| 1 | /* |
| 2 | * Copyright (c) 2000-2021 Apple Inc. All rights reserved. |
| 3 | * |
| 4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ |
| 5 | * |
| 6 | * This file contains Original Code and/or Modifications of Original Code |
| 7 | * as defined in and that are subject to the Apple Public Source License |
| 8 | * Version 2.0 (the 'License'). You may not use this file except in |
| 9 | * compliance with the License. The rights granted to you under the License |
| 10 | * may not be used to create, or enable the creation or redistribution of, |
| 11 | * unlawful or unlicensed copies of an Apple operating system, or to |
| 12 | * circumvent, violate, or enable the circumvention or violation of, any |
| 13 | * terms of an Apple operating system software license agreement. |
| 14 | * |
| 15 | * Please obtain a copy of the License at |
| 16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. |
| 17 | * |
| 18 | * The Original Code and all software distributed under the License are |
| 19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER |
| 20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
| 21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, |
| 22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
| 23 | * Please see the License for the specific language governing rights and |
| 24 | * limitations under the License. |
| 25 | * |
| 26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ |
| 27 | */ |
| 28 | /* |
| 29 | * Copyright (c) 1982, 1986, 1991, 1993, 1995 |
| 30 | * The Regents of the University of California. All rights reserved. |
| 31 | * |
| 32 | * Redistribution and use in source and binary forms, with or without |
| 33 | * modification, are permitted provided that the following conditions |
| 34 | * are met: |
| 35 | * 1. Redistributions of source code must retain the above copyright |
| 36 | * notice, this list of conditions and the following disclaimer. |
| 37 | * 2. Redistributions in binary form must reproduce the above copyright |
| 38 | * notice, this list of conditions and the following disclaimer in the |
| 39 | * documentation and/or other materials provided with the distribution. |
| 40 | * 3. All advertising materials mentioning features or use of this software |
| 41 | * must display the following acknowledgement: |
| 42 | * This product includes software developed by the University of |
| 43 | * California, Berkeley and its contributors. |
| 44 | * 4. Neither the name of the University nor the names of its contributors |
| 45 | * may be used to endorse or promote products derived from this software |
| 46 | * without specific prior written permission. |
| 47 | * |
| 48 | * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND |
| 49 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 50 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 51 | * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE |
| 52 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
| 53 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
| 54 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| 55 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
| 56 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
| 57 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
| 58 | * SUCH DAMAGE. |
| 59 | * |
| 60 | * @(#)in_pcb.c 8.4 (Berkeley) 5/24/95 |
| 61 | * $FreeBSD: src/sys/netinet/in_pcb.c,v 1.59.2.17 2001/08/13 16:26:17 ume Exp $ |
| 62 | */ |
| 63 | |
| 64 | #include <sys/param.h> |
| 65 | #include <sys/systm.h> |
| 66 | #include <sys/malloc.h> |
| 67 | #include <sys/mbuf.h> |
| 68 | #include <sys/domain.h> |
| 69 | #include <sys/protosw.h> |
| 70 | #include <sys/socket.h> |
| 71 | #include <sys/socketvar.h> |
| 72 | #include <sys/proc.h> |
| 73 | #include <sys/kernel.h> |
| 74 | #include <sys/sysctl.h> |
| 75 | #include <sys/mcache.h> |
| 76 | #include <sys/kauth.h> |
| 77 | #include <sys/priv.h> |
| 78 | #include <sys/proc_uuid_policy.h> |
| 79 | #include <sys/syslog.h> |
| 80 | #include <sys/priv.h> |
| 81 | #include <sys/file_internal.h> |
| 82 | #include <net/dlil.h> |
| 83 | |
| 84 | #include <libkern/OSAtomic.h> |
| 85 | #include <kern/locks.h> |
| 86 | |
| 87 | #include <machine/limits.h> |
| 88 | |
| 89 | #include <kern/zalloc.h> |
| 90 | |
| 91 | #include <net/if.h> |
| 92 | #include <net/if_types.h> |
| 93 | #include <net/route.h> |
| 94 | #include <net/flowhash.h> |
| 95 | #include <net/flowadv.h> |
| 96 | #include <net/nat464_utils.h> |
| 97 | #include <net/ntstat.h> |
| 98 | #include <net/nwk_wq.h> |
| 99 | #include <net/restricted_in_port.h> |
| 100 | |
| 101 | #include <netinet/in.h> |
| 102 | #include <netinet/in_pcb.h> |
| 103 | #include <netinet/inp_log.h> |
| 104 | #include <netinet/in_var.h> |
| 105 | #include <netinet/ip_var.h> |
| 106 | |
| 107 | #include <netinet/ip6.h> |
| 108 | #include <netinet6/ip6_var.h> |
| 109 | |
| 110 | #include <sys/kdebug.h> |
| 111 | #include <sys/random.h> |
| 112 | |
| 113 | #include <dev/random/randomdev.h> |
| 114 | #include <mach/boolean.h> |
| 115 | |
| 116 | #include <atm/atm_internal.h> |
| 117 | #include <pexpert/pexpert.h> |
| 118 | |
| 119 | #if NECP |
| 120 | #include <net/necp.h> |
| 121 | #endif |
| 122 | |
| 123 | #include <sys/stat.h> |
| 124 | #include <sys/ubc.h> |
| 125 | #include <sys/vnode.h> |
| 126 | |
| 127 | #include <os/log.h> |
| 128 | |
| 129 | #if SKYWALK |
| 130 | #include <skywalk/namespace/flowidns.h> |
| 131 | #endif /* SKYWALK */ |
| 132 | |
| 133 | #include <IOKit/IOBSD.h> |
| 134 | |
| 135 | #include <net/sockaddr_utils.h> |
| 136 | |
| 137 | extern const char *proc_name_address(struct proc *); |
| 138 | |
| 139 | static LCK_GRP_DECLARE(inpcb_lock_grp, "inpcb" ); |
| 140 | static LCK_ATTR_DECLARE(inpcb_lock_attr, 0, 0); |
| 141 | static LCK_MTX_DECLARE_ATTR(inpcb_lock, &inpcb_lock_grp, &inpcb_lock_attr); |
| 142 | static LCK_MTX_DECLARE_ATTR(inpcb_timeout_lock, &inpcb_lock_grp, &inpcb_lock_attr); |
| 143 | |
| 144 | static TAILQ_HEAD(, inpcbinfo) inpcb_head = TAILQ_HEAD_INITIALIZER(inpcb_head); |
| 145 | |
| 146 | static u_int16_t inpcb_timeout_run = 0; /* INPCB timer is scheduled to run */ |
| 147 | static boolean_t inpcb_garbage_collecting = FALSE; /* gc timer is scheduled */ |
| 148 | static boolean_t inpcb_ticking = FALSE; /* "slow" timer is scheduled */ |
| 149 | static boolean_t inpcb_fast_timer_on = FALSE; |
| 150 | |
| 151 | #define INPCB_GCREQ_THRESHOLD 50000 |
| 152 | |
| 153 | static thread_call_t inpcb_thread_call, inpcb_fast_thread_call; |
| 154 | static void inpcb_sched_timeout(void); |
| 155 | static void inpcb_sched_lazy_timeout(void); |
| 156 | static void _inpcb_sched_timeout(unsigned int); |
| 157 | static void inpcb_timeout(void *, void *); |
| 158 | const int inpcb_timeout_lazy = 10; /* 10 seconds leeway for lazy timers */ |
| 159 | extern int tvtohz(struct timeval *); |
| 160 | |
| 161 | #if CONFIG_PROC_UUID_POLICY |
| 162 | static void inp_update_cellular_policy(struct inpcb *, boolean_t); |
| 163 | #if NECP |
| 164 | static void inp_update_necp_want_app_policy(struct inpcb *, boolean_t); |
| 165 | #endif /* NECP */ |
| 166 | #endif /* !CONFIG_PROC_UUID_POLICY */ |
| 167 | |
| 168 | #define DBG_FNC_PCB_LOOKUP NETDBG_CODE(DBG_NETTCP, (6 << 8)) |
| 169 | #define DBG_FNC_PCB_HLOOKUP NETDBG_CODE(DBG_NETTCP, ((6 << 8) | 1)) |
| 170 | |
| 171 | int allow_udp_port_exhaustion = 0; |
| 172 | |
| 173 | /* |
| 174 | * These configure the range of local port addresses assigned to |
| 175 | * "unspecified" outgoing connections/packets/whatever. |
| 176 | */ |
| 177 | int ipport_lowfirstauto = IPPORT_RESERVED - 1; /* 1023 */ |
| 178 | int ipport_lowlastauto = IPPORT_RESERVEDSTART; /* 600 */ |
| 179 | int ipport_firstauto = IPPORT_HIFIRSTAUTO; /* 49152 */ |
| 180 | int ipport_lastauto = IPPORT_HILASTAUTO; /* 65535 */ |
| 181 | int ipport_hifirstauto = IPPORT_HIFIRSTAUTO; /* 49152 */ |
| 182 | int ipport_hilastauto = IPPORT_HILASTAUTO; /* 65535 */ |
| 183 | |
| 184 | #define RANGECHK(var, min, max) \ |
| 185 | if ((var) < (min)) { (var) = (min); } \ |
| 186 | else if ((var) > (max)) { (var) = (max); } |
| 187 | |
| 188 | static int |
| 189 | sysctl_net_ipport_check SYSCTL_HANDLER_ARGS |
| 190 | { |
| 191 | #pragma unused(arg1, arg2) |
| 192 | int error; |
| 193 | int new_value = *(int *)oidp->oid_arg1; |
| 194 | #if (DEBUG | DEVELOPMENT) |
| 195 | int old_value = *(int *)oidp->oid_arg1; |
| 196 | /* |
| 197 | * For unit testing allow a non-superuser process with the |
| 198 | * proper entitlement to modify the variables |
| 199 | */ |
| 200 | if (req->newptr) { |
| 201 | if (proc_suser(current_proc()) != 0 && |
| 202 | (error = priv_check_cred(kauth_cred_get(), |
| 203 | PRIV_NETINET_RESERVEDPORT, 0))) { |
| 204 | return EPERM; |
| 205 | } |
| 206 | } |
| 207 | #endif /* (DEBUG | DEVELOPMENT) */ |
| 208 | |
| 209 | error = sysctl_handle_int(oidp, arg1: &new_value, arg2: 0, req); |
| 210 | if (!error) { |
| 211 | if (oidp->oid_arg1 == &ipport_lowfirstauto || oidp->oid_arg1 == &ipport_lowlastauto) { |
| 212 | RANGECHK(new_value, 1, IPPORT_RESERVED - 1); |
| 213 | } else { |
| 214 | RANGECHK(new_value, IPPORT_RESERVED, USHRT_MAX); |
| 215 | } |
| 216 | *(int *)oidp->oid_arg1 = new_value; |
| 217 | } |
| 218 | |
| 219 | #if (DEBUG | DEVELOPMENT) |
| 220 | os_log(OS_LOG_DEFAULT, |
| 221 | "%s:%u sysctl net.restricted_port.verbose: %d -> %d)" , |
| 222 | proc_best_name(current_proc()), proc_selfpid(), |
| 223 | old_value, *(int *)oidp->oid_arg1); |
| 224 | #endif /* (DEBUG | DEVELOPMENT) */ |
| 225 | |
| 226 | return error; |
| 227 | } |
| 228 | |
| 229 | #undef RANGECHK |
| 230 | |
| 231 | SYSCTL_NODE(_net_inet_ip, IPPROTO_IP, portrange, |
| 232 | CTLFLAG_RW | CTLFLAG_LOCKED, 0, "IP Ports" ); |
| 233 | |
| 234 | #if (DEBUG | DEVELOPMENT) |
| 235 | #define CTLFAGS_IP_PORTRANGE (CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED | CTLFLAG_ANYBODY) |
| 236 | #else |
| 237 | #define CTLFAGS_IP_PORTRANGE (CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED) |
| 238 | #endif /* (DEBUG | DEVELOPMENT) */ |
| 239 | |
| 240 | SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowfirst, |
| 241 | CTLFAGS_IP_PORTRANGE, |
| 242 | &ipport_lowfirstauto, 0, &sysctl_net_ipport_check, "I" , "" ); |
| 243 | SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowlast, |
| 244 | CTLFAGS_IP_PORTRANGE, |
| 245 | &ipport_lowlastauto, 0, &sysctl_net_ipport_check, "I" , "" ); |
| 246 | SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, first, |
| 247 | CTLFAGS_IP_PORTRANGE, |
| 248 | &ipport_firstauto, 0, &sysctl_net_ipport_check, "I" , "" ); |
| 249 | SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, last, |
| 250 | CTLFAGS_IP_PORTRANGE, |
| 251 | &ipport_lastauto, 0, &sysctl_net_ipport_check, "I" , "" ); |
| 252 | SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hifirst, |
| 253 | CTLFAGS_IP_PORTRANGE, |
| 254 | &ipport_hifirstauto, 0, &sysctl_net_ipport_check, "I" , "" ); |
| 255 | SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hilast, |
| 256 | CTLFAGS_IP_PORTRANGE, |
| 257 | &ipport_hilastauto, 0, &sysctl_net_ipport_check, "I" , "" ); |
| 258 | SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, ipport_allow_udp_port_exhaustion, |
| 259 | CTLFLAG_LOCKED | CTLFLAG_RW, &allow_udp_port_exhaustion, 0, "" ); |
| 260 | |
| 261 | static uint32_t apn_fallbk_debug = 0; |
| 262 | #define apn_fallbk_log(x) do { if (apn_fallbk_debug >= 1) log x; } while (0) |
| 263 | |
| 264 | #if !XNU_TARGET_OS_OSX |
| 265 | static boolean_t apn_fallbk_enabled = TRUE; |
| 266 | |
| 267 | SYSCTL_DECL(_net_inet); |
| 268 | SYSCTL_NODE(_net_inet, OID_AUTO, apn_fallback, CTLFLAG_RW | CTLFLAG_LOCKED, 0, "APN Fallback" ); |
| 269 | SYSCTL_UINT(_net_inet_apn_fallback, OID_AUTO, enable, CTLFLAG_RW | CTLFLAG_LOCKED, |
| 270 | &apn_fallbk_enabled, 0, "APN fallback enable" ); |
| 271 | SYSCTL_UINT(_net_inet_apn_fallback, OID_AUTO, debug, CTLFLAG_RW | CTLFLAG_LOCKED, |
| 272 | &apn_fallbk_debug, 0, "APN fallback debug enable" ); |
| 273 | #else /* XNU_TARGET_OS_OSX */ |
| 274 | static boolean_t apn_fallbk_enabled = FALSE; |
| 275 | #endif /* XNU_TARGET_OS_OSX */ |
| 276 | |
| 277 | extern int udp_use_randomport; |
| 278 | extern int tcp_use_randomport; |
| 279 | |
| 280 | /* Structs used for flowhash computation */ |
| 281 | struct inp_flowhash_key_addr { |
| 282 | union { |
| 283 | struct in_addr v4; |
| 284 | struct in6_addr v6; |
| 285 | u_int8_t addr8[16]; |
| 286 | u_int16_t addr16[8]; |
| 287 | u_int32_t addr32[4]; |
| 288 | } infha; |
| 289 | }; |
| 290 | |
| 291 | struct inp_flowhash_key { |
| 292 | struct inp_flowhash_key_addr infh_laddr; |
| 293 | struct inp_flowhash_key_addr infh_faddr; |
| 294 | u_int32_t infh_lport; |
| 295 | u_int32_t infh_fport; |
| 296 | u_int32_t infh_af; |
| 297 | u_int32_t infh_proto; |
| 298 | u_int32_t infh_rand1; |
| 299 | u_int32_t infh_rand2; |
| 300 | }; |
| 301 | |
| 302 | #if !SKYWALK |
| 303 | static u_int32_t inp_hash_seed = 0; |
| 304 | #endif /* !SKYWALK */ |
| 305 | |
| 306 | static int infc_cmp(const struct inpcb *, const struct inpcb *); |
| 307 | |
| 308 | /* Flags used by inp_fc_getinp */ |
| 309 | #define INPFC_SOLOCKED 0x1 |
| 310 | #define INPFC_REMOVE 0x2 |
| 311 | static struct inpcb *inp_fc_getinp(u_int32_t, u_int32_t); |
| 312 | |
| 313 | static void inp_fc_feedback(struct inpcb *); |
| 314 | extern void tcp_remove_from_time_wait(struct inpcb *inp); |
| 315 | |
| 316 | static LCK_MTX_DECLARE_ATTR(inp_fc_lck, &inpcb_lock_grp, &inpcb_lock_attr); |
| 317 | |
| 318 | RB_HEAD(inp_fc_tree, inpcb) inp_fc_tree; |
| 319 | RB_PROTOTYPE(inp_fc_tree, inpcb, infc_link, infc_cmp); |
| 320 | RB_GENERATE(inp_fc_tree, inpcb, infc_link, infc_cmp); |
| 321 | |
| 322 | /* |
| 323 | * Use this inp as a key to find an inp in the flowhash tree. |
| 324 | * Accesses to it are protected by inp_fc_lck. |
| 325 | */ |
| 326 | struct inpcb key_inp; |
| 327 | |
| 328 | /* |
| 329 | * in_pcb.c: manage the Protocol Control Blocks. |
| 330 | */ |
| 331 | |
| 332 | void |
| 333 | in_pcbinit(void) |
| 334 | { |
| 335 | static int inpcb_initialized = 0; |
| 336 | uint32_t logging_config; |
| 337 | |
| 338 | VERIFY(!inpcb_initialized); |
| 339 | inpcb_initialized = 1; |
| 340 | |
| 341 | logging_config = atm_get_diagnostic_config(); |
| 342 | if (logging_config & 0x80000000) { |
| 343 | inp_log_privacy = 1; |
| 344 | } |
| 345 | |
| 346 | inpcb_thread_call = thread_call_allocate_with_priority(func: inpcb_timeout, |
| 347 | NULL, pri: THREAD_CALL_PRIORITY_KERNEL); |
| 348 | /* Give it an arg so that we know that this is the fast timer */ |
| 349 | inpcb_fast_thread_call = thread_call_allocate_with_priority( |
| 350 | func: inpcb_timeout, param0: &inpcb_timeout, pri: THREAD_CALL_PRIORITY_KERNEL); |
| 351 | if (inpcb_thread_call == NULL || inpcb_fast_thread_call == NULL) { |
| 352 | panic("unable to alloc the inpcb thread call" ); |
| 353 | } |
| 354 | |
| 355 | /* |
| 356 | * Initialize data structures required to deliver |
| 357 | * flow advisories. |
| 358 | */ |
| 359 | lck_mtx_lock(lck: &inp_fc_lck); |
| 360 | RB_INIT(&inp_fc_tree); |
| 361 | bzero(s: &key_inp, n: sizeof(key_inp)); |
| 362 | lck_mtx_unlock(lck: &inp_fc_lck); |
| 363 | } |
| 364 | |
| 365 | #define INPCB_HAVE_TIMER_REQ(req) (((req).intimer_lazy > 0) || \ |
| 366 | ((req).intimer_fast > 0) || ((req).intimer_nodelay > 0)) |
| 367 | static void |
| 368 | inpcb_timeout(void *arg0, void *arg1) |
| 369 | { |
| 370 | #pragma unused(arg1) |
| 371 | struct inpcbinfo *ipi; |
| 372 | boolean_t t, gc; |
| 373 | struct intimercount gccnt, tmcnt; |
| 374 | |
| 375 | /* |
| 376 | * Update coarse-grained networking timestamp (in sec.); the idea |
| 377 | * is to piggy-back on the timeout callout to update the counter |
| 378 | * returnable via net_uptime(). |
| 379 | */ |
| 380 | net_update_uptime(); |
| 381 | |
| 382 | bzero(s: &gccnt, n: sizeof(gccnt)); |
| 383 | bzero(s: &tmcnt, n: sizeof(tmcnt)); |
| 384 | |
| 385 | lck_mtx_lock_spin(lck: &inpcb_timeout_lock); |
| 386 | gc = inpcb_garbage_collecting; |
| 387 | inpcb_garbage_collecting = FALSE; |
| 388 | |
| 389 | t = inpcb_ticking; |
| 390 | inpcb_ticking = FALSE; |
| 391 | |
| 392 | if (gc || t) { |
| 393 | lck_mtx_unlock(lck: &inpcb_timeout_lock); |
| 394 | |
| 395 | lck_mtx_lock(lck: &inpcb_lock); |
| 396 | TAILQ_FOREACH(ipi, &inpcb_head, ipi_entry) { |
| 397 | if (INPCB_HAVE_TIMER_REQ(ipi->ipi_gc_req)) { |
| 398 | bzero(s: &ipi->ipi_gc_req, |
| 399 | n: sizeof(ipi->ipi_gc_req)); |
| 400 | if (gc && ipi->ipi_gc != NULL) { |
| 401 | ipi->ipi_gc(ipi); |
| 402 | gccnt.intimer_lazy += |
| 403 | ipi->ipi_gc_req.intimer_lazy; |
| 404 | gccnt.intimer_fast += |
| 405 | ipi->ipi_gc_req.intimer_fast; |
| 406 | gccnt.intimer_nodelay += |
| 407 | ipi->ipi_gc_req.intimer_nodelay; |
| 408 | } |
| 409 | } |
| 410 | if (INPCB_HAVE_TIMER_REQ(ipi->ipi_timer_req)) { |
| 411 | bzero(s: &ipi->ipi_timer_req, |
| 412 | n: sizeof(ipi->ipi_timer_req)); |
| 413 | if (t && ipi->ipi_timer != NULL) { |
| 414 | ipi->ipi_timer(ipi); |
| 415 | tmcnt.intimer_lazy += |
| 416 | ipi->ipi_timer_req.intimer_lazy; |
| 417 | tmcnt.intimer_fast += |
| 418 | ipi->ipi_timer_req.intimer_fast; |
| 419 | tmcnt.intimer_nodelay += |
| 420 | ipi->ipi_timer_req.intimer_nodelay; |
| 421 | } |
| 422 | } |
| 423 | } |
| 424 | lck_mtx_unlock(lck: &inpcb_lock); |
| 425 | lck_mtx_lock_spin(lck: &inpcb_timeout_lock); |
| 426 | } |
| 427 | |
| 428 | /* lock was dropped above, so check first before overriding */ |
| 429 | if (!inpcb_garbage_collecting) { |
| 430 | inpcb_garbage_collecting = INPCB_HAVE_TIMER_REQ(gccnt); |
| 431 | } |
| 432 | if (!inpcb_ticking) { |
| 433 | inpcb_ticking = INPCB_HAVE_TIMER_REQ(tmcnt); |
| 434 | } |
| 435 | |
| 436 | /* arg0 will be set if we are the fast timer */ |
| 437 | if (arg0 != NULL) { |
| 438 | inpcb_fast_timer_on = FALSE; |
| 439 | } |
| 440 | inpcb_timeout_run--; |
| 441 | VERIFY(inpcb_timeout_run >= 0 && inpcb_timeout_run < 2); |
| 442 | |
| 443 | /* re-arm the timer if there's work to do */ |
| 444 | if (gccnt.intimer_nodelay > 0 || tmcnt.intimer_nodelay > 0) { |
| 445 | inpcb_sched_timeout(); |
| 446 | } else if ((gccnt.intimer_fast + tmcnt.intimer_fast) <= 5) { |
| 447 | /* be lazy when idle with little activity */ |
| 448 | inpcb_sched_lazy_timeout(); |
| 449 | } else { |
| 450 | inpcb_sched_timeout(); |
| 451 | } |
| 452 | |
| 453 | lck_mtx_unlock(lck: &inpcb_timeout_lock); |
| 454 | } |
| 455 | |
| 456 | static void |
| 457 | inpcb_sched_timeout(void) |
| 458 | { |
| 459 | _inpcb_sched_timeout(0); |
| 460 | } |
| 461 | |
| 462 | static void |
| 463 | inpcb_sched_lazy_timeout(void) |
| 464 | { |
| 465 | _inpcb_sched_timeout(inpcb_timeout_lazy); |
| 466 | } |
| 467 | |
| 468 | static void |
| 469 | _inpcb_sched_timeout(unsigned int offset) |
| 470 | { |
| 471 | uint64_t deadline, leeway; |
| 472 | |
| 473 | clock_interval_to_deadline(interval: 1, NSEC_PER_SEC, result: &deadline); |
| 474 | LCK_MTX_ASSERT(&inpcb_timeout_lock, LCK_MTX_ASSERT_OWNED); |
| 475 | if (inpcb_timeout_run == 0 && |
| 476 | (inpcb_garbage_collecting || inpcb_ticking)) { |
| 477 | lck_mtx_convert_spin(lck: &inpcb_timeout_lock); |
| 478 | inpcb_timeout_run++; |
| 479 | if (offset == 0) { |
| 480 | inpcb_fast_timer_on = TRUE; |
| 481 | thread_call_enter_delayed(call: inpcb_fast_thread_call, |
| 482 | deadline); |
| 483 | } else { |
| 484 | inpcb_fast_timer_on = FALSE; |
| 485 | clock_interval_to_absolutetime_interval(interval: offset, |
| 486 | NSEC_PER_SEC, result: &leeway); |
| 487 | thread_call_enter_delayed_with_leeway( |
| 488 | call: inpcb_thread_call, NULL, deadline, leeway, |
| 489 | THREAD_CALL_DELAY_LEEWAY); |
| 490 | } |
| 491 | } else if (inpcb_timeout_run == 1 && |
| 492 | offset == 0 && !inpcb_fast_timer_on) { |
| 493 | /* |
| 494 | * Since the request was for a fast timer but the |
| 495 | * scheduled timer is a lazy timer, try to schedule |
| 496 | * another instance of fast timer also. |
| 497 | */ |
| 498 | lck_mtx_convert_spin(lck: &inpcb_timeout_lock); |
| 499 | inpcb_timeout_run++; |
| 500 | inpcb_fast_timer_on = TRUE; |
| 501 | thread_call_enter_delayed(call: inpcb_fast_thread_call, deadline); |
| 502 | } |
| 503 | } |
| 504 | |
| 505 | void |
| 506 | inpcb_gc_sched(struct inpcbinfo *ipi, u_int32_t type) |
| 507 | { |
| 508 | u_int32_t gccnt; |
| 509 | |
| 510 | lck_mtx_lock_spin(lck: &inpcb_timeout_lock); |
| 511 | inpcb_garbage_collecting = TRUE; |
| 512 | gccnt = ipi->ipi_gc_req.intimer_nodelay + |
| 513 | ipi->ipi_gc_req.intimer_fast; |
| 514 | |
| 515 | if (gccnt > INPCB_GCREQ_THRESHOLD) { |
| 516 | type = INPCB_TIMER_FAST; |
| 517 | } |
| 518 | |
| 519 | switch (type) { |
| 520 | case INPCB_TIMER_NODELAY: |
| 521 | os_atomic_inc(&ipi->ipi_gc_req.intimer_nodelay, relaxed); |
| 522 | inpcb_sched_timeout(); |
| 523 | break; |
| 524 | case INPCB_TIMER_FAST: |
| 525 | os_atomic_inc(&ipi->ipi_gc_req.intimer_fast, relaxed); |
| 526 | inpcb_sched_timeout(); |
| 527 | break; |
| 528 | default: |
| 529 | os_atomic_inc(&ipi->ipi_gc_req.intimer_lazy, relaxed); |
| 530 | inpcb_sched_lazy_timeout(); |
| 531 | break; |
| 532 | } |
| 533 | lck_mtx_unlock(lck: &inpcb_timeout_lock); |
| 534 | } |
| 535 | |
| 536 | void |
| 537 | inpcb_timer_sched(struct inpcbinfo *ipi, u_int32_t type) |
| 538 | { |
| 539 | lck_mtx_lock_spin(lck: &inpcb_timeout_lock); |
| 540 | inpcb_ticking = TRUE; |
| 541 | switch (type) { |
| 542 | case INPCB_TIMER_NODELAY: |
| 543 | os_atomic_inc(&ipi->ipi_timer_req.intimer_nodelay, relaxed); |
| 544 | inpcb_sched_timeout(); |
| 545 | break; |
| 546 | case INPCB_TIMER_FAST: |
| 547 | os_atomic_inc(&ipi->ipi_timer_req.intimer_fast, relaxed); |
| 548 | inpcb_sched_timeout(); |
| 549 | break; |
| 550 | default: |
| 551 | os_atomic_inc(&ipi->ipi_timer_req.intimer_lazy, relaxed); |
| 552 | inpcb_sched_lazy_timeout(); |
| 553 | break; |
| 554 | } |
| 555 | lck_mtx_unlock(lck: &inpcb_timeout_lock); |
| 556 | } |
| 557 | |
| 558 | void |
| 559 | in_pcbinfo_attach(struct inpcbinfo *ipi) |
| 560 | { |
| 561 | struct inpcbinfo *ipi0; |
| 562 | |
| 563 | lck_mtx_lock(lck: &inpcb_lock); |
| 564 | TAILQ_FOREACH(ipi0, &inpcb_head, ipi_entry) { |
| 565 | if (ipi0 == ipi) { |
| 566 | panic("%s: ipi %p already in the list" , |
| 567 | __func__, ipi); |
| 568 | /* NOTREACHED */ |
| 569 | } |
| 570 | } |
| 571 | TAILQ_INSERT_TAIL(&inpcb_head, ipi, ipi_entry); |
| 572 | lck_mtx_unlock(lck: &inpcb_lock); |
| 573 | } |
| 574 | |
| 575 | int |
| 576 | in_pcbinfo_detach(struct inpcbinfo *ipi) |
| 577 | { |
| 578 | struct inpcbinfo *ipi0; |
| 579 | int error = 0; |
| 580 | |
| 581 | lck_mtx_lock(lck: &inpcb_lock); |
| 582 | TAILQ_FOREACH(ipi0, &inpcb_head, ipi_entry) { |
| 583 | if (ipi0 == ipi) { |
| 584 | break; |
| 585 | } |
| 586 | } |
| 587 | if (ipi0 != NULL) { |
| 588 | TAILQ_REMOVE(&inpcb_head, ipi0, ipi_entry); |
| 589 | } else { |
| 590 | error = ENXIO; |
| 591 | } |
| 592 | lck_mtx_unlock(lck: &inpcb_lock); |
| 593 | |
| 594 | return error; |
| 595 | } |
| 596 | |
| 597 | __attribute__((noinline)) |
| 598 | char * |
| 599 | inp_snprintf_tuple(struct inpcb *inp, char *buf, size_t buflen) |
| 600 | { |
| 601 | char laddrstr[MAX_IPv6_STR_LEN]; |
| 602 | char faddrstr[MAX_IPv6_STR_LEN]; |
| 603 | uint16_t lport = 0; |
| 604 | uint16_t fport = 0; |
| 605 | uint16_t proto = IPPROTO_IP; |
| 606 | |
| 607 | if (inp->inp_socket != NULL) { |
| 608 | proto = SOCK_PROTO(inp->inp_socket); |
| 609 | |
| 610 | if (proto == IPPROTO_TCP || proto == IPPROTO_UDP) { |
| 611 | lport = inp->inp_lport; |
| 612 | fport = inp->inp_fport; |
| 613 | } |
| 614 | } |
| 615 | if (inp->inp_vflag & INP_IPV4) { |
| 616 | inet_ntop(AF_INET, (void *)&inp->inp_laddr.s_addr, laddrstr, sizeof(laddrstr)); |
| 617 | inet_ntop(AF_INET, (void *)&inp->inp_faddr.s_addr, faddrstr, sizeof(faddrstr)); |
| 618 | } else if (inp->inp_vflag & INP_IPV6) { |
| 619 | inet_ntop(AF_INET6, (void *)&inp->in6p_faddr, laddrstr, sizeof(laddrstr)); |
| 620 | inet_ntop(AF_INET6, (void *)&inp->in6p_faddr, faddrstr, sizeof(faddrstr)); |
| 621 | } |
| 622 | snprintf(buf, count: buflen, "[%u %s:%u %s:%u]" , |
| 623 | proto, laddrstr, ntohs(lport), faddrstr, ntohs(fport)); |
| 624 | |
| 625 | return buf; |
| 626 | } |
| 627 | |
| 628 | __attribute__((noinline)) |
| 629 | void |
| 630 | in_pcb_check_management_entitled(struct inpcb *inp) |
| 631 | { |
| 632 | if (inp->inp_flags2 & INP2_MANAGEMENT_CHECKED) { |
| 633 | return; |
| 634 | } |
| 635 | |
| 636 | if (management_data_unrestricted) { |
| 637 | inp->inp_flags2 |= INP2_MANAGEMENT_ALLOWED; |
| 638 | inp->inp_flags2 |= INP2_MANAGEMENT_CHECKED; |
| 639 | } else if (if_management_interface_check_needed == true) { |
| 640 | inp->inp_flags2 |= INP2_MANAGEMENT_CHECKED; |
| 641 | /* |
| 642 | * Note that soopt_cred_check check both intcoproc entitlements |
| 643 | * We check MANAGEMENT_DATA_ENTITLEMENT as there is no corresponding PRIV value |
| 644 | */ |
| 645 | if (soopt_cred_check(so: inp->inp_socket, PRIV_NET_RESTRICTED_INTCOPROC, false, false) == 0 |
| 646 | || IOCurrentTaskHasEntitlement(MANAGEMENT_DATA_ENTITLEMENT) == true |
| 647 | #if DEBUG || DEVELOPMENT |
| 648 | || IOCurrentTaskHasEntitlement(MANAGEMENT_DATA_ENTITLEMENT_DEVELOPMENT) == true |
| 649 | #endif /* DEBUG || DEVELOPMENT */ |
| 650 | ) { |
| 651 | inp->inp_flags2 |= INP2_MANAGEMENT_ALLOWED; |
| 652 | } else { |
| 653 | if (__improbable(if_management_verbose > 1)) { |
| 654 | char buf[128]; |
| 655 | |
| 656 | os_log(OS_LOG_DEFAULT, "in_pcb_check_management_entitled %s:%d not management entitled %s" , |
| 657 | proc_best_name(current_proc()), |
| 658 | proc_selfpid(), |
| 659 | inp_snprintf_tuple(inp, buf, sizeof(buf))); |
| 660 | } |
| 661 | } |
| 662 | } |
| 663 | } |
| 664 | |
| 665 | /* |
| 666 | * Allocate a PCB and associate it with the socket. |
| 667 | * |
| 668 | * Returns: 0 Success |
| 669 | * ENOBUFS |
| 670 | * ENOMEM |
| 671 | */ |
| 672 | int |
| 673 | in_pcballoc(struct socket *so, struct inpcbinfo *pcbinfo, struct proc *p) |
| 674 | { |
| 675 | #pragma unused(p) |
| 676 | struct inpcb *inp; |
| 677 | caddr_t temp; |
| 678 | |
| 679 | if ((so->so_flags1 & SOF1_CACHED_IN_SOCK_LAYER) == 0) { |
| 680 | inp = zalloc_flags(pcbinfo->ipi_zone, |
| 681 | Z_WAITOK | Z_ZERO | Z_NOFAIL); |
| 682 | } else { |
| 683 | inp = (struct inpcb *)(void *)so->so_saved_pcb; |
| 684 | temp = inp->inp_saved_ppcb; |
| 685 | bzero(s: (caddr_t)inp, n: sizeof(*inp)); |
| 686 | inp->inp_saved_ppcb = temp; |
| 687 | } |
| 688 | |
| 689 | inp->inp_gencnt = ++pcbinfo->ipi_gencnt; |
| 690 | inp->inp_pcbinfo = pcbinfo; |
| 691 | inp->inp_socket = so; |
| 692 | /* make sure inp_stat is always 64-bit aligned */ |
| 693 | inp->inp_stat = (struct inp_stat *)P2ROUNDUP(inp->inp_stat_store, |
| 694 | sizeof(u_int64_t)); |
| 695 | if (((uintptr_t)inp->inp_stat - (uintptr_t)inp->inp_stat_store) + |
| 696 | sizeof(*inp->inp_stat) > sizeof(inp->inp_stat_store)) { |
| 697 | panic("%s: insufficient space to align inp_stat" , __func__); |
| 698 | /* NOTREACHED */ |
| 699 | } |
| 700 | |
| 701 | /* make sure inp_cstat is always 64-bit aligned */ |
| 702 | inp->inp_cstat = (struct inp_stat *)P2ROUNDUP(inp->inp_cstat_store, |
| 703 | sizeof(u_int64_t)); |
| 704 | if (((uintptr_t)inp->inp_cstat - (uintptr_t)inp->inp_cstat_store) + |
| 705 | sizeof(*inp->inp_cstat) > sizeof(inp->inp_cstat_store)) { |
| 706 | panic("%s: insufficient space to align inp_cstat" , __func__); |
| 707 | /* NOTREACHED */ |
| 708 | } |
| 709 | |
| 710 | /* make sure inp_wstat is always 64-bit aligned */ |
| 711 | inp->inp_wstat = (struct inp_stat *)P2ROUNDUP(inp->inp_wstat_store, |
| 712 | sizeof(u_int64_t)); |
| 713 | if (((uintptr_t)inp->inp_wstat - (uintptr_t)inp->inp_wstat_store) + |
| 714 | sizeof(*inp->inp_wstat) > sizeof(inp->inp_wstat_store)) { |
| 715 | panic("%s: insufficient space to align inp_wstat" , __func__); |
| 716 | /* NOTREACHED */ |
| 717 | } |
| 718 | |
| 719 | /* make sure inp_Wstat is always 64-bit aligned */ |
| 720 | inp->inp_Wstat = (struct inp_stat *)P2ROUNDUP(inp->inp_Wstat_store, |
| 721 | sizeof(u_int64_t)); |
| 722 | if (((uintptr_t)inp->inp_Wstat - (uintptr_t)inp->inp_Wstat_store) + |
| 723 | sizeof(*inp->inp_Wstat) > sizeof(inp->inp_Wstat_store)) { |
| 724 | panic("%s: insufficient space to align inp_Wstat" , __func__); |
| 725 | /* NOTREACHED */ |
| 726 | } |
| 727 | |
| 728 | so->so_pcb = (caddr_t)inp; |
| 729 | |
| 730 | if (so->so_proto->pr_flags & PR_PCBLOCK) { |
| 731 | lck_mtx_init(lck: &inp->inpcb_mtx, grp: pcbinfo->ipi_lock_grp, |
| 732 | attr: &pcbinfo->ipi_lock_attr); |
| 733 | } |
| 734 | |
| 735 | if (SOCK_DOM(so) == PF_INET6 && !ip6_mapped_addr_on) { |
| 736 | inp->inp_flags |= IN6P_IPV6_V6ONLY; |
| 737 | } |
| 738 | |
| 739 | if (ip6_auto_flowlabel) { |
| 740 | inp->inp_flags |= IN6P_AUTOFLOWLABEL; |
| 741 | } |
| 742 | if (intcoproc_unrestricted) { |
| 743 | inp->inp_flags2 |= INP2_INTCOPROC_ALLOWED; |
| 744 | } |
| 745 | |
| 746 | (void) inp_update_policy(inp); |
| 747 | |
| 748 | lck_rw_lock_exclusive(lck: &pcbinfo->ipi_lock); |
| 749 | inp->inp_gencnt = ++pcbinfo->ipi_gencnt; |
| 750 | LIST_INSERT_HEAD(pcbinfo->ipi_listhead, inp, inp_list); |
| 751 | pcbinfo->ipi_count++; |
| 752 | lck_rw_done(lck: &pcbinfo->ipi_lock); |
| 753 | return 0; |
| 754 | } |
| 755 | |
| 756 | /* |
| 757 | * in_pcblookup_local_and_cleanup does everything |
| 758 | * in_pcblookup_local does but it checks for a socket |
| 759 | * that's going away. Since we know that the lock is |
| 760 | * held read+write when this function is called, we |
| 761 | * can safely dispose of this socket like the slow |
| 762 | * timer would usually do and return NULL. This is |
| 763 | * great for bind. |
| 764 | */ |
| 765 | struct inpcb * |
| 766 | in_pcblookup_local_and_cleanup(struct inpcbinfo *pcbinfo, struct in_addr laddr, |
| 767 | u_int lport_arg, int wild_okay) |
| 768 | { |
| 769 | struct inpcb *inp; |
| 770 | |
| 771 | /* Perform normal lookup */ |
| 772 | inp = in_pcblookup_local(pcbinfo, laddr, lport_arg, wild_okay); |
| 773 | |
| 774 | /* Check if we found a match but it's waiting to be disposed */ |
| 775 | if (inp != NULL && inp->inp_wantcnt == WNT_STOPUSING) { |
| 776 | struct socket *so = inp->inp_socket; |
| 777 | |
| 778 | socket_lock(so, refcount: 0); |
| 779 | |
| 780 | if (so->so_usecount == 0) { |
| 781 | if (inp->inp_state != INPCB_STATE_DEAD) { |
| 782 | in_pcbdetach(inp); |
| 783 | } |
| 784 | in_pcbdispose(inp); /* will unlock & destroy */ |
| 785 | inp = NULL; |
| 786 | } else { |
| 787 | socket_unlock(so, refcount: 0); |
| 788 | } |
| 789 | } |
| 790 | |
| 791 | return inp; |
| 792 | } |
| 793 | |
| 794 | static void |
| 795 | in_pcb_conflict_post_msg(u_int16_t port) |
| 796 | { |
| 797 | /* |
| 798 | * Radar 5523020 send a kernel event notification if a |
| 799 | * non-participating socket tries to bind the port a socket |
| 800 | * who has set SOF_NOTIFYCONFLICT owns. |
| 801 | */ |
| 802 | struct kev_msg ev_msg; |
| 803 | struct kev_in_portinuse in_portinuse; |
| 804 | |
| 805 | bzero(s: &in_portinuse, n: sizeof(struct kev_in_portinuse)); |
| 806 | bzero(s: &ev_msg, n: sizeof(struct kev_msg)); |
| 807 | in_portinuse.port = ntohs(port); /* port in host order */ |
| 808 | in_portinuse.req_pid = proc_selfpid(); |
| 809 | ev_msg.vendor_code = KEV_VENDOR_APPLE; |
| 810 | ev_msg.kev_class = KEV_NETWORK_CLASS; |
| 811 | ev_msg.kev_subclass = KEV_INET_SUBCLASS; |
| 812 | ev_msg.event_code = KEV_INET_PORTINUSE; |
| 813 | ev_msg.dv[0].data_ptr = &in_portinuse; |
| 814 | ev_msg.dv[0].data_length = sizeof(struct kev_in_portinuse); |
| 815 | ev_msg.dv[1].data_length = 0; |
| 816 | dlil_post_complete_msg(NULL, &ev_msg); |
| 817 | } |
| 818 | |
| 819 | /* |
| 820 | * Bind an INPCB to an address and/or port. This routine should not alter |
| 821 | * the caller-supplied local address "nam". |
| 822 | * |
| 823 | * Returns: 0 Success |
| 824 | * EADDRNOTAVAIL Address not available. |
| 825 | * EINVAL Invalid argument |
| 826 | * EAFNOSUPPORT Address family not supported [notdef] |
| 827 | * EACCES Permission denied |
| 828 | * EADDRINUSE Address in use |
| 829 | * EAGAIN Resource unavailable, try again |
| 830 | * priv_check_cred:EPERM Operation not permitted |
| 831 | */ |
| 832 | int |
| 833 | in_pcbbind(struct inpcb *inp, struct sockaddr *nam, struct proc *p) |
| 834 | { |
| 835 | struct socket *so = inp->inp_socket; |
| 836 | unsigned short *lastport; |
| 837 | struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; |
| 838 | u_short lport = 0, rand_port = 0; |
| 839 | int wild = 0; |
| 840 | int reuseport = (so->so_options & SO_REUSEPORT); |
| 841 | int error = 0; |
| 842 | int randomport; |
| 843 | int conflict = 0; |
| 844 | boolean_t anonport = FALSE; |
| 845 | kauth_cred_t cred; |
| 846 | struct in_addr laddr; |
| 847 | struct ifnet *outif = NULL; |
| 848 | |
| 849 | if (inp->inp_flags2 & INP2_BIND_IN_PROGRESS) { |
| 850 | return EINVAL; |
| 851 | } |
| 852 | inp->inp_flags2 |= INP2_BIND_IN_PROGRESS; |
| 853 | |
| 854 | if (TAILQ_EMPTY(&in_ifaddrhead)) { /* XXX broken! */ |
| 855 | error = EADDRNOTAVAIL; |
| 856 | goto done; |
| 857 | } |
| 858 | if (!(so->so_options & (SO_REUSEADDR | SO_REUSEPORT))) { |
| 859 | wild = 1; |
| 860 | } |
| 861 | |
| 862 | bzero(s: &laddr, n: sizeof(laddr)); |
| 863 | |
| 864 | socket_unlock(so, refcount: 0); /* keep reference on socket */ |
| 865 | lck_rw_lock_exclusive(lck: &pcbinfo->ipi_lock); |
| 866 | if (inp->inp_lport != 0 || inp->inp_laddr.s_addr != INADDR_ANY) { |
| 867 | /* another thread completed the bind */ |
| 868 | lck_rw_done(lck: &pcbinfo->ipi_lock); |
| 869 | socket_lock(so, refcount: 0); |
| 870 | error = EINVAL; |
| 871 | goto done; |
| 872 | } |
| 873 | |
| 874 | if (nam != NULL) { |
| 875 | if (nam->sa_len != sizeof(struct sockaddr_in)) { |
| 876 | lck_rw_done(lck: &pcbinfo->ipi_lock); |
| 877 | socket_lock(so, refcount: 0); |
| 878 | error = EINVAL; |
| 879 | goto done; |
| 880 | } |
| 881 | #if 0 |
| 882 | /* |
| 883 | * We should check the family, but old programs |
| 884 | * incorrectly fail to initialize it. |
| 885 | */ |
| 886 | if (nam->sa_family != AF_INET) { |
| 887 | lck_rw_done(&pcbinfo->ipi_lock); |
| 888 | socket_lock(so, 0); |
| 889 | error = EAFNOSUPPORT; |
| 890 | goto done; |
| 891 | } |
| 892 | #endif /* 0 */ |
| 893 | lport = SIN(nam)->sin_port; |
| 894 | |
| 895 | if (IN_MULTICAST(ntohl(SIN(nam)->sin_addr.s_addr))) { |
| 896 | /* |
| 897 | * Treat SO_REUSEADDR as SO_REUSEPORT for multicast; |
| 898 | * allow complete duplication of binding if |
| 899 | * SO_REUSEPORT is set, or if SO_REUSEADDR is set |
| 900 | * and a multicast address is bound on both |
| 901 | * new and duplicated sockets. |
| 902 | */ |
| 903 | if (so->so_options & SO_REUSEADDR) { |
| 904 | reuseport = SO_REUSEADDR | SO_REUSEPORT; |
| 905 | } |
| 906 | } else if (SIN(nam)->sin_addr.s_addr != INADDR_ANY) { |
| 907 | struct sockaddr_in sin; |
| 908 | struct ifaddr *ifa; |
| 909 | |
| 910 | /* Sanitized for interface address searches */ |
| 911 | SOCKADDR_ZERO(&sin, sizeof(sin)); |
| 912 | sin.sin_family = AF_INET; |
| 913 | sin.sin_len = sizeof(struct sockaddr_in); |
| 914 | sin.sin_addr.s_addr = SIN(nam)->sin_addr.s_addr; |
| 915 | |
| 916 | ifa = ifa_ifwithaddr(SA(&sin)); |
| 917 | if (ifa == NULL) { |
| 918 | lck_rw_done(lck: &pcbinfo->ipi_lock); |
| 919 | socket_lock(so, refcount: 0); |
| 920 | error = EADDRNOTAVAIL; |
| 921 | goto done; |
| 922 | } else { |
| 923 | /* |
| 924 | * Opportunistically determine the outbound |
| 925 | * interface that may be used; this may not |
| 926 | * hold true if we end up using a route |
| 927 | * going over a different interface, e.g. |
| 928 | * when sending to a local address. This |
| 929 | * will get updated again after sending. |
| 930 | */ |
| 931 | IFA_LOCK(ifa); |
| 932 | outif = ifa->ifa_ifp; |
| 933 | IFA_UNLOCK(ifa); |
| 934 | ifa_remref(ifa); |
| 935 | } |
| 936 | } |
| 937 | |
| 938 | #if SKYWALK |
| 939 | if (inp->inp_flags2 & INP2_EXTERNAL_PORT) { |
| 940 | // Extract the external flow info |
| 941 | struct ns_flow_info nfi = {}; |
| 942 | error = necp_client_get_netns_flow_info(client_id: inp->necp_client_uuid, |
| 943 | flow_info: &nfi); |
| 944 | if (error != 0) { |
| 945 | lck_rw_done(lck: &pcbinfo->ipi_lock); |
| 946 | socket_lock(so, refcount: 0); |
| 947 | goto done; |
| 948 | } |
| 949 | |
| 950 | // Extract the reserved port |
| 951 | u_int16_t reserved_lport = 0; |
| 952 | if (nfi.nfi_laddr.sa.sa_family == AF_INET) { |
| 953 | reserved_lport = nfi.nfi_laddr.sin.sin_port; |
| 954 | } else if (nfi.nfi_laddr.sa.sa_family == AF_INET6) { |
| 955 | reserved_lport = nfi.nfi_laddr.sin6.sin6_port; |
| 956 | } else { |
| 957 | lck_rw_done(lck: &pcbinfo->ipi_lock); |
| 958 | socket_lock(so, refcount: 0); |
| 959 | error = EINVAL; |
| 960 | goto done; |
| 961 | } |
| 962 | |
| 963 | // Validate or use the reserved port |
| 964 | if (lport == 0) { |
| 965 | lport = reserved_lport; |
| 966 | } else if (lport != reserved_lport) { |
| 967 | lck_rw_done(lck: &pcbinfo->ipi_lock); |
| 968 | socket_lock(so, refcount: 0); |
| 969 | error = EINVAL; |
| 970 | goto done; |
| 971 | } |
| 972 | } |
| 973 | |
| 974 | /* Do not allow reserving a UDP port if remaining UDP port count is below 4096 */ |
| 975 | if (SOCK_PROTO(so) == IPPROTO_UDP && !allow_udp_port_exhaustion) { |
| 976 | uint32_t current_reservations = 0; |
| 977 | if (inp->inp_vflag & INP_IPV6) { |
| 978 | current_reservations = netns_lookup_reservations_count_in6(addr: inp->in6p_laddr, IPPROTO_UDP); |
| 979 | } else { |
| 980 | current_reservations = netns_lookup_reservations_count_in(addr: inp->inp_laddr, IPPROTO_UDP); |
| 981 | } |
| 982 | if (USHRT_MAX - UDP_RANDOM_PORT_RESERVE < current_reservations) { |
| 983 | log(LOG_ERR, "UDP port not available, less than 4096 UDP ports left" ); |
| 984 | lck_rw_done(lck: &pcbinfo->ipi_lock); |
| 985 | socket_lock(so, refcount: 0); |
| 986 | error = EADDRNOTAVAIL; |
| 987 | goto done; |
| 988 | } |
| 989 | } |
| 990 | |
| 991 | #endif /* SKYWALK */ |
| 992 | |
| 993 | if (lport != 0) { |
| 994 | struct inpcb *t; |
| 995 | uid_t u; |
| 996 | |
| 997 | #if XNU_TARGET_OS_OSX |
| 998 | if (ntohs(lport) < IPPORT_RESERVED && |
| 999 | SIN(nam)->sin_addr.s_addr != 0 && |
| 1000 | !(inp->inp_flags2 & INP2_EXTERNAL_PORT)) { |
| 1001 | cred = kauth_cred_proc_ref(procp: p); |
| 1002 | error = priv_check_cred(cred, |
| 1003 | PRIV_NETINET_RESERVEDPORT, flags: 0); |
| 1004 | kauth_cred_unref(&cred); |
| 1005 | if (error != 0) { |
| 1006 | lck_rw_done(lck: &pcbinfo->ipi_lock); |
| 1007 | socket_lock(so, refcount: 0); |
| 1008 | error = EACCES; |
| 1009 | goto done; |
| 1010 | } |
| 1011 | } |
| 1012 | #endif /* XNU_TARGET_OS_OSX */ |
| 1013 | /* |
| 1014 | * Check wether the process is allowed to bind to a restricted port |
| 1015 | */ |
| 1016 | if (!current_task_can_use_restricted_in_port(port: lport, |
| 1017 | protocol: (uint8_t)SOCK_PROTO(so), PORT_FLAGS_BSD)) { |
| 1018 | lck_rw_done(lck: &pcbinfo->ipi_lock); |
| 1019 | socket_lock(so, refcount: 0); |
| 1020 | error = EADDRINUSE; |
| 1021 | goto done; |
| 1022 | } |
| 1023 | |
| 1024 | if (!IN_MULTICAST(ntohl(SIN(nam)->sin_addr.s_addr)) && |
| 1025 | (u = kauth_cred_getuid(cred: so->so_cred)) != 0 && |
| 1026 | (t = in_pcblookup_local_and_cleanup( |
| 1027 | pcbinfo: inp->inp_pcbinfo, SIN(nam)->sin_addr, lport_arg: lport, |
| 1028 | INPLOOKUP_WILDCARD)) != NULL && |
| 1029 | (SIN(nam)->sin_addr.s_addr != INADDR_ANY || |
| 1030 | t->inp_laddr.s_addr != INADDR_ANY || |
| 1031 | !(t->inp_socket->so_options & SO_REUSEPORT)) && |
| 1032 | (u != kauth_cred_getuid(cred: t->inp_socket->so_cred)) && |
| 1033 | !(t->inp_socket->so_flags & SOF_REUSESHAREUID) && |
| 1034 | (SIN(nam)->sin_addr.s_addr != INADDR_ANY || |
| 1035 | t->inp_laddr.s_addr != INADDR_ANY) && |
| 1036 | (!(t->inp_flags2 & INP2_EXTERNAL_PORT) || |
| 1037 | !(inp->inp_flags2 & INP2_EXTERNAL_PORT) || |
| 1038 | uuid_compare(uu1: t->necp_client_uuid, uu2: inp->necp_client_uuid) != 0)) { |
| 1039 | if ((t->inp_socket->so_flags & |
| 1040 | SOF_NOTIFYCONFLICT) && |
| 1041 | !(so->so_flags & SOF_NOTIFYCONFLICT)) { |
| 1042 | conflict = 1; |
| 1043 | } |
| 1044 | |
| 1045 | lck_rw_done(lck: &pcbinfo->ipi_lock); |
| 1046 | |
| 1047 | if (conflict) { |
| 1048 | in_pcb_conflict_post_msg(port: lport); |
| 1049 | } |
| 1050 | |
| 1051 | socket_lock(so, refcount: 0); |
| 1052 | error = EADDRINUSE; |
| 1053 | goto done; |
| 1054 | } |
| 1055 | t = in_pcblookup_local_and_cleanup(pcbinfo, |
| 1056 | SIN(nam)->sin_addr, lport_arg: lport, wild_okay: wild); |
| 1057 | if (t != NULL && |
| 1058 | (reuseport & t->inp_socket->so_options) == 0 && |
| 1059 | (!(t->inp_flags2 & INP2_EXTERNAL_PORT) || |
| 1060 | !(inp->inp_flags2 & INP2_EXTERNAL_PORT) || |
| 1061 | uuid_compare(uu1: t->necp_client_uuid, uu2: inp->necp_client_uuid) != 0)) { |
| 1062 | if (SIN(nam)->sin_addr.s_addr != INADDR_ANY || |
| 1063 | t->inp_laddr.s_addr != INADDR_ANY || |
| 1064 | SOCK_DOM(so) != PF_INET6 || |
| 1065 | SOCK_DOM(t->inp_socket) != PF_INET6) { |
| 1066 | if ((t->inp_socket->so_flags & |
| 1067 | SOF_NOTIFYCONFLICT) && |
| 1068 | !(so->so_flags & SOF_NOTIFYCONFLICT)) { |
| 1069 | conflict = 1; |
| 1070 | } |
| 1071 | |
| 1072 | lck_rw_done(lck: &pcbinfo->ipi_lock); |
| 1073 | |
| 1074 | if (conflict) { |
| 1075 | in_pcb_conflict_post_msg(port: lport); |
| 1076 | } |
| 1077 | socket_lock(so, refcount: 0); |
| 1078 | error = EADDRINUSE; |
| 1079 | goto done; |
| 1080 | } |
| 1081 | } |
| 1082 | #if SKYWALK |
| 1083 | if ((SOCK_PROTO(so) == IPPROTO_TCP || |
| 1084 | SOCK_PROTO(so) == IPPROTO_UDP) && |
| 1085 | !(inp->inp_flags2 & INP2_EXTERNAL_PORT)) { |
| 1086 | int res_err = 0; |
| 1087 | if (inp->inp_vflag & INP_IPV6) { |
| 1088 | res_err = netns_reserve_in6( |
| 1089 | token: &inp->inp_netns_token, |
| 1090 | SIN6(nam)->sin6_addr, |
| 1091 | proto: (uint8_t)SOCK_PROTO(so), port: lport, NETNS_BSD, |
| 1092 | NULL); |
| 1093 | } else { |
| 1094 | res_err = netns_reserve_in( |
| 1095 | token: &inp->inp_netns_token, |
| 1096 | SIN(nam)->sin_addr, proto: (uint8_t)SOCK_PROTO(so), |
| 1097 | port: lport, NETNS_BSD, NULL); |
| 1098 | } |
| 1099 | if (res_err != 0) { |
| 1100 | lck_rw_done(lck: &pcbinfo->ipi_lock); |
| 1101 | socket_lock(so, refcount: 0); |
| 1102 | error = EADDRINUSE; |
| 1103 | goto done; |
| 1104 | } |
| 1105 | } |
| 1106 | #endif /* SKYWALK */ |
| 1107 | } |
| 1108 | laddr = SIN(nam)->sin_addr; |
| 1109 | } |
| 1110 | if (lport == 0) { |
| 1111 | u_short first, last; |
| 1112 | int count; |
| 1113 | bool found; |
| 1114 | |
| 1115 | /* |
| 1116 | * Override wild = 1 for implicit bind (mainly used by connect) |
| 1117 | * For implicit bind (lport == 0), we always use an unused port, |
| 1118 | * so REUSEADDR|REUSEPORT don't apply |
| 1119 | */ |
| 1120 | wild = 1; |
| 1121 | |
| 1122 | randomport = (so->so_flags & SOF_BINDRANDOMPORT) || |
| 1123 | (so->so_type == SOCK_STREAM ? tcp_use_randomport : |
| 1124 | udp_use_randomport); |
| 1125 | |
| 1126 | /* |
| 1127 | * Even though this looks similar to the code in |
| 1128 | * in6_pcbsetport, the v6 vs v4 checks are different. |
| 1129 | */ |
| 1130 | anonport = TRUE; |
| 1131 | if (inp->inp_flags & INP_HIGHPORT) { |
| 1132 | first = (u_short)ipport_hifirstauto; /* sysctl */ |
| 1133 | last = (u_short)ipport_hilastauto; |
| 1134 | lastport = &pcbinfo->ipi_lasthi; |
| 1135 | } else if (inp->inp_flags & INP_LOWPORT) { |
| 1136 | cred = kauth_cred_proc_ref(procp: p); |
| 1137 | error = priv_check_cred(cred, |
| 1138 | PRIV_NETINET_RESERVEDPORT, flags: 0); |
| 1139 | kauth_cred_unref(&cred); |
| 1140 | if (error != 0) { |
| 1141 | lck_rw_done(lck: &pcbinfo->ipi_lock); |
| 1142 | socket_lock(so, refcount: 0); |
| 1143 | goto done; |
| 1144 | } |
| 1145 | first = (u_short)ipport_lowfirstauto; /* 1023 */ |
| 1146 | last = (u_short)ipport_lowlastauto; /* 600 */ |
| 1147 | lastport = &pcbinfo->ipi_lastlow; |
| 1148 | } else { |
| 1149 | first = (u_short)ipport_firstauto; /* sysctl */ |
| 1150 | last = (u_short)ipport_lastauto; |
| 1151 | lastport = &pcbinfo->ipi_lastport; |
| 1152 | } |
| 1153 | /* No point in randomizing if only one port is available */ |
| 1154 | |
| 1155 | if (first == last) { |
| 1156 | randomport = 0; |
| 1157 | } |
| 1158 | /* |
| 1159 | * Simple check to ensure all ports are not used up causing |
| 1160 | * a deadlock here. |
| 1161 | * |
| 1162 | * We split the two cases (up and down) so that the direction |
| 1163 | * is not being tested on each round of the loop. |
| 1164 | */ |
| 1165 | if (first > last) { |
| 1166 | struct in_addr lookup_addr; |
| 1167 | |
| 1168 | /* |
| 1169 | * counting down |
| 1170 | */ |
| 1171 | if (randomport) { |
| 1172 | read_frandom(buffer: &rand_port, numBytes: sizeof(rand_port)); |
| 1173 | *lastport = |
| 1174 | first - (rand_port % (first - last)); |
| 1175 | } |
| 1176 | count = first - last; |
| 1177 | |
| 1178 | lookup_addr = (laddr.s_addr != INADDR_ANY) ? laddr : |
| 1179 | inp->inp_laddr; |
| 1180 | |
| 1181 | found = false; |
| 1182 | do { |
| 1183 | if (count-- < 0) { /* completely used? */ |
| 1184 | lck_rw_done(lck: &pcbinfo->ipi_lock); |
| 1185 | socket_lock(so, refcount: 0); |
| 1186 | error = EADDRNOTAVAIL; |
| 1187 | goto done; |
| 1188 | } |
| 1189 | --*lastport; |
| 1190 | if (*lastport > first || *lastport < last) { |
| 1191 | *lastport = first; |
| 1192 | } |
| 1193 | lport = htons(*lastport); |
| 1194 | |
| 1195 | /* |
| 1196 | * Skip if this is a restricted port as we do not want to |
| 1197 | * restricted ports as ephemeral |
| 1198 | */ |
| 1199 | if (IS_RESTRICTED_IN_PORT(lport)) { |
| 1200 | continue; |
| 1201 | } |
| 1202 | |
| 1203 | found = in_pcblookup_local_and_cleanup(pcbinfo, |
| 1204 | laddr: lookup_addr, lport_arg: lport, wild_okay: wild) == NULL; |
| 1205 | #if SKYWALK |
| 1206 | if (found && |
| 1207 | (SOCK_PROTO(so) == IPPROTO_TCP || |
| 1208 | SOCK_PROTO(so) == IPPROTO_UDP) && |
| 1209 | !(inp->inp_flags2 & INP2_EXTERNAL_PORT)) { |
| 1210 | int res_err; |
| 1211 | if (inp->inp_vflag & INP_IPV6) { |
| 1212 | res_err = netns_reserve_in6( |
| 1213 | token: &inp->inp_netns_token, |
| 1214 | addr: inp->in6p_laddr, |
| 1215 | proto: (uint8_t)SOCK_PROTO(so), port: lport, |
| 1216 | NETNS_BSD, NULL); |
| 1217 | } else { |
| 1218 | res_err = netns_reserve_in( |
| 1219 | token: &inp->inp_netns_token, |
| 1220 | addr: lookup_addr, proto: (uint8_t)SOCK_PROTO(so), |
| 1221 | port: lport, NETNS_BSD, NULL); |
| 1222 | } |
| 1223 | found = res_err == 0; |
| 1224 | } |
| 1225 | #endif /* SKYWALK */ |
| 1226 | } while (!found); |
| 1227 | } else { |
| 1228 | struct in_addr lookup_addr; |
| 1229 | |
| 1230 | /* |
| 1231 | * counting up |
| 1232 | */ |
| 1233 | if (randomport) { |
| 1234 | read_frandom(buffer: &rand_port, numBytes: sizeof(rand_port)); |
| 1235 | *lastport = |
| 1236 | first + (rand_port % (first - last)); |
| 1237 | } |
| 1238 | count = last - first; |
| 1239 | |
| 1240 | lookup_addr = (laddr.s_addr != INADDR_ANY) ? laddr : |
| 1241 | inp->inp_laddr; |
| 1242 | |
| 1243 | found = false; |
| 1244 | do { |
| 1245 | if (count-- < 0) { /* completely used? */ |
| 1246 | lck_rw_done(lck: &pcbinfo->ipi_lock); |
| 1247 | socket_lock(so, refcount: 0); |
| 1248 | error = EADDRNOTAVAIL; |
| 1249 | goto done; |
| 1250 | } |
| 1251 | ++*lastport; |
| 1252 | if (*lastport < first || *lastport > last) { |
| 1253 | *lastport = first; |
| 1254 | } |
| 1255 | lport = htons(*lastport); |
| 1256 | |
| 1257 | /* |
| 1258 | * Skip if this is a restricted port as we do not want to |
| 1259 | * restricted ports as ephemeral |
| 1260 | */ |
| 1261 | if (IS_RESTRICTED_IN_PORT(lport)) { |
| 1262 | continue; |
| 1263 | } |
| 1264 | |
| 1265 | found = in_pcblookup_local_and_cleanup(pcbinfo, |
| 1266 | laddr: lookup_addr, lport_arg: lport, wild_okay: wild) == NULL; |
| 1267 | #if SKYWALK |
| 1268 | if (found && |
| 1269 | (SOCK_PROTO(so) == IPPROTO_TCP || |
| 1270 | SOCK_PROTO(so) == IPPROTO_UDP) && |
| 1271 | !(inp->inp_flags2 & INP2_EXTERNAL_PORT)) { |
| 1272 | int res_err; |
| 1273 | if (inp->inp_vflag & INP_IPV6) { |
| 1274 | res_err = netns_reserve_in6( |
| 1275 | token: &inp->inp_netns_token, |
| 1276 | addr: inp->in6p_laddr, |
| 1277 | proto: (uint8_t)SOCK_PROTO(so), port: lport, |
| 1278 | NETNS_BSD, NULL); |
| 1279 | } else { |
| 1280 | res_err = netns_reserve_in( |
| 1281 | token: &inp->inp_netns_token, |
| 1282 | addr: lookup_addr, proto: (uint8_t)SOCK_PROTO(so), |
| 1283 | port: lport, NETNS_BSD, NULL); |
| 1284 | } |
| 1285 | found = res_err == 0; |
| 1286 | } |
| 1287 | #endif /* SKYWALK */ |
| 1288 | } while (!found); |
| 1289 | } |
| 1290 | } |
| 1291 | socket_lock(so, refcount: 0); |
| 1292 | |
| 1293 | /* |
| 1294 | * We unlocked socket's protocol lock for a long time. |
| 1295 | * The socket might have been dropped/defuncted. |
| 1296 | * Checking if world has changed since. |
| 1297 | */ |
| 1298 | if (inp->inp_state == INPCB_STATE_DEAD) { |
| 1299 | #if SKYWALK |
| 1300 | netns_release(token: &inp->inp_netns_token); |
| 1301 | #endif /* SKYWALK */ |
| 1302 | lck_rw_done(lck: &pcbinfo->ipi_lock); |
| 1303 | error = ECONNABORTED; |
| 1304 | goto done; |
| 1305 | } |
| 1306 | |
| 1307 | if (inp->inp_lport != 0 || inp->inp_laddr.s_addr != INADDR_ANY) { |
| 1308 | #if SKYWALK |
| 1309 | netns_release(token: &inp->inp_netns_token); |
| 1310 | #endif /* SKYWALK */ |
| 1311 | lck_rw_done(lck: &pcbinfo->ipi_lock); |
| 1312 | error = EINVAL; |
| 1313 | goto done; |
| 1314 | } |
| 1315 | |
| 1316 | if (laddr.s_addr != INADDR_ANY) { |
| 1317 | inp->inp_laddr = laddr; |
| 1318 | inp->inp_last_outifp = outif; |
| 1319 | #if SKYWALK |
| 1320 | if (NETNS_TOKEN_VALID(&inp->inp_netns_token)) { |
| 1321 | netns_set_ifnet(token: &inp->inp_netns_token, ifp: outif); |
| 1322 | } |
| 1323 | #endif /* SKYWALK */ |
| 1324 | } |
| 1325 | inp->inp_lport = lport; |
| 1326 | if (anonport) { |
| 1327 | inp->inp_flags |= INP_ANONPORT; |
| 1328 | } |
| 1329 | |
| 1330 | if (in_pcbinshash(inp, 1) != 0) { |
| 1331 | inp->inp_laddr.s_addr = INADDR_ANY; |
| 1332 | inp->inp_last_outifp = NULL; |
| 1333 | |
| 1334 | #if SKYWALK |
| 1335 | netns_release(token: &inp->inp_netns_token); |
| 1336 | #endif /* SKYWALK */ |
| 1337 | inp->inp_lport = 0; |
| 1338 | if (anonport) { |
| 1339 | inp->inp_flags &= ~INP_ANONPORT; |
| 1340 | } |
| 1341 | lck_rw_done(lck: &pcbinfo->ipi_lock); |
| 1342 | error = EAGAIN; |
| 1343 | goto done; |
| 1344 | } |
| 1345 | lck_rw_done(lck: &pcbinfo->ipi_lock); |
| 1346 | sflt_notify(so, event: sock_evt_bound, NULL); |
| 1347 | |
| 1348 | in_pcb_check_management_entitled(inp); |
| 1349 | done: |
| 1350 | inp->inp_flags2 &= ~INP2_BIND_IN_PROGRESS; |
| 1351 | return error; |
| 1352 | } |
| 1353 | |
| 1354 | #define APN_FALLBACK_IP_FILTER(a) \ |
| 1355 | (IN_LINKLOCAL(ntohl((a)->sin_addr.s_addr)) || \ |
| 1356 | IN_LOOPBACK(ntohl((a)->sin_addr.s_addr)) || \ |
| 1357 | IN_ZERONET(ntohl((a)->sin_addr.s_addr)) || \ |
| 1358 | IN_MULTICAST(ntohl((a)->sin_addr.s_addr)) || \ |
| 1359 | IN_PRIVATE(ntohl((a)->sin_addr.s_addr))) |
| 1360 | |
| 1361 | #define APN_FALLBACK_NOTIF_INTERVAL 2 /* Magic Number */ |
| 1362 | static uint64_t last_apn_fallback = 0; |
| 1363 | |
| 1364 | static boolean_t |
| 1365 | apn_fallback_required(proc_t proc, struct socket *so, struct sockaddr_in *p_dstv4) |
| 1366 | { |
| 1367 | uint64_t timenow; |
| 1368 | struct sockaddr_storage lookup_default_addr; |
| 1369 | struct rtentry *rt = NULL; |
| 1370 | |
| 1371 | VERIFY(proc != NULL); |
| 1372 | |
| 1373 | if (apn_fallbk_enabled == FALSE) { |
| 1374 | return FALSE; |
| 1375 | } |
| 1376 | |
| 1377 | if (proc == kernproc) { |
| 1378 | return FALSE; |
| 1379 | } |
| 1380 | |
| 1381 | if (so && (so->so_options & SO_NOAPNFALLBK)) { |
| 1382 | return FALSE; |
| 1383 | } |
| 1384 | |
| 1385 | timenow = net_uptime(); |
| 1386 | if ((timenow - last_apn_fallback) < APN_FALLBACK_NOTIF_INTERVAL) { |
| 1387 | apn_fallbk_log((LOG_INFO, "APN fallback notification throttled.\n" )); |
| 1388 | return FALSE; |
| 1389 | } |
| 1390 | |
| 1391 | if (p_dstv4 && APN_FALLBACK_IP_FILTER(p_dstv4)) { |
| 1392 | return FALSE; |
| 1393 | } |
| 1394 | |
| 1395 | /* Check if we have unscoped IPv6 default route through cellular */ |
| 1396 | bzero(s: &lookup_default_addr, n: sizeof(lookup_default_addr)); |
| 1397 | lookup_default_addr.ss_family = AF_INET6; |
| 1398 | lookup_default_addr.ss_len = sizeof(struct sockaddr_in6); |
| 1399 | |
| 1400 | rt = rtalloc1(SA(&lookup_default_addr), 0, 0); |
| 1401 | if (NULL == rt) { |
| 1402 | apn_fallbk_log((LOG_INFO, "APN fallback notification could not find " |
| 1403 | "unscoped default IPv6 route.\n" )); |
| 1404 | return FALSE; |
| 1405 | } |
| 1406 | |
| 1407 | if (!IFNET_IS_CELLULAR(rt->rt_ifp)) { |
| 1408 | rtfree(rt); |
| 1409 | apn_fallbk_log((LOG_INFO, "APN fallback notification could not find " |
| 1410 | "unscoped default IPv6 route through cellular interface.\n" )); |
| 1411 | return FALSE; |
| 1412 | } |
| 1413 | |
| 1414 | /* |
| 1415 | * We have a default IPv6 route, ensure that |
| 1416 | * we do not have IPv4 default route before triggering |
| 1417 | * the event |
| 1418 | */ |
| 1419 | rtfree(rt); |
| 1420 | rt = NULL; |
| 1421 | |
| 1422 | bzero(s: &lookup_default_addr, n: sizeof(lookup_default_addr)); |
| 1423 | lookup_default_addr.ss_family = AF_INET; |
| 1424 | lookup_default_addr.ss_len = sizeof(struct sockaddr_in); |
| 1425 | |
| 1426 | rt = rtalloc1(SA(&lookup_default_addr), 0, 0); |
| 1427 | |
| 1428 | if (rt) { |
| 1429 | rtfree(rt); |
| 1430 | rt = NULL; |
| 1431 | apn_fallbk_log((LOG_INFO, "APN fallback notification found unscoped " |
| 1432 | "IPv4 default route!\n" )); |
| 1433 | return FALSE; |
| 1434 | } |
| 1435 | |
| 1436 | { |
| 1437 | /* |
| 1438 | * We disable APN fallback if the binary is not a third-party app. |
| 1439 | * Note that platform daemons use their process name as a |
| 1440 | * bundle ID so we filter out bundle IDs without dots. |
| 1441 | */ |
| 1442 | const char *bundle_id = cs_identity_get(proc); |
| 1443 | if (bundle_id == NULL || |
| 1444 | bundle_id[0] == '\0' || |
| 1445 | strchr(s: bundle_id, c: '.') == NULL || |
| 1446 | strncmp(s1: bundle_id, s2: "com.apple." , n: sizeof("com.apple." ) - 1) == 0) { |
| 1447 | apn_fallbk_log((LOG_INFO, "Abort: APN fallback notification found first-" |
| 1448 | "party bundle ID \"%s\"!\n" , (bundle_id ? bundle_id : "NULL" ))); |
| 1449 | return FALSE; |
| 1450 | } |
| 1451 | } |
| 1452 | |
| 1453 | { |
| 1454 | /* |
| 1455 | * The Apple App Store IPv6 requirement started on |
| 1456 | * June 1st, 2016 at 12:00:00 AM PDT. |
| 1457 | * We disable APN fallback if the binary is more recent than that. |
| 1458 | * We check both atime and birthtime since birthtime is not always supported. |
| 1459 | */ |
| 1460 | static const long ipv6_start_date = 1464764400L; |
| 1461 | vfs_context_t context; |
| 1462 | struct stat64 sb; |
| 1463 | int vn_stat_error; |
| 1464 | |
| 1465 | bzero(s: &sb, n: sizeof(struct stat64)); |
| 1466 | context = vfs_context_create(NULL); |
| 1467 | vn_stat_error = vn_stat(vp: proc->p_textvp, sb: &sb, NULL, isstat64: 1, needsrealdev: 0, ctx: context); |
| 1468 | (void)vfs_context_rele(ctx: context); |
| 1469 | |
| 1470 | if (vn_stat_error != 0 || |
| 1471 | sb.st_atimespec.tv_sec >= ipv6_start_date || |
| 1472 | sb.st_birthtimespec.tv_sec >= ipv6_start_date) { |
| 1473 | apn_fallbk_log((LOG_INFO, "Abort: APN fallback notification found binary " |
| 1474 | "too recent! (err %d atime %ld mtime %ld ctime %ld birthtime %ld)\n" , |
| 1475 | vn_stat_error, sb.st_atimespec.tv_sec, sb.st_mtimespec.tv_sec, |
| 1476 | sb.st_ctimespec.tv_sec, sb.st_birthtimespec.tv_sec)); |
| 1477 | return FALSE; |
| 1478 | } |
| 1479 | } |
| 1480 | return TRUE; |
| 1481 | } |
| 1482 | |
| 1483 | static void |
| 1484 | apn_fallback_trigger(proc_t proc, struct socket *so) |
| 1485 | { |
| 1486 | pid_t pid = 0; |
| 1487 | struct kev_msg ev_msg; |
| 1488 | struct kev_netevent_apnfallbk_data apnfallbk_data; |
| 1489 | |
| 1490 | last_apn_fallback = net_uptime(); |
| 1491 | pid = proc_pid(proc); |
| 1492 | uuid_t application_uuid; |
| 1493 | uuid_clear(uu: application_uuid); |
| 1494 | proc_getexecutableuuid(proc, application_uuid, |
| 1495 | sizeof(application_uuid)); |
| 1496 | |
| 1497 | bzero(s: &ev_msg, n: sizeof(struct kev_msg)); |
| 1498 | ev_msg.vendor_code = KEV_VENDOR_APPLE; |
| 1499 | ev_msg.kev_class = KEV_NETWORK_CLASS; |
| 1500 | ev_msg.kev_subclass = KEV_NETEVENT_SUBCLASS; |
| 1501 | ev_msg.event_code = KEV_NETEVENT_APNFALLBACK; |
| 1502 | |
| 1503 | bzero(s: &apnfallbk_data, n: sizeof(apnfallbk_data)); |
| 1504 | |
| 1505 | if (so->so_flags & SOF_DELEGATED) { |
| 1506 | apnfallbk_data.epid = so->e_pid; |
| 1507 | uuid_copy(dst: apnfallbk_data.euuid, src: so->e_uuid); |
| 1508 | } else { |
| 1509 | apnfallbk_data.epid = so->last_pid; |
| 1510 | uuid_copy(dst: apnfallbk_data.euuid, src: so->last_uuid); |
| 1511 | } |
| 1512 | |
| 1513 | ev_msg.dv[0].data_ptr = &apnfallbk_data; |
| 1514 | ev_msg.dv[0].data_length = sizeof(apnfallbk_data); |
| 1515 | kev_post_msg(event: &ev_msg); |
| 1516 | apn_fallbk_log((LOG_INFO, "APN fallback notification issued.\n" )); |
| 1517 | } |
| 1518 | |
| 1519 | /* |
| 1520 | * Transform old in_pcbconnect() into an inner subroutine for new |
| 1521 | * in_pcbconnect(); do some validity-checking on the remote address |
| 1522 | * (in "nam") and then determine local host address (i.e., which |
| 1523 | * interface) to use to access that remote host. |
| 1524 | * |
| 1525 | * This routine may alter the caller-supplied remote address "nam". |
| 1526 | * |
| 1527 | * The caller may override the bound-to-interface setting of the socket |
| 1528 | * by specifying the ifscope parameter (e.g. from IP_PKTINFO.) |
| 1529 | * |
| 1530 | * This routine might return an ifp with a reference held if the caller |
| 1531 | * provides a non-NULL outif, even in the error case. The caller is |
| 1532 | * responsible for releasing its reference. |
| 1533 | * |
| 1534 | * Returns: 0 Success |
| 1535 | * EINVAL Invalid argument |
| 1536 | * EAFNOSUPPORT Address family not supported |
| 1537 | * EADDRNOTAVAIL Address not available |
| 1538 | */ |
| 1539 | int |
| 1540 | in_pcbladdr(struct inpcb *inp, struct sockaddr *nam, struct in_addr *laddr, |
| 1541 | unsigned int ifscope, struct ifnet **outif, int raw) |
| 1542 | { |
| 1543 | struct route *ro = &inp->inp_route; |
| 1544 | struct in_ifaddr *ia = NULL; |
| 1545 | struct sockaddr_in sin; |
| 1546 | int error = 0; |
| 1547 | boolean_t restricted = FALSE; |
| 1548 | |
| 1549 | if (outif != NULL) { |
| 1550 | *outif = NULL; |
| 1551 | } |
| 1552 | if (nam->sa_len != sizeof(struct sockaddr_in)) { |
| 1553 | return EINVAL; |
| 1554 | } |
| 1555 | if (SIN(nam)->sin_family != AF_INET) { |
| 1556 | return EAFNOSUPPORT; |
| 1557 | } |
| 1558 | if (raw == 0 && SIN(nam)->sin_port == 0) { |
| 1559 | return EADDRNOTAVAIL; |
| 1560 | } |
| 1561 | |
| 1562 | in_pcb_check_management_entitled(inp); |
| 1563 | |
| 1564 | /* |
| 1565 | * If the destination address is INADDR_ANY, |
| 1566 | * use the primary local address. |
| 1567 | * If the supplied address is INADDR_BROADCAST, |
| 1568 | * and the primary interface supports broadcast, |
| 1569 | * choose the broadcast address for that interface. |
| 1570 | */ |
| 1571 | if (raw == 0 && (SIN(nam)->sin_addr.s_addr == INADDR_ANY || |
| 1572 | SIN(nam)->sin_addr.s_addr == (u_int32_t)INADDR_BROADCAST)) { |
| 1573 | lck_rw_lock_shared(lck: &in_ifaddr_rwlock); |
| 1574 | if (!TAILQ_EMPTY(&in_ifaddrhead)) { |
| 1575 | ia = TAILQ_FIRST(&in_ifaddrhead); |
| 1576 | IFA_LOCK_SPIN(&ia->ia_ifa); |
| 1577 | if (SIN(nam)->sin_addr.s_addr == INADDR_ANY) { |
| 1578 | SIN(nam)->sin_addr = IA_SIN(ia)->sin_addr; |
| 1579 | } else if (ia->ia_ifp->if_flags & IFF_BROADCAST) { |
| 1580 | SIN(nam)->sin_addr = |
| 1581 | SIN(&ia->ia_broadaddr)->sin_addr; |
| 1582 | } |
| 1583 | IFA_UNLOCK(&ia->ia_ifa); |
| 1584 | ia = NULL; |
| 1585 | } |
| 1586 | lck_rw_done(lck: &in_ifaddr_rwlock); |
| 1587 | } |
| 1588 | /* |
| 1589 | * Otherwise, if the socket has already bound the source, just use it. |
| 1590 | */ |
| 1591 | if (inp->inp_laddr.s_addr != INADDR_ANY) { |
| 1592 | VERIFY(ia == NULL); |
| 1593 | *laddr = inp->inp_laddr; |
| 1594 | return 0; |
| 1595 | } |
| 1596 | |
| 1597 | /* |
| 1598 | * If the ifscope is specified by the caller (e.g. IP_PKTINFO) |
| 1599 | * then it overrides the sticky ifscope set for the socket. |
| 1600 | */ |
| 1601 | if (ifscope == IFSCOPE_NONE && (inp->inp_flags & INP_BOUND_IF)) { |
| 1602 | ifscope = inp->inp_boundifp->if_index; |
| 1603 | } |
| 1604 | |
| 1605 | /* |
| 1606 | * If route is known or can be allocated now, |
| 1607 | * our src addr is taken from the i/f, else punt. |
| 1608 | * Note that we should check the address family of the cached |
| 1609 | * destination, in case of sharing the cache with IPv6. |
| 1610 | */ |
| 1611 | if (ro->ro_rt != NULL) { |
| 1612 | RT_LOCK_SPIN(ro->ro_rt); |
| 1613 | } |
| 1614 | if (ROUTE_UNUSABLE(ro) || ro->ro_dst.sa_family != AF_INET || |
| 1615 | SIN(&ro->ro_dst)->sin_addr.s_addr != SIN(nam)->sin_addr.s_addr || |
| 1616 | (inp->inp_socket->so_options & SO_DONTROUTE)) { |
| 1617 | if (ro->ro_rt != NULL) { |
| 1618 | RT_UNLOCK(ro->ro_rt); |
| 1619 | } |
| 1620 | ROUTE_RELEASE(ro); |
| 1621 | } |
| 1622 | if (!(inp->inp_socket->so_options & SO_DONTROUTE) && |
| 1623 | (ro->ro_rt == NULL || ro->ro_rt->rt_ifp == NULL)) { |
| 1624 | if (ro->ro_rt != NULL) { |
| 1625 | RT_UNLOCK(ro->ro_rt); |
| 1626 | } |
| 1627 | ROUTE_RELEASE(ro); |
| 1628 | /* No route yet, so try to acquire one */ |
| 1629 | SOCKADDR_ZERO(&ro->ro_dst, sizeof(struct sockaddr_in)); |
| 1630 | ro->ro_dst.sa_family = AF_INET; |
| 1631 | ro->ro_dst.sa_len = sizeof(struct sockaddr_in); |
| 1632 | SIN(&ro->ro_dst)->sin_addr = SIN(nam)->sin_addr; |
| 1633 | rtalloc_scoped(ro, ifscope); |
| 1634 | if (ro->ro_rt != NULL) { |
| 1635 | RT_LOCK_SPIN(ro->ro_rt); |
| 1636 | } |
| 1637 | } |
| 1638 | /* Sanitized local copy for interface address searches */ |
| 1639 | SOCKADDR_ZERO(&sin, sizeof(sin)); |
| 1640 | sin.sin_family = AF_INET; |
| 1641 | sin.sin_len = sizeof(struct sockaddr_in); |
| 1642 | sin.sin_addr.s_addr = SIN(nam)->sin_addr.s_addr; |
| 1643 | /* |
| 1644 | * If we did not find (or use) a route, assume dest is reachable |
| 1645 | * on a directly connected network and try to find a corresponding |
| 1646 | * interface to take the source address from. |
| 1647 | */ |
| 1648 | if (ro->ro_rt == NULL) { |
| 1649 | proc_t proc = current_proc(); |
| 1650 | |
| 1651 | VERIFY(ia == NULL); |
| 1652 | ia = ifatoia(ifa_ifwithdstaddr(SA(&sin))); |
| 1653 | if (ia == NULL) { |
| 1654 | ia = ifatoia(ifa_ifwithnet_scoped(SA(&sin), ifscope)); |
| 1655 | } |
| 1656 | error = ((ia == NULL) ? ENETUNREACH : 0); |
| 1657 | |
| 1658 | if (apn_fallback_required(proc, so: inp->inp_socket, |
| 1659 | p_dstv4: (void *)nam)) { |
| 1660 | apn_fallback_trigger(proc, so: inp->inp_socket); |
| 1661 | } |
| 1662 | |
| 1663 | goto done; |
| 1664 | } |
| 1665 | RT_LOCK_ASSERT_HELD(ro->ro_rt); |
| 1666 | /* |
| 1667 | * If the outgoing interface on the route found is not |
| 1668 | * a loopback interface, use the address from that interface. |
| 1669 | */ |
| 1670 | if (!(ro->ro_rt->rt_ifp->if_flags & IFF_LOOPBACK)) { |
| 1671 | VERIFY(ia == NULL); |
| 1672 | /* |
| 1673 | * If the route points to a cellular interface and the |
| 1674 | * caller forbids our using interfaces of such type, |
| 1675 | * pretend that there is no route. |
| 1676 | * Apply the same logic for expensive interfaces. |
| 1677 | */ |
| 1678 | if (inp_restricted_send(inp, ro->ro_rt->rt_ifp)) { |
| 1679 | RT_UNLOCK(ro->ro_rt); |
| 1680 | ROUTE_RELEASE(ro); |
| 1681 | error = EHOSTUNREACH; |
| 1682 | restricted = TRUE; |
| 1683 | } else { |
| 1684 | /* Become a regular mutex */ |
| 1685 | RT_CONVERT_LOCK(ro->ro_rt); |
| 1686 | ia = ifatoia(ro->ro_rt->rt_ifa); |
| 1687 | ifa_addref(ifa: &ia->ia_ifa); |
| 1688 | |
| 1689 | /* |
| 1690 | * Mark the control block for notification of |
| 1691 | * a possible flow that might undergo clat46 |
| 1692 | * translation. |
| 1693 | * |
| 1694 | * We defer the decision to a later point when |
| 1695 | * inpcb is being disposed off. |
| 1696 | * The reason is that we only want to send notification |
| 1697 | * if the flow was ever used to send data. |
| 1698 | */ |
| 1699 | if (IS_INTF_CLAT46(ro->ro_rt->rt_ifp)) { |
| 1700 | inp->inp_flags2 |= INP2_CLAT46_FLOW; |
| 1701 | } |
| 1702 | |
| 1703 | RT_UNLOCK(ro->ro_rt); |
| 1704 | error = 0; |
| 1705 | } |
| 1706 | goto done; |
| 1707 | } |
| 1708 | VERIFY(ro->ro_rt->rt_ifp->if_flags & IFF_LOOPBACK); |
| 1709 | RT_UNLOCK(ro->ro_rt); |
| 1710 | /* |
| 1711 | * The outgoing interface is marked with 'loopback net', so a route |
| 1712 | * to ourselves is here. |
| 1713 | * Try to find the interface of the destination address and then |
| 1714 | * take the address from there. That interface is not necessarily |
| 1715 | * a loopback interface. |
| 1716 | */ |
| 1717 | VERIFY(ia == NULL); |
| 1718 | ia = ifatoia(ifa_ifwithdstaddr(SA(&sin))); |
| 1719 | if (ia == NULL) { |
| 1720 | ia = ifatoia(ifa_ifwithaddr_scoped(SA(&sin), ifscope)); |
| 1721 | } |
| 1722 | if (ia == NULL) { |
| 1723 | ia = ifatoia(ifa_ifwithnet_scoped(SA(&sin), ifscope)); |
| 1724 | } |
| 1725 | if (ia == NULL) { |
| 1726 | RT_LOCK(ro->ro_rt); |
| 1727 | ia = ifatoia(ro->ro_rt->rt_ifa); |
| 1728 | if (ia != NULL) { |
| 1729 | ifa_addref(ifa: &ia->ia_ifa); |
| 1730 | } |
| 1731 | RT_UNLOCK(ro->ro_rt); |
| 1732 | } |
| 1733 | error = ((ia == NULL) ? ENETUNREACH : 0); |
| 1734 | |
| 1735 | done: |
| 1736 | /* |
| 1737 | * If the destination address is multicast and an outgoing |
| 1738 | * interface has been set as a multicast option, use the |
| 1739 | * address of that interface as our source address. |
| 1740 | */ |
| 1741 | if (IN_MULTICAST(ntohl(SIN(nam)->sin_addr.s_addr)) && |
| 1742 | inp->inp_moptions != NULL) { |
| 1743 | struct ip_moptions *imo; |
| 1744 | struct ifnet *ifp; |
| 1745 | |
| 1746 | imo = inp->inp_moptions; |
| 1747 | IMO_LOCK(imo); |
| 1748 | if (imo->imo_multicast_ifp != NULL && (ia == NULL || |
| 1749 | ia->ia_ifp != imo->imo_multicast_ifp)) { |
| 1750 | ifp = imo->imo_multicast_ifp; |
| 1751 | if (ia != NULL) { |
| 1752 | ifa_remref(ifa: &ia->ia_ifa); |
| 1753 | } |
| 1754 | lck_rw_lock_shared(lck: &in_ifaddr_rwlock); |
| 1755 | TAILQ_FOREACH(ia, &in_ifaddrhead, ia_link) { |
| 1756 | if (ia->ia_ifp == ifp) { |
| 1757 | break; |
| 1758 | } |
| 1759 | } |
| 1760 | if (ia != NULL) { |
| 1761 | ifa_addref(ifa: &ia->ia_ifa); |
| 1762 | } |
| 1763 | lck_rw_done(lck: &in_ifaddr_rwlock); |
| 1764 | if (ia == NULL) { |
| 1765 | error = EADDRNOTAVAIL; |
| 1766 | } else { |
| 1767 | error = 0; |
| 1768 | } |
| 1769 | } |
| 1770 | IMO_UNLOCK(imo); |
| 1771 | } |
| 1772 | /* |
| 1773 | * Don't do pcblookup call here; return interface in laddr |
| 1774 | * and exit to caller, that will do the lookup. |
| 1775 | */ |
| 1776 | if (ia != NULL) { |
| 1777 | /* |
| 1778 | * If the source address belongs to a cellular interface |
| 1779 | * and the socket forbids our using interfaces of such |
| 1780 | * type, pretend that there is no source address. |
| 1781 | * Apply the same logic for expensive interfaces. |
| 1782 | */ |
| 1783 | IFA_LOCK_SPIN(&ia->ia_ifa); |
| 1784 | if (inp_restricted_send(inp, ia->ia_ifa.ifa_ifp)) { |
| 1785 | IFA_UNLOCK(&ia->ia_ifa); |
| 1786 | error = EHOSTUNREACH; |
| 1787 | restricted = TRUE; |
| 1788 | } else if (error == 0) { |
| 1789 | *laddr = ia->ia_addr.sin_addr; |
| 1790 | if (outif != NULL) { |
| 1791 | struct ifnet *ifp; |
| 1792 | |
| 1793 | if (ro->ro_rt != NULL) { |
| 1794 | ifp = ro->ro_rt->rt_ifp; |
| 1795 | } else { |
| 1796 | ifp = ia->ia_ifp; |
| 1797 | } |
| 1798 | |
| 1799 | VERIFY(ifp != NULL); |
| 1800 | IFA_CONVERT_LOCK(&ia->ia_ifa); |
| 1801 | ifnet_reference(interface: ifp); /* for caller */ |
| 1802 | if (*outif != NULL) { |
| 1803 | ifnet_release(interface: *outif); |
| 1804 | } |
| 1805 | *outif = ifp; |
| 1806 | } |
| 1807 | IFA_UNLOCK(&ia->ia_ifa); |
| 1808 | } else { |
| 1809 | IFA_UNLOCK(&ia->ia_ifa); |
| 1810 | } |
| 1811 | ifa_remref(ifa: &ia->ia_ifa); |
| 1812 | ia = NULL; |
| 1813 | } |
| 1814 | |
| 1815 | if (restricted && error == EHOSTUNREACH) { |
| 1816 | soevent(so: inp->inp_socket, hint: (SO_FILT_HINT_LOCKED | |
| 1817 | SO_FILT_HINT_IFDENIED)); |
| 1818 | } |
| 1819 | |
| 1820 | return error; |
| 1821 | } |
| 1822 | |
| 1823 | /* |
| 1824 | * Outer subroutine: |
| 1825 | * Connect from a socket to a specified address. |
| 1826 | * Both address and port must be specified in argument sin. |
| 1827 | * If don't have a local address for this socket yet, |
| 1828 | * then pick one. |
| 1829 | * |
| 1830 | * The caller may override the bound-to-interface setting of the socket |
| 1831 | * by specifying the ifscope parameter (e.g. from IP_PKTINFO.) |
| 1832 | */ |
| 1833 | int |
| 1834 | in_pcbconnect(struct inpcb *inp, struct sockaddr *nam, struct proc *p, |
| 1835 | unsigned int ifscope, struct ifnet **outif) |
| 1836 | { |
| 1837 | struct in_addr laddr; |
| 1838 | struct sockaddr_in *sin = SIN(nam); |
| 1839 | struct inpcb *pcb; |
| 1840 | int error; |
| 1841 | struct socket *so = inp->inp_socket; |
| 1842 | |
| 1843 | #if CONTENT_FILTER |
| 1844 | if (so) { |
| 1845 | so->so_state_change_cnt++; |
| 1846 | } |
| 1847 | #endif |
| 1848 | |
| 1849 | /* |
| 1850 | * Call inner routine, to assign local interface address. |
| 1851 | */ |
| 1852 | if ((error = in_pcbladdr(inp, nam, laddr: &laddr, ifscope, outif, raw: 0)) != 0) { |
| 1853 | return error; |
| 1854 | } |
| 1855 | |
| 1856 | socket_unlock(so, refcount: 0); |
| 1857 | pcb = in_pcblookup_hash(inp->inp_pcbinfo, sin->sin_addr, sin->sin_port, |
| 1858 | inp->inp_laddr.s_addr ? inp->inp_laddr : laddr, |
| 1859 | inp->inp_lport, 0, NULL); |
| 1860 | socket_lock(so, refcount: 0); |
| 1861 | |
| 1862 | /* |
| 1863 | * Check if the socket is still in a valid state. When we unlock this |
| 1864 | * embryonic socket, it can get aborted if another thread is closing |
| 1865 | * the listener (radar 7947600). |
| 1866 | */ |
| 1867 | if ((so->so_flags & SOF_ABORTED) != 0) { |
| 1868 | return ECONNREFUSED; |
| 1869 | } |
| 1870 | |
| 1871 | if (pcb != NULL) { |
| 1872 | in_pcb_checkstate(pcb, WNT_RELEASE, pcb == inp ? 1 : 0); |
| 1873 | return EADDRINUSE; |
| 1874 | } |
| 1875 | if (inp->inp_laddr.s_addr == INADDR_ANY) { |
| 1876 | if (inp->inp_lport == 0) { |
| 1877 | error = in_pcbbind(inp, NULL, p); |
| 1878 | if (error) { |
| 1879 | return error; |
| 1880 | } |
| 1881 | } |
| 1882 | if (!lck_rw_try_lock_exclusive(lck: &inp->inp_pcbinfo->ipi_lock)) { |
| 1883 | /* |
| 1884 | * Lock inversion issue, mostly with udp |
| 1885 | * multicast packets. |
| 1886 | */ |
| 1887 | socket_unlock(so, refcount: 0); |
| 1888 | lck_rw_lock_exclusive(lck: &inp->inp_pcbinfo->ipi_lock); |
| 1889 | socket_lock(so, refcount: 0); |
| 1890 | } |
| 1891 | inp->inp_laddr = laddr; |
| 1892 | /* no reference needed */ |
| 1893 | inp->inp_last_outifp = (outif != NULL) ? *outif : NULL; |
| 1894 | #if SKYWALK |
| 1895 | if (NETNS_TOKEN_VALID(&inp->inp_netns_token)) { |
| 1896 | netns_set_ifnet(token: &inp->inp_netns_token, |
| 1897 | ifp: inp->inp_last_outifp); |
| 1898 | } |
| 1899 | #endif /* SKYWALK */ |
| 1900 | inp->inp_flags |= INP_INADDR_ANY; |
| 1901 | } else { |
| 1902 | /* |
| 1903 | * Usage of IP_PKTINFO, without local port already |
| 1904 | * speficified will cause kernel to panic, |
| 1905 | * see rdar://problem/18508185. |
| 1906 | * For now returning error to avoid a kernel panic |
| 1907 | * This routines can be refactored and handle this better |
| 1908 | * in future. |
| 1909 | */ |
| 1910 | if (inp->inp_lport == 0) { |
| 1911 | return EINVAL; |
| 1912 | } |
| 1913 | if (!lck_rw_try_lock_exclusive(lck: &inp->inp_pcbinfo->ipi_lock)) { |
| 1914 | /* |
| 1915 | * Lock inversion issue, mostly with udp |
| 1916 | * multicast packets. |
| 1917 | */ |
| 1918 | socket_unlock(so, refcount: 0); |
| 1919 | lck_rw_lock_exclusive(lck: &inp->inp_pcbinfo->ipi_lock); |
| 1920 | socket_lock(so, refcount: 0); |
| 1921 | } |
| 1922 | } |
| 1923 | inp->inp_faddr = sin->sin_addr; |
| 1924 | inp->inp_fport = sin->sin_port; |
| 1925 | if (nstat_collect && SOCK_PROTO(so) == IPPROTO_UDP) { |
| 1926 | nstat_pcb_invalidate_cache(inp); |
| 1927 | } |
| 1928 | in_pcbrehash(inp); |
| 1929 | lck_rw_done(lck: &inp->inp_pcbinfo->ipi_lock); |
| 1930 | return 0; |
| 1931 | } |
| 1932 | |
| 1933 | void |
| 1934 | in_pcbdisconnect(struct inpcb *inp) |
| 1935 | { |
| 1936 | struct socket *so = inp->inp_socket; |
| 1937 | |
| 1938 | if (nstat_collect && SOCK_PROTO(so) == IPPROTO_UDP) { |
| 1939 | nstat_pcb_cache(inp); |
| 1940 | } |
| 1941 | |
| 1942 | inp->inp_faddr.s_addr = INADDR_ANY; |
| 1943 | inp->inp_fport = 0; |
| 1944 | |
| 1945 | #if CONTENT_FILTER |
| 1946 | if (so) { |
| 1947 | so->so_state_change_cnt++; |
| 1948 | } |
| 1949 | #endif |
| 1950 | |
| 1951 | if (!lck_rw_try_lock_exclusive(lck: &inp->inp_pcbinfo->ipi_lock)) { |
| 1952 | /* lock inversion issue, mostly with udp multicast packets */ |
| 1953 | socket_unlock(so, refcount: 0); |
| 1954 | lck_rw_lock_exclusive(lck: &inp->inp_pcbinfo->ipi_lock); |
| 1955 | socket_lock(so, refcount: 0); |
| 1956 | } |
| 1957 | |
| 1958 | in_pcbrehash(inp); |
| 1959 | lck_rw_done(lck: &inp->inp_pcbinfo->ipi_lock); |
| 1960 | /* |
| 1961 | * A multipath subflow socket would have its SS_NOFDREF set by default, |
| 1962 | * so check for SOF_MP_SUBFLOW socket flag before detaching the PCB; |
| 1963 | * when the socket is closed for real, SOF_MP_SUBFLOW would be cleared. |
| 1964 | */ |
| 1965 | if (!(so->so_flags & SOF_MP_SUBFLOW) && (so->so_state & SS_NOFDREF)) { |
| 1966 | in_pcbdetach(inp); |
| 1967 | } |
| 1968 | } |
| 1969 | |
| 1970 | void |
| 1971 | in_pcbdetach(struct inpcb *inp) |
| 1972 | { |
| 1973 | struct socket *so = inp->inp_socket; |
| 1974 | |
| 1975 | if (so->so_pcb == NULL) { |
| 1976 | /* PCB has been disposed */ |
| 1977 | panic("%s: inp=%p so=%p proto=%d so_pcb is null!" , __func__, |
| 1978 | inp, so, SOCK_PROTO(so)); |
| 1979 | /* NOTREACHED */ |
| 1980 | } |
| 1981 | |
| 1982 | #if IPSEC |
| 1983 | if (inp->inp_sp != NULL) { |
| 1984 | (void) ipsec4_delete_pcbpolicy(inp); |
| 1985 | } |
| 1986 | #endif /* IPSEC */ |
| 1987 | |
| 1988 | if (inp->inp_stat != NULL && SOCK_PROTO(so) == IPPROTO_UDP) { |
| 1989 | if (inp->inp_stat->rxpackets == 0 && inp->inp_stat->txpackets == 0) { |
| 1990 | INC_ATOMIC_INT64_LIM(net_api_stats.nas_socket_inet_dgram_no_data); |
| 1991 | } |
| 1992 | } |
| 1993 | |
| 1994 | /* |
| 1995 | * Let NetworkStatistics know this PCB is going away |
| 1996 | * before we detach it. |
| 1997 | */ |
| 1998 | if (nstat_collect && |
| 1999 | (SOCK_PROTO(so) == IPPROTO_TCP || SOCK_PROTO(so) == IPPROTO_UDP)) { |
| 2000 | nstat_pcb_detach(inp); |
| 2001 | } |
| 2002 | |
| 2003 | /* Free memory buffer held for generating keep alives */ |
| 2004 | if (inp->inp_keepalive_data != NULL) { |
| 2005 | kfree_data(inp->inp_keepalive_data, inp->inp_keepalive_datalen); |
| 2006 | inp->inp_keepalive_data = NULL; |
| 2007 | } |
| 2008 | |
| 2009 | /* mark socket state as dead */ |
| 2010 | if (in_pcb_checkstate(inp, WNT_STOPUSING, 1) != WNT_STOPUSING) { |
| 2011 | panic("%s: so=%p proto=%d couldn't set to STOPUSING" , |
| 2012 | __func__, so, SOCK_PROTO(so)); |
| 2013 | /* NOTREACHED */ |
| 2014 | } |
| 2015 | |
| 2016 | #if SKYWALK |
| 2017 | /* Free up the port in the namespace registrar if not in TIME_WAIT */ |
| 2018 | if (!(inp->inp_flags2 & INP2_TIMEWAIT)) { |
| 2019 | netns_release(token: &inp->inp_netns_token); |
| 2020 | netns_release(token: &inp->inp_wildcard_netns_token); |
| 2021 | } |
| 2022 | #endif /* SKYWALK */ |
| 2023 | |
| 2024 | if (!(so->so_flags & SOF_PCBCLEARING)) { |
| 2025 | struct ip_moptions *imo; |
| 2026 | |
| 2027 | inp->inp_vflag = 0; |
| 2028 | if (inp->inp_options != NULL) { |
| 2029 | (void) m_free(inp->inp_options); |
| 2030 | inp->inp_options = NULL; |
| 2031 | } |
| 2032 | ROUTE_RELEASE(&inp->inp_route); |
| 2033 | imo = inp->inp_moptions; |
| 2034 | if (imo != NULL) { |
| 2035 | IMO_REMREF(imo); |
| 2036 | } |
| 2037 | inp->inp_moptions = NULL; |
| 2038 | sofreelastref(so, 0); |
| 2039 | inp->inp_state = INPCB_STATE_DEAD; |
| 2040 | |
| 2041 | /* |
| 2042 | * Enqueue an event to send kernel event notification |
| 2043 | * if the flow has to CLAT46 for data packets |
| 2044 | */ |
| 2045 | if (inp->inp_flags2 & INP2_CLAT46_FLOW) { |
| 2046 | /* |
| 2047 | * If there has been any exchange of data bytes |
| 2048 | * over this flow. |
| 2049 | * Schedule a notification to report that flow is |
| 2050 | * using client side translation. |
| 2051 | */ |
| 2052 | if (inp->inp_stat != NULL && |
| 2053 | (inp->inp_stat->txbytes != 0 || |
| 2054 | inp->inp_stat->rxbytes != 0)) { |
| 2055 | if (so->so_flags & SOF_DELEGATED) { |
| 2056 | in6_clat46_event_enqueue_nwk_wq_entry( |
| 2057 | IN6_CLAT46_EVENT_V4_FLOW, |
| 2058 | so->e_pid, |
| 2059 | so->e_uuid); |
| 2060 | } else { |
| 2061 | in6_clat46_event_enqueue_nwk_wq_entry( |
| 2062 | IN6_CLAT46_EVENT_V4_FLOW, |
| 2063 | so->last_pid, |
| 2064 | so->last_uuid); |
| 2065 | } |
| 2066 | } |
| 2067 | } |
| 2068 | |
| 2069 | /* makes sure we're not called twice from so_close */ |
| 2070 | so->so_flags |= SOF_PCBCLEARING; |
| 2071 | |
| 2072 | inpcb_gc_sched(ipi: inp->inp_pcbinfo, type: INPCB_TIMER_FAST); |
| 2073 | } |
| 2074 | } |
| 2075 | |
| 2076 | |
| 2077 | void |
| 2078 | in_pcbdispose(struct inpcb *inp) |
| 2079 | { |
| 2080 | struct socket *so = inp->inp_socket; |
| 2081 | struct inpcbinfo *ipi = inp->inp_pcbinfo; |
| 2082 | |
| 2083 | if (so != NULL && so->so_usecount != 0) { |
| 2084 | panic("%s: so %p [%d,%d] usecount %d lockhistory %s" , |
| 2085 | __func__, so, SOCK_DOM(so), SOCK_TYPE(so), so->so_usecount, |
| 2086 | solockhistory_nr(so)); |
| 2087 | /* NOTREACHED */ |
| 2088 | } else if (inp->inp_wantcnt != WNT_STOPUSING) { |
| 2089 | if (so != NULL) { |
| 2090 | panic_plain("%s: inp %p invalid wantcnt %d, so %p " |
| 2091 | "[%d,%d] usecount %d retaincnt %d state 0x%x " |
| 2092 | "flags 0x%x lockhistory %s\n" , __func__, inp, |
| 2093 | inp->inp_wantcnt, so, SOCK_DOM(so), SOCK_TYPE(so), |
| 2094 | so->so_usecount, so->so_retaincnt, so->so_state, |
| 2095 | so->so_flags, solockhistory_nr(so)); |
| 2096 | /* NOTREACHED */ |
| 2097 | } else { |
| 2098 | panic("%s: inp %p invalid wantcnt %d no socket" , |
| 2099 | __func__, inp, inp->inp_wantcnt); |
| 2100 | /* NOTREACHED */ |
| 2101 | } |
| 2102 | } |
| 2103 | |
| 2104 | LCK_RW_ASSERT(&ipi->ipi_lock, LCK_RW_ASSERT_EXCLUSIVE); |
| 2105 | |
| 2106 | inp->inp_gencnt = ++ipi->ipi_gencnt; |
| 2107 | /* access ipi in in_pcbremlists */ |
| 2108 | in_pcbremlists(inp); |
| 2109 | |
| 2110 | if (so != NULL) { |
| 2111 | if (so->so_proto->pr_flags & PR_PCBLOCK) { |
| 2112 | sofreelastref(so, 0); |
| 2113 | if (so->so_rcv.sb_cc > 0 || so->so_snd.sb_cc > 0) { |
| 2114 | /* |
| 2115 | * selthreadclear() already called |
| 2116 | * during sofreelastref() above. |
| 2117 | */ |
| 2118 | sbrelease(sb: &so->so_rcv); |
| 2119 | sbrelease(sb: &so->so_snd); |
| 2120 | } |
| 2121 | if (so->so_head != NULL) { |
| 2122 | panic("%s: so=%p head still exist" , |
| 2123 | __func__, so); |
| 2124 | /* NOTREACHED */ |
| 2125 | } |
| 2126 | lck_mtx_unlock(lck: &inp->inpcb_mtx); |
| 2127 | |
| 2128 | #if NECP |
| 2129 | necp_inpcb_remove_cb(inp); |
| 2130 | #endif /* NECP */ |
| 2131 | |
| 2132 | lck_mtx_destroy(lck: &inp->inpcb_mtx, grp: ipi->ipi_lock_grp); |
| 2133 | } |
| 2134 | /* makes sure we're not called twice from so_close */ |
| 2135 | so->so_flags |= SOF_PCBCLEARING; |
| 2136 | so->so_saved_pcb = (caddr_t)inp; |
| 2137 | so->so_pcb = NULL; |
| 2138 | inp->inp_socket = NULL; |
| 2139 | #if NECP |
| 2140 | necp_inpcb_dispose(inp); |
| 2141 | #endif /* NECP */ |
| 2142 | /* |
| 2143 | * In case there a route cached after a detach (possible |
| 2144 | * in the tcp case), make sure that it is freed before |
| 2145 | * we deallocate the structure. |
| 2146 | */ |
| 2147 | ROUTE_RELEASE(&inp->inp_route); |
| 2148 | if ((so->so_flags1 & SOF1_CACHED_IN_SOCK_LAYER) == 0) { |
| 2149 | zfree(ipi->ipi_zone, inp); |
| 2150 | } |
| 2151 | sodealloc(so); |
| 2152 | } |
| 2153 | } |
| 2154 | |
| 2155 | /* |
| 2156 | * The calling convention of in_getsockaddr() and in_getpeeraddr() was |
| 2157 | * modified to match the pru_sockaddr() and pru_peeraddr() entry points |
| 2158 | * in struct pr_usrreqs, so that protocols can just reference then directly |
| 2159 | * without the need for a wrapper function. |
| 2160 | */ |
| 2161 | int |
| 2162 | in_getsockaddr(struct socket *so, struct sockaddr **nam) |
| 2163 | { |
| 2164 | struct inpcb *inp; |
| 2165 | struct sockaddr_in *sin; |
| 2166 | |
| 2167 | /* |
| 2168 | * Do the malloc first in case it blocks. |
| 2169 | */ |
| 2170 | sin = SIN(alloc_sockaddr(sizeof(*sin), |
| 2171 | Z_WAITOK | Z_NOFAIL)); |
| 2172 | |
| 2173 | sin->sin_family = AF_INET; |
| 2174 | |
| 2175 | if ((inp = sotoinpcb(so)) == NULL) { |
| 2176 | free_sockaddr(sin); |
| 2177 | return EINVAL; |
| 2178 | } |
| 2179 | sin->sin_port = inp->inp_lport; |
| 2180 | sin->sin_addr = inp->inp_laddr; |
| 2181 | |
| 2182 | *nam = SA(sin); |
| 2183 | return 0; |
| 2184 | } |
| 2185 | |
| 2186 | int |
| 2187 | in_getsockaddr_s(struct socket *so, struct sockaddr_in *ss) |
| 2188 | { |
| 2189 | struct sockaddr_in *sin = ss; |
| 2190 | struct inpcb *inp; |
| 2191 | |
| 2192 | VERIFY(ss != NULL); |
| 2193 | SOCKADDR_ZERO(ss, sizeof(*ss)); |
| 2194 | |
| 2195 | sin->sin_family = AF_INET; |
| 2196 | sin->sin_len = sizeof(*sin); |
| 2197 | |
| 2198 | if ((inp = sotoinpcb(so)) == NULL) { |
| 2199 | return EINVAL; |
| 2200 | } |
| 2201 | |
| 2202 | sin->sin_port = inp->inp_lport; |
| 2203 | sin->sin_addr = inp->inp_laddr; |
| 2204 | return 0; |
| 2205 | } |
| 2206 | |
| 2207 | int |
| 2208 | in_getpeeraddr(struct socket *so, struct sockaddr **nam) |
| 2209 | { |
| 2210 | struct inpcb *inp; |
| 2211 | struct sockaddr_in *sin; |
| 2212 | |
| 2213 | /* |
| 2214 | * Do the malloc first in case it blocks. |
| 2215 | */ |
| 2216 | sin = SIN(alloc_sockaddr(sizeof(*sin), |
| 2217 | Z_WAITOK | Z_NOFAIL)); |
| 2218 | |
| 2219 | sin->sin_family = AF_INET; |
| 2220 | |
| 2221 | if ((inp = sotoinpcb(so)) == NULL) { |
| 2222 | free_sockaddr(sin); |
| 2223 | return EINVAL; |
| 2224 | } |
| 2225 | sin->sin_port = inp->inp_fport; |
| 2226 | sin->sin_addr = inp->inp_faddr; |
| 2227 | |
| 2228 | *nam = SA(sin); |
| 2229 | return 0; |
| 2230 | } |
| 2231 | |
| 2232 | void |
| 2233 | in_pcbnotifyall(struct inpcbinfo *pcbinfo, struct in_addr faddr, |
| 2234 | int errno, void (*notify)(struct inpcb *, int)) |
| 2235 | { |
| 2236 | struct inpcb *inp; |
| 2237 | |
| 2238 | lck_rw_lock_shared(lck: &pcbinfo->ipi_lock); |
| 2239 | |
| 2240 | LIST_FOREACH(inp, pcbinfo->ipi_listhead, inp_list) { |
| 2241 | if (!(inp->inp_vflag & INP_IPV4)) { |
| 2242 | continue; |
| 2243 | } |
| 2244 | if (inp->inp_faddr.s_addr != faddr.s_addr || |
| 2245 | inp->inp_socket == NULL) { |
| 2246 | continue; |
| 2247 | } |
| 2248 | if (in_pcb_checkstate(inp, WNT_ACQUIRE, 0) == WNT_STOPUSING) { |
| 2249 | continue; |
| 2250 | } |
| 2251 | socket_lock(so: inp->inp_socket, refcount: 1); |
| 2252 | (*notify)(inp, errno); |
| 2253 | (void) in_pcb_checkstate(inp, WNT_RELEASE, 1); |
| 2254 | socket_unlock(so: inp->inp_socket, refcount: 1); |
| 2255 | } |
| 2256 | lck_rw_done(lck: &pcbinfo->ipi_lock); |
| 2257 | } |
| 2258 | |
| 2259 | /* |
| 2260 | * Check for alternatives when higher level complains |
| 2261 | * about service problems. For now, invalidate cached |
| 2262 | * routing information. If the route was created dynamically |
| 2263 | * (by a redirect), time to try a default gateway again. |
| 2264 | */ |
| 2265 | void |
| 2266 | in_losing(struct inpcb *inp) |
| 2267 | { |
| 2268 | boolean_t release = FALSE; |
| 2269 | struct rtentry *rt; |
| 2270 | |
| 2271 | if ((rt = inp->inp_route.ro_rt) != NULL) { |
| 2272 | struct in_ifaddr *ia = NULL; |
| 2273 | |
| 2274 | RT_LOCK(rt); |
| 2275 | if (rt->rt_flags & RTF_DYNAMIC) { |
| 2276 | /* |
| 2277 | * Prevent another thread from modifying rt_key, |
| 2278 | * rt_gateway via rt_setgate() after rt_lock is |
| 2279 | * dropped by marking the route as defunct. |
| 2280 | */ |
| 2281 | rt->rt_flags |= RTF_CONDEMNED; |
| 2282 | RT_UNLOCK(rt); |
| 2283 | (void) rtrequest(RTM_DELETE, rt_key(rt), |
| 2284 | rt->rt_gateway, rt_mask(rt), rt->rt_flags, NULL); |
| 2285 | } else { |
| 2286 | RT_UNLOCK(rt); |
| 2287 | } |
| 2288 | /* if the address is gone keep the old route in the pcb */ |
| 2289 | if (inp->inp_laddr.s_addr != INADDR_ANY && |
| 2290 | (ia = ifa_foraddr(inp->inp_laddr.s_addr)) != NULL) { |
| 2291 | /* |
| 2292 | * Address is around; ditch the route. A new route |
| 2293 | * can be allocated the next time output is attempted. |
| 2294 | */ |
| 2295 | release = TRUE; |
| 2296 | } |
| 2297 | if (ia != NULL) { |
| 2298 | ifa_remref(ifa: &ia->ia_ifa); |
| 2299 | } |
| 2300 | } |
| 2301 | if (rt == NULL || release) { |
| 2302 | ROUTE_RELEASE(&inp->inp_route); |
| 2303 | } |
| 2304 | } |
| 2305 | |
| 2306 | /* |
| 2307 | * After a routing change, flush old routing |
| 2308 | * and allocate a (hopefully) better one. |
| 2309 | */ |
| 2310 | void |
| 2311 | in_rtchange(struct inpcb *inp, int errno) |
| 2312 | { |
| 2313 | #pragma unused(errno) |
| 2314 | boolean_t release = FALSE; |
| 2315 | struct rtentry *rt; |
| 2316 | |
| 2317 | if ((rt = inp->inp_route.ro_rt) != NULL) { |
| 2318 | struct in_ifaddr *ia = NULL; |
| 2319 | |
| 2320 | /* if address is gone, keep the old route */ |
| 2321 | if (inp->inp_laddr.s_addr != INADDR_ANY && |
| 2322 | (ia = ifa_foraddr(inp->inp_laddr.s_addr)) != NULL) { |
| 2323 | /* |
| 2324 | * Address is around; ditch the route. A new route |
| 2325 | * can be allocated the next time output is attempted. |
| 2326 | */ |
| 2327 | release = TRUE; |
| 2328 | } |
| 2329 | if (ia != NULL) { |
| 2330 | ifa_remref(ifa: &ia->ia_ifa); |
| 2331 | } |
| 2332 | } |
| 2333 | if (rt == NULL || release) { |
| 2334 | ROUTE_RELEASE(&inp->inp_route); |
| 2335 | } |
| 2336 | } |
| 2337 | |
| 2338 | /* |
| 2339 | * Lookup a PCB based on the local address and port. |
| 2340 | */ |
| 2341 | struct inpcb * |
| 2342 | in_pcblookup_local(struct inpcbinfo *pcbinfo, struct in_addr laddr, |
| 2343 | unsigned int lport_arg, int wild_okay) |
| 2344 | { |
| 2345 | struct inpcb *inp; |
| 2346 | int matchwild = 3, wildcard; |
| 2347 | u_short lport = (u_short)lport_arg; |
| 2348 | |
| 2349 | KERNEL_DEBUG(DBG_FNC_PCB_LOOKUP | DBG_FUNC_START, 0, 0, 0, 0, 0); |
| 2350 | |
| 2351 | if (!wild_okay) { |
| 2352 | struct inpcbhead *head; |
| 2353 | /* |
| 2354 | * Look for an unconnected (wildcard foreign addr) PCB that |
| 2355 | * matches the local address and port we're looking for. |
| 2356 | */ |
| 2357 | head = &pcbinfo->ipi_hashbase[INP_PCBHASH(INADDR_ANY, lport, 0, |
| 2358 | pcbinfo->ipi_hashmask)]; |
| 2359 | LIST_FOREACH(inp, head, inp_hash) { |
| 2360 | if (!(inp->inp_vflag & INP_IPV4)) { |
| 2361 | continue; |
| 2362 | } |
| 2363 | if (inp->inp_faddr.s_addr == INADDR_ANY && |
| 2364 | inp->inp_laddr.s_addr == laddr.s_addr && |
| 2365 | inp->inp_lport == lport) { |
| 2366 | /* |
| 2367 | * Found. |
| 2368 | */ |
| 2369 | return inp; |
| 2370 | } |
| 2371 | } |
| 2372 | /* |
| 2373 | * Not found. |
| 2374 | */ |
| 2375 | KERNEL_DEBUG(DBG_FNC_PCB_LOOKUP | DBG_FUNC_END, 0, 0, 0, 0, 0); |
| 2376 | return NULL; |
| 2377 | } else { |
| 2378 | struct inpcbporthead *porthash; |
| 2379 | struct inpcbport *phd; |
| 2380 | struct inpcb *match = NULL; |
| 2381 | /* |
| 2382 | * Best fit PCB lookup. |
| 2383 | * |
| 2384 | * First see if this local port is in use by looking on the |
| 2385 | * port hash list. |
| 2386 | */ |
| 2387 | porthash = &pcbinfo->ipi_porthashbase[INP_PCBPORTHASH(lport, |
| 2388 | pcbinfo->ipi_porthashmask)]; |
| 2389 | LIST_FOREACH(phd, porthash, phd_hash) { |
| 2390 | if (phd->phd_port == lport) { |
| 2391 | break; |
| 2392 | } |
| 2393 | } |
| 2394 | if (phd != NULL) { |
| 2395 | /* |
| 2396 | * Port is in use by one or more PCBs. Look for best |
| 2397 | * fit. |
| 2398 | */ |
| 2399 | LIST_FOREACH(inp, &phd->phd_pcblist, inp_portlist) { |
| 2400 | wildcard = 0; |
| 2401 | if (!(inp->inp_vflag & INP_IPV4)) { |
| 2402 | continue; |
| 2403 | } |
| 2404 | if (inp->inp_faddr.s_addr != INADDR_ANY) { |
| 2405 | wildcard++; |
| 2406 | } |
| 2407 | if (inp->inp_laddr.s_addr != INADDR_ANY) { |
| 2408 | if (laddr.s_addr == INADDR_ANY) { |
| 2409 | wildcard++; |
| 2410 | } else if (inp->inp_laddr.s_addr != |
| 2411 | laddr.s_addr) { |
| 2412 | continue; |
| 2413 | } |
| 2414 | } else { |
| 2415 | if (laddr.s_addr != INADDR_ANY) { |
| 2416 | wildcard++; |
| 2417 | } |
| 2418 | } |
| 2419 | if (wildcard < matchwild) { |
| 2420 | match = inp; |
| 2421 | matchwild = wildcard; |
| 2422 | if (matchwild == 0) { |
| 2423 | break; |
| 2424 | } |
| 2425 | } |
| 2426 | } |
| 2427 | } |
| 2428 | KERNEL_DEBUG(DBG_FNC_PCB_LOOKUP | DBG_FUNC_END, match, |
| 2429 | 0, 0, 0, 0); |
| 2430 | return match; |
| 2431 | } |
| 2432 | } |
| 2433 | |
| 2434 | /* |
| 2435 | * Check if PCB exists in hash list. |
| 2436 | */ |
| 2437 | int |
| 2438 | in_pcblookup_hash_exists(struct inpcbinfo *pcbinfo, struct in_addr faddr, |
| 2439 | u_int fport_arg, struct in_addr laddr, u_int lport_arg, int wildcard, |
| 2440 | uid_t *uid, gid_t *gid, struct ifnet *ifp) |
| 2441 | { |
| 2442 | struct inpcbhead *head; |
| 2443 | struct inpcb *inp; |
| 2444 | u_short fport = (u_short)fport_arg, lport = (u_short)lport_arg; |
| 2445 | int found = 0; |
| 2446 | struct inpcb *local_wild = NULL; |
| 2447 | struct inpcb *local_wild_mapped = NULL; |
| 2448 | |
| 2449 | *uid = UID_MAX; |
| 2450 | *gid = GID_MAX; |
| 2451 | |
| 2452 | /* |
| 2453 | * We may have found the pcb in the last lookup - check this first. |
| 2454 | */ |
| 2455 | |
| 2456 | lck_rw_lock_shared(lck: &pcbinfo->ipi_lock); |
| 2457 | |
| 2458 | /* |
| 2459 | * First look for an exact match. |
| 2460 | */ |
| 2461 | head = &pcbinfo->ipi_hashbase[INP_PCBHASH(faddr.s_addr, lport, fport, |
| 2462 | pcbinfo->ipi_hashmask)]; |
| 2463 | LIST_FOREACH(inp, head, inp_hash) { |
| 2464 | if (!(inp->inp_vflag & INP_IPV4)) { |
| 2465 | continue; |
| 2466 | } |
| 2467 | if (inp_restricted_recv(inp, ifp)) { |
| 2468 | continue; |
| 2469 | } |
| 2470 | |
| 2471 | #if NECP |
| 2472 | if (!necp_socket_is_allowed_to_recv_on_interface(inp, interface: ifp)) { |
| 2473 | continue; |
| 2474 | } |
| 2475 | #endif /* NECP */ |
| 2476 | |
| 2477 | if (inp->inp_faddr.s_addr == faddr.s_addr && |
| 2478 | inp->inp_laddr.s_addr == laddr.s_addr && |
| 2479 | inp->inp_fport == fport && |
| 2480 | inp->inp_lport == lport) { |
| 2481 | if ((found = (inp->inp_socket != NULL))) { |
| 2482 | /* |
| 2483 | * Found. |
| 2484 | */ |
| 2485 | *uid = kauth_cred_getuid( |
| 2486 | cred: inp->inp_socket->so_cred); |
| 2487 | *gid = kauth_cred_getgid( |
| 2488 | cred: inp->inp_socket->so_cred); |
| 2489 | } |
| 2490 | lck_rw_done(lck: &pcbinfo->ipi_lock); |
| 2491 | return found; |
| 2492 | } |
| 2493 | } |
| 2494 | |
| 2495 | if (!wildcard) { |
| 2496 | /* |
| 2497 | * Not found. |
| 2498 | */ |
| 2499 | lck_rw_done(lck: &pcbinfo->ipi_lock); |
| 2500 | return 0; |
| 2501 | } |
| 2502 | |
| 2503 | head = &pcbinfo->ipi_hashbase[INP_PCBHASH(INADDR_ANY, lport, 0, |
| 2504 | pcbinfo->ipi_hashmask)]; |
| 2505 | LIST_FOREACH(inp, head, inp_hash) { |
| 2506 | if (!(inp->inp_vflag & INP_IPV4)) { |
| 2507 | continue; |
| 2508 | } |
| 2509 | if (inp_restricted_recv(inp, ifp)) { |
| 2510 | continue; |
| 2511 | } |
| 2512 | |
| 2513 | #if NECP |
| 2514 | if (!necp_socket_is_allowed_to_recv_on_interface(inp, interface: ifp)) { |
| 2515 | continue; |
| 2516 | } |
| 2517 | #endif /* NECP */ |
| 2518 | |
| 2519 | if (inp->inp_faddr.s_addr == INADDR_ANY && |
| 2520 | inp->inp_lport == lport) { |
| 2521 | if (inp->inp_laddr.s_addr == laddr.s_addr) { |
| 2522 | if ((found = (inp->inp_socket != NULL))) { |
| 2523 | *uid = kauth_cred_getuid( |
| 2524 | cred: inp->inp_socket->so_cred); |
| 2525 | *gid = kauth_cred_getgid( |
| 2526 | cred: inp->inp_socket->so_cred); |
| 2527 | } |
| 2528 | lck_rw_done(lck: &pcbinfo->ipi_lock); |
| 2529 | return found; |
| 2530 | } else if (inp->inp_laddr.s_addr == INADDR_ANY) { |
| 2531 | if (inp->inp_socket && |
| 2532 | SOCK_CHECK_DOM(inp->inp_socket, PF_INET6)) { |
| 2533 | local_wild_mapped = inp; |
| 2534 | } else { |
| 2535 | local_wild = inp; |
| 2536 | } |
| 2537 | } |
| 2538 | } |
| 2539 | } |
| 2540 | if (local_wild == NULL) { |
| 2541 | if (local_wild_mapped != NULL) { |
| 2542 | if ((found = (local_wild_mapped->inp_socket != NULL))) { |
| 2543 | *uid = kauth_cred_getuid( |
| 2544 | cred: local_wild_mapped->inp_socket->so_cred); |
| 2545 | *gid = kauth_cred_getgid( |
| 2546 | cred: local_wild_mapped->inp_socket->so_cred); |
| 2547 | } |
| 2548 | lck_rw_done(lck: &pcbinfo->ipi_lock); |
| 2549 | return found; |
| 2550 | } |
| 2551 | lck_rw_done(lck: &pcbinfo->ipi_lock); |
| 2552 | return 0; |
| 2553 | } |
| 2554 | if ((found = (local_wild->inp_socket != NULL))) { |
| 2555 | *uid = kauth_cred_getuid( |
| 2556 | cred: local_wild->inp_socket->so_cred); |
| 2557 | *gid = kauth_cred_getgid( |
| 2558 | cred: local_wild->inp_socket->so_cred); |
| 2559 | } |
| 2560 | lck_rw_done(lck: &pcbinfo->ipi_lock); |
| 2561 | return found; |
| 2562 | } |
| 2563 | |
| 2564 | /* |
| 2565 | * Lookup PCB in hash list. |
| 2566 | */ |
| 2567 | struct inpcb * |
| 2568 | in_pcblookup_hash(struct inpcbinfo *pcbinfo, struct in_addr faddr, |
| 2569 | u_int fport_arg, struct in_addr laddr, u_int lport_arg, int wildcard, |
| 2570 | struct ifnet *ifp) |
| 2571 | { |
| 2572 | struct inpcbhead *head; |
| 2573 | struct inpcb *inp; |
| 2574 | u_short fport = (u_short)fport_arg, lport = (u_short)lport_arg; |
| 2575 | struct inpcb *local_wild = NULL; |
| 2576 | struct inpcb *local_wild_mapped = NULL; |
| 2577 | |
| 2578 | /* |
| 2579 | * We may have found the pcb in the last lookup - check this first. |
| 2580 | */ |
| 2581 | |
| 2582 | lck_rw_lock_shared(lck: &pcbinfo->ipi_lock); |
| 2583 | |
| 2584 | /* |
| 2585 | * First look for an exact match. |
| 2586 | */ |
| 2587 | head = &pcbinfo->ipi_hashbase[INP_PCBHASH(faddr.s_addr, lport, fport, |
| 2588 | pcbinfo->ipi_hashmask)]; |
| 2589 | LIST_FOREACH(inp, head, inp_hash) { |
| 2590 | if (!(inp->inp_vflag & INP_IPV4)) { |
| 2591 | continue; |
| 2592 | } |
| 2593 | if (inp_restricted_recv(inp, ifp)) { |
| 2594 | continue; |
| 2595 | } |
| 2596 | |
| 2597 | #if NECP |
| 2598 | if (!necp_socket_is_allowed_to_recv_on_interface(inp, interface: ifp)) { |
| 2599 | continue; |
| 2600 | } |
| 2601 | #endif /* NECP */ |
| 2602 | |
| 2603 | if (inp->inp_faddr.s_addr == faddr.s_addr && |
| 2604 | inp->inp_laddr.s_addr == laddr.s_addr && |
| 2605 | inp->inp_fport == fport && |
| 2606 | inp->inp_lport == lport) { |
| 2607 | /* |
| 2608 | * Found. |
| 2609 | */ |
| 2610 | if (in_pcb_checkstate(inp, WNT_ACQUIRE, 0) != |
| 2611 | WNT_STOPUSING) { |
| 2612 | lck_rw_done(lck: &pcbinfo->ipi_lock); |
| 2613 | return inp; |
| 2614 | } else { |
| 2615 | /* it's there but dead, say it isn't found */ |
| 2616 | lck_rw_done(lck: &pcbinfo->ipi_lock); |
| 2617 | return NULL; |
| 2618 | } |
| 2619 | } |
| 2620 | } |
| 2621 | |
| 2622 | if (!wildcard) { |
| 2623 | /* |
| 2624 | * Not found. |
| 2625 | */ |
| 2626 | lck_rw_done(lck: &pcbinfo->ipi_lock); |
| 2627 | return NULL; |
| 2628 | } |
| 2629 | |
| 2630 | head = &pcbinfo->ipi_hashbase[INP_PCBHASH(INADDR_ANY, lport, 0, |
| 2631 | pcbinfo->ipi_hashmask)]; |
| 2632 | LIST_FOREACH(inp, head, inp_hash) { |
| 2633 | if (!(inp->inp_vflag & INP_IPV4)) { |
| 2634 | continue; |
| 2635 | } |
| 2636 | if (inp_restricted_recv(inp, ifp)) { |
| 2637 | continue; |
| 2638 | } |
| 2639 | |
| 2640 | #if NECP |
| 2641 | if (!necp_socket_is_allowed_to_recv_on_interface(inp, interface: ifp)) { |
| 2642 | continue; |
| 2643 | } |
| 2644 | #endif /* NECP */ |
| 2645 | |
| 2646 | if (inp->inp_faddr.s_addr == INADDR_ANY && |
| 2647 | inp->inp_lport == lport) { |
| 2648 | if (inp->inp_laddr.s_addr == laddr.s_addr) { |
| 2649 | if (in_pcb_checkstate(inp, WNT_ACQUIRE, 0) != |
| 2650 | WNT_STOPUSING) { |
| 2651 | lck_rw_done(lck: &pcbinfo->ipi_lock); |
| 2652 | return inp; |
| 2653 | } else { |
| 2654 | /* it's dead; say it isn't found */ |
| 2655 | lck_rw_done(lck: &pcbinfo->ipi_lock); |
| 2656 | return NULL; |
| 2657 | } |
| 2658 | } else if (inp->inp_laddr.s_addr == INADDR_ANY) { |
| 2659 | if (SOCK_CHECK_DOM(inp->inp_socket, PF_INET6)) { |
| 2660 | local_wild_mapped = inp; |
| 2661 | } else { |
| 2662 | local_wild = inp; |
| 2663 | } |
| 2664 | } |
| 2665 | } |
| 2666 | } |
| 2667 | if (local_wild == NULL) { |
| 2668 | if (local_wild_mapped != NULL) { |
| 2669 | if (in_pcb_checkstate(local_wild_mapped, |
| 2670 | WNT_ACQUIRE, 0) != WNT_STOPUSING) { |
| 2671 | lck_rw_done(lck: &pcbinfo->ipi_lock); |
| 2672 | return local_wild_mapped; |
| 2673 | } else { |
| 2674 | /* it's dead; say it isn't found */ |
| 2675 | lck_rw_done(lck: &pcbinfo->ipi_lock); |
| 2676 | return NULL; |
| 2677 | } |
| 2678 | } |
| 2679 | lck_rw_done(lck: &pcbinfo->ipi_lock); |
| 2680 | return NULL; |
| 2681 | } |
| 2682 | if (in_pcb_checkstate(local_wild, WNT_ACQUIRE, 0) != WNT_STOPUSING) { |
| 2683 | lck_rw_done(lck: &pcbinfo->ipi_lock); |
| 2684 | return local_wild; |
| 2685 | } |
| 2686 | /* |
| 2687 | * It's either not found or is already dead. |
| 2688 | */ |
| 2689 | lck_rw_done(lck: &pcbinfo->ipi_lock); |
| 2690 | return NULL; |
| 2691 | } |
| 2692 | |
| 2693 | /* |
| 2694 | * @brief Insert PCB onto various hash lists. |
| 2695 | * |
| 2696 | * @param inp Pointer to internet protocol control block |
| 2697 | * @param locked Implies if ipi_lock (protecting pcb list) |
| 2698 | * is already locked or not. |
| 2699 | * |
| 2700 | * @return int error on failure and 0 on success |
| 2701 | */ |
| 2702 | int |
| 2703 | in_pcbinshash(struct inpcb *inp, int locked) |
| 2704 | { |
| 2705 | struct inpcbhead *pcbhash; |
| 2706 | struct inpcbporthead *pcbporthash; |
| 2707 | struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; |
| 2708 | struct inpcbport *phd; |
| 2709 | u_int32_t hashkey_faddr; |
| 2710 | |
| 2711 | if (!locked) { |
| 2712 | if (!lck_rw_try_lock_exclusive(lck: &pcbinfo->ipi_lock)) { |
| 2713 | /* |
| 2714 | * Lock inversion issue, mostly with udp |
| 2715 | * multicast packets |
| 2716 | */ |
| 2717 | socket_unlock(so: inp->inp_socket, refcount: 0); |
| 2718 | lck_rw_lock_exclusive(lck: &pcbinfo->ipi_lock); |
| 2719 | socket_lock(so: inp->inp_socket, refcount: 0); |
| 2720 | } |
| 2721 | } |
| 2722 | |
| 2723 | /* |
| 2724 | * This routine or its caller may have given up |
| 2725 | * socket's protocol lock briefly. |
| 2726 | * During that time the socket may have been dropped. |
| 2727 | * Safe-guarding against that. |
| 2728 | */ |
| 2729 | if (inp->inp_state == INPCB_STATE_DEAD) { |
| 2730 | if (!locked) { |
| 2731 | lck_rw_done(lck: &pcbinfo->ipi_lock); |
| 2732 | } |
| 2733 | return ECONNABORTED; |
| 2734 | } |
| 2735 | |
| 2736 | |
| 2737 | if (inp->inp_vflag & INP_IPV6) { |
| 2738 | hashkey_faddr = inp->in6p_faddr.s6_addr32[3] /* XXX */; |
| 2739 | } else { |
| 2740 | hashkey_faddr = inp->inp_faddr.s_addr; |
| 2741 | } |
| 2742 | |
| 2743 | inp->inp_hash_element = INP_PCBHASH(hashkey_faddr, inp->inp_lport, |
| 2744 | inp->inp_fport, pcbinfo->ipi_hashmask); |
| 2745 | |
| 2746 | pcbhash = &pcbinfo->ipi_hashbase[inp->inp_hash_element]; |
| 2747 | |
| 2748 | pcbporthash = &pcbinfo->ipi_porthashbase[INP_PCBPORTHASH(inp->inp_lport, |
| 2749 | pcbinfo->ipi_porthashmask)]; |
| 2750 | |
| 2751 | /* |
| 2752 | * Go through port list and look for a head for this lport. |
| 2753 | */ |
| 2754 | LIST_FOREACH(phd, pcbporthash, phd_hash) { |
| 2755 | if (phd->phd_port == inp->inp_lport) { |
| 2756 | break; |
| 2757 | } |
| 2758 | } |
| 2759 | |
| 2760 | /* |
| 2761 | * If none exists, malloc one and tack it on. |
| 2762 | */ |
| 2763 | if (phd == NULL) { |
| 2764 | phd = kalloc_type(struct inpcbport, Z_WAITOK | Z_NOFAIL); |
| 2765 | phd->phd_port = inp->inp_lport; |
| 2766 | LIST_INIT(&phd->phd_pcblist); |
| 2767 | LIST_INSERT_HEAD(pcbporthash, phd, phd_hash); |
| 2768 | } |
| 2769 | |
| 2770 | VERIFY(!(inp->inp_flags2 & INP2_INHASHLIST)); |
| 2771 | |
| 2772 | #if SKYWALK |
| 2773 | int err; |
| 2774 | struct socket *so = inp->inp_socket; |
| 2775 | if ((SOCK_PROTO(so) == IPPROTO_TCP || SOCK_PROTO(so) == IPPROTO_UDP) && |
| 2776 | !(inp->inp_flags2 & INP2_EXTERNAL_PORT)) { |
| 2777 | if (inp->inp_vflag & INP_IPV6) { |
| 2778 | err = netns_reserve_in6(token: &inp->inp_netns_token, |
| 2779 | addr: inp->in6p_laddr, proto: (uint8_t)SOCK_PROTO(so), port: inp->inp_lport, |
| 2780 | NETNS_BSD | NETNS_PRERESERVED, NULL); |
| 2781 | } else { |
| 2782 | err = netns_reserve_in(token: &inp->inp_netns_token, |
| 2783 | addr: inp->inp_laddr, proto: (uint8_t)SOCK_PROTO(so), port: inp->inp_lport, |
| 2784 | NETNS_BSD | NETNS_PRERESERVED, NULL); |
| 2785 | } |
| 2786 | if (err) { |
| 2787 | if (!locked) { |
| 2788 | lck_rw_done(lck: &pcbinfo->ipi_lock); |
| 2789 | } |
| 2790 | return err; |
| 2791 | } |
| 2792 | netns_set_ifnet(token: &inp->inp_netns_token, ifp: inp->inp_last_outifp); |
| 2793 | inp_update_netns_flags(so); |
| 2794 | } |
| 2795 | #endif /* SKYWALK */ |
| 2796 | |
| 2797 | inp->inp_phd = phd; |
| 2798 | LIST_INSERT_HEAD(&phd->phd_pcblist, inp, inp_portlist); |
| 2799 | LIST_INSERT_HEAD(pcbhash, inp, inp_hash); |
| 2800 | inp->inp_flags2 |= INP2_INHASHLIST; |
| 2801 | |
| 2802 | if (!locked) { |
| 2803 | lck_rw_done(lck: &pcbinfo->ipi_lock); |
| 2804 | } |
| 2805 | |
| 2806 | #if NECP |
| 2807 | // This call catches the original setting of the local address |
| 2808 | inp_update_necp_policy(inp, NULL, NULL, 0); |
| 2809 | #endif /* NECP */ |
| 2810 | |
| 2811 | return 0; |
| 2812 | } |
| 2813 | |
| 2814 | /* |
| 2815 | * Move PCB to the proper hash bucket when { faddr, fport } have been |
| 2816 | * changed. NOTE: This does not handle the case of the lport changing (the |
| 2817 | * hashed port list would have to be updated as well), so the lport must |
| 2818 | * not change after in_pcbinshash() has been called. |
| 2819 | */ |
| 2820 | void |
| 2821 | in_pcbrehash(struct inpcb *inp) |
| 2822 | { |
| 2823 | struct inpcbhead *head; |
| 2824 | u_int32_t hashkey_faddr; |
| 2825 | |
| 2826 | #if SKYWALK |
| 2827 | struct socket *so = inp->inp_socket; |
| 2828 | if ((SOCK_PROTO(so) == IPPROTO_TCP || SOCK_PROTO(so) == IPPROTO_UDP) && |
| 2829 | !(inp->inp_flags2 & INP2_EXTERNAL_PORT)) { |
| 2830 | int err; |
| 2831 | if (NETNS_TOKEN_VALID(&inp->inp_netns_token)) { |
| 2832 | if (inp->inp_vflag & INP_IPV6) { |
| 2833 | err = netns_change_addr_in6( |
| 2834 | token: &inp->inp_netns_token, addr: inp->in6p_laddr); |
| 2835 | } else { |
| 2836 | err = netns_change_addr_in( |
| 2837 | token: &inp->inp_netns_token, addr: inp->inp_laddr); |
| 2838 | } |
| 2839 | } else { |
| 2840 | if (inp->inp_vflag & INP_IPV6) { |
| 2841 | err = netns_reserve_in6(token: &inp->inp_netns_token, |
| 2842 | addr: inp->in6p_laddr, proto: (uint8_t)SOCK_PROTO(so), |
| 2843 | port: inp->inp_lport, NETNS_BSD, NULL); |
| 2844 | } else { |
| 2845 | err = netns_reserve_in(token: &inp->inp_netns_token, |
| 2846 | addr: inp->inp_laddr, proto: (uint8_t)SOCK_PROTO(so), |
| 2847 | port: inp->inp_lport, NETNS_BSD, NULL); |
| 2848 | } |
| 2849 | } |
| 2850 | /* We are assuming that whatever code paths result in a rehash |
| 2851 | * did their due diligence and ensured that the given |
| 2852 | * <proto, laddr, lport> tuple was free ahead of time. Just |
| 2853 | * reserving the lport on INADDR_ANY should be enough, since |
| 2854 | * that will block Skywalk from trying to reserve that same |
| 2855 | * port. Given this assumption, the above netns calls should |
| 2856 | * never fail*/ |
| 2857 | VERIFY(err == 0); |
| 2858 | |
| 2859 | netns_set_ifnet(token: &inp->inp_netns_token, ifp: inp->inp_last_outifp); |
| 2860 | inp_update_netns_flags(so); |
| 2861 | } |
| 2862 | #endif /* SKYWALK */ |
| 2863 | if (inp->inp_vflag & INP_IPV6) { |
| 2864 | hashkey_faddr = inp->in6p_faddr.s6_addr32[3] /* XXX */; |
| 2865 | } else { |
| 2866 | hashkey_faddr = inp->inp_faddr.s_addr; |
| 2867 | } |
| 2868 | |
| 2869 | inp->inp_hash_element = INP_PCBHASH(hashkey_faddr, inp->inp_lport, |
| 2870 | inp->inp_fport, inp->inp_pcbinfo->ipi_hashmask); |
| 2871 | head = &inp->inp_pcbinfo->ipi_hashbase[inp->inp_hash_element]; |
| 2872 | |
| 2873 | if (inp->inp_flags2 & INP2_INHASHLIST) { |
| 2874 | LIST_REMOVE(inp, inp_hash); |
| 2875 | inp->inp_flags2 &= ~INP2_INHASHLIST; |
| 2876 | } |
| 2877 | |
| 2878 | VERIFY(!(inp->inp_flags2 & INP2_INHASHLIST)); |
| 2879 | LIST_INSERT_HEAD(head, inp, inp_hash); |
| 2880 | inp->inp_flags2 |= INP2_INHASHLIST; |
| 2881 | |
| 2882 | #if NECP |
| 2883 | // This call catches updates to the remote addresses |
| 2884 | inp_update_necp_policy(inp, NULL, NULL, 0); |
| 2885 | #endif /* NECP */ |
| 2886 | } |
| 2887 | |
| 2888 | /* |
| 2889 | * Remove PCB from various lists. |
| 2890 | * Must be called pcbinfo lock is held in exclusive mode. |
| 2891 | */ |
| 2892 | void |
| 2893 | in_pcbremlists(struct inpcb *inp) |
| 2894 | { |
| 2895 | inp->inp_gencnt = ++inp->inp_pcbinfo->ipi_gencnt; |
| 2896 | |
| 2897 | /* |
| 2898 | * Check if it's in hashlist -- an inp is placed in hashlist when |
| 2899 | * it's local port gets assigned. So it should also be present |
| 2900 | * in the port list. |
| 2901 | */ |
| 2902 | if (inp->inp_flags2 & INP2_INHASHLIST) { |
| 2903 | struct inpcbport *phd = inp->inp_phd; |
| 2904 | |
| 2905 | VERIFY(phd != NULL && inp->inp_lport > 0); |
| 2906 | |
| 2907 | LIST_REMOVE(inp, inp_hash); |
| 2908 | inp->inp_hash.le_next = NULL; |
| 2909 | inp->inp_hash.le_prev = NULL; |
| 2910 | |
| 2911 | LIST_REMOVE(inp, inp_portlist); |
| 2912 | inp->inp_portlist.le_next = NULL; |
| 2913 | inp->inp_portlist.le_prev = NULL; |
| 2914 | if (LIST_EMPTY(&phd->phd_pcblist)) { |
| 2915 | LIST_REMOVE(phd, phd_hash); |
| 2916 | kfree_type(struct inpcbport, phd); |
| 2917 | } |
| 2918 | inp->inp_phd = NULL; |
| 2919 | inp->inp_flags2 &= ~INP2_INHASHLIST; |
| 2920 | #if SKYWALK |
| 2921 | /* Free up the port in the namespace registrar */ |
| 2922 | netns_release(token: &inp->inp_netns_token); |
| 2923 | netns_release(token: &inp->inp_wildcard_netns_token); |
| 2924 | #endif /* SKYWALK */ |
| 2925 | } |
| 2926 | VERIFY(!(inp->inp_flags2 & INP2_INHASHLIST)); |
| 2927 | |
| 2928 | if (inp->inp_flags2 & INP2_TIMEWAIT) { |
| 2929 | /* Remove from time-wait queue */ |
| 2930 | tcp_remove_from_time_wait(inp); |
| 2931 | inp->inp_flags2 &= ~INP2_TIMEWAIT; |
| 2932 | VERIFY(inp->inp_pcbinfo->ipi_twcount != 0); |
| 2933 | inp->inp_pcbinfo->ipi_twcount--; |
| 2934 | } else { |
| 2935 | /* Remove from global inp list if it is not time-wait */ |
| 2936 | LIST_REMOVE(inp, inp_list); |
| 2937 | } |
| 2938 | |
| 2939 | if (inp->inp_flags2 & INP2_IN_FCTREE) { |
| 2940 | inp_fc_getinp(inp->inp_flowhash, (INPFC_SOLOCKED | INPFC_REMOVE)); |
| 2941 | VERIFY(!(inp->inp_flags2 & INP2_IN_FCTREE)); |
| 2942 | } |
| 2943 | |
| 2944 | inp->inp_pcbinfo->ipi_count--; |
| 2945 | } |
| 2946 | |
| 2947 | /* |
| 2948 | * Mechanism used to defer the memory release of PCBs |
| 2949 | * The pcb list will contain the pcb until the reaper can clean it up if |
| 2950 | * the following conditions are met: |
| 2951 | * 1) state "DEAD", |
| 2952 | * 2) wantcnt is STOPUSING |
| 2953 | * 3) usecount is 0 |
| 2954 | * This function will be called to either mark the pcb as |
| 2955 | */ |
| 2956 | int |
| 2957 | in_pcb_checkstate(struct inpcb *pcb, int mode, int locked) |
| 2958 | { |
| 2959 | volatile UInt32 *wantcnt = (volatile UInt32 *)&pcb->inp_wantcnt; |
| 2960 | UInt32 origwant; |
| 2961 | UInt32 newwant; |
| 2962 | |
| 2963 | switch (mode) { |
| 2964 | case WNT_STOPUSING: |
| 2965 | /* |
| 2966 | * Try to mark the pcb as ready for recycling. CAS with |
| 2967 | * STOPUSING, if success we're good, if it's in use, will |
| 2968 | * be marked later |
| 2969 | */ |
| 2970 | if (locked == 0) { |
| 2971 | socket_lock(so: pcb->inp_socket, refcount: 1); |
| 2972 | } |
| 2973 | pcb->inp_state = INPCB_STATE_DEAD; |
| 2974 | |
| 2975 | stopusing: |
| 2976 | if (pcb->inp_socket->so_usecount < 0) { |
| 2977 | panic("%s: pcb=%p so=%p usecount is negative" , |
| 2978 | __func__, pcb, pcb->inp_socket); |
| 2979 | /* NOTREACHED */ |
| 2980 | } |
| 2981 | if (locked == 0) { |
| 2982 | socket_unlock(so: pcb->inp_socket, refcount: 1); |
| 2983 | } |
| 2984 | |
| 2985 | inpcb_gc_sched(ipi: pcb->inp_pcbinfo, type: INPCB_TIMER_FAST); |
| 2986 | |
| 2987 | origwant = *wantcnt; |
| 2988 | if ((UInt16) origwant == 0xffff) { /* should stop using */ |
| 2989 | return WNT_STOPUSING; |
| 2990 | } |
| 2991 | newwant = 0xffff; |
| 2992 | if ((UInt16) origwant == 0) { |
| 2993 | /* try to mark it as unsuable now */ |
| 2994 | OSCompareAndSwap(origwant, newwant, wantcnt); |
| 2995 | } |
| 2996 | return WNT_STOPUSING; |
| 2997 | |
| 2998 | case WNT_ACQUIRE: |
| 2999 | /* |
| 3000 | * Try to increase reference to pcb. If WNT_STOPUSING |
| 3001 | * should bail out. If socket state DEAD, try to set count |
| 3002 | * to STOPUSING, return failed otherwise increase cnt. |
| 3003 | */ |
| 3004 | do { |
| 3005 | origwant = *wantcnt; |
| 3006 | if ((UInt16) origwant == 0xffff) { |
| 3007 | /* should stop using */ |
| 3008 | return WNT_STOPUSING; |
| 3009 | } |
| 3010 | newwant = origwant + 1; |
| 3011 | } while (!OSCompareAndSwap(origwant, newwant, wantcnt)); |
| 3012 | return WNT_ACQUIRE; |
| 3013 | |
| 3014 | case WNT_RELEASE: |
| 3015 | /* |
| 3016 | * Release reference. If result is null and pcb state |
| 3017 | * is DEAD, set wanted bit to STOPUSING |
| 3018 | */ |
| 3019 | if (locked == 0) { |
| 3020 | socket_lock(so: pcb->inp_socket, refcount: 1); |
| 3021 | } |
| 3022 | |
| 3023 | do { |
| 3024 | origwant = *wantcnt; |
| 3025 | if ((UInt16) origwant == 0x0) { |
| 3026 | panic("%s: pcb=%p release with zero count" , |
| 3027 | __func__, pcb); |
| 3028 | /* NOTREACHED */ |
| 3029 | } |
| 3030 | if ((UInt16) origwant == 0xffff) { |
| 3031 | /* should stop using */ |
| 3032 | if (locked == 0) { |
| 3033 | socket_unlock(so: pcb->inp_socket, refcount: 1); |
| 3034 | } |
| 3035 | return WNT_STOPUSING; |
| 3036 | } |
| 3037 | newwant = origwant - 1; |
| 3038 | } while (!OSCompareAndSwap(origwant, newwant, wantcnt)); |
| 3039 | |
| 3040 | if (pcb->inp_state == INPCB_STATE_DEAD) { |
| 3041 | goto stopusing; |
| 3042 | } |
| 3043 | if (pcb->inp_socket->so_usecount < 0) { |
| 3044 | panic("%s: RELEASE pcb=%p so=%p usecount is negative" , |
| 3045 | __func__, pcb, pcb->inp_socket); |
| 3046 | /* NOTREACHED */ |
| 3047 | } |
| 3048 | |
| 3049 | if (locked == 0) { |
| 3050 | socket_unlock(so: pcb->inp_socket, refcount: 1); |
| 3051 | } |
| 3052 | return WNT_RELEASE; |
| 3053 | |
| 3054 | default: |
| 3055 | panic("%s: so=%p not a valid state =%x" , __func__, |
| 3056 | pcb->inp_socket, mode); |
| 3057 | /* NOTREACHED */ |
| 3058 | } |
| 3059 | |
| 3060 | /* NOTREACHED */ |
| 3061 | return mode; |
| 3062 | } |
| 3063 | |
| 3064 | /* |
| 3065 | * inpcb_to_compat copies specific bits of an inpcb to a inpcb_compat. |
| 3066 | * The inpcb_compat data structure is passed to user space and must |
| 3067 | * not change. We intentionally avoid copying pointers. |
| 3068 | */ |
| 3069 | void |
| 3070 | inpcb_to_compat(struct inpcb *inp, struct inpcb_compat *inp_compat) |
| 3071 | { |
| 3072 | bzero(s: inp_compat, n: sizeof(*inp_compat)); |
| 3073 | inp_compat->inp_fport = inp->inp_fport; |
| 3074 | inp_compat->inp_lport = inp->inp_lport; |
| 3075 | inp_compat->nat_owner = 0; |
| 3076 | inp_compat->nat_cookie = 0; |
| 3077 | inp_compat->inp_gencnt = inp->inp_gencnt; |
| 3078 | inp_compat->inp_flags = inp->inp_flags; |
| 3079 | inp_compat->inp_flow = inp->inp_flow; |
| 3080 | inp_compat->inp_vflag = inp->inp_vflag; |
| 3081 | inp_compat->inp_ip_ttl = inp->inp_ip_ttl; |
| 3082 | inp_compat->inp_ip_p = inp->inp_ip_p; |
| 3083 | inp_compat->inp_dependfaddr.inp6_foreign = |
| 3084 | inp->inp_dependfaddr.inp6_foreign; |
| 3085 | inp_compat->inp_dependladdr.inp6_local = |
| 3086 | inp->inp_dependladdr.inp6_local; |
| 3087 | inp_compat->inp_depend4.inp4_ip_tos = inp->inp_depend4.inp4_ip_tos; |
| 3088 | inp_compat->inp_depend6.inp6_hlim = 0; |
| 3089 | inp_compat->inp_depend6.inp6_cksum = inp->inp_depend6.inp6_cksum; |
| 3090 | inp_compat->inp_depend6.inp6_ifindex = 0; |
| 3091 | inp_compat->inp_depend6.inp6_hops = inp->inp_depend6.inp6_hops; |
| 3092 | } |
| 3093 | |
| 3094 | #if XNU_TARGET_OS_OSX |
| 3095 | void |
| 3096 | inpcb_to_xinpcb64(struct inpcb *inp, struct xinpcb64 *xinp) |
| 3097 | { |
| 3098 | xinp->inp_fport = inp->inp_fport; |
| 3099 | xinp->inp_lport = inp->inp_lport; |
| 3100 | xinp->inp_gencnt = inp->inp_gencnt; |
| 3101 | xinp->inp_flags = inp->inp_flags; |
| 3102 | xinp->inp_flow = inp->inp_flow; |
| 3103 | xinp->inp_vflag = inp->inp_vflag; |
| 3104 | xinp->inp_ip_ttl = inp->inp_ip_ttl; |
| 3105 | xinp->inp_ip_p = inp->inp_ip_p; |
| 3106 | xinp->inp_dependfaddr.inp6_foreign = inp->inp_dependfaddr.inp6_foreign; |
| 3107 | xinp->inp_dependladdr.inp6_local = inp->inp_dependladdr.inp6_local; |
| 3108 | xinp->inp_depend4.inp4_ip_tos = inp->inp_depend4.inp4_ip_tos; |
| 3109 | xinp->inp_depend6.inp6_hlim = 0; |
| 3110 | xinp->inp_depend6.inp6_cksum = inp->inp_depend6.inp6_cksum; |
| 3111 | xinp->inp_depend6.inp6_ifindex = 0; |
| 3112 | xinp->inp_depend6.inp6_hops = inp->inp_depend6.inp6_hops; |
| 3113 | } |
| 3114 | #endif /* XNU_TARGET_OS_OSX */ |
| 3115 | |
| 3116 | /* |
| 3117 | * The following routines implement this scheme: |
| 3118 | * |
| 3119 | * Callers of ip_output() that intend to cache the route in the inpcb pass |
| 3120 | * a local copy of the struct route to ip_output(). Using a local copy of |
| 3121 | * the cached route significantly simplifies things as IP no longer has to |
| 3122 | * worry about having exclusive access to the passed in struct route, since |
| 3123 | * it's defined in the caller's stack; in essence, this allows for a lock- |
| 3124 | * less operation when updating the struct route at the IP level and below, |
| 3125 | * whenever necessary. The scheme works as follows: |
| 3126 | * |
| 3127 | * Prior to dropping the socket's lock and calling ip_output(), the caller |
| 3128 | * copies the struct route from the inpcb into its stack, and adds a reference |
| 3129 | * to the cached route entry, if there was any. The socket's lock is then |
| 3130 | * dropped and ip_output() is called with a pointer to the copy of struct |
| 3131 | * route defined on the stack (not to the one in the inpcb.) |
| 3132 | * |
| 3133 | * Upon returning from ip_output(), the caller then acquires the socket's |
| 3134 | * lock and synchronizes the cache; if there is no route cached in the inpcb, |
| 3135 | * it copies the local copy of struct route (which may or may not contain any |
| 3136 | * route) back into the cache; otherwise, if the inpcb has a route cached in |
| 3137 | * it, the one in the local copy will be freed, if there's any. Trashing the |
| 3138 | * cached route in the inpcb can be avoided because ip_output() is single- |
| 3139 | * threaded per-PCB (i.e. multiple transmits on a PCB are always serialized |
| 3140 | * by the socket/transport layer.) |
| 3141 | */ |
| 3142 | void |
| 3143 | inp_route_copyout(struct inpcb *inp, struct route *dst) |
| 3144 | { |
| 3145 | struct route *src = &inp->inp_route; |
| 3146 | |
| 3147 | socket_lock_assert_owned(so: inp->inp_socket); |
| 3148 | |
| 3149 | /* |
| 3150 | * If the route in the PCB is stale or not for IPv4, blow it away; |
| 3151 | * this is possible in the case of IPv4-mapped address case. |
| 3152 | */ |
| 3153 | if (ROUTE_UNUSABLE(src) || rt_key(src->ro_rt)->sa_family != AF_INET) { |
| 3154 | ROUTE_RELEASE(src); |
| 3155 | } |
| 3156 | |
| 3157 | route_copyout(dst, src, sizeof(*dst)); |
| 3158 | } |
| 3159 | |
| 3160 | void |
| 3161 | inp_route_copyin(struct inpcb *inp, struct route *src) |
| 3162 | { |
| 3163 | struct route *dst = &inp->inp_route; |
| 3164 | |
| 3165 | socket_lock_assert_owned(so: inp->inp_socket); |
| 3166 | |
| 3167 | /* Minor sanity check */ |
| 3168 | if (src->ro_rt != NULL && rt_key(src->ro_rt)->sa_family != AF_INET) { |
| 3169 | panic("%s: wrong or corrupted route: %p" , __func__, src); |
| 3170 | } |
| 3171 | |
| 3172 | route_copyin(src, dst, sizeof(*src)); |
| 3173 | } |
| 3174 | |
| 3175 | /* |
| 3176 | * Handler for setting IP_BOUND_IF/IPV6_BOUND_IF socket option. |
| 3177 | */ |
| 3178 | int |
| 3179 | inp_bindif(struct inpcb *inp, unsigned int ifscope, struct ifnet **pifp) |
| 3180 | { |
| 3181 | struct ifnet *ifp = NULL; |
| 3182 | |
| 3183 | ifnet_head_lock_shared(); |
| 3184 | if ((ifscope > (unsigned)if_index) || (ifscope != IFSCOPE_NONE && |
| 3185 | (ifp = ifindex2ifnet[ifscope]) == NULL)) { |
| 3186 | ifnet_head_done(); |
| 3187 | return ENXIO; |
| 3188 | } |
| 3189 | ifnet_head_done(); |
| 3190 | |
| 3191 | VERIFY(ifp != NULL || ifscope == IFSCOPE_NONE); |
| 3192 | |
| 3193 | /* |
| 3194 | * A zero interface scope value indicates an "unbind". |
| 3195 | * Otherwise, take in whatever value the app desires; |
| 3196 | * the app may already know the scope (or force itself |
| 3197 | * to such a scope) ahead of time before the interface |
| 3198 | * gets attached. It doesn't matter either way; any |
| 3199 | * route lookup from this point on will require an |
| 3200 | * exact match for the embedded interface scope. |
| 3201 | */ |
| 3202 | inp->inp_boundifp = ifp; |
| 3203 | if (inp->inp_boundifp == NULL) { |
| 3204 | inp->inp_flags &= ~INP_BOUND_IF; |
| 3205 | } else { |
| 3206 | inp->inp_flags |= INP_BOUND_IF; |
| 3207 | } |
| 3208 | |
| 3209 | /* Blow away any cached route in the PCB */ |
| 3210 | ROUTE_RELEASE(&inp->inp_route); |
| 3211 | |
| 3212 | if (pifp != NULL) { |
| 3213 | *pifp = ifp; |
| 3214 | } |
| 3215 | |
| 3216 | return 0; |
| 3217 | } |
| 3218 | |
| 3219 | /* |
| 3220 | * Handler for setting IP_NO_IFT_CELLULAR/IPV6_NO_IFT_CELLULAR socket option, |
| 3221 | * as well as for setting PROC_UUID_NO_CELLULAR policy. |
| 3222 | */ |
| 3223 | void |
| 3224 | inp_set_nocellular(struct inpcb *inp) |
| 3225 | { |
| 3226 | inp->inp_flags |= INP_NO_IFT_CELLULAR; |
| 3227 | |
| 3228 | /* Blow away any cached route in the PCB */ |
| 3229 | ROUTE_RELEASE(&inp->inp_route); |
| 3230 | } |
| 3231 | |
| 3232 | /* |
| 3233 | * Handler for clearing IP_NO_IFT_CELLULAR/IPV6_NO_IFT_CELLULAR socket option, |
| 3234 | * as well as for clearing PROC_UUID_NO_CELLULAR policy. |
| 3235 | */ |
| 3236 | void |
| 3237 | inp_clear_nocellular(struct inpcb *inp) |
| 3238 | { |
| 3239 | struct socket *so = inp->inp_socket; |
| 3240 | |
| 3241 | /* |
| 3242 | * SO_RESTRICT_DENY_CELLULAR socket restriction issued on the socket |
| 3243 | * has a higher precendence than INP_NO_IFT_CELLULAR. Clear the flag |
| 3244 | * if and only if the socket is unrestricted. |
| 3245 | */ |
| 3246 | if (so != NULL && !(so->so_restrictions & SO_RESTRICT_DENY_CELLULAR)) { |
| 3247 | inp->inp_flags &= ~INP_NO_IFT_CELLULAR; |
| 3248 | |
| 3249 | /* Blow away any cached route in the PCB */ |
| 3250 | ROUTE_RELEASE(&inp->inp_route); |
| 3251 | } |
| 3252 | } |
| 3253 | |
| 3254 | void |
| 3255 | inp_set_noexpensive(struct inpcb *inp) |
| 3256 | { |
| 3257 | inp->inp_flags2 |= INP2_NO_IFF_EXPENSIVE; |
| 3258 | |
| 3259 | /* Blow away any cached route in the PCB */ |
| 3260 | ROUTE_RELEASE(&inp->inp_route); |
| 3261 | } |
| 3262 | |
| 3263 | void |
| 3264 | inp_set_noconstrained(struct inpcb *inp) |
| 3265 | { |
| 3266 | inp->inp_flags2 |= INP2_NO_IFF_CONSTRAINED; |
| 3267 | |
| 3268 | /* Blow away any cached route in the PCB */ |
| 3269 | ROUTE_RELEASE(&inp->inp_route); |
| 3270 | } |
| 3271 | |
| 3272 | void |
| 3273 | inp_set_awdl_unrestricted(struct inpcb *inp) |
| 3274 | { |
| 3275 | inp->inp_flags2 |= INP2_AWDL_UNRESTRICTED; |
| 3276 | |
| 3277 | /* Blow away any cached route in the PCB */ |
| 3278 | ROUTE_RELEASE(&inp->inp_route); |
| 3279 | } |
| 3280 | |
| 3281 | boolean_t |
| 3282 | inp_get_awdl_unrestricted(struct inpcb *inp) |
| 3283 | { |
| 3284 | return (inp->inp_flags2 & INP2_AWDL_UNRESTRICTED) ? TRUE : FALSE; |
| 3285 | } |
| 3286 | |
| 3287 | void |
| 3288 | inp_clear_awdl_unrestricted(struct inpcb *inp) |
| 3289 | { |
| 3290 | inp->inp_flags2 &= ~INP2_AWDL_UNRESTRICTED; |
| 3291 | |
| 3292 | /* Blow away any cached route in the PCB */ |
| 3293 | ROUTE_RELEASE(&inp->inp_route); |
| 3294 | } |
| 3295 | |
| 3296 | void |
| 3297 | inp_set_intcoproc_allowed(struct inpcb *inp) |
| 3298 | { |
| 3299 | inp->inp_flags2 |= INP2_INTCOPROC_ALLOWED; |
| 3300 | |
| 3301 | /* Blow away any cached route in the PCB */ |
| 3302 | ROUTE_RELEASE(&inp->inp_route); |
| 3303 | } |
| 3304 | |
| 3305 | boolean_t |
| 3306 | inp_get_intcoproc_allowed(struct inpcb *inp) |
| 3307 | { |
| 3308 | return (inp->inp_flags2 & INP2_INTCOPROC_ALLOWED) ? TRUE : FALSE; |
| 3309 | } |
| 3310 | |
| 3311 | void |
| 3312 | inp_clear_intcoproc_allowed(struct inpcb *inp) |
| 3313 | { |
| 3314 | inp->inp_flags2 &= ~INP2_INTCOPROC_ALLOWED; |
| 3315 | |
| 3316 | /* Blow away any cached route in the PCB */ |
| 3317 | ROUTE_RELEASE(&inp->inp_route); |
| 3318 | } |
| 3319 | |
| 3320 | void |
| 3321 | inp_set_management_allowed(struct inpcb *inp) |
| 3322 | { |
| 3323 | inp->inp_flags2 |= INP2_MANAGEMENT_ALLOWED; |
| 3324 | inp->inp_flags2 |= INP2_MANAGEMENT_CHECKED; |
| 3325 | |
| 3326 | /* Blow away any cached route in the PCB */ |
| 3327 | ROUTE_RELEASE(&inp->inp_route); |
| 3328 | } |
| 3329 | |
| 3330 | boolean_t |
| 3331 | inp_get_management_allowed(struct inpcb *inp) |
| 3332 | { |
| 3333 | return (inp->inp_flags2 & INP2_MANAGEMENT_ALLOWED) ? TRUE : FALSE; |
| 3334 | } |
| 3335 | |
| 3336 | void |
| 3337 | inp_clear_management_allowed(struct inpcb *inp) |
| 3338 | { |
| 3339 | inp->inp_flags2 &= ~INP2_MANAGEMENT_ALLOWED; |
| 3340 | |
| 3341 | /* Blow away any cached route in the PCB */ |
| 3342 | ROUTE_RELEASE(&inp->inp_route); |
| 3343 | } |
| 3344 | |
| 3345 | #if NECP |
| 3346 | /* |
| 3347 | * Called when PROC_UUID_NECP_APP_POLICY is set. |
| 3348 | */ |
| 3349 | void |
| 3350 | inp_set_want_app_policy(struct inpcb *inp) |
| 3351 | { |
| 3352 | inp->inp_flags2 |= INP2_WANT_APP_POLICY; |
| 3353 | } |
| 3354 | |
| 3355 | /* |
| 3356 | * Called when PROC_UUID_NECP_APP_POLICY is cleared. |
| 3357 | */ |
| 3358 | void |
| 3359 | inp_clear_want_app_policy(struct inpcb *inp) |
| 3360 | { |
| 3361 | inp->inp_flags2 &= ~INP2_WANT_APP_POLICY; |
| 3362 | } |
| 3363 | #endif /* NECP */ |
| 3364 | |
| 3365 | /* |
| 3366 | * Calculate flow hash for an inp, used by an interface to identify a |
| 3367 | * flow. When an interface provides flow control advisory, this flow |
| 3368 | * hash is used as an identifier. |
| 3369 | */ |
| 3370 | u_int32_t |
| 3371 | inp_calc_flowhash(struct inpcb *inp) |
| 3372 | { |
| 3373 | #if SKYWALK |
| 3374 | |
| 3375 | uint32_t flowid; |
| 3376 | struct flowidns_flow_key fk; |
| 3377 | |
| 3378 | bzero(s: &fk, n: sizeof(fk)); |
| 3379 | |
| 3380 | if (inp->inp_vflag & INP_IPV4) { |
| 3381 | fk.ffk_af = AF_INET; |
| 3382 | fk.ffk_laddr_v4 = inp->inp_laddr; |
| 3383 | fk.ffk_raddr_v4 = inp->inp_faddr; |
| 3384 | } else { |
| 3385 | fk.ffk_af = AF_INET6; |
| 3386 | fk.ffk_laddr_v6 = inp->in6p_laddr; |
| 3387 | fk.ffk_raddr_v6 = inp->in6p_faddr; |
| 3388 | /* clear embedded scope ID */ |
| 3389 | if (IN6_IS_SCOPE_EMBED(&fk.ffk_laddr_v6)) { |
| 3390 | fk.ffk_laddr_v6.s6_addr16[1] = 0; |
| 3391 | } |
| 3392 | if (IN6_IS_SCOPE_EMBED(&fk.ffk_raddr_v6)) { |
| 3393 | fk.ffk_raddr_v6.s6_addr16[1] = 0; |
| 3394 | } |
| 3395 | } |
| 3396 | |
| 3397 | fk.ffk_lport = inp->inp_lport; |
| 3398 | fk.ffk_rport = inp->inp_fport; |
| 3399 | fk.ffk_proto = (inp->inp_ip_p != 0) ? inp->inp_ip_p : |
| 3400 | (uint8_t)SOCK_PROTO(inp->inp_socket); |
| 3401 | flowidns_allocate_flowid(domain: FLOWIDNS_DOMAIN_INPCB, flow_key: &fk, flowid: &flowid); |
| 3402 | /* Insert the inp into inp_fc_tree */ |
| 3403 | lck_mtx_lock_spin(lck: &inp_fc_lck); |
| 3404 | ASSERT(inp->inp_flowhash == 0); |
| 3405 | ASSERT((inp->inp_flags2 & INP2_IN_FCTREE) == 0); |
| 3406 | inp->inp_flowhash = flowid; |
| 3407 | VERIFY(RB_INSERT(inp_fc_tree, &inp_fc_tree, inp) == NULL); |
| 3408 | inp->inp_flags2 |= INP2_IN_FCTREE; |
| 3409 | lck_mtx_unlock(lck: &inp_fc_lck); |
| 3410 | |
| 3411 | return flowid; |
| 3412 | |
| 3413 | #else /* !SKYWALK */ |
| 3414 | |
| 3415 | struct inp_flowhash_key fh __attribute__((aligned(8))); |
| 3416 | u_int32_t flowhash = 0; |
| 3417 | struct inpcb *tmp_inp = NULL; |
| 3418 | |
| 3419 | if (inp_hash_seed == 0) { |
| 3420 | inp_hash_seed = RandomULong(); |
| 3421 | } |
| 3422 | |
| 3423 | bzero(&fh, sizeof(fh)); |
| 3424 | |
| 3425 | bcopy(&inp->inp_dependladdr, &fh.infh_laddr, sizeof(fh.infh_laddr)); |
| 3426 | bcopy(&inp->inp_dependfaddr, &fh.infh_faddr, sizeof(fh.infh_faddr)); |
| 3427 | |
| 3428 | fh.infh_lport = inp->inp_lport; |
| 3429 | fh.infh_fport = inp->inp_fport; |
| 3430 | fh.infh_af = (inp->inp_vflag & INP_IPV6) ? AF_INET6 : AF_INET; |
| 3431 | fh.infh_proto = inp->inp_ip_p; |
| 3432 | fh.infh_rand1 = RandomULong(); |
| 3433 | fh.infh_rand2 = RandomULong(); |
| 3434 | |
| 3435 | try_again: |
| 3436 | flowhash = net_flowhash(&fh, sizeof(fh), inp_hash_seed); |
| 3437 | if (flowhash == 0) { |
| 3438 | /* try to get a non-zero flowhash */ |
| 3439 | inp_hash_seed = RandomULong(); |
| 3440 | goto try_again; |
| 3441 | } |
| 3442 | |
| 3443 | inp->inp_flowhash = flowhash; |
| 3444 | |
| 3445 | /* Insert the inp into inp_fc_tree */ |
| 3446 | lck_mtx_lock_spin(&inp_fc_lck); |
| 3447 | tmp_inp = RB_FIND(inp_fc_tree, &inp_fc_tree, inp); |
| 3448 | if (tmp_inp != NULL) { |
| 3449 | /* |
| 3450 | * There is a different inp with the same flowhash. |
| 3451 | * There can be a collision on flow hash but the |
| 3452 | * probability is low. Let's recompute the |
| 3453 | * flowhash. |
| 3454 | */ |
| 3455 | lck_mtx_unlock(&inp_fc_lck); |
| 3456 | /* recompute hash seed */ |
| 3457 | inp_hash_seed = RandomULong(); |
| 3458 | goto try_again; |
| 3459 | } |
| 3460 | |
| 3461 | RB_INSERT(inp_fc_tree, &inp_fc_tree, inp); |
| 3462 | inp->inp_flags2 |= INP2_IN_FCTREE; |
| 3463 | lck_mtx_unlock(&inp_fc_lck); |
| 3464 | |
| 3465 | return flowhash; |
| 3466 | |
| 3467 | #endif /* !SKYWALK */ |
| 3468 | } |
| 3469 | |
| 3470 | void |
| 3471 | inp_flowadv(uint32_t flowhash) |
| 3472 | { |
| 3473 | struct inpcb *inp; |
| 3474 | |
| 3475 | inp = inp_fc_getinp(flowhash, 0); |
| 3476 | |
| 3477 | if (inp == NULL) { |
| 3478 | return; |
| 3479 | } |
| 3480 | inp_fc_feedback(inp); |
| 3481 | } |
| 3482 | |
| 3483 | /* |
| 3484 | * Function to compare inp_fc_entries in inp flow control tree |
| 3485 | */ |
| 3486 | static inline int |
| 3487 | infc_cmp(const struct inpcb *inp1, const struct inpcb *inp2) |
| 3488 | { |
| 3489 | return memcmp(s1: &(inp1->inp_flowhash), s2: &(inp2->inp_flowhash), |
| 3490 | n: sizeof(inp1->inp_flowhash)); |
| 3491 | } |
| 3492 | |
| 3493 | static struct inpcb * |
| 3494 | inp_fc_getinp(u_int32_t flowhash, u_int32_t flags) |
| 3495 | { |
| 3496 | struct inpcb *inp = NULL; |
| 3497 | int locked = (flags & INPFC_SOLOCKED) ? 1 : 0; |
| 3498 | |
| 3499 | lck_mtx_lock_spin(lck: &inp_fc_lck); |
| 3500 | key_inp.inp_flowhash = flowhash; |
| 3501 | inp = RB_FIND(inp_fc_tree, &inp_fc_tree, &key_inp); |
| 3502 | if (inp == NULL) { |
| 3503 | /* inp is not present, return */ |
| 3504 | lck_mtx_unlock(lck: &inp_fc_lck); |
| 3505 | return NULL; |
| 3506 | } |
| 3507 | |
| 3508 | if (flags & INPFC_REMOVE) { |
| 3509 | ASSERT((inp->inp_flags2 & INP2_IN_FCTREE) != 0); |
| 3510 | lck_mtx_convert_spin(lck: &inp_fc_lck); |
| 3511 | RB_REMOVE(inp_fc_tree, &inp_fc_tree, inp); |
| 3512 | bzero(s: &(inp->infc_link), n: sizeof(inp->infc_link)); |
| 3513 | #if SKYWALK |
| 3514 | VERIFY(inp->inp_flowhash != 0); |
| 3515 | flowidns_release_flowid(flowid: inp->inp_flowhash); |
| 3516 | inp->inp_flowhash = 0; |
| 3517 | #endif /* !SKYWALK */ |
| 3518 | inp->inp_flags2 &= ~INP2_IN_FCTREE; |
| 3519 | lck_mtx_unlock(lck: &inp_fc_lck); |
| 3520 | return NULL; |
| 3521 | } |
| 3522 | |
| 3523 | if (in_pcb_checkstate(pcb: inp, WNT_ACQUIRE, locked) == WNT_STOPUSING) { |
| 3524 | inp = NULL; |
| 3525 | } |
| 3526 | lck_mtx_unlock(lck: &inp_fc_lck); |
| 3527 | |
| 3528 | return inp; |
| 3529 | } |
| 3530 | |
| 3531 | static void |
| 3532 | inp_fc_feedback(struct inpcb *inp) |
| 3533 | { |
| 3534 | struct socket *so = inp->inp_socket; |
| 3535 | |
| 3536 | /* we already hold a want_cnt on this inp, socket can't be null */ |
| 3537 | VERIFY(so != NULL); |
| 3538 | socket_lock(so, refcount: 1); |
| 3539 | |
| 3540 | if (in_pcb_checkstate(pcb: inp, WNT_RELEASE, locked: 1) == WNT_STOPUSING) { |
| 3541 | socket_unlock(so, refcount: 1); |
| 3542 | return; |
| 3543 | } |
| 3544 | |
| 3545 | if (inp->inp_sndinprog_cnt > 0) { |
| 3546 | inp->inp_flags |= INP_FC_FEEDBACK; |
| 3547 | } |
| 3548 | |
| 3549 | /* |
| 3550 | * Return if the connection is not in flow-controlled state. |
| 3551 | * This can happen if the connection experienced |
| 3552 | * loss while it was in flow controlled state |
| 3553 | */ |
| 3554 | if (!INP_WAIT_FOR_IF_FEEDBACK(inp)) { |
| 3555 | socket_unlock(so, refcount: 1); |
| 3556 | return; |
| 3557 | } |
| 3558 | inp_reset_fc_state(inp); |
| 3559 | |
| 3560 | if (SOCK_TYPE(so) == SOCK_STREAM) { |
| 3561 | inp_fc_unthrottle_tcp(inp); |
| 3562 | } |
| 3563 | |
| 3564 | socket_unlock(so, refcount: 1); |
| 3565 | } |
| 3566 | |
| 3567 | static void |
| 3568 | inp_reset_fc_timerstat(struct inpcb *inp) |
| 3569 | { |
| 3570 | uint64_t now; |
| 3571 | |
| 3572 | if (inp->inp_fadv_start_time == 0) { |
| 3573 | return; |
| 3574 | } |
| 3575 | |
| 3576 | now = net_uptime_us(); |
| 3577 | ASSERT(now >= inp->inp_fadv_start_time); |
| 3578 | |
| 3579 | inp->inp_fadv_total_time += (now - inp->inp_fadv_start_time); |
| 3580 | inp->inp_fadv_cnt++; |
| 3581 | |
| 3582 | inp->inp_fadv_start_time = 0; |
| 3583 | } |
| 3584 | |
| 3585 | static void |
| 3586 | inp_set_fc_timerstat(struct inpcb *inp) |
| 3587 | { |
| 3588 | if (inp->inp_fadv_start_time != 0) { |
| 3589 | return; |
| 3590 | } |
| 3591 | |
| 3592 | inp->inp_fadv_start_time = net_uptime_us(); |
| 3593 | } |
| 3594 | |
| 3595 | void |
| 3596 | inp_reset_fc_state(struct inpcb *inp) |
| 3597 | { |
| 3598 | struct socket *so = inp->inp_socket; |
| 3599 | int suspended = (INP_IS_FLOW_SUSPENDED(inp)) ? 1 : 0; |
| 3600 | int needwakeup = (INP_WAIT_FOR_IF_FEEDBACK(inp)) ? 1 : 0; |
| 3601 | |
| 3602 | inp->inp_flags &= ~(INP_FLOW_CONTROLLED | INP_FLOW_SUSPENDED); |
| 3603 | |
| 3604 | inp_reset_fc_timerstat(inp); |
| 3605 | |
| 3606 | if (suspended) { |
| 3607 | so->so_flags &= ~(SOF_SUSPENDED); |
| 3608 | soevent(so, hint: (SO_FILT_HINT_LOCKED | SO_FILT_HINT_RESUME)); |
| 3609 | } |
| 3610 | |
| 3611 | /* Give a write wakeup to unblock the socket */ |
| 3612 | if (needwakeup) { |
| 3613 | sowwakeup(so); |
| 3614 | } |
| 3615 | } |
| 3616 | |
| 3617 | int |
| 3618 | inp_set_fc_state(struct inpcb *inp, int advcode) |
| 3619 | { |
| 3620 | boolean_t is_flow_controlled = INP_WAIT_FOR_IF_FEEDBACK(inp); |
| 3621 | struct inpcb *tmp_inp = NULL; |
| 3622 | /* |
| 3623 | * If there was a feedback from the interface when |
| 3624 | * send operation was in progress, we should ignore |
| 3625 | * this flow advisory to avoid a race between setting |
| 3626 | * flow controlled state and receiving feedback from |
| 3627 | * the interface |
| 3628 | */ |
| 3629 | if (inp->inp_flags & INP_FC_FEEDBACK) { |
| 3630 | return 0; |
| 3631 | } |
| 3632 | |
| 3633 | inp->inp_flags &= ~(INP_FLOW_CONTROLLED | INP_FLOW_SUSPENDED); |
| 3634 | if ((tmp_inp = inp_fc_getinp(flowhash: inp->inp_flowhash, |
| 3635 | INPFC_SOLOCKED)) != NULL) { |
| 3636 | if (in_pcb_checkstate(pcb: tmp_inp, WNT_RELEASE, locked: 1) == WNT_STOPUSING) { |
| 3637 | goto exit_reset; |
| 3638 | } |
| 3639 | VERIFY(tmp_inp == inp); |
| 3640 | switch (advcode) { |
| 3641 | case FADV_FLOW_CONTROLLED: |
| 3642 | inp->inp_flags |= INP_FLOW_CONTROLLED; |
| 3643 | inp_set_fc_timerstat(inp); |
| 3644 | break; |
| 3645 | case FADV_SUSPENDED: |
| 3646 | inp->inp_flags |= INP_FLOW_SUSPENDED; |
| 3647 | inp_set_fc_timerstat(inp); |
| 3648 | |
| 3649 | soevent(so: inp->inp_socket, |
| 3650 | hint: (SO_FILT_HINT_LOCKED | SO_FILT_HINT_SUSPEND)); |
| 3651 | |
| 3652 | /* Record the fact that suspend event was sent */ |
| 3653 | inp->inp_socket->so_flags |= SOF_SUSPENDED; |
| 3654 | break; |
| 3655 | } |
| 3656 | |
| 3657 | if (!is_flow_controlled && SOCK_TYPE(inp->inp_socket) == SOCK_STREAM) { |
| 3658 | inp_fc_throttle_tcp(inp); |
| 3659 | } |
| 3660 | return 1; |
| 3661 | } |
| 3662 | |
| 3663 | exit_reset: |
| 3664 | inp_reset_fc_timerstat(inp); |
| 3665 | |
| 3666 | return 0; |
| 3667 | } |
| 3668 | |
| 3669 | /* |
| 3670 | * Handler for SO_FLUSH socket option. |
| 3671 | */ |
| 3672 | int |
| 3673 | inp_flush(struct inpcb *inp, int optval) |
| 3674 | { |
| 3675 | u_int32_t flowhash = inp->inp_flowhash; |
| 3676 | struct ifnet *rtifp, *oifp; |
| 3677 | |
| 3678 | /* Either all classes or one of the valid ones */ |
| 3679 | if (optval != SO_TC_ALL && !SO_VALID_TC(optval)) { |
| 3680 | return EINVAL; |
| 3681 | } |
| 3682 | |
| 3683 | /* We need a flow hash for identification */ |
| 3684 | if (flowhash == 0) { |
| 3685 | return 0; |
| 3686 | } |
| 3687 | |
| 3688 | /* Grab the interfaces from the route and pcb */ |
| 3689 | rtifp = ((inp->inp_route.ro_rt != NULL) ? |
| 3690 | inp->inp_route.ro_rt->rt_ifp : NULL); |
| 3691 | oifp = inp->inp_last_outifp; |
| 3692 | |
| 3693 | if (rtifp != NULL) { |
| 3694 | if_qflush_sc(rtifp, so_tc2msc(optval), flowhash, NULL, NULL, 0); |
| 3695 | } |
| 3696 | if (oifp != NULL && oifp != rtifp) { |
| 3697 | if_qflush_sc(oifp, so_tc2msc(optval), flowhash, NULL, NULL, 0); |
| 3698 | } |
| 3699 | |
| 3700 | return 0; |
| 3701 | } |
| 3702 | |
| 3703 | /* |
| 3704 | * Clear the INP_INADDR_ANY flag (special case for PPP only) |
| 3705 | */ |
| 3706 | void |
| 3707 | inp_clear_INP_INADDR_ANY(struct socket *so) |
| 3708 | { |
| 3709 | struct inpcb *inp = NULL; |
| 3710 | |
| 3711 | socket_lock(so, refcount: 1); |
| 3712 | inp = sotoinpcb(so); |
| 3713 | if (inp) { |
| 3714 | inp->inp_flags &= ~INP_INADDR_ANY; |
| 3715 | } |
| 3716 | socket_unlock(so, refcount: 1); |
| 3717 | } |
| 3718 | |
| 3719 | void |
| 3720 | inp_get_soprocinfo(struct inpcb *inp, struct so_procinfo *soprocinfo) |
| 3721 | { |
| 3722 | struct socket *so = inp->inp_socket; |
| 3723 | |
| 3724 | soprocinfo->spi_pid = so->last_pid; |
| 3725 | strlcpy(dst: &soprocinfo->spi_proc_name[0], src: &inp->inp_last_proc_name[0], |
| 3726 | n: sizeof(soprocinfo->spi_proc_name)); |
| 3727 | if (so->last_pid != 0) { |
| 3728 | uuid_copy(dst: soprocinfo->spi_uuid, src: so->last_uuid); |
| 3729 | } |
| 3730 | /* |
| 3731 | * When not delegated, the effective pid is the same as the real pid |
| 3732 | */ |
| 3733 | if (so->so_flags & SOF_DELEGATED) { |
| 3734 | soprocinfo->spi_delegated = 1; |
| 3735 | soprocinfo->spi_epid = so->e_pid; |
| 3736 | uuid_copy(dst: soprocinfo->spi_euuid, src: so->e_uuid); |
| 3737 | } else { |
| 3738 | soprocinfo->spi_delegated = 0; |
| 3739 | soprocinfo->spi_epid = so->last_pid; |
| 3740 | } |
| 3741 | strlcpy(dst: &soprocinfo->spi_e_proc_name[0], src: &inp->inp_e_proc_name[0], |
| 3742 | n: sizeof(soprocinfo->spi_e_proc_name)); |
| 3743 | } |
| 3744 | |
| 3745 | int |
| 3746 | inp_findinpcb_procinfo(struct inpcbinfo *pcbinfo, uint32_t flowhash, |
| 3747 | struct so_procinfo *soprocinfo) |
| 3748 | { |
| 3749 | struct inpcb *inp = NULL; |
| 3750 | int found = 0; |
| 3751 | |
| 3752 | bzero(s: soprocinfo, n: sizeof(struct so_procinfo)); |
| 3753 | |
| 3754 | if (!flowhash) { |
| 3755 | return -1; |
| 3756 | } |
| 3757 | |
| 3758 | lck_rw_lock_shared(lck: &pcbinfo->ipi_lock); |
| 3759 | LIST_FOREACH(inp, pcbinfo->ipi_listhead, inp_list) { |
| 3760 | if (inp->inp_state != INPCB_STATE_DEAD && |
| 3761 | inp->inp_socket != NULL && |
| 3762 | inp->inp_flowhash == flowhash) { |
| 3763 | found = 1; |
| 3764 | inp_get_soprocinfo(inp, soprocinfo); |
| 3765 | break; |
| 3766 | } |
| 3767 | } |
| 3768 | lck_rw_done(lck: &pcbinfo->ipi_lock); |
| 3769 | |
| 3770 | return found; |
| 3771 | } |
| 3772 | |
| 3773 | #if CONFIG_PROC_UUID_POLICY |
| 3774 | static void |
| 3775 | inp_update_cellular_policy(struct inpcb *inp, boolean_t set) |
| 3776 | { |
| 3777 | struct socket *so = inp->inp_socket; |
| 3778 | int before, after; |
| 3779 | |
| 3780 | VERIFY(so != NULL); |
| 3781 | VERIFY(inp->inp_state != INPCB_STATE_DEAD); |
| 3782 | |
| 3783 | before = INP_NO_CELLULAR(inp); |
| 3784 | if (set) { |
| 3785 | inp_set_nocellular(inp); |
| 3786 | } else { |
| 3787 | inp_clear_nocellular(inp); |
| 3788 | } |
| 3789 | after = INP_NO_CELLULAR(inp); |
| 3790 | if (net_io_policy_log && (before != after)) { |
| 3791 | static const char *ok = "OK" ; |
| 3792 | static const char *nok = "NOACCESS" ; |
| 3793 | uuid_string_t euuid_buf; |
| 3794 | pid_t epid; |
| 3795 | |
| 3796 | if (so->so_flags & SOF_DELEGATED) { |
| 3797 | uuid_unparse(uu: so->e_uuid, out: euuid_buf); |
| 3798 | epid = so->e_pid; |
| 3799 | } else { |
| 3800 | uuid_unparse(uu: so->last_uuid, out: euuid_buf); |
| 3801 | epid = so->last_pid; |
| 3802 | } |
| 3803 | |
| 3804 | /* allow this socket to generate another notification event */ |
| 3805 | so->so_ifdenied_notifies = 0; |
| 3806 | |
| 3807 | log(LOG_DEBUG, "%s: so %llu [%d,%d] epid %d " |
| 3808 | "euuid %s%s %s->%s\n" , __func__, |
| 3809 | so->so_gencnt, SOCK_DOM(so), |
| 3810 | SOCK_TYPE(so), epid, euuid_buf, |
| 3811 | (so->so_flags & SOF_DELEGATED) ? |
| 3812 | " [delegated]" : "" , |
| 3813 | ((before < after) ? ok : nok), |
| 3814 | ((before < after) ? nok : ok)); |
| 3815 | } |
| 3816 | } |
| 3817 | |
| 3818 | #if NECP |
| 3819 | static void |
| 3820 | inp_update_necp_want_app_policy(struct inpcb *inp, boolean_t set) |
| 3821 | { |
| 3822 | struct socket *so = inp->inp_socket; |
| 3823 | int before, after; |
| 3824 | |
| 3825 | VERIFY(so != NULL); |
| 3826 | VERIFY(inp->inp_state != INPCB_STATE_DEAD); |
| 3827 | |
| 3828 | before = (inp->inp_flags2 & INP2_WANT_APP_POLICY); |
| 3829 | if (set) { |
| 3830 | inp_set_want_app_policy(inp); |
| 3831 | } else { |
| 3832 | inp_clear_want_app_policy(inp); |
| 3833 | } |
| 3834 | after = (inp->inp_flags2 & INP2_WANT_APP_POLICY); |
| 3835 | if (net_io_policy_log && (before != after)) { |
| 3836 | static const char *wanted = "WANTED" ; |
| 3837 | static const char *unwanted = "UNWANTED" ; |
| 3838 | uuid_string_t euuid_buf; |
| 3839 | pid_t epid; |
| 3840 | |
| 3841 | if (so->so_flags & SOF_DELEGATED) { |
| 3842 | uuid_unparse(uu: so->e_uuid, out: euuid_buf); |
| 3843 | epid = so->e_pid; |
| 3844 | } else { |
| 3845 | uuid_unparse(uu: so->last_uuid, out: euuid_buf); |
| 3846 | epid = so->last_pid; |
| 3847 | } |
| 3848 | |
| 3849 | log(LOG_DEBUG, "%s: so %llu [%d,%d] epid %d " |
| 3850 | "euuid %s%s %s->%s\n" , __func__, |
| 3851 | so->so_gencnt, SOCK_DOM(so), |
| 3852 | SOCK_TYPE(so), epid, euuid_buf, |
| 3853 | (so->so_flags & SOF_DELEGATED) ? |
| 3854 | " [delegated]" : "" , |
| 3855 | ((before < after) ? unwanted : wanted), |
| 3856 | ((before < after) ? wanted : unwanted)); |
| 3857 | } |
| 3858 | } |
| 3859 | #endif /* NECP */ |
| 3860 | #endif /* !CONFIG_PROC_UUID_POLICY */ |
| 3861 | |
| 3862 | #if NECP |
| 3863 | void |
| 3864 | inp_update_necp_policy(struct inpcb *inp, struct sockaddr *override_local_addr, struct sockaddr *override_remote_addr, u_int override_bound_interface) |
| 3865 | { |
| 3866 | necp_socket_find_policy_match(inp, override_local_addr, override_remote_addr, override_bound_interface); |
| 3867 | if (necp_socket_should_rescope(inp) && |
| 3868 | inp->inp_lport == 0 && |
| 3869 | inp->inp_laddr.s_addr == INADDR_ANY && |
| 3870 | IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr)) { |
| 3871 | // If we should rescope, and the socket is not yet bound |
| 3872 | inp_bindif(inp, ifscope: necp_socket_get_rescope_if_index(inp), NULL); |
| 3873 | inp->inp_flags2 |= INP2_SCOPED_BY_NECP; |
| 3874 | } |
| 3875 | } |
| 3876 | #endif /* NECP */ |
| 3877 | |
| 3878 | int |
| 3879 | inp_update_policy(struct inpcb *inp) |
| 3880 | { |
| 3881 | #if CONFIG_PROC_UUID_POLICY |
| 3882 | struct socket *so = inp->inp_socket; |
| 3883 | uint32_t pflags = 0; |
| 3884 | int32_t ogencnt; |
| 3885 | int err = 0; |
| 3886 | uint8_t *lookup_uuid = NULL; |
| 3887 | |
| 3888 | if (!net_io_policy_uuid || |
| 3889 | so == NULL || inp->inp_state == INPCB_STATE_DEAD) { |
| 3890 | return 0; |
| 3891 | } |
| 3892 | |
| 3893 | /* |
| 3894 | * Kernel-created sockets that aren't delegating other sockets |
| 3895 | * are currently exempted from UUID policy checks. |
| 3896 | */ |
| 3897 | if (so->last_pid == 0 && !(so->so_flags & SOF_DELEGATED)) { |
| 3898 | return 0; |
| 3899 | } |
| 3900 | |
| 3901 | #if defined(XNU_TARGET_OS_OSX) |
| 3902 | if (so->so_rpid > 0) { |
| 3903 | lookup_uuid = so->so_ruuid; |
| 3904 | ogencnt = so->so_policy_gencnt; |
| 3905 | err = proc_uuid_policy_lookup(uuid: lookup_uuid, flags: &pflags, gencount: &so->so_policy_gencnt); |
| 3906 | } |
| 3907 | #endif |
| 3908 | if (lookup_uuid == NULL || err == ENOENT) { |
| 3909 | lookup_uuid = ((so->so_flags & SOF_DELEGATED) ? so->e_uuid : so->last_uuid); |
| 3910 | ogencnt = so->so_policy_gencnt; |
| 3911 | err = proc_uuid_policy_lookup(uuid: lookup_uuid, flags: &pflags, gencount: &so->so_policy_gencnt); |
| 3912 | } |
| 3913 | |
| 3914 | /* |
| 3915 | * Discard cached generation count if the entry is gone (ENOENT), |
| 3916 | * so that we go thru the checks below. |
| 3917 | */ |
| 3918 | if (err == ENOENT && ogencnt != 0) { |
| 3919 | so->so_policy_gencnt = 0; |
| 3920 | } |
| 3921 | |
| 3922 | /* |
| 3923 | * If the generation count has changed, inspect the policy flags |
| 3924 | * and act accordingly. If a policy flag was previously set and |
| 3925 | * the UUID is no longer present in the table (ENOENT), treat it |
| 3926 | * as if the flag has been cleared. |
| 3927 | */ |
| 3928 | if ((err == 0 || err == ENOENT) && ogencnt != so->so_policy_gencnt) { |
| 3929 | /* update cellular policy for this socket */ |
| 3930 | if (err == 0 && (pflags & PROC_UUID_NO_CELLULAR)) { |
| 3931 | inp_update_cellular_policy(inp, TRUE); |
| 3932 | } else if (!(pflags & PROC_UUID_NO_CELLULAR)) { |
| 3933 | inp_update_cellular_policy(inp, FALSE); |
| 3934 | } |
| 3935 | #if NECP |
| 3936 | /* update necp want app policy for this socket */ |
| 3937 | if (err == 0 && (pflags & PROC_UUID_NECP_APP_POLICY)) { |
| 3938 | inp_update_necp_want_app_policy(inp, TRUE); |
| 3939 | } else if (!(pflags & PROC_UUID_NECP_APP_POLICY)) { |
| 3940 | inp_update_necp_want_app_policy(inp, FALSE); |
| 3941 | } |
| 3942 | #endif /* NECP */ |
| 3943 | } |
| 3944 | |
| 3945 | return (err == ENOENT) ? 0 : err; |
| 3946 | #else /* !CONFIG_PROC_UUID_POLICY */ |
| 3947 | #pragma unused(inp) |
| 3948 | return 0; |
| 3949 | #endif /* !CONFIG_PROC_UUID_POLICY */ |
| 3950 | } |
| 3951 | |
| 3952 | unsigned int log_restricted; |
| 3953 | SYSCTL_DECL(_net_inet); |
| 3954 | SYSCTL_INT(_net_inet, OID_AUTO, log_restricted, |
| 3955 | CTLFLAG_RW | CTLFLAG_LOCKED, &log_restricted, 0, |
| 3956 | "Log network restrictions" ); |
| 3957 | |
| 3958 | |
| 3959 | /* |
| 3960 | * Called when we need to enforce policy restrictions in the input path. |
| 3961 | * |
| 3962 | * Returns TRUE if we're not allowed to receive data, otherwise FALSE. |
| 3963 | */ |
| 3964 | static boolean_t |
| 3965 | _inp_restricted_recv(struct inpcb *inp, struct ifnet *ifp) |
| 3966 | { |
| 3967 | VERIFY(inp != NULL); |
| 3968 | |
| 3969 | /* |
| 3970 | * Inbound restrictions. |
| 3971 | */ |
| 3972 | if (!sorestrictrecv) { |
| 3973 | return FALSE; |
| 3974 | } |
| 3975 | |
| 3976 | if (ifp == NULL) { |
| 3977 | return FALSE; |
| 3978 | } |
| 3979 | |
| 3980 | if (IFNET_IS_CELLULAR(ifp) && INP_NO_CELLULAR(inp)) { |
| 3981 | return TRUE; |
| 3982 | } |
| 3983 | |
| 3984 | if (IFNET_IS_EXPENSIVE(ifp) && INP_NO_EXPENSIVE(inp)) { |
| 3985 | return TRUE; |
| 3986 | } |
| 3987 | |
| 3988 | if (IFNET_IS_CONSTRAINED(ifp) && INP_NO_CONSTRAINED(inp)) { |
| 3989 | return TRUE; |
| 3990 | } |
| 3991 | |
| 3992 | if (IFNET_IS_AWDL_RESTRICTED(ifp) && !INP_AWDL_UNRESTRICTED(inp)) { |
| 3993 | return TRUE; |
| 3994 | } |
| 3995 | |
| 3996 | if (!(ifp->if_eflags & IFEF_RESTRICTED_RECV)) { |
| 3997 | return FALSE; |
| 3998 | } |
| 3999 | |
| 4000 | if (inp->inp_flags & INP_RECV_ANYIF) { |
| 4001 | return FALSE; |
| 4002 | } |
| 4003 | |
| 4004 | /* |
| 4005 | * An entitled process can use the management interface without being bound |
| 4006 | * to the interface |
| 4007 | */ |
| 4008 | if (IFNET_IS_MANAGEMENT(ifp)) { |
| 4009 | if (INP_MANAGEMENT_ALLOWED(inp)) { |
| 4010 | return FALSE; |
| 4011 | } |
| 4012 | if (if_management_verbose > 1) { |
| 4013 | os_log(OS_LOG_DEFAULT, "_inp_restricted_recv %s:%d not allowed on management interface %s" , |
| 4014 | proc_best_name(current_proc()), proc_getpid(current_proc()), |
| 4015 | ifp->if_xname); |
| 4016 | } |
| 4017 | return TRUE; |
| 4018 | } |
| 4019 | |
| 4020 | if ((inp->inp_flags & INP_BOUND_IF) && inp->inp_boundifp == ifp) { |
| 4021 | return FALSE; |
| 4022 | } |
| 4023 | |
| 4024 | if (IFNET_IS_INTCOPROC(ifp) && !INP_INTCOPROC_ALLOWED(inp)) { |
| 4025 | return TRUE; |
| 4026 | } |
| 4027 | |
| 4028 | |
| 4029 | return TRUE; |
| 4030 | } |
| 4031 | |
| 4032 | boolean_t |
| 4033 | inp_restricted_recv(struct inpcb *inp, struct ifnet *ifp) |
| 4034 | { |
| 4035 | boolean_t ret; |
| 4036 | |
| 4037 | ret = _inp_restricted_recv(inp, ifp); |
| 4038 | if (ret == TRUE && log_restricted) { |
| 4039 | printf("pid %d (%s) is unable to receive packets on %s\n" , |
| 4040 | proc_getpid(current_proc()), proc_best_name(p: current_proc()), |
| 4041 | ifp->if_xname); |
| 4042 | } |
| 4043 | return ret; |
| 4044 | } |
| 4045 | |
| 4046 | /* |
| 4047 | * Called when we need to enforce policy restrictions in the output path. |
| 4048 | * |
| 4049 | * Returns TRUE if we're not allowed to send data out, otherwise FALSE. |
| 4050 | */ |
| 4051 | static boolean_t |
| 4052 | _inp_restricted_send(struct inpcb *inp, struct ifnet *ifp) |
| 4053 | { |
| 4054 | VERIFY(inp != NULL); |
| 4055 | |
| 4056 | /* |
| 4057 | * Outbound restrictions. |
| 4058 | */ |
| 4059 | if (!sorestrictsend) { |
| 4060 | return FALSE; |
| 4061 | } |
| 4062 | |
| 4063 | if (ifp == NULL) { |
| 4064 | return FALSE; |
| 4065 | } |
| 4066 | |
| 4067 | if (IFNET_IS_CELLULAR(ifp) && INP_NO_CELLULAR(inp)) { |
| 4068 | return TRUE; |
| 4069 | } |
| 4070 | |
| 4071 | if (IFNET_IS_EXPENSIVE(ifp) && INP_NO_EXPENSIVE(inp)) { |
| 4072 | return TRUE; |
| 4073 | } |
| 4074 | |
| 4075 | if (IFNET_IS_CONSTRAINED(ifp) && INP_NO_CONSTRAINED(inp)) { |
| 4076 | return TRUE; |
| 4077 | } |
| 4078 | |
| 4079 | if (IFNET_IS_AWDL_RESTRICTED(ifp) && !INP_AWDL_UNRESTRICTED(inp)) { |
| 4080 | return TRUE; |
| 4081 | } |
| 4082 | |
| 4083 | if (IFNET_IS_MANAGEMENT(ifp)) { |
| 4084 | if (!INP_MANAGEMENT_ALLOWED(inp)) { |
| 4085 | if (if_management_verbose > 1) { |
| 4086 | os_log(OS_LOG_DEFAULT, "_inp_restricted_send %s:%d not allowed on management interface %s" , |
| 4087 | proc_best_name(current_proc()), proc_getpid(current_proc()), |
| 4088 | ifp->if_xname); |
| 4089 | } |
| 4090 | return TRUE; |
| 4091 | } |
| 4092 | } |
| 4093 | |
| 4094 | if (IFNET_IS_INTCOPROC(ifp) && !INP_INTCOPROC_ALLOWED(inp)) { |
| 4095 | return TRUE; |
| 4096 | } |
| 4097 | |
| 4098 | return FALSE; |
| 4099 | } |
| 4100 | |
| 4101 | boolean_t |
| 4102 | inp_restricted_send(struct inpcb *inp, struct ifnet *ifp) |
| 4103 | { |
| 4104 | boolean_t ret; |
| 4105 | |
| 4106 | ret = _inp_restricted_send(inp, ifp); |
| 4107 | if (ret == TRUE && log_restricted) { |
| 4108 | printf("pid %d (%s) is unable to transmit packets on %s\n" , |
| 4109 | proc_getpid(current_proc()), proc_best_name(p: current_proc()), |
| 4110 | ifp->if_xname); |
| 4111 | } |
| 4112 | return ret; |
| 4113 | } |
| 4114 | |
| 4115 | inline void |
| 4116 | inp_count_sndbytes(struct inpcb *inp, u_int32_t th_ack) |
| 4117 | { |
| 4118 | struct ifnet *ifp = inp->inp_last_outifp; |
| 4119 | struct socket *so = inp->inp_socket; |
| 4120 | if (ifp != NULL && !(so->so_flags & SOF_MP_SUBFLOW) && |
| 4121 | (ifp->if_type == IFT_CELLULAR || IFNET_IS_WIFI(ifp))) { |
| 4122 | int32_t unsent; |
| 4123 | |
| 4124 | so->so_snd.sb_flags |= SB_SNDBYTE_CNT; |
| 4125 | |
| 4126 | /* |
| 4127 | * There can be data outstanding before the connection |
| 4128 | * becomes established -- TFO case |
| 4129 | */ |
| 4130 | if (so->so_snd.sb_cc > 0) { |
| 4131 | inp_incr_sndbytes_total(so, so->so_snd.sb_cc); |
| 4132 | } |
| 4133 | |
| 4134 | unsent = inp_get_sndbytes_allunsent(so, th_ack); |
| 4135 | if (unsent > 0) { |
| 4136 | inp_incr_sndbytes_unsent(so, unsent); |
| 4137 | } |
| 4138 | } |
| 4139 | } |
| 4140 | |
| 4141 | inline void |
| 4142 | inp_incr_sndbytes_total(struct socket *so, int32_t len) |
| 4143 | { |
| 4144 | struct inpcb *inp = (struct inpcb *)so->so_pcb; |
| 4145 | struct ifnet *ifp = inp->inp_last_outifp; |
| 4146 | |
| 4147 | if (ifp != NULL) { |
| 4148 | VERIFY(ifp->if_sndbyte_total >= 0); |
| 4149 | OSAddAtomic64(len, &ifp->if_sndbyte_total); |
| 4150 | } |
| 4151 | } |
| 4152 | |
| 4153 | inline void |
| 4154 | inp_decr_sndbytes_total(struct socket *so, int32_t len) |
| 4155 | { |
| 4156 | struct inpcb *inp = (struct inpcb *)so->so_pcb; |
| 4157 | struct ifnet *ifp = inp->inp_last_outifp; |
| 4158 | |
| 4159 | if (ifp != NULL) { |
| 4160 | if (ifp->if_sndbyte_total >= len) { |
| 4161 | OSAddAtomic64(-len, &ifp->if_sndbyte_total); |
| 4162 | } else { |
| 4163 | ifp->if_sndbyte_total = 0; |
| 4164 | } |
| 4165 | } |
| 4166 | } |
| 4167 | |
| 4168 | inline void |
| 4169 | inp_incr_sndbytes_unsent(struct socket *so, int32_t len) |
| 4170 | { |
| 4171 | struct inpcb *inp = (struct inpcb *)so->so_pcb; |
| 4172 | struct ifnet *ifp = inp->inp_last_outifp; |
| 4173 | |
| 4174 | if (ifp != NULL) { |
| 4175 | VERIFY(ifp->if_sndbyte_unsent >= 0); |
| 4176 | OSAddAtomic64(len, &ifp->if_sndbyte_unsent); |
| 4177 | } |
| 4178 | } |
| 4179 | |
| 4180 | inline void |
| 4181 | inp_decr_sndbytes_unsent(struct socket *so, int32_t len) |
| 4182 | { |
| 4183 | if (so == NULL || !(so->so_snd.sb_flags & SB_SNDBYTE_CNT)) { |
| 4184 | return; |
| 4185 | } |
| 4186 | |
| 4187 | struct inpcb *inp = (struct inpcb *)so->so_pcb; |
| 4188 | struct ifnet *ifp = inp->inp_last_outifp; |
| 4189 | |
| 4190 | if (ifp != NULL) { |
| 4191 | if (ifp->if_sndbyte_unsent >= len) { |
| 4192 | OSAddAtomic64(-len, &ifp->if_sndbyte_unsent); |
| 4193 | } else { |
| 4194 | ifp->if_sndbyte_unsent = 0; |
| 4195 | } |
| 4196 | } |
| 4197 | } |
| 4198 | |
| 4199 | inline void |
| 4200 | inp_decr_sndbytes_allunsent(struct socket *so, u_int32_t th_ack) |
| 4201 | { |
| 4202 | int32_t len; |
| 4203 | |
| 4204 | if (so == NULL || !(so->so_snd.sb_flags & SB_SNDBYTE_CNT)) { |
| 4205 | return; |
| 4206 | } |
| 4207 | |
| 4208 | len = inp_get_sndbytes_allunsent(so, th_ack); |
| 4209 | inp_decr_sndbytes_unsent(so, len); |
| 4210 | } |
| 4211 | |
| 4212 | #if SKYWALK |
| 4213 | inline void |
| 4214 | inp_update_netns_flags(struct socket *so) |
| 4215 | { |
| 4216 | struct inpcb *inp; |
| 4217 | uint32_t set_flags = 0; |
| 4218 | uint32_t clear_flags = 0; |
| 4219 | |
| 4220 | if (!(SOCK_CHECK_DOM(so, AF_INET) || SOCK_CHECK_DOM(so, AF_INET6))) { |
| 4221 | return; |
| 4222 | } |
| 4223 | |
| 4224 | inp = sotoinpcb(so); |
| 4225 | |
| 4226 | if (inp == NULL) { |
| 4227 | return; |
| 4228 | } |
| 4229 | |
| 4230 | if (!NETNS_TOKEN_VALID(&inp->inp_netns_token)) { |
| 4231 | return; |
| 4232 | } |
| 4233 | |
| 4234 | if (so->so_options & SO_NOWAKEFROMSLEEP) { |
| 4235 | set_flags |= NETNS_NOWAKEFROMSLEEP; |
| 4236 | } else { |
| 4237 | clear_flags |= NETNS_NOWAKEFROMSLEEP; |
| 4238 | } |
| 4239 | |
| 4240 | if (inp->inp_flags & INP_RECV_ANYIF) { |
| 4241 | set_flags |= NETNS_RECVANYIF; |
| 4242 | } else { |
| 4243 | clear_flags |= NETNS_RECVANYIF; |
| 4244 | } |
| 4245 | |
| 4246 | if (so->so_flags1 & SOF1_EXTEND_BK_IDLE_WANTED) { |
| 4247 | set_flags |= NETNS_EXTBGIDLE; |
| 4248 | } else { |
| 4249 | clear_flags |= NETNS_EXTBGIDLE; |
| 4250 | } |
| 4251 | |
| 4252 | netns_change_flags(token: &inp->inp_netns_token, set_flags, clear_flags); |
| 4253 | } |
| 4254 | #endif /* SKYWALK */ |
| 4255 | |
| 4256 | inline void |
| 4257 | inp_set_activity_bitmap(struct inpcb *inp) |
| 4258 | { |
| 4259 | in_stat_set_activity_bitmap(activity: &inp->inp_nw_activity, now: net_uptime()); |
| 4260 | } |
| 4261 | |
| 4262 | inline void |
| 4263 | inp_get_activity_bitmap(struct inpcb *inp, activity_bitmap_t *ab) |
| 4264 | { |
| 4265 | bcopy(src: &inp->inp_nw_activity, dst: ab, n: sizeof(*ab)); |
| 4266 | } |
| 4267 | |
| 4268 | inline void |
| 4269 | inp_clear_activity_bitmap(struct inpcb *inp) |
| 4270 | { |
| 4271 | in_stat_clear_activity_bitmap(activity: &inp->inp_nw_activity); |
| 4272 | } |
| 4273 | |
| 4274 | void |
| 4275 | inp_update_last_owner(struct socket *so, struct proc *p, struct proc *ep) |
| 4276 | { |
| 4277 | struct inpcb *inp = (struct inpcb *)so->so_pcb; |
| 4278 | |
| 4279 | if (inp == NULL) { |
| 4280 | return; |
| 4281 | } |
| 4282 | |
| 4283 | if (p != NULL) { |
| 4284 | strlcpy(dst: &inp->inp_last_proc_name[0], src: proc_name_address(p), n: sizeof(inp->inp_last_proc_name)); |
| 4285 | } |
| 4286 | if (so->so_flags & SOF_DELEGATED) { |
| 4287 | if (ep != NULL) { |
| 4288 | strlcpy(dst: &inp->inp_e_proc_name[0], src: proc_name_address(ep), n: sizeof(inp->inp_e_proc_name)); |
| 4289 | } else { |
| 4290 | inp->inp_e_proc_name[0] = 0; |
| 4291 | } |
| 4292 | } else { |
| 4293 | inp->inp_e_proc_name[0] = 0; |
| 4294 | } |
| 4295 | } |
| 4296 | |
| 4297 | void |
| 4298 | inp_copy_last_owner(struct socket *so, struct socket *head) |
| 4299 | { |
| 4300 | struct inpcb *inp = (struct inpcb *)so->so_pcb; |
| 4301 | struct inpcb *head_inp = (struct inpcb *)head->so_pcb; |
| 4302 | |
| 4303 | if (inp == NULL || head_inp == NULL) { |
| 4304 | return; |
| 4305 | } |
| 4306 | |
| 4307 | strlcpy(dst: &inp->inp_last_proc_name[0], src: &head_inp->inp_last_proc_name[0], n: sizeof(inp->inp_last_proc_name)); |
| 4308 | strlcpy(dst: &inp->inp_e_proc_name[0], src: &head_inp->inp_e_proc_name[0], n: sizeof(inp->inp_e_proc_name)); |
| 4309 | } |
| 4310 | |
| 4311 | static int |
| 4312 | in_check_management_interface_proc_callout(proc_t proc, void *arg __unused) |
| 4313 | { |
| 4314 | struct fileproc *fp = NULL; |
| 4315 | task_t task = proc_task(proc); |
| 4316 | bool allowed = false; |
| 4317 | |
| 4318 | if (IOTaskHasEntitlement(task, INTCOPROC_RESTRICTED_ENTITLEMENT) == true |
| 4319 | || IOTaskHasEntitlement(task, MANAGEMENT_DATA_ENTITLEMENT) == true |
| 4320 | #if DEBUG || DEVELOPMENT |
| 4321 | || IOTaskHasEntitlement(task, INTCOPROC_RESTRICTED_ENTITLEMENT_DEVELOPMENT) == true |
| 4322 | || IOTaskHasEntitlement(task, MANAGEMENT_DATA_ENTITLEMENT_DEVELOPMENT) == true |
| 4323 | #endif /* DEBUG || DEVELOPMENT */ |
| 4324 | ) { |
| 4325 | allowed = true; |
| 4326 | } |
| 4327 | if (allowed == false && management_data_unrestricted == false) { |
| 4328 | return PROC_RETURNED; |
| 4329 | } |
| 4330 | |
| 4331 | proc_fdlock(proc); |
| 4332 | fdt_foreach(fp, proc) { |
| 4333 | struct fileglob *fg = fp->fp_glob; |
| 4334 | struct socket *so; |
| 4335 | struct inpcb *inp; |
| 4336 | |
| 4337 | if (FILEGLOB_DTYPE(fg) != DTYPE_SOCKET) { |
| 4338 | continue; |
| 4339 | } |
| 4340 | |
| 4341 | so = (struct socket *)fp_get_data(fp); |
| 4342 | if (SOCK_DOM(so) != PF_INET && SOCK_DOM(so) != PF_INET6) { |
| 4343 | continue; |
| 4344 | } |
| 4345 | |
| 4346 | inp = (struct inpcb *)so->so_pcb; |
| 4347 | |
| 4348 | if (in_pcb_checkstate(pcb: inp, WNT_ACQUIRE, locked: 0) == WNT_STOPUSING) { |
| 4349 | continue; |
| 4350 | } |
| 4351 | |
| 4352 | socket_lock(so, refcount: 1); |
| 4353 | |
| 4354 | if (in_pcb_checkstate(pcb: inp, WNT_RELEASE, locked: 1) == WNT_STOPUSING) { |
| 4355 | socket_unlock(so, refcount: 1); |
| 4356 | continue; |
| 4357 | } |
| 4358 | inp->inp_flags2 |= INP2_MANAGEMENT_ALLOWED; |
| 4359 | inp->inp_flags2 |= INP2_MANAGEMENT_CHECKED; |
| 4360 | |
| 4361 | socket_unlock(so, refcount: 1); |
| 4362 | } |
| 4363 | proc_fdunlock(proc); |
| 4364 | |
| 4365 | return PROC_RETURNED; |
| 4366 | } |
| 4367 | |
| 4368 | static bool in_management_interface_checked = false; |
| 4369 | |
| 4370 | static void |
| 4371 | in_management_interface_event_callback(struct nwk_wq_entry *nwk_item) |
| 4372 | { |
| 4373 | kfree_type(struct nwk_wq_entry, nwk_item); |
| 4374 | |
| 4375 | if (in_management_interface_checked == true) { |
| 4376 | return; |
| 4377 | } |
| 4378 | in_management_interface_checked = true; |
| 4379 | |
| 4380 | proc_iterate(PROC_ALLPROCLIST, |
| 4381 | callout: in_check_management_interface_proc_callout, |
| 4382 | NULL, NULL, NULL); |
| 4383 | } |
| 4384 | |
| 4385 | void |
| 4386 | in_management_interface_check(void) |
| 4387 | { |
| 4388 | struct nwk_wq_entry *nwk_item; |
| 4389 | |
| 4390 | if (if_management_interface_check_needed == false || |
| 4391 | in_management_interface_checked == true) { |
| 4392 | return; |
| 4393 | } |
| 4394 | |
| 4395 | nwk_item = kalloc_type(struct nwk_wq_entry, |
| 4396 | Z_WAITOK | Z_ZERO | Z_NOFAIL); |
| 4397 | |
| 4398 | nwk_item->func = in_management_interface_event_callback; |
| 4399 | |
| 4400 | nwk_wq_enqueue(nwk_item); |
| 4401 | } |
| 4402 | |