| 1 | /* |
| 2 | * Copyright (c) 2000-2013 Apple Inc. All rights reserved. |
| 3 | * |
| 4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ |
| 5 | * |
| 6 | * This file contains Original Code and/or Modifications of Original Code |
| 7 | * as defined in and that are subject to the Apple Public Source License |
| 8 | * Version 2.0 (the 'License'). You may not use this file except in |
| 9 | * compliance with the License. The rights granted to you under the License |
| 10 | * may not be used to create, or enable the creation or redistribution of, |
| 11 | * unlawful or unlicensed copies of an Apple operating system, or to |
| 12 | * circumvent, violate, or enable the circumvention or violation of, any |
| 13 | * terms of an Apple operating system software license agreement. |
| 14 | * |
| 15 | * Please obtain a copy of the License at |
| 16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. |
| 17 | * |
| 18 | * The Original Code and all software distributed under the License are |
| 19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER |
| 20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
| 21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, |
| 22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
| 23 | * Please see the License for the specific language governing rights and |
| 24 | * limitations under the License. |
| 25 | * |
| 26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ |
| 27 | */ |
| 28 | /* |
| 29 | * Copyright (c) 1988, 1989, 1993 |
| 30 | * The Regents of the University of California. All rights reserved. |
| 31 | * |
| 32 | * Redistribution and use in source and binary forms, with or without |
| 33 | * modification, are permitted provided that the following conditions |
| 34 | * are met: |
| 35 | * 1. Redistributions of source code must retain the above copyright |
| 36 | * notice, this list of conditions and the following disclaimer. |
| 37 | * 2. Redistributions in binary form must reproduce the above copyright |
| 38 | * notice, this list of conditions and the following disclaimer in the |
| 39 | * documentation and/or other materials provided with the distribution. |
| 40 | * 3. All advertising materials mentioning features or use of this software |
| 41 | * must display the following acknowledgement: |
| 42 | * This product includes software developed by the University of |
| 43 | * California, Berkeley and its contributors. |
| 44 | * 4. Neither the name of the University nor the names of its contributors |
| 45 | * may be used to endorse or promote products derived from this software |
| 46 | * without specific prior written permission. |
| 47 | * |
| 48 | * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND |
| 49 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 50 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 51 | * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE |
| 52 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
| 53 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
| 54 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| 55 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
| 56 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
| 57 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
| 58 | * SUCH DAMAGE. |
| 59 | * |
| 60 | * @(#)radix.c 8.4 (Berkeley) 11/2/94 |
| 61 | * $FreeBSD: src/sys/net/radix.c,v 1.20.2.2 2001/03/06 00:56:50 obrien Exp $ |
| 62 | */ |
| 63 | |
| 64 | /* |
| 65 | * Routines to build and maintain radix trees for routing lookups. |
| 66 | */ |
| 67 | #ifndef _RADIX_H_ |
| 68 | #include <sys/param.h> |
| 69 | #include <sys/systm.h> |
| 70 | #include <sys/domain.h> |
| 71 | #include <sys/syslog.h> |
| 72 | #include <net/radix.h> |
| 73 | #include <sys/socket.h> |
| 74 | #include <sys/socketvar.h> |
| 75 | #include <kern/locks.h> |
| 76 | #endif |
| 77 | |
| 78 | static int rn_walktree_from(struct radix_node_head *h, void *a, |
| 79 | void *m, walktree_f_t *f, void *w); |
| 80 | static int rn_walktree(struct radix_node_head *, walktree_f_t *, void *); |
| 81 | static struct radix_node *rn_insert(void *, struct radix_node_head *, int *, struct radix_node[2]); |
| 82 | static struct radix_node *rn_newpair(void *, int, struct radix_node[2]); |
| 83 | static struct radix_node *rn_search(void *, struct radix_node *); |
| 84 | static struct radix_node *rn_search_m(void *, struct radix_node *, void *); |
| 85 | |
| 86 | static int max_keylen; |
| 87 | static struct radix_mask *rn_mkfreelist; |
| 88 | static struct radix_node_head *mask_rnhead; |
| 89 | static char *addmask_key; |
| 90 | static char normal_chars[] = {0, 0x80, 0xc0, 0xe0, 0xf0, 0xf8, 0xfc, 0xfe, -1}; |
| 91 | static char *rn_zeros, *rn_ones; |
| 92 | |
| 93 | static zone_t radix_node_zone; |
| 94 | KALLOC_TYPE_DEFINE(radix_node_head_zone, struct radix_node_head, KT_DEFAULT); |
| 95 | |
| 96 | #define rn_masktop (mask_rnhead->rnh_treetop) |
| 97 | #undef Bcmp |
| 98 | #define Bcmp(a, b, l) \ |
| 99 | (l == 0 ? 0 : bcmp((caddr_t)(a), (caddr_t)(b), (uint32_t)l)) |
| 100 | |
| 101 | static int rn_lexobetter(void *m_arg, void *n_arg); |
| 102 | static struct radix_mask * |
| 103 | rn_new_radix_mask(struct radix_node *tt, |
| 104 | struct radix_mask *next); |
| 105 | static int rn_satisfies_leaf(char *trial, struct radix_node *leaf, int skip, |
| 106 | rn_matchf_t *f, void *w); |
| 107 | |
| 108 | #define RN_MATCHF(rn, f, arg) (f == NULL || (*f)((rn), arg)) |
| 109 | |
| 110 | /* |
| 111 | * The data structure for the keys is a radix tree with one way |
| 112 | * branching removed. The index rn_bit at an internal node n represents a bit |
| 113 | * position to be tested. The tree is arranged so that all descendants |
| 114 | * of a node n have keys whose bits all agree up to position rn_bit - 1. |
| 115 | * (We say the index of n is rn_bit.) |
| 116 | * |
| 117 | * There is at least one descendant which has a one bit at position rn_bit, |
| 118 | * and at least one with a zero there. |
| 119 | * |
| 120 | * A route is determined by a pair of key and mask. We require that the |
| 121 | * bit-wise logical and of the key and mask to be the key. |
| 122 | * We define the index of a route to associated with the mask to be |
| 123 | * the first bit number in the mask where 0 occurs (with bit number 0 |
| 124 | * representing the highest order bit). |
| 125 | * |
| 126 | * We say a mask is normal if every bit is 0, past the index of the mask. |
| 127 | * If a node n has a descendant (k, m) with index(m) == index(n) == rn_bit, |
| 128 | * and m is a normal mask, then the route applies to every descendant of n. |
| 129 | * If the index(m) < rn_bit, this implies the trailing last few bits of k |
| 130 | * before bit b are all 0, (and hence consequently true of every descendant |
| 131 | * of n), so the route applies to all descendants of the node as well. |
| 132 | * |
| 133 | * Similar logic shows that a non-normal mask m such that |
| 134 | * index(m) <= index(n) could potentially apply to many children of n. |
| 135 | * Thus, for each non-host route, we attach its mask to a list at an internal |
| 136 | * node as high in the tree as we can go. |
| 137 | * |
| 138 | * The present version of the code makes use of normal routes in short- |
| 139 | * circuiting an explict mask and compare operation when testing whether |
| 140 | * a key satisfies a normal route, and also in remembering the unique leaf |
| 141 | * that governs a subtree. |
| 142 | */ |
| 143 | |
| 144 | static struct radix_node * |
| 145 | rn_search(void *v_arg, struct radix_node *head) |
| 146 | { |
| 147 | struct radix_node *x; |
| 148 | caddr_t v; |
| 149 | |
| 150 | for (x = head, v = v_arg; x->rn_bit >= 0;) { |
| 151 | if (x->rn_bmask & v[x->rn_offset]) { |
| 152 | x = x->rn_right; |
| 153 | } else { |
| 154 | x = x->rn_left; |
| 155 | } |
| 156 | } |
| 157 | return x; |
| 158 | } |
| 159 | |
| 160 | static struct radix_node * |
| 161 | rn_search_m(void *v_arg, struct radix_node *head, void *m_arg) |
| 162 | { |
| 163 | struct radix_node *x; |
| 164 | caddr_t v = v_arg, m = m_arg; |
| 165 | |
| 166 | for (x = head; x->rn_bit >= 0;) { |
| 167 | if ((x->rn_bmask & m[x->rn_offset]) && |
| 168 | (x->rn_bmask & v[x->rn_offset])) { |
| 169 | x = x->rn_right; |
| 170 | } else { |
| 171 | x = x->rn_left; |
| 172 | } |
| 173 | } |
| 174 | return x; |
| 175 | } |
| 176 | |
| 177 | int |
| 178 | rn_refines(void *m_arg, void *n_arg) |
| 179 | { |
| 180 | caddr_t m = m_arg, n = n_arg; |
| 181 | caddr_t lim, lim2 = lim = n + *(u_char *)n; |
| 182 | int longer = (*(u_char *)n++) - (int)(*(u_char *)m++); |
| 183 | int masks_are_equal = 1; |
| 184 | |
| 185 | if (longer > 0) { |
| 186 | lim -= longer; |
| 187 | } |
| 188 | while (n < lim) { |
| 189 | if (*n & ~(*m)) { |
| 190 | return 0; |
| 191 | } |
| 192 | if (*n++ != *m++) { |
| 193 | masks_are_equal = 0; |
| 194 | } |
| 195 | } |
| 196 | while (n < lim2) { |
| 197 | if (*n++) { |
| 198 | return 0; |
| 199 | } |
| 200 | } |
| 201 | if (masks_are_equal && (longer < 0)) { |
| 202 | for (lim2 = m - longer; m < lim2;) { |
| 203 | if (*m++) { |
| 204 | return 1; |
| 205 | } |
| 206 | } |
| 207 | } |
| 208 | return !masks_are_equal; |
| 209 | } |
| 210 | |
| 211 | struct radix_node * |
| 212 | rn_lookup(void *v_arg, void *m_arg, struct radix_node_head *head) |
| 213 | { |
| 214 | return rn_lookup_args(v_arg, m_arg, head, NULL, NULL); |
| 215 | } |
| 216 | |
| 217 | struct radix_node * |
| 218 | rn_lookup_args(void *v_arg, void *m_arg, struct radix_node_head *head, |
| 219 | rn_matchf_t *f, void *w) |
| 220 | { |
| 221 | struct radix_node *x; |
| 222 | caddr_t netmask = NULL; |
| 223 | |
| 224 | if (m_arg) { |
| 225 | x = rn_addmask(m_arg, 1, head->rnh_treetop->rn_offset); |
| 226 | if (x == 0) { |
| 227 | return NULL; |
| 228 | } |
| 229 | /* |
| 230 | * Note: the auxillary mask is stored as a "key". |
| 231 | */ |
| 232 | netmask = rn_get_key(rn: x); |
| 233 | } |
| 234 | x = rn_match_args(v_arg, head, f, w); |
| 235 | if (x && netmask) { |
| 236 | while (x && rn_get_mask(rn: x) != netmask) { |
| 237 | x = x->rn_dupedkey; |
| 238 | } |
| 239 | } |
| 240 | return x; |
| 241 | } |
| 242 | |
| 243 | /* |
| 244 | * Returns true if address 'trial' has no bits differing from the |
| 245 | * leaf's key when compared under the leaf's mask. In other words, |
| 246 | * returns true when 'trial' matches leaf. If a leaf-matching |
| 247 | * routine is passed in, it is also used to find a match on the |
| 248 | * conditions defined by the caller of rn_match. |
| 249 | */ |
| 250 | static int |
| 251 | rn_satisfies_leaf(char *trial, struct radix_node *leaf, int skip, |
| 252 | rn_matchf_t *f, void *w) |
| 253 | { |
| 254 | char *cp = trial; |
| 255 | char *cp2 = rn_get_key(rn: leaf); |
| 256 | char *cp3 = rn_get_mask(rn: leaf); |
| 257 | char *cplim; |
| 258 | int length = min(a: *(u_char *)cp, b: *(u_char *)cp2); |
| 259 | |
| 260 | if (cp3 == 0) { |
| 261 | cp3 = rn_ones; |
| 262 | } else { |
| 263 | length = min(a: length, b: *(u_char *)cp3); |
| 264 | } |
| 265 | cplim = cp + length; cp3 += skip; cp2 += skip; |
| 266 | for (cp += skip; cp < cplim; cp++, cp2++, cp3++) { |
| 267 | if ((*cp ^ *cp2) & *cp3) { |
| 268 | return 0; |
| 269 | } |
| 270 | } |
| 271 | |
| 272 | return RN_MATCHF(leaf, f, w); |
| 273 | } |
| 274 | |
| 275 | struct radix_node * |
| 276 | rn_match(void *v_arg, struct radix_node_head *head) |
| 277 | { |
| 278 | return rn_match_args(v_arg, head, NULL, NULL); |
| 279 | } |
| 280 | |
| 281 | struct radix_node * |
| 282 | rn_match_args(void *v_arg, struct radix_node_head *head, |
| 283 | rn_matchf_t *f, void *w) |
| 284 | { |
| 285 | caddr_t v = v_arg; |
| 286 | struct radix_node *t = head->rnh_treetop, *x; |
| 287 | caddr_t cp = v, cp2; |
| 288 | caddr_t cplim; |
| 289 | struct radix_node *saved_t, *top = t; |
| 290 | int off = t->rn_offset, vlen = *(u_char *)cp, matched_off; |
| 291 | int test, b, rn_bit; |
| 292 | |
| 293 | /* |
| 294 | * Open code rn_search(v, top) to avoid overhead of extra |
| 295 | * subroutine call. |
| 296 | */ |
| 297 | for (; t->rn_bit >= 0;) { |
| 298 | if (t->rn_bmask & cp[t->rn_offset]) { |
| 299 | t = t->rn_right; |
| 300 | } else { |
| 301 | t = t->rn_left; |
| 302 | } |
| 303 | } |
| 304 | /* |
| 305 | * See if we match exactly as a host destination |
| 306 | * or at least learn how many bits match, for normal mask finesse. |
| 307 | * |
| 308 | * It doesn't hurt us to limit how many bytes to check |
| 309 | * to the length of the mask, since if it matches we had a genuine |
| 310 | * match and the leaf we have is the most specific one anyway; |
| 311 | * if it didn't match with a shorter length it would fail |
| 312 | * with a long one. This wins big for class B&C netmasks which |
| 313 | * are probably the most common case... |
| 314 | */ |
| 315 | if (rn_get_mask(rn: t)) { |
| 316 | vlen = *(u_char *)rn_get_mask(rn: t); |
| 317 | } |
| 318 | cp += off; |
| 319 | cp2 = rn_get_key(rn: t) + off; |
| 320 | cplim = v + vlen; |
| 321 | |
| 322 | for (; cp < cplim; cp++, cp2++) { |
| 323 | if (*cp != *cp2) { |
| 324 | goto on1; |
| 325 | } |
| 326 | } |
| 327 | /* |
| 328 | * This extra grot is in case we are explicitly asked |
| 329 | * to look up the default. Ugh! |
| 330 | * |
| 331 | * Never return the root node itself, it seems to cause a |
| 332 | * lot of confusion. |
| 333 | */ |
| 334 | if (t->rn_flags & RNF_ROOT) { |
| 335 | t = t->rn_dupedkey; |
| 336 | } |
| 337 | if (t == NULL || RN_MATCHF(t, f, w)) { |
| 338 | return t; |
| 339 | } else { |
| 340 | /* |
| 341 | * Although we found an exact match on the key, |
| 342 | * f() is looking for some other criteria as well. |
| 343 | * Continue looking as if the exact match failed. |
| 344 | */ |
| 345 | if (t->rn_parent->rn_flags & RNF_ROOT) { |
| 346 | /* Hit the top; have to give up */ |
| 347 | return NULL; |
| 348 | } |
| 349 | b = 0; |
| 350 | goto keeplooking; |
| 351 | } |
| 352 | on1: |
| 353 | test = (*cp ^ *cp2) & 0xff; /* find first bit that differs */ |
| 354 | for (b = 7; (test >>= 1) > 0;) { |
| 355 | b--; |
| 356 | } |
| 357 | keeplooking: |
| 358 | matched_off = (int)(cp - v); |
| 359 | b += matched_off << 3; |
| 360 | rn_bit = -1 - b; |
| 361 | /* |
| 362 | * If there is a host route in a duped-key chain, it will be first. |
| 363 | */ |
| 364 | saved_t = t; |
| 365 | if (rn_get_mask(rn: t) == 0) { |
| 366 | t = t->rn_dupedkey; |
| 367 | } |
| 368 | for (; t; t = t->rn_dupedkey) { |
| 369 | /* |
| 370 | * Even if we don't match exactly as a host, |
| 371 | * we may match if the leaf we wound up at is |
| 372 | * a route to a net. |
| 373 | */ |
| 374 | if (t->rn_flags & RNF_NORMAL) { |
| 375 | if ((rn_bit <= t->rn_bit) && RN_MATCHF(t, f, w)) { |
| 376 | return t; |
| 377 | } |
| 378 | } else if (rn_satisfies_leaf(trial: v, leaf: t, skip: matched_off, f, w)) { |
| 379 | return t; |
| 380 | } |
| 381 | } |
| 382 | t = saved_t; |
| 383 | /* start searching up the tree */ |
| 384 | do { |
| 385 | struct radix_mask *m; |
| 386 | t = t->rn_parent; |
| 387 | m = t->rn_mklist; |
| 388 | /* |
| 389 | * If non-contiguous masks ever become important |
| 390 | * we can restore the masking and open coding of |
| 391 | * the search and satisfaction test and put the |
| 392 | * calculation of "off" back before the "do". |
| 393 | */ |
| 394 | while (m) { |
| 395 | if (m->rm_flags & RNF_NORMAL) { |
| 396 | if ((rn_bit <= m->rm_bit) && |
| 397 | RN_MATCHF(m->rm_leaf, f, w)) { |
| 398 | return m->rm_leaf; |
| 399 | } |
| 400 | } else { |
| 401 | off = min(a: t->rn_offset, b: matched_off); |
| 402 | x = rn_search_m(v_arg: v, head: t, m_arg: rm_get_mask(rm: m)); |
| 403 | while (x && rn_get_mask(rn: x) != rm_get_mask(rm: m)) { |
| 404 | x = x->rn_dupedkey; |
| 405 | } |
| 406 | if (x && rn_satisfies_leaf(trial: v, leaf: x, skip: off, f, w)) { |
| 407 | return x; |
| 408 | } |
| 409 | } |
| 410 | m = m->rm_mklist; |
| 411 | } |
| 412 | } while (t != top); |
| 413 | return NULL; |
| 414 | } |
| 415 | |
| 416 | #ifdef RN_DEBUG |
| 417 | int rn_nodenum; |
| 418 | struct radix_node *rn_clist; |
| 419 | int rn_saveinfo; |
| 420 | int rn_debug = 1; |
| 421 | #endif |
| 422 | |
| 423 | static struct radix_node * |
| 424 | rn_newpair(void *v, int b, struct radix_node nodes[2]) |
| 425 | { |
| 426 | struct radix_node *tt = nodes, *t = tt + 1; |
| 427 | t->rn_bit = (short)b; |
| 428 | t->rn_bmask = 0x80 >> (b & 7); |
| 429 | t->rn_left = tt; |
| 430 | t->rn_offset = b >> 3; |
| 431 | tt->rn_bit = -1; |
| 432 | tt->rn_key = (caddr_t)v; |
| 433 | tt->rn_parent = t; |
| 434 | tt->rn_flags = t->rn_flags = RNF_ACTIVE; |
| 435 | tt->rn_mklist = t->rn_mklist = NULL; |
| 436 | #ifdef RN_DEBUG |
| 437 | tt->rn_info = rn_nodenum++; t->rn_info = rn_nodenum++; |
| 438 | tt->rn_twin = t; |
| 439 | tt->rn_ybro = rn_clist; |
| 440 | rn_clist = tt; |
| 441 | #endif |
| 442 | return t; |
| 443 | } |
| 444 | |
| 445 | static struct radix_node * |
| 446 | rn_insert(void *v_arg, struct radix_node_head *head, int *dupentry, |
| 447 | struct radix_node nodes[2]) |
| 448 | { |
| 449 | caddr_t v = v_arg; |
| 450 | struct radix_node *top = head->rnh_treetop; |
| 451 | int head_off = top->rn_offset, vlen = (int)*((u_char *)v); |
| 452 | struct radix_node *t = rn_search(v_arg, head: top); |
| 453 | caddr_t cp = v + head_off; |
| 454 | int b; |
| 455 | struct radix_node *tt; |
| 456 | /* |
| 457 | * Find first bit at which v and t->rn_key differ |
| 458 | */ |
| 459 | { |
| 460 | caddr_t cp2 = rn_get_key(rn: t) + head_off; |
| 461 | int cmp_res; |
| 462 | caddr_t cplim = v + vlen; |
| 463 | |
| 464 | while (cp < cplim) { |
| 465 | if (*cp2++ != *cp++) { |
| 466 | goto on1; |
| 467 | } |
| 468 | } |
| 469 | *dupentry = 1; |
| 470 | return t; |
| 471 | on1: |
| 472 | *dupentry = 0; |
| 473 | cmp_res = (cp[-1] ^ cp2[-1]) & 0xff; |
| 474 | for (b = (int)(cp - v) << 3; cmp_res; b--) { |
| 475 | cmp_res >>= 1; |
| 476 | } |
| 477 | } |
| 478 | { |
| 479 | struct radix_node *p, *x = top; |
| 480 | cp = v; |
| 481 | do { |
| 482 | p = x; |
| 483 | if (cp[x->rn_offset] & x->rn_bmask) { |
| 484 | x = x->rn_right; |
| 485 | } else { |
| 486 | x = x->rn_left; |
| 487 | } |
| 488 | } while (b > (unsigned) x->rn_bit); |
| 489 | /* x->rn_bit < b && x->rn_bit >= 0 */ |
| 490 | #ifdef RN_DEBUG |
| 491 | if (rn_debug) { |
| 492 | log(LOG_DEBUG, "rn_insert: Going In:\n" ), traverse(p); |
| 493 | } |
| 494 | #endif |
| 495 | t = rn_newpair(v: v_arg, b, nodes); |
| 496 | tt = t->rn_left; |
| 497 | if ((cp[p->rn_offset] & p->rn_bmask) == 0) { |
| 498 | p->rn_left = t; |
| 499 | } else { |
| 500 | p->rn_right = t; |
| 501 | } |
| 502 | x->rn_parent = t; |
| 503 | t->rn_parent = p; /* frees x, p as temp vars below */ |
| 504 | if ((cp[t->rn_offset] & t->rn_bmask) == 0) { |
| 505 | t->rn_right = x; |
| 506 | } else { |
| 507 | t->rn_right = tt; |
| 508 | t->rn_left = x; |
| 509 | } |
| 510 | #ifdef RN_DEBUG |
| 511 | if (rn_debug) { |
| 512 | log(LOG_DEBUG, "rn_insert: Coming Out:\n" ), traverse(p); |
| 513 | } |
| 514 | #endif |
| 515 | } |
| 516 | return tt; |
| 517 | } |
| 518 | |
| 519 | struct radix_node * |
| 520 | rn_addmask(void *n_arg, int search, int skip) |
| 521 | { |
| 522 | caddr_t netmask = (caddr_t)n_arg; |
| 523 | struct radix_node *x; |
| 524 | caddr_t cp, cplim; |
| 525 | int b = 0, mlen, j; |
| 526 | int maskduplicated, m0, isnormal; |
| 527 | struct radix_node *saved_x; |
| 528 | static int last_zeroed = 0; |
| 529 | |
| 530 | if ((mlen = *(u_char *)netmask) > max_keylen) { |
| 531 | mlen = max_keylen; |
| 532 | } |
| 533 | if (skip == 0) { |
| 534 | skip = 1; |
| 535 | } |
| 536 | if (mlen <= skip) { |
| 537 | return mask_rnhead->rnh_nodes; |
| 538 | } |
| 539 | if (skip > 1) { |
| 540 | Bcopy(rn_ones + 1, addmask_key + 1, skip - 1); |
| 541 | } |
| 542 | if ((m0 = mlen) > skip) { |
| 543 | Bcopy(netmask + skip, addmask_key + skip, mlen - skip); |
| 544 | } |
| 545 | /* |
| 546 | * Trim trailing zeroes. |
| 547 | */ |
| 548 | for (cp = addmask_key + mlen; (cp > addmask_key) && cp[-1] == 0;) { |
| 549 | cp--; |
| 550 | } |
| 551 | mlen = (int)(cp - addmask_key); |
| 552 | if (mlen <= skip) { |
| 553 | if (m0 >= last_zeroed) { |
| 554 | last_zeroed = mlen; |
| 555 | } |
| 556 | return mask_rnhead->rnh_nodes; |
| 557 | } |
| 558 | if (m0 < last_zeroed) { |
| 559 | Bzero(addmask_key + m0, last_zeroed - m0); |
| 560 | } |
| 561 | *addmask_key = last_zeroed = (char)mlen; |
| 562 | x = rn_search(v_arg: addmask_key, rn_masktop); |
| 563 | if (Bcmp(addmask_key, rn_get_key(x), mlen) != 0) { |
| 564 | x = NULL; |
| 565 | } |
| 566 | if (x || search) { |
| 567 | return x; |
| 568 | } |
| 569 | x = saved_x = zalloc_flags(radix_node_zone, Z_WAITOK_ZERO_NOFAIL); |
| 570 | netmask = cp = (caddr_t)(x + 2); |
| 571 | Bcopy(addmask_key, cp, mlen); |
| 572 | x = rn_insert(v_arg: cp, head: mask_rnhead, dupentry: &maskduplicated, nodes: x); |
| 573 | if (maskduplicated) { |
| 574 | log(LOG_ERR, "rn_addmask: mask impossibly already in tree" ); |
| 575 | zfree(radix_node_zone, saved_x); |
| 576 | return x; |
| 577 | } |
| 578 | mask_rnhead->rnh_cnt++; |
| 579 | /* |
| 580 | * Calculate index of mask, and check for normalcy. |
| 581 | */ |
| 582 | cplim = netmask + mlen; isnormal = 1; |
| 583 | for (cp = netmask + skip; (cp < cplim) && *(u_char *)cp == 0xff;) { |
| 584 | cp++; |
| 585 | } |
| 586 | if (cp != cplim) { |
| 587 | for (j = 0x80; (j & *cp) != 0; j >>= 1) { |
| 588 | b++; |
| 589 | } |
| 590 | if (*cp != normal_chars[b] || cp != (cplim - 1)) { |
| 591 | isnormal = 0; |
| 592 | } |
| 593 | } |
| 594 | b += (cp - netmask) << 3; |
| 595 | x->rn_bit = (short)(-1 - b); |
| 596 | if (isnormal) { |
| 597 | x->rn_flags |= RNF_NORMAL; |
| 598 | } |
| 599 | return x; |
| 600 | } |
| 601 | |
| 602 | static int |
| 603 | /* XXX: arbitrary ordering for non-contiguous masks */ |
| 604 | rn_lexobetter(void *m_arg, void *n_arg) |
| 605 | { |
| 606 | u_char *mp = m_arg, *np = n_arg, *lim; |
| 607 | |
| 608 | if (*mp > *np) { |
| 609 | return 1; /* not really, but need to check longer one first */ |
| 610 | } |
| 611 | if (*mp == *np) { |
| 612 | for (lim = mp + *mp; mp < lim;) { |
| 613 | if (*mp++ > *np++) { |
| 614 | return 1; |
| 615 | } |
| 616 | } |
| 617 | } |
| 618 | return 0; |
| 619 | } |
| 620 | |
| 621 | static struct radix_mask * |
| 622 | rn_new_radix_mask(struct radix_node *tt, struct radix_mask *next) |
| 623 | { |
| 624 | struct radix_mask *m; |
| 625 | |
| 626 | MKGet(m); |
| 627 | m->rm_bit = tt->rn_bit; |
| 628 | m->rm_flags = tt->rn_flags; |
| 629 | if (tt->rn_flags & RNF_NORMAL) { |
| 630 | m->rm_leaf = tt; |
| 631 | } else { |
| 632 | m->rm_mask = rn_get_mask(rn: tt); |
| 633 | } |
| 634 | m->rm_mklist = next; |
| 635 | tt->rn_mklist = m; |
| 636 | return m; |
| 637 | } |
| 638 | |
| 639 | struct radix_node * |
| 640 | rn_addroute(void *v_arg, void *n_arg, struct radix_node_head *head, |
| 641 | struct radix_node treenodes[2]) |
| 642 | { |
| 643 | caddr_t v = (caddr_t)v_arg, netmask = (caddr_t)n_arg; |
| 644 | struct radix_node *t, *x = NULL, *tt; |
| 645 | struct radix_node *saved_tt, *top = head->rnh_treetop; |
| 646 | short b = 0, b_leaf = 0; |
| 647 | int keyduplicated; |
| 648 | caddr_t mmask; |
| 649 | struct radix_mask *m, **mp; |
| 650 | |
| 651 | /* |
| 652 | * In dealing with non-contiguous masks, there may be |
| 653 | * many different routes which have the same mask. |
| 654 | * We will find it useful to have a unique pointer to |
| 655 | * the mask to speed avoiding duplicate references at |
| 656 | * nodes and possibly save time in calculating indices. |
| 657 | */ |
| 658 | if (netmask) { |
| 659 | if ((x = rn_addmask(n_arg: netmask, search: 0, skip: top->rn_offset)) == 0) { |
| 660 | return NULL; |
| 661 | } |
| 662 | b_leaf = x->rn_bit; |
| 663 | b = -1 - x->rn_bit; |
| 664 | /* |
| 665 | * Note: the auxillary mask is stored as a "key". |
| 666 | */ |
| 667 | netmask = rn_get_key(rn: x); |
| 668 | } |
| 669 | /* |
| 670 | * Deal with duplicated keys: attach node to previous instance |
| 671 | */ |
| 672 | saved_tt = tt = rn_insert(v_arg: v, head, dupentry: &keyduplicated, nodes: treenodes); |
| 673 | if (keyduplicated) { |
| 674 | for (t = tt; tt; t = tt, tt = tt->rn_dupedkey) { |
| 675 | if (rn_get_mask(rn: tt) == netmask) { |
| 676 | return NULL; |
| 677 | } |
| 678 | if (netmask == 0 || |
| 679 | (rn_get_mask(rn: tt) != NULL && |
| 680 | ((b_leaf < tt->rn_bit) /* index(netmask) > node */ |
| 681 | || rn_refines(m_arg: netmask, n_arg: rn_get_mask(rn: tt)) |
| 682 | || rn_lexobetter(m_arg: netmask, n_arg: rn_get_mask(rn: tt))))) { |
| 683 | break; |
| 684 | } |
| 685 | } |
| 686 | /* |
| 687 | * If the mask is not duplicated, we wouldn't |
| 688 | * find it among possible duplicate key entries |
| 689 | * anyway, so the above test doesn't hurt. |
| 690 | * |
| 691 | * We sort the masks for a duplicated key the same way as |
| 692 | * in a masklist -- most specific to least specific. |
| 693 | * This may require the unfortunate nuisance of relocating |
| 694 | * the head of the list. |
| 695 | */ |
| 696 | if (tt == saved_tt) { |
| 697 | struct radix_node *xx = x; |
| 698 | /* link in at head of list */ |
| 699 | (tt = treenodes)->rn_dupedkey = t; |
| 700 | tt->rn_flags = t->rn_flags; |
| 701 | tt->rn_parent = x = t->rn_parent; |
| 702 | t->rn_parent = tt; /* parent */ |
| 703 | if (x->rn_left == t) { |
| 704 | x->rn_left = tt; |
| 705 | } else { |
| 706 | x->rn_right = tt; |
| 707 | } |
| 708 | saved_tt = tt; x = xx; |
| 709 | } else { |
| 710 | (tt = treenodes)->rn_dupedkey = t->rn_dupedkey; |
| 711 | t->rn_dupedkey = tt; |
| 712 | tt->rn_parent = t; /* parent */ |
| 713 | if (tt->rn_dupedkey) { /* parent */ |
| 714 | tt->rn_dupedkey->rn_parent = tt; /* parent */ |
| 715 | } |
| 716 | } |
| 717 | #ifdef RN_DEBUG |
| 718 | t = tt + 1; tt->rn_info = rn_nodenum++; t->rn_info = rn_nodenum++; |
| 719 | tt->rn_twin = t; tt->rn_ybro = rn_clist; rn_clist = tt; |
| 720 | #endif |
| 721 | tt->rn_key = (caddr_t) v; |
| 722 | tt->rn_bit = -1; |
| 723 | tt->rn_flags = RNF_ACTIVE; |
| 724 | } |
| 725 | head->rnh_cnt++; |
| 726 | /* |
| 727 | * Put mask in tree. |
| 728 | */ |
| 729 | if (netmask) { |
| 730 | tt->rn_mask = netmask; |
| 731 | tt->rn_bit = x->rn_bit; |
| 732 | tt->rn_flags |= x->rn_flags & RNF_NORMAL; |
| 733 | } |
| 734 | t = saved_tt->rn_parent; |
| 735 | if (keyduplicated) { |
| 736 | goto on2; |
| 737 | } |
| 738 | b_leaf = -1 - t->rn_bit; |
| 739 | if (t->rn_right == saved_tt) { |
| 740 | x = t->rn_left; |
| 741 | } else { |
| 742 | x = t->rn_right; |
| 743 | } |
| 744 | /* Promote general routes from below */ |
| 745 | if (x->rn_bit < 0) { |
| 746 | for (mp = &t->rn_mklist; x; x = x->rn_dupedkey) { |
| 747 | if (rn_get_mask(rn: x) != NULL && (x->rn_bit >= b_leaf) && x->rn_mklist == 0) { |
| 748 | *mp = m = rn_new_radix_mask(tt: x, NULL); |
| 749 | if (m) { |
| 750 | mp = &m->rm_mklist; |
| 751 | } |
| 752 | } |
| 753 | } |
| 754 | } else if (x->rn_mklist) { |
| 755 | /* |
| 756 | * Skip over masks whose index is > that of new node |
| 757 | */ |
| 758 | for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist) { |
| 759 | if (m->rm_bit >= b_leaf) { |
| 760 | break; |
| 761 | } |
| 762 | } |
| 763 | t->rn_mklist = m; *mp = NULL; |
| 764 | } |
| 765 | on2: |
| 766 | /* Add new route to highest possible ancestor's list */ |
| 767 | if ((netmask == 0) || (b > t->rn_bit)) { |
| 768 | return tt; /* can't lift at all */ |
| 769 | } |
| 770 | b_leaf = tt->rn_bit; |
| 771 | do { |
| 772 | x = t; |
| 773 | t = t->rn_parent; |
| 774 | } while (b <= t->rn_bit && x != top); |
| 775 | /* |
| 776 | * Search through routes associated with node to |
| 777 | * insert new route according to index. |
| 778 | * Need same criteria as when sorting dupedkeys to avoid |
| 779 | * double loop on deletion. |
| 780 | */ |
| 781 | for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist) { |
| 782 | if (m->rm_bit < b_leaf) { |
| 783 | continue; |
| 784 | } |
| 785 | if (m->rm_bit > b_leaf) { |
| 786 | break; |
| 787 | } |
| 788 | if (m->rm_flags & RNF_NORMAL) { |
| 789 | mmask = rn_get_mask(rn: m->rm_leaf); |
| 790 | if (tt->rn_flags & RNF_NORMAL) { |
| 791 | log(LOG_ERR, |
| 792 | "Non-unique normal route, mask not entered" ); |
| 793 | return tt; |
| 794 | } |
| 795 | } else { |
| 796 | mmask = rm_get_mask(rm: m); |
| 797 | } |
| 798 | if (mmask == netmask) { |
| 799 | m->rm_refs++; |
| 800 | tt->rn_mklist = m; |
| 801 | return tt; |
| 802 | } |
| 803 | if (rn_refines(m_arg: netmask, n_arg: mmask) |
| 804 | || rn_lexobetter(m_arg: netmask, n_arg: mmask)) { |
| 805 | break; |
| 806 | } |
| 807 | } |
| 808 | *mp = rn_new_radix_mask(tt, next: *mp); |
| 809 | return tt; |
| 810 | } |
| 811 | |
| 812 | struct radix_node * |
| 813 | rn_delete(void *v_arg, void *netmask_arg, struct radix_node_head *head) |
| 814 | { |
| 815 | struct radix_node *t, *p, *x, *tt; |
| 816 | struct radix_mask *m, *saved_m, **mp; |
| 817 | struct radix_node *dupedkey, *saved_tt, *top; |
| 818 | caddr_t v, netmask; |
| 819 | int b, head_off, vlen; |
| 820 | |
| 821 | v = v_arg; |
| 822 | netmask = netmask_arg; |
| 823 | x = head->rnh_treetop; |
| 824 | tt = rn_search(v_arg: v, head: x); |
| 825 | head_off = x->rn_offset; |
| 826 | vlen = *(u_char *)v; |
| 827 | saved_tt = tt; |
| 828 | top = x; |
| 829 | if (tt == 0 || |
| 830 | Bcmp(v + head_off, rn_get_key(tt) + head_off, vlen - head_off)) { |
| 831 | return NULL; |
| 832 | } |
| 833 | /* |
| 834 | * Delete our route from mask lists. |
| 835 | */ |
| 836 | if (netmask) { |
| 837 | if ((x = rn_addmask(n_arg: netmask, search: 1, skip: head_off)) == 0) { |
| 838 | return NULL; |
| 839 | } |
| 840 | netmask = rn_get_key(rn: x); |
| 841 | while (rn_get_mask(rn: tt) != netmask) { |
| 842 | if ((tt = tt->rn_dupedkey) == 0) { |
| 843 | return NULL; |
| 844 | } |
| 845 | } |
| 846 | } |
| 847 | if (rn_get_mask(rn: tt) == 0 || (saved_m = m = tt->rn_mklist) == 0) { |
| 848 | goto on1; |
| 849 | } |
| 850 | if (tt->rn_flags & RNF_NORMAL) { |
| 851 | if (m->rm_leaf != tt || m->rm_refs > 0) { |
| 852 | log(LOG_ERR, "rn_delete: inconsistent annotation\n" ); |
| 853 | return NULL; /* dangling ref could cause disaster */ |
| 854 | } |
| 855 | } else { |
| 856 | if (rm_get_mask(rm: m) != rn_get_mask(rn: tt)) { |
| 857 | log(LOG_ERR, "rn_delete: inconsistent annotation\n" ); |
| 858 | goto on1; |
| 859 | } |
| 860 | if (--m->rm_refs >= 0) { |
| 861 | goto on1; |
| 862 | } |
| 863 | } |
| 864 | b = -1 - tt->rn_bit; |
| 865 | t = saved_tt->rn_parent; |
| 866 | if (b > t->rn_bit) { |
| 867 | goto on1; /* Wasn't lifted at all */ |
| 868 | } |
| 869 | do { |
| 870 | x = t; |
| 871 | t = t->rn_parent; |
| 872 | } while (b <= t->rn_bit && x != top); |
| 873 | for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist) { |
| 874 | if (m == saved_m) { |
| 875 | *mp = m->rm_mklist; |
| 876 | if (tt->rn_mklist == m) { |
| 877 | tt->rn_mklist = *mp; |
| 878 | } |
| 879 | MKFree(m); |
| 880 | break; |
| 881 | } |
| 882 | } |
| 883 | if (m == 0) { |
| 884 | log(LOG_ERR, "rn_delete: couldn't find our annotation\n" ); |
| 885 | if (tt->rn_flags & RNF_NORMAL) { |
| 886 | return NULL; /* Dangling ref to us */ |
| 887 | } |
| 888 | } |
| 889 | on1: |
| 890 | /* |
| 891 | * Eliminate us from tree |
| 892 | */ |
| 893 | if (tt->rn_flags & RNF_ROOT) { |
| 894 | return NULL; |
| 895 | } |
| 896 | head->rnh_cnt--; |
| 897 | #ifdef RN_DEBUG |
| 898 | /* Get us out of the creation list */ |
| 899 | for (t = rn_clist; t && t->rn_ybro != tt; t = t->rn_ybro) { |
| 900 | } |
| 901 | if (t) { |
| 902 | t->rn_ybro = tt->rn_ybro; |
| 903 | } |
| 904 | #endif |
| 905 | t = tt->rn_parent; |
| 906 | dupedkey = saved_tt->rn_dupedkey; |
| 907 | if (dupedkey) { |
| 908 | /* |
| 909 | * at this point, tt is the deletion target and saved_tt |
| 910 | * is the head of the dupekey chain |
| 911 | */ |
| 912 | if (tt == saved_tt) { |
| 913 | /* remove from head of chain */ |
| 914 | x = dupedkey; x->rn_parent = t; |
| 915 | if (t->rn_left == tt) { |
| 916 | t->rn_left = x; |
| 917 | } else { |
| 918 | t->rn_right = x; |
| 919 | } |
| 920 | } else { |
| 921 | /* find node in front of tt on the chain */ |
| 922 | for (x = p = saved_tt; p && p->rn_dupedkey != tt;) { |
| 923 | p = p->rn_dupedkey; |
| 924 | } |
| 925 | if (p) { |
| 926 | p->rn_dupedkey = tt->rn_dupedkey; |
| 927 | if (tt->rn_dupedkey) { /* parent */ |
| 928 | tt->rn_dupedkey->rn_parent = p; |
| 929 | } |
| 930 | /* parent */ |
| 931 | } else { |
| 932 | log(LOG_ERR, "rn_delete: couldn't find us\n" ); |
| 933 | } |
| 934 | } |
| 935 | t = tt + 1; |
| 936 | if (t->rn_flags & RNF_ACTIVE) { |
| 937 | #ifndef RN_DEBUG |
| 938 | *++x = *t; |
| 939 | p = t->rn_parent; |
| 940 | #else |
| 941 | b = t->rn_info; |
| 942 | *++x = *t; |
| 943 | t->rn_info = b; |
| 944 | p = t->rn_parent; |
| 945 | #endif |
| 946 | if (p->rn_left == t) { |
| 947 | p->rn_left = x; |
| 948 | } else { |
| 949 | p->rn_right = x; |
| 950 | } |
| 951 | x->rn_left->rn_parent = x; |
| 952 | x->rn_right->rn_parent = x; |
| 953 | } |
| 954 | goto out; |
| 955 | } |
| 956 | if (t->rn_left == tt) { |
| 957 | x = t->rn_right; |
| 958 | } else { |
| 959 | x = t->rn_left; |
| 960 | } |
| 961 | p = t->rn_parent; |
| 962 | if (p->rn_right == t) { |
| 963 | p->rn_right = x; |
| 964 | } else { |
| 965 | p->rn_left = x; |
| 966 | } |
| 967 | x->rn_parent = p; |
| 968 | /* |
| 969 | * Demote routes attached to us. |
| 970 | */ |
| 971 | if (t->rn_mklist) { |
| 972 | if (x->rn_bit >= 0) { |
| 973 | for (mp = &x->rn_mklist; (m = *mp);) { |
| 974 | mp = &m->rm_mklist; |
| 975 | } |
| 976 | *mp = t->rn_mklist; |
| 977 | } else { |
| 978 | /* If there are any key,mask pairs in a sibling |
| 979 | * duped-key chain, some subset will appear sorted |
| 980 | * in the same order attached to our mklist */ |
| 981 | for (m = t->rn_mklist; m && x; x = x->rn_dupedkey) { |
| 982 | if (m == x->rn_mklist) { |
| 983 | struct radix_mask *mm = m->rm_mklist; |
| 984 | x->rn_mklist = NULL; |
| 985 | if (--(m->rm_refs) < 0) { |
| 986 | MKFree(m); |
| 987 | } |
| 988 | m = mm; |
| 989 | } |
| 990 | } |
| 991 | if (m) { |
| 992 | log(LOG_ERR, "rn_delete: Orphaned Mask " |
| 993 | "0x%llx at 0x%llx\n" , |
| 994 | (uint64_t)VM_KERNEL_ADDRPERM(m), |
| 995 | (uint64_t)VM_KERNEL_ADDRPERM(x)); |
| 996 | } |
| 997 | } |
| 998 | } |
| 999 | /* |
| 1000 | * We may be holding an active internal node in the tree. |
| 1001 | */ |
| 1002 | x = tt + 1; |
| 1003 | if (t != x) { |
| 1004 | #ifndef RN_DEBUG |
| 1005 | *t = *x; |
| 1006 | #else |
| 1007 | b = t->rn_info; |
| 1008 | *t = *x; |
| 1009 | t->rn_info = b; |
| 1010 | #endif |
| 1011 | t->rn_left->rn_parent = t; |
| 1012 | t->rn_right->rn_parent = t; |
| 1013 | p = x->rn_parent; |
| 1014 | if (p->rn_left == x) { |
| 1015 | p->rn_left = t; |
| 1016 | } else { |
| 1017 | p->rn_right = t; |
| 1018 | } |
| 1019 | } |
| 1020 | out: |
| 1021 | tt->rn_flags &= ~RNF_ACTIVE; |
| 1022 | tt[1].rn_flags &= ~RNF_ACTIVE; |
| 1023 | return tt; |
| 1024 | } |
| 1025 | |
| 1026 | /* |
| 1027 | * This is the same as rn_walktree() except for the parameters and the |
| 1028 | * exit. |
| 1029 | */ |
| 1030 | static int |
| 1031 | rn_walktree_from(struct radix_node_head *h, void *a, void *m, walktree_f_t *f, |
| 1032 | void *w) |
| 1033 | { |
| 1034 | int error; |
| 1035 | struct radix_node *base, *next; |
| 1036 | u_char *xa = (u_char *)a; |
| 1037 | u_char *xm = (u_char *)m; |
| 1038 | struct radix_node *rn, *last; |
| 1039 | int stopping; |
| 1040 | int lastb; |
| 1041 | int rnh_cnt; |
| 1042 | |
| 1043 | /* |
| 1044 | * This gets complicated because we may delete the node while |
| 1045 | * applying the function f to it; we cannot simply use the next |
| 1046 | * leaf as the successor node in advance, because that leaf may |
| 1047 | * be removed as well during deletion when it is a clone of the |
| 1048 | * current node. When that happens, we would end up referring |
| 1049 | * to an already-freed radix node as the successor node. To get |
| 1050 | * around this issue, if we detect that the radix tree has changed |
| 1051 | * in dimension (smaller than before), we simply restart the walk |
| 1052 | * from the top of tree. |
| 1053 | */ |
| 1054 | restart: |
| 1055 | last = NULL; |
| 1056 | stopping = 0; |
| 1057 | rnh_cnt = h->rnh_cnt; |
| 1058 | |
| 1059 | /* |
| 1060 | * rn_search_m is sort-of-open-coded here. |
| 1061 | */ |
| 1062 | for (rn = h->rnh_treetop; rn->rn_bit >= 0;) { |
| 1063 | last = rn; |
| 1064 | if (!(rn->rn_bmask & xm[rn->rn_offset])) { |
| 1065 | break; |
| 1066 | } |
| 1067 | |
| 1068 | if (rn->rn_bmask & xa[rn->rn_offset]) { |
| 1069 | rn = rn->rn_right; |
| 1070 | } else { |
| 1071 | rn = rn->rn_left; |
| 1072 | } |
| 1073 | } |
| 1074 | |
| 1075 | /* |
| 1076 | * Two cases: either we stepped off the end of our mask, |
| 1077 | * in which case last == rn, or we reached a leaf, in which |
| 1078 | * case we want to start from the last node we looked at. |
| 1079 | * Either way, last is the node we want to start from. |
| 1080 | */ |
| 1081 | rn = last; |
| 1082 | lastb = rn->rn_bit; |
| 1083 | |
| 1084 | /* First time through node, go left */ |
| 1085 | while (rn->rn_bit >= 0) { |
| 1086 | rn = rn->rn_left; |
| 1087 | } |
| 1088 | |
| 1089 | while (!stopping) { |
| 1090 | base = rn; |
| 1091 | /* If at right child go back up, otherwise, go right */ |
| 1092 | while (rn->rn_parent->rn_right == rn |
| 1093 | && !(rn->rn_flags & RNF_ROOT)) { |
| 1094 | rn = rn->rn_parent; |
| 1095 | |
| 1096 | /* if went up beyond last, stop */ |
| 1097 | if (rn->rn_bit <= lastb) { |
| 1098 | stopping = 1; |
| 1099 | /* |
| 1100 | * XXX we should jump to the 'Process leaves' |
| 1101 | * part, because the values of 'rn' and 'next' |
| 1102 | * we compute will not be used. Not a big deal |
| 1103 | * because this loop will terminate, but it is |
| 1104 | * inefficient and hard to understand! |
| 1105 | */ |
| 1106 | } |
| 1107 | } |
| 1108 | |
| 1109 | /* |
| 1110 | * The following code (bug fix) inherited from FreeBSD is |
| 1111 | * currently disabled, because our implementation uses the |
| 1112 | * RTF_PRCLONING scheme that has been abandoned in current |
| 1113 | * FreeBSD release. The scheme involves setting such a flag |
| 1114 | * for the default route entry, and therefore all off-link |
| 1115 | * destinations would become clones of that entry. Enabling |
| 1116 | * the following code would be problematic at this point, |
| 1117 | * because the removal of default route would cause only |
| 1118 | * the left-half of the tree to be traversed, leaving the |
| 1119 | * right-half untouched. If there are clones of the entry |
| 1120 | * that reside in that right-half, they would not be deleted |
| 1121 | * and would linger around until they expire or explicitly |
| 1122 | * deleted, which is a very bad thing. |
| 1123 | * |
| 1124 | * This code should be uncommented only after we get rid |
| 1125 | * of the RTF_PRCLONING scheme. |
| 1126 | */ |
| 1127 | #if 0 |
| 1128 | /* |
| 1129 | * At the top of the tree, no need to traverse the right |
| 1130 | * half, prevent the traversal of the entire tree in the |
| 1131 | * case of default route. |
| 1132 | */ |
| 1133 | if (rn->rn_parent->rn_flags & RNF_ROOT) { |
| 1134 | stopping = 1; |
| 1135 | } |
| 1136 | #endif |
| 1137 | |
| 1138 | /* Find the next *leaf* to start from */ |
| 1139 | for (rn = rn->rn_parent->rn_right; rn->rn_bit >= 0;) { |
| 1140 | rn = rn->rn_left; |
| 1141 | } |
| 1142 | next = rn; |
| 1143 | /* Process leaves */ |
| 1144 | while ((rn = base) != 0) { |
| 1145 | base = rn->rn_dupedkey; |
| 1146 | if (!(rn->rn_flags & RNF_ROOT) |
| 1147 | && (error = (*f)(rn, w))) { |
| 1148 | return error; |
| 1149 | } |
| 1150 | } |
| 1151 | /* If one or more nodes got deleted, restart from top */ |
| 1152 | if (h->rnh_cnt < rnh_cnt) { |
| 1153 | goto restart; |
| 1154 | } |
| 1155 | rn = next; |
| 1156 | if (rn->rn_flags & RNF_ROOT) { |
| 1157 | stopping = 1; |
| 1158 | } |
| 1159 | } |
| 1160 | return 0; |
| 1161 | } |
| 1162 | |
| 1163 | static int |
| 1164 | rn_walktree(struct radix_node_head *h, walktree_f_t *f, void *w) |
| 1165 | { |
| 1166 | int error; |
| 1167 | struct radix_node *base, *next; |
| 1168 | struct radix_node *rn; |
| 1169 | int rnh_cnt; |
| 1170 | |
| 1171 | /* |
| 1172 | * This gets complicated because we may delete the node while |
| 1173 | * applying the function f to it; we cannot simply use the next |
| 1174 | * leaf as the successor node in advance, because that leaf may |
| 1175 | * be removed as well during deletion when it is a clone of the |
| 1176 | * current node. When that happens, we would end up referring |
| 1177 | * to an already-freed radix node as the successor node. To get |
| 1178 | * around this issue, if we detect that the radix tree has changed |
| 1179 | * in dimension (smaller than before), we simply restart the walk |
| 1180 | * from the top of tree. |
| 1181 | */ |
| 1182 | restart: |
| 1183 | rn = h->rnh_treetop; |
| 1184 | rnh_cnt = h->rnh_cnt; |
| 1185 | |
| 1186 | /* First time through node, go left */ |
| 1187 | while (rn->rn_bit >= 0) { |
| 1188 | rn = rn->rn_left; |
| 1189 | } |
| 1190 | for (;;) { |
| 1191 | base = rn; |
| 1192 | /* If at right child go back up, otherwise, go right */ |
| 1193 | while (rn->rn_parent->rn_right == rn && |
| 1194 | (rn->rn_flags & RNF_ROOT) == 0) { |
| 1195 | rn = rn->rn_parent; |
| 1196 | } |
| 1197 | /* Find the next *leaf* to start from */ |
| 1198 | for (rn = rn->rn_parent->rn_right; rn->rn_bit >= 0;) { |
| 1199 | rn = rn->rn_left; |
| 1200 | } |
| 1201 | next = rn; |
| 1202 | /* Process leaves */ |
| 1203 | while ((rn = base) != NULL) { |
| 1204 | base = rn->rn_dupedkey; |
| 1205 | if (!(rn->rn_flags & RNF_ROOT) |
| 1206 | && (error = (*f)(rn, w))) { |
| 1207 | return error; |
| 1208 | } |
| 1209 | } |
| 1210 | /* If one or more nodes got deleted, restart from top */ |
| 1211 | if (h->rnh_cnt < rnh_cnt) { |
| 1212 | goto restart; |
| 1213 | } |
| 1214 | rn = next; |
| 1215 | if (rn->rn_flags & RNF_ROOT) { |
| 1216 | return 0; |
| 1217 | } |
| 1218 | } |
| 1219 | /* NOTREACHED */ |
| 1220 | } |
| 1221 | |
| 1222 | int |
| 1223 | rn_inithead(void **head, int off) |
| 1224 | { |
| 1225 | struct radix_node_head *rnh; |
| 1226 | struct radix_node *t, *tt, *ttt; |
| 1227 | if (off > INT8_MAX) { |
| 1228 | return 0; |
| 1229 | } |
| 1230 | if (*head) { |
| 1231 | return 1; |
| 1232 | } |
| 1233 | |
| 1234 | rnh = zalloc_flags(radix_node_head_zone, Z_WAITOK_ZERO_NOFAIL); |
| 1235 | *head = rnh; |
| 1236 | t = rn_newpair(v: rn_zeros, b: off, nodes: rnh->rnh_nodes); |
| 1237 | ttt = rnh->rnh_nodes + 2; |
| 1238 | t->rn_right = ttt; |
| 1239 | t->rn_parent = t; |
| 1240 | tt = t->rn_left; |
| 1241 | tt->rn_flags = t->rn_flags = RNF_ROOT | RNF_ACTIVE; |
| 1242 | tt->rn_bit = (short)(-1 - off); |
| 1243 | *ttt = *tt; |
| 1244 | ttt->rn_key = rn_ones; |
| 1245 | rnh->rnh_addaddr = rn_addroute; |
| 1246 | rnh->rnh_deladdr = rn_delete; |
| 1247 | rnh->rnh_matchaddr = rn_match; |
| 1248 | rnh->rnh_matchaddr_args = rn_match_args; |
| 1249 | rnh->rnh_lookup = rn_lookup; |
| 1250 | rnh->rnh_lookup_args = rn_lookup_args; |
| 1251 | rnh->rnh_walktree = rn_walktree; |
| 1252 | rnh->rnh_walktree_from = rn_walktree_from; |
| 1253 | rnh->rnh_treetop = t; |
| 1254 | rnh->rnh_cnt = 3; |
| 1255 | return 1; |
| 1256 | } |
| 1257 | |
| 1258 | void |
| 1259 | rn_init(void) |
| 1260 | { |
| 1261 | char *cp, *cplim; |
| 1262 | struct domain *dom; |
| 1263 | |
| 1264 | /* lock already held when rn_init is called */ |
| 1265 | TAILQ_FOREACH(dom, &domains, dom_entry) { |
| 1266 | if (dom->dom_maxrtkey > max_keylen) { |
| 1267 | max_keylen = dom->dom_maxrtkey; |
| 1268 | } |
| 1269 | } |
| 1270 | if (max_keylen == 0) { |
| 1271 | log(LOG_ERR, |
| 1272 | "rn_init: radix functions require max_keylen be set\n" ); |
| 1273 | return; |
| 1274 | } |
| 1275 | rn_zeros = zalloc_permanent(3 * max_keylen, ZALIGN_NONE); |
| 1276 | rn_ones = cp = rn_zeros + max_keylen; |
| 1277 | addmask_key = cplim = rn_ones + max_keylen; |
| 1278 | while (cp < cplim) { |
| 1279 | *cp++ = -1; |
| 1280 | } |
| 1281 | if (rn_inithead(head: (void **)&mask_rnhead, off: 0) == 0) { |
| 1282 | panic("rn_init 2" ); |
| 1283 | } |
| 1284 | |
| 1285 | radix_node_zone = zone_create(name: "radix_node" , |
| 1286 | size: sizeof(struct radix_node) * 2 + max_keylen, |
| 1287 | flags: ZC_PGZ_USE_GUARDS | ZC_ZFREE_CLEARMEM); |
| 1288 | } |
| 1289 | |