| 1 | /* |
| 2 | * Copyright (c) 2000-2022 Apple Inc. All rights reserved. |
| 3 | * |
| 4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ |
| 5 | * |
| 6 | * This file contains Original Code and/or Modifications of Original Code |
| 7 | * as defined in and that are subject to the Apple Public Source License |
| 8 | * Version 2.0 (the 'License'). You may not use this file except in |
| 9 | * compliance with the License. The rights granted to you under the License |
| 10 | * may not be used to create, or enable the creation or redistribution of, |
| 11 | * unlawful or unlicensed copies of an Apple operating system, or to |
| 12 | * circumvent, violate, or enable the circumvention or violation of, any |
| 13 | * terms of an Apple operating system software license agreement. |
| 14 | * |
| 15 | * Please obtain a copy of the License at |
| 16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. |
| 17 | * |
| 18 | * The Original Code and all software distributed under the License are |
| 19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER |
| 20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
| 21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, |
| 22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
| 23 | * Please see the License for the specific language governing rights and |
| 24 | * limitations under the License. |
| 25 | * |
| 26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ |
| 27 | */ |
| 28 | /* |
| 29 | * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995 |
| 30 | * The Regents of the University of California. All rights reserved. |
| 31 | * |
| 32 | * Redistribution and use in source and binary forms, with or without |
| 33 | * modification, are permitted provided that the following conditions |
| 34 | * are met: |
| 35 | * 1. Redistributions of source code must retain the above copyright |
| 36 | * notice, this list of conditions and the following disclaimer. |
| 37 | * 2. Redistributions in binary form must reproduce the above copyright |
| 38 | * notice, this list of conditions and the following disclaimer in the |
| 39 | * documentation and/or other materials provided with the distribution. |
| 40 | * 3. All advertising materials mentioning features or use of this software |
| 41 | * must display the following acknowledgement: |
| 42 | * This product includes software developed by the University of |
| 43 | * California, Berkeley and its contributors. |
| 44 | * 4. Neither the name of the University nor the names of its contributors |
| 45 | * may be used to endorse or promote products derived from this software |
| 46 | * without specific prior written permission. |
| 47 | * |
| 48 | * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND |
| 49 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 50 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 51 | * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE |
| 52 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
| 53 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
| 54 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| 55 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
| 56 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
| 57 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
| 58 | * SUCH DAMAGE. |
| 59 | * |
| 60 | * @(#)tcp_output.c 8.4 (Berkeley) 5/24/95 |
| 61 | * $FreeBSD: src/sys/netinet/tcp_output.c,v 1.39.2.10 2001/07/07 04:30:38 silby Exp $ |
| 62 | */ |
| 63 | /* |
| 64 | * NOTICE: This file was modified by SPARTA, Inc. in 2005 to introduce |
| 65 | * support for mandatory and extensible security protections. This notice |
| 66 | * is included in support of clause 2.2 (b) of the Apple Public License, |
| 67 | * Version 2.0. |
| 68 | */ |
| 69 | |
| 70 | #define _IP_VHL |
| 71 | |
| 72 | #include "tcp_includes.h" |
| 73 | |
| 74 | #include <sys/param.h> |
| 75 | #include <sys/systm.h> |
| 76 | #include <sys/kernel.h> |
| 77 | #include <sys/sysctl.h> |
| 78 | #include <sys/mbuf.h> |
| 79 | #include <sys/domain.h> |
| 80 | #include <sys/protosw.h> |
| 81 | #include <sys/socket.h> |
| 82 | #include <sys/socketvar.h> |
| 83 | |
| 84 | #include <net/route.h> |
| 85 | #include <net/ntstat.h> |
| 86 | #include <net/if_var.h> |
| 87 | #include <net/if.h> |
| 88 | #include <net/if_types.h> |
| 89 | #include <net/dlil.h> |
| 90 | |
| 91 | #include <netinet/in.h> |
| 92 | #include <netinet/in_systm.h> |
| 93 | #include <netinet/in_var.h> |
| 94 | #include <netinet/in_tclass.h> |
| 95 | #include <netinet/ip.h> |
| 96 | #include <netinet/in_pcb.h> |
| 97 | #include <netinet/ip_var.h> |
| 98 | #include <mach/sdt.h> |
| 99 | #include <netinet6/in6_pcb.h> |
| 100 | #include <netinet/ip6.h> |
| 101 | #include <netinet6/ip6_var.h> |
| 102 | #include <netinet/tcp.h> |
| 103 | #include <netinet/tcp_cache.h> |
| 104 | #include <netinet/tcp_fsm.h> |
| 105 | #include <netinet/tcp_seq.h> |
| 106 | #include <netinet/tcp_timer.h> |
| 107 | #include <netinet/tcp_var.h> |
| 108 | #include <netinet/tcpip.h> |
| 109 | #include <netinet/tcp_cc.h> |
| 110 | #if TCPDEBUG |
| 111 | #include <netinet/tcp_debug.h> |
| 112 | #endif |
| 113 | #include <netinet/tcp_log.h> |
| 114 | #include <sys/kdebug.h> |
| 115 | #include <mach/sdt.h> |
| 116 | |
| 117 | #if IPSEC |
| 118 | #include <netinet6/ipsec.h> |
| 119 | #endif /*IPSEC*/ |
| 120 | |
| 121 | #if MPTCP |
| 122 | #include <netinet/mptcp_var.h> |
| 123 | #include <netinet/mptcp.h> |
| 124 | #include <netinet/mptcp_opt.h> |
| 125 | #include <netinet/mptcp_seq.h> |
| 126 | #endif |
| 127 | |
| 128 | #include <corecrypto/ccaes.h> |
| 129 | |
| 130 | #define DBG_LAYER_BEG NETDBG_CODE(DBG_NETTCP, 1) |
| 131 | #define DBG_LAYER_END NETDBG_CODE(DBG_NETTCP, 3) |
| 132 | #define DBG_FNC_TCP_OUTPUT NETDBG_CODE(DBG_NETTCP, (4 << 8) | 1) |
| 133 | |
| 134 | SYSCTL_SKMEM_TCP_INT(OID_AUTO, path_mtu_discovery, |
| 135 | CTLFLAG_RW | CTLFLAG_LOCKED, int, path_mtu_discovery, 1, |
| 136 | "Enable Path MTU Discovery" ); |
| 137 | |
| 138 | SYSCTL_SKMEM_TCP_INT(OID_AUTO, local_slowstart_flightsize, |
| 139 | CTLFLAG_RW | CTLFLAG_LOCKED, int, ss_fltsz_local, 8, |
| 140 | "Slow start flight size for local networks" ); |
| 141 | |
| 142 | SYSCTL_SKMEM_TCP_INT(OID_AUTO, tso, CTLFLAG_RW | CTLFLAG_LOCKED, |
| 143 | int, tcp_do_tso, 1, "Enable TCP Segmentation Offload" ); |
| 144 | |
| 145 | SYSCTL_SKMEM_TCP_INT(OID_AUTO, ecn_setup_percentage, |
| 146 | CTLFLAG_RW | CTLFLAG_LOCKED, int, tcp_ecn_setup_percentage, 100, |
| 147 | "Max ECN setup percentage" ); |
| 148 | |
| 149 | SYSCTL_SKMEM_TCP_INT(OID_AUTO, accurate_ecn, |
| 150 | CTLFLAG_RW | CTLFLAG_LOCKED, int, tcp_acc_ecn, 0, |
| 151 | "Accurate ECN mode (0: disable, 1: enable ACE feedback" ); |
| 152 | |
| 153 | // TO BE REMOVED |
| 154 | SYSCTL_SKMEM_TCP_INT(OID_AUTO, do_ack_compression, |
| 155 | CTLFLAG_RW | CTLFLAG_LOCKED, int, tcp_do_ack_compression, 1, |
| 156 | "Enable TCP ACK compression (on (cell only): 1, off: 0, on (all interfaces): 2)" ); |
| 157 | |
| 158 | SYSCTL_SKMEM_TCP_INT(OID_AUTO, ack_compression_rate, |
| 159 | CTLFLAG_RW | CTLFLAG_LOCKED, int, tcp_ack_compression_rate, TCP_COMP_CHANGE_RATE, |
| 160 | "Rate at which we force sending new ACKs (in ms)" ); |
| 161 | |
| 162 | SYSCTL_SKMEM_TCP_INT(OID_AUTO, randomize_timestamps, |
| 163 | CTLFLAG_RW | CTLFLAG_LOCKED, int, tcp_randomize_timestamps, 1, |
| 164 | "Randomize TCP timestamps to prevent tracking (on: 1, off: 0)" ); |
| 165 | |
| 166 | static int |
| 167 | sysctl_change_ecn_setting SYSCTL_HANDLER_ARGS |
| 168 | { |
| 169 | #pragma unused(oidp, arg1, arg2) |
| 170 | int i, err = 0, changed = 0; |
| 171 | struct ifnet *ifp; |
| 172 | |
| 173 | err = sysctl_io_number(req, bigValue: tcp_ecn_outbound, valueSize: sizeof(int32_t), |
| 174 | pValue: &i, changed: &changed); |
| 175 | if (err != 0 || req->newptr == USER_ADDR_NULL) { |
| 176 | return err; |
| 177 | } |
| 178 | |
| 179 | if (changed) { |
| 180 | if ((tcp_ecn_outbound == 0 || tcp_ecn_outbound == 1) && |
| 181 | (i == 0 || i == 1)) { |
| 182 | tcp_ecn_outbound = i; |
| 183 | SYSCTL_SKMEM_UPDATE_FIELD(tcp.ecn_initiate_out, tcp_ecn_outbound); |
| 184 | return err; |
| 185 | } |
| 186 | if (tcp_ecn_outbound == 2 && (i == 0 || i == 1)) { |
| 187 | /* |
| 188 | * Reset ECN enable flags on non-cellular |
| 189 | * interfaces so that the system default will take |
| 190 | * over |
| 191 | */ |
| 192 | ifnet_head_lock_shared(); |
| 193 | TAILQ_FOREACH(ifp, &ifnet_head, if_link) { |
| 194 | if (!IFNET_IS_CELLULAR(ifp)) { |
| 195 | if_clear_eflags(ifp, |
| 196 | IFEF_ECN_ENABLE | |
| 197 | IFEF_ECN_DISABLE); |
| 198 | } |
| 199 | } |
| 200 | ifnet_head_done(); |
| 201 | } else { |
| 202 | /* |
| 203 | * Set ECN enable flags on non-cellular |
| 204 | * interfaces |
| 205 | */ |
| 206 | ifnet_head_lock_shared(); |
| 207 | TAILQ_FOREACH(ifp, &ifnet_head, if_link) { |
| 208 | if (!IFNET_IS_CELLULAR(ifp)) { |
| 209 | if_set_eflags(ifp, IFEF_ECN_ENABLE); |
| 210 | if_clear_eflags(ifp, IFEF_ECN_DISABLE); |
| 211 | } |
| 212 | } |
| 213 | ifnet_head_done(); |
| 214 | } |
| 215 | tcp_ecn_outbound = i; |
| 216 | SYSCTL_SKMEM_UPDATE_FIELD(tcp.ecn_initiate_out, tcp_ecn_outbound); |
| 217 | } |
| 218 | /* Change the other one too as the work is done */ |
| 219 | if (i == 2 || tcp_ecn_inbound == 2) { |
| 220 | tcp_ecn_inbound = i; |
| 221 | SYSCTL_SKMEM_UPDATE_FIELD(tcp.ecn_negotiate_in, tcp_ecn_inbound); |
| 222 | } |
| 223 | return err; |
| 224 | } |
| 225 | |
| 226 | int tcp_ecn_outbound = 2; |
| 227 | SYSCTL_PROC(_net_inet_tcp, OID_AUTO, ecn_initiate_out, |
| 228 | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED, &tcp_ecn_outbound, 0, |
| 229 | sysctl_change_ecn_setting, "IU" , |
| 230 | "Initiate ECN for outbound connections" ); |
| 231 | |
| 232 | int tcp_ecn_inbound = 2; |
| 233 | SYSCTL_PROC(_net_inet_tcp, OID_AUTO, ecn_negotiate_in, |
| 234 | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED, &tcp_ecn_inbound, 0, |
| 235 | sysctl_change_ecn_setting, "IU" , |
| 236 | "Initiate ECN for inbound connections" ); |
| 237 | |
| 238 | SYSCTL_SKMEM_TCP_INT(OID_AUTO, packetchain, |
| 239 | CTLFLAG_RW | CTLFLAG_LOCKED, int, tcp_packet_chaining, 50, |
| 240 | "Enable TCP output packet chaining" ); |
| 241 | |
| 242 | SYSCTL_SKMEM_TCP_INT(OID_AUTO, socket_unlocked_on_output, |
| 243 | CTLFLAG_RW | CTLFLAG_LOCKED, int, tcp_output_unlocked, 1, |
| 244 | "Unlock TCP when sending packets down to IP" ); |
| 245 | |
| 246 | SYSCTL_SKMEM_TCP_INT(OID_AUTO, min_iaj_win, |
| 247 | CTLFLAG_RW | CTLFLAG_LOCKED, int, tcp_min_iaj_win, MIN_IAJ_WIN, |
| 248 | "Minimum recv win based on inter-packet arrival jitter" ); |
| 249 | |
| 250 | SYSCTL_SKMEM_TCP_INT(OID_AUTO, acc_iaj_react_limit, |
| 251 | CTLFLAG_RW | CTLFLAG_LOCKED, int, tcp_acc_iaj_react_limit, |
| 252 | ACC_IAJ_REACT_LIMIT, "Accumulated IAJ when receiver starts to react" ); |
| 253 | |
| 254 | SYSCTL_SKMEM_TCP_INT(OID_AUTO, autosndbufinc, |
| 255 | CTLFLAG_RW | CTLFLAG_LOCKED, uint32_t, tcp_autosndbuf_inc, |
| 256 | 8 * 1024, "Increment in send socket bufffer size" ); |
| 257 | |
| 258 | SYSCTL_SKMEM_TCP_INT(OID_AUTO, autosndbufmax, |
| 259 | CTLFLAG_RW | CTLFLAG_LOCKED | CTLFLAG_KERN, uint32_t, tcp_autosndbuf_max, 2 * 1024 * 1024, |
| 260 | "Maximum send socket buffer size" ); |
| 261 | |
| 262 | SYSCTL_SKMEM_TCP_INT(OID_AUTO, rtt_recvbg, |
| 263 | CTLFLAG_RW | CTLFLAG_LOCKED, uint32_t, tcp_use_rtt_recvbg, 1, |
| 264 | "Use RTT for bg recv algorithm" ); |
| 265 | |
| 266 | SYSCTL_SKMEM_TCP_INT(OID_AUTO, recv_throttle_minwin, |
| 267 | CTLFLAG_RW | CTLFLAG_LOCKED, uint32_t, tcp_recv_throttle_minwin, 16 * 1024, |
| 268 | "Minimum recv win for throttling" ); |
| 269 | |
| 270 | SYSCTL_SKMEM_TCP_INT(OID_AUTO, enable_tlp, |
| 271 | CTLFLAG_RW | CTLFLAG_LOCKED, |
| 272 | int32_t, tcp_enable_tlp, 1, "Enable Tail loss probe" ); |
| 273 | |
| 274 | static int32_t packchain_newlist = 0; |
| 275 | static int32_t packchain_looped = 0; |
| 276 | static int32_t packchain_sent = 0; |
| 277 | |
| 278 | /* temporary: for testing */ |
| 279 | #if IPSEC |
| 280 | extern int ipsec_bypass; |
| 281 | #endif |
| 282 | |
| 283 | extern int slowlink_wsize; /* window correction for slow links */ |
| 284 | |
| 285 | extern u_int32_t kipf_count; |
| 286 | |
| 287 | static int tcp_ip_output(struct socket *, struct tcpcb *, struct mbuf *, |
| 288 | int, struct mbuf *, int, int, boolean_t); |
| 289 | static int tcp_recv_throttle(struct tcpcb *tp); |
| 290 | |
| 291 | __attribute__((noinline)) |
| 292 | static int32_t |
| 293 | tcp_tfo_check(struct tcpcb *tp, int32_t len) |
| 294 | { |
| 295 | struct socket *so = tp->t_inpcb->inp_socket; |
| 296 | unsigned int optlen = 0; |
| 297 | unsigned int cookie_len; |
| 298 | |
| 299 | if (tp->t_flags & TF_NOOPT) { |
| 300 | goto fallback; |
| 301 | } |
| 302 | |
| 303 | if (!(tp->t_flagsext & TF_FASTOPEN_FORCE_ENABLE) && |
| 304 | !tcp_heuristic_do_tfo(tp)) { |
| 305 | tp->t_tfo_stats |= TFO_S_HEURISTICS_DISABLE; |
| 306 | tcpstat.tcps_tfo_heuristics_disable++; |
| 307 | goto fallback; |
| 308 | } |
| 309 | |
| 310 | if (so->so_flags1 & SOF1_DATA_AUTHENTICATED) { |
| 311 | return len; |
| 312 | } |
| 313 | |
| 314 | optlen += TCPOLEN_MAXSEG; |
| 315 | |
| 316 | if (tp->t_flags & TF_REQ_SCALE) { |
| 317 | optlen += 4; |
| 318 | } |
| 319 | |
| 320 | #if MPTCP |
| 321 | if ((so->so_flags & SOF_MP_SUBFLOW) && mptcp_enable && |
| 322 | (tp->t_rxtshift <= mptcp_mpcap_retries || |
| 323 | (tptomptp(tp)->mpt_mpte->mpte_flags & MPTE_FORCE_ENABLE))) { |
| 324 | optlen += sizeof(struct mptcp_mpcapable_opt_common) + sizeof(mptcp_key_t); |
| 325 | } |
| 326 | #endif /* MPTCP */ |
| 327 | |
| 328 | if (tp->t_flags & TF_REQ_TSTMP) { |
| 329 | optlen += TCPOLEN_TSTAMP_APPA; |
| 330 | } |
| 331 | |
| 332 | if (SACK_ENABLED(tp)) { |
| 333 | optlen += TCPOLEN_SACK_PERMITTED; |
| 334 | } |
| 335 | |
| 336 | /* Now, decide whether to use TFO or not */ |
| 337 | |
| 338 | /* Don't even bother trying if there is no space at all... */ |
| 339 | if (MAX_TCPOPTLEN - optlen < TCPOLEN_FASTOPEN_REQ) { |
| 340 | goto fallback; |
| 341 | } |
| 342 | |
| 343 | cookie_len = tcp_cache_get_cookie_len(tp); |
| 344 | if (cookie_len == 0) { |
| 345 | /* No cookie, so we request one */ |
| 346 | return 0; |
| 347 | } |
| 348 | |
| 349 | /* There is not enough space for the cookie, so we cannot do TFO */ |
| 350 | if (MAX_TCPOPTLEN - optlen < cookie_len) { |
| 351 | goto fallback; |
| 352 | } |
| 353 | |
| 354 | /* Do not send SYN+data if there is more in the queue than MSS */ |
| 355 | if (so->so_snd.sb_cc > (tp->t_maxopd - MAX_TCPOPTLEN)) { |
| 356 | goto fallback; |
| 357 | } |
| 358 | |
| 359 | /* Ok, everything looks good. We can go on and do TFO */ |
| 360 | return len; |
| 361 | |
| 362 | fallback: |
| 363 | tcp_disable_tfo(tp); |
| 364 | return 0; |
| 365 | } |
| 366 | |
| 367 | /* Returns the number of bytes written to the TCP option-space */ |
| 368 | __attribute__((noinline)) |
| 369 | static unsigned int |
| 370 | tcp_tfo_write_cookie_rep(struct tcpcb *tp, unsigned int optlen, u_char *opt) |
| 371 | { |
| 372 | u_char out[CCAES_BLOCK_SIZE]; |
| 373 | unsigned ret = 0; |
| 374 | u_char *bp; |
| 375 | |
| 376 | if (MAX_TCPOPTLEN - optlen < |
| 377 | TCPOLEN_FASTOPEN_REQ + TFO_COOKIE_LEN_DEFAULT) { |
| 378 | return ret; |
| 379 | } |
| 380 | |
| 381 | tcp_tfo_gen_cookie(inp: tp->t_inpcb, out, blk_size: sizeof(out)); |
| 382 | |
| 383 | bp = opt + optlen; |
| 384 | |
| 385 | *bp++ = TCPOPT_FASTOPEN; |
| 386 | *bp++ = 2 + TFO_COOKIE_LEN_DEFAULT; |
| 387 | memcpy(dst: bp, src: out, TFO_COOKIE_LEN_DEFAULT); |
| 388 | ret += 2 + TFO_COOKIE_LEN_DEFAULT; |
| 389 | |
| 390 | tp->t_tfo_stats |= TFO_S_COOKIE_SENT; |
| 391 | tcpstat.tcps_tfo_cookie_sent++; |
| 392 | |
| 393 | return ret; |
| 394 | } |
| 395 | |
| 396 | __attribute__((noinline)) |
| 397 | static unsigned int |
| 398 | tcp_tfo_write_cookie(struct tcpcb *tp, unsigned int optlen, int32_t len, |
| 399 | u_char *opt) |
| 400 | { |
| 401 | uint8_t tfo_len; |
| 402 | struct socket *so = tp->t_inpcb->inp_socket; |
| 403 | unsigned ret = 0; |
| 404 | int res; |
| 405 | u_char *bp; |
| 406 | |
| 407 | if (TCPOLEN_FASTOPEN_REQ > MAX_TCPOPTLEN - optlen) { |
| 408 | return 0; |
| 409 | } |
| 410 | tfo_len = (uint8_t)(MAX_TCPOPTLEN - optlen - TCPOLEN_FASTOPEN_REQ); |
| 411 | |
| 412 | if (so->so_flags1 & SOF1_DATA_AUTHENTICATED) { |
| 413 | /* If there is some data, let's track it */ |
| 414 | if (len > 0) { |
| 415 | tp->t_tfo_stats |= TFO_S_SYN_DATA_SENT; |
| 416 | tcpstat.tcps_tfo_syn_data_sent++; |
| 417 | } |
| 418 | |
| 419 | return 0; |
| 420 | } |
| 421 | |
| 422 | bp = opt + optlen; |
| 423 | |
| 424 | /* |
| 425 | * The cookie will be copied in the appropriate place within the |
| 426 | * TCP-option space. That way we avoid the need for an intermediate |
| 427 | * variable. |
| 428 | */ |
| 429 | res = tcp_cache_get_cookie(tp, cookie: bp + TCPOLEN_FASTOPEN_REQ, len: &tfo_len); |
| 430 | if (res == 0) { |
| 431 | *bp++ = TCPOPT_FASTOPEN; |
| 432 | *bp++ = TCPOLEN_FASTOPEN_REQ; |
| 433 | ret += TCPOLEN_FASTOPEN_REQ; |
| 434 | |
| 435 | tp->t_tfo_flags |= TFO_F_COOKIE_REQ; |
| 436 | |
| 437 | tp->t_tfo_stats |= TFO_S_COOKIE_REQ; |
| 438 | tcpstat.tcps_tfo_cookie_req++; |
| 439 | } else { |
| 440 | *bp++ = TCPOPT_FASTOPEN; |
| 441 | *bp++ = TCPOLEN_FASTOPEN_REQ + tfo_len; |
| 442 | |
| 443 | ret += TCPOLEN_FASTOPEN_REQ + tfo_len; |
| 444 | |
| 445 | tp->t_tfo_flags |= TFO_F_COOKIE_SENT; |
| 446 | |
| 447 | /* If there is some data, let's track it */ |
| 448 | if (len > 0) { |
| 449 | tp->t_tfo_stats |= TFO_S_SYN_DATA_SENT; |
| 450 | tcpstat.tcps_tfo_syn_data_sent++; |
| 451 | } |
| 452 | } |
| 453 | |
| 454 | return ret; |
| 455 | } |
| 456 | |
| 457 | static inline bool |
| 458 | tcp_send_ecn_flags_on_syn(struct tcpcb *tp) |
| 459 | { |
| 460 | /* We allow Accurate ECN negotiation on first retransmission as well */ |
| 461 | bool send_on_first_retrans = (tp->ecn_flags & TE_ACE_SETUPSENT) && |
| 462 | (tp->t_rxtshift <= 1); |
| 463 | |
| 464 | return !(tp->ecn_flags & (TE_SETUPSENT | TE_ACE_SETUPSENT)) || send_on_first_retrans; |
| 465 | } |
| 466 | |
| 467 | void |
| 468 | tcp_set_ecn(struct tcpcb *tp, struct ifnet *ifp) |
| 469 | { |
| 470 | boolean_t inbound; |
| 471 | |
| 472 | /* |
| 473 | * Socket option has precedence |
| 474 | */ |
| 475 | if (tp->ecn_flags & TE_ECN_MODE_ENABLE) { |
| 476 | tp->ecn_flags |= TE_ENABLE_ECN; |
| 477 | goto check_heuristic; |
| 478 | } |
| 479 | |
| 480 | if (tp->ecn_flags & TE_ECN_MODE_DISABLE) { |
| 481 | tp->ecn_flags &= ~TE_ENABLE_ECN; |
| 482 | return; |
| 483 | } |
| 484 | /* |
| 485 | * Per interface setting comes next |
| 486 | */ |
| 487 | if (ifp != NULL) { |
| 488 | if (ifp->if_eflags & IFEF_ECN_ENABLE) { |
| 489 | tp->ecn_flags |= TE_ENABLE_ECN; |
| 490 | goto check_heuristic; |
| 491 | } |
| 492 | |
| 493 | if (ifp->if_eflags & IFEF_ECN_DISABLE) { |
| 494 | tp->ecn_flags &= ~TE_ENABLE_ECN; |
| 495 | return; |
| 496 | } |
| 497 | } |
| 498 | /* |
| 499 | * System wide settings come last |
| 500 | */ |
| 501 | inbound = (tp->t_inpcb->inp_socket->so_head != NULL); |
| 502 | if ((inbound && tcp_ecn_inbound == 1) || |
| 503 | (!inbound && tcp_ecn_outbound == 1)) { |
| 504 | tp->ecn_flags |= TE_ENABLE_ECN; |
| 505 | goto check_heuristic; |
| 506 | } else { |
| 507 | tp->ecn_flags &= ~TE_ENABLE_ECN; |
| 508 | } |
| 509 | |
| 510 | return; |
| 511 | |
| 512 | check_heuristic: |
| 513 | if (TCP_ACC_ECN_ENABLED(tp)) { |
| 514 | /* Allow ECN when Accurate ECN is enabled until heuristics are fixed */ |
| 515 | tp->ecn_flags |= TE_ENABLE_ECN; |
| 516 | /* Set the accurate ECN state */ |
| 517 | if (tp->t_client_accecn_state == tcp_connection_client_accurate_ecn_feature_disabled) { |
| 518 | tp->t_client_accecn_state = tcp_connection_client_accurate_ecn_feature_enabled; |
| 519 | } |
| 520 | if (tp->t_server_accecn_state == tcp_connection_server_accurate_ecn_feature_disabled) { |
| 521 | tp->t_server_accecn_state = tcp_connection_server_accurate_ecn_feature_enabled; |
| 522 | } |
| 523 | } |
| 524 | if (!tcp_heuristic_do_ecn(tp) && !TCP_ACC_ECN_ENABLED(tp)) { |
| 525 | /* Allow ECN when Accurate ECN is enabled until heuristics are fixed */ |
| 526 | tp->ecn_flags &= ~TE_ENABLE_ECN; |
| 527 | } |
| 528 | /* |
| 529 | * If the interface setting, system-level setting and heuristics |
| 530 | * allow to enable ECN, randomly select 5% of connections to |
| 531 | * enable it |
| 532 | */ |
| 533 | if ((tp->ecn_flags & (TE_ECN_MODE_ENABLE | TE_ECN_MODE_DISABLE |
| 534 | | TE_ENABLE_ECN)) == TE_ENABLE_ECN) { |
| 535 | /* |
| 536 | * Use the random value in iss for randomizing |
| 537 | * this selection |
| 538 | */ |
| 539 | if ((tp->iss % 100) >= tcp_ecn_setup_percentage && !TCP_ACC_ECN_ENABLED(tp)) { |
| 540 | /* Don't disable Accurate ECN randomly */ |
| 541 | tp->ecn_flags &= ~TE_ENABLE_ECN; |
| 542 | } |
| 543 | } |
| 544 | } |
| 545 | |
| 546 | int |
| 547 | tcp_flight_size(struct tcpcb *tp) |
| 548 | { |
| 549 | int ret; |
| 550 | |
| 551 | VERIFY(tp->sackhint.sack_bytes_acked >= 0); |
| 552 | VERIFY(tp->sackhint.sack_bytes_rexmit >= 0); |
| 553 | |
| 554 | /* |
| 555 | * RFC6675, SetPipe (), SACK'd bytes are discounted. All the rest is still in-flight. |
| 556 | */ |
| 557 | ret = tp->snd_nxt - tp->snd_una - tp->sackhint.sack_bytes_acked; |
| 558 | |
| 559 | if (ret < 0) { |
| 560 | /* |
| 561 | * This happens when the RTO-timer fires because snd_nxt gets artificially |
| 562 | * decreased. If we then receive some SACK-blogs, sack_bytes_acked is |
| 563 | * going to be high. |
| 564 | */ |
| 565 | ret = 0; |
| 566 | } |
| 567 | |
| 568 | return ret; |
| 569 | } |
| 570 | |
| 571 | /* |
| 572 | * Either of ECT0 or ECT1 flag should be set |
| 573 | * when this function is called |
| 574 | */ |
| 575 | static void |
| 576 | tcp_add_accecn_option(struct tcpcb *tp, uint16_t flags, uint32_t *lp, uint8_t *optlen) |
| 577 | { |
| 578 | uint8_t max_len = TCP_MAXOLEN - *optlen; |
| 579 | uint8_t len = TCPOLEN_ACCECN_EMPTY; |
| 580 | |
| 581 | uint32_t e1b = (uint32_t)(tp->t_rcv_ect1_bytes & TCP_ACO_MASK); |
| 582 | uint32_t e0b = (uint32_t)(tp->t_rcv_ect0_bytes & TCP_ACO_MASK); |
| 583 | uint32_t ceb = (uint32_t)(tp->t_rcv_ce_bytes & TCP_ACO_MASK); |
| 584 | |
| 585 | if (max_len < TCPOLEN_ACCECN_EMPTY) { |
| 586 | TCP_LOG(tp, "not enough space to add any AccECN option" ); |
| 587 | return; |
| 588 | } |
| 589 | |
| 590 | if (!(flags & TH_SYN || (tp->ecn_flags & TE_ACE_FINAL_ACK_3WHS) || |
| 591 | tp->snd_una == tp->iss + 1 || |
| 592 | tp->ecn_flags & (TE_ACO_ECT1 | TE_ACO_ECT0))) { |
| 593 | /* |
| 594 | * Since this is neither a SYN-ACK packet, nor the final ACK of |
| 595 | * the 3WHS (nor the first acked data segment) nor any of the ECT byte |
| 596 | * counter flags are set, no need to send the option. |
| 597 | */ |
| 598 | return; |
| 599 | } |
| 600 | |
| 601 | if ((flags & (TH_SYN | TH_ACK)) == (TH_SYN | TH_ACK) && |
| 602 | tp->t_rxtshift >= 1) { |
| 603 | /* |
| 604 | * If this is a SYN-ACK retransmission (first), |
| 605 | * retry without AccECN option and just with ACE fields. |
| 606 | * From second retransmission onwards, we don't send any |
| 607 | * Accurate ECN state. |
| 608 | */ |
| 609 | return; |
| 610 | } |
| 611 | |
| 612 | if (max_len < (TCPOLEN_ACCECN_EMPTY + 1 * TCPOLEN_ACCECN_COUNTER)) { |
| 613 | /* Can carry EMPTY option which can be used to test path in SYN-ACK packet */ |
| 614 | if (flags & TH_SYN) { |
| 615 | *lp++ = htonl((TCPOPT_ACCECN1 << 24) | (len << 16) | |
| 616 | (TCPOPT_NOP << 8) | TCPOPT_NOP); |
| 617 | *optlen += len + 2; /* 2 NOPs */ |
| 618 | TCP_LOG(tp, "add empty AccECN option, optlen=%u" , *optlen); |
| 619 | } |
| 620 | } else if (max_len < (TCPOLEN_ACCECN_EMPTY + 2 * TCPOLEN_ACCECN_COUNTER)) { |
| 621 | /* Can carry one option */ |
| 622 | len += 1 * TCPOLEN_ACCECN_COUNTER; |
| 623 | if (tp->ecn_flags & TE_ACO_ECT1) { |
| 624 | *lp++ = htonl((TCPOPT_ACCECN1 << 24) | (len << 16) | ((e1b >> 8) & 0xffff)); |
| 625 | *lp++ = htonl(((e1b & 0xff) << 24) | (TCPOPT_NOP << 16) | (TCPOPT_NOP << 8) | TCPOPT_NOP); |
| 626 | } else { |
| 627 | *lp++ = htonl((TCPOPT_ACCECN0 << 24) | (len << 16) | ((e0b >> 8) & 0xffff)); |
| 628 | *lp++ = htonl(((e0b & 0xff) << 24) | (TCPOPT_NOP << 16) | (TCPOPT_NOP << 8) | TCPOPT_NOP); |
| 629 | } |
| 630 | *optlen += len + 3; /* 3 NOPs */ |
| 631 | TCP_LOG(tp, "add single counter for AccECN option, optlen=%u" , *optlen); |
| 632 | } else if (max_len < (TCPOLEN_ACCECN_EMPTY + 3 * TCPOLEN_ACCECN_COUNTER)) { |
| 633 | /* Can carry two options */ |
| 634 | len += 2 * TCPOLEN_ACCECN_COUNTER; |
| 635 | if (tp->ecn_flags & TE_ACO_ECT1) { |
| 636 | *lp++ = htonl((TCPOPT_ACCECN1 << 24) | (len << 16) | ((e1b >> 8) & 0xffff)); |
| 637 | *lp++ = htonl(((e1b & 0xff) << 24) | (ceb & 0xffffff)); |
| 638 | } else { |
| 639 | *lp++ = htonl((TCPOPT_ACCECN0 << 24) | (len << 16) | ((e0b >> 8) & 0xffff)); |
| 640 | *lp++ = htonl(((e0b & 0xff) << 24) | (ceb & 0xffffff)); |
| 641 | } |
| 642 | *optlen += len; /* 0 NOPs */ |
| 643 | TCP_LOG(tp, "add 2 counters for AccECN option, optlen=%u" , *optlen); |
| 644 | } else { |
| 645 | /* |
| 646 | * TCP option sufficient to hold full AccECN option |
| 647 | * but send counter that changed during the entire connection. |
| 648 | */ |
| 649 | len += 3 * TCPOLEN_ACCECN_COUNTER; |
| 650 | /* Can carry all three options */ |
| 651 | if (tp->ecn_flags & TE_ACO_ECT1) { |
| 652 | *lp++ = htonl((TCPOPT_ACCECN1 << 24) | (len << 16) | ((e1b >> 8) & 0xffff)); |
| 653 | *lp++ = htonl(((e1b & 0xff) << 24) | (ceb & 0xffffff)); |
| 654 | *lp++ = htonl(((e0b & 0xffffff) << 8) | TCPOPT_NOP); |
| 655 | } else { |
| 656 | *lp++ = htonl((TCPOPT_ACCECN0 << 24) | (len << 16) | ((e0b >> 8) & 0xffff)); |
| 657 | *lp++ = htonl(((e0b & 0xff) << 24) | (ceb & 0xffffff)); |
| 658 | *lp++ = htonl(((e1b & 0xffffff) << 8) | TCPOPT_NOP); |
| 659 | } |
| 660 | *optlen += len + 1; /* 1 NOP */ |
| 661 | TCP_LOG(tp, "add all 3 counters for AccECN option, optlen=%u" , *optlen); |
| 662 | } |
| 663 | } |
| 664 | |
| 665 | /* |
| 666 | * Tcp output routine: figure out what should be sent and send it. |
| 667 | * |
| 668 | * Returns: 0 Success |
| 669 | * EADDRNOTAVAIL |
| 670 | * ENOBUFS |
| 671 | * EMSGSIZE |
| 672 | * EHOSTUNREACH |
| 673 | * ENETDOWN |
| 674 | * ip_output_list:ENOMEM |
| 675 | * ip_output_list:EADDRNOTAVAIL |
| 676 | * ip_output_list:ENETUNREACH |
| 677 | * ip_output_list:EHOSTUNREACH |
| 678 | * ip_output_list:EACCES |
| 679 | * ip_output_list:EMSGSIZE |
| 680 | * ip_output_list:ENOBUFS |
| 681 | * ip_output_list:??? [ignorable: mostly IPSEC/firewall/DLIL] |
| 682 | * ip6_output_list:EINVAL |
| 683 | * ip6_output_list:EOPNOTSUPP |
| 684 | * ip6_output_list:EHOSTUNREACH |
| 685 | * ip6_output_list:EADDRNOTAVAIL |
| 686 | * ip6_output_list:ENETUNREACH |
| 687 | * ip6_output_list:EMSGSIZE |
| 688 | * ip6_output_list:ENOBUFS |
| 689 | * ip6_output_list:??? [ignorable: mostly IPSEC/firewall/DLIL] |
| 690 | */ |
| 691 | int |
| 692 | tcp_output(struct tcpcb *tp) |
| 693 | { |
| 694 | struct inpcb *inp = tp->t_inpcb; |
| 695 | struct socket *so = inp->inp_socket; |
| 696 | int32_t len, recwin, sendwin, off; |
| 697 | uint32_t max_len = 0; |
| 698 | uint16_t flags; |
| 699 | int error; |
| 700 | struct mbuf *m; |
| 701 | struct ip *ip = NULL; |
| 702 | struct ip6_hdr *ip6 = NULL; |
| 703 | struct tcphdr *th; |
| 704 | u_char opt[TCP_MAXOLEN]; |
| 705 | unsigned int ipoptlen, optlen, hdrlen; |
| 706 | int idle, sendalot, lost = 0; |
| 707 | int sendalot_cnt = 0; |
| 708 | int i, sack_rxmit; |
| 709 | int tso = 0; |
| 710 | int sack_bytes_rxmt; |
| 711 | tcp_seq old_snd_nxt = 0; |
| 712 | struct sackhole *p; |
| 713 | #if IPSEC |
| 714 | size_t ipsec_optlen = 0; |
| 715 | #endif /* IPSEC */ |
| 716 | int idle_time = 0; |
| 717 | struct mbuf *packetlist = NULL; |
| 718 | struct mbuf *tp_inp_options = inp->inp_depend4.inp4_options; |
| 719 | int isipv6 = inp->inp_vflag & INP_IPV6; |
| 720 | int packchain_listadd = 0; |
| 721 | int so_options = so->so_options; |
| 722 | struct rtentry *rt; |
| 723 | u_int32_t svc_flags = 0, allocated_len; |
| 724 | #if MPTCP |
| 725 | boolean_t mptcp_acknow; |
| 726 | #endif /* MPTCP */ |
| 727 | boolean_t cell = FALSE; |
| 728 | boolean_t wifi = FALSE; |
| 729 | boolean_t wired = FALSE; |
| 730 | boolean_t sack_rescue_rxt = FALSE; |
| 731 | int sotc = so->so_traffic_class; |
| 732 | boolean_t do_not_compress = FALSE; |
| 733 | boolean_t sack_rxmted = FALSE; |
| 734 | |
| 735 | /* |
| 736 | * Determine length of data that should be transmitted, |
| 737 | * and flags that will be used. |
| 738 | * If there is some data or critical controls (SYN, RST) |
| 739 | * to send, then transmit; otherwise, investigate further. |
| 740 | */ |
| 741 | idle = (tp->t_flags & TF_LASTIDLE) || (tp->snd_max == tp->snd_una); |
| 742 | |
| 743 | /* Since idle_time is signed integer, the following integer subtraction |
| 744 | * will take care of wrap around of tcp_now |
| 745 | */ |
| 746 | idle_time = tcp_now - tp->t_rcvtime; |
| 747 | if (idle && idle_time >= TCP_IDLETIMEOUT(tp)) { |
| 748 | if (CC_ALGO(tp)->after_idle != NULL && |
| 749 | (tp->tcp_cc_index != TCP_CC_ALGO_CUBIC_INDEX || |
| 750 | idle_time >= TCP_CC_CWND_NONVALIDATED_PERIOD)) { |
| 751 | CC_ALGO(tp)->after_idle(tp); |
| 752 | tcp_ccdbg_trace(tp, NULL, event: TCP_CC_IDLE_TIMEOUT); |
| 753 | } |
| 754 | |
| 755 | /* |
| 756 | * Do some other tasks that need to be done after |
| 757 | * idle time |
| 758 | */ |
| 759 | if (!SLIST_EMPTY(&tp->t_rxt_segments)) { |
| 760 | tcp_rxtseg_clean(tp); |
| 761 | } |
| 762 | |
| 763 | /* If stretch ack was auto-disabled, re-evaluate it */ |
| 764 | tcp_cc_after_idle_stretchack(tp); |
| 765 | tp->t_forced_acks = TCP_FORCED_ACKS_COUNT; |
| 766 | } |
| 767 | tp->t_flags &= ~TF_LASTIDLE; |
| 768 | if (idle) { |
| 769 | if (tp->t_flags & TF_MORETOCOME) { |
| 770 | tp->t_flags |= TF_LASTIDLE; |
| 771 | idle = 0; |
| 772 | } |
| 773 | } |
| 774 | #if MPTCP |
| 775 | if (tp->t_mpflags & TMPF_RESET) { |
| 776 | tcp_check_timer_state(tp); |
| 777 | /* |
| 778 | * Once a RST has been sent for an MPTCP subflow, |
| 779 | * the subflow socket stays around until deleted. |
| 780 | * No packets such as FINs must be sent after RST. |
| 781 | */ |
| 782 | return 0; |
| 783 | } |
| 784 | #endif /* MPTCP */ |
| 785 | |
| 786 | again: |
| 787 | #if MPTCP |
| 788 | mptcp_acknow = FALSE; |
| 789 | |
| 790 | if (so->so_flags & SOF_MP_SUBFLOW && SEQ_LT(tp->snd_nxt, tp->snd_una)) { |
| 791 | os_log_error(mptcp_log_handle, "%s - %lx: snd_nxt is %u and snd_una is %u, cnt %d\n" , |
| 792 | __func__, (unsigned long)VM_KERNEL_ADDRPERM(tp->t_mpsub->mpts_mpte), |
| 793 | tp->snd_nxt, tp->snd_una, sendalot_cnt); |
| 794 | } |
| 795 | #endif |
| 796 | do_not_compress = FALSE; |
| 797 | sendalot_cnt++; |
| 798 | |
| 799 | KERNEL_DEBUG(DBG_FNC_TCP_OUTPUT | DBG_FUNC_START, 0, 0, 0, 0, 0); |
| 800 | |
| 801 | if (isipv6) { |
| 802 | KERNEL_DEBUG(DBG_LAYER_BEG, |
| 803 | ((inp->inp_fport << 16) | inp->inp_lport), |
| 804 | (((inp->in6p_laddr.s6_addr16[0] & 0xffff) << 16) | |
| 805 | (inp->in6p_faddr.s6_addr16[0] & 0xffff)), |
| 806 | sendalot, 0, 0); |
| 807 | } else { |
| 808 | KERNEL_DEBUG(DBG_LAYER_BEG, |
| 809 | ((inp->inp_fport << 16) | inp->inp_lport), |
| 810 | (((inp->inp_laddr.s_addr & 0xffff) << 16) | |
| 811 | (inp->inp_faddr.s_addr & 0xffff)), |
| 812 | sendalot, 0, 0); |
| 813 | } |
| 814 | /* |
| 815 | * If the route generation id changed, we need to check that our |
| 816 | * local (source) IP address is still valid. If it isn't either |
| 817 | * return error or silently do nothing (assuming the address will |
| 818 | * come back before the TCP connection times out). |
| 819 | */ |
| 820 | rt = inp->inp_route.ro_rt; |
| 821 | if (rt != NULL && ROUTE_UNUSABLE(&tp->t_inpcb->inp_route)) { |
| 822 | struct ifnet *ifp; |
| 823 | struct in_ifaddr *ia = NULL; |
| 824 | struct in6_ifaddr *ia6 = NULL; |
| 825 | int found_srcaddr = 0; |
| 826 | |
| 827 | /* disable multipages at the socket */ |
| 828 | somultipages(so, FALSE); |
| 829 | |
| 830 | /* Disable TSO for the socket until we know more */ |
| 831 | tp->t_flags &= ~TF_TSO; |
| 832 | |
| 833 | soif2kcl(so, FALSE); |
| 834 | |
| 835 | if (isipv6) { |
| 836 | ia6 = ifa_foraddr6(&inp->in6p_laddr); |
| 837 | if (ia6 != NULL) { |
| 838 | found_srcaddr = 1; |
| 839 | } |
| 840 | } else { |
| 841 | ia = ifa_foraddr(inp->inp_laddr.s_addr); |
| 842 | if (ia != NULL) { |
| 843 | found_srcaddr = 1; |
| 844 | } |
| 845 | } |
| 846 | |
| 847 | /* check that the source address is still valid */ |
| 848 | if (found_srcaddr == 0) { |
| 849 | soevent(so, |
| 850 | hint: (SO_FILT_HINT_LOCKED | SO_FILT_HINT_NOSRCADDR)); |
| 851 | |
| 852 | if (tp->t_state >= TCPS_CLOSE_WAIT) { |
| 853 | tcp_drop(tp, EADDRNOTAVAIL); |
| 854 | return EADDRNOTAVAIL; |
| 855 | } |
| 856 | |
| 857 | /* |
| 858 | * Set retransmit timer if it wasn't set, |
| 859 | * reset Persist timer and shift register as the |
| 860 | * advertised peer window may not be valid anymore |
| 861 | */ |
| 862 | if (tp->t_timer[TCPT_REXMT] == 0) { |
| 863 | tp->t_timer[TCPT_REXMT] = |
| 864 | OFFSET_FROM_START(tp, tp->t_rxtcur); |
| 865 | if (tp->t_timer[TCPT_PERSIST] != 0) { |
| 866 | tp->t_timer[TCPT_PERSIST] = 0; |
| 867 | tp->t_persist_stop = 0; |
| 868 | TCP_RESET_REXMT_STATE(tp); |
| 869 | } |
| 870 | } |
| 871 | |
| 872 | if (tp->t_pktlist_head != NULL) { |
| 873 | m_freem_list(tp->t_pktlist_head); |
| 874 | } |
| 875 | TCP_PKTLIST_CLEAR(tp); |
| 876 | |
| 877 | /* drop connection if source address isn't available */ |
| 878 | if (so->so_flags & SOF_NOADDRAVAIL) { |
| 879 | tcp_drop(tp, EADDRNOTAVAIL); |
| 880 | return EADDRNOTAVAIL; |
| 881 | } else { |
| 882 | TCP_LOG_OUTPUT(tp, "no source address silently ignored" ); |
| 883 | tcp_check_timer_state(tp); |
| 884 | return 0; /* silently ignore, keep data in socket: address may be back */ |
| 885 | } |
| 886 | } |
| 887 | if (ia != NULL) { |
| 888 | ifa_remref(ifa: &ia->ia_ifa); |
| 889 | } |
| 890 | |
| 891 | if (ia6 != NULL) { |
| 892 | ifa_remref(ifa: &ia6->ia_ifa); |
| 893 | } |
| 894 | |
| 895 | /* |
| 896 | * Address is still valid; check for multipages capability |
| 897 | * again in case the outgoing interface has changed. |
| 898 | */ |
| 899 | RT_LOCK(rt); |
| 900 | if ((ifp = rt->rt_ifp) != NULL) { |
| 901 | somultipages(so, (ifp->if_hwassist & IFNET_MULTIPAGES)); |
| 902 | tcp_set_tso(tp, ifp); |
| 903 | soif2kcl(so, (ifp->if_eflags & IFEF_2KCL)); |
| 904 | tcp_set_ecn(tp, ifp); |
| 905 | } |
| 906 | if (rt->rt_flags & RTF_UP) { |
| 907 | RT_GENID_SYNC(rt); |
| 908 | } |
| 909 | /* |
| 910 | * See if we should do MTU discovery. Don't do it if: |
| 911 | * 1) it is disabled via the sysctl |
| 912 | * 2) the route isn't up |
| 913 | * 3) the MTU is locked (if it is, then discovery |
| 914 | * has been disabled) |
| 915 | */ |
| 916 | |
| 917 | if (!path_mtu_discovery || ((rt != NULL) && |
| 918 | (!(rt->rt_flags & RTF_UP) || |
| 919 | (rt->rt_rmx.rmx_locks & RTV_MTU)))) { |
| 920 | tp->t_flags &= ~TF_PMTUD; |
| 921 | } else { |
| 922 | tp->t_flags |= TF_PMTUD; |
| 923 | } |
| 924 | |
| 925 | RT_UNLOCK(rt); |
| 926 | } |
| 927 | |
| 928 | if (rt != NULL) { |
| 929 | cell = IFNET_IS_CELLULAR(rt->rt_ifp); |
| 930 | wifi = (!cell && IFNET_IS_WIFI(rt->rt_ifp)); |
| 931 | wired = (!wifi && IFNET_IS_WIRED(rt->rt_ifp)); |
| 932 | } |
| 933 | |
| 934 | /* |
| 935 | * If we've recently taken a timeout, snd_max will be greater than |
| 936 | * snd_nxt. There may be SACK information that allows us to avoid |
| 937 | * resending already delivered data. Adjust snd_nxt accordingly. |
| 938 | */ |
| 939 | if (SACK_ENABLED(tp) && SEQ_LT(tp->snd_nxt, tp->snd_max)) { |
| 940 | max_len = tcp_sack_adjust(tp); |
| 941 | } |
| 942 | sendalot = 0; |
| 943 | off = tp->snd_nxt - tp->snd_una; |
| 944 | sendwin = min(a: tp->snd_wnd, b: tp->snd_cwnd); |
| 945 | |
| 946 | if (tp->t_flags & TF_SLOWLINK && slowlink_wsize > 0) { |
| 947 | sendwin = min(a: sendwin, b: slowlink_wsize); |
| 948 | } |
| 949 | |
| 950 | flags = tcp_outflags[tp->t_state]; |
| 951 | /* |
| 952 | * Send any SACK-generated retransmissions. If we're explicitly |
| 953 | * trying to send out new data (when sendalot is 1), bypass this |
| 954 | * function. If we retransmit in fast recovery mode, decrement |
| 955 | * snd_cwnd, since we're replacing a (future) new transmission |
| 956 | * with a retransmission now, and we previously incremented |
| 957 | * snd_cwnd in tcp_input(). |
| 958 | */ |
| 959 | /* |
| 960 | * Still in sack recovery , reset rxmit flag to zero. |
| 961 | */ |
| 962 | sack_rxmit = 0; |
| 963 | sack_bytes_rxmt = 0; |
| 964 | len = 0; |
| 965 | p = NULL; |
| 966 | if (SACK_ENABLED(tp) && IN_FASTRECOVERY(tp) && |
| 967 | (p = tcp_sack_output(tp, sack_bytes_rexmt: &sack_bytes_rxmt))) { |
| 968 | int32_t cwin; |
| 969 | |
| 970 | if (tcp_do_better_lr) { |
| 971 | cwin = min(a: tp->snd_wnd, b: tp->snd_cwnd) - tcp_flight_size(tp); |
| 972 | if (cwin <= 0 && sack_rxmted == FALSE) { |
| 973 | /* Allow to clock out at least on per period */ |
| 974 | cwin = tp->t_maxseg; |
| 975 | } |
| 976 | |
| 977 | sack_rxmted = TRUE; |
| 978 | } else { |
| 979 | cwin = min(a: tp->snd_wnd, b: tp->snd_cwnd) - sack_bytes_rxmt; |
| 980 | } |
| 981 | if (cwin < 0) { |
| 982 | cwin = 0; |
| 983 | } |
| 984 | /* Do not retransmit SACK segments beyond snd_recover */ |
| 985 | if (SEQ_GT(p->end, tp->snd_recover)) { |
| 986 | /* |
| 987 | * (At least) part of sack hole extends beyond |
| 988 | * snd_recover. Check to see if we can rexmit data |
| 989 | * for this hole. |
| 990 | */ |
| 991 | if (SEQ_GEQ(p->rxmit, tp->snd_recover)) { |
| 992 | /* |
| 993 | * Can't rexmit any more data for this hole. |
| 994 | * That data will be rexmitted in the next |
| 995 | * sack recovery episode, when snd_recover |
| 996 | * moves past p->rxmit. |
| 997 | */ |
| 998 | p = NULL; |
| 999 | goto after_sack_rexmit; |
| 1000 | } else { |
| 1001 | /* Can rexmit part of the current hole */ |
| 1002 | len = ((int32_t)min(a: cwin, |
| 1003 | b: tp->snd_recover - p->rxmit)); |
| 1004 | } |
| 1005 | } else { |
| 1006 | len = ((int32_t)min(a: cwin, b: p->end - p->rxmit)); |
| 1007 | } |
| 1008 | if (len > 0) { |
| 1009 | off = p->rxmit - tp->snd_una; |
| 1010 | sack_rxmit = 1; |
| 1011 | sendalot = 1; |
| 1012 | /* Everything sent after snd_nxt will allow us to account for fast-retransmit of the retransmitted segment */ |
| 1013 | tp->send_highest_sack = tp->snd_nxt; |
| 1014 | tp->t_new_dupacks = 0; |
| 1015 | tcpstat.tcps_sack_rexmits++; |
| 1016 | tcpstat.tcps_sack_rexmit_bytes += |
| 1017 | min(a: len, b: tp->t_maxseg); |
| 1018 | } else { |
| 1019 | len = 0; |
| 1020 | } |
| 1021 | } |
| 1022 | after_sack_rexmit: |
| 1023 | /* |
| 1024 | * Get standard flags, and add SYN or FIN if requested by 'hidden' |
| 1025 | * state flags. |
| 1026 | */ |
| 1027 | if (tp->t_flags & TF_NEEDFIN) { |
| 1028 | flags |= TH_FIN; |
| 1029 | } |
| 1030 | |
| 1031 | /* |
| 1032 | * If in persist timeout with window of 0, send 1 byte. |
| 1033 | * Otherwise, if window is small but nonzero |
| 1034 | * and timer expired, we will send what we can |
| 1035 | * and go to transmit state. |
| 1036 | */ |
| 1037 | if (tp->t_flagsext & TF_FORCE) { |
| 1038 | if (sendwin == 0) { |
| 1039 | /* |
| 1040 | * If we still have some data to send, then |
| 1041 | * clear the FIN bit. Usually this would |
| 1042 | * happen below when it realizes that we |
| 1043 | * aren't sending all the data. However, |
| 1044 | * if we have exactly 1 byte of unsent data, |
| 1045 | * then it won't clear the FIN bit below, |
| 1046 | * and if we are in persist state, we wind |
| 1047 | * up sending the packet without recording |
| 1048 | * that we sent the FIN bit. |
| 1049 | * |
| 1050 | * We can't just blindly clear the FIN bit, |
| 1051 | * because if we don't have any more data |
| 1052 | * to send then the probe will be the FIN |
| 1053 | * itself. |
| 1054 | */ |
| 1055 | if (off < so->so_snd.sb_cc) { |
| 1056 | flags &= ~TH_FIN; |
| 1057 | } |
| 1058 | sendwin = 1; |
| 1059 | } else { |
| 1060 | tp->t_timer[TCPT_PERSIST] = 0; |
| 1061 | tp->t_persist_stop = 0; |
| 1062 | TCP_RESET_REXMT_STATE(tp); |
| 1063 | } |
| 1064 | } |
| 1065 | |
| 1066 | /* |
| 1067 | * If snd_nxt == snd_max and we have transmitted a FIN, the |
| 1068 | * offset will be > 0 even if so_snd.sb_cc is 0, resulting in |
| 1069 | * a negative length. This can also occur when TCP opens up |
| 1070 | * its congestion window while receiving additional duplicate |
| 1071 | * acks after fast-retransmit because TCP will reset snd_nxt |
| 1072 | * to snd_max after the fast-retransmit. |
| 1073 | * |
| 1074 | * In the normal retransmit-FIN-only case, however, snd_nxt will |
| 1075 | * be set to snd_una, the offset will be 0, and the length may |
| 1076 | * wind up 0. |
| 1077 | * |
| 1078 | * If sack_rxmit is true we are retransmitting from the scoreboard |
| 1079 | * in which case len is already set. |
| 1080 | */ |
| 1081 | if (sack_rxmit == 0) { |
| 1082 | if (sack_bytes_rxmt == 0) { |
| 1083 | len = min(a: so->so_snd.sb_cc, b: sendwin) - off; |
| 1084 | } else { |
| 1085 | int32_t cwin; |
| 1086 | |
| 1087 | if (tcp_do_better_lr) { |
| 1088 | cwin = tp->snd_cwnd - tcp_flight_size(tp); |
| 1089 | } else { |
| 1090 | cwin = tp->snd_cwnd - |
| 1091 | (tp->snd_nxt - tp->sack_newdata) - |
| 1092 | sack_bytes_rxmt; |
| 1093 | } |
| 1094 | if (cwin < 0) { |
| 1095 | cwin = 0; |
| 1096 | } |
| 1097 | /* |
| 1098 | * We are inside of a SACK recovery episode and are |
| 1099 | * sending new data, having retransmitted all the |
| 1100 | * data possible in the scoreboard. |
| 1101 | */ |
| 1102 | len = min(a: so->so_snd.sb_cc, b: tp->snd_wnd) - off; |
| 1103 | /* |
| 1104 | * Don't remove this (len > 0) check ! |
| 1105 | * We explicitly check for len > 0 here (although it |
| 1106 | * isn't really necessary), to work around a gcc |
| 1107 | * optimization issue - to force gcc to compute |
| 1108 | * len above. Without this check, the computation |
| 1109 | * of len is bungled by the optimizer. |
| 1110 | */ |
| 1111 | if (len > 0) { |
| 1112 | len = imin(a: len, b: cwin); |
| 1113 | } else { |
| 1114 | len = 0; |
| 1115 | } |
| 1116 | /* |
| 1117 | * At this point SACK recovery can not send any |
| 1118 | * data from scoreboard or any new data. Check |
| 1119 | * if we can do a rescue retransmit towards the |
| 1120 | * tail end of recovery window. |
| 1121 | */ |
| 1122 | if (len == 0 && cwin > 0 && |
| 1123 | SEQ_LT(tp->snd_fack, tp->snd_recover) && |
| 1124 | !(tp->t_flagsext & TF_RESCUE_RXT)) { |
| 1125 | len = min(a: (tp->snd_recover - tp->snd_fack), |
| 1126 | b: tp->t_maxseg); |
| 1127 | len = imin(a: len, b: cwin); |
| 1128 | old_snd_nxt = tp->snd_nxt; |
| 1129 | sack_rescue_rxt = TRUE; |
| 1130 | tp->snd_nxt = tp->snd_recover - len; |
| 1131 | /* |
| 1132 | * If FIN has been sent, snd_max |
| 1133 | * must have been advanced to cover it. |
| 1134 | */ |
| 1135 | if ((tp->t_flags & TF_SENTFIN) && |
| 1136 | tp->snd_max == tp->snd_recover) { |
| 1137 | tp->snd_nxt--; |
| 1138 | } |
| 1139 | |
| 1140 | off = tp->snd_nxt - tp->snd_una; |
| 1141 | sendalot = 0; |
| 1142 | tp->t_flagsext |= TF_RESCUE_RXT; |
| 1143 | } |
| 1144 | } |
| 1145 | } |
| 1146 | |
| 1147 | if (max_len != 0 && len > 0) { |
| 1148 | len = min(a: len, b: max_len); |
| 1149 | } |
| 1150 | |
| 1151 | /* |
| 1152 | * Lop off SYN bit if it has already been sent. However, if this |
| 1153 | * is SYN-SENT state and if segment contains data and if we don't |
| 1154 | * know that foreign host supports TAO, suppress sending segment. |
| 1155 | */ |
| 1156 | if ((flags & TH_SYN) && SEQ_GT(tp->snd_nxt, tp->snd_una)) { |
| 1157 | if (tp->t_state == TCPS_SYN_RECEIVED && tfo_enabled(tp) && tp->snd_nxt == tp->snd_una + 1) { |
| 1158 | /* We are sending the SYN again! */ |
| 1159 | off--; |
| 1160 | len++; |
| 1161 | } else { |
| 1162 | if (tp->t_state != TCPS_SYN_RECEIVED || tfo_enabled(tp)) { |
| 1163 | flags &= ~TH_SYN; |
| 1164 | } |
| 1165 | |
| 1166 | off--; |
| 1167 | len++; |
| 1168 | if (len > 0 && tp->t_state == TCPS_SYN_SENT) { |
| 1169 | while (inp->inp_sndinprog_cnt == 0 && |
| 1170 | tp->t_pktlist_head != NULL) { |
| 1171 | packetlist = tp->t_pktlist_head; |
| 1172 | packchain_listadd = tp->t_lastchain; |
| 1173 | packchain_sent++; |
| 1174 | TCP_PKTLIST_CLEAR(tp); |
| 1175 | |
| 1176 | error = tcp_ip_output(so, tp, packetlist, |
| 1177 | packchain_listadd, tp_inp_options, |
| 1178 | (so_options & SO_DONTROUTE), |
| 1179 | (sack_rxmit || (sack_bytes_rxmt != 0)), |
| 1180 | isipv6); |
| 1181 | } |
| 1182 | |
| 1183 | /* |
| 1184 | * tcp was closed while we were in ip, |
| 1185 | * resume close |
| 1186 | */ |
| 1187 | if (inp->inp_sndinprog_cnt == 0 && |
| 1188 | (tp->t_flags & TF_CLOSING)) { |
| 1189 | tp->t_flags &= ~TF_CLOSING; |
| 1190 | (void) tcp_close(tp); |
| 1191 | } else { |
| 1192 | tcp_check_timer_state(tp); |
| 1193 | } |
| 1194 | KERNEL_DEBUG(DBG_FNC_TCP_OUTPUT | DBG_FUNC_END, |
| 1195 | 0, 0, 0, 0, 0); |
| 1196 | return 0; |
| 1197 | } |
| 1198 | } |
| 1199 | } |
| 1200 | |
| 1201 | /* |
| 1202 | * Be careful not to send data and/or FIN on SYN segments. |
| 1203 | * This measure is needed to prevent interoperability problems |
| 1204 | * with not fully conformant TCP implementations. |
| 1205 | * |
| 1206 | * In case of TFO, we handle the setting of the len in |
| 1207 | * tcp_tfo_check. In case TFO is not enabled, never ever send |
| 1208 | * SYN+data. |
| 1209 | */ |
| 1210 | if ((flags & TH_SYN) && !tfo_enabled(tp)) { |
| 1211 | len = 0; |
| 1212 | flags &= ~TH_FIN; |
| 1213 | } |
| 1214 | |
| 1215 | /* |
| 1216 | * Don't send a RST with data. |
| 1217 | */ |
| 1218 | if (flags & TH_RST) { |
| 1219 | len = 0; |
| 1220 | } |
| 1221 | |
| 1222 | if ((flags & TH_SYN) && tp->t_state <= TCPS_SYN_SENT && tfo_enabled(tp)) { |
| 1223 | len = tcp_tfo_check(tp, len); |
| 1224 | } |
| 1225 | |
| 1226 | /* |
| 1227 | * The check here used to be (len < 0). Some times len is zero |
| 1228 | * when the congestion window is closed and we need to check |
| 1229 | * if persist timer has to be set in that case. But don't set |
| 1230 | * persist until connection is established. |
| 1231 | */ |
| 1232 | if (len <= 0 && !(flags & TH_SYN)) { |
| 1233 | /* |
| 1234 | * If FIN has been sent but not acked, |
| 1235 | * but we haven't been called to retransmit, |
| 1236 | * len will be < 0. Otherwise, window shrank |
| 1237 | * after we sent into it. If window shrank to 0, |
| 1238 | * cancel pending retransmit, pull snd_nxt back |
| 1239 | * to (closed) window, and set the persist timer |
| 1240 | * if it isn't already going. If the window didn't |
| 1241 | * close completely, just wait for an ACK. |
| 1242 | */ |
| 1243 | len = 0; |
| 1244 | if (sendwin == 0) { |
| 1245 | tp->t_timer[TCPT_REXMT] = 0; |
| 1246 | tp->t_timer[TCPT_PTO] = 0; |
| 1247 | TCP_RESET_REXMT_STATE(tp); |
| 1248 | tp->snd_nxt = tp->snd_una; |
| 1249 | off = 0; |
| 1250 | if (tp->t_timer[TCPT_PERSIST] == 0) { |
| 1251 | tcp_setpersist(tp); |
| 1252 | } |
| 1253 | } |
| 1254 | } |
| 1255 | |
| 1256 | /* |
| 1257 | * Automatic sizing of send socket buffer. Increase the send |
| 1258 | * socket buffer size if all of the following criteria are met |
| 1259 | * 1. the receiver has enough buffer space for this data |
| 1260 | * 2. send buffer is filled to 7/8th with data (so we actually |
| 1261 | * have data to make use of it); |
| 1262 | * 3. our send window (slow start and congestion controlled) is |
| 1263 | * larger than sent but unacknowledged data in send buffer. |
| 1264 | */ |
| 1265 | if (!INP_WAIT_FOR_IF_FEEDBACK(inp) && !IN_FASTRECOVERY(tp) && |
| 1266 | (so->so_snd.sb_flags & (SB_AUTOSIZE | SB_TRIM)) == SB_AUTOSIZE) { |
| 1267 | if ((tp->snd_wnd / 4 * 5) >= so->so_snd.sb_hiwat && |
| 1268 | so->so_snd.sb_cc >= (so->so_snd.sb_hiwat / 8 * 7) && |
| 1269 | sendwin >= (so->so_snd.sb_cc - (tp->snd_nxt - tp->snd_una))) { |
| 1270 | if (sbreserve(sb: &so->so_snd, |
| 1271 | cc: min(a: so->so_snd.sb_hiwat + tcp_autosndbuf_inc, |
| 1272 | b: tcp_autosndbuf_max)) == 1) { |
| 1273 | so->so_snd.sb_idealsize = so->so_snd.sb_hiwat; |
| 1274 | } |
| 1275 | } |
| 1276 | } |
| 1277 | |
| 1278 | /* |
| 1279 | * Truncate to the maximum segment length or enable TCP Segmentation |
| 1280 | * Offloading (if supported by hardware) and ensure that FIN is removed |
| 1281 | * if the length no longer contains the last data byte. |
| 1282 | * |
| 1283 | * TSO may only be used if we are in a pure bulk sending state. |
| 1284 | * The presence of TCP-MD5, SACK retransmits, SACK advertizements, |
| 1285 | * filters and IP options, as well as disabling hardware checksum |
| 1286 | * offload prevent using TSO. With TSO the TCP header is the same |
| 1287 | * (except for the sequence number) for all generated packets. This |
| 1288 | * makes it impossible to transmit any options which vary per generated |
| 1289 | * segment or packet. |
| 1290 | * |
| 1291 | * The length of TSO bursts is limited to TCP_MAXWIN. That limit and |
| 1292 | * removal of FIN (if not already catched here) are handled later after |
| 1293 | * the exact length of the TCP options are known. |
| 1294 | */ |
| 1295 | #if IPSEC |
| 1296 | /* |
| 1297 | * Pre-calculate here as we save another lookup into the darknesses |
| 1298 | * of IPsec that way and can actually decide if TSO is ok. |
| 1299 | */ |
| 1300 | if (ipsec_bypass == 0) { |
| 1301 | ipsec_optlen = ipsec_hdrsiz_tcp(tp); |
| 1302 | } |
| 1303 | #endif |
| 1304 | if (len > tp->t_maxseg) { |
| 1305 | if ((tp->t_flags & TF_TSO) && tcp_do_tso && hwcksum_tx && |
| 1306 | kipf_count == 0 && |
| 1307 | tp->rcv_numsacks == 0 && sack_rxmit == 0 && |
| 1308 | sack_bytes_rxmt == 0 && |
| 1309 | inp->inp_options == NULL && |
| 1310 | inp->in6p_options == NULL |
| 1311 | #if IPSEC |
| 1312 | && ipsec_optlen == 0 |
| 1313 | #endif |
| 1314 | ) { |
| 1315 | tso = 1; |
| 1316 | sendalot = 0; |
| 1317 | } else { |
| 1318 | len = tp->t_maxseg; |
| 1319 | sendalot = 1; |
| 1320 | tso = 0; |
| 1321 | } |
| 1322 | } else { |
| 1323 | tso = 0; |
| 1324 | } |
| 1325 | |
| 1326 | /* Send one segment or less as a tail loss probe */ |
| 1327 | if (tp->t_flagsext & TF_SENT_TLPROBE) { |
| 1328 | len = min(a: len, b: tp->t_maxseg); |
| 1329 | sendalot = 0; |
| 1330 | tso = 0; |
| 1331 | } |
| 1332 | |
| 1333 | #if MPTCP |
| 1334 | if (so->so_flags & SOF_MP_SUBFLOW && off < 0) { |
| 1335 | os_log_error(mptcp_log_handle, "%s - %lx: offset is negative! len %d off %d\n" , |
| 1336 | __func__, (unsigned long)VM_KERNEL_ADDRPERM(tp->t_mpsub->mpts_mpte), |
| 1337 | len, off); |
| 1338 | } |
| 1339 | |
| 1340 | if ((so->so_flags & SOF_MP_SUBFLOW) && |
| 1341 | !(tp->t_mpflags & TMPF_TCP_FALLBACK)) { |
| 1342 | int newlen = len; |
| 1343 | struct mptcb *mp_tp = tptomptp(tp); |
| 1344 | if (tp->t_state >= TCPS_ESTABLISHED && |
| 1345 | (tp->t_mpflags & TMPF_SND_MPPRIO || |
| 1346 | tp->t_mpflags & TMPF_SND_REM_ADDR || |
| 1347 | tp->t_mpflags & TMPF_SND_MPFAIL || |
| 1348 | (tp->t_mpflags & TMPF_SND_KEYS && |
| 1349 | mp_tp->mpt_version == MPTCP_VERSION_0) || |
| 1350 | tp->t_mpflags & TMPF_SND_JACK || |
| 1351 | tp->t_mpflags & TMPF_MPTCP_ECHO_ADDR)) { |
| 1352 | if (len > 0) { |
| 1353 | len = 0; |
| 1354 | tso = 0; |
| 1355 | } |
| 1356 | /* |
| 1357 | * On a new subflow, don't try to send again, because |
| 1358 | * we are still waiting for the fourth ack. |
| 1359 | */ |
| 1360 | if (!(tp->t_mpflags & TMPF_PREESTABLISHED)) { |
| 1361 | sendalot = 1; |
| 1362 | } |
| 1363 | mptcp_acknow = TRUE; |
| 1364 | } else { |
| 1365 | mptcp_acknow = FALSE; |
| 1366 | } |
| 1367 | /* |
| 1368 | * The contiguous bytes in the subflow socket buffer can be |
| 1369 | * discontiguous at the MPTCP level. Since only one DSS |
| 1370 | * option can be sent in one packet, reduce length to match |
| 1371 | * the contiguous MPTCP level. Set sendalot to send remainder. |
| 1372 | */ |
| 1373 | if (len > 0 && off >= 0) { |
| 1374 | newlen = mptcp_adj_sendlen(so, off); |
| 1375 | } |
| 1376 | |
| 1377 | if (newlen < len) { |
| 1378 | len = newlen; |
| 1379 | if (len <= tp->t_maxseg) { |
| 1380 | tso = 0; |
| 1381 | } |
| 1382 | } |
| 1383 | } |
| 1384 | #endif /* MPTCP */ |
| 1385 | |
| 1386 | if (sack_rxmit) { |
| 1387 | if (SEQ_LT(p->rxmit + len, tp->snd_una + so->so_snd.sb_cc)) { |
| 1388 | flags &= ~TH_FIN; |
| 1389 | } |
| 1390 | } else { |
| 1391 | if (SEQ_LT(tp->snd_nxt + len, tp->snd_una + so->so_snd.sb_cc)) { |
| 1392 | flags &= ~TH_FIN; |
| 1393 | } |
| 1394 | } |
| 1395 | /* |
| 1396 | * Compare available window to amount of window |
| 1397 | * known to peer (as advertised window less |
| 1398 | * next expected input). If the difference is at least two |
| 1399 | * max size segments, or at least 25% of the maximum possible |
| 1400 | * window, then want to send a window update to peer. |
| 1401 | */ |
| 1402 | recwin = tcp_sbspace(tp); |
| 1403 | |
| 1404 | if (!(so->so_flags & SOF_MP_SUBFLOW)) { |
| 1405 | if (recwin < (int32_t)(so->so_rcv.sb_hiwat / 4) && |
| 1406 | recwin < (int)tp->t_maxseg) { |
| 1407 | recwin = 0; |
| 1408 | } |
| 1409 | } else { |
| 1410 | struct mptcb *mp_tp = tptomptp(tp); |
| 1411 | struct socket *mp_so = mptetoso(mpte: mp_tp->mpt_mpte); |
| 1412 | |
| 1413 | if (recwin < (int32_t)(mp_so->so_rcv.sb_hiwat / 4) && |
| 1414 | recwin < (int)tp->t_maxseg) { |
| 1415 | recwin = 0; |
| 1416 | } |
| 1417 | } |
| 1418 | |
| 1419 | #if TRAFFIC_MGT |
| 1420 | if (tcp_recv_bg == 1 || IS_TCP_RECV_BG(so)) { |
| 1421 | /* |
| 1422 | * Timestamp MUST be supported to use rledbat unless we haven't |
| 1423 | * yet negotiated it. |
| 1424 | */ |
| 1425 | if (TCP_RLEDBAT_ENABLED(tp) || (tcp_rledbat && tp->t_state < |
| 1426 | TCPS_ESTABLISHED)) { |
| 1427 | if (recwin > 0 && tcp_cc_rledbat.get_rlwin != NULL) { |
| 1428 | /* Min of flow control window and rledbat window */ |
| 1429 | recwin = imin(a: recwin, b: tcp_cc_rledbat.get_rlwin(tp)); |
| 1430 | } |
| 1431 | } else if (recwin > 0 && tcp_recv_throttle(tp)) { |
| 1432 | uint32_t min_iaj_win = tcp_min_iaj_win * tp->t_maxseg; |
| 1433 | uint32_t bg_rwintop = tp->rcv_adv; |
| 1434 | if (SEQ_LT(bg_rwintop, tp->rcv_nxt + min_iaj_win)) { |
| 1435 | bg_rwintop = tp->rcv_nxt + min_iaj_win; |
| 1436 | } |
| 1437 | recwin = imin(a: (int32_t)(bg_rwintop - tp->rcv_nxt), |
| 1438 | b: recwin); |
| 1439 | if (recwin < 0) { |
| 1440 | recwin = 0; |
| 1441 | } |
| 1442 | } |
| 1443 | } |
| 1444 | #endif /* TRAFFIC_MGT */ |
| 1445 | |
| 1446 | if (recwin > (int32_t)(TCP_MAXWIN << tp->rcv_scale)) { |
| 1447 | recwin = (int32_t)(TCP_MAXWIN << tp->rcv_scale); |
| 1448 | } |
| 1449 | |
| 1450 | if (!(so->so_flags & SOF_MP_SUBFLOW)) { |
| 1451 | if (recwin < (int32_t)(tp->rcv_adv - tp->rcv_nxt)) { |
| 1452 | recwin = (int32_t)(tp->rcv_adv - tp->rcv_nxt); |
| 1453 | } |
| 1454 | } else { |
| 1455 | struct mptcb *mp_tp = tptomptp(tp); |
| 1456 | int64_t recwin_announced = (int64_t)(mp_tp->mpt_rcvadv - mp_tp->mpt_rcvnxt); |
| 1457 | |
| 1458 | /* Don't remove what we announced at the MPTCP-layer */ |
| 1459 | VERIFY(recwin_announced < INT32_MAX && recwin_announced > INT32_MIN); |
| 1460 | if (recwin < (int32_t)recwin_announced) { |
| 1461 | recwin = (int32_t)recwin_announced; |
| 1462 | } |
| 1463 | } |
| 1464 | |
| 1465 | /* |
| 1466 | * Sender silly window avoidance. We transmit under the following |
| 1467 | * conditions when len is non-zero: |
| 1468 | * |
| 1469 | * - we've timed out (e.g. persist timer) |
| 1470 | * - we need to retransmit |
| 1471 | * - We have a full segment (or more with TSO) |
| 1472 | * - This is the last buffer in a write()/send() and we are |
| 1473 | * either idle or running NODELAY |
| 1474 | * - we have more then 1/2 the maximum send window's worth of |
| 1475 | * data (receiver may be limited the window size) |
| 1476 | */ |
| 1477 | if (len) { |
| 1478 | if (tp->t_flagsext & TF_FORCE) { |
| 1479 | goto send; |
| 1480 | } |
| 1481 | if (SEQ_LT(tp->snd_nxt, tp->snd_max)) { |
| 1482 | goto send; |
| 1483 | } |
| 1484 | if (sack_rxmit) { |
| 1485 | goto send; |
| 1486 | } |
| 1487 | |
| 1488 | /* |
| 1489 | * If this here is the first segment after SYN/ACK and TFO |
| 1490 | * is being used, then we always send it, regardless of Nagle,... |
| 1491 | */ |
| 1492 | if (tp->t_state == TCPS_SYN_RECEIVED && |
| 1493 | tfo_enabled(tp) && |
| 1494 | (tp->t_tfo_flags & TFO_F_COOKIE_VALID) && |
| 1495 | tp->snd_nxt == tp->iss + 1) { |
| 1496 | goto send; |
| 1497 | } |
| 1498 | |
| 1499 | /* |
| 1500 | * Send new data on the connection only if it is |
| 1501 | * not flow controlled |
| 1502 | */ |
| 1503 | if (!INP_WAIT_FOR_IF_FEEDBACK(inp) || |
| 1504 | tp->t_state != TCPS_ESTABLISHED) { |
| 1505 | if (off + len == tp->snd_wnd) { |
| 1506 | /* We are limited by the receiver's window... */ |
| 1507 | if (tp->t_rcvwnd_limited_start_time == 0) { |
| 1508 | tp->t_rcvwnd_limited_start_time = net_uptime_us(); |
| 1509 | } |
| 1510 | } else { |
| 1511 | /* We are no more limited by the receiver's window... */ |
| 1512 | if (tp->t_rcvwnd_limited_start_time != 0) { |
| 1513 | uint64_t now = net_uptime_us(); |
| 1514 | |
| 1515 | ASSERT(now >= tp->t_rcvwnd_limited_start_time); |
| 1516 | |
| 1517 | tp->t_rcvwnd_limited_total_time += (now - tp->t_rcvwnd_limited_start_time); |
| 1518 | |
| 1519 | tp->t_rcvwnd_limited_start_time = 0; |
| 1520 | } |
| 1521 | } |
| 1522 | |
| 1523 | if (len >= tp->t_maxseg) { |
| 1524 | goto send; |
| 1525 | } |
| 1526 | |
| 1527 | if (!(tp->t_flags & TF_MORETOCOME) && |
| 1528 | (idle || tp->t_flags & TF_NODELAY || |
| 1529 | (tp->t_flags & TF_MAXSEGSNT) || |
| 1530 | ALLOW_LIMITED_TRANSMIT(tp)) && |
| 1531 | (tp->t_flags & TF_NOPUSH) == 0 && |
| 1532 | (len + off >= so->so_snd.sb_cc || |
| 1533 | /* |
| 1534 | * MPTCP needs to respect the DSS-mappings. So, it |
| 1535 | * may be sending data that *could* have been |
| 1536 | * coalesced, but cannot because of |
| 1537 | * mptcp_adj_sendlen(). |
| 1538 | */ |
| 1539 | so->so_flags & SOF_MP_SUBFLOW)) { |
| 1540 | goto send; |
| 1541 | } |
| 1542 | if (len >= tp->max_sndwnd / 2 && tp->max_sndwnd > 0) { |
| 1543 | goto send; |
| 1544 | } |
| 1545 | } else { |
| 1546 | tcpstat.tcps_fcholdpacket++; |
| 1547 | } |
| 1548 | } |
| 1549 | |
| 1550 | if (recwin > 0) { |
| 1551 | /* |
| 1552 | * "adv" is the amount we can increase the window, |
| 1553 | * taking into account that we are limited by |
| 1554 | * TCP_MAXWIN << tp->rcv_scale. |
| 1555 | */ |
| 1556 | int32_t adv, oldwin = 0; |
| 1557 | adv = imin(a: recwin, b: (int)TCP_MAXWIN << tp->rcv_scale) - |
| 1558 | (tp->rcv_adv - tp->rcv_nxt); |
| 1559 | |
| 1560 | if (SEQ_GT(tp->rcv_adv, tp->rcv_nxt)) { |
| 1561 | oldwin = tp->rcv_adv - tp->rcv_nxt; |
| 1562 | } |
| 1563 | |
| 1564 | if (tcp_ack_strategy == TCP_ACK_STRATEGY_LEGACY) { |
| 1565 | if (adv >= (int32_t) (2 * tp->t_maxseg)) { |
| 1566 | /* |
| 1567 | * Update only if the resulting scaled value of |
| 1568 | * the window changed, or if there is a change in |
| 1569 | * the sequence since the last ack. This avoids |
| 1570 | * what appears as dupe ACKS (see rdar://5640997) |
| 1571 | * |
| 1572 | * If streaming is detected avoid sending too many |
| 1573 | * window updates. We will depend on the delack |
| 1574 | * timer to send a window update when needed. |
| 1575 | * |
| 1576 | * If there is more data to read, don't send an ACK. |
| 1577 | * Otherwise we will end up sending many ACKs if the |
| 1578 | * application is doing micro-reads. |
| 1579 | */ |
| 1580 | if (!(tp->t_flags & TF_STRETCHACK) && |
| 1581 | (tp->last_ack_sent != tp->rcv_nxt || |
| 1582 | ((oldwin + adv) >> tp->rcv_scale) > |
| 1583 | (oldwin >> tp->rcv_scale))) { |
| 1584 | goto send; |
| 1585 | } |
| 1586 | } |
| 1587 | } else { |
| 1588 | if (adv >= (int32_t) (2 * tp->t_maxseg)) { |
| 1589 | /* |
| 1590 | * ACK every second full-sized segment, if the |
| 1591 | * ACK is advancing or the window becomes bigger |
| 1592 | */ |
| 1593 | if (so->so_rcv.sb_cc < so->so_rcv.sb_lowat && |
| 1594 | (tp->last_ack_sent != tp->rcv_nxt || |
| 1595 | ((oldwin + adv) >> tp->rcv_scale) > |
| 1596 | (oldwin >> tp->rcv_scale))) { |
| 1597 | goto send; |
| 1598 | } |
| 1599 | } else if (tp->t_flags & TF_DELACK) { |
| 1600 | /* |
| 1601 | * If we delayed the ACK and the window |
| 1602 | * is not advancing by a lot (< 2MSS), ACK |
| 1603 | * immediately if the last incoming packet had |
| 1604 | * the push flag set and we emptied the buffer. |
| 1605 | * |
| 1606 | * This takes care of a sender doing small |
| 1607 | * repeated writes with Nagle enabled. |
| 1608 | */ |
| 1609 | if (so->so_rcv.sb_cc == 0 && |
| 1610 | tp->last_ack_sent != tp->rcv_nxt && |
| 1611 | (tp->t_flagsext & TF_LAST_IS_PSH)) { |
| 1612 | goto send; |
| 1613 | } |
| 1614 | } |
| 1615 | } |
| 1616 | if (4 * adv >= (int32_t) so->so_rcv.sb_hiwat) { |
| 1617 | goto send; |
| 1618 | } |
| 1619 | |
| 1620 | /* |
| 1621 | * Make sure that the delayed ack timer is set if |
| 1622 | * we delayed sending a window update because of |
| 1623 | * streaming detection. |
| 1624 | */ |
| 1625 | if (tcp_ack_strategy == TCP_ACK_STRATEGY_LEGACY && |
| 1626 | (tp->t_flags & TF_STRETCHACK) && |
| 1627 | !(tp->t_flags & TF_DELACK)) { |
| 1628 | tp->t_flags |= TF_DELACK; |
| 1629 | tp->t_timer[TCPT_DELACK] = |
| 1630 | OFFSET_FROM_START(tp, tcp_delack); |
| 1631 | } |
| 1632 | } |
| 1633 | |
| 1634 | /* |
| 1635 | * Send if we owe the peer an ACK, RST, SYN, or urgent data. ACKNOW |
| 1636 | * is also a catch-all for the retransmit timer timeout case. |
| 1637 | */ |
| 1638 | if (tp->t_flags & TF_ACKNOW) { |
| 1639 | if (tp->t_forced_acks > 0) { |
| 1640 | tp->t_forced_acks--; |
| 1641 | } |
| 1642 | goto send; |
| 1643 | } |
| 1644 | if ((flags & TH_RST) || (flags & TH_SYN)) { |
| 1645 | goto send; |
| 1646 | } |
| 1647 | if (SEQ_GT(tp->snd_up, tp->snd_una)) { |
| 1648 | goto send; |
| 1649 | } |
| 1650 | #if MPTCP |
| 1651 | if (mptcp_acknow) { |
| 1652 | goto send; |
| 1653 | } |
| 1654 | #endif /* MPTCP */ |
| 1655 | /* |
| 1656 | * If our state indicates that FIN should be sent |
| 1657 | * and we have not yet done so, then we need to send. |
| 1658 | */ |
| 1659 | if ((flags & TH_FIN) && |
| 1660 | (!(tp->t_flags & TF_SENTFIN) || tp->snd_nxt == tp->snd_una)) { |
| 1661 | goto send; |
| 1662 | } |
| 1663 | /* |
| 1664 | * In SACK, it is possible for tcp_output to fail to send a segment |
| 1665 | * after the retransmission timer has been turned off. Make sure |
| 1666 | * that the retransmission timer is set. |
| 1667 | */ |
| 1668 | if (SACK_ENABLED(tp) && (tp->t_state >= TCPS_ESTABLISHED) && |
| 1669 | SEQ_GT(tp->snd_max, tp->snd_una) && |
| 1670 | tp->t_timer[TCPT_REXMT] == 0 && |
| 1671 | tp->t_timer[TCPT_PERSIST] == 0) { |
| 1672 | tp->t_timer[TCPT_REXMT] = OFFSET_FROM_START(tp, |
| 1673 | tp->t_rxtcur); |
| 1674 | goto just_return; |
| 1675 | } |
| 1676 | /* |
| 1677 | * TCP window updates are not reliable, rather a polling protocol |
| 1678 | * using ``persist'' packets is used to insure receipt of window |
| 1679 | * updates. The three ``states'' for the output side are: |
| 1680 | * idle not doing retransmits or persists |
| 1681 | * persisting to move a small or zero window |
| 1682 | * (re)transmitting and thereby not persisting |
| 1683 | * |
| 1684 | * tp->t_timer[TCPT_PERSIST] |
| 1685 | * is set when we are in persist state. |
| 1686 | * tp->t_force |
| 1687 | * is set when we are called to send a persist packet. |
| 1688 | * tp->t_timer[TCPT_REXMT] |
| 1689 | * is set when we are retransmitting |
| 1690 | * The output side is idle when both timers are zero. |
| 1691 | * |
| 1692 | * If send window is too small, there is data to transmit, and no |
| 1693 | * retransmit or persist is pending, then go to persist state. |
| 1694 | * If nothing happens soon, send when timer expires: |
| 1695 | * if window is nonzero, transmit what we can, |
| 1696 | * otherwise force out a byte. |
| 1697 | */ |
| 1698 | if (so->so_snd.sb_cc && tp->t_timer[TCPT_REXMT] == 0 && |
| 1699 | tp->t_timer[TCPT_PERSIST] == 0) { |
| 1700 | TCP_RESET_REXMT_STATE(tp); |
| 1701 | tcp_setpersist(tp); |
| 1702 | } |
| 1703 | just_return: |
| 1704 | /* |
| 1705 | * If there is no reason to send a segment, just return. |
| 1706 | * but if there is some packets left in the packet list, send them now. |
| 1707 | */ |
| 1708 | while (inp->inp_sndinprog_cnt == 0 && |
| 1709 | tp->t_pktlist_head != NULL) { |
| 1710 | packetlist = tp->t_pktlist_head; |
| 1711 | packchain_listadd = tp->t_lastchain; |
| 1712 | packchain_sent++; |
| 1713 | TCP_PKTLIST_CLEAR(tp); |
| 1714 | |
| 1715 | error = tcp_ip_output(so, tp, packetlist, |
| 1716 | packchain_listadd, |
| 1717 | tp_inp_options, (so_options & SO_DONTROUTE), |
| 1718 | (sack_rxmit || (sack_bytes_rxmt != 0)), isipv6); |
| 1719 | } |
| 1720 | /* tcp was closed while we were in ip; resume close */ |
| 1721 | if (inp->inp_sndinprog_cnt == 0 && |
| 1722 | (tp->t_flags & TF_CLOSING)) { |
| 1723 | tp->t_flags &= ~TF_CLOSING; |
| 1724 | (void) tcp_close(tp); |
| 1725 | } else { |
| 1726 | tcp_check_timer_state(tp); |
| 1727 | } |
| 1728 | KERNEL_DEBUG(DBG_FNC_TCP_OUTPUT | DBG_FUNC_END, 0, 0, 0, 0, 0); |
| 1729 | return 0; |
| 1730 | |
| 1731 | send: |
| 1732 | /* |
| 1733 | * Set TF_MAXSEGSNT flag if the segment size is greater than |
| 1734 | * the max segment size. |
| 1735 | */ |
| 1736 | if (len > 0) { |
| 1737 | do_not_compress = TRUE; |
| 1738 | |
| 1739 | if (len >= tp->t_maxseg) { |
| 1740 | tp->t_flags |= TF_MAXSEGSNT; |
| 1741 | } else { |
| 1742 | tp->t_flags &= ~TF_MAXSEGSNT; |
| 1743 | } |
| 1744 | } |
| 1745 | /* |
| 1746 | * If we are connected and no segment has been ACKed or SACKed yet and we |
| 1747 | * hit a retransmission timeout, then we should disable AccECN option |
| 1748 | * for the rest of the connection. |
| 1749 | */ |
| 1750 | if (TCP_ACC_ECN_ON(tp) && tp->t_state == TCPS_ESTABLISHED && |
| 1751 | tp->snd_una == tp->iss + 1 && (tp->snd_fack == 0) |
| 1752 | && tp->t_rxtshift > 0) { |
| 1753 | if ((tp->ecn_flags & TE_RETRY_WITHOUT_ACO) == 0) { |
| 1754 | tp->ecn_flags |= TE_RETRY_WITHOUT_ACO; |
| 1755 | } |
| 1756 | } |
| 1757 | /* |
| 1758 | * Before ESTABLISHED, force sending of initial options |
| 1759 | * unless TCP set not to do any options. |
| 1760 | * NOTE: we assume that the IP/TCP header plus TCP options |
| 1761 | * always fit in a single mbuf, leaving room for a maximum |
| 1762 | * link header, i.e. |
| 1763 | * max_linkhdr + sizeof (struct tcpiphdr) + optlen <= MCLBYTES |
| 1764 | */ |
| 1765 | optlen = 0; |
| 1766 | if (isipv6) { |
| 1767 | hdrlen = sizeof(struct ip6_hdr) + sizeof(struct tcphdr); |
| 1768 | } else { |
| 1769 | hdrlen = sizeof(struct tcpiphdr); |
| 1770 | } |
| 1771 | if (flags & TH_SYN) { |
| 1772 | tp->snd_nxt = tp->iss; |
| 1773 | if ((tp->t_flags & TF_NOOPT) == 0) { |
| 1774 | u_short mss; |
| 1775 | |
| 1776 | opt[0] = TCPOPT_MAXSEG; |
| 1777 | opt[1] = TCPOLEN_MAXSEG; |
| 1778 | mss = htons((u_short) tcp_mssopt(tp)); |
| 1779 | (void)memcpy(dst: opt + 2, src: &mss, n: sizeof(mss)); |
| 1780 | optlen = TCPOLEN_MAXSEG; |
| 1781 | |
| 1782 | if ((tp->t_flags & TF_REQ_SCALE) && |
| 1783 | ((flags & TH_ACK) == 0 || |
| 1784 | (tp->t_flags & TF_RCVD_SCALE))) { |
| 1785 | *((u_int32_t *)(void *)(opt + optlen)) = htonl( |
| 1786 | TCPOPT_NOP << 24 | |
| 1787 | TCPOPT_WINDOW << 16 | |
| 1788 | TCPOLEN_WINDOW << 8 | |
| 1789 | tp->request_r_scale); |
| 1790 | optlen += 4; |
| 1791 | } |
| 1792 | #if MPTCP |
| 1793 | if (mptcp_enable && (so->so_flags & SOF_MP_SUBFLOW)) { |
| 1794 | optlen = mptcp_setup_syn_opts(so, opt, optlen); |
| 1795 | } |
| 1796 | #endif /* MPTCP */ |
| 1797 | } |
| 1798 | } |
| 1799 | |
| 1800 | /* |
| 1801 | * Send a timestamp and echo-reply if this is a SYN and our side |
| 1802 | * wants to use timestamps (TF_REQ_TSTMP is set) or both our side |
| 1803 | * and our peer have sent timestamps in our SYN's. |
| 1804 | */ |
| 1805 | if ((tp->t_flags & (TF_REQ_TSTMP | TF_NOOPT)) == TF_REQ_TSTMP && |
| 1806 | (flags & TH_RST) == 0 && |
| 1807 | ((flags & TH_ACK) == 0 || |
| 1808 | (tp->t_flags & TF_RCVD_TSTMP))) { |
| 1809 | u_int32_t *lp = (u_int32_t *)(void *)(opt + optlen); |
| 1810 | |
| 1811 | /* Form timestamp option as shown in appendix A of RFC 1323. */ |
| 1812 | *lp++ = htonl(TCPOPT_TSTAMP_HDR); |
| 1813 | *lp++ = htonl(tcp_now + tp->t_ts_offset); |
| 1814 | *lp = htonl(tp->ts_recent); |
| 1815 | optlen += TCPOLEN_TSTAMP_APPA; |
| 1816 | } |
| 1817 | |
| 1818 | if (SACK_ENABLED(tp) && ((tp->t_flags & TF_NOOPT) == 0)) { |
| 1819 | /* |
| 1820 | * Tack on the SACK permitted option *last*. |
| 1821 | * And do padding of options after tacking this on. |
| 1822 | * This is because of MSS, TS, WinScale and Signatures are |
| 1823 | * all present, we have just 2 bytes left for the SACK |
| 1824 | * permitted option, which is just enough. |
| 1825 | */ |
| 1826 | /* |
| 1827 | * If this is the first SYN of connection (not a SYN |
| 1828 | * ACK), include SACK permitted option. If this is a |
| 1829 | * SYN ACK, include SACK permitted option if peer has |
| 1830 | * already done so. This is only for active connect, |
| 1831 | * since the syncache takes care of the passive connect. |
| 1832 | */ |
| 1833 | if ((flags & TH_SYN) && |
| 1834 | (!(flags & TH_ACK) || (tp->t_flags & TF_SACK_PERMIT))) { |
| 1835 | u_char *bp; |
| 1836 | bp = (u_char *)opt + optlen; |
| 1837 | |
| 1838 | *bp++ = TCPOPT_SACK_PERMITTED; |
| 1839 | *bp++ = TCPOLEN_SACK_PERMITTED; |
| 1840 | optlen += TCPOLEN_SACK_PERMITTED; |
| 1841 | } |
| 1842 | } |
| 1843 | #if MPTCP |
| 1844 | if (so->so_flags & SOF_MP_SUBFLOW) { |
| 1845 | /* |
| 1846 | * Its important to piggyback acks with data as ack only packets |
| 1847 | * may get lost and data packets that don't send Data ACKs |
| 1848 | * still advance the subflow level ACK and therefore make it |
| 1849 | * hard for the remote end to recover in low cwnd situations. |
| 1850 | */ |
| 1851 | if (len != 0) { |
| 1852 | tp->t_mpflags |= (TMPF_SEND_DSN | |
| 1853 | TMPF_MPTCP_ACKNOW); |
| 1854 | } else { |
| 1855 | tp->t_mpflags |= TMPF_MPTCP_ACKNOW; |
| 1856 | } |
| 1857 | optlen = mptcp_setup_opts(tp, off, opt: &opt[0], optlen, flags, |
| 1858 | len, p_mptcp_acknow: &mptcp_acknow, do_not_compress: &do_not_compress); |
| 1859 | tp->t_mpflags &= ~TMPF_SEND_DSN; |
| 1860 | } |
| 1861 | #endif /* MPTCP */ |
| 1862 | |
| 1863 | if (tfo_enabled(tp) && !(tp->t_flags & TF_NOOPT) && |
| 1864 | (flags & (TH_SYN | TH_ACK)) == TH_SYN) { |
| 1865 | optlen += tcp_tfo_write_cookie(tp, optlen, len, opt); |
| 1866 | } |
| 1867 | |
| 1868 | if (tfo_enabled(tp) && |
| 1869 | (flags & (TH_SYN | TH_ACK)) == (TH_SYN | TH_ACK) && |
| 1870 | (tp->t_tfo_flags & TFO_F_OFFER_COOKIE)) { |
| 1871 | optlen += tcp_tfo_write_cookie_rep(tp, optlen, opt); |
| 1872 | } |
| 1873 | |
| 1874 | if (SACK_ENABLED(tp) && ((tp->t_flags & TF_NOOPT) == 0)) { |
| 1875 | /* |
| 1876 | * Send SACKs if necessary. This should be the last |
| 1877 | * option processed. Only as many SACKs are sent as |
| 1878 | * are permitted by the maximum options size. |
| 1879 | * |
| 1880 | * In general, SACK blocks consume 8*n+2 bytes. |
| 1881 | * So a full size SACK blocks option is 34 bytes |
| 1882 | * (to generate 4 SACK blocks). At a minimum, |
| 1883 | * we need 10 bytes (to generate 1 SACK block). |
| 1884 | * If TCP Timestamps (12 bytes) and TCP Signatures |
| 1885 | * (18 bytes) are both present, we'll just have |
| 1886 | * 10 bytes for SACK options 40 - (12 + 18). |
| 1887 | */ |
| 1888 | if (TCPS_HAVEESTABLISHED(tp->t_state) && |
| 1889 | (tp->t_flags & TF_SACK_PERMIT) && |
| 1890 | (tp->rcv_numsacks > 0 || TCP_SEND_DSACK_OPT(tp)) && |
| 1891 | MAX_TCPOPTLEN - optlen >= TCPOLEN_SACK + 2) { |
| 1892 | unsigned int sackoptlen = 0; |
| 1893 | int nsack, padlen; |
| 1894 | u_char *bp = (u_char *)opt + optlen; |
| 1895 | u_int32_t *lp; |
| 1896 | |
| 1897 | nsack = (MAX_TCPOPTLEN - optlen - 2) / TCPOLEN_SACK; |
| 1898 | nsack = min(a: nsack, b: (tp->rcv_numsacks + |
| 1899 | (TCP_SEND_DSACK_OPT(tp) ? 1 : 0))); |
| 1900 | sackoptlen = (2 + nsack * TCPOLEN_SACK); |
| 1901 | VERIFY(sackoptlen < UINT8_MAX); |
| 1902 | |
| 1903 | /* |
| 1904 | * First we need to pad options so that the |
| 1905 | * SACK blocks can start at a 4-byte boundary |
| 1906 | * (sack option and length are at a 2 byte offset). |
| 1907 | */ |
| 1908 | padlen = (MAX_TCPOPTLEN - optlen - sackoptlen) % 4; |
| 1909 | optlen += padlen; |
| 1910 | while (padlen-- > 0) { |
| 1911 | *bp++ = TCPOPT_NOP; |
| 1912 | } |
| 1913 | |
| 1914 | tcpstat.tcps_sack_send_blocks++; |
| 1915 | *bp++ = TCPOPT_SACK; |
| 1916 | *bp++ = (uint8_t)sackoptlen; |
| 1917 | lp = (u_int32_t *)(void *)bp; |
| 1918 | |
| 1919 | /* |
| 1920 | * First block of SACK option should represent |
| 1921 | * DSACK. Prefer to send SACK information if there |
| 1922 | * is space for only one SACK block. This will |
| 1923 | * allow for faster recovery. |
| 1924 | */ |
| 1925 | if (TCP_SEND_DSACK_OPT(tp) && nsack > 0 && |
| 1926 | (tp->rcv_numsacks == 0 || nsack > 1)) { |
| 1927 | *lp++ = htonl(tp->t_dsack_lseq); |
| 1928 | *lp++ = htonl(tp->t_dsack_rseq); |
| 1929 | tcpstat.tcps_dsack_sent++; |
| 1930 | tp->t_dsack_sent++; |
| 1931 | nsack--; |
| 1932 | } |
| 1933 | VERIFY(nsack == 0 || tp->rcv_numsacks >= nsack); |
| 1934 | for (i = 0; i < nsack; i++) { |
| 1935 | struct sackblk sack = tp->sackblks[i]; |
| 1936 | *lp++ = htonl(sack.start); |
| 1937 | *lp++ = htonl(sack.end); |
| 1938 | } |
| 1939 | optlen += sackoptlen; |
| 1940 | |
| 1941 | /* Make sure we didn't write too much */ |
| 1942 | VERIFY((u_char *)lp - opt <= MAX_TCPOPTLEN); |
| 1943 | } |
| 1944 | } |
| 1945 | |
| 1946 | /* |
| 1947 | * AccECN option - after SACK |
| 1948 | * Don't send on <SYN>, |
| 1949 | * send only on <SYN,ACK> before ACCECN is negotiated or |
| 1950 | * when doing an AccECN session. Don't send AccECN option |
| 1951 | * if retransmitting a SYN-ACK or a data segment |
| 1952 | */ |
| 1953 | if ((TCP_ACC_ECN_ON(tp) || |
| 1954 | (TCP_ACC_ECN_ENABLED(tp) && (flags & (TH_SYN | TH_ACK)) == (TH_SYN | TH_ACK))) |
| 1955 | && ((tp->ecn_flags & TE_RETRY_WITHOUT_ACO) == 0)) { |
| 1956 | uint32_t *lp = (uint32_t *)(void *)(opt + optlen); |
| 1957 | /* lp will become outdated after options are added */ |
| 1958 | tcp_add_accecn_option(tp, flags, lp, optlen: (uint8_t *)&optlen); |
| 1959 | } |
| 1960 | /* Pad TCP options to a 4 byte boundary */ |
| 1961 | if (optlen < MAX_TCPOPTLEN && (optlen % sizeof(u_int32_t))) { |
| 1962 | int pad = sizeof(u_int32_t) - (optlen % sizeof(u_int32_t)); |
| 1963 | u_char *bp = (u_char *)opt + optlen; |
| 1964 | |
| 1965 | optlen += pad; |
| 1966 | while (pad) { |
| 1967 | *bp++ = TCPOPT_EOL; |
| 1968 | pad--; |
| 1969 | } |
| 1970 | } |
| 1971 | |
| 1972 | /* |
| 1973 | * For Accurate ECN, send ACE flag based on r.cep, if |
| 1974 | * We have completed handshake and are in ESTABLISHED state, and |
| 1975 | * This is not the final ACK of 3WHS. |
| 1976 | */ |
| 1977 | if (TCP_ACC_ECN_ON(tp) && TCPS_HAVEESTABLISHED(tp->t_state) && |
| 1978 | (tp->ecn_flags & TE_ACE_FINAL_ACK_3WHS) == 0) { |
| 1979 | uint8_t ace = tp->t_rcv_ce_packets & TCP_ACE_MASK; |
| 1980 | if (ace & 0x01) { |
| 1981 | flags |= TH_ECE; |
| 1982 | } else { |
| 1983 | flags &= ~TH_ECE; |
| 1984 | } |
| 1985 | if (ace & 0x02) { |
| 1986 | flags |= TH_CWR; |
| 1987 | } else { |
| 1988 | flags &= ~TH_CWR; |
| 1989 | } |
| 1990 | if (ace & 0x04) { |
| 1991 | flags |= TH_AE; |
| 1992 | } else { |
| 1993 | flags &= ~TH_AE; |
| 1994 | } |
| 1995 | } |
| 1996 | |
| 1997 | /* |
| 1998 | * RFC 3168 states that: |
| 1999 | * - If you ever sent an ECN-setup SYN/SYN-ACK you must be prepared |
| 2000 | * to handle the TCP ECE flag, even if you also later send a |
| 2001 | * non-ECN-setup SYN/SYN-ACK. |
| 2002 | * - If you ever send a non-ECN-setup SYN/SYN-ACK, you must not set |
| 2003 | * the ip ECT flag. |
| 2004 | * |
| 2005 | * It is not clear how the ECE flag would ever be set if you never |
| 2006 | * set the IP ECT flag on outbound packets. All the same, we use |
| 2007 | * the TE_SETUPSENT to indicate that we have committed to handling |
| 2008 | * the TCP ECE flag correctly. We use the TE_SENDIPECT to indicate |
| 2009 | * whether or not we should set the IP ECT flag on outbound packet |
| 2010 | * |
| 2011 | * For a SYN-ACK, send an ECN setup SYN-ACK |
| 2012 | * |
| 2013 | * Below we send ECN for three different handhshake states: |
| 2014 | * 1. Server received SYN and is sending a SYN-ACK (state->TCPS_SYN_RECEIVED) |
| 2015 | * - both classic and Accurate ECN have special encoding |
| 2016 | * 2. Client is sending SYN packet (state->SYN_SENT) |
| 2017 | * - both classic and Accurate ECN have special encoding |
| 2018 | * 3. Client is sending final ACK of 3WHS (state->ESTABLISHED) |
| 2019 | * - Only Accurate ECN has special encoding |
| 2020 | */ |
| 2021 | if ((flags & (TH_SYN | TH_ACK)) == (TH_SYN | TH_ACK) && |
| 2022 | (tp->ecn_flags & TE_ENABLE_ECN)) { |
| 2023 | /* Server received either legacy or Accurate ECN setup SYN */ |
| 2024 | if (tp->ecn_flags & (TE_SETUPRECEIVED | TE_ACE_SETUPRECEIVED)) { |
| 2025 | if (tcp_send_ecn_flags_on_syn(tp)) { |
| 2026 | if (TCP_ACC_ECN_ENABLED(tp) && (tp->ecn_flags & TE_ACE_SETUPRECEIVED)) { |
| 2027 | /* |
| 2028 | * Accurate ECN mode is on. Initialize packet and byte counters |
| 2029 | * for the server sending SYN-ACK. Although s_cep will be initialized |
| 2030 | * during input processing of ACK of SYN-ACK, initialize here as well |
| 2031 | * in case ACK gets lost. |
| 2032 | * |
| 2033 | * Non-zero initial values are used to |
| 2034 | * support a stateless handshake (see |
| 2035 | * Section 5.1 of AccECN draft) and to be |
| 2036 | * distinct from cases where the fields |
| 2037 | * are incorrectly zeroed. |
| 2038 | */ |
| 2039 | tp->t_rcv_ce_packets = 5; |
| 2040 | tp->t_snd_ce_packets = 5; |
| 2041 | |
| 2042 | /* Initialize CE byte counter to 0 */ |
| 2043 | tp->t_rcv_ce_bytes = tp->t_snd_ce_bytes = 0; |
| 2044 | |
| 2045 | if (tp->ecn_flags & TE_ACE_SETUP_NON_ECT) { |
| 2046 | tp->t_prev_ace_flags = TH_CWR; |
| 2047 | flags |= tp->t_prev_ace_flags; |
| 2048 | /* Remove the setup flag as it is also used for final ACK */ |
| 2049 | tp->ecn_flags &= ~TE_ACE_SETUP_NON_ECT; |
| 2050 | tcpstat.tcps_ecn_ace_syn_not_ect++; |
| 2051 | } else if (tp->ecn_flags & TE_ACE_SETUP_ECT1) { |
| 2052 | tp->t_prev_ace_flags = (TH_CWR | TH_ECE); |
| 2053 | flags |= tp->t_prev_ace_flags; |
| 2054 | tp->ecn_flags &= ~TE_ACE_SETUP_ECT1; |
| 2055 | tcpstat.tcps_ecn_ace_syn_ect1++; |
| 2056 | } else if (tp->ecn_flags & TE_ACE_SETUP_ECT0) { |
| 2057 | tp->t_prev_ace_flags = TH_AE; |
| 2058 | flags |= tp->t_prev_ace_flags; |
| 2059 | tp->ecn_flags &= ~TE_ACE_SETUP_ECT0; |
| 2060 | tcpstat.tcps_ecn_ace_syn_ect0++; |
| 2061 | } else if (tp->ecn_flags & TE_ACE_SETUP_CE) { |
| 2062 | tp->t_prev_ace_flags = (TH_AE | TH_CWR); |
| 2063 | flags |= tp->t_prev_ace_flags; |
| 2064 | tp->ecn_flags &= ~TE_ACE_SETUP_CE; |
| 2065 | /* |
| 2066 | * Receive counter is updated on |
| 2067 | * all acceptable packets except |
| 2068 | * CE on SYN packets (SYN=1, ACK=0) |
| 2069 | */ |
| 2070 | tcpstat.tcps_ecn_ace_syn_ce++; |
| 2071 | } else { |
| 2072 | if (tp->t_prev_ace_flags != 0) { |
| 2073 | /* Set the flags for retransmitted SYN-ACK same as the previous one */ |
| 2074 | flags |= tp->t_prev_ace_flags; |
| 2075 | } else { |
| 2076 | /* We shouldn't come here */ |
| 2077 | panic("ECN flags (0x%x) not set correctly" , tp->ecn_flags); |
| 2078 | } |
| 2079 | } |
| 2080 | /* |
| 2081 | * We are not yet committing to send IP ECT packets when |
| 2082 | * Accurate ECN mode is on |
| 2083 | */ |
| 2084 | tp->ecn_flags |= (TE_ACE_SETUPSENT); |
| 2085 | } else if (tp->ecn_flags & TE_SETUPRECEIVED) { |
| 2086 | /* |
| 2087 | * Setting TH_ECE makes this an ECN-setup |
| 2088 | * SYN-ACK |
| 2089 | */ |
| 2090 | flags |= TH_ECE; |
| 2091 | /* |
| 2092 | * Record that we sent the ECN-setup and |
| 2093 | * default to setting IP ECT. |
| 2094 | */ |
| 2095 | tp->ecn_flags |= (TE_SETUPSENT | TE_SENDIPECT); |
| 2096 | } |
| 2097 | tcpstat.tcps_ecn_server_setup++; |
| 2098 | tcpstat.tcps_ecn_server_success++; |
| 2099 | } else { |
| 2100 | /* |
| 2101 | * For classic ECN, we sent an ECN-setup SYN-ACK but it was |
| 2102 | * dropped. Fallback to non-ECN-setup |
| 2103 | * SYN-ACK and clear flag to indicate that |
| 2104 | * we should not send data with IP ECT set |
| 2105 | * |
| 2106 | * Pretend we didn't receive an |
| 2107 | * ECN-setup SYN. |
| 2108 | * |
| 2109 | * We already incremented the counter |
| 2110 | * assuming that the ECN setup will |
| 2111 | * succeed. Decrementing here |
| 2112 | * tcps_ecn_server_success to correct it. |
| 2113 | * |
| 2114 | * For Accurate ECN, we don't yet remove TE_ACE_SETUPRECEIVED |
| 2115 | * as the client might have received Accurate ECN SYN-ACK. |
| 2116 | * We decide Accurate ECN's state on processing last ACK from the client. |
| 2117 | */ |
| 2118 | if (tp->ecn_flags & (TE_SETUPSENT | TE_ACE_SETUPSENT)) { |
| 2119 | tcpstat.tcps_ecn_lost_synack++; |
| 2120 | tcpstat.tcps_ecn_server_success--; |
| 2121 | tp->ecn_flags |= TE_LOST_SYNACK; |
| 2122 | } |
| 2123 | |
| 2124 | tp->ecn_flags &= |
| 2125 | ~(TE_SETUPRECEIVED | TE_SENDIPECT | |
| 2126 | TE_SENDCWR); |
| 2127 | } |
| 2128 | } |
| 2129 | } else if ((flags & (TH_SYN | TH_ACK)) == TH_SYN && |
| 2130 | (tp->ecn_flags & TE_ENABLE_ECN)) { |
| 2131 | if (tcp_send_ecn_flags_on_syn(tp)) { |
| 2132 | if (TCP_ACC_ECN_ENABLED(tp)) { |
| 2133 | /* We are negotiating AccECN in SYN */ |
| 2134 | flags |= TH_ACE; |
| 2135 | /* |
| 2136 | * For AccECN, we only set the ECN-setup sent |
| 2137 | * flag as we are not committing to set ECT yet. |
| 2138 | */ |
| 2139 | tp->ecn_flags |= (TE_ACE_SETUPSENT); |
| 2140 | } else { |
| 2141 | /* |
| 2142 | * Setting TH_ECE and TH_CWR makes this an |
| 2143 | * ECN-setup SYN |
| 2144 | */ |
| 2145 | flags |= (TH_ECE | TH_CWR); |
| 2146 | /* |
| 2147 | * Record that we sent the ECN-setup and default to |
| 2148 | * setting IP ECT. |
| 2149 | */ |
| 2150 | tp->ecn_flags |= (TE_SETUPSENT | TE_SENDIPECT); |
| 2151 | } |
| 2152 | tcpstat.tcps_ecn_client_setup++; |
| 2153 | tp->ecn_flags |= TE_CLIENT_SETUP; |
| 2154 | } else { |
| 2155 | /* |
| 2156 | * We sent an ECN-setup SYN but it was dropped. |
| 2157 | * Fall back to non-ECN and clear flag indicating |
| 2158 | * we should send data with IP ECT set. |
| 2159 | */ |
| 2160 | if (tp->ecn_flags & (TE_SETUPSENT | TE_ACE_SETUPSENT)) { |
| 2161 | tcpstat.tcps_ecn_lost_syn++; |
| 2162 | tp->ecn_flags |= TE_LOST_SYN; |
| 2163 | } |
| 2164 | tp->ecn_flags &= ~TE_SENDIPECT; |
| 2165 | } |
| 2166 | } else if (TCP_ACC_ECN_ON(tp) && (tp->ecn_flags & TE_ACE_FINAL_ACK_3WHS) && |
| 2167 | len == 0 && (flags & (TH_FLAGS_ALL)) == TH_ACK) { |
| 2168 | /* |
| 2169 | * Client has processed SYN-ACK and moved to ESTABLISHED. |
| 2170 | * This is the final ACK of 3WHS. If ACC_ECN has been negotiated, |
| 2171 | * then send the handshake encoding as per Table 3 of Accurate ECN draft. |
| 2172 | * We are clearing the ACE flags just in case if they were set before. |
| 2173 | * TODO: if client has to carry data in the 3WHS ACK, then we need to send a pure ACK first |
| 2174 | */ |
| 2175 | flags &= ~(TH_AE | TH_CWR | TH_ECE); |
| 2176 | if (tp->ecn_flags & TE_ACE_SETUP_NON_ECT) { |
| 2177 | flags |= TH_CWR; |
| 2178 | tp->ecn_flags &= ~TE_ACE_SETUP_NON_ECT; |
| 2179 | } else if (tp->ecn_flags & TE_ACE_SETUP_ECT1) { |
| 2180 | flags |= (TH_CWR | TH_ECE); |
| 2181 | tp->ecn_flags &= ~TE_ACE_SETUP_ECT1; |
| 2182 | } else if (tp->ecn_flags & TE_ACE_SETUP_ECT0) { |
| 2183 | flags |= TH_AE; |
| 2184 | tp->ecn_flags &= ~TE_ACE_SETUP_ECT0; |
| 2185 | } else if (tp->ecn_flags & TE_ACE_SETUP_CE) { |
| 2186 | flags |= (TH_AE | TH_CWR); |
| 2187 | tp->ecn_flags &= ~TE_ACE_SETUP_CE; |
| 2188 | } |
| 2189 | tp->ecn_flags &= ~(TE_ACE_FINAL_ACK_3WHS); |
| 2190 | } |
| 2191 | |
| 2192 | /* |
| 2193 | * Check if we should set the TCP CWR flag. |
| 2194 | * CWR flag is sent when we reduced the congestion window because |
| 2195 | * we received a TCP ECE or we performed a fast retransmit. We |
| 2196 | * never set the CWR flag on retransmitted packets. We only set |
| 2197 | * the CWR flag on data packets. Pure acks don't have this set. |
| 2198 | */ |
| 2199 | if ((tp->ecn_flags & TE_SENDCWR) != 0 && len != 0 && |
| 2200 | !SEQ_LT(tp->snd_nxt, tp->snd_max) && !sack_rxmit) { |
| 2201 | flags |= TH_CWR; |
| 2202 | tp->ecn_flags &= ~TE_SENDCWR; |
| 2203 | } |
| 2204 | |
| 2205 | /* |
| 2206 | * Check if we should set the TCP ECE flag. |
| 2207 | */ |
| 2208 | if ((tp->ecn_flags & TE_SENDECE) != 0 && len == 0) { |
| 2209 | flags |= TH_ECE; |
| 2210 | tcpstat.tcps_ecn_sent_ece++; |
| 2211 | } |
| 2212 | |
| 2213 | hdrlen += optlen; |
| 2214 | |
| 2215 | /* Reset DSACK sequence numbers */ |
| 2216 | tp->t_dsack_lseq = 0; |
| 2217 | tp->t_dsack_rseq = 0; |
| 2218 | |
| 2219 | if (isipv6) { |
| 2220 | ipoptlen = ip6_optlen(inp); |
| 2221 | } else { |
| 2222 | if (tp_inp_options) { |
| 2223 | ipoptlen = tp_inp_options->m_len - |
| 2224 | offsetof(struct ipoption, ipopt_list); |
| 2225 | } else { |
| 2226 | ipoptlen = 0; |
| 2227 | } |
| 2228 | } |
| 2229 | #if IPSEC |
| 2230 | ipoptlen += ipsec_optlen; |
| 2231 | #endif |
| 2232 | |
| 2233 | /* |
| 2234 | * Adjust data length if insertion of options will |
| 2235 | * bump the packet length beyond the t_maxopd length. |
| 2236 | * Clear the FIN bit because we cut off the tail of |
| 2237 | * the segment. |
| 2238 | * |
| 2239 | * When doing TSO limit a burst to TCP_MAXWIN minus the |
| 2240 | * IP, TCP and Options length to keep ip->ip_len from |
| 2241 | * overflowing. Prevent the last segment from being |
| 2242 | * fractional thus making them all equal sized and set |
| 2243 | * the flag to continue sending. TSO is disabled when |
| 2244 | * IP options or IPSEC are present. |
| 2245 | */ |
| 2246 | if (len + optlen + ipoptlen > tp->t_maxopd) { |
| 2247 | /* |
| 2248 | * If there is still more to send, |
| 2249 | * don't close the connection. |
| 2250 | */ |
| 2251 | flags &= ~TH_FIN; |
| 2252 | if (tso) { |
| 2253 | int32_t tso_maxlen; |
| 2254 | |
| 2255 | tso_maxlen = tp->tso_max_segment_size ? |
| 2256 | tp->tso_max_segment_size : TCP_MAXWIN; |
| 2257 | |
| 2258 | /* hdrlen includes optlen */ |
| 2259 | if (len > tso_maxlen - hdrlen) { |
| 2260 | len = tso_maxlen - hdrlen; |
| 2261 | sendalot = 1; |
| 2262 | } else if (tp->t_flags & TF_NEEDFIN) { |
| 2263 | sendalot = 1; |
| 2264 | } |
| 2265 | |
| 2266 | if (len % (tp->t_maxopd - optlen) != 0) { |
| 2267 | len = len - (len % (tp->t_maxopd - optlen)); |
| 2268 | sendalot = 1; |
| 2269 | } |
| 2270 | } else { |
| 2271 | len = tp->t_maxopd - optlen - ipoptlen; |
| 2272 | sendalot = 1; |
| 2273 | } |
| 2274 | } |
| 2275 | |
| 2276 | if (max_linkhdr + hdrlen > MCLBYTES) { |
| 2277 | panic("tcphdr too big" ); |
| 2278 | } |
| 2279 | |
| 2280 | /* Check if there is enough data in the send socket |
| 2281 | * buffer to start measuring bandwidth |
| 2282 | */ |
| 2283 | if ((tp->t_flagsext & TF_MEASURESNDBW) != 0 && |
| 2284 | (tp->t_bwmeas != NULL) && |
| 2285 | (tp->t_flagsext & TF_BWMEAS_INPROGRESS) == 0) { |
| 2286 | tp->t_bwmeas->bw_size = min(a: min( |
| 2287 | a: (so->so_snd.sb_cc - (tp->snd_max - tp->snd_una)), |
| 2288 | b: tp->snd_cwnd), b: tp->snd_wnd); |
| 2289 | if (tp->t_bwmeas->bw_minsize > 0 && |
| 2290 | tp->t_bwmeas->bw_size < tp->t_bwmeas->bw_minsize) { |
| 2291 | tp->t_bwmeas->bw_size = 0; |
| 2292 | } |
| 2293 | if (tp->t_bwmeas->bw_maxsize > 0) { |
| 2294 | tp->t_bwmeas->bw_size = min(a: tp->t_bwmeas->bw_size, |
| 2295 | b: tp->t_bwmeas->bw_maxsize); |
| 2296 | } |
| 2297 | if (tp->t_bwmeas->bw_size > 0) { |
| 2298 | tp->t_flagsext |= TF_BWMEAS_INPROGRESS; |
| 2299 | tp->t_bwmeas->bw_start = tp->snd_max; |
| 2300 | tp->t_bwmeas->bw_ts = tcp_now; |
| 2301 | } |
| 2302 | } |
| 2303 | |
| 2304 | VERIFY(inp->inp_flowhash != 0); |
| 2305 | /* |
| 2306 | * Grab a header mbuf, attaching a copy of data to |
| 2307 | * be transmitted, and initialize the header from |
| 2308 | * the template for sends on this connection. |
| 2309 | */ |
| 2310 | if (len) { |
| 2311 | /* Remember what the last head-of-line packet-size was */ |
| 2312 | if (tp->t_pmtud_lastseg_size == 0 && tp->snd_nxt == tp->snd_una) { |
| 2313 | ASSERT(len + optlen + ipoptlen <= IP_MAXPACKET); |
| 2314 | tp->t_pmtud_lastseg_size = (uint16_t)(len + optlen + ipoptlen); |
| 2315 | } |
| 2316 | if ((tp->t_flagsext & TF_FORCE) && len == 1) { |
| 2317 | tcpstat.tcps_sndprobe++; |
| 2318 | } else if (SEQ_LT(tp->snd_nxt, tp->snd_max) || sack_rxmit) { |
| 2319 | tcpstat.tcps_sndrexmitpack++; |
| 2320 | tcpstat.tcps_sndrexmitbyte += len; |
| 2321 | if (nstat_collect) { |
| 2322 | nstat_route_tx(rte: inp->inp_route.ro_rt, packets: 1, |
| 2323 | bytes: len, flags: NSTAT_TX_FLAG_RETRANSMIT); |
| 2324 | INP_ADD_STAT(inp, cell, wifi, wired, |
| 2325 | txpackets, 1); |
| 2326 | INP_ADD_STAT(inp, cell, wifi, wired, |
| 2327 | txbytes, len); |
| 2328 | tp->t_stat.txretransmitbytes += len; |
| 2329 | tp->t_stat.rxmitpkts++; |
| 2330 | } |
| 2331 | if (tp->ecn_flags & TE_SENDIPECT) { |
| 2332 | tp->t_ecn_capable_packets_lost++; |
| 2333 | } |
| 2334 | } else { |
| 2335 | tcpstat.tcps_sndpack++; |
| 2336 | tcpstat.tcps_sndbyte += len; |
| 2337 | |
| 2338 | if (nstat_collect) { |
| 2339 | INP_ADD_STAT(inp, cell, wifi, wired, |
| 2340 | txpackets, 1); |
| 2341 | INP_ADD_STAT(inp, cell, wifi, wired, |
| 2342 | txbytes, len); |
| 2343 | } |
| 2344 | if (tp->ecn_flags & TE_SENDIPECT) { |
| 2345 | tp->t_ecn_capable_packets_sent++; |
| 2346 | } |
| 2347 | inp_decr_sndbytes_unsent(so, len); |
| 2348 | } |
| 2349 | inp_set_activity_bitmap(inp); |
| 2350 | #if MPTCP |
| 2351 | if (tp->t_mpflags & TMPF_MPTCP_TRUE) { |
| 2352 | tcpstat.tcps_mp_sndpacks++; |
| 2353 | tcpstat.tcps_mp_sndbytes += len; |
| 2354 | } |
| 2355 | #endif /* MPTCP */ |
| 2356 | /* |
| 2357 | * try to use the new interface that allocates all |
| 2358 | * the necessary mbuf hdrs under 1 mbuf lock and |
| 2359 | * avoids rescanning the socket mbuf list if |
| 2360 | * certain conditions are met. This routine can't |
| 2361 | * be used in the following cases... |
| 2362 | * 1) the protocol headers exceed the capacity of |
| 2363 | * of a single mbuf header's data area (no cluster attached) |
| 2364 | * 2) the length of the data being transmitted plus |
| 2365 | * the protocol headers fits into a single mbuf header's |
| 2366 | * data area (no cluster attached) |
| 2367 | */ |
| 2368 | m = NULL; |
| 2369 | |
| 2370 | /* minimum length we are going to allocate */ |
| 2371 | allocated_len = MHLEN; |
| 2372 | if (MHLEN < hdrlen + max_linkhdr) { |
| 2373 | MGETHDR(m, M_DONTWAIT, MT_HEADER); |
| 2374 | if (m == NULL) { |
| 2375 | error = ENOBUFS; |
| 2376 | goto out; |
| 2377 | } |
| 2378 | MCLGET(m, M_DONTWAIT); |
| 2379 | if ((m->m_flags & M_EXT) == 0) { |
| 2380 | m_freem(m); |
| 2381 | error = ENOBUFS; |
| 2382 | goto out; |
| 2383 | } |
| 2384 | m->m_data += max_linkhdr; |
| 2385 | m->m_len = hdrlen; |
| 2386 | allocated_len = MCLBYTES; |
| 2387 | } |
| 2388 | if (len <= allocated_len - hdrlen - max_linkhdr) { |
| 2389 | if (m == NULL) { |
| 2390 | VERIFY(allocated_len <= MHLEN); |
| 2391 | MGETHDR(m, M_DONTWAIT, MT_HEADER); |
| 2392 | if (m == NULL) { |
| 2393 | error = ENOBUFS; |
| 2394 | goto out; |
| 2395 | } |
| 2396 | m->m_data += max_linkhdr; |
| 2397 | m->m_len = hdrlen; |
| 2398 | } |
| 2399 | /* makes sure we still have data left to be sent at this point */ |
| 2400 | if (so->so_snd.sb_mb == NULL || off < 0) { |
| 2401 | if (m != NULL) { |
| 2402 | m_freem(m); |
| 2403 | } |
| 2404 | error = 0; /* should we return an error? */ |
| 2405 | goto out; |
| 2406 | } |
| 2407 | m_copydata(so->so_snd.sb_mb, off, (int) len, |
| 2408 | mtod(m, caddr_t) + hdrlen); |
| 2409 | m->m_len += len; |
| 2410 | } else { |
| 2411 | uint32_t copymode; |
| 2412 | /* |
| 2413 | * Retain packet header metadata at the socket |
| 2414 | * buffer if this is is an MPTCP subflow, |
| 2415 | * otherwise move it. |
| 2416 | */ |
| 2417 | copymode = M_COPYM_MOVE_HDR; |
| 2418 | #if MPTCP |
| 2419 | if (so->so_flags & SOF_MP_SUBFLOW) { |
| 2420 | copymode = M_COPYM_NOOP_HDR; |
| 2421 | } |
| 2422 | #endif /* MPTCP */ |
| 2423 | if (m != NULL) { |
| 2424 | if (so->so_snd.sb_flags & SB_SENDHEAD) { |
| 2425 | VERIFY(so->so_snd.sb_flags & SB_SENDHEAD); |
| 2426 | VERIFY(so->so_snd.sb_sendoff <= so->so_snd.sb_cc); |
| 2427 | |
| 2428 | m->m_next = m_copym_mode(so->so_snd.sb_mb, |
| 2429 | off, (int)len, M_DONTWAIT, |
| 2430 | &so->so_snd.sb_sendhead, |
| 2431 | &so->so_snd.sb_sendoff, copymode); |
| 2432 | |
| 2433 | VERIFY(so->so_snd.sb_sendoff <= so->so_snd.sb_cc); |
| 2434 | } else { |
| 2435 | m->m_next = m_copym_mode(so->so_snd.sb_mb, |
| 2436 | off, (int)len, M_DONTWAIT, |
| 2437 | NULL, NULL, copymode); |
| 2438 | } |
| 2439 | if (m->m_next == NULL) { |
| 2440 | (void) m_free(m); |
| 2441 | error = ENOBUFS; |
| 2442 | goto out; |
| 2443 | } |
| 2444 | } else { |
| 2445 | /* |
| 2446 | * make sure we still have data left |
| 2447 | * to be sent at this point |
| 2448 | */ |
| 2449 | if (so->so_snd.sb_mb == NULL) { |
| 2450 | error = 0; /* should we return an error? */ |
| 2451 | goto out; |
| 2452 | } |
| 2453 | |
| 2454 | /* |
| 2455 | * m_copym_with_hdrs will always return the |
| 2456 | * last mbuf pointer and the offset into it that |
| 2457 | * it acted on to fullfill the current request, |
| 2458 | * whether a valid 'hint' was passed in or not. |
| 2459 | */ |
| 2460 | if (so->so_snd.sb_flags & SB_SENDHEAD) { |
| 2461 | VERIFY(so->so_snd.sb_flags & SB_SENDHEAD); |
| 2462 | VERIFY(so->so_snd.sb_sendoff <= so->so_snd.sb_cc); |
| 2463 | |
| 2464 | m = m_copym_with_hdrs(so->so_snd.sb_mb, |
| 2465 | off, len, M_DONTWAIT, &so->so_snd.sb_sendhead, |
| 2466 | &so->so_snd.sb_sendoff, copymode); |
| 2467 | |
| 2468 | VERIFY(so->so_snd.sb_sendoff <= so->so_snd.sb_cc); |
| 2469 | } else { |
| 2470 | m = m_copym_with_hdrs(so->so_snd.sb_mb, |
| 2471 | off, len, M_DONTWAIT, NULL, |
| 2472 | NULL, copymode); |
| 2473 | } |
| 2474 | if (m == NULL) { |
| 2475 | error = ENOBUFS; |
| 2476 | goto out; |
| 2477 | } |
| 2478 | m->m_data += max_linkhdr; |
| 2479 | m->m_len = hdrlen; |
| 2480 | } |
| 2481 | } |
| 2482 | /* |
| 2483 | * If we're sending everything we've got, set PUSH. |
| 2484 | * (This will keep happy those implementations which only |
| 2485 | * give data to the user when a buffer fills or |
| 2486 | * a PUSH comes in.) |
| 2487 | * |
| 2488 | * On SYN-segments we should not add the PUSH-flag. |
| 2489 | */ |
| 2490 | if (off + len == so->so_snd.sb_cc && !(flags & TH_SYN)) { |
| 2491 | flags |= TH_PUSH; |
| 2492 | } |
| 2493 | } else { |
| 2494 | if (tp->t_flags & TF_ACKNOW) { |
| 2495 | tcpstat.tcps_sndacks++; |
| 2496 | } else if (flags & (TH_SYN | TH_FIN | TH_RST)) { |
| 2497 | tcpstat.tcps_sndctrl++; |
| 2498 | } else if (SEQ_GT(tp->snd_up, tp->snd_una)) { |
| 2499 | tcpstat.tcps_sndurg++; |
| 2500 | } else { |
| 2501 | tcpstat.tcps_sndwinup++; |
| 2502 | } |
| 2503 | |
| 2504 | MGETHDR(m, M_DONTWAIT, MT_HEADER); /* MAC-OK */ |
| 2505 | if (m == NULL) { |
| 2506 | error = ENOBUFS; |
| 2507 | goto out; |
| 2508 | } |
| 2509 | if (MHLEN < (hdrlen + max_linkhdr)) { |
| 2510 | MCLGET(m, M_DONTWAIT); |
| 2511 | if ((m->m_flags & M_EXT) == 0) { |
| 2512 | m_freem(m); |
| 2513 | error = ENOBUFS; |
| 2514 | goto out; |
| 2515 | } |
| 2516 | } |
| 2517 | m->m_data += max_linkhdr; |
| 2518 | m->m_len = hdrlen; |
| 2519 | } |
| 2520 | m->m_pkthdr.rcvif = 0; |
| 2521 | m_add_crumb(m, PKT_CRUMB_TCP_OUTPUT); |
| 2522 | |
| 2523 | /* Any flag other than pure-ACK: Do not compress! */ |
| 2524 | if (flags & ~(TH_ACK)) { |
| 2525 | do_not_compress = TRUE; |
| 2526 | } |
| 2527 | |
| 2528 | if (tp->rcv_scale == 0) { |
| 2529 | do_not_compress = TRUE; |
| 2530 | } |
| 2531 | |
| 2532 | if (do_not_compress) { |
| 2533 | m->m_pkthdr.comp_gencnt = 0; |
| 2534 | } else { |
| 2535 | if (TSTMP_LT(tp->t_comp_lastinc + tcp_ack_compression_rate, tcp_now)) { |
| 2536 | tp->t_comp_gencnt++; |
| 2537 | /* 0 means no compression, thus jump this */ |
| 2538 | if (tp->t_comp_gencnt <= TCP_ACK_COMPRESSION_DUMMY) { |
| 2539 | tp->t_comp_gencnt = TCP_ACK_COMPRESSION_DUMMY + 1; |
| 2540 | } |
| 2541 | tp->t_comp_lastinc = tcp_now; |
| 2542 | } |
| 2543 | m->m_pkthdr.comp_gencnt = tp->t_comp_gencnt; |
| 2544 | } |
| 2545 | |
| 2546 | if (isipv6) { |
| 2547 | ip6 = mtod(m, struct ip6_hdr *); |
| 2548 | th = (struct tcphdr *)(void *)(ip6 + 1); |
| 2549 | tcp_fillheaders(m, tp, ip6, th); |
| 2550 | if ((tp->ecn_flags & TE_SENDIPECT) != 0 && len && |
| 2551 | !SEQ_LT(tp->snd_nxt, tp->snd_max) && !sack_rxmit) { |
| 2552 | ip6->ip6_flow |= htonl(IPTOS_ECN_ECT0 << 20); |
| 2553 | } |
| 2554 | svc_flags |= PKT_SCF_IPV6; |
| 2555 | #if PF_ECN |
| 2556 | m_pftag(m)->pftag_hdr = (void *)ip6; |
| 2557 | m_pftag(m)->pftag_flags |= PF_TAG_HDR_INET6; |
| 2558 | #endif /* PF_ECN */ |
| 2559 | } else { |
| 2560 | ip = mtod(m, struct ip *); |
| 2561 | th = (struct tcphdr *)(void *)(ip + 1); |
| 2562 | /* this picks up the pseudo header (w/o the length) */ |
| 2563 | tcp_fillheaders(m, tp, ip, th); |
| 2564 | if ((tp->ecn_flags & TE_SENDIPECT) != 0 && len && |
| 2565 | !SEQ_LT(tp->snd_nxt, tp->snd_max) && |
| 2566 | !sack_rxmit && !(flags & TH_SYN)) { |
| 2567 | ip->ip_tos |= IPTOS_ECN_ECT0; |
| 2568 | } |
| 2569 | #if PF_ECN |
| 2570 | m_pftag(m)->pftag_hdr = (void *)ip; |
| 2571 | m_pftag(m)->pftag_flags |= PF_TAG_HDR_INET; |
| 2572 | #endif /* PF_ECN */ |
| 2573 | } |
| 2574 | |
| 2575 | /* |
| 2576 | * Fill in fields, remembering maximum advertised |
| 2577 | * window for use in delaying messages about window sizes. |
| 2578 | * If resending a FIN, be sure not to use a new sequence number. |
| 2579 | */ |
| 2580 | if ((flags & TH_FIN) && (tp->t_flags & TF_SENTFIN) && |
| 2581 | tp->snd_nxt == tp->snd_max) { |
| 2582 | tp->snd_nxt--; |
| 2583 | } |
| 2584 | /* |
| 2585 | * If we are doing retransmissions, then snd_nxt will |
| 2586 | * not reflect the first unsent octet. For ACK only |
| 2587 | * packets, we do not want the sequence number of the |
| 2588 | * retransmitted packet, we want the sequence number |
| 2589 | * of the next unsent octet. So, if there is no data |
| 2590 | * (and no SYN or FIN), use snd_max instead of snd_nxt |
| 2591 | * when filling in ti_seq. But if we are in persist |
| 2592 | * state, snd_max might reflect one byte beyond the |
| 2593 | * right edge of the window, so use snd_nxt in that |
| 2594 | * case, since we know we aren't doing a retransmission. |
| 2595 | * (retransmit and persist are mutually exclusive...) |
| 2596 | * |
| 2597 | * Note the state of this retransmit segment to detect spurious |
| 2598 | * retransmissions. |
| 2599 | */ |
| 2600 | if (sack_rxmit == 0) { |
| 2601 | if (len || (flags & (TH_SYN | TH_FIN)) || |
| 2602 | tp->t_timer[TCPT_PERSIST]) { |
| 2603 | th->th_seq = htonl(tp->snd_nxt); |
| 2604 | if (len > 0) { |
| 2605 | m->m_pkthdr.tx_start_seq = tp->snd_nxt; |
| 2606 | m->m_pkthdr.pkt_flags |= PKTF_START_SEQ; |
| 2607 | } |
| 2608 | if (SEQ_LT(tp->snd_nxt, tp->snd_max)) { |
| 2609 | if (SACK_ENABLED(tp) && len > 1 && |
| 2610 | !(tp->t_flagsext & TF_SENT_TLPROBE)) { |
| 2611 | tcp_rxtseg_insert(tp, tp->snd_nxt, |
| 2612 | (tp->snd_nxt + len - 1)); |
| 2613 | } |
| 2614 | if (len > 0) { |
| 2615 | m->m_pkthdr.pkt_flags |= |
| 2616 | PKTF_TCP_REXMT; |
| 2617 | } |
| 2618 | } |
| 2619 | } else { |
| 2620 | th->th_seq = htonl(tp->snd_max); |
| 2621 | } |
| 2622 | } else { |
| 2623 | th->th_seq = htonl(p->rxmit); |
| 2624 | if (len > 0) { |
| 2625 | m->m_pkthdr.pkt_flags |= |
| 2626 | (PKTF_TCP_REXMT | PKTF_START_SEQ); |
| 2627 | m->m_pkthdr.tx_start_seq = p->rxmit; |
| 2628 | } |
| 2629 | tcp_rxtseg_insert(tp, p->rxmit, (p->rxmit + len - 1)); |
| 2630 | p->rxmit += len; |
| 2631 | tp->sackhint.sack_bytes_rexmit += len; |
| 2632 | } |
| 2633 | th->th_ack = htonl(tp->rcv_nxt); |
| 2634 | tp->last_ack_sent = tp->rcv_nxt; |
| 2635 | if (optlen) { |
| 2636 | bcopy(src: opt, dst: th + 1, n: optlen); |
| 2637 | th->th_off = (sizeof(struct tcphdr) + optlen) >> 2; |
| 2638 | } |
| 2639 | /* Separate AE from flags */ |
| 2640 | th->th_flags = (flags & (TH_FLAGS_ALL)); |
| 2641 | th->th_x2 = (flags & (TH_AE)) >> 8; |
| 2642 | th->th_win = htons((u_short) (recwin >> tp->rcv_scale)); |
| 2643 | tp->t_last_recwin = recwin; |
| 2644 | if (!(so->so_flags & SOF_MP_SUBFLOW)) { |
| 2645 | if (recwin > 0 && SEQ_LT(tp->rcv_adv, tp->rcv_nxt + recwin)) { |
| 2646 | tp->rcv_adv = tp->rcv_nxt + recwin; |
| 2647 | } |
| 2648 | } else { |
| 2649 | struct mptcb *mp_tp = tptomptp(tp); |
| 2650 | if (recwin > 0) { |
| 2651 | tp->rcv_adv = tp->rcv_nxt + recwin; |
| 2652 | } |
| 2653 | |
| 2654 | if (recwin > 0 && MPTCP_SEQ_LT(mp_tp->mpt_rcvadv, mp_tp->mpt_rcvnxt + recwin)) { |
| 2655 | mp_tp->mpt_rcvadv = mp_tp->mpt_rcvnxt + recwin; |
| 2656 | } |
| 2657 | } |
| 2658 | |
| 2659 | /* |
| 2660 | * Adjust the RXWIN0SENT flag - indicate that we have advertised |
| 2661 | * a 0 window. This may cause the remote transmitter to stall. This |
| 2662 | * flag tells soreceive() to disable delayed acknowledgements when |
| 2663 | * draining the buffer. This can occur if the receiver is attempting |
| 2664 | * to read more data then can be buffered prior to transmitting on |
| 2665 | * the connection. |
| 2666 | */ |
| 2667 | if (th->th_win == 0) { |
| 2668 | tp->t_flags |= TF_RXWIN0SENT; |
| 2669 | } else { |
| 2670 | tp->t_flags &= ~TF_RXWIN0SENT; |
| 2671 | } |
| 2672 | |
| 2673 | if (SEQ_GT(tp->snd_up, tp->snd_nxt)) { |
| 2674 | th->th_urp = htons((u_short)(tp->snd_up - tp->snd_nxt)); |
| 2675 | th->th_flags |= TH_URG; |
| 2676 | } else { |
| 2677 | /* |
| 2678 | * If no urgent pointer to send, then we pull |
| 2679 | * the urgent pointer to the left edge of the send window |
| 2680 | * so that it doesn't drift into the send window on sequence |
| 2681 | * number wraparound. |
| 2682 | */ |
| 2683 | tp->snd_up = tp->snd_una; /* drag it along */ |
| 2684 | } |
| 2685 | |
| 2686 | /* |
| 2687 | * Put TCP length in extended header, and then |
| 2688 | * checksum extended header and data. |
| 2689 | */ |
| 2690 | m->m_pkthdr.len = hdrlen + len; /* in6_cksum() need this */ |
| 2691 | |
| 2692 | /* |
| 2693 | * If this is potentially the last packet on the stream, then mark |
| 2694 | * it in order to enable some optimizations in the underlying |
| 2695 | * layers |
| 2696 | */ |
| 2697 | if (tp->t_state != TCPS_ESTABLISHED && |
| 2698 | (tp->t_state == TCPS_CLOSING || tp->t_state == TCPS_TIME_WAIT |
| 2699 | || tp->t_state == TCPS_LAST_ACK || (th->th_flags & TH_RST))) { |
| 2700 | m->m_pkthdr.pkt_flags |= PKTF_LAST_PKT; |
| 2701 | } |
| 2702 | |
| 2703 | if (isipv6) { |
| 2704 | /* |
| 2705 | * ip6_plen is not need to be filled now, and will be filled |
| 2706 | * in ip6_output. |
| 2707 | */ |
| 2708 | m->m_pkthdr.csum_flags = CSUM_TCPIPV6; |
| 2709 | m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum); |
| 2710 | if (len + optlen) { |
| 2711 | th->th_sum = in_addword(th->th_sum, |
| 2712 | htons((u_short)(optlen + len))); |
| 2713 | } |
| 2714 | } else { |
| 2715 | m->m_pkthdr.csum_flags = CSUM_TCP; |
| 2716 | m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum); |
| 2717 | if (len + optlen) { |
| 2718 | th->th_sum = in_addword(th->th_sum, |
| 2719 | htons((u_short)(optlen + len))); |
| 2720 | } |
| 2721 | } |
| 2722 | |
| 2723 | /* |
| 2724 | * Enable TSO and specify the size of the segments. |
| 2725 | * The TCP pseudo header checksum is always provided. |
| 2726 | */ |
| 2727 | if (tso) { |
| 2728 | if (isipv6) { |
| 2729 | m->m_pkthdr.csum_flags |= CSUM_TSO_IPV6; |
| 2730 | } else { |
| 2731 | m->m_pkthdr.csum_flags |= CSUM_TSO_IPV4; |
| 2732 | } |
| 2733 | |
| 2734 | m->m_pkthdr.tso_segsz = tp->t_maxopd - optlen; |
| 2735 | } else { |
| 2736 | m->m_pkthdr.tso_segsz = 0; |
| 2737 | } |
| 2738 | |
| 2739 | /* |
| 2740 | * In transmit state, time the transmission and arrange for |
| 2741 | * the retransmit. In persist state, just set snd_max. |
| 2742 | */ |
| 2743 | if (!(tp->t_flagsext & TF_FORCE) |
| 2744 | || tp->t_timer[TCPT_PERSIST] == 0) { |
| 2745 | tcp_seq startseq = tp->snd_nxt; |
| 2746 | |
| 2747 | /* |
| 2748 | * Advance snd_nxt over sequence space of this segment. |
| 2749 | */ |
| 2750 | if (flags & (TH_SYN | TH_FIN)) { |
| 2751 | if (flags & TH_SYN) { |
| 2752 | tp->snd_nxt++; |
| 2753 | } |
| 2754 | if ((flags & TH_FIN) && |
| 2755 | !(tp->t_flags & TF_SENTFIN)) { |
| 2756 | tp->snd_nxt++; |
| 2757 | tp->t_flags |= TF_SENTFIN; |
| 2758 | } |
| 2759 | } |
| 2760 | if (sack_rxmit) { |
| 2761 | goto timer; |
| 2762 | } |
| 2763 | if (sack_rescue_rxt == TRUE) { |
| 2764 | tp->snd_nxt = old_snd_nxt; |
| 2765 | sack_rescue_rxt = FALSE; |
| 2766 | tcpstat.tcps_pto_in_recovery++; |
| 2767 | } else { |
| 2768 | tp->snd_nxt += len; |
| 2769 | } |
| 2770 | if (SEQ_GT(tp->snd_nxt, tp->snd_max)) { |
| 2771 | tp->snd_max = tp->snd_nxt; |
| 2772 | tp->t_sndtime = tcp_now; |
| 2773 | /* |
| 2774 | * Time this transmission if not a retransmission and |
| 2775 | * not currently timing anything. |
| 2776 | */ |
| 2777 | if (tp->t_rtttime == 0) { |
| 2778 | tp->t_rtttime = tcp_now; |
| 2779 | tp->t_rtseq = startseq; |
| 2780 | tcpstat.tcps_segstimed++; |
| 2781 | |
| 2782 | /* update variables related to pipe ack */ |
| 2783 | tp->t_pipeack_lastuna = tp->snd_una; |
| 2784 | } |
| 2785 | } |
| 2786 | |
| 2787 | /* |
| 2788 | * Set retransmit timer if not currently set, |
| 2789 | * and not doing an ack or a keep-alive probe. |
| 2790 | */ |
| 2791 | timer: |
| 2792 | if (tp->t_timer[TCPT_REXMT] == 0 && |
| 2793 | ((sack_rxmit && tp->snd_nxt != tp->snd_max) || |
| 2794 | tp->snd_nxt != tp->snd_una || (flags & TH_FIN))) { |
| 2795 | if (tp->t_timer[TCPT_PERSIST]) { |
| 2796 | tp->t_timer[TCPT_PERSIST] = 0; |
| 2797 | tp->t_persist_stop = 0; |
| 2798 | TCP_RESET_REXMT_STATE(tp); |
| 2799 | } |
| 2800 | tp->t_timer[TCPT_REXMT] = |
| 2801 | OFFSET_FROM_START(tp, tp->t_rxtcur); |
| 2802 | } |
| 2803 | |
| 2804 | /* |
| 2805 | * Set tail loss probe timeout if new data is being |
| 2806 | * transmitted. This will be supported only when |
| 2807 | * SACK option is enabled on a connection. |
| 2808 | * |
| 2809 | * Every time new data is sent PTO will get reset. |
| 2810 | */ |
| 2811 | if (tcp_enable_tlp && len != 0 && tp->t_state == TCPS_ESTABLISHED && |
| 2812 | SACK_ENABLED(tp) && !IN_FASTRECOVERY(tp) && |
| 2813 | tp->snd_nxt == tp->snd_max && |
| 2814 | SEQ_GT(tp->snd_nxt, tp->snd_una) && |
| 2815 | tp->t_rxtshift == 0 && |
| 2816 | (tp->t_flagsext & (TF_SENT_TLPROBE | TF_PKTS_REORDERED)) == 0) { |
| 2817 | uint32_t pto, srtt; |
| 2818 | |
| 2819 | if (tcp_do_better_lr) { |
| 2820 | srtt = tp->t_srtt >> TCP_RTT_SHIFT; |
| 2821 | pto = 2 * srtt; |
| 2822 | if ((tp->snd_max - tp->snd_una) <= tp->t_maxseg) { |
| 2823 | pto += tcp_delack; |
| 2824 | } else { |
| 2825 | pto += 2; |
| 2826 | } |
| 2827 | } else { |
| 2828 | /* |
| 2829 | * Using SRTT alone to set PTO can cause spurious |
| 2830 | * retransmissions on wireless networks where there |
| 2831 | * is a lot of variance in RTT. Taking variance |
| 2832 | * into account will avoid this. |
| 2833 | */ |
| 2834 | srtt = tp->t_srtt >> TCP_RTT_SHIFT; |
| 2835 | pto = ((TCP_REXMTVAL(tp)) * 3) >> 1; |
| 2836 | pto = max(a: 2 * srtt, b: pto); |
| 2837 | if ((tp->snd_max - tp->snd_una) == tp->t_maxseg) { |
| 2838 | pto = max(a: pto, |
| 2839 | b: (((3 * pto) >> 2) + tcp_delack * 2)); |
| 2840 | } else { |
| 2841 | pto = max(a: 10, b: pto); |
| 2842 | } |
| 2843 | } |
| 2844 | |
| 2845 | /* if RTO is less than PTO, choose RTO instead */ |
| 2846 | if (tp->t_rxtcur < pto) { |
| 2847 | pto = tp->t_rxtcur; |
| 2848 | } |
| 2849 | |
| 2850 | tp->t_timer[TCPT_PTO] = OFFSET_FROM_START(tp, pto); |
| 2851 | } |
| 2852 | } else { |
| 2853 | /* |
| 2854 | * Persist case, update snd_max but since we are in |
| 2855 | * persist mode (no window) we do not update snd_nxt. |
| 2856 | */ |
| 2857 | int xlen = len; |
| 2858 | if (flags & TH_SYN) { |
| 2859 | ++xlen; |
| 2860 | } |
| 2861 | if ((flags & TH_FIN) && |
| 2862 | !(tp->t_flags & TF_SENTFIN)) { |
| 2863 | ++xlen; |
| 2864 | tp->t_flags |= TF_SENTFIN; |
| 2865 | } |
| 2866 | if (SEQ_GT(tp->snd_nxt + xlen, tp->snd_max)) { |
| 2867 | tp->snd_max = tp->snd_nxt + len; |
| 2868 | tp->t_sndtime = tcp_now; |
| 2869 | } |
| 2870 | } |
| 2871 | |
| 2872 | #if TCPDEBUG |
| 2873 | /* |
| 2874 | * Trace. |
| 2875 | */ |
| 2876 | if (so_options & SO_DEBUG) { |
| 2877 | tcp_trace(TA_OUTPUT, tp->t_state, tp, mtod(m, void *), th, 0); |
| 2878 | } |
| 2879 | #endif |
| 2880 | |
| 2881 | /* |
| 2882 | * Fill in IP length and desired time to live and |
| 2883 | * send to IP level. There should be a better way |
| 2884 | * to handle ttl and tos; we could keep them in |
| 2885 | * the template, but need a way to checksum without them. |
| 2886 | */ |
| 2887 | /* |
| 2888 | * m->m_pkthdr.len should have been set before cksum calcuration, |
| 2889 | * because in6_cksum() need it. |
| 2890 | */ |
| 2891 | if (isipv6) { |
| 2892 | /* |
| 2893 | * we separately set hoplimit for every segment, since the |
| 2894 | * user might want to change the value via setsockopt. |
| 2895 | * Also, desired default hop limit might be changed via |
| 2896 | * Neighbor Discovery. |
| 2897 | */ |
| 2898 | ip6->ip6_hlim = in6_selecthlim(inp, inp->in6p_route.ro_rt ? |
| 2899 | inp->in6p_route.ro_rt->rt_ifp : NULL); |
| 2900 | |
| 2901 | /* Don't set ECT bit if requested by an app */ |
| 2902 | |
| 2903 | /* Set ECN bits for testing purposes */ |
| 2904 | if (tp->ecn_flags & TE_FORCE_ECT1) { |
| 2905 | ip6->ip6_flow |= htonl(IPTOS_ECN_ECT1 << 20); |
| 2906 | } else if (tp->ecn_flags & TE_FORCE_ECT0) { |
| 2907 | ip6->ip6_flow |= htonl(IPTOS_ECN_ECT0 << 20); |
| 2908 | } |
| 2909 | |
| 2910 | KERNEL_DEBUG(DBG_LAYER_BEG, |
| 2911 | ((inp->inp_fport << 16) | inp->inp_lport), |
| 2912 | (((inp->in6p_laddr.s6_addr16[0] & 0xffff) << 16) | |
| 2913 | (inp->in6p_faddr.s6_addr16[0] & 0xffff)), |
| 2914 | sendalot, 0, 0); |
| 2915 | } else { |
| 2916 | ASSERT(m->m_pkthdr.len <= IP_MAXPACKET); |
| 2917 | ip->ip_len = (u_short)m->m_pkthdr.len; |
| 2918 | ip->ip_ttl = inp->inp_ip_ttl; /* XXX */ |
| 2919 | |
| 2920 | /* Don't set ECN bit if requested by an app */ |
| 2921 | ip->ip_tos |= (inp->inp_ip_tos & ~IPTOS_ECN_MASK); |
| 2922 | |
| 2923 | /* Set ECN bits for testing purposes */ |
| 2924 | if (tp->ecn_flags & TE_FORCE_ECT1) { |
| 2925 | ip->ip_tos |= IPTOS_ECN_ECT1; |
| 2926 | } else if (tp->ecn_flags & TE_FORCE_ECT0) { |
| 2927 | ip->ip_tos |= IPTOS_ECN_ECT0; |
| 2928 | } |
| 2929 | |
| 2930 | KERNEL_DEBUG(DBG_LAYER_BEG, |
| 2931 | ((inp->inp_fport << 16) | inp->inp_lport), |
| 2932 | (((inp->inp_laddr.s_addr & 0xffff) << 16) | |
| 2933 | (inp->inp_faddr.s_addr & 0xffff)), 0, 0, 0); |
| 2934 | } |
| 2935 | |
| 2936 | /* |
| 2937 | * See if we should do MTU discovery. |
| 2938 | * Look at the flag updated on the following criterias: |
| 2939 | * 1) Path MTU discovery is authorized by the sysctl |
| 2940 | * 2) The route isn't set yet (unlikely but could happen) |
| 2941 | * 3) The route is up |
| 2942 | * 4) the MTU is not locked (if it is, then discovery has been |
| 2943 | * disabled for that route) |
| 2944 | */ |
| 2945 | if (!isipv6) { |
| 2946 | if (path_mtu_discovery && (tp->t_flags & TF_PMTUD)) { |
| 2947 | ip->ip_off |= IP_DF; |
| 2948 | } |
| 2949 | } |
| 2950 | |
| 2951 | #if NECP |
| 2952 | { |
| 2953 | necp_kernel_policy_id policy_id; |
| 2954 | necp_kernel_policy_id skip_policy_id; |
| 2955 | u_int32_t route_rule_id; |
| 2956 | u_int32_t pass_flags; |
| 2957 | if (!necp_socket_is_allowed_to_send_recv(inp, NULL, pf_tag: 0, return_policy_id: &policy_id, return_route_rule_id: &route_rule_id, return_skip_policy_id: &skip_policy_id, return_pass_flags: &pass_flags)) { |
| 2958 | TCP_LOG_DROP_NECP(isipv6 ? (void *)ip6 : (void *)ip, th, tp, true); |
| 2959 | m_freem(m); |
| 2960 | error = EHOSTUNREACH; |
| 2961 | goto out; |
| 2962 | } |
| 2963 | necp_mark_packet_from_socket(packet: m, inp, policy_id, route_rule_id, skip_policy_id, pass_flags); |
| 2964 | |
| 2965 | if (net_qos_policy_restricted != 0) { |
| 2966 | necp_socket_update_qos_marking(inp, route: inp->inp_route.ro_rt, route_rule_id); |
| 2967 | } |
| 2968 | } |
| 2969 | #endif /* NECP */ |
| 2970 | |
| 2971 | #if IPSEC |
| 2972 | if (inp->inp_sp != NULL) { |
| 2973 | ipsec_setsocket(m, so); |
| 2974 | } |
| 2975 | #endif /*IPSEC*/ |
| 2976 | |
| 2977 | /* |
| 2978 | * The socket is kept locked while sending out packets in ip_output, even if packet chaining is not active. |
| 2979 | */ |
| 2980 | lost = 0; |
| 2981 | |
| 2982 | /* |
| 2983 | * Embed the flow hash in pkt hdr and mark the packet as |
| 2984 | * capable of flow controlling |
| 2985 | */ |
| 2986 | m->m_pkthdr.pkt_flowsrc = FLOWSRC_INPCB; |
| 2987 | m->m_pkthdr.pkt_flowid = inp->inp_flowhash; |
| 2988 | m->m_pkthdr.pkt_flags |= (PKTF_FLOW_ID | PKTF_FLOW_LOCALSRC | PKTF_FLOW_ADV); |
| 2989 | m->m_pkthdr.pkt_proto = IPPROTO_TCP; |
| 2990 | m->m_pkthdr.tx_tcp_pid = so->last_pid; |
| 2991 | if (so->so_flags & SOF_DELEGATED) { |
| 2992 | m->m_pkthdr.tx_tcp_e_pid = so->e_pid; |
| 2993 | } else { |
| 2994 | m->m_pkthdr.tx_tcp_e_pid = 0; |
| 2995 | } |
| 2996 | |
| 2997 | m->m_nextpkt = NULL; |
| 2998 | |
| 2999 | if (inp->inp_last_outifp != NULL && |
| 3000 | !(inp->inp_last_outifp->if_flags & IFF_LOOPBACK)) { |
| 3001 | /* Hint to prioritize this packet if |
| 3002 | * 1. if the packet has no data |
| 3003 | * 2. the interface supports transmit-start model and did |
| 3004 | * not disable ACK prioritization. |
| 3005 | * 3. Only ACK flag is set. |
| 3006 | * 4. there is no outstanding data on this connection. |
| 3007 | */ |
| 3008 | if (len == 0 && (inp->inp_last_outifp->if_eflags & (IFEF_TXSTART | IFEF_NOACKPRI)) == IFEF_TXSTART) { |
| 3009 | if (th->th_flags == TH_ACK && |
| 3010 | tp->snd_una == tp->snd_max && |
| 3011 | tp->t_timer[TCPT_REXMT] == 0) { |
| 3012 | svc_flags |= PKT_SCF_TCP_ACK; |
| 3013 | } |
| 3014 | if (th->th_flags & TH_SYN) { |
| 3015 | svc_flags |= PKT_SCF_TCP_SYN; |
| 3016 | } |
| 3017 | } |
| 3018 | set_packet_service_class(m, so, sotc, svc_flags); |
| 3019 | } else { |
| 3020 | /* |
| 3021 | * Optimization for loopback just set the mbuf |
| 3022 | * service class |
| 3023 | */ |
| 3024 | (void) m_set_service_class(m, so_tc2msc(sotc)); |
| 3025 | } |
| 3026 | |
| 3027 | if ((th->th_flags & TH_SYN) && tp->t_syn_sent < UINT8_MAX) { |
| 3028 | tp->t_syn_sent++; |
| 3029 | } |
| 3030 | if ((th->th_flags & TH_FIN) && tp->t_fin_sent < UINT8_MAX) { |
| 3031 | tp->t_fin_sent++; |
| 3032 | } |
| 3033 | if ((th->th_flags & TH_RST) && tp->t_rst_sent < UINT8_MAX) { |
| 3034 | tp->t_rst_sent++; |
| 3035 | } |
| 3036 | TCP_LOG_TH_FLAGS(isipv6 ? (void *)ip6 : (void *)ip, th, tp, true, |
| 3037 | inp->inp_last_outifp != NULL ? inp->inp_last_outifp : |
| 3038 | inp->inp_boundifp); |
| 3039 | |
| 3040 | tp->t_pktlist_sentlen += len; |
| 3041 | tp->t_lastchain++; |
| 3042 | |
| 3043 | if (isipv6) { |
| 3044 | DTRACE_TCP5(send, struct mbuf *, m, struct inpcb *, inp, |
| 3045 | struct ip6 *, ip6, struct tcpcb *, tp, struct tcphdr *, |
| 3046 | th); |
| 3047 | } else { |
| 3048 | DTRACE_TCP5(send, struct mbuf *, m, struct inpcb *, inp, |
| 3049 | struct ip *, ip, struct tcpcb *, tp, struct tcphdr *, th); |
| 3050 | } |
| 3051 | |
| 3052 | if (tp->t_pktlist_head != NULL) { |
| 3053 | tp->t_pktlist_tail->m_nextpkt = m; |
| 3054 | tp->t_pktlist_tail = m; |
| 3055 | } else { |
| 3056 | packchain_newlist++; |
| 3057 | tp->t_pktlist_head = tp->t_pktlist_tail = m; |
| 3058 | } |
| 3059 | |
| 3060 | if (sendalot == 0 || (tp->t_state != TCPS_ESTABLISHED) || |
| 3061 | (tp->t_flags & TF_ACKNOW) || |
| 3062 | (tp->t_flagsext & TF_FORCE) || |
| 3063 | tp->t_lastchain >= tcp_packet_chaining) { |
| 3064 | error = 0; |
| 3065 | while (inp->inp_sndinprog_cnt == 0 && |
| 3066 | tp->t_pktlist_head != NULL) { |
| 3067 | packetlist = tp->t_pktlist_head; |
| 3068 | packchain_listadd = tp->t_lastchain; |
| 3069 | packchain_sent++; |
| 3070 | lost = tp->t_pktlist_sentlen; |
| 3071 | TCP_PKTLIST_CLEAR(tp); |
| 3072 | |
| 3073 | error = tcp_ip_output(so, tp, packetlist, |
| 3074 | packchain_listadd, tp_inp_options, |
| 3075 | (so_options & SO_DONTROUTE), |
| 3076 | (sack_rxmit || (sack_bytes_rxmt != 0)), isipv6); |
| 3077 | if (error) { |
| 3078 | /* |
| 3079 | * Take into account the rest of unsent |
| 3080 | * packets in the packet list for this tcp |
| 3081 | * into "lost", since we're about to free |
| 3082 | * the whole list below. |
| 3083 | */ |
| 3084 | lost += tp->t_pktlist_sentlen; |
| 3085 | break; |
| 3086 | } else { |
| 3087 | lost = 0; |
| 3088 | } |
| 3089 | } |
| 3090 | /* tcp was closed while we were in ip; resume close */ |
| 3091 | if (inp->inp_sndinprog_cnt == 0 && |
| 3092 | (tp->t_flags & TF_CLOSING)) { |
| 3093 | tp->t_flags &= ~TF_CLOSING; |
| 3094 | (void) tcp_close(tp); |
| 3095 | return 0; |
| 3096 | } |
| 3097 | } else { |
| 3098 | error = 0; |
| 3099 | packchain_looped++; |
| 3100 | tcpstat.tcps_sndtotal++; |
| 3101 | |
| 3102 | goto again; |
| 3103 | } |
| 3104 | if (error) { |
| 3105 | /* |
| 3106 | * Assume that the packets were lost, so back out the |
| 3107 | * sequence number advance, if any. Note that the "lost" |
| 3108 | * variable represents the amount of user data sent during |
| 3109 | * the recent call to ip_output_list() plus the amount of |
| 3110 | * user data in the packet list for this tcp at the moment. |
| 3111 | */ |
| 3112 | if (!(tp->t_flagsext & TF_FORCE) |
| 3113 | || tp->t_timer[TCPT_PERSIST] == 0) { |
| 3114 | /* |
| 3115 | * No need to check for TH_FIN here because |
| 3116 | * the TF_SENTFIN flag handles that case. |
| 3117 | */ |
| 3118 | if ((flags & TH_SYN) == 0) { |
| 3119 | if (sack_rxmit) { |
| 3120 | if (SEQ_GT((p->rxmit - lost), |
| 3121 | tp->snd_una)) { |
| 3122 | p->rxmit -= lost; |
| 3123 | |
| 3124 | if (SEQ_LT(p->rxmit, p->start)) { |
| 3125 | p->rxmit = p->start; |
| 3126 | } |
| 3127 | } else { |
| 3128 | lost = p->rxmit - tp->snd_una; |
| 3129 | p->rxmit = tp->snd_una; |
| 3130 | |
| 3131 | if (SEQ_LT(p->rxmit, p->start)) { |
| 3132 | p->rxmit = p->start; |
| 3133 | } |
| 3134 | } |
| 3135 | tp->sackhint.sack_bytes_rexmit -= lost; |
| 3136 | if (tp->sackhint.sack_bytes_rexmit < 0) { |
| 3137 | tp->sackhint.sack_bytes_rexmit = 0; |
| 3138 | } |
| 3139 | } else { |
| 3140 | if (SEQ_GT((tp->snd_nxt - lost), |
| 3141 | tp->snd_una)) { |
| 3142 | tp->snd_nxt -= lost; |
| 3143 | } else { |
| 3144 | tp->snd_nxt = tp->snd_una; |
| 3145 | } |
| 3146 | } |
| 3147 | } |
| 3148 | } |
| 3149 | out: |
| 3150 | if (tp->t_pktlist_head != NULL) { |
| 3151 | m_freem_list(tp->t_pktlist_head); |
| 3152 | } |
| 3153 | TCP_PKTLIST_CLEAR(tp); |
| 3154 | |
| 3155 | if (error == ENOBUFS) { |
| 3156 | /* |
| 3157 | * Set retransmit timer if not currently set |
| 3158 | * when we failed to send a segment that can be |
| 3159 | * retransmitted (i.e. not pure ack or rst) |
| 3160 | */ |
| 3161 | if (tp->t_timer[TCPT_REXMT] == 0 && |
| 3162 | tp->t_timer[TCPT_PERSIST] == 0 && |
| 3163 | (len != 0 || (flags & (TH_SYN | TH_FIN)) != 0 || |
| 3164 | so->so_snd.sb_cc > 0)) { |
| 3165 | tp->t_timer[TCPT_REXMT] = |
| 3166 | OFFSET_FROM_START(tp, tp->t_rxtcur); |
| 3167 | } |
| 3168 | tp->snd_cwnd = tp->t_maxseg; |
| 3169 | tp->t_bytes_acked = 0; |
| 3170 | tcp_check_timer_state(tp); |
| 3171 | KERNEL_DEBUG(DBG_FNC_TCP_OUTPUT | DBG_FUNC_END, 0, 0, 0, 0, 0); |
| 3172 | |
| 3173 | TCP_LOG_OUTPUT(tp, "error ENOBUFS silently handled" ); |
| 3174 | |
| 3175 | tcp_ccdbg_trace(tp, NULL, event: TCP_CC_OUTPUT_ERROR); |
| 3176 | return 0; |
| 3177 | } |
| 3178 | if (error == EMSGSIZE) { |
| 3179 | /* |
| 3180 | * ip_output() will have already fixed the route |
| 3181 | * for us. tcp_mtudisc() will, as its last action, |
| 3182 | * initiate retransmission, so it is important to |
| 3183 | * not do so here. |
| 3184 | * |
| 3185 | * If TSO was active we either got an interface |
| 3186 | * without TSO capabilits or TSO was turned off. |
| 3187 | * Disable it for this connection as too and |
| 3188 | * immediatly retry with MSS sized segments generated |
| 3189 | * by this function. |
| 3190 | */ |
| 3191 | if (tso) { |
| 3192 | tp->t_flags &= ~TF_TSO; |
| 3193 | } |
| 3194 | |
| 3195 | tcp_mtudisc(inp, 0); |
| 3196 | tcp_check_timer_state(tp); |
| 3197 | |
| 3198 | TCP_LOG_OUTPUT(tp, "error EMSGSIZE silently handled" ); |
| 3199 | |
| 3200 | KERNEL_DEBUG(DBG_FNC_TCP_OUTPUT | DBG_FUNC_END, 0, 0, 0, 0, 0); |
| 3201 | return 0; |
| 3202 | } |
| 3203 | /* |
| 3204 | * Unless this is due to interface restriction policy, |
| 3205 | * treat EHOSTUNREACH/ENETDOWN/EADDRNOTAVAIL as a soft error. |
| 3206 | */ |
| 3207 | if ((error == EHOSTUNREACH || error == ENETDOWN || error == EADDRNOTAVAIL) && |
| 3208 | TCPS_HAVERCVDSYN(tp->t_state) && |
| 3209 | !inp_restricted_send(inp, inp->inp_last_outifp)) { |
| 3210 | tp->t_softerror = error; |
| 3211 | TCP_LOG_OUTPUT(tp, "soft error %d silently handled" , error); |
| 3212 | error = 0; |
| 3213 | } else { |
| 3214 | TCP_LOG_OUTPUT(tp, "error %d" , error); |
| 3215 | } |
| 3216 | tcp_check_timer_state(tp); |
| 3217 | KERNEL_DEBUG(DBG_FNC_TCP_OUTPUT | DBG_FUNC_END, 0, 0, 0, 0, 0); |
| 3218 | return error; |
| 3219 | } |
| 3220 | |
| 3221 | tcpstat.tcps_sndtotal++; |
| 3222 | |
| 3223 | KERNEL_DEBUG(DBG_FNC_TCP_OUTPUT | DBG_FUNC_END, 0, 0, 0, 0, 0); |
| 3224 | if (sendalot) { |
| 3225 | goto again; |
| 3226 | } |
| 3227 | |
| 3228 | tcp_check_timer_state(tp); |
| 3229 | |
| 3230 | return 0; |
| 3231 | } |
| 3232 | |
| 3233 | static int |
| 3234 | tcp_ip_output(struct socket *so, struct tcpcb *tp, struct mbuf *pkt, |
| 3235 | int cnt, struct mbuf *opt, int flags, int sack_in_progress, boolean_t isipv6) |
| 3236 | { |
| 3237 | int error = 0; |
| 3238 | boolean_t chain; |
| 3239 | boolean_t unlocked = FALSE; |
| 3240 | boolean_t ifdenied = FALSE; |
| 3241 | struct inpcb *inp = tp->t_inpcb; |
| 3242 | struct ifnet *outif = NULL; |
| 3243 | bool check_qos_marking_again = (so->so_flags1 & SOF1_QOSMARKING_POLICY_OVERRIDE) ? FALSE : TRUE; |
| 3244 | |
| 3245 | union { |
| 3246 | struct route _ro; |
| 3247 | struct route_in6 _ro6; |
| 3248 | } route_u_ = {}; |
| 3249 | #define ro route_u_._ro |
| 3250 | #define ro6 route_u_._ro6 |
| 3251 | |
| 3252 | union { |
| 3253 | struct ip_out_args _ipoa; |
| 3254 | struct ip6_out_args _ip6oa; |
| 3255 | } out_args_u_ = {}; |
| 3256 | #define ipoa out_args_u_._ipoa |
| 3257 | #define ip6oa out_args_u_._ip6oa |
| 3258 | |
| 3259 | if (isipv6) { |
| 3260 | ip6oa.ip6oa_boundif = IFSCOPE_NONE; |
| 3261 | ip6oa.ip6oa_flags = IP6OAF_SELECT_SRCIF | IP6OAF_BOUND_SRCADDR; |
| 3262 | ip6oa.ip6oa_sotc = SO_TC_UNSPEC; |
| 3263 | ip6oa.ip6oa_netsvctype = _NET_SERVICE_TYPE_UNSPEC; |
| 3264 | } else { |
| 3265 | ipoa.ipoa_boundif = IFSCOPE_NONE; |
| 3266 | ipoa.ipoa_flags = IPOAF_SELECT_SRCIF | IPOAF_BOUND_SRCADDR; |
| 3267 | ipoa.ipoa_sotc = SO_TC_UNSPEC; |
| 3268 | ipoa.ipoa_netsvctype = _NET_SERVICE_TYPE_UNSPEC; |
| 3269 | } |
| 3270 | |
| 3271 | struct flowadv *adv = |
| 3272 | (isipv6 ? &ip6oa.ip6oa_flowadv : &ipoa.ipoa_flowadv); |
| 3273 | |
| 3274 | /* If socket was bound to an ifindex, tell ip_output about it */ |
| 3275 | if (inp->inp_flags & INP_BOUND_IF) { |
| 3276 | if (isipv6) { |
| 3277 | ip6oa.ip6oa_boundif = inp->inp_boundifp->if_index; |
| 3278 | ip6oa.ip6oa_flags |= IP6OAF_BOUND_IF; |
| 3279 | } else { |
| 3280 | ipoa.ipoa_boundif = inp->inp_boundifp->if_index; |
| 3281 | ipoa.ipoa_flags |= IPOAF_BOUND_IF; |
| 3282 | } |
| 3283 | } else if (!in6_embedded_scope && isipv6 && (IN6_IS_SCOPE_EMBED(&inp->in6p_faddr))) { |
| 3284 | ip6oa.ip6oa_boundif = inp->inp_fifscope; |
| 3285 | ip6oa.ip6oa_flags |= IP6OAF_BOUND_IF; |
| 3286 | } |
| 3287 | |
| 3288 | if (INP_NO_CELLULAR(inp)) { |
| 3289 | if (isipv6) { |
| 3290 | ip6oa.ip6oa_flags |= IP6OAF_NO_CELLULAR; |
| 3291 | } else { |
| 3292 | ipoa.ipoa_flags |= IPOAF_NO_CELLULAR; |
| 3293 | } |
| 3294 | } |
| 3295 | if (INP_NO_EXPENSIVE(inp)) { |
| 3296 | if (isipv6) { |
| 3297 | ip6oa.ip6oa_flags |= IP6OAF_NO_EXPENSIVE; |
| 3298 | } else { |
| 3299 | ipoa.ipoa_flags |= IPOAF_NO_EXPENSIVE; |
| 3300 | } |
| 3301 | } |
| 3302 | if (INP_NO_CONSTRAINED(inp)) { |
| 3303 | if (isipv6) { |
| 3304 | ip6oa.ip6oa_flags |= IP6OAF_NO_CONSTRAINED; |
| 3305 | } else { |
| 3306 | ipoa.ipoa_flags |= IPOAF_NO_CONSTRAINED; |
| 3307 | } |
| 3308 | } |
| 3309 | if (INP_AWDL_UNRESTRICTED(inp)) { |
| 3310 | if (isipv6) { |
| 3311 | ip6oa.ip6oa_flags |= IP6OAF_AWDL_UNRESTRICTED; |
| 3312 | } else { |
| 3313 | ipoa.ipoa_flags |= IPOAF_AWDL_UNRESTRICTED; |
| 3314 | } |
| 3315 | } |
| 3316 | if (INP_INTCOPROC_ALLOWED(inp) && isipv6) { |
| 3317 | ip6oa.ip6oa_flags |= IP6OAF_INTCOPROC_ALLOWED; |
| 3318 | } |
| 3319 | if (INP_MANAGEMENT_ALLOWED(inp)) { |
| 3320 | if (isipv6) { |
| 3321 | ip6oa.ip6oa_flags |= IP6OAF_MANAGEMENT_ALLOWED; |
| 3322 | } else { |
| 3323 | ipoa.ipoa_flags |= IPOAF_MANAGEMENT_ALLOWED; |
| 3324 | } |
| 3325 | } |
| 3326 | if (isipv6) { |
| 3327 | ip6oa.ip6oa_sotc = so->so_traffic_class; |
| 3328 | ip6oa.ip6oa_netsvctype = so->so_netsvctype; |
| 3329 | ip6oa.qos_marking_gencount = inp->inp_policyresult.results.qos_marking_gencount; |
| 3330 | } else { |
| 3331 | ipoa.ipoa_sotc = so->so_traffic_class; |
| 3332 | ipoa.ipoa_netsvctype = so->so_netsvctype; |
| 3333 | ipoa.qos_marking_gencount = inp->inp_policyresult.results.qos_marking_gencount; |
| 3334 | } |
| 3335 | if ((so->so_flags1 & SOF1_QOSMARKING_ALLOWED)) { |
| 3336 | if (isipv6) { |
| 3337 | ip6oa.ip6oa_flags |= IP6OAF_QOSMARKING_ALLOWED; |
| 3338 | } else { |
| 3339 | ipoa.ipoa_flags |= IPOAF_QOSMARKING_ALLOWED; |
| 3340 | } |
| 3341 | } |
| 3342 | if (check_qos_marking_again) { |
| 3343 | if (isipv6) { |
| 3344 | ip6oa.ip6oa_flags |= IP6OAF_REDO_QOSMARKING_POLICY; |
| 3345 | } else { |
| 3346 | ipoa.ipoa_flags |= IPOAF_REDO_QOSMARKING_POLICY; |
| 3347 | } |
| 3348 | } |
| 3349 | if (isipv6) { |
| 3350 | flags |= IPV6_OUTARGS; |
| 3351 | } else { |
| 3352 | flags |= IP_OUTARGS; |
| 3353 | } |
| 3354 | |
| 3355 | /* Copy the cached route and take an extra reference */ |
| 3356 | if (isipv6) { |
| 3357 | in6p_route_copyout(inp, &ro6); |
| 3358 | } else { |
| 3359 | inp_route_copyout(inp, &ro); |
| 3360 | } |
| 3361 | #if (DEBUG || DEVELOPMENT) |
| 3362 | if ((so->so_flags & SOF_MARK_WAKE_PKT) && pkt != NULL) { |
| 3363 | so->so_flags &= ~SOF_MARK_WAKE_PKT; |
| 3364 | pkt->m_pkthdr.pkt_flags |= PKTF_WAKE_PKT; |
| 3365 | } |
| 3366 | #endif /* (DEBUG || DEVELOPMENT) */ |
| 3367 | |
| 3368 | /* |
| 3369 | * Make sure ACK/DELACK conditions are cleared before |
| 3370 | * we unlock the socket. |
| 3371 | */ |
| 3372 | tp->last_ack_sent = tp->rcv_nxt; |
| 3373 | tp->t_flags &= ~(TF_ACKNOW | TF_DELACK); |
| 3374 | tp->t_timer[TCPT_DELACK] = 0; |
| 3375 | tp->t_unacksegs = 0; |
| 3376 | tp->t_unacksegs_ce = 0; |
| 3377 | |
| 3378 | /* Increment the count of outstanding send operations */ |
| 3379 | inp->inp_sndinprog_cnt++; |
| 3380 | |
| 3381 | /* |
| 3382 | * If allowed, unlock TCP socket while in IP |
| 3383 | * but only if the connection is established and |
| 3384 | * in a normal mode where reentrancy on the tcpcb won't be |
| 3385 | * an issue: |
| 3386 | * - there is no SACK episode |
| 3387 | * - we're not in Fast Recovery mode |
| 3388 | * - if we're not sending from an upcall. |
| 3389 | */ |
| 3390 | if (tcp_output_unlocked && !so->so_upcallusecount && |
| 3391 | (tp->t_state == TCPS_ESTABLISHED) && (sack_in_progress == 0) && |
| 3392 | !IN_FASTRECOVERY(tp) && !(so->so_flags & SOF_MP_SUBFLOW)) { |
| 3393 | unlocked = TRUE; |
| 3394 | socket_unlock(so, refcount: 0); |
| 3395 | } |
| 3396 | |
| 3397 | /* |
| 3398 | * Don't send down a chain of packets when: |
| 3399 | * - TCP chaining is disabled |
| 3400 | * - there is an IPsec rule set |
| 3401 | * - there is a non default rule set for the firewall |
| 3402 | */ |
| 3403 | |
| 3404 | chain = tcp_packet_chaining > 1 |
| 3405 | #if IPSEC |
| 3406 | && ipsec_bypass |
| 3407 | #endif |
| 3408 | ; // I'm important, not extraneous |
| 3409 | |
| 3410 | while (pkt != NULL) { |
| 3411 | struct mbuf *npkt = pkt->m_nextpkt; |
| 3412 | |
| 3413 | if (!chain) { |
| 3414 | pkt->m_nextpkt = NULL; |
| 3415 | /* |
| 3416 | * If we are not chaining, make sure to set the packet |
| 3417 | * list count to 0 so that IP takes the right path; |
| 3418 | * this is important for cases such as IPsec where a |
| 3419 | * single mbuf might result in multiple mbufs as part |
| 3420 | * of the encapsulation. If a non-zero count is passed |
| 3421 | * down to IP, the head of the chain might change and |
| 3422 | * we could end up skipping it (thus generating bogus |
| 3423 | * packets). Fixing it in IP would be desirable, but |
| 3424 | * for now this would do it. |
| 3425 | */ |
| 3426 | cnt = 0; |
| 3427 | } |
| 3428 | if (isipv6) { |
| 3429 | error = ip6_output_list(pkt, cnt, |
| 3430 | inp->in6p_outputopts, &ro6, flags, NULL, NULL, |
| 3431 | &ip6oa); |
| 3432 | ifdenied = (ip6oa.ip6oa_flags & IP6OAF_R_IFDENIED); |
| 3433 | } else { |
| 3434 | error = ip_output_list(pkt, cnt, opt, &ro, flags, NULL, |
| 3435 | &ipoa); |
| 3436 | ifdenied = (ipoa.ipoa_flags & IPOAF_R_IFDENIED); |
| 3437 | } |
| 3438 | |
| 3439 | if (chain || error) { |
| 3440 | /* |
| 3441 | * If we sent down a chain then we are done since |
| 3442 | * the callee had taken care of everything; else |
| 3443 | * we need to free the rest of the chain ourselves. |
| 3444 | */ |
| 3445 | if (!chain) { |
| 3446 | m_freem_list(npkt); |
| 3447 | } |
| 3448 | break; |
| 3449 | } |
| 3450 | pkt = npkt; |
| 3451 | } |
| 3452 | |
| 3453 | if (unlocked) { |
| 3454 | socket_lock(so, refcount: 0); |
| 3455 | } |
| 3456 | |
| 3457 | /* |
| 3458 | * Enter flow controlled state if the connection is established |
| 3459 | * and is not in recovery. Flow control is allowed only if there |
| 3460 | * is outstanding data. |
| 3461 | * |
| 3462 | * A connection will enter suspended state even if it is in |
| 3463 | * recovery. |
| 3464 | */ |
| 3465 | if (((adv->code == FADV_FLOW_CONTROLLED && !IN_FASTRECOVERY(tp)) || |
| 3466 | adv->code == FADV_SUSPENDED) && |
| 3467 | !(tp->t_flags & TF_CLOSING) && |
| 3468 | tp->t_state == TCPS_ESTABLISHED && |
| 3469 | SEQ_GT(tp->snd_max, tp->snd_una)) { |
| 3470 | int rc; |
| 3471 | rc = inp_set_fc_state(inp, advcode: adv->code); |
| 3472 | |
| 3473 | if (rc == 1) { |
| 3474 | tcp_ccdbg_trace(tp, NULL, |
| 3475 | event: ((adv->code == FADV_FLOW_CONTROLLED) ? |
| 3476 | TCP_CC_FLOW_CONTROL : TCP_CC_SUSPEND)); |
| 3477 | if (adv->code == FADV_FLOW_CONTROLLED) { |
| 3478 | TCP_LOG_OUTPUT(tp, "flow controlled" ); |
| 3479 | } else { |
| 3480 | TCP_LOG_OUTPUT(tp, "flow suspended" ); |
| 3481 | } |
| 3482 | } |
| 3483 | } |
| 3484 | |
| 3485 | /* |
| 3486 | * When an interface queue gets suspended, some of the |
| 3487 | * packets are dropped. Return ENOBUFS, to update the |
| 3488 | * pcb state. |
| 3489 | */ |
| 3490 | if (adv->code == FADV_SUSPENDED) { |
| 3491 | error = ENOBUFS; |
| 3492 | } |
| 3493 | |
| 3494 | VERIFY(inp->inp_sndinprog_cnt > 0); |
| 3495 | if (--inp->inp_sndinprog_cnt == 0) { |
| 3496 | inp->inp_flags &= ~(INP_FC_FEEDBACK); |
| 3497 | if (inp->inp_sndingprog_waiters > 0) { |
| 3498 | wakeup(chan: &inp->inp_sndinprog_cnt); |
| 3499 | } |
| 3500 | } |
| 3501 | |
| 3502 | if (isipv6) { |
| 3503 | /* |
| 3504 | * When an NECP IP tunnel policy forces the outbound interface, |
| 3505 | * ip6_output_list() informs the transport layer what is the actual |
| 3506 | * outgoing interface |
| 3507 | */ |
| 3508 | if (ip6oa.ip6oa_flags & IP6OAF_BOUND_IF) { |
| 3509 | outif = ifindex2ifnet[ip6oa.ip6oa_boundif]; |
| 3510 | } else if (ro6.ro_rt != NULL) { |
| 3511 | outif = ro6.ro_rt->rt_ifp; |
| 3512 | } |
| 3513 | } else { |
| 3514 | if (ro.ro_rt != NULL) { |
| 3515 | outif = ro.ro_rt->rt_ifp; |
| 3516 | } |
| 3517 | } |
| 3518 | if (check_qos_marking_again) { |
| 3519 | uint32_t qos_marking_gencount; |
| 3520 | bool allow_qos_marking; |
| 3521 | if (isipv6) { |
| 3522 | qos_marking_gencount = ip6oa.qos_marking_gencount; |
| 3523 | allow_qos_marking = ip6oa.ip6oa_flags & IP6OAF_QOSMARKING_ALLOWED ? TRUE : FALSE; |
| 3524 | } else { |
| 3525 | qos_marking_gencount = ipoa.qos_marking_gencount; |
| 3526 | allow_qos_marking = ipoa.ipoa_flags & IPOAF_QOSMARKING_ALLOWED ? TRUE : FALSE; |
| 3527 | } |
| 3528 | inp->inp_policyresult.results.qos_marking_gencount = qos_marking_gencount; |
| 3529 | if (allow_qos_marking == TRUE) { |
| 3530 | inp->inp_socket->so_flags1 |= SOF1_QOSMARKING_ALLOWED; |
| 3531 | } else { |
| 3532 | inp->inp_socket->so_flags1 &= ~SOF1_QOSMARKING_ALLOWED; |
| 3533 | } |
| 3534 | } |
| 3535 | |
| 3536 | if (outif != NULL && outif != inp->inp_last_outifp) { |
| 3537 | /* Update the send byte count */ |
| 3538 | if (so->so_snd.sb_cc > 0 && so->so_snd.sb_flags & SB_SNDBYTE_CNT) { |
| 3539 | inp_decr_sndbytes_total(so, so->so_snd.sb_cc); |
| 3540 | inp_decr_sndbytes_allunsent(so, tp->snd_una); |
| 3541 | so->so_snd.sb_flags &= ~SB_SNDBYTE_CNT; |
| 3542 | } |
| 3543 | inp->inp_last_outifp = outif; |
| 3544 | #if SKYWALK |
| 3545 | if (NETNS_TOKEN_VALID(&inp->inp_netns_token)) { |
| 3546 | netns_set_ifnet(token: &inp->inp_netns_token, ifp: inp->inp_last_outifp); |
| 3547 | } |
| 3548 | #endif /* SKYWALK */ |
| 3549 | } |
| 3550 | |
| 3551 | if (error != 0 && ifdenied && |
| 3552 | (INP_NO_CELLULAR(inp) || INP_NO_EXPENSIVE(inp) || INP_NO_CONSTRAINED(inp))) { |
| 3553 | soevent(so, |
| 3554 | hint: (SO_FILT_HINT_LOCKED | SO_FILT_HINT_IFDENIED)); |
| 3555 | } |
| 3556 | |
| 3557 | /* Synchronize cached PCB route & options */ |
| 3558 | if (isipv6) { |
| 3559 | in6p_route_copyin(inp, &ro6); |
| 3560 | } else { |
| 3561 | inp_route_copyin(inp, &ro); |
| 3562 | } |
| 3563 | |
| 3564 | if (tp->t_state < TCPS_ESTABLISHED && tp->t_rxtshift == 0 && |
| 3565 | tp->t_inpcb->inp_route.ro_rt != NULL) { |
| 3566 | /* If we found the route and there is an rtt on it |
| 3567 | * reset the retransmit timer |
| 3568 | */ |
| 3569 | tcp_getrt_rtt(tp, rt: tp->t_inpcb->in6p_route.ro_rt); |
| 3570 | tp->t_timer[TCPT_REXMT] = OFFSET_FROM_START(tp, tp->t_rxtcur); |
| 3571 | } |
| 3572 | return error; |
| 3573 | #undef ro |
| 3574 | #undef ro6 |
| 3575 | #undef ipoa |
| 3576 | #undef ip6oa |
| 3577 | } |
| 3578 | |
| 3579 | int tcptv_persmin_val = TCPTV_PERSMIN; |
| 3580 | |
| 3581 | void |
| 3582 | tcp_setpersist(struct tcpcb *tp) |
| 3583 | { |
| 3584 | int t = ((tp->t_srtt >> 2) + tp->t_rttvar) >> 1; |
| 3585 | |
| 3586 | /* If a PERSIST_TIMER option was set we will limit the |
| 3587 | * time the persist timer will be active for that connection |
| 3588 | * in order to avoid DOS by using zero window probes. |
| 3589 | * see rdar://5805356 |
| 3590 | */ |
| 3591 | |
| 3592 | if (tp->t_persist_timeout != 0 && |
| 3593 | tp->t_timer[TCPT_PERSIST] == 0 && |
| 3594 | tp->t_persist_stop == 0) { |
| 3595 | tp->t_persist_stop = tcp_now + tp->t_persist_timeout; |
| 3596 | } |
| 3597 | |
| 3598 | /* |
| 3599 | * Start/restart persistance timer. |
| 3600 | */ |
| 3601 | TCPT_RANGESET(tp->t_timer[TCPT_PERSIST], |
| 3602 | t * tcp_backoff[tp->t_rxtshift], |
| 3603 | tcptv_persmin_val, TCPTV_PERSMAX, 0); |
| 3604 | tp->t_timer[TCPT_PERSIST] = OFFSET_FROM_START(tp, tp->t_timer[TCPT_PERSIST]); |
| 3605 | |
| 3606 | if (tp->t_rxtshift < TCP_MAXRXTSHIFT) { |
| 3607 | tp->t_rxtshift++; |
| 3608 | } |
| 3609 | } |
| 3610 | |
| 3611 | static int |
| 3612 | tcp_recv_throttle(struct tcpcb *tp) |
| 3613 | { |
| 3614 | uint32_t base_rtt, newsize; |
| 3615 | struct sockbuf *sbrcv = &tp->t_inpcb->inp_socket->so_rcv; |
| 3616 | |
| 3617 | if (tcp_use_rtt_recvbg == 1 && |
| 3618 | TSTMP_SUPPORTED(tp)) { |
| 3619 | /* |
| 3620 | * Timestamps are supported on this connection. Use |
| 3621 | * RTT to look for an increase in latency. |
| 3622 | */ |
| 3623 | |
| 3624 | /* |
| 3625 | * If the connection is already being throttled, leave it |
| 3626 | * in that state until rtt comes closer to base rtt |
| 3627 | */ |
| 3628 | if (tp->t_flagsext & TF_RECV_THROTTLE) { |
| 3629 | return 1; |
| 3630 | } |
| 3631 | |
| 3632 | base_rtt = get_base_rtt(tp); |
| 3633 | |
| 3634 | if (base_rtt != 0 && tp->t_rttcur != 0) { |
| 3635 | /* |
| 3636 | * if latency increased on a background flow, |
| 3637 | * return 1 to start throttling. |
| 3638 | */ |
| 3639 | if (tp->t_rttcur > (base_rtt + target_qdelay)) { |
| 3640 | tp->t_flagsext |= TF_RECV_THROTTLE; |
| 3641 | if (tp->t_recv_throttle_ts == 0) { |
| 3642 | tp->t_recv_throttle_ts = tcp_now; |
| 3643 | } |
| 3644 | /* |
| 3645 | * Reduce the recv socket buffer size to |
| 3646 | * minimize latecy. |
| 3647 | */ |
| 3648 | if (sbrcv->sb_idealsize > |
| 3649 | tcp_recv_throttle_minwin) { |
| 3650 | newsize = sbrcv->sb_idealsize >> 1; |
| 3651 | /* Set a minimum of 16 K */ |
| 3652 | newsize = |
| 3653 | max(a: newsize, |
| 3654 | b: tcp_recv_throttle_minwin); |
| 3655 | sbrcv->sb_idealsize = newsize; |
| 3656 | } |
| 3657 | return 1; |
| 3658 | } else { |
| 3659 | return 0; |
| 3660 | } |
| 3661 | } |
| 3662 | } |
| 3663 | |
| 3664 | /* |
| 3665 | * Timestamps are not supported or there is no good RTT |
| 3666 | * measurement. Use IPDV in this case. |
| 3667 | */ |
| 3668 | if (tp->acc_iaj > tcp_acc_iaj_react_limit) { |
| 3669 | return 1; |
| 3670 | } |
| 3671 | |
| 3672 | return 0; |
| 3673 | } |
| 3674 | |