| 1 | /* |
| 2 | * Copyright (c) 2000-2024 Apple Inc. All rights reserved. |
| 3 | * |
| 4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ |
| 5 | * |
| 6 | * This file contains Original Code and/or Modifications of Original Code |
| 7 | * as defined in and that are subject to the Apple Public Source License |
| 8 | * Version 2.0 (the 'License'). You may not use this file except in |
| 9 | * compliance with the License. The rights granted to you under the License |
| 10 | * may not be used to create, or enable the creation or redistribution of, |
| 11 | * unlawful or unlicensed copies of an Apple operating system, or to |
| 12 | * circumvent, violate, or enable the circumvention or violation of, any |
| 13 | * terms of an Apple operating system software license agreement. |
| 14 | * |
| 15 | * Please obtain a copy of the License at |
| 16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. |
| 17 | * |
| 18 | * The Original Code and all software distributed under the License are |
| 19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER |
| 20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
| 21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, |
| 22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
| 23 | * Please see the License for the specific language governing rights and |
| 24 | * limitations under the License. |
| 25 | * |
| 26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ |
| 27 | */ |
| 28 | /* |
| 29 | * Copyright (c) 1988, 1991, 1993 |
| 30 | * The Regents of the University of California. All rights reserved. |
| 31 | * |
| 32 | * Redistribution and use in source and binary forms, with or without |
| 33 | * modification, are permitted provided that the following conditions |
| 34 | * are met: |
| 35 | * 1. Redistributions of source code must retain the above copyright |
| 36 | * notice, this list of conditions and the following disclaimer. |
| 37 | * 2. Redistributions in binary form must reproduce the above copyright |
| 38 | * notice, this list of conditions and the following disclaimer in the |
| 39 | * documentation and/or other materials provided with the distribution. |
| 40 | * 3. All advertising materials mentioning features or use of this software |
| 41 | * must display the following acknowledgement: |
| 42 | * This product includes software developed by the University of |
| 43 | * California, Berkeley and its contributors. |
| 44 | * 4. Neither the name of the University nor the names of its contributors |
| 45 | * may be used to endorse or promote products derived from this software |
| 46 | * without specific prior written permission. |
| 47 | * |
| 48 | * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND |
| 49 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 50 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 51 | * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE |
| 52 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
| 53 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
| 54 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| 55 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
| 56 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
| 57 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
| 58 | * SUCH DAMAGE. |
| 59 | * |
| 60 | * @(#)rtsock.c 8.5 (Berkeley) 11/2/94 |
| 61 | */ |
| 62 | |
| 63 | #include <sys/param.h> |
| 64 | #include <sys/systm.h> |
| 65 | #include <sys/kauth.h> |
| 66 | #include <sys/kernel.h> |
| 67 | #include <sys/sysctl.h> |
| 68 | #include <sys/proc.h> |
| 69 | #include <sys/malloc.h> |
| 70 | #include <sys/mbuf.h> |
| 71 | #include <sys/socket.h> |
| 72 | #include <sys/socketvar.h> |
| 73 | #include <sys/domain.h> |
| 74 | #include <sys/protosw.h> |
| 75 | #include <sys/syslog.h> |
| 76 | #include <sys/mcache.h> |
| 77 | #include <kern/locks.h> |
| 78 | #include <sys/codesign.h> |
| 79 | |
| 80 | #include <net/if.h> |
| 81 | #include <net/route.h> |
| 82 | #include <net/dlil.h> |
| 83 | #include <net/raw_cb.h> |
| 84 | #include <netinet/in.h> |
| 85 | #include <netinet/in_var.h> |
| 86 | #include <netinet/in_arp.h> |
| 87 | #include <netinet/ip.h> |
| 88 | #include <netinet/ip6.h> |
| 89 | #include <netinet6/nd6.h> |
| 90 | |
| 91 | #include <net/sockaddr_utils.h> |
| 92 | |
| 93 | #include <IOKit/IOBSD.h> |
| 94 | |
| 95 | extern struct rtstat rtstat; |
| 96 | extern struct domain routedomain_s; |
| 97 | static struct domain *routedomain = NULL; |
| 98 | |
| 99 | static struct sockaddr route_dst = { .sa_len = 2, .sa_family = PF_ROUTE, .sa_data = { 0, } }; |
| 100 | static struct sockaddr route_src = { .sa_len = 2, .sa_family = PF_ROUTE, .sa_data = { 0, } }; |
| 101 | static struct sockaddr sa_zero = { .sa_len = sizeof(sa_zero), .sa_family = AF_INET, .sa_data = { 0, } }; |
| 102 | |
| 103 | struct route_cb { |
| 104 | u_int32_t ip_count; /* attached w/ AF_INET */ |
| 105 | u_int32_t ip6_count; /* attached w/ AF_INET6 */ |
| 106 | u_int32_t any_count; /* total attached */ |
| 107 | }; |
| 108 | |
| 109 | static struct route_cb route_cb; |
| 110 | |
| 111 | struct walkarg { |
| 112 | int w_tmemsize; |
| 113 | int w_op, w_arg; |
| 114 | caddr_t w_tmem; |
| 115 | struct sysctl_req *w_req; |
| 116 | }; |
| 117 | |
| 118 | static void route_dinit(struct domain *); |
| 119 | static int rts_abort(struct socket *); |
| 120 | static int rts_attach(struct socket *, int, struct proc *); |
| 121 | static int rts_bind(struct socket *, struct sockaddr *, struct proc *); |
| 122 | static int rts_connect(struct socket *, struct sockaddr *, struct proc *); |
| 123 | static int rts_detach(struct socket *); |
| 124 | static int rts_disconnect(struct socket *); |
| 125 | static int rts_peeraddr(struct socket *, struct sockaddr **); |
| 126 | static int rts_send(struct socket *, int, struct mbuf *, struct sockaddr *, |
| 127 | struct mbuf *, struct proc *); |
| 128 | static int rts_shutdown(struct socket *); |
| 129 | static int rts_sockaddr(struct socket *, struct sockaddr **); |
| 130 | |
| 131 | static int route_output(struct mbuf *, struct socket *); |
| 132 | static int rt_setmetrics(u_int32_t, struct rt_metrics *, struct rtentry *); |
| 133 | static void rt_getmetrics(struct rtentry *, struct rt_metrics *); |
| 134 | static void rt_setif(struct rtentry *, struct sockaddr *, struct sockaddr *, |
| 135 | struct sockaddr *, unsigned int); |
| 136 | static int rt_xaddrs(caddr_t cp __ended_by(cplim), caddr_t cplim, struct rt_addrinfo *); |
| 137 | static struct mbuf *rt_msg1(u_char, struct rt_addrinfo *); |
| 138 | static int rt_msg2(u_char, struct rt_addrinfo *, caddr_t, struct walkarg *, |
| 139 | kauth_cred_t *); |
| 140 | static int sysctl_dumpentry(struct radix_node *rn, void *vw); |
| 141 | static int sysctl_dumpentry_ext(struct radix_node *rn, void *vw); |
| 142 | static int sysctl_iflist(int af, struct walkarg *w); |
| 143 | static int sysctl_iflist2(int af, struct walkarg *w); |
| 144 | static int sysctl_rtstat(struct sysctl_req *); |
| 145 | static int sysctl_rttrash(struct sysctl_req *); |
| 146 | static int sysctl_rtsock SYSCTL_HANDLER_ARGS; |
| 147 | |
| 148 | SYSCTL_NODE(_net, PF_ROUTE, routetable, CTLFLAG_RD | CTLFLAG_LOCKED, |
| 149 | sysctl_rtsock, "" ); |
| 150 | |
| 151 | SYSCTL_NODE(_net, OID_AUTO, route, CTLFLAG_RW | CTLFLAG_LOCKED, 0, "routing" ); |
| 152 | |
| 153 | /* Align x to 1024 (only power of 2) assuming x is positive */ |
| 154 | #define ALIGN_BYTES(x) do { \ |
| 155 | x = (uint32_t)P2ALIGN(x, 1024); \ |
| 156 | } while(0) |
| 157 | |
| 158 | #define ROUNDUP32(a) \ |
| 159 | ((a) > 0 ? (1 + (((a) - 1) | (sizeof (uint32_t) - 1))) : \ |
| 160 | sizeof (uint32_t)) |
| 161 | |
| 162 | #define ADVANCE32(x, n, lim) do { \ |
| 163 | (x += ROUNDUP32((n)->sa_len)); \ |
| 164 | _Pragma("clang diagnostic push"); \ |
| 165 | _Pragma("clang diagnostic ignored \"-Wself-assign\""); \ |
| 166 | (lim) = (lim); \ |
| 167 | _Pragma("clang diagnostic pop"); \ |
| 168 | } while(0) |
| 169 | |
| 170 | |
| 171 | #define RT_HAS_IFADDR(rt) \ |
| 172 | ((rt)->rt_ifa != NULL && (rt)->rt_ifa->ifa_addr != NULL) |
| 173 | |
| 174 | /* |
| 175 | * It really doesn't make any sense at all for this code to share much |
| 176 | * with raw_usrreq.c, since its functionality is so restricted. XXX |
| 177 | */ |
| 178 | static int |
| 179 | rts_abort(struct socket *so) |
| 180 | { |
| 181 | return raw_usrreqs.pru_abort(so); |
| 182 | } |
| 183 | |
| 184 | /* pru_accept is EOPNOTSUPP */ |
| 185 | |
| 186 | static int |
| 187 | rts_attach(struct socket *so, int proto, struct proc *p) |
| 188 | { |
| 189 | #pragma unused(p) |
| 190 | struct rawcb *rp; |
| 191 | int error; |
| 192 | |
| 193 | VERIFY(so->so_pcb == NULL); |
| 194 | |
| 195 | rp = kalloc_type(struct rawcb, Z_WAITOK_ZERO_NOFAIL); |
| 196 | so->so_pcb = (caddr_t)rp; |
| 197 | /* don't use raw_usrreqs.pru_attach, it checks for SS_PRIV */ |
| 198 | error = raw_attach(so, proto); |
| 199 | rp = sotorawcb(so); |
| 200 | if (error) { |
| 201 | kfree_type(struct rawcb, rp); |
| 202 | so->so_pcb = NULL; |
| 203 | so->so_flags |= SOF_PCBCLEARING; |
| 204 | return error; |
| 205 | } |
| 206 | |
| 207 | switch (rp->rcb_proto.sp_protocol) { |
| 208 | case AF_INET: |
| 209 | os_atomic_inc(&route_cb.ip_count, relaxed); |
| 210 | break; |
| 211 | case AF_INET6: |
| 212 | os_atomic_inc(&route_cb.ip6_count, relaxed); |
| 213 | break; |
| 214 | } |
| 215 | rp->rcb_faddr = &route_src; |
| 216 | os_atomic_inc(&route_cb.any_count, relaxed); |
| 217 | /* the socket is already locked when we enter rts_attach */ |
| 218 | soisconnected(so); |
| 219 | so->so_options |= SO_USELOOPBACK; |
| 220 | return 0; |
| 221 | } |
| 222 | |
| 223 | static int |
| 224 | rts_bind(struct socket *so, struct sockaddr *nam, struct proc *p) |
| 225 | { |
| 226 | return raw_usrreqs.pru_bind(so, nam, p); /* xxx just EINVAL */ |
| 227 | } |
| 228 | |
| 229 | static int |
| 230 | rts_connect(struct socket *so, struct sockaddr *nam, struct proc *p) |
| 231 | { |
| 232 | return raw_usrreqs.pru_connect(so, nam, p); /* XXX just EINVAL */ |
| 233 | } |
| 234 | |
| 235 | /* pru_connect2 is EOPNOTSUPP */ |
| 236 | /* pru_control is EOPNOTSUPP */ |
| 237 | |
| 238 | static int |
| 239 | rts_detach(struct socket *so) |
| 240 | { |
| 241 | struct rawcb *rp = sotorawcb(so); |
| 242 | |
| 243 | VERIFY(rp != NULL); |
| 244 | |
| 245 | switch (rp->rcb_proto.sp_protocol) { |
| 246 | case AF_INET: |
| 247 | os_atomic_dec(&route_cb.ip_count, relaxed); |
| 248 | break; |
| 249 | case AF_INET6: |
| 250 | os_atomic_dec(&route_cb.ip6_count, relaxed); |
| 251 | break; |
| 252 | } |
| 253 | os_atomic_dec(&route_cb.any_count, relaxed); |
| 254 | return raw_usrreqs.pru_detach(so); |
| 255 | } |
| 256 | |
| 257 | static int |
| 258 | rts_disconnect(struct socket *so) |
| 259 | { |
| 260 | return raw_usrreqs.pru_disconnect(so); |
| 261 | } |
| 262 | |
| 263 | /* pru_listen is EOPNOTSUPP */ |
| 264 | |
| 265 | static int |
| 266 | rts_peeraddr(struct socket *so, struct sockaddr **nam) |
| 267 | { |
| 268 | return raw_usrreqs.pru_peeraddr(so, nam); |
| 269 | } |
| 270 | |
| 271 | /* pru_rcvd is EOPNOTSUPP */ |
| 272 | /* pru_rcvoob is EOPNOTSUPP */ |
| 273 | |
| 274 | static int |
| 275 | rts_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *nam, |
| 276 | struct mbuf *control, struct proc *p) |
| 277 | { |
| 278 | return raw_usrreqs.pru_send(so, flags, m, nam, control, p); |
| 279 | } |
| 280 | |
| 281 | /* pru_sense is null */ |
| 282 | |
| 283 | static int |
| 284 | rts_shutdown(struct socket *so) |
| 285 | { |
| 286 | return raw_usrreqs.pru_shutdown(so); |
| 287 | } |
| 288 | |
| 289 | static int |
| 290 | rts_sockaddr(struct socket *so, struct sockaddr **nam) |
| 291 | { |
| 292 | return raw_usrreqs.pru_sockaddr(so, nam); |
| 293 | } |
| 294 | |
| 295 | static struct pr_usrreqs route_usrreqs = { |
| 296 | .pru_abort = rts_abort, |
| 297 | .pru_attach = rts_attach, |
| 298 | .pru_bind = rts_bind, |
| 299 | .pru_connect = rts_connect, |
| 300 | .pru_detach = rts_detach, |
| 301 | .pru_disconnect = rts_disconnect, |
| 302 | .pru_peeraddr = rts_peeraddr, |
| 303 | .pru_send = rts_send, |
| 304 | .pru_shutdown = rts_shutdown, |
| 305 | .pru_sockaddr = rts_sockaddr, |
| 306 | .pru_sosend = sosend, |
| 307 | .pru_soreceive = soreceive, |
| 308 | }; |
| 309 | |
| 310 | /*ARGSUSED*/ |
| 311 | static int |
| 312 | route_output(struct mbuf *m, struct socket *so) |
| 313 | { |
| 314 | struct rt_msghdr *rtm = NULL; |
| 315 | size_t rtm_len = 0; |
| 316 | rtentry_ref_t rt = NULL; |
| 317 | rtentry_ref_t saved_nrt = NULL; |
| 318 | struct radix_node_head *rnh; |
| 319 | struct rt_addrinfo info; |
| 320 | int len, error = 0; |
| 321 | sa_family_t dst_sa_family = 0; |
| 322 | struct ifnet *ifp = NULL; |
| 323 | struct sockaddr_in dst_in, gate_in; |
| 324 | int sendonlytoself = 0; |
| 325 | unsigned int ifscope = IFSCOPE_NONE; |
| 326 | struct rawcb *rp = NULL; |
| 327 | boolean_t is_router = FALSE; |
| 328 | #define senderr(e) { error = (e); goto flush; } |
| 329 | if (m == NULL || ((m->m_len < sizeof(intptr_t)) && |
| 330 | (m = m_pullup(m, sizeof(intptr_t))) == NULL)) { |
| 331 | return ENOBUFS; |
| 332 | } |
| 333 | VERIFY(m->m_flags & M_PKTHDR); |
| 334 | |
| 335 | /* |
| 336 | * Unlock the socket (but keep a reference) it won't be |
| 337 | * accessed until raw_input appends to it. |
| 338 | */ |
| 339 | socket_unlock(so, refcount: 0); |
| 340 | lck_mtx_lock(rnh_lock); |
| 341 | |
| 342 | len = m->m_pkthdr.len; |
| 343 | if (len < sizeof(*rtm) || |
| 344 | len != mtod(m, struct rt_msghdr *)->rtm_msglen) { |
| 345 | info.rti_info[RTAX_DST] = NULL; |
| 346 | senderr(EINVAL); |
| 347 | } |
| 348 | rtm = kalloc_data(len, Z_WAITOK); |
| 349 | if (rtm == NULL) { |
| 350 | info.rti_info[RTAX_DST] = NULL; |
| 351 | senderr(ENOBUFS); |
| 352 | } |
| 353 | rtm_len = (size_t)len; |
| 354 | m_copydata(m, 0, len, (caddr_t)rtm); |
| 355 | if (rtm->rtm_version != RTM_VERSION) { |
| 356 | info.rti_info[RTAX_DST] = NULL; |
| 357 | senderr(EPROTONOSUPPORT); |
| 358 | } |
| 359 | |
| 360 | /* |
| 361 | * Silent version of RTM_GET for Reachabiltiy APIs. We may change |
| 362 | * all RTM_GETs to be silent in the future, so this is private for now. |
| 363 | */ |
| 364 | if (rtm->rtm_type == RTM_GET_SILENT) { |
| 365 | if (!(so->so_options & SO_USELOOPBACK)) { |
| 366 | senderr(EINVAL); |
| 367 | } |
| 368 | sendonlytoself = 1; |
| 369 | rtm->rtm_type = RTM_GET; |
| 370 | } |
| 371 | |
| 372 | /* |
| 373 | * Perform permission checking, only privileged sockets |
| 374 | * may perform operations other than RTM_GET |
| 375 | */ |
| 376 | if (rtm->rtm_type != RTM_GET && !(so->so_state & SS_PRIV)) { |
| 377 | info.rti_info[RTAX_DST] = NULL; |
| 378 | senderr(EPERM); |
| 379 | } |
| 380 | |
| 381 | rtm->rtm_pid = proc_selfpid(); |
| 382 | info.rti_addrs = rtm->rtm_addrs; |
| 383 | if (rt_xaddrs(cp: (caddr_t)(rtm + 1), cplim: len + (caddr_t)rtm, &info)) { |
| 384 | info.rti_info[RTAX_DST] = NULL; |
| 385 | senderr(EINVAL); |
| 386 | } |
| 387 | if (info.rti_info[RTAX_DST] == NULL || |
| 388 | info.rti_info[RTAX_DST]->sa_family >= AF_MAX || |
| 389 | (info.rti_info[RTAX_GATEWAY] != NULL && |
| 390 | info.rti_info[RTAX_GATEWAY]->sa_family >= AF_MAX)) { |
| 391 | senderr(EINVAL); |
| 392 | } |
| 393 | |
| 394 | if (info.rti_info[RTAX_DST]->sa_family == AF_INET && |
| 395 | info.rti_info[RTAX_DST]->sa_len != sizeof(struct sockaddr_in)) { |
| 396 | /* At minimum, we need up to sin_addr */ |
| 397 | if (info.rti_info[RTAX_DST]->sa_len < |
| 398 | offsetof(struct sockaddr_in, sin_zero)) { |
| 399 | senderr(EINVAL); |
| 400 | } |
| 401 | SOCKADDR_ZERO(&dst_in, sizeof(dst_in)); |
| 402 | dst_in.sin_len = sizeof(dst_in); |
| 403 | dst_in.sin_family = AF_INET; |
| 404 | dst_in.sin_port = SIN(info.rti_info[RTAX_DST])->sin_port; |
| 405 | dst_in.sin_addr = SIN(info.rti_info[RTAX_DST])->sin_addr; |
| 406 | info.rti_info[RTAX_DST] = SA(&dst_in); |
| 407 | dst_sa_family = info.rti_info[RTAX_DST]->sa_family; |
| 408 | } else if (info.rti_info[RTAX_DST]->sa_family == AF_INET6 && |
| 409 | info.rti_info[RTAX_DST]->sa_len < sizeof(struct sockaddr_in6)) { |
| 410 | senderr(EINVAL); |
| 411 | } |
| 412 | |
| 413 | if (info.rti_info[RTAX_GATEWAY] != NULL) { |
| 414 | if (info.rti_info[RTAX_GATEWAY]->sa_family == AF_INET && |
| 415 | info.rti_info[RTAX_GATEWAY]->sa_len != sizeof(struct sockaddr_in)) { |
| 416 | /* At minimum, we need up to sin_addr */ |
| 417 | if (info.rti_info[RTAX_GATEWAY]->sa_len < |
| 418 | offsetof(struct sockaddr_in, sin_zero)) { |
| 419 | senderr(EINVAL); |
| 420 | } |
| 421 | SOCKADDR_ZERO(&gate_in, sizeof(gate_in)); |
| 422 | gate_in.sin_len = sizeof(gate_in); |
| 423 | gate_in.sin_family = AF_INET; |
| 424 | gate_in.sin_port = SIN(info.rti_info[RTAX_GATEWAY])->sin_port; |
| 425 | gate_in.sin_addr = SIN(info.rti_info[RTAX_GATEWAY])->sin_addr; |
| 426 | info.rti_info[RTAX_GATEWAY] = SA(&gate_in); |
| 427 | } else if (info.rti_info[RTAX_GATEWAY]->sa_family == AF_INET6 && |
| 428 | info.rti_info[RTAX_GATEWAY]->sa_len < sizeof(struct sockaddr_in6)) { |
| 429 | senderr(EINVAL); |
| 430 | } |
| 431 | } |
| 432 | |
| 433 | if (info.rti_info[RTAX_GENMASK]) { |
| 434 | struct radix_node *t; |
| 435 | t = rn_addmask((caddr_t)info.rti_info[RTAX_GENMASK], 0, 1); |
| 436 | if (t != NULL && Bcmp(info.rti_info[RTAX_GENMASK], |
| 437 | rn_get_key(t), *(u_char *)info.rti_info[RTAX_GENMASK]) == 0) { |
| 438 | info.rti_info[RTAX_GENMASK] = SA(rn_get_key(t)); |
| 439 | } else { |
| 440 | senderr(ENOBUFS); |
| 441 | } |
| 442 | } |
| 443 | |
| 444 | /* |
| 445 | * If RTF_IFSCOPE flag is set, then rtm_index specifies the scope. |
| 446 | */ |
| 447 | if (rtm->rtm_flags & RTF_IFSCOPE) { |
| 448 | if (info.rti_info[RTAX_DST]->sa_family != AF_INET && |
| 449 | info.rti_info[RTAX_DST]->sa_family != AF_INET6) { |
| 450 | senderr(EINVAL); |
| 451 | } |
| 452 | ifscope = rtm->rtm_index; |
| 453 | } |
| 454 | /* |
| 455 | * Block changes on INTCOPROC interfaces. |
| 456 | */ |
| 457 | if (ifscope != IFSCOPE_NONE) { |
| 458 | unsigned int intcoproc_scope = 0; |
| 459 | ifnet_head_lock_shared(); |
| 460 | TAILQ_FOREACH(ifp, &ifnet_head, if_link) { |
| 461 | if (IFNET_IS_INTCOPROC(ifp)) { |
| 462 | intcoproc_scope = ifp->if_index; |
| 463 | break; |
| 464 | } |
| 465 | } |
| 466 | ifnet_head_done(); |
| 467 | if (intcoproc_scope == ifscope && proc_getpid(current_proc()) != 0) { |
| 468 | senderr(EINVAL); |
| 469 | } |
| 470 | } |
| 471 | /* |
| 472 | * Require entitlement to change management interfaces |
| 473 | */ |
| 474 | if (management_control_unrestricted == false && if_management_interface_check_needed == true && |
| 475 | ifscope != IFSCOPE_NONE && proc_getpid(current_proc()) != 0) { |
| 476 | bool is_management = false; |
| 477 | |
| 478 | ifnet_head_lock_shared(); |
| 479 | if (IF_INDEX_IN_RANGE(ifscope)) { |
| 480 | ifp = ifindex2ifnet[ifscope]; |
| 481 | if (ifp != NULL && IFNET_IS_MANAGEMENT(ifp)) { |
| 482 | is_management = true; |
| 483 | } |
| 484 | } |
| 485 | ifnet_head_done(); |
| 486 | |
| 487 | if (is_management && !IOCurrentTaskHasEntitlement(MANAGEMENT_CONTROL_ENTITLEMENT)) { |
| 488 | senderr(EINVAL); |
| 489 | } |
| 490 | } |
| 491 | |
| 492 | /* |
| 493 | * RTF_PROXY can only be set internally from within the kernel. |
| 494 | */ |
| 495 | if (rtm->rtm_flags & RTF_PROXY) { |
| 496 | senderr(EINVAL); |
| 497 | } |
| 498 | |
| 499 | /* |
| 500 | * For AF_INET, always zero out the embedded scope ID. If this is |
| 501 | * a scoped request, it must be done explicitly by setting RTF_IFSCOPE |
| 502 | * flag and the corresponding rtm_index value. This is to prevent |
| 503 | * false interpretation of the scope ID because it's using the sin_zero |
| 504 | * field, which might not be properly cleared by the requestor. |
| 505 | */ |
| 506 | if (info.rti_info[RTAX_DST]->sa_family == AF_INET) { |
| 507 | sin_set_ifscope(info.rti_info[RTAX_DST], IFSCOPE_NONE); |
| 508 | } |
| 509 | if (info.rti_info[RTAX_GATEWAY] != NULL && |
| 510 | info.rti_info[RTAX_GATEWAY]->sa_family == AF_INET) { |
| 511 | sin_set_ifscope(info.rti_info[RTAX_GATEWAY], IFSCOPE_NONE); |
| 512 | } |
| 513 | if (info.rti_info[RTAX_DST]->sa_family == AF_INET6 && |
| 514 | IN6_IS_SCOPE_EMBED(&SIN6(info.rti_info[RTAX_DST])->sin6_addr) && |
| 515 | !IN6_IS_ADDR_UNICAST_BASED_MULTICAST(&SIN6(info.rti_info[RTAX_DST])->sin6_addr) && |
| 516 | SIN6(info.rti_info[RTAX_DST])->sin6_scope_id == 0) { |
| 517 | SIN6(info.rti_info[RTAX_DST])->sin6_scope_id = ntohs(SIN6(info.rti_info[RTAX_DST])->sin6_addr.s6_addr16[1]); |
| 518 | SIN6(info.rti_info[RTAX_DST])->sin6_addr.s6_addr16[1] = 0; |
| 519 | } |
| 520 | |
| 521 | switch (rtm->rtm_type) { |
| 522 | case RTM_ADD: |
| 523 | if (info.rti_info[RTAX_GATEWAY] == NULL) { |
| 524 | senderr(EINVAL); |
| 525 | } |
| 526 | |
| 527 | error = rtrequest_scoped_locked(RTM_ADD, |
| 528 | info.rti_info[RTAX_DST], info.rti_info[RTAX_GATEWAY], |
| 529 | info.rti_info[RTAX_NETMASK], rtm->rtm_flags, &saved_nrt, |
| 530 | ifscope); |
| 531 | if (error == 0 && saved_nrt != NULL) { |
| 532 | RT_LOCK(saved_nrt); |
| 533 | /* |
| 534 | * If the route request specified an interface with |
| 535 | * IFA and/or IFP, we set the requested interface on |
| 536 | * the route with rt_setif. It would be much better |
| 537 | * to do this inside rtrequest, but that would |
| 538 | * require passing the desired interface, in some |
| 539 | * form, to rtrequest. Since rtrequest is called in |
| 540 | * so many places (roughly 40 in our source), adding |
| 541 | * a parameter is to much for us to swallow; this is |
| 542 | * something for the FreeBSD developers to tackle. |
| 543 | * Instead, we let rtrequest compute whatever |
| 544 | * interface it wants, then come in behind it and |
| 545 | * stick in the interface that we really want. This |
| 546 | * works reasonably well except when rtrequest can't |
| 547 | * figure out what interface to use (with |
| 548 | * ifa_withroute) and returns ENETUNREACH. Ideally |
| 549 | * it shouldn't matter if rtrequest can't figure out |
| 550 | * the interface if we're going to explicitly set it |
| 551 | * ourselves anyway. But practically we can't |
| 552 | * recover here because rtrequest will not do any of |
| 553 | * the work necessary to add the route if it can't |
| 554 | * find an interface. As long as there is a default |
| 555 | * route that leads to some interface, rtrequest will |
| 556 | * find an interface, so this problem should be |
| 557 | * rarely encountered. |
| 558 | * dwiggins@bbn.com |
| 559 | */ |
| 560 | rt_setif(saved_nrt, |
| 561 | info.rti_info[RTAX_IFP], info.rti_info[RTAX_IFA], |
| 562 | info.rti_info[RTAX_GATEWAY], ifscope); |
| 563 | (void)rt_setmetrics(rtm->rtm_inits, &rtm->rtm_rmx, saved_nrt); |
| 564 | saved_nrt->rt_rmx.rmx_locks &= ~(rtm->rtm_inits); |
| 565 | saved_nrt->rt_rmx.rmx_locks |= |
| 566 | (rtm->rtm_inits & rtm->rtm_rmx.rmx_locks); |
| 567 | saved_nrt->rt_genmask = info.rti_info[RTAX_GENMASK]; |
| 568 | RT_REMREF_LOCKED(saved_nrt); |
| 569 | RT_UNLOCK(saved_nrt); |
| 570 | } |
| 571 | break; |
| 572 | |
| 573 | case RTM_DELETE: |
| 574 | error = rtrequest_scoped_locked(RTM_DELETE, |
| 575 | info.rti_info[RTAX_DST], info.rti_info[RTAX_GATEWAY], |
| 576 | info.rti_info[RTAX_NETMASK], rtm->rtm_flags, &saved_nrt, |
| 577 | ifscope); |
| 578 | if (error == 0) { |
| 579 | rt = saved_nrt; |
| 580 | RT_LOCK(rt); |
| 581 | goto report; |
| 582 | } |
| 583 | break; |
| 584 | |
| 585 | case RTM_GET: |
| 586 | case RTM_CHANGE: |
| 587 | case RTM_LOCK: |
| 588 | rnh = rt_tables[info.rti_info[RTAX_DST]->sa_family]; |
| 589 | if (rnh == NULL) { |
| 590 | senderr(EAFNOSUPPORT); |
| 591 | } |
| 592 | /* |
| 593 | * Lookup the best match based on the key-mask pair; |
| 594 | * callee adds a reference and checks for root node. |
| 595 | */ |
| 596 | rt = rt_lookup(TRUE, info.rti_info[RTAX_DST], |
| 597 | info.rti_info[RTAX_NETMASK], rnh, ifscope); |
| 598 | if (rt == NULL) { |
| 599 | senderr(ESRCH); |
| 600 | } |
| 601 | RT_LOCK(rt); |
| 602 | |
| 603 | /* |
| 604 | * Holding rnh_lock here prevents the possibility of |
| 605 | * ifa from changing (e.g. in_ifinit), so it is safe |
| 606 | * to access its ifa_addr (down below) without locking. |
| 607 | */ |
| 608 | switch (rtm->rtm_type) { |
| 609 | case RTM_GET: { |
| 610 | kauth_cred_t cred __single; |
| 611 | kauth_cred_t* credp; |
| 612 | struct ifaddr *ifa2; |
| 613 | report: |
| 614 | cred = current_cached_proc_cred(PROC_NULL); |
| 615 | credp = &cred; |
| 616 | |
| 617 | ifa2 = NULL; |
| 618 | RT_LOCK_ASSERT_HELD(rt); |
| 619 | info.rti_info[RTAX_DST] = rt_key(rt); |
| 620 | dst_sa_family = info.rti_info[RTAX_DST]->sa_family; |
| 621 | info.rti_info[RTAX_GATEWAY] = rt->rt_gateway; |
| 622 | info.rti_info[RTAX_NETMASK] = rt_mask(rt); |
| 623 | info.rti_info[RTAX_GENMASK] = rt->rt_genmask; |
| 624 | if (rtm->rtm_addrs & (RTA_IFP | RTA_IFA)) { |
| 625 | ifp = rt->rt_ifp; |
| 626 | if (ifp != NULL) { |
| 627 | ifnet_lock_shared(ifp); |
| 628 | ifa2 = ifp->if_lladdr; |
| 629 | info.rti_info[RTAX_IFP] = |
| 630 | ifa2->ifa_addr; |
| 631 | ifa_addref(ifa: ifa2); |
| 632 | ifnet_lock_done(ifp); |
| 633 | info.rti_info[RTAX_IFA] = |
| 634 | rt->rt_ifa->ifa_addr; |
| 635 | rtm->rtm_index = ifp->if_index; |
| 636 | } else { |
| 637 | info.rti_info[RTAX_IFP] = NULL; |
| 638 | info.rti_info[RTAX_IFA] = NULL; |
| 639 | } |
| 640 | } else if ((ifp = rt->rt_ifp) != NULL) { |
| 641 | rtm->rtm_index = ifp->if_index; |
| 642 | } |
| 643 | if (ifa2 != NULL) { |
| 644 | IFA_LOCK(ifa2); |
| 645 | } |
| 646 | len = rt_msg2(rtm->rtm_type, &info, NULL, NULL, credp); |
| 647 | if (ifa2 != NULL) { |
| 648 | IFA_UNLOCK(ifa2); |
| 649 | } |
| 650 | struct rt_msghdr *out_rtm; |
| 651 | out_rtm = kalloc_data(len, Z_WAITOK); |
| 652 | if (out_rtm == NULL) { |
| 653 | RT_UNLOCK(rt); |
| 654 | if (ifa2 != NULL) { |
| 655 | ifa_remref(ifa: ifa2); |
| 656 | } |
| 657 | senderr(ENOBUFS); |
| 658 | } |
| 659 | Bcopy(rtm, out_rtm, sizeof(struct rt_msghdr)); |
| 660 | if (ifa2 != NULL) { |
| 661 | IFA_LOCK(ifa2); |
| 662 | } |
| 663 | (void) rt_msg2(out_rtm->rtm_type, &info, (caddr_t)out_rtm, |
| 664 | NULL, &cred); |
| 665 | if (ifa2 != NULL) { |
| 666 | IFA_UNLOCK(ifa2); |
| 667 | } |
| 668 | kfree_data(rtm, rtm_len); |
| 669 | rtm = out_rtm; |
| 670 | rtm_len = len; |
| 671 | rtm->rtm_flags = rt->rt_flags; |
| 672 | rt_getmetrics(rt, &rtm->rtm_rmx); |
| 673 | rtm->rtm_addrs = info.rti_addrs; |
| 674 | if (ifa2 != NULL) { |
| 675 | ifa_remref(ifa: ifa2); |
| 676 | } |
| 677 | |
| 678 | break; |
| 679 | } |
| 680 | |
| 681 | case RTM_CHANGE: |
| 682 | is_router = (rt->rt_flags & RTF_ROUTER) ? TRUE : FALSE; |
| 683 | |
| 684 | if (info.rti_info[RTAX_GATEWAY] != NULL && |
| 685 | (error = rt_setgate(rt, rt_key(rt), |
| 686 | info.rti_info[RTAX_GATEWAY]))) { |
| 687 | int tmp = error; |
| 688 | RT_UNLOCK(rt); |
| 689 | senderr(tmp); |
| 690 | } |
| 691 | /* |
| 692 | * If they tried to change things but didn't specify |
| 693 | * the required gateway, then just use the old one. |
| 694 | * This can happen if the user tries to change the |
| 695 | * flags on the default route without changing the |
| 696 | * default gateway. Changing flags still doesn't work. |
| 697 | */ |
| 698 | if ((rt->rt_flags & RTF_GATEWAY) && |
| 699 | info.rti_info[RTAX_GATEWAY] == NULL) { |
| 700 | info.rti_info[RTAX_GATEWAY] = rt->rt_gateway; |
| 701 | } |
| 702 | |
| 703 | /* |
| 704 | * On Darwin, we call rt_setif which contains the |
| 705 | * equivalent to the code found at this very spot |
| 706 | * in BSD. |
| 707 | */ |
| 708 | rt_setif(rt, |
| 709 | info.rti_info[RTAX_IFP], info.rti_info[RTAX_IFA], |
| 710 | info.rti_info[RTAX_GATEWAY], ifscope); |
| 711 | |
| 712 | if ((error = rt_setmetrics(rtm->rtm_inits, |
| 713 | &rtm->rtm_rmx, rt))) { |
| 714 | int tmp = error; |
| 715 | RT_UNLOCK(rt); |
| 716 | senderr(tmp); |
| 717 | } |
| 718 | if (info.rti_info[RTAX_GENMASK]) { |
| 719 | rt->rt_genmask = info.rti_info[RTAX_GENMASK]; |
| 720 | } |
| 721 | |
| 722 | /* |
| 723 | * Enqueue work item to invoke callback for this route entry |
| 724 | * This may not be needed always, but for now issue it anytime |
| 725 | * RTM_CHANGE gets called. |
| 726 | */ |
| 727 | route_event_enqueue_nwk_wq_entry(rt, NULL, ROUTE_ENTRY_REFRESH, NULL, TRUE); |
| 728 | /* |
| 729 | * If the route is for a router, walk the tree to send refresh |
| 730 | * event to protocol cloned entries |
| 731 | */ |
| 732 | if (is_router) { |
| 733 | struct route_event rt_ev; |
| 734 | route_event_init(p_route_ev: &rt_ev, rt, NULL, route_ev_code: ROUTE_ENTRY_REFRESH); |
| 735 | RT_UNLOCK(rt); |
| 736 | (void) rnh->rnh_walktree(rnh, route_event_walktree, (void *)&rt_ev); |
| 737 | RT_LOCK(rt); |
| 738 | } |
| 739 | OS_FALLTHROUGH; |
| 740 | case RTM_LOCK: |
| 741 | rt->rt_rmx.rmx_locks &= ~(rtm->rtm_inits); |
| 742 | rt->rt_rmx.rmx_locks |= |
| 743 | (rtm->rtm_inits & rtm->rtm_rmx.rmx_locks); |
| 744 | break; |
| 745 | } |
| 746 | RT_UNLOCK(rt); |
| 747 | break; |
| 748 | default: |
| 749 | senderr(EOPNOTSUPP); |
| 750 | } |
| 751 | flush: |
| 752 | if (rtm != NULL) { |
| 753 | if (error) { |
| 754 | rtm->rtm_errno = error; |
| 755 | } else { |
| 756 | rtm->rtm_flags |= RTF_DONE; |
| 757 | } |
| 758 | } |
| 759 | if (rt != NULL) { |
| 760 | RT_LOCK_ASSERT_NOTHELD(rt); |
| 761 | rtfree_locked(rt); |
| 762 | } |
| 763 | lck_mtx_unlock(rnh_lock); |
| 764 | |
| 765 | /* relock the socket now */ |
| 766 | socket_lock(so, refcount: 0); |
| 767 | /* |
| 768 | * Check to see if we don't want our own messages. |
| 769 | */ |
| 770 | if (!(so->so_options & SO_USELOOPBACK)) { |
| 771 | if (route_cb.any_count <= 1) { |
| 772 | kfree_data(rtm, rtm_len); |
| 773 | m_freem(m); |
| 774 | return error; |
| 775 | } |
| 776 | /* There is another listener, so construct message */ |
| 777 | rp = sotorawcb(so); |
| 778 | } |
| 779 | if (rtm != NULL) { |
| 780 | m_copyback(m, 0, rtm->rtm_msglen, (caddr_t)rtm); |
| 781 | if (m->m_pkthdr.len < rtm->rtm_msglen) { |
| 782 | m_freem(m); |
| 783 | m = NULL; |
| 784 | } else if (m->m_pkthdr.len > rtm->rtm_msglen) { |
| 785 | m_adj(m, rtm->rtm_msglen - m->m_pkthdr.len); |
| 786 | } |
| 787 | kfree_data(rtm, rtm_len); |
| 788 | } |
| 789 | if (sendonlytoself && m != NULL) { |
| 790 | error = 0; |
| 791 | if (sbappendaddr(sb: &so->so_rcv, asa: &route_src, m0: m, |
| 792 | NULL, error_out: &error) != 0) { |
| 793 | sorwakeup(so); |
| 794 | } |
| 795 | if (error) { |
| 796 | return error; |
| 797 | } |
| 798 | } else { |
| 799 | struct sockproto route_proto = { .sp_family = PF_ROUTE, .sp_protocol = 0 }; |
| 800 | if (rp != NULL) { |
| 801 | rp->rcb_proto.sp_family = 0; /* Avoid us */ |
| 802 | } |
| 803 | if (dst_sa_family != 0) { |
| 804 | route_proto.sp_protocol = dst_sa_family; |
| 805 | } |
| 806 | if (m != NULL) { |
| 807 | socket_unlock(so, refcount: 0); |
| 808 | raw_input(m, &route_proto, &route_src, &route_dst); |
| 809 | socket_lock(so, refcount: 0); |
| 810 | } |
| 811 | if (rp != NULL) { |
| 812 | rp->rcb_proto.sp_family = PF_ROUTE; |
| 813 | } |
| 814 | } |
| 815 | return error; |
| 816 | } |
| 817 | |
| 818 | void |
| 819 | rt_setexpire(struct rtentry *rt, uint64_t expiry) |
| 820 | { |
| 821 | /* set both rt_expire and rmx_expire */ |
| 822 | rt->rt_expire = expiry; |
| 823 | if (expiry) { |
| 824 | rt->rt_rmx.rmx_expire = |
| 825 | (int32_t)(expiry + rt->base_calendartime - |
| 826 | rt->base_uptime); |
| 827 | } else { |
| 828 | rt->rt_rmx.rmx_expire = 0; |
| 829 | } |
| 830 | } |
| 831 | |
| 832 | static int |
| 833 | rt_setmetrics(u_int32_t which, struct rt_metrics *in, struct rtentry *out) |
| 834 | { |
| 835 | if (!(which & RTV_REFRESH_HOST)) { |
| 836 | struct timeval caltime; |
| 837 | getmicrotime(&caltime); |
| 838 | #define metric(f, e) if (which & (f)) out->rt_rmx.e = in->e; |
| 839 | metric(RTV_RPIPE, rmx_recvpipe); |
| 840 | metric(RTV_SPIPE, rmx_sendpipe); |
| 841 | metric(RTV_SSTHRESH, rmx_ssthresh); |
| 842 | metric(RTV_RTT, rmx_rtt); |
| 843 | metric(RTV_RTTVAR, rmx_rttvar); |
| 844 | metric(RTV_HOPCOUNT, rmx_hopcount); |
| 845 | metric(RTV_MTU, rmx_mtu); |
| 846 | metric(RTV_EXPIRE, rmx_expire); |
| 847 | #undef metric |
| 848 | if (out->rt_rmx.rmx_expire > 0) { |
| 849 | /* account for system time change */ |
| 850 | getmicrotime(&caltime); |
| 851 | out->base_calendartime += |
| 852 | NET_CALCULATE_CLOCKSKEW(caltime, |
| 853 | out->base_calendartime, |
| 854 | net_uptime(), out->base_uptime); |
| 855 | rt_setexpire(rt: out, |
| 856 | expiry: out->rt_rmx.rmx_expire - |
| 857 | out->base_calendartime + |
| 858 | out->base_uptime); |
| 859 | } else { |
| 860 | rt_setexpire(rt: out, expiry: 0); |
| 861 | } |
| 862 | |
| 863 | VERIFY(out->rt_expire == 0 || out->rt_rmx.rmx_expire != 0); |
| 864 | VERIFY(out->rt_expire != 0 || out->rt_rmx.rmx_expire == 0); |
| 865 | } else { |
| 866 | /* Only RTV_REFRESH_HOST must be set */ |
| 867 | if ((which & ~RTV_REFRESH_HOST) || |
| 868 | (out->rt_flags & RTF_STATIC) || |
| 869 | !(out->rt_flags & RTF_LLINFO)) { |
| 870 | return EINVAL; |
| 871 | } |
| 872 | |
| 873 | if (out->rt_llinfo_refresh == NULL) { |
| 874 | return ENOTSUP; |
| 875 | } |
| 876 | |
| 877 | out->rt_llinfo_refresh(out); |
| 878 | } |
| 879 | return 0; |
| 880 | } |
| 881 | |
| 882 | static void |
| 883 | rt_getmetrics(struct rtentry *in, struct rt_metrics *out) |
| 884 | { |
| 885 | struct timeval caltime; |
| 886 | |
| 887 | VERIFY(in->rt_expire == 0 || in->rt_rmx.rmx_expire != 0); |
| 888 | VERIFY(in->rt_expire != 0 || in->rt_rmx.rmx_expire == 0); |
| 889 | |
| 890 | *out = in->rt_rmx; |
| 891 | |
| 892 | if (in->rt_expire != 0) { |
| 893 | /* account for system time change */ |
| 894 | getmicrotime(&caltime); |
| 895 | |
| 896 | in->base_calendartime += |
| 897 | NET_CALCULATE_CLOCKSKEW(caltime, |
| 898 | in->base_calendartime, net_uptime(), in->base_uptime); |
| 899 | |
| 900 | out->rmx_expire = (int32_t)(in->base_calendartime + |
| 901 | in->rt_expire - in->base_uptime); |
| 902 | } else { |
| 903 | out->rmx_expire = 0; |
| 904 | } |
| 905 | } |
| 906 | |
| 907 | /* |
| 908 | * Set route's interface given info.rti_info[RTAX_IFP], |
| 909 | * info.rti_info[RTAX_IFA], and gateway. |
| 910 | */ |
| 911 | static void |
| 912 | rt_setif(struct rtentry *rt, struct sockaddr *Ifpaddr, struct sockaddr *Ifaaddr, |
| 913 | struct sockaddr *Gate, unsigned int ifscope) |
| 914 | { |
| 915 | struct ifaddr *ifa = NULL; |
| 916 | struct ifnet *ifp = NULL; |
| 917 | void (*ifa_rtrequest)(int, struct rtentry *, struct sockaddr *); |
| 918 | |
| 919 | LCK_MTX_ASSERT(rnh_lock, LCK_MTX_ASSERT_OWNED); |
| 920 | |
| 921 | RT_LOCK_ASSERT_HELD(rt); |
| 922 | |
| 923 | /* Don't update a defunct route */ |
| 924 | if (rt->rt_flags & RTF_CONDEMNED) { |
| 925 | return; |
| 926 | } |
| 927 | |
| 928 | /* Add an extra ref for ourselves */ |
| 929 | RT_ADDREF_LOCKED(rt); |
| 930 | |
| 931 | /* Become a regular mutex, just in case */ |
| 932 | RT_CONVERT_LOCK(rt); |
| 933 | |
| 934 | /* |
| 935 | * New gateway could require new ifaddr, ifp; flags may also |
| 936 | * be different; ifp may be specified by ll sockaddr when |
| 937 | * protocol address is ambiguous. |
| 938 | */ |
| 939 | if (Ifpaddr && (ifa = ifa_ifwithnet_scoped(Ifpaddr, ifscope)) && |
| 940 | (ifp = ifa->ifa_ifp) && (Ifaaddr || Gate)) { |
| 941 | ifa_remref(ifa); |
| 942 | ifa = ifaof_ifpforaddr(Ifaaddr ? Ifaaddr : Gate, ifp); |
| 943 | } else { |
| 944 | if (ifa != NULL) { |
| 945 | ifa_remref(ifa); |
| 946 | ifa = NULL; |
| 947 | } |
| 948 | if (Ifpaddr && (ifp = if_withname(Ifpaddr))) { |
| 949 | if (Gate) { |
| 950 | ifa = ifaof_ifpforaddr(Gate, ifp); |
| 951 | } else { |
| 952 | ifnet_lock_shared(ifp); |
| 953 | ifa = TAILQ_FIRST(&ifp->if_addrhead); |
| 954 | if (ifa != NULL) { |
| 955 | ifa_addref(ifa); |
| 956 | } |
| 957 | ifnet_lock_done(ifp); |
| 958 | } |
| 959 | } else if (Ifaaddr && |
| 960 | (ifa = ifa_ifwithaddr_scoped(Ifaaddr, ifscope))) { |
| 961 | ifp = ifa->ifa_ifp; |
| 962 | } else if (Gate != NULL) { |
| 963 | /* |
| 964 | * Safe to drop rt_lock and use rt_key, since holding |
| 965 | * rnh_lock here prevents another thread from calling |
| 966 | * rt_setgate() on this route. We cannot hold the |
| 967 | * lock across ifa_ifwithroute since the lookup done |
| 968 | * by that routine may point to the same route. |
| 969 | */ |
| 970 | RT_UNLOCK(rt); |
| 971 | if ((ifa = ifa_ifwithroute_scoped_locked(rt->rt_flags, |
| 972 | rt_key(rt), Gate, ifscope)) != NULL) { |
| 973 | ifp = ifa->ifa_ifp; |
| 974 | } |
| 975 | RT_LOCK(rt); |
| 976 | /* Don't update a defunct route */ |
| 977 | if (rt->rt_flags & RTF_CONDEMNED) { |
| 978 | if (ifa != NULL) { |
| 979 | ifa_remref(ifa); |
| 980 | } |
| 981 | /* Release extra ref */ |
| 982 | RT_REMREF_LOCKED(rt); |
| 983 | return; |
| 984 | } |
| 985 | } |
| 986 | } |
| 987 | |
| 988 | /* trigger route cache reevaluation */ |
| 989 | if (rt_key(rt)->sa_family == AF_INET) { |
| 990 | routegenid_inet_update(); |
| 991 | } else if (rt_key(rt)->sa_family == AF_INET6) { |
| 992 | routegenid_inet6_update(); |
| 993 | } |
| 994 | |
| 995 | if (ifa != NULL) { |
| 996 | struct ifaddr *oifa = rt->rt_ifa; |
| 997 | if (oifa != ifa) { |
| 998 | if (oifa != NULL) { |
| 999 | IFA_LOCK_SPIN(oifa); |
| 1000 | ifa_rtrequest = oifa->ifa_rtrequest; |
| 1001 | IFA_UNLOCK(oifa); |
| 1002 | if (ifa_rtrequest != NULL) { |
| 1003 | ifa_rtrequest(RTM_DELETE, rt, Gate); |
| 1004 | } |
| 1005 | } |
| 1006 | rtsetifa(rt, ifa); |
| 1007 | |
| 1008 | if (rt->rt_ifp != ifp) { |
| 1009 | /* |
| 1010 | * Purge any link-layer info caching. |
| 1011 | */ |
| 1012 | if (rt->rt_llinfo_purge != NULL) { |
| 1013 | rt->rt_llinfo_purge(rt); |
| 1014 | } |
| 1015 | |
| 1016 | /* |
| 1017 | * Adjust route ref count for the interfaces. |
| 1018 | */ |
| 1019 | if (rt->rt_if_ref_fn != NULL) { |
| 1020 | rt->rt_if_ref_fn(ifp, 1); |
| 1021 | rt->rt_if_ref_fn(rt->rt_ifp, -1); |
| 1022 | } |
| 1023 | } |
| 1024 | rt->rt_ifp = ifp; |
| 1025 | /* |
| 1026 | * If this is the (non-scoped) default route, record |
| 1027 | * the interface index used for the primary ifscope. |
| 1028 | */ |
| 1029 | if (rt_primary_default(rt, rt_key(rt))) { |
| 1030 | set_primary_ifscope(rt_key(rt)->sa_family, |
| 1031 | rt->rt_ifp->if_index); |
| 1032 | } |
| 1033 | /* |
| 1034 | * If rmx_mtu is not locked, update it |
| 1035 | * to the MTU used by the new interface. |
| 1036 | */ |
| 1037 | if (!(rt->rt_rmx.rmx_locks & RTV_MTU)) { |
| 1038 | rt->rt_rmx.rmx_mtu = rt->rt_ifp->if_mtu; |
| 1039 | if (rt_key(rt)->sa_family == AF_INET && |
| 1040 | INTF_ADJUST_MTU_FOR_CLAT46(ifp)) { |
| 1041 | rt->rt_rmx.rmx_mtu = IN6_LINKMTU(rt->rt_ifp); |
| 1042 | /* Further adjust the size for CLAT46 expansion */ |
| 1043 | rt->rt_rmx.rmx_mtu -= CLAT46_HDR_EXPANSION_OVERHD; |
| 1044 | } |
| 1045 | } |
| 1046 | |
| 1047 | if (rt->rt_ifa != NULL) { |
| 1048 | IFA_LOCK_SPIN(rt->rt_ifa); |
| 1049 | ifa_rtrequest = rt->rt_ifa->ifa_rtrequest; |
| 1050 | IFA_UNLOCK(rt->rt_ifa); |
| 1051 | if (ifa_rtrequest != NULL) { |
| 1052 | ifa_rtrequest(RTM_ADD, rt, Gate); |
| 1053 | } |
| 1054 | } |
| 1055 | ifa_remref(ifa); |
| 1056 | /* Release extra ref */ |
| 1057 | RT_REMREF_LOCKED(rt); |
| 1058 | return; |
| 1059 | } |
| 1060 | ifa_remref(ifa); |
| 1061 | ifa = NULL; |
| 1062 | } |
| 1063 | |
| 1064 | /* XXX: to reset gateway to correct value, at RTM_CHANGE */ |
| 1065 | if (rt->rt_ifa != NULL) { |
| 1066 | IFA_LOCK_SPIN(rt->rt_ifa); |
| 1067 | ifa_rtrequest = rt->rt_ifa->ifa_rtrequest; |
| 1068 | IFA_UNLOCK(rt->rt_ifa); |
| 1069 | if (ifa_rtrequest != NULL) { |
| 1070 | ifa_rtrequest(RTM_ADD, rt, Gate); |
| 1071 | } |
| 1072 | } |
| 1073 | |
| 1074 | /* |
| 1075 | * Workaround for local address routes pointing to the loopback |
| 1076 | * interface added by configd, until <rdar://problem/12970142>. |
| 1077 | */ |
| 1078 | if ((rt->rt_ifp->if_flags & IFF_LOOPBACK) && |
| 1079 | (rt->rt_flags & RTF_HOST) && rt->rt_ifa->ifa_ifp == rt->rt_ifp) { |
| 1080 | ifa = ifa_ifwithaddr(rt_key(rt)); |
| 1081 | if (ifa != NULL) { |
| 1082 | if (ifa != rt->rt_ifa) { |
| 1083 | rtsetifa(rt, ifa); |
| 1084 | } |
| 1085 | ifa_remref(ifa); |
| 1086 | } |
| 1087 | } |
| 1088 | |
| 1089 | /* Release extra ref */ |
| 1090 | RT_REMREF_LOCKED(rt); |
| 1091 | } |
| 1092 | |
| 1093 | /* |
| 1094 | * Extract the addresses of the passed sockaddrs. |
| 1095 | * Do a little sanity checking so as to avoid bad memory references. |
| 1096 | * This data is derived straight from userland. |
| 1097 | */ |
| 1098 | static int |
| 1099 | rt_xaddrs(caddr_t cp __ended_by(cplim), caddr_t cplim, struct rt_addrinfo *rtinfo) |
| 1100 | { |
| 1101 | struct sockaddr *sa; |
| 1102 | int i; |
| 1103 | |
| 1104 | bzero(s: rtinfo->rti_info, n: sizeof(rtinfo->rti_info)); |
| 1105 | for (i = 0; (i < RTAX_MAX) && (cp < cplim); i++) { |
| 1106 | if ((rtinfo->rti_addrs & (1 << i)) == 0) { |
| 1107 | continue; |
| 1108 | } |
| 1109 | sa = SA(cp); |
| 1110 | /* |
| 1111 | * It won't fit. |
| 1112 | */ |
| 1113 | if ((cp + sa->sa_len) > cplim) { |
| 1114 | return EINVAL; |
| 1115 | } |
| 1116 | if (sa->sa_len > sizeof(struct sockaddr_storage)) { |
| 1117 | return EINVAL; |
| 1118 | } |
| 1119 | /* |
| 1120 | * there are no more.. quit now |
| 1121 | * If there are more bits, they are in error. |
| 1122 | * I've seen this. route(1) can evidently generate these. |
| 1123 | * This causes kernel to core dump. |
| 1124 | * for compatibility, If we see this, point to a safe address. |
| 1125 | */ |
| 1126 | if (sa->sa_len == 0) { |
| 1127 | rtinfo->rti_info[i] = &sa_zero; |
| 1128 | return 0; /* should be EINVAL but for compat */ |
| 1129 | } |
| 1130 | if (sa->sa_len < offsetof(struct sockaddr, sa_data)) { |
| 1131 | return EINVAL; |
| 1132 | } |
| 1133 | /* accept it */ |
| 1134 | rtinfo->rti_info[i] = sa; |
| 1135 | ADVANCE32(cp, sa, cplim); |
| 1136 | } |
| 1137 | return 0; |
| 1138 | } |
| 1139 | |
| 1140 | static struct mbuf * |
| 1141 | rt_msg1(u_char type, struct rt_addrinfo *rtinfo) |
| 1142 | { |
| 1143 | struct rt_msghdr *rtm; |
| 1144 | struct mbuf *m; |
| 1145 | int i; |
| 1146 | int len, dlen, off; |
| 1147 | |
| 1148 | switch (type) { |
| 1149 | case RTM_DELADDR: |
| 1150 | case RTM_NEWADDR: |
| 1151 | len = sizeof(struct ifa_msghdr); |
| 1152 | break; |
| 1153 | |
| 1154 | case RTM_DELMADDR: |
| 1155 | case RTM_NEWMADDR: |
| 1156 | len = sizeof(struct ifma_msghdr); |
| 1157 | break; |
| 1158 | |
| 1159 | case RTM_IFINFO: |
| 1160 | len = sizeof(struct if_msghdr); |
| 1161 | break; |
| 1162 | |
| 1163 | default: |
| 1164 | len = sizeof(struct rt_msghdr); |
| 1165 | } |
| 1166 | m = m_gethdr(M_DONTWAIT, MT_DATA); |
| 1167 | if (m && len > MHLEN) { |
| 1168 | MCLGET(m, M_DONTWAIT); |
| 1169 | if (!(m->m_flags & M_EXT)) { |
| 1170 | m_free(m); |
| 1171 | m = NULL; |
| 1172 | } |
| 1173 | } |
| 1174 | if (m == NULL) { |
| 1175 | return NULL; |
| 1176 | } |
| 1177 | m->m_pkthdr.len = m->m_len = len; |
| 1178 | m->m_pkthdr.rcvif = NULL; |
| 1179 | rtm = mtod(m, struct rt_msghdr *); |
| 1180 | bzero(s: (caddr_t)rtm, n: len); |
| 1181 | off = len; |
| 1182 | for (i = 0; i < RTAX_MAX; i++) { |
| 1183 | struct sockaddr *sa, *hint; |
| 1184 | uint8_t ssbuf[SOCK_MAXADDRLEN + 1]; |
| 1185 | |
| 1186 | /* |
| 1187 | * Make sure to accomodate the largest possible size of sa_len. |
| 1188 | */ |
| 1189 | _CASSERT(sizeof(ssbuf) == (SOCK_MAXADDRLEN + 1)); |
| 1190 | |
| 1191 | if ((sa = rtinfo->rti_info[i]) == NULL) { |
| 1192 | continue; |
| 1193 | } |
| 1194 | |
| 1195 | switch (i) { |
| 1196 | case RTAX_DST: |
| 1197 | case RTAX_NETMASK: |
| 1198 | if ((hint = rtinfo->rti_info[RTAX_DST]) == NULL) { |
| 1199 | hint = rtinfo->rti_info[RTAX_IFA]; |
| 1200 | } |
| 1201 | |
| 1202 | /* Scrub away any trace of embedded interface scope */ |
| 1203 | sa = rtm_scrub(type, i, hint, sa, buf: &ssbuf, |
| 1204 | buflen: sizeof(ssbuf), NULL); |
| 1205 | break; |
| 1206 | |
| 1207 | default: |
| 1208 | break; |
| 1209 | } |
| 1210 | |
| 1211 | rtinfo->rti_addrs |= (1 << i); |
| 1212 | dlen = sa->sa_len; |
| 1213 | m_copyback(m, off, dlen, (caddr_t)sa); |
| 1214 | len = off + dlen; |
| 1215 | off += ROUNDUP32(dlen); |
| 1216 | } |
| 1217 | if (m->m_pkthdr.len != len) { |
| 1218 | m_freem(m); |
| 1219 | return NULL; |
| 1220 | } |
| 1221 | rtm->rtm_msglen = (u_short)len; |
| 1222 | rtm->rtm_version = RTM_VERSION; |
| 1223 | rtm->rtm_type = type; |
| 1224 | return m; |
| 1225 | } |
| 1226 | |
| 1227 | static int |
| 1228 | rt_msg2(u_char type, struct rt_addrinfo *rtinfo, caddr_t cp, struct walkarg *w, |
| 1229 | kauth_cred_t* credp) |
| 1230 | { |
| 1231 | int i; |
| 1232 | int len, dlen, rlen, second_time = 0; |
| 1233 | caddr_t cp0; |
| 1234 | |
| 1235 | rtinfo->rti_addrs = 0; |
| 1236 | again: |
| 1237 | switch (type) { |
| 1238 | case RTM_DELADDR: |
| 1239 | case RTM_NEWADDR: |
| 1240 | len = sizeof(struct ifa_msghdr); |
| 1241 | break; |
| 1242 | |
| 1243 | case RTM_DELMADDR: |
| 1244 | case RTM_NEWMADDR: |
| 1245 | len = sizeof(struct ifma_msghdr); |
| 1246 | break; |
| 1247 | |
| 1248 | case RTM_IFINFO: |
| 1249 | len = sizeof(struct if_msghdr); |
| 1250 | break; |
| 1251 | |
| 1252 | case RTM_IFINFO2: |
| 1253 | len = sizeof(struct if_msghdr2); |
| 1254 | break; |
| 1255 | |
| 1256 | case RTM_NEWMADDR2: |
| 1257 | len = sizeof(struct ifma_msghdr2); |
| 1258 | break; |
| 1259 | |
| 1260 | case RTM_GET_EXT: |
| 1261 | len = sizeof(struct rt_msghdr_ext); |
| 1262 | break; |
| 1263 | |
| 1264 | case RTM_GET2: |
| 1265 | len = sizeof(struct rt_msghdr2); |
| 1266 | break; |
| 1267 | |
| 1268 | default: |
| 1269 | len = sizeof(struct rt_msghdr); |
| 1270 | } |
| 1271 | cp0 = cp; |
| 1272 | if (cp0) { |
| 1273 | cp += len; |
| 1274 | } |
| 1275 | for (i = 0; i < RTAX_MAX; i++) { |
| 1276 | struct sockaddr *sa, *hint; |
| 1277 | uint8_t ssbuf[SOCK_MAXADDRLEN + 1]; |
| 1278 | |
| 1279 | /* |
| 1280 | * Make sure to accomodate the largest possible size of sa_len. |
| 1281 | */ |
| 1282 | _CASSERT(sizeof(ssbuf) == (SOCK_MAXADDRLEN + 1)); |
| 1283 | |
| 1284 | if ((sa = rtinfo->rti_info[i]) == NULL) { |
| 1285 | continue; |
| 1286 | } |
| 1287 | |
| 1288 | switch (i) { |
| 1289 | case RTAX_DST: |
| 1290 | case RTAX_NETMASK: |
| 1291 | if ((hint = rtinfo->rti_info[RTAX_DST]) == NULL) { |
| 1292 | hint = rtinfo->rti_info[RTAX_IFA]; |
| 1293 | } |
| 1294 | |
| 1295 | /* Scrub away any trace of embedded interface scope */ |
| 1296 | sa = rtm_scrub(type, i, hint, sa, buf: &ssbuf, |
| 1297 | buflen: sizeof(ssbuf), NULL); |
| 1298 | break; |
| 1299 | case RTAX_GATEWAY: |
| 1300 | case RTAX_IFP: |
| 1301 | sa = rtm_scrub(type, i, NULL, sa, buf: &ssbuf, |
| 1302 | buflen: sizeof(ssbuf), credp); |
| 1303 | break; |
| 1304 | |
| 1305 | default: |
| 1306 | break; |
| 1307 | } |
| 1308 | |
| 1309 | rtinfo->rti_addrs |= (1 << i); |
| 1310 | dlen = sa->sa_len; |
| 1311 | rlen = ROUNDUP32(dlen); |
| 1312 | if (cp) { |
| 1313 | bcopy(src: (caddr_t)sa, dst: cp, n: (size_t)dlen); |
| 1314 | if (dlen != rlen) { |
| 1315 | bzero(s: cp + dlen, n: rlen - dlen); |
| 1316 | } |
| 1317 | cp += rlen; |
| 1318 | } |
| 1319 | len += rlen; |
| 1320 | } |
| 1321 | if (cp == NULL && w != NULL && !second_time) { |
| 1322 | struct walkarg *rw = w; |
| 1323 | |
| 1324 | if (rw->w_req != NULL) { |
| 1325 | if (rw->w_tmemsize < len) { |
| 1326 | if (rw->w_tmem != NULL) { |
| 1327 | kfree_data(rw->w_tmem, rw->w_tmemsize); |
| 1328 | } |
| 1329 | rw->w_tmem = (caddr_t) kalloc_data(len, Z_ZERO | Z_WAITOK); |
| 1330 | if (rw->w_tmem != NULL) { |
| 1331 | rw->w_tmemsize = len; |
| 1332 | } |
| 1333 | } |
| 1334 | if (rw->w_tmem != NULL) { |
| 1335 | cp = rw->w_tmem; |
| 1336 | second_time = 1; |
| 1337 | goto again; |
| 1338 | } |
| 1339 | } |
| 1340 | } |
| 1341 | if (cp) { |
| 1342 | struct rt_msghdr *rtm = (struct rt_msghdr *)(void *)cp0; |
| 1343 | |
| 1344 | rtm->rtm_version = RTM_VERSION; |
| 1345 | rtm->rtm_type = type; |
| 1346 | rtm->rtm_msglen = (u_short)len; |
| 1347 | } |
| 1348 | return len; |
| 1349 | } |
| 1350 | |
| 1351 | /* |
| 1352 | * This routine is called to generate a message from the routing |
| 1353 | * socket indicating that a redirect has occurred, a routing lookup |
| 1354 | * has failed, or that a protocol has detected timeouts to a particular |
| 1355 | * destination. |
| 1356 | */ |
| 1357 | void |
| 1358 | rt_missmsg(u_char type, struct rt_addrinfo *rtinfo, int flags, int error) |
| 1359 | { |
| 1360 | struct rt_msghdr *rtm; |
| 1361 | struct mbuf *m; |
| 1362 | struct sockaddr *sa = rtinfo->rti_info[RTAX_DST]; |
| 1363 | struct sockproto route_proto = { .sp_family = PF_ROUTE, .sp_protocol = 0 }; |
| 1364 | |
| 1365 | if (route_cb.any_count == 0) { |
| 1366 | return; |
| 1367 | } |
| 1368 | m = rt_msg1(type, rtinfo); |
| 1369 | if (m == NULL) { |
| 1370 | return; |
| 1371 | } |
| 1372 | rtm = mtod(m, struct rt_msghdr *); |
| 1373 | rtm->rtm_flags = RTF_DONE | flags; |
| 1374 | rtm->rtm_errno = error; |
| 1375 | rtm->rtm_addrs = rtinfo->rti_addrs; |
| 1376 | route_proto.sp_family = sa ? sa->sa_family : 0; |
| 1377 | raw_input(m, &route_proto, &route_src, &route_dst); |
| 1378 | } |
| 1379 | |
| 1380 | /* |
| 1381 | * This routine is called to generate a message from the routing |
| 1382 | * socket indicating that the status of a network interface has changed. |
| 1383 | */ |
| 1384 | void |
| 1385 | rt_ifmsg(struct ifnet *ifp) |
| 1386 | { |
| 1387 | struct if_msghdr *ifm; |
| 1388 | struct mbuf *m; |
| 1389 | struct rt_addrinfo info; |
| 1390 | struct sockproto route_proto = { .sp_family = PF_ROUTE, .sp_protocol = 0 }; |
| 1391 | |
| 1392 | if (route_cb.any_count == 0) { |
| 1393 | return; |
| 1394 | } |
| 1395 | bzero(s: (caddr_t)&info, n: sizeof(info)); |
| 1396 | m = rt_msg1(RTM_IFINFO, rtinfo: &info); |
| 1397 | if (m == NULL) { |
| 1398 | return; |
| 1399 | } |
| 1400 | ifm = mtod(m, struct if_msghdr *); |
| 1401 | ifm->ifm_index = ifp->if_index; |
| 1402 | ifm->ifm_flags = (u_short)ifp->if_flags; |
| 1403 | if_data_internal_to_if_data(ifp, if_data_int: &ifp->if_data, if_data: &ifm->ifm_data); |
| 1404 | ifm->ifm_addrs = 0; |
| 1405 | raw_input(m, &route_proto, &route_src, &route_dst); |
| 1406 | } |
| 1407 | |
| 1408 | /* |
| 1409 | * This is called to generate messages from the routing socket |
| 1410 | * indicating a network interface has had addresses associated with it. |
| 1411 | * if we ever reverse the logic and replace messages TO the routing |
| 1412 | * socket indicate a request to configure interfaces, then it will |
| 1413 | * be unnecessary as the routing socket will automatically generate |
| 1414 | * copies of it. |
| 1415 | * |
| 1416 | * Since this is coming from the interface, it is expected that the |
| 1417 | * interface will be locked. Caller must hold rnh_lock and rt_lock. |
| 1418 | */ |
| 1419 | void |
| 1420 | rt_newaddrmsg(u_char cmd, struct ifaddr *ifa, int error, struct rtentry *rt) |
| 1421 | { |
| 1422 | struct rt_addrinfo info; |
| 1423 | struct sockaddr *sa = 0; |
| 1424 | int pass; |
| 1425 | struct mbuf *m = 0; |
| 1426 | struct ifnet *ifp = ifa->ifa_ifp; |
| 1427 | struct sockproto route_proto = { .sp_family = PF_ROUTE, .sp_protocol = 0 }; |
| 1428 | |
| 1429 | LCK_MTX_ASSERT(rnh_lock, LCK_MTX_ASSERT_OWNED); |
| 1430 | RT_LOCK_ASSERT_HELD(rt); |
| 1431 | |
| 1432 | if (route_cb.any_count == 0) { |
| 1433 | return; |
| 1434 | } |
| 1435 | |
| 1436 | /* Become a regular mutex, just in case */ |
| 1437 | RT_CONVERT_LOCK(rt); |
| 1438 | for (pass = 1; pass < 3; pass++) { |
| 1439 | bzero(s: (caddr_t)&info, n: sizeof(info)); |
| 1440 | if ((cmd == RTM_ADD && pass == 1) || |
| 1441 | (cmd == RTM_DELETE && pass == 2)) { |
| 1442 | struct ifa_msghdr *ifam; |
| 1443 | u_char ncmd = cmd == RTM_ADD ? RTM_NEWADDR : RTM_DELADDR; |
| 1444 | |
| 1445 | /* Lock ifp for if_lladdr */ |
| 1446 | ifnet_lock_shared(ifp); |
| 1447 | IFA_LOCK(ifa); |
| 1448 | info.rti_info[RTAX_IFA] = sa = ifa->ifa_addr; |
| 1449 | /* |
| 1450 | * Holding ifnet lock here prevents the link address |
| 1451 | * from changing contents, so no need to hold its |
| 1452 | * lock. The link address is always present; it's |
| 1453 | * never freed. |
| 1454 | */ |
| 1455 | info.rti_info[RTAX_IFP] = ifp->if_lladdr->ifa_addr; |
| 1456 | info.rti_info[RTAX_NETMASK] = ifa->ifa_netmask; |
| 1457 | info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr; |
| 1458 | if ((m = rt_msg1(type: ncmd, rtinfo: &info)) == NULL) { |
| 1459 | IFA_UNLOCK(ifa); |
| 1460 | ifnet_lock_done(ifp); |
| 1461 | continue; |
| 1462 | } |
| 1463 | IFA_UNLOCK(ifa); |
| 1464 | ifnet_lock_done(ifp); |
| 1465 | ifam = mtod(m, struct ifa_msghdr *); |
| 1466 | ifam->ifam_index = ifp->if_index; |
| 1467 | IFA_LOCK_SPIN(ifa); |
| 1468 | ifam->ifam_metric = ifa->ifa_metric; |
| 1469 | ifam->ifam_flags = ifa->ifa_flags; |
| 1470 | IFA_UNLOCK(ifa); |
| 1471 | ifam->ifam_addrs = info.rti_addrs; |
| 1472 | } |
| 1473 | if ((cmd == RTM_ADD && pass == 2) || |
| 1474 | (cmd == RTM_DELETE && pass == 1)) { |
| 1475 | struct rt_msghdr *rtm; |
| 1476 | |
| 1477 | if (rt == NULL) { |
| 1478 | continue; |
| 1479 | } |
| 1480 | info.rti_info[RTAX_NETMASK] = rt_mask(rt); |
| 1481 | info.rti_info[RTAX_DST] = sa = rt_key(rt); |
| 1482 | info.rti_info[RTAX_GATEWAY] = rt->rt_gateway; |
| 1483 | if ((m = rt_msg1(type: cmd, rtinfo: &info)) == NULL) { |
| 1484 | continue; |
| 1485 | } |
| 1486 | rtm = mtod(m, struct rt_msghdr *); |
| 1487 | rtm->rtm_index = ifp->if_index; |
| 1488 | rtm->rtm_flags |= rt->rt_flags; |
| 1489 | rtm->rtm_errno = error; |
| 1490 | rtm->rtm_addrs = info.rti_addrs; |
| 1491 | } |
| 1492 | route_proto.sp_protocol = sa ? sa->sa_family : 0; |
| 1493 | raw_input(m, &route_proto, &route_src, &route_dst); |
| 1494 | } |
| 1495 | } |
| 1496 | |
| 1497 | /* |
| 1498 | * This is the analogue to the rt_newaddrmsg which performs the same |
| 1499 | * function but for multicast group memberhips. This is easier since |
| 1500 | * there is no route state to worry about. |
| 1501 | */ |
| 1502 | void |
| 1503 | rt_newmaddrmsg(u_char cmd, struct ifmultiaddr *ifma) |
| 1504 | { |
| 1505 | struct rt_addrinfo info; |
| 1506 | struct mbuf *m = 0; |
| 1507 | struct ifnet *ifp = ifma->ifma_ifp; |
| 1508 | struct ifma_msghdr *ifmam; |
| 1509 | struct sockproto route_proto = { .sp_family = PF_ROUTE, .sp_protocol = 0 }; |
| 1510 | |
| 1511 | if (route_cb.any_count == 0) { |
| 1512 | return; |
| 1513 | } |
| 1514 | |
| 1515 | /* Lock ifp for if_lladdr */ |
| 1516 | ifnet_lock_shared(ifp); |
| 1517 | bzero(s: (caddr_t)&info, n: sizeof(info)); |
| 1518 | IFMA_LOCK(ifma); |
| 1519 | info.rti_info[RTAX_IFA] = ifma->ifma_addr; |
| 1520 | /* lladdr doesn't need lock */ |
| 1521 | info.rti_info[RTAX_IFP] = ifp->if_lladdr->ifa_addr; |
| 1522 | |
| 1523 | /* |
| 1524 | * If a link-layer address is present, present it as a ``gateway'' |
| 1525 | * (similarly to how ARP entries, e.g., are presented). |
| 1526 | */ |
| 1527 | info.rti_info[RTAX_GATEWAY] = (ifma->ifma_ll != NULL) ? |
| 1528 | ifma->ifma_ll->ifma_addr : NULL; |
| 1529 | if ((m = rt_msg1(type: cmd, rtinfo: &info)) == NULL) { |
| 1530 | IFMA_UNLOCK(ifma); |
| 1531 | ifnet_lock_done(ifp); |
| 1532 | return; |
| 1533 | } |
| 1534 | ifmam = mtod(m, struct ifma_msghdr *); |
| 1535 | ifmam->ifmam_index = ifp->if_index; |
| 1536 | ifmam->ifmam_addrs = info.rti_addrs; |
| 1537 | route_proto.sp_protocol = ifma->ifma_addr->sa_family; |
| 1538 | IFMA_UNLOCK(ifma); |
| 1539 | ifnet_lock_done(ifp); |
| 1540 | raw_input(m, &route_proto, &route_src, &route_dst); |
| 1541 | } |
| 1542 | |
| 1543 | const char * |
| 1544 | rtm2str(int cmd) |
| 1545 | { |
| 1546 | const char *c = "RTM_?" ; |
| 1547 | |
| 1548 | switch (cmd) { |
| 1549 | case RTM_ADD: |
| 1550 | c = "RTM_ADD" ; |
| 1551 | break; |
| 1552 | case RTM_DELETE: |
| 1553 | c = "RTM_DELETE" ; |
| 1554 | break; |
| 1555 | case RTM_CHANGE: |
| 1556 | c = "RTM_CHANGE" ; |
| 1557 | break; |
| 1558 | case RTM_GET: |
| 1559 | c = "RTM_GET" ; |
| 1560 | break; |
| 1561 | case RTM_LOSING: |
| 1562 | c = "RTM_LOSING" ; |
| 1563 | break; |
| 1564 | case RTM_REDIRECT: |
| 1565 | c = "RTM_REDIRECT" ; |
| 1566 | break; |
| 1567 | case RTM_MISS: |
| 1568 | c = "RTM_MISS" ; |
| 1569 | break; |
| 1570 | case RTM_LOCK: |
| 1571 | c = "RTM_LOCK" ; |
| 1572 | break; |
| 1573 | case RTM_OLDADD: |
| 1574 | c = "RTM_OLDADD" ; |
| 1575 | break; |
| 1576 | case RTM_OLDDEL: |
| 1577 | c = "RTM_OLDDEL" ; |
| 1578 | break; |
| 1579 | case RTM_RESOLVE: |
| 1580 | c = "RTM_RESOLVE" ; |
| 1581 | break; |
| 1582 | case RTM_NEWADDR: |
| 1583 | c = "RTM_NEWADDR" ; |
| 1584 | break; |
| 1585 | case RTM_DELADDR: |
| 1586 | c = "RTM_DELADDR" ; |
| 1587 | break; |
| 1588 | case RTM_IFINFO: |
| 1589 | c = "RTM_IFINFO" ; |
| 1590 | break; |
| 1591 | case RTM_NEWMADDR: |
| 1592 | c = "RTM_NEWMADDR" ; |
| 1593 | break; |
| 1594 | case RTM_DELMADDR: |
| 1595 | c = "RTM_DELMADDR" ; |
| 1596 | break; |
| 1597 | case RTM_GET_SILENT: |
| 1598 | c = "RTM_GET_SILENT" ; |
| 1599 | break; |
| 1600 | case RTM_IFINFO2: |
| 1601 | c = "RTM_IFINFO2" ; |
| 1602 | break; |
| 1603 | case RTM_NEWMADDR2: |
| 1604 | c = "RTM_NEWMADDR2" ; |
| 1605 | break; |
| 1606 | case RTM_GET2: |
| 1607 | c = "RTM_GET2" ; |
| 1608 | break; |
| 1609 | case RTM_GET_EXT: |
| 1610 | c = "RTM_GET_EXT" ; |
| 1611 | break; |
| 1612 | } |
| 1613 | |
| 1614 | return c; |
| 1615 | } |
| 1616 | |
| 1617 | /* |
| 1618 | * This is used in dumping the kernel table via sysctl(). |
| 1619 | */ |
| 1620 | static int |
| 1621 | sysctl_dumpentry(struct radix_node *rn, void *vw) |
| 1622 | { |
| 1623 | struct walkarg *w = vw; |
| 1624 | rtentry_ref_t rt = (rtentry_ref_t)rn; |
| 1625 | int error = 0, size; |
| 1626 | struct rt_addrinfo info; |
| 1627 | kauth_cred_t cred __single; |
| 1628 | kauth_cred_t *credp; |
| 1629 | |
| 1630 | cred = current_cached_proc_cred(PROC_NULL); |
| 1631 | credp = &cred; |
| 1632 | |
| 1633 | RT_LOCK(rt); |
| 1634 | if ((w->w_op == NET_RT_FLAGS || w->w_op == NET_RT_FLAGS_PRIV) && |
| 1635 | !(rt->rt_flags & w->w_arg)) { |
| 1636 | goto done; |
| 1637 | } |
| 1638 | |
| 1639 | /* |
| 1640 | * If the matching route has RTF_LLINFO set, then we can skip scrubbing the MAC |
| 1641 | * only if the outgoing interface is not loopback and the process has entitlement |
| 1642 | * for neighbor cache read. |
| 1643 | */ |
| 1644 | if (w->w_op == NET_RT_FLAGS_PRIV && (rt->rt_flags & RTF_LLINFO)) { |
| 1645 | if (rt->rt_ifp != lo_ifp && |
| 1646 | (route_op_entitlement_check(NULL, cred, ROUTE_OP_READ, TRUE) == 0)) { |
| 1647 | credp = NULL; |
| 1648 | } |
| 1649 | } |
| 1650 | |
| 1651 | bzero(s: (caddr_t)&info, n: sizeof(info)); |
| 1652 | info.rti_info[RTAX_DST] = rt_key(rt); |
| 1653 | info.rti_info[RTAX_GATEWAY] = rt->rt_gateway; |
| 1654 | info.rti_info[RTAX_NETMASK] = rt_mask(rt); |
| 1655 | info.rti_info[RTAX_GENMASK] = rt->rt_genmask; |
| 1656 | if (RT_HAS_IFADDR(rt)) { |
| 1657 | info.rti_info[RTAX_IFA] = rt->rt_ifa->ifa_addr; |
| 1658 | } |
| 1659 | |
| 1660 | if (w->w_op != NET_RT_DUMP2) { |
| 1661 | size = rt_msg2(RTM_GET, rtinfo: &info, NULL, w, credp); |
| 1662 | if (w->w_req != NULL && w->w_tmem != NULL) { |
| 1663 | struct rt_msghdr *rtm = |
| 1664 | (struct rt_msghdr *)(void *)w->w_tmem; |
| 1665 | |
| 1666 | rtm->rtm_flags = rt->rt_flags; |
| 1667 | rtm->rtm_use = rt->rt_use; |
| 1668 | rt_getmetrics(in: rt, out: &rtm->rtm_rmx); |
| 1669 | rtm->rtm_index = rt->rt_ifp->if_index; |
| 1670 | rtm->rtm_pid = 0; |
| 1671 | rtm->rtm_seq = 0; |
| 1672 | rtm->rtm_errno = 0; |
| 1673 | rtm->rtm_addrs = info.rti_addrs; |
| 1674 | error = SYSCTL_OUT(w->w_req, (caddr_t)rtm, size); |
| 1675 | } |
| 1676 | } else { |
| 1677 | size = rt_msg2(RTM_GET2, rtinfo: &info, NULL, w, credp); |
| 1678 | if (w->w_req != NULL && w->w_tmem != NULL) { |
| 1679 | struct rt_msghdr2 *rtm = |
| 1680 | (struct rt_msghdr2 *)(void *)w->w_tmem; |
| 1681 | |
| 1682 | rtm->rtm_flags = rt->rt_flags; |
| 1683 | rtm->rtm_use = rt->rt_use; |
| 1684 | rt_getmetrics(in: rt, out: &rtm->rtm_rmx); |
| 1685 | rtm->rtm_index = rt->rt_ifp->if_index; |
| 1686 | rtm->rtm_refcnt = rt->rt_refcnt; |
| 1687 | if (rt->rt_parent) { |
| 1688 | rtm->rtm_parentflags = rt->rt_parent->rt_flags; |
| 1689 | } else { |
| 1690 | rtm->rtm_parentflags = 0; |
| 1691 | } |
| 1692 | rtm->rtm_reserved = 0; |
| 1693 | rtm->rtm_addrs = info.rti_addrs; |
| 1694 | error = SYSCTL_OUT(w->w_req, (caddr_t)rtm, size); |
| 1695 | } |
| 1696 | } |
| 1697 | |
| 1698 | done: |
| 1699 | RT_UNLOCK(rt); |
| 1700 | return error; |
| 1701 | } |
| 1702 | |
| 1703 | /* |
| 1704 | * This is used for dumping extended information from route entries. |
| 1705 | */ |
| 1706 | static int |
| 1707 | sysctl_dumpentry_ext(struct radix_node *rn, void *vw) |
| 1708 | { |
| 1709 | struct walkarg *w = vw; |
| 1710 | rtentry_ref_t rt = (rtentry_ref_t)rn; |
| 1711 | int error = 0, size; |
| 1712 | struct rt_addrinfo info; |
| 1713 | kauth_cred_t cred __single; |
| 1714 | |
| 1715 | cred = current_cached_proc_cred(PROC_NULL); |
| 1716 | |
| 1717 | RT_LOCK(rt); |
| 1718 | if (w->w_op == NET_RT_DUMPX_FLAGS && !(rt->rt_flags & w->w_arg)) { |
| 1719 | goto done; |
| 1720 | } |
| 1721 | bzero(s: &info, n: sizeof(info)); |
| 1722 | info.rti_info[RTAX_DST] = rt_key(rt); |
| 1723 | info.rti_info[RTAX_GATEWAY] = rt->rt_gateway; |
| 1724 | info.rti_info[RTAX_NETMASK] = rt_mask(rt); |
| 1725 | info.rti_info[RTAX_GENMASK] = rt->rt_genmask; |
| 1726 | |
| 1727 | size = rt_msg2(RTM_GET_EXT, rtinfo: &info, NULL, w, credp: &cred); |
| 1728 | if (w->w_req != NULL && w->w_tmem != NULL) { |
| 1729 | struct rt_msghdr_ext *ertm = |
| 1730 | (struct rt_msghdr_ext *)(void *)w->w_tmem; |
| 1731 | |
| 1732 | ertm->rtm_flags = rt->rt_flags; |
| 1733 | ertm->rtm_use = rt->rt_use; |
| 1734 | rt_getmetrics(in: rt, out: &ertm->rtm_rmx); |
| 1735 | ertm->rtm_index = rt->rt_ifp->if_index; |
| 1736 | ertm->rtm_pid = 0; |
| 1737 | ertm->rtm_seq = 0; |
| 1738 | ertm->rtm_errno = 0; |
| 1739 | ertm->rtm_addrs = info.rti_addrs; |
| 1740 | if (rt->rt_llinfo_get_ri == NULL) { |
| 1741 | bzero(s: &ertm->rtm_ri, n: sizeof(ertm->rtm_ri)); |
| 1742 | ertm->rtm_ri.ri_rssi = IFNET_RSSI_UNKNOWN; |
| 1743 | ertm->rtm_ri.ri_lqm = IFNET_LQM_THRESH_OFF; |
| 1744 | ertm->rtm_ri.ri_npm = IFNET_NPM_THRESH_UNKNOWN; |
| 1745 | } else { |
| 1746 | rt->rt_llinfo_get_ri(rt, &ertm->rtm_ri); |
| 1747 | } |
| 1748 | error = SYSCTL_OUT(w->w_req, (caddr_t)ertm, size); |
| 1749 | } |
| 1750 | |
| 1751 | done: |
| 1752 | RT_UNLOCK(rt); |
| 1753 | return error; |
| 1754 | } |
| 1755 | |
| 1756 | static boolean_t |
| 1757 | should_include_clat46(void) |
| 1758 | { |
| 1759 | #define CLAT46_ENTITLEMENT "com.apple.private.route.iflist.include-clat46" |
| 1760 | return IOCurrentTaskHasEntitlement(CLAT46_ENTITLEMENT); |
| 1761 | } |
| 1762 | |
| 1763 | static boolean_t |
| 1764 | is_clat46_address(struct ifaddr *ifa) |
| 1765 | { |
| 1766 | boolean_t is_clat46 = FALSE; |
| 1767 | |
| 1768 | if (ifa->ifa_addr->sa_family == AF_INET6) { |
| 1769 | struct in6_ifaddr *ifa6 = ifatoia6(ifa); |
| 1770 | |
| 1771 | is_clat46 = (ifa6->ia6_flags & IN6_IFF_CLAT46) != 0; |
| 1772 | } |
| 1773 | return is_clat46; |
| 1774 | } |
| 1775 | |
| 1776 | /* |
| 1777 | * rdar://9307819 |
| 1778 | * To avoid to call copyout() while holding locks and to cause problems |
| 1779 | * in the paging path, sysctl_iflist() and sysctl_iflist2() contstruct |
| 1780 | * the list in two passes. In the first pass we compute the total |
| 1781 | * length of the data we are going to copyout, then we release |
| 1782 | * all locks to allocate a temporary buffer that gets filled |
| 1783 | * in the second pass. |
| 1784 | * |
| 1785 | * Note that we are verifying the assumption that kalloc() returns a buffer |
| 1786 | * that is at least 32 bits aligned and that the messages and addresses are |
| 1787 | * 32 bits aligned. |
| 1788 | */ |
| 1789 | static int |
| 1790 | sysctl_iflist(int af, struct walkarg *w) |
| 1791 | { |
| 1792 | struct ifnet *ifp; |
| 1793 | struct ifaddr *ifa; |
| 1794 | struct rt_addrinfo info; |
| 1795 | int error = 0; |
| 1796 | int pass = 0; |
| 1797 | size_t len = 0, total_len = 0, total_buffer_len = 0, current_len = 0; |
| 1798 | char *total_buffer = NULL, *cp = NULL; |
| 1799 | kauth_cred_t cred __single; |
| 1800 | boolean_t include_clat46 = FALSE; |
| 1801 | boolean_t include_clat46_valid = FALSE; |
| 1802 | |
| 1803 | cred = current_cached_proc_cred(PROC_NULL); |
| 1804 | |
| 1805 | bzero(s: (caddr_t)&info, n: sizeof(info)); |
| 1806 | |
| 1807 | for (pass = 0; pass < 2; pass++) { |
| 1808 | ifnet_head_lock_shared(); |
| 1809 | |
| 1810 | TAILQ_FOREACH(ifp, &ifnet_head, if_link) { |
| 1811 | if (error) { |
| 1812 | break; |
| 1813 | } |
| 1814 | if (w->w_arg && w->w_arg != ifp->if_index) { |
| 1815 | continue; |
| 1816 | } |
| 1817 | ifnet_lock_shared(ifp); |
| 1818 | /* |
| 1819 | * Holding ifnet lock here prevents the link address |
| 1820 | * from changing contents, so no need to hold the ifa |
| 1821 | * lock. The link address is always present; it's |
| 1822 | * never freed. |
| 1823 | */ |
| 1824 | ifa = ifp->if_lladdr; |
| 1825 | info.rti_info[RTAX_IFP] = ifa->ifa_addr; |
| 1826 | len = rt_msg2(RTM_IFINFO, rtinfo: &info, NULL, NULL, credp: &cred); |
| 1827 | if (pass == 0) { |
| 1828 | if (os_add_overflow(total_len, len, &total_len)) { |
| 1829 | ifnet_lock_done(ifp); |
| 1830 | error = ENOBUFS; |
| 1831 | break; |
| 1832 | } |
| 1833 | } else { |
| 1834 | struct if_msghdr *ifm; |
| 1835 | |
| 1836 | if (current_len + len > total_len) { |
| 1837 | ifnet_lock_done(ifp); |
| 1838 | error = ENOBUFS; |
| 1839 | break; |
| 1840 | } |
| 1841 | info.rti_info[RTAX_IFP] = ifa->ifa_addr; |
| 1842 | len = rt_msg2(RTM_IFINFO, rtinfo: &info, |
| 1843 | cp: (caddr_t)cp, NULL, credp: &cred); |
| 1844 | info.rti_info[RTAX_IFP] = NULL; |
| 1845 | |
| 1846 | ifm = (struct if_msghdr *)(void *)cp; |
| 1847 | ifm->ifm_index = ifp->if_index; |
| 1848 | ifm->ifm_flags = (u_short)ifp->if_flags; |
| 1849 | if_data_internal_to_if_data(ifp, if_data_int: &ifp->if_data, |
| 1850 | if_data: &ifm->ifm_data); |
| 1851 | ifm->ifm_addrs = info.rti_addrs; |
| 1852 | /* |
| 1853 | * <rdar://problem/32940901> |
| 1854 | * Round bytes only for non-platform |
| 1855 | */ |
| 1856 | if (!csproc_get_platform_binary(w->w_req->p)) { |
| 1857 | ALIGN_BYTES(ifm->ifm_data.ifi_ibytes); |
| 1858 | ALIGN_BYTES(ifm->ifm_data.ifi_obytes); |
| 1859 | } |
| 1860 | |
| 1861 | cp += len; |
| 1862 | VERIFY(IS_P2ALIGNED(cp, sizeof(u_int32_t))); |
| 1863 | current_len += len; |
| 1864 | VERIFY(current_len <= total_len); |
| 1865 | } |
| 1866 | while ((ifa = ifa->ifa_link.tqe_next) != NULL) { |
| 1867 | boolean_t is_clat46; |
| 1868 | |
| 1869 | IFA_LOCK(ifa); |
| 1870 | if (af && af != ifa->ifa_addr->sa_family) { |
| 1871 | IFA_UNLOCK(ifa); |
| 1872 | continue; |
| 1873 | } |
| 1874 | is_clat46 = is_clat46_address(ifa); |
| 1875 | if (is_clat46) { |
| 1876 | if (!include_clat46_valid) { |
| 1877 | include_clat46_valid = TRUE; |
| 1878 | include_clat46 = |
| 1879 | should_include_clat46(); |
| 1880 | } |
| 1881 | if (!include_clat46) { |
| 1882 | IFA_UNLOCK(ifa); |
| 1883 | continue; |
| 1884 | } |
| 1885 | } |
| 1886 | info.rti_info[RTAX_IFA] = ifa->ifa_addr; |
| 1887 | info.rti_info[RTAX_NETMASK] = ifa->ifa_netmask; |
| 1888 | info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr; |
| 1889 | len = rt_msg2(RTM_NEWADDR, rtinfo: &info, NULL, NULL, |
| 1890 | credp: &cred); |
| 1891 | if (pass == 0) { |
| 1892 | if (os_add_overflow(total_len, len, &total_len)) { |
| 1893 | IFA_UNLOCK(ifa); |
| 1894 | error = ENOBUFS; |
| 1895 | break; |
| 1896 | } |
| 1897 | } else { |
| 1898 | struct ifa_msghdr *ifam; |
| 1899 | |
| 1900 | if (current_len + len > total_len) { |
| 1901 | IFA_UNLOCK(ifa); |
| 1902 | error = ENOBUFS; |
| 1903 | break; |
| 1904 | } |
| 1905 | len = rt_msg2(RTM_NEWADDR, rtinfo: &info, |
| 1906 | cp: (caddr_t)cp, NULL, credp: &cred); |
| 1907 | |
| 1908 | ifam = (struct ifa_msghdr *)(void *)cp; |
| 1909 | ifam->ifam_index = |
| 1910 | ifa->ifa_ifp->if_index; |
| 1911 | ifam->ifam_flags = ifa->ifa_flags; |
| 1912 | ifam->ifam_metric = ifa->ifa_metric; |
| 1913 | ifam->ifam_addrs = info.rti_addrs; |
| 1914 | |
| 1915 | cp += len; |
| 1916 | VERIFY(IS_P2ALIGNED(cp, |
| 1917 | sizeof(u_int32_t))); |
| 1918 | current_len += len; |
| 1919 | VERIFY(current_len <= total_len); |
| 1920 | } |
| 1921 | IFA_UNLOCK(ifa); |
| 1922 | } |
| 1923 | ifnet_lock_done(ifp); |
| 1924 | info.rti_info[RTAX_IFA] = info.rti_info[RTAX_NETMASK] = |
| 1925 | info.rti_info[RTAX_BRD] = NULL; |
| 1926 | } |
| 1927 | |
| 1928 | ifnet_head_done(); |
| 1929 | |
| 1930 | if (error != 0) { |
| 1931 | if (error == ENOBUFS) { |
| 1932 | printf("%s: current_len (%lu) + len (%lu) > " |
| 1933 | "total_len (%lu)\n" , __func__, current_len, |
| 1934 | len, total_len); |
| 1935 | } |
| 1936 | break; |
| 1937 | } |
| 1938 | |
| 1939 | if (pass == 0) { |
| 1940 | /* Better to return zero length buffer than ENOBUFS */ |
| 1941 | if (total_len == 0) { |
| 1942 | total_len = 1; |
| 1943 | } |
| 1944 | total_len += total_len >> 3; |
| 1945 | total_buffer_len = total_len; |
| 1946 | total_buffer = (char *) kalloc_data(total_len, Z_ZERO | Z_WAITOK); |
| 1947 | if (total_buffer == NULL) { |
| 1948 | printf("%s: kalloc_data(%lu) failed\n" , __func__, |
| 1949 | total_len); |
| 1950 | error = ENOBUFS; |
| 1951 | break; |
| 1952 | } |
| 1953 | cp = total_buffer; |
| 1954 | VERIFY(IS_P2ALIGNED(cp, sizeof(u_int32_t))); |
| 1955 | } else { |
| 1956 | error = SYSCTL_OUT(w->w_req, total_buffer, current_len); |
| 1957 | if (error) { |
| 1958 | break; |
| 1959 | } |
| 1960 | } |
| 1961 | } |
| 1962 | |
| 1963 | if (total_buffer != NULL) { |
| 1964 | kfree_data(total_buffer, total_buffer_len); |
| 1965 | } |
| 1966 | |
| 1967 | return error; |
| 1968 | } |
| 1969 | |
| 1970 | static int |
| 1971 | sysctl_iflist2(int af, struct walkarg *w) |
| 1972 | { |
| 1973 | struct ifnet *ifp; |
| 1974 | struct ifaddr *ifa; |
| 1975 | struct rt_addrinfo info; |
| 1976 | int error = 0; |
| 1977 | int pass = 0; |
| 1978 | size_t len = 0, total_len = 0, total_buffer_len = 0, current_len = 0; |
| 1979 | char *total_buffer = NULL, *cp = NULL; |
| 1980 | kauth_cred_t cred __single; |
| 1981 | boolean_t include_clat46 = FALSE; |
| 1982 | boolean_t include_clat46_valid = FALSE; |
| 1983 | |
| 1984 | cred = current_cached_proc_cred(PROC_NULL); |
| 1985 | |
| 1986 | bzero(s: (caddr_t)&info, n: sizeof(info)); |
| 1987 | |
| 1988 | for (pass = 0; pass < 2; pass++) { |
| 1989 | struct ifmultiaddr *ifma; |
| 1990 | |
| 1991 | ifnet_head_lock_shared(); |
| 1992 | |
| 1993 | TAILQ_FOREACH(ifp, &ifnet_head, if_link) { |
| 1994 | if (error) { |
| 1995 | break; |
| 1996 | } |
| 1997 | if (w->w_arg && w->w_arg != ifp->if_index) { |
| 1998 | continue; |
| 1999 | } |
| 2000 | ifnet_lock_shared(ifp); |
| 2001 | /* |
| 2002 | * Holding ifnet lock here prevents the link address |
| 2003 | * from changing contents, so no need to hold the ifa |
| 2004 | * lock. The link address is always present; it's |
| 2005 | * never freed. |
| 2006 | */ |
| 2007 | ifa = ifp->if_lladdr; |
| 2008 | info.rti_info[RTAX_IFP] = ifa->ifa_addr; |
| 2009 | len = rt_msg2(RTM_IFINFO2, rtinfo: &info, NULL, NULL, credp: &cred); |
| 2010 | if (pass == 0) { |
| 2011 | if (os_add_overflow(total_len, len, &total_len)) { |
| 2012 | ifnet_lock_done(ifp); |
| 2013 | error = ENOBUFS; |
| 2014 | break; |
| 2015 | } |
| 2016 | } else { |
| 2017 | struct if_msghdr2 *ifm; |
| 2018 | |
| 2019 | if (current_len + len > total_len) { |
| 2020 | ifnet_lock_done(ifp); |
| 2021 | error = ENOBUFS; |
| 2022 | break; |
| 2023 | } |
| 2024 | info.rti_info[RTAX_IFP] = ifa->ifa_addr; |
| 2025 | len = rt_msg2(RTM_IFINFO2, rtinfo: &info, |
| 2026 | cp: (caddr_t)cp, NULL, credp: &cred); |
| 2027 | info.rti_info[RTAX_IFP] = NULL; |
| 2028 | |
| 2029 | ifm = (struct if_msghdr2 *)(void *)cp; |
| 2030 | ifm->ifm_addrs = info.rti_addrs; |
| 2031 | ifm->ifm_flags = (u_short)ifp->if_flags; |
| 2032 | ifm->ifm_index = ifp->if_index; |
| 2033 | ifm->ifm_snd_len = IFCQ_LEN(ifp->if_snd); |
| 2034 | ifm->ifm_snd_maxlen = IFCQ_MAXLEN(ifp->if_snd); |
| 2035 | ifm->ifm_snd_drops = |
| 2036 | (int)ifp->if_snd->ifcq_dropcnt.packets; |
| 2037 | ifm->ifm_timer = ifp->if_timer; |
| 2038 | if_data_internal_to_if_data64(ifp, |
| 2039 | if_data_int: &ifp->if_data, if_data64: &ifm->ifm_data); |
| 2040 | /* |
| 2041 | * <rdar://problem/32940901> |
| 2042 | * Round bytes only for non-platform |
| 2043 | */ |
| 2044 | if (!csproc_get_platform_binary(w->w_req->p)) { |
| 2045 | ALIGN_BYTES(ifm->ifm_data.ifi_ibytes); |
| 2046 | ALIGN_BYTES(ifm->ifm_data.ifi_obytes); |
| 2047 | } |
| 2048 | |
| 2049 | cp += len; |
| 2050 | VERIFY(IS_P2ALIGNED(cp, sizeof(u_int32_t))); |
| 2051 | current_len += len; |
| 2052 | VERIFY(current_len <= total_len); |
| 2053 | } |
| 2054 | while ((ifa = ifa->ifa_link.tqe_next) != NULL) { |
| 2055 | boolean_t is_clat46; |
| 2056 | |
| 2057 | IFA_LOCK(ifa); |
| 2058 | if (af && af != ifa->ifa_addr->sa_family) { |
| 2059 | IFA_UNLOCK(ifa); |
| 2060 | continue; |
| 2061 | } |
| 2062 | is_clat46 = is_clat46_address(ifa); |
| 2063 | if (is_clat46) { |
| 2064 | if (!include_clat46_valid) { |
| 2065 | include_clat46_valid = TRUE; |
| 2066 | include_clat46 = |
| 2067 | should_include_clat46(); |
| 2068 | } |
| 2069 | if (!include_clat46) { |
| 2070 | IFA_UNLOCK(ifa); |
| 2071 | continue; |
| 2072 | } |
| 2073 | } |
| 2074 | info.rti_info[RTAX_IFA] = ifa->ifa_addr; |
| 2075 | info.rti_info[RTAX_NETMASK] = ifa->ifa_netmask; |
| 2076 | info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr; |
| 2077 | len = rt_msg2(RTM_NEWADDR, rtinfo: &info, NULL, NULL, |
| 2078 | credp: &cred); |
| 2079 | if (pass == 0) { |
| 2080 | if (os_add_overflow(total_len, len, &total_len)) { |
| 2081 | IFA_UNLOCK(ifa); |
| 2082 | error = ENOBUFS; |
| 2083 | break; |
| 2084 | } |
| 2085 | } else { |
| 2086 | struct ifa_msghdr *ifam; |
| 2087 | |
| 2088 | if (current_len + len > total_len) { |
| 2089 | IFA_UNLOCK(ifa); |
| 2090 | error = ENOBUFS; |
| 2091 | break; |
| 2092 | } |
| 2093 | len = rt_msg2(RTM_NEWADDR, rtinfo: &info, |
| 2094 | cp: (caddr_t)cp, NULL, credp: &cred); |
| 2095 | |
| 2096 | ifam = (struct ifa_msghdr *)(void *)cp; |
| 2097 | ifam->ifam_index = |
| 2098 | ifa->ifa_ifp->if_index; |
| 2099 | ifam->ifam_flags = ifa->ifa_flags; |
| 2100 | ifam->ifam_metric = ifa->ifa_metric; |
| 2101 | ifam->ifam_addrs = info.rti_addrs; |
| 2102 | |
| 2103 | cp += len; |
| 2104 | VERIFY(IS_P2ALIGNED(cp, |
| 2105 | sizeof(u_int32_t))); |
| 2106 | current_len += len; |
| 2107 | VERIFY(current_len <= total_len); |
| 2108 | } |
| 2109 | IFA_UNLOCK(ifa); |
| 2110 | } |
| 2111 | if (error) { |
| 2112 | ifnet_lock_done(ifp); |
| 2113 | break; |
| 2114 | } |
| 2115 | |
| 2116 | for (ifma = LIST_FIRST(&ifp->if_multiaddrs); |
| 2117 | ifma != NULL; ifma = LIST_NEXT(ifma, ifma_link)) { |
| 2118 | struct ifaddr *ifa0; |
| 2119 | |
| 2120 | IFMA_LOCK(ifma); |
| 2121 | if (af && af != ifma->ifma_addr->sa_family) { |
| 2122 | IFMA_UNLOCK(ifma); |
| 2123 | continue; |
| 2124 | } |
| 2125 | bzero(s: (caddr_t)&info, n: sizeof(info)); |
| 2126 | info.rti_info[RTAX_IFA] = ifma->ifma_addr; |
| 2127 | /* |
| 2128 | * Holding ifnet lock here prevents the link |
| 2129 | * address from changing contents, so no need |
| 2130 | * to hold the ifa0 lock. The link address is |
| 2131 | * always present; it's never freed. |
| 2132 | */ |
| 2133 | ifa0 = ifp->if_lladdr; |
| 2134 | info.rti_info[RTAX_IFP] = ifa0->ifa_addr; |
| 2135 | if (ifma->ifma_ll != NULL) { |
| 2136 | info.rti_info[RTAX_GATEWAY] = |
| 2137 | ifma->ifma_ll->ifma_addr; |
| 2138 | } |
| 2139 | len = rt_msg2(RTM_NEWMADDR2, rtinfo: &info, NULL, NULL, |
| 2140 | credp: &cred); |
| 2141 | if (pass == 0) { |
| 2142 | total_len += len; |
| 2143 | } else { |
| 2144 | struct ifma_msghdr2 *ifmam; |
| 2145 | |
| 2146 | if (current_len + len > total_len) { |
| 2147 | IFMA_UNLOCK(ifma); |
| 2148 | error = ENOBUFS; |
| 2149 | break; |
| 2150 | } |
| 2151 | len = rt_msg2(RTM_NEWMADDR2, rtinfo: &info, |
| 2152 | cp: (caddr_t)cp, NULL, credp: &cred); |
| 2153 | |
| 2154 | ifmam = |
| 2155 | (struct ifma_msghdr2 *)(void *)cp; |
| 2156 | ifmam->ifmam_addrs = info.rti_addrs; |
| 2157 | ifmam->ifmam_flags = 0; |
| 2158 | ifmam->ifmam_index = |
| 2159 | ifma->ifma_ifp->if_index; |
| 2160 | ifmam->ifmam_refcount = |
| 2161 | ifma->ifma_reqcnt; |
| 2162 | |
| 2163 | cp += len; |
| 2164 | VERIFY(IS_P2ALIGNED(cp, |
| 2165 | sizeof(u_int32_t))); |
| 2166 | current_len += len; |
| 2167 | } |
| 2168 | IFMA_UNLOCK(ifma); |
| 2169 | } |
| 2170 | ifnet_lock_done(ifp); |
| 2171 | info.rti_info[RTAX_IFA] = info.rti_info[RTAX_NETMASK] = |
| 2172 | info.rti_info[RTAX_BRD] = NULL; |
| 2173 | } |
| 2174 | ifnet_head_done(); |
| 2175 | |
| 2176 | if (error) { |
| 2177 | if (error == ENOBUFS) { |
| 2178 | printf("%s: current_len (%lu) + len (%lu) > " |
| 2179 | "total_len (%lu)\n" , __func__, current_len, |
| 2180 | len, total_len); |
| 2181 | } |
| 2182 | break; |
| 2183 | } |
| 2184 | |
| 2185 | if (pass == 0) { |
| 2186 | /* Better to return zero length buffer than ENOBUFS */ |
| 2187 | if (total_len == 0) { |
| 2188 | total_len = 1; |
| 2189 | } |
| 2190 | total_len += total_len >> 3; |
| 2191 | total_buffer_len = total_len; |
| 2192 | total_buffer = (char *) kalloc_data(total_len, Z_ZERO | Z_WAITOK); |
| 2193 | if (total_buffer == NULL) { |
| 2194 | printf("%s: kalloc_data(%lu) failed\n" , __func__, |
| 2195 | total_len); |
| 2196 | error = ENOBUFS; |
| 2197 | break; |
| 2198 | } |
| 2199 | cp = total_buffer; |
| 2200 | VERIFY(IS_P2ALIGNED(cp, sizeof(u_int32_t))); |
| 2201 | } else { |
| 2202 | error = SYSCTL_OUT(w->w_req, total_buffer, current_len); |
| 2203 | if (error) { |
| 2204 | break; |
| 2205 | } |
| 2206 | } |
| 2207 | } |
| 2208 | |
| 2209 | if (total_buffer != NULL) { |
| 2210 | kfree_data(total_buffer, total_buffer_len); |
| 2211 | } |
| 2212 | |
| 2213 | return error; |
| 2214 | } |
| 2215 | |
| 2216 | |
| 2217 | static int |
| 2218 | sysctl_rtstat(struct sysctl_req *req) |
| 2219 | { |
| 2220 | return SYSCTL_OUT(req, &rtstat, sizeof(struct rtstat)); |
| 2221 | } |
| 2222 | |
| 2223 | static int |
| 2224 | sysctl_rttrash(struct sysctl_req *req) |
| 2225 | { |
| 2226 | return SYSCTL_OUT(req, &rttrash, sizeof(rttrash)); |
| 2227 | } |
| 2228 | |
| 2229 | static int |
| 2230 | sysctl_rtsock SYSCTL_HANDLER_ARGS |
| 2231 | { |
| 2232 | #pragma unused(oidp) |
| 2233 | int *name = (int *)arg1; |
| 2234 | u_int namelen = arg2; |
| 2235 | struct radix_node_head *rnh; |
| 2236 | int i, error = EINVAL; |
| 2237 | u_char af; |
| 2238 | struct walkarg w; |
| 2239 | |
| 2240 | name++; |
| 2241 | namelen--; |
| 2242 | if (req->newptr) { |
| 2243 | return EPERM; |
| 2244 | } |
| 2245 | if (namelen != 3) { |
| 2246 | return EINVAL; |
| 2247 | } |
| 2248 | af = (u_char)name[0]; |
| 2249 | Bzero(&w, sizeof(w)); |
| 2250 | w.w_op = name[1]; |
| 2251 | w.w_arg = name[2]; |
| 2252 | w.w_req = req; |
| 2253 | |
| 2254 | switch (w.w_op) { |
| 2255 | case NET_RT_DUMP: |
| 2256 | case NET_RT_DUMP2: |
| 2257 | case NET_RT_FLAGS: |
| 2258 | case NET_RT_FLAGS_PRIV: |
| 2259 | lck_mtx_lock(rnh_lock); |
| 2260 | for (i = 1; i <= AF_MAX; i++) { |
| 2261 | if ((rnh = rt_tables[i]) && (af == 0 || af == i) && |
| 2262 | (error = rnh->rnh_walktree(rnh, |
| 2263 | sysctl_dumpentry, &w))) { |
| 2264 | break; |
| 2265 | } |
| 2266 | } |
| 2267 | lck_mtx_unlock(rnh_lock); |
| 2268 | break; |
| 2269 | case NET_RT_DUMPX: |
| 2270 | case NET_RT_DUMPX_FLAGS: |
| 2271 | lck_mtx_lock(rnh_lock); |
| 2272 | for (i = 1; i <= AF_MAX; i++) { |
| 2273 | if ((rnh = rt_tables[i]) && (af == 0 || af == i) && |
| 2274 | (error = rnh->rnh_walktree(rnh, |
| 2275 | sysctl_dumpentry_ext, &w))) { |
| 2276 | break; |
| 2277 | } |
| 2278 | } |
| 2279 | lck_mtx_unlock(rnh_lock); |
| 2280 | break; |
| 2281 | case NET_RT_IFLIST: |
| 2282 | error = sysctl_iflist(af, w: &w); |
| 2283 | break; |
| 2284 | case NET_RT_IFLIST2: |
| 2285 | error = sysctl_iflist2(af, w: &w); |
| 2286 | break; |
| 2287 | case NET_RT_STAT: |
| 2288 | error = sysctl_rtstat(req); |
| 2289 | break; |
| 2290 | case NET_RT_TRASH: |
| 2291 | error = sysctl_rttrash(req); |
| 2292 | break; |
| 2293 | } |
| 2294 | if (w.w_tmem != NULL) { |
| 2295 | kfree_data(w.w_tmem, w.w_tmemsize); |
| 2296 | } |
| 2297 | return error; |
| 2298 | } |
| 2299 | |
| 2300 | /* |
| 2301 | * Definitions of protocols supported in the ROUTE domain. |
| 2302 | */ |
| 2303 | static struct protosw routesw[] = { |
| 2304 | { |
| 2305 | .pr_type = SOCK_RAW, |
| 2306 | .pr_protocol = 0, |
| 2307 | .pr_flags = PR_ATOMIC | PR_ADDR, |
| 2308 | .pr_output = route_output, |
| 2309 | .pr_ctlinput = raw_ctlinput, |
| 2310 | .pr_usrreqs = &route_usrreqs, |
| 2311 | } |
| 2312 | }; |
| 2313 | |
| 2314 | static int route_proto_count = (sizeof(routesw) / sizeof(struct protosw)); |
| 2315 | |
| 2316 | struct domain routedomain_s = { |
| 2317 | .dom_family = PF_ROUTE, |
| 2318 | .dom_name = "route" , |
| 2319 | .dom_init = route_dinit, |
| 2320 | }; |
| 2321 | |
| 2322 | static void |
| 2323 | route_dinit(struct domain *dp) |
| 2324 | { |
| 2325 | struct protosw *pr; |
| 2326 | int i; |
| 2327 | |
| 2328 | VERIFY(!(dp->dom_flags & DOM_INITIALIZED)); |
| 2329 | VERIFY(routedomain == NULL); |
| 2330 | |
| 2331 | routedomain = dp; |
| 2332 | |
| 2333 | for (i = 0, pr = &routesw[0]; i < route_proto_count; i++, pr++) { |
| 2334 | net_add_proto(pr, dp, 1); |
| 2335 | } |
| 2336 | |
| 2337 | route_init(); |
| 2338 | } |
| 2339 | |