| 1 | /* |
| 2 | * Copyright (c) 2012-2024 Apple Inc. All rights reserved. |
| 3 | * |
| 4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ |
| 5 | * |
| 6 | * This file contains Original Code and/or Modifications of Original Code |
| 7 | * as defined in and that are subject to the Apple Public Source License |
| 8 | * Version 2.0 (the 'License'). You may not use this file except in |
| 9 | * compliance with the License. The rights granted to you under the License |
| 10 | * may not be used to create, or enable the creation or redistribution of, |
| 11 | * unlawful or unlicensed copies of an Apple operating system, or to |
| 12 | * circumvent, violate, or enable the circumvention or violation of, any |
| 13 | * terms of an Apple operating system software license agreement. |
| 14 | * |
| 15 | * Please obtain a copy of the License at |
| 16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. |
| 17 | * |
| 18 | * The Original Code and all software distributed under the License are |
| 19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER |
| 20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
| 21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, |
| 22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
| 23 | * Please see the License for the specific language governing rights and |
| 24 | * limitations under the License. |
| 25 | * |
| 26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ |
| 27 | */ |
| 28 | |
| 29 | #include <string.h> |
| 30 | #include <sys/types.h> |
| 31 | #include <sys/syslog.h> |
| 32 | #include <sys/queue.h> |
| 33 | #include <sys/malloc.h> |
| 34 | #include <sys/socket.h> |
| 35 | #include <sys/kpi_mbuf.h> |
| 36 | #include <sys/mbuf.h> |
| 37 | #include <sys/domain.h> |
| 38 | #include <sys/protosw.h> |
| 39 | #include <sys/socketvar.h> |
| 40 | #include <sys/kernel.h> |
| 41 | #include <sys/systm.h> |
| 42 | #include <sys/kern_control.h> |
| 43 | #include <sys/ubc.h> |
| 44 | #include <sys/codesign.h> |
| 45 | #include <sys/file_internal.h> |
| 46 | #include <sys/kauth.h> |
| 47 | #include <libkern/tree.h> |
| 48 | #include <kern/locks.h> |
| 49 | #include <kern/debug.h> |
| 50 | #include <kern/task.h> |
| 51 | #include <mach/task_info.h> |
| 52 | #include <net/if_var.h> |
| 53 | #include <net/route.h> |
| 54 | #include <net/flowhash.h> |
| 55 | #include <net/ntstat.h> |
| 56 | #include <net/content_filter.h> |
| 57 | #include <net/necp.h> |
| 58 | #include <netinet/in.h> |
| 59 | #include <netinet/in_var.h> |
| 60 | #include <netinet/tcp.h> |
| 61 | #include <netinet/tcp_var.h> |
| 62 | #include <netinet/tcp_fsm.h> |
| 63 | #include <netinet/flow_divert.h> |
| 64 | #include <netinet/flow_divert_proto.h> |
| 65 | #include <netinet6/in6_pcb.h> |
| 66 | #include <netinet6/ip6protosw.h> |
| 67 | #include <dev/random/randomdev.h> |
| 68 | #include <libkern/crypto/sha1.h> |
| 69 | #include <libkern/crypto/crypto_internal.h> |
| 70 | #include <os/log.h> |
| 71 | #include <corecrypto/cc.h> |
| 72 | #if CONTENT_FILTER |
| 73 | #include <net/content_filter.h> |
| 74 | #endif /* CONTENT_FILTER */ |
| 75 | |
| 76 | #define FLOW_DIVERT_CONNECT_STARTED 0x00000001 |
| 77 | #define FLOW_DIVERT_READ_CLOSED 0x00000002 |
| 78 | #define FLOW_DIVERT_WRITE_CLOSED 0x00000004 |
| 79 | #define FLOW_DIVERT_TUNNEL_RD_CLOSED 0x00000008 |
| 80 | #define FLOW_DIVERT_TUNNEL_WR_CLOSED 0x00000010 |
| 81 | #define FLOW_DIVERT_HAS_HMAC 0x00000040 |
| 82 | #define FLOW_DIVERT_NOTIFY_ON_RECEIVED 0x00000080 |
| 83 | #define FLOW_DIVERT_IMPLICIT_CONNECT 0x00000100 |
| 84 | #define FLOW_DIVERT_DID_SET_LOCAL_ADDR 0x00000200 |
| 85 | #define FLOW_DIVERT_HAS_TOKEN 0x00000400 |
| 86 | #define FLOW_DIVERT_SHOULD_SET_LOCAL_ADDR 0x00000800 |
| 87 | #define FLOW_DIVERT_FLOW_IS_TRANSPARENT 0x00001000 |
| 88 | |
| 89 | #define FDLOG(level, pcb, format, ...) \ |
| 90 | os_log_with_type(OS_LOG_DEFAULT, flow_divert_syslog_type_to_oslog_type(level), "(%u): " format "\n", (pcb)->hash, __VA_ARGS__) |
| 91 | |
| 92 | #define FDLOG0(level, pcb, msg) \ |
| 93 | os_log_with_type(OS_LOG_DEFAULT, flow_divert_syslog_type_to_oslog_type(level), "(%u): " msg "\n", (pcb)->hash) |
| 94 | |
| 95 | #define FDRETAIN(pcb) if ((pcb) != NULL) OSIncrementAtomic(&(pcb)->ref_count) |
| 96 | #define FDRELEASE(pcb) \ |
| 97 | do { \ |
| 98 | if ((pcb) != NULL && 1 == OSDecrementAtomic(&(pcb)->ref_count)) { \ |
| 99 | flow_divert_pcb_destroy(pcb); \ |
| 100 | } \ |
| 101 | } while (0) |
| 102 | |
| 103 | #define FDGRP_RETAIN(grp) if ((grp) != NULL) OSIncrementAtomic(&(grp)->ref_count) |
| 104 | #define FDGRP_RELEASE(grp) if ((grp) != NULL && 1 == OSDecrementAtomic(&(grp)->ref_count)) flow_divert_group_destroy(grp) |
| 105 | |
| 106 | #define FDLOCK(pcb) lck_mtx_lock(&(pcb)->mtx) |
| 107 | #define FDUNLOCK(pcb) lck_mtx_unlock(&(pcb)->mtx) |
| 108 | |
| 109 | #define FD_CTL_SENDBUFF_SIZE (128 * 1024) |
| 110 | |
| 111 | #define GROUP_BIT_CTL_ENQUEUE_BLOCKED 0 |
| 112 | |
| 113 | #define GROUP_COUNT_MAX 31 |
| 114 | #define FLOW_DIVERT_MAX_NAME_SIZE 4096 |
| 115 | #define FLOW_DIVERT_MAX_KEY_SIZE 1024 |
| 116 | #define FLOW_DIVERT_MAX_TRIE_MEMORY (1024 * 1024) |
| 117 | |
| 118 | struct flow_divert_trie_node { |
| 119 | uint16_t start; |
| 120 | uint16_t length; |
| 121 | uint16_t child_map; |
| 122 | }; |
| 123 | |
| 124 | #define CHILD_MAP_SIZE 256 |
| 125 | #define NULL_TRIE_IDX 0xffff |
| 126 | #define TRIE_NODE(t, i) ((t)->nodes[(i)]) |
| 127 | #define TRIE_CHILD(t, i, b) (((t)->child_maps + (CHILD_MAP_SIZE * TRIE_NODE(t, i).child_map))[(b)]) |
| 128 | #define TRIE_BYTE(t, i) ((t)->bytes[(i)]) |
| 129 | |
| 130 | #define SO_IS_DIVERTED(s) (((s)->so_flags & SOF_FLOW_DIVERT) && (s)->so_fd_pcb != NULL) |
| 131 | |
| 132 | static struct flow_divert_pcb nil_pcb; |
| 133 | |
| 134 | static LCK_ATTR_DECLARE(flow_divert_mtx_attr, 0, 0); |
| 135 | static LCK_GRP_DECLARE(flow_divert_mtx_grp, FLOW_DIVERT_CONTROL_NAME); |
| 136 | static LCK_RW_DECLARE_ATTR(g_flow_divert_group_lck, &flow_divert_mtx_grp, |
| 137 | &flow_divert_mtx_attr); |
| 138 | |
| 139 | static TAILQ_HEAD(_flow_divert_group_list, flow_divert_group) g_flow_divert_in_process_group_list; |
| 140 | |
| 141 | static struct flow_divert_group **g_flow_divert_groups = NULL; |
| 142 | static uint32_t g_active_group_count = 0; |
| 143 | |
| 144 | static errno_t g_init_result = 0; |
| 145 | |
| 146 | static kern_ctl_ref g_flow_divert_kctl_ref = NULL; |
| 147 | |
| 148 | static struct protosw g_flow_divert_in_protosw; |
| 149 | static struct pr_usrreqs g_flow_divert_in_usrreqs; |
| 150 | static struct protosw g_flow_divert_in_udp_protosw; |
| 151 | static struct pr_usrreqs g_flow_divert_in_udp_usrreqs; |
| 152 | static struct ip6protosw g_flow_divert_in6_protosw; |
| 153 | static struct pr_usrreqs g_flow_divert_in6_usrreqs; |
| 154 | static struct ip6protosw g_flow_divert_in6_udp_protosw; |
| 155 | static struct pr_usrreqs g_flow_divert_in6_udp_usrreqs; |
| 156 | |
| 157 | static struct protosw *g_tcp_protosw = NULL; |
| 158 | static struct ip6protosw *g_tcp6_protosw = NULL; |
| 159 | static struct protosw *g_udp_protosw = NULL; |
| 160 | static struct ip6protosw *g_udp6_protosw = NULL; |
| 161 | |
| 162 | static KALLOC_TYPE_DEFINE(flow_divert_group_zone, struct flow_divert_group, |
| 163 | NET_KT_DEFAULT); |
| 164 | static KALLOC_TYPE_DEFINE(flow_divert_pcb_zone, struct flow_divert_pcb, |
| 165 | NET_KT_DEFAULT); |
| 166 | |
| 167 | static errno_t |
| 168 | flow_divert_dup_addr(sa_family_t family, struct sockaddr *addr, struct sockaddr **dup); |
| 169 | |
| 170 | static boolean_t |
| 171 | flow_divert_is_sockaddr_valid(struct sockaddr *addr); |
| 172 | |
| 173 | static int |
| 174 | flow_divert_append_target_endpoint_tlv(mbuf_t connect_packet, struct sockaddr *toaddr); |
| 175 | |
| 176 | struct sockaddr * |
| 177 | flow_divert_get_buffered_target_address(mbuf_t buffer); |
| 178 | |
| 179 | static void |
| 180 | flow_divert_disconnect_socket(struct socket *so, bool is_connected, bool delay_if_needed); |
| 181 | |
| 182 | static void flow_divert_group_destroy(struct flow_divert_group *group); |
| 183 | |
| 184 | static inline uint8_t |
| 185 | flow_divert_syslog_type_to_oslog_type(int syslog_type) |
| 186 | { |
| 187 | switch (syslog_type) { |
| 188 | case LOG_ERR: return OS_LOG_TYPE_ERROR; |
| 189 | case LOG_INFO: return OS_LOG_TYPE_INFO; |
| 190 | case LOG_DEBUG: return OS_LOG_TYPE_DEBUG; |
| 191 | default: return OS_LOG_TYPE_DEFAULT; |
| 192 | } |
| 193 | } |
| 194 | |
| 195 | static inline int |
| 196 | flow_divert_pcb_cmp(const struct flow_divert_pcb *pcb_a, const struct flow_divert_pcb *pcb_b) |
| 197 | { |
| 198 | return memcmp(s1: &pcb_a->hash, s2: &pcb_b->hash, n: sizeof(pcb_a->hash)); |
| 199 | } |
| 200 | |
| 201 | RB_PROTOTYPE(fd_pcb_tree, flow_divert_pcb, rb_link, flow_divert_pcb_cmp); |
| 202 | RB_GENERATE(fd_pcb_tree, flow_divert_pcb, rb_link, flow_divert_pcb_cmp); |
| 203 | |
| 204 | static const char * |
| 205 | flow_divert_packet_type2str(uint8_t packet_type) |
| 206 | { |
| 207 | switch (packet_type) { |
| 208 | case FLOW_DIVERT_PKT_CONNECT: |
| 209 | return "connect" ; |
| 210 | case FLOW_DIVERT_PKT_CONNECT_RESULT: |
| 211 | return "connect result" ; |
| 212 | case FLOW_DIVERT_PKT_DATA: |
| 213 | return "data" ; |
| 214 | case FLOW_DIVERT_PKT_CLOSE: |
| 215 | return "close" ; |
| 216 | case FLOW_DIVERT_PKT_READ_NOTIFY: |
| 217 | return "read notification" ; |
| 218 | case FLOW_DIVERT_PKT_PROPERTIES_UPDATE: |
| 219 | return "properties update" ; |
| 220 | case FLOW_DIVERT_PKT_APP_MAP_CREATE: |
| 221 | return "app map create" ; |
| 222 | default: |
| 223 | return "unknown" ; |
| 224 | } |
| 225 | } |
| 226 | |
| 227 | static struct flow_divert_pcb * |
| 228 | flow_divert_pcb_lookup(uint32_t hash, struct flow_divert_group *group) |
| 229 | { |
| 230 | struct flow_divert_pcb key_item; |
| 231 | struct flow_divert_pcb *fd_cb = NULL; |
| 232 | |
| 233 | key_item.hash = hash; |
| 234 | |
| 235 | lck_rw_lock_shared(lck: &group->lck); |
| 236 | fd_cb = RB_FIND(fd_pcb_tree, &group->pcb_tree, &key_item); |
| 237 | FDRETAIN(fd_cb); |
| 238 | lck_rw_done(lck: &group->lck); |
| 239 | |
| 240 | return fd_cb; |
| 241 | } |
| 242 | |
| 243 | static struct flow_divert_group * |
| 244 | flow_divert_group_lookup(uint32_t ctl_unit, struct flow_divert_pcb *fd_cb) |
| 245 | { |
| 246 | struct flow_divert_group *group = NULL; |
| 247 | lck_rw_lock_shared(lck: &g_flow_divert_group_lck); |
| 248 | if (g_active_group_count == 0) { |
| 249 | if (fd_cb != NULL) { |
| 250 | FDLOG0(LOG_ERR, fd_cb, "No active groups, flow divert cannot be used for this socket" ); |
| 251 | } |
| 252 | } else if (ctl_unit == 0 || (ctl_unit >= GROUP_COUNT_MAX && ctl_unit < FLOW_DIVERT_IN_PROCESS_UNIT_MIN)) { |
| 253 | FDLOG(LOG_ERR, fd_cb, "Cannot lookup group with invalid control unit (%u)" , ctl_unit); |
| 254 | } else if (ctl_unit < FLOW_DIVERT_IN_PROCESS_UNIT_MIN) { |
| 255 | if (g_flow_divert_groups == NULL) { |
| 256 | if (fd_cb != NULL) { |
| 257 | FDLOG0(LOG_ERR, fd_cb, "No active non-in-process groups, flow divert cannot be used for this socket" ); |
| 258 | } |
| 259 | } else { |
| 260 | group = g_flow_divert_groups[ctl_unit]; |
| 261 | if (group == NULL) { |
| 262 | if (fd_cb != NULL) { |
| 263 | FDLOG(LOG_ERR, fd_cb, "Group for control unit %u is NULL, flow divert cannot be used for this socket" , ctl_unit); |
| 264 | } |
| 265 | } else { |
| 266 | FDGRP_RETAIN(group); |
| 267 | } |
| 268 | } |
| 269 | } else { |
| 270 | if (TAILQ_EMPTY(&g_flow_divert_in_process_group_list)) { |
| 271 | if (fd_cb != NULL) { |
| 272 | FDLOG0(LOG_ERR, fd_cb, "No active in-process groups, flow divert cannot be used for this socket" ); |
| 273 | } |
| 274 | } else { |
| 275 | struct flow_divert_group *group_cursor = NULL; |
| 276 | TAILQ_FOREACH(group_cursor, &g_flow_divert_in_process_group_list, chain) { |
| 277 | if (group_cursor->ctl_unit == ctl_unit) { |
| 278 | group = group_cursor; |
| 279 | break; |
| 280 | } |
| 281 | } |
| 282 | if (group == NULL) { |
| 283 | if (fd_cb != NULL) { |
| 284 | FDLOG(LOG_ERR, fd_cb, "Group for control unit %u not found, flow divert cannot be used for this socket" , ctl_unit); |
| 285 | } |
| 286 | } else if (fd_cb != NULL && |
| 287 | (fd_cb->so == NULL || |
| 288 | group_cursor->in_process_pid != fd_cb->so->last_pid)) { |
| 289 | FDLOG(LOG_ERR, fd_cb, "Cannot access group for control unit %u, mismatched PID (%u != %u)" , |
| 290 | ctl_unit, group_cursor->in_process_pid, fd_cb->so ? fd_cb->so->last_pid : 0); |
| 291 | group = NULL; |
| 292 | } else { |
| 293 | FDGRP_RETAIN(group); |
| 294 | } |
| 295 | } |
| 296 | } |
| 297 | lck_rw_done(lck: &g_flow_divert_group_lck); |
| 298 | return group; |
| 299 | } |
| 300 | |
| 301 | static errno_t |
| 302 | flow_divert_pcb_insert(struct flow_divert_pcb *fd_cb, struct flow_divert_group *group) |
| 303 | { |
| 304 | int error = 0; |
| 305 | lck_rw_lock_exclusive(lck: &group->lck); |
| 306 | if (!(group->flags & FLOW_DIVERT_GROUP_FLAG_DEFUNCT)) { |
| 307 | if (NULL == RB_INSERT(fd_pcb_tree, &group->pcb_tree, fd_cb)) { |
| 308 | fd_cb->group = group; |
| 309 | fd_cb->control_group_unit = group->ctl_unit; |
| 310 | FDRETAIN(fd_cb); /* The group now has a reference */ |
| 311 | } else { |
| 312 | FDLOG(LOG_ERR, fd_cb, "Group %u already contains a PCB with hash %u" , group->ctl_unit, fd_cb->hash); |
| 313 | error = EEXIST; |
| 314 | } |
| 315 | } else { |
| 316 | FDLOG(LOG_ERR, fd_cb, "Group %u is defunct, cannot insert" , group->ctl_unit); |
| 317 | error = ENOENT; |
| 318 | } |
| 319 | lck_rw_done(lck: &group->lck); |
| 320 | return error; |
| 321 | } |
| 322 | |
| 323 | static errno_t |
| 324 | flow_divert_add_to_group(struct flow_divert_pcb *fd_cb, uint32_t ctl_unit) |
| 325 | { |
| 326 | errno_t error = 0; |
| 327 | struct flow_divert_group *group = NULL; |
| 328 | static uint32_t g_nextkey = 1; |
| 329 | static uint32_t g_hash_seed = 0; |
| 330 | int try_count = 0; |
| 331 | |
| 332 | group = flow_divert_group_lookup(ctl_unit, fd_cb); |
| 333 | if (group == NULL) { |
| 334 | return ENOENT; |
| 335 | } |
| 336 | |
| 337 | do { |
| 338 | uint32_t key[2]; |
| 339 | uint32_t idx; |
| 340 | |
| 341 | key[0] = g_nextkey++; |
| 342 | key[1] = RandomULong(); |
| 343 | |
| 344 | if (g_hash_seed == 0) { |
| 345 | g_hash_seed = RandomULong(); |
| 346 | } |
| 347 | |
| 348 | error = 0; |
| 349 | fd_cb->hash = net_flowhash(key, sizeof(key), g_hash_seed); |
| 350 | |
| 351 | for (idx = 1; idx < GROUP_COUNT_MAX && error == 0; idx++) { |
| 352 | if (idx == ctl_unit) { |
| 353 | continue; |
| 354 | } |
| 355 | struct flow_divert_group *curr_group = flow_divert_group_lookup(ctl_unit: idx, NULL); |
| 356 | if (curr_group != NULL) { |
| 357 | lck_rw_lock_shared(lck: &curr_group->lck); |
| 358 | if (NULL != RB_FIND(fd_pcb_tree, &curr_group->pcb_tree, fd_cb)) { |
| 359 | error = EEXIST; |
| 360 | } |
| 361 | lck_rw_done(lck: &curr_group->lck); |
| 362 | FDGRP_RELEASE(curr_group); |
| 363 | } |
| 364 | } |
| 365 | |
| 366 | if (error == 0) { |
| 367 | error = flow_divert_pcb_insert(fd_cb, group); |
| 368 | } |
| 369 | } while (error == EEXIST && try_count++ < 3); |
| 370 | |
| 371 | if (error == EEXIST) { |
| 372 | FDLOG0(LOG_ERR, fd_cb, "Failed to create a unique hash" ); |
| 373 | fd_cb->hash = 0; |
| 374 | } |
| 375 | |
| 376 | FDGRP_RELEASE(group); |
| 377 | return error; |
| 378 | } |
| 379 | |
| 380 | static struct flow_divert_pcb * |
| 381 | flow_divert_pcb_create(socket_t so) |
| 382 | { |
| 383 | struct flow_divert_pcb *new_pcb = NULL; |
| 384 | |
| 385 | new_pcb = zalloc_flags(flow_divert_pcb_zone, Z_WAITOK | Z_ZERO); |
| 386 | lck_mtx_init(lck: &new_pcb->mtx, grp: &flow_divert_mtx_grp, attr: &flow_divert_mtx_attr); |
| 387 | new_pcb->so = so; |
| 388 | new_pcb->log_level = nil_pcb.log_level; |
| 389 | |
| 390 | FDRETAIN(new_pcb); /* Represents the socket's reference */ |
| 391 | |
| 392 | return new_pcb; |
| 393 | } |
| 394 | |
| 395 | static void |
| 396 | flow_divert_pcb_destroy(struct flow_divert_pcb *fd_cb) |
| 397 | { |
| 398 | FDLOG(LOG_INFO, fd_cb, "Destroying, app tx %llu, tunnel tx %llu, tunnel rx %llu" , |
| 399 | fd_cb->bytes_written_by_app, fd_cb->bytes_sent, fd_cb->bytes_received); |
| 400 | |
| 401 | if (fd_cb->connect_token != NULL) { |
| 402 | mbuf_freem(mbuf: fd_cb->connect_token); |
| 403 | } |
| 404 | if (fd_cb->connect_packet != NULL) { |
| 405 | mbuf_freem(mbuf: fd_cb->connect_packet); |
| 406 | } |
| 407 | if (fd_cb->app_data != NULL) { |
| 408 | kfree_data(fd_cb->app_data, fd_cb->app_data_length); |
| 409 | } |
| 410 | if (fd_cb->original_remote_endpoint != NULL) { |
| 411 | free_sockaddr(fd_cb->original_remote_endpoint); |
| 412 | } |
| 413 | zfree(flow_divert_pcb_zone, fd_cb); |
| 414 | } |
| 415 | |
| 416 | static void |
| 417 | flow_divert_pcb_remove(struct flow_divert_pcb *fd_cb) |
| 418 | { |
| 419 | if (fd_cb->group != NULL) { |
| 420 | struct flow_divert_group *group = fd_cb->group; |
| 421 | lck_rw_lock_exclusive(lck: &group->lck); |
| 422 | FDLOG(LOG_INFO, fd_cb, "Removing from group %d, ref count = %d" , group->ctl_unit, fd_cb->ref_count); |
| 423 | RB_REMOVE(fd_pcb_tree, &group->pcb_tree, fd_cb); |
| 424 | fd_cb->group = NULL; |
| 425 | FDRELEASE(fd_cb); /* Release the group's reference */ |
| 426 | lck_rw_done(lck: &group->lck); |
| 427 | } |
| 428 | } |
| 429 | |
| 430 | static int |
| 431 | flow_divert_packet_init(struct flow_divert_pcb *fd_cb, uint8_t packet_type, mbuf_t *packet) |
| 432 | { |
| 433 | struct flow_divert_packet_header hdr; |
| 434 | int error = 0; |
| 435 | |
| 436 | error = mbuf_gethdr(how: MBUF_DONTWAIT, type: MBUF_TYPE_HEADER, mbuf: packet); |
| 437 | if (error) { |
| 438 | FDLOG(LOG_ERR, fd_cb, "failed to allocate the header mbuf: %d" , error); |
| 439 | return error; |
| 440 | } |
| 441 | |
| 442 | hdr.packet_type = packet_type; |
| 443 | hdr.conn_id = htonl(fd_cb->hash); |
| 444 | |
| 445 | /* Lay down the header */ |
| 446 | error = mbuf_copyback(mbuf: *packet, offset: 0, length: sizeof(hdr), data: &hdr, how: MBUF_DONTWAIT); |
| 447 | if (error) { |
| 448 | FDLOG(LOG_ERR, fd_cb, "mbuf_copyback(hdr) failed: %d" , error); |
| 449 | mbuf_freem(mbuf: *packet); |
| 450 | *packet = NULL; |
| 451 | return error; |
| 452 | } |
| 453 | |
| 454 | return 0; |
| 455 | } |
| 456 | |
| 457 | static int |
| 458 | flow_divert_packet_append_tlv(mbuf_t packet, uint8_t type, uint32_t length, const void *value) |
| 459 | { |
| 460 | uint32_t net_length = htonl(length); |
| 461 | int error = 0; |
| 462 | |
| 463 | error = mbuf_copyback(mbuf: packet, offset: mbuf_pkthdr_len(mbuf: packet), length: sizeof(type), data: &type, how: MBUF_DONTWAIT); |
| 464 | if (error) { |
| 465 | FDLOG(LOG_ERR, &nil_pcb, "failed to append the type (%d)" , type); |
| 466 | return error; |
| 467 | } |
| 468 | |
| 469 | error = mbuf_copyback(mbuf: packet, offset: mbuf_pkthdr_len(mbuf: packet), length: sizeof(net_length), data: &net_length, how: MBUF_DONTWAIT); |
| 470 | if (error) { |
| 471 | FDLOG(LOG_ERR, &nil_pcb, "failed to append the length (%u)" , length); |
| 472 | return error; |
| 473 | } |
| 474 | |
| 475 | error = mbuf_copyback(mbuf: packet, offset: mbuf_pkthdr_len(mbuf: packet), length, data: value, how: MBUF_DONTWAIT); |
| 476 | if (error) { |
| 477 | FDLOG0(LOG_ERR, &nil_pcb, "failed to append the value" ); |
| 478 | return error; |
| 479 | } |
| 480 | |
| 481 | return error; |
| 482 | } |
| 483 | |
| 484 | static int |
| 485 | flow_divert_packet_find_tlv(mbuf_t packet, int offset, uint8_t type, int *err, int next) |
| 486 | { |
| 487 | size_t cursor = offset; |
| 488 | int error = 0; |
| 489 | uint32_t curr_length; |
| 490 | uint8_t curr_type; |
| 491 | |
| 492 | *err = 0; |
| 493 | |
| 494 | do { |
| 495 | if (!next) { |
| 496 | error = mbuf_copydata(mbuf: packet, offset: cursor, length: sizeof(curr_type), out_data: &curr_type); |
| 497 | if (error) { |
| 498 | *err = ENOENT; |
| 499 | return -1; |
| 500 | } |
| 501 | } else { |
| 502 | next = 0; |
| 503 | curr_type = FLOW_DIVERT_TLV_NIL; |
| 504 | } |
| 505 | |
| 506 | if (curr_type != type) { |
| 507 | cursor += sizeof(curr_type); |
| 508 | error = mbuf_copydata(mbuf: packet, offset: cursor, length: sizeof(curr_length), out_data: &curr_length); |
| 509 | if (error) { |
| 510 | *err = error; |
| 511 | return -1; |
| 512 | } |
| 513 | |
| 514 | cursor += (sizeof(curr_length) + ntohl(curr_length)); |
| 515 | } |
| 516 | } while (curr_type != type); |
| 517 | |
| 518 | return (int)cursor; |
| 519 | } |
| 520 | |
| 521 | static int |
| 522 | flow_divert_packet_get_tlv(mbuf_t packet, int offset, uint8_t type, size_t buff_len, void *buff, uint32_t *val_size) |
| 523 | { |
| 524 | int error = 0; |
| 525 | uint32_t length; |
| 526 | int tlv_offset; |
| 527 | |
| 528 | tlv_offset = flow_divert_packet_find_tlv(packet, offset, type, err: &error, next: 0); |
| 529 | if (tlv_offset < 0) { |
| 530 | return error; |
| 531 | } |
| 532 | |
| 533 | error = mbuf_copydata(mbuf: packet, offset: tlv_offset + sizeof(type), length: sizeof(length), out_data: &length); |
| 534 | if (error) { |
| 535 | return error; |
| 536 | } |
| 537 | |
| 538 | length = ntohl(length); |
| 539 | |
| 540 | uint32_t data_offset = tlv_offset + sizeof(type) + sizeof(length); |
| 541 | |
| 542 | if (length > (mbuf_pkthdr_len(mbuf: packet) - data_offset)) { |
| 543 | FDLOG(LOG_ERR, &nil_pcb, "Length of %u TLV (%u) is larger than remaining packet data (%lu)" , type, length, (mbuf_pkthdr_len(packet) - data_offset)); |
| 544 | return EINVAL; |
| 545 | } |
| 546 | |
| 547 | if (val_size != NULL) { |
| 548 | *val_size = length; |
| 549 | } |
| 550 | |
| 551 | if (buff != NULL && buff_len > 0) { |
| 552 | memset(s: buff, c: 0, n: buff_len); |
| 553 | size_t to_copy = (length < buff_len) ? length : buff_len; |
| 554 | error = mbuf_copydata(mbuf: packet, offset: data_offset, length: to_copy, out_data: buff); |
| 555 | if (error) { |
| 556 | return error; |
| 557 | } |
| 558 | } |
| 559 | |
| 560 | return 0; |
| 561 | } |
| 562 | |
| 563 | static int |
| 564 | flow_divert_packet_compute_hmac(mbuf_t packet, struct flow_divert_group *group, uint8_t *hmac) |
| 565 | { |
| 566 | mbuf_t curr_mbuf = packet; |
| 567 | |
| 568 | if (g_crypto_funcs == NULL || group->token_key == NULL) { |
| 569 | return ENOPROTOOPT; |
| 570 | } |
| 571 | |
| 572 | cchmac_di_decl(g_crypto_funcs->ccsha1_di, hmac_ctx); |
| 573 | g_crypto_funcs->cchmac_init_fn(g_crypto_funcs->ccsha1_di, hmac_ctx, group->token_key_size, group->token_key); |
| 574 | |
| 575 | while (curr_mbuf != NULL) { |
| 576 | g_crypto_funcs->cchmac_update_fn(g_crypto_funcs->ccsha1_di, hmac_ctx, mbuf_len(mbuf: curr_mbuf), mbuf_data(mbuf: curr_mbuf)); |
| 577 | curr_mbuf = mbuf_next(mbuf: curr_mbuf); |
| 578 | } |
| 579 | |
| 580 | g_crypto_funcs->cchmac_final_fn(g_crypto_funcs->ccsha1_di, hmac_ctx, hmac); |
| 581 | |
| 582 | return 0; |
| 583 | } |
| 584 | |
| 585 | static int |
| 586 | flow_divert_packet_verify_hmac(mbuf_t packet, uint32_t ctl_unit) |
| 587 | { |
| 588 | int error = 0; |
| 589 | struct flow_divert_group *group = NULL; |
| 590 | int hmac_offset; |
| 591 | uint8_t packet_hmac[SHA_DIGEST_LENGTH]; |
| 592 | uint8_t computed_hmac[SHA_DIGEST_LENGTH]; |
| 593 | mbuf_t tail; |
| 594 | |
| 595 | group = flow_divert_group_lookup(ctl_unit, NULL); |
| 596 | if (group == NULL) { |
| 597 | FDLOG(LOG_ERR, &nil_pcb, "Failed to lookup group for control unit %u" , ctl_unit); |
| 598 | return ENOPROTOOPT; |
| 599 | } |
| 600 | |
| 601 | lck_rw_lock_shared(lck: &group->lck); |
| 602 | |
| 603 | if (group->token_key == NULL) { |
| 604 | error = ENOPROTOOPT; |
| 605 | goto done; |
| 606 | } |
| 607 | |
| 608 | hmac_offset = flow_divert_packet_find_tlv(packet, offset: 0, FLOW_DIVERT_TLV_HMAC, err: &error, next: 0); |
| 609 | if (hmac_offset < 0) { |
| 610 | goto done; |
| 611 | } |
| 612 | |
| 613 | error = flow_divert_packet_get_tlv(packet, offset: hmac_offset, FLOW_DIVERT_TLV_HMAC, buff_len: sizeof(packet_hmac), buff: packet_hmac, NULL); |
| 614 | if (error) { |
| 615 | goto done; |
| 616 | } |
| 617 | |
| 618 | /* Chop off the HMAC TLV */ |
| 619 | error = mbuf_split(src: packet, offset: hmac_offset, how: MBUF_WAITOK, new_mbuf: &tail); |
| 620 | if (error) { |
| 621 | goto done; |
| 622 | } |
| 623 | |
| 624 | mbuf_free(mbuf: tail); |
| 625 | |
| 626 | error = flow_divert_packet_compute_hmac(packet, group, hmac: computed_hmac); |
| 627 | if (error) { |
| 628 | goto done; |
| 629 | } |
| 630 | |
| 631 | if (cc_cmp_safe(num: sizeof(packet_hmac), ptr1: packet_hmac, ptr2: computed_hmac)) { |
| 632 | FDLOG0(LOG_WARNING, &nil_pcb, "HMAC in token does not match computed HMAC" ); |
| 633 | error = EINVAL; |
| 634 | goto done; |
| 635 | } |
| 636 | |
| 637 | done: |
| 638 | if (group != NULL) { |
| 639 | lck_rw_done(lck: &group->lck); |
| 640 | FDGRP_RELEASE(group); |
| 641 | } |
| 642 | return error; |
| 643 | } |
| 644 | |
| 645 | static void |
| 646 | flow_divert_add_data_statistics(struct flow_divert_pcb *fd_cb, size_t data_len, Boolean send) |
| 647 | { |
| 648 | struct inpcb *inp = NULL; |
| 649 | struct ifnet *ifp = NULL; |
| 650 | Boolean cell = FALSE; |
| 651 | Boolean wifi = FALSE; |
| 652 | Boolean wired = FALSE; |
| 653 | |
| 654 | inp = sotoinpcb(fd_cb->so); |
| 655 | if (inp == NULL) { |
| 656 | return; |
| 657 | } |
| 658 | |
| 659 | if (inp->inp_vflag & INP_IPV4) { |
| 660 | ifp = inp->inp_last_outifp; |
| 661 | } else if (inp->inp_vflag & INP_IPV6) { |
| 662 | ifp = inp->in6p_last_outifp; |
| 663 | } |
| 664 | if (ifp != NULL) { |
| 665 | cell = IFNET_IS_CELLULAR(ifp); |
| 666 | wifi = (!cell && IFNET_IS_WIFI(ifp)); |
| 667 | wired = (!wifi && IFNET_IS_WIRED(ifp)); |
| 668 | } |
| 669 | |
| 670 | if (send) { |
| 671 | INP_ADD_STAT(inp, cell, wifi, wired, txpackets, 1); |
| 672 | INP_ADD_STAT(inp, cell, wifi, wired, txbytes, data_len); |
| 673 | } else { |
| 674 | INP_ADD_STAT(inp, cell, wifi, wired, rxpackets, 1); |
| 675 | INP_ADD_STAT(inp, cell, wifi, wired, rxbytes, data_len); |
| 676 | } |
| 677 | inp_set_activity_bitmap(inp); |
| 678 | } |
| 679 | |
| 680 | static errno_t |
| 681 | flow_divert_check_no_cellular(struct flow_divert_pcb *fd_cb) |
| 682 | { |
| 683 | struct inpcb *inp = sotoinpcb(fd_cb->so); |
| 684 | if (INP_NO_CELLULAR(inp)) { |
| 685 | struct ifnet *ifp = NULL; |
| 686 | if (inp->inp_vflag & INP_IPV4) { |
| 687 | ifp = inp->inp_last_outifp; |
| 688 | } else if (inp->inp_vflag & INP_IPV6) { |
| 689 | ifp = inp->in6p_last_outifp; |
| 690 | } |
| 691 | if (ifp != NULL && IFNET_IS_CELLULAR(ifp)) { |
| 692 | FDLOG0(LOG_ERR, fd_cb, "Cellular is denied" ); |
| 693 | return EHOSTUNREACH; |
| 694 | } |
| 695 | } |
| 696 | return 0; |
| 697 | } |
| 698 | |
| 699 | static errno_t |
| 700 | flow_divert_check_no_expensive(struct flow_divert_pcb *fd_cb) |
| 701 | { |
| 702 | struct inpcb *inp = sotoinpcb(fd_cb->so); |
| 703 | if (INP_NO_EXPENSIVE(inp)) { |
| 704 | struct ifnet *ifp = NULL; |
| 705 | if (inp->inp_vflag & INP_IPV4) { |
| 706 | ifp = inp->inp_last_outifp; |
| 707 | } else if (inp->inp_vflag & INP_IPV6) { |
| 708 | ifp = inp->in6p_last_outifp; |
| 709 | } |
| 710 | if (ifp != NULL && IFNET_IS_EXPENSIVE(ifp)) { |
| 711 | FDLOG0(LOG_ERR, fd_cb, "Expensive is denied" ); |
| 712 | return EHOSTUNREACH; |
| 713 | } |
| 714 | } |
| 715 | return 0; |
| 716 | } |
| 717 | |
| 718 | static errno_t |
| 719 | flow_divert_check_no_constrained(struct flow_divert_pcb *fd_cb) |
| 720 | { |
| 721 | struct inpcb *inp = sotoinpcb(fd_cb->so); |
| 722 | if (INP_NO_CONSTRAINED(inp)) { |
| 723 | struct ifnet *ifp = NULL; |
| 724 | if (inp->inp_vflag & INP_IPV4) { |
| 725 | ifp = inp->inp_last_outifp; |
| 726 | } else if (inp->inp_vflag & INP_IPV6) { |
| 727 | ifp = inp->in6p_last_outifp; |
| 728 | } |
| 729 | if (ifp != NULL && IFNET_IS_CONSTRAINED(ifp)) { |
| 730 | FDLOG0(LOG_ERR, fd_cb, "Constrained is denied" ); |
| 731 | return EHOSTUNREACH; |
| 732 | } |
| 733 | } |
| 734 | return 0; |
| 735 | } |
| 736 | |
| 737 | static void |
| 738 | flow_divert_update_closed_state(struct flow_divert_pcb *fd_cb, int how, bool tunnel, bool flush_snd) |
| 739 | { |
| 740 | if (how != SHUT_RD) { |
| 741 | fd_cb->flags |= FLOW_DIVERT_WRITE_CLOSED; |
| 742 | if (tunnel || !(fd_cb->flags & FLOW_DIVERT_CONNECT_STARTED)) { |
| 743 | fd_cb->flags |= FLOW_DIVERT_TUNNEL_WR_CLOSED; |
| 744 | if (flush_snd) { |
| 745 | /* If the tunnel is not accepting writes any more, then flush the send buffer */ |
| 746 | sbflush(sb: &fd_cb->so->so_snd); |
| 747 | } |
| 748 | } |
| 749 | } |
| 750 | if (how != SHUT_WR) { |
| 751 | fd_cb->flags |= FLOW_DIVERT_READ_CLOSED; |
| 752 | if (tunnel || !(fd_cb->flags & FLOW_DIVERT_CONNECT_STARTED)) { |
| 753 | fd_cb->flags |= FLOW_DIVERT_TUNNEL_RD_CLOSED; |
| 754 | } |
| 755 | } |
| 756 | } |
| 757 | |
| 758 | static uint16_t |
| 759 | trie_node_alloc(struct flow_divert_trie *trie) |
| 760 | { |
| 761 | if (trie->nodes_free_next < trie->nodes_count) { |
| 762 | uint16_t node_idx = trie->nodes_free_next++; |
| 763 | TRIE_NODE(trie, node_idx).child_map = NULL_TRIE_IDX; |
| 764 | return node_idx; |
| 765 | } else { |
| 766 | return NULL_TRIE_IDX; |
| 767 | } |
| 768 | } |
| 769 | |
| 770 | static uint16_t |
| 771 | trie_child_map_alloc(struct flow_divert_trie *trie) |
| 772 | { |
| 773 | if (trie->child_maps_free_next < trie->child_maps_count) { |
| 774 | return trie->child_maps_free_next++; |
| 775 | } else { |
| 776 | return NULL_TRIE_IDX; |
| 777 | } |
| 778 | } |
| 779 | |
| 780 | static uint16_t |
| 781 | trie_bytes_move(struct flow_divert_trie *trie, uint16_t bytes_idx, size_t bytes_size) |
| 782 | { |
| 783 | uint16_t start = trie->bytes_free_next; |
| 784 | if (start + bytes_size <= trie->bytes_count) { |
| 785 | if (start != bytes_idx) { |
| 786 | memmove(dst: &TRIE_BYTE(trie, start), src: &TRIE_BYTE(trie, bytes_idx), n: bytes_size); |
| 787 | } |
| 788 | trie->bytes_free_next += bytes_size; |
| 789 | return start; |
| 790 | } else { |
| 791 | return NULL_TRIE_IDX; |
| 792 | } |
| 793 | } |
| 794 | |
| 795 | static uint16_t |
| 796 | flow_divert_trie_insert(struct flow_divert_trie *trie, uint16_t string_start, size_t string_len) |
| 797 | { |
| 798 | uint16_t current = trie->root; |
| 799 | uint16_t child = trie->root; |
| 800 | uint16_t string_end = string_start + (uint16_t)string_len; |
| 801 | uint16_t string_idx = string_start; |
| 802 | uint16_t string_remainder = (uint16_t)string_len; |
| 803 | |
| 804 | while (child != NULL_TRIE_IDX) { |
| 805 | uint16_t parent = current; |
| 806 | uint16_t node_idx; |
| 807 | uint16_t current_end; |
| 808 | |
| 809 | current = child; |
| 810 | child = NULL_TRIE_IDX; |
| 811 | |
| 812 | current_end = TRIE_NODE(trie, current).start + TRIE_NODE(trie, current).length; |
| 813 | |
| 814 | for (node_idx = TRIE_NODE(trie, current).start; |
| 815 | node_idx < current_end && |
| 816 | string_idx < string_end && |
| 817 | TRIE_BYTE(trie, node_idx) == TRIE_BYTE(trie, string_idx); |
| 818 | node_idx++, string_idx++) { |
| 819 | ; |
| 820 | } |
| 821 | |
| 822 | string_remainder = string_end - string_idx; |
| 823 | |
| 824 | if (node_idx < (TRIE_NODE(trie, current).start + TRIE_NODE(trie, current).length)) { |
| 825 | /* |
| 826 | * We did not reach the end of the current node's string. |
| 827 | * We need to split the current node into two: |
| 828 | * 1. A new node that contains the prefix of the node that matches |
| 829 | * the prefix of the string being inserted. |
| 830 | * 2. The current node modified to point to the remainder |
| 831 | * of the current node's string. |
| 832 | */ |
| 833 | uint16_t prefix = trie_node_alloc(trie); |
| 834 | if (prefix == NULL_TRIE_IDX) { |
| 835 | FDLOG0(LOG_ERR, &nil_pcb, "Ran out of trie nodes while splitting an existing node" ); |
| 836 | return NULL_TRIE_IDX; |
| 837 | } |
| 838 | |
| 839 | /* |
| 840 | * Prefix points to the portion of the current nodes's string that has matched |
| 841 | * the input string thus far. |
| 842 | */ |
| 843 | TRIE_NODE(trie, prefix).start = TRIE_NODE(trie, current).start; |
| 844 | TRIE_NODE(trie, prefix).length = (node_idx - TRIE_NODE(trie, current).start); |
| 845 | |
| 846 | /* |
| 847 | * Prefix has the current node as the child corresponding to the first byte |
| 848 | * after the split. |
| 849 | */ |
| 850 | TRIE_NODE(trie, prefix).child_map = trie_child_map_alloc(trie); |
| 851 | if (TRIE_NODE(trie, prefix).child_map == NULL_TRIE_IDX) { |
| 852 | FDLOG0(LOG_ERR, &nil_pcb, "Ran out of child maps while splitting an existing node" ); |
| 853 | return NULL_TRIE_IDX; |
| 854 | } |
| 855 | TRIE_CHILD(trie, prefix, TRIE_BYTE(trie, node_idx)) = current; |
| 856 | |
| 857 | /* Parent has the prefix as the child correspoding to the first byte in the prefix */ |
| 858 | TRIE_CHILD(trie, parent, TRIE_BYTE(trie, TRIE_NODE(trie, prefix).start)) = prefix; |
| 859 | |
| 860 | /* Current node is adjusted to point to the remainder */ |
| 861 | TRIE_NODE(trie, current).start = node_idx; |
| 862 | TRIE_NODE(trie, current).length -= TRIE_NODE(trie, prefix).length; |
| 863 | |
| 864 | /* We want to insert the new leaf (if any) as a child of the prefix */ |
| 865 | current = prefix; |
| 866 | } |
| 867 | |
| 868 | if (string_remainder > 0) { |
| 869 | /* |
| 870 | * We still have bytes in the string that have not been matched yet. |
| 871 | * If the current node has children, iterate to the child corresponding |
| 872 | * to the next byte in the string. |
| 873 | */ |
| 874 | if (TRIE_NODE(trie, current).child_map != NULL_TRIE_IDX) { |
| 875 | child = TRIE_CHILD(trie, current, TRIE_BYTE(trie, string_idx)); |
| 876 | } |
| 877 | } |
| 878 | } /* while (child != NULL_TRIE_IDX) */ |
| 879 | |
| 880 | if (string_remainder > 0) { |
| 881 | /* Add a new leaf containing the remainder of the string */ |
| 882 | uint16_t leaf = trie_node_alloc(trie); |
| 883 | if (leaf == NULL_TRIE_IDX) { |
| 884 | FDLOG0(LOG_ERR, &nil_pcb, "Ran out of trie nodes while inserting a new leaf" ); |
| 885 | return NULL_TRIE_IDX; |
| 886 | } |
| 887 | |
| 888 | TRIE_NODE(trie, leaf).start = trie_bytes_move(trie, bytes_idx: string_idx, bytes_size: string_remainder); |
| 889 | if (TRIE_NODE(trie, leaf).start == NULL_TRIE_IDX) { |
| 890 | FDLOG0(LOG_ERR, &nil_pcb, "Ran out of bytes while inserting a new leaf" ); |
| 891 | return NULL_TRIE_IDX; |
| 892 | } |
| 893 | TRIE_NODE(trie, leaf).length = string_remainder; |
| 894 | |
| 895 | /* Set the new leaf as the child of the current node */ |
| 896 | if (TRIE_NODE(trie, current).child_map == NULL_TRIE_IDX) { |
| 897 | TRIE_NODE(trie, current).child_map = trie_child_map_alloc(trie); |
| 898 | if (TRIE_NODE(trie, current).child_map == NULL_TRIE_IDX) { |
| 899 | FDLOG0(LOG_ERR, &nil_pcb, "Ran out of child maps while inserting a new leaf" ); |
| 900 | return NULL_TRIE_IDX; |
| 901 | } |
| 902 | } |
| 903 | TRIE_CHILD(trie, current, TRIE_BYTE(trie, TRIE_NODE(trie, leaf).start)) = leaf; |
| 904 | current = leaf; |
| 905 | } /* else duplicate or this string is a prefix of one of the existing strings */ |
| 906 | |
| 907 | return current; |
| 908 | } |
| 909 | |
| 910 | #define APPLE_WEBCLIP_ID_PREFIX "com.apple.webapp" |
| 911 | static uint16_t |
| 912 | flow_divert_trie_search(struct flow_divert_trie *trie, const uint8_t *string_bytes) |
| 913 | { |
| 914 | uint16_t current = trie->root; |
| 915 | uint16_t string_idx = 0; |
| 916 | |
| 917 | while (current != NULL_TRIE_IDX) { |
| 918 | uint16_t next = NULL_TRIE_IDX; |
| 919 | uint16_t node_end = TRIE_NODE(trie, current).start + TRIE_NODE(trie, current).length; |
| 920 | uint16_t node_idx; |
| 921 | |
| 922 | for (node_idx = TRIE_NODE(trie, current).start; |
| 923 | node_idx < node_end && string_bytes[string_idx] != '\0' && string_bytes[string_idx] == TRIE_BYTE(trie, node_idx); |
| 924 | node_idx++, string_idx++) { |
| 925 | ; |
| 926 | } |
| 927 | |
| 928 | if (node_idx == node_end) { |
| 929 | if (string_bytes[string_idx] == '\0') { |
| 930 | return current; /* Got an exact match */ |
| 931 | } else if (string_idx == strlen(APPLE_WEBCLIP_ID_PREFIX) && |
| 932 | 0 == strncmp(s1: (const char *)string_bytes, APPLE_WEBCLIP_ID_PREFIX, n: string_idx)) { |
| 933 | return current; /* Got an apple webclip id prefix match */ |
| 934 | } else if (TRIE_NODE(trie, current).child_map != NULL_TRIE_IDX) { |
| 935 | next = TRIE_CHILD(trie, current, string_bytes[string_idx]); |
| 936 | } |
| 937 | } |
| 938 | current = next; |
| 939 | } |
| 940 | |
| 941 | return NULL_TRIE_IDX; |
| 942 | } |
| 943 | |
| 944 | struct uuid_search_info { |
| 945 | uuid_t target_uuid; |
| 946 | char *found_signing_id; |
| 947 | boolean_t found_multiple_signing_ids; |
| 948 | proc_t found_proc; |
| 949 | }; |
| 950 | |
| 951 | static int |
| 952 | flow_divert_find_proc_by_uuid_callout(proc_t p, void *arg) |
| 953 | { |
| 954 | struct uuid_search_info *info = (struct uuid_search_info *)arg; |
| 955 | int result = PROC_RETURNED_DONE; /* By default, we didn't find the process */ |
| 956 | |
| 957 | if (info->found_signing_id != NULL) { |
| 958 | if (!info->found_multiple_signing_ids) { |
| 959 | /* All processes that were found had the same signing identifier, so just claim this first one and be done. */ |
| 960 | info->found_proc = p; |
| 961 | result = PROC_CLAIMED_DONE; |
| 962 | } else { |
| 963 | uuid_string_t uuid_str; |
| 964 | uuid_unparse(uu: info->target_uuid, out: uuid_str); |
| 965 | FDLOG(LOG_WARNING, &nil_pcb, "Found multiple processes with UUID %s with different signing identifiers" , uuid_str); |
| 966 | } |
| 967 | kfree_data(info->found_signing_id, strlen(info->found_signing_id) + 1); |
| 968 | info->found_signing_id = NULL; |
| 969 | } |
| 970 | |
| 971 | if (result == PROC_RETURNED_DONE) { |
| 972 | uuid_string_t uuid_str; |
| 973 | uuid_unparse(uu: info->target_uuid, out: uuid_str); |
| 974 | FDLOG(LOG_WARNING, &nil_pcb, "Failed to find a process with UUID %s" , uuid_str); |
| 975 | } |
| 976 | |
| 977 | return result; |
| 978 | } |
| 979 | |
| 980 | static int |
| 981 | flow_divert_find_proc_by_uuid_filter(proc_t p, void *arg) |
| 982 | { |
| 983 | struct uuid_search_info *info = (struct uuid_search_info *)arg; |
| 984 | int include = 0; |
| 985 | |
| 986 | if (info->found_multiple_signing_ids) { |
| 987 | return include; |
| 988 | } |
| 989 | |
| 990 | include = (uuid_compare(uu1: proc_executableuuid_addr(p), uu2: info->target_uuid) == 0); |
| 991 | if (include) { |
| 992 | const char *signing_id = cs_identity_get(p); |
| 993 | if (signing_id != NULL) { |
| 994 | FDLOG(LOG_INFO, &nil_pcb, "Found process %d with signing identifier %s" , proc_getpid(p), signing_id); |
| 995 | size_t signing_id_size = strlen(s: signing_id) + 1; |
| 996 | if (info->found_signing_id == NULL) { |
| 997 | info->found_signing_id = kalloc_data(signing_id_size, Z_WAITOK); |
| 998 | memcpy(dst: info->found_signing_id, src: signing_id, n: signing_id_size); |
| 999 | } else if (memcmp(s1: signing_id, s2: info->found_signing_id, n: signing_id_size)) { |
| 1000 | info->found_multiple_signing_ids = TRUE; |
| 1001 | } |
| 1002 | } else { |
| 1003 | info->found_multiple_signing_ids = TRUE; |
| 1004 | } |
| 1005 | include = !info->found_multiple_signing_ids; |
| 1006 | } |
| 1007 | |
| 1008 | return include; |
| 1009 | } |
| 1010 | |
| 1011 | static proc_t |
| 1012 | flow_divert_find_proc_by_uuid(uuid_t uuid) |
| 1013 | { |
| 1014 | struct uuid_search_info info; |
| 1015 | |
| 1016 | if (LOG_INFO <= nil_pcb.log_level) { |
| 1017 | uuid_string_t uuid_str; |
| 1018 | uuid_unparse(uu: uuid, out: uuid_str); |
| 1019 | FDLOG(LOG_INFO, &nil_pcb, "Looking for process with UUID %s" , uuid_str); |
| 1020 | } |
| 1021 | |
| 1022 | memset(s: &info, c: 0, n: sizeof(info)); |
| 1023 | info.found_proc = PROC_NULL; |
| 1024 | uuid_copy(dst: info.target_uuid, src: uuid); |
| 1025 | |
| 1026 | proc_iterate(PROC_ALLPROCLIST, callout: flow_divert_find_proc_by_uuid_callout, arg: &info, filterfn: flow_divert_find_proc_by_uuid_filter, filterarg: &info); |
| 1027 | |
| 1028 | return info.found_proc; |
| 1029 | } |
| 1030 | |
| 1031 | static int |
| 1032 | flow_divert_add_proc_info(struct flow_divert_pcb *fd_cb, proc_t proc, const char *signing_id, mbuf_t connect_packet, bool is_effective) |
| 1033 | { |
| 1034 | int error = 0; |
| 1035 | uint8_t *cdhash = NULL; |
| 1036 | audit_token_t audit_token = {}; |
| 1037 | const char *proc_cs_id = signing_id; |
| 1038 | |
| 1039 | proc_lock(proc); |
| 1040 | |
| 1041 | if (proc_cs_id == NULL) { |
| 1042 | if (proc_getcsflags(proc) & (CS_VALID | CS_DEBUGGED)) { |
| 1043 | proc_cs_id = cs_identity_get(proc); |
| 1044 | } else { |
| 1045 | FDLOG0(LOG_ERR, fd_cb, "Signature of proc is invalid" ); |
| 1046 | } |
| 1047 | } |
| 1048 | |
| 1049 | if (is_effective) { |
| 1050 | lck_rw_lock_shared(lck: &fd_cb->group->lck); |
| 1051 | if (!(fd_cb->group->flags & FLOW_DIVERT_GROUP_FLAG_NO_APP_MAP)) { |
| 1052 | if (proc_cs_id != NULL) { |
| 1053 | uint16_t result = flow_divert_trie_search(trie: &fd_cb->group->signing_id_trie, string_bytes: (const uint8_t *)proc_cs_id); |
| 1054 | if (result == NULL_TRIE_IDX) { |
| 1055 | FDLOG(LOG_WARNING, fd_cb, "%s did not match" , proc_cs_id); |
| 1056 | error = EPERM; |
| 1057 | } else { |
| 1058 | FDLOG(LOG_INFO, fd_cb, "%s matched" , proc_cs_id); |
| 1059 | } |
| 1060 | } else { |
| 1061 | error = EPERM; |
| 1062 | } |
| 1063 | } |
| 1064 | lck_rw_done(lck: &fd_cb->group->lck); |
| 1065 | } |
| 1066 | |
| 1067 | if (error != 0) { |
| 1068 | goto done; |
| 1069 | } |
| 1070 | |
| 1071 | /* |
| 1072 | * If signing_id is not NULL then it came from the flow divert token and will be added |
| 1073 | * as part of the token, so there is no need to add it here. |
| 1074 | */ |
| 1075 | if (signing_id == NULL && proc_cs_id != NULL) { |
| 1076 | error = flow_divert_packet_append_tlv(packet: connect_packet, |
| 1077 | type: (is_effective ? FLOW_DIVERT_TLV_SIGNING_ID : FLOW_DIVERT_TLV_APP_REAL_SIGNING_ID), |
| 1078 | length: (uint32_t)strlen(s: proc_cs_id), |
| 1079 | value: proc_cs_id); |
| 1080 | if (error != 0) { |
| 1081 | FDLOG(LOG_ERR, fd_cb, "failed to append the signing ID: %d" , error); |
| 1082 | goto done; |
| 1083 | } |
| 1084 | } |
| 1085 | |
| 1086 | cdhash = cs_get_cdhash(proc); |
| 1087 | if (cdhash != NULL) { |
| 1088 | error = flow_divert_packet_append_tlv(packet: connect_packet, |
| 1089 | type: (is_effective ? FLOW_DIVERT_TLV_CDHASH : FLOW_DIVERT_TLV_APP_REAL_CDHASH), |
| 1090 | SHA1_RESULTLEN, |
| 1091 | value: cdhash); |
| 1092 | if (error) { |
| 1093 | FDLOG(LOG_ERR, fd_cb, "failed to append the cdhash: %d" , error); |
| 1094 | goto done; |
| 1095 | } |
| 1096 | } else { |
| 1097 | FDLOG0(LOG_ERR, fd_cb, "failed to get the cdhash" ); |
| 1098 | } |
| 1099 | |
| 1100 | task_t task = proc_task(proc); |
| 1101 | if (task != TASK_NULL) { |
| 1102 | mach_msg_type_number_t count = TASK_AUDIT_TOKEN_COUNT; |
| 1103 | kern_return_t rc = task_info(task, TASK_AUDIT_TOKEN, task_info_out: (task_info_t)&audit_token, task_info_count: &count); |
| 1104 | if (rc == KERN_SUCCESS) { |
| 1105 | int append_error = flow_divert_packet_append_tlv(packet: connect_packet, |
| 1106 | type: (is_effective ? FLOW_DIVERT_TLV_APP_AUDIT_TOKEN : FLOW_DIVERT_TLV_APP_REAL_AUDIT_TOKEN), |
| 1107 | length: sizeof(audit_token_t), |
| 1108 | value: &audit_token); |
| 1109 | if (append_error) { |
| 1110 | FDLOG(LOG_ERR, fd_cb, "failed to append app audit token: %d" , append_error); |
| 1111 | } |
| 1112 | } |
| 1113 | } |
| 1114 | |
| 1115 | done: |
| 1116 | proc_unlock(proc); |
| 1117 | |
| 1118 | return error; |
| 1119 | } |
| 1120 | |
| 1121 | static int |
| 1122 | flow_divert_add_all_proc_info(struct flow_divert_pcb *fd_cb, struct socket *so, proc_t proc, const char *signing_id, mbuf_t connect_packet) |
| 1123 | { |
| 1124 | int error = 0; |
| 1125 | proc_t effective_proc = PROC_NULL; |
| 1126 | proc_t responsible_proc = PROC_NULL; |
| 1127 | proc_t real_proc = proc_find(pid: so->last_pid); |
| 1128 | bool release_real_proc = true; |
| 1129 | |
| 1130 | proc_t src_proc = PROC_NULL; |
| 1131 | proc_t real_src_proc = PROC_NULL; |
| 1132 | |
| 1133 | if (real_proc == PROC_NULL) { |
| 1134 | FDLOG(LOG_ERR, fd_cb, "failed to find the real proc record for %d" , so->last_pid); |
| 1135 | release_real_proc = false; |
| 1136 | real_proc = proc; |
| 1137 | if (real_proc == PROC_NULL) { |
| 1138 | real_proc = current_proc(); |
| 1139 | } |
| 1140 | } |
| 1141 | |
| 1142 | if (so->so_flags & SOF_DELEGATED) { |
| 1143 | if (proc_getpid(real_proc) != so->e_pid) { |
| 1144 | effective_proc = proc_find(pid: so->e_pid); |
| 1145 | } else if (uuid_compare(uu1: proc_executableuuid_addr(real_proc), uu2: so->e_uuid)) { |
| 1146 | effective_proc = flow_divert_find_proc_by_uuid(uuid: so->e_uuid); |
| 1147 | } |
| 1148 | } |
| 1149 | |
| 1150 | #if defined(XNU_TARGET_OS_OSX) |
| 1151 | lck_rw_lock_shared(lck: &fd_cb->group->lck); |
| 1152 | if (!(fd_cb->group->flags & FLOW_DIVERT_GROUP_FLAG_NO_APP_MAP)) { |
| 1153 | if (so->so_rpid > 0) { |
| 1154 | responsible_proc = proc_find(pid: so->so_rpid); |
| 1155 | } |
| 1156 | } |
| 1157 | lck_rw_done(lck: &fd_cb->group->lck); |
| 1158 | #endif |
| 1159 | |
| 1160 | real_src_proc = real_proc; |
| 1161 | |
| 1162 | if (responsible_proc != PROC_NULL) { |
| 1163 | src_proc = responsible_proc; |
| 1164 | if (effective_proc != NULL) { |
| 1165 | real_src_proc = effective_proc; |
| 1166 | } |
| 1167 | } else if (effective_proc != PROC_NULL) { |
| 1168 | src_proc = effective_proc; |
| 1169 | } else { |
| 1170 | src_proc = real_proc; |
| 1171 | } |
| 1172 | |
| 1173 | error = flow_divert_add_proc_info(fd_cb, proc: src_proc, signing_id, connect_packet, true); |
| 1174 | if (error != 0) { |
| 1175 | goto done; |
| 1176 | } |
| 1177 | |
| 1178 | if (real_src_proc != NULL && real_src_proc != src_proc) { |
| 1179 | error = flow_divert_add_proc_info(fd_cb, proc: real_src_proc, NULL, connect_packet, false); |
| 1180 | if (error != 0) { |
| 1181 | goto done; |
| 1182 | } |
| 1183 | } |
| 1184 | |
| 1185 | done: |
| 1186 | if (responsible_proc != PROC_NULL) { |
| 1187 | proc_rele(p: responsible_proc); |
| 1188 | } |
| 1189 | |
| 1190 | if (effective_proc != PROC_NULL) { |
| 1191 | proc_rele(p: effective_proc); |
| 1192 | } |
| 1193 | |
| 1194 | if (real_proc != PROC_NULL && release_real_proc) { |
| 1195 | proc_rele(p: real_proc); |
| 1196 | } |
| 1197 | |
| 1198 | return error; |
| 1199 | } |
| 1200 | |
| 1201 | static int |
| 1202 | flow_divert_send_packet(struct flow_divert_pcb *fd_cb, mbuf_t packet) |
| 1203 | { |
| 1204 | int error; |
| 1205 | |
| 1206 | if (fd_cb->group == NULL) { |
| 1207 | FDLOG0(LOG_INFO, fd_cb, "no provider, cannot send packet" ); |
| 1208 | flow_divert_update_closed_state(fd_cb, SHUT_RDWR, true, false); |
| 1209 | flow_divert_disconnect_socket(so: fd_cb->so, is_connected: !(fd_cb->flags & FLOW_DIVERT_IMPLICIT_CONNECT), false); |
| 1210 | if (SOCK_TYPE(fd_cb->so) == SOCK_STREAM) { |
| 1211 | error = ECONNABORTED; |
| 1212 | } else { |
| 1213 | error = EHOSTUNREACH; |
| 1214 | } |
| 1215 | fd_cb->so->so_error = (uint16_t)error; |
| 1216 | return error; |
| 1217 | } |
| 1218 | |
| 1219 | lck_rw_lock_shared(lck: &fd_cb->group->lck); |
| 1220 | |
| 1221 | if (MBUFQ_EMPTY(&fd_cb->group->send_queue)) { |
| 1222 | error = ctl_enqueuembuf(kctlref: g_flow_divert_kctl_ref, unit: fd_cb->group->ctl_unit, m: packet, CTL_DATA_EOR); |
| 1223 | if (error) { |
| 1224 | FDLOG(LOG_NOTICE, &nil_pcb, "flow_divert_send_packet: ctl_enqueuembuf returned an error: %d" , error); |
| 1225 | } |
| 1226 | } else { |
| 1227 | error = ENOBUFS; |
| 1228 | } |
| 1229 | |
| 1230 | if (error == ENOBUFS) { |
| 1231 | if (!lck_rw_lock_shared_to_exclusive(lck: &fd_cb->group->lck)) { |
| 1232 | lck_rw_lock_exclusive(lck: &fd_cb->group->lck); |
| 1233 | } |
| 1234 | MBUFQ_ENQUEUE(&fd_cb->group->send_queue, packet); |
| 1235 | error = 0; |
| 1236 | OSTestAndSet(GROUP_BIT_CTL_ENQUEUE_BLOCKED, startAddress: &fd_cb->group->atomic_bits); |
| 1237 | } |
| 1238 | |
| 1239 | lck_rw_done(lck: &fd_cb->group->lck); |
| 1240 | |
| 1241 | return error; |
| 1242 | } |
| 1243 | |
| 1244 | static void |
| 1245 | flow_divert_append_domain_name(char *domain_name, void *ctx) |
| 1246 | { |
| 1247 | mbuf_t packet = (mbuf_t)ctx; |
| 1248 | size_t domain_name_length = 0; |
| 1249 | |
| 1250 | if (packet == NULL || domain_name == NULL) { |
| 1251 | return; |
| 1252 | } |
| 1253 | |
| 1254 | domain_name_length = strlen(s: domain_name); |
| 1255 | if (domain_name_length > 0 && domain_name_length < FLOW_DIVERT_MAX_NAME_SIZE) { |
| 1256 | int error = flow_divert_packet_append_tlv(packet, FLOW_DIVERT_TLV_TARGET_HOSTNAME, length: (uint32_t)domain_name_length, value: domain_name); |
| 1257 | if (error) { |
| 1258 | FDLOG(LOG_ERR, &nil_pcb, "Failed to append %s: %d" , domain_name, error); |
| 1259 | } |
| 1260 | } |
| 1261 | } |
| 1262 | |
| 1263 | static int |
| 1264 | flow_divert_create_connect_packet(struct flow_divert_pcb *fd_cb, struct sockaddr *to, struct socket *so, proc_t p, mbuf_t *out_connect_packet) |
| 1265 | { |
| 1266 | int error = 0; |
| 1267 | int flow_type = 0; |
| 1268 | char *signing_id = NULL; |
| 1269 | uint32_t sid_size = 0; |
| 1270 | mbuf_t connect_packet = NULL; |
| 1271 | cfil_sock_id_t cfil_sock_id = CFIL_SOCK_ID_NONE; |
| 1272 | const void *cfil_id = NULL; |
| 1273 | size_t cfil_id_size = 0; |
| 1274 | struct inpcb *inp = sotoinpcb(so); |
| 1275 | struct ifnet *ifp = NULL; |
| 1276 | uint32_t flags = 0; |
| 1277 | |
| 1278 | error = flow_divert_packet_init(fd_cb, FLOW_DIVERT_PKT_CONNECT, packet: &connect_packet); |
| 1279 | if (error) { |
| 1280 | goto done; |
| 1281 | } |
| 1282 | |
| 1283 | if (fd_cb->connect_token != NULL && (fd_cb->flags & FLOW_DIVERT_HAS_HMAC)) { |
| 1284 | int find_error = flow_divert_packet_get_tlv(packet: fd_cb->connect_token, offset: 0, FLOW_DIVERT_TLV_SIGNING_ID, buff_len: 0, NULL, val_size: &sid_size); |
| 1285 | if (find_error == 0 && sid_size > 0) { |
| 1286 | signing_id = kalloc_data(sid_size + 1, Z_WAITOK | Z_ZERO); |
| 1287 | if (signing_id != NULL) { |
| 1288 | flow_divert_packet_get_tlv(packet: fd_cb->connect_token, offset: 0, FLOW_DIVERT_TLV_SIGNING_ID, buff_len: sid_size, buff: signing_id, NULL); |
| 1289 | FDLOG(LOG_INFO, fd_cb, "Got %s from token" , signing_id); |
| 1290 | } |
| 1291 | } |
| 1292 | } |
| 1293 | |
| 1294 | error = flow_divert_add_all_proc_info(fd_cb, so, proc: p, signing_id, connect_packet); |
| 1295 | |
| 1296 | if (signing_id != NULL) { |
| 1297 | kfree_data(signing_id, sid_size + 1); |
| 1298 | } |
| 1299 | |
| 1300 | if (error) { |
| 1301 | FDLOG(LOG_ERR, fd_cb, "Failed to add source proc info: %d" , error); |
| 1302 | goto done; |
| 1303 | } |
| 1304 | |
| 1305 | error = flow_divert_packet_append_tlv(packet: connect_packet, |
| 1306 | FLOW_DIVERT_TLV_TRAFFIC_CLASS, |
| 1307 | length: sizeof(fd_cb->so->so_traffic_class), |
| 1308 | value: &fd_cb->so->so_traffic_class); |
| 1309 | if (error) { |
| 1310 | goto done; |
| 1311 | } |
| 1312 | |
| 1313 | if (SOCK_TYPE(fd_cb->so) == SOCK_STREAM) { |
| 1314 | flow_type = FLOW_DIVERT_FLOW_TYPE_TCP; |
| 1315 | } else if (SOCK_TYPE(fd_cb->so) == SOCK_DGRAM) { |
| 1316 | flow_type = FLOW_DIVERT_FLOW_TYPE_UDP; |
| 1317 | } else { |
| 1318 | error = EINVAL; |
| 1319 | goto done; |
| 1320 | } |
| 1321 | error = flow_divert_packet_append_tlv(packet: connect_packet, |
| 1322 | FLOW_DIVERT_TLV_FLOW_TYPE, |
| 1323 | length: sizeof(flow_type), |
| 1324 | value: &flow_type); |
| 1325 | |
| 1326 | if (error) { |
| 1327 | goto done; |
| 1328 | } |
| 1329 | |
| 1330 | if (fd_cb->connect_token != NULL) { |
| 1331 | unsigned int token_len = m_length(fd_cb->connect_token); |
| 1332 | mbuf_concatenate(dst: connect_packet, src: fd_cb->connect_token); |
| 1333 | mbuf_pkthdr_adjustlen(mbuf: connect_packet, amount: token_len); |
| 1334 | fd_cb->connect_token = NULL; |
| 1335 | } else { |
| 1336 | error = flow_divert_append_target_endpoint_tlv(connect_packet, toaddr: to); |
| 1337 | if (error) { |
| 1338 | goto done; |
| 1339 | } |
| 1340 | |
| 1341 | necp_with_inp_domain_name(so, ctx: connect_packet, with_func: flow_divert_append_domain_name); |
| 1342 | } |
| 1343 | |
| 1344 | if (fd_cb->local_endpoint.sa.sa_family == AF_INET || fd_cb->local_endpoint.sa.sa_family == AF_INET6) { |
| 1345 | error = flow_divert_packet_append_tlv(packet: connect_packet, FLOW_DIVERT_TLV_LOCAL_ADDR, length: fd_cb->local_endpoint.sa.sa_len, value: &(fd_cb->local_endpoint.sa)); |
| 1346 | if (error) { |
| 1347 | goto done; |
| 1348 | } |
| 1349 | } |
| 1350 | |
| 1351 | if (inp->inp_vflag & INP_IPV4) { |
| 1352 | ifp = inp->inp_last_outifp; |
| 1353 | } else if (inp->inp_vflag & INP_IPV6) { |
| 1354 | ifp = inp->in6p_last_outifp; |
| 1355 | } |
| 1356 | if (ifp != NULL) { |
| 1357 | uint32_t flow_if_index = ifp->if_index; |
| 1358 | error = flow_divert_packet_append_tlv(packet: connect_packet, FLOW_DIVERT_TLV_OUT_IF_INDEX, |
| 1359 | length: sizeof(flow_if_index), value: &flow_if_index); |
| 1360 | if (error) { |
| 1361 | goto done; |
| 1362 | } |
| 1363 | } |
| 1364 | |
| 1365 | if (so->so_flags1 & SOF1_DATA_IDEMPOTENT) { |
| 1366 | flags |= FLOW_DIVERT_TOKEN_FLAG_TFO; |
| 1367 | } |
| 1368 | |
| 1369 | if ((inp->inp_flags & INP_BOUND_IF) || |
| 1370 | ((inp->inp_vflag & INP_IPV6) && !IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr)) || |
| 1371 | ((inp->inp_vflag & INP_IPV4) && inp->inp_laddr.s_addr != INADDR_ANY)) { |
| 1372 | flags |= FLOW_DIVERT_TOKEN_FLAG_BOUND; |
| 1373 | } |
| 1374 | |
| 1375 | if (flags != 0) { |
| 1376 | error = flow_divert_packet_append_tlv(packet: connect_packet, FLOW_DIVERT_TLV_FLAGS, length: sizeof(flags), value: &flags); |
| 1377 | if (error) { |
| 1378 | goto done; |
| 1379 | } |
| 1380 | } |
| 1381 | |
| 1382 | if (SOCK_TYPE(so) == SOCK_DGRAM) { |
| 1383 | cfil_sock_id = cfil_sock_id_from_datagram_socket(so, NULL, remote: to); |
| 1384 | } else { |
| 1385 | cfil_sock_id = cfil_sock_id_from_socket(so); |
| 1386 | } |
| 1387 | |
| 1388 | if (cfil_sock_id != CFIL_SOCK_ID_NONE) { |
| 1389 | cfil_id = &cfil_sock_id; |
| 1390 | cfil_id_size = sizeof(cfil_sock_id); |
| 1391 | } else if (so->so_flags1 & SOF1_CONTENT_FILTER_SKIP) { |
| 1392 | cfil_id = &inp->necp_client_uuid; |
| 1393 | cfil_id_size = sizeof(inp->necp_client_uuid); |
| 1394 | } |
| 1395 | |
| 1396 | if (cfil_id != NULL && cfil_id_size > 0 && cfil_id_size <= sizeof(uuid_t)) { |
| 1397 | error = flow_divert_packet_append_tlv(packet: connect_packet, FLOW_DIVERT_TLV_CFIL_ID, length: (uint32_t)cfil_id_size, value: cfil_id); |
| 1398 | if (error) { |
| 1399 | goto done; |
| 1400 | } |
| 1401 | } |
| 1402 | |
| 1403 | done: |
| 1404 | if (!error) { |
| 1405 | *out_connect_packet = connect_packet; |
| 1406 | } else if (connect_packet != NULL) { |
| 1407 | mbuf_freem(mbuf: connect_packet); |
| 1408 | } |
| 1409 | |
| 1410 | return error; |
| 1411 | } |
| 1412 | |
| 1413 | static int |
| 1414 | flow_divert_send_connect_packet(struct flow_divert_pcb *fd_cb) |
| 1415 | { |
| 1416 | int error = 0; |
| 1417 | mbuf_t connect_packet = fd_cb->connect_packet; |
| 1418 | mbuf_t saved_connect_packet = NULL; |
| 1419 | |
| 1420 | if (connect_packet != NULL) { |
| 1421 | error = mbuf_copym(src: connect_packet, offset: 0, len: mbuf_pkthdr_len(mbuf: connect_packet), how: MBUF_DONTWAIT, new_mbuf: &saved_connect_packet); |
| 1422 | if (error) { |
| 1423 | FDLOG0(LOG_ERR, fd_cb, "Failed to copy the connect packet" ); |
| 1424 | goto done; |
| 1425 | } |
| 1426 | |
| 1427 | error = flow_divert_send_packet(fd_cb, packet: connect_packet); |
| 1428 | if (error) { |
| 1429 | goto done; |
| 1430 | } |
| 1431 | |
| 1432 | fd_cb->connect_packet = saved_connect_packet; |
| 1433 | saved_connect_packet = NULL; |
| 1434 | } else { |
| 1435 | error = ENOENT; |
| 1436 | } |
| 1437 | done: |
| 1438 | if (saved_connect_packet != NULL) { |
| 1439 | mbuf_freem(mbuf: saved_connect_packet); |
| 1440 | } |
| 1441 | |
| 1442 | return error; |
| 1443 | } |
| 1444 | |
| 1445 | static int |
| 1446 | flow_divert_send_connect_result(struct flow_divert_pcb *fd_cb) |
| 1447 | { |
| 1448 | int error = 0; |
| 1449 | mbuf_t packet = NULL; |
| 1450 | int rbuff_space = 0; |
| 1451 | |
| 1452 | error = flow_divert_packet_init(fd_cb, FLOW_DIVERT_PKT_CONNECT_RESULT, packet: &packet); |
| 1453 | if (error) { |
| 1454 | FDLOG(LOG_ERR, fd_cb, "failed to create a connect result packet: %d" , error); |
| 1455 | goto done; |
| 1456 | } |
| 1457 | |
| 1458 | rbuff_space = fd_cb->so->so_rcv.sb_hiwat; |
| 1459 | if (rbuff_space < 0) { |
| 1460 | rbuff_space = 0; |
| 1461 | } |
| 1462 | rbuff_space = htonl(rbuff_space); |
| 1463 | error = flow_divert_packet_append_tlv(packet, |
| 1464 | FLOW_DIVERT_TLV_SPACE_AVAILABLE, |
| 1465 | length: sizeof(rbuff_space), |
| 1466 | value: &rbuff_space); |
| 1467 | if (error) { |
| 1468 | goto done; |
| 1469 | } |
| 1470 | |
| 1471 | if (fd_cb->local_endpoint.sa.sa_family == AF_INET || fd_cb->local_endpoint.sa.sa_family == AF_INET6) { |
| 1472 | error = flow_divert_packet_append_tlv(packet, FLOW_DIVERT_TLV_LOCAL_ADDR, length: fd_cb->local_endpoint.sa.sa_len, value: &(fd_cb->local_endpoint.sa)); |
| 1473 | if (error) { |
| 1474 | goto done; |
| 1475 | } |
| 1476 | } |
| 1477 | |
| 1478 | error = flow_divert_send_packet(fd_cb, packet); |
| 1479 | if (error) { |
| 1480 | goto done; |
| 1481 | } |
| 1482 | |
| 1483 | done: |
| 1484 | if (error && packet != NULL) { |
| 1485 | mbuf_freem(mbuf: packet); |
| 1486 | } |
| 1487 | |
| 1488 | return error; |
| 1489 | } |
| 1490 | |
| 1491 | static int |
| 1492 | flow_divert_send_close(struct flow_divert_pcb *fd_cb, int how) |
| 1493 | { |
| 1494 | int error = 0; |
| 1495 | mbuf_t packet = NULL; |
| 1496 | uint32_t zero = 0; |
| 1497 | |
| 1498 | error = flow_divert_packet_init(fd_cb, FLOW_DIVERT_PKT_CLOSE, packet: &packet); |
| 1499 | if (error) { |
| 1500 | FDLOG(LOG_ERR, fd_cb, "failed to create a close packet: %d" , error); |
| 1501 | goto done; |
| 1502 | } |
| 1503 | |
| 1504 | error = flow_divert_packet_append_tlv(packet, FLOW_DIVERT_TLV_ERROR_CODE, length: sizeof(zero), value: &zero); |
| 1505 | if (error) { |
| 1506 | FDLOG(LOG_ERR, fd_cb, "failed to add the error code TLV: %d" , error); |
| 1507 | goto done; |
| 1508 | } |
| 1509 | |
| 1510 | how = htonl(how); |
| 1511 | error = flow_divert_packet_append_tlv(packet, FLOW_DIVERT_TLV_HOW, length: sizeof(how), value: &how); |
| 1512 | if (error) { |
| 1513 | FDLOG(LOG_ERR, fd_cb, "failed to add the how flag: %d" , error); |
| 1514 | goto done; |
| 1515 | } |
| 1516 | |
| 1517 | error = flow_divert_send_packet(fd_cb, packet); |
| 1518 | if (error) { |
| 1519 | goto done; |
| 1520 | } |
| 1521 | |
| 1522 | done: |
| 1523 | if (error && packet != NULL) { |
| 1524 | mbuf_free(mbuf: packet); |
| 1525 | } |
| 1526 | |
| 1527 | return error; |
| 1528 | } |
| 1529 | |
| 1530 | static int |
| 1531 | flow_divert_tunnel_how_closed(struct flow_divert_pcb *fd_cb) |
| 1532 | { |
| 1533 | if ((fd_cb->flags & (FLOW_DIVERT_TUNNEL_RD_CLOSED | FLOW_DIVERT_TUNNEL_WR_CLOSED)) == |
| 1534 | (FLOW_DIVERT_TUNNEL_RD_CLOSED | FLOW_DIVERT_TUNNEL_WR_CLOSED)) { |
| 1535 | return SHUT_RDWR; |
| 1536 | } else if (fd_cb->flags & FLOW_DIVERT_TUNNEL_RD_CLOSED) { |
| 1537 | return SHUT_RD; |
| 1538 | } else if (fd_cb->flags & FLOW_DIVERT_TUNNEL_WR_CLOSED) { |
| 1539 | return SHUT_WR; |
| 1540 | } |
| 1541 | |
| 1542 | return -1; |
| 1543 | } |
| 1544 | |
| 1545 | /* |
| 1546 | * Determine what close messages if any need to be sent to the tunnel. Returns TRUE if the tunnel is closed for both reads and |
| 1547 | * writes. Returns FALSE otherwise. |
| 1548 | */ |
| 1549 | static void |
| 1550 | flow_divert_send_close_if_needed(struct flow_divert_pcb *fd_cb) |
| 1551 | { |
| 1552 | int how = -1; |
| 1553 | |
| 1554 | /* Do not send any close messages if there is still data in the send buffer */ |
| 1555 | if (fd_cb->so->so_snd.sb_cc == 0) { |
| 1556 | if ((fd_cb->flags & (FLOW_DIVERT_READ_CLOSED | FLOW_DIVERT_TUNNEL_RD_CLOSED)) == FLOW_DIVERT_READ_CLOSED) { |
| 1557 | /* Socket closed reads, but tunnel did not. Tell tunnel to close reads */ |
| 1558 | how = SHUT_RD; |
| 1559 | } |
| 1560 | if ((fd_cb->flags & (FLOW_DIVERT_WRITE_CLOSED | FLOW_DIVERT_TUNNEL_WR_CLOSED)) == FLOW_DIVERT_WRITE_CLOSED) { |
| 1561 | /* Socket closed writes, but tunnel did not. Tell tunnel to close writes */ |
| 1562 | if (how == SHUT_RD) { |
| 1563 | how = SHUT_RDWR; |
| 1564 | } else { |
| 1565 | how = SHUT_WR; |
| 1566 | } |
| 1567 | } |
| 1568 | } |
| 1569 | |
| 1570 | if (how != -1) { |
| 1571 | FDLOG(LOG_INFO, fd_cb, "sending close, how = %d" , how); |
| 1572 | if (flow_divert_send_close(fd_cb, how) != ENOBUFS) { |
| 1573 | /* Successfully sent the close packet. Record the ways in which the tunnel has been closed */ |
| 1574 | if (how != SHUT_RD) { |
| 1575 | fd_cb->flags |= FLOW_DIVERT_TUNNEL_WR_CLOSED; |
| 1576 | } |
| 1577 | if (how != SHUT_WR) { |
| 1578 | fd_cb->flags |= FLOW_DIVERT_TUNNEL_RD_CLOSED; |
| 1579 | } |
| 1580 | } |
| 1581 | } |
| 1582 | |
| 1583 | if (flow_divert_tunnel_how_closed(fd_cb) == SHUT_RDWR) { |
| 1584 | flow_divert_disconnect_socket(so: fd_cb->so, is_connected: !(fd_cb->flags & FLOW_DIVERT_IMPLICIT_CONNECT), false); |
| 1585 | } |
| 1586 | } |
| 1587 | |
| 1588 | static errno_t |
| 1589 | flow_divert_send_data_packet(struct flow_divert_pcb *fd_cb, mbuf_t data, size_t data_len) |
| 1590 | { |
| 1591 | mbuf_t packet = NULL; |
| 1592 | mbuf_t last = NULL; |
| 1593 | int error = 0; |
| 1594 | |
| 1595 | error = flow_divert_packet_init(fd_cb, FLOW_DIVERT_PKT_DATA, packet: &packet); |
| 1596 | if (error || packet == NULL) { |
| 1597 | FDLOG(LOG_ERR, fd_cb, "flow_divert_packet_init failed: %d" , error); |
| 1598 | goto done; |
| 1599 | } |
| 1600 | |
| 1601 | if (data_len > 0 && data_len <= INT_MAX && data != NULL) { |
| 1602 | last = m_last(packet); |
| 1603 | mbuf_setnext(mbuf: last, next: data); |
| 1604 | mbuf_pkthdr_adjustlen(mbuf: packet, amount: (int)data_len); |
| 1605 | } else { |
| 1606 | data_len = 0; |
| 1607 | } |
| 1608 | error = flow_divert_send_packet(fd_cb, packet); |
| 1609 | if (error == 0 && data_len > 0) { |
| 1610 | fd_cb->bytes_sent += data_len; |
| 1611 | flow_divert_add_data_statistics(fd_cb, data_len, TRUE); |
| 1612 | } |
| 1613 | |
| 1614 | done: |
| 1615 | if (error) { |
| 1616 | if (last != NULL) { |
| 1617 | mbuf_setnext(mbuf: last, NULL); |
| 1618 | } |
| 1619 | if (packet != NULL) { |
| 1620 | mbuf_freem(mbuf: packet); |
| 1621 | } |
| 1622 | } |
| 1623 | |
| 1624 | return error; |
| 1625 | } |
| 1626 | |
| 1627 | static errno_t |
| 1628 | flow_divert_send_datagram_packet(struct flow_divert_pcb *fd_cb, mbuf_t data, size_t data_len, struct sockaddr *toaddr, Boolean is_fragment, size_t datagram_size) |
| 1629 | { |
| 1630 | mbuf_t packet = NULL; |
| 1631 | mbuf_t last = NULL; |
| 1632 | int error = 0; |
| 1633 | |
| 1634 | error = flow_divert_packet_init(fd_cb, FLOW_DIVERT_PKT_DATA, packet: &packet); |
| 1635 | if (error || packet == NULL) { |
| 1636 | FDLOG(LOG_ERR, fd_cb, "flow_divert_packet_init failed: %d" , error); |
| 1637 | goto done; |
| 1638 | } |
| 1639 | |
| 1640 | if (toaddr != NULL) { |
| 1641 | error = flow_divert_append_target_endpoint_tlv(connect_packet: packet, toaddr); |
| 1642 | if (error) { |
| 1643 | FDLOG(LOG_ERR, fd_cb, "flow_divert_append_target_endpoint_tlv() failed: %d" , error); |
| 1644 | goto done; |
| 1645 | } |
| 1646 | } |
| 1647 | if (is_fragment) { |
| 1648 | error = flow_divert_packet_append_tlv(packet, FLOW_DIVERT_TLV_IS_FRAGMENT, length: sizeof(is_fragment), value: &is_fragment); |
| 1649 | if (error) { |
| 1650 | FDLOG(LOG_ERR, fd_cb, "flow_divert_packet_append_tlv(FLOW_DIVERT_TLV_IS_FRAGMENT) failed: %d" , error); |
| 1651 | goto done; |
| 1652 | } |
| 1653 | } |
| 1654 | |
| 1655 | error = flow_divert_packet_append_tlv(packet, FLOW_DIVERT_TLV_DATAGRAM_SIZE, length: sizeof(datagram_size), value: &datagram_size); |
| 1656 | if (error) { |
| 1657 | FDLOG(LOG_ERR, fd_cb, "flow_divert_packet_append_tlv(FLOW_DIVERT_TLV_DATAGRAM_SIZE) failed: %d" , error); |
| 1658 | goto done; |
| 1659 | } |
| 1660 | |
| 1661 | if (data_len > 0 && data_len <= INT_MAX && data != NULL) { |
| 1662 | last = m_last(packet); |
| 1663 | mbuf_setnext(mbuf: last, next: data); |
| 1664 | mbuf_pkthdr_adjustlen(mbuf: packet, amount: (int)data_len); |
| 1665 | } else { |
| 1666 | data_len = 0; |
| 1667 | } |
| 1668 | error = flow_divert_send_packet(fd_cb, packet); |
| 1669 | if (error == 0 && data_len > 0) { |
| 1670 | fd_cb->bytes_sent += data_len; |
| 1671 | flow_divert_add_data_statistics(fd_cb, data_len, TRUE); |
| 1672 | } |
| 1673 | |
| 1674 | done: |
| 1675 | if (error) { |
| 1676 | if (last != NULL) { |
| 1677 | mbuf_setnext(mbuf: last, NULL); |
| 1678 | } |
| 1679 | if (packet != NULL) { |
| 1680 | mbuf_freem(mbuf: packet); |
| 1681 | } |
| 1682 | } |
| 1683 | |
| 1684 | return error; |
| 1685 | } |
| 1686 | |
| 1687 | static errno_t |
| 1688 | flow_divert_send_fragmented_datagram(struct flow_divert_pcb *fd_cb, mbuf_t datagram, size_t datagram_len, struct sockaddr *toaddr) |
| 1689 | { |
| 1690 | mbuf_t next_data = datagram; |
| 1691 | size_t remaining_len = datagram_len; |
| 1692 | mbuf_t remaining_data = NULL; |
| 1693 | int error = 0; |
| 1694 | bool first = true; |
| 1695 | |
| 1696 | while (remaining_len > 0 && next_data != NULL) { |
| 1697 | size_t to_send = remaining_len; |
| 1698 | remaining_data = NULL; |
| 1699 | |
| 1700 | if (to_send > FLOW_DIVERT_CHUNK_SIZE) { |
| 1701 | to_send = FLOW_DIVERT_CHUNK_SIZE; |
| 1702 | error = mbuf_split(src: next_data, offset: to_send, how: MBUF_DONTWAIT, new_mbuf: &remaining_data); |
| 1703 | if (error) { |
| 1704 | break; |
| 1705 | } |
| 1706 | } |
| 1707 | |
| 1708 | error = flow_divert_send_datagram_packet(fd_cb, data: next_data, data_len: to_send, toaddr: (first ? toaddr : NULL), TRUE, datagram_size: (first ? datagram_len : 0)); |
| 1709 | if (error) { |
| 1710 | break; |
| 1711 | } |
| 1712 | |
| 1713 | first = false; |
| 1714 | remaining_len -= to_send; |
| 1715 | next_data = remaining_data; |
| 1716 | } |
| 1717 | |
| 1718 | if (error) { |
| 1719 | if (next_data != NULL) { |
| 1720 | mbuf_freem(mbuf: next_data); |
| 1721 | } |
| 1722 | if (remaining_data != NULL) { |
| 1723 | mbuf_freem(mbuf: remaining_data); |
| 1724 | } |
| 1725 | } |
| 1726 | return error; |
| 1727 | } |
| 1728 | |
| 1729 | static void |
| 1730 | flow_divert_send_buffered_data(struct flow_divert_pcb *fd_cb, Boolean force) |
| 1731 | { |
| 1732 | size_t to_send; |
| 1733 | size_t sent = 0; |
| 1734 | int error = 0; |
| 1735 | mbuf_t buffer; |
| 1736 | |
| 1737 | to_send = fd_cb->so->so_snd.sb_cc; |
| 1738 | buffer = fd_cb->so->so_snd.sb_mb; |
| 1739 | |
| 1740 | if (buffer == NULL && to_send > 0) { |
| 1741 | FDLOG(LOG_ERR, fd_cb, "Send buffer is NULL, but size is supposed to be %lu" , to_send); |
| 1742 | return; |
| 1743 | } |
| 1744 | |
| 1745 | /* Ignore the send window if force is enabled */ |
| 1746 | if (!force && (to_send > fd_cb->send_window)) { |
| 1747 | to_send = fd_cb->send_window; |
| 1748 | } |
| 1749 | |
| 1750 | if (SOCK_TYPE(fd_cb->so) == SOCK_STREAM) { |
| 1751 | while (sent < to_send) { |
| 1752 | mbuf_t data; |
| 1753 | size_t data_len; |
| 1754 | |
| 1755 | data_len = to_send - sent; |
| 1756 | if (data_len > FLOW_DIVERT_CHUNK_SIZE) { |
| 1757 | data_len = FLOW_DIVERT_CHUNK_SIZE; |
| 1758 | } |
| 1759 | |
| 1760 | error = mbuf_copym(src: buffer, offset: sent, len: data_len, how: MBUF_DONTWAIT, new_mbuf: &data); |
| 1761 | if (error) { |
| 1762 | FDLOG(LOG_ERR, fd_cb, "mbuf_copym failed: %d" , error); |
| 1763 | break; |
| 1764 | } |
| 1765 | |
| 1766 | error = flow_divert_send_data_packet(fd_cb, data, data_len); |
| 1767 | if (error) { |
| 1768 | if (data != NULL) { |
| 1769 | mbuf_freem(mbuf: data); |
| 1770 | } |
| 1771 | break; |
| 1772 | } |
| 1773 | |
| 1774 | sent += data_len; |
| 1775 | } |
| 1776 | sbdrop(sb: &fd_cb->so->so_snd, len: (int)sent); |
| 1777 | sowwakeup(so: fd_cb->so); |
| 1778 | } else if (SOCK_TYPE(fd_cb->so) == SOCK_DGRAM) { |
| 1779 | mbuf_t data; |
| 1780 | mbuf_t m; |
| 1781 | size_t data_len; |
| 1782 | |
| 1783 | while (buffer) { |
| 1784 | struct sockaddr *toaddr = flow_divert_get_buffered_target_address(buffer); |
| 1785 | |
| 1786 | m = buffer; |
| 1787 | if (toaddr != NULL) { |
| 1788 | /* look for data in the chain */ |
| 1789 | do { |
| 1790 | m = m->m_next; |
| 1791 | if (m != NULL && m->m_type == MT_DATA) { |
| 1792 | break; |
| 1793 | } |
| 1794 | } while (m); |
| 1795 | if (m == NULL) { |
| 1796 | /* unexpected */ |
| 1797 | FDLOG0(LOG_ERR, fd_cb, "failed to find type MT_DATA in the mbuf chain." ); |
| 1798 | goto move_on; |
| 1799 | } |
| 1800 | } |
| 1801 | data_len = mbuf_pkthdr_len(mbuf: m); |
| 1802 | if (data_len > 0) { |
| 1803 | FDLOG(LOG_DEBUG, fd_cb, "mbuf_copym() data_len = %lu" , data_len); |
| 1804 | error = mbuf_copym(src: m, offset: 0, len: data_len, how: MBUF_DONTWAIT, new_mbuf: &data); |
| 1805 | if (error) { |
| 1806 | FDLOG(LOG_ERR, fd_cb, "mbuf_copym failed: %d" , error); |
| 1807 | break; |
| 1808 | } |
| 1809 | } else { |
| 1810 | data = NULL; |
| 1811 | } |
| 1812 | if (data_len <= FLOW_DIVERT_CHUNK_SIZE) { |
| 1813 | error = flow_divert_send_datagram_packet(fd_cb, data, data_len, toaddr, FALSE, datagram_size: 0); |
| 1814 | } else { |
| 1815 | error = flow_divert_send_fragmented_datagram(fd_cb, datagram: data, datagram_len: data_len, toaddr); |
| 1816 | data = NULL; |
| 1817 | } |
| 1818 | if (error) { |
| 1819 | if (data != NULL) { |
| 1820 | mbuf_freem(mbuf: data); |
| 1821 | } |
| 1822 | break; |
| 1823 | } |
| 1824 | sent += data_len; |
| 1825 | move_on: |
| 1826 | buffer = buffer->m_nextpkt; |
| 1827 | (void) sbdroprecord(sb: &(fd_cb->so->so_snd)); |
| 1828 | } |
| 1829 | } |
| 1830 | |
| 1831 | if (sent > 0) { |
| 1832 | FDLOG(LOG_DEBUG, fd_cb, "sent %lu bytes of buffered data" , sent); |
| 1833 | if (fd_cb->send_window >= sent) { |
| 1834 | fd_cb->send_window -= sent; |
| 1835 | } else { |
| 1836 | fd_cb->send_window = 0; |
| 1837 | } |
| 1838 | } |
| 1839 | } |
| 1840 | |
| 1841 | static int |
| 1842 | flow_divert_send_app_data(struct flow_divert_pcb *fd_cb, mbuf_t data, size_t data_size, struct sockaddr *toaddr) |
| 1843 | { |
| 1844 | size_t to_send = data_size; |
| 1845 | int error = 0; |
| 1846 | |
| 1847 | if (to_send > fd_cb->send_window) { |
| 1848 | to_send = fd_cb->send_window; |
| 1849 | } |
| 1850 | |
| 1851 | if (fd_cb->so->so_snd.sb_cc > 0) { |
| 1852 | to_send = 0; /* If the send buffer is non-empty, then we can't send anything */ |
| 1853 | } |
| 1854 | |
| 1855 | if (SOCK_TYPE(fd_cb->so) == SOCK_STREAM) { |
| 1856 | size_t sent = 0; |
| 1857 | mbuf_t remaining_data = data; |
| 1858 | size_t remaining_size = data_size; |
| 1859 | mbuf_t pkt_data = NULL; |
| 1860 | |
| 1861 | while (sent < to_send && remaining_data != NULL && remaining_size > 0) { |
| 1862 | size_t pkt_data_len; |
| 1863 | |
| 1864 | pkt_data = remaining_data; |
| 1865 | |
| 1866 | if ((to_send - sent) > FLOW_DIVERT_CHUNK_SIZE) { |
| 1867 | pkt_data_len = FLOW_DIVERT_CHUNK_SIZE; |
| 1868 | } else { |
| 1869 | pkt_data_len = to_send - sent; |
| 1870 | } |
| 1871 | |
| 1872 | if (pkt_data_len < remaining_size) { |
| 1873 | error = mbuf_split(src: pkt_data, offset: pkt_data_len, how: MBUF_DONTWAIT, new_mbuf: &remaining_data); |
| 1874 | if (error) { |
| 1875 | FDLOG(LOG_ERR, fd_cb, "mbuf_split failed: %d" , error); |
| 1876 | pkt_data = NULL; |
| 1877 | break; |
| 1878 | } |
| 1879 | remaining_size -= pkt_data_len; |
| 1880 | } else { |
| 1881 | remaining_data = NULL; |
| 1882 | remaining_size = 0; |
| 1883 | } |
| 1884 | |
| 1885 | error = flow_divert_send_data_packet(fd_cb, data: pkt_data, data_len: pkt_data_len); |
| 1886 | if (error) { |
| 1887 | break; |
| 1888 | } |
| 1889 | |
| 1890 | pkt_data = NULL; |
| 1891 | sent += pkt_data_len; |
| 1892 | } |
| 1893 | |
| 1894 | if (fd_cb->send_window >= sent) { |
| 1895 | fd_cb->send_window -= sent; |
| 1896 | } else { |
| 1897 | fd_cb->send_window = 0; |
| 1898 | } |
| 1899 | |
| 1900 | error = 0; |
| 1901 | |
| 1902 | if (pkt_data != NULL) { |
| 1903 | if (sbspace(sb: &fd_cb->so->so_snd) > 0) { |
| 1904 | if (!sbappendstream(sb: &fd_cb->so->so_snd, m: pkt_data)) { |
| 1905 | FDLOG(LOG_ERR, fd_cb, "sbappendstream failed with pkt_data, send buffer size = %u, send_window = %u\n" , |
| 1906 | fd_cb->so->so_snd.sb_cc, fd_cb->send_window); |
| 1907 | } |
| 1908 | } else { |
| 1909 | mbuf_freem(mbuf: pkt_data); |
| 1910 | error = ENOBUFS; |
| 1911 | } |
| 1912 | } |
| 1913 | |
| 1914 | if (remaining_data != NULL) { |
| 1915 | if (sbspace(sb: &fd_cb->so->so_snd) > 0) { |
| 1916 | if (!sbappendstream(sb: &fd_cb->so->so_snd, m: remaining_data)) { |
| 1917 | FDLOG(LOG_ERR, fd_cb, "sbappendstream failed with remaining_data, send buffer size = %u, send_window = %u\n" , |
| 1918 | fd_cb->so->so_snd.sb_cc, fd_cb->send_window); |
| 1919 | } |
| 1920 | } else { |
| 1921 | mbuf_freem(mbuf: remaining_data); |
| 1922 | error = ENOBUFS; |
| 1923 | } |
| 1924 | } |
| 1925 | } else if (SOCK_TYPE(fd_cb->so) == SOCK_DGRAM) { |
| 1926 | int send_dgram_error = 0; |
| 1927 | if (to_send || data_size == 0) { |
| 1928 | if (data_size <= FLOW_DIVERT_CHUNK_SIZE) { |
| 1929 | send_dgram_error = flow_divert_send_datagram_packet(fd_cb, data, data_len: data_size, toaddr, FALSE, datagram_size: 0); |
| 1930 | } else { |
| 1931 | send_dgram_error = flow_divert_send_fragmented_datagram(fd_cb, datagram: data, datagram_len: data_size, toaddr); |
| 1932 | data = NULL; |
| 1933 | } |
| 1934 | if (send_dgram_error) { |
| 1935 | FDLOG(LOG_NOTICE, fd_cb, "flow_divert_send_datagram_packet failed with error %d, send data size = %lu" , send_dgram_error, data_size); |
| 1936 | } else { |
| 1937 | if (data_size >= fd_cb->send_window) { |
| 1938 | fd_cb->send_window = 0; |
| 1939 | } else { |
| 1940 | fd_cb->send_window -= data_size; |
| 1941 | } |
| 1942 | data = NULL; |
| 1943 | } |
| 1944 | } |
| 1945 | |
| 1946 | if (data != NULL) { |
| 1947 | /* buffer it */ |
| 1948 | if (sbspace(sb: &fd_cb->so->so_snd) > 0) { |
| 1949 | if (toaddr != NULL) { |
| 1950 | int append_error = 0; |
| 1951 | if (!sbappendaddr(sb: &fd_cb->so->so_snd, asa: toaddr, m0: data, NULL, error_out: &append_error)) { |
| 1952 | FDLOG(LOG_ERR, fd_cb, |
| 1953 | "sbappendaddr failed. send buffer size = %u, send_window = %u, error = %d" , |
| 1954 | fd_cb->so->so_snd.sb_cc, fd_cb->send_window, append_error); |
| 1955 | } |
| 1956 | } else { |
| 1957 | if (!sbappendrecord(sb: &fd_cb->so->so_snd, m0: data)) { |
| 1958 | FDLOG(LOG_ERR, fd_cb, |
| 1959 | "sbappendrecord failed. send buffer size = %u, send_window = %u" , |
| 1960 | fd_cb->so->so_snd.sb_cc, fd_cb->send_window); |
| 1961 | } |
| 1962 | } |
| 1963 | } else { |
| 1964 | FDLOG(LOG_ERR, fd_cb, "flow_divert_send_datagram_packet failed with error %d, send data size = %lu, dropping the datagram" , error, data_size); |
| 1965 | mbuf_freem(mbuf: data); |
| 1966 | } |
| 1967 | } |
| 1968 | } |
| 1969 | |
| 1970 | return error; |
| 1971 | } |
| 1972 | |
| 1973 | static int |
| 1974 | flow_divert_send_read_notification(struct flow_divert_pcb *fd_cb) |
| 1975 | { |
| 1976 | int error = 0; |
| 1977 | mbuf_t packet = NULL; |
| 1978 | |
| 1979 | error = flow_divert_packet_init(fd_cb, FLOW_DIVERT_PKT_READ_NOTIFY, packet: &packet); |
| 1980 | if (error) { |
| 1981 | FDLOG(LOG_ERR, fd_cb, "failed to create a read notification packet: %d" , error); |
| 1982 | goto done; |
| 1983 | } |
| 1984 | |
| 1985 | error = flow_divert_send_packet(fd_cb, packet); |
| 1986 | if (error) { |
| 1987 | goto done; |
| 1988 | } |
| 1989 | |
| 1990 | done: |
| 1991 | if (error && packet != NULL) { |
| 1992 | mbuf_free(mbuf: packet); |
| 1993 | } |
| 1994 | |
| 1995 | return error; |
| 1996 | } |
| 1997 | |
| 1998 | static int |
| 1999 | flow_divert_send_traffic_class_update(struct flow_divert_pcb *fd_cb, int traffic_class) |
| 2000 | { |
| 2001 | int error = 0; |
| 2002 | mbuf_t packet = NULL; |
| 2003 | |
| 2004 | error = flow_divert_packet_init(fd_cb, FLOW_DIVERT_PKT_PROPERTIES_UPDATE, packet: &packet); |
| 2005 | if (error) { |
| 2006 | FDLOG(LOG_ERR, fd_cb, "failed to create a properties update packet: %d" , error); |
| 2007 | goto done; |
| 2008 | } |
| 2009 | |
| 2010 | error = flow_divert_packet_append_tlv(packet, FLOW_DIVERT_TLV_TRAFFIC_CLASS, length: sizeof(traffic_class), value: &traffic_class); |
| 2011 | if (error) { |
| 2012 | FDLOG(LOG_ERR, fd_cb, "failed to add the traffic class: %d" , error); |
| 2013 | goto done; |
| 2014 | } |
| 2015 | |
| 2016 | error = flow_divert_send_packet(fd_cb, packet); |
| 2017 | if (error) { |
| 2018 | goto done; |
| 2019 | } |
| 2020 | |
| 2021 | done: |
| 2022 | if (error && packet != NULL) { |
| 2023 | mbuf_free(mbuf: packet); |
| 2024 | } |
| 2025 | |
| 2026 | return error; |
| 2027 | } |
| 2028 | |
| 2029 | static void |
| 2030 | flow_divert_set_local_endpoint(struct flow_divert_pcb *fd_cb, struct sockaddr *local_endpoint) |
| 2031 | { |
| 2032 | struct inpcb *inp = sotoinpcb(fd_cb->so); |
| 2033 | |
| 2034 | if (local_endpoint->sa_family == AF_INET6) { |
| 2035 | if (IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr) && (fd_cb->flags & FLOW_DIVERT_SHOULD_SET_LOCAL_ADDR)) { |
| 2036 | fd_cb->flags |= FLOW_DIVERT_DID_SET_LOCAL_ADDR; |
| 2037 | inp->in6p_laddr = (satosin6(local_endpoint))->sin6_addr; |
| 2038 | inp->inp_lifscope = (satosin6(local_endpoint))->sin6_scope_id; |
| 2039 | in6_verify_ifscope(&inp->in6p_laddr, inp->inp_lifscope); |
| 2040 | } |
| 2041 | if (inp->inp_lport == 0) { |
| 2042 | inp->inp_lport = (satosin6(local_endpoint))->sin6_port; |
| 2043 | } |
| 2044 | } else if (local_endpoint->sa_family == AF_INET) { |
| 2045 | if (inp->inp_laddr.s_addr == INADDR_ANY && (fd_cb->flags & FLOW_DIVERT_SHOULD_SET_LOCAL_ADDR)) { |
| 2046 | fd_cb->flags |= FLOW_DIVERT_DID_SET_LOCAL_ADDR; |
| 2047 | inp->inp_laddr = (satosin(local_endpoint))->sin_addr; |
| 2048 | } |
| 2049 | if (inp->inp_lport == 0) { |
| 2050 | inp->inp_lport = (satosin(local_endpoint))->sin_port; |
| 2051 | } |
| 2052 | } |
| 2053 | } |
| 2054 | |
| 2055 | static void |
| 2056 | flow_divert_set_remote_endpoint(struct flow_divert_pcb *fd_cb, struct sockaddr *remote_endpoint) |
| 2057 | { |
| 2058 | struct inpcb *inp = sotoinpcb(fd_cb->so); |
| 2059 | |
| 2060 | if (remote_endpoint->sa_family == AF_INET6) { |
| 2061 | if (IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_faddr)) { |
| 2062 | inp->in6p_faddr = (satosin6(remote_endpoint))->sin6_addr; |
| 2063 | inp->inp_fifscope = (satosin6(remote_endpoint))->sin6_scope_id; |
| 2064 | in6_verify_ifscope(&inp->in6p_faddr, inp->inp_fifscope); |
| 2065 | } |
| 2066 | if (inp->inp_fport == 0) { |
| 2067 | inp->inp_fport = (satosin6(remote_endpoint))->sin6_port; |
| 2068 | } |
| 2069 | } else if (remote_endpoint->sa_family == AF_INET) { |
| 2070 | if (inp->inp_faddr.s_addr == INADDR_ANY) { |
| 2071 | inp->inp_faddr = (satosin(remote_endpoint))->sin_addr; |
| 2072 | } |
| 2073 | if (inp->inp_fport == 0) { |
| 2074 | inp->inp_fport = (satosin(remote_endpoint))->sin_port; |
| 2075 | } |
| 2076 | } |
| 2077 | } |
| 2078 | |
| 2079 | static uint32_t |
| 2080 | flow_divert_derive_kernel_control_unit(pid_t pid, uint32_t *ctl_unit, uint32_t *aggregate_unit, bool *is_aggregate) |
| 2081 | { |
| 2082 | uint32_t result = *ctl_unit; |
| 2083 | |
| 2084 | // There are two models supported for deriving control units: |
| 2085 | // 1. A series of flow divert units that allow "transparently" failing |
| 2086 | // over to the next unit. For this model, the aggregate_unit contains list |
| 2087 | // of all control units (between 1 and 30) masked over each other. |
| 2088 | // 2. An indication that in-process flow divert should be preferred, with |
| 2089 | // an out of process flow divert to fail over to. For this model, the |
| 2090 | // ctl_unit is FLOW_DIVERT_IN_PROCESS_UNIT. In this case, that unit |
| 2091 | // is returned first, with the unpacked aggregate unit returned as a |
| 2092 | // fallback. |
| 2093 | *is_aggregate = false; |
| 2094 | if (*ctl_unit == FLOW_DIVERT_IN_PROCESS_UNIT) { |
| 2095 | bool found_unit = false; |
| 2096 | if (pid != 0) { |
| 2097 | // Look for an in-process group that is already open, and use that unit |
| 2098 | struct flow_divert_group *group = NULL; |
| 2099 | TAILQ_FOREACH(group, &g_flow_divert_in_process_group_list, chain) { |
| 2100 | if (group->in_process_pid == pid) { |
| 2101 | // Found an in-process group for our same PID, use it |
| 2102 | found_unit = true; |
| 2103 | result = group->ctl_unit; |
| 2104 | break; |
| 2105 | } |
| 2106 | } |
| 2107 | |
| 2108 | // If an in-process group isn't open yet, send a signal up through NECP to request one |
| 2109 | if (!found_unit) { |
| 2110 | necp_client_request_in_process_flow_divert(pid); |
| 2111 | } |
| 2112 | } |
| 2113 | |
| 2114 | // If a unit was found, return it |
| 2115 | if (found_unit) { |
| 2116 | if (aggregate_unit != NULL && *aggregate_unit != 0) { |
| 2117 | *is_aggregate = true; |
| 2118 | } |
| 2119 | // The next time around, the aggregate unit values will be picked up |
| 2120 | *ctl_unit = 0; |
| 2121 | return result; |
| 2122 | } |
| 2123 | |
| 2124 | // If no unit was found, fall through and clear out the ctl_unit |
| 2125 | result = 0; |
| 2126 | *ctl_unit = 0; |
| 2127 | } |
| 2128 | |
| 2129 | if (aggregate_unit != NULL && *aggregate_unit != 0) { |
| 2130 | uint32_t counter; |
| 2131 | struct flow_divert_group *lower_order_group = NULL; |
| 2132 | |
| 2133 | for (counter = 0; counter < (GROUP_COUNT_MAX - 1); counter++) { |
| 2134 | if ((*aggregate_unit) & (1 << counter)) { |
| 2135 | struct flow_divert_group *group = NULL; |
| 2136 | group = flow_divert_group_lookup(ctl_unit: counter + 1, NULL); |
| 2137 | |
| 2138 | if (group != NULL) { |
| 2139 | if (lower_order_group == NULL) { |
| 2140 | lower_order_group = group; |
| 2141 | } else if ((group->order < lower_order_group->order)) { |
| 2142 | lower_order_group = group; |
| 2143 | } |
| 2144 | } |
| 2145 | } |
| 2146 | } |
| 2147 | |
| 2148 | if (lower_order_group != NULL) { |
| 2149 | *aggregate_unit &= ~(1 << (lower_order_group->ctl_unit - 1)); |
| 2150 | *is_aggregate = true; |
| 2151 | return lower_order_group->ctl_unit; |
| 2152 | } else { |
| 2153 | *ctl_unit = 0; |
| 2154 | return result; |
| 2155 | } |
| 2156 | } else { |
| 2157 | *ctl_unit = 0; |
| 2158 | return result; |
| 2159 | } |
| 2160 | } |
| 2161 | |
| 2162 | static int |
| 2163 | flow_divert_try_next_group(struct flow_divert_pcb *fd_cb) |
| 2164 | { |
| 2165 | int error = 0; |
| 2166 | uint32_t policy_control_unit = fd_cb->policy_control_unit; |
| 2167 | |
| 2168 | flow_divert_pcb_remove(fd_cb); |
| 2169 | |
| 2170 | do { |
| 2171 | struct flow_divert_group *next_group = NULL; |
| 2172 | bool is_aggregate = false; |
| 2173 | uint32_t next_ctl_unit = flow_divert_derive_kernel_control_unit(pid: 0, ctl_unit: &policy_control_unit, aggregate_unit: &(fd_cb->aggregate_unit), is_aggregate: &is_aggregate); |
| 2174 | |
| 2175 | if (fd_cb->control_group_unit == next_ctl_unit) { |
| 2176 | FDLOG0(LOG_NOTICE, fd_cb, "Next control unit is the same as the current control unit, disabling flow divert" ); |
| 2177 | error = EALREADY; |
| 2178 | break; |
| 2179 | } |
| 2180 | |
| 2181 | if (next_ctl_unit == 0 || next_ctl_unit >= GROUP_COUNT_MAX) { |
| 2182 | FDLOG0(LOG_NOTICE, fd_cb, "No more valid control units, disabling flow divert" ); |
| 2183 | error = ENOENT; |
| 2184 | break; |
| 2185 | } |
| 2186 | |
| 2187 | next_group = flow_divert_group_lookup(ctl_unit: next_ctl_unit, fd_cb); |
| 2188 | if (next_group == NULL) { |
| 2189 | FDLOG(LOG_NOTICE, fd_cb, "Group for control unit %u does not exist" , next_ctl_unit); |
| 2190 | continue; |
| 2191 | } |
| 2192 | |
| 2193 | FDLOG(LOG_NOTICE, fd_cb, "Moving from %u to %u" , fd_cb->control_group_unit, next_ctl_unit); |
| 2194 | |
| 2195 | error = flow_divert_pcb_insert(fd_cb, group: next_group); |
| 2196 | if (error == 0) { |
| 2197 | if (is_aggregate) { |
| 2198 | fd_cb->flags |= FLOW_DIVERT_FLOW_IS_TRANSPARENT; |
| 2199 | } else { |
| 2200 | fd_cb->flags &= ~FLOW_DIVERT_FLOW_IS_TRANSPARENT; |
| 2201 | } |
| 2202 | } |
| 2203 | FDGRP_RELEASE(next_group); |
| 2204 | } while (fd_cb->group == NULL); |
| 2205 | |
| 2206 | if (fd_cb->group == NULL) { |
| 2207 | return error ? error : ENOENT; |
| 2208 | } |
| 2209 | |
| 2210 | error = flow_divert_send_connect_packet(fd_cb); |
| 2211 | if (error) { |
| 2212 | FDLOG(LOG_NOTICE, fd_cb, "Failed to send the connect packet to %u, disabling flow divert" , fd_cb->control_group_unit); |
| 2213 | flow_divert_pcb_remove(fd_cb); |
| 2214 | error = ENOENT; |
| 2215 | } |
| 2216 | |
| 2217 | return error; |
| 2218 | } |
| 2219 | |
| 2220 | static void |
| 2221 | flow_divert_disable(struct flow_divert_pcb *fd_cb) |
| 2222 | { |
| 2223 | struct socket *so = NULL; |
| 2224 | mbuf_t buffer; |
| 2225 | int error = 0; |
| 2226 | proc_t last_proc = NULL; |
| 2227 | struct sockaddr *remote_endpoint = fd_cb->original_remote_endpoint; |
| 2228 | bool do_connect = !(fd_cb->flags & FLOW_DIVERT_IMPLICIT_CONNECT); |
| 2229 | struct inpcb *inp = NULL; |
| 2230 | |
| 2231 | so = fd_cb->so; |
| 2232 | if (so == NULL) { |
| 2233 | goto done; |
| 2234 | } |
| 2235 | |
| 2236 | FDLOG0(LOG_NOTICE, fd_cb, "Skipped all flow divert services, disabling flow divert" ); |
| 2237 | |
| 2238 | /* Restore the IP state */ |
| 2239 | inp = sotoinpcb(so); |
| 2240 | inp->inp_vflag = fd_cb->original_vflag; |
| 2241 | inp->inp_faddr.s_addr = INADDR_ANY; |
| 2242 | inp->inp_fport = 0; |
| 2243 | memset(s: &(inp->in6p_faddr), c: 0, n: sizeof(inp->in6p_faddr)); |
| 2244 | inp->inp_fifscope = IFSCOPE_NONE; |
| 2245 | inp->in6p_fport = 0; |
| 2246 | /* If flow divert set the local address, clear it out */ |
| 2247 | if (fd_cb->flags & FLOW_DIVERT_DID_SET_LOCAL_ADDR) { |
| 2248 | inp->inp_laddr.s_addr = INADDR_ANY; |
| 2249 | memset(s: &(inp->in6p_laddr), c: 0, n: sizeof(inp->in6p_laddr)); |
| 2250 | inp->inp_lifscope = IFSCOPE_NONE; |
| 2251 | } |
| 2252 | inp->inp_last_outifp = fd_cb->original_last_outifp; |
| 2253 | inp->in6p_last_outifp = fd_cb->original_last_outifp6; |
| 2254 | |
| 2255 | /* Dis-associate the socket */ |
| 2256 | so->so_flags &= ~SOF_FLOW_DIVERT; |
| 2257 | so->so_flags1 |= SOF1_FLOW_DIVERT_SKIP; |
| 2258 | so->so_fd_pcb = NULL; |
| 2259 | fd_cb->so = NULL; |
| 2260 | |
| 2261 | FDRELEASE(fd_cb); /* Release the socket's reference */ |
| 2262 | |
| 2263 | /* Revert back to the original protocol */ |
| 2264 | so->so_proto = pffindproto(SOCK_DOM(so), SOCK_PROTO(so), SOCK_TYPE(so)); |
| 2265 | |
| 2266 | /* Reset the socket state to avoid confusing NECP */ |
| 2267 | so->so_state &= ~(SS_ISCONNECTING | SS_ISCONNECTED); |
| 2268 | |
| 2269 | last_proc = proc_find(pid: so->last_pid); |
| 2270 | |
| 2271 | if (do_connect) { |
| 2272 | /* Connect using the original protocol */ |
| 2273 | error = (*so->so_proto->pr_usrreqs->pru_connect)(so, remote_endpoint, (last_proc != NULL ? last_proc : current_proc())); |
| 2274 | if (error) { |
| 2275 | FDLOG(LOG_ERR, fd_cb, "Failed to connect using the socket's original protocol: %d" , error); |
| 2276 | goto done; |
| 2277 | } |
| 2278 | } |
| 2279 | |
| 2280 | buffer = so->so_snd.sb_mb; |
| 2281 | if (buffer == NULL) { |
| 2282 | /* No buffered data, done */ |
| 2283 | goto done; |
| 2284 | } |
| 2285 | |
| 2286 | /* Send any buffered data using the original protocol */ |
| 2287 | if (SOCK_TYPE(so) == SOCK_STREAM) { |
| 2288 | mbuf_t data_to_send = NULL; |
| 2289 | size_t data_len = so->so_snd.sb_cc; |
| 2290 | |
| 2291 | error = mbuf_copym(src: buffer, offset: 0, len: data_len, how: MBUF_DONTWAIT, new_mbuf: &data_to_send); |
| 2292 | if (error) { |
| 2293 | FDLOG0(LOG_ERR, fd_cb, "Failed to copy the mbuf chain in the socket's send buffer" ); |
| 2294 | goto done; |
| 2295 | } |
| 2296 | |
| 2297 | sbflush(sb: &so->so_snd); |
| 2298 | |
| 2299 | if (data_to_send->m_flags & M_PKTHDR) { |
| 2300 | mbuf_pkthdr_setlen(mbuf: data_to_send, len: data_len); |
| 2301 | } |
| 2302 | |
| 2303 | error = (*so->so_proto->pr_usrreqs->pru_send)(so, |
| 2304 | 0, |
| 2305 | data_to_send, |
| 2306 | NULL, |
| 2307 | NULL, |
| 2308 | (last_proc != NULL ? last_proc : current_proc())); |
| 2309 | |
| 2310 | if (error && error != EWOULDBLOCK) { |
| 2311 | FDLOG(LOG_ERR, fd_cb, "Failed to send queued TCP data using the socket's original protocol: %d" , error); |
| 2312 | } else { |
| 2313 | error = 0; |
| 2314 | } |
| 2315 | } else if (SOCK_TYPE(so) == SOCK_DGRAM) { |
| 2316 | struct sockbuf *sb = &so->so_snd; |
| 2317 | MBUFQ_HEAD(send_queue_head) send_queue; |
| 2318 | MBUFQ_INIT(&send_queue); |
| 2319 | |
| 2320 | /* Flush the send buffer, moving all records to a temporary queue */ |
| 2321 | while (sb->sb_mb != NULL) { |
| 2322 | mbuf_t record = sb->sb_mb; |
| 2323 | mbuf_t m = record; |
| 2324 | sb->sb_mb = sb->sb_mb->m_nextpkt; |
| 2325 | while (m != NULL) { |
| 2326 | sbfree(sb, m); |
| 2327 | m = m->m_next; |
| 2328 | } |
| 2329 | record->m_nextpkt = NULL; |
| 2330 | MBUFQ_ENQUEUE(&send_queue, record); |
| 2331 | } |
| 2332 | SB_EMPTY_FIXUP(sb); |
| 2333 | |
| 2334 | while (!MBUFQ_EMPTY(&send_queue)) { |
| 2335 | mbuf_t next_record = MBUFQ_FIRST(&send_queue); |
| 2336 | mbuf_t addr = NULL; |
| 2337 | mbuf_t control = NULL; |
| 2338 | mbuf_t last_control = NULL; |
| 2339 | mbuf_t data = NULL; |
| 2340 | mbuf_t m = next_record; |
| 2341 | struct sockaddr *to_endpoint = NULL; |
| 2342 | |
| 2343 | MBUFQ_DEQUEUE(&send_queue, next_record); |
| 2344 | |
| 2345 | while (m != NULL) { |
| 2346 | if (m->m_type == MT_SONAME) { |
| 2347 | addr = m; |
| 2348 | } else if (m->m_type == MT_CONTROL) { |
| 2349 | if (control == NULL) { |
| 2350 | control = m; |
| 2351 | } |
| 2352 | last_control = m; |
| 2353 | } else if (m->m_type == MT_DATA) { |
| 2354 | data = m; |
| 2355 | break; |
| 2356 | } |
| 2357 | m = m->m_next; |
| 2358 | } |
| 2359 | |
| 2360 | if (addr != NULL && !do_connect) { |
| 2361 | to_endpoint = flow_divert_get_buffered_target_address(buffer: addr); |
| 2362 | if (to_endpoint == NULL) { |
| 2363 | FDLOG0(LOG_NOTICE, fd_cb, "Failed to get the remote address from the buffer" ); |
| 2364 | } |
| 2365 | } |
| 2366 | |
| 2367 | if (data == NULL) { |
| 2368 | FDLOG0(LOG_ERR, fd_cb, "Buffered record does not contain any data" ); |
| 2369 | mbuf_freem(mbuf: next_record); |
| 2370 | continue; |
| 2371 | } |
| 2372 | |
| 2373 | if (!(data->m_flags & M_PKTHDR)) { |
| 2374 | FDLOG0(LOG_ERR, fd_cb, "Buffered data does not have a packet header" ); |
| 2375 | mbuf_freem(mbuf: next_record); |
| 2376 | continue; |
| 2377 | } |
| 2378 | |
| 2379 | if (addr != NULL) { |
| 2380 | addr->m_next = NULL; |
| 2381 | } |
| 2382 | |
| 2383 | if (last_control != NULL) { |
| 2384 | last_control->m_next = NULL; |
| 2385 | } |
| 2386 | |
| 2387 | error = (*so->so_proto->pr_usrreqs->pru_send)(so, |
| 2388 | 0, |
| 2389 | data, |
| 2390 | to_endpoint, |
| 2391 | control, |
| 2392 | (last_proc != NULL ? last_proc : current_proc())); |
| 2393 | |
| 2394 | if (addr != NULL) { |
| 2395 | mbuf_freem(mbuf: addr); |
| 2396 | } |
| 2397 | |
| 2398 | if (error) { |
| 2399 | FDLOG(LOG_ERR, fd_cb, "Failed to send queued UDP data using the socket's original protocol: %d" , error); |
| 2400 | } |
| 2401 | } |
| 2402 | } |
| 2403 | done: |
| 2404 | if (last_proc != NULL) { |
| 2405 | proc_rele(p: last_proc); |
| 2406 | } |
| 2407 | |
| 2408 | if (error && so != NULL) { |
| 2409 | so->so_error = (uint16_t)error; |
| 2410 | flow_divert_disconnect_socket(so, is_connected: do_connect, false); |
| 2411 | } |
| 2412 | } |
| 2413 | |
| 2414 | static void |
| 2415 | flow_divert_scope(struct flow_divert_pcb *fd_cb, int out_if_index, bool derive_new_address) |
| 2416 | { |
| 2417 | struct socket *so = NULL; |
| 2418 | struct inpcb *inp = NULL; |
| 2419 | struct ifnet *current_ifp = NULL; |
| 2420 | struct ifnet *new_ifp = NULL; |
| 2421 | int error = 0; |
| 2422 | |
| 2423 | so = fd_cb->so; |
| 2424 | if (so == NULL) { |
| 2425 | return; |
| 2426 | } |
| 2427 | |
| 2428 | inp = sotoinpcb(so); |
| 2429 | |
| 2430 | if (out_if_index <= 0) { |
| 2431 | return; |
| 2432 | } |
| 2433 | |
| 2434 | if (inp->inp_vflag & INP_IPV6) { |
| 2435 | current_ifp = inp->in6p_last_outifp; |
| 2436 | } else { |
| 2437 | current_ifp = inp->inp_last_outifp; |
| 2438 | } |
| 2439 | |
| 2440 | if (current_ifp != NULL) { |
| 2441 | if (current_ifp->if_index == out_if_index) { |
| 2442 | /* No change */ |
| 2443 | return; |
| 2444 | } |
| 2445 | |
| 2446 | /* Scope the socket to the given interface */ |
| 2447 | error = inp_bindif(inp, out_if_index, &new_ifp); |
| 2448 | if (error != 0) { |
| 2449 | FDLOG(LOG_ERR, fd_cb, "failed to scope to %d because inp_bindif returned %d" , out_if_index, error); |
| 2450 | return; |
| 2451 | } |
| 2452 | |
| 2453 | if (derive_new_address && fd_cb->original_remote_endpoint != NULL) { |
| 2454 | /* Get the appropriate address for the given interface */ |
| 2455 | if (inp->inp_vflag & INP_IPV6) { |
| 2456 | inp->in6p_laddr = sa6_any.sin6_addr; |
| 2457 | error = in6_pcbladdr(inp, fd_cb->original_remote_endpoint, &(fd_cb->local_endpoint.sin6.sin6_addr), NULL); |
| 2458 | } else { |
| 2459 | inp->inp_laddr.s_addr = INADDR_ANY; |
| 2460 | error = in_pcbladdr(inp, fd_cb->original_remote_endpoint, &(fd_cb->local_endpoint.sin.sin_addr), IFSCOPE_NONE, NULL, 0); |
| 2461 | } |
| 2462 | |
| 2463 | if (error != 0) { |
| 2464 | FDLOG(LOG_WARNING, fd_cb, "failed to derive a new local address from %d because in_pcbladdr returned %d" , out_if_index, error); |
| 2465 | } |
| 2466 | } |
| 2467 | } else { |
| 2468 | ifnet_head_lock_shared(); |
| 2469 | if (IF_INDEX_IN_RANGE(out_if_index)) { |
| 2470 | new_ifp = ifindex2ifnet[out_if_index]; |
| 2471 | } |
| 2472 | ifnet_head_done(); |
| 2473 | } |
| 2474 | |
| 2475 | /* Update the "last interface" of the socket */ |
| 2476 | if (new_ifp != NULL) { |
| 2477 | if (inp->inp_vflag & INP_IPV6) { |
| 2478 | inp->in6p_last_outifp = new_ifp; |
| 2479 | } else { |
| 2480 | inp->inp_last_outifp = new_ifp; |
| 2481 | } |
| 2482 | |
| 2483 | #if SKYWALK |
| 2484 | if (NETNS_TOKEN_VALID(&inp->inp_netns_token)) { |
| 2485 | netns_set_ifnet(token: &inp->inp_netns_token, ifp: new_ifp); |
| 2486 | } |
| 2487 | #endif /* SKYWALK */ |
| 2488 | } |
| 2489 | } |
| 2490 | |
| 2491 | static void |
| 2492 | flow_divert_handle_connect_result(struct flow_divert_pcb *fd_cb, mbuf_t packet, int offset) |
| 2493 | { |
| 2494 | uint32_t connect_error = 0; |
| 2495 | uint32_t ctl_unit = 0; |
| 2496 | int error = 0; |
| 2497 | union sockaddr_in_4_6 local_endpoint = {}; |
| 2498 | union sockaddr_in_4_6 remote_endpoint = {}; |
| 2499 | int out_if_index = 0; |
| 2500 | uint32_t send_window; |
| 2501 | uint32_t app_data_length = 0; |
| 2502 | |
| 2503 | memset(s: &local_endpoint, c: 0, n: sizeof(local_endpoint)); |
| 2504 | memset(s: &remote_endpoint, c: 0, n: sizeof(remote_endpoint)); |
| 2505 | |
| 2506 | error = flow_divert_packet_get_tlv(packet, offset, FLOW_DIVERT_TLV_ERROR_CODE, buff_len: sizeof(connect_error), buff: &connect_error, NULL); |
| 2507 | if (error) { |
| 2508 | FDLOG(LOG_ERR, fd_cb, "failed to get the connect result: %d" , error); |
| 2509 | return; |
| 2510 | } |
| 2511 | |
| 2512 | connect_error = ntohl(connect_error); |
| 2513 | FDLOG(LOG_INFO, fd_cb, "received connect result %u" , connect_error); |
| 2514 | |
| 2515 | error = flow_divert_packet_get_tlv(packet, offset, FLOW_DIVERT_TLV_SPACE_AVAILABLE, buff_len: sizeof(send_window), buff: &send_window, NULL); |
| 2516 | if (error) { |
| 2517 | FDLOG(LOG_ERR, fd_cb, "failed to get the send window: %d" , error); |
| 2518 | return; |
| 2519 | } |
| 2520 | |
| 2521 | error = flow_divert_packet_get_tlv(packet, offset, FLOW_DIVERT_TLV_CTL_UNIT, buff_len: sizeof(ctl_unit), buff: &ctl_unit, NULL); |
| 2522 | if (error) { |
| 2523 | FDLOG0(LOG_INFO, fd_cb, "No control unit provided in the connect result" ); |
| 2524 | } |
| 2525 | |
| 2526 | error = flow_divert_packet_get_tlv(packet, offset, FLOW_DIVERT_TLV_LOCAL_ADDR, buff_len: sizeof(local_endpoint), buff: &(local_endpoint.sa), NULL); |
| 2527 | if (error) { |
| 2528 | FDLOG0(LOG_INFO, fd_cb, "No local address provided" ); |
| 2529 | } |
| 2530 | |
| 2531 | error = flow_divert_packet_get_tlv(packet, offset, FLOW_DIVERT_TLV_REMOTE_ADDR, buff_len: sizeof(remote_endpoint), buff: &(remote_endpoint.sa), NULL); |
| 2532 | if (error) { |
| 2533 | FDLOG0(LOG_INFO, fd_cb, "No remote address provided" ); |
| 2534 | } |
| 2535 | |
| 2536 | error = flow_divert_packet_get_tlv(packet, offset, FLOW_DIVERT_TLV_OUT_IF_INDEX, buff_len: sizeof(out_if_index), buff: &out_if_index, NULL); |
| 2537 | if (error) { |
| 2538 | FDLOG0(LOG_INFO, fd_cb, "No output if index provided" ); |
| 2539 | } |
| 2540 | |
| 2541 | error = flow_divert_packet_get_tlv(packet, offset, FLOW_DIVERT_TLV_APP_DATA, buff_len: 0, NULL, val_size: &app_data_length); |
| 2542 | if (error) { |
| 2543 | FDLOG0(LOG_INFO, fd_cb, "No application data provided in connect result" ); |
| 2544 | } |
| 2545 | |
| 2546 | error = 0; |
| 2547 | |
| 2548 | FDLOCK(fd_cb); |
| 2549 | if (fd_cb->so != NULL) { |
| 2550 | struct inpcb *inp = NULL; |
| 2551 | struct socket *so = fd_cb->so; |
| 2552 | bool local_address_is_valid = false; |
| 2553 | |
| 2554 | socket_lock(so, refcount: 1); |
| 2555 | |
| 2556 | if (!(so->so_flags & SOF_FLOW_DIVERT)) { |
| 2557 | FDLOG0(LOG_NOTICE, fd_cb, "socket is not attached any more, ignoring connect result" ); |
| 2558 | goto done; |
| 2559 | } |
| 2560 | |
| 2561 | if (SOCK_TYPE(so) == SOCK_STREAM && !(so->so_state & SS_ISCONNECTING)) { |
| 2562 | FDLOG0(LOG_ERR, fd_cb, "TCP socket is not in the connecting state, ignoring connect result" ); |
| 2563 | goto done; |
| 2564 | } |
| 2565 | |
| 2566 | inp = sotoinpcb(so); |
| 2567 | |
| 2568 | if (connect_error || error) { |
| 2569 | goto set_socket_state; |
| 2570 | } |
| 2571 | |
| 2572 | if (flow_divert_is_sockaddr_valid(SA(&local_endpoint))) { |
| 2573 | if (local_endpoint.sa.sa_family == AF_INET) { |
| 2574 | local_endpoint.sa.sa_len = sizeof(struct sockaddr_in); |
| 2575 | if ((inp->inp_vflag & INP_IPV4) && local_endpoint.sin.sin_addr.s_addr != INADDR_ANY) { |
| 2576 | local_address_is_valid = true; |
| 2577 | fd_cb->local_endpoint = local_endpoint; |
| 2578 | inp->inp_laddr.s_addr = INADDR_ANY; |
| 2579 | } else { |
| 2580 | fd_cb->local_endpoint.sin.sin_port = local_endpoint.sin.sin_port; |
| 2581 | } |
| 2582 | } else if (local_endpoint.sa.sa_family == AF_INET6) { |
| 2583 | local_endpoint.sa.sa_len = sizeof(struct sockaddr_in6); |
| 2584 | if ((inp->inp_vflag & INP_IPV6) && !IN6_IS_ADDR_UNSPECIFIED(&local_endpoint.sin6.sin6_addr)) { |
| 2585 | local_address_is_valid = true; |
| 2586 | fd_cb->local_endpoint = local_endpoint; |
| 2587 | inp->in6p_laddr = sa6_any.sin6_addr; |
| 2588 | } else { |
| 2589 | fd_cb->local_endpoint.sin6.sin6_port = local_endpoint.sin6.sin6_port; |
| 2590 | } |
| 2591 | } |
| 2592 | } |
| 2593 | |
| 2594 | flow_divert_scope(fd_cb, out_if_index, derive_new_address: !local_address_is_valid); |
| 2595 | flow_divert_set_local_endpoint(fd_cb, SA(&fd_cb->local_endpoint)); |
| 2596 | |
| 2597 | if (flow_divert_is_sockaddr_valid(SA(&remote_endpoint)) && SOCK_TYPE(so) == SOCK_STREAM) { |
| 2598 | if (remote_endpoint.sa.sa_family == AF_INET) { |
| 2599 | remote_endpoint.sa.sa_len = sizeof(struct sockaddr_in); |
| 2600 | } else if (remote_endpoint.sa.sa_family == AF_INET6) { |
| 2601 | remote_endpoint.sa.sa_len = sizeof(struct sockaddr_in6); |
| 2602 | } |
| 2603 | flow_divert_set_remote_endpoint(fd_cb, SA(&remote_endpoint)); |
| 2604 | } |
| 2605 | |
| 2606 | if (app_data_length > 0) { |
| 2607 | uint8_t *app_data = NULL; |
| 2608 | app_data = kalloc_data(app_data_length, Z_WAITOK); |
| 2609 | if (app_data != NULL) { |
| 2610 | error = flow_divert_packet_get_tlv(packet, offset, FLOW_DIVERT_TLV_APP_DATA, buff_len: app_data_length, buff: app_data, NULL); |
| 2611 | if (error == 0) { |
| 2612 | FDLOG(LOG_INFO, fd_cb, "Got %u bytes of app data from the connect result" , app_data_length); |
| 2613 | if (fd_cb->app_data != NULL) { |
| 2614 | kfree_data(fd_cb->app_data, fd_cb->app_data_length); |
| 2615 | } |
| 2616 | fd_cb->app_data = app_data; |
| 2617 | fd_cb->app_data_length = app_data_length; |
| 2618 | } else { |
| 2619 | FDLOG(LOG_ERR, fd_cb, "Failed to copy %u bytes of application data from the connect result packet" , app_data_length); |
| 2620 | kfree_data(app_data, app_data_length); |
| 2621 | } |
| 2622 | } else { |
| 2623 | FDLOG(LOG_ERR, fd_cb, "Failed to allocate a buffer of size %u to hold the application data from the connect result" , app_data_length); |
| 2624 | } |
| 2625 | } |
| 2626 | |
| 2627 | if (error) { |
| 2628 | goto set_socket_state; |
| 2629 | } |
| 2630 | |
| 2631 | if (fd_cb->group == NULL) { |
| 2632 | error = EINVAL; |
| 2633 | goto set_socket_state; |
| 2634 | } |
| 2635 | |
| 2636 | ctl_unit = ntohl(ctl_unit); |
| 2637 | if (ctl_unit > 0) { |
| 2638 | int insert_error = 0; |
| 2639 | struct flow_divert_group *grp = NULL; |
| 2640 | |
| 2641 | if (ctl_unit >= GROUP_COUNT_MAX) { |
| 2642 | FDLOG(LOG_ERR, fd_cb, "Connect result contains an invalid control unit: %u" , ctl_unit); |
| 2643 | error = EINVAL; |
| 2644 | goto set_socket_state; |
| 2645 | } |
| 2646 | |
| 2647 | grp = flow_divert_group_lookup(ctl_unit, fd_cb); |
| 2648 | if (grp == NULL) { |
| 2649 | error = ECONNRESET; |
| 2650 | goto set_socket_state; |
| 2651 | } |
| 2652 | |
| 2653 | flow_divert_pcb_remove(fd_cb); |
| 2654 | insert_error = flow_divert_pcb_insert(fd_cb, group: grp); |
| 2655 | FDGRP_RELEASE(grp); |
| 2656 | |
| 2657 | if (insert_error != 0) { |
| 2658 | error = ECONNRESET; |
| 2659 | goto set_socket_state; |
| 2660 | } |
| 2661 | } |
| 2662 | |
| 2663 | fd_cb->send_window = ntohl(send_window); |
| 2664 | |
| 2665 | set_socket_state: |
| 2666 | if (!connect_error && !error) { |
| 2667 | FDLOG0(LOG_INFO, fd_cb, "sending connect result" ); |
| 2668 | error = flow_divert_send_connect_result(fd_cb); |
| 2669 | } |
| 2670 | |
| 2671 | if (connect_error || error) { |
| 2672 | if (connect_error && fd_cb->control_group_unit != fd_cb->policy_control_unit) { |
| 2673 | error = flow_divert_try_next_group(fd_cb); |
| 2674 | if (error && fd_cb->policy_control_unit == 0) { |
| 2675 | flow_divert_disable(fd_cb); |
| 2676 | goto done; |
| 2677 | } else if (error == 0) { |
| 2678 | goto done; |
| 2679 | } |
| 2680 | } |
| 2681 | |
| 2682 | if (!connect_error) { |
| 2683 | flow_divert_update_closed_state(fd_cb, SHUT_RDWR, false, true); |
| 2684 | so->so_error = (uint16_t)error; |
| 2685 | flow_divert_send_close_if_needed(fd_cb); |
| 2686 | } else { |
| 2687 | flow_divert_update_closed_state(fd_cb, SHUT_RDWR, true, true); |
| 2688 | so->so_error = (uint16_t)connect_error; |
| 2689 | } |
| 2690 | flow_divert_disconnect_socket(so, is_connected: !(fd_cb->flags & FLOW_DIVERT_IMPLICIT_CONNECT), false); |
| 2691 | } else { |
| 2692 | #if NECP |
| 2693 | /* Update NECP client with connected five-tuple */ |
| 2694 | if (!uuid_is_null(uu: inp->necp_client_uuid)) { |
| 2695 | socket_unlock(so, refcount: 0); |
| 2696 | necp_client_assign_from_socket(pid: so->last_pid, client_id: inp->necp_client_uuid, inp); |
| 2697 | socket_lock(so, refcount: 0); |
| 2698 | if (!(so->so_flags & SOF_FLOW_DIVERT)) { |
| 2699 | /* The socket was closed while it was unlocked */ |
| 2700 | goto done; |
| 2701 | } |
| 2702 | } |
| 2703 | #endif /* NECP */ |
| 2704 | |
| 2705 | flow_divert_send_buffered_data(fd_cb, FALSE); |
| 2706 | soisconnected(so); |
| 2707 | } |
| 2708 | |
| 2709 | /* We don't need the connect packet any more */ |
| 2710 | if (fd_cb->connect_packet != NULL) { |
| 2711 | mbuf_freem(mbuf: fd_cb->connect_packet); |
| 2712 | fd_cb->connect_packet = NULL; |
| 2713 | } |
| 2714 | |
| 2715 | /* We don't need the original remote endpoint any more */ |
| 2716 | free_sockaddr(fd_cb->original_remote_endpoint); |
| 2717 | done: |
| 2718 | socket_unlock(so, refcount: 1); |
| 2719 | } |
| 2720 | FDUNLOCK(fd_cb); |
| 2721 | } |
| 2722 | |
| 2723 | static void |
| 2724 | flow_divert_handle_close(struct flow_divert_pcb *fd_cb, mbuf_t packet, int offset) |
| 2725 | { |
| 2726 | uint32_t close_error = 0; |
| 2727 | int error = 0; |
| 2728 | int how = 0; |
| 2729 | |
| 2730 | error = flow_divert_packet_get_tlv(packet, offset, FLOW_DIVERT_TLV_ERROR_CODE, buff_len: sizeof(close_error), buff: &close_error, NULL); |
| 2731 | if (error) { |
| 2732 | FDLOG(LOG_ERR, fd_cb, "failed to get the close error: %d" , error); |
| 2733 | return; |
| 2734 | } |
| 2735 | |
| 2736 | error = flow_divert_packet_get_tlv(packet, offset, FLOW_DIVERT_TLV_HOW, buff_len: sizeof(how), buff: &how, NULL); |
| 2737 | if (error) { |
| 2738 | FDLOG(LOG_ERR, fd_cb, "failed to get the close how flag: %d" , error); |
| 2739 | return; |
| 2740 | } |
| 2741 | |
| 2742 | how = ntohl(how); |
| 2743 | |
| 2744 | FDLOG(LOG_INFO, fd_cb, "close received, how = %d" , how); |
| 2745 | |
| 2746 | FDLOCK(fd_cb); |
| 2747 | if (fd_cb->so != NULL) { |
| 2748 | bool is_connected = (SOCK_TYPE(fd_cb->so) == SOCK_STREAM || !(fd_cb->flags & FLOW_DIVERT_IMPLICIT_CONNECT)); |
| 2749 | socket_lock(so: fd_cb->so, refcount: 0); |
| 2750 | |
| 2751 | if (!(fd_cb->so->so_flags & SOF_FLOW_DIVERT)) { |
| 2752 | FDLOG0(LOG_NOTICE, fd_cb, "socket is not attached any more, ignoring close from provider" ); |
| 2753 | goto done; |
| 2754 | } |
| 2755 | |
| 2756 | fd_cb->so->so_error = (uint16_t)ntohl(close_error); |
| 2757 | |
| 2758 | flow_divert_update_closed_state(fd_cb, how, true, true); |
| 2759 | |
| 2760 | /* Only do this for stream flows because "shutdown by peer" doesn't make sense for datagram flows */ |
| 2761 | how = flow_divert_tunnel_how_closed(fd_cb); |
| 2762 | if (how == SHUT_RDWR) { |
| 2763 | flow_divert_disconnect_socket(so: fd_cb->so, is_connected, true); |
| 2764 | } else if (how == SHUT_RD && is_connected) { |
| 2765 | socantrcvmore(so: fd_cb->so); |
| 2766 | } else if (how == SHUT_WR && is_connected) { |
| 2767 | socantsendmore(so: fd_cb->so); |
| 2768 | } |
| 2769 | done: |
| 2770 | socket_unlock(so: fd_cb->so, refcount: 0); |
| 2771 | } |
| 2772 | FDUNLOCK(fd_cb); |
| 2773 | } |
| 2774 | |
| 2775 | static mbuf_t |
| 2776 | flow_divert_create_control_mbuf(struct flow_divert_pcb *fd_cb) |
| 2777 | { |
| 2778 | struct inpcb *inp = sotoinpcb(fd_cb->so); |
| 2779 | bool need_recvdstaddr = false; |
| 2780 | /* Socket flow tracking needs to see the local address */ |
| 2781 | need_recvdstaddr = SOFLOW_ENABLED(inp->inp_socket); |
| 2782 | if ((inp->inp_vflag & INP_IPV4) && |
| 2783 | fd_cb->local_endpoint.sa.sa_family == AF_INET && |
| 2784 | ((inp->inp_flags & INP_RECVDSTADDR) || need_recvdstaddr)) { |
| 2785 | return sbcreatecontrol(p: (caddr_t)&(fd_cb->local_endpoint.sin.sin_addr), size: sizeof(struct in_addr), IP_RECVDSTADDR, IPPROTO_IP); |
| 2786 | } else if ((inp->inp_vflag & INP_IPV6) && |
| 2787 | fd_cb->local_endpoint.sa.sa_family == AF_INET6 && |
| 2788 | ((inp->inp_flags & IN6P_PKTINFO) || need_recvdstaddr)) { |
| 2789 | struct in6_pktinfo pi6; |
| 2790 | memset(s: &pi6, c: 0, n: sizeof(pi6)); |
| 2791 | pi6.ipi6_addr = fd_cb->local_endpoint.sin6.sin6_addr; |
| 2792 | |
| 2793 | return sbcreatecontrol(p: (caddr_t)&pi6, size: sizeof(pi6), IPV6_PKTINFO, IPPROTO_IPV6); |
| 2794 | } |
| 2795 | return NULL; |
| 2796 | } |
| 2797 | |
| 2798 | static int |
| 2799 | flow_divert_handle_data(struct flow_divert_pcb *fd_cb, mbuf_t packet, size_t offset) |
| 2800 | { |
| 2801 | int error = 0; |
| 2802 | |
| 2803 | FDLOCK(fd_cb); |
| 2804 | if (fd_cb->so != NULL) { |
| 2805 | mbuf_t data = NULL; |
| 2806 | size_t data_size; |
| 2807 | struct sockaddr_storage remote_address; |
| 2808 | boolean_t got_remote_sa = FALSE; |
| 2809 | boolean_t appended = FALSE; |
| 2810 | boolean_t append_success = FALSE; |
| 2811 | |
| 2812 | socket_lock(so: fd_cb->so, refcount: 0); |
| 2813 | |
| 2814 | if (!(fd_cb->so->so_flags & SOF_FLOW_DIVERT)) { |
| 2815 | FDLOG0(LOG_NOTICE, fd_cb, "socket is not attached any more, ignoring inbound data" ); |
| 2816 | goto done; |
| 2817 | } |
| 2818 | |
| 2819 | if (sbspace(sb: &fd_cb->so->so_rcv) == 0) { |
| 2820 | error = ENOBUFS; |
| 2821 | fd_cb->flags |= FLOW_DIVERT_NOTIFY_ON_RECEIVED; |
| 2822 | FDLOG0(LOG_INFO, fd_cb, "Receive buffer is full, will send read notification when app reads some data" ); |
| 2823 | goto done; |
| 2824 | } |
| 2825 | |
| 2826 | if (SOCK_TYPE(fd_cb->so) == SOCK_DGRAM) { |
| 2827 | uint32_t val_size = 0; |
| 2828 | |
| 2829 | /* check if we got remote address with data */ |
| 2830 | memset(s: &remote_address, c: 0, n: sizeof(remote_address)); |
| 2831 | error = flow_divert_packet_get_tlv(packet, offset: (int)offset, FLOW_DIVERT_TLV_REMOTE_ADDR, buff_len: sizeof(remote_address), buff: &remote_address, val_size: &val_size); |
| 2832 | if (error || val_size > sizeof(remote_address)) { |
| 2833 | FDLOG0(LOG_INFO, fd_cb, "No remote address provided" ); |
| 2834 | error = 0; |
| 2835 | } else { |
| 2836 | if (remote_address.ss_len > sizeof(remote_address)) { |
| 2837 | remote_address.ss_len = sizeof(remote_address); |
| 2838 | } |
| 2839 | /* validate the address */ |
| 2840 | if (flow_divert_is_sockaddr_valid(addr: (struct sockaddr *)&remote_address)) { |
| 2841 | got_remote_sa = TRUE; |
| 2842 | } else { |
| 2843 | FDLOG0(LOG_INFO, fd_cb, "Remote address is invalid" ); |
| 2844 | } |
| 2845 | offset += (sizeof(uint8_t) + sizeof(uint32_t) + val_size); |
| 2846 | } |
| 2847 | } |
| 2848 | |
| 2849 | data_size = (mbuf_pkthdr_len(mbuf: packet) - offset); |
| 2850 | |
| 2851 | if (fd_cb->so->so_state & SS_CANTRCVMORE) { |
| 2852 | FDLOG(LOG_NOTICE, fd_cb, "app cannot receive any more data, dropping %lu bytes of data" , data_size); |
| 2853 | goto done; |
| 2854 | } |
| 2855 | |
| 2856 | if (SOCK_TYPE(fd_cb->so) != SOCK_STREAM && SOCK_TYPE(fd_cb->so) != SOCK_DGRAM) { |
| 2857 | FDLOG(LOG_ERR, fd_cb, "socket has an unsupported type: %d" , SOCK_TYPE(fd_cb->so)); |
| 2858 | goto done; |
| 2859 | } |
| 2860 | |
| 2861 | FDLOG(LOG_DEBUG, fd_cb, "received %lu bytes of data" , data_size); |
| 2862 | |
| 2863 | error = mbuf_split(src: packet, offset, how: MBUF_DONTWAIT, new_mbuf: &data); |
| 2864 | if (error || data == NULL) { |
| 2865 | FDLOG(LOG_ERR, fd_cb, "mbuf_split failed: %d" , error); |
| 2866 | goto done; |
| 2867 | } |
| 2868 | |
| 2869 | if (SOCK_TYPE(fd_cb->so) == SOCK_STREAM) { |
| 2870 | appended = (sbappendstream(sb: &fd_cb->so->so_rcv, m: data) != 0); |
| 2871 | append_success = TRUE; |
| 2872 | } else { |
| 2873 | struct sockaddr *append_sa = NULL; |
| 2874 | mbuf_t mctl; |
| 2875 | |
| 2876 | if (got_remote_sa == TRUE) { |
| 2877 | error = flow_divert_dup_addr(family: remote_address.ss_family, addr: (struct sockaddr *)&remote_address, dup: &append_sa); |
| 2878 | } else { |
| 2879 | if (SOCK_CHECK_DOM(fd_cb->so, AF_INET6)) { |
| 2880 | error = in6_mapped_peeraddr(so: fd_cb->so, nam: &append_sa); |
| 2881 | } else { |
| 2882 | error = in_getpeeraddr(fd_cb->so, &append_sa); |
| 2883 | } |
| 2884 | } |
| 2885 | if (error) { |
| 2886 | FDLOG0(LOG_ERR, fd_cb, "failed to dup the socket address." ); |
| 2887 | } |
| 2888 | |
| 2889 | mctl = flow_divert_create_control_mbuf(fd_cb); |
| 2890 | int append_error = 0; |
| 2891 | appended = sbappendaddr(sb: &fd_cb->so->so_rcv, asa: append_sa, m0: data, control: mctl, error_out: &append_error); |
| 2892 | if (appended || append_error == 0) { |
| 2893 | append_success = TRUE; |
| 2894 | } else { |
| 2895 | FDLOG(LOG_ERR, fd_cb, "failed to append %lu bytes of data: %d" , data_size, append_error); |
| 2896 | } |
| 2897 | |
| 2898 | free_sockaddr(append_sa); |
| 2899 | } |
| 2900 | |
| 2901 | if (append_success) { |
| 2902 | fd_cb->bytes_received += data_size; |
| 2903 | flow_divert_add_data_statistics(fd_cb, data_len: data_size, FALSE); |
| 2904 | } |
| 2905 | |
| 2906 | if (appended) { |
| 2907 | sorwakeup(so: fd_cb->so); |
| 2908 | } |
| 2909 | done: |
| 2910 | socket_unlock(so: fd_cb->so, refcount: 0); |
| 2911 | } |
| 2912 | FDUNLOCK(fd_cb); |
| 2913 | |
| 2914 | return error; |
| 2915 | } |
| 2916 | |
| 2917 | static void |
| 2918 | flow_divert_handle_read_notification(struct flow_divert_pcb *fd_cb, mbuf_t packet, int offset) |
| 2919 | { |
| 2920 | uint32_t read_count = 0; |
| 2921 | int error = 0; |
| 2922 | |
| 2923 | error = flow_divert_packet_get_tlv(packet, offset, FLOW_DIVERT_TLV_READ_COUNT, buff_len: sizeof(read_count), buff: &read_count, NULL); |
| 2924 | if (error) { |
| 2925 | FDLOG(LOG_ERR, fd_cb, "failed to get the read count: %d" , error); |
| 2926 | return; |
| 2927 | } |
| 2928 | |
| 2929 | FDLOG(LOG_DEBUG, fd_cb, "received a read notification for %u bytes" , ntohl(read_count)); |
| 2930 | |
| 2931 | FDLOCK(fd_cb); |
| 2932 | if (fd_cb->so != NULL) { |
| 2933 | socket_lock(so: fd_cb->so, refcount: 0); |
| 2934 | |
| 2935 | if (!(fd_cb->so->so_flags & SOF_FLOW_DIVERT)) { |
| 2936 | FDLOG0(LOG_NOTICE, fd_cb, "socket is not attached any more, ignoring read notification" ); |
| 2937 | goto done; |
| 2938 | } |
| 2939 | |
| 2940 | fd_cb->send_window += ntohl(read_count); |
| 2941 | flow_divert_send_buffered_data(fd_cb, FALSE); |
| 2942 | done: |
| 2943 | socket_unlock(so: fd_cb->so, refcount: 0); |
| 2944 | } |
| 2945 | FDUNLOCK(fd_cb); |
| 2946 | } |
| 2947 | |
| 2948 | static void |
| 2949 | flow_divert_handle_group_init(struct flow_divert_group *group, mbuf_t packet, int offset) |
| 2950 | { |
| 2951 | int error = 0; |
| 2952 | uint32_t key_size = 0; |
| 2953 | int log_level = 0; |
| 2954 | uint32_t flags = 0; |
| 2955 | int32_t order = FLOW_DIVERT_ORDER_LAST; |
| 2956 | |
| 2957 | error = flow_divert_packet_get_tlv(packet, offset, FLOW_DIVERT_TLV_TOKEN_KEY, buff_len: 0, NULL, val_size: &key_size); |
| 2958 | if (error) { |
| 2959 | FDLOG(LOG_ERR, &nil_pcb, "failed to get the key size: %d" , error); |
| 2960 | return; |
| 2961 | } |
| 2962 | |
| 2963 | if (key_size == 0 || key_size > FLOW_DIVERT_MAX_KEY_SIZE) { |
| 2964 | FDLOG(LOG_ERR, &nil_pcb, "Invalid key size: %u" , key_size); |
| 2965 | return; |
| 2966 | } |
| 2967 | |
| 2968 | error = flow_divert_packet_get_tlv(packet, offset, FLOW_DIVERT_TLV_LOG_LEVEL, buff_len: sizeof(log_level), buff: &log_level, NULL); |
| 2969 | if (!error) { |
| 2970 | nil_pcb.log_level = (uint8_t)log_level; |
| 2971 | } |
| 2972 | |
| 2973 | lck_rw_lock_exclusive(lck: &group->lck); |
| 2974 | |
| 2975 | if (group->flags & FLOW_DIVERT_GROUP_FLAG_DEFUNCT) { |
| 2976 | FDLOG(LOG_ERR, &nil_pcb, "Skipping (re)initialization of defunct group %u" , group->ctl_unit); |
| 2977 | lck_rw_done(lck: &group->lck); |
| 2978 | return; |
| 2979 | } |
| 2980 | |
| 2981 | if (group->token_key != NULL) { |
| 2982 | kfree_data(group->token_key, group->token_key_size); |
| 2983 | group->token_key = NULL; |
| 2984 | } |
| 2985 | |
| 2986 | group->token_key = kalloc_data(key_size, Z_WAITOK); |
| 2987 | error = flow_divert_packet_get_tlv(packet, offset, FLOW_DIVERT_TLV_TOKEN_KEY, buff_len: key_size, buff: group->token_key, NULL); |
| 2988 | if (error) { |
| 2989 | FDLOG(LOG_ERR, &nil_pcb, "failed to get the token key: %d" , error); |
| 2990 | kfree_data(group->token_key, key_size); |
| 2991 | group->token_key = NULL; |
| 2992 | lck_rw_done(lck: &group->lck); |
| 2993 | return; |
| 2994 | } |
| 2995 | |
| 2996 | group->token_key_size = key_size; |
| 2997 | |
| 2998 | error = flow_divert_packet_get_tlv(packet, offset, FLOW_DIVERT_TLV_FLAGS, buff_len: sizeof(flags), buff: &flags, NULL); |
| 2999 | if (!error) { |
| 3000 | group->flags = flags; |
| 3001 | } |
| 3002 | |
| 3003 | error = flow_divert_packet_get_tlv(packet, offset, FLOW_DIVERT_TLV_ORDER, buff_len: sizeof(order), buff: &order, NULL); |
| 3004 | if (!error) { |
| 3005 | FDLOG(LOG_INFO, &nil_pcb, "group %u order is %u" , group->ctl_unit, order); |
| 3006 | group->order = order; |
| 3007 | } |
| 3008 | |
| 3009 | lck_rw_done(lck: &group->lck); |
| 3010 | } |
| 3011 | |
| 3012 | static void |
| 3013 | flow_divert_handle_properties_update(struct flow_divert_pcb *fd_cb, mbuf_t packet, int offset) |
| 3014 | { |
| 3015 | int error = 0; |
| 3016 | int out_if_index = 0; |
| 3017 | uint32_t app_data_length = 0; |
| 3018 | |
| 3019 | FDLOG0(LOG_INFO, fd_cb, "received a properties update" ); |
| 3020 | |
| 3021 | error = flow_divert_packet_get_tlv(packet, offset, FLOW_DIVERT_TLV_OUT_IF_INDEX, buff_len: sizeof(out_if_index), buff: &out_if_index, NULL); |
| 3022 | if (error) { |
| 3023 | FDLOG0(LOG_INFO, fd_cb, "No output if index provided in properties update" ); |
| 3024 | } |
| 3025 | |
| 3026 | error = flow_divert_packet_get_tlv(packet, offset, FLOW_DIVERT_TLV_APP_DATA, buff_len: 0, NULL, val_size: &app_data_length); |
| 3027 | if (error) { |
| 3028 | FDLOG0(LOG_INFO, fd_cb, "No application data provided in properties update" ); |
| 3029 | } |
| 3030 | |
| 3031 | FDLOCK(fd_cb); |
| 3032 | if (fd_cb->so != NULL) { |
| 3033 | socket_lock(so: fd_cb->so, refcount: 0); |
| 3034 | |
| 3035 | if (!(fd_cb->so->so_flags & SOF_FLOW_DIVERT)) { |
| 3036 | FDLOG0(LOG_NOTICE, fd_cb, "socket is not attached any more, ignoring properties update" ); |
| 3037 | goto done; |
| 3038 | } |
| 3039 | |
| 3040 | if (out_if_index > 0) { |
| 3041 | flow_divert_scope(fd_cb, out_if_index, true); |
| 3042 | flow_divert_set_local_endpoint(fd_cb, SA(&fd_cb->local_endpoint)); |
| 3043 | } |
| 3044 | |
| 3045 | if (app_data_length > 0) { |
| 3046 | uint8_t *app_data = NULL; |
| 3047 | app_data = kalloc_data(app_data_length, Z_WAITOK); |
| 3048 | if (app_data != NULL) { |
| 3049 | error = flow_divert_packet_get_tlv(packet, offset, FLOW_DIVERT_TLV_APP_DATA, buff_len: app_data_length, buff: app_data, NULL); |
| 3050 | if (error == 0) { |
| 3051 | if (fd_cb->app_data != NULL) { |
| 3052 | kfree_data(fd_cb->app_data, fd_cb->app_data_length); |
| 3053 | } |
| 3054 | fd_cb->app_data = app_data; |
| 3055 | fd_cb->app_data_length = app_data_length; |
| 3056 | } else { |
| 3057 | FDLOG(LOG_ERR, fd_cb, "Failed to copy %u bytes of application data from the properties update packet" , app_data_length); |
| 3058 | kfree_data(app_data, app_data_length); |
| 3059 | } |
| 3060 | } else { |
| 3061 | FDLOG(LOG_ERR, fd_cb, "Failed to allocate a buffer of size %u to hold the application data from the properties update" , app_data_length); |
| 3062 | } |
| 3063 | } |
| 3064 | done: |
| 3065 | socket_unlock(so: fd_cb->so, refcount: 0); |
| 3066 | } |
| 3067 | FDUNLOCK(fd_cb); |
| 3068 | } |
| 3069 | |
| 3070 | static void |
| 3071 | flow_divert_handle_app_map_create(struct flow_divert_group *group, mbuf_t packet, int offset) |
| 3072 | { |
| 3073 | size_t bytes_mem_size; |
| 3074 | size_t child_maps_mem_size; |
| 3075 | size_t nodes_mem_size; |
| 3076 | size_t trie_memory_size = 0; |
| 3077 | int cursor; |
| 3078 | int error = 0; |
| 3079 | struct flow_divert_trie new_trie; |
| 3080 | int insert_error = 0; |
| 3081 | int prefix_count = -1; |
| 3082 | int signing_id_count = 0; |
| 3083 | size_t bytes_count = 0; |
| 3084 | size_t nodes_count = 0; |
| 3085 | size_t maps_count = 0; |
| 3086 | |
| 3087 | lck_rw_lock_exclusive(lck: &group->lck); |
| 3088 | |
| 3089 | /* Re-set the current trie */ |
| 3090 | if (group->signing_id_trie.memory != NULL) { |
| 3091 | kfree_data_addr(group->signing_id_trie.memory); |
| 3092 | } |
| 3093 | memset(s: &group->signing_id_trie, c: 0, n: sizeof(group->signing_id_trie)); |
| 3094 | group->signing_id_trie.root = NULL_TRIE_IDX; |
| 3095 | |
| 3096 | memset(s: &new_trie, c: 0, n: sizeof(new_trie)); |
| 3097 | |
| 3098 | /* Get the number of shared prefixes in the new set of signing ID strings */ |
| 3099 | error = flow_divert_packet_get_tlv(packet, offset, FLOW_DIVERT_TLV_PREFIX_COUNT, buff_len: sizeof(prefix_count), buff: &prefix_count, NULL); |
| 3100 | |
| 3101 | if (prefix_count < 0 || error) { |
| 3102 | FDLOG(LOG_ERR, &nil_pcb, "Invalid prefix count (%d) or an error occurred while reading the prefix count: %d" , prefix_count, error); |
| 3103 | lck_rw_done(lck: &group->lck); |
| 3104 | return; |
| 3105 | } |
| 3106 | |
| 3107 | /* Compute the number of signing IDs and the total amount of bytes needed to store them */ |
| 3108 | for (cursor = flow_divert_packet_find_tlv(packet, offset, FLOW_DIVERT_TLV_SIGNING_ID, err: &error, next: 0); |
| 3109 | cursor >= 0; |
| 3110 | cursor = flow_divert_packet_find_tlv(packet, offset: cursor, FLOW_DIVERT_TLV_SIGNING_ID, err: &error, next: 1)) { |
| 3111 | uint32_t sid_size = 0; |
| 3112 | error = flow_divert_packet_get_tlv(packet, offset: cursor, FLOW_DIVERT_TLV_SIGNING_ID, buff_len: 0, NULL, val_size: &sid_size); |
| 3113 | if (error || sid_size == 0) { |
| 3114 | FDLOG(LOG_ERR, &nil_pcb, "Failed to get the length of the signing identifier at offset %d: %d" , cursor, error); |
| 3115 | signing_id_count = 0; |
| 3116 | break; |
| 3117 | } |
| 3118 | if (os_add_overflow(bytes_count, sid_size, &bytes_count)) { |
| 3119 | FDLOG0(LOG_ERR, &nil_pcb, "Overflow while incrementing number of bytes" ); |
| 3120 | signing_id_count = 0; |
| 3121 | break; |
| 3122 | } |
| 3123 | signing_id_count++; |
| 3124 | } |
| 3125 | |
| 3126 | if (signing_id_count == 0) { |
| 3127 | lck_rw_done(lck: &group->lck); |
| 3128 | FDLOG0(LOG_NOTICE, &nil_pcb, "No signing identifiers" ); |
| 3129 | return; |
| 3130 | } |
| 3131 | |
| 3132 | if (os_add3_overflow(prefix_count, signing_id_count, 1, &nodes_count)) { /* + 1 for the root node */ |
| 3133 | lck_rw_done(lck: &group->lck); |
| 3134 | FDLOG0(LOG_ERR, &nil_pcb, "Overflow while computing the number of nodes" ); |
| 3135 | return; |
| 3136 | } |
| 3137 | |
| 3138 | if (os_add_overflow(prefix_count, 1, &maps_count)) { /* + 1 for the root node */ |
| 3139 | lck_rw_done(lck: &group->lck); |
| 3140 | FDLOG0(LOG_ERR, &nil_pcb, "Overflow while computing the number of maps" ); |
| 3141 | return; |
| 3142 | } |
| 3143 | |
| 3144 | if (bytes_count > UINT16_MAX || nodes_count > UINT16_MAX || maps_count > UINT16_MAX) { |
| 3145 | lck_rw_done(lck: &group->lck); |
| 3146 | FDLOG(LOG_NOTICE, &nil_pcb, "Invalid bytes count (%lu), nodes count (%lu) or maps count (%lu)" , bytes_count, nodes_count, maps_count); |
| 3147 | return; |
| 3148 | } |
| 3149 | |
| 3150 | FDLOG(LOG_INFO, &nil_pcb, "Nodes count = %lu, child maps count = %lu, bytes_count = %lu" , |
| 3151 | nodes_count, maps_count, bytes_count); |
| 3152 | |
| 3153 | if (os_mul_overflow(sizeof(*new_trie.nodes), (size_t)nodes_count, &nodes_mem_size) || |
| 3154 | os_mul3_overflow(sizeof(*new_trie.child_maps), CHILD_MAP_SIZE, (size_t)maps_count, &child_maps_mem_size) || |
| 3155 | os_mul_overflow(sizeof(*new_trie.bytes), (size_t)bytes_count, &bytes_mem_size) || |
| 3156 | os_add3_overflow(nodes_mem_size, child_maps_mem_size, bytes_mem_size, &trie_memory_size)) { |
| 3157 | FDLOG0(LOG_ERR, &nil_pcb, "Overflow while computing trie memory sizes" ); |
| 3158 | lck_rw_done(lck: &group->lck); |
| 3159 | return; |
| 3160 | } |
| 3161 | |
| 3162 | if (trie_memory_size > FLOW_DIVERT_MAX_TRIE_MEMORY) { |
| 3163 | FDLOG(LOG_ERR, &nil_pcb, "Trie memory size (%lu) is too big (maximum is %u)" , trie_memory_size, FLOW_DIVERT_MAX_TRIE_MEMORY); |
| 3164 | lck_rw_done(lck: &group->lck); |
| 3165 | return; |
| 3166 | } |
| 3167 | |
| 3168 | new_trie.memory = kalloc_data(trie_memory_size, Z_WAITOK); |
| 3169 | if (new_trie.memory == NULL) { |
| 3170 | FDLOG(LOG_ERR, &nil_pcb, "Failed to allocate %lu bytes of memory for the signing ID trie" , |
| 3171 | nodes_mem_size + child_maps_mem_size + bytes_mem_size); |
| 3172 | lck_rw_done(lck: &group->lck); |
| 3173 | return; |
| 3174 | } |
| 3175 | |
| 3176 | new_trie.bytes_count = (uint16_t)bytes_count; |
| 3177 | new_trie.nodes_count = (uint16_t)nodes_count; |
| 3178 | new_trie.child_maps_count = (uint16_t)maps_count; |
| 3179 | |
| 3180 | /* Initialize the free lists */ |
| 3181 | new_trie.nodes = (struct flow_divert_trie_node *)new_trie.memory; |
| 3182 | new_trie.nodes_free_next = 0; |
| 3183 | memset(s: new_trie.nodes, c: 0, n: nodes_mem_size); |
| 3184 | |
| 3185 | new_trie.child_maps = (uint16_t *)(void *)((uint8_t *)new_trie.memory + nodes_mem_size); |
| 3186 | new_trie.child_maps_free_next = 0; |
| 3187 | memset(s: new_trie.child_maps, c: 0xff, n: child_maps_mem_size); |
| 3188 | |
| 3189 | new_trie.bytes = (uint8_t *)(void *)((uint8_t *)new_trie.memory + nodes_mem_size + child_maps_mem_size); |
| 3190 | new_trie.bytes_free_next = 0; |
| 3191 | memset(s: new_trie.bytes, c: 0, n: bytes_mem_size); |
| 3192 | |
| 3193 | /* The root is an empty node */ |
| 3194 | new_trie.root = trie_node_alloc(trie: &new_trie); |
| 3195 | |
| 3196 | /* Add each signing ID to the trie */ |
| 3197 | for (cursor = flow_divert_packet_find_tlv(packet, offset, FLOW_DIVERT_TLV_SIGNING_ID, err: &error, next: 0); |
| 3198 | cursor >= 0; |
| 3199 | cursor = flow_divert_packet_find_tlv(packet, offset: cursor, FLOW_DIVERT_TLV_SIGNING_ID, err: &error, next: 1)) { |
| 3200 | uint32_t sid_size = 0; |
| 3201 | error = flow_divert_packet_get_tlv(packet, offset: cursor, FLOW_DIVERT_TLV_SIGNING_ID, buff_len: 0, NULL, val_size: &sid_size); |
| 3202 | if (error || sid_size == 0) { |
| 3203 | FDLOG(LOG_ERR, &nil_pcb, "Failed to get the length of the signing identifier at offset %d while building: %d" , cursor, error); |
| 3204 | insert_error = EINVAL; |
| 3205 | break; |
| 3206 | } |
| 3207 | if (sid_size <= UINT16_MAX && new_trie.bytes_free_next + (uint16_t)sid_size <= new_trie.bytes_count) { |
| 3208 | uint16_t new_node_idx; |
| 3209 | error = flow_divert_packet_get_tlv(packet, offset: cursor, FLOW_DIVERT_TLV_SIGNING_ID, buff_len: sid_size, buff: &TRIE_BYTE(&new_trie, new_trie.bytes_free_next), NULL); |
| 3210 | if (error) { |
| 3211 | FDLOG(LOG_ERR, &nil_pcb, "Failed to read the signing identifier at offset %d: %d" , cursor, error); |
| 3212 | insert_error = EINVAL; |
| 3213 | break; |
| 3214 | } |
| 3215 | new_node_idx = flow_divert_trie_insert(trie: &new_trie, string_start: new_trie.bytes_free_next, string_len: sid_size); |
| 3216 | if (new_node_idx == NULL_TRIE_IDX) { |
| 3217 | insert_error = EINVAL; |
| 3218 | break; |
| 3219 | } |
| 3220 | } else { |
| 3221 | FDLOG0(LOG_ERR, &nil_pcb, "No place to put signing ID for insertion" ); |
| 3222 | insert_error = ENOBUFS; |
| 3223 | break; |
| 3224 | } |
| 3225 | } |
| 3226 | |
| 3227 | if (!insert_error) { |
| 3228 | group->signing_id_trie = new_trie; |
| 3229 | } else { |
| 3230 | kfree_data(new_trie.memory, trie_memory_size); |
| 3231 | } |
| 3232 | |
| 3233 | lck_rw_done(lck: &group->lck); |
| 3234 | } |
| 3235 | |
| 3236 | static void |
| 3237 | flow_divert_handle_flow_states_request(struct flow_divert_group *group) |
| 3238 | { |
| 3239 | struct flow_divert_pcb *fd_cb; |
| 3240 | mbuf_t packet = NULL; |
| 3241 | SLIST_HEAD(, flow_divert_pcb) tmp_list; |
| 3242 | int error = 0; |
| 3243 | uint32_t ctl_unit = 0; |
| 3244 | |
| 3245 | SLIST_INIT(&tmp_list); |
| 3246 | |
| 3247 | error = flow_divert_packet_init(fd_cb: &nil_pcb, FLOW_DIVERT_PKT_FLOW_STATES, packet: &packet); |
| 3248 | if (error || packet == NULL) { |
| 3249 | FDLOG(LOG_ERR, &nil_pcb, "flow_divert_packet_init failed: %d, cannot send flow states" , error); |
| 3250 | return; |
| 3251 | } |
| 3252 | |
| 3253 | lck_rw_lock_shared(lck: &group->lck); |
| 3254 | |
| 3255 | if (!MBUFQ_EMPTY(&group->send_queue)) { |
| 3256 | FDLOG0(LOG_WARNING, &nil_pcb, "flow_divert_handle_flow_states_request: group send queue is not empty" ); |
| 3257 | } |
| 3258 | |
| 3259 | ctl_unit = group->ctl_unit; |
| 3260 | |
| 3261 | RB_FOREACH(fd_cb, fd_pcb_tree, &group->pcb_tree) { |
| 3262 | FDRETAIN(fd_cb); |
| 3263 | SLIST_INSERT_HEAD(&tmp_list, fd_cb, tmp_list_entry); |
| 3264 | } |
| 3265 | |
| 3266 | lck_rw_done(lck: &group->lck); |
| 3267 | |
| 3268 | SLIST_FOREACH(fd_cb, &tmp_list, tmp_list_entry) { |
| 3269 | FDLOCK(fd_cb); |
| 3270 | if (fd_cb->so != NULL) { |
| 3271 | struct flow_divert_flow_state state = {}; |
| 3272 | socket_lock(so: fd_cb->so, refcount: 0); |
| 3273 | |
| 3274 | state.conn_id = fd_cb->hash; |
| 3275 | state.bytes_written_by_app = fd_cb->bytes_written_by_app; |
| 3276 | state.bytes_sent = fd_cb->bytes_sent; |
| 3277 | state.bytes_received = fd_cb->bytes_received; |
| 3278 | state.send_window = fd_cb->send_window; |
| 3279 | state.send_buffer_bytes = fd_cb->so->so_snd.sb_cc; |
| 3280 | |
| 3281 | error = flow_divert_packet_append_tlv(packet, FLOW_DIVERT_TLV_FLOW_STATE, length: sizeof(state), value: &state); |
| 3282 | if (error) { |
| 3283 | FDLOG(LOG_ERR, fd_cb, "Failed to add a flow state: %d" , error); |
| 3284 | } |
| 3285 | |
| 3286 | socket_unlock(so: fd_cb->so, refcount: 0); |
| 3287 | } |
| 3288 | FDUNLOCK(fd_cb); |
| 3289 | FDRELEASE(fd_cb); |
| 3290 | } |
| 3291 | |
| 3292 | error = ctl_enqueuembuf(kctlref: g_flow_divert_kctl_ref, unit: ctl_unit, m: packet, CTL_DATA_EOR); |
| 3293 | if (error) { |
| 3294 | FDLOG(LOG_NOTICE, &nil_pcb, "flow_divert_handle_flow_states_request: ctl_enqueuembuf returned an error: %d" , error); |
| 3295 | mbuf_freem(mbuf: packet); |
| 3296 | } |
| 3297 | } |
| 3298 | |
| 3299 | static int |
| 3300 | flow_divert_input(mbuf_t packet, struct flow_divert_group *group) |
| 3301 | { |
| 3302 | struct flow_divert_packet_header hdr; |
| 3303 | int error = 0; |
| 3304 | struct flow_divert_pcb *fd_cb; |
| 3305 | |
| 3306 | if (mbuf_pkthdr_len(mbuf: packet) < sizeof(hdr)) { |
| 3307 | FDLOG(LOG_ERR, &nil_pcb, "got a bad packet, length (%lu) < sizeof hdr (%lu)" , mbuf_pkthdr_len(packet), sizeof(hdr)); |
| 3308 | error = EINVAL; |
| 3309 | goto done; |
| 3310 | } |
| 3311 | |
| 3312 | error = mbuf_copydata(mbuf: packet, offset: 0, length: sizeof(hdr), out_data: &hdr); |
| 3313 | if (error) { |
| 3314 | FDLOG(LOG_ERR, &nil_pcb, "mbuf_copydata failed for the header: %d" , error); |
| 3315 | error = ENOBUFS; |
| 3316 | goto done; |
| 3317 | } |
| 3318 | |
| 3319 | hdr.conn_id = ntohl(hdr.conn_id); |
| 3320 | |
| 3321 | if (hdr.conn_id == 0) { |
| 3322 | switch (hdr.packet_type) { |
| 3323 | case FLOW_DIVERT_PKT_GROUP_INIT: |
| 3324 | flow_divert_handle_group_init(group, packet, offset: sizeof(hdr)); |
| 3325 | break; |
| 3326 | case FLOW_DIVERT_PKT_APP_MAP_CREATE: |
| 3327 | flow_divert_handle_app_map_create(group, packet, offset: sizeof(hdr)); |
| 3328 | break; |
| 3329 | case FLOW_DIVERT_PKT_FLOW_STATES_REQUEST: |
| 3330 | flow_divert_handle_flow_states_request(group); |
| 3331 | break; |
| 3332 | default: |
| 3333 | FDLOG(LOG_WARNING, &nil_pcb, "got an unknown message type: %d" , hdr.packet_type); |
| 3334 | break; |
| 3335 | } |
| 3336 | goto done; |
| 3337 | } |
| 3338 | |
| 3339 | fd_cb = flow_divert_pcb_lookup(hash: hdr.conn_id, group); /* This retains the PCB */ |
| 3340 | if (fd_cb == NULL) { |
| 3341 | if (hdr.packet_type != FLOW_DIVERT_PKT_CLOSE && hdr.packet_type != FLOW_DIVERT_PKT_READ_NOTIFY) { |
| 3342 | FDLOG(LOG_NOTICE, &nil_pcb, "got a %s message from group %d for an unknown pcb: %u" , flow_divert_packet_type2str(hdr.packet_type), group->ctl_unit, hdr.conn_id); |
| 3343 | } |
| 3344 | goto done; |
| 3345 | } |
| 3346 | |
| 3347 | switch (hdr.packet_type) { |
| 3348 | case FLOW_DIVERT_PKT_CONNECT_RESULT: |
| 3349 | flow_divert_handle_connect_result(fd_cb, packet, offset: sizeof(hdr)); |
| 3350 | break; |
| 3351 | case FLOW_DIVERT_PKT_CLOSE: |
| 3352 | flow_divert_handle_close(fd_cb, packet, offset: sizeof(hdr)); |
| 3353 | break; |
| 3354 | case FLOW_DIVERT_PKT_DATA: |
| 3355 | error = flow_divert_handle_data(fd_cb, packet, offset: sizeof(hdr)); |
| 3356 | break; |
| 3357 | case FLOW_DIVERT_PKT_READ_NOTIFY: |
| 3358 | flow_divert_handle_read_notification(fd_cb, packet, offset: sizeof(hdr)); |
| 3359 | break; |
| 3360 | case FLOW_DIVERT_PKT_PROPERTIES_UPDATE: |
| 3361 | flow_divert_handle_properties_update(fd_cb, packet, offset: sizeof(hdr)); |
| 3362 | break; |
| 3363 | default: |
| 3364 | FDLOG(LOG_WARNING, fd_cb, "got an unknown message type: %d" , hdr.packet_type); |
| 3365 | break; |
| 3366 | } |
| 3367 | |
| 3368 | FDRELEASE(fd_cb); |
| 3369 | |
| 3370 | done: |
| 3371 | mbuf_freem(mbuf: packet); |
| 3372 | return error; |
| 3373 | } |
| 3374 | |
| 3375 | static void |
| 3376 | flow_divert_close_all(struct flow_divert_group *group) |
| 3377 | { |
| 3378 | struct flow_divert_pcb *fd_cb; |
| 3379 | SLIST_HEAD(, flow_divert_pcb) tmp_list; |
| 3380 | |
| 3381 | SLIST_INIT(&tmp_list); |
| 3382 | |
| 3383 | lck_rw_lock_exclusive(lck: &group->lck); |
| 3384 | |
| 3385 | MBUFQ_DRAIN(&group->send_queue); |
| 3386 | |
| 3387 | RB_FOREACH(fd_cb, fd_pcb_tree, &group->pcb_tree) { |
| 3388 | FDRETAIN(fd_cb); |
| 3389 | SLIST_INSERT_HEAD(&tmp_list, fd_cb, tmp_list_entry); |
| 3390 | } |
| 3391 | |
| 3392 | group->flags |= FLOW_DIVERT_GROUP_FLAG_DEFUNCT; |
| 3393 | |
| 3394 | lck_rw_done(lck: &group->lck); |
| 3395 | |
| 3396 | while (!SLIST_EMPTY(&tmp_list)) { |
| 3397 | fd_cb = SLIST_FIRST(&tmp_list); |
| 3398 | FDLOCK(fd_cb); |
| 3399 | SLIST_REMOVE_HEAD(&tmp_list, tmp_list_entry); |
| 3400 | if (fd_cb->so != NULL) { |
| 3401 | socket_lock(so: fd_cb->so, refcount: 0); |
| 3402 | flow_divert_pcb_remove(fd_cb); |
| 3403 | flow_divert_update_closed_state(fd_cb, SHUT_RDWR, true, true); |
| 3404 | fd_cb->so->so_error = ECONNABORTED; |
| 3405 | flow_divert_disconnect_socket(so: fd_cb->so, is_connected: !(fd_cb->flags & FLOW_DIVERT_IMPLICIT_CONNECT), false); |
| 3406 | socket_unlock(so: fd_cb->so, refcount: 0); |
| 3407 | } |
| 3408 | FDUNLOCK(fd_cb); |
| 3409 | FDRELEASE(fd_cb); |
| 3410 | } |
| 3411 | } |
| 3412 | |
| 3413 | void |
| 3414 | flow_divert_detach(struct socket *so) |
| 3415 | { |
| 3416 | struct flow_divert_pcb *fd_cb = so->so_fd_pcb; |
| 3417 | |
| 3418 | if (!SO_IS_DIVERTED(so)) { |
| 3419 | return; |
| 3420 | } |
| 3421 | |
| 3422 | so->so_flags &= ~SOF_FLOW_DIVERT; |
| 3423 | so->so_fd_pcb = NULL; |
| 3424 | |
| 3425 | FDLOG(LOG_INFO, fd_cb, "Detaching, ref count = %d" , fd_cb->ref_count); |
| 3426 | |
| 3427 | if (fd_cb->group != NULL) { |
| 3428 | /* Last-ditch effort to send any buffered data */ |
| 3429 | flow_divert_send_buffered_data(fd_cb, TRUE); |
| 3430 | |
| 3431 | flow_divert_update_closed_state(fd_cb, SHUT_RDWR, false, true); |
| 3432 | flow_divert_send_close_if_needed(fd_cb); |
| 3433 | /* Remove from the group */ |
| 3434 | flow_divert_pcb_remove(fd_cb); |
| 3435 | } |
| 3436 | |
| 3437 | socket_unlock(so, refcount: 0); |
| 3438 | FDLOCK(fd_cb); |
| 3439 | fd_cb->so = NULL; |
| 3440 | FDUNLOCK(fd_cb); |
| 3441 | socket_lock(so, refcount: 0); |
| 3442 | |
| 3443 | FDRELEASE(fd_cb); /* Release the socket's reference */ |
| 3444 | } |
| 3445 | |
| 3446 | static int |
| 3447 | flow_divert_close(struct socket *so) |
| 3448 | { |
| 3449 | struct flow_divert_pcb *fd_cb = so->so_fd_pcb; |
| 3450 | |
| 3451 | if (!SO_IS_DIVERTED(so)) { |
| 3452 | return EINVAL; |
| 3453 | } |
| 3454 | |
| 3455 | FDLOG0(LOG_INFO, fd_cb, "Closing" ); |
| 3456 | |
| 3457 | if (SOCK_TYPE(so) == SOCK_STREAM) { |
| 3458 | soisdisconnecting(so); |
| 3459 | sbflush(sb: &so->so_rcv); |
| 3460 | } |
| 3461 | |
| 3462 | flow_divert_send_buffered_data(fd_cb, TRUE); |
| 3463 | flow_divert_update_closed_state(fd_cb, SHUT_RDWR, false, true); |
| 3464 | flow_divert_send_close_if_needed(fd_cb); |
| 3465 | |
| 3466 | /* Remove from the group */ |
| 3467 | flow_divert_pcb_remove(fd_cb); |
| 3468 | |
| 3469 | return 0; |
| 3470 | } |
| 3471 | |
| 3472 | static int |
| 3473 | flow_divert_disconnectx(struct socket *so, sae_associd_t aid, |
| 3474 | sae_connid_t cid __unused) |
| 3475 | { |
| 3476 | if (aid != SAE_ASSOCID_ANY && aid != SAE_ASSOCID_ALL) { |
| 3477 | return EINVAL; |
| 3478 | } |
| 3479 | |
| 3480 | return flow_divert_close(so); |
| 3481 | } |
| 3482 | |
| 3483 | static int |
| 3484 | flow_divert_shutdown(struct socket *so) |
| 3485 | { |
| 3486 | struct flow_divert_pcb *fd_cb = so->so_fd_pcb; |
| 3487 | |
| 3488 | if (!SO_IS_DIVERTED(so)) { |
| 3489 | return EINVAL; |
| 3490 | } |
| 3491 | |
| 3492 | FDLOG0(LOG_INFO, fd_cb, "Can't send more" ); |
| 3493 | |
| 3494 | socantsendmore(so); |
| 3495 | |
| 3496 | flow_divert_update_closed_state(fd_cb, SHUT_WR, false, true); |
| 3497 | flow_divert_send_close_if_needed(fd_cb); |
| 3498 | |
| 3499 | return 0; |
| 3500 | } |
| 3501 | |
| 3502 | static int |
| 3503 | flow_divert_rcvd(struct socket *so, int flags __unused) |
| 3504 | { |
| 3505 | struct flow_divert_pcb *fd_cb = so->so_fd_pcb; |
| 3506 | int space = 0; |
| 3507 | |
| 3508 | if (!SO_IS_DIVERTED(so)) { |
| 3509 | return EINVAL; |
| 3510 | } |
| 3511 | |
| 3512 | space = sbspace(sb: &so->so_rcv); |
| 3513 | FDLOG(LOG_DEBUG, fd_cb, "app read bytes, space = %d" , space); |
| 3514 | if ((fd_cb->flags & FLOW_DIVERT_NOTIFY_ON_RECEIVED) && |
| 3515 | (space > 0) && |
| 3516 | flow_divert_send_read_notification(fd_cb) == 0) { |
| 3517 | FDLOG0(LOG_INFO, fd_cb, "Sent a read notification" ); |
| 3518 | fd_cb->flags &= ~FLOW_DIVERT_NOTIFY_ON_RECEIVED; |
| 3519 | } |
| 3520 | |
| 3521 | return 0; |
| 3522 | } |
| 3523 | |
| 3524 | static int |
| 3525 | flow_divert_append_target_endpoint_tlv(mbuf_t connect_packet, struct sockaddr *toaddr) |
| 3526 | { |
| 3527 | int error = 0; |
| 3528 | int port = 0; |
| 3529 | |
| 3530 | if (!flow_divert_is_sockaddr_valid(addr: toaddr)) { |
| 3531 | FDLOG(LOG_ERR, &nil_pcb, "Invalid target address, family = %u, length = %u" , toaddr->sa_family, toaddr->sa_len); |
| 3532 | error = EINVAL; |
| 3533 | goto done; |
| 3534 | } |
| 3535 | |
| 3536 | error = flow_divert_packet_append_tlv(packet: connect_packet, FLOW_DIVERT_TLV_TARGET_ADDRESS, length: toaddr->sa_len, value: toaddr); |
| 3537 | if (error) { |
| 3538 | goto done; |
| 3539 | } |
| 3540 | |
| 3541 | if (toaddr->sa_family == AF_INET) { |
| 3542 | port = ntohs((satosin(toaddr))->sin_port); |
| 3543 | } else { |
| 3544 | port = ntohs((satosin6(toaddr))->sin6_port); |
| 3545 | } |
| 3546 | |
| 3547 | error = flow_divert_packet_append_tlv(packet: connect_packet, FLOW_DIVERT_TLV_TARGET_PORT, length: sizeof(port), value: &port); |
| 3548 | if (error) { |
| 3549 | goto done; |
| 3550 | } |
| 3551 | |
| 3552 | done: |
| 3553 | return error; |
| 3554 | } |
| 3555 | |
| 3556 | struct sockaddr * |
| 3557 | flow_divert_get_buffered_target_address(mbuf_t buffer) |
| 3558 | { |
| 3559 | if (buffer != NULL && buffer->m_type == MT_SONAME) { |
| 3560 | struct sockaddr *toaddr = mtod(buffer, struct sockaddr *); |
| 3561 | if (toaddr != NULL && flow_divert_is_sockaddr_valid(addr: toaddr)) { |
| 3562 | return toaddr; |
| 3563 | } |
| 3564 | } |
| 3565 | return NULL; |
| 3566 | } |
| 3567 | |
| 3568 | static boolean_t |
| 3569 | flow_divert_is_sockaddr_valid(struct sockaddr *addr) |
| 3570 | { |
| 3571 | switch (addr->sa_family) { |
| 3572 | case AF_INET: |
| 3573 | if (addr->sa_len < sizeof(struct sockaddr_in)) { |
| 3574 | return FALSE; |
| 3575 | } |
| 3576 | break; |
| 3577 | case AF_INET6: |
| 3578 | if (addr->sa_len < sizeof(struct sockaddr_in6)) { |
| 3579 | return FALSE; |
| 3580 | } |
| 3581 | break; |
| 3582 | default: |
| 3583 | return FALSE; |
| 3584 | } |
| 3585 | return TRUE; |
| 3586 | } |
| 3587 | |
| 3588 | static errno_t |
| 3589 | flow_divert_dup_addr(sa_family_t family, struct sockaddr *addr, |
| 3590 | struct sockaddr **dup) |
| 3591 | { |
| 3592 | int error = 0; |
| 3593 | struct sockaddr *result; |
| 3594 | struct sockaddr_storage ss; |
| 3595 | |
| 3596 | if (addr != NULL) { |
| 3597 | result = addr; |
| 3598 | } else { |
| 3599 | memset(s: &ss, c: 0, n: sizeof(ss)); |
| 3600 | ss.ss_family = family; |
| 3601 | if (ss.ss_family == AF_INET) { |
| 3602 | ss.ss_len = sizeof(struct sockaddr_in); |
| 3603 | } else if (ss.ss_family == AF_INET6) { |
| 3604 | ss.ss_len = sizeof(struct sockaddr_in6); |
| 3605 | } else { |
| 3606 | error = EINVAL; |
| 3607 | } |
| 3608 | result = (struct sockaddr *)&ss; |
| 3609 | } |
| 3610 | |
| 3611 | if (!error) { |
| 3612 | *dup = dup_sockaddr(sa: result, canwait: 1); |
| 3613 | if (*dup == NULL) { |
| 3614 | error = ENOBUFS; |
| 3615 | } |
| 3616 | } |
| 3617 | |
| 3618 | return error; |
| 3619 | } |
| 3620 | |
| 3621 | static void |
| 3622 | flow_divert_disconnect_socket(struct socket *so, bool is_connected, bool delay_if_needed) |
| 3623 | { |
| 3624 | if (SOCK_TYPE(so) == SOCK_STREAM || is_connected) { |
| 3625 | soisdisconnected(so); |
| 3626 | } |
| 3627 | if (SOCK_TYPE(so) == SOCK_DGRAM) { |
| 3628 | struct inpcb *inp = sotoinpcb(so); |
| 3629 | if (inp != NULL && !(so->so_flags & SOF_PCBCLEARING)) { |
| 3630 | /* |
| 3631 | * Let NetworkStatistics know this PCB is going away |
| 3632 | * before we detach it. |
| 3633 | */ |
| 3634 | if (nstat_collect && (SOCK_PROTO(so) == IPPROTO_TCP || SOCK_PROTO(so) == IPPROTO_UDP)) { |
| 3635 | nstat_pcb_detach(inp); |
| 3636 | } |
| 3637 | |
| 3638 | if (SOCK_DOM(so) == PF_INET6) { |
| 3639 | ROUTE_RELEASE(&inp->in6p_route); |
| 3640 | } else { |
| 3641 | ROUTE_RELEASE(&inp->inp_route); |
| 3642 | } |
| 3643 | if (delay_if_needed) { |
| 3644 | (void) cfil_sock_is_dead(so); |
| 3645 | } else { |
| 3646 | inp->inp_state = INPCB_STATE_DEAD; |
| 3647 | inpcb_gc_sched(inp->inp_pcbinfo, type: INPCB_TIMER_FAST); |
| 3648 | } |
| 3649 | /* makes sure we're not called twice from so_close */ |
| 3650 | so->so_flags |= SOF_PCBCLEARING; |
| 3651 | } |
| 3652 | } |
| 3653 | } |
| 3654 | |
| 3655 | static errno_t |
| 3656 | flow_divert_ctloutput(struct socket *so, struct sockopt *sopt) |
| 3657 | { |
| 3658 | struct flow_divert_pcb *fd_cb = so->so_fd_pcb; |
| 3659 | |
| 3660 | if (!SO_IS_DIVERTED(so)) { |
| 3661 | return EINVAL; |
| 3662 | } |
| 3663 | |
| 3664 | if (sopt->sopt_name == SO_TRAFFIC_CLASS) { |
| 3665 | if (sopt->sopt_dir == SOPT_SET && fd_cb->flags & FLOW_DIVERT_CONNECT_STARTED) { |
| 3666 | flow_divert_send_traffic_class_update(fd_cb, traffic_class: so->so_traffic_class); |
| 3667 | } |
| 3668 | } |
| 3669 | |
| 3670 | if (SOCK_DOM(so) == PF_INET) { |
| 3671 | return g_tcp_protosw->pr_ctloutput(so, sopt); |
| 3672 | } else if (SOCK_DOM(so) == PF_INET6) { |
| 3673 | return g_tcp6_protosw->pr_ctloutput(so, sopt); |
| 3674 | } |
| 3675 | return 0; |
| 3676 | } |
| 3677 | |
| 3678 | static errno_t |
| 3679 | flow_divert_connect_out_internal(struct socket *so, struct sockaddr *to, proc_t p, bool implicit) |
| 3680 | { |
| 3681 | struct flow_divert_pcb *fd_cb = so->so_fd_pcb; |
| 3682 | int error = 0; |
| 3683 | struct inpcb *inp = sotoinpcb(so); |
| 3684 | struct sockaddr_in *sinp; |
| 3685 | mbuf_t connect_packet = NULL; |
| 3686 | int do_send = 1; |
| 3687 | |
| 3688 | if (!SO_IS_DIVERTED(so)) { |
| 3689 | return EINVAL; |
| 3690 | } |
| 3691 | |
| 3692 | if (fd_cb->group == NULL) { |
| 3693 | error = ENETUNREACH; |
| 3694 | goto done; |
| 3695 | } |
| 3696 | |
| 3697 | if (inp == NULL) { |
| 3698 | error = EINVAL; |
| 3699 | goto done; |
| 3700 | } else if (inp->inp_state == INPCB_STATE_DEAD) { |
| 3701 | if (so->so_error) { |
| 3702 | error = so->so_error; |
| 3703 | so->so_error = 0; |
| 3704 | } else { |
| 3705 | error = EINVAL; |
| 3706 | } |
| 3707 | goto done; |
| 3708 | } |
| 3709 | |
| 3710 | if (fd_cb->flags & FLOW_DIVERT_CONNECT_STARTED) { |
| 3711 | error = EALREADY; |
| 3712 | goto done; |
| 3713 | } |
| 3714 | |
| 3715 | FDLOG0(LOG_INFO, fd_cb, "Connecting" ); |
| 3716 | |
| 3717 | if (fd_cb->connect_packet == NULL) { |
| 3718 | struct sockaddr_in sin = {}; |
| 3719 | struct ifnet *ifp = NULL; |
| 3720 | |
| 3721 | if (to == NULL) { |
| 3722 | FDLOG0(LOG_ERR, fd_cb, "No destination address available when creating connect packet" ); |
| 3723 | error = EINVAL; |
| 3724 | goto done; |
| 3725 | } |
| 3726 | |
| 3727 | if (!flow_divert_is_sockaddr_valid(addr: to)) { |
| 3728 | FDLOG0(LOG_ERR, fd_cb, "Destination address is not valid when creating connect packet" ); |
| 3729 | error = EINVAL; |
| 3730 | goto done; |
| 3731 | } |
| 3732 | |
| 3733 | fd_cb->original_remote_endpoint = dup_sockaddr(sa: to, canwait: 0); |
| 3734 | if (fd_cb->original_remote_endpoint == NULL) { |
| 3735 | FDLOG0(LOG_ERR, fd_cb, "Failed to dup the remote endpoint" ); |
| 3736 | error = ENOMEM; |
| 3737 | goto done; |
| 3738 | } |
| 3739 | fd_cb->original_vflag = inp->inp_vflag; |
| 3740 | fd_cb->original_last_outifp = inp->inp_last_outifp; |
| 3741 | fd_cb->original_last_outifp6 = inp->in6p_last_outifp; |
| 3742 | |
| 3743 | sinp = (struct sockaddr_in *)(void *)to; |
| 3744 | if (sinp->sin_family == AF_INET && IN_MULTICAST(ntohl(sinp->sin_addr.s_addr))) { |
| 3745 | error = EAFNOSUPPORT; |
| 3746 | goto done; |
| 3747 | } |
| 3748 | |
| 3749 | if (to->sa_family == AF_INET6 && !(inp->inp_flags & IN6P_IPV6_V6ONLY)) { |
| 3750 | struct sockaddr_in6 sin6 = {}; |
| 3751 | sin6.sin6_family = AF_INET6; |
| 3752 | sin6.sin6_len = sizeof(struct sockaddr_in6); |
| 3753 | sin6.sin6_port = satosin6(to)->sin6_port; |
| 3754 | sin6.sin6_addr = satosin6(to)->sin6_addr; |
| 3755 | if (IN6_IS_ADDR_V4MAPPED(&(sin6.sin6_addr))) { |
| 3756 | in6_sin6_2_sin(sin: &sin, sin6: &sin6); |
| 3757 | to = (struct sockaddr *)&sin; |
| 3758 | } |
| 3759 | } |
| 3760 | |
| 3761 | if (to->sa_family == AF_INET6) { |
| 3762 | struct sockaddr_in6 *to6 = satosin6(to); |
| 3763 | |
| 3764 | inp->inp_vflag &= ~INP_IPV4; |
| 3765 | inp->inp_vflag |= INP_IPV6; |
| 3766 | fd_cb->local_endpoint.sin6.sin6_len = sizeof(struct sockaddr_in6); |
| 3767 | fd_cb->local_endpoint.sin6.sin6_family = AF_INET6; |
| 3768 | fd_cb->local_endpoint.sin6.sin6_port = inp->inp_lport; |
| 3769 | error = in6_pcbladdr(inp, to, &(fd_cb->local_endpoint.sin6.sin6_addr), &ifp); |
| 3770 | if (error) { |
| 3771 | FDLOG(LOG_WARNING, fd_cb, "failed to get a local IPv6 address: %d" , error); |
| 3772 | if (!(fd_cb->flags & FLOW_DIVERT_FLOW_IS_TRANSPARENT) || IN6_IS_ADDR_UNSPECIFIED(&(satosin6(to)->sin6_addr))) { |
| 3773 | error = 0; |
| 3774 | } else { |
| 3775 | goto done; |
| 3776 | } |
| 3777 | } |
| 3778 | if (ifp != NULL) { |
| 3779 | inp->in6p_last_outifp = ifp; |
| 3780 | ifnet_release(interface: ifp); |
| 3781 | } |
| 3782 | |
| 3783 | if (IN6_IS_SCOPE_EMBED(&(fd_cb->local_endpoint.sin6.sin6_addr)) && |
| 3784 | in6_embedded_scope && |
| 3785 | fd_cb->local_endpoint.sin6.sin6_addr.s6_addr16[1] != 0) { |
| 3786 | fd_cb->local_endpoint.sin6.sin6_scope_id = ntohs(fd_cb->local_endpoint.sin6.sin6_addr.s6_addr16[1]); |
| 3787 | fd_cb->local_endpoint.sin6.sin6_addr.s6_addr16[1] = 0; |
| 3788 | } |
| 3789 | |
| 3790 | if (IN6_IS_SCOPE_EMBED(&(to6->sin6_addr)) && |
| 3791 | in6_embedded_scope && |
| 3792 | to6->sin6_addr.s6_addr16[1] != 0) { |
| 3793 | to6->sin6_scope_id = ntohs(to6->sin6_addr.s6_addr16[1]); |
| 3794 | to6->sin6_addr.s6_addr16[1] = 0; |
| 3795 | } |
| 3796 | } else if (to->sa_family == AF_INET) { |
| 3797 | inp->inp_vflag |= INP_IPV4; |
| 3798 | inp->inp_vflag &= ~INP_IPV6; |
| 3799 | fd_cb->local_endpoint.sin.sin_len = sizeof(struct sockaddr_in); |
| 3800 | fd_cb->local_endpoint.sin.sin_family = AF_INET; |
| 3801 | fd_cb->local_endpoint.sin.sin_port = inp->inp_lport; |
| 3802 | error = in_pcbladdr(inp, to, &(fd_cb->local_endpoint.sin.sin_addr), IFSCOPE_NONE, &ifp, 0); |
| 3803 | if (error) { |
| 3804 | FDLOG(LOG_WARNING, fd_cb, "failed to get a local IPv4 address: %d" , error); |
| 3805 | if (!(fd_cb->flags & FLOW_DIVERT_FLOW_IS_TRANSPARENT) || satosin(to)->sin_addr.s_addr == INADDR_ANY) { |
| 3806 | error = 0; |
| 3807 | } else { |
| 3808 | goto done; |
| 3809 | } |
| 3810 | } |
| 3811 | if (ifp != NULL) { |
| 3812 | inp->inp_last_outifp = ifp; |
| 3813 | ifnet_release(interface: ifp); |
| 3814 | } |
| 3815 | } else { |
| 3816 | FDLOG(LOG_WARNING, fd_cb, "target address has an unsupported family: %d" , to->sa_family); |
| 3817 | } |
| 3818 | |
| 3819 | error = flow_divert_check_no_cellular(fd_cb) || |
| 3820 | flow_divert_check_no_expensive(fd_cb) || |
| 3821 | flow_divert_check_no_constrained(fd_cb); |
| 3822 | if (error) { |
| 3823 | goto done; |
| 3824 | } |
| 3825 | |
| 3826 | if (SOCK_TYPE(so) == SOCK_STREAM || /* TCP or */ |
| 3827 | !implicit || /* connect() was called or */ |
| 3828 | ((inp->inp_vflag & INP_IPV6) && !IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr)) || /* local address is not un-specified */ |
| 3829 | ((inp->inp_vflag & INP_IPV4) && inp->inp_laddr.s_addr != INADDR_ANY)) { |
| 3830 | fd_cb->flags |= FLOW_DIVERT_SHOULD_SET_LOCAL_ADDR; |
| 3831 | } |
| 3832 | |
| 3833 | error = flow_divert_create_connect_packet(fd_cb, to, so, p, out_connect_packet: &connect_packet); |
| 3834 | if (error) { |
| 3835 | goto done; |
| 3836 | } |
| 3837 | |
| 3838 | if (!implicit || SOCK_TYPE(so) == SOCK_STREAM) { |
| 3839 | flow_divert_set_remote_endpoint(fd_cb, remote_endpoint: to); |
| 3840 | flow_divert_set_local_endpoint(fd_cb, SA(&fd_cb->local_endpoint)); |
| 3841 | } |
| 3842 | |
| 3843 | if (implicit) { |
| 3844 | fd_cb->flags |= FLOW_DIVERT_IMPLICIT_CONNECT; |
| 3845 | } |
| 3846 | |
| 3847 | if (so->so_flags1 & SOF1_PRECONNECT_DATA) { |
| 3848 | FDLOG0(LOG_INFO, fd_cb, "Delaying sending the connect packet until send or receive" ); |
| 3849 | do_send = 0; |
| 3850 | } |
| 3851 | |
| 3852 | fd_cb->connect_packet = connect_packet; |
| 3853 | connect_packet = NULL; |
| 3854 | } else { |
| 3855 | FDLOG0(LOG_INFO, fd_cb, "Sending saved connect packet" ); |
| 3856 | } |
| 3857 | |
| 3858 | if (do_send) { |
| 3859 | error = flow_divert_send_connect_packet(fd_cb); |
| 3860 | if (error) { |
| 3861 | goto done; |
| 3862 | } |
| 3863 | |
| 3864 | fd_cb->flags |= FLOW_DIVERT_CONNECT_STARTED; |
| 3865 | } |
| 3866 | |
| 3867 | if (SOCK_TYPE(so) == SOCK_DGRAM && !(fd_cb->flags & FLOW_DIVERT_HAS_TOKEN)) { |
| 3868 | soisconnected(so); |
| 3869 | } else { |
| 3870 | soisconnecting(so); |
| 3871 | } |
| 3872 | |
| 3873 | done: |
| 3874 | return error; |
| 3875 | } |
| 3876 | |
| 3877 | errno_t |
| 3878 | flow_divert_connect_out(struct socket *so, struct sockaddr *to, proc_t p) |
| 3879 | { |
| 3880 | #if CONTENT_FILTER |
| 3881 | if (SOCK_TYPE(so) == SOCK_STREAM && !(so->so_flags & SOF_CONTENT_FILTER)) { |
| 3882 | int error = cfil_sock_attach(so, NULL, remote: to, CFS_CONNECTION_DIR_OUT); |
| 3883 | if (error != 0) { |
| 3884 | struct flow_divert_pcb *fd_cb = so->so_fd_pcb; |
| 3885 | FDLOG(LOG_ERR, fd_cb, "Failed to attach cfil: %d" , error); |
| 3886 | return error; |
| 3887 | } |
| 3888 | } |
| 3889 | #endif /* CONTENT_FILTER */ |
| 3890 | |
| 3891 | return flow_divert_connect_out_internal(so, to, p, false); |
| 3892 | } |
| 3893 | |
| 3894 | static int |
| 3895 | flow_divert_connectx_out_common(struct socket *so, struct sockaddr *dst, |
| 3896 | struct proc *p, uint32_t ifscope, sae_connid_t *pcid, struct uio *auio, user_ssize_t *bytes_written) |
| 3897 | { |
| 3898 | struct inpcb *inp = sotoinpcb(so); |
| 3899 | int error; |
| 3900 | |
| 3901 | if (inp == NULL) { |
| 3902 | return EINVAL; |
| 3903 | } |
| 3904 | |
| 3905 | VERIFY(dst != NULL); |
| 3906 | |
| 3907 | #if CONTENT_FILTER && NECP |
| 3908 | struct flow_divert_pcb *fd_cb = so->so_fd_pcb; |
| 3909 | if (fd_cb != NULL && (fd_cb->flags & FLOW_DIVERT_HAS_TOKEN) && |
| 3910 | SOCK_TYPE(so) == SOCK_STREAM && !(so->so_flags & SOF_CONTENT_FILTER)) { |
| 3911 | inp_update_necp_policy(sotoinpcb(so), NULL, dst, 0); |
| 3912 | } |
| 3913 | #endif /* CONTENT_FILTER */ |
| 3914 | |
| 3915 | /* bind socket to the specified interface, if requested */ |
| 3916 | if (ifscope != IFSCOPE_NONE && |
| 3917 | (error = inp_bindif(inp, ifscope, NULL)) != 0) { |
| 3918 | return error; |
| 3919 | } |
| 3920 | |
| 3921 | error = flow_divert_connect_out(so, to: dst, p); |
| 3922 | |
| 3923 | if (error != 0) { |
| 3924 | return error; |
| 3925 | } |
| 3926 | |
| 3927 | /* if there is data, send it */ |
| 3928 | if (auio != NULL) { |
| 3929 | user_ssize_t datalen = 0; |
| 3930 | |
| 3931 | socket_unlock(so, refcount: 0); |
| 3932 | |
| 3933 | VERIFY(bytes_written != NULL); |
| 3934 | |
| 3935 | datalen = uio_resid(a_uio: auio); |
| 3936 | error = so->so_proto->pr_usrreqs->pru_sosend(so, NULL, (uio_t)auio, NULL, NULL, 0); |
| 3937 | socket_lock(so, refcount: 0); |
| 3938 | |
| 3939 | if (error == 0 || error == EWOULDBLOCK) { |
| 3940 | *bytes_written = datalen - uio_resid(a_uio: auio); |
| 3941 | } |
| 3942 | |
| 3943 | /* |
| 3944 | * sosend returns EWOULDBLOCK if it's a non-blocking |
| 3945 | * socket or a timeout occured (this allows to return |
| 3946 | * the amount of queued data through sendit()). |
| 3947 | * |
| 3948 | * However, connectx() returns EINPROGRESS in case of a |
| 3949 | * blocking socket. So we change the return value here. |
| 3950 | */ |
| 3951 | if (error == EWOULDBLOCK) { |
| 3952 | error = EINPROGRESS; |
| 3953 | } |
| 3954 | } |
| 3955 | |
| 3956 | if (error == 0 && pcid != NULL) { |
| 3957 | *pcid = 1; /* there is only 1 connection for a TCP */ |
| 3958 | } |
| 3959 | |
| 3960 | return error; |
| 3961 | } |
| 3962 | |
| 3963 | static int |
| 3964 | flow_divert_connectx_out(struct socket *so, struct sockaddr *src __unused, |
| 3965 | struct sockaddr *dst, struct proc *p, uint32_t ifscope, |
| 3966 | sae_associd_t aid __unused, sae_connid_t *pcid, uint32_t flags __unused, void *arg __unused, |
| 3967 | uint32_t arglen __unused, struct uio *uio, user_ssize_t *bytes_written) |
| 3968 | { |
| 3969 | return flow_divert_connectx_out_common(so, dst, p, ifscope, pcid, auio: uio, bytes_written); |
| 3970 | } |
| 3971 | |
| 3972 | static int |
| 3973 | flow_divert_connectx6_out(struct socket *so, struct sockaddr *src __unused, |
| 3974 | struct sockaddr *dst, struct proc *p, uint32_t ifscope, |
| 3975 | sae_associd_t aid __unused, sae_connid_t *pcid, uint32_t flags __unused, void *arg __unused, |
| 3976 | uint32_t arglen __unused, struct uio *uio, user_ssize_t *bytes_written) |
| 3977 | { |
| 3978 | return flow_divert_connectx_out_common(so, dst, p, ifscope, pcid, auio: uio, bytes_written); |
| 3979 | } |
| 3980 | |
| 3981 | static errno_t |
| 3982 | flow_divert_data_out(struct socket *so, int flags, mbuf_t data, struct sockaddr *to, mbuf_t control, struct proc *p) |
| 3983 | { |
| 3984 | struct flow_divert_pcb *fd_cb = so->so_fd_pcb; |
| 3985 | int error = 0; |
| 3986 | struct inpcb *inp; |
| 3987 | #if CONTENT_FILTER |
| 3988 | struct m_tag *cfil_tag = NULL; |
| 3989 | #endif |
| 3990 | |
| 3991 | if (!SO_IS_DIVERTED(so)) { |
| 3992 | return EINVAL; |
| 3993 | } |
| 3994 | |
| 3995 | inp = sotoinpcb(so); |
| 3996 | if (inp == NULL || inp->inp_state == INPCB_STATE_DEAD) { |
| 3997 | error = ECONNRESET; |
| 3998 | goto done; |
| 3999 | } |
| 4000 | |
| 4001 | if ((fd_cb->flags & FLOW_DIVERT_TUNNEL_WR_CLOSED) && SOCK_TYPE(so) == SOCK_DGRAM) { |
| 4002 | /* The provider considers this datagram flow to be closed, so no data can be sent */ |
| 4003 | FDLOG0(LOG_INFO, fd_cb, "provider is no longer accepting writes, cannot send data" ); |
| 4004 | error = EHOSTUNREACH; |
| 4005 | goto done; |
| 4006 | } |
| 4007 | |
| 4008 | #if CONTENT_FILTER |
| 4009 | /* |
| 4010 | * If the socket is subject to a UDP Content Filter and no remote address is passed in, |
| 4011 | * retrieve the CFIL saved remote address from the mbuf and use it. |
| 4012 | */ |
| 4013 | if (to == NULL && CFIL_DGRAM_FILTERED(so)) { |
| 4014 | struct sockaddr *cfil_faddr = NULL; |
| 4015 | cfil_tag = cfil_dgram_get_socket_state(m: data, NULL, NULL, faddr: &cfil_faddr, NULL); |
| 4016 | if (cfil_tag) { |
| 4017 | to = (struct sockaddr *)(void *)cfil_faddr; |
| 4018 | } |
| 4019 | FDLOG(LOG_INFO, fd_cb, "Using remote address from CFIL saved state: %p" , to); |
| 4020 | } |
| 4021 | #endif |
| 4022 | |
| 4023 | /* Implicit connect */ |
| 4024 | if (!(fd_cb->flags & FLOW_DIVERT_CONNECT_STARTED)) { |
| 4025 | FDLOG0(LOG_INFO, fd_cb, "implicit connect" ); |
| 4026 | |
| 4027 | error = flow_divert_connect_out_internal(so, to, p, true); |
| 4028 | if (error) { |
| 4029 | goto done; |
| 4030 | } |
| 4031 | } else { |
| 4032 | error = flow_divert_check_no_cellular(fd_cb) || |
| 4033 | flow_divert_check_no_expensive(fd_cb) || |
| 4034 | flow_divert_check_no_constrained(fd_cb); |
| 4035 | if (error) { |
| 4036 | goto done; |
| 4037 | } |
| 4038 | } |
| 4039 | |
| 4040 | if (data != NULL) { |
| 4041 | size_t data_size = 0; |
| 4042 | if (mbuf_flags(mbuf: data) & M_PKTHDR) { |
| 4043 | data_size = mbuf_pkthdr_len(mbuf: data); |
| 4044 | } else { |
| 4045 | for (mbuf_t blob = data; blob != NULL; blob = mbuf_next(mbuf: blob)) { |
| 4046 | data_size += mbuf_len(mbuf: blob); |
| 4047 | } |
| 4048 | } |
| 4049 | |
| 4050 | FDLOG(LOG_DEBUG, fd_cb, "app wrote %lu bytes" , data_size); |
| 4051 | fd_cb->bytes_written_by_app += data_size; |
| 4052 | |
| 4053 | error = flow_divert_send_app_data(fd_cb, data, data_size, toaddr: to); |
| 4054 | |
| 4055 | data = NULL; |
| 4056 | |
| 4057 | if (error) { |
| 4058 | goto done; |
| 4059 | } |
| 4060 | } |
| 4061 | |
| 4062 | if (flags & PRUS_EOF) { |
| 4063 | flow_divert_shutdown(so); |
| 4064 | } |
| 4065 | |
| 4066 | done: |
| 4067 | if (data) { |
| 4068 | mbuf_freem(mbuf: data); |
| 4069 | } |
| 4070 | if (control) { |
| 4071 | mbuf_free(mbuf: control); |
| 4072 | } |
| 4073 | #if CONTENT_FILTER |
| 4074 | if (cfil_tag) { |
| 4075 | m_tag_free(cfil_tag); |
| 4076 | } |
| 4077 | #endif |
| 4078 | |
| 4079 | return error; |
| 4080 | } |
| 4081 | |
| 4082 | static int |
| 4083 | flow_divert_preconnect(struct socket *so) |
| 4084 | { |
| 4085 | int error = 0; |
| 4086 | struct flow_divert_pcb *fd_cb = so->so_fd_pcb; |
| 4087 | |
| 4088 | if (!SO_IS_DIVERTED(so)) { |
| 4089 | return EINVAL; |
| 4090 | } |
| 4091 | |
| 4092 | if (!(fd_cb->flags & FLOW_DIVERT_CONNECT_STARTED)) { |
| 4093 | FDLOG0(LOG_INFO, fd_cb, "Pre-connect read: sending saved connect packet" ); |
| 4094 | error = flow_divert_send_connect_packet(fd_cb: so->so_fd_pcb); |
| 4095 | if (error) { |
| 4096 | return error; |
| 4097 | } |
| 4098 | |
| 4099 | fd_cb->flags |= FLOW_DIVERT_CONNECT_STARTED; |
| 4100 | } |
| 4101 | |
| 4102 | soclearfastopen(so); |
| 4103 | |
| 4104 | return error; |
| 4105 | } |
| 4106 | |
| 4107 | static void |
| 4108 | flow_divert_set_protosw(struct socket *so) |
| 4109 | { |
| 4110 | if (SOCK_DOM(so) == PF_INET) { |
| 4111 | so->so_proto = &g_flow_divert_in_protosw; |
| 4112 | } else { |
| 4113 | so->so_proto = (struct protosw *)&g_flow_divert_in6_protosw; |
| 4114 | } |
| 4115 | } |
| 4116 | |
| 4117 | static void |
| 4118 | flow_divert_set_udp_protosw(struct socket *so) |
| 4119 | { |
| 4120 | if (SOCK_DOM(so) == PF_INET) { |
| 4121 | so->so_proto = &g_flow_divert_in_udp_protosw; |
| 4122 | } else { |
| 4123 | so->so_proto = (struct protosw *)&g_flow_divert_in6_udp_protosw; |
| 4124 | } |
| 4125 | } |
| 4126 | |
| 4127 | errno_t |
| 4128 | flow_divert_implicit_data_out(struct socket *so, int flags, mbuf_t data, struct sockaddr *to, mbuf_t control, struct proc *p) |
| 4129 | { |
| 4130 | struct flow_divert_pcb *fd_cb = so->so_fd_pcb; |
| 4131 | struct inpcb *inp; |
| 4132 | int error = 0; |
| 4133 | |
| 4134 | inp = sotoinpcb(so); |
| 4135 | if (inp == NULL) { |
| 4136 | return EINVAL; |
| 4137 | } |
| 4138 | |
| 4139 | if (fd_cb == NULL) { |
| 4140 | error = flow_divert_pcb_init(so); |
| 4141 | fd_cb = so->so_fd_pcb; |
| 4142 | if (error != 0 || fd_cb == NULL) { |
| 4143 | goto done; |
| 4144 | } |
| 4145 | } |
| 4146 | return flow_divert_data_out(so, flags, data, to, control, p); |
| 4147 | |
| 4148 | done: |
| 4149 | if (data) { |
| 4150 | mbuf_freem(mbuf: data); |
| 4151 | } |
| 4152 | if (control) { |
| 4153 | mbuf_free(mbuf: control); |
| 4154 | } |
| 4155 | |
| 4156 | return error; |
| 4157 | } |
| 4158 | |
| 4159 | static errno_t |
| 4160 | flow_divert_pcb_init_internal(struct socket *so, uint32_t ctl_unit, uint32_t aggregate_unit) |
| 4161 | { |
| 4162 | errno_t error = 0; |
| 4163 | struct flow_divert_pcb *fd_cb = NULL; |
| 4164 | uint32_t agg_unit = aggregate_unit; |
| 4165 | uint32_t policy_control_unit = ctl_unit; |
| 4166 | bool is_aggregate = false; |
| 4167 | |
| 4168 | if (so->so_flags & SOF_FLOW_DIVERT) { |
| 4169 | return EALREADY; |
| 4170 | } |
| 4171 | |
| 4172 | fd_cb = flow_divert_pcb_create(so); |
| 4173 | if (fd_cb == NULL) { |
| 4174 | return ENOMEM; |
| 4175 | } |
| 4176 | |
| 4177 | do { |
| 4178 | uint32_t group_unit = flow_divert_derive_kernel_control_unit(pid: so->last_pid, ctl_unit: &policy_control_unit, aggregate_unit: &agg_unit, is_aggregate: &is_aggregate); |
| 4179 | if (group_unit == 0 || (group_unit >= GROUP_COUNT_MAX && group_unit < FLOW_DIVERT_IN_PROCESS_UNIT_MIN)) { |
| 4180 | FDLOG0(LOG_ERR, fd_cb, "No valid group is available, cannot init flow divert" ); |
| 4181 | error = EINVAL; |
| 4182 | break; |
| 4183 | } |
| 4184 | |
| 4185 | error = flow_divert_add_to_group(fd_cb, ctl_unit: group_unit); |
| 4186 | if (error == 0) { |
| 4187 | so->so_fd_pcb = fd_cb; |
| 4188 | so->so_flags |= SOF_FLOW_DIVERT; |
| 4189 | fd_cb->control_group_unit = group_unit; |
| 4190 | fd_cb->policy_control_unit = ctl_unit; |
| 4191 | fd_cb->aggregate_unit = agg_unit; |
| 4192 | if (is_aggregate) { |
| 4193 | fd_cb->flags |= FLOW_DIVERT_FLOW_IS_TRANSPARENT; |
| 4194 | } else { |
| 4195 | fd_cb->flags &= ~FLOW_DIVERT_FLOW_IS_TRANSPARENT; |
| 4196 | } |
| 4197 | |
| 4198 | if (SOCK_TYPE(so) == SOCK_STREAM) { |
| 4199 | flow_divert_set_protosw(so); |
| 4200 | } else if (SOCK_TYPE(so) == SOCK_DGRAM) { |
| 4201 | flow_divert_set_udp_protosw(so); |
| 4202 | } |
| 4203 | |
| 4204 | FDLOG0(LOG_INFO, fd_cb, "Created" ); |
| 4205 | } else if (error != ENOENT) { |
| 4206 | FDLOG(LOG_ERR, fd_cb, "pcb insert failed: %d" , error); |
| 4207 | } |
| 4208 | } while (error == ENOENT); |
| 4209 | |
| 4210 | if (error != 0) { |
| 4211 | FDRELEASE(fd_cb); |
| 4212 | } |
| 4213 | |
| 4214 | return error; |
| 4215 | } |
| 4216 | |
| 4217 | errno_t |
| 4218 | flow_divert_pcb_init(struct socket *so) |
| 4219 | { |
| 4220 | struct inpcb *inp = sotoinpcb(so); |
| 4221 | uint32_t aggregate_units = 0; |
| 4222 | uint32_t ctl_unit = necp_socket_get_flow_divert_control_unit(inp, aggregate_unit: &aggregate_units); |
| 4223 | return flow_divert_pcb_init_internal(so, ctl_unit, aggregate_unit: aggregate_units); |
| 4224 | } |
| 4225 | |
| 4226 | errno_t |
| 4227 | flow_divert_token_set(struct socket *so, struct sockopt *sopt) |
| 4228 | { |
| 4229 | uint32_t ctl_unit = 0; |
| 4230 | uint32_t key_unit = 0; |
| 4231 | uint32_t aggregate_unit = 0; |
| 4232 | int error = 0; |
| 4233 | int hmac_error = 0; |
| 4234 | mbuf_t token = NULL; |
| 4235 | |
| 4236 | if (so->so_flags & SOF_FLOW_DIVERT) { |
| 4237 | error = EALREADY; |
| 4238 | goto done; |
| 4239 | } |
| 4240 | |
| 4241 | if (g_init_result) { |
| 4242 | FDLOG(LOG_ERR, &nil_pcb, "flow_divert_init failed (%d), cannot use flow divert" , g_init_result); |
| 4243 | error = ENOPROTOOPT; |
| 4244 | goto done; |
| 4245 | } |
| 4246 | |
| 4247 | if ((SOCK_TYPE(so) != SOCK_STREAM && SOCK_TYPE(so) != SOCK_DGRAM) || |
| 4248 | (SOCK_PROTO(so) != IPPROTO_TCP && SOCK_PROTO(so) != IPPROTO_UDP) || |
| 4249 | (SOCK_DOM(so) != PF_INET && SOCK_DOM(so) != PF_INET6)) { |
| 4250 | error = EINVAL; |
| 4251 | goto done; |
| 4252 | } else { |
| 4253 | if (SOCK_TYPE(so) == SOCK_STREAM && SOCK_PROTO(so) == IPPROTO_TCP) { |
| 4254 | struct tcpcb *tp = sototcpcb(so); |
| 4255 | if (tp == NULL || tp->t_state != TCPS_CLOSED) { |
| 4256 | error = EINVAL; |
| 4257 | goto done; |
| 4258 | } |
| 4259 | } |
| 4260 | } |
| 4261 | |
| 4262 | error = soopt_getm(sopt, mp: &token); |
| 4263 | if (error) { |
| 4264 | token = NULL; |
| 4265 | goto done; |
| 4266 | } |
| 4267 | |
| 4268 | error = soopt_mcopyin(sopt, m: token); |
| 4269 | if (error) { |
| 4270 | token = NULL; |
| 4271 | goto done; |
| 4272 | } |
| 4273 | |
| 4274 | error = flow_divert_packet_get_tlv(packet: token, offset: 0, FLOW_DIVERT_TLV_KEY_UNIT, buff_len: sizeof(key_unit), buff: (void *)&key_unit, NULL); |
| 4275 | if (!error) { |
| 4276 | key_unit = ntohl(key_unit); |
| 4277 | if (key_unit >= GROUP_COUNT_MAX) { |
| 4278 | key_unit = 0; |
| 4279 | } |
| 4280 | } else if (error != ENOENT) { |
| 4281 | FDLOG(LOG_ERR, &nil_pcb, "Failed to get the key unit from the token: %d" , error); |
| 4282 | goto done; |
| 4283 | } else { |
| 4284 | key_unit = 0; |
| 4285 | } |
| 4286 | |
| 4287 | error = flow_divert_packet_get_tlv(packet: token, offset: 0, FLOW_DIVERT_TLV_CTL_UNIT, buff_len: sizeof(ctl_unit), buff: (void *)&ctl_unit, NULL); |
| 4288 | if (error) { |
| 4289 | FDLOG(LOG_ERR, &nil_pcb, "Failed to get the control socket unit from the token: %d" , error); |
| 4290 | goto done; |
| 4291 | } |
| 4292 | |
| 4293 | error = flow_divert_packet_get_tlv(packet: token, offset: 0, FLOW_DIVERT_TLV_AGGREGATE_UNIT, buff_len: sizeof(aggregate_unit), buff: (void *)&aggregate_unit, NULL); |
| 4294 | if (error && error != ENOENT) { |
| 4295 | FDLOG(LOG_ERR, &nil_pcb, "Failed to get the aggregate unit from the token: %d" , error); |
| 4296 | goto done; |
| 4297 | } |
| 4298 | |
| 4299 | /* A valid kernel control unit is required */ |
| 4300 | ctl_unit = ntohl(ctl_unit); |
| 4301 | aggregate_unit = ntohl(aggregate_unit); |
| 4302 | |
| 4303 | if (ctl_unit > 0 && ctl_unit < GROUP_COUNT_MAX) { |
| 4304 | hmac_error = flow_divert_packet_verify_hmac(packet: token, ctl_unit: (key_unit != 0 ? key_unit : ctl_unit)); |
| 4305 | if (hmac_error && hmac_error != ENOENT) { |
| 4306 | FDLOG(LOG_ERR, &nil_pcb, "HMAC verfication failed: %d" , hmac_error); |
| 4307 | error = hmac_error; |
| 4308 | goto done; |
| 4309 | } |
| 4310 | } |
| 4311 | |
| 4312 | error = flow_divert_pcb_init_internal(so, ctl_unit, aggregate_unit); |
| 4313 | if (error == 0) { |
| 4314 | struct flow_divert_pcb *fd_cb = so->so_fd_pcb; |
| 4315 | int log_level = LOG_NOTICE; |
| 4316 | |
| 4317 | error = flow_divert_packet_get_tlv(packet: token, offset: 0, FLOW_DIVERT_TLV_LOG_LEVEL, buff_len: sizeof(log_level), buff: &log_level, NULL); |
| 4318 | if (error == 0) { |
| 4319 | fd_cb->log_level = (uint8_t)log_level; |
| 4320 | } |
| 4321 | error = 0; |
| 4322 | |
| 4323 | fd_cb->connect_token = token; |
| 4324 | token = NULL; |
| 4325 | |
| 4326 | fd_cb->flags |= FLOW_DIVERT_HAS_TOKEN; |
| 4327 | } |
| 4328 | |
| 4329 | if (hmac_error == 0) { |
| 4330 | struct flow_divert_pcb *fd_cb = so->so_fd_pcb; |
| 4331 | if (fd_cb != NULL) { |
| 4332 | fd_cb->flags |= FLOW_DIVERT_HAS_HMAC; |
| 4333 | } |
| 4334 | } |
| 4335 | |
| 4336 | done: |
| 4337 | if (token != NULL) { |
| 4338 | mbuf_freem(mbuf: token); |
| 4339 | } |
| 4340 | |
| 4341 | return error; |
| 4342 | } |
| 4343 | |
| 4344 | errno_t |
| 4345 | flow_divert_token_get(struct socket *so, struct sockopt *sopt) |
| 4346 | { |
| 4347 | uint32_t ctl_unit; |
| 4348 | int error = 0; |
| 4349 | uint8_t hmac[SHA_DIGEST_LENGTH]; |
| 4350 | struct flow_divert_pcb *fd_cb = so->so_fd_pcb; |
| 4351 | mbuf_t token = NULL; |
| 4352 | struct flow_divert_group *control_group = NULL; |
| 4353 | |
| 4354 | if (!SO_IS_DIVERTED(so)) { |
| 4355 | error = EINVAL; |
| 4356 | goto done; |
| 4357 | } |
| 4358 | |
| 4359 | if (fd_cb->group == NULL) { |
| 4360 | error = EINVAL; |
| 4361 | goto done; |
| 4362 | } |
| 4363 | |
| 4364 | error = mbuf_gethdr(how: MBUF_DONTWAIT, type: MBUF_TYPE_HEADER, mbuf: &token); |
| 4365 | if (error) { |
| 4366 | FDLOG(LOG_ERR, fd_cb, "failed to allocate the header mbuf: %d" , error); |
| 4367 | goto done; |
| 4368 | } |
| 4369 | |
| 4370 | ctl_unit = htonl(fd_cb->group->ctl_unit); |
| 4371 | |
| 4372 | error = flow_divert_packet_append_tlv(packet: token, FLOW_DIVERT_TLV_CTL_UNIT, length: sizeof(ctl_unit), value: &ctl_unit); |
| 4373 | if (error) { |
| 4374 | goto done; |
| 4375 | } |
| 4376 | |
| 4377 | error = flow_divert_packet_append_tlv(packet: token, FLOW_DIVERT_TLV_FLOW_ID, length: sizeof(fd_cb->hash), value: &fd_cb->hash); |
| 4378 | if (error) { |
| 4379 | goto done; |
| 4380 | } |
| 4381 | |
| 4382 | if (fd_cb->app_data != NULL) { |
| 4383 | error = flow_divert_packet_append_tlv(packet: token, FLOW_DIVERT_TLV_APP_DATA, length: (uint32_t)fd_cb->app_data_length, value: fd_cb->app_data); |
| 4384 | if (error) { |
| 4385 | goto done; |
| 4386 | } |
| 4387 | } |
| 4388 | |
| 4389 | control_group = flow_divert_group_lookup(ctl_unit: fd_cb->control_group_unit, fd_cb); |
| 4390 | if (control_group != NULL) { |
| 4391 | lck_rw_lock_shared(lck: &control_group->lck); |
| 4392 | ctl_unit = htonl(control_group->ctl_unit); |
| 4393 | error = flow_divert_packet_append_tlv(packet: token, FLOW_DIVERT_TLV_KEY_UNIT, length: sizeof(ctl_unit), value: &ctl_unit); |
| 4394 | if (!error) { |
| 4395 | error = flow_divert_packet_compute_hmac(packet: token, group: control_group, hmac); |
| 4396 | } |
| 4397 | lck_rw_done(lck: &control_group->lck); |
| 4398 | FDGRP_RELEASE(control_group); |
| 4399 | } else { |
| 4400 | error = ENOPROTOOPT; |
| 4401 | } |
| 4402 | |
| 4403 | if (error) { |
| 4404 | goto done; |
| 4405 | } |
| 4406 | |
| 4407 | error = flow_divert_packet_append_tlv(packet: token, FLOW_DIVERT_TLV_HMAC, length: sizeof(hmac), value: hmac); |
| 4408 | if (error) { |
| 4409 | goto done; |
| 4410 | } |
| 4411 | |
| 4412 | if (sopt->sopt_val == USER_ADDR_NULL) { |
| 4413 | /* If the caller passed NULL to getsockopt, just set the size of the token and return */ |
| 4414 | sopt->sopt_valsize = mbuf_pkthdr_len(mbuf: token); |
| 4415 | goto done; |
| 4416 | } |
| 4417 | |
| 4418 | error = soopt_mcopyout(sopt, m: token); |
| 4419 | if (error) { |
| 4420 | token = NULL; /* For some reason, soopt_mcopyout() frees the mbuf if it fails */ |
| 4421 | goto done; |
| 4422 | } |
| 4423 | |
| 4424 | done: |
| 4425 | if (token != NULL) { |
| 4426 | mbuf_freem(mbuf: token); |
| 4427 | } |
| 4428 | |
| 4429 | return error; |
| 4430 | } |
| 4431 | |
| 4432 | void |
| 4433 | flow_divert_group_destroy(struct flow_divert_group *group) |
| 4434 | { |
| 4435 | lck_rw_lock_exclusive(lck: &group->lck); |
| 4436 | |
| 4437 | FDLOG(LOG_NOTICE, &nil_pcb, "Destroying group %u" , group->ctl_unit); |
| 4438 | |
| 4439 | if (group->token_key != NULL) { |
| 4440 | memset(s: group->token_key, c: 0, n: group->token_key_size); |
| 4441 | kfree_data(group->token_key, group->token_key_size); |
| 4442 | group->token_key = NULL; |
| 4443 | group->token_key_size = 0; |
| 4444 | } |
| 4445 | |
| 4446 | /* Re-set the current trie */ |
| 4447 | if (group->signing_id_trie.memory != NULL) { |
| 4448 | kfree_data_addr(group->signing_id_trie.memory); |
| 4449 | } |
| 4450 | memset(s: &group->signing_id_trie, c: 0, n: sizeof(group->signing_id_trie)); |
| 4451 | group->signing_id_trie.root = NULL_TRIE_IDX; |
| 4452 | |
| 4453 | lck_rw_done(lck: &group->lck); |
| 4454 | |
| 4455 | zfree(flow_divert_group_zone, group); |
| 4456 | } |
| 4457 | |
| 4458 | static struct flow_divert_group * |
| 4459 | flow_divert_allocate_group(u_int32_t unit, pid_t pid) |
| 4460 | { |
| 4461 | struct flow_divert_group *new_group = NULL; |
| 4462 | new_group = zalloc_flags(flow_divert_group_zone, Z_WAITOK | Z_ZERO); |
| 4463 | lck_rw_init(lck: &new_group->lck, grp: &flow_divert_mtx_grp, attr: &flow_divert_mtx_attr); |
| 4464 | RB_INIT(&new_group->pcb_tree); |
| 4465 | new_group->ctl_unit = unit; |
| 4466 | new_group->in_process_pid = pid; |
| 4467 | MBUFQ_INIT(&new_group->send_queue); |
| 4468 | new_group->signing_id_trie.root = NULL_TRIE_IDX; |
| 4469 | new_group->ref_count = 1; |
| 4470 | new_group->order = FLOW_DIVERT_ORDER_LAST; |
| 4471 | return new_group; |
| 4472 | } |
| 4473 | |
| 4474 | static errno_t |
| 4475 | flow_divert_kctl_setup(u_int32_t *unit, void **unitinfo) |
| 4476 | { |
| 4477 | if (unit == NULL || unitinfo == NULL) { |
| 4478 | return EINVAL; |
| 4479 | } |
| 4480 | |
| 4481 | struct flow_divert_group *new_group = NULL; |
| 4482 | errno_t error = 0; |
| 4483 | lck_rw_lock_shared(lck: &g_flow_divert_group_lck); |
| 4484 | if (*unit == FLOW_DIVERT_IN_PROCESS_UNIT) { |
| 4485 | // Return next unused in-process unit |
| 4486 | u_int32_t unit_cursor = FLOW_DIVERT_IN_PROCESS_UNIT_MIN; |
| 4487 | struct flow_divert_group *group_next = NULL; |
| 4488 | TAILQ_FOREACH(group_next, &g_flow_divert_in_process_group_list, chain) { |
| 4489 | if (group_next->ctl_unit > unit_cursor) { |
| 4490 | // Found a gap, lets fill it in |
| 4491 | break; |
| 4492 | } |
| 4493 | unit_cursor = group_next->ctl_unit + 1; |
| 4494 | if (unit_cursor == FLOW_DIVERT_IN_PROCESS_UNIT_MAX) { |
| 4495 | break; |
| 4496 | } |
| 4497 | } |
| 4498 | if (unit_cursor == FLOW_DIVERT_IN_PROCESS_UNIT_MAX) { |
| 4499 | error = EBUSY; |
| 4500 | } else { |
| 4501 | *unit = unit_cursor; |
| 4502 | new_group = flow_divert_allocate_group(unit: *unit, pid: proc_pid(current_proc())); |
| 4503 | if (group_next != NULL) { |
| 4504 | TAILQ_INSERT_BEFORE(group_next, new_group, chain); |
| 4505 | } else { |
| 4506 | TAILQ_INSERT_TAIL(&g_flow_divert_in_process_group_list, new_group, chain); |
| 4507 | } |
| 4508 | g_active_group_count++; |
| 4509 | } |
| 4510 | } else { |
| 4511 | if (kauth_cred_issuser(cred: kauth_cred_get()) == 0) { |
| 4512 | error = EPERM; |
| 4513 | } else { |
| 4514 | if (g_flow_divert_groups == NULL) { |
| 4515 | g_flow_divert_groups = kalloc_type(struct flow_divert_group *, |
| 4516 | GROUP_COUNT_MAX, Z_WAITOK | Z_ZERO | Z_NOFAIL); |
| 4517 | } |
| 4518 | |
| 4519 | // Return next unused group unit |
| 4520 | bool found_unused_unit = false; |
| 4521 | u_int32_t unit_cursor; |
| 4522 | for (unit_cursor = 1; unit_cursor < GROUP_COUNT_MAX; unit_cursor++) { |
| 4523 | struct flow_divert_group *group = g_flow_divert_groups[unit_cursor]; |
| 4524 | if (group == NULL) { |
| 4525 | // Open slot, assign this one |
| 4526 | *unit = unit_cursor; |
| 4527 | new_group = flow_divert_allocate_group(unit: *unit, pid: 0); |
| 4528 | g_flow_divert_groups[*unit] = new_group; |
| 4529 | found_unused_unit = true; |
| 4530 | g_active_group_count++; |
| 4531 | break; |
| 4532 | } |
| 4533 | } |
| 4534 | if (!found_unused_unit) { |
| 4535 | error = EBUSY; |
| 4536 | } |
| 4537 | } |
| 4538 | } |
| 4539 | lck_rw_done(lck: &g_flow_divert_group_lck); |
| 4540 | |
| 4541 | *unitinfo = new_group; |
| 4542 | |
| 4543 | return error; |
| 4544 | } |
| 4545 | |
| 4546 | static errno_t |
| 4547 | flow_divert_kctl_connect(kern_ctl_ref kctlref __unused, struct sockaddr_ctl *sac, void **unitinfo) |
| 4548 | { |
| 4549 | if (unitinfo == NULL) { |
| 4550 | return EINVAL; |
| 4551 | } |
| 4552 | |
| 4553 | // Just validate. The group will already have been allocated. |
| 4554 | struct flow_divert_group *group = (struct flow_divert_group *)*unitinfo; |
| 4555 | if (group == NULL || sac->sc_unit != group->ctl_unit) { |
| 4556 | FDLOG(LOG_ERR, &nil_pcb, "Flow divert connect fail, unit mismatch %u != %u" , |
| 4557 | sac->sc_unit, group ? group->ctl_unit : 0); |
| 4558 | return EINVAL; |
| 4559 | } |
| 4560 | |
| 4561 | return 0; |
| 4562 | } |
| 4563 | |
| 4564 | static errno_t |
| 4565 | flow_divert_kctl_disconnect(kern_ctl_ref kctlref __unused, uint32_t unit, void *unitinfo) |
| 4566 | { |
| 4567 | struct flow_divert_group *group = NULL; |
| 4568 | errno_t error = 0; |
| 4569 | |
| 4570 | if (unitinfo == NULL) { |
| 4571 | return 0; |
| 4572 | } |
| 4573 | |
| 4574 | FDLOG(LOG_INFO, &nil_pcb, "disconnecting group %d" , unit); |
| 4575 | |
| 4576 | lck_rw_lock_exclusive(lck: &g_flow_divert_group_lck); |
| 4577 | |
| 4578 | if (g_active_group_count == 0) { |
| 4579 | panic("flow divert group %u is disconnecting, but no groups are active (active count = %u)" , |
| 4580 | unit, g_active_group_count); |
| 4581 | } |
| 4582 | |
| 4583 | if (unit < FLOW_DIVERT_IN_PROCESS_UNIT_MIN) { |
| 4584 | if (unit >= GROUP_COUNT_MAX) { |
| 4585 | return EINVAL; |
| 4586 | } |
| 4587 | |
| 4588 | if (g_flow_divert_groups == NULL) { |
| 4589 | panic("flow divert group %u is disconnecting, but groups array is NULL" , |
| 4590 | unit); |
| 4591 | } |
| 4592 | group = g_flow_divert_groups[unit]; |
| 4593 | |
| 4594 | if (group != (struct flow_divert_group *)unitinfo) { |
| 4595 | panic("group with unit %d (%p) != unit info (%p)" , unit, group, unitinfo); |
| 4596 | } |
| 4597 | |
| 4598 | g_flow_divert_groups[unit] = NULL; |
| 4599 | } else { |
| 4600 | group = (struct flow_divert_group *)unitinfo; |
| 4601 | if (TAILQ_EMPTY(&g_flow_divert_in_process_group_list)) { |
| 4602 | panic("flow divert group %u is disconnecting, but in-process group list is empty" , |
| 4603 | unit); |
| 4604 | } |
| 4605 | |
| 4606 | TAILQ_REMOVE(&g_flow_divert_in_process_group_list, group, chain); |
| 4607 | } |
| 4608 | |
| 4609 | g_active_group_count--; |
| 4610 | |
| 4611 | if (g_active_group_count == 0) { |
| 4612 | kfree_type(struct flow_divert_group *, |
| 4613 | GROUP_COUNT_MAX, g_flow_divert_groups); |
| 4614 | g_flow_divert_groups = NULL; |
| 4615 | } |
| 4616 | |
| 4617 | lck_rw_done(lck: &g_flow_divert_group_lck); |
| 4618 | |
| 4619 | if (group != NULL) { |
| 4620 | flow_divert_close_all(group); |
| 4621 | FDGRP_RELEASE(group); |
| 4622 | } else { |
| 4623 | error = EINVAL; |
| 4624 | } |
| 4625 | |
| 4626 | return error; |
| 4627 | } |
| 4628 | |
| 4629 | static errno_t |
| 4630 | flow_divert_kctl_send(__unused kern_ctl_ref kctlref, uint32_t unit, __unused void *unitinfo, mbuf_t m, __unused int flags) |
| 4631 | { |
| 4632 | errno_t error = 0; |
| 4633 | struct flow_divert_group *group = flow_divert_group_lookup(ctl_unit: unit, NULL); |
| 4634 | if (group != NULL) { |
| 4635 | error = flow_divert_input(packet: m, group); |
| 4636 | FDGRP_RELEASE(group); |
| 4637 | } else { |
| 4638 | error = ENOENT; |
| 4639 | } |
| 4640 | return error; |
| 4641 | } |
| 4642 | |
| 4643 | static void |
| 4644 | flow_divert_kctl_rcvd(__unused kern_ctl_ref kctlref, uint32_t unit, __unused void *unitinfo, __unused int flags) |
| 4645 | { |
| 4646 | struct flow_divert_group *group = flow_divert_group_lookup(ctl_unit: unit, NULL); |
| 4647 | if (group == NULL) { |
| 4648 | return; |
| 4649 | } |
| 4650 | |
| 4651 | if (!OSTestAndClear(GROUP_BIT_CTL_ENQUEUE_BLOCKED, startAddress: &group->atomic_bits)) { |
| 4652 | struct flow_divert_pcb *fd_cb; |
| 4653 | SLIST_HEAD(, flow_divert_pcb) tmp_list; |
| 4654 | |
| 4655 | lck_rw_lock_exclusive(lck: &group->lck); |
| 4656 | |
| 4657 | while (!MBUFQ_EMPTY(&group->send_queue)) { |
| 4658 | mbuf_t next_packet; |
| 4659 | FDLOG0(LOG_DEBUG, &nil_pcb, "trying ctl_enqueuembuf again" ); |
| 4660 | next_packet = MBUFQ_FIRST(&group->send_queue); |
| 4661 | int error = ctl_enqueuembuf(kctlref: g_flow_divert_kctl_ref, unit: group->ctl_unit, m: next_packet, CTL_DATA_EOR); |
| 4662 | if (error) { |
| 4663 | FDLOG(LOG_NOTICE, &nil_pcb, "flow_divert_kctl_rcvd: ctl_enqueuembuf returned an error: %d" , error); |
| 4664 | OSTestAndSet(GROUP_BIT_CTL_ENQUEUE_BLOCKED, startAddress: &group->atomic_bits); |
| 4665 | lck_rw_done(lck: &group->lck); |
| 4666 | return; |
| 4667 | } |
| 4668 | MBUFQ_DEQUEUE(&group->send_queue, next_packet); |
| 4669 | } |
| 4670 | |
| 4671 | SLIST_INIT(&tmp_list); |
| 4672 | |
| 4673 | RB_FOREACH(fd_cb, fd_pcb_tree, &group->pcb_tree) { |
| 4674 | FDRETAIN(fd_cb); |
| 4675 | SLIST_INSERT_HEAD(&tmp_list, fd_cb, tmp_list_entry); |
| 4676 | } |
| 4677 | |
| 4678 | lck_rw_done(lck: &group->lck); |
| 4679 | |
| 4680 | SLIST_FOREACH(fd_cb, &tmp_list, tmp_list_entry) { |
| 4681 | FDLOCK(fd_cb); |
| 4682 | if (fd_cb->so != NULL) { |
| 4683 | socket_lock(so: fd_cb->so, refcount: 0); |
| 4684 | if (fd_cb->group != NULL) { |
| 4685 | flow_divert_send_buffered_data(fd_cb, FALSE); |
| 4686 | } |
| 4687 | socket_unlock(so: fd_cb->so, refcount: 0); |
| 4688 | } |
| 4689 | FDUNLOCK(fd_cb); |
| 4690 | FDRELEASE(fd_cb); |
| 4691 | } |
| 4692 | } |
| 4693 | |
| 4694 | FDGRP_RELEASE(group); |
| 4695 | } |
| 4696 | |
| 4697 | static int |
| 4698 | flow_divert_kctl_init(void) |
| 4699 | { |
| 4700 | struct kern_ctl_reg ctl_reg; |
| 4701 | int result; |
| 4702 | |
| 4703 | memset(s: &ctl_reg, c: 0, n: sizeof(ctl_reg)); |
| 4704 | |
| 4705 | strlcpy(dst: ctl_reg.ctl_name, FLOW_DIVERT_CONTROL_NAME, n: sizeof(ctl_reg.ctl_name)); |
| 4706 | ctl_reg.ctl_name[sizeof(ctl_reg.ctl_name) - 1] = '\0'; |
| 4707 | |
| 4708 | // Do not restrict to privileged processes. flow_divert_kctl_setup checks |
| 4709 | // permissions separately. |
| 4710 | ctl_reg.ctl_flags = CTL_FLAG_REG_EXTENDED | CTL_FLAG_REG_SETUP; |
| 4711 | ctl_reg.ctl_sendsize = FD_CTL_SENDBUFF_SIZE; |
| 4712 | |
| 4713 | ctl_reg.ctl_connect = flow_divert_kctl_connect; |
| 4714 | ctl_reg.ctl_disconnect = flow_divert_kctl_disconnect; |
| 4715 | ctl_reg.ctl_send = flow_divert_kctl_send; |
| 4716 | ctl_reg.ctl_rcvd = flow_divert_kctl_rcvd; |
| 4717 | ctl_reg.ctl_setup = flow_divert_kctl_setup; |
| 4718 | |
| 4719 | result = ctl_register(userkctl: &ctl_reg, kctlref: &g_flow_divert_kctl_ref); |
| 4720 | |
| 4721 | if (result) { |
| 4722 | FDLOG(LOG_ERR, &nil_pcb, "flow_divert_kctl_init - ctl_register failed: %d\n" , result); |
| 4723 | return result; |
| 4724 | } |
| 4725 | |
| 4726 | return 0; |
| 4727 | } |
| 4728 | |
| 4729 | void |
| 4730 | flow_divert_init(void) |
| 4731 | { |
| 4732 | memset(s: &nil_pcb, c: 0, n: sizeof(nil_pcb)); |
| 4733 | nil_pcb.log_level = LOG_NOTICE; |
| 4734 | |
| 4735 | g_tcp_protosw = pffindproto(AF_INET, IPPROTO_TCP, SOCK_STREAM); |
| 4736 | |
| 4737 | VERIFY(g_tcp_protosw != NULL); |
| 4738 | |
| 4739 | memcpy(dst: &g_flow_divert_in_protosw, src: g_tcp_protosw, n: sizeof(g_flow_divert_in_protosw)); |
| 4740 | memcpy(dst: &g_flow_divert_in_usrreqs, src: g_tcp_protosw->pr_usrreqs, n: sizeof(g_flow_divert_in_usrreqs)); |
| 4741 | |
| 4742 | g_flow_divert_in_usrreqs.pru_connect = flow_divert_connect_out; |
| 4743 | g_flow_divert_in_usrreqs.pru_connectx = flow_divert_connectx_out; |
| 4744 | g_flow_divert_in_usrreqs.pru_disconnect = flow_divert_close; |
| 4745 | g_flow_divert_in_usrreqs.pru_disconnectx = flow_divert_disconnectx; |
| 4746 | g_flow_divert_in_usrreqs.pru_rcvd = flow_divert_rcvd; |
| 4747 | g_flow_divert_in_usrreqs.pru_send = flow_divert_data_out; |
| 4748 | g_flow_divert_in_usrreqs.pru_shutdown = flow_divert_shutdown; |
| 4749 | g_flow_divert_in_usrreqs.pru_preconnect = flow_divert_preconnect; |
| 4750 | |
| 4751 | g_flow_divert_in_protosw.pr_usrreqs = &g_flow_divert_in_usrreqs; |
| 4752 | g_flow_divert_in_protosw.pr_ctloutput = flow_divert_ctloutput; |
| 4753 | |
| 4754 | /* |
| 4755 | * Socket filters shouldn't attach/detach to/from this protosw |
| 4756 | * since pr_protosw is to be used instead, which points to the |
| 4757 | * real protocol; if they do, it is a bug and we should panic. |
| 4758 | */ |
| 4759 | g_flow_divert_in_protosw.pr_filter_head.tqh_first = |
| 4760 | (struct socket_filter *)(uintptr_t)0xdeadbeefdeadbeef; |
| 4761 | g_flow_divert_in_protosw.pr_filter_head.tqh_last = |
| 4762 | (struct socket_filter **)(uintptr_t)0xdeadbeefdeadbeef; |
| 4763 | |
| 4764 | /* UDP */ |
| 4765 | g_udp_protosw = pffindproto(AF_INET, IPPROTO_UDP, SOCK_DGRAM); |
| 4766 | VERIFY(g_udp_protosw != NULL); |
| 4767 | |
| 4768 | memcpy(dst: &g_flow_divert_in_udp_protosw, src: g_udp_protosw, n: sizeof(g_flow_divert_in_udp_protosw)); |
| 4769 | memcpy(dst: &g_flow_divert_in_udp_usrreqs, src: g_udp_protosw->pr_usrreqs, n: sizeof(g_flow_divert_in_udp_usrreqs)); |
| 4770 | |
| 4771 | g_flow_divert_in_udp_usrreqs.pru_connect = flow_divert_connect_out; |
| 4772 | g_flow_divert_in_udp_usrreqs.pru_connectx = flow_divert_connectx_out; |
| 4773 | g_flow_divert_in_udp_usrreqs.pru_disconnect = flow_divert_close; |
| 4774 | g_flow_divert_in_udp_usrreqs.pru_disconnectx = flow_divert_disconnectx; |
| 4775 | g_flow_divert_in_udp_usrreqs.pru_rcvd = flow_divert_rcvd; |
| 4776 | g_flow_divert_in_udp_usrreqs.pru_send = flow_divert_data_out; |
| 4777 | g_flow_divert_in_udp_usrreqs.pru_shutdown = flow_divert_shutdown; |
| 4778 | g_flow_divert_in_udp_usrreqs.pru_sosend_list = pru_sosend_list_notsupp; |
| 4779 | g_flow_divert_in_udp_usrreqs.pru_preconnect = flow_divert_preconnect; |
| 4780 | |
| 4781 | g_flow_divert_in_udp_protosw.pr_usrreqs = &g_flow_divert_in_usrreqs; |
| 4782 | g_flow_divert_in_udp_protosw.pr_ctloutput = flow_divert_ctloutput; |
| 4783 | |
| 4784 | /* |
| 4785 | * Socket filters shouldn't attach/detach to/from this protosw |
| 4786 | * since pr_protosw is to be used instead, which points to the |
| 4787 | * real protocol; if they do, it is a bug and we should panic. |
| 4788 | */ |
| 4789 | g_flow_divert_in_udp_protosw.pr_filter_head.tqh_first = |
| 4790 | (struct socket_filter *)(uintptr_t)0xdeadbeefdeadbeef; |
| 4791 | g_flow_divert_in_udp_protosw.pr_filter_head.tqh_last = |
| 4792 | (struct socket_filter **)(uintptr_t)0xdeadbeefdeadbeef; |
| 4793 | |
| 4794 | g_tcp6_protosw = (struct ip6protosw *)pffindproto(AF_INET6, IPPROTO_TCP, SOCK_STREAM); |
| 4795 | |
| 4796 | VERIFY(g_tcp6_protosw != NULL); |
| 4797 | |
| 4798 | memcpy(dst: &g_flow_divert_in6_protosw, src: g_tcp6_protosw, n: sizeof(g_flow_divert_in6_protosw)); |
| 4799 | memcpy(dst: &g_flow_divert_in6_usrreqs, src: g_tcp6_protosw->pr_usrreqs, n: sizeof(g_flow_divert_in6_usrreqs)); |
| 4800 | |
| 4801 | g_flow_divert_in6_usrreqs.pru_connect = flow_divert_connect_out; |
| 4802 | g_flow_divert_in6_usrreqs.pru_connectx = flow_divert_connectx6_out; |
| 4803 | g_flow_divert_in6_usrreqs.pru_disconnect = flow_divert_close; |
| 4804 | g_flow_divert_in6_usrreqs.pru_disconnectx = flow_divert_disconnectx; |
| 4805 | g_flow_divert_in6_usrreqs.pru_rcvd = flow_divert_rcvd; |
| 4806 | g_flow_divert_in6_usrreqs.pru_send = flow_divert_data_out; |
| 4807 | g_flow_divert_in6_usrreqs.pru_shutdown = flow_divert_shutdown; |
| 4808 | g_flow_divert_in6_usrreqs.pru_preconnect = flow_divert_preconnect; |
| 4809 | |
| 4810 | g_flow_divert_in6_protosw.pr_usrreqs = &g_flow_divert_in6_usrreqs; |
| 4811 | g_flow_divert_in6_protosw.pr_ctloutput = flow_divert_ctloutput; |
| 4812 | /* |
| 4813 | * Socket filters shouldn't attach/detach to/from this protosw |
| 4814 | * since pr_protosw is to be used instead, which points to the |
| 4815 | * real protocol; if they do, it is a bug and we should panic. |
| 4816 | */ |
| 4817 | g_flow_divert_in6_protosw.pr_filter_head.tqh_first = |
| 4818 | (struct socket_filter *)(uintptr_t)0xdeadbeefdeadbeef; |
| 4819 | g_flow_divert_in6_protosw.pr_filter_head.tqh_last = |
| 4820 | (struct socket_filter **)(uintptr_t)0xdeadbeefdeadbeef; |
| 4821 | |
| 4822 | /* UDP6 */ |
| 4823 | g_udp6_protosw = (struct ip6protosw *)pffindproto(AF_INET6, IPPROTO_UDP, SOCK_DGRAM); |
| 4824 | |
| 4825 | VERIFY(g_udp6_protosw != NULL); |
| 4826 | |
| 4827 | memcpy(dst: &g_flow_divert_in6_udp_protosw, src: g_udp6_protosw, n: sizeof(g_flow_divert_in6_udp_protosw)); |
| 4828 | memcpy(dst: &g_flow_divert_in6_udp_usrreqs, src: g_udp6_protosw->pr_usrreqs, n: sizeof(g_flow_divert_in6_udp_usrreqs)); |
| 4829 | |
| 4830 | g_flow_divert_in6_udp_usrreqs.pru_connect = flow_divert_connect_out; |
| 4831 | g_flow_divert_in6_udp_usrreqs.pru_connectx = flow_divert_connectx6_out; |
| 4832 | g_flow_divert_in6_udp_usrreqs.pru_disconnect = flow_divert_close; |
| 4833 | g_flow_divert_in6_udp_usrreqs.pru_disconnectx = flow_divert_disconnectx; |
| 4834 | g_flow_divert_in6_udp_usrreqs.pru_rcvd = flow_divert_rcvd; |
| 4835 | g_flow_divert_in6_udp_usrreqs.pru_send = flow_divert_data_out; |
| 4836 | g_flow_divert_in6_udp_usrreqs.pru_shutdown = flow_divert_shutdown; |
| 4837 | g_flow_divert_in6_udp_usrreqs.pru_sosend_list = pru_sosend_list_notsupp; |
| 4838 | g_flow_divert_in6_udp_usrreqs.pru_preconnect = flow_divert_preconnect; |
| 4839 | |
| 4840 | g_flow_divert_in6_udp_protosw.pr_usrreqs = &g_flow_divert_in6_udp_usrreqs; |
| 4841 | g_flow_divert_in6_udp_protosw.pr_ctloutput = flow_divert_ctloutput; |
| 4842 | /* |
| 4843 | * Socket filters shouldn't attach/detach to/from this protosw |
| 4844 | * since pr_protosw is to be used instead, which points to the |
| 4845 | * real protocol; if they do, it is a bug and we should panic. |
| 4846 | */ |
| 4847 | g_flow_divert_in6_udp_protosw.pr_filter_head.tqh_first = |
| 4848 | (struct socket_filter *)(uintptr_t)0xdeadbeefdeadbeef; |
| 4849 | g_flow_divert_in6_udp_protosw.pr_filter_head.tqh_last = |
| 4850 | (struct socket_filter **)(uintptr_t)0xdeadbeefdeadbeef; |
| 4851 | |
| 4852 | TAILQ_INIT(&g_flow_divert_in_process_group_list); |
| 4853 | |
| 4854 | g_init_result = flow_divert_kctl_init(); |
| 4855 | if (g_init_result) { |
| 4856 | goto done; |
| 4857 | } |
| 4858 | |
| 4859 | done: |
| 4860 | if (g_init_result != 0) { |
| 4861 | if (g_flow_divert_kctl_ref != NULL) { |
| 4862 | ctl_deregister(kctlref: g_flow_divert_kctl_ref); |
| 4863 | g_flow_divert_kctl_ref = NULL; |
| 4864 | } |
| 4865 | } |
| 4866 | } |
| 4867 | |