1 | /* |
2 | * Copyright (c) 2000-2024 Apple Inc. All rights reserved. |
3 | * |
4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ |
5 | * |
6 | * This file contains Original Code and/or Modifications of Original Code |
7 | * as defined in and that are subject to the Apple Public Source License |
8 | * Version 2.0 (the 'License'). You may not use this file except in |
9 | * compliance with the License. The rights granted to you under the License |
10 | * may not be used to create, or enable the creation or redistribution of, |
11 | * unlawful or unlicensed copies of an Apple operating system, or to |
12 | * circumvent, violate, or enable the circumvention or violation of, any |
13 | * terms of an Apple operating system software license agreement. |
14 | * |
15 | * Please obtain a copy of the License at |
16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. |
17 | * |
18 | * The Original Code and all software distributed under the License are |
19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER |
20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, |
22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
23 | * Please see the License for the specific language governing rights and |
24 | * limitations under the License. |
25 | * |
26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ |
27 | */ |
28 | /* |
29 | * Copyright (c) 1988, 1991, 1993 |
30 | * The Regents of the University of California. All rights reserved. |
31 | * |
32 | * Redistribution and use in source and binary forms, with or without |
33 | * modification, are permitted provided that the following conditions |
34 | * are met: |
35 | * 1. Redistributions of source code must retain the above copyright |
36 | * notice, this list of conditions and the following disclaimer. |
37 | * 2. Redistributions in binary form must reproduce the above copyright |
38 | * notice, this list of conditions and the following disclaimer in the |
39 | * documentation and/or other materials provided with the distribution. |
40 | * 3. All advertising materials mentioning features or use of this software |
41 | * must display the following acknowledgement: |
42 | * This product includes software developed by the University of |
43 | * California, Berkeley and its contributors. |
44 | * 4. Neither the name of the University nor the names of its contributors |
45 | * may be used to endorse or promote products derived from this software |
46 | * without specific prior written permission. |
47 | * |
48 | * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND |
49 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
50 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
51 | * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE |
52 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
53 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
54 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
55 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
56 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
57 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
58 | * SUCH DAMAGE. |
59 | * |
60 | * @(#)rtsock.c 8.5 (Berkeley) 11/2/94 |
61 | */ |
62 | |
63 | #include <sys/param.h> |
64 | #include <sys/systm.h> |
65 | #include <sys/kauth.h> |
66 | #include <sys/kernel.h> |
67 | #include <sys/sysctl.h> |
68 | #include <sys/proc.h> |
69 | #include <sys/malloc.h> |
70 | #include <sys/mbuf.h> |
71 | #include <sys/socket.h> |
72 | #include <sys/socketvar.h> |
73 | #include <sys/domain.h> |
74 | #include <sys/protosw.h> |
75 | #include <sys/syslog.h> |
76 | #include <sys/mcache.h> |
77 | #include <kern/locks.h> |
78 | #include <sys/codesign.h> |
79 | |
80 | #include <net/if.h> |
81 | #include <net/route.h> |
82 | #include <net/dlil.h> |
83 | #include <net/raw_cb.h> |
84 | #include <netinet/in.h> |
85 | #include <netinet/in_var.h> |
86 | #include <netinet/in_arp.h> |
87 | #include <netinet/ip.h> |
88 | #include <netinet/ip6.h> |
89 | #include <netinet6/nd6.h> |
90 | |
91 | #include <net/sockaddr_utils.h> |
92 | |
93 | #include <IOKit/IOBSD.h> |
94 | |
95 | extern struct rtstat rtstat; |
96 | extern struct domain routedomain_s; |
97 | static struct domain *routedomain = NULL; |
98 | |
99 | static struct sockaddr route_dst = { .sa_len = 2, .sa_family = PF_ROUTE, .sa_data = { 0, } }; |
100 | static struct sockaddr route_src = { .sa_len = 2, .sa_family = PF_ROUTE, .sa_data = { 0, } }; |
101 | static struct sockaddr sa_zero = { .sa_len = sizeof(sa_zero), .sa_family = AF_INET, .sa_data = { 0, } }; |
102 | |
103 | struct route_cb { |
104 | u_int32_t ip_count; /* attached w/ AF_INET */ |
105 | u_int32_t ip6_count; /* attached w/ AF_INET6 */ |
106 | u_int32_t any_count; /* total attached */ |
107 | }; |
108 | |
109 | static struct route_cb route_cb; |
110 | |
111 | struct walkarg { |
112 | int w_tmemsize; |
113 | int w_op, w_arg; |
114 | caddr_t w_tmem; |
115 | struct sysctl_req *w_req; |
116 | }; |
117 | |
118 | static void route_dinit(struct domain *); |
119 | static int rts_abort(struct socket *); |
120 | static int rts_attach(struct socket *, int, struct proc *); |
121 | static int rts_bind(struct socket *, struct sockaddr *, struct proc *); |
122 | static int rts_connect(struct socket *, struct sockaddr *, struct proc *); |
123 | static int rts_detach(struct socket *); |
124 | static int rts_disconnect(struct socket *); |
125 | static int rts_peeraddr(struct socket *, struct sockaddr **); |
126 | static int rts_send(struct socket *, int, struct mbuf *, struct sockaddr *, |
127 | struct mbuf *, struct proc *); |
128 | static int rts_shutdown(struct socket *); |
129 | static int rts_sockaddr(struct socket *, struct sockaddr **); |
130 | |
131 | static int route_output(struct mbuf *, struct socket *); |
132 | static int rt_setmetrics(u_int32_t, struct rt_metrics *, struct rtentry *); |
133 | static void rt_getmetrics(struct rtentry *, struct rt_metrics *); |
134 | static void rt_setif(struct rtentry *, struct sockaddr *, struct sockaddr *, |
135 | struct sockaddr *, unsigned int); |
136 | static int rt_xaddrs(caddr_t cp __ended_by(cplim), caddr_t cplim, struct rt_addrinfo *); |
137 | static struct mbuf *rt_msg1(u_char, struct rt_addrinfo *); |
138 | static int rt_msg2(u_char, struct rt_addrinfo *, caddr_t, struct walkarg *, |
139 | kauth_cred_t *); |
140 | static int sysctl_dumpentry(struct radix_node *rn, void *vw); |
141 | static int sysctl_dumpentry_ext(struct radix_node *rn, void *vw); |
142 | static int sysctl_iflist(int af, struct walkarg *w); |
143 | static int sysctl_iflist2(int af, struct walkarg *w); |
144 | static int sysctl_rtstat(struct sysctl_req *); |
145 | static int sysctl_rttrash(struct sysctl_req *); |
146 | static int sysctl_rtsock SYSCTL_HANDLER_ARGS; |
147 | |
148 | SYSCTL_NODE(_net, PF_ROUTE, routetable, CTLFLAG_RD | CTLFLAG_LOCKED, |
149 | sysctl_rtsock, "" ); |
150 | |
151 | SYSCTL_NODE(_net, OID_AUTO, route, CTLFLAG_RW | CTLFLAG_LOCKED, 0, "routing" ); |
152 | |
153 | /* Align x to 1024 (only power of 2) assuming x is positive */ |
154 | #define ALIGN_BYTES(x) do { \ |
155 | x = (uint32_t)P2ALIGN(x, 1024); \ |
156 | } while(0) |
157 | |
158 | #define ROUNDUP32(a) \ |
159 | ((a) > 0 ? (1 + (((a) - 1) | (sizeof (uint32_t) - 1))) : \ |
160 | sizeof (uint32_t)) |
161 | |
162 | #define ADVANCE32(x, n, lim) do { \ |
163 | (x += ROUNDUP32((n)->sa_len)); \ |
164 | _Pragma("clang diagnostic push"); \ |
165 | _Pragma("clang diagnostic ignored \"-Wself-assign\""); \ |
166 | (lim) = (lim); \ |
167 | _Pragma("clang diagnostic pop"); \ |
168 | } while(0) |
169 | |
170 | |
171 | #define RT_HAS_IFADDR(rt) \ |
172 | ((rt)->rt_ifa != NULL && (rt)->rt_ifa->ifa_addr != NULL) |
173 | |
174 | /* |
175 | * It really doesn't make any sense at all for this code to share much |
176 | * with raw_usrreq.c, since its functionality is so restricted. XXX |
177 | */ |
178 | static int |
179 | rts_abort(struct socket *so) |
180 | { |
181 | return raw_usrreqs.pru_abort(so); |
182 | } |
183 | |
184 | /* pru_accept is EOPNOTSUPP */ |
185 | |
186 | static int |
187 | rts_attach(struct socket *so, int proto, struct proc *p) |
188 | { |
189 | #pragma unused(p) |
190 | struct rawcb *rp; |
191 | int error; |
192 | |
193 | VERIFY(so->so_pcb == NULL); |
194 | |
195 | rp = kalloc_type(struct rawcb, Z_WAITOK_ZERO_NOFAIL); |
196 | so->so_pcb = (caddr_t)rp; |
197 | /* don't use raw_usrreqs.pru_attach, it checks for SS_PRIV */ |
198 | error = raw_attach(so, proto); |
199 | rp = sotorawcb(so); |
200 | if (error) { |
201 | kfree_type(struct rawcb, rp); |
202 | so->so_pcb = NULL; |
203 | so->so_flags |= SOF_PCBCLEARING; |
204 | return error; |
205 | } |
206 | |
207 | switch (rp->rcb_proto.sp_protocol) { |
208 | case AF_INET: |
209 | os_atomic_inc(&route_cb.ip_count, relaxed); |
210 | break; |
211 | case AF_INET6: |
212 | os_atomic_inc(&route_cb.ip6_count, relaxed); |
213 | break; |
214 | } |
215 | rp->rcb_faddr = &route_src; |
216 | os_atomic_inc(&route_cb.any_count, relaxed); |
217 | /* the socket is already locked when we enter rts_attach */ |
218 | soisconnected(so); |
219 | so->so_options |= SO_USELOOPBACK; |
220 | return 0; |
221 | } |
222 | |
223 | static int |
224 | rts_bind(struct socket *so, struct sockaddr *nam, struct proc *p) |
225 | { |
226 | return raw_usrreqs.pru_bind(so, nam, p); /* xxx just EINVAL */ |
227 | } |
228 | |
229 | static int |
230 | rts_connect(struct socket *so, struct sockaddr *nam, struct proc *p) |
231 | { |
232 | return raw_usrreqs.pru_connect(so, nam, p); /* XXX just EINVAL */ |
233 | } |
234 | |
235 | /* pru_connect2 is EOPNOTSUPP */ |
236 | /* pru_control is EOPNOTSUPP */ |
237 | |
238 | static int |
239 | rts_detach(struct socket *so) |
240 | { |
241 | struct rawcb *rp = sotorawcb(so); |
242 | |
243 | VERIFY(rp != NULL); |
244 | |
245 | switch (rp->rcb_proto.sp_protocol) { |
246 | case AF_INET: |
247 | os_atomic_dec(&route_cb.ip_count, relaxed); |
248 | break; |
249 | case AF_INET6: |
250 | os_atomic_dec(&route_cb.ip6_count, relaxed); |
251 | break; |
252 | } |
253 | os_atomic_dec(&route_cb.any_count, relaxed); |
254 | return raw_usrreqs.pru_detach(so); |
255 | } |
256 | |
257 | static int |
258 | rts_disconnect(struct socket *so) |
259 | { |
260 | return raw_usrreqs.pru_disconnect(so); |
261 | } |
262 | |
263 | /* pru_listen is EOPNOTSUPP */ |
264 | |
265 | static int |
266 | rts_peeraddr(struct socket *so, struct sockaddr **nam) |
267 | { |
268 | return raw_usrreqs.pru_peeraddr(so, nam); |
269 | } |
270 | |
271 | /* pru_rcvd is EOPNOTSUPP */ |
272 | /* pru_rcvoob is EOPNOTSUPP */ |
273 | |
274 | static int |
275 | rts_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *nam, |
276 | struct mbuf *control, struct proc *p) |
277 | { |
278 | return raw_usrreqs.pru_send(so, flags, m, nam, control, p); |
279 | } |
280 | |
281 | /* pru_sense is null */ |
282 | |
283 | static int |
284 | rts_shutdown(struct socket *so) |
285 | { |
286 | return raw_usrreqs.pru_shutdown(so); |
287 | } |
288 | |
289 | static int |
290 | rts_sockaddr(struct socket *so, struct sockaddr **nam) |
291 | { |
292 | return raw_usrreqs.pru_sockaddr(so, nam); |
293 | } |
294 | |
295 | static struct pr_usrreqs route_usrreqs = { |
296 | .pru_abort = rts_abort, |
297 | .pru_attach = rts_attach, |
298 | .pru_bind = rts_bind, |
299 | .pru_connect = rts_connect, |
300 | .pru_detach = rts_detach, |
301 | .pru_disconnect = rts_disconnect, |
302 | .pru_peeraddr = rts_peeraddr, |
303 | .pru_send = rts_send, |
304 | .pru_shutdown = rts_shutdown, |
305 | .pru_sockaddr = rts_sockaddr, |
306 | .pru_sosend = sosend, |
307 | .pru_soreceive = soreceive, |
308 | }; |
309 | |
310 | /*ARGSUSED*/ |
311 | static int |
312 | route_output(struct mbuf *m, struct socket *so) |
313 | { |
314 | struct rt_msghdr *rtm = NULL; |
315 | size_t rtm_len = 0; |
316 | rtentry_ref_t rt = NULL; |
317 | rtentry_ref_t saved_nrt = NULL; |
318 | struct radix_node_head *rnh; |
319 | struct rt_addrinfo info; |
320 | int len, error = 0; |
321 | sa_family_t dst_sa_family = 0; |
322 | struct ifnet *ifp = NULL; |
323 | struct sockaddr_in dst_in, gate_in; |
324 | int sendonlytoself = 0; |
325 | unsigned int ifscope = IFSCOPE_NONE; |
326 | struct rawcb *rp = NULL; |
327 | boolean_t is_router = FALSE; |
328 | #define senderr(e) { error = (e); goto flush; } |
329 | if (m == NULL || ((m->m_len < sizeof(intptr_t)) && |
330 | (m = m_pullup(m, sizeof(intptr_t))) == NULL)) { |
331 | return ENOBUFS; |
332 | } |
333 | VERIFY(m->m_flags & M_PKTHDR); |
334 | |
335 | /* |
336 | * Unlock the socket (but keep a reference) it won't be |
337 | * accessed until raw_input appends to it. |
338 | */ |
339 | socket_unlock(so, refcount: 0); |
340 | lck_mtx_lock(rnh_lock); |
341 | |
342 | len = m->m_pkthdr.len; |
343 | if (len < sizeof(*rtm) || |
344 | len != mtod(m, struct rt_msghdr *)->rtm_msglen) { |
345 | info.rti_info[RTAX_DST] = NULL; |
346 | senderr(EINVAL); |
347 | } |
348 | rtm = kalloc_data(len, Z_WAITOK); |
349 | if (rtm == NULL) { |
350 | info.rti_info[RTAX_DST] = NULL; |
351 | senderr(ENOBUFS); |
352 | } |
353 | rtm_len = (size_t)len; |
354 | m_copydata(m, 0, len, (caddr_t)rtm); |
355 | if (rtm->rtm_version != RTM_VERSION) { |
356 | info.rti_info[RTAX_DST] = NULL; |
357 | senderr(EPROTONOSUPPORT); |
358 | } |
359 | |
360 | /* |
361 | * Silent version of RTM_GET for Reachabiltiy APIs. We may change |
362 | * all RTM_GETs to be silent in the future, so this is private for now. |
363 | */ |
364 | if (rtm->rtm_type == RTM_GET_SILENT) { |
365 | if (!(so->so_options & SO_USELOOPBACK)) { |
366 | senderr(EINVAL); |
367 | } |
368 | sendonlytoself = 1; |
369 | rtm->rtm_type = RTM_GET; |
370 | } |
371 | |
372 | /* |
373 | * Perform permission checking, only privileged sockets |
374 | * may perform operations other than RTM_GET |
375 | */ |
376 | if (rtm->rtm_type != RTM_GET && !(so->so_state & SS_PRIV)) { |
377 | info.rti_info[RTAX_DST] = NULL; |
378 | senderr(EPERM); |
379 | } |
380 | |
381 | rtm->rtm_pid = proc_selfpid(); |
382 | info.rti_addrs = rtm->rtm_addrs; |
383 | if (rt_xaddrs(cp: (caddr_t)(rtm + 1), cplim: len + (caddr_t)rtm, &info)) { |
384 | info.rti_info[RTAX_DST] = NULL; |
385 | senderr(EINVAL); |
386 | } |
387 | if (info.rti_info[RTAX_DST] == NULL || |
388 | info.rti_info[RTAX_DST]->sa_family >= AF_MAX || |
389 | (info.rti_info[RTAX_GATEWAY] != NULL && |
390 | info.rti_info[RTAX_GATEWAY]->sa_family >= AF_MAX)) { |
391 | senderr(EINVAL); |
392 | } |
393 | |
394 | if (info.rti_info[RTAX_DST]->sa_family == AF_INET && |
395 | info.rti_info[RTAX_DST]->sa_len != sizeof(struct sockaddr_in)) { |
396 | /* At minimum, we need up to sin_addr */ |
397 | if (info.rti_info[RTAX_DST]->sa_len < |
398 | offsetof(struct sockaddr_in, sin_zero)) { |
399 | senderr(EINVAL); |
400 | } |
401 | SOCKADDR_ZERO(&dst_in, sizeof(dst_in)); |
402 | dst_in.sin_len = sizeof(dst_in); |
403 | dst_in.sin_family = AF_INET; |
404 | dst_in.sin_port = SIN(info.rti_info[RTAX_DST])->sin_port; |
405 | dst_in.sin_addr = SIN(info.rti_info[RTAX_DST])->sin_addr; |
406 | info.rti_info[RTAX_DST] = SA(&dst_in); |
407 | dst_sa_family = info.rti_info[RTAX_DST]->sa_family; |
408 | } else if (info.rti_info[RTAX_DST]->sa_family == AF_INET6 && |
409 | info.rti_info[RTAX_DST]->sa_len < sizeof(struct sockaddr_in6)) { |
410 | senderr(EINVAL); |
411 | } |
412 | |
413 | if (info.rti_info[RTAX_GATEWAY] != NULL) { |
414 | if (info.rti_info[RTAX_GATEWAY]->sa_family == AF_INET && |
415 | info.rti_info[RTAX_GATEWAY]->sa_len != sizeof(struct sockaddr_in)) { |
416 | /* At minimum, we need up to sin_addr */ |
417 | if (info.rti_info[RTAX_GATEWAY]->sa_len < |
418 | offsetof(struct sockaddr_in, sin_zero)) { |
419 | senderr(EINVAL); |
420 | } |
421 | SOCKADDR_ZERO(&gate_in, sizeof(gate_in)); |
422 | gate_in.sin_len = sizeof(gate_in); |
423 | gate_in.sin_family = AF_INET; |
424 | gate_in.sin_port = SIN(info.rti_info[RTAX_GATEWAY])->sin_port; |
425 | gate_in.sin_addr = SIN(info.rti_info[RTAX_GATEWAY])->sin_addr; |
426 | info.rti_info[RTAX_GATEWAY] = SA(&gate_in); |
427 | } else if (info.rti_info[RTAX_GATEWAY]->sa_family == AF_INET6 && |
428 | info.rti_info[RTAX_GATEWAY]->sa_len < sizeof(struct sockaddr_in6)) { |
429 | senderr(EINVAL); |
430 | } |
431 | } |
432 | |
433 | if (info.rti_info[RTAX_GENMASK]) { |
434 | struct radix_node *t; |
435 | t = rn_addmask((caddr_t)info.rti_info[RTAX_GENMASK], 0, 1); |
436 | if (t != NULL && Bcmp(info.rti_info[RTAX_GENMASK], |
437 | rn_get_key(t), *(u_char *)info.rti_info[RTAX_GENMASK]) == 0) { |
438 | info.rti_info[RTAX_GENMASK] = SA(rn_get_key(t)); |
439 | } else { |
440 | senderr(ENOBUFS); |
441 | } |
442 | } |
443 | |
444 | /* |
445 | * If RTF_IFSCOPE flag is set, then rtm_index specifies the scope. |
446 | */ |
447 | if (rtm->rtm_flags & RTF_IFSCOPE) { |
448 | if (info.rti_info[RTAX_DST]->sa_family != AF_INET && |
449 | info.rti_info[RTAX_DST]->sa_family != AF_INET6) { |
450 | senderr(EINVAL); |
451 | } |
452 | ifscope = rtm->rtm_index; |
453 | } |
454 | /* |
455 | * Block changes on INTCOPROC interfaces. |
456 | */ |
457 | if (ifscope != IFSCOPE_NONE) { |
458 | unsigned int intcoproc_scope = 0; |
459 | ifnet_head_lock_shared(); |
460 | TAILQ_FOREACH(ifp, &ifnet_head, if_link) { |
461 | if (IFNET_IS_INTCOPROC(ifp)) { |
462 | intcoproc_scope = ifp->if_index; |
463 | break; |
464 | } |
465 | } |
466 | ifnet_head_done(); |
467 | if (intcoproc_scope == ifscope && proc_getpid(current_proc()) != 0) { |
468 | senderr(EINVAL); |
469 | } |
470 | } |
471 | /* |
472 | * Require entitlement to change management interfaces |
473 | */ |
474 | if (management_control_unrestricted == false && if_management_interface_check_needed == true && |
475 | ifscope != IFSCOPE_NONE && proc_getpid(current_proc()) != 0) { |
476 | bool is_management = false; |
477 | |
478 | ifnet_head_lock_shared(); |
479 | if (IF_INDEX_IN_RANGE(ifscope)) { |
480 | ifp = ifindex2ifnet[ifscope]; |
481 | if (ifp != NULL && IFNET_IS_MANAGEMENT(ifp)) { |
482 | is_management = true; |
483 | } |
484 | } |
485 | ifnet_head_done(); |
486 | |
487 | if (is_management && !IOCurrentTaskHasEntitlement(MANAGEMENT_CONTROL_ENTITLEMENT)) { |
488 | senderr(EINVAL); |
489 | } |
490 | } |
491 | |
492 | /* |
493 | * RTF_PROXY can only be set internally from within the kernel. |
494 | */ |
495 | if (rtm->rtm_flags & RTF_PROXY) { |
496 | senderr(EINVAL); |
497 | } |
498 | |
499 | /* |
500 | * For AF_INET, always zero out the embedded scope ID. If this is |
501 | * a scoped request, it must be done explicitly by setting RTF_IFSCOPE |
502 | * flag and the corresponding rtm_index value. This is to prevent |
503 | * false interpretation of the scope ID because it's using the sin_zero |
504 | * field, which might not be properly cleared by the requestor. |
505 | */ |
506 | if (info.rti_info[RTAX_DST]->sa_family == AF_INET) { |
507 | sin_set_ifscope(info.rti_info[RTAX_DST], IFSCOPE_NONE); |
508 | } |
509 | if (info.rti_info[RTAX_GATEWAY] != NULL && |
510 | info.rti_info[RTAX_GATEWAY]->sa_family == AF_INET) { |
511 | sin_set_ifscope(info.rti_info[RTAX_GATEWAY], IFSCOPE_NONE); |
512 | } |
513 | if (info.rti_info[RTAX_DST]->sa_family == AF_INET6 && |
514 | IN6_IS_SCOPE_EMBED(&SIN6(info.rti_info[RTAX_DST])->sin6_addr) && |
515 | !IN6_IS_ADDR_UNICAST_BASED_MULTICAST(&SIN6(info.rti_info[RTAX_DST])->sin6_addr) && |
516 | SIN6(info.rti_info[RTAX_DST])->sin6_scope_id == 0) { |
517 | SIN6(info.rti_info[RTAX_DST])->sin6_scope_id = ntohs(SIN6(info.rti_info[RTAX_DST])->sin6_addr.s6_addr16[1]); |
518 | SIN6(info.rti_info[RTAX_DST])->sin6_addr.s6_addr16[1] = 0; |
519 | } |
520 | |
521 | switch (rtm->rtm_type) { |
522 | case RTM_ADD: |
523 | if (info.rti_info[RTAX_GATEWAY] == NULL) { |
524 | senderr(EINVAL); |
525 | } |
526 | |
527 | error = rtrequest_scoped_locked(RTM_ADD, |
528 | info.rti_info[RTAX_DST], info.rti_info[RTAX_GATEWAY], |
529 | info.rti_info[RTAX_NETMASK], rtm->rtm_flags, &saved_nrt, |
530 | ifscope); |
531 | if (error == 0 && saved_nrt != NULL) { |
532 | RT_LOCK(saved_nrt); |
533 | /* |
534 | * If the route request specified an interface with |
535 | * IFA and/or IFP, we set the requested interface on |
536 | * the route with rt_setif. It would be much better |
537 | * to do this inside rtrequest, but that would |
538 | * require passing the desired interface, in some |
539 | * form, to rtrequest. Since rtrequest is called in |
540 | * so many places (roughly 40 in our source), adding |
541 | * a parameter is to much for us to swallow; this is |
542 | * something for the FreeBSD developers to tackle. |
543 | * Instead, we let rtrequest compute whatever |
544 | * interface it wants, then come in behind it and |
545 | * stick in the interface that we really want. This |
546 | * works reasonably well except when rtrequest can't |
547 | * figure out what interface to use (with |
548 | * ifa_withroute) and returns ENETUNREACH. Ideally |
549 | * it shouldn't matter if rtrequest can't figure out |
550 | * the interface if we're going to explicitly set it |
551 | * ourselves anyway. But practically we can't |
552 | * recover here because rtrequest will not do any of |
553 | * the work necessary to add the route if it can't |
554 | * find an interface. As long as there is a default |
555 | * route that leads to some interface, rtrequest will |
556 | * find an interface, so this problem should be |
557 | * rarely encountered. |
558 | * dwiggins@bbn.com |
559 | */ |
560 | rt_setif(saved_nrt, |
561 | info.rti_info[RTAX_IFP], info.rti_info[RTAX_IFA], |
562 | info.rti_info[RTAX_GATEWAY], ifscope); |
563 | (void)rt_setmetrics(rtm->rtm_inits, &rtm->rtm_rmx, saved_nrt); |
564 | saved_nrt->rt_rmx.rmx_locks &= ~(rtm->rtm_inits); |
565 | saved_nrt->rt_rmx.rmx_locks |= |
566 | (rtm->rtm_inits & rtm->rtm_rmx.rmx_locks); |
567 | saved_nrt->rt_genmask = info.rti_info[RTAX_GENMASK]; |
568 | RT_REMREF_LOCKED(saved_nrt); |
569 | RT_UNLOCK(saved_nrt); |
570 | } |
571 | break; |
572 | |
573 | case RTM_DELETE: |
574 | error = rtrequest_scoped_locked(RTM_DELETE, |
575 | info.rti_info[RTAX_DST], info.rti_info[RTAX_GATEWAY], |
576 | info.rti_info[RTAX_NETMASK], rtm->rtm_flags, &saved_nrt, |
577 | ifscope); |
578 | if (error == 0) { |
579 | rt = saved_nrt; |
580 | RT_LOCK(rt); |
581 | goto report; |
582 | } |
583 | break; |
584 | |
585 | case RTM_GET: |
586 | case RTM_CHANGE: |
587 | case RTM_LOCK: |
588 | rnh = rt_tables[info.rti_info[RTAX_DST]->sa_family]; |
589 | if (rnh == NULL) { |
590 | senderr(EAFNOSUPPORT); |
591 | } |
592 | /* |
593 | * Lookup the best match based on the key-mask pair; |
594 | * callee adds a reference and checks for root node. |
595 | */ |
596 | rt = rt_lookup(TRUE, info.rti_info[RTAX_DST], |
597 | info.rti_info[RTAX_NETMASK], rnh, ifscope); |
598 | if (rt == NULL) { |
599 | senderr(ESRCH); |
600 | } |
601 | RT_LOCK(rt); |
602 | |
603 | /* |
604 | * Holding rnh_lock here prevents the possibility of |
605 | * ifa from changing (e.g. in_ifinit), so it is safe |
606 | * to access its ifa_addr (down below) without locking. |
607 | */ |
608 | switch (rtm->rtm_type) { |
609 | case RTM_GET: { |
610 | kauth_cred_t cred __single; |
611 | kauth_cred_t* credp; |
612 | struct ifaddr *ifa2; |
613 | report: |
614 | cred = current_cached_proc_cred(PROC_NULL); |
615 | credp = &cred; |
616 | |
617 | ifa2 = NULL; |
618 | RT_LOCK_ASSERT_HELD(rt); |
619 | info.rti_info[RTAX_DST] = rt_key(rt); |
620 | dst_sa_family = info.rti_info[RTAX_DST]->sa_family; |
621 | info.rti_info[RTAX_GATEWAY] = rt->rt_gateway; |
622 | info.rti_info[RTAX_NETMASK] = rt_mask(rt); |
623 | info.rti_info[RTAX_GENMASK] = rt->rt_genmask; |
624 | if (rtm->rtm_addrs & (RTA_IFP | RTA_IFA)) { |
625 | ifp = rt->rt_ifp; |
626 | if (ifp != NULL) { |
627 | ifnet_lock_shared(ifp); |
628 | ifa2 = ifp->if_lladdr; |
629 | info.rti_info[RTAX_IFP] = |
630 | ifa2->ifa_addr; |
631 | ifa_addref(ifa: ifa2); |
632 | ifnet_lock_done(ifp); |
633 | info.rti_info[RTAX_IFA] = |
634 | rt->rt_ifa->ifa_addr; |
635 | rtm->rtm_index = ifp->if_index; |
636 | } else { |
637 | info.rti_info[RTAX_IFP] = NULL; |
638 | info.rti_info[RTAX_IFA] = NULL; |
639 | } |
640 | } else if ((ifp = rt->rt_ifp) != NULL) { |
641 | rtm->rtm_index = ifp->if_index; |
642 | } |
643 | if (ifa2 != NULL) { |
644 | IFA_LOCK(ifa2); |
645 | } |
646 | len = rt_msg2(rtm->rtm_type, &info, NULL, NULL, credp); |
647 | if (ifa2 != NULL) { |
648 | IFA_UNLOCK(ifa2); |
649 | } |
650 | struct rt_msghdr *out_rtm; |
651 | out_rtm = kalloc_data(len, Z_WAITOK); |
652 | if (out_rtm == NULL) { |
653 | RT_UNLOCK(rt); |
654 | if (ifa2 != NULL) { |
655 | ifa_remref(ifa: ifa2); |
656 | } |
657 | senderr(ENOBUFS); |
658 | } |
659 | Bcopy(rtm, out_rtm, sizeof(struct rt_msghdr)); |
660 | if (ifa2 != NULL) { |
661 | IFA_LOCK(ifa2); |
662 | } |
663 | (void) rt_msg2(out_rtm->rtm_type, &info, (caddr_t)out_rtm, |
664 | NULL, &cred); |
665 | if (ifa2 != NULL) { |
666 | IFA_UNLOCK(ifa2); |
667 | } |
668 | kfree_data(rtm, rtm_len); |
669 | rtm = out_rtm; |
670 | rtm_len = len; |
671 | rtm->rtm_flags = rt->rt_flags; |
672 | rt_getmetrics(rt, &rtm->rtm_rmx); |
673 | rtm->rtm_addrs = info.rti_addrs; |
674 | if (ifa2 != NULL) { |
675 | ifa_remref(ifa: ifa2); |
676 | } |
677 | |
678 | break; |
679 | } |
680 | |
681 | case RTM_CHANGE: |
682 | is_router = (rt->rt_flags & RTF_ROUTER) ? TRUE : FALSE; |
683 | |
684 | if (info.rti_info[RTAX_GATEWAY] != NULL && |
685 | (error = rt_setgate(rt, rt_key(rt), |
686 | info.rti_info[RTAX_GATEWAY]))) { |
687 | int tmp = error; |
688 | RT_UNLOCK(rt); |
689 | senderr(tmp); |
690 | } |
691 | /* |
692 | * If they tried to change things but didn't specify |
693 | * the required gateway, then just use the old one. |
694 | * This can happen if the user tries to change the |
695 | * flags on the default route without changing the |
696 | * default gateway. Changing flags still doesn't work. |
697 | */ |
698 | if ((rt->rt_flags & RTF_GATEWAY) && |
699 | info.rti_info[RTAX_GATEWAY] == NULL) { |
700 | info.rti_info[RTAX_GATEWAY] = rt->rt_gateway; |
701 | } |
702 | |
703 | /* |
704 | * On Darwin, we call rt_setif which contains the |
705 | * equivalent to the code found at this very spot |
706 | * in BSD. |
707 | */ |
708 | rt_setif(rt, |
709 | info.rti_info[RTAX_IFP], info.rti_info[RTAX_IFA], |
710 | info.rti_info[RTAX_GATEWAY], ifscope); |
711 | |
712 | if ((error = rt_setmetrics(rtm->rtm_inits, |
713 | &rtm->rtm_rmx, rt))) { |
714 | int tmp = error; |
715 | RT_UNLOCK(rt); |
716 | senderr(tmp); |
717 | } |
718 | if (info.rti_info[RTAX_GENMASK]) { |
719 | rt->rt_genmask = info.rti_info[RTAX_GENMASK]; |
720 | } |
721 | |
722 | /* |
723 | * Enqueue work item to invoke callback for this route entry |
724 | * This may not be needed always, but for now issue it anytime |
725 | * RTM_CHANGE gets called. |
726 | */ |
727 | route_event_enqueue_nwk_wq_entry(rt, NULL, ROUTE_ENTRY_REFRESH, NULL, TRUE); |
728 | /* |
729 | * If the route is for a router, walk the tree to send refresh |
730 | * event to protocol cloned entries |
731 | */ |
732 | if (is_router) { |
733 | struct route_event rt_ev; |
734 | route_event_init(p_route_ev: &rt_ev, rt, NULL, route_ev_code: ROUTE_ENTRY_REFRESH); |
735 | RT_UNLOCK(rt); |
736 | (void) rnh->rnh_walktree(rnh, route_event_walktree, (void *)&rt_ev); |
737 | RT_LOCK(rt); |
738 | } |
739 | OS_FALLTHROUGH; |
740 | case RTM_LOCK: |
741 | rt->rt_rmx.rmx_locks &= ~(rtm->rtm_inits); |
742 | rt->rt_rmx.rmx_locks |= |
743 | (rtm->rtm_inits & rtm->rtm_rmx.rmx_locks); |
744 | break; |
745 | } |
746 | RT_UNLOCK(rt); |
747 | break; |
748 | default: |
749 | senderr(EOPNOTSUPP); |
750 | } |
751 | flush: |
752 | if (rtm != NULL) { |
753 | if (error) { |
754 | rtm->rtm_errno = error; |
755 | } else { |
756 | rtm->rtm_flags |= RTF_DONE; |
757 | } |
758 | } |
759 | if (rt != NULL) { |
760 | RT_LOCK_ASSERT_NOTHELD(rt); |
761 | rtfree_locked(rt); |
762 | } |
763 | lck_mtx_unlock(rnh_lock); |
764 | |
765 | /* relock the socket now */ |
766 | socket_lock(so, refcount: 0); |
767 | /* |
768 | * Check to see if we don't want our own messages. |
769 | */ |
770 | if (!(so->so_options & SO_USELOOPBACK)) { |
771 | if (route_cb.any_count <= 1) { |
772 | kfree_data(rtm, rtm_len); |
773 | m_freem(m); |
774 | return error; |
775 | } |
776 | /* There is another listener, so construct message */ |
777 | rp = sotorawcb(so); |
778 | } |
779 | if (rtm != NULL) { |
780 | m_copyback(m, 0, rtm->rtm_msglen, (caddr_t)rtm); |
781 | if (m->m_pkthdr.len < rtm->rtm_msglen) { |
782 | m_freem(m); |
783 | m = NULL; |
784 | } else if (m->m_pkthdr.len > rtm->rtm_msglen) { |
785 | m_adj(m, rtm->rtm_msglen - m->m_pkthdr.len); |
786 | } |
787 | kfree_data(rtm, rtm_len); |
788 | } |
789 | if (sendonlytoself && m != NULL) { |
790 | error = 0; |
791 | if (sbappendaddr(sb: &so->so_rcv, asa: &route_src, m0: m, |
792 | NULL, error_out: &error) != 0) { |
793 | sorwakeup(so); |
794 | } |
795 | if (error) { |
796 | return error; |
797 | } |
798 | } else { |
799 | struct sockproto route_proto = { .sp_family = PF_ROUTE, .sp_protocol = 0 }; |
800 | if (rp != NULL) { |
801 | rp->rcb_proto.sp_family = 0; /* Avoid us */ |
802 | } |
803 | if (dst_sa_family != 0) { |
804 | route_proto.sp_protocol = dst_sa_family; |
805 | } |
806 | if (m != NULL) { |
807 | socket_unlock(so, refcount: 0); |
808 | raw_input(m, &route_proto, &route_src, &route_dst); |
809 | socket_lock(so, refcount: 0); |
810 | } |
811 | if (rp != NULL) { |
812 | rp->rcb_proto.sp_family = PF_ROUTE; |
813 | } |
814 | } |
815 | return error; |
816 | } |
817 | |
818 | void |
819 | rt_setexpire(struct rtentry *rt, uint64_t expiry) |
820 | { |
821 | /* set both rt_expire and rmx_expire */ |
822 | rt->rt_expire = expiry; |
823 | if (expiry) { |
824 | rt->rt_rmx.rmx_expire = |
825 | (int32_t)(expiry + rt->base_calendartime - |
826 | rt->base_uptime); |
827 | } else { |
828 | rt->rt_rmx.rmx_expire = 0; |
829 | } |
830 | } |
831 | |
832 | static int |
833 | rt_setmetrics(u_int32_t which, struct rt_metrics *in, struct rtentry *out) |
834 | { |
835 | if (!(which & RTV_REFRESH_HOST)) { |
836 | struct timeval caltime; |
837 | getmicrotime(&caltime); |
838 | #define metric(f, e) if (which & (f)) out->rt_rmx.e = in->e; |
839 | metric(RTV_RPIPE, rmx_recvpipe); |
840 | metric(RTV_SPIPE, rmx_sendpipe); |
841 | metric(RTV_SSTHRESH, rmx_ssthresh); |
842 | metric(RTV_RTT, rmx_rtt); |
843 | metric(RTV_RTTVAR, rmx_rttvar); |
844 | metric(RTV_HOPCOUNT, rmx_hopcount); |
845 | metric(RTV_MTU, rmx_mtu); |
846 | metric(RTV_EXPIRE, rmx_expire); |
847 | #undef metric |
848 | if (out->rt_rmx.rmx_expire > 0) { |
849 | /* account for system time change */ |
850 | getmicrotime(&caltime); |
851 | out->base_calendartime += |
852 | NET_CALCULATE_CLOCKSKEW(caltime, |
853 | out->base_calendartime, |
854 | net_uptime(), out->base_uptime); |
855 | rt_setexpire(rt: out, |
856 | expiry: out->rt_rmx.rmx_expire - |
857 | out->base_calendartime + |
858 | out->base_uptime); |
859 | } else { |
860 | rt_setexpire(rt: out, expiry: 0); |
861 | } |
862 | |
863 | VERIFY(out->rt_expire == 0 || out->rt_rmx.rmx_expire != 0); |
864 | VERIFY(out->rt_expire != 0 || out->rt_rmx.rmx_expire == 0); |
865 | } else { |
866 | /* Only RTV_REFRESH_HOST must be set */ |
867 | if ((which & ~RTV_REFRESH_HOST) || |
868 | (out->rt_flags & RTF_STATIC) || |
869 | !(out->rt_flags & RTF_LLINFO)) { |
870 | return EINVAL; |
871 | } |
872 | |
873 | if (out->rt_llinfo_refresh == NULL) { |
874 | return ENOTSUP; |
875 | } |
876 | |
877 | out->rt_llinfo_refresh(out); |
878 | } |
879 | return 0; |
880 | } |
881 | |
882 | static void |
883 | rt_getmetrics(struct rtentry *in, struct rt_metrics *out) |
884 | { |
885 | struct timeval caltime; |
886 | |
887 | VERIFY(in->rt_expire == 0 || in->rt_rmx.rmx_expire != 0); |
888 | VERIFY(in->rt_expire != 0 || in->rt_rmx.rmx_expire == 0); |
889 | |
890 | *out = in->rt_rmx; |
891 | |
892 | if (in->rt_expire != 0) { |
893 | /* account for system time change */ |
894 | getmicrotime(&caltime); |
895 | |
896 | in->base_calendartime += |
897 | NET_CALCULATE_CLOCKSKEW(caltime, |
898 | in->base_calendartime, net_uptime(), in->base_uptime); |
899 | |
900 | out->rmx_expire = (int32_t)(in->base_calendartime + |
901 | in->rt_expire - in->base_uptime); |
902 | } else { |
903 | out->rmx_expire = 0; |
904 | } |
905 | } |
906 | |
907 | /* |
908 | * Set route's interface given info.rti_info[RTAX_IFP], |
909 | * info.rti_info[RTAX_IFA], and gateway. |
910 | */ |
911 | static void |
912 | rt_setif(struct rtentry *rt, struct sockaddr *Ifpaddr, struct sockaddr *Ifaaddr, |
913 | struct sockaddr *Gate, unsigned int ifscope) |
914 | { |
915 | struct ifaddr *ifa = NULL; |
916 | struct ifnet *ifp = NULL; |
917 | void (*ifa_rtrequest)(int, struct rtentry *, struct sockaddr *); |
918 | |
919 | LCK_MTX_ASSERT(rnh_lock, LCK_MTX_ASSERT_OWNED); |
920 | |
921 | RT_LOCK_ASSERT_HELD(rt); |
922 | |
923 | /* Don't update a defunct route */ |
924 | if (rt->rt_flags & RTF_CONDEMNED) { |
925 | return; |
926 | } |
927 | |
928 | /* Add an extra ref for ourselves */ |
929 | RT_ADDREF_LOCKED(rt); |
930 | |
931 | /* Become a regular mutex, just in case */ |
932 | RT_CONVERT_LOCK(rt); |
933 | |
934 | /* |
935 | * New gateway could require new ifaddr, ifp; flags may also |
936 | * be different; ifp may be specified by ll sockaddr when |
937 | * protocol address is ambiguous. |
938 | */ |
939 | if (Ifpaddr && (ifa = ifa_ifwithnet_scoped(Ifpaddr, ifscope)) && |
940 | (ifp = ifa->ifa_ifp) && (Ifaaddr || Gate)) { |
941 | ifa_remref(ifa); |
942 | ifa = ifaof_ifpforaddr(Ifaaddr ? Ifaaddr : Gate, ifp); |
943 | } else { |
944 | if (ifa != NULL) { |
945 | ifa_remref(ifa); |
946 | ifa = NULL; |
947 | } |
948 | if (Ifpaddr && (ifp = if_withname(Ifpaddr))) { |
949 | if (Gate) { |
950 | ifa = ifaof_ifpforaddr(Gate, ifp); |
951 | } else { |
952 | ifnet_lock_shared(ifp); |
953 | ifa = TAILQ_FIRST(&ifp->if_addrhead); |
954 | if (ifa != NULL) { |
955 | ifa_addref(ifa); |
956 | } |
957 | ifnet_lock_done(ifp); |
958 | } |
959 | } else if (Ifaaddr && |
960 | (ifa = ifa_ifwithaddr_scoped(Ifaaddr, ifscope))) { |
961 | ifp = ifa->ifa_ifp; |
962 | } else if (Gate != NULL) { |
963 | /* |
964 | * Safe to drop rt_lock and use rt_key, since holding |
965 | * rnh_lock here prevents another thread from calling |
966 | * rt_setgate() on this route. We cannot hold the |
967 | * lock across ifa_ifwithroute since the lookup done |
968 | * by that routine may point to the same route. |
969 | */ |
970 | RT_UNLOCK(rt); |
971 | if ((ifa = ifa_ifwithroute_scoped_locked(rt->rt_flags, |
972 | rt_key(rt), Gate, ifscope)) != NULL) { |
973 | ifp = ifa->ifa_ifp; |
974 | } |
975 | RT_LOCK(rt); |
976 | /* Don't update a defunct route */ |
977 | if (rt->rt_flags & RTF_CONDEMNED) { |
978 | if (ifa != NULL) { |
979 | ifa_remref(ifa); |
980 | } |
981 | /* Release extra ref */ |
982 | RT_REMREF_LOCKED(rt); |
983 | return; |
984 | } |
985 | } |
986 | } |
987 | |
988 | /* trigger route cache reevaluation */ |
989 | if (rt_key(rt)->sa_family == AF_INET) { |
990 | routegenid_inet_update(); |
991 | } else if (rt_key(rt)->sa_family == AF_INET6) { |
992 | routegenid_inet6_update(); |
993 | } |
994 | |
995 | if (ifa != NULL) { |
996 | struct ifaddr *oifa = rt->rt_ifa; |
997 | if (oifa != ifa) { |
998 | if (oifa != NULL) { |
999 | IFA_LOCK_SPIN(oifa); |
1000 | ifa_rtrequest = oifa->ifa_rtrequest; |
1001 | IFA_UNLOCK(oifa); |
1002 | if (ifa_rtrequest != NULL) { |
1003 | ifa_rtrequest(RTM_DELETE, rt, Gate); |
1004 | } |
1005 | } |
1006 | rtsetifa(rt, ifa); |
1007 | |
1008 | if (rt->rt_ifp != ifp) { |
1009 | /* |
1010 | * Purge any link-layer info caching. |
1011 | */ |
1012 | if (rt->rt_llinfo_purge != NULL) { |
1013 | rt->rt_llinfo_purge(rt); |
1014 | } |
1015 | |
1016 | /* |
1017 | * Adjust route ref count for the interfaces. |
1018 | */ |
1019 | if (rt->rt_if_ref_fn != NULL) { |
1020 | rt->rt_if_ref_fn(ifp, 1); |
1021 | rt->rt_if_ref_fn(rt->rt_ifp, -1); |
1022 | } |
1023 | } |
1024 | rt->rt_ifp = ifp; |
1025 | /* |
1026 | * If this is the (non-scoped) default route, record |
1027 | * the interface index used for the primary ifscope. |
1028 | */ |
1029 | if (rt_primary_default(rt, rt_key(rt))) { |
1030 | set_primary_ifscope(rt_key(rt)->sa_family, |
1031 | rt->rt_ifp->if_index); |
1032 | } |
1033 | /* |
1034 | * If rmx_mtu is not locked, update it |
1035 | * to the MTU used by the new interface. |
1036 | */ |
1037 | if (!(rt->rt_rmx.rmx_locks & RTV_MTU)) { |
1038 | rt->rt_rmx.rmx_mtu = rt->rt_ifp->if_mtu; |
1039 | if (rt_key(rt)->sa_family == AF_INET && |
1040 | INTF_ADJUST_MTU_FOR_CLAT46(ifp)) { |
1041 | rt->rt_rmx.rmx_mtu = IN6_LINKMTU(rt->rt_ifp); |
1042 | /* Further adjust the size for CLAT46 expansion */ |
1043 | rt->rt_rmx.rmx_mtu -= CLAT46_HDR_EXPANSION_OVERHD; |
1044 | } |
1045 | } |
1046 | |
1047 | if (rt->rt_ifa != NULL) { |
1048 | IFA_LOCK_SPIN(rt->rt_ifa); |
1049 | ifa_rtrequest = rt->rt_ifa->ifa_rtrequest; |
1050 | IFA_UNLOCK(rt->rt_ifa); |
1051 | if (ifa_rtrequest != NULL) { |
1052 | ifa_rtrequest(RTM_ADD, rt, Gate); |
1053 | } |
1054 | } |
1055 | ifa_remref(ifa); |
1056 | /* Release extra ref */ |
1057 | RT_REMREF_LOCKED(rt); |
1058 | return; |
1059 | } |
1060 | ifa_remref(ifa); |
1061 | ifa = NULL; |
1062 | } |
1063 | |
1064 | /* XXX: to reset gateway to correct value, at RTM_CHANGE */ |
1065 | if (rt->rt_ifa != NULL) { |
1066 | IFA_LOCK_SPIN(rt->rt_ifa); |
1067 | ifa_rtrequest = rt->rt_ifa->ifa_rtrequest; |
1068 | IFA_UNLOCK(rt->rt_ifa); |
1069 | if (ifa_rtrequest != NULL) { |
1070 | ifa_rtrequest(RTM_ADD, rt, Gate); |
1071 | } |
1072 | } |
1073 | |
1074 | /* |
1075 | * Workaround for local address routes pointing to the loopback |
1076 | * interface added by configd, until <rdar://problem/12970142>. |
1077 | */ |
1078 | if ((rt->rt_ifp->if_flags & IFF_LOOPBACK) && |
1079 | (rt->rt_flags & RTF_HOST) && rt->rt_ifa->ifa_ifp == rt->rt_ifp) { |
1080 | ifa = ifa_ifwithaddr(rt_key(rt)); |
1081 | if (ifa != NULL) { |
1082 | if (ifa != rt->rt_ifa) { |
1083 | rtsetifa(rt, ifa); |
1084 | } |
1085 | ifa_remref(ifa); |
1086 | } |
1087 | } |
1088 | |
1089 | /* Release extra ref */ |
1090 | RT_REMREF_LOCKED(rt); |
1091 | } |
1092 | |
1093 | /* |
1094 | * Extract the addresses of the passed sockaddrs. |
1095 | * Do a little sanity checking so as to avoid bad memory references. |
1096 | * This data is derived straight from userland. |
1097 | */ |
1098 | static int |
1099 | rt_xaddrs(caddr_t cp __ended_by(cplim), caddr_t cplim, struct rt_addrinfo *rtinfo) |
1100 | { |
1101 | struct sockaddr *sa; |
1102 | int i; |
1103 | |
1104 | bzero(s: rtinfo->rti_info, n: sizeof(rtinfo->rti_info)); |
1105 | for (i = 0; (i < RTAX_MAX) && (cp < cplim); i++) { |
1106 | if ((rtinfo->rti_addrs & (1 << i)) == 0) { |
1107 | continue; |
1108 | } |
1109 | sa = SA(cp); |
1110 | /* |
1111 | * It won't fit. |
1112 | */ |
1113 | if ((cp + sa->sa_len) > cplim) { |
1114 | return EINVAL; |
1115 | } |
1116 | if (sa->sa_len > sizeof(struct sockaddr_storage)) { |
1117 | return EINVAL; |
1118 | } |
1119 | /* |
1120 | * there are no more.. quit now |
1121 | * If there are more bits, they are in error. |
1122 | * I've seen this. route(1) can evidently generate these. |
1123 | * This causes kernel to core dump. |
1124 | * for compatibility, If we see this, point to a safe address. |
1125 | */ |
1126 | if (sa->sa_len == 0) { |
1127 | rtinfo->rti_info[i] = &sa_zero; |
1128 | return 0; /* should be EINVAL but for compat */ |
1129 | } |
1130 | if (sa->sa_len < offsetof(struct sockaddr, sa_data)) { |
1131 | return EINVAL; |
1132 | } |
1133 | /* accept it */ |
1134 | rtinfo->rti_info[i] = sa; |
1135 | ADVANCE32(cp, sa, cplim); |
1136 | } |
1137 | return 0; |
1138 | } |
1139 | |
1140 | static struct mbuf * |
1141 | rt_msg1(u_char type, struct rt_addrinfo *rtinfo) |
1142 | { |
1143 | struct rt_msghdr *rtm; |
1144 | struct mbuf *m; |
1145 | int i; |
1146 | int len, dlen, off; |
1147 | |
1148 | switch (type) { |
1149 | case RTM_DELADDR: |
1150 | case RTM_NEWADDR: |
1151 | len = sizeof(struct ifa_msghdr); |
1152 | break; |
1153 | |
1154 | case RTM_DELMADDR: |
1155 | case RTM_NEWMADDR: |
1156 | len = sizeof(struct ifma_msghdr); |
1157 | break; |
1158 | |
1159 | case RTM_IFINFO: |
1160 | len = sizeof(struct if_msghdr); |
1161 | break; |
1162 | |
1163 | default: |
1164 | len = sizeof(struct rt_msghdr); |
1165 | } |
1166 | m = m_gethdr(M_DONTWAIT, MT_DATA); |
1167 | if (m && len > MHLEN) { |
1168 | MCLGET(m, M_DONTWAIT); |
1169 | if (!(m->m_flags & M_EXT)) { |
1170 | m_free(m); |
1171 | m = NULL; |
1172 | } |
1173 | } |
1174 | if (m == NULL) { |
1175 | return NULL; |
1176 | } |
1177 | m->m_pkthdr.len = m->m_len = len; |
1178 | m->m_pkthdr.rcvif = NULL; |
1179 | rtm = mtod(m, struct rt_msghdr *); |
1180 | bzero(s: (caddr_t)rtm, n: len); |
1181 | off = len; |
1182 | for (i = 0; i < RTAX_MAX; i++) { |
1183 | struct sockaddr *sa, *hint; |
1184 | uint8_t ssbuf[SOCK_MAXADDRLEN + 1]; |
1185 | |
1186 | /* |
1187 | * Make sure to accomodate the largest possible size of sa_len. |
1188 | */ |
1189 | _CASSERT(sizeof(ssbuf) == (SOCK_MAXADDRLEN + 1)); |
1190 | |
1191 | if ((sa = rtinfo->rti_info[i]) == NULL) { |
1192 | continue; |
1193 | } |
1194 | |
1195 | switch (i) { |
1196 | case RTAX_DST: |
1197 | case RTAX_NETMASK: |
1198 | if ((hint = rtinfo->rti_info[RTAX_DST]) == NULL) { |
1199 | hint = rtinfo->rti_info[RTAX_IFA]; |
1200 | } |
1201 | |
1202 | /* Scrub away any trace of embedded interface scope */ |
1203 | sa = rtm_scrub(type, i, hint, sa, buf: &ssbuf, |
1204 | buflen: sizeof(ssbuf), NULL); |
1205 | break; |
1206 | |
1207 | default: |
1208 | break; |
1209 | } |
1210 | |
1211 | rtinfo->rti_addrs |= (1 << i); |
1212 | dlen = sa->sa_len; |
1213 | m_copyback(m, off, dlen, (caddr_t)sa); |
1214 | len = off + dlen; |
1215 | off += ROUNDUP32(dlen); |
1216 | } |
1217 | if (m->m_pkthdr.len != len) { |
1218 | m_freem(m); |
1219 | return NULL; |
1220 | } |
1221 | rtm->rtm_msglen = (u_short)len; |
1222 | rtm->rtm_version = RTM_VERSION; |
1223 | rtm->rtm_type = type; |
1224 | return m; |
1225 | } |
1226 | |
1227 | static int |
1228 | rt_msg2(u_char type, struct rt_addrinfo *rtinfo, caddr_t cp, struct walkarg *w, |
1229 | kauth_cred_t* credp) |
1230 | { |
1231 | int i; |
1232 | int len, dlen, rlen, second_time = 0; |
1233 | caddr_t cp0; |
1234 | |
1235 | rtinfo->rti_addrs = 0; |
1236 | again: |
1237 | switch (type) { |
1238 | case RTM_DELADDR: |
1239 | case RTM_NEWADDR: |
1240 | len = sizeof(struct ifa_msghdr); |
1241 | break; |
1242 | |
1243 | case RTM_DELMADDR: |
1244 | case RTM_NEWMADDR: |
1245 | len = sizeof(struct ifma_msghdr); |
1246 | break; |
1247 | |
1248 | case RTM_IFINFO: |
1249 | len = sizeof(struct if_msghdr); |
1250 | break; |
1251 | |
1252 | case RTM_IFINFO2: |
1253 | len = sizeof(struct if_msghdr2); |
1254 | break; |
1255 | |
1256 | case RTM_NEWMADDR2: |
1257 | len = sizeof(struct ifma_msghdr2); |
1258 | break; |
1259 | |
1260 | case RTM_GET_EXT: |
1261 | len = sizeof(struct rt_msghdr_ext); |
1262 | break; |
1263 | |
1264 | case RTM_GET2: |
1265 | len = sizeof(struct rt_msghdr2); |
1266 | break; |
1267 | |
1268 | default: |
1269 | len = sizeof(struct rt_msghdr); |
1270 | } |
1271 | cp0 = cp; |
1272 | if (cp0) { |
1273 | cp += len; |
1274 | } |
1275 | for (i = 0; i < RTAX_MAX; i++) { |
1276 | struct sockaddr *sa, *hint; |
1277 | uint8_t ssbuf[SOCK_MAXADDRLEN + 1]; |
1278 | |
1279 | /* |
1280 | * Make sure to accomodate the largest possible size of sa_len. |
1281 | */ |
1282 | _CASSERT(sizeof(ssbuf) == (SOCK_MAXADDRLEN + 1)); |
1283 | |
1284 | if ((sa = rtinfo->rti_info[i]) == NULL) { |
1285 | continue; |
1286 | } |
1287 | |
1288 | switch (i) { |
1289 | case RTAX_DST: |
1290 | case RTAX_NETMASK: |
1291 | if ((hint = rtinfo->rti_info[RTAX_DST]) == NULL) { |
1292 | hint = rtinfo->rti_info[RTAX_IFA]; |
1293 | } |
1294 | |
1295 | /* Scrub away any trace of embedded interface scope */ |
1296 | sa = rtm_scrub(type, i, hint, sa, buf: &ssbuf, |
1297 | buflen: sizeof(ssbuf), NULL); |
1298 | break; |
1299 | case RTAX_GATEWAY: |
1300 | case RTAX_IFP: |
1301 | sa = rtm_scrub(type, i, NULL, sa, buf: &ssbuf, |
1302 | buflen: sizeof(ssbuf), credp); |
1303 | break; |
1304 | |
1305 | default: |
1306 | break; |
1307 | } |
1308 | |
1309 | rtinfo->rti_addrs |= (1 << i); |
1310 | dlen = sa->sa_len; |
1311 | rlen = ROUNDUP32(dlen); |
1312 | if (cp) { |
1313 | bcopy(src: (caddr_t)sa, dst: cp, n: (size_t)dlen); |
1314 | if (dlen != rlen) { |
1315 | bzero(s: cp + dlen, n: rlen - dlen); |
1316 | } |
1317 | cp += rlen; |
1318 | } |
1319 | len += rlen; |
1320 | } |
1321 | if (cp == NULL && w != NULL && !second_time) { |
1322 | struct walkarg *rw = w; |
1323 | |
1324 | if (rw->w_req != NULL) { |
1325 | if (rw->w_tmemsize < len) { |
1326 | if (rw->w_tmem != NULL) { |
1327 | kfree_data(rw->w_tmem, rw->w_tmemsize); |
1328 | } |
1329 | rw->w_tmem = (caddr_t) kalloc_data(len, Z_ZERO | Z_WAITOK); |
1330 | if (rw->w_tmem != NULL) { |
1331 | rw->w_tmemsize = len; |
1332 | } |
1333 | } |
1334 | if (rw->w_tmem != NULL) { |
1335 | cp = rw->w_tmem; |
1336 | second_time = 1; |
1337 | goto again; |
1338 | } |
1339 | } |
1340 | } |
1341 | if (cp) { |
1342 | struct rt_msghdr *rtm = (struct rt_msghdr *)(void *)cp0; |
1343 | |
1344 | rtm->rtm_version = RTM_VERSION; |
1345 | rtm->rtm_type = type; |
1346 | rtm->rtm_msglen = (u_short)len; |
1347 | } |
1348 | return len; |
1349 | } |
1350 | |
1351 | /* |
1352 | * This routine is called to generate a message from the routing |
1353 | * socket indicating that a redirect has occurred, a routing lookup |
1354 | * has failed, or that a protocol has detected timeouts to a particular |
1355 | * destination. |
1356 | */ |
1357 | void |
1358 | rt_missmsg(u_char type, struct rt_addrinfo *rtinfo, int flags, int error) |
1359 | { |
1360 | struct rt_msghdr *rtm; |
1361 | struct mbuf *m; |
1362 | struct sockaddr *sa = rtinfo->rti_info[RTAX_DST]; |
1363 | struct sockproto route_proto = { .sp_family = PF_ROUTE, .sp_protocol = 0 }; |
1364 | |
1365 | if (route_cb.any_count == 0) { |
1366 | return; |
1367 | } |
1368 | m = rt_msg1(type, rtinfo); |
1369 | if (m == NULL) { |
1370 | return; |
1371 | } |
1372 | rtm = mtod(m, struct rt_msghdr *); |
1373 | rtm->rtm_flags = RTF_DONE | flags; |
1374 | rtm->rtm_errno = error; |
1375 | rtm->rtm_addrs = rtinfo->rti_addrs; |
1376 | route_proto.sp_family = sa ? sa->sa_family : 0; |
1377 | raw_input(m, &route_proto, &route_src, &route_dst); |
1378 | } |
1379 | |
1380 | /* |
1381 | * This routine is called to generate a message from the routing |
1382 | * socket indicating that the status of a network interface has changed. |
1383 | */ |
1384 | void |
1385 | rt_ifmsg(struct ifnet *ifp) |
1386 | { |
1387 | struct if_msghdr *ifm; |
1388 | struct mbuf *m; |
1389 | struct rt_addrinfo info; |
1390 | struct sockproto route_proto = { .sp_family = PF_ROUTE, .sp_protocol = 0 }; |
1391 | |
1392 | if (route_cb.any_count == 0) { |
1393 | return; |
1394 | } |
1395 | bzero(s: (caddr_t)&info, n: sizeof(info)); |
1396 | m = rt_msg1(RTM_IFINFO, rtinfo: &info); |
1397 | if (m == NULL) { |
1398 | return; |
1399 | } |
1400 | ifm = mtod(m, struct if_msghdr *); |
1401 | ifm->ifm_index = ifp->if_index; |
1402 | ifm->ifm_flags = (u_short)ifp->if_flags; |
1403 | if_data_internal_to_if_data(ifp, if_data_int: &ifp->if_data, if_data: &ifm->ifm_data); |
1404 | ifm->ifm_addrs = 0; |
1405 | raw_input(m, &route_proto, &route_src, &route_dst); |
1406 | } |
1407 | |
1408 | /* |
1409 | * This is called to generate messages from the routing socket |
1410 | * indicating a network interface has had addresses associated with it. |
1411 | * if we ever reverse the logic and replace messages TO the routing |
1412 | * socket indicate a request to configure interfaces, then it will |
1413 | * be unnecessary as the routing socket will automatically generate |
1414 | * copies of it. |
1415 | * |
1416 | * Since this is coming from the interface, it is expected that the |
1417 | * interface will be locked. Caller must hold rnh_lock and rt_lock. |
1418 | */ |
1419 | void |
1420 | rt_newaddrmsg(u_char cmd, struct ifaddr *ifa, int error, struct rtentry *rt) |
1421 | { |
1422 | struct rt_addrinfo info; |
1423 | struct sockaddr *sa = 0; |
1424 | int pass; |
1425 | struct mbuf *m = 0; |
1426 | struct ifnet *ifp = ifa->ifa_ifp; |
1427 | struct sockproto route_proto = { .sp_family = PF_ROUTE, .sp_protocol = 0 }; |
1428 | |
1429 | LCK_MTX_ASSERT(rnh_lock, LCK_MTX_ASSERT_OWNED); |
1430 | RT_LOCK_ASSERT_HELD(rt); |
1431 | |
1432 | if (route_cb.any_count == 0) { |
1433 | return; |
1434 | } |
1435 | |
1436 | /* Become a regular mutex, just in case */ |
1437 | RT_CONVERT_LOCK(rt); |
1438 | for (pass = 1; pass < 3; pass++) { |
1439 | bzero(s: (caddr_t)&info, n: sizeof(info)); |
1440 | if ((cmd == RTM_ADD && pass == 1) || |
1441 | (cmd == RTM_DELETE && pass == 2)) { |
1442 | struct ifa_msghdr *ifam; |
1443 | u_char ncmd = cmd == RTM_ADD ? RTM_NEWADDR : RTM_DELADDR; |
1444 | |
1445 | /* Lock ifp for if_lladdr */ |
1446 | ifnet_lock_shared(ifp); |
1447 | IFA_LOCK(ifa); |
1448 | info.rti_info[RTAX_IFA] = sa = ifa->ifa_addr; |
1449 | /* |
1450 | * Holding ifnet lock here prevents the link address |
1451 | * from changing contents, so no need to hold its |
1452 | * lock. The link address is always present; it's |
1453 | * never freed. |
1454 | */ |
1455 | info.rti_info[RTAX_IFP] = ifp->if_lladdr->ifa_addr; |
1456 | info.rti_info[RTAX_NETMASK] = ifa->ifa_netmask; |
1457 | info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr; |
1458 | if ((m = rt_msg1(type: ncmd, rtinfo: &info)) == NULL) { |
1459 | IFA_UNLOCK(ifa); |
1460 | ifnet_lock_done(ifp); |
1461 | continue; |
1462 | } |
1463 | IFA_UNLOCK(ifa); |
1464 | ifnet_lock_done(ifp); |
1465 | ifam = mtod(m, struct ifa_msghdr *); |
1466 | ifam->ifam_index = ifp->if_index; |
1467 | IFA_LOCK_SPIN(ifa); |
1468 | ifam->ifam_metric = ifa->ifa_metric; |
1469 | ifam->ifam_flags = ifa->ifa_flags; |
1470 | IFA_UNLOCK(ifa); |
1471 | ifam->ifam_addrs = info.rti_addrs; |
1472 | } |
1473 | if ((cmd == RTM_ADD && pass == 2) || |
1474 | (cmd == RTM_DELETE && pass == 1)) { |
1475 | struct rt_msghdr *rtm; |
1476 | |
1477 | if (rt == NULL) { |
1478 | continue; |
1479 | } |
1480 | info.rti_info[RTAX_NETMASK] = rt_mask(rt); |
1481 | info.rti_info[RTAX_DST] = sa = rt_key(rt); |
1482 | info.rti_info[RTAX_GATEWAY] = rt->rt_gateway; |
1483 | if ((m = rt_msg1(type: cmd, rtinfo: &info)) == NULL) { |
1484 | continue; |
1485 | } |
1486 | rtm = mtod(m, struct rt_msghdr *); |
1487 | rtm->rtm_index = ifp->if_index; |
1488 | rtm->rtm_flags |= rt->rt_flags; |
1489 | rtm->rtm_errno = error; |
1490 | rtm->rtm_addrs = info.rti_addrs; |
1491 | } |
1492 | route_proto.sp_protocol = sa ? sa->sa_family : 0; |
1493 | raw_input(m, &route_proto, &route_src, &route_dst); |
1494 | } |
1495 | } |
1496 | |
1497 | /* |
1498 | * This is the analogue to the rt_newaddrmsg which performs the same |
1499 | * function but for multicast group memberhips. This is easier since |
1500 | * there is no route state to worry about. |
1501 | */ |
1502 | void |
1503 | rt_newmaddrmsg(u_char cmd, struct ifmultiaddr *ifma) |
1504 | { |
1505 | struct rt_addrinfo info; |
1506 | struct mbuf *m = 0; |
1507 | struct ifnet *ifp = ifma->ifma_ifp; |
1508 | struct ifma_msghdr *ifmam; |
1509 | struct sockproto route_proto = { .sp_family = PF_ROUTE, .sp_protocol = 0 }; |
1510 | |
1511 | if (route_cb.any_count == 0) { |
1512 | return; |
1513 | } |
1514 | |
1515 | /* Lock ifp for if_lladdr */ |
1516 | ifnet_lock_shared(ifp); |
1517 | bzero(s: (caddr_t)&info, n: sizeof(info)); |
1518 | IFMA_LOCK(ifma); |
1519 | info.rti_info[RTAX_IFA] = ifma->ifma_addr; |
1520 | /* lladdr doesn't need lock */ |
1521 | info.rti_info[RTAX_IFP] = ifp->if_lladdr->ifa_addr; |
1522 | |
1523 | /* |
1524 | * If a link-layer address is present, present it as a ``gateway'' |
1525 | * (similarly to how ARP entries, e.g., are presented). |
1526 | */ |
1527 | info.rti_info[RTAX_GATEWAY] = (ifma->ifma_ll != NULL) ? |
1528 | ifma->ifma_ll->ifma_addr : NULL; |
1529 | if ((m = rt_msg1(type: cmd, rtinfo: &info)) == NULL) { |
1530 | IFMA_UNLOCK(ifma); |
1531 | ifnet_lock_done(ifp); |
1532 | return; |
1533 | } |
1534 | ifmam = mtod(m, struct ifma_msghdr *); |
1535 | ifmam->ifmam_index = ifp->if_index; |
1536 | ifmam->ifmam_addrs = info.rti_addrs; |
1537 | route_proto.sp_protocol = ifma->ifma_addr->sa_family; |
1538 | IFMA_UNLOCK(ifma); |
1539 | ifnet_lock_done(ifp); |
1540 | raw_input(m, &route_proto, &route_src, &route_dst); |
1541 | } |
1542 | |
1543 | const char * |
1544 | rtm2str(int cmd) |
1545 | { |
1546 | const char *c = "RTM_?" ; |
1547 | |
1548 | switch (cmd) { |
1549 | case RTM_ADD: |
1550 | c = "RTM_ADD" ; |
1551 | break; |
1552 | case RTM_DELETE: |
1553 | c = "RTM_DELETE" ; |
1554 | break; |
1555 | case RTM_CHANGE: |
1556 | c = "RTM_CHANGE" ; |
1557 | break; |
1558 | case RTM_GET: |
1559 | c = "RTM_GET" ; |
1560 | break; |
1561 | case RTM_LOSING: |
1562 | c = "RTM_LOSING" ; |
1563 | break; |
1564 | case RTM_REDIRECT: |
1565 | c = "RTM_REDIRECT" ; |
1566 | break; |
1567 | case RTM_MISS: |
1568 | c = "RTM_MISS" ; |
1569 | break; |
1570 | case RTM_LOCK: |
1571 | c = "RTM_LOCK" ; |
1572 | break; |
1573 | case RTM_OLDADD: |
1574 | c = "RTM_OLDADD" ; |
1575 | break; |
1576 | case RTM_OLDDEL: |
1577 | c = "RTM_OLDDEL" ; |
1578 | break; |
1579 | case RTM_RESOLVE: |
1580 | c = "RTM_RESOLVE" ; |
1581 | break; |
1582 | case RTM_NEWADDR: |
1583 | c = "RTM_NEWADDR" ; |
1584 | break; |
1585 | case RTM_DELADDR: |
1586 | c = "RTM_DELADDR" ; |
1587 | break; |
1588 | case RTM_IFINFO: |
1589 | c = "RTM_IFINFO" ; |
1590 | break; |
1591 | case RTM_NEWMADDR: |
1592 | c = "RTM_NEWMADDR" ; |
1593 | break; |
1594 | case RTM_DELMADDR: |
1595 | c = "RTM_DELMADDR" ; |
1596 | break; |
1597 | case RTM_GET_SILENT: |
1598 | c = "RTM_GET_SILENT" ; |
1599 | break; |
1600 | case RTM_IFINFO2: |
1601 | c = "RTM_IFINFO2" ; |
1602 | break; |
1603 | case RTM_NEWMADDR2: |
1604 | c = "RTM_NEWMADDR2" ; |
1605 | break; |
1606 | case RTM_GET2: |
1607 | c = "RTM_GET2" ; |
1608 | break; |
1609 | case RTM_GET_EXT: |
1610 | c = "RTM_GET_EXT" ; |
1611 | break; |
1612 | } |
1613 | |
1614 | return c; |
1615 | } |
1616 | |
1617 | /* |
1618 | * This is used in dumping the kernel table via sysctl(). |
1619 | */ |
1620 | static int |
1621 | sysctl_dumpentry(struct radix_node *rn, void *vw) |
1622 | { |
1623 | struct walkarg *w = vw; |
1624 | rtentry_ref_t rt = (rtentry_ref_t)rn; |
1625 | int error = 0, size; |
1626 | struct rt_addrinfo info; |
1627 | kauth_cred_t cred __single; |
1628 | kauth_cred_t *credp; |
1629 | |
1630 | cred = current_cached_proc_cred(PROC_NULL); |
1631 | credp = &cred; |
1632 | |
1633 | RT_LOCK(rt); |
1634 | if ((w->w_op == NET_RT_FLAGS || w->w_op == NET_RT_FLAGS_PRIV) && |
1635 | !(rt->rt_flags & w->w_arg)) { |
1636 | goto done; |
1637 | } |
1638 | |
1639 | /* |
1640 | * If the matching route has RTF_LLINFO set, then we can skip scrubbing the MAC |
1641 | * only if the outgoing interface is not loopback and the process has entitlement |
1642 | * for neighbor cache read. |
1643 | */ |
1644 | if (w->w_op == NET_RT_FLAGS_PRIV && (rt->rt_flags & RTF_LLINFO)) { |
1645 | if (rt->rt_ifp != lo_ifp && |
1646 | (route_op_entitlement_check(NULL, cred, ROUTE_OP_READ, TRUE) == 0)) { |
1647 | credp = NULL; |
1648 | } |
1649 | } |
1650 | |
1651 | bzero(s: (caddr_t)&info, n: sizeof(info)); |
1652 | info.rti_info[RTAX_DST] = rt_key(rt); |
1653 | info.rti_info[RTAX_GATEWAY] = rt->rt_gateway; |
1654 | info.rti_info[RTAX_NETMASK] = rt_mask(rt); |
1655 | info.rti_info[RTAX_GENMASK] = rt->rt_genmask; |
1656 | if (RT_HAS_IFADDR(rt)) { |
1657 | info.rti_info[RTAX_IFA] = rt->rt_ifa->ifa_addr; |
1658 | } |
1659 | |
1660 | if (w->w_op != NET_RT_DUMP2) { |
1661 | size = rt_msg2(RTM_GET, rtinfo: &info, NULL, w, credp); |
1662 | if (w->w_req != NULL && w->w_tmem != NULL) { |
1663 | struct rt_msghdr *rtm = |
1664 | (struct rt_msghdr *)(void *)w->w_tmem; |
1665 | |
1666 | rtm->rtm_flags = rt->rt_flags; |
1667 | rtm->rtm_use = rt->rt_use; |
1668 | rt_getmetrics(in: rt, out: &rtm->rtm_rmx); |
1669 | rtm->rtm_index = rt->rt_ifp->if_index; |
1670 | rtm->rtm_pid = 0; |
1671 | rtm->rtm_seq = 0; |
1672 | rtm->rtm_errno = 0; |
1673 | rtm->rtm_addrs = info.rti_addrs; |
1674 | error = SYSCTL_OUT(w->w_req, (caddr_t)rtm, size); |
1675 | } |
1676 | } else { |
1677 | size = rt_msg2(RTM_GET2, rtinfo: &info, NULL, w, credp); |
1678 | if (w->w_req != NULL && w->w_tmem != NULL) { |
1679 | struct rt_msghdr2 *rtm = |
1680 | (struct rt_msghdr2 *)(void *)w->w_tmem; |
1681 | |
1682 | rtm->rtm_flags = rt->rt_flags; |
1683 | rtm->rtm_use = rt->rt_use; |
1684 | rt_getmetrics(in: rt, out: &rtm->rtm_rmx); |
1685 | rtm->rtm_index = rt->rt_ifp->if_index; |
1686 | rtm->rtm_refcnt = rt->rt_refcnt; |
1687 | if (rt->rt_parent) { |
1688 | rtm->rtm_parentflags = rt->rt_parent->rt_flags; |
1689 | } else { |
1690 | rtm->rtm_parentflags = 0; |
1691 | } |
1692 | rtm->rtm_reserved = 0; |
1693 | rtm->rtm_addrs = info.rti_addrs; |
1694 | error = SYSCTL_OUT(w->w_req, (caddr_t)rtm, size); |
1695 | } |
1696 | } |
1697 | |
1698 | done: |
1699 | RT_UNLOCK(rt); |
1700 | return error; |
1701 | } |
1702 | |
1703 | /* |
1704 | * This is used for dumping extended information from route entries. |
1705 | */ |
1706 | static int |
1707 | sysctl_dumpentry_ext(struct radix_node *rn, void *vw) |
1708 | { |
1709 | struct walkarg *w = vw; |
1710 | rtentry_ref_t rt = (rtentry_ref_t)rn; |
1711 | int error = 0, size; |
1712 | struct rt_addrinfo info; |
1713 | kauth_cred_t cred __single; |
1714 | |
1715 | cred = current_cached_proc_cred(PROC_NULL); |
1716 | |
1717 | RT_LOCK(rt); |
1718 | if (w->w_op == NET_RT_DUMPX_FLAGS && !(rt->rt_flags & w->w_arg)) { |
1719 | goto done; |
1720 | } |
1721 | bzero(s: &info, n: sizeof(info)); |
1722 | info.rti_info[RTAX_DST] = rt_key(rt); |
1723 | info.rti_info[RTAX_GATEWAY] = rt->rt_gateway; |
1724 | info.rti_info[RTAX_NETMASK] = rt_mask(rt); |
1725 | info.rti_info[RTAX_GENMASK] = rt->rt_genmask; |
1726 | |
1727 | size = rt_msg2(RTM_GET_EXT, rtinfo: &info, NULL, w, credp: &cred); |
1728 | if (w->w_req != NULL && w->w_tmem != NULL) { |
1729 | struct rt_msghdr_ext *ertm = |
1730 | (struct rt_msghdr_ext *)(void *)w->w_tmem; |
1731 | |
1732 | ertm->rtm_flags = rt->rt_flags; |
1733 | ertm->rtm_use = rt->rt_use; |
1734 | rt_getmetrics(in: rt, out: &ertm->rtm_rmx); |
1735 | ertm->rtm_index = rt->rt_ifp->if_index; |
1736 | ertm->rtm_pid = 0; |
1737 | ertm->rtm_seq = 0; |
1738 | ertm->rtm_errno = 0; |
1739 | ertm->rtm_addrs = info.rti_addrs; |
1740 | if (rt->rt_llinfo_get_ri == NULL) { |
1741 | bzero(s: &ertm->rtm_ri, n: sizeof(ertm->rtm_ri)); |
1742 | ertm->rtm_ri.ri_rssi = IFNET_RSSI_UNKNOWN; |
1743 | ertm->rtm_ri.ri_lqm = IFNET_LQM_THRESH_OFF; |
1744 | ertm->rtm_ri.ri_npm = IFNET_NPM_THRESH_UNKNOWN; |
1745 | } else { |
1746 | rt->rt_llinfo_get_ri(rt, &ertm->rtm_ri); |
1747 | } |
1748 | error = SYSCTL_OUT(w->w_req, (caddr_t)ertm, size); |
1749 | } |
1750 | |
1751 | done: |
1752 | RT_UNLOCK(rt); |
1753 | return error; |
1754 | } |
1755 | |
1756 | static boolean_t |
1757 | should_include_clat46(void) |
1758 | { |
1759 | #define CLAT46_ENTITLEMENT "com.apple.private.route.iflist.include-clat46" |
1760 | return IOCurrentTaskHasEntitlement(CLAT46_ENTITLEMENT); |
1761 | } |
1762 | |
1763 | static boolean_t |
1764 | is_clat46_address(struct ifaddr *ifa) |
1765 | { |
1766 | boolean_t is_clat46 = FALSE; |
1767 | |
1768 | if (ifa->ifa_addr->sa_family == AF_INET6) { |
1769 | struct in6_ifaddr *ifa6 = ifatoia6(ifa); |
1770 | |
1771 | is_clat46 = (ifa6->ia6_flags & IN6_IFF_CLAT46) != 0; |
1772 | } |
1773 | return is_clat46; |
1774 | } |
1775 | |
1776 | /* |
1777 | * rdar://9307819 |
1778 | * To avoid to call copyout() while holding locks and to cause problems |
1779 | * in the paging path, sysctl_iflist() and sysctl_iflist2() contstruct |
1780 | * the list in two passes. In the first pass we compute the total |
1781 | * length of the data we are going to copyout, then we release |
1782 | * all locks to allocate a temporary buffer that gets filled |
1783 | * in the second pass. |
1784 | * |
1785 | * Note that we are verifying the assumption that kalloc() returns a buffer |
1786 | * that is at least 32 bits aligned and that the messages and addresses are |
1787 | * 32 bits aligned. |
1788 | */ |
1789 | static int |
1790 | sysctl_iflist(int af, struct walkarg *w) |
1791 | { |
1792 | struct ifnet *ifp; |
1793 | struct ifaddr *ifa; |
1794 | struct rt_addrinfo info; |
1795 | int error = 0; |
1796 | int pass = 0; |
1797 | size_t len = 0, total_len = 0, total_buffer_len = 0, current_len = 0; |
1798 | char *total_buffer = NULL, *cp = NULL; |
1799 | kauth_cred_t cred __single; |
1800 | boolean_t include_clat46 = FALSE; |
1801 | boolean_t include_clat46_valid = FALSE; |
1802 | |
1803 | cred = current_cached_proc_cred(PROC_NULL); |
1804 | |
1805 | bzero(s: (caddr_t)&info, n: sizeof(info)); |
1806 | |
1807 | for (pass = 0; pass < 2; pass++) { |
1808 | ifnet_head_lock_shared(); |
1809 | |
1810 | TAILQ_FOREACH(ifp, &ifnet_head, if_link) { |
1811 | if (error) { |
1812 | break; |
1813 | } |
1814 | if (w->w_arg && w->w_arg != ifp->if_index) { |
1815 | continue; |
1816 | } |
1817 | ifnet_lock_shared(ifp); |
1818 | /* |
1819 | * Holding ifnet lock here prevents the link address |
1820 | * from changing contents, so no need to hold the ifa |
1821 | * lock. The link address is always present; it's |
1822 | * never freed. |
1823 | */ |
1824 | ifa = ifp->if_lladdr; |
1825 | info.rti_info[RTAX_IFP] = ifa->ifa_addr; |
1826 | len = rt_msg2(RTM_IFINFO, rtinfo: &info, NULL, NULL, credp: &cred); |
1827 | if (pass == 0) { |
1828 | if (os_add_overflow(total_len, len, &total_len)) { |
1829 | ifnet_lock_done(ifp); |
1830 | error = ENOBUFS; |
1831 | break; |
1832 | } |
1833 | } else { |
1834 | struct if_msghdr *ifm; |
1835 | |
1836 | if (current_len + len > total_len) { |
1837 | ifnet_lock_done(ifp); |
1838 | error = ENOBUFS; |
1839 | break; |
1840 | } |
1841 | info.rti_info[RTAX_IFP] = ifa->ifa_addr; |
1842 | len = rt_msg2(RTM_IFINFO, rtinfo: &info, |
1843 | cp: (caddr_t)cp, NULL, credp: &cred); |
1844 | info.rti_info[RTAX_IFP] = NULL; |
1845 | |
1846 | ifm = (struct if_msghdr *)(void *)cp; |
1847 | ifm->ifm_index = ifp->if_index; |
1848 | ifm->ifm_flags = (u_short)ifp->if_flags; |
1849 | if_data_internal_to_if_data(ifp, if_data_int: &ifp->if_data, |
1850 | if_data: &ifm->ifm_data); |
1851 | ifm->ifm_addrs = info.rti_addrs; |
1852 | /* |
1853 | * <rdar://problem/32940901> |
1854 | * Round bytes only for non-platform |
1855 | */ |
1856 | if (!csproc_get_platform_binary(w->w_req->p)) { |
1857 | ALIGN_BYTES(ifm->ifm_data.ifi_ibytes); |
1858 | ALIGN_BYTES(ifm->ifm_data.ifi_obytes); |
1859 | } |
1860 | |
1861 | cp += len; |
1862 | VERIFY(IS_P2ALIGNED(cp, sizeof(u_int32_t))); |
1863 | current_len += len; |
1864 | VERIFY(current_len <= total_len); |
1865 | } |
1866 | while ((ifa = ifa->ifa_link.tqe_next) != NULL) { |
1867 | boolean_t is_clat46; |
1868 | |
1869 | IFA_LOCK(ifa); |
1870 | if (af && af != ifa->ifa_addr->sa_family) { |
1871 | IFA_UNLOCK(ifa); |
1872 | continue; |
1873 | } |
1874 | is_clat46 = is_clat46_address(ifa); |
1875 | if (is_clat46) { |
1876 | if (!include_clat46_valid) { |
1877 | include_clat46_valid = TRUE; |
1878 | include_clat46 = |
1879 | should_include_clat46(); |
1880 | } |
1881 | if (!include_clat46) { |
1882 | IFA_UNLOCK(ifa); |
1883 | continue; |
1884 | } |
1885 | } |
1886 | info.rti_info[RTAX_IFA] = ifa->ifa_addr; |
1887 | info.rti_info[RTAX_NETMASK] = ifa->ifa_netmask; |
1888 | info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr; |
1889 | len = rt_msg2(RTM_NEWADDR, rtinfo: &info, NULL, NULL, |
1890 | credp: &cred); |
1891 | if (pass == 0) { |
1892 | if (os_add_overflow(total_len, len, &total_len)) { |
1893 | IFA_UNLOCK(ifa); |
1894 | error = ENOBUFS; |
1895 | break; |
1896 | } |
1897 | } else { |
1898 | struct ifa_msghdr *ifam; |
1899 | |
1900 | if (current_len + len > total_len) { |
1901 | IFA_UNLOCK(ifa); |
1902 | error = ENOBUFS; |
1903 | break; |
1904 | } |
1905 | len = rt_msg2(RTM_NEWADDR, rtinfo: &info, |
1906 | cp: (caddr_t)cp, NULL, credp: &cred); |
1907 | |
1908 | ifam = (struct ifa_msghdr *)(void *)cp; |
1909 | ifam->ifam_index = |
1910 | ifa->ifa_ifp->if_index; |
1911 | ifam->ifam_flags = ifa->ifa_flags; |
1912 | ifam->ifam_metric = ifa->ifa_metric; |
1913 | ifam->ifam_addrs = info.rti_addrs; |
1914 | |
1915 | cp += len; |
1916 | VERIFY(IS_P2ALIGNED(cp, |
1917 | sizeof(u_int32_t))); |
1918 | current_len += len; |
1919 | VERIFY(current_len <= total_len); |
1920 | } |
1921 | IFA_UNLOCK(ifa); |
1922 | } |
1923 | ifnet_lock_done(ifp); |
1924 | info.rti_info[RTAX_IFA] = info.rti_info[RTAX_NETMASK] = |
1925 | info.rti_info[RTAX_BRD] = NULL; |
1926 | } |
1927 | |
1928 | ifnet_head_done(); |
1929 | |
1930 | if (error != 0) { |
1931 | if (error == ENOBUFS) { |
1932 | printf("%s: current_len (%lu) + len (%lu) > " |
1933 | "total_len (%lu)\n" , __func__, current_len, |
1934 | len, total_len); |
1935 | } |
1936 | break; |
1937 | } |
1938 | |
1939 | if (pass == 0) { |
1940 | /* Better to return zero length buffer than ENOBUFS */ |
1941 | if (total_len == 0) { |
1942 | total_len = 1; |
1943 | } |
1944 | total_len += total_len >> 3; |
1945 | total_buffer_len = total_len; |
1946 | total_buffer = (char *) kalloc_data(total_len, Z_ZERO | Z_WAITOK); |
1947 | if (total_buffer == NULL) { |
1948 | printf("%s: kalloc_data(%lu) failed\n" , __func__, |
1949 | total_len); |
1950 | error = ENOBUFS; |
1951 | break; |
1952 | } |
1953 | cp = total_buffer; |
1954 | VERIFY(IS_P2ALIGNED(cp, sizeof(u_int32_t))); |
1955 | } else { |
1956 | error = SYSCTL_OUT(w->w_req, total_buffer, current_len); |
1957 | if (error) { |
1958 | break; |
1959 | } |
1960 | } |
1961 | } |
1962 | |
1963 | if (total_buffer != NULL) { |
1964 | kfree_data(total_buffer, total_buffer_len); |
1965 | } |
1966 | |
1967 | return error; |
1968 | } |
1969 | |
1970 | static int |
1971 | sysctl_iflist2(int af, struct walkarg *w) |
1972 | { |
1973 | struct ifnet *ifp; |
1974 | struct ifaddr *ifa; |
1975 | struct rt_addrinfo info; |
1976 | int error = 0; |
1977 | int pass = 0; |
1978 | size_t len = 0, total_len = 0, total_buffer_len = 0, current_len = 0; |
1979 | char *total_buffer = NULL, *cp = NULL; |
1980 | kauth_cred_t cred __single; |
1981 | boolean_t include_clat46 = FALSE; |
1982 | boolean_t include_clat46_valid = FALSE; |
1983 | |
1984 | cred = current_cached_proc_cred(PROC_NULL); |
1985 | |
1986 | bzero(s: (caddr_t)&info, n: sizeof(info)); |
1987 | |
1988 | for (pass = 0; pass < 2; pass++) { |
1989 | struct ifmultiaddr *ifma; |
1990 | |
1991 | ifnet_head_lock_shared(); |
1992 | |
1993 | TAILQ_FOREACH(ifp, &ifnet_head, if_link) { |
1994 | if (error) { |
1995 | break; |
1996 | } |
1997 | if (w->w_arg && w->w_arg != ifp->if_index) { |
1998 | continue; |
1999 | } |
2000 | ifnet_lock_shared(ifp); |
2001 | /* |
2002 | * Holding ifnet lock here prevents the link address |
2003 | * from changing contents, so no need to hold the ifa |
2004 | * lock. The link address is always present; it's |
2005 | * never freed. |
2006 | */ |
2007 | ifa = ifp->if_lladdr; |
2008 | info.rti_info[RTAX_IFP] = ifa->ifa_addr; |
2009 | len = rt_msg2(RTM_IFINFO2, rtinfo: &info, NULL, NULL, credp: &cred); |
2010 | if (pass == 0) { |
2011 | if (os_add_overflow(total_len, len, &total_len)) { |
2012 | ifnet_lock_done(ifp); |
2013 | error = ENOBUFS; |
2014 | break; |
2015 | } |
2016 | } else { |
2017 | struct if_msghdr2 *ifm; |
2018 | |
2019 | if (current_len + len > total_len) { |
2020 | ifnet_lock_done(ifp); |
2021 | error = ENOBUFS; |
2022 | break; |
2023 | } |
2024 | info.rti_info[RTAX_IFP] = ifa->ifa_addr; |
2025 | len = rt_msg2(RTM_IFINFO2, rtinfo: &info, |
2026 | cp: (caddr_t)cp, NULL, credp: &cred); |
2027 | info.rti_info[RTAX_IFP] = NULL; |
2028 | |
2029 | ifm = (struct if_msghdr2 *)(void *)cp; |
2030 | ifm->ifm_addrs = info.rti_addrs; |
2031 | ifm->ifm_flags = (u_short)ifp->if_flags; |
2032 | ifm->ifm_index = ifp->if_index; |
2033 | ifm->ifm_snd_len = IFCQ_LEN(ifp->if_snd); |
2034 | ifm->ifm_snd_maxlen = IFCQ_MAXLEN(ifp->if_snd); |
2035 | ifm->ifm_snd_drops = |
2036 | (int)ifp->if_snd->ifcq_dropcnt.packets; |
2037 | ifm->ifm_timer = ifp->if_timer; |
2038 | if_data_internal_to_if_data64(ifp, |
2039 | if_data_int: &ifp->if_data, if_data64: &ifm->ifm_data); |
2040 | /* |
2041 | * <rdar://problem/32940901> |
2042 | * Round bytes only for non-platform |
2043 | */ |
2044 | if (!csproc_get_platform_binary(w->w_req->p)) { |
2045 | ALIGN_BYTES(ifm->ifm_data.ifi_ibytes); |
2046 | ALIGN_BYTES(ifm->ifm_data.ifi_obytes); |
2047 | } |
2048 | |
2049 | cp += len; |
2050 | VERIFY(IS_P2ALIGNED(cp, sizeof(u_int32_t))); |
2051 | current_len += len; |
2052 | VERIFY(current_len <= total_len); |
2053 | } |
2054 | while ((ifa = ifa->ifa_link.tqe_next) != NULL) { |
2055 | boolean_t is_clat46; |
2056 | |
2057 | IFA_LOCK(ifa); |
2058 | if (af && af != ifa->ifa_addr->sa_family) { |
2059 | IFA_UNLOCK(ifa); |
2060 | continue; |
2061 | } |
2062 | is_clat46 = is_clat46_address(ifa); |
2063 | if (is_clat46) { |
2064 | if (!include_clat46_valid) { |
2065 | include_clat46_valid = TRUE; |
2066 | include_clat46 = |
2067 | should_include_clat46(); |
2068 | } |
2069 | if (!include_clat46) { |
2070 | IFA_UNLOCK(ifa); |
2071 | continue; |
2072 | } |
2073 | } |
2074 | info.rti_info[RTAX_IFA] = ifa->ifa_addr; |
2075 | info.rti_info[RTAX_NETMASK] = ifa->ifa_netmask; |
2076 | info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr; |
2077 | len = rt_msg2(RTM_NEWADDR, rtinfo: &info, NULL, NULL, |
2078 | credp: &cred); |
2079 | if (pass == 0) { |
2080 | if (os_add_overflow(total_len, len, &total_len)) { |
2081 | IFA_UNLOCK(ifa); |
2082 | error = ENOBUFS; |
2083 | break; |
2084 | } |
2085 | } else { |
2086 | struct ifa_msghdr *ifam; |
2087 | |
2088 | if (current_len + len > total_len) { |
2089 | IFA_UNLOCK(ifa); |
2090 | error = ENOBUFS; |
2091 | break; |
2092 | } |
2093 | len = rt_msg2(RTM_NEWADDR, rtinfo: &info, |
2094 | cp: (caddr_t)cp, NULL, credp: &cred); |
2095 | |
2096 | ifam = (struct ifa_msghdr *)(void *)cp; |
2097 | ifam->ifam_index = |
2098 | ifa->ifa_ifp->if_index; |
2099 | ifam->ifam_flags = ifa->ifa_flags; |
2100 | ifam->ifam_metric = ifa->ifa_metric; |
2101 | ifam->ifam_addrs = info.rti_addrs; |
2102 | |
2103 | cp += len; |
2104 | VERIFY(IS_P2ALIGNED(cp, |
2105 | sizeof(u_int32_t))); |
2106 | current_len += len; |
2107 | VERIFY(current_len <= total_len); |
2108 | } |
2109 | IFA_UNLOCK(ifa); |
2110 | } |
2111 | if (error) { |
2112 | ifnet_lock_done(ifp); |
2113 | break; |
2114 | } |
2115 | |
2116 | for (ifma = LIST_FIRST(&ifp->if_multiaddrs); |
2117 | ifma != NULL; ifma = LIST_NEXT(ifma, ifma_link)) { |
2118 | struct ifaddr *ifa0; |
2119 | |
2120 | IFMA_LOCK(ifma); |
2121 | if (af && af != ifma->ifma_addr->sa_family) { |
2122 | IFMA_UNLOCK(ifma); |
2123 | continue; |
2124 | } |
2125 | bzero(s: (caddr_t)&info, n: sizeof(info)); |
2126 | info.rti_info[RTAX_IFA] = ifma->ifma_addr; |
2127 | /* |
2128 | * Holding ifnet lock here prevents the link |
2129 | * address from changing contents, so no need |
2130 | * to hold the ifa0 lock. The link address is |
2131 | * always present; it's never freed. |
2132 | */ |
2133 | ifa0 = ifp->if_lladdr; |
2134 | info.rti_info[RTAX_IFP] = ifa0->ifa_addr; |
2135 | if (ifma->ifma_ll != NULL) { |
2136 | info.rti_info[RTAX_GATEWAY] = |
2137 | ifma->ifma_ll->ifma_addr; |
2138 | } |
2139 | len = rt_msg2(RTM_NEWMADDR2, rtinfo: &info, NULL, NULL, |
2140 | credp: &cred); |
2141 | if (pass == 0) { |
2142 | total_len += len; |
2143 | } else { |
2144 | struct ifma_msghdr2 *ifmam; |
2145 | |
2146 | if (current_len + len > total_len) { |
2147 | IFMA_UNLOCK(ifma); |
2148 | error = ENOBUFS; |
2149 | break; |
2150 | } |
2151 | len = rt_msg2(RTM_NEWMADDR2, rtinfo: &info, |
2152 | cp: (caddr_t)cp, NULL, credp: &cred); |
2153 | |
2154 | ifmam = |
2155 | (struct ifma_msghdr2 *)(void *)cp; |
2156 | ifmam->ifmam_addrs = info.rti_addrs; |
2157 | ifmam->ifmam_flags = 0; |
2158 | ifmam->ifmam_index = |
2159 | ifma->ifma_ifp->if_index; |
2160 | ifmam->ifmam_refcount = |
2161 | ifma->ifma_reqcnt; |
2162 | |
2163 | cp += len; |
2164 | VERIFY(IS_P2ALIGNED(cp, |
2165 | sizeof(u_int32_t))); |
2166 | current_len += len; |
2167 | } |
2168 | IFMA_UNLOCK(ifma); |
2169 | } |
2170 | ifnet_lock_done(ifp); |
2171 | info.rti_info[RTAX_IFA] = info.rti_info[RTAX_NETMASK] = |
2172 | info.rti_info[RTAX_BRD] = NULL; |
2173 | } |
2174 | ifnet_head_done(); |
2175 | |
2176 | if (error) { |
2177 | if (error == ENOBUFS) { |
2178 | printf("%s: current_len (%lu) + len (%lu) > " |
2179 | "total_len (%lu)\n" , __func__, current_len, |
2180 | len, total_len); |
2181 | } |
2182 | break; |
2183 | } |
2184 | |
2185 | if (pass == 0) { |
2186 | /* Better to return zero length buffer than ENOBUFS */ |
2187 | if (total_len == 0) { |
2188 | total_len = 1; |
2189 | } |
2190 | total_len += total_len >> 3; |
2191 | total_buffer_len = total_len; |
2192 | total_buffer = (char *) kalloc_data(total_len, Z_ZERO | Z_WAITOK); |
2193 | if (total_buffer == NULL) { |
2194 | printf("%s: kalloc_data(%lu) failed\n" , __func__, |
2195 | total_len); |
2196 | error = ENOBUFS; |
2197 | break; |
2198 | } |
2199 | cp = total_buffer; |
2200 | VERIFY(IS_P2ALIGNED(cp, sizeof(u_int32_t))); |
2201 | } else { |
2202 | error = SYSCTL_OUT(w->w_req, total_buffer, current_len); |
2203 | if (error) { |
2204 | break; |
2205 | } |
2206 | } |
2207 | } |
2208 | |
2209 | if (total_buffer != NULL) { |
2210 | kfree_data(total_buffer, total_buffer_len); |
2211 | } |
2212 | |
2213 | return error; |
2214 | } |
2215 | |
2216 | |
2217 | static int |
2218 | sysctl_rtstat(struct sysctl_req *req) |
2219 | { |
2220 | return SYSCTL_OUT(req, &rtstat, sizeof(struct rtstat)); |
2221 | } |
2222 | |
2223 | static int |
2224 | sysctl_rttrash(struct sysctl_req *req) |
2225 | { |
2226 | return SYSCTL_OUT(req, &rttrash, sizeof(rttrash)); |
2227 | } |
2228 | |
2229 | static int |
2230 | sysctl_rtsock SYSCTL_HANDLER_ARGS |
2231 | { |
2232 | #pragma unused(oidp) |
2233 | int *name = (int *)arg1; |
2234 | u_int namelen = arg2; |
2235 | struct radix_node_head *rnh; |
2236 | int i, error = EINVAL; |
2237 | u_char af; |
2238 | struct walkarg w; |
2239 | |
2240 | name++; |
2241 | namelen--; |
2242 | if (req->newptr) { |
2243 | return EPERM; |
2244 | } |
2245 | if (namelen != 3) { |
2246 | return EINVAL; |
2247 | } |
2248 | af = (u_char)name[0]; |
2249 | Bzero(&w, sizeof(w)); |
2250 | w.w_op = name[1]; |
2251 | w.w_arg = name[2]; |
2252 | w.w_req = req; |
2253 | |
2254 | switch (w.w_op) { |
2255 | case NET_RT_DUMP: |
2256 | case NET_RT_DUMP2: |
2257 | case NET_RT_FLAGS: |
2258 | case NET_RT_FLAGS_PRIV: |
2259 | lck_mtx_lock(rnh_lock); |
2260 | for (i = 1; i <= AF_MAX; i++) { |
2261 | if ((rnh = rt_tables[i]) && (af == 0 || af == i) && |
2262 | (error = rnh->rnh_walktree(rnh, |
2263 | sysctl_dumpentry, &w))) { |
2264 | break; |
2265 | } |
2266 | } |
2267 | lck_mtx_unlock(rnh_lock); |
2268 | break; |
2269 | case NET_RT_DUMPX: |
2270 | case NET_RT_DUMPX_FLAGS: |
2271 | lck_mtx_lock(rnh_lock); |
2272 | for (i = 1; i <= AF_MAX; i++) { |
2273 | if ((rnh = rt_tables[i]) && (af == 0 || af == i) && |
2274 | (error = rnh->rnh_walktree(rnh, |
2275 | sysctl_dumpentry_ext, &w))) { |
2276 | break; |
2277 | } |
2278 | } |
2279 | lck_mtx_unlock(rnh_lock); |
2280 | break; |
2281 | case NET_RT_IFLIST: |
2282 | error = sysctl_iflist(af, w: &w); |
2283 | break; |
2284 | case NET_RT_IFLIST2: |
2285 | error = sysctl_iflist2(af, w: &w); |
2286 | break; |
2287 | case NET_RT_STAT: |
2288 | error = sysctl_rtstat(req); |
2289 | break; |
2290 | case NET_RT_TRASH: |
2291 | error = sysctl_rttrash(req); |
2292 | break; |
2293 | } |
2294 | if (w.w_tmem != NULL) { |
2295 | kfree_data(w.w_tmem, w.w_tmemsize); |
2296 | } |
2297 | return error; |
2298 | } |
2299 | |
2300 | /* |
2301 | * Definitions of protocols supported in the ROUTE domain. |
2302 | */ |
2303 | static struct protosw routesw[] = { |
2304 | { |
2305 | .pr_type = SOCK_RAW, |
2306 | .pr_protocol = 0, |
2307 | .pr_flags = PR_ATOMIC | PR_ADDR, |
2308 | .pr_output = route_output, |
2309 | .pr_ctlinput = raw_ctlinput, |
2310 | .pr_usrreqs = &route_usrreqs, |
2311 | } |
2312 | }; |
2313 | |
2314 | static int route_proto_count = (sizeof(routesw) / sizeof(struct protosw)); |
2315 | |
2316 | struct domain routedomain_s = { |
2317 | .dom_family = PF_ROUTE, |
2318 | .dom_name = "route" , |
2319 | .dom_init = route_dinit, |
2320 | }; |
2321 | |
2322 | static void |
2323 | route_dinit(struct domain *dp) |
2324 | { |
2325 | struct protosw *pr; |
2326 | int i; |
2327 | |
2328 | VERIFY(!(dp->dom_flags & DOM_INITIALIZED)); |
2329 | VERIFY(routedomain == NULL); |
2330 | |
2331 | routedomain = dp; |
2332 | |
2333 | for (i = 0, pr = &routesw[0]; i < route_proto_count; i++, pr++) { |
2334 | net_add_proto(pr, dp, 1); |
2335 | } |
2336 | |
2337 | route_init(); |
2338 | } |
2339 | |