1 | /* |
2 | * Copyright (c) 2000-2021 Apple Inc. All rights reserved. |
3 | * |
4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ |
5 | * |
6 | * This file contains Original Code and/or Modifications of Original Code |
7 | * as defined in and that are subject to the Apple Public Source License |
8 | * Version 2.0 (the 'License'). You may not use this file except in |
9 | * compliance with the License. The rights granted to you under the License |
10 | * may not be used to create, or enable the creation or redistribution of, |
11 | * unlawful or unlicensed copies of an Apple operating system, or to |
12 | * circumvent, violate, or enable the circumvention or violation of, any |
13 | * terms of an Apple operating system software license agreement. |
14 | * |
15 | * Please obtain a copy of the License at |
16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. |
17 | * |
18 | * The Original Code and all software distributed under the License are |
19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER |
20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, |
22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
23 | * Please see the License for the specific language governing rights and |
24 | * limitations under the License. |
25 | * |
26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ |
27 | */ |
28 | /* |
29 | * Copyright (c) 1982, 1986, 1991, 1993, 1995 |
30 | * The Regents of the University of California. All rights reserved. |
31 | * |
32 | * Redistribution and use in source and binary forms, with or without |
33 | * modification, are permitted provided that the following conditions |
34 | * are met: |
35 | * 1. Redistributions of source code must retain the above copyright |
36 | * notice, this list of conditions and the following disclaimer. |
37 | * 2. Redistributions in binary form must reproduce the above copyright |
38 | * notice, this list of conditions and the following disclaimer in the |
39 | * documentation and/or other materials provided with the distribution. |
40 | * 3. All advertising materials mentioning features or use of this software |
41 | * must display the following acknowledgement: |
42 | * This product includes software developed by the University of |
43 | * California, Berkeley and its contributors. |
44 | * 4. Neither the name of the University nor the names of its contributors |
45 | * may be used to endorse or promote products derived from this software |
46 | * without specific prior written permission. |
47 | * |
48 | * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND |
49 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
50 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
51 | * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE |
52 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
53 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
54 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
55 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
56 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
57 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
58 | * SUCH DAMAGE. |
59 | * |
60 | * @(#)in_pcb.c 8.4 (Berkeley) 5/24/95 |
61 | * $FreeBSD: src/sys/netinet/in_pcb.c,v 1.59.2.17 2001/08/13 16:26:17 ume Exp $ |
62 | */ |
63 | |
64 | #include <sys/param.h> |
65 | #include <sys/systm.h> |
66 | #include <sys/malloc.h> |
67 | #include <sys/mbuf.h> |
68 | #include <sys/domain.h> |
69 | #include <sys/protosw.h> |
70 | #include <sys/socket.h> |
71 | #include <sys/socketvar.h> |
72 | #include <sys/proc.h> |
73 | #include <sys/kernel.h> |
74 | #include <sys/sysctl.h> |
75 | #include <sys/mcache.h> |
76 | #include <sys/kauth.h> |
77 | #include <sys/priv.h> |
78 | #include <sys/proc_uuid_policy.h> |
79 | #include <sys/syslog.h> |
80 | #include <sys/priv.h> |
81 | #include <sys/file_internal.h> |
82 | #include <net/dlil.h> |
83 | |
84 | #include <libkern/OSAtomic.h> |
85 | #include <kern/locks.h> |
86 | |
87 | #include <machine/limits.h> |
88 | |
89 | #include <kern/zalloc.h> |
90 | |
91 | #include <net/if.h> |
92 | #include <net/if_types.h> |
93 | #include <net/route.h> |
94 | #include <net/flowhash.h> |
95 | #include <net/flowadv.h> |
96 | #include <net/nat464_utils.h> |
97 | #include <net/ntstat.h> |
98 | #include <net/nwk_wq.h> |
99 | #include <net/restricted_in_port.h> |
100 | |
101 | #include <netinet/in.h> |
102 | #include <netinet/in_pcb.h> |
103 | #include <netinet/inp_log.h> |
104 | #include <netinet/in_var.h> |
105 | #include <netinet/ip_var.h> |
106 | |
107 | #include <netinet/ip6.h> |
108 | #include <netinet6/ip6_var.h> |
109 | |
110 | #include <sys/kdebug.h> |
111 | #include <sys/random.h> |
112 | |
113 | #include <dev/random/randomdev.h> |
114 | #include <mach/boolean.h> |
115 | |
116 | #include <atm/atm_internal.h> |
117 | #include <pexpert/pexpert.h> |
118 | |
119 | #if NECP |
120 | #include <net/necp.h> |
121 | #endif |
122 | |
123 | #include <sys/stat.h> |
124 | #include <sys/ubc.h> |
125 | #include <sys/vnode.h> |
126 | |
127 | #include <os/log.h> |
128 | |
129 | #if SKYWALK |
130 | #include <skywalk/namespace/flowidns.h> |
131 | #endif /* SKYWALK */ |
132 | |
133 | #include <IOKit/IOBSD.h> |
134 | |
135 | #include <net/sockaddr_utils.h> |
136 | |
137 | extern const char *proc_name_address(struct proc *); |
138 | |
139 | static LCK_GRP_DECLARE(inpcb_lock_grp, "inpcb" ); |
140 | static LCK_ATTR_DECLARE(inpcb_lock_attr, 0, 0); |
141 | static LCK_MTX_DECLARE_ATTR(inpcb_lock, &inpcb_lock_grp, &inpcb_lock_attr); |
142 | static LCK_MTX_DECLARE_ATTR(inpcb_timeout_lock, &inpcb_lock_grp, &inpcb_lock_attr); |
143 | |
144 | static TAILQ_HEAD(, inpcbinfo) inpcb_head = TAILQ_HEAD_INITIALIZER(inpcb_head); |
145 | |
146 | static u_int16_t inpcb_timeout_run = 0; /* INPCB timer is scheduled to run */ |
147 | static boolean_t inpcb_garbage_collecting = FALSE; /* gc timer is scheduled */ |
148 | static boolean_t inpcb_ticking = FALSE; /* "slow" timer is scheduled */ |
149 | static boolean_t inpcb_fast_timer_on = FALSE; |
150 | |
151 | #define INPCB_GCREQ_THRESHOLD 50000 |
152 | |
153 | static thread_call_t inpcb_thread_call, inpcb_fast_thread_call; |
154 | static void inpcb_sched_timeout(void); |
155 | static void inpcb_sched_lazy_timeout(void); |
156 | static void _inpcb_sched_timeout(unsigned int); |
157 | static void inpcb_timeout(void *, void *); |
158 | const int inpcb_timeout_lazy = 10; /* 10 seconds leeway for lazy timers */ |
159 | extern int tvtohz(struct timeval *); |
160 | |
161 | #if CONFIG_PROC_UUID_POLICY |
162 | static void inp_update_cellular_policy(struct inpcb *, boolean_t); |
163 | #if NECP |
164 | static void inp_update_necp_want_app_policy(struct inpcb *, boolean_t); |
165 | #endif /* NECP */ |
166 | #endif /* !CONFIG_PROC_UUID_POLICY */ |
167 | |
168 | #define DBG_FNC_PCB_LOOKUP NETDBG_CODE(DBG_NETTCP, (6 << 8)) |
169 | #define DBG_FNC_PCB_HLOOKUP NETDBG_CODE(DBG_NETTCP, ((6 << 8) | 1)) |
170 | |
171 | int allow_udp_port_exhaustion = 0; |
172 | |
173 | /* |
174 | * These configure the range of local port addresses assigned to |
175 | * "unspecified" outgoing connections/packets/whatever. |
176 | */ |
177 | int ipport_lowfirstauto = IPPORT_RESERVED - 1; /* 1023 */ |
178 | int ipport_lowlastauto = IPPORT_RESERVEDSTART; /* 600 */ |
179 | int ipport_firstauto = IPPORT_HIFIRSTAUTO; /* 49152 */ |
180 | int ipport_lastauto = IPPORT_HILASTAUTO; /* 65535 */ |
181 | int ipport_hifirstauto = IPPORT_HIFIRSTAUTO; /* 49152 */ |
182 | int ipport_hilastauto = IPPORT_HILASTAUTO; /* 65535 */ |
183 | |
184 | #define RANGECHK(var, min, max) \ |
185 | if ((var) < (min)) { (var) = (min); } \ |
186 | else if ((var) > (max)) { (var) = (max); } |
187 | |
188 | static int |
189 | sysctl_net_ipport_check SYSCTL_HANDLER_ARGS |
190 | { |
191 | #pragma unused(arg1, arg2) |
192 | int error; |
193 | int new_value = *(int *)oidp->oid_arg1; |
194 | #if (DEBUG | DEVELOPMENT) |
195 | int old_value = *(int *)oidp->oid_arg1; |
196 | /* |
197 | * For unit testing allow a non-superuser process with the |
198 | * proper entitlement to modify the variables |
199 | */ |
200 | if (req->newptr) { |
201 | if (proc_suser(current_proc()) != 0 && |
202 | (error = priv_check_cred(kauth_cred_get(), |
203 | PRIV_NETINET_RESERVEDPORT, 0))) { |
204 | return EPERM; |
205 | } |
206 | } |
207 | #endif /* (DEBUG | DEVELOPMENT) */ |
208 | |
209 | error = sysctl_handle_int(oidp, arg1: &new_value, arg2: 0, req); |
210 | if (!error) { |
211 | if (oidp->oid_arg1 == &ipport_lowfirstauto || oidp->oid_arg1 == &ipport_lowlastauto) { |
212 | RANGECHK(new_value, 1, IPPORT_RESERVED - 1); |
213 | } else { |
214 | RANGECHK(new_value, IPPORT_RESERVED, USHRT_MAX); |
215 | } |
216 | *(int *)oidp->oid_arg1 = new_value; |
217 | } |
218 | |
219 | #if (DEBUG | DEVELOPMENT) |
220 | os_log(OS_LOG_DEFAULT, |
221 | "%s:%u sysctl net.restricted_port.verbose: %d -> %d)" , |
222 | proc_best_name(current_proc()), proc_selfpid(), |
223 | old_value, *(int *)oidp->oid_arg1); |
224 | #endif /* (DEBUG | DEVELOPMENT) */ |
225 | |
226 | return error; |
227 | } |
228 | |
229 | #undef RANGECHK |
230 | |
231 | SYSCTL_NODE(_net_inet_ip, IPPROTO_IP, portrange, |
232 | CTLFLAG_RW | CTLFLAG_LOCKED, 0, "IP Ports" ); |
233 | |
234 | #if (DEBUG | DEVELOPMENT) |
235 | #define CTLFAGS_IP_PORTRANGE (CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED | CTLFLAG_ANYBODY) |
236 | #else |
237 | #define CTLFAGS_IP_PORTRANGE (CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED) |
238 | #endif /* (DEBUG | DEVELOPMENT) */ |
239 | |
240 | SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowfirst, |
241 | CTLFAGS_IP_PORTRANGE, |
242 | &ipport_lowfirstauto, 0, &sysctl_net_ipport_check, "I" , "" ); |
243 | SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowlast, |
244 | CTLFAGS_IP_PORTRANGE, |
245 | &ipport_lowlastauto, 0, &sysctl_net_ipport_check, "I" , "" ); |
246 | SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, first, |
247 | CTLFAGS_IP_PORTRANGE, |
248 | &ipport_firstauto, 0, &sysctl_net_ipport_check, "I" , "" ); |
249 | SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, last, |
250 | CTLFAGS_IP_PORTRANGE, |
251 | &ipport_lastauto, 0, &sysctl_net_ipport_check, "I" , "" ); |
252 | SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hifirst, |
253 | CTLFAGS_IP_PORTRANGE, |
254 | &ipport_hifirstauto, 0, &sysctl_net_ipport_check, "I" , "" ); |
255 | SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hilast, |
256 | CTLFAGS_IP_PORTRANGE, |
257 | &ipport_hilastauto, 0, &sysctl_net_ipport_check, "I" , "" ); |
258 | SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, ipport_allow_udp_port_exhaustion, |
259 | CTLFLAG_LOCKED | CTLFLAG_RW, &allow_udp_port_exhaustion, 0, "" ); |
260 | |
261 | static uint32_t apn_fallbk_debug = 0; |
262 | #define apn_fallbk_log(x) do { if (apn_fallbk_debug >= 1) log x; } while (0) |
263 | |
264 | #if !XNU_TARGET_OS_OSX |
265 | static boolean_t apn_fallbk_enabled = TRUE; |
266 | |
267 | SYSCTL_DECL(_net_inet); |
268 | SYSCTL_NODE(_net_inet, OID_AUTO, apn_fallback, CTLFLAG_RW | CTLFLAG_LOCKED, 0, "APN Fallback" ); |
269 | SYSCTL_UINT(_net_inet_apn_fallback, OID_AUTO, enable, CTLFLAG_RW | CTLFLAG_LOCKED, |
270 | &apn_fallbk_enabled, 0, "APN fallback enable" ); |
271 | SYSCTL_UINT(_net_inet_apn_fallback, OID_AUTO, debug, CTLFLAG_RW | CTLFLAG_LOCKED, |
272 | &apn_fallbk_debug, 0, "APN fallback debug enable" ); |
273 | #else /* XNU_TARGET_OS_OSX */ |
274 | static boolean_t apn_fallbk_enabled = FALSE; |
275 | #endif /* XNU_TARGET_OS_OSX */ |
276 | |
277 | extern int udp_use_randomport; |
278 | extern int tcp_use_randomport; |
279 | |
280 | /* Structs used for flowhash computation */ |
281 | struct inp_flowhash_key_addr { |
282 | union { |
283 | struct in_addr v4; |
284 | struct in6_addr v6; |
285 | u_int8_t addr8[16]; |
286 | u_int16_t addr16[8]; |
287 | u_int32_t addr32[4]; |
288 | } infha; |
289 | }; |
290 | |
291 | struct inp_flowhash_key { |
292 | struct inp_flowhash_key_addr infh_laddr; |
293 | struct inp_flowhash_key_addr infh_faddr; |
294 | u_int32_t infh_lport; |
295 | u_int32_t infh_fport; |
296 | u_int32_t infh_af; |
297 | u_int32_t infh_proto; |
298 | u_int32_t infh_rand1; |
299 | u_int32_t infh_rand2; |
300 | }; |
301 | |
302 | #if !SKYWALK |
303 | static u_int32_t inp_hash_seed = 0; |
304 | #endif /* !SKYWALK */ |
305 | |
306 | static int infc_cmp(const struct inpcb *, const struct inpcb *); |
307 | |
308 | /* Flags used by inp_fc_getinp */ |
309 | #define INPFC_SOLOCKED 0x1 |
310 | #define INPFC_REMOVE 0x2 |
311 | static struct inpcb *inp_fc_getinp(u_int32_t, u_int32_t); |
312 | |
313 | static void inp_fc_feedback(struct inpcb *); |
314 | extern void tcp_remove_from_time_wait(struct inpcb *inp); |
315 | |
316 | static LCK_MTX_DECLARE_ATTR(inp_fc_lck, &inpcb_lock_grp, &inpcb_lock_attr); |
317 | |
318 | RB_HEAD(inp_fc_tree, inpcb) inp_fc_tree; |
319 | RB_PROTOTYPE(inp_fc_tree, inpcb, infc_link, infc_cmp); |
320 | RB_GENERATE(inp_fc_tree, inpcb, infc_link, infc_cmp); |
321 | |
322 | /* |
323 | * Use this inp as a key to find an inp in the flowhash tree. |
324 | * Accesses to it are protected by inp_fc_lck. |
325 | */ |
326 | struct inpcb key_inp; |
327 | |
328 | /* |
329 | * in_pcb.c: manage the Protocol Control Blocks. |
330 | */ |
331 | |
332 | void |
333 | in_pcbinit(void) |
334 | { |
335 | static int inpcb_initialized = 0; |
336 | uint32_t logging_config; |
337 | |
338 | VERIFY(!inpcb_initialized); |
339 | inpcb_initialized = 1; |
340 | |
341 | logging_config = atm_get_diagnostic_config(); |
342 | if (logging_config & 0x80000000) { |
343 | inp_log_privacy = 1; |
344 | } |
345 | |
346 | inpcb_thread_call = thread_call_allocate_with_priority(func: inpcb_timeout, |
347 | NULL, pri: THREAD_CALL_PRIORITY_KERNEL); |
348 | /* Give it an arg so that we know that this is the fast timer */ |
349 | inpcb_fast_thread_call = thread_call_allocate_with_priority( |
350 | func: inpcb_timeout, param0: &inpcb_timeout, pri: THREAD_CALL_PRIORITY_KERNEL); |
351 | if (inpcb_thread_call == NULL || inpcb_fast_thread_call == NULL) { |
352 | panic("unable to alloc the inpcb thread call" ); |
353 | } |
354 | |
355 | /* |
356 | * Initialize data structures required to deliver |
357 | * flow advisories. |
358 | */ |
359 | lck_mtx_lock(lck: &inp_fc_lck); |
360 | RB_INIT(&inp_fc_tree); |
361 | bzero(s: &key_inp, n: sizeof(key_inp)); |
362 | lck_mtx_unlock(lck: &inp_fc_lck); |
363 | } |
364 | |
365 | #define INPCB_HAVE_TIMER_REQ(req) (((req).intimer_lazy > 0) || \ |
366 | ((req).intimer_fast > 0) || ((req).intimer_nodelay > 0)) |
367 | static void |
368 | inpcb_timeout(void *arg0, void *arg1) |
369 | { |
370 | #pragma unused(arg1) |
371 | struct inpcbinfo *ipi; |
372 | boolean_t t, gc; |
373 | struct intimercount gccnt, tmcnt; |
374 | |
375 | /* |
376 | * Update coarse-grained networking timestamp (in sec.); the idea |
377 | * is to piggy-back on the timeout callout to update the counter |
378 | * returnable via net_uptime(). |
379 | */ |
380 | net_update_uptime(); |
381 | |
382 | bzero(s: &gccnt, n: sizeof(gccnt)); |
383 | bzero(s: &tmcnt, n: sizeof(tmcnt)); |
384 | |
385 | lck_mtx_lock_spin(lck: &inpcb_timeout_lock); |
386 | gc = inpcb_garbage_collecting; |
387 | inpcb_garbage_collecting = FALSE; |
388 | |
389 | t = inpcb_ticking; |
390 | inpcb_ticking = FALSE; |
391 | |
392 | if (gc || t) { |
393 | lck_mtx_unlock(lck: &inpcb_timeout_lock); |
394 | |
395 | lck_mtx_lock(lck: &inpcb_lock); |
396 | TAILQ_FOREACH(ipi, &inpcb_head, ipi_entry) { |
397 | if (INPCB_HAVE_TIMER_REQ(ipi->ipi_gc_req)) { |
398 | bzero(s: &ipi->ipi_gc_req, |
399 | n: sizeof(ipi->ipi_gc_req)); |
400 | if (gc && ipi->ipi_gc != NULL) { |
401 | ipi->ipi_gc(ipi); |
402 | gccnt.intimer_lazy += |
403 | ipi->ipi_gc_req.intimer_lazy; |
404 | gccnt.intimer_fast += |
405 | ipi->ipi_gc_req.intimer_fast; |
406 | gccnt.intimer_nodelay += |
407 | ipi->ipi_gc_req.intimer_nodelay; |
408 | } |
409 | } |
410 | if (INPCB_HAVE_TIMER_REQ(ipi->ipi_timer_req)) { |
411 | bzero(s: &ipi->ipi_timer_req, |
412 | n: sizeof(ipi->ipi_timer_req)); |
413 | if (t && ipi->ipi_timer != NULL) { |
414 | ipi->ipi_timer(ipi); |
415 | tmcnt.intimer_lazy += |
416 | ipi->ipi_timer_req.intimer_lazy; |
417 | tmcnt.intimer_fast += |
418 | ipi->ipi_timer_req.intimer_fast; |
419 | tmcnt.intimer_nodelay += |
420 | ipi->ipi_timer_req.intimer_nodelay; |
421 | } |
422 | } |
423 | } |
424 | lck_mtx_unlock(lck: &inpcb_lock); |
425 | lck_mtx_lock_spin(lck: &inpcb_timeout_lock); |
426 | } |
427 | |
428 | /* lock was dropped above, so check first before overriding */ |
429 | if (!inpcb_garbage_collecting) { |
430 | inpcb_garbage_collecting = INPCB_HAVE_TIMER_REQ(gccnt); |
431 | } |
432 | if (!inpcb_ticking) { |
433 | inpcb_ticking = INPCB_HAVE_TIMER_REQ(tmcnt); |
434 | } |
435 | |
436 | /* arg0 will be set if we are the fast timer */ |
437 | if (arg0 != NULL) { |
438 | inpcb_fast_timer_on = FALSE; |
439 | } |
440 | inpcb_timeout_run--; |
441 | VERIFY(inpcb_timeout_run >= 0 && inpcb_timeout_run < 2); |
442 | |
443 | /* re-arm the timer if there's work to do */ |
444 | if (gccnt.intimer_nodelay > 0 || tmcnt.intimer_nodelay > 0) { |
445 | inpcb_sched_timeout(); |
446 | } else if ((gccnt.intimer_fast + tmcnt.intimer_fast) <= 5) { |
447 | /* be lazy when idle with little activity */ |
448 | inpcb_sched_lazy_timeout(); |
449 | } else { |
450 | inpcb_sched_timeout(); |
451 | } |
452 | |
453 | lck_mtx_unlock(lck: &inpcb_timeout_lock); |
454 | } |
455 | |
456 | static void |
457 | inpcb_sched_timeout(void) |
458 | { |
459 | _inpcb_sched_timeout(0); |
460 | } |
461 | |
462 | static void |
463 | inpcb_sched_lazy_timeout(void) |
464 | { |
465 | _inpcb_sched_timeout(inpcb_timeout_lazy); |
466 | } |
467 | |
468 | static void |
469 | _inpcb_sched_timeout(unsigned int offset) |
470 | { |
471 | uint64_t deadline, leeway; |
472 | |
473 | clock_interval_to_deadline(interval: 1, NSEC_PER_SEC, result: &deadline); |
474 | LCK_MTX_ASSERT(&inpcb_timeout_lock, LCK_MTX_ASSERT_OWNED); |
475 | if (inpcb_timeout_run == 0 && |
476 | (inpcb_garbage_collecting || inpcb_ticking)) { |
477 | lck_mtx_convert_spin(lck: &inpcb_timeout_lock); |
478 | inpcb_timeout_run++; |
479 | if (offset == 0) { |
480 | inpcb_fast_timer_on = TRUE; |
481 | thread_call_enter_delayed(call: inpcb_fast_thread_call, |
482 | deadline); |
483 | } else { |
484 | inpcb_fast_timer_on = FALSE; |
485 | clock_interval_to_absolutetime_interval(interval: offset, |
486 | NSEC_PER_SEC, result: &leeway); |
487 | thread_call_enter_delayed_with_leeway( |
488 | call: inpcb_thread_call, NULL, deadline, leeway, |
489 | THREAD_CALL_DELAY_LEEWAY); |
490 | } |
491 | } else if (inpcb_timeout_run == 1 && |
492 | offset == 0 && !inpcb_fast_timer_on) { |
493 | /* |
494 | * Since the request was for a fast timer but the |
495 | * scheduled timer is a lazy timer, try to schedule |
496 | * another instance of fast timer also. |
497 | */ |
498 | lck_mtx_convert_spin(lck: &inpcb_timeout_lock); |
499 | inpcb_timeout_run++; |
500 | inpcb_fast_timer_on = TRUE; |
501 | thread_call_enter_delayed(call: inpcb_fast_thread_call, deadline); |
502 | } |
503 | } |
504 | |
505 | void |
506 | inpcb_gc_sched(struct inpcbinfo *ipi, u_int32_t type) |
507 | { |
508 | u_int32_t gccnt; |
509 | |
510 | lck_mtx_lock_spin(lck: &inpcb_timeout_lock); |
511 | inpcb_garbage_collecting = TRUE; |
512 | gccnt = ipi->ipi_gc_req.intimer_nodelay + |
513 | ipi->ipi_gc_req.intimer_fast; |
514 | |
515 | if (gccnt > INPCB_GCREQ_THRESHOLD) { |
516 | type = INPCB_TIMER_FAST; |
517 | } |
518 | |
519 | switch (type) { |
520 | case INPCB_TIMER_NODELAY: |
521 | os_atomic_inc(&ipi->ipi_gc_req.intimer_nodelay, relaxed); |
522 | inpcb_sched_timeout(); |
523 | break; |
524 | case INPCB_TIMER_FAST: |
525 | os_atomic_inc(&ipi->ipi_gc_req.intimer_fast, relaxed); |
526 | inpcb_sched_timeout(); |
527 | break; |
528 | default: |
529 | os_atomic_inc(&ipi->ipi_gc_req.intimer_lazy, relaxed); |
530 | inpcb_sched_lazy_timeout(); |
531 | break; |
532 | } |
533 | lck_mtx_unlock(lck: &inpcb_timeout_lock); |
534 | } |
535 | |
536 | void |
537 | inpcb_timer_sched(struct inpcbinfo *ipi, u_int32_t type) |
538 | { |
539 | lck_mtx_lock_spin(lck: &inpcb_timeout_lock); |
540 | inpcb_ticking = TRUE; |
541 | switch (type) { |
542 | case INPCB_TIMER_NODELAY: |
543 | os_atomic_inc(&ipi->ipi_timer_req.intimer_nodelay, relaxed); |
544 | inpcb_sched_timeout(); |
545 | break; |
546 | case INPCB_TIMER_FAST: |
547 | os_atomic_inc(&ipi->ipi_timer_req.intimer_fast, relaxed); |
548 | inpcb_sched_timeout(); |
549 | break; |
550 | default: |
551 | os_atomic_inc(&ipi->ipi_timer_req.intimer_lazy, relaxed); |
552 | inpcb_sched_lazy_timeout(); |
553 | break; |
554 | } |
555 | lck_mtx_unlock(lck: &inpcb_timeout_lock); |
556 | } |
557 | |
558 | void |
559 | in_pcbinfo_attach(struct inpcbinfo *ipi) |
560 | { |
561 | struct inpcbinfo *ipi0; |
562 | |
563 | lck_mtx_lock(lck: &inpcb_lock); |
564 | TAILQ_FOREACH(ipi0, &inpcb_head, ipi_entry) { |
565 | if (ipi0 == ipi) { |
566 | panic("%s: ipi %p already in the list" , |
567 | __func__, ipi); |
568 | /* NOTREACHED */ |
569 | } |
570 | } |
571 | TAILQ_INSERT_TAIL(&inpcb_head, ipi, ipi_entry); |
572 | lck_mtx_unlock(lck: &inpcb_lock); |
573 | } |
574 | |
575 | int |
576 | in_pcbinfo_detach(struct inpcbinfo *ipi) |
577 | { |
578 | struct inpcbinfo *ipi0; |
579 | int error = 0; |
580 | |
581 | lck_mtx_lock(lck: &inpcb_lock); |
582 | TAILQ_FOREACH(ipi0, &inpcb_head, ipi_entry) { |
583 | if (ipi0 == ipi) { |
584 | break; |
585 | } |
586 | } |
587 | if (ipi0 != NULL) { |
588 | TAILQ_REMOVE(&inpcb_head, ipi0, ipi_entry); |
589 | } else { |
590 | error = ENXIO; |
591 | } |
592 | lck_mtx_unlock(lck: &inpcb_lock); |
593 | |
594 | return error; |
595 | } |
596 | |
597 | __attribute__((noinline)) |
598 | char * |
599 | inp_snprintf_tuple(struct inpcb *inp, char *buf, size_t buflen) |
600 | { |
601 | char laddrstr[MAX_IPv6_STR_LEN]; |
602 | char faddrstr[MAX_IPv6_STR_LEN]; |
603 | uint16_t lport = 0; |
604 | uint16_t fport = 0; |
605 | uint16_t proto = IPPROTO_IP; |
606 | |
607 | if (inp->inp_socket != NULL) { |
608 | proto = SOCK_PROTO(inp->inp_socket); |
609 | |
610 | if (proto == IPPROTO_TCP || proto == IPPROTO_UDP) { |
611 | lport = inp->inp_lport; |
612 | fport = inp->inp_fport; |
613 | } |
614 | } |
615 | if (inp->inp_vflag & INP_IPV4) { |
616 | inet_ntop(AF_INET, (void *)&inp->inp_laddr.s_addr, laddrstr, sizeof(laddrstr)); |
617 | inet_ntop(AF_INET, (void *)&inp->inp_faddr.s_addr, faddrstr, sizeof(faddrstr)); |
618 | } else if (inp->inp_vflag & INP_IPV6) { |
619 | inet_ntop(AF_INET6, (void *)&inp->in6p_faddr, laddrstr, sizeof(laddrstr)); |
620 | inet_ntop(AF_INET6, (void *)&inp->in6p_faddr, faddrstr, sizeof(faddrstr)); |
621 | } |
622 | snprintf(buf, count: buflen, "[%u %s:%u %s:%u]" , |
623 | proto, laddrstr, ntohs(lport), faddrstr, ntohs(fport)); |
624 | |
625 | return buf; |
626 | } |
627 | |
628 | __attribute__((noinline)) |
629 | void |
630 | in_pcb_check_management_entitled(struct inpcb *inp) |
631 | { |
632 | if (inp->inp_flags2 & INP2_MANAGEMENT_CHECKED) { |
633 | return; |
634 | } |
635 | |
636 | if (management_data_unrestricted) { |
637 | inp->inp_flags2 |= INP2_MANAGEMENT_ALLOWED; |
638 | inp->inp_flags2 |= INP2_MANAGEMENT_CHECKED; |
639 | } else if (if_management_interface_check_needed == true) { |
640 | inp->inp_flags2 |= INP2_MANAGEMENT_CHECKED; |
641 | /* |
642 | * Note that soopt_cred_check check both intcoproc entitlements |
643 | * We check MANAGEMENT_DATA_ENTITLEMENT as there is no corresponding PRIV value |
644 | */ |
645 | if (soopt_cred_check(so: inp->inp_socket, PRIV_NET_RESTRICTED_INTCOPROC, false, false) == 0 |
646 | || IOCurrentTaskHasEntitlement(MANAGEMENT_DATA_ENTITLEMENT) == true |
647 | #if DEBUG || DEVELOPMENT |
648 | || IOCurrentTaskHasEntitlement(MANAGEMENT_DATA_ENTITLEMENT_DEVELOPMENT) == true |
649 | #endif /* DEBUG || DEVELOPMENT */ |
650 | ) { |
651 | inp->inp_flags2 |= INP2_MANAGEMENT_ALLOWED; |
652 | } else { |
653 | if (__improbable(if_management_verbose > 1)) { |
654 | char buf[128]; |
655 | |
656 | os_log(OS_LOG_DEFAULT, "in_pcb_check_management_entitled %s:%d not management entitled %s" , |
657 | proc_best_name(current_proc()), |
658 | proc_selfpid(), |
659 | inp_snprintf_tuple(inp, buf, sizeof(buf))); |
660 | } |
661 | } |
662 | } |
663 | } |
664 | |
665 | /* |
666 | * Allocate a PCB and associate it with the socket. |
667 | * |
668 | * Returns: 0 Success |
669 | * ENOBUFS |
670 | * ENOMEM |
671 | */ |
672 | int |
673 | in_pcballoc(struct socket *so, struct inpcbinfo *pcbinfo, struct proc *p) |
674 | { |
675 | #pragma unused(p) |
676 | struct inpcb *inp; |
677 | caddr_t temp; |
678 | |
679 | if ((so->so_flags1 & SOF1_CACHED_IN_SOCK_LAYER) == 0) { |
680 | inp = zalloc_flags(pcbinfo->ipi_zone, |
681 | Z_WAITOK | Z_ZERO | Z_NOFAIL); |
682 | } else { |
683 | inp = (struct inpcb *)(void *)so->so_saved_pcb; |
684 | temp = inp->inp_saved_ppcb; |
685 | bzero(s: (caddr_t)inp, n: sizeof(*inp)); |
686 | inp->inp_saved_ppcb = temp; |
687 | } |
688 | |
689 | inp->inp_gencnt = ++pcbinfo->ipi_gencnt; |
690 | inp->inp_pcbinfo = pcbinfo; |
691 | inp->inp_socket = so; |
692 | /* make sure inp_stat is always 64-bit aligned */ |
693 | inp->inp_stat = (struct inp_stat *)P2ROUNDUP(inp->inp_stat_store, |
694 | sizeof(u_int64_t)); |
695 | if (((uintptr_t)inp->inp_stat - (uintptr_t)inp->inp_stat_store) + |
696 | sizeof(*inp->inp_stat) > sizeof(inp->inp_stat_store)) { |
697 | panic("%s: insufficient space to align inp_stat" , __func__); |
698 | /* NOTREACHED */ |
699 | } |
700 | |
701 | /* make sure inp_cstat is always 64-bit aligned */ |
702 | inp->inp_cstat = (struct inp_stat *)P2ROUNDUP(inp->inp_cstat_store, |
703 | sizeof(u_int64_t)); |
704 | if (((uintptr_t)inp->inp_cstat - (uintptr_t)inp->inp_cstat_store) + |
705 | sizeof(*inp->inp_cstat) > sizeof(inp->inp_cstat_store)) { |
706 | panic("%s: insufficient space to align inp_cstat" , __func__); |
707 | /* NOTREACHED */ |
708 | } |
709 | |
710 | /* make sure inp_wstat is always 64-bit aligned */ |
711 | inp->inp_wstat = (struct inp_stat *)P2ROUNDUP(inp->inp_wstat_store, |
712 | sizeof(u_int64_t)); |
713 | if (((uintptr_t)inp->inp_wstat - (uintptr_t)inp->inp_wstat_store) + |
714 | sizeof(*inp->inp_wstat) > sizeof(inp->inp_wstat_store)) { |
715 | panic("%s: insufficient space to align inp_wstat" , __func__); |
716 | /* NOTREACHED */ |
717 | } |
718 | |
719 | /* make sure inp_Wstat is always 64-bit aligned */ |
720 | inp->inp_Wstat = (struct inp_stat *)P2ROUNDUP(inp->inp_Wstat_store, |
721 | sizeof(u_int64_t)); |
722 | if (((uintptr_t)inp->inp_Wstat - (uintptr_t)inp->inp_Wstat_store) + |
723 | sizeof(*inp->inp_Wstat) > sizeof(inp->inp_Wstat_store)) { |
724 | panic("%s: insufficient space to align inp_Wstat" , __func__); |
725 | /* NOTREACHED */ |
726 | } |
727 | |
728 | so->so_pcb = (caddr_t)inp; |
729 | |
730 | if (so->so_proto->pr_flags & PR_PCBLOCK) { |
731 | lck_mtx_init(lck: &inp->inpcb_mtx, grp: pcbinfo->ipi_lock_grp, |
732 | attr: &pcbinfo->ipi_lock_attr); |
733 | } |
734 | |
735 | if (SOCK_DOM(so) == PF_INET6 && !ip6_mapped_addr_on) { |
736 | inp->inp_flags |= IN6P_IPV6_V6ONLY; |
737 | } |
738 | |
739 | if (ip6_auto_flowlabel) { |
740 | inp->inp_flags |= IN6P_AUTOFLOWLABEL; |
741 | } |
742 | if (intcoproc_unrestricted) { |
743 | inp->inp_flags2 |= INP2_INTCOPROC_ALLOWED; |
744 | } |
745 | |
746 | (void) inp_update_policy(inp); |
747 | |
748 | lck_rw_lock_exclusive(lck: &pcbinfo->ipi_lock); |
749 | inp->inp_gencnt = ++pcbinfo->ipi_gencnt; |
750 | LIST_INSERT_HEAD(pcbinfo->ipi_listhead, inp, inp_list); |
751 | pcbinfo->ipi_count++; |
752 | lck_rw_done(lck: &pcbinfo->ipi_lock); |
753 | return 0; |
754 | } |
755 | |
756 | /* |
757 | * in_pcblookup_local_and_cleanup does everything |
758 | * in_pcblookup_local does but it checks for a socket |
759 | * that's going away. Since we know that the lock is |
760 | * held read+write when this function is called, we |
761 | * can safely dispose of this socket like the slow |
762 | * timer would usually do and return NULL. This is |
763 | * great for bind. |
764 | */ |
765 | struct inpcb * |
766 | in_pcblookup_local_and_cleanup(struct inpcbinfo *pcbinfo, struct in_addr laddr, |
767 | u_int lport_arg, int wild_okay) |
768 | { |
769 | struct inpcb *inp; |
770 | |
771 | /* Perform normal lookup */ |
772 | inp = in_pcblookup_local(pcbinfo, laddr, lport_arg, wild_okay); |
773 | |
774 | /* Check if we found a match but it's waiting to be disposed */ |
775 | if (inp != NULL && inp->inp_wantcnt == WNT_STOPUSING) { |
776 | struct socket *so = inp->inp_socket; |
777 | |
778 | socket_lock(so, refcount: 0); |
779 | |
780 | if (so->so_usecount == 0) { |
781 | if (inp->inp_state != INPCB_STATE_DEAD) { |
782 | in_pcbdetach(inp); |
783 | } |
784 | in_pcbdispose(inp); /* will unlock & destroy */ |
785 | inp = NULL; |
786 | } else { |
787 | socket_unlock(so, refcount: 0); |
788 | } |
789 | } |
790 | |
791 | return inp; |
792 | } |
793 | |
794 | static void |
795 | in_pcb_conflict_post_msg(u_int16_t port) |
796 | { |
797 | /* |
798 | * Radar 5523020 send a kernel event notification if a |
799 | * non-participating socket tries to bind the port a socket |
800 | * who has set SOF_NOTIFYCONFLICT owns. |
801 | */ |
802 | struct kev_msg ev_msg; |
803 | struct kev_in_portinuse in_portinuse; |
804 | |
805 | bzero(s: &in_portinuse, n: sizeof(struct kev_in_portinuse)); |
806 | bzero(s: &ev_msg, n: sizeof(struct kev_msg)); |
807 | in_portinuse.port = ntohs(port); /* port in host order */ |
808 | in_portinuse.req_pid = proc_selfpid(); |
809 | ev_msg.vendor_code = KEV_VENDOR_APPLE; |
810 | ev_msg.kev_class = KEV_NETWORK_CLASS; |
811 | ev_msg.kev_subclass = KEV_INET_SUBCLASS; |
812 | ev_msg.event_code = KEV_INET_PORTINUSE; |
813 | ev_msg.dv[0].data_ptr = &in_portinuse; |
814 | ev_msg.dv[0].data_length = sizeof(struct kev_in_portinuse); |
815 | ev_msg.dv[1].data_length = 0; |
816 | dlil_post_complete_msg(NULL, &ev_msg); |
817 | } |
818 | |
819 | /* |
820 | * Bind an INPCB to an address and/or port. This routine should not alter |
821 | * the caller-supplied local address "nam". |
822 | * |
823 | * Returns: 0 Success |
824 | * EADDRNOTAVAIL Address not available. |
825 | * EINVAL Invalid argument |
826 | * EAFNOSUPPORT Address family not supported [notdef] |
827 | * EACCES Permission denied |
828 | * EADDRINUSE Address in use |
829 | * EAGAIN Resource unavailable, try again |
830 | * priv_check_cred:EPERM Operation not permitted |
831 | */ |
832 | int |
833 | in_pcbbind(struct inpcb *inp, struct sockaddr *nam, struct proc *p) |
834 | { |
835 | struct socket *so = inp->inp_socket; |
836 | unsigned short *lastport; |
837 | struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; |
838 | u_short lport = 0, rand_port = 0; |
839 | int wild = 0; |
840 | int reuseport = (so->so_options & SO_REUSEPORT); |
841 | int error = 0; |
842 | int randomport; |
843 | int conflict = 0; |
844 | boolean_t anonport = FALSE; |
845 | kauth_cred_t cred; |
846 | struct in_addr laddr; |
847 | struct ifnet *outif = NULL; |
848 | |
849 | if (inp->inp_flags2 & INP2_BIND_IN_PROGRESS) { |
850 | return EINVAL; |
851 | } |
852 | inp->inp_flags2 |= INP2_BIND_IN_PROGRESS; |
853 | |
854 | if (TAILQ_EMPTY(&in_ifaddrhead)) { /* XXX broken! */ |
855 | error = EADDRNOTAVAIL; |
856 | goto done; |
857 | } |
858 | if (!(so->so_options & (SO_REUSEADDR | SO_REUSEPORT))) { |
859 | wild = 1; |
860 | } |
861 | |
862 | bzero(s: &laddr, n: sizeof(laddr)); |
863 | |
864 | socket_unlock(so, refcount: 0); /* keep reference on socket */ |
865 | lck_rw_lock_exclusive(lck: &pcbinfo->ipi_lock); |
866 | if (inp->inp_lport != 0 || inp->inp_laddr.s_addr != INADDR_ANY) { |
867 | /* another thread completed the bind */ |
868 | lck_rw_done(lck: &pcbinfo->ipi_lock); |
869 | socket_lock(so, refcount: 0); |
870 | error = EINVAL; |
871 | goto done; |
872 | } |
873 | |
874 | if (nam != NULL) { |
875 | if (nam->sa_len != sizeof(struct sockaddr_in)) { |
876 | lck_rw_done(lck: &pcbinfo->ipi_lock); |
877 | socket_lock(so, refcount: 0); |
878 | error = EINVAL; |
879 | goto done; |
880 | } |
881 | #if 0 |
882 | /* |
883 | * We should check the family, but old programs |
884 | * incorrectly fail to initialize it. |
885 | */ |
886 | if (nam->sa_family != AF_INET) { |
887 | lck_rw_done(&pcbinfo->ipi_lock); |
888 | socket_lock(so, 0); |
889 | error = EAFNOSUPPORT; |
890 | goto done; |
891 | } |
892 | #endif /* 0 */ |
893 | lport = SIN(nam)->sin_port; |
894 | |
895 | if (IN_MULTICAST(ntohl(SIN(nam)->sin_addr.s_addr))) { |
896 | /* |
897 | * Treat SO_REUSEADDR as SO_REUSEPORT for multicast; |
898 | * allow complete duplication of binding if |
899 | * SO_REUSEPORT is set, or if SO_REUSEADDR is set |
900 | * and a multicast address is bound on both |
901 | * new and duplicated sockets. |
902 | */ |
903 | if (so->so_options & SO_REUSEADDR) { |
904 | reuseport = SO_REUSEADDR | SO_REUSEPORT; |
905 | } |
906 | } else if (SIN(nam)->sin_addr.s_addr != INADDR_ANY) { |
907 | struct sockaddr_in sin; |
908 | struct ifaddr *ifa; |
909 | |
910 | /* Sanitized for interface address searches */ |
911 | SOCKADDR_ZERO(&sin, sizeof(sin)); |
912 | sin.sin_family = AF_INET; |
913 | sin.sin_len = sizeof(struct sockaddr_in); |
914 | sin.sin_addr.s_addr = SIN(nam)->sin_addr.s_addr; |
915 | |
916 | ifa = ifa_ifwithaddr(SA(&sin)); |
917 | if (ifa == NULL) { |
918 | lck_rw_done(lck: &pcbinfo->ipi_lock); |
919 | socket_lock(so, refcount: 0); |
920 | error = EADDRNOTAVAIL; |
921 | goto done; |
922 | } else { |
923 | /* |
924 | * Opportunistically determine the outbound |
925 | * interface that may be used; this may not |
926 | * hold true if we end up using a route |
927 | * going over a different interface, e.g. |
928 | * when sending to a local address. This |
929 | * will get updated again after sending. |
930 | */ |
931 | IFA_LOCK(ifa); |
932 | outif = ifa->ifa_ifp; |
933 | IFA_UNLOCK(ifa); |
934 | ifa_remref(ifa); |
935 | } |
936 | } |
937 | |
938 | #if SKYWALK |
939 | if (inp->inp_flags2 & INP2_EXTERNAL_PORT) { |
940 | // Extract the external flow info |
941 | struct ns_flow_info nfi = {}; |
942 | error = necp_client_get_netns_flow_info(client_id: inp->necp_client_uuid, |
943 | flow_info: &nfi); |
944 | if (error != 0) { |
945 | lck_rw_done(lck: &pcbinfo->ipi_lock); |
946 | socket_lock(so, refcount: 0); |
947 | goto done; |
948 | } |
949 | |
950 | // Extract the reserved port |
951 | u_int16_t reserved_lport = 0; |
952 | if (nfi.nfi_laddr.sa.sa_family == AF_INET) { |
953 | reserved_lport = nfi.nfi_laddr.sin.sin_port; |
954 | } else if (nfi.nfi_laddr.sa.sa_family == AF_INET6) { |
955 | reserved_lport = nfi.nfi_laddr.sin6.sin6_port; |
956 | } else { |
957 | lck_rw_done(lck: &pcbinfo->ipi_lock); |
958 | socket_lock(so, refcount: 0); |
959 | error = EINVAL; |
960 | goto done; |
961 | } |
962 | |
963 | // Validate or use the reserved port |
964 | if (lport == 0) { |
965 | lport = reserved_lport; |
966 | } else if (lport != reserved_lport) { |
967 | lck_rw_done(lck: &pcbinfo->ipi_lock); |
968 | socket_lock(so, refcount: 0); |
969 | error = EINVAL; |
970 | goto done; |
971 | } |
972 | } |
973 | |
974 | /* Do not allow reserving a UDP port if remaining UDP port count is below 4096 */ |
975 | if (SOCK_PROTO(so) == IPPROTO_UDP && !allow_udp_port_exhaustion) { |
976 | uint32_t current_reservations = 0; |
977 | if (inp->inp_vflag & INP_IPV6) { |
978 | current_reservations = netns_lookup_reservations_count_in6(addr: inp->in6p_laddr, IPPROTO_UDP); |
979 | } else { |
980 | current_reservations = netns_lookup_reservations_count_in(addr: inp->inp_laddr, IPPROTO_UDP); |
981 | } |
982 | if (USHRT_MAX - UDP_RANDOM_PORT_RESERVE < current_reservations) { |
983 | log(LOG_ERR, "UDP port not available, less than 4096 UDP ports left" ); |
984 | lck_rw_done(lck: &pcbinfo->ipi_lock); |
985 | socket_lock(so, refcount: 0); |
986 | error = EADDRNOTAVAIL; |
987 | goto done; |
988 | } |
989 | } |
990 | |
991 | #endif /* SKYWALK */ |
992 | |
993 | if (lport != 0) { |
994 | struct inpcb *t; |
995 | uid_t u; |
996 | |
997 | #if XNU_TARGET_OS_OSX |
998 | if (ntohs(lport) < IPPORT_RESERVED && |
999 | SIN(nam)->sin_addr.s_addr != 0 && |
1000 | !(inp->inp_flags2 & INP2_EXTERNAL_PORT)) { |
1001 | cred = kauth_cred_proc_ref(procp: p); |
1002 | error = priv_check_cred(cred, |
1003 | PRIV_NETINET_RESERVEDPORT, flags: 0); |
1004 | kauth_cred_unref(&cred); |
1005 | if (error != 0) { |
1006 | lck_rw_done(lck: &pcbinfo->ipi_lock); |
1007 | socket_lock(so, refcount: 0); |
1008 | error = EACCES; |
1009 | goto done; |
1010 | } |
1011 | } |
1012 | #endif /* XNU_TARGET_OS_OSX */ |
1013 | /* |
1014 | * Check wether the process is allowed to bind to a restricted port |
1015 | */ |
1016 | if (!current_task_can_use_restricted_in_port(port: lport, |
1017 | protocol: (uint8_t)SOCK_PROTO(so), PORT_FLAGS_BSD)) { |
1018 | lck_rw_done(lck: &pcbinfo->ipi_lock); |
1019 | socket_lock(so, refcount: 0); |
1020 | error = EADDRINUSE; |
1021 | goto done; |
1022 | } |
1023 | |
1024 | if (!IN_MULTICAST(ntohl(SIN(nam)->sin_addr.s_addr)) && |
1025 | (u = kauth_cred_getuid(cred: so->so_cred)) != 0 && |
1026 | (t = in_pcblookup_local_and_cleanup( |
1027 | pcbinfo: inp->inp_pcbinfo, SIN(nam)->sin_addr, lport_arg: lport, |
1028 | INPLOOKUP_WILDCARD)) != NULL && |
1029 | (SIN(nam)->sin_addr.s_addr != INADDR_ANY || |
1030 | t->inp_laddr.s_addr != INADDR_ANY || |
1031 | !(t->inp_socket->so_options & SO_REUSEPORT)) && |
1032 | (u != kauth_cred_getuid(cred: t->inp_socket->so_cred)) && |
1033 | !(t->inp_socket->so_flags & SOF_REUSESHAREUID) && |
1034 | (SIN(nam)->sin_addr.s_addr != INADDR_ANY || |
1035 | t->inp_laddr.s_addr != INADDR_ANY) && |
1036 | (!(t->inp_flags2 & INP2_EXTERNAL_PORT) || |
1037 | !(inp->inp_flags2 & INP2_EXTERNAL_PORT) || |
1038 | uuid_compare(uu1: t->necp_client_uuid, uu2: inp->necp_client_uuid) != 0)) { |
1039 | if ((t->inp_socket->so_flags & |
1040 | SOF_NOTIFYCONFLICT) && |
1041 | !(so->so_flags & SOF_NOTIFYCONFLICT)) { |
1042 | conflict = 1; |
1043 | } |
1044 | |
1045 | lck_rw_done(lck: &pcbinfo->ipi_lock); |
1046 | |
1047 | if (conflict) { |
1048 | in_pcb_conflict_post_msg(port: lport); |
1049 | } |
1050 | |
1051 | socket_lock(so, refcount: 0); |
1052 | error = EADDRINUSE; |
1053 | goto done; |
1054 | } |
1055 | t = in_pcblookup_local_and_cleanup(pcbinfo, |
1056 | SIN(nam)->sin_addr, lport_arg: lport, wild_okay: wild); |
1057 | if (t != NULL && |
1058 | (reuseport & t->inp_socket->so_options) == 0 && |
1059 | (!(t->inp_flags2 & INP2_EXTERNAL_PORT) || |
1060 | !(inp->inp_flags2 & INP2_EXTERNAL_PORT) || |
1061 | uuid_compare(uu1: t->necp_client_uuid, uu2: inp->necp_client_uuid) != 0)) { |
1062 | if (SIN(nam)->sin_addr.s_addr != INADDR_ANY || |
1063 | t->inp_laddr.s_addr != INADDR_ANY || |
1064 | SOCK_DOM(so) != PF_INET6 || |
1065 | SOCK_DOM(t->inp_socket) != PF_INET6) { |
1066 | if ((t->inp_socket->so_flags & |
1067 | SOF_NOTIFYCONFLICT) && |
1068 | !(so->so_flags & SOF_NOTIFYCONFLICT)) { |
1069 | conflict = 1; |
1070 | } |
1071 | |
1072 | lck_rw_done(lck: &pcbinfo->ipi_lock); |
1073 | |
1074 | if (conflict) { |
1075 | in_pcb_conflict_post_msg(port: lport); |
1076 | } |
1077 | socket_lock(so, refcount: 0); |
1078 | error = EADDRINUSE; |
1079 | goto done; |
1080 | } |
1081 | } |
1082 | #if SKYWALK |
1083 | if ((SOCK_PROTO(so) == IPPROTO_TCP || |
1084 | SOCK_PROTO(so) == IPPROTO_UDP) && |
1085 | !(inp->inp_flags2 & INP2_EXTERNAL_PORT)) { |
1086 | int res_err = 0; |
1087 | if (inp->inp_vflag & INP_IPV6) { |
1088 | res_err = netns_reserve_in6( |
1089 | token: &inp->inp_netns_token, |
1090 | SIN6(nam)->sin6_addr, |
1091 | proto: (uint8_t)SOCK_PROTO(so), port: lport, NETNS_BSD, |
1092 | NULL); |
1093 | } else { |
1094 | res_err = netns_reserve_in( |
1095 | token: &inp->inp_netns_token, |
1096 | SIN(nam)->sin_addr, proto: (uint8_t)SOCK_PROTO(so), |
1097 | port: lport, NETNS_BSD, NULL); |
1098 | } |
1099 | if (res_err != 0) { |
1100 | lck_rw_done(lck: &pcbinfo->ipi_lock); |
1101 | socket_lock(so, refcount: 0); |
1102 | error = EADDRINUSE; |
1103 | goto done; |
1104 | } |
1105 | } |
1106 | #endif /* SKYWALK */ |
1107 | } |
1108 | laddr = SIN(nam)->sin_addr; |
1109 | } |
1110 | if (lport == 0) { |
1111 | u_short first, last; |
1112 | int count; |
1113 | bool found; |
1114 | |
1115 | /* |
1116 | * Override wild = 1 for implicit bind (mainly used by connect) |
1117 | * For implicit bind (lport == 0), we always use an unused port, |
1118 | * so REUSEADDR|REUSEPORT don't apply |
1119 | */ |
1120 | wild = 1; |
1121 | |
1122 | randomport = (so->so_flags & SOF_BINDRANDOMPORT) || |
1123 | (so->so_type == SOCK_STREAM ? tcp_use_randomport : |
1124 | udp_use_randomport); |
1125 | |
1126 | /* |
1127 | * Even though this looks similar to the code in |
1128 | * in6_pcbsetport, the v6 vs v4 checks are different. |
1129 | */ |
1130 | anonport = TRUE; |
1131 | if (inp->inp_flags & INP_HIGHPORT) { |
1132 | first = (u_short)ipport_hifirstauto; /* sysctl */ |
1133 | last = (u_short)ipport_hilastauto; |
1134 | lastport = &pcbinfo->ipi_lasthi; |
1135 | } else if (inp->inp_flags & INP_LOWPORT) { |
1136 | cred = kauth_cred_proc_ref(procp: p); |
1137 | error = priv_check_cred(cred, |
1138 | PRIV_NETINET_RESERVEDPORT, flags: 0); |
1139 | kauth_cred_unref(&cred); |
1140 | if (error != 0) { |
1141 | lck_rw_done(lck: &pcbinfo->ipi_lock); |
1142 | socket_lock(so, refcount: 0); |
1143 | goto done; |
1144 | } |
1145 | first = (u_short)ipport_lowfirstauto; /* 1023 */ |
1146 | last = (u_short)ipport_lowlastauto; /* 600 */ |
1147 | lastport = &pcbinfo->ipi_lastlow; |
1148 | } else { |
1149 | first = (u_short)ipport_firstauto; /* sysctl */ |
1150 | last = (u_short)ipport_lastauto; |
1151 | lastport = &pcbinfo->ipi_lastport; |
1152 | } |
1153 | /* No point in randomizing if only one port is available */ |
1154 | |
1155 | if (first == last) { |
1156 | randomport = 0; |
1157 | } |
1158 | /* |
1159 | * Simple check to ensure all ports are not used up causing |
1160 | * a deadlock here. |
1161 | * |
1162 | * We split the two cases (up and down) so that the direction |
1163 | * is not being tested on each round of the loop. |
1164 | */ |
1165 | if (first > last) { |
1166 | struct in_addr lookup_addr; |
1167 | |
1168 | /* |
1169 | * counting down |
1170 | */ |
1171 | if (randomport) { |
1172 | read_frandom(buffer: &rand_port, numBytes: sizeof(rand_port)); |
1173 | *lastport = |
1174 | first - (rand_port % (first - last)); |
1175 | } |
1176 | count = first - last; |
1177 | |
1178 | lookup_addr = (laddr.s_addr != INADDR_ANY) ? laddr : |
1179 | inp->inp_laddr; |
1180 | |
1181 | found = false; |
1182 | do { |
1183 | if (count-- < 0) { /* completely used? */ |
1184 | lck_rw_done(lck: &pcbinfo->ipi_lock); |
1185 | socket_lock(so, refcount: 0); |
1186 | error = EADDRNOTAVAIL; |
1187 | goto done; |
1188 | } |
1189 | --*lastport; |
1190 | if (*lastport > first || *lastport < last) { |
1191 | *lastport = first; |
1192 | } |
1193 | lport = htons(*lastport); |
1194 | |
1195 | /* |
1196 | * Skip if this is a restricted port as we do not want to |
1197 | * restricted ports as ephemeral |
1198 | */ |
1199 | if (IS_RESTRICTED_IN_PORT(lport)) { |
1200 | continue; |
1201 | } |
1202 | |
1203 | found = in_pcblookup_local_and_cleanup(pcbinfo, |
1204 | laddr: lookup_addr, lport_arg: lport, wild_okay: wild) == NULL; |
1205 | #if SKYWALK |
1206 | if (found && |
1207 | (SOCK_PROTO(so) == IPPROTO_TCP || |
1208 | SOCK_PROTO(so) == IPPROTO_UDP) && |
1209 | !(inp->inp_flags2 & INP2_EXTERNAL_PORT)) { |
1210 | int res_err; |
1211 | if (inp->inp_vflag & INP_IPV6) { |
1212 | res_err = netns_reserve_in6( |
1213 | token: &inp->inp_netns_token, |
1214 | addr: inp->in6p_laddr, |
1215 | proto: (uint8_t)SOCK_PROTO(so), port: lport, |
1216 | NETNS_BSD, NULL); |
1217 | } else { |
1218 | res_err = netns_reserve_in( |
1219 | token: &inp->inp_netns_token, |
1220 | addr: lookup_addr, proto: (uint8_t)SOCK_PROTO(so), |
1221 | port: lport, NETNS_BSD, NULL); |
1222 | } |
1223 | found = res_err == 0; |
1224 | } |
1225 | #endif /* SKYWALK */ |
1226 | } while (!found); |
1227 | } else { |
1228 | struct in_addr lookup_addr; |
1229 | |
1230 | /* |
1231 | * counting up |
1232 | */ |
1233 | if (randomport) { |
1234 | read_frandom(buffer: &rand_port, numBytes: sizeof(rand_port)); |
1235 | *lastport = |
1236 | first + (rand_port % (first - last)); |
1237 | } |
1238 | count = last - first; |
1239 | |
1240 | lookup_addr = (laddr.s_addr != INADDR_ANY) ? laddr : |
1241 | inp->inp_laddr; |
1242 | |
1243 | found = false; |
1244 | do { |
1245 | if (count-- < 0) { /* completely used? */ |
1246 | lck_rw_done(lck: &pcbinfo->ipi_lock); |
1247 | socket_lock(so, refcount: 0); |
1248 | error = EADDRNOTAVAIL; |
1249 | goto done; |
1250 | } |
1251 | ++*lastport; |
1252 | if (*lastport < first || *lastport > last) { |
1253 | *lastport = first; |
1254 | } |
1255 | lport = htons(*lastport); |
1256 | |
1257 | /* |
1258 | * Skip if this is a restricted port as we do not want to |
1259 | * restricted ports as ephemeral |
1260 | */ |
1261 | if (IS_RESTRICTED_IN_PORT(lport)) { |
1262 | continue; |
1263 | } |
1264 | |
1265 | found = in_pcblookup_local_and_cleanup(pcbinfo, |
1266 | laddr: lookup_addr, lport_arg: lport, wild_okay: wild) == NULL; |
1267 | #if SKYWALK |
1268 | if (found && |
1269 | (SOCK_PROTO(so) == IPPROTO_TCP || |
1270 | SOCK_PROTO(so) == IPPROTO_UDP) && |
1271 | !(inp->inp_flags2 & INP2_EXTERNAL_PORT)) { |
1272 | int res_err; |
1273 | if (inp->inp_vflag & INP_IPV6) { |
1274 | res_err = netns_reserve_in6( |
1275 | token: &inp->inp_netns_token, |
1276 | addr: inp->in6p_laddr, |
1277 | proto: (uint8_t)SOCK_PROTO(so), port: lport, |
1278 | NETNS_BSD, NULL); |
1279 | } else { |
1280 | res_err = netns_reserve_in( |
1281 | token: &inp->inp_netns_token, |
1282 | addr: lookup_addr, proto: (uint8_t)SOCK_PROTO(so), |
1283 | port: lport, NETNS_BSD, NULL); |
1284 | } |
1285 | found = res_err == 0; |
1286 | } |
1287 | #endif /* SKYWALK */ |
1288 | } while (!found); |
1289 | } |
1290 | } |
1291 | socket_lock(so, refcount: 0); |
1292 | |
1293 | /* |
1294 | * We unlocked socket's protocol lock for a long time. |
1295 | * The socket might have been dropped/defuncted. |
1296 | * Checking if world has changed since. |
1297 | */ |
1298 | if (inp->inp_state == INPCB_STATE_DEAD) { |
1299 | #if SKYWALK |
1300 | netns_release(token: &inp->inp_netns_token); |
1301 | #endif /* SKYWALK */ |
1302 | lck_rw_done(lck: &pcbinfo->ipi_lock); |
1303 | error = ECONNABORTED; |
1304 | goto done; |
1305 | } |
1306 | |
1307 | if (inp->inp_lport != 0 || inp->inp_laddr.s_addr != INADDR_ANY) { |
1308 | #if SKYWALK |
1309 | netns_release(token: &inp->inp_netns_token); |
1310 | #endif /* SKYWALK */ |
1311 | lck_rw_done(lck: &pcbinfo->ipi_lock); |
1312 | error = EINVAL; |
1313 | goto done; |
1314 | } |
1315 | |
1316 | if (laddr.s_addr != INADDR_ANY) { |
1317 | inp->inp_laddr = laddr; |
1318 | inp->inp_last_outifp = outif; |
1319 | #if SKYWALK |
1320 | if (NETNS_TOKEN_VALID(&inp->inp_netns_token)) { |
1321 | netns_set_ifnet(token: &inp->inp_netns_token, ifp: outif); |
1322 | } |
1323 | #endif /* SKYWALK */ |
1324 | } |
1325 | inp->inp_lport = lport; |
1326 | if (anonport) { |
1327 | inp->inp_flags |= INP_ANONPORT; |
1328 | } |
1329 | |
1330 | if (in_pcbinshash(inp, 1) != 0) { |
1331 | inp->inp_laddr.s_addr = INADDR_ANY; |
1332 | inp->inp_last_outifp = NULL; |
1333 | |
1334 | #if SKYWALK |
1335 | netns_release(token: &inp->inp_netns_token); |
1336 | #endif /* SKYWALK */ |
1337 | inp->inp_lport = 0; |
1338 | if (anonport) { |
1339 | inp->inp_flags &= ~INP_ANONPORT; |
1340 | } |
1341 | lck_rw_done(lck: &pcbinfo->ipi_lock); |
1342 | error = EAGAIN; |
1343 | goto done; |
1344 | } |
1345 | lck_rw_done(lck: &pcbinfo->ipi_lock); |
1346 | sflt_notify(so, event: sock_evt_bound, NULL); |
1347 | |
1348 | in_pcb_check_management_entitled(inp); |
1349 | done: |
1350 | inp->inp_flags2 &= ~INP2_BIND_IN_PROGRESS; |
1351 | return error; |
1352 | } |
1353 | |
1354 | #define APN_FALLBACK_IP_FILTER(a) \ |
1355 | (IN_LINKLOCAL(ntohl((a)->sin_addr.s_addr)) || \ |
1356 | IN_LOOPBACK(ntohl((a)->sin_addr.s_addr)) || \ |
1357 | IN_ZERONET(ntohl((a)->sin_addr.s_addr)) || \ |
1358 | IN_MULTICAST(ntohl((a)->sin_addr.s_addr)) || \ |
1359 | IN_PRIVATE(ntohl((a)->sin_addr.s_addr))) |
1360 | |
1361 | #define APN_FALLBACK_NOTIF_INTERVAL 2 /* Magic Number */ |
1362 | static uint64_t last_apn_fallback = 0; |
1363 | |
1364 | static boolean_t |
1365 | apn_fallback_required(proc_t proc, struct socket *so, struct sockaddr_in *p_dstv4) |
1366 | { |
1367 | uint64_t timenow; |
1368 | struct sockaddr_storage lookup_default_addr; |
1369 | struct rtentry *rt = NULL; |
1370 | |
1371 | VERIFY(proc != NULL); |
1372 | |
1373 | if (apn_fallbk_enabled == FALSE) { |
1374 | return FALSE; |
1375 | } |
1376 | |
1377 | if (proc == kernproc) { |
1378 | return FALSE; |
1379 | } |
1380 | |
1381 | if (so && (so->so_options & SO_NOAPNFALLBK)) { |
1382 | return FALSE; |
1383 | } |
1384 | |
1385 | timenow = net_uptime(); |
1386 | if ((timenow - last_apn_fallback) < APN_FALLBACK_NOTIF_INTERVAL) { |
1387 | apn_fallbk_log((LOG_INFO, "APN fallback notification throttled.\n" )); |
1388 | return FALSE; |
1389 | } |
1390 | |
1391 | if (p_dstv4 && APN_FALLBACK_IP_FILTER(p_dstv4)) { |
1392 | return FALSE; |
1393 | } |
1394 | |
1395 | /* Check if we have unscoped IPv6 default route through cellular */ |
1396 | bzero(s: &lookup_default_addr, n: sizeof(lookup_default_addr)); |
1397 | lookup_default_addr.ss_family = AF_INET6; |
1398 | lookup_default_addr.ss_len = sizeof(struct sockaddr_in6); |
1399 | |
1400 | rt = rtalloc1(SA(&lookup_default_addr), 0, 0); |
1401 | if (NULL == rt) { |
1402 | apn_fallbk_log((LOG_INFO, "APN fallback notification could not find " |
1403 | "unscoped default IPv6 route.\n" )); |
1404 | return FALSE; |
1405 | } |
1406 | |
1407 | if (!IFNET_IS_CELLULAR(rt->rt_ifp)) { |
1408 | rtfree(rt); |
1409 | apn_fallbk_log((LOG_INFO, "APN fallback notification could not find " |
1410 | "unscoped default IPv6 route through cellular interface.\n" )); |
1411 | return FALSE; |
1412 | } |
1413 | |
1414 | /* |
1415 | * We have a default IPv6 route, ensure that |
1416 | * we do not have IPv4 default route before triggering |
1417 | * the event |
1418 | */ |
1419 | rtfree(rt); |
1420 | rt = NULL; |
1421 | |
1422 | bzero(s: &lookup_default_addr, n: sizeof(lookup_default_addr)); |
1423 | lookup_default_addr.ss_family = AF_INET; |
1424 | lookup_default_addr.ss_len = sizeof(struct sockaddr_in); |
1425 | |
1426 | rt = rtalloc1(SA(&lookup_default_addr), 0, 0); |
1427 | |
1428 | if (rt) { |
1429 | rtfree(rt); |
1430 | rt = NULL; |
1431 | apn_fallbk_log((LOG_INFO, "APN fallback notification found unscoped " |
1432 | "IPv4 default route!\n" )); |
1433 | return FALSE; |
1434 | } |
1435 | |
1436 | { |
1437 | /* |
1438 | * We disable APN fallback if the binary is not a third-party app. |
1439 | * Note that platform daemons use their process name as a |
1440 | * bundle ID so we filter out bundle IDs without dots. |
1441 | */ |
1442 | const char *bundle_id = cs_identity_get(proc); |
1443 | if (bundle_id == NULL || |
1444 | bundle_id[0] == '\0' || |
1445 | strchr(s: bundle_id, c: '.') == NULL || |
1446 | strncmp(s1: bundle_id, s2: "com.apple." , n: sizeof("com.apple." ) - 1) == 0) { |
1447 | apn_fallbk_log((LOG_INFO, "Abort: APN fallback notification found first-" |
1448 | "party bundle ID \"%s\"!\n" , (bundle_id ? bundle_id : "NULL" ))); |
1449 | return FALSE; |
1450 | } |
1451 | } |
1452 | |
1453 | { |
1454 | /* |
1455 | * The Apple App Store IPv6 requirement started on |
1456 | * June 1st, 2016 at 12:00:00 AM PDT. |
1457 | * We disable APN fallback if the binary is more recent than that. |
1458 | * We check both atime and birthtime since birthtime is not always supported. |
1459 | */ |
1460 | static const long ipv6_start_date = 1464764400L; |
1461 | vfs_context_t context; |
1462 | struct stat64 sb; |
1463 | int vn_stat_error; |
1464 | |
1465 | bzero(s: &sb, n: sizeof(struct stat64)); |
1466 | context = vfs_context_create(NULL); |
1467 | vn_stat_error = vn_stat(vp: proc->p_textvp, sb: &sb, NULL, isstat64: 1, needsrealdev: 0, ctx: context); |
1468 | (void)vfs_context_rele(ctx: context); |
1469 | |
1470 | if (vn_stat_error != 0 || |
1471 | sb.st_atimespec.tv_sec >= ipv6_start_date || |
1472 | sb.st_birthtimespec.tv_sec >= ipv6_start_date) { |
1473 | apn_fallbk_log((LOG_INFO, "Abort: APN fallback notification found binary " |
1474 | "too recent! (err %d atime %ld mtime %ld ctime %ld birthtime %ld)\n" , |
1475 | vn_stat_error, sb.st_atimespec.tv_sec, sb.st_mtimespec.tv_sec, |
1476 | sb.st_ctimespec.tv_sec, sb.st_birthtimespec.tv_sec)); |
1477 | return FALSE; |
1478 | } |
1479 | } |
1480 | return TRUE; |
1481 | } |
1482 | |
1483 | static void |
1484 | apn_fallback_trigger(proc_t proc, struct socket *so) |
1485 | { |
1486 | pid_t pid = 0; |
1487 | struct kev_msg ev_msg; |
1488 | struct kev_netevent_apnfallbk_data apnfallbk_data; |
1489 | |
1490 | last_apn_fallback = net_uptime(); |
1491 | pid = proc_pid(proc); |
1492 | uuid_t application_uuid; |
1493 | uuid_clear(uu: application_uuid); |
1494 | proc_getexecutableuuid(proc, application_uuid, |
1495 | sizeof(application_uuid)); |
1496 | |
1497 | bzero(s: &ev_msg, n: sizeof(struct kev_msg)); |
1498 | ev_msg.vendor_code = KEV_VENDOR_APPLE; |
1499 | ev_msg.kev_class = KEV_NETWORK_CLASS; |
1500 | ev_msg.kev_subclass = KEV_NETEVENT_SUBCLASS; |
1501 | ev_msg.event_code = KEV_NETEVENT_APNFALLBACK; |
1502 | |
1503 | bzero(s: &apnfallbk_data, n: sizeof(apnfallbk_data)); |
1504 | |
1505 | if (so->so_flags & SOF_DELEGATED) { |
1506 | apnfallbk_data.epid = so->e_pid; |
1507 | uuid_copy(dst: apnfallbk_data.euuid, src: so->e_uuid); |
1508 | } else { |
1509 | apnfallbk_data.epid = so->last_pid; |
1510 | uuid_copy(dst: apnfallbk_data.euuid, src: so->last_uuid); |
1511 | } |
1512 | |
1513 | ev_msg.dv[0].data_ptr = &apnfallbk_data; |
1514 | ev_msg.dv[0].data_length = sizeof(apnfallbk_data); |
1515 | kev_post_msg(event: &ev_msg); |
1516 | apn_fallbk_log((LOG_INFO, "APN fallback notification issued.\n" )); |
1517 | } |
1518 | |
1519 | /* |
1520 | * Transform old in_pcbconnect() into an inner subroutine for new |
1521 | * in_pcbconnect(); do some validity-checking on the remote address |
1522 | * (in "nam") and then determine local host address (i.e., which |
1523 | * interface) to use to access that remote host. |
1524 | * |
1525 | * This routine may alter the caller-supplied remote address "nam". |
1526 | * |
1527 | * The caller may override the bound-to-interface setting of the socket |
1528 | * by specifying the ifscope parameter (e.g. from IP_PKTINFO.) |
1529 | * |
1530 | * This routine might return an ifp with a reference held if the caller |
1531 | * provides a non-NULL outif, even in the error case. The caller is |
1532 | * responsible for releasing its reference. |
1533 | * |
1534 | * Returns: 0 Success |
1535 | * EINVAL Invalid argument |
1536 | * EAFNOSUPPORT Address family not supported |
1537 | * EADDRNOTAVAIL Address not available |
1538 | */ |
1539 | int |
1540 | in_pcbladdr(struct inpcb *inp, struct sockaddr *nam, struct in_addr *laddr, |
1541 | unsigned int ifscope, struct ifnet **outif, int raw) |
1542 | { |
1543 | struct route *ro = &inp->inp_route; |
1544 | struct in_ifaddr *ia = NULL; |
1545 | struct sockaddr_in sin; |
1546 | int error = 0; |
1547 | boolean_t restricted = FALSE; |
1548 | |
1549 | if (outif != NULL) { |
1550 | *outif = NULL; |
1551 | } |
1552 | if (nam->sa_len != sizeof(struct sockaddr_in)) { |
1553 | return EINVAL; |
1554 | } |
1555 | if (SIN(nam)->sin_family != AF_INET) { |
1556 | return EAFNOSUPPORT; |
1557 | } |
1558 | if (raw == 0 && SIN(nam)->sin_port == 0) { |
1559 | return EADDRNOTAVAIL; |
1560 | } |
1561 | |
1562 | in_pcb_check_management_entitled(inp); |
1563 | |
1564 | /* |
1565 | * If the destination address is INADDR_ANY, |
1566 | * use the primary local address. |
1567 | * If the supplied address is INADDR_BROADCAST, |
1568 | * and the primary interface supports broadcast, |
1569 | * choose the broadcast address for that interface. |
1570 | */ |
1571 | if (raw == 0 && (SIN(nam)->sin_addr.s_addr == INADDR_ANY || |
1572 | SIN(nam)->sin_addr.s_addr == (u_int32_t)INADDR_BROADCAST)) { |
1573 | lck_rw_lock_shared(lck: &in_ifaddr_rwlock); |
1574 | if (!TAILQ_EMPTY(&in_ifaddrhead)) { |
1575 | ia = TAILQ_FIRST(&in_ifaddrhead); |
1576 | IFA_LOCK_SPIN(&ia->ia_ifa); |
1577 | if (SIN(nam)->sin_addr.s_addr == INADDR_ANY) { |
1578 | SIN(nam)->sin_addr = IA_SIN(ia)->sin_addr; |
1579 | } else if (ia->ia_ifp->if_flags & IFF_BROADCAST) { |
1580 | SIN(nam)->sin_addr = |
1581 | SIN(&ia->ia_broadaddr)->sin_addr; |
1582 | } |
1583 | IFA_UNLOCK(&ia->ia_ifa); |
1584 | ia = NULL; |
1585 | } |
1586 | lck_rw_done(lck: &in_ifaddr_rwlock); |
1587 | } |
1588 | /* |
1589 | * Otherwise, if the socket has already bound the source, just use it. |
1590 | */ |
1591 | if (inp->inp_laddr.s_addr != INADDR_ANY) { |
1592 | VERIFY(ia == NULL); |
1593 | *laddr = inp->inp_laddr; |
1594 | return 0; |
1595 | } |
1596 | |
1597 | /* |
1598 | * If the ifscope is specified by the caller (e.g. IP_PKTINFO) |
1599 | * then it overrides the sticky ifscope set for the socket. |
1600 | */ |
1601 | if (ifscope == IFSCOPE_NONE && (inp->inp_flags & INP_BOUND_IF)) { |
1602 | ifscope = inp->inp_boundifp->if_index; |
1603 | } |
1604 | |
1605 | /* |
1606 | * If route is known or can be allocated now, |
1607 | * our src addr is taken from the i/f, else punt. |
1608 | * Note that we should check the address family of the cached |
1609 | * destination, in case of sharing the cache with IPv6. |
1610 | */ |
1611 | if (ro->ro_rt != NULL) { |
1612 | RT_LOCK_SPIN(ro->ro_rt); |
1613 | } |
1614 | if (ROUTE_UNUSABLE(ro) || ro->ro_dst.sa_family != AF_INET || |
1615 | SIN(&ro->ro_dst)->sin_addr.s_addr != SIN(nam)->sin_addr.s_addr || |
1616 | (inp->inp_socket->so_options & SO_DONTROUTE)) { |
1617 | if (ro->ro_rt != NULL) { |
1618 | RT_UNLOCK(ro->ro_rt); |
1619 | } |
1620 | ROUTE_RELEASE(ro); |
1621 | } |
1622 | if (!(inp->inp_socket->so_options & SO_DONTROUTE) && |
1623 | (ro->ro_rt == NULL || ro->ro_rt->rt_ifp == NULL)) { |
1624 | if (ro->ro_rt != NULL) { |
1625 | RT_UNLOCK(ro->ro_rt); |
1626 | } |
1627 | ROUTE_RELEASE(ro); |
1628 | /* No route yet, so try to acquire one */ |
1629 | SOCKADDR_ZERO(&ro->ro_dst, sizeof(struct sockaddr_in)); |
1630 | ro->ro_dst.sa_family = AF_INET; |
1631 | ro->ro_dst.sa_len = sizeof(struct sockaddr_in); |
1632 | SIN(&ro->ro_dst)->sin_addr = SIN(nam)->sin_addr; |
1633 | rtalloc_scoped(ro, ifscope); |
1634 | if (ro->ro_rt != NULL) { |
1635 | RT_LOCK_SPIN(ro->ro_rt); |
1636 | } |
1637 | } |
1638 | /* Sanitized local copy for interface address searches */ |
1639 | SOCKADDR_ZERO(&sin, sizeof(sin)); |
1640 | sin.sin_family = AF_INET; |
1641 | sin.sin_len = sizeof(struct sockaddr_in); |
1642 | sin.sin_addr.s_addr = SIN(nam)->sin_addr.s_addr; |
1643 | /* |
1644 | * If we did not find (or use) a route, assume dest is reachable |
1645 | * on a directly connected network and try to find a corresponding |
1646 | * interface to take the source address from. |
1647 | */ |
1648 | if (ro->ro_rt == NULL) { |
1649 | proc_t proc = current_proc(); |
1650 | |
1651 | VERIFY(ia == NULL); |
1652 | ia = ifatoia(ifa_ifwithdstaddr(SA(&sin))); |
1653 | if (ia == NULL) { |
1654 | ia = ifatoia(ifa_ifwithnet_scoped(SA(&sin), ifscope)); |
1655 | } |
1656 | error = ((ia == NULL) ? ENETUNREACH : 0); |
1657 | |
1658 | if (apn_fallback_required(proc, so: inp->inp_socket, |
1659 | p_dstv4: (void *)nam)) { |
1660 | apn_fallback_trigger(proc, so: inp->inp_socket); |
1661 | } |
1662 | |
1663 | goto done; |
1664 | } |
1665 | RT_LOCK_ASSERT_HELD(ro->ro_rt); |
1666 | /* |
1667 | * If the outgoing interface on the route found is not |
1668 | * a loopback interface, use the address from that interface. |
1669 | */ |
1670 | if (!(ro->ro_rt->rt_ifp->if_flags & IFF_LOOPBACK)) { |
1671 | VERIFY(ia == NULL); |
1672 | /* |
1673 | * If the route points to a cellular interface and the |
1674 | * caller forbids our using interfaces of such type, |
1675 | * pretend that there is no route. |
1676 | * Apply the same logic for expensive interfaces. |
1677 | */ |
1678 | if (inp_restricted_send(inp, ro->ro_rt->rt_ifp)) { |
1679 | RT_UNLOCK(ro->ro_rt); |
1680 | ROUTE_RELEASE(ro); |
1681 | error = EHOSTUNREACH; |
1682 | restricted = TRUE; |
1683 | } else { |
1684 | /* Become a regular mutex */ |
1685 | RT_CONVERT_LOCK(ro->ro_rt); |
1686 | ia = ifatoia(ro->ro_rt->rt_ifa); |
1687 | ifa_addref(ifa: &ia->ia_ifa); |
1688 | |
1689 | /* |
1690 | * Mark the control block for notification of |
1691 | * a possible flow that might undergo clat46 |
1692 | * translation. |
1693 | * |
1694 | * We defer the decision to a later point when |
1695 | * inpcb is being disposed off. |
1696 | * The reason is that we only want to send notification |
1697 | * if the flow was ever used to send data. |
1698 | */ |
1699 | if (IS_INTF_CLAT46(ro->ro_rt->rt_ifp)) { |
1700 | inp->inp_flags2 |= INP2_CLAT46_FLOW; |
1701 | } |
1702 | |
1703 | RT_UNLOCK(ro->ro_rt); |
1704 | error = 0; |
1705 | } |
1706 | goto done; |
1707 | } |
1708 | VERIFY(ro->ro_rt->rt_ifp->if_flags & IFF_LOOPBACK); |
1709 | RT_UNLOCK(ro->ro_rt); |
1710 | /* |
1711 | * The outgoing interface is marked with 'loopback net', so a route |
1712 | * to ourselves is here. |
1713 | * Try to find the interface of the destination address and then |
1714 | * take the address from there. That interface is not necessarily |
1715 | * a loopback interface. |
1716 | */ |
1717 | VERIFY(ia == NULL); |
1718 | ia = ifatoia(ifa_ifwithdstaddr(SA(&sin))); |
1719 | if (ia == NULL) { |
1720 | ia = ifatoia(ifa_ifwithaddr_scoped(SA(&sin), ifscope)); |
1721 | } |
1722 | if (ia == NULL) { |
1723 | ia = ifatoia(ifa_ifwithnet_scoped(SA(&sin), ifscope)); |
1724 | } |
1725 | if (ia == NULL) { |
1726 | RT_LOCK(ro->ro_rt); |
1727 | ia = ifatoia(ro->ro_rt->rt_ifa); |
1728 | if (ia != NULL) { |
1729 | ifa_addref(ifa: &ia->ia_ifa); |
1730 | } |
1731 | RT_UNLOCK(ro->ro_rt); |
1732 | } |
1733 | error = ((ia == NULL) ? ENETUNREACH : 0); |
1734 | |
1735 | done: |
1736 | /* |
1737 | * If the destination address is multicast and an outgoing |
1738 | * interface has been set as a multicast option, use the |
1739 | * address of that interface as our source address. |
1740 | */ |
1741 | if (IN_MULTICAST(ntohl(SIN(nam)->sin_addr.s_addr)) && |
1742 | inp->inp_moptions != NULL) { |
1743 | struct ip_moptions *imo; |
1744 | struct ifnet *ifp; |
1745 | |
1746 | imo = inp->inp_moptions; |
1747 | IMO_LOCK(imo); |
1748 | if (imo->imo_multicast_ifp != NULL && (ia == NULL || |
1749 | ia->ia_ifp != imo->imo_multicast_ifp)) { |
1750 | ifp = imo->imo_multicast_ifp; |
1751 | if (ia != NULL) { |
1752 | ifa_remref(ifa: &ia->ia_ifa); |
1753 | } |
1754 | lck_rw_lock_shared(lck: &in_ifaddr_rwlock); |
1755 | TAILQ_FOREACH(ia, &in_ifaddrhead, ia_link) { |
1756 | if (ia->ia_ifp == ifp) { |
1757 | break; |
1758 | } |
1759 | } |
1760 | if (ia != NULL) { |
1761 | ifa_addref(ifa: &ia->ia_ifa); |
1762 | } |
1763 | lck_rw_done(lck: &in_ifaddr_rwlock); |
1764 | if (ia == NULL) { |
1765 | error = EADDRNOTAVAIL; |
1766 | } else { |
1767 | error = 0; |
1768 | } |
1769 | } |
1770 | IMO_UNLOCK(imo); |
1771 | } |
1772 | /* |
1773 | * Don't do pcblookup call here; return interface in laddr |
1774 | * and exit to caller, that will do the lookup. |
1775 | */ |
1776 | if (ia != NULL) { |
1777 | /* |
1778 | * If the source address belongs to a cellular interface |
1779 | * and the socket forbids our using interfaces of such |
1780 | * type, pretend that there is no source address. |
1781 | * Apply the same logic for expensive interfaces. |
1782 | */ |
1783 | IFA_LOCK_SPIN(&ia->ia_ifa); |
1784 | if (inp_restricted_send(inp, ia->ia_ifa.ifa_ifp)) { |
1785 | IFA_UNLOCK(&ia->ia_ifa); |
1786 | error = EHOSTUNREACH; |
1787 | restricted = TRUE; |
1788 | } else if (error == 0) { |
1789 | *laddr = ia->ia_addr.sin_addr; |
1790 | if (outif != NULL) { |
1791 | struct ifnet *ifp; |
1792 | |
1793 | if (ro->ro_rt != NULL) { |
1794 | ifp = ro->ro_rt->rt_ifp; |
1795 | } else { |
1796 | ifp = ia->ia_ifp; |
1797 | } |
1798 | |
1799 | VERIFY(ifp != NULL); |
1800 | IFA_CONVERT_LOCK(&ia->ia_ifa); |
1801 | ifnet_reference(interface: ifp); /* for caller */ |
1802 | if (*outif != NULL) { |
1803 | ifnet_release(interface: *outif); |
1804 | } |
1805 | *outif = ifp; |
1806 | } |
1807 | IFA_UNLOCK(&ia->ia_ifa); |
1808 | } else { |
1809 | IFA_UNLOCK(&ia->ia_ifa); |
1810 | } |
1811 | ifa_remref(ifa: &ia->ia_ifa); |
1812 | ia = NULL; |
1813 | } |
1814 | |
1815 | if (restricted && error == EHOSTUNREACH) { |
1816 | soevent(so: inp->inp_socket, hint: (SO_FILT_HINT_LOCKED | |
1817 | SO_FILT_HINT_IFDENIED)); |
1818 | } |
1819 | |
1820 | return error; |
1821 | } |
1822 | |
1823 | /* |
1824 | * Outer subroutine: |
1825 | * Connect from a socket to a specified address. |
1826 | * Both address and port must be specified in argument sin. |
1827 | * If don't have a local address for this socket yet, |
1828 | * then pick one. |
1829 | * |
1830 | * The caller may override the bound-to-interface setting of the socket |
1831 | * by specifying the ifscope parameter (e.g. from IP_PKTINFO.) |
1832 | */ |
1833 | int |
1834 | in_pcbconnect(struct inpcb *inp, struct sockaddr *nam, struct proc *p, |
1835 | unsigned int ifscope, struct ifnet **outif) |
1836 | { |
1837 | struct in_addr laddr; |
1838 | struct sockaddr_in *sin = SIN(nam); |
1839 | struct inpcb *pcb; |
1840 | int error; |
1841 | struct socket *so = inp->inp_socket; |
1842 | |
1843 | #if CONTENT_FILTER |
1844 | if (so) { |
1845 | so->so_state_change_cnt++; |
1846 | } |
1847 | #endif |
1848 | |
1849 | /* |
1850 | * Call inner routine, to assign local interface address. |
1851 | */ |
1852 | if ((error = in_pcbladdr(inp, nam, laddr: &laddr, ifscope, outif, raw: 0)) != 0) { |
1853 | return error; |
1854 | } |
1855 | |
1856 | socket_unlock(so, refcount: 0); |
1857 | pcb = in_pcblookup_hash(inp->inp_pcbinfo, sin->sin_addr, sin->sin_port, |
1858 | inp->inp_laddr.s_addr ? inp->inp_laddr : laddr, |
1859 | inp->inp_lport, 0, NULL); |
1860 | socket_lock(so, refcount: 0); |
1861 | |
1862 | /* |
1863 | * Check if the socket is still in a valid state. When we unlock this |
1864 | * embryonic socket, it can get aborted if another thread is closing |
1865 | * the listener (radar 7947600). |
1866 | */ |
1867 | if ((so->so_flags & SOF_ABORTED) != 0) { |
1868 | return ECONNREFUSED; |
1869 | } |
1870 | |
1871 | if (pcb != NULL) { |
1872 | in_pcb_checkstate(pcb, WNT_RELEASE, pcb == inp ? 1 : 0); |
1873 | return EADDRINUSE; |
1874 | } |
1875 | if (inp->inp_laddr.s_addr == INADDR_ANY) { |
1876 | if (inp->inp_lport == 0) { |
1877 | error = in_pcbbind(inp, NULL, p); |
1878 | if (error) { |
1879 | return error; |
1880 | } |
1881 | } |
1882 | if (!lck_rw_try_lock_exclusive(lck: &inp->inp_pcbinfo->ipi_lock)) { |
1883 | /* |
1884 | * Lock inversion issue, mostly with udp |
1885 | * multicast packets. |
1886 | */ |
1887 | socket_unlock(so, refcount: 0); |
1888 | lck_rw_lock_exclusive(lck: &inp->inp_pcbinfo->ipi_lock); |
1889 | socket_lock(so, refcount: 0); |
1890 | } |
1891 | inp->inp_laddr = laddr; |
1892 | /* no reference needed */ |
1893 | inp->inp_last_outifp = (outif != NULL) ? *outif : NULL; |
1894 | #if SKYWALK |
1895 | if (NETNS_TOKEN_VALID(&inp->inp_netns_token)) { |
1896 | netns_set_ifnet(token: &inp->inp_netns_token, |
1897 | ifp: inp->inp_last_outifp); |
1898 | } |
1899 | #endif /* SKYWALK */ |
1900 | inp->inp_flags |= INP_INADDR_ANY; |
1901 | } else { |
1902 | /* |
1903 | * Usage of IP_PKTINFO, without local port already |
1904 | * speficified will cause kernel to panic, |
1905 | * see rdar://problem/18508185. |
1906 | * For now returning error to avoid a kernel panic |
1907 | * This routines can be refactored and handle this better |
1908 | * in future. |
1909 | */ |
1910 | if (inp->inp_lport == 0) { |
1911 | return EINVAL; |
1912 | } |
1913 | if (!lck_rw_try_lock_exclusive(lck: &inp->inp_pcbinfo->ipi_lock)) { |
1914 | /* |
1915 | * Lock inversion issue, mostly with udp |
1916 | * multicast packets. |
1917 | */ |
1918 | socket_unlock(so, refcount: 0); |
1919 | lck_rw_lock_exclusive(lck: &inp->inp_pcbinfo->ipi_lock); |
1920 | socket_lock(so, refcount: 0); |
1921 | } |
1922 | } |
1923 | inp->inp_faddr = sin->sin_addr; |
1924 | inp->inp_fport = sin->sin_port; |
1925 | if (nstat_collect && SOCK_PROTO(so) == IPPROTO_UDP) { |
1926 | nstat_pcb_invalidate_cache(inp); |
1927 | } |
1928 | in_pcbrehash(inp); |
1929 | lck_rw_done(lck: &inp->inp_pcbinfo->ipi_lock); |
1930 | return 0; |
1931 | } |
1932 | |
1933 | void |
1934 | in_pcbdisconnect(struct inpcb *inp) |
1935 | { |
1936 | struct socket *so = inp->inp_socket; |
1937 | |
1938 | if (nstat_collect && SOCK_PROTO(so) == IPPROTO_UDP) { |
1939 | nstat_pcb_cache(inp); |
1940 | } |
1941 | |
1942 | inp->inp_faddr.s_addr = INADDR_ANY; |
1943 | inp->inp_fport = 0; |
1944 | |
1945 | #if CONTENT_FILTER |
1946 | if (so) { |
1947 | so->so_state_change_cnt++; |
1948 | } |
1949 | #endif |
1950 | |
1951 | if (!lck_rw_try_lock_exclusive(lck: &inp->inp_pcbinfo->ipi_lock)) { |
1952 | /* lock inversion issue, mostly with udp multicast packets */ |
1953 | socket_unlock(so, refcount: 0); |
1954 | lck_rw_lock_exclusive(lck: &inp->inp_pcbinfo->ipi_lock); |
1955 | socket_lock(so, refcount: 0); |
1956 | } |
1957 | |
1958 | in_pcbrehash(inp); |
1959 | lck_rw_done(lck: &inp->inp_pcbinfo->ipi_lock); |
1960 | /* |
1961 | * A multipath subflow socket would have its SS_NOFDREF set by default, |
1962 | * so check for SOF_MP_SUBFLOW socket flag before detaching the PCB; |
1963 | * when the socket is closed for real, SOF_MP_SUBFLOW would be cleared. |
1964 | */ |
1965 | if (!(so->so_flags & SOF_MP_SUBFLOW) && (so->so_state & SS_NOFDREF)) { |
1966 | in_pcbdetach(inp); |
1967 | } |
1968 | } |
1969 | |
1970 | void |
1971 | in_pcbdetach(struct inpcb *inp) |
1972 | { |
1973 | struct socket *so = inp->inp_socket; |
1974 | |
1975 | if (so->so_pcb == NULL) { |
1976 | /* PCB has been disposed */ |
1977 | panic("%s: inp=%p so=%p proto=%d so_pcb is null!" , __func__, |
1978 | inp, so, SOCK_PROTO(so)); |
1979 | /* NOTREACHED */ |
1980 | } |
1981 | |
1982 | #if IPSEC |
1983 | if (inp->inp_sp != NULL) { |
1984 | (void) ipsec4_delete_pcbpolicy(inp); |
1985 | } |
1986 | #endif /* IPSEC */ |
1987 | |
1988 | if (inp->inp_stat != NULL && SOCK_PROTO(so) == IPPROTO_UDP) { |
1989 | if (inp->inp_stat->rxpackets == 0 && inp->inp_stat->txpackets == 0) { |
1990 | INC_ATOMIC_INT64_LIM(net_api_stats.nas_socket_inet_dgram_no_data); |
1991 | } |
1992 | } |
1993 | |
1994 | /* |
1995 | * Let NetworkStatistics know this PCB is going away |
1996 | * before we detach it. |
1997 | */ |
1998 | if (nstat_collect && |
1999 | (SOCK_PROTO(so) == IPPROTO_TCP || SOCK_PROTO(so) == IPPROTO_UDP)) { |
2000 | nstat_pcb_detach(inp); |
2001 | } |
2002 | |
2003 | /* Free memory buffer held for generating keep alives */ |
2004 | if (inp->inp_keepalive_data != NULL) { |
2005 | kfree_data(inp->inp_keepalive_data, inp->inp_keepalive_datalen); |
2006 | inp->inp_keepalive_data = NULL; |
2007 | } |
2008 | |
2009 | /* mark socket state as dead */ |
2010 | if (in_pcb_checkstate(inp, WNT_STOPUSING, 1) != WNT_STOPUSING) { |
2011 | panic("%s: so=%p proto=%d couldn't set to STOPUSING" , |
2012 | __func__, so, SOCK_PROTO(so)); |
2013 | /* NOTREACHED */ |
2014 | } |
2015 | |
2016 | #if SKYWALK |
2017 | /* Free up the port in the namespace registrar if not in TIME_WAIT */ |
2018 | if (!(inp->inp_flags2 & INP2_TIMEWAIT)) { |
2019 | netns_release(token: &inp->inp_netns_token); |
2020 | netns_release(token: &inp->inp_wildcard_netns_token); |
2021 | } |
2022 | #endif /* SKYWALK */ |
2023 | |
2024 | if (!(so->so_flags & SOF_PCBCLEARING)) { |
2025 | struct ip_moptions *imo; |
2026 | |
2027 | inp->inp_vflag = 0; |
2028 | if (inp->inp_options != NULL) { |
2029 | (void) m_free(inp->inp_options); |
2030 | inp->inp_options = NULL; |
2031 | } |
2032 | ROUTE_RELEASE(&inp->inp_route); |
2033 | imo = inp->inp_moptions; |
2034 | if (imo != NULL) { |
2035 | IMO_REMREF(imo); |
2036 | } |
2037 | inp->inp_moptions = NULL; |
2038 | sofreelastref(so, 0); |
2039 | inp->inp_state = INPCB_STATE_DEAD; |
2040 | |
2041 | /* |
2042 | * Enqueue an event to send kernel event notification |
2043 | * if the flow has to CLAT46 for data packets |
2044 | */ |
2045 | if (inp->inp_flags2 & INP2_CLAT46_FLOW) { |
2046 | /* |
2047 | * If there has been any exchange of data bytes |
2048 | * over this flow. |
2049 | * Schedule a notification to report that flow is |
2050 | * using client side translation. |
2051 | */ |
2052 | if (inp->inp_stat != NULL && |
2053 | (inp->inp_stat->txbytes != 0 || |
2054 | inp->inp_stat->rxbytes != 0)) { |
2055 | if (so->so_flags & SOF_DELEGATED) { |
2056 | in6_clat46_event_enqueue_nwk_wq_entry( |
2057 | IN6_CLAT46_EVENT_V4_FLOW, |
2058 | so->e_pid, |
2059 | so->e_uuid); |
2060 | } else { |
2061 | in6_clat46_event_enqueue_nwk_wq_entry( |
2062 | IN6_CLAT46_EVENT_V4_FLOW, |
2063 | so->last_pid, |
2064 | so->last_uuid); |
2065 | } |
2066 | } |
2067 | } |
2068 | |
2069 | /* makes sure we're not called twice from so_close */ |
2070 | so->so_flags |= SOF_PCBCLEARING; |
2071 | |
2072 | inpcb_gc_sched(ipi: inp->inp_pcbinfo, type: INPCB_TIMER_FAST); |
2073 | } |
2074 | } |
2075 | |
2076 | |
2077 | void |
2078 | in_pcbdispose(struct inpcb *inp) |
2079 | { |
2080 | struct socket *so = inp->inp_socket; |
2081 | struct inpcbinfo *ipi = inp->inp_pcbinfo; |
2082 | |
2083 | if (so != NULL && so->so_usecount != 0) { |
2084 | panic("%s: so %p [%d,%d] usecount %d lockhistory %s" , |
2085 | __func__, so, SOCK_DOM(so), SOCK_TYPE(so), so->so_usecount, |
2086 | solockhistory_nr(so)); |
2087 | /* NOTREACHED */ |
2088 | } else if (inp->inp_wantcnt != WNT_STOPUSING) { |
2089 | if (so != NULL) { |
2090 | panic_plain("%s: inp %p invalid wantcnt %d, so %p " |
2091 | "[%d,%d] usecount %d retaincnt %d state 0x%x " |
2092 | "flags 0x%x lockhistory %s\n" , __func__, inp, |
2093 | inp->inp_wantcnt, so, SOCK_DOM(so), SOCK_TYPE(so), |
2094 | so->so_usecount, so->so_retaincnt, so->so_state, |
2095 | so->so_flags, solockhistory_nr(so)); |
2096 | /* NOTREACHED */ |
2097 | } else { |
2098 | panic("%s: inp %p invalid wantcnt %d no socket" , |
2099 | __func__, inp, inp->inp_wantcnt); |
2100 | /* NOTREACHED */ |
2101 | } |
2102 | } |
2103 | |
2104 | LCK_RW_ASSERT(&ipi->ipi_lock, LCK_RW_ASSERT_EXCLUSIVE); |
2105 | |
2106 | inp->inp_gencnt = ++ipi->ipi_gencnt; |
2107 | /* access ipi in in_pcbremlists */ |
2108 | in_pcbremlists(inp); |
2109 | |
2110 | if (so != NULL) { |
2111 | if (so->so_proto->pr_flags & PR_PCBLOCK) { |
2112 | sofreelastref(so, 0); |
2113 | if (so->so_rcv.sb_cc > 0 || so->so_snd.sb_cc > 0) { |
2114 | /* |
2115 | * selthreadclear() already called |
2116 | * during sofreelastref() above. |
2117 | */ |
2118 | sbrelease(sb: &so->so_rcv); |
2119 | sbrelease(sb: &so->so_snd); |
2120 | } |
2121 | if (so->so_head != NULL) { |
2122 | panic("%s: so=%p head still exist" , |
2123 | __func__, so); |
2124 | /* NOTREACHED */ |
2125 | } |
2126 | lck_mtx_unlock(lck: &inp->inpcb_mtx); |
2127 | |
2128 | #if NECP |
2129 | necp_inpcb_remove_cb(inp); |
2130 | #endif /* NECP */ |
2131 | |
2132 | lck_mtx_destroy(lck: &inp->inpcb_mtx, grp: ipi->ipi_lock_grp); |
2133 | } |
2134 | /* makes sure we're not called twice from so_close */ |
2135 | so->so_flags |= SOF_PCBCLEARING; |
2136 | so->so_saved_pcb = (caddr_t)inp; |
2137 | so->so_pcb = NULL; |
2138 | inp->inp_socket = NULL; |
2139 | #if NECP |
2140 | necp_inpcb_dispose(inp); |
2141 | #endif /* NECP */ |
2142 | /* |
2143 | * In case there a route cached after a detach (possible |
2144 | * in the tcp case), make sure that it is freed before |
2145 | * we deallocate the structure. |
2146 | */ |
2147 | ROUTE_RELEASE(&inp->inp_route); |
2148 | if ((so->so_flags1 & SOF1_CACHED_IN_SOCK_LAYER) == 0) { |
2149 | zfree(ipi->ipi_zone, inp); |
2150 | } |
2151 | sodealloc(so); |
2152 | } |
2153 | } |
2154 | |
2155 | /* |
2156 | * The calling convention of in_getsockaddr() and in_getpeeraddr() was |
2157 | * modified to match the pru_sockaddr() and pru_peeraddr() entry points |
2158 | * in struct pr_usrreqs, so that protocols can just reference then directly |
2159 | * without the need for a wrapper function. |
2160 | */ |
2161 | int |
2162 | in_getsockaddr(struct socket *so, struct sockaddr **nam) |
2163 | { |
2164 | struct inpcb *inp; |
2165 | struct sockaddr_in *sin; |
2166 | |
2167 | /* |
2168 | * Do the malloc first in case it blocks. |
2169 | */ |
2170 | sin = SIN(alloc_sockaddr(sizeof(*sin), |
2171 | Z_WAITOK | Z_NOFAIL)); |
2172 | |
2173 | sin->sin_family = AF_INET; |
2174 | |
2175 | if ((inp = sotoinpcb(so)) == NULL) { |
2176 | free_sockaddr(sin); |
2177 | return EINVAL; |
2178 | } |
2179 | sin->sin_port = inp->inp_lport; |
2180 | sin->sin_addr = inp->inp_laddr; |
2181 | |
2182 | *nam = SA(sin); |
2183 | return 0; |
2184 | } |
2185 | |
2186 | int |
2187 | in_getsockaddr_s(struct socket *so, struct sockaddr_in *ss) |
2188 | { |
2189 | struct sockaddr_in *sin = ss; |
2190 | struct inpcb *inp; |
2191 | |
2192 | VERIFY(ss != NULL); |
2193 | SOCKADDR_ZERO(ss, sizeof(*ss)); |
2194 | |
2195 | sin->sin_family = AF_INET; |
2196 | sin->sin_len = sizeof(*sin); |
2197 | |
2198 | if ((inp = sotoinpcb(so)) == NULL) { |
2199 | return EINVAL; |
2200 | } |
2201 | |
2202 | sin->sin_port = inp->inp_lport; |
2203 | sin->sin_addr = inp->inp_laddr; |
2204 | return 0; |
2205 | } |
2206 | |
2207 | int |
2208 | in_getpeeraddr(struct socket *so, struct sockaddr **nam) |
2209 | { |
2210 | struct inpcb *inp; |
2211 | struct sockaddr_in *sin; |
2212 | |
2213 | /* |
2214 | * Do the malloc first in case it blocks. |
2215 | */ |
2216 | sin = SIN(alloc_sockaddr(sizeof(*sin), |
2217 | Z_WAITOK | Z_NOFAIL)); |
2218 | |
2219 | sin->sin_family = AF_INET; |
2220 | |
2221 | if ((inp = sotoinpcb(so)) == NULL) { |
2222 | free_sockaddr(sin); |
2223 | return EINVAL; |
2224 | } |
2225 | sin->sin_port = inp->inp_fport; |
2226 | sin->sin_addr = inp->inp_faddr; |
2227 | |
2228 | *nam = SA(sin); |
2229 | return 0; |
2230 | } |
2231 | |
2232 | void |
2233 | in_pcbnotifyall(struct inpcbinfo *pcbinfo, struct in_addr faddr, |
2234 | int errno, void (*notify)(struct inpcb *, int)) |
2235 | { |
2236 | struct inpcb *inp; |
2237 | |
2238 | lck_rw_lock_shared(lck: &pcbinfo->ipi_lock); |
2239 | |
2240 | LIST_FOREACH(inp, pcbinfo->ipi_listhead, inp_list) { |
2241 | if (!(inp->inp_vflag & INP_IPV4)) { |
2242 | continue; |
2243 | } |
2244 | if (inp->inp_faddr.s_addr != faddr.s_addr || |
2245 | inp->inp_socket == NULL) { |
2246 | continue; |
2247 | } |
2248 | if (in_pcb_checkstate(inp, WNT_ACQUIRE, 0) == WNT_STOPUSING) { |
2249 | continue; |
2250 | } |
2251 | socket_lock(so: inp->inp_socket, refcount: 1); |
2252 | (*notify)(inp, errno); |
2253 | (void) in_pcb_checkstate(inp, WNT_RELEASE, 1); |
2254 | socket_unlock(so: inp->inp_socket, refcount: 1); |
2255 | } |
2256 | lck_rw_done(lck: &pcbinfo->ipi_lock); |
2257 | } |
2258 | |
2259 | /* |
2260 | * Check for alternatives when higher level complains |
2261 | * about service problems. For now, invalidate cached |
2262 | * routing information. If the route was created dynamically |
2263 | * (by a redirect), time to try a default gateway again. |
2264 | */ |
2265 | void |
2266 | in_losing(struct inpcb *inp) |
2267 | { |
2268 | boolean_t release = FALSE; |
2269 | struct rtentry *rt; |
2270 | |
2271 | if ((rt = inp->inp_route.ro_rt) != NULL) { |
2272 | struct in_ifaddr *ia = NULL; |
2273 | |
2274 | RT_LOCK(rt); |
2275 | if (rt->rt_flags & RTF_DYNAMIC) { |
2276 | /* |
2277 | * Prevent another thread from modifying rt_key, |
2278 | * rt_gateway via rt_setgate() after rt_lock is |
2279 | * dropped by marking the route as defunct. |
2280 | */ |
2281 | rt->rt_flags |= RTF_CONDEMNED; |
2282 | RT_UNLOCK(rt); |
2283 | (void) rtrequest(RTM_DELETE, rt_key(rt), |
2284 | rt->rt_gateway, rt_mask(rt), rt->rt_flags, NULL); |
2285 | } else { |
2286 | RT_UNLOCK(rt); |
2287 | } |
2288 | /* if the address is gone keep the old route in the pcb */ |
2289 | if (inp->inp_laddr.s_addr != INADDR_ANY && |
2290 | (ia = ifa_foraddr(inp->inp_laddr.s_addr)) != NULL) { |
2291 | /* |
2292 | * Address is around; ditch the route. A new route |
2293 | * can be allocated the next time output is attempted. |
2294 | */ |
2295 | release = TRUE; |
2296 | } |
2297 | if (ia != NULL) { |
2298 | ifa_remref(ifa: &ia->ia_ifa); |
2299 | } |
2300 | } |
2301 | if (rt == NULL || release) { |
2302 | ROUTE_RELEASE(&inp->inp_route); |
2303 | } |
2304 | } |
2305 | |
2306 | /* |
2307 | * After a routing change, flush old routing |
2308 | * and allocate a (hopefully) better one. |
2309 | */ |
2310 | void |
2311 | in_rtchange(struct inpcb *inp, int errno) |
2312 | { |
2313 | #pragma unused(errno) |
2314 | boolean_t release = FALSE; |
2315 | struct rtentry *rt; |
2316 | |
2317 | if ((rt = inp->inp_route.ro_rt) != NULL) { |
2318 | struct in_ifaddr *ia = NULL; |
2319 | |
2320 | /* if address is gone, keep the old route */ |
2321 | if (inp->inp_laddr.s_addr != INADDR_ANY && |
2322 | (ia = ifa_foraddr(inp->inp_laddr.s_addr)) != NULL) { |
2323 | /* |
2324 | * Address is around; ditch the route. A new route |
2325 | * can be allocated the next time output is attempted. |
2326 | */ |
2327 | release = TRUE; |
2328 | } |
2329 | if (ia != NULL) { |
2330 | ifa_remref(ifa: &ia->ia_ifa); |
2331 | } |
2332 | } |
2333 | if (rt == NULL || release) { |
2334 | ROUTE_RELEASE(&inp->inp_route); |
2335 | } |
2336 | } |
2337 | |
2338 | /* |
2339 | * Lookup a PCB based on the local address and port. |
2340 | */ |
2341 | struct inpcb * |
2342 | in_pcblookup_local(struct inpcbinfo *pcbinfo, struct in_addr laddr, |
2343 | unsigned int lport_arg, int wild_okay) |
2344 | { |
2345 | struct inpcb *inp; |
2346 | int matchwild = 3, wildcard; |
2347 | u_short lport = (u_short)lport_arg; |
2348 | |
2349 | KERNEL_DEBUG(DBG_FNC_PCB_LOOKUP | DBG_FUNC_START, 0, 0, 0, 0, 0); |
2350 | |
2351 | if (!wild_okay) { |
2352 | struct inpcbhead *head; |
2353 | /* |
2354 | * Look for an unconnected (wildcard foreign addr) PCB that |
2355 | * matches the local address and port we're looking for. |
2356 | */ |
2357 | head = &pcbinfo->ipi_hashbase[INP_PCBHASH(INADDR_ANY, lport, 0, |
2358 | pcbinfo->ipi_hashmask)]; |
2359 | LIST_FOREACH(inp, head, inp_hash) { |
2360 | if (!(inp->inp_vflag & INP_IPV4)) { |
2361 | continue; |
2362 | } |
2363 | if (inp->inp_faddr.s_addr == INADDR_ANY && |
2364 | inp->inp_laddr.s_addr == laddr.s_addr && |
2365 | inp->inp_lport == lport) { |
2366 | /* |
2367 | * Found. |
2368 | */ |
2369 | return inp; |
2370 | } |
2371 | } |
2372 | /* |
2373 | * Not found. |
2374 | */ |
2375 | KERNEL_DEBUG(DBG_FNC_PCB_LOOKUP | DBG_FUNC_END, 0, 0, 0, 0, 0); |
2376 | return NULL; |
2377 | } else { |
2378 | struct inpcbporthead *porthash; |
2379 | struct inpcbport *phd; |
2380 | struct inpcb *match = NULL; |
2381 | /* |
2382 | * Best fit PCB lookup. |
2383 | * |
2384 | * First see if this local port is in use by looking on the |
2385 | * port hash list. |
2386 | */ |
2387 | porthash = &pcbinfo->ipi_porthashbase[INP_PCBPORTHASH(lport, |
2388 | pcbinfo->ipi_porthashmask)]; |
2389 | LIST_FOREACH(phd, porthash, phd_hash) { |
2390 | if (phd->phd_port == lport) { |
2391 | break; |
2392 | } |
2393 | } |
2394 | if (phd != NULL) { |
2395 | /* |
2396 | * Port is in use by one or more PCBs. Look for best |
2397 | * fit. |
2398 | */ |
2399 | LIST_FOREACH(inp, &phd->phd_pcblist, inp_portlist) { |
2400 | wildcard = 0; |
2401 | if (!(inp->inp_vflag & INP_IPV4)) { |
2402 | continue; |
2403 | } |
2404 | if (inp->inp_faddr.s_addr != INADDR_ANY) { |
2405 | wildcard++; |
2406 | } |
2407 | if (inp->inp_laddr.s_addr != INADDR_ANY) { |
2408 | if (laddr.s_addr == INADDR_ANY) { |
2409 | wildcard++; |
2410 | } else if (inp->inp_laddr.s_addr != |
2411 | laddr.s_addr) { |
2412 | continue; |
2413 | } |
2414 | } else { |
2415 | if (laddr.s_addr != INADDR_ANY) { |
2416 | wildcard++; |
2417 | } |
2418 | } |
2419 | if (wildcard < matchwild) { |
2420 | match = inp; |
2421 | matchwild = wildcard; |
2422 | if (matchwild == 0) { |
2423 | break; |
2424 | } |
2425 | } |
2426 | } |
2427 | } |
2428 | KERNEL_DEBUG(DBG_FNC_PCB_LOOKUP | DBG_FUNC_END, match, |
2429 | 0, 0, 0, 0); |
2430 | return match; |
2431 | } |
2432 | } |
2433 | |
2434 | /* |
2435 | * Check if PCB exists in hash list. |
2436 | */ |
2437 | int |
2438 | in_pcblookup_hash_exists(struct inpcbinfo *pcbinfo, struct in_addr faddr, |
2439 | u_int fport_arg, struct in_addr laddr, u_int lport_arg, int wildcard, |
2440 | uid_t *uid, gid_t *gid, struct ifnet *ifp) |
2441 | { |
2442 | struct inpcbhead *head; |
2443 | struct inpcb *inp; |
2444 | u_short fport = (u_short)fport_arg, lport = (u_short)lport_arg; |
2445 | int found = 0; |
2446 | struct inpcb *local_wild = NULL; |
2447 | struct inpcb *local_wild_mapped = NULL; |
2448 | |
2449 | *uid = UID_MAX; |
2450 | *gid = GID_MAX; |
2451 | |
2452 | /* |
2453 | * We may have found the pcb in the last lookup - check this first. |
2454 | */ |
2455 | |
2456 | lck_rw_lock_shared(lck: &pcbinfo->ipi_lock); |
2457 | |
2458 | /* |
2459 | * First look for an exact match. |
2460 | */ |
2461 | head = &pcbinfo->ipi_hashbase[INP_PCBHASH(faddr.s_addr, lport, fport, |
2462 | pcbinfo->ipi_hashmask)]; |
2463 | LIST_FOREACH(inp, head, inp_hash) { |
2464 | if (!(inp->inp_vflag & INP_IPV4)) { |
2465 | continue; |
2466 | } |
2467 | if (inp_restricted_recv(inp, ifp)) { |
2468 | continue; |
2469 | } |
2470 | |
2471 | #if NECP |
2472 | if (!necp_socket_is_allowed_to_recv_on_interface(inp, interface: ifp)) { |
2473 | continue; |
2474 | } |
2475 | #endif /* NECP */ |
2476 | |
2477 | if (inp->inp_faddr.s_addr == faddr.s_addr && |
2478 | inp->inp_laddr.s_addr == laddr.s_addr && |
2479 | inp->inp_fport == fport && |
2480 | inp->inp_lport == lport) { |
2481 | if ((found = (inp->inp_socket != NULL))) { |
2482 | /* |
2483 | * Found. |
2484 | */ |
2485 | *uid = kauth_cred_getuid( |
2486 | cred: inp->inp_socket->so_cred); |
2487 | *gid = kauth_cred_getgid( |
2488 | cred: inp->inp_socket->so_cred); |
2489 | } |
2490 | lck_rw_done(lck: &pcbinfo->ipi_lock); |
2491 | return found; |
2492 | } |
2493 | } |
2494 | |
2495 | if (!wildcard) { |
2496 | /* |
2497 | * Not found. |
2498 | */ |
2499 | lck_rw_done(lck: &pcbinfo->ipi_lock); |
2500 | return 0; |
2501 | } |
2502 | |
2503 | head = &pcbinfo->ipi_hashbase[INP_PCBHASH(INADDR_ANY, lport, 0, |
2504 | pcbinfo->ipi_hashmask)]; |
2505 | LIST_FOREACH(inp, head, inp_hash) { |
2506 | if (!(inp->inp_vflag & INP_IPV4)) { |
2507 | continue; |
2508 | } |
2509 | if (inp_restricted_recv(inp, ifp)) { |
2510 | continue; |
2511 | } |
2512 | |
2513 | #if NECP |
2514 | if (!necp_socket_is_allowed_to_recv_on_interface(inp, interface: ifp)) { |
2515 | continue; |
2516 | } |
2517 | #endif /* NECP */ |
2518 | |
2519 | if (inp->inp_faddr.s_addr == INADDR_ANY && |
2520 | inp->inp_lport == lport) { |
2521 | if (inp->inp_laddr.s_addr == laddr.s_addr) { |
2522 | if ((found = (inp->inp_socket != NULL))) { |
2523 | *uid = kauth_cred_getuid( |
2524 | cred: inp->inp_socket->so_cred); |
2525 | *gid = kauth_cred_getgid( |
2526 | cred: inp->inp_socket->so_cred); |
2527 | } |
2528 | lck_rw_done(lck: &pcbinfo->ipi_lock); |
2529 | return found; |
2530 | } else if (inp->inp_laddr.s_addr == INADDR_ANY) { |
2531 | if (inp->inp_socket && |
2532 | SOCK_CHECK_DOM(inp->inp_socket, PF_INET6)) { |
2533 | local_wild_mapped = inp; |
2534 | } else { |
2535 | local_wild = inp; |
2536 | } |
2537 | } |
2538 | } |
2539 | } |
2540 | if (local_wild == NULL) { |
2541 | if (local_wild_mapped != NULL) { |
2542 | if ((found = (local_wild_mapped->inp_socket != NULL))) { |
2543 | *uid = kauth_cred_getuid( |
2544 | cred: local_wild_mapped->inp_socket->so_cred); |
2545 | *gid = kauth_cred_getgid( |
2546 | cred: local_wild_mapped->inp_socket->so_cred); |
2547 | } |
2548 | lck_rw_done(lck: &pcbinfo->ipi_lock); |
2549 | return found; |
2550 | } |
2551 | lck_rw_done(lck: &pcbinfo->ipi_lock); |
2552 | return 0; |
2553 | } |
2554 | if ((found = (local_wild->inp_socket != NULL))) { |
2555 | *uid = kauth_cred_getuid( |
2556 | cred: local_wild->inp_socket->so_cred); |
2557 | *gid = kauth_cred_getgid( |
2558 | cred: local_wild->inp_socket->so_cred); |
2559 | } |
2560 | lck_rw_done(lck: &pcbinfo->ipi_lock); |
2561 | return found; |
2562 | } |
2563 | |
2564 | /* |
2565 | * Lookup PCB in hash list. |
2566 | */ |
2567 | struct inpcb * |
2568 | in_pcblookup_hash(struct inpcbinfo *pcbinfo, struct in_addr faddr, |
2569 | u_int fport_arg, struct in_addr laddr, u_int lport_arg, int wildcard, |
2570 | struct ifnet *ifp) |
2571 | { |
2572 | struct inpcbhead *head; |
2573 | struct inpcb *inp; |
2574 | u_short fport = (u_short)fport_arg, lport = (u_short)lport_arg; |
2575 | struct inpcb *local_wild = NULL; |
2576 | struct inpcb *local_wild_mapped = NULL; |
2577 | |
2578 | /* |
2579 | * We may have found the pcb in the last lookup - check this first. |
2580 | */ |
2581 | |
2582 | lck_rw_lock_shared(lck: &pcbinfo->ipi_lock); |
2583 | |
2584 | /* |
2585 | * First look for an exact match. |
2586 | */ |
2587 | head = &pcbinfo->ipi_hashbase[INP_PCBHASH(faddr.s_addr, lport, fport, |
2588 | pcbinfo->ipi_hashmask)]; |
2589 | LIST_FOREACH(inp, head, inp_hash) { |
2590 | if (!(inp->inp_vflag & INP_IPV4)) { |
2591 | continue; |
2592 | } |
2593 | if (inp_restricted_recv(inp, ifp)) { |
2594 | continue; |
2595 | } |
2596 | |
2597 | #if NECP |
2598 | if (!necp_socket_is_allowed_to_recv_on_interface(inp, interface: ifp)) { |
2599 | continue; |
2600 | } |
2601 | #endif /* NECP */ |
2602 | |
2603 | if (inp->inp_faddr.s_addr == faddr.s_addr && |
2604 | inp->inp_laddr.s_addr == laddr.s_addr && |
2605 | inp->inp_fport == fport && |
2606 | inp->inp_lport == lport) { |
2607 | /* |
2608 | * Found. |
2609 | */ |
2610 | if (in_pcb_checkstate(inp, WNT_ACQUIRE, 0) != |
2611 | WNT_STOPUSING) { |
2612 | lck_rw_done(lck: &pcbinfo->ipi_lock); |
2613 | return inp; |
2614 | } else { |
2615 | /* it's there but dead, say it isn't found */ |
2616 | lck_rw_done(lck: &pcbinfo->ipi_lock); |
2617 | return NULL; |
2618 | } |
2619 | } |
2620 | } |
2621 | |
2622 | if (!wildcard) { |
2623 | /* |
2624 | * Not found. |
2625 | */ |
2626 | lck_rw_done(lck: &pcbinfo->ipi_lock); |
2627 | return NULL; |
2628 | } |
2629 | |
2630 | head = &pcbinfo->ipi_hashbase[INP_PCBHASH(INADDR_ANY, lport, 0, |
2631 | pcbinfo->ipi_hashmask)]; |
2632 | LIST_FOREACH(inp, head, inp_hash) { |
2633 | if (!(inp->inp_vflag & INP_IPV4)) { |
2634 | continue; |
2635 | } |
2636 | if (inp_restricted_recv(inp, ifp)) { |
2637 | continue; |
2638 | } |
2639 | |
2640 | #if NECP |
2641 | if (!necp_socket_is_allowed_to_recv_on_interface(inp, interface: ifp)) { |
2642 | continue; |
2643 | } |
2644 | #endif /* NECP */ |
2645 | |
2646 | if (inp->inp_faddr.s_addr == INADDR_ANY && |
2647 | inp->inp_lport == lport) { |
2648 | if (inp->inp_laddr.s_addr == laddr.s_addr) { |
2649 | if (in_pcb_checkstate(inp, WNT_ACQUIRE, 0) != |
2650 | WNT_STOPUSING) { |
2651 | lck_rw_done(lck: &pcbinfo->ipi_lock); |
2652 | return inp; |
2653 | } else { |
2654 | /* it's dead; say it isn't found */ |
2655 | lck_rw_done(lck: &pcbinfo->ipi_lock); |
2656 | return NULL; |
2657 | } |
2658 | } else if (inp->inp_laddr.s_addr == INADDR_ANY) { |
2659 | if (SOCK_CHECK_DOM(inp->inp_socket, PF_INET6)) { |
2660 | local_wild_mapped = inp; |
2661 | } else { |
2662 | local_wild = inp; |
2663 | } |
2664 | } |
2665 | } |
2666 | } |
2667 | if (local_wild == NULL) { |
2668 | if (local_wild_mapped != NULL) { |
2669 | if (in_pcb_checkstate(local_wild_mapped, |
2670 | WNT_ACQUIRE, 0) != WNT_STOPUSING) { |
2671 | lck_rw_done(lck: &pcbinfo->ipi_lock); |
2672 | return local_wild_mapped; |
2673 | } else { |
2674 | /* it's dead; say it isn't found */ |
2675 | lck_rw_done(lck: &pcbinfo->ipi_lock); |
2676 | return NULL; |
2677 | } |
2678 | } |
2679 | lck_rw_done(lck: &pcbinfo->ipi_lock); |
2680 | return NULL; |
2681 | } |
2682 | if (in_pcb_checkstate(local_wild, WNT_ACQUIRE, 0) != WNT_STOPUSING) { |
2683 | lck_rw_done(lck: &pcbinfo->ipi_lock); |
2684 | return local_wild; |
2685 | } |
2686 | /* |
2687 | * It's either not found or is already dead. |
2688 | */ |
2689 | lck_rw_done(lck: &pcbinfo->ipi_lock); |
2690 | return NULL; |
2691 | } |
2692 | |
2693 | /* |
2694 | * @brief Insert PCB onto various hash lists. |
2695 | * |
2696 | * @param inp Pointer to internet protocol control block |
2697 | * @param locked Implies if ipi_lock (protecting pcb list) |
2698 | * is already locked or not. |
2699 | * |
2700 | * @return int error on failure and 0 on success |
2701 | */ |
2702 | int |
2703 | in_pcbinshash(struct inpcb *inp, int locked) |
2704 | { |
2705 | struct inpcbhead *pcbhash; |
2706 | struct inpcbporthead *pcbporthash; |
2707 | struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; |
2708 | struct inpcbport *phd; |
2709 | u_int32_t hashkey_faddr; |
2710 | |
2711 | if (!locked) { |
2712 | if (!lck_rw_try_lock_exclusive(lck: &pcbinfo->ipi_lock)) { |
2713 | /* |
2714 | * Lock inversion issue, mostly with udp |
2715 | * multicast packets |
2716 | */ |
2717 | socket_unlock(so: inp->inp_socket, refcount: 0); |
2718 | lck_rw_lock_exclusive(lck: &pcbinfo->ipi_lock); |
2719 | socket_lock(so: inp->inp_socket, refcount: 0); |
2720 | } |
2721 | } |
2722 | |
2723 | /* |
2724 | * This routine or its caller may have given up |
2725 | * socket's protocol lock briefly. |
2726 | * During that time the socket may have been dropped. |
2727 | * Safe-guarding against that. |
2728 | */ |
2729 | if (inp->inp_state == INPCB_STATE_DEAD) { |
2730 | if (!locked) { |
2731 | lck_rw_done(lck: &pcbinfo->ipi_lock); |
2732 | } |
2733 | return ECONNABORTED; |
2734 | } |
2735 | |
2736 | |
2737 | if (inp->inp_vflag & INP_IPV6) { |
2738 | hashkey_faddr = inp->in6p_faddr.s6_addr32[3] /* XXX */; |
2739 | } else { |
2740 | hashkey_faddr = inp->inp_faddr.s_addr; |
2741 | } |
2742 | |
2743 | inp->inp_hash_element = INP_PCBHASH(hashkey_faddr, inp->inp_lport, |
2744 | inp->inp_fport, pcbinfo->ipi_hashmask); |
2745 | |
2746 | pcbhash = &pcbinfo->ipi_hashbase[inp->inp_hash_element]; |
2747 | |
2748 | pcbporthash = &pcbinfo->ipi_porthashbase[INP_PCBPORTHASH(inp->inp_lport, |
2749 | pcbinfo->ipi_porthashmask)]; |
2750 | |
2751 | /* |
2752 | * Go through port list and look for a head for this lport. |
2753 | */ |
2754 | LIST_FOREACH(phd, pcbporthash, phd_hash) { |
2755 | if (phd->phd_port == inp->inp_lport) { |
2756 | break; |
2757 | } |
2758 | } |
2759 | |
2760 | /* |
2761 | * If none exists, malloc one and tack it on. |
2762 | */ |
2763 | if (phd == NULL) { |
2764 | phd = kalloc_type(struct inpcbport, Z_WAITOK | Z_NOFAIL); |
2765 | phd->phd_port = inp->inp_lport; |
2766 | LIST_INIT(&phd->phd_pcblist); |
2767 | LIST_INSERT_HEAD(pcbporthash, phd, phd_hash); |
2768 | } |
2769 | |
2770 | VERIFY(!(inp->inp_flags2 & INP2_INHASHLIST)); |
2771 | |
2772 | #if SKYWALK |
2773 | int err; |
2774 | struct socket *so = inp->inp_socket; |
2775 | if ((SOCK_PROTO(so) == IPPROTO_TCP || SOCK_PROTO(so) == IPPROTO_UDP) && |
2776 | !(inp->inp_flags2 & INP2_EXTERNAL_PORT)) { |
2777 | if (inp->inp_vflag & INP_IPV6) { |
2778 | err = netns_reserve_in6(token: &inp->inp_netns_token, |
2779 | addr: inp->in6p_laddr, proto: (uint8_t)SOCK_PROTO(so), port: inp->inp_lport, |
2780 | NETNS_BSD | NETNS_PRERESERVED, NULL); |
2781 | } else { |
2782 | err = netns_reserve_in(token: &inp->inp_netns_token, |
2783 | addr: inp->inp_laddr, proto: (uint8_t)SOCK_PROTO(so), port: inp->inp_lport, |
2784 | NETNS_BSD | NETNS_PRERESERVED, NULL); |
2785 | } |
2786 | if (err) { |
2787 | if (!locked) { |
2788 | lck_rw_done(lck: &pcbinfo->ipi_lock); |
2789 | } |
2790 | return err; |
2791 | } |
2792 | netns_set_ifnet(token: &inp->inp_netns_token, ifp: inp->inp_last_outifp); |
2793 | inp_update_netns_flags(so); |
2794 | } |
2795 | #endif /* SKYWALK */ |
2796 | |
2797 | inp->inp_phd = phd; |
2798 | LIST_INSERT_HEAD(&phd->phd_pcblist, inp, inp_portlist); |
2799 | LIST_INSERT_HEAD(pcbhash, inp, inp_hash); |
2800 | inp->inp_flags2 |= INP2_INHASHLIST; |
2801 | |
2802 | if (!locked) { |
2803 | lck_rw_done(lck: &pcbinfo->ipi_lock); |
2804 | } |
2805 | |
2806 | #if NECP |
2807 | // This call catches the original setting of the local address |
2808 | inp_update_necp_policy(inp, NULL, NULL, 0); |
2809 | #endif /* NECP */ |
2810 | |
2811 | return 0; |
2812 | } |
2813 | |
2814 | /* |
2815 | * Move PCB to the proper hash bucket when { faddr, fport } have been |
2816 | * changed. NOTE: This does not handle the case of the lport changing (the |
2817 | * hashed port list would have to be updated as well), so the lport must |
2818 | * not change after in_pcbinshash() has been called. |
2819 | */ |
2820 | void |
2821 | in_pcbrehash(struct inpcb *inp) |
2822 | { |
2823 | struct inpcbhead *head; |
2824 | u_int32_t hashkey_faddr; |
2825 | |
2826 | #if SKYWALK |
2827 | struct socket *so = inp->inp_socket; |
2828 | if ((SOCK_PROTO(so) == IPPROTO_TCP || SOCK_PROTO(so) == IPPROTO_UDP) && |
2829 | !(inp->inp_flags2 & INP2_EXTERNAL_PORT)) { |
2830 | int err; |
2831 | if (NETNS_TOKEN_VALID(&inp->inp_netns_token)) { |
2832 | if (inp->inp_vflag & INP_IPV6) { |
2833 | err = netns_change_addr_in6( |
2834 | token: &inp->inp_netns_token, addr: inp->in6p_laddr); |
2835 | } else { |
2836 | err = netns_change_addr_in( |
2837 | token: &inp->inp_netns_token, addr: inp->inp_laddr); |
2838 | } |
2839 | } else { |
2840 | if (inp->inp_vflag & INP_IPV6) { |
2841 | err = netns_reserve_in6(token: &inp->inp_netns_token, |
2842 | addr: inp->in6p_laddr, proto: (uint8_t)SOCK_PROTO(so), |
2843 | port: inp->inp_lport, NETNS_BSD, NULL); |
2844 | } else { |
2845 | err = netns_reserve_in(token: &inp->inp_netns_token, |
2846 | addr: inp->inp_laddr, proto: (uint8_t)SOCK_PROTO(so), |
2847 | port: inp->inp_lport, NETNS_BSD, NULL); |
2848 | } |
2849 | } |
2850 | /* We are assuming that whatever code paths result in a rehash |
2851 | * did their due diligence and ensured that the given |
2852 | * <proto, laddr, lport> tuple was free ahead of time. Just |
2853 | * reserving the lport on INADDR_ANY should be enough, since |
2854 | * that will block Skywalk from trying to reserve that same |
2855 | * port. Given this assumption, the above netns calls should |
2856 | * never fail*/ |
2857 | VERIFY(err == 0); |
2858 | |
2859 | netns_set_ifnet(token: &inp->inp_netns_token, ifp: inp->inp_last_outifp); |
2860 | inp_update_netns_flags(so); |
2861 | } |
2862 | #endif /* SKYWALK */ |
2863 | if (inp->inp_vflag & INP_IPV6) { |
2864 | hashkey_faddr = inp->in6p_faddr.s6_addr32[3] /* XXX */; |
2865 | } else { |
2866 | hashkey_faddr = inp->inp_faddr.s_addr; |
2867 | } |
2868 | |
2869 | inp->inp_hash_element = INP_PCBHASH(hashkey_faddr, inp->inp_lport, |
2870 | inp->inp_fport, inp->inp_pcbinfo->ipi_hashmask); |
2871 | head = &inp->inp_pcbinfo->ipi_hashbase[inp->inp_hash_element]; |
2872 | |
2873 | if (inp->inp_flags2 & INP2_INHASHLIST) { |
2874 | LIST_REMOVE(inp, inp_hash); |
2875 | inp->inp_flags2 &= ~INP2_INHASHLIST; |
2876 | } |
2877 | |
2878 | VERIFY(!(inp->inp_flags2 & INP2_INHASHLIST)); |
2879 | LIST_INSERT_HEAD(head, inp, inp_hash); |
2880 | inp->inp_flags2 |= INP2_INHASHLIST; |
2881 | |
2882 | #if NECP |
2883 | // This call catches updates to the remote addresses |
2884 | inp_update_necp_policy(inp, NULL, NULL, 0); |
2885 | #endif /* NECP */ |
2886 | } |
2887 | |
2888 | /* |
2889 | * Remove PCB from various lists. |
2890 | * Must be called pcbinfo lock is held in exclusive mode. |
2891 | */ |
2892 | void |
2893 | in_pcbremlists(struct inpcb *inp) |
2894 | { |
2895 | inp->inp_gencnt = ++inp->inp_pcbinfo->ipi_gencnt; |
2896 | |
2897 | /* |
2898 | * Check if it's in hashlist -- an inp is placed in hashlist when |
2899 | * it's local port gets assigned. So it should also be present |
2900 | * in the port list. |
2901 | */ |
2902 | if (inp->inp_flags2 & INP2_INHASHLIST) { |
2903 | struct inpcbport *phd = inp->inp_phd; |
2904 | |
2905 | VERIFY(phd != NULL && inp->inp_lport > 0); |
2906 | |
2907 | LIST_REMOVE(inp, inp_hash); |
2908 | inp->inp_hash.le_next = NULL; |
2909 | inp->inp_hash.le_prev = NULL; |
2910 | |
2911 | LIST_REMOVE(inp, inp_portlist); |
2912 | inp->inp_portlist.le_next = NULL; |
2913 | inp->inp_portlist.le_prev = NULL; |
2914 | if (LIST_EMPTY(&phd->phd_pcblist)) { |
2915 | LIST_REMOVE(phd, phd_hash); |
2916 | kfree_type(struct inpcbport, phd); |
2917 | } |
2918 | inp->inp_phd = NULL; |
2919 | inp->inp_flags2 &= ~INP2_INHASHLIST; |
2920 | #if SKYWALK |
2921 | /* Free up the port in the namespace registrar */ |
2922 | netns_release(token: &inp->inp_netns_token); |
2923 | netns_release(token: &inp->inp_wildcard_netns_token); |
2924 | #endif /* SKYWALK */ |
2925 | } |
2926 | VERIFY(!(inp->inp_flags2 & INP2_INHASHLIST)); |
2927 | |
2928 | if (inp->inp_flags2 & INP2_TIMEWAIT) { |
2929 | /* Remove from time-wait queue */ |
2930 | tcp_remove_from_time_wait(inp); |
2931 | inp->inp_flags2 &= ~INP2_TIMEWAIT; |
2932 | VERIFY(inp->inp_pcbinfo->ipi_twcount != 0); |
2933 | inp->inp_pcbinfo->ipi_twcount--; |
2934 | } else { |
2935 | /* Remove from global inp list if it is not time-wait */ |
2936 | LIST_REMOVE(inp, inp_list); |
2937 | } |
2938 | |
2939 | if (inp->inp_flags2 & INP2_IN_FCTREE) { |
2940 | inp_fc_getinp(inp->inp_flowhash, (INPFC_SOLOCKED | INPFC_REMOVE)); |
2941 | VERIFY(!(inp->inp_flags2 & INP2_IN_FCTREE)); |
2942 | } |
2943 | |
2944 | inp->inp_pcbinfo->ipi_count--; |
2945 | } |
2946 | |
2947 | /* |
2948 | * Mechanism used to defer the memory release of PCBs |
2949 | * The pcb list will contain the pcb until the reaper can clean it up if |
2950 | * the following conditions are met: |
2951 | * 1) state "DEAD", |
2952 | * 2) wantcnt is STOPUSING |
2953 | * 3) usecount is 0 |
2954 | * This function will be called to either mark the pcb as |
2955 | */ |
2956 | int |
2957 | in_pcb_checkstate(struct inpcb *pcb, int mode, int locked) |
2958 | { |
2959 | volatile UInt32 *wantcnt = (volatile UInt32 *)&pcb->inp_wantcnt; |
2960 | UInt32 origwant; |
2961 | UInt32 newwant; |
2962 | |
2963 | switch (mode) { |
2964 | case WNT_STOPUSING: |
2965 | /* |
2966 | * Try to mark the pcb as ready for recycling. CAS with |
2967 | * STOPUSING, if success we're good, if it's in use, will |
2968 | * be marked later |
2969 | */ |
2970 | if (locked == 0) { |
2971 | socket_lock(so: pcb->inp_socket, refcount: 1); |
2972 | } |
2973 | pcb->inp_state = INPCB_STATE_DEAD; |
2974 | |
2975 | stopusing: |
2976 | if (pcb->inp_socket->so_usecount < 0) { |
2977 | panic("%s: pcb=%p so=%p usecount is negative" , |
2978 | __func__, pcb, pcb->inp_socket); |
2979 | /* NOTREACHED */ |
2980 | } |
2981 | if (locked == 0) { |
2982 | socket_unlock(so: pcb->inp_socket, refcount: 1); |
2983 | } |
2984 | |
2985 | inpcb_gc_sched(ipi: pcb->inp_pcbinfo, type: INPCB_TIMER_FAST); |
2986 | |
2987 | origwant = *wantcnt; |
2988 | if ((UInt16) origwant == 0xffff) { /* should stop using */ |
2989 | return WNT_STOPUSING; |
2990 | } |
2991 | newwant = 0xffff; |
2992 | if ((UInt16) origwant == 0) { |
2993 | /* try to mark it as unsuable now */ |
2994 | OSCompareAndSwap(origwant, newwant, wantcnt); |
2995 | } |
2996 | return WNT_STOPUSING; |
2997 | |
2998 | case WNT_ACQUIRE: |
2999 | /* |
3000 | * Try to increase reference to pcb. If WNT_STOPUSING |
3001 | * should bail out. If socket state DEAD, try to set count |
3002 | * to STOPUSING, return failed otherwise increase cnt. |
3003 | */ |
3004 | do { |
3005 | origwant = *wantcnt; |
3006 | if ((UInt16) origwant == 0xffff) { |
3007 | /* should stop using */ |
3008 | return WNT_STOPUSING; |
3009 | } |
3010 | newwant = origwant + 1; |
3011 | } while (!OSCompareAndSwap(origwant, newwant, wantcnt)); |
3012 | return WNT_ACQUIRE; |
3013 | |
3014 | case WNT_RELEASE: |
3015 | /* |
3016 | * Release reference. If result is null and pcb state |
3017 | * is DEAD, set wanted bit to STOPUSING |
3018 | */ |
3019 | if (locked == 0) { |
3020 | socket_lock(so: pcb->inp_socket, refcount: 1); |
3021 | } |
3022 | |
3023 | do { |
3024 | origwant = *wantcnt; |
3025 | if ((UInt16) origwant == 0x0) { |
3026 | panic("%s: pcb=%p release with zero count" , |
3027 | __func__, pcb); |
3028 | /* NOTREACHED */ |
3029 | } |
3030 | if ((UInt16) origwant == 0xffff) { |
3031 | /* should stop using */ |
3032 | if (locked == 0) { |
3033 | socket_unlock(so: pcb->inp_socket, refcount: 1); |
3034 | } |
3035 | return WNT_STOPUSING; |
3036 | } |
3037 | newwant = origwant - 1; |
3038 | } while (!OSCompareAndSwap(origwant, newwant, wantcnt)); |
3039 | |
3040 | if (pcb->inp_state == INPCB_STATE_DEAD) { |
3041 | goto stopusing; |
3042 | } |
3043 | if (pcb->inp_socket->so_usecount < 0) { |
3044 | panic("%s: RELEASE pcb=%p so=%p usecount is negative" , |
3045 | __func__, pcb, pcb->inp_socket); |
3046 | /* NOTREACHED */ |
3047 | } |
3048 | |
3049 | if (locked == 0) { |
3050 | socket_unlock(so: pcb->inp_socket, refcount: 1); |
3051 | } |
3052 | return WNT_RELEASE; |
3053 | |
3054 | default: |
3055 | panic("%s: so=%p not a valid state =%x" , __func__, |
3056 | pcb->inp_socket, mode); |
3057 | /* NOTREACHED */ |
3058 | } |
3059 | |
3060 | /* NOTREACHED */ |
3061 | return mode; |
3062 | } |
3063 | |
3064 | /* |
3065 | * inpcb_to_compat copies specific bits of an inpcb to a inpcb_compat. |
3066 | * The inpcb_compat data structure is passed to user space and must |
3067 | * not change. We intentionally avoid copying pointers. |
3068 | */ |
3069 | void |
3070 | inpcb_to_compat(struct inpcb *inp, struct inpcb_compat *inp_compat) |
3071 | { |
3072 | bzero(s: inp_compat, n: sizeof(*inp_compat)); |
3073 | inp_compat->inp_fport = inp->inp_fport; |
3074 | inp_compat->inp_lport = inp->inp_lport; |
3075 | inp_compat->nat_owner = 0; |
3076 | inp_compat->nat_cookie = 0; |
3077 | inp_compat->inp_gencnt = inp->inp_gencnt; |
3078 | inp_compat->inp_flags = inp->inp_flags; |
3079 | inp_compat->inp_flow = inp->inp_flow; |
3080 | inp_compat->inp_vflag = inp->inp_vflag; |
3081 | inp_compat->inp_ip_ttl = inp->inp_ip_ttl; |
3082 | inp_compat->inp_ip_p = inp->inp_ip_p; |
3083 | inp_compat->inp_dependfaddr.inp6_foreign = |
3084 | inp->inp_dependfaddr.inp6_foreign; |
3085 | inp_compat->inp_dependladdr.inp6_local = |
3086 | inp->inp_dependladdr.inp6_local; |
3087 | inp_compat->inp_depend4.inp4_ip_tos = inp->inp_depend4.inp4_ip_tos; |
3088 | inp_compat->inp_depend6.inp6_hlim = 0; |
3089 | inp_compat->inp_depend6.inp6_cksum = inp->inp_depend6.inp6_cksum; |
3090 | inp_compat->inp_depend6.inp6_ifindex = 0; |
3091 | inp_compat->inp_depend6.inp6_hops = inp->inp_depend6.inp6_hops; |
3092 | } |
3093 | |
3094 | #if XNU_TARGET_OS_OSX |
3095 | void |
3096 | inpcb_to_xinpcb64(struct inpcb *inp, struct xinpcb64 *xinp) |
3097 | { |
3098 | xinp->inp_fport = inp->inp_fport; |
3099 | xinp->inp_lport = inp->inp_lport; |
3100 | xinp->inp_gencnt = inp->inp_gencnt; |
3101 | xinp->inp_flags = inp->inp_flags; |
3102 | xinp->inp_flow = inp->inp_flow; |
3103 | xinp->inp_vflag = inp->inp_vflag; |
3104 | xinp->inp_ip_ttl = inp->inp_ip_ttl; |
3105 | xinp->inp_ip_p = inp->inp_ip_p; |
3106 | xinp->inp_dependfaddr.inp6_foreign = inp->inp_dependfaddr.inp6_foreign; |
3107 | xinp->inp_dependladdr.inp6_local = inp->inp_dependladdr.inp6_local; |
3108 | xinp->inp_depend4.inp4_ip_tos = inp->inp_depend4.inp4_ip_tos; |
3109 | xinp->inp_depend6.inp6_hlim = 0; |
3110 | xinp->inp_depend6.inp6_cksum = inp->inp_depend6.inp6_cksum; |
3111 | xinp->inp_depend6.inp6_ifindex = 0; |
3112 | xinp->inp_depend6.inp6_hops = inp->inp_depend6.inp6_hops; |
3113 | } |
3114 | #endif /* XNU_TARGET_OS_OSX */ |
3115 | |
3116 | /* |
3117 | * The following routines implement this scheme: |
3118 | * |
3119 | * Callers of ip_output() that intend to cache the route in the inpcb pass |
3120 | * a local copy of the struct route to ip_output(). Using a local copy of |
3121 | * the cached route significantly simplifies things as IP no longer has to |
3122 | * worry about having exclusive access to the passed in struct route, since |
3123 | * it's defined in the caller's stack; in essence, this allows for a lock- |
3124 | * less operation when updating the struct route at the IP level and below, |
3125 | * whenever necessary. The scheme works as follows: |
3126 | * |
3127 | * Prior to dropping the socket's lock and calling ip_output(), the caller |
3128 | * copies the struct route from the inpcb into its stack, and adds a reference |
3129 | * to the cached route entry, if there was any. The socket's lock is then |
3130 | * dropped and ip_output() is called with a pointer to the copy of struct |
3131 | * route defined on the stack (not to the one in the inpcb.) |
3132 | * |
3133 | * Upon returning from ip_output(), the caller then acquires the socket's |
3134 | * lock and synchronizes the cache; if there is no route cached in the inpcb, |
3135 | * it copies the local copy of struct route (which may or may not contain any |
3136 | * route) back into the cache; otherwise, if the inpcb has a route cached in |
3137 | * it, the one in the local copy will be freed, if there's any. Trashing the |
3138 | * cached route in the inpcb can be avoided because ip_output() is single- |
3139 | * threaded per-PCB (i.e. multiple transmits on a PCB are always serialized |
3140 | * by the socket/transport layer.) |
3141 | */ |
3142 | void |
3143 | inp_route_copyout(struct inpcb *inp, struct route *dst) |
3144 | { |
3145 | struct route *src = &inp->inp_route; |
3146 | |
3147 | socket_lock_assert_owned(so: inp->inp_socket); |
3148 | |
3149 | /* |
3150 | * If the route in the PCB is stale or not for IPv4, blow it away; |
3151 | * this is possible in the case of IPv4-mapped address case. |
3152 | */ |
3153 | if (ROUTE_UNUSABLE(src) || rt_key(src->ro_rt)->sa_family != AF_INET) { |
3154 | ROUTE_RELEASE(src); |
3155 | } |
3156 | |
3157 | route_copyout(dst, src, sizeof(*dst)); |
3158 | } |
3159 | |
3160 | void |
3161 | inp_route_copyin(struct inpcb *inp, struct route *src) |
3162 | { |
3163 | struct route *dst = &inp->inp_route; |
3164 | |
3165 | socket_lock_assert_owned(so: inp->inp_socket); |
3166 | |
3167 | /* Minor sanity check */ |
3168 | if (src->ro_rt != NULL && rt_key(src->ro_rt)->sa_family != AF_INET) { |
3169 | panic("%s: wrong or corrupted route: %p" , __func__, src); |
3170 | } |
3171 | |
3172 | route_copyin(src, dst, sizeof(*src)); |
3173 | } |
3174 | |
3175 | /* |
3176 | * Handler for setting IP_BOUND_IF/IPV6_BOUND_IF socket option. |
3177 | */ |
3178 | int |
3179 | inp_bindif(struct inpcb *inp, unsigned int ifscope, struct ifnet **pifp) |
3180 | { |
3181 | struct ifnet *ifp = NULL; |
3182 | |
3183 | ifnet_head_lock_shared(); |
3184 | if ((ifscope > (unsigned)if_index) || (ifscope != IFSCOPE_NONE && |
3185 | (ifp = ifindex2ifnet[ifscope]) == NULL)) { |
3186 | ifnet_head_done(); |
3187 | return ENXIO; |
3188 | } |
3189 | ifnet_head_done(); |
3190 | |
3191 | VERIFY(ifp != NULL || ifscope == IFSCOPE_NONE); |
3192 | |
3193 | /* |
3194 | * A zero interface scope value indicates an "unbind". |
3195 | * Otherwise, take in whatever value the app desires; |
3196 | * the app may already know the scope (or force itself |
3197 | * to such a scope) ahead of time before the interface |
3198 | * gets attached. It doesn't matter either way; any |
3199 | * route lookup from this point on will require an |
3200 | * exact match for the embedded interface scope. |
3201 | */ |
3202 | inp->inp_boundifp = ifp; |
3203 | if (inp->inp_boundifp == NULL) { |
3204 | inp->inp_flags &= ~INP_BOUND_IF; |
3205 | } else { |
3206 | inp->inp_flags |= INP_BOUND_IF; |
3207 | } |
3208 | |
3209 | /* Blow away any cached route in the PCB */ |
3210 | ROUTE_RELEASE(&inp->inp_route); |
3211 | |
3212 | if (pifp != NULL) { |
3213 | *pifp = ifp; |
3214 | } |
3215 | |
3216 | return 0; |
3217 | } |
3218 | |
3219 | /* |
3220 | * Handler for setting IP_NO_IFT_CELLULAR/IPV6_NO_IFT_CELLULAR socket option, |
3221 | * as well as for setting PROC_UUID_NO_CELLULAR policy. |
3222 | */ |
3223 | void |
3224 | inp_set_nocellular(struct inpcb *inp) |
3225 | { |
3226 | inp->inp_flags |= INP_NO_IFT_CELLULAR; |
3227 | |
3228 | /* Blow away any cached route in the PCB */ |
3229 | ROUTE_RELEASE(&inp->inp_route); |
3230 | } |
3231 | |
3232 | /* |
3233 | * Handler for clearing IP_NO_IFT_CELLULAR/IPV6_NO_IFT_CELLULAR socket option, |
3234 | * as well as for clearing PROC_UUID_NO_CELLULAR policy. |
3235 | */ |
3236 | void |
3237 | inp_clear_nocellular(struct inpcb *inp) |
3238 | { |
3239 | struct socket *so = inp->inp_socket; |
3240 | |
3241 | /* |
3242 | * SO_RESTRICT_DENY_CELLULAR socket restriction issued on the socket |
3243 | * has a higher precendence than INP_NO_IFT_CELLULAR. Clear the flag |
3244 | * if and only if the socket is unrestricted. |
3245 | */ |
3246 | if (so != NULL && !(so->so_restrictions & SO_RESTRICT_DENY_CELLULAR)) { |
3247 | inp->inp_flags &= ~INP_NO_IFT_CELLULAR; |
3248 | |
3249 | /* Blow away any cached route in the PCB */ |
3250 | ROUTE_RELEASE(&inp->inp_route); |
3251 | } |
3252 | } |
3253 | |
3254 | void |
3255 | inp_set_noexpensive(struct inpcb *inp) |
3256 | { |
3257 | inp->inp_flags2 |= INP2_NO_IFF_EXPENSIVE; |
3258 | |
3259 | /* Blow away any cached route in the PCB */ |
3260 | ROUTE_RELEASE(&inp->inp_route); |
3261 | } |
3262 | |
3263 | void |
3264 | inp_set_noconstrained(struct inpcb *inp) |
3265 | { |
3266 | inp->inp_flags2 |= INP2_NO_IFF_CONSTRAINED; |
3267 | |
3268 | /* Blow away any cached route in the PCB */ |
3269 | ROUTE_RELEASE(&inp->inp_route); |
3270 | } |
3271 | |
3272 | void |
3273 | inp_set_awdl_unrestricted(struct inpcb *inp) |
3274 | { |
3275 | inp->inp_flags2 |= INP2_AWDL_UNRESTRICTED; |
3276 | |
3277 | /* Blow away any cached route in the PCB */ |
3278 | ROUTE_RELEASE(&inp->inp_route); |
3279 | } |
3280 | |
3281 | boolean_t |
3282 | inp_get_awdl_unrestricted(struct inpcb *inp) |
3283 | { |
3284 | return (inp->inp_flags2 & INP2_AWDL_UNRESTRICTED) ? TRUE : FALSE; |
3285 | } |
3286 | |
3287 | void |
3288 | inp_clear_awdl_unrestricted(struct inpcb *inp) |
3289 | { |
3290 | inp->inp_flags2 &= ~INP2_AWDL_UNRESTRICTED; |
3291 | |
3292 | /* Blow away any cached route in the PCB */ |
3293 | ROUTE_RELEASE(&inp->inp_route); |
3294 | } |
3295 | |
3296 | void |
3297 | inp_set_intcoproc_allowed(struct inpcb *inp) |
3298 | { |
3299 | inp->inp_flags2 |= INP2_INTCOPROC_ALLOWED; |
3300 | |
3301 | /* Blow away any cached route in the PCB */ |
3302 | ROUTE_RELEASE(&inp->inp_route); |
3303 | } |
3304 | |
3305 | boolean_t |
3306 | inp_get_intcoproc_allowed(struct inpcb *inp) |
3307 | { |
3308 | return (inp->inp_flags2 & INP2_INTCOPROC_ALLOWED) ? TRUE : FALSE; |
3309 | } |
3310 | |
3311 | void |
3312 | inp_clear_intcoproc_allowed(struct inpcb *inp) |
3313 | { |
3314 | inp->inp_flags2 &= ~INP2_INTCOPROC_ALLOWED; |
3315 | |
3316 | /* Blow away any cached route in the PCB */ |
3317 | ROUTE_RELEASE(&inp->inp_route); |
3318 | } |
3319 | |
3320 | void |
3321 | inp_set_management_allowed(struct inpcb *inp) |
3322 | { |
3323 | inp->inp_flags2 |= INP2_MANAGEMENT_ALLOWED; |
3324 | inp->inp_flags2 |= INP2_MANAGEMENT_CHECKED; |
3325 | |
3326 | /* Blow away any cached route in the PCB */ |
3327 | ROUTE_RELEASE(&inp->inp_route); |
3328 | } |
3329 | |
3330 | boolean_t |
3331 | inp_get_management_allowed(struct inpcb *inp) |
3332 | { |
3333 | return (inp->inp_flags2 & INP2_MANAGEMENT_ALLOWED) ? TRUE : FALSE; |
3334 | } |
3335 | |
3336 | void |
3337 | inp_clear_management_allowed(struct inpcb *inp) |
3338 | { |
3339 | inp->inp_flags2 &= ~INP2_MANAGEMENT_ALLOWED; |
3340 | |
3341 | /* Blow away any cached route in the PCB */ |
3342 | ROUTE_RELEASE(&inp->inp_route); |
3343 | } |
3344 | |
3345 | #if NECP |
3346 | /* |
3347 | * Called when PROC_UUID_NECP_APP_POLICY is set. |
3348 | */ |
3349 | void |
3350 | inp_set_want_app_policy(struct inpcb *inp) |
3351 | { |
3352 | inp->inp_flags2 |= INP2_WANT_APP_POLICY; |
3353 | } |
3354 | |
3355 | /* |
3356 | * Called when PROC_UUID_NECP_APP_POLICY is cleared. |
3357 | */ |
3358 | void |
3359 | inp_clear_want_app_policy(struct inpcb *inp) |
3360 | { |
3361 | inp->inp_flags2 &= ~INP2_WANT_APP_POLICY; |
3362 | } |
3363 | #endif /* NECP */ |
3364 | |
3365 | /* |
3366 | * Calculate flow hash for an inp, used by an interface to identify a |
3367 | * flow. When an interface provides flow control advisory, this flow |
3368 | * hash is used as an identifier. |
3369 | */ |
3370 | u_int32_t |
3371 | inp_calc_flowhash(struct inpcb *inp) |
3372 | { |
3373 | #if SKYWALK |
3374 | |
3375 | uint32_t flowid; |
3376 | struct flowidns_flow_key fk; |
3377 | |
3378 | bzero(s: &fk, n: sizeof(fk)); |
3379 | |
3380 | if (inp->inp_vflag & INP_IPV4) { |
3381 | fk.ffk_af = AF_INET; |
3382 | fk.ffk_laddr_v4 = inp->inp_laddr; |
3383 | fk.ffk_raddr_v4 = inp->inp_faddr; |
3384 | } else { |
3385 | fk.ffk_af = AF_INET6; |
3386 | fk.ffk_laddr_v6 = inp->in6p_laddr; |
3387 | fk.ffk_raddr_v6 = inp->in6p_faddr; |
3388 | /* clear embedded scope ID */ |
3389 | if (IN6_IS_SCOPE_EMBED(&fk.ffk_laddr_v6)) { |
3390 | fk.ffk_laddr_v6.s6_addr16[1] = 0; |
3391 | } |
3392 | if (IN6_IS_SCOPE_EMBED(&fk.ffk_raddr_v6)) { |
3393 | fk.ffk_raddr_v6.s6_addr16[1] = 0; |
3394 | } |
3395 | } |
3396 | |
3397 | fk.ffk_lport = inp->inp_lport; |
3398 | fk.ffk_rport = inp->inp_fport; |
3399 | fk.ffk_proto = (inp->inp_ip_p != 0) ? inp->inp_ip_p : |
3400 | (uint8_t)SOCK_PROTO(inp->inp_socket); |
3401 | flowidns_allocate_flowid(domain: FLOWIDNS_DOMAIN_INPCB, flow_key: &fk, flowid: &flowid); |
3402 | /* Insert the inp into inp_fc_tree */ |
3403 | lck_mtx_lock_spin(lck: &inp_fc_lck); |
3404 | ASSERT(inp->inp_flowhash == 0); |
3405 | ASSERT((inp->inp_flags2 & INP2_IN_FCTREE) == 0); |
3406 | inp->inp_flowhash = flowid; |
3407 | VERIFY(RB_INSERT(inp_fc_tree, &inp_fc_tree, inp) == NULL); |
3408 | inp->inp_flags2 |= INP2_IN_FCTREE; |
3409 | lck_mtx_unlock(lck: &inp_fc_lck); |
3410 | |
3411 | return flowid; |
3412 | |
3413 | #else /* !SKYWALK */ |
3414 | |
3415 | struct inp_flowhash_key fh __attribute__((aligned(8))); |
3416 | u_int32_t flowhash = 0; |
3417 | struct inpcb *tmp_inp = NULL; |
3418 | |
3419 | if (inp_hash_seed == 0) { |
3420 | inp_hash_seed = RandomULong(); |
3421 | } |
3422 | |
3423 | bzero(&fh, sizeof(fh)); |
3424 | |
3425 | bcopy(&inp->inp_dependladdr, &fh.infh_laddr, sizeof(fh.infh_laddr)); |
3426 | bcopy(&inp->inp_dependfaddr, &fh.infh_faddr, sizeof(fh.infh_faddr)); |
3427 | |
3428 | fh.infh_lport = inp->inp_lport; |
3429 | fh.infh_fport = inp->inp_fport; |
3430 | fh.infh_af = (inp->inp_vflag & INP_IPV6) ? AF_INET6 : AF_INET; |
3431 | fh.infh_proto = inp->inp_ip_p; |
3432 | fh.infh_rand1 = RandomULong(); |
3433 | fh.infh_rand2 = RandomULong(); |
3434 | |
3435 | try_again: |
3436 | flowhash = net_flowhash(&fh, sizeof(fh), inp_hash_seed); |
3437 | if (flowhash == 0) { |
3438 | /* try to get a non-zero flowhash */ |
3439 | inp_hash_seed = RandomULong(); |
3440 | goto try_again; |
3441 | } |
3442 | |
3443 | inp->inp_flowhash = flowhash; |
3444 | |
3445 | /* Insert the inp into inp_fc_tree */ |
3446 | lck_mtx_lock_spin(&inp_fc_lck); |
3447 | tmp_inp = RB_FIND(inp_fc_tree, &inp_fc_tree, inp); |
3448 | if (tmp_inp != NULL) { |
3449 | /* |
3450 | * There is a different inp with the same flowhash. |
3451 | * There can be a collision on flow hash but the |
3452 | * probability is low. Let's recompute the |
3453 | * flowhash. |
3454 | */ |
3455 | lck_mtx_unlock(&inp_fc_lck); |
3456 | /* recompute hash seed */ |
3457 | inp_hash_seed = RandomULong(); |
3458 | goto try_again; |
3459 | } |
3460 | |
3461 | RB_INSERT(inp_fc_tree, &inp_fc_tree, inp); |
3462 | inp->inp_flags2 |= INP2_IN_FCTREE; |
3463 | lck_mtx_unlock(&inp_fc_lck); |
3464 | |
3465 | return flowhash; |
3466 | |
3467 | #endif /* !SKYWALK */ |
3468 | } |
3469 | |
3470 | void |
3471 | inp_flowadv(uint32_t flowhash) |
3472 | { |
3473 | struct inpcb *inp; |
3474 | |
3475 | inp = inp_fc_getinp(flowhash, 0); |
3476 | |
3477 | if (inp == NULL) { |
3478 | return; |
3479 | } |
3480 | inp_fc_feedback(inp); |
3481 | } |
3482 | |
3483 | /* |
3484 | * Function to compare inp_fc_entries in inp flow control tree |
3485 | */ |
3486 | static inline int |
3487 | infc_cmp(const struct inpcb *inp1, const struct inpcb *inp2) |
3488 | { |
3489 | return memcmp(s1: &(inp1->inp_flowhash), s2: &(inp2->inp_flowhash), |
3490 | n: sizeof(inp1->inp_flowhash)); |
3491 | } |
3492 | |
3493 | static struct inpcb * |
3494 | inp_fc_getinp(u_int32_t flowhash, u_int32_t flags) |
3495 | { |
3496 | struct inpcb *inp = NULL; |
3497 | int locked = (flags & INPFC_SOLOCKED) ? 1 : 0; |
3498 | |
3499 | lck_mtx_lock_spin(lck: &inp_fc_lck); |
3500 | key_inp.inp_flowhash = flowhash; |
3501 | inp = RB_FIND(inp_fc_tree, &inp_fc_tree, &key_inp); |
3502 | if (inp == NULL) { |
3503 | /* inp is not present, return */ |
3504 | lck_mtx_unlock(lck: &inp_fc_lck); |
3505 | return NULL; |
3506 | } |
3507 | |
3508 | if (flags & INPFC_REMOVE) { |
3509 | ASSERT((inp->inp_flags2 & INP2_IN_FCTREE) != 0); |
3510 | lck_mtx_convert_spin(lck: &inp_fc_lck); |
3511 | RB_REMOVE(inp_fc_tree, &inp_fc_tree, inp); |
3512 | bzero(s: &(inp->infc_link), n: sizeof(inp->infc_link)); |
3513 | #if SKYWALK |
3514 | VERIFY(inp->inp_flowhash != 0); |
3515 | flowidns_release_flowid(flowid: inp->inp_flowhash); |
3516 | inp->inp_flowhash = 0; |
3517 | #endif /* !SKYWALK */ |
3518 | inp->inp_flags2 &= ~INP2_IN_FCTREE; |
3519 | lck_mtx_unlock(lck: &inp_fc_lck); |
3520 | return NULL; |
3521 | } |
3522 | |
3523 | if (in_pcb_checkstate(pcb: inp, WNT_ACQUIRE, locked) == WNT_STOPUSING) { |
3524 | inp = NULL; |
3525 | } |
3526 | lck_mtx_unlock(lck: &inp_fc_lck); |
3527 | |
3528 | return inp; |
3529 | } |
3530 | |
3531 | static void |
3532 | inp_fc_feedback(struct inpcb *inp) |
3533 | { |
3534 | struct socket *so = inp->inp_socket; |
3535 | |
3536 | /* we already hold a want_cnt on this inp, socket can't be null */ |
3537 | VERIFY(so != NULL); |
3538 | socket_lock(so, refcount: 1); |
3539 | |
3540 | if (in_pcb_checkstate(pcb: inp, WNT_RELEASE, locked: 1) == WNT_STOPUSING) { |
3541 | socket_unlock(so, refcount: 1); |
3542 | return; |
3543 | } |
3544 | |
3545 | if (inp->inp_sndinprog_cnt > 0) { |
3546 | inp->inp_flags |= INP_FC_FEEDBACK; |
3547 | } |
3548 | |
3549 | /* |
3550 | * Return if the connection is not in flow-controlled state. |
3551 | * This can happen if the connection experienced |
3552 | * loss while it was in flow controlled state |
3553 | */ |
3554 | if (!INP_WAIT_FOR_IF_FEEDBACK(inp)) { |
3555 | socket_unlock(so, refcount: 1); |
3556 | return; |
3557 | } |
3558 | inp_reset_fc_state(inp); |
3559 | |
3560 | if (SOCK_TYPE(so) == SOCK_STREAM) { |
3561 | inp_fc_unthrottle_tcp(inp); |
3562 | } |
3563 | |
3564 | socket_unlock(so, refcount: 1); |
3565 | } |
3566 | |
3567 | static void |
3568 | inp_reset_fc_timerstat(struct inpcb *inp) |
3569 | { |
3570 | uint64_t now; |
3571 | |
3572 | if (inp->inp_fadv_start_time == 0) { |
3573 | return; |
3574 | } |
3575 | |
3576 | now = net_uptime_us(); |
3577 | ASSERT(now >= inp->inp_fadv_start_time); |
3578 | |
3579 | inp->inp_fadv_total_time += (now - inp->inp_fadv_start_time); |
3580 | inp->inp_fadv_cnt++; |
3581 | |
3582 | inp->inp_fadv_start_time = 0; |
3583 | } |
3584 | |
3585 | static void |
3586 | inp_set_fc_timerstat(struct inpcb *inp) |
3587 | { |
3588 | if (inp->inp_fadv_start_time != 0) { |
3589 | return; |
3590 | } |
3591 | |
3592 | inp->inp_fadv_start_time = net_uptime_us(); |
3593 | } |
3594 | |
3595 | void |
3596 | inp_reset_fc_state(struct inpcb *inp) |
3597 | { |
3598 | struct socket *so = inp->inp_socket; |
3599 | int suspended = (INP_IS_FLOW_SUSPENDED(inp)) ? 1 : 0; |
3600 | int needwakeup = (INP_WAIT_FOR_IF_FEEDBACK(inp)) ? 1 : 0; |
3601 | |
3602 | inp->inp_flags &= ~(INP_FLOW_CONTROLLED | INP_FLOW_SUSPENDED); |
3603 | |
3604 | inp_reset_fc_timerstat(inp); |
3605 | |
3606 | if (suspended) { |
3607 | so->so_flags &= ~(SOF_SUSPENDED); |
3608 | soevent(so, hint: (SO_FILT_HINT_LOCKED | SO_FILT_HINT_RESUME)); |
3609 | } |
3610 | |
3611 | /* Give a write wakeup to unblock the socket */ |
3612 | if (needwakeup) { |
3613 | sowwakeup(so); |
3614 | } |
3615 | } |
3616 | |
3617 | int |
3618 | inp_set_fc_state(struct inpcb *inp, int advcode) |
3619 | { |
3620 | boolean_t is_flow_controlled = INP_WAIT_FOR_IF_FEEDBACK(inp); |
3621 | struct inpcb *tmp_inp = NULL; |
3622 | /* |
3623 | * If there was a feedback from the interface when |
3624 | * send operation was in progress, we should ignore |
3625 | * this flow advisory to avoid a race between setting |
3626 | * flow controlled state and receiving feedback from |
3627 | * the interface |
3628 | */ |
3629 | if (inp->inp_flags & INP_FC_FEEDBACK) { |
3630 | return 0; |
3631 | } |
3632 | |
3633 | inp->inp_flags &= ~(INP_FLOW_CONTROLLED | INP_FLOW_SUSPENDED); |
3634 | if ((tmp_inp = inp_fc_getinp(flowhash: inp->inp_flowhash, |
3635 | INPFC_SOLOCKED)) != NULL) { |
3636 | if (in_pcb_checkstate(pcb: tmp_inp, WNT_RELEASE, locked: 1) == WNT_STOPUSING) { |
3637 | goto exit_reset; |
3638 | } |
3639 | VERIFY(tmp_inp == inp); |
3640 | switch (advcode) { |
3641 | case FADV_FLOW_CONTROLLED: |
3642 | inp->inp_flags |= INP_FLOW_CONTROLLED; |
3643 | inp_set_fc_timerstat(inp); |
3644 | break; |
3645 | case FADV_SUSPENDED: |
3646 | inp->inp_flags |= INP_FLOW_SUSPENDED; |
3647 | inp_set_fc_timerstat(inp); |
3648 | |
3649 | soevent(so: inp->inp_socket, |
3650 | hint: (SO_FILT_HINT_LOCKED | SO_FILT_HINT_SUSPEND)); |
3651 | |
3652 | /* Record the fact that suspend event was sent */ |
3653 | inp->inp_socket->so_flags |= SOF_SUSPENDED; |
3654 | break; |
3655 | } |
3656 | |
3657 | if (!is_flow_controlled && SOCK_TYPE(inp->inp_socket) == SOCK_STREAM) { |
3658 | inp_fc_throttle_tcp(inp); |
3659 | } |
3660 | return 1; |
3661 | } |
3662 | |
3663 | exit_reset: |
3664 | inp_reset_fc_timerstat(inp); |
3665 | |
3666 | return 0; |
3667 | } |
3668 | |
3669 | /* |
3670 | * Handler for SO_FLUSH socket option. |
3671 | */ |
3672 | int |
3673 | inp_flush(struct inpcb *inp, int optval) |
3674 | { |
3675 | u_int32_t flowhash = inp->inp_flowhash; |
3676 | struct ifnet *rtifp, *oifp; |
3677 | |
3678 | /* Either all classes or one of the valid ones */ |
3679 | if (optval != SO_TC_ALL && !SO_VALID_TC(optval)) { |
3680 | return EINVAL; |
3681 | } |
3682 | |
3683 | /* We need a flow hash for identification */ |
3684 | if (flowhash == 0) { |
3685 | return 0; |
3686 | } |
3687 | |
3688 | /* Grab the interfaces from the route and pcb */ |
3689 | rtifp = ((inp->inp_route.ro_rt != NULL) ? |
3690 | inp->inp_route.ro_rt->rt_ifp : NULL); |
3691 | oifp = inp->inp_last_outifp; |
3692 | |
3693 | if (rtifp != NULL) { |
3694 | if_qflush_sc(rtifp, so_tc2msc(optval), flowhash, NULL, NULL, 0); |
3695 | } |
3696 | if (oifp != NULL && oifp != rtifp) { |
3697 | if_qflush_sc(oifp, so_tc2msc(optval), flowhash, NULL, NULL, 0); |
3698 | } |
3699 | |
3700 | return 0; |
3701 | } |
3702 | |
3703 | /* |
3704 | * Clear the INP_INADDR_ANY flag (special case for PPP only) |
3705 | */ |
3706 | void |
3707 | inp_clear_INP_INADDR_ANY(struct socket *so) |
3708 | { |
3709 | struct inpcb *inp = NULL; |
3710 | |
3711 | socket_lock(so, refcount: 1); |
3712 | inp = sotoinpcb(so); |
3713 | if (inp) { |
3714 | inp->inp_flags &= ~INP_INADDR_ANY; |
3715 | } |
3716 | socket_unlock(so, refcount: 1); |
3717 | } |
3718 | |
3719 | void |
3720 | inp_get_soprocinfo(struct inpcb *inp, struct so_procinfo *soprocinfo) |
3721 | { |
3722 | struct socket *so = inp->inp_socket; |
3723 | |
3724 | soprocinfo->spi_pid = so->last_pid; |
3725 | strlcpy(dst: &soprocinfo->spi_proc_name[0], src: &inp->inp_last_proc_name[0], |
3726 | n: sizeof(soprocinfo->spi_proc_name)); |
3727 | if (so->last_pid != 0) { |
3728 | uuid_copy(dst: soprocinfo->spi_uuid, src: so->last_uuid); |
3729 | } |
3730 | /* |
3731 | * When not delegated, the effective pid is the same as the real pid |
3732 | */ |
3733 | if (so->so_flags & SOF_DELEGATED) { |
3734 | soprocinfo->spi_delegated = 1; |
3735 | soprocinfo->spi_epid = so->e_pid; |
3736 | uuid_copy(dst: soprocinfo->spi_euuid, src: so->e_uuid); |
3737 | } else { |
3738 | soprocinfo->spi_delegated = 0; |
3739 | soprocinfo->spi_epid = so->last_pid; |
3740 | } |
3741 | strlcpy(dst: &soprocinfo->spi_e_proc_name[0], src: &inp->inp_e_proc_name[0], |
3742 | n: sizeof(soprocinfo->spi_e_proc_name)); |
3743 | } |
3744 | |
3745 | int |
3746 | inp_findinpcb_procinfo(struct inpcbinfo *pcbinfo, uint32_t flowhash, |
3747 | struct so_procinfo *soprocinfo) |
3748 | { |
3749 | struct inpcb *inp = NULL; |
3750 | int found = 0; |
3751 | |
3752 | bzero(s: soprocinfo, n: sizeof(struct so_procinfo)); |
3753 | |
3754 | if (!flowhash) { |
3755 | return -1; |
3756 | } |
3757 | |
3758 | lck_rw_lock_shared(lck: &pcbinfo->ipi_lock); |
3759 | LIST_FOREACH(inp, pcbinfo->ipi_listhead, inp_list) { |
3760 | if (inp->inp_state != INPCB_STATE_DEAD && |
3761 | inp->inp_socket != NULL && |
3762 | inp->inp_flowhash == flowhash) { |
3763 | found = 1; |
3764 | inp_get_soprocinfo(inp, soprocinfo); |
3765 | break; |
3766 | } |
3767 | } |
3768 | lck_rw_done(lck: &pcbinfo->ipi_lock); |
3769 | |
3770 | return found; |
3771 | } |
3772 | |
3773 | #if CONFIG_PROC_UUID_POLICY |
3774 | static void |
3775 | inp_update_cellular_policy(struct inpcb *inp, boolean_t set) |
3776 | { |
3777 | struct socket *so = inp->inp_socket; |
3778 | int before, after; |
3779 | |
3780 | VERIFY(so != NULL); |
3781 | VERIFY(inp->inp_state != INPCB_STATE_DEAD); |
3782 | |
3783 | before = INP_NO_CELLULAR(inp); |
3784 | if (set) { |
3785 | inp_set_nocellular(inp); |
3786 | } else { |
3787 | inp_clear_nocellular(inp); |
3788 | } |
3789 | after = INP_NO_CELLULAR(inp); |
3790 | if (net_io_policy_log && (before != after)) { |
3791 | static const char *ok = "OK" ; |
3792 | static const char *nok = "NOACCESS" ; |
3793 | uuid_string_t euuid_buf; |
3794 | pid_t epid; |
3795 | |
3796 | if (so->so_flags & SOF_DELEGATED) { |
3797 | uuid_unparse(uu: so->e_uuid, out: euuid_buf); |
3798 | epid = so->e_pid; |
3799 | } else { |
3800 | uuid_unparse(uu: so->last_uuid, out: euuid_buf); |
3801 | epid = so->last_pid; |
3802 | } |
3803 | |
3804 | /* allow this socket to generate another notification event */ |
3805 | so->so_ifdenied_notifies = 0; |
3806 | |
3807 | log(LOG_DEBUG, "%s: so %llu [%d,%d] epid %d " |
3808 | "euuid %s%s %s->%s\n" , __func__, |
3809 | so->so_gencnt, SOCK_DOM(so), |
3810 | SOCK_TYPE(so), epid, euuid_buf, |
3811 | (so->so_flags & SOF_DELEGATED) ? |
3812 | " [delegated]" : "" , |
3813 | ((before < after) ? ok : nok), |
3814 | ((before < after) ? nok : ok)); |
3815 | } |
3816 | } |
3817 | |
3818 | #if NECP |
3819 | static void |
3820 | inp_update_necp_want_app_policy(struct inpcb *inp, boolean_t set) |
3821 | { |
3822 | struct socket *so = inp->inp_socket; |
3823 | int before, after; |
3824 | |
3825 | VERIFY(so != NULL); |
3826 | VERIFY(inp->inp_state != INPCB_STATE_DEAD); |
3827 | |
3828 | before = (inp->inp_flags2 & INP2_WANT_APP_POLICY); |
3829 | if (set) { |
3830 | inp_set_want_app_policy(inp); |
3831 | } else { |
3832 | inp_clear_want_app_policy(inp); |
3833 | } |
3834 | after = (inp->inp_flags2 & INP2_WANT_APP_POLICY); |
3835 | if (net_io_policy_log && (before != after)) { |
3836 | static const char *wanted = "WANTED" ; |
3837 | static const char *unwanted = "UNWANTED" ; |
3838 | uuid_string_t euuid_buf; |
3839 | pid_t epid; |
3840 | |
3841 | if (so->so_flags & SOF_DELEGATED) { |
3842 | uuid_unparse(uu: so->e_uuid, out: euuid_buf); |
3843 | epid = so->e_pid; |
3844 | } else { |
3845 | uuid_unparse(uu: so->last_uuid, out: euuid_buf); |
3846 | epid = so->last_pid; |
3847 | } |
3848 | |
3849 | log(LOG_DEBUG, "%s: so %llu [%d,%d] epid %d " |
3850 | "euuid %s%s %s->%s\n" , __func__, |
3851 | so->so_gencnt, SOCK_DOM(so), |
3852 | SOCK_TYPE(so), epid, euuid_buf, |
3853 | (so->so_flags & SOF_DELEGATED) ? |
3854 | " [delegated]" : "" , |
3855 | ((before < after) ? unwanted : wanted), |
3856 | ((before < after) ? wanted : unwanted)); |
3857 | } |
3858 | } |
3859 | #endif /* NECP */ |
3860 | #endif /* !CONFIG_PROC_UUID_POLICY */ |
3861 | |
3862 | #if NECP |
3863 | void |
3864 | inp_update_necp_policy(struct inpcb *inp, struct sockaddr *override_local_addr, struct sockaddr *override_remote_addr, u_int override_bound_interface) |
3865 | { |
3866 | necp_socket_find_policy_match(inp, override_local_addr, override_remote_addr, override_bound_interface); |
3867 | if (necp_socket_should_rescope(inp) && |
3868 | inp->inp_lport == 0 && |
3869 | inp->inp_laddr.s_addr == INADDR_ANY && |
3870 | IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr)) { |
3871 | // If we should rescope, and the socket is not yet bound |
3872 | inp_bindif(inp, ifscope: necp_socket_get_rescope_if_index(inp), NULL); |
3873 | inp->inp_flags2 |= INP2_SCOPED_BY_NECP; |
3874 | } |
3875 | } |
3876 | #endif /* NECP */ |
3877 | |
3878 | int |
3879 | inp_update_policy(struct inpcb *inp) |
3880 | { |
3881 | #if CONFIG_PROC_UUID_POLICY |
3882 | struct socket *so = inp->inp_socket; |
3883 | uint32_t pflags = 0; |
3884 | int32_t ogencnt; |
3885 | int err = 0; |
3886 | uint8_t *lookup_uuid = NULL; |
3887 | |
3888 | if (!net_io_policy_uuid || |
3889 | so == NULL || inp->inp_state == INPCB_STATE_DEAD) { |
3890 | return 0; |
3891 | } |
3892 | |
3893 | /* |
3894 | * Kernel-created sockets that aren't delegating other sockets |
3895 | * are currently exempted from UUID policy checks. |
3896 | */ |
3897 | if (so->last_pid == 0 && !(so->so_flags & SOF_DELEGATED)) { |
3898 | return 0; |
3899 | } |
3900 | |
3901 | #if defined(XNU_TARGET_OS_OSX) |
3902 | if (so->so_rpid > 0) { |
3903 | lookup_uuid = so->so_ruuid; |
3904 | ogencnt = so->so_policy_gencnt; |
3905 | err = proc_uuid_policy_lookup(uuid: lookup_uuid, flags: &pflags, gencount: &so->so_policy_gencnt); |
3906 | } |
3907 | #endif |
3908 | if (lookup_uuid == NULL || err == ENOENT) { |
3909 | lookup_uuid = ((so->so_flags & SOF_DELEGATED) ? so->e_uuid : so->last_uuid); |
3910 | ogencnt = so->so_policy_gencnt; |
3911 | err = proc_uuid_policy_lookup(uuid: lookup_uuid, flags: &pflags, gencount: &so->so_policy_gencnt); |
3912 | } |
3913 | |
3914 | /* |
3915 | * Discard cached generation count if the entry is gone (ENOENT), |
3916 | * so that we go thru the checks below. |
3917 | */ |
3918 | if (err == ENOENT && ogencnt != 0) { |
3919 | so->so_policy_gencnt = 0; |
3920 | } |
3921 | |
3922 | /* |
3923 | * If the generation count has changed, inspect the policy flags |
3924 | * and act accordingly. If a policy flag was previously set and |
3925 | * the UUID is no longer present in the table (ENOENT), treat it |
3926 | * as if the flag has been cleared. |
3927 | */ |
3928 | if ((err == 0 || err == ENOENT) && ogencnt != so->so_policy_gencnt) { |
3929 | /* update cellular policy for this socket */ |
3930 | if (err == 0 && (pflags & PROC_UUID_NO_CELLULAR)) { |
3931 | inp_update_cellular_policy(inp, TRUE); |
3932 | } else if (!(pflags & PROC_UUID_NO_CELLULAR)) { |
3933 | inp_update_cellular_policy(inp, FALSE); |
3934 | } |
3935 | #if NECP |
3936 | /* update necp want app policy for this socket */ |
3937 | if (err == 0 && (pflags & PROC_UUID_NECP_APP_POLICY)) { |
3938 | inp_update_necp_want_app_policy(inp, TRUE); |
3939 | } else if (!(pflags & PROC_UUID_NECP_APP_POLICY)) { |
3940 | inp_update_necp_want_app_policy(inp, FALSE); |
3941 | } |
3942 | #endif /* NECP */ |
3943 | } |
3944 | |
3945 | return (err == ENOENT) ? 0 : err; |
3946 | #else /* !CONFIG_PROC_UUID_POLICY */ |
3947 | #pragma unused(inp) |
3948 | return 0; |
3949 | #endif /* !CONFIG_PROC_UUID_POLICY */ |
3950 | } |
3951 | |
3952 | unsigned int log_restricted; |
3953 | SYSCTL_DECL(_net_inet); |
3954 | SYSCTL_INT(_net_inet, OID_AUTO, log_restricted, |
3955 | CTLFLAG_RW | CTLFLAG_LOCKED, &log_restricted, 0, |
3956 | "Log network restrictions" ); |
3957 | |
3958 | |
3959 | /* |
3960 | * Called when we need to enforce policy restrictions in the input path. |
3961 | * |
3962 | * Returns TRUE if we're not allowed to receive data, otherwise FALSE. |
3963 | */ |
3964 | static boolean_t |
3965 | _inp_restricted_recv(struct inpcb *inp, struct ifnet *ifp) |
3966 | { |
3967 | VERIFY(inp != NULL); |
3968 | |
3969 | /* |
3970 | * Inbound restrictions. |
3971 | */ |
3972 | if (!sorestrictrecv) { |
3973 | return FALSE; |
3974 | } |
3975 | |
3976 | if (ifp == NULL) { |
3977 | return FALSE; |
3978 | } |
3979 | |
3980 | if (IFNET_IS_CELLULAR(ifp) && INP_NO_CELLULAR(inp)) { |
3981 | return TRUE; |
3982 | } |
3983 | |
3984 | if (IFNET_IS_EXPENSIVE(ifp) && INP_NO_EXPENSIVE(inp)) { |
3985 | return TRUE; |
3986 | } |
3987 | |
3988 | if (IFNET_IS_CONSTRAINED(ifp) && INP_NO_CONSTRAINED(inp)) { |
3989 | return TRUE; |
3990 | } |
3991 | |
3992 | if (IFNET_IS_AWDL_RESTRICTED(ifp) && !INP_AWDL_UNRESTRICTED(inp)) { |
3993 | return TRUE; |
3994 | } |
3995 | |
3996 | if (!(ifp->if_eflags & IFEF_RESTRICTED_RECV)) { |
3997 | return FALSE; |
3998 | } |
3999 | |
4000 | if (inp->inp_flags & INP_RECV_ANYIF) { |
4001 | return FALSE; |
4002 | } |
4003 | |
4004 | /* |
4005 | * An entitled process can use the management interface without being bound |
4006 | * to the interface |
4007 | */ |
4008 | if (IFNET_IS_MANAGEMENT(ifp)) { |
4009 | if (INP_MANAGEMENT_ALLOWED(inp)) { |
4010 | return FALSE; |
4011 | } |
4012 | if (if_management_verbose > 1) { |
4013 | os_log(OS_LOG_DEFAULT, "_inp_restricted_recv %s:%d not allowed on management interface %s" , |
4014 | proc_best_name(current_proc()), proc_getpid(current_proc()), |
4015 | ifp->if_xname); |
4016 | } |
4017 | return TRUE; |
4018 | } |
4019 | |
4020 | if ((inp->inp_flags & INP_BOUND_IF) && inp->inp_boundifp == ifp) { |
4021 | return FALSE; |
4022 | } |
4023 | |
4024 | if (IFNET_IS_INTCOPROC(ifp) && !INP_INTCOPROC_ALLOWED(inp)) { |
4025 | return TRUE; |
4026 | } |
4027 | |
4028 | |
4029 | return TRUE; |
4030 | } |
4031 | |
4032 | boolean_t |
4033 | inp_restricted_recv(struct inpcb *inp, struct ifnet *ifp) |
4034 | { |
4035 | boolean_t ret; |
4036 | |
4037 | ret = _inp_restricted_recv(inp, ifp); |
4038 | if (ret == TRUE && log_restricted) { |
4039 | printf("pid %d (%s) is unable to receive packets on %s\n" , |
4040 | proc_getpid(current_proc()), proc_best_name(p: current_proc()), |
4041 | ifp->if_xname); |
4042 | } |
4043 | return ret; |
4044 | } |
4045 | |
4046 | /* |
4047 | * Called when we need to enforce policy restrictions in the output path. |
4048 | * |
4049 | * Returns TRUE if we're not allowed to send data out, otherwise FALSE. |
4050 | */ |
4051 | static boolean_t |
4052 | _inp_restricted_send(struct inpcb *inp, struct ifnet *ifp) |
4053 | { |
4054 | VERIFY(inp != NULL); |
4055 | |
4056 | /* |
4057 | * Outbound restrictions. |
4058 | */ |
4059 | if (!sorestrictsend) { |
4060 | return FALSE; |
4061 | } |
4062 | |
4063 | if (ifp == NULL) { |
4064 | return FALSE; |
4065 | } |
4066 | |
4067 | if (IFNET_IS_CELLULAR(ifp) && INP_NO_CELLULAR(inp)) { |
4068 | return TRUE; |
4069 | } |
4070 | |
4071 | if (IFNET_IS_EXPENSIVE(ifp) && INP_NO_EXPENSIVE(inp)) { |
4072 | return TRUE; |
4073 | } |
4074 | |
4075 | if (IFNET_IS_CONSTRAINED(ifp) && INP_NO_CONSTRAINED(inp)) { |
4076 | return TRUE; |
4077 | } |
4078 | |
4079 | if (IFNET_IS_AWDL_RESTRICTED(ifp) && !INP_AWDL_UNRESTRICTED(inp)) { |
4080 | return TRUE; |
4081 | } |
4082 | |
4083 | if (IFNET_IS_MANAGEMENT(ifp)) { |
4084 | if (!INP_MANAGEMENT_ALLOWED(inp)) { |
4085 | if (if_management_verbose > 1) { |
4086 | os_log(OS_LOG_DEFAULT, "_inp_restricted_send %s:%d not allowed on management interface %s" , |
4087 | proc_best_name(current_proc()), proc_getpid(current_proc()), |
4088 | ifp->if_xname); |
4089 | } |
4090 | return TRUE; |
4091 | } |
4092 | } |
4093 | |
4094 | if (IFNET_IS_INTCOPROC(ifp) && !INP_INTCOPROC_ALLOWED(inp)) { |
4095 | return TRUE; |
4096 | } |
4097 | |
4098 | return FALSE; |
4099 | } |
4100 | |
4101 | boolean_t |
4102 | inp_restricted_send(struct inpcb *inp, struct ifnet *ifp) |
4103 | { |
4104 | boolean_t ret; |
4105 | |
4106 | ret = _inp_restricted_send(inp, ifp); |
4107 | if (ret == TRUE && log_restricted) { |
4108 | printf("pid %d (%s) is unable to transmit packets on %s\n" , |
4109 | proc_getpid(current_proc()), proc_best_name(p: current_proc()), |
4110 | ifp->if_xname); |
4111 | } |
4112 | return ret; |
4113 | } |
4114 | |
4115 | inline void |
4116 | inp_count_sndbytes(struct inpcb *inp, u_int32_t th_ack) |
4117 | { |
4118 | struct ifnet *ifp = inp->inp_last_outifp; |
4119 | struct socket *so = inp->inp_socket; |
4120 | if (ifp != NULL && !(so->so_flags & SOF_MP_SUBFLOW) && |
4121 | (ifp->if_type == IFT_CELLULAR || IFNET_IS_WIFI(ifp))) { |
4122 | int32_t unsent; |
4123 | |
4124 | so->so_snd.sb_flags |= SB_SNDBYTE_CNT; |
4125 | |
4126 | /* |
4127 | * There can be data outstanding before the connection |
4128 | * becomes established -- TFO case |
4129 | */ |
4130 | if (so->so_snd.sb_cc > 0) { |
4131 | inp_incr_sndbytes_total(so, so->so_snd.sb_cc); |
4132 | } |
4133 | |
4134 | unsent = inp_get_sndbytes_allunsent(so, th_ack); |
4135 | if (unsent > 0) { |
4136 | inp_incr_sndbytes_unsent(so, unsent); |
4137 | } |
4138 | } |
4139 | } |
4140 | |
4141 | inline void |
4142 | inp_incr_sndbytes_total(struct socket *so, int32_t len) |
4143 | { |
4144 | struct inpcb *inp = (struct inpcb *)so->so_pcb; |
4145 | struct ifnet *ifp = inp->inp_last_outifp; |
4146 | |
4147 | if (ifp != NULL) { |
4148 | VERIFY(ifp->if_sndbyte_total >= 0); |
4149 | OSAddAtomic64(len, &ifp->if_sndbyte_total); |
4150 | } |
4151 | } |
4152 | |
4153 | inline void |
4154 | inp_decr_sndbytes_total(struct socket *so, int32_t len) |
4155 | { |
4156 | struct inpcb *inp = (struct inpcb *)so->so_pcb; |
4157 | struct ifnet *ifp = inp->inp_last_outifp; |
4158 | |
4159 | if (ifp != NULL) { |
4160 | if (ifp->if_sndbyte_total >= len) { |
4161 | OSAddAtomic64(-len, &ifp->if_sndbyte_total); |
4162 | } else { |
4163 | ifp->if_sndbyte_total = 0; |
4164 | } |
4165 | } |
4166 | } |
4167 | |
4168 | inline void |
4169 | inp_incr_sndbytes_unsent(struct socket *so, int32_t len) |
4170 | { |
4171 | struct inpcb *inp = (struct inpcb *)so->so_pcb; |
4172 | struct ifnet *ifp = inp->inp_last_outifp; |
4173 | |
4174 | if (ifp != NULL) { |
4175 | VERIFY(ifp->if_sndbyte_unsent >= 0); |
4176 | OSAddAtomic64(len, &ifp->if_sndbyte_unsent); |
4177 | } |
4178 | } |
4179 | |
4180 | inline void |
4181 | inp_decr_sndbytes_unsent(struct socket *so, int32_t len) |
4182 | { |
4183 | if (so == NULL || !(so->so_snd.sb_flags & SB_SNDBYTE_CNT)) { |
4184 | return; |
4185 | } |
4186 | |
4187 | struct inpcb *inp = (struct inpcb *)so->so_pcb; |
4188 | struct ifnet *ifp = inp->inp_last_outifp; |
4189 | |
4190 | if (ifp != NULL) { |
4191 | if (ifp->if_sndbyte_unsent >= len) { |
4192 | OSAddAtomic64(-len, &ifp->if_sndbyte_unsent); |
4193 | } else { |
4194 | ifp->if_sndbyte_unsent = 0; |
4195 | } |
4196 | } |
4197 | } |
4198 | |
4199 | inline void |
4200 | inp_decr_sndbytes_allunsent(struct socket *so, u_int32_t th_ack) |
4201 | { |
4202 | int32_t len; |
4203 | |
4204 | if (so == NULL || !(so->so_snd.sb_flags & SB_SNDBYTE_CNT)) { |
4205 | return; |
4206 | } |
4207 | |
4208 | len = inp_get_sndbytes_allunsent(so, th_ack); |
4209 | inp_decr_sndbytes_unsent(so, len); |
4210 | } |
4211 | |
4212 | #if SKYWALK |
4213 | inline void |
4214 | inp_update_netns_flags(struct socket *so) |
4215 | { |
4216 | struct inpcb *inp; |
4217 | uint32_t set_flags = 0; |
4218 | uint32_t clear_flags = 0; |
4219 | |
4220 | if (!(SOCK_CHECK_DOM(so, AF_INET) || SOCK_CHECK_DOM(so, AF_INET6))) { |
4221 | return; |
4222 | } |
4223 | |
4224 | inp = sotoinpcb(so); |
4225 | |
4226 | if (inp == NULL) { |
4227 | return; |
4228 | } |
4229 | |
4230 | if (!NETNS_TOKEN_VALID(&inp->inp_netns_token)) { |
4231 | return; |
4232 | } |
4233 | |
4234 | if (so->so_options & SO_NOWAKEFROMSLEEP) { |
4235 | set_flags |= NETNS_NOWAKEFROMSLEEP; |
4236 | } else { |
4237 | clear_flags |= NETNS_NOWAKEFROMSLEEP; |
4238 | } |
4239 | |
4240 | if (inp->inp_flags & INP_RECV_ANYIF) { |
4241 | set_flags |= NETNS_RECVANYIF; |
4242 | } else { |
4243 | clear_flags |= NETNS_RECVANYIF; |
4244 | } |
4245 | |
4246 | if (so->so_flags1 & SOF1_EXTEND_BK_IDLE_WANTED) { |
4247 | set_flags |= NETNS_EXTBGIDLE; |
4248 | } else { |
4249 | clear_flags |= NETNS_EXTBGIDLE; |
4250 | } |
4251 | |
4252 | netns_change_flags(token: &inp->inp_netns_token, set_flags, clear_flags); |
4253 | } |
4254 | #endif /* SKYWALK */ |
4255 | |
4256 | inline void |
4257 | inp_set_activity_bitmap(struct inpcb *inp) |
4258 | { |
4259 | in_stat_set_activity_bitmap(activity: &inp->inp_nw_activity, now: net_uptime()); |
4260 | } |
4261 | |
4262 | inline void |
4263 | inp_get_activity_bitmap(struct inpcb *inp, activity_bitmap_t *ab) |
4264 | { |
4265 | bcopy(src: &inp->inp_nw_activity, dst: ab, n: sizeof(*ab)); |
4266 | } |
4267 | |
4268 | inline void |
4269 | inp_clear_activity_bitmap(struct inpcb *inp) |
4270 | { |
4271 | in_stat_clear_activity_bitmap(activity: &inp->inp_nw_activity); |
4272 | } |
4273 | |
4274 | void |
4275 | inp_update_last_owner(struct socket *so, struct proc *p, struct proc *ep) |
4276 | { |
4277 | struct inpcb *inp = (struct inpcb *)so->so_pcb; |
4278 | |
4279 | if (inp == NULL) { |
4280 | return; |
4281 | } |
4282 | |
4283 | if (p != NULL) { |
4284 | strlcpy(dst: &inp->inp_last_proc_name[0], src: proc_name_address(p), n: sizeof(inp->inp_last_proc_name)); |
4285 | } |
4286 | if (so->so_flags & SOF_DELEGATED) { |
4287 | if (ep != NULL) { |
4288 | strlcpy(dst: &inp->inp_e_proc_name[0], src: proc_name_address(ep), n: sizeof(inp->inp_e_proc_name)); |
4289 | } else { |
4290 | inp->inp_e_proc_name[0] = 0; |
4291 | } |
4292 | } else { |
4293 | inp->inp_e_proc_name[0] = 0; |
4294 | } |
4295 | } |
4296 | |
4297 | void |
4298 | inp_copy_last_owner(struct socket *so, struct socket *head) |
4299 | { |
4300 | struct inpcb *inp = (struct inpcb *)so->so_pcb; |
4301 | struct inpcb *head_inp = (struct inpcb *)head->so_pcb; |
4302 | |
4303 | if (inp == NULL || head_inp == NULL) { |
4304 | return; |
4305 | } |
4306 | |
4307 | strlcpy(dst: &inp->inp_last_proc_name[0], src: &head_inp->inp_last_proc_name[0], n: sizeof(inp->inp_last_proc_name)); |
4308 | strlcpy(dst: &inp->inp_e_proc_name[0], src: &head_inp->inp_e_proc_name[0], n: sizeof(inp->inp_e_proc_name)); |
4309 | } |
4310 | |
4311 | static int |
4312 | in_check_management_interface_proc_callout(proc_t proc, void *arg __unused) |
4313 | { |
4314 | struct fileproc *fp = NULL; |
4315 | task_t task = proc_task(proc); |
4316 | bool allowed = false; |
4317 | |
4318 | if (IOTaskHasEntitlement(task, INTCOPROC_RESTRICTED_ENTITLEMENT) == true |
4319 | || IOTaskHasEntitlement(task, MANAGEMENT_DATA_ENTITLEMENT) == true |
4320 | #if DEBUG || DEVELOPMENT |
4321 | || IOTaskHasEntitlement(task, INTCOPROC_RESTRICTED_ENTITLEMENT_DEVELOPMENT) == true |
4322 | || IOTaskHasEntitlement(task, MANAGEMENT_DATA_ENTITLEMENT_DEVELOPMENT) == true |
4323 | #endif /* DEBUG || DEVELOPMENT */ |
4324 | ) { |
4325 | allowed = true; |
4326 | } |
4327 | if (allowed == false && management_data_unrestricted == false) { |
4328 | return PROC_RETURNED; |
4329 | } |
4330 | |
4331 | proc_fdlock(proc); |
4332 | fdt_foreach(fp, proc) { |
4333 | struct fileglob *fg = fp->fp_glob; |
4334 | struct socket *so; |
4335 | struct inpcb *inp; |
4336 | |
4337 | if (FILEGLOB_DTYPE(fg) != DTYPE_SOCKET) { |
4338 | continue; |
4339 | } |
4340 | |
4341 | so = (struct socket *)fp_get_data(fp); |
4342 | if (SOCK_DOM(so) != PF_INET && SOCK_DOM(so) != PF_INET6) { |
4343 | continue; |
4344 | } |
4345 | |
4346 | inp = (struct inpcb *)so->so_pcb; |
4347 | |
4348 | if (in_pcb_checkstate(pcb: inp, WNT_ACQUIRE, locked: 0) == WNT_STOPUSING) { |
4349 | continue; |
4350 | } |
4351 | |
4352 | socket_lock(so, refcount: 1); |
4353 | |
4354 | if (in_pcb_checkstate(pcb: inp, WNT_RELEASE, locked: 1) == WNT_STOPUSING) { |
4355 | socket_unlock(so, refcount: 1); |
4356 | continue; |
4357 | } |
4358 | inp->inp_flags2 |= INP2_MANAGEMENT_ALLOWED; |
4359 | inp->inp_flags2 |= INP2_MANAGEMENT_CHECKED; |
4360 | |
4361 | socket_unlock(so, refcount: 1); |
4362 | } |
4363 | proc_fdunlock(proc); |
4364 | |
4365 | return PROC_RETURNED; |
4366 | } |
4367 | |
4368 | static bool in_management_interface_checked = false; |
4369 | |
4370 | static void |
4371 | in_management_interface_event_callback(struct nwk_wq_entry *nwk_item) |
4372 | { |
4373 | kfree_type(struct nwk_wq_entry, nwk_item); |
4374 | |
4375 | if (in_management_interface_checked == true) { |
4376 | return; |
4377 | } |
4378 | in_management_interface_checked = true; |
4379 | |
4380 | proc_iterate(PROC_ALLPROCLIST, |
4381 | callout: in_check_management_interface_proc_callout, |
4382 | NULL, NULL, NULL); |
4383 | } |
4384 | |
4385 | void |
4386 | in_management_interface_check(void) |
4387 | { |
4388 | struct nwk_wq_entry *nwk_item; |
4389 | |
4390 | if (if_management_interface_check_needed == false || |
4391 | in_management_interface_checked == true) { |
4392 | return; |
4393 | } |
4394 | |
4395 | nwk_item = kalloc_type(struct nwk_wq_entry, |
4396 | Z_WAITOK | Z_ZERO | Z_NOFAIL); |
4397 | |
4398 | nwk_item->func = in_management_interface_event_callback; |
4399 | |
4400 | nwk_wq_enqueue(nwk_item); |
4401 | } |
4402 | |