1/*
2 * Copyright (c) 2000-2019 Apple Computer, Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28/* Copyright (c) 1995 NeXT Computer, Inc. All Rights Reserved */
29/*
30 * Copyright (c) 1989, 1993, 1995
31 * The Regents of the University of California. All rights reserved.
32 *
33 * Redistribution and use in source and binary forms, with or without
34 * modification, are permitted provided that the following conditions
35 * are met:
36 * 1. Redistributions of source code must retain the above copyright
37 * notice, this list of conditions and the following disclaimer.
38 * 2. Redistributions in binary form must reproduce the above copyright
39 * notice, this list of conditions and the following disclaimer in the
40 * documentation and/or other materials provided with the distribution.
41 * 3. All advertising materials mentioning features or use of this software
42 * must display the following acknowledgement:
43 * This product includes software developed by the University of
44 * California, Berkeley and its contributors.
45 * 4. Neither the name of the University nor the names of its contributors
46 * may be used to endorse or promote products derived from this software
47 * without specific prior written permission.
48 *
49 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
50 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
51 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
52 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
53 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
54 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
55 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
56 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
57 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
58 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
59 * SUCH DAMAGE.
60 *
61 * @(#)spec_vnops.c 8.14 (Berkeley) 5/21/95
62 */
63
64#include <sys/param.h>
65#include <sys/proc_internal.h>
66#include <sys/kauth.h>
67#include <sys/systm.h>
68#include <sys/kernel.h>
69#include <sys/conf.h>
70#include <sys/buf_internal.h>
71#include <sys/mount_internal.h>
72#include <sys/vnode_internal.h>
73#include <sys/file_internal.h>
74#include <sys/namei.h>
75#include <sys/stat.h>
76#include <sys/errno.h>
77#include <sys/ioctl.h>
78#include <sys/file.h>
79#include <sys/user.h>
80#include <sys/malloc.h>
81#include <sys/disk.h>
82#include <sys/uio_internal.h>
83#include <sys/resource.h>
84#include <machine/machine_routines.h>
85#include <miscfs/specfs/specdev.h>
86#include <vfs/vfs_support.h>
87#include <vfs/vfs_disk_conditioner.h>
88
89#include <kern/assert.h>
90#include <kern/task.h>
91#include <kern/sched_prim.h>
92#include <kern/thread.h>
93#include <kern/policy_internal.h>
94#include <kern/timer_call.h>
95#include <kern/waitq.h>
96
97#include <pexpert/pexpert.h>
98
99#include <sys/kdebug.h>
100#include <libkern/section_keywords.h>
101
102#if CONFIG_IO_COMPRESSION_STATS
103#include <vfs/vfs_io_compression_stats.h>
104#endif /* CONFIG_IO_COMPRESSION_STATS */
105
106/* XXX following three prototypes should be in a header file somewhere */
107extern dev_t chrtoblk(dev_t dev);
108extern boolean_t iskmemdev(dev_t dev);
109extern int bpfkqfilter(dev_t dev, struct knote *kn);
110extern int ptsd_kqfilter(dev_t, struct knote *);
111extern int ptmx_kqfilter(dev_t, struct knote *);
112#if CONFIG_PHYS_WRITE_ACCT
113uint64_t kernel_pm_writes; // to track the sync writes occurring during power management transitions
114#endif /* CONFIG_PHYS_WRITE_ACCT */
115
116
117struct vnode *speclisth[SPECHSZ];
118
119/* symbolic sleep message strings for devices */
120char devopn[] = "devopn";
121char devio[] = "devio";
122char devwait[] = "devwait";
123char devin[] = "devin";
124char devout[] = "devout";
125char devioc[] = "devioc";
126char devcls[] = "devcls";
127
128#define VOPFUNC int (*)(void *)
129
130int(**spec_vnodeop_p)(void *);
131const struct vnodeopv_entry_desc spec_vnodeop_entries[] = {
132 { .opve_op = &vnop_default_desc, .opve_impl = (VOPFUNC)(void (*)(void))vn_default_error },
133 { .opve_op = &vnop_lookup_desc, .opve_impl = (VOPFUNC)spec_lookup }, /* lookup */
134 { .opve_op = &vnop_create_desc, .opve_impl = (VOPFUNC)err_create }, /* create */
135 { .opve_op = &vnop_mknod_desc, .opve_impl = (VOPFUNC)err_mknod }, /* mknod */
136 { .opve_op = &vnop_open_desc, .opve_impl = (VOPFUNC)spec_open }, /* open */
137 { .opve_op = &vnop_close_desc, .opve_impl = (VOPFUNC)spec_close }, /* close */
138 { .opve_op = &vnop_access_desc, .opve_impl = (VOPFUNC)spec_access }, /* access */
139 { .opve_op = &vnop_getattr_desc, .opve_impl = (VOPFUNC)spec_getattr }, /* getattr */
140 { .opve_op = &vnop_setattr_desc, .opve_impl = (VOPFUNC)spec_setattr }, /* setattr */
141 { .opve_op = &vnop_read_desc, .opve_impl = (VOPFUNC)spec_read }, /* read */
142 { .opve_op = &vnop_write_desc, .opve_impl = (VOPFUNC)spec_write }, /* write */
143 { .opve_op = &vnop_ioctl_desc, .opve_impl = (VOPFUNC)spec_ioctl }, /* ioctl */
144 { .opve_op = &vnop_select_desc, .opve_impl = (VOPFUNC)spec_select }, /* select */
145 { .opve_op = &vnop_revoke_desc, .opve_impl = (VOPFUNC)nop_revoke }, /* revoke */
146 { .opve_op = &vnop_mmap_desc, .opve_impl = (VOPFUNC)err_mmap }, /* mmap */
147 { .opve_op = &vnop_fsync_desc, .opve_impl = (VOPFUNC)spec_fsync }, /* fsync */
148 { .opve_op = &vnop_remove_desc, .opve_impl = (VOPFUNC)err_remove }, /* remove */
149 { .opve_op = &vnop_link_desc, .opve_impl = (VOPFUNC)err_link }, /* link */
150 { .opve_op = &vnop_rename_desc, .opve_impl = (VOPFUNC)err_rename }, /* rename */
151 { .opve_op = &vnop_mkdir_desc, .opve_impl = (VOPFUNC)err_mkdir }, /* mkdir */
152 { .opve_op = &vnop_rmdir_desc, .opve_impl = (VOPFUNC)err_rmdir }, /* rmdir */
153 { .opve_op = &vnop_symlink_desc, .opve_impl = (VOPFUNC)err_symlink }, /* symlink */
154 { .opve_op = &vnop_readdir_desc, .opve_impl = (VOPFUNC)err_readdir }, /* readdir */
155 { .opve_op = &vnop_readlink_desc, .opve_impl = (VOPFUNC)err_readlink }, /* readlink */
156 { .opve_op = &vnop_inactive_desc, .opve_impl = (VOPFUNC)nop_inactive }, /* inactive */
157 { .opve_op = &vnop_reclaim_desc, .opve_impl = (VOPFUNC)nop_reclaim }, /* reclaim */
158 { .opve_op = &vnop_strategy_desc, .opve_impl = (VOPFUNC)spec_strategy }, /* strategy */
159 { .opve_op = &vnop_pathconf_desc, .opve_impl = (VOPFUNC)spec_pathconf }, /* pathconf */
160 { .opve_op = &vnop_advlock_desc, .opve_impl = (VOPFUNC)err_advlock }, /* advlock */
161 { .opve_op = &vnop_bwrite_desc, .opve_impl = (VOPFUNC)spec_bwrite }, /* bwrite */
162 { .opve_op = &vnop_pagein_desc, .opve_impl = (VOPFUNC)err_pagein }, /* Pagein */
163 { .opve_op = &vnop_pageout_desc, .opve_impl = (VOPFUNC)err_pageout }, /* Pageout */
164 { .opve_op = &vnop_copyfile_desc, .opve_impl = (VOPFUNC)err_copyfile }, /* Copyfile */
165 { .opve_op = &vnop_blktooff_desc, .opve_impl = (VOPFUNC)spec_blktooff }, /* blktooff */
166 { .opve_op = &vnop_offtoblk_desc, .opve_impl = (VOPFUNC)spec_offtoblk }, /* offtoblk */
167 { .opve_op = &vnop_blockmap_desc, .opve_impl = (VOPFUNC)spec_blockmap }, /* blockmap */
168 { .opve_op = (struct vnodeop_desc*)NULL, .opve_impl = (int (*)(void *))NULL }
169};
170const struct vnodeopv_desc spec_vnodeop_opv_desc =
171{ .opv_desc_vector_p = &spec_vnodeop_p, .opv_desc_ops = spec_vnodeop_entries };
172
173
174static void set_blocksize(vnode_t, dev_t);
175
176#define LOWPRI_TIER1_WINDOW_MSECS 25
177#define LOWPRI_TIER2_WINDOW_MSECS 100
178#define LOWPRI_TIER3_WINDOW_MSECS 500
179
180#define LOWPRI_TIER1_IO_PERIOD_MSECS 40
181#define LOWPRI_TIER2_IO_PERIOD_MSECS 85
182#define LOWPRI_TIER3_IO_PERIOD_MSECS 200
183
184#define LOWPRI_TIER1_IO_PERIOD_SSD_MSECS 5
185#define LOWPRI_TIER2_IO_PERIOD_SSD_MSECS 15
186#define LOWPRI_TIER3_IO_PERIOD_SSD_MSECS 25
187
188
189int throttle_windows_msecs[THROTTLE_LEVEL_END + 1] = {
190 0,
191 LOWPRI_TIER1_WINDOW_MSECS,
192 LOWPRI_TIER2_WINDOW_MSECS,
193 LOWPRI_TIER3_WINDOW_MSECS,
194};
195
196int throttle_io_period_msecs[THROTTLE_LEVEL_END + 1] = {
197 0,
198 LOWPRI_TIER1_IO_PERIOD_MSECS,
199 LOWPRI_TIER2_IO_PERIOD_MSECS,
200 LOWPRI_TIER3_IO_PERIOD_MSECS,
201};
202
203int throttle_io_period_ssd_msecs[THROTTLE_LEVEL_END + 1] = {
204 0,
205 LOWPRI_TIER1_IO_PERIOD_SSD_MSECS,
206 LOWPRI_TIER2_IO_PERIOD_SSD_MSECS,
207 LOWPRI_TIER3_IO_PERIOD_SSD_MSECS,
208};
209
210
211int throttled_count[THROTTLE_LEVEL_END + 1];
212
213struct _throttle_io_info_t {
214 lck_mtx_t throttle_lock;
215
216 struct timeval throttle_last_write_timestamp;
217 struct timeval throttle_min_timer_deadline;
218 struct timeval throttle_window_start_timestamp[THROTTLE_LEVEL_END + 1]; /* window starts at both the beginning and completion of an I/O */
219 struct timeval throttle_last_IO_timestamp[THROTTLE_LEVEL_END + 1];
220 pid_t throttle_last_IO_pid[THROTTLE_LEVEL_END + 1];
221 struct timeval throttle_start_IO_period_timestamp[THROTTLE_LEVEL_END + 1];
222 int32_t throttle_inflight_count[THROTTLE_LEVEL_END + 1];
223
224 TAILQ_HEAD(, uthread) throttle_uthlist[THROTTLE_LEVEL_END + 1]; /* Lists of throttled uthreads */
225 int throttle_next_wake_level;
226
227 thread_call_t throttle_timer_call;
228 int32_t throttle_timer_ref;
229 int32_t throttle_timer_active;
230
231 int32_t throttle_io_count;
232 int32_t throttle_io_count_begin;
233 int *throttle_io_periods;
234 uint32_t throttle_io_period_num;
235
236 int32_t throttle_refcnt;
237 int32_t throttle_alloc;
238 int32_t throttle_disabled;
239 int32_t throttle_is_fusion_with_priority;
240};
241
242struct _throttle_io_info_t _throttle_io_info[LOWPRI_MAX_NUM_DEV];
243
244
245int lowpri_throttle_enabled = 1;
246
247
248static void throttle_info_end_io_internal(struct _throttle_io_info_t *info, int throttle_level);
249static int throttle_info_update_internal(struct _throttle_io_info_t *info, uthread_t ut, int flags, boolean_t isssd, boolean_t inflight, struct bufattr *bap);
250static int throttle_get_thread_throttle_level(uthread_t ut);
251static int throttle_get_thread_throttle_level_internal(uthread_t ut, int io_tier);
252void throttle_info_mount_reset_period(mount_t mp, int isssd);
253
254/*
255 * Trivial lookup routine that always fails.
256 */
257int
258spec_lookup(struct vnop_lookup_args *ap)
259{
260 *ap->a_vpp = NULL;
261 return ENOTDIR;
262}
263
264static void
265set_blocksize(struct vnode *vp, dev_t dev)
266{
267 int (*size)(dev_t);
268 int rsize;
269
270 if ((major(dev) < nblkdev) && (size = bdevsw[major(dev)].d_psize)) {
271 rsize = (*size)(dev);
272 if (rsize <= 0) { /* did size fail? */
273 vp->v_specsize = DEV_BSIZE;
274 } else {
275 vp->v_specsize = rsize;
276 }
277 } else {
278 vp->v_specsize = DEV_BSIZE;
279 }
280}
281
282void
283set_fsblocksize(struct vnode *vp)
284{
285 if (vp->v_type == VBLK) {
286 dev_t dev = (dev_t)vp->v_rdev;
287 int maj = major(dev);
288
289 if ((u_int)maj >= (u_int)nblkdev) {
290 return;
291 }
292
293 vnode_lock(vp);
294 set_blocksize(vp, dev);
295 vnode_unlock(vp);
296 }
297}
298
299static void
300spec_init_bsdunit(vnode_t vp, vfs_context_t ctx, const char* caller)
301{
302 int isssd = 0;
303 uint64_t throttle_mask = 0;
304 uint32_t devbsdunit = 0;
305
306 if (VNOP_IOCTL(vp, DKIOCISSOLIDSTATE, data: (caddr_t)&isssd, fflag: 0, ctx)) {
307 isssd = 0;
308 }
309 if (VNOP_IOCTL(vp, DKIOCGETTHROTTLEMASK, data: (caddr_t)&throttle_mask, fflag: 0, NULL)) {
310 throttle_mask = 0;
311 }
312
313 if (throttle_mask != 0) {
314 /*
315 * as a reasonable approximation, only use the lowest bit of the mask
316 * to generate a disk unit number
317 */
318 devbsdunit = num_trailing_0(n: throttle_mask);
319 } else {
320 devbsdunit = 0;
321 }
322
323 if (vp->v_un.vu_specinfo->si_initted == 0) {
324 vnode_lock(vp);
325 if (vp->v_un.vu_specinfo->si_initted == 0) {
326 vp->v_un.vu_specinfo->si_isssd = isssd ? 1 : 0;
327 vp->v_un.vu_specinfo->si_devbsdunit = devbsdunit;
328 vp->v_un.vu_specinfo->si_throttle_mask = throttle_mask;
329 vp->v_un.vu_specinfo->si_throttleable = 1;
330 vp->v_un.vu_specinfo->si_initted = 1;
331 }
332 vnode_unlock(vp);
333 printf("%s : si_devbsdunit initialized to (%d), throttle_mask is (0x%llx), isssd is (%d)\n",
334 caller, vp->v_un.vu_specinfo->si_devbsdunit,
335 vp->v_un.vu_specinfo->si_throttle_mask,
336 vp->v_un.vu_specinfo->si_isssd);
337 }
338}
339
340#define SPEC_INIT_BSDUNIT(vp, ctx) spec_init_bsdunit((vp), (ctx), __FUNCTION__)
341
342/*
343 * Open a special file.
344 */
345int
346spec_open(struct vnop_open_args *ap)
347{
348 struct proc *p = vfs_context_proc(ctx: ap->a_context);
349 kauth_cred_t cred = vfs_context_ucred(ctx: ap->a_context);
350 struct vnode *vp = ap->a_vp;
351 dev_t bdev, dev = (dev_t)vp->v_rdev;
352 int maj = major(dev);
353 int error;
354
355 /*
356 * Don't allow open if fs is mounted -nodev.
357 */
358 if (vp->v_mount && (vp->v_mount->mnt_flag & MNT_NODEV)) {
359 return ENXIO;
360 }
361
362 switch (vp->v_type) {
363 case VCHR:
364 if ((u_int)maj >= (u_int)nchrdev) {
365 return ENXIO;
366 }
367 if (cred != FSCRED && (ap->a_mode & FWRITE)) {
368#if 0
369 /*
370 * When running in very secure mode, do not allow
371 * opens for writing of any disk character devices.
372 */
373 if (securelevel >= 2 && isdisk(dev, VCHR)) {
374 return EPERM;
375 }
376#endif
377
378 /* Never allow writing to /dev/mem or /dev/kmem */
379 if (iskmemdev(dev)) {
380 return EPERM;
381 }
382 /*
383 * When running in secure mode, do not allow opens for
384 * writing of character devices whose corresponding block
385 * devices are currently mounted.
386 */
387 if (securelevel >= 1) {
388 if ((bdev = chrtoblk(dev)) != NODEV && check_mountedon(dev: bdev, type: VBLK, errorp: &error)) {
389 return error;
390 }
391 }
392 }
393
394 devsw_lock(dev, S_IFCHR);
395 error = (*cdevsw[maj].d_open)(dev, ap->a_mode, S_IFCHR, p);
396
397 if (error == 0) {
398 vp->v_specinfo->si_opencount++;
399 }
400
401 devsw_unlock(dev, S_IFCHR);
402
403 if (error == 0 && cdevsw[maj].d_type == D_DISK && !vp->v_un.vu_specinfo->si_initted) {
404 int isssd = 0;
405 uint64_t throttle_mask = 0;
406 uint32_t devbsdunit = 0;
407
408 if (VNOP_IOCTL(vp, DKIOCGETTHROTTLEMASK, data: (caddr_t)&throttle_mask, fflag: 0, NULL) == 0) {
409 if (throttle_mask != 0 &&
410 VNOP_IOCTL(vp, DKIOCISSOLIDSTATE, data: (caddr_t)&isssd, fflag: 0, ctx: ap->a_context) == 0) {
411 /*
412 * as a reasonable approximation, only use the lowest bit of the mask
413 * to generate a disk unit number
414 */
415 devbsdunit = num_trailing_0(n: throttle_mask);
416
417 vnode_lock(vp);
418
419 vp->v_un.vu_specinfo->si_isssd = isssd ? 1 : 0;
420 vp->v_un.vu_specinfo->si_devbsdunit = devbsdunit;
421 vp->v_un.vu_specinfo->si_throttle_mask = throttle_mask;
422 vp->v_un.vu_specinfo->si_throttleable = 1;
423 vp->v_un.vu_specinfo->si_initted = 1;
424
425 vnode_unlock(vp);
426 }
427 }
428 if (vp->v_un.vu_specinfo->si_initted == 0) {
429 vnode_lock(vp);
430 vp->v_un.vu_specinfo->si_initted = 1;
431 vnode_unlock(vp);
432 }
433 }
434 return error;
435
436 case VBLK:
437 if ((u_int)maj >= (u_int)nblkdev) {
438 return ENXIO;
439 }
440 /*
441 * When running in very secure mode, do not allow
442 * opens for writing of any disk block devices.
443 */
444 if (securelevel >= 2 && cred != FSCRED &&
445 (ap->a_mode & FWRITE) && bdevsw[maj].d_type == D_DISK) {
446 return EPERM;
447 }
448 /*
449 * Do not allow opens of block devices that are
450 * currently mounted.
451 */
452 if ((error = vfs_mountedon(vp))) {
453 return error;
454 }
455
456 devsw_lock(dev, S_IFBLK);
457 error = (*bdevsw[maj].d_open)(dev, ap->a_mode, S_IFBLK, p);
458 if (!error) {
459 vp->v_specinfo->si_opencount++;
460 }
461 devsw_unlock(dev, S_IFBLK);
462
463 if (!error) {
464 u_int64_t blkcnt;
465 u_int32_t blksize;
466 int setsize = 0;
467 u_int32_t size512 = 512;
468
469 if (bdevsw[maj].d_type == D_DISK && !vp->v_un.vu_specinfo->si_initted) {
470 SPEC_INIT_BSDUNIT(vp, ap->a_context);
471 }
472
473 if (!VNOP_IOCTL(vp, DKIOCGETBLOCKSIZE, data: (caddr_t)&blksize, fflag: 0, ctx: ap->a_context)) {
474 /* Switch to 512 byte sectors (temporarily) */
475
476 if (!VNOP_IOCTL(vp, DKIOCSETBLOCKSIZE, data: (caddr_t)&size512, FWRITE, ctx: ap->a_context)) {
477 /* Get the number of 512 byte physical blocks. */
478 if (!VNOP_IOCTL(vp, DKIOCGETBLOCKCOUNT, data: (caddr_t)&blkcnt, fflag: 0, ctx: ap->a_context)) {
479 setsize = 1;
480 }
481 }
482 /* If it doesn't set back, we can't recover */
483 if (VNOP_IOCTL(vp, DKIOCSETBLOCKSIZE, data: (caddr_t)&blksize, FWRITE, ctx: ap->a_context)) {
484 error = ENXIO;
485 }
486 }
487
488
489 vnode_lock(vp);
490 set_blocksize(vp, dev);
491
492 /*
493 * Cache the size in bytes of the block device for later
494 * use by spec_write().
495 */
496 if (setsize) {
497 vp->v_specdevsize = blkcnt * (u_int64_t)size512;
498 } else {
499 vp->v_specdevsize = (u_int64_t)0; /* Default: Can't get */
500 }
501 vnode_unlock(vp);
502 }
503 return error;
504 default:
505 panic("spec_open type");
506 }
507 return 0;
508}
509
510/*
511 * Vnode op for read
512 */
513int
514spec_read(struct vnop_read_args *ap)
515{
516 struct vnode *vp = ap->a_vp;
517 struct uio *uio = ap->a_uio;
518 struct buf *bp;
519 daddr64_t bn, nextbn;
520 long bscale;
521 int devBlockSize = 0;
522 size_t bsize, n, on;
523 int error = 0;
524 dev_t dev;
525
526#if DIAGNOSTIC
527 if (uio->uio_rw != UIO_READ) {
528 panic("spec_read mode");
529 }
530 if (UIO_SEG_IS_USER_SPACE(uio->uio_segflg)) {
531 panic("spec_read proc");
532 }
533#endif
534 if (uio_resid(a_uio: uio) == 0) {
535 return 0;
536 }
537
538 switch (vp->v_type) {
539 case VCHR:
540 {
541 struct _throttle_io_info_t *throttle_info = NULL;
542 int thread_throttle_level;
543 uint64_t blkno = 0;
544 uint32_t iolen = 0;
545 int ddisk = 0;
546 int ktrace_code = DKIO_READ;
547 devBlockSize = vp->v_specsize;
548 uintptr_t our_id = 0;
549
550 if (cdevsw[major(vp->v_rdev)].d_type == D_DISK) {
551 ddisk = 1;
552 }
553
554 if (ddisk && vp->v_un.vu_specinfo->si_throttleable) {
555 throttle_info = &_throttle_io_info[vp->v_un.vu_specinfo->si_devbsdunit];
556 thread_throttle_level = throttle_info_update_internal(info: throttle_info, NULL, flags: 0, isssd: vp->v_un.vu_specinfo->si_isssd, TRUE, NULL);
557 }
558
559 if (kdebug_enable && ddisk) {
560 if (devBlockSize == 0) {
561 devBlockSize = 512; // default sector size
562 }
563
564 if (uio_offset(a_uio: uio) && devBlockSize) {
565 blkno = ((uint64_t) uio_offset(a_uio: uio) / ((uint64_t)devBlockSize));
566 }
567 iolen = (int) uio_resid(a_uio: uio);
568 our_id = (uintptr_t)thread_tid(thread: current_thread());
569 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_COMMON,
570 (FSDBG_CODE(DBG_DKRW, ktrace_code)) | DBG_FUNC_NONE, our_id,
571 vp->v_rdev, blkno, iolen, 0);
572 }
573
574 error = (*cdevsw[major(vp->v_rdev)].d_read)
575 (vp->v_rdev, uio, ap->a_ioflag);
576
577
578 if (kdebug_enable && ddisk) {
579 uint32_t residual = (uint32_t)uio_resid(a_uio: uio);
580 ktrace_code |= DKIO_DONE;
581 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_COMMON,
582 (FSDBG_CODE(DBG_DKRW, ktrace_code)) | DBG_FUNC_NONE, our_id,
583 (uintptr_t)VM_KERNEL_ADDRPERM(vp), residual, error, 0);
584 }
585
586 if (throttle_info) {
587 throttle_info_end_io_internal(info: throttle_info, throttle_level: thread_throttle_level);
588 }
589
590 return error;
591 }
592
593 case VBLK:
594 if (uio->uio_offset < 0) {
595 return EINVAL;
596 }
597
598 dev = vp->v_rdev;
599
600 devBlockSize = vp->v_specsize;
601
602 if (devBlockSize > PAGE_SIZE) {
603 return EINVAL;
604 }
605
606 bscale = PAGE_SIZE / devBlockSize;
607 bsize = bscale * devBlockSize;
608
609 do {
610 on = uio->uio_offset % bsize;
611
612 bn = (daddr64_t)((uio->uio_offset / devBlockSize) & ~(bscale - 1));
613
614 if (vp->v_speclastr + bscale == bn) {
615 nextbn = bn + bscale;
616 error = buf_breadn(vp, blkno: bn, size: (int)bsize, rablks: &nextbn,
617 rasizes: (int *)&bsize, nrablks: 1, NOCRED, bpp: &bp);
618 } else {
619 error = buf_bread(vp, blkno: bn, size: (int)bsize, NOCRED, bpp: &bp);
620 }
621
622 vnode_lock(vp);
623 vp->v_speclastr = bn;
624 vnode_unlock(vp);
625
626 n = bsize - buf_resid(bp);
627 if ((on > n) || error) {
628 if (!error) {
629 error = EINVAL;
630 }
631 buf_brelse(bp);
632 return error;
633 }
634 n = MIN((n - on), (size_t)uio_resid(uio));
635
636 error = uiomove(cp: (char *)buf_dataptr(bp) + on, n: (int)n, uio);
637 if (n + on == bsize) {
638 buf_markaged(bp);
639 }
640 buf_brelse(bp);
641 } while (error == 0 && uio_resid(a_uio: uio) > 0 && n != 0);
642 return error;
643
644 default:
645 panic("spec_read type");
646 }
647 /* NOTREACHED */
648
649 return 0;
650}
651
652/*
653 * Vnode op for write
654 */
655int
656spec_write(struct vnop_write_args *ap)
657{
658 struct vnode *vp = ap->a_vp;
659 struct uio *uio = ap->a_uio;
660 struct buf *bp;
661 daddr64_t bn;
662 int blkmask, bscale;
663 int io_sync;
664 int devBlockSize = 0;
665 size_t bsize, n, on;
666 int error = 0;
667 dev_t dev;
668
669#if DIAGNOSTIC
670 if (uio->uio_rw != UIO_WRITE) {
671 panic("spec_write mode");
672 }
673 if (UIO_SEG_IS_USER_SPACE(uio->uio_segflg)) {
674 panic("spec_write proc");
675 }
676#endif
677
678 switch (vp->v_type) {
679 case VCHR:
680 {
681 struct _throttle_io_info_t *throttle_info = NULL;
682 int thread_throttle_level;
683 dev = vp->v_rdev;
684 devBlockSize = vp->v_specsize;
685 uint32_t iolen = 0;
686 uint64_t blkno = 0;
687 int ddisk = 0;
688 int ktrace_code = 0; // write is implied; read must be OR'd in.
689 uintptr_t our_id = 0;
690
691 if (cdevsw[major(dev)].d_type == D_DISK) {
692 ddisk = 1;
693 }
694
695 if (ddisk && vp->v_un.vu_specinfo->si_throttleable) {
696 throttle_info = &_throttle_io_info[vp->v_un.vu_specinfo->si_devbsdunit];
697
698 thread_throttle_level = throttle_info_update_internal(info: throttle_info, NULL, flags: 0, isssd: vp->v_un.vu_specinfo->si_isssd, TRUE, NULL);
699
700 microuptime(tv: &throttle_info->throttle_last_write_timestamp);
701 }
702
703 if (kdebug_enable && ddisk) {
704 if (devBlockSize == 0) {
705 devBlockSize = 512; // default sector size
706 }
707 if ((uio_offset(a_uio: uio) != 0) && devBlockSize) {
708 blkno = ((uint64_t)uio_offset(a_uio: uio)) / ((uint64_t)devBlockSize);
709 }
710 iolen = (int)uio_resid(a_uio: uio);
711 our_id = (uintptr_t)thread_tid(thread: current_thread());
712 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_COMMON,
713 (FSDBG_CODE(DBG_DKRW, ktrace_code)) | DBG_FUNC_NONE, our_id,
714 vp->v_rdev, blkno, iolen, 0);
715 }
716 error = (*cdevsw[major(vp->v_rdev)].d_write)
717 (vp->v_rdev, uio, ap->a_ioflag);
718
719 if (kdebug_enable && ddisk) {
720 //emit the I/O completion
721 uint32_t residual = (uint32_t)uio_resid(a_uio: uio);
722 ktrace_code |= DKIO_DONE;
723 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_COMMON,
724 (FSDBG_CODE(DBG_DKRW, ktrace_code)) | DBG_FUNC_NONE, our_id,
725 (uintptr_t)VM_KERNEL_ADDRPERM(vp), residual, error, 0);
726 }
727
728 if (throttle_info) {
729 throttle_info_end_io_internal(info: throttle_info, throttle_level: thread_throttle_level);
730 }
731
732 return error;
733 }
734
735 case VBLK:
736 if (uio_resid(a_uio: uio) == 0) {
737 return 0;
738 }
739 if (uio->uio_offset < 0) {
740 return EINVAL;
741 }
742
743 io_sync = (ap->a_ioflag & IO_SYNC);
744
745 dev = (vp->v_rdev);
746
747 devBlockSize = vp->v_specsize;
748 if (devBlockSize > PAGE_SIZE) {
749 return EINVAL;
750 }
751
752 bscale = PAGE_SIZE / devBlockSize;
753 blkmask = bscale - 1;
754 bsize = bscale * devBlockSize;
755
756
757 do {
758 bn = (daddr64_t)((uio->uio_offset / devBlockSize) & ~blkmask);
759 on = uio->uio_offset % bsize;
760
761 n = MIN((bsize - on), (size_t)uio_resid(uio));
762
763 /*
764 * Use buf_getblk() as an optimization IFF:
765 *
766 * 1) We are reading exactly a block on a block
767 * aligned boundary
768 * 2) We know the size of the device from spec_open
769 * 3) The read doesn't span the end of the device
770 *
771 * Otherwise, we fall back on buf_bread().
772 */
773 if (n == bsize &&
774 vp->v_specdevsize != (u_int64_t)0 &&
775 (uio->uio_offset + (u_int64_t)n) > vp->v_specdevsize) {
776 /* reduce the size of the read to what is there */
777 n = (uio->uio_offset + (u_int64_t)n) - vp->v_specdevsize;
778 }
779
780 if (n == bsize) {
781 bp = buf_getblk(vp, blkno: bn, size: (int)bsize, slpflag: 0, slptimeo: 0, BLK_WRITE);
782 } else {
783 error = (int)buf_bread(vp, blkno: bn, size: (int)bsize, NOCRED, bpp: &bp);
784 }
785
786 /* Translate downstream error for upstream, if needed */
787 if (!error) {
788 error = (int)buf_error(bp);
789 }
790 if (error) {
791 buf_brelse(bp);
792 return error;
793 }
794 n = MIN(n, bsize - buf_resid(bp));
795
796 error = uiomove(cp: (char *)buf_dataptr(bp) + on, n: (int)n, uio);
797 if (error) {
798 buf_brelse(bp);
799 return error;
800 }
801 buf_markaged(bp);
802
803 if (io_sync) {
804 error = buf_bwrite(bp);
805 } else {
806 if ((n + on) == bsize) {
807 error = buf_bawrite(bp);
808 } else {
809 error = buf_bdwrite(bp);
810 }
811 }
812 } while (error == 0 && uio_resid(a_uio: uio) > 0 && n != 0);
813 return error;
814
815 default:
816 panic("spec_write type");
817 }
818 /* NOTREACHED */
819
820 return 0;
821}
822
823/*
824 * Device ioctl operation.
825 */
826int
827spec_ioctl(struct vnop_ioctl_args *ap)
828{
829 proc_t p = vfs_context_proc(ctx: ap->a_context);
830 dev_t dev = ap->a_vp->v_rdev;
831 int retval = 0;
832
833 KERNEL_DEBUG_CONSTANT(FSDBG_CODE(DBG_IOCTL, 0) | DBG_FUNC_START,
834 dev, ap->a_command, ap->a_fflag, ap->a_vp->v_type, 0);
835
836 switch (ap->a_vp->v_type) {
837 case VCHR:
838 retval = (*cdevsw[major(dev)].d_ioctl)(dev, ap->a_command, ap->a_data,
839 ap->a_fflag, p);
840 break;
841
842 case VBLK:
843 retval = (*bdevsw[major(dev)].d_ioctl)(dev, ap->a_command, ap->a_data, ap->a_fflag, p);
844 if (!retval && ap->a_command == DKIOCSETBLOCKSIZE) {
845 ap->a_vp->v_specsize = *(uint32_t *)ap->a_data;
846 }
847 break;
848
849 default:
850 panic("spec_ioctl");
851 /* NOTREACHED */
852 }
853 KERNEL_DEBUG_CONSTANT(FSDBG_CODE(DBG_IOCTL, 0) | DBG_FUNC_END,
854 dev, ap->a_command, ap->a_fflag, retval, 0);
855
856 return retval;
857}
858
859int
860spec_select(struct vnop_select_args *ap)
861{
862 proc_t p = vfs_context_proc(ctx: ap->a_context);
863 dev_t dev;
864
865 switch (ap->a_vp->v_type) {
866 default:
867 return 1; /* XXX */
868
869 case VCHR:
870 dev = ap->a_vp->v_rdev;
871 return (*cdevsw[major(dev)].d_select)(dev, ap->a_which, ap->a_wql, p);
872 }
873}
874
875int
876spec_kqfilter(vnode_t vp, struct knote *kn, struct kevent_qos_s *kev)
877{
878 dev_t dev;
879
880 assert(vnode_ischr(vp));
881
882 dev = vnode_specrdev(vp);
883
884#if NETWORKING
885 /*
886 * Try a bpf device, as defined in bsd/net/bpf.c
887 * If it doesn't error out the attach, then it
888 * claimed it. Otherwise, fall through and try
889 * other attaches.
890 */
891 int32_t tmp_flags = kn->kn_flags;
892 int64_t tmp_sdata = kn->kn_sdata;
893 int res;
894
895 res = bpfkqfilter(dev, kn);
896 if ((kn->kn_flags & EV_ERROR) == 0) {
897 return res;
898 }
899 kn->kn_flags = tmp_flags;
900 kn->kn_sdata = tmp_sdata;
901#endif
902
903 if (major(dev) >= nchrdev) {
904 knote_set_error(kn, ENXIO);
905 return 0;
906 }
907
908 kn->kn_vnode_kqok = !!(cdevsw_flags[major(dev)] & CDEVSW_SELECT_KQUEUE);
909 kn->kn_vnode_use_ofst = !!(cdevsw_flags[major(dev)] & CDEVSW_USE_OFFSET);
910
911 if (cdevsw_flags[major(dev)] & CDEVSW_IS_PTS) {
912 kn->kn_filtid = EVFILTID_PTSD;
913 return ptsd_kqfilter(dev, kn);
914 } else if (cdevsw_flags[major(dev)] & CDEVSW_IS_PTC) {
915 kn->kn_filtid = EVFILTID_PTMX;
916 return ptmx_kqfilter(dev, kn);
917 } else if (cdevsw[major(dev)].d_type == D_TTY && kn->kn_vnode_kqok) {
918 /*
919 * TTYs from drivers that use struct ttys use their own filter
920 * routines. The PTC driver doesn't use the tty for character
921 * counts, so it must go through the select fallback.
922 */
923 kn->kn_filtid = EVFILTID_TTY;
924 } else {
925 /* Try to attach to other char special devices */
926 kn->kn_filtid = EVFILTID_SPEC;
927 }
928
929 return knote_fops(kn)->f_attach(kn, kev);
930}
931
932/*
933 * Synch buffers associated with a block device
934 */
935int
936spec_fsync_internal(vnode_t vp, int waitfor, __unused vfs_context_t context)
937{
938 if (vp->v_type == VCHR) {
939 return 0;
940 }
941 /*
942 * Flush all dirty buffers associated with a block device.
943 */
944 buf_flushdirtyblks(vp, wait: (waitfor == MNT_WAIT || waitfor == MNT_DWAIT), flags: 0, msg: "spec_fsync");
945
946 return 0;
947}
948
949int
950spec_fsync(struct vnop_fsync_args *ap)
951{
952 return spec_fsync_internal(vp: ap->a_vp, waitfor: ap->a_waitfor, context: ap->a_context);
953}
954
955
956/*
957 * Just call the device strategy routine
958 */
959void throttle_init(void);
960
961
962#if 0
963#define DEBUG_ALLOC_THROTTLE_INFO(format, debug_info, args...) \
964 do { \
965 if ((debug_info)->alloc) \
966 printf("%s: "format, __FUNCTION__, ## args); \
967 } while(0)
968
969#else
970#define DEBUG_ALLOC_THROTTLE_INFO(format, debug_info, args...)
971#endif
972
973
974SYSCTL_INT(_debug, OID_AUTO, lowpri_throttle_tier1_window_msecs, CTLFLAG_RW | CTLFLAG_LOCKED, &throttle_windows_msecs[THROTTLE_LEVEL_TIER1], 0, "");
975SYSCTL_INT(_debug, OID_AUTO, lowpri_throttle_tier2_window_msecs, CTLFLAG_RW | CTLFLAG_LOCKED, &throttle_windows_msecs[THROTTLE_LEVEL_TIER2], 0, "");
976SYSCTL_INT(_debug, OID_AUTO, lowpri_throttle_tier3_window_msecs, CTLFLAG_RW | CTLFLAG_LOCKED, &throttle_windows_msecs[THROTTLE_LEVEL_TIER3], 0, "");
977
978SYSCTL_INT(_debug, OID_AUTO, lowpri_throttle_tier1_io_period_msecs, CTLFLAG_RW | CTLFLAG_LOCKED, &throttle_io_period_msecs[THROTTLE_LEVEL_TIER1], 0, "");
979SYSCTL_INT(_debug, OID_AUTO, lowpri_throttle_tier2_io_period_msecs, CTLFLAG_RW | CTLFLAG_LOCKED, &throttle_io_period_msecs[THROTTLE_LEVEL_TIER2], 0, "");
980SYSCTL_INT(_debug, OID_AUTO, lowpri_throttle_tier3_io_period_msecs, CTLFLAG_RW | CTLFLAG_LOCKED, &throttle_io_period_msecs[THROTTLE_LEVEL_TIER3], 0, "");
981
982SYSCTL_INT(_debug, OID_AUTO, lowpri_throttle_tier1_io_period_ssd_msecs, CTLFLAG_RW | CTLFLAG_LOCKED, &throttle_io_period_ssd_msecs[THROTTLE_LEVEL_TIER1], 0, "");
983SYSCTL_INT(_debug, OID_AUTO, lowpri_throttle_tier2_io_period_ssd_msecs, CTLFLAG_RW | CTLFLAG_LOCKED, &throttle_io_period_ssd_msecs[THROTTLE_LEVEL_TIER2], 0, "");
984SYSCTL_INT(_debug, OID_AUTO, lowpri_throttle_tier3_io_period_ssd_msecs, CTLFLAG_RW | CTLFLAG_LOCKED, &throttle_io_period_ssd_msecs[THROTTLE_LEVEL_TIER3], 0, "");
985
986SYSCTL_INT(_debug, OID_AUTO, lowpri_throttle_enabled, CTLFLAG_RW | CTLFLAG_LOCKED, &lowpri_throttle_enabled, 0, "");
987
988
989static LCK_GRP_DECLARE(throttle_lock_grp, "throttle I/O");
990
991
992/*
993 * throttled I/O helper function
994 * convert the index of the lowest set bit to a device index
995 */
996int
997num_trailing_0(uint64_t n)
998{
999 /*
1000 * since in most cases the number of trailing 0s is very small,
1001 * we simply counting sequentially from the lowest bit
1002 */
1003 if (n == 0) {
1004 return sizeof(n) * 8;
1005 }
1006 int count = 0;
1007 while (!ISSET(n, 1)) {
1008 n >>= 1;
1009 ++count;
1010 }
1011 return count;
1012}
1013
1014
1015/*
1016 * Release the reference and if the item was allocated and this is the last
1017 * reference then free it.
1018 *
1019 * This routine always returns the old value.
1020 */
1021static int
1022throttle_info_rel(struct _throttle_io_info_t *info)
1023{
1024 SInt32 oldValue = OSDecrementAtomic(&info->throttle_refcnt);
1025
1026 DEBUG_ALLOC_THROTTLE_INFO("refcnt = %d info = %p\n",
1027 info, (int)(oldValue - 1), info );
1028
1029 /* The reference count just went negative, very bad */
1030 if (oldValue == 0) {
1031 panic("throttle info ref cnt went negative!");
1032 }
1033
1034 /*
1035 * Once reference count is zero, no one else should be able to take a
1036 * reference
1037 */
1038 if ((oldValue == 1) && (info->throttle_alloc)) {
1039 DEBUG_ALLOC_THROTTLE_INFO("Freeing info = %p\n", info);
1040
1041 lck_mtx_destroy(lck: &info->throttle_lock, grp: &throttle_lock_grp);
1042 kfree_type(struct _throttle_io_info_t, info);
1043 }
1044 return oldValue;
1045}
1046
1047
1048/*
1049 * Just take a reference on the throttle info structure.
1050 *
1051 * This routine always returns the old value.
1052 */
1053static SInt32
1054throttle_info_ref(struct _throttle_io_info_t *info)
1055{
1056 SInt32 oldValue = OSIncrementAtomic(&info->throttle_refcnt);
1057
1058 DEBUG_ALLOC_THROTTLE_INFO("refcnt = %d info = %p\n",
1059 info, (int)(oldValue - 1), info );
1060 /* Allocated items should never have a reference of zero */
1061 if (info->throttle_alloc && (oldValue == 0)) {
1062 panic("Taking a reference without calling create throttle info!");
1063 }
1064
1065 return oldValue;
1066}
1067
1068/*
1069 * on entry the throttle_lock is held...
1070 * this function is responsible for taking
1071 * and dropping the reference on the info
1072 * structure which will keep it from going
1073 * away while the timer is running if it
1074 * happens to have been dynamically allocated by
1075 * a network fileystem kext which is now trying
1076 * to free it
1077 */
1078static uint32_t
1079throttle_timer_start(struct _throttle_io_info_t *info, boolean_t update_io_count, int wakelevel)
1080{
1081 struct timeval elapsed;
1082 struct timeval now;
1083 struct timeval period;
1084 uint64_t elapsed_msecs;
1085 int throttle_level;
1086 int level;
1087 int msecs;
1088 boolean_t throttled = FALSE;
1089 boolean_t need_timer = FALSE;
1090
1091 microuptime(tv: &now);
1092
1093 if (update_io_count == TRUE) {
1094 info->throttle_io_count_begin = info->throttle_io_count;
1095 info->throttle_io_period_num++;
1096
1097 while (wakelevel >= THROTTLE_LEVEL_THROTTLED) {
1098 info->throttle_start_IO_period_timestamp[wakelevel--] = now;
1099 }
1100
1101 info->throttle_min_timer_deadline = now;
1102
1103 msecs = info->throttle_io_periods[THROTTLE_LEVEL_THROTTLED];
1104 period.tv_sec = msecs / 1000;
1105 period.tv_usec = (msecs % 1000) * 1000;
1106
1107 timevaladd(t1: &info->throttle_min_timer_deadline, t2: &period);
1108 }
1109 for (throttle_level = THROTTLE_LEVEL_START; throttle_level < THROTTLE_LEVEL_END; throttle_level++) {
1110 elapsed = now;
1111 timevalsub(t1: &elapsed, t2: &info->throttle_window_start_timestamp[throttle_level]);
1112 elapsed_msecs = (uint64_t)elapsed.tv_sec * (uint64_t)1000 + (elapsed.tv_usec / 1000);
1113
1114 for (level = throttle_level + 1; level <= THROTTLE_LEVEL_END; level++) {
1115 if (!TAILQ_EMPTY(&info->throttle_uthlist[level])) {
1116 if (elapsed_msecs < (uint64_t)throttle_windows_msecs[level] || info->throttle_inflight_count[throttle_level]) {
1117 /*
1118 * we had an I/O occur at a higher priority tier within
1119 * this tier's throttle window
1120 */
1121 throttled = TRUE;
1122 }
1123 /*
1124 * we assume that the windows are the same or longer
1125 * as we drop through the throttling tiers... thus
1126 * we can stop looking once we run into a tier with
1127 * threads to schedule regardless of whether it's
1128 * still in its throttling window or not
1129 */
1130 break;
1131 }
1132 }
1133 if (throttled == TRUE) {
1134 break;
1135 }
1136 }
1137 if (throttled == TRUE) {
1138 uint64_t deadline = 0;
1139 struct timeval target;
1140 struct timeval min_target;
1141
1142 /*
1143 * we've got at least one tier still in a throttled window
1144 * so we need a timer running... compute the next deadline
1145 * and schedule it
1146 */
1147 for (level = throttle_level + 1; level <= THROTTLE_LEVEL_END; level++) {
1148 if (TAILQ_EMPTY(&info->throttle_uthlist[level])) {
1149 continue;
1150 }
1151
1152 target = info->throttle_start_IO_period_timestamp[level];
1153
1154 msecs = info->throttle_io_periods[level];
1155 period.tv_sec = msecs / 1000;
1156 period.tv_usec = (msecs % 1000) * 1000;
1157
1158 timevaladd(t1: &target, t2: &period);
1159
1160 if (need_timer == FALSE || timevalcmp(&target, &min_target, <)) {
1161 min_target = target;
1162 need_timer = TRUE;
1163 }
1164 }
1165 if (timevalcmp(&info->throttle_min_timer_deadline, &now, >)) {
1166 if (timevalcmp(&info->throttle_min_timer_deadline, &min_target, >)) {
1167 min_target = info->throttle_min_timer_deadline;
1168 }
1169 }
1170
1171 if (info->throttle_timer_active) {
1172 if (thread_call_cancel(call: info->throttle_timer_call) == FALSE) {
1173 /*
1174 * couldn't kill the timer because it's already
1175 * been dispatched, so don't try to start a new
1176 * one... once we drop the lock, the timer will
1177 * proceed and eventually re-run this function
1178 */
1179 need_timer = FALSE;
1180 } else {
1181 info->throttle_timer_active = 0;
1182 }
1183 }
1184 if (need_timer == TRUE) {
1185 /*
1186 * This is defined as an int (32-bit) rather than a 64-bit
1187 * value because it would need a really big period in the
1188 * order of ~500 days to overflow this. So, we let this be
1189 * 32-bit which allows us to use the clock_interval_to_deadline()
1190 * routine.
1191 */
1192 int target_msecs;
1193
1194 if (info->throttle_timer_ref == 0) {
1195 /*
1196 * take a reference for the timer
1197 */
1198 throttle_info_ref(info);
1199
1200 info->throttle_timer_ref = 1;
1201 }
1202 elapsed = min_target;
1203 timevalsub(t1: &elapsed, t2: &now);
1204 target_msecs = (int)(elapsed.tv_sec * 1000 + elapsed.tv_usec / 1000);
1205
1206 if (target_msecs <= 0) {
1207 /*
1208 * we may have computed a deadline slightly in the past
1209 * due to various factors... if so, just set the timer
1210 * to go off in the near future (we don't need to be precise)
1211 */
1212 target_msecs = 1;
1213 }
1214 clock_interval_to_deadline(interval: target_msecs, scale_factor: 1000000, result: &deadline);
1215
1216 thread_call_enter_delayed(call: info->throttle_timer_call, deadline);
1217 info->throttle_timer_active = 1;
1218 }
1219 }
1220 return throttle_level;
1221}
1222
1223
1224static void
1225throttle_timer(struct _throttle_io_info_t *info, __unused thread_call_param_t p)
1226{
1227 uthread_t ut, utlist;
1228 struct timeval elapsed;
1229 struct timeval now;
1230 uint64_t elapsed_msecs;
1231 int throttle_level;
1232 int level;
1233 int wake_level;
1234 caddr_t wake_address = NULL;
1235 boolean_t update_io_count = FALSE;
1236 boolean_t need_wakeup = FALSE;
1237 boolean_t need_release = FALSE;
1238
1239 ut = NULL;
1240 lck_mtx_lock(lck: &info->throttle_lock);
1241
1242 info->throttle_timer_active = 0;
1243 microuptime(tv: &now);
1244
1245 elapsed = now;
1246 timevalsub(t1: &elapsed, t2: &info->throttle_start_IO_period_timestamp[THROTTLE_LEVEL_THROTTLED]);
1247 elapsed_msecs = (uint64_t)elapsed.tv_sec * (uint64_t)1000 + (elapsed.tv_usec / 1000);
1248
1249 if (elapsed_msecs >= (uint64_t)info->throttle_io_periods[THROTTLE_LEVEL_THROTTLED]) {
1250 wake_level = info->throttle_next_wake_level;
1251
1252 for (level = THROTTLE_LEVEL_START; level < THROTTLE_LEVEL_END; level++) {
1253 elapsed = now;
1254 timevalsub(t1: &elapsed, t2: &info->throttle_start_IO_period_timestamp[wake_level]);
1255 elapsed_msecs = (uint64_t)elapsed.tv_sec * (uint64_t)1000 + (elapsed.tv_usec / 1000);
1256
1257 if (elapsed_msecs >= (uint64_t)info->throttle_io_periods[wake_level] && !TAILQ_EMPTY(&info->throttle_uthlist[wake_level])) {
1258 /*
1259 * we're closing out the current IO period...
1260 * if we have a waiting thread, wake it up
1261 * after we have reset the I/O window info
1262 */
1263 need_wakeup = TRUE;
1264 update_io_count = TRUE;
1265
1266 info->throttle_next_wake_level = wake_level - 1;
1267
1268 if (info->throttle_next_wake_level == THROTTLE_LEVEL_START) {
1269 info->throttle_next_wake_level = THROTTLE_LEVEL_END;
1270 }
1271
1272 break;
1273 }
1274 wake_level--;
1275
1276 if (wake_level == THROTTLE_LEVEL_START) {
1277 wake_level = THROTTLE_LEVEL_END;
1278 }
1279 }
1280 }
1281 if (need_wakeup == TRUE) {
1282 if (!TAILQ_EMPTY(&info->throttle_uthlist[wake_level])) {
1283 ut = (uthread_t)TAILQ_FIRST(&info->throttle_uthlist[wake_level]);
1284 TAILQ_REMOVE(&info->throttle_uthlist[wake_level], ut, uu_throttlelist);
1285 ut->uu_on_throttlelist = THROTTLE_LEVEL_NONE;
1286 ut->uu_is_throttled = false;
1287
1288 wake_address = (caddr_t)&ut->uu_on_throttlelist;
1289 }
1290 } else {
1291 wake_level = THROTTLE_LEVEL_START;
1292 }
1293
1294 throttle_level = throttle_timer_start(info, update_io_count, wakelevel: wake_level);
1295
1296 if (wake_address != NULL) {
1297 wakeup(chan: wake_address);
1298 }
1299
1300 for (level = THROTTLE_LEVEL_THROTTLED; level <= throttle_level; level++) {
1301 TAILQ_FOREACH_SAFE(ut, &info->throttle_uthlist[level], uu_throttlelist, utlist) {
1302 TAILQ_REMOVE(&info->throttle_uthlist[level], ut, uu_throttlelist);
1303 ut->uu_on_throttlelist = THROTTLE_LEVEL_NONE;
1304 ut->uu_is_throttled = false;
1305
1306 wakeup(chan: &ut->uu_on_throttlelist);
1307 }
1308 }
1309 if (info->throttle_timer_active == 0 && info->throttle_timer_ref) {
1310 info->throttle_timer_ref = 0;
1311 need_release = TRUE;
1312 }
1313 lck_mtx_unlock(lck: &info->throttle_lock);
1314
1315 if (need_release == TRUE) {
1316 throttle_info_rel(info);
1317 }
1318}
1319
1320
1321static int
1322throttle_add_to_list(struct _throttle_io_info_t *info, uthread_t ut, int mylevel, boolean_t insert_tail)
1323{
1324 boolean_t start_timer = FALSE;
1325 int level = THROTTLE_LEVEL_START;
1326
1327 if (TAILQ_EMPTY(&info->throttle_uthlist[mylevel])) {
1328 info->throttle_start_IO_period_timestamp[mylevel] = info->throttle_last_IO_timestamp[mylevel];
1329 start_timer = TRUE;
1330 }
1331
1332 if (insert_tail == TRUE) {
1333 TAILQ_INSERT_TAIL(&info->throttle_uthlist[mylevel], ut, uu_throttlelist);
1334 } else {
1335 TAILQ_INSERT_HEAD(&info->throttle_uthlist[mylevel], ut, uu_throttlelist);
1336 }
1337
1338 ut->uu_on_throttlelist = (int8_t)mylevel;
1339
1340 if (start_timer == TRUE) {
1341 /* we may need to start or rearm the timer */
1342 level = throttle_timer_start(info, FALSE, THROTTLE_LEVEL_START);
1343
1344 if (level == THROTTLE_LEVEL_END) {
1345 if (ut->uu_on_throttlelist >= THROTTLE_LEVEL_THROTTLED) {
1346 TAILQ_REMOVE(&info->throttle_uthlist[ut->uu_on_throttlelist], ut, uu_throttlelist);
1347
1348 ut->uu_on_throttlelist = THROTTLE_LEVEL_NONE;
1349 }
1350 }
1351 }
1352 return level;
1353}
1354
1355static void
1356throttle_init_throttle_window(void)
1357{
1358 int throttle_window_size;
1359
1360 /*
1361 * The hierarchy of throttle window values is as follows:
1362 * - Global defaults
1363 * - Device tree properties
1364 * - Boot-args
1365 * All values are specified in msecs.
1366 */
1367
1368#if (XNU_TARGET_OS_OSX && __arm64__)
1369 /*
1370 * IO Tier EDT overrides are meant for
1371 * some arm platforms but not for
1372 * macs.
1373 */
1374#else /* (XNU_TARGET_OS_OSX && __arm64__) */
1375 /* Override global values with device-tree properties */
1376 if (PE_get_default("kern.io_throttle_window_tier1", &throttle_window_size, sizeof(throttle_window_size))) {
1377 throttle_windows_msecs[THROTTLE_LEVEL_TIER1] = throttle_window_size;
1378 }
1379
1380 if (PE_get_default("kern.io_throttle_window_tier2", &throttle_window_size, sizeof(throttle_window_size))) {
1381 throttle_windows_msecs[THROTTLE_LEVEL_TIER2] = throttle_window_size;
1382 }
1383
1384 if (PE_get_default("kern.io_throttle_window_tier3", &throttle_window_size, sizeof(throttle_window_size))) {
1385 throttle_windows_msecs[THROTTLE_LEVEL_TIER3] = throttle_window_size;
1386 }
1387#endif /* (XNU_TARGET_OS_OSX && __arm64__) */
1388
1389 /* Override with boot-args */
1390 if (PE_parse_boot_argn(arg_string: "io_throttle_window_tier1", arg_ptr: &throttle_window_size, max_arg: sizeof(throttle_window_size))) {
1391 throttle_windows_msecs[THROTTLE_LEVEL_TIER1] = throttle_window_size;
1392 }
1393
1394 if (PE_parse_boot_argn(arg_string: "io_throttle_window_tier2", arg_ptr: &throttle_window_size, max_arg: sizeof(throttle_window_size))) {
1395 throttle_windows_msecs[THROTTLE_LEVEL_TIER2] = throttle_window_size;
1396 }
1397
1398 if (PE_parse_boot_argn(arg_string: "io_throttle_window_tier3", arg_ptr: &throttle_window_size, max_arg: sizeof(throttle_window_size))) {
1399 throttle_windows_msecs[THROTTLE_LEVEL_TIER3] = throttle_window_size;
1400 }
1401}
1402
1403static void
1404throttle_init_throttle_period(struct _throttle_io_info_t *info, boolean_t isssd)
1405{
1406 int throttle_period_size;
1407
1408 /*
1409 * The hierarchy of throttle period values is as follows:
1410 * - Global defaults
1411 * - Device tree properties
1412 * - Boot-args
1413 * All values are specified in msecs.
1414 */
1415
1416 /* Assign global defaults */
1417 if ((isssd == TRUE) && (info->throttle_is_fusion_with_priority == 0)) {
1418 info->throttle_io_periods = &throttle_io_period_ssd_msecs[0];
1419 } else {
1420 info->throttle_io_periods = &throttle_io_period_msecs[0];
1421 }
1422
1423#if (XNU_TARGET_OS_OSX && __arm64__)
1424 /*
1425 * IO Tier EDT overrides are meant for
1426 * some arm platforms but not for
1427 * macs.
1428 */
1429#else /* (XNU_TARGET_OS_OSX && __arm64__) */
1430 /* Override global values with device-tree properties */
1431 if (PE_get_default("kern.io_throttle_period_tier1", &throttle_period_size, sizeof(throttle_period_size))) {
1432 info->throttle_io_periods[THROTTLE_LEVEL_TIER1] = throttle_period_size;
1433 }
1434
1435 if (PE_get_default("kern.io_throttle_period_tier2", &throttle_period_size, sizeof(throttle_period_size))) {
1436 info->throttle_io_periods[THROTTLE_LEVEL_TIER2] = throttle_period_size;
1437 }
1438
1439 if (PE_get_default("kern.io_throttle_period_tier3", &throttle_period_size, sizeof(throttle_period_size))) {
1440 info->throttle_io_periods[THROTTLE_LEVEL_TIER3] = throttle_period_size;
1441 }
1442#endif /* (XNU_TARGET_OS_OSX && __arm64__) */
1443
1444 /* Override with boot-args */
1445 if (PE_parse_boot_argn(arg_string: "io_throttle_period_tier1", arg_ptr: &throttle_period_size, max_arg: sizeof(throttle_period_size))) {
1446 info->throttle_io_periods[THROTTLE_LEVEL_TIER1] = throttle_period_size;
1447 }
1448
1449 if (PE_parse_boot_argn(arg_string: "io_throttle_period_tier2", arg_ptr: &throttle_period_size, max_arg: sizeof(throttle_period_size))) {
1450 info->throttle_io_periods[THROTTLE_LEVEL_TIER2] = throttle_period_size;
1451 }
1452
1453 if (PE_parse_boot_argn(arg_string: "io_throttle_period_tier3", arg_ptr: &throttle_period_size, max_arg: sizeof(throttle_period_size))) {
1454 info->throttle_io_periods[THROTTLE_LEVEL_TIER3] = throttle_period_size;
1455 }
1456}
1457
1458#if CONFIG_IOSCHED
1459extern void vm_io_reprioritize_init(void);
1460int iosched_enabled = 1;
1461#endif
1462
1463void
1464throttle_init(void)
1465{
1466 struct _throttle_io_info_t *info;
1467 int i;
1468 int level;
1469#if CONFIG_IOSCHED
1470 int iosched;
1471#endif
1472
1473 /* Update throttle parameters based on device tree configuration */
1474 throttle_init_throttle_window();
1475
1476 for (i = 0; i < LOWPRI_MAX_NUM_DEV; i++) {
1477 info = &_throttle_io_info[i];
1478
1479 lck_mtx_init(lck: &info->throttle_lock, grp: &throttle_lock_grp, LCK_ATTR_NULL);
1480 info->throttle_timer_call = thread_call_allocate(func: (thread_call_func_t)throttle_timer, param0: (thread_call_param_t)info);
1481
1482 for (level = 0; level <= THROTTLE_LEVEL_END; level++) {
1483 TAILQ_INIT(&info->throttle_uthlist[level]);
1484 info->throttle_last_IO_pid[level] = 0;
1485 info->throttle_inflight_count[level] = 0;
1486 }
1487 info->throttle_next_wake_level = THROTTLE_LEVEL_END;
1488 info->throttle_disabled = 0;
1489 info->throttle_is_fusion_with_priority = 0;
1490 }
1491#if CONFIG_IOSCHED
1492 if (PE_parse_boot_argn(arg_string: "iosched", arg_ptr: &iosched, max_arg: sizeof(iosched))) {
1493 iosched_enabled = iosched;
1494 }
1495 if (iosched_enabled) {
1496 /* Initialize I/O Reprioritization mechanism */
1497 vm_io_reprioritize_init();
1498 }
1499#endif
1500}
1501
1502void
1503sys_override_io_throttle(boolean_t enable_override)
1504{
1505 if (enable_override) {
1506 lowpri_throttle_enabled = 0;
1507 } else {
1508 lowpri_throttle_enabled = 1;
1509 }
1510}
1511
1512int rethrottle_wakeups = 0;
1513
1514/*
1515 * the uu_rethrottle_lock is used to synchronize this function
1516 * with "throttle_lowpri_io" which is where a throttled thread
1517 * will block... that function will grab this lock before beginning
1518 * it's decision making process concerning the need to block, and
1519 * hold it through the assert_wait. When that thread is awakened
1520 * for any reason (timer or rethrottle), it will reacquire the
1521 * uu_rethrottle_lock before determining if it really is ok for
1522 * it to now run. This is the point at which the thread could
1523 * enter a different throttling queue and reblock or return from
1524 * the throttle w/o having waited out it's entire throttle if
1525 * the rethrottle has now moved it out of any currently
1526 * active throttle window.
1527 *
1528 *
1529 * NOTES:
1530 * 1 - This may be called with the task lock held.
1531 * 2 - This may be called with preemption and interrupts disabled
1532 * in the kqueue wakeup path so we can't take the throttle_lock which is a mutex
1533 * 3 - This cannot safely dereference uu_throttle_info, as it may
1534 * get deallocated out from under us
1535 */
1536
1537void
1538rethrottle_thread(uthread_t ut)
1539{
1540 /*
1541 * If uthread doesn't have throttle state, then there's no chance
1542 * of it needing a rethrottle.
1543 */
1544 if (ut->uu_throttle_info == NULL) {
1545 return;
1546 }
1547
1548 boolean_t s = ml_set_interrupts_enabled(FALSE);
1549 lck_spin_lock(lck: &ut->uu_rethrottle_lock);
1550
1551 if (!ut->uu_is_throttled) {
1552 ut->uu_was_rethrottled = true;
1553 } else {
1554 int my_new_level = throttle_get_thread_throttle_level(ut);
1555
1556 if (my_new_level != ut->uu_on_throttlelist) {
1557 /*
1558 * ut is currently blocked (as indicated by
1559 * ut->uu_is_throttled == true)
1560 * and we're changing it's throttle level, so
1561 * we need to wake it up.
1562 */
1563 ut->uu_is_throttled = false;
1564 wakeup(chan: &ut->uu_on_throttlelist);
1565
1566 rethrottle_wakeups++;
1567 KERNEL_DEBUG_CONSTANT((FSDBG_CODE(DBG_FSRW, 102)),
1568 uthread_tid(ut), ut->uu_on_throttlelist, my_new_level, 0, 0);
1569 }
1570 }
1571 lck_spin_unlock(lck: &ut->uu_rethrottle_lock);
1572 ml_set_interrupts_enabled(enable: s);
1573}
1574
1575
1576/*
1577 * KPI routine
1578 *
1579 * Create and take a reference on a throttle info structure and return a
1580 * pointer for the file system to use when calling throttle_info_update.
1581 * Calling file system must have a matching release for every create.
1582 */
1583void *
1584throttle_info_create(void)
1585{
1586 struct _throttle_io_info_t *info;
1587 int level;
1588
1589 info = kalloc_type(struct _throttle_io_info_t,
1590 Z_ZERO | Z_WAITOK | Z_NOFAIL);
1591 /* Mark that this one was allocated and needs to be freed */
1592 DEBUG_ALLOC_THROTTLE_INFO("Creating info = %p\n", info, info );
1593 info->throttle_alloc = TRUE;
1594
1595 lck_mtx_init(lck: &info->throttle_lock, grp: &throttle_lock_grp, LCK_ATTR_NULL);
1596 info->throttle_timer_call = thread_call_allocate(func: (thread_call_func_t)throttle_timer, param0: (thread_call_param_t)info);
1597
1598 for (level = 0; level <= THROTTLE_LEVEL_END; level++) {
1599 TAILQ_INIT(&info->throttle_uthlist[level]);
1600 }
1601 info->throttle_next_wake_level = THROTTLE_LEVEL_END;
1602
1603 /* Take a reference */
1604 OSIncrementAtomic(&info->throttle_refcnt);
1605 return info;
1606}
1607
1608/*
1609 * KPI routine
1610 *
1611 * Release the throttle info pointer if all the reference are gone. Should be
1612 * called to release reference taken by throttle_info_create
1613 */
1614void
1615throttle_info_release(void *throttle_info)
1616{
1617 DEBUG_ALLOC_THROTTLE_INFO("Releaseing info = %p\n",
1618 (struct _throttle_io_info_t *)throttle_info,
1619 (struct _throttle_io_info_t *)throttle_info);
1620 if (throttle_info) { /* Just to be careful */
1621 throttle_info_rel(info: throttle_info);
1622 }
1623}
1624
1625/*
1626 * KPI routine
1627 *
1628 * File Systems that create an info structure, need to call this routine in
1629 * their mount routine (used by cluster code). File Systems that call this in
1630 * their mount routines must call throttle_info_mount_rel in their unmount
1631 * routines.
1632 */
1633void
1634throttle_info_mount_ref(mount_t mp, void *throttle_info)
1635{
1636 if ((throttle_info == NULL) || (mp == NULL)) {
1637 return;
1638 }
1639 throttle_info_ref(info: throttle_info);
1640
1641 /*
1642 * We already have a reference release it before adding the new one
1643 */
1644 if (mp->mnt_throttle_info) {
1645 throttle_info_rel(info: mp->mnt_throttle_info);
1646 }
1647 mp->mnt_throttle_info = throttle_info;
1648}
1649
1650/*
1651 * Private KPI routine
1652 *
1653 * return a handle for accessing throttle_info given a throttle_mask. The
1654 * handle must be released by throttle_info_rel_by_mask
1655 */
1656int
1657throttle_info_ref_by_mask(uint64_t throttle_mask, throttle_info_handle_t *throttle_info_handle)
1658{
1659 int dev_index;
1660 struct _throttle_io_info_t *info;
1661
1662 /*
1663 * The 'throttle_mask' is not expected to be 0 otherwise num_trailing_0()
1664 * would return value of 64 and this will cause '_throttle_io_info' to
1665 * go out of bounds as '_throttle_io_info' is only LOWPRI_MAX_NUM_DEV (64)
1666 * elements long.
1667 */
1668 if (throttle_info_handle == NULL || throttle_mask == 0) {
1669 return EINVAL;
1670 }
1671
1672 dev_index = num_trailing_0(n: throttle_mask);
1673 info = &_throttle_io_info[dev_index];
1674 throttle_info_ref(info);
1675 *(struct _throttle_io_info_t**)throttle_info_handle = info;
1676
1677 return 0;
1678}
1679
1680/*
1681 * Private KPI routine
1682 *
1683 * release the handle obtained by throttle_info_ref_by_mask
1684 */
1685void
1686throttle_info_rel_by_mask(throttle_info_handle_t throttle_info_handle)
1687{
1688 /*
1689 * for now the handle is just a pointer to _throttle_io_info_t
1690 */
1691 throttle_info_rel(info: (struct _throttle_io_info_t*)throttle_info_handle);
1692}
1693
1694/*
1695 * KPI routine
1696 *
1697 * File Systems that throttle_info_mount_ref, must call this routine in their
1698 * umount routine.
1699 */
1700void
1701throttle_info_mount_rel(mount_t mp)
1702{
1703 if (mp->mnt_throttle_info) {
1704 throttle_info_rel(info: mp->mnt_throttle_info);
1705 }
1706 mp->mnt_throttle_info = NULL;
1707}
1708
1709/*
1710 * Reset throttling periods for the given mount point
1711 *
1712 * private interface used by disk conditioner to reset
1713 * throttling periods when 'is_ssd' status changes
1714 */
1715void
1716throttle_info_mount_reset_period(mount_t mp, int isssd)
1717{
1718 struct _throttle_io_info_t *info;
1719
1720 if (mp == NULL) {
1721 info = &_throttle_io_info[LOWPRI_MAX_NUM_DEV - 1];
1722 } else if (mp->mnt_throttle_info == NULL) {
1723 info = &_throttle_io_info[mp->mnt_devbsdunit];
1724 } else {
1725 info = mp->mnt_throttle_info;
1726 }
1727
1728 throttle_init_throttle_period(info, isssd);
1729}
1730
1731void
1732throttle_info_get_last_io_time(mount_t mp, struct timeval *tv)
1733{
1734 struct _throttle_io_info_t *info;
1735
1736 if (mp == NULL) {
1737 info = &_throttle_io_info[LOWPRI_MAX_NUM_DEV - 1];
1738 } else if (mp->mnt_throttle_info == NULL) {
1739 info = &_throttle_io_info[mp->mnt_devbsdunit];
1740 } else {
1741 info = mp->mnt_throttle_info;
1742 }
1743
1744 *tv = info->throttle_last_write_timestamp;
1745}
1746
1747void
1748update_last_io_time(mount_t mp)
1749{
1750 struct _throttle_io_info_t *info;
1751
1752 if (mp == NULL) {
1753 info = &_throttle_io_info[LOWPRI_MAX_NUM_DEV - 1];
1754 } else if (mp->mnt_throttle_info == NULL) {
1755 info = &_throttle_io_info[mp->mnt_devbsdunit];
1756 } else {
1757 info = mp->mnt_throttle_info;
1758 }
1759
1760 microuptime(tv: &info->throttle_last_write_timestamp);
1761 if (mp != NULL) {
1762 mp->mnt_last_write_completed_timestamp = info->throttle_last_write_timestamp;
1763 }
1764}
1765
1766int
1767throttle_get_io_policy(uthread_t *ut)
1768{
1769 if (ut != NULL) {
1770 *ut = current_uthread();
1771 }
1772
1773 return proc_get_effective_thread_policy(thread: current_thread(), TASK_POLICY_IO);
1774}
1775
1776int
1777throttle_get_passive_io_policy(uthread_t *ut)
1778{
1779 if (ut != NULL) {
1780 *ut = current_uthread();
1781 }
1782
1783 return proc_get_effective_thread_policy(thread: current_thread(), TASK_POLICY_PASSIVE_IO);
1784}
1785
1786
1787static int
1788throttle_get_thread_throttle_level(uthread_t ut)
1789{
1790 uthread_t *ut_p = (ut == NULL) ? &ut : NULL;
1791 int io_tier = throttle_get_io_policy(ut: ut_p);
1792
1793 return throttle_get_thread_throttle_level_internal(ut, io_tier);
1794}
1795
1796/*
1797 * Return a throttle level given an existing I/O tier (such as returned by throttle_get_io_policy)
1798 */
1799static int
1800throttle_get_thread_throttle_level_internal(uthread_t ut, int io_tier)
1801{
1802 int thread_throttle_level = io_tier;
1803 int user_idle_level;
1804
1805 assert(ut != NULL);
1806
1807 /* Bootcache misses should always be throttled */
1808 if (ut->uu_throttle_bc) {
1809 thread_throttle_level = THROTTLE_LEVEL_TIER3;
1810 }
1811
1812 /*
1813 * Issue tier3 I/O as tier2 when the user is idle
1814 * to allow maintenance tasks to make more progress.
1815 *
1816 * Assume any positive idle level is enough... for now it's
1817 * only ever 0 or 128 but this is not defined anywhere.
1818 */
1819 if (thread_throttle_level >= THROTTLE_LEVEL_TIER3) {
1820 user_idle_level = timer_get_user_idle_level();
1821 if (user_idle_level > 0) {
1822 thread_throttle_level--;
1823 }
1824 }
1825
1826 return thread_throttle_level;
1827}
1828
1829/*
1830 * I/O will be throttled if either of the following are true:
1831 * - Higher tiers have in-flight I/O
1832 * - The time delta since the last start/completion of a higher tier is within the throttle window interval
1833 *
1834 * In-flight I/O is bookended by throttle_info_update_internal/throttle_info_end_io_internal
1835 */
1836static int
1837throttle_io_will_be_throttled_internal(void * throttle_info, int * mylevel, int * throttling_level)
1838{
1839 struct _throttle_io_info_t *info = throttle_info;
1840 struct timeval elapsed;
1841 struct timeval now;
1842 uint64_t elapsed_msecs;
1843 int thread_throttle_level;
1844 int throttle_level;
1845
1846 if ((thread_throttle_level = throttle_get_thread_throttle_level(NULL)) < THROTTLE_LEVEL_THROTTLED) {
1847 return THROTTLE_DISENGAGED;
1848 }
1849
1850 microuptime(tv: &now);
1851
1852 for (throttle_level = THROTTLE_LEVEL_START; throttle_level < thread_throttle_level; throttle_level++) {
1853 if (info->throttle_inflight_count[throttle_level]) {
1854 break;
1855 }
1856 elapsed = now;
1857 timevalsub(t1: &elapsed, t2: &info->throttle_window_start_timestamp[throttle_level]);
1858 elapsed_msecs = (uint64_t)elapsed.tv_sec * (uint64_t)1000 + (elapsed.tv_usec / 1000);
1859
1860 if (elapsed_msecs < (uint64_t)throttle_windows_msecs[thread_throttle_level]) {
1861 break;
1862 }
1863 }
1864 if (throttle_level >= thread_throttle_level) {
1865 /*
1866 * we're beyond all of the throttle windows
1867 * that affect the throttle level of this thread,
1868 * so go ahead and treat as normal I/O
1869 */
1870 return THROTTLE_DISENGAGED;
1871 }
1872 if (mylevel) {
1873 *mylevel = thread_throttle_level;
1874 }
1875 if (throttling_level) {
1876 *throttling_level = throttle_level;
1877 }
1878
1879 if (info->throttle_io_count != info->throttle_io_count_begin) {
1880 /*
1881 * we've already issued at least one throttleable I/O
1882 * in the current I/O window, so avoid issuing another one
1883 */
1884 return THROTTLE_NOW;
1885 }
1886 /*
1887 * we're in the throttle window, so
1888 * cut the I/O size back
1889 */
1890 return THROTTLE_ENGAGED;
1891}
1892
1893/*
1894 * If we have a mount point and it has a throttle info pointer then
1895 * use it to do the check, otherwise use the device unit number to find
1896 * the correct throttle info array element.
1897 */
1898int
1899throttle_io_will_be_throttled(__unused int lowpri_window_msecs, mount_t mp)
1900{
1901 struct _throttle_io_info_t *info;
1902
1903 /*
1904 * Should we just return zero if no mount point
1905 */
1906 if (mp == NULL) {
1907 info = &_throttle_io_info[LOWPRI_MAX_NUM_DEV - 1];
1908 } else if (mp->mnt_throttle_info == NULL) {
1909 info = &_throttle_io_info[mp->mnt_devbsdunit];
1910 } else {
1911 info = mp->mnt_throttle_info;
1912 }
1913
1914 if (info->throttle_is_fusion_with_priority) {
1915 uthread_t ut = current_uthread();
1916 if (ut->uu_lowpri_window == 0) {
1917 return THROTTLE_DISENGAGED;
1918 }
1919 }
1920
1921 if (info->throttle_disabled) {
1922 return THROTTLE_DISENGAGED;
1923 } else {
1924 return throttle_io_will_be_throttled_internal(throttle_info: info, NULL, NULL);
1925 }
1926}
1927
1928/*
1929 * Routine to increment I/O throttling counters maintained in the proc
1930 */
1931
1932static void
1933throttle_update_proc_stats(pid_t throttling_pid, int count)
1934{
1935 proc_t throttling_proc;
1936 proc_t throttled_proc = current_proc();
1937
1938 /* The throttled_proc is always the current proc; so we are not concerned with refs */
1939 OSAddAtomic64(count, &(throttled_proc->was_throttled));
1940
1941 /* The throttling pid might have exited by now */
1942 throttling_proc = proc_find(pid: throttling_pid);
1943 if (throttling_proc != PROC_NULL) {
1944 OSAddAtomic64(count, &(throttling_proc->did_throttle));
1945 proc_rele(p: throttling_proc);
1946 }
1947}
1948
1949/*
1950 * Block until woken up by the throttle timer or by a rethrottle call.
1951 * As long as we hold the throttle_lock while querying the throttle tier, we're
1952 * safe against seeing an old throttle tier after a rethrottle.
1953 */
1954uint32_t
1955throttle_lowpri_io(int sleep_amount)
1956{
1957 uthread_t ut;
1958 struct _throttle_io_info_t *info;
1959 int throttle_type = 0;
1960 int mylevel = 0;
1961 int throttling_level = THROTTLE_LEVEL_NONE;
1962 int sleep_cnt = 0;
1963 uint32_t throttle_io_period_num = 0;
1964 boolean_t insert_tail = TRUE;
1965 boolean_t s;
1966
1967 ut = current_uthread();
1968
1969 if (ut->uu_lowpri_window == 0) {
1970 return 0;
1971 }
1972
1973 info = ut->uu_throttle_info;
1974
1975 if (info == NULL) {
1976 ut->uu_throttle_bc = false;
1977 ut->uu_lowpri_window = 0;
1978 return 0;
1979 }
1980 lck_mtx_lock(lck: &info->throttle_lock);
1981 assert(ut->uu_on_throttlelist < THROTTLE_LEVEL_THROTTLED);
1982
1983 if (sleep_amount == 0) {
1984 goto done;
1985 }
1986
1987 if (sleep_amount == 1 && !ut->uu_throttle_bc) {
1988 sleep_amount = 0;
1989 }
1990
1991 throttle_io_period_num = info->throttle_io_period_num;
1992
1993 ut->uu_was_rethrottled = false;
1994
1995 while ((throttle_type = throttle_io_will_be_throttled_internal(throttle_info: info, mylevel: &mylevel, throttling_level: &throttling_level))) {
1996 if (throttle_type == THROTTLE_ENGAGED) {
1997 if (sleep_amount == 0) {
1998 break;
1999 }
2000 if (info->throttle_io_period_num < throttle_io_period_num) {
2001 break;
2002 }
2003 if ((info->throttle_io_period_num - throttle_io_period_num) >= (uint32_t)sleep_amount) {
2004 break;
2005 }
2006 }
2007 /*
2008 * keep the same position in the list if "rethrottle_thread" changes our throttle level and
2009 * then puts us back to the original level before we get a chance to run
2010 */
2011 if (ut->uu_on_throttlelist >= THROTTLE_LEVEL_THROTTLED && ut->uu_on_throttlelist != mylevel) {
2012 /*
2013 * must have been awakened via "rethrottle_thread" (the timer pulls us off the list)
2014 * and we've changed our throttling level, so pull ourselves off of the appropriate list
2015 * and make sure we get put on the tail of the new list since we're starting anew w/r to
2016 * the throttling engine
2017 */
2018 TAILQ_REMOVE(&info->throttle_uthlist[ut->uu_on_throttlelist], ut, uu_throttlelist);
2019 ut->uu_on_throttlelist = THROTTLE_LEVEL_NONE;
2020 insert_tail = TRUE;
2021 }
2022 if (ut->uu_on_throttlelist < THROTTLE_LEVEL_THROTTLED) {
2023 if (throttle_add_to_list(info, ut, mylevel, insert_tail) == THROTTLE_LEVEL_END) {
2024 goto done;
2025 }
2026 }
2027 assert(throttling_level >= THROTTLE_LEVEL_START && throttling_level <= THROTTLE_LEVEL_END);
2028
2029 s = ml_set_interrupts_enabled(FALSE);
2030 lck_spin_lock(lck: &ut->uu_rethrottle_lock);
2031
2032 /*
2033 * this is the critical section w/r to our interaction
2034 * with "rethrottle_thread"
2035 */
2036 if (ut->uu_was_rethrottled) {
2037 lck_spin_unlock(lck: &ut->uu_rethrottle_lock);
2038 ml_set_interrupts_enabled(enable: s);
2039 lck_mtx_yield(lck: &info->throttle_lock);
2040
2041 KERNEL_DEBUG_CONSTANT((FSDBG_CODE(DBG_FSRW, 103)),
2042 uthread_tid(ut), ut->uu_on_throttlelist, 0, 0, 0);
2043
2044 ut->uu_was_rethrottled = false;
2045 continue;
2046 }
2047 KERNEL_DEBUG_CONSTANT((FSDBG_CODE(DBG_THROTTLE, PROCESS_THROTTLED)) | DBG_FUNC_NONE,
2048 info->throttle_last_IO_pid[throttling_level], throttling_level, proc_selfpid(), mylevel, 0);
2049
2050 if (sleep_cnt == 0) {
2051 KERNEL_DEBUG_CONSTANT((FSDBG_CODE(DBG_FSRW, 97)) | DBG_FUNC_START,
2052 throttle_windows_msecs[mylevel], info->throttle_io_periods[mylevel], info->throttle_io_count, 0, 0);
2053 throttled_count[mylevel]++;
2054 }
2055 ut->uu_wmesg = "throttle_lowpri_io";
2056
2057 assert_wait(event: (caddr_t)&ut->uu_on_throttlelist, THREAD_UNINT);
2058
2059 ut->uu_is_throttled = true;
2060 lck_spin_unlock(lck: &ut->uu_rethrottle_lock);
2061 ml_set_interrupts_enabled(enable: s);
2062
2063 lck_mtx_unlock(lck: &info->throttle_lock);
2064
2065 thread_block(THREAD_CONTINUE_NULL);
2066
2067 ut->uu_wmesg = NULL;
2068
2069 ut->uu_is_throttled = false;
2070 ut->uu_was_rethrottled = false;
2071
2072 lck_mtx_lock(lck: &info->throttle_lock);
2073
2074 sleep_cnt++;
2075
2076 if (sleep_amount == 0) {
2077 insert_tail = FALSE;
2078 } else if (info->throttle_io_period_num < throttle_io_period_num ||
2079 (info->throttle_io_period_num - throttle_io_period_num) >= (uint32_t)sleep_amount) {
2080 insert_tail = FALSE;
2081 sleep_amount = 0;
2082 }
2083 }
2084done:
2085 if (ut->uu_on_throttlelist >= THROTTLE_LEVEL_THROTTLED) {
2086 TAILQ_REMOVE(&info->throttle_uthlist[ut->uu_on_throttlelist], ut, uu_throttlelist);
2087 ut->uu_on_throttlelist = THROTTLE_LEVEL_NONE;
2088 }
2089 lck_mtx_unlock(lck: &info->throttle_lock);
2090
2091 if (sleep_cnt) {
2092 KERNEL_DEBUG_CONSTANT((FSDBG_CODE(DBG_FSRW, 97)) | DBG_FUNC_END,
2093 throttle_windows_msecs[mylevel], info->throttle_io_periods[mylevel], info->throttle_io_count, 0, 0);
2094 /*
2095 * We update the stats for the last pid which opened a throttle window for the throttled thread.
2096 * This might not be completely accurate since the multiple throttles seen by the lower tier pid
2097 * might have been caused by various higher prio pids. However, updating these stats accurately
2098 * means doing a proc_find while holding the throttle lock which leads to deadlock.
2099 */
2100 throttle_update_proc_stats(throttling_pid: info->throttle_last_IO_pid[throttling_level], count: sleep_cnt);
2101 }
2102
2103 ut->uu_throttle_info = NULL;
2104 ut->uu_throttle_bc = false;
2105 ut->uu_lowpri_window = 0;
2106
2107 throttle_info_rel(info);
2108
2109 return sleep_cnt;
2110}
2111
2112/*
2113 * returns TRUE if the throttle_lowpri_io called with the same sleep_amount would've slept
2114 * This function mimics the most of the throttle_lowpri_io checks but without actual sleeping
2115 */
2116int
2117throttle_lowpri_io_will_be_throttled(int sleep_amount)
2118{
2119 if (sleep_amount == 0) {
2120 return FALSE;
2121 }
2122
2123 uthread_t ut = current_uthread();
2124 if (ut->uu_lowpri_window == 0) {
2125 return FALSE;
2126 }
2127
2128 struct _throttle_io_info_t *info = ut->uu_throttle_info;
2129 if (info == NULL) {
2130 return FALSE;
2131 }
2132
2133 lck_mtx_lock(lck: &info->throttle_lock);
2134 assert(ut->uu_on_throttlelist < THROTTLE_LEVEL_THROTTLED);
2135
2136 if (sleep_amount == 1 && !ut->uu_throttle_bc) {
2137 sleep_amount = 0;
2138 }
2139
2140 int result = FALSE;
2141
2142 int throttle_type = throttle_io_will_be_throttled_internal(throttle_info: info, NULL, NULL);
2143 if (throttle_type > THROTTLE_DISENGAGED) {
2144 result = TRUE;
2145 if ((throttle_type == THROTTLE_ENGAGED) && (sleep_amount == 0)) {
2146 result = FALSE;
2147 }
2148 }
2149
2150 lck_mtx_unlock(lck: &info->throttle_lock);
2151
2152 return result;
2153}
2154
2155
2156/*
2157 * KPI routine
2158 *
2159 * set a kernel thread's IO policy. policy can be:
2160 * IOPOL_NORMAL, IOPOL_THROTTLE, IOPOL_PASSIVE, IOPOL_UTILITY, IOPOL_STANDARD
2161 *
2162 * explanations about these policies are in the man page of setiopolicy_np
2163 */
2164void
2165throttle_set_thread_io_policy(int policy)
2166{
2167 proc_set_thread_policy(thread: current_thread(), TASK_POLICY_INTERNAL, TASK_POLICY_IOPOL, value: policy);
2168}
2169
2170int
2171throttle_get_thread_effective_io_policy()
2172{
2173 return proc_get_effective_thread_policy(thread: current_thread(), TASK_POLICY_IO);
2174}
2175
2176int
2177throttle_thread_io_tier_above_metadata(void)
2178{
2179 return throttle_get_thread_effective_io_policy() < IOSCHED_METADATA_TIER;
2180}
2181
2182void
2183throttle_info_reset_window(uthread_t ut)
2184{
2185 struct _throttle_io_info_t *info;
2186
2187 if (ut == NULL) {
2188 ut = current_uthread();
2189 }
2190
2191 if ((info = ut->uu_throttle_info)) {
2192 throttle_info_rel(info);
2193
2194 ut->uu_throttle_info = NULL;
2195 ut->uu_lowpri_window = 0;
2196 ut->uu_throttle_bc = false;
2197 }
2198}
2199
2200static
2201void
2202throttle_info_set_initial_window(uthread_t ut, struct _throttle_io_info_t *info, boolean_t BC_throttle, boolean_t isssd)
2203{
2204 if (lowpri_throttle_enabled == 0 || info->throttle_disabled) {
2205 return;
2206 }
2207
2208 if (info->throttle_io_periods == 0) {
2209 throttle_init_throttle_period(info, isssd);
2210 }
2211 if (ut->uu_throttle_info == NULL) {
2212 ut->uu_throttle_info = info;
2213 throttle_info_ref(info);
2214 DEBUG_ALLOC_THROTTLE_INFO("updating info = %p\n", info, info );
2215
2216 ut->uu_lowpri_window = 1;
2217 ut->uu_throttle_bc = BC_throttle;
2218 }
2219}
2220
2221/*
2222 * Update inflight IO count and throttling window
2223 * Should be called when an IO is done
2224 *
2225 * Only affects IO that was sent through spec_strategy
2226 */
2227void
2228throttle_info_end_io(buf_t bp)
2229{
2230 vnode_t vp;
2231 mount_t mp;
2232 struct bufattr *bap;
2233 struct _throttle_io_info_t *info;
2234 int io_tier;
2235
2236 bap = &bp->b_attr;
2237 if (!ISSET(bap->ba_flags, BA_STRATEGY_TRACKED_IO)) {
2238 return;
2239 }
2240 CLR(bap->ba_flags, BA_STRATEGY_TRACKED_IO);
2241
2242 vp = buf_vnode(bp);
2243 mp = vp->v_mount;
2244
2245 if (vp && (vp->v_type == VBLK || vp->v_type == VCHR)) {
2246 info = &_throttle_io_info[vp->v_un.vu_specinfo->si_devbsdunit];
2247 } else if (mp != NULL) {
2248 info = &_throttle_io_info[mp->mnt_devbsdunit];
2249 } else {
2250 info = &_throttle_io_info[LOWPRI_MAX_NUM_DEV - 1];
2251 }
2252
2253 io_tier = GET_BUFATTR_IO_TIER(bap);
2254 if (ISSET(bap->ba_flags, BA_IO_TIER_UPGRADE)) {
2255 io_tier--;
2256 }
2257
2258 throttle_info_end_io_internal(info, throttle_level: io_tier);
2259}
2260
2261/*
2262 * Decrement inflight count initially incremented by throttle_info_update_internal
2263 */
2264static
2265void
2266throttle_info_end_io_internal(struct _throttle_io_info_t *info, int throttle_level)
2267{
2268 if (throttle_level == THROTTLE_LEVEL_NONE) {
2269 return;
2270 }
2271
2272 microuptime(tv: &info->throttle_window_start_timestamp[throttle_level]);
2273 OSDecrementAtomic(&info->throttle_inflight_count[throttle_level]);
2274 assert(info->throttle_inflight_count[throttle_level] >= 0);
2275}
2276
2277/*
2278 * If inflight is TRUE and bap is NULL then the caller is responsible for calling
2279 * throttle_info_end_io_internal to avoid leaking in-flight I/O.
2280 */
2281static
2282int
2283throttle_info_update_internal(struct _throttle_io_info_t *info, uthread_t ut, int flags, boolean_t isssd, boolean_t inflight, struct bufattr *bap)
2284{
2285 int thread_throttle_level;
2286
2287 if (lowpri_throttle_enabled == 0 || info->throttle_disabled) {
2288 return THROTTLE_LEVEL_NONE;
2289 }
2290
2291 if (ut == NULL) {
2292 ut = current_uthread();
2293 }
2294
2295 if (bap && inflight && !ut->uu_throttle_bc) {
2296 thread_throttle_level = GET_BUFATTR_IO_TIER(bap);
2297 if (ISSET(bap->ba_flags, BA_IO_TIER_UPGRADE)) {
2298 thread_throttle_level--;
2299 }
2300 } else {
2301 thread_throttle_level = throttle_get_thread_throttle_level(ut);
2302 }
2303
2304 if (thread_throttle_level != THROTTLE_LEVEL_NONE) {
2305 if (!ISSET(flags, B_PASSIVE)) {
2306 info->throttle_last_IO_pid[thread_throttle_level] = proc_selfpid();
2307 if (inflight && !ut->uu_throttle_bc) {
2308 if (NULL != bap) {
2309 SET(bap->ba_flags, BA_STRATEGY_TRACKED_IO);
2310 }
2311 OSIncrementAtomic(&info->throttle_inflight_count[thread_throttle_level]);
2312 } else {
2313 microuptime(tv: &info->throttle_window_start_timestamp[thread_throttle_level]);
2314 }
2315 KERNEL_DEBUG_CONSTANT((FSDBG_CODE(DBG_THROTTLE, OPEN_THROTTLE_WINDOW)) | DBG_FUNC_NONE,
2316 proc_getpid(current_proc()), thread_throttle_level, 0, 0, 0);
2317 }
2318 microuptime(tv: &info->throttle_last_IO_timestamp[thread_throttle_level]);
2319 }
2320
2321
2322 if (thread_throttle_level >= THROTTLE_LEVEL_THROTTLED) {
2323 /*
2324 * I'd really like to do the IOSleep here, but
2325 * we may be holding all kinds of filesystem related locks
2326 * and the pages for this I/O marked 'busy'...
2327 * we don't want to cause a normal task to block on
2328 * one of these locks while we're throttling a task marked
2329 * for low priority I/O... we'll mark the uthread and
2330 * do the delay just before we return from the system
2331 * call that triggered this I/O or from vnode_pagein
2332 */
2333 OSAddAtomic(1, &info->throttle_io_count);
2334
2335 throttle_info_set_initial_window(ut, info, FALSE, isssd);
2336 }
2337
2338 return thread_throttle_level;
2339}
2340
2341void *
2342throttle_info_update_by_mount(mount_t mp)
2343{
2344 struct _throttle_io_info_t *info;
2345 uthread_t ut;
2346 boolean_t isssd = FALSE;
2347
2348 ut = current_uthread();
2349
2350 if (mp != NULL) {
2351 if (disk_conditioner_mount_is_ssd(mp)) {
2352 isssd = TRUE;
2353 }
2354 info = &_throttle_io_info[mp->mnt_devbsdunit];
2355 } else {
2356 info = &_throttle_io_info[LOWPRI_MAX_NUM_DEV - 1];
2357 }
2358
2359 if (!ut->uu_lowpri_window) {
2360 throttle_info_set_initial_window(ut, info, FALSE, isssd);
2361 }
2362
2363 return info;
2364}
2365
2366
2367/*
2368 * KPI routine
2369 *
2370 * this is usually called before every I/O, used for throttled I/O
2371 * book keeping. This routine has low overhead and does not sleep
2372 */
2373void
2374throttle_info_update(void *throttle_info, int flags)
2375{
2376 if (throttle_info) {
2377 throttle_info_update_internal(info: throttle_info, NULL, flags, FALSE, FALSE, NULL);
2378 }
2379}
2380
2381/*
2382 * KPI routine
2383 *
2384 * this is usually called before every I/O, used for throttled I/O
2385 * book keeping. This routine has low overhead and does not sleep
2386 */
2387void
2388throttle_info_update_by_mask(void *throttle_info_handle, int flags)
2389{
2390 void *throttle_info = throttle_info_handle;
2391
2392 /*
2393 * for now we only use the lowest bit of the throttle mask, so the
2394 * handle is the same as the throttle_info. Later if we store a
2395 * set of throttle infos in the handle, we will want to loop through
2396 * them and call throttle_info_update in a loop
2397 */
2398 throttle_info_update(throttle_info, flags);
2399}
2400/*
2401 * KPI routine
2402 *
2403 * This routine marks the throttle info as disabled. Used for mount points which
2404 * support I/O scheduling.
2405 */
2406
2407void
2408throttle_info_disable_throttle(int devno, boolean_t isfusion)
2409{
2410 struct _throttle_io_info_t *info;
2411
2412 if (devno < 0 || devno >= LOWPRI_MAX_NUM_DEV) {
2413 panic("Illegal devno (%d) passed into throttle_info_disable_throttle()", devno);
2414 }
2415
2416 info = &_throttle_io_info[devno];
2417 // don't disable software throttling on devices that are part of a fusion device
2418 // and override the software throttle periods to use HDD periods
2419 if (isfusion) {
2420 info->throttle_is_fusion_with_priority = isfusion;
2421 throttle_init_throttle_period(info, FALSE);
2422 }
2423 info->throttle_disabled = !info->throttle_is_fusion_with_priority;
2424 return;
2425}
2426
2427
2428/*
2429 * KPI routine (private)
2430 * Called to determine if this IO is being throttled to this level so that it can be treated specially
2431 */
2432int
2433throttle_info_io_will_be_throttled(void * throttle_info, int policy)
2434{
2435 struct _throttle_io_info_t *info = throttle_info;
2436 struct timeval elapsed;
2437 uint64_t elapsed_msecs;
2438 int throttle_level;
2439 int thread_throttle_level;
2440
2441 switch (policy) {
2442 case IOPOL_THROTTLE:
2443 thread_throttle_level = THROTTLE_LEVEL_TIER3;
2444 break;
2445 case IOPOL_UTILITY:
2446 thread_throttle_level = THROTTLE_LEVEL_TIER2;
2447 break;
2448 case IOPOL_STANDARD:
2449 thread_throttle_level = THROTTLE_LEVEL_TIER1;
2450 break;
2451 default:
2452 thread_throttle_level = THROTTLE_LEVEL_TIER0;
2453 break;
2454 }
2455 for (throttle_level = THROTTLE_LEVEL_START; throttle_level < thread_throttle_level; throttle_level++) {
2456 if (info->throttle_inflight_count[throttle_level]) {
2457 break;
2458 }
2459
2460 microuptime(tv: &elapsed);
2461 timevalsub(t1: &elapsed, t2: &info->throttle_window_start_timestamp[throttle_level]);
2462 elapsed_msecs = (uint64_t)elapsed.tv_sec * (uint64_t)1000 + (elapsed.tv_usec / 1000);
2463
2464 if (elapsed_msecs < (uint64_t)throttle_windows_msecs[thread_throttle_level]) {
2465 break;
2466 }
2467 }
2468 if (throttle_level >= thread_throttle_level) {
2469 /*
2470 * we're beyond all of the throttle windows
2471 * so go ahead and treat as normal I/O
2472 */
2473 return THROTTLE_DISENGAGED;
2474 }
2475 /*
2476 * we're in the throttle window
2477 */
2478 return THROTTLE_ENGAGED;
2479}
2480
2481int
2482throttle_lowpri_window(void)
2483{
2484 return current_uthread()->uu_lowpri_window;
2485}
2486
2487
2488#if CONFIG_IOSCHED
2489int upl_get_cached_tier(void *);
2490#endif
2491
2492#if CONFIG_PHYS_WRITE_ACCT
2493extern thread_t pm_sync_thread;
2494#endif /* CONFIG_PHYS_WRITE_ACCT */
2495
2496int
2497spec_strategy(struct vnop_strategy_args *ap)
2498{
2499 buf_t bp;
2500 int bflags;
2501 int io_tier;
2502 int passive;
2503 dev_t bdev;
2504 uthread_t ut;
2505 vnode_t vp;
2506 mount_t mp;
2507 struct bufattr *bap;
2508 int strategy_ret;
2509 struct _throttle_io_info_t *throttle_info;
2510 boolean_t isssd = FALSE;
2511 boolean_t inflight = FALSE;
2512 boolean_t upgrade = FALSE;
2513 int code = 0;
2514
2515#if CONFIG_DELAY_IDLE_SLEEP
2516 proc_t curproc = current_proc();
2517#endif /* CONFIG_DELAY_IDLE_SLEEP */
2518
2519 bp = ap->a_bp;
2520 bdev = buf_device(bp);
2521 vp = buf_vnode(bp);
2522 mp = vp ? vp->v_mount : NULL;
2523 bap = &bp->b_attr;
2524
2525#if CONFIG_PHYS_WRITE_ACCT
2526 if (current_thread() == pm_sync_thread) {
2527 OSAddAtomic64(buf_count(bp), (SInt64 *)&(kernel_pm_writes));
2528 }
2529#endif /* CONFIG_PHYS_WRITE_ACCT */
2530
2531#if CONFIG_IOSCHED
2532 if (bp->b_flags & B_CLUSTER) {
2533 io_tier = upl_get_cached_tier(bp->b_upl);
2534
2535 if (io_tier == -1) {
2536 io_tier = throttle_get_io_policy(ut: &ut);
2537 }
2538#if DEVELOPMENT || DEBUG
2539 else {
2540 int my_io_tier = throttle_get_io_policy(&ut);
2541
2542 if (io_tier != my_io_tier) {
2543 KERNEL_DEBUG_CONSTANT((FSDBG_CODE(DBG_THROTTLE, IO_TIER_UPL_MISMATCH)) | DBG_FUNC_NONE, buf_kernel_addrperm_addr(bp), my_io_tier, io_tier, 0, 0);
2544 }
2545 }
2546#endif
2547 } else {
2548 io_tier = throttle_get_io_policy(ut: &ut);
2549 }
2550#else
2551 io_tier = throttle_get_io_policy(&ut);
2552#endif
2553 passive = throttle_get_passive_io_policy(ut: &ut);
2554
2555 /*
2556 * Mark if the I/O was upgraded by throttle_get_thread_throttle_level
2557 * while preserving the original issued tier (throttle_get_io_policy
2558 * does not return upgraded tiers)
2559 */
2560 if (mp && io_tier > throttle_get_thread_throttle_level_internal(ut, io_tier)) {
2561#if CONFIG_IOSCHED
2562 if (!(mp->mnt_ioflags & MNT_IOFLAGS_IOSCHED_SUPPORTED)) {
2563 upgrade = TRUE;
2564 }
2565#else /* CONFIG_IOSCHED */
2566 upgrade = TRUE;
2567#endif /* CONFIG_IOSCHED */
2568 }
2569
2570 if (bp->b_flags & B_META) {
2571 bap->ba_flags |= BA_META;
2572 }
2573
2574#if CONFIG_IOSCHED
2575 /*
2576 * For metadata reads, ceil the I/O tier to IOSCHED_METADATA_EXPEDITED_TIER if they are expedited, otherwise
2577 * ceil it to IOSCHED_METADATA_TIER. Mark them passive if the I/O tier was upgraded.
2578 * For metadata writes, set the I/O tier to IOSCHED_METADATA_EXPEDITED_TIER if they are expedited. Otherwise
2579 * set it to IOSCHED_METADATA_TIER. In addition, mark them as passive.
2580 */
2581 if (bap->ba_flags & BA_META) {
2582 if ((mp && (mp->mnt_ioflags & MNT_IOFLAGS_IOSCHED_SUPPORTED)) || (bap->ba_flags & BA_IO_SCHEDULED)) {
2583 if (bp->b_flags & B_READ) {
2584 if ((bap->ba_flags & BA_EXPEDITED_META_IO) && (io_tier > IOSCHED_METADATA_EXPEDITED_TIER)) {
2585 io_tier = IOSCHED_METADATA_EXPEDITED_TIER;
2586 passive = 1;
2587 } else if (io_tier > IOSCHED_METADATA_TIER) {
2588 io_tier = IOSCHED_METADATA_TIER;
2589 passive = 1;
2590 }
2591 } else {
2592 if (bap->ba_flags & BA_EXPEDITED_META_IO) {
2593 io_tier = IOSCHED_METADATA_EXPEDITED_TIER;
2594 } else {
2595 io_tier = IOSCHED_METADATA_TIER;
2596 }
2597 passive = 1;
2598 }
2599 }
2600 }
2601#endif /* CONFIG_IOSCHED */
2602
2603 SET_BUFATTR_IO_TIER(bap, io_tier);
2604
2605 if (passive) {
2606 bp->b_flags |= B_PASSIVE;
2607 bap->ba_flags |= BA_PASSIVE;
2608 }
2609
2610#if CONFIG_DELAY_IDLE_SLEEP
2611 if ((curproc != NULL) && ((curproc->p_flag & P_DELAYIDLESLEEP) == P_DELAYIDLESLEEP)) {
2612 bap->ba_flags |= BA_DELAYIDLESLEEP;
2613 }
2614#endif /* CONFIG_DELAY_IDLE_SLEEP */
2615
2616 bflags = bp->b_flags;
2617
2618 if (((bflags & B_READ) == 0) && ((bflags & B_ASYNC) == 0)) {
2619 bufattr_markquickcomplete(bap);
2620 }
2621
2622 if (bflags & B_READ) {
2623 code |= DKIO_READ;
2624 }
2625 if (bflags & B_ASYNC) {
2626 code |= DKIO_ASYNC;
2627 }
2628
2629 if (bap->ba_flags & BA_META) {
2630 code |= DKIO_META;
2631 } else if (bflags & B_PAGEIO) {
2632 code |= DKIO_PAGING;
2633 }
2634
2635 if (io_tier != 0) {
2636 code |= DKIO_THROTTLE;
2637 }
2638
2639 code |= ((io_tier << DKIO_TIER_SHIFT) & DKIO_TIER_MASK);
2640
2641 if (bflags & B_PASSIVE) {
2642 code |= DKIO_PASSIVE;
2643 }
2644
2645 if (bap->ba_flags & BA_NOCACHE) {
2646 code |= DKIO_NOCACHE;
2647 }
2648
2649 if (upgrade) {
2650 code |= DKIO_TIER_UPGRADE;
2651 SET(bap->ba_flags, BA_IO_TIER_UPGRADE);
2652 }
2653
2654 if (kdebug_enable) {
2655 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_COMMON, FSDBG_CODE(DBG_DKRW, code) | DBG_FUNC_NONE,
2656 buf_kernel_addrperm_addr(bp), bdev, buf_blkno(bp), buf_count(bp), 0);
2657 }
2658
2659#if CONFIG_IO_COMPRESSION_STATS
2660 // Do not run IO Compression Stats when a privilege thread is active
2661 if (!is_vm_privileged() && !is_external_pageout_thread()) {
2662 io_compression_stats(bp);
2663 }
2664#endif /* CONFIG_IO_COMPRESSION_STATS */
2665 thread_update_io_stats(current_thread(), size: buf_count(bp), io_flags: code);
2666
2667 if (vp && (vp->v_type == VBLK || vp->v_type == VCHR)) {
2668 if (!vp->v_un.vu_specinfo->si_initted) {
2669 SPEC_INIT_BSDUNIT(vp, vfs_context_current());
2670 }
2671 if (vp->v_un.vu_specinfo->si_devbsdunit > (LOWPRI_MAX_NUM_DEV - 1)) {
2672 panic("Invalid value (%d) for si_devbsdunit for vnode %p",
2673 vp->v_un.vu_specinfo->si_devbsdunit, vp);
2674 }
2675 if (vp->v_un.vu_specinfo->si_isssd > 1) {
2676 panic("Invalid value (%d) for si_isssd for vnode %p",
2677 vp->v_un.vu_specinfo->si_isssd, vp);
2678 }
2679 throttle_info = &_throttle_io_info[vp->v_un.vu_specinfo->si_devbsdunit];
2680 isssd = vp->v_un.vu_specinfo->si_isssd;
2681 } else if (mp != NULL) {
2682 if (disk_conditioner_mount_is_ssd(mp)) {
2683 isssd = TRUE;
2684 }
2685 /*
2686 * Partially initialized mounts don't have a final devbsdunit and should not be tracked.
2687 * Verify that devbsdunit is initialized (non-zero) or that 0 is the correct initialized value
2688 * (mnt_throttle_mask is initialized and num_trailing_0 would be 0)
2689 */
2690 if (mp->mnt_devbsdunit || (mp->mnt_throttle_mask != LOWPRI_MAX_NUM_DEV - 1 && mp->mnt_throttle_mask & 0x1)) {
2691 inflight = TRUE;
2692 }
2693 throttle_info = &_throttle_io_info[mp->mnt_devbsdunit];
2694 } else {
2695 throttle_info = &_throttle_io_info[LOWPRI_MAX_NUM_DEV - 1];
2696 }
2697
2698 throttle_info_update_internal(info: throttle_info, ut, flags: bflags, isssd, inflight, bap);
2699
2700 if ((bflags & B_READ) == 0) {
2701 microuptime(tv: &throttle_info->throttle_last_write_timestamp);
2702
2703 if (!(vp && (vp->v_type == VBLK || vp->v_type == VCHR)) && mp) {
2704 mp->mnt_last_write_issued_timestamp = throttle_info->throttle_last_write_timestamp;
2705 INCR_PENDING_IO(buf_count(bp), mp->mnt_pending_write_size);
2706 }
2707 } else if (!(vp && (vp->v_type == VBLK || vp->v_type == VCHR)) && mp) {
2708 INCR_PENDING_IO(buf_count(bp), mp->mnt_pending_read_size);
2709 }
2710 /*
2711 * The BootCache may give us special information about
2712 * the IO, so it returns special values that we check
2713 * for here.
2714 *
2715 * IO_SATISFIED_BY_CACHE
2716 * The read has been satisfied by the boot cache. Don't
2717 * throttle the thread unnecessarily.
2718 *
2719 * IO_SHOULD_BE_THROTTLED
2720 * The boot cache is playing back a playlist and this IO
2721 * cut through. Throttle it so we're not cutting through
2722 * the boot cache too often.
2723 *
2724 * Note that typical strategy routines are defined with
2725 * a void return so we'll get garbage here. In the
2726 * unlikely case the garbage matches our special return
2727 * value, it's not a big deal since we're only adjusting
2728 * the throttling delay.
2729 */
2730#define IO_SATISFIED_BY_CACHE ((int)0xcafefeed)
2731#define IO_SHOULD_BE_THROTTLED ((int)0xcafebeef)
2732#pragma clang diagnostic push
2733#pragma clang diagnostic ignored "-Wcast-function-type"
2734
2735 typedef int strategy_fcn_ret_t(struct buf *bp);
2736
2737 strategy_ret = (*(strategy_fcn_ret_t*)bdevsw[major(bdev)].d_strategy)(bp);
2738
2739#pragma clang diagnostic pop
2740
2741 // disk conditioner needs to track when this I/O actually starts
2742 // which means track it after `strategy` which may include delays
2743 // from inflight I/Os
2744 microuptime(tv: &bp->b_timestamp_tv);
2745
2746 if (IO_SATISFIED_BY_CACHE == strategy_ret) {
2747 /*
2748 * If this was a throttled IO satisfied by the boot cache,
2749 * don't delay the thread.
2750 */
2751 throttle_info_reset_window(ut);
2752 } else if (IO_SHOULD_BE_THROTTLED == strategy_ret) {
2753 /*
2754 * If the boot cache indicates this IO should be throttled,
2755 * delay the thread.
2756 */
2757 throttle_info_set_initial_window(ut, info: throttle_info, TRUE, isssd);
2758 }
2759 return 0;
2760}
2761
2762
2763/*
2764 * This is a noop, simply returning what one has been given.
2765 */
2766int
2767spec_blockmap(__unused struct vnop_blockmap_args *ap)
2768{
2769 return ENOTSUP;
2770}
2771
2772
2773/*
2774 * Device close routine
2775 */
2776int
2777spec_close(struct vnop_close_args *ap)
2778{
2779 struct vnode *vp = ap->a_vp;
2780 dev_t dev = vp->v_rdev;
2781 int error = 0;
2782 int flags = ap->a_fflag;
2783 struct proc *p = vfs_context_proc(ctx: ap->a_context);
2784 struct session *sessp;
2785 struct pgrp *pg;
2786
2787 switch (vp->v_type) {
2788 case VCHR:
2789 /*
2790 * Hack: a tty device that is a controlling terminal
2791 * has a reference from the session structure.
2792 * We cannot easily tell that a character device is
2793 * a controlling terminal, unless it is the closing
2794 * process' controlling terminal. In that case,
2795 * if the reference count is 1 (this is the very
2796 * last close)
2797 */
2798 pg = proc_pgrp(p, &sessp);
2799 devsw_lock(dev, S_IFCHR);
2800 if (sessp != SESSION_NULL) {
2801 if (vp == sessp->s_ttyvp && vcount(vp) == 1) {
2802 struct tty *tp = TTY_NULL;
2803
2804 devsw_unlock(dev, S_IFCHR);
2805 session_lock(sess: sessp);
2806 if (vp == sessp->s_ttyvp) {
2807 tp = session_clear_tty_locked(sess: sessp);
2808 }
2809 session_unlock(sess: sessp);
2810
2811 if (tp != TTY_NULL) {
2812 ttyfree(tp);
2813 }
2814 devsw_lock(dev, S_IFCHR);
2815 }
2816 }
2817 pgrp_rele(pgrp: pg);
2818
2819 if (--vp->v_specinfo->si_opencount < 0) {
2820 panic("negative open count (c, %u, %u)", major(dev), minor(dev));
2821 }
2822
2823 /*
2824 * close on last reference or on vnode revoke call
2825 */
2826 if (vcount(vp) == 0 || (flags & IO_REVOKE) != 0) {
2827 error = cdevsw[major(dev)].d_close(dev, flags, S_IFCHR, p);
2828 }
2829
2830 devsw_unlock(dev, S_IFCHR);
2831 break;
2832
2833 case VBLK:
2834 /*
2835 * If there is more than one outstanding open, don't
2836 * send the close to the device.
2837 */
2838 devsw_lock(dev, S_IFBLK);
2839 if (vcount(vp) > 1) {
2840 vp->v_specinfo->si_opencount--;
2841 devsw_unlock(dev, S_IFBLK);
2842 return 0;
2843 }
2844 devsw_unlock(dev, S_IFBLK);
2845
2846 /*
2847 * On last close of a block device (that isn't mounted)
2848 * we must invalidate any in core blocks, so that
2849 * we can, for instance, change floppy disks.
2850 */
2851 if ((error = spec_fsync_internal(vp, MNT_WAIT, context: ap->a_context))) {
2852 return error;
2853 }
2854
2855 error = buf_invalidateblks(vp, BUF_WRITE_DATA, slpflag: 0, slptimeo: 0);
2856 if (error) {
2857 return error;
2858 }
2859
2860 devsw_lock(dev, S_IFBLK);
2861
2862 if (--vp->v_specinfo->si_opencount < 0) {
2863 panic("negative open count (b, %u, %u)", major(dev), minor(dev));
2864 }
2865
2866 if (vcount(vp) == 0) {
2867 error = bdevsw[major(dev)].d_close(dev, flags, S_IFBLK, p);
2868 }
2869
2870 devsw_unlock(dev, S_IFBLK);
2871 break;
2872
2873 default:
2874 panic("spec_close: not special");
2875 return EBADF;
2876 }
2877
2878 return error;
2879}
2880
2881/*
2882 * Return POSIX pathconf information applicable to special devices.
2883 */
2884int
2885spec_pathconf(struct vnop_pathconf_args *ap)
2886{
2887 switch (ap->a_name) {
2888 case _PC_LINK_MAX:
2889 *ap->a_retval = LINK_MAX;
2890 return 0;
2891 case _PC_MAX_CANON:
2892 *ap->a_retval = MAX_CANON;
2893 return 0;
2894 case _PC_MAX_INPUT:
2895 *ap->a_retval = MAX_INPUT;
2896 return 0;
2897 case _PC_PIPE_BUF:
2898 *ap->a_retval = PIPE_BUF;
2899 return 0;
2900 case _PC_CHOWN_RESTRICTED:
2901 *ap->a_retval = 200112; /* _POSIX_CHOWN_RESTRICTED */
2902 return 0;
2903 case _PC_VDISABLE:
2904 *ap->a_retval = _POSIX_VDISABLE;
2905 return 0;
2906 default:
2907 return EINVAL;
2908 }
2909 /* NOTREACHED */
2910}
2911
2912/*
2913 * Special device failed operation
2914 */
2915int
2916spec_ebadf(__unused void *dummy)
2917{
2918 return EBADF;
2919}
2920
2921/* Blktooff derives file offset from logical block number */
2922int
2923spec_blktooff(struct vnop_blktooff_args *ap)
2924{
2925 struct vnode *vp = ap->a_vp;
2926
2927 switch (vp->v_type) {
2928 case VCHR:
2929 *ap->a_offset = (off_t)-1; /* failure */
2930 return ENOTSUP;
2931
2932 case VBLK:
2933 printf("spec_blktooff: not implemented for VBLK\n");
2934 *ap->a_offset = (off_t)-1; /* failure */
2935 return ENOTSUP;
2936
2937 default:
2938 panic("spec_blktooff type");
2939 }
2940 /* NOTREACHED */
2941
2942 return 0;
2943}
2944
2945/* Offtoblk derives logical block number from file offset */
2946int
2947spec_offtoblk(struct vnop_offtoblk_args *ap)
2948{
2949 struct vnode *vp = ap->a_vp;
2950
2951 switch (vp->v_type) {
2952 case VCHR:
2953 *ap->a_lblkno = (daddr64_t)-1; /* failure */
2954 return ENOTSUP;
2955
2956 case VBLK:
2957 printf("spec_offtoblk: not implemented for VBLK\n");
2958 *ap->a_lblkno = (daddr64_t)-1; /* failure */
2959 return ENOTSUP;
2960
2961 default:
2962 panic("spec_offtoblk type");
2963 }
2964 /* NOTREACHED */
2965
2966 return 0;
2967}
2968
2969static int filt_specattach(struct knote *kn, struct kevent_qos_s *kev);
2970static void filt_specdetach(struct knote *kn);
2971static int filt_specevent(struct knote *kn, long hint);
2972static int filt_spectouch(struct knote *kn, struct kevent_qos_s *kev);
2973static int filt_specprocess(struct knote *kn, struct kevent_qos_s *kev);
2974
2975SECURITY_READ_ONLY_EARLY(struct filterops) spec_filtops = {
2976 .f_isfd = 1,
2977 .f_attach = filt_specattach,
2978 .f_detach = filt_specdetach,
2979 .f_event = filt_specevent,
2980 .f_touch = filt_spectouch,
2981 .f_process = filt_specprocess,
2982};
2983
2984static void
2985filt_spec_make_eof(struct knote *kn)
2986{
2987 /*
2988 * The spec filter might touch kn_flags from f_event
2989 * without holding "the primitive lock", so make it atomic.
2990 */
2991 os_atomic_or(&kn->kn_flags, EV_EOF | EV_ONESHOT, relaxed);
2992}
2993
2994static int
2995filt_spec_common(struct knote *kn, struct kevent_qos_s *kev, bool attach)
2996{
2997 uthread_t uth = current_uthread();
2998 vfs_context_t ctx = vfs_context_current();
2999 vnode_t vp = (vnode_t)fp_get_data(fp: kn->kn_fp);
3000 __block bool selrecorded = false;
3001 struct select_set *old_wqs;
3002 int64_t data = 0;
3003 int ret, selret;
3004
3005 if (kn->kn_flags & EV_EOF) {
3006 ret = FILTER_ACTIVE;
3007 goto out;
3008 }
3009
3010 if (!attach && vnode_getwithvid(vp, vnode_vid(vp)) != 0) {
3011 filt_spec_make_eof(kn);
3012 ret = FILTER_ACTIVE;
3013 goto out;
3014 }
3015
3016 selspec_record_hook_t cb = ^(struct selinfo *si) {
3017 selspec_attach(kn, si);
3018 selrecorded = true;
3019 };
3020
3021 old_wqs = uth->uu_selset;
3022 uth->uu_selset = SELSPEC_RECORD_MARKER;
3023 selret = VNOP_SELECT(vp, knote_get_seltype(kn), 0, cb, ctx);
3024 uth->uu_selset = old_wqs;
3025
3026 if (!attach) {
3027 vnode_put(vp);
3028 }
3029
3030 if (!selrecorded && selret == 0) {
3031 /*
3032 * The device indicated that there's no data to read,
3033 * but didn't call `selrecord`.
3034 *
3035 * Nothing will be notified of changes to this vnode,
3036 * so return an error back to user space on attach,
3037 * or pretend the knote disappeared for other cases,
3038 * to make it clear that the knote is not attached.
3039 */
3040 if (attach) {
3041 knote_set_error(kn, ENODEV);
3042 return 0;
3043 }
3044
3045 filt_spec_make_eof(kn);
3046 ret = FILTER_ACTIVE;
3047 goto out;
3048 }
3049
3050 if (kn->kn_vnode_use_ofst) {
3051 if (kn->kn_fp->fp_glob->fg_offset >= (uint32_t)selret) {
3052 data = 0;
3053 } else {
3054 data = ((uint32_t)selret) - kn->kn_fp->fp_glob->fg_offset;
3055 }
3056 } else {
3057 data = selret;
3058 }
3059
3060 if (data >= knote_low_watermark(kn)) {
3061 ret = FILTER_ACTIVE;
3062 } else {
3063 ret = 0;
3064 }
3065out:
3066 if (ret) {
3067 knote_fill_kevent(kn, kev, data);
3068 }
3069 return ret;
3070}
3071
3072static int
3073filt_specattach(struct knote *kn, __unused struct kevent_qos_s *kev)
3074{
3075 vnode_t vp = (vnode_t)fp_get_data(fp: kn->kn_fp); /* Already have iocount, and vnode is alive */
3076 dev_t dev;
3077
3078 assert(vnode_ischr(vp));
3079
3080 dev = vnode_specrdev(vp);
3081
3082 /*
3083 * For a few special kinds of devices, we can attach knotes with
3084 * no restrictions because their "select" vectors return the amount
3085 * of data available. Others require an explicit NOTE_LOWAT with
3086 * data of 1, indicating that the caller doesn't care about actual
3087 * data counts, just an indication that the device has data.
3088 */
3089 if (!kn->kn_vnode_kqok &&
3090 ((kn->kn_sfflags & NOTE_LOWAT) == 0 || kn->kn_sdata != 1)) {
3091 knote_set_error(kn, EINVAL);
3092 return 0;
3093 }
3094
3095 return filt_spec_common(kn, kev, true);
3096}
3097
3098static void
3099filt_specdetach(struct knote *kn)
3100{
3101 selspec_detach(kn);
3102}
3103
3104static int
3105filt_specevent(struct knote *kn, long hint)
3106{
3107 /* Due to selwakeup_internal() on SI_SELSPEC */
3108 assert(KNOTE_IS_AUTODETACHED(kn));
3109 knote_kn_hook_set_raw(kn, NULL);
3110
3111 /* called by selwakeup with the selspec_lock lock held */
3112 if (hint & NOTE_REVOKE) {
3113 filt_spec_make_eof(kn);
3114 }
3115 return FILTER_ACTIVE;
3116}
3117
3118static int
3119filt_spectouch(struct knote *kn, struct kevent_qos_s *kev)
3120{
3121 kn->kn_sdata = kev->data;
3122 kn->kn_sfflags = kev->fflags;
3123
3124 return filt_spec_common(kn, kev, false);
3125}
3126
3127static int
3128filt_specprocess(struct knote *kn, struct kevent_qos_s *kev)
3129{
3130 return filt_spec_common(kn, kev, false);
3131}
3132