1/*
2 * Copyright (c) 2000-2021 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28/*
29 * Copyright (c) 1982, 1986, 1991, 1993, 1995
30 * The Regents of the University of California. All rights reserved.
31 *
32 * Redistribution and use in source and binary forms, with or without
33 * modification, are permitted provided that the following conditions
34 * are met:
35 * 1. Redistributions of source code must retain the above copyright
36 * notice, this list of conditions and the following disclaimer.
37 * 2. Redistributions in binary form must reproduce the above copyright
38 * notice, this list of conditions and the following disclaimer in the
39 * documentation and/or other materials provided with the distribution.
40 * 3. All advertising materials mentioning features or use of this software
41 * must display the following acknowledgement:
42 * This product includes software developed by the University of
43 * California, Berkeley and its contributors.
44 * 4. Neither the name of the University nor the names of its contributors
45 * may be used to endorse or promote products derived from this software
46 * without specific prior written permission.
47 *
48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58 * SUCH DAMAGE.
59 *
60 * @(#)in_pcb.c 8.4 (Berkeley) 5/24/95
61 * $FreeBSD: src/sys/netinet/in_pcb.c,v 1.59.2.17 2001/08/13 16:26:17 ume Exp $
62 */
63
64#include <sys/param.h>
65#include <sys/systm.h>
66#include <sys/malloc.h>
67#include <sys/mbuf.h>
68#include <sys/domain.h>
69#include <sys/protosw.h>
70#include <sys/socket.h>
71#include <sys/socketvar.h>
72#include <sys/proc.h>
73#include <sys/kernel.h>
74#include <sys/sysctl.h>
75#include <sys/mcache.h>
76#include <sys/kauth.h>
77#include <sys/priv.h>
78#include <sys/proc_uuid_policy.h>
79#include <sys/syslog.h>
80#include <sys/priv.h>
81#include <sys/file_internal.h>
82#include <net/dlil.h>
83
84#include <libkern/OSAtomic.h>
85#include <kern/locks.h>
86
87#include <machine/limits.h>
88
89#include <kern/zalloc.h>
90
91#include <net/if.h>
92#include <net/if_types.h>
93#include <net/route.h>
94#include <net/flowhash.h>
95#include <net/flowadv.h>
96#include <net/nat464_utils.h>
97#include <net/ntstat.h>
98#include <net/nwk_wq.h>
99#include <net/restricted_in_port.h>
100
101#include <netinet/in.h>
102#include <netinet/in_pcb.h>
103#include <netinet/inp_log.h>
104#include <netinet/in_var.h>
105#include <netinet/ip_var.h>
106
107#include <netinet/ip6.h>
108#include <netinet6/ip6_var.h>
109
110#include <sys/kdebug.h>
111#include <sys/random.h>
112
113#include <dev/random/randomdev.h>
114#include <mach/boolean.h>
115
116#include <atm/atm_internal.h>
117#include <pexpert/pexpert.h>
118
119#if NECP
120#include <net/necp.h>
121#endif
122
123#include <sys/stat.h>
124#include <sys/ubc.h>
125#include <sys/vnode.h>
126
127#include <os/log.h>
128
129#if SKYWALK
130#include <skywalk/namespace/flowidns.h>
131#endif /* SKYWALK */
132
133#include <IOKit/IOBSD.h>
134
135#include <net/sockaddr_utils.h>
136
137extern const char *proc_name_address(struct proc *);
138
139static LCK_GRP_DECLARE(inpcb_lock_grp, "inpcb");
140static LCK_ATTR_DECLARE(inpcb_lock_attr, 0, 0);
141static LCK_MTX_DECLARE_ATTR(inpcb_lock, &inpcb_lock_grp, &inpcb_lock_attr);
142static LCK_MTX_DECLARE_ATTR(inpcb_timeout_lock, &inpcb_lock_grp, &inpcb_lock_attr);
143
144static TAILQ_HEAD(, inpcbinfo) inpcb_head = TAILQ_HEAD_INITIALIZER(inpcb_head);
145
146static u_int16_t inpcb_timeout_run = 0; /* INPCB timer is scheduled to run */
147static boolean_t inpcb_garbage_collecting = FALSE; /* gc timer is scheduled */
148static boolean_t inpcb_ticking = FALSE; /* "slow" timer is scheduled */
149static boolean_t inpcb_fast_timer_on = FALSE;
150
151#define INPCB_GCREQ_THRESHOLD 50000
152
153static thread_call_t inpcb_thread_call, inpcb_fast_thread_call;
154static void inpcb_sched_timeout(void);
155static void inpcb_sched_lazy_timeout(void);
156static void _inpcb_sched_timeout(unsigned int);
157static void inpcb_timeout(void *, void *);
158const int inpcb_timeout_lazy = 10; /* 10 seconds leeway for lazy timers */
159extern int tvtohz(struct timeval *);
160
161#if CONFIG_PROC_UUID_POLICY
162static void inp_update_cellular_policy(struct inpcb *, boolean_t);
163#if NECP
164static void inp_update_necp_want_app_policy(struct inpcb *, boolean_t);
165#endif /* NECP */
166#endif /* !CONFIG_PROC_UUID_POLICY */
167
168#define DBG_FNC_PCB_LOOKUP NETDBG_CODE(DBG_NETTCP, (6 << 8))
169#define DBG_FNC_PCB_HLOOKUP NETDBG_CODE(DBG_NETTCP, ((6 << 8) | 1))
170
171int allow_udp_port_exhaustion = 0;
172
173/*
174 * These configure the range of local port addresses assigned to
175 * "unspecified" outgoing connections/packets/whatever.
176 */
177int ipport_lowfirstauto = IPPORT_RESERVED - 1; /* 1023 */
178int ipport_lowlastauto = IPPORT_RESERVEDSTART; /* 600 */
179int ipport_firstauto = IPPORT_HIFIRSTAUTO; /* 49152 */
180int ipport_lastauto = IPPORT_HILASTAUTO; /* 65535 */
181int ipport_hifirstauto = IPPORT_HIFIRSTAUTO; /* 49152 */
182int ipport_hilastauto = IPPORT_HILASTAUTO; /* 65535 */
183
184#define RANGECHK(var, min, max) \
185 if ((var) < (min)) { (var) = (min); } \
186 else if ((var) > (max)) { (var) = (max); }
187
188static int
189sysctl_net_ipport_check SYSCTL_HANDLER_ARGS
190{
191#pragma unused(arg1, arg2)
192 int error;
193 int new_value = *(int *)oidp->oid_arg1;
194#if (DEBUG | DEVELOPMENT)
195 int old_value = *(int *)oidp->oid_arg1;
196 /*
197 * For unit testing allow a non-superuser process with the
198 * proper entitlement to modify the variables
199 */
200 if (req->newptr) {
201 if (proc_suser(current_proc()) != 0 &&
202 (error = priv_check_cred(kauth_cred_get(),
203 PRIV_NETINET_RESERVEDPORT, 0))) {
204 return EPERM;
205 }
206 }
207#endif /* (DEBUG | DEVELOPMENT) */
208
209 error = sysctl_handle_int(oidp, arg1: &new_value, arg2: 0, req);
210 if (!error) {
211 if (oidp->oid_arg1 == &ipport_lowfirstauto || oidp->oid_arg1 == &ipport_lowlastauto) {
212 RANGECHK(new_value, 1, IPPORT_RESERVED - 1);
213 } else {
214 RANGECHK(new_value, IPPORT_RESERVED, USHRT_MAX);
215 }
216 *(int *)oidp->oid_arg1 = new_value;
217 }
218
219#if (DEBUG | DEVELOPMENT)
220 os_log(OS_LOG_DEFAULT,
221 "%s:%u sysctl net.restricted_port.verbose: %d -> %d)",
222 proc_best_name(current_proc()), proc_selfpid(),
223 old_value, *(int *)oidp->oid_arg1);
224#endif /* (DEBUG | DEVELOPMENT) */
225
226 return error;
227}
228
229#undef RANGECHK
230
231SYSCTL_NODE(_net_inet_ip, IPPROTO_IP, portrange,
232 CTLFLAG_RW | CTLFLAG_LOCKED, 0, "IP Ports");
233
234#if (DEBUG | DEVELOPMENT)
235#define CTLFAGS_IP_PORTRANGE (CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED | CTLFLAG_ANYBODY)
236#else
237#define CTLFAGS_IP_PORTRANGE (CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED)
238#endif /* (DEBUG | DEVELOPMENT) */
239
240SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowfirst,
241 CTLFAGS_IP_PORTRANGE,
242 &ipport_lowfirstauto, 0, &sysctl_net_ipport_check, "I", "");
243SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowlast,
244 CTLFAGS_IP_PORTRANGE,
245 &ipport_lowlastauto, 0, &sysctl_net_ipport_check, "I", "");
246SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, first,
247 CTLFAGS_IP_PORTRANGE,
248 &ipport_firstauto, 0, &sysctl_net_ipport_check, "I", "");
249SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, last,
250 CTLFAGS_IP_PORTRANGE,
251 &ipport_lastauto, 0, &sysctl_net_ipport_check, "I", "");
252SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hifirst,
253 CTLFAGS_IP_PORTRANGE,
254 &ipport_hifirstauto, 0, &sysctl_net_ipport_check, "I", "");
255SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hilast,
256 CTLFAGS_IP_PORTRANGE,
257 &ipport_hilastauto, 0, &sysctl_net_ipport_check, "I", "");
258SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, ipport_allow_udp_port_exhaustion,
259 CTLFLAG_LOCKED | CTLFLAG_RW, &allow_udp_port_exhaustion, 0, "");
260
261static uint32_t apn_fallbk_debug = 0;
262#define apn_fallbk_log(x) do { if (apn_fallbk_debug >= 1) log x; } while (0)
263
264#if !XNU_TARGET_OS_OSX
265static boolean_t apn_fallbk_enabled = TRUE;
266
267SYSCTL_DECL(_net_inet);
268SYSCTL_NODE(_net_inet, OID_AUTO, apn_fallback, CTLFLAG_RW | CTLFLAG_LOCKED, 0, "APN Fallback");
269SYSCTL_UINT(_net_inet_apn_fallback, OID_AUTO, enable, CTLFLAG_RW | CTLFLAG_LOCKED,
270 &apn_fallbk_enabled, 0, "APN fallback enable");
271SYSCTL_UINT(_net_inet_apn_fallback, OID_AUTO, debug, CTLFLAG_RW | CTLFLAG_LOCKED,
272 &apn_fallbk_debug, 0, "APN fallback debug enable");
273#else /* XNU_TARGET_OS_OSX */
274static boolean_t apn_fallbk_enabled = FALSE;
275#endif /* XNU_TARGET_OS_OSX */
276
277extern int udp_use_randomport;
278extern int tcp_use_randomport;
279
280/* Structs used for flowhash computation */
281struct inp_flowhash_key_addr {
282 union {
283 struct in_addr v4;
284 struct in6_addr v6;
285 u_int8_t addr8[16];
286 u_int16_t addr16[8];
287 u_int32_t addr32[4];
288 } infha;
289};
290
291struct inp_flowhash_key {
292 struct inp_flowhash_key_addr infh_laddr;
293 struct inp_flowhash_key_addr infh_faddr;
294 u_int32_t infh_lport;
295 u_int32_t infh_fport;
296 u_int32_t infh_af;
297 u_int32_t infh_proto;
298 u_int32_t infh_rand1;
299 u_int32_t infh_rand2;
300};
301
302#if !SKYWALK
303static u_int32_t inp_hash_seed = 0;
304#endif /* !SKYWALK */
305
306static int infc_cmp(const struct inpcb *, const struct inpcb *);
307
308/* Flags used by inp_fc_getinp */
309#define INPFC_SOLOCKED 0x1
310#define INPFC_REMOVE 0x2
311static struct inpcb *inp_fc_getinp(u_int32_t, u_int32_t);
312
313static void inp_fc_feedback(struct inpcb *);
314extern void tcp_remove_from_time_wait(struct inpcb *inp);
315
316static LCK_MTX_DECLARE_ATTR(inp_fc_lck, &inpcb_lock_grp, &inpcb_lock_attr);
317
318RB_HEAD(inp_fc_tree, inpcb) inp_fc_tree;
319RB_PROTOTYPE(inp_fc_tree, inpcb, infc_link, infc_cmp);
320RB_GENERATE(inp_fc_tree, inpcb, infc_link, infc_cmp);
321
322/*
323 * Use this inp as a key to find an inp in the flowhash tree.
324 * Accesses to it are protected by inp_fc_lck.
325 */
326struct inpcb key_inp;
327
328/*
329 * in_pcb.c: manage the Protocol Control Blocks.
330 */
331
332void
333in_pcbinit(void)
334{
335 static int inpcb_initialized = 0;
336 uint32_t logging_config;
337
338 VERIFY(!inpcb_initialized);
339 inpcb_initialized = 1;
340
341 logging_config = atm_get_diagnostic_config();
342 if (logging_config & 0x80000000) {
343 inp_log_privacy = 1;
344 }
345
346 inpcb_thread_call = thread_call_allocate_with_priority(func: inpcb_timeout,
347 NULL, pri: THREAD_CALL_PRIORITY_KERNEL);
348 /* Give it an arg so that we know that this is the fast timer */
349 inpcb_fast_thread_call = thread_call_allocate_with_priority(
350 func: inpcb_timeout, param0: &inpcb_timeout, pri: THREAD_CALL_PRIORITY_KERNEL);
351 if (inpcb_thread_call == NULL || inpcb_fast_thread_call == NULL) {
352 panic("unable to alloc the inpcb thread call");
353 }
354
355 /*
356 * Initialize data structures required to deliver
357 * flow advisories.
358 */
359 lck_mtx_lock(lck: &inp_fc_lck);
360 RB_INIT(&inp_fc_tree);
361 bzero(s: &key_inp, n: sizeof(key_inp));
362 lck_mtx_unlock(lck: &inp_fc_lck);
363}
364
365#define INPCB_HAVE_TIMER_REQ(req) (((req).intimer_lazy > 0) || \
366 ((req).intimer_fast > 0) || ((req).intimer_nodelay > 0))
367static void
368inpcb_timeout(void *arg0, void *arg1)
369{
370#pragma unused(arg1)
371 struct inpcbinfo *ipi;
372 boolean_t t, gc;
373 struct intimercount gccnt, tmcnt;
374
375 /*
376 * Update coarse-grained networking timestamp (in sec.); the idea
377 * is to piggy-back on the timeout callout to update the counter
378 * returnable via net_uptime().
379 */
380 net_update_uptime();
381
382 bzero(s: &gccnt, n: sizeof(gccnt));
383 bzero(s: &tmcnt, n: sizeof(tmcnt));
384
385 lck_mtx_lock_spin(lck: &inpcb_timeout_lock);
386 gc = inpcb_garbage_collecting;
387 inpcb_garbage_collecting = FALSE;
388
389 t = inpcb_ticking;
390 inpcb_ticking = FALSE;
391
392 if (gc || t) {
393 lck_mtx_unlock(lck: &inpcb_timeout_lock);
394
395 lck_mtx_lock(lck: &inpcb_lock);
396 TAILQ_FOREACH(ipi, &inpcb_head, ipi_entry) {
397 if (INPCB_HAVE_TIMER_REQ(ipi->ipi_gc_req)) {
398 bzero(s: &ipi->ipi_gc_req,
399 n: sizeof(ipi->ipi_gc_req));
400 if (gc && ipi->ipi_gc != NULL) {
401 ipi->ipi_gc(ipi);
402 gccnt.intimer_lazy +=
403 ipi->ipi_gc_req.intimer_lazy;
404 gccnt.intimer_fast +=
405 ipi->ipi_gc_req.intimer_fast;
406 gccnt.intimer_nodelay +=
407 ipi->ipi_gc_req.intimer_nodelay;
408 }
409 }
410 if (INPCB_HAVE_TIMER_REQ(ipi->ipi_timer_req)) {
411 bzero(s: &ipi->ipi_timer_req,
412 n: sizeof(ipi->ipi_timer_req));
413 if (t && ipi->ipi_timer != NULL) {
414 ipi->ipi_timer(ipi);
415 tmcnt.intimer_lazy +=
416 ipi->ipi_timer_req.intimer_lazy;
417 tmcnt.intimer_fast +=
418 ipi->ipi_timer_req.intimer_fast;
419 tmcnt.intimer_nodelay +=
420 ipi->ipi_timer_req.intimer_nodelay;
421 }
422 }
423 }
424 lck_mtx_unlock(lck: &inpcb_lock);
425 lck_mtx_lock_spin(lck: &inpcb_timeout_lock);
426 }
427
428 /* lock was dropped above, so check first before overriding */
429 if (!inpcb_garbage_collecting) {
430 inpcb_garbage_collecting = INPCB_HAVE_TIMER_REQ(gccnt);
431 }
432 if (!inpcb_ticking) {
433 inpcb_ticking = INPCB_HAVE_TIMER_REQ(tmcnt);
434 }
435
436 /* arg0 will be set if we are the fast timer */
437 if (arg0 != NULL) {
438 inpcb_fast_timer_on = FALSE;
439 }
440 inpcb_timeout_run--;
441 VERIFY(inpcb_timeout_run >= 0 && inpcb_timeout_run < 2);
442
443 /* re-arm the timer if there's work to do */
444 if (gccnt.intimer_nodelay > 0 || tmcnt.intimer_nodelay > 0) {
445 inpcb_sched_timeout();
446 } else if ((gccnt.intimer_fast + tmcnt.intimer_fast) <= 5) {
447 /* be lazy when idle with little activity */
448 inpcb_sched_lazy_timeout();
449 } else {
450 inpcb_sched_timeout();
451 }
452
453 lck_mtx_unlock(lck: &inpcb_timeout_lock);
454}
455
456static void
457inpcb_sched_timeout(void)
458{
459 _inpcb_sched_timeout(0);
460}
461
462static void
463inpcb_sched_lazy_timeout(void)
464{
465 _inpcb_sched_timeout(inpcb_timeout_lazy);
466}
467
468static void
469_inpcb_sched_timeout(unsigned int offset)
470{
471 uint64_t deadline, leeway;
472
473 clock_interval_to_deadline(interval: 1, NSEC_PER_SEC, result: &deadline);
474 LCK_MTX_ASSERT(&inpcb_timeout_lock, LCK_MTX_ASSERT_OWNED);
475 if (inpcb_timeout_run == 0 &&
476 (inpcb_garbage_collecting || inpcb_ticking)) {
477 lck_mtx_convert_spin(lck: &inpcb_timeout_lock);
478 inpcb_timeout_run++;
479 if (offset == 0) {
480 inpcb_fast_timer_on = TRUE;
481 thread_call_enter_delayed(call: inpcb_fast_thread_call,
482 deadline);
483 } else {
484 inpcb_fast_timer_on = FALSE;
485 clock_interval_to_absolutetime_interval(interval: offset,
486 NSEC_PER_SEC, result: &leeway);
487 thread_call_enter_delayed_with_leeway(
488 call: inpcb_thread_call, NULL, deadline, leeway,
489 THREAD_CALL_DELAY_LEEWAY);
490 }
491 } else if (inpcb_timeout_run == 1 &&
492 offset == 0 && !inpcb_fast_timer_on) {
493 /*
494 * Since the request was for a fast timer but the
495 * scheduled timer is a lazy timer, try to schedule
496 * another instance of fast timer also.
497 */
498 lck_mtx_convert_spin(lck: &inpcb_timeout_lock);
499 inpcb_timeout_run++;
500 inpcb_fast_timer_on = TRUE;
501 thread_call_enter_delayed(call: inpcb_fast_thread_call, deadline);
502 }
503}
504
505void
506inpcb_gc_sched(struct inpcbinfo *ipi, u_int32_t type)
507{
508 u_int32_t gccnt;
509
510 lck_mtx_lock_spin(lck: &inpcb_timeout_lock);
511 inpcb_garbage_collecting = TRUE;
512 gccnt = ipi->ipi_gc_req.intimer_nodelay +
513 ipi->ipi_gc_req.intimer_fast;
514
515 if (gccnt > INPCB_GCREQ_THRESHOLD) {
516 type = INPCB_TIMER_FAST;
517 }
518
519 switch (type) {
520 case INPCB_TIMER_NODELAY:
521 os_atomic_inc(&ipi->ipi_gc_req.intimer_nodelay, relaxed);
522 inpcb_sched_timeout();
523 break;
524 case INPCB_TIMER_FAST:
525 os_atomic_inc(&ipi->ipi_gc_req.intimer_fast, relaxed);
526 inpcb_sched_timeout();
527 break;
528 default:
529 os_atomic_inc(&ipi->ipi_gc_req.intimer_lazy, relaxed);
530 inpcb_sched_lazy_timeout();
531 break;
532 }
533 lck_mtx_unlock(lck: &inpcb_timeout_lock);
534}
535
536void
537inpcb_timer_sched(struct inpcbinfo *ipi, u_int32_t type)
538{
539 lck_mtx_lock_spin(lck: &inpcb_timeout_lock);
540 inpcb_ticking = TRUE;
541 switch (type) {
542 case INPCB_TIMER_NODELAY:
543 os_atomic_inc(&ipi->ipi_timer_req.intimer_nodelay, relaxed);
544 inpcb_sched_timeout();
545 break;
546 case INPCB_TIMER_FAST:
547 os_atomic_inc(&ipi->ipi_timer_req.intimer_fast, relaxed);
548 inpcb_sched_timeout();
549 break;
550 default:
551 os_atomic_inc(&ipi->ipi_timer_req.intimer_lazy, relaxed);
552 inpcb_sched_lazy_timeout();
553 break;
554 }
555 lck_mtx_unlock(lck: &inpcb_timeout_lock);
556}
557
558void
559in_pcbinfo_attach(struct inpcbinfo *ipi)
560{
561 struct inpcbinfo *ipi0;
562
563 lck_mtx_lock(lck: &inpcb_lock);
564 TAILQ_FOREACH(ipi0, &inpcb_head, ipi_entry) {
565 if (ipi0 == ipi) {
566 panic("%s: ipi %p already in the list",
567 __func__, ipi);
568 /* NOTREACHED */
569 }
570 }
571 TAILQ_INSERT_TAIL(&inpcb_head, ipi, ipi_entry);
572 lck_mtx_unlock(lck: &inpcb_lock);
573}
574
575int
576in_pcbinfo_detach(struct inpcbinfo *ipi)
577{
578 struct inpcbinfo *ipi0;
579 int error = 0;
580
581 lck_mtx_lock(lck: &inpcb_lock);
582 TAILQ_FOREACH(ipi0, &inpcb_head, ipi_entry) {
583 if (ipi0 == ipi) {
584 break;
585 }
586 }
587 if (ipi0 != NULL) {
588 TAILQ_REMOVE(&inpcb_head, ipi0, ipi_entry);
589 } else {
590 error = ENXIO;
591 }
592 lck_mtx_unlock(lck: &inpcb_lock);
593
594 return error;
595}
596
597__attribute__((noinline))
598char *
599inp_snprintf_tuple(struct inpcb *inp, char *buf, size_t buflen)
600{
601 char laddrstr[MAX_IPv6_STR_LEN];
602 char faddrstr[MAX_IPv6_STR_LEN];
603 uint16_t lport = 0;
604 uint16_t fport = 0;
605 uint16_t proto = IPPROTO_IP;
606
607 if (inp->inp_socket != NULL) {
608 proto = SOCK_PROTO(inp->inp_socket);
609
610 if (proto == IPPROTO_TCP || proto == IPPROTO_UDP) {
611 lport = inp->inp_lport;
612 fport = inp->inp_fport;
613 }
614 }
615 if (inp->inp_vflag & INP_IPV4) {
616 inet_ntop(AF_INET, (void *)&inp->inp_laddr.s_addr, laddrstr, sizeof(laddrstr));
617 inet_ntop(AF_INET, (void *)&inp->inp_faddr.s_addr, faddrstr, sizeof(faddrstr));
618 } else if (inp->inp_vflag & INP_IPV6) {
619 inet_ntop(AF_INET6, (void *)&inp->in6p_faddr, laddrstr, sizeof(laddrstr));
620 inet_ntop(AF_INET6, (void *)&inp->in6p_faddr, faddrstr, sizeof(faddrstr));
621 }
622 snprintf(buf, count: buflen, "[%u %s:%u %s:%u]",
623 proto, laddrstr, ntohs(lport), faddrstr, ntohs(fport));
624
625 return buf;
626}
627
628__attribute__((noinline))
629void
630in_pcb_check_management_entitled(struct inpcb *inp)
631{
632 if (inp->inp_flags2 & INP2_MANAGEMENT_CHECKED) {
633 return;
634 }
635
636 if (management_data_unrestricted) {
637 inp->inp_flags2 |= INP2_MANAGEMENT_ALLOWED;
638 inp->inp_flags2 |= INP2_MANAGEMENT_CHECKED;
639 } else if (if_management_interface_check_needed == true) {
640 inp->inp_flags2 |= INP2_MANAGEMENT_CHECKED;
641 /*
642 * Note that soopt_cred_check check both intcoproc entitlements
643 * We check MANAGEMENT_DATA_ENTITLEMENT as there is no corresponding PRIV value
644 */
645 if (soopt_cred_check(so: inp->inp_socket, PRIV_NET_RESTRICTED_INTCOPROC, false, false) == 0
646 || IOCurrentTaskHasEntitlement(MANAGEMENT_DATA_ENTITLEMENT) == true
647#if DEBUG || DEVELOPMENT
648 || IOCurrentTaskHasEntitlement(MANAGEMENT_DATA_ENTITLEMENT_DEVELOPMENT) == true
649#endif /* DEBUG || DEVELOPMENT */
650 ) {
651 inp->inp_flags2 |= INP2_MANAGEMENT_ALLOWED;
652 } else {
653 if (__improbable(if_management_verbose > 1)) {
654 char buf[128];
655
656 os_log(OS_LOG_DEFAULT, "in_pcb_check_management_entitled %s:%d not management entitled %s",
657 proc_best_name(current_proc()),
658 proc_selfpid(),
659 inp_snprintf_tuple(inp, buf, sizeof(buf)));
660 }
661 }
662 }
663}
664
665/*
666 * Allocate a PCB and associate it with the socket.
667 *
668 * Returns: 0 Success
669 * ENOBUFS
670 * ENOMEM
671 */
672int
673in_pcballoc(struct socket *so, struct inpcbinfo *pcbinfo, struct proc *p)
674{
675#pragma unused(p)
676 struct inpcb *inp;
677 caddr_t temp;
678
679 if ((so->so_flags1 & SOF1_CACHED_IN_SOCK_LAYER) == 0) {
680 inp = zalloc_flags(pcbinfo->ipi_zone,
681 Z_WAITOK | Z_ZERO | Z_NOFAIL);
682 } else {
683 inp = (struct inpcb *)(void *)so->so_saved_pcb;
684 temp = inp->inp_saved_ppcb;
685 bzero(s: (caddr_t)inp, n: sizeof(*inp));
686 inp->inp_saved_ppcb = temp;
687 }
688
689 inp->inp_gencnt = ++pcbinfo->ipi_gencnt;
690 inp->inp_pcbinfo = pcbinfo;
691 inp->inp_socket = so;
692 /* make sure inp_stat is always 64-bit aligned */
693 inp->inp_stat = (struct inp_stat *)P2ROUNDUP(inp->inp_stat_store,
694 sizeof(u_int64_t));
695 if (((uintptr_t)inp->inp_stat - (uintptr_t)inp->inp_stat_store) +
696 sizeof(*inp->inp_stat) > sizeof(inp->inp_stat_store)) {
697 panic("%s: insufficient space to align inp_stat", __func__);
698 /* NOTREACHED */
699 }
700
701 /* make sure inp_cstat is always 64-bit aligned */
702 inp->inp_cstat = (struct inp_stat *)P2ROUNDUP(inp->inp_cstat_store,
703 sizeof(u_int64_t));
704 if (((uintptr_t)inp->inp_cstat - (uintptr_t)inp->inp_cstat_store) +
705 sizeof(*inp->inp_cstat) > sizeof(inp->inp_cstat_store)) {
706 panic("%s: insufficient space to align inp_cstat", __func__);
707 /* NOTREACHED */
708 }
709
710 /* make sure inp_wstat is always 64-bit aligned */
711 inp->inp_wstat = (struct inp_stat *)P2ROUNDUP(inp->inp_wstat_store,
712 sizeof(u_int64_t));
713 if (((uintptr_t)inp->inp_wstat - (uintptr_t)inp->inp_wstat_store) +
714 sizeof(*inp->inp_wstat) > sizeof(inp->inp_wstat_store)) {
715 panic("%s: insufficient space to align inp_wstat", __func__);
716 /* NOTREACHED */
717 }
718
719 /* make sure inp_Wstat is always 64-bit aligned */
720 inp->inp_Wstat = (struct inp_stat *)P2ROUNDUP(inp->inp_Wstat_store,
721 sizeof(u_int64_t));
722 if (((uintptr_t)inp->inp_Wstat - (uintptr_t)inp->inp_Wstat_store) +
723 sizeof(*inp->inp_Wstat) > sizeof(inp->inp_Wstat_store)) {
724 panic("%s: insufficient space to align inp_Wstat", __func__);
725 /* NOTREACHED */
726 }
727
728 so->so_pcb = (caddr_t)inp;
729
730 if (so->so_proto->pr_flags & PR_PCBLOCK) {
731 lck_mtx_init(lck: &inp->inpcb_mtx, grp: pcbinfo->ipi_lock_grp,
732 attr: &pcbinfo->ipi_lock_attr);
733 }
734
735 if (SOCK_DOM(so) == PF_INET6 && !ip6_mapped_addr_on) {
736 inp->inp_flags |= IN6P_IPV6_V6ONLY;
737 }
738
739 if (ip6_auto_flowlabel) {
740 inp->inp_flags |= IN6P_AUTOFLOWLABEL;
741 }
742 if (intcoproc_unrestricted) {
743 inp->inp_flags2 |= INP2_INTCOPROC_ALLOWED;
744 }
745
746 (void) inp_update_policy(inp);
747
748 lck_rw_lock_exclusive(lck: &pcbinfo->ipi_lock);
749 inp->inp_gencnt = ++pcbinfo->ipi_gencnt;
750 LIST_INSERT_HEAD(pcbinfo->ipi_listhead, inp, inp_list);
751 pcbinfo->ipi_count++;
752 lck_rw_done(lck: &pcbinfo->ipi_lock);
753 return 0;
754}
755
756/*
757 * in_pcblookup_local_and_cleanup does everything
758 * in_pcblookup_local does but it checks for a socket
759 * that's going away. Since we know that the lock is
760 * held read+write when this function is called, we
761 * can safely dispose of this socket like the slow
762 * timer would usually do and return NULL. This is
763 * great for bind.
764 */
765struct inpcb *
766in_pcblookup_local_and_cleanup(struct inpcbinfo *pcbinfo, struct in_addr laddr,
767 u_int lport_arg, int wild_okay)
768{
769 struct inpcb *inp;
770
771 /* Perform normal lookup */
772 inp = in_pcblookup_local(pcbinfo, laddr, lport_arg, wild_okay);
773
774 /* Check if we found a match but it's waiting to be disposed */
775 if (inp != NULL && inp->inp_wantcnt == WNT_STOPUSING) {
776 struct socket *so = inp->inp_socket;
777
778 socket_lock(so, refcount: 0);
779
780 if (so->so_usecount == 0) {
781 if (inp->inp_state != INPCB_STATE_DEAD) {
782 in_pcbdetach(inp);
783 }
784 in_pcbdispose(inp); /* will unlock & destroy */
785 inp = NULL;
786 } else {
787 socket_unlock(so, refcount: 0);
788 }
789 }
790
791 return inp;
792}
793
794static void
795in_pcb_conflict_post_msg(u_int16_t port)
796{
797 /*
798 * Radar 5523020 send a kernel event notification if a
799 * non-participating socket tries to bind the port a socket
800 * who has set SOF_NOTIFYCONFLICT owns.
801 */
802 struct kev_msg ev_msg;
803 struct kev_in_portinuse in_portinuse;
804
805 bzero(s: &in_portinuse, n: sizeof(struct kev_in_portinuse));
806 bzero(s: &ev_msg, n: sizeof(struct kev_msg));
807 in_portinuse.port = ntohs(port); /* port in host order */
808 in_portinuse.req_pid = proc_selfpid();
809 ev_msg.vendor_code = KEV_VENDOR_APPLE;
810 ev_msg.kev_class = KEV_NETWORK_CLASS;
811 ev_msg.kev_subclass = KEV_INET_SUBCLASS;
812 ev_msg.event_code = KEV_INET_PORTINUSE;
813 ev_msg.dv[0].data_ptr = &in_portinuse;
814 ev_msg.dv[0].data_length = sizeof(struct kev_in_portinuse);
815 ev_msg.dv[1].data_length = 0;
816 dlil_post_complete_msg(NULL, &ev_msg);
817}
818
819/*
820 * Bind an INPCB to an address and/or port. This routine should not alter
821 * the caller-supplied local address "nam".
822 *
823 * Returns: 0 Success
824 * EADDRNOTAVAIL Address not available.
825 * EINVAL Invalid argument
826 * EAFNOSUPPORT Address family not supported [notdef]
827 * EACCES Permission denied
828 * EADDRINUSE Address in use
829 * EAGAIN Resource unavailable, try again
830 * priv_check_cred:EPERM Operation not permitted
831 */
832int
833in_pcbbind(struct inpcb *inp, struct sockaddr *nam, struct proc *p)
834{
835 struct socket *so = inp->inp_socket;
836 unsigned short *lastport;
837 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
838 u_short lport = 0, rand_port = 0;
839 int wild = 0;
840 int reuseport = (so->so_options & SO_REUSEPORT);
841 int error = 0;
842 int randomport;
843 int conflict = 0;
844 boolean_t anonport = FALSE;
845 kauth_cred_t cred;
846 struct in_addr laddr;
847 struct ifnet *outif = NULL;
848
849 if (inp->inp_flags2 & INP2_BIND_IN_PROGRESS) {
850 return EINVAL;
851 }
852 inp->inp_flags2 |= INP2_BIND_IN_PROGRESS;
853
854 if (TAILQ_EMPTY(&in_ifaddrhead)) { /* XXX broken! */
855 error = EADDRNOTAVAIL;
856 goto done;
857 }
858 if (!(so->so_options & (SO_REUSEADDR | SO_REUSEPORT))) {
859 wild = 1;
860 }
861
862 bzero(s: &laddr, n: sizeof(laddr));
863
864 socket_unlock(so, refcount: 0); /* keep reference on socket */
865 lck_rw_lock_exclusive(lck: &pcbinfo->ipi_lock);
866 if (inp->inp_lport != 0 || inp->inp_laddr.s_addr != INADDR_ANY) {
867 /* another thread completed the bind */
868 lck_rw_done(lck: &pcbinfo->ipi_lock);
869 socket_lock(so, refcount: 0);
870 error = EINVAL;
871 goto done;
872 }
873
874 if (nam != NULL) {
875 if (nam->sa_len != sizeof(struct sockaddr_in)) {
876 lck_rw_done(lck: &pcbinfo->ipi_lock);
877 socket_lock(so, refcount: 0);
878 error = EINVAL;
879 goto done;
880 }
881#if 0
882 /*
883 * We should check the family, but old programs
884 * incorrectly fail to initialize it.
885 */
886 if (nam->sa_family != AF_INET) {
887 lck_rw_done(&pcbinfo->ipi_lock);
888 socket_lock(so, 0);
889 error = EAFNOSUPPORT;
890 goto done;
891 }
892#endif /* 0 */
893 lport = SIN(nam)->sin_port;
894
895 if (IN_MULTICAST(ntohl(SIN(nam)->sin_addr.s_addr))) {
896 /*
897 * Treat SO_REUSEADDR as SO_REUSEPORT for multicast;
898 * allow complete duplication of binding if
899 * SO_REUSEPORT is set, or if SO_REUSEADDR is set
900 * and a multicast address is bound on both
901 * new and duplicated sockets.
902 */
903 if (so->so_options & SO_REUSEADDR) {
904 reuseport = SO_REUSEADDR | SO_REUSEPORT;
905 }
906 } else if (SIN(nam)->sin_addr.s_addr != INADDR_ANY) {
907 struct sockaddr_in sin;
908 struct ifaddr *ifa;
909
910 /* Sanitized for interface address searches */
911 SOCKADDR_ZERO(&sin, sizeof(sin));
912 sin.sin_family = AF_INET;
913 sin.sin_len = sizeof(struct sockaddr_in);
914 sin.sin_addr.s_addr = SIN(nam)->sin_addr.s_addr;
915
916 ifa = ifa_ifwithaddr(SA(&sin));
917 if (ifa == NULL) {
918 lck_rw_done(lck: &pcbinfo->ipi_lock);
919 socket_lock(so, refcount: 0);
920 error = EADDRNOTAVAIL;
921 goto done;
922 } else {
923 /*
924 * Opportunistically determine the outbound
925 * interface that may be used; this may not
926 * hold true if we end up using a route
927 * going over a different interface, e.g.
928 * when sending to a local address. This
929 * will get updated again after sending.
930 */
931 IFA_LOCK(ifa);
932 outif = ifa->ifa_ifp;
933 IFA_UNLOCK(ifa);
934 ifa_remref(ifa);
935 }
936 }
937
938#if SKYWALK
939 if (inp->inp_flags2 & INP2_EXTERNAL_PORT) {
940 // Extract the external flow info
941 struct ns_flow_info nfi = {};
942 error = necp_client_get_netns_flow_info(client_id: inp->necp_client_uuid,
943 flow_info: &nfi);
944 if (error != 0) {
945 lck_rw_done(lck: &pcbinfo->ipi_lock);
946 socket_lock(so, refcount: 0);
947 goto done;
948 }
949
950 // Extract the reserved port
951 u_int16_t reserved_lport = 0;
952 if (nfi.nfi_laddr.sa.sa_family == AF_INET) {
953 reserved_lport = nfi.nfi_laddr.sin.sin_port;
954 } else if (nfi.nfi_laddr.sa.sa_family == AF_INET6) {
955 reserved_lport = nfi.nfi_laddr.sin6.sin6_port;
956 } else {
957 lck_rw_done(lck: &pcbinfo->ipi_lock);
958 socket_lock(so, refcount: 0);
959 error = EINVAL;
960 goto done;
961 }
962
963 // Validate or use the reserved port
964 if (lport == 0) {
965 lport = reserved_lport;
966 } else if (lport != reserved_lport) {
967 lck_rw_done(lck: &pcbinfo->ipi_lock);
968 socket_lock(so, refcount: 0);
969 error = EINVAL;
970 goto done;
971 }
972 }
973
974 /* Do not allow reserving a UDP port if remaining UDP port count is below 4096 */
975 if (SOCK_PROTO(so) == IPPROTO_UDP && !allow_udp_port_exhaustion) {
976 uint32_t current_reservations = 0;
977 if (inp->inp_vflag & INP_IPV6) {
978 current_reservations = netns_lookup_reservations_count_in6(addr: inp->in6p_laddr, IPPROTO_UDP);
979 } else {
980 current_reservations = netns_lookup_reservations_count_in(addr: inp->inp_laddr, IPPROTO_UDP);
981 }
982 if (USHRT_MAX - UDP_RANDOM_PORT_RESERVE < current_reservations) {
983 log(LOG_ERR, "UDP port not available, less than 4096 UDP ports left");
984 lck_rw_done(lck: &pcbinfo->ipi_lock);
985 socket_lock(so, refcount: 0);
986 error = EADDRNOTAVAIL;
987 goto done;
988 }
989 }
990
991#endif /* SKYWALK */
992
993 if (lport != 0) {
994 struct inpcb *t;
995 uid_t u;
996
997#if XNU_TARGET_OS_OSX
998 if (ntohs(lport) < IPPORT_RESERVED &&
999 SIN(nam)->sin_addr.s_addr != 0 &&
1000 !(inp->inp_flags2 & INP2_EXTERNAL_PORT)) {
1001 cred = kauth_cred_proc_ref(procp: p);
1002 error = priv_check_cred(cred,
1003 PRIV_NETINET_RESERVEDPORT, flags: 0);
1004 kauth_cred_unref(&cred);
1005 if (error != 0) {
1006 lck_rw_done(lck: &pcbinfo->ipi_lock);
1007 socket_lock(so, refcount: 0);
1008 error = EACCES;
1009 goto done;
1010 }
1011 }
1012#endif /* XNU_TARGET_OS_OSX */
1013 /*
1014 * Check wether the process is allowed to bind to a restricted port
1015 */
1016 if (!current_task_can_use_restricted_in_port(port: lport,
1017 protocol: (uint8_t)SOCK_PROTO(so), PORT_FLAGS_BSD)) {
1018 lck_rw_done(lck: &pcbinfo->ipi_lock);
1019 socket_lock(so, refcount: 0);
1020 error = EADDRINUSE;
1021 goto done;
1022 }
1023
1024 if (!IN_MULTICAST(ntohl(SIN(nam)->sin_addr.s_addr)) &&
1025 (u = kauth_cred_getuid(cred: so->so_cred)) != 0 &&
1026 (t = in_pcblookup_local_and_cleanup(
1027 pcbinfo: inp->inp_pcbinfo, SIN(nam)->sin_addr, lport_arg: lport,
1028 INPLOOKUP_WILDCARD)) != NULL &&
1029 (SIN(nam)->sin_addr.s_addr != INADDR_ANY ||
1030 t->inp_laddr.s_addr != INADDR_ANY ||
1031 !(t->inp_socket->so_options & SO_REUSEPORT)) &&
1032 (u != kauth_cred_getuid(cred: t->inp_socket->so_cred)) &&
1033 !(t->inp_socket->so_flags & SOF_REUSESHAREUID) &&
1034 (SIN(nam)->sin_addr.s_addr != INADDR_ANY ||
1035 t->inp_laddr.s_addr != INADDR_ANY) &&
1036 (!(t->inp_flags2 & INP2_EXTERNAL_PORT) ||
1037 !(inp->inp_flags2 & INP2_EXTERNAL_PORT) ||
1038 uuid_compare(uu1: t->necp_client_uuid, uu2: inp->necp_client_uuid) != 0)) {
1039 if ((t->inp_socket->so_flags &
1040 SOF_NOTIFYCONFLICT) &&
1041 !(so->so_flags & SOF_NOTIFYCONFLICT)) {
1042 conflict = 1;
1043 }
1044
1045 lck_rw_done(lck: &pcbinfo->ipi_lock);
1046
1047 if (conflict) {
1048 in_pcb_conflict_post_msg(port: lport);
1049 }
1050
1051 socket_lock(so, refcount: 0);
1052 error = EADDRINUSE;
1053 goto done;
1054 }
1055 t = in_pcblookup_local_and_cleanup(pcbinfo,
1056 SIN(nam)->sin_addr, lport_arg: lport, wild_okay: wild);
1057 if (t != NULL &&
1058 (reuseport & t->inp_socket->so_options) == 0 &&
1059 (!(t->inp_flags2 & INP2_EXTERNAL_PORT) ||
1060 !(inp->inp_flags2 & INP2_EXTERNAL_PORT) ||
1061 uuid_compare(uu1: t->necp_client_uuid, uu2: inp->necp_client_uuid) != 0)) {
1062 if (SIN(nam)->sin_addr.s_addr != INADDR_ANY ||
1063 t->inp_laddr.s_addr != INADDR_ANY ||
1064 SOCK_DOM(so) != PF_INET6 ||
1065 SOCK_DOM(t->inp_socket) != PF_INET6) {
1066 if ((t->inp_socket->so_flags &
1067 SOF_NOTIFYCONFLICT) &&
1068 !(so->so_flags & SOF_NOTIFYCONFLICT)) {
1069 conflict = 1;
1070 }
1071
1072 lck_rw_done(lck: &pcbinfo->ipi_lock);
1073
1074 if (conflict) {
1075 in_pcb_conflict_post_msg(port: lport);
1076 }
1077 socket_lock(so, refcount: 0);
1078 error = EADDRINUSE;
1079 goto done;
1080 }
1081 }
1082#if SKYWALK
1083 if ((SOCK_PROTO(so) == IPPROTO_TCP ||
1084 SOCK_PROTO(so) == IPPROTO_UDP) &&
1085 !(inp->inp_flags2 & INP2_EXTERNAL_PORT)) {
1086 int res_err = 0;
1087 if (inp->inp_vflag & INP_IPV6) {
1088 res_err = netns_reserve_in6(
1089 token: &inp->inp_netns_token,
1090 SIN6(nam)->sin6_addr,
1091 proto: (uint8_t)SOCK_PROTO(so), port: lport, NETNS_BSD,
1092 NULL);
1093 } else {
1094 res_err = netns_reserve_in(
1095 token: &inp->inp_netns_token,
1096 SIN(nam)->sin_addr, proto: (uint8_t)SOCK_PROTO(so),
1097 port: lport, NETNS_BSD, NULL);
1098 }
1099 if (res_err != 0) {
1100 lck_rw_done(lck: &pcbinfo->ipi_lock);
1101 socket_lock(so, refcount: 0);
1102 error = EADDRINUSE;
1103 goto done;
1104 }
1105 }
1106#endif /* SKYWALK */
1107 }
1108 laddr = SIN(nam)->sin_addr;
1109 }
1110 if (lport == 0) {
1111 u_short first, last;
1112 int count;
1113 bool found;
1114
1115 /*
1116 * Override wild = 1 for implicit bind (mainly used by connect)
1117 * For implicit bind (lport == 0), we always use an unused port,
1118 * so REUSEADDR|REUSEPORT don't apply
1119 */
1120 wild = 1;
1121
1122 randomport = (so->so_flags & SOF_BINDRANDOMPORT) ||
1123 (so->so_type == SOCK_STREAM ? tcp_use_randomport :
1124 udp_use_randomport);
1125
1126 /*
1127 * Even though this looks similar to the code in
1128 * in6_pcbsetport, the v6 vs v4 checks are different.
1129 */
1130 anonport = TRUE;
1131 if (inp->inp_flags & INP_HIGHPORT) {
1132 first = (u_short)ipport_hifirstauto; /* sysctl */
1133 last = (u_short)ipport_hilastauto;
1134 lastport = &pcbinfo->ipi_lasthi;
1135 } else if (inp->inp_flags & INP_LOWPORT) {
1136 cred = kauth_cred_proc_ref(procp: p);
1137 error = priv_check_cred(cred,
1138 PRIV_NETINET_RESERVEDPORT, flags: 0);
1139 kauth_cred_unref(&cred);
1140 if (error != 0) {
1141 lck_rw_done(lck: &pcbinfo->ipi_lock);
1142 socket_lock(so, refcount: 0);
1143 goto done;
1144 }
1145 first = (u_short)ipport_lowfirstauto; /* 1023 */
1146 last = (u_short)ipport_lowlastauto; /* 600 */
1147 lastport = &pcbinfo->ipi_lastlow;
1148 } else {
1149 first = (u_short)ipport_firstauto; /* sysctl */
1150 last = (u_short)ipport_lastauto;
1151 lastport = &pcbinfo->ipi_lastport;
1152 }
1153 /* No point in randomizing if only one port is available */
1154
1155 if (first == last) {
1156 randomport = 0;
1157 }
1158 /*
1159 * Simple check to ensure all ports are not used up causing
1160 * a deadlock here.
1161 *
1162 * We split the two cases (up and down) so that the direction
1163 * is not being tested on each round of the loop.
1164 */
1165 if (first > last) {
1166 struct in_addr lookup_addr;
1167
1168 /*
1169 * counting down
1170 */
1171 if (randomport) {
1172 read_frandom(buffer: &rand_port, numBytes: sizeof(rand_port));
1173 *lastport =
1174 first - (rand_port % (first - last));
1175 }
1176 count = first - last;
1177
1178 lookup_addr = (laddr.s_addr != INADDR_ANY) ? laddr :
1179 inp->inp_laddr;
1180
1181 found = false;
1182 do {
1183 if (count-- < 0) { /* completely used? */
1184 lck_rw_done(lck: &pcbinfo->ipi_lock);
1185 socket_lock(so, refcount: 0);
1186 error = EADDRNOTAVAIL;
1187 goto done;
1188 }
1189 --*lastport;
1190 if (*lastport > first || *lastport < last) {
1191 *lastport = first;
1192 }
1193 lport = htons(*lastport);
1194
1195 /*
1196 * Skip if this is a restricted port as we do not want to
1197 * restricted ports as ephemeral
1198 */
1199 if (IS_RESTRICTED_IN_PORT(lport)) {
1200 continue;
1201 }
1202
1203 found = in_pcblookup_local_and_cleanup(pcbinfo,
1204 laddr: lookup_addr, lport_arg: lport, wild_okay: wild) == NULL;
1205#if SKYWALK
1206 if (found &&
1207 (SOCK_PROTO(so) == IPPROTO_TCP ||
1208 SOCK_PROTO(so) == IPPROTO_UDP) &&
1209 !(inp->inp_flags2 & INP2_EXTERNAL_PORT)) {
1210 int res_err;
1211 if (inp->inp_vflag & INP_IPV6) {
1212 res_err = netns_reserve_in6(
1213 token: &inp->inp_netns_token,
1214 addr: inp->in6p_laddr,
1215 proto: (uint8_t)SOCK_PROTO(so), port: lport,
1216 NETNS_BSD, NULL);
1217 } else {
1218 res_err = netns_reserve_in(
1219 token: &inp->inp_netns_token,
1220 addr: lookup_addr, proto: (uint8_t)SOCK_PROTO(so),
1221 port: lport, NETNS_BSD, NULL);
1222 }
1223 found = res_err == 0;
1224 }
1225#endif /* SKYWALK */
1226 } while (!found);
1227 } else {
1228 struct in_addr lookup_addr;
1229
1230 /*
1231 * counting up
1232 */
1233 if (randomport) {
1234 read_frandom(buffer: &rand_port, numBytes: sizeof(rand_port));
1235 *lastport =
1236 first + (rand_port % (first - last));
1237 }
1238 count = last - first;
1239
1240 lookup_addr = (laddr.s_addr != INADDR_ANY) ? laddr :
1241 inp->inp_laddr;
1242
1243 found = false;
1244 do {
1245 if (count-- < 0) { /* completely used? */
1246 lck_rw_done(lck: &pcbinfo->ipi_lock);
1247 socket_lock(so, refcount: 0);
1248 error = EADDRNOTAVAIL;
1249 goto done;
1250 }
1251 ++*lastport;
1252 if (*lastport < first || *lastport > last) {
1253 *lastport = first;
1254 }
1255 lport = htons(*lastport);
1256
1257 /*
1258 * Skip if this is a restricted port as we do not want to
1259 * restricted ports as ephemeral
1260 */
1261 if (IS_RESTRICTED_IN_PORT(lport)) {
1262 continue;
1263 }
1264
1265 found = in_pcblookup_local_and_cleanup(pcbinfo,
1266 laddr: lookup_addr, lport_arg: lport, wild_okay: wild) == NULL;
1267#if SKYWALK
1268 if (found &&
1269 (SOCK_PROTO(so) == IPPROTO_TCP ||
1270 SOCK_PROTO(so) == IPPROTO_UDP) &&
1271 !(inp->inp_flags2 & INP2_EXTERNAL_PORT)) {
1272 int res_err;
1273 if (inp->inp_vflag & INP_IPV6) {
1274 res_err = netns_reserve_in6(
1275 token: &inp->inp_netns_token,
1276 addr: inp->in6p_laddr,
1277 proto: (uint8_t)SOCK_PROTO(so), port: lport,
1278 NETNS_BSD, NULL);
1279 } else {
1280 res_err = netns_reserve_in(
1281 token: &inp->inp_netns_token,
1282 addr: lookup_addr, proto: (uint8_t)SOCK_PROTO(so),
1283 port: lport, NETNS_BSD, NULL);
1284 }
1285 found = res_err == 0;
1286 }
1287#endif /* SKYWALK */
1288 } while (!found);
1289 }
1290 }
1291 socket_lock(so, refcount: 0);
1292
1293 /*
1294 * We unlocked socket's protocol lock for a long time.
1295 * The socket might have been dropped/defuncted.
1296 * Checking if world has changed since.
1297 */
1298 if (inp->inp_state == INPCB_STATE_DEAD) {
1299#if SKYWALK
1300 netns_release(token: &inp->inp_netns_token);
1301#endif /* SKYWALK */
1302 lck_rw_done(lck: &pcbinfo->ipi_lock);
1303 error = ECONNABORTED;
1304 goto done;
1305 }
1306
1307 if (inp->inp_lport != 0 || inp->inp_laddr.s_addr != INADDR_ANY) {
1308#if SKYWALK
1309 netns_release(token: &inp->inp_netns_token);
1310#endif /* SKYWALK */
1311 lck_rw_done(lck: &pcbinfo->ipi_lock);
1312 error = EINVAL;
1313 goto done;
1314 }
1315
1316 if (laddr.s_addr != INADDR_ANY) {
1317 inp->inp_laddr = laddr;
1318 inp->inp_last_outifp = outif;
1319#if SKYWALK
1320 if (NETNS_TOKEN_VALID(&inp->inp_netns_token)) {
1321 netns_set_ifnet(token: &inp->inp_netns_token, ifp: outif);
1322 }
1323#endif /* SKYWALK */
1324 }
1325 inp->inp_lport = lport;
1326 if (anonport) {
1327 inp->inp_flags |= INP_ANONPORT;
1328 }
1329
1330 if (in_pcbinshash(inp, 1) != 0) {
1331 inp->inp_laddr.s_addr = INADDR_ANY;
1332 inp->inp_last_outifp = NULL;
1333
1334#if SKYWALK
1335 netns_release(token: &inp->inp_netns_token);
1336#endif /* SKYWALK */
1337 inp->inp_lport = 0;
1338 if (anonport) {
1339 inp->inp_flags &= ~INP_ANONPORT;
1340 }
1341 lck_rw_done(lck: &pcbinfo->ipi_lock);
1342 error = EAGAIN;
1343 goto done;
1344 }
1345 lck_rw_done(lck: &pcbinfo->ipi_lock);
1346 sflt_notify(so, event: sock_evt_bound, NULL);
1347
1348 in_pcb_check_management_entitled(inp);
1349done:
1350 inp->inp_flags2 &= ~INP2_BIND_IN_PROGRESS;
1351 return error;
1352}
1353
1354#define APN_FALLBACK_IP_FILTER(a) \
1355 (IN_LINKLOCAL(ntohl((a)->sin_addr.s_addr)) || \
1356 IN_LOOPBACK(ntohl((a)->sin_addr.s_addr)) || \
1357 IN_ZERONET(ntohl((a)->sin_addr.s_addr)) || \
1358 IN_MULTICAST(ntohl((a)->sin_addr.s_addr)) || \
1359 IN_PRIVATE(ntohl((a)->sin_addr.s_addr)))
1360
1361#define APN_FALLBACK_NOTIF_INTERVAL 2 /* Magic Number */
1362static uint64_t last_apn_fallback = 0;
1363
1364static boolean_t
1365apn_fallback_required(proc_t proc, struct socket *so, struct sockaddr_in *p_dstv4)
1366{
1367 uint64_t timenow;
1368 struct sockaddr_storage lookup_default_addr;
1369 struct rtentry *rt = NULL;
1370
1371 VERIFY(proc != NULL);
1372
1373 if (apn_fallbk_enabled == FALSE) {
1374 return FALSE;
1375 }
1376
1377 if (proc == kernproc) {
1378 return FALSE;
1379 }
1380
1381 if (so && (so->so_options & SO_NOAPNFALLBK)) {
1382 return FALSE;
1383 }
1384
1385 timenow = net_uptime();
1386 if ((timenow - last_apn_fallback) < APN_FALLBACK_NOTIF_INTERVAL) {
1387 apn_fallbk_log((LOG_INFO, "APN fallback notification throttled.\n"));
1388 return FALSE;
1389 }
1390
1391 if (p_dstv4 && APN_FALLBACK_IP_FILTER(p_dstv4)) {
1392 return FALSE;
1393 }
1394
1395 /* Check if we have unscoped IPv6 default route through cellular */
1396 bzero(s: &lookup_default_addr, n: sizeof(lookup_default_addr));
1397 lookup_default_addr.ss_family = AF_INET6;
1398 lookup_default_addr.ss_len = sizeof(struct sockaddr_in6);
1399
1400 rt = rtalloc1(SA(&lookup_default_addr), 0, 0);
1401 if (NULL == rt) {
1402 apn_fallbk_log((LOG_INFO, "APN fallback notification could not find "
1403 "unscoped default IPv6 route.\n"));
1404 return FALSE;
1405 }
1406
1407 if (!IFNET_IS_CELLULAR(rt->rt_ifp)) {
1408 rtfree(rt);
1409 apn_fallbk_log((LOG_INFO, "APN fallback notification could not find "
1410 "unscoped default IPv6 route through cellular interface.\n"));
1411 return FALSE;
1412 }
1413
1414 /*
1415 * We have a default IPv6 route, ensure that
1416 * we do not have IPv4 default route before triggering
1417 * the event
1418 */
1419 rtfree(rt);
1420 rt = NULL;
1421
1422 bzero(s: &lookup_default_addr, n: sizeof(lookup_default_addr));
1423 lookup_default_addr.ss_family = AF_INET;
1424 lookup_default_addr.ss_len = sizeof(struct sockaddr_in);
1425
1426 rt = rtalloc1(SA(&lookup_default_addr), 0, 0);
1427
1428 if (rt) {
1429 rtfree(rt);
1430 rt = NULL;
1431 apn_fallbk_log((LOG_INFO, "APN fallback notification found unscoped "
1432 "IPv4 default route!\n"));
1433 return FALSE;
1434 }
1435
1436 {
1437 /*
1438 * We disable APN fallback if the binary is not a third-party app.
1439 * Note that platform daemons use their process name as a
1440 * bundle ID so we filter out bundle IDs without dots.
1441 */
1442 const char *bundle_id = cs_identity_get(proc);
1443 if (bundle_id == NULL ||
1444 bundle_id[0] == '\0' ||
1445 strchr(s: bundle_id, c: '.') == NULL ||
1446 strncmp(s1: bundle_id, s2: "com.apple.", n: sizeof("com.apple.") - 1) == 0) {
1447 apn_fallbk_log((LOG_INFO, "Abort: APN fallback notification found first-"
1448 "party bundle ID \"%s\"!\n", (bundle_id ? bundle_id : "NULL")));
1449 return FALSE;
1450 }
1451 }
1452
1453 {
1454 /*
1455 * The Apple App Store IPv6 requirement started on
1456 * June 1st, 2016 at 12:00:00 AM PDT.
1457 * We disable APN fallback if the binary is more recent than that.
1458 * We check both atime and birthtime since birthtime is not always supported.
1459 */
1460 static const long ipv6_start_date = 1464764400L;
1461 vfs_context_t context;
1462 struct stat64 sb;
1463 int vn_stat_error;
1464
1465 bzero(s: &sb, n: sizeof(struct stat64));
1466 context = vfs_context_create(NULL);
1467 vn_stat_error = vn_stat(vp: proc->p_textvp, sb: &sb, NULL, isstat64: 1, needsrealdev: 0, ctx: context);
1468 (void)vfs_context_rele(ctx: context);
1469
1470 if (vn_stat_error != 0 ||
1471 sb.st_atimespec.tv_sec >= ipv6_start_date ||
1472 sb.st_birthtimespec.tv_sec >= ipv6_start_date) {
1473 apn_fallbk_log((LOG_INFO, "Abort: APN fallback notification found binary "
1474 "too recent! (err %d atime %ld mtime %ld ctime %ld birthtime %ld)\n",
1475 vn_stat_error, sb.st_atimespec.tv_sec, sb.st_mtimespec.tv_sec,
1476 sb.st_ctimespec.tv_sec, sb.st_birthtimespec.tv_sec));
1477 return FALSE;
1478 }
1479 }
1480 return TRUE;
1481}
1482
1483static void
1484apn_fallback_trigger(proc_t proc, struct socket *so)
1485{
1486 pid_t pid = 0;
1487 struct kev_msg ev_msg;
1488 struct kev_netevent_apnfallbk_data apnfallbk_data;
1489
1490 last_apn_fallback = net_uptime();
1491 pid = proc_pid(proc);
1492 uuid_t application_uuid;
1493 uuid_clear(uu: application_uuid);
1494 proc_getexecutableuuid(proc, application_uuid,
1495 sizeof(application_uuid));
1496
1497 bzero(s: &ev_msg, n: sizeof(struct kev_msg));
1498 ev_msg.vendor_code = KEV_VENDOR_APPLE;
1499 ev_msg.kev_class = KEV_NETWORK_CLASS;
1500 ev_msg.kev_subclass = KEV_NETEVENT_SUBCLASS;
1501 ev_msg.event_code = KEV_NETEVENT_APNFALLBACK;
1502
1503 bzero(s: &apnfallbk_data, n: sizeof(apnfallbk_data));
1504
1505 if (so->so_flags & SOF_DELEGATED) {
1506 apnfallbk_data.epid = so->e_pid;
1507 uuid_copy(dst: apnfallbk_data.euuid, src: so->e_uuid);
1508 } else {
1509 apnfallbk_data.epid = so->last_pid;
1510 uuid_copy(dst: apnfallbk_data.euuid, src: so->last_uuid);
1511 }
1512
1513 ev_msg.dv[0].data_ptr = &apnfallbk_data;
1514 ev_msg.dv[0].data_length = sizeof(apnfallbk_data);
1515 kev_post_msg(event: &ev_msg);
1516 apn_fallbk_log((LOG_INFO, "APN fallback notification issued.\n"));
1517}
1518
1519/*
1520 * Transform old in_pcbconnect() into an inner subroutine for new
1521 * in_pcbconnect(); do some validity-checking on the remote address
1522 * (in "nam") and then determine local host address (i.e., which
1523 * interface) to use to access that remote host.
1524 *
1525 * This routine may alter the caller-supplied remote address "nam".
1526 *
1527 * The caller may override the bound-to-interface setting of the socket
1528 * by specifying the ifscope parameter (e.g. from IP_PKTINFO.)
1529 *
1530 * This routine might return an ifp with a reference held if the caller
1531 * provides a non-NULL outif, even in the error case. The caller is
1532 * responsible for releasing its reference.
1533 *
1534 * Returns: 0 Success
1535 * EINVAL Invalid argument
1536 * EAFNOSUPPORT Address family not supported
1537 * EADDRNOTAVAIL Address not available
1538 */
1539int
1540in_pcbladdr(struct inpcb *inp, struct sockaddr *nam, struct in_addr *laddr,
1541 unsigned int ifscope, struct ifnet **outif, int raw)
1542{
1543 struct route *ro = &inp->inp_route;
1544 struct in_ifaddr *ia = NULL;
1545 struct sockaddr_in sin;
1546 int error = 0;
1547 boolean_t restricted = FALSE;
1548
1549 if (outif != NULL) {
1550 *outif = NULL;
1551 }
1552 if (nam->sa_len != sizeof(struct sockaddr_in)) {
1553 return EINVAL;
1554 }
1555 if (SIN(nam)->sin_family != AF_INET) {
1556 return EAFNOSUPPORT;
1557 }
1558 if (raw == 0 && SIN(nam)->sin_port == 0) {
1559 return EADDRNOTAVAIL;
1560 }
1561
1562 in_pcb_check_management_entitled(inp);
1563
1564 /*
1565 * If the destination address is INADDR_ANY,
1566 * use the primary local address.
1567 * If the supplied address is INADDR_BROADCAST,
1568 * and the primary interface supports broadcast,
1569 * choose the broadcast address for that interface.
1570 */
1571 if (raw == 0 && (SIN(nam)->sin_addr.s_addr == INADDR_ANY ||
1572 SIN(nam)->sin_addr.s_addr == (u_int32_t)INADDR_BROADCAST)) {
1573 lck_rw_lock_shared(lck: &in_ifaddr_rwlock);
1574 if (!TAILQ_EMPTY(&in_ifaddrhead)) {
1575 ia = TAILQ_FIRST(&in_ifaddrhead);
1576 IFA_LOCK_SPIN(&ia->ia_ifa);
1577 if (SIN(nam)->sin_addr.s_addr == INADDR_ANY) {
1578 SIN(nam)->sin_addr = IA_SIN(ia)->sin_addr;
1579 } else if (ia->ia_ifp->if_flags & IFF_BROADCAST) {
1580 SIN(nam)->sin_addr =
1581 SIN(&ia->ia_broadaddr)->sin_addr;
1582 }
1583 IFA_UNLOCK(&ia->ia_ifa);
1584 ia = NULL;
1585 }
1586 lck_rw_done(lck: &in_ifaddr_rwlock);
1587 }
1588 /*
1589 * Otherwise, if the socket has already bound the source, just use it.
1590 */
1591 if (inp->inp_laddr.s_addr != INADDR_ANY) {
1592 VERIFY(ia == NULL);
1593 *laddr = inp->inp_laddr;
1594 return 0;
1595 }
1596
1597 /*
1598 * If the ifscope is specified by the caller (e.g. IP_PKTINFO)
1599 * then it overrides the sticky ifscope set for the socket.
1600 */
1601 if (ifscope == IFSCOPE_NONE && (inp->inp_flags & INP_BOUND_IF)) {
1602 ifscope = inp->inp_boundifp->if_index;
1603 }
1604
1605 /*
1606 * If route is known or can be allocated now,
1607 * our src addr is taken from the i/f, else punt.
1608 * Note that we should check the address family of the cached
1609 * destination, in case of sharing the cache with IPv6.
1610 */
1611 if (ro->ro_rt != NULL) {
1612 RT_LOCK_SPIN(ro->ro_rt);
1613 }
1614 if (ROUTE_UNUSABLE(ro) || ro->ro_dst.sa_family != AF_INET ||
1615 SIN(&ro->ro_dst)->sin_addr.s_addr != SIN(nam)->sin_addr.s_addr ||
1616 (inp->inp_socket->so_options & SO_DONTROUTE)) {
1617 if (ro->ro_rt != NULL) {
1618 RT_UNLOCK(ro->ro_rt);
1619 }
1620 ROUTE_RELEASE(ro);
1621 }
1622 if (!(inp->inp_socket->so_options & SO_DONTROUTE) &&
1623 (ro->ro_rt == NULL || ro->ro_rt->rt_ifp == NULL)) {
1624 if (ro->ro_rt != NULL) {
1625 RT_UNLOCK(ro->ro_rt);
1626 }
1627 ROUTE_RELEASE(ro);
1628 /* No route yet, so try to acquire one */
1629 SOCKADDR_ZERO(&ro->ro_dst, sizeof(struct sockaddr_in));
1630 ro->ro_dst.sa_family = AF_INET;
1631 ro->ro_dst.sa_len = sizeof(struct sockaddr_in);
1632 SIN(&ro->ro_dst)->sin_addr = SIN(nam)->sin_addr;
1633 rtalloc_scoped(ro, ifscope);
1634 if (ro->ro_rt != NULL) {
1635 RT_LOCK_SPIN(ro->ro_rt);
1636 }
1637 }
1638 /* Sanitized local copy for interface address searches */
1639 SOCKADDR_ZERO(&sin, sizeof(sin));
1640 sin.sin_family = AF_INET;
1641 sin.sin_len = sizeof(struct sockaddr_in);
1642 sin.sin_addr.s_addr = SIN(nam)->sin_addr.s_addr;
1643 /*
1644 * If we did not find (or use) a route, assume dest is reachable
1645 * on a directly connected network and try to find a corresponding
1646 * interface to take the source address from.
1647 */
1648 if (ro->ro_rt == NULL) {
1649 proc_t proc = current_proc();
1650
1651 VERIFY(ia == NULL);
1652 ia = ifatoia(ifa_ifwithdstaddr(SA(&sin)));
1653 if (ia == NULL) {
1654 ia = ifatoia(ifa_ifwithnet_scoped(SA(&sin), ifscope));
1655 }
1656 error = ((ia == NULL) ? ENETUNREACH : 0);
1657
1658 if (apn_fallback_required(proc, so: inp->inp_socket,
1659 p_dstv4: (void *)nam)) {
1660 apn_fallback_trigger(proc, so: inp->inp_socket);
1661 }
1662
1663 goto done;
1664 }
1665 RT_LOCK_ASSERT_HELD(ro->ro_rt);
1666 /*
1667 * If the outgoing interface on the route found is not
1668 * a loopback interface, use the address from that interface.
1669 */
1670 if (!(ro->ro_rt->rt_ifp->if_flags & IFF_LOOPBACK)) {
1671 VERIFY(ia == NULL);
1672 /*
1673 * If the route points to a cellular interface and the
1674 * caller forbids our using interfaces of such type,
1675 * pretend that there is no route.
1676 * Apply the same logic for expensive interfaces.
1677 */
1678 if (inp_restricted_send(inp, ro->ro_rt->rt_ifp)) {
1679 RT_UNLOCK(ro->ro_rt);
1680 ROUTE_RELEASE(ro);
1681 error = EHOSTUNREACH;
1682 restricted = TRUE;
1683 } else {
1684 /* Become a regular mutex */
1685 RT_CONVERT_LOCK(ro->ro_rt);
1686 ia = ifatoia(ro->ro_rt->rt_ifa);
1687 ifa_addref(ifa: &ia->ia_ifa);
1688
1689 /*
1690 * Mark the control block for notification of
1691 * a possible flow that might undergo clat46
1692 * translation.
1693 *
1694 * We defer the decision to a later point when
1695 * inpcb is being disposed off.
1696 * The reason is that we only want to send notification
1697 * if the flow was ever used to send data.
1698 */
1699 if (IS_INTF_CLAT46(ro->ro_rt->rt_ifp)) {
1700 inp->inp_flags2 |= INP2_CLAT46_FLOW;
1701 }
1702
1703 RT_UNLOCK(ro->ro_rt);
1704 error = 0;
1705 }
1706 goto done;
1707 }
1708 VERIFY(ro->ro_rt->rt_ifp->if_flags & IFF_LOOPBACK);
1709 RT_UNLOCK(ro->ro_rt);
1710 /*
1711 * The outgoing interface is marked with 'loopback net', so a route
1712 * to ourselves is here.
1713 * Try to find the interface of the destination address and then
1714 * take the address from there. That interface is not necessarily
1715 * a loopback interface.
1716 */
1717 VERIFY(ia == NULL);
1718 ia = ifatoia(ifa_ifwithdstaddr(SA(&sin)));
1719 if (ia == NULL) {
1720 ia = ifatoia(ifa_ifwithaddr_scoped(SA(&sin), ifscope));
1721 }
1722 if (ia == NULL) {
1723 ia = ifatoia(ifa_ifwithnet_scoped(SA(&sin), ifscope));
1724 }
1725 if (ia == NULL) {
1726 RT_LOCK(ro->ro_rt);
1727 ia = ifatoia(ro->ro_rt->rt_ifa);
1728 if (ia != NULL) {
1729 ifa_addref(ifa: &ia->ia_ifa);
1730 }
1731 RT_UNLOCK(ro->ro_rt);
1732 }
1733 error = ((ia == NULL) ? ENETUNREACH : 0);
1734
1735done:
1736 /*
1737 * If the destination address is multicast and an outgoing
1738 * interface has been set as a multicast option, use the
1739 * address of that interface as our source address.
1740 */
1741 if (IN_MULTICAST(ntohl(SIN(nam)->sin_addr.s_addr)) &&
1742 inp->inp_moptions != NULL) {
1743 struct ip_moptions *imo;
1744 struct ifnet *ifp;
1745
1746 imo = inp->inp_moptions;
1747 IMO_LOCK(imo);
1748 if (imo->imo_multicast_ifp != NULL && (ia == NULL ||
1749 ia->ia_ifp != imo->imo_multicast_ifp)) {
1750 ifp = imo->imo_multicast_ifp;
1751 if (ia != NULL) {
1752 ifa_remref(ifa: &ia->ia_ifa);
1753 }
1754 lck_rw_lock_shared(lck: &in_ifaddr_rwlock);
1755 TAILQ_FOREACH(ia, &in_ifaddrhead, ia_link) {
1756 if (ia->ia_ifp == ifp) {
1757 break;
1758 }
1759 }
1760 if (ia != NULL) {
1761 ifa_addref(ifa: &ia->ia_ifa);
1762 }
1763 lck_rw_done(lck: &in_ifaddr_rwlock);
1764 if (ia == NULL) {
1765 error = EADDRNOTAVAIL;
1766 } else {
1767 error = 0;
1768 }
1769 }
1770 IMO_UNLOCK(imo);
1771 }
1772 /*
1773 * Don't do pcblookup call here; return interface in laddr
1774 * and exit to caller, that will do the lookup.
1775 */
1776 if (ia != NULL) {
1777 /*
1778 * If the source address belongs to a cellular interface
1779 * and the socket forbids our using interfaces of such
1780 * type, pretend that there is no source address.
1781 * Apply the same logic for expensive interfaces.
1782 */
1783 IFA_LOCK_SPIN(&ia->ia_ifa);
1784 if (inp_restricted_send(inp, ia->ia_ifa.ifa_ifp)) {
1785 IFA_UNLOCK(&ia->ia_ifa);
1786 error = EHOSTUNREACH;
1787 restricted = TRUE;
1788 } else if (error == 0) {
1789 *laddr = ia->ia_addr.sin_addr;
1790 if (outif != NULL) {
1791 struct ifnet *ifp;
1792
1793 if (ro->ro_rt != NULL) {
1794 ifp = ro->ro_rt->rt_ifp;
1795 } else {
1796 ifp = ia->ia_ifp;
1797 }
1798
1799 VERIFY(ifp != NULL);
1800 IFA_CONVERT_LOCK(&ia->ia_ifa);
1801 ifnet_reference(interface: ifp); /* for caller */
1802 if (*outif != NULL) {
1803 ifnet_release(interface: *outif);
1804 }
1805 *outif = ifp;
1806 }
1807 IFA_UNLOCK(&ia->ia_ifa);
1808 } else {
1809 IFA_UNLOCK(&ia->ia_ifa);
1810 }
1811 ifa_remref(ifa: &ia->ia_ifa);
1812 ia = NULL;
1813 }
1814
1815 if (restricted && error == EHOSTUNREACH) {
1816 soevent(so: inp->inp_socket, hint: (SO_FILT_HINT_LOCKED |
1817 SO_FILT_HINT_IFDENIED));
1818 }
1819
1820 return error;
1821}
1822
1823/*
1824 * Outer subroutine:
1825 * Connect from a socket to a specified address.
1826 * Both address and port must be specified in argument sin.
1827 * If don't have a local address for this socket yet,
1828 * then pick one.
1829 *
1830 * The caller may override the bound-to-interface setting of the socket
1831 * by specifying the ifscope parameter (e.g. from IP_PKTINFO.)
1832 */
1833int
1834in_pcbconnect(struct inpcb *inp, struct sockaddr *nam, struct proc *p,
1835 unsigned int ifscope, struct ifnet **outif)
1836{
1837 struct in_addr laddr;
1838 struct sockaddr_in *sin = SIN(nam);
1839 struct inpcb *pcb;
1840 int error;
1841 struct socket *so = inp->inp_socket;
1842
1843#if CONTENT_FILTER
1844 if (so) {
1845 so->so_state_change_cnt++;
1846 }
1847#endif
1848
1849 /*
1850 * Call inner routine, to assign local interface address.
1851 */
1852 if ((error = in_pcbladdr(inp, nam, laddr: &laddr, ifscope, outif, raw: 0)) != 0) {
1853 return error;
1854 }
1855
1856 socket_unlock(so, refcount: 0);
1857 pcb = in_pcblookup_hash(inp->inp_pcbinfo, sin->sin_addr, sin->sin_port,
1858 inp->inp_laddr.s_addr ? inp->inp_laddr : laddr,
1859 inp->inp_lport, 0, NULL);
1860 socket_lock(so, refcount: 0);
1861
1862 /*
1863 * Check if the socket is still in a valid state. When we unlock this
1864 * embryonic socket, it can get aborted if another thread is closing
1865 * the listener (radar 7947600).
1866 */
1867 if ((so->so_flags & SOF_ABORTED) != 0) {
1868 return ECONNREFUSED;
1869 }
1870
1871 if (pcb != NULL) {
1872 in_pcb_checkstate(pcb, WNT_RELEASE, pcb == inp ? 1 : 0);
1873 return EADDRINUSE;
1874 }
1875 if (inp->inp_laddr.s_addr == INADDR_ANY) {
1876 if (inp->inp_lport == 0) {
1877 error = in_pcbbind(inp, NULL, p);
1878 if (error) {
1879 return error;
1880 }
1881 }
1882 if (!lck_rw_try_lock_exclusive(lck: &inp->inp_pcbinfo->ipi_lock)) {
1883 /*
1884 * Lock inversion issue, mostly with udp
1885 * multicast packets.
1886 */
1887 socket_unlock(so, refcount: 0);
1888 lck_rw_lock_exclusive(lck: &inp->inp_pcbinfo->ipi_lock);
1889 socket_lock(so, refcount: 0);
1890 }
1891 inp->inp_laddr = laddr;
1892 /* no reference needed */
1893 inp->inp_last_outifp = (outif != NULL) ? *outif : NULL;
1894#if SKYWALK
1895 if (NETNS_TOKEN_VALID(&inp->inp_netns_token)) {
1896 netns_set_ifnet(token: &inp->inp_netns_token,
1897 ifp: inp->inp_last_outifp);
1898 }
1899#endif /* SKYWALK */
1900 inp->inp_flags |= INP_INADDR_ANY;
1901 } else {
1902 /*
1903 * Usage of IP_PKTINFO, without local port already
1904 * speficified will cause kernel to panic,
1905 * see rdar://problem/18508185.
1906 * For now returning error to avoid a kernel panic
1907 * This routines can be refactored and handle this better
1908 * in future.
1909 */
1910 if (inp->inp_lport == 0) {
1911 return EINVAL;
1912 }
1913 if (!lck_rw_try_lock_exclusive(lck: &inp->inp_pcbinfo->ipi_lock)) {
1914 /*
1915 * Lock inversion issue, mostly with udp
1916 * multicast packets.
1917 */
1918 socket_unlock(so, refcount: 0);
1919 lck_rw_lock_exclusive(lck: &inp->inp_pcbinfo->ipi_lock);
1920 socket_lock(so, refcount: 0);
1921 }
1922 }
1923 inp->inp_faddr = sin->sin_addr;
1924 inp->inp_fport = sin->sin_port;
1925 if (nstat_collect && SOCK_PROTO(so) == IPPROTO_UDP) {
1926 nstat_pcb_invalidate_cache(inp);
1927 }
1928 in_pcbrehash(inp);
1929 lck_rw_done(lck: &inp->inp_pcbinfo->ipi_lock);
1930 return 0;
1931}
1932
1933void
1934in_pcbdisconnect(struct inpcb *inp)
1935{
1936 struct socket *so = inp->inp_socket;
1937
1938 if (nstat_collect && SOCK_PROTO(so) == IPPROTO_UDP) {
1939 nstat_pcb_cache(inp);
1940 }
1941
1942 inp->inp_faddr.s_addr = INADDR_ANY;
1943 inp->inp_fport = 0;
1944
1945#if CONTENT_FILTER
1946 if (so) {
1947 so->so_state_change_cnt++;
1948 }
1949#endif
1950
1951 if (!lck_rw_try_lock_exclusive(lck: &inp->inp_pcbinfo->ipi_lock)) {
1952 /* lock inversion issue, mostly with udp multicast packets */
1953 socket_unlock(so, refcount: 0);
1954 lck_rw_lock_exclusive(lck: &inp->inp_pcbinfo->ipi_lock);
1955 socket_lock(so, refcount: 0);
1956 }
1957
1958 in_pcbrehash(inp);
1959 lck_rw_done(lck: &inp->inp_pcbinfo->ipi_lock);
1960 /*
1961 * A multipath subflow socket would have its SS_NOFDREF set by default,
1962 * so check for SOF_MP_SUBFLOW socket flag before detaching the PCB;
1963 * when the socket is closed for real, SOF_MP_SUBFLOW would be cleared.
1964 */
1965 if (!(so->so_flags & SOF_MP_SUBFLOW) && (so->so_state & SS_NOFDREF)) {
1966 in_pcbdetach(inp);
1967 }
1968}
1969
1970void
1971in_pcbdetach(struct inpcb *inp)
1972{
1973 struct socket *so = inp->inp_socket;
1974
1975 if (so->so_pcb == NULL) {
1976 /* PCB has been disposed */
1977 panic("%s: inp=%p so=%p proto=%d so_pcb is null!", __func__,
1978 inp, so, SOCK_PROTO(so));
1979 /* NOTREACHED */
1980 }
1981
1982#if IPSEC
1983 if (inp->inp_sp != NULL) {
1984 (void) ipsec4_delete_pcbpolicy(inp);
1985 }
1986#endif /* IPSEC */
1987
1988 if (inp->inp_stat != NULL && SOCK_PROTO(so) == IPPROTO_UDP) {
1989 if (inp->inp_stat->rxpackets == 0 && inp->inp_stat->txpackets == 0) {
1990 INC_ATOMIC_INT64_LIM(net_api_stats.nas_socket_inet_dgram_no_data);
1991 }
1992 }
1993
1994 /*
1995 * Let NetworkStatistics know this PCB is going away
1996 * before we detach it.
1997 */
1998 if (nstat_collect &&
1999 (SOCK_PROTO(so) == IPPROTO_TCP || SOCK_PROTO(so) == IPPROTO_UDP)) {
2000 nstat_pcb_detach(inp);
2001 }
2002
2003 /* Free memory buffer held for generating keep alives */
2004 if (inp->inp_keepalive_data != NULL) {
2005 kfree_data(inp->inp_keepalive_data, inp->inp_keepalive_datalen);
2006 inp->inp_keepalive_data = NULL;
2007 }
2008
2009 /* mark socket state as dead */
2010 if (in_pcb_checkstate(inp, WNT_STOPUSING, 1) != WNT_STOPUSING) {
2011 panic("%s: so=%p proto=%d couldn't set to STOPUSING",
2012 __func__, so, SOCK_PROTO(so));
2013 /* NOTREACHED */
2014 }
2015
2016#if SKYWALK
2017 /* Free up the port in the namespace registrar if not in TIME_WAIT */
2018 if (!(inp->inp_flags2 & INP2_TIMEWAIT)) {
2019 netns_release(token: &inp->inp_netns_token);
2020 netns_release(token: &inp->inp_wildcard_netns_token);
2021 }
2022#endif /* SKYWALK */
2023
2024 if (!(so->so_flags & SOF_PCBCLEARING)) {
2025 struct ip_moptions *imo;
2026
2027 inp->inp_vflag = 0;
2028 if (inp->inp_options != NULL) {
2029 (void) m_free(inp->inp_options);
2030 inp->inp_options = NULL;
2031 }
2032 ROUTE_RELEASE(&inp->inp_route);
2033 imo = inp->inp_moptions;
2034 if (imo != NULL) {
2035 IMO_REMREF(imo);
2036 }
2037 inp->inp_moptions = NULL;
2038 sofreelastref(so, 0);
2039 inp->inp_state = INPCB_STATE_DEAD;
2040
2041 /*
2042 * Enqueue an event to send kernel event notification
2043 * if the flow has to CLAT46 for data packets
2044 */
2045 if (inp->inp_flags2 & INP2_CLAT46_FLOW) {
2046 /*
2047 * If there has been any exchange of data bytes
2048 * over this flow.
2049 * Schedule a notification to report that flow is
2050 * using client side translation.
2051 */
2052 if (inp->inp_stat != NULL &&
2053 (inp->inp_stat->txbytes != 0 ||
2054 inp->inp_stat->rxbytes != 0)) {
2055 if (so->so_flags & SOF_DELEGATED) {
2056 in6_clat46_event_enqueue_nwk_wq_entry(
2057 IN6_CLAT46_EVENT_V4_FLOW,
2058 so->e_pid,
2059 so->e_uuid);
2060 } else {
2061 in6_clat46_event_enqueue_nwk_wq_entry(
2062 IN6_CLAT46_EVENT_V4_FLOW,
2063 so->last_pid,
2064 so->last_uuid);
2065 }
2066 }
2067 }
2068
2069 /* makes sure we're not called twice from so_close */
2070 so->so_flags |= SOF_PCBCLEARING;
2071
2072 inpcb_gc_sched(ipi: inp->inp_pcbinfo, type: INPCB_TIMER_FAST);
2073 }
2074}
2075
2076
2077void
2078in_pcbdispose(struct inpcb *inp)
2079{
2080 struct socket *so = inp->inp_socket;
2081 struct inpcbinfo *ipi = inp->inp_pcbinfo;
2082
2083 if (so != NULL && so->so_usecount != 0) {
2084 panic("%s: so %p [%d,%d] usecount %d lockhistory %s",
2085 __func__, so, SOCK_DOM(so), SOCK_TYPE(so), so->so_usecount,
2086 solockhistory_nr(so));
2087 /* NOTREACHED */
2088 } else if (inp->inp_wantcnt != WNT_STOPUSING) {
2089 if (so != NULL) {
2090 panic_plain("%s: inp %p invalid wantcnt %d, so %p "
2091 "[%d,%d] usecount %d retaincnt %d state 0x%x "
2092 "flags 0x%x lockhistory %s\n", __func__, inp,
2093 inp->inp_wantcnt, so, SOCK_DOM(so), SOCK_TYPE(so),
2094 so->so_usecount, so->so_retaincnt, so->so_state,
2095 so->so_flags, solockhistory_nr(so));
2096 /* NOTREACHED */
2097 } else {
2098 panic("%s: inp %p invalid wantcnt %d no socket",
2099 __func__, inp, inp->inp_wantcnt);
2100 /* NOTREACHED */
2101 }
2102 }
2103
2104 LCK_RW_ASSERT(&ipi->ipi_lock, LCK_RW_ASSERT_EXCLUSIVE);
2105
2106 inp->inp_gencnt = ++ipi->ipi_gencnt;
2107 /* access ipi in in_pcbremlists */
2108 in_pcbremlists(inp);
2109
2110 if (so != NULL) {
2111 if (so->so_proto->pr_flags & PR_PCBLOCK) {
2112 sofreelastref(so, 0);
2113 if (so->so_rcv.sb_cc > 0 || so->so_snd.sb_cc > 0) {
2114 /*
2115 * selthreadclear() already called
2116 * during sofreelastref() above.
2117 */
2118 sbrelease(sb: &so->so_rcv);
2119 sbrelease(sb: &so->so_snd);
2120 }
2121 if (so->so_head != NULL) {
2122 panic("%s: so=%p head still exist",
2123 __func__, so);
2124 /* NOTREACHED */
2125 }
2126 lck_mtx_unlock(lck: &inp->inpcb_mtx);
2127
2128#if NECP
2129 necp_inpcb_remove_cb(inp);
2130#endif /* NECP */
2131
2132 lck_mtx_destroy(lck: &inp->inpcb_mtx, grp: ipi->ipi_lock_grp);
2133 }
2134 /* makes sure we're not called twice from so_close */
2135 so->so_flags |= SOF_PCBCLEARING;
2136 so->so_saved_pcb = (caddr_t)inp;
2137 so->so_pcb = NULL;
2138 inp->inp_socket = NULL;
2139#if NECP
2140 necp_inpcb_dispose(inp);
2141#endif /* NECP */
2142 /*
2143 * In case there a route cached after a detach (possible
2144 * in the tcp case), make sure that it is freed before
2145 * we deallocate the structure.
2146 */
2147 ROUTE_RELEASE(&inp->inp_route);
2148 if ((so->so_flags1 & SOF1_CACHED_IN_SOCK_LAYER) == 0) {
2149 zfree(ipi->ipi_zone, inp);
2150 }
2151 sodealloc(so);
2152 }
2153}
2154
2155/*
2156 * The calling convention of in_getsockaddr() and in_getpeeraddr() was
2157 * modified to match the pru_sockaddr() and pru_peeraddr() entry points
2158 * in struct pr_usrreqs, so that protocols can just reference then directly
2159 * without the need for a wrapper function.
2160 */
2161int
2162in_getsockaddr(struct socket *so, struct sockaddr **nam)
2163{
2164 struct inpcb *inp;
2165 struct sockaddr_in *sin;
2166
2167 /*
2168 * Do the malloc first in case it blocks.
2169 */
2170 sin = SIN(alloc_sockaddr(sizeof(*sin),
2171 Z_WAITOK | Z_NOFAIL));
2172
2173 sin->sin_family = AF_INET;
2174
2175 if ((inp = sotoinpcb(so)) == NULL) {
2176 free_sockaddr(sin);
2177 return EINVAL;
2178 }
2179 sin->sin_port = inp->inp_lport;
2180 sin->sin_addr = inp->inp_laddr;
2181
2182 *nam = SA(sin);
2183 return 0;
2184}
2185
2186int
2187in_getsockaddr_s(struct socket *so, struct sockaddr_in *ss)
2188{
2189 struct sockaddr_in *sin = ss;
2190 struct inpcb *inp;
2191
2192 VERIFY(ss != NULL);
2193 SOCKADDR_ZERO(ss, sizeof(*ss));
2194
2195 sin->sin_family = AF_INET;
2196 sin->sin_len = sizeof(*sin);
2197
2198 if ((inp = sotoinpcb(so)) == NULL) {
2199 return EINVAL;
2200 }
2201
2202 sin->sin_port = inp->inp_lport;
2203 sin->sin_addr = inp->inp_laddr;
2204 return 0;
2205}
2206
2207int
2208in_getpeeraddr(struct socket *so, struct sockaddr **nam)
2209{
2210 struct inpcb *inp;
2211 struct sockaddr_in *sin;
2212
2213 /*
2214 * Do the malloc first in case it blocks.
2215 */
2216 sin = SIN(alloc_sockaddr(sizeof(*sin),
2217 Z_WAITOK | Z_NOFAIL));
2218
2219 sin->sin_family = AF_INET;
2220
2221 if ((inp = sotoinpcb(so)) == NULL) {
2222 free_sockaddr(sin);
2223 return EINVAL;
2224 }
2225 sin->sin_port = inp->inp_fport;
2226 sin->sin_addr = inp->inp_faddr;
2227
2228 *nam = SA(sin);
2229 return 0;
2230}
2231
2232void
2233in_pcbnotifyall(struct inpcbinfo *pcbinfo, struct in_addr faddr,
2234 int errno, void (*notify)(struct inpcb *, int))
2235{
2236 struct inpcb *inp;
2237
2238 lck_rw_lock_shared(lck: &pcbinfo->ipi_lock);
2239
2240 LIST_FOREACH(inp, pcbinfo->ipi_listhead, inp_list) {
2241 if (!(inp->inp_vflag & INP_IPV4)) {
2242 continue;
2243 }
2244 if (inp->inp_faddr.s_addr != faddr.s_addr ||
2245 inp->inp_socket == NULL) {
2246 continue;
2247 }
2248 if (in_pcb_checkstate(inp, WNT_ACQUIRE, 0) == WNT_STOPUSING) {
2249 continue;
2250 }
2251 socket_lock(so: inp->inp_socket, refcount: 1);
2252 (*notify)(inp, errno);
2253 (void) in_pcb_checkstate(inp, WNT_RELEASE, 1);
2254 socket_unlock(so: inp->inp_socket, refcount: 1);
2255 }
2256 lck_rw_done(lck: &pcbinfo->ipi_lock);
2257}
2258
2259/*
2260 * Check for alternatives when higher level complains
2261 * about service problems. For now, invalidate cached
2262 * routing information. If the route was created dynamically
2263 * (by a redirect), time to try a default gateway again.
2264 */
2265void
2266in_losing(struct inpcb *inp)
2267{
2268 boolean_t release = FALSE;
2269 struct rtentry *rt;
2270
2271 if ((rt = inp->inp_route.ro_rt) != NULL) {
2272 struct in_ifaddr *ia = NULL;
2273
2274 RT_LOCK(rt);
2275 if (rt->rt_flags & RTF_DYNAMIC) {
2276 /*
2277 * Prevent another thread from modifying rt_key,
2278 * rt_gateway via rt_setgate() after rt_lock is
2279 * dropped by marking the route as defunct.
2280 */
2281 rt->rt_flags |= RTF_CONDEMNED;
2282 RT_UNLOCK(rt);
2283 (void) rtrequest(RTM_DELETE, rt_key(rt),
2284 rt->rt_gateway, rt_mask(rt), rt->rt_flags, NULL);
2285 } else {
2286 RT_UNLOCK(rt);
2287 }
2288 /* if the address is gone keep the old route in the pcb */
2289 if (inp->inp_laddr.s_addr != INADDR_ANY &&
2290 (ia = ifa_foraddr(inp->inp_laddr.s_addr)) != NULL) {
2291 /*
2292 * Address is around; ditch the route. A new route
2293 * can be allocated the next time output is attempted.
2294 */
2295 release = TRUE;
2296 }
2297 if (ia != NULL) {
2298 ifa_remref(ifa: &ia->ia_ifa);
2299 }
2300 }
2301 if (rt == NULL || release) {
2302 ROUTE_RELEASE(&inp->inp_route);
2303 }
2304}
2305
2306/*
2307 * After a routing change, flush old routing
2308 * and allocate a (hopefully) better one.
2309 */
2310void
2311in_rtchange(struct inpcb *inp, int errno)
2312{
2313#pragma unused(errno)
2314 boolean_t release = FALSE;
2315 struct rtentry *rt;
2316
2317 if ((rt = inp->inp_route.ro_rt) != NULL) {
2318 struct in_ifaddr *ia = NULL;
2319
2320 /* if address is gone, keep the old route */
2321 if (inp->inp_laddr.s_addr != INADDR_ANY &&
2322 (ia = ifa_foraddr(inp->inp_laddr.s_addr)) != NULL) {
2323 /*
2324 * Address is around; ditch the route. A new route
2325 * can be allocated the next time output is attempted.
2326 */
2327 release = TRUE;
2328 }
2329 if (ia != NULL) {
2330 ifa_remref(ifa: &ia->ia_ifa);
2331 }
2332 }
2333 if (rt == NULL || release) {
2334 ROUTE_RELEASE(&inp->inp_route);
2335 }
2336}
2337
2338/*
2339 * Lookup a PCB based on the local address and port.
2340 */
2341struct inpcb *
2342in_pcblookup_local(struct inpcbinfo *pcbinfo, struct in_addr laddr,
2343 unsigned int lport_arg, int wild_okay)
2344{
2345 struct inpcb *inp;
2346 int matchwild = 3, wildcard;
2347 u_short lport = (u_short)lport_arg;
2348
2349 KERNEL_DEBUG(DBG_FNC_PCB_LOOKUP | DBG_FUNC_START, 0, 0, 0, 0, 0);
2350
2351 if (!wild_okay) {
2352 struct inpcbhead *head;
2353 /*
2354 * Look for an unconnected (wildcard foreign addr) PCB that
2355 * matches the local address and port we're looking for.
2356 */
2357 head = &pcbinfo->ipi_hashbase[INP_PCBHASH(INADDR_ANY, lport, 0,
2358 pcbinfo->ipi_hashmask)];
2359 LIST_FOREACH(inp, head, inp_hash) {
2360 if (!(inp->inp_vflag & INP_IPV4)) {
2361 continue;
2362 }
2363 if (inp->inp_faddr.s_addr == INADDR_ANY &&
2364 inp->inp_laddr.s_addr == laddr.s_addr &&
2365 inp->inp_lport == lport) {
2366 /*
2367 * Found.
2368 */
2369 return inp;
2370 }
2371 }
2372 /*
2373 * Not found.
2374 */
2375 KERNEL_DEBUG(DBG_FNC_PCB_LOOKUP | DBG_FUNC_END, 0, 0, 0, 0, 0);
2376 return NULL;
2377 } else {
2378 struct inpcbporthead *porthash;
2379 struct inpcbport *phd;
2380 struct inpcb *match = NULL;
2381 /*
2382 * Best fit PCB lookup.
2383 *
2384 * First see if this local port is in use by looking on the
2385 * port hash list.
2386 */
2387 porthash = &pcbinfo->ipi_porthashbase[INP_PCBPORTHASH(lport,
2388 pcbinfo->ipi_porthashmask)];
2389 LIST_FOREACH(phd, porthash, phd_hash) {
2390 if (phd->phd_port == lport) {
2391 break;
2392 }
2393 }
2394 if (phd != NULL) {
2395 /*
2396 * Port is in use by one or more PCBs. Look for best
2397 * fit.
2398 */
2399 LIST_FOREACH(inp, &phd->phd_pcblist, inp_portlist) {
2400 wildcard = 0;
2401 if (!(inp->inp_vflag & INP_IPV4)) {
2402 continue;
2403 }
2404 if (inp->inp_faddr.s_addr != INADDR_ANY) {
2405 wildcard++;
2406 }
2407 if (inp->inp_laddr.s_addr != INADDR_ANY) {
2408 if (laddr.s_addr == INADDR_ANY) {
2409 wildcard++;
2410 } else if (inp->inp_laddr.s_addr !=
2411 laddr.s_addr) {
2412 continue;
2413 }
2414 } else {
2415 if (laddr.s_addr != INADDR_ANY) {
2416 wildcard++;
2417 }
2418 }
2419 if (wildcard < matchwild) {
2420 match = inp;
2421 matchwild = wildcard;
2422 if (matchwild == 0) {
2423 break;
2424 }
2425 }
2426 }
2427 }
2428 KERNEL_DEBUG(DBG_FNC_PCB_LOOKUP | DBG_FUNC_END, match,
2429 0, 0, 0, 0);
2430 return match;
2431 }
2432}
2433
2434/*
2435 * Check if PCB exists in hash list.
2436 */
2437int
2438in_pcblookup_hash_exists(struct inpcbinfo *pcbinfo, struct in_addr faddr,
2439 u_int fport_arg, struct in_addr laddr, u_int lport_arg, int wildcard,
2440 uid_t *uid, gid_t *gid, struct ifnet *ifp)
2441{
2442 struct inpcbhead *head;
2443 struct inpcb *inp;
2444 u_short fport = (u_short)fport_arg, lport = (u_short)lport_arg;
2445 int found = 0;
2446 struct inpcb *local_wild = NULL;
2447 struct inpcb *local_wild_mapped = NULL;
2448
2449 *uid = UID_MAX;
2450 *gid = GID_MAX;
2451
2452 /*
2453 * We may have found the pcb in the last lookup - check this first.
2454 */
2455
2456 lck_rw_lock_shared(lck: &pcbinfo->ipi_lock);
2457
2458 /*
2459 * First look for an exact match.
2460 */
2461 head = &pcbinfo->ipi_hashbase[INP_PCBHASH(faddr.s_addr, lport, fport,
2462 pcbinfo->ipi_hashmask)];
2463 LIST_FOREACH(inp, head, inp_hash) {
2464 if (!(inp->inp_vflag & INP_IPV4)) {
2465 continue;
2466 }
2467 if (inp_restricted_recv(inp, ifp)) {
2468 continue;
2469 }
2470
2471#if NECP
2472 if (!necp_socket_is_allowed_to_recv_on_interface(inp, interface: ifp)) {
2473 continue;
2474 }
2475#endif /* NECP */
2476
2477 if (inp->inp_faddr.s_addr == faddr.s_addr &&
2478 inp->inp_laddr.s_addr == laddr.s_addr &&
2479 inp->inp_fport == fport &&
2480 inp->inp_lport == lport) {
2481 if ((found = (inp->inp_socket != NULL))) {
2482 /*
2483 * Found.
2484 */
2485 *uid = kauth_cred_getuid(
2486 cred: inp->inp_socket->so_cred);
2487 *gid = kauth_cred_getgid(
2488 cred: inp->inp_socket->so_cred);
2489 }
2490 lck_rw_done(lck: &pcbinfo->ipi_lock);
2491 return found;
2492 }
2493 }
2494
2495 if (!wildcard) {
2496 /*
2497 * Not found.
2498 */
2499 lck_rw_done(lck: &pcbinfo->ipi_lock);
2500 return 0;
2501 }
2502
2503 head = &pcbinfo->ipi_hashbase[INP_PCBHASH(INADDR_ANY, lport, 0,
2504 pcbinfo->ipi_hashmask)];
2505 LIST_FOREACH(inp, head, inp_hash) {
2506 if (!(inp->inp_vflag & INP_IPV4)) {
2507 continue;
2508 }
2509 if (inp_restricted_recv(inp, ifp)) {
2510 continue;
2511 }
2512
2513#if NECP
2514 if (!necp_socket_is_allowed_to_recv_on_interface(inp, interface: ifp)) {
2515 continue;
2516 }
2517#endif /* NECP */
2518
2519 if (inp->inp_faddr.s_addr == INADDR_ANY &&
2520 inp->inp_lport == lport) {
2521 if (inp->inp_laddr.s_addr == laddr.s_addr) {
2522 if ((found = (inp->inp_socket != NULL))) {
2523 *uid = kauth_cred_getuid(
2524 cred: inp->inp_socket->so_cred);
2525 *gid = kauth_cred_getgid(
2526 cred: inp->inp_socket->so_cred);
2527 }
2528 lck_rw_done(lck: &pcbinfo->ipi_lock);
2529 return found;
2530 } else if (inp->inp_laddr.s_addr == INADDR_ANY) {
2531 if (inp->inp_socket &&
2532 SOCK_CHECK_DOM(inp->inp_socket, PF_INET6)) {
2533 local_wild_mapped = inp;
2534 } else {
2535 local_wild = inp;
2536 }
2537 }
2538 }
2539 }
2540 if (local_wild == NULL) {
2541 if (local_wild_mapped != NULL) {
2542 if ((found = (local_wild_mapped->inp_socket != NULL))) {
2543 *uid = kauth_cred_getuid(
2544 cred: local_wild_mapped->inp_socket->so_cred);
2545 *gid = kauth_cred_getgid(
2546 cred: local_wild_mapped->inp_socket->so_cred);
2547 }
2548 lck_rw_done(lck: &pcbinfo->ipi_lock);
2549 return found;
2550 }
2551 lck_rw_done(lck: &pcbinfo->ipi_lock);
2552 return 0;
2553 }
2554 if ((found = (local_wild->inp_socket != NULL))) {
2555 *uid = kauth_cred_getuid(
2556 cred: local_wild->inp_socket->so_cred);
2557 *gid = kauth_cred_getgid(
2558 cred: local_wild->inp_socket->so_cred);
2559 }
2560 lck_rw_done(lck: &pcbinfo->ipi_lock);
2561 return found;
2562}
2563
2564/*
2565 * Lookup PCB in hash list.
2566 */
2567struct inpcb *
2568in_pcblookup_hash(struct inpcbinfo *pcbinfo, struct in_addr faddr,
2569 u_int fport_arg, struct in_addr laddr, u_int lport_arg, int wildcard,
2570 struct ifnet *ifp)
2571{
2572 struct inpcbhead *head;
2573 struct inpcb *inp;
2574 u_short fport = (u_short)fport_arg, lport = (u_short)lport_arg;
2575 struct inpcb *local_wild = NULL;
2576 struct inpcb *local_wild_mapped = NULL;
2577
2578 /*
2579 * We may have found the pcb in the last lookup - check this first.
2580 */
2581
2582 lck_rw_lock_shared(lck: &pcbinfo->ipi_lock);
2583
2584 /*
2585 * First look for an exact match.
2586 */
2587 head = &pcbinfo->ipi_hashbase[INP_PCBHASH(faddr.s_addr, lport, fport,
2588 pcbinfo->ipi_hashmask)];
2589 LIST_FOREACH(inp, head, inp_hash) {
2590 if (!(inp->inp_vflag & INP_IPV4)) {
2591 continue;
2592 }
2593 if (inp_restricted_recv(inp, ifp)) {
2594 continue;
2595 }
2596
2597#if NECP
2598 if (!necp_socket_is_allowed_to_recv_on_interface(inp, interface: ifp)) {
2599 continue;
2600 }
2601#endif /* NECP */
2602
2603 if (inp->inp_faddr.s_addr == faddr.s_addr &&
2604 inp->inp_laddr.s_addr == laddr.s_addr &&
2605 inp->inp_fport == fport &&
2606 inp->inp_lport == lport) {
2607 /*
2608 * Found.
2609 */
2610 if (in_pcb_checkstate(inp, WNT_ACQUIRE, 0) !=
2611 WNT_STOPUSING) {
2612 lck_rw_done(lck: &pcbinfo->ipi_lock);
2613 return inp;
2614 } else {
2615 /* it's there but dead, say it isn't found */
2616 lck_rw_done(lck: &pcbinfo->ipi_lock);
2617 return NULL;
2618 }
2619 }
2620 }
2621
2622 if (!wildcard) {
2623 /*
2624 * Not found.
2625 */
2626 lck_rw_done(lck: &pcbinfo->ipi_lock);
2627 return NULL;
2628 }
2629
2630 head = &pcbinfo->ipi_hashbase[INP_PCBHASH(INADDR_ANY, lport, 0,
2631 pcbinfo->ipi_hashmask)];
2632 LIST_FOREACH(inp, head, inp_hash) {
2633 if (!(inp->inp_vflag & INP_IPV4)) {
2634 continue;
2635 }
2636 if (inp_restricted_recv(inp, ifp)) {
2637 continue;
2638 }
2639
2640#if NECP
2641 if (!necp_socket_is_allowed_to_recv_on_interface(inp, interface: ifp)) {
2642 continue;
2643 }
2644#endif /* NECP */
2645
2646 if (inp->inp_faddr.s_addr == INADDR_ANY &&
2647 inp->inp_lport == lport) {
2648 if (inp->inp_laddr.s_addr == laddr.s_addr) {
2649 if (in_pcb_checkstate(inp, WNT_ACQUIRE, 0) !=
2650 WNT_STOPUSING) {
2651 lck_rw_done(lck: &pcbinfo->ipi_lock);
2652 return inp;
2653 } else {
2654 /* it's dead; say it isn't found */
2655 lck_rw_done(lck: &pcbinfo->ipi_lock);
2656 return NULL;
2657 }
2658 } else if (inp->inp_laddr.s_addr == INADDR_ANY) {
2659 if (SOCK_CHECK_DOM(inp->inp_socket, PF_INET6)) {
2660 local_wild_mapped = inp;
2661 } else {
2662 local_wild = inp;
2663 }
2664 }
2665 }
2666 }
2667 if (local_wild == NULL) {
2668 if (local_wild_mapped != NULL) {
2669 if (in_pcb_checkstate(local_wild_mapped,
2670 WNT_ACQUIRE, 0) != WNT_STOPUSING) {
2671 lck_rw_done(lck: &pcbinfo->ipi_lock);
2672 return local_wild_mapped;
2673 } else {
2674 /* it's dead; say it isn't found */
2675 lck_rw_done(lck: &pcbinfo->ipi_lock);
2676 return NULL;
2677 }
2678 }
2679 lck_rw_done(lck: &pcbinfo->ipi_lock);
2680 return NULL;
2681 }
2682 if (in_pcb_checkstate(local_wild, WNT_ACQUIRE, 0) != WNT_STOPUSING) {
2683 lck_rw_done(lck: &pcbinfo->ipi_lock);
2684 return local_wild;
2685 }
2686 /*
2687 * It's either not found or is already dead.
2688 */
2689 lck_rw_done(lck: &pcbinfo->ipi_lock);
2690 return NULL;
2691}
2692
2693/*
2694 * @brief Insert PCB onto various hash lists.
2695 *
2696 * @param inp Pointer to internet protocol control block
2697 * @param locked Implies if ipi_lock (protecting pcb list)
2698 * is already locked or not.
2699 *
2700 * @return int error on failure and 0 on success
2701 */
2702int
2703in_pcbinshash(struct inpcb *inp, int locked)
2704{
2705 struct inpcbhead *pcbhash;
2706 struct inpcbporthead *pcbporthash;
2707 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
2708 struct inpcbport *phd;
2709 u_int32_t hashkey_faddr;
2710
2711 if (!locked) {
2712 if (!lck_rw_try_lock_exclusive(lck: &pcbinfo->ipi_lock)) {
2713 /*
2714 * Lock inversion issue, mostly with udp
2715 * multicast packets
2716 */
2717 socket_unlock(so: inp->inp_socket, refcount: 0);
2718 lck_rw_lock_exclusive(lck: &pcbinfo->ipi_lock);
2719 socket_lock(so: inp->inp_socket, refcount: 0);
2720 }
2721 }
2722
2723 /*
2724 * This routine or its caller may have given up
2725 * socket's protocol lock briefly.
2726 * During that time the socket may have been dropped.
2727 * Safe-guarding against that.
2728 */
2729 if (inp->inp_state == INPCB_STATE_DEAD) {
2730 if (!locked) {
2731 lck_rw_done(lck: &pcbinfo->ipi_lock);
2732 }
2733 return ECONNABORTED;
2734 }
2735
2736
2737 if (inp->inp_vflag & INP_IPV6) {
2738 hashkey_faddr = inp->in6p_faddr.s6_addr32[3] /* XXX */;
2739 } else {
2740 hashkey_faddr = inp->inp_faddr.s_addr;
2741 }
2742
2743 inp->inp_hash_element = INP_PCBHASH(hashkey_faddr, inp->inp_lport,
2744 inp->inp_fport, pcbinfo->ipi_hashmask);
2745
2746 pcbhash = &pcbinfo->ipi_hashbase[inp->inp_hash_element];
2747
2748 pcbporthash = &pcbinfo->ipi_porthashbase[INP_PCBPORTHASH(inp->inp_lport,
2749 pcbinfo->ipi_porthashmask)];
2750
2751 /*
2752 * Go through port list and look for a head for this lport.
2753 */
2754 LIST_FOREACH(phd, pcbporthash, phd_hash) {
2755 if (phd->phd_port == inp->inp_lport) {
2756 break;
2757 }
2758 }
2759
2760 /*
2761 * If none exists, malloc one and tack it on.
2762 */
2763 if (phd == NULL) {
2764 phd = kalloc_type(struct inpcbport, Z_WAITOK | Z_NOFAIL);
2765 phd->phd_port = inp->inp_lport;
2766 LIST_INIT(&phd->phd_pcblist);
2767 LIST_INSERT_HEAD(pcbporthash, phd, phd_hash);
2768 }
2769
2770 VERIFY(!(inp->inp_flags2 & INP2_INHASHLIST));
2771
2772#if SKYWALK
2773 int err;
2774 struct socket *so = inp->inp_socket;
2775 if ((SOCK_PROTO(so) == IPPROTO_TCP || SOCK_PROTO(so) == IPPROTO_UDP) &&
2776 !(inp->inp_flags2 & INP2_EXTERNAL_PORT)) {
2777 if (inp->inp_vflag & INP_IPV6) {
2778 err = netns_reserve_in6(token: &inp->inp_netns_token,
2779 addr: inp->in6p_laddr, proto: (uint8_t)SOCK_PROTO(so), port: inp->inp_lport,
2780 NETNS_BSD | NETNS_PRERESERVED, NULL);
2781 } else {
2782 err = netns_reserve_in(token: &inp->inp_netns_token,
2783 addr: inp->inp_laddr, proto: (uint8_t)SOCK_PROTO(so), port: inp->inp_lport,
2784 NETNS_BSD | NETNS_PRERESERVED, NULL);
2785 }
2786 if (err) {
2787 if (!locked) {
2788 lck_rw_done(lck: &pcbinfo->ipi_lock);
2789 }
2790 return err;
2791 }
2792 netns_set_ifnet(token: &inp->inp_netns_token, ifp: inp->inp_last_outifp);
2793 inp_update_netns_flags(so);
2794 }
2795#endif /* SKYWALK */
2796
2797 inp->inp_phd = phd;
2798 LIST_INSERT_HEAD(&phd->phd_pcblist, inp, inp_portlist);
2799 LIST_INSERT_HEAD(pcbhash, inp, inp_hash);
2800 inp->inp_flags2 |= INP2_INHASHLIST;
2801
2802 if (!locked) {
2803 lck_rw_done(lck: &pcbinfo->ipi_lock);
2804 }
2805
2806#if NECP
2807 // This call catches the original setting of the local address
2808 inp_update_necp_policy(inp, NULL, NULL, 0);
2809#endif /* NECP */
2810
2811 return 0;
2812}
2813
2814/*
2815 * Move PCB to the proper hash bucket when { faddr, fport } have been
2816 * changed. NOTE: This does not handle the case of the lport changing (the
2817 * hashed port list would have to be updated as well), so the lport must
2818 * not change after in_pcbinshash() has been called.
2819 */
2820void
2821in_pcbrehash(struct inpcb *inp)
2822{
2823 struct inpcbhead *head;
2824 u_int32_t hashkey_faddr;
2825
2826#if SKYWALK
2827 struct socket *so = inp->inp_socket;
2828 if ((SOCK_PROTO(so) == IPPROTO_TCP || SOCK_PROTO(so) == IPPROTO_UDP) &&
2829 !(inp->inp_flags2 & INP2_EXTERNAL_PORT)) {
2830 int err;
2831 if (NETNS_TOKEN_VALID(&inp->inp_netns_token)) {
2832 if (inp->inp_vflag & INP_IPV6) {
2833 err = netns_change_addr_in6(
2834 token: &inp->inp_netns_token, addr: inp->in6p_laddr);
2835 } else {
2836 err = netns_change_addr_in(
2837 token: &inp->inp_netns_token, addr: inp->inp_laddr);
2838 }
2839 } else {
2840 if (inp->inp_vflag & INP_IPV6) {
2841 err = netns_reserve_in6(token: &inp->inp_netns_token,
2842 addr: inp->in6p_laddr, proto: (uint8_t)SOCK_PROTO(so),
2843 port: inp->inp_lport, NETNS_BSD, NULL);
2844 } else {
2845 err = netns_reserve_in(token: &inp->inp_netns_token,
2846 addr: inp->inp_laddr, proto: (uint8_t)SOCK_PROTO(so),
2847 port: inp->inp_lport, NETNS_BSD, NULL);
2848 }
2849 }
2850 /* We are assuming that whatever code paths result in a rehash
2851 * did their due diligence and ensured that the given
2852 * <proto, laddr, lport> tuple was free ahead of time. Just
2853 * reserving the lport on INADDR_ANY should be enough, since
2854 * that will block Skywalk from trying to reserve that same
2855 * port. Given this assumption, the above netns calls should
2856 * never fail*/
2857 VERIFY(err == 0);
2858
2859 netns_set_ifnet(token: &inp->inp_netns_token, ifp: inp->inp_last_outifp);
2860 inp_update_netns_flags(so);
2861 }
2862#endif /* SKYWALK */
2863 if (inp->inp_vflag & INP_IPV6) {
2864 hashkey_faddr = inp->in6p_faddr.s6_addr32[3] /* XXX */;
2865 } else {
2866 hashkey_faddr = inp->inp_faddr.s_addr;
2867 }
2868
2869 inp->inp_hash_element = INP_PCBHASH(hashkey_faddr, inp->inp_lport,
2870 inp->inp_fport, inp->inp_pcbinfo->ipi_hashmask);
2871 head = &inp->inp_pcbinfo->ipi_hashbase[inp->inp_hash_element];
2872
2873 if (inp->inp_flags2 & INP2_INHASHLIST) {
2874 LIST_REMOVE(inp, inp_hash);
2875 inp->inp_flags2 &= ~INP2_INHASHLIST;
2876 }
2877
2878 VERIFY(!(inp->inp_flags2 & INP2_INHASHLIST));
2879 LIST_INSERT_HEAD(head, inp, inp_hash);
2880 inp->inp_flags2 |= INP2_INHASHLIST;
2881
2882#if NECP
2883 // This call catches updates to the remote addresses
2884 inp_update_necp_policy(inp, NULL, NULL, 0);
2885#endif /* NECP */
2886}
2887
2888/*
2889 * Remove PCB from various lists.
2890 * Must be called pcbinfo lock is held in exclusive mode.
2891 */
2892void
2893in_pcbremlists(struct inpcb *inp)
2894{
2895 inp->inp_gencnt = ++inp->inp_pcbinfo->ipi_gencnt;
2896
2897 /*
2898 * Check if it's in hashlist -- an inp is placed in hashlist when
2899 * it's local port gets assigned. So it should also be present
2900 * in the port list.
2901 */
2902 if (inp->inp_flags2 & INP2_INHASHLIST) {
2903 struct inpcbport *phd = inp->inp_phd;
2904
2905 VERIFY(phd != NULL && inp->inp_lport > 0);
2906
2907 LIST_REMOVE(inp, inp_hash);
2908 inp->inp_hash.le_next = NULL;
2909 inp->inp_hash.le_prev = NULL;
2910
2911 LIST_REMOVE(inp, inp_portlist);
2912 inp->inp_portlist.le_next = NULL;
2913 inp->inp_portlist.le_prev = NULL;
2914 if (LIST_EMPTY(&phd->phd_pcblist)) {
2915 LIST_REMOVE(phd, phd_hash);
2916 kfree_type(struct inpcbport, phd);
2917 }
2918 inp->inp_phd = NULL;
2919 inp->inp_flags2 &= ~INP2_INHASHLIST;
2920#if SKYWALK
2921 /* Free up the port in the namespace registrar */
2922 netns_release(token: &inp->inp_netns_token);
2923 netns_release(token: &inp->inp_wildcard_netns_token);
2924#endif /* SKYWALK */
2925 }
2926 VERIFY(!(inp->inp_flags2 & INP2_INHASHLIST));
2927
2928 if (inp->inp_flags2 & INP2_TIMEWAIT) {
2929 /* Remove from time-wait queue */
2930 tcp_remove_from_time_wait(inp);
2931 inp->inp_flags2 &= ~INP2_TIMEWAIT;
2932 VERIFY(inp->inp_pcbinfo->ipi_twcount != 0);
2933 inp->inp_pcbinfo->ipi_twcount--;
2934 } else {
2935 /* Remove from global inp list if it is not time-wait */
2936 LIST_REMOVE(inp, inp_list);
2937 }
2938
2939 if (inp->inp_flags2 & INP2_IN_FCTREE) {
2940 inp_fc_getinp(inp->inp_flowhash, (INPFC_SOLOCKED | INPFC_REMOVE));
2941 VERIFY(!(inp->inp_flags2 & INP2_IN_FCTREE));
2942 }
2943
2944 inp->inp_pcbinfo->ipi_count--;
2945}
2946
2947/*
2948 * Mechanism used to defer the memory release of PCBs
2949 * The pcb list will contain the pcb until the reaper can clean it up if
2950 * the following conditions are met:
2951 * 1) state "DEAD",
2952 * 2) wantcnt is STOPUSING
2953 * 3) usecount is 0
2954 * This function will be called to either mark the pcb as
2955 */
2956int
2957in_pcb_checkstate(struct inpcb *pcb, int mode, int locked)
2958{
2959 volatile UInt32 *wantcnt = (volatile UInt32 *)&pcb->inp_wantcnt;
2960 UInt32 origwant;
2961 UInt32 newwant;
2962
2963 switch (mode) {
2964 case WNT_STOPUSING:
2965 /*
2966 * Try to mark the pcb as ready for recycling. CAS with
2967 * STOPUSING, if success we're good, if it's in use, will
2968 * be marked later
2969 */
2970 if (locked == 0) {
2971 socket_lock(so: pcb->inp_socket, refcount: 1);
2972 }
2973 pcb->inp_state = INPCB_STATE_DEAD;
2974
2975stopusing:
2976 if (pcb->inp_socket->so_usecount < 0) {
2977 panic("%s: pcb=%p so=%p usecount is negative",
2978 __func__, pcb, pcb->inp_socket);
2979 /* NOTREACHED */
2980 }
2981 if (locked == 0) {
2982 socket_unlock(so: pcb->inp_socket, refcount: 1);
2983 }
2984
2985 inpcb_gc_sched(ipi: pcb->inp_pcbinfo, type: INPCB_TIMER_FAST);
2986
2987 origwant = *wantcnt;
2988 if ((UInt16) origwant == 0xffff) { /* should stop using */
2989 return WNT_STOPUSING;
2990 }
2991 newwant = 0xffff;
2992 if ((UInt16) origwant == 0) {
2993 /* try to mark it as unsuable now */
2994 OSCompareAndSwap(origwant, newwant, wantcnt);
2995 }
2996 return WNT_STOPUSING;
2997
2998 case WNT_ACQUIRE:
2999 /*
3000 * Try to increase reference to pcb. If WNT_STOPUSING
3001 * should bail out. If socket state DEAD, try to set count
3002 * to STOPUSING, return failed otherwise increase cnt.
3003 */
3004 do {
3005 origwant = *wantcnt;
3006 if ((UInt16) origwant == 0xffff) {
3007 /* should stop using */
3008 return WNT_STOPUSING;
3009 }
3010 newwant = origwant + 1;
3011 } while (!OSCompareAndSwap(origwant, newwant, wantcnt));
3012 return WNT_ACQUIRE;
3013
3014 case WNT_RELEASE:
3015 /*
3016 * Release reference. If result is null and pcb state
3017 * is DEAD, set wanted bit to STOPUSING
3018 */
3019 if (locked == 0) {
3020 socket_lock(so: pcb->inp_socket, refcount: 1);
3021 }
3022
3023 do {
3024 origwant = *wantcnt;
3025 if ((UInt16) origwant == 0x0) {
3026 panic("%s: pcb=%p release with zero count",
3027 __func__, pcb);
3028 /* NOTREACHED */
3029 }
3030 if ((UInt16) origwant == 0xffff) {
3031 /* should stop using */
3032 if (locked == 0) {
3033 socket_unlock(so: pcb->inp_socket, refcount: 1);
3034 }
3035 return WNT_STOPUSING;
3036 }
3037 newwant = origwant - 1;
3038 } while (!OSCompareAndSwap(origwant, newwant, wantcnt));
3039
3040 if (pcb->inp_state == INPCB_STATE_DEAD) {
3041 goto stopusing;
3042 }
3043 if (pcb->inp_socket->so_usecount < 0) {
3044 panic("%s: RELEASE pcb=%p so=%p usecount is negative",
3045 __func__, pcb, pcb->inp_socket);
3046 /* NOTREACHED */
3047 }
3048
3049 if (locked == 0) {
3050 socket_unlock(so: pcb->inp_socket, refcount: 1);
3051 }
3052 return WNT_RELEASE;
3053
3054 default:
3055 panic("%s: so=%p not a valid state =%x", __func__,
3056 pcb->inp_socket, mode);
3057 /* NOTREACHED */
3058 }
3059
3060 /* NOTREACHED */
3061 return mode;
3062}
3063
3064/*
3065 * inpcb_to_compat copies specific bits of an inpcb to a inpcb_compat.
3066 * The inpcb_compat data structure is passed to user space and must
3067 * not change. We intentionally avoid copying pointers.
3068 */
3069void
3070inpcb_to_compat(struct inpcb *inp, struct inpcb_compat *inp_compat)
3071{
3072 bzero(s: inp_compat, n: sizeof(*inp_compat));
3073 inp_compat->inp_fport = inp->inp_fport;
3074 inp_compat->inp_lport = inp->inp_lport;
3075 inp_compat->nat_owner = 0;
3076 inp_compat->nat_cookie = 0;
3077 inp_compat->inp_gencnt = inp->inp_gencnt;
3078 inp_compat->inp_flags = inp->inp_flags;
3079 inp_compat->inp_flow = inp->inp_flow;
3080 inp_compat->inp_vflag = inp->inp_vflag;
3081 inp_compat->inp_ip_ttl = inp->inp_ip_ttl;
3082 inp_compat->inp_ip_p = inp->inp_ip_p;
3083 inp_compat->inp_dependfaddr.inp6_foreign =
3084 inp->inp_dependfaddr.inp6_foreign;
3085 inp_compat->inp_dependladdr.inp6_local =
3086 inp->inp_dependladdr.inp6_local;
3087 inp_compat->inp_depend4.inp4_ip_tos = inp->inp_depend4.inp4_ip_tos;
3088 inp_compat->inp_depend6.inp6_hlim = 0;
3089 inp_compat->inp_depend6.inp6_cksum = inp->inp_depend6.inp6_cksum;
3090 inp_compat->inp_depend6.inp6_ifindex = 0;
3091 inp_compat->inp_depend6.inp6_hops = inp->inp_depend6.inp6_hops;
3092}
3093
3094#if XNU_TARGET_OS_OSX
3095void
3096inpcb_to_xinpcb64(struct inpcb *inp, struct xinpcb64 *xinp)
3097{
3098 xinp->inp_fport = inp->inp_fport;
3099 xinp->inp_lport = inp->inp_lport;
3100 xinp->inp_gencnt = inp->inp_gencnt;
3101 xinp->inp_flags = inp->inp_flags;
3102 xinp->inp_flow = inp->inp_flow;
3103 xinp->inp_vflag = inp->inp_vflag;
3104 xinp->inp_ip_ttl = inp->inp_ip_ttl;
3105 xinp->inp_ip_p = inp->inp_ip_p;
3106 xinp->inp_dependfaddr.inp6_foreign = inp->inp_dependfaddr.inp6_foreign;
3107 xinp->inp_dependladdr.inp6_local = inp->inp_dependladdr.inp6_local;
3108 xinp->inp_depend4.inp4_ip_tos = inp->inp_depend4.inp4_ip_tos;
3109 xinp->inp_depend6.inp6_hlim = 0;
3110 xinp->inp_depend6.inp6_cksum = inp->inp_depend6.inp6_cksum;
3111 xinp->inp_depend6.inp6_ifindex = 0;
3112 xinp->inp_depend6.inp6_hops = inp->inp_depend6.inp6_hops;
3113}
3114#endif /* XNU_TARGET_OS_OSX */
3115
3116/*
3117 * The following routines implement this scheme:
3118 *
3119 * Callers of ip_output() that intend to cache the route in the inpcb pass
3120 * a local copy of the struct route to ip_output(). Using a local copy of
3121 * the cached route significantly simplifies things as IP no longer has to
3122 * worry about having exclusive access to the passed in struct route, since
3123 * it's defined in the caller's stack; in essence, this allows for a lock-
3124 * less operation when updating the struct route at the IP level and below,
3125 * whenever necessary. The scheme works as follows:
3126 *
3127 * Prior to dropping the socket's lock and calling ip_output(), the caller
3128 * copies the struct route from the inpcb into its stack, and adds a reference
3129 * to the cached route entry, if there was any. The socket's lock is then
3130 * dropped and ip_output() is called with a pointer to the copy of struct
3131 * route defined on the stack (not to the one in the inpcb.)
3132 *
3133 * Upon returning from ip_output(), the caller then acquires the socket's
3134 * lock and synchronizes the cache; if there is no route cached in the inpcb,
3135 * it copies the local copy of struct route (which may or may not contain any
3136 * route) back into the cache; otherwise, if the inpcb has a route cached in
3137 * it, the one in the local copy will be freed, if there's any. Trashing the
3138 * cached route in the inpcb can be avoided because ip_output() is single-
3139 * threaded per-PCB (i.e. multiple transmits on a PCB are always serialized
3140 * by the socket/transport layer.)
3141 */
3142void
3143inp_route_copyout(struct inpcb *inp, struct route *dst)
3144{
3145 struct route *src = &inp->inp_route;
3146
3147 socket_lock_assert_owned(so: inp->inp_socket);
3148
3149 /*
3150 * If the route in the PCB is stale or not for IPv4, blow it away;
3151 * this is possible in the case of IPv4-mapped address case.
3152 */
3153 if (ROUTE_UNUSABLE(src) || rt_key(src->ro_rt)->sa_family != AF_INET) {
3154 ROUTE_RELEASE(src);
3155 }
3156
3157 route_copyout(dst, src, sizeof(*dst));
3158}
3159
3160void
3161inp_route_copyin(struct inpcb *inp, struct route *src)
3162{
3163 struct route *dst = &inp->inp_route;
3164
3165 socket_lock_assert_owned(so: inp->inp_socket);
3166
3167 /* Minor sanity check */
3168 if (src->ro_rt != NULL && rt_key(src->ro_rt)->sa_family != AF_INET) {
3169 panic("%s: wrong or corrupted route: %p", __func__, src);
3170 }
3171
3172 route_copyin(src, dst, sizeof(*src));
3173}
3174
3175/*
3176 * Handler for setting IP_BOUND_IF/IPV6_BOUND_IF socket option.
3177 */
3178int
3179inp_bindif(struct inpcb *inp, unsigned int ifscope, struct ifnet **pifp)
3180{
3181 struct ifnet *ifp = NULL;
3182
3183 ifnet_head_lock_shared();
3184 if ((ifscope > (unsigned)if_index) || (ifscope != IFSCOPE_NONE &&
3185 (ifp = ifindex2ifnet[ifscope]) == NULL)) {
3186 ifnet_head_done();
3187 return ENXIO;
3188 }
3189 ifnet_head_done();
3190
3191 VERIFY(ifp != NULL || ifscope == IFSCOPE_NONE);
3192
3193 /*
3194 * A zero interface scope value indicates an "unbind".
3195 * Otherwise, take in whatever value the app desires;
3196 * the app may already know the scope (or force itself
3197 * to such a scope) ahead of time before the interface
3198 * gets attached. It doesn't matter either way; any
3199 * route lookup from this point on will require an
3200 * exact match for the embedded interface scope.
3201 */
3202 inp->inp_boundifp = ifp;
3203 if (inp->inp_boundifp == NULL) {
3204 inp->inp_flags &= ~INP_BOUND_IF;
3205 } else {
3206 inp->inp_flags |= INP_BOUND_IF;
3207 }
3208
3209 /* Blow away any cached route in the PCB */
3210 ROUTE_RELEASE(&inp->inp_route);
3211
3212 if (pifp != NULL) {
3213 *pifp = ifp;
3214 }
3215
3216 return 0;
3217}
3218
3219/*
3220 * Handler for setting IP_NO_IFT_CELLULAR/IPV6_NO_IFT_CELLULAR socket option,
3221 * as well as for setting PROC_UUID_NO_CELLULAR policy.
3222 */
3223void
3224inp_set_nocellular(struct inpcb *inp)
3225{
3226 inp->inp_flags |= INP_NO_IFT_CELLULAR;
3227
3228 /* Blow away any cached route in the PCB */
3229 ROUTE_RELEASE(&inp->inp_route);
3230}
3231
3232/*
3233 * Handler for clearing IP_NO_IFT_CELLULAR/IPV6_NO_IFT_CELLULAR socket option,
3234 * as well as for clearing PROC_UUID_NO_CELLULAR policy.
3235 */
3236void
3237inp_clear_nocellular(struct inpcb *inp)
3238{
3239 struct socket *so = inp->inp_socket;
3240
3241 /*
3242 * SO_RESTRICT_DENY_CELLULAR socket restriction issued on the socket
3243 * has a higher precendence than INP_NO_IFT_CELLULAR. Clear the flag
3244 * if and only if the socket is unrestricted.
3245 */
3246 if (so != NULL && !(so->so_restrictions & SO_RESTRICT_DENY_CELLULAR)) {
3247 inp->inp_flags &= ~INP_NO_IFT_CELLULAR;
3248
3249 /* Blow away any cached route in the PCB */
3250 ROUTE_RELEASE(&inp->inp_route);
3251 }
3252}
3253
3254void
3255inp_set_noexpensive(struct inpcb *inp)
3256{
3257 inp->inp_flags2 |= INP2_NO_IFF_EXPENSIVE;
3258
3259 /* Blow away any cached route in the PCB */
3260 ROUTE_RELEASE(&inp->inp_route);
3261}
3262
3263void
3264inp_set_noconstrained(struct inpcb *inp)
3265{
3266 inp->inp_flags2 |= INP2_NO_IFF_CONSTRAINED;
3267
3268 /* Blow away any cached route in the PCB */
3269 ROUTE_RELEASE(&inp->inp_route);
3270}
3271
3272void
3273inp_set_awdl_unrestricted(struct inpcb *inp)
3274{
3275 inp->inp_flags2 |= INP2_AWDL_UNRESTRICTED;
3276
3277 /* Blow away any cached route in the PCB */
3278 ROUTE_RELEASE(&inp->inp_route);
3279}
3280
3281boolean_t
3282inp_get_awdl_unrestricted(struct inpcb *inp)
3283{
3284 return (inp->inp_flags2 & INP2_AWDL_UNRESTRICTED) ? TRUE : FALSE;
3285}
3286
3287void
3288inp_clear_awdl_unrestricted(struct inpcb *inp)
3289{
3290 inp->inp_flags2 &= ~INP2_AWDL_UNRESTRICTED;
3291
3292 /* Blow away any cached route in the PCB */
3293 ROUTE_RELEASE(&inp->inp_route);
3294}
3295
3296void
3297inp_set_intcoproc_allowed(struct inpcb *inp)
3298{
3299 inp->inp_flags2 |= INP2_INTCOPROC_ALLOWED;
3300
3301 /* Blow away any cached route in the PCB */
3302 ROUTE_RELEASE(&inp->inp_route);
3303}
3304
3305boolean_t
3306inp_get_intcoproc_allowed(struct inpcb *inp)
3307{
3308 return (inp->inp_flags2 & INP2_INTCOPROC_ALLOWED) ? TRUE : FALSE;
3309}
3310
3311void
3312inp_clear_intcoproc_allowed(struct inpcb *inp)
3313{
3314 inp->inp_flags2 &= ~INP2_INTCOPROC_ALLOWED;
3315
3316 /* Blow away any cached route in the PCB */
3317 ROUTE_RELEASE(&inp->inp_route);
3318}
3319
3320void
3321inp_set_management_allowed(struct inpcb *inp)
3322{
3323 inp->inp_flags2 |= INP2_MANAGEMENT_ALLOWED;
3324 inp->inp_flags2 |= INP2_MANAGEMENT_CHECKED;
3325
3326 /* Blow away any cached route in the PCB */
3327 ROUTE_RELEASE(&inp->inp_route);
3328}
3329
3330boolean_t
3331inp_get_management_allowed(struct inpcb *inp)
3332{
3333 return (inp->inp_flags2 & INP2_MANAGEMENT_ALLOWED) ? TRUE : FALSE;
3334}
3335
3336void
3337inp_clear_management_allowed(struct inpcb *inp)
3338{
3339 inp->inp_flags2 &= ~INP2_MANAGEMENT_ALLOWED;
3340
3341 /* Blow away any cached route in the PCB */
3342 ROUTE_RELEASE(&inp->inp_route);
3343}
3344
3345#if NECP
3346/*
3347 * Called when PROC_UUID_NECP_APP_POLICY is set.
3348 */
3349void
3350inp_set_want_app_policy(struct inpcb *inp)
3351{
3352 inp->inp_flags2 |= INP2_WANT_APP_POLICY;
3353}
3354
3355/*
3356 * Called when PROC_UUID_NECP_APP_POLICY is cleared.
3357 */
3358void
3359inp_clear_want_app_policy(struct inpcb *inp)
3360{
3361 inp->inp_flags2 &= ~INP2_WANT_APP_POLICY;
3362}
3363#endif /* NECP */
3364
3365/*
3366 * Calculate flow hash for an inp, used by an interface to identify a
3367 * flow. When an interface provides flow control advisory, this flow
3368 * hash is used as an identifier.
3369 */
3370u_int32_t
3371inp_calc_flowhash(struct inpcb *inp)
3372{
3373#if SKYWALK
3374
3375 uint32_t flowid;
3376 struct flowidns_flow_key fk;
3377
3378 bzero(s: &fk, n: sizeof(fk));
3379
3380 if (inp->inp_vflag & INP_IPV4) {
3381 fk.ffk_af = AF_INET;
3382 fk.ffk_laddr_v4 = inp->inp_laddr;
3383 fk.ffk_raddr_v4 = inp->inp_faddr;
3384 } else {
3385 fk.ffk_af = AF_INET6;
3386 fk.ffk_laddr_v6 = inp->in6p_laddr;
3387 fk.ffk_raddr_v6 = inp->in6p_faddr;
3388 /* clear embedded scope ID */
3389 if (IN6_IS_SCOPE_EMBED(&fk.ffk_laddr_v6)) {
3390 fk.ffk_laddr_v6.s6_addr16[1] = 0;
3391 }
3392 if (IN6_IS_SCOPE_EMBED(&fk.ffk_raddr_v6)) {
3393 fk.ffk_raddr_v6.s6_addr16[1] = 0;
3394 }
3395 }
3396
3397 fk.ffk_lport = inp->inp_lport;
3398 fk.ffk_rport = inp->inp_fport;
3399 fk.ffk_proto = (inp->inp_ip_p != 0) ? inp->inp_ip_p :
3400 (uint8_t)SOCK_PROTO(inp->inp_socket);
3401 flowidns_allocate_flowid(domain: FLOWIDNS_DOMAIN_INPCB, flow_key: &fk, flowid: &flowid);
3402 /* Insert the inp into inp_fc_tree */
3403 lck_mtx_lock_spin(lck: &inp_fc_lck);
3404 ASSERT(inp->inp_flowhash == 0);
3405 ASSERT((inp->inp_flags2 & INP2_IN_FCTREE) == 0);
3406 inp->inp_flowhash = flowid;
3407 VERIFY(RB_INSERT(inp_fc_tree, &inp_fc_tree, inp) == NULL);
3408 inp->inp_flags2 |= INP2_IN_FCTREE;
3409 lck_mtx_unlock(lck: &inp_fc_lck);
3410
3411 return flowid;
3412
3413#else /* !SKYWALK */
3414
3415 struct inp_flowhash_key fh __attribute__((aligned(8)));
3416 u_int32_t flowhash = 0;
3417 struct inpcb *tmp_inp = NULL;
3418
3419 if (inp_hash_seed == 0) {
3420 inp_hash_seed = RandomULong();
3421 }
3422
3423 bzero(&fh, sizeof(fh));
3424
3425 bcopy(&inp->inp_dependladdr, &fh.infh_laddr, sizeof(fh.infh_laddr));
3426 bcopy(&inp->inp_dependfaddr, &fh.infh_faddr, sizeof(fh.infh_faddr));
3427
3428 fh.infh_lport = inp->inp_lport;
3429 fh.infh_fport = inp->inp_fport;
3430 fh.infh_af = (inp->inp_vflag & INP_IPV6) ? AF_INET6 : AF_INET;
3431 fh.infh_proto = inp->inp_ip_p;
3432 fh.infh_rand1 = RandomULong();
3433 fh.infh_rand2 = RandomULong();
3434
3435try_again:
3436 flowhash = net_flowhash(&fh, sizeof(fh), inp_hash_seed);
3437 if (flowhash == 0) {
3438 /* try to get a non-zero flowhash */
3439 inp_hash_seed = RandomULong();
3440 goto try_again;
3441 }
3442
3443 inp->inp_flowhash = flowhash;
3444
3445 /* Insert the inp into inp_fc_tree */
3446 lck_mtx_lock_spin(&inp_fc_lck);
3447 tmp_inp = RB_FIND(inp_fc_tree, &inp_fc_tree, inp);
3448 if (tmp_inp != NULL) {
3449 /*
3450 * There is a different inp with the same flowhash.
3451 * There can be a collision on flow hash but the
3452 * probability is low. Let's recompute the
3453 * flowhash.
3454 */
3455 lck_mtx_unlock(&inp_fc_lck);
3456 /* recompute hash seed */
3457 inp_hash_seed = RandomULong();
3458 goto try_again;
3459 }
3460
3461 RB_INSERT(inp_fc_tree, &inp_fc_tree, inp);
3462 inp->inp_flags2 |= INP2_IN_FCTREE;
3463 lck_mtx_unlock(&inp_fc_lck);
3464
3465 return flowhash;
3466
3467#endif /* !SKYWALK */
3468}
3469
3470void
3471inp_flowadv(uint32_t flowhash)
3472{
3473 struct inpcb *inp;
3474
3475 inp = inp_fc_getinp(flowhash, 0);
3476
3477 if (inp == NULL) {
3478 return;
3479 }
3480 inp_fc_feedback(inp);
3481}
3482
3483/*
3484 * Function to compare inp_fc_entries in inp flow control tree
3485 */
3486static inline int
3487infc_cmp(const struct inpcb *inp1, const struct inpcb *inp2)
3488{
3489 return memcmp(s1: &(inp1->inp_flowhash), s2: &(inp2->inp_flowhash),
3490 n: sizeof(inp1->inp_flowhash));
3491}
3492
3493static struct inpcb *
3494inp_fc_getinp(u_int32_t flowhash, u_int32_t flags)
3495{
3496 struct inpcb *inp = NULL;
3497 int locked = (flags & INPFC_SOLOCKED) ? 1 : 0;
3498
3499 lck_mtx_lock_spin(lck: &inp_fc_lck);
3500 key_inp.inp_flowhash = flowhash;
3501 inp = RB_FIND(inp_fc_tree, &inp_fc_tree, &key_inp);
3502 if (inp == NULL) {
3503 /* inp is not present, return */
3504 lck_mtx_unlock(lck: &inp_fc_lck);
3505 return NULL;
3506 }
3507
3508 if (flags & INPFC_REMOVE) {
3509 ASSERT((inp->inp_flags2 & INP2_IN_FCTREE) != 0);
3510 lck_mtx_convert_spin(lck: &inp_fc_lck);
3511 RB_REMOVE(inp_fc_tree, &inp_fc_tree, inp);
3512 bzero(s: &(inp->infc_link), n: sizeof(inp->infc_link));
3513#if SKYWALK
3514 VERIFY(inp->inp_flowhash != 0);
3515 flowidns_release_flowid(flowid: inp->inp_flowhash);
3516 inp->inp_flowhash = 0;
3517#endif /* !SKYWALK */
3518 inp->inp_flags2 &= ~INP2_IN_FCTREE;
3519 lck_mtx_unlock(lck: &inp_fc_lck);
3520 return NULL;
3521 }
3522
3523 if (in_pcb_checkstate(pcb: inp, WNT_ACQUIRE, locked) == WNT_STOPUSING) {
3524 inp = NULL;
3525 }
3526 lck_mtx_unlock(lck: &inp_fc_lck);
3527
3528 return inp;
3529}
3530
3531static void
3532inp_fc_feedback(struct inpcb *inp)
3533{
3534 struct socket *so = inp->inp_socket;
3535
3536 /* we already hold a want_cnt on this inp, socket can't be null */
3537 VERIFY(so != NULL);
3538 socket_lock(so, refcount: 1);
3539
3540 if (in_pcb_checkstate(pcb: inp, WNT_RELEASE, locked: 1) == WNT_STOPUSING) {
3541 socket_unlock(so, refcount: 1);
3542 return;
3543 }
3544
3545 if (inp->inp_sndinprog_cnt > 0) {
3546 inp->inp_flags |= INP_FC_FEEDBACK;
3547 }
3548
3549 /*
3550 * Return if the connection is not in flow-controlled state.
3551 * This can happen if the connection experienced
3552 * loss while it was in flow controlled state
3553 */
3554 if (!INP_WAIT_FOR_IF_FEEDBACK(inp)) {
3555 socket_unlock(so, refcount: 1);
3556 return;
3557 }
3558 inp_reset_fc_state(inp);
3559
3560 if (SOCK_TYPE(so) == SOCK_STREAM) {
3561 inp_fc_unthrottle_tcp(inp);
3562 }
3563
3564 socket_unlock(so, refcount: 1);
3565}
3566
3567static void
3568inp_reset_fc_timerstat(struct inpcb *inp)
3569{
3570 uint64_t now;
3571
3572 if (inp->inp_fadv_start_time == 0) {
3573 return;
3574 }
3575
3576 now = net_uptime_us();
3577 ASSERT(now >= inp->inp_fadv_start_time);
3578
3579 inp->inp_fadv_total_time += (now - inp->inp_fadv_start_time);
3580 inp->inp_fadv_cnt++;
3581
3582 inp->inp_fadv_start_time = 0;
3583}
3584
3585static void
3586inp_set_fc_timerstat(struct inpcb *inp)
3587{
3588 if (inp->inp_fadv_start_time != 0) {
3589 return;
3590 }
3591
3592 inp->inp_fadv_start_time = net_uptime_us();
3593}
3594
3595void
3596inp_reset_fc_state(struct inpcb *inp)
3597{
3598 struct socket *so = inp->inp_socket;
3599 int suspended = (INP_IS_FLOW_SUSPENDED(inp)) ? 1 : 0;
3600 int needwakeup = (INP_WAIT_FOR_IF_FEEDBACK(inp)) ? 1 : 0;
3601
3602 inp->inp_flags &= ~(INP_FLOW_CONTROLLED | INP_FLOW_SUSPENDED);
3603
3604 inp_reset_fc_timerstat(inp);
3605
3606 if (suspended) {
3607 so->so_flags &= ~(SOF_SUSPENDED);
3608 soevent(so, hint: (SO_FILT_HINT_LOCKED | SO_FILT_HINT_RESUME));
3609 }
3610
3611 /* Give a write wakeup to unblock the socket */
3612 if (needwakeup) {
3613 sowwakeup(so);
3614 }
3615}
3616
3617int
3618inp_set_fc_state(struct inpcb *inp, int advcode)
3619{
3620 boolean_t is_flow_controlled = INP_WAIT_FOR_IF_FEEDBACK(inp);
3621 struct inpcb *tmp_inp = NULL;
3622 /*
3623 * If there was a feedback from the interface when
3624 * send operation was in progress, we should ignore
3625 * this flow advisory to avoid a race between setting
3626 * flow controlled state and receiving feedback from
3627 * the interface
3628 */
3629 if (inp->inp_flags & INP_FC_FEEDBACK) {
3630 return 0;
3631 }
3632
3633 inp->inp_flags &= ~(INP_FLOW_CONTROLLED | INP_FLOW_SUSPENDED);
3634 if ((tmp_inp = inp_fc_getinp(flowhash: inp->inp_flowhash,
3635 INPFC_SOLOCKED)) != NULL) {
3636 if (in_pcb_checkstate(pcb: tmp_inp, WNT_RELEASE, locked: 1) == WNT_STOPUSING) {
3637 goto exit_reset;
3638 }
3639 VERIFY(tmp_inp == inp);
3640 switch (advcode) {
3641 case FADV_FLOW_CONTROLLED:
3642 inp->inp_flags |= INP_FLOW_CONTROLLED;
3643 inp_set_fc_timerstat(inp);
3644 break;
3645 case FADV_SUSPENDED:
3646 inp->inp_flags |= INP_FLOW_SUSPENDED;
3647 inp_set_fc_timerstat(inp);
3648
3649 soevent(so: inp->inp_socket,
3650 hint: (SO_FILT_HINT_LOCKED | SO_FILT_HINT_SUSPEND));
3651
3652 /* Record the fact that suspend event was sent */
3653 inp->inp_socket->so_flags |= SOF_SUSPENDED;
3654 break;
3655 }
3656
3657 if (!is_flow_controlled && SOCK_TYPE(inp->inp_socket) == SOCK_STREAM) {
3658 inp_fc_throttle_tcp(inp);
3659 }
3660 return 1;
3661 }
3662
3663exit_reset:
3664 inp_reset_fc_timerstat(inp);
3665
3666 return 0;
3667}
3668
3669/*
3670 * Handler for SO_FLUSH socket option.
3671 */
3672int
3673inp_flush(struct inpcb *inp, int optval)
3674{
3675 u_int32_t flowhash = inp->inp_flowhash;
3676 struct ifnet *rtifp, *oifp;
3677
3678 /* Either all classes or one of the valid ones */
3679 if (optval != SO_TC_ALL && !SO_VALID_TC(optval)) {
3680 return EINVAL;
3681 }
3682
3683 /* We need a flow hash for identification */
3684 if (flowhash == 0) {
3685 return 0;
3686 }
3687
3688 /* Grab the interfaces from the route and pcb */
3689 rtifp = ((inp->inp_route.ro_rt != NULL) ?
3690 inp->inp_route.ro_rt->rt_ifp : NULL);
3691 oifp = inp->inp_last_outifp;
3692
3693 if (rtifp != NULL) {
3694 if_qflush_sc(rtifp, so_tc2msc(optval), flowhash, NULL, NULL, 0);
3695 }
3696 if (oifp != NULL && oifp != rtifp) {
3697 if_qflush_sc(oifp, so_tc2msc(optval), flowhash, NULL, NULL, 0);
3698 }
3699
3700 return 0;
3701}
3702
3703/*
3704 * Clear the INP_INADDR_ANY flag (special case for PPP only)
3705 */
3706void
3707inp_clear_INP_INADDR_ANY(struct socket *so)
3708{
3709 struct inpcb *inp = NULL;
3710
3711 socket_lock(so, refcount: 1);
3712 inp = sotoinpcb(so);
3713 if (inp) {
3714 inp->inp_flags &= ~INP_INADDR_ANY;
3715 }
3716 socket_unlock(so, refcount: 1);
3717}
3718
3719void
3720inp_get_soprocinfo(struct inpcb *inp, struct so_procinfo *soprocinfo)
3721{
3722 struct socket *so = inp->inp_socket;
3723
3724 soprocinfo->spi_pid = so->last_pid;
3725 strlcpy(dst: &soprocinfo->spi_proc_name[0], src: &inp->inp_last_proc_name[0],
3726 n: sizeof(soprocinfo->spi_proc_name));
3727 if (so->last_pid != 0) {
3728 uuid_copy(dst: soprocinfo->spi_uuid, src: so->last_uuid);
3729 }
3730 /*
3731 * When not delegated, the effective pid is the same as the real pid
3732 */
3733 if (so->so_flags & SOF_DELEGATED) {
3734 soprocinfo->spi_delegated = 1;
3735 soprocinfo->spi_epid = so->e_pid;
3736 uuid_copy(dst: soprocinfo->spi_euuid, src: so->e_uuid);
3737 } else {
3738 soprocinfo->spi_delegated = 0;
3739 soprocinfo->spi_epid = so->last_pid;
3740 }
3741 strlcpy(dst: &soprocinfo->spi_e_proc_name[0], src: &inp->inp_e_proc_name[0],
3742 n: sizeof(soprocinfo->spi_e_proc_name));
3743}
3744
3745int
3746inp_findinpcb_procinfo(struct inpcbinfo *pcbinfo, uint32_t flowhash,
3747 struct so_procinfo *soprocinfo)
3748{
3749 struct inpcb *inp = NULL;
3750 int found = 0;
3751
3752 bzero(s: soprocinfo, n: sizeof(struct so_procinfo));
3753
3754 if (!flowhash) {
3755 return -1;
3756 }
3757
3758 lck_rw_lock_shared(lck: &pcbinfo->ipi_lock);
3759 LIST_FOREACH(inp, pcbinfo->ipi_listhead, inp_list) {
3760 if (inp->inp_state != INPCB_STATE_DEAD &&
3761 inp->inp_socket != NULL &&
3762 inp->inp_flowhash == flowhash) {
3763 found = 1;
3764 inp_get_soprocinfo(inp, soprocinfo);
3765 break;
3766 }
3767 }
3768 lck_rw_done(lck: &pcbinfo->ipi_lock);
3769
3770 return found;
3771}
3772
3773#if CONFIG_PROC_UUID_POLICY
3774static void
3775inp_update_cellular_policy(struct inpcb *inp, boolean_t set)
3776{
3777 struct socket *so = inp->inp_socket;
3778 int before, after;
3779
3780 VERIFY(so != NULL);
3781 VERIFY(inp->inp_state != INPCB_STATE_DEAD);
3782
3783 before = INP_NO_CELLULAR(inp);
3784 if (set) {
3785 inp_set_nocellular(inp);
3786 } else {
3787 inp_clear_nocellular(inp);
3788 }
3789 after = INP_NO_CELLULAR(inp);
3790 if (net_io_policy_log && (before != after)) {
3791 static const char *ok = "OK";
3792 static const char *nok = "NOACCESS";
3793 uuid_string_t euuid_buf;
3794 pid_t epid;
3795
3796 if (so->so_flags & SOF_DELEGATED) {
3797 uuid_unparse(uu: so->e_uuid, out: euuid_buf);
3798 epid = so->e_pid;
3799 } else {
3800 uuid_unparse(uu: so->last_uuid, out: euuid_buf);
3801 epid = so->last_pid;
3802 }
3803
3804 /* allow this socket to generate another notification event */
3805 so->so_ifdenied_notifies = 0;
3806
3807 log(LOG_DEBUG, "%s: so %llu [%d,%d] epid %d "
3808 "euuid %s%s %s->%s\n", __func__,
3809 so->so_gencnt, SOCK_DOM(so),
3810 SOCK_TYPE(so), epid, euuid_buf,
3811 (so->so_flags & SOF_DELEGATED) ?
3812 " [delegated]" : "",
3813 ((before < after) ? ok : nok),
3814 ((before < after) ? nok : ok));
3815 }
3816}
3817
3818#if NECP
3819static void
3820inp_update_necp_want_app_policy(struct inpcb *inp, boolean_t set)
3821{
3822 struct socket *so = inp->inp_socket;
3823 int before, after;
3824
3825 VERIFY(so != NULL);
3826 VERIFY(inp->inp_state != INPCB_STATE_DEAD);
3827
3828 before = (inp->inp_flags2 & INP2_WANT_APP_POLICY);
3829 if (set) {
3830 inp_set_want_app_policy(inp);
3831 } else {
3832 inp_clear_want_app_policy(inp);
3833 }
3834 after = (inp->inp_flags2 & INP2_WANT_APP_POLICY);
3835 if (net_io_policy_log && (before != after)) {
3836 static const char *wanted = "WANTED";
3837 static const char *unwanted = "UNWANTED";
3838 uuid_string_t euuid_buf;
3839 pid_t epid;
3840
3841 if (so->so_flags & SOF_DELEGATED) {
3842 uuid_unparse(uu: so->e_uuid, out: euuid_buf);
3843 epid = so->e_pid;
3844 } else {
3845 uuid_unparse(uu: so->last_uuid, out: euuid_buf);
3846 epid = so->last_pid;
3847 }
3848
3849 log(LOG_DEBUG, "%s: so %llu [%d,%d] epid %d "
3850 "euuid %s%s %s->%s\n", __func__,
3851 so->so_gencnt, SOCK_DOM(so),
3852 SOCK_TYPE(so), epid, euuid_buf,
3853 (so->so_flags & SOF_DELEGATED) ?
3854 " [delegated]" : "",
3855 ((before < after) ? unwanted : wanted),
3856 ((before < after) ? wanted : unwanted));
3857 }
3858}
3859#endif /* NECP */
3860#endif /* !CONFIG_PROC_UUID_POLICY */
3861
3862#if NECP
3863void
3864inp_update_necp_policy(struct inpcb *inp, struct sockaddr *override_local_addr, struct sockaddr *override_remote_addr, u_int override_bound_interface)
3865{
3866 necp_socket_find_policy_match(inp, override_local_addr, override_remote_addr, override_bound_interface);
3867 if (necp_socket_should_rescope(inp) &&
3868 inp->inp_lport == 0 &&
3869 inp->inp_laddr.s_addr == INADDR_ANY &&
3870 IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr)) {
3871 // If we should rescope, and the socket is not yet bound
3872 inp_bindif(inp, ifscope: necp_socket_get_rescope_if_index(inp), NULL);
3873 inp->inp_flags2 |= INP2_SCOPED_BY_NECP;
3874 }
3875}
3876#endif /* NECP */
3877
3878int
3879inp_update_policy(struct inpcb *inp)
3880{
3881#if CONFIG_PROC_UUID_POLICY
3882 struct socket *so = inp->inp_socket;
3883 uint32_t pflags = 0;
3884 int32_t ogencnt;
3885 int err = 0;
3886 uint8_t *lookup_uuid = NULL;
3887
3888 if (!net_io_policy_uuid ||
3889 so == NULL || inp->inp_state == INPCB_STATE_DEAD) {
3890 return 0;
3891 }
3892
3893 /*
3894 * Kernel-created sockets that aren't delegating other sockets
3895 * are currently exempted from UUID policy checks.
3896 */
3897 if (so->last_pid == 0 && !(so->so_flags & SOF_DELEGATED)) {
3898 return 0;
3899 }
3900
3901#if defined(XNU_TARGET_OS_OSX)
3902 if (so->so_rpid > 0) {
3903 lookup_uuid = so->so_ruuid;
3904 ogencnt = so->so_policy_gencnt;
3905 err = proc_uuid_policy_lookup(uuid: lookup_uuid, flags: &pflags, gencount: &so->so_policy_gencnt);
3906 }
3907#endif
3908 if (lookup_uuid == NULL || err == ENOENT) {
3909 lookup_uuid = ((so->so_flags & SOF_DELEGATED) ? so->e_uuid : so->last_uuid);
3910 ogencnt = so->so_policy_gencnt;
3911 err = proc_uuid_policy_lookup(uuid: lookup_uuid, flags: &pflags, gencount: &so->so_policy_gencnt);
3912 }
3913
3914 /*
3915 * Discard cached generation count if the entry is gone (ENOENT),
3916 * so that we go thru the checks below.
3917 */
3918 if (err == ENOENT && ogencnt != 0) {
3919 so->so_policy_gencnt = 0;
3920 }
3921
3922 /*
3923 * If the generation count has changed, inspect the policy flags
3924 * and act accordingly. If a policy flag was previously set and
3925 * the UUID is no longer present in the table (ENOENT), treat it
3926 * as if the flag has been cleared.
3927 */
3928 if ((err == 0 || err == ENOENT) && ogencnt != so->so_policy_gencnt) {
3929 /* update cellular policy for this socket */
3930 if (err == 0 && (pflags & PROC_UUID_NO_CELLULAR)) {
3931 inp_update_cellular_policy(inp, TRUE);
3932 } else if (!(pflags & PROC_UUID_NO_CELLULAR)) {
3933 inp_update_cellular_policy(inp, FALSE);
3934 }
3935#if NECP
3936 /* update necp want app policy for this socket */
3937 if (err == 0 && (pflags & PROC_UUID_NECP_APP_POLICY)) {
3938 inp_update_necp_want_app_policy(inp, TRUE);
3939 } else if (!(pflags & PROC_UUID_NECP_APP_POLICY)) {
3940 inp_update_necp_want_app_policy(inp, FALSE);
3941 }
3942#endif /* NECP */
3943 }
3944
3945 return (err == ENOENT) ? 0 : err;
3946#else /* !CONFIG_PROC_UUID_POLICY */
3947#pragma unused(inp)
3948 return 0;
3949#endif /* !CONFIG_PROC_UUID_POLICY */
3950}
3951
3952unsigned int log_restricted;
3953SYSCTL_DECL(_net_inet);
3954SYSCTL_INT(_net_inet, OID_AUTO, log_restricted,
3955 CTLFLAG_RW | CTLFLAG_LOCKED, &log_restricted, 0,
3956 "Log network restrictions");
3957
3958
3959/*
3960 * Called when we need to enforce policy restrictions in the input path.
3961 *
3962 * Returns TRUE if we're not allowed to receive data, otherwise FALSE.
3963 */
3964static boolean_t
3965_inp_restricted_recv(struct inpcb *inp, struct ifnet *ifp)
3966{
3967 VERIFY(inp != NULL);
3968
3969 /*
3970 * Inbound restrictions.
3971 */
3972 if (!sorestrictrecv) {
3973 return FALSE;
3974 }
3975
3976 if (ifp == NULL) {
3977 return FALSE;
3978 }
3979
3980 if (IFNET_IS_CELLULAR(ifp) && INP_NO_CELLULAR(inp)) {
3981 return TRUE;
3982 }
3983
3984 if (IFNET_IS_EXPENSIVE(ifp) && INP_NO_EXPENSIVE(inp)) {
3985 return TRUE;
3986 }
3987
3988 if (IFNET_IS_CONSTRAINED(ifp) && INP_NO_CONSTRAINED(inp)) {
3989 return TRUE;
3990 }
3991
3992 if (IFNET_IS_AWDL_RESTRICTED(ifp) && !INP_AWDL_UNRESTRICTED(inp)) {
3993 return TRUE;
3994 }
3995
3996 if (!(ifp->if_eflags & IFEF_RESTRICTED_RECV)) {
3997 return FALSE;
3998 }
3999
4000 if (inp->inp_flags & INP_RECV_ANYIF) {
4001 return FALSE;
4002 }
4003
4004 /*
4005 * An entitled process can use the management interface without being bound
4006 * to the interface
4007 */
4008 if (IFNET_IS_MANAGEMENT(ifp)) {
4009 if (INP_MANAGEMENT_ALLOWED(inp)) {
4010 return FALSE;
4011 }
4012 if (if_management_verbose > 1) {
4013 os_log(OS_LOG_DEFAULT, "_inp_restricted_recv %s:%d not allowed on management interface %s",
4014 proc_best_name(current_proc()), proc_getpid(current_proc()),
4015 ifp->if_xname);
4016 }
4017 return TRUE;
4018 }
4019
4020 if ((inp->inp_flags & INP_BOUND_IF) && inp->inp_boundifp == ifp) {
4021 return FALSE;
4022 }
4023
4024 if (IFNET_IS_INTCOPROC(ifp) && !INP_INTCOPROC_ALLOWED(inp)) {
4025 return TRUE;
4026 }
4027
4028
4029 return TRUE;
4030}
4031
4032boolean_t
4033inp_restricted_recv(struct inpcb *inp, struct ifnet *ifp)
4034{
4035 boolean_t ret;
4036
4037 ret = _inp_restricted_recv(inp, ifp);
4038 if (ret == TRUE && log_restricted) {
4039 printf("pid %d (%s) is unable to receive packets on %s\n",
4040 proc_getpid(current_proc()), proc_best_name(p: current_proc()),
4041 ifp->if_xname);
4042 }
4043 return ret;
4044}
4045
4046/*
4047 * Called when we need to enforce policy restrictions in the output path.
4048 *
4049 * Returns TRUE if we're not allowed to send data out, otherwise FALSE.
4050 */
4051static boolean_t
4052_inp_restricted_send(struct inpcb *inp, struct ifnet *ifp)
4053{
4054 VERIFY(inp != NULL);
4055
4056 /*
4057 * Outbound restrictions.
4058 */
4059 if (!sorestrictsend) {
4060 return FALSE;
4061 }
4062
4063 if (ifp == NULL) {
4064 return FALSE;
4065 }
4066
4067 if (IFNET_IS_CELLULAR(ifp) && INP_NO_CELLULAR(inp)) {
4068 return TRUE;
4069 }
4070
4071 if (IFNET_IS_EXPENSIVE(ifp) && INP_NO_EXPENSIVE(inp)) {
4072 return TRUE;
4073 }
4074
4075 if (IFNET_IS_CONSTRAINED(ifp) && INP_NO_CONSTRAINED(inp)) {
4076 return TRUE;
4077 }
4078
4079 if (IFNET_IS_AWDL_RESTRICTED(ifp) && !INP_AWDL_UNRESTRICTED(inp)) {
4080 return TRUE;
4081 }
4082
4083 if (IFNET_IS_MANAGEMENT(ifp)) {
4084 if (!INP_MANAGEMENT_ALLOWED(inp)) {
4085 if (if_management_verbose > 1) {
4086 os_log(OS_LOG_DEFAULT, "_inp_restricted_send %s:%d not allowed on management interface %s",
4087 proc_best_name(current_proc()), proc_getpid(current_proc()),
4088 ifp->if_xname);
4089 }
4090 return TRUE;
4091 }
4092 }
4093
4094 if (IFNET_IS_INTCOPROC(ifp) && !INP_INTCOPROC_ALLOWED(inp)) {
4095 return TRUE;
4096 }
4097
4098 return FALSE;
4099}
4100
4101boolean_t
4102inp_restricted_send(struct inpcb *inp, struct ifnet *ifp)
4103{
4104 boolean_t ret;
4105
4106 ret = _inp_restricted_send(inp, ifp);
4107 if (ret == TRUE && log_restricted) {
4108 printf("pid %d (%s) is unable to transmit packets on %s\n",
4109 proc_getpid(current_proc()), proc_best_name(p: current_proc()),
4110 ifp->if_xname);
4111 }
4112 return ret;
4113}
4114
4115inline void
4116inp_count_sndbytes(struct inpcb *inp, u_int32_t th_ack)
4117{
4118 struct ifnet *ifp = inp->inp_last_outifp;
4119 struct socket *so = inp->inp_socket;
4120 if (ifp != NULL && !(so->so_flags & SOF_MP_SUBFLOW) &&
4121 (ifp->if_type == IFT_CELLULAR || IFNET_IS_WIFI(ifp))) {
4122 int32_t unsent;
4123
4124 so->so_snd.sb_flags |= SB_SNDBYTE_CNT;
4125
4126 /*
4127 * There can be data outstanding before the connection
4128 * becomes established -- TFO case
4129 */
4130 if (so->so_snd.sb_cc > 0) {
4131 inp_incr_sndbytes_total(so, so->so_snd.sb_cc);
4132 }
4133
4134 unsent = inp_get_sndbytes_allunsent(so, th_ack);
4135 if (unsent > 0) {
4136 inp_incr_sndbytes_unsent(so, unsent);
4137 }
4138 }
4139}
4140
4141inline void
4142inp_incr_sndbytes_total(struct socket *so, int32_t len)
4143{
4144 struct inpcb *inp = (struct inpcb *)so->so_pcb;
4145 struct ifnet *ifp = inp->inp_last_outifp;
4146
4147 if (ifp != NULL) {
4148 VERIFY(ifp->if_sndbyte_total >= 0);
4149 OSAddAtomic64(len, &ifp->if_sndbyte_total);
4150 }
4151}
4152
4153inline void
4154inp_decr_sndbytes_total(struct socket *so, int32_t len)
4155{
4156 struct inpcb *inp = (struct inpcb *)so->so_pcb;
4157 struct ifnet *ifp = inp->inp_last_outifp;
4158
4159 if (ifp != NULL) {
4160 if (ifp->if_sndbyte_total >= len) {
4161 OSAddAtomic64(-len, &ifp->if_sndbyte_total);
4162 } else {
4163 ifp->if_sndbyte_total = 0;
4164 }
4165 }
4166}
4167
4168inline void
4169inp_incr_sndbytes_unsent(struct socket *so, int32_t len)
4170{
4171 struct inpcb *inp = (struct inpcb *)so->so_pcb;
4172 struct ifnet *ifp = inp->inp_last_outifp;
4173
4174 if (ifp != NULL) {
4175 VERIFY(ifp->if_sndbyte_unsent >= 0);
4176 OSAddAtomic64(len, &ifp->if_sndbyte_unsent);
4177 }
4178}
4179
4180inline void
4181inp_decr_sndbytes_unsent(struct socket *so, int32_t len)
4182{
4183 if (so == NULL || !(so->so_snd.sb_flags & SB_SNDBYTE_CNT)) {
4184 return;
4185 }
4186
4187 struct inpcb *inp = (struct inpcb *)so->so_pcb;
4188 struct ifnet *ifp = inp->inp_last_outifp;
4189
4190 if (ifp != NULL) {
4191 if (ifp->if_sndbyte_unsent >= len) {
4192 OSAddAtomic64(-len, &ifp->if_sndbyte_unsent);
4193 } else {
4194 ifp->if_sndbyte_unsent = 0;
4195 }
4196 }
4197}
4198
4199inline void
4200inp_decr_sndbytes_allunsent(struct socket *so, u_int32_t th_ack)
4201{
4202 int32_t len;
4203
4204 if (so == NULL || !(so->so_snd.sb_flags & SB_SNDBYTE_CNT)) {
4205 return;
4206 }
4207
4208 len = inp_get_sndbytes_allunsent(so, th_ack);
4209 inp_decr_sndbytes_unsent(so, len);
4210}
4211
4212#if SKYWALK
4213inline void
4214inp_update_netns_flags(struct socket *so)
4215{
4216 struct inpcb *inp;
4217 uint32_t set_flags = 0;
4218 uint32_t clear_flags = 0;
4219
4220 if (!(SOCK_CHECK_DOM(so, AF_INET) || SOCK_CHECK_DOM(so, AF_INET6))) {
4221 return;
4222 }
4223
4224 inp = sotoinpcb(so);
4225
4226 if (inp == NULL) {
4227 return;
4228 }
4229
4230 if (!NETNS_TOKEN_VALID(&inp->inp_netns_token)) {
4231 return;
4232 }
4233
4234 if (so->so_options & SO_NOWAKEFROMSLEEP) {
4235 set_flags |= NETNS_NOWAKEFROMSLEEP;
4236 } else {
4237 clear_flags |= NETNS_NOWAKEFROMSLEEP;
4238 }
4239
4240 if (inp->inp_flags & INP_RECV_ANYIF) {
4241 set_flags |= NETNS_RECVANYIF;
4242 } else {
4243 clear_flags |= NETNS_RECVANYIF;
4244 }
4245
4246 if (so->so_flags1 & SOF1_EXTEND_BK_IDLE_WANTED) {
4247 set_flags |= NETNS_EXTBGIDLE;
4248 } else {
4249 clear_flags |= NETNS_EXTBGIDLE;
4250 }
4251
4252 netns_change_flags(token: &inp->inp_netns_token, set_flags, clear_flags);
4253}
4254#endif /* SKYWALK */
4255
4256inline void
4257inp_set_activity_bitmap(struct inpcb *inp)
4258{
4259 in_stat_set_activity_bitmap(activity: &inp->inp_nw_activity, now: net_uptime());
4260}
4261
4262inline void
4263inp_get_activity_bitmap(struct inpcb *inp, activity_bitmap_t *ab)
4264{
4265 bcopy(src: &inp->inp_nw_activity, dst: ab, n: sizeof(*ab));
4266}
4267
4268inline void
4269inp_clear_activity_bitmap(struct inpcb *inp)
4270{
4271 in_stat_clear_activity_bitmap(activity: &inp->inp_nw_activity);
4272}
4273
4274void
4275inp_update_last_owner(struct socket *so, struct proc *p, struct proc *ep)
4276{
4277 struct inpcb *inp = (struct inpcb *)so->so_pcb;
4278
4279 if (inp == NULL) {
4280 return;
4281 }
4282
4283 if (p != NULL) {
4284 strlcpy(dst: &inp->inp_last_proc_name[0], src: proc_name_address(p), n: sizeof(inp->inp_last_proc_name));
4285 }
4286 if (so->so_flags & SOF_DELEGATED) {
4287 if (ep != NULL) {
4288 strlcpy(dst: &inp->inp_e_proc_name[0], src: proc_name_address(ep), n: sizeof(inp->inp_e_proc_name));
4289 } else {
4290 inp->inp_e_proc_name[0] = 0;
4291 }
4292 } else {
4293 inp->inp_e_proc_name[0] = 0;
4294 }
4295}
4296
4297void
4298inp_copy_last_owner(struct socket *so, struct socket *head)
4299{
4300 struct inpcb *inp = (struct inpcb *)so->so_pcb;
4301 struct inpcb *head_inp = (struct inpcb *)head->so_pcb;
4302
4303 if (inp == NULL || head_inp == NULL) {
4304 return;
4305 }
4306
4307 strlcpy(dst: &inp->inp_last_proc_name[0], src: &head_inp->inp_last_proc_name[0], n: sizeof(inp->inp_last_proc_name));
4308 strlcpy(dst: &inp->inp_e_proc_name[0], src: &head_inp->inp_e_proc_name[0], n: sizeof(inp->inp_e_proc_name));
4309}
4310
4311static int
4312in_check_management_interface_proc_callout(proc_t proc, void *arg __unused)
4313{
4314 struct fileproc *fp = NULL;
4315 task_t task = proc_task(proc);
4316 bool allowed = false;
4317
4318 if (IOTaskHasEntitlement(task, INTCOPROC_RESTRICTED_ENTITLEMENT) == true
4319 || IOTaskHasEntitlement(task, MANAGEMENT_DATA_ENTITLEMENT) == true
4320#if DEBUG || DEVELOPMENT
4321 || IOTaskHasEntitlement(task, INTCOPROC_RESTRICTED_ENTITLEMENT_DEVELOPMENT) == true
4322 || IOTaskHasEntitlement(task, MANAGEMENT_DATA_ENTITLEMENT_DEVELOPMENT) == true
4323#endif /* DEBUG || DEVELOPMENT */
4324 ) {
4325 allowed = true;
4326 }
4327 if (allowed == false && management_data_unrestricted == false) {
4328 return PROC_RETURNED;
4329 }
4330
4331 proc_fdlock(proc);
4332 fdt_foreach(fp, proc) {
4333 struct fileglob *fg = fp->fp_glob;
4334 struct socket *so;
4335 struct inpcb *inp;
4336
4337 if (FILEGLOB_DTYPE(fg) != DTYPE_SOCKET) {
4338 continue;
4339 }
4340
4341 so = (struct socket *)fp_get_data(fp);
4342 if (SOCK_DOM(so) != PF_INET && SOCK_DOM(so) != PF_INET6) {
4343 continue;
4344 }
4345
4346 inp = (struct inpcb *)so->so_pcb;
4347
4348 if (in_pcb_checkstate(pcb: inp, WNT_ACQUIRE, locked: 0) == WNT_STOPUSING) {
4349 continue;
4350 }
4351
4352 socket_lock(so, refcount: 1);
4353
4354 if (in_pcb_checkstate(pcb: inp, WNT_RELEASE, locked: 1) == WNT_STOPUSING) {
4355 socket_unlock(so, refcount: 1);
4356 continue;
4357 }
4358 inp->inp_flags2 |= INP2_MANAGEMENT_ALLOWED;
4359 inp->inp_flags2 |= INP2_MANAGEMENT_CHECKED;
4360
4361 socket_unlock(so, refcount: 1);
4362 }
4363 proc_fdunlock(proc);
4364
4365 return PROC_RETURNED;
4366}
4367
4368static bool in_management_interface_checked = false;
4369
4370static void
4371in_management_interface_event_callback(struct nwk_wq_entry *nwk_item)
4372{
4373 kfree_type(struct nwk_wq_entry, nwk_item);
4374
4375 if (in_management_interface_checked == true) {
4376 return;
4377 }
4378 in_management_interface_checked = true;
4379
4380 proc_iterate(PROC_ALLPROCLIST,
4381 callout: in_check_management_interface_proc_callout,
4382 NULL, NULL, NULL);
4383}
4384
4385void
4386in_management_interface_check(void)
4387{
4388 struct nwk_wq_entry *nwk_item;
4389
4390 if (if_management_interface_check_needed == false ||
4391 in_management_interface_checked == true) {
4392 return;
4393 }
4394
4395 nwk_item = kalloc_type(struct nwk_wq_entry,
4396 Z_WAITOK | Z_ZERO | Z_NOFAIL);
4397
4398 nwk_item->func = in_management_interface_event_callback;
4399
4400 nwk_wq_enqueue(nwk_item);
4401}
4402