_offload ka; |
| 1058 | /* |
| 1059 | * If the socket is not connected, the stack will |
| 1060 | * not know the destination address to put in the |
| 1061 | * keepalive datagram. Return an error now instead |
| 1062 | * of failing later. |
| 1063 | */ |
| 1064 | if (!(so->so_state & SS_ISCONNECTED)) { |
| 1065 | error = EINVAL; |
| 1066 | break; |
| 1067 | } |
| 1068 | if (sopt->sopt_valsize != sizeof(ka)) { |
| 1069 | error = EINVAL; |
| 1070 | break; |
| 1071 | } |
| 1072 | if ((error = sooptcopyin(sopt, &ka, len: sizeof(ka), |
| 1073 | minlen: sizeof(ka))) != 0) { |
| 1074 | break; |
| 1075 | } |
| 1076 | |
| 1077 | /* application should specify the type */ |
| 1078 | if (ka.ka_type == 0) { |
| 1079 | return EINVAL; |
| 1080 | } |
| 1081 | |
| 1082 | if (ka.ka_interval == 0) { |
| 1083 | /* |
| 1084 | * if interval is 0, disable the offload |
| 1085 | * mechanism |
| 1086 | */ |
| 1087 | if (inp->inp_keepalive_data != NULL) { |
| 1088 | kfree_data(inp->inp_keepalive_data, |
| 1089 | inp->inp_keepalive_datalen); |
| 1090 | } |
| 1091 | inp->inp_keepalive_data = NULL; |
| 1092 | inp->inp_keepalive_datalen = 0; |
| 1093 | inp->inp_keepalive_interval = 0; |
| 1094 | inp->inp_keepalive_type = 0; |
| 1095 | inp->inp_flags2 &= ~INP2_KEEPALIVE_OFFLOAD; |
| 1096 | } else { |
| 1097 | if (inp->inp_keepalive_data != NULL) { |
| 1098 | kfree_data(inp->inp_keepalive_data, |
| 1099 | inp->inp_keepalive_datalen); |
| 1100 | inp->inp_keepalive_data = NULL; |
| 1101 | } |
| 1102 | |
| 1103 | inp->inp_keepalive_datalen = (uint8_t)min( |
| 1104 | a: ka.ka_data_len, |
| 1105 | UDP_KEEPALIVE_OFFLOAD_DATA_SIZE); |
| 1106 | if (inp->inp_keepalive_datalen > 0) { |
| 1107 | inp->inp_keepalive_data = (u_int8_t *)kalloc_data( |
| 1108 | inp->inp_keepalive_datalen, Z_WAITOK); |
| 1109 | if (inp->inp_keepalive_data == NULL) { |
| 1110 | inp->inp_keepalive_datalen = 0; |
| 1111 | error = ENOMEM; |
| 1112 | break; |
| 1113 | } |
| 1114 | bcopy(src: ka.ka_data, |
| 1115 | dst: inp->inp_keepalive_data, |
| 1116 | n: inp->inp_keepalive_datalen); |
| 1117 | } else { |
| 1118 | inp->inp_keepalive_datalen = 0; |
| 1119 | } |
| 1120 | inp->inp_keepalive_interval = (uint8_t) |
| 1121 | min(UDP_KEEPALIVE_INTERVAL_MAX_SECONDS, |
| 1122 | b: ka.ka_interval); |
| 1123 | inp->inp_keepalive_type = ka.ka_type; |
| 1124 | inp->inp_flags2 |= INP2_KEEPALIVE_OFFLOAD; |
| 1125 | } |
| 1126 | break; |
| 1127 | } |
| 1128 | case SO_FLUSH: |
| 1129 | if ((error = sooptcopyin(sopt, &optval, len: sizeof(optval), |
| 1130 | minlen: sizeof(optval))) != 0) { |
| 1131 | break; |
| 1132 | } |
| 1133 | |
| 1134 | error = inp_flush(inp, optval); |
| 1135 | break; |
| 1136 | |
| 1137 | default: |
| 1138 | error = ENOPROTOOPT; |
| 1139 | break; |
| 1140 | } |
| 1141 | break; |
| 1142 | |
| 1143 | case SOPT_GET: |
| 1144 | switch (sopt->sopt_name) { |
| 1145 | case UDP_NOCKSUM: |
| 1146 | optval = inp->inp_flags & INP_UDP_NOCKSUM; |
| 1147 | break; |
| 1148 | |
| 1149 | default: |
| 1150 | error = ENOPROTOOPT; |
| 1151 | break; |
| 1152 | } |
| 1153 | if (error == 0) { |
| 1154 | error = sooptcopyout(sopt, data: &optval, len: sizeof(optval)); |
| 1155 | } |
| 1156 | break; |
| 1157 | } |
| 1158 | return error; |
| 1159 | } |
| 1160 | |
| 1161 | static int |
| 1162 | udp_pcblist SYSCTL_HANDLER_ARGS |
| 1163 | { |
| 1164 | #pragma unused(oidp, arg1, arg2) |
| 1165 | int error, i, n, sz; |
| 1166 | struct inpcb *inp, **inp_list; |
| 1167 | inp_gen_t gencnt; |
| 1168 | struct xinpgen xig; |
| 1169 | |
| 1170 | /* |
| 1171 | * The process of preparing the TCB list is too time-consuming and |
| 1172 | * resource-intensive to repeat twice on every request. |
| 1173 | */ |
| 1174 | lck_rw_lock_exclusive(lck: &udbinfo.ipi_lock); |
| 1175 | if (req->oldptr == USER_ADDR_NULL) { |
| 1176 | n = udbinfo.ipi_count; |
| 1177 | req->oldidx = 2 * (sizeof(xig)) |
| 1178 | + (n + n / 8) * sizeof(struct xinpcb); |
| 1179 | lck_rw_done(lck: &udbinfo.ipi_lock); |
| 1180 | return 0; |
| 1181 | } |
| 1182 | |
| 1183 | if (req->newptr != USER_ADDR_NULL) { |
| 1184 | lck_rw_done(lck: &udbinfo.ipi_lock); |
| 1185 | return EPERM; |
| 1186 | } |
| 1187 | |
| 1188 | /* |
| 1189 | * OK, now we're committed to doing something. |
| 1190 | */ |
| 1191 | gencnt = udbinfo.ipi_gencnt; |
| 1192 | sz = n = udbinfo.ipi_count; |
| 1193 | |
| 1194 | bzero(s: &xig, n: sizeof(xig)); |
| 1195 | xig.xig_len = sizeof(xig); |
| 1196 | xig.xig_count = n; |
| 1197 | xig.xig_gen = gencnt; |
| 1198 | xig.xig_sogen = so_gencnt; |
| 1199 | error = SYSCTL_OUT(req, &xig, sizeof(xig)); |
| 1200 | if (error) { |
| 1201 | lck_rw_done(lck: &udbinfo.ipi_lock); |
| 1202 | return error; |
| 1203 | } |
| 1204 | /* |
| 1205 | * We are done if there is no pcb |
| 1206 | */ |
| 1207 | if (n == 0) { |
| 1208 | lck_rw_done(lck: &udbinfo.ipi_lock); |
| 1209 | return 0; |
| 1210 | } |
| 1211 | |
| 1212 | inp_list = kalloc_type(struct inpcb *, n, Z_WAITOK); |
| 1213 | if (inp_list == NULL) { |
| 1214 | lck_rw_done(lck: &udbinfo.ipi_lock); |
| 1215 | return ENOMEM; |
| 1216 | } |
| 1217 | |
| 1218 | for (inp = LIST_FIRST(udbinfo.ipi_listhead), i = 0; inp && i < n; |
| 1219 | inp = LIST_NEXT(inp, inp_list)) { |
| 1220 | if (inp->inp_gencnt <= gencnt && |
| 1221 | inp->inp_state != INPCB_STATE_DEAD) { |
| 1222 | inp_list[i++] = inp; |
| 1223 | } |
| 1224 | } |
| 1225 | n = i; |
| 1226 | |
| 1227 | error = 0; |
| 1228 | for (i = 0; i < n; i++) { |
| 1229 | struct xinpcb xi; |
| 1230 | |
| 1231 | inp = inp_list[i]; |
| 1232 | |
| 1233 | if (in_pcb_checkstate(inp, WNT_ACQUIRE, 0) == WNT_STOPUSING) { |
| 1234 | continue; |
| 1235 | } |
| 1236 | udp_lock(inp->inp_socket, 1, 0); |
| 1237 | if (in_pcb_checkstate(inp, WNT_RELEASE, 1) == WNT_STOPUSING) { |
| 1238 | udp_unlock(inp->inp_socket, 1, 0); |
| 1239 | continue; |
| 1240 | } |
| 1241 | if (inp->inp_gencnt > gencnt) { |
| 1242 | udp_unlock(inp->inp_socket, 1, 0); |
| 1243 | continue; |
| 1244 | } |
| 1245 | |
| 1246 | bzero(s: &xi, n: sizeof(xi)); |
| 1247 | xi.xi_len = sizeof(xi); |
| 1248 | /* XXX should avoid extra copy */ |
| 1249 | inpcb_to_compat(inp, &xi.xi_inp); |
| 1250 | if (inp->inp_socket) { |
| 1251 | sotoxsocket(so: inp->inp_socket, xso: &xi.xi_socket); |
| 1252 | } |
| 1253 | |
| 1254 | udp_unlock(inp->inp_socket, 1, 0); |
| 1255 | |
| 1256 | error = SYSCTL_OUT(req, &xi, sizeof(xi)); |
| 1257 | } |
| 1258 | if (!error) { |
| 1259 | /* |
| 1260 | * Give the user an updated idea of our state. |
| 1261 | * If the generation differs from what we told |
| 1262 | * her before, she knows that something happened |
| 1263 | * while we were processing this request, and it |
| 1264 | * might be necessary to retry. |
| 1265 | */ |
| 1266 | bzero(s: &xig, n: sizeof(xig)); |
| 1267 | xig.xig_len = sizeof(xig); |
| 1268 | xig.xig_gen = udbinfo.ipi_gencnt; |
| 1269 | xig.xig_sogen = so_gencnt; |
| 1270 | xig.xig_count = udbinfo.ipi_count; |
| 1271 | error = SYSCTL_OUT(req, &xig, sizeof(xig)); |
| 1272 | } |
| 1273 | |
| 1274 | lck_rw_done(lck: &udbinfo.ipi_lock); |
| 1275 | kfree_type(struct inpcb *, sz, inp_list); |
| 1276 | return error; |
| 1277 | } |
| 1278 | |
| 1279 | SYSCTL_PROC(_net_inet_udp, UDPCTL_PCBLIST, pcblist, |
| 1280 | CTLTYPE_STRUCT | CTLFLAG_RD | CTLFLAG_LOCKED, 0, 0, udp_pcblist, |
| 1281 | "S,xinpcb" , "List of active UDP sockets" ); |
| 1282 | |
| 1283 | #if XNU_TARGET_OS_OSX |
| 1284 | |
| 1285 | static int |
| 1286 | udp_pcblist64 SYSCTL_HANDLER_ARGS |
| 1287 | { |
| 1288 | #pragma unused(oidp, arg1, arg2) |
| 1289 | int error, i, n, sz; |
| 1290 | struct inpcb *inp, **inp_list; |
| 1291 | inp_gen_t gencnt; |
| 1292 | struct xinpgen xig; |
| 1293 | |
| 1294 | /* |
| 1295 | * The process of preparing the TCB list is too time-consuming and |
| 1296 | * resource-intensive to repeat twice on every request. |
| 1297 | */ |
| 1298 | lck_rw_lock_shared(lck: &udbinfo.ipi_lock); |
| 1299 | if (req->oldptr == USER_ADDR_NULL) { |
| 1300 | n = udbinfo.ipi_count; |
| 1301 | req->oldidx = |
| 1302 | 2 * (sizeof(xig)) + (n + n / 8) * sizeof(struct xinpcb64); |
| 1303 | lck_rw_done(lck: &udbinfo.ipi_lock); |
| 1304 | return 0; |
| 1305 | } |
| 1306 | |
| 1307 | if (req->newptr != USER_ADDR_NULL) { |
| 1308 | lck_rw_done(lck: &udbinfo.ipi_lock); |
| 1309 | return EPERM; |
| 1310 | } |
| 1311 | |
| 1312 | /* |
| 1313 | * OK, now we're committed to doing something. |
| 1314 | */ |
| 1315 | gencnt = udbinfo.ipi_gencnt; |
| 1316 | sz = n = udbinfo.ipi_count; |
| 1317 | |
| 1318 | bzero(s: &xig, n: sizeof(xig)); |
| 1319 | xig.xig_len = sizeof(xig); |
| 1320 | xig.xig_count = n; |
| 1321 | xig.xig_gen = gencnt; |
| 1322 | xig.xig_sogen = so_gencnt; |
| 1323 | error = SYSCTL_OUT(req, &xig, sizeof(xig)); |
| 1324 | if (error) { |
| 1325 | lck_rw_done(lck: &udbinfo.ipi_lock); |
| 1326 | return error; |
| 1327 | } |
| 1328 | /* |
| 1329 | * We are done if there is no pcb |
| 1330 | */ |
| 1331 | if (n == 0) { |
| 1332 | lck_rw_done(lck: &udbinfo.ipi_lock); |
| 1333 | return 0; |
| 1334 | } |
| 1335 | |
| 1336 | inp_list = kalloc_type(struct inpcb *, n, Z_WAITOK); |
| 1337 | if (inp_list == NULL) { |
| 1338 | lck_rw_done(lck: &udbinfo.ipi_lock); |
| 1339 | return ENOMEM; |
| 1340 | } |
| 1341 | |
| 1342 | for (inp = LIST_FIRST(udbinfo.ipi_listhead), i = 0; inp && i < n; |
| 1343 | inp = LIST_NEXT(inp, inp_list)) { |
| 1344 | if (inp->inp_gencnt <= gencnt && |
| 1345 | inp->inp_state != INPCB_STATE_DEAD) { |
| 1346 | inp_list[i++] = inp; |
| 1347 | } |
| 1348 | } |
| 1349 | n = i; |
| 1350 | |
| 1351 | error = 0; |
| 1352 | for (i = 0; i < n; i++) { |
| 1353 | struct xinpcb64 xi; |
| 1354 | |
| 1355 | inp = inp_list[i]; |
| 1356 | |
| 1357 | if (in_pcb_checkstate(inp, WNT_ACQUIRE, 0) == WNT_STOPUSING) { |
| 1358 | continue; |
| 1359 | } |
| 1360 | udp_lock(inp->inp_socket, 1, 0); |
| 1361 | if (in_pcb_checkstate(inp, WNT_RELEASE, 1) == WNT_STOPUSING) { |
| 1362 | udp_unlock(inp->inp_socket, 1, 0); |
| 1363 | continue; |
| 1364 | } |
| 1365 | if (inp->inp_gencnt > gencnt) { |
| 1366 | udp_unlock(inp->inp_socket, 1, 0); |
| 1367 | continue; |
| 1368 | } |
| 1369 | |
| 1370 | bzero(s: &xi, n: sizeof(xi)); |
| 1371 | xi.xi_len = sizeof(xi); |
| 1372 | inpcb_to_xinpcb64(inp, &xi); |
| 1373 | if (inp->inp_socket) { |
| 1374 | sotoxsocket64(so: inp->inp_socket, xso: &xi.xi_socket); |
| 1375 | } |
| 1376 | |
| 1377 | udp_unlock(inp->inp_socket, 1, 0); |
| 1378 | |
| 1379 | error = SYSCTL_OUT(req, &xi, sizeof(xi)); |
| 1380 | } |
| 1381 | if (!error) { |
| 1382 | /* |
| 1383 | * Give the user an updated idea of our state. |
| 1384 | * If the generation differs from what we told |
| 1385 | * her before, she knows that something happened |
| 1386 | * while we were processing this request, and it |
| 1387 | * might be necessary to retry. |
| 1388 | */ |
| 1389 | bzero(s: &xig, n: sizeof(xig)); |
| 1390 | xig.xig_len = sizeof(xig); |
| 1391 | xig.xig_gen = udbinfo.ipi_gencnt; |
| 1392 | xig.xig_sogen = so_gencnt; |
| 1393 | xig.xig_count = udbinfo.ipi_count; |
| 1394 | error = SYSCTL_OUT(req, &xig, sizeof(xig)); |
| 1395 | } |
| 1396 | |
| 1397 | lck_rw_done(lck: &udbinfo.ipi_lock); |
| 1398 | kfree_type(struct inpcb *, sz, inp_list); |
| 1399 | return error; |
| 1400 | } |
| 1401 | |
| 1402 | SYSCTL_PROC(_net_inet_udp, OID_AUTO, pcblist64, |
| 1403 | CTLTYPE_STRUCT | CTLFLAG_RD | CTLFLAG_LOCKED, 0, 0, udp_pcblist64, |
| 1404 | "S,xinpcb64" , "List of active UDP sockets" ); |
| 1405 | |
| 1406 | #endif /* XNU_TARGET_OS_OSX */ |
| 1407 | |
| 1408 | static int |
| 1409 | udp_pcblist_n SYSCTL_HANDLER_ARGS |
| 1410 | { |
| 1411 | #pragma unused(oidp, arg1, arg2) |
| 1412 | return get_pcblist_n(IPPROTO_UDP, req, &udbinfo); |
| 1413 | } |
| 1414 | |
| 1415 | SYSCTL_PROC(_net_inet_udp, OID_AUTO, pcblist_n, |
| 1416 | CTLTYPE_STRUCT | CTLFLAG_RD | CTLFLAG_LOCKED, 0, 0, udp_pcblist_n, |
| 1417 | "S,xinpcb_n" , "List of active UDP sockets" ); |
| 1418 | |
| 1419 | __private_extern__ void |
| 1420 | udp_get_ports_used(ifnet_t ifp, int protocol, uint32_t flags, |
| 1421 | bitstr_t *bitfield) |
| 1422 | { |
| 1423 | inpcb_get_ports_used(ifp, protocol, flags, bitfield, |
| 1424 | &udbinfo); |
| 1425 | } |
| 1426 | |
| 1427 | __private_extern__ uint32_t |
| 1428 | udp_count_opportunistic(unsigned int ifindex, u_int32_t flags) |
| 1429 | { |
| 1430 | return inpcb_count_opportunistic(ifindex, &udbinfo, flags); |
| 1431 | } |
| 1432 | |
| 1433 | __private_extern__ uint32_t |
| 1434 | udp_find_anypcb_byaddr(struct ifaddr *ifa) |
| 1435 | { |
| 1436 | #if SKYWALK |
| 1437 | if (netns_is_enabled()) { |
| 1438 | return netns_find_anyres_byaddr(ifa, IPPROTO_UDP); |
| 1439 | } else |
| 1440 | #endif /* SKYWALK */ |
| 1441 | return inpcb_find_anypcb_byaddr(ifa, &udbinfo); |
| 1442 | } |
| 1443 | |
| 1444 | static int |
| 1445 | udp_check_pktinfo(struct mbuf *control, struct ifnet **outif, |
| 1446 | struct in_addr *laddr) |
| 1447 | { |
| 1448 | struct cmsghdr *cm = 0; |
| 1449 | struct in_pktinfo *pktinfo; |
| 1450 | struct ifnet *ifp; |
| 1451 | |
| 1452 | if (outif != NULL) { |
| 1453 | *outif = NULL; |
| 1454 | } |
| 1455 | |
| 1456 | /* |
| 1457 | * XXX: Currently, we assume all the optional information is stored |
| 1458 | * in a single mbuf. |
| 1459 | */ |
| 1460 | if (control->m_next) { |
| 1461 | return EINVAL; |
| 1462 | } |
| 1463 | |
| 1464 | if (control->m_len < CMSG_LEN(0)) { |
| 1465 | return EINVAL; |
| 1466 | } |
| 1467 | |
| 1468 | for (cm = M_FIRST_CMSGHDR(control); |
| 1469 | is_cmsg_valid(control, cmsg: cm); |
| 1470 | cm = M_NXT_CMSGHDR(control, cm)) { |
| 1471 | if (cm->cmsg_level != IPPROTO_IP || |
| 1472 | cm->cmsg_type != IP_PKTINFO) { |
| 1473 | continue; |
| 1474 | } |
| 1475 | |
| 1476 | if (cm->cmsg_len != CMSG_LEN(sizeof(struct in_pktinfo))) { |
| 1477 | return EINVAL; |
| 1478 | } |
| 1479 | |
| 1480 | pktinfo = (struct in_pktinfo *)(void *)CMSG_DATA(cm); |
| 1481 | |
| 1482 | /* Check for a valid ifindex in pktinfo */ |
| 1483 | ifnet_head_lock_shared(); |
| 1484 | |
| 1485 | if (pktinfo->ipi_ifindex > if_index) { |
| 1486 | ifnet_head_done(); |
| 1487 | return ENXIO; |
| 1488 | } |
| 1489 | |
| 1490 | /* |
| 1491 | * If ipi_ifindex is specified it takes precedence |
| 1492 | * over ipi_spec_dst. |
| 1493 | */ |
| 1494 | if (pktinfo->ipi_ifindex) { |
| 1495 | ifp = ifindex2ifnet[pktinfo->ipi_ifindex]; |
| 1496 | if (ifp == NULL) { |
| 1497 | ifnet_head_done(); |
| 1498 | return ENXIO; |
| 1499 | } |
| 1500 | if (outif != NULL) { |
| 1501 | ifnet_reference(interface: ifp); |
| 1502 | *outif = ifp; |
| 1503 | } |
| 1504 | ifnet_head_done(); |
| 1505 | laddr->s_addr = INADDR_ANY; |
| 1506 | break; |
| 1507 | } |
| 1508 | |
| 1509 | ifnet_head_done(); |
| 1510 | |
| 1511 | /* |
| 1512 | * Use the provided ipi_spec_dst address for temp |
| 1513 | * source address. |
| 1514 | */ |
| 1515 | *laddr = pktinfo->ipi_spec_dst; |
| 1516 | break; |
| 1517 | } |
| 1518 | return 0; |
| 1519 | } |
| 1520 | |
| 1521 | int |
| 1522 | udp_output(struct inpcb *inp, struct mbuf *m, struct sockaddr *addr, |
| 1523 | struct mbuf *control, struct proc *p) |
| 1524 | { |
| 1525 | struct udpiphdr *ui; |
| 1526 | int len = m->m_pkthdr.len; |
| 1527 | struct sockaddr_in *sin; |
| 1528 | struct in_addr origladdr, laddr, faddr, pi_laddr; |
| 1529 | u_short lport, fport; |
| 1530 | int error = 0, udp_dodisconnect = 0, pktinfo = 0; |
| 1531 | struct socket *so = inp->inp_socket; |
| 1532 | int soopts = 0; |
| 1533 | struct mbuf *inpopts; |
| 1534 | struct ip_moptions *mopts; |
| 1535 | struct route ro; |
| 1536 | struct ip_out_args ipoa; |
| 1537 | bool sndinprog_cnt_used = false; |
| 1538 | #if CONTENT_FILTER |
| 1539 | struct m_tag *cfil_tag = NULL; |
| 1540 | bool cfil_faddr_use = false; |
| 1541 | uint32_t cfil_so_state_change_cnt = 0; |
| 1542 | uint32_t cfil_so_options = 0; |
| 1543 | struct sockaddr *cfil_faddr = NULL; |
| 1544 | #endif |
| 1545 | bool check_qos_marking_again = (so->so_flags1 & SOF1_QOSMARKING_POLICY_OVERRIDE) ? FALSE : TRUE; |
| 1546 | |
| 1547 | bzero(s: &ipoa, n: sizeof(ipoa)); |
| 1548 | ipoa.ipoa_boundif = IFSCOPE_NONE; |
| 1549 | ipoa.ipoa_flags = IPOAF_SELECT_SRCIF; |
| 1550 | |
| 1551 | struct ifnet *outif = NULL; |
| 1552 | struct flowadv *adv = &ipoa.ipoa_flowadv; |
| 1553 | int sotc = SO_TC_UNSPEC; |
| 1554 | int netsvctype = _NET_SERVICE_TYPE_UNSPEC; |
| 1555 | struct ifnet *origoutifp = NULL; |
| 1556 | int flowadv = 0; |
| 1557 | int tos = IPTOS_UNSPEC; |
| 1558 | |
| 1559 | /* Enable flow advisory only when connected */ |
| 1560 | flowadv = (so->so_state & SS_ISCONNECTED) ? 1 : 0; |
| 1561 | pi_laddr.s_addr = INADDR_ANY; |
| 1562 | |
| 1563 | KERNEL_DEBUG(DBG_FNC_UDP_OUTPUT | DBG_FUNC_START, 0, 0, 0, 0, 0); |
| 1564 | |
| 1565 | socket_lock_assert_owned(so); |
| 1566 | |
| 1567 | #if CONTENT_FILTER |
| 1568 | /* |
| 1569 | * If socket is subject to UDP Content Filter and no addr is passed in, |
| 1570 | * retrieve CFIL saved state from mbuf and use it if necessary. |
| 1571 | */ |
| 1572 | if (CFIL_DGRAM_FILTERED(so) && !addr) { |
| 1573 | cfil_tag = cfil_dgram_get_socket_state(m, state_change_cnt: &cfil_so_state_change_cnt, options: &cfil_so_options, faddr: &cfil_faddr, NULL); |
| 1574 | if (cfil_tag) { |
| 1575 | sin = SIN(cfil_faddr); |
| 1576 | if (inp && inp->inp_faddr.s_addr == INADDR_ANY) { |
| 1577 | /* |
| 1578 | * Socket is unconnected, simply use the saved faddr as 'addr' to go through |
| 1579 | * the connect/disconnect logic. |
| 1580 | */ |
| 1581 | addr = SA(cfil_faddr); |
| 1582 | } else if ((so->so_state_change_cnt != cfil_so_state_change_cnt) && |
| 1583 | (inp->inp_fport != sin->sin_port || |
| 1584 | inp->inp_faddr.s_addr != sin->sin_addr.s_addr)) { |
| 1585 | /* |
| 1586 | * Socket is connected but socket state and dest addr/port changed. |
| 1587 | * We need to use the saved faddr info. |
| 1588 | */ |
| 1589 | cfil_faddr_use = true; |
| 1590 | } |
| 1591 | } |
| 1592 | } |
| 1593 | #endif |
| 1594 | |
| 1595 | if (control != NULL) { |
| 1596 | tos = so_tos_from_control(control); |
| 1597 | sotc = so_tc_from_control(control, &netsvctype); |
| 1598 | VERIFY(outif == NULL); |
| 1599 | error = udp_check_pktinfo(control, outif: &outif, laddr: &pi_laddr); |
| 1600 | m_freem(control); |
| 1601 | control = NULL; |
| 1602 | if (error) { |
| 1603 | goto release; |
| 1604 | } |
| 1605 | if (outif != NULL) { |
| 1606 | pktinfo++; |
| 1607 | ipoa.ipoa_boundif = outif->if_index; |
| 1608 | } |
| 1609 | } |
| 1610 | if (sotc == SO_TC_UNSPEC) { |
| 1611 | sotc = so->so_traffic_class; |
| 1612 | netsvctype = so->so_netsvctype; |
| 1613 | } |
| 1614 | |
| 1615 | KERNEL_DEBUG(DBG_LAYER_OUT_BEG, inp->inp_fport, inp->inp_lport, |
| 1616 | inp->inp_laddr.s_addr, inp->inp_faddr.s_addr, |
| 1617 | (htons((u_short)len + sizeof(struct udphdr)))); |
| 1618 | |
| 1619 | if (len + sizeof(struct udpiphdr) > IP_MAXPACKET) { |
| 1620 | error = EMSGSIZE; |
| 1621 | goto release; |
| 1622 | } |
| 1623 | |
| 1624 | if (flowadv && INP_WAIT_FOR_IF_FEEDBACK(inp)) { |
| 1625 | /* |
| 1626 | * The socket is flow-controlled, drop the packets |
| 1627 | * until the inp is not flow controlled |
| 1628 | */ |
| 1629 | error = ENOBUFS; |
| 1630 | goto release; |
| 1631 | } |
| 1632 | /* |
| 1633 | * If socket was bound to an ifindex, tell ip_output about it. |
| 1634 | * If the ancillary IP_PKTINFO option contains an interface index, |
| 1635 | * it takes precedence over the one specified by IP_BOUND_IF. |
| 1636 | */ |
| 1637 | if (ipoa.ipoa_boundif == IFSCOPE_NONE && |
| 1638 | (inp->inp_flags & INP_BOUND_IF)) { |
| 1639 | VERIFY(inp->inp_boundifp != NULL); |
| 1640 | ifnet_reference(interface: inp->inp_boundifp); /* for this routine */ |
| 1641 | if (outif != NULL) { |
| 1642 | ifnet_release(interface: outif); |
| 1643 | } |
| 1644 | outif = inp->inp_boundifp; |
| 1645 | ipoa.ipoa_boundif = outif->if_index; |
| 1646 | } |
| 1647 | if (INP_NO_CELLULAR(inp)) { |
| 1648 | ipoa.ipoa_flags |= IPOAF_NO_CELLULAR; |
| 1649 | } |
| 1650 | if (INP_NO_EXPENSIVE(inp)) { |
| 1651 | ipoa.ipoa_flags |= IPOAF_NO_EXPENSIVE; |
| 1652 | } |
| 1653 | if (INP_NO_CONSTRAINED(inp)) { |
| 1654 | ipoa.ipoa_flags |= IPOAF_NO_CONSTRAINED; |
| 1655 | } |
| 1656 | if (INP_AWDL_UNRESTRICTED(inp)) { |
| 1657 | ipoa.ipoa_flags |= IPOAF_AWDL_UNRESTRICTED; |
| 1658 | } |
| 1659 | if (INP_MANAGEMENT_ALLOWED(inp)) { |
| 1660 | ipoa.ipoa_flags |= IPOAF_MANAGEMENT_ALLOWED; |
| 1661 | } |
| 1662 | ipoa.ipoa_sotc = sotc; |
| 1663 | ipoa.ipoa_netsvctype = netsvctype; |
| 1664 | soopts |= IP_OUTARGS; |
| 1665 | |
| 1666 | /* |
| 1667 | * If there was a routing change, discard cached route and check |
| 1668 | * that we have a valid source address. Reacquire a new source |
| 1669 | * address if INADDR_ANY was specified. |
| 1670 | * |
| 1671 | * If we are using cfil saved state, go through this cache cleanup |
| 1672 | * so that we can get a new route. |
| 1673 | */ |
| 1674 | if (ROUTE_UNUSABLE(&inp->inp_route) |
| 1675 | #if CONTENT_FILTER |
| 1676 | || cfil_faddr_use |
| 1677 | #endif |
| 1678 | ) { |
| 1679 | struct in_ifaddr *ia = NULL; |
| 1680 | |
| 1681 | ROUTE_RELEASE(&inp->inp_route); |
| 1682 | |
| 1683 | /* src address is gone? */ |
| 1684 | if (inp->inp_laddr.s_addr != INADDR_ANY && |
| 1685 | (ia = ifa_foraddr(inp->inp_laddr.s_addr)) == NULL) { |
| 1686 | if (!(inp->inp_flags & INP_INADDR_ANY) || |
| 1687 | (so->so_state & SS_ISCONNECTED)) { |
| 1688 | /* |
| 1689 | * Rdar://5448998 |
| 1690 | * If the source address is gone, return an |
| 1691 | * error if: |
| 1692 | * - the source was specified |
| 1693 | * - the socket was already connected |
| 1694 | */ |
| 1695 | soevent(so, hint: (SO_FILT_HINT_LOCKED | |
| 1696 | SO_FILT_HINT_NOSRCADDR)); |
| 1697 | error = EADDRNOTAVAIL; |
| 1698 | goto release; |
| 1699 | } else { |
| 1700 | /* new src will be set later */ |
| 1701 | inp->inp_laddr.s_addr = INADDR_ANY; |
| 1702 | inp->inp_last_outifp = NULL; |
| 1703 | #if SKYWALK |
| 1704 | if (NETNS_TOKEN_VALID(&inp->inp_netns_token)) { |
| 1705 | netns_set_ifnet(token: &inp->inp_netns_token, NULL); |
| 1706 | } |
| 1707 | #endif /* SKYWALK */ |
| 1708 | } |
| 1709 | } |
| 1710 | if (ia != NULL) { |
| 1711 | ifa_remref(ifa: &ia->ia_ifa); |
| 1712 | } |
| 1713 | } |
| 1714 | |
| 1715 | /* |
| 1716 | * IP_PKTINFO option check. If a temporary scope or src address |
| 1717 | * is provided, use it for this packet only and make sure we forget |
| 1718 | * it after sending this datagram. |
| 1719 | */ |
| 1720 | if (pi_laddr.s_addr != INADDR_ANY || |
| 1721 | (ipoa.ipoa_boundif != IFSCOPE_NONE && pktinfo)) { |
| 1722 | /* temp src address for this datagram only */ |
| 1723 | laddr = pi_laddr; |
| 1724 | origladdr.s_addr = INADDR_ANY; |
| 1725 | /* we don't want to keep the laddr or route */ |
| 1726 | udp_dodisconnect = 1; |
| 1727 | /* remember we don't care about src addr */ |
| 1728 | inp->inp_flags |= INP_INADDR_ANY; |
| 1729 | } else { |
| 1730 | origladdr = laddr = inp->inp_laddr; |
| 1731 | } |
| 1732 | |
| 1733 | origoutifp = inp->inp_last_outifp; |
| 1734 | faddr = inp->inp_faddr; |
| 1735 | lport = inp->inp_lport; |
| 1736 | fport = inp->inp_fport; |
| 1737 | |
| 1738 | #if CONTENT_FILTER |
| 1739 | if (cfil_faddr_use) { |
| 1740 | faddr = SIN(cfil_faddr)->sin_addr; |
| 1741 | fport = SIN(cfil_faddr)->sin_port; |
| 1742 | } |
| 1743 | #endif |
| 1744 | inp->inp_sndinprog_cnt++; |
| 1745 | sndinprog_cnt_used = true; |
| 1746 | |
| 1747 | if (addr) { |
| 1748 | sin = SIN(addr); |
| 1749 | if (faddr.s_addr != INADDR_ANY) { |
| 1750 | error = EISCONN; |
| 1751 | goto release; |
| 1752 | } |
| 1753 | if (lport == 0) { |
| 1754 | /* |
| 1755 | * In case we don't have a local port set, go through |
| 1756 | * the full connect. We don't have a local port yet |
| 1757 | * (i.e., we can't be looked up), so it's not an issue |
| 1758 | * if the input runs at the same time we do this. |
| 1759 | */ |
| 1760 | /* if we have a source address specified, use that */ |
| 1761 | if (pi_laddr.s_addr != INADDR_ANY) { |
| 1762 | inp->inp_laddr = pi_laddr; |
| 1763 | } |
| 1764 | /* |
| 1765 | * If a scope is specified, use it. Scope from |
| 1766 | * IP_PKTINFO takes precendence over the the scope |
| 1767 | * set via INP_BOUND_IF. |
| 1768 | */ |
| 1769 | error = in_pcbconnect(inp, addr, p, ipoa.ipoa_boundif, |
| 1770 | &outif); |
| 1771 | if (error) { |
| 1772 | goto release; |
| 1773 | } |
| 1774 | |
| 1775 | laddr = inp->inp_laddr; |
| 1776 | lport = inp->inp_lport; |
| 1777 | faddr = inp->inp_faddr; |
| 1778 | fport = inp->inp_fport; |
| 1779 | udp_dodisconnect = 1; |
| 1780 | |
| 1781 | /* synch up in case in_pcbladdr() overrides */ |
| 1782 | if (outif != NULL && ipoa.ipoa_boundif != IFSCOPE_NONE) { |
| 1783 | ipoa.ipoa_boundif = outif->if_index; |
| 1784 | } |
| 1785 | } else { |
| 1786 | /* |
| 1787 | * Fast path case |
| 1788 | * |
| 1789 | * We have a full address and a local port; use those |
| 1790 | * info to build the packet without changing the pcb |
| 1791 | * and interfering with the input path. See 3851370. |
| 1792 | * |
| 1793 | * Scope from IP_PKTINFO takes precendence over the |
| 1794 | * the scope set via INP_BOUND_IF. |
| 1795 | */ |
| 1796 | if (laddr.s_addr == INADDR_ANY) { |
| 1797 | if ((error = in_pcbladdr(inp, addr, &laddr, |
| 1798 | ipoa.ipoa_boundif, &outif, 0)) != 0) { |
| 1799 | goto release; |
| 1800 | } |
| 1801 | /* |
| 1802 | * from pcbconnect: remember we don't |
| 1803 | * care about src addr. |
| 1804 | */ |
| 1805 | inp->inp_flags |= INP_INADDR_ANY; |
| 1806 | |
| 1807 | /* synch up in case in_pcbladdr() overrides */ |
| 1808 | if (outif != NULL && |
| 1809 | ipoa.ipoa_boundif != IFSCOPE_NONE) { |
| 1810 | ipoa.ipoa_boundif = outif->if_index; |
| 1811 | } |
| 1812 | } |
| 1813 | |
| 1814 | faddr = sin->sin_addr; |
| 1815 | fport = sin->sin_port; |
| 1816 | } |
| 1817 | } else { |
| 1818 | if (faddr.s_addr == INADDR_ANY) { |
| 1819 | error = ENOTCONN; |
| 1820 | goto release; |
| 1821 | } |
| 1822 | } |
| 1823 | |
| 1824 | if (inp->inp_flowhash == 0) { |
| 1825 | inp_calc_flowhash(inp); |
| 1826 | ASSERT(inp->inp_flowhash != 0); |
| 1827 | } |
| 1828 | |
| 1829 | if (fport == htons(53) && !(so->so_flags1 & SOF1_DNS_COUNTED)) { |
| 1830 | so->so_flags1 |= SOF1_DNS_COUNTED; |
| 1831 | INC_ATOMIC_INT64_LIM(net_api_stats.nas_socket_inet_dgram_dns); |
| 1832 | } |
| 1833 | |
| 1834 | /* |
| 1835 | * Calculate data length and get a mbuf |
| 1836 | * for UDP and IP headers. |
| 1837 | */ |
| 1838 | M_PREPEND(m, sizeof(struct udpiphdr), M_DONTWAIT, 1); |
| 1839 | if (m == 0) { |
| 1840 | error = ENOBUFS; |
| 1841 | goto abort; |
| 1842 | } |
| 1843 | |
| 1844 | /* |
| 1845 | * Fill in mbuf with extended UDP header |
| 1846 | * and addresses and length put into network format. |
| 1847 | */ |
| 1848 | ui = mtod(m, struct udpiphdr *); |
| 1849 | bzero(s: ui->ui_x1, n: sizeof(ui->ui_x1)); /* XXX still needed? */ |
| 1850 | ui->ui_pr = IPPROTO_UDP; |
| 1851 | ui->ui_src = laddr; |
| 1852 | ui->ui_dst = faddr; |
| 1853 | ui->ui_sport = lport; |
| 1854 | ui->ui_dport = fport; |
| 1855 | ui->ui_ulen = htons((u_short)len + sizeof(struct udphdr)); |
| 1856 | |
| 1857 | /* |
| 1858 | * Set the Don't Fragment bit in the IP header. |
| 1859 | */ |
| 1860 | if (inp->inp_flags2 & INP2_DONTFRAG) { |
| 1861 | struct ip *ip; |
| 1862 | |
| 1863 | ip = (struct ip *)&ui->ui_i; |
| 1864 | ip->ip_off |= IP_DF; |
| 1865 | } |
| 1866 | |
| 1867 | /* |
| 1868 | * Set up checksum to pseudo header checksum and output datagram. |
| 1869 | * |
| 1870 | * Treat flows to be CLAT46'd as IPv6 flow and compute checksum |
| 1871 | * no matter what, as IPv6 mandates checksum for UDP. |
| 1872 | * |
| 1873 | * Here we only compute the one's complement sum of the pseudo header. |
| 1874 | * The payload computation and final complement is delayed to much later |
| 1875 | * in IP processing to decide if remaining computation needs to be done |
| 1876 | * through offload. |
| 1877 | * |
| 1878 | * That is communicated by setting CSUM_UDP in csum_flags. |
| 1879 | * The offset of checksum from the start of ULP header is communicated |
| 1880 | * through csum_data. |
| 1881 | * |
| 1882 | * Note since this already contains the pseudo checksum header, any |
| 1883 | * later operation at IP layer that modify the values used here must |
| 1884 | * update the checksum as well (for example NAT etc). |
| 1885 | */ |
| 1886 | if ((inp->inp_flags2 & INP2_CLAT46_FLOW) || |
| 1887 | (udpcksum && !(inp->inp_flags & INP_UDP_NOCKSUM))) { |
| 1888 | ui->ui_sum = in_pseudo(ui->ui_src.s_addr, ui->ui_dst.s_addr, |
| 1889 | htons((u_short)len + sizeof(struct udphdr) + IPPROTO_UDP)); |
| 1890 | m->m_pkthdr.csum_flags = (CSUM_UDP | CSUM_ZERO_INVERT); |
| 1891 | m->m_pkthdr.csum_data = offsetof(struct udphdr, uh_sum); |
| 1892 | } else { |
| 1893 | ui->ui_sum = 0; |
| 1894 | } |
| 1895 | ((struct ip *)ui)->ip_len = (uint16_t)(sizeof(struct udpiphdr) + len); |
| 1896 | ((struct ip *)ui)->ip_ttl = inp->inp_ip_ttl; /* XXX */ |
| 1897 | if (tos != IPTOS_UNSPEC) { |
| 1898 | ((struct ip *)ui)->ip_tos = (uint8_t)(tos & IPTOS_MASK); |
| 1899 | } else { |
| 1900 | ((struct ip *)ui)->ip_tos = inp->inp_ip_tos; /* XXX */ |
| 1901 | } |
| 1902 | udpstat.udps_opackets++; |
| 1903 | |
| 1904 | KERNEL_DEBUG(DBG_LAYER_OUT_END, ui->ui_dport, ui->ui_sport, |
| 1905 | ui->ui_src.s_addr, ui->ui_dst.s_addr, ui->ui_ulen); |
| 1906 | |
| 1907 | #if NECP |
| 1908 | { |
| 1909 | necp_kernel_policy_id policy_id; |
| 1910 | necp_kernel_policy_id skip_policy_id; |
| 1911 | u_int32_t route_rule_id; |
| 1912 | u_int32_t pass_flags; |
| 1913 | |
| 1914 | /* |
| 1915 | * We need a route to perform NECP route rule checks |
| 1916 | */ |
| 1917 | if (net_qos_policy_restricted != 0 && |
| 1918 | ROUTE_UNUSABLE(&inp->inp_route)) { |
| 1919 | struct sockaddr_in to; |
| 1920 | struct sockaddr_in from; |
| 1921 | |
| 1922 | ROUTE_RELEASE(&inp->inp_route); |
| 1923 | |
| 1924 | SOCKADDR_ZERO(&from, sizeof(struct sockaddr_in)); |
| 1925 | from.sin_family = AF_INET; |
| 1926 | from.sin_len = sizeof(struct sockaddr_in); |
| 1927 | from.sin_addr = laddr; |
| 1928 | |
| 1929 | SOCKADDR_ZERO(&to, sizeof(struct sockaddr_in)); |
| 1930 | to.sin_family = AF_INET; |
| 1931 | to.sin_len = sizeof(struct sockaddr_in); |
| 1932 | to.sin_addr = faddr; |
| 1933 | |
| 1934 | inp->inp_route.ro_dst.sa_family = AF_INET; |
| 1935 | inp->inp_route.ro_dst.sa_len = sizeof(struct sockaddr_in); |
| 1936 | SIN(&inp->inp_route.ro_dst)->sin_addr = faddr; |
| 1937 | |
| 1938 | rtalloc_scoped(&inp->inp_route, ipoa.ipoa_boundif); |
| 1939 | |
| 1940 | inp_update_necp_policy(inp, SA(&from), |
| 1941 | SA(&to), ipoa.ipoa_boundif); |
| 1942 | inp->inp_policyresult.results.qos_marking_gencount = 0; |
| 1943 | } |
| 1944 | |
| 1945 | if (!necp_socket_is_allowed_to_send_recv_v4(inp, local_port: lport, remote_port: fport, |
| 1946 | local_addr: &laddr, remote_addr: &faddr, NULL, pf_tag: 0, return_policy_id: &policy_id, return_route_rule_id: &route_rule_id, return_skip_policy_id: &skip_policy_id, return_pass_flags: &pass_flags)) { |
| 1947 | error = EHOSTUNREACH; |
| 1948 | goto abort; |
| 1949 | } |
| 1950 | |
| 1951 | necp_mark_packet_from_socket(packet: m, inp, policy_id, route_rule_id, skip_policy_id, pass_flags); |
| 1952 | |
| 1953 | if (net_qos_policy_restricted != 0) { |
| 1954 | necp_socket_update_qos_marking(inp, route: inp->inp_route.ro_rt, route_rule_id); |
| 1955 | } |
| 1956 | } |
| 1957 | #endif /* NECP */ |
| 1958 | if ((so->so_flags1 & SOF1_QOSMARKING_ALLOWED)) { |
| 1959 | ipoa.ipoa_flags |= IPOAF_QOSMARKING_ALLOWED; |
| 1960 | } |
| 1961 | if (check_qos_marking_again) { |
| 1962 | ipoa.ipoa_flags |= IPOAF_REDO_QOSMARKING_POLICY; |
| 1963 | } |
| 1964 | ipoa.qos_marking_gencount = inp->inp_policyresult.results.qos_marking_gencount; |
| 1965 | |
| 1966 | #if IPSEC |
| 1967 | if (inp->inp_sp != NULL && ipsec_setsocket(m, inp->inp_socket) != 0) { |
| 1968 | error = ENOBUFS; |
| 1969 | goto abort; |
| 1970 | } |
| 1971 | #endif /* IPSEC */ |
| 1972 | |
| 1973 | inpopts = inp->inp_options; |
| 1974 | #if CONTENT_FILTER |
| 1975 | if (cfil_tag && (inp->inp_socket->so_options != cfil_so_options)) { |
| 1976 | soopts |= (cfil_so_options & (SO_DONTROUTE | SO_BROADCAST)); |
| 1977 | } else |
| 1978 | #endif |
| 1979 | soopts |= (inp->inp_socket->so_options & (SO_DONTROUTE | SO_BROADCAST)); |
| 1980 | |
| 1981 | mopts = inp->inp_moptions; |
| 1982 | if (mopts != NULL) { |
| 1983 | IMO_LOCK(mopts); |
| 1984 | IMO_ADDREF_LOCKED(mopts); |
| 1985 | if (IN_MULTICAST(ntohl(ui->ui_dst.s_addr)) && |
| 1986 | mopts->imo_multicast_ifp != NULL) { |
| 1987 | /* no reference needed */ |
| 1988 | inp->inp_last_outifp = mopts->imo_multicast_ifp; |
| 1989 | #if SKYWALK |
| 1990 | if (NETNS_TOKEN_VALID(&inp->inp_netns_token)) { |
| 1991 | netns_set_ifnet(token: &inp->inp_netns_token, |
| 1992 | ifp: inp->inp_last_outifp); |
| 1993 | } |
| 1994 | #endif /* SKYWALK */ |
| 1995 | } |
| 1996 | IMO_UNLOCK(mopts); |
| 1997 | } |
| 1998 | |
| 1999 | /* Copy the cached route and take an extra reference */ |
| 2000 | inp_route_copyout(inp, &ro); |
| 2001 | |
| 2002 | set_packet_service_class(m, so, sotc, 0); |
| 2003 | m->m_pkthdr.pkt_flowsrc = FLOWSRC_INPCB; |
| 2004 | m->m_pkthdr.pkt_flowid = inp->inp_flowhash; |
| 2005 | m->m_pkthdr.pkt_proto = IPPROTO_UDP; |
| 2006 | m->m_pkthdr.pkt_flags |= (PKTF_FLOW_ID | PKTF_FLOW_LOCALSRC); |
| 2007 | if (flowadv) { |
| 2008 | m->m_pkthdr.pkt_flags |= PKTF_FLOW_ADV; |
| 2009 | } |
| 2010 | m->m_pkthdr.tx_udp_pid = so->last_pid; |
| 2011 | if (so->so_flags & SOF_DELEGATED) { |
| 2012 | m->m_pkthdr.tx_udp_e_pid = so->e_pid; |
| 2013 | } else { |
| 2014 | m->m_pkthdr.tx_udp_e_pid = 0; |
| 2015 | } |
| 2016 | #if (DEBUG || DEVELOPMENT) |
| 2017 | if (so->so_flags & SOF_MARK_WAKE_PKT) { |
| 2018 | so->so_flags &= ~SOF_MARK_WAKE_PKT; |
| 2019 | m->m_pkthdr.pkt_flags |= PKTF_WAKE_PKT; |
| 2020 | } |
| 2021 | #endif /* (DEBUG || DEVELOPMENT) */ |
| 2022 | |
| 2023 | m_add_crumb(m, PKT_CRUMB_UDP_OUTPUT); |
| 2024 | |
| 2025 | if (ipoa.ipoa_boundif != IFSCOPE_NONE) { |
| 2026 | ipoa.ipoa_flags |= IPOAF_BOUND_IF; |
| 2027 | } |
| 2028 | |
| 2029 | if (laddr.s_addr != INADDR_ANY) { |
| 2030 | ipoa.ipoa_flags |= IPOAF_BOUND_SRCADDR; |
| 2031 | } |
| 2032 | |
| 2033 | socket_unlock(so, refcount: 0); |
| 2034 | error = ip_output(m, inpopts, &ro, soopts, mopts, &ipoa); |
| 2035 | m = NULL; |
| 2036 | socket_lock(so, refcount: 0); |
| 2037 | if (mopts != NULL) { |
| 2038 | IMO_REMREF(mopts); |
| 2039 | } |
| 2040 | |
| 2041 | if (check_qos_marking_again) { |
| 2042 | inp->inp_policyresult.results.qos_marking_gencount = ipoa.qos_marking_gencount; |
| 2043 | |
| 2044 | if (ipoa.ipoa_flags & IPOAF_QOSMARKING_ALLOWED) { |
| 2045 | inp->inp_socket->so_flags1 |= SOF1_QOSMARKING_ALLOWED; |
| 2046 | } else { |
| 2047 | inp->inp_socket->so_flags1 &= ~SOF1_QOSMARKING_ALLOWED; |
| 2048 | } |
| 2049 | } |
| 2050 | |
| 2051 | if (error == 0 && nstat_collect) { |
| 2052 | boolean_t cell, wifi, wired; |
| 2053 | |
| 2054 | if (ro.ro_rt != NULL) { |
| 2055 | cell = IFNET_IS_CELLULAR(ro.ro_rt->rt_ifp); |
| 2056 | wifi = (!cell && IFNET_IS_WIFI(ro.ro_rt->rt_ifp)); |
| 2057 | wired = (!wifi && IFNET_IS_WIRED(ro.ro_rt->rt_ifp)); |
| 2058 | } else { |
| 2059 | cell = wifi = wired = FALSE; |
| 2060 | } |
| 2061 | INP_ADD_STAT(inp, cell, wifi, wired, txpackets, 1); |
| 2062 | INP_ADD_STAT(inp, cell, wifi, wired, txbytes, len); |
| 2063 | inp_set_activity_bitmap(inp); |
| 2064 | } |
| 2065 | |
| 2066 | if (flowadv && (adv->code == FADV_FLOW_CONTROLLED || |
| 2067 | adv->code == FADV_SUSPENDED)) { |
| 2068 | /* |
| 2069 | * return a hint to the application that |
| 2070 | * the packet has been dropped |
| 2071 | */ |
| 2072 | error = ENOBUFS; |
| 2073 | inp_set_fc_state(inp, advcode: adv->code); |
| 2074 | } |
| 2075 | |
| 2076 | /* Synchronize PCB cached route */ |
| 2077 | inp_route_copyin(inp, &ro); |
| 2078 | |
| 2079 | if (inp->inp_route.ro_rt != NULL) { |
| 2080 | if (IS_LOCALNET_ROUTE(inp->inp_route.ro_rt)) { |
| 2081 | inp->inp_flags2 |= INP2_LAST_ROUTE_LOCAL; |
| 2082 | } else { |
| 2083 | inp->inp_flags2 &= ~INP2_LAST_ROUTE_LOCAL; |
| 2084 | } |
| 2085 | } |
| 2086 | |
| 2087 | abort: |
| 2088 | if (udp_dodisconnect) { |
| 2089 | /* Always discard the cached route for unconnected socket */ |
| 2090 | ROUTE_RELEASE(&inp->inp_route); |
| 2091 | in_pcbdisconnect(inp); |
| 2092 | inp->inp_laddr = origladdr; /* XXX rehash? */ |
| 2093 | /* no reference needed */ |
| 2094 | inp->inp_last_outifp = origoutifp; |
| 2095 | #if SKYWALK |
| 2096 | if (NETNS_TOKEN_VALID(&inp->inp_netns_token)) { |
| 2097 | netns_set_ifnet(token: &inp->inp_netns_token, |
| 2098 | ifp: inp->inp_last_outifp); |
| 2099 | } |
| 2100 | #endif /* SKYWALK */ |
| 2101 | } else if (inp->inp_route.ro_rt != NULL) { |
| 2102 | struct rtentry *rt = inp->inp_route.ro_rt; |
| 2103 | struct ifnet *outifp; |
| 2104 | |
| 2105 | if (rt->rt_flags & (RTF_MULTICAST | RTF_BROADCAST)) { |
| 2106 | rt = NULL; /* unusable */ |
| 2107 | } |
| 2108 | #if CONTENT_FILTER |
| 2109 | /* |
| 2110 | * Discard temporary route for cfil case |
| 2111 | */ |
| 2112 | if (cfil_faddr_use) { |
| 2113 | rt = NULL; /* unusable */ |
| 2114 | } |
| 2115 | #endif |
| 2116 | |
| 2117 | /* |
| 2118 | * Always discard if it is a multicast or broadcast route. |
| 2119 | */ |
| 2120 | if (rt == NULL) { |
| 2121 | ROUTE_RELEASE(&inp->inp_route); |
| 2122 | } |
| 2123 | |
| 2124 | /* |
| 2125 | * If the destination route is unicast, update outifp with |
| 2126 | * that of the route interface used by IP. |
| 2127 | */ |
| 2128 | if (rt != NULL && |
| 2129 | (outifp = rt->rt_ifp) != inp->inp_last_outifp) { |
| 2130 | inp->inp_last_outifp = outifp; /* no reference needed */ |
| 2131 | #if SKYWALK |
| 2132 | if (NETNS_TOKEN_VALID(&inp->inp_netns_token)) { |
| 2133 | netns_set_ifnet(token: &inp->inp_netns_token, |
| 2134 | ifp: inp->inp_last_outifp); |
| 2135 | } |
| 2136 | #endif /* SKYWALK */ |
| 2137 | |
| 2138 | so->so_pktheadroom = (uint16_t)P2ROUNDUP( |
| 2139 | sizeof(struct udphdr) + |
| 2140 | sizeof(struct ip) + |
| 2141 | ifnet_hdrlen(outifp) + |
| 2142 | ifnet_mbuf_packetpreamblelen(outifp), |
| 2143 | sizeof(u_int32_t)); |
| 2144 | } |
| 2145 | } else { |
| 2146 | ROUTE_RELEASE(&inp->inp_route); |
| 2147 | } |
| 2148 | |
| 2149 | /* |
| 2150 | * If output interface was cellular/expensive, and this socket is |
| 2151 | * denied access to it, generate an event. |
| 2152 | */ |
| 2153 | if (error != 0 && (ipoa.ipoa_flags & IPOAF_R_IFDENIED) && |
| 2154 | (INP_NO_CELLULAR(inp) || INP_NO_EXPENSIVE(inp) || INP_NO_CONSTRAINED(inp))) { |
| 2155 | soevent(so, hint: (SO_FILT_HINT_LOCKED | SO_FILT_HINT_IFDENIED)); |
| 2156 | } |
| 2157 | |
| 2158 | release: |
| 2159 | KERNEL_DEBUG(DBG_FNC_UDP_OUTPUT | DBG_FUNC_END, error, 0, 0, 0, 0); |
| 2160 | |
| 2161 | if (m != NULL) { |
| 2162 | m_freem(m); |
| 2163 | } |
| 2164 | |
| 2165 | if (outif != NULL) { |
| 2166 | ifnet_release(interface: outif); |
| 2167 | } |
| 2168 | |
| 2169 | #if CONTENT_FILTER |
| 2170 | if (cfil_tag) { |
| 2171 | m_tag_free(cfil_tag); |
| 2172 | } |
| 2173 | #endif |
| 2174 | if (sndinprog_cnt_used) { |
| 2175 | VERIFY(inp->inp_sndinprog_cnt > 0); |
| 2176 | if (--inp->inp_sndinprog_cnt == 0) { |
| 2177 | inp->inp_flags &= ~(INP_FC_FEEDBACK); |
| 2178 | if (inp->inp_sndingprog_waiters > 0) { |
| 2179 | wakeup(chan: &inp->inp_sndinprog_cnt); |
| 2180 | } |
| 2181 | } |
| 2182 | sndinprog_cnt_used = false; |
| 2183 | } |
| 2184 | |
| 2185 | return error; |
| 2186 | } |
| 2187 | |
| 2188 | u_int32_t udp_sendspace = 9216; /* really max datagram size */ |
| 2189 | /* 187 1K datagrams (approx 192 KB) */ |
| 2190 | u_int32_t udp_recvspace = 187 * (1024 + sizeof(struct sockaddr_in6)); |
| 2191 | |
| 2192 | /* Check that the values of udp send and recv space do not exceed sb_max */ |
| 2193 | static int |
| 2194 | sysctl_udp_sospace(struct sysctl_oid *oidp, void *arg1, int arg2, |
| 2195 | struct sysctl_req *req) |
| 2196 | { |
| 2197 | #pragma unused(arg1, arg2) |
| 2198 | u_int32_t new_value = 0, *space_p = NULL; |
| 2199 | int changed = 0, error = 0; |
| 2200 | |
| 2201 | switch (oidp->oid_number) { |
| 2202 | case UDPCTL_RECVSPACE: |
| 2203 | space_p = &udp_recvspace; |
| 2204 | break; |
| 2205 | case UDPCTL_MAXDGRAM: |
| 2206 | space_p = &udp_sendspace; |
| 2207 | break; |
| 2208 | default: |
| 2209 | return EINVAL; |
| 2210 | } |
| 2211 | error = sysctl_io_number(req, bigValue: *space_p, valueSize: sizeof(u_int32_t), |
| 2212 | pValue: &new_value, changed: &changed); |
| 2213 | if (changed) { |
| 2214 | if (new_value > 0 && new_value <= sb_max) { |
| 2215 | *space_p = new_value; |
| 2216 | } else { |
| 2217 | error = ERANGE; |
| 2218 | } |
| 2219 | } |
| 2220 | return error; |
| 2221 | } |
| 2222 | |
| 2223 | SYSCTL_PROC(_net_inet_udp, UDPCTL_RECVSPACE, recvspace, |
| 2224 | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED, &udp_recvspace, 0, |
| 2225 | &sysctl_udp_sospace, "IU" , "Maximum incoming UDP datagram size" ); |
| 2226 | |
| 2227 | SYSCTL_PROC(_net_inet_udp, UDPCTL_MAXDGRAM, maxdgram, |
| 2228 | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED, &udp_sendspace, 0, |
| 2229 | &sysctl_udp_sospace, "IU" , "Maximum outgoing UDP datagram size" ); |
| 2230 | |
| 2231 | int |
| 2232 | udp_abort(struct socket *so) |
| 2233 | { |
| 2234 | struct inpcb *inp; |
| 2235 | |
| 2236 | inp = sotoinpcb(so); |
| 2237 | if (inp == NULL) { |
| 2238 | panic("%s: so=%p null inp" , __func__, so); |
| 2239 | /* NOTREACHED */ |
| 2240 | } |
| 2241 | soisdisconnected(so); |
| 2242 | in_pcbdetach(inp); |
| 2243 | return 0; |
| 2244 | } |
| 2245 | |
| 2246 | int |
| 2247 | udp_attach(struct socket *so, int proto, struct proc *p) |
| 2248 | { |
| 2249 | #pragma unused(proto) |
| 2250 | struct inpcb *inp; |
| 2251 | int error; |
| 2252 | |
| 2253 | error = soreserve(so, sndcc: udp_sendspace, rcvcc: udp_recvspace); |
| 2254 | if (error != 0) { |
| 2255 | return error; |
| 2256 | } |
| 2257 | inp = sotoinpcb(so); |
| 2258 | if (inp != NULL) { |
| 2259 | panic("%s so=%p inp=%p" , __func__, so, inp); |
| 2260 | /* NOTREACHED */ |
| 2261 | } |
| 2262 | error = in_pcballoc(so, &udbinfo, p); |
| 2263 | if (error != 0) { |
| 2264 | return error; |
| 2265 | } |
| 2266 | inp = (struct inpcb *)so->so_pcb; |
| 2267 | inp->inp_vflag |= INP_IPV4; |
| 2268 | inp->inp_ip_ttl = (uint8_t)ip_defttl; |
| 2269 | if (nstat_collect) { |
| 2270 | nstat_udp_new_pcb(inp); |
| 2271 | } |
| 2272 | return 0; |
| 2273 | } |
| 2274 | |
| 2275 | int |
| 2276 | udp_bind(struct socket *so, struct sockaddr *nam, struct proc *p) |
| 2277 | { |
| 2278 | struct inpcb *inp; |
| 2279 | int error; |
| 2280 | |
| 2281 | if (nam->sa_family != 0 && nam->sa_family != AF_INET && |
| 2282 | nam->sa_family != AF_INET6) { |
| 2283 | return EAFNOSUPPORT; |
| 2284 | } |
| 2285 | |
| 2286 | inp = sotoinpcb(so); |
| 2287 | if (inp == NULL) { |
| 2288 | return EINVAL; |
| 2289 | } |
| 2290 | error = in_pcbbind(inp, nam, p); |
| 2291 | |
| 2292 | #if NECP |
| 2293 | /* Update NECP client with bind result if not in middle of connect */ |
| 2294 | if (error == 0 && |
| 2295 | (inp->inp_flags2 & INP2_CONNECT_IN_PROGRESS) && |
| 2296 | !uuid_is_null(uu: inp->necp_client_uuid)) { |
| 2297 | socket_unlock(so, refcount: 0); |
| 2298 | necp_client_assign_from_socket(pid: so->last_pid, client_id: inp->necp_client_uuid, inp); |
| 2299 | socket_lock(so, refcount: 0); |
| 2300 | } |
| 2301 | #endif /* NECP */ |
| 2302 | |
| 2303 | UDP_LOG_BIND(inp, error); |
| 2304 | |
| 2305 | return error; |
| 2306 | } |
| 2307 | |
| 2308 | int |
| 2309 | udp_connect(struct socket *so, struct sockaddr *nam, struct proc *p) |
| 2310 | { |
| 2311 | struct inpcb *inp; |
| 2312 | int error; |
| 2313 | |
| 2314 | inp = sotoinpcb(so); |
| 2315 | if (inp == NULL) { |
| 2316 | return EINVAL; |
| 2317 | } |
| 2318 | if (inp->inp_faddr.s_addr != INADDR_ANY) { |
| 2319 | return EISCONN; |
| 2320 | } |
| 2321 | |
| 2322 | if (!(so->so_flags1 & SOF1_CONNECT_COUNTED)) { |
| 2323 | so->so_flags1 |= SOF1_CONNECT_COUNTED; |
| 2324 | INC_ATOMIC_INT64_LIM(net_api_stats.nas_socket_inet_dgram_connected); |
| 2325 | } |
| 2326 | |
| 2327 | #if NECP |
| 2328 | #if FLOW_DIVERT |
| 2329 | if (necp_socket_should_use_flow_divert(inp)) { |
| 2330 | error = flow_divert_pcb_init(so); |
| 2331 | if (error == 0) { |
| 2332 | error = flow_divert_connect_out(so, to: nam, p); |
| 2333 | } |
| 2334 | UDP_LOG_CONNECT(inp, error); |
| 2335 | return error; |
| 2336 | } else { |
| 2337 | so->so_flags1 |= SOF1_FLOW_DIVERT_SKIP; |
| 2338 | } |
| 2339 | #endif /* FLOW_DIVERT */ |
| 2340 | #endif /* NECP */ |
| 2341 | |
| 2342 | error = in_pcbconnect(inp, nam, p, IFSCOPE_NONE, NULL); |
| 2343 | if (error == 0) { |
| 2344 | #if NECP |
| 2345 | /* Update NECP client with connected five-tuple */ |
| 2346 | if (!uuid_is_null(uu: inp->necp_client_uuid)) { |
| 2347 | socket_unlock(so, refcount: 0); |
| 2348 | necp_client_assign_from_socket(pid: so->last_pid, client_id: inp->necp_client_uuid, inp); |
| 2349 | socket_lock(so, refcount: 0); |
| 2350 | } |
| 2351 | #endif /* NECP */ |
| 2352 | |
| 2353 | soisconnected(so); |
| 2354 | if (inp->inp_flowhash == 0) { |
| 2355 | inp_calc_flowhash(inp); |
| 2356 | ASSERT(inp->inp_flowhash != 0); |
| 2357 | } |
| 2358 | inp->inp_connect_timestamp = mach_continuous_time(); |
| 2359 | } |
| 2360 | UDP_LOG_CONNECT(inp, error); |
| 2361 | return error; |
| 2362 | } |
| 2363 | |
| 2364 | int |
| 2365 | udp_connectx_common(struct socket *so, int af, struct sockaddr *src, struct sockaddr *dst, |
| 2366 | struct proc *p, uint32_t ifscope, sae_associd_t aid, sae_connid_t *pcid, |
| 2367 | uint32_t flags, void *arg, uint32_t arglen, |
| 2368 | struct uio *uio, user_ssize_t *bytes_written) |
| 2369 | { |
| 2370 | #pragma unused(aid, flags, arg, arglen) |
| 2371 | struct inpcb *inp = sotoinpcb(so); |
| 2372 | int error = 0; |
| 2373 | user_ssize_t datalen = 0; |
| 2374 | |
| 2375 | if (inp == NULL) { |
| 2376 | return EINVAL; |
| 2377 | } |
| 2378 | |
| 2379 | VERIFY(dst != NULL); |
| 2380 | |
| 2381 | ASSERT(!(inp->inp_flags2 & INP2_CONNECT_IN_PROGRESS)); |
| 2382 | inp->inp_flags2 |= INP2_CONNECT_IN_PROGRESS; |
| 2383 | |
| 2384 | #if NECP |
| 2385 | inp_update_necp_policy(inp, src, dst, ifscope); |
| 2386 | #endif /* NECP */ |
| 2387 | |
| 2388 | /* bind socket to the specified interface, if requested */ |
| 2389 | if (ifscope != IFSCOPE_NONE && |
| 2390 | (error = inp_bindif(inp, ifscope, NULL)) != 0) { |
| 2391 | goto done; |
| 2392 | } |
| 2393 | |
| 2394 | /* if source address and/or port is specified, bind to it */ |
| 2395 | if (src != NULL) { |
| 2396 | error = sobindlock(so, nam: src, dolock: 0); /* already locked */ |
| 2397 | if (error != 0) { |
| 2398 | goto done; |
| 2399 | } |
| 2400 | } |
| 2401 | |
| 2402 | switch (af) { |
| 2403 | case AF_INET: |
| 2404 | error = udp_connect(so, nam: dst, p); |
| 2405 | break; |
| 2406 | case AF_INET6: |
| 2407 | error = udp6_connect(so, dst, p); |
| 2408 | break; |
| 2409 | default: |
| 2410 | VERIFY(0); |
| 2411 | /* NOTREACHED */ |
| 2412 | } |
| 2413 | |
| 2414 | if (error != 0) { |
| 2415 | goto done; |
| 2416 | } |
| 2417 | |
| 2418 | /* |
| 2419 | * If there is data, copy it. DATA_IDEMPOTENT is ignored. |
| 2420 | * CONNECT_RESUME_ON_READ_WRITE is ignored. |
| 2421 | */ |
| 2422 | if (uio != NULL) { |
| 2423 | socket_unlock(so, refcount: 0); |
| 2424 | |
| 2425 | VERIFY(bytes_written != NULL); |
| 2426 | |
| 2427 | datalen = uio_resid(a_uio: uio); |
| 2428 | error = so->so_proto->pr_usrreqs->pru_sosend(so, NULL, |
| 2429 | (uio_t)uio, NULL, NULL, 0); |
| 2430 | socket_lock(so, refcount: 0); |
| 2431 | |
| 2432 | /* If error returned is EMSGSIZE, for example, disconnect */ |
| 2433 | if (error == 0 || error == EWOULDBLOCK) { |
| 2434 | *bytes_written = datalen - uio_resid(a_uio: uio); |
| 2435 | } else { |
| 2436 | (void) so->so_proto->pr_usrreqs->pru_disconnectx(so, |
| 2437 | SAE_ASSOCID_ANY, SAE_CONNID_ANY); |
| 2438 | } |
| 2439 | /* |
| 2440 | * mask the EWOULDBLOCK error so that the caller |
| 2441 | * knows that atleast the connect was successful. |
| 2442 | */ |
| 2443 | if (error == EWOULDBLOCK) { |
| 2444 | error = 0; |
| 2445 | } |
| 2446 | } |
| 2447 | |
| 2448 | if (error == 0 && pcid != NULL) { |
| 2449 | *pcid = 1; /* there is only 1 connection for UDP */ |
| 2450 | } |
| 2451 | done: |
| 2452 | inp->inp_flags2 &= ~INP2_CONNECT_IN_PROGRESS; |
| 2453 | return error; |
| 2454 | } |
| 2455 | |
| 2456 | int |
| 2457 | udp_connectx(struct socket *so, struct sockaddr *src, |
| 2458 | struct sockaddr *dst, struct proc *p, uint32_t ifscope, |
| 2459 | sae_associd_t aid, sae_connid_t *pcid, uint32_t flags, void *arg, |
| 2460 | uint32_t arglen, struct uio *uio, user_ssize_t *bytes_written) |
| 2461 | { |
| 2462 | return udp_connectx_common(so, AF_INET, src, dst, |
| 2463 | p, ifscope, aid, pcid, flags, arg, arglen, uio, bytes_written); |
| 2464 | } |
| 2465 | |
| 2466 | int |
| 2467 | udp_detach(struct socket *so) |
| 2468 | { |
| 2469 | struct inpcb *inp; |
| 2470 | |
| 2471 | inp = sotoinpcb(so); |
| 2472 | if (inp == NULL) { |
| 2473 | panic("%s: so=%p null inp" , __func__, so); |
| 2474 | /* NOTREACHED */ |
| 2475 | } |
| 2476 | |
| 2477 | /* |
| 2478 | * If this is a socket that does not want to wakeup the device |
| 2479 | * for it's traffic, the application might be waiting for |
| 2480 | * close to complete before going to sleep. Send a notification |
| 2481 | * for this kind of sockets |
| 2482 | */ |
| 2483 | if (so->so_options & SO_NOWAKEFROMSLEEP) { |
| 2484 | socket_post_kev_msg_closed(so); |
| 2485 | } |
| 2486 | |
| 2487 | UDP_LOG_CONNECTION_SUMMARY(inp); |
| 2488 | |
| 2489 | in_pcbdetach(inp); |
| 2490 | inp->inp_state = INPCB_STATE_DEAD; |
| 2491 | return 0; |
| 2492 | } |
| 2493 | |
| 2494 | int |
| 2495 | udp_disconnect(struct socket *so) |
| 2496 | { |
| 2497 | struct inpcb *inp; |
| 2498 | |
| 2499 | inp = sotoinpcb(so); |
| 2500 | if (inp == NULL) { |
| 2501 | return EINVAL; |
| 2502 | } |
| 2503 | if (inp->inp_faddr.s_addr == INADDR_ANY) { |
| 2504 | return ENOTCONN; |
| 2505 | } |
| 2506 | |
| 2507 | UDP_LOG_CONNECTION_SUMMARY(inp); |
| 2508 | |
| 2509 | in_pcbdisconnect(inp); |
| 2510 | |
| 2511 | /* reset flow controlled state, just in case */ |
| 2512 | inp_reset_fc_state(inp); |
| 2513 | |
| 2514 | inp->inp_laddr.s_addr = INADDR_ANY; |
| 2515 | so->so_state &= ~SS_ISCONNECTED; /* XXX */ |
| 2516 | inp->inp_last_outifp = NULL; |
| 2517 | #if SKYWALK |
| 2518 | if (NETNS_TOKEN_VALID(&inp->inp_netns_token)) { |
| 2519 | netns_set_ifnet(token: &inp->inp_netns_token, NULL); |
| 2520 | } |
| 2521 | #endif /* SKYWALK */ |
| 2522 | |
| 2523 | return 0; |
| 2524 | } |
| 2525 | |
| 2526 | int |
| 2527 | udp_disconnectx(struct socket *so, sae_associd_t aid, sae_connid_t cid) |
| 2528 | { |
| 2529 | #pragma unused(cid) |
| 2530 | if (aid != SAE_ASSOCID_ANY && aid != SAE_ASSOCID_ALL) { |
| 2531 | return EINVAL; |
| 2532 | } |
| 2533 | |
| 2534 | return udp_disconnect(so); |
| 2535 | } |
| 2536 | |
| 2537 | int |
| 2538 | udp_send(struct socket *so, int flags, struct mbuf *m, |
| 2539 | struct sockaddr *addr, struct mbuf *control, struct proc *p) |
| 2540 | { |
| 2541 | #ifndef FLOW_DIVERT |
| 2542 | #pragma unused(flags) |
| 2543 | #endif /* !(FLOW_DIVERT) */ |
| 2544 | struct inpcb *inp; |
| 2545 | int error; |
| 2546 | |
| 2547 | inp = sotoinpcb(so); |
| 2548 | if (inp == NULL) { |
| 2549 | if (m != NULL) { |
| 2550 | m_freem(m); |
| 2551 | } |
| 2552 | if (control != NULL) { |
| 2553 | m_freem(control); |
| 2554 | } |
| 2555 | return EINVAL; |
| 2556 | } |
| 2557 | |
| 2558 | #if NECP |
| 2559 | #if FLOW_DIVERT |
| 2560 | if (necp_socket_should_use_flow_divert(inp)) { |
| 2561 | /* Implicit connect */ |
| 2562 | return flow_divert_implicit_data_out(so, flags, data: m, to: addr, |
| 2563 | control, p); |
| 2564 | } else { |
| 2565 | so->so_flags1 |= SOF1_FLOW_DIVERT_SKIP; |
| 2566 | } |
| 2567 | #endif /* FLOW_DIVERT */ |
| 2568 | #endif /* NECP */ |
| 2569 | |
| 2570 | #if SKYWALK |
| 2571 | sk_protect_t protect = sk_async_transmit_protect(); |
| 2572 | #endif /* SKYWALK */ |
| 2573 | error = udp_output(inp, m, addr, control, p); |
| 2574 | #if SKYWALK |
| 2575 | sk_async_transmit_unprotect(protect); |
| 2576 | #endif /* SKYWALK */ |
| 2577 | |
| 2578 | return error; |
| 2579 | } |
| 2580 | |
| 2581 | int |
| 2582 | udp_shutdown(struct socket *so) |
| 2583 | { |
| 2584 | struct inpcb *inp; |
| 2585 | |
| 2586 | inp = sotoinpcb(so); |
| 2587 | if (inp == NULL) { |
| 2588 | return EINVAL; |
| 2589 | } |
| 2590 | socantsendmore(so); |
| 2591 | return 0; |
| 2592 | } |
| 2593 | |
| 2594 | int |
| 2595 | udp_lock(struct socket *so, int refcount, void *debug) |
| 2596 | { |
| 2597 | void *lr_saved; |
| 2598 | |
| 2599 | if (debug == NULL) { |
| 2600 | lr_saved = __builtin_return_address(0); |
| 2601 | } else { |
| 2602 | lr_saved = debug; |
| 2603 | } |
| 2604 | |
| 2605 | if (so->so_pcb != NULL) { |
| 2606 | LCK_MTX_ASSERT(&((struct inpcb *)so->so_pcb)->inpcb_mtx, |
| 2607 | LCK_MTX_ASSERT_NOTOWNED); |
| 2608 | lck_mtx_lock(lck: &((struct inpcb *)so->so_pcb)->inpcb_mtx); |
| 2609 | } else { |
| 2610 | panic("%s: so=%p NO PCB! lr=%p lrh= %s" , __func__, |
| 2611 | so, lr_saved, solockhistory_nr(so)); |
| 2612 | /* NOTREACHED */ |
| 2613 | } |
| 2614 | if (refcount) { |
| 2615 | so->so_usecount++; |
| 2616 | } |
| 2617 | |
| 2618 | so->lock_lr[so->next_lock_lr] = lr_saved; |
| 2619 | so->next_lock_lr = (so->next_lock_lr + 1) % SO_LCKDBG_MAX; |
| 2620 | return 0; |
| 2621 | } |
| 2622 | |
| 2623 | int |
| 2624 | udp_unlock(struct socket *so, int refcount, void *debug) |
| 2625 | { |
| 2626 | void *lr_saved; |
| 2627 | |
| 2628 | if (debug == NULL) { |
| 2629 | lr_saved = __builtin_return_address(0); |
| 2630 | } else { |
| 2631 | lr_saved = debug; |
| 2632 | } |
| 2633 | |
| 2634 | if (refcount) { |
| 2635 | VERIFY(so->so_usecount > 0); |
| 2636 | so->so_usecount--; |
| 2637 | } |
| 2638 | if (so->so_pcb == NULL) { |
| 2639 | panic("%s: so=%p NO PCB! lr=%p lrh= %s" , __func__, |
| 2640 | so, lr_saved, solockhistory_nr(so)); |
| 2641 | /* NOTREACHED */ |
| 2642 | } else { |
| 2643 | LCK_MTX_ASSERT(&((struct inpcb *)so->so_pcb)->inpcb_mtx, |
| 2644 | LCK_MTX_ASSERT_OWNED); |
| 2645 | so->unlock_lr[so->next_unlock_lr] = lr_saved; |
| 2646 | so->next_unlock_lr = (so->next_unlock_lr + 1) % SO_LCKDBG_MAX; |
| 2647 | lck_mtx_unlock(lck: &((struct inpcb *)so->so_pcb)->inpcb_mtx); |
| 2648 | } |
| 2649 | return 0; |
| 2650 | } |
| 2651 | |
| 2652 | lck_mtx_t * |
| 2653 | udp_getlock(struct socket *so, int flags) |
| 2654 | { |
| 2655 | #pragma unused(flags) |
| 2656 | struct inpcb *inp = sotoinpcb(so); |
| 2657 | |
| 2658 | if (so->so_pcb == NULL) { |
| 2659 | panic("%s: so=%p NULL so_pcb lrh= %s" , __func__, |
| 2660 | so, solockhistory_nr(so)); |
| 2661 | /* NOTREACHED */ |
| 2662 | } |
| 2663 | return &inp->inpcb_mtx; |
| 2664 | } |
| 2665 | |
| 2666 | /* |
| 2667 | * UDP garbage collector callback (inpcb_timer_func_t). |
| 2668 | * |
| 2669 | * Returns > 0 to keep timer active. |
| 2670 | */ |
| 2671 | static void |
| 2672 | udp_gc(struct inpcbinfo *ipi) |
| 2673 | { |
| 2674 | struct inpcb *inp, *inpnxt; |
| 2675 | struct socket *so; |
| 2676 | |
| 2677 | if (lck_rw_try_lock_exclusive(lck: &ipi->ipi_lock) == FALSE) { |
| 2678 | if (udp_gc_done == TRUE) { |
| 2679 | udp_gc_done = FALSE; |
| 2680 | /* couldn't get the lock, must lock next time */ |
| 2681 | os_atomic_inc(&ipi->ipi_gc_req.intimer_fast, relaxed); |
| 2682 | return; |
| 2683 | } |
| 2684 | lck_rw_lock_exclusive(lck: &ipi->ipi_lock); |
| 2685 | } |
| 2686 | |
| 2687 | udp_gc_done = TRUE; |
| 2688 | |
| 2689 | for (inp = udb.lh_first; inp != NULL; inp = inpnxt) { |
| 2690 | inpnxt = inp->inp_list.le_next; |
| 2691 | |
| 2692 | /* |
| 2693 | * Skip unless it's STOPUSING; garbage collector will |
| 2694 | * be triggered by in_pcb_checkstate() upon setting |
| 2695 | * wantcnt to that value. If the PCB is already dead, |
| 2696 | * keep gc active to anticipate wantcnt changing. |
| 2697 | */ |
| 2698 | if (inp->inp_wantcnt != WNT_STOPUSING) { |
| 2699 | continue; |
| 2700 | } |
| 2701 | |
| 2702 | /* |
| 2703 | * Skip if busy, no hurry for cleanup. Keep gc active |
| 2704 | * and try the lock again during next round. |
| 2705 | */ |
| 2706 | if (!socket_try_lock(so: inp->inp_socket)) { |
| 2707 | os_atomic_inc(&ipi->ipi_gc_req.intimer_fast, relaxed); |
| 2708 | continue; |
| 2709 | } |
| 2710 | |
| 2711 | /* |
| 2712 | * Keep gc active unless usecount is 0. |
| 2713 | */ |
| 2714 | so = inp->inp_socket; |
| 2715 | if (so->so_usecount == 0) { |
| 2716 | if (inp->inp_state != INPCB_STATE_DEAD) { |
| 2717 | if (SOCK_CHECK_DOM(so, PF_INET6)) { |
| 2718 | in6_pcbdetach(inp); |
| 2719 | } else { |
| 2720 | in_pcbdetach(inp); |
| 2721 | } |
| 2722 | } |
| 2723 | in_pcbdispose(inp); |
| 2724 | } else { |
| 2725 | socket_unlock(so, refcount: 0); |
| 2726 | os_atomic_inc(&ipi->ipi_gc_req.intimer_fast, relaxed); |
| 2727 | } |
| 2728 | } |
| 2729 | lck_rw_done(lck: &ipi->ipi_lock); |
| 2730 | } |
| 2731 | |
| 2732 | static int |
| 2733 | udp_getstat SYSCTL_HANDLER_ARGS |
| 2734 | { |
| 2735 | #pragma unused(oidp, arg1, arg2) |
| 2736 | if (req->oldptr == USER_ADDR_NULL) { |
| 2737 | req->oldlen = (size_t)sizeof(struct udpstat); |
| 2738 | } |
| 2739 | |
| 2740 | return SYSCTL_OUT(req, &udpstat, MIN(sizeof(udpstat), req->oldlen)); |
| 2741 | } |
| 2742 | |
| 2743 | void |
| 2744 | udp_in_cksum_stats(u_int32_t len) |
| 2745 | { |
| 2746 | udpstat.udps_rcv_swcsum++; |
| 2747 | udpstat.udps_rcv_swcsum_bytes += len; |
| 2748 | } |
| 2749 | |
| 2750 | void |
| 2751 | udp_out_cksum_stats(u_int32_t len) |
| 2752 | { |
| 2753 | udpstat.udps_snd_swcsum++; |
| 2754 | udpstat.udps_snd_swcsum_bytes += len; |
| 2755 | } |
| 2756 | |
| 2757 | void |
| 2758 | udp_in6_cksum_stats(u_int32_t len) |
| 2759 | { |
| 2760 | udpstat.udps_rcv6_swcsum++; |
| 2761 | udpstat.udps_rcv6_swcsum_bytes += len; |
| 2762 | } |
| 2763 | |
| 2764 | void |
| 2765 | udp_out6_cksum_stats(u_int32_t len) |
| 2766 | { |
| 2767 | udpstat.udps_snd6_swcsum++; |
| 2768 | udpstat.udps_snd6_swcsum_bytes += len; |
| 2769 | } |
| 2770 | |
| 2771 | /* |
| 2772 | * Checksum extended UDP header and data. |
| 2773 | */ |
| 2774 | static int |
| 2775 | udp_input_checksum(struct mbuf *m, struct udphdr *uh, int off, int ulen) |
| 2776 | { |
| 2777 | struct ifnet *ifp = m->m_pkthdr.rcvif; |
| 2778 | struct ip *ip = mtod(m, struct ip *); |
| 2779 | struct ipovly *ipov = (struct ipovly *)ip; |
| 2780 | |
| 2781 | if (uh->uh_sum == 0) { |
| 2782 | udpstat.udps_nosum++; |
| 2783 | return 0; |
| 2784 | } |
| 2785 | |
| 2786 | /* ip_stripoptions() must have been called before we get here */ |
| 2787 | ASSERT((ip->ip_hl << 2) == sizeof(*ip)); |
| 2788 | |
| 2789 | if ((hwcksum_rx || (ifp->if_flags & IFF_LOOPBACK) || |
| 2790 | (m->m_pkthdr.pkt_flags & PKTF_LOOP)) && |
| 2791 | (m->m_pkthdr.csum_flags & CSUM_DATA_VALID)) { |
| 2792 | if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) { |
| 2793 | uh->uh_sum = m->m_pkthdr.csum_rx_val; |
| 2794 | } else { |
| 2795 | uint32_t sum = m->m_pkthdr.csum_rx_val; |
| 2796 | uint32_t start = m->m_pkthdr.csum_rx_start; |
| 2797 | int32_t trailer = (m_pktlen(m) - (off + ulen)); |
| 2798 | |
| 2799 | /* |
| 2800 | * Perform 1's complement adjustment of octets |
| 2801 | * that got included/excluded in the hardware- |
| 2802 | * calculated checksum value. Ignore cases |
| 2803 | * where the value already includes the entire |
| 2804 | * IP header span, as the sum for those octets |
| 2805 | * would already be 0 by the time we get here; |
| 2806 | * IP has already performed its header checksum |
| 2807 | * checks. If we do need to adjust, restore |
| 2808 | * the original fields in the IP header when |
| 2809 | * computing the adjustment value. Also take |
| 2810 | * care of any trailing bytes and subtract out |
| 2811 | * their partial sum. |
| 2812 | */ |
| 2813 | ASSERT(trailer >= 0); |
| 2814 | if ((m->m_pkthdr.csum_flags & CSUM_PARTIAL) && |
| 2815 | ((start != 0 && start != off) || trailer != 0)) { |
| 2816 | uint32_t swbytes = (uint32_t)trailer; |
| 2817 | |
| 2818 | if (start < off) { |
| 2819 | ip->ip_len += sizeof(*ip); |
| 2820 | #if BYTE_ORDER != BIG_ENDIAN |
| 2821 | HTONS(ip->ip_len); |
| 2822 | HTONS(ip->ip_off); |
| 2823 | #endif /* BYTE_ORDER != BIG_ENDIAN */ |
| 2824 | } |
| 2825 | /* callee folds in sum */ |
| 2826 | sum = m_adj_sum16(m, start, off, ulen, sum); |
| 2827 | if (off > start) { |
| 2828 | swbytes += (off - start); |
| 2829 | } else { |
| 2830 | swbytes += (start - off); |
| 2831 | } |
| 2832 | |
| 2833 | if (start < off) { |
| 2834 | #if BYTE_ORDER != BIG_ENDIAN |
| 2835 | NTOHS(ip->ip_off); |
| 2836 | NTOHS(ip->ip_len); |
| 2837 | #endif /* BYTE_ORDER != BIG_ENDIAN */ |
| 2838 | ip->ip_len -= sizeof(*ip); |
| 2839 | } |
| 2840 | |
| 2841 | if (swbytes != 0) { |
| 2842 | udp_in_cksum_stats(len: swbytes); |
| 2843 | } |
| 2844 | if (trailer != 0) { |
| 2845 | m_adj(m, -trailer); |
| 2846 | } |
| 2847 | } |
| 2848 | |
| 2849 | /* callee folds in sum */ |
| 2850 | uh->uh_sum = in_pseudo(ip->ip_src.s_addr, |
| 2851 | ip->ip_dst.s_addr, sum + htonl(ulen + IPPROTO_UDP)); |
| 2852 | } |
| 2853 | uh->uh_sum ^= 0xffff; |
| 2854 | } else { |
| 2855 | uint16_t ip_sum; |
| 2856 | char b[9]; |
| 2857 | |
| 2858 | bcopy(src: ipov->ih_x1, dst: b, n: sizeof(ipov->ih_x1)); |
| 2859 | bzero(s: ipov->ih_x1, n: sizeof(ipov->ih_x1)); |
| 2860 | ip_sum = ipov->ih_len; |
| 2861 | ipov->ih_len = uh->uh_ulen; |
| 2862 | uh->uh_sum = in_cksum(m, ulen + sizeof(struct ip)); |
| 2863 | bcopy(src: b, dst: ipov->ih_x1, n: sizeof(ipov->ih_x1)); |
| 2864 | ipov->ih_len = ip_sum; |
| 2865 | |
| 2866 | udp_in_cksum_stats(len: ulen); |
| 2867 | } |
| 2868 | |
| 2869 | if (uh->uh_sum != 0) { |
| 2870 | udpstat.udps_badsum++; |
| 2871 | IF_UDP_STATINC(ifp, badchksum); |
| 2872 | return -1; |
| 2873 | } |
| 2874 | |
| 2875 | return 0; |
| 2876 | } |
| 2877 | |
| 2878 | void |
| 2879 | udp_fill_keepalive_offload_frames(ifnet_t ifp, |
| 2880 | struct ifnet_keepalive_offload_frame *frames_array, |
| 2881 | u_int32_t frames_array_count, size_t frame_data_offset, |
| 2882 | u_int32_t *used_frames_count) |
| 2883 | { |
| 2884 | struct inpcb *inp; |
| 2885 | inp_gen_t gencnt; |
| 2886 | u_int32_t frame_index = *used_frames_count; |
| 2887 | |
| 2888 | if (ifp == NULL || frames_array == NULL || |
| 2889 | frames_array_count == 0 || |
| 2890 | frame_index >= frames_array_count || |
| 2891 | frame_data_offset >= IFNET_KEEPALIVE_OFFLOAD_FRAME_DATA_SIZE) { |
| 2892 | return; |
| 2893 | } |
| 2894 | |
| 2895 | lck_rw_lock_shared(lck: &udbinfo.ipi_lock); |
| 2896 | gencnt = udbinfo.ipi_gencnt; |
| 2897 | LIST_FOREACH(inp, udbinfo.ipi_listhead, inp_list) { |
| 2898 | struct socket *so; |
| 2899 | u_int8_t *data; |
| 2900 | struct ifnet_keepalive_offload_frame *frame; |
| 2901 | struct mbuf *m = NULL; |
| 2902 | |
| 2903 | if (frame_index >= frames_array_count) { |
| 2904 | break; |
| 2905 | } |
| 2906 | |
| 2907 | if (inp->inp_gencnt > gencnt || |
| 2908 | inp->inp_state == INPCB_STATE_DEAD) { |
| 2909 | continue; |
| 2910 | } |
| 2911 | |
| 2912 | if ((so = inp->inp_socket) == NULL || |
| 2913 | (so->so_state & SS_DEFUNCT)) { |
| 2914 | continue; |
| 2915 | } |
| 2916 | /* |
| 2917 | * check for keepalive offload flag without socket |
| 2918 | * lock to avoid a deadlock |
| 2919 | */ |
| 2920 | if (!(inp->inp_flags2 & INP2_KEEPALIVE_OFFLOAD)) { |
| 2921 | continue; |
| 2922 | } |
| 2923 | |
| 2924 | udp_lock(so, refcount: 1, debug: 0); |
| 2925 | if (!(inp->inp_vflag & (INP_IPV4 | INP_IPV6))) { |
| 2926 | udp_unlock(so, refcount: 1, debug: 0); |
| 2927 | continue; |
| 2928 | } |
| 2929 | if ((inp->inp_vflag & INP_IPV4) && |
| 2930 | (inp->inp_laddr.s_addr == INADDR_ANY || |
| 2931 | inp->inp_faddr.s_addr == INADDR_ANY)) { |
| 2932 | udp_unlock(so, refcount: 1, debug: 0); |
| 2933 | continue; |
| 2934 | } |
| 2935 | if ((inp->inp_vflag & INP_IPV6) && |
| 2936 | (IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr) || |
| 2937 | IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_faddr))) { |
| 2938 | udp_unlock(so, refcount: 1, debug: 0); |
| 2939 | continue; |
| 2940 | } |
| 2941 | if (inp->inp_lport == 0 || inp->inp_fport == 0) { |
| 2942 | udp_unlock(so, refcount: 1, debug: 0); |
| 2943 | continue; |
| 2944 | } |
| 2945 | if (inp->inp_last_outifp == NULL || |
| 2946 | inp->inp_last_outifp->if_index != ifp->if_index) { |
| 2947 | udp_unlock(so, refcount: 1, debug: 0); |
| 2948 | continue; |
| 2949 | } |
| 2950 | if ((inp->inp_vflag & INP_IPV4)) { |
| 2951 | if ((frame_data_offset + sizeof(struct udpiphdr) + |
| 2952 | inp->inp_keepalive_datalen) > |
| 2953 | IFNET_KEEPALIVE_OFFLOAD_FRAME_DATA_SIZE) { |
| 2954 | udp_unlock(so, refcount: 1, debug: 0); |
| 2955 | continue; |
| 2956 | } |
| 2957 | if ((sizeof(struct udpiphdr) + |
| 2958 | inp->inp_keepalive_datalen) > _MHLEN) { |
| 2959 | udp_unlock(so, refcount: 1, debug: 0); |
| 2960 | continue; |
| 2961 | } |
| 2962 | } else { |
| 2963 | if ((frame_data_offset + sizeof(struct ip6_hdr) + |
| 2964 | sizeof(struct udphdr) + |
| 2965 | inp->inp_keepalive_datalen) > |
| 2966 | IFNET_KEEPALIVE_OFFLOAD_FRAME_DATA_SIZE) { |
| 2967 | udp_unlock(so, refcount: 1, debug: 0); |
| 2968 | continue; |
| 2969 | } |
| 2970 | if ((sizeof(struct ip6_hdr) + sizeof(struct udphdr) + |
| 2971 | inp->inp_keepalive_datalen) > _MHLEN) { |
| 2972 | udp_unlock(so, refcount: 1, debug: 0); |
| 2973 | continue; |
| 2974 | } |
| 2975 | } |
| 2976 | MGETHDR(m, M_WAIT, MT_HEADER); |
| 2977 | if (m == NULL) { |
| 2978 | udp_unlock(so, refcount: 1, debug: 0); |
| 2979 | continue; |
| 2980 | } |
| 2981 | /* |
| 2982 | * This inp has all the information that is needed to |
| 2983 | * generate an offload frame. |
| 2984 | */ |
| 2985 | if (inp->inp_vflag & INP_IPV4) { |
| 2986 | struct ip *ip; |
| 2987 | struct udphdr *udp; |
| 2988 | |
| 2989 | frame = &frames_array[frame_index]; |
| 2990 | frame->length = (uint8_t)(frame_data_offset + |
| 2991 | sizeof(struct udpiphdr) + |
| 2992 | inp->inp_keepalive_datalen); |
| 2993 | frame->ether_type = |
| 2994 | IFNET_KEEPALIVE_OFFLOAD_FRAME_ETHERTYPE_IPV4; |
| 2995 | frame->interval = inp->inp_keepalive_interval; |
| 2996 | switch (inp->inp_keepalive_type) { |
| 2997 | case UDP_KEEPALIVE_OFFLOAD_TYPE_AIRPLAY: |
| 2998 | frame->type = |
| 2999 | IFNET_KEEPALIVE_OFFLOAD_FRAME_AIRPLAY; |
| 3000 | break; |
| 3001 | default: |
| 3002 | break; |
| 3003 | } |
| 3004 | data = mtod(m, u_int8_t *); |
| 3005 | bzero(s: data, n: sizeof(struct udpiphdr)); |
| 3006 | ip = (__typeof__(ip))(void *)data; |
| 3007 | udp = (__typeof__(udp))(void *) (data + |
| 3008 | sizeof(struct ip)); |
| 3009 | m->m_len = sizeof(struct udpiphdr); |
| 3010 | data = data + sizeof(struct udpiphdr); |
| 3011 | if (inp->inp_keepalive_datalen > 0 && |
| 3012 | inp->inp_keepalive_data != NULL) { |
| 3013 | bcopy(src: inp->inp_keepalive_data, dst: data, |
| 3014 | n: inp->inp_keepalive_datalen); |
| 3015 | m->m_len += inp->inp_keepalive_datalen; |
| 3016 | } |
| 3017 | m->m_pkthdr.len = m->m_len; |
| 3018 | |
| 3019 | ip->ip_v = IPVERSION; |
| 3020 | ip->ip_hl = (sizeof(struct ip) >> 2); |
| 3021 | ip->ip_p = IPPROTO_UDP; |
| 3022 | ip->ip_len = htons(sizeof(struct udpiphdr) + |
| 3023 | (u_short)inp->inp_keepalive_datalen); |
| 3024 | ip->ip_ttl = inp->inp_ip_ttl; |
| 3025 | ip->ip_tos |= (inp->inp_ip_tos & ~IPTOS_ECN_MASK); |
| 3026 | ip->ip_src = inp->inp_laddr; |
| 3027 | ip->ip_dst = inp->inp_faddr; |
| 3028 | ip->ip_sum = in_cksum_hdr_opt(ip); |
| 3029 | |
| 3030 | udp->uh_sport = inp->inp_lport; |
| 3031 | udp->uh_dport = inp->inp_fport; |
| 3032 | udp->uh_ulen = htons(sizeof(struct udphdr) + |
| 3033 | (u_short)inp->inp_keepalive_datalen); |
| 3034 | |
| 3035 | if (!(inp->inp_flags & INP_UDP_NOCKSUM)) { |
| 3036 | udp->uh_sum = in_pseudo(ip->ip_src.s_addr, |
| 3037 | ip->ip_dst.s_addr, |
| 3038 | htons(sizeof(struct udphdr) + |
| 3039 | (u_short)inp->inp_keepalive_datalen + |
| 3040 | IPPROTO_UDP)); |
| 3041 | m->m_pkthdr.csum_flags = |
| 3042 | (CSUM_UDP | CSUM_ZERO_INVERT); |
| 3043 | m->m_pkthdr.csum_data = offsetof(struct udphdr, |
| 3044 | uh_sum); |
| 3045 | } |
| 3046 | m->m_pkthdr.pkt_proto = IPPROTO_UDP; |
| 3047 | in_delayed_cksum(m); |
| 3048 | bcopy(src: m_mtod_current(m), dst: frame->data + frame_data_offset, |
| 3049 | n: m->m_len); |
| 3050 | } else { |
| 3051 | struct ip6_hdr *ip6; |
| 3052 | struct udphdr *udp6; |
| 3053 | |
| 3054 | VERIFY(inp->inp_vflag & INP_IPV6); |
| 3055 | frame = &frames_array[frame_index]; |
| 3056 | frame->length = (uint8_t)(frame_data_offset + |
| 3057 | sizeof(struct ip6_hdr) + |
| 3058 | sizeof(struct udphdr) + |
| 3059 | inp->inp_keepalive_datalen); |
| 3060 | frame->ether_type = |
| 3061 | IFNET_KEEPALIVE_OFFLOAD_FRAME_ETHERTYPE_IPV6; |
| 3062 | frame->interval = inp->inp_keepalive_interval; |
| 3063 | switch (inp->inp_keepalive_type) { |
| 3064 | case UDP_KEEPALIVE_OFFLOAD_TYPE_AIRPLAY: |
| 3065 | frame->type = |
| 3066 | IFNET_KEEPALIVE_OFFLOAD_FRAME_AIRPLAY; |
| 3067 | break; |
| 3068 | default: |
| 3069 | break; |
| 3070 | } |
| 3071 | data = mtod(m, u_int8_t *); |
| 3072 | bzero(s: data, n: sizeof(struct ip6_hdr) + sizeof(struct udphdr)); |
| 3073 | ip6 = (__typeof__(ip6))(void *)data; |
| 3074 | udp6 = (__typeof__(udp6))(void *)(data + |
| 3075 | sizeof(struct ip6_hdr)); |
| 3076 | m->m_len = sizeof(struct ip6_hdr) + |
| 3077 | sizeof(struct udphdr); |
| 3078 | data = data + (sizeof(struct ip6_hdr) + |
| 3079 | sizeof(struct udphdr)); |
| 3080 | if (inp->inp_keepalive_datalen > 0 && |
| 3081 | inp->inp_keepalive_data != NULL) { |
| 3082 | bcopy(src: inp->inp_keepalive_data, dst: data, |
| 3083 | n: inp->inp_keepalive_datalen); |
| 3084 | m->m_len += inp->inp_keepalive_datalen; |
| 3085 | } |
| 3086 | m->m_pkthdr.len = m->m_len; |
| 3087 | ip6->ip6_flow = inp->inp_flow & IPV6_FLOWINFO_MASK; |
| 3088 | ip6->ip6_flow = ip6->ip6_flow & ~IPV6_FLOW_ECN_MASK; |
| 3089 | ip6->ip6_vfc &= ~IPV6_VERSION_MASK; |
| 3090 | ip6->ip6_vfc |= IPV6_VERSION; |
| 3091 | ip6->ip6_nxt = IPPROTO_UDP; |
| 3092 | ip6->ip6_hlim = (uint8_t)ip6_defhlim; |
| 3093 | ip6->ip6_plen = htons(sizeof(struct udphdr) + |
| 3094 | (u_short)inp->inp_keepalive_datalen); |
| 3095 | ip6->ip6_src = inp->in6p_laddr; |
| 3096 | if (IN6_IS_SCOPE_EMBED(&ip6->ip6_src)) { |
| 3097 | ip6->ip6_src.s6_addr16[1] = 0; |
| 3098 | } |
| 3099 | |
| 3100 | ip6->ip6_dst = inp->in6p_faddr; |
| 3101 | if (IN6_IS_SCOPE_EMBED(&ip6->ip6_dst)) { |
| 3102 | ip6->ip6_dst.s6_addr16[1] = 0; |
| 3103 | } |
| 3104 | |
| 3105 | udp6->uh_sport = inp->in6p_lport; |
| 3106 | udp6->uh_dport = inp->in6p_fport; |
| 3107 | udp6->uh_ulen = htons(sizeof(struct udphdr) + |
| 3108 | (u_short)inp->inp_keepalive_datalen); |
| 3109 | if (!(inp->inp_flags & INP_UDP_NOCKSUM)) { |
| 3110 | udp6->uh_sum = in6_pseudo(&ip6->ip6_src, |
| 3111 | &ip6->ip6_dst, |
| 3112 | htonl(sizeof(struct udphdr) + |
| 3113 | (u_short)inp->inp_keepalive_datalen + |
| 3114 | IPPROTO_UDP)); |
| 3115 | m->m_pkthdr.csum_flags = |
| 3116 | (CSUM_UDPIPV6 | CSUM_ZERO_INVERT); |
| 3117 | m->m_pkthdr.csum_data = offsetof(struct udphdr, |
| 3118 | uh_sum); |
| 3119 | } |
| 3120 | m->m_pkthdr.pkt_proto = IPPROTO_UDP; |
| 3121 | in6_delayed_cksum(m); |
| 3122 | bcopy(src: m_mtod_current(m), dst: frame->data + frame_data_offset, n: m->m_len); |
| 3123 | } |
| 3124 | if (m != NULL) { |
| 3125 | m_freem(m); |
| 3126 | m = NULL; |
| 3127 | } |
| 3128 | frame_index++; |
| 3129 | udp_unlock(so, refcount: 1, debug: 0); |
| 3130 | } |
| 3131 | lck_rw_done(lck: &udbinfo.ipi_lock); |
| 3132 | *used_frames_count = frame_index; |
| 3133 | } |
| 3134 | |
| 3135 | int |
| 3136 | udp_defunct(struct socket *so) |
| 3137 | { |
| 3138 | struct ip_moptions *imo; |
| 3139 | struct inpcb *inp; |
| 3140 | |
| 3141 | inp = sotoinpcb(so); |
| 3142 | if (inp == NULL) { |
| 3143 | return EINVAL; |
| 3144 | } |
| 3145 | |
| 3146 | imo = inp->inp_moptions; |
| 3147 | if (imo != NULL) { |
| 3148 | struct proc *p = current_proc(); |
| 3149 | |
| 3150 | SODEFUNCTLOG("%s[%d, %s]: defuncting so 0x%llu drop multicast memberships" , |
| 3151 | __func__, proc_pid(p), proc_best_name(p), |
| 3152 | so->so_gencnt); |
| 3153 | |
| 3154 | inp->inp_moptions = NULL; |
| 3155 | |
| 3156 | IMO_REMREF(imo); |
| 3157 | } |
| 3158 | |
| 3159 | return 0; |
| 3160 | } |
| 3161 | |