| 1 | /* |
| 2 | * Copyright (c) 2000-2021 Apple Inc. All rights reserved. |
| 3 | * |
| 4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ |
| 5 | * |
| 6 | * This file contains Original Code and/or Modifications of Original Code |
| 7 | * as defined in and that are subject to the Apple Public Source License |
| 8 | * Version 2.0 (the 'License'). You may not use this file except in |
| 9 | * compliance with the License. The rights granted to you under the License |
| 10 | * may not be used to create, or enable the creation or redistribution of, |
| 11 | * unlawful or unlicensed copies of an Apple operating system, or to |
| 12 | * circumvent, violate, or enable the circumvention or violation of, any |
| 13 | * terms of an Apple operating system software license agreement. |
| 14 | * |
| 15 | * Please obtain a copy of the License at |
| 16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. |
| 17 | * |
| 18 | * The Original Code and all software distributed under the License are |
| 19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER |
| 20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
| 21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, |
| 22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
| 23 | * Please see the License for the specific language governing rights and |
| 24 | * limitations under the License. |
| 25 | * |
| 26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ |
| 27 | */ |
| 28 | /* $FreeBSD: src/sys/netinet/ip_encap.c,v 1.1.2.2 2001/07/03 11:01:46 ume Exp $ */ |
| 29 | /* $KAME: ip_encap.c,v 1.41 2001/03/15 08:35:08 itojun Exp $ */ |
| 30 | |
| 31 | /* |
| 32 | * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. |
| 33 | * All rights reserved. |
| 34 | * |
| 35 | * Redistribution and use in source and binary forms, with or without |
| 36 | * modification, are permitted provided that the following conditions |
| 37 | * are met: |
| 38 | * 1. Redistributions of source code must retain the above copyright |
| 39 | * notice, this list of conditions and the following disclaimer. |
| 40 | * 2. Redistributions in binary form must reproduce the above copyright |
| 41 | * notice, this list of conditions and the following disclaimer in the |
| 42 | * documentation and/or other materials provided with the distribution. |
| 43 | * 3. Neither the name of the project nor the names of its contributors |
| 44 | * may be used to endorse or promote products derived from this software |
| 45 | * without specific prior written permission. |
| 46 | * |
| 47 | * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND |
| 48 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 49 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 50 | * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE |
| 51 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
| 52 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
| 53 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| 54 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
| 55 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
| 56 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
| 57 | * SUCH DAMAGE. |
| 58 | */ |
| 59 | /* |
| 60 | * My grandfather said that there's a devil inside tunnelling technology... |
| 61 | * |
| 62 | * We have surprisingly many protocols that want packets with IP protocol |
| 63 | * #4 or #41. Here's a list of protocols that want protocol #41: |
| 64 | * RFC1933 configured tunnel |
| 65 | * RFC1933 automatic tunnel |
| 66 | * RFC2401 IPsec tunnel |
| 67 | * RFC2473 IPv6 generic packet tunnelling |
| 68 | * RFC2529 6over4 tunnel |
| 69 | * mobile-ip6 (uses RFC2473) |
| 70 | * 6to4 tunnel |
| 71 | * Here's a list of protocol that want protocol #4: |
| 72 | * RFC1853 IPv4-in-IPv4 tunnelling |
| 73 | * RFC2003 IPv4 encapsulation within IPv4 |
| 74 | * RFC2344 reverse tunnelling for mobile-ip4 |
| 75 | * RFC2401 IPsec tunnel |
| 76 | * Well, what can I say. They impose different en/decapsulation mechanism |
| 77 | * from each other, so they need separate protocol handler. The only one |
| 78 | * we can easily determine by protocol # is IPsec, which always has |
| 79 | * AH/ESP header right after outer IP header. |
| 80 | * |
| 81 | * So, clearly good old protosw does not work for protocol #4 and #41. |
| 82 | * The code will let you match protocol via src/dst address pair. |
| 83 | */ |
| 84 | /* XXX is M_NETADDR correct? */ |
| 85 | |
| 86 | #include <sys/param.h> |
| 87 | #include <sys/systm.h> |
| 88 | #include <sys/socket.h> |
| 89 | #include <sys/sockio.h> |
| 90 | #include <sys/mbuf.h> |
| 91 | #include <sys/mcache.h> |
| 92 | #include <sys/errno.h> |
| 93 | #include <sys/domain.h> |
| 94 | #include <sys/protosw.h> |
| 95 | #include <sys/queue.h> |
| 96 | |
| 97 | #include <net/if.h> |
| 98 | #include <net/route.h> |
| 99 | |
| 100 | #include <netinet/in.h> |
| 101 | #include <netinet/in_systm.h> |
| 102 | #include <netinet/ip.h> |
| 103 | #include <netinet/ip_var.h> |
| 104 | #include <netinet/ip_encap.h> |
| 105 | |
| 106 | #include <netinet/ip6.h> |
| 107 | #include <netinet6/ip6_var.h> |
| 108 | #include <netinet6/ip6protosw.h> |
| 109 | |
| 110 | #include <net/net_osdep.h> |
| 111 | #include <net/sockaddr_utils.h> |
| 112 | |
| 113 | #ifndef __APPLE__ |
| 114 | #include <sys/kernel.h> |
| 115 | #include <sys/malloc.h> |
| 116 | MALLOC_DEFINE(M_NETADDR, "Export Host" , "Export host address structure" ); |
| 117 | #endif |
| 118 | |
| 119 | static void encap_add_locked(struct encaptab *); |
| 120 | static int mask_match(const struct encaptab *, const struct sockaddr *, |
| 121 | const struct sockaddr *); |
| 122 | static void encap_fillarg(struct mbuf *, void *arg); |
| 123 | |
| 124 | LIST_HEAD(, encaptab) encaptab = LIST_HEAD_INITIALIZER(&encaptab); |
| 125 | |
| 126 | static LCK_GRP_DECLARE(encaptab_lock_grp, "encaptab lock" ); |
| 127 | static LCK_RW_DECLARE(encaptab_lock, &encaptab_lock_grp); |
| 128 | |
| 129 | #if INET |
| 130 | void |
| 131 | encap4_input(struct mbuf *m, int off) |
| 132 | { |
| 133 | int proto; |
| 134 | struct ip *ip; |
| 135 | struct sockaddr_in s, d; |
| 136 | const struct protosw *psw; |
| 137 | struct encaptab *ep, *match; |
| 138 | int prio, matchprio; |
| 139 | void *match_arg = NULL; |
| 140 | |
| 141 | #ifndef __APPLE__ |
| 142 | va_start(ap, m); |
| 143 | off = va_arg(ap, int); |
| 144 | proto = va_arg(ap, int); |
| 145 | va_end(ap); |
| 146 | #endif |
| 147 | |
| 148 | /* Expect 32-bit aligned data pointer on strict-align platforms */ |
| 149 | MBUF_STRICT_DATA_ALIGNMENT_CHECK_32(m); |
| 150 | |
| 151 | ip = mtod(m, struct ip *); |
| 152 | #ifdef __APPLE__ |
| 153 | proto = ip->ip_p; |
| 154 | #endif |
| 155 | |
| 156 | SOCKADDR_ZERO(&s, sizeof(s)); |
| 157 | s.sin_family = AF_INET; |
| 158 | s.sin_len = sizeof(struct sockaddr_in); |
| 159 | s.sin_addr = ip->ip_src; |
| 160 | SOCKADDR_ZERO(&d, sizeof(d)); |
| 161 | d.sin_family = AF_INET; |
| 162 | d.sin_len = sizeof(struct sockaddr_in); |
| 163 | d.sin_addr = ip->ip_dst; |
| 164 | |
| 165 | match = NULL; |
| 166 | matchprio = 0; |
| 167 | |
| 168 | lck_rw_lock_shared(lck: &encaptab_lock); |
| 169 | for (ep = LIST_FIRST(&encaptab); ep; ep = LIST_NEXT(ep, chain)) { |
| 170 | if (ep->af != AF_INET) { |
| 171 | continue; |
| 172 | } |
| 173 | if (ep->proto >= 0 && ep->proto != proto) { |
| 174 | continue; |
| 175 | } |
| 176 | if (ep->func) { |
| 177 | prio = (*ep->func)(m, off, proto, ep->arg); |
| 178 | } else { |
| 179 | /* |
| 180 | * it's inbound traffic, we need to match in reverse |
| 181 | * order |
| 182 | */ |
| 183 | prio = mask_match(ep, SA(&d), SA(&s)); |
| 184 | } |
| 185 | |
| 186 | /* |
| 187 | * We prioritize the matches by using bit length of the |
| 188 | * matches. mask_match() and user-supplied matching function |
| 189 | * should return the bit length of the matches (for example, |
| 190 | * if both src/dst are matched for IPv4, 64 should be returned). |
| 191 | * 0 or negative return value means "it did not match". |
| 192 | * |
| 193 | * The question is, since we have two "mask" portion, we |
| 194 | * cannot really define total order between entries. |
| 195 | * For example, which of these should be preferred? |
| 196 | * mask_match() returns 48 (32 + 16) for both of them. |
| 197 | * src=3ffe::/16, dst=3ffe:501::/32 |
| 198 | * src=3ffe:501::/32, dst=3ffe::/16 |
| 199 | * |
| 200 | * We need to loop through all the possible candidates |
| 201 | * to get the best match - the search takes O(n) for |
| 202 | * n attachments (i.e. interfaces). |
| 203 | */ |
| 204 | if (prio <= 0) { |
| 205 | continue; |
| 206 | } |
| 207 | if (prio > matchprio) { |
| 208 | matchprio = prio; |
| 209 | match = ep; |
| 210 | psw = (const struct protosw *)match->psw; |
| 211 | match_arg = ep->arg; |
| 212 | } |
| 213 | } |
| 214 | lck_rw_unlock_shared(lck: &encaptab_lock); |
| 215 | |
| 216 | if (match) { |
| 217 | /* found a match, "match" has the best one */ |
| 218 | if (psw && psw->pr_input) { |
| 219 | encap_fillarg(m, arg: match_arg); |
| 220 | (*psw->pr_input)(m, off); |
| 221 | } else { |
| 222 | m_freem(m); |
| 223 | } |
| 224 | return; |
| 225 | } |
| 226 | |
| 227 | /* last resort: inject to raw socket */ |
| 228 | rip_input(m, off); |
| 229 | } |
| 230 | #endif |
| 231 | |
| 232 | int |
| 233 | encap6_input(struct mbuf **mp, int *offp, int proto) |
| 234 | { |
| 235 | struct mbuf *m = *mp; |
| 236 | struct ip6_hdr *ip6; |
| 237 | struct sockaddr_in6 s, d; |
| 238 | const struct ip6protosw *psw; |
| 239 | struct encaptab *ep, *match; |
| 240 | int prio, matchprio; |
| 241 | void *match_arg = NULL; |
| 242 | |
| 243 | /* Expect 32-bit aligned data pointer on strict-align platforms */ |
| 244 | MBUF_STRICT_DATA_ALIGNMENT_CHECK_32(m); |
| 245 | |
| 246 | ip6 = mtod(m, struct ip6_hdr *); |
| 247 | SOCKADDR_ZERO(&s, sizeof(s)); |
| 248 | s.sin6_family = AF_INET6; |
| 249 | s.sin6_len = sizeof(struct sockaddr_in6); |
| 250 | s.sin6_addr = ip6->ip6_src; |
| 251 | SOCKADDR_ZERO(&d, sizeof(d)); |
| 252 | d.sin6_family = AF_INET6; |
| 253 | d.sin6_len = sizeof(struct sockaddr_in6); |
| 254 | d.sin6_addr = ip6->ip6_dst; |
| 255 | |
| 256 | match = NULL; |
| 257 | matchprio = 0; |
| 258 | |
| 259 | lck_rw_lock_shared(lck: &encaptab_lock); |
| 260 | for (ep = LIST_FIRST(&encaptab); ep; ep = LIST_NEXT(ep, chain)) { |
| 261 | if (ep->af != AF_INET6) { |
| 262 | continue; |
| 263 | } |
| 264 | if (ep->proto >= 0 && ep->proto != proto) { |
| 265 | continue; |
| 266 | } |
| 267 | if (ep->func) { |
| 268 | prio = (*ep->func)(m, *offp, proto, ep->arg); |
| 269 | } else { |
| 270 | /* |
| 271 | * it's inbound traffic, we need to match in reverse |
| 272 | * order |
| 273 | */ |
| 274 | prio = mask_match(ep, SA(&d), SA(&s)); |
| 275 | } |
| 276 | |
| 277 | /* see encap4_input() for issues here */ |
| 278 | if (prio <= 0) { |
| 279 | continue; |
| 280 | } |
| 281 | if (prio > matchprio) { |
| 282 | matchprio = prio; |
| 283 | match = ep; |
| 284 | psw = (const struct ip6protosw *)match->psw; |
| 285 | match_arg = ep->arg; |
| 286 | } |
| 287 | } |
| 288 | lck_rw_unlock_shared(lck: &encaptab_lock); |
| 289 | |
| 290 | if (match) { |
| 291 | /* found a match */ |
| 292 | if (psw && psw->pr_input) { |
| 293 | encap_fillarg(m, arg: match_arg); |
| 294 | return (*psw->pr_input)(mp, offp, proto); |
| 295 | } else { |
| 296 | m_freem(m); |
| 297 | return IPPROTO_DONE; |
| 298 | } |
| 299 | } |
| 300 | |
| 301 | /* last resort: inject to raw socket */ |
| 302 | return rip6_input(mp, offp, proto); |
| 303 | } |
| 304 | |
| 305 | static void |
| 306 | encap_add_locked(struct encaptab *ep) |
| 307 | { |
| 308 | LCK_RW_ASSERT(&encaptab_lock, LCK_RW_ASSERT_EXCLUSIVE); |
| 309 | LIST_INSERT_HEAD(&encaptab, ep, chain); |
| 310 | } |
| 311 | |
| 312 | /* |
| 313 | * sp (src ptr) is always my side, and dp (dst ptr) is always remote side. |
| 314 | * length of mask (sm and dm) is assumed to be same as sp/dp. |
| 315 | * Return value will be necessary as input (cookie) for encap_detach(). |
| 316 | */ |
| 317 | const struct encaptab * |
| 318 | encap_attach(int af, int proto, const struct sockaddr *sp, |
| 319 | const struct sockaddr *sm, const struct sockaddr *dp, |
| 320 | const struct sockaddr *dm, const struct protosw *psw, void *arg) |
| 321 | { |
| 322 | struct encaptab *ep = NULL; |
| 323 | struct encaptab *new_ep = NULL; |
| 324 | int error; |
| 325 | |
| 326 | /* sanity check on args */ |
| 327 | if (sp->sa_len > sizeof(new_ep->src) || dp->sa_len > sizeof(new_ep->dst)) { |
| 328 | error = EINVAL; |
| 329 | goto fail; |
| 330 | } |
| 331 | if (sp->sa_len != dp->sa_len) { |
| 332 | error = EINVAL; |
| 333 | goto fail; |
| 334 | } |
| 335 | if (af != sp->sa_family || af != dp->sa_family) { |
| 336 | error = EINVAL; |
| 337 | goto fail; |
| 338 | } |
| 339 | |
| 340 | new_ep = kalloc_type(struct encaptab, Z_WAITOK | Z_ZERO | Z_NOFAIL); |
| 341 | |
| 342 | /* check if anyone have already attached with exactly same config */ |
| 343 | lck_rw_lock_exclusive(lck: &encaptab_lock); |
| 344 | for (ep = LIST_FIRST(&encaptab); ep; ep = LIST_NEXT(ep, chain)) { |
| 345 | if (ep->af != af) { |
| 346 | continue; |
| 347 | } |
| 348 | if (ep->proto != proto) { |
| 349 | continue; |
| 350 | } |
| 351 | if (ep->src.ss_len != sp->sa_len || |
| 352 | SOCKADDR_CMP(&ep->src, sp, sp->sa_len) != 0 || |
| 353 | SOCKADDR_CMP(&ep->srcmask, sm, sp->sa_len) != 0) { |
| 354 | continue; |
| 355 | } |
| 356 | if (ep->dst.ss_len != dp->sa_len || |
| 357 | SOCKADDR_CMP(&ep->dst, dp, dp->sa_len) != 0 || |
| 358 | SOCKADDR_CMP(&ep->dstmask, dm, dp->sa_len) != 0) { |
| 359 | continue; |
| 360 | } |
| 361 | |
| 362 | error = EEXIST; |
| 363 | goto fail_locked; |
| 364 | } |
| 365 | |
| 366 | new_ep->af = af; |
| 367 | new_ep->proto = proto; |
| 368 | SOCKADDR_COPY(sp, &new_ep->src, sp->sa_len); |
| 369 | SOCKADDR_COPY(sm, &new_ep->srcmask, sp->sa_len); |
| 370 | SOCKADDR_COPY(dp, &new_ep->dst, dp->sa_len); |
| 371 | SOCKADDR_COPY(dm, &new_ep->dstmask, dp->sa_len); |
| 372 | new_ep->psw = psw; |
| 373 | new_ep->arg = arg; |
| 374 | |
| 375 | encap_add_locked(ep: new_ep); |
| 376 | lck_rw_unlock_exclusive(lck: &encaptab_lock); |
| 377 | |
| 378 | error = 0; |
| 379 | return new_ep; |
| 380 | |
| 381 | fail_locked: |
| 382 | lck_rw_unlock_exclusive(lck: &encaptab_lock); |
| 383 | if (new_ep != NULL) { |
| 384 | kfree_type(struct encaptab, new_ep); |
| 385 | } |
| 386 | fail: |
| 387 | return NULL; |
| 388 | } |
| 389 | |
| 390 | const struct encaptab * |
| 391 | encap_attach_func( int af, int proto, |
| 392 | int (*func)(const struct mbuf *, int, int, void *), |
| 393 | const struct protosw *psw, void *arg) |
| 394 | { |
| 395 | struct encaptab *ep; |
| 396 | int error; |
| 397 | |
| 398 | /* sanity check on args */ |
| 399 | if (!func) { |
| 400 | error = EINVAL; |
| 401 | goto fail; |
| 402 | } |
| 403 | |
| 404 | ep = kalloc_type(struct encaptab, Z_WAITOK | Z_ZERO | Z_NOFAIL); /* XXX */ |
| 405 | |
| 406 | ep->af = af; |
| 407 | ep->proto = proto; |
| 408 | ep->func = func; |
| 409 | ep->psw = psw; |
| 410 | ep->arg = arg; |
| 411 | |
| 412 | lck_rw_lock_exclusive(lck: &encaptab_lock); |
| 413 | encap_add_locked(ep); |
| 414 | lck_rw_unlock_exclusive(lck: &encaptab_lock); |
| 415 | |
| 416 | error = 0; |
| 417 | return ep; |
| 418 | |
| 419 | fail: |
| 420 | return NULL; |
| 421 | } |
| 422 | |
| 423 | int |
| 424 | encap_detach(const struct encaptab *cookie) |
| 425 | { |
| 426 | const struct encaptab *ep = cookie; |
| 427 | struct encaptab *p; |
| 428 | |
| 429 | lck_rw_lock_exclusive(lck: &encaptab_lock); |
| 430 | for (p = LIST_FIRST(&encaptab); p; p = LIST_NEXT(p, chain)) { |
| 431 | if (p == ep) { |
| 432 | LIST_REMOVE(p, chain); |
| 433 | lck_rw_unlock_exclusive(lck: &encaptab_lock); |
| 434 | kfree_type(struct encaptab, p); /*XXX*/ |
| 435 | return 0; |
| 436 | } |
| 437 | } |
| 438 | lck_rw_unlock_exclusive(lck: &encaptab_lock); |
| 439 | |
| 440 | return EINVAL; |
| 441 | } |
| 442 | |
| 443 | static int |
| 444 | mask_match(const struct encaptab *ep, const struct sockaddr *sp, |
| 445 | const struct sockaddr *dp) |
| 446 | { |
| 447 | struct sockaddr_storage s; |
| 448 | struct sockaddr_storage d; |
| 449 | int i; |
| 450 | const u_int8_t *p, *q; |
| 451 | u_int8_t *r; |
| 452 | int matchlen; |
| 453 | |
| 454 | if (sp->sa_len > sizeof(s) || dp->sa_len > sizeof(d)) { |
| 455 | return 0; |
| 456 | } |
| 457 | if (sp->sa_family != ep->af || dp->sa_family != ep->af) { |
| 458 | return 0; |
| 459 | } |
| 460 | if (sp->sa_len != ep->src.ss_len || dp->sa_len != ep->dst.ss_len) { |
| 461 | return 0; |
| 462 | } |
| 463 | |
| 464 | matchlen = 0; |
| 465 | |
| 466 | p = (const u_int8_t *)sp; |
| 467 | q = (const u_int8_t *)&ep->srcmask; |
| 468 | r = (u_int8_t *)&s; |
| 469 | for (i = 0; i < sp->sa_len; i++) { |
| 470 | r[i] = p[i] & q[i]; |
| 471 | /* XXX estimate */ |
| 472 | matchlen += (q[i] ? 8 : 0); |
| 473 | } |
| 474 | |
| 475 | p = (const u_int8_t *)dp; |
| 476 | q = (const u_int8_t *)&ep->dstmask; |
| 477 | r = (u_int8_t *)&d; |
| 478 | for (i = 0; i < dp->sa_len; i++) { |
| 479 | r[i] = p[i] & q[i]; |
| 480 | /* XXX rough estimate */ |
| 481 | matchlen += (q[i] ? 8 : 0); |
| 482 | } |
| 483 | |
| 484 | /* need to overwrite len/family portion as we don't compare them */ |
| 485 | s.ss_len = sp->sa_len; |
| 486 | s.ss_family = sp->sa_family; |
| 487 | d.ss_len = dp->sa_len; |
| 488 | d.ss_family = dp->sa_family; |
| 489 | |
| 490 | if (bcmp(s1: &s, s2: &ep->src, n: ep->src.ss_len) == 0 && |
| 491 | bcmp(s1: &d, s2: &ep->dst, n: ep->dst.ss_len) == 0) { |
| 492 | return matchlen; |
| 493 | } else { |
| 494 | return 0; |
| 495 | } |
| 496 | } |
| 497 | |
| 498 | struct encaptabtag { |
| 499 | void* *arg; |
| 500 | }; |
| 501 | |
| 502 | static void |
| 503 | encap_fillarg( |
| 504 | struct mbuf *m, |
| 505 | void *arg) |
| 506 | { |
| 507 | struct m_tag *tag; |
| 508 | struct encaptabtag *et; |
| 509 | |
| 510 | tag = m_tag_create(KERNEL_MODULE_TAG_ID, KERNEL_TAG_TYPE_ENCAP, |
| 511 | sizeof(struct encaptabtag), M_WAITOK, m); |
| 512 | |
| 513 | if (tag != NULL) { |
| 514 | et = (struct encaptabtag*)(tag->m_tag_data); |
| 515 | et->arg = arg; |
| 516 | m_tag_prepend(m, tag); |
| 517 | } |
| 518 | } |
| 519 | |
| 520 | void * |
| 521 | encap_getarg(struct mbuf *m) |
| 522 | { |
| 523 | struct m_tag *tag; |
| 524 | struct encaptabtag *et; |
| 525 | void *p = NULL; |
| 526 | |
| 527 | tag = m_tag_locate(m, KERNEL_MODULE_TAG_ID, KERNEL_TAG_TYPE_ENCAP); |
| 528 | if (tag) { |
| 529 | et = (struct encaptabtag*)(tag->m_tag_data); |
| 530 | p = et->arg; |
| 531 | m_tag_delete(m, tag); |
| 532 | } |
| 533 | |
| 534 | return p; |
| 535 | } |
| 536 | |
| 537 | struct encaptab_tag_container { |
| 538 | struct m_tag encaptab_m_tag; |
| 539 | struct encaptabtag encaptab_tag; |
| 540 | }; |
| 541 | |
| 542 | static struct m_tag * |
| 543 | m_tag_kalloc_encap(u_int32_t id, u_int16_t type, uint16_t len, int wait) |
| 544 | { |
| 545 | struct encaptab_tag_container *tag_container; |
| 546 | struct m_tag *tag = NULL; |
| 547 | |
| 548 | assert3u(id, ==, KERNEL_MODULE_TAG_ID); |
| 549 | assert3u(type, ==, KERNEL_TAG_TYPE_ENCAP); |
| 550 | assert3u(len, ==, sizeof(struct encaptabtag)); |
| 551 | |
| 552 | if (len != sizeof(struct encaptabtag)) { |
| 553 | return NULL; |
| 554 | } |
| 555 | |
| 556 | tag_container = kalloc_type(struct encaptab_tag_container, wait | M_ZERO); |
| 557 | if (tag_container != NULL) { |
| 558 | tag = &tag_container->encaptab_m_tag; |
| 559 | |
| 560 | assert3p(tag, ==, tag_container); |
| 561 | |
| 562 | M_TAG_INIT(tag, id, type, len, &tag_container->encaptab_tag, NULL); |
| 563 | } |
| 564 | |
| 565 | return tag; |
| 566 | } |
| 567 | |
| 568 | static void |
| 569 | m_tag_kfree_encap(struct m_tag *tag) |
| 570 | { |
| 571 | struct encaptab_tag_container *tag_container = (struct encaptab_tag_container *)tag; |
| 572 | |
| 573 | assert3u(tag->m_tag_len, ==, sizeof(struct encaptabtag)); |
| 574 | |
| 575 | kfree_type(struct encaptab_tag_container, tag_container); |
| 576 | } |
| 577 | |
| 578 | void |
| 579 | encap_register_m_tag(void) |
| 580 | { |
| 581 | int error; |
| 582 | |
| 583 | error = m_register_internal_tag_type(type: KERNEL_TAG_TYPE_ENCAP, len: sizeof(struct encaptabtag), |
| 584 | alloc_func: m_tag_kalloc_encap, free_func: m_tag_kfree_encap); |
| 585 | |
| 586 | assert3u(error, ==, 0); |
| 587 | } |
| 588 | |