1 | /* |
2 | * Copyright (c) 1998-2020 Apple Inc. All rights reserved. |
3 | * |
4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ |
5 | * |
6 | * This file contains Original Code and/or Modifications of Original Code |
7 | * as defined in and that are subject to the Apple Public Source License |
8 | * Version 2.0 (the 'License'). You may not use this file except in |
9 | * compliance with the License. The rights granted to you under the License |
10 | * may not be used to create, or enable the creation or redistribution of, |
11 | * unlawful or unlicensed copies of an Apple operating system, or to |
12 | * circumvent, violate, or enable the circumvention or violation of, any |
13 | * terms of an Apple operating system software license agreement. |
14 | * |
15 | * Please obtain a copy of the License at |
16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. |
17 | * |
18 | * The Original Code and all software distributed under the License are |
19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER |
20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, |
22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
23 | * Please see the License for the specific language governing rights and |
24 | * limitations under the License. |
25 | * |
26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ |
27 | */ |
28 | /* Copyright (c) 1995 NeXT Computer, Inc. All Rights Reserved */ |
29 | /* |
30 | * Copyright (c) 1982, 1986, 1988, 1990, 1993 |
31 | * The Regents of the University of California. All rights reserved. |
32 | * |
33 | * Redistribution and use in source and binary forms, with or without |
34 | * modification, are permitted provided that the following conditions |
35 | * are met: |
36 | * 1. Redistributions of source code must retain the above copyright |
37 | * notice, this list of conditions and the following disclaimer. |
38 | * 2. Redistributions in binary form must reproduce the above copyright |
39 | * notice, this list of conditions and the following disclaimer in the |
40 | * documentation and/or other materials provided with the distribution. |
41 | * 3. All advertising materials mentioning features or use of this software |
42 | * must display the following acknowledgement: |
43 | * This product includes software developed by the University of |
44 | * California, Berkeley and its contributors. |
45 | * 4. Neither the name of the University nor the names of its contributors |
46 | * may be used to endorse or promote products derived from this software |
47 | * without specific prior written permission. |
48 | * |
49 | * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND |
50 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
51 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
52 | * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE |
53 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
54 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
55 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
56 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
57 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
58 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
59 | * SUCH DAMAGE. |
60 | * |
61 | * @(#)uipc_socket2.c 8.1 (Berkeley) 6/10/93 |
62 | */ |
63 | /* |
64 | * NOTICE: This file was modified by SPARTA, Inc. in 2005 to introduce |
65 | * support for mandatory and extensible security protections. This notice |
66 | * is included in support of clause 2.2 (b) of the Apple Public License, |
67 | * Version 2.0. |
68 | */ |
69 | |
70 | #include <sys/param.h> |
71 | #include <sys/systm.h> |
72 | #include <sys/domain.h> |
73 | #include <sys/kernel.h> |
74 | #include <sys/proc_internal.h> |
75 | #include <sys/kauth.h> |
76 | #include <sys/malloc.h> |
77 | #include <sys/mbuf.h> |
78 | #include <sys/mcache.h> |
79 | #include <sys/protosw.h> |
80 | #include <sys/stat.h> |
81 | #include <sys/socket.h> |
82 | #include <sys/socketvar.h> |
83 | #include <sys/signalvar.h> |
84 | #include <sys/sysctl.h> |
85 | #include <sys/syslog.h> |
86 | #include <sys/unpcb.h> |
87 | #include <sys/ev.h> |
88 | #include <kern/locks.h> |
89 | #include <net/route.h> |
90 | #include <net/content_filter.h> |
91 | #include <netinet/in.h> |
92 | #include <netinet/in_pcb.h> |
93 | #include <netinet/tcp_var.h> |
94 | #include <sys/kdebug.h> |
95 | #include <libkern/OSAtomic.h> |
96 | |
97 | #if CONFIG_MACF |
98 | #include <security/mac_framework.h> |
99 | #endif |
100 | |
101 | #include <mach/vm_param.h> |
102 | |
103 | #if MPTCP |
104 | #include <netinet/mptcp_var.h> |
105 | #endif |
106 | |
107 | #include <net/sockaddr_utils.h> |
108 | |
109 | extern uint32_t net_wake_pkt_debug; |
110 | |
111 | #define DBG_FNC_SBDROP NETDBG_CODE(DBG_NETSOCK, 4) |
112 | #define DBG_FNC_SBAPPEND NETDBG_CODE(DBG_NETSOCK, 5) |
113 | |
114 | SYSCTL_DECL(_kern_ipc); |
115 | |
116 | __private_extern__ u_int32_t net_io_policy_throttle_best_effort = 0; |
117 | SYSCTL_INT(_kern_ipc, OID_AUTO, throttle_best_effort, |
118 | CTLFLAG_RW | CTLFLAG_LOCKED, &net_io_policy_throttle_best_effort, 0, "" ); |
119 | |
120 | static inline void sbcompress(struct sockbuf *, struct mbuf *, struct mbuf *); |
121 | static struct socket *sonewconn_internal(struct socket *, int); |
122 | static int sbappendcontrol_internal(struct sockbuf *, struct mbuf *, |
123 | struct mbuf *); |
124 | static void soevent_ifdenied(struct socket *); |
125 | |
126 | static int sbappendrecord_common(struct sockbuf *sb, struct mbuf *m0, boolean_t nodrop); |
127 | static int sbappend_common(struct sockbuf *sb, struct mbuf *m, boolean_t nodrop); |
128 | |
129 | /* |
130 | * Primitive routines for operating on sockets and socket buffers |
131 | */ |
132 | static int soqlimitcompat = 1; |
133 | static int soqlencomp = 0; |
134 | |
135 | /* |
136 | * Based on the number of mbuf clusters configured, high_sb_max and sb_max can |
137 | * get scaled up or down to suit that memory configuration. high_sb_max is a |
138 | * higher limit on sb_max that is checked when sb_max gets set through sysctl. |
139 | */ |
140 | uint32_t sb_max = SB_MAX; |
141 | uint32_t high_sb_max = SB_MAX; |
142 | |
143 | static uint32_t sb_efficiency = 8; /* parameter for sbreserve() */ |
144 | |
145 | uint32_t net_io_policy_log = 0; /* log socket policy changes */ |
146 | #if CONFIG_PROC_UUID_POLICY |
147 | uint32_t net_io_policy_uuid = 1; /* enable UUID socket policy */ |
148 | #endif /* CONFIG_PROC_UUID_POLICY */ |
149 | |
150 | /* |
151 | * Procedures to manipulate state flags of socket |
152 | * and do appropriate wakeups. Normal sequence from the |
153 | * active (originating) side is that soisconnecting() is |
154 | * called during processing of connect() call, |
155 | * resulting in an eventual call to soisconnected() if/when the |
156 | * connection is established. When the connection is torn down |
157 | * soisdisconnecting() is called during processing of disconnect() call, |
158 | * and soisdisconnected() is called when the connection to the peer |
159 | * is totally severed. The semantics of these routines are such that |
160 | * connectionless protocols can call soisconnected() and soisdisconnected() |
161 | * only, bypassing the in-progress calls when setting up a ``connection'' |
162 | * takes no time. |
163 | * |
164 | * From the passive side, a socket is created with |
165 | * two queues of sockets: so_incomp for connections in progress |
166 | * and so_comp for connections already made and awaiting user acceptance. |
167 | * As a protocol is preparing incoming connections, it creates a socket |
168 | * structure queued on so_incomp by calling sonewconn(). When the connection |
169 | * is established, soisconnected() is called, and transfers the |
170 | * socket structure to so_comp, making it available to accept(). |
171 | * |
172 | * If a socket is closed with sockets on either |
173 | * so_incomp or so_comp, these sockets are dropped. |
174 | * |
175 | * If higher level protocols are implemented in |
176 | * the kernel, the wakeups done here will sometimes |
177 | * cause software-interrupt process scheduling. |
178 | */ |
179 | void |
180 | soisconnecting(struct socket *so) |
181 | { |
182 | so->so_state &= ~(SS_ISCONNECTED | SS_ISDISCONNECTING); |
183 | so->so_state |= SS_ISCONNECTING; |
184 | |
185 | sflt_notify(so, event: sock_evt_connecting, NULL); |
186 | } |
187 | |
188 | void |
189 | soisconnected(struct socket *so) |
190 | { |
191 | /* |
192 | * If socket is subject to filter and is pending initial verdict, |
193 | * delay marking socket as connected and do not present the connected |
194 | * socket to user just yet. |
195 | */ |
196 | if (cfil_sock_connected_pending_verdict(so)) { |
197 | return; |
198 | } |
199 | |
200 | so->so_state &= ~(SS_ISCONNECTING | SS_ISDISCONNECTING | SS_ISCONFIRMING); |
201 | so->so_state |= SS_ISCONNECTED; |
202 | |
203 | soreserve_preconnect(so, pre_cc: 0); |
204 | |
205 | sflt_notify(so, event: sock_evt_connected, NULL); |
206 | |
207 | if (so->so_head != NULL && (so->so_state & SS_INCOMP)) { |
208 | struct socket *head = so->so_head; |
209 | int locked = 0; |
210 | |
211 | /* |
212 | * Enforce lock order when the protocol has per socket locks |
213 | */ |
214 | if (head->so_proto->pr_getlock != NULL) { |
215 | socket_lock(so: head, refcount: 1); |
216 | so_acquire_accept_list(head, so); |
217 | locked = 1; |
218 | } |
219 | if (so->so_head == head && (so->so_state & SS_INCOMP)) { |
220 | so->so_state &= ~SS_INCOMP; |
221 | so->so_state |= SS_COMP; |
222 | TAILQ_REMOVE(&head->so_incomp, so, so_list); |
223 | TAILQ_INSERT_TAIL(&head->so_comp, so, so_list); |
224 | head->so_incqlen--; |
225 | |
226 | /* |
227 | * We have to release the accept list in |
228 | * case a socket callback calls sock_accept() |
229 | */ |
230 | if (locked != 0) { |
231 | so_release_accept_list(head); |
232 | socket_unlock(so, refcount: 0); |
233 | } |
234 | sorwakeup(so: head); |
235 | wakeup_one(chan: (caddr_t)&head->so_timeo); |
236 | |
237 | if (locked != 0) { |
238 | socket_unlock(so: head, refcount: 1); |
239 | socket_lock(so, refcount: 0); |
240 | } |
241 | } else if (locked != 0) { |
242 | so_release_accept_list(head); |
243 | socket_unlock(so: head, refcount: 1); |
244 | } |
245 | } else { |
246 | wakeup(chan: (caddr_t)&so->so_timeo); |
247 | sorwakeup(so); |
248 | sowwakeup(so); |
249 | soevent(so, SO_FILT_HINT_LOCKED | SO_FILT_HINT_CONNECTED | |
250 | SO_FILT_HINT_CONNINFO_UPDATED); |
251 | } |
252 | } |
253 | |
254 | boolean_t |
255 | socanwrite(struct socket *so) |
256 | { |
257 | return (so->so_state & SS_ISCONNECTED) || |
258 | !(so->so_proto->pr_flags & PR_CONNREQUIRED) || |
259 | (so->so_flags1 & SOF1_PRECONNECT_DATA); |
260 | } |
261 | |
262 | void |
263 | soisdisconnecting(struct socket *so) |
264 | { |
265 | so->so_state &= ~SS_ISCONNECTING; |
266 | so->so_state |= (SS_ISDISCONNECTING | SS_CANTRCVMORE | SS_CANTSENDMORE); |
267 | soevent(so, SO_FILT_HINT_LOCKED); |
268 | sflt_notify(so, event: sock_evt_disconnecting, NULL); |
269 | wakeup(chan: (caddr_t)&so->so_timeo); |
270 | sowwakeup(so); |
271 | sorwakeup(so); |
272 | } |
273 | |
274 | void |
275 | soisdisconnected(struct socket *so) |
276 | { |
277 | so->so_state &= ~(SS_ISCONNECTING | SS_ISCONNECTED | SS_ISDISCONNECTING); |
278 | so->so_state |= (SS_CANTRCVMORE | SS_CANTSENDMORE | SS_ISDISCONNECTED); |
279 | soevent(so, SO_FILT_HINT_LOCKED | SO_FILT_HINT_DISCONNECTED | |
280 | SO_FILT_HINT_CONNINFO_UPDATED); |
281 | sflt_notify(so, event: sock_evt_disconnected, NULL); |
282 | wakeup(chan: (caddr_t)&so->so_timeo); |
283 | sowwakeup(so); |
284 | sorwakeup(so); |
285 | |
286 | #if CONTENT_FILTER |
287 | /* Notify content filters as soon as we cannot send/receive data */ |
288 | cfil_sock_notify_shutdown(so, SHUT_RDWR); |
289 | #endif /* CONTENT_FILTER */ |
290 | } |
291 | |
292 | /* |
293 | * This function will issue a wakeup like soisdisconnected but it will not |
294 | * notify the socket filters. This will avoid unlocking the socket |
295 | * in the midst of closing it. |
296 | */ |
297 | void |
298 | sodisconnectwakeup(struct socket *so) |
299 | { |
300 | so->so_state &= ~(SS_ISCONNECTING | SS_ISCONNECTED | SS_ISDISCONNECTING); |
301 | so->so_state |= (SS_CANTRCVMORE | SS_CANTSENDMORE | SS_ISDISCONNECTED); |
302 | soevent(so, SO_FILT_HINT_LOCKED | SO_FILT_HINT_DISCONNECTED | |
303 | SO_FILT_HINT_CONNINFO_UPDATED); |
304 | wakeup(chan: (caddr_t)&so->so_timeo); |
305 | sowwakeup(so); |
306 | sorwakeup(so); |
307 | |
308 | #if CONTENT_FILTER |
309 | /* Notify content filters as soon as we cannot send/receive data */ |
310 | cfil_sock_notify_shutdown(so, SHUT_RDWR); |
311 | #endif /* CONTENT_FILTER */ |
312 | } |
313 | |
314 | /* |
315 | * When an attempt at a new connection is noted on a socket |
316 | * which accepts connections, sonewconn is called. If the |
317 | * connection is possible (subject to space constraints, etc.) |
318 | * then we allocate a new structure, propoerly linked into the |
319 | * data structure of the original socket, and return this. |
320 | * Connstatus may be 0, or SO_ISCONFIRMING, or SO_ISCONNECTED. |
321 | */ |
322 | static struct socket * |
323 | sonewconn_internal(struct socket *head, int connstatus) |
324 | { |
325 | int so_qlen, error = 0; |
326 | struct socket *so; |
327 | lck_mtx_t *mutex_held; |
328 | |
329 | if (head->so_proto->pr_getlock != NULL) { |
330 | mutex_held = (*head->so_proto->pr_getlock)(head, 0); |
331 | } else { |
332 | mutex_held = head->so_proto->pr_domain->dom_mtx; |
333 | } |
334 | LCK_MTX_ASSERT(mutex_held, LCK_MTX_ASSERT_OWNED); |
335 | |
336 | if (!soqlencomp) { |
337 | /* |
338 | * This is the default case; so_qlen represents the |
339 | * sum of both incomplete and completed queues. |
340 | */ |
341 | so_qlen = head->so_qlen; |
342 | } else { |
343 | /* |
344 | * When kern.ipc.soqlencomp is set to 1, so_qlen |
345 | * represents only the completed queue. Since we |
346 | * cannot let the incomplete queue goes unbounded |
347 | * (in case of SYN flood), we cap the incomplete |
348 | * queue length to at most somaxconn, and use that |
349 | * as so_qlen so that we fail immediately below. |
350 | */ |
351 | so_qlen = head->so_qlen - head->so_incqlen; |
352 | if (head->so_incqlen > somaxconn) { |
353 | so_qlen = somaxconn; |
354 | } |
355 | } |
356 | |
357 | if (so_qlen >= |
358 | (soqlimitcompat ? head->so_qlimit : (3 * head->so_qlimit / 2))) { |
359 | return (struct socket *)0; |
360 | } |
361 | so = soalloc(waitok: 1, SOCK_DOM(head), type: head->so_type); |
362 | if (so == NULL) { |
363 | return (struct socket *)0; |
364 | } |
365 | /* check if head was closed during the soalloc */ |
366 | if (head->so_proto == NULL) { |
367 | sodealloc(so); |
368 | return (struct socket *)0; |
369 | } |
370 | |
371 | so->so_type = head->so_type; |
372 | so->so_family = head->so_family; |
373 | so->so_protocol = head->so_protocol; |
374 | so->so_options = head->so_options & ~SO_ACCEPTCONN; |
375 | so->so_linger = head->so_linger; |
376 | so->so_state = head->so_state | SS_NOFDREF; |
377 | so->so_proto = head->so_proto; |
378 | so->so_timeo = head->so_timeo; |
379 | so->so_pgid = head->so_pgid; |
380 | kauth_cred_ref(cred: head->so_cred); |
381 | so->so_cred = head->so_cred; |
382 | so->so_persona_id = head->so_persona_id; |
383 | so->last_pid = head->last_pid; |
384 | so->last_upid = head->last_upid; |
385 | memcpy(dst: so->last_uuid, src: head->last_uuid, n: sizeof(so->last_uuid)); |
386 | if (head->so_flags & SOF_DELEGATED) { |
387 | so->e_pid = head->e_pid; |
388 | so->e_upid = head->e_upid; |
389 | memcpy(dst: so->e_uuid, src: head->e_uuid, n: sizeof(so->e_uuid)); |
390 | } |
391 | /* inherit socket options stored in so_flags */ |
392 | so->so_flags = head->so_flags & |
393 | (SOF_NOSIGPIPE | SOF_NOADDRAVAIL | SOF_REUSESHAREUID | |
394 | SOF_NOTIFYCONFLICT | SOF_BINDRANDOMPORT | SOF_NPX_SETOPTSHUT | |
395 | SOF_NODEFUNCT | SOF_PRIVILEGED_TRAFFIC_CLASS | SOF_NOTSENT_LOWAT | |
396 | SOF_DELEGATED); |
397 | so->so_flags1 |= SOF1_INBOUND; |
398 | so->so_usecount = 1; |
399 | so->next_lock_lr = 0; |
400 | so->next_unlock_lr = 0; |
401 | |
402 | so->so_rcv.sb_flags |= SB_RECV; /* XXX */ |
403 | so->so_rcv.sb_so = so->so_snd.sb_so = so; |
404 | |
405 | /* inherit traffic management properties of listener */ |
406 | so->so_flags1 |= |
407 | head->so_flags1 & (SOF1_TRAFFIC_MGT_SO_BACKGROUND | SOF1_TC_NET_SERV_TYPE | |
408 | SOF1_QOSMARKING_ALLOWED | SOF1_QOSMARKING_POLICY_OVERRIDE); |
409 | so->so_background_thread = head->so_background_thread; |
410 | so->so_traffic_class = head->so_traffic_class; |
411 | so->so_netsvctype = head->so_netsvctype; |
412 | |
413 | if (soreserve(so, sndcc: head->so_snd.sb_hiwat, rcvcc: head->so_rcv.sb_hiwat)) { |
414 | sodealloc(so); |
415 | return (struct socket *)0; |
416 | } |
417 | so->so_rcv.sb_flags |= (head->so_rcv.sb_flags & SB_USRSIZE); |
418 | so->so_snd.sb_flags |= (head->so_snd.sb_flags & SB_USRSIZE); |
419 | |
420 | /* |
421 | * Must be done with head unlocked to avoid deadlock |
422 | * for protocol with per socket mutexes. |
423 | */ |
424 | if (head->so_proto->pr_unlock) { |
425 | socket_unlock(so: head, refcount: 0); |
426 | } |
427 | if (((*so->so_proto->pr_usrreqs->pru_attach)(so, 0, NULL) != 0) || |
428 | error) { |
429 | sodealloc(so); |
430 | if (head->so_proto->pr_unlock) { |
431 | socket_lock(so: head, refcount: 0); |
432 | } |
433 | return (struct socket *)0; |
434 | } |
435 | if (head->so_proto->pr_unlock) { |
436 | socket_lock(so: head, refcount: 0); |
437 | /* |
438 | * Radar 7385998 Recheck that the head is still accepting |
439 | * to avoid race condition when head is getting closed. |
440 | */ |
441 | if ((head->so_options & SO_ACCEPTCONN) == 0) { |
442 | so->so_state &= ~SS_NOFDREF; |
443 | soclose(so); |
444 | return (struct socket *)0; |
445 | } |
446 | } |
447 | |
448 | if (so->so_proto->pr_copy_last_owner != NULL) { |
449 | (*so->so_proto->pr_copy_last_owner)(so, head); |
450 | } |
451 | os_atomic_inc(&so->so_proto->pr_domain->dom_refs, relaxed); |
452 | |
453 | /* Insert in head appropriate lists */ |
454 | so_acquire_accept_list(head, NULL); |
455 | |
456 | so->so_head = head; |
457 | |
458 | /* |
459 | * Since this socket is going to be inserted into the incomp |
460 | * queue, it can be picked up by another thread in |
461 | * tcp_dropdropablreq to get dropped before it is setup.. |
462 | * To prevent this race, set in-progress flag which can be |
463 | * cleared later |
464 | */ |
465 | so->so_flags |= SOF_INCOMP_INPROGRESS; |
466 | |
467 | if (connstatus) { |
468 | TAILQ_INSERT_TAIL(&head->so_comp, so, so_list); |
469 | so->so_state |= SS_COMP; |
470 | } else { |
471 | TAILQ_INSERT_TAIL(&head->so_incomp, so, so_list); |
472 | so->so_state |= SS_INCOMP; |
473 | head->so_incqlen++; |
474 | } |
475 | head->so_qlen++; |
476 | |
477 | so_release_accept_list(head); |
478 | |
479 | /* Attach socket filters for this protocol */ |
480 | sflt_initsock(so); |
481 | |
482 | if (connstatus) { |
483 | so->so_state |= (short)connstatus; |
484 | sorwakeup(so: head); |
485 | wakeup(chan: (caddr_t)&head->so_timeo); |
486 | } |
487 | return so; |
488 | } |
489 | |
490 | |
491 | struct socket * |
492 | sonewconn(struct socket *head, int connstatus, const struct sockaddr *from) |
493 | { |
494 | int error = sflt_connectin(head, remote: from); |
495 | if (error) { |
496 | return NULL; |
497 | } |
498 | |
499 | return sonewconn_internal(head, connstatus); |
500 | } |
501 | |
502 | /* |
503 | * Socantsendmore indicates that no more data will be sent on the |
504 | * socket; it would normally be applied to a socket when the user |
505 | * informs the system that no more data is to be sent, by the protocol |
506 | * code (in case PRU_SHUTDOWN). Socantrcvmore indicates that no more data |
507 | * will be received, and will normally be applied to the socket by a |
508 | * protocol when it detects that the peer will send no more data. |
509 | * Data queued for reading in the socket may yet be read. |
510 | */ |
511 | |
512 | void |
513 | socantsendmore(struct socket *so) |
514 | { |
515 | so->so_state |= SS_CANTSENDMORE; |
516 | soevent(so, SO_FILT_HINT_LOCKED | SO_FILT_HINT_CANTSENDMORE); |
517 | sflt_notify(so, event: sock_evt_cantsendmore, NULL); |
518 | sowwakeup(so); |
519 | } |
520 | |
521 | void |
522 | socantrcvmore(struct socket *so) |
523 | { |
524 | so->so_state |= SS_CANTRCVMORE; |
525 | soevent(so, SO_FILT_HINT_LOCKED | SO_FILT_HINT_CANTRCVMORE); |
526 | sflt_notify(so, event: sock_evt_cantrecvmore, NULL); |
527 | sorwakeup(so); |
528 | } |
529 | |
530 | /* |
531 | * Wait for data to arrive at/drain from a socket buffer. |
532 | */ |
533 | int |
534 | sbwait(struct sockbuf *sb) |
535 | { |
536 | boolean_t nointr = (sb->sb_flags & SB_NOINTR); |
537 | void *lr_saved = __builtin_return_address(0); |
538 | struct socket *so = sb->sb_so; |
539 | lck_mtx_t *mutex_held; |
540 | struct timespec ts; |
541 | int error = 0; |
542 | |
543 | if (so == NULL) { |
544 | panic("%s: null so, sb=%p sb_flags=0x%x lr=%p" , |
545 | __func__, sb, sb->sb_flags, lr_saved); |
546 | /* NOTREACHED */ |
547 | } else if (so->so_usecount < 1) { |
548 | panic("%s: sb=%p sb_flags=0x%x sb_so=%p usecount=%d lr=%p " |
549 | "lrh= %s\n" , __func__, sb, sb->sb_flags, so, |
550 | so->so_usecount, lr_saved, solockhistory_nr(so)); |
551 | /* NOTREACHED */ |
552 | } |
553 | |
554 | if ((so->so_state & SS_DRAINING) || (so->so_flags & SOF_DEFUNCT)) { |
555 | error = EBADF; |
556 | if (so->so_flags & SOF_DEFUNCT) { |
557 | SODEFUNCTLOG("%s[%d, %s]: defunct so 0x%llu [%d,%d] " |
558 | "(%d)\n" , __func__, proc_selfpid(), |
559 | proc_best_name(current_proc()), |
560 | so->so_gencnt, |
561 | SOCK_DOM(so), SOCK_TYPE(so), error); |
562 | } |
563 | return error; |
564 | } |
565 | |
566 | if (so->so_proto->pr_getlock != NULL) { |
567 | mutex_held = (*so->so_proto->pr_getlock)(so, PR_F_WILLUNLOCK); |
568 | } else { |
569 | mutex_held = so->so_proto->pr_domain->dom_mtx; |
570 | } |
571 | |
572 | LCK_MTX_ASSERT(mutex_held, LCK_MTX_ASSERT_OWNED); |
573 | |
574 | ts.tv_sec = sb->sb_timeo.tv_sec; |
575 | ts.tv_nsec = sb->sb_timeo.tv_usec * 1000; |
576 | |
577 | sb->sb_waiters++; |
578 | VERIFY(sb->sb_waiters != 0); |
579 | |
580 | error = msleep(chan: (caddr_t)&sb->sb_cc, mtx: mutex_held, |
581 | pri: nointr ? PSOCK : PSOCK | PCATCH, |
582 | wmesg: nointr ? "sbwait_nointr" : "sbwait" , ts: &ts); |
583 | |
584 | VERIFY(sb->sb_waiters != 0); |
585 | sb->sb_waiters--; |
586 | |
587 | if (so->so_usecount < 1) { |
588 | panic("%s: 2 sb=%p sb_flags=0x%x sb_so=%p usecount=%d lr=%p " |
589 | "lrh= %s\n" , __func__, sb, sb->sb_flags, so, |
590 | so->so_usecount, lr_saved, solockhistory_nr(so)); |
591 | /* NOTREACHED */ |
592 | } |
593 | |
594 | if ((so->so_state & SS_DRAINING) || (so->so_flags & SOF_DEFUNCT)) { |
595 | error = EBADF; |
596 | if (so->so_flags & SOF_DEFUNCT) { |
597 | SODEFUNCTLOG("%s[%d, %s]: defunct so 0x%llu [%d,%d] " |
598 | "(%d)\n" , __func__, proc_selfpid(), |
599 | proc_best_name(current_proc()), |
600 | so->so_gencnt, |
601 | SOCK_DOM(so), SOCK_TYPE(so), error); |
602 | } |
603 | } |
604 | |
605 | return error; |
606 | } |
607 | |
608 | void |
609 | sbwakeup(struct sockbuf *sb) |
610 | { |
611 | if (sb->sb_waiters > 0) { |
612 | wakeup(chan: (caddr_t)&sb->sb_cc); |
613 | } |
614 | } |
615 | |
616 | /* |
617 | * Wakeup processes waiting on a socket buffer. |
618 | * Do asynchronous notification via SIGIO |
619 | * if the socket has the SS_ASYNC flag set. |
620 | */ |
621 | void |
622 | sowakeup(struct socket *so, struct sockbuf *sb, struct socket *so2) |
623 | { |
624 | if (so->so_flags & SOF_DEFUNCT) { |
625 | SODEFUNCTLOG("%s[%d, %s]: defunct so 0x%llu [%d,%d] si 0x%x, " |
626 | "fl 0x%x [%s]\n" , __func__, proc_selfpid(), |
627 | proc_best_name(current_proc()), |
628 | so->so_gencnt, SOCK_DOM(so), |
629 | SOCK_TYPE(so), (uint32_t)sb->sb_sel.si_flags, sb->sb_flags, |
630 | (sb->sb_flags & SB_RECV) ? "rcv" : "snd" ); |
631 | } |
632 | |
633 | sb->sb_flags &= ~SB_SEL; |
634 | selwakeup(&sb->sb_sel); |
635 | sbwakeup(sb); |
636 | if (so->so_state & SS_ASYNC) { |
637 | if (so->so_pgid < 0) { |
638 | gsignal(pgid: -so->so_pgid, SIGIO); |
639 | } else if (so->so_pgid > 0) { |
640 | proc_signal(pid: so->so_pgid, SIGIO); |
641 | } |
642 | } |
643 | if (sb->sb_flags & SB_KNOTE) { |
644 | KNOTE(&sb->sb_sel.si_note, SO_FILT_HINT_LOCKED); |
645 | } |
646 | if (sb->sb_flags & SB_UPCALL) { |
647 | void (*sb_upcall)(struct socket *, void *, int); |
648 | caddr_t sb_upcallarg; |
649 | int lock = !(sb->sb_flags & SB_UPCALL_LOCK); |
650 | |
651 | sb_upcall = sb->sb_upcall; |
652 | sb_upcallarg = sb->sb_upcallarg; |
653 | /* Let close know that we're about to do an upcall */ |
654 | so->so_upcallusecount++; |
655 | |
656 | if (lock) { |
657 | if (so2) { |
658 | struct unpcb *unp = sotounpcb(so2); |
659 | unp->unp_flags |= UNP_DONTDISCONNECT; |
660 | unp->rw_thrcount++; |
661 | |
662 | socket_unlock(so: so2, refcount: 0); |
663 | } |
664 | socket_unlock(so, refcount: 0); |
665 | } |
666 | (*sb_upcall)(so, sb_upcallarg, M_DONTWAIT); |
667 | if (lock) { |
668 | if (so2 && so > so2) { |
669 | struct unpcb *unp; |
670 | socket_lock(so: so2, refcount: 0); |
671 | |
672 | unp = sotounpcb(so2); |
673 | unp->rw_thrcount--; |
674 | if (unp->rw_thrcount == 0) { |
675 | unp->unp_flags &= ~UNP_DONTDISCONNECT; |
676 | wakeup(chan: unp); |
677 | } |
678 | } |
679 | |
680 | socket_lock(so, refcount: 0); |
681 | |
682 | if (so2 && so < so2) { |
683 | struct unpcb *unp; |
684 | socket_lock(so: so2, refcount: 0); |
685 | |
686 | unp = sotounpcb(so2); |
687 | unp->rw_thrcount--; |
688 | if (unp->rw_thrcount == 0) { |
689 | unp->unp_flags &= ~UNP_DONTDISCONNECT; |
690 | wakeup(chan: unp); |
691 | } |
692 | } |
693 | } |
694 | |
695 | so->so_upcallusecount--; |
696 | /* Tell close that it's safe to proceed */ |
697 | if ((so->so_flags & SOF_CLOSEWAIT) && |
698 | so->so_upcallusecount == 0) { |
699 | wakeup(chan: (caddr_t)&so->so_upcallusecount); |
700 | } |
701 | } |
702 | #if CONTENT_FILTER |
703 | /* |
704 | * Trap disconnection events for content filters |
705 | */ |
706 | if ((so->so_flags & SOF_CONTENT_FILTER) != 0) { |
707 | if ((sb->sb_flags & SB_RECV)) { |
708 | if (so->so_state & (SS_CANTRCVMORE)) { |
709 | cfil_sock_notify_shutdown(so, SHUT_RD); |
710 | } |
711 | } else { |
712 | if (so->so_state & (SS_CANTSENDMORE)) { |
713 | cfil_sock_notify_shutdown(so, SHUT_WR); |
714 | } |
715 | } |
716 | } |
717 | #endif /* CONTENT_FILTER */ |
718 | } |
719 | |
720 | /* |
721 | * Socket buffer (struct sockbuf) utility routines. |
722 | * |
723 | * Each socket contains two socket buffers: one for sending data and |
724 | * one for receiving data. Each buffer contains a queue of mbufs, |
725 | * information about the number of mbufs and amount of data in the |
726 | * queue, and other fields allowing select() statements and notification |
727 | * on data availability to be implemented. |
728 | * |
729 | * Data stored in a socket buffer is maintained as a list of records. |
730 | * Each record is a list of mbufs chained together with the m_next |
731 | * field. Records are chained together with the m_nextpkt field. The upper |
732 | * level routine soreceive() expects the following conventions to be |
733 | * observed when placing information in the receive buffer: |
734 | * |
735 | * 1. If the protocol requires each message be preceded by the sender's |
736 | * name, then a record containing that name must be present before |
737 | * any associated data (mbuf's must be of type MT_SONAME). |
738 | * 2. If the protocol supports the exchange of ``access rights'' (really |
739 | * just additional data associated with the message), and there are |
740 | * ``rights'' to be received, then a record containing this data |
741 | * should be present (mbuf's must be of type MT_RIGHTS). |
742 | * 3. If a name or rights record exists, then it must be followed by |
743 | * a data record, perhaps of zero length. |
744 | * |
745 | * Before using a new socket structure it is first necessary to reserve |
746 | * buffer space to the socket, by calling sbreserve(). This should commit |
747 | * some of the available buffer space in the system buffer pool for the |
748 | * socket (currently, it does nothing but enforce limits). The space |
749 | * should be released by calling sbrelease() when the socket is destroyed. |
750 | */ |
751 | |
752 | /* |
753 | * Returns: 0 Success |
754 | * ENOBUFS |
755 | */ |
756 | int |
757 | soreserve(struct socket *so, uint32_t sndcc, uint32_t rcvcc) |
758 | { |
759 | if (sbreserve(sb: &so->so_snd, cc: sndcc) == 0) { |
760 | goto bad; |
761 | } else { |
762 | so->so_snd.sb_idealsize = sndcc; |
763 | } |
764 | |
765 | if (sbreserve(sb: &so->so_rcv, cc: rcvcc) == 0) { |
766 | goto bad2; |
767 | } else { |
768 | so->so_rcv.sb_idealsize = rcvcc; |
769 | } |
770 | |
771 | if (so->so_rcv.sb_lowat == 0) { |
772 | so->so_rcv.sb_lowat = 1; |
773 | } |
774 | if (so->so_snd.sb_lowat == 0) { |
775 | so->so_snd.sb_lowat = MCLBYTES; |
776 | } |
777 | if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat) { |
778 | so->so_snd.sb_lowat = so->so_snd.sb_hiwat; |
779 | } |
780 | return 0; |
781 | bad2: |
782 | so->so_snd.sb_flags &= ~SB_SEL; |
783 | selthreadclear(&so->so_snd.sb_sel); |
784 | sbrelease(sb: &so->so_snd); |
785 | bad: |
786 | return ENOBUFS; |
787 | } |
788 | |
789 | void |
790 | soreserve_preconnect(struct socket *so, unsigned int pre_cc) |
791 | { |
792 | /* As of now, same bytes for both preconnect read and write */ |
793 | so->so_snd.sb_preconn_hiwat = pre_cc; |
794 | so->so_rcv.sb_preconn_hiwat = pre_cc; |
795 | } |
796 | |
797 | /* |
798 | * Allot mbufs to a sockbuf. |
799 | * Attempt to scale mbmax so that mbcnt doesn't become limiting |
800 | * if buffering efficiency is near the normal case. |
801 | */ |
802 | int |
803 | sbreserve(struct sockbuf *sb, uint32_t cc) |
804 | { |
805 | if (cc > sb_max) { |
806 | /* We would not end up changing sb_cc, so return 0 */ |
807 | if (sb->sb_hiwat == sb_max) { |
808 | return 0; |
809 | } |
810 | cc = sb_max; |
811 | } |
812 | if (cc > sb->sb_hiwat && (sb->sb_flags & SB_LIMITED)) { |
813 | return 0; |
814 | } |
815 | sb->sb_hiwat = cc; |
816 | sb->sb_mbmax = cc * sb_efficiency; |
817 | if (sb->sb_lowat > sb->sb_hiwat) { |
818 | sb->sb_lowat = sb->sb_hiwat; |
819 | } |
820 | return 1; |
821 | } |
822 | |
823 | /* |
824 | * Free mbufs held by a socket, and reserved mbuf space. |
825 | */ |
826 | /* WARNING needs to do selthreadclear() before calling this */ |
827 | void |
828 | sbrelease(struct sockbuf *sb) |
829 | { |
830 | sbflush(sb); |
831 | sb->sb_hiwat = 0; |
832 | sb->sb_mbmax = 0; |
833 | } |
834 | |
835 | /* |
836 | * Routines to add and remove |
837 | * data from an mbuf queue. |
838 | * |
839 | * The routines sbappend() or sbappendrecord() are normally called to |
840 | * append new mbufs to a socket buffer, after checking that adequate |
841 | * space is available, comparing the function sbspace() with the amount |
842 | * of data to be added. sbappendrecord() differs from sbappend() in |
843 | * that data supplied is treated as the beginning of a new record. |
844 | * To place a sender's address, optional access rights, and data in a |
845 | * socket receive buffer, sbappendaddr() should be used. To place |
846 | * access rights and data in a socket receive buffer, sbappendrights() |
847 | * should be used. In either case, the new data begins a new record. |
848 | * Note that unlike sbappend() and sbappendrecord(), these routines check |
849 | * for the caller that there will be enough space to store the data. |
850 | * Each fails if there is not enough space, or if it cannot find mbufs |
851 | * to store additional information in. |
852 | * |
853 | * Reliable protocols may use the socket send buffer to hold data |
854 | * awaiting acknowledgement. Data is normally copied from a socket |
855 | * send buffer in a protocol with m_copy for output to a peer, |
856 | * and then removing the data from the socket buffer with sbdrop() |
857 | * or sbdroprecord() when the data is acknowledged by the peer. |
858 | */ |
859 | |
860 | /* |
861 | * Append mbuf chain m to the last record in the |
862 | * socket buffer sb. The additional space associated |
863 | * the mbuf chain is recorded in sb. Empty mbufs are |
864 | * discarded and mbufs are compacted where possible. |
865 | */ |
866 | static int |
867 | sbappend_common(struct sockbuf *sb, struct mbuf *m, boolean_t nodrop) |
868 | { |
869 | struct socket *so = sb->sb_so; |
870 | struct soflow_hash_entry *dgram_flow_entry = NULL; |
871 | |
872 | if (m == NULL || (sb->sb_flags & SB_DROP)) { |
873 | if (m != NULL && !nodrop) { |
874 | m_freem(m); |
875 | } |
876 | return 0; |
877 | } |
878 | |
879 | SBLASTRECORDCHK(sb, "sbappend 1" ); |
880 | |
881 | if (sb->sb_lastrecord != NULL && (sb->sb_mbtail->m_flags & M_EOR)) { |
882 | return sbappendrecord_common(sb, m0: m, nodrop); |
883 | } |
884 | |
885 | if (SOCK_DOM(sb->sb_so) == PF_INET || SOCK_DOM(sb->sb_so) == PF_INET6) { |
886 | ASSERT(nodrop == FALSE); |
887 | |
888 | if (NEED_DGRAM_FLOW_TRACKING(so)) { |
889 | dgram_flow_entry = soflow_get_flow(so, NULL, NULL, NULL, m != NULL ? m_length(m) : 0, false, (m != NULL && m->m_pkthdr.rcvif) ? m->m_pkthdr.rcvif->if_index : 0); |
890 | } |
891 | |
892 | if (sb->sb_flags & SB_RECV && !(m && m->m_flags & M_SKIPCFIL)) { |
893 | int error = sflt_data_in(so, NULL, data: &m, NULL, flags: 0); |
894 | SBLASTRECORDCHK(sb, "sbappend 2" ); |
895 | |
896 | #if CONTENT_FILTER |
897 | if (error == 0) { |
898 | error = cfil_sock_data_in(so, NULL, data: m, NULL, flags: 0, dgram_flow_entry); |
899 | } |
900 | #endif /* CONTENT_FILTER */ |
901 | |
902 | if (error != 0) { |
903 | if (error != EJUSTRETURN) { |
904 | m_freem(m); |
905 | } |
906 | if (dgram_flow_entry != NULL) { |
907 | soflow_free_flow(dgram_flow_entry); |
908 | } |
909 | return 0; |
910 | } |
911 | } else if (m) { |
912 | m->m_flags &= ~M_SKIPCFIL; |
913 | } |
914 | |
915 | if (dgram_flow_entry != NULL) { |
916 | soflow_free_flow(dgram_flow_entry); |
917 | } |
918 | } |
919 | |
920 | /* If this is the first record, it's also the last record */ |
921 | if (sb->sb_lastrecord == NULL) { |
922 | sb->sb_lastrecord = m; |
923 | } |
924 | |
925 | sbcompress(sb, m, sb->sb_mbtail); |
926 | SBLASTRECORDCHK(sb, "sbappend 3" ); |
927 | return 1; |
928 | } |
929 | |
930 | int |
931 | sbappend(struct sockbuf *sb, struct mbuf *m) |
932 | { |
933 | return sbappend_common(sb, m, FALSE); |
934 | } |
935 | |
936 | int |
937 | sbappend_nodrop(struct sockbuf *sb, struct mbuf *m) |
938 | { |
939 | return sbappend_common(sb, m, TRUE); |
940 | } |
941 | |
942 | /* |
943 | * Similar to sbappend, except that this is optimized for stream sockets. |
944 | */ |
945 | int |
946 | sbappendstream(struct sockbuf *sb, struct mbuf *m) |
947 | { |
948 | struct soflow_hash_entry *dgram_flow_entry = NULL; |
949 | struct socket *so = sb->sb_so; |
950 | |
951 | if (m == NULL || (sb->sb_flags & SB_DROP)) { |
952 | if (m != NULL) { |
953 | m_freem(m); |
954 | } |
955 | return 0; |
956 | } |
957 | |
958 | if (m->m_nextpkt != NULL || (sb->sb_mb != sb->sb_lastrecord)) { |
959 | panic("sbappendstream: nexpkt %p || mb %p != lastrecord %p" , |
960 | m->m_nextpkt, sb->sb_mb, sb->sb_lastrecord); |
961 | /* NOTREACHED */ |
962 | } |
963 | |
964 | SBLASTMBUFCHK(sb, __func__); |
965 | |
966 | if (SOCK_DOM(sb->sb_so) == PF_INET || SOCK_DOM(sb->sb_so) == PF_INET6) { |
967 | if (NEED_DGRAM_FLOW_TRACKING(so)) { |
968 | dgram_flow_entry = soflow_get_flow(so, NULL, NULL, NULL, m != NULL ? m_length(m) : 0, false, (m != NULL && m->m_pkthdr.rcvif) ? m->m_pkthdr.rcvif->if_index : 0); |
969 | } |
970 | |
971 | if (sb->sb_flags & SB_RECV && !(m && m->m_flags & M_SKIPCFIL)) { |
972 | int error = sflt_data_in(so, NULL, data: &m, NULL, flags: 0); |
973 | SBLASTRECORDCHK(sb, "sbappendstream 1" ); |
974 | |
975 | #if CONTENT_FILTER |
976 | if (error == 0) { |
977 | error = cfil_sock_data_in(so, NULL, data: m, NULL, flags: 0, dgram_flow_entry); |
978 | } |
979 | #endif /* CONTENT_FILTER */ |
980 | |
981 | if (error != 0) { |
982 | if (error != EJUSTRETURN) { |
983 | m_freem(m); |
984 | } |
985 | if (dgram_flow_entry != NULL) { |
986 | soflow_free_flow(dgram_flow_entry); |
987 | } |
988 | return 0; |
989 | } |
990 | } else if (m) { |
991 | m->m_flags &= ~M_SKIPCFIL; |
992 | } |
993 | |
994 | if (dgram_flow_entry != NULL) { |
995 | soflow_free_flow(dgram_flow_entry); |
996 | } |
997 | } |
998 | |
999 | sbcompress(sb, m, sb->sb_mbtail); |
1000 | sb->sb_lastrecord = sb->sb_mb; |
1001 | SBLASTRECORDCHK(sb, "sbappendstream 2" ); |
1002 | return 1; |
1003 | } |
1004 | |
1005 | #ifdef SOCKBUF_DEBUG |
1006 | void |
1007 | sbcheck(struct sockbuf *sb) |
1008 | { |
1009 | struct mbuf *m; |
1010 | struct mbuf *n = 0; |
1011 | u_int32_t len = 0, mbcnt = 0; |
1012 | lck_mtx_t *mutex_held; |
1013 | |
1014 | if (sb->sb_so->so_proto->pr_getlock != NULL) { |
1015 | mutex_held = (*sb->sb_so->so_proto->pr_getlock)(sb->sb_so, 0); |
1016 | } else { |
1017 | mutex_held = sb->sb_so->so_proto->pr_domain->dom_mtx; |
1018 | } |
1019 | |
1020 | LCK_MTX_ASSERT(mutex_held, LCK_MTX_ASSERT_OWNED); |
1021 | |
1022 | if (sbchecking == 0) { |
1023 | return; |
1024 | } |
1025 | |
1026 | for (m = sb->sb_mb; m; m = n) { |
1027 | n = m->m_nextpkt; |
1028 | for (; m; m = m->m_next) { |
1029 | len += m->m_len; |
1030 | mbcnt += _MSIZE; |
1031 | /* XXX pretty sure this is bogus */ |
1032 | if (m->m_flags & M_EXT) { |
1033 | mbcnt += m->m_ext.ext_size; |
1034 | } |
1035 | } |
1036 | } |
1037 | if (len != sb->sb_cc || mbcnt != sb->sb_mbcnt) { |
1038 | panic("cc %ld != %ld || mbcnt %ld != %ld" , len, sb->sb_cc, |
1039 | mbcnt, sb->sb_mbcnt); |
1040 | } |
1041 | } |
1042 | #endif |
1043 | |
1044 | void |
1045 | sblastrecordchk(struct sockbuf *sb, const char *where) |
1046 | { |
1047 | struct mbuf *m = sb->sb_mb; |
1048 | |
1049 | while (m && m->m_nextpkt) { |
1050 | m = m->m_nextpkt; |
1051 | } |
1052 | |
1053 | if (m != sb->sb_lastrecord) { |
1054 | printf("sblastrecordchk: mb 0x%llx lastrecord 0x%llx " |
1055 | "last 0x%llx\n" , |
1056 | (uint64_t)VM_KERNEL_ADDRPERM(sb->sb_mb), |
1057 | (uint64_t)VM_KERNEL_ADDRPERM(sb->sb_lastrecord), |
1058 | (uint64_t)VM_KERNEL_ADDRPERM(m)); |
1059 | printf("packet chain:\n" ); |
1060 | for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt) { |
1061 | printf("\t0x%llx\n" , (uint64_t)VM_KERNEL_ADDRPERM(m)); |
1062 | } |
1063 | panic("sblastrecordchk from %s" , where); |
1064 | } |
1065 | } |
1066 | |
1067 | void |
1068 | sblastmbufchk(struct sockbuf *sb, const char *where) |
1069 | { |
1070 | struct mbuf *m = sb->sb_mb; |
1071 | struct mbuf *n; |
1072 | |
1073 | while (m && m->m_nextpkt) { |
1074 | m = m->m_nextpkt; |
1075 | } |
1076 | |
1077 | while (m && m->m_next) { |
1078 | m = m->m_next; |
1079 | } |
1080 | |
1081 | if (m != sb->sb_mbtail) { |
1082 | printf("sblastmbufchk: mb 0x%llx mbtail 0x%llx last 0x%llx\n" , |
1083 | (uint64_t)VM_KERNEL_ADDRPERM(sb->sb_mb), |
1084 | (uint64_t)VM_KERNEL_ADDRPERM(sb->sb_mbtail), |
1085 | (uint64_t)VM_KERNEL_ADDRPERM(m)); |
1086 | printf("packet tree:\n" ); |
1087 | for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt) { |
1088 | printf("\t" ); |
1089 | for (n = m; n != NULL; n = n->m_next) { |
1090 | printf("0x%llx " , |
1091 | (uint64_t)VM_KERNEL_ADDRPERM(n)); |
1092 | } |
1093 | printf("\n" ); |
1094 | } |
1095 | panic("sblastmbufchk from %s" , where); |
1096 | } |
1097 | } |
1098 | |
1099 | /* |
1100 | * Similar to sbappend, except the mbuf chain begins a new record. |
1101 | */ |
1102 | static int |
1103 | sbappendrecord_common(struct sockbuf *sb, struct mbuf *m0, boolean_t nodrop) |
1104 | { |
1105 | struct soflow_hash_entry *dgram_flow_entry = NULL; |
1106 | struct socket *so = sb->sb_so; |
1107 | struct mbuf *m; |
1108 | int space = 0; |
1109 | |
1110 | if (m0 == NULL || (sb->sb_flags & SB_DROP)) { |
1111 | if (m0 != NULL && nodrop == FALSE) { |
1112 | m_freem(m0); |
1113 | } |
1114 | return 0; |
1115 | } |
1116 | |
1117 | for (m = m0; m != NULL; m = m->m_next) { |
1118 | space += m->m_len; |
1119 | } |
1120 | |
1121 | if (space > sbspace(sb) && !(sb->sb_flags & SB_UNIX)) { |
1122 | if (nodrop == FALSE) { |
1123 | m_freem(m0); |
1124 | } |
1125 | return 0; |
1126 | } |
1127 | |
1128 | if (SOCK_DOM(sb->sb_so) == PF_INET || SOCK_DOM(sb->sb_so) == PF_INET6) { |
1129 | ASSERT(nodrop == FALSE); |
1130 | |
1131 | if (NEED_DGRAM_FLOW_TRACKING(so)) { |
1132 | dgram_flow_entry = soflow_get_flow(so, NULL, NULL, NULL, m0 != NULL ? m_length(m0) : 0, false, (m0 != NULL && m0->m_pkthdr.rcvif) ? m0->m_pkthdr.rcvif->if_index : 0); |
1133 | } |
1134 | |
1135 | if (sb->sb_flags & SB_RECV && !(m0 && m0->m_flags & M_SKIPCFIL)) { |
1136 | int error = sflt_data_in(so: sb->sb_so, NULL, data: &m0, NULL, |
1137 | flags: sock_data_filt_flag_record); |
1138 | |
1139 | #if CONTENT_FILTER |
1140 | if (error == 0) { |
1141 | error = cfil_sock_data_in(so: sb->sb_so, NULL, data: m0, NULL, flags: 0, dgram_flow_entry); |
1142 | } |
1143 | #endif /* CONTENT_FILTER */ |
1144 | |
1145 | if (error != 0) { |
1146 | SBLASTRECORDCHK(sb, "sbappendrecord 1" ); |
1147 | if (error != EJUSTRETURN) { |
1148 | m_freem(m0); |
1149 | } |
1150 | if (dgram_flow_entry != NULL) { |
1151 | soflow_free_flow(dgram_flow_entry); |
1152 | } |
1153 | return 0; |
1154 | } |
1155 | } else if (m0) { |
1156 | m0->m_flags &= ~M_SKIPCFIL; |
1157 | } |
1158 | |
1159 | if (dgram_flow_entry != NULL) { |
1160 | soflow_free_flow(dgram_flow_entry); |
1161 | } |
1162 | } |
1163 | |
1164 | /* |
1165 | * Note this permits zero length records. |
1166 | */ |
1167 | sballoc(sb, m: m0); |
1168 | SBLASTRECORDCHK(sb, "sbappendrecord 2" ); |
1169 | if (sb->sb_lastrecord != NULL) { |
1170 | sb->sb_lastrecord->m_nextpkt = m0; |
1171 | } else { |
1172 | sb->sb_mb = m0; |
1173 | } |
1174 | sb->sb_lastrecord = m0; |
1175 | sb->sb_mbtail = m0; |
1176 | |
1177 | m = m0->m_next; |
1178 | m0->m_next = 0; |
1179 | if (m && (m0->m_flags & M_EOR)) { |
1180 | m0->m_flags &= ~M_EOR; |
1181 | m->m_flags |= M_EOR; |
1182 | } |
1183 | sbcompress(sb, m, m0); |
1184 | SBLASTRECORDCHK(sb, "sbappendrecord 3" ); |
1185 | return 1; |
1186 | } |
1187 | |
1188 | int |
1189 | sbappendrecord(struct sockbuf *sb, struct mbuf *m0) |
1190 | { |
1191 | return sbappendrecord_common(sb, m0, FALSE); |
1192 | } |
1193 | |
1194 | int |
1195 | sbappendrecord_nodrop(struct sockbuf *sb, struct mbuf *m0) |
1196 | { |
1197 | return sbappendrecord_common(sb, m0, TRUE); |
1198 | } |
1199 | |
1200 | /* |
1201 | * Concatenate address (optional), control (optional) and data into one |
1202 | * single mbuf chain. If sockbuf *sb is passed in, space check will be |
1203 | * performed. |
1204 | * |
1205 | * Returns: mbuf chain pointer if succeeded, NULL if failed |
1206 | */ |
1207 | struct mbuf * |
1208 | sbconcat_mbufs(struct sockbuf *sb, struct sockaddr *asa, struct mbuf *m0, struct mbuf *control) |
1209 | { |
1210 | struct mbuf *m = NULL, *n = NULL; |
1211 | int space = 0; |
1212 | |
1213 | if (m0 && (m0->m_flags & M_PKTHDR) == 0) { |
1214 | panic("sbconcat_mbufs" ); |
1215 | } |
1216 | |
1217 | if (m0) { |
1218 | space += m0->m_pkthdr.len; |
1219 | } |
1220 | for (n = control; n; n = n->m_next) { |
1221 | space += n->m_len; |
1222 | if (n->m_next == 0) { /* keep pointer to last control buf */ |
1223 | break; |
1224 | } |
1225 | } |
1226 | |
1227 | if (asa != NULL) { |
1228 | _CASSERT(sizeof(asa->sa_len) == sizeof(__uint8_t)); |
1229 | if (MLEN <= UINT8_MAX && asa->sa_len > MLEN) { |
1230 | return NULL; |
1231 | } |
1232 | space += asa->sa_len; |
1233 | } |
1234 | |
1235 | if (sb != NULL && space > sbspace(sb)) { |
1236 | return NULL; |
1237 | } |
1238 | |
1239 | if (n) { |
1240 | n->m_next = m0; /* concatenate data to control */ |
1241 | } else { |
1242 | control = m0; |
1243 | } |
1244 | |
1245 | if (asa != NULL) { |
1246 | MGET(m, M_DONTWAIT, MT_SONAME); |
1247 | if (m == 0) { |
1248 | if (n) { |
1249 | /* unchain control and data if necessary */ |
1250 | n->m_next = NULL; |
1251 | } |
1252 | return NULL; |
1253 | } |
1254 | m->m_len = asa->sa_len; |
1255 | bcopy(src: (caddr_t)asa, mtod(m, caddr_t), n: asa->sa_len); |
1256 | |
1257 | m->m_next = control; |
1258 | } else { |
1259 | m = control; |
1260 | } |
1261 | |
1262 | return m; |
1263 | } |
1264 | |
1265 | /* |
1266 | * Queue mbuf chain to the receive queue of a socket. |
1267 | * Parameter space is the total len of the mbuf chain. |
1268 | * If passed in, sockbuf space will be checked. |
1269 | * |
1270 | * Returns: 0 Invalid mbuf chain |
1271 | * 1 Success |
1272 | */ |
1273 | int |
1274 | sbappendchain(struct sockbuf *sb, struct mbuf *m, int space) |
1275 | { |
1276 | struct mbuf *n, *nlast; |
1277 | |
1278 | if (m == NULL) { |
1279 | return 0; |
1280 | } |
1281 | |
1282 | if (space != 0 && space > sbspace(sb)) { |
1283 | return 0; |
1284 | } |
1285 | |
1286 | for (n = m; n->m_next != NULL; n = n->m_next) { |
1287 | sballoc(sb, m: n); |
1288 | } |
1289 | sballoc(sb, m: n); |
1290 | nlast = n; |
1291 | |
1292 | if (sb->sb_lastrecord != NULL) { |
1293 | sb->sb_lastrecord->m_nextpkt = m; |
1294 | } else { |
1295 | sb->sb_mb = m; |
1296 | } |
1297 | sb->sb_lastrecord = m; |
1298 | sb->sb_mbtail = nlast; |
1299 | |
1300 | SBLASTMBUFCHK(sb, __func__); |
1301 | SBLASTRECORDCHK(sb, "sbappendadddr 2" ); |
1302 | return 1; |
1303 | } |
1304 | |
1305 | /* |
1306 | * Returns: 0 Error: No space/out of mbufs/etc. |
1307 | * 1 Success |
1308 | * |
1309 | * Imputed: (*error_out) errno for error |
1310 | * ENOBUFS |
1311 | * sflt_data_in:??? [whatever a filter author chooses] |
1312 | */ |
1313 | int |
1314 | sbappendaddr(struct sockbuf *sb, struct sockaddr *asa, struct mbuf *m0, |
1315 | struct mbuf *control, int *error_out) |
1316 | { |
1317 | int result = 0; |
1318 | boolean_t sb_unix = (sb->sb_flags & SB_UNIX); |
1319 | struct mbuf *mbuf_chain = NULL; |
1320 | struct soflow_hash_entry *dgram_flow_entry = NULL; |
1321 | struct socket *so = sb->sb_so; |
1322 | |
1323 | if (error_out) { |
1324 | *error_out = 0; |
1325 | } |
1326 | |
1327 | if (m0 && (m0->m_flags & M_PKTHDR) == 0) { |
1328 | panic("sbappendaddrorfree" ); |
1329 | } |
1330 | |
1331 | if (sb->sb_flags & SB_DROP) { |
1332 | if (m0 != NULL) { |
1333 | m_freem(m0); |
1334 | } |
1335 | if (control != NULL && !sb_unix) { |
1336 | m_freem(control); |
1337 | } |
1338 | if (error_out != NULL) { |
1339 | *error_out = EINVAL; |
1340 | } |
1341 | return 0; |
1342 | } |
1343 | |
1344 | if (SOCK_DOM(sb->sb_so) == PF_INET || SOCK_DOM(sb->sb_so) == PF_INET6) { |
1345 | /* Call socket data in filters */ |
1346 | |
1347 | if (NEED_DGRAM_FLOW_TRACKING(so)) { |
1348 | dgram_flow_entry = soflow_get_flow(so, NULL, asa, control, m0 != NULL ? m_length(m0) : 0, false, (m0 != NULL && m0->m_pkthdr.rcvif) ? m0->m_pkthdr.rcvif->if_index : 0); |
1349 | } |
1350 | |
1351 | if (sb->sb_flags & SB_RECV && !(m0 && m0->m_flags & M_SKIPCFIL)) { |
1352 | int error; |
1353 | error = sflt_data_in(so: sb->sb_so, from: asa, data: &m0, control: &control, flags: 0); |
1354 | SBLASTRECORDCHK(sb, __func__); |
1355 | |
1356 | #if CONTENT_FILTER |
1357 | if (error == 0) { |
1358 | error = cfil_sock_data_in(so: sb->sb_so, from: asa, data: m0, control, |
1359 | flags: 0, dgram_flow_entry); |
1360 | } |
1361 | #endif /* CONTENT_FILTER */ |
1362 | |
1363 | if (error) { |
1364 | if (error != EJUSTRETURN) { |
1365 | if (m0) { |
1366 | m_freem(m0); |
1367 | } |
1368 | if (control != NULL && !sb_unix) { |
1369 | m_freem(control); |
1370 | } |
1371 | if (error_out) { |
1372 | *error_out = error; |
1373 | } |
1374 | } |
1375 | if (dgram_flow_entry != NULL) { |
1376 | soflow_free_flow(dgram_flow_entry); |
1377 | } |
1378 | return 0; |
1379 | } |
1380 | } else if (m0) { |
1381 | m0->m_flags &= ~M_SKIPCFIL; |
1382 | } |
1383 | |
1384 | if (dgram_flow_entry != NULL) { |
1385 | soflow_free_flow(dgram_flow_entry); |
1386 | } |
1387 | } |
1388 | |
1389 | mbuf_chain = sbconcat_mbufs(sb, asa, m0, control); |
1390 | SBLASTRECORDCHK(sb, "sbappendadddr 1" ); |
1391 | result = sbappendchain(sb, m: mbuf_chain, space: 0); |
1392 | if (result == 0) { |
1393 | if (m0) { |
1394 | m_freem(m0); |
1395 | } |
1396 | if (control != NULL && !sb_unix) { |
1397 | m_freem(control); |
1398 | } |
1399 | if (error_out) { |
1400 | *error_out = ENOBUFS; |
1401 | } |
1402 | } |
1403 | |
1404 | return result; |
1405 | } |
1406 | |
1407 | inline boolean_t |
1408 | is_cmsg_valid(struct mbuf *control, struct cmsghdr *cmsg) |
1409 | { |
1410 | if (cmsg == NULL) { |
1411 | return FALSE; |
1412 | } |
1413 | |
1414 | if (cmsg->cmsg_len < sizeof(struct cmsghdr)) { |
1415 | return FALSE; |
1416 | } |
1417 | |
1418 | if ((uint8_t *)control->m_data >= (uint8_t *)cmsg + cmsg->cmsg_len) { |
1419 | return FALSE; |
1420 | } |
1421 | |
1422 | if ((uint8_t *)control->m_data + control->m_len < |
1423 | (uint8_t *)cmsg + cmsg->cmsg_len) { |
1424 | return FALSE; |
1425 | } |
1426 | |
1427 | return TRUE; |
1428 | } |
1429 | |
1430 | static int |
1431 | sbappendcontrol_internal(struct sockbuf *sb, struct mbuf *m0, |
1432 | struct mbuf *control) |
1433 | { |
1434 | struct mbuf *m, *mlast, *n; |
1435 | int space = 0; |
1436 | |
1437 | if (control == 0) { |
1438 | panic("sbappendcontrol" ); |
1439 | } |
1440 | |
1441 | for (m = control;; m = m->m_next) { |
1442 | space += m->m_len; |
1443 | if (m->m_next == 0) { |
1444 | break; |
1445 | } |
1446 | } |
1447 | n = m; /* save pointer to last control buffer */ |
1448 | for (m = m0; m; m = m->m_next) { |
1449 | space += m->m_len; |
1450 | } |
1451 | if (space > sbspace(sb) && !(sb->sb_flags & SB_UNIX)) { |
1452 | return 0; |
1453 | } |
1454 | n->m_next = m0; /* concatenate data to control */ |
1455 | SBLASTRECORDCHK(sb, "sbappendcontrol 1" ); |
1456 | |
1457 | for (m = control; m->m_next != NULL; m = m->m_next) { |
1458 | sballoc(sb, m); |
1459 | } |
1460 | sballoc(sb, m); |
1461 | mlast = m; |
1462 | |
1463 | if (sb->sb_lastrecord != NULL) { |
1464 | sb->sb_lastrecord->m_nextpkt = control; |
1465 | } else { |
1466 | sb->sb_mb = control; |
1467 | } |
1468 | sb->sb_lastrecord = control; |
1469 | sb->sb_mbtail = mlast; |
1470 | |
1471 | SBLASTMBUFCHK(sb, __func__); |
1472 | SBLASTRECORDCHK(sb, "sbappendcontrol 2" ); |
1473 | return 1; |
1474 | } |
1475 | |
1476 | int |
1477 | sbappendcontrol(struct sockbuf *sb, struct mbuf *m0, struct mbuf *control, |
1478 | int *error_out) |
1479 | { |
1480 | struct soflow_hash_entry *dgram_flow_entry = NULL; |
1481 | struct socket *so = sb->sb_so; |
1482 | int result = 0; |
1483 | boolean_t sb_unix = (sb->sb_flags & SB_UNIX); |
1484 | |
1485 | if (error_out) { |
1486 | *error_out = 0; |
1487 | } |
1488 | |
1489 | if (sb->sb_flags & SB_DROP) { |
1490 | if (m0 != NULL) { |
1491 | m_freem(m0); |
1492 | } |
1493 | if (control != NULL && !sb_unix) { |
1494 | m_freem(control); |
1495 | } |
1496 | if (error_out != NULL) { |
1497 | *error_out = EINVAL; |
1498 | } |
1499 | return 0; |
1500 | } |
1501 | |
1502 | if (SOCK_DOM(sb->sb_so) == PF_INET || SOCK_DOM(sb->sb_so) == PF_INET6) { |
1503 | if (NEED_DGRAM_FLOW_TRACKING(so)) { |
1504 | dgram_flow_entry = soflow_get_flow(so, NULL, NULL, control, m0 != NULL ? m_length(m0) : 0, false, (m0 != NULL && m0->m_pkthdr.rcvif) ? m0->m_pkthdr.rcvif->if_index : 0); |
1505 | } |
1506 | |
1507 | if (sb->sb_flags & SB_RECV && !(m0 && m0->m_flags & M_SKIPCFIL)) { |
1508 | int error; |
1509 | |
1510 | error = sflt_data_in(so: sb->sb_so, NULL, data: &m0, control: &control, flags: 0); |
1511 | SBLASTRECORDCHK(sb, __func__); |
1512 | |
1513 | #if CONTENT_FILTER |
1514 | if (error == 0) { |
1515 | error = cfil_sock_data_in(so: sb->sb_so, NULL, data: m0, control, |
1516 | flags: 0, dgram_flow_entry); |
1517 | } |
1518 | #endif /* CONTENT_FILTER */ |
1519 | |
1520 | if (error) { |
1521 | if (error != EJUSTRETURN) { |
1522 | if (m0) { |
1523 | m_freem(m0); |
1524 | } |
1525 | if (control != NULL && !sb_unix) { |
1526 | m_freem(control); |
1527 | } |
1528 | if (error_out) { |
1529 | *error_out = error; |
1530 | } |
1531 | } |
1532 | if (dgram_flow_entry != NULL) { |
1533 | soflow_free_flow(dgram_flow_entry); |
1534 | } |
1535 | return 0; |
1536 | } |
1537 | } else if (m0) { |
1538 | m0->m_flags &= ~M_SKIPCFIL; |
1539 | } |
1540 | |
1541 | if (dgram_flow_entry != NULL) { |
1542 | soflow_free_flow(dgram_flow_entry); |
1543 | } |
1544 | } |
1545 | |
1546 | result = sbappendcontrol_internal(sb, m0, control); |
1547 | if (result == 0) { |
1548 | if (m0) { |
1549 | m_freem(m0); |
1550 | } |
1551 | if (control != NULL && !sb_unix) { |
1552 | m_freem(control); |
1553 | } |
1554 | if (error_out) { |
1555 | *error_out = ENOBUFS; |
1556 | } |
1557 | } |
1558 | |
1559 | return result; |
1560 | } |
1561 | |
1562 | /* |
1563 | * TCP streams have Multipath TCP support or are regular TCP sockets. |
1564 | */ |
1565 | int |
1566 | sbappendstream_rcvdemux(struct socket *so, struct mbuf *m) |
1567 | { |
1568 | int ret = 0; |
1569 | |
1570 | if ((m != NULL) && |
1571 | m_pktlen(m) <= 0 && |
1572 | !((so->so_flags & SOF_MP_SUBFLOW) && |
1573 | (m->m_flags & M_PKTHDR) && |
1574 | (m->m_pkthdr.pkt_flags & PKTF_MPTCP_DFIN))) { |
1575 | m_freem(m); |
1576 | return ret; |
1577 | } |
1578 | |
1579 | #if MPTCP |
1580 | if (so->so_flags & SOF_MP_SUBFLOW) { |
1581 | return sbappendmptcpstream_rcv(sb: &so->so_rcv, m); |
1582 | } else |
1583 | #endif /* MPTCP */ |
1584 | { |
1585 | return sbappendstream(sb: &so->so_rcv, m); |
1586 | } |
1587 | } |
1588 | |
1589 | #if MPTCP |
1590 | int |
1591 | sbappendmptcpstream_rcv(struct sockbuf *sb, struct mbuf *m) |
1592 | { |
1593 | struct socket *so = sb->sb_so; |
1594 | |
1595 | VERIFY(m == NULL || (m->m_flags & M_PKTHDR)); |
1596 | /* SB_NOCOMPRESS must be set prevent loss of M_PKTHDR data */ |
1597 | VERIFY((sb->sb_flags & (SB_RECV | SB_NOCOMPRESS)) == |
1598 | (SB_RECV | SB_NOCOMPRESS)); |
1599 | |
1600 | if (m == NULL || m_pktlen(m) == 0 || (sb->sb_flags & SB_DROP) || |
1601 | (so->so_state & SS_CANTRCVMORE)) { |
1602 | if (m && (m->m_flags & M_PKTHDR) && |
1603 | m_pktlen(m) == 0 && |
1604 | (m->m_pkthdr.pkt_flags & PKTF_MPTCP_DFIN)) { |
1605 | mptcp_input(tptomptp(sototcpcb(so))->mpt_mpte, m); |
1606 | return 1; |
1607 | } else if (m != NULL) { |
1608 | m_freem(m); |
1609 | } |
1610 | return 0; |
1611 | } |
1612 | /* the socket is not closed, so SOF_MP_SUBFLOW must be set */ |
1613 | VERIFY(so->so_flags & SOF_MP_SUBFLOW); |
1614 | |
1615 | if (m->m_nextpkt != NULL || (sb->sb_mb != sb->sb_lastrecord)) { |
1616 | panic("%s: nexpkt %p || mb %p != lastrecord %p" , __func__, |
1617 | m->m_nextpkt, sb->sb_mb, sb->sb_lastrecord); |
1618 | /* NOTREACHED */ |
1619 | } |
1620 | |
1621 | SBLASTMBUFCHK(sb, __func__); |
1622 | |
1623 | /* No filter support (SB_RECV) on mptcp subflow sockets */ |
1624 | |
1625 | sbcompress(sb, m, sb->sb_mbtail); |
1626 | sb->sb_lastrecord = sb->sb_mb; |
1627 | SBLASTRECORDCHK(sb, __func__); |
1628 | return 1; |
1629 | } |
1630 | #endif /* MPTCP */ |
1631 | |
1632 | /* |
1633 | * Compress mbuf chain m into the socket |
1634 | * buffer sb following mbuf n. If n |
1635 | * is null, the buffer is presumed empty. |
1636 | */ |
1637 | static inline void |
1638 | sbcompress(struct sockbuf *sb, struct mbuf *m, struct mbuf *n) |
1639 | { |
1640 | int eor = 0, compress = (!(sb->sb_flags & SB_NOCOMPRESS)); |
1641 | struct mbuf *o; |
1642 | |
1643 | if (m == NULL) { |
1644 | /* There is nothing to compress; just update the tail */ |
1645 | for (; n->m_next != NULL; n = n->m_next) { |
1646 | ; |
1647 | } |
1648 | sb->sb_mbtail = n; |
1649 | goto done; |
1650 | } |
1651 | |
1652 | while (m != NULL) { |
1653 | eor |= m->m_flags & M_EOR; |
1654 | if (compress && m->m_len == 0 && (eor == 0 || |
1655 | (((o = m->m_next) || (o = n)) && o->m_type == m->m_type))) { |
1656 | if (sb->sb_lastrecord == m) { |
1657 | sb->sb_lastrecord = m->m_next; |
1658 | } |
1659 | m = m_free(m); |
1660 | continue; |
1661 | } |
1662 | if (compress && n != NULL && (n->m_flags & M_EOR) == 0 && |
1663 | #ifndef __APPLE__ |
1664 | M_WRITABLE(n) && |
1665 | #endif |
1666 | m->m_len <= MCLBYTES / 4 && /* XXX: Don't copy too much */ |
1667 | m->m_len <= M_TRAILINGSPACE(n) && |
1668 | n->m_type == m->m_type) { |
1669 | bcopy(mtod(m, caddr_t), mtod(n, caddr_t) + n->m_len, |
1670 | n: (unsigned)m->m_len); |
1671 | n->m_len += m->m_len; |
1672 | sb->sb_cc += m->m_len; |
1673 | if (!m_has_mtype(m, mtype_flags: MTF_DATA | MTF_HEADER | MTF_OOBDATA)) { |
1674 | /* XXX: Probably don't need */ |
1675 | sb->sb_ctl += m->m_len; |
1676 | } |
1677 | |
1678 | /* update send byte count */ |
1679 | if (sb->sb_flags & SB_SNDBYTE_CNT) { |
1680 | inp_incr_sndbytes_total(sb->sb_so, |
1681 | m->m_len); |
1682 | inp_incr_sndbytes_unsent(sb->sb_so, |
1683 | m->m_len); |
1684 | } |
1685 | m = m_free(m); |
1686 | continue; |
1687 | } |
1688 | if (n != NULL) { |
1689 | n->m_next = m; |
1690 | } else { |
1691 | sb->sb_mb = m; |
1692 | } |
1693 | sb->sb_mbtail = m; |
1694 | sballoc(sb, m); |
1695 | n = m; |
1696 | m->m_flags &= ~M_EOR; |
1697 | m = m->m_next; |
1698 | n->m_next = NULL; |
1699 | } |
1700 | if (eor != 0) { |
1701 | if (n != NULL) { |
1702 | n->m_flags |= M_EOR; |
1703 | } else { |
1704 | printf("semi-panic: sbcompress\n" ); |
1705 | } |
1706 | } |
1707 | done: |
1708 | SBLASTMBUFCHK(sb, __func__); |
1709 | } |
1710 | |
1711 | void |
1712 | sb_empty_assert(struct sockbuf *sb, const char *where) |
1713 | { |
1714 | if (!(sb->sb_cc == 0 && sb->sb_mb == NULL && sb->sb_mbcnt == 0 && |
1715 | sb->sb_mbtail == NULL && sb->sb_lastrecord == NULL)) { |
1716 | panic("%s: sb %p so %p cc %d mbcnt %d mb %p mbtail %p " |
1717 | "lastrecord %p\n" , where, sb, sb->sb_so, sb->sb_cc, |
1718 | sb->sb_mbcnt, sb->sb_mb, sb->sb_mbtail, |
1719 | sb->sb_lastrecord); |
1720 | /* NOTREACHED */ |
1721 | } |
1722 | } |
1723 | |
1724 | /* |
1725 | * Free all mbufs in a sockbuf. |
1726 | * Check that all resources are reclaimed. |
1727 | */ |
1728 | void |
1729 | sbflush(struct sockbuf *sb) |
1730 | { |
1731 | void *lr_saved = __builtin_return_address(0); |
1732 | struct socket *so = sb->sb_so; |
1733 | |
1734 | /* so_usecount may be 0 if we get here from sofreelastref() */ |
1735 | if (so == NULL) { |
1736 | panic("%s: null so, sb=%p sb_flags=0x%x lr=%p" , |
1737 | __func__, sb, sb->sb_flags, lr_saved); |
1738 | /* NOTREACHED */ |
1739 | } else if (so->so_usecount < 0) { |
1740 | panic("%s: sb=%p sb_flags=0x%x sb_so=%p usecount=%d lr=%p " |
1741 | "lrh= %s\n" , __func__, sb, sb->sb_flags, so, |
1742 | so->so_usecount, lr_saved, solockhistory_nr(so)); |
1743 | /* NOTREACHED */ |
1744 | } |
1745 | |
1746 | /* |
1747 | * Obtain lock on the socket buffer (SB_LOCK). This is required |
1748 | * to prevent the socket buffer from being unexpectedly altered |
1749 | * while it is used by another thread in socket send/receive. |
1750 | * |
1751 | * sblock() must not fail here, hence the assertion. |
1752 | */ |
1753 | (void) sblock(sb, SBL_WAIT | SBL_NOINTR | SBL_IGNDEFUNCT); |
1754 | VERIFY(sb->sb_flags & SB_LOCK); |
1755 | |
1756 | while (sb->sb_mbcnt > 0) { |
1757 | /* |
1758 | * Don't call sbdrop(sb, 0) if the leading mbuf is non-empty: |
1759 | * we would loop forever. Panic instead. |
1760 | */ |
1761 | if (!sb->sb_cc && (sb->sb_mb == NULL || sb->sb_mb->m_len)) { |
1762 | break; |
1763 | } |
1764 | sbdrop(sb, len: (int)sb->sb_cc); |
1765 | } |
1766 | |
1767 | if (sb->sb_flags & SB_SENDHEAD) { |
1768 | sb->sb_sendhead = NULL; |
1769 | } |
1770 | |
1771 | sb_empty_assert(sb, where: __func__); |
1772 | sbunlock(sb, TRUE); /* keep socket locked */ |
1773 | } |
1774 | |
1775 | /* |
1776 | * Drop data from (the front of) a sockbuf. |
1777 | * use m_freem_list to free the mbuf structures |
1778 | * under a single lock... this is done by pruning |
1779 | * the top of the tree from the body by keeping track |
1780 | * of where we get to in the tree and then zeroing the |
1781 | * two pertinent pointers m_nextpkt and m_next |
1782 | * the socket buffer is then updated to point at the new |
1783 | * top of the tree and the pruned area is released via |
1784 | * m_freem_list. |
1785 | */ |
1786 | void |
1787 | sbdrop(struct sockbuf *sb, int len) |
1788 | { |
1789 | struct mbuf *m, *free_list, *ml; |
1790 | struct mbuf *next, *last; |
1791 | |
1792 | next = (m = sb->sb_mb) ? m->m_nextpkt : 0; |
1793 | #if MPTCP |
1794 | if (m != NULL && len > 0 && !(sb->sb_flags & SB_RECV) && |
1795 | ((sb->sb_so->so_flags & SOF_MP_SUBFLOW) || |
1796 | (SOCK_CHECK_DOM(sb->sb_so, PF_MULTIPATH) && |
1797 | SOCK_CHECK_PROTO(sb->sb_so, IPPROTO_TCP))) && |
1798 | !(sb->sb_so->so_flags1 & SOF1_POST_FALLBACK_SYNC)) { |
1799 | mptcp_preproc_sbdrop(sb->sb_so, m, (unsigned int)len); |
1800 | } |
1801 | if (m != NULL && len > 0 && !(sb->sb_flags & SB_RECV) && |
1802 | (sb->sb_so->so_flags & SOF_MP_SUBFLOW) && |
1803 | (sb->sb_so->so_flags1 & SOF1_POST_FALLBACK_SYNC)) { |
1804 | mptcp_fallback_sbdrop(so: sb->sb_so, m, len); |
1805 | } |
1806 | #endif /* MPTCP */ |
1807 | KERNEL_DEBUG((DBG_FNC_SBDROP | DBG_FUNC_START), sb, len, 0, 0, 0); |
1808 | |
1809 | free_list = last = m; |
1810 | ml = (struct mbuf *)0; |
1811 | |
1812 | if (sb->sb_flags & SB_SENDHEAD) { |
1813 | sb->sb_sendoff -= MIN(len, sb->sb_sendoff); |
1814 | } |
1815 | |
1816 | while (len > 0) { |
1817 | if (m == NULL) { |
1818 | if (next == NULL) { |
1819 | /* |
1820 | * temporarily replacing this panic with printf |
1821 | * because it occurs occasionally when closing |
1822 | * a socket when there is no harm in ignoring |
1823 | * it. This problem will be investigated |
1824 | * further. |
1825 | */ |
1826 | /* panic("sbdrop"); */ |
1827 | printf("sbdrop - count not zero\n" ); |
1828 | len = 0; |
1829 | /* |
1830 | * zero the counts. if we have no mbufs, |
1831 | * we have no data (PR-2986815) |
1832 | */ |
1833 | sb->sb_cc = 0; |
1834 | sb->sb_mbcnt = 0; |
1835 | break; |
1836 | } |
1837 | m = last = next; |
1838 | next = m->m_nextpkt; |
1839 | continue; |
1840 | } |
1841 | if (m->m_len > len) { |
1842 | m->m_len -= len; |
1843 | m->m_data += len; |
1844 | sb->sb_cc -= len; |
1845 | /* update the send byte count */ |
1846 | if (sb->sb_flags & SB_SNDBYTE_CNT) { |
1847 | inp_decr_sndbytes_total(sb->sb_so, len); |
1848 | } |
1849 | if (sb->sb_flags & SB_SENDHEAD) { |
1850 | if (sb->sb_sendhead == m) { |
1851 | sb->sb_sendhead = NULL; |
1852 | } |
1853 | } |
1854 | if (!m_has_mtype(m, mtype_flags: MTF_DATA | MTF_HEADER | MTF_OOBDATA)) { |
1855 | sb->sb_ctl -= len; |
1856 | } |
1857 | break; |
1858 | } |
1859 | len -= m->m_len; |
1860 | sbfree(sb, m); |
1861 | |
1862 | ml = m; |
1863 | m = m->m_next; |
1864 | } |
1865 | while (m && m->m_len == 0) { |
1866 | sbfree(sb, m); |
1867 | |
1868 | ml = m; |
1869 | m = m->m_next; |
1870 | } |
1871 | if (ml) { |
1872 | ml->m_next = (struct mbuf *)0; |
1873 | last->m_nextpkt = (struct mbuf *)0; |
1874 | m_freem_list(free_list); |
1875 | } |
1876 | if (m) { |
1877 | sb->sb_mb = m; |
1878 | m->m_nextpkt = next; |
1879 | } else { |
1880 | sb->sb_mb = next; |
1881 | } |
1882 | |
1883 | /* |
1884 | * First part is an inline SB_EMPTY_FIXUP(). Second part |
1885 | * makes sure sb_lastrecord is up-to-date if we dropped |
1886 | * part of the last record. |
1887 | */ |
1888 | m = sb->sb_mb; |
1889 | if (m == NULL) { |
1890 | sb->sb_mbtail = NULL; |
1891 | sb->sb_lastrecord = NULL; |
1892 | } else if (m->m_nextpkt == NULL) { |
1893 | sb->sb_lastrecord = m; |
1894 | } |
1895 | |
1896 | #if CONTENT_FILTER |
1897 | cfil_sock_buf_update(sb); |
1898 | #endif /* CONTENT_FILTER */ |
1899 | |
1900 | KERNEL_DEBUG((DBG_FNC_SBDROP | DBG_FUNC_END), sb, 0, 0, 0, 0); |
1901 | } |
1902 | |
1903 | /* |
1904 | * Drop a record off the front of a sockbuf |
1905 | * and move the next record to the front. |
1906 | */ |
1907 | void |
1908 | sbdroprecord(struct sockbuf *sb) |
1909 | { |
1910 | struct mbuf *m, *mn; |
1911 | |
1912 | m = sb->sb_mb; |
1913 | if (m) { |
1914 | sb->sb_mb = m->m_nextpkt; |
1915 | do { |
1916 | sbfree(sb, m); |
1917 | MFREE(m, mn); |
1918 | m = mn; |
1919 | } while (m); |
1920 | } |
1921 | SB_EMPTY_FIXUP(sb); |
1922 | } |
1923 | |
1924 | /* |
1925 | * Create a "control" mbuf containing the specified data |
1926 | * with the specified type for presentation on a socket buffer. |
1927 | */ |
1928 | struct mbuf * |
1929 | sbcreatecontrol(caddr_t p, int size, int type, int level) |
1930 | { |
1931 | struct cmsghdr *cp; |
1932 | struct mbuf *m; |
1933 | |
1934 | if (CMSG_SPACE((u_int)size) > MLEN) { |
1935 | return (struct mbuf *)NULL; |
1936 | } |
1937 | if ((m = m_get(M_DONTWAIT, MT_CONTROL)) == NULL) { |
1938 | return (struct mbuf *)NULL; |
1939 | } |
1940 | cp = mtod(m, struct cmsghdr *); |
1941 | VERIFY(IS_P2ALIGNED(cp, sizeof(u_int32_t))); |
1942 | /* XXX check size? */ |
1943 | (void) memcpy(CMSG_DATA(cp), src: p, n: size); |
1944 | m->m_len = (int32_t)CMSG_SPACE(size); |
1945 | cp->cmsg_len = CMSG_LEN(size); |
1946 | cp->cmsg_level = level; |
1947 | cp->cmsg_type = type; |
1948 | return m; |
1949 | } |
1950 | |
1951 | struct mbuf ** |
1952 | sbcreatecontrol_mbuf(caddr_t p, int size, int type, int level, struct mbuf **mp) |
1953 | { |
1954 | struct mbuf *m; |
1955 | struct cmsghdr *cp; |
1956 | |
1957 | if (*mp == NULL) { |
1958 | *mp = sbcreatecontrol(p, size, type, level); |
1959 | return mp; |
1960 | } |
1961 | |
1962 | if (CMSG_SPACE((u_int)size) + (*mp)->m_len > MLEN) { |
1963 | mp = &(*mp)->m_next; |
1964 | *mp = sbcreatecontrol(p, size, type, level); |
1965 | return mp; |
1966 | } |
1967 | |
1968 | m = *mp; |
1969 | |
1970 | cp = (struct cmsghdr *)(void *)(mtod(m, char *) + m->m_len); |
1971 | /* CMSG_SPACE ensures 32-bit alignment */ |
1972 | VERIFY(IS_P2ALIGNED(cp, sizeof(u_int32_t))); |
1973 | m->m_len += (int32_t)CMSG_SPACE(size); |
1974 | |
1975 | /* XXX check size? */ |
1976 | (void) memcpy(CMSG_DATA(cp), src: p, n: size); |
1977 | cp->cmsg_len = CMSG_LEN(size); |
1978 | cp->cmsg_level = level; |
1979 | cp->cmsg_type = type; |
1980 | |
1981 | return mp; |
1982 | } |
1983 | |
1984 | |
1985 | /* |
1986 | * Some routines that return EOPNOTSUPP for entry points that are not |
1987 | * supported by a protocol. Fill in as needed. |
1988 | */ |
1989 | int |
1990 | pru_abort_notsupp(struct socket *so) |
1991 | { |
1992 | #pragma unused(so) |
1993 | return EOPNOTSUPP; |
1994 | } |
1995 | |
1996 | int |
1997 | pru_accept_notsupp(struct socket *so, struct sockaddr **nam) |
1998 | { |
1999 | #pragma unused(so, nam) |
2000 | return EOPNOTSUPP; |
2001 | } |
2002 | |
2003 | int |
2004 | pru_attach_notsupp(struct socket *so, int proto, struct proc *p) |
2005 | { |
2006 | #pragma unused(so, proto, p) |
2007 | return EOPNOTSUPP; |
2008 | } |
2009 | |
2010 | int |
2011 | pru_bind_notsupp(struct socket *so, struct sockaddr *nam, struct proc *p) |
2012 | { |
2013 | #pragma unused(so, nam, p) |
2014 | return EOPNOTSUPP; |
2015 | } |
2016 | |
2017 | int |
2018 | pru_connect_notsupp(struct socket *so, struct sockaddr *nam, struct proc *p) |
2019 | { |
2020 | #pragma unused(so, nam, p) |
2021 | return EOPNOTSUPP; |
2022 | } |
2023 | |
2024 | int |
2025 | pru_connect2_notsupp(struct socket *so1, struct socket *so2) |
2026 | { |
2027 | #pragma unused(so1, so2) |
2028 | return EOPNOTSUPP; |
2029 | } |
2030 | |
2031 | int |
2032 | pru_connectx_notsupp(struct socket *so, struct sockaddr *src, |
2033 | struct sockaddr *dst, struct proc *p, uint32_t ifscope, |
2034 | sae_associd_t aid, sae_connid_t *pcid, uint32_t flags, void *arg, |
2035 | uint32_t arglen, struct uio *uio, user_ssize_t *bytes_written) |
2036 | { |
2037 | #pragma unused(so, src, dst, p, ifscope, aid, pcid, flags, arg, arglen, uio, bytes_written) |
2038 | return EOPNOTSUPP; |
2039 | } |
2040 | |
2041 | int |
2042 | pru_control_notsupp(struct socket *so, u_long cmd, caddr_t data, |
2043 | struct ifnet *ifp, struct proc *p) |
2044 | { |
2045 | #pragma unused(so, cmd, data, ifp, p) |
2046 | return EOPNOTSUPP; |
2047 | } |
2048 | |
2049 | int |
2050 | pru_detach_notsupp(struct socket *so) |
2051 | { |
2052 | #pragma unused(so) |
2053 | return EOPNOTSUPP; |
2054 | } |
2055 | |
2056 | int |
2057 | pru_disconnect_notsupp(struct socket *so) |
2058 | { |
2059 | #pragma unused(so) |
2060 | return EOPNOTSUPP; |
2061 | } |
2062 | |
2063 | int |
2064 | pru_disconnectx_notsupp(struct socket *so, sae_associd_t aid, sae_connid_t cid) |
2065 | { |
2066 | #pragma unused(so, aid, cid) |
2067 | return EOPNOTSUPP; |
2068 | } |
2069 | |
2070 | int |
2071 | pru_listen_notsupp(struct socket *so, struct proc *p) |
2072 | { |
2073 | #pragma unused(so, p) |
2074 | return EOPNOTSUPP; |
2075 | } |
2076 | |
2077 | int |
2078 | pru_peeraddr_notsupp(struct socket *so, struct sockaddr **nam) |
2079 | { |
2080 | #pragma unused(so, nam) |
2081 | return EOPNOTSUPP; |
2082 | } |
2083 | |
2084 | int |
2085 | pru_rcvd_notsupp(struct socket *so, int flags) |
2086 | { |
2087 | #pragma unused(so, flags) |
2088 | return EOPNOTSUPP; |
2089 | } |
2090 | |
2091 | int |
2092 | pru_rcvoob_notsupp(struct socket *so, struct mbuf *m, int flags) |
2093 | { |
2094 | #pragma unused(so, m, flags) |
2095 | return EOPNOTSUPP; |
2096 | } |
2097 | |
2098 | int |
2099 | pru_send_notsupp(struct socket *so, int flags, struct mbuf *m, |
2100 | struct sockaddr *addr, struct mbuf *control, struct proc *p) |
2101 | { |
2102 | #pragma unused(so, flags, m, addr, control, p) |
2103 | return EOPNOTSUPP; |
2104 | } |
2105 | |
2106 | int |
2107 | pru_send_list_notsupp(struct socket *so, struct mbuf *m, u_int *pktcnt, |
2108 | int flags) |
2109 | { |
2110 | #pragma unused(so, m, pktcnt, flags) |
2111 | return EOPNOTSUPP; |
2112 | } |
2113 | |
2114 | /* |
2115 | * This isn't really a ``null'' operation, but it's the default one |
2116 | * and doesn't do anything destructive. |
2117 | */ |
2118 | int |
2119 | pru_sense_null(struct socket *so, void *ub, int isstat64) |
2120 | { |
2121 | if (isstat64 != 0) { |
2122 | struct stat64 *sb64; |
2123 | |
2124 | sb64 = (struct stat64 *)ub; |
2125 | sb64->st_blksize = so->so_snd.sb_hiwat; |
2126 | } else { |
2127 | struct stat *sb; |
2128 | |
2129 | sb = (struct stat *)ub; |
2130 | sb->st_blksize = so->so_snd.sb_hiwat; |
2131 | } |
2132 | |
2133 | return 0; |
2134 | } |
2135 | |
2136 | int |
2137 | pru_sosend_notsupp(struct socket *so, struct sockaddr *addr, struct uio *uio, |
2138 | struct mbuf *top, struct mbuf *control, int flags) |
2139 | { |
2140 | #pragma unused(so, addr, uio, top, control, flags) |
2141 | return EOPNOTSUPP; |
2142 | } |
2143 | |
2144 | int |
2145 | pru_sosend_list_notsupp(struct socket *so, struct mbuf *m, size_t total_len, u_int *pktcnt, int flags) |
2146 | { |
2147 | #pragma unused(so, m, total_len, pktcnt, flags) |
2148 | return EOPNOTSUPP; |
2149 | } |
2150 | |
2151 | int |
2152 | pru_soreceive_notsupp(struct socket *so, struct sockaddr **paddr, |
2153 | struct uio *uio, struct mbuf **mp0, struct mbuf **controlp, int *flagsp) |
2154 | { |
2155 | #pragma unused(so, paddr, uio, mp0, controlp, flagsp) |
2156 | return EOPNOTSUPP; |
2157 | } |
2158 | |
2159 | int |
2160 | pru_shutdown_notsupp(struct socket *so) |
2161 | { |
2162 | #pragma unused(so) |
2163 | return EOPNOTSUPP; |
2164 | } |
2165 | |
2166 | int |
2167 | pru_sockaddr_notsupp(struct socket *so, struct sockaddr **nam) |
2168 | { |
2169 | #pragma unused(so, nam) |
2170 | return EOPNOTSUPP; |
2171 | } |
2172 | |
2173 | int |
2174 | pru_sopoll_notsupp(struct socket *so, int events, kauth_cred_t cred, void *wql) |
2175 | { |
2176 | #pragma unused(so, events, cred, wql) |
2177 | return EOPNOTSUPP; |
2178 | } |
2179 | |
2180 | int |
2181 | pru_socheckopt_null(struct socket *so, struct sockopt *sopt) |
2182 | { |
2183 | #pragma unused(so, sopt) |
2184 | /* |
2185 | * Allow all options for set/get by default. |
2186 | */ |
2187 | return 0; |
2188 | } |
2189 | |
2190 | static int |
2191 | pru_preconnect_null(struct socket *so) |
2192 | { |
2193 | #pragma unused(so) |
2194 | return 0; |
2195 | } |
2196 | |
2197 | static int |
2198 | pru_defunct_null(struct socket *so) |
2199 | { |
2200 | #pragma unused(so) |
2201 | return 0; |
2202 | } |
2203 | |
2204 | |
2205 | void |
2206 | pru_sanitize(struct pr_usrreqs *pru) |
2207 | { |
2208 | #define DEFAULT(foo, bar) if ((foo) == NULL) (foo) = (bar) |
2209 | DEFAULT(pru->pru_abort, pru_abort_notsupp); |
2210 | DEFAULT(pru->pru_accept, pru_accept_notsupp); |
2211 | DEFAULT(pru->pru_attach, pru_attach_notsupp); |
2212 | DEFAULT(pru->pru_bind, pru_bind_notsupp); |
2213 | DEFAULT(pru->pru_connect, pru_connect_notsupp); |
2214 | DEFAULT(pru->pru_connect2, pru_connect2_notsupp); |
2215 | DEFAULT(pru->pru_connectx, pru_connectx_notsupp); |
2216 | DEFAULT(pru->pru_control, pru_control_notsupp); |
2217 | DEFAULT(pru->pru_detach, pru_detach_notsupp); |
2218 | DEFAULT(pru->pru_disconnect, pru_disconnect_notsupp); |
2219 | DEFAULT(pru->pru_disconnectx, pru_disconnectx_notsupp); |
2220 | DEFAULT(pru->pru_listen, pru_listen_notsupp); |
2221 | DEFAULT(pru->pru_peeraddr, pru_peeraddr_notsupp); |
2222 | DEFAULT(pru->pru_rcvd, pru_rcvd_notsupp); |
2223 | DEFAULT(pru->pru_rcvoob, pru_rcvoob_notsupp); |
2224 | DEFAULT(pru->pru_send, pru_send_notsupp); |
2225 | DEFAULT(pru->pru_send_list, pru_send_list_notsupp); |
2226 | DEFAULT(pru->pru_sense, pru_sense_null); |
2227 | DEFAULT(pru->pru_shutdown, pru_shutdown_notsupp); |
2228 | DEFAULT(pru->pru_sockaddr, pru_sockaddr_notsupp); |
2229 | DEFAULT(pru->pru_sopoll, pru_sopoll_notsupp); |
2230 | DEFAULT(pru->pru_soreceive, pru_soreceive_notsupp); |
2231 | DEFAULT(pru->pru_sosend, pru_sosend_notsupp); |
2232 | DEFAULT(pru->pru_sosend_list, pru_sosend_list_notsupp); |
2233 | DEFAULT(pru->pru_socheckopt, pru_socheckopt_null); |
2234 | DEFAULT(pru->pru_preconnect, pru_preconnect_null); |
2235 | DEFAULT(pru->pru_defunct, pru_defunct_null); |
2236 | #undef DEFAULT |
2237 | } |
2238 | |
2239 | /* |
2240 | * The following are macros on BSD and functions on Darwin |
2241 | */ |
2242 | |
2243 | /* |
2244 | * Do we need to notify the other side when I/O is possible? |
2245 | */ |
2246 | |
2247 | int |
2248 | sb_notify(struct sockbuf *sb) |
2249 | { |
2250 | return sb->sb_waiters > 0 || |
2251 | (sb->sb_flags & (SB_SEL | SB_ASYNC | SB_UPCALL | SB_KNOTE)); |
2252 | } |
2253 | |
2254 | /* |
2255 | * How much space is there in a socket buffer (so->so_snd or so->so_rcv)? |
2256 | * This is problematical if the fields are unsigned, as the space might |
2257 | * still be negative (cc > hiwat or mbcnt > mbmax). Should detect |
2258 | * overflow and return 0. |
2259 | */ |
2260 | int |
2261 | sbspace(struct sockbuf *sb) |
2262 | { |
2263 | int pending = 0; |
2264 | int space; |
2265 | |
2266 | if (sb->sb_flags & SB_KCTL) { |
2267 | space = (int)(sb->sb_hiwat - sb->sb_cc); |
2268 | } else { |
2269 | space = imin(a: (int)(sb->sb_hiwat - sb->sb_cc), |
2270 | b: (int)(sb->sb_mbmax - sb->sb_mbcnt)); |
2271 | } |
2272 | if (sb->sb_preconn_hiwat != 0) { |
2273 | space = imin(a: (int)(sb->sb_preconn_hiwat - sb->sb_cc), b: space); |
2274 | } |
2275 | |
2276 | if (space < 0) { |
2277 | space = 0; |
2278 | } |
2279 | |
2280 | /* Compensate for data being processed by content filters */ |
2281 | #if CONTENT_FILTER |
2282 | pending = cfil_sock_data_space(sb); |
2283 | #endif /* CONTENT_FILTER */ |
2284 | if (pending > space) { |
2285 | space = 0; |
2286 | } else { |
2287 | space -= pending; |
2288 | } |
2289 | |
2290 | return space; |
2291 | } |
2292 | |
2293 | /* do we have to send all at once on a socket? */ |
2294 | int |
2295 | sosendallatonce(struct socket *so) |
2296 | { |
2297 | return so->so_proto->pr_flags & PR_ATOMIC; |
2298 | } |
2299 | |
2300 | /* can we read something from so? */ |
2301 | int |
2302 | soreadable(struct socket *so) |
2303 | { |
2304 | return so->so_rcv.sb_cc >= so->so_rcv.sb_lowat || |
2305 | ((so->so_state & SS_CANTRCVMORE) |
2306 | #if CONTENT_FILTER |
2307 | && cfil_sock_data_pending(sb: &so->so_rcv) == 0 |
2308 | #endif /* CONTENT_FILTER */ |
2309 | ) || |
2310 | so->so_comp.tqh_first || so->so_error; |
2311 | } |
2312 | |
2313 | /* can we write something to so? */ |
2314 | |
2315 | int |
2316 | sowriteable(struct socket *so) |
2317 | { |
2318 | if ((so->so_state & SS_CANTSENDMORE) || |
2319 | so->so_error > 0) { |
2320 | return 1; |
2321 | } |
2322 | if (so_wait_for_if_feedback(so) || !socanwrite(so)) { |
2323 | return 0; |
2324 | } |
2325 | if (so->so_flags1 & SOF1_PRECONNECT_DATA) { |
2326 | return 1; |
2327 | } |
2328 | |
2329 | int64_t data = sbspace(sb: &so->so_snd); |
2330 | int64_t lowat = so->so_snd.sb_lowat; |
2331 | /* |
2332 | * Deal with connected UNIX domain sockets which |
2333 | * rely on the fact that the sender's socket buffer is |
2334 | * actually the receiver's socket buffer. |
2335 | */ |
2336 | if (SOCK_DOM(so) == PF_LOCAL) { |
2337 | struct unpcb *unp = sotounpcb(so); |
2338 | if (unp != NULL && unp->unp_conn != NULL && |
2339 | unp->unp_conn->unp_socket != NULL) { |
2340 | struct socket *so2 = unp->unp_conn->unp_socket; |
2341 | /* |
2342 | * At this point we know that `so' is locked |
2343 | * and that `unp_conn` isn't going to change. |
2344 | * However, we don't lock `so2` because doing so |
2345 | * may require unlocking `so' |
2346 | * (see unp_get_locks_in_order()). |
2347 | * |
2348 | * Two cases can happen: |
2349 | * |
2350 | * 1) we return 1 and tell the application that |
2351 | * it can write. Meanwhile, another thread |
2352 | * fills up the socket buffer. This will either |
2353 | * lead to a blocking send or EWOULDBLOCK |
2354 | * which the application should deal with. |
2355 | * 2) we return 0 and tell the application that |
2356 | * the socket is not writable. Meanwhile, |
2357 | * another thread depletes the receive socket |
2358 | * buffer. In this case the application will |
2359 | * be woken up by sb_notify(). |
2360 | * |
2361 | * MIN() is required because otherwise sosendcheck() |
2362 | * may return EWOULDBLOCK since it only considers |
2363 | * so->so_snd. |
2364 | */ |
2365 | data = MIN(data, sbspace(&so2->so_rcv)); |
2366 | } |
2367 | } |
2368 | |
2369 | if (data >= lowat) { |
2370 | if (so->so_flags & SOF_NOTSENT_LOWAT) { |
2371 | if ((SOCK_DOM(so) == PF_INET6 || |
2372 | SOCK_DOM(so) == PF_INET) && |
2373 | so->so_type == SOCK_STREAM) { |
2374 | return tcp_notsent_lowat_check(so); |
2375 | } |
2376 | #if MPTCP |
2377 | else if ((SOCK_DOM(so) == PF_MULTIPATH) && |
2378 | (SOCK_PROTO(so) == IPPROTO_TCP)) { |
2379 | return mptcp_notsent_lowat_check(so); |
2380 | } |
2381 | #endif |
2382 | else { |
2383 | return 1; |
2384 | } |
2385 | } else { |
2386 | return 1; |
2387 | } |
2388 | } |
2389 | return 0; |
2390 | } |
2391 | |
2392 | /* adjust counters in sb reflecting allocation of m */ |
2393 | |
2394 | void |
2395 | sballoc(struct sockbuf *sb, struct mbuf *m) |
2396 | { |
2397 | sb->sb_cc += m->m_len; |
2398 | if (!m_has_mtype(m, mtype_flags: MTF_DATA | MTF_HEADER | MTF_OOBDATA)) { |
2399 | sb->sb_ctl += m->m_len; |
2400 | } |
2401 | sb->sb_mbcnt += _MSIZE; |
2402 | |
2403 | if (m->m_flags & M_EXT) { |
2404 | sb->sb_mbcnt += m->m_ext.ext_size; |
2405 | } |
2406 | |
2407 | /* |
2408 | * If data is being added to the send socket buffer, |
2409 | * update the send byte count |
2410 | */ |
2411 | if (sb->sb_flags & SB_SNDBYTE_CNT) { |
2412 | inp_incr_sndbytes_total(sb->sb_so, m->m_len); |
2413 | inp_incr_sndbytes_unsent(sb->sb_so, m->m_len); |
2414 | } |
2415 | } |
2416 | |
2417 | /* adjust counters in sb reflecting freeing of m */ |
2418 | void |
2419 | sbfree(struct sockbuf *sb, struct mbuf *m) |
2420 | { |
2421 | sb->sb_cc -= m->m_len; |
2422 | if (!m_has_mtype(m, mtype_flags: MTF_DATA | MTF_HEADER | MTF_OOBDATA)) { |
2423 | sb->sb_ctl -= m->m_len; |
2424 | } |
2425 | sb->sb_mbcnt -= _MSIZE; |
2426 | if (m->m_flags & M_EXT) { |
2427 | sb->sb_mbcnt -= m->m_ext.ext_size; |
2428 | } |
2429 | |
2430 | /* |
2431 | * If data is being removed from the send socket buffer, |
2432 | * update the send byte count |
2433 | */ |
2434 | if (sb->sb_flags & SB_SNDBYTE_CNT) { |
2435 | inp_decr_sndbytes_total(sb->sb_so, m->m_len); |
2436 | } |
2437 | |
2438 | if (sb->sb_flags & SB_SENDHEAD) { |
2439 | if (m == sb->sb_sendhead) { |
2440 | sb->sb_sendhead = NULL; |
2441 | } |
2442 | } |
2443 | } |
2444 | |
2445 | /* |
2446 | * Set lock on sockbuf sb; sleep if lock is already held. |
2447 | * Unless SB_NOINTR is set on sockbuf, sleep is interruptible. |
2448 | * Returns error without lock if sleep is interrupted. |
2449 | */ |
2450 | int |
2451 | sblock(struct sockbuf *sb, uint32_t flags) |
2452 | { |
2453 | boolean_t nointr = ((sb->sb_flags & SB_NOINTR) || (flags & SBL_NOINTR)); |
2454 | void *lr_saved = __builtin_return_address(0); |
2455 | struct socket *so = sb->sb_so; |
2456 | void * wchan; |
2457 | int error = 0; |
2458 | thread_t tp = current_thread(); |
2459 | |
2460 | VERIFY((flags & SBL_VALID) == flags); |
2461 | |
2462 | /* so_usecount may be 0 if we get here from sofreelastref() */ |
2463 | if (so == NULL) { |
2464 | panic("%s: null so, sb=%p sb_flags=0x%x lr=%p" , |
2465 | __func__, sb, sb->sb_flags, lr_saved); |
2466 | /* NOTREACHED */ |
2467 | } else if (so->so_usecount < 0) { |
2468 | panic("%s: sb=%p sb_flags=0x%x sb_so=%p usecount=%d lr=%p " |
2469 | "lrh= %s\n" , __func__, sb, sb->sb_flags, so, |
2470 | so->so_usecount, lr_saved, solockhistory_nr(so)); |
2471 | /* NOTREACHED */ |
2472 | } |
2473 | |
2474 | /* |
2475 | * The content filter thread must hold the sockbuf lock |
2476 | */ |
2477 | if ((so->so_flags & SOF_CONTENT_FILTER) && sb->sb_cfil_thread == tp) { |
2478 | /* |
2479 | * Don't panic if we are defunct because SB_LOCK has |
2480 | * been cleared by sodefunct() |
2481 | */ |
2482 | if (!(so->so_flags & SOF_DEFUNCT) && !(sb->sb_flags & SB_LOCK)) { |
2483 | panic("%s: SB_LOCK not held for %p" , |
2484 | __func__, sb); |
2485 | } |
2486 | |
2487 | /* Keep the sockbuf locked */ |
2488 | return 0; |
2489 | } |
2490 | |
2491 | if ((sb->sb_flags & SB_LOCK) && !(flags & SBL_WAIT)) { |
2492 | return EWOULDBLOCK; |
2493 | } |
2494 | /* |
2495 | * We may get here from sorflush(), in which case "sb" may not |
2496 | * point to the real socket buffer. Use the actual socket buffer |
2497 | * address from the socket instead. |
2498 | */ |
2499 | wchan = (sb->sb_flags & SB_RECV) ? |
2500 | &so->so_rcv.sb_flags : &so->so_snd.sb_flags; |
2501 | |
2502 | /* |
2503 | * A content filter thread has exclusive access to the sockbuf |
2504 | * until it clears the |
2505 | */ |
2506 | while ((sb->sb_flags & SB_LOCK) || |
2507 | ((so->so_flags & SOF_CONTENT_FILTER) && |
2508 | sb->sb_cfil_thread != NULL)) { |
2509 | lck_mtx_t *mutex_held; |
2510 | |
2511 | /* |
2512 | * XXX: This code should be moved up above outside of this loop; |
2513 | * however, we may get here as part of sofreelastref(), and |
2514 | * at that time pr_getlock() may no longer be able to return |
2515 | * us the lock. This will be fixed in future. |
2516 | */ |
2517 | if (so->so_proto->pr_getlock != NULL) { |
2518 | mutex_held = (*so->so_proto->pr_getlock)(so, PR_F_WILLUNLOCK); |
2519 | } else { |
2520 | mutex_held = so->so_proto->pr_domain->dom_mtx; |
2521 | } |
2522 | |
2523 | LCK_MTX_ASSERT(mutex_held, LCK_MTX_ASSERT_OWNED); |
2524 | |
2525 | sb->sb_wantlock++; |
2526 | VERIFY(sb->sb_wantlock != 0); |
2527 | |
2528 | error = msleep(chan: wchan, mtx: mutex_held, |
2529 | pri: nointr ? PSOCK : PSOCK | PCATCH, |
2530 | wmesg: nointr ? "sb_lock_nointr" : "sb_lock" , NULL); |
2531 | |
2532 | VERIFY(sb->sb_wantlock != 0); |
2533 | sb->sb_wantlock--; |
2534 | |
2535 | if (error == 0 && (so->so_flags & SOF_DEFUNCT) && |
2536 | !(flags & SBL_IGNDEFUNCT)) { |
2537 | error = EBADF; |
2538 | SODEFUNCTLOG("%s[%d, %s]: defunct so 0x%llu [%d,%d] " |
2539 | "(%d)\n" , __func__, proc_selfpid(), |
2540 | proc_best_name(current_proc()), |
2541 | so->so_gencnt, |
2542 | SOCK_DOM(so), SOCK_TYPE(so), error); |
2543 | } |
2544 | |
2545 | if (error != 0) { |
2546 | return error; |
2547 | } |
2548 | } |
2549 | sb->sb_flags |= SB_LOCK; |
2550 | return 0; |
2551 | } |
2552 | |
2553 | /* |
2554 | * Release lock on sockbuf sb |
2555 | */ |
2556 | void |
2557 | sbunlock(struct sockbuf *sb, boolean_t keeplocked) |
2558 | { |
2559 | void *lr_saved = __builtin_return_address(0); |
2560 | struct socket *so = sb->sb_so; |
2561 | thread_t tp = current_thread(); |
2562 | |
2563 | /* so_usecount may be 0 if we get here from sofreelastref() */ |
2564 | if (so == NULL) { |
2565 | panic("%s: null so, sb=%p sb_flags=0x%x lr=%p" , |
2566 | __func__, sb, sb->sb_flags, lr_saved); |
2567 | /* NOTREACHED */ |
2568 | } else if (so->so_usecount < 0) { |
2569 | panic("%s: sb=%p sb_flags=0x%x sb_so=%p usecount=%d lr=%p " |
2570 | "lrh= %s\n" , __func__, sb, sb->sb_flags, so, |
2571 | so->so_usecount, lr_saved, solockhistory_nr(so)); |
2572 | /* NOTREACHED */ |
2573 | } |
2574 | |
2575 | /* |
2576 | * The content filter thread must hold the sockbuf lock |
2577 | */ |
2578 | if ((so->so_flags & SOF_CONTENT_FILTER) && sb->sb_cfil_thread == tp) { |
2579 | /* |
2580 | * Don't panic if we are defunct because SB_LOCK has |
2581 | * been cleared by sodefunct() |
2582 | */ |
2583 | if (!(so->so_flags & SOF_DEFUNCT) && |
2584 | !(sb->sb_flags & SB_LOCK) && |
2585 | !(so->so_state & SS_DEFUNCT) && |
2586 | !(so->so_flags1 & SOF1_DEFUNCTINPROG)) { |
2587 | panic("%s: SB_LOCK not held for %p" , |
2588 | __func__, sb); |
2589 | } |
2590 | /* Keep the sockbuf locked and proceed */ |
2591 | } else { |
2592 | VERIFY((sb->sb_flags & SB_LOCK) || |
2593 | (so->so_state & SS_DEFUNCT) || |
2594 | (so->so_flags1 & SOF1_DEFUNCTINPROG)); |
2595 | |
2596 | sb->sb_flags &= ~SB_LOCK; |
2597 | |
2598 | if (sb->sb_wantlock > 0) { |
2599 | /* |
2600 | * We may get here from sorflush(), in which case "sb" |
2601 | * may not point to the real socket buffer. Use the |
2602 | * actual socket buffer address from the socket instead. |
2603 | */ |
2604 | wakeup(chan: (sb->sb_flags & SB_RECV) ? &so->so_rcv.sb_flags : |
2605 | &so->so_snd.sb_flags); |
2606 | } |
2607 | } |
2608 | |
2609 | if (!keeplocked) { /* unlock on exit */ |
2610 | if (so->so_flags & SOF_MP_SUBFLOW || SOCK_DOM(so) == PF_MULTIPATH) { |
2611 | (*so->so_proto->pr_unlock)(so, 1, lr_saved); |
2612 | } else { |
2613 | lck_mtx_t *mutex_held; |
2614 | |
2615 | if (so->so_proto->pr_getlock != NULL) { |
2616 | mutex_held = (*so->so_proto->pr_getlock)(so, PR_F_WILLUNLOCK); |
2617 | } else { |
2618 | mutex_held = so->so_proto->pr_domain->dom_mtx; |
2619 | } |
2620 | |
2621 | LCK_MTX_ASSERT(mutex_held, LCK_MTX_ASSERT_OWNED); |
2622 | |
2623 | VERIFY(so->so_usecount > 0); |
2624 | so->so_usecount--; |
2625 | so->unlock_lr[so->next_unlock_lr] = lr_saved; |
2626 | so->next_unlock_lr = (so->next_unlock_lr + 1) % SO_LCKDBG_MAX; |
2627 | lck_mtx_unlock(lck: mutex_held); |
2628 | } |
2629 | } |
2630 | } |
2631 | |
2632 | void |
2633 | sorwakeup(struct socket *so) |
2634 | { |
2635 | if (sb_notify(sb: &so->so_rcv)) { |
2636 | sowakeup(so, sb: &so->so_rcv, NULL); |
2637 | } |
2638 | } |
2639 | |
2640 | void |
2641 | sowwakeup(struct socket *so) |
2642 | { |
2643 | if (sb_notify(sb: &so->so_snd)) { |
2644 | sowakeup(so, sb: &so->so_snd, NULL); |
2645 | } |
2646 | } |
2647 | |
2648 | static void |
2649 | soevupcall(struct socket *so, uint32_t hint) |
2650 | { |
2651 | if (so->so_event != NULL) { |
2652 | caddr_t so_eventarg = so->so_eventarg; |
2653 | |
2654 | hint &= so->so_eventmask; |
2655 | if (hint != 0) { |
2656 | so->so_event(so, so_eventarg, hint); |
2657 | } |
2658 | } |
2659 | } |
2660 | |
2661 | void |
2662 | soevent(struct socket *so, uint32_t hint) |
2663 | { |
2664 | if (net_wake_pkt_debug > 0 && (hint & SO_FILT_HINT_WAKE_PKT)) { |
2665 | os_log(OS_LOG_DEFAULT, "%s: SO_FILT_HINT_WAKE_PKT so %p" , |
2666 | __func__, so); |
2667 | } |
2668 | |
2669 | if (so->so_flags & SOF_KNOTE) { |
2670 | KNOTE(&so->so_klist, hint); |
2671 | } |
2672 | |
2673 | soevupcall(so, hint); |
2674 | |
2675 | /* |
2676 | * Don't post an event if this a subflow socket or |
2677 | * the app has opted out of using cellular interface |
2678 | */ |
2679 | if ((hint & SO_FILT_HINT_IFDENIED) && |
2680 | !(so->so_flags & SOF_MP_SUBFLOW) && |
2681 | !(so->so_restrictions & SO_RESTRICT_DENY_CELLULAR) && |
2682 | !(so->so_restrictions & SO_RESTRICT_DENY_EXPENSIVE) && |
2683 | !(so->so_restrictions & SO_RESTRICT_DENY_CONSTRAINED)) { |
2684 | soevent_ifdenied(so); |
2685 | } |
2686 | } |
2687 | |
2688 | static void |
2689 | soevent_ifdenied(struct socket *so) |
2690 | { |
2691 | struct kev_netpolicy_ifdenied ev_ifdenied; |
2692 | |
2693 | bzero(s: &ev_ifdenied, n: sizeof(ev_ifdenied)); |
2694 | /* |
2695 | * The event consumer is interested about the effective {upid,pid,uuid} |
2696 | * info which can be different than the those related to the process |
2697 | * that recently performed a system call on the socket, i.e. when the |
2698 | * socket is delegated. |
2699 | */ |
2700 | if (so->so_flags & SOF_DELEGATED) { |
2701 | ev_ifdenied.ev_data.eupid = so->e_upid; |
2702 | ev_ifdenied.ev_data.epid = so->e_pid; |
2703 | uuid_copy(dst: ev_ifdenied.ev_data.euuid, src: so->e_uuid); |
2704 | } else { |
2705 | ev_ifdenied.ev_data.eupid = so->last_upid; |
2706 | ev_ifdenied.ev_data.epid = so->last_pid; |
2707 | uuid_copy(dst: ev_ifdenied.ev_data.euuid, src: so->last_uuid); |
2708 | } |
2709 | |
2710 | if (++so->so_ifdenied_notifies > 1) { |
2711 | /* |
2712 | * Allow for at most one kernel event to be generated per |
2713 | * socket; so_ifdenied_notifies is reset upon changes in |
2714 | * the UUID policy. See comments in inp_update_policy. |
2715 | */ |
2716 | if (net_io_policy_log) { |
2717 | uuid_string_t buf; |
2718 | |
2719 | uuid_unparse(uu: ev_ifdenied.ev_data.euuid, out: buf); |
2720 | log(LOG_DEBUG, "%s[%d]: so %llu [%d,%d] epid %llu " |
2721 | "euuid %s%s has %d redundant events supressed\n" , |
2722 | __func__, so->last_pid, |
2723 | so->so_gencnt, SOCK_DOM(so), |
2724 | SOCK_TYPE(so), ev_ifdenied.ev_data.epid, buf, |
2725 | ((so->so_flags & SOF_DELEGATED) ? |
2726 | " [delegated]" : "" ), so->so_ifdenied_notifies); |
2727 | } |
2728 | } else { |
2729 | if (net_io_policy_log) { |
2730 | uuid_string_t buf; |
2731 | |
2732 | uuid_unparse(uu: ev_ifdenied.ev_data.euuid, out: buf); |
2733 | log(LOG_DEBUG, "%s[%d]: so %llu [%d,%d] epid %llu " |
2734 | "euuid %s%s event posted\n" , __func__, |
2735 | so->last_pid, so->so_gencnt, |
2736 | SOCK_DOM(so), SOCK_TYPE(so), |
2737 | ev_ifdenied.ev_data.epid, buf, |
2738 | ((so->so_flags & SOF_DELEGATED) ? |
2739 | " [delegated]" : "" )); |
2740 | } |
2741 | netpolicy_post_msg(KEV_NETPOLICY_IFDENIED, &ev_ifdenied.ev_data, |
2742 | sizeof(ev_ifdenied)); |
2743 | } |
2744 | } |
2745 | |
2746 | /* |
2747 | * Make a copy of a sockaddr in a malloced buffer of type SONAME. |
2748 | */ |
2749 | struct sockaddr * |
2750 | dup_sockaddr(struct sockaddr *sa, int canwait) |
2751 | { |
2752 | struct sockaddr *sa2; |
2753 | |
2754 | sa2 = SA(alloc_sockaddr(sa->sa_len, canwait ? Z_WAITOK : Z_NOWAIT)); |
2755 | if (sa2 != NULL) { |
2756 | SOCKADDR_COPY(sa, sa2, sa->sa_len); |
2757 | } |
2758 | return sa2; |
2759 | } |
2760 | |
2761 | void * __header_indexable |
2762 | alloc_sockaddr(size_t size, zalloc_flags_t flags) |
2763 | { |
2764 | VERIFY((size) <= UINT8_MAX); |
2765 | |
2766 | __typed_allocators_ignore_push |
2767 | void * buf = kheap_alloc(KHEAP_SONAME, size, flags | Z_ZERO); |
2768 | __typed_allocators_ignore_pop |
2769 | if (buf != NULL) { |
2770 | struct sockaddr *sa = SA(buf); |
2771 | sa->sa_len = (uint8_t)size; |
2772 | } |
2773 | |
2774 | return buf; |
2775 | } |
2776 | |
2777 | /* |
2778 | * Create an external-format (``xsocket'') structure using the information |
2779 | * in the kernel-format socket structure pointed to by so. This is done |
2780 | * to reduce the spew of irrelevant information over this interface, |
2781 | * to isolate user code from changes in the kernel structure, and |
2782 | * potentially to provide information-hiding if we decide that |
2783 | * some of this information should be hidden from users. |
2784 | */ |
2785 | void |
2786 | sotoxsocket(struct socket *so, struct xsocket *xso) |
2787 | { |
2788 | xso->xso_len = sizeof(*xso); |
2789 | xso->xso_so = (_XSOCKET_PTR(struct socket *))VM_KERNEL_ADDRHASH(so); |
2790 | xso->so_type = so->so_type; |
2791 | xso->so_options = (short)(so->so_options & 0xffff); |
2792 | xso->so_linger = so->so_linger; |
2793 | xso->so_state = so->so_state; |
2794 | xso->so_pcb = (_XSOCKET_PTR(caddr_t))VM_KERNEL_ADDRHASH(so->so_pcb); |
2795 | if (so->so_proto) { |
2796 | xso->xso_protocol = SOCK_PROTO(so); |
2797 | xso->xso_family = SOCK_DOM(so); |
2798 | } else { |
2799 | xso->xso_protocol = xso->xso_family = 0; |
2800 | } |
2801 | xso->so_qlen = so->so_qlen; |
2802 | xso->so_incqlen = so->so_incqlen; |
2803 | xso->so_qlimit = so->so_qlimit; |
2804 | xso->so_timeo = so->so_timeo; |
2805 | xso->so_error = so->so_error; |
2806 | xso->so_pgid = so->so_pgid; |
2807 | xso->so_oobmark = so->so_oobmark; |
2808 | sbtoxsockbuf(sb: &so->so_snd, xsb: &xso->so_snd); |
2809 | sbtoxsockbuf(sb: &so->so_rcv, xsb: &xso->so_rcv); |
2810 | xso->so_uid = kauth_cred_getuid(cred: so->so_cred); |
2811 | } |
2812 | |
2813 | |
2814 | #if XNU_TARGET_OS_OSX |
2815 | |
2816 | void |
2817 | sotoxsocket64(struct socket *so, struct xsocket64 *xso) |
2818 | { |
2819 | xso->xso_len = sizeof(*xso); |
2820 | xso->xso_so = (u_int64_t)VM_KERNEL_ADDRHASH(so); |
2821 | xso->so_type = so->so_type; |
2822 | xso->so_options = (short)(so->so_options & 0xffff); |
2823 | xso->so_linger = so->so_linger; |
2824 | xso->so_state = so->so_state; |
2825 | xso->so_pcb = (u_int64_t)VM_KERNEL_ADDRHASH(so->so_pcb); |
2826 | if (so->so_proto) { |
2827 | xso->xso_protocol = SOCK_PROTO(so); |
2828 | xso->xso_family = SOCK_DOM(so); |
2829 | } else { |
2830 | xso->xso_protocol = xso->xso_family = 0; |
2831 | } |
2832 | xso->so_qlen = so->so_qlen; |
2833 | xso->so_incqlen = so->so_incqlen; |
2834 | xso->so_qlimit = so->so_qlimit; |
2835 | xso->so_timeo = so->so_timeo; |
2836 | xso->so_error = so->so_error; |
2837 | xso->so_pgid = so->so_pgid; |
2838 | xso->so_oobmark = so->so_oobmark; |
2839 | sbtoxsockbuf(sb: &so->so_snd, xsb: &xso->so_snd); |
2840 | sbtoxsockbuf(sb: &so->so_rcv, xsb: &xso->so_rcv); |
2841 | xso->so_uid = kauth_cred_getuid(cred: so->so_cred); |
2842 | } |
2843 | |
2844 | #endif /* XNU_TARGET_OS_OSX */ |
2845 | |
2846 | /* |
2847 | * This does the same for sockbufs. Note that the xsockbuf structure, |
2848 | * since it is always embedded in a socket, does not include a self |
2849 | * pointer nor a length. We make this entry point public in case |
2850 | * some other mechanism needs it. |
2851 | */ |
2852 | void |
2853 | sbtoxsockbuf(struct sockbuf *sb, struct xsockbuf *xsb) |
2854 | { |
2855 | xsb->sb_cc = sb->sb_cc; |
2856 | xsb->sb_hiwat = sb->sb_hiwat; |
2857 | xsb->sb_mbcnt = sb->sb_mbcnt; |
2858 | xsb->sb_mbmax = sb->sb_mbmax; |
2859 | xsb->sb_lowat = sb->sb_lowat; |
2860 | xsb->sb_flags = (short)sb->sb_flags; |
2861 | xsb->sb_timeo = (short) |
2862 | ((sb->sb_timeo.tv_sec * hz) + sb->sb_timeo.tv_usec / tick); |
2863 | if (xsb->sb_timeo == 0 && sb->sb_timeo.tv_usec != 0) { |
2864 | xsb->sb_timeo = 1; |
2865 | } |
2866 | } |
2867 | |
2868 | /* |
2869 | * Based on the policy set by an all knowing decison maker, throttle sockets |
2870 | * that either have been marked as belonging to "background" process. |
2871 | */ |
2872 | inline int |
2873 | soisthrottled(struct socket *so) |
2874 | { |
2875 | return so->so_flags1 & SOF1_TRAFFIC_MGT_SO_BACKGROUND; |
2876 | } |
2877 | |
2878 | inline int |
2879 | soisprivilegedtraffic(struct socket *so) |
2880 | { |
2881 | return (so->so_flags & SOF_PRIVILEGED_TRAFFIC_CLASS) ? 1 : 0; |
2882 | } |
2883 | |
2884 | inline int |
2885 | soissrcbackground(struct socket *so) |
2886 | { |
2887 | return (so->so_flags1 & SOF1_TRAFFIC_MGT_SO_BACKGROUND) || |
2888 | IS_SO_TC_BACKGROUND(so->so_traffic_class); |
2889 | } |
2890 | |
2891 | inline int |
2892 | soissrcrealtime(struct socket *so) |
2893 | { |
2894 | return so->so_traffic_class >= SO_TC_AV && |
2895 | so->so_traffic_class <= SO_TC_VO; |
2896 | } |
2897 | |
2898 | inline int |
2899 | soissrcbesteffort(struct socket *so) |
2900 | { |
2901 | return so->so_traffic_class == SO_TC_BE || |
2902 | so->so_traffic_class == SO_TC_RD || |
2903 | so->so_traffic_class == SO_TC_OAM; |
2904 | } |
2905 | |
2906 | void |
2907 | soclearfastopen(struct socket *so) |
2908 | { |
2909 | if (so->so_flags1 & SOF1_PRECONNECT_DATA) { |
2910 | so->so_flags1 &= ~SOF1_PRECONNECT_DATA; |
2911 | } |
2912 | |
2913 | if (so->so_flags1 & SOF1_DATA_IDEMPOTENT) { |
2914 | so->so_flags1 &= ~SOF1_DATA_IDEMPOTENT; |
2915 | } |
2916 | } |
2917 | |
2918 | void |
2919 | sonullevent(struct socket *so, void *arg, uint32_t hint) |
2920 | { |
2921 | #pragma unused(so, arg, hint) |
2922 | } |
2923 | |
2924 | /* |
2925 | * Here is the definition of some of the basic objects in the kern.ipc |
2926 | * branch of the MIB. |
2927 | */ |
2928 | SYSCTL_NODE(_kern, KERN_IPC, ipc, |
2929 | CTLFLAG_RW | CTLFLAG_LOCKED | CTLFLAG_ANYBODY, 0, "IPC" ); |
2930 | |
2931 | /* Check that the maximum socket buffer size is within a range */ |
2932 | |
2933 | static int |
2934 | sysctl_sb_max SYSCTL_HANDLER_ARGS |
2935 | { |
2936 | #pragma unused(oidp, arg1, arg2) |
2937 | u_int32_t new_value; |
2938 | int changed = 0; |
2939 | int error = sysctl_io_number(req, bigValue: sb_max, valueSize: sizeof(u_int32_t), |
2940 | pValue: &new_value, changed: &changed); |
2941 | if (!error && changed) { |
2942 | if (new_value > LOW_SB_MAX && new_value <= high_sb_max) { |
2943 | sb_max = new_value; |
2944 | } else { |
2945 | error = ERANGE; |
2946 | } |
2947 | } |
2948 | return error; |
2949 | } |
2950 | |
2951 | SYSCTL_PROC(_kern_ipc, KIPC_MAXSOCKBUF, maxsockbuf, |
2952 | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED, |
2953 | &sb_max, 0, &sysctl_sb_max, "IU" , "Maximum socket buffer size" ); |
2954 | |
2955 | SYSCTL_INT(_kern_ipc, KIPC_SOCKBUF_WASTE, sockbuf_waste_factor, |
2956 | CTLFLAG_RW | CTLFLAG_LOCKED, &sb_efficiency, 0, "" ); |
2957 | |
2958 | SYSCTL_INT(_kern_ipc, KIPC_NMBCLUSTERS, nmbclusters, |
2959 | CTLFLAG_RD | CTLFLAG_LOCKED, &nmbclusters, 0, "" ); |
2960 | |
2961 | SYSCTL_INT(_kern_ipc, OID_AUTO, njcl, |
2962 | CTLFLAG_RD | CTLFLAG_LOCKED, &njcl, 0, "" ); |
2963 | |
2964 | SYSCTL_INT(_kern_ipc, OID_AUTO, njclbytes, |
2965 | CTLFLAG_RD | CTLFLAG_LOCKED, &njclbytes, 0, "" ); |
2966 | |
2967 | SYSCTL_INT(_kern_ipc, KIPC_SOQLIMITCOMPAT, soqlimitcompat, |
2968 | CTLFLAG_RW | CTLFLAG_LOCKED, &soqlimitcompat, 1, |
2969 | "Enable socket queue limit compatibility" ); |
2970 | |
2971 | /* |
2972 | * Hack alert -- rdar://33572856 |
2973 | * A loopback test we cannot change was failing because it sets |
2974 | * SO_SENDTIMEO to 5 seconds and that's also the value |
2975 | * of the minimum persist timer. Because of the persist timer, |
2976 | * the connection was not idle for 5 seconds and SO_SNDTIMEO |
2977 | * was not triggering at 5 seconds causing the test failure. |
2978 | * As a workaround we check the sysctl soqlencomp the test is already |
2979 | * setting to set disable auto tuning of the receive buffer. |
2980 | */ |
2981 | |
2982 | extern u_int32_t tcp_do_autorcvbuf; |
2983 | |
2984 | static int |
2985 | sysctl_soqlencomp SYSCTL_HANDLER_ARGS |
2986 | { |
2987 | #pragma unused(oidp, arg1, arg2) |
2988 | u_int32_t new_value; |
2989 | int changed = 0; |
2990 | int error = sysctl_io_number(req, bigValue: soqlencomp, valueSize: sizeof(u_int32_t), |
2991 | pValue: &new_value, changed: &changed); |
2992 | if (!error && changed) { |
2993 | soqlencomp = new_value; |
2994 | if (new_value != 0) { |
2995 | tcp_do_autorcvbuf = 0; |
2996 | tcptv_persmin_val = 6 * TCP_RETRANSHZ; |
2997 | } |
2998 | } |
2999 | return error; |
3000 | } |
3001 | SYSCTL_PROC(_kern_ipc, OID_AUTO, soqlencomp, |
3002 | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED, |
3003 | &soqlencomp, 0, &sysctl_soqlencomp, "IU" , "" ); |
3004 | |
3005 | SYSCTL_NODE(_kern_ipc, OID_AUTO, io_policy, CTLFLAG_RW, 0, "network IO policy" ); |
3006 | |
3007 | SYSCTL_INT(_kern_ipc_io_policy, OID_AUTO, log, CTLFLAG_RW | CTLFLAG_LOCKED, |
3008 | &net_io_policy_log, 0, "" ); |
3009 | |
3010 | #if CONFIG_PROC_UUID_POLICY |
3011 | SYSCTL_INT(_kern_ipc_io_policy, OID_AUTO, uuid, CTLFLAG_RW | CTLFLAG_LOCKED, |
3012 | &net_io_policy_uuid, 0, "" ); |
3013 | #endif /* CONFIG_PROC_UUID_POLICY */ |
3014 | |