| 1 | /* |
| 2 | * Copyright (c) 2000-2022 Apple Inc. All rights reserved. |
| 3 | * |
| 4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ |
| 5 | * |
| 6 | * This file contains Original Code and/or Modifications of Original Code |
| 7 | * as defined in and that are subject to the Apple Public Source License |
| 8 | * Version 2.0 (the 'License'). You may not use this file except in |
| 9 | * compliance with the License. The rights granted to you under the License |
| 10 | * may not be used to create, or enable the creation or redistribution of, |
| 11 | * unlawful or unlicensed copies of an Apple operating system, or to |
| 12 | * circumvent, violate, or enable the circumvention or violation of, any |
| 13 | * terms of an Apple operating system software license agreement. |
| 14 | * |
| 15 | * Please obtain a copy of the License at |
| 16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. |
| 17 | * |
| 18 | * The Original Code and all software distributed under the License are |
| 19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER |
| 20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
| 21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, |
| 22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
| 23 | * Please see the License for the specific language governing rights and |
| 24 | * limitations under the License. |
| 25 | * |
| 26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ |
| 27 | */ |
| 28 | /* |
| 29 | * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995 |
| 30 | * The Regents of the University of California. All rights reserved. |
| 31 | * |
| 32 | * Redistribution and use in source and binary forms, with or without |
| 33 | * modification, are permitted provided that the following conditions |
| 34 | * are met: |
| 35 | * 1. Redistributions of source code must retain the above copyright |
| 36 | * notice, this list of conditions and the following disclaimer. |
| 37 | * 2. Redistributions in binary form must reproduce the above copyright |
| 38 | * notice, this list of conditions and the following disclaimer in the |
| 39 | * documentation and/or other materials provided with the distribution. |
| 40 | * 3. All advertising materials mentioning features or use of this software |
| 41 | * must display the following acknowledgement: |
| 42 | * This product includes software developed by the University of |
| 43 | * California, Berkeley and its contributors. |
| 44 | * 4. Neither the name of the University nor the names of its contributors |
| 45 | * may be used to endorse or promote products derived from this software |
| 46 | * without specific prior written permission. |
| 47 | * |
| 48 | * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND |
| 49 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 50 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 51 | * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE |
| 52 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
| 53 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
| 54 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| 55 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
| 56 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
| 57 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
| 58 | * SUCH DAMAGE. |
| 59 | * |
| 60 | * @(#)tcp_input.c 8.12 (Berkeley) 5/24/95 |
| 61 | * $FreeBSD: src/sys/netinet/tcp_input.c,v 1.107.2.16 2001/08/22 00:59:12 silby Exp $ |
| 62 | */ |
| 63 | /* |
| 64 | * NOTICE: This file was modified by SPARTA, Inc. in 2005 to introduce |
| 65 | * support for mandatory and extensible security protections. This notice |
| 66 | * is included in support of clause 2.2 (b) of the Apple Public License, |
| 67 | * Version 2.0. |
| 68 | */ |
| 69 | |
| 70 | #include "tcp_includes.h" |
| 71 | |
| 72 | #include <sys/param.h> |
| 73 | #include <sys/systm.h> |
| 74 | #include <sys/kernel.h> |
| 75 | #include <sys/sysctl.h> |
| 76 | #include <sys/malloc.h> |
| 77 | #include <sys/mbuf.h> |
| 78 | #include <sys/proc.h> /* for proc0 declaration */ |
| 79 | #include <sys/protosw.h> |
| 80 | #include <sys/socket.h> |
| 81 | #include <sys/socketvar.h> |
| 82 | #include <sys/syslog.h> |
| 83 | #include <sys/mcache.h> |
| 84 | #include <sys/kauth.h> |
| 85 | #include <kern/cpu_number.h> /* before tcp_seq.h, for tcp_random18() */ |
| 86 | |
| 87 | #include <machine/endian.h> |
| 88 | |
| 89 | #include <net/if.h> |
| 90 | #include <net/if_types.h> |
| 91 | #include <net/route.h> |
| 92 | #include <net/ntstat.h> |
| 93 | #include <net/content_filter.h> |
| 94 | #include <net/dlil.h> |
| 95 | #include <net/multi_layer_pkt_log.h> |
| 96 | |
| 97 | #include <netinet/in.h> |
| 98 | #include <netinet/in_systm.h> |
| 99 | #include <netinet/ip.h> |
| 100 | #include <netinet/ip_icmp.h> /* for ICMP_BANDLIM */ |
| 101 | #include <netinet/in_var.h> |
| 102 | #include <netinet/icmp_var.h> /* for ICMP_BANDLIM */ |
| 103 | #include <netinet/in_pcb.h> |
| 104 | #include <netinet/ip_var.h> |
| 105 | #include <mach/sdt.h> |
| 106 | #include <netinet/ip6.h> |
| 107 | #include <netinet/icmp6.h> |
| 108 | #include <netinet6/nd6.h> |
| 109 | #include <netinet6/ip6_var.h> |
| 110 | #include <netinet6/in6_pcb.h> |
| 111 | #include <netinet/tcp.h> |
| 112 | #include <netinet/tcp_cache.h> |
| 113 | #include <netinet/tcp_fsm.h> |
| 114 | #include <netinet/tcp_seq.h> |
| 115 | #include <netinet/tcp_timer.h> |
| 116 | #include <netinet/tcp_var.h> |
| 117 | #include <netinet/tcp_cc.h> |
| 118 | #include <dev/random/randomdev.h> |
| 119 | #include <kern/zalloc.h> |
| 120 | #include <netinet6/tcp6_var.h> |
| 121 | #include <netinet/tcpip.h> |
| 122 | #if TCPDEBUG |
| 123 | #include <netinet/tcp_debug.h> |
| 124 | u_char tcp_saveipgen[40]; /* the size must be of max ip header, now IPv6 */ |
| 125 | struct tcphdr tcp_savetcp; |
| 126 | #endif /* TCPDEBUG */ |
| 127 | #include <netinet/tcp_log.h> |
| 128 | |
| 129 | #if IPSEC |
| 130 | #include <netinet6/ipsec.h> |
| 131 | #include <netinet6/ipsec6.h> |
| 132 | #include <netkey/key.h> |
| 133 | #endif /*IPSEC*/ |
| 134 | |
| 135 | #include <sys/kdebug.h> |
| 136 | #if MPTCP |
| 137 | #include <netinet/mptcp_var.h> |
| 138 | #include <netinet/mptcp.h> |
| 139 | #include <netinet/mptcp_opt.h> |
| 140 | #endif /* MPTCP */ |
| 141 | |
| 142 | #include <corecrypto/ccaes.h> |
| 143 | #include <net/sockaddr_utils.h> |
| 144 | |
| 145 | #define DBG_LAYER_BEG NETDBG_CODE(DBG_NETTCP, 0) |
| 146 | #define DBG_LAYER_END NETDBG_CODE(DBG_NETTCP, 2) |
| 147 | #define DBG_FNC_TCP_INPUT NETDBG_CODE(DBG_NETTCP, (3 << 8)) |
| 148 | #define DBG_FNC_TCP_NEWCONN NETDBG_CODE(DBG_NETTCP, (7 << 8)) |
| 149 | |
| 150 | #define TCP_RTT_HISTORY_EXPIRE_TIME (60 * TCP_RETRANSHZ) |
| 151 | #define TCP_RECV_THROTTLE_WIN (5 * TCP_RETRANSHZ) |
| 152 | #define TCP_STRETCHACK_ENABLE_PKTCNT 2000 |
| 153 | |
| 154 | struct tcpstat tcpstat; |
| 155 | |
| 156 | SYSCTL_SKMEM_TCP_INT(OID_AUTO, flow_control_response, |
| 157 | CTLFLAG_RW | CTLFLAG_LOCKED, int, tcp_flow_control_response, 1, |
| 158 | "Improved response to Flow-control events" ); |
| 159 | |
| 160 | static int log_in_vain = 0; |
| 161 | SYSCTL_INT(_net_inet_tcp, OID_AUTO, log_in_vain, |
| 162 | CTLFLAG_RW | CTLFLAG_LOCKED, &log_in_vain, 0, |
| 163 | "Log all incoming TCP connections" ); |
| 164 | |
| 165 | SYSCTL_SKMEM_TCP_INT(OID_AUTO, ack_strategy, |
| 166 | CTLFLAG_RW | CTLFLAG_LOCKED, int, tcp_ack_strategy, TCP_ACK_STRATEGY_MODERN, |
| 167 | "Revised TCP ACK-strategy, avoiding stretch-ACK implementation" ); |
| 168 | |
| 169 | static int blackhole = 0; |
| 170 | SYSCTL_INT(_net_inet_tcp, OID_AUTO, blackhole, |
| 171 | CTLFLAG_RW | CTLFLAG_LOCKED, &blackhole, 0, |
| 172 | "Do not send RST when dropping refused connections" ); |
| 173 | |
| 174 | /* TODO - remove once uTCP stopped using it */ |
| 175 | SYSCTL_SKMEM_TCP_INT(OID_AUTO, aggressive_rcvwnd_inc, |
| 176 | CTLFLAG_RW | CTLFLAG_LOCKED, int, tcp_aggressive_rcvwnd_inc, 1, |
| 177 | "Be more aggressive about increasing the receive-window." ); |
| 178 | |
| 179 | SYSCTL_SKMEM_TCP_INT(OID_AUTO, delayed_ack, |
| 180 | CTLFLAG_RW | CTLFLAG_LOCKED, int, tcp_delack_enabled, 3, |
| 181 | "Delay ACK to try and piggyback it onto a data packet" ); |
| 182 | |
| 183 | SYSCTL_SKMEM_TCP_INT(OID_AUTO, recvbg, CTLFLAG_RW | CTLFLAG_LOCKED, |
| 184 | int, tcp_recv_bg, 0, "Receive background" ); |
| 185 | |
| 186 | SYSCTL_SKMEM_TCP_INT(OID_AUTO, drop_synfin, |
| 187 | CTLFLAG_RW | CTLFLAG_LOCKED, static int, drop_synfin, 1, |
| 188 | "Drop TCP packets with SYN+FIN set" ); |
| 189 | |
| 190 | SYSCTL_NODE(_net_inet_tcp, OID_AUTO, reass, CTLFLAG_RW | CTLFLAG_LOCKED, 0, |
| 191 | "TCP Segment Reassembly Queue" ); |
| 192 | |
| 193 | static int tcp_reass_overflows = 0; |
| 194 | SYSCTL_INT(_net_inet_tcp_reass, OID_AUTO, overflows, |
| 195 | CTLFLAG_RD | CTLFLAG_LOCKED, &tcp_reass_overflows, 0, |
| 196 | "Global number of TCP segment reassembly queue overflows" ); |
| 197 | |
| 198 | int tcp_reass_total_qlen = 0; |
| 199 | SYSCTL_INT(_net_inet_tcp_reass, OID_AUTO, qlen, |
| 200 | CTLFLAG_RD | CTLFLAG_LOCKED, &tcp_reass_total_qlen, 0, |
| 201 | "Total number of TCP segments in reassembly queues" ); |
| 202 | |
| 203 | |
| 204 | SYSCTL_SKMEM_TCP_INT(OID_AUTO, slowlink_wsize, CTLFLAG_RW | CTLFLAG_LOCKED, |
| 205 | __private_extern__ int, slowlink_wsize, 8192, |
| 206 | "Maximum advertised window size for slowlink" ); |
| 207 | |
| 208 | SYSCTL_SKMEM_TCP_INT(OID_AUTO, maxseg_unacked, |
| 209 | CTLFLAG_RW | CTLFLAG_LOCKED, int, maxseg_unacked, 8, |
| 210 | "Maximum number of outstanding segments left unacked" ); |
| 211 | |
| 212 | SYSCTL_SKMEM_TCP_INT(OID_AUTO, rfc3465, CTLFLAG_RW | CTLFLAG_LOCKED, |
| 213 | int, tcp_do_rfc3465, 1, "" ); |
| 214 | |
| 215 | SYSCTL_SKMEM_TCP_INT(OID_AUTO, rfc3465_lim2, |
| 216 | CTLFLAG_RW | CTLFLAG_LOCKED, int, tcp_do_rfc3465_lim2, 1, |
| 217 | "Appropriate bytes counting w/ L=2*SMSS" ); |
| 218 | |
| 219 | int rtt_samples_per_slot = 20; |
| 220 | |
| 221 | int tcp_acc_iaj_high_thresh = ACC_IAJ_HIGH_THRESH; |
| 222 | u_int32_t tcp_autorcvbuf_inc_shift = 3; |
| 223 | SYSCTL_SKMEM_TCP_INT(OID_AUTO, recv_allowed_iaj, |
| 224 | CTLFLAG_RW | CTLFLAG_LOCKED, int, tcp_allowed_iaj, ALLOWED_IAJ, |
| 225 | "Allowed inter-packet arrival jiter" ); |
| 226 | |
| 227 | SYSCTL_SKMEM_TCP_INT(OID_AUTO, doautorcvbuf, |
| 228 | CTLFLAG_RW | CTLFLAG_LOCKED, u_int32_t, tcp_do_autorcvbuf, 1, |
| 229 | "Enable automatic socket buffer tuning" ); |
| 230 | |
| 231 | SYSCTL_SKMEM_TCP_INT(OID_AUTO, autotunereorder, |
| 232 | CTLFLAG_RW | CTLFLAG_LOCKED, u_int32_t, tcp_autotune_reorder, 1, |
| 233 | "Enable automatic socket buffer tuning even when reordering is present" ); |
| 234 | |
| 235 | SYSCTL_SKMEM_TCP_INT(OID_AUTO, autorcvbufmax, |
| 236 | CTLFLAG_RW | CTLFLAG_LOCKED | CTLFLAG_KERN, u_int32_t, tcp_autorcvbuf_max, 2 * 1024 * 1024, |
| 237 | "Maximum receive socket buffer size" ); |
| 238 | |
| 239 | int tcp_disable_access_to_stats = 1; |
| 240 | SYSCTL_INT(_net_inet_tcp, OID_AUTO, disable_access_to_stats, |
| 241 | CTLFLAG_RW | CTLFLAG_LOCKED, &tcp_disable_access_to_stats, 0, |
| 242 | "Disable access to tcpstat" ); |
| 243 | |
| 244 | SYSCTL_SKMEM_TCP_INT(OID_AUTO, challengeack_limit, |
| 245 | CTLFLAG_RW | CTLFLAG_LOCKED, uint32_t, tcp_challengeack_limit, 10, |
| 246 | "Maximum number of challenge ACKs per connection per second" ); |
| 247 | |
| 248 | /* TO BE REMOVED */ |
| 249 | SYSCTL_SKMEM_TCP_INT(OID_AUTO, do_rfc5961, |
| 250 | CTLFLAG_RW | CTLFLAG_LOCKED, static int, tcp_do_rfc5961, 1, |
| 251 | "Enable/Disable full RFC 5961 compliance" ); |
| 252 | |
| 253 | SYSCTL_SKMEM_TCP_INT(OID_AUTO, do_better_lr, |
| 254 | CTLFLAG_RW | CTLFLAG_LOCKED, int, tcp_do_better_lr, 1, |
| 255 | "Improved TCP Loss Recovery" ); |
| 256 | |
| 257 | SYSCTL_SKMEM_TCP_INT(OID_AUTO, use_min_curr_rtt, |
| 258 | CTLFLAG_RW | CTLFLAG_LOCKED, int, tcp_use_min_curr_rtt, 1, |
| 259 | "Use a min of k=4 RTT samples for congestion controllers" ); |
| 260 | |
| 261 | SYSCTL_SKMEM_TCP_INT(OID_AUTO, awdl_rtobase, |
| 262 | CTLFLAG_RW | CTLFLAG_LOCKED, int, tcp_awdl_rtobase, 100, |
| 263 | "Initial RTO for AWDL interface" ); |
| 264 | |
| 265 | extern int tcp_acc_iaj_high; |
| 266 | extern int tcp_acc_iaj_react_limit; |
| 267 | extern int tcp_fin_timeout; |
| 268 | |
| 269 | uint8_t tcprexmtthresh = 3; |
| 270 | |
| 271 | u_int32_t tcp_now; |
| 272 | struct timeval tcp_uptime; /* uptime when tcp_now was last updated */ |
| 273 | |
| 274 | /* Used to sychronize updates to tcp_now */ |
| 275 | static LCK_GRP_DECLARE(tcp_uptime_mtx_grp, "tcpuptime" ); |
| 276 | LCK_SPIN_DECLARE(tcp_uptime_lock, &tcp_uptime_mtx_grp); |
| 277 | |
| 278 | struct inpcbhead tcb; |
| 279 | #define tcb6 tcb /* for KAME src sync over BSD*'s */ |
| 280 | struct inpcbinfo tcbinfo; |
| 281 | |
| 282 | static void tcp_dooptions(struct tcpcb *, u_char *, int, struct tcphdr *, |
| 283 | struct tcpopt *); |
| 284 | static void tcp_finalize_options(struct tcpcb *, struct tcpopt *, unsigned int); |
| 285 | static void tcp_pulloutofband(struct socket *, |
| 286 | struct tcphdr *, struct mbuf *, int); |
| 287 | static void tcp_xmit_timer(struct tcpcb *, int, u_int32_t, tcp_seq); |
| 288 | static inline unsigned int tcp_maxmtu(struct rtentry *); |
| 289 | static inline int tcp_stretch_ack_enable(struct tcpcb *tp, int thflags); |
| 290 | static inline void tcp_adaptive_rwtimo_check(struct tcpcb *, int); |
| 291 | |
| 292 | #if TRAFFIC_MGT |
| 293 | static inline void compute_iaj(struct tcpcb *tp); |
| 294 | static inline void compute_iaj_meat(struct tcpcb *tp, uint32_t cur_iaj); |
| 295 | #endif /* TRAFFIC_MGT */ |
| 296 | |
| 297 | static inline unsigned int tcp_maxmtu6(struct rtentry *); |
| 298 | unsigned int get_maxmtu(struct rtentry *); |
| 299 | |
| 300 | static void tcp_sbrcv_grow(struct tcpcb *tp, struct sockbuf *sb, |
| 301 | struct tcpopt *to, uint32_t tlen); |
| 302 | void tcp_sbrcv_trim(struct tcpcb *tp, struct sockbuf *sb); |
| 303 | static void tcp_sbsnd_trim(struct sockbuf *sbsnd); |
| 304 | static inline void tcp_sbrcv_tstmp_check(struct tcpcb *tp); |
| 305 | static inline void tcp_sbrcv_reserve(struct tcpcb *tp, struct sockbuf *sb, |
| 306 | u_int32_t newsize, u_int32_t idealsize, u_int32_t rcvbuf_max); |
| 307 | static void tcp_bad_rexmt_restore_state(struct tcpcb *tp, struct tcphdr *th); |
| 308 | static void tcp_compute_rtt(struct tcpcb *tp, struct tcpopt *to, |
| 309 | struct tcphdr *th); |
| 310 | static void tcp_compute_rcv_rtt(struct tcpcb *tp, struct tcpopt *to, |
| 311 | struct tcphdr *th); |
| 312 | static void tcp_early_rexmt_check(struct tcpcb *tp, struct tcphdr *th); |
| 313 | static void tcp_bad_rexmt_check(struct tcpcb *tp, struct tcphdr *th, |
| 314 | struct tcpopt *to); |
| 315 | /* |
| 316 | * Constants used for resizing receive socket buffer |
| 317 | * when timestamps are not supported |
| 318 | */ |
| 319 | #define TCPTV_RCVNOTS_QUANTUM 100 |
| 320 | #define TCP_RCVNOTS_BYTELEVEL 204800 |
| 321 | |
| 322 | /* |
| 323 | * Constants used for limiting early retransmits |
| 324 | * to 10 per minute. |
| 325 | */ |
| 326 | #define TCP_EARLY_REXMT_WIN (60 * TCP_RETRANSHZ) /* 60 seconds */ |
| 327 | #define TCP_EARLY_REXMT_LIMIT 10 |
| 328 | |
| 329 | #define log_in_vain_log( a ) { log a; } |
| 330 | |
| 331 | int tcp_rcvunackwin = TCPTV_UNACKWIN; |
| 332 | int tcp_maxrcvidle = TCPTV_MAXRCVIDLE; |
| 333 | SYSCTL_SKMEM_TCP_INT(OID_AUTO, rcvsspktcnt, CTLFLAG_RW | CTLFLAG_LOCKED, |
| 334 | int, tcp_rcvsspktcnt, TCP_RCV_SS_PKTCOUNT, "packets to be seen before receiver stretches acks" ); |
| 335 | |
| 336 | #define DELAY_ACK(tp, th) \ |
| 337 | (CC_ALGO(tp)->delay_ack != NULL && CC_ALGO(tp)->delay_ack(tp, th)) |
| 338 | |
| 339 | static int tcp_dropdropablreq(struct socket *head); |
| 340 | static void tcp_newreno_partial_ack(struct tcpcb *tp, struct tcphdr *th); |
| 341 | static void update_base_rtt(struct tcpcb *tp, uint32_t rtt); |
| 342 | void tcp_set_background_cc(struct socket *so); |
| 343 | void tcp_set_foreground_cc(struct socket *so); |
| 344 | static void tcp_set_new_cc(struct socket *so, uint8_t cc_index); |
| 345 | static void tcp_bwmeas_check(struct tcpcb *tp); |
| 346 | |
| 347 | #if TRAFFIC_MGT |
| 348 | void |
| 349 | reset_acc_iaj(struct tcpcb *tp) |
| 350 | { |
| 351 | tp->acc_iaj = 0; |
| 352 | CLEAR_IAJ_STATE(tp); |
| 353 | } |
| 354 | |
| 355 | static inline void |
| 356 | update_iaj_state(struct tcpcb *tp, int size, int rst_size) |
| 357 | { |
| 358 | if (rst_size > 0) { |
| 359 | tp->iaj_size = 0; |
| 360 | } |
| 361 | if (tp->iaj_size == 0 || size >= tp->iaj_size) { |
| 362 | tp->iaj_size = size; |
| 363 | tp->iaj_rcv_ts = tcp_now; |
| 364 | tp->iaj_small_pkt = 0; |
| 365 | } |
| 366 | } |
| 367 | |
| 368 | /* For every 64-bit unsigned integer(v), this function will find the |
| 369 | * largest 32-bit integer n such that (n*n <= v). This takes at most 32 iterations |
| 370 | * irrespective of the value of v and does not involve multiplications. |
| 371 | */ |
| 372 | static inline uint32_t |
| 373 | isqrt(uint64_t val) |
| 374 | { |
| 375 | uint32_t sqrt_cache[11] = {0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100}; |
| 376 | uint64_t temp, g = 0, b = 1 << 31, bshft = 31; |
| 377 | if (val <= 100) { |
| 378 | for (g = 0; g <= 10; ++g) { |
| 379 | if (sqrt_cache[g] > val) { |
| 380 | g--; |
| 381 | break; |
| 382 | } else if (sqrt_cache[g] == val) { |
| 383 | break; |
| 384 | } |
| 385 | } |
| 386 | } else { |
| 387 | do { |
| 388 | temp = (((g << 1) + b) << (bshft--)); |
| 389 | if (val >= temp) { |
| 390 | g += b; |
| 391 | val -= temp; |
| 392 | } |
| 393 | b >>= 1; |
| 394 | } while (b > 0 && val > 0); |
| 395 | } |
| 396 | return (uint32_t)g; |
| 397 | } |
| 398 | |
| 399 | static inline void |
| 400 | compute_iaj_meat(struct tcpcb *tp, uint32_t cur_iaj) |
| 401 | { |
| 402 | /* When accumulated IAJ reaches MAX_ACC_IAJ in milliseconds, |
| 403 | * throttle the receive window to a minimum of MIN_IAJ_WIN packets |
| 404 | */ |
| 405 | #define MAX_ACC_IAJ (tcp_acc_iaj_high_thresh + tcp_acc_iaj_react_limit) |
| 406 | #define IAJ_DIV_SHIFT 4 |
| 407 | #define IAJ_ROUNDUP_CONST (1 << (IAJ_DIV_SHIFT - 1)) |
| 408 | |
| 409 | uint32_t allowed_iaj, acc_iaj = 0; |
| 410 | |
| 411 | /* Using 64-bit storage for the inter-arrival jitter deviation, |
| 412 | * to avoid accidentally rolling over if the inter-arrival time exceeds 62 seconds. |
| 413 | */ |
| 414 | int64_t mean, temp, cur_iaj_dev; |
| 415 | |
| 416 | cur_iaj_dev = (cur_iaj - tp->avg_iaj); |
| 417 | |
| 418 | /* Allow a jitter of "allowed_iaj" milliseconds. Some connections |
| 419 | * may have a constant jitter more than that. We detect this by |
| 420 | * using standard deviation. |
| 421 | */ |
| 422 | allowed_iaj = tp->avg_iaj + tp->std_dev_iaj; |
| 423 | if (allowed_iaj < tcp_allowed_iaj) { |
| 424 | allowed_iaj = tcp_allowed_iaj; |
| 425 | } |
| 426 | |
| 427 | /* Initially when the connection starts, the senders congestion |
| 428 | * window is small. During this period we avoid throttling a |
| 429 | * connection because we do not have a good starting point for |
| 430 | * allowed_iaj. IAJ_IGNORE_PKTCNT is used to quietly gloss over |
| 431 | * the first few packets. |
| 432 | */ |
| 433 | if (tp->iaj_pktcnt > IAJ_IGNORE_PKTCNT) { |
| 434 | if (cur_iaj <= allowed_iaj) { |
| 435 | if (tp->acc_iaj >= 2) { |
| 436 | acc_iaj = tp->acc_iaj - 2; |
| 437 | } else { |
| 438 | acc_iaj = 0; |
| 439 | } |
| 440 | } else { |
| 441 | acc_iaj = tp->acc_iaj + (cur_iaj - allowed_iaj); |
| 442 | } |
| 443 | |
| 444 | if (acc_iaj > MAX_ACC_IAJ) { |
| 445 | acc_iaj = MAX_ACC_IAJ; |
| 446 | } |
| 447 | tp->acc_iaj = acc_iaj; |
| 448 | } |
| 449 | |
| 450 | /* Compute weighted average where the history has a weight of |
| 451 | * 15 out of 16 and the current value has a weight of 1 out of 16. |
| 452 | * This will make the short-term measurements have more weight. |
| 453 | * |
| 454 | * The addition of 8 will help to round-up the value |
| 455 | * instead of round-down |
| 456 | */ |
| 457 | tp->avg_iaj = (((tp->avg_iaj << IAJ_DIV_SHIFT) - tp->avg_iaj) |
| 458 | + cur_iaj + IAJ_ROUNDUP_CONST) >> IAJ_DIV_SHIFT; |
| 459 | |
| 460 | /* Compute Root-mean-square of deviation where mean is a weighted |
| 461 | * average as described above. |
| 462 | */ |
| 463 | temp = tp->std_dev_iaj * tp->std_dev_iaj; |
| 464 | mean = (((temp << IAJ_DIV_SHIFT) - temp) |
| 465 | + (cur_iaj_dev * cur_iaj_dev) |
| 466 | + IAJ_ROUNDUP_CONST) >> IAJ_DIV_SHIFT; |
| 467 | |
| 468 | tp->std_dev_iaj = isqrt(val: mean); |
| 469 | |
| 470 | DTRACE_TCP3(iaj, struct tcpcb *, tp, uint32_t, cur_iaj, |
| 471 | uint32_t, allowed_iaj); |
| 472 | |
| 473 | return; |
| 474 | } |
| 475 | |
| 476 | static inline void |
| 477 | compute_iaj(struct tcpcb *tp) |
| 478 | { |
| 479 | compute_iaj_meat(tp, cur_iaj: (tcp_now - tp->iaj_rcv_ts)); |
| 480 | } |
| 481 | #endif /* TRAFFIC_MGT */ |
| 482 | |
| 483 | /* |
| 484 | * Perform rate limit check per connection per second |
| 485 | * tp->t_challengeack_last is the last_time diff was greater than 1sec |
| 486 | * tp->t_challengeack_count is the number of ACKs sent (within 1sec) |
| 487 | * Return TRUE if we shouldn't send the ACK due to rate limitation |
| 488 | * Return FALSE if it is still ok to send challenge ACK |
| 489 | */ |
| 490 | static boolean_t |
| 491 | tcp_is_ack_ratelimited(struct tcpcb *tp) |
| 492 | { |
| 493 | boolean_t ret = TRUE; |
| 494 | uint32_t now = tcp_now; |
| 495 | int32_t diff = 0; |
| 496 | |
| 497 | diff = timer_diff(t1: now, toff1: 0, t2: tp->t_challengeack_last, toff2: 0); |
| 498 | /* If it is first time or diff > 1000ms, |
| 499 | * update the challengeack_last and reset the |
| 500 | * current count of ACKs |
| 501 | */ |
| 502 | if (tp->t_challengeack_last == 0 || diff >= 1000) { |
| 503 | tp->t_challengeack_last = now; |
| 504 | tp->t_challengeack_count = 0; |
| 505 | ret = FALSE; |
| 506 | } else if (tp->t_challengeack_count < tcp_challengeack_limit) { |
| 507 | ret = FALSE; |
| 508 | } |
| 509 | |
| 510 | /* Careful about wrap-around */ |
| 511 | if (ret == FALSE && (tp->t_challengeack_count + 1 > 0)) { |
| 512 | tp->t_challengeack_count++; |
| 513 | } |
| 514 | |
| 515 | return ret; |
| 516 | } |
| 517 | |
| 518 | /* Check if enough amount of data has been acknowledged since |
| 519 | * bw measurement was started |
| 520 | */ |
| 521 | static void |
| 522 | tcp_bwmeas_check(struct tcpcb *tp) |
| 523 | { |
| 524 | int32_t bw_meas_bytes; |
| 525 | uint32_t bw, bytes, elapsed_time; |
| 526 | |
| 527 | if (SEQ_LEQ(tp->snd_una, tp->t_bwmeas->bw_start)) { |
| 528 | return; |
| 529 | } |
| 530 | |
| 531 | bw_meas_bytes = tp->snd_una - tp->t_bwmeas->bw_start; |
| 532 | if ((tp->t_flagsext & TF_BWMEAS_INPROGRESS) && |
| 533 | bw_meas_bytes >= (int32_t)(tp->t_bwmeas->bw_size)) { |
| 534 | bytes = bw_meas_bytes; |
| 535 | elapsed_time = tcp_now - tp->t_bwmeas->bw_ts; |
| 536 | if (elapsed_time > 0) { |
| 537 | bw = bytes / elapsed_time; |
| 538 | if (bw > 0) { |
| 539 | if (tp->t_bwmeas->bw_sndbw > 0) { |
| 540 | tp->t_bwmeas->bw_sndbw = |
| 541 | (((tp->t_bwmeas->bw_sndbw << 3) |
| 542 | - tp->t_bwmeas->bw_sndbw) |
| 543 | + bw) >> 3; |
| 544 | } else { |
| 545 | tp->t_bwmeas->bw_sndbw = bw; |
| 546 | } |
| 547 | |
| 548 | /* Store the maximum value */ |
| 549 | if (tp->t_bwmeas->bw_sndbw_max == 0) { |
| 550 | tp->t_bwmeas->bw_sndbw_max = |
| 551 | tp->t_bwmeas->bw_sndbw; |
| 552 | } else { |
| 553 | tp->t_bwmeas->bw_sndbw_max = |
| 554 | max(a: tp->t_bwmeas->bw_sndbw, |
| 555 | b: tp->t_bwmeas->bw_sndbw_max); |
| 556 | } |
| 557 | } |
| 558 | } |
| 559 | tp->t_flagsext &= ~(TF_BWMEAS_INPROGRESS); |
| 560 | } |
| 561 | } |
| 562 | |
| 563 | static int |
| 564 | tcp_reass(struct tcpcb *tp, struct tcphdr *th, int *tlenp, struct mbuf *m, |
| 565 | struct ifnet *ifp, int *dowakeup) |
| 566 | { |
| 567 | struct tseg_qent *q; |
| 568 | struct tseg_qent *p = NULL; |
| 569 | struct tseg_qent *nq; |
| 570 | struct tseg_qent *te = NULL; |
| 571 | struct inpcb *inp = tp->t_inpcb; |
| 572 | struct socket *so = inp->inp_socket; |
| 573 | int flags = 0; |
| 574 | uint32_t qlimit; |
| 575 | boolean_t cell = IFNET_IS_CELLULAR(ifp); |
| 576 | boolean_t wifi = (!cell && IFNET_IS_WIFI(ifp)); |
| 577 | boolean_t wired = (!wifi && IFNET_IS_WIRED(ifp)); |
| 578 | boolean_t dsack_set = FALSE; |
| 579 | |
| 580 | /* |
| 581 | * If the reassembly queue already has entries or if we are going |
| 582 | * to add a new one, then the connection has reached a loss state. |
| 583 | * Reset the stretch-ack algorithm at this point. |
| 584 | */ |
| 585 | tcp_reset_stretch_ack(tp); |
| 586 | tp->t_forced_acks = TCP_FORCED_ACKS_COUNT; |
| 587 | |
| 588 | #if TRAFFIC_MGT |
| 589 | if (tp->acc_iaj > 0) { |
| 590 | reset_acc_iaj(tp); |
| 591 | } |
| 592 | #endif /* TRAFFIC_MGT */ |
| 593 | |
| 594 | if (th->th_seq != tp->rcv_nxt) { |
| 595 | struct mbuf *tmp = m; |
| 596 | while (tmp != NULL) { |
| 597 | if (mbuf_class_under_pressure(m: tmp)) { |
| 598 | m_freem(m); |
| 599 | tcp_reass_overflows++; |
| 600 | tcpstat.tcps_rcvmemdrop++; |
| 601 | *tlenp = 0; |
| 602 | return 0; |
| 603 | } |
| 604 | |
| 605 | tmp = tmp->m_next; |
| 606 | } |
| 607 | } |
| 608 | |
| 609 | /* |
| 610 | * Limit the number of segments in the reassembly queue to prevent |
| 611 | * holding on to too many segments (and thus running out of mbufs). |
| 612 | * Make sure to let the missing segment through which caused this |
| 613 | * queue. Always keep one global queue entry spare to be able to |
| 614 | * process the missing segment. |
| 615 | */ |
| 616 | qlimit = min(a: max(a: 100, b: so->so_rcv.sb_hiwat >> 10), |
| 617 | b: (tcp_autorcvbuf_max >> 10)); |
| 618 | if (th->th_seq != tp->rcv_nxt && |
| 619 | (tp->t_reassqlen + 1) >= qlimit) { |
| 620 | tcp_reass_overflows++; |
| 621 | tcpstat.tcps_rcvmemdrop++; |
| 622 | m_freem(m); |
| 623 | *tlenp = 0; |
| 624 | return 0; |
| 625 | } |
| 626 | |
| 627 | /* Allocate a new queue entry. If we can't, just drop the pkt. XXX */ |
| 628 | te = zalloc_flags(tcp_reass_zone, Z_WAITOK | Z_NOFAIL); |
| 629 | tp->t_reassqlen++; |
| 630 | OSIncrementAtomic(&tcp_reass_total_qlen); |
| 631 | |
| 632 | /* |
| 633 | * Find a segment which begins after this one does. |
| 634 | */ |
| 635 | LIST_FOREACH(q, &tp->t_segq, tqe_q) { |
| 636 | if (SEQ_GT(q->tqe_th->th_seq, th->th_seq)) { |
| 637 | break; |
| 638 | } |
| 639 | p = q; |
| 640 | } |
| 641 | |
| 642 | /* |
| 643 | * If there is a preceding segment, it may provide some of |
| 644 | * our data already. If so, drop the data from the incoming |
| 645 | * segment. If it provides all of our data, drop us. |
| 646 | */ |
| 647 | if (p != NULL) { |
| 648 | int i; |
| 649 | /* conversion to int (in i) handles seq wraparound */ |
| 650 | i = p->tqe_th->th_seq + p->tqe_len - th->th_seq; |
| 651 | if (i > 0) { |
| 652 | if (i > 1) { |
| 653 | /* |
| 654 | * Note duplicate data sequnce numbers |
| 655 | * to report in DSACK option |
| 656 | */ |
| 657 | tp->t_dsack_lseq = th->th_seq; |
| 658 | tp->t_dsack_rseq = th->th_seq + |
| 659 | min(a: i, b: *tlenp); |
| 660 | |
| 661 | /* |
| 662 | * Report only the first part of partial/ |
| 663 | * non-contiguous duplicate sequence space |
| 664 | */ |
| 665 | dsack_set = TRUE; |
| 666 | } |
| 667 | if (i >= *tlenp) { |
| 668 | tcpstat.tcps_rcvduppack++; |
| 669 | tcpstat.tcps_rcvdupbyte += *tlenp; |
| 670 | if (nstat_collect) { |
| 671 | nstat_route_rx(rte: inp->inp_route.ro_rt, |
| 672 | packets: 1, bytes: *tlenp, |
| 673 | flags: NSTAT_RX_FLAG_DUPLICATE); |
| 674 | INP_ADD_STAT(inp, cell, wifi, wired, |
| 675 | rxpackets, 1); |
| 676 | INP_ADD_STAT(inp, cell, wifi, wired, |
| 677 | rxbytes, *tlenp); |
| 678 | tp->t_stat.rxduplicatebytes += *tlenp; |
| 679 | inp_set_activity_bitmap(inp); |
| 680 | } |
| 681 | m_freem(m); |
| 682 | zfree(tcp_reass_zone, te); |
| 683 | te = NULL; |
| 684 | tp->t_reassqlen--; |
| 685 | OSDecrementAtomic(&tcp_reass_total_qlen); |
| 686 | /* |
| 687 | * Try to present any queued data |
| 688 | * at the left window edge to the user. |
| 689 | * This is needed after the 3-WHS |
| 690 | * completes. |
| 691 | */ |
| 692 | goto present; |
| 693 | } |
| 694 | m_adj(m, i); |
| 695 | *tlenp -= i; |
| 696 | th->th_seq += i; |
| 697 | } |
| 698 | } |
| 699 | |
| 700 | if (th->th_seq != tp->rcv_nxt) { |
| 701 | tp->t_rcvoopack++; |
| 702 | tcpstat.tcps_rcvoopack++; |
| 703 | tcpstat.tcps_rcvoobyte += *tlenp; |
| 704 | if (nstat_collect) { |
| 705 | tp->t_stat.rxoutoforderbytes += *tlenp; |
| 706 | } |
| 707 | } |
| 708 | |
| 709 | if (nstat_collect) { |
| 710 | nstat_route_rx(rte: inp->inp_route.ro_rt, packets: 1, bytes: *tlenp, |
| 711 | flags: NSTAT_RX_FLAG_OUT_OF_ORDER); |
| 712 | INP_ADD_STAT(inp, cell, wifi, wired, rxpackets, 1); |
| 713 | INP_ADD_STAT(inp, cell, wifi, wired, rxbytes, *tlenp); |
| 714 | inp_set_activity_bitmap(inp); |
| 715 | } |
| 716 | |
| 717 | /* |
| 718 | * While we overlap succeeding segments trim them or, |
| 719 | * if they are completely covered, dequeue them. |
| 720 | */ |
| 721 | while (q) { |
| 722 | int i = (th->th_seq + *tlenp) - q->tqe_th->th_seq; |
| 723 | if (i <= 0) { |
| 724 | break; |
| 725 | } |
| 726 | |
| 727 | /* |
| 728 | * Report only the first part of partial/non-contiguous |
| 729 | * duplicate segment in dsack option. The variable |
| 730 | * dsack_set will be true if a previous entry has some of |
| 731 | * the duplicate sequence space. |
| 732 | */ |
| 733 | if (i > 1 && !dsack_set) { |
| 734 | if (tp->t_dsack_lseq == 0) { |
| 735 | tp->t_dsack_lseq = q->tqe_th->th_seq; |
| 736 | tp->t_dsack_rseq = |
| 737 | tp->t_dsack_lseq + min(a: i, b: q->tqe_len); |
| 738 | } else { |
| 739 | /* |
| 740 | * this segment overlaps data in multple |
| 741 | * entries in the reassembly queue, move |
| 742 | * the right sequence number further. |
| 743 | */ |
| 744 | tp->t_dsack_rseq = |
| 745 | tp->t_dsack_rseq + min(a: i, b: q->tqe_len); |
| 746 | } |
| 747 | } |
| 748 | if (i < q->tqe_len) { |
| 749 | q->tqe_th->th_seq += i; |
| 750 | q->tqe_len -= i; |
| 751 | m_adj(q->tqe_m, i); |
| 752 | break; |
| 753 | } |
| 754 | |
| 755 | nq = LIST_NEXT(q, tqe_q); |
| 756 | LIST_REMOVE(q, tqe_q); |
| 757 | tp->t_reassq_mbcnt -= _MSIZE + (q->tqe_m->m_flags & M_EXT) ? |
| 758 | q->tqe_m->m_ext.ext_size : 0; |
| 759 | m_freem(q->tqe_m); |
| 760 | zfree(tcp_reass_zone, q); |
| 761 | tp->t_reassqlen--; |
| 762 | OSDecrementAtomic(&tcp_reass_total_qlen); |
| 763 | q = nq; |
| 764 | } |
| 765 | |
| 766 | /* Insert the new segment queue entry into place. */ |
| 767 | te->tqe_m = m; |
| 768 | te->tqe_th = th; |
| 769 | te->tqe_len = *tlenp; |
| 770 | |
| 771 | tp->t_reassq_mbcnt += _MSIZE + (m->m_flags & M_EXT) ? m->m_ext.ext_size : 0; |
| 772 | |
| 773 | if (p == NULL) { |
| 774 | LIST_INSERT_HEAD(&tp->t_segq, te, tqe_q); |
| 775 | } else { |
| 776 | LIST_INSERT_AFTER(p, te, tqe_q); |
| 777 | } |
| 778 | |
| 779 | present: |
| 780 | /* |
| 781 | * Present data to user, advancing rcv_nxt through |
| 782 | * completed sequence space. |
| 783 | */ |
| 784 | if (!TCPS_HAVEESTABLISHED(tp->t_state)) { |
| 785 | return 0; |
| 786 | } |
| 787 | q = LIST_FIRST(&tp->t_segq); |
| 788 | if (!q || q->tqe_th->th_seq != tp->rcv_nxt) { |
| 789 | return 0; |
| 790 | } |
| 791 | |
| 792 | /* |
| 793 | * If there is already another thread doing reassembly for this |
| 794 | * connection, it is better to let it finish the job -- |
| 795 | * (radar 16316196) |
| 796 | */ |
| 797 | if (tp->t_flagsext & TF_REASS_INPROG) { |
| 798 | return 0; |
| 799 | } |
| 800 | |
| 801 | tp->t_flagsext |= TF_REASS_INPROG; |
| 802 | /* lost packet was recovered, so ooo data can be returned */ |
| 803 | tcpstat.tcps_recovered_pkts++; |
| 804 | |
| 805 | do { |
| 806 | tp->rcv_nxt += q->tqe_len; |
| 807 | flags = q->tqe_th->th_flags & TH_FIN; |
| 808 | LIST_REMOVE(q, tqe_q); |
| 809 | tp->t_reassq_mbcnt -= _MSIZE + (q->tqe_m->m_flags & M_EXT) ? |
| 810 | q->tqe_m->m_ext.ext_size : 0; |
| 811 | if (so->so_state & SS_CANTRCVMORE) { |
| 812 | m_freem(q->tqe_m); |
| 813 | } else { |
| 814 | so_recv_data_stat(so, q->tqe_m, 0); /* XXXX */ |
| 815 | if (q->tqe_th->th_flags & TH_PUSH) { |
| 816 | tp->t_flagsext |= TF_LAST_IS_PSH; |
| 817 | } else { |
| 818 | tp->t_flagsext &= ~TF_LAST_IS_PSH; |
| 819 | } |
| 820 | |
| 821 | if (sbappendstream_rcvdemux(so, m: q->tqe_m)) { |
| 822 | *dowakeup = 1; |
| 823 | } |
| 824 | } |
| 825 | zfree(tcp_reass_zone, q); |
| 826 | tp->t_reassqlen--; |
| 827 | OSDecrementAtomic(&tcp_reass_total_qlen); |
| 828 | q = LIST_FIRST(&tp->t_segq); |
| 829 | } while (q && q->tqe_th->th_seq == tp->rcv_nxt); |
| 830 | tp->t_flagsext &= ~TF_REASS_INPROG; |
| 831 | |
| 832 | if ((inp->inp_vflag & INP_IPV6) != 0) { |
| 833 | KERNEL_DEBUG(DBG_LAYER_BEG, |
| 834 | ((inp->inp_fport << 16) | inp->inp_lport), |
| 835 | (((inp->in6p_laddr.s6_addr16[0] & 0xffff) << 16) | |
| 836 | (inp->in6p_faddr.s6_addr16[0] & 0xffff)), |
| 837 | 0, 0, 0); |
| 838 | } else { |
| 839 | KERNEL_DEBUG(DBG_LAYER_BEG, |
| 840 | ((inp->inp_fport << 16) | inp->inp_lport), |
| 841 | (((inp->inp_laddr.s_addr & 0xffff) << 16) | |
| 842 | (inp->inp_faddr.s_addr & 0xffff)), |
| 843 | 0, 0, 0); |
| 844 | } |
| 845 | |
| 846 | return flags; |
| 847 | } |
| 848 | |
| 849 | /* |
| 850 | * Reduce congestion window -- used when ECN is seen or when a tail loss |
| 851 | * probe recovers the last packet. |
| 852 | */ |
| 853 | static void |
| 854 | tcp_reduce_congestion_window(struct tcpcb *tp) |
| 855 | { |
| 856 | /* |
| 857 | * If the current tcp cc module has |
| 858 | * defined a hook for tasks to run |
| 859 | * before entering FR, call it |
| 860 | */ |
| 861 | if (CC_ALGO(tp)->pre_fr != NULL) { |
| 862 | CC_ALGO(tp)->pre_fr(tp); |
| 863 | } |
| 864 | ENTER_FASTRECOVERY(tp); |
| 865 | if (tp->t_flags & TF_SENTFIN) { |
| 866 | tp->snd_recover = tp->snd_max - 1; |
| 867 | } else { |
| 868 | tp->snd_recover = tp->snd_max; |
| 869 | } |
| 870 | tp->t_timer[TCPT_REXMT] = 0; |
| 871 | tp->t_timer[TCPT_PTO] = 0; |
| 872 | tp->t_rtttime = 0; |
| 873 | if (tp->t_flagsext & TF_CWND_NONVALIDATED) { |
| 874 | tcp_cc_adjust_nonvalidated_cwnd(tp); |
| 875 | } else { |
| 876 | tp->snd_cwnd = tp->snd_ssthresh + |
| 877 | tp->t_maxseg * tcprexmtthresh; |
| 878 | } |
| 879 | } |
| 880 | |
| 881 | /* |
| 882 | * This function is called upon reception of data on a socket. It's purpose is |
| 883 | * to handle the adaptive keepalive timers that monitor whether the connection |
| 884 | * is making progress. First the adaptive read-timer, second the TFO probe-timer. |
| 885 | * |
| 886 | * The application wants to get an event if there is a stall during read. |
| 887 | * Set the initial keepalive timeout to be equal to twice RTO. |
| 888 | * |
| 889 | * If the outgoing interface is in marginal conditions, we need to |
| 890 | * enable read probes for that too. |
| 891 | */ |
| 892 | static inline void |
| 893 | tcp_adaptive_rwtimo_check(struct tcpcb *tp, int tlen) |
| 894 | { |
| 895 | struct ifnet *outifp = tp->t_inpcb->inp_last_outifp; |
| 896 | |
| 897 | if ((tp->t_adaptive_rtimo > 0 || |
| 898 | (outifp != NULL && |
| 899 | (outifp->if_eflags & IFEF_PROBE_CONNECTIVITY))) |
| 900 | && tlen > 0 && |
| 901 | tp->t_state == TCPS_ESTABLISHED) { |
| 902 | tp->t_timer[TCPT_KEEP] = OFFSET_FROM_START(tp, |
| 903 | (TCP_REXMTVAL(tp) << 1)); |
| 904 | tp->t_flagsext |= TF_DETECT_READSTALL; |
| 905 | tp->t_rtimo_probes = 0; |
| 906 | } |
| 907 | } |
| 908 | |
| 909 | inline void |
| 910 | tcp_keepalive_reset(struct tcpcb *tp) |
| 911 | { |
| 912 | tp->t_timer[TCPT_KEEP] = OFFSET_FROM_START(tp, |
| 913 | TCP_CONN_KEEPIDLE(tp)); |
| 914 | tp->t_flagsext &= ~(TF_DETECT_READSTALL); |
| 915 | tp->t_rtimo_probes = 0; |
| 916 | } |
| 917 | |
| 918 | void |
| 919 | tcp_set_finwait_timeout(struct tcpcb *tp) |
| 920 | { |
| 921 | /* |
| 922 | * Starting the TCPT_2MSL timer is contrary to the |
| 923 | * specification, but if we don't get a FIN |
| 924 | * we'll hang forever. |
| 925 | */ |
| 926 | ASSERT(tp->t_state == TCPS_FIN_WAIT_2); |
| 927 | ASSERT((tp->t_inpcb->inp_socket->so_state & (SS_CANTRCVMORE)) == SS_CANTRCVMORE); |
| 928 | |
| 929 | if (tcp_fin_timeout > 0 && |
| 930 | tcp_fin_timeout < TCP_CONN_MAXIDLE(tp)) { |
| 931 | tp->t_timer[TCPT_2MSL] = OFFSET_FROM_START(tp, tcp_fin_timeout); |
| 932 | } else { |
| 933 | tp->t_timer[TCPT_2MSL] = OFFSET_FROM_START(tp, TCP_CONN_MAXIDLE(tp)); |
| 934 | } |
| 935 | } |
| 936 | |
| 937 | /* |
| 938 | * TCP input routine, follows pages 65-76 of the |
| 939 | * protocol specification dated September, 1981 very closely. |
| 940 | */ |
| 941 | int |
| 942 | tcp6_input(struct mbuf **mp, int *offp, int proto) |
| 943 | { |
| 944 | #pragma unused(proto) |
| 945 | struct mbuf *m = *mp; |
| 946 | uint32_t ia6_flags; |
| 947 | struct ifnet *ifp = m->m_pkthdr.rcvif; |
| 948 | |
| 949 | IP6_EXTHDR_CHECK(m, *offp, sizeof(struct tcphdr), return IPPROTO_DONE); |
| 950 | |
| 951 | /* Expect 32-bit aligned data pointer on strict-align platforms */ |
| 952 | MBUF_STRICT_DATA_ALIGNMENT_CHECK_32(m); |
| 953 | |
| 954 | /* |
| 955 | * draft-itojun-ipv6-tcp-to-anycast |
| 956 | * better place to put this in? |
| 957 | */ |
| 958 | if (ip6_getdstifaddr_info(m, NULL, &ia6_flags) == 0) { |
| 959 | if (ia6_flags & IN6_IFF_ANYCAST) { |
| 960 | struct ip6_hdr *ip6; |
| 961 | |
| 962 | ip6 = mtod(m, struct ip6_hdr *); |
| 963 | icmp6_error(m, ICMP6_DST_UNREACH, |
| 964 | ICMP6_DST_UNREACH_ADDR, |
| 965 | (int)((caddr_t)&ip6->ip6_dst - (caddr_t)ip6)); |
| 966 | |
| 967 | IF_TCP_STATINC(ifp, icmp6unreach); |
| 968 | |
| 969 | return IPPROTO_DONE; |
| 970 | } |
| 971 | } |
| 972 | |
| 973 | tcp_input(m, *offp); |
| 974 | return IPPROTO_DONE; |
| 975 | } |
| 976 | |
| 977 | static void |
| 978 | tcp_sbrcv_reserve(struct tcpcb *tp, struct sockbuf *sbrcv, |
| 979 | u_int32_t newsize, u_int32_t idealsize, u_int32_t rcvbuf_max) |
| 980 | { |
| 981 | /* newsize should not exceed max */ |
| 982 | newsize = min(a: newsize, b: rcvbuf_max); |
| 983 | |
| 984 | /* The receive window scale negotiated at the |
| 985 | * beginning of the connection will also set a |
| 986 | * limit on the socket buffer size |
| 987 | */ |
| 988 | newsize = min(a: newsize, TCP_MAXWIN << tp->rcv_scale); |
| 989 | |
| 990 | /* Set new socket buffer size */ |
| 991 | if (newsize > sbrcv->sb_hiwat && |
| 992 | (sbreserve(sb: sbrcv, cc: newsize) == 1)) { |
| 993 | sbrcv->sb_idealsize = min(a: max(a: sbrcv->sb_idealsize, |
| 994 | b: (idealsize != 0) ? idealsize : newsize), b: rcvbuf_max); |
| 995 | |
| 996 | /* Again check the limit set by the advertised |
| 997 | * window scale |
| 998 | */ |
| 999 | sbrcv->sb_idealsize = min(a: sbrcv->sb_idealsize, |
| 1000 | TCP_MAXWIN << tp->rcv_scale); |
| 1001 | } |
| 1002 | } |
| 1003 | |
| 1004 | /* |
| 1005 | * This function is used to grow a receive socket buffer. It |
| 1006 | * will take into account system-level memory usage and the |
| 1007 | * bandwidth available on the link to make a decision. |
| 1008 | */ |
| 1009 | static void |
| 1010 | tcp_sbrcv_grow(struct tcpcb *tp, struct sockbuf *sbrcv, |
| 1011 | struct tcpopt *to, uint32_t pktlen) |
| 1012 | { |
| 1013 | struct socket *so = sbrcv->sb_so; |
| 1014 | |
| 1015 | /* |
| 1016 | * Do not grow the receive socket buffer if |
| 1017 | * - auto resizing is disabled, globally or on this socket |
| 1018 | * - the high water mark already reached the maximum |
| 1019 | * - the stream is in background and receive side is being |
| 1020 | * throttled |
| 1021 | */ |
| 1022 | if (tcp_do_autorcvbuf == 0 || |
| 1023 | (sbrcv->sb_flags & SB_AUTOSIZE) == 0 || |
| 1024 | sbrcv->sb_hiwat >= tcp_autorcvbuf_max || |
| 1025 | (tp->t_flagsext & TF_RECV_THROTTLE) || |
| 1026 | (so->so_flags1 & SOF1_EXTEND_BK_IDLE_WANTED) || |
| 1027 | (!tcp_autotune_reorder && !LIST_EMPTY(&tp->t_segq))) { |
| 1028 | /* Can not resize the socket buffer, just return */ |
| 1029 | goto out; |
| 1030 | } |
| 1031 | |
| 1032 | if (!TSTMP_SUPPORTED(tp)) { |
| 1033 | /* |
| 1034 | * Timestamp option is not supported on this connection, |
| 1035 | * use receiver's RTT. Socket buffer grows based on the |
| 1036 | * BDP of the link. |
| 1037 | */ |
| 1038 | if (TSTMP_GEQ(tcp_now, |
| 1039 | tp->rfbuf_ts + (tp->rcv_srtt >> TCP_RTT_SHIFT))) { |
| 1040 | tp->rfbuf_cnt += pktlen; |
| 1041 | if (tp->rfbuf_cnt > tp->rfbuf_space) { |
| 1042 | int32_t rcvbuf_inc; |
| 1043 | uint32_t idealsize; |
| 1044 | |
| 1045 | /* |
| 1046 | * Increase receive-buffer aggressively if we |
| 1047 | * received more than 150% of what was received |
| 1048 | * in the previous round. Because, that means |
| 1049 | * the sender is in TCP slow-start and so |
| 1050 | * we need to give it more space to not be |
| 1051 | * limiting the sender with a small receive-window. |
| 1052 | */ |
| 1053 | if (tp->rfbuf_cnt > tp->rfbuf_space + (tp->rfbuf_space >> 1)) { |
| 1054 | rcvbuf_inc = (tp->rfbuf_cnt << 2) - sbrcv->sb_hiwat; |
| 1055 | idealsize = (tp->rfbuf_cnt << 2); |
| 1056 | } else { |
| 1057 | rcvbuf_inc = (tp->rfbuf_cnt << 1) - sbrcv->sb_hiwat; |
| 1058 | idealsize = (tp->rfbuf_cnt << 1); |
| 1059 | } |
| 1060 | |
| 1061 | if (rcvbuf_inc > 0) { |
| 1062 | rcvbuf_inc = |
| 1063 | (rcvbuf_inc / tp->t_maxseg) * tp->t_maxseg; |
| 1064 | |
| 1065 | tcp_sbrcv_reserve(tp, sbrcv, |
| 1066 | newsize: sbrcv->sb_hiwat + rcvbuf_inc, |
| 1067 | idealsize, rcvbuf_max: tcp_autorcvbuf_max); |
| 1068 | |
| 1069 | tp->rfbuf_space = tp->rfbuf_cnt; |
| 1070 | } |
| 1071 | } |
| 1072 | goto out; |
| 1073 | } else { |
| 1074 | tp->rfbuf_cnt += pktlen; |
| 1075 | return; |
| 1076 | } |
| 1077 | } else if (to->to_tsecr != 0) { |
| 1078 | /* |
| 1079 | * If the timestamp shows that one RTT has |
| 1080 | * completed, we can stop counting the |
| 1081 | * bytes. Here we consider increasing |
| 1082 | * the socket buffer if the bandwidth measured in |
| 1083 | * last rtt, is more than half of sb_hiwat, this will |
| 1084 | * help to scale the buffer according to the bandwidth |
| 1085 | * on the link. |
| 1086 | */ |
| 1087 | if (TSTMP_GEQ(to->to_tsecr, tp->rfbuf_ts)) { |
| 1088 | tp->rfbuf_cnt += pktlen; |
| 1089 | |
| 1090 | if (tp->rfbuf_cnt > tp->rfbuf_space) { |
| 1091 | int32_t rcvbuf_inc; |
| 1092 | uint32_t idealsize; |
| 1093 | |
| 1094 | if (tp->rfbuf_cnt > tp->rfbuf_space + (tp->rfbuf_space >> 1)) { |
| 1095 | rcvbuf_inc = (tp->rfbuf_cnt << 2) - sbrcv->sb_hiwat; |
| 1096 | idealsize = (tp->rfbuf_cnt << 2); |
| 1097 | } else { |
| 1098 | rcvbuf_inc = (tp->rfbuf_cnt << 1) - sbrcv->sb_hiwat; |
| 1099 | idealsize = (tp->rfbuf_cnt << 1); |
| 1100 | } |
| 1101 | |
| 1102 | tp->rfbuf_space = tp->rfbuf_cnt; |
| 1103 | |
| 1104 | if (rcvbuf_inc > 0) { |
| 1105 | rcvbuf_inc = |
| 1106 | (rcvbuf_inc / tp->t_maxseg) * tp->t_maxseg; |
| 1107 | |
| 1108 | tcp_sbrcv_reserve(tp, sbrcv, |
| 1109 | newsize: sbrcv->sb_hiwat + rcvbuf_inc, |
| 1110 | idealsize, rcvbuf_max: tcp_autorcvbuf_max); |
| 1111 | } |
| 1112 | } |
| 1113 | /* Measure instantaneous receive bandwidth */ |
| 1114 | if (tp->t_bwmeas != NULL && tp->rfbuf_cnt > 0 && |
| 1115 | TSTMP_GT(tcp_now, tp->rfbuf_ts)) { |
| 1116 | u_int32_t rcv_bw; |
| 1117 | rcv_bw = tp->rfbuf_cnt / |
| 1118 | (int)(tcp_now - tp->rfbuf_ts); |
| 1119 | if (tp->t_bwmeas->bw_rcvbw_max == 0) { |
| 1120 | tp->t_bwmeas->bw_rcvbw_max = rcv_bw; |
| 1121 | } else { |
| 1122 | tp->t_bwmeas->bw_rcvbw_max = max( |
| 1123 | a: tp->t_bwmeas->bw_rcvbw_max, b: rcv_bw); |
| 1124 | } |
| 1125 | } |
| 1126 | goto out; |
| 1127 | } else { |
| 1128 | tp->rfbuf_cnt += pktlen; |
| 1129 | return; |
| 1130 | } |
| 1131 | } |
| 1132 | out: |
| 1133 | /* Restart the measurement */ |
| 1134 | tp->rfbuf_ts = tcp_now; |
| 1135 | tp->rfbuf_cnt = 0; |
| 1136 | return; |
| 1137 | } |
| 1138 | |
| 1139 | /* This function will trim the excess space added to the socket buffer |
| 1140 | * to help a slow-reading app. The ideal-size of a socket buffer depends |
| 1141 | * on the link bandwidth or it is set by an application and we aim to |
| 1142 | * reach that size. |
| 1143 | */ |
| 1144 | void |
| 1145 | tcp_sbrcv_trim(struct tcpcb *tp, struct sockbuf *sbrcv) |
| 1146 | { |
| 1147 | if (tcp_do_autorcvbuf == 1 && sbrcv->sb_idealsize > 0 && |
| 1148 | sbrcv->sb_hiwat > sbrcv->sb_idealsize) { |
| 1149 | int32_t trim; |
| 1150 | /* compute the difference between ideal and current sizes */ |
| 1151 | u_int32_t diff = sbrcv->sb_hiwat - sbrcv->sb_idealsize; |
| 1152 | |
| 1153 | /* Compute the maximum advertised window for |
| 1154 | * this connection. |
| 1155 | */ |
| 1156 | u_int32_t advwin = tp->rcv_adv - tp->rcv_nxt; |
| 1157 | |
| 1158 | /* How much can we trim the receive socket buffer? |
| 1159 | * 1. it can not be trimmed beyond the max rcv win advertised |
| 1160 | * 2. if possible, leave 1/16 of bandwidth*delay to |
| 1161 | * avoid closing the win completely |
| 1162 | */ |
| 1163 | u_int32_t leave = max(a: advwin, b: (sbrcv->sb_idealsize >> 4)); |
| 1164 | |
| 1165 | /* Sometimes leave can be zero, in that case leave at least |
| 1166 | * a few segments worth of space. |
| 1167 | */ |
| 1168 | if (leave == 0) { |
| 1169 | leave = tp->t_maxseg << tcp_autorcvbuf_inc_shift; |
| 1170 | } |
| 1171 | |
| 1172 | trim = sbrcv->sb_hiwat - (sbrcv->sb_cc + leave); |
| 1173 | trim = imin(a: trim, b: (int32_t)diff); |
| 1174 | |
| 1175 | if (trim > 0) { |
| 1176 | sbreserve(sb: sbrcv, cc: (sbrcv->sb_hiwat - trim)); |
| 1177 | } |
| 1178 | } |
| 1179 | } |
| 1180 | |
| 1181 | /* We may need to trim the send socket buffer size for two reasons: |
| 1182 | * 1. if the rtt seen on the connection is climbing up, we do not |
| 1183 | * want to fill the buffers any more. |
| 1184 | * 2. if the congestion win on the socket backed off, there is no need |
| 1185 | * to hold more mbufs for that connection than what the cwnd will allow. |
| 1186 | */ |
| 1187 | void |
| 1188 | tcp_sbsnd_trim(struct sockbuf *sbsnd) |
| 1189 | { |
| 1190 | if (((sbsnd->sb_flags & (SB_AUTOSIZE | SB_TRIM)) == |
| 1191 | (SB_AUTOSIZE | SB_TRIM)) && |
| 1192 | (sbsnd->sb_idealsize > 0) && |
| 1193 | (sbsnd->sb_hiwat > sbsnd->sb_idealsize)) { |
| 1194 | u_int32_t trim = 0; |
| 1195 | if (sbsnd->sb_cc <= sbsnd->sb_idealsize) { |
| 1196 | trim = sbsnd->sb_hiwat - sbsnd->sb_idealsize; |
| 1197 | } else { |
| 1198 | trim = sbsnd->sb_hiwat - sbsnd->sb_cc; |
| 1199 | } |
| 1200 | sbreserve(sb: sbsnd, cc: (sbsnd->sb_hiwat - trim)); |
| 1201 | } |
| 1202 | if (sbsnd->sb_hiwat <= sbsnd->sb_idealsize) { |
| 1203 | sbsnd->sb_flags &= ~(SB_TRIM); |
| 1204 | } |
| 1205 | } |
| 1206 | |
| 1207 | /* |
| 1208 | * If timestamp option was not negotiated on this connection |
| 1209 | * and this connection is on the receiving side of a stream |
| 1210 | * then we can not measure the delay on the link accurately. |
| 1211 | * Instead of enabling automatic receive socket buffer |
| 1212 | * resizing, just give more space to the receive socket buffer. |
| 1213 | */ |
| 1214 | static inline void |
| 1215 | tcp_sbrcv_tstmp_check(struct tcpcb *tp) |
| 1216 | { |
| 1217 | struct socket *so = tp->t_inpcb->inp_socket; |
| 1218 | u_int32_t newsize = 2 * tcp_recvspace; |
| 1219 | struct sockbuf *sbrcv = &so->so_rcv; |
| 1220 | |
| 1221 | if ((tp->t_flags & (TF_REQ_TSTMP | TF_RCVD_TSTMP)) != |
| 1222 | (TF_REQ_TSTMP | TF_RCVD_TSTMP) && |
| 1223 | (sbrcv->sb_flags & SB_AUTOSIZE) != 0) { |
| 1224 | tcp_sbrcv_reserve(tp, sbrcv, newsize, idealsize: 0, rcvbuf_max: newsize); |
| 1225 | } |
| 1226 | } |
| 1227 | |
| 1228 | /* A receiver will evaluate the flow of packets on a connection |
| 1229 | * to see if it can reduce ack traffic. The receiver will start |
| 1230 | * stretching acks if all of the following conditions are met: |
| 1231 | * 1. tcp_delack_enabled is set to 3 |
| 1232 | * 2. If the bytes received in the last 100ms is greater than a threshold |
| 1233 | * defined by maxseg_unacked |
| 1234 | * 3. If the connection has not been idle for tcp_maxrcvidle period. |
| 1235 | * 4. If the connection has seen enough packets to let the slow-start |
| 1236 | * finish after connection establishment or after some packet loss. |
| 1237 | * |
| 1238 | * The receiver will stop stretching acks if there is congestion/reordering |
| 1239 | * as indicated by packets on reassembly queue or an ECN. If the delayed-ack |
| 1240 | * timer fires while stretching acks, it means that the packet flow has gone |
| 1241 | * below the threshold defined by maxseg_unacked and the receiver will stop |
| 1242 | * stretching acks. The receiver gets no indication when slow-start is completed |
| 1243 | * or when the connection reaches an idle state. That is why we use |
| 1244 | * tcp_rcvsspktcnt to cover slow-start and tcp_maxrcvidle to identify idle |
| 1245 | * state. |
| 1246 | */ |
| 1247 | static inline int |
| 1248 | tcp_stretch_ack_enable(struct tcpcb *tp, int thflags) |
| 1249 | { |
| 1250 | if (tp->rcv_by_unackwin >= (maxseg_unacked * tp->t_maxseg) && |
| 1251 | TSTMP_GEQ(tp->rcv_unackwin, tcp_now)) { |
| 1252 | tp->t_flags |= TF_STREAMING_ON; |
| 1253 | } else { |
| 1254 | tp->t_flags &= ~TF_STREAMING_ON; |
| 1255 | } |
| 1256 | |
| 1257 | /* If there has been an idle time, reset streaming detection */ |
| 1258 | if (TSTMP_GT(tcp_now, tp->rcv_unackwin + tcp_maxrcvidle)) { |
| 1259 | tp->t_flags &= ~TF_STREAMING_ON; |
| 1260 | } |
| 1261 | |
| 1262 | /* |
| 1263 | * If there are flags other than TH_ACK set, reset streaming |
| 1264 | * detection |
| 1265 | */ |
| 1266 | if (thflags & ~TH_ACK) { |
| 1267 | tp->t_flags &= ~TF_STREAMING_ON; |
| 1268 | } |
| 1269 | |
| 1270 | if (tp->t_flagsext & TF_DISABLE_STRETCHACK) { |
| 1271 | if (tp->rcv_nostrack_pkts >= TCP_STRETCHACK_ENABLE_PKTCNT) { |
| 1272 | tp->t_flagsext &= ~TF_DISABLE_STRETCHACK; |
| 1273 | tp->rcv_nostrack_pkts = 0; |
| 1274 | tp->rcv_nostrack_ts = 0; |
| 1275 | } else { |
| 1276 | tp->rcv_nostrack_pkts++; |
| 1277 | } |
| 1278 | } |
| 1279 | |
| 1280 | if (!(tp->t_flagsext & (TF_NOSTRETCHACK | TF_DISABLE_STRETCHACK)) && |
| 1281 | (tp->t_flags & TF_STREAMING_ON) && |
| 1282 | (!(tp->t_flagsext & TF_RCVUNACK_WAITSS) || |
| 1283 | (tp->rcv_waitforss >= tcp_rcvsspktcnt))) { |
| 1284 | return 1; |
| 1285 | } |
| 1286 | |
| 1287 | return 0; |
| 1288 | } |
| 1289 | |
| 1290 | /* |
| 1291 | * Reset the state related to stretch-ack algorithm. This will make |
| 1292 | * the receiver generate an ack every other packet. The receiver |
| 1293 | * will start re-evaluating the rate at which packets come to decide |
| 1294 | * if it can benefit by lowering the ack traffic. |
| 1295 | */ |
| 1296 | void |
| 1297 | tcp_reset_stretch_ack(struct tcpcb *tp) |
| 1298 | { |
| 1299 | tp->t_flags &= ~(TF_STRETCHACK | TF_STREAMING_ON); |
| 1300 | tp->rcv_by_unackwin = 0; |
| 1301 | tp->rcv_by_unackhalfwin = 0; |
| 1302 | tp->rcv_unackwin = tcp_now + tcp_rcvunackwin; |
| 1303 | |
| 1304 | /* |
| 1305 | * When there is packet loss or packet re-ordering or CWR due to |
| 1306 | * ECN, the sender's congestion window is reduced. In these states, |
| 1307 | * generate an ack for every other packet for some time to allow |
| 1308 | * the sender's congestion window to grow. |
| 1309 | */ |
| 1310 | tp->t_flagsext |= TF_RCVUNACK_WAITSS; |
| 1311 | tp->rcv_waitforss = 0; |
| 1312 | } |
| 1313 | |
| 1314 | /* |
| 1315 | * The last packet was a retransmission, check if this ack |
| 1316 | * indicates that the retransmission was spurious. |
| 1317 | * |
| 1318 | * If the connection supports timestamps, we could use it to |
| 1319 | * detect if the last retransmit was not needed. Otherwise, |
| 1320 | * we check if the ACK arrived within RTT/2 window, then it |
| 1321 | * was a mistake to do the retransmit in the first place. |
| 1322 | * |
| 1323 | * This function will return 1 if it is a spurious retransmit, |
| 1324 | * 0 otherwise. |
| 1325 | */ |
| 1326 | int |
| 1327 | tcp_detect_bad_rexmt(struct tcpcb *tp, struct tcphdr *th, |
| 1328 | struct tcpopt *to, u_int32_t rxtime) |
| 1329 | { |
| 1330 | int32_t tdiff, bad_rexmt_win; |
| 1331 | bad_rexmt_win = (tp->t_srtt >> (TCP_RTT_SHIFT + 1)); |
| 1332 | |
| 1333 | /* If the ack has ECN CE bit, then cwnd has to be adjusted */ |
| 1334 | if ((TCP_ACC_ECN_ON(tp) && tp->t_delta_ce_packets > 0) || |
| 1335 | (TCP_ECN_ENABLED(tp) && (th->th_flags & TH_ECE))) { |
| 1336 | return 0; |
| 1337 | } |
| 1338 | if (TSTMP_SUPPORTED(tp)) { |
| 1339 | if (rxtime > 0 && (to->to_flags & TOF_TS) && to->to_tsecr != 0 && |
| 1340 | TSTMP_LT(to->to_tsecr, rxtime)) { |
| 1341 | return 1; |
| 1342 | } |
| 1343 | } else { |
| 1344 | if ((tp->t_rxtshift == 1 || (tp->t_flagsext & TF_SENT_TLPROBE)) && |
| 1345 | rxtime > 0) { |
| 1346 | tdiff = (int32_t)(tcp_now - rxtime); |
| 1347 | if (tdiff < bad_rexmt_win) { |
| 1348 | return 1; |
| 1349 | } |
| 1350 | } |
| 1351 | } |
| 1352 | return 0; |
| 1353 | } |
| 1354 | |
| 1355 | |
| 1356 | /* |
| 1357 | * Restore congestion window state if a spurious timeout |
| 1358 | * was detected. |
| 1359 | */ |
| 1360 | static void |
| 1361 | tcp_bad_rexmt_restore_state(struct tcpcb *tp, struct tcphdr *th) |
| 1362 | { |
| 1363 | if (TSTMP_SUPPORTED(tp)) { |
| 1364 | u_int32_t fsize, acked; |
| 1365 | fsize = tp->snd_max - th->th_ack; |
| 1366 | acked = BYTES_ACKED(th, tp); |
| 1367 | |
| 1368 | /* |
| 1369 | * Implement bad retransmit recovery as |
| 1370 | * described in RFC 4015. |
| 1371 | */ |
| 1372 | tp->snd_ssthresh = tp->snd_ssthresh_prev; |
| 1373 | |
| 1374 | /* Initialize cwnd to the initial window */ |
| 1375 | if (CC_ALGO(tp)->cwnd_init != NULL) { |
| 1376 | CC_ALGO(tp)->cwnd_init(tp); |
| 1377 | } |
| 1378 | |
| 1379 | tp->snd_cwnd = fsize + min(a: acked, b: tp->snd_cwnd); |
| 1380 | } else { |
| 1381 | tp->snd_cwnd = tp->snd_cwnd_prev; |
| 1382 | tp->snd_ssthresh = tp->snd_ssthresh_prev; |
| 1383 | if (tp->t_flags & TF_WASFRECOVERY) { |
| 1384 | ENTER_FASTRECOVERY(tp); |
| 1385 | } |
| 1386 | |
| 1387 | /* Do not use the loss flight size in this case */ |
| 1388 | tp->t_lossflightsize = 0; |
| 1389 | } |
| 1390 | tp->snd_cwnd = max(a: tp->snd_cwnd, b: tcp_initial_cwnd(tp)); |
| 1391 | tp->snd_recover = tp->snd_recover_prev; |
| 1392 | tp->snd_nxt = tp->snd_max; |
| 1393 | |
| 1394 | /* Fix send socket buffer to reflect the change in cwnd */ |
| 1395 | tcp_bad_rexmt_fix_sndbuf(tp); |
| 1396 | |
| 1397 | /* |
| 1398 | * This RTT might reflect the extra delay induced |
| 1399 | * by the network. Skip using this sample for RTO |
| 1400 | * calculation and mark the connection so we can |
| 1401 | * recompute RTT when the next eligible sample is |
| 1402 | * found. |
| 1403 | */ |
| 1404 | tp->t_flagsext |= TF_RECOMPUTE_RTT; |
| 1405 | tp->t_badrexmt_time = tcp_now; |
| 1406 | tp->t_rtttime = 0; |
| 1407 | } |
| 1408 | |
| 1409 | /* |
| 1410 | * If the previous packet was sent in retransmission timer, and it was |
| 1411 | * not needed, then restore the congestion window to the state before that |
| 1412 | * transmission. |
| 1413 | * |
| 1414 | * If the last packet was sent in tail loss probe timeout, check if that |
| 1415 | * recovered the last packet. If so, that will indicate a real loss and |
| 1416 | * the congestion window needs to be lowered. |
| 1417 | */ |
| 1418 | static void |
| 1419 | tcp_bad_rexmt_check(struct tcpcb *tp, struct tcphdr *th, struct tcpopt *to) |
| 1420 | { |
| 1421 | if (tp->t_rxtshift > 0 && |
| 1422 | tcp_detect_bad_rexmt(tp, th, to, rxtime: tp->t_rxtstart)) { |
| 1423 | ++tcpstat.tcps_sndrexmitbad; |
| 1424 | tcp_bad_rexmt_restore_state(tp, th); |
| 1425 | tcp_ccdbg_trace(tp, th, event: TCP_CC_BAD_REXMT_RECOVERY); |
| 1426 | } else if ((tp->t_flagsext & TF_SENT_TLPROBE) && tp->t_tlphighrxt > 0 && |
| 1427 | SEQ_GEQ(th->th_ack, tp->t_tlphighrxt) && |
| 1428 | !tcp_detect_bad_rexmt(tp, th, to, rxtime: tp->t_tlpstart)) { |
| 1429 | /* |
| 1430 | * The tail loss probe recovered the last packet and |
| 1431 | * we need to adjust the congestion window to take |
| 1432 | * this loss into account. |
| 1433 | */ |
| 1434 | ++tcpstat.tcps_tlp_recoverlastpkt; |
| 1435 | if (!IN_FASTRECOVERY(tp)) { |
| 1436 | tcp_reduce_congestion_window(tp); |
| 1437 | EXIT_FASTRECOVERY(tp); |
| 1438 | } |
| 1439 | tcp_ccdbg_trace(tp, th, event: TCP_CC_TLP_RECOVER_LASTPACKET); |
| 1440 | } else if (tcp_rxtseg_detect_bad_rexmt(tp, th->th_ack)) { |
| 1441 | /* |
| 1442 | * All of the retransmitted segments were duplicated, this |
| 1443 | * can be an indication of bad fast retransmit. |
| 1444 | */ |
| 1445 | tcpstat.tcps_dsack_badrexmt++; |
| 1446 | tcp_bad_rexmt_restore_state(tp, th); |
| 1447 | tcp_ccdbg_trace(tp, th, event: TCP_CC_DSACK_BAD_REXMT); |
| 1448 | tcp_rxtseg_clean(tp); |
| 1449 | } |
| 1450 | tp->t_flagsext &= ~(TF_SENT_TLPROBE); |
| 1451 | tp->t_tlphighrxt = 0; |
| 1452 | tp->t_tlpstart = 0; |
| 1453 | |
| 1454 | /* |
| 1455 | * check if the latest ack was for a segment sent during PMTU |
| 1456 | * blackhole detection. If the timestamp on the ack is before |
| 1457 | * PMTU blackhole detection, then revert the size of the max |
| 1458 | * segment to previous size. |
| 1459 | */ |
| 1460 | if (tp->t_rxtshift > 0 && (tp->t_flags & TF_BLACKHOLE) && |
| 1461 | tp->t_pmtud_start_ts > 0 && TSTMP_SUPPORTED(tp)) { |
| 1462 | if ((to->to_flags & TOF_TS) && to->to_tsecr != 0 |
| 1463 | && TSTMP_LT(to->to_tsecr, tp->t_pmtud_start_ts)) { |
| 1464 | tcp_pmtud_revert_segment_size(tp); |
| 1465 | } |
| 1466 | } |
| 1467 | if (tp->t_pmtud_start_ts > 0) { |
| 1468 | tp->t_pmtud_start_ts = 0; |
| 1469 | } |
| 1470 | |
| 1471 | tp->t_pmtud_lastseg_size = 0; |
| 1472 | } |
| 1473 | |
| 1474 | /* |
| 1475 | * Check if early retransmit can be attempted according to RFC 5827. |
| 1476 | * |
| 1477 | * If packet reordering is detected on a connection, fast recovery will |
| 1478 | * be delayed until it is clear that the packet was lost and not reordered. |
| 1479 | * But reordering detection is done only when SACK is enabled. |
| 1480 | * |
| 1481 | * On connections that do not support SACK, there is a limit on the number |
| 1482 | * of early retransmits that can be done per minute. This limit is needed |
| 1483 | * to make sure that too many packets are not retransmitted when there is |
| 1484 | * packet reordering. |
| 1485 | */ |
| 1486 | static void |
| 1487 | tcp_early_rexmt_check(struct tcpcb *tp, struct tcphdr *th) |
| 1488 | { |
| 1489 | u_int32_t obytes, snd_off; |
| 1490 | int32_t snd_len; |
| 1491 | struct socket *so = tp->t_inpcb->inp_socket; |
| 1492 | |
| 1493 | if ((SACK_ENABLED(tp) || tp->t_early_rexmt_count < TCP_EARLY_REXMT_LIMIT) && |
| 1494 | SEQ_GT(tp->snd_max, tp->snd_una) && |
| 1495 | (tp->t_dupacks == 1 || (SACK_ENABLED(tp) && !TAILQ_EMPTY(&tp->snd_holes)))) { |
| 1496 | /* |
| 1497 | * If there are only a few outstanding |
| 1498 | * segments on the connection, we might need |
| 1499 | * to lower the retransmit threshold. This |
| 1500 | * will allow us to do Early Retransmit as |
| 1501 | * described in RFC 5827. |
| 1502 | */ |
| 1503 | if (SACK_ENABLED(tp) && |
| 1504 | !TAILQ_EMPTY(&tp->snd_holes)) { |
| 1505 | obytes = (tp->snd_max - tp->snd_fack) + |
| 1506 | tp->sackhint.sack_bytes_rexmit; |
| 1507 | } else { |
| 1508 | obytes = (tp->snd_max - tp->snd_una); |
| 1509 | } |
| 1510 | |
| 1511 | /* |
| 1512 | * In order to lower retransmit threshold the |
| 1513 | * following two conditions must be met. |
| 1514 | * 1. the amount of outstanding data is less |
| 1515 | * than 4*SMSS bytes |
| 1516 | * 2. there is no unsent data ready for |
| 1517 | * transmission or the advertised window |
| 1518 | * will limit sending new segments. |
| 1519 | */ |
| 1520 | snd_off = tp->snd_max - tp->snd_una; |
| 1521 | snd_len = min(a: so->so_snd.sb_cc, b: tp->snd_wnd) - snd_off; |
| 1522 | if (obytes < (tp->t_maxseg << 2) && |
| 1523 | snd_len <= 0) { |
| 1524 | u_int32_t osegs; |
| 1525 | |
| 1526 | osegs = obytes / tp->t_maxseg; |
| 1527 | if ((osegs * tp->t_maxseg) < obytes) { |
| 1528 | osegs++; |
| 1529 | } |
| 1530 | |
| 1531 | /* |
| 1532 | * Since the connection might have already |
| 1533 | * received some dupacks, we add them to |
| 1534 | * to the outstanding segments count to get |
| 1535 | * the correct retransmit threshold. |
| 1536 | * |
| 1537 | * By checking for early retransmit after |
| 1538 | * receiving some duplicate acks when SACK |
| 1539 | * is supported, the connection will |
| 1540 | * enter fast recovery even if multiple |
| 1541 | * segments are lost in the same window. |
| 1542 | */ |
| 1543 | osegs += tp->t_dupacks; |
| 1544 | if (osegs < 4) { |
| 1545 | tp->t_rexmtthresh = |
| 1546 | ((osegs - 1) > 1) ? ((uint8_t)osegs - 1) : 1; |
| 1547 | tp->t_rexmtthresh = |
| 1548 | MIN(tp->t_rexmtthresh, tcprexmtthresh); |
| 1549 | tp->t_rexmtthresh = |
| 1550 | MAX(tp->t_rexmtthresh, |
| 1551 | tp->t_dupacks > UINT8_MAX ? UINT8_MAX : (uint8_t)tp->t_dupacks); |
| 1552 | |
| 1553 | if (tp->t_early_rexmt_count == 0) { |
| 1554 | tp->t_early_rexmt_win = tcp_now; |
| 1555 | } |
| 1556 | |
| 1557 | if (tp->t_flagsext & TF_SENT_TLPROBE) { |
| 1558 | tcpstat.tcps_tlp_recovery++; |
| 1559 | tcp_ccdbg_trace(tp, th, |
| 1560 | event: TCP_CC_TLP_RECOVERY); |
| 1561 | } else { |
| 1562 | tcpstat.tcps_early_rexmt++; |
| 1563 | tp->t_early_rexmt_count++; |
| 1564 | tcp_ccdbg_trace(tp, th, |
| 1565 | event: TCP_CC_EARLY_RETRANSMIT); |
| 1566 | } |
| 1567 | } |
| 1568 | } |
| 1569 | } |
| 1570 | |
| 1571 | /* |
| 1572 | * If we ever sent a TLP probe, the acknowledgement will trigger |
| 1573 | * early retransmit because the value of snd_fack will be close |
| 1574 | * to snd_max. This will take care of adjustments to the |
| 1575 | * congestion window. So we can reset TF_SENT_PROBE flag. |
| 1576 | */ |
| 1577 | tp->t_flagsext &= ~(TF_SENT_TLPROBE); |
| 1578 | tp->t_tlphighrxt = 0; |
| 1579 | tp->t_tlpstart = 0; |
| 1580 | } |
| 1581 | |
| 1582 | static boolean_t |
| 1583 | tcp_tfo_syn(struct tcpcb *tp, struct tcpopt *to) |
| 1584 | { |
| 1585 | u_char out[CCAES_BLOCK_SIZE]; |
| 1586 | unsigned char len; |
| 1587 | |
| 1588 | if (!(to->to_flags & (TOF_TFO | TOF_TFOREQ)) || |
| 1589 | !(tcp_fastopen & TCP_FASTOPEN_SERVER)) { |
| 1590 | return FALSE; |
| 1591 | } |
| 1592 | |
| 1593 | if ((to->to_flags & TOF_TFOREQ)) { |
| 1594 | tp->t_tfo_flags |= TFO_F_OFFER_COOKIE; |
| 1595 | |
| 1596 | tp->t_tfo_stats |= TFO_S_COOKIEREQ_RECV; |
| 1597 | tcpstat.tcps_tfo_cookie_req_rcv++; |
| 1598 | return FALSE; |
| 1599 | } |
| 1600 | |
| 1601 | /* Ok, then it must be an offered cookie. We need to check that ... */ |
| 1602 | tcp_tfo_gen_cookie(inp: tp->t_inpcb, out, blk_size: sizeof(out)); |
| 1603 | |
| 1604 | len = *to->to_tfo - TCPOLEN_FASTOPEN_REQ; |
| 1605 | to->to_tfo++; |
| 1606 | if (memcmp(s1: out, s2: to->to_tfo, n: len)) { |
| 1607 | /* Cookies are different! Let's return and offer a new cookie */ |
| 1608 | tp->t_tfo_flags |= TFO_F_OFFER_COOKIE; |
| 1609 | |
| 1610 | tp->t_tfo_stats |= TFO_S_COOKIE_INVALID; |
| 1611 | tcpstat.tcps_tfo_cookie_invalid++; |
| 1612 | return FALSE; |
| 1613 | } |
| 1614 | |
| 1615 | if (OSIncrementAtomic(&tcp_tfo_halfcnt) >= tcp_tfo_backlog) { |
| 1616 | /* Need to decrement again as we just increased it... */ |
| 1617 | OSDecrementAtomic(&tcp_tfo_halfcnt); |
| 1618 | return FALSE; |
| 1619 | } |
| 1620 | |
| 1621 | tp->t_tfo_flags |= TFO_F_COOKIE_VALID; |
| 1622 | |
| 1623 | tp->t_tfo_stats |= TFO_S_SYNDATA_RCV; |
| 1624 | tcpstat.tcps_tfo_syn_data_rcv++; |
| 1625 | |
| 1626 | return TRUE; |
| 1627 | } |
| 1628 | |
| 1629 | static void |
| 1630 | tcp_tfo_synack(struct tcpcb *tp, struct tcpopt *to) |
| 1631 | { |
| 1632 | if (to->to_flags & TOF_TFO) { |
| 1633 | unsigned char len = *to->to_tfo - TCPOLEN_FASTOPEN_REQ; |
| 1634 | |
| 1635 | /* |
| 1636 | * If this happens, things have gone terribly wrong. len should |
| 1637 | * have been checked in tcp_dooptions. |
| 1638 | */ |
| 1639 | VERIFY(len <= TFO_COOKIE_LEN_MAX); |
| 1640 | |
| 1641 | to->to_tfo++; |
| 1642 | |
| 1643 | tcp_cache_set_cookie(tp, cookie: to->to_tfo, len); |
| 1644 | tcp_heuristic_tfo_success(tp); |
| 1645 | |
| 1646 | tp->t_tfo_stats |= TFO_S_COOKIE_RCV; |
| 1647 | tcpstat.tcps_tfo_cookie_rcv++; |
| 1648 | if (tp->t_tfo_flags & TFO_F_COOKIE_SENT) { |
| 1649 | tcpstat.tcps_tfo_cookie_wrong++; |
| 1650 | tp->t_tfo_stats |= TFO_S_COOKIE_WRONG; |
| 1651 | } |
| 1652 | } else { |
| 1653 | /* |
| 1654 | * Thus, no cookie in the response, but we either asked for one |
| 1655 | * or sent SYN+DATA. Now, we need to check whether we had to |
| 1656 | * rexmit the SYN. If that's the case, it's better to start |
| 1657 | * backing of TFO-cookie requests. |
| 1658 | */ |
| 1659 | if (!(tp->t_flagsext & TF_FASTOPEN_FORCE_ENABLE) && |
| 1660 | tp->t_tfo_flags & TFO_F_SYN_LOSS) { |
| 1661 | tp->t_tfo_stats |= TFO_S_SYN_LOSS; |
| 1662 | tcpstat.tcps_tfo_syn_loss++; |
| 1663 | |
| 1664 | tcp_heuristic_tfo_loss(tp); |
| 1665 | } else { |
| 1666 | if (tp->t_tfo_flags & TFO_F_COOKIE_REQ) { |
| 1667 | tp->t_tfo_stats |= TFO_S_NO_COOKIE_RCV; |
| 1668 | tcpstat.tcps_tfo_no_cookie_rcv++; |
| 1669 | } |
| 1670 | |
| 1671 | tcp_heuristic_tfo_success(tp); |
| 1672 | } |
| 1673 | } |
| 1674 | } |
| 1675 | |
| 1676 | static void |
| 1677 | tcp_tfo_rcv_probe(struct tcpcb *tp, int tlen) |
| 1678 | { |
| 1679 | if (tlen != 0) { |
| 1680 | return; |
| 1681 | } |
| 1682 | |
| 1683 | tp->t_tfo_probe_state = TFO_PROBE_PROBING; |
| 1684 | |
| 1685 | /* |
| 1686 | * We send the probe out rather quickly (after one RTO). It does not |
| 1687 | * really hurt that much, it's only one additional segment on the wire. |
| 1688 | */ |
| 1689 | tp->t_timer[TCPT_KEEP] = OFFSET_FROM_START(tp, (TCP_REXMTVAL(tp))); |
| 1690 | } |
| 1691 | |
| 1692 | static void |
| 1693 | tcp_tfo_rcv_data(struct tcpcb *tp) |
| 1694 | { |
| 1695 | /* Transition from PROBING to NONE as data has been received */ |
| 1696 | if (tp->t_tfo_probe_state >= TFO_PROBE_PROBING) { |
| 1697 | tp->t_tfo_probe_state = TFO_PROBE_NONE; |
| 1698 | } |
| 1699 | } |
| 1700 | |
| 1701 | static void |
| 1702 | tcp_tfo_rcv_ack(struct tcpcb *tp, struct tcphdr *th) |
| 1703 | { |
| 1704 | if (tp->t_tfo_probe_state == TFO_PROBE_PROBING && |
| 1705 | tp->t_tfo_probes > 0) { |
| 1706 | if (th->th_seq == tp->rcv_nxt) { |
| 1707 | /* No hole, so stop probing */ |
| 1708 | tp->t_tfo_probe_state = TFO_PROBE_NONE; |
| 1709 | } else if (SEQ_GT(th->th_seq, tp->rcv_nxt)) { |
| 1710 | /* There is a hole! Wait a bit for data... */ |
| 1711 | tp->t_tfo_probe_state = TFO_PROBE_WAIT_DATA; |
| 1712 | tp->t_timer[TCPT_KEEP] = OFFSET_FROM_START(tp, |
| 1713 | TCP_REXMTVAL(tp)); |
| 1714 | } |
| 1715 | } |
| 1716 | } |
| 1717 | |
| 1718 | /* |
| 1719 | * Update snd_wnd information. |
| 1720 | */ |
| 1721 | static inline bool |
| 1722 | tcp_update_window(struct tcpcb *tp, int thflags, struct tcphdr * th, |
| 1723 | u_int32_t tiwin, int tlen) |
| 1724 | { |
| 1725 | /* Don't look at the window if there is no ACK flag */ |
| 1726 | if ((thflags & TH_ACK) && |
| 1727 | (SEQ_LT(tp->snd_wl1, th->th_seq) || |
| 1728 | (tp->snd_wl1 == th->th_seq && (SEQ_LT(tp->snd_wl2, th->th_ack) || |
| 1729 | (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))))) { |
| 1730 | /* keep track of pure window updates */ |
| 1731 | if (tlen == 0 && |
| 1732 | tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd) { |
| 1733 | tcpstat.tcps_rcvwinupd++; |
| 1734 | } |
| 1735 | tp->snd_wnd = tiwin; |
| 1736 | tp->snd_wl1 = th->th_seq; |
| 1737 | tp->snd_wl2 = th->th_ack; |
| 1738 | if (tp->snd_wnd > tp->max_sndwnd) { |
| 1739 | tp->max_sndwnd = tp->snd_wnd; |
| 1740 | } |
| 1741 | |
| 1742 | if (tp->t_inpcb->inp_socket->so_flags & SOF_MP_SUBFLOW) { |
| 1743 | mptcp_update_window_wakeup(tp); |
| 1744 | } |
| 1745 | return true; |
| 1746 | } |
| 1747 | return false; |
| 1748 | } |
| 1749 | |
| 1750 | static void |
| 1751 | tcp_handle_wakeup(struct socket *so, int read_wakeup, int write_wakeup) |
| 1752 | { |
| 1753 | if (read_wakeup != 0) { |
| 1754 | sorwakeup(so); |
| 1755 | } |
| 1756 | if (write_wakeup != 0) { |
| 1757 | sowwakeup(so); |
| 1758 | } |
| 1759 | } |
| 1760 | |
| 1761 | static void |
| 1762 | tcp_update_snd_una(struct tcpcb *tp, uint32_t ack) |
| 1763 | { |
| 1764 | tp->snd_una = ack; |
| 1765 | if (SACK_ENABLED(tp) && SEQ_LT(tp->send_highest_sack, tp->snd_una)) { |
| 1766 | tp->send_highest_sack = tp->snd_una; |
| 1767 | |
| 1768 | /* If we move our marker, we need to start fresh */ |
| 1769 | tp->t_new_dupacks = 0; |
| 1770 | } |
| 1771 | } |
| 1772 | |
| 1773 | static bool |
| 1774 | tcp_syn_data_valid(struct tcpcb *tp, struct tcphdr *tcp_hdr, int tlen) |
| 1775 | { |
| 1776 | /* No data? */ |
| 1777 | if (tlen <= 0) { |
| 1778 | return false; |
| 1779 | } |
| 1780 | |
| 1781 | /* Not the right sequence-number? */ |
| 1782 | if (tcp_hdr->th_seq != tp->irs) { |
| 1783 | return false; |
| 1784 | } |
| 1785 | |
| 1786 | /* We could have wrapped around, check that */ |
| 1787 | if (tp->t_inpcb->inp_stat->rxbytes > INT32_MAX) { |
| 1788 | return false; |
| 1789 | } |
| 1790 | |
| 1791 | return true; |
| 1792 | } |
| 1793 | |
| 1794 | /* Process IP-ECN codepoints on received packets and update receive side counters */ |
| 1795 | static void |
| 1796 | tcp_input_ip_ecn(struct tcpcb *tp, struct inpcb *inp, uint32_t tlen, uint32_t segment_count, uint8_t ip_ecn) |
| 1797 | { |
| 1798 | switch (ip_ecn) { |
| 1799 | case IPTOS_ECN_ECT1: |
| 1800 | tp->ecn_flags |= TE_ACO_ECT1; |
| 1801 | tp->t_rcv_ect1_bytes += tlen; |
| 1802 | break; |
| 1803 | case IPTOS_ECN_ECT0: |
| 1804 | tp->ecn_flags |= TE_ACO_ECT0; |
| 1805 | tp->t_rcv_ect0_bytes += tlen; |
| 1806 | break; |
| 1807 | case IPTOS_ECN_CE: |
| 1808 | tp->t_rcv_ce_packets += segment_count; |
| 1809 | tp->t_rcv_ce_bytes += tlen; |
| 1810 | tp->t_ecn_recv_ce++; |
| 1811 | tcpstat.tcps_ecn_recv_ce++; |
| 1812 | INP_INC_IFNET_STAT(inp, ecn_recv_ce); |
| 1813 | break; |
| 1814 | default: |
| 1815 | /* No counter for Not-ECT */ |
| 1816 | break; |
| 1817 | } |
| 1818 | } |
| 1819 | |
| 1820 | /* Process SYN packet that wishes to negotiate Accurate ECN */ |
| 1821 | static void |
| 1822 | tcp_input_process_accecn_syn(struct tcpcb *tp, int ace_flags, uint8_t ip_ecn) |
| 1823 | { |
| 1824 | switch (ace_flags) { |
| 1825 | case (0 | 0 | 0): |
| 1826 | /* No ECN */ |
| 1827 | tp->t_server_accecn_state = tcp_connection_server_no_ecn_requested; |
| 1828 | break; |
| 1829 | case (0 | TH_CWR | TH_ECE): |
| 1830 | /* Legacy ECN-setup */ |
| 1831 | tp->ecn_flags |= (TE_SETUPRECEIVED | TE_SENDIPECT); |
| 1832 | tp->t_server_accecn_state = tcp_connection_server_classic_ecn_requested; |
| 1833 | break; |
| 1834 | case (TH_ACE): |
| 1835 | /* Accurate ECN */ |
| 1836 | if (TCP_ACC_ECN_ENABLED(tp)) { |
| 1837 | switch (ip_ecn) { |
| 1838 | case IPTOS_ECN_NOTECT: |
| 1839 | tp->ecn_flags |= TE_ACE_SETUP_NON_ECT; |
| 1840 | break; |
| 1841 | case IPTOS_ECN_ECT1: |
| 1842 | tp->ecn_flags |= TE_ACE_SETUP_ECT1; |
| 1843 | break; |
| 1844 | case IPTOS_ECN_ECT0: |
| 1845 | tp->ecn_flags |= TE_ACE_SETUP_ECT0; |
| 1846 | break; |
| 1847 | case IPTOS_ECN_CE: |
| 1848 | tp->ecn_flags |= TE_ACE_SETUP_CE; |
| 1849 | break; |
| 1850 | } |
| 1851 | /* |
| 1852 | * We are not yet committing to send IP ECT packets when |
| 1853 | * Accurate ECN is enabled |
| 1854 | */ |
| 1855 | tp->ecn_flags |= (TE_ACE_SETUPRECEIVED); |
| 1856 | |
| 1857 | /* Initialize ECT byte counter to 1 to distinguish zeroing of options */ |
| 1858 | tp->t_rcv_ect1_bytes = tp->t_rcv_ect0_bytes = 1; |
| 1859 | tp->t_snd_ect1_bytes = tp->t_snd_ect0_bytes = 1; |
| 1860 | tp->t_server_accecn_state = tcp_connection_server_accurate_ecn_requested; |
| 1861 | } else { |
| 1862 | /* |
| 1863 | * If AccECN is not enabled, ignore |
| 1864 | * the TH_AE bit and do Legacy ECN-setup |
| 1865 | */ |
| 1866 | tp->ecn_flags |= (TE_SETUPRECEIVED | TE_SENDIPECT); |
| 1867 | } |
| 1868 | default: |
| 1869 | /* Forward Compatibility */ |
| 1870 | /* Accurate ECN */ |
| 1871 | if (TCP_ACC_ECN_ENABLED(tp)) { |
| 1872 | switch (ip_ecn) { |
| 1873 | case IPTOS_ECN_NOTECT: |
| 1874 | tp->ecn_flags |= TE_ACE_SETUP_NON_ECT; |
| 1875 | break; |
| 1876 | case IPTOS_ECN_ECT1: |
| 1877 | tp->ecn_flags |= TE_ACE_SETUP_ECT1; |
| 1878 | break; |
| 1879 | case IPTOS_ECN_ECT0: |
| 1880 | tp->ecn_flags |= TE_ACE_SETUP_ECT0; |
| 1881 | break; |
| 1882 | case IPTOS_ECN_CE: |
| 1883 | tp->ecn_flags |= TE_ACE_SETUP_CE; |
| 1884 | break; |
| 1885 | } |
| 1886 | /* |
| 1887 | * We are not yet committing to send IP ECT packets when |
| 1888 | * Accurate ECN is enabled |
| 1889 | */ |
| 1890 | tp->ecn_flags |= (TE_ACE_SETUPRECEIVED); |
| 1891 | |
| 1892 | /* Initialize ECT byte counter to 1 to distinguish zeroing of options */ |
| 1893 | tp->t_rcv_ect1_bytes = tp->t_rcv_ect0_bytes = 1; |
| 1894 | tp->t_snd_ect1_bytes = tp->t_snd_ect0_bytes = 1; |
| 1895 | tp->t_server_accecn_state = tcp_connection_server_accurate_ecn_requested; |
| 1896 | } |
| 1897 | break; |
| 1898 | } |
| 1899 | } |
| 1900 | |
| 1901 | void |
| 1902 | tcp_input(struct mbuf *m, int off0) |
| 1903 | { |
| 1904 | int exiting_fr = 0; |
| 1905 | struct tcphdr *th; |
| 1906 | struct ip *ip = NULL; |
| 1907 | struct inpcb *inp; |
| 1908 | u_char *optp = NULL; |
| 1909 | int optlen = 0; |
| 1910 | int tlen, off; |
| 1911 | int drop_hdrlen; |
| 1912 | struct tcpcb *tp = 0; |
| 1913 | int thflags; |
| 1914 | struct socket *so = 0; |
| 1915 | int todrop, acked, ourfinisacked, needoutput = 0; |
| 1916 | int read_wakeup = 0; |
| 1917 | int write_wakeup = 0; |
| 1918 | struct in_addr laddr; |
| 1919 | struct in6_addr laddr6; |
| 1920 | int dropsocket = 0; |
| 1921 | int iss = 0, nosock = 0; |
| 1922 | u_int32_t tiwin, sack_bytes_acked = 0, sack_bytes_newly_acked = 0; |
| 1923 | struct tcpopt to; /* options in this segment */ |
| 1924 | #if TCPDEBUG |
| 1925 | short ostate = 0; |
| 1926 | #endif |
| 1927 | u_char ip_ecn = IPTOS_ECN_NOTECT; |
| 1928 | unsigned int ifscope; |
| 1929 | uint8_t isconnected, isdisconnected; |
| 1930 | struct ifnet *ifp = m->m_pkthdr.rcvif; |
| 1931 | int segment_count = m->m_pkthdr.seg_cnt ? : 1; |
| 1932 | int win; |
| 1933 | u_int16_t pf_tag = 0; |
| 1934 | #if MPTCP |
| 1935 | struct mptcb *mp_tp = NULL; |
| 1936 | #endif /* MPTCP */ |
| 1937 | boolean_t cell = IFNET_IS_CELLULAR(ifp); |
| 1938 | boolean_t wifi = (!cell && IFNET_IS_WIFI(ifp)); |
| 1939 | boolean_t wired = (!wifi && IFNET_IS_WIRED(ifp)); |
| 1940 | boolean_t recvd_dsack = FALSE; |
| 1941 | struct tcp_respond_args tra; |
| 1942 | int prev_t_state; |
| 1943 | boolean_t check_cfil = cfil_filter_present(); |
| 1944 | bool findpcb_iterated = false; |
| 1945 | /* |
| 1946 | * The mbuf may be freed after it has been added to the receive socket |
| 1947 | * buffer or the reassembly queue, so we reinitialize th to point to a |
| 1948 | * safe copy of the TCP header |
| 1949 | */ |
| 1950 | struct tcphdr saved_tcphdr = {}; |
| 1951 | /* |
| 1952 | * Save copy of the IPv4/IPv6 header. |
| 1953 | * Note: use array of uint32_t to silence compiler warning when casting |
| 1954 | * to a struct ip6_hdr pointer. |
| 1955 | */ |
| 1956 | #define MAX_IPWORDS ((sizeof(struct ip) + MAX_IPOPTLEN) / sizeof(uint32_t)) |
| 1957 | uint32_t saved_hdr[MAX_IPWORDS]; |
| 1958 | |
| 1959 | #define TCP_INC_VAR(stat, npkts) do { \ |
| 1960 | stat += npkts; \ |
| 1961 | } while (0) |
| 1962 | |
| 1963 | if (tcp_ack_strategy == TCP_ACK_STRATEGY_LEGACY) { |
| 1964 | segment_count = 1; |
| 1965 | } |
| 1966 | TCP_INC_VAR(tcpstat.tcps_rcvtotal, segment_count); |
| 1967 | |
| 1968 | struct ip6_hdr *ip6 = NULL; |
| 1969 | int isipv6; |
| 1970 | struct proc *kernel_proc = current_proc(); |
| 1971 | |
| 1972 | KERNEL_DEBUG(DBG_FNC_TCP_INPUT | DBG_FUNC_START, 0, 0, 0, 0, 0); |
| 1973 | |
| 1974 | isipv6 = (mtod(m, struct ip *)->ip_v == 6) ? 1 : 0; |
| 1975 | bzero(s: (char *)&to, n: sizeof(to)); |
| 1976 | |
| 1977 | m_add_crumb(m, PKT_CRUMB_TCP_INPUT); |
| 1978 | |
| 1979 | if (m->m_flags & M_PKTHDR) { |
| 1980 | pf_tag = m_pftag(m)->pftag_tag; |
| 1981 | } |
| 1982 | |
| 1983 | if (isipv6) { |
| 1984 | /* |
| 1985 | * Expect 32-bit aligned data pointer on |
| 1986 | * strict-align platforms |
| 1987 | */ |
| 1988 | MBUF_STRICT_DATA_ALIGNMENT_CHECK_32(m); |
| 1989 | |
| 1990 | /* IP6_EXTHDR_CHECK() is already done at tcp6_input() */ |
| 1991 | ip6 = mtod(m, struct ip6_hdr *); |
| 1992 | tlen = sizeof(*ip6) + ntohs(ip6->ip6_plen) - off0; |
| 1993 | th = (struct tcphdr *)(void *)((caddr_t)ip6 + off0); |
| 1994 | |
| 1995 | if (tcp_input_checksum(AF_INET6, m, th, off0, tlen)) { |
| 1996 | TCP_LOG_DROP_PKT(ip6, th, ifp, "IPv6 bad tcp checksum" ); |
| 1997 | goto dropnosock; |
| 1998 | } |
| 1999 | |
| 2000 | KERNEL_DEBUG(DBG_LAYER_BEG, ((th->th_dport << 16) | th->th_sport), |
| 2001 | (((ip6->ip6_src.s6_addr16[0]) << 16) | (ip6->ip6_dst.s6_addr16[0])), |
| 2002 | th->th_seq, th->th_ack, th->th_win); |
| 2003 | /* |
| 2004 | * Be proactive about unspecified IPv6 address in source. |
| 2005 | * As we use all-zero to indicate unbounded/unconnected pcb, |
| 2006 | * unspecified IPv6 address can be used to confuse us. |
| 2007 | * |
| 2008 | * Note that packets with unspecified IPv6 destination is |
| 2009 | * already dropped in ip6_input. |
| 2010 | */ |
| 2011 | if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) { |
| 2012 | /* XXX stat */ |
| 2013 | IF_TCP_STATINC(ifp, unspecv6); |
| 2014 | TCP_LOG_DROP_PKT(ip6, th, ifp, "src IPv6 address unspecified" ); |
| 2015 | goto dropnosock; |
| 2016 | } |
| 2017 | DTRACE_TCP5(receive, struct mbuf *, m, struct inpcb *, NULL, |
| 2018 | struct ip6_hdr *, ip6, struct tcpcb *, NULL, |
| 2019 | struct tcphdr *, th); |
| 2020 | |
| 2021 | ip_ecn = (ntohl(ip6->ip6_flow) >> 20) & IPTOS_ECN_MASK; |
| 2022 | } else { |
| 2023 | /* |
| 2024 | * Get IP and TCP header together in first mbuf. |
| 2025 | * Note: IP leaves IP header in first mbuf. |
| 2026 | */ |
| 2027 | if (off0 > sizeof(struct ip)) { |
| 2028 | ip_stripoptions(m); |
| 2029 | off0 = sizeof(struct ip); |
| 2030 | } |
| 2031 | if (m->m_len < sizeof(struct tcpiphdr)) { |
| 2032 | if ((m = m_pullup(m, sizeof(struct tcpiphdr))) == 0) { |
| 2033 | tcpstat.tcps_rcvshort++; |
| 2034 | return; |
| 2035 | } |
| 2036 | } |
| 2037 | |
| 2038 | /* Expect 32-bit aligned data pointer on strict-align platforms */ |
| 2039 | MBUF_STRICT_DATA_ALIGNMENT_CHECK_32(m); |
| 2040 | |
| 2041 | ip = mtod(m, struct ip *); |
| 2042 | th = (struct tcphdr *)(void *)((caddr_t)ip + off0); |
| 2043 | tlen = ip->ip_len; |
| 2044 | |
| 2045 | if (tcp_input_checksum(AF_INET, m, th, off0, tlen)) { |
| 2046 | TCP_LOG_DROP_PKT(ip, th, ifp, "IPv4 bad tcp checksum" ); |
| 2047 | goto dropnosock; |
| 2048 | } |
| 2049 | |
| 2050 | /* Re-initialization for later version check */ |
| 2051 | ip->ip_v = IPVERSION; |
| 2052 | ip_ecn = (ip->ip_tos & IPTOS_ECN_MASK); |
| 2053 | |
| 2054 | DTRACE_TCP5(receive, struct mbuf *, m, struct inpcb *, NULL, |
| 2055 | struct ip *, ip, struct tcpcb *, NULL, struct tcphdr *, th); |
| 2056 | |
| 2057 | KERNEL_DEBUG(DBG_LAYER_BEG, ((th->th_dport << 16) | th->th_sport), |
| 2058 | (((ip->ip_src.s_addr & 0xffff) << 16) | (ip->ip_dst.s_addr & 0xffff)), |
| 2059 | th->th_seq, th->th_ack, th->th_win); |
| 2060 | } |
| 2061 | |
| 2062 | #define TCP_LOG_HDR (isipv6 ? (void *)ip6 : (void *)ip) |
| 2063 | |
| 2064 | /* |
| 2065 | * Check that TCP offset makes sense, |
| 2066 | * pull out TCP options and adjust length. |
| 2067 | */ |
| 2068 | off = th->th_off << 2; |
| 2069 | if (off < sizeof(struct tcphdr) || off > tlen) { |
| 2070 | tcpstat.tcps_rcvbadoff++; |
| 2071 | IF_TCP_STATINC(ifp, badformat); |
| 2072 | TCP_LOG_DROP_PKT(TCP_LOG_HDR, th, ifp, "bad tcp offset" ); |
| 2073 | goto dropnosock; |
| 2074 | } |
| 2075 | tlen -= off; /* tlen is used instead of ti->ti_len */ |
| 2076 | if (off > sizeof(struct tcphdr)) { |
| 2077 | if (isipv6) { |
| 2078 | IP6_EXTHDR_CHECK(m, off0, off, return ); |
| 2079 | ip6 = mtod(m, struct ip6_hdr *); |
| 2080 | th = (struct tcphdr *)(void *)((caddr_t)ip6 + off0); |
| 2081 | } else { |
| 2082 | if (m->m_len < sizeof(struct ip) + off) { |
| 2083 | if ((m = m_pullup(m, sizeof(struct ip) + off)) == 0) { |
| 2084 | tcpstat.tcps_rcvshort++; |
| 2085 | return; |
| 2086 | } |
| 2087 | ip = mtod(m, struct ip *); |
| 2088 | th = (struct tcphdr *)(void *)((caddr_t)ip + off0); |
| 2089 | } |
| 2090 | } |
| 2091 | optlen = off - sizeof(struct tcphdr); |
| 2092 | optp = (u_char *)(th + 1); |
| 2093 | /* |
| 2094 | * Do quick retrieval of timestamp options ("options |
| 2095 | * prediction?"). If timestamp is the only option and it's |
| 2096 | * formatted as recommended in RFC 1323 appendix A, we |
| 2097 | * quickly get the values now and not bother calling |
| 2098 | * tcp_dooptions(), etc. |
| 2099 | */ |
| 2100 | if ((optlen == TCPOLEN_TSTAMP_APPA || |
| 2101 | (optlen > TCPOLEN_TSTAMP_APPA && |
| 2102 | optp[TCPOLEN_TSTAMP_APPA] == TCPOPT_EOL)) && |
| 2103 | *(u_int32_t *)(void *)optp == htonl(TCPOPT_TSTAMP_HDR) && |
| 2104 | (th->th_flags & TH_SYN) == 0) { |
| 2105 | to.to_flags |= TOF_TS; |
| 2106 | to.to_tsval = ntohl(*(u_int32_t *)(void *)(optp + 4)); |
| 2107 | to.to_tsecr = ntohl(*(u_int32_t *)(void *)(optp + 8)); |
| 2108 | optp = NULL; /* we've parsed the options */ |
| 2109 | } |
| 2110 | } |
| 2111 | thflags = th->th_flags; |
| 2112 | |
| 2113 | /* |
| 2114 | * Drop all packets with both the SYN and FIN bits set. |
| 2115 | * This prevents e.g. nmap from identifying the TCP/IP stack. |
| 2116 | * |
| 2117 | * This is a violation of the TCP specification. |
| 2118 | */ |
| 2119 | if ((thflags & (TH_SYN | TH_FIN)) == (TH_SYN | TH_FIN)) { |
| 2120 | IF_TCP_STATINC(ifp, synfin); |
| 2121 | TCP_LOG_DROP_PKT(TCP_LOG_HDR, th, ifp, "drop SYN FIN" ); |
| 2122 | goto dropnosock; |
| 2123 | } |
| 2124 | |
| 2125 | /* |
| 2126 | * Delay dropping TCP, IP headers, IPv6 ext headers, and TCP options, |
| 2127 | * until after ip6_savecontrol() is called and before other functions |
| 2128 | * which don't want those proto headers. |
| 2129 | * Because ip6_savecontrol() is going to parse the mbuf to |
| 2130 | * search for data to be passed up to user-land, it wants mbuf |
| 2131 | * parameters to be unchanged. |
| 2132 | */ |
| 2133 | drop_hdrlen = off0 + off; |
| 2134 | |
| 2135 | /* Since this is an entry point for input processing of tcp packets, we |
| 2136 | * can update the tcp clock here. |
| 2137 | */ |
| 2138 | calculate_tcp_clock(); |
| 2139 | |
| 2140 | /* |
| 2141 | * Record the interface where this segment arrived on; this does not |
| 2142 | * affect normal data output (for non-detached TCP) as it provides a |
| 2143 | * hint about which route and interface to use for sending in the |
| 2144 | * absence of a PCB, when scoped routing (and thus source interface |
| 2145 | * selection) are enabled. |
| 2146 | */ |
| 2147 | if ((m->m_pkthdr.pkt_flags & PKTF_LOOP) || m->m_pkthdr.rcvif == NULL) { |
| 2148 | ifscope = IFSCOPE_NONE; |
| 2149 | } else { |
| 2150 | ifscope = m->m_pkthdr.rcvif->if_index; |
| 2151 | } |
| 2152 | |
| 2153 | /* |
| 2154 | * Convert TCP protocol specific fields to host format. |
| 2155 | */ |
| 2156 | |
| 2157 | #if BYTE_ORDER != BIG_ENDIAN |
| 2158 | NTOHL(th->th_seq); |
| 2159 | NTOHL(th->th_ack); |
| 2160 | NTOHS(th->th_win); |
| 2161 | NTOHS(th->th_urp); |
| 2162 | #endif |
| 2163 | |
| 2164 | /* |
| 2165 | * Locate pcb for segment. |
| 2166 | */ |
| 2167 | findpcb: |
| 2168 | |
| 2169 | isconnected = FALSE; |
| 2170 | isdisconnected = FALSE; |
| 2171 | |
| 2172 | if (isipv6) { |
| 2173 | inp = in6_pcblookup_hash(&tcbinfo, &ip6->ip6_src, th->th_sport, ip6_input_getsrcifscope(m), |
| 2174 | &ip6->ip6_dst, th->th_dport, ip6_input_getdstifscope(m), 1, |
| 2175 | m->m_pkthdr.rcvif); |
| 2176 | } else { |
| 2177 | inp = in_pcblookup_hash(&tcbinfo, ip->ip_src, th->th_sport, |
| 2178 | ip->ip_dst, th->th_dport, 1, m->m_pkthdr.rcvif); |
| 2179 | } |
| 2180 | |
| 2181 | /* |
| 2182 | * Use the interface scope information from the PCB for outbound |
| 2183 | * segments. If the PCB isn't present and if scoped routing is |
| 2184 | * enabled, tcp_respond will use the scope of the interface where |
| 2185 | * the segment arrived on. |
| 2186 | */ |
| 2187 | if (inp != NULL && (inp->inp_flags & INP_BOUND_IF)) { |
| 2188 | ifscope = inp->inp_boundifp->if_index; |
| 2189 | } |
| 2190 | |
| 2191 | /* |
| 2192 | * If the state is CLOSED (i.e., TCB does not exist) then |
| 2193 | * all data in the incoming segment is discarded. |
| 2194 | * If the TCB exists but is in CLOSED state, it is embryonic, |
| 2195 | * but should either do a listen or a connect soon. |
| 2196 | */ |
| 2197 | if (inp == NULL) { |
| 2198 | if (log_in_vain) { |
| 2199 | char dbuf[MAX_IPv6_STR_LEN], sbuf[MAX_IPv6_STR_LEN]; |
| 2200 | |
| 2201 | if (isipv6) { |
| 2202 | inet_ntop(AF_INET6, &ip6->ip6_dst, dbuf, sizeof(dbuf)); |
| 2203 | inet_ntop(AF_INET6, &ip6->ip6_src, sbuf, sizeof(sbuf)); |
| 2204 | } else { |
| 2205 | inet_ntop(AF_INET, &ip->ip_dst, dbuf, sizeof(dbuf)); |
| 2206 | inet_ntop(AF_INET, &ip->ip_src, sbuf, sizeof(sbuf)); |
| 2207 | } |
| 2208 | switch (log_in_vain) { |
| 2209 | case 1: |
| 2210 | if (thflags & TH_SYN) { |
| 2211 | log(LOG_INFO, |
| 2212 | "Connection attempt to TCP %s:%d from %s:%d\n" , |
| 2213 | dbuf, ntohs(th->th_dport), |
| 2214 | sbuf, |
| 2215 | ntohs(th->th_sport)); |
| 2216 | } |
| 2217 | break; |
| 2218 | case 2: |
| 2219 | log(LOG_INFO, |
| 2220 | "Connection attempt to TCP %s:%d from %s:%d flags:0x%x\n" , |
| 2221 | dbuf, ntohs(th->th_dport), sbuf, |
| 2222 | ntohs(th->th_sport), thflags); |
| 2223 | break; |
| 2224 | case 3: |
| 2225 | case 4: |
| 2226 | if ((thflags & TH_SYN) && !(thflags & TH_ACK) && |
| 2227 | !(m->m_flags & (M_BCAST | M_MCAST)) && |
| 2228 | ((isipv6 && !in6_are_addr_equal_scoped(&ip6->ip6_dst, &ip6->ip6_src, ip6_input_getdstifscope(m), ip6_input_getsrcifscope(m))) || |
| 2229 | (!isipv6 && ip->ip_dst.s_addr != ip->ip_src.s_addr))) { |
| 2230 | log_in_vain_log((LOG_INFO, |
| 2231 | "Stealth Mode connection attempt to TCP %s:%d from %s:%d\n" , |
| 2232 | dbuf, ntohs(th->th_dport), |
| 2233 | sbuf, |
| 2234 | ntohs(th->th_sport))); |
| 2235 | } |
| 2236 | break; |
| 2237 | default: |
| 2238 | break; |
| 2239 | } |
| 2240 | } |
| 2241 | if (blackhole) { |
| 2242 | if (m->m_pkthdr.rcvif && m->m_pkthdr.rcvif->if_type != IFT_LOOP) { |
| 2243 | switch (blackhole) { |
| 2244 | case 1: |
| 2245 | if (thflags & TH_SYN) { |
| 2246 | TCP_LOG_DROP_PKT(TCP_LOG_HDR, th, ifp, "blackhole 1 syn for closed port" ); |
| 2247 | goto dropnosock; |
| 2248 | } |
| 2249 | break; |
| 2250 | case 2: |
| 2251 | TCP_LOG_DROP_PKT(TCP_LOG_HDR, th, ifp, "blackhole 2 closed port" ); |
| 2252 | goto dropnosock; |
| 2253 | default: |
| 2254 | TCP_LOG_DROP_PKT(TCP_LOG_HDR, th, ifp, "blackhole closed port" ); |
| 2255 | goto dropnosock; |
| 2256 | } |
| 2257 | } |
| 2258 | } |
| 2259 | IF_TCP_STATINC(ifp, noconnnolist); |
| 2260 | TCP_LOG_DROP_PKT(TCP_LOG_HDR, th, ifp, "closed port" ); |
| 2261 | goto dropwithresetnosock; |
| 2262 | } |
| 2263 | so = inp->inp_socket; |
| 2264 | if (so == NULL) { |
| 2265 | /* This case shouldn't happen as the socket shouldn't be null |
| 2266 | * if inp_state isn't set to INPCB_STATE_DEAD |
| 2267 | * But just in case, we pretend we didn't find the socket if we hit this case |
| 2268 | * as this isn't cause for a panic (the socket might be leaked however)... |
| 2269 | */ |
| 2270 | inp = NULL; |
| 2271 | #if TEMPDEBUG |
| 2272 | printf("tcp_input: no more socket for inp=%x. This shouldn't happen\n" , inp); |
| 2273 | #endif |
| 2274 | TCP_LOG_DROP_PKT(TCP_LOG_HDR, th, ifp, "inp_socket NULL" ); |
| 2275 | goto dropnosock; |
| 2276 | } |
| 2277 | |
| 2278 | socket_lock(so, refcount: 1); |
| 2279 | if (in_pcb_checkstate(inp, WNT_RELEASE, 1) == WNT_STOPUSING) { |
| 2280 | socket_unlock(so, refcount: 1); |
| 2281 | inp = NULL; // pretend we didn't find it |
| 2282 | TCP_LOG_DROP_PKT(TCP_LOG_HDR, th, ifp, "inp state WNT_STOPUSING" ); |
| 2283 | goto dropnosock; |
| 2284 | } |
| 2285 | |
| 2286 | if (!isipv6 && inp->inp_faddr.s_addr != INADDR_ANY) { |
| 2287 | if (inp->inp_faddr.s_addr != ip->ip_src.s_addr || |
| 2288 | inp->inp_laddr.s_addr != ip->ip_dst.s_addr || |
| 2289 | inp->inp_fport != th->th_sport || |
| 2290 | inp->inp_lport != th->th_dport) { |
| 2291 | os_log_error(OS_LOG_DEFAULT, "%s 5-tuple does not match: %u:%u %u:%u\n" , |
| 2292 | __func__, |
| 2293 | ntohs(inp->inp_fport), ntohs(th->th_sport), |
| 2294 | ntohs(inp->inp_lport), ntohs(th->th_dport)); |
| 2295 | if (findpcb_iterated) { |
| 2296 | goto drop; |
| 2297 | } |
| 2298 | findpcb_iterated = true; |
| 2299 | socket_unlock(so, refcount: 1); |
| 2300 | inp = NULL; |
| 2301 | goto findpcb; |
| 2302 | } |
| 2303 | } else if (isipv6 && !IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_faddr)) { |
| 2304 | if (!in6_are_addr_equal_scoped(&inp->in6p_faddr, &ip6->ip6_src, inp->inp_fifscope, ip6_input_getsrcifscope(m)) || |
| 2305 | !in6_are_addr_equal_scoped(&inp->in6p_laddr, &ip6->ip6_dst, inp->inp_lifscope, ip6_input_getdstifscope(m)) || |
| 2306 | inp->inp_fport != th->th_sport || |
| 2307 | inp->inp_lport != th->th_dport) { |
| 2308 | os_log_error(OS_LOG_DEFAULT, "%s 5-tuple does not match: %u:%u %u:%u\n" , |
| 2309 | __func__, |
| 2310 | ntohs(inp->inp_fport), ntohs(th->th_sport), |
| 2311 | ntohs(inp->inp_lport), ntohs(th->th_dport)); |
| 2312 | if (findpcb_iterated) { |
| 2313 | goto drop; |
| 2314 | } |
| 2315 | findpcb_iterated = true; |
| 2316 | socket_unlock(so, refcount: 1); |
| 2317 | inp = NULL; |
| 2318 | goto findpcb; |
| 2319 | } |
| 2320 | } |
| 2321 | |
| 2322 | tp = intotcpcb(inp); |
| 2323 | if (tp == NULL) { |
| 2324 | IF_TCP_STATINC(ifp, noconnlist); |
| 2325 | TCP_LOG_DROP_PKT(TCP_LOG_HDR, th, ifp, "tp is NULL" ); |
| 2326 | goto dropwithreset; |
| 2327 | } |
| 2328 | |
| 2329 | /* Now that we found the tcpcb, we can adjust the TCP timestamp */ |
| 2330 | if (to.to_flags & TOF_TS) { |
| 2331 | to.to_tsecr -= tp->t_ts_offset; |
| 2332 | } |
| 2333 | |
| 2334 | if (tp->t_state == TCPS_CLOSED) { |
| 2335 | TCP_LOG_DROP_PCB(TCP_LOG_HDR, th, tp, false, "tp state TCPS_CLOSED" ); |
| 2336 | goto drop; |
| 2337 | } |
| 2338 | |
| 2339 | #if NECP |
| 2340 | if (so->so_state & SS_ISCONNECTED) { |
| 2341 | // Connected TCP sockets have a fully-bound local and remote, |
| 2342 | // so the policy check doesn't need to override addresses |
| 2343 | if (!necp_socket_is_allowed_to_send_recv(inp, input_interface: ifp, pf_tag, NULL, NULL, NULL, NULL)) { |
| 2344 | TCP_LOG_DROP_NECP(TCP_LOG_HDR, th, intotcpcb(inp), false); |
| 2345 | IF_TCP_STATINC(ifp, badformat); |
| 2346 | goto drop; |
| 2347 | } |
| 2348 | } else { |
| 2349 | /* |
| 2350 | * If the proc_uuid_policy table has been updated since the last use |
| 2351 | * of the listening socket (i.e., the proc_uuid_policy_table_gencount |
| 2352 | * has been updated), the flags in the socket may be out of date. |
| 2353 | * If INP2_WANT_APP_POLICY is stale, inbound packets may |
| 2354 | * be dropped by NECP if the socket should now match a per-app |
| 2355 | * exception policy. |
| 2356 | * In order to avoid this refresh the proc_uuid_policy state to |
| 2357 | * potentially recalculate the socket's flags before checking |
| 2358 | * with NECP. |
| 2359 | */ |
| 2360 | (void) inp_update_policy(inp); |
| 2361 | |
| 2362 | if (isipv6) { |
| 2363 | if (!necp_socket_is_allowed_to_send_recv_v6(inp, |
| 2364 | local_port: th->th_dport, remote_port: th->th_sport, local_addr: &ip6->ip6_dst, |
| 2365 | remote_addr: &ip6->ip6_src, input_interface: ifp, pf_tag, NULL, NULL, NULL, NULL)) { |
| 2366 | TCP_LOG_DROP_NECP(TCP_LOG_HDR, th, intotcpcb(inp), false); |
| 2367 | IF_TCP_STATINC(ifp, badformat); |
| 2368 | goto drop; |
| 2369 | } |
| 2370 | } else { |
| 2371 | if (!necp_socket_is_allowed_to_send_recv_v4(inp, |
| 2372 | local_port: th->th_dport, remote_port: th->th_sport, local_addr: &ip->ip_dst, remote_addr: &ip->ip_src, |
| 2373 | input_interface: ifp, pf_tag, NULL, NULL, NULL, NULL)) { |
| 2374 | TCP_LOG_DROP_NECP(TCP_LOG_HDR, th, intotcpcb(inp), false); |
| 2375 | IF_TCP_STATINC(ifp, badformat); |
| 2376 | goto drop; |
| 2377 | } |
| 2378 | } |
| 2379 | } |
| 2380 | #endif /* NECP */ |
| 2381 | |
| 2382 | prev_t_state = tp->t_state; |
| 2383 | |
| 2384 | /* If none of the FIN|SYN|RST|ACK flag is set, drop */ |
| 2385 | if ((thflags & TH_ACCEPT) == 0) { |
| 2386 | TCP_LOG_DROP_PCB(TCP_LOG_HDR, th, tp, false, "rfc5961 TH_ACCEPT == 0" ); |
| 2387 | goto drop; |
| 2388 | } |
| 2389 | |
| 2390 | /* Unscale the window into a 32-bit value. */ |
| 2391 | if ((thflags & TH_SYN) == 0) { |
| 2392 | tiwin = th->th_win << tp->snd_scale; |
| 2393 | } else { |
| 2394 | tiwin = th->th_win; |
| 2395 | } |
| 2396 | |
| 2397 | /* Avoid processing packets while closing a listen socket */ |
| 2398 | if (tp->t_state == TCPS_LISTEN && |
| 2399 | (so->so_options & SO_ACCEPTCONN) == 0) { |
| 2400 | TCP_LOG_DROP_PCB(TCP_LOG_HDR, th, tp, false, "closing a listening socket" ); |
| 2401 | goto drop; |
| 2402 | } |
| 2403 | |
| 2404 | if ((m->m_flags & M_PKTHDR) && (m->m_pkthdr.pkt_flags & PKTF_WAKE_PKT)) { |
| 2405 | soevent(so, SO_FILT_HINT_LOCKED | SO_FILT_HINT_WAKE_PKT); |
| 2406 | } |
| 2407 | |
| 2408 | if (so->so_options & (SO_DEBUG | SO_ACCEPTCONN)) { |
| 2409 | #if TCPDEBUG |
| 2410 | if (so->so_options & SO_DEBUG) { |
| 2411 | ostate = tp->t_state; |
| 2412 | if (isipv6) { |
| 2413 | bcopy((char *)ip6, (char *)tcp_saveipgen, |
| 2414 | sizeof(*ip6)); |
| 2415 | } else { |
| 2416 | bcopy((char *)ip, (char *)tcp_saveipgen, sizeof(*ip)); |
| 2417 | } |
| 2418 | tcp_savetcp = *th; |
| 2419 | } |
| 2420 | #endif |
| 2421 | if (so->so_options & SO_ACCEPTCONN) { |
| 2422 | struct tcpcb *tp0 = tp; |
| 2423 | struct socket *so2; |
| 2424 | struct socket *oso; |
| 2425 | struct sockaddr_storage from; |
| 2426 | struct sockaddr_storage to2; |
| 2427 | struct inpcb *oinp = sotoinpcb(so); |
| 2428 | struct ifnet *head_ifscope; |
| 2429 | bool head_nocell, head_recvanyif, |
| 2430 | head_noexpensive, head_awdl_unrestricted, |
| 2431 | head_intcoproc_allowed, head_external_port, |
| 2432 | head_noconstrained, head_management_allowed; |
| 2433 | |
| 2434 | /* Get listener's bound-to-interface, if any */ |
| 2435 | head_ifscope = (inp->inp_flags & INP_BOUND_IF) ? |
| 2436 | inp->inp_boundifp : NULL; |
| 2437 | /* Get listener's no-cellular information, if any */ |
| 2438 | head_nocell = INP_NO_CELLULAR(inp); |
| 2439 | /* Get listener's recv-any-interface, if any */ |
| 2440 | head_recvanyif = (inp->inp_flags & INP_RECV_ANYIF); |
| 2441 | /* Get listener's no-expensive information, if any */ |
| 2442 | head_noexpensive = INP_NO_EXPENSIVE(inp); |
| 2443 | head_noconstrained = INP_NO_CONSTRAINED(inp); |
| 2444 | head_awdl_unrestricted = INP_AWDL_UNRESTRICTED(inp); |
| 2445 | head_intcoproc_allowed = INP_INTCOPROC_ALLOWED(inp); |
| 2446 | head_external_port = (inp->inp_flags2 & INP2_EXTERNAL_PORT); |
| 2447 | head_management_allowed = INP_MANAGEMENT_ALLOWED(inp); |
| 2448 | |
| 2449 | /* |
| 2450 | * If the state is LISTEN then ignore segment if it contains an RST. |
| 2451 | * If the segment contains an ACK then it is bad and send a RST. |
| 2452 | * If it does not contain a SYN then it is not interesting; drop it. |
| 2453 | * If it is from this socket, drop it, it must be forged. |
| 2454 | */ |
| 2455 | if ((thflags & (TH_RST | TH_ACK | TH_SYN)) != TH_SYN) { |
| 2456 | IF_TCP_STATINC(ifp, listbadsyn); |
| 2457 | |
| 2458 | if (thflags & TH_RST) { |
| 2459 | TCP_LOG_DROP_PCB(TCP_LOG_HDR, th, tp, false, |
| 2460 | thflags & TH_SYN ? "ignore SYN with RST" : "ignore RST" ); |
| 2461 | goto drop; |
| 2462 | } |
| 2463 | if (thflags & TH_ACK) { |
| 2464 | TCP_LOG_DROP_PCB(TCP_LOG_HDR, th, tp, false, |
| 2465 | thflags & TH_SYN ? "bad SYN with ACK" : "bad ACK" ); |
| 2466 | tp = NULL; |
| 2467 | tcpstat.tcps_badsyn++; |
| 2468 | goto dropwithreset; |
| 2469 | } |
| 2470 | |
| 2471 | /* We come here if there is no SYN set */ |
| 2472 | tcpstat.tcps_badsyn++; |
| 2473 | TCP_LOG_DROP_PCB(TCP_LOG_HDR, th, tp, false, "bad SYN" ); |
| 2474 | goto drop; |
| 2475 | } |
| 2476 | KERNEL_DEBUG(DBG_FNC_TCP_NEWCONN | DBG_FUNC_START, 0, 0, 0, 0, 0); |
| 2477 | if (th->th_dport == th->th_sport) { |
| 2478 | if (isipv6) { |
| 2479 | if (in6_are_addr_equal_scoped(&ip6->ip6_dst, &ip6->ip6_src, ip6_input_getdstifscope(m), ip6_input_getsrcifscope(m))) { |
| 2480 | TCP_LOG_DROP_PCB(TCP_LOG_HDR, th, tp, false, "bad tuple same port" ); |
| 2481 | goto drop; |
| 2482 | } |
| 2483 | } else if (ip->ip_dst.s_addr == ip->ip_src.s_addr) { |
| 2484 | TCP_LOG_DROP_PCB(TCP_LOG_HDR, th, tp, false, "bad tuple same IPv4 address" ); |
| 2485 | goto drop; |
| 2486 | } |
| 2487 | } |
| 2488 | /* |
| 2489 | * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN |
| 2490 | * in_broadcast() should never return true on a received |
| 2491 | * packet with M_BCAST not set. |
| 2492 | * |
| 2493 | * Packets with a multicast source address should also |
| 2494 | * be discarded. |
| 2495 | */ |
| 2496 | if (m->m_flags & (M_BCAST | M_MCAST)) { |
| 2497 | TCP_LOG_DROP_PCB(TCP_LOG_HDR, th, tp, false, "mbuf M_BCAST | M_MCAST" ); |
| 2498 | goto drop; |
| 2499 | } |
| 2500 | if (isipv6) { |
| 2501 | if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) || |
| 2502 | IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) { |
| 2503 | TCP_LOG_DROP_PCB(TCP_LOG_HDR, th, tp, false, "IN6_IS_ADDR_MULTICAST" ); |
| 2504 | goto drop; |
| 2505 | } |
| 2506 | } else if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) || |
| 2507 | IN_MULTICAST(ntohl(ip->ip_src.s_addr)) || |
| 2508 | ip->ip_src.s_addr == htonl(INADDR_BROADCAST) || |
| 2509 | in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif)) { |
| 2510 | TCP_LOG_DROP_PCB(TCP_LOG_HDR, th, tp, false, "multicast or broadcast address" ); |
| 2511 | goto drop; |
| 2512 | } |
| 2513 | |
| 2514 | |
| 2515 | /* |
| 2516 | * If deprecated address is forbidden, |
| 2517 | * we do not accept SYN to deprecated interface |
| 2518 | * address to prevent any new inbound connection from |
| 2519 | * getting established. |
| 2520 | * When we do not accept SYN, we send a TCP RST, |
| 2521 | * with deprecated source address (instead of dropping |
| 2522 | * it). We compromise it as it is much better for peer |
| 2523 | * to send a RST, and RST will be the final packet |
| 2524 | * for the exchange. |
| 2525 | * |
| 2526 | * If we do not forbid deprecated addresses, we accept |
| 2527 | * the SYN packet. RFC 4862 forbids dropping SYN in |
| 2528 | * this case. |
| 2529 | */ |
| 2530 | if (isipv6 && !ip6_use_deprecated) { |
| 2531 | uint32_t ia6_flags; |
| 2532 | |
| 2533 | if (ip6_getdstifaddr_info(m, NULL, |
| 2534 | &ia6_flags) == 0) { |
| 2535 | if (ia6_flags & IN6_IFF_DEPRECATED) { |
| 2536 | tp = NULL; |
| 2537 | IF_TCP_STATINC(ifp, deprecate6); |
| 2538 | TCP_LOG_DROP_PCB(TCP_LOG_HDR, th, tp, false, "deprecated IPv6 address" ); |
| 2539 | goto dropwithreset; |
| 2540 | } |
| 2541 | } |
| 2542 | } |
| 2543 | if (so->so_filt || check_cfil) { |
| 2544 | if (isipv6) { |
| 2545 | struct sockaddr_in6 *sin6 = SIN6(&from); |
| 2546 | |
| 2547 | sin6->sin6_len = sizeof(*sin6); |
| 2548 | sin6->sin6_family = AF_INET6; |
| 2549 | sin6->sin6_port = th->th_sport; |
| 2550 | sin6->sin6_flowinfo = 0; |
| 2551 | sin6->sin6_addr = ip6->ip6_src; |
| 2552 | sin6->sin6_scope_id = 0; |
| 2553 | |
| 2554 | sin6 = SIN6(&to2); |
| 2555 | |
| 2556 | sin6->sin6_len = sizeof(struct sockaddr_in6); |
| 2557 | sin6->sin6_family = AF_INET6; |
| 2558 | sin6->sin6_port = th->th_dport; |
| 2559 | sin6->sin6_flowinfo = 0; |
| 2560 | sin6->sin6_addr = ip6->ip6_dst; |
| 2561 | sin6->sin6_scope_id = 0; |
| 2562 | } else { |
| 2563 | struct sockaddr_in *sin = SIN(&from); |
| 2564 | |
| 2565 | sin->sin_len = sizeof(*sin); |
| 2566 | sin->sin_family = AF_INET; |
| 2567 | sin->sin_port = th->th_sport; |
| 2568 | sin->sin_addr = ip->ip_src; |
| 2569 | |
| 2570 | sin = SIN(&to2); |
| 2571 | |
| 2572 | sin->sin_len = sizeof(struct sockaddr_in); |
| 2573 | sin->sin_family = AF_INET; |
| 2574 | sin->sin_port = th->th_dport; |
| 2575 | sin->sin_addr = ip->ip_dst; |
| 2576 | } |
| 2577 | } |
| 2578 | |
| 2579 | if (so->so_filt) { |
| 2580 | so2 = sonewconn(head: so, connstatus: 0, SA(&from)); |
| 2581 | } else { |
| 2582 | so2 = sonewconn(head: so, connstatus: 0, NULL); |
| 2583 | } |
| 2584 | if (so2 == 0) { |
| 2585 | tcpstat.tcps_listendrop++; |
| 2586 | if (tcp_dropdropablreq(head: so)) { |
| 2587 | if (so->so_filt) { |
| 2588 | so2 = sonewconn(head: so, connstatus: 0, SA(&from)); |
| 2589 | } else { |
| 2590 | so2 = sonewconn(head: so, connstatus: 0, NULL); |
| 2591 | } |
| 2592 | } |
| 2593 | if (!so2) { |
| 2594 | TCP_LOG_DROP_PCB(TCP_LOG_HDR, th, tp, false, " listen drop" ); |
| 2595 | goto drop; |
| 2596 | } |
| 2597 | } |
| 2598 | |
| 2599 | /* Point "inp" and "tp" in tandem to new socket */ |
| 2600 | inp = (struct inpcb *)so2->so_pcb; |
| 2601 | tp = intotcpcb(inp); |
| 2602 | |
| 2603 | oso = so; |
| 2604 | socket_unlock(so, refcount: 0); /* Unlock but keep a reference on listener for now */ |
| 2605 | |
| 2606 | so = so2; |
| 2607 | socket_lock(so, refcount: 1); |
| 2608 | /* |
| 2609 | * Mark socket as temporary until we're |
| 2610 | * committed to keeping it. The code at |
| 2611 | * ``drop'' and ``dropwithreset'' check the |
| 2612 | * flag dropsocket to see if the temporary |
| 2613 | * socket created here should be discarded. |
| 2614 | * We mark the socket as discardable until |
| 2615 | * we're committed to it below in TCPS_LISTEN. |
| 2616 | * There are some error conditions in which we |
| 2617 | * have to drop the temporary socket. |
| 2618 | */ |
| 2619 | dropsocket++; |
| 2620 | /* |
| 2621 | * Inherit INP_BOUND_IF from listener; testing if |
| 2622 | * head_ifscope is non-NULL is sufficient, since it |
| 2623 | * can only be set to a non-zero value earlier if |
| 2624 | * the listener has such a flag set. |
| 2625 | */ |
| 2626 | if (head_ifscope != NULL) { |
| 2627 | inp->inp_flags |= INP_BOUND_IF; |
| 2628 | inp->inp_boundifp = head_ifscope; |
| 2629 | } else { |
| 2630 | inp->inp_flags &= ~INP_BOUND_IF; |
| 2631 | } |
| 2632 | /* |
| 2633 | * Inherit restrictions from listener. |
| 2634 | */ |
| 2635 | if (head_nocell) { |
| 2636 | inp_set_nocellular(inp); |
| 2637 | } |
| 2638 | if (head_noexpensive) { |
| 2639 | inp_set_noexpensive(inp); |
| 2640 | } |
| 2641 | if (head_noconstrained) { |
| 2642 | inp_set_noconstrained(inp); |
| 2643 | } |
| 2644 | if (head_awdl_unrestricted) { |
| 2645 | inp_set_awdl_unrestricted(inp); |
| 2646 | } |
| 2647 | if (head_intcoproc_allowed) { |
| 2648 | inp_set_intcoproc_allowed(inp); |
| 2649 | } |
| 2650 | if (head_management_allowed) { |
| 2651 | inp_set_management_allowed(inp); |
| 2652 | } |
| 2653 | /* |
| 2654 | * Inherit {IN,IN6}_RECV_ANYIF from listener. |
| 2655 | */ |
| 2656 | if (head_recvanyif) { |
| 2657 | inp->inp_flags |= INP_RECV_ANYIF; |
| 2658 | } else { |
| 2659 | inp->inp_flags &= ~INP_RECV_ANYIF; |
| 2660 | } |
| 2661 | |
| 2662 | if (head_external_port) { |
| 2663 | inp->inp_flags2 |= INP2_EXTERNAL_PORT; |
| 2664 | } |
| 2665 | if (isipv6) { |
| 2666 | inp->in6p_laddr = ip6->ip6_dst; |
| 2667 | inp->inp_lifscope = in6_addr2scopeid(ifp, &inp->in6p_laddr); |
| 2668 | in6_verify_ifscope(&ip6->ip6_dst, inp->inp_lifscope); |
| 2669 | } else { |
| 2670 | inp->inp_vflag &= ~INP_IPV6; |
| 2671 | inp->inp_vflag |= INP_IPV4; |
| 2672 | inp->inp_laddr = ip->ip_dst; |
| 2673 | } |
| 2674 | inp->inp_lport = th->th_dport; |
| 2675 | if (in_pcbinshash(inp, 0) != 0) { |
| 2676 | /* |
| 2677 | * Undo the assignments above if we failed to |
| 2678 | * put the PCB on the hash lists. |
| 2679 | */ |
| 2680 | if (isipv6) { |
| 2681 | inp->in6p_laddr = in6addr_any; |
| 2682 | inp->inp_lifscope = IFSCOPE_NONE; |
| 2683 | } else { |
| 2684 | inp->inp_laddr.s_addr = INADDR_ANY; |
| 2685 | } |
| 2686 | #if SKYWALK |
| 2687 | netns_release(token: &inp->inp_netns_token); |
| 2688 | #endif /* SKYWALK */ |
| 2689 | inp->inp_lport = 0; |
| 2690 | socket_lock(so: oso, refcount: 0); /* release ref on parent */ |
| 2691 | socket_unlock(so: oso, refcount: 1); |
| 2692 | TCP_LOG_DROP_PCB(TCP_LOG_HDR, th, tp, false, " in_pcbinshash failed" ); |
| 2693 | goto drop; |
| 2694 | } |
| 2695 | socket_lock(so: oso, refcount: 0); |
| 2696 | if (isipv6) { |
| 2697 | /* |
| 2698 | * Inherit socket options from the listening |
| 2699 | * socket. |
| 2700 | * Note that in6p_inputopts are not (even |
| 2701 | * should not be) copied, since it stores |
| 2702 | * previously received options and is used to |
| 2703 | * detect if each new option is different than |
| 2704 | * the previous one and hence should be passed |
| 2705 | * to a user. |
| 2706 | * If we copied in6p_inputopts, a user would |
| 2707 | * not be able to receive options just after |
| 2708 | * calling the accept system call. |
| 2709 | */ |
| 2710 | inp->inp_flags |= |
| 2711 | oinp->inp_flags & INP_CONTROLOPTS; |
| 2712 | if (oinp->in6p_outputopts) { |
| 2713 | inp->in6p_outputopts = |
| 2714 | ip6_copypktopts(oinp->in6p_outputopts, |
| 2715 | Z_NOWAIT); |
| 2716 | } |
| 2717 | } else { |
| 2718 | inp->inp_options = ip_srcroute(); |
| 2719 | inp->inp_ip_tos = oinp->inp_ip_tos; |
| 2720 | } |
| 2721 | #if IPSEC |
| 2722 | /* copy old policy into new socket's */ |
| 2723 | if (sotoinpcb(oso)->inp_sp) { |
| 2724 | int error = 0; |
| 2725 | /* Is it a security hole here to silently fail to copy the policy? */ |
| 2726 | if (inp->inp_sp == NULL) { |
| 2727 | error = ipsec_init_policy(so, &inp->inp_sp); |
| 2728 | } |
| 2729 | if (error != 0 || ipsec_copy_policy(sotoinpcb(oso)->inp_sp, inp->inp_sp)) { |
| 2730 | printf("tcp_input: could not copy policy\n" ); |
| 2731 | } |
| 2732 | } |
| 2733 | #endif |
| 2734 | /* inherit states from the listener */ |
| 2735 | DTRACE_TCP4(state__change, void, NULL, struct inpcb *, inp, |
| 2736 | struct tcpcb *, tp, int32_t, TCPS_LISTEN); |
| 2737 | TCP_LOG_STATE(tp, TCPS_LISTEN); |
| 2738 | tp->t_state = TCPS_LISTEN; |
| 2739 | tp->t_flags |= tp0->t_flags & (TF_NOPUSH | TF_NOOPT | TF_NODELAY); |
| 2740 | tp->t_flagsext |= (tp0->t_flagsext & (TF_RXTFINDROP | TF_NOTIMEWAIT | TF_FASTOPEN)); |
| 2741 | tp->t_keepinit = tp0->t_keepinit; |
| 2742 | tp->t_keepcnt = tp0->t_keepcnt; |
| 2743 | tp->t_keepintvl = tp0->t_keepintvl; |
| 2744 | tp->t_adaptive_wtimo = tp0->t_adaptive_wtimo; |
| 2745 | tp->t_adaptive_rtimo = tp0->t_adaptive_rtimo; |
| 2746 | tp->t_inpcb->inp_ip_ttl = tp0->t_inpcb->inp_ip_ttl; |
| 2747 | if ((so->so_flags & SOF_NOTSENT_LOWAT) != 0) { |
| 2748 | tp->t_notsent_lowat = tp0->t_notsent_lowat; |
| 2749 | } |
| 2750 | tp->t_inpcb->inp_flags2 |= |
| 2751 | tp0->t_inpcb->inp_flags2 & INP2_KEEPALIVE_OFFLOAD; |
| 2752 | |
| 2753 | /* now drop the reference on the listener */ |
| 2754 | socket_unlock(so: oso, refcount: 1); |
| 2755 | |
| 2756 | tcp_set_max_rwinscale(tp, so); |
| 2757 | |
| 2758 | #if CONTENT_FILTER |
| 2759 | if (check_cfil) { |
| 2760 | int error = cfil_sock_attach(so: so2, SA(&to2), SA(&from), CFS_CONNECTION_DIR_IN); |
| 2761 | if (error != 0) { |
| 2762 | TCP_LOG_DROP_PCB(TCP_LOG_HDR, th, tp, false, " cfil_sock_attach failed" ); |
| 2763 | goto drop; |
| 2764 | } |
| 2765 | } |
| 2766 | #endif /* CONTENT_FILTER */ |
| 2767 | |
| 2768 | KERNEL_DEBUG(DBG_FNC_TCP_NEWCONN | DBG_FUNC_END, 0, 0, 0, 0, 0); |
| 2769 | } |
| 2770 | } |
| 2771 | socket_lock_assert_owned(so); |
| 2772 | |
| 2773 | /* |
| 2774 | * Packet accounting should not be done on listening socket |
| 2775 | */ |
| 2776 | if (th->th_flags & TH_SYN) { |
| 2777 | (void) os_add_overflow(1, tp->t_syn_rcvd, &tp->t_syn_rcvd); |
| 2778 | } |
| 2779 | if (th->th_flags & TH_FIN) { |
| 2780 | (void) os_add_overflow(1, tp->t_fin_rcvd, &tp->t_fin_rcvd); |
| 2781 | } |
| 2782 | if (th->th_flags & TH_RST) { |
| 2783 | (void) os_add_overflow(1, tp->t_rst_rcvd, &tp->t_rst_rcvd); |
| 2784 | } |
| 2785 | TCP_LOG_TH_FLAGS(TCP_LOG_HDR, th, tp, false, ifp); |
| 2786 | |
| 2787 | if (net_mpklog_enabled && (m->m_pkthdr.rcvif->if_xflags & IFXF_MPK_LOG)) { |
| 2788 | MPKL_TCP_INPUT(tcp_mpkl_log_object, |
| 2789 | ntohs(tp->t_inpcb->inp_lport), ntohs(tp->t_inpcb->inp_fport), |
| 2790 | th->th_seq, th->th_ack, tlen, thflags, |
| 2791 | so->last_pid, so->so_log_seqn++); |
| 2792 | } |
| 2793 | |
| 2794 | if (tp->t_state == TCPS_ESTABLISHED && tlen > 0) { |
| 2795 | /* |
| 2796 | * Evaluate the rate of arrival of packets to see if the |
| 2797 | * receiver can reduce the ack traffic. The algorithm to |
| 2798 | * stretch acks will be enabled if the connection meets |
| 2799 | * certain criteria defined in tcp_stretch_ack_enable function. |
| 2800 | */ |
| 2801 | if ((tp->t_flagsext & TF_RCVUNACK_WAITSS) != 0) { |
| 2802 | TCP_INC_VAR(tp->rcv_waitforss, segment_count); |
| 2803 | } |
| 2804 | if (tcp_stretch_ack_enable(tp, thflags)) { |
| 2805 | tp->t_flags |= TF_STRETCHACK; |
| 2806 | tp->t_flagsext &= ~(TF_RCVUNACK_WAITSS); |
| 2807 | tp->rcv_waitforss = 0; |
| 2808 | } else { |
| 2809 | tp->t_flags &= ~(TF_STRETCHACK); |
| 2810 | } |
| 2811 | if (TSTMP_GT(tp->rcv_unackwin - (tcp_rcvunackwin >> 1), tcp_now)) { |
| 2812 | tp->rcv_by_unackhalfwin += (tlen + off); |
| 2813 | tp->rcv_by_unackwin += (tlen + off); |
| 2814 | } else { |
| 2815 | tp->rcv_unackwin = tcp_now + tcp_rcvunackwin; |
| 2816 | tp->rcv_by_unackwin = tp->rcv_by_unackhalfwin + tlen + off; |
| 2817 | tp->rcv_by_unackhalfwin = tlen + off; |
| 2818 | } |
| 2819 | } |
| 2820 | |
| 2821 | if (tp->t_state == TCPS_ESTABLISHED && BYTES_ACKED(th, tp) > 0) { |
| 2822 | if (tp->ecn_flags & TE_SENDIPECT) { |
| 2823 | /* |
| 2824 | * Data sent with ECT has been acknowledged, calculate |
| 2825 | * packets approx. by dividing by MSS. This is done to |
| 2826 | * count MSS sized packets in case packets are aggregated |
| 2827 | * by GRO/LRO. |
| 2828 | */ |
| 2829 | uint32_t bytes_acked = tcp_round_to(BYTES_ACKED(th, tp), round: tp->t_maxseg); |
| 2830 | tp->t_ecn_capable_packets_acked += max(a: 1, b: (bytes_acked / tp->t_maxseg)); |
| 2831 | } |
| 2832 | } |
| 2833 | |
| 2834 | /* Accurate ECN has different semantics for TH_CWR. */ |
| 2835 | if (!TCP_ACC_ECN_ENABLED(tp)) { |
| 2836 | /* |
| 2837 | * Clear TE_SENDECE if TH_CWR is set. This is harmless, so we don't |
| 2838 | * bother doing extensive checks for state and whatnot. |
| 2839 | */ |
| 2840 | if (thflags & TH_CWR) { |
| 2841 | tp->ecn_flags &= ~TE_SENDECE; |
| 2842 | tp->t_ecn_recv_cwr++; |
| 2843 | } |
| 2844 | } |
| 2845 | |
| 2846 | /* |
| 2847 | * Accurate ECN feedback |
| 2848 | * 1. Process peer's feedback in received TCP thflags and update s.cep |
| 2849 | * 2. Process IP ECN bits and update r.cep for CE marked pure ACKs |
| 2850 | * or valid data packets |
| 2851 | * |
| 2852 | */ |
| 2853 | if (TCP_ACC_ECN_ON(tp) && tp->t_state == TCPS_ESTABLISHED) { |
| 2854 | /* |
| 2855 | * Update s.cep if bytes have been acknowledged |
| 2856 | * otherwise, this ACK has already been superseded. |
| 2857 | */ |
| 2858 | uint8_t ace = tcp_get_ace(th); |
| 2859 | if (BYTES_ACKED(th, tp) > 0) { |
| 2860 | /* Congestion was experienced if delta_cep > 0 */ |
| 2861 | tp->t_delta_ce_packets = (ace + TCP_ACE_DIV - (tp->t_snd_ce_packets % TCP_ACE_DIV)) % TCP_ACE_DIV; |
| 2862 | tp->t_snd_ce_packets += tp->t_delta_ce_packets; |
| 2863 | } |
| 2864 | /* Update receive side counters */ |
| 2865 | if (tlen == 0 || (tlen > 0 && |
| 2866 | SEQ_GEQ(th->th_seq, tp->last_ack_sent) && |
| 2867 | SEQ_LT(th->th_seq, tp->last_ack_sent + tp->rcv_wnd))) { |
| 2868 | tcp_input_ip_ecn(tp, inp, tlen: (uint32_t)tlen, segment_count: (uint32_t)segment_count, ip_ecn); |
| 2869 | } |
| 2870 | |
| 2871 | /* Test for ACE bleaching, initial value of ace should be non-zero */ |
| 2872 | if (th->th_seq == tp->iss + 1 && ace == 0) { |
| 2873 | tp->t_client_accecn_state = tcp_connection_client_accurate_ecn_ace_bleaching_detected; |
| 2874 | } |
| 2875 | } else { |
| 2876 | /* |
| 2877 | * Explicit Congestion Notification - Flag that we need to send ECE if |
| 2878 | * + The IP Congestion experienced flag was set. |
| 2879 | * + Socket is in established state |
| 2880 | * + We negotiated ECN in the TCP setup |
| 2881 | * + This isn't a pure ack (tlen > 0) |
| 2882 | * + The data is in the valid window |
| 2883 | * |
| 2884 | * TE_SENDECE will be cleared when we receive a packet with TH_CWR set. |
| 2885 | */ |
| 2886 | if (ip_ecn == IPTOS_ECN_CE && tp->t_state == TCPS_ESTABLISHED && |
| 2887 | TCP_ECN_ENABLED(tp) && tlen > 0 && |
| 2888 | SEQ_GEQ(th->th_seq, tp->last_ack_sent) && |
| 2889 | SEQ_LT(th->th_seq, tp->last_ack_sent + tp->rcv_wnd)) { |
| 2890 | tp->t_ecn_recv_ce++; |
| 2891 | tcpstat.tcps_ecn_recv_ce++; |
| 2892 | INP_INC_IFNET_STAT(inp, ecn_recv_ce); |
| 2893 | /* Mark this connection as it received CE from network */ |
| 2894 | tp->ecn_flags |= TE_RECV_ECN_CE; |
| 2895 | tp->ecn_flags |= TE_SENDECE; |
| 2896 | } |
| 2897 | } |
| 2898 | |
| 2899 | /* |
| 2900 | * If we received an explicit notification of congestion in |
| 2901 | * ip tos ecn bits or by the CWR bit in TCP header flags, reset |
| 2902 | * the ack-stretching state. We need to handle ECN notification if |
| 2903 | * an ECN setup SYN was sent even once. |
| 2904 | */ |
| 2905 | if (tp->t_state == TCPS_ESTABLISHED && |
| 2906 | (tp->ecn_flags & TE_SETUPSENT) && |
| 2907 | (ip_ecn == IPTOS_ECN_CE || (thflags & TH_CWR))) { |
| 2908 | tcp_reset_stretch_ack(tp); |
| 2909 | tp->t_forced_acks = TCP_FORCED_ACKS_COUNT; |
| 2910 | CLEAR_IAJ_STATE(tp); |
| 2911 | } |
| 2912 | |
| 2913 | if (ip_ecn == IPTOS_ECN_CE && tp->t_state == TCPS_ESTABLISHED && |
| 2914 | !TCP_ECN_ENABLED(tp) && !(tp->ecn_flags & TE_CEHEURI_SET)) { |
| 2915 | tcpstat.tcps_ecn_fallback_ce++; |
| 2916 | tcp_heuristic_ecn_aggressive(tp); |
| 2917 | tp->ecn_flags |= TE_CEHEURI_SET; |
| 2918 | } |
| 2919 | |
| 2920 | if (tp->t_state == TCPS_ESTABLISHED && TCP_ECN_ENABLED(tp) && |
| 2921 | ip_ecn == IPTOS_ECN_CE && !(tp->ecn_flags & TE_CEHEURI_SET)) { |
| 2922 | if (inp->inp_stat->rxpackets < ECN_MIN_CE_PROBES) { |
| 2923 | tp->t_ecn_recv_ce_pkt++; |
| 2924 | } else if (tp->t_ecn_recv_ce_pkt > ECN_MAX_CE_RATIO) { |
| 2925 | tcpstat.tcps_ecn_fallback_ce++; |
| 2926 | tcp_heuristic_ecn_aggressive(tp); |
| 2927 | tp->ecn_flags |= TE_CEHEURI_SET; |
| 2928 | INP_INC_IFNET_STAT(inp, ecn_fallback_ce); |
| 2929 | } else { |
| 2930 | /* We tracked the first ECN_MIN_CE_PROBES segments, we |
| 2931 | * now know that the path is good. |
| 2932 | */ |
| 2933 | tp->ecn_flags |= TE_CEHEURI_SET; |
| 2934 | } |
| 2935 | } |
| 2936 | |
| 2937 | /* Update rcvtime as a new segment was received on the connection */ |
| 2938 | tp->t_rcvtime = tcp_now; |
| 2939 | |
| 2940 | /* |
| 2941 | * Segment received on connection. |
| 2942 | * Reset idle time and keep-alive timer. |
| 2943 | */ |
| 2944 | if (TCPS_HAVEESTABLISHED(tp->t_state)) { |
| 2945 | tcp_keepalive_reset(tp); |
| 2946 | |
| 2947 | if (tp->t_mpsub) { |
| 2948 | mptcp_reset_keepalive(tp); |
| 2949 | } |
| 2950 | } |
| 2951 | |
| 2952 | /* |
| 2953 | * Process options if not in LISTEN state, |
| 2954 | * else do it below (after getting remote address). |
| 2955 | */ |
| 2956 | if (tp->t_state != TCPS_LISTEN && optp) { |
| 2957 | tcp_dooptions(tp, optp, optlen, th, &to); |
| 2958 | } |
| 2959 | #if MPTCP |
| 2960 | if (tp->t_state != TCPS_LISTEN && (so->so_flags & SOF_MP_SUBFLOW)) { |
| 2961 | mptcp_insert_rmap(tp, m, th); |
| 2962 | } |
| 2963 | #endif /* MPTCP */ |
| 2964 | if (tp->t_state == TCPS_SYN_SENT && (thflags & TH_SYN)) { |
| 2965 | if (!(thflags & TH_ACK) || |
| 2966 | (SEQ_GT(th->th_ack, tp->iss) && |
| 2967 | SEQ_LEQ(th->th_ack, tp->snd_max))) { |
| 2968 | tcp_finalize_options(tp, &to, ifscope); |
| 2969 | } |
| 2970 | } |
| 2971 | |
| 2972 | #if TRAFFIC_MGT |
| 2973 | /* |
| 2974 | * Compute inter-packet arrival jitter. According to RFC 3550, |
| 2975 | * inter-packet arrival jitter is defined as the difference in |
| 2976 | * packet spacing at the receiver compared to the sender for a |
| 2977 | * pair of packets. When two packets of maximum segment size come |
| 2978 | * one after the other with consecutive sequence numbers, we |
| 2979 | * consider them as packets sent together at the sender and use |
| 2980 | * them as a pair to compute inter-packet arrival jitter. This |
| 2981 | * metric indicates the delay induced by the network components due |
| 2982 | * to queuing in edge/access routers. |
| 2983 | */ |
| 2984 | if (tp->t_state == TCPS_ESTABLISHED && |
| 2985 | (thflags & (TH_SYN | TH_FIN | TH_RST | TH_URG | TH_ACK | TH_ECE | TH_PUSH)) == TH_ACK && |
| 2986 | ((tp->t_flags & TF_NEEDFIN) == 0) && |
| 2987 | ((to.to_flags & TOF_TS) == 0 || |
| 2988 | TSTMP_GEQ(to.to_tsval, tp->ts_recent)) && |
| 2989 | th->th_seq == tp->rcv_nxt && LIST_EMPTY(&tp->t_segq)) { |
| 2990 | int seg_size = tlen; |
| 2991 | if (tp->iaj_pktcnt <= IAJ_IGNORE_PKTCNT) { |
| 2992 | TCP_INC_VAR(tp->iaj_pktcnt, segment_count); |
| 2993 | } |
| 2994 | |
| 2995 | if (tp->iaj_size == 0 || seg_size > tp->iaj_size || |
| 2996 | (seg_size == tp->iaj_size && tp->iaj_rcv_ts == 0)) { |
| 2997 | /* |
| 2998 | * State related to inter-arrival jitter is |
| 2999 | * uninitialized or we are trying to find a good |
| 3000 | * first packet to start computing the metric |
| 3001 | */ |
| 3002 | update_iaj_state(tp, size: seg_size, rst_size: 0); |
| 3003 | } else { |
| 3004 | if (seg_size == tp->iaj_size) { |
| 3005 | /* |
| 3006 | * Compute inter-arrival jitter taking |
| 3007 | * this packet as the second packet |
| 3008 | */ |
| 3009 | compute_iaj(tp); |
| 3010 | } |
| 3011 | if (seg_size < tp->iaj_size) { |
| 3012 | /* |
| 3013 | * There is a smaller packet in the stream. |
| 3014 | * Some times the maximum size supported |
| 3015 | * on a path can change if there is a new |
| 3016 | * link with smaller MTU. The receiver will |
| 3017 | * not know about this change. If there |
| 3018 | * are too many packets smaller than |
| 3019 | * iaj_size, we try to learn the iaj_size |
| 3020 | * again. |
| 3021 | */ |
| 3022 | TCP_INC_VAR(tp->iaj_small_pkt, segment_count); |
| 3023 | if (tp->iaj_small_pkt > RESET_IAJ_SIZE_THRESH) { |
| 3024 | update_iaj_state(tp, size: seg_size, rst_size: 1); |
| 3025 | } else { |
| 3026 | CLEAR_IAJ_STATE(tp); |
| 3027 | } |
| 3028 | } else { |
| 3029 | update_iaj_state(tp, size: seg_size, rst_size: 0); |
| 3030 | } |
| 3031 | } |
| 3032 | } else { |
| 3033 | CLEAR_IAJ_STATE(tp); |
| 3034 | } |
| 3035 | #endif /* TRAFFIC_MGT */ |
| 3036 | |
| 3037 | /* |
| 3038 | * Header prediction: check for the two common cases |
| 3039 | * of a uni-directional data xfer. If the packet has |
| 3040 | * no control flags, is in-sequence, the window didn't |
| 3041 | * change and we're not retransmitting, it's a |
| 3042 | * candidate. If the length is zero and the ack moved |
| 3043 | * forward, we're the sender side of the xfer. Just |
| 3044 | * free the data acked & wake any higher level process |
| 3045 | * that was blocked waiting for space. If the length |
| 3046 | * is non-zero and the ack didn't move, we're the |
| 3047 | * receiver side. If we're getting packets in-order |
| 3048 | * (the reassembly queue is empty), add the data to |
| 3049 | * the socket buffer and note that we need a delayed ack. |
| 3050 | * Make sure that the hidden state-flags are also off. |
| 3051 | * Since we check for TCPS_ESTABLISHED above, it can only |
| 3052 | * be TH_NEEDSYN. |
| 3053 | */ |
| 3054 | if (tp->t_state == TCPS_ESTABLISHED && |
| 3055 | !(so->so_state & SS_CANTRCVMORE) && |
| 3056 | (thflags & TH_FLAGS) == TH_ACK && |
| 3057 | ((tp->t_flags & TF_NEEDFIN) == 0) && |
| 3058 | ((to.to_flags & TOF_TS) == 0 || |
| 3059 | TSTMP_GEQ(to.to_tsval, tp->ts_recent)) && |
| 3060 | th->th_seq == tp->rcv_nxt && |
| 3061 | tiwin && tiwin == tp->snd_wnd && |
| 3062 | tp->snd_nxt == tp->snd_max) { |
| 3063 | /* |
| 3064 | * If last ACK falls within this segment's sequence numbers, |
| 3065 | * record the timestamp. |
| 3066 | * NOTE that the test is modified according to the latest |
| 3067 | * proposal of the tcplw@cray.com list (Braden 1993/04/26). |
| 3068 | */ |
| 3069 | if ((to.to_flags & TOF_TS) != 0 && |
| 3070 | SEQ_LEQ(th->th_seq, tp->last_ack_sent)) { |
| 3071 | tp->ts_recent_age = tcp_now; |
| 3072 | tp->ts_recent = to.to_tsval; |
| 3073 | } |
| 3074 | |
| 3075 | /* |
| 3076 | * We increment t_unacksegs_ce for both data segments |
| 3077 | * and pure ACKs for Accurate ECN |
| 3078 | */ |
| 3079 | if (TCP_ACC_ECN_ON(tp) && ip_ecn == IPTOS_ECN_CE) { |
| 3080 | TCP_INC_VAR(tp->t_unacksegs_ce, segment_count); |
| 3081 | } |
| 3082 | |
| 3083 | if (tlen == 0) { |
| 3084 | if (SEQ_GT(th->th_ack, tp->snd_una) && |
| 3085 | SEQ_LEQ(th->th_ack, tp->snd_max) && |
| 3086 | tp->snd_cwnd >= tp->snd_ssthresh && |
| 3087 | (!IN_FASTRECOVERY(tp) && |
| 3088 | ((!(SACK_ENABLED(tp)) && |
| 3089 | tp->t_dupacks < tp->t_rexmtthresh) || |
| 3090 | (SACK_ENABLED(tp) && to.to_nsacks == 0 && |
| 3091 | TAILQ_EMPTY(&tp->snd_holes))))) { |
| 3092 | /* |
| 3093 | * this is a pure ack for outstanding data. |
| 3094 | */ |
| 3095 | ++tcpstat.tcps_predack; |
| 3096 | |
| 3097 | tcp_bad_rexmt_check(tp, th, to: &to); |
| 3098 | |
| 3099 | /* Recalculate the RTT */ |
| 3100 | tcp_compute_rtt(tp, to: &to, th); |
| 3101 | |
| 3102 | VERIFY(SEQ_GEQ(th->th_ack, tp->snd_una)); |
| 3103 | acked = BYTES_ACKED(th, tp); |
| 3104 | tcpstat.tcps_rcvackpack++; |
| 3105 | tcpstat.tcps_rcvackbyte += acked; |
| 3106 | |
| 3107 | /* |
| 3108 | * Handle an ack that is in sequence during |
| 3109 | * congestion avoidance phase. The |
| 3110 | * calculations in this function |
| 3111 | * assume that snd_una is not updated yet. |
| 3112 | */ |
| 3113 | if (CC_ALGO(tp)->congestion_avd != NULL) { |
| 3114 | CC_ALGO(tp)->congestion_avd(tp, th); |
| 3115 | } |
| 3116 | tcp_ccdbg_trace(tp, th, event: TCP_CC_INSEQ_ACK_RCVD); |
| 3117 | sbdrop(sb: &so->so_snd, len: acked); |
| 3118 | tcp_sbsnd_trim(sbsnd: &so->so_snd); |
| 3119 | |
| 3120 | if (SEQ_GT(tp->snd_una, tp->snd_recover) && |
| 3121 | SEQ_LEQ(th->th_ack, tp->snd_recover)) { |
| 3122 | tp->snd_recover = th->th_ack - 1; |
| 3123 | } |
| 3124 | |
| 3125 | tcp_update_snd_una(tp, ack: th->th_ack); |
| 3126 | |
| 3127 | TCP_RESET_REXMT_STATE(tp); |
| 3128 | |
| 3129 | /* |
| 3130 | * pull snd_wl2 up to prevent seq wrap relative |
| 3131 | * to th_ack. |
| 3132 | */ |
| 3133 | tp->snd_wl2 = th->th_ack; |
| 3134 | |
| 3135 | if (tp->t_dupacks > 0) { |
| 3136 | tp->t_dupacks = 0; |
| 3137 | tp->t_rexmtthresh = tcprexmtthresh; |
| 3138 | tp->t_new_dupacks = 0; |
| 3139 | } |
| 3140 | |
| 3141 | tp->sackhint.sack_bytes_acked = 0; |
| 3142 | |
| 3143 | /* |
| 3144 | * If all outstanding data are acked, stop |
| 3145 | * retransmit timer, otherwise restart timer |
| 3146 | * using current (possibly backed-off) value. |
| 3147 | * If process is waiting for space, |
| 3148 | * wakeup/selwakeup/signal. If data |
| 3149 | * are ready to send, let tcp_output |
| 3150 | * decide between more output or persist. |
| 3151 | */ |
| 3152 | if (tp->snd_una == tp->snd_max) { |
| 3153 | tp->t_timer[TCPT_REXMT] = 0; |
| 3154 | tp->t_timer[TCPT_PTO] = 0; |
| 3155 | } else if (tp->t_timer[TCPT_PERSIST] == 0) { |
| 3156 | tp->t_timer[TCPT_REXMT] = OFFSET_FROM_START(tp, tp->t_rxtcur); |
| 3157 | } |
| 3158 | if (!SLIST_EMPTY(&tp->t_rxt_segments) && |
| 3159 | !TCP_DSACK_SEQ_IN_WINDOW(tp, |
| 3160 | tp->t_dsack_lastuna, tp->snd_una)) { |
| 3161 | tcp_rxtseg_clean(tp); |
| 3162 | } |
| 3163 | |
| 3164 | if ((tp->t_flagsext & TF_MEASURESNDBW) != 0 && |
| 3165 | tp->t_bwmeas != NULL) { |
| 3166 | tcp_bwmeas_check(tp); |
| 3167 | } |
| 3168 | |
| 3169 | write_wakeup = 1; |
| 3170 | if (!SLIST_EMPTY(&tp->t_notify_ack)) { |
| 3171 | tcp_notify_acknowledgement(tp, so); |
| 3172 | } |
| 3173 | |
| 3174 | if ((so->so_snd.sb_cc) || (tp->t_flags & TF_ACKNOW)) { |
| 3175 | (void) tcp_output(tp); |
| 3176 | } |
| 3177 | |
| 3178 | tcp_tfo_rcv_ack(tp, th); |
| 3179 | |
| 3180 | m_freem(m); |
| 3181 | |
| 3182 | tcp_check_timer_state(tp); |
| 3183 | |
| 3184 | tcp_handle_wakeup(so, read_wakeup, write_wakeup); |
| 3185 | |
| 3186 | socket_unlock(so, refcount: 1); |
| 3187 | KERNEL_DEBUG(DBG_FNC_TCP_INPUT | DBG_FUNC_END, 0, 0, 0, 0, 0); |
| 3188 | return; |
| 3189 | } |
| 3190 | } else if (th->th_ack == tp->snd_una && LIST_EMPTY(&tp->t_segq) && |
| 3191 | tlen <= tcp_sbspace(tp)) { |
| 3192 | /* |
| 3193 | * this is a pure, in-sequence data packet |
| 3194 | * with nothing on the reassembly queue and |
| 3195 | * we have enough buffer space to take it. |
| 3196 | */ |
| 3197 | |
| 3198 | /* Clean receiver SACK report if present */ |
| 3199 | if (SACK_ENABLED(tp) && tp->rcv_numsacks) { |
| 3200 | tcp_clean_sackreport(tp); |
| 3201 | } |
| 3202 | ++tcpstat.tcps_preddat; |
| 3203 | tp->rcv_nxt += tlen; |
| 3204 | /* Update highest received sequence and its timestamp */ |
| 3205 | if (SEQ_LT(tp->rcv_high, tp->rcv_nxt)) { |
| 3206 | tp->rcv_high = tp->rcv_nxt; |
| 3207 | if (to.to_flags & TOF_TS) { |
| 3208 | tp->tsv_high = to.to_tsval; |
| 3209 | } |
| 3210 | } |
| 3211 | |
| 3212 | /* |
| 3213 | * Pull snd_wl1 up to prevent seq wrap relative to |
| 3214 | * th_seq. |
| 3215 | */ |
| 3216 | tp->snd_wl1 = th->th_seq; |
| 3217 | /* |
| 3218 | * Pull rcv_up up to prevent seq wrap relative to |
| 3219 | * rcv_nxt. |
| 3220 | */ |
| 3221 | tp->rcv_up = tp->rcv_nxt; |
| 3222 | TCP_INC_VAR(tcpstat.tcps_rcvpack, segment_count); |
| 3223 | tcpstat.tcps_rcvbyte += tlen; |
| 3224 | if (nstat_collect) { |
| 3225 | INP_ADD_STAT(inp, cell, wifi, wired, |
| 3226 | rxpackets, 1); |
| 3227 | INP_ADD_STAT(inp, cell, wifi, wired, rxbytes, |
| 3228 | tlen); |
| 3229 | inp_set_activity_bitmap(inp); |
| 3230 | } |
| 3231 | |
| 3232 | /* Calculate the RTT on the receiver */ |
| 3233 | tcp_compute_rcv_rtt(tp, to: &to, th); |
| 3234 | |
| 3235 | tcp_sbrcv_grow(tp, sbrcv: &so->so_rcv, to: &to, pktlen: tlen); |
| 3236 | if (TCP_USE_RLEDBAT(tp, so) && tcp_cc_rledbat.data_rcvd != NULL) { |
| 3237 | tcp_cc_rledbat.data_rcvd(tp, th, &to, tlen); |
| 3238 | } |
| 3239 | |
| 3240 | /* |
| 3241 | * Add data to socket buffer. |
| 3242 | */ |
| 3243 | so_recv_data_stat(so, m, 0); |
| 3244 | m_adj(m, drop_hdrlen); /* delayed header drop */ |
| 3245 | |
| 3246 | if (isipv6) { |
| 3247 | memcpy(dst: &saved_hdr, src: ip6, n: sizeof(struct ip6_hdr)); |
| 3248 | ip6 = (struct ip6_hdr *)&saved_hdr[0]; |
| 3249 | } else { |
| 3250 | memcpy(dst: &saved_hdr, src: ip, n: ip->ip_hl << 2); |
| 3251 | ip = (struct ip *)&saved_hdr[0]; |
| 3252 | } |
| 3253 | memcpy(dst: &saved_tcphdr, src: th, n: sizeof(struct tcphdr)); |
| 3254 | |
| 3255 | if (th->th_flags & TH_PUSH) { |
| 3256 | tp->t_flagsext |= TF_LAST_IS_PSH; |
| 3257 | } else { |
| 3258 | tp->t_flagsext &= ~TF_LAST_IS_PSH; |
| 3259 | } |
| 3260 | |
| 3261 | if (sbappendstream_rcvdemux(so, m)) { |
| 3262 | mptcp_handle_input(so); |
| 3263 | read_wakeup = 1; |
| 3264 | } |
| 3265 | th = &saved_tcphdr; |
| 3266 | |
| 3267 | if (isipv6) { |
| 3268 | KERNEL_DEBUG(DBG_LAYER_END, ((th->th_dport << 16) | th->th_sport), |
| 3269 | (((ip6->ip6_src.s6_addr16[0]) << 16) | (ip6->ip6_dst.s6_addr16[0])), |
| 3270 | th->th_seq, th->th_ack, th->th_win); |
| 3271 | } else { |
| 3272 | KERNEL_DEBUG(DBG_LAYER_END, ((th->th_dport << 16) | th->th_sport), |
| 3273 | (((ip->ip_src.s_addr & 0xffff) << 16) | (ip->ip_dst.s_addr & 0xffff)), |
| 3274 | th->th_seq, th->th_ack, th->th_win); |
| 3275 | } |
| 3276 | TCP_INC_VAR(tp->t_unacksegs, segment_count); |
| 3277 | if (DELAY_ACK(tp, th)) { |
| 3278 | if ((tp->t_flags & TF_DELACK) == 0) { |
| 3279 | tp->t_flags |= TF_DELACK; |
| 3280 | tp->t_timer[TCPT_DELACK] = OFFSET_FROM_START(tp, tcp_delack); |
| 3281 | } |
| 3282 | } else { |
| 3283 | tp->t_flags |= TF_ACKNOW; |
| 3284 | tcp_output(tp); |
| 3285 | } |
| 3286 | |
| 3287 | tcp_adaptive_rwtimo_check(tp, tlen); |
| 3288 | |
| 3289 | if (tlen > 0) { |
| 3290 | tcp_tfo_rcv_data(tp); |
| 3291 | } |
| 3292 | |
| 3293 | tcp_check_timer_state(tp); |
| 3294 | |
| 3295 | tcp_handle_wakeup(so, read_wakeup, write_wakeup); |
| 3296 | |
| 3297 | socket_unlock(so, refcount: 1); |
| 3298 | KERNEL_DEBUG(DBG_FNC_TCP_INPUT | DBG_FUNC_END, 0, 0, 0, 0, 0); |
| 3299 | return; |
| 3300 | } |
| 3301 | } |
| 3302 | |
| 3303 | /* |
| 3304 | * Calculate amount of space in receive window, |
| 3305 | * and then do TCP input processing. |
| 3306 | * Receive window is amount of space in rcv queue, |
| 3307 | * but not less than advertised window. |
| 3308 | */ |
| 3309 | socket_lock_assert_owned(so); |
| 3310 | win = tcp_sbspace(tp); |
| 3311 | if (win < 0) { |
| 3312 | win = 0; |
| 3313 | } else { /* clip rcv window to 4K for modems */ |
| 3314 | if (tp->t_flags & TF_SLOWLINK && slowlink_wsize > 0) { |
| 3315 | win = min(a: win, b: slowlink_wsize); |
| 3316 | } |
| 3317 | } |
| 3318 | tp->rcv_wnd = imax(a: win, b: (int)(tp->rcv_adv - tp->rcv_nxt)); |
| 3319 | #if MPTCP |
| 3320 | /* |
| 3321 | * Ensure that the subflow receive window isn't greater |
| 3322 | * than the connection level receive window. |
| 3323 | */ |
| 3324 | if ((tp->t_mpflags & TMPF_MPTCP_TRUE) && (mp_tp = tptomptp(tp))) { |
| 3325 | socket_lock_assert_owned(so: mptetoso(mpte: mp_tp->mpt_mpte)); |
| 3326 | int64_t recwin_conn = (int64_t)(mp_tp->mpt_rcvadv - mp_tp->mpt_rcvnxt); |
| 3327 | |
| 3328 | VERIFY(recwin_conn < INT32_MAX && recwin_conn > INT32_MIN); |
| 3329 | if (recwin_conn > 0 && tp->rcv_wnd > (uint32_t)recwin_conn) { |
| 3330 | tp->rcv_wnd = (uint32_t)recwin_conn; |
| 3331 | tcpstat.tcps_mp_reducedwin++; |
| 3332 | } |
| 3333 | } |
| 3334 | #endif /* MPTCP */ |
| 3335 | |
| 3336 | switch (tp->t_state) { |
| 3337 | /* |
| 3338 | * Initialize tp->rcv_nxt, and tp->irs, select an initial |
| 3339 | * tp->iss, and send a segment: |
| 3340 | * <SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK> |
| 3341 | * Also initialize tp->snd_nxt to tp->iss+1 and tp->snd_una to tp->iss. |
| 3342 | * Fill in remote peer address fields if not previously specified. |
| 3343 | * Enter SYN_RECEIVED state, and process any other fields of this |
| 3344 | * segment in this state. |
| 3345 | */ |
| 3346 | case TCPS_LISTEN: { |
| 3347 | struct sockaddr_in *sin; |
| 3348 | struct sockaddr_in6 *sin6; |
| 3349 | |
| 3350 | socket_lock_assert_owned(so); |
| 3351 | |
| 3352 | /* Clear the logging flags inherited from the listening socket */ |
| 3353 | inp->inp_log_flags = 0; |
| 3354 | inp->inp_flags2 |= INP2_LOGGED_SUMMARY; |
| 3355 | |
| 3356 | if (isipv6) { |
| 3357 | sin6 = kalloc_type(struct sockaddr_in6, Z_NOWAIT | Z_ZERO); |
| 3358 | if (sin6 == NULL) { |
| 3359 | TCP_LOG_DROP_PCB(TCP_LOG_HDR, th, tp, false, "LISTEN kalloc_type failed" ); |
| 3360 | goto drop; |
| 3361 | } |
| 3362 | sin6->sin6_family = AF_INET6; |
| 3363 | sin6->sin6_len = sizeof(*sin6); |
| 3364 | sin6->sin6_addr = ip6->ip6_src; |
| 3365 | sin6->sin6_port = th->th_sport; |
| 3366 | if (!in6_embedded_scope && IN6_IS_SCOPE_EMBED(&ip6->ip6_src)) { |
| 3367 | sin6->sin6_scope_id = ip6_input_getsrcifscope(m); |
| 3368 | } |
| 3369 | laddr6 = inp->in6p_laddr; |
| 3370 | uint32_t lifscope = inp->inp_lifscope; |
| 3371 | if (IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr)) { |
| 3372 | inp->in6p_laddr = ip6->ip6_dst; |
| 3373 | inp->inp_lifscope = in6_addr2scopeid(ifp, &inp->in6p_laddr); |
| 3374 | in6_verify_ifscope(&inp->in6p_laddr, inp->inp_lifscope); |
| 3375 | } |
| 3376 | if (in6_pcbconnect(inp, SA(sin6), kernel_proc)) { |
| 3377 | inp->in6p_laddr = laddr6; |
| 3378 | kfree_type(struct sockaddr_in6, sin6); |
| 3379 | inp->inp_lifscope = lifscope; |
| 3380 | in6_verify_ifscope(&inp->in6p_laddr, inp->inp_lifscope); |
| 3381 | TCP_LOG_DROP_PCB(TCP_LOG_HDR, th, tp, false, " LISTEN in6_pcbconnect failed" ); |
| 3382 | goto drop; |
| 3383 | } |
| 3384 | kfree_type(struct sockaddr_in6, sin6); |
| 3385 | } else { |
| 3386 | socket_lock_assert_owned(so); |
| 3387 | sin = kalloc_type(struct sockaddr_in, Z_NOWAIT); |
| 3388 | if (sin == NULL) { |
| 3389 | TCP_LOG_DROP_PCB(TCP_LOG_HDR, th, tp, false, "LISTEN kalloc_type failed" ); |
| 3390 | goto drop; |
| 3391 | } |
| 3392 | sin->sin_family = AF_INET; |
| 3393 | sin->sin_len = sizeof(*sin); |
| 3394 | sin->sin_addr = ip->ip_src; |
| 3395 | sin->sin_port = th->th_sport; |
| 3396 | bzero(s: (caddr_t)sin->sin_zero, n: sizeof(sin->sin_zero)); |
| 3397 | laddr = inp->inp_laddr; |
| 3398 | if (inp->inp_laddr.s_addr == INADDR_ANY) { |
| 3399 | inp->inp_laddr = ip->ip_dst; |
| 3400 | } |
| 3401 | if (in_pcbconnect(inp, SA(sin), kernel_proc, IFSCOPE_NONE, NULL)) { |
| 3402 | inp->inp_laddr = laddr; |
| 3403 | kfree_type(struct sockaddr_in, sin); |
| 3404 | TCP_LOG_DROP_PCB(TCP_LOG_HDR, th, tp, false, " LISTEN in_pcbconnect failed" ); |
| 3405 | goto drop; |
| 3406 | } |
| 3407 | kfree_type(struct sockaddr_in, sin); |
| 3408 | } |
| 3409 | |
| 3410 | tcp_dooptions(tp, optp, optlen, th, &to); |
| 3411 | tcp_finalize_options(tp, &to, ifscope); |
| 3412 | |
| 3413 | if (tfo_enabled(tp) && tcp_tfo_syn(tp, to: &to)) { |
| 3414 | isconnected = TRUE; |
| 3415 | } |
| 3416 | |
| 3417 | if (iss) { |
| 3418 | tp->iss = iss; |
| 3419 | } else { |
| 3420 | tp->iss = tcp_new_isn(tp); |
| 3421 | } |
| 3422 | tp->irs = th->th_seq; |
| 3423 | tcp_sendseqinit(tp); |
| 3424 | tcp_rcvseqinit(tp); |
| 3425 | tp->snd_recover = tp->snd_una; |
| 3426 | /* |
| 3427 | * Initialization of the tcpcb for transaction; |
| 3428 | * set SND.WND = SEG.WND, |
| 3429 | * initialize CCsend and CCrecv. |
| 3430 | */ |
| 3431 | tp->snd_wnd = tiwin; /* initial send-window */ |
| 3432 | tp->max_sndwnd = tp->snd_wnd; |
| 3433 | tp->t_flags |= TF_ACKNOW; |
| 3434 | tp->t_unacksegs = 0; |
| 3435 | tp->t_unacksegs_ce = 0; |
| 3436 | DTRACE_TCP4(state__change, void, NULL, struct inpcb *, inp, |
| 3437 | struct tcpcb *, tp, int32_t, TCPS_SYN_RECEIVED); |
| 3438 | TCP_LOG_STATE(tp, TCPS_SYN_RECEIVED); |
| 3439 | tp->t_state = TCPS_SYN_RECEIVED; |
| 3440 | tp->t_timer[TCPT_KEEP] = OFFSET_FROM_START(tp, |
| 3441 | TCP_CONN_KEEPINIT(tp)); |
| 3442 | tp->t_connect_time = tcp_now; |
| 3443 | dropsocket = 0; /* committed to socket */ |
| 3444 | |
| 3445 | if (inp->inp_flowhash == 0) { |
| 3446 | inp_calc_flowhash(inp); |
| 3447 | ASSERT(inp->inp_flowhash != 0); |
| 3448 | } |
| 3449 | /* update flowinfo - RFC 6437 */ |
| 3450 | if (inp->inp_flow == 0 && |
| 3451 | inp->in6p_flags & IN6P_AUTOFLOWLABEL) { |
| 3452 | inp->inp_flow &= ~IPV6_FLOWLABEL_MASK; |
| 3453 | inp->inp_flow |= |
| 3454 | (htonl(ip6_randomflowlabel()) & IPV6_FLOWLABEL_MASK); |
| 3455 | } |
| 3456 | |
| 3457 | /* reset the incomp processing flag */ |
| 3458 | so->so_flags &= ~(SOF_INCOMP_INPROGRESS); |
| 3459 | tcpstat.tcps_accepts++; |
| 3460 | |
| 3461 | int ace_flags = ((th->th_x2 << 8) | thflags) & TH_ACE; |
| 3462 | tcp_input_process_accecn_syn(tp, ace_flags, ip_ecn); |
| 3463 | |
| 3464 | /* |
| 3465 | * The address and connection state are finalized |
| 3466 | */ |
| 3467 | TCP_LOG_CONNECT(tp, false, 0); |
| 3468 | |
| 3469 | tcp_add_fsw_flow(tp, ifp); |
| 3470 | |
| 3471 | goto trimthenstep6; |
| 3472 | } |
| 3473 | |
| 3474 | /* |
| 3475 | * If the state is SYN_RECEIVED and the seg contains an ACK, |
| 3476 | * but not for our SYN/ACK, send a RST. |
| 3477 | */ |
| 3478 | case TCPS_SYN_RECEIVED: |
| 3479 | if ((thflags & TH_ACK) && |
| 3480 | (SEQ_LEQ(th->th_ack, tp->snd_una) || |
| 3481 | SEQ_GT(th->th_ack, tp->snd_max))) { |
| 3482 | IF_TCP_STATINC(ifp, ooopacket); |
| 3483 | TCP_LOG_DROP_PCB(TCP_LOG_HDR, th, tp, false, "SYN_RECEIVED bad ACK" ); |
| 3484 | goto dropwithreset; |
| 3485 | } |
| 3486 | |
| 3487 | /* |
| 3488 | * In SYN_RECEIVED state, if we recv some SYNS with |
| 3489 | * window scale and others without, window scaling should |
| 3490 | * be disabled. Otherwise the window advertised will be |
| 3491 | * lower if we assume scaling and the other end does not. |
| 3492 | */ |
| 3493 | if ((thflags & TH_SYN) && |
| 3494 | (tp->irs == th->th_seq) && |
| 3495 | !(to.to_flags & TOF_SCALE)) { |
| 3496 | tp->t_flags &= ~TF_RCVD_SCALE; |
| 3497 | } |
| 3498 | break; |
| 3499 | |
| 3500 | /* |
| 3501 | * If the state is SYN_SENT: |
| 3502 | * if seg contains an ACK, but not for our SYN, drop the input. |
| 3503 | * if seg contains a RST, then drop the connection. |
| 3504 | * if seg does not contain SYN, then drop it. |
| 3505 | * Otherwise this is an acceptable SYN segment |
| 3506 | * initialize tp->rcv_nxt and tp->irs |
| 3507 | * if seg contains ack then advance tp->snd_una |
| 3508 | * if SYN has been acked change to ESTABLISHED else SYN_RCVD state |
| 3509 | * arrange for segment to be acked (eventually) |
| 3510 | * continue processing rest of data/controls, beginning with URG |
| 3511 | */ |
| 3512 | case TCPS_SYN_SENT: |
| 3513 | if ((thflags & TH_ACK) && |
| 3514 | (SEQ_LEQ(th->th_ack, tp->iss) || |
| 3515 | SEQ_GT(th->th_ack, tp->snd_max))) { |
| 3516 | IF_TCP_STATINC(ifp, ooopacket); |
| 3517 | TCP_LOG_DROP_PCB(TCP_LOG_HDR, th, tp, false, "SYN_SENT bad ACK" ); |
| 3518 | goto dropwithreset; |
| 3519 | } |
| 3520 | if (thflags & TH_RST) { |
| 3521 | if ((thflags & TH_ACK) != 0) { |
| 3522 | if (tfo_enabled(tp) && |
| 3523 | !(tp->t_flagsext & TF_FASTOPEN_FORCE_ENABLE)) { |
| 3524 | tcp_heuristic_tfo_rst(tp); |
| 3525 | } |
| 3526 | if ((tp->ecn_flags & (TE_SETUPSENT | TE_RCVD_SYN_RST)) == TE_SETUPSENT || |
| 3527 | (tp->ecn_flags & (TE_ACE_SETUPSENT | TE_RCVD_SYN_RST)) == TE_ACE_SETUPSENT) { |
| 3528 | /* |
| 3529 | * On local connections, send |
| 3530 | * non-ECN syn one time before |
| 3531 | * dropping the connection |
| 3532 | */ |
| 3533 | if (tp->t_flags & TF_LOCAL) { |
| 3534 | tp->ecn_flags |= TE_RCVD_SYN_RST; |
| 3535 | goto drop; |
| 3536 | } else { |
| 3537 | tcp_heuristic_ecn_synrst(tp); |
| 3538 | } |
| 3539 | } |
| 3540 | soevent(so, |
| 3541 | hint: (SO_FILT_HINT_LOCKED | |
| 3542 | SO_FILT_HINT_CONNRESET)); |
| 3543 | tp = tcp_drop(tp, ECONNREFUSED); |
| 3544 | } |
| 3545 | TCP_LOG_DROP_PCB(TCP_LOG_HDR, th, tp, false, "SYN_SENT got RST" ); |
| 3546 | goto drop; |
| 3547 | } |
| 3548 | if ((thflags & TH_SYN) == 0) { |
| 3549 | TCP_LOG_DROP_PCB(TCP_LOG_HDR, th, tp, false, "SYN_SENT no SYN" ); |
| 3550 | goto drop; |
| 3551 | } |
| 3552 | tp->snd_wnd = th->th_win; /* initial send window */ |
| 3553 | tp->max_sndwnd = tp->snd_wnd; |
| 3554 | |
| 3555 | tp->irs = th->th_seq; |
| 3556 | tcp_rcvseqinit(tp); |
| 3557 | if (thflags & TH_ACK) { |
| 3558 | /* Client processes SYN-ACK */ |
| 3559 | tcpstat.tcps_connects++; |
| 3560 | |
| 3561 | const uint32_t ace_flags = ((th->th_x2 << 8) | thflags) & TH_ACE; |
| 3562 | |
| 3563 | if ((thflags & (TH_ECE | TH_CWR)) == (TH_ECE)) { |
| 3564 | /* Receiving Any|0|1 is classic ECN-setup SYN-ACK */ |
| 3565 | tp->ecn_flags |= TE_SETUPRECEIVED; |
| 3566 | if (TCP_ECN_ENABLED(tp)) { |
| 3567 | tcp_heuristic_ecn_success(tp); |
| 3568 | tcpstat.tcps_ecn_client_success++; |
| 3569 | } |
| 3570 | |
| 3571 | if (tp->ecn_flags & TE_ACE_SETUPSENT) { |
| 3572 | /* |
| 3573 | * Sent AccECN SYN but received classic ECN SYN-ACK |
| 3574 | * Set classic ECN related flags |
| 3575 | */ |
| 3576 | tp->ecn_flags |= (TE_SETUPSENT | TE_SENDIPECT); |
| 3577 | tp->ecn_flags &= ~TE_ACE_SETUPSENT; |
| 3578 | if (tp->t_client_accecn_state == tcp_connection_client_accurate_ecn_feature_enabled) { |
| 3579 | tp->t_client_accecn_state = tcp_connection_client_classic_ecn_available; |
| 3580 | } |
| 3581 | } |
| 3582 | } else if (TCP_ACC_ECN_ENABLED(tp) && ace_flags != 0 && |
| 3583 | ace_flags != TH_ACE) { |
| 3584 | /* Initialize sender side packet & byte counters */ |
| 3585 | tp->t_snd_ce_packets = 5; |
| 3586 | tp->t_snd_ect1_bytes = tp->t_snd_ect0_bytes = 1; |
| 3587 | tp->t_snd_ce_bytes = 0; |
| 3588 | tp->ecn_flags |= TE_ACE_FINAL_ACK_3WHS; |
| 3589 | /* |
| 3590 | * Client received AccECN SYN-ACK that reflects the state (ECN) |
| 3591 | * in which SYN packet was delivered. This helps to detect if |
| 3592 | * there was mangling of the SYN packet on the path. Currently, we |
| 3593 | * only send Not-ECT on SYN packets. So, we should set Not-ECT in |
| 3594 | * all packets if we receive any encoding other than 0|TH_CWR|0. |
| 3595 | * If 0|0|0 and 1|1|1 were received, fail Accurate ECN negotiation |
| 3596 | * by not setting TE_ACE_SETUPRECEIVED. |
| 3597 | */ |
| 3598 | switch (ace_flags) { |
| 3599 | case (0 | TH_CWR | 0): |
| 3600 | /* Non-ECT SYN was delivered */ |
| 3601 | tp->ecn_flags |= TE_ACE_SETUPRECEIVED; |
| 3602 | tcpstat.tcps_ecn_ace_syn_not_ect++; |
| 3603 | tp->t_client_accecn_state = tcp_connection_client_accurate_ecn_negotiation_success; |
| 3604 | break; |
| 3605 | case (0 | TH_CWR | TH_ECE): |
| 3606 | /* ECT1 SYN was delivered */ |
| 3607 | tp->ecn_flags |= TE_ACE_SETUPRECEIVED; |
| 3608 | /* Mangling detected, set Non-ECT on outgoing packets */ |
| 3609 | tp->ecn_flags &= ~TE_SENDIPECT; |
| 3610 | tcpstat.tcps_ecn_ace_syn_ect1++; |
| 3611 | tp->t_client_accecn_state = tcp_connection_client_accurate_ecn_negotiation_success_ect_mangling_detected; |
| 3612 | break; |
| 3613 | case (TH_AE | 0 | 0): |
| 3614 | /* ECT0 SYN was delivered */ |
| 3615 | tp->ecn_flags |= TE_ACE_SETUPRECEIVED; |
| 3616 | /* Mangling detected, set Non-ECT on outgoing packets */ |
| 3617 | tp->ecn_flags &= ~TE_SENDIPECT; |
| 3618 | tcpstat.tcps_ecn_ace_syn_ect0++; |
| 3619 | tp->t_client_accecn_state = tcp_connection_client_accurate_ecn_negotiation_success_ect_mangling_detected; |
| 3620 | break; |
| 3621 | case (TH_AE | TH_CWR | 0): |
| 3622 | /* CE SYN was delivered */ |
| 3623 | tp->ecn_flags |= TE_ACE_SETUPRECEIVED; |
| 3624 | /* Mangling detected, set Non-ECT on outgoing packets */ |
| 3625 | tp->t_client_accecn_state = tcp_connection_client_accurate_ecn_negotiation_success_ect_mangling_detected; |
| 3626 | tp->ecn_flags &= ~TE_SENDIPECT; |
| 3627 | /* |
| 3628 | * Although we don't send ECT SYN yet, it is possible that |
| 3629 | * a network element changed Not-ECT to ECT and later there |
| 3630 | * was congestion at another network element that set it to CE. |
| 3631 | * To keep it simple, we will consider this as a congestion event |
| 3632 | * for the congestion controller. |
| 3633 | * If a TCP client in AccECN mode receives CE feedback in the TCP |
| 3634 | * flags of a SYN/ACK, it MUST NOT increment s.cep. |
| 3635 | */ |
| 3636 | tcpstat.tcps_ecn_ace_syn_ce++; |
| 3637 | break; |
| 3638 | default: |
| 3639 | break; |
| 3640 | } |
| 3641 | if (TCP_ECN_ENABLED(tp)) { |
| 3642 | tcp_heuristic_ecn_success(tp); |
| 3643 | tcpstat.tcps_ecn_client_success++; |
| 3644 | } |
| 3645 | /* |
| 3646 | * A TCP client in AccECN mode MUST feed back which of the 4 |
| 3647 | * possible values of the IP-ECN field that was received in the |
| 3648 | * SYN/ACK. Set the setup flag for final ACK accordingly. |
| 3649 | * We will initialize r.cep, r.e1b, r.e0b first and then increment |
| 3650 | * if CE was set on the IP-ECN field of the SYN-ACK. |
| 3651 | */ |
| 3652 | tp->t_rcv_ce_packets = 5; |
| 3653 | tp->t_rcv_ect0_bytes = tp->t_rcv_ect1_bytes = 1; |
| 3654 | tp->t_rcv_ce_bytes = 0; |
| 3655 | |
| 3656 | /* Increment packet & byte counters based on IP-ECN */ |
| 3657 | tcp_input_ip_ecn(tp, inp, tlen: (uint32_t)tlen, segment_count: (uint32_t)segment_count, ip_ecn); |
| 3658 | |
| 3659 | switch (ip_ecn) { |
| 3660 | case IPTOS_ECN_NOTECT: |
| 3661 | /* Not-ECT SYN-ACK was received */ |
| 3662 | tp->ecn_flags |= TE_ACE_SETUP_NON_ECT; |
| 3663 | break; |
| 3664 | case IPTOS_ECN_ECT1: |
| 3665 | /* ECT1 SYN-ACK was received */ |
| 3666 | tp->ecn_flags |= TE_ACE_SETUP_ECT1; |
| 3667 | break; |
| 3668 | case IPTOS_ECN_ECT0: |
| 3669 | /* ECT0 SYN-ACK was received */ |
| 3670 | tp->ecn_flags |= TE_ACE_SETUP_ECT0; |
| 3671 | break; |
| 3672 | case IPTOS_ECN_CE: |
| 3673 | tp->ecn_flags |= TE_ACE_SETUP_CE; |
| 3674 | break; |
| 3675 | } |
| 3676 | } else { |
| 3677 | if ((tp->ecn_flags & (TE_SETUPSENT | TE_ACE_SETUPSENT)) && |
| 3678 | tp->t_rxtshift == 0) { |
| 3679 | tcp_heuristic_ecn_success(tp); |
| 3680 | tcpstat.tcps_ecn_not_supported++; |
| 3681 | } |
| 3682 | if ((tp->ecn_flags & (TE_SETUPSENT | TE_ACE_SETUPSENT)) && |
| 3683 | tp->t_rxtshift > 0) { |
| 3684 | tcp_heuristic_ecn_loss(tp); |
| 3685 | } |
| 3686 | |
| 3687 | /* non-ECN-setup SYN-ACK */ |
| 3688 | tp->ecn_flags &= ~TE_SENDIPECT; |
| 3689 | /* |
| 3690 | * If Accurate ECN SYN was retransmitted twice and non-ECN SYN-ACK |
| 3691 | * was received, then we consider it as Accurate ECN blackholing |
| 3692 | */ |
| 3693 | if ((tp->ecn_flags & TE_LOST_SYN) && tp->t_rxtshift <= 2 && |
| 3694 | tp->t_client_accecn_state == tcp_connection_client_accurate_ecn_feature_enabled) { |
| 3695 | tp->t_client_accecn_state = tcp_connection_client_accurate_ecn_negotiation_blackholed; |
| 3696 | } |
| 3697 | /* |
| 3698 | * If SYN wasn't retransmitted twice yet, the server supports neither classic nor |
| 3699 | * accurate ECN SYN-ACK. Accurate ECN should already be disabled for both half connections |
| 3700 | * as TE_ACE_SETUPRECEIVED flag is not set. |
| 3701 | */ |
| 3702 | if (tp->t_client_accecn_state == tcp_connection_client_accurate_ecn_feature_enabled) { |
| 3703 | tp->t_client_accecn_state = tcp_connection_client_ecn_not_available; |
| 3704 | } |
| 3705 | } |
| 3706 | |
| 3707 | /* Do window scaling on this connection? */ |
| 3708 | if (TCP_WINDOW_SCALE_ENABLED(tp)) { |
| 3709 | tp->snd_scale = tp->requested_s_scale; |
| 3710 | tp->rcv_scale = tp->request_r_scale; |
| 3711 | } |
| 3712 | |
| 3713 | uint32_t recwin = min(a: tp->rcv_wnd, TCP_MAXWIN << tp->rcv_scale); |
| 3714 | if (TCP_USE_RLEDBAT(tp, so) && tcp_cc_rledbat.get_rlwin != NULL) { |
| 3715 | /* For a LBE receiver, also use rledbat_win */ |
| 3716 | uint32_t rledbat_win = tcp_cc_rledbat.get_rlwin(tp); |
| 3717 | if (rledbat_win > 0) { |
| 3718 | recwin = min(a: recwin, b: rledbat_win); |
| 3719 | } |
| 3720 | } |
| 3721 | tp->rcv_adv += recwin; |
| 3722 | |
| 3723 | tp->snd_una++; /* SYN is acked */ |
| 3724 | if (SEQ_LT(tp->snd_nxt, tp->snd_una)) { |
| 3725 | tp->snd_nxt = tp->snd_una; |
| 3726 | } |
| 3727 | |
| 3728 | /* |
| 3729 | * We have sent more in the SYN than what is being |
| 3730 | * acked. (e.g., TFO) |
| 3731 | * We should restart the sending from what the receiver |
| 3732 | * has acknowledged immediately. |
| 3733 | */ |
| 3734 | if (SEQ_GT(tp->snd_nxt, th->th_ack)) { |
| 3735 | /* |
| 3736 | * rdar://problem/33214601 |
| 3737 | * There is a middlebox that acks all but one |
| 3738 | * byte and still drops the data. |
| 3739 | */ |
| 3740 | if (!(tp->t_flagsext & TF_FASTOPEN_FORCE_ENABLE) && |
| 3741 | (tp->t_tfo_stats & TFO_S_SYN_DATA_SENT) && |
| 3742 | tp->snd_max == th->th_ack + 1 && |
| 3743 | tp->snd_max > tp->snd_una + 1) { |
| 3744 | tcp_heuristic_tfo_middlebox(tp); |
| 3745 | |
| 3746 | so->so_error = ENODATA; |
| 3747 | soevent(so, |
| 3748 | hint: (SO_FILT_HINT_LOCKED | SO_FILT_HINT_MP_SUB_ERROR)); |
| 3749 | |
| 3750 | tp->t_tfo_stats |= TFO_S_ONE_BYTE_PROXY; |
| 3751 | } |
| 3752 | |
| 3753 | tp->snd_max = tp->snd_nxt = th->th_ack; |
| 3754 | } |
| 3755 | |
| 3756 | /* |
| 3757 | * If there's data, delay ACK; if there's also a FIN |
| 3758 | * ACKNOW will be turned on later. |
| 3759 | */ |
| 3760 | TCP_INC_VAR(tp->t_unacksegs, segment_count); |
| 3761 | if (TCP_ACC_ECN_ON(tp) && ip_ecn == IPTOS_ECN_CE) { |
| 3762 | TCP_INC_VAR(tp->t_unacksegs_ce, segment_count); |
| 3763 | } |
| 3764 | if (DELAY_ACK(tp, th) && tlen != 0) { |
| 3765 | if ((tp->t_flags & TF_DELACK) == 0) { |
| 3766 | tp->t_flags |= TF_DELACK; |
| 3767 | tp->t_timer[TCPT_DELACK] = OFFSET_FROM_START(tp, tcp_delack); |
| 3768 | } |
| 3769 | } else { |
| 3770 | tp->t_flags |= TF_ACKNOW; |
| 3771 | } |
| 3772 | /* |
| 3773 | * Received <SYN,ACK> in SYN_SENT[*] state. |
| 3774 | * Transitions: |
| 3775 | * SYN_SENT --> ESTABLISHED |
| 3776 | * SYN_SENT* --> FIN_WAIT_1 |
| 3777 | */ |
| 3778 | tp->t_starttime = tcp_now; |
| 3779 | tcp_sbrcv_tstmp_check(tp); |
| 3780 | if (tp->t_flags & TF_NEEDFIN) { |
| 3781 | DTRACE_TCP4(state__change, void, NULL, |
| 3782 | struct inpcb *, inp, |
| 3783 | struct tcpcb *, tp, int32_t, |
| 3784 | TCPS_FIN_WAIT_1); |
| 3785 | TCP_LOG_STATE(tp, TCPS_FIN_WAIT_1); |
| 3786 | tp->t_state = TCPS_FIN_WAIT_1; |
| 3787 | tp->t_flags &= ~TF_NEEDFIN; |
| 3788 | thflags &= ~TH_SYN; |
| 3789 | |
| 3790 | TCP_LOG_CONNECTION_SUMMARY(tp); |
| 3791 | } else { |
| 3792 | DTRACE_TCP4(state__change, void, NULL, |
| 3793 | struct inpcb *, inp, struct tcpcb *, |
| 3794 | tp, int32_t, TCPS_ESTABLISHED); |
| 3795 | TCP_LOG_STATE(tp, TCPS_ESTABLISHED); |
| 3796 | tp->t_state = TCPS_ESTABLISHED; |
| 3797 | tp->t_timer[TCPT_KEEP] = |
| 3798 | OFFSET_FROM_START(tp, |
| 3799 | TCP_CONN_KEEPIDLE(tp)); |
| 3800 | if (nstat_collect) { |
| 3801 | nstat_route_connect_success( |
| 3802 | rte: inp->inp_route.ro_rt); |
| 3803 | } |
| 3804 | TCP_LOG_CONNECTED(tp, 0); |
| 3805 | /* |
| 3806 | * The SYN is acknowledged but una is not |
| 3807 | * updated yet. So pass the value of |
| 3808 | * ack to compute sndbytes correctly |
| 3809 | */ |
| 3810 | inp_count_sndbytes(inp, th->th_ack); |
| 3811 | } |
| 3812 | tp->t_forced_acks = TCP_FORCED_ACKS_COUNT; |
| 3813 | #if MPTCP |
| 3814 | /* |
| 3815 | * Do not send the connect notification for additional |
| 3816 | * subflows until ACK for 3-way handshake arrives. |
| 3817 | */ |
| 3818 | if ((!(tp->t_mpflags & TMPF_MPTCP_TRUE)) && |
| 3819 | (tp->t_mpflags & TMPF_SENT_JOIN)) { |
| 3820 | isconnected = FALSE; |
| 3821 | } else |
| 3822 | #endif /* MPTCP */ |
| 3823 | isconnected = TRUE; |
| 3824 | |
| 3825 | if ((tp->t_tfo_flags & (TFO_F_COOKIE_REQ | TFO_F_COOKIE_SENT)) || |
| 3826 | (tp->t_tfo_stats & TFO_S_SYN_DATA_SENT)) { |
| 3827 | tcp_tfo_synack(tp, to: &to); |
| 3828 | |
| 3829 | if ((tp->t_tfo_stats & TFO_S_SYN_DATA_SENT) && |
| 3830 | SEQ_LT(tp->snd_una, th->th_ack)) { |
| 3831 | tp->t_tfo_stats |= TFO_S_SYN_DATA_ACKED; |
| 3832 | tcpstat.tcps_tfo_syn_data_acked++; |
| 3833 | #if MPTCP |
| 3834 | if (so->so_flags & SOF_MP_SUBFLOW) { |
| 3835 | so->so_flags1 |= SOF1_TFO_REWIND; |
| 3836 | } |
| 3837 | #endif |
| 3838 | tcp_tfo_rcv_probe(tp, tlen); |
| 3839 | } |
| 3840 | } |
| 3841 | } else { |
| 3842 | /* |
| 3843 | * Received initial SYN in SYN-SENT[*] state => simul- |
| 3844 | * taneous open. |
| 3845 | * Do 3-way handshake: |
| 3846 | * SYN-SENT -> SYN-RECEIVED |
| 3847 | * SYN-SENT* -> SYN-RECEIVED* |
| 3848 | */ |
| 3849 | tp->t_flags |= TF_ACKNOW; |
| 3850 | tp->t_timer[TCPT_REXMT] = 0; |
| 3851 | DTRACE_TCP4(state__change, void, NULL, struct inpcb *, inp, |
| 3852 | struct tcpcb *, tp, int32_t, TCPS_SYN_RECEIVED); |
| 3853 | TCP_LOG_STATE(tp, TCPS_SYN_RECEIVED); |
| 3854 | tp->t_state = TCPS_SYN_RECEIVED; |
| 3855 | |
| 3856 | /* |
| 3857 | * During simultaneous open, TFO should not be used. |
| 3858 | * So, we disable it here, to prevent that data gets |
| 3859 | * sent on the SYN/ACK. |
| 3860 | */ |
| 3861 | tcp_disable_tfo(tp); |
| 3862 | } |
| 3863 | |
| 3864 | trimthenstep6: |
| 3865 | /* |
| 3866 | * Advance th->th_seq to correspond to first data byte. |
| 3867 | * If data, trim to stay within window, |
| 3868 | * dropping FIN if necessary. |
| 3869 | */ |
| 3870 | th->th_seq++; |
| 3871 | if (tlen > tp->rcv_wnd) { |
| 3872 | todrop = tlen - tp->rcv_wnd; |
| 3873 | m_adj(m, -todrop); |
| 3874 | tlen = tp->rcv_wnd; |
| 3875 | thflags &= ~TH_FIN; |
| 3876 | tcpstat.tcps_rcvpackafterwin++; |
| 3877 | tcpstat.tcps_rcvbyteafterwin += todrop; |
| 3878 | } |
| 3879 | tp->snd_wl1 = th->th_seq - 1; |
| 3880 | tp->rcv_up = th->th_seq; |
| 3881 | /* |
| 3882 | * Client side of transaction: already sent SYN and data. |
| 3883 | * If the remote host used T/TCP to validate the SYN, |
| 3884 | * our data will be ACK'd; if so, enter normal data segment |
| 3885 | * processing in the middle of step 5, ack processing. |
| 3886 | * Otherwise, goto step 6. |
| 3887 | */ |
| 3888 | if (thflags & TH_ACK) { |
| 3889 | goto process_ACK; |
| 3890 | } |
| 3891 | goto step6; |
| 3892 | /* |
| 3893 | * If the state is LAST_ACK or CLOSING or TIME_WAIT: |
| 3894 | * do normal processing. |
| 3895 | * |
| 3896 | * NB: Leftover from RFC1644 T/TCP. Cases to be reused later. |
| 3897 | */ |
| 3898 | case TCPS_LAST_ACK: |
| 3899 | case TCPS_CLOSING: |
| 3900 | case TCPS_TIME_WAIT: |
| 3901 | break; /* continue normal processing */ |
| 3902 | |
| 3903 | /* Received a SYN while connection is already established. |
| 3904 | * This is a "half open connection and other anomalies" described |
| 3905 | * in RFC793 page 34, send an ACK so the remote reset the connection |
| 3906 | * or recovers by adjusting its sequence numbering. Sending an ACK is |
| 3907 | * in accordance with RFC 5961 Section 4.2 |
| 3908 | * |
| 3909 | * For Accurate ECN, if we receive a packet with SYN in ESTABLISHED |
| 3910 | * state, we don't send the handshake encoding. |
| 3911 | */ |
| 3912 | case TCPS_ESTABLISHED: |
| 3913 | if (thflags & TH_SYN && tlen <= 0) { |
| 3914 | /* Drop the packet silently if we have reached the limit */ |
| 3915 | if (tcp_is_ack_ratelimited(tp)) { |
| 3916 | TCP_LOG_DROP_PCB(TCP_LOG_HDR, th, tp, false, "ESTABLISHED rfc5961 rate limited" ); |
| 3917 | goto drop; |
| 3918 | } else { |
| 3919 | /* Send challenge ACK */ |
| 3920 | tcpstat.tcps_synchallenge++; |
| 3921 | TCP_LOG_DROP_PCB(TCP_LOG_HDR, th, tp, false, "ESTABLISHED rfc5961 challenge ACK" ); |
| 3922 | goto dropafterack; |
| 3923 | } |
| 3924 | } |
| 3925 | break; |
| 3926 | } |
| 3927 | |
| 3928 | /* |
| 3929 | * States other than LISTEN or SYN_SENT. |
| 3930 | * First check the RST flag and sequence number since reset segments |
| 3931 | * are exempt from the timestamp and connection count tests. This |
| 3932 | * fixes a bug introduced by the Stevens, vol. 2, p. 960 bugfix |
| 3933 | * below which allowed reset segments in half the sequence space |
| 3934 | * to fall though and be processed (which gives forged reset |
| 3935 | * segments with a random sequence number a 50 percent chance of |
| 3936 | * killing a connection). |
| 3937 | * Then check timestamp, if present. |
| 3938 | * Then check the connection count, if present. |
| 3939 | * Then check that at least some bytes of segment are within |
| 3940 | * receive window. If segment begins before rcv_nxt, |
| 3941 | * drop leading data (and SYN); if nothing left, just ack. |
| 3942 | * |
| 3943 | * |
| 3944 | * If the RST bit is set, check the sequence number to see |
| 3945 | * if this is a valid reset segment. |
| 3946 | * RFC 793 page 37: |
| 3947 | * In all states except SYN-SENT, all reset (RST) segments |
| 3948 | * are validated by checking their SEQ-fields. A reset is |
| 3949 | * valid if its sequence number is in the window. |
| 3950 | * Note: this does not take into account delayed ACKs, so |
| 3951 | * we should test against last_ack_sent instead of rcv_nxt. |
| 3952 | * The sequence number in the reset segment is normally an |
| 3953 | * echo of our outgoing acknowlegement numbers, but some hosts |
| 3954 | * send a reset with the sequence number at the rightmost edge |
| 3955 | * of our receive window, and we have to handle this case. |
| 3956 | * Note 2: Paul Watson's paper "Slipping in the Window" has shown |
| 3957 | * that brute force RST attacks are possible. To combat this, |
| 3958 | * we use a much stricter check while in the ESTABLISHED state, |
| 3959 | * only accepting RSTs where the sequence number is equal to |
| 3960 | * last_ack_sent. In all other states (the states in which a |
| 3961 | * RST is more likely), the more permissive check is used. |
| 3962 | * RFC 5961 Section 3.2: if the RST bit is set, sequence # is |
| 3963 | * within the receive window and last_ack_sent == seq, |
| 3964 | * then reset the connection. Otherwise if the seq doesn't |
| 3965 | * match last_ack_sent, TCP must send challenge ACK. Perform |
| 3966 | * rate limitation when sending the challenge ACK. |
| 3967 | * If we have multiple segments in flight, the intial reset |
| 3968 | * segment sequence numbers will be to the left of last_ack_sent, |
| 3969 | * but they will eventually catch up. |
| 3970 | * In any case, it never made sense to trim reset segments to |
| 3971 | * fit the receive window since RFC 1122 says: |
| 3972 | * 4.2.2.12 RST Segment: RFC-793 Section 3.4 |
| 3973 | * |
| 3974 | * A TCP SHOULD allow a received RST segment to include data. |
| 3975 | * |
| 3976 | * DISCUSSION |
| 3977 | * It has been suggested that a RST segment could contain |
| 3978 | * ASCII text that encoded and explained the cause of the |
| 3979 | * RST. No standard has yet been established for such |
| 3980 | * data. |
| 3981 | * |
| 3982 | * If the reset segment passes the sequence number test examine |
| 3983 | * the state: |
| 3984 | * SYN_RECEIVED STATE: |
| 3985 | * If passive open, return to LISTEN state. |
| 3986 | * If active open, inform user that connection was refused. |
| 3987 | * ESTABLISHED, FIN_WAIT_1, FIN_WAIT_2, CLOSE_WAIT STATES: |
| 3988 | * Inform user that connection was reset, and close tcb. |
| 3989 | * CLOSING, LAST_ACK STATES: |
| 3990 | * Close the tcb. |
| 3991 | * TIME_WAIT STATE: |
| 3992 | * Drop the segment - see Stevens, vol. 2, p. 964 and |
| 3993 | * RFC 1337. |
| 3994 | * |
| 3995 | * Radar 4803931: Allows for the case where we ACKed the FIN but |
| 3996 | * there is already a RST in flight from the peer. |
| 3997 | * In that case, accept the RST for non-established |
| 3998 | * state if it's one off from last_ack_sent. |
| 3999 | * |
| 4000 | */ |
| 4001 | if (thflags & TH_RST) { |
| 4002 | if ((SEQ_GEQ(th->th_seq, tp->last_ack_sent) && |
| 4003 | SEQ_LT(th->th_seq, tp->last_ack_sent + tp->rcv_wnd)) || |
| 4004 | (tp->rcv_wnd == 0 && |
| 4005 | ((tp->last_ack_sent == th->th_seq) || |
| 4006 | ((tp->last_ack_sent - 1) == th->th_seq)))) { |
| 4007 | if (tp->last_ack_sent == th->th_seq) { |
| 4008 | switch (tp->t_state) { |
| 4009 | case TCPS_SYN_RECEIVED: |
| 4010 | IF_TCP_STATINC(ifp, rstinsynrcv); |
| 4011 | so->so_error = ECONNREFUSED; |
| 4012 | goto close; |
| 4013 | |
| 4014 | case TCPS_ESTABLISHED: |
| 4015 | if ((TCP_ECN_ENABLED(tp) || TCP_ACC_ECN_ON(tp)) && |
| 4016 | tp->snd_una == tp->iss + 1 && |
| 4017 | SEQ_GT(tp->snd_max, tp->snd_una)) { |
| 4018 | /* |
| 4019 | * If the first data packet on an |
| 4020 | * ECN connection, receives a RST |
| 4021 | * increment the heuristic |
| 4022 | */ |
| 4023 | tcp_heuristic_ecn_droprst(tp); |
| 4024 | } |
| 4025 | OS_FALLTHROUGH; |
| 4026 | case TCPS_FIN_WAIT_1: |
| 4027 | case TCPS_CLOSE_WAIT: |
| 4028 | case TCPS_FIN_WAIT_2: |
| 4029 | so->so_error = ECONNRESET; |
| 4030 | close: |
| 4031 | soevent(so, |
| 4032 | hint: (SO_FILT_HINT_LOCKED | |
| 4033 | SO_FILT_HINT_CONNRESET)); |
| 4034 | |
| 4035 | tcpstat.tcps_drops++; |
| 4036 | tp = tcp_close(tp); |
| 4037 | break; |
| 4038 | |
| 4039 | case TCPS_CLOSING: |
| 4040 | case TCPS_LAST_ACK: |
| 4041 | tp = tcp_close(tp); |
| 4042 | break; |
| 4043 | |
| 4044 | case TCPS_TIME_WAIT: |
| 4045 | break; |
| 4046 | } |
| 4047 | } else { |
| 4048 | tcpstat.tcps_badrst++; |
| 4049 | /* Drop if we have reached the ACK limit */ |
| 4050 | if (tcp_is_ack_ratelimited(tp)) { |
| 4051 | TCP_LOG_DROP_PCB(TCP_LOG_HDR, th, tp, false, "ESTABLISHED rfc5961 rate limited" ); |
| 4052 | goto drop; |
| 4053 | } else { |
| 4054 | /* Send challenge ACK */ |
| 4055 | tcpstat.tcps_rstchallenge++; |
| 4056 | TCP_LOG_DROP_PCB(TCP_LOG_HDR, th, tp, false, "ESTABLISHED rfc5961 challenge ACK" ); |
| 4057 | goto dropafterack; |
| 4058 | } |
| 4059 | } |
| 4060 | } |
| 4061 | goto drop; |
| 4062 | } |
| 4063 | |
| 4064 | /* |
| 4065 | * RFC 1323 PAWS: If we have a timestamp reply on this segment |
| 4066 | * and it's less than ts_recent, drop it. |
| 4067 | */ |
| 4068 | if ((to.to_flags & TOF_TS) != 0 && tp->ts_recent && |
| 4069 | TSTMP_LT(to.to_tsval, tp->ts_recent)) { |
| 4070 | /* Check to see if ts_recent is over 24 days old. */ |
| 4071 | if ((int)(tcp_now - tp->ts_recent_age) > TCP_PAWS_IDLE) { |
| 4072 | /* |
| 4073 | * Invalidate ts_recent. If this segment updates |
| 4074 | * ts_recent, the age will be reset later and ts_recent |
| 4075 | * will get a valid value. If it does not, setting |
| 4076 | * ts_recent to zero will at least satisfy the |
| 4077 | * requirement that zero be placed in the timestamp |
| 4078 | * echo reply when ts_recent isn't valid. The |
| 4079 | * age isn't reset until we get a valid ts_recent |
| 4080 | * because we don't want out-of-order segments to be |
| 4081 | * dropped when ts_recent is old. |
| 4082 | */ |
| 4083 | tp->ts_recent = 0; |
| 4084 | } else { |
| 4085 | tcpstat.tcps_rcvduppack++; |
| 4086 | tcpstat.tcps_rcvdupbyte += tlen; |
| 4087 | tp->t_pawsdrop++; |
| 4088 | tcpstat.tcps_pawsdrop++; |
| 4089 | |
| 4090 | /* |
| 4091 | * PAWS-drop when ECN is being used? That indicates |
| 4092 | * that ECT-marked packets take a different path, with |
| 4093 | * different congestion-characteristics. |
| 4094 | * |
| 4095 | * Only fallback when we did send less than 2GB as PAWS |
| 4096 | * really has no reason to kick in earlier. |
| 4097 | */ |
| 4098 | if ((TCP_ECN_ENABLED(tp) || TCP_ACC_ECN_ON(tp)) && |
| 4099 | inp->inp_stat->rxbytes < 2147483648) { |
| 4100 | INP_INC_IFNET_STAT(inp, ecn_fallback_reorder); |
| 4101 | tcpstat.tcps_ecn_fallback_reorder++; |
| 4102 | tcp_heuristic_ecn_aggressive(tp); |
| 4103 | } |
| 4104 | |
| 4105 | if (nstat_collect) { |
| 4106 | nstat_route_rx(rte: tp->t_inpcb->inp_route.ro_rt, |
| 4107 | packets: 1, bytes: tlen, flags: NSTAT_RX_FLAG_DUPLICATE); |
| 4108 | INP_ADD_STAT(inp, cell, wifi, wired, |
| 4109 | rxpackets, 1); |
| 4110 | INP_ADD_STAT(inp, cell, wifi, wired, |
| 4111 | rxbytes, tlen); |
| 4112 | tp->t_stat.rxduplicatebytes += tlen; |
| 4113 | inp_set_activity_bitmap(inp); |
| 4114 | } |
| 4115 | if (tlen > 0) { |
| 4116 | goto dropafterack; |
| 4117 | } |
| 4118 | goto drop; |
| 4119 | } |
| 4120 | } |
| 4121 | |
| 4122 | /* |
| 4123 | * In the SYN-RECEIVED state, validate that the packet belongs to |
| 4124 | * this connection before trimming the data to fit the receive |
| 4125 | * window. Check the sequence number versus IRS since we know |
| 4126 | * the sequence numbers haven't wrapped. This is a partial fix |
| 4127 | * for the "LAND" DoS attack. |
| 4128 | */ |
| 4129 | if (tp->t_state == TCPS_SYN_RECEIVED && SEQ_LT(th->th_seq, tp->irs)) { |
| 4130 | IF_TCP_STATINC(ifp, dospacket); |
| 4131 | TCP_LOG_DROP_PCB(TCP_LOG_HDR, th, tp, false, "SYN_RECEIVED bad SEQ" ); |
| 4132 | goto dropwithreset; |
| 4133 | } |
| 4134 | |
| 4135 | /* |
| 4136 | * Check if there is old data at the beginning of the window |
| 4137 | * i.e. the sequence number is before rcv_nxt |
| 4138 | */ |
| 4139 | todrop = tp->rcv_nxt - th->th_seq; |
| 4140 | if (todrop > 0) { |
| 4141 | boolean_t is_syn_set = FALSE; |
| 4142 | |
| 4143 | if (thflags & TH_SYN) { |
| 4144 | is_syn_set = TRUE; |
| 4145 | thflags &= ~TH_SYN; |
| 4146 | th->th_seq++; |
| 4147 | if (th->th_urp > 1) { |
| 4148 | th->th_urp--; |
| 4149 | } else { |
| 4150 | thflags &= ~TH_URG; |
| 4151 | } |
| 4152 | todrop--; |
| 4153 | } |
| 4154 | /* |
| 4155 | * Following if statement from Stevens, vol. 2, p. 960. |
| 4156 | * The amount of duplicate data is greater than or equal |
| 4157 | * to the size of the segment - entire segment is duplicate |
| 4158 | */ |
| 4159 | if (todrop > tlen |
| 4160 | || (todrop == tlen && (thflags & TH_FIN) == 0)) { |
| 4161 | /* |
| 4162 | * Any valid FIN must be to the left of the window. |
| 4163 | * At this point the FIN must be a duplicate or out |
| 4164 | * of sequence; drop it. |
| 4165 | */ |
| 4166 | thflags &= ~TH_FIN; |
| 4167 | |
| 4168 | /* |
| 4169 | * Send an ACK to resynchronize and drop any data. |
| 4170 | * But keep on processing for RST or ACK. |
| 4171 | * |
| 4172 | * If the SYN bit was originally set, then only send |
| 4173 | * an ACK if we are not rate-limiting this connection. |
| 4174 | */ |
| 4175 | if (is_syn_set) { |
| 4176 | if (!tcp_is_ack_ratelimited(tp)) { |
| 4177 | tcpstat.tcps_synchallenge++; |
| 4178 | tp->t_flags |= TF_ACKNOW; |
| 4179 | } |
| 4180 | } else { |
| 4181 | tp->t_flags |= TF_ACKNOW; |
| 4182 | } |
| 4183 | |
| 4184 | if (todrop == 1) { |
| 4185 | /* This could be a keepalive */ |
| 4186 | soevent(so, SO_FILT_HINT_LOCKED | |
| 4187 | SO_FILT_HINT_KEEPALIVE); |
| 4188 | } |
| 4189 | todrop = tlen; |
| 4190 | tcpstat.tcps_rcvduppack++; |
| 4191 | tcpstat.tcps_rcvdupbyte += todrop; |
| 4192 | } else { |
| 4193 | tcpstat.tcps_rcvpartduppack++; |
| 4194 | tcpstat.tcps_rcvpartdupbyte += todrop; |
| 4195 | } |
| 4196 | |
| 4197 | if (todrop > 1) { |
| 4198 | /* |
| 4199 | * Note the duplicate data sequence space so that |
| 4200 | * it can be reported in DSACK option. |
| 4201 | */ |
| 4202 | tp->t_dsack_lseq = th->th_seq; |
| 4203 | tp->t_dsack_rseq = th->th_seq + todrop; |
| 4204 | tp->t_flags |= TF_ACKNOW; |
| 4205 | } |
| 4206 | if (nstat_collect) { |
| 4207 | nstat_route_rx(rte: tp->t_inpcb->inp_route.ro_rt, packets: 1, |
| 4208 | bytes: todrop, flags: NSTAT_RX_FLAG_DUPLICATE); |
| 4209 | INP_ADD_STAT(inp, cell, wifi, wired, rxpackets, 1); |
| 4210 | INP_ADD_STAT(inp, cell, wifi, wired, rxbytes, todrop); |
| 4211 | tp->t_stat.rxduplicatebytes += todrop; |
| 4212 | inp_set_activity_bitmap(inp); |
| 4213 | } |
| 4214 | drop_hdrlen += todrop; /* drop from the top afterwards */ |
| 4215 | th->th_seq += todrop; |
| 4216 | tlen -= todrop; |
| 4217 | if (th->th_urp > todrop) { |
| 4218 | th->th_urp -= todrop; |
| 4219 | } else { |
| 4220 | thflags &= ~TH_URG; |
| 4221 | th->th_urp = 0; |
| 4222 | } |
| 4223 | } |
| 4224 | |
| 4225 | /* |
| 4226 | * If new data are received on a connection after the user |
| 4227 | * processes are gone, then RST the other end. |
| 4228 | * Send also a RST when we received a data segment after we've |
| 4229 | * sent our FIN when the socket is defunct. |
| 4230 | * Note that an MPTCP subflow socket would have SS_NOFDREF set |
| 4231 | * by default. So, if it's an MPTCP-subflow we rather check the |
| 4232 | * MPTCP-level's socket state for SS_NOFDREF. |
| 4233 | */ |
| 4234 | if (tlen) { |
| 4235 | boolean_t close_it = FALSE; |
| 4236 | |
| 4237 | if (!(so->so_flags & SOF_MP_SUBFLOW) && (so->so_state & SS_NOFDREF) && |
| 4238 | tp->t_state > TCPS_CLOSE_WAIT) { |
| 4239 | TCP_LOG_DROP_PCB(TCP_LOG_HDR, th, tp, false, "SS_NOFDREF" ); |
| 4240 | close_it = TRUE; |
| 4241 | } |
| 4242 | |
| 4243 | if ((so->so_flags & SOF_MP_SUBFLOW) && (mptetoso(mpte: tptomptp(tp)->mpt_mpte)->so_state & SS_NOFDREF) && |
| 4244 | tp->t_state > TCPS_CLOSE_WAIT) { |
| 4245 | TCP_LOG_DROP_PCB(TCP_LOG_HDR, th, tp, false, "SOF_MP_SUBFLOW SS_NOFDREF" ); |
| 4246 | close_it = TRUE; |
| 4247 | } |
| 4248 | |
| 4249 | if ((so->so_flags & SOF_DEFUNCT) && tp->t_state > TCPS_FIN_WAIT_1) { |
| 4250 | TCP_LOG_DROP_PCB(TCP_LOG_HDR, th, tp, false, "SOF_DEFUNCT" ); |
| 4251 | close_it = TRUE; |
| 4252 | } |
| 4253 | |
| 4254 | if (so->so_state & SS_CANTRCVMORE) { |
| 4255 | TCP_LOG_DROP_PCB(TCP_LOG_HDR, th, tp, false, "SS_CANTRCVMORE" ); |
| 4256 | close_it = TRUE; |
| 4257 | } |
| 4258 | |
| 4259 | if (close_it) { |
| 4260 | tp = tcp_close(tp); |
| 4261 | tcpstat.tcps_rcvafterclose++; |
| 4262 | IF_TCP_STATINC(ifp, cleanup); |
| 4263 | goto dropwithreset; |
| 4264 | } |
| 4265 | } |
| 4266 | |
| 4267 | /* |
| 4268 | * If segment ends after window, drop trailing data |
| 4269 | * (and PUSH and FIN); if nothing left, just ACK. |
| 4270 | */ |
| 4271 | todrop = (th->th_seq + tlen) - (tp->rcv_nxt + tp->rcv_wnd); |
| 4272 | if (todrop > 0) { |
| 4273 | tcpstat.tcps_rcvpackafterwin++; |
| 4274 | if (todrop >= tlen) { |
| 4275 | tcpstat.tcps_rcvbyteafterwin += tlen; |
| 4276 | /* |
| 4277 | * If a new connection request is received |
| 4278 | * while in TIME_WAIT, drop the old connection |
| 4279 | * and start over if the sequence numbers |
| 4280 | * are above the previous ones. |
| 4281 | */ |
| 4282 | if (thflags & TH_SYN && |
| 4283 | tp->t_state == TCPS_TIME_WAIT && |
| 4284 | SEQ_GT(th->th_seq, tp->rcv_nxt)) { |
| 4285 | iss = tcp_new_isn(tp); |
| 4286 | tp = tcp_close(tp); |
| 4287 | socket_unlock(so, refcount: 1); |
| 4288 | goto findpcb; |
| 4289 | } |
| 4290 | /* |
| 4291 | * If window is closed can only take segments at |
| 4292 | * window edge, and have to drop data and PUSH from |
| 4293 | * incoming segments. Continue processing, but |
| 4294 | * remember to ack. Otherwise, drop segment |
| 4295 | * and ack. |
| 4296 | */ |
| 4297 | if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) { |
| 4298 | tp->t_flags |= TF_ACKNOW; |
| 4299 | tcpstat.tcps_rcvwinprobe++; |
| 4300 | } else { |
| 4301 | goto dropafterack; |
| 4302 | } |
| 4303 | } else { |
| 4304 | tcpstat.tcps_rcvbyteafterwin += todrop; |
| 4305 | } |
| 4306 | m_adj(m, -todrop); |
| 4307 | tlen -= todrop; |
| 4308 | thflags &= ~(TH_PUSH | TH_FIN); |
| 4309 | } |
| 4310 | |
| 4311 | /* |
| 4312 | * If last ACK falls within this segment's sequence numbers, |
| 4313 | * record its timestamp. |
| 4314 | * NOTE: |
| 4315 | * 1) That the test incorporates suggestions from the latest |
| 4316 | * proposal of the tcplw@cray.com list (Braden 1993/04/26). |
| 4317 | * 2) That updating only on newer timestamps interferes with |
| 4318 | * our earlier PAWS tests, so this check should be solely |
| 4319 | * predicated on the sequence space of this segment. |
| 4320 | * 3) That we modify the segment boundary check to be |
| 4321 | * Last.ACK.Sent <= SEG.SEQ + SEG.Len |
| 4322 | * instead of RFC1323's |
| 4323 | * Last.ACK.Sent < SEG.SEQ + SEG.Len, |
| 4324 | * This modified check allows us to overcome RFC1323's |
| 4325 | * limitations as described in Stevens TCP/IP Illustrated |
| 4326 | * Vol. 2 p.869. In such cases, we can still calculate the |
| 4327 | * RTT correctly when RCV.NXT == Last.ACK.Sent. |
| 4328 | */ |
| 4329 | if ((to.to_flags & TOF_TS) != 0 && |
| 4330 | SEQ_LEQ(th->th_seq, tp->last_ack_sent) && |
| 4331 | SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen + |
| 4332 | ((thflags & (TH_SYN | TH_FIN)) != 0))) { |
| 4333 | tp->ts_recent_age = tcp_now; |
| 4334 | tp->ts_recent = to.to_tsval; |
| 4335 | } |
| 4336 | |
| 4337 | /* |
| 4338 | * Stevens: If a SYN is in the window, then this is an |
| 4339 | * error and we send an RST and drop the connection. |
| 4340 | * |
| 4341 | * RFC 5961 Section 4.2 |
| 4342 | * Send challenge ACK for any SYN in synchronized state |
| 4343 | * Perform rate limitation in doing so. |
| 4344 | */ |
| 4345 | if (thflags & TH_SYN) { |
| 4346 | if (!tcp_syn_data_valid(tp, tcp_hdr: th, tlen)) { |
| 4347 | tcpstat.tcps_badsyn++; |
| 4348 | /* Drop if we have reached ACK limit */ |
| 4349 | if (tcp_is_ack_ratelimited(tp)) { |
| 4350 | TCP_LOG_DROP_PCB(TCP_LOG_HDR, th, tp, false, "rfc5961 bad SYN rate limited" ); |
| 4351 | goto drop; |
| 4352 | } else { |
| 4353 | /* Send challenge ACK */ |
| 4354 | tcpstat.tcps_synchallenge++; |
| 4355 | TCP_LOG_DROP_PCB(TCP_LOG_HDR, th, tp, false, "rfc5961 bad SYN challenge ack" ); |
| 4356 | goto dropafterack; |
| 4357 | } |
| 4358 | } else { |
| 4359 | /* |
| 4360 | * Received SYN (/ACK) with data. |
| 4361 | * Move sequence number along to process the data. |
| 4362 | */ |
| 4363 | th->th_seq++; |
| 4364 | thflags &= ~TH_SYN; |
| 4365 | } |
| 4366 | } |
| 4367 | |
| 4368 | /* |
| 4369 | * If the ACK bit is off: if in SYN-RECEIVED state or SENDSYN |
| 4370 | * flag is on (half-synchronized state), then queue data for |
| 4371 | * later processing; else drop segment and return. |
| 4372 | */ |
| 4373 | if ((thflags & TH_ACK) == 0) { |
| 4374 | if (tp->t_state == TCPS_SYN_RECEIVED) { |
| 4375 | if ((tfo_enabled(tp))) { |
| 4376 | /* |
| 4377 | * So, we received a valid segment while in |
| 4378 | * SYN-RECEIVED. |
| 4379 | * As this cannot be an RST (see that if a bit |
| 4380 | * higher), and it does not have the ACK-flag |
| 4381 | * set, we want to retransmit the SYN/ACK. |
| 4382 | * Thus, we have to reset snd_nxt to snd_una to |
| 4383 | * trigger the going back to sending of the |
| 4384 | * SYN/ACK. This is more consistent with the |
| 4385 | * behavior of tcp_output(), which expects |
| 4386 | * to send the segment that is pointed to by |
| 4387 | * snd_nxt. |
| 4388 | */ |
| 4389 | tp->snd_nxt = tp->snd_una; |
| 4390 | |
| 4391 | /* |
| 4392 | * We need to make absolutely sure that we are |
| 4393 | * going to reply upon a duplicate SYN-segment. |
| 4394 | */ |
| 4395 | if (th->th_flags & TH_SYN) { |
| 4396 | needoutput = 1; |
| 4397 | } |
| 4398 | } |
| 4399 | /* Process this same as newly received Accurate ECN SYN */ |
| 4400 | int ace_flags = ((th->th_x2 << 8) | thflags) & TH_ACE; |
| 4401 | tcp_input_process_accecn_syn(tp, ace_flags, ip_ecn); |
| 4402 | |
| 4403 | goto step6; |
| 4404 | } else if (tp->t_flags & TF_ACKNOW) { |
| 4405 | TCP_LOG_DROP_PCB(TCP_LOG_HDR, th, tp, false, "bad ACK" ); |
| 4406 | goto dropafterack; |
| 4407 | } else { |
| 4408 | TCP_LOG_DROP_PCB(TCP_LOG_HDR, th, tp, false, "bad ACK" ); |
| 4409 | goto drop; |
| 4410 | } |
| 4411 | } |
| 4412 | |
| 4413 | /* |
| 4414 | * Ack processing. |
| 4415 | */ |
| 4416 | |
| 4417 | switch (tp->t_state) { |
| 4418 | /* |
| 4419 | * In SYN_RECEIVED state, the ack ACKs our SYN, so enter |
| 4420 | * ESTABLISHED state and continue processing. |
| 4421 | * The ACK was checked above. |
| 4422 | */ |
| 4423 | case TCPS_SYN_RECEIVED: |
| 4424 | |
| 4425 | tcpstat.tcps_connects++; |
| 4426 | |
| 4427 | /* Do window scaling? */ |
| 4428 | if (TCP_WINDOW_SCALE_ENABLED(tp)) { |
| 4429 | tp->snd_scale = tp->requested_s_scale; |
| 4430 | tp->rcv_scale = tp->request_r_scale; |
| 4431 | tp->snd_wnd = th->th_win << tp->snd_scale; |
| 4432 | tp->max_sndwnd = tp->snd_wnd; |
| 4433 | tiwin = tp->snd_wnd; |
| 4434 | } |
| 4435 | /* |
| 4436 | * Make transitions: |
| 4437 | * SYN-RECEIVED -> ESTABLISHED |
| 4438 | * SYN-RECEIVED* -> FIN-WAIT-1 |
| 4439 | */ |
| 4440 | tp->t_starttime = tcp_now; |
| 4441 | tcp_sbrcv_tstmp_check(tp); |
| 4442 | if (tp->t_flags & TF_NEEDFIN) { |
| 4443 | DTRACE_TCP4(state__change, void, NULL, |
| 4444 | struct inpcb *, inp, |
| 4445 | struct tcpcb *, tp, int32_t, TCPS_FIN_WAIT_1); |
| 4446 | TCP_LOG_STATE(tp, TCPS_FIN_WAIT_1); |
| 4447 | tp->t_state = TCPS_FIN_WAIT_1; |
| 4448 | tp->t_flags &= ~TF_NEEDFIN; |
| 4449 | |
| 4450 | TCP_LOG_CONNECTION_SUMMARY(tp); |
| 4451 | } else { |
| 4452 | DTRACE_TCP4(state__change, void, NULL, |
| 4453 | struct inpcb *, inp, |
| 4454 | struct tcpcb *, tp, int32_t, TCPS_ESTABLISHED); |
| 4455 | TCP_LOG_STATE(tp, TCPS_ESTABLISHED); |
| 4456 | tp->t_state = TCPS_ESTABLISHED; |
| 4457 | tp->t_timer[TCPT_KEEP] = OFFSET_FROM_START(tp, |
| 4458 | TCP_CONN_KEEPIDLE(tp)); |
| 4459 | if (nstat_collect) { |
| 4460 | nstat_route_connect_success( |
| 4461 | rte: tp->t_inpcb->inp_route.ro_rt); |
| 4462 | } |
| 4463 | TCP_LOG_CONNECTED(tp, 0); |
| 4464 | /* |
| 4465 | * The SYN is acknowledged but una is not updated |
| 4466 | * yet. So pass the value of ack to compute |
| 4467 | * sndbytes correctly |
| 4468 | */ |
| 4469 | inp_count_sndbytes(inp, th->th_ack); |
| 4470 | } |
| 4471 | tp->t_forced_acks = TCP_FORCED_ACKS_COUNT; |
| 4472 | |
| 4473 | VERIFY(LIST_EMPTY(&tp->t_segq)); |
| 4474 | tp->snd_wl1 = th->th_seq - 1; |
| 4475 | |
| 4476 | /* |
| 4477 | * AccECN server in SYN-RCVD state received an ACK with |
| 4478 | * SYN=0, process handshake encoding present in the ACK for SYN-ACK |
| 4479 | * and update receive side counters. |
| 4480 | */ |
| 4481 | if (TCP_ACC_ECN_ON(tp) && (thflags & (TH_SYN | TH_ACK)) == TH_ACK) { |
| 4482 | const uint32_t ace_flags = ((th->th_x2 << 8) | thflags) & TH_ACE; |
| 4483 | if (tlen == 0 && to.to_nsacks == 0) { |
| 4484 | /* |
| 4485 | * ACK for SYN-ACK reflects the state (ECN) in which SYN-ACK packet |
| 4486 | * was delivered. Use Table 4 of Accurate ECN draft to decode only |
| 4487 | * when a pure ACK with no SACK block is received. |
| 4488 | * 0|0|0 will fail Accurate ECN negotiation and disable ECN. |
| 4489 | */ |
| 4490 | switch (ace_flags) { |
| 4491 | case (0 | TH_CWR | 0): |
| 4492 | /* Non-ECT SYN-ACK was delivered */ |
| 4493 | tp->t_snd_ce_packets = 5; |
| 4494 | if (tp->t_server_accecn_state == tcp_connection_server_accurate_ecn_requested) { |
| 4495 | tp->t_server_accecn_state = tcp_connection_server_accurate_ecn_negotiation_success; |
| 4496 | } |
| 4497 | break; |
| 4498 | case (0 | TH_CWR | TH_ECE): |
| 4499 | /* ECT1 SYN-ACK was delivered, mangling detected */ |
| 4500 | OS_FALLTHROUGH; |
| 4501 | case (TH_AE | 0 | 0): |
| 4502 | /* ECT0 SYN-ACK was delivered, mangling detected */ |
| 4503 | tp->t_snd_ce_packets = 5; |
| 4504 | if (tp->t_server_accecn_state == tcp_connection_server_accurate_ecn_requested) { |
| 4505 | tp->t_server_accecn_state = tcp_connection_server_accurate_ecn_negotiation_success_ect_mangling_detected; |
| 4506 | } |
| 4507 | break; |
| 4508 | case (TH_AE | TH_CWR | 0): |
| 4509 | /* |
| 4510 | * CE SYN-ACK was delivered, even though mangling happened, |
| 4511 | * CE could indicate congestion at a node after mangling occured. |
| 4512 | * Set cwnd to 2 segments |
| 4513 | */ |
| 4514 | tp->t_snd_ce_packets = 6; |
| 4515 | tp->snd_cwnd = 2 * tp->t_maxseg; |
| 4516 | if (tp->t_server_accecn_state == tcp_connection_server_accurate_ecn_requested) { |
| 4517 | tp->t_server_accecn_state = tcp_connection_server_accurate_ecn_negotiation_success_ect_mangling_detected; |
| 4518 | } |
| 4519 | break; |
| 4520 | case (0 | 0 | 0): |
| 4521 | /* Disable ECN, as ACE fields were zeroed */ |
| 4522 | tp->ecn_flags &= ~(TE_SETUPRECEIVED | TE_SENDIPECT | |
| 4523 | TE_SENDCWR | TE_ACE_SETUPRECEIVED); |
| 4524 | /* |
| 4525 | * Since last ACK has no ECN flag set and TE_LOST_SYNACK is set, this is in response |
| 4526 | * to the second (non-ECN setup) SYN-ACK retransmission. In such a case, we assume |
| 4527 | * that AccECN SYN-ACK was blackholed. |
| 4528 | */ |
| 4529 | if ((tp->ecn_flags & TE_LOST_SYNACK) && tp->t_rxtshift <= 2 && |
| 4530 | (tp->t_server_accecn_state == tcp_connection_server_classic_ecn_requested || |
| 4531 | tp->t_server_accecn_state == tcp_connection_server_accurate_ecn_requested)) { |
| 4532 | tp->t_server_accecn_state = tcp_connection_server_accurate_ecn_negotiation_blackholed; |
| 4533 | } |
| 4534 | /* |
| 4535 | * SYN-ACK hasn't been retransmitted twice yet, so this could likely mean bleaching of ACE |
| 4536 | * on the path from client to server on last ACK. |
| 4537 | */ |
| 4538 | if (tp->t_server_accecn_state == tcp_connection_server_accurate_ecn_requested) { |
| 4539 | tp->t_server_accecn_state = tcp_connection_server_accurate_ecn_ace_bleaching_detected; |
| 4540 | } |
| 4541 | break; |
| 4542 | default: |
| 4543 | /* Unused values for forward compatibility */ |
| 4544 | tp->t_snd_ce_packets = 5; |
| 4545 | break; |
| 4546 | } |
| 4547 | } |
| 4548 | /* Increment receive side counters based on IP-ECN */ |
| 4549 | tcp_input_ip_ecn(tp, inp, tlen: (uint32_t)tlen, segment_count: (uint32_t)segment_count, ip_ecn); |
| 4550 | } |
| 4551 | |
| 4552 | #if MPTCP |
| 4553 | /* |
| 4554 | * Do not send the connect notification for additional subflows |
| 4555 | * until ACK for 3-way handshake arrives. |
| 4556 | */ |
| 4557 | if ((!(tp->t_mpflags & TMPF_MPTCP_TRUE)) && |
| 4558 | (tp->t_mpflags & TMPF_SENT_JOIN)) { |
| 4559 | isconnected = FALSE; |
| 4560 | } else |
| 4561 | #endif /* MPTCP */ |
| 4562 | isconnected = TRUE; |
| 4563 | if ((tp->t_tfo_flags & TFO_F_COOKIE_VALID)) { |
| 4564 | /* Done this when receiving the SYN */ |
| 4565 | isconnected = FALSE; |
| 4566 | |
| 4567 | OSDecrementAtomic(&tcp_tfo_halfcnt); |
| 4568 | |
| 4569 | /* Panic if something has gone terribly wrong. */ |
| 4570 | VERIFY(tcp_tfo_halfcnt >= 0); |
| 4571 | |
| 4572 | tp->t_tfo_flags &= ~TFO_F_COOKIE_VALID; |
| 4573 | } |
| 4574 | |
| 4575 | /* |
| 4576 | * In case there is data in the send-queue (e.g., TFO is being |
| 4577 | * used, or connectx+data has been done), then if we would |
| 4578 | * "FALLTHROUGH", we would handle this ACK as if data has been |
| 4579 | * acknowledged. But, we have to prevent this. And this |
| 4580 | * can be prevented by increasing snd_una by 1, so that the |
| 4581 | * SYN is not considered as data (snd_una++ is actually also |
| 4582 | * done in SYN_SENT-state as part of the regular TCP stack). |
| 4583 | * |
| 4584 | * In case there is data on this ack as well, the data will be |
| 4585 | * handled by the label "dodata" right after step6. |
| 4586 | */ |
| 4587 | if (so->so_snd.sb_cc) { |
| 4588 | tp->snd_una++; /* SYN is acked */ |
| 4589 | if (SEQ_LT(tp->snd_nxt, tp->snd_una)) { |
| 4590 | tp->snd_nxt = tp->snd_una; |
| 4591 | } |
| 4592 | |
| 4593 | /* |
| 4594 | * No duplicate-ACK handling is needed. So, we |
| 4595 | * directly advance to processing the ACK (aka, |
| 4596 | * updating the RTT estimation,...) |
| 4597 | * |
| 4598 | * But, we first need to handle eventual SACKs, |
| 4599 | * because TFO will start sending data with the |
| 4600 | * SYN/ACK, so it might be that the client |
| 4601 | * includes a SACK with its ACK. |
| 4602 | */ |
| 4603 | if (SACK_ENABLED(tp) && |
| 4604 | (to.to_nsacks > 0 || !TAILQ_EMPTY(&tp->snd_holes))) { |
| 4605 | tcp_sack_doack(tp, &to, th, &sack_bytes_acked, &sack_bytes_newly_acked); |
| 4606 | } |
| 4607 | |
| 4608 | goto process_ACK; |
| 4609 | } |
| 4610 | |
| 4611 | OS_FALLTHROUGH; |
| 4612 | |
| 4613 | /* |
| 4614 | * In ESTABLISHED state: drop duplicate ACKs; ACK out of range |
| 4615 | * ACKs. If the ack is in the range |
| 4616 | * tp->snd_una < th->th_ack <= tp->snd_max |
| 4617 | * then advance tp->snd_una to th->th_ack and drop |
| 4618 | * data from the retransmission queue. If this ACK reflects |
| 4619 | * more up to date window information we update our window information. |
| 4620 | */ |
| 4621 | case TCPS_ESTABLISHED: |
| 4622 | case TCPS_FIN_WAIT_1: |
| 4623 | case TCPS_FIN_WAIT_2: |
| 4624 | case TCPS_CLOSE_WAIT: |
| 4625 | case TCPS_CLOSING: |
| 4626 | case TCPS_LAST_ACK: |
| 4627 | case TCPS_TIME_WAIT: |
| 4628 | if (SEQ_GT(th->th_ack, tp->snd_max)) { |
| 4629 | tcpstat.tcps_rcvacktoomuch++; |
| 4630 | if (tcp_is_ack_ratelimited(tp)) { |
| 4631 | TCP_LOG_DROP_PCB(TCP_LOG_HDR, th, tp, false, "rfc5961 rcvacktoomuch" ); |
| 4632 | goto drop; |
| 4633 | } else { |
| 4634 | goto dropafterack; |
| 4635 | } |
| 4636 | } |
| 4637 | if (SEQ_LT(th->th_ack, tp->snd_una - tp->max_sndwnd)) { |
| 4638 | if (tcp_is_ack_ratelimited(tp)) { |
| 4639 | TCP_LOG_DROP_PCB(TCP_LOG_HDR, th, tp, false, "rfc5961 bad ACK" ); |
| 4640 | goto drop; |
| 4641 | } else { |
| 4642 | goto dropafterack; |
| 4643 | } |
| 4644 | } |
| 4645 | if (SACK_ENABLED(tp) && to.to_nsacks > 0) { |
| 4646 | recvd_dsack = tcp_sack_process_dsack(tp, &to, th); |
| 4647 | /* |
| 4648 | * If DSACK is received and this packet has no |
| 4649 | * other SACK information, it can be dropped. |
| 4650 | * We do not want to treat it as a duplicate ack. |
| 4651 | */ |
| 4652 | if (recvd_dsack && |
| 4653 | SEQ_LEQ(th->th_ack, tp->snd_una) && |
| 4654 | to.to_nsacks == 0) { |
| 4655 | tcp_bad_rexmt_check(tp, th, to: &to); |
| 4656 | goto drop; |
| 4657 | } |
| 4658 | } |
| 4659 | |
| 4660 | if (SACK_ENABLED(tp) && |
| 4661 | (to.to_nsacks > 0 || !TAILQ_EMPTY(&tp->snd_holes))) { |
| 4662 | tcp_sack_doack(tp, &to, th, &sack_bytes_acked, &sack_bytes_newly_acked); |
| 4663 | } |
| 4664 | |
| 4665 | #if MPTCP |
| 4666 | if (tp->t_mpuna && SEQ_GEQ(th->th_ack, tp->t_mpuna)) { |
| 4667 | if (tp->t_mpflags & TMPF_PREESTABLISHED) { |
| 4668 | /* MP TCP establishment succeeded */ |
| 4669 | tp->t_mpuna = 0; |
| 4670 | if (tp->t_mpflags & TMPF_JOINED_FLOW) { |
| 4671 | if (tp->t_mpflags & TMPF_SENT_JOIN) { |
| 4672 | tp->t_mpflags &= |
| 4673 | ~TMPF_PREESTABLISHED; |
| 4674 | tp->t_mpflags |= |
| 4675 | TMPF_MPTCP_TRUE; |
| 4676 | |
| 4677 | tp->t_timer[TCPT_JACK_RXMT] = 0; |
| 4678 | tp->t_mprxtshift = 0; |
| 4679 | isconnected = TRUE; |
| 4680 | } else { |
| 4681 | isconnected = FALSE; |
| 4682 | } |
| 4683 | } else { |
| 4684 | isconnected = TRUE; |
| 4685 | } |
| 4686 | } |
| 4687 | } |
| 4688 | #endif /* MPTCP */ |
| 4689 | |
| 4690 | tcp_tfo_rcv_ack(tp, th); |
| 4691 | |
| 4692 | /* |
| 4693 | * If we have outstanding data (other than |
| 4694 | * a window probe), this is a completely |
| 4695 | * duplicate ack and the ack is the biggest we've seen. |
| 4696 | * |
| 4697 | * Need to accommodate a change in window on duplicate acks |
| 4698 | * to allow operating systems that update window during |
| 4699 | * recovery with SACK |
| 4700 | */ |
| 4701 | if (SEQ_LEQ(th->th_ack, tp->snd_una)) { |
| 4702 | if (tlen == 0 && (tiwin == tp->snd_wnd || |
| 4703 | (to.to_nsacks > 0 && sack_bytes_acked > 0))) { |
| 4704 | uint32_t old_dupacks; |
| 4705 | /* |
| 4706 | * If both ends send FIN at the same time, |
| 4707 | * then the ack will be a duplicate ack |
| 4708 | * but we have to process the FIN. Check |
| 4709 | * for this condition and process the FIN |
| 4710 | * instead of the dupack |
| 4711 | */ |
| 4712 | if ((thflags & TH_FIN) && |
| 4713 | !TCPS_HAVERCVDFIN(tp->t_state)) { |
| 4714 | break; |
| 4715 | } |
| 4716 | process_dupack: |
| 4717 | old_dupacks = tp->t_dupacks; |
| 4718 | #if MPTCP |
| 4719 | /* |
| 4720 | * MPTCP options that are ignored must |
| 4721 | * not be treated as duplicate ACKs. |
| 4722 | */ |
| 4723 | if (to.to_flags & TOF_MPTCP) { |
| 4724 | goto drop; |
| 4725 | } |
| 4726 | |
| 4727 | if ((isconnected) && (tp->t_mpflags & TMPF_JOINED_FLOW)) { |
| 4728 | break; |
| 4729 | } |
| 4730 | #endif /* MPTCP */ |
| 4731 | /* |
| 4732 | * If a duplicate acknowledgement was seen |
| 4733 | * after ECN, it indicates packet loss in |
| 4734 | * addition to ECN. Reset INRECOVERY flag |
| 4735 | * so that we can process partial acks |
| 4736 | * correctly |
| 4737 | */ |
| 4738 | if (tp->ecn_flags & TE_INRECOVERY) { |
| 4739 | tp->ecn_flags &= ~TE_INRECOVERY; |
| 4740 | } |
| 4741 | |
| 4742 | tcpstat.tcps_rcvdupack++; |
| 4743 | if (SACK_ENABLED(tp) && tcp_do_better_lr) { |
| 4744 | tp->t_dupacks += max(a: 1, b: sack_bytes_acked / tp->t_maxseg); |
| 4745 | } else { |
| 4746 | ++tp->t_dupacks; |
| 4747 | } |
| 4748 | |
| 4749 | tp->sackhint.sack_bytes_acked += sack_bytes_acked; |
| 4750 | |
| 4751 | if (SACK_ENABLED(tp) && tcp_do_better_lr) { |
| 4752 | tp->t_new_dupacks += (sack_bytes_newly_acked / tp->t_maxseg); |
| 4753 | |
| 4754 | if (tp->t_new_dupacks >= tp->t_rexmtthresh && IN_FASTRECOVERY(tp)) { |
| 4755 | /* Let's restart the retransmission */ |
| 4756 | tcp_sack_lost_rexmit(tp); |
| 4757 | |
| 4758 | /* |
| 4759 | * If the current tcp cc module has |
| 4760 | * defined a hook for tasks to run |
| 4761 | * before entering FR, call it |
| 4762 | */ |
| 4763 | if (CC_ALGO(tp)->pre_fr != NULL) { |
| 4764 | CC_ALGO(tp)->pre_fr(tp); |
| 4765 | } |
| 4766 | |
| 4767 | ENTER_FASTRECOVERY(tp); |
| 4768 | |
| 4769 | if (tp->t_flags & TF_SENTFIN) { |
| 4770 | tp->snd_recover = tp->snd_max - 1; |
| 4771 | } else { |
| 4772 | tp->snd_recover = tp->snd_max; |
| 4773 | } |
| 4774 | tp->t_rtttime = 0; |
| 4775 | /* |
| 4776 | * Accurate ECN Sender MUST NOT set CWR to indicate |
| 4777 | * it has received and responded to indications |
| 4778 | * of congestion. ACE field is used to reflect counters |
| 4779 | * that are continously updated overloading the CWR bit. |
| 4780 | */ |
| 4781 | if (!TCP_ACC_ECN_ON(tp) && TCP_ECN_ENABLED(tp)) { |
| 4782 | tp->ecn_flags |= TE_SENDCWR; |
| 4783 | } |
| 4784 | |
| 4785 | if (tp->t_flagsext & TF_CWND_NONVALIDATED) { |
| 4786 | tcp_cc_adjust_nonvalidated_cwnd(tp); |
| 4787 | } else { |
| 4788 | tp->snd_cwnd = tp->snd_ssthresh; |
| 4789 | } |
| 4790 | } |
| 4791 | } |
| 4792 | |
| 4793 | /* |
| 4794 | * Check if we need to reset the limit on |
| 4795 | * early retransmit |
| 4796 | */ |
| 4797 | if (tp->t_early_rexmt_count > 0 && |
| 4798 | TSTMP_GEQ(tcp_now, |
| 4799 | (tp->t_early_rexmt_win + |
| 4800 | TCP_EARLY_REXMT_WIN))) { |
| 4801 | tp->t_early_rexmt_count = 0; |
| 4802 | } |
| 4803 | |
| 4804 | /* |
| 4805 | * Is early retransmit needed? We check for |
| 4806 | * this when the connection is waiting for |
| 4807 | * duplicate acks to enter fast recovery. |
| 4808 | */ |
| 4809 | if (!IN_FASTRECOVERY(tp)) { |
| 4810 | tcp_early_rexmt_check(tp, th); |
| 4811 | } |
| 4812 | |
| 4813 | /* |
| 4814 | * If we've seen exactly rexmt threshold |
| 4815 | * of duplicate acks, assume a packet |
| 4816 | * has been dropped and retransmit it. |
| 4817 | * Kludge snd_nxt & the congestion |
| 4818 | * window so we send only this one |
| 4819 | * packet. |
| 4820 | * |
| 4821 | * We know we're losing at the current |
| 4822 | * window size so do congestion avoidance |
| 4823 | * (set ssthresh to half the current window |
| 4824 | * and pull our congestion window back to |
| 4825 | * the new ssthresh). |
| 4826 | * |
| 4827 | * Dup acks mean that packets have left the |
| 4828 | * network (they're now cached at the receiver) |
| 4829 | * so bump cwnd by the amount in the receiver |
| 4830 | * to keep a constant cwnd packets in the |
| 4831 | * network. |
| 4832 | */ |
| 4833 | if (tp->t_timer[TCPT_REXMT] == 0 || |
| 4834 | (th->th_ack != tp->snd_una && sack_bytes_acked == 0)) { |
| 4835 | tp->t_dupacks = 0; |
| 4836 | tp->t_rexmtthresh = tcprexmtthresh; |
| 4837 | tp->t_new_dupacks = 0; |
| 4838 | } else if ((tp->t_dupacks > tp->t_rexmtthresh && (!tcp_do_better_lr || old_dupacks >= tp->t_rexmtthresh)) || |
| 4839 | IN_FASTRECOVERY(tp)) { |
| 4840 | /* |
| 4841 | * If this connection was seeing packet |
| 4842 | * reordering, then recovery might be |
| 4843 | * delayed to disambiguate between |
| 4844 | * reordering and loss |
| 4845 | */ |
| 4846 | if (SACK_ENABLED(tp) && !IN_FASTRECOVERY(tp) && |
| 4847 | (tp->t_flagsext & |
| 4848 | (TF_PKTS_REORDERED | TF_DELAY_RECOVERY)) == |
| 4849 | (TF_PKTS_REORDERED | TF_DELAY_RECOVERY)) { |
| 4850 | /* |
| 4851 | * Since the SACK information is already |
| 4852 | * updated, this ACK will be dropped |
| 4853 | */ |
| 4854 | break; |
| 4855 | } |
| 4856 | |
| 4857 | /* |
| 4858 | * Dup acks mean that packets have left the |
| 4859 | * network (they're now cached at the receiver) |
| 4860 | * so bump cwnd by the amount in the receiver |
| 4861 | * to keep a constant cwnd packets in the |
| 4862 | * network. |
| 4863 | */ |
| 4864 | if (SACK_ENABLED(tp) && IN_FASTRECOVERY(tp)) { |
| 4865 | int awnd; |
| 4866 | |
| 4867 | /* |
| 4868 | * Compute the amount of data in flight first. |
| 4869 | * We can inject new data into the pipe iff |
| 4870 | * we have less than snd_ssthres worth of data in |
| 4871 | * flight. |
| 4872 | */ |
| 4873 | awnd = (tp->snd_nxt - tp->snd_fack) + tp->sackhint.sack_bytes_rexmit; |
| 4874 | if (awnd < tp->snd_ssthresh) { |
| 4875 | tp->snd_cwnd += tp->t_maxseg; |
| 4876 | if (tp->snd_cwnd > tp->snd_ssthresh) { |
| 4877 | tp->snd_cwnd = tp->snd_ssthresh; |
| 4878 | } |
| 4879 | } |
| 4880 | } else { |
| 4881 | tp->snd_cwnd += tp->t_maxseg; |
| 4882 | } |
| 4883 | |
| 4884 | /* Process any window updates */ |
| 4885 | if (tiwin > tp->snd_wnd) { |
| 4886 | tcp_update_window(tp, thflags, |
| 4887 | th, tiwin, tlen); |
| 4888 | } |
| 4889 | tcp_ccdbg_trace(tp, th, |
| 4890 | event: TCP_CC_IN_FASTRECOVERY); |
| 4891 | |
| 4892 | (void) tcp_output(tp); |
| 4893 | |
| 4894 | goto drop; |
| 4895 | } else if ((!tcp_do_better_lr && tp->t_dupacks == tp->t_rexmtthresh) || |
| 4896 | (tcp_do_better_lr && tp->t_dupacks >= tp->t_rexmtthresh)) { |
| 4897 | tcp_seq onxt = tp->snd_nxt; |
| 4898 | |
| 4899 | /* |
| 4900 | * If we're doing sack, check to |
| 4901 | * see if we're already in sack |
| 4902 | * recovery. If we're not doing sack, |
| 4903 | * check to see if we're in newreno |
| 4904 | * recovery. |
| 4905 | */ |
| 4906 | if (SACK_ENABLED(tp)) { |
| 4907 | if (IN_FASTRECOVERY(tp)) { |
| 4908 | tp->t_dupacks = 0; |
| 4909 | break; |
| 4910 | } else if (tp->t_flagsext & TF_DELAY_RECOVERY) { |
| 4911 | break; |
| 4912 | } |
| 4913 | } else { |
| 4914 | if (SEQ_LEQ(th->th_ack, tp->snd_recover)) { |
| 4915 | tp->t_dupacks = 0; |
| 4916 | break; |
| 4917 | } |
| 4918 | } |
| 4919 | if (tp->t_flags & TF_SENTFIN) { |
| 4920 | tp->snd_recover = tp->snd_max - 1; |
| 4921 | } else { |
| 4922 | tp->snd_recover = tp->snd_max; |
| 4923 | } |
| 4924 | tp->t_timer[TCPT_PTO] = 0; |
| 4925 | tp->t_rtttime = 0; |
| 4926 | |
| 4927 | /* |
| 4928 | * If the connection has seen pkt |
| 4929 | * reordering, delay recovery until |
| 4930 | * it is clear that the packet |
| 4931 | * was lost. |
| 4932 | */ |
| 4933 | if (SACK_ENABLED(tp) && |
| 4934 | (tp->t_flagsext & |
| 4935 | (TF_PKTS_REORDERED | TF_DELAY_RECOVERY)) |
| 4936 | == TF_PKTS_REORDERED && |
| 4937 | !IN_FASTRECOVERY(tp) && |
| 4938 | tp->t_reorderwin > 0 && |
| 4939 | (tp->t_state == TCPS_ESTABLISHED || |
| 4940 | tp->t_state == TCPS_FIN_WAIT_1)) { |
| 4941 | tp->t_timer[TCPT_DELAYFR] = |
| 4942 | OFFSET_FROM_START(tp, |
| 4943 | tp->t_reorderwin); |
| 4944 | tp->t_flagsext |= TF_DELAY_RECOVERY; |
| 4945 | tcpstat.tcps_delay_recovery++; |
| 4946 | tcp_ccdbg_trace(tp, th, |
| 4947 | event: TCP_CC_DELAY_FASTRECOVERY); |
| 4948 | break; |
| 4949 | } |
| 4950 | |
| 4951 | tcp_rexmt_save_state(tp); |
| 4952 | /* |
| 4953 | * If the current tcp cc module has |
| 4954 | * defined a hook for tasks to run |
| 4955 | * before entering FR, call it |
| 4956 | */ |
| 4957 | if (CC_ALGO(tp)->pre_fr != NULL) { |
| 4958 | CC_ALGO(tp)->pre_fr(tp); |
| 4959 | } |
| 4960 | ENTER_FASTRECOVERY(tp); |
| 4961 | tp->t_timer[TCPT_REXMT] = 0; |
| 4962 | if (!TCP_ACC_ECN_ON(tp) && TCP_ECN_ENABLED(tp)) { |
| 4963 | tp->ecn_flags |= TE_SENDCWR; |
| 4964 | } |
| 4965 | |
| 4966 | if (SACK_ENABLED(tp)) { |
| 4967 | tcpstat.tcps_sack_recovery_episode++; |
| 4968 | tp->t_sack_recovery_episode++; |
| 4969 | tp->sack_newdata = tp->snd_nxt; |
| 4970 | if (tcp_do_better_lr) { |
| 4971 | tp->snd_cwnd = tp->snd_ssthresh; |
| 4972 | } else { |
| 4973 | tp->snd_cwnd = tp->t_maxseg; |
| 4974 | } |
| 4975 | tp->t_flagsext &= ~TF_CWND_NONVALIDATED; |
| 4976 | |
| 4977 | /* Process any window updates */ |
| 4978 | if (tiwin > tp->snd_wnd) { |
| 4979 | tcp_update_window(tp, thflags, th, tiwin, tlen); |
| 4980 | } |
| 4981 | |
| 4982 | tcp_ccdbg_trace(tp, th, event: TCP_CC_ENTER_FASTRECOVERY); |
| 4983 | (void) tcp_output(tp); |
| 4984 | goto drop; |
| 4985 | } |
| 4986 | tp->snd_nxt = th->th_ack; |
| 4987 | tp->snd_cwnd = tp->t_maxseg; |
| 4988 | |
| 4989 | /* Process any window updates */ |
| 4990 | if (tiwin > tp->snd_wnd) { |
| 4991 | tcp_update_window(tp, thflags, th, tiwin, tlen); |
| 4992 | } |
| 4993 | |
| 4994 | (void) tcp_output(tp); |
| 4995 | if (tp->t_flagsext & TF_CWND_NONVALIDATED) { |
| 4996 | tcp_cc_adjust_nonvalidated_cwnd(tp); |
| 4997 | } else { |
| 4998 | tp->snd_cwnd = tp->snd_ssthresh + tp->t_maxseg * tp->t_dupacks; |
| 4999 | } |
| 5000 | if (SEQ_GT(onxt, tp->snd_nxt)) { |
| 5001 | tp->snd_nxt = onxt; |
| 5002 | } |
| 5003 | |
| 5004 | tcp_ccdbg_trace(tp, th, event: TCP_CC_ENTER_FASTRECOVERY); |
| 5005 | goto drop; |
| 5006 | } else if (ALLOW_LIMITED_TRANSMIT(tp) && |
| 5007 | (!(SACK_ENABLED(tp)) || sack_bytes_acked > 0) && |
| 5008 | (so->so_snd.sb_cc - (tp->snd_max - tp->snd_una)) > 0) { |
| 5009 | u_int32_t incr = (tp->t_maxseg * tp->t_dupacks); |
| 5010 | |
| 5011 | /* Use Limited Transmit algorithm on the first two |
| 5012 | * duplicate acks when there is new data to transmit |
| 5013 | */ |
| 5014 | tp->snd_cwnd += incr; |
| 5015 | tcpstat.tcps_limited_txt++; |
| 5016 | (void) tcp_output(tp); |
| 5017 | |
| 5018 | tcp_ccdbg_trace(tp, th, event: TCP_CC_LIMITED_TRANSMIT); |
| 5019 | |
| 5020 | /* Reset snd_cwnd back to normal */ |
| 5021 | tp->snd_cwnd -= incr; |
| 5022 | } |
| 5023 | } |
| 5024 | break; |
| 5025 | } |
| 5026 | /* |
| 5027 | * If the congestion window was inflated to account |
| 5028 | * for the other side's cached packets, retract it. |
| 5029 | */ |
| 5030 | if (IN_FASTRECOVERY(tp)) { |
| 5031 | if (SEQ_LT(th->th_ack, tp->snd_recover)) { |
| 5032 | /* |
| 5033 | * If we received an ECE and entered |
| 5034 | * recovery, the subsequent ACKs should |
| 5035 | * not be treated as partial acks. |
| 5036 | */ |
| 5037 | if (tp->ecn_flags & TE_INRECOVERY) { |
| 5038 | goto process_ACK; |
| 5039 | } |
| 5040 | |
| 5041 | if (SACK_ENABLED(tp)) { |
| 5042 | tcp_sack_partialack(tp, th); |
| 5043 | } else { |
| 5044 | tcp_newreno_partial_ack(tp, th); |
| 5045 | } |
| 5046 | tcp_ccdbg_trace(tp, th, event: TCP_CC_PARTIAL_ACK); |
| 5047 | } else { |
| 5048 | if (tcp_cubic_minor_fixes) { |
| 5049 | exiting_fr = 1; |
| 5050 | } |
| 5051 | EXIT_FASTRECOVERY(tp); |
| 5052 | if (CC_ALGO(tp)->post_fr != NULL) { |
| 5053 | CC_ALGO(tp)->post_fr(tp, th); |
| 5054 | } |
| 5055 | tp->t_pipeack = 0; |
| 5056 | tcp_clear_pipeack_state(tp); |
| 5057 | tcp_ccdbg_trace(tp, th, |
| 5058 | event: TCP_CC_EXIT_FASTRECOVERY); |
| 5059 | } |
| 5060 | } else if ((tp->t_flagsext & |
| 5061 | (TF_PKTS_REORDERED | TF_DELAY_RECOVERY)) |
| 5062 | == (TF_PKTS_REORDERED | TF_DELAY_RECOVERY)) { |
| 5063 | /* |
| 5064 | * If the ack acknowledges upto snd_recover or if |
| 5065 | * it acknowledges all the snd holes, exit |
| 5066 | * recovery and cancel the timer. Otherwise, |
| 5067 | * this is a partial ack. Wait for recovery timer |
| 5068 | * to enter recovery. The snd_holes have already |
| 5069 | * been updated. |
| 5070 | */ |
| 5071 | if (SEQ_GEQ(th->th_ack, tp->snd_recover) || |
| 5072 | TAILQ_EMPTY(&tp->snd_holes)) { |
| 5073 | tp->t_timer[TCPT_DELAYFR] = 0; |
| 5074 | tp->t_flagsext &= ~TF_DELAY_RECOVERY; |
| 5075 | EXIT_FASTRECOVERY(tp); |
| 5076 | tcp_ccdbg_trace(tp, th, |
| 5077 | event: TCP_CC_EXIT_FASTRECOVERY); |
| 5078 | } |
| 5079 | } else { |
| 5080 | /* |
| 5081 | * We were not in fast recovery. Reset the |
| 5082 | * duplicate ack counter. |
| 5083 | */ |
| 5084 | tp->t_dupacks = 0; |
| 5085 | tp->t_rexmtthresh = tcprexmtthresh; |
| 5086 | tp->t_new_dupacks = 0; |
| 5087 | } |
| 5088 | |
| 5089 | process_ACK: |
| 5090 | VERIFY(SEQ_GEQ(th->th_ack, tp->snd_una)); |
| 5091 | acked = BYTES_ACKED(th, tp); |
| 5092 | tcpstat.tcps_rcvackpack++; |
| 5093 | tcpstat.tcps_rcvackbyte += acked; |
| 5094 | |
| 5095 | /* |
| 5096 | * If the last packet was a retransmit, make sure |
| 5097 | * it was not spurious. |
| 5098 | * |
| 5099 | * This will also take care of congestion window |
| 5100 | * adjustment if a last packet was recovered due to a |
| 5101 | * tail loss probe. |
| 5102 | */ |
| 5103 | tcp_bad_rexmt_check(tp, th, to: &to); |
| 5104 | |
| 5105 | /* Recalculate the RTT */ |
| 5106 | tcp_compute_rtt(tp, to: &to, th); |
| 5107 | |
| 5108 | /* |
| 5109 | * If all outstanding data is acked, stop retransmit |
| 5110 | * timer and remember to restart (more output or persist). |
| 5111 | * If there is more data to be acked, restart retransmit |
| 5112 | * timer, using current (possibly backed-off) value. |
| 5113 | */ |
| 5114 | TCP_RESET_REXMT_STATE(tp); |
| 5115 | TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp), |
| 5116 | tp->t_rttmin, TCPTV_REXMTMAX, |
| 5117 | TCP_ADD_REXMTSLOP(tp)); |
| 5118 | if (th->th_ack == tp->snd_max) { |
| 5119 | tp->t_timer[TCPT_REXMT] = 0; |
| 5120 | tp->t_timer[TCPT_PTO] = 0; |
| 5121 | needoutput = 1; |
| 5122 | } else if (tp->t_timer[TCPT_PERSIST] == 0) { |
| 5123 | tp->t_timer[TCPT_REXMT] = OFFSET_FROM_START(tp, |
| 5124 | tp->t_rxtcur); |
| 5125 | } |
| 5126 | |
| 5127 | if ((prev_t_state == TCPS_SYN_SENT || |
| 5128 | prev_t_state == TCPS_SYN_RECEIVED) && |
| 5129 | tp->t_state == TCPS_ESTABLISHED) { |
| 5130 | TCP_LOG_RTT_INFO(tp); |
| 5131 | } |
| 5132 | |
| 5133 | /* |
| 5134 | * If no data (only SYN) was ACK'd, skip rest of ACK |
| 5135 | * processing. |
| 5136 | */ |
| 5137 | if (acked == 0) { |
| 5138 | goto step6; |
| 5139 | } |
| 5140 | |
| 5141 | /* |
| 5142 | * When outgoing data has been acked (except the SYN+data), we |
| 5143 | * mark this connection as "sending good" for TFO. |
| 5144 | */ |
| 5145 | if ((tp->t_tfo_stats & TFO_S_SYN_DATA_SENT) && |
| 5146 | !(tp->t_tfo_flags & TFO_F_NO_SNDPROBING) && |
| 5147 | !(th->th_flags & TH_SYN)) { |
| 5148 | tp->t_tfo_flags |= TFO_F_NO_SNDPROBING; |
| 5149 | } |
| 5150 | |
| 5151 | /* |
| 5152 | * Accurate ECN uses delta_cep to determine a congestion |
| 5153 | * event if new CE counts were received. |
| 5154 | * For classic ECN, congestion event is receiving TH_ECE. |
| 5155 | */ |
| 5156 | if ((tp->ecn_flags & TE_SENDIPECT)) { |
| 5157 | if (TCP_ACC_ECN_ON(tp)) { |
| 5158 | if (!IN_FASTRECOVERY(tp) && tp->t_delta_ce_packets > 0) { |
| 5159 | tcp_reduce_congestion_window(tp); |
| 5160 | tp->ecn_flags |= (TE_INRECOVERY); |
| 5161 | /* update the stats */ |
| 5162 | tcpstat.tcps_ecn_ace_recv_ce += tp->t_delta_ce_packets; |
| 5163 | tp->t_ecn_capable_packets_marked += tp->t_delta_ce_packets; |
| 5164 | tcp_ccdbg_trace(tp, th, event: TCP_CC_ECN_RCVD); |
| 5165 | } |
| 5166 | } else if (TCP_ECN_ENABLED(tp) && (thflags & TH_ECE)) { |
| 5167 | /* |
| 5168 | * Reduce the congestion window if we haven't |
| 5169 | * done so. |
| 5170 | */ |
| 5171 | if (!IN_FASTRECOVERY(tp)) { |
| 5172 | tcp_reduce_congestion_window(tp); |
| 5173 | tp->ecn_flags |= (TE_INRECOVERY | TE_SENDCWR); |
| 5174 | /* |
| 5175 | * Also note that the connection received |
| 5176 | * ECE atleast once. We increment |
| 5177 | * t_ecn_capable_packets_marked when we first |
| 5178 | * enter fast recovery. |
| 5179 | */ |
| 5180 | tp->ecn_flags |= TE_RECV_ECN_ECE; |
| 5181 | INP_INC_IFNET_STAT(inp, ecn_recv_ece); |
| 5182 | tcpstat.tcps_ecn_recv_ece++; |
| 5183 | tp->t_ecn_capable_packets_marked++; |
| 5184 | tcp_ccdbg_trace(tp, th, event: TCP_CC_ECN_RCVD); |
| 5185 | } |
| 5186 | } |
| 5187 | } |
| 5188 | |
| 5189 | /* |
| 5190 | * When new data is acked, open the congestion window. |
| 5191 | * The specifics of how this is achieved are up to the |
| 5192 | * congestion control algorithm in use for this connection. |
| 5193 | * |
| 5194 | * The calculations in this function assume that snd_una is |
| 5195 | * not updated yet. |
| 5196 | */ |
| 5197 | if (!IN_FASTRECOVERY(tp) && !exiting_fr) { |
| 5198 | if (CC_ALGO(tp)->ack_rcvd != NULL) { |
| 5199 | CC_ALGO(tp)->ack_rcvd(tp, th); |
| 5200 | } |
| 5201 | tcp_ccdbg_trace(tp, th, event: TCP_CC_ACK_RCVD); |
| 5202 | } |
| 5203 | if (acked > so->so_snd.sb_cc) { |
| 5204 | tp->snd_wnd -= so->so_snd.sb_cc; |
| 5205 | sbdrop(sb: &so->so_snd, len: (int)so->so_snd.sb_cc); |
| 5206 | ourfinisacked = 1; |
| 5207 | } else { |
| 5208 | sbdrop(sb: &so->so_snd, len: acked); |
| 5209 | tcp_sbsnd_trim(sbsnd: &so->so_snd); |
| 5210 | tp->snd_wnd -= acked; |
| 5211 | ourfinisacked = 0; |
| 5212 | } |
| 5213 | /* detect una wraparound */ |
| 5214 | if (!IN_FASTRECOVERY(tp) && |
| 5215 | SEQ_GT(tp->snd_una, tp->snd_recover) && |
| 5216 | SEQ_LEQ(th->th_ack, tp->snd_recover)) { |
| 5217 | tp->snd_recover = th->th_ack - 1; |
| 5218 | } |
| 5219 | |
| 5220 | if (IN_FASTRECOVERY(tp) && |
| 5221 | SEQ_GEQ(th->th_ack, tp->snd_recover)) { |
| 5222 | EXIT_FASTRECOVERY(tp); |
| 5223 | } |
| 5224 | |
| 5225 | tcp_update_snd_una(tp, ack: th->th_ack); |
| 5226 | |
| 5227 | if (SACK_ENABLED(tp)) { |
| 5228 | if (SEQ_GT(tp->snd_una, tp->snd_recover)) { |
| 5229 | tp->snd_recover = tp->snd_una; |
| 5230 | } |
| 5231 | } |
| 5232 | if (SEQ_LT(tp->snd_nxt, tp->snd_una)) { |
| 5233 | tp->snd_nxt = tp->snd_una; |
| 5234 | } |
| 5235 | if (!SLIST_EMPTY(&tp->t_rxt_segments) && |
| 5236 | !TCP_DSACK_SEQ_IN_WINDOW(tp, tp->t_dsack_lastuna, |
| 5237 | tp->snd_una)) { |
| 5238 | tcp_rxtseg_clean(tp); |
| 5239 | } |
| 5240 | if ((tp->t_flagsext & TF_MEASURESNDBW) != 0 && |
| 5241 | tp->t_bwmeas != NULL) { |
| 5242 | tcp_bwmeas_check(tp); |
| 5243 | } |
| 5244 | |
| 5245 | write_wakeup = 1; |
| 5246 | |
| 5247 | if (!SLIST_EMPTY(&tp->t_notify_ack)) { |
| 5248 | tcp_notify_acknowledgement(tp, so); |
| 5249 | } |
| 5250 | |
| 5251 | switch (tp->t_state) { |
| 5252 | /* |
| 5253 | * In FIN_WAIT_1 STATE in addition to the processing |
| 5254 | * for the ESTABLISHED state if our FIN is now acknowledged |
| 5255 | * then enter FIN_WAIT_2. |
| 5256 | */ |
| 5257 | case TCPS_FIN_WAIT_1: |
| 5258 | if (ourfinisacked) { |
| 5259 | /* |
| 5260 | * If we can't receive any more |
| 5261 | * data, then closing user can proceed. |
| 5262 | * Starting the TCPT_2MSL timer is contrary to the |
| 5263 | * specification, but if we don't get a FIN |
| 5264 | * we'll hang forever. |
| 5265 | */ |
| 5266 | DTRACE_TCP4(state__change, void, NULL, |
| 5267 | struct inpcb *, inp, |
| 5268 | struct tcpcb *, tp, |
| 5269 | int32_t, TCPS_FIN_WAIT_2); |
| 5270 | TCP_LOG_STATE(tp, TCPS_FIN_WAIT_2); |
| 5271 | tp->t_state = TCPS_FIN_WAIT_2; |
| 5272 | if (so->so_state & SS_CANTRCVMORE) { |
| 5273 | isconnected = FALSE; |
| 5274 | isdisconnected = TRUE; |
| 5275 | tcp_set_finwait_timeout(tp); |
| 5276 | } |
| 5277 | /* |
| 5278 | * fall through and make sure we also recognize |
| 5279 | * data ACKed with the FIN |
| 5280 | */ |
| 5281 | } |
| 5282 | break; |
| 5283 | |
| 5284 | /* |
| 5285 | * In CLOSING STATE in addition to the processing for |
| 5286 | * the ESTABLISHED state if the ACK acknowledges our FIN |
| 5287 | * then enter the TIME-WAIT state, otherwise ignore |
| 5288 | * the segment. |
| 5289 | */ |
| 5290 | case TCPS_CLOSING: |
| 5291 | if (ourfinisacked) { |
| 5292 | DTRACE_TCP4(state__change, void, NULL, |
| 5293 | struct inpcb *, inp, |
| 5294 | struct tcpcb *, tp, |
| 5295 | int32_t, TCPS_TIME_WAIT); |
| 5296 | TCP_LOG_STATE(tp, TCPS_TIME_WAIT); |
| 5297 | tp->t_state = TCPS_TIME_WAIT; |
| 5298 | tcp_canceltimers(tp); |
| 5299 | if (tp->t_flagsext & TF_NOTIMEWAIT) { |
| 5300 | tp->t_flags |= TF_CLOSING; |
| 5301 | } else { |
| 5302 | add_to_time_wait(tp, delay: 2 * tcp_msl); |
| 5303 | } |
| 5304 | isconnected = FALSE; |
| 5305 | isdisconnected = TRUE; |
| 5306 | } |
| 5307 | break; |
| 5308 | |
| 5309 | /* |
| 5310 | * In LAST_ACK, we may still be waiting for data to drain |
| 5311 | * and/or to be acked, as well as for the ack of our FIN. |
| 5312 | * If our FIN is now acknowledged, delete the TCB, |
| 5313 | * enter the closed state and return. |
| 5314 | */ |
| 5315 | case TCPS_LAST_ACK: |
| 5316 | if (ourfinisacked) { |
| 5317 | tp = tcp_close(tp); |
| 5318 | goto drop; |
| 5319 | } |
| 5320 | break; |
| 5321 | |
| 5322 | /* |
| 5323 | * In TIME_WAIT state the only thing that should arrive |
| 5324 | * is a retransmission of the remote FIN. Acknowledge |
| 5325 | * it and restart the finack timer. |
| 5326 | */ |
| 5327 | case TCPS_TIME_WAIT: |
| 5328 | add_to_time_wait(tp, delay: 2 * tcp_msl); |
| 5329 | goto dropafterack; |
| 5330 | } |
| 5331 | |
| 5332 | /* |
| 5333 | * If there is a SACK option on the ACK and we |
| 5334 | * haven't seen any duplicate acks before, count |
| 5335 | * it as a duplicate ack even if the cumulative |
| 5336 | * ack is advanced. If the receiver delayed an |
| 5337 | * ack and detected loss afterwards, then the ack |
| 5338 | * will advance cumulative ack and will also have |
| 5339 | * a SACK option. So counting it as one duplicate |
| 5340 | * ack is ok. |
| 5341 | */ |
| 5342 | if (tp->t_state == TCPS_ESTABLISHED && |
| 5343 | SACK_ENABLED(tp) && sack_bytes_acked > 0 && |
| 5344 | to.to_nsacks > 0 && tp->t_dupacks == 0 && |
| 5345 | SEQ_LEQ(th->th_ack, tp->snd_una) && tlen == 0 && |
| 5346 | !(tp->t_flagsext & TF_PKTS_REORDERED)) { |
| 5347 | tcpstat.tcps_sack_ackadv++; |
| 5348 | goto process_dupack; |
| 5349 | } |
| 5350 | } |
| 5351 | |
| 5352 | step6: |
| 5353 | /* |
| 5354 | * Update window information. |
| 5355 | */ |
| 5356 | if (tcp_update_window(tp, thflags, th, tiwin, tlen)) { |
| 5357 | needoutput = 1; |
| 5358 | } |
| 5359 | |
| 5360 | /* |
| 5361 | * Process segments with URG. |
| 5362 | */ |
| 5363 | if ((thflags & TH_URG) && th->th_urp && |
| 5364 | TCPS_HAVERCVDFIN(tp->t_state) == 0) { |
| 5365 | /* |
| 5366 | * This is a kludge, but if we receive and accept |
| 5367 | * random urgent pointers, we'll crash in |
| 5368 | * soreceive. It's hard to imagine someone |
| 5369 | * actually wanting to send this much urgent data. |
| 5370 | */ |
| 5371 | if (th->th_urp + so->so_rcv.sb_cc > sb_max) { |
| 5372 | th->th_urp = 0; /* XXX */ |
| 5373 | thflags &= ~TH_URG; /* XXX */ |
| 5374 | goto dodata; /* XXX */ |
| 5375 | } |
| 5376 | /* |
| 5377 | * If this segment advances the known urgent pointer, |
| 5378 | * then mark the data stream. This should not happen |
| 5379 | * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since |
| 5380 | * a FIN has been received from the remote side. |
| 5381 | * In these states we ignore the URG. |
| 5382 | * |
| 5383 | * According to RFC961 (Assigned Protocols), |
| 5384 | * the urgent pointer points to the last octet |
| 5385 | * of urgent data. We continue, however, |
| 5386 | * to consider it to indicate the first octet |
| 5387 | * of data past the urgent section as the original |
| 5388 | * spec states (in one of two places). |
| 5389 | */ |
| 5390 | if (SEQ_GT(th->th_seq + th->th_urp, tp->rcv_up)) { |
| 5391 | tp->rcv_up = th->th_seq + th->th_urp; |
| 5392 | so->so_oobmark = so->so_rcv.sb_cc + |
| 5393 | (tp->rcv_up - tp->rcv_nxt) - 1; |
| 5394 | if (so->so_oobmark == 0) { |
| 5395 | so->so_state |= SS_RCVATMARK; |
| 5396 | } |
| 5397 | sohasoutofband(so); |
| 5398 | tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA); |
| 5399 | } |
| 5400 | /* |
| 5401 | * Remove out of band data so doesn't get presented to user. |
| 5402 | * This can happen independent of advancing the URG pointer, |
| 5403 | * but if two URG's are pending at once, some out-of-band |
| 5404 | * data may creep in... ick. |
| 5405 | */ |
| 5406 | if (th->th_urp <= (u_int32_t)tlen |
| 5407 | #if SO_OOBINLINE |
| 5408 | && (so->so_options & SO_OOBINLINE) == 0 |
| 5409 | #endif |
| 5410 | ) { |
| 5411 | tcp_pulloutofband(so, th, m, |
| 5412 | drop_hdrlen); /* hdr drop is delayed */ |
| 5413 | } |
| 5414 | } else { |
| 5415 | /* |
| 5416 | * If no out of band data is expected, |
| 5417 | * pull receive urgent pointer along |
| 5418 | * with the receive window. |
| 5419 | */ |
| 5420 | if (SEQ_GT(tp->rcv_nxt, tp->rcv_up)) { |
| 5421 | tp->rcv_up = tp->rcv_nxt; |
| 5422 | } |
| 5423 | } |
| 5424 | dodata: |
| 5425 | |
| 5426 | /* Set socket's connect or disconnect state correcly before doing data. |
| 5427 | * The following might unlock the socket if there is an upcall or a socket |
| 5428 | * filter. |
| 5429 | */ |
| 5430 | if (isconnected) { |
| 5431 | soisconnected(so); |
| 5432 | } else if (isdisconnected) { |
| 5433 | soisdisconnected(so); |
| 5434 | } |
| 5435 | |
| 5436 | /* Let's check the state of pcb just to make sure that it did not get closed |
| 5437 | * when we unlocked above |
| 5438 | */ |
| 5439 | if (inp->inp_state == INPCB_STATE_DEAD) { |
| 5440 | /* Just drop the packet that we are processing and return */ |
| 5441 | TCP_LOG_DROP_PCB(TCP_LOG_HDR, th, tp, false, "INPCB_STATE_DEAD" ); |
| 5442 | goto drop; |
| 5443 | } |
| 5444 | |
| 5445 | /* |
| 5446 | * Process the segment text, merging it into the TCP sequencing queue, |
| 5447 | * and arranging for acknowledgment of receipt if necessary. |
| 5448 | * This process logically involves adjusting tp->rcv_wnd as data |
| 5449 | * is presented to the user (this happens in tcp_usrreq.c, |
| 5450 | * case PRU_RCVD). If a FIN has already been received on this |
| 5451 | * connection then we just ignore the text. |
| 5452 | * |
| 5453 | * If we are in SYN-received state and got a valid TFO cookie, we want |
| 5454 | * to process the data. |
| 5455 | */ |
| 5456 | if ((tlen || (thflags & TH_FIN)) && |
| 5457 | TCPS_HAVERCVDFIN(tp->t_state) == 0 && |
| 5458 | (TCPS_HAVEESTABLISHED(tp->t_state) || |
| 5459 | (tp->t_state == TCPS_SYN_RECEIVED && |
| 5460 | (tp->t_tfo_flags & TFO_F_COOKIE_VALID)))) { |
| 5461 | tcp_seq save_start = th->th_seq; |
| 5462 | tcp_seq save_end = th->th_seq + tlen; |
| 5463 | m_adj(m, drop_hdrlen); /* delayed header drop */ |
| 5464 | /* |
| 5465 | * Insert segment which includes th into TCP reassembly queue |
| 5466 | * with control block tp. Set thflags to whether reassembly now |
| 5467 | * includes a segment with FIN. This handles the common case |
| 5468 | * inline (segment is the next to be received on an established |
| 5469 | * connection, and the queue is empty), avoiding linkage into |
| 5470 | * and removal from the queue and repetition of various |
| 5471 | * conversions. |
| 5472 | * Set DELACK for segments received in order, but ack |
| 5473 | * immediately when segments are out of order (so |
| 5474 | * fast retransmit can work). |
| 5475 | */ |
| 5476 | if (th->th_seq == tp->rcv_nxt && LIST_EMPTY(&tp->t_segq)) { |
| 5477 | TCP_INC_VAR(tp->t_unacksegs, segment_count); |
| 5478 | |
| 5479 | /* Calculate the RTT on the receiver */ |
| 5480 | tcp_compute_rcv_rtt(tp, to: &to, th); |
| 5481 | |
| 5482 | if (DELAY_ACK(tp, th) && |
| 5483 | ((tp->t_flags & TF_ACKNOW) == 0)) { |
| 5484 | if ((tp->t_flags & TF_DELACK) == 0) { |
| 5485 | tp->t_flags |= TF_DELACK; |
| 5486 | tp->t_timer[TCPT_DELACK] = |
| 5487 | OFFSET_FROM_START(tp, tcp_delack); |
| 5488 | } |
| 5489 | } else { |
| 5490 | tp->t_flags |= TF_ACKNOW; |
| 5491 | } |
| 5492 | tp->rcv_nxt += tlen; |
| 5493 | /* Update highest received sequence and its timestamp */ |
| 5494 | if (SEQ_LT(tp->rcv_high, tp->rcv_nxt)) { |
| 5495 | tp->rcv_high = tp->rcv_nxt; |
| 5496 | if (to.to_flags & TOF_TS) { |
| 5497 | tp->tsv_high = to.to_tsval; |
| 5498 | } |
| 5499 | } |
| 5500 | |
| 5501 | thflags = th->th_flags & TH_FIN; |
| 5502 | TCP_INC_VAR(tcpstat.tcps_rcvpack, segment_count); |
| 5503 | tcpstat.tcps_rcvbyte += tlen; |
| 5504 | if (nstat_collect) { |
| 5505 | INP_ADD_STAT(inp, cell, wifi, wired, |
| 5506 | rxpackets, 1); |
| 5507 | INP_ADD_STAT(inp, cell, wifi, wired, |
| 5508 | rxbytes, tlen); |
| 5509 | inp_set_activity_bitmap(inp); |
| 5510 | } |
| 5511 | tcp_sbrcv_grow(tp, sbrcv: &so->so_rcv, to: &to, pktlen: tlen); |
| 5512 | if (TCP_USE_RLEDBAT(tp, so) && |
| 5513 | tcp_cc_rledbat.data_rcvd != NULL) { |
| 5514 | tcp_cc_rledbat.data_rcvd(tp, th, &to, tlen); |
| 5515 | } |
| 5516 | |
| 5517 | so_recv_data_stat(so, m, drop_hdrlen); |
| 5518 | |
| 5519 | if (isipv6) { |
| 5520 | memcpy(dst: &saved_hdr, src: ip6, n: sizeof(struct ip6_hdr)); |
| 5521 | ip6 = (struct ip6_hdr *)&saved_hdr[0]; |
| 5522 | } else { |
| 5523 | memcpy(dst: &saved_hdr, src: ip, n: ip->ip_hl << 2); |
| 5524 | ip = (struct ip *)&saved_hdr[0]; |
| 5525 | } |
| 5526 | memcpy(dst: &saved_tcphdr, src: th, n: sizeof(struct tcphdr)); |
| 5527 | |
| 5528 | if (th->th_flags & TH_PUSH) { |
| 5529 | tp->t_flagsext |= TF_LAST_IS_PSH; |
| 5530 | } else { |
| 5531 | tp->t_flagsext &= ~TF_LAST_IS_PSH; |
| 5532 | } |
| 5533 | |
| 5534 | if (sbappendstream_rcvdemux(so, m)) { |
| 5535 | read_wakeup = 1; |
| 5536 | } |
| 5537 | th = &saved_tcphdr; |
| 5538 | } else { |
| 5539 | if (isipv6) { |
| 5540 | memcpy(dst: &saved_hdr, src: ip6, n: sizeof(struct ip6_hdr)); |
| 5541 | ip6 = (struct ip6_hdr *)&saved_hdr[0]; |
| 5542 | } else { |
| 5543 | memcpy(dst: &saved_hdr, src: ip, n: ip->ip_hl << 2); |
| 5544 | ip = (struct ip *)&saved_hdr[0]; |
| 5545 | } |
| 5546 | |
| 5547 | /* Update highest received sequence and its timestamp */ |
| 5548 | if (SEQ_LT(tp->rcv_high, th->th_seq + tlen)) { |
| 5549 | tp->rcv_high = th->th_seq + tlen; |
| 5550 | if (to.to_flags & TOF_TS) { |
| 5551 | tp->tsv_high = to.to_tsval; |
| 5552 | } |
| 5553 | } |
| 5554 | |
| 5555 | /* |
| 5556 | * Calculate the RTT on the receiver, |
| 5557 | * even if OOO segment is received. |
| 5558 | */ |
| 5559 | tcp_compute_rcv_rtt(tp, to: &to, th); |
| 5560 | |
| 5561 | if (tcp_autotune_reorder) { |
| 5562 | tcp_sbrcv_grow(tp, sbrcv: &so->so_rcv, to: &to, pktlen: tlen); |
| 5563 | } |
| 5564 | if (TCP_USE_RLEDBAT(tp, so) && |
| 5565 | tcp_cc_rledbat.data_rcvd != NULL) { |
| 5566 | tcp_cc_rledbat.data_rcvd(tp, th, &to, tlen); |
| 5567 | } |
| 5568 | |
| 5569 | memcpy(dst: &saved_tcphdr, src: th, n: sizeof(struct tcphdr)); |
| 5570 | thflags = tcp_reass(tp, th, tlenp: &tlen, m, ifp, dowakeup: &read_wakeup); |
| 5571 | th = &saved_tcphdr; |
| 5572 | tp->t_flags |= TF_ACKNOW; |
| 5573 | } |
| 5574 | |
| 5575 | if ((tlen > 0 || (th->th_flags & TH_FIN)) && SACK_ENABLED(tp)) { |
| 5576 | if (th->th_flags & TH_FIN) { |
| 5577 | save_end++; |
| 5578 | } |
| 5579 | tcp_update_sack_list(tp, rcv_laststart: save_start, rcv_lastend: save_end); |
| 5580 | } |
| 5581 | |
| 5582 | tcp_adaptive_rwtimo_check(tp, tlen); |
| 5583 | |
| 5584 | if (tlen > 0) { |
| 5585 | tcp_tfo_rcv_data(tp); |
| 5586 | } |
| 5587 | |
| 5588 | if (tp->t_flags & TF_DELACK) { |
| 5589 | if (isipv6) { |
| 5590 | KERNEL_DEBUG(DBG_LAYER_END, ((th->th_dport << 16) | th->th_sport), |
| 5591 | (((ip6->ip6_src.s6_addr16[0]) << 16) | (ip6->ip6_dst.s6_addr16[0])), |
| 5592 | th->th_seq, th->th_ack, th->th_win); |
| 5593 | } else { |
| 5594 | KERNEL_DEBUG(DBG_LAYER_END, ((th->th_dport << 16) | th->th_sport), |
| 5595 | (((ip->ip_src.s_addr & 0xffff) << 16) | (ip->ip_dst.s_addr & 0xffff)), |
| 5596 | th->th_seq, th->th_ack, th->th_win); |
| 5597 | } |
| 5598 | } |
| 5599 | } else { |
| 5600 | if ((so->so_flags & SOF_MP_SUBFLOW) && tlen == 0 && |
| 5601 | (m->m_pkthdr.pkt_flags & PKTF_MPTCP_DFIN) && |
| 5602 | (m->m_pkthdr.pkt_flags & PKTF_MPTCP)) { |
| 5603 | m_adj(m, drop_hdrlen); /* delayed header drop */ |
| 5604 | /* |
| 5605 | * 0-length DATA_FIN. The rlen is actually 0. We special-case the |
| 5606 | * byte consumed by the dfin in mptcp_input and mptcp_reass_present |
| 5607 | */ |
| 5608 | m->m_pkthdr.mp_rlen = 0; |
| 5609 | mptcp_input(tptomptp(tp)->mpt_mpte, m); |
| 5610 | tp->t_flags |= TF_ACKNOW; |
| 5611 | } else { |
| 5612 | m_freem(m); |
| 5613 | } |
| 5614 | thflags &= ~TH_FIN; |
| 5615 | } |
| 5616 | /* |
| 5617 | * We increment t_unacksegs_ce for both data segments and pure ACKs |
| 5618 | * No need to increment if a FIN has already been received. |
| 5619 | */ |
| 5620 | if (TCP_ACC_ECN_ON(tp) && TCPS_HAVEESTABLISHED(tp->t_state) && |
| 5621 | TCPS_HAVERCVDFIN(tp->t_state) == 0) { |
| 5622 | if (ip_ecn == IPTOS_ECN_CE) { |
| 5623 | TCP_INC_VAR(tp->t_unacksegs_ce, segment_count); |
| 5624 | } |
| 5625 | /* |
| 5626 | * Send an ACK immediately if there is a change in IP ECN |
| 5627 | * from non-CE to CE. |
| 5628 | * If new data is delivered, then ACK for every 2 CE marks, |
| 5629 | * otherwise ACK for every 3 CE marks |
| 5630 | */ |
| 5631 | if ((ip_ecn == IPTOS_ECN_CE && ip_ecn != tp->t_prev_ip_ecn) || |
| 5632 | (tp->t_unacksegs_ce >= 2 && tp->last_ack_sent != tp->rcv_nxt) || |
| 5633 | tp->t_unacksegs_ce >= 3) { |
| 5634 | tp->t_flags |= TF_ACKNOW; |
| 5635 | } |
| 5636 | tp->t_prev_ip_ecn = ip_ecn; |
| 5637 | } |
| 5638 | /* |
| 5639 | * If FIN is received ACK the FIN and let the user know |
| 5640 | * that the connection is closing. |
| 5641 | */ |
| 5642 | if (thflags & TH_FIN) { |
| 5643 | if (TCPS_HAVERCVDFIN(tp->t_state) == 0) { |
| 5644 | socantrcvmore(so); |
| 5645 | /* |
| 5646 | * If connection is half-synchronized |
| 5647 | * (ie NEEDSYN flag on) then delay ACK, |
| 5648 | * so it may be piggybacked when SYN is sent. |
| 5649 | * Otherwise, since we received a FIN then no |
| 5650 | * more input can be expected, send ACK now. |
| 5651 | */ |
| 5652 | TCP_INC_VAR(tp->t_unacksegs, segment_count); |
| 5653 | tp->t_flags |= TF_ACKNOW; |
| 5654 | tp->rcv_nxt++; |
| 5655 | } |
| 5656 | switch (tp->t_state) { |
| 5657 | /* |
| 5658 | * In SYN_RECEIVED and ESTABLISHED STATES |
| 5659 | * enter the CLOSE_WAIT state. |
| 5660 | */ |
| 5661 | case TCPS_SYN_RECEIVED: |
| 5662 | tp->t_starttime = tcp_now; |
| 5663 | OS_FALLTHROUGH; |
| 5664 | case TCPS_ESTABLISHED: |
| 5665 | DTRACE_TCP4(state__change, void, NULL, struct inpcb *, inp, |
| 5666 | struct tcpcb *, tp, int32_t, TCPS_CLOSE_WAIT); |
| 5667 | TCP_LOG_STATE(tp, TCPS_CLOSE_WAIT); |
| 5668 | tp->t_state = TCPS_CLOSE_WAIT; |
| 5669 | break; |
| 5670 | |
| 5671 | /* |
| 5672 | * If still in FIN_WAIT_1 STATE FIN has not been acked so |
| 5673 | * enter the CLOSING state. |
| 5674 | */ |
| 5675 | case TCPS_FIN_WAIT_1: |
| 5676 | DTRACE_TCP4(state__change, void, NULL, struct inpcb *, inp, |
| 5677 | struct tcpcb *, tp, int32_t, TCPS_CLOSING); |
| 5678 | TCP_LOG_STATE(tp, TCPS_CLOSING); |
| 5679 | tp->t_state = TCPS_CLOSING; |
| 5680 | break; |
| 5681 | |
| 5682 | /* |
| 5683 | * In FIN_WAIT_2 state enter the TIME_WAIT state, |
| 5684 | * starting the time-wait timer, turning off the other |
| 5685 | * standard timers. |
| 5686 | */ |
| 5687 | case TCPS_FIN_WAIT_2: |
| 5688 | DTRACE_TCP4(state__change, void, NULL, |
| 5689 | struct inpcb *, inp, |
| 5690 | struct tcpcb *, tp, |
| 5691 | int32_t, TCPS_TIME_WAIT); |
| 5692 | TCP_LOG_STATE(tp, TCPS_TIME_WAIT); |
| 5693 | tp->t_state = TCPS_TIME_WAIT; |
| 5694 | tcp_canceltimers(tp); |
| 5695 | tp->t_flags |= TF_ACKNOW; |
| 5696 | if (tp->t_flagsext & TF_NOTIMEWAIT) { |
| 5697 | tp->t_flags |= TF_CLOSING; |
| 5698 | } else { |
| 5699 | add_to_time_wait(tp, delay: 2 * tcp_msl); |
| 5700 | } |
| 5701 | soisdisconnected(so); |
| 5702 | break; |
| 5703 | |
| 5704 | /* |
| 5705 | * In TIME_WAIT state restart the 2 MSL time_wait timer. |
| 5706 | */ |
| 5707 | case TCPS_TIME_WAIT: |
| 5708 | add_to_time_wait(tp, delay: 2 * tcp_msl); |
| 5709 | break; |
| 5710 | } |
| 5711 | } |
| 5712 | #if TCPDEBUG |
| 5713 | if (so->so_options & SO_DEBUG) { |
| 5714 | tcp_trace(TA_INPUT, ostate, tp, (void *)tcp_saveipgen, |
| 5715 | &tcp_savetcp, 0); |
| 5716 | } |
| 5717 | #endif |
| 5718 | |
| 5719 | if (read_wakeup) { |
| 5720 | mptcp_handle_input(so); |
| 5721 | } |
| 5722 | |
| 5723 | /* |
| 5724 | * Return any desired output. |
| 5725 | */ |
| 5726 | if (needoutput || (tp->t_flags & TF_ACKNOW)) { |
| 5727 | (void) tcp_output(tp); |
| 5728 | } |
| 5729 | |
| 5730 | tcp_check_timer_state(tp); |
| 5731 | |
| 5732 | tcp_handle_wakeup(so, read_wakeup, write_wakeup); |
| 5733 | |
| 5734 | socket_unlock(so, refcount: 1); |
| 5735 | KERNEL_DEBUG(DBG_FNC_TCP_INPUT | DBG_FUNC_END, 0, 0, 0, 0, 0); |
| 5736 | return; |
| 5737 | |
| 5738 | dropafterack: |
| 5739 | /* |
| 5740 | * Generate an ACK dropping incoming segment if it occupies |
| 5741 | * sequence space, where the ACK reflects our state. |
| 5742 | * |
| 5743 | * We can now skip the test for the RST flag since all |
| 5744 | * paths to this code happen after packets containing |
| 5745 | * RST have been dropped. |
| 5746 | * |
| 5747 | * In the SYN-RECEIVED state, don't send an ACK unless the |
| 5748 | * segment we received passes the SYN-RECEIVED ACK test. |
| 5749 | * If it fails send a RST. This breaks the loop in the |
| 5750 | * "LAND" DoS attack, and also prevents an ACK storm |
| 5751 | * between two listening ports that have been sent forged |
| 5752 | * SYN segments, each with the source address of the other. |
| 5753 | */ |
| 5754 | if (tp->t_state == TCPS_SYN_RECEIVED && (thflags & TH_ACK) && |
| 5755 | (SEQ_GT(tp->snd_una, th->th_ack) || |
| 5756 | SEQ_GT(th->th_ack, tp->snd_max))) { |
| 5757 | IF_TCP_STATINC(ifp, dospacket); |
| 5758 | goto dropwithreset; |
| 5759 | } |
| 5760 | #if TCPDEBUG |
| 5761 | if (so->so_options & SO_DEBUG) { |
| 5762 | tcp_trace(TA_DROP, ostate, tp, (void *)tcp_saveipgen, |
| 5763 | &tcp_savetcp, 0); |
| 5764 | } |
| 5765 | #endif |
| 5766 | m_freem(m); |
| 5767 | tp->t_flags |= TF_ACKNOW; |
| 5768 | |
| 5769 | (void) tcp_output(tp); |
| 5770 | |
| 5771 | tcp_handle_wakeup(so, read_wakeup, write_wakeup); |
| 5772 | |
| 5773 | /* Don't need to check timer state as we should have done it during tcp_output */ |
| 5774 | socket_unlock(so, refcount: 1); |
| 5775 | KERNEL_DEBUG(DBG_FNC_TCP_INPUT | DBG_FUNC_END, 0, 0, 0, 0, 0); |
| 5776 | return; |
| 5777 | dropwithresetnosock: |
| 5778 | nosock = 1; |
| 5779 | dropwithreset: |
| 5780 | /* |
| 5781 | * Generate a RST, dropping incoming segment. |
| 5782 | * Make ACK acceptable to originator of segment. |
| 5783 | * Don't bother to respond if destination was broadcast/multicast. |
| 5784 | */ |
| 5785 | if ((thflags & TH_RST) || m->m_flags & (M_BCAST | M_MCAST)) { |
| 5786 | goto drop; |
| 5787 | } |
| 5788 | if (isipv6) { |
| 5789 | if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) || |
| 5790 | IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) { |
| 5791 | goto drop; |
| 5792 | } |
| 5793 | } else if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) || |
| 5794 | IN_MULTICAST(ntohl(ip->ip_src.s_addr)) || |
| 5795 | ip->ip_src.s_addr == htonl(INADDR_BROADCAST) || |
| 5796 | in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif)) { |
| 5797 | goto drop; |
| 5798 | } |
| 5799 | /* IPv6 anycast check is done at tcp6_input() */ |
| 5800 | |
| 5801 | #if TCPDEBUG |
| 5802 | if (tp == 0 || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG)) { |
| 5803 | tcp_trace(TA_DROP, ostate, tp, (void *)tcp_saveipgen, |
| 5804 | &tcp_savetcp, 0); |
| 5805 | } |
| 5806 | #endif |
| 5807 | bzero(s: &tra, n: sizeof(tra)); |
| 5808 | tra.ifscope = ifscope; |
| 5809 | tra.awdl_unrestricted = 1; |
| 5810 | tra.intcoproc_allowed = 1; |
| 5811 | tra.management_allowed = 1; |
| 5812 | if (thflags & TH_ACK) { |
| 5813 | /* mtod() below is safe as long as hdr dropping is delayed */ |
| 5814 | tcp_respond(tp, mtod(m, void *), th, m, (tcp_seq)0, th->th_ack, |
| 5815 | TH_RST, &tra); |
| 5816 | } else { |
| 5817 | if (thflags & TH_SYN) { |
| 5818 | tlen++; |
| 5819 | } |
| 5820 | /* mtod() below is safe as long as hdr dropping is delayed */ |
| 5821 | tcp_respond(tp, mtod(m, void *), th, m, th->th_seq + tlen, |
| 5822 | (tcp_seq)0, TH_RST | TH_ACK, &tra); |
| 5823 | } |
| 5824 | /* destroy temporarily created socket */ |
| 5825 | if (dropsocket) { |
| 5826 | (void) soabort(so); |
| 5827 | socket_unlock(so, refcount: 1); |
| 5828 | } else if ((inp != NULL) && (nosock == 0)) { |
| 5829 | tcp_handle_wakeup(so, read_wakeup, write_wakeup); |
| 5830 | |
| 5831 | socket_unlock(so, refcount: 1); |
| 5832 | } |
| 5833 | KERNEL_DEBUG(DBG_FNC_TCP_INPUT | DBG_FUNC_END, 0, 0, 0, 0, 0); |
| 5834 | return; |
| 5835 | dropnosock: |
| 5836 | nosock = 1; |
| 5837 | drop: |
| 5838 | /* |
| 5839 | * Drop space held by incoming segment and return. |
| 5840 | */ |
| 5841 | #if TCPDEBUG |
| 5842 | if (tp == 0 || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG)) { |
| 5843 | tcp_trace(TA_DROP, ostate, tp, (void *)tcp_saveipgen, |
| 5844 | &tcp_savetcp, 0); |
| 5845 | } |
| 5846 | #endif |
| 5847 | m_freem(m); |
| 5848 | /* destroy temporarily created socket */ |
| 5849 | if (dropsocket) { |
| 5850 | (void) soabort(so); |
| 5851 | socket_unlock(so, refcount: 1); |
| 5852 | } else if (nosock == 0) { |
| 5853 | tcp_handle_wakeup(so, read_wakeup, write_wakeup); |
| 5854 | |
| 5855 | socket_unlock(so, refcount: 1); |
| 5856 | } |
| 5857 | KERNEL_DEBUG(DBG_FNC_TCP_INPUT | DBG_FUNC_END, 0, 0, 0, 0, 0); |
| 5858 | return; |
| 5859 | } |
| 5860 | |
| 5861 | /* |
| 5862 | * Parse TCP options and place in tcpopt. |
| 5863 | */ |
| 5864 | static void |
| 5865 | tcp_dooptions(struct tcpcb *tp, u_char *cp, int cnt, struct tcphdr *th, |
| 5866 | struct tcpopt *to) |
| 5867 | { |
| 5868 | u_short mss = 0; |
| 5869 | uint8_t opt, optlen; |
| 5870 | |
| 5871 | for (; cnt > 0; cnt -= optlen, cp += optlen) { |
| 5872 | opt = cp[0]; |
| 5873 | if (opt == TCPOPT_EOL) { |
| 5874 | break; |
| 5875 | } |
| 5876 | if (opt == TCPOPT_NOP) { |
| 5877 | optlen = 1; |
| 5878 | } else { |
| 5879 | if (cnt < 2) { |
| 5880 | break; |
| 5881 | } |
| 5882 | optlen = cp[1]; |
| 5883 | if (optlen < 2 || optlen > cnt) { |
| 5884 | break; |
| 5885 | } |
| 5886 | } |
| 5887 | switch (opt) { |
| 5888 | default: |
| 5889 | continue; |
| 5890 | |
| 5891 | case TCPOPT_MAXSEG: |
| 5892 | if (optlen != TCPOLEN_MAXSEG) { |
| 5893 | continue; |
| 5894 | } |
| 5895 | if (!(th->th_flags & TH_SYN)) { |
| 5896 | continue; |
| 5897 | } |
| 5898 | bcopy(src: (char *) cp + 2, dst: (char *) &mss, n: sizeof(mss)); |
| 5899 | NTOHS(mss); |
| 5900 | to->to_mss = mss; |
| 5901 | to->to_flags |= TOF_MSS; |
| 5902 | break; |
| 5903 | |
| 5904 | case TCPOPT_WINDOW: |
| 5905 | if (optlen != TCPOLEN_WINDOW) { |
| 5906 | continue; |
| 5907 | } |
| 5908 | if (!(th->th_flags & TH_SYN)) { |
| 5909 | continue; |
| 5910 | } |
| 5911 | to->to_flags |= TOF_SCALE; |
| 5912 | to->to_requested_s_scale = MIN(cp[2], TCP_MAX_WINSHIFT); |
| 5913 | break; |
| 5914 | |
| 5915 | case TCPOPT_TIMESTAMP: |
| 5916 | if (optlen != TCPOLEN_TIMESTAMP) { |
| 5917 | continue; |
| 5918 | } |
| 5919 | to->to_flags |= TOF_TS; |
| 5920 | bcopy(src: (char *)cp + 2, |
| 5921 | dst: (char *)&to->to_tsval, n: sizeof(to->to_tsval)); |
| 5922 | NTOHL(to->to_tsval); |
| 5923 | bcopy(src: (char *)cp + 6, |
| 5924 | dst: (char *)&to->to_tsecr, n: sizeof(to->to_tsecr)); |
| 5925 | NTOHL(to->to_tsecr); |
| 5926 | to->to_tsecr -= tp->t_ts_offset; |
| 5927 | /* Re-enable sending Timestamps if we received them */ |
| 5928 | if (!(tp->t_flags & TF_REQ_TSTMP) && tcp_do_timestamps) { |
| 5929 | tp->t_flags |= TF_REQ_TSTMP; |
| 5930 | } |
| 5931 | break; |
| 5932 | case TCPOPT_SACK_PERMITTED: |
| 5933 | if (optlen != TCPOLEN_SACK_PERMITTED) { |
| 5934 | continue; |
| 5935 | } |
| 5936 | if (th->th_flags & TH_SYN) { |
| 5937 | to->to_flags |= TOF_SACK; |
| 5938 | } |
| 5939 | break; |
| 5940 | case TCPOPT_SACK: |
| 5941 | if (optlen <= 2 || (optlen - 2) % TCPOLEN_SACK != 0) { |
| 5942 | continue; |
| 5943 | } |
| 5944 | to->to_nsacks = (optlen - 2) / TCPOLEN_SACK; |
| 5945 | to->to_sacks = cp + 2; |
| 5946 | tcpstat.tcps_sack_rcv_blocks++; |
| 5947 | |
| 5948 | break; |
| 5949 | case TCPOPT_FASTOPEN: |
| 5950 | if (optlen == TCPOLEN_FASTOPEN_REQ) { |
| 5951 | if (tp->t_state != TCPS_LISTEN) { |
| 5952 | continue; |
| 5953 | } |
| 5954 | |
| 5955 | to->to_flags |= TOF_TFOREQ; |
| 5956 | } else { |
| 5957 | if (optlen < TCPOLEN_FASTOPEN_REQ || |
| 5958 | (optlen - TCPOLEN_FASTOPEN_REQ) > TFO_COOKIE_LEN_MAX || |
| 5959 | (optlen - TCPOLEN_FASTOPEN_REQ) < TFO_COOKIE_LEN_MIN) { |
| 5960 | continue; |
| 5961 | } |
| 5962 | if (tp->t_state != TCPS_LISTEN && |
| 5963 | tp->t_state != TCPS_SYN_SENT) { |
| 5964 | continue; |
| 5965 | } |
| 5966 | |
| 5967 | to->to_flags |= TOF_TFO; |
| 5968 | to->to_tfo = cp + 1; |
| 5969 | } |
| 5970 | |
| 5971 | break; |
| 5972 | #if MPTCP |
| 5973 | case TCPOPT_MULTIPATH: |
| 5974 | tcp_do_mptcp_options(tp, cp, th, to, optlen); |
| 5975 | break; |
| 5976 | #endif /* MPTCP */ |
| 5977 | } |
| 5978 | } |
| 5979 | } |
| 5980 | |
| 5981 | static void |
| 5982 | tcp_finalize_options(struct tcpcb *tp, struct tcpopt *to, unsigned int ifscope) |
| 5983 | { |
| 5984 | if (to->to_flags & TOF_TS) { |
| 5985 | tp->t_flags |= TF_RCVD_TSTMP; |
| 5986 | tp->ts_recent = to->to_tsval; |
| 5987 | tp->ts_recent_age = tcp_now; |
| 5988 | } |
| 5989 | if (to->to_flags & TOF_MSS) { |
| 5990 | tcp_mss(tp, to->to_mss, ifscope); |
| 5991 | } |
| 5992 | if (SACK_ENABLED(tp)) { |
| 5993 | if (!(to->to_flags & TOF_SACK)) { |
| 5994 | tp->t_flagsext &= ~(TF_SACK_ENABLE); |
| 5995 | } else { |
| 5996 | tp->t_flags |= TF_SACK_PERMIT; |
| 5997 | } |
| 5998 | } |
| 5999 | if (to->to_flags & TOF_SCALE) { |
| 6000 | tp->t_flags |= TF_RCVD_SCALE; |
| 6001 | tp->requested_s_scale = to->to_requested_s_scale; |
| 6002 | |
| 6003 | /* Re-enable window scaling, if the option is received */ |
| 6004 | if (tp->request_r_scale > 0) { |
| 6005 | tp->t_flags |= TF_REQ_SCALE; |
| 6006 | } |
| 6007 | } |
| 6008 | } |
| 6009 | |
| 6010 | /* |
| 6011 | * Pull out of band byte out of a segment so |
| 6012 | * it doesn't appear in the user's data queue. |
| 6013 | * It is still reflected in the segment length for |
| 6014 | * sequencing purposes. |
| 6015 | * |
| 6016 | * @param off delayed to be droped hdrlen |
| 6017 | */ |
| 6018 | static void |
| 6019 | tcp_pulloutofband(struct socket *so, struct tcphdr *th, struct mbuf *m, int off) |
| 6020 | { |
| 6021 | int cnt = off + th->th_urp - 1; |
| 6022 | |
| 6023 | while (cnt >= 0) { |
| 6024 | if (m->m_len > cnt) { |
| 6025 | char *cp = mtod(m, caddr_t) + cnt; |
| 6026 | struct tcpcb *tp = sototcpcb(so); |
| 6027 | |
| 6028 | tp->t_iobc = *cp; |
| 6029 | tp->t_oobflags |= TCPOOB_HAVEDATA; |
| 6030 | bcopy(src: cp + 1, dst: cp, n: (unsigned)(m->m_len - cnt - 1)); |
| 6031 | m->m_len--; |
| 6032 | if (m->m_flags & M_PKTHDR) { |
| 6033 | m->m_pkthdr.len--; |
| 6034 | } |
| 6035 | return; |
| 6036 | } |
| 6037 | cnt -= m->m_len; |
| 6038 | m = m->m_next; |
| 6039 | if (m == 0) { |
| 6040 | break; |
| 6041 | } |
| 6042 | } |
| 6043 | panic("tcp_pulloutofband" ); |
| 6044 | } |
| 6045 | |
| 6046 | uint32_t |
| 6047 | get_base_rtt(struct tcpcb *tp) |
| 6048 | { |
| 6049 | struct rtentry *rt = tp->t_inpcb->inp_route.ro_rt; |
| 6050 | return (rt == NULL) ? 0 : rt->rtt_min; |
| 6051 | } |
| 6052 | |
| 6053 | static void |
| 6054 | update_curr_rtt(struct tcpcb * tp, uint32_t rtt) |
| 6055 | { |
| 6056 | tp->curr_rtt_index = (tp->curr_rtt_index + 1) % NCURR_RTT_HIST; |
| 6057 | tp->curr_rtt_hist[tp->curr_rtt_index] = rtt; |
| 6058 | |
| 6059 | /* forget the old value and update minimum */ |
| 6060 | tp->curr_rtt_min = 0; |
| 6061 | for (int i = 0; i < NCURR_RTT_HIST; ++i) { |
| 6062 | if (tp->curr_rtt_hist[i] != 0 && (tp->curr_rtt_min == 0 || |
| 6063 | tp->curr_rtt_hist[i] < tp->curr_rtt_min)) { |
| 6064 | tp->curr_rtt_min = tp->curr_rtt_hist[i]; |
| 6065 | } |
| 6066 | } |
| 6067 | } |
| 6068 | |
| 6069 | /* Each value of RTT base represents the minimum RTT seen in a minute. |
| 6070 | * We keep upto N_RTT_BASE minutes worth of history. |
| 6071 | */ |
| 6072 | void |
| 6073 | update_base_rtt(struct tcpcb *tp, uint32_t rtt) |
| 6074 | { |
| 6075 | u_int32_t base_rtt, i; |
| 6076 | struct rtentry *rt; |
| 6077 | |
| 6078 | if ((rt = tp->t_inpcb->inp_route.ro_rt) == NULL) { |
| 6079 | return; |
| 6080 | } |
| 6081 | if (rt->rtt_expire_ts == 0) { |
| 6082 | RT_LOCK_SPIN(rt); |
| 6083 | if (rt->rtt_expire_ts != 0) { |
| 6084 | RT_UNLOCK(rt); |
| 6085 | goto update; |
| 6086 | } |
| 6087 | rt->rtt_expire_ts = tcp_now; |
| 6088 | rt->rtt_index = 0; |
| 6089 | rt->rtt_hist[0] = rtt; |
| 6090 | rt->rtt_min = rtt; |
| 6091 | RT_UNLOCK(rt); |
| 6092 | |
| 6093 | tp->curr_rtt_index = 0; |
| 6094 | tp->curr_rtt_hist[0] = rtt; |
| 6095 | tp->curr_rtt_min = rtt; |
| 6096 | return; |
| 6097 | } |
| 6098 | update: |
| 6099 | #if TRAFFIC_MGT |
| 6100 | /* |
| 6101 | * If the recv side is being throttled, check if the |
| 6102 | * current RTT is closer to the base RTT seen in |
| 6103 | * first (recent) two slots. If so, unthrottle the stream. |
| 6104 | */ |
| 6105 | if ((tp->t_flagsext & TF_RECV_THROTTLE) && |
| 6106 | (int)(tcp_now - tp->t_recv_throttle_ts) >= TCP_RECV_THROTTLE_WIN) { |
| 6107 | base_rtt = rt->rtt_min; |
| 6108 | if (tp->t_rttcur <= (base_rtt + target_qdelay)) { |
| 6109 | tp->t_flagsext &= ~TF_RECV_THROTTLE; |
| 6110 | tp->t_recv_throttle_ts = 0; |
| 6111 | } |
| 6112 | } |
| 6113 | #endif /* TRAFFIC_MGT */ |
| 6114 | |
| 6115 | /* Update the next current RTT sample */ |
| 6116 | update_curr_rtt(tp, rtt); |
| 6117 | |
| 6118 | if ((int)(tcp_now - rt->rtt_expire_ts) >= |
| 6119 | TCP_RTT_HISTORY_EXPIRE_TIME) { |
| 6120 | RT_LOCK_SPIN(rt); |
| 6121 | /* check the condition again to avoid race */ |
| 6122 | if ((int)(tcp_now - rt->rtt_expire_ts) >= |
| 6123 | TCP_RTT_HISTORY_EXPIRE_TIME) { |
| 6124 | /* Set the base rtt to 0 for idle periods */ |
| 6125 | uint32_t times = MIN((tcp_now - rt->rtt_expire_ts) / |
| 6126 | TCP_RTT_HISTORY_EXPIRE_TIME, NRTT_HIST + 1); |
| 6127 | |
| 6128 | for (i = rt->rtt_index + 1; i < rt->rtt_index + times; i++) { |
| 6129 | rt->rtt_hist[i % NRTT_HIST] = 0; |
| 6130 | } |
| 6131 | |
| 6132 | rt->rtt_index = i % NRTT_HIST; |
| 6133 | rt->rtt_hist[rt->rtt_index] = rtt; |
| 6134 | rt->rtt_expire_ts = tcp_now; |
| 6135 | } else { |
| 6136 | rt->rtt_hist[rt->rtt_index] = |
| 6137 | min(a: rt->rtt_hist[rt->rtt_index], b: rtt); |
| 6138 | } |
| 6139 | /* forget the old value and update minimum */ |
| 6140 | rt->rtt_min = 0; |
| 6141 | for (i = 0; i < NRTT_HIST; ++i) { |
| 6142 | if (rt->rtt_hist[i] != 0 && |
| 6143 | (rt->rtt_min == 0 || |
| 6144 | rt->rtt_hist[i] < rt->rtt_min)) { |
| 6145 | rt->rtt_min = rt->rtt_hist[i]; |
| 6146 | } |
| 6147 | } |
| 6148 | RT_UNLOCK(rt); |
| 6149 | } else { |
| 6150 | rt->rtt_hist[rt->rtt_index] = |
| 6151 | min(a: rt->rtt_hist[rt->rtt_index], b: rtt); |
| 6152 | if (rt->rtt_min == 0) { |
| 6153 | rt->rtt_min = rtt; |
| 6154 | } else { |
| 6155 | rt->rtt_min = min(a: rt->rtt_min, b: rtt); |
| 6156 | } |
| 6157 | } |
| 6158 | } |
| 6159 | |
| 6160 | /* |
| 6161 | * If we have a timestamp reply, update smoothed RTT. If no timestamp is |
| 6162 | * present but transmit timer is running and timed sequence number was |
| 6163 | * acked, update smoothed RTT. |
| 6164 | * |
| 6165 | * If timestamps are supported, a receiver can update RTT even if |
| 6166 | * there is no outstanding data. |
| 6167 | * |
| 6168 | * Some boxes send broken timestamp replies during the SYN+ACK phase, |
| 6169 | * ignore timestamps of 0or we could calculate a huge RTT and blow up |
| 6170 | * the retransmit timer. |
| 6171 | */ |
| 6172 | static void |
| 6173 | tcp_compute_rtt(struct tcpcb *tp, struct tcpopt *to, struct tcphdr *th) |
| 6174 | { |
| 6175 | int rtt = 0; |
| 6176 | VERIFY(to != NULL && th != NULL); |
| 6177 | if (tp->t_rtttime != 0 && SEQ_GT(th->th_ack, tp->t_rtseq)) { |
| 6178 | u_int32_t pipe_ack_val; |
| 6179 | rtt = tcp_now - tp->t_rtttime; |
| 6180 | if (rtt == 0) { |
| 6181 | /* |
| 6182 | * Make adjustment for sub ms RTT when |
| 6183 | * timestamps are not used. |
| 6184 | */ |
| 6185 | rtt = 1; |
| 6186 | } |
| 6187 | /* |
| 6188 | * Compute pipe ack -- the amount of data acknowledged |
| 6189 | * in the last RTT -- only works for sender |
| 6190 | */ |
| 6191 | if (SEQ_GT(th->th_ack, tp->t_pipeack_lastuna)) { |
| 6192 | pipe_ack_val = th->th_ack - tp->t_pipeack_lastuna; |
| 6193 | /* Update the sample */ |
| 6194 | tp->t_pipeack_sample[tp->t_pipeack_ind++] = |
| 6195 | pipe_ack_val; |
| 6196 | tp->t_pipeack_ind %= TCP_PIPEACK_SAMPLE_COUNT; |
| 6197 | |
| 6198 | /* Compute the max of the pipeack samples */ |
| 6199 | pipe_ack_val = tcp_get_max_pipeack(tp); |
| 6200 | tp->t_pipeack = (pipe_ack_val > |
| 6201 | tcp_initial_cwnd(tp)) ? |
| 6202 | pipe_ack_val : 0; |
| 6203 | } |
| 6204 | /* start another measurement */ |
| 6205 | tp->t_rtttime = 0; |
| 6206 | } |
| 6207 | if (((to->to_flags & TOF_TS) != 0) && |
| 6208 | (to->to_tsecr != 0) && |
| 6209 | TSTMP_GEQ(tcp_now, to->to_tsecr)) { |
| 6210 | tcp_xmit_timer(tp, (tcp_now - to->to_tsecr), |
| 6211 | to->to_tsecr, th->th_ack); |
| 6212 | } else if (rtt > 0) { |
| 6213 | tcp_xmit_timer(tp, rtt, 0, th->th_ack); |
| 6214 | } |
| 6215 | } |
| 6216 | |
| 6217 | static void |
| 6218 | tcp_compute_rcv_rtt(struct tcpcb *tp, struct tcpopt *to, struct tcphdr *th) |
| 6219 | { |
| 6220 | uint32_t rtt = 0, delta = 0; |
| 6221 | VERIFY(to != NULL && th != NULL); |
| 6222 | |
| 6223 | /* Calculate RTT */ |
| 6224 | if (((to->to_flags & TOF_TS) != 0) && (to->to_tsecr != 0) && |
| 6225 | TSTMP_GEQ(tcp_now, to->to_tsecr)) { |
| 6226 | /* Timestamp is supported */ |
| 6227 | rtt = tcp_now - to->to_tsecr; |
| 6228 | if (rtt == 0) { |
| 6229 | /* Make adjustment for sub ms RTT */ |
| 6230 | rtt = 1; |
| 6231 | } |
| 6232 | } else if ((to->to_flags & TOF_TS) == 0) { |
| 6233 | /* |
| 6234 | * Timestamp is not supported, 1RTT is roughly |
| 6235 | * the time to receive one full window of data |
| 6236 | * Currently, RTT calculated this way is only used |
| 6237 | * for auto-tuning. |
| 6238 | */ |
| 6239 | if (tp->rcv_rtt_est_ts != 0) { |
| 6240 | if (SEQ_LT(tp->rcv_nxt, tp->rcv_rtt_est_seq)) { |
| 6241 | /* Haven't received a full window yet */ |
| 6242 | return; |
| 6243 | } else { |
| 6244 | rtt = tcp_now - tp->rcv_rtt_est_ts; |
| 6245 | if (rtt == 0) { |
| 6246 | /* Make adjustment for sub ms RTT */ |
| 6247 | rtt = 1; |
| 6248 | } |
| 6249 | } |
| 6250 | } else { |
| 6251 | /* Use default value when no RTT measurement */ |
| 6252 | rtt = TCPTV_RCVNOTS_QUANTUM; |
| 6253 | } |
| 6254 | /* Restart the measurement */ |
| 6255 | tp->rcv_rtt_est_ts = tcp_now; |
| 6256 | tp->rcv_rtt_est_seq = tp->rcv_nxt + tp->rcv_wnd; |
| 6257 | } |
| 6258 | |
| 6259 | /* Update receiver's SRTT */ |
| 6260 | if (tp->rcv_srtt != 0) { |
| 6261 | /* |
| 6262 | * Use the smoothed rtt formula, |
| 6263 | * (srtt = rtt/8 + srtt*7/8) in fixed point |
| 6264 | */ |
| 6265 | delta = (rtt << TCP_DELTA_SHIFT) |
| 6266 | - (tp->rcv_srtt >> (TCP_RTT_SHIFT - TCP_DELTA_SHIFT)); |
| 6267 | |
| 6268 | if ((tp->rcv_srtt += delta) <= 0) { |
| 6269 | tp->rcv_srtt = 1; |
| 6270 | } |
| 6271 | } else { |
| 6272 | /* No previous measurement */ |
| 6273 | tp->rcv_srtt = rtt << TCP_RTT_SHIFT; |
| 6274 | } |
| 6275 | |
| 6276 | /* |
| 6277 | * For current RTT, base RTT and current RTT over k samples, |
| 6278 | * we are using the same state for both sender and receiver |
| 6279 | * as the most recent sample is always updated before any |
| 6280 | * other processing, i.e. the sender will not end up with |
| 6281 | * a high RTT due to the receiver. |
| 6282 | */ |
| 6283 | tp->t_rttcur = rtt; |
| 6284 | update_base_rtt(tp, rtt); |
| 6285 | } |
| 6286 | |
| 6287 | /* |
| 6288 | * Collect new round-trip time estimate and update averages and |
| 6289 | * current timeout. |
| 6290 | */ |
| 6291 | static void |
| 6292 | tcp_xmit_timer(struct tcpcb *tp, int rtt, |
| 6293 | u_int32_t tsecr, tcp_seq th_ack) |
| 6294 | { |
| 6295 | VERIFY(rtt >= 0); |
| 6296 | int delta; |
| 6297 | int old_srtt = tp->t_srtt; |
| 6298 | int old_rttvar = tp->t_rttvar; |
| 6299 | bool log_rtt = false; |
| 6300 | |
| 6301 | if (rtt == 0) { |
| 6302 | /* |
| 6303 | * As rtt has millisecond precision, |
| 6304 | * make adjustment for sub ms RTT |
| 6305 | */ |
| 6306 | rtt = 1; |
| 6307 | } |
| 6308 | |
| 6309 | if (rtt > 4 * TCPTV_MSL) { |
| 6310 | TCP_LOG(tp, "%s: rtt is %d - maxing it at 4 x MSL\n" , __func__, rtt); |
| 6311 | /* |
| 6312 | * We compute RTT either based on the time-to-ACK a packet, |
| 6313 | * if TSval is disabled or based on the TSecr value. |
| 6314 | * If there is a middlebox messing up the TSecr value, we can |
| 6315 | * end up having HUGE rtt values, causing all kinds of problems. |
| 6316 | * Let's protect against this by capping RTT to 4*MSL |
| 6317 | * (60seconds). |
| 6318 | */ |
| 6319 | rtt = 4 * TCPTV_MSL; |
| 6320 | } |
| 6321 | |
| 6322 | /* |
| 6323 | * On AWDL interface, the initial RTT measurement on SYN |
| 6324 | * can be wrong due to peer caching. Avoid the first RTT |
| 6325 | * measurement as it might skew up the RTO. |
| 6326 | * <rdar://problem/28739046> |
| 6327 | */ |
| 6328 | if (tp->t_inpcb->inp_last_outifp != NULL && |
| 6329 | (tp->t_inpcb->inp_last_outifp->if_eflags & IFEF_AWDL) && |
| 6330 | th_ack == tp->iss + 1) { |
| 6331 | return; |
| 6332 | } |
| 6333 | |
| 6334 | if (tp->t_flagsext & TF_RECOMPUTE_RTT) { |
| 6335 | if (SEQ_GT(th_ack, tp->snd_una) && |
| 6336 | SEQ_LEQ(th_ack, tp->snd_max) && |
| 6337 | (tsecr == 0 || |
| 6338 | TSTMP_GEQ(tsecr, tp->t_badrexmt_time))) { |
| 6339 | /* |
| 6340 | * We received a new ACK after a |
| 6341 | * spurious timeout. Adapt retransmission |
| 6342 | * timer as described in rfc 4015. |
| 6343 | */ |
| 6344 | tp->t_flagsext &= ~(TF_RECOMPUTE_RTT); |
| 6345 | tp->t_badrexmt_time = 0; |
| 6346 | tp->t_srtt = max(a: tp->t_srtt_prev, b: rtt); |
| 6347 | tp->t_srtt = tp->t_srtt << TCP_RTT_SHIFT; |
| 6348 | tp->t_rttvar = max(a: tp->t_rttvar_prev, b: (rtt >> 1)); |
| 6349 | tp->t_rttvar = tp->t_rttvar << TCP_RTTVAR_SHIFT; |
| 6350 | |
| 6351 | if (tp->t_rttbest > (tp->t_srtt + tp->t_rttvar)) { |
| 6352 | tp->t_rttbest = tp->t_srtt + tp->t_rttvar; |
| 6353 | } |
| 6354 | |
| 6355 | goto compute_rto; |
| 6356 | } else { |
| 6357 | return; |
| 6358 | } |
| 6359 | } |
| 6360 | |
| 6361 | tcpstat.tcps_rttupdated++; |
| 6362 | tp->t_rttupdated++; |
| 6363 | |
| 6364 | tp->t_rttcur = rtt; |
| 6365 | update_base_rtt(tp, rtt); |
| 6366 | |
| 6367 | if (tp->t_srtt != 0) { |
| 6368 | /* |
| 6369 | * srtt is stored as fixed point with 5 bits after the |
| 6370 | * binary point (i.e., scaled by 32). The following magic |
| 6371 | * is equivalent to the smoothing algorithm in rfc793 with |
| 6372 | * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed |
| 6373 | * point). |
| 6374 | * |
| 6375 | * Freebsd adjusts rtt to origin 0 by subtracting 1 |
| 6376 | * from the provided rtt value. This was required because |
| 6377 | * of the way t_rtttime was initiailised to 1 before. |
| 6378 | * Since we changed t_rtttime to be based on |
| 6379 | * tcp_now, this extra adjustment is not needed. |
| 6380 | */ |
| 6381 | delta = (rtt << TCP_DELTA_SHIFT) |
| 6382 | - (tp->t_srtt >> (TCP_RTT_SHIFT - TCP_DELTA_SHIFT)); |
| 6383 | |
| 6384 | if ((tp->t_srtt += delta) <= 0) { |
| 6385 | tp->t_srtt = 1; |
| 6386 | } |
| 6387 | |
| 6388 | /* |
| 6389 | * We accumulate a smoothed rtt variance (actually, a |
| 6390 | * smoothed mean difference), then set the retransmit |
| 6391 | * timer to smoothed rtt + 4 times the smoothed variance. |
| 6392 | * rttvar is stored as fixed point with 4 bits after the |
| 6393 | * binary point (scaled by 16). The following is |
| 6394 | * equivalent to rfc793 smoothing with an alpha of .75 |
| 6395 | * (rttvar = rttvar*3/4 + |delta| / 4). This replaces |
| 6396 | * rfc793's wired-in beta. |
| 6397 | */ |
| 6398 | if (delta < 0) { |
| 6399 | delta = -delta; |
| 6400 | } |
| 6401 | delta -= tp->t_rttvar >> (TCP_RTTVAR_SHIFT - TCP_DELTA_SHIFT); |
| 6402 | if ((tp->t_rttvar += delta) <= 0) { |
| 6403 | tp->t_rttvar = 1; |
| 6404 | } |
| 6405 | if (tp->t_rttbest == 0 || |
| 6406 | tp->t_rttbest > (tp->t_srtt + tp->t_rttvar)) { |
| 6407 | tp->t_rttbest = tp->t_srtt + tp->t_rttvar; |
| 6408 | } |
| 6409 | } else { |
| 6410 | /* |
| 6411 | * No rtt measurement yet - use the unsmoothed rtt. |
| 6412 | * Set the variance to half the rtt (so our first |
| 6413 | * retransmit happens at 3*rtt). |
| 6414 | */ |
| 6415 | tp->t_srtt = rtt << TCP_RTT_SHIFT; |
| 6416 | tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT - 1); |
| 6417 | tp->t_rttbest = tp->t_srtt + tp->t_rttvar; |
| 6418 | |
| 6419 | /* Initialize the receive SRTT */ |
| 6420 | if (tp->rcv_srtt == 0) { |
| 6421 | tp->rcv_srtt = tp->t_srtt; |
| 6422 | } |
| 6423 | } |
| 6424 | |
| 6425 | compute_rto: |
| 6426 | nstat_route_rtt(rte: tp->t_inpcb->inp_route.ro_rt, rtt: tp->t_srtt, |
| 6427 | rtt_var: tp->t_rttvar); |
| 6428 | |
| 6429 | /* |
| 6430 | * the retransmit should happen at rtt + 4 * rttvar. |
| 6431 | * Because of the way we do the smoothing, srtt and rttvar |
| 6432 | * will each average +1/2 tick of bias. When we compute |
| 6433 | * the retransmit timer, we want 1/2 tick of rounding and |
| 6434 | * 1 extra tick because of +-1/2 tick uncertainty in the |
| 6435 | * firing of the timer. The bias will give us exactly the |
| 6436 | * 1.5 tick we need. But, because the bias is |
| 6437 | * statistical, we have to test that we don't drop below |
| 6438 | * the minimum feasible timer (which is 2 ticks). |
| 6439 | */ |
| 6440 | TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp), |
| 6441 | max(tp->t_rttmin, rtt + 2), TCPTV_REXMTMAX, |
| 6442 | TCP_ADD_REXMTSLOP(tp)); |
| 6443 | |
| 6444 | /* |
| 6445 | * We received an ack for a packet that wasn't retransmitted; |
| 6446 | * it is probably safe to discard any error indications we've |
| 6447 | * received recently. This isn't quite right, but close enough |
| 6448 | * for now (a route might have failed after we sent a segment, |
| 6449 | * and the return path might not be symmetrical). |
| 6450 | */ |
| 6451 | tp->t_softerror = 0; |
| 6452 | |
| 6453 | if (log_rtt) { |
| 6454 | TCP_LOG_RTT_INFO(tp); |
| 6455 | } |
| 6456 | |
| 6457 | TCP_LOG_RTT_CHANGE(tp, old_srtt, old_rttvar); |
| 6458 | } |
| 6459 | |
| 6460 | static inline unsigned int |
| 6461 | tcp_maxmtu(struct rtentry *rt) |
| 6462 | { |
| 6463 | unsigned int maxmtu; |
| 6464 | int interface_mtu = 0; |
| 6465 | |
| 6466 | RT_LOCK_ASSERT_HELD(rt); |
| 6467 | interface_mtu = rt->rt_ifp->if_mtu; |
| 6468 | |
| 6469 | if (rt_key(rt)->sa_family == AF_INET && |
| 6470 | INTF_ADJUST_MTU_FOR_CLAT46(rt->rt_ifp)) { |
| 6471 | interface_mtu = IN6_LINKMTU(rt->rt_ifp); |
| 6472 | /* Further adjust the size for CLAT46 expansion */ |
| 6473 | interface_mtu -= CLAT46_HDR_EXPANSION_OVERHD; |
| 6474 | } |
| 6475 | |
| 6476 | if (rt->rt_rmx.rmx_mtu == 0) { |
| 6477 | maxmtu = interface_mtu; |
| 6478 | } else { |
| 6479 | maxmtu = MIN(rt->rt_rmx.rmx_mtu, interface_mtu); |
| 6480 | } |
| 6481 | |
| 6482 | return maxmtu; |
| 6483 | } |
| 6484 | |
| 6485 | static inline unsigned int |
| 6486 | tcp_maxmtu6(struct rtentry *rt) |
| 6487 | { |
| 6488 | unsigned int maxmtu; |
| 6489 | struct nd_ifinfo *ndi = NULL; |
| 6490 | |
| 6491 | RT_LOCK_ASSERT_HELD(rt); |
| 6492 | if ((ndi = ND_IFINFO(rt->rt_ifp)) != NULL && !ndi->initialized) { |
| 6493 | ndi = NULL; |
| 6494 | } |
| 6495 | if (ndi != NULL) { |
| 6496 | lck_mtx_lock(lck: &ndi->lock); |
| 6497 | } |
| 6498 | if (rt->rt_rmx.rmx_mtu == 0) { |
| 6499 | maxmtu = IN6_LINKMTU(rt->rt_ifp); |
| 6500 | } else { |
| 6501 | maxmtu = MIN(rt->rt_rmx.rmx_mtu, IN6_LINKMTU(rt->rt_ifp)); |
| 6502 | } |
| 6503 | if (ndi != NULL) { |
| 6504 | lck_mtx_unlock(lck: &ndi->lock); |
| 6505 | } |
| 6506 | |
| 6507 | return maxmtu; |
| 6508 | } |
| 6509 | |
| 6510 | unsigned int |
| 6511 | get_maxmtu(struct rtentry *rt) |
| 6512 | { |
| 6513 | unsigned int maxmtu = 0; |
| 6514 | |
| 6515 | RT_LOCK_ASSERT_NOTHELD(rt); |
| 6516 | |
| 6517 | RT_LOCK(rt); |
| 6518 | |
| 6519 | if (rt_key(rt)->sa_family == AF_INET6) { |
| 6520 | maxmtu = tcp_maxmtu6(rt); |
| 6521 | } else { |
| 6522 | maxmtu = tcp_maxmtu(rt); |
| 6523 | } |
| 6524 | |
| 6525 | RT_UNLOCK(rt); |
| 6526 | |
| 6527 | return maxmtu; |
| 6528 | } |
| 6529 | |
| 6530 | /* |
| 6531 | * Determine a reasonable value for maxseg size. |
| 6532 | * If the route is known, check route for mtu. |
| 6533 | * If none, use an mss that can be handled on the outgoing |
| 6534 | * interface without forcing IP to fragment; if bigger than |
| 6535 | * an mbuf cluster (MCLBYTES), round down to nearest multiple of MCLBYTES |
| 6536 | * to utilize large mbufs. If no route is found, route has no mtu, |
| 6537 | * or the destination isn't local, use a default, hopefully conservative |
| 6538 | * size (usually 512 or the default IP max size, but no more than the mtu |
| 6539 | * of the interface), as we can't discover anything about intervening |
| 6540 | * gateways or networks. We also initialize the congestion/slow start |
| 6541 | * window. While looking at the routing entry, we also initialize |
| 6542 | * other path-dependent parameters from pre-set or cached values |
| 6543 | * in the routing entry. |
| 6544 | * |
| 6545 | * Also take into account the space needed for options that we |
| 6546 | * send regularly. Make maxseg shorter by that amount to assure |
| 6547 | * that we can send maxseg amount of data even when the options |
| 6548 | * are present. Store the upper limit of the length of options plus |
| 6549 | * data in maxopd. |
| 6550 | * |
| 6551 | * NOTE that this routine is only called when we process an incoming |
| 6552 | * segment, for outgoing segments only tcp_mssopt is called. |
| 6553 | * |
| 6554 | */ |
| 6555 | void |
| 6556 | tcp_mss(struct tcpcb *tp, int offer, unsigned int input_ifscope) |
| 6557 | { |
| 6558 | struct rtentry *rt; |
| 6559 | struct ifnet *ifp; |
| 6560 | int rtt, mss; |
| 6561 | uint32_t bufsize; |
| 6562 | struct inpcb *inp; |
| 6563 | struct socket *so; |
| 6564 | int origoffer = offer; |
| 6565 | int isnetlocal = 0; |
| 6566 | int isipv6; |
| 6567 | int min_protoh; |
| 6568 | |
| 6569 | inp = tp->t_inpcb; |
| 6570 | |
| 6571 | so = inp->inp_socket; |
| 6572 | /* |
| 6573 | * Nothing left to send after the socket is defunct or TCP is in the closed state |
| 6574 | */ |
| 6575 | if ((so->so_state & SS_DEFUNCT) || tp->t_state == TCPS_CLOSED) { |
| 6576 | return; |
| 6577 | } |
| 6578 | |
| 6579 | isipv6 = ((inp->inp_vflag & INP_IPV6) != 0) ? 1 : 0; |
| 6580 | min_protoh = isipv6 ? sizeof(struct ip6_hdr) + sizeof(struct tcphdr) |
| 6581 | : sizeof(struct tcpiphdr); |
| 6582 | |
| 6583 | if (isipv6) { |
| 6584 | rt = tcp_rtlookup6(inp, input_ifscope); |
| 6585 | } else { |
| 6586 | rt = tcp_rtlookup(inp, input_ifscope); |
| 6587 | } |
| 6588 | isnetlocal = (tp->t_flags & TF_LOCAL); |
| 6589 | |
| 6590 | if (rt == NULL) { |
| 6591 | tp->t_maxopd = tp->t_maxseg = isipv6 ? tcp_v6mssdflt : tcp_mssdflt; |
| 6592 | return; |
| 6593 | } |
| 6594 | ifp = rt->rt_ifp; |
| 6595 | /* |
| 6596 | * Slower link window correction: |
| 6597 | * If a value is specificied for slowlink_wsize use it for |
| 6598 | * PPP links believed to be on a serial modem (speed <128Kbps). |
| 6599 | * Excludes 9600bps as it is the default value adversized |
| 6600 | * by pseudo-devices over ppp. |
| 6601 | */ |
| 6602 | if (ifp->if_type == IFT_PPP && slowlink_wsize > 0 && |
| 6603 | ifp->if_baudrate > 9600 && ifp->if_baudrate <= 128000) { |
| 6604 | tp->t_flags |= TF_SLOWLINK; |
| 6605 | } |
| 6606 | |
| 6607 | /* |
| 6608 | * Offer == -1 means that we didn't receive SYN yet. Use 0 then. |
| 6609 | */ |
| 6610 | if (offer == -1) { |
| 6611 | offer = rt->rt_rmx.rmx_filler[0]; |
| 6612 | } |
| 6613 | /* |
| 6614 | * Offer == 0 means that there was no MSS on the SYN segment, |
| 6615 | * in this case we use tcp_mssdflt. |
| 6616 | */ |
| 6617 | if (offer == 0) { |
| 6618 | offer = isipv6 ? tcp_v6mssdflt : tcp_mssdflt; |
| 6619 | } else { |
| 6620 | /* |
| 6621 | * Prevent DoS attack with too small MSS. Round up |
| 6622 | * to at least minmss. |
| 6623 | */ |
| 6624 | offer = max(a: offer, b: tcp_minmss); |
| 6625 | /* |
| 6626 | * Sanity check: make sure that maxopd will be large |
| 6627 | * enough to allow some data on segments even is the |
| 6628 | * all the option space is used (40bytes). Otherwise |
| 6629 | * funny things may happen in tcp_output. |
| 6630 | */ |
| 6631 | offer = max(a: offer, b: 64); |
| 6632 | } |
| 6633 | rt->rt_rmx.rmx_filler[0] = offer; |
| 6634 | |
| 6635 | /* |
| 6636 | * While we're here, check if there's an initial rtt |
| 6637 | * or rttvar. Convert from the route-table units |
| 6638 | * to scaled multiples of the slow timeout timer. |
| 6639 | */ |
| 6640 | if (tp->t_srtt == 0 && (rtt = rt->rt_rmx.rmx_rtt) != 0) { |
| 6641 | tcp_getrt_rtt(tp, rt); |
| 6642 | } else { |
| 6643 | tp->t_rttmin = isnetlocal ? tcp_TCPTV_MIN : TCPTV_REXMTMIN; |
| 6644 | } |
| 6645 | |
| 6646 | mss = (isipv6 ? tcp_maxmtu6(rt) : tcp_maxmtu(rt)); |
| 6647 | |
| 6648 | #if NECP |
| 6649 | // At this point, the mss is just the MTU. Adjust if necessary. |
| 6650 | mss = necp_socket_get_effective_mtu(inp, current_mtu: mss); |
| 6651 | #endif /* NECP */ |
| 6652 | |
| 6653 | mss -= min_protoh; |
| 6654 | |
| 6655 | if (rt->rt_rmx.rmx_mtu == 0) { |
| 6656 | if (isipv6) { |
| 6657 | if (!isnetlocal) { |
| 6658 | mss = min(a: mss, b: tcp_v6mssdflt); |
| 6659 | } |
| 6660 | } else if (!isnetlocal) { |
| 6661 | mss = min(a: mss, b: tcp_mssdflt); |
| 6662 | } |
| 6663 | } |
| 6664 | |
| 6665 | mss = min(a: mss, b: offer); |
| 6666 | /* |
| 6667 | * maxopd stores the maximum length of data AND options |
| 6668 | * in a segment; maxseg is the amount of data in a normal |
| 6669 | * segment. We need to store this value (maxopd) apart |
| 6670 | * from maxseg, because now every segment carries options |
| 6671 | * and thus we normally have somewhat less data in segments. |
| 6672 | */ |
| 6673 | tp->t_maxopd = mss; |
| 6674 | |
| 6675 | /* |
| 6676 | * origoffer==-1 indicates, that no segments were received yet. |
| 6677 | * In this case we just guess. |
| 6678 | */ |
| 6679 | if ((tp->t_flags & (TF_REQ_TSTMP | TF_NOOPT)) == TF_REQ_TSTMP && |
| 6680 | (origoffer == -1 || |
| 6681 | (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP)) { |
| 6682 | mss -= TCPOLEN_TSTAMP_APPA; |
| 6683 | } |
| 6684 | |
| 6685 | #if MPTCP |
| 6686 | mss -= mptcp_adj_mss(tp, FALSE); |
| 6687 | #endif /* MPTCP */ |
| 6688 | tp->t_maxseg = mss; |
| 6689 | |
| 6690 | /* |
| 6691 | * If there's a pipesize (ie loopback), change the socket |
| 6692 | * buffer to that size only if it's bigger than the current |
| 6693 | * sockbuf size. Make the socket buffers an integral |
| 6694 | * number of mss units; if the mss is larger than |
| 6695 | * the socket buffer, decrease the mss. |
| 6696 | */ |
| 6697 | #if RTV_SPIPE |
| 6698 | bufsize = rt->rt_rmx.rmx_sendpipe; |
| 6699 | if (bufsize < so->so_snd.sb_hiwat) |
| 6700 | #endif |
| 6701 | bufsize = so->so_snd.sb_hiwat; |
| 6702 | if (bufsize < mss) { |
| 6703 | mss = bufsize; |
| 6704 | } else { |
| 6705 | bufsize = (((bufsize + mss - 1) / mss) * mss); |
| 6706 | (void)sbreserve(sb: &so->so_snd, cc: bufsize); |
| 6707 | } |
| 6708 | tp->t_maxseg = mss; |
| 6709 | |
| 6710 | ASSERT(tp->t_maxseg); |
| 6711 | |
| 6712 | /* |
| 6713 | * Update MSS using recommendation from link status report. This is |
| 6714 | * temporary |
| 6715 | */ |
| 6716 | tcp_update_mss_locked(so, ifp); |
| 6717 | |
| 6718 | #if RTV_RPIPE |
| 6719 | bufsize = rt->rt_rmx.rmx_recvpipe; |
| 6720 | if (bufsize < so->so_rcv.sb_hiwat) |
| 6721 | #endif |
| 6722 | bufsize = so->so_rcv.sb_hiwat; |
| 6723 | if (bufsize > mss) { |
| 6724 | bufsize = (((bufsize + mss - 1) / mss) * mss); |
| 6725 | (void)sbreserve(sb: &so->so_rcv, cc: bufsize); |
| 6726 | } |
| 6727 | |
| 6728 | set_tcp_stream_priority(so); |
| 6729 | |
| 6730 | if (rt->rt_rmx.rmx_ssthresh) { |
| 6731 | /* |
| 6732 | * There's some sort of gateway or interface |
| 6733 | * buffer limit on the path. Use this to set |
| 6734 | * slow-start threshold, but set the threshold to |
| 6735 | * no less than 2*mss. |
| 6736 | */ |
| 6737 | tp->snd_ssthresh = max(a: 2 * mss, b: rt->rt_rmx.rmx_ssthresh); |
| 6738 | tcpstat.tcps_usedssthresh++; |
| 6739 | } else { |
| 6740 | tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT; |
| 6741 | } |
| 6742 | |
| 6743 | /* |
| 6744 | * Set the slow-start flight size depending on whether this |
| 6745 | * is a local network or not. |
| 6746 | */ |
| 6747 | if (CC_ALGO(tp)->cwnd_init != NULL) { |
| 6748 | CC_ALGO(tp)->cwnd_init(tp); |
| 6749 | } |
| 6750 | |
| 6751 | tcp_ccdbg_trace(tp, NULL, event: TCP_CC_CWND_INIT); |
| 6752 | |
| 6753 | if (TCP_USE_RLEDBAT(tp, so) && tcp_cc_rledbat.rwnd_init != NULL) { |
| 6754 | tcp_cc_rledbat.rwnd_init(tp); |
| 6755 | } |
| 6756 | |
| 6757 | /* Route locked during lookup above */ |
| 6758 | RT_UNLOCK(rt); |
| 6759 | } |
| 6760 | |
| 6761 | /* |
| 6762 | * Determine the MSS option to send on an outgoing SYN. |
| 6763 | */ |
| 6764 | int |
| 6765 | tcp_mssopt(struct tcpcb *tp) |
| 6766 | { |
| 6767 | struct rtentry *rt; |
| 6768 | int mss; |
| 6769 | int isipv6; |
| 6770 | int min_protoh; |
| 6771 | |
| 6772 | isipv6 = ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0) ? 1 : 0; |
| 6773 | min_protoh = isipv6 ? sizeof(struct ip6_hdr) + sizeof(struct tcphdr) |
| 6774 | : sizeof(struct tcpiphdr); |
| 6775 | |
| 6776 | if (isipv6) { |
| 6777 | rt = tcp_rtlookup6(tp->t_inpcb, IFSCOPE_NONE); |
| 6778 | } else { |
| 6779 | rt = tcp_rtlookup(tp->t_inpcb, IFSCOPE_NONE); |
| 6780 | } |
| 6781 | if (rt == NULL) { |
| 6782 | return isipv6 ? tcp_v6mssdflt : tcp_mssdflt; |
| 6783 | } |
| 6784 | /* |
| 6785 | * Slower link window correction: |
| 6786 | * If a value is specificied for slowlink_wsize use it for PPP links |
| 6787 | * believed to be on a serial modem (speed <128Kbps). Excludes 9600bps as |
| 6788 | * it is the default value adversized by pseudo-devices over ppp. |
| 6789 | */ |
| 6790 | if (rt->rt_ifp->if_type == IFT_PPP && slowlink_wsize > 0 && |
| 6791 | rt->rt_ifp->if_baudrate > 9600 && rt->rt_ifp->if_baudrate <= 128000) { |
| 6792 | tp->t_flags |= TF_SLOWLINK; |
| 6793 | } |
| 6794 | |
| 6795 | mss = (isipv6 ? tcp_maxmtu6(rt) : tcp_maxmtu(rt)); |
| 6796 | /* Route locked during lookup above */ |
| 6797 | RT_UNLOCK(rt); |
| 6798 | |
| 6799 | #if NECP |
| 6800 | // At this point, the mss is just the MTU. Adjust if necessary. |
| 6801 | mss = necp_socket_get_effective_mtu(inp: tp->t_inpcb, current_mtu: mss); |
| 6802 | #endif /* NECP */ |
| 6803 | |
| 6804 | return mss - min_protoh; |
| 6805 | } |
| 6806 | |
| 6807 | /* |
| 6808 | * On a partial ack arrives, force the retransmission of the |
| 6809 | * next unacknowledged segment. Do not clear tp->t_dupacks. |
| 6810 | * By setting snd_nxt to th_ack, this forces retransmission timer to |
| 6811 | * be started again. |
| 6812 | */ |
| 6813 | static void |
| 6814 | tcp_newreno_partial_ack(struct tcpcb *tp, struct tcphdr *th) |
| 6815 | { |
| 6816 | tcp_seq onxt = tp->snd_nxt; |
| 6817 | u_int32_t ocwnd = tp->snd_cwnd; |
| 6818 | tp->t_timer[TCPT_REXMT] = 0; |
| 6819 | tp->t_timer[TCPT_PTO] = 0; |
| 6820 | tp->t_rtttime = 0; |
| 6821 | tp->snd_nxt = th->th_ack; |
| 6822 | /* |
| 6823 | * Set snd_cwnd to one segment beyond acknowledged offset |
| 6824 | * (tp->snd_una has not yet been updated when this function |
| 6825 | * is called) |
| 6826 | */ |
| 6827 | tp->snd_cwnd = tp->t_maxseg + BYTES_ACKED(th, tp); |
| 6828 | (void) tcp_output(tp); |
| 6829 | tp->snd_cwnd = ocwnd; |
| 6830 | if (SEQ_GT(onxt, tp->snd_nxt)) { |
| 6831 | tp->snd_nxt = onxt; |
| 6832 | } |
| 6833 | /* |
| 6834 | * Partial window deflation. Relies on fact that tp->snd_una |
| 6835 | * not updated yet. |
| 6836 | */ |
| 6837 | if (tp->snd_cwnd > BYTES_ACKED(th, tp)) { |
| 6838 | tp->snd_cwnd -= BYTES_ACKED(th, tp); |
| 6839 | } else { |
| 6840 | tp->snd_cwnd = 0; |
| 6841 | } |
| 6842 | tp->snd_cwnd += tp->t_maxseg; |
| 6843 | } |
| 6844 | |
| 6845 | /* |
| 6846 | * Drop a random TCP connection that hasn't been serviced yet and |
| 6847 | * is eligible for discard. There is a one in qlen chance that |
| 6848 | * we will return a null, saying that there are no dropable |
| 6849 | * requests. In this case, the protocol specific code should drop |
| 6850 | * the new request. This insures fairness. |
| 6851 | * |
| 6852 | * The listening TCP socket "head" must be locked |
| 6853 | */ |
| 6854 | static int |
| 6855 | tcp_dropdropablreq(struct socket *head) |
| 6856 | { |
| 6857 | struct socket *so, *sonext; |
| 6858 | unsigned int j, qlen; |
| 6859 | static uint32_t rnd = 0; |
| 6860 | static uint64_t old_runtime; |
| 6861 | static unsigned int cur_cnt, old_cnt; |
| 6862 | uint64_t now_sec, i; |
| 6863 | struct inpcb *inp = NULL; |
| 6864 | struct tcpcb *tp; |
| 6865 | |
| 6866 | if ((head->so_options & SO_ACCEPTCONN) == 0) { |
| 6867 | return 0; |
| 6868 | } |
| 6869 | |
| 6870 | if (TAILQ_EMPTY(&head->so_incomp)) { |
| 6871 | return 0; |
| 6872 | } |
| 6873 | |
| 6874 | so_acquire_accept_list(head, NULL); |
| 6875 | socket_unlock(so: head, refcount: 0); |
| 6876 | |
| 6877 | /* |
| 6878 | * Check if there is any socket in the incomp queue |
| 6879 | * that is closed because of a reset from the peer and is |
| 6880 | * waiting to be garbage collected. If so, pick that as |
| 6881 | * the victim |
| 6882 | */ |
| 6883 | TAILQ_FOREACH_SAFE(so, &head->so_incomp, so_list, sonext) { |
| 6884 | inp = sotoinpcb(so); |
| 6885 | tp = intotcpcb(inp); |
| 6886 | if (tp != NULL && tp->t_state == TCPS_CLOSED && |
| 6887 | so->so_head != NULL && |
| 6888 | (so->so_state & (SS_INCOMP | SS_CANTSENDMORE | SS_CANTRCVMORE)) == |
| 6889 | (SS_INCOMP | SS_CANTSENDMORE | SS_CANTRCVMORE)) { |
| 6890 | /* |
| 6891 | * The listen socket is already locked but we |
| 6892 | * can lock this socket here without lock ordering |
| 6893 | * issues because it is in the incomp queue and |
| 6894 | * is not visible to others. |
| 6895 | */ |
| 6896 | if (socket_try_lock(so)) { |
| 6897 | so->so_usecount++; |
| 6898 | goto found_victim; |
| 6899 | } else { |
| 6900 | continue; |
| 6901 | } |
| 6902 | } |
| 6903 | } |
| 6904 | |
| 6905 | so = TAILQ_FIRST(&head->so_incomp); |
| 6906 | |
| 6907 | now_sec = net_uptime(); |
| 6908 | if ((i = (now_sec - old_runtime)) != 0) { |
| 6909 | old_runtime = now_sec; |
| 6910 | old_cnt = cur_cnt / i; |
| 6911 | cur_cnt = 0; |
| 6912 | } |
| 6913 | |
| 6914 | qlen = head->so_incqlen; |
| 6915 | if (rnd == 0) { |
| 6916 | rnd = RandomULong(); |
| 6917 | } |
| 6918 | |
| 6919 | if (++cur_cnt > qlen || old_cnt > qlen) { |
| 6920 | rnd = (314159 * rnd + 66329) & 0xffff; |
| 6921 | j = ((qlen + 1) * rnd) >> 16; |
| 6922 | |
| 6923 | while (j-- && so) { |
| 6924 | so = TAILQ_NEXT(so, so_list); |
| 6925 | } |
| 6926 | } |
| 6927 | /* Find a connection that is not already closing (or being served) */ |
| 6928 | while (so) { |
| 6929 | inp = (struct inpcb *)so->so_pcb; |
| 6930 | |
| 6931 | sonext = TAILQ_NEXT(so, so_list); |
| 6932 | |
| 6933 | if (in_pcb_checkstate(inp, WNT_ACQUIRE, 0) != WNT_STOPUSING) { |
| 6934 | /* |
| 6935 | * Avoid the issue of a socket being accepted |
| 6936 | * by one input thread and being dropped by |
| 6937 | * another input thread. If we can't get a hold |
| 6938 | * on this mutex, then grab the next socket in |
| 6939 | * line. |
| 6940 | */ |
| 6941 | if (socket_try_lock(so)) { |
| 6942 | so->so_usecount++; |
| 6943 | if ((so->so_usecount == 2) && |
| 6944 | (so->so_state & SS_INCOMP) && |
| 6945 | !(so->so_flags & SOF_INCOMP_INPROGRESS)) { |
| 6946 | break; |
| 6947 | } else { |
| 6948 | /* |
| 6949 | * don't use if being accepted or |
| 6950 | * used in any other way |
| 6951 | */ |
| 6952 | in_pcb_checkstate(inp, WNT_RELEASE, 1); |
| 6953 | socket_unlock(so, refcount: 1); |
| 6954 | } |
| 6955 | } else { |
| 6956 | /* |
| 6957 | * do not try to lock the inp in |
| 6958 | * in_pcb_checkstate because the lock |
| 6959 | * is already held in some other thread. |
| 6960 | * Only drop the inp_wntcnt reference. |
| 6961 | */ |
| 6962 | in_pcb_checkstate(inp, WNT_RELEASE, 1); |
| 6963 | } |
| 6964 | } |
| 6965 | so = sonext; |
| 6966 | } |
| 6967 | if (so == NULL) { |
| 6968 | socket_lock(so: head, refcount: 0); |
| 6969 | so_release_accept_list(head); |
| 6970 | return 0; |
| 6971 | } |
| 6972 | |
| 6973 | /* Makes sure socket is still in the right state to be discarded */ |
| 6974 | |
| 6975 | if (in_pcb_checkstate(inp, WNT_RELEASE, 1) == WNT_STOPUSING) { |
| 6976 | socket_unlock(so, refcount: 1); |
| 6977 | socket_lock(so: head, refcount: 0); |
| 6978 | so_release_accept_list(head); |
| 6979 | return 0; |
| 6980 | } |
| 6981 | |
| 6982 | found_victim: |
| 6983 | if (so->so_usecount != 2 || !(so->so_state & SS_INCOMP)) { |
| 6984 | /* do not discard: that socket is being accepted */ |
| 6985 | socket_unlock(so, refcount: 1); |
| 6986 | socket_lock(so: head, refcount: 0); |
| 6987 | so_release_accept_list(head); |
| 6988 | return 0; |
| 6989 | } |
| 6990 | |
| 6991 | socket_lock(so: head, refcount: 0); |
| 6992 | TAILQ_REMOVE(&head->so_incomp, so, so_list); |
| 6993 | head->so_incqlen--; |
| 6994 | head->so_qlen--; |
| 6995 | so->so_state &= ~SS_INCOMP; |
| 6996 | so->so_flags |= SOF_OVERFLOW; |
| 6997 | so->so_head = NULL; |
| 6998 | so_release_accept_list(head); |
| 6999 | socket_unlock(so: head, refcount: 0); |
| 7000 | |
| 7001 | socket_lock_assert_owned(so); |
| 7002 | tp = sototcpcb(so); |
| 7003 | |
| 7004 | tcp_close(tp); |
| 7005 | if (inp->inp_wantcnt > 0 && inp->inp_wantcnt != WNT_STOPUSING) { |
| 7006 | /* |
| 7007 | * Some one has a wantcnt on this pcb. Since WNT_ACQUIRE |
| 7008 | * doesn't require a lock, it could have happened while |
| 7009 | * we are holding the lock. This pcb will have to |
| 7010 | * be garbage collected later. |
| 7011 | * Release the reference held for so_incomp queue |
| 7012 | */ |
| 7013 | VERIFY(so->so_usecount > 0); |
| 7014 | so->so_usecount--; |
| 7015 | socket_unlock(so, refcount: 1); |
| 7016 | } else { |
| 7017 | /* |
| 7018 | * Unlock this socket and leave the reference on. |
| 7019 | * We need to acquire the pcbinfo lock in order to |
| 7020 | * fully dispose it off |
| 7021 | */ |
| 7022 | socket_unlock(so, refcount: 0); |
| 7023 | |
| 7024 | lck_rw_lock_exclusive(lck: &tcbinfo.ipi_lock); |
| 7025 | |
| 7026 | socket_lock(so, refcount: 0); |
| 7027 | /* Release the reference held for so_incomp queue */ |
| 7028 | VERIFY(so->so_usecount > 0); |
| 7029 | so->so_usecount--; |
| 7030 | |
| 7031 | if (so->so_usecount != 1 || |
| 7032 | (inp->inp_wantcnt > 0 && |
| 7033 | inp->inp_wantcnt != WNT_STOPUSING)) { |
| 7034 | /* |
| 7035 | * There is an extra wantcount or usecount |
| 7036 | * that must have been added when the socket |
| 7037 | * was unlocked. This socket will have to be |
| 7038 | * garbage collected later |
| 7039 | */ |
| 7040 | socket_unlock(so, refcount: 1); |
| 7041 | } else { |
| 7042 | /* Drop the reference held for this function */ |
| 7043 | VERIFY(so->so_usecount > 0); |
| 7044 | so->so_usecount--; |
| 7045 | |
| 7046 | in_pcbdispose(inp); |
| 7047 | } |
| 7048 | lck_rw_done(lck: &tcbinfo.ipi_lock); |
| 7049 | } |
| 7050 | tcpstat.tcps_drops++; |
| 7051 | |
| 7052 | socket_lock(so: head, refcount: 0); |
| 7053 | return 1; |
| 7054 | } |
| 7055 | |
| 7056 | /* Set background congestion control on a socket */ |
| 7057 | void |
| 7058 | tcp_set_background_cc(struct socket *so) |
| 7059 | { |
| 7060 | tcp_set_new_cc(so, TCP_CC_ALGO_BACKGROUND_INDEX); |
| 7061 | } |
| 7062 | |
| 7063 | /* Set foreground congestion control on a socket */ |
| 7064 | void |
| 7065 | tcp_set_foreground_cc(struct socket *so) |
| 7066 | { |
| 7067 | if (tcp_use_newreno) { |
| 7068 | tcp_set_new_cc(so, TCP_CC_ALGO_NEWRENO_INDEX); |
| 7069 | #if (DEVELOPMENT || DEBUG) |
| 7070 | } else if (tcp_use_ledbat) { |
| 7071 | /* Only used for testing */ |
| 7072 | tcp_set_new_cc(so, TCP_CC_ALGO_BACKGROUND_INDEX); |
| 7073 | #endif |
| 7074 | } else { |
| 7075 | tcp_set_new_cc(so, TCP_CC_ALGO_CUBIC_INDEX); |
| 7076 | } |
| 7077 | } |
| 7078 | |
| 7079 | static void |
| 7080 | tcp_set_new_cc(struct socket *so, uint8_t cc_index) |
| 7081 | { |
| 7082 | struct inpcb *inp = sotoinpcb(so); |
| 7083 | struct tcpcb *tp = intotcpcb(inp); |
| 7084 | |
| 7085 | if (tp->tcp_cc_index != cc_index) { |
| 7086 | if (CC_ALGO(tp)->cleanup != NULL) { |
| 7087 | CC_ALGO(tp)->cleanup(tp); |
| 7088 | } |
| 7089 | tp->tcp_cc_index = cc_index; |
| 7090 | |
| 7091 | tcp_cc_allocate_state(tp); |
| 7092 | |
| 7093 | if (CC_ALGO(tp)->switch_to != NULL) { |
| 7094 | CC_ALGO(tp)->switch_to(tp); |
| 7095 | } |
| 7096 | |
| 7097 | tcp_ccdbg_trace(tp, NULL, event: TCP_CC_CHANGE_ALGO); |
| 7098 | } |
| 7099 | } |
| 7100 | |
| 7101 | void |
| 7102 | tcp_set_recv_bg(struct socket *so) |
| 7103 | { |
| 7104 | if (!IS_TCP_RECV_BG(so)) { |
| 7105 | so->so_flags1 |= SOF1_TRAFFIC_MGT_TCP_RECVBG; |
| 7106 | |
| 7107 | struct inpcb *inp = sotoinpcb(so); |
| 7108 | struct tcpcb *tp = intotcpcb(inp); |
| 7109 | |
| 7110 | if (TCP_RLEDBAT_ENABLED(tp) && tcp_cc_rledbat.switch_to != NULL) { |
| 7111 | tcp_cc_rledbat.switch_to(tp); |
| 7112 | } |
| 7113 | } |
| 7114 | } |
| 7115 | |
| 7116 | void |
| 7117 | tcp_clear_recv_bg(struct socket *so) |
| 7118 | { |
| 7119 | if (IS_TCP_RECV_BG(so)) { |
| 7120 | so->so_flags1 &= ~(SOF1_TRAFFIC_MGT_TCP_RECVBG); |
| 7121 | } |
| 7122 | } |
| 7123 | |
| 7124 | void |
| 7125 | inp_fc_throttle_tcp(struct inpcb *inp) |
| 7126 | { |
| 7127 | struct tcpcb *tp = inp->inp_ppcb; |
| 7128 | |
| 7129 | if (!tcp_flow_control_response) { |
| 7130 | return; |
| 7131 | } |
| 7132 | |
| 7133 | /* |
| 7134 | * Back off the slow-start threshold and enter |
| 7135 | * congestion avoidance phase |
| 7136 | */ |
| 7137 | if (CC_ALGO(tp)->pre_fr != NULL) { |
| 7138 | CC_ALGO(tp)->pre_fr(tp); |
| 7139 | } |
| 7140 | } |
| 7141 | |
| 7142 | void |
| 7143 | inp_fc_unthrottle_tcp(struct inpcb *inp) |
| 7144 | { |
| 7145 | struct tcpcb *tp = inp->inp_ppcb; |
| 7146 | |
| 7147 | if (tcp_flow_control_response) { |
| 7148 | if (CC_ALGO(tp)->post_fr != NULL) { |
| 7149 | CC_ALGO(tp)->post_fr(tp, NULL); |
| 7150 | } |
| 7151 | |
| 7152 | tp->t_bytes_acked = 0; |
| 7153 | |
| 7154 | /* |
| 7155 | * Reset retransmit shift as we know that the reason |
| 7156 | * for delay in sending a packet is due to flow |
| 7157 | * control on the outgoing interface. There is no need |
| 7158 | * to backoff retransmit timer. |
| 7159 | */ |
| 7160 | TCP_RESET_REXMT_STATE(tp); |
| 7161 | |
| 7162 | tp->t_flagsext &= ~TF_CWND_NONVALIDATED; |
| 7163 | |
| 7164 | /* |
| 7165 | * Start the output stream again. Since we are |
| 7166 | * not retransmitting data, do not reset the |
| 7167 | * retransmit timer or rtt calculation. |
| 7168 | */ |
| 7169 | tcp_output(tp); |
| 7170 | return; |
| 7171 | } |
| 7172 | |
| 7173 | /* |
| 7174 | * Back off the slow-start threshold and enter |
| 7175 | * congestion avoidance phase |
| 7176 | */ |
| 7177 | if (CC_ALGO(tp)->pre_fr != NULL) { |
| 7178 | CC_ALGO(tp)->pre_fr(tp); |
| 7179 | } |
| 7180 | |
| 7181 | tp->snd_cwnd = tp->snd_ssthresh; |
| 7182 | tp->t_flagsext &= ~TF_CWND_NONVALIDATED; |
| 7183 | /* |
| 7184 | * Restart counting for ABC as we changed the |
| 7185 | * congestion window just now. |
| 7186 | */ |
| 7187 | tp->t_bytes_acked = 0; |
| 7188 | |
| 7189 | /* Reset retransmit shift as we know that the reason |
| 7190 | * for delay in sending a packet is due to flow |
| 7191 | * control on the outgoing interface. There is no need |
| 7192 | * to backoff retransmit timer. |
| 7193 | */ |
| 7194 | TCP_RESET_REXMT_STATE(tp); |
| 7195 | |
| 7196 | /* |
| 7197 | * Start the output stream again. Since we are |
| 7198 | * not retransmitting data, do not reset the |
| 7199 | * retransmit timer or rtt calculation. |
| 7200 | */ |
| 7201 | tcp_output(tp); |
| 7202 | } |
| 7203 | |
| 7204 | static int |
| 7205 | tcp_getstat SYSCTL_HANDLER_ARGS |
| 7206 | { |
| 7207 | #pragma unused(oidp, arg1, arg2) |
| 7208 | |
| 7209 | int error; |
| 7210 | struct tcpstat *stat; |
| 7211 | stat = &tcpstat; |
| 7212 | #if XNU_TARGET_OS_OSX |
| 7213 | struct tcpstat zero_stat; |
| 7214 | |
| 7215 | if (tcp_disable_access_to_stats && |
| 7216 | !kauth_cred_issuser(cred: kauth_cred_get())) { |
| 7217 | bzero(s: &zero_stat, n: sizeof(zero_stat)); |
| 7218 | stat = &zero_stat; |
| 7219 | } |
| 7220 | |
| 7221 | #endif /* XNU_TARGET_OS_OSX */ |
| 7222 | |
| 7223 | if (req->oldptr == 0) { |
| 7224 | req->oldlen = (size_t)sizeof(struct tcpstat); |
| 7225 | } |
| 7226 | |
| 7227 | error = SYSCTL_OUT(req, stat, MIN(sizeof(tcpstat), req->oldlen)); |
| 7228 | |
| 7229 | return error; |
| 7230 | } |
| 7231 | |
| 7232 | /* |
| 7233 | * Checksum extended TCP header and data. |
| 7234 | */ |
| 7235 | int |
| 7236 | tcp_input_checksum(int af, struct mbuf *m, struct tcphdr *th, int off, int tlen) |
| 7237 | { |
| 7238 | struct ifnet *ifp = m->m_pkthdr.rcvif; |
| 7239 | |
| 7240 | switch (af) { |
| 7241 | case AF_INET: { |
| 7242 | struct ip *ip = mtod(m, struct ip *); |
| 7243 | struct ipovly *ipov = (struct ipovly *)ip; |
| 7244 | |
| 7245 | /* ip_stripoptions() must have been called before we get here */ |
| 7246 | ASSERT((ip->ip_hl << 2) == sizeof(*ip)); |
| 7247 | |
| 7248 | if ((hwcksum_rx || (ifp->if_flags & IFF_LOOPBACK) || |
| 7249 | (m->m_pkthdr.pkt_flags & PKTF_LOOP)) && |
| 7250 | (m->m_pkthdr.csum_flags & CSUM_DATA_VALID)) { |
| 7251 | if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) { |
| 7252 | th->th_sum = m->m_pkthdr.csum_rx_val; |
| 7253 | } else { |
| 7254 | uint32_t sum = m->m_pkthdr.csum_rx_val; |
| 7255 | uint32_t start = m->m_pkthdr.csum_rx_start; |
| 7256 | int32_t trailer = (m_pktlen(m) - (off + tlen)); |
| 7257 | |
| 7258 | /* |
| 7259 | * Perform 1's complement adjustment of octets |
| 7260 | * that got included/excluded in the hardware- |
| 7261 | * calculated checksum value. Ignore cases |
| 7262 | * where the value already includes the entire |
| 7263 | * IP header span, as the sum for those octets |
| 7264 | * would already be 0 by the time we get here; |
| 7265 | * IP has already performed its header checksum |
| 7266 | * checks. If we do need to adjust, restore |
| 7267 | * the original fields in the IP header when |
| 7268 | * computing the adjustment value. Also take |
| 7269 | * care of any trailing bytes and subtract out |
| 7270 | * their partial sum. |
| 7271 | */ |
| 7272 | ASSERT(trailer >= 0); |
| 7273 | if ((m->m_pkthdr.csum_flags & CSUM_PARTIAL) && |
| 7274 | ((start != 0 && start != off) || trailer)) { |
| 7275 | uint32_t swbytes = (uint32_t)trailer; |
| 7276 | |
| 7277 | if (start < off) { |
| 7278 | ip->ip_len += sizeof(*ip); |
| 7279 | #if BYTE_ORDER != BIG_ENDIAN |
| 7280 | HTONS(ip->ip_len); |
| 7281 | HTONS(ip->ip_off); |
| 7282 | #endif /* BYTE_ORDER != BIG_ENDIAN */ |
| 7283 | } |
| 7284 | /* callee folds in sum */ |
| 7285 | sum = m_adj_sum16(m, start, off, |
| 7286 | tlen, sum); |
| 7287 | if (off > start) { |
| 7288 | swbytes += (off - start); |
| 7289 | } else { |
| 7290 | swbytes += (start - off); |
| 7291 | } |
| 7292 | |
| 7293 | if (start < off) { |
| 7294 | #if BYTE_ORDER != BIG_ENDIAN |
| 7295 | NTOHS(ip->ip_off); |
| 7296 | NTOHS(ip->ip_len); |
| 7297 | #endif /* BYTE_ORDER != BIG_ENDIAN */ |
| 7298 | ip->ip_len -= sizeof(*ip); |
| 7299 | } |
| 7300 | |
| 7301 | if (swbytes != 0) { |
| 7302 | tcp_in_cksum_stats(swbytes); |
| 7303 | } |
| 7304 | if (trailer != 0) { |
| 7305 | m_adj(m, -trailer); |
| 7306 | } |
| 7307 | } |
| 7308 | |
| 7309 | /* callee folds in sum */ |
| 7310 | th->th_sum = in_pseudo(ip->ip_src.s_addr, |
| 7311 | ip->ip_dst.s_addr, |
| 7312 | sum + htonl(tlen + IPPROTO_TCP)); |
| 7313 | } |
| 7314 | th->th_sum ^= 0xffff; |
| 7315 | } else { |
| 7316 | uint16_t ip_sum; |
| 7317 | int len; |
| 7318 | char b[9]; |
| 7319 | |
| 7320 | bcopy(src: ipov->ih_x1, dst: b, n: sizeof(ipov->ih_x1)); |
| 7321 | bzero(s: ipov->ih_x1, n: sizeof(ipov->ih_x1)); |
| 7322 | ip_sum = ipov->ih_len; |
| 7323 | ipov->ih_len = (u_short)tlen; |
| 7324 | #if BYTE_ORDER != BIG_ENDIAN |
| 7325 | HTONS(ipov->ih_len); |
| 7326 | #endif |
| 7327 | len = sizeof(struct ip) + tlen; |
| 7328 | th->th_sum = in_cksum(m, len); |
| 7329 | bcopy(src: b, dst: ipov->ih_x1, n: sizeof(ipov->ih_x1)); |
| 7330 | ipov->ih_len = ip_sum; |
| 7331 | |
| 7332 | tcp_in_cksum_stats(len); |
| 7333 | } |
| 7334 | break; |
| 7335 | } |
| 7336 | case AF_INET6: { |
| 7337 | struct ip6_hdr *ip6 = mtod(m, struct ip6_hdr *); |
| 7338 | |
| 7339 | if ((hwcksum_rx || (ifp->if_flags & IFF_LOOPBACK) || |
| 7340 | (m->m_pkthdr.pkt_flags & PKTF_LOOP)) && |
| 7341 | (m->m_pkthdr.csum_flags & CSUM_DATA_VALID)) { |
| 7342 | if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) { |
| 7343 | th->th_sum = m->m_pkthdr.csum_rx_val; |
| 7344 | } else { |
| 7345 | uint32_t sum = m->m_pkthdr.csum_rx_val; |
| 7346 | uint32_t start = m->m_pkthdr.csum_rx_start; |
| 7347 | int32_t trailer = (m_pktlen(m) - (off + tlen)); |
| 7348 | |
| 7349 | /* |
| 7350 | * Perform 1's complement adjustment of octets |
| 7351 | * that got included/excluded in the hardware- |
| 7352 | * calculated checksum value. Also take care |
| 7353 | * of any trailing bytes and subtract out their |
| 7354 | * partial sum. |
| 7355 | */ |
| 7356 | ASSERT(trailer >= 0); |
| 7357 | if ((m->m_pkthdr.csum_flags & CSUM_PARTIAL) && |
| 7358 | (start != off || trailer != 0)) { |
| 7359 | uint16_t s = 0, d = 0; |
| 7360 | uint32_t swbytes = (uint32_t)trailer; |
| 7361 | |
| 7362 | if (IN6_IS_SCOPE_EMBED(&ip6->ip6_src)) { |
| 7363 | s = ip6->ip6_src.s6_addr16[1]; |
| 7364 | ip6->ip6_src.s6_addr16[1] = 0; |
| 7365 | } |
| 7366 | if (IN6_IS_SCOPE_EMBED(&ip6->ip6_dst)) { |
| 7367 | d = ip6->ip6_dst.s6_addr16[1]; |
| 7368 | ip6->ip6_dst.s6_addr16[1] = 0; |
| 7369 | } |
| 7370 | |
| 7371 | /* callee folds in sum */ |
| 7372 | sum = m_adj_sum16(m, start, off, |
| 7373 | tlen, sum); |
| 7374 | if (off > start) { |
| 7375 | swbytes += (off - start); |
| 7376 | } else { |
| 7377 | swbytes += (start - off); |
| 7378 | } |
| 7379 | |
| 7380 | if (IN6_IS_SCOPE_EMBED(&ip6->ip6_src)) { |
| 7381 | ip6->ip6_src.s6_addr16[1] = s; |
| 7382 | } |
| 7383 | if (IN6_IS_SCOPE_EMBED(&ip6->ip6_dst)) { |
| 7384 | ip6->ip6_dst.s6_addr16[1] = d; |
| 7385 | } |
| 7386 | |
| 7387 | if (swbytes != 0) { |
| 7388 | tcp_in6_cksum_stats(swbytes); |
| 7389 | } |
| 7390 | if (trailer != 0) { |
| 7391 | m_adj(m, -trailer); |
| 7392 | } |
| 7393 | } |
| 7394 | |
| 7395 | th->th_sum = in6_pseudo( |
| 7396 | &ip6->ip6_src, &ip6->ip6_dst, |
| 7397 | sum + htonl(tlen + IPPROTO_TCP)); |
| 7398 | } |
| 7399 | th->th_sum ^= 0xffff; |
| 7400 | } else { |
| 7401 | tcp_in6_cksum_stats(tlen); |
| 7402 | th->th_sum = in6_cksum(m, IPPROTO_TCP, off, tlen); |
| 7403 | } |
| 7404 | break; |
| 7405 | } |
| 7406 | default: |
| 7407 | VERIFY(0); |
| 7408 | /* NOTREACHED */ |
| 7409 | } |
| 7410 | |
| 7411 | if (th->th_sum != 0) { |
| 7412 | tcpstat.tcps_rcvbadsum++; |
| 7413 | IF_TCP_STATINC(ifp, badformat); |
| 7414 | return -1; |
| 7415 | } |
| 7416 | |
| 7417 | return 0; |
| 7418 | } |
| 7419 | |
| 7420 | #define DUMP_BUF_CHK() { \ |
| 7421 | clen -= k; \ |
| 7422 | if (clen < 1) \ |
| 7423 | goto done; \ |
| 7424 | c += k; \ |
| 7425 | } |
| 7426 | |
| 7427 | int |
| 7428 | dump_tcp_reass_qlen(char *str, int str_len) |
| 7429 | { |
| 7430 | char *c = str; |
| 7431 | int k, clen = str_len; |
| 7432 | |
| 7433 | if (tcp_reass_total_qlen != 0) { |
| 7434 | k = scnprintf(c, count: clen, "\ntcp reass qlen %d\n" , tcp_reass_total_qlen); |
| 7435 | DUMP_BUF_CHK(); |
| 7436 | } |
| 7437 | |
| 7438 | done: |
| 7439 | return str_len - clen; |
| 7440 | } |
| 7441 | |
| 7442 | uint32_t |
| 7443 | tcp_reass_qlen_space(struct socket *so) |
| 7444 | { |
| 7445 | uint32_t space = 0; |
| 7446 | struct inpcb *inp = sotoinpcb(so); |
| 7447 | |
| 7448 | if (inp != NULL) { |
| 7449 | struct tcpcb *tp = intotcpcb(inp); |
| 7450 | |
| 7451 | if (tp != NULL) { |
| 7452 | space = tp->t_reassq_mbcnt; |
| 7453 | } |
| 7454 | } |
| 7455 | return space; |
| 7456 | } |
| 7457 | |
| 7458 | |
| 7459 | SYSCTL_PROC(_net_inet_tcp, TCPCTL_STATS, stats, |
| 7460 | CTLTYPE_STRUCT | CTLFLAG_RD | CTLFLAG_LOCKED, 0, 0, tcp_getstat, |
| 7461 | "S,tcpstat" , "TCP statistics (struct tcpstat, netinet/tcp_var.h)" ); |
| 7462 | |
| 7463 | static int |
| 7464 | sysctl_rexmtthresh SYSCTL_HANDLER_ARGS |
| 7465 | { |
| 7466 | #pragma unused(arg1, arg2) |
| 7467 | |
| 7468 | int error, val = tcprexmtthresh; |
| 7469 | |
| 7470 | error = sysctl_handle_int(oidp, arg1: &val, arg2: 0, req); |
| 7471 | if (error || !req->newptr) { |
| 7472 | return error; |
| 7473 | } |
| 7474 | |
| 7475 | /* |
| 7476 | * Constrain the number of duplicate ACKs |
| 7477 | * to consider for TCP fast retransmit |
| 7478 | * to either 2 or 3 |
| 7479 | */ |
| 7480 | |
| 7481 | if (val < 2 || val > 3) { |
| 7482 | return EINVAL; |
| 7483 | } |
| 7484 | |
| 7485 | tcprexmtthresh = (uint8_t)val; |
| 7486 | |
| 7487 | return 0; |
| 7488 | } |
| 7489 | |
| 7490 | SYSCTL_PROC(_net_inet_tcp, OID_AUTO, rexmt_thresh, CTLTYPE_INT | CTLFLAG_RW | |
| 7491 | CTLFLAG_LOCKED, &tcprexmtthresh, 0, &sysctl_rexmtthresh, "I" , |
| 7492 | "Duplicate ACK Threshold for Fast Retransmit" ); |
| 7493 | |