| 1 | /* |
| 2 | * Copyright (c) 1998-2022 Apple Inc. All rights reserved. |
| 3 | * |
| 4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ |
| 5 | * |
| 6 | * This file contains Original Code and/or Modifications of Original Code |
| 7 | * as defined in and that are subject to the Apple Public Source License |
| 8 | * Version 2.0 (the 'License'). You may not use this file except in |
| 9 | * compliance with the License. The rights granted to you under the License |
| 10 | * may not be used to create, or enable the creation or redistribution of, |
| 11 | * unlawful or unlicensed copies of an Apple operating system, or to |
| 12 | * circumvent, violate, or enable the circumvention or violation of, any |
| 13 | * terms of an Apple operating system software license agreement. |
| 14 | * |
| 15 | * Please obtain a copy of the License at |
| 16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. |
| 17 | * |
| 18 | * The Original Code and all software distributed under the License are |
| 19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER |
| 20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
| 21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, |
| 22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
| 23 | * Please see the License for the specific language governing rights and |
| 24 | * limitations under the License. |
| 25 | * |
| 26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ |
| 27 | */ |
| 28 | /* Copyright (c) 1995 NeXT Computer, Inc. All Rights Reserved */ |
| 29 | /* |
| 30 | * Copyright (c) 1982, 1986, 1988, 1991, 1993 |
| 31 | * The Regents of the University of California. All rights reserved. |
| 32 | * |
| 33 | * Redistribution and use in source and binary forms, with or without |
| 34 | * modification, are permitted provided that the following conditions |
| 35 | * are met: |
| 36 | * 1. Redistributions of source code must retain the above copyright |
| 37 | * notice, this list of conditions and the following disclaimer. |
| 38 | * 2. Redistributions in binary form must reproduce the above copyright |
| 39 | * notice, this list of conditions and the following disclaimer in the |
| 40 | * documentation and/or other materials provided with the distribution. |
| 41 | * 3. All advertising materials mentioning features or use of this software |
| 42 | * must display the following acknowledgement: |
| 43 | * This product includes software developed by the University of |
| 44 | * California, Berkeley and its contributors. |
| 45 | * 4. Neither the name of the University nor the names of its contributors |
| 46 | * may be used to endorse or promote products derived from this software |
| 47 | * without specific prior written permission. |
| 48 | * |
| 49 | * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND |
| 50 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 51 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 52 | * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE |
| 53 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
| 54 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
| 55 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| 56 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
| 57 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
| 58 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
| 59 | * SUCH DAMAGE. |
| 60 | * |
| 61 | * @(#)uipc_mbuf.c 8.2 (Berkeley) 1/4/94 |
| 62 | */ |
| 63 | /* |
| 64 | * NOTICE: This file was modified by SPARTA, Inc. in 2005 to introduce |
| 65 | * support for mandatory and extensible security protections. This notice |
| 66 | * is included in support of clause 2.2 (b) of the Apple Public License, |
| 67 | * Version 2.0. |
| 68 | */ |
| 69 | |
| 70 | #include <ptrauth.h> |
| 71 | |
| 72 | #include <sys/param.h> |
| 73 | #include <sys/systm.h> |
| 74 | #include <sys/malloc.h> |
| 75 | #include <sys/mbuf.h> |
| 76 | #include <sys/kernel.h> |
| 77 | #include <sys/sysctl.h> |
| 78 | #include <sys/syslog.h> |
| 79 | #include <sys/protosw.h> |
| 80 | #include <sys/domain.h> |
| 81 | #include <sys/queue.h> |
| 82 | #include <sys/proc.h> |
| 83 | #include <sys/filedesc.h> |
| 84 | #include <sys/file_internal.h> |
| 85 | |
| 86 | #include <dev/random/randomdev.h> |
| 87 | |
| 88 | #include <kern/kern_types.h> |
| 89 | #include <kern/simple_lock.h> |
| 90 | #include <kern/queue.h> |
| 91 | #include <kern/sched_prim.h> |
| 92 | #include <kern/backtrace.h> |
| 93 | #include <kern/percpu.h> |
| 94 | #include <kern/zalloc.h> |
| 95 | |
| 96 | #include <libkern/OSDebug.h> |
| 97 | #include <libkern/libkern.h> |
| 98 | |
| 99 | #include <os/log.h> |
| 100 | #include <os/ptrtools.h> |
| 101 | |
| 102 | #include <IOKit/IOMapper.h> |
| 103 | |
| 104 | #include <machine/limits.h> |
| 105 | #include <machine/machine_routines.h> |
| 106 | |
| 107 | #if CONFIG_MBUF_MCACHE |
| 108 | #include <sys/mcache.h> |
| 109 | #endif /* CONFIG_MBUF_MCACHE */ |
| 110 | #include <net/ntstat.h> |
| 111 | |
| 112 | #if INET |
| 113 | extern int dump_tcp_reass_qlen(char *, int); |
| 114 | extern int tcp_reass_qlen_space(struct socket *); |
| 115 | #endif /* INET */ |
| 116 | |
| 117 | #if MPTCP |
| 118 | extern int dump_mptcp_reass_qlen(char *, int); |
| 119 | #endif /* MPTCP */ |
| 120 | |
| 121 | |
| 122 | #if NETWORKING |
| 123 | extern int dlil_dump_top_if_qlen(char *, int); |
| 124 | #endif /* NETWORKING */ |
| 125 | |
| 126 | #if CONFIG_MBUF_MCACHE |
| 127 | /* |
| 128 | * MBUF IMPLEMENTATION NOTES. |
| 129 | * |
| 130 | * There is a total of 5 per-CPU caches: |
| 131 | * |
| 132 | * MC_MBUF: |
| 133 | * This is a cache of rudimentary objects of _MSIZE in size; each |
| 134 | * object represents an mbuf structure. This cache preserves only |
| 135 | * the m_type field of the mbuf during its transactions. |
| 136 | * |
| 137 | * MC_CL: |
| 138 | * This is a cache of rudimentary objects of MCLBYTES in size; each |
| 139 | * object represents a mcluster structure. This cache does not |
| 140 | * preserve the contents of the objects during its transactions. |
| 141 | * |
| 142 | * MC_BIGCL: |
| 143 | * This is a cache of rudimentary objects of MBIGCLBYTES in size; each |
| 144 | * object represents a mbigcluster structure. This cache does not |
| 145 | * preserve the contents of the objects during its transaction. |
| 146 | * |
| 147 | * MC_MBUF_CL: |
| 148 | * This is a cache of mbufs each having a cluster attached to it. |
| 149 | * It is backed by MC_MBUF and MC_CL rudimentary caches. Several |
| 150 | * fields of the mbuf related to the external cluster are preserved |
| 151 | * during transactions. |
| 152 | * |
| 153 | * MC_MBUF_BIGCL: |
| 154 | * This is a cache of mbufs each having a big cluster attached to it. |
| 155 | * It is backed by MC_MBUF and MC_BIGCL rudimentary caches. Several |
| 156 | * fields of the mbuf related to the external cluster are preserved |
| 157 | * during transactions. |
| 158 | * |
| 159 | * OBJECT ALLOCATION: |
| 160 | * |
| 161 | * Allocation requests are handled first at the per-CPU (mcache) layer |
| 162 | * before falling back to the slab layer. Performance is optimal when |
| 163 | * the request is satisfied at the CPU layer because global data/lock |
| 164 | * never gets accessed. When the slab layer is entered for allocation, |
| 165 | * the slab freelist will be checked first for available objects before |
| 166 | * the VM backing store is invoked. Slab layer operations are serialized |
| 167 | * for all of the caches as the mbuf global lock is held most of the time. |
| 168 | * Allocation paths are different depending on the class of objects: |
| 169 | * |
| 170 | * a. Rudimentary object: |
| 171 | * |
| 172 | * { m_get_common(), m_clattach(), m_mclget(), |
| 173 | * m_mclalloc(), m_bigalloc(), m_copym_with_hdrs(), |
| 174 | * composite object allocation } |
| 175 | * | ^ |
| 176 | * | | |
| 177 | * | +-----------------------+ |
| 178 | * v | |
| 179 | * mcache_alloc/mcache_alloc_ext() mbuf_slab_audit() |
| 180 | * | ^ |
| 181 | * v | |
| 182 | * [CPU cache] -------> (found?) -------+ |
| 183 | * | | |
| 184 | * v | |
| 185 | * mbuf_slab_alloc() | |
| 186 | * | | |
| 187 | * v | |
| 188 | * +---------> [freelist] -------> (found?) -------+ |
| 189 | * | | |
| 190 | * | v |
| 191 | * | m_clalloc() |
| 192 | * | | |
| 193 | * | v |
| 194 | * +---<<---- kmem_mb_alloc() |
| 195 | * |
| 196 | * b. Composite object: |
| 197 | * |
| 198 | * { m_getpackets_internal(), m_allocpacket_internal() } |
| 199 | * | ^ |
| 200 | * | | |
| 201 | * | +------ (done) ---------+ |
| 202 | * v | |
| 203 | * mcache_alloc/mcache_alloc_ext() mbuf_cslab_audit() |
| 204 | * | ^ |
| 205 | * v | |
| 206 | * [CPU cache] -------> (found?) -------+ |
| 207 | * | | |
| 208 | * v | |
| 209 | * mbuf_cslab_alloc() | |
| 210 | * | | |
| 211 | * v | |
| 212 | * [freelist] -------> (found?) -------+ |
| 213 | * | | |
| 214 | * v | |
| 215 | * (rudimentary object) | |
| 216 | * mcache_alloc/mcache_alloc_ext() ------>>-----+ |
| 217 | * |
| 218 | * Auditing notes: If auditing is enabled, buffers will be subjected to |
| 219 | * integrity checks by the audit routine. This is done by verifying their |
| 220 | * contents against DEADBEEF (free) pattern before returning them to caller. |
| 221 | * As part of this step, the routine will also record the transaction and |
| 222 | * pattern-fill the buffers with BADDCAFE (uninitialized) pattern. It will |
| 223 | * also restore any constructed data structure fields if necessary. |
| 224 | * |
| 225 | * OBJECT DEALLOCATION: |
| 226 | * |
| 227 | * Freeing an object simply involves placing it into the CPU cache; this |
| 228 | * pollutes the cache to benefit subsequent allocations. The slab layer |
| 229 | * will only be entered if the object is to be purged out of the cache. |
| 230 | * During normal operations, this happens only when the CPU layer resizes |
| 231 | * its bucket while it's adjusting to the allocation load. Deallocation |
| 232 | * paths are different depending on the class of objects: |
| 233 | * |
| 234 | * a. Rudimentary object: |
| 235 | * |
| 236 | * { m_free(), m_freem_list(), composite object deallocation } |
| 237 | * | ^ |
| 238 | * | | |
| 239 | * | +------ (done) ---------+ |
| 240 | * v | |
| 241 | * mcache_free/mcache_free_ext() | |
| 242 | * | | |
| 243 | * v | |
| 244 | * mbuf_slab_audit() | |
| 245 | * | | |
| 246 | * v | |
| 247 | * [CPU cache] ---> (not purging?) -----+ |
| 248 | * | | |
| 249 | * v | |
| 250 | * mbuf_slab_free() | |
| 251 | * | | |
| 252 | * v | |
| 253 | * [freelist] ----------->>------------+ |
| 254 | * (objects get purged to VM only on demand) |
| 255 | * |
| 256 | * b. Composite object: |
| 257 | * |
| 258 | * { m_free(), m_freem_list() } |
| 259 | * | ^ |
| 260 | * | | |
| 261 | * | +------ (done) ---------+ |
| 262 | * v | |
| 263 | * mcache_free/mcache_free_ext() | |
| 264 | * | | |
| 265 | * v | |
| 266 | * mbuf_cslab_audit() | |
| 267 | * | | |
| 268 | * v | |
| 269 | * [CPU cache] ---> (not purging?) -----+ |
| 270 | * | | |
| 271 | * v | |
| 272 | * mbuf_cslab_free() | |
| 273 | * | | |
| 274 | * v | |
| 275 | * [freelist] ---> (not purging?) -----+ |
| 276 | * | | |
| 277 | * v | |
| 278 | * (rudimentary object) | |
| 279 | * mcache_free/mcache_free_ext() ------->>------+ |
| 280 | * |
| 281 | * Auditing notes: If auditing is enabled, the audit routine will save |
| 282 | * any constructed data structure fields (if necessary) before filling the |
| 283 | * contents of the buffers with DEADBEEF (free) pattern and recording the |
| 284 | * transaction. Buffers that are freed (whether at CPU or slab layer) are |
| 285 | * expected to contain the free pattern. |
| 286 | * |
| 287 | * DEBUGGING: |
| 288 | * |
| 289 | * Debugging can be enabled by adding "mbuf_debug=0x3" to boot-args; this |
| 290 | * translates to the mcache flags (MCF_VERIFY | MCF_AUDIT). Additionally, |
| 291 | * the CPU layer cache can be disabled by setting the MCF_NOCPUCACHE flag, |
| 292 | * i.e. modify the boot argument parameter to "mbuf_debug=0x13". Leak |
| 293 | * detection may also be disabled by setting the MCF_NOLEAKLOG flag, e.g. |
| 294 | * "mbuf_debug=0x113". Note that debugging consumes more CPU and memory. |
| 295 | * |
| 296 | * Each object is associated with exactly one mcache_audit_t structure that |
| 297 | * contains the information related to its last buffer transaction. Given |
| 298 | * an address of an object, the audit structure can be retrieved by finding |
| 299 | * the position of the object relevant to the base address of the cluster: |
| 300 | * |
| 301 | * +------------+ +=============+ |
| 302 | * | mbuf addr | | mclaudit[i] | |
| 303 | * +------------+ +=============+ |
| 304 | * | | cl_audit[0] | |
| 305 | * i = MTOBG(addr) +-------------+ |
| 306 | * | +-----> | cl_audit[1] | -----> mcache_audit_t |
| 307 | * b = BGTOM(i) | +-------------+ |
| 308 | * | | | ... | |
| 309 | * x = MCLIDX(b, addr) | +-------------+ |
| 310 | * | | | cl_audit[7] | |
| 311 | * +-----------------+ +-------------+ |
| 312 | * (e.g. x == 1) |
| 313 | * |
| 314 | * The mclaudit[] array is allocated at initialization time, but its contents |
| 315 | * get populated when the corresponding cluster is created. Because a page |
| 316 | * can be turned into NMBPG number of mbufs, we preserve enough space for the |
| 317 | * mbufs so that there is a 1-to-1 mapping between them. A page that never |
| 318 | * gets (or has not yet) turned into mbufs will use only cl_audit[0] with the |
| 319 | * remaining entries unused. For 16KB cluster, only one entry from the first |
| 320 | * page is allocated and used for the entire object. |
| 321 | */ |
| 322 | #else |
| 323 | /* |
| 324 | * MBUF IMPLEMENTATION NOTES (using zalloc). |
| 325 | * |
| 326 | * There are a total of 4 zones and 3 zcaches. |
| 327 | * |
| 328 | * MC_MBUF: |
| 329 | * This is a zone of rudimentary objects of _MSIZE in size; each |
| 330 | * object represents an mbuf structure. This cache preserves only |
| 331 | * the m_type field of the mbuf during its transactions. |
| 332 | * |
| 333 | * MC_CL: |
| 334 | * This is a zone of rudimentary objects of MCLBYTES in size; each |
| 335 | * object represents a mcluster structure. This cache does not |
| 336 | * preserve the contents of the objects during its transactions. |
| 337 | * |
| 338 | * MC_BIGCL: |
| 339 | * This is a zone of rudimentary objects of MBIGCLBYTES in size; each |
| 340 | * object represents a mbigcluster structure. This cache does not |
| 341 | * preserve the contents of the objects during its transaction. |
| 342 | * |
| 343 | * MC_16KCL: |
| 344 | * This is a zone of rudimentary objects of M16KCLBYTES in size; each |
| 345 | * object represents a m16kcluster structure. This cache does not |
| 346 | * preserve the contents of the objects during its transaction. |
| 347 | * |
| 348 | * MC_MBUF_CL: |
| 349 | * This is a cache of mbufs each having a cluster attached to it. |
| 350 | * It is backed by MC_MBUF and MC_CL rudimentary caches. Several |
| 351 | * fields of the mbuf related to the external cluster are preserved |
| 352 | * during transactions. |
| 353 | * |
| 354 | * MC_MBUF_BIGCL: |
| 355 | * This is a cache of mbufs each having a big cluster attached to it. |
| 356 | * It is backed by MC_MBUF and MC_BIGCL rudimentary caches. Several |
| 357 | * fields of the mbuf related to the external cluster are preserved |
| 358 | * during transactions. |
| 359 | * |
| 360 | * MC_MBUF_16KCL: |
| 361 | * This is a cache of mbufs each having a big cluster attached to it. |
| 362 | * It is backed by MC_MBUF and MC_16KCL rudimentary caches. Several |
| 363 | * fields of the mbuf related to the external cluster are preserved |
| 364 | * during transactions. |
| 365 | * |
| 366 | * OBJECT ALLOCATION: |
| 367 | * |
| 368 | * Allocation requests are handled first at the zalloc per-CPU layer |
| 369 | * before falling back to the zalloc depot. Performance is optimal when |
| 370 | * the request is satisfied at the CPU layer. zalloc has an additional |
| 371 | * overflow layer called the depot, not pictured in the diagram below. |
| 372 | * |
| 373 | * Allocation paths are different depending on the class of objects: |
| 374 | * |
| 375 | * a. Rudimentary object: |
| 376 | * |
| 377 | * { m_get_common(), m_clattach(), m_mclget(), |
| 378 | * m_mclalloc(), m_bigalloc(), m_copym_with_hdrs(), |
| 379 | * composite object allocation } |
| 380 | * | ^ |
| 381 | * | | |
| 382 | * | +------- (done) --------+ |
| 383 | * v | |
| 384 | * zalloc_flags/zalloc_n() KASAN |
| 385 | * | ^ |
| 386 | * v | |
| 387 | * +----> [zalloc per-CPU cache] -----> (found?) --+ |
| 388 | * | | | |
| 389 | * | v | |
| 390 | * | [zalloc recirculation layer] --> (found?) ---+ |
| 391 | * | | |
| 392 | * | v |
| 393 | * +--<<-- [zone backing store] |
| 394 | * |
| 395 | * b. Composite object: |
| 396 | * |
| 397 | * { m_getpackets_internal(), m_allocpacket_internal() } |
| 398 | * | ^ |
| 399 | * | | |
| 400 | * | +------ (done) ---------+ |
| 401 | * v | |
| 402 | * mz_composite_alloc() KASAN |
| 403 | * | ^ |
| 404 | * v | |
| 405 | * zcache_alloc_n() | |
| 406 | * | | |
| 407 | * v | |
| 408 | * [zalloc per-CPU cache] --> mark_valid() ---+ |
| 409 | * | | |
| 410 | * v | |
| 411 | * [zalloc recirculation layer] -> mark_valid() -+ |
| 412 | * | | |
| 413 | * v | |
| 414 | * mz_composite_build() | |
| 415 | * | | |
| 416 | * v | |
| 417 | * (rudimentary objects) | |
| 418 | * zalloc_id() ---------------->>-----+ |
| 419 | * |
| 420 | * Auditing notes: If KASAN enabled, buffers will be subjected to |
| 421 | * integrity checks by the AddressSanitizer. |
| 422 | * |
| 423 | * OBJECT DEALLOCATION: |
| 424 | * |
| 425 | * Freeing an object simply involves placing it into the CPU cache; this |
| 426 | * pollutes the cache to benefit subsequent allocations. The depot |
| 427 | * will only be entered if the object is to be purged out of the cache. |
| 428 | * Objects may be purged based on the overall memory pressure or |
| 429 | * during zone garbage collection. |
| 430 | * To improve performance, objects are not zero-filled when freed |
| 431 | * as it's custom for other zalloc zones. |
| 432 | * |
| 433 | * Deallocation paths are different depending on the class of objects: |
| 434 | * |
| 435 | * a. Rudimentary object: |
| 436 | * |
| 437 | * { m_free(), m_freem_list(), composite object deallocation } |
| 438 | * | ^ |
| 439 | * | | |
| 440 | * | +------ (done) ---------+ |
| 441 | * v | |
| 442 | * zfree_nozero() | |
| 443 | * | | |
| 444 | * v | |
| 445 | * KASAN | |
| 446 | * | | |
| 447 | * v | |
| 448 | * [zalloc per-CPU cache] -> (not purging?) --+ |
| 449 | * | | |
| 450 | * v | |
| 451 | * [zalloc recirculation layer] --->>----------+ |
| 452 | * |
| 453 | * |
| 454 | * b. Composite object: |
| 455 | * |
| 456 | * { m_free(), m_freem_list() } |
| 457 | * | ^ |
| 458 | * | | |
| 459 | * | +------ (done) ---------+ |
| 460 | * v | |
| 461 | * mz_composite_free() | |
| 462 | * | | |
| 463 | * v | |
| 464 | * zcache_free_n() | |
| 465 | * | | |
| 466 | * v | |
| 467 | * KASAN | |
| 468 | * | | |
| 469 | * v | |
| 470 | * [zalloc per-CPU cache] -> mark_invalid() --+ |
| 471 | * | | |
| 472 | * v | |
| 473 | * mz_composite_destroy() | |
| 474 | * | | |
| 475 | * v | |
| 476 | * (rudimentary object) | |
| 477 | * zfree_nozero() -------------->>------+ |
| 478 | * |
| 479 | * Auditing notes: If KASAN enabled, buffers will be subjected to |
| 480 | * integrity checks by the AddressSanitizer. |
| 481 | * |
| 482 | * DEBUGGING: |
| 483 | * |
| 484 | * Debugging mbufs can be done by booting a KASAN enabled kernel. |
| 485 | */ |
| 486 | |
| 487 | #endif /* CONFIG_MBUF_MCACHE */ |
| 488 | |
| 489 | /* TODO: should be in header file */ |
| 490 | /* kernel translater */ |
| 491 | extern ppnum_t pmap_find_phys(pmap_t pmap, addr64_t va); |
| 492 | extern vm_map_t mb_map; /* special map */ |
| 493 | |
| 494 | #if CONFIG_MBUF_MCACHE |
| 495 | static uint32_t mb_kmem_contig_failed; |
| 496 | static uint32_t mb_kmem_failed; |
| 497 | static uint32_t mb_kmem_one_failed; |
| 498 | /* Timestamp of allocation failures. */ |
| 499 | static uint64_t mb_kmem_contig_failed_ts; |
| 500 | static uint64_t mb_kmem_failed_ts; |
| 501 | static uint64_t mb_kmem_one_failed_ts; |
| 502 | static uint64_t mb_kmem_contig_failed_size; |
| 503 | static uint64_t mb_kmem_failed_size; |
| 504 | static uint32_t mb_kmem_stats[6]; |
| 505 | #endif /* CONFIG_MBUF_MCACHE */ |
| 506 | |
| 507 | /* Global lock */ |
| 508 | static LCK_GRP_DECLARE(mbuf_mlock_grp, "mbuf" ); |
| 509 | static LCK_MTX_DECLARE(mbuf_mlock_data, &mbuf_mlock_grp); |
| 510 | static lck_mtx_t *const mbuf_mlock = &mbuf_mlock_data; |
| 511 | |
| 512 | #if CONFIG_MBUF_MCACHE |
| 513 | /* Back-end (common) layer */ |
| 514 | static uint64_t mb_expand_cnt; |
| 515 | static uint64_t mb_expand_cl_cnt; |
| 516 | static uint64_t mb_expand_cl_total; |
| 517 | static uint64_t mb_expand_bigcl_cnt; |
| 518 | static uint64_t mb_expand_bigcl_total; |
| 519 | static uint64_t mb_expand_16kcl_cnt; |
| 520 | static uint64_t mb_expand_16kcl_total; |
| 521 | static boolean_t mbuf_worker_needs_wakeup; /* wait channel for mbuf worker */ |
| 522 | static uint32_t mbuf_worker_run_cnt; |
| 523 | static uint64_t mbuf_worker_last_runtime; |
| 524 | static uint64_t mbuf_drain_last_runtime; |
| 525 | static int mbuf_worker_ready; /* worker thread is runnable */ |
| 526 | static unsigned int ncpu; /* number of CPUs */ |
| 527 | static ppnum_t *mcl_paddr; /* Array of cluster physical addresses */ |
| 528 | static ppnum_t mcl_pages; /* Size of array (# physical pages) */ |
| 529 | static ppnum_t mcl_paddr_base; /* Handle returned by IOMapper::iovmAlloc() */ |
| 530 | static mcache_t *ref_cache; /* Cache of cluster reference & flags */ |
| 531 | static mcache_t *mcl_audit_con_cache; /* Audit contents cache */ |
| 532 | unsigned int mbuf_debug; /* patchable mbuf mcache flags */ |
| 533 | #endif /* CONFIG_MBUF_DEBUG */ |
| 534 | static unsigned int mb_normalized; /* number of packets "normalized" */ |
| 535 | |
| 536 | extern unsigned int mb_tag_mbuf; |
| 537 | |
| 538 | #define MB_GROWTH_AGGRESSIVE 1 /* Threshold: 1/2 of total */ |
| 539 | #define MB_GROWTH_NORMAL 2 /* Threshold: 3/4 of total */ |
| 540 | |
| 541 | typedef enum { |
| 542 | MC_MBUF = 0, /* Regular mbuf */ |
| 543 | MC_CL, /* Cluster */ |
| 544 | MC_BIGCL, /* Large (4KB) cluster */ |
| 545 | MC_16KCL, /* Jumbo (16KB) cluster */ |
| 546 | MC_MBUF_CL, /* mbuf + cluster */ |
| 547 | MC_MBUF_BIGCL, /* mbuf + large (4KB) cluster */ |
| 548 | MC_MBUF_16KCL /* mbuf + jumbo (16KB) cluster */ |
| 549 | } mbuf_class_t; |
| 550 | |
| 551 | #define MBUF_CLASS_MIN MC_MBUF |
| 552 | #define MBUF_CLASS_MAX MC_MBUF_16KCL |
| 553 | #define MBUF_CLASS_LAST MC_16KCL |
| 554 | #define MBUF_CLASS_VALID(c) \ |
| 555 | ((int)(c) >= MBUF_CLASS_MIN && (int)(c) <= MBUF_CLASS_MAX) |
| 556 | #define MBUF_CLASS_COMPOSITE(c) \ |
| 557 | ((int)(c) > MBUF_CLASS_LAST) |
| 558 | |
| 559 | |
| 560 | /* |
| 561 | * mbuf specific mcache allocation request flags. |
| 562 | */ |
| 563 | #define MCR_COMP MCR_USR1 /* for MC_MBUF_{CL,BIGCL,16KCL} caches */ |
| 564 | |
| 565 | /* |
| 566 | * Per-cluster slab structure. |
| 567 | * |
| 568 | * A slab is a cluster control structure that contains one or more object |
| 569 | * chunks; the available chunks are chained in the slab's freelist (sl_head). |
| 570 | * Each time a chunk is taken out of the slab, the slab's reference count |
| 571 | * gets incremented. When all chunks have been taken out, the empty slab |
| 572 | * gets removed (SLF_DETACHED) from the class's slab list. A chunk that is |
| 573 | * returned to a slab causes the slab's reference count to be decremented; |
| 574 | * it also causes the slab to be reinserted back to class's slab list, if |
| 575 | * it's not already done. |
| 576 | * |
| 577 | * Compartmentalizing of the object chunks into slabs allows us to easily |
| 578 | * merge one or more slabs together when the adjacent slabs are idle, as |
| 579 | * well as to convert or move a slab from one class to another; e.g. the |
| 580 | * mbuf cluster slab can be converted to a regular cluster slab when all |
| 581 | * mbufs in the slab have been freed. |
| 582 | * |
| 583 | * A slab may also span across multiple clusters for chunks larger than |
| 584 | * a cluster's size. In this case, only the slab of the first cluster is |
| 585 | * used. The rest of the slabs are marked with SLF_PARTIAL to indicate |
| 586 | * that they are part of the larger slab. |
| 587 | * |
| 588 | * Each slab controls a page of memory. |
| 589 | */ |
| 590 | typedef struct mcl_slab { |
| 591 | struct mcl_slab *sl_next; /* neighboring slab */ |
| 592 | u_int8_t sl_class; /* controlling mbuf class */ |
| 593 | int8_t sl_refcnt; /* outstanding allocations */ |
| 594 | int8_t sl_chunks; /* chunks (bufs) in this slab */ |
| 595 | u_int16_t sl_flags; /* slab flags (see below) */ |
| 596 | u_int16_t sl_len; /* slab length */ |
| 597 | void *sl_base; /* base of allocated memory */ |
| 598 | void *sl_head; /* first free buffer */ |
| 599 | TAILQ_ENTRY(mcl_slab) sl_link; /* next/prev slab on freelist */ |
| 600 | } mcl_slab_t; |
| 601 | |
| 602 | #define SLF_MAPPED 0x0001 /* backed by a mapped page */ |
| 603 | #define SLF_PARTIAL 0x0002 /* part of another slab */ |
| 604 | #define SLF_DETACHED 0x0004 /* not in slab freelist */ |
| 605 | |
| 606 | /* |
| 607 | * The array of slabs are broken into groups of arrays per 1MB of kernel |
| 608 | * memory to reduce the footprint. Each group is allocated on demand |
| 609 | * whenever a new piece of memory mapped in from the VM crosses the 1MB |
| 610 | * boundary. |
| 611 | */ |
| 612 | #define NSLABSPMB ((1 << MBSHIFT) >> PAGE_SHIFT) |
| 613 | |
| 614 | typedef struct mcl_slabg { |
| 615 | mcl_slab_t *slg_slab; /* group of slabs */ |
| 616 | } mcl_slabg_t; |
| 617 | |
| 618 | /* |
| 619 | * Number of slabs needed to control a 16KB cluster object. |
| 620 | */ |
| 621 | #define NSLABSP16KB (M16KCLBYTES >> PAGE_SHIFT) |
| 622 | |
| 623 | #if CONFIG_MBUF_MCACHE |
| 624 | /* |
| 625 | * Per-cluster audit structure. |
| 626 | */ |
| 627 | typedef struct { |
| 628 | mcache_audit_t **cl_audit; /* array of audits */ |
| 629 | } mcl_audit_t; |
| 630 | |
| 631 | typedef struct { |
| 632 | struct thread *msa_thread; /* thread doing transaction */ |
| 633 | struct thread *msa_pthread; /* previous transaction thread */ |
| 634 | uint32_t msa_tstamp; /* transaction timestamp (ms) */ |
| 635 | uint32_t msa_ptstamp; /* prev transaction timestamp (ms) */ |
| 636 | uint16_t msa_depth; /* pc stack depth */ |
| 637 | uint16_t msa_pdepth; /* previous transaction pc stack */ |
| 638 | void *msa_stack[MCACHE_STACK_DEPTH]; |
| 639 | void *msa_pstack[MCACHE_STACK_DEPTH]; |
| 640 | } mcl_scratch_audit_t; |
| 641 | |
| 642 | typedef struct { |
| 643 | /* |
| 644 | * Size of data from the beginning of an mbuf that covers m_hdr, |
| 645 | * pkthdr and m_ext structures. If auditing is enabled, we allocate |
| 646 | * a shadow mbuf structure of this size inside each audit structure, |
| 647 | * and the contents of the real mbuf gets copied into it when the mbuf |
| 648 | * is freed. This allows us to pattern-fill the mbuf for integrity |
| 649 | * check, and to preserve any constructed mbuf fields (e.g. mbuf + |
| 650 | * cluster cache case). Note that we don't save the contents of |
| 651 | * clusters when they are freed; we simply pattern-fill them. |
| 652 | */ |
| 653 | u_int8_t sc_mbuf[(_MSIZE - _MHLEN) + sizeof(_m_ext_t)]; |
| 654 | mcl_scratch_audit_t sc_scratch __attribute__((aligned(8))); |
| 655 | } mcl_saved_contents_t; |
| 656 | |
| 657 | #define AUDIT_CONTENTS_SIZE (sizeof (mcl_saved_contents_t)) |
| 658 | |
| 659 | #define MCA_SAVED_MBUF_PTR(_mca) \ |
| 660 | ((struct mbuf *)(void *)((mcl_saved_contents_t *) \ |
| 661 | (_mca)->mca_contents)->sc_mbuf) |
| 662 | #define MCA_SAVED_MBUF_SIZE \ |
| 663 | (sizeof (((mcl_saved_contents_t *)0)->sc_mbuf)) |
| 664 | #define MCA_SAVED_SCRATCH_PTR(_mca) \ |
| 665 | (&((mcl_saved_contents_t *)(_mca)->mca_contents)->sc_scratch) |
| 666 | |
| 667 | /* |
| 668 | * mbuf specific mcache audit flags |
| 669 | */ |
| 670 | #define MB_INUSE 0x01 /* object has not been returned to slab */ |
| 671 | #define MB_COMP_INUSE 0x02 /* object has not been returned to cslab */ |
| 672 | #define MB_SCVALID 0x04 /* object has valid saved contents */ |
| 673 | |
| 674 | /* |
| 675 | * Each of the following two arrays hold up to nmbclusters elements. |
| 676 | */ |
| 677 | static mcl_audit_t *mclaudit; /* array of cluster audit information */ |
| 678 | static unsigned int maxclaudit; /* max # of entries in audit table */ |
| 679 | static mcl_slabg_t **slabstbl; /* cluster slabs table */ |
| 680 | static unsigned int maxslabgrp; /* max # of entries in slabs table */ |
| 681 | static unsigned int slabgrp; /* # of entries in slabs table */ |
| 682 | #endif /* CONFIG_MBUF_MCACHE */ |
| 683 | |
| 684 | /* Globals */ |
| 685 | int nclusters; /* # of clusters for non-jumbo (legacy) sizes */ |
| 686 | int njcl; /* # of clusters for jumbo sizes */ |
| 687 | int njclbytes; /* size of a jumbo cluster */ |
| 688 | unsigned char *mbutl; /* first mapped cluster address */ |
| 689 | unsigned char *embutl; /* ending virtual address of mclusters */ |
| 690 | int max_linkhdr; /* largest link-level header */ |
| 691 | int max_protohdr; /* largest protocol header */ |
| 692 | int max_hdr; /* largest link+protocol header */ |
| 693 | int max_datalen; /* MHLEN - max_hdr */ |
| 694 | |
| 695 | #if CONFIG_MBUF_MCACHE |
| 696 | static boolean_t mclverify; /* debug: pattern-checking */ |
| 697 | static boolean_t mcltrace; /* debug: stack tracing */ |
| 698 | static boolean_t mclfindleak; /* debug: leak detection */ |
| 699 | static boolean_t mclexpleak; /* debug: expose leak info to user space */ |
| 700 | |
| 701 | static struct timeval mb_start; /* beginning of time */ |
| 702 | |
| 703 | /* mbuf leak detection variables */ |
| 704 | static struct mleak_table mleak_table; |
| 705 | static mleak_stat_t *mleak_stat; |
| 706 | |
| 707 | #define MLEAK_STAT_SIZE(n) \ |
| 708 | __builtin_offsetof(mleak_stat_t, ml_trace[n]) |
| 709 | |
| 710 | struct mallocation { |
| 711 | mcache_obj_t *element; /* the alloc'ed element, NULL if unused */ |
| 712 | u_int32_t trace_index; /* mtrace index for corresponding backtrace */ |
| 713 | u_int32_t count; /* How many objects were requested */ |
| 714 | u_int64_t hitcount; /* for determining hash effectiveness */ |
| 715 | }; |
| 716 | |
| 717 | struct mtrace { |
| 718 | u_int64_t collisions; |
| 719 | u_int64_t hitcount; |
| 720 | u_int64_t allocs; |
| 721 | u_int64_t depth; |
| 722 | uintptr_t addr[MLEAK_STACK_DEPTH]; |
| 723 | }; |
| 724 | |
| 725 | /* Size must be a power of two for the zhash to be able to just mask off bits */ |
| 726 | #define MLEAK_ALLOCATION_MAP_NUM 512 |
| 727 | #define MLEAK_TRACE_MAP_NUM 256 |
| 728 | |
| 729 | /* |
| 730 | * Sample factor for how often to record a trace. This is overwritable |
| 731 | * by the boot-arg mleak_sample_factor. |
| 732 | */ |
| 733 | #define MLEAK_SAMPLE_FACTOR 500 |
| 734 | |
| 735 | /* |
| 736 | * Number of top leakers recorded. |
| 737 | */ |
| 738 | #define MLEAK_NUM_TRACES 5 |
| 739 | |
| 740 | #define MB_LEAK_SPACING_64 " " |
| 741 | #define MB_LEAK_SPACING_32 " " |
| 742 | |
| 743 | |
| 744 | #define MB_LEAK_HDR_32 "\n\ |
| 745 | trace [1] trace [2] trace [3] trace [4] trace [5] \n\ |
| 746 | ---------- ---------- ---------- ---------- ---------- \n\ |
| 747 | " |
| 748 | |
| 749 | #define MB_LEAK_HDR_64 "\n\ |
| 750 | trace [1] trace [2] trace [3] \ |
| 751 | trace [4] trace [5] \n\ |
| 752 | ------------------ ------------------ ------------------ \ |
| 753 | ------------------ ------------------ \n\ |
| 754 | " |
| 755 | |
| 756 | static uint32_t mleak_alloc_buckets = MLEAK_ALLOCATION_MAP_NUM; |
| 757 | static uint32_t mleak_trace_buckets = MLEAK_TRACE_MAP_NUM; |
| 758 | |
| 759 | /* Hashmaps of allocations and their corresponding traces */ |
| 760 | static struct mallocation *mleak_allocations; |
| 761 | static struct mtrace *mleak_traces; |
| 762 | static struct mtrace *mleak_top_trace[MLEAK_NUM_TRACES]; |
| 763 | |
| 764 | /* Lock to protect mleak tables from concurrent modification */ |
| 765 | static LCK_GRP_DECLARE(mleak_lock_grp, "mleak_lock" ); |
| 766 | static LCK_MTX_DECLARE(mleak_lock_data, &mleak_lock_grp); |
| 767 | static lck_mtx_t *const mleak_lock = &mleak_lock_data; |
| 768 | |
| 769 | /* *Failed* large allocations. */ |
| 770 | struct mtracelarge { |
| 771 | uint64_t size; |
| 772 | uint64_t depth; |
| 773 | uintptr_t addr[MLEAK_STACK_DEPTH]; |
| 774 | }; |
| 775 | |
| 776 | #define MTRACELARGE_NUM_TRACES 5 |
| 777 | static struct mtracelarge mtracelarge_table[MTRACELARGE_NUM_TRACES]; |
| 778 | |
| 779 | static void mtracelarge_register(size_t size); |
| 780 | #endif /* CONFIG_MBUF_MCACHE */ |
| 781 | |
| 782 | /* Lock to protect the completion callback table */ |
| 783 | static LCK_GRP_DECLARE(mbuf_tx_compl_tbl_lck_grp, "mbuf_tx_compl_tbl" ); |
| 784 | LCK_RW_DECLARE(mbuf_tx_compl_tbl_lock, &mbuf_tx_compl_tbl_lck_grp); |
| 785 | |
| 786 | extern u_int32_t high_sb_max; |
| 787 | |
| 788 | /* The minimum number of objects that are allocated, to start. */ |
| 789 | #define MINCL 32 |
| 790 | #define MINBIGCL (MINCL >> 1) |
| 791 | #define MIN16KCL (MINCL >> 2) |
| 792 | |
| 793 | /* Low watermarks (only map in pages once free counts go below) */ |
| 794 | #define MBIGCL_LOWAT MINBIGCL |
| 795 | #define M16KCL_LOWAT MIN16KCL |
| 796 | |
| 797 | typedef struct { |
| 798 | mbuf_class_t mtbl_class; /* class type */ |
| 799 | #if CONFIG_MBUF_MCACHE |
| 800 | mcache_t *mtbl_cache; /* mcache for this buffer class */ |
| 801 | TAILQ_HEAD(mcl_slhead, mcl_slab) mtbl_slablist; /* slab list */ |
| 802 | mcache_obj_t *mtbl_cobjlist; /* composite objects freelist */ |
| 803 | #endif /* CONFIG_MBUF_MCACHE */ |
| 804 | mb_class_stat_t *mtbl_stats; /* statistics fetchable via sysctl */ |
| 805 | u_int32_t mtbl_maxsize; /* maximum buffer size */ |
| 806 | int mtbl_minlimit; /* minimum allowed */ |
| 807 | int mtbl_maxlimit; /* maximum allowed */ |
| 808 | u_int32_t mtbl_wantpurge; /* purge during next reclaim */ |
| 809 | uint32_t mtbl_avgtotal; /* average total on iOS */ |
| 810 | u_int32_t mtbl_expand; /* worker should expand the class */ |
| 811 | } mbuf_table_t; |
| 812 | |
| 813 | #define m_class(c) mbuf_table[c].mtbl_class |
| 814 | #if CONFIG_MBUF_MCACHE |
| 815 | #define m_cache(c) mbuf_table[c].mtbl_cache |
| 816 | #define m_slablist(c) mbuf_table[c].mtbl_slablist |
| 817 | #define m_cobjlist(c) mbuf_table[c].mtbl_cobjlist |
| 818 | #else |
| 819 | #define m_stats(c) mbuf_table[c].mtbl_stats |
| 820 | #endif /* CONFIG_MBUF_MCACHE */ |
| 821 | #define m_maxsize(c) mbuf_table[c].mtbl_maxsize |
| 822 | #define m_minlimit(c) mbuf_table[c].mtbl_minlimit |
| 823 | #define m_maxlimit(c) mbuf_table[c].mtbl_maxlimit |
| 824 | #define m_wantpurge(c) mbuf_table[c].mtbl_wantpurge |
| 825 | #define m_cname(c) mbuf_table[c].mtbl_stats->mbcl_cname |
| 826 | #define m_size(c) mbuf_table[c].mtbl_stats->mbcl_size |
| 827 | #define m_total(c) mbuf_table[c].mtbl_stats->mbcl_total |
| 828 | #define m_active(c) mbuf_table[c].mtbl_stats->mbcl_active |
| 829 | #define m_infree(c) mbuf_table[c].mtbl_stats->mbcl_infree |
| 830 | #define m_slab_cnt(c) mbuf_table[c].mtbl_stats->mbcl_slab_cnt |
| 831 | #define m_alloc_cnt(c) mbuf_table[c].mtbl_stats->mbcl_alloc_cnt |
| 832 | #define m_free_cnt(c) mbuf_table[c].mtbl_stats->mbcl_free_cnt |
| 833 | #define m_notified(c) mbuf_table[c].mtbl_stats->mbcl_notified |
| 834 | #define m_purge_cnt(c) mbuf_table[c].mtbl_stats->mbcl_purge_cnt |
| 835 | #define m_fail_cnt(c) mbuf_table[c].mtbl_stats->mbcl_fail_cnt |
| 836 | #define m_ctotal(c) mbuf_table[c].mtbl_stats->mbcl_ctotal |
| 837 | #define m_release_cnt(c) mbuf_table[c].mtbl_stats->mbcl_release_cnt |
| 838 | #define m_region_expand(c) mbuf_table[c].mtbl_expand |
| 839 | |
| 840 | static mbuf_table_t mbuf_table[] = { |
| 841 | #if CONFIG_MBUF_MCACHE |
| 842 | /* |
| 843 | * The caches for mbufs, regular clusters and big clusters. |
| 844 | * The average total values were based on data gathered by actual |
| 845 | * usage patterns on iOS. |
| 846 | */ |
| 847 | { MC_MBUF, NULL, TAILQ_HEAD_INITIALIZER(m_slablist(MC_MBUF)), |
| 848 | NULL, NULL, 0, 0, 0, 0, 3000, 0 }, |
| 849 | { MC_CL, NULL, TAILQ_HEAD_INITIALIZER(m_slablist(MC_CL)), |
| 850 | NULL, NULL, 0, 0, 0, 0, 2000, 0 }, |
| 851 | { MC_BIGCL, NULL, TAILQ_HEAD_INITIALIZER(m_slablist(MC_BIGCL)), |
| 852 | NULL, NULL, 0, 0, 0, 0, 1000, 0 }, |
| 853 | { MC_16KCL, NULL, TAILQ_HEAD_INITIALIZER(m_slablist(MC_16KCL)), |
| 854 | NULL, NULL, 0, 0, 0, 0, 200, 0 }, |
| 855 | /* |
| 856 | * The following are special caches; they serve as intermediate |
| 857 | * caches backed by the above rudimentary caches. Each object |
| 858 | * in the cache is an mbuf with a cluster attached to it. Unlike |
| 859 | * the above caches, these intermediate caches do not directly |
| 860 | * deal with the slab structures; instead, the constructed |
| 861 | * cached elements are simply stored in the freelists. |
| 862 | */ |
| 863 | { MC_MBUF_CL, NULL, { NULL, NULL }, NULL, NULL, 0, 0, 0, 0, 2000, 0 }, |
| 864 | { MC_MBUF_BIGCL, NULL, { NULL, NULL }, NULL, NULL, 0, 0, 0, 0, 1000, 0 }, |
| 865 | { MC_MBUF_16KCL, NULL, { NULL, NULL }, NULL, NULL, 0, 0, 0, 0, 200, 0 }, |
| 866 | #else |
| 867 | { .mtbl_class = MC_MBUF }, |
| 868 | { .mtbl_class = MC_CL }, |
| 869 | { .mtbl_class = MC_BIGCL }, |
| 870 | { .mtbl_class = MC_16KCL }, |
| 871 | { .mtbl_class = MC_MBUF_CL }, |
| 872 | { .mtbl_class = MC_MBUF_BIGCL }, |
| 873 | { .mtbl_class = MC_MBUF_16KCL }, |
| 874 | #endif /* CONFIG_MBUF_MCACHE */ |
| 875 | }; |
| 876 | |
| 877 | #define NELEM(a) (sizeof (a) / sizeof ((a)[0])) |
| 878 | |
| 879 | #if SKYWALK && CONFIG_MBUF_MCACHE |
| 880 | #define MC_THRESHOLD_SCALE_DOWN_FACTOR 2 |
| 881 | static unsigned int mc_threshold_scale_down_factor = |
| 882 | MC_THRESHOLD_SCALE_DOWN_FACTOR; |
| 883 | #endif /* SKYWALK */ |
| 884 | |
| 885 | #if CONFIG_MBUF_MCACHE |
| 886 | static uint32_t |
| 887 | m_avgtotal(mbuf_class_t c) |
| 888 | { |
| 889 | #if SKYWALK |
| 890 | return if_is_fsw_transport_netagent_enabled() ? |
| 891 | (mbuf_table[c].mtbl_avgtotal / mc_threshold_scale_down_factor) : |
| 892 | mbuf_table[c].mtbl_avgtotal; |
| 893 | #else /* !SKYWALK */ |
| 894 | return mbuf_table[c].mtbl_avgtotal; |
| 895 | #endif /* SKYWALK */ |
| 896 | } |
| 897 | #endif /* CONFIG_MBUF_MCACHE */ |
| 898 | |
| 899 | #if CONFIG_MBUF_MCACHE |
| 900 | static void *mb_waitchan = &mbuf_table; /* wait channel for all caches */ |
| 901 | static int mb_waiters; /* number of waiters */ |
| 902 | #endif /* CONFIG_MBUF_MCACHE */ |
| 903 | |
| 904 | #define MB_WDT_MAXTIME 10 /* # of secs before watchdog panic */ |
| 905 | #if CONFIG_MBUF_MCACHE |
| 906 | static struct timeval mb_wdtstart; /* watchdog start timestamp */ |
| 907 | static char *mbuf_dump_buf; |
| 908 | |
| 909 | #define MBUF_DUMP_BUF_SIZE 4096 |
| 910 | |
| 911 | /* |
| 912 | * mbuf watchdog is enabled by default. It is also toggeable via the |
| 913 | * kern.ipc.mb_watchdog sysctl. |
| 914 | * Garbage collection is enabled by default on embedded platforms. |
| 915 | * mb_drain_maxint controls the amount of time to wait (in seconds) before |
| 916 | * consecutive calls to mbuf_drain(). |
| 917 | */ |
| 918 | static unsigned int mb_watchdog = 1; |
| 919 | #if !XNU_TARGET_OS_OSX |
| 920 | static unsigned int mb_drain_maxint = 60; |
| 921 | #else /* XNU_TARGET_OS_OSX */ |
| 922 | static unsigned int mb_drain_maxint = 0; |
| 923 | #endif /* XNU_TARGET_OS_OSX */ |
| 924 | #endif /* CONFIG_MBUF_MCACHE */ |
| 925 | static unsigned int mb_memory_pressure_percentage = 80; |
| 926 | |
| 927 | uintptr_t mb_obscure_extfree __attribute__((visibility("hidden" ))); |
| 928 | uintptr_t mb_obscure_extref __attribute__((visibility("hidden" ))); |
| 929 | |
| 930 | /* Red zone */ |
| 931 | static u_int32_t mb_redzone_cookie; |
| 932 | static void m_redzone_init(struct mbuf *); |
| 933 | static void m_redzone_verify(struct mbuf *m); |
| 934 | |
| 935 | static void m_set_rfa(struct mbuf *, struct ext_ref *); |
| 936 | |
| 937 | #if CONFIG_MBUF_MCACHE |
| 938 | /* The following are used to serialize m_clalloc() */ |
| 939 | static boolean_t mb_clalloc_busy; |
| 940 | static void *mb_clalloc_waitchan = &mb_clalloc_busy; |
| 941 | static int mb_clalloc_waiters; |
| 942 | #endif /* CONFIG_MBUF_MCACHE */ |
| 943 | |
| 944 | static void mbuf_mtypes_sync(boolean_t); |
| 945 | static int mbstat_sysctl SYSCTL_HANDLER_ARGS; |
| 946 | static void mbuf_stat_sync(void); |
| 947 | static int mb_stat_sysctl SYSCTL_HANDLER_ARGS; |
| 948 | #if CONFIG_MBUF_MCACHE |
| 949 | static int mleak_top_trace_sysctl SYSCTL_HANDLER_ARGS; |
| 950 | static int mleak_table_sysctl SYSCTL_HANDLER_ARGS; |
| 951 | static char *mbuf_dump(void); |
| 952 | #endif /* CONFIG_MBUF_MCACHE */ |
| 953 | static void mbuf_table_init(void); |
| 954 | static inline void m_incref(struct mbuf *); |
| 955 | static inline u_int16_t m_decref(struct mbuf *); |
| 956 | static void mbuf_watchdog_defunct(thread_call_param_t, thread_call_param_t); |
| 957 | #if CONFIG_MBUF_MCACHE |
| 958 | static int m_clalloc(const u_int32_t, const int, const u_int32_t); |
| 959 | static void mbuf_worker_thread_init(void); |
| 960 | static mcache_obj_t *slab_alloc(mbuf_class_t, int); |
| 961 | static void slab_free(mbuf_class_t, mcache_obj_t *); |
| 962 | static unsigned int mbuf_slab_alloc(void *, mcache_obj_t ***, |
| 963 | unsigned int, int); |
| 964 | static void mbuf_slab_free(void *, mcache_obj_t *, int); |
| 965 | static void mbuf_slab_audit(void *, mcache_obj_t *, boolean_t); |
| 966 | static void mbuf_slab_notify(void *, u_int32_t); |
| 967 | static unsigned int cslab_alloc(mbuf_class_t, mcache_obj_t ***, |
| 968 | unsigned int); |
| 969 | static unsigned int cslab_free(mbuf_class_t, mcache_obj_t *, int); |
| 970 | static unsigned int mbuf_cslab_alloc(void *, mcache_obj_t ***, |
| 971 | unsigned int, int); |
| 972 | static void mbuf_cslab_free(void *, mcache_obj_t *, int); |
| 973 | static void mbuf_cslab_audit(void *, mcache_obj_t *, boolean_t); |
| 974 | static int freelist_populate(mbuf_class_t, unsigned int, int); |
| 975 | static void freelist_init(mbuf_class_t); |
| 976 | static boolean_t mbuf_cached_above(mbuf_class_t, int); |
| 977 | static boolean_t mbuf_steal(mbuf_class_t, unsigned int); |
| 978 | static void m_reclaim(mbuf_class_t, unsigned int, boolean_t); |
| 979 | static int m_howmany(int, size_t); |
| 980 | static void mbuf_worker_thread(void); |
| 981 | static void mbuf_watchdog(void); |
| 982 | static boolean_t mbuf_sleep(mbuf_class_t, unsigned int, int); |
| 983 | |
| 984 | static void mcl_audit_init(void *, mcache_audit_t **, mcache_obj_t **, |
| 985 | size_t, unsigned int); |
| 986 | static void mcl_audit_free(void *, unsigned int); |
| 987 | static mcache_audit_t *mcl_audit_buf2mca(mbuf_class_t, mcache_obj_t *); |
| 988 | static void mcl_audit_mbuf(mcache_audit_t *, void *, boolean_t, boolean_t); |
| 989 | static void mcl_audit_cluster(mcache_audit_t *, void *, size_t, boolean_t, |
| 990 | boolean_t); |
| 991 | static void mcl_audit_restore_mbuf(struct mbuf *, mcache_audit_t *, boolean_t); |
| 992 | static void mcl_audit_save_mbuf(struct mbuf *, mcache_audit_t *); |
| 993 | static void mcl_audit_scratch(mcache_audit_t *); |
| 994 | static void mcl_audit_mcheck_panic(struct mbuf *); |
| 995 | static void mcl_audit_verify_nextptr(void *, mcache_audit_t *); |
| 996 | |
| 997 | static void mleak_activate(void); |
| 998 | static void mleak_logger(u_int32_t, mcache_obj_t *, boolean_t); |
| 999 | static boolean_t mleak_log(uintptr_t *, mcache_obj_t *, uint32_t, int); |
| 1000 | static void mleak_free(mcache_obj_t *); |
| 1001 | static void mleak_sort_traces(void); |
| 1002 | static void mleak_update_stats(void); |
| 1003 | |
| 1004 | static mcl_slab_t *slab_get(void *); |
| 1005 | static void slab_init(mcl_slab_t *, mbuf_class_t, u_int32_t, |
| 1006 | void *, void *, unsigned int, int, int); |
| 1007 | static void slab_insert(mcl_slab_t *, mbuf_class_t); |
| 1008 | static void slab_remove(mcl_slab_t *, mbuf_class_t); |
| 1009 | static boolean_t slab_inrange(mcl_slab_t *, void *); |
| 1010 | static void slab_nextptr_panic(mcl_slab_t *, void *); |
| 1011 | static void slab_detach(mcl_slab_t *); |
| 1012 | static boolean_t slab_is_detached(mcl_slab_t *); |
| 1013 | #else /* !CONFIG_MBUF_MCACHE */ |
| 1014 | static void mbuf_watchdog_drain_composite(thread_call_param_t, thread_call_param_t); |
| 1015 | static struct mbuf *mz_alloc(zalloc_flags_t); |
| 1016 | static void mz_free(struct mbuf *); |
| 1017 | static struct ext_ref *mz_ref_alloc(zalloc_flags_t); |
| 1018 | static void mz_ref_free(struct ext_ref *); |
| 1019 | static void *mz_cl_alloc(zone_id_t, zalloc_flags_t); |
| 1020 | static void mz_cl_free(zone_id_t, void *); |
| 1021 | static struct mbuf *mz_composite_alloc(mbuf_class_t, zalloc_flags_t); |
| 1022 | static zstack_t mz_composite_alloc_n(mbuf_class_t, unsigned int, zalloc_flags_t); |
| 1023 | static void mz_composite_free(mbuf_class_t, struct mbuf *); |
| 1024 | static void mz_composite_free_n(mbuf_class_t, zstack_t); |
| 1025 | static void *mz_composite_build(zone_id_t, zalloc_flags_t); |
| 1026 | static void *mz_composite_mark_valid(zone_id_t, void *); |
| 1027 | static void *mz_composite_mark_invalid(zone_id_t, void *); |
| 1028 | static void mz_composite_destroy(zone_id_t, void *); |
| 1029 | |
| 1030 | ZONE_DEFINE_ID(ZONE_ID_MBUF_REF, "mbuf.ref" , struct ext_ref, |
| 1031 | ZC_CACHING | ZC_NOPGZ | ZC_KASAN_NOQUARANTINE); |
| 1032 | ZONE_DEFINE_ID(ZONE_ID_MBUF, "mbuf" , struct mbuf, |
| 1033 | ZC_CACHING | ZC_NOPGZ | ZC_KASAN_NOQUARANTINE); |
| 1034 | ZONE_DEFINE_ID(ZONE_ID_CLUSTER_2K, "mbuf.cluster.2k" , union mcluster, |
| 1035 | ZC_CACHING | ZC_NOPGZ | ZC_KASAN_NOQUARANTINE | ZC_DATA); |
| 1036 | ZONE_DEFINE_ID(ZONE_ID_CLUSTER_4K, "mbuf.cluster.4k" , union mbigcluster, |
| 1037 | ZC_CACHING | ZC_NOPGZ | ZC_KASAN_NOQUARANTINE | ZC_DATA); |
| 1038 | ZONE_DEFINE_ID(ZONE_ID_CLUSTER_16K, "mbuf.cluster.16k" , union m16kcluster, |
| 1039 | ZC_CACHING | ZC_NOPGZ | ZC_KASAN_NOQUARANTINE | ZC_DATA); |
| 1040 | static_assert(sizeof(union mcluster) == MCLBYTES); |
| 1041 | static_assert(sizeof(union mbigcluster) == MBIGCLBYTES); |
| 1042 | static_assert(sizeof(union m16kcluster) == M16KCLBYTES); |
| 1043 | |
| 1044 | static const struct zone_cache_ops mz_composite_ops = { |
| 1045 | .zc_op_alloc = mz_composite_build, |
| 1046 | .zc_op_mark_valid = mz_composite_mark_valid, |
| 1047 | .zc_op_mark_invalid = mz_composite_mark_invalid, |
| 1048 | .zc_op_free = mz_composite_destroy, |
| 1049 | }; |
| 1050 | ZCACHE_DEFINE(ZONE_ID_MBUF_CLUSTER_2K, "mbuf.composite.2k" , struct mbuf, |
| 1051 | sizeof(struct mbuf) + sizeof(struct ext_ref) + MCLBYTES, |
| 1052 | &mz_composite_ops); |
| 1053 | ZCACHE_DEFINE(ZONE_ID_MBUF_CLUSTER_4K, "mbuf.composite.4k" , struct mbuf, |
| 1054 | sizeof(struct mbuf) + sizeof(struct ext_ref) + MBIGCLBYTES, |
| 1055 | &mz_composite_ops); |
| 1056 | ZCACHE_DEFINE(ZONE_ID_MBUF_CLUSTER_16K, "mbuf.composite.16k" , struct mbuf, |
| 1057 | sizeof(struct mbuf) + sizeof(struct ext_ref) + M16KCLBYTES, |
| 1058 | &mz_composite_ops); |
| 1059 | static_assert(ZONE_ID_MBUF + MC_MBUF == ZONE_ID_MBUF); |
| 1060 | static_assert(ZONE_ID_MBUF + MC_CL == ZONE_ID_CLUSTER_2K); |
| 1061 | static_assert(ZONE_ID_MBUF + MC_BIGCL == ZONE_ID_CLUSTER_4K); |
| 1062 | static_assert(ZONE_ID_MBUF + MC_16KCL == ZONE_ID_CLUSTER_16K); |
| 1063 | static_assert(ZONE_ID_MBUF + MC_MBUF_CL == ZONE_ID_MBUF_CLUSTER_2K); |
| 1064 | static_assert(ZONE_ID_MBUF + MC_MBUF_BIGCL == ZONE_ID_MBUF_CLUSTER_4K); |
| 1065 | static_assert(ZONE_ID_MBUF + MC_MBUF_16KCL == ZONE_ID_MBUF_CLUSTER_16K); |
| 1066 | |
| 1067 | /* Converts a an mbuf class to a zalloc zone ID. */ |
| 1068 | __attribute__((always_inline)) |
| 1069 | static inline zone_id_t |
| 1070 | m_class_to_zid(mbuf_class_t class) |
| 1071 | { |
| 1072 | return ZONE_ID_MBUF + class - MC_MBUF; |
| 1073 | } |
| 1074 | |
| 1075 | __attribute__((always_inline)) |
| 1076 | static inline mbuf_class_t |
| 1077 | m_class_from_zid(zone_id_t zid) |
| 1078 | { |
| 1079 | return MC_MBUF + zid - ZONE_ID_MBUF; |
| 1080 | } |
| 1081 | |
| 1082 | static thread_call_t mbuf_defunct_tcall; |
| 1083 | static thread_call_t mbuf_drain_tcall; |
| 1084 | #endif /* CONFIG_MBUF_MCACHE */ |
| 1085 | |
| 1086 | static int m_copyback0(struct mbuf **, int, int, const void *, int, int); |
| 1087 | static struct mbuf *m_split0(struct mbuf *, int, int, int); |
| 1088 | #if CONFIG_MBUF_MCACHE && (DEBUG || DEVELOPMENT) |
| 1089 | #define mbwdog_logger(fmt, ...) _mbwdog_logger(__func__, __LINE__, fmt, ## __VA_ARGS__) |
| 1090 | static void _mbwdog_logger(const char *func, const int line, const char *fmt, ...); |
| 1091 | static char *mbwdog_logging; |
| 1092 | const unsigned mbwdog_logging_size = 4096; |
| 1093 | static size_t mbwdog_logging_used; |
| 1094 | #else |
| 1095 | #define mbwdog_logger(fmt, ...) do { } while (0) |
| 1096 | #endif /* CONFIG_MBUF_MCACHE &&DEBUG || DEVELOPMENT */ |
| 1097 | #if CONFIG_MBUF_MCACHE |
| 1098 | static void mbuf_drain_locked(boolean_t); |
| 1099 | #endif /* CONFIG_MBUF_MCACHE */ |
| 1100 | |
| 1101 | /* flags for m_copyback0 */ |
| 1102 | #define M_COPYBACK0_COPYBACK 0x0001 /* copyback from cp */ |
| 1103 | #define M_COPYBACK0_PRESERVE 0x0002 /* preserve original data */ |
| 1104 | #define M_COPYBACK0_COW 0x0004 /* do copy-on-write */ |
| 1105 | #define M_COPYBACK0_EXTEND 0x0008 /* extend chain */ |
| 1106 | |
| 1107 | /* |
| 1108 | * This flag is set for all mbufs that come out of and into the composite |
| 1109 | * mbuf + cluster caches, i.e. MC_MBUF_CL and MC_MBUF_BIGCL. mbufs that |
| 1110 | * are marked with such a flag have clusters attached to them, and will be |
| 1111 | * treated differently when they are freed; instead of being placed back |
| 1112 | * into the mbuf and cluster freelists, the composite mbuf + cluster objects |
| 1113 | * are placed back into the appropriate composite cache's freelist, and the |
| 1114 | * actual freeing is deferred until the composite objects are purged. At |
| 1115 | * such a time, this flag will be cleared from the mbufs and the objects |
| 1116 | * will be freed into their own separate freelists. |
| 1117 | */ |
| 1118 | #define EXTF_COMPOSITE 0x1 |
| 1119 | |
| 1120 | /* |
| 1121 | * This flag indicates that the external cluster is read-only, i.e. it is |
| 1122 | * or was referred to by more than one mbufs. Once set, this flag is never |
| 1123 | * cleared. |
| 1124 | */ |
| 1125 | #define EXTF_READONLY 0x2 |
| 1126 | /* |
| 1127 | * This flag indicates that the external cluster is paired with the mbuf. |
| 1128 | * Pairing implies an external free routine defined which will be invoked |
| 1129 | * when the reference count drops to the minimum at m_free time. This |
| 1130 | * flag is never cleared. |
| 1131 | */ |
| 1132 | #define EXTF_PAIRED 0x4 |
| 1133 | |
| 1134 | #define EXTF_MASK \ |
| 1135 | (EXTF_COMPOSITE | EXTF_READONLY | EXTF_PAIRED) |
| 1136 | |
| 1137 | #define MEXT_MINREF(m) ((m_get_rfa(m))->minref) |
| 1138 | #define MEXT_REF(m) ((m_get_rfa(m))->refcnt) |
| 1139 | #define MEXT_PREF(m) ((m_get_rfa(m))->prefcnt) |
| 1140 | #define MEXT_FLAGS(m) ((m_get_rfa(m))->flags) |
| 1141 | #define MEXT_PRIV(m) ((m_get_rfa(m))->priv) |
| 1142 | #define MEXT_PMBUF(m) ((m_get_rfa(m))->paired) |
| 1143 | #define MEXT_TOKEN(m) ((m_get_rfa(m))->ext_token) |
| 1144 | #define MBUF_IS_COMPOSITE(m) \ |
| 1145 | (MEXT_REF(m) == MEXT_MINREF(m) && \ |
| 1146 | (MEXT_FLAGS(m) & EXTF_MASK) == EXTF_COMPOSITE) |
| 1147 | /* |
| 1148 | * This macro can be used to test if the mbuf is paired to an external |
| 1149 | * cluster. The test for MEXT_PMBUF being equal to the mbuf in subject |
| 1150 | * is important, as EXTF_PAIRED alone is insufficient since it is immutable, |
| 1151 | * and thus survives calls to m_free_paired. |
| 1152 | */ |
| 1153 | #define MBUF_IS_PAIRED(m) \ |
| 1154 | (((m)->m_flags & M_EXT) && \ |
| 1155 | (MEXT_FLAGS(m) & EXTF_MASK) == EXTF_PAIRED && \ |
| 1156 | MEXT_PMBUF(m) == (m)) |
| 1157 | |
| 1158 | /* |
| 1159 | * Macros used to verify the integrity of the mbuf. |
| 1160 | */ |
| 1161 | #if CONFIG_MBUF_MCACHE |
| 1162 | #define _MCHECK(m) { \ |
| 1163 | if ((m)->m_type != MT_FREE && !MBUF_IS_PAIRED(m)) { \ |
| 1164 | if (mclaudit == NULL) \ |
| 1165 | panic("MCHECK: m_type=%d m=%p", \ |
| 1166 | (u_int16_t)(m)->m_type, m); \ |
| 1167 | else \ |
| 1168 | mcl_audit_mcheck_panic(m); \ |
| 1169 | } \ |
| 1170 | } |
| 1171 | #else |
| 1172 | #define _MCHECK(m) \ |
| 1173 | if ((m)->m_type != MT_FREE && !MBUF_IS_PAIRED(m)) { \ |
| 1174 | panic("MCHECK: m_type=%d m=%p", \ |
| 1175 | (u_int16_t)(m)->m_type, m); \ |
| 1176 | } |
| 1177 | #endif /* CONFIG_MBUF_MCACHE */ |
| 1178 | |
| 1179 | /* |
| 1180 | * Macro version of mtod. |
| 1181 | */ |
| 1182 | #define MTOD(m, t) ((t)((m)->m_data)) |
| 1183 | |
| 1184 | #if CONFIG_MBUF_MCACHE |
| 1185 | #define MBUF_IN_MAP(addr) \ |
| 1186 | ((unsigned char *)(addr) >= mbutl && \ |
| 1187 | (unsigned char *)(addr) < embutl) |
| 1188 | |
| 1189 | #define MRANGE(addr) { \ |
| 1190 | if (!MBUF_IN_MAP(addr)) \ |
| 1191 | panic("MRANGE: address out of range 0x%p", addr); \ |
| 1192 | } |
| 1193 | |
| 1194 | /* |
| 1195 | * Macros to obtain page index given a base cluster address |
| 1196 | */ |
| 1197 | #define MTOPG(x) (((unsigned char *)x - mbutl) >> PAGE_SHIFT) |
| 1198 | #define PGTOM(x) (mbutl + (x << PAGE_SHIFT)) |
| 1199 | |
| 1200 | /* |
| 1201 | * Macro to find the mbuf index relative to a base. |
| 1202 | */ |
| 1203 | #define MBPAGEIDX(c, m) \ |
| 1204 | (((unsigned char *)(m) - (unsigned char *)(c)) >> _MSIZESHIFT) |
| 1205 | |
| 1206 | /* |
| 1207 | * Same thing for 2KB cluster index. |
| 1208 | */ |
| 1209 | #define CLPAGEIDX(c, m) \ |
| 1210 | (((unsigned char *)(m) - (unsigned char *)(c)) >> MCLSHIFT) |
| 1211 | |
| 1212 | /* |
| 1213 | * Macro to find 4KB cluster index relative to a base |
| 1214 | */ |
| 1215 | #define BCLPAGEIDX(c, m) \ |
| 1216 | (((unsigned char *)(m) - (unsigned char *)(c)) >> MBIGCLSHIFT) |
| 1217 | #endif /* CONFIG_MBUF_MCACHE */ |
| 1218 | |
| 1219 | /* |
| 1220 | * Macros used during mbuf and cluster initialization. |
| 1221 | */ |
| 1222 | #define MBUF_INIT_PKTHDR(m) { \ |
| 1223 | (m)->m_pkthdr.rcvif = NULL; \ |
| 1224 | (m)->m_pkthdr.pkt_hdr = NULL; \ |
| 1225 | (m)->m_pkthdr.len = 0; \ |
| 1226 | (m)->m_pkthdr.csum_flags = 0; \ |
| 1227 | (m)->m_pkthdr.csum_data = 0; \ |
| 1228 | (m)->m_pkthdr.vlan_tag = 0; \ |
| 1229 | (m)->m_pkthdr.comp_gencnt = 0; \ |
| 1230 | (m)->m_pkthdr.pkt_crumbs = 0; \ |
| 1231 | m_classifier_init(m, 0); \ |
| 1232 | m_tag_init(m, 1); \ |
| 1233 | m_scratch_init(m); \ |
| 1234 | m_redzone_init(m); \ |
| 1235 | } |
| 1236 | |
| 1237 | #define MBUF_INIT(m, pkthdr, type) { \ |
| 1238 | _MCHECK(m); \ |
| 1239 | (m)->m_next = (m)->m_nextpkt = NULL; \ |
| 1240 | (m)->m_len = 0; \ |
| 1241 | (m)->m_type = type; \ |
| 1242 | if ((pkthdr) == 0) { \ |
| 1243 | (m)->m_data = (uintptr_t)(m)->m_dat; \ |
| 1244 | (m)->m_flags = 0; \ |
| 1245 | } else { \ |
| 1246 | (m)->m_data = (uintptr_t)(m)->m_pktdat; \ |
| 1247 | (m)->m_flags = M_PKTHDR; \ |
| 1248 | MBUF_INIT_PKTHDR(m); \ |
| 1249 | } \ |
| 1250 | } |
| 1251 | |
| 1252 | #define MEXT_INIT mext_init |
| 1253 | |
| 1254 | #define MBUF_CL_INIT(m, buf, rfa, ref, flag) \ |
| 1255 | MEXT_INIT(m, buf, m_maxsize(MC_CL), NULL, NULL, rfa, 0, \ |
| 1256 | ref, 0, flag, 0, NULL) |
| 1257 | |
| 1258 | #define MBUF_BIGCL_INIT(m, buf, rfa, ref, flag) \ |
| 1259 | MEXT_INIT(m, buf, m_maxsize(MC_BIGCL), m_bigfree, NULL, rfa, 0, \ |
| 1260 | ref, 0, flag, 0, NULL) |
| 1261 | |
| 1262 | #define MBUF_16KCL_INIT(m, buf, rfa, ref, flag) \ |
| 1263 | MEXT_INIT(m, buf, m_maxsize(MC_16KCL), m_16kfree, NULL, rfa, 0, \ |
| 1264 | ref, 0, flag, 0, NULL) |
| 1265 | |
| 1266 | /* |
| 1267 | * Macro to convert BSD malloc sleep flag to mcache's |
| 1268 | */ |
| 1269 | #define MSLEEPF(f) ((!((f) & M_DONTWAIT)) ? MCR_SLEEP : MCR_NOSLEEP) |
| 1270 | |
| 1271 | /* |
| 1272 | * The structure that holds all mbuf class statistics exportable via sysctl. |
| 1273 | * Similar to mbstat structure, the mb_stat structure is protected by the |
| 1274 | * global mbuf lock. It contains additional information about the classes |
| 1275 | * that allows for a more accurate view of the state of the allocator. |
| 1276 | */ |
| 1277 | struct mb_stat *mb_stat; |
| 1278 | struct omb_stat *omb_stat; /* For backwards compatibility */ |
| 1279 | |
| 1280 | #define MB_STAT_SIZE(n) \ |
| 1281 | __builtin_offsetof(mb_stat_t, mbs_class[n]) |
| 1282 | #define OMB_STAT_SIZE(n) \ |
| 1283 | __builtin_offsetof(struct omb_stat, mbs_class[n]) |
| 1284 | |
| 1285 | /* |
| 1286 | * The legacy structure holding all of the mbuf allocation statistics. |
| 1287 | * The actual statistics used by the kernel are stored in the mbuf_table |
| 1288 | * instead, and are updated atomically while the global mbuf lock is held. |
| 1289 | * They are mirrored in mbstat to support legacy applications (e.g. netstat). |
| 1290 | * Unlike before, the kernel no longer relies on the contents of mbstat for |
| 1291 | * its operations (e.g. cluster expansion) because the structure is exposed |
| 1292 | * to outside and could possibly be modified, therefore making it unsafe. |
| 1293 | * With the exception of the mbstat.m_mtypes array (see below), all of the |
| 1294 | * statistics are updated as they change. |
| 1295 | */ |
| 1296 | struct mbstat mbstat; |
| 1297 | |
| 1298 | #define MBSTAT_MTYPES_MAX \ |
| 1299 | (sizeof (mbstat.m_mtypes) / sizeof (mbstat.m_mtypes[0])) |
| 1300 | |
| 1301 | /* |
| 1302 | * Allocation statistics related to mbuf types (up to MT_MAX-1) are updated |
| 1303 | * atomically and stored in a per-CPU structure which is lock-free; this is |
| 1304 | * done in order to avoid writing to the global mbstat data structure which |
| 1305 | * would cause false sharing. During sysctl request for kern.ipc.mbstat, |
| 1306 | * the statistics across all CPUs will be converged into the mbstat.m_mtypes |
| 1307 | * array and returned to the application. Any updates for types greater or |
| 1308 | * equal than MT_MAX would be done atomically to the mbstat; this slows down |
| 1309 | * performance but is okay since the kernel uses only up to MT_MAX-1 while |
| 1310 | * anything beyond that (up to type 255) is considered a corner case. |
| 1311 | */ |
| 1312 | typedef struct { |
| 1313 | unsigned int cpu_mtypes[MT_MAX]; |
| 1314 | } mbuf_mtypes_t; |
| 1315 | |
| 1316 | static mbuf_mtypes_t PERCPU_DATA(mbuf_mtypes); |
| 1317 | |
| 1318 | #define mtype_stat_add(type, n) { \ |
| 1319 | if ((unsigned)(type) < MT_MAX) { \ |
| 1320 | mbuf_mtypes_t *mbs = PERCPU_GET(mbuf_mtypes); \ |
| 1321 | os_atomic_add(&mbs->cpu_mtypes[type], n, relaxed); \ |
| 1322 | } else if ((unsigned)(type) < (unsigned)MBSTAT_MTYPES_MAX) { \ |
| 1323 | os_atomic_add((int16_t *)&mbstat.m_mtypes[type], n, relaxed); \ |
| 1324 | } \ |
| 1325 | } |
| 1326 | |
| 1327 | #define mtype_stat_sub(t, n) mtype_stat_add(t, -(n)) |
| 1328 | #define mtype_stat_inc(t) mtype_stat_add(t, 1) |
| 1329 | #define mtype_stat_dec(t) mtype_stat_sub(t, 1) |
| 1330 | |
| 1331 | static inline void |
| 1332 | mext_init(struct mbuf *m, void *__sized_by(size)buf, u_int size, |
| 1333 | m_ext_free_func_t free, caddr_t free_arg, struct ext_ref *rfa, |
| 1334 | u_int16_t min, u_int16_t ref, u_int16_t pref, u_int16_t flag, |
| 1335 | u_int32_t priv, struct mbuf *pm) |
| 1336 | { |
| 1337 | m->m_ext.ext_buf = buf; |
| 1338 | m->m_ext.ext_size = size; |
| 1339 | m->m_data = (uintptr_t)m->m_ext.ext_buf; |
| 1340 | m->m_len = 0; |
| 1341 | m->m_flags |= M_EXT; |
| 1342 | m_set_ext(m, rfa, free, free_arg); |
| 1343 | MEXT_MINREF(m) = min; |
| 1344 | MEXT_REF(m) = ref; |
| 1345 | MEXT_PREF(m) = pref; |
| 1346 | MEXT_FLAGS(m) = flag; |
| 1347 | MEXT_PRIV(m) = priv; |
| 1348 | MEXT_PMBUF(m) = pm; |
| 1349 | } |
| 1350 | |
| 1351 | static void |
| 1352 | mbuf_mtypes_sync(boolean_t locked) |
| 1353 | { |
| 1354 | mbuf_mtypes_t mtc; |
| 1355 | |
| 1356 | if (locked) { |
| 1357 | LCK_MTX_ASSERT(mbuf_mlock, LCK_MTX_ASSERT_OWNED); |
| 1358 | } |
| 1359 | |
| 1360 | mtc = *PERCPU_GET_MASTER(mbuf_mtypes); |
| 1361 | percpu_foreach_secondary(mtype, mbuf_mtypes) { |
| 1362 | for (int n = 0; n < MT_MAX; n++) { |
| 1363 | mtc.cpu_mtypes[n] += mtype->cpu_mtypes[n]; |
| 1364 | } |
| 1365 | } |
| 1366 | |
| 1367 | if (!locked) { |
| 1368 | lck_mtx_lock(lck: mbuf_mlock); |
| 1369 | } |
| 1370 | for (int n = 0; n < MT_MAX; n++) { |
| 1371 | mbstat.m_mtypes[n] = mtc.cpu_mtypes[n]; |
| 1372 | } |
| 1373 | if (!locked) { |
| 1374 | lck_mtx_unlock(lck: mbuf_mlock); |
| 1375 | } |
| 1376 | } |
| 1377 | |
| 1378 | static int |
| 1379 | mbstat_sysctl SYSCTL_HANDLER_ARGS |
| 1380 | { |
| 1381 | #pragma unused(oidp, arg1, arg2) |
| 1382 | |
| 1383 | #if CONFIG_MBUF_MCACHE |
| 1384 | mbuf_mtypes_sync(FALSE); |
| 1385 | #else |
| 1386 | lck_mtx_lock(lck: mbuf_mlock); |
| 1387 | mbuf_stat_sync(); |
| 1388 | mbuf_mtypes_sync(TRUE); |
| 1389 | lck_mtx_unlock(lck: mbuf_mlock); |
| 1390 | #endif |
| 1391 | |
| 1392 | return SYSCTL_OUT(req, &mbstat, sizeof(mbstat)); |
| 1393 | } |
| 1394 | |
| 1395 | static void |
| 1396 | mbuf_stat_sync(void) |
| 1397 | { |
| 1398 | mb_class_stat_t *sp; |
| 1399 | #if CONFIG_MBUF_MCACHE |
| 1400 | mcache_cpu_t *ccp; |
| 1401 | mcache_t *cp; |
| 1402 | int k, m, bktsize; |
| 1403 | #else |
| 1404 | int k; |
| 1405 | uint64_t drops = 0; |
| 1406 | #endif /* CONFIG_MBUF_MCACHE */ |
| 1407 | |
| 1408 | |
| 1409 | LCK_MTX_ASSERT(mbuf_mlock, LCK_MTX_ASSERT_OWNED); |
| 1410 | |
| 1411 | #if CONFIG_MBUF_MCACHE |
| 1412 | for (k = 0; k < NELEM(mbuf_table); k++) { |
| 1413 | cp = m_cache(k); |
| 1414 | ccp = &cp->mc_cpu[0]; |
| 1415 | bktsize = ccp->cc_bktsize; |
| 1416 | sp = mbuf_table[k].mtbl_stats; |
| 1417 | |
| 1418 | if (cp->mc_flags & MCF_NOCPUCACHE) { |
| 1419 | sp->mbcl_mc_state = MCS_DISABLED; |
| 1420 | } else if (cp->mc_purge_cnt > 0) { |
| 1421 | sp->mbcl_mc_state = MCS_PURGING; |
| 1422 | } else if (bktsize == 0) { |
| 1423 | sp->mbcl_mc_state = MCS_OFFLINE; |
| 1424 | } else { |
| 1425 | sp->mbcl_mc_state = MCS_ONLINE; |
| 1426 | } |
| 1427 | |
| 1428 | sp->mbcl_mc_cached = 0; |
| 1429 | for (m = 0; m < ncpu; m++) { |
| 1430 | ccp = &cp->mc_cpu[m]; |
| 1431 | if (ccp->cc_objs > 0) { |
| 1432 | sp->mbcl_mc_cached += ccp->cc_objs; |
| 1433 | } |
| 1434 | if (ccp->cc_pobjs > 0) { |
| 1435 | sp->mbcl_mc_cached += ccp->cc_pobjs; |
| 1436 | } |
| 1437 | } |
| 1438 | sp->mbcl_mc_cached += (cp->mc_full.bl_total * bktsize); |
| 1439 | sp->mbcl_active = sp->mbcl_total - sp->mbcl_mc_cached - |
| 1440 | sp->mbcl_infree; |
| 1441 | |
| 1442 | sp->mbcl_mc_waiter_cnt = cp->mc_waiter_cnt; |
| 1443 | sp->mbcl_mc_wretry_cnt = cp->mc_wretry_cnt; |
| 1444 | sp->mbcl_mc_nwretry_cnt = cp->mc_nwretry_cnt; |
| 1445 | |
| 1446 | /* Calculate total count specific to each class */ |
| 1447 | sp->mbcl_ctotal = sp->mbcl_total; |
| 1448 | switch (m_class(k)) { |
| 1449 | case MC_MBUF: |
| 1450 | /* Deduct mbufs used in composite caches */ |
| 1451 | sp->mbcl_ctotal -= (m_total(MC_MBUF_CL) + |
| 1452 | m_total(MC_MBUF_BIGCL) - m_total(MC_MBUF_16KCL)); |
| 1453 | break; |
| 1454 | |
| 1455 | case MC_CL: |
| 1456 | /* Deduct clusters used in composite cache */ |
| 1457 | sp->mbcl_ctotal -= m_total(MC_MBUF_CL); |
| 1458 | break; |
| 1459 | |
| 1460 | case MC_BIGCL: |
| 1461 | /* Deduct clusters used in composite cache */ |
| 1462 | sp->mbcl_ctotal -= m_total(MC_MBUF_BIGCL); |
| 1463 | break; |
| 1464 | |
| 1465 | case MC_16KCL: |
| 1466 | /* Deduct clusters used in composite cache */ |
| 1467 | sp->mbcl_ctotal -= m_total(MC_MBUF_16KCL); |
| 1468 | break; |
| 1469 | |
| 1470 | default: |
| 1471 | break; |
| 1472 | } |
| 1473 | } |
| 1474 | #else |
| 1475 | for (k = 0; k < NELEM(mbuf_table); k++) { |
| 1476 | const zone_id_t zid = m_class_to_zid(m_class(k)); |
| 1477 | const zone_t zone = zone_by_id(zid); |
| 1478 | struct zone_basic_stats stats = {}; |
| 1479 | |
| 1480 | sp = m_stats(k); |
| 1481 | zone_get_stats(zone, stats: &stats); |
| 1482 | drops += stats.zbs_alloc_fail; |
| 1483 | sp->mbcl_total = stats.zbs_avail; |
| 1484 | sp->mbcl_active = stats.zbs_alloc; |
| 1485 | /* |
| 1486 | * infree is what mcache considers the freelist (uncached) |
| 1487 | * free_cnt contains all the cached/uncached elements |
| 1488 | * in a zone. |
| 1489 | */ |
| 1490 | sp->mbcl_infree = stats.zbs_free - stats.zbs_cached; |
| 1491 | sp->mbcl_fail_cnt = stats.zbs_alloc_fail; |
| 1492 | sp->mbcl_ctotal = sp->mbcl_total; |
| 1493 | |
| 1494 | /* These stats are not available in zalloc. */ |
| 1495 | sp->mbcl_alloc_cnt = 0; |
| 1496 | sp->mbcl_free_cnt = 0; |
| 1497 | sp->mbcl_notified = 0; |
| 1498 | sp->mbcl_purge_cnt = 0; |
| 1499 | sp->mbcl_slab_cnt = 0; |
| 1500 | sp->mbcl_release_cnt = 0; |
| 1501 | |
| 1502 | /* zalloc caches are always on. */ |
| 1503 | sp->mbcl_mc_state = MCS_ONLINE; |
| 1504 | sp->mbcl_mc_cached = stats.zbs_cached; |
| 1505 | /* These stats are not collected by zalloc. */ |
| 1506 | sp->mbcl_mc_waiter_cnt = 0; |
| 1507 | sp->mbcl_mc_wretry_cnt = 0; |
| 1508 | sp->mbcl_mc_nwretry_cnt = 0; |
| 1509 | } |
| 1510 | /* Deduct clusters used in composite cache */ |
| 1511 | m_ctotal(MC_MBUF) -= (m_total(MC_MBUF_CL) + |
| 1512 | m_total(MC_MBUF_BIGCL) - |
| 1513 | m_total(MC_MBUF_16KCL)); |
| 1514 | m_ctotal(MC_CL) -= m_total(MC_MBUF_CL); |
| 1515 | m_ctotal(MC_BIGCL) -= m_total(MC_MBUF_BIGCL); |
| 1516 | m_ctotal(MC_16KCL) -= m_total(MC_MBUF_16KCL); |
| 1517 | |
| 1518 | /* Update mbstat. */ |
| 1519 | mbstat.m_mbufs = m_total(MC_MBUF); |
| 1520 | mbstat.m_clusters = m_total(MC_CL); |
| 1521 | mbstat.m_clfree = m_infree(MC_CL) + m_infree(MC_MBUF_CL); |
| 1522 | mbstat.m_drops = drops; |
| 1523 | mbstat.m_bigclusters = m_total(MC_BIGCL); |
| 1524 | mbstat.m_bigclfree = m_infree(MC_BIGCL) + m_infree(MC_MBUF_BIGCL); |
| 1525 | #endif /* CONFIG_MBUF_MCACHE */ |
| 1526 | } |
| 1527 | |
| 1528 | static int |
| 1529 | mb_stat_sysctl SYSCTL_HANDLER_ARGS |
| 1530 | { |
| 1531 | #pragma unused(oidp, arg1, arg2) |
| 1532 | void *statp; |
| 1533 | int k, statsz, proc64 = proc_is64bit(req->p); |
| 1534 | |
| 1535 | lck_mtx_lock(lck: mbuf_mlock); |
| 1536 | mbuf_stat_sync(); |
| 1537 | |
| 1538 | if (!proc64) { |
| 1539 | struct omb_class_stat *oc; |
| 1540 | struct mb_class_stat *c; |
| 1541 | |
| 1542 | omb_stat->mbs_cnt = mb_stat->mbs_cnt; |
| 1543 | oc = &omb_stat->mbs_class[0]; |
| 1544 | c = &mb_stat->mbs_class[0]; |
| 1545 | for (k = 0; k < omb_stat->mbs_cnt; k++, oc++, c++) { |
| 1546 | (void) snprintf(oc->mbcl_cname, count: sizeof(oc->mbcl_cname), |
| 1547 | "%s" , c->mbcl_cname); |
| 1548 | oc->mbcl_size = c->mbcl_size; |
| 1549 | oc->mbcl_total = c->mbcl_total; |
| 1550 | oc->mbcl_active = c->mbcl_active; |
| 1551 | oc->mbcl_infree = c->mbcl_infree; |
| 1552 | oc->mbcl_slab_cnt = c->mbcl_slab_cnt; |
| 1553 | oc->mbcl_alloc_cnt = c->mbcl_alloc_cnt; |
| 1554 | oc->mbcl_free_cnt = c->mbcl_free_cnt; |
| 1555 | oc->mbcl_notified = c->mbcl_notified; |
| 1556 | oc->mbcl_purge_cnt = c->mbcl_purge_cnt; |
| 1557 | oc->mbcl_fail_cnt = c->mbcl_fail_cnt; |
| 1558 | oc->mbcl_ctotal = c->mbcl_ctotal; |
| 1559 | oc->mbcl_release_cnt = c->mbcl_release_cnt; |
| 1560 | oc->mbcl_mc_state = c->mbcl_mc_state; |
| 1561 | oc->mbcl_mc_cached = c->mbcl_mc_cached; |
| 1562 | oc->mbcl_mc_waiter_cnt = c->mbcl_mc_waiter_cnt; |
| 1563 | oc->mbcl_mc_wretry_cnt = c->mbcl_mc_wretry_cnt; |
| 1564 | oc->mbcl_mc_nwretry_cnt = c->mbcl_mc_nwretry_cnt; |
| 1565 | } |
| 1566 | statp = omb_stat; |
| 1567 | statsz = OMB_STAT_SIZE(NELEM(mbuf_table)); |
| 1568 | } else { |
| 1569 | statp = mb_stat; |
| 1570 | statsz = MB_STAT_SIZE(NELEM(mbuf_table)); |
| 1571 | } |
| 1572 | |
| 1573 | lck_mtx_unlock(lck: mbuf_mlock); |
| 1574 | |
| 1575 | return SYSCTL_OUT(req, statp, statsz); |
| 1576 | } |
| 1577 | |
| 1578 | #if !CONFIG_MBUF_MCACHE |
| 1579 | /* |
| 1580 | * The following functions are wrappers around mbuf |
| 1581 | * allocation for zalloc. They all have the prefix "mz" |
| 1582 | * which was chosen to avoid conflicts with the mbuf KPIs. |
| 1583 | * |
| 1584 | * Z_NOPAGEWAIT is used in place of Z_NOWAIT because |
| 1585 | * Z_NOPAGEWAIT maps closer to MCR_TRYHARD. Z_NOWAIT will |
| 1586 | * fail immediately if it has to take a mutex and that |
| 1587 | * may cause packets to be dropped more frequently. |
| 1588 | * In general, the mbuf subsystem can sustain grabbing a mutex |
| 1589 | * during "non-blocking" allocation and that's the reason |
| 1590 | * why Z_NOPAGEWAIT was chosen. |
| 1591 | * |
| 1592 | * mbufs are elided (removed all pointers) before they are |
| 1593 | * returned to the cache. The exception are composite mbufs which |
| 1594 | * are re-initialized on allocation. |
| 1595 | */ |
| 1596 | __attribute__((always_inline)) |
| 1597 | static inline void |
| 1598 | m_elide(struct mbuf *m) |
| 1599 | { |
| 1600 | m->m_next = m->m_nextpkt = NULL; |
| 1601 | m->m_data = 0; |
| 1602 | memset(s: &m->m_ext, c: 0, n: sizeof(m->m_ext)); |
| 1603 | m->m_pkthdr.rcvif = NULL; |
| 1604 | m->m_pkthdr.pkt_hdr = NULL; |
| 1605 | m->m_flags |= M_PKTHDR; |
| 1606 | m_tag_init(m, 1); |
| 1607 | m->m_pkthdr.pkt_flags = 0; |
| 1608 | m_scratch_init(m); |
| 1609 | m->m_pkthdr.redzone = 0; |
| 1610 | m->m_flags &= ~M_PKTHDR; |
| 1611 | } |
| 1612 | |
| 1613 | __attribute__((always_inline)) |
| 1614 | static inline struct mbuf * |
| 1615 | mz_alloc(zalloc_flags_t flags) |
| 1616 | { |
| 1617 | if (flags & Z_NOWAIT) { |
| 1618 | flags ^= Z_NOWAIT | Z_NOPAGEWAIT; |
| 1619 | } else if (!(flags & Z_NOPAGEWAIT)) { |
| 1620 | flags |= Z_NOFAIL; |
| 1621 | } |
| 1622 | return zalloc_id(ZONE_ID_MBUF, flags | Z_NOZZC); |
| 1623 | } |
| 1624 | |
| 1625 | __attribute__((always_inline)) |
| 1626 | static inline zstack_t |
| 1627 | mz_alloc_n(uint32_t count, zalloc_flags_t flags) |
| 1628 | { |
| 1629 | if (flags & Z_NOWAIT) { |
| 1630 | flags ^= Z_NOWAIT | Z_NOPAGEWAIT; |
| 1631 | } else if (!(flags & Z_NOPAGEWAIT)) { |
| 1632 | flags |= Z_NOFAIL; |
| 1633 | } |
| 1634 | return zalloc_n(zone_id: ZONE_ID_MBUF, count, flags: flags | Z_NOZZC); |
| 1635 | } |
| 1636 | |
| 1637 | __attribute__((always_inline)) |
| 1638 | static inline void |
| 1639 | mz_free(struct mbuf *m) |
| 1640 | { |
| 1641 | #if KASAN |
| 1642 | zone_require(zone_by_id(ZONE_ID_MBUF), m); |
| 1643 | #endif |
| 1644 | m_elide(m); |
| 1645 | zfree_nozero(ZONE_ID_MBUF, m); |
| 1646 | } |
| 1647 | |
| 1648 | __attribute__((always_inline)) |
| 1649 | static inline void |
| 1650 | mz_free_n(zstack_t list) |
| 1651 | { |
| 1652 | /* Callers of this function have already elided the mbuf. */ |
| 1653 | zfree_nozero_n(ZONE_ID_MBUF, list); |
| 1654 | } |
| 1655 | |
| 1656 | __attribute__((always_inline)) |
| 1657 | static inline struct ext_ref * |
| 1658 | mz_ref_alloc(zalloc_flags_t flags) |
| 1659 | { |
| 1660 | if (flags & Z_NOWAIT) { |
| 1661 | flags ^= Z_NOWAIT | Z_NOPAGEWAIT; |
| 1662 | } |
| 1663 | return zalloc_id(ZONE_ID_MBUF_REF, flags | Z_NOZZC); |
| 1664 | } |
| 1665 | |
| 1666 | __attribute__((always_inline)) |
| 1667 | static inline void |
| 1668 | mz_ref_free(struct ext_ref *rfa) |
| 1669 | { |
| 1670 | VERIFY(rfa->minref == rfa->refcnt); |
| 1671 | #if KASAN |
| 1672 | zone_require(zone_by_id(ZONE_ID_MBUF_REF), rfa); |
| 1673 | #endif |
| 1674 | zfree_nozero(ZONE_ID_MBUF_REF, rfa); |
| 1675 | } |
| 1676 | |
| 1677 | __attribute__((always_inline)) |
| 1678 | static inline void * |
| 1679 | mz_cl_alloc(zone_id_t zid, zalloc_flags_t flags) |
| 1680 | { |
| 1681 | if (flags & Z_NOWAIT) { |
| 1682 | flags ^= Z_NOWAIT | Z_NOPAGEWAIT; |
| 1683 | } else if (!(flags & Z_NOPAGEWAIT)) { |
| 1684 | flags |= Z_NOFAIL; |
| 1685 | } |
| 1686 | return (zalloc_id)(zid, flags: flags | Z_NOZZC); |
| 1687 | } |
| 1688 | |
| 1689 | __attribute__((always_inline)) |
| 1690 | static inline void |
| 1691 | mz_cl_free(zone_id_t zid, void *cl) |
| 1692 | { |
| 1693 | #if KASAN |
| 1694 | zone_require(zone_by_id(zid), cl); |
| 1695 | #endif |
| 1696 | zfree_nozero(zid, cl); |
| 1697 | } |
| 1698 | |
| 1699 | __attribute__((always_inline)) |
| 1700 | static inline zstack_t |
| 1701 | mz_composite_alloc_n(mbuf_class_t class, unsigned int n, zalloc_flags_t flags) |
| 1702 | { |
| 1703 | if (flags & Z_NOWAIT) { |
| 1704 | flags ^= Z_NOWAIT | Z_NOPAGEWAIT; |
| 1705 | } |
| 1706 | return (zcache_alloc_n)(zone_id: m_class_to_zid(class), count: n, flags, |
| 1707 | ops: &mz_composite_ops); |
| 1708 | } |
| 1709 | |
| 1710 | __attribute__((always_inline)) |
| 1711 | static inline struct mbuf * |
| 1712 | mz_composite_alloc(mbuf_class_t class, zalloc_flags_t flags) |
| 1713 | { |
| 1714 | zstack_t list = {}; |
| 1715 | list = mz_composite_alloc_n(class, n: 1, flags); |
| 1716 | if (!zstack_empty(stack: list)) { |
| 1717 | return zstack_pop(stack: &list); |
| 1718 | } else { |
| 1719 | return NULL; |
| 1720 | } |
| 1721 | } |
| 1722 | |
| 1723 | __attribute__((always_inline)) |
| 1724 | static inline void |
| 1725 | mz_composite_free_n(mbuf_class_t class, zstack_t list) |
| 1726 | { |
| 1727 | (zcache_free_n)(zone_id: m_class_to_zid(class), stack: list, ops: &mz_composite_ops); |
| 1728 | } |
| 1729 | |
| 1730 | __attribute__((always_inline)) |
| 1731 | static inline void |
| 1732 | mz_composite_free(mbuf_class_t class, struct mbuf *m) |
| 1733 | { |
| 1734 | zstack_t list = {}; |
| 1735 | zstack_push(stack: &list, elem: m); |
| 1736 | (zcache_free_n)(zone_id: m_class_to_zid(class), stack: list, ops: &mz_composite_ops); |
| 1737 | } |
| 1738 | |
| 1739 | /* Converts composite zone ID to the cluster zone ID. */ |
| 1740 | __attribute__((always_inline)) |
| 1741 | static inline zone_id_t |
| 1742 | mz_cl_zid(zone_id_t zid) |
| 1743 | { |
| 1744 | return ZONE_ID_CLUSTER_2K + zid - ZONE_ID_MBUF_CLUSTER_2K; |
| 1745 | } |
| 1746 | |
| 1747 | static void * |
| 1748 | mz_composite_build(zone_id_t zid, zalloc_flags_t flags) |
| 1749 | { |
| 1750 | const zone_id_t cl_zid = mz_cl_zid(zid); |
| 1751 | struct mbuf *m = NULL; |
| 1752 | struct ext_ref *rfa = NULL; |
| 1753 | void *cl = NULL; |
| 1754 | |
| 1755 | cl = mz_cl_alloc(zid: cl_zid, flags); |
| 1756 | if (__improbable(cl == NULL)) { |
| 1757 | goto out; |
| 1758 | } |
| 1759 | rfa = mz_ref_alloc(flags); |
| 1760 | if (__improbable(rfa == NULL)) { |
| 1761 | goto out_free_cl; |
| 1762 | } |
| 1763 | m = mz_alloc(flags); |
| 1764 | if (__improbable(m == NULL)) { |
| 1765 | goto out_free_rfa; |
| 1766 | } |
| 1767 | MBUF_INIT(m, 0, MT_FREE); |
| 1768 | if (zid == ZONE_ID_MBUF_CLUSTER_2K) { |
| 1769 | MBUF_CL_INIT(m, cl, rfa, 0, EXTF_COMPOSITE); |
| 1770 | } else if (zid == ZONE_ID_MBUF_CLUSTER_4K) { |
| 1771 | MBUF_BIGCL_INIT(m, cl, rfa, 0, EXTF_COMPOSITE); |
| 1772 | } else { |
| 1773 | MBUF_16KCL_INIT(m, cl, rfa, 0, EXTF_COMPOSITE); |
| 1774 | } |
| 1775 | VERIFY(m->m_flags == M_EXT); |
| 1776 | VERIFY(m_get_rfa(m) != NULL && MBUF_IS_COMPOSITE(m)); |
| 1777 | |
| 1778 | return m; |
| 1779 | out_free_rfa: |
| 1780 | mz_ref_free(rfa); |
| 1781 | out_free_cl: |
| 1782 | mz_cl_free(zid: cl_zid, cl); |
| 1783 | out: |
| 1784 | return NULL; |
| 1785 | } |
| 1786 | |
| 1787 | static void * |
| 1788 | mz_composite_mark_valid(zone_id_t zid, void *p) |
| 1789 | { |
| 1790 | struct mbuf *m = p; |
| 1791 | |
| 1792 | m = zcache_mark_valid(zone: zone_by_id(zid: ZONE_ID_MBUF), elem: m); |
| 1793 | #if KASAN |
| 1794 | struct ext_ref *rfa = m_get_rfa(m); |
| 1795 | const zone_id_t cl_zid = mz_cl_zid(zid); |
| 1796 | void *cl = m->m_ext.ext_buf; |
| 1797 | |
| 1798 | cl = zcache_mark_valid(zone_by_id(cl_zid), cl); |
| 1799 | rfa = zcache_mark_valid(zone_by_id(ZONE_ID_MBUF_REF), rfa); |
| 1800 | m->m_data = (uintptr_t)cl; |
| 1801 | m->m_ext.ext_buf = cl; |
| 1802 | m_set_rfa(m, rfa); |
| 1803 | #else |
| 1804 | #pragma unused(zid) |
| 1805 | #endif |
| 1806 | VERIFY(MBUF_IS_COMPOSITE(m)); |
| 1807 | |
| 1808 | return m; |
| 1809 | } |
| 1810 | |
| 1811 | static void * |
| 1812 | mz_composite_mark_invalid(zone_id_t zid, void *p) |
| 1813 | { |
| 1814 | struct mbuf *m = p; |
| 1815 | |
| 1816 | VERIFY(MBUF_IS_COMPOSITE(m)); |
| 1817 | VERIFY(MEXT_REF(m) == MEXT_MINREF(m)); |
| 1818 | #if KASAN |
| 1819 | struct ext_ref *rfa = m_get_rfa(m); |
| 1820 | const zone_id_t cl_zid = mz_cl_zid(zid); |
| 1821 | void *cl = m->m_ext.ext_buf; |
| 1822 | |
| 1823 | cl = zcache_mark_invalid(zone_by_id(cl_zid), cl); |
| 1824 | rfa = zcache_mark_invalid(zone_by_id(ZONE_ID_MBUF_REF), rfa); |
| 1825 | m->m_data = (uintptr_t)cl; |
| 1826 | m->m_ext.ext_buf = cl; |
| 1827 | m_set_rfa(m, rfa); |
| 1828 | #else |
| 1829 | #pragma unused(zid) |
| 1830 | #endif |
| 1831 | |
| 1832 | return zcache_mark_invalid(zone: zone_by_id(zid: ZONE_ID_MBUF), elem: m); |
| 1833 | } |
| 1834 | |
| 1835 | static void |
| 1836 | mz_composite_destroy(zone_id_t zid, void *p) |
| 1837 | { |
| 1838 | const zone_id_t cl_zid = mz_cl_zid(zid); |
| 1839 | struct ext_ref *rfa = NULL; |
| 1840 | struct mbuf *m = p; |
| 1841 | |
| 1842 | VERIFY(MBUF_IS_COMPOSITE(m)); |
| 1843 | |
| 1844 | MEXT_MINREF(m) = 0; |
| 1845 | MEXT_REF(m) = 0; |
| 1846 | MEXT_PREF(m) = 0; |
| 1847 | MEXT_FLAGS(m) = 0; |
| 1848 | MEXT_PRIV(m) = 0; |
| 1849 | MEXT_PMBUF(m) = NULL; |
| 1850 | MEXT_TOKEN(m) = 0; |
| 1851 | |
| 1852 | rfa = m_get_rfa(m); |
| 1853 | m_set_ext(m, NULL, NULL, NULL); |
| 1854 | |
| 1855 | m->m_type = MT_FREE; |
| 1856 | m->m_flags = m->m_len = 0; |
| 1857 | m->m_next = m->m_nextpkt = NULL; |
| 1858 | |
| 1859 | mz_cl_free(zid: cl_zid, cl: m->m_ext.ext_buf); |
| 1860 | m->m_ext.ext_buf = NULL; |
| 1861 | mz_ref_free(rfa); |
| 1862 | mz_free(m); |
| 1863 | } |
| 1864 | #endif /* !CONFIG_MBUF_MCACHE */ |
| 1865 | |
| 1866 | #if CONFIG_MBUF_MCACHE |
| 1867 | static int |
| 1868 | mleak_top_trace_sysctl SYSCTL_HANDLER_ARGS |
| 1869 | { |
| 1870 | #pragma unused(oidp, arg1, arg2) |
| 1871 | int i; |
| 1872 | |
| 1873 | /* Ensure leak tracing turned on */ |
| 1874 | if (!mclfindleak || !mclexpleak) { |
| 1875 | return ENXIO; |
| 1876 | } |
| 1877 | |
| 1878 | lck_mtx_lock(mleak_lock); |
| 1879 | mleak_update_stats(); |
| 1880 | i = SYSCTL_OUT(req, mleak_stat, MLEAK_STAT_SIZE(MLEAK_NUM_TRACES)); |
| 1881 | lck_mtx_unlock(mleak_lock); |
| 1882 | |
| 1883 | return i; |
| 1884 | } |
| 1885 | |
| 1886 | static int |
| 1887 | mleak_table_sysctl SYSCTL_HANDLER_ARGS |
| 1888 | { |
| 1889 | #pragma unused(oidp, arg1, arg2) |
| 1890 | int i = 0; |
| 1891 | |
| 1892 | /* Ensure leak tracing turned on */ |
| 1893 | if (!mclfindleak || !mclexpleak) { |
| 1894 | return ENXIO; |
| 1895 | } |
| 1896 | |
| 1897 | lck_mtx_lock(mleak_lock); |
| 1898 | i = SYSCTL_OUT(req, &mleak_table, sizeof(mleak_table)); |
| 1899 | lck_mtx_unlock(mleak_lock); |
| 1900 | |
| 1901 | return i; |
| 1902 | } |
| 1903 | #endif /* CONFIG_MBUF_MCACHE */ |
| 1904 | |
| 1905 | static inline void |
| 1906 | m_incref(struct mbuf *m) |
| 1907 | { |
| 1908 | uint16_t new = os_atomic_inc(&MEXT_REF(m), relaxed); |
| 1909 | |
| 1910 | VERIFY(new != 0); |
| 1911 | /* |
| 1912 | * If cluster is shared, mark it with (sticky) EXTF_READONLY; |
| 1913 | * we don't clear the flag when the refcount goes back to the |
| 1914 | * minimum, to simplify code calling m_mclhasreference(). |
| 1915 | */ |
| 1916 | if (new > (MEXT_MINREF(m) + 1) && !(MEXT_FLAGS(m) & EXTF_READONLY)) { |
| 1917 | os_atomic_or(&MEXT_FLAGS(m), EXTF_READONLY, relaxed); |
| 1918 | } |
| 1919 | } |
| 1920 | |
| 1921 | static inline uint16_t |
| 1922 | m_decref(struct mbuf *m) |
| 1923 | { |
| 1924 | VERIFY(MEXT_REF(m) != 0); |
| 1925 | |
| 1926 | return os_atomic_dec(&MEXT_REF(m), acq_rel); |
| 1927 | } |
| 1928 | |
| 1929 | static void |
| 1930 | mbuf_table_init(void) |
| 1931 | { |
| 1932 | unsigned int b, c, s; |
| 1933 | int m, config_mbuf_jumbo = 0; |
| 1934 | |
| 1935 | omb_stat = zalloc_permanent(OMB_STAT_SIZE(NELEM(mbuf_table)), |
| 1936 | ZALIGN(struct omb_stat)); |
| 1937 | |
| 1938 | mb_stat = zalloc_permanent(MB_STAT_SIZE(NELEM(mbuf_table)), |
| 1939 | ZALIGN(mb_stat_t)); |
| 1940 | |
| 1941 | mb_stat->mbs_cnt = NELEM(mbuf_table); |
| 1942 | for (m = 0; m < NELEM(mbuf_table); m++) { |
| 1943 | mbuf_table[m].mtbl_stats = &mb_stat->mbs_class[m]; |
| 1944 | } |
| 1945 | |
| 1946 | #if CONFIG_MBUF_JUMBO |
| 1947 | config_mbuf_jumbo = 1; |
| 1948 | #endif /* CONFIG_MBUF_JUMBO */ |
| 1949 | |
| 1950 | if (config_mbuf_jumbo == 1 || PAGE_SIZE == M16KCLBYTES) { |
| 1951 | /* |
| 1952 | * Set aside 1/3 of the mbuf cluster map for jumbo |
| 1953 | * clusters; we do this only on platforms where jumbo |
| 1954 | * cluster pool is enabled. |
| 1955 | */ |
| 1956 | njcl = nmbclusters / 3; |
| 1957 | njclbytes = M16KCLBYTES; |
| 1958 | } |
| 1959 | |
| 1960 | /* |
| 1961 | * nclusters holds both the 2KB and 4KB pools, so ensure it's |
| 1962 | * a multiple of 4KB clusters. |
| 1963 | */ |
| 1964 | nclusters = P2ROUNDDOWN(nmbclusters - njcl, NCLPG); |
| 1965 | if (njcl > 0) { |
| 1966 | /* |
| 1967 | * Each jumbo cluster takes 8 2KB clusters, so make |
| 1968 | * sure that the pool size is evenly divisible by 8; |
| 1969 | * njcl is in 2KB unit, hence treated as such. |
| 1970 | */ |
| 1971 | njcl = P2ROUNDDOWN(nmbclusters - nclusters, NCLPJCL); |
| 1972 | |
| 1973 | /* Update nclusters with rounded down value of njcl */ |
| 1974 | nclusters = P2ROUNDDOWN(nmbclusters - njcl, NCLPG); |
| 1975 | } |
| 1976 | |
| 1977 | /* |
| 1978 | * njcl is valid only on platforms with 16KB jumbo clusters or |
| 1979 | * with 16KB pages, where it is configured to 1/3 of the pool |
| 1980 | * size. On these platforms, the remaining is used for 2KB |
| 1981 | * and 4KB clusters. On platforms without 16KB jumbo clusters, |
| 1982 | * the entire pool is used for both 2KB and 4KB clusters. A 4KB |
| 1983 | * cluster can either be splitted into 16 mbufs, or into 2 2KB |
| 1984 | * clusters. |
| 1985 | * |
| 1986 | * +---+---+------------ ... -----------+------- ... -------+ |
| 1987 | * | c | b | s | njcl | |
| 1988 | * +---+---+------------ ... -----------+------- ... -------+ |
| 1989 | * |
| 1990 | * 1/32th of the shared region is reserved for pure 2KB and 4KB |
| 1991 | * clusters (1/64th each.) |
| 1992 | */ |
| 1993 | c = P2ROUNDDOWN((nclusters >> 6), NCLPG); /* in 2KB unit */ |
| 1994 | b = P2ROUNDDOWN((nclusters >> (6 + NCLPBGSHIFT)), NBCLPG); /* in 4KB unit */ |
| 1995 | s = nclusters - (c + (b << NCLPBGSHIFT)); /* in 2KB unit */ |
| 1996 | |
| 1997 | /* |
| 1998 | * 1/64th (c) is reserved for 2KB clusters. |
| 1999 | */ |
| 2000 | m_minlimit(MC_CL) = c; |
| 2001 | m_maxlimit(MC_CL) = s + c; /* in 2KB unit */ |
| 2002 | m_maxsize(MC_CL) = m_size(MC_CL) = MCLBYTES; |
| 2003 | snprintf(m_cname(MC_CL), MAX_MBUF_CNAME, "cl" ); |
| 2004 | |
| 2005 | /* |
| 2006 | * Another 1/64th (b) of the map is reserved for 4KB clusters. |
| 2007 | * It cannot be turned into 2KB clusters or mbufs. |
| 2008 | */ |
| 2009 | m_minlimit(MC_BIGCL) = b; |
| 2010 | m_maxlimit(MC_BIGCL) = (s >> NCLPBGSHIFT) + b; /* in 4KB unit */ |
| 2011 | m_maxsize(MC_BIGCL) = m_size(MC_BIGCL) = MBIGCLBYTES; |
| 2012 | snprintf(m_cname(MC_BIGCL), MAX_MBUF_CNAME, "bigcl" ); |
| 2013 | |
| 2014 | /* |
| 2015 | * The remaining 31/32ths (s) are all-purpose (mbufs, 2KB, or 4KB) |
| 2016 | */ |
| 2017 | m_minlimit(MC_MBUF) = 0; |
| 2018 | m_maxlimit(MC_MBUF) = s * NMBPCL; /* in mbuf unit */ |
| 2019 | m_maxsize(MC_MBUF) = m_size(MC_MBUF) = _MSIZE; |
| 2020 | snprintf(m_cname(MC_MBUF), MAX_MBUF_CNAME, "mbuf" ); |
| 2021 | |
| 2022 | /* |
| 2023 | * Set limits for the composite classes. |
| 2024 | */ |
| 2025 | m_minlimit(MC_MBUF_CL) = 0; |
| 2026 | m_maxlimit(MC_MBUF_CL) = m_maxlimit(MC_CL); |
| 2027 | m_maxsize(MC_MBUF_CL) = MCLBYTES; |
| 2028 | m_size(MC_MBUF_CL) = m_size(MC_MBUF) + m_size(MC_CL); |
| 2029 | snprintf(m_cname(MC_MBUF_CL), MAX_MBUF_CNAME, "mbuf_cl" ); |
| 2030 | |
| 2031 | m_minlimit(MC_MBUF_BIGCL) = 0; |
| 2032 | m_maxlimit(MC_MBUF_BIGCL) = m_maxlimit(MC_BIGCL); |
| 2033 | m_maxsize(MC_MBUF_BIGCL) = MBIGCLBYTES; |
| 2034 | m_size(MC_MBUF_BIGCL) = m_size(MC_MBUF) + m_size(MC_BIGCL); |
| 2035 | snprintf(m_cname(MC_MBUF_BIGCL), MAX_MBUF_CNAME, "mbuf_bigcl" ); |
| 2036 | |
| 2037 | /* |
| 2038 | * And for jumbo classes. |
| 2039 | */ |
| 2040 | m_minlimit(MC_16KCL) = 0; |
| 2041 | m_maxlimit(MC_16KCL) = (njcl >> NCLPJCLSHIFT); /* in 16KB unit */ |
| 2042 | m_maxsize(MC_16KCL) = m_size(MC_16KCL) = M16KCLBYTES; |
| 2043 | snprintf(m_cname(MC_16KCL), MAX_MBUF_CNAME, "16kcl" ); |
| 2044 | |
| 2045 | m_minlimit(MC_MBUF_16KCL) = 0; |
| 2046 | m_maxlimit(MC_MBUF_16KCL) = m_maxlimit(MC_16KCL); |
| 2047 | m_maxsize(MC_MBUF_16KCL) = M16KCLBYTES; |
| 2048 | m_size(MC_MBUF_16KCL) = m_size(MC_MBUF) + m_size(MC_16KCL); |
| 2049 | snprintf(m_cname(MC_MBUF_16KCL), MAX_MBUF_CNAME, "mbuf_16kcl" ); |
| 2050 | |
| 2051 | /* |
| 2052 | * Initialize the legacy mbstat structure. |
| 2053 | */ |
| 2054 | bzero(s: &mbstat, n: sizeof(mbstat)); |
| 2055 | mbstat.m_msize = m_maxsize(MC_MBUF); |
| 2056 | mbstat.m_mclbytes = m_maxsize(MC_CL); |
| 2057 | mbstat.m_minclsize = MINCLSIZE; |
| 2058 | mbstat.m_mlen = MLEN; |
| 2059 | mbstat.m_mhlen = MHLEN; |
| 2060 | mbstat.m_bigmclbytes = m_maxsize(MC_BIGCL); |
| 2061 | } |
| 2062 | |
| 2063 | static int |
| 2064 | mbuf_get_class(struct mbuf *m) |
| 2065 | { |
| 2066 | if (m->m_flags & M_EXT) { |
| 2067 | uint32_t composite = (MEXT_FLAGS(m) & EXTF_COMPOSITE); |
| 2068 | m_ext_free_func_t m_free_func = m_get_ext_free(m); |
| 2069 | |
| 2070 | if (m_free_func == NULL) { |
| 2071 | if (composite) { |
| 2072 | return MC_MBUF_CL; |
| 2073 | } else { |
| 2074 | return MC_CL; |
| 2075 | } |
| 2076 | } else if (m_free_func == m_bigfree) { |
| 2077 | if (composite) { |
| 2078 | return MC_MBUF_BIGCL; |
| 2079 | } else { |
| 2080 | return MC_BIGCL; |
| 2081 | } |
| 2082 | } else if (m_free_func == m_16kfree) { |
| 2083 | if (composite) { |
| 2084 | return MC_MBUF_16KCL; |
| 2085 | } else { |
| 2086 | return MC_16KCL; |
| 2087 | } |
| 2088 | } |
| 2089 | } |
| 2090 | |
| 2091 | return MC_MBUF; |
| 2092 | } |
| 2093 | |
| 2094 | bool |
| 2095 | mbuf_class_under_pressure(struct mbuf *m) |
| 2096 | { |
| 2097 | int mclass = mbuf_get_class(m); |
| 2098 | |
| 2099 | #if CONFIG_MBUF_MCACHE |
| 2100 | if (m_total(mclass) - m_infree(mclass) >= (m_maxlimit(mclass) * mb_memory_pressure_percentage) / 100) { |
| 2101 | /* |
| 2102 | * The above computation does not include the per-CPU cached objects. |
| 2103 | * As a fast-path check this is good-enough. But now we do |
| 2104 | * the "slower" count of the cached objects to know exactly the |
| 2105 | * number of active mbufs in use. |
| 2106 | * |
| 2107 | * We do not take the mbuf_lock here to avoid lock-contention. Numbers |
| 2108 | * might be slightly off but we don't try to be 100% accurate. |
| 2109 | * At worst, we drop a packet that we shouldn't have dropped or |
| 2110 | * we might go slightly above our memory-pressure threshold. |
| 2111 | */ |
| 2112 | mcache_t *cp = m_cache(mclass); |
| 2113 | mcache_cpu_t *ccp = &cp->mc_cpu[0]; |
| 2114 | |
| 2115 | int bktsize = os_access_once(ccp->cc_bktsize); |
| 2116 | uint32_t bl_total = os_access_once(cp->mc_full.bl_total); |
| 2117 | uint32_t cached = 0; |
| 2118 | int i; |
| 2119 | |
| 2120 | for (i = 0; i < ncpu; i++) { |
| 2121 | ccp = &cp->mc_cpu[i]; |
| 2122 | |
| 2123 | int cc_objs = os_access_once(ccp->cc_objs); |
| 2124 | if (cc_objs > 0) { |
| 2125 | cached += cc_objs; |
| 2126 | } |
| 2127 | |
| 2128 | int cc_pobjs = os_access_once(ccp->cc_pobjs); |
| 2129 | if (cc_pobjs > 0) { |
| 2130 | cached += cc_pobjs; |
| 2131 | } |
| 2132 | } |
| 2133 | cached += (bl_total * bktsize); |
| 2134 | if (m_total(mclass) - m_infree(mclass) - cached >= (m_maxlimit(mclass) * mb_memory_pressure_percentage) / 100) { |
| 2135 | os_log(OS_LOG_DEFAULT, |
| 2136 | "%s memory-pressure on mbuf due to class %u, total %u free %u cached %u max %u" , |
| 2137 | __func__, mclass, m_total(mclass), m_infree(mclass), cached, m_maxlimit(mclass)); |
| 2138 | return true; |
| 2139 | } |
| 2140 | } |
| 2141 | #else |
| 2142 | /* |
| 2143 | * Grab the statistics from zalloc. |
| 2144 | * We can't call mbuf_stat_sync() since that requires a lock. |
| 2145 | */ |
| 2146 | const zone_id_t zid = m_class_to_zid(m_class(mclass)); |
| 2147 | const zone_t zone = zone_by_id(zid); |
| 2148 | struct zone_basic_stats stats = {}; |
| 2149 | |
| 2150 | zone_get_stats(zone, stats: &stats); |
| 2151 | if (stats.zbs_avail - stats.zbs_free >= (m_maxlimit(mclass) * mb_memory_pressure_percentage) / 100) { |
| 2152 | os_log(OS_LOG_DEFAULT, |
| 2153 | "%s memory-pressure on mbuf due to class %u, total %llu free %llu max %u" , |
| 2154 | __func__, mclass, stats.zbs_avail, stats.zbs_free, m_maxlimit(mclass)); |
| 2155 | return true; |
| 2156 | } |
| 2157 | #endif /* CONFIG_MBUF_MCACHE */ |
| 2158 | |
| 2159 | return false; |
| 2160 | } |
| 2161 | |
| 2162 | #if defined(__LP64__) |
| 2163 | typedef struct ncl_tbl { |
| 2164 | uint64_t nt_maxmem; /* memory (sane) size */ |
| 2165 | uint32_t nt_mbpool; /* mbuf pool size */ |
| 2166 | } ncl_tbl_t; |
| 2167 | |
| 2168 | static const ncl_tbl_t ncl_table[] = { |
| 2169 | { (1ULL << GBSHIFT) /* 1 GB */, (64 << MBSHIFT) /* 64 MB */ }, |
| 2170 | { .nt_maxmem: (1ULL << (GBSHIFT + 2)) /* 4 GB */, .nt_mbpool: (96 << MBSHIFT) /* 96 MB */ }, |
| 2171 | { .nt_maxmem: (1ULL << (GBSHIFT + 3)) /* 8 GB */, .nt_mbpool: (128 << MBSHIFT) /* 128 MB */ }, |
| 2172 | { .nt_maxmem: (1ULL << (GBSHIFT + 4)) /* 16 GB */, .nt_mbpool: (256 << MBSHIFT) /* 256 MB */ }, |
| 2173 | { .nt_maxmem: (1ULL << (GBSHIFT + 5)) /* 32 GB */, .nt_mbpool: (512 << MBSHIFT) /* 512 MB */ }, |
| 2174 | { .nt_maxmem: 0, .nt_mbpool: 0 } |
| 2175 | }; |
| 2176 | #endif /* __LP64__ */ |
| 2177 | |
| 2178 | __private_extern__ unsigned int |
| 2179 | mbuf_default_ncl(uint64_t mem) |
| 2180 | { |
| 2181 | #if !defined(__LP64__) |
| 2182 | unsigned int n; |
| 2183 | /* |
| 2184 | * 32-bit kernel (default to 64MB of mbuf pool for >= 1GB RAM). |
| 2185 | */ |
| 2186 | if ((n = ((mem / 16) / MCLBYTES)) > 32768) { |
| 2187 | n = 32768; |
| 2188 | } |
| 2189 | #else |
| 2190 | unsigned int n, i; |
| 2191 | /* |
| 2192 | * 64-bit kernel (mbuf pool size based on table). |
| 2193 | */ |
| 2194 | n = ncl_table[0].nt_mbpool; |
| 2195 | for (i = 0; ncl_table[i].nt_mbpool != 0; i++) { |
| 2196 | if (mem < ncl_table[i].nt_maxmem) { |
| 2197 | break; |
| 2198 | } |
| 2199 | n = ncl_table[i].nt_mbpool; |
| 2200 | } |
| 2201 | n >>= MCLSHIFT; |
| 2202 | #endif /* !__LP64__ */ |
| 2203 | return n; |
| 2204 | } |
| 2205 | |
| 2206 | __private_extern__ void |
| 2207 | mbinit(void) |
| 2208 | { |
| 2209 | unsigned int m; |
| 2210 | #if CONFIG_MBUF_MCACHE |
| 2211 | unsigned int initmcl = 0; |
| 2212 | thread_t thread = THREAD_NULL; |
| 2213 | #endif /* CONFIG_MBUF_MCACHE */ |
| 2214 | |
| 2215 | #if CONFIG_MBUF_MCACHE |
| 2216 | microuptime(&mb_start); |
| 2217 | #endif /* CONFIG_MBUF_MCACHE */ |
| 2218 | |
| 2219 | /* |
| 2220 | * These MBUF_ values must be equal to their private counterparts. |
| 2221 | */ |
| 2222 | _CASSERT(MBUF_EXT == M_EXT); |
| 2223 | _CASSERT(MBUF_PKTHDR == M_PKTHDR); |
| 2224 | _CASSERT(MBUF_EOR == M_EOR); |
| 2225 | _CASSERT(MBUF_LOOP == M_LOOP); |
| 2226 | _CASSERT(MBUF_BCAST == M_BCAST); |
| 2227 | _CASSERT(MBUF_MCAST == M_MCAST); |
| 2228 | _CASSERT(MBUF_FRAG == M_FRAG); |
| 2229 | _CASSERT(MBUF_FIRSTFRAG == M_FIRSTFRAG); |
| 2230 | _CASSERT(MBUF_LASTFRAG == M_LASTFRAG); |
| 2231 | _CASSERT(MBUF_PROMISC == M_PROMISC); |
| 2232 | _CASSERT(MBUF_HASFCS == M_HASFCS); |
| 2233 | |
| 2234 | _CASSERT(MBUF_TYPE_FREE == MT_FREE); |
| 2235 | _CASSERT(MBUF_TYPE_DATA == MT_DATA); |
| 2236 | _CASSERT(MBUF_TYPE_HEADER == MT_HEADER); |
| 2237 | _CASSERT(MBUF_TYPE_SOCKET == MT_SOCKET); |
| 2238 | _CASSERT(MBUF_TYPE_PCB == MT_PCB); |
| 2239 | _CASSERT(MBUF_TYPE_RTABLE == MT_RTABLE); |
| 2240 | _CASSERT(MBUF_TYPE_HTABLE == MT_HTABLE); |
| 2241 | _CASSERT(MBUF_TYPE_ATABLE == MT_ATABLE); |
| 2242 | _CASSERT(MBUF_TYPE_SONAME == MT_SONAME); |
| 2243 | _CASSERT(MBUF_TYPE_SOOPTS == MT_SOOPTS); |
| 2244 | _CASSERT(MBUF_TYPE_FTABLE == MT_FTABLE); |
| 2245 | _CASSERT(MBUF_TYPE_RIGHTS == MT_RIGHTS); |
| 2246 | _CASSERT(MBUF_TYPE_IFADDR == MT_IFADDR); |
| 2247 | _CASSERT(MBUF_TYPE_CONTROL == MT_CONTROL); |
| 2248 | _CASSERT(MBUF_TYPE_OOBDATA == MT_OOBDATA); |
| 2249 | |
| 2250 | _CASSERT(MBUF_TSO_IPV4 == CSUM_TSO_IPV4); |
| 2251 | _CASSERT(MBUF_TSO_IPV6 == CSUM_TSO_IPV6); |
| 2252 | _CASSERT(MBUF_CSUM_REQ_SUM16 == CSUM_PARTIAL); |
| 2253 | _CASSERT(MBUF_CSUM_TCP_SUM16 == MBUF_CSUM_REQ_SUM16); |
| 2254 | _CASSERT(MBUF_CSUM_REQ_ZERO_INVERT == CSUM_ZERO_INVERT); |
| 2255 | _CASSERT(MBUF_CSUM_REQ_IP == CSUM_IP); |
| 2256 | _CASSERT(MBUF_CSUM_REQ_TCP == CSUM_TCP); |
| 2257 | _CASSERT(MBUF_CSUM_REQ_UDP == CSUM_UDP); |
| 2258 | _CASSERT(MBUF_CSUM_REQ_TCPIPV6 == CSUM_TCPIPV6); |
| 2259 | _CASSERT(MBUF_CSUM_REQ_UDPIPV6 == CSUM_UDPIPV6); |
| 2260 | _CASSERT(MBUF_CSUM_DID_IP == CSUM_IP_CHECKED); |
| 2261 | _CASSERT(MBUF_CSUM_IP_GOOD == CSUM_IP_VALID); |
| 2262 | _CASSERT(MBUF_CSUM_DID_DATA == CSUM_DATA_VALID); |
| 2263 | _CASSERT(MBUF_CSUM_PSEUDO_HDR == CSUM_PSEUDO_HDR); |
| 2264 | |
| 2265 | _CASSERT(MBUF_WAITOK == M_WAIT); |
| 2266 | _CASSERT(MBUF_DONTWAIT == M_DONTWAIT); |
| 2267 | _CASSERT(MBUF_COPYALL == M_COPYALL); |
| 2268 | |
| 2269 | _CASSERT(MBUF_SC2TC(MBUF_SC_BK_SYS) == MBUF_TC_BK); |
| 2270 | _CASSERT(MBUF_SC2TC(MBUF_SC_BK) == MBUF_TC_BK); |
| 2271 | _CASSERT(MBUF_SC2TC(MBUF_SC_BE) == MBUF_TC_BE); |
| 2272 | _CASSERT(MBUF_SC2TC(MBUF_SC_RD) == MBUF_TC_BE); |
| 2273 | _CASSERT(MBUF_SC2TC(MBUF_SC_OAM) == MBUF_TC_BE); |
| 2274 | _CASSERT(MBUF_SC2TC(MBUF_SC_AV) == MBUF_TC_VI); |
| 2275 | _CASSERT(MBUF_SC2TC(MBUF_SC_RV) == MBUF_TC_VI); |
| 2276 | _CASSERT(MBUF_SC2TC(MBUF_SC_VI) == MBUF_TC_VI); |
| 2277 | _CASSERT(MBUF_SC2TC(MBUF_SC_SIG) == MBUF_TC_VI); |
| 2278 | _CASSERT(MBUF_SC2TC(MBUF_SC_VO) == MBUF_TC_VO); |
| 2279 | _CASSERT(MBUF_SC2TC(MBUF_SC_CTL) == MBUF_TC_VO); |
| 2280 | |
| 2281 | _CASSERT(MBUF_TC2SCVAL(MBUF_TC_BK) == SCVAL_BK); |
| 2282 | _CASSERT(MBUF_TC2SCVAL(MBUF_TC_BE) == SCVAL_BE); |
| 2283 | _CASSERT(MBUF_TC2SCVAL(MBUF_TC_VI) == SCVAL_VI); |
| 2284 | _CASSERT(MBUF_TC2SCVAL(MBUF_TC_VO) == SCVAL_VO); |
| 2285 | |
| 2286 | /* Module specific scratch space (32-bit alignment requirement) */ |
| 2287 | _CASSERT(!(offsetof(struct mbuf, m_pkthdr.pkt_mpriv) % |
| 2288 | sizeof(uint32_t))); |
| 2289 | |
| 2290 | /* pktdata needs to start at 128-bit offset! */ |
| 2291 | _CASSERT((offsetof(struct mbuf, m_pktdat) % 16) == 0); |
| 2292 | |
| 2293 | /* Initialize random red zone cookie value */ |
| 2294 | _CASSERT(sizeof(mb_redzone_cookie) == |
| 2295 | sizeof(((struct pkthdr *)0)->redzone)); |
| 2296 | read_random(buffer: &mb_redzone_cookie, numBytes: sizeof(mb_redzone_cookie)); |
| 2297 | read_random(buffer: &mb_obscure_extref, numBytes: sizeof(mb_obscure_extref)); |
| 2298 | read_random(buffer: &mb_obscure_extfree, numBytes: sizeof(mb_obscure_extfree)); |
| 2299 | mb_obscure_extref |= 0x3; |
| 2300 | mb_obscure_extref = 0; |
| 2301 | mb_obscure_extfree |= 0x3; |
| 2302 | |
| 2303 | #if CONFIG_MBUF_MCACHE |
| 2304 | /* Make sure we don't save more than we should */ |
| 2305 | _CASSERT(MCA_SAVED_MBUF_SIZE <= sizeof(struct mbuf)); |
| 2306 | #endif /* CONFIG_MBUF_MCACHE */ |
| 2307 | |
| 2308 | if (nmbclusters == 0) { |
| 2309 | nmbclusters = NMBCLUSTERS; |
| 2310 | } |
| 2311 | |
| 2312 | /* This should be a sane (at least even) value by now */ |
| 2313 | VERIFY(nmbclusters != 0 && !(nmbclusters & 0x1)); |
| 2314 | |
| 2315 | /* Setup the mbuf table */ |
| 2316 | mbuf_table_init(); |
| 2317 | |
| 2318 | _CASSERT(sizeof(struct mbuf) == _MSIZE); |
| 2319 | |
| 2320 | #if CONFIG_MBUF_MCACHE |
| 2321 | /* |
| 2322 | * Allocate cluster slabs table: |
| 2323 | * |
| 2324 | * maxslabgrp = (N * 2048) / (1024 * 1024) |
| 2325 | * |
| 2326 | * Where N is nmbclusters rounded up to the nearest 512. This yields |
| 2327 | * mcl_slab_g_t units, each one representing a MB of memory. |
| 2328 | */ |
| 2329 | maxslabgrp = |
| 2330 | (P2ROUNDUP(nmbclusters, (MBSIZE >> MCLSHIFT)) << MCLSHIFT) >> MBSHIFT; |
| 2331 | slabstbl = zalloc_permanent(maxslabgrp * sizeof(mcl_slabg_t *), |
| 2332 | ZALIGN(mcl_slabg_t)); |
| 2333 | |
| 2334 | /* |
| 2335 | * Allocate audit structures, if needed: |
| 2336 | * |
| 2337 | * maxclaudit = (maxslabgrp * 1024 * 1024) / PAGE_SIZE |
| 2338 | * |
| 2339 | * This yields mcl_audit_t units, each one representing a page. |
| 2340 | */ |
| 2341 | PE_parse_boot_argn("mbuf_debug" , &mbuf_debug, sizeof(mbuf_debug)); |
| 2342 | mbuf_debug |= mcache_getflags(); |
| 2343 | if (mbuf_debug & MCF_DEBUG) { |
| 2344 | int l; |
| 2345 | mcl_audit_t *mclad; |
| 2346 | maxclaudit = ((maxslabgrp << MBSHIFT) >> PAGE_SHIFT); |
| 2347 | mclaudit = zalloc_permanent(maxclaudit * sizeof(*mclaudit), |
| 2348 | ZALIGN(mcl_audit_t)); |
| 2349 | for (l = 0, mclad = mclaudit; l < maxclaudit; l++) { |
| 2350 | mclad[l].cl_audit = zalloc_permanent(NMBPG * sizeof(mcache_audit_t *), |
| 2351 | ZALIGN_PTR); |
| 2352 | } |
| 2353 | |
| 2354 | mcl_audit_con_cache = mcache_create("mcl_audit_contents" , |
| 2355 | AUDIT_CONTENTS_SIZE, sizeof(u_int64_t), 0, MCR_SLEEP); |
| 2356 | VERIFY(mcl_audit_con_cache != NULL); |
| 2357 | } |
| 2358 | mclverify = (mbuf_debug & MCF_VERIFY); |
| 2359 | mcltrace = (mbuf_debug & MCF_TRACE); |
| 2360 | mclfindleak = !(mbuf_debug & MCF_NOLEAKLOG); |
| 2361 | mclexpleak = mclfindleak && (mbuf_debug & MCF_EXPLEAKLOG); |
| 2362 | |
| 2363 | /* Enable mbuf leak logging, with a lock to protect the tables */ |
| 2364 | |
| 2365 | mleak_activate(); |
| 2366 | |
| 2367 | /* |
| 2368 | * Allocate structure for per-CPU statistics that's aligned |
| 2369 | * on the CPU cache boundary; this code assumes that we never |
| 2370 | * uninitialize this framework, since the original address |
| 2371 | * before alignment is not saved. |
| 2372 | */ |
| 2373 | ncpu = ml_wait_max_cpus(); |
| 2374 | |
| 2375 | /* Calculate the number of pages assigned to the cluster pool */ |
| 2376 | mcl_pages = (nmbclusters << MCLSHIFT) / PAGE_SIZE; |
| 2377 | mcl_paddr = zalloc_permanent(mcl_pages * sizeof(ppnum_t), |
| 2378 | ZALIGN(ppnum_t)); |
| 2379 | |
| 2380 | /* Register with the I/O Bus mapper */ |
| 2381 | mcl_paddr_base = IOMapperIOVMAlloc(mcl_pages); |
| 2382 | |
| 2383 | embutl = (mbutl + (nmbclusters * MCLBYTES)); |
| 2384 | VERIFY(((embutl - mbutl) % MBIGCLBYTES) == 0); |
| 2385 | |
| 2386 | /* Prime up the freelist */ |
| 2387 | PE_parse_boot_argn("initmcl" , &initmcl, sizeof(initmcl)); |
| 2388 | if (initmcl != 0) { |
| 2389 | initmcl >>= NCLPBGSHIFT; /* become a 4K unit */ |
| 2390 | if (initmcl > m_maxlimit(MC_BIGCL)) { |
| 2391 | initmcl = m_maxlimit(MC_BIGCL); |
| 2392 | } |
| 2393 | } |
| 2394 | if (initmcl < m_minlimit(MC_BIGCL)) { |
| 2395 | initmcl = m_minlimit(MC_BIGCL); |
| 2396 | } |
| 2397 | |
| 2398 | lck_mtx_lock(mbuf_mlock); |
| 2399 | |
| 2400 | /* |
| 2401 | * For classes with non-zero minimum limits, populate their freelists |
| 2402 | * so that m_total(class) is at least m_minlimit(class). |
| 2403 | */ |
| 2404 | VERIFY(m_total(MC_BIGCL) == 0 && m_minlimit(MC_BIGCL) != 0); |
| 2405 | freelist_populate(m_class(MC_BIGCL), initmcl, M_WAIT); |
| 2406 | VERIFY(m_total(MC_BIGCL) >= m_minlimit(MC_BIGCL)); |
| 2407 | freelist_init(m_class(MC_CL)); |
| 2408 | #else |
| 2409 | /* |
| 2410 | * We have yet to create the non composite zones |
| 2411 | * and thus we haven't asked zalloc to allocate |
| 2412 | * anything yet, which means that at this point |
| 2413 | * m_total() is zero. Once we create the zones and |
| 2414 | * raise the reserve, m_total() will be calculated, |
| 2415 | * but until then just assume that we will have |
| 2416 | * at least the minium limit allocated. |
| 2417 | */ |
| 2418 | m_total(MC_BIGCL) = m_minlimit(MC_BIGCL); |
| 2419 | m_total(MC_CL) = m_minlimit(MC_CL); |
| 2420 | #endif /* CONFIG_MBUF_MCACHE */ |
| 2421 | |
| 2422 | for (m = 0; m < NELEM(mbuf_table); m++) { |
| 2423 | /* Make sure we didn't miss any */ |
| 2424 | VERIFY(m_minlimit(m_class(m)) == 0 || |
| 2425 | m_total(m_class(m)) >= m_minlimit(m_class(m))); |
| 2426 | } |
| 2427 | |
| 2428 | #if CONFIG_MBUF_MCACHE |
| 2429 | lck_mtx_unlock(mbuf_mlock); |
| 2430 | |
| 2431 | (void) kernel_thread_start((thread_continue_t)mbuf_worker_thread_init, |
| 2432 | NULL, &thread); |
| 2433 | thread_deallocate(thread); |
| 2434 | |
| 2435 | ref_cache = mcache_create("mext_ref" , sizeof(struct ext_ref), |
| 2436 | 0, 0, MCR_SLEEP); |
| 2437 | #endif /* CONFIG_MBUF_MCACHE */ |
| 2438 | |
| 2439 | /* Create the cache for each class */ |
| 2440 | for (m = 0; m < NELEM(mbuf_table); m++) { |
| 2441 | #if CONFIG_MBUF_MCACHE |
| 2442 | void *allocfunc, *freefunc, *auditfunc, *logfunc; |
| 2443 | u_int32_t flags; |
| 2444 | |
| 2445 | flags = mbuf_debug; |
| 2446 | if (m_class(m) == MC_MBUF_CL || m_class(m) == MC_MBUF_BIGCL || |
| 2447 | m_class(m) == MC_MBUF_16KCL) { |
| 2448 | allocfunc = mbuf_cslab_alloc; |
| 2449 | freefunc = mbuf_cslab_free; |
| 2450 | auditfunc = mbuf_cslab_audit; |
| 2451 | logfunc = mleak_logger; |
| 2452 | } else { |
| 2453 | allocfunc = mbuf_slab_alloc; |
| 2454 | freefunc = mbuf_slab_free; |
| 2455 | auditfunc = mbuf_slab_audit; |
| 2456 | logfunc = mleak_logger; |
| 2457 | } |
| 2458 | |
| 2459 | /* |
| 2460 | * Disable per-CPU caches for jumbo classes if there |
| 2461 | * is no jumbo cluster pool available in the system. |
| 2462 | * The cache itself is still created (but will never |
| 2463 | * be populated) since it simplifies the code. |
| 2464 | */ |
| 2465 | if ((m_class(m) == MC_MBUF_16KCL || m_class(m) == MC_16KCL) && |
| 2466 | njcl == 0) { |
| 2467 | flags |= MCF_NOCPUCACHE; |
| 2468 | } |
| 2469 | |
| 2470 | if (!mclfindleak) { |
| 2471 | flags |= MCF_NOLEAKLOG; |
| 2472 | } |
| 2473 | |
| 2474 | m_cache(m) = mcache_create_ext(m_cname(m), m_maxsize(m), |
| 2475 | allocfunc, freefunc, auditfunc, logfunc, mbuf_slab_notify, |
| 2476 | (void *)(uintptr_t)m, flags, MCR_SLEEP); |
| 2477 | #else |
| 2478 | if (!MBUF_CLASS_COMPOSITE(m)) { |
| 2479 | zone_t zone = zone_by_id(zid: m_class_to_zid(class: m)); |
| 2480 | |
| 2481 | zone_set_exhaustible(zone, m_maxlimit(m), false); |
| 2482 | zone_raise_reserve(zone_or_view: zone, m_minlimit(m)); |
| 2483 | /* |
| 2484 | * Pretend that we have allocated m_total() items |
| 2485 | * at this point. zalloc will eventually do that |
| 2486 | * but it's an async operation. |
| 2487 | */ |
| 2488 | m_total(m) = m_minlimit(m); |
| 2489 | } |
| 2490 | #endif /* CONFIG_MBUF_MCACHE */ |
| 2491 | } |
| 2492 | |
| 2493 | /* |
| 2494 | * Set the max limit on sb_max to be 1/16 th of the size of |
| 2495 | * memory allocated for mbuf clusters. |
| 2496 | */ |
| 2497 | high_sb_max = (nmbclusters << (MCLSHIFT - 4)); |
| 2498 | if (high_sb_max < sb_max) { |
| 2499 | /* sb_max is too large for this configuration, scale it down */ |
| 2500 | if (high_sb_max > (1 << MBSHIFT)) { |
| 2501 | /* We have atleast 16 M of mbuf pool */ |
| 2502 | sb_max = high_sb_max; |
| 2503 | } else if ((nmbclusters << MCLSHIFT) > (1 << MBSHIFT)) { |
| 2504 | /* |
| 2505 | * If we have more than 1M of mbufpool, cap the size of |
| 2506 | * max sock buf at 1M |
| 2507 | */ |
| 2508 | sb_max = high_sb_max = (1 << MBSHIFT); |
| 2509 | } else { |
| 2510 | sb_max = high_sb_max; |
| 2511 | } |
| 2512 | } |
| 2513 | |
| 2514 | #if CONFIG_MBUF_MCACHE |
| 2515 | /* allocate space for mbuf_dump_buf */ |
| 2516 | mbuf_dump_buf = zalloc_permanent(MBUF_DUMP_BUF_SIZE, ZALIGN_NONE); |
| 2517 | |
| 2518 | if (mbuf_debug & MCF_DEBUG) { |
| 2519 | printf("%s: MLEN %d, MHLEN %d\n" , __func__, |
| 2520 | (int)_MLEN, (int)_MHLEN); |
| 2521 | } |
| 2522 | #else |
| 2523 | mbuf_defunct_tcall = |
| 2524 | thread_call_allocate_with_options(func: mbuf_watchdog_defunct, |
| 2525 | NULL, |
| 2526 | pri: THREAD_CALL_PRIORITY_KERNEL, |
| 2527 | options: THREAD_CALL_OPTIONS_ONCE); |
| 2528 | mbuf_drain_tcall = |
| 2529 | thread_call_allocate_with_options(func: mbuf_watchdog_drain_composite, |
| 2530 | NULL, |
| 2531 | pri: THREAD_CALL_PRIORITY_KERNEL, |
| 2532 | options: THREAD_CALL_OPTIONS_ONCE); |
| 2533 | #endif /* CONFIG_MBUF_MCACHE */ |
| 2534 | printf("%s: done [%d MB total pool size, (%d/%d) split]\n" , __func__, |
| 2535 | (nmbclusters << MCLSHIFT) >> MBSHIFT, |
| 2536 | (nclusters << MCLSHIFT) >> MBSHIFT, |
| 2537 | (njcl << MCLSHIFT) >> MBSHIFT); |
| 2538 | |
| 2539 | PE_parse_boot_argn(arg_string: "mb_tag_mbuf" , arg_ptr: &mb_tag_mbuf, max_arg: sizeof(mb_tag_mbuf)); |
| 2540 | } |
| 2541 | |
| 2542 | #if CONFIG_MBUF_MCACHE |
| 2543 | /* |
| 2544 | * Obtain a slab of object(s) from the class's freelist. |
| 2545 | */ |
| 2546 | static mcache_obj_t * |
| 2547 | slab_alloc(mbuf_class_t class, int wait) |
| 2548 | { |
| 2549 | mcl_slab_t *sp; |
| 2550 | mcache_obj_t *buf; |
| 2551 | |
| 2552 | LCK_MTX_ASSERT(mbuf_mlock, LCK_MTX_ASSERT_OWNED); |
| 2553 | |
| 2554 | /* This should always be NULL for us */ |
| 2555 | VERIFY(m_cobjlist(class) == NULL); |
| 2556 | |
| 2557 | /* |
| 2558 | * Treat composite objects as having longer lifespan by using |
| 2559 | * a slab from the reverse direction, in hoping that this could |
| 2560 | * reduce the probability of fragmentation for slabs that hold |
| 2561 | * more than one buffer chunks (e.g. mbuf slabs). For other |
| 2562 | * slabs, this probably doesn't make much of a difference. |
| 2563 | */ |
| 2564 | if ((class == MC_MBUF || class == MC_CL || class == MC_BIGCL) |
| 2565 | && (wait & MCR_COMP)) { |
| 2566 | sp = (mcl_slab_t *)TAILQ_LAST(&m_slablist(class), mcl_slhead); |
| 2567 | } else { |
| 2568 | sp = (mcl_slab_t *)TAILQ_FIRST(&m_slablist(class)); |
| 2569 | } |
| 2570 | |
| 2571 | if (sp == NULL) { |
| 2572 | VERIFY(m_infree(class) == 0 && m_slab_cnt(class) == 0); |
| 2573 | /* The slab list for this class is empty */ |
| 2574 | return NULL; |
| 2575 | } |
| 2576 | |
| 2577 | VERIFY(m_infree(class) > 0); |
| 2578 | VERIFY(!slab_is_detached(sp)); |
| 2579 | VERIFY(sp->sl_class == class && |
| 2580 | (sp->sl_flags & (SLF_MAPPED | SLF_PARTIAL)) == SLF_MAPPED); |
| 2581 | buf = sp->sl_head; |
| 2582 | VERIFY(slab_inrange(sp, buf) && sp == slab_get(buf)); |
| 2583 | sp->sl_head = buf->obj_next; |
| 2584 | /* Increment slab reference */ |
| 2585 | sp->sl_refcnt++; |
| 2586 | |
| 2587 | VERIFY(sp->sl_head != NULL || sp->sl_refcnt == sp->sl_chunks); |
| 2588 | |
| 2589 | if (sp->sl_head != NULL && !slab_inrange(sp, sp->sl_head)) { |
| 2590 | slab_nextptr_panic(sp, sp->sl_head); |
| 2591 | /* In case sl_head is in the map but not in the slab */ |
| 2592 | VERIFY(slab_inrange(sp, sp->sl_head)); |
| 2593 | /* NOTREACHED */ |
| 2594 | } |
| 2595 | |
| 2596 | if (mclaudit != NULL) { |
| 2597 | mcache_audit_t *mca = mcl_audit_buf2mca(class, buf); |
| 2598 | mca->mca_uflags = 0; |
| 2599 | /* Save contents on mbuf objects only */ |
| 2600 | if (class == MC_MBUF) { |
| 2601 | mca->mca_uflags |= MB_SCVALID; |
| 2602 | } |
| 2603 | } |
| 2604 | |
| 2605 | if (class == MC_CL) { |
| 2606 | mbstat.m_clfree = (--m_infree(MC_CL)) + m_infree(MC_MBUF_CL); |
| 2607 | /* |
| 2608 | * A 2K cluster slab can have at most NCLPG references. |
| 2609 | */ |
| 2610 | VERIFY(sp->sl_refcnt >= 1 && sp->sl_refcnt <= NCLPG && |
| 2611 | sp->sl_chunks == NCLPG && sp->sl_len == PAGE_SIZE); |
| 2612 | VERIFY(sp->sl_refcnt < NCLPG || sp->sl_head == NULL); |
| 2613 | } else if (class == MC_BIGCL) { |
| 2614 | mbstat.m_bigclfree = (--m_infree(MC_BIGCL)) + |
| 2615 | m_infree(MC_MBUF_BIGCL); |
| 2616 | /* |
| 2617 | * A 4K cluster slab can have NBCLPG references. |
| 2618 | */ |
| 2619 | VERIFY(sp->sl_refcnt >= 1 && sp->sl_chunks == NBCLPG && |
| 2620 | sp->sl_len == PAGE_SIZE && |
| 2621 | (sp->sl_refcnt < NBCLPG || sp->sl_head == NULL)); |
| 2622 | } else if (class == MC_16KCL) { |
| 2623 | mcl_slab_t *nsp; |
| 2624 | int k; |
| 2625 | |
| 2626 | --m_infree(MC_16KCL); |
| 2627 | VERIFY(sp->sl_refcnt == 1 && sp->sl_chunks == 1 && |
| 2628 | sp->sl_len == m_maxsize(class) && sp->sl_head == NULL); |
| 2629 | /* |
| 2630 | * Increment 2nd-Nth slab reference, where N is NSLABSP16KB. |
| 2631 | * A 16KB big cluster takes NSLABSP16KB slabs, each having at |
| 2632 | * most 1 reference. |
| 2633 | */ |
| 2634 | for (nsp = sp, k = 1; k < NSLABSP16KB; k++) { |
| 2635 | nsp = nsp->sl_next; |
| 2636 | /* Next slab must already be present */ |
| 2637 | VERIFY(nsp != NULL); |
| 2638 | nsp->sl_refcnt++; |
| 2639 | VERIFY(!slab_is_detached(nsp)); |
| 2640 | VERIFY(nsp->sl_class == MC_16KCL && |
| 2641 | nsp->sl_flags == (SLF_MAPPED | SLF_PARTIAL) && |
| 2642 | nsp->sl_refcnt == 1 && nsp->sl_chunks == 0 && |
| 2643 | nsp->sl_len == 0 && nsp->sl_base == sp->sl_base && |
| 2644 | nsp->sl_head == NULL); |
| 2645 | } |
| 2646 | } else { |
| 2647 | VERIFY(class == MC_MBUF); |
| 2648 | --m_infree(MC_MBUF); |
| 2649 | /* |
| 2650 | * If auditing is turned on, this check is |
| 2651 | * deferred until later in mbuf_slab_audit(). |
| 2652 | */ |
| 2653 | if (mclaudit == NULL) { |
| 2654 | _MCHECK((struct mbuf *)buf); |
| 2655 | } |
| 2656 | /* |
| 2657 | * Since we have incremented the reference count above, |
| 2658 | * an mbuf slab (formerly a 4KB cluster slab that was cut |
| 2659 | * up into mbufs) must have a reference count between 1 |
| 2660 | * and NMBPG at this point. |
| 2661 | */ |
| 2662 | VERIFY(sp->sl_refcnt >= 1 && sp->sl_refcnt <= NMBPG && |
| 2663 | sp->sl_chunks == NMBPG && |
| 2664 | sp->sl_len == PAGE_SIZE); |
| 2665 | VERIFY(sp->sl_refcnt < NMBPG || sp->sl_head == NULL); |
| 2666 | } |
| 2667 | |
| 2668 | /* If empty, remove this slab from the class's freelist */ |
| 2669 | if (sp->sl_head == NULL) { |
| 2670 | VERIFY(class != MC_MBUF || sp->sl_refcnt == NMBPG); |
| 2671 | VERIFY(class != MC_CL || sp->sl_refcnt == NCLPG); |
| 2672 | VERIFY(class != MC_BIGCL || sp->sl_refcnt == NBCLPG); |
| 2673 | slab_remove(sp, class); |
| 2674 | } |
| 2675 | |
| 2676 | return buf; |
| 2677 | } |
| 2678 | |
| 2679 | /* |
| 2680 | * Place a slab of object(s) back into a class's slab list. |
| 2681 | */ |
| 2682 | static void |
| 2683 | slab_free(mbuf_class_t class, mcache_obj_t *buf) |
| 2684 | { |
| 2685 | mcl_slab_t *sp; |
| 2686 | boolean_t reinit_supercl = false; |
| 2687 | mbuf_class_t super_class; |
| 2688 | |
| 2689 | LCK_MTX_ASSERT(mbuf_mlock, LCK_MTX_ASSERT_OWNED); |
| 2690 | |
| 2691 | VERIFY(class != MC_16KCL || njcl > 0); |
| 2692 | VERIFY(buf->obj_next == NULL); |
| 2693 | |
| 2694 | /* |
| 2695 | * Synchronizing with m_clalloc, as it reads m_total, while we here |
| 2696 | * are modifying m_total. |
| 2697 | */ |
| 2698 | while (mb_clalloc_busy) { |
| 2699 | mb_clalloc_waiters++; |
| 2700 | (void) msleep(mb_clalloc_waitchan, mbuf_mlock, |
| 2701 | (PZERO - 1), "m_clalloc" , NULL); |
| 2702 | LCK_MTX_ASSERT(mbuf_mlock, LCK_MTX_ASSERT_OWNED); |
| 2703 | } |
| 2704 | |
| 2705 | /* We are busy now; tell everyone else to go away */ |
| 2706 | mb_clalloc_busy = TRUE; |
| 2707 | |
| 2708 | sp = slab_get(buf); |
| 2709 | VERIFY(sp->sl_class == class && slab_inrange(sp, buf) && |
| 2710 | (sp->sl_flags & (SLF_MAPPED | SLF_PARTIAL)) == SLF_MAPPED); |
| 2711 | |
| 2712 | /* Decrement slab reference */ |
| 2713 | sp->sl_refcnt--; |
| 2714 | |
| 2715 | if (class == MC_CL) { |
| 2716 | VERIFY(IS_P2ALIGNED(buf, MCLBYTES)); |
| 2717 | /* |
| 2718 | * A slab that has been splitted for 2KB clusters can have |
| 2719 | * at most 1 outstanding reference at this point. |
| 2720 | */ |
| 2721 | VERIFY(sp->sl_refcnt >= 0 && sp->sl_refcnt <= (NCLPG - 1) && |
| 2722 | sp->sl_chunks == NCLPG && sp->sl_len == PAGE_SIZE); |
| 2723 | VERIFY(sp->sl_refcnt < (NCLPG - 1) || |
| 2724 | (slab_is_detached(sp) && sp->sl_head == NULL)); |
| 2725 | } else if (class == MC_BIGCL) { |
| 2726 | VERIFY(IS_P2ALIGNED(buf, MBIGCLBYTES)); |
| 2727 | |
| 2728 | /* A 4KB cluster slab can have NBCLPG references at most */ |
| 2729 | VERIFY(sp->sl_refcnt >= 0 && sp->sl_chunks == NBCLPG); |
| 2730 | VERIFY(sp->sl_refcnt < (NBCLPG - 1) || |
| 2731 | (slab_is_detached(sp) && sp->sl_head == NULL)); |
| 2732 | } else if (class == MC_16KCL) { |
| 2733 | mcl_slab_t *nsp; |
| 2734 | int k; |
| 2735 | /* |
| 2736 | * A 16KB cluster takes NSLABSP16KB slabs, all must |
| 2737 | * now have 0 reference. |
| 2738 | */ |
| 2739 | VERIFY(IS_P2ALIGNED(buf, PAGE_SIZE)); |
| 2740 | VERIFY(sp->sl_refcnt == 0 && sp->sl_chunks == 1 && |
| 2741 | sp->sl_len == m_maxsize(class) && sp->sl_head == NULL); |
| 2742 | VERIFY(slab_is_detached(sp)); |
| 2743 | for (nsp = sp, k = 1; k < NSLABSP16KB; k++) { |
| 2744 | nsp = nsp->sl_next; |
| 2745 | /* Next slab must already be present */ |
| 2746 | VERIFY(nsp != NULL); |
| 2747 | nsp->sl_refcnt--; |
| 2748 | VERIFY(slab_is_detached(nsp)); |
| 2749 | VERIFY(nsp->sl_class == MC_16KCL && |
| 2750 | (nsp->sl_flags & (SLF_MAPPED | SLF_PARTIAL)) && |
| 2751 | nsp->sl_refcnt == 0 && nsp->sl_chunks == 0 && |
| 2752 | nsp->sl_len == 0 && nsp->sl_base == sp->sl_base && |
| 2753 | nsp->sl_head == NULL); |
| 2754 | } |
| 2755 | } else { |
| 2756 | /* |
| 2757 | * A slab that has been splitted for mbufs has at most |
| 2758 | * NMBPG reference counts. Since we have decremented |
| 2759 | * one reference above, it must now be between 0 and |
| 2760 | * NMBPG-1. |
| 2761 | */ |
| 2762 | VERIFY(class == MC_MBUF); |
| 2763 | VERIFY(sp->sl_refcnt >= 0 && |
| 2764 | sp->sl_refcnt <= (NMBPG - 1) && |
| 2765 | sp->sl_chunks == NMBPG && |
| 2766 | sp->sl_len == PAGE_SIZE); |
| 2767 | VERIFY(sp->sl_refcnt < (NMBPG - 1) || |
| 2768 | (slab_is_detached(sp) && sp->sl_head == NULL)); |
| 2769 | } |
| 2770 | |
| 2771 | /* |
| 2772 | * When auditing is enabled, ensure that the buffer still |
| 2773 | * contains the free pattern. Otherwise it got corrupted |
| 2774 | * while at the CPU cache layer. |
| 2775 | */ |
| 2776 | if (mclaudit != NULL) { |
| 2777 | mcache_audit_t *mca = mcl_audit_buf2mca(class, buf); |
| 2778 | if (mclverify) { |
| 2779 | mcache_audit_free_verify(mca, buf, 0, |
| 2780 | m_maxsize(class)); |
| 2781 | } |
| 2782 | mca->mca_uflags &= ~MB_SCVALID; |
| 2783 | } |
| 2784 | |
| 2785 | if (class == MC_CL) { |
| 2786 | mbstat.m_clfree = (++m_infree(MC_CL)) + m_infree(MC_MBUF_CL); |
| 2787 | buf->obj_next = sp->sl_head; |
| 2788 | } else if (class == MC_BIGCL) { |
| 2789 | mbstat.m_bigclfree = (++m_infree(MC_BIGCL)) + |
| 2790 | m_infree(MC_MBUF_BIGCL); |
| 2791 | buf->obj_next = sp->sl_head; |
| 2792 | } else if (class == MC_16KCL) { |
| 2793 | ++m_infree(MC_16KCL); |
| 2794 | } else { |
| 2795 | ++m_infree(MC_MBUF); |
| 2796 | buf->obj_next = sp->sl_head; |
| 2797 | } |
| 2798 | sp->sl_head = buf; |
| 2799 | |
| 2800 | /* |
| 2801 | * If a slab has been split to either one which holds 2KB clusters, |
| 2802 | * or one which holds mbufs, turn it back to one which holds a |
| 2803 | * 4 or 16 KB cluster depending on the page size. |
| 2804 | */ |
| 2805 | if (m_maxsize(MC_BIGCL) == PAGE_SIZE) { |
| 2806 | super_class = MC_BIGCL; |
| 2807 | } else { |
| 2808 | VERIFY(PAGE_SIZE == m_maxsize(MC_16KCL)); |
| 2809 | super_class = MC_16KCL; |
| 2810 | } |
| 2811 | if (class == MC_MBUF && sp->sl_refcnt == 0 && |
| 2812 | m_total(class) >= (m_minlimit(class) + NMBPG) && |
| 2813 | m_total(super_class) < m_maxlimit(super_class)) { |
| 2814 | int i = NMBPG; |
| 2815 | |
| 2816 | m_total(MC_MBUF) -= NMBPG; |
| 2817 | mbstat.m_mbufs = m_total(MC_MBUF); |
| 2818 | m_infree(MC_MBUF) -= NMBPG; |
| 2819 | mtype_stat_add(MT_FREE, -((unsigned)NMBPG)); |
| 2820 | |
| 2821 | while (i--) { |
| 2822 | struct mbuf *m = sp->sl_head; |
| 2823 | VERIFY(m != NULL); |
| 2824 | sp->sl_head = m->m_next; |
| 2825 | m->m_next = NULL; |
| 2826 | } |
| 2827 | reinit_supercl = true; |
| 2828 | } else if (class == MC_CL && sp->sl_refcnt == 0 && |
| 2829 | m_total(class) >= (m_minlimit(class) + NCLPG) && |
| 2830 | m_total(super_class) < m_maxlimit(super_class)) { |
| 2831 | int i = NCLPG; |
| 2832 | |
| 2833 | m_total(MC_CL) -= NCLPG; |
| 2834 | mbstat.m_clusters = m_total(MC_CL); |
| 2835 | m_infree(MC_CL) -= NCLPG; |
| 2836 | |
| 2837 | while (i--) { |
| 2838 | union mcluster *c = sp->sl_head; |
| 2839 | VERIFY(c != NULL); |
| 2840 | sp->sl_head = c->mcl_next; |
| 2841 | c->mcl_next = NULL; |
| 2842 | } |
| 2843 | reinit_supercl = true; |
| 2844 | } else if (class == MC_BIGCL && super_class != MC_BIGCL && |
| 2845 | sp->sl_refcnt == 0 && |
| 2846 | m_total(class) >= (m_minlimit(class) + NBCLPG) && |
| 2847 | m_total(super_class) < m_maxlimit(super_class)) { |
| 2848 | int i = NBCLPG; |
| 2849 | |
| 2850 | VERIFY(super_class == MC_16KCL); |
| 2851 | m_total(MC_BIGCL) -= NBCLPG; |
| 2852 | mbstat.m_bigclusters = m_total(MC_BIGCL); |
| 2853 | m_infree(MC_BIGCL) -= NBCLPG; |
| 2854 | |
| 2855 | while (i--) { |
| 2856 | union mbigcluster *bc = sp->sl_head; |
| 2857 | VERIFY(bc != NULL); |
| 2858 | sp->sl_head = bc->mbc_next; |
| 2859 | bc->mbc_next = NULL; |
| 2860 | } |
| 2861 | reinit_supercl = true; |
| 2862 | } |
| 2863 | |
| 2864 | if (reinit_supercl) { |
| 2865 | VERIFY(sp->sl_head == NULL); |
| 2866 | VERIFY(m_total(class) >= m_minlimit(class)); |
| 2867 | slab_remove(sp, class); |
| 2868 | |
| 2869 | /* Reinitialize it as a cluster for the super class */ |
| 2870 | m_total(super_class)++; |
| 2871 | m_infree(super_class)++; |
| 2872 | VERIFY(sp->sl_flags == (SLF_MAPPED | SLF_DETACHED) && |
| 2873 | sp->sl_len == PAGE_SIZE && sp->sl_refcnt == 0); |
| 2874 | |
| 2875 | slab_init(sp, super_class, SLF_MAPPED, sp->sl_base, |
| 2876 | sp->sl_base, PAGE_SIZE, 0, 1); |
| 2877 | if (mclverify) { |
| 2878 | mcache_set_pattern(MCACHE_FREE_PATTERN, |
| 2879 | (caddr_t)sp->sl_base, sp->sl_len); |
| 2880 | } |
| 2881 | ((mcache_obj_t *)(sp->sl_base))->obj_next = NULL; |
| 2882 | |
| 2883 | if (super_class == MC_BIGCL) { |
| 2884 | mbstat.m_bigclusters = m_total(MC_BIGCL); |
| 2885 | mbstat.m_bigclfree = m_infree(MC_BIGCL) + |
| 2886 | m_infree(MC_MBUF_BIGCL); |
| 2887 | } |
| 2888 | |
| 2889 | VERIFY(slab_is_detached(sp)); |
| 2890 | VERIFY(m_total(super_class) <= m_maxlimit(super_class)); |
| 2891 | |
| 2892 | /* And finally switch class */ |
| 2893 | class = super_class; |
| 2894 | } |
| 2895 | |
| 2896 | /* Reinsert the slab to the class's slab list */ |
| 2897 | if (slab_is_detached(sp)) { |
| 2898 | slab_insert(sp, class); |
| 2899 | } |
| 2900 | |
| 2901 | /* We're done; let others enter */ |
| 2902 | mb_clalloc_busy = FALSE; |
| 2903 | if (mb_clalloc_waiters > 0) { |
| 2904 | mb_clalloc_waiters = 0; |
| 2905 | wakeup(mb_clalloc_waitchan); |
| 2906 | } |
| 2907 | } |
| 2908 | |
| 2909 | /* |
| 2910 | * Common allocator for rudimentary objects called by the CPU cache layer |
| 2911 | * during an allocation request whenever there is no available element in the |
| 2912 | * bucket layer. It returns one or more elements from the appropriate global |
| 2913 | * freelist. If the freelist is empty, it will attempt to populate it and |
| 2914 | * retry the allocation. |
| 2915 | */ |
| 2916 | static unsigned int |
| 2917 | mbuf_slab_alloc(void *arg, mcache_obj_t ***plist, unsigned int num, int wait) |
| 2918 | { |
| 2919 | mbuf_class_t class = (mbuf_class_t)arg; |
| 2920 | unsigned int need = num; |
| 2921 | mcache_obj_t **list = *plist; |
| 2922 | |
| 2923 | ASSERT(MBUF_CLASS_VALID(class) && !MBUF_CLASS_COMPOSITE(class)); |
| 2924 | ASSERT(need > 0); |
| 2925 | |
| 2926 | lck_mtx_lock(mbuf_mlock); |
| 2927 | |
| 2928 | for (;;) { |
| 2929 | if ((*list = slab_alloc(class, wait)) != NULL) { |
| 2930 | (*list)->obj_next = NULL; |
| 2931 | list = *plist = &(*list)->obj_next; |
| 2932 | |
| 2933 | if (--need == 0) { |
| 2934 | /* |
| 2935 | * If the number of elements in freelist has |
| 2936 | * dropped below low watermark, asynchronously |
| 2937 | * populate the freelist now rather than doing |
| 2938 | * it later when we run out of elements. |
| 2939 | */ |
| 2940 | if (!mbuf_cached_above(class, wait) && |
| 2941 | m_infree(class) < (m_total(class) >> 5)) { |
| 2942 | (void) freelist_populate(class, 1, |
| 2943 | M_DONTWAIT); |
| 2944 | } |
| 2945 | break; |
| 2946 | } |
| 2947 | } else { |
| 2948 | VERIFY(m_infree(class) == 0 || class == MC_CL); |
| 2949 | |
| 2950 | (void) freelist_populate(class, 1, |
| 2951 | (wait & MCR_NOSLEEP) ? M_DONTWAIT : M_WAIT); |
| 2952 | |
| 2953 | if (m_infree(class) > 0) { |
| 2954 | continue; |
| 2955 | } |
| 2956 | |
| 2957 | /* Check if there's anything at the cache layer */ |
| 2958 | if (mbuf_cached_above(class, wait)) { |
| 2959 | break; |
| 2960 | } |
| 2961 | |
| 2962 | /* watchdog checkpoint */ |
| 2963 | mbuf_watchdog(); |
| 2964 | |
| 2965 | /* We have nothing and cannot block; give up */ |
| 2966 | if (wait & MCR_NOSLEEP) { |
| 2967 | if (!(wait & MCR_TRYHARD)) { |
| 2968 | m_fail_cnt(class)++; |
| 2969 | mbstat.m_drops++; |
| 2970 | break; |
| 2971 | } |
| 2972 | } |
| 2973 | |
| 2974 | /* |
| 2975 | * If the freelist is still empty and the caller is |
| 2976 | * willing to be blocked, sleep on the wait channel |
| 2977 | * until an element is available. Otherwise, if |
| 2978 | * MCR_TRYHARD is set, do our best to satisfy the |
| 2979 | * request without having to go to sleep. |
| 2980 | */ |
| 2981 | if (mbuf_worker_ready && |
| 2982 | mbuf_sleep(class, need, wait)) { |
| 2983 | break; |
| 2984 | } |
| 2985 | |
| 2986 | LCK_MTX_ASSERT(mbuf_mlock, LCK_MTX_ASSERT_OWNED); |
| 2987 | } |
| 2988 | } |
| 2989 | |
| 2990 | m_alloc_cnt(class) += num - need; |
| 2991 | lck_mtx_unlock(mbuf_mlock); |
| 2992 | |
| 2993 | return num - need; |
| 2994 | } |
| 2995 | |
| 2996 | /* |
| 2997 | * Common de-allocator for rudimentary objects called by the CPU cache |
| 2998 | * layer when one or more elements need to be returned to the appropriate |
| 2999 | * global freelist. |
| 3000 | */ |
| 3001 | static void |
| 3002 | mbuf_slab_free(void *arg, mcache_obj_t *list, __unused int purged) |
| 3003 | { |
| 3004 | mbuf_class_t class = (mbuf_class_t)arg; |
| 3005 | mcache_obj_t *nlist; |
| 3006 | unsigned int num = 0; |
| 3007 | int w; |
| 3008 | |
| 3009 | ASSERT(MBUF_CLASS_VALID(class) && !MBUF_CLASS_COMPOSITE(class)); |
| 3010 | |
| 3011 | lck_mtx_lock(mbuf_mlock); |
| 3012 | |
| 3013 | for (;;) { |
| 3014 | nlist = list->obj_next; |
| 3015 | list->obj_next = NULL; |
| 3016 | slab_free(class, list); |
| 3017 | ++num; |
| 3018 | if ((list = nlist) == NULL) { |
| 3019 | break; |
| 3020 | } |
| 3021 | } |
| 3022 | m_free_cnt(class) += num; |
| 3023 | |
| 3024 | if ((w = mb_waiters) > 0) { |
| 3025 | mb_waiters = 0; |
| 3026 | } |
| 3027 | if (w) { |
| 3028 | mbwdog_logger("waking up all threads" ); |
| 3029 | } |
| 3030 | lck_mtx_unlock(mbuf_mlock); |
| 3031 | |
| 3032 | if (w != 0) { |
| 3033 | wakeup(mb_waitchan); |
| 3034 | } |
| 3035 | } |
| 3036 | |
| 3037 | /* |
| 3038 | * Common auditor for rudimentary objects called by the CPU cache layer |
| 3039 | * during an allocation or free request. For the former, this is called |
| 3040 | * after the objects are obtained from either the bucket or slab layer |
| 3041 | * and before they are returned to the caller. For the latter, this is |
| 3042 | * called immediately during free and before placing the objects into |
| 3043 | * the bucket or slab layer. |
| 3044 | */ |
| 3045 | static void |
| 3046 | mbuf_slab_audit(void *arg, mcache_obj_t *list, boolean_t alloc) |
| 3047 | { |
| 3048 | mbuf_class_t class = (mbuf_class_t)arg; |
| 3049 | mcache_audit_t *mca; |
| 3050 | |
| 3051 | ASSERT(MBUF_CLASS_VALID(class) && !MBUF_CLASS_COMPOSITE(class)); |
| 3052 | |
| 3053 | while (list != NULL) { |
| 3054 | lck_mtx_lock(mbuf_mlock); |
| 3055 | mca = mcl_audit_buf2mca(class, list); |
| 3056 | |
| 3057 | /* Do the sanity checks */ |
| 3058 | if (class == MC_MBUF) { |
| 3059 | mcl_audit_mbuf(mca, list, FALSE, alloc); |
| 3060 | ASSERT(mca->mca_uflags & MB_SCVALID); |
| 3061 | } else { |
| 3062 | mcl_audit_cluster(mca, list, m_maxsize(class), |
| 3063 | alloc, TRUE); |
| 3064 | ASSERT(!(mca->mca_uflags & MB_SCVALID)); |
| 3065 | } |
| 3066 | /* Record this transaction */ |
| 3067 | if (mcltrace) { |
| 3068 | mcache_buffer_log(mca, list, m_cache(class), &mb_start); |
| 3069 | } |
| 3070 | |
| 3071 | if (alloc) { |
| 3072 | mca->mca_uflags |= MB_INUSE; |
| 3073 | } else { |
| 3074 | mca->mca_uflags &= ~MB_INUSE; |
| 3075 | } |
| 3076 | /* Unpair the object (unconditionally) */ |
| 3077 | mca->mca_uptr = NULL; |
| 3078 | lck_mtx_unlock(mbuf_mlock); |
| 3079 | |
| 3080 | list = list->obj_next; |
| 3081 | } |
| 3082 | } |
| 3083 | |
| 3084 | /* |
| 3085 | * Common notify routine for all caches. It is called by mcache when |
| 3086 | * one or more objects get freed. We use this indication to trigger |
| 3087 | * the wakeup of any sleeping threads so that they can retry their |
| 3088 | * allocation requests. |
| 3089 | */ |
| 3090 | static void |
| 3091 | mbuf_slab_notify(void *arg, u_int32_t reason) |
| 3092 | { |
| 3093 | mbuf_class_t class = (mbuf_class_t)arg; |
| 3094 | int w; |
| 3095 | |
| 3096 | ASSERT(MBUF_CLASS_VALID(class)); |
| 3097 | |
| 3098 | if (reason != MCN_RETRYALLOC) { |
| 3099 | return; |
| 3100 | } |
| 3101 | |
| 3102 | lck_mtx_lock(mbuf_mlock); |
| 3103 | if ((w = mb_waiters) > 0) { |
| 3104 | m_notified(class)++; |
| 3105 | mb_waiters = 0; |
| 3106 | } |
| 3107 | if (w) { |
| 3108 | mbwdog_logger("waking up all threads" ); |
| 3109 | } |
| 3110 | lck_mtx_unlock(mbuf_mlock); |
| 3111 | |
| 3112 | if (w != 0) { |
| 3113 | wakeup(mb_waitchan); |
| 3114 | } |
| 3115 | } |
| 3116 | |
| 3117 | /* |
| 3118 | * Obtain object(s) from the composite class's freelist. |
| 3119 | */ |
| 3120 | static unsigned int |
| 3121 | cslab_alloc(mbuf_class_t class, mcache_obj_t ***plist, unsigned int num) |
| 3122 | { |
| 3123 | unsigned int need = num; |
| 3124 | mcl_slab_t *sp, *clsp, *nsp; |
| 3125 | struct mbuf *m; |
| 3126 | mcache_obj_t **list = *plist; |
| 3127 | void *cl; |
| 3128 | |
| 3129 | VERIFY(need > 0); |
| 3130 | VERIFY(class != MC_MBUF_16KCL || njcl > 0); |
| 3131 | LCK_MTX_ASSERT(mbuf_mlock, LCK_MTX_ASSERT_OWNED); |
| 3132 | |
| 3133 | /* Get what we can from the freelist */ |
| 3134 | while ((*list = m_cobjlist(class)) != NULL) { |
| 3135 | MRANGE(*list); |
| 3136 | |
| 3137 | m = (struct mbuf *)*list; |
| 3138 | sp = slab_get(m); |
| 3139 | cl = m->m_ext.ext_buf; |
| 3140 | clsp = slab_get(cl); |
| 3141 | VERIFY(m->m_flags == M_EXT && cl != NULL); |
| 3142 | VERIFY(m_get_rfa(m) != NULL && MBUF_IS_COMPOSITE(m)); |
| 3143 | |
| 3144 | if (class == MC_MBUF_CL) { |
| 3145 | VERIFY(clsp->sl_refcnt >= 1 && |
| 3146 | clsp->sl_refcnt <= NCLPG); |
| 3147 | } else { |
| 3148 | VERIFY(clsp->sl_refcnt >= 1 && |
| 3149 | clsp->sl_refcnt <= NBCLPG); |
| 3150 | } |
| 3151 | |
| 3152 | if (class == MC_MBUF_16KCL) { |
| 3153 | int k; |
| 3154 | for (nsp = clsp, k = 1; k < NSLABSP16KB; k++) { |
| 3155 | nsp = nsp->sl_next; |
| 3156 | /* Next slab must already be present */ |
| 3157 | VERIFY(nsp != NULL); |
| 3158 | VERIFY(nsp->sl_refcnt == 1); |
| 3159 | } |
| 3160 | } |
| 3161 | |
| 3162 | if ((m_cobjlist(class) = (*list)->obj_next) != NULL && |
| 3163 | !MBUF_IN_MAP(m_cobjlist(class))) { |
| 3164 | slab_nextptr_panic(sp, m_cobjlist(class)); |
| 3165 | /* NOTREACHED */ |
| 3166 | } |
| 3167 | (*list)->obj_next = NULL; |
| 3168 | list = *plist = &(*list)->obj_next; |
| 3169 | |
| 3170 | if (--need == 0) { |
| 3171 | break; |
| 3172 | } |
| 3173 | } |
| 3174 | m_infree(class) -= (num - need); |
| 3175 | |
| 3176 | return num - need; |
| 3177 | } |
| 3178 | |
| 3179 | /* |
| 3180 | * Place object(s) back into a composite class's freelist. |
| 3181 | */ |
| 3182 | static unsigned int |
| 3183 | cslab_free(mbuf_class_t class, mcache_obj_t *list, int purged) |
| 3184 | { |
| 3185 | mcache_obj_t *o, *tail; |
| 3186 | unsigned int num = 0; |
| 3187 | struct mbuf *m, *ms; |
| 3188 | mcache_audit_t *mca = NULL; |
| 3189 | mcache_obj_t *ref_list = NULL; |
| 3190 | mcl_slab_t *clsp, *nsp; |
| 3191 | void *cl; |
| 3192 | mbuf_class_t cl_class; |
| 3193 | |
| 3194 | ASSERT(MBUF_CLASS_VALID(class) && MBUF_CLASS_COMPOSITE(class)); |
| 3195 | VERIFY(class != MC_MBUF_16KCL || njcl > 0); |
| 3196 | LCK_MTX_ASSERT(mbuf_mlock, LCK_MTX_ASSERT_OWNED); |
| 3197 | |
| 3198 | if (class == MC_MBUF_CL) { |
| 3199 | cl_class = MC_CL; |
| 3200 | } else if (class == MC_MBUF_BIGCL) { |
| 3201 | cl_class = MC_BIGCL; |
| 3202 | } else { |
| 3203 | VERIFY(class == MC_MBUF_16KCL); |
| 3204 | cl_class = MC_16KCL; |
| 3205 | } |
| 3206 | |
| 3207 | o = tail = list; |
| 3208 | |
| 3209 | while ((m = ms = (struct mbuf *)o) != NULL) { |
| 3210 | mcache_obj_t *rfa, *nexto = o->obj_next; |
| 3211 | |
| 3212 | /* Do the mbuf sanity checks */ |
| 3213 | if (mclaudit != NULL) { |
| 3214 | mca = mcl_audit_buf2mca(MC_MBUF, (mcache_obj_t *)m); |
| 3215 | if (mclverify) { |
| 3216 | mcache_audit_free_verify(mca, m, 0, |
| 3217 | m_maxsize(MC_MBUF)); |
| 3218 | } |
| 3219 | ms = MCA_SAVED_MBUF_PTR(mca); |
| 3220 | } |
| 3221 | |
| 3222 | /* Do the cluster sanity checks */ |
| 3223 | cl = ms->m_ext.ext_buf; |
| 3224 | clsp = slab_get(cl); |
| 3225 | if (mclverify) { |
| 3226 | size_t size = m_maxsize(cl_class); |
| 3227 | mcache_audit_free_verify(mcl_audit_buf2mca(cl_class, |
| 3228 | (mcache_obj_t *)cl), cl, 0, size); |
| 3229 | } |
| 3230 | VERIFY(ms->m_type == MT_FREE); |
| 3231 | VERIFY(ms->m_flags == M_EXT); |
| 3232 | VERIFY(m_get_rfa(ms) != NULL && MBUF_IS_COMPOSITE(ms)); |
| 3233 | if (cl_class == MC_CL) { |
| 3234 | VERIFY(clsp->sl_refcnt >= 1 && |
| 3235 | clsp->sl_refcnt <= NCLPG); |
| 3236 | } else { |
| 3237 | VERIFY(clsp->sl_refcnt >= 1 && |
| 3238 | clsp->sl_refcnt <= NBCLPG); |
| 3239 | } |
| 3240 | if (cl_class == MC_16KCL) { |
| 3241 | int k; |
| 3242 | for (nsp = clsp, k = 1; k < NSLABSP16KB; k++) { |
| 3243 | nsp = nsp->sl_next; |
| 3244 | /* Next slab must already be present */ |
| 3245 | VERIFY(nsp != NULL); |
| 3246 | VERIFY(nsp->sl_refcnt == 1); |
| 3247 | } |
| 3248 | } |
| 3249 | |
| 3250 | /* |
| 3251 | * If we're asked to purge, restore the actual mbuf using |
| 3252 | * contents of the shadow structure (if auditing is enabled) |
| 3253 | * and clear EXTF_COMPOSITE flag from the mbuf, as we are |
| 3254 | * about to free it and the attached cluster into their caches. |
| 3255 | */ |
| 3256 | if (purged) { |
| 3257 | /* Restore constructed mbuf fields */ |
| 3258 | if (mclaudit != NULL) { |
| 3259 | mcl_audit_restore_mbuf(m, mca, TRUE); |
| 3260 | } |
| 3261 | |
| 3262 | MEXT_MINREF(m) = 0; |
| 3263 | MEXT_REF(m) = 0; |
| 3264 | MEXT_PREF(m) = 0; |
| 3265 | MEXT_FLAGS(m) = 0; |
| 3266 | MEXT_PRIV(m) = 0; |
| 3267 | MEXT_PMBUF(m) = NULL; |
| 3268 | MEXT_TOKEN(m) = 0; |
| 3269 | |
| 3270 | rfa = (mcache_obj_t *)(void *)m_get_rfa(m); |
| 3271 | m_set_ext(m, NULL, NULL, NULL); |
| 3272 | rfa->obj_next = ref_list; |
| 3273 | ref_list = rfa; |
| 3274 | |
| 3275 | m->m_type = MT_FREE; |
| 3276 | m->m_flags = m->m_len = 0; |
| 3277 | m->m_next = m->m_nextpkt = NULL; |
| 3278 | |
| 3279 | /* Save mbuf fields and make auditing happy */ |
| 3280 | if (mclaudit != NULL) { |
| 3281 | mcl_audit_mbuf(mca, o, FALSE, FALSE); |
| 3282 | } |
| 3283 | |
| 3284 | VERIFY(m_total(class) > 0); |
| 3285 | m_total(class)--; |
| 3286 | |
| 3287 | /* Free the mbuf */ |
| 3288 | o->obj_next = NULL; |
| 3289 | slab_free(MC_MBUF, o); |
| 3290 | |
| 3291 | /* And free the cluster */ |
| 3292 | ((mcache_obj_t *)cl)->obj_next = NULL; |
| 3293 | if (class == MC_MBUF_CL) { |
| 3294 | slab_free(MC_CL, cl); |
| 3295 | } else if (class == MC_MBUF_BIGCL) { |
| 3296 | slab_free(MC_BIGCL, cl); |
| 3297 | } else { |
| 3298 | slab_free(MC_16KCL, cl); |
| 3299 | } |
| 3300 | } |
| 3301 | |
| 3302 | ++num; |
| 3303 | tail = o; |
| 3304 | o = nexto; |
| 3305 | } |
| 3306 | |
| 3307 | if (!purged) { |
| 3308 | tail->obj_next = m_cobjlist(class); |
| 3309 | m_cobjlist(class) = list; |
| 3310 | m_infree(class) += num; |
| 3311 | } else if (ref_list != NULL) { |
| 3312 | mcache_free_ext(ref_cache, ref_list); |
| 3313 | } |
| 3314 | |
| 3315 | return num; |
| 3316 | } |
| 3317 | |
| 3318 | /* |
| 3319 | * Common allocator for composite objects called by the CPU cache layer |
| 3320 | * during an allocation request whenever there is no available element in |
| 3321 | * the bucket layer. It returns one or more composite elements from the |
| 3322 | * appropriate global freelist. If the freelist is empty, it will attempt |
| 3323 | * to obtain the rudimentary objects from their caches and construct them |
| 3324 | * into composite mbuf + cluster objects. |
| 3325 | */ |
| 3326 | static unsigned int |
| 3327 | mbuf_cslab_alloc(void *arg, mcache_obj_t ***plist, unsigned int needed, |
| 3328 | int wait) |
| 3329 | { |
| 3330 | mbuf_class_t class = (mbuf_class_t)arg; |
| 3331 | mbuf_class_t cl_class = 0; |
| 3332 | unsigned int num = 0, cnum = 0, want = needed; |
| 3333 | mcache_obj_t *ref_list = NULL; |
| 3334 | mcache_obj_t *mp_list = NULL; |
| 3335 | mcache_obj_t *clp_list = NULL; |
| 3336 | mcache_obj_t **list; |
| 3337 | struct ext_ref *rfa; |
| 3338 | struct mbuf *m; |
| 3339 | void *cl; |
| 3340 | |
| 3341 | ASSERT(MBUF_CLASS_VALID(class) && MBUF_CLASS_COMPOSITE(class)); |
| 3342 | ASSERT(needed > 0); |
| 3343 | |
| 3344 | VERIFY(class != MC_MBUF_16KCL || njcl > 0); |
| 3345 | |
| 3346 | /* There should not be any slab for this class */ |
| 3347 | VERIFY(m_slab_cnt(class) == 0 && |
| 3348 | m_slablist(class).tqh_first == NULL && |
| 3349 | m_slablist(class).tqh_last == NULL); |
| 3350 | |
| 3351 | lck_mtx_lock(mbuf_mlock); |
| 3352 | |
| 3353 | /* Try using the freelist first */ |
| 3354 | num = cslab_alloc(class, plist, needed); |
| 3355 | list = *plist; |
| 3356 | if (num == needed) { |
| 3357 | m_alloc_cnt(class) += num; |
| 3358 | lck_mtx_unlock(mbuf_mlock); |
| 3359 | return needed; |
| 3360 | } |
| 3361 | |
| 3362 | lck_mtx_unlock(mbuf_mlock); |
| 3363 | |
| 3364 | /* |
| 3365 | * We could not satisfy the request using the freelist alone; |
| 3366 | * allocate from the appropriate rudimentary caches and use |
| 3367 | * whatever we can get to construct the composite objects. |
| 3368 | */ |
| 3369 | needed -= num; |
| 3370 | |
| 3371 | /* |
| 3372 | * Mark these allocation requests as coming from a composite cache. |
| 3373 | * Also, if the caller is willing to be blocked, mark the request |
| 3374 | * with MCR_FAILOK such that we don't end up sleeping at the mbuf |
| 3375 | * slab layer waiting for the individual object when one or more |
| 3376 | * of the already-constructed composite objects are available. |
| 3377 | */ |
| 3378 | wait |= MCR_COMP; |
| 3379 | if (!(wait & MCR_NOSLEEP)) { |
| 3380 | wait |= MCR_FAILOK; |
| 3381 | } |
| 3382 | |
| 3383 | /* allocate mbufs */ |
| 3384 | needed = mcache_alloc_ext(m_cache(MC_MBUF), &mp_list, needed, wait); |
| 3385 | if (needed == 0) { |
| 3386 | ASSERT(mp_list == NULL); |
| 3387 | goto fail; |
| 3388 | } |
| 3389 | |
| 3390 | /* allocate clusters */ |
| 3391 | if (class == MC_MBUF_CL) { |
| 3392 | cl_class = MC_CL; |
| 3393 | } else if (class == MC_MBUF_BIGCL) { |
| 3394 | cl_class = MC_BIGCL; |
| 3395 | } else { |
| 3396 | VERIFY(class == MC_MBUF_16KCL); |
| 3397 | cl_class = MC_16KCL; |
| 3398 | } |
| 3399 | needed = mcache_alloc_ext(m_cache(cl_class), &clp_list, needed, wait); |
| 3400 | if (needed == 0) { |
| 3401 | ASSERT(clp_list == NULL); |
| 3402 | goto fail; |
| 3403 | } |
| 3404 | |
| 3405 | needed = mcache_alloc_ext(ref_cache, &ref_list, needed, wait); |
| 3406 | if (needed == 0) { |
| 3407 | ASSERT(ref_list == NULL); |
| 3408 | goto fail; |
| 3409 | } |
| 3410 | |
| 3411 | /* |
| 3412 | * By this time "needed" is MIN(mbuf, cluster, ref). Any left |
| 3413 | * overs will get freed accordingly before we return to caller. |
| 3414 | */ |
| 3415 | for (cnum = 0; cnum < needed; cnum++) { |
| 3416 | struct mbuf *ms; |
| 3417 | |
| 3418 | m = ms = (struct mbuf *)mp_list; |
| 3419 | mp_list = mp_list->obj_next; |
| 3420 | |
| 3421 | cl = clp_list; |
| 3422 | clp_list = clp_list->obj_next; |
| 3423 | ((mcache_obj_t *)cl)->obj_next = NULL; |
| 3424 | |
| 3425 | rfa = (struct ext_ref *)ref_list; |
| 3426 | ref_list = ref_list->obj_next; |
| 3427 | ((mcache_obj_t *)(void *)rfa)->obj_next = NULL; |
| 3428 | |
| 3429 | /* |
| 3430 | * If auditing is enabled, construct the shadow mbuf |
| 3431 | * in the audit structure instead of in the actual one. |
| 3432 | * mbuf_cslab_audit() will take care of restoring the |
| 3433 | * contents after the integrity check. |
| 3434 | */ |
| 3435 | if (mclaudit != NULL) { |
| 3436 | mcache_audit_t *mca, *cl_mca; |
| 3437 | |
| 3438 | lck_mtx_lock(mbuf_mlock); |
| 3439 | mca = mcl_audit_buf2mca(MC_MBUF, (mcache_obj_t *)m); |
| 3440 | ms = MCA_SAVED_MBUF_PTR(mca); |
| 3441 | cl_mca = mcl_audit_buf2mca(cl_class, |
| 3442 | (mcache_obj_t *)cl); |
| 3443 | |
| 3444 | /* |
| 3445 | * Pair them up. Note that this is done at the time |
| 3446 | * the mbuf+cluster objects are constructed. This |
| 3447 | * information should be treated as "best effort" |
| 3448 | * debugging hint since more than one mbufs can refer |
| 3449 | * to a cluster. In that case, the cluster might not |
| 3450 | * be freed along with the mbuf it was paired with. |
| 3451 | */ |
| 3452 | mca->mca_uptr = cl_mca; |
| 3453 | cl_mca->mca_uptr = mca; |
| 3454 | |
| 3455 | ASSERT(mca->mca_uflags & MB_SCVALID); |
| 3456 | ASSERT(!(cl_mca->mca_uflags & MB_SCVALID)); |
| 3457 | lck_mtx_unlock(mbuf_mlock); |
| 3458 | |
| 3459 | /* Technically, they are in the freelist */ |
| 3460 | if (mclverify) { |
| 3461 | size_t size; |
| 3462 | |
| 3463 | mcache_set_pattern(MCACHE_FREE_PATTERN, m, |
| 3464 | m_maxsize(MC_MBUF)); |
| 3465 | |
| 3466 | if (class == MC_MBUF_CL) { |
| 3467 | size = m_maxsize(MC_CL); |
| 3468 | } else if (class == MC_MBUF_BIGCL) { |
| 3469 | size = m_maxsize(MC_BIGCL); |
| 3470 | } else { |
| 3471 | size = m_maxsize(MC_16KCL); |
| 3472 | } |
| 3473 | |
| 3474 | mcache_set_pattern(MCACHE_FREE_PATTERN, cl, |
| 3475 | size); |
| 3476 | } |
| 3477 | } |
| 3478 | |
| 3479 | MBUF_INIT(ms, 0, MT_FREE); |
| 3480 | if (class == MC_MBUF_16KCL) { |
| 3481 | MBUF_16KCL_INIT(ms, cl, rfa, 0, EXTF_COMPOSITE); |
| 3482 | } else if (class == MC_MBUF_BIGCL) { |
| 3483 | MBUF_BIGCL_INIT(ms, cl, rfa, 0, EXTF_COMPOSITE); |
| 3484 | } else { |
| 3485 | MBUF_CL_INIT(ms, cl, rfa, 0, EXTF_COMPOSITE); |
| 3486 | } |
| 3487 | VERIFY(ms->m_flags == M_EXT); |
| 3488 | VERIFY(m_get_rfa(ms) != NULL && MBUF_IS_COMPOSITE(ms)); |
| 3489 | |
| 3490 | *list = (mcache_obj_t *)m; |
| 3491 | (*list)->obj_next = NULL; |
| 3492 | list = *plist = &(*list)->obj_next; |
| 3493 | } |
| 3494 | |
| 3495 | fail: |
| 3496 | /* |
| 3497 | * Free up what's left of the above. |
| 3498 | */ |
| 3499 | if (mp_list != NULL) { |
| 3500 | mcache_free_ext(m_cache(MC_MBUF), mp_list); |
| 3501 | } |
| 3502 | if (clp_list != NULL) { |
| 3503 | mcache_free_ext(m_cache(cl_class), clp_list); |
| 3504 | } |
| 3505 | if (ref_list != NULL) { |
| 3506 | mcache_free_ext(ref_cache, ref_list); |
| 3507 | } |
| 3508 | |
| 3509 | lck_mtx_lock(mbuf_mlock); |
| 3510 | if (num > 0 || cnum > 0) { |
| 3511 | m_total(class) += cnum; |
| 3512 | VERIFY(m_total(class) <= m_maxlimit(class)); |
| 3513 | m_alloc_cnt(class) += num + cnum; |
| 3514 | } |
| 3515 | if ((num + cnum) < want) { |
| 3516 | m_fail_cnt(class) += (want - (num + cnum)); |
| 3517 | } |
| 3518 | lck_mtx_unlock(mbuf_mlock); |
| 3519 | |
| 3520 | return num + cnum; |
| 3521 | } |
| 3522 | |
| 3523 | /* |
| 3524 | * Common de-allocator for composite objects called by the CPU cache |
| 3525 | * layer when one or more elements need to be returned to the appropriate |
| 3526 | * global freelist. |
| 3527 | */ |
| 3528 | static void |
| 3529 | mbuf_cslab_free(void *arg, mcache_obj_t *list, int purged) |
| 3530 | { |
| 3531 | mbuf_class_t class = (mbuf_class_t)arg; |
| 3532 | unsigned int num; |
| 3533 | int w; |
| 3534 | |
| 3535 | ASSERT(MBUF_CLASS_VALID(class) && MBUF_CLASS_COMPOSITE(class)); |
| 3536 | |
| 3537 | lck_mtx_lock(mbuf_mlock); |
| 3538 | |
| 3539 | num = cslab_free(class, list, purged); |
| 3540 | m_free_cnt(class) += num; |
| 3541 | |
| 3542 | if ((w = mb_waiters) > 0) { |
| 3543 | mb_waiters = 0; |
| 3544 | } |
| 3545 | if (w) { |
| 3546 | mbwdog_logger("waking up all threads" ); |
| 3547 | } |
| 3548 | |
| 3549 | lck_mtx_unlock(mbuf_mlock); |
| 3550 | |
| 3551 | if (w != 0) { |
| 3552 | wakeup(mb_waitchan); |
| 3553 | } |
| 3554 | } |
| 3555 | |
| 3556 | /* |
| 3557 | * Common auditor for composite objects called by the CPU cache layer |
| 3558 | * during an allocation or free request. For the former, this is called |
| 3559 | * after the objects are obtained from either the bucket or slab layer |
| 3560 | * and before they are returned to the caller. For the latter, this is |
| 3561 | * called immediately during free and before placing the objects into |
| 3562 | * the bucket or slab layer. |
| 3563 | */ |
| 3564 | static void |
| 3565 | mbuf_cslab_audit(void *arg, mcache_obj_t *list, boolean_t alloc) |
| 3566 | { |
| 3567 | mbuf_class_t class = (mbuf_class_t)arg, cl_class; |
| 3568 | mcache_audit_t *mca; |
| 3569 | struct mbuf *m, *ms; |
| 3570 | mcl_slab_t *clsp, *nsp; |
| 3571 | size_t cl_size; |
| 3572 | void *cl; |
| 3573 | |
| 3574 | ASSERT(MBUF_CLASS_VALID(class) && MBUF_CLASS_COMPOSITE(class)); |
| 3575 | if (class == MC_MBUF_CL) { |
| 3576 | cl_class = MC_CL; |
| 3577 | } else if (class == MC_MBUF_BIGCL) { |
| 3578 | cl_class = MC_BIGCL; |
| 3579 | } else { |
| 3580 | cl_class = MC_16KCL; |
| 3581 | } |
| 3582 | cl_size = m_maxsize(cl_class); |
| 3583 | |
| 3584 | while ((m = ms = (struct mbuf *)list) != NULL) { |
| 3585 | lck_mtx_lock(mbuf_mlock); |
| 3586 | /* Do the mbuf sanity checks and record its transaction */ |
| 3587 | mca = mcl_audit_buf2mca(MC_MBUF, (mcache_obj_t *)m); |
| 3588 | mcl_audit_mbuf(mca, m, TRUE, alloc); |
| 3589 | if (mcltrace) { |
| 3590 | mcache_buffer_log(mca, m, m_cache(class), &mb_start); |
| 3591 | } |
| 3592 | |
| 3593 | if (alloc) { |
| 3594 | mca->mca_uflags |= MB_COMP_INUSE; |
| 3595 | } else { |
| 3596 | mca->mca_uflags &= ~MB_COMP_INUSE; |
| 3597 | } |
| 3598 | |
| 3599 | /* |
| 3600 | * Use the shadow mbuf in the audit structure if we are |
| 3601 | * freeing, since the contents of the actual mbuf has been |
| 3602 | * pattern-filled by the above call to mcl_audit_mbuf(). |
| 3603 | */ |
| 3604 | if (!alloc && mclverify) { |
| 3605 | ms = MCA_SAVED_MBUF_PTR(mca); |
| 3606 | } |
| 3607 | |
| 3608 | /* Do the cluster sanity checks and record its transaction */ |
| 3609 | cl = ms->m_ext.ext_buf; |
| 3610 | clsp = slab_get(cl); |
| 3611 | VERIFY(ms->m_flags == M_EXT && cl != NULL); |
| 3612 | VERIFY(m_get_rfa(ms) != NULL && MBUF_IS_COMPOSITE(ms)); |
| 3613 | if (class == MC_MBUF_CL) { |
| 3614 | VERIFY(clsp->sl_refcnt >= 1 && |
| 3615 | clsp->sl_refcnt <= NCLPG); |
| 3616 | } else { |
| 3617 | VERIFY(clsp->sl_refcnt >= 1 && |
| 3618 | clsp->sl_refcnt <= NBCLPG); |
| 3619 | } |
| 3620 | |
| 3621 | if (class == MC_MBUF_16KCL) { |
| 3622 | int k; |
| 3623 | for (nsp = clsp, k = 1; k < NSLABSP16KB; k++) { |
| 3624 | nsp = nsp->sl_next; |
| 3625 | /* Next slab must already be present */ |
| 3626 | VERIFY(nsp != NULL); |
| 3627 | VERIFY(nsp->sl_refcnt == 1); |
| 3628 | } |
| 3629 | } |
| 3630 | |
| 3631 | |
| 3632 | mca = mcl_audit_buf2mca(cl_class, cl); |
| 3633 | mcl_audit_cluster(mca, cl, cl_size, alloc, FALSE); |
| 3634 | if (mcltrace) { |
| 3635 | mcache_buffer_log(mca, cl, m_cache(class), &mb_start); |
| 3636 | } |
| 3637 | |
| 3638 | if (alloc) { |
| 3639 | mca->mca_uflags |= MB_COMP_INUSE; |
| 3640 | } else { |
| 3641 | mca->mca_uflags &= ~MB_COMP_INUSE; |
| 3642 | } |
| 3643 | lck_mtx_unlock(mbuf_mlock); |
| 3644 | |
| 3645 | list = list->obj_next; |
| 3646 | } |
| 3647 | } |
| 3648 | |
| 3649 | static void |
| 3650 | m_vm_error_stats(uint32_t *cnt, uint64_t *ts, uint64_t *size, |
| 3651 | uint64_t alloc_size, kern_return_t error) |
| 3652 | { |
| 3653 | *cnt = *cnt + 1; |
| 3654 | *ts = net_uptime(); |
| 3655 | if (size) { |
| 3656 | *size = alloc_size; |
| 3657 | } |
| 3658 | switch (error) { |
| 3659 | case KERN_SUCCESS: |
| 3660 | break; |
| 3661 | case KERN_INVALID_ARGUMENT: |
| 3662 | mb_kmem_stats[0]++; |
| 3663 | break; |
| 3664 | case KERN_INVALID_ADDRESS: |
| 3665 | mb_kmem_stats[1]++; |
| 3666 | break; |
| 3667 | case KERN_RESOURCE_SHORTAGE: |
| 3668 | mb_kmem_stats[2]++; |
| 3669 | break; |
| 3670 | case KERN_NO_SPACE: |
| 3671 | mb_kmem_stats[3]++; |
| 3672 | break; |
| 3673 | case KERN_FAILURE: |
| 3674 | mb_kmem_stats[4]++; |
| 3675 | break; |
| 3676 | default: |
| 3677 | mb_kmem_stats[5]++; |
| 3678 | break; |
| 3679 | } |
| 3680 | } |
| 3681 | |
| 3682 | static vm_offset_t |
| 3683 | kmem_mb_alloc(vm_map_t mbmap, int size, int physContig, kern_return_t *err) |
| 3684 | { |
| 3685 | vm_offset_t addr = 0; |
| 3686 | kern_return_t kr = KERN_SUCCESS; |
| 3687 | |
| 3688 | if (!physContig) { |
| 3689 | kr = kmem_alloc(mbmap, &addr, size, |
| 3690 | KMA_KOBJECT | KMA_LOMEM, VM_KERN_MEMORY_MBUF); |
| 3691 | } else { |
| 3692 | kr = kmem_alloc_contig(mbmap, &addr, size, PAGE_MASK, 0xfffff, |
| 3693 | 0, KMA_KOBJECT | KMA_LOMEM, VM_KERN_MEMORY_MBUF); |
| 3694 | } |
| 3695 | |
| 3696 | if (kr != KERN_SUCCESS) { |
| 3697 | addr = 0; |
| 3698 | } |
| 3699 | if (err) { |
| 3700 | *err = kr; |
| 3701 | } |
| 3702 | |
| 3703 | return addr; |
| 3704 | } |
| 3705 | |
| 3706 | /* |
| 3707 | * Allocate some number of mbuf clusters and place on cluster freelist. |
| 3708 | */ |
| 3709 | static int |
| 3710 | m_clalloc(const u_int32_t num, const int wait, const u_int32_t bufsize) |
| 3711 | { |
| 3712 | int i, count = 0; |
| 3713 | vm_size_t size = 0; |
| 3714 | int numpages = 0, large_buffer; |
| 3715 | vm_offset_t page = 0; |
| 3716 | mcache_audit_t *mca_list = NULL; |
| 3717 | mcache_obj_t *con_list = NULL; |
| 3718 | mcl_slab_t *sp; |
| 3719 | mbuf_class_t class; |
| 3720 | kern_return_t error; |
| 3721 | |
| 3722 | /* Set if a buffer allocation needs allocation of multiple pages */ |
| 3723 | large_buffer = ((bufsize == m_maxsize(MC_16KCL)) && |
| 3724 | PAGE_SIZE < M16KCLBYTES); |
| 3725 | VERIFY(bufsize == m_maxsize(MC_BIGCL) || |
| 3726 | bufsize == m_maxsize(MC_16KCL)); |
| 3727 | |
| 3728 | VERIFY((bufsize == PAGE_SIZE) || |
| 3729 | (bufsize > PAGE_SIZE && bufsize == m_maxsize(MC_16KCL))); |
| 3730 | |
| 3731 | if (bufsize == m_size(MC_BIGCL)) { |
| 3732 | class = MC_BIGCL; |
| 3733 | } else { |
| 3734 | class = MC_16KCL; |
| 3735 | } |
| 3736 | |
| 3737 | LCK_MTX_ASSERT(mbuf_mlock, LCK_MTX_ASSERT_OWNED); |
| 3738 | |
| 3739 | /* |
| 3740 | * Multiple threads may attempt to populate the cluster map one |
| 3741 | * after another. Since we drop the lock below prior to acquiring |
| 3742 | * the physical page(s), our view of the cluster map may no longer |
| 3743 | * be accurate, and we could end up over-committing the pages beyond |
| 3744 | * the maximum allowed for each class. To prevent it, this entire |
| 3745 | * operation (including the page mapping) is serialized. |
| 3746 | */ |
| 3747 | while (mb_clalloc_busy) { |
| 3748 | mb_clalloc_waiters++; |
| 3749 | (void) msleep(mb_clalloc_waitchan, mbuf_mlock, |
| 3750 | (PZERO - 1), "m_clalloc" , NULL); |
| 3751 | LCK_MTX_ASSERT(mbuf_mlock, LCK_MTX_ASSERT_OWNED); |
| 3752 | } |
| 3753 | |
| 3754 | /* We are busy now; tell everyone else to go away */ |
| 3755 | mb_clalloc_busy = TRUE; |
| 3756 | |
| 3757 | /* |
| 3758 | * Honor the caller's wish to block or not block. We have a way |
| 3759 | * to grow the pool asynchronously using the mbuf worker thread. |
| 3760 | */ |
| 3761 | i = m_howmany(num, bufsize); |
| 3762 | if (i <= 0 || (wait & M_DONTWAIT)) { |
| 3763 | goto out; |
| 3764 | } |
| 3765 | |
| 3766 | lck_mtx_unlock(mbuf_mlock); |
| 3767 | |
| 3768 | size = round_page(i * bufsize); |
| 3769 | page = kmem_mb_alloc(mb_map, size, large_buffer, &error); |
| 3770 | |
| 3771 | /* |
| 3772 | * If we did ask for "n" 16KB physically contiguous chunks |
| 3773 | * and didn't get them, then please try again without this |
| 3774 | * restriction. |
| 3775 | */ |
| 3776 | net_update_uptime(); |
| 3777 | if (large_buffer && page == 0) { |
| 3778 | m_vm_error_stats(&mb_kmem_contig_failed, |
| 3779 | &mb_kmem_contig_failed_ts, |
| 3780 | &mb_kmem_contig_failed_size, |
| 3781 | size, error); |
| 3782 | page = kmem_mb_alloc(mb_map, size, 0, &error); |
| 3783 | } |
| 3784 | |
| 3785 | if (page == 0) { |
| 3786 | m_vm_error_stats(&mb_kmem_failed, |
| 3787 | &mb_kmem_failed_ts, |
| 3788 | &mb_kmem_failed_size, |
| 3789 | size, error); |
| 3790 | #if PAGE_SIZE == 4096 |
| 3791 | if (bufsize == m_maxsize(MC_BIGCL)) { |
| 3792 | #else |
| 3793 | if (bufsize >= m_maxsize(MC_BIGCL)) { |
| 3794 | #endif |
| 3795 | /* Try for 1 page if failed */ |
| 3796 | size = PAGE_SIZE; |
| 3797 | page = kmem_mb_alloc(mb_map, size, 0, &error); |
| 3798 | if (page == 0) { |
| 3799 | m_vm_error_stats(&mb_kmem_one_failed, |
| 3800 | &mb_kmem_one_failed_ts, |
| 3801 | NULL, size, error); |
| 3802 | } |
| 3803 | } |
| 3804 | |
| 3805 | if (page == 0) { |
| 3806 | lck_mtx_lock(mbuf_mlock); |
| 3807 | goto out; |
| 3808 | } |
| 3809 | } |
| 3810 | |
| 3811 | VERIFY(IS_P2ALIGNED(page, PAGE_SIZE)); |
| 3812 | numpages = size / PAGE_SIZE; |
| 3813 | |
| 3814 | /* If auditing is enabled, allocate the audit structures now */ |
| 3815 | if (mclaudit != NULL) { |
| 3816 | int needed; |
| 3817 | |
| 3818 | /* |
| 3819 | * Yes, I realize this is a waste of memory for clusters |
| 3820 | * that never get transformed into mbufs, as we may end |
| 3821 | * up with NMBPG-1 unused audit structures per cluster. |
| 3822 | * But doing so tremendously simplifies the allocation |
| 3823 | * strategy, since at this point we are not holding the |
| 3824 | * mbuf lock and the caller is okay to be blocked. |
| 3825 | */ |
| 3826 | if (bufsize == PAGE_SIZE) { |
| 3827 | needed = numpages * NMBPG; |
| 3828 | |
| 3829 | i = mcache_alloc_ext(mcl_audit_con_cache, |
| 3830 | &con_list, needed, MCR_SLEEP); |
| 3831 | |
| 3832 | VERIFY(con_list != NULL && i == needed); |
| 3833 | } else { |
| 3834 | /* |
| 3835 | * if multiple 4K pages are being used for a |
| 3836 | * 16K cluster |
| 3837 | */ |
| 3838 | needed = numpages / NSLABSP16KB; |
| 3839 | } |
| 3840 | |
| 3841 | i = mcache_alloc_ext(mcache_audit_cache, |
| 3842 | (mcache_obj_t **)&mca_list, needed, MCR_SLEEP); |
| 3843 | |
| 3844 | VERIFY(mca_list != NULL && i == needed); |
| 3845 | } |
| 3846 | |
| 3847 | lck_mtx_lock(mbuf_mlock); |
| 3848 | |
| 3849 | for (i = 0; i < numpages; i++, page += PAGE_SIZE) { |
| 3850 | ppnum_t offset = |
| 3851 | ((unsigned char *)page - mbutl) >> PAGE_SHIFT; |
| 3852 | ppnum_t new_page = pmap_find_phys(kernel_pmap, page); |
| 3853 | |
| 3854 | /* |
| 3855 | * If there is a mapper the appropriate I/O page is |
| 3856 | * returned; zero out the page to discard its past |
| 3857 | * contents to prevent exposing leftover kernel memory. |
| 3858 | */ |
| 3859 | VERIFY(offset < mcl_pages); |
| 3860 | if (mcl_paddr_base != 0) { |
| 3861 | bzero((void *)(uintptr_t) page, PAGE_SIZE); |
| 3862 | new_page = IOMapperInsertPage(mcl_paddr_base, |
| 3863 | offset, new_page); |
| 3864 | } |
| 3865 | mcl_paddr[offset] = new_page; |
| 3866 | |
| 3867 | /* Pattern-fill this fresh page */ |
| 3868 | if (mclverify) { |
| 3869 | mcache_set_pattern(MCACHE_FREE_PATTERN, |
| 3870 | (caddr_t)page, PAGE_SIZE); |
| 3871 | } |
| 3872 | if (bufsize == PAGE_SIZE) { |
| 3873 | mcache_obj_t *buf; |
| 3874 | /* One for the entire page */ |
| 3875 | sp = slab_get((void *)page); |
| 3876 | if (mclaudit != NULL) { |
| 3877 | mcl_audit_init((void *)page, |
| 3878 | &mca_list, &con_list, |
| 3879 | AUDIT_CONTENTS_SIZE, NMBPG); |
| 3880 | } |
| 3881 | VERIFY(sp->sl_refcnt == 0 && sp->sl_flags == 0); |
| 3882 | slab_init(sp, class, SLF_MAPPED, (void *)page, |
| 3883 | (void *)page, PAGE_SIZE, 0, 1); |
| 3884 | buf = (mcache_obj_t *)page; |
| 3885 | buf->obj_next = NULL; |
| 3886 | |
| 3887 | /* Insert this slab */ |
| 3888 | slab_insert(sp, class); |
| 3889 | |
| 3890 | /* Update stats now since slab_get drops the lock */ |
| 3891 | ++m_infree(class); |
| 3892 | ++m_total(class); |
| 3893 | VERIFY(m_total(class) <= m_maxlimit(class)); |
| 3894 | if (class == MC_BIGCL) { |
| 3895 | mbstat.m_bigclfree = m_infree(MC_BIGCL) + |
| 3896 | m_infree(MC_MBUF_BIGCL); |
| 3897 | mbstat.m_bigclusters = m_total(MC_BIGCL); |
| 3898 | } |
| 3899 | ++count; |
| 3900 | } else if ((bufsize > PAGE_SIZE) && |
| 3901 | (i % NSLABSP16KB) == 0) { |
| 3902 | union m16kcluster *m16kcl = (union m16kcluster *)page; |
| 3903 | mcl_slab_t *nsp; |
| 3904 | int k; |
| 3905 | |
| 3906 | /* One for the entire 16KB */ |
| 3907 | sp = slab_get(m16kcl); |
| 3908 | if (mclaudit != NULL) { |
| 3909 | mcl_audit_init(m16kcl, &mca_list, NULL, 0, 1); |
| 3910 | } |
| 3911 | |
| 3912 | VERIFY(sp->sl_refcnt == 0 && sp->sl_flags == 0); |
| 3913 | slab_init(sp, MC_16KCL, SLF_MAPPED, |
| 3914 | m16kcl, m16kcl, bufsize, 0, 1); |
| 3915 | m16kcl->m16kcl_next = NULL; |
| 3916 | |
| 3917 | /* |
| 3918 | * 2nd-Nth page's slab is part of the first one, |
| 3919 | * where N is NSLABSP16KB. |
| 3920 | */ |
| 3921 | for (k = 1; k < NSLABSP16KB; k++) { |
| 3922 | nsp = slab_get(((union mbigcluster *)page) + k); |
| 3923 | VERIFY(nsp->sl_refcnt == 0 && |
| 3924 | nsp->sl_flags == 0); |
| 3925 | slab_init(nsp, MC_16KCL, |
| 3926 | SLF_MAPPED | SLF_PARTIAL, |
| 3927 | m16kcl, NULL, 0, 0, 0); |
| 3928 | } |
| 3929 | /* Insert this slab */ |
| 3930 | slab_insert(sp, MC_16KCL); |
| 3931 | |
| 3932 | /* Update stats now since slab_get drops the lock */ |
| 3933 | ++m_infree(MC_16KCL); |
| 3934 | ++m_total(MC_16KCL); |
| 3935 | VERIFY(m_total(MC_16KCL) <= m_maxlimit(MC_16KCL)); |
| 3936 | ++count; |
| 3937 | } |
| 3938 | } |
| 3939 | VERIFY(mca_list == NULL && con_list == NULL); |
| 3940 | |
| 3941 | /* We're done; let others enter */ |
| 3942 | mb_clalloc_busy = FALSE; |
| 3943 | if (mb_clalloc_waiters > 0) { |
| 3944 | mb_clalloc_waiters = 0; |
| 3945 | wakeup(mb_clalloc_waitchan); |
| 3946 | } |
| 3947 | |
| 3948 | return count; |
| 3949 | out: |
| 3950 | LCK_MTX_ASSERT(mbuf_mlock, LCK_MTX_ASSERT_OWNED); |
| 3951 | |
| 3952 | mtracelarge_register(size); |
| 3953 | |
| 3954 | /* We're done; let others enter */ |
| 3955 | mb_clalloc_busy = FALSE; |
| 3956 | if (mb_clalloc_waiters > 0) { |
| 3957 | mb_clalloc_waiters = 0; |
| 3958 | wakeup(mb_clalloc_waitchan); |
| 3959 | } |
| 3960 | |
| 3961 | /* |
| 3962 | * When non-blocking we kick a thread if we have to grow the |
| 3963 | * pool or if the number of free clusters is less than requested. |
| 3964 | */ |
| 3965 | if (i > 0 && mbuf_worker_ready && mbuf_worker_needs_wakeup) { |
| 3966 | mbwdog_logger("waking up the worker thread to to grow %s by %d" , |
| 3967 | m_cname(class), i); |
| 3968 | wakeup((caddr_t)&mbuf_worker_needs_wakeup); |
| 3969 | mbuf_worker_needs_wakeup = FALSE; |
| 3970 | } |
| 3971 | if (class == MC_BIGCL) { |
| 3972 | if (i > 0) { |
| 3973 | /* |
| 3974 | * Remember total number of 4KB clusters needed |
| 3975 | * at this time. |
| 3976 | */ |
| 3977 | i += m_total(MC_BIGCL); |
| 3978 | if (i > m_region_expand(MC_BIGCL)) { |
| 3979 | m_region_expand(MC_BIGCL) = i; |
| 3980 | } |
| 3981 | } |
| 3982 | if (m_infree(MC_BIGCL) >= num) { |
| 3983 | return 1; |
| 3984 | } |
| 3985 | } else { |
| 3986 | if (i > 0) { |
| 3987 | /* |
| 3988 | * Remember total number of 16KB clusters needed |
| 3989 | * at this time. |
| 3990 | */ |
| 3991 | i += m_total(MC_16KCL); |
| 3992 | if (i > m_region_expand(MC_16KCL)) { |
| 3993 | m_region_expand(MC_16KCL) = i; |
| 3994 | } |
| 3995 | } |
| 3996 | if (m_infree(MC_16KCL) >= num) { |
| 3997 | return 1; |
| 3998 | } |
| 3999 | } |
| 4000 | return 0; |
| 4001 | } |
| 4002 | |
| 4003 | /* |
| 4004 | * Populate the global freelist of the corresponding buffer class. |
| 4005 | */ |
| 4006 | static int |
| 4007 | freelist_populate(mbuf_class_t class, unsigned int num, int wait) |
| 4008 | { |
| 4009 | mcache_obj_t *o = NULL; |
| 4010 | int i, numpages = 0, count; |
| 4011 | mbuf_class_t super_class; |
| 4012 | |
| 4013 | VERIFY(class == MC_MBUF || class == MC_CL || class == MC_BIGCL || |
| 4014 | class == MC_16KCL); |
| 4015 | |
| 4016 | LCK_MTX_ASSERT(mbuf_mlock, LCK_MTX_ASSERT_OWNED); |
| 4017 | |
| 4018 | VERIFY(PAGE_SIZE == m_maxsize(MC_BIGCL) || |
| 4019 | PAGE_SIZE == m_maxsize(MC_16KCL)); |
| 4020 | |
| 4021 | if (m_maxsize(class) >= PAGE_SIZE) { |
| 4022 | return m_clalloc(num, wait, m_maxsize(class)) != 0; |
| 4023 | } |
| 4024 | |
| 4025 | /* |
| 4026 | * The rest of the function will allocate pages and will slice |
| 4027 | * them up into the right size |
| 4028 | */ |
| 4029 | |
| 4030 | numpages = (num * m_size(class) + PAGE_SIZE - 1) / PAGE_SIZE; |
| 4031 | |
| 4032 | /* Currently assume that pages are 4K or 16K */ |
| 4033 | if (PAGE_SIZE == m_maxsize(MC_BIGCL)) { |
| 4034 | super_class = MC_BIGCL; |
| 4035 | } else { |
| 4036 | super_class = MC_16KCL; |
| 4037 | } |
| 4038 | |
| 4039 | i = m_clalloc(numpages, wait, m_maxsize(super_class)); |
| 4040 | |
| 4041 | /* how many objects will we cut the page into? */ |
| 4042 | int numobj = PAGE_SIZE / m_maxsize(class); |
| 4043 | |
| 4044 | for (count = 0; count < numpages; count++) { |
| 4045 | /* respect totals, minlimit, maxlimit */ |
| 4046 | if (m_total(super_class) <= m_minlimit(super_class) || |
| 4047 | m_total(class) >= m_maxlimit(class)) { |
| 4048 | break; |
| 4049 | } |
| 4050 | |
| 4051 | if ((o = slab_alloc(super_class, wait)) == NULL) { |
| 4052 | break; |
| 4053 | } |
| 4054 | |
| 4055 | struct mbuf *m = (struct mbuf *)o; |
| 4056 | union mcluster *c = (union mcluster *)o; |
| 4057 | union mbigcluster *mbc = (union mbigcluster *)o; |
| 4058 | mcl_slab_t *sp = slab_get(o); |
| 4059 | mcache_audit_t *mca = NULL; |
| 4060 | |
| 4061 | /* |
| 4062 | * since one full page will be converted to MC_MBUF or |
| 4063 | * MC_CL, verify that the reference count will match that |
| 4064 | * assumption |
| 4065 | */ |
| 4066 | VERIFY(sp->sl_refcnt == 1 && slab_is_detached(sp)); |
| 4067 | VERIFY((sp->sl_flags & (SLF_MAPPED | SLF_PARTIAL)) == SLF_MAPPED); |
| 4068 | /* |
| 4069 | * Make sure that the cluster is unmolested |
| 4070 | * while in freelist |
| 4071 | */ |
| 4072 | if (mclverify) { |
| 4073 | mca = mcl_audit_buf2mca(super_class, |
| 4074 | (mcache_obj_t *)o); |
| 4075 | mcache_audit_free_verify(mca, |
| 4076 | (mcache_obj_t *)o, 0, m_maxsize(super_class)); |
| 4077 | } |
| 4078 | |
| 4079 | /* Reinitialize it as an mbuf or 2K or 4K slab */ |
| 4080 | slab_init(sp, class, sp->sl_flags, |
| 4081 | sp->sl_base, NULL, PAGE_SIZE, 0, numobj); |
| 4082 | |
| 4083 | VERIFY(sp->sl_head == NULL); |
| 4084 | |
| 4085 | VERIFY(m_total(super_class) >= 1); |
| 4086 | m_total(super_class)--; |
| 4087 | |
| 4088 | if (super_class == MC_BIGCL) { |
| 4089 | mbstat.m_bigclusters = m_total(MC_BIGCL); |
| 4090 | } |
| 4091 | |
| 4092 | m_total(class) += numobj; |
| 4093 | VERIFY(m_total(class) <= m_maxlimit(class)); |
| 4094 | m_infree(class) += numobj; |
| 4095 | |
| 4096 | i = numobj; |
| 4097 | if (class == MC_MBUF) { |
| 4098 | mbstat.m_mbufs = m_total(MC_MBUF); |
| 4099 | mtype_stat_add(MT_FREE, NMBPG); |
| 4100 | while (i--) { |
| 4101 | /* |
| 4102 | * If auditing is enabled, construct the |
| 4103 | * shadow mbuf in the audit structure |
| 4104 | * instead of the actual one. |
| 4105 | * mbuf_slab_audit() will take care of |
| 4106 | * restoring the contents after the |
| 4107 | * integrity check. |
| 4108 | */ |
| 4109 | if (mclaudit != NULL) { |
| 4110 | struct mbuf *ms; |
| 4111 | mca = mcl_audit_buf2mca(MC_MBUF, |
| 4112 | (mcache_obj_t *)m); |
| 4113 | ms = MCA_SAVED_MBUF_PTR(mca); |
| 4114 | ms->m_type = MT_FREE; |
| 4115 | } else { |
| 4116 | m->m_type = MT_FREE; |
| 4117 | } |
| 4118 | m->m_next = sp->sl_head; |
| 4119 | sp->sl_head = (void *)m++; |
| 4120 | } |
| 4121 | } else if (class == MC_CL) { /* MC_CL */ |
| 4122 | mbstat.m_clfree = |
| 4123 | m_infree(MC_CL) + m_infree(MC_MBUF_CL); |
| 4124 | mbstat.m_clusters = m_total(MC_CL); |
| 4125 | while (i--) { |
| 4126 | c->mcl_next = sp->sl_head; |
| 4127 | sp->sl_head = (void *)c++; |
| 4128 | } |
| 4129 | } else { |
| 4130 | VERIFY(class == MC_BIGCL); |
| 4131 | mbstat.m_bigclusters = m_total(MC_BIGCL); |
| 4132 | mbstat.m_bigclfree = m_infree(MC_BIGCL) + |
| 4133 | m_infree(MC_MBUF_BIGCL); |
| 4134 | while (i--) { |
| 4135 | mbc->mbc_next = sp->sl_head; |
| 4136 | sp->sl_head = (void *)mbc++; |
| 4137 | } |
| 4138 | } |
| 4139 | |
| 4140 | /* Insert into the mbuf or 2k or 4k slab list */ |
| 4141 | slab_insert(sp, class); |
| 4142 | |
| 4143 | if ((i = mb_waiters) > 0) { |
| 4144 | mb_waiters = 0; |
| 4145 | } |
| 4146 | if (i != 0) { |
| 4147 | mbwdog_logger("waking up all threads" ); |
| 4148 | wakeup(mb_waitchan); |
| 4149 | } |
| 4150 | } |
| 4151 | return count != 0; |
| 4152 | } |
| 4153 | |
| 4154 | /* |
| 4155 | * For each class, initialize the freelist to hold m_minlimit() objects. |
| 4156 | */ |
| 4157 | static void |
| 4158 | freelist_init(mbuf_class_t class) |
| 4159 | { |
| 4160 | LCK_MTX_ASSERT(mbuf_mlock, LCK_MTX_ASSERT_OWNED); |
| 4161 | |
| 4162 | VERIFY(class == MC_CL || class == MC_BIGCL); |
| 4163 | VERIFY(m_total(class) == 0); |
| 4164 | VERIFY(m_minlimit(class) > 0); |
| 4165 | |
| 4166 | while (m_total(class) < m_minlimit(class)) { |
| 4167 | (void) freelist_populate(class, m_minlimit(class), M_WAIT); |
| 4168 | } |
| 4169 | |
| 4170 | VERIFY(m_total(class) >= m_minlimit(class)); |
| 4171 | } |
| 4172 | |
| 4173 | /* |
| 4174 | * (Inaccurately) check if it might be worth a trip back to the |
| 4175 | * mcache layer due the availability of objects there. We'll |
| 4176 | * end up back here if there's nothing up there. |
| 4177 | */ |
| 4178 | static boolean_t |
| 4179 | mbuf_cached_above(mbuf_class_t class, int wait) |
| 4180 | { |
| 4181 | switch (class) { |
| 4182 | case MC_MBUF: |
| 4183 | if (wait & MCR_COMP) { |
| 4184 | return !mcache_bkt_isempty(m_cache(MC_MBUF_CL)) || |
| 4185 | !mcache_bkt_isempty(m_cache(MC_MBUF_BIGCL)); |
| 4186 | } |
| 4187 | break; |
| 4188 | |
| 4189 | case MC_CL: |
| 4190 | if (wait & MCR_COMP) { |
| 4191 | return !mcache_bkt_isempty(m_cache(MC_MBUF_CL)); |
| 4192 | } |
| 4193 | break; |
| 4194 | |
| 4195 | case MC_BIGCL: |
| 4196 | if (wait & MCR_COMP) { |
| 4197 | return !mcache_bkt_isempty(m_cache(MC_MBUF_BIGCL)); |
| 4198 | } |
| 4199 | break; |
| 4200 | |
| 4201 | case MC_16KCL: |
| 4202 | if (wait & MCR_COMP) { |
| 4203 | return !mcache_bkt_isempty(m_cache(MC_MBUF_16KCL)); |
| 4204 | } |
| 4205 | break; |
| 4206 | |
| 4207 | case MC_MBUF_CL: |
| 4208 | case MC_MBUF_BIGCL: |
| 4209 | case MC_MBUF_16KCL: |
| 4210 | break; |
| 4211 | |
| 4212 | default: |
| 4213 | VERIFY(0); |
| 4214 | /* NOTREACHED */ |
| 4215 | } |
| 4216 | |
| 4217 | return !mcache_bkt_isempty(m_cache(class)); |
| 4218 | } |
| 4219 | |
| 4220 | /* |
| 4221 | * If possible, convert constructed objects to raw ones. |
| 4222 | */ |
| 4223 | static boolean_t |
| 4224 | mbuf_steal(mbuf_class_t class, unsigned int num) |
| 4225 | { |
| 4226 | mcache_obj_t *top = NULL; |
| 4227 | mcache_obj_t **list = ⊤ |
| 4228 | unsigned int tot = 0; |
| 4229 | |
| 4230 | LCK_MTX_ASSERT(mbuf_mlock, LCK_MTX_ASSERT_OWNED); |
| 4231 | |
| 4232 | switch (class) { |
| 4233 | case MC_MBUF: |
| 4234 | case MC_CL: |
| 4235 | case MC_BIGCL: |
| 4236 | case MC_16KCL: |
| 4237 | return FALSE; |
| 4238 | |
| 4239 | case MC_MBUF_CL: |
| 4240 | case MC_MBUF_BIGCL: |
| 4241 | case MC_MBUF_16KCL: |
| 4242 | /* Get the required number of constructed objects if possible */ |
| 4243 | if (m_infree(class) > m_minlimit(class)) { |
| 4244 | tot = cslab_alloc(class, &list, |
| 4245 | MIN(num, m_infree(class))); |
| 4246 | } |
| 4247 | |
| 4248 | /* And destroy them to get back the raw objects */ |
| 4249 | if (top != NULL) { |
| 4250 | (void) cslab_free(class, top, 1); |
| 4251 | } |
| 4252 | break; |
| 4253 | |
| 4254 | default: |
| 4255 | VERIFY(0); |
| 4256 | /* NOTREACHED */ |
| 4257 | } |
| 4258 | |
| 4259 | return tot == num; |
| 4260 | } |
| 4261 | |
| 4262 | static void |
| 4263 | m_reclaim(mbuf_class_t class, unsigned int num, boolean_t comp) |
| 4264 | { |
| 4265 | int m, bmap = 0; |
| 4266 | |
| 4267 | LCK_MTX_ASSERT(mbuf_mlock, LCK_MTX_ASSERT_OWNED); |
| 4268 | |
| 4269 | VERIFY(m_total(MC_CL) <= m_maxlimit(MC_CL)); |
| 4270 | VERIFY(m_total(MC_BIGCL) <= m_maxlimit(MC_BIGCL)); |
| 4271 | VERIFY(m_total(MC_16KCL) <= m_maxlimit(MC_16KCL)); |
| 4272 | |
| 4273 | /* |
| 4274 | * This logic can be made smarter; for now, simply mark |
| 4275 | * all other related classes as potential victims. |
| 4276 | */ |
| 4277 | switch (class) { |
| 4278 | case MC_MBUF: |
| 4279 | m_wantpurge(MC_CL)++; |
| 4280 | m_wantpurge(MC_BIGCL)++; |
| 4281 | m_wantpurge(MC_MBUF_CL)++; |
| 4282 | m_wantpurge(MC_MBUF_BIGCL)++; |
| 4283 | break; |
| 4284 | |
| 4285 | case MC_CL: |
| 4286 | m_wantpurge(MC_MBUF)++; |
| 4287 | m_wantpurge(MC_BIGCL)++; |
| 4288 | m_wantpurge(MC_MBUF_BIGCL)++; |
| 4289 | if (!comp) { |
| 4290 | m_wantpurge(MC_MBUF_CL)++; |
| 4291 | } |
| 4292 | break; |
| 4293 | |
| 4294 | case MC_BIGCL: |
| 4295 | m_wantpurge(MC_MBUF)++; |
| 4296 | m_wantpurge(MC_CL)++; |
| 4297 | m_wantpurge(MC_MBUF_CL)++; |
| 4298 | if (!comp) { |
| 4299 | m_wantpurge(MC_MBUF_BIGCL)++; |
| 4300 | } |
| 4301 | break; |
| 4302 | |
| 4303 | case MC_16KCL: |
| 4304 | if (!comp) { |
| 4305 | m_wantpurge(MC_MBUF_16KCL)++; |
| 4306 | } |
| 4307 | break; |
| 4308 | |
| 4309 | default: |
| 4310 | VERIFY(0); |
| 4311 | /* NOTREACHED */ |
| 4312 | } |
| 4313 | |
| 4314 | /* |
| 4315 | * Run through each marked class and check if we really need to |
| 4316 | * purge (and therefore temporarily disable) the per-CPU caches |
| 4317 | * layer used by the class. If so, remember the classes since |
| 4318 | * we are going to drop the lock below prior to purging. |
| 4319 | */ |
| 4320 | for (m = 0; m < NELEM(mbuf_table); m++) { |
| 4321 | if (m_wantpurge(m) > 0) { |
| 4322 | m_wantpurge(m) = 0; |
| 4323 | /* |
| 4324 | * Try hard to steal the required number of objects |
| 4325 | * from the freelist of other mbuf classes. Only |
| 4326 | * purge and disable the per-CPU caches layer when |
| 4327 | * we don't have enough; it's the last resort. |
| 4328 | */ |
| 4329 | if (!mbuf_steal(m, num)) { |
| 4330 | bmap |= (1 << m); |
| 4331 | } |
| 4332 | } |
| 4333 | } |
| 4334 | |
| 4335 | lck_mtx_unlock(mbuf_mlock); |
| 4336 | |
| 4337 | if (bmap != 0) { |
| 4338 | /* signal the domains to drain */ |
| 4339 | net_drain_domains(); |
| 4340 | |
| 4341 | /* Sigh; we have no other choices but to ask mcache to purge */ |
| 4342 | for (m = 0; m < NELEM(mbuf_table); m++) { |
| 4343 | if ((bmap & (1 << m)) && |
| 4344 | mcache_purge_cache(m_cache(m), TRUE)) { |
| 4345 | lck_mtx_lock(mbuf_mlock); |
| 4346 | m_purge_cnt(m)++; |
| 4347 | mbstat.m_drain++; |
| 4348 | lck_mtx_unlock(mbuf_mlock); |
| 4349 | } |
| 4350 | } |
| 4351 | } else { |
| 4352 | /* |
| 4353 | * Request mcache to reap extra elements from all of its caches; |
| 4354 | * note that all reaps are serialized and happen only at a fixed |
| 4355 | * interval. |
| 4356 | */ |
| 4357 | mcache_reap(); |
| 4358 | } |
| 4359 | lck_mtx_lock(mbuf_mlock); |
| 4360 | } |
| 4361 | #endif /* CONFIG_MBUF_MCACHE */ |
| 4362 | |
| 4363 | static inline struct mbuf * |
| 4364 | m_get_common(int wait, short type, int hdr) |
| 4365 | { |
| 4366 | struct mbuf *m; |
| 4367 | |
| 4368 | #if CONFIG_MBUF_MCACHE |
| 4369 | int mcflags = MSLEEPF(wait); |
| 4370 | |
| 4371 | /* Is this due to a non-blocking retry? If so, then try harder */ |
| 4372 | if (mcflags & MCR_NOSLEEP) { |
| 4373 | mcflags |= MCR_TRYHARD; |
| 4374 | } |
| 4375 | |
| 4376 | m = mcache_alloc(m_cache(MC_MBUF), mcflags); |
| 4377 | #else |
| 4378 | m = mz_alloc(flags: wait); |
| 4379 | #endif /* CONFIG_MBUF_MCACHE */ |
| 4380 | if (m != NULL) { |
| 4381 | MBUF_INIT(m, hdr, type); |
| 4382 | mtype_stat_inc(type); |
| 4383 | mtype_stat_dec(MT_FREE); |
| 4384 | } |
| 4385 | return m; |
| 4386 | } |
| 4387 | |
| 4388 | /* |
| 4389 | * Space allocation routines; these are also available as macros |
| 4390 | * for critical paths. |
| 4391 | */ |
| 4392 | #define _M_GET(wait, type) m_get_common(wait, type, 0) |
| 4393 | #define _M_GETHDR(wait, type) m_get_common(wait, type, 1) |
| 4394 | #define _M_RETRY(wait, type) _M_GET(wait, type) |
| 4395 | #define _M_RETRYHDR(wait, type) _M_GETHDR(wait, type) |
| 4396 | #define _MGET(m, how, type) ((m) = _M_GET(how, type)) |
| 4397 | #define _MGETHDR(m, how, type) ((m) = _M_GETHDR(how, type)) |
| 4398 | |
| 4399 | struct mbuf * |
| 4400 | m_get(int wait, int type) |
| 4401 | { |
| 4402 | return _M_GET(wait, type); |
| 4403 | } |
| 4404 | |
| 4405 | struct mbuf * |
| 4406 | m_gethdr(int wait, int type) |
| 4407 | { |
| 4408 | return _M_GETHDR(wait, type); |
| 4409 | } |
| 4410 | |
| 4411 | struct mbuf * |
| 4412 | m_retry(int wait, int type) |
| 4413 | { |
| 4414 | return _M_RETRY(wait, type); |
| 4415 | } |
| 4416 | |
| 4417 | struct mbuf * |
| 4418 | m_retryhdr(int wait, int type) |
| 4419 | { |
| 4420 | return _M_RETRYHDR(wait, type); |
| 4421 | } |
| 4422 | |
| 4423 | struct mbuf * |
| 4424 | m_getclr(int wait, int type) |
| 4425 | { |
| 4426 | struct mbuf *m; |
| 4427 | |
| 4428 | _MGET(m, wait, type); |
| 4429 | if (m != NULL) { |
| 4430 | bzero(MTOD(m, caddr_t), MLEN); |
| 4431 | } |
| 4432 | return m; |
| 4433 | } |
| 4434 | |
| 4435 | static int |
| 4436 | m_free_paired(struct mbuf *m) |
| 4437 | { |
| 4438 | VERIFY((m->m_flags & M_EXT) && (MEXT_FLAGS(m) & EXTF_PAIRED)); |
| 4439 | |
| 4440 | os_atomic_thread_fence(seq_cst); |
| 4441 | if (MEXT_PMBUF(m) == m) { |
| 4442 | /* |
| 4443 | * Paired ref count might be negative in case we lose |
| 4444 | * against another thread clearing MEXT_PMBUF, in the |
| 4445 | * event it occurs after the above memory barrier sync. |
| 4446 | * In that case just ignore as things have been unpaired. |
| 4447 | */ |
| 4448 | int16_t prefcnt = os_atomic_dec(&MEXT_PREF(m), acq_rel); |
| 4449 | if (prefcnt > 1) { |
| 4450 | return 1; |
| 4451 | } else if (prefcnt == 1) { |
| 4452 | m_ext_free_func_t m_free_func = m_get_ext_free(m); |
| 4453 | VERIFY(m_free_func != NULL); |
| 4454 | (*m_free_func)(m->m_ext.ext_buf, |
| 4455 | m->m_ext.ext_size, m_get_ext_arg(m)); |
| 4456 | return 1; |
| 4457 | } else if (prefcnt == 0) { |
| 4458 | VERIFY(MBUF_IS_PAIRED(m)); |
| 4459 | |
| 4460 | /* |
| 4461 | * Restore minref to its natural value, so that |
| 4462 | * the caller will be able to free the cluster |
| 4463 | * as appropriate. |
| 4464 | */ |
| 4465 | MEXT_MINREF(m) = 0; |
| 4466 | |
| 4467 | /* |
| 4468 | * Clear MEXT_PMBUF, but leave EXTF_PAIRED intact |
| 4469 | * as it is immutable. atomic_set_ptr also causes |
| 4470 | * memory barrier sync. |
| 4471 | */ |
| 4472 | os_atomic_store(&MEXT_PMBUF(m), NULL, release); |
| 4473 | |
| 4474 | switch (m->m_ext.ext_size) { |
| 4475 | case MCLBYTES: |
| 4476 | m_set_ext(m, m_get_rfa(m), NULL, NULL); |
| 4477 | break; |
| 4478 | |
| 4479 | case MBIGCLBYTES: |
| 4480 | m_set_ext(m, m_get_rfa(m), m_bigfree, NULL); |
| 4481 | break; |
| 4482 | |
| 4483 | case M16KCLBYTES: |
| 4484 | m_set_ext(m, m_get_rfa(m), m_16kfree, NULL); |
| 4485 | break; |
| 4486 | |
| 4487 | default: |
| 4488 | VERIFY(0); |
| 4489 | /* NOTREACHED */ |
| 4490 | } |
| 4491 | } |
| 4492 | } |
| 4493 | |
| 4494 | /* |
| 4495 | * Tell caller the unpair has occurred, and that the reference |
| 4496 | * count on the external cluster held for the paired mbuf should |
| 4497 | * now be dropped. |
| 4498 | */ |
| 4499 | return 0; |
| 4500 | } |
| 4501 | |
| 4502 | struct mbuf * |
| 4503 | m_free(struct mbuf *m) |
| 4504 | { |
| 4505 | struct mbuf *n = m->m_next; |
| 4506 | |
| 4507 | if (m->m_type == MT_FREE) { |
| 4508 | panic("m_free: freeing an already freed mbuf" ); |
| 4509 | } |
| 4510 | |
| 4511 | if (m->m_flags & M_PKTHDR) { |
| 4512 | /* Check for scratch area overflow */ |
| 4513 | m_redzone_verify(m); |
| 4514 | /* Free the aux data and tags if there is any */ |
| 4515 | m_tag_delete_chain(m); |
| 4516 | |
| 4517 | m_do_tx_compl_callback(m, NULL); |
| 4518 | } |
| 4519 | |
| 4520 | if (m->m_flags & M_EXT) { |
| 4521 | if (MBUF_IS_PAIRED(m) && m_free_paired(m)) { |
| 4522 | return n; |
| 4523 | } |
| 4524 | /* |
| 4525 | * Make sure that we don't touch any ext_ref |
| 4526 | * member after we decrement the reference count |
| 4527 | * since that may lead to use-after-free |
| 4528 | * when we do not hold the last reference. |
| 4529 | */ |
| 4530 | const bool composite = !!(MEXT_FLAGS(m) & EXTF_COMPOSITE); |
| 4531 | const m_ext_free_func_t m_free_func = m_get_ext_free(m); |
| 4532 | const uint16_t minref = MEXT_MINREF(m); |
| 4533 | const uint16_t refcnt = m_decref(m); |
| 4534 | |
| 4535 | if (refcnt == minref && !composite) { |
| 4536 | #if CONFIG_MBUF_MCACHE |
| 4537 | if (m_free_func == NULL) { |
| 4538 | mcache_free(m_cache(MC_CL), m->m_ext.ext_buf); |
| 4539 | } else if (m_free_func == m_bigfree) { |
| 4540 | mcache_free(m_cache(MC_BIGCL), |
| 4541 | m->m_ext.ext_buf); |
| 4542 | } else if (m_free_func == m_16kfree) { |
| 4543 | mcache_free(m_cache(MC_16KCL), |
| 4544 | m->m_ext.ext_buf); |
| 4545 | } else { |
| 4546 | (*m_free_func)(m->m_ext.ext_buf, |
| 4547 | m->m_ext.ext_size, m_get_ext_arg(m)); |
| 4548 | } |
| 4549 | mcache_free(ref_cache, m_get_rfa(m)); |
| 4550 | #else |
| 4551 | if (m_free_func == NULL) { |
| 4552 | mz_cl_free(zid: ZONE_ID_CLUSTER_2K, cl: m->m_ext.ext_buf); |
| 4553 | } else if (m_free_func == m_bigfree) { |
| 4554 | mz_cl_free(zid: ZONE_ID_CLUSTER_4K, cl: m->m_ext.ext_buf); |
| 4555 | } else if (m_free_func == m_16kfree) { |
| 4556 | mz_cl_free(zid: ZONE_ID_CLUSTER_16K, cl: m->m_ext.ext_buf); |
| 4557 | } else { |
| 4558 | (*m_free_func)(m->m_ext.ext_buf, |
| 4559 | m->m_ext.ext_size, m_get_ext_arg(m)); |
| 4560 | } |
| 4561 | mz_ref_free(rfa: m_get_rfa(m)); |
| 4562 | #endif /* CONFIG_MBUF_MCACHE */ |
| 4563 | m_set_ext(m, NULL, NULL, NULL); |
| 4564 | } else if (refcnt == minref && composite) { |
| 4565 | VERIFY(!(MEXT_FLAGS(m) & EXTF_PAIRED)); |
| 4566 | |
| 4567 | mtype_stat_dec(m->m_type); |
| 4568 | mtype_stat_inc(MT_FREE); |
| 4569 | |
| 4570 | m->m_type = MT_FREE; |
| 4571 | m->m_flags = M_EXT; |
| 4572 | m->m_len = 0; |
| 4573 | m->m_next = m->m_nextpkt = NULL; |
| 4574 | /* |
| 4575 | * MEXT_FLAGS is safe to access here |
| 4576 | * since we are now sure that we held |
| 4577 | * the last reference to ext_ref. |
| 4578 | */ |
| 4579 | MEXT_FLAGS(m) &= ~EXTF_READONLY; |
| 4580 | |
| 4581 | #if CONFIG_MBUF_MCACHE |
| 4582 | /* "Free" into the intermediate cache */ |
| 4583 | if (m_free_func == NULL) { |
| 4584 | mcache_free(m_cache(MC_MBUF_CL), m); |
| 4585 | } else if (m_free_func == m_bigfree) { |
| 4586 | mcache_free(m_cache(MC_MBUF_BIGCL), m); |
| 4587 | } else { |
| 4588 | VERIFY(m_free_func == m_16kfree); |
| 4589 | mcache_free(m_cache(MC_MBUF_16KCL), m); |
| 4590 | } |
| 4591 | #else |
| 4592 | /* "Free" into the intermediate cache */ |
| 4593 | if (m_free_func == NULL) { |
| 4594 | mz_composite_free(class: MC_MBUF_CL, m); |
| 4595 | } else if (m_free_func == m_bigfree) { |
| 4596 | mz_composite_free(class: MC_MBUF_BIGCL, m); |
| 4597 | } else { |
| 4598 | VERIFY(m_free_func == m_16kfree); |
| 4599 | mz_composite_free(class: MC_MBUF_16KCL, m); |
| 4600 | } |
| 4601 | #endif /* CONFIG_MBUF_MCACHE */ |
| 4602 | return n; |
| 4603 | } |
| 4604 | } |
| 4605 | |
| 4606 | mtype_stat_dec(m->m_type); |
| 4607 | mtype_stat_inc(MT_FREE); |
| 4608 | |
| 4609 | m->m_type = MT_FREE; |
| 4610 | m->m_flags = m->m_len = 0; |
| 4611 | m->m_next = m->m_nextpkt = NULL; |
| 4612 | |
| 4613 | #if CONFIG_MBUF_MCACHE |
| 4614 | mcache_free(m_cache(MC_MBUF), m); |
| 4615 | #else |
| 4616 | mz_free(m); |
| 4617 | #endif /* CONFIG_MBUF_MCACHE */ |
| 4618 | |
| 4619 | return n; |
| 4620 | } |
| 4621 | |
| 4622 | __private_extern__ struct mbuf * |
| 4623 | m_clattach(struct mbuf *m, int type, caddr_t extbuf, |
| 4624 | void (*extfree)(caddr_t, u_int, caddr_t), size_t extsize, caddr_t extarg, |
| 4625 | int wait, int pair) |
| 4626 | { |
| 4627 | struct ext_ref *rfa = NULL; |
| 4628 | |
| 4629 | /* |
| 4630 | * If pairing is requested and an existing mbuf is provided, reject |
| 4631 | * it if it's already been paired to another cluster. Otherwise, |
| 4632 | * allocate a new one or free any existing below. |
| 4633 | */ |
| 4634 | if ((m != NULL && MBUF_IS_PAIRED(m)) || |
| 4635 | (m == NULL && (m = _M_GETHDR(wait, type)) == NULL)) { |
| 4636 | return NULL; |
| 4637 | } |
| 4638 | |
| 4639 | if (m->m_flags & M_EXT) { |
| 4640 | /* |
| 4641 | * Make sure that we don't touch any ext_ref |
| 4642 | * member after we decrement the reference count |
| 4643 | * since that may lead to use-after-free |
| 4644 | * when we do not hold the last reference. |
| 4645 | */ |
| 4646 | const bool composite = !!(MEXT_FLAGS(m) & EXTF_COMPOSITE); |
| 4647 | VERIFY(!(MEXT_FLAGS(m) & EXTF_PAIRED) && MEXT_PMBUF(m) == NULL); |
| 4648 | const m_ext_free_func_t m_free_func = m_get_ext_free(m); |
| 4649 | const uint16_t minref = MEXT_MINREF(m); |
| 4650 | const uint16_t refcnt = m_decref(m); |
| 4651 | |
| 4652 | if (refcnt == minref && !composite) { |
| 4653 | #if CONFIG_MBUF_MCACHE |
| 4654 | if (m_free_func == NULL) { |
| 4655 | mcache_free(m_cache(MC_CL), m->m_ext.ext_buf); |
| 4656 | } else if (m_free_func == m_bigfree) { |
| 4657 | mcache_free(m_cache(MC_BIGCL), |
| 4658 | m->m_ext.ext_buf); |
| 4659 | } else if (m_free_func == m_16kfree) { |
| 4660 | mcache_free(m_cache(MC_16KCL), |
| 4661 | m->m_ext.ext_buf); |
| 4662 | } else { |
| 4663 | (*m_free_func)(m->m_ext.ext_buf, |
| 4664 | m->m_ext.ext_size, m_get_ext_arg(m)); |
| 4665 | } |
| 4666 | #else |
| 4667 | if (m_free_func == NULL) { |
| 4668 | mz_cl_free(zid: ZONE_ID_CLUSTER_2K, cl: m->m_ext.ext_buf); |
| 4669 | } else if (m_free_func == m_bigfree) { |
| 4670 | mz_cl_free(zid: ZONE_ID_CLUSTER_4K, cl: m->m_ext.ext_buf); |
| 4671 | } else if (m_free_func == m_16kfree) { |
| 4672 | mz_cl_free(zid: ZONE_ID_CLUSTER_16K, cl: m->m_ext.ext_buf); |
| 4673 | } else { |
| 4674 | (*m_free_func)(m->m_ext.ext_buf, |
| 4675 | m->m_ext.ext_size, m_get_ext_arg(m)); |
| 4676 | } |
| 4677 | #endif /* CONFIG_MBUF_MCACHE */ |
| 4678 | /* Re-use the reference structure */ |
| 4679 | rfa = m_get_rfa(m); |
| 4680 | } else if (refcnt == minref && composite) { |
| 4681 | VERIFY(m->m_type != MT_FREE); |
| 4682 | |
| 4683 | mtype_stat_dec(m->m_type); |
| 4684 | mtype_stat_inc(MT_FREE); |
| 4685 | |
| 4686 | m->m_type = MT_FREE; |
| 4687 | m->m_flags = M_EXT; |
| 4688 | m->m_len = 0; |
| 4689 | m->m_next = m->m_nextpkt = NULL; |
| 4690 | |
| 4691 | /* |
| 4692 | * MEXT_FLAGS is safe to access here |
| 4693 | * since we are now sure that we held |
| 4694 | * the last reference to ext_ref. |
| 4695 | */ |
| 4696 | MEXT_FLAGS(m) &= ~EXTF_READONLY; |
| 4697 | |
| 4698 | /* "Free" into the intermediate cache */ |
| 4699 | #if CONFIG_MBUF_MCACHE |
| 4700 | if (m_free_func == NULL) { |
| 4701 | mcache_free(m_cache(MC_MBUF_CL), m); |
| 4702 | } else if (m_free_func == m_bigfree) { |
| 4703 | mcache_free(m_cache(MC_MBUF_BIGCL), m); |
| 4704 | } else { |
| 4705 | VERIFY(m_free_func == m_16kfree); |
| 4706 | mcache_free(m_cache(MC_MBUF_16KCL), m); |
| 4707 | } |
| 4708 | #else |
| 4709 | if (m_free_func == NULL) { |
| 4710 | mz_composite_free(class: MC_MBUF_CL, m); |
| 4711 | } else if (m_free_func == m_bigfree) { |
| 4712 | mz_composite_free(class: MC_MBUF_BIGCL, m); |
| 4713 | } else { |
| 4714 | VERIFY(m_free_func == m_16kfree); |
| 4715 | mz_composite_free(class: MC_MBUF_16KCL, m); |
| 4716 | } |
| 4717 | #endif /* CONFIG_MBUF_MCACHE */ |
| 4718 | /* |
| 4719 | * Allocate a new mbuf, since we didn't divorce |
| 4720 | * the composite mbuf + cluster pair above. |
| 4721 | */ |
| 4722 | if ((m = _M_GETHDR(wait, type)) == NULL) { |
| 4723 | return NULL; |
| 4724 | } |
| 4725 | } |
| 4726 | } |
| 4727 | |
| 4728 | #if CONFIG_MBUF_MCACHE |
| 4729 | if (rfa == NULL && |
| 4730 | (rfa = mcache_alloc(ref_cache, MSLEEPF(wait))) == NULL) { |
| 4731 | m_free(m); |
| 4732 | return NULL; |
| 4733 | } |
| 4734 | #else |
| 4735 | if (rfa == NULL && |
| 4736 | (rfa = mz_ref_alloc(flags: wait)) == NULL) { |
| 4737 | m_free(m); |
| 4738 | return NULL; |
| 4739 | } |
| 4740 | #endif /* CONFIG_MBUF_MCACHE */ |
| 4741 | |
| 4742 | if (!pair) { |
| 4743 | MEXT_INIT(m, buf: extbuf, size: extsize, free: extfree, free_arg: extarg, rfa, |
| 4744 | min: 0, ref: 1, pref: 0, flag: 0, priv: 0, NULL); |
| 4745 | } else { |
| 4746 | MEXT_INIT(m, buf: extbuf, size: extsize, free: extfree, free_arg: (caddr_t)m, rfa, |
| 4747 | min: 1, ref: 1, pref: 1, EXTF_PAIRED, priv: 0, pm: m); |
| 4748 | } |
| 4749 | |
| 4750 | return m; |
| 4751 | } |
| 4752 | |
| 4753 | /* |
| 4754 | * Perform `fast' allocation mbuf clusters from a cache of recently-freed |
| 4755 | * clusters. (If the cache is empty, new clusters are allocated en-masse.) |
| 4756 | */ |
| 4757 | struct mbuf * |
| 4758 | m_getcl(int wait, int type, int flags) |
| 4759 | { |
| 4760 | struct mbuf *m = NULL; |
| 4761 | int hdr = (flags & M_PKTHDR); |
| 4762 | |
| 4763 | #if CONFIG_MBUF_MCACHE |
| 4764 | int mcflags = MSLEEPF(wait); |
| 4765 | |
| 4766 | /* Is this due to a non-blocking retry? If so, then try harder */ |
| 4767 | if (mcflags & MCR_NOSLEEP) { |
| 4768 | mcflags |= MCR_TRYHARD; |
| 4769 | } |
| 4770 | |
| 4771 | m = mcache_alloc(m_cache(MC_MBUF_CL), mcflags); |
| 4772 | #else |
| 4773 | m = mz_composite_alloc(class: MC_MBUF_CL, flags: wait); |
| 4774 | #endif /* CONFIG_MBUF_MCACHE */ |
| 4775 | if (m != NULL) { |
| 4776 | u_int16_t flag; |
| 4777 | struct ext_ref *rfa; |
| 4778 | void *cl; |
| 4779 | |
| 4780 | VERIFY(m->m_type == MT_FREE && m->m_flags == M_EXT); |
| 4781 | cl = m->m_ext.ext_buf; |
| 4782 | rfa = m_get_rfa(m); |
| 4783 | |
| 4784 | ASSERT(cl != NULL && rfa != NULL); |
| 4785 | VERIFY(MBUF_IS_COMPOSITE(m) && m_get_ext_free(m) == NULL); |
| 4786 | |
| 4787 | flag = MEXT_FLAGS(m); |
| 4788 | |
| 4789 | MBUF_INIT(m, hdr, type); |
| 4790 | MBUF_CL_INIT(m, cl, rfa, 1, flag); |
| 4791 | |
| 4792 | mtype_stat_inc(type); |
| 4793 | mtype_stat_dec(MT_FREE); |
| 4794 | } |
| 4795 | return m; |
| 4796 | } |
| 4797 | |
| 4798 | /* m_mclget() add an mbuf cluster to a normal mbuf */ |
| 4799 | struct mbuf * |
| 4800 | m_mclget(struct mbuf *m, int wait) |
| 4801 | { |
| 4802 | struct ext_ref *rfa = NULL; |
| 4803 | |
| 4804 | #if CONFIG_MBUF_MCACHE |
| 4805 | if ((rfa = mcache_alloc(ref_cache, MSLEEPF(wait))) == NULL) { |
| 4806 | return m; |
| 4807 | } |
| 4808 | #else |
| 4809 | if ((rfa = mz_ref_alloc(flags: wait)) == NULL) { |
| 4810 | return m; |
| 4811 | } |
| 4812 | #endif /* CONFIG_MBUF_MCACHE */ |
| 4813 | m->m_ext.ext_buf = m_mclalloc(wait); |
| 4814 | if (m->m_ext.ext_buf != NULL) { |
| 4815 | MBUF_CL_INIT(m, m->m_ext.ext_buf, rfa, 1, 0); |
| 4816 | } else { |
| 4817 | #if CONFIG_MBUF_MCACHE |
| 4818 | mcache_free(ref_cache, rfa); |
| 4819 | #else |
| 4820 | mz_ref_free(rfa); |
| 4821 | #endif /* CONFIG_MBUF_MCACHE */ |
| 4822 | } |
| 4823 | |
| 4824 | return m; |
| 4825 | } |
| 4826 | |
| 4827 | /* Allocate an mbuf cluster */ |
| 4828 | caddr_t |
| 4829 | m_mclalloc(int wait) |
| 4830 | { |
| 4831 | #if CONFIG_MBUF_MCACHE |
| 4832 | int mcflags = MSLEEPF(wait); |
| 4833 | |
| 4834 | /* Is this due to a non-blocking retry? If so, then try harder */ |
| 4835 | if (mcflags & MCR_NOSLEEP) { |
| 4836 | mcflags |= MCR_TRYHARD; |
| 4837 | } |
| 4838 | |
| 4839 | return mcache_alloc(m_cache(MC_CL), mcflags); |
| 4840 | #else |
| 4841 | return mz_cl_alloc(zid: ZONE_ID_CLUSTER_2K, flags: wait); |
| 4842 | #endif /* CONFIG_MBUF_MCACHE */ |
| 4843 | } |
| 4844 | |
| 4845 | /* Free an mbuf cluster */ |
| 4846 | void |
| 4847 | m_mclfree(caddr_t p) |
| 4848 | { |
| 4849 | #if CONFIG_MBUF_MCACHE |
| 4850 | mcache_free(m_cache(MC_CL), p); |
| 4851 | #else |
| 4852 | mz_cl_free(zid: ZONE_ID_CLUSTER_2K, cl: p); |
| 4853 | #endif /* CONFIG_MBUF_MCACHE */ |
| 4854 | } |
| 4855 | |
| 4856 | /* |
| 4857 | * mcl_hasreference() checks if a cluster of an mbuf is referenced by |
| 4858 | * another mbuf; see comments in m_incref() regarding EXTF_READONLY. |
| 4859 | */ |
| 4860 | int |
| 4861 | m_mclhasreference(struct mbuf *m) |
| 4862 | { |
| 4863 | if (!(m->m_flags & M_EXT)) { |
| 4864 | return 0; |
| 4865 | } |
| 4866 | |
| 4867 | ASSERT(m_get_rfa(m) != NULL); |
| 4868 | |
| 4869 | return (MEXT_FLAGS(m) & EXTF_READONLY) ? 1 : 0; |
| 4870 | } |
| 4871 | |
| 4872 | __private_extern__ caddr_t |
| 4873 | m_bigalloc(int wait) |
| 4874 | { |
| 4875 | #if CONFIG_MBUF_MCACHE |
| 4876 | int mcflags = MSLEEPF(wait); |
| 4877 | |
| 4878 | /* Is this due to a non-blocking retry? If so, then try harder */ |
| 4879 | if (mcflags & MCR_NOSLEEP) { |
| 4880 | mcflags |= MCR_TRYHARD; |
| 4881 | } |
| 4882 | |
| 4883 | return mcache_alloc(m_cache(MC_BIGCL), mcflags); |
| 4884 | #else |
| 4885 | return mz_cl_alloc(zid: ZONE_ID_CLUSTER_4K, flags: wait); |
| 4886 | #endif /* CONFIG_MBUF_MCACHE */ |
| 4887 | } |
| 4888 | |
| 4889 | __private_extern__ void |
| 4890 | m_bigfree(caddr_t p, __unused u_int size, __unused caddr_t arg) |
| 4891 | { |
| 4892 | #if CONFIG_MBUF_MCACHE |
| 4893 | mcache_free(m_cache(MC_BIGCL), p); |
| 4894 | #else |
| 4895 | mz_cl_free(zid: ZONE_ID_CLUSTER_4K, cl: p); |
| 4896 | #endif /* CONFIG_MBUF_MCACHE */ |
| 4897 | } |
| 4898 | |
| 4899 | /* m_mbigget() add an 4KB mbuf cluster to a normal mbuf */ |
| 4900 | __private_extern__ struct mbuf * |
| 4901 | m_mbigget(struct mbuf *m, int wait) |
| 4902 | { |
| 4903 | struct ext_ref *rfa = NULL; |
| 4904 | |
| 4905 | #if CONFIG_MBUF_MCACHE |
| 4906 | if ((rfa = mcache_alloc(ref_cache, MSLEEPF(wait))) == NULL) { |
| 4907 | return m; |
| 4908 | } |
| 4909 | #else |
| 4910 | if ((rfa = mz_ref_alloc(flags: wait)) == NULL) { |
| 4911 | return m; |
| 4912 | } |
| 4913 | #endif /* CONFIG_MBUF_MCACHE */ |
| 4914 | m->m_ext.ext_buf = m_bigalloc(wait); |
| 4915 | if (m->m_ext.ext_buf != NULL) { |
| 4916 | MBUF_BIGCL_INIT(m, m->m_ext.ext_buf, rfa, 1, 0); |
| 4917 | } else { |
| 4918 | #if CONFIG_MBUF_MCACHE |
| 4919 | mcache_free(ref_cache, rfa); |
| 4920 | #else |
| 4921 | mz_ref_free(rfa); |
| 4922 | #endif /* CONFIG_MBUF_MCACHE */ |
| 4923 | } |
| 4924 | return m; |
| 4925 | } |
| 4926 | |
| 4927 | __private_extern__ caddr_t |
| 4928 | m_16kalloc(int wait) |
| 4929 | { |
| 4930 | #if CONFIG_MBUF_MCACHE |
| 4931 | int mcflags = MSLEEPF(wait); |
| 4932 | |
| 4933 | /* Is this due to a non-blocking retry? If so, then try harder */ |
| 4934 | if (mcflags & MCR_NOSLEEP) { |
| 4935 | mcflags |= MCR_TRYHARD; |
| 4936 | } |
| 4937 | |
| 4938 | return mcache_alloc(m_cache(MC_16KCL), mcflags); |
| 4939 | #else |
| 4940 | return mz_cl_alloc(zid: ZONE_ID_CLUSTER_16K, flags: wait); |
| 4941 | #endif /* CONFIG_MBUF_MCACHE */ |
| 4942 | } |
| 4943 | |
| 4944 | __private_extern__ void |
| 4945 | m_16kfree(caddr_t p, __unused u_int size, __unused caddr_t arg) |
| 4946 | { |
| 4947 | #if CONFIG_MBUF_MCACHE |
| 4948 | mcache_free(m_cache(MC_16KCL), p); |
| 4949 | #else |
| 4950 | mz_cl_free(zid: ZONE_ID_CLUSTER_16K, cl: p); |
| 4951 | #endif /* CONFIG_MBUF_MCACHE */ |
| 4952 | } |
| 4953 | |
| 4954 | /* m_m16kget() add a 16KB mbuf cluster to a normal mbuf */ |
| 4955 | __private_extern__ struct mbuf * |
| 4956 | m_m16kget(struct mbuf *m, int wait) |
| 4957 | { |
| 4958 | struct ext_ref *rfa = NULL; |
| 4959 | |
| 4960 | #if CONFIG_MBUF_MCACHE |
| 4961 | if ((rfa = mcache_alloc(ref_cache, MSLEEPF(wait))) == NULL) { |
| 4962 | return m; |
| 4963 | } |
| 4964 | #else |
| 4965 | if ((rfa = mz_ref_alloc(flags: wait)) == NULL) { |
| 4966 | return m; |
| 4967 | } |
| 4968 | #endif /* CONFIG_MBUF_MCACHE */ |
| 4969 | m->m_ext.ext_buf = m_16kalloc(wait); |
| 4970 | if (m->m_ext.ext_buf != NULL) { |
| 4971 | MBUF_16KCL_INIT(m, m->m_ext.ext_buf, rfa, 1, 0); |
| 4972 | } else { |
| 4973 | #if CONFIG_MBUF_MCACHE |
| 4974 | mcache_free(ref_cache, rfa); |
| 4975 | #else |
| 4976 | mz_ref_free(rfa); |
| 4977 | #endif /* CONFIG_MBUF_MCACHE */ |
| 4978 | } |
| 4979 | |
| 4980 | return m; |
| 4981 | } |
| 4982 | |
| 4983 | /* |
| 4984 | * "Move" mbuf pkthdr from "from" to "to". |
| 4985 | * "from" must have M_PKTHDR set, and "to" must be empty. |
| 4986 | */ |
| 4987 | void |
| 4988 | m_copy_pkthdr(struct mbuf *to, struct mbuf *from) |
| 4989 | { |
| 4990 | VERIFY(from->m_flags & M_PKTHDR); |
| 4991 | |
| 4992 | /* Check for scratch area overflow */ |
| 4993 | m_redzone_verify(m: from); |
| 4994 | |
| 4995 | if (to->m_flags & M_PKTHDR) { |
| 4996 | /* Check for scratch area overflow */ |
| 4997 | m_redzone_verify(m: to); |
| 4998 | /* We will be taking over the tags of 'to' */ |
| 4999 | m_tag_delete_chain(to); |
| 5000 | } |
| 5001 | to->m_pkthdr = from->m_pkthdr; /* especially tags */ |
| 5002 | m_classifier_init(from, 0); /* purge classifier info */ |
| 5003 | m_tag_init(from, 1); /* purge all tags from src */ |
| 5004 | m_scratch_init(from); /* clear src scratch area */ |
| 5005 | to->m_flags = (from->m_flags & M_COPYFLAGS) | (to->m_flags & M_EXT); |
| 5006 | if ((to->m_flags & M_EXT) == 0) { |
| 5007 | to->m_data = (uintptr_t)to->m_pktdat; |
| 5008 | } |
| 5009 | m_redzone_init(to); /* setup red zone on dst */ |
| 5010 | } |
| 5011 | |
| 5012 | /* |
| 5013 | * Duplicate "from"'s mbuf pkthdr in "to". |
| 5014 | * "from" must have M_PKTHDR set, and "to" must be empty. |
| 5015 | * In particular, this does a deep copy of the packet tags. |
| 5016 | */ |
| 5017 | int |
| 5018 | m_dup_pkthdr(struct mbuf *to, struct mbuf *from, int how) |
| 5019 | { |
| 5020 | VERIFY(from->m_flags & M_PKTHDR); |
| 5021 | |
| 5022 | /* Check for scratch area overflow */ |
| 5023 | m_redzone_verify(m: from); |
| 5024 | |
| 5025 | if (to->m_flags & M_PKTHDR) { |
| 5026 | /* Check for scratch area overflow */ |
| 5027 | m_redzone_verify(m: to); |
| 5028 | /* We will be taking over the tags of 'to' */ |
| 5029 | m_tag_delete_chain(to); |
| 5030 | } |
| 5031 | to->m_flags = (from->m_flags & M_COPYFLAGS) | (to->m_flags & M_EXT); |
| 5032 | if ((to->m_flags & M_EXT) == 0) { |
| 5033 | to->m_data = (uintptr_t)to->m_pktdat; |
| 5034 | } |
| 5035 | to->m_pkthdr = from->m_pkthdr; |
| 5036 | /* clear TX completion flag so the callback is not called in the copy */ |
| 5037 | to->m_pkthdr.pkt_flags &= ~PKTF_TX_COMPL_TS_REQ; |
| 5038 | m_redzone_init(to); /* setup red zone on dst */ |
| 5039 | m_tag_init(to, 0); /* preserve dst static tags */ |
| 5040 | return m_tag_copy_chain(to, from, how); |
| 5041 | } |
| 5042 | |
| 5043 | void |
| 5044 | m_copy_pftag(struct mbuf *to, struct mbuf *from) |
| 5045 | { |
| 5046 | memcpy(m_pftag(to), m_pftag(from), n: sizeof(struct pf_mtag)); |
| 5047 | #if PF_ECN |
| 5048 | m_pftag(to)->pftag_hdr = NULL; |
| 5049 | m_pftag(to)->pftag_flags &= ~(PF_TAG_HDR_INET | PF_TAG_HDR_INET6); |
| 5050 | #endif /* PF_ECN */ |
| 5051 | } |
| 5052 | |
| 5053 | void |
| 5054 | m_copy_necptag(struct mbuf *to, struct mbuf *from) |
| 5055 | { |
| 5056 | memcpy(m_necptag(to), m_necptag(from), n: sizeof(struct necp_mtag_)); |
| 5057 | } |
| 5058 | |
| 5059 | void |
| 5060 | m_classifier_init(struct mbuf *m, uint32_t pktf_mask) |
| 5061 | { |
| 5062 | VERIFY(m->m_flags & M_PKTHDR); |
| 5063 | |
| 5064 | m->m_pkthdr.pkt_proto = 0; |
| 5065 | m->m_pkthdr.pkt_flowsrc = 0; |
| 5066 | m->m_pkthdr.pkt_flowid = 0; |
| 5067 | m->m_pkthdr.pkt_ext_flags = 0; |
| 5068 | m->m_pkthdr.pkt_flags &= pktf_mask; /* caller-defined mask */ |
| 5069 | /* preserve service class and interface info for loopback packets */ |
| 5070 | if (!(m->m_pkthdr.pkt_flags & PKTF_LOOP)) { |
| 5071 | (void) m_set_service_class(m, MBUF_SC_BE); |
| 5072 | } |
| 5073 | if (!(m->m_pkthdr.pkt_flags & PKTF_IFAINFO)) { |
| 5074 | m->m_pkthdr.pkt_ifainfo = 0; |
| 5075 | } |
| 5076 | /* |
| 5077 | * Preserve timestamp if requested |
| 5078 | */ |
| 5079 | if (!(m->m_pkthdr.pkt_flags & PKTF_TS_VALID)) { |
| 5080 | m->m_pkthdr.pkt_timestamp = 0; |
| 5081 | } |
| 5082 | } |
| 5083 | |
| 5084 | void |
| 5085 | m_copy_classifier(struct mbuf *to, struct mbuf *from) |
| 5086 | { |
| 5087 | VERIFY(to->m_flags & M_PKTHDR); |
| 5088 | VERIFY(from->m_flags & M_PKTHDR); |
| 5089 | |
| 5090 | to->m_pkthdr.pkt_proto = from->m_pkthdr.pkt_proto; |
| 5091 | to->m_pkthdr.pkt_flowsrc = from->m_pkthdr.pkt_flowsrc; |
| 5092 | to->m_pkthdr.pkt_flowid = from->m_pkthdr.pkt_flowid; |
| 5093 | to->m_pkthdr.pkt_mpriv_srcid = from->m_pkthdr.pkt_mpriv_srcid; |
| 5094 | to->m_pkthdr.pkt_flags = from->m_pkthdr.pkt_flags; |
| 5095 | to->m_pkthdr.pkt_ext_flags = from->m_pkthdr.pkt_ext_flags; |
| 5096 | (void) m_set_service_class(to, from->m_pkthdr.pkt_svc); |
| 5097 | to->m_pkthdr.pkt_ifainfo = from->m_pkthdr.pkt_ifainfo; |
| 5098 | } |
| 5099 | |
| 5100 | /* |
| 5101 | * Return a list of mbuf hdrs that point to clusters. Try for num_needed; |
| 5102 | * if wantall is not set, return whatever number were available. Set up the |
| 5103 | * first num_with_pkthdrs with mbuf hdrs configured as packet headers; these |
| 5104 | * are chained on the m_nextpkt field. Any packets requested beyond this |
| 5105 | * are chained onto the last packet header's m_next field. The size of |
| 5106 | * the cluster is controlled by the parameter bufsize. |
| 5107 | */ |
| 5108 | __private_extern__ struct mbuf * |
| 5109 | m_getpackets_internal(unsigned int *num_needed, int num_with_pkthdrs, |
| 5110 | int wait, int wantall, size_t bufsize) |
| 5111 | { |
| 5112 | struct mbuf *m = NULL; |
| 5113 | struct mbuf **np, *top; |
| 5114 | unsigned int pnum, needed = *num_needed; |
| 5115 | #if CONFIG_MBUF_MCACHE |
| 5116 | mcache_obj_t *mp_list = NULL; |
| 5117 | int mcflags = MSLEEPF(wait); |
| 5118 | mcache_t *cp; |
| 5119 | #else |
| 5120 | zstack_t mp_list = {}; |
| 5121 | mbuf_class_t class = MC_MBUF_CL; |
| 5122 | #endif /* CONFIG_MBUF_MCACHE */ |
| 5123 | u_int16_t flag; |
| 5124 | struct ext_ref *rfa; |
| 5125 | void *cl; |
| 5126 | |
| 5127 | ASSERT(bufsize == m_maxsize(MC_CL) || |
| 5128 | bufsize == m_maxsize(MC_BIGCL) || |
| 5129 | bufsize == m_maxsize(MC_16KCL)); |
| 5130 | |
| 5131 | /* |
| 5132 | * Caller must first check for njcl because this |
| 5133 | * routine is internal and not exposed/used via KPI. |
| 5134 | */ |
| 5135 | VERIFY(bufsize != m_maxsize(MC_16KCL) || njcl > 0); |
| 5136 | |
| 5137 | top = NULL; |
| 5138 | np = ⊤ |
| 5139 | pnum = 0; |
| 5140 | |
| 5141 | /* |
| 5142 | * The caller doesn't want all the requested buffers; only some. |
| 5143 | * Try hard to get what we can, but don't block. This effectively |
| 5144 | * overrides MCR_SLEEP, since this thread will not go to sleep |
| 5145 | * if we can't get all the buffers. |
| 5146 | */ |
| 5147 | #if CONFIG_MBUF_MCACHE |
| 5148 | if (!wantall || (mcflags & MCR_NOSLEEP)) { |
| 5149 | mcflags |= MCR_TRYHARD; |
| 5150 | } |
| 5151 | |
| 5152 | /* Allocate the composite mbuf + cluster elements from the cache */ |
| 5153 | if (bufsize == m_maxsize(MC_CL)) { |
| 5154 | cp = m_cache(MC_MBUF_CL); |
| 5155 | } else if (bufsize == m_maxsize(MC_BIGCL)) { |
| 5156 | cp = m_cache(MC_MBUF_BIGCL); |
| 5157 | } else { |
| 5158 | cp = m_cache(MC_MBUF_16KCL); |
| 5159 | } |
| 5160 | needed = mcache_alloc_ext(cp, &mp_list, needed, mcflags); |
| 5161 | #else |
| 5162 | if (!wantall || (wait & Z_NOWAIT)) { |
| 5163 | wait &= ~Z_NOWAIT; |
| 5164 | wait |= Z_NOPAGEWAIT; |
| 5165 | } |
| 5166 | |
| 5167 | /* Allocate the composite mbuf + cluster elements from the cache */ |
| 5168 | if (bufsize == m_maxsize(MC_CL)) { |
| 5169 | class = MC_MBUF_CL; |
| 5170 | } else if (bufsize == m_maxsize(MC_BIGCL)) { |
| 5171 | class = MC_MBUF_BIGCL; |
| 5172 | } else { |
| 5173 | class = MC_MBUF_16KCL; |
| 5174 | } |
| 5175 | mp_list = mz_composite_alloc_n(class, n: needed, flags: wait); |
| 5176 | needed = zstack_count(stack: mp_list); |
| 5177 | #endif /* CONFIG_MBUF_MCACHE */ |
| 5178 | |
| 5179 | for (pnum = 0; pnum < needed; pnum++) { |
| 5180 | #if CONFIG_MBUF_MCACHE |
| 5181 | m = (struct mbuf *)mp_list; |
| 5182 | mp_list = mp_list->obj_next; |
| 5183 | #else |
| 5184 | m = zstack_pop(stack: &mp_list); |
| 5185 | #endif /* CONFIG_MBUF_MCACHE */ |
| 5186 | |
| 5187 | VERIFY(m->m_type == MT_FREE && m->m_flags == M_EXT); |
| 5188 | cl = m->m_ext.ext_buf; |
| 5189 | rfa = m_get_rfa(m); |
| 5190 | |
| 5191 | ASSERT(cl != NULL && rfa != NULL); |
| 5192 | VERIFY(MBUF_IS_COMPOSITE(m)); |
| 5193 | |
| 5194 | flag = MEXT_FLAGS(m); |
| 5195 | |
| 5196 | MBUF_INIT(m, num_with_pkthdrs, MT_DATA); |
| 5197 | if (bufsize == m_maxsize(MC_16KCL)) { |
| 5198 | MBUF_16KCL_INIT(m, cl, rfa, 1, flag); |
| 5199 | } else if (bufsize == m_maxsize(MC_BIGCL)) { |
| 5200 | MBUF_BIGCL_INIT(m, cl, rfa, 1, flag); |
| 5201 | } else { |
| 5202 | MBUF_CL_INIT(m, cl, rfa, 1, flag); |
| 5203 | } |
| 5204 | |
| 5205 | if (num_with_pkthdrs > 0) { |
| 5206 | --num_with_pkthdrs; |
| 5207 | } |
| 5208 | |
| 5209 | *np = m; |
| 5210 | if (num_with_pkthdrs > 0) { |
| 5211 | np = &m->m_nextpkt; |
| 5212 | } else { |
| 5213 | np = &m->m_next; |
| 5214 | } |
| 5215 | } |
| 5216 | #if CONFIG_MBUF_MCACHE |
| 5217 | ASSERT(pnum != *num_needed || mp_list == NULL); |
| 5218 | if (mp_list != NULL) { |
| 5219 | mcache_free_ext(cp, mp_list); |
| 5220 | } |
| 5221 | #else |
| 5222 | ASSERT(pnum != *num_needed || zstack_empty(mp_list)); |
| 5223 | if (!zstack_empty(stack: mp_list)) { |
| 5224 | mz_composite_free_n(class, list: mp_list); |
| 5225 | } |
| 5226 | #endif /* CONFIG_MBUF_MCACHE */ |
| 5227 | if (pnum > 0) { |
| 5228 | mtype_stat_add(MT_DATA, pnum); |
| 5229 | mtype_stat_sub(MT_FREE, pnum); |
| 5230 | } |
| 5231 | |
| 5232 | if (wantall && (pnum != *num_needed)) { |
| 5233 | if (top != NULL) { |
| 5234 | m_freem_list(top); |
| 5235 | } |
| 5236 | return NULL; |
| 5237 | } |
| 5238 | |
| 5239 | if (pnum > *num_needed) { |
| 5240 | printf("%s: File a radar related to <rdar://10146739>. \ |
| 5241 | needed = %u, pnum = %u, num_needed = %u \n" , |
| 5242 | __func__, needed, pnum, *num_needed); |
| 5243 | } |
| 5244 | *num_needed = pnum; |
| 5245 | |
| 5246 | return top; |
| 5247 | } |
| 5248 | |
| 5249 | /* |
| 5250 | * Return list of mbuf linked by m_nextpkt. Try for numlist, and if |
| 5251 | * wantall is not set, return whatever number were available. The size of |
| 5252 | * each mbuf in the list is controlled by the parameter packetlen. Each |
| 5253 | * mbuf of the list may have a chain of mbufs linked by m_next. Each mbuf |
| 5254 | * in the chain is called a segment. If maxsegments is not null and the |
| 5255 | * value pointed to is not null, this specify the maximum number of segments |
| 5256 | * for a chain of mbufs. If maxsegments is zero or the value pointed to |
| 5257 | * is zero the caller does not have any restriction on the number of segments. |
| 5258 | * The actual number of segments of a mbuf chain is return in the value |
| 5259 | * pointed to by maxsegments. |
| 5260 | */ |
| 5261 | __private_extern__ struct mbuf * |
| 5262 | m_allocpacket_internal(unsigned int *numlist, size_t packetlen, |
| 5263 | unsigned int *maxsegments, int wait, int wantall, size_t wantsize) |
| 5264 | { |
| 5265 | struct mbuf **np, *top, *first = NULL; |
| 5266 | size_t bufsize, r_bufsize; |
| 5267 | unsigned int num = 0; |
| 5268 | unsigned int nsegs = 0; |
| 5269 | unsigned int needed = 0, resid; |
| 5270 | #if CONFIG_MBUF_MCACHE |
| 5271 | int mcflags = MSLEEPF(wait); |
| 5272 | mcache_obj_t *mp_list = NULL, *rmp_list = NULL; |
| 5273 | mcache_t *cp = NULL, *rcp = NULL; |
| 5274 | #else |
| 5275 | zstack_t mp_list = {}, rmp_list = {}; |
| 5276 | mbuf_class_t class = MC_MBUF, rclass = MC_MBUF_CL; |
| 5277 | #endif /* CONFIG_MBUF_MCACHE */ |
| 5278 | |
| 5279 | if (*numlist == 0) { |
| 5280 | os_log(OS_LOG_DEFAULT, "m_allocpacket_internal *numlist is 0" ); |
| 5281 | return NULL; |
| 5282 | } |
| 5283 | |
| 5284 | top = NULL; |
| 5285 | np = ⊤ |
| 5286 | |
| 5287 | if (wantsize == 0) { |
| 5288 | if (packetlen <= MINCLSIZE) { |
| 5289 | bufsize = packetlen; |
| 5290 | } else if (packetlen > m_maxsize(MC_CL)) { |
| 5291 | /* Use 4KB if jumbo cluster pool isn't available */ |
| 5292 | if (packetlen <= m_maxsize(MC_BIGCL) || njcl == 0) { |
| 5293 | bufsize = m_maxsize(MC_BIGCL); |
| 5294 | } else { |
| 5295 | bufsize = m_maxsize(MC_16KCL); |
| 5296 | } |
| 5297 | } else { |
| 5298 | bufsize = m_maxsize(MC_CL); |
| 5299 | } |
| 5300 | } else if (wantsize == m_maxsize(MC_CL) || |
| 5301 | wantsize == m_maxsize(MC_BIGCL) || |
| 5302 | (wantsize == m_maxsize(MC_16KCL) && njcl > 0)) { |
| 5303 | bufsize = wantsize; |
| 5304 | } else { |
| 5305 | *numlist = 0; |
| 5306 | os_log(OS_LOG_DEFAULT, "m_allocpacket_internal wantsize unsupported" ); |
| 5307 | return NULL; |
| 5308 | } |
| 5309 | |
| 5310 | if (bufsize <= MHLEN) { |
| 5311 | nsegs = 1; |
| 5312 | } else if (bufsize <= MINCLSIZE) { |
| 5313 | if (maxsegments != NULL && *maxsegments == 1) { |
| 5314 | bufsize = m_maxsize(MC_CL); |
| 5315 | nsegs = 1; |
| 5316 | } else { |
| 5317 | nsegs = 2; |
| 5318 | } |
| 5319 | } else if (bufsize == m_maxsize(MC_16KCL)) { |
| 5320 | VERIFY(njcl > 0); |
| 5321 | nsegs = ((packetlen - 1) >> M16KCLSHIFT) + 1; |
| 5322 | } else if (bufsize == m_maxsize(MC_BIGCL)) { |
| 5323 | nsegs = ((packetlen - 1) >> MBIGCLSHIFT) + 1; |
| 5324 | } else { |
| 5325 | nsegs = ((packetlen - 1) >> MCLSHIFT) + 1; |
| 5326 | } |
| 5327 | if (maxsegments != NULL) { |
| 5328 | if (*maxsegments && nsegs > *maxsegments) { |
| 5329 | *maxsegments = nsegs; |
| 5330 | *numlist = 0; |
| 5331 | os_log(OS_LOG_DEFAULT, "m_allocpacket_internal nsegs > *maxsegments" ); |
| 5332 | return NULL; |
| 5333 | } |
| 5334 | *maxsegments = nsegs; |
| 5335 | } |
| 5336 | |
| 5337 | /* |
| 5338 | * The caller doesn't want all the requested buffers; only some. |
| 5339 | * Try hard to get what we can, but don't block. This effectively |
| 5340 | * overrides MCR_SLEEP, since this thread will not go to sleep |
| 5341 | * if we can't get all the buffers. |
| 5342 | */ |
| 5343 | #if CONFIG_MBUF_MCACHE |
| 5344 | if (!wantall || (mcflags & MCR_NOSLEEP)) { |
| 5345 | mcflags |= MCR_TRYHARD; |
| 5346 | } |
| 5347 | #else |
| 5348 | if (!wantall || (wait & Z_NOWAIT)) { |
| 5349 | wait &= ~Z_NOWAIT; |
| 5350 | wait |= Z_NOPAGEWAIT; |
| 5351 | } |
| 5352 | #endif /* !CONFIG_MBUF_MCACHE */ |
| 5353 | |
| 5354 | /* |
| 5355 | * Simple case where all elements in the lists/chains are mbufs. |
| 5356 | * Unless bufsize is greater than MHLEN, each segment chain is made |
| 5357 | * up of exactly 1 mbuf. Otherwise, each segment chain is made up |
| 5358 | * of 2 mbufs; the second one is used for the residual data, i.e. |
| 5359 | * the remaining data that cannot fit into the first mbuf. |
| 5360 | */ |
| 5361 | if (bufsize <= MINCLSIZE) { |
| 5362 | /* Allocate the elements in one shot from the mbuf cache */ |
| 5363 | ASSERT(bufsize <= MHLEN || nsegs == 2); |
| 5364 | #if CONFIG_MBUF_MCACHE |
| 5365 | cp = m_cache(MC_MBUF); |
| 5366 | needed = mcache_alloc_ext(cp, &mp_list, |
| 5367 | (*numlist) * nsegs, mcflags); |
| 5368 | #else |
| 5369 | class = MC_MBUF; |
| 5370 | mp_list = mz_alloc_n(count: (*numlist) * nsegs, flags: wait); |
| 5371 | needed = zstack_count(stack: mp_list); |
| 5372 | #endif /* CONFIG_MBUF_MCACHE */ |
| 5373 | |
| 5374 | /* |
| 5375 | * The number of elements must be even if we are to use an |
| 5376 | * mbuf (instead of a cluster) to store the residual data. |
| 5377 | * If we couldn't allocate the requested number of mbufs, |
| 5378 | * trim the number down (if it's odd) in order to avoid |
| 5379 | * creating a partial segment chain. |
| 5380 | */ |
| 5381 | if (bufsize > MHLEN && (needed & 0x1)) { |
| 5382 | needed--; |
| 5383 | } |
| 5384 | |
| 5385 | while (num < needed) { |
| 5386 | struct mbuf *m = NULL; |
| 5387 | |
| 5388 | #if CONFIG_MBUF_MCACHE |
| 5389 | m = (struct mbuf *)mp_list; |
| 5390 | mp_list = mp_list->obj_next; |
| 5391 | #else |
| 5392 | m = zstack_pop(stack: &mp_list); |
| 5393 | #endif /* CONFIG_MBUF_MCACHE */ |
| 5394 | ASSERT(m != NULL); |
| 5395 | |
| 5396 | MBUF_INIT(m, 1, MT_DATA); |
| 5397 | num++; |
| 5398 | if (bufsize > MHLEN) { |
| 5399 | /* A second mbuf for this segment chain */ |
| 5400 | #if CONFIG_MBUF_MCACHE |
| 5401 | m->m_next = (struct mbuf *)mp_list; |
| 5402 | mp_list = mp_list->obj_next; |
| 5403 | #else |
| 5404 | m->m_next = zstack_pop(stack: &mp_list); |
| 5405 | #endif /* CONFIG_MBUF_MCACHE */ |
| 5406 | |
| 5407 | ASSERT(m->m_next != NULL); |
| 5408 | |
| 5409 | MBUF_INIT(m->m_next, 0, MT_DATA); |
| 5410 | num++; |
| 5411 | } |
| 5412 | *np = m; |
| 5413 | np = &m->m_nextpkt; |
| 5414 | } |
| 5415 | #if CONFIG_MBUF_MCACHE |
| 5416 | ASSERT(num != *numlist || mp_list == NULL); |
| 5417 | #else |
| 5418 | ASSERT(num != *numlist || zstack_empty(mp_list)); |
| 5419 | #endif /* CONFIG_MBUF_MCACHE */ |
| 5420 | |
| 5421 | if (num > 0) { |
| 5422 | mtype_stat_add(MT_DATA, num); |
| 5423 | mtype_stat_sub(MT_FREE, num); |
| 5424 | } |
| 5425 | num /= nsegs; |
| 5426 | |
| 5427 | /* We've got them all; return to caller */ |
| 5428 | if (num == *numlist) { |
| 5429 | return top; |
| 5430 | } |
| 5431 | |
| 5432 | goto fail; |
| 5433 | } |
| 5434 | |
| 5435 | /* |
| 5436 | * Complex cases where elements are made up of one or more composite |
| 5437 | * mbufs + cluster, depending on packetlen. Each N-segment chain can |
| 5438 | * be illustrated as follows: |
| 5439 | * |
| 5440 | * [mbuf + cluster 1] [mbuf + cluster 2] ... [mbuf + cluster N] |
| 5441 | * |
| 5442 | * Every composite mbuf + cluster element comes from the intermediate |
| 5443 | * cache (either MC_MBUF_CL or MC_MBUF_BIGCL). For space efficiency, |
| 5444 | * the last composite element will come from the MC_MBUF_CL cache, |
| 5445 | * unless the residual data is larger than 2KB where we use the |
| 5446 | * big cluster composite cache (MC_MBUF_BIGCL) instead. Residual |
| 5447 | * data is defined as extra data beyond the first element that cannot |
| 5448 | * fit into the previous element, i.e. there is no residual data if |
| 5449 | * the chain only has 1 segment. |
| 5450 | */ |
| 5451 | r_bufsize = bufsize; |
| 5452 | resid = packetlen > bufsize ? packetlen % bufsize : 0; |
| 5453 | if (resid > 0) { |
| 5454 | /* There is residual data; figure out the cluster size */ |
| 5455 | if (wantsize == 0 && packetlen > MINCLSIZE) { |
| 5456 | /* |
| 5457 | * Caller didn't request that all of the segments |
| 5458 | * in the chain use the same cluster size; use the |
| 5459 | * smaller of the cluster sizes. |
| 5460 | */ |
| 5461 | if (njcl > 0 && resid > m_maxsize(MC_BIGCL)) { |
| 5462 | r_bufsize = m_maxsize(MC_16KCL); |
| 5463 | } else if (resid > m_maxsize(MC_CL)) { |
| 5464 | r_bufsize = m_maxsize(MC_BIGCL); |
| 5465 | } else { |
| 5466 | r_bufsize = m_maxsize(MC_CL); |
| 5467 | } |
| 5468 | } else { |
| 5469 | /* Use the same cluster size as the other segments */ |
| 5470 | resid = 0; |
| 5471 | } |
| 5472 | } |
| 5473 | |
| 5474 | needed = *numlist; |
| 5475 | if (resid > 0) { |
| 5476 | /* |
| 5477 | * Attempt to allocate composite mbuf + cluster elements for |
| 5478 | * the residual data in each chain; record the number of such |
| 5479 | * elements that can be allocated so that we know how many |
| 5480 | * segment chains we can afford to create. |
| 5481 | */ |
| 5482 | #if CONFIG_MBUF_MCACHE |
| 5483 | if (r_bufsize <= m_maxsize(MC_CL)) { |
| 5484 | rcp = m_cache(MC_MBUF_CL); |
| 5485 | } else if (r_bufsize <= m_maxsize(MC_BIGCL)) { |
| 5486 | rcp = m_cache(MC_MBUF_BIGCL); |
| 5487 | } else { |
| 5488 | rcp = m_cache(MC_MBUF_16KCL); |
| 5489 | } |
| 5490 | needed = mcache_alloc_ext(rcp, &rmp_list, *numlist, mcflags); |
| 5491 | #else |
| 5492 | if (r_bufsize <= m_maxsize(MC_CL)) { |
| 5493 | rclass = MC_MBUF_CL; |
| 5494 | } else if (r_bufsize <= m_maxsize(MC_BIGCL)) { |
| 5495 | rclass = MC_MBUF_BIGCL; |
| 5496 | } else { |
| 5497 | rclass = MC_MBUF_16KCL; |
| 5498 | } |
| 5499 | rmp_list = mz_composite_alloc_n(class: rclass, n: *numlist, flags: wait); |
| 5500 | needed = zstack_count(stack: rmp_list); |
| 5501 | #endif /* CONFIG_MBUF_MCACHE */ |
| 5502 | if (needed == 0) { |
| 5503 | goto fail; |
| 5504 | } |
| 5505 | |
| 5506 | /* This is temporarily reduced for calculation */ |
| 5507 | ASSERT(nsegs > 1); |
| 5508 | nsegs--; |
| 5509 | } |
| 5510 | |
| 5511 | /* |
| 5512 | * Attempt to allocate the rest of the composite mbuf + cluster |
| 5513 | * elements for the number of segment chains that we need. |
| 5514 | */ |
| 5515 | #if CONFIG_MBUF_MCACHE |
| 5516 | if (bufsize <= m_maxsize(MC_CL)) { |
| 5517 | cp = m_cache(MC_MBUF_CL); |
| 5518 | } else if (bufsize <= m_maxsize(MC_BIGCL)) { |
| 5519 | cp = m_cache(MC_MBUF_BIGCL); |
| 5520 | } else { |
| 5521 | cp = m_cache(MC_MBUF_16KCL); |
| 5522 | } |
| 5523 | needed = mcache_alloc_ext(cp, &mp_list, needed * nsegs, mcflags); |
| 5524 | #else |
| 5525 | if (bufsize <= m_maxsize(MC_CL)) { |
| 5526 | class = MC_MBUF_CL; |
| 5527 | } else if (bufsize <= m_maxsize(MC_BIGCL)) { |
| 5528 | class = MC_MBUF_BIGCL; |
| 5529 | } else { |
| 5530 | class = MC_MBUF_16KCL; |
| 5531 | } |
| 5532 | mp_list = mz_composite_alloc_n(class, n: needed * nsegs, flags: wait); |
| 5533 | needed = zstack_count(stack: mp_list); |
| 5534 | #endif /* CONFIG_MBUF_MCACHE */ |
| 5535 | |
| 5536 | /* Round it down to avoid creating a partial segment chain */ |
| 5537 | needed = (needed / nsegs) * nsegs; |
| 5538 | if (needed == 0) { |
| 5539 | goto fail; |
| 5540 | } |
| 5541 | |
| 5542 | if (resid > 0) { |
| 5543 | /* |
| 5544 | * We're about to construct the chain(s); take into account |
| 5545 | * the number of segments we have created above to hold the |
| 5546 | * residual data for each chain, as well as restore the |
| 5547 | * original count of segments per chain. |
| 5548 | */ |
| 5549 | ASSERT(nsegs > 0); |
| 5550 | needed += needed / nsegs; |
| 5551 | nsegs++; |
| 5552 | } |
| 5553 | |
| 5554 | for (;;) { |
| 5555 | struct mbuf *m = NULL; |
| 5556 | u_int16_t flag; |
| 5557 | struct ext_ref *rfa; |
| 5558 | void *cl; |
| 5559 | int pkthdr; |
| 5560 | m_ext_free_func_t m_free_func; |
| 5561 | |
| 5562 | ++num; |
| 5563 | |
| 5564 | if (nsegs == 1 || (num % nsegs) != 0 || resid == 0) { |
| 5565 | #if CONFIG_MBUF_MCACHE |
| 5566 | m = (struct mbuf *)mp_list; |
| 5567 | mp_list = mp_list->obj_next; |
| 5568 | #else |
| 5569 | m = zstack_pop(stack: &mp_list); |
| 5570 | #endif /* CONFIG_MBUF_MCACHE */ |
| 5571 | } else { |
| 5572 | #if CONFIG_MBUF_MCACHE |
| 5573 | m = (struct mbuf *)rmp_list; |
| 5574 | rmp_list = rmp_list->obj_next; |
| 5575 | #else |
| 5576 | m = zstack_pop(stack: &rmp_list); |
| 5577 | #endif /* CONFIG_MBUF_MCACHE */ |
| 5578 | } |
| 5579 | m_free_func = m_get_ext_free(m); |
| 5580 | ASSERT(m != NULL); |
| 5581 | VERIFY(m->m_type == MT_FREE && m->m_flags == M_EXT); |
| 5582 | VERIFY(m_free_func == NULL || m_free_func == m_bigfree || |
| 5583 | m_free_func == m_16kfree); |
| 5584 | |
| 5585 | cl = m->m_ext.ext_buf; |
| 5586 | rfa = m_get_rfa(m); |
| 5587 | |
| 5588 | ASSERT(cl != NULL && rfa != NULL); |
| 5589 | VERIFY(MBUF_IS_COMPOSITE(m)); |
| 5590 | |
| 5591 | flag = MEXT_FLAGS(m); |
| 5592 | |
| 5593 | pkthdr = (nsegs == 1 || (num % nsegs) == 1); |
| 5594 | if (pkthdr) { |
| 5595 | first = m; |
| 5596 | } |
| 5597 | MBUF_INIT(m, pkthdr, MT_DATA); |
| 5598 | if (m_free_func == m_16kfree) { |
| 5599 | MBUF_16KCL_INIT(m, cl, rfa, 1, flag); |
| 5600 | } else if (m_free_func == m_bigfree) { |
| 5601 | MBUF_BIGCL_INIT(m, cl, rfa, 1, flag); |
| 5602 | } else { |
| 5603 | MBUF_CL_INIT(m, cl, rfa, 1, flag); |
| 5604 | } |
| 5605 | |
| 5606 | *np = m; |
| 5607 | if ((num % nsegs) == 0) { |
| 5608 | np = &first->m_nextpkt; |
| 5609 | } else { |
| 5610 | np = &m->m_next; |
| 5611 | } |
| 5612 | |
| 5613 | if (num == needed) { |
| 5614 | break; |
| 5615 | } |
| 5616 | } |
| 5617 | |
| 5618 | if (num > 0) { |
| 5619 | mtype_stat_add(MT_DATA, num); |
| 5620 | mtype_stat_sub(MT_FREE, num); |
| 5621 | } |
| 5622 | |
| 5623 | num /= nsegs; |
| 5624 | |
| 5625 | /* We've got them all; return to caller */ |
| 5626 | if (num == *numlist) { |
| 5627 | #if CONFIG_MBUF_MCACHE |
| 5628 | ASSERT(mp_list == NULL && rmp_list == NULL); |
| 5629 | #else |
| 5630 | ASSERT(zstack_empty(mp_list) && zstack_empty(rmp_list)); |
| 5631 | #endif /* CONFIG_MBUF_MCACHE */ |
| 5632 | return top; |
| 5633 | } |
| 5634 | |
| 5635 | fail: |
| 5636 | /* Free up what's left of the above */ |
| 5637 | #if CONFIG_MBUF_MCACHE |
| 5638 | if (mp_list != NULL) { |
| 5639 | mcache_free_ext(cp, mp_list); |
| 5640 | } |
| 5641 | if (rmp_list != NULL) { |
| 5642 | mcache_free_ext(rcp, rmp_list); |
| 5643 | } |
| 5644 | #else |
| 5645 | if (!zstack_empty(stack: mp_list)) { |
| 5646 | if (class == MC_MBUF) { |
| 5647 | /* No need to elide, these mbufs came from the cache. */ |
| 5648 | mz_free_n(list: mp_list); |
| 5649 | } else { |
| 5650 | mz_composite_free_n(class, list: mp_list); |
| 5651 | } |
| 5652 | } |
| 5653 | if (!zstack_empty(stack: rmp_list)) { |
| 5654 | mz_composite_free_n(class: rclass, list: rmp_list); |
| 5655 | } |
| 5656 | #endif /* CONFIG_MBUF_MCACHE */ |
| 5657 | if (wantall && top != NULL) { |
| 5658 | m_freem_list(top); |
| 5659 | *numlist = 0; |
| 5660 | return NULL; |
| 5661 | } |
| 5662 | *numlist = num; |
| 5663 | return top; |
| 5664 | } |
| 5665 | |
| 5666 | /* |
| 5667 | * Best effort to get a mbuf cluster + pkthdr. Used by drivers to allocated |
| 5668 | * packets on receive ring. |
| 5669 | */ |
| 5670 | __private_extern__ struct mbuf * |
| 5671 | m_getpacket_how(int wait) |
| 5672 | { |
| 5673 | unsigned int num_needed = 1; |
| 5674 | |
| 5675 | return m_getpackets_internal(num_needed: &num_needed, num_with_pkthdrs: 1, wait, wantall: 1, |
| 5676 | m_maxsize(MC_CL)); |
| 5677 | } |
| 5678 | |
| 5679 | /* |
| 5680 | * Best effort to get a mbuf cluster + pkthdr. Used by drivers to allocated |
| 5681 | * packets on receive ring. |
| 5682 | */ |
| 5683 | struct mbuf * |
| 5684 | m_getpacket(void) |
| 5685 | { |
| 5686 | unsigned int num_needed = 1; |
| 5687 | |
| 5688 | return m_getpackets_internal(num_needed: &num_needed, num_with_pkthdrs: 1, M_WAIT, wantall: 1, |
| 5689 | m_maxsize(MC_CL)); |
| 5690 | } |
| 5691 | |
| 5692 | /* |
| 5693 | * Return a list of mbuf hdrs that point to clusters. Try for num_needed; |
| 5694 | * if this can't be met, return whatever number were available. Set up the |
| 5695 | * first num_with_pkthdrs with mbuf hdrs configured as packet headers. These |
| 5696 | * are chained on the m_nextpkt field. Any packets requested beyond this are |
| 5697 | * chained onto the last packet header's m_next field. |
| 5698 | */ |
| 5699 | struct mbuf * |
| 5700 | m_getpackets(int num_needed, int num_with_pkthdrs, int how) |
| 5701 | { |
| 5702 | unsigned int n = num_needed; |
| 5703 | |
| 5704 | return m_getpackets_internal(num_needed: &n, num_with_pkthdrs, wait: how, wantall: 0, |
| 5705 | m_maxsize(MC_CL)); |
| 5706 | } |
| 5707 | |
| 5708 | /* |
| 5709 | * Return a list of mbuf hdrs set up as packet hdrs chained together |
| 5710 | * on the m_nextpkt field |
| 5711 | */ |
| 5712 | struct mbuf * |
| 5713 | m_getpackethdrs(int num_needed, int how) |
| 5714 | { |
| 5715 | struct mbuf *m; |
| 5716 | struct mbuf **np, *top; |
| 5717 | |
| 5718 | top = NULL; |
| 5719 | np = ⊤ |
| 5720 | |
| 5721 | while (num_needed--) { |
| 5722 | m = _M_RETRYHDR(how, MT_DATA); |
| 5723 | if (m == NULL) { |
| 5724 | break; |
| 5725 | } |
| 5726 | |
| 5727 | *np = m; |
| 5728 | np = &m->m_nextpkt; |
| 5729 | } |
| 5730 | |
| 5731 | return top; |
| 5732 | } |
| 5733 | |
| 5734 | /* |
| 5735 | * Free an mbuf list (m_nextpkt) while following m_next. Returns the count |
| 5736 | * for mbufs packets freed. Used by the drivers. |
| 5737 | */ |
| 5738 | int |
| 5739 | m_freem_list(struct mbuf *m) |
| 5740 | { |
| 5741 | struct mbuf *nextpkt; |
| 5742 | #if CONFIG_MBUF_MCACHE |
| 5743 | mcache_obj_t *mp_list = NULL; |
| 5744 | mcache_obj_t *mcl_list = NULL; |
| 5745 | mcache_obj_t *mbc_list = NULL; |
| 5746 | mcache_obj_t *m16k_list = NULL; |
| 5747 | mcache_obj_t *m_mcl_list = NULL; |
| 5748 | mcache_obj_t *m_mbc_list = NULL; |
| 5749 | mcache_obj_t *m_m16k_list = NULL; |
| 5750 | mcache_obj_t *ref_list = NULL; |
| 5751 | #else |
| 5752 | zstack_t mp_list = {}, mcl_list = {}, mbc_list = {}, |
| 5753 | m16k_list = {}, m_mcl_list = {}, |
| 5754 | m_mbc_list = {}, m_m16k_list = {}, ref_list = {}; |
| 5755 | #endif /* CONFIG_MBUF_MCACHE */ |
| 5756 | int pktcount = 0; |
| 5757 | int mt_free = 0, mt_data = 0, = 0, mt_soname = 0, mt_tag = 0; |
| 5758 | |
| 5759 | while (m != NULL) { |
| 5760 | pktcount++; |
| 5761 | |
| 5762 | nextpkt = m->m_nextpkt; |
| 5763 | m->m_nextpkt = NULL; |
| 5764 | |
| 5765 | while (m != NULL) { |
| 5766 | struct mbuf *next = m->m_next; |
| 5767 | #if CONFIG_MBUF_MCACHE |
| 5768 | mcache_obj_t *o, *rfa; |
| 5769 | #else |
| 5770 | void *cl = NULL; |
| 5771 | #endif /* CONFIG_MBUF_MCACHE */ |
| 5772 | if (m->m_type == MT_FREE) { |
| 5773 | panic("m_free: freeing an already freed mbuf" ); |
| 5774 | } |
| 5775 | |
| 5776 | if (m->m_flags & M_PKTHDR) { |
| 5777 | /* Check for scratch area overflow */ |
| 5778 | m_redzone_verify(m); |
| 5779 | /* Free the aux data and tags if there is any */ |
| 5780 | m_tag_delete_chain(m); |
| 5781 | m_do_tx_compl_callback(m, NULL); |
| 5782 | } |
| 5783 | |
| 5784 | if (!(m->m_flags & M_EXT)) { |
| 5785 | mt_free++; |
| 5786 | goto simple_free; |
| 5787 | } |
| 5788 | |
| 5789 | if (MBUF_IS_PAIRED(m) && m_free_paired(m)) { |
| 5790 | m = next; |
| 5791 | continue; |
| 5792 | } |
| 5793 | |
| 5794 | mt_free++; |
| 5795 | |
| 5796 | #if CONFIG_MBUF_MCACHE |
| 5797 | o = (mcache_obj_t *)(void *)m->m_ext.ext_buf; |
| 5798 | #else |
| 5799 | cl = m->m_ext.ext_buf; |
| 5800 | #endif /* CONFIG_MBUF_MCACHE */ |
| 5801 | /* |
| 5802 | * Make sure that we don't touch any ext_ref |
| 5803 | * member after we decrement the reference count |
| 5804 | * since that may lead to use-after-free |
| 5805 | * when we do not hold the last reference. |
| 5806 | */ |
| 5807 | const bool composite = !!(MEXT_FLAGS(m) & EXTF_COMPOSITE); |
| 5808 | const m_ext_free_func_t m_free_func = m_get_ext_free(m); |
| 5809 | const uint16_t minref = MEXT_MINREF(m); |
| 5810 | const uint16_t refcnt = m_decref(m); |
| 5811 | if (refcnt == minref && !composite) { |
| 5812 | #if CONFIG_MBUF_MCACHE |
| 5813 | if (m_free_func == NULL) { |
| 5814 | o->obj_next = mcl_list; |
| 5815 | mcl_list = o; |
| 5816 | } else if (m_free_func == m_bigfree) { |
| 5817 | o->obj_next = mbc_list; |
| 5818 | mbc_list = o; |
| 5819 | } else if (m_free_func == m_16kfree) { |
| 5820 | o->obj_next = m16k_list; |
| 5821 | m16k_list = o; |
| 5822 | } else { |
| 5823 | (*(m_free_func))((caddr_t)o, |
| 5824 | m->m_ext.ext_size, |
| 5825 | m_get_ext_arg(m)); |
| 5826 | } |
| 5827 | rfa = (mcache_obj_t *)(void *)m_get_rfa(m); |
| 5828 | rfa->obj_next = ref_list; |
| 5829 | ref_list = rfa; |
| 5830 | #else |
| 5831 | if (m_free_func == NULL) { |
| 5832 | zstack_push(stack: &mcl_list, elem: cl); |
| 5833 | } else if (m_free_func == m_bigfree) { |
| 5834 | zstack_push(stack: &mbc_list, elem: cl); |
| 5835 | } else if (m_free_func == m_16kfree) { |
| 5836 | zstack_push(stack: &m16k_list, elem: cl); |
| 5837 | } else { |
| 5838 | (*(m_free_func))((caddr_t)cl, |
| 5839 | m->m_ext.ext_size, |
| 5840 | m_get_ext_arg(m)); |
| 5841 | } |
| 5842 | zstack_push(stack: &ref_list, elem: m_get_rfa(m)); |
| 5843 | #endif /* CONFIG_MBUF_MCACHE */ |
| 5844 | m_set_ext(m, NULL, NULL, NULL); |
| 5845 | } else if (refcnt == minref && composite) { |
| 5846 | VERIFY(!(MEXT_FLAGS(m) & EXTF_PAIRED)); |
| 5847 | /* |
| 5848 | * Amortize the costs of atomic operations |
| 5849 | * by doing them at the end, if possible. |
| 5850 | */ |
| 5851 | if (m->m_type == MT_DATA) { |
| 5852 | mt_data++; |
| 5853 | } else if (m->m_type == MT_HEADER) { |
| 5854 | mt_header++; |
| 5855 | } else if (m->m_type == MT_SONAME) { |
| 5856 | mt_soname++; |
| 5857 | } else if (m->m_type == MT_TAG) { |
| 5858 | mt_tag++; |
| 5859 | } else { |
| 5860 | mtype_stat_dec(m->m_type); |
| 5861 | } |
| 5862 | |
| 5863 | m->m_type = MT_FREE; |
| 5864 | m->m_flags = M_EXT; |
| 5865 | m->m_len = 0; |
| 5866 | m->m_next = m->m_nextpkt = NULL; |
| 5867 | |
| 5868 | /* |
| 5869 | * MEXT_FLAGS is safe to access here |
| 5870 | * since we are now sure that we held |
| 5871 | * the last reference to ext_ref. |
| 5872 | */ |
| 5873 | MEXT_FLAGS(m) &= ~EXTF_READONLY; |
| 5874 | |
| 5875 | /* "Free" into the intermediate cache */ |
| 5876 | #if CONFIG_MBUF_MCACHE |
| 5877 | o = (mcache_obj_t *)m; |
| 5878 | if (m_free_func == NULL) { |
| 5879 | o->obj_next = m_mcl_list; |
| 5880 | m_mcl_list = o; |
| 5881 | } else if (m_free_func == m_bigfree) { |
| 5882 | o->obj_next = m_mbc_list; |
| 5883 | m_mbc_list = o; |
| 5884 | } else { |
| 5885 | VERIFY(m_free_func == m_16kfree); |
| 5886 | o->obj_next = m_m16k_list; |
| 5887 | m_m16k_list = o; |
| 5888 | } |
| 5889 | #else |
| 5890 | if (m_free_func == NULL) { |
| 5891 | zstack_push(stack: &m_mcl_list, elem: m); |
| 5892 | } else if (m_free_func == m_bigfree) { |
| 5893 | zstack_push(stack: &m_mbc_list, elem: m); |
| 5894 | } else { |
| 5895 | VERIFY(m_free_func == m_16kfree); |
| 5896 | zstack_push(stack: &m_m16k_list, elem: m); |
| 5897 | } |
| 5898 | #endif /* CONFIG_MBUF_MCACHE */ |
| 5899 | m = next; |
| 5900 | continue; |
| 5901 | } |
| 5902 | simple_free: |
| 5903 | /* |
| 5904 | * Amortize the costs of atomic operations |
| 5905 | * by doing them at the end, if possible. |
| 5906 | */ |
| 5907 | if (m->m_type == MT_DATA) { |
| 5908 | mt_data++; |
| 5909 | } else if (m->m_type == MT_HEADER) { |
| 5910 | mt_header++; |
| 5911 | } else if (m->m_type == MT_SONAME) { |
| 5912 | mt_soname++; |
| 5913 | } else if (m->m_type == MT_TAG) { |
| 5914 | mt_tag++; |
| 5915 | } else if (m->m_type != MT_FREE) { |
| 5916 | mtype_stat_dec(m->m_type); |
| 5917 | } |
| 5918 | |
| 5919 | m->m_type = MT_FREE; |
| 5920 | m->m_flags = m->m_len = 0; |
| 5921 | m->m_next = m->m_nextpkt = NULL; |
| 5922 | |
| 5923 | #if CONFIG_MBUF_MCACHE |
| 5924 | ((mcache_obj_t *)m)->obj_next = mp_list; |
| 5925 | mp_list = (mcache_obj_t *)m; |
| 5926 | #else |
| 5927 | m_elide(m); |
| 5928 | zstack_push(stack: &mp_list, elem: m); |
| 5929 | #endif /* CONFIG_MBUF_MCACHE */ |
| 5930 | |
| 5931 | m = next; |
| 5932 | } |
| 5933 | |
| 5934 | m = nextpkt; |
| 5935 | } |
| 5936 | |
| 5937 | if (mt_free > 0) { |
| 5938 | mtype_stat_add(MT_FREE, mt_free); |
| 5939 | } |
| 5940 | if (mt_data > 0) { |
| 5941 | mtype_stat_sub(MT_DATA, mt_data); |
| 5942 | } |
| 5943 | if (mt_header > 0) { |
| 5944 | mtype_stat_sub(MT_HEADER, mt_header); |
| 5945 | } |
| 5946 | if (mt_soname > 0) { |
| 5947 | mtype_stat_sub(MT_SONAME, mt_soname); |
| 5948 | } |
| 5949 | if (mt_tag > 0) { |
| 5950 | mtype_stat_sub(MT_TAG, mt_tag); |
| 5951 | } |
| 5952 | #if CONFIG_MBUF_MCACHE |
| 5953 | if (mp_list != NULL) { |
| 5954 | mcache_free_ext(m_cache(MC_MBUF), mp_list); |
| 5955 | } |
| 5956 | if (mcl_list != NULL) { |
| 5957 | mcache_free_ext(m_cache(MC_CL), mcl_list); |
| 5958 | } |
| 5959 | if (mbc_list != NULL) { |
| 5960 | mcache_free_ext(m_cache(MC_BIGCL), mbc_list); |
| 5961 | } |
| 5962 | if (m16k_list != NULL) { |
| 5963 | mcache_free_ext(m_cache(MC_16KCL), m16k_list); |
| 5964 | } |
| 5965 | if (m_mcl_list != NULL) { |
| 5966 | mcache_free_ext(m_cache(MC_MBUF_CL), m_mcl_list); |
| 5967 | } |
| 5968 | if (m_mbc_list != NULL) { |
| 5969 | mcache_free_ext(m_cache(MC_MBUF_BIGCL), m_mbc_list); |
| 5970 | } |
| 5971 | if (m_m16k_list != NULL) { |
| 5972 | mcache_free_ext(m_cache(MC_MBUF_16KCL), m_m16k_list); |
| 5973 | } |
| 5974 | if (ref_list != NULL) { |
| 5975 | mcache_free_ext(ref_cache, ref_list); |
| 5976 | } |
| 5977 | #else |
| 5978 | if (!zstack_empty(stack: mp_list)) { |
| 5979 | /* mbufs elided above. */ |
| 5980 | mz_free_n(list: mp_list); |
| 5981 | } |
| 5982 | if (!zstack_empty(stack: mcl_list)) { |
| 5983 | zfree_nozero_n(ZONE_ID_CLUSTER_2K, mcl_list); |
| 5984 | } |
| 5985 | if (!zstack_empty(stack: mbc_list)) { |
| 5986 | zfree_nozero_n(ZONE_ID_CLUSTER_4K, mbc_list); |
| 5987 | } |
| 5988 | if (!zstack_empty(stack: m16k_list)) { |
| 5989 | zfree_nozero_n(ZONE_ID_CLUSTER_16K, m16k_list); |
| 5990 | } |
| 5991 | if (!zstack_empty(stack: m_mcl_list)) { |
| 5992 | mz_composite_free_n(class: MC_MBUF_CL, list: m_mcl_list); |
| 5993 | } |
| 5994 | if (!zstack_empty(stack: m_mbc_list)) { |
| 5995 | mz_composite_free_n(class: MC_MBUF_BIGCL, list: m_mbc_list); |
| 5996 | } |
| 5997 | if (!zstack_empty(stack: m_m16k_list)) { |
| 5998 | mz_composite_free_n(class: MC_MBUF_16KCL, list: m_m16k_list); |
| 5999 | } |
| 6000 | if (!zstack_empty(stack: ref_list)) { |
| 6001 | zfree_nozero_n(ZONE_ID_MBUF_REF, ref_list); |
| 6002 | } |
| 6003 | #endif /* CONFIG_MBUF_MCACHE */ |
| 6004 | |
| 6005 | return pktcount; |
| 6006 | } |
| 6007 | |
| 6008 | void |
| 6009 | m_freem(struct mbuf *m) |
| 6010 | { |
| 6011 | while (m != NULL) { |
| 6012 | m = m_free(m); |
| 6013 | } |
| 6014 | } |
| 6015 | |
| 6016 | /* |
| 6017 | * Mbuffer utility routines. |
| 6018 | */ |
| 6019 | /* |
| 6020 | * Set the m_data pointer of a newly allocated mbuf to place an object of the |
| 6021 | * specified size at the end of the mbuf, longword aligned. |
| 6022 | * |
| 6023 | * NB: Historically, we had M_ALIGN(), MH_ALIGN(), and MEXT_ALIGN() as |
| 6024 | * separate macros, each asserting that it was called at the proper moment. |
| 6025 | * This required callers to themselves test the storage type and call the |
| 6026 | * right one. Rather than require callers to be aware of those layout |
| 6027 | * decisions, we centralize here. |
| 6028 | */ |
| 6029 | void |
| 6030 | m_align(struct mbuf *m, int len) |
| 6031 | { |
| 6032 | int adjust = 0; |
| 6033 | |
| 6034 | /* At this point data must point to start */ |
| 6035 | VERIFY(m->m_data == (uintptr_t)M_START(m)); |
| 6036 | VERIFY(len >= 0); |
| 6037 | VERIFY(len <= M_SIZE(m)); |
| 6038 | adjust = M_SIZE(m) - len; |
| 6039 | m->m_data += adjust & ~(sizeof(long) - 1); |
| 6040 | } |
| 6041 | |
| 6042 | /* |
| 6043 | * Lesser-used path for M_PREPEND: allocate new mbuf to prepend to chain, |
| 6044 | * copy junk along. Does not adjust packet header length. |
| 6045 | */ |
| 6046 | struct mbuf * |
| 6047 | m_prepend(struct mbuf *m, int len, int how) |
| 6048 | { |
| 6049 | struct mbuf *mn; |
| 6050 | |
| 6051 | _MGET(mn, how, m->m_type); |
| 6052 | if (mn == NULL) { |
| 6053 | m_freem(m); |
| 6054 | return NULL; |
| 6055 | } |
| 6056 | if (m->m_flags & M_PKTHDR) { |
| 6057 | M_COPY_PKTHDR(mn, m); |
| 6058 | m->m_flags &= ~M_PKTHDR; |
| 6059 | } |
| 6060 | mn->m_next = m; |
| 6061 | m = mn; |
| 6062 | if (m->m_flags & M_PKTHDR) { |
| 6063 | VERIFY(len <= MHLEN); |
| 6064 | MH_ALIGN(m, len); |
| 6065 | } else { |
| 6066 | VERIFY(len <= MLEN); |
| 6067 | M_ALIGN(m, len); |
| 6068 | } |
| 6069 | m->m_len = len; |
| 6070 | return m; |
| 6071 | } |
| 6072 | |
| 6073 | /* |
| 6074 | * Replacement for old M_PREPEND macro: allocate new mbuf to prepend to |
| 6075 | * chain, copy junk along, and adjust length. |
| 6076 | */ |
| 6077 | struct mbuf * |
| 6078 | m_prepend_2(struct mbuf *m, int len, int how, int align) |
| 6079 | { |
| 6080 | if (M_LEADINGSPACE(m) >= len && |
| 6081 | (!align || IS_P2ALIGNED((m->m_data - len), sizeof(u_int32_t)))) { |
| 6082 | m->m_data -= len; |
| 6083 | m->m_len += len; |
| 6084 | } else { |
| 6085 | m = m_prepend(m, len, how); |
| 6086 | } |
| 6087 | if ((m) && (m->m_flags & M_PKTHDR)) { |
| 6088 | m->m_pkthdr.len += len; |
| 6089 | } |
| 6090 | return m; |
| 6091 | } |
| 6092 | |
| 6093 | /* |
| 6094 | * Make a copy of an mbuf chain starting "off0" bytes from the beginning, |
| 6095 | * continuing for "len" bytes. If len is M_COPYALL, copy to end of mbuf. |
| 6096 | * The wait parameter is a choice of M_WAIT/M_DONTWAIT from caller. |
| 6097 | * |
| 6098 | * The last mbuf and offset accessed are passed in and adjusted on return to |
| 6099 | * avoid having to iterate over the entire mbuf chain each time. |
| 6100 | */ |
| 6101 | struct mbuf * |
| 6102 | m_copym_mode(struct mbuf *m, int off0, int len0, int wait, |
| 6103 | struct mbuf **m_lastm, int *m_off, uint32_t mode) |
| 6104 | { |
| 6105 | struct mbuf *n, *mhdr = NULL, **np; |
| 6106 | int off = off0, len = len0; |
| 6107 | struct mbuf *top; |
| 6108 | int copyhdr = 0; |
| 6109 | |
| 6110 | if (off < 0 || len < 0) { |
| 6111 | panic("m_copym: invalid offset %d or len %d" , off, len); |
| 6112 | } |
| 6113 | |
| 6114 | VERIFY((mode != M_COPYM_MUST_COPY_HDR && |
| 6115 | mode != M_COPYM_MUST_MOVE_HDR) || (m->m_flags & M_PKTHDR)); |
| 6116 | |
| 6117 | if ((off == 0 && (m->m_flags & M_PKTHDR)) || |
| 6118 | mode == M_COPYM_MUST_COPY_HDR || mode == M_COPYM_MUST_MOVE_HDR) { |
| 6119 | mhdr = m; |
| 6120 | copyhdr = 1; |
| 6121 | } |
| 6122 | |
| 6123 | if (m_lastm != NULL && *m_lastm != NULL) { |
| 6124 | if (off0 >= *m_off) { |
| 6125 | m = *m_lastm; |
| 6126 | off = off0 - *m_off; |
| 6127 | } |
| 6128 | } |
| 6129 | |
| 6130 | while (off >= m->m_len) { |
| 6131 | off -= m->m_len; |
| 6132 | m = m->m_next; |
| 6133 | } |
| 6134 | np = ⊤ |
| 6135 | top = NULL; |
| 6136 | |
| 6137 | while (len > 0) { |
| 6138 | if (m == NULL) { |
| 6139 | if (len != M_COPYALL) { |
| 6140 | panic("m_copym: len != M_COPYALL" ); |
| 6141 | } |
| 6142 | break; |
| 6143 | } |
| 6144 | |
| 6145 | if (copyhdr) { |
| 6146 | n = _M_RETRYHDR(wait, m->m_type); |
| 6147 | } else { |
| 6148 | n = _M_RETRY(wait, m->m_type); |
| 6149 | } |
| 6150 | *np = n; |
| 6151 | |
| 6152 | if (n == NULL) { |
| 6153 | goto nospace; |
| 6154 | } |
| 6155 | |
| 6156 | if (copyhdr != 0) { |
| 6157 | if ((mode == M_COPYM_MOVE_HDR) || |
| 6158 | (mode == M_COPYM_MUST_MOVE_HDR)) { |
| 6159 | M_COPY_PKTHDR(n, mhdr); |
| 6160 | } else if ((mode == M_COPYM_COPY_HDR) || |
| 6161 | (mode == M_COPYM_MUST_COPY_HDR)) { |
| 6162 | if (m_dup_pkthdr(to: n, from: mhdr, how: wait) == 0) { |
| 6163 | goto nospace; |
| 6164 | } |
| 6165 | } |
| 6166 | if (len == M_COPYALL) { |
| 6167 | n->m_pkthdr.len -= off0; |
| 6168 | } else { |
| 6169 | n->m_pkthdr.len = len; |
| 6170 | } |
| 6171 | copyhdr = 0; |
| 6172 | /* |
| 6173 | * There is data to copy from the packet header mbuf |
| 6174 | * if it is empty or it is before the starting offset |
| 6175 | */ |
| 6176 | if (mhdr != m) { |
| 6177 | np = &n->m_next; |
| 6178 | continue; |
| 6179 | } |
| 6180 | } |
| 6181 | n->m_len = MIN(len, (m->m_len - off)); |
| 6182 | if (m->m_flags & M_EXT) { |
| 6183 | n->m_ext = m->m_ext; |
| 6184 | m_incref(m); |
| 6185 | n->m_data = m->m_data + off; |
| 6186 | n->m_flags |= M_EXT; |
| 6187 | } else { |
| 6188 | /* |
| 6189 | * Limit to the capacity of the destination |
| 6190 | */ |
| 6191 | if (n->m_flags & M_PKTHDR) { |
| 6192 | n->m_len = MIN(n->m_len, MHLEN); |
| 6193 | } else { |
| 6194 | n->m_len = MIN(n->m_len, MLEN); |
| 6195 | } |
| 6196 | |
| 6197 | if (MTOD(n, char *) + n->m_len > ((char *)n) + _MSIZE) { |
| 6198 | panic("%s n %p copy overflow" , |
| 6199 | __func__, n); |
| 6200 | } |
| 6201 | |
| 6202 | bcopy(MTOD(m, caddr_t) + off, MTOD(n, caddr_t), |
| 6203 | n: (unsigned)n->m_len); |
| 6204 | } |
| 6205 | if (len != M_COPYALL) { |
| 6206 | len -= n->m_len; |
| 6207 | } |
| 6208 | |
| 6209 | if (len == 0) { |
| 6210 | if (m_lastm != NULL) { |
| 6211 | *m_lastm = m; |
| 6212 | *m_off = off0 + len0 - (off + n->m_len); |
| 6213 | } |
| 6214 | } |
| 6215 | off = 0; |
| 6216 | m = m->m_next; |
| 6217 | np = &n->m_next; |
| 6218 | } |
| 6219 | |
| 6220 | return top; |
| 6221 | nospace: |
| 6222 | m_freem(m: top); |
| 6223 | |
| 6224 | return NULL; |
| 6225 | } |
| 6226 | |
| 6227 | |
| 6228 | struct mbuf * |
| 6229 | m_copym(struct mbuf *m, int off0, int len, int wait) |
| 6230 | { |
| 6231 | return m_copym_mode(m, off0, len0: len, wait, NULL, NULL, M_COPYM_MOVE_HDR); |
| 6232 | } |
| 6233 | |
| 6234 | /* |
| 6235 | * Equivalent to m_copym except that all necessary mbuf hdrs are allocated |
| 6236 | * within this routine also. |
| 6237 | * |
| 6238 | * The last mbuf and offset accessed are passed in and adjusted on return to |
| 6239 | * avoid having to iterate over the entire mbuf chain each time. |
| 6240 | */ |
| 6241 | struct mbuf * |
| 6242 | m_copym_with_hdrs(struct mbuf *m0, int off0, int len0, int wait, |
| 6243 | struct mbuf **m_lastm, int *m_off, uint32_t mode) |
| 6244 | { |
| 6245 | struct mbuf *m = m0, *n, **np = NULL; |
| 6246 | int off = off0, len = len0; |
| 6247 | struct mbuf *top = NULL; |
| 6248 | #if CONFIG_MBUF_MCACHE |
| 6249 | int mcflags = MSLEEPF(wait); |
| 6250 | mcache_obj_t *list = NULL; |
| 6251 | #else |
| 6252 | zstack_t list = {}; |
| 6253 | #endif /* CONFIG_MBUF_MCACHE */ |
| 6254 | int copyhdr = 0; |
| 6255 | int type = 0; |
| 6256 | int needed = 0; |
| 6257 | |
| 6258 | if (off == 0 && (m->m_flags & M_PKTHDR)) { |
| 6259 | copyhdr = 1; |
| 6260 | } |
| 6261 | |
| 6262 | if (m_lastm != NULL && *m_lastm != NULL) { |
| 6263 | if (off0 >= *m_off) { |
| 6264 | m = *m_lastm; |
| 6265 | off = off0 - *m_off; |
| 6266 | } |
| 6267 | } |
| 6268 | |
| 6269 | while (off >= m->m_len) { |
| 6270 | off -= m->m_len; |
| 6271 | m = m->m_next; |
| 6272 | } |
| 6273 | |
| 6274 | n = m; |
| 6275 | while (len > 0) { |
| 6276 | needed++; |
| 6277 | len -= MIN(len, (n->m_len - ((needed == 1) ? off : 0))); |
| 6278 | n = n->m_next; |
| 6279 | } |
| 6280 | needed++; |
| 6281 | len = len0; |
| 6282 | |
| 6283 | #if CONFIG_MBUF_MCACHE |
| 6284 | /* |
| 6285 | * If the caller doesn't want to be put to sleep, mark it with |
| 6286 | * MCR_TRYHARD so that we may reclaim buffers from other places |
| 6287 | * before giving up. |
| 6288 | */ |
| 6289 | if (mcflags & MCR_NOSLEEP) { |
| 6290 | mcflags |= MCR_TRYHARD; |
| 6291 | } |
| 6292 | |
| 6293 | if (mcache_alloc_ext(m_cache(MC_MBUF), &list, needed, |
| 6294 | mcflags) != needed) { |
| 6295 | goto nospace; |
| 6296 | } |
| 6297 | #else |
| 6298 | list = mz_alloc_n(count: needed, flags: wait); |
| 6299 | if (zstack_count(stack: list) != needed) { |
| 6300 | goto nospace; |
| 6301 | } |
| 6302 | #endif /* CONFIG_MBUF_MCACHE */ |
| 6303 | |
| 6304 | needed = 0; |
| 6305 | while (len > 0) { |
| 6306 | #if CONFIG_MBUF_MCACHE |
| 6307 | n = (struct mbuf *)list; |
| 6308 | list = list->obj_next; |
| 6309 | #else |
| 6310 | n = zstack_pop(stack: &list); |
| 6311 | #endif /* CONFIG_MBUF_MCACHE */ |
| 6312 | ASSERT(n != NULL && m != NULL); |
| 6313 | |
| 6314 | type = (top == NULL) ? MT_HEADER : m->m_type; |
| 6315 | MBUF_INIT(n, (top == NULL), type); |
| 6316 | |
| 6317 | if (top == NULL) { |
| 6318 | top = n; |
| 6319 | np = &top->m_next; |
| 6320 | continue; |
| 6321 | } else { |
| 6322 | needed++; |
| 6323 | *np = n; |
| 6324 | } |
| 6325 | |
| 6326 | if (copyhdr) { |
| 6327 | if ((mode == M_COPYM_MOVE_HDR) || |
| 6328 | (mode == M_COPYM_MUST_MOVE_HDR)) { |
| 6329 | M_COPY_PKTHDR(n, m); |
| 6330 | } else if ((mode == M_COPYM_COPY_HDR) || |
| 6331 | (mode == M_COPYM_MUST_COPY_HDR)) { |
| 6332 | if (m_dup_pkthdr(to: n, from: m, how: wait) == 0) { |
| 6333 | #if !CONFIG_MBUF_MCACHE |
| 6334 | m_elide(m: n); |
| 6335 | #endif |
| 6336 | goto nospace; |
| 6337 | } |
| 6338 | } |
| 6339 | n->m_pkthdr.len = len; |
| 6340 | copyhdr = 0; |
| 6341 | } |
| 6342 | n->m_len = MIN(len, (m->m_len - off)); |
| 6343 | |
| 6344 | if (m->m_flags & M_EXT) { |
| 6345 | n->m_ext = m->m_ext; |
| 6346 | m_incref(m); |
| 6347 | n->m_data = m->m_data + off; |
| 6348 | n->m_flags |= M_EXT; |
| 6349 | } else { |
| 6350 | if (m_mtod_end(m: n) > m_mtod_upper_bound(m: n)) { |
| 6351 | panic("%s n %p copy overflow" , |
| 6352 | __func__, n); |
| 6353 | } |
| 6354 | |
| 6355 | bcopy(MTOD(m, caddr_t) + off, MTOD(n, caddr_t), |
| 6356 | n: (unsigned)n->m_len); |
| 6357 | } |
| 6358 | len -= n->m_len; |
| 6359 | |
| 6360 | if (len == 0) { |
| 6361 | if (m_lastm != NULL) { |
| 6362 | *m_lastm = m; |
| 6363 | *m_off = off0 + len0 - (off + n->m_len); |
| 6364 | } |
| 6365 | break; |
| 6366 | } |
| 6367 | off = 0; |
| 6368 | m = m->m_next; |
| 6369 | np = &n->m_next; |
| 6370 | } |
| 6371 | |
| 6372 | mtype_stat_inc(MT_HEADER); |
| 6373 | mtype_stat_add(type, needed); |
| 6374 | mtype_stat_sub(MT_FREE, needed + 1); |
| 6375 | |
| 6376 | #if CONFIG_MBUF_MCACHE |
| 6377 | ASSERT(list == NULL); |
| 6378 | #else |
| 6379 | ASSERT(zstack_empty(list)); |
| 6380 | #endif /* CONFIG_MBUF_MCACHE */ |
| 6381 | |
| 6382 | return top; |
| 6383 | |
| 6384 | nospace: |
| 6385 | #if CONFIG_MBUF_MCACHE |
| 6386 | if (list != NULL) { |
| 6387 | mcache_free_ext(m_cache(MC_MBUF), list); |
| 6388 | } |
| 6389 | #else |
| 6390 | if (!zstack_empty(stack: list)) { |
| 6391 | /* No need to elide, these mbufs came from the cache. */ |
| 6392 | mz_free_n(list); |
| 6393 | } |
| 6394 | #endif /* CONFIG_MBUF_MCACHE */ |
| 6395 | if (top != NULL) { |
| 6396 | m_freem(m: top); |
| 6397 | } |
| 6398 | return NULL; |
| 6399 | } |
| 6400 | |
| 6401 | /* |
| 6402 | * Copy data from an mbuf chain starting "off" bytes from the beginning, |
| 6403 | * continuing for "len" bytes, into the indicated buffer. |
| 6404 | */ |
| 6405 | void |
| 6406 | m_copydata(struct mbuf *m, int off, int len, void *vp) |
| 6407 | { |
| 6408 | int off0 = off, len0 = len; |
| 6409 | struct mbuf *m0 = m; |
| 6410 | unsigned count; |
| 6411 | char *cp = vp; |
| 6412 | |
| 6413 | if (__improbable(off < 0 || len < 0)) { |
| 6414 | panic("%s: invalid offset %d or len %d" , __func__, off, len); |
| 6415 | /* NOTREACHED */ |
| 6416 | } |
| 6417 | |
| 6418 | while (off > 0) { |
| 6419 | if (__improbable(m == NULL)) { |
| 6420 | panic("%s: invalid mbuf chain %p [off %d, len %d]" , |
| 6421 | __func__, m0, off0, len0); |
| 6422 | /* NOTREACHED */ |
| 6423 | } |
| 6424 | if (off < m->m_len) { |
| 6425 | break; |
| 6426 | } |
| 6427 | off -= m->m_len; |
| 6428 | m = m->m_next; |
| 6429 | } |
| 6430 | while (len > 0) { |
| 6431 | if (__improbable(m == NULL)) { |
| 6432 | panic("%s: invalid mbuf chain %p [off %d, len %d]" , |
| 6433 | __func__, m0, off0, len0); |
| 6434 | /* NOTREACHED */ |
| 6435 | } |
| 6436 | count = MIN(m->m_len - off, len); |
| 6437 | bcopy(MTOD(m, caddr_t) + off, dst: cp, n: count); |
| 6438 | len -= count; |
| 6439 | cp += count; |
| 6440 | off = 0; |
| 6441 | m = m->m_next; |
| 6442 | } |
| 6443 | } |
| 6444 | |
| 6445 | /* |
| 6446 | * Concatenate mbuf chain n to m. Both chains must be of the same type |
| 6447 | * (e.g. MT_DATA). Any m_pkthdr is not updated. |
| 6448 | */ |
| 6449 | void |
| 6450 | m_cat(struct mbuf *m, struct mbuf *n) |
| 6451 | { |
| 6452 | while (m->m_next) { |
| 6453 | m = m->m_next; |
| 6454 | } |
| 6455 | while (n) { |
| 6456 | if ((m->m_flags & M_EXT) || |
| 6457 | m->m_data + m->m_len + n->m_len >= (uintptr_t)&m->m_dat[MLEN]) { |
| 6458 | /* just join the two chains */ |
| 6459 | m->m_next = n; |
| 6460 | return; |
| 6461 | } |
| 6462 | /* splat the data from one into the other */ |
| 6463 | bcopy(MTOD(n, caddr_t), MTOD(m, caddr_t) + m->m_len, |
| 6464 | n: (u_int)n->m_len); |
| 6465 | m->m_len += n->m_len; |
| 6466 | n = m_free(m: n); |
| 6467 | } |
| 6468 | } |
| 6469 | |
| 6470 | void |
| 6471 | m_adj(struct mbuf *mp, int req_len) |
| 6472 | { |
| 6473 | int len = req_len; |
| 6474 | struct mbuf *m; |
| 6475 | int count; |
| 6476 | |
| 6477 | if ((m = mp) == NULL) { |
| 6478 | return; |
| 6479 | } |
| 6480 | if (len >= 0) { |
| 6481 | /* |
| 6482 | * Trim from head. |
| 6483 | */ |
| 6484 | while (m != NULL && len > 0) { |
| 6485 | if (m->m_len <= len) { |
| 6486 | len -= m->m_len; |
| 6487 | m->m_len = 0; |
| 6488 | m = m->m_next; |
| 6489 | } else { |
| 6490 | m->m_len -= len; |
| 6491 | m->m_data += len; |
| 6492 | len = 0; |
| 6493 | } |
| 6494 | } |
| 6495 | m = mp; |
| 6496 | if (m->m_flags & M_PKTHDR) { |
| 6497 | m->m_pkthdr.len -= (req_len - len); |
| 6498 | } |
| 6499 | } else { |
| 6500 | /* |
| 6501 | * Trim from tail. Scan the mbuf chain, |
| 6502 | * calculating its length and finding the last mbuf. |
| 6503 | * If the adjustment only affects this mbuf, then just |
| 6504 | * adjust and return. Otherwise, rescan and truncate |
| 6505 | * after the remaining size. |
| 6506 | */ |
| 6507 | len = -len; |
| 6508 | count = 0; |
| 6509 | for (;;) { |
| 6510 | count += m->m_len; |
| 6511 | if (m->m_next == (struct mbuf *)0) { |
| 6512 | break; |
| 6513 | } |
| 6514 | m = m->m_next; |
| 6515 | } |
| 6516 | if (m->m_len >= len) { |
| 6517 | m->m_len -= len; |
| 6518 | m = mp; |
| 6519 | if (m->m_flags & M_PKTHDR) { |
| 6520 | m->m_pkthdr.len -= len; |
| 6521 | } |
| 6522 | return; |
| 6523 | } |
| 6524 | count -= len; |
| 6525 | if (count < 0) { |
| 6526 | count = 0; |
| 6527 | } |
| 6528 | /* |
| 6529 | * Correct length for chain is "count". |
| 6530 | * Find the mbuf with last data, adjust its length, |
| 6531 | * and toss data from remaining mbufs on chain. |
| 6532 | */ |
| 6533 | m = mp; |
| 6534 | if (m->m_flags & M_PKTHDR) { |
| 6535 | m->m_pkthdr.len = count; |
| 6536 | } |
| 6537 | for (; m; m = m->m_next) { |
| 6538 | if (m->m_len >= count) { |
| 6539 | m->m_len = count; |
| 6540 | break; |
| 6541 | } |
| 6542 | count -= m->m_len; |
| 6543 | } |
| 6544 | while ((m = m->m_next)) { |
| 6545 | m->m_len = 0; |
| 6546 | } |
| 6547 | } |
| 6548 | } |
| 6549 | |
| 6550 | /* |
| 6551 | * Rearange an mbuf chain so that len bytes are contiguous |
| 6552 | * and in the data area of an mbuf (so that mtod |
| 6553 | * will work for a structure of size len). Returns the resulting |
| 6554 | * mbuf chain on success, frees it and returns null on failure. |
| 6555 | * If there is room, it will add up to max_protohdr-len extra bytes to the |
| 6556 | * contiguous region in an attempt to avoid being called next time. |
| 6557 | */ |
| 6558 | struct mbuf * |
| 6559 | m_pullup(struct mbuf *n, int len) |
| 6560 | { |
| 6561 | struct mbuf *m; |
| 6562 | int count; |
| 6563 | int space; |
| 6564 | |
| 6565 | /* check invalid arguments */ |
| 6566 | if (n == NULL) { |
| 6567 | panic("%s: n == NULL" , __func__); |
| 6568 | } |
| 6569 | if (len < 0) { |
| 6570 | os_log_info(OS_LOG_DEFAULT, "%s: failed negative len %d" , |
| 6571 | __func__, len); |
| 6572 | goto bad; |
| 6573 | } |
| 6574 | if (len > MLEN) { |
| 6575 | os_log_info(OS_LOG_DEFAULT, "%s: failed len %d too big" , |
| 6576 | __func__, len); |
| 6577 | goto bad; |
| 6578 | } |
| 6579 | if ((n->m_flags & M_EXT) == 0 && |
| 6580 | m_mtod_current(m: n) >= m_mtod_upper_bound(m: n)) { |
| 6581 | os_log_info(OS_LOG_DEFAULT, "%s: m_data out of bounds" , |
| 6582 | __func__); |
| 6583 | goto bad; |
| 6584 | } |
| 6585 | |
| 6586 | /* |
| 6587 | * If first mbuf has no cluster, and has room for len bytes |
| 6588 | * without shifting current data, pullup into it, |
| 6589 | * otherwise allocate a new mbuf to prepend to the chain. |
| 6590 | */ |
| 6591 | if ((n->m_flags & M_EXT) == 0 && |
| 6592 | len < m_mtod_upper_bound(m: n) - m_mtod_current(m: n) && n->m_next != NULL) { |
| 6593 | if (n->m_len >= len) { |
| 6594 | return n; |
| 6595 | } |
| 6596 | m = n; |
| 6597 | n = n->m_next; |
| 6598 | len -= m->m_len; |
| 6599 | } else { |
| 6600 | if (len > MHLEN) { |
| 6601 | goto bad; |
| 6602 | } |
| 6603 | _MGET(m, M_DONTWAIT, n->m_type); |
| 6604 | if (m == 0) { |
| 6605 | goto bad; |
| 6606 | } |
| 6607 | m->m_len = 0; |
| 6608 | if (n->m_flags & M_PKTHDR) { |
| 6609 | M_COPY_PKTHDR(m, n); |
| 6610 | n->m_flags &= ~M_PKTHDR; |
| 6611 | } |
| 6612 | } |
| 6613 | space = m_mtod_upper_bound(m) - m_mtod_end(m); |
| 6614 | do { |
| 6615 | count = MIN(MIN(MAX(len, max_protohdr), space), n->m_len); |
| 6616 | bcopy(MTOD(n, caddr_t), MTOD(m, caddr_t) + m->m_len, |
| 6617 | n: (unsigned)count); |
| 6618 | len -= count; |
| 6619 | m->m_len += count; |
| 6620 | n->m_len -= count; |
| 6621 | space -= count; |
| 6622 | if (n->m_len != 0) { |
| 6623 | n->m_data += count; |
| 6624 | } else { |
| 6625 | n = m_free(m: n); |
| 6626 | } |
| 6627 | } while (len > 0 && n != NULL); |
| 6628 | if (len > 0) { |
| 6629 | (void) m_free(m); |
| 6630 | goto bad; |
| 6631 | } |
| 6632 | m->m_next = n; |
| 6633 | return m; |
| 6634 | bad: |
| 6635 | m_freem(m: n); |
| 6636 | return 0; |
| 6637 | } |
| 6638 | |
| 6639 | /* |
| 6640 | * Like m_pullup(), except a new mbuf is always allocated, and we allow |
| 6641 | * the amount of empty space before the data in the new mbuf to be specified |
| 6642 | * (in the event that the caller expects to prepend later). |
| 6643 | */ |
| 6644 | __private_extern__ struct mbuf * |
| 6645 | m_copyup(struct mbuf *n, int len, int dstoff) |
| 6646 | { |
| 6647 | struct mbuf *m; |
| 6648 | int count, space; |
| 6649 | |
| 6650 | VERIFY(len >= 0 && dstoff >= 0); |
| 6651 | |
| 6652 | if (len > (MHLEN - dstoff)) { |
| 6653 | goto bad; |
| 6654 | } |
| 6655 | MGET(m, M_DONTWAIT, n->m_type); |
| 6656 | if (m == NULL) { |
| 6657 | goto bad; |
| 6658 | } |
| 6659 | m->m_len = 0; |
| 6660 | if (n->m_flags & M_PKTHDR) { |
| 6661 | m_copy_pkthdr(to: m, from: n); |
| 6662 | n->m_flags &= ~M_PKTHDR; |
| 6663 | } |
| 6664 | m->m_data += dstoff; |
| 6665 | space = m_mtod_upper_bound(m) - m_mtod_end(m); |
| 6666 | do { |
| 6667 | count = min(a: min(a: max(a: len, b: max_protohdr), b: space), b: n->m_len); |
| 6668 | memcpy(mtod(m, caddr_t) + m->m_len, mtod(n, caddr_t), |
| 6669 | n: (unsigned)count); |
| 6670 | len -= count; |
| 6671 | m->m_len += count; |
| 6672 | n->m_len -= count; |
| 6673 | space -= count; |
| 6674 | if (n->m_len) { |
| 6675 | n->m_data += count; |
| 6676 | } else { |
| 6677 | n = m_free(m: n); |
| 6678 | } |
| 6679 | } while (len > 0 && n); |
| 6680 | if (len > 0) { |
| 6681 | (void) m_free(m); |
| 6682 | goto bad; |
| 6683 | } |
| 6684 | m->m_next = n; |
| 6685 | return m; |
| 6686 | bad: |
| 6687 | m_freem(m: n); |
| 6688 | |
| 6689 | return NULL; |
| 6690 | } |
| 6691 | |
| 6692 | /* |
| 6693 | * Partition an mbuf chain in two pieces, returning the tail -- |
| 6694 | * all but the first len0 bytes. In case of failure, it returns NULL and |
| 6695 | * attempts to restore the chain to its original state. |
| 6696 | */ |
| 6697 | struct mbuf * |
| 6698 | m_split(struct mbuf *m0, int len0, int wait) |
| 6699 | { |
| 6700 | return m_split0(m0, len0, wait, 1); |
| 6701 | } |
| 6702 | |
| 6703 | static struct mbuf * |
| 6704 | m_split0(struct mbuf *m0, int len0, int wait, int copyhdr) |
| 6705 | { |
| 6706 | struct mbuf *m, *n; |
| 6707 | unsigned len = len0, remain; |
| 6708 | |
| 6709 | /* |
| 6710 | * First iterate to the mbuf which contains the first byte of |
| 6711 | * data at offset len0 |
| 6712 | */ |
| 6713 | for (m = m0; m && len > m->m_len; m = m->m_next) { |
| 6714 | len -= m->m_len; |
| 6715 | } |
| 6716 | if (m == NULL) { |
| 6717 | return NULL; |
| 6718 | } |
| 6719 | /* |
| 6720 | * len effectively is now the offset in the current |
| 6721 | * mbuf where we have to perform split. |
| 6722 | * |
| 6723 | * remain becomes the tail length. |
| 6724 | * Note that len can also be == m->m_len |
| 6725 | */ |
| 6726 | remain = m->m_len - len; |
| 6727 | |
| 6728 | /* |
| 6729 | * If current mbuf len contains the entire remaining offset len, |
| 6730 | * just make the second mbuf chain pointing to next mbuf onwards |
| 6731 | * and return after making necessary adjustments |
| 6732 | */ |
| 6733 | if (copyhdr && (m0->m_flags & M_PKTHDR) && remain == 0) { |
| 6734 | _MGETHDR(n, wait, m0->m_type); |
| 6735 | if (n == NULL) { |
| 6736 | return NULL; |
| 6737 | } |
| 6738 | n->m_next = m->m_next; |
| 6739 | m->m_next = NULL; |
| 6740 | n->m_pkthdr.rcvif = m0->m_pkthdr.rcvif; |
| 6741 | n->m_pkthdr.len = m0->m_pkthdr.len - len0; |
| 6742 | m0->m_pkthdr.len = len0; |
| 6743 | return n; |
| 6744 | } |
| 6745 | if (copyhdr && (m0->m_flags & M_PKTHDR)) { |
| 6746 | _MGETHDR(n, wait, m0->m_type); |
| 6747 | if (n == NULL) { |
| 6748 | return NULL; |
| 6749 | } |
| 6750 | n->m_pkthdr.rcvif = m0->m_pkthdr.rcvif; |
| 6751 | n->m_pkthdr.len = m0->m_pkthdr.len - len0; |
| 6752 | m0->m_pkthdr.len = len0; |
| 6753 | |
| 6754 | /* |
| 6755 | * If current points to external storage |
| 6756 | * then it can be shared by making last mbuf |
| 6757 | * of head chain and first mbuf of current chain |
| 6758 | * pointing to different data offsets |
| 6759 | */ |
| 6760 | if (m->m_flags & M_EXT) { |
| 6761 | goto extpacket; |
| 6762 | } |
| 6763 | if (remain > MHLEN) { |
| 6764 | /* m can't be the lead packet */ |
| 6765 | MH_ALIGN(n, 0); |
| 6766 | n->m_next = m_split(m0: m, len0: len, wait); |
| 6767 | if (n->m_next == NULL) { |
| 6768 | (void) m_free(m: n); |
| 6769 | return NULL; |
| 6770 | } else { |
| 6771 | return n; |
| 6772 | } |
| 6773 | } else { |
| 6774 | MH_ALIGN(n, remain); |
| 6775 | } |
| 6776 | } else if (remain == 0) { |
| 6777 | n = m->m_next; |
| 6778 | m->m_next = NULL; |
| 6779 | return n; |
| 6780 | } else { |
| 6781 | _MGET(n, wait, m->m_type); |
| 6782 | if (n == NULL) { |
| 6783 | return NULL; |
| 6784 | } |
| 6785 | |
| 6786 | if ((m->m_flags & M_EXT) == 0) { |
| 6787 | VERIFY(remain <= MLEN); |
| 6788 | M_ALIGN(n, remain); |
| 6789 | } |
| 6790 | } |
| 6791 | extpacket: |
| 6792 | if (m->m_flags & M_EXT) { |
| 6793 | n->m_flags |= M_EXT; |
| 6794 | n->m_ext = m->m_ext; |
| 6795 | m_incref(m); |
| 6796 | n->m_data = m->m_data + len; |
| 6797 | } else { |
| 6798 | bcopy(MTOD(m, caddr_t) + len, MTOD(n, caddr_t), n: remain); |
| 6799 | } |
| 6800 | n->m_len = remain; |
| 6801 | m->m_len = len; |
| 6802 | n->m_next = m->m_next; |
| 6803 | m->m_next = NULL; |
| 6804 | return n; |
| 6805 | } |
| 6806 | |
| 6807 | /* |
| 6808 | * Routine to copy from device local memory into mbufs. |
| 6809 | */ |
| 6810 | struct mbuf * |
| 6811 | m_devget(char *buf, int totlen, int off0, struct ifnet *ifp, |
| 6812 | void (*copy)(const void *, void *, size_t)) |
| 6813 | { |
| 6814 | struct mbuf *m; |
| 6815 | struct mbuf *top = NULL, **mp = ⊤ |
| 6816 | int off = off0, len; |
| 6817 | char *cp; |
| 6818 | char *epkt; |
| 6819 | |
| 6820 | cp = buf; |
| 6821 | epkt = cp + totlen; |
| 6822 | if (off) { |
| 6823 | /* |
| 6824 | * If 'off' is non-zero, packet is trailer-encapsulated, |
| 6825 | * so we have to skip the type and length fields. |
| 6826 | */ |
| 6827 | cp += off + 2 * sizeof(u_int16_t); |
| 6828 | totlen -= 2 * sizeof(u_int16_t); |
| 6829 | } |
| 6830 | _MGETHDR(m, M_DONTWAIT, MT_DATA); |
| 6831 | if (m == NULL) { |
| 6832 | return NULL; |
| 6833 | } |
| 6834 | m->m_pkthdr.rcvif = ifp; |
| 6835 | m->m_pkthdr.len = totlen; |
| 6836 | m->m_len = MHLEN; |
| 6837 | |
| 6838 | while (totlen > 0) { |
| 6839 | if (top != NULL) { |
| 6840 | _MGET(m, M_DONTWAIT, MT_DATA); |
| 6841 | if (m == NULL) { |
| 6842 | m_freem(m: top); |
| 6843 | return NULL; |
| 6844 | } |
| 6845 | m->m_len = MLEN; |
| 6846 | } |
| 6847 | len = MIN(totlen, epkt - cp); |
| 6848 | if (len >= MINCLSIZE) { |
| 6849 | MCLGET(m, M_DONTWAIT); |
| 6850 | if (m->m_flags & M_EXT) { |
| 6851 | m->m_len = len = MIN(len, m_maxsize(MC_CL)); |
| 6852 | } else { |
| 6853 | /* give up when it's out of cluster mbufs */ |
| 6854 | if (top != NULL) { |
| 6855 | m_freem(m: top); |
| 6856 | } |
| 6857 | m_freem(m); |
| 6858 | return NULL; |
| 6859 | } |
| 6860 | } else { |
| 6861 | /* |
| 6862 | * Place initial small packet/header at end of mbuf. |
| 6863 | */ |
| 6864 | if (len < m->m_len) { |
| 6865 | if (top == NULL && |
| 6866 | len + max_linkhdr <= m->m_len) { |
| 6867 | m->m_data += max_linkhdr; |
| 6868 | } |
| 6869 | m->m_len = len; |
| 6870 | } else { |
| 6871 | len = m->m_len; |
| 6872 | } |
| 6873 | } |
| 6874 | if (copy) { |
| 6875 | copy(cp, MTOD(m, caddr_t), (unsigned)len); |
| 6876 | } else { |
| 6877 | bcopy(src: cp, MTOD(m, caddr_t), n: (unsigned)len); |
| 6878 | } |
| 6879 | cp += len; |
| 6880 | *mp = m; |
| 6881 | mp = &m->m_next; |
| 6882 | totlen -= len; |
| 6883 | if (cp == epkt) { |
| 6884 | cp = buf; |
| 6885 | } |
| 6886 | } |
| 6887 | return top; |
| 6888 | } |
| 6889 | |
| 6890 | #if CONFIG_MBUF_MCACHE |
| 6891 | #ifndef MBUF_GROWTH_NORMAL_THRESH |
| 6892 | #define MBUF_GROWTH_NORMAL_THRESH 25 |
| 6893 | #endif |
| 6894 | |
| 6895 | /* |
| 6896 | * Cluster freelist allocation check. |
| 6897 | */ |
| 6898 | static int |
| 6899 | m_howmany(int num, size_t bufsize) |
| 6900 | { |
| 6901 | int i = 0, j = 0; |
| 6902 | u_int32_t m_mbclusters, m_clusters, m_bigclusters, m_16kclusters; |
| 6903 | u_int32_t m_mbfree, m_clfree, m_bigclfree, m_16kclfree; |
| 6904 | u_int32_t sumclusters, freeclusters; |
| 6905 | u_int32_t percent_pool, percent_kmem; |
| 6906 | u_int32_t mb_growth, mb_growth_thresh; |
| 6907 | |
| 6908 | VERIFY(bufsize == m_maxsize(MC_BIGCL) || |
| 6909 | bufsize == m_maxsize(MC_16KCL)); |
| 6910 | |
| 6911 | LCK_MTX_ASSERT(mbuf_mlock, LCK_MTX_ASSERT_OWNED); |
| 6912 | |
| 6913 | /* Numbers in 2K cluster units */ |
| 6914 | m_mbclusters = m_total(MC_MBUF) >> NMBPCLSHIFT; |
| 6915 | m_clusters = m_total(MC_CL); |
| 6916 | m_bigclusters = m_total(MC_BIGCL) << NCLPBGSHIFT; |
| 6917 | m_16kclusters = m_total(MC_16KCL); |
| 6918 | sumclusters = m_mbclusters + m_clusters + m_bigclusters; |
| 6919 | |
| 6920 | m_mbfree = m_infree(MC_MBUF) >> NMBPCLSHIFT; |
| 6921 | m_clfree = m_infree(MC_CL); |
| 6922 | m_bigclfree = m_infree(MC_BIGCL) << NCLPBGSHIFT; |
| 6923 | m_16kclfree = m_infree(MC_16KCL); |
| 6924 | freeclusters = m_mbfree + m_clfree + m_bigclfree; |
| 6925 | |
| 6926 | /* Bail if we've maxed out the mbuf memory map */ |
| 6927 | if ((bufsize == m_maxsize(MC_BIGCL) && sumclusters >= nclusters) || |
| 6928 | (njcl > 0 && bufsize == m_maxsize(MC_16KCL) && |
| 6929 | (m_16kclusters << NCLPJCLSHIFT) >= njcl)) { |
| 6930 | mbwdog_logger("maxed out nclusters (%u >= %u) or njcl (%u >= %u)" , |
| 6931 | sumclusters, nclusters, |
| 6932 | (m_16kclusters << NCLPJCLSHIFT), njcl); |
| 6933 | return 0; |
| 6934 | } |
| 6935 | |
| 6936 | if (bufsize == m_maxsize(MC_BIGCL)) { |
| 6937 | /* Under minimum */ |
| 6938 | if (m_bigclusters < m_minlimit(MC_BIGCL)) { |
| 6939 | return m_minlimit(MC_BIGCL) - m_bigclusters; |
| 6940 | } |
| 6941 | |
| 6942 | percent_pool = |
| 6943 | ((sumclusters - freeclusters) * 100) / sumclusters; |
| 6944 | percent_kmem = (sumclusters * 100) / nclusters; |
| 6945 | |
| 6946 | /* |
| 6947 | * If a light/normal user, grow conservatively (75%) |
| 6948 | * If a heavy user, grow aggressively (50%) |
| 6949 | */ |
| 6950 | if (percent_kmem < MBUF_GROWTH_NORMAL_THRESH) { |
| 6951 | mb_growth = MB_GROWTH_NORMAL; |
| 6952 | } else { |
| 6953 | mb_growth = MB_GROWTH_AGGRESSIVE; |
| 6954 | } |
| 6955 | |
| 6956 | if (percent_kmem < 5) { |
| 6957 | /* For initial allocations */ |
| 6958 | i = num; |
| 6959 | } else { |
| 6960 | /* Return if >= MBIGCL_LOWAT clusters available */ |
| 6961 | if (m_infree(MC_BIGCL) >= MBIGCL_LOWAT && |
| 6962 | m_total(MC_BIGCL) >= |
| 6963 | MBIGCL_LOWAT + m_minlimit(MC_BIGCL)) { |
| 6964 | return 0; |
| 6965 | } |
| 6966 | |
| 6967 | /* Ensure at least num clusters are accessible */ |
| 6968 | if (num >= m_infree(MC_BIGCL)) { |
| 6969 | i = num - m_infree(MC_BIGCL); |
| 6970 | } |
| 6971 | if (num > m_total(MC_BIGCL) - m_minlimit(MC_BIGCL)) { |
| 6972 | j = num - (m_total(MC_BIGCL) - |
| 6973 | m_minlimit(MC_BIGCL)); |
| 6974 | } |
| 6975 | |
| 6976 | i = MAX(i, j); |
| 6977 | |
| 6978 | /* |
| 6979 | * Grow pool if percent_pool > 75 (normal growth) |
| 6980 | * or percent_pool > 50 (aggressive growth). |
| 6981 | */ |
| 6982 | mb_growth_thresh = 100 - (100 / (1 << mb_growth)); |
| 6983 | if (percent_pool > mb_growth_thresh) { |
| 6984 | j = ((sumclusters + num) >> mb_growth) - |
| 6985 | freeclusters; |
| 6986 | } |
| 6987 | i = MAX(i, j); |
| 6988 | } |
| 6989 | |
| 6990 | /* Check to ensure we didn't go over limits */ |
| 6991 | if (i + m_bigclusters >= m_maxlimit(MC_BIGCL)) { |
| 6992 | i = m_maxlimit(MC_BIGCL) - m_bigclusters; |
| 6993 | } |
| 6994 | if ((i << 1) + sumclusters >= nclusters) { |
| 6995 | i = (nclusters - sumclusters) >> 1; |
| 6996 | } |
| 6997 | VERIFY((m_total(MC_BIGCL) + i) <= m_maxlimit(MC_BIGCL)); |
| 6998 | VERIFY(sumclusters + (i << 1) <= nclusters); |
| 6999 | } else { /* 16K CL */ |
| 7000 | VERIFY(njcl > 0); |
| 7001 | /* Ensure at least num clusters are available */ |
| 7002 | if (num >= m_16kclfree) { |
| 7003 | i = num - m_16kclfree; |
| 7004 | } |
| 7005 | |
| 7006 | /* Always grow 16KCL pool aggressively */ |
| 7007 | if (((m_16kclusters + num) >> 1) > m_16kclfree) { |
| 7008 | j = ((m_16kclusters + num) >> 1) - m_16kclfree; |
| 7009 | } |
| 7010 | i = MAX(i, j); |
| 7011 | |
| 7012 | /* Check to ensure we don't go over limit */ |
| 7013 | if ((i + m_total(MC_16KCL)) >= m_maxlimit(MC_16KCL)) { |
| 7014 | i = m_maxlimit(MC_16KCL) - m_total(MC_16KCL); |
| 7015 | } |
| 7016 | } |
| 7017 | return i; |
| 7018 | } |
| 7019 | #endif /* CONFIG_MBUF_MCACHE */ |
| 7020 | /* |
| 7021 | * Return the number of bytes in the mbuf chain, m. |
| 7022 | */ |
| 7023 | unsigned int |
| 7024 | m_length(struct mbuf *m) |
| 7025 | { |
| 7026 | struct mbuf *m0; |
| 7027 | unsigned int pktlen; |
| 7028 | |
| 7029 | if (m->m_flags & M_PKTHDR) { |
| 7030 | return m->m_pkthdr.len; |
| 7031 | } |
| 7032 | |
| 7033 | pktlen = 0; |
| 7034 | for (m0 = m; m0 != NULL; m0 = m0->m_next) { |
| 7035 | pktlen += m0->m_len; |
| 7036 | } |
| 7037 | return pktlen; |
| 7038 | } |
| 7039 | |
| 7040 | /* |
| 7041 | * Copy data from a buffer back into the indicated mbuf chain, |
| 7042 | * starting "off" bytes from the beginning, extending the mbuf |
| 7043 | * chain if necessary. |
| 7044 | */ |
| 7045 | void |
| 7046 | m_copyback(struct mbuf *m0, int off, int len, const void *cp) |
| 7047 | { |
| 7048 | #if DEBUG |
| 7049 | struct mbuf *origm = m0; |
| 7050 | int error; |
| 7051 | #endif /* DEBUG */ |
| 7052 | |
| 7053 | if (m0 == NULL) { |
| 7054 | return; |
| 7055 | } |
| 7056 | |
| 7057 | #if DEBUG |
| 7058 | error = |
| 7059 | #endif /* DEBUG */ |
| 7060 | m_copyback0(&m0, off, len, cp, |
| 7061 | M_COPYBACK0_COPYBACK | M_COPYBACK0_EXTEND, M_DONTWAIT); |
| 7062 | |
| 7063 | #if DEBUG |
| 7064 | if (error != 0 || (m0 != NULL && origm != m0)) { |
| 7065 | panic("m_copyback" ); |
| 7066 | } |
| 7067 | #endif /* DEBUG */ |
| 7068 | } |
| 7069 | |
| 7070 | struct mbuf * |
| 7071 | m_copyback_cow(struct mbuf *m0, int off, int len, const void *cp, int how) |
| 7072 | { |
| 7073 | int error; |
| 7074 | |
| 7075 | /* don't support chain expansion */ |
| 7076 | VERIFY(off + len <= m_length(m0)); |
| 7077 | |
| 7078 | error = m_copyback0(&m0, off, len, cp, |
| 7079 | M_COPYBACK0_COPYBACK | M_COPYBACK0_COW, how); |
| 7080 | if (error) { |
| 7081 | /* |
| 7082 | * no way to recover from partial success. |
| 7083 | * just free the chain. |
| 7084 | */ |
| 7085 | m_freem(m: m0); |
| 7086 | return NULL; |
| 7087 | } |
| 7088 | return m0; |
| 7089 | } |
| 7090 | |
| 7091 | /* |
| 7092 | * m_makewritable: ensure the specified range writable. |
| 7093 | */ |
| 7094 | int |
| 7095 | m_makewritable(struct mbuf **mp, int off, int len, int how) |
| 7096 | { |
| 7097 | int error; |
| 7098 | #if DEBUG |
| 7099 | struct mbuf *n; |
| 7100 | int origlen, reslen; |
| 7101 | |
| 7102 | origlen = m_length(*mp); |
| 7103 | #endif /* DEBUG */ |
| 7104 | |
| 7105 | #if 0 /* M_COPYALL is large enough */ |
| 7106 | if (len == M_COPYALL) { |
| 7107 | len = m_length(*mp) - off; /* XXX */ |
| 7108 | } |
| 7109 | #endif |
| 7110 | |
| 7111 | error = m_copyback0(mp, off, len, NULL, |
| 7112 | M_COPYBACK0_PRESERVE | M_COPYBACK0_COW, how); |
| 7113 | |
| 7114 | #if DEBUG |
| 7115 | reslen = 0; |
| 7116 | for (n = *mp; n; n = n->m_next) { |
| 7117 | reslen += n->m_len; |
| 7118 | } |
| 7119 | if (origlen != reslen) { |
| 7120 | panic("m_makewritable: length changed" ); |
| 7121 | } |
| 7122 | if (((*mp)->m_flags & M_PKTHDR) && reslen != (*mp)->m_pkthdr.len) { |
| 7123 | panic("m_makewritable: inconsist" ); |
| 7124 | } |
| 7125 | #endif /* DEBUG */ |
| 7126 | |
| 7127 | return error; |
| 7128 | } |
| 7129 | |
| 7130 | static int |
| 7131 | m_copyback0(struct mbuf **mp0, int off, int len, const void *vp, int flags, |
| 7132 | int how) |
| 7133 | { |
| 7134 | int mlen; |
| 7135 | struct mbuf *m, *n; |
| 7136 | struct mbuf **mp; |
| 7137 | int totlen = 0; |
| 7138 | const char *cp = vp; |
| 7139 | |
| 7140 | VERIFY(mp0 != NULL); |
| 7141 | VERIFY(*mp0 != NULL); |
| 7142 | VERIFY((flags & M_COPYBACK0_PRESERVE) == 0 || cp == NULL); |
| 7143 | VERIFY((flags & M_COPYBACK0_COPYBACK) == 0 || cp != NULL); |
| 7144 | |
| 7145 | /* |
| 7146 | * we don't bother to update "totlen" in the case of M_COPYBACK0_COW, |
| 7147 | * assuming that M_COPYBACK0_EXTEND and M_COPYBACK0_COW are exclusive. |
| 7148 | */ |
| 7149 | |
| 7150 | VERIFY((~flags & (M_COPYBACK0_EXTEND | M_COPYBACK0_COW)) != 0); |
| 7151 | |
| 7152 | mp = mp0; |
| 7153 | m = *mp; |
| 7154 | while (off > (mlen = m->m_len)) { |
| 7155 | off -= mlen; |
| 7156 | totlen += mlen; |
| 7157 | if (m->m_next == NULL) { |
| 7158 | int tspace; |
| 7159 | extend: |
| 7160 | if (!(flags & M_COPYBACK0_EXTEND)) { |
| 7161 | goto out; |
| 7162 | } |
| 7163 | |
| 7164 | /* |
| 7165 | * try to make some space at the end of "m". |
| 7166 | */ |
| 7167 | |
| 7168 | mlen = m->m_len; |
| 7169 | if (off + len >= MINCLSIZE && |
| 7170 | !(m->m_flags & M_EXT) && m->m_len == 0) { |
| 7171 | MCLGET(m, how); |
| 7172 | } |
| 7173 | tspace = M_TRAILINGSPACE(m); |
| 7174 | if (tspace > 0) { |
| 7175 | tspace = MIN(tspace, off + len); |
| 7176 | VERIFY(tspace > 0); |
| 7177 | bzero(mtod(m, char *) + m->m_len, |
| 7178 | MIN(off, tspace)); |
| 7179 | m->m_len += tspace; |
| 7180 | off += mlen; |
| 7181 | totlen -= mlen; |
| 7182 | continue; |
| 7183 | } |
| 7184 | |
| 7185 | /* |
| 7186 | * need to allocate an mbuf. |
| 7187 | */ |
| 7188 | |
| 7189 | if (off + len >= MINCLSIZE) { |
| 7190 | n = m_getcl(wait: how, type: m->m_type, flags: 0); |
| 7191 | } else { |
| 7192 | n = _M_GET(how, m->m_type); |
| 7193 | } |
| 7194 | if (n == NULL) { |
| 7195 | goto out; |
| 7196 | } |
| 7197 | n->m_len = 0; |
| 7198 | n->m_len = MIN(M_TRAILINGSPACE(n), off + len); |
| 7199 | bzero(mtod(n, char *), MIN(n->m_len, off)); |
| 7200 | m->m_next = n; |
| 7201 | } |
| 7202 | mp = &m->m_next; |
| 7203 | m = m->m_next; |
| 7204 | } |
| 7205 | while (len > 0) { |
| 7206 | mlen = m->m_len - off; |
| 7207 | if (mlen != 0 && m_mclhasreference(m)) { |
| 7208 | char *datap; |
| 7209 | int eatlen; |
| 7210 | |
| 7211 | /* |
| 7212 | * this mbuf is read-only. |
| 7213 | * allocate a new writable mbuf and try again. |
| 7214 | */ |
| 7215 | |
| 7216 | #if DIAGNOSTIC |
| 7217 | if (!(flags & M_COPYBACK0_COW)) { |
| 7218 | panic("m_copyback0: read-only" ); |
| 7219 | } |
| 7220 | #endif /* DIAGNOSTIC */ |
| 7221 | |
| 7222 | /* |
| 7223 | * if we're going to write into the middle of |
| 7224 | * a mbuf, split it first. |
| 7225 | */ |
| 7226 | if (off > 0 && len < mlen) { |
| 7227 | n = m_split0(m0: m, len0: off, wait: how, copyhdr: 0); |
| 7228 | if (n == NULL) { |
| 7229 | goto enobufs; |
| 7230 | } |
| 7231 | m->m_next = n; |
| 7232 | mp = &m->m_next; |
| 7233 | m = n; |
| 7234 | off = 0; |
| 7235 | continue; |
| 7236 | } |
| 7237 | |
| 7238 | /* |
| 7239 | * XXX TODO coalesce into the trailingspace of |
| 7240 | * the previous mbuf when possible. |
| 7241 | */ |
| 7242 | |
| 7243 | /* |
| 7244 | * allocate a new mbuf. copy packet header if needed. |
| 7245 | */ |
| 7246 | n = _M_GET(how, m->m_type); |
| 7247 | if (n == NULL) { |
| 7248 | goto enobufs; |
| 7249 | } |
| 7250 | if (off == 0 && (m->m_flags & M_PKTHDR)) { |
| 7251 | M_COPY_PKTHDR(n, m); |
| 7252 | n->m_len = MHLEN; |
| 7253 | } else { |
| 7254 | if (len >= MINCLSIZE) { |
| 7255 | MCLGET(n, M_DONTWAIT); |
| 7256 | } |
| 7257 | n->m_len = |
| 7258 | (n->m_flags & M_EXT) ? MCLBYTES : MLEN; |
| 7259 | } |
| 7260 | if (n->m_len > len) { |
| 7261 | n->m_len = len; |
| 7262 | } |
| 7263 | |
| 7264 | /* |
| 7265 | * free the region which has been overwritten. |
| 7266 | * copying data from old mbufs if requested. |
| 7267 | */ |
| 7268 | if (flags & M_COPYBACK0_PRESERVE) { |
| 7269 | datap = mtod(n, char *); |
| 7270 | } else { |
| 7271 | datap = NULL; |
| 7272 | } |
| 7273 | eatlen = n->m_len; |
| 7274 | VERIFY(off == 0 || eatlen >= mlen); |
| 7275 | if (off > 0) { |
| 7276 | VERIFY(len >= mlen); |
| 7277 | m->m_len = off; |
| 7278 | m->m_next = n; |
| 7279 | if (datap) { |
| 7280 | m_copydata(m, off, len: mlen, vp: datap); |
| 7281 | datap += mlen; |
| 7282 | } |
| 7283 | eatlen -= mlen; |
| 7284 | mp = &m->m_next; |
| 7285 | m = m->m_next; |
| 7286 | } |
| 7287 | while (m != NULL && m_mclhasreference(m) && |
| 7288 | n->m_type == m->m_type && eatlen > 0) { |
| 7289 | mlen = MIN(eatlen, m->m_len); |
| 7290 | if (datap) { |
| 7291 | m_copydata(m, off: 0, len: mlen, vp: datap); |
| 7292 | datap += mlen; |
| 7293 | } |
| 7294 | m->m_data += mlen; |
| 7295 | m->m_len -= mlen; |
| 7296 | eatlen -= mlen; |
| 7297 | if (m->m_len == 0) { |
| 7298 | *mp = m = m_free(m); |
| 7299 | } |
| 7300 | } |
| 7301 | if (eatlen > 0) { |
| 7302 | n->m_len -= eatlen; |
| 7303 | } |
| 7304 | n->m_next = m; |
| 7305 | *mp = m = n; |
| 7306 | continue; |
| 7307 | } |
| 7308 | mlen = MIN(mlen, len); |
| 7309 | if (flags & M_COPYBACK0_COPYBACK) { |
| 7310 | bcopy(src: cp, mtod(m, caddr_t) + off, n: (unsigned)mlen); |
| 7311 | cp += mlen; |
| 7312 | } |
| 7313 | len -= mlen; |
| 7314 | mlen += off; |
| 7315 | off = 0; |
| 7316 | totlen += mlen; |
| 7317 | if (len == 0) { |
| 7318 | break; |
| 7319 | } |
| 7320 | if (m->m_next == NULL) { |
| 7321 | goto extend; |
| 7322 | } |
| 7323 | mp = &m->m_next; |
| 7324 | m = m->m_next; |
| 7325 | } |
| 7326 | out: |
| 7327 | if (((m = *mp0)->m_flags & M_PKTHDR) && (m->m_pkthdr.len < totlen)) { |
| 7328 | VERIFY(flags & M_COPYBACK0_EXTEND); |
| 7329 | m->m_pkthdr.len = totlen; |
| 7330 | } |
| 7331 | |
| 7332 | return 0; |
| 7333 | |
| 7334 | enobufs: |
| 7335 | return ENOBUFS; |
| 7336 | } |
| 7337 | |
| 7338 | uint64_t |
| 7339 | mcl_to_paddr(char *addr) |
| 7340 | { |
| 7341 | #if CONFIG_MBUF_MCACHE |
| 7342 | vm_offset_t base_phys; |
| 7343 | |
| 7344 | if (!MBUF_IN_MAP(addr)) { |
| 7345 | return 0; |
| 7346 | } |
| 7347 | base_phys = mcl_paddr[atop_64(addr - (char *)mbutl)]; |
| 7348 | |
| 7349 | if (base_phys == 0) { |
| 7350 | return 0; |
| 7351 | } |
| 7352 | return (uint64_t)(ptoa_64(base_phys) | ((uint64_t)addr & PAGE_MASK)); |
| 7353 | #else |
| 7354 | extern addr64_t kvtophys(vm_offset_t va); |
| 7355 | |
| 7356 | return kvtophys(va: (vm_offset_t)addr); |
| 7357 | #endif /* CONFIG_MBUF_MCACHE */ |
| 7358 | } |
| 7359 | |
| 7360 | /* |
| 7361 | * Dup the mbuf chain passed in. The whole thing. No cute additional cruft. |
| 7362 | * And really copy the thing. That way, we don't "precompute" checksums |
| 7363 | * for unsuspecting consumers. Assumption: m->m_nextpkt == 0. Trick: for |
| 7364 | * small packets, don't dup into a cluster. That way received packets |
| 7365 | * don't take up too much room in the sockbuf (cf. sbspace()). |
| 7366 | */ |
| 7367 | struct mbuf * |
| 7368 | m_dup(struct mbuf *m, int how) |
| 7369 | { |
| 7370 | struct mbuf *n, **np; |
| 7371 | struct mbuf *top; |
| 7372 | int copyhdr = 0; |
| 7373 | |
| 7374 | np = ⊤ |
| 7375 | top = NULL; |
| 7376 | if (m->m_flags & M_PKTHDR) { |
| 7377 | copyhdr = 1; |
| 7378 | } |
| 7379 | |
| 7380 | /* |
| 7381 | * Quick check: if we have one mbuf and its data fits in an |
| 7382 | * mbuf with packet header, just copy and go. |
| 7383 | */ |
| 7384 | if (m->m_next == NULL) { |
| 7385 | /* Then just move the data into an mbuf and be done... */ |
| 7386 | if (copyhdr) { |
| 7387 | if (m->m_pkthdr.len <= MHLEN && m->m_len <= MHLEN) { |
| 7388 | if ((n = _M_GETHDR(how, m->m_type)) == NULL) { |
| 7389 | return NULL; |
| 7390 | } |
| 7391 | n->m_len = m->m_len; |
| 7392 | m_dup_pkthdr(to: n, from: m, how); |
| 7393 | bcopy(MTOD(m, caddr_t), MTOD(n, caddr_t), n: m->m_len); |
| 7394 | return n; |
| 7395 | } |
| 7396 | } else if (m->m_len <= MLEN) { |
| 7397 | if ((n = _M_GET(how, m->m_type)) == NULL) { |
| 7398 | return NULL; |
| 7399 | } |
| 7400 | bcopy(MTOD(m, caddr_t), MTOD(n, caddr_t), n: m->m_len); |
| 7401 | n->m_len = m->m_len; |
| 7402 | return n; |
| 7403 | } |
| 7404 | } |
| 7405 | while (m != NULL) { |
| 7406 | #if BLUE_DEBUG |
| 7407 | printf("<%x: %x, %x, %x\n" , m, m->m_flags, m->m_len, |
| 7408 | m->m_data); |
| 7409 | #endif |
| 7410 | if (copyhdr) { |
| 7411 | n = _M_GETHDR(how, m->m_type); |
| 7412 | } else { |
| 7413 | n = _M_GET(how, m->m_type); |
| 7414 | } |
| 7415 | if (n == NULL) { |
| 7416 | goto nospace; |
| 7417 | } |
| 7418 | if (m->m_flags & M_EXT) { |
| 7419 | if (m->m_len <= m_maxsize(MC_CL)) { |
| 7420 | MCLGET(n, how); |
| 7421 | } else if (m->m_len <= m_maxsize(MC_BIGCL)) { |
| 7422 | n = m_mbigget(m: n, wait: how); |
| 7423 | } else if (m->m_len <= m_maxsize(MC_16KCL) && njcl > 0) { |
| 7424 | n = m_m16kget(m: n, wait: how); |
| 7425 | } |
| 7426 | if (!(n->m_flags & M_EXT)) { |
| 7427 | (void) m_free(m: n); |
| 7428 | goto nospace; |
| 7429 | } |
| 7430 | } else { |
| 7431 | VERIFY((copyhdr == 1 && m->m_len <= MHLEN) || |
| 7432 | (copyhdr == 0 && m->m_len <= MLEN)); |
| 7433 | } |
| 7434 | *np = n; |
| 7435 | if (copyhdr) { |
| 7436 | /* Don't use M_COPY_PKTHDR: preserve m_data */ |
| 7437 | m_dup_pkthdr(to: n, from: m, how); |
| 7438 | copyhdr = 0; |
| 7439 | if (!(n->m_flags & M_EXT)) { |
| 7440 | n->m_data = (uintptr_t)n->m_pktdat; |
| 7441 | } |
| 7442 | } |
| 7443 | n->m_len = m->m_len; |
| 7444 | /* |
| 7445 | * Get the dup on the same bdry as the original |
| 7446 | * Assume that the two mbufs have the same offset to data area |
| 7447 | * (up to word boundaries) |
| 7448 | */ |
| 7449 | bcopy(MTOD(m, caddr_t), MTOD(n, caddr_t), n: (unsigned)n->m_len); |
| 7450 | m = m->m_next; |
| 7451 | np = &n->m_next; |
| 7452 | #if BLUE_DEBUG |
| 7453 | printf(">%x: %x, %x, %x\n" , n, n->m_flags, n->m_len, |
| 7454 | n->m_data); |
| 7455 | #endif |
| 7456 | } |
| 7457 | |
| 7458 | return top; |
| 7459 | |
| 7460 | nospace: |
| 7461 | m_freem(m: top); |
| 7462 | return NULL; |
| 7463 | } |
| 7464 | |
| 7465 | #define MBUF_MULTIPAGES(m) \ |
| 7466 | (((m)->m_flags & M_EXT) && \ |
| 7467 | ((IS_P2ALIGNED((m)->m_data, PAGE_SIZE) \ |
| 7468 | && (m)->m_len > PAGE_SIZE) || \ |
| 7469 | (!IS_P2ALIGNED((m)->m_data, PAGE_SIZE) && \ |
| 7470 | P2ROUNDUP((m)->m_data, PAGE_SIZE) < ((uintptr_t)(m)->m_data + (m)->m_len)))) |
| 7471 | |
| 7472 | static struct mbuf * |
| 7473 | m_expand(struct mbuf *m, struct mbuf **last) |
| 7474 | { |
| 7475 | struct mbuf *top = NULL; |
| 7476 | struct mbuf **nm = ⊤ |
| 7477 | uintptr_t data0, data; |
| 7478 | unsigned int len0, len; |
| 7479 | |
| 7480 | VERIFY(MBUF_MULTIPAGES(m)); |
| 7481 | VERIFY(m->m_next == NULL); |
| 7482 | data0 = (uintptr_t)m->m_data; |
| 7483 | len0 = m->m_len; |
| 7484 | *last = top; |
| 7485 | |
| 7486 | for (;;) { |
| 7487 | struct mbuf *n; |
| 7488 | |
| 7489 | data = data0; |
| 7490 | if (IS_P2ALIGNED(data, PAGE_SIZE) && len0 > PAGE_SIZE) { |
| 7491 | len = PAGE_SIZE; |
| 7492 | } else if (!IS_P2ALIGNED(data, PAGE_SIZE) && |
| 7493 | P2ROUNDUP(data, PAGE_SIZE) < (data + len0)) { |
| 7494 | len = P2ROUNDUP(data, PAGE_SIZE) - data; |
| 7495 | } else { |
| 7496 | len = len0; |
| 7497 | } |
| 7498 | |
| 7499 | VERIFY(len > 0); |
| 7500 | VERIFY(m->m_flags & M_EXT); |
| 7501 | m->m_data = data; |
| 7502 | m->m_len = len; |
| 7503 | |
| 7504 | *nm = *last = m; |
| 7505 | nm = &m->m_next; |
| 7506 | m->m_next = NULL; |
| 7507 | |
| 7508 | data0 += len; |
| 7509 | len0 -= len; |
| 7510 | if (len0 == 0) { |
| 7511 | break; |
| 7512 | } |
| 7513 | |
| 7514 | n = _M_RETRY(M_DONTWAIT, MT_DATA); |
| 7515 | if (n == NULL) { |
| 7516 | m_freem(m: top); |
| 7517 | top = *last = NULL; |
| 7518 | break; |
| 7519 | } |
| 7520 | |
| 7521 | n->m_ext = m->m_ext; |
| 7522 | m_incref(m); |
| 7523 | n->m_flags |= M_EXT; |
| 7524 | m = n; |
| 7525 | } |
| 7526 | return top; |
| 7527 | } |
| 7528 | |
| 7529 | struct mbuf * |
| 7530 | m_normalize(struct mbuf *m) |
| 7531 | { |
| 7532 | struct mbuf *top = NULL; |
| 7533 | struct mbuf **nm = ⊤ |
| 7534 | boolean_t expanded = FALSE; |
| 7535 | |
| 7536 | while (m != NULL) { |
| 7537 | struct mbuf *n; |
| 7538 | |
| 7539 | n = m->m_next; |
| 7540 | m->m_next = NULL; |
| 7541 | |
| 7542 | /* Does the data cross one or more page boundaries? */ |
| 7543 | if (MBUF_MULTIPAGES(m)) { |
| 7544 | struct mbuf *last; |
| 7545 | if ((m = m_expand(m, last: &last)) == NULL) { |
| 7546 | m_freem(m: n); |
| 7547 | m_freem(m: top); |
| 7548 | top = NULL; |
| 7549 | break; |
| 7550 | } |
| 7551 | *nm = m; |
| 7552 | nm = &last->m_next; |
| 7553 | expanded = TRUE; |
| 7554 | } else { |
| 7555 | *nm = m; |
| 7556 | nm = &m->m_next; |
| 7557 | } |
| 7558 | m = n; |
| 7559 | } |
| 7560 | if (expanded) { |
| 7561 | os_atomic_inc(&mb_normalized, relaxed); |
| 7562 | } |
| 7563 | return top; |
| 7564 | } |
| 7565 | |
| 7566 | /* |
| 7567 | * Append the specified data to the indicated mbuf chain, |
| 7568 | * Extend the mbuf chain if the new data does not fit in |
| 7569 | * existing space. |
| 7570 | * |
| 7571 | * Return 1 if able to complete the job; otherwise 0. |
| 7572 | */ |
| 7573 | int |
| 7574 | m_append(struct mbuf *m0, int len, caddr_t cp) |
| 7575 | { |
| 7576 | struct mbuf *m, *n; |
| 7577 | int remainder, space; |
| 7578 | |
| 7579 | for (m = m0; m->m_next != NULL; m = m->m_next) { |
| 7580 | ; |
| 7581 | } |
| 7582 | remainder = len; |
| 7583 | space = M_TRAILINGSPACE(m); |
| 7584 | if (space > 0) { |
| 7585 | /* |
| 7586 | * Copy into available space. |
| 7587 | */ |
| 7588 | if (space > remainder) { |
| 7589 | space = remainder; |
| 7590 | } |
| 7591 | bcopy(src: cp, mtod(m, caddr_t) + m->m_len, n: space); |
| 7592 | m->m_len += space; |
| 7593 | cp += space; |
| 7594 | remainder -= space; |
| 7595 | } |
| 7596 | while (remainder > 0) { |
| 7597 | /* |
| 7598 | * Allocate a new mbuf; could check space |
| 7599 | * and allocate a cluster instead. |
| 7600 | */ |
| 7601 | n = m_get(M_WAITOK, type: m->m_type); |
| 7602 | if (n == NULL) { |
| 7603 | break; |
| 7604 | } |
| 7605 | n->m_len = min(MLEN, b: remainder); |
| 7606 | bcopy(src: cp, mtod(n, caddr_t), n: n->m_len); |
| 7607 | cp += n->m_len; |
| 7608 | remainder -= n->m_len; |
| 7609 | m->m_next = n; |
| 7610 | m = n; |
| 7611 | } |
| 7612 | if (m0->m_flags & M_PKTHDR) { |
| 7613 | m0->m_pkthdr.len += len - remainder; |
| 7614 | } |
| 7615 | return remainder == 0; |
| 7616 | } |
| 7617 | |
| 7618 | struct mbuf * |
| 7619 | m_last(struct mbuf *m) |
| 7620 | { |
| 7621 | while (m->m_next != NULL) { |
| 7622 | m = m->m_next; |
| 7623 | } |
| 7624 | return m; |
| 7625 | } |
| 7626 | |
| 7627 | unsigned int |
| 7628 | m_fixhdr(struct mbuf *m0) |
| 7629 | { |
| 7630 | u_int len; |
| 7631 | |
| 7632 | VERIFY(m0->m_flags & M_PKTHDR); |
| 7633 | |
| 7634 | len = m_length2(m0, NULL); |
| 7635 | m0->m_pkthdr.len = len; |
| 7636 | return len; |
| 7637 | } |
| 7638 | |
| 7639 | unsigned int |
| 7640 | m_length2(struct mbuf *m0, struct mbuf **last) |
| 7641 | { |
| 7642 | struct mbuf *m; |
| 7643 | u_int len; |
| 7644 | |
| 7645 | len = 0; |
| 7646 | for (m = m0; m != NULL; m = m->m_next) { |
| 7647 | len += m->m_len; |
| 7648 | if (m->m_next == NULL) { |
| 7649 | break; |
| 7650 | } |
| 7651 | } |
| 7652 | if (last != NULL) { |
| 7653 | *last = m; |
| 7654 | } |
| 7655 | return len; |
| 7656 | } |
| 7657 | |
| 7658 | /* |
| 7659 | * Defragment a mbuf chain, returning the shortest possible chain of mbufs |
| 7660 | * and clusters. If allocation fails and this cannot be completed, NULL will |
| 7661 | * be returned, but the passed in chain will be unchanged. Upon success, |
| 7662 | * the original chain will be freed, and the new chain will be returned. |
| 7663 | * |
| 7664 | * If a non-packet header is passed in, the original mbuf (chain?) will |
| 7665 | * be returned unharmed. |
| 7666 | * |
| 7667 | * If offset is specfied, the first mbuf in the chain will have a leading |
| 7668 | * space of the amount stated by the "off" parameter. |
| 7669 | * |
| 7670 | * This routine requires that the m_pkthdr.header field of the original |
| 7671 | * mbuf chain is cleared by the caller. |
| 7672 | */ |
| 7673 | struct mbuf * |
| 7674 | m_defrag_offset(struct mbuf *m0, u_int32_t off, int how) |
| 7675 | { |
| 7676 | struct mbuf *m_new = NULL, *m_final = NULL; |
| 7677 | int progress = 0, length, pktlen; |
| 7678 | |
| 7679 | if (!(m0->m_flags & M_PKTHDR)) { |
| 7680 | return m0; |
| 7681 | } |
| 7682 | |
| 7683 | VERIFY(off < MHLEN); |
| 7684 | m_fixhdr(m0); /* Needed sanity check */ |
| 7685 | |
| 7686 | pktlen = m0->m_pkthdr.len + off; |
| 7687 | if (pktlen > MHLEN) { |
| 7688 | m_final = m_getcl(wait: how, MT_DATA, M_PKTHDR); |
| 7689 | } else { |
| 7690 | m_final = m_gethdr(wait: how, MT_DATA); |
| 7691 | } |
| 7692 | |
| 7693 | if (m_final == NULL) { |
| 7694 | goto nospace; |
| 7695 | } |
| 7696 | |
| 7697 | if (off > 0) { |
| 7698 | pktlen -= off; |
| 7699 | m_final->m_data += off; |
| 7700 | } |
| 7701 | |
| 7702 | /* |
| 7703 | * Caller must have handled the contents pointed to by this |
| 7704 | * pointer before coming here, as otherwise it will point to |
| 7705 | * the original mbuf which will get freed upon success. |
| 7706 | */ |
| 7707 | VERIFY(m0->m_pkthdr.pkt_hdr == NULL); |
| 7708 | |
| 7709 | if (m_dup_pkthdr(to: m_final, from: m0, how) == 0) { |
| 7710 | goto nospace; |
| 7711 | } |
| 7712 | |
| 7713 | m_new = m_final; |
| 7714 | |
| 7715 | while (progress < pktlen) { |
| 7716 | length = pktlen - progress; |
| 7717 | if (length > MCLBYTES) { |
| 7718 | length = MCLBYTES; |
| 7719 | } |
| 7720 | length -= ((m_new == m_final) ? off : 0); |
| 7721 | if (length < 0) { |
| 7722 | goto nospace; |
| 7723 | } |
| 7724 | |
| 7725 | if (m_new == NULL) { |
| 7726 | if (length > MLEN) { |
| 7727 | m_new = m_getcl(wait: how, MT_DATA, flags: 0); |
| 7728 | } else { |
| 7729 | m_new = m_get(wait: how, MT_DATA); |
| 7730 | } |
| 7731 | if (m_new == NULL) { |
| 7732 | goto nospace; |
| 7733 | } |
| 7734 | } |
| 7735 | |
| 7736 | m_copydata(m: m0, off: progress, len: length, mtod(m_new, caddr_t)); |
| 7737 | progress += length; |
| 7738 | m_new->m_len = length; |
| 7739 | if (m_new != m_final) { |
| 7740 | m_cat(m: m_final, n: m_new); |
| 7741 | } |
| 7742 | m_new = NULL; |
| 7743 | } |
| 7744 | m_freem(m: m0); |
| 7745 | m0 = m_final; |
| 7746 | return m0; |
| 7747 | nospace: |
| 7748 | if (m_final) { |
| 7749 | m_freem(m: m_final); |
| 7750 | } |
| 7751 | return NULL; |
| 7752 | } |
| 7753 | |
| 7754 | struct mbuf * |
| 7755 | m_defrag(struct mbuf *m0, int how) |
| 7756 | { |
| 7757 | return m_defrag_offset(m0, off: 0, how); |
| 7758 | } |
| 7759 | |
| 7760 | void |
| 7761 | m_mchtype(struct mbuf *m, int t) |
| 7762 | { |
| 7763 | mtype_stat_inc(t); |
| 7764 | mtype_stat_dec(m->m_type); |
| 7765 | (m)->m_type = t; |
| 7766 | } |
| 7767 | |
| 7768 | void *__unsafe_indexable |
| 7769 | m_mtod(struct mbuf *m) |
| 7770 | { |
| 7771 | return m_mtod_current(m); |
| 7772 | } |
| 7773 | |
| 7774 | void |
| 7775 | m_mcheck(struct mbuf *m) |
| 7776 | { |
| 7777 | _MCHECK(m); |
| 7778 | } |
| 7779 | |
| 7780 | /* |
| 7781 | * Return a pointer to mbuf/offset of location in mbuf chain. |
| 7782 | */ |
| 7783 | struct mbuf * |
| 7784 | m_getptr(struct mbuf *m, int loc, int *off) |
| 7785 | { |
| 7786 | while (loc >= 0) { |
| 7787 | /* Normal end of search. */ |
| 7788 | if (m->m_len > loc) { |
| 7789 | *off = loc; |
| 7790 | return m; |
| 7791 | } else { |
| 7792 | loc -= m->m_len; |
| 7793 | if (m->m_next == NULL) { |
| 7794 | if (loc == 0) { |
| 7795 | /* Point at the end of valid data. */ |
| 7796 | *off = m->m_len; |
| 7797 | return m; |
| 7798 | } |
| 7799 | return NULL; |
| 7800 | } |
| 7801 | m = m->m_next; |
| 7802 | } |
| 7803 | } |
| 7804 | return NULL; |
| 7805 | } |
| 7806 | |
| 7807 | #if CONFIG_MBUF_MCACHE |
| 7808 | /* |
| 7809 | * Inform the corresponding mcache(s) that there's a waiter below. |
| 7810 | */ |
| 7811 | static void |
| 7812 | mbuf_waiter_inc(mbuf_class_t class, boolean_t comp) |
| 7813 | { |
| 7814 | mcache_waiter_inc(m_cache(class)); |
| 7815 | if (comp) { |
| 7816 | if (class == MC_CL) { |
| 7817 | mcache_waiter_inc(m_cache(MC_MBUF_CL)); |
| 7818 | } else if (class == MC_BIGCL) { |
| 7819 | mcache_waiter_inc(m_cache(MC_MBUF_BIGCL)); |
| 7820 | } else if (class == MC_16KCL) { |
| 7821 | mcache_waiter_inc(m_cache(MC_MBUF_16KCL)); |
| 7822 | } else { |
| 7823 | mcache_waiter_inc(m_cache(MC_MBUF_CL)); |
| 7824 | mcache_waiter_inc(m_cache(MC_MBUF_BIGCL)); |
| 7825 | } |
| 7826 | } |
| 7827 | } |
| 7828 | |
| 7829 | /* |
| 7830 | * Inform the corresponding mcache(s) that there's no more waiter below. |
| 7831 | */ |
| 7832 | static void |
| 7833 | mbuf_waiter_dec(mbuf_class_t class, boolean_t comp) |
| 7834 | { |
| 7835 | mcache_waiter_dec(m_cache(class)); |
| 7836 | if (comp) { |
| 7837 | if (class == MC_CL) { |
| 7838 | mcache_waiter_dec(m_cache(MC_MBUF_CL)); |
| 7839 | } else if (class == MC_BIGCL) { |
| 7840 | mcache_waiter_dec(m_cache(MC_MBUF_BIGCL)); |
| 7841 | } else if (class == MC_16KCL) { |
| 7842 | mcache_waiter_dec(m_cache(MC_MBUF_16KCL)); |
| 7843 | } else { |
| 7844 | mcache_waiter_dec(m_cache(MC_MBUF_CL)); |
| 7845 | mcache_waiter_dec(m_cache(MC_MBUF_BIGCL)); |
| 7846 | } |
| 7847 | } |
| 7848 | } |
| 7849 | |
| 7850 | static bool mbuf_watchdog_defunct_active = false; |
| 7851 | |
| 7852 | #endif /* CONFIG_MBUF_MCACHE */ |
| 7853 | |
| 7854 | static uint32_t |
| 7855 | mbuf_watchdog_socket_space(struct socket *so) |
| 7856 | { |
| 7857 | uint32_t space = 0; |
| 7858 | |
| 7859 | if (so == NULL) { |
| 7860 | return 0; |
| 7861 | } |
| 7862 | |
| 7863 | space = so->so_snd.sb_mbcnt + so->so_rcv.sb_mbcnt; |
| 7864 | |
| 7865 | #if INET |
| 7866 | if ((SOCK_DOM(so) == PF_INET || SOCK_DOM(so) == PF_INET6) && |
| 7867 | SOCK_PROTO(so) == IPPROTO_TCP) { |
| 7868 | space += tcp_reass_qlen_space(so); |
| 7869 | } |
| 7870 | #endif /* INET */ |
| 7871 | |
| 7872 | return space; |
| 7873 | } |
| 7874 | |
| 7875 | struct mbuf_watchdog_defunct_args { |
| 7876 | struct proc *top_app; |
| 7877 | uint32_t top_app_space_used; |
| 7878 | bool non_blocking; |
| 7879 | }; |
| 7880 | |
| 7881 | static bool |
| 7882 | proc_fd_trylock(proc_t p) |
| 7883 | { |
| 7884 | return lck_mtx_try_lock(lck: &p->p_fd.fd_lock); |
| 7885 | } |
| 7886 | |
| 7887 | static int |
| 7888 | mbuf_watchdog_defunct_iterate(proc_t p, void *arg) |
| 7889 | { |
| 7890 | struct fileproc *fp = NULL; |
| 7891 | struct mbuf_watchdog_defunct_args *args = |
| 7892 | (struct mbuf_watchdog_defunct_args *)arg; |
| 7893 | uint32_t space_used = 0; |
| 7894 | |
| 7895 | /* |
| 7896 | * Non-blocking is only used when dumping the mbuf usage from the watchdog |
| 7897 | */ |
| 7898 | if (args->non_blocking) { |
| 7899 | if (!proc_fd_trylock(p)) { |
| 7900 | return PROC_RETURNED; |
| 7901 | } |
| 7902 | } else { |
| 7903 | proc_fdlock(p); |
| 7904 | } |
| 7905 | fdt_foreach(fp, p) { |
| 7906 | struct fileglob *fg = fp->fp_glob; |
| 7907 | struct socket *so = NULL; |
| 7908 | |
| 7909 | if (FILEGLOB_DTYPE(fg) != DTYPE_SOCKET) { |
| 7910 | continue; |
| 7911 | } |
| 7912 | so = fg_get_data(fg); |
| 7913 | /* |
| 7914 | * We calculate the space without the socket |
| 7915 | * lock because we don't want to be blocked |
| 7916 | * by another process that called send() and |
| 7917 | * is stuck waiting for mbufs. |
| 7918 | * |
| 7919 | * These variables are 32-bit so we don't have |
| 7920 | * to worry about incomplete reads. |
| 7921 | */ |
| 7922 | space_used += mbuf_watchdog_socket_space(so); |
| 7923 | } |
| 7924 | proc_fdunlock(p); |
| 7925 | if (space_used > args->top_app_space_used) { |
| 7926 | if (args->top_app != NULL) { |
| 7927 | proc_rele(p: args->top_app); |
| 7928 | } |
| 7929 | args->top_app = p; |
| 7930 | args->top_app_space_used = space_used; |
| 7931 | |
| 7932 | return PROC_CLAIMED; |
| 7933 | } else { |
| 7934 | return PROC_RETURNED; |
| 7935 | } |
| 7936 | } |
| 7937 | |
| 7938 | extern char *proc_name_address(void *p); |
| 7939 | |
| 7940 | static void |
| 7941 | mbuf_watchdog_defunct(thread_call_param_t arg0, thread_call_param_t arg1) |
| 7942 | { |
| 7943 | #pragma unused(arg0, arg1) |
| 7944 | struct mbuf_watchdog_defunct_args args = {}; |
| 7945 | struct fileproc *fp = NULL; |
| 7946 | |
| 7947 | args.non_blocking = false; |
| 7948 | proc_iterate(PROC_ALLPROCLIST, |
| 7949 | callout: mbuf_watchdog_defunct_iterate, arg: &args, NULL, NULL); |
| 7950 | |
| 7951 | /* |
| 7952 | * Defunct all sockets from this app. |
| 7953 | */ |
| 7954 | if (args.top_app != NULL) { |
| 7955 | #if CONFIG_MBUF_MCACHE |
| 7956 | /* Restart the watchdog count. */ |
| 7957 | lck_mtx_lock(mbuf_mlock); |
| 7958 | microuptime(&mb_wdtstart); |
| 7959 | lck_mtx_unlock(mbuf_mlock); |
| 7960 | #endif |
| 7961 | os_log(OS_LOG_DEFAULT, "%s: defuncting all sockets from %s.%d" , |
| 7962 | __func__, |
| 7963 | proc_name_address(args.top_app), |
| 7964 | proc_pid(args.top_app)); |
| 7965 | proc_fdlock(args.top_app); |
| 7966 | fdt_foreach(fp, args.top_app) { |
| 7967 | struct fileglob *fg = fp->fp_glob; |
| 7968 | struct socket *so = NULL; |
| 7969 | |
| 7970 | if (FILEGLOB_DTYPE(fg) != DTYPE_SOCKET) { |
| 7971 | continue; |
| 7972 | } |
| 7973 | so = (struct socket *)fp_get_data(fp); |
| 7974 | if (!socket_try_lock(so)) { |
| 7975 | continue; |
| 7976 | } |
| 7977 | if (sosetdefunct(args.top_app, so, |
| 7978 | SHUTDOWN_SOCKET_LEVEL_DISCONNECT_ALL, |
| 7979 | TRUE) == 0) { |
| 7980 | sodefunct(args.top_app, so, |
| 7981 | SHUTDOWN_SOCKET_LEVEL_DISCONNECT_ALL); |
| 7982 | } |
| 7983 | socket_unlock(so, refcount: 0); |
| 7984 | } |
| 7985 | proc_fdunlock(args.top_app); |
| 7986 | proc_rele(p: args.top_app); |
| 7987 | mbstat.m_forcedefunct++; |
| 7988 | #if !CONFIG_MBUF_MCACHE |
| 7989 | zcache_drain(zone_id: ZONE_ID_MBUF_CLUSTER_2K); |
| 7990 | zcache_drain(zone_id: ZONE_ID_MBUF_CLUSTER_4K); |
| 7991 | zcache_drain(zone_id: ZONE_ID_MBUF_CLUSTER_16K); |
| 7992 | zone_drain(zone: zone_by_id(zid: ZONE_ID_MBUF)); |
| 7993 | zone_drain(zone: zone_by_id(zid: ZONE_ID_CLUSTER_2K)); |
| 7994 | zone_drain(zone: zone_by_id(zid: ZONE_ID_CLUSTER_4K)); |
| 7995 | zone_drain(zone: zone_by_id(zid: ZONE_ID_CLUSTER_16K)); |
| 7996 | zone_drain(zone: zone_by_id(zid: ZONE_ID_MBUF_REF)); |
| 7997 | #endif |
| 7998 | } |
| 7999 | #if CONFIG_MBUF_MCACHE |
| 8000 | mbuf_watchdog_defunct_active = false; |
| 8001 | #endif |
| 8002 | } |
| 8003 | |
| 8004 | #if !CONFIG_MBUF_MCACHE |
| 8005 | static LCK_GRP_DECLARE(mbuf_exhausted_grp, "mbuf-exhausted" ); |
| 8006 | static LCK_TICKET_DECLARE(mbuf_exhausted_lock, &mbuf_exhausted_grp); |
| 8007 | static uint32_t mbuf_exhausted_mask; |
| 8008 | |
| 8009 | #define MBUF_EXHAUSTED_DRAIN_MASK (\ |
| 8010 | (1u << MC_MBUF) | \ |
| 8011 | (1u << MC_CL) | \ |
| 8012 | (1u << MC_BIGCL) | \ |
| 8013 | (1u << MC_16KCL)) |
| 8014 | |
| 8015 | #define MBUF_EXHAUSTED_DEFUNCT_MASK (\ |
| 8016 | (1u << MC_MBUF) | \ |
| 8017 | (1u << MC_MBUF_CL) | \ |
| 8018 | (1u << MC_MBUF_BIGCL) | \ |
| 8019 | (1u << MC_MBUF_16KCL)) |
| 8020 | |
| 8021 | static void |
| 8022 | mbuf_watchdog_drain_composite(thread_call_param_t arg0, thread_call_param_t arg1) |
| 8023 | { |
| 8024 | #pragma unused(arg0, arg1) |
| 8025 | zcache_drain(zone_id: ZONE_ID_MBUF_CLUSTER_2K); |
| 8026 | zcache_drain(zone_id: ZONE_ID_MBUF_CLUSTER_4K); |
| 8027 | zcache_drain(zone_id: ZONE_ID_MBUF_CLUSTER_16K); |
| 8028 | } |
| 8029 | |
| 8030 | static void |
| 8031 | mbuf_zone_exhausted_start(uint32_t bit) |
| 8032 | { |
| 8033 | uint64_t deadline; |
| 8034 | uint32_t mask; |
| 8035 | |
| 8036 | mask = mbuf_exhausted_mask; |
| 8037 | mbuf_exhausted_mask = mask | bit; |
| 8038 | |
| 8039 | if ((mask & MBUF_EXHAUSTED_DRAIN_MASK) == 0 && |
| 8040 | (bit & MBUF_EXHAUSTED_DRAIN_MASK)) { |
| 8041 | clock_interval_to_deadline(MB_WDT_MAXTIME * 1000 / 10, |
| 8042 | NSEC_PER_MSEC, result: &deadline); |
| 8043 | thread_call_enter_delayed(call: mbuf_drain_tcall, deadline); |
| 8044 | } |
| 8045 | |
| 8046 | if ((mask & MBUF_EXHAUSTED_DEFUNCT_MASK) == 0 && |
| 8047 | (bit & MBUF_EXHAUSTED_DEFUNCT_MASK)) { |
| 8048 | clock_interval_to_deadline(MB_WDT_MAXTIME * 1000 / 2, |
| 8049 | NSEC_PER_MSEC, result: &deadline); |
| 8050 | thread_call_enter_delayed(call: mbuf_defunct_tcall, deadline); |
| 8051 | } |
| 8052 | } |
| 8053 | |
| 8054 | static void |
| 8055 | mbuf_zone_exhausted_end(uint32_t bit) |
| 8056 | { |
| 8057 | uint32_t mask; |
| 8058 | |
| 8059 | mask = (mbuf_exhausted_mask &= ~bit); |
| 8060 | |
| 8061 | if ((mask & MBUF_EXHAUSTED_DRAIN_MASK) == 0 && |
| 8062 | (bit & MBUF_EXHAUSTED_DRAIN_MASK)) { |
| 8063 | thread_call_cancel(call: mbuf_drain_tcall); |
| 8064 | } |
| 8065 | |
| 8066 | if ((mask & MBUF_EXHAUSTED_DEFUNCT_MASK) == 0 && |
| 8067 | (bit & MBUF_EXHAUSTED_DEFUNCT_MASK)) { |
| 8068 | thread_call_cancel(call: mbuf_defunct_tcall); |
| 8069 | } |
| 8070 | } |
| 8071 | |
| 8072 | static void |
| 8073 | mbuf_zone_exhausted(zone_id_t zid, zone_t zone __unused, bool exhausted) |
| 8074 | { |
| 8075 | uint32_t bit; |
| 8076 | |
| 8077 | if (zid < m_class_to_zid(MBUF_CLASS_MIN) || |
| 8078 | zid > m_class_to_zid(MBUF_CLASS_MAX)) { |
| 8079 | return; |
| 8080 | } |
| 8081 | |
| 8082 | bit = 1u << m_class_from_zid(zid); |
| 8083 | |
| 8084 | lck_ticket_lock_nopreempt(tlock: &mbuf_exhausted_lock, grp: &mbuf_exhausted_grp); |
| 8085 | |
| 8086 | if (exhausted) { |
| 8087 | mbuf_zone_exhausted_start(bit); |
| 8088 | } else { |
| 8089 | mbuf_zone_exhausted_end(bit); |
| 8090 | } |
| 8091 | |
| 8092 | lck_ticket_unlock_nopreempt(tlock: &mbuf_exhausted_lock); |
| 8093 | } |
| 8094 | EVENT_REGISTER_HANDLER(ZONE_EXHAUSTED, mbuf_zone_exhausted); |
| 8095 | #endif /* !CONFIG_MBUF_MCACHE */ |
| 8096 | |
| 8097 | #if CONFIG_MBUF_MCACHE |
| 8098 | /* |
| 8099 | * Called during slab (blocking and non-blocking) allocation. If there |
| 8100 | * is at least one waiter, and the time since the first waiter is blocked |
| 8101 | * is greater than the watchdog timeout, panic the system. |
| 8102 | */ |
| 8103 | static void |
| 8104 | mbuf_watchdog(void) |
| 8105 | { |
| 8106 | struct timeval now; |
| 8107 | unsigned int since; |
| 8108 | static thread_call_t defunct_tcall = NULL; |
| 8109 | |
| 8110 | if (mb_waiters == 0 || !mb_watchdog) { |
| 8111 | return; |
| 8112 | } |
| 8113 | |
| 8114 | LCK_MTX_ASSERT(mbuf_mlock, LCK_MTX_ASSERT_OWNED); |
| 8115 | |
| 8116 | microuptime(&now); |
| 8117 | since = now.tv_sec - mb_wdtstart.tv_sec; |
| 8118 | |
| 8119 | if (mbuf_watchdog_defunct_active) { |
| 8120 | /* |
| 8121 | * Don't panic the system while we are trying |
| 8122 | * to find sockets to defunct. |
| 8123 | */ |
| 8124 | return; |
| 8125 | } |
| 8126 | if (since >= MB_WDT_MAXTIME) { |
| 8127 | panic_plain("%s: %d waiters stuck for %u secs\n%s" , __func__, |
| 8128 | mb_waiters, since, mbuf_dump()); |
| 8129 | /* NOTREACHED */ |
| 8130 | } |
| 8131 | /* |
| 8132 | * Check if we are about to panic the system due |
| 8133 | * to lack of mbufs and start defuncting sockets |
| 8134 | * from processes that use too many sockets. |
| 8135 | * |
| 8136 | * We're always called with the mbuf_mlock held, |
| 8137 | * so that also protects mbuf_watchdog_defunct_active. |
| 8138 | */ |
| 8139 | if (since >= MB_WDT_MAXTIME / 2) { |
| 8140 | /* |
| 8141 | * Start a thread to defunct sockets |
| 8142 | * from apps that are over-using their socket |
| 8143 | * buffers. |
| 8144 | */ |
| 8145 | if (defunct_tcall == NULL) { |
| 8146 | defunct_tcall = |
| 8147 | thread_call_allocate_with_options(mbuf_watchdog_defunct, |
| 8148 | NULL, |
| 8149 | THREAD_CALL_PRIORITY_KERNEL, |
| 8150 | THREAD_CALL_OPTIONS_ONCE); |
| 8151 | } |
| 8152 | if (defunct_tcall != NULL) { |
| 8153 | mbuf_watchdog_defunct_active = true; |
| 8154 | thread_call_enter(defunct_tcall); |
| 8155 | } |
| 8156 | } |
| 8157 | } |
| 8158 | |
| 8159 | /* |
| 8160 | * Called during blocking allocation. Returns TRUE if one or more objects |
| 8161 | * are available at the per-CPU caches layer and that allocation should be |
| 8162 | * retried at that level. |
| 8163 | */ |
| 8164 | static boolean_t |
| 8165 | mbuf_sleep(mbuf_class_t class, unsigned int num, int wait) |
| 8166 | { |
| 8167 | boolean_t mcache_retry = FALSE; |
| 8168 | |
| 8169 | LCK_MTX_ASSERT(mbuf_mlock, LCK_MTX_ASSERT_OWNED); |
| 8170 | |
| 8171 | /* Check if there's anything at the cache layer */ |
| 8172 | if (mbuf_cached_above(class, wait)) { |
| 8173 | mcache_retry = TRUE; |
| 8174 | goto done; |
| 8175 | } |
| 8176 | |
| 8177 | /* Nothing? Then try hard to get it from somewhere */ |
| 8178 | m_reclaim(class, num, (wait & MCR_COMP)); |
| 8179 | |
| 8180 | /* We tried hard and got something? */ |
| 8181 | if (m_infree(class) > 0) { |
| 8182 | mbstat.m_wait++; |
| 8183 | goto done; |
| 8184 | } else if (mbuf_cached_above(class, wait)) { |
| 8185 | mbstat.m_wait++; |
| 8186 | mcache_retry = TRUE; |
| 8187 | goto done; |
| 8188 | } else if (wait & MCR_TRYHARD) { |
| 8189 | mcache_retry = TRUE; |
| 8190 | goto done; |
| 8191 | } |
| 8192 | |
| 8193 | /* |
| 8194 | * There's really nothing for us right now; inform the |
| 8195 | * cache(s) that there is a waiter below and go to sleep. |
| 8196 | */ |
| 8197 | mbuf_waiter_inc(class, (wait & MCR_COMP)); |
| 8198 | |
| 8199 | VERIFY(!(wait & MCR_NOSLEEP)); |
| 8200 | |
| 8201 | /* |
| 8202 | * If this is the first waiter, arm the watchdog timer. Otherwise |
| 8203 | * check if we need to panic the system due to watchdog timeout. |
| 8204 | */ |
| 8205 | if (mb_waiters == 0) { |
| 8206 | microuptime(&mb_wdtstart); |
| 8207 | } else { |
| 8208 | mbuf_watchdog(); |
| 8209 | } |
| 8210 | |
| 8211 | mb_waiters++; |
| 8212 | m_region_expand(class) += m_total(class) + num; |
| 8213 | /* wake up the worker thread */ |
| 8214 | if (mbuf_worker_ready && |
| 8215 | mbuf_worker_needs_wakeup) { |
| 8216 | wakeup((caddr_t)&mbuf_worker_needs_wakeup); |
| 8217 | mbuf_worker_needs_wakeup = FALSE; |
| 8218 | } |
| 8219 | mbwdog_logger("waiting (%d mbufs in class %s)" , num, m_cname(class)); |
| 8220 | (void) msleep(mb_waitchan, mbuf_mlock, (PZERO - 1), m_cname(class), NULL); |
| 8221 | mbwdog_logger("woke up (%d mbufs in class %s) " , num, m_cname(class)); |
| 8222 | |
| 8223 | /* We are now up; stop getting notified until next round */ |
| 8224 | mbuf_waiter_dec(class, (wait & MCR_COMP)); |
| 8225 | |
| 8226 | /* We waited and got something */ |
| 8227 | if (m_infree(class) > 0) { |
| 8228 | mbstat.m_wait++; |
| 8229 | goto done; |
| 8230 | } else if (mbuf_cached_above(class, wait)) { |
| 8231 | mbstat.m_wait++; |
| 8232 | mcache_retry = TRUE; |
| 8233 | } |
| 8234 | done: |
| 8235 | return mcache_retry; |
| 8236 | } |
| 8237 | |
| 8238 | __attribute__((noreturn)) |
| 8239 | static void |
| 8240 | mbuf_worker_thread(void) |
| 8241 | { |
| 8242 | int mbuf_expand; |
| 8243 | |
| 8244 | while (1) { |
| 8245 | lck_mtx_lock(mbuf_mlock); |
| 8246 | mbwdog_logger("worker thread running" ); |
| 8247 | mbuf_worker_run_cnt++; |
| 8248 | mbuf_expand = 0; |
| 8249 | /* |
| 8250 | * Allocations are based on page size, so if we have depleted |
| 8251 | * the reserved spaces, try to free mbufs from the major classes. |
| 8252 | */ |
| 8253 | #if PAGE_SIZE == 4096 |
| 8254 | uint32_t m_mbclusters = m_total(MC_MBUF) >> NMBPCLSHIFT; |
| 8255 | uint32_t m_clusters = m_total(MC_CL); |
| 8256 | uint32_t m_bigclusters = m_total(MC_BIGCL) << NCLPBGSHIFT; |
| 8257 | uint32_t sumclusters = m_mbclusters + m_clusters + m_bigclusters; |
| 8258 | if (sumclusters >= nclusters) { |
| 8259 | mbwdog_logger("reclaiming bigcl" ); |
| 8260 | mbuf_drain_locked(TRUE); |
| 8261 | m_reclaim(MC_BIGCL, 4, FALSE); |
| 8262 | } |
| 8263 | #else |
| 8264 | uint32_t m_16kclusters = m_total(MC_16KCL); |
| 8265 | if (njcl > 0 && (m_16kclusters << NCLPJCLSHIFT) >= njcl) { |
| 8266 | mbwdog_logger("reclaiming 16kcl" ); |
| 8267 | mbuf_drain_locked(TRUE); |
| 8268 | m_reclaim(MC_16KCL, 4, FALSE); |
| 8269 | } |
| 8270 | #endif |
| 8271 | if (m_region_expand(MC_CL) > 0) { |
| 8272 | int n; |
| 8273 | mb_expand_cl_cnt++; |
| 8274 | /* Adjust to current number of cluster in use */ |
| 8275 | n = m_region_expand(MC_CL) - |
| 8276 | (m_total(MC_CL) - m_infree(MC_CL)); |
| 8277 | if ((n + m_total(MC_CL)) > m_maxlimit(MC_CL)) { |
| 8278 | n = m_maxlimit(MC_CL) - m_total(MC_CL); |
| 8279 | } |
| 8280 | if (n > 0) { |
| 8281 | mb_expand_cl_total += n; |
| 8282 | } |
| 8283 | m_region_expand(MC_CL) = 0; |
| 8284 | |
| 8285 | if (n > 0) { |
| 8286 | mbwdog_logger("expanding MC_CL by %d" , n); |
| 8287 | freelist_populate(MC_CL, n, M_WAIT); |
| 8288 | } |
| 8289 | } |
| 8290 | if (m_region_expand(MC_BIGCL) > 0) { |
| 8291 | int n; |
| 8292 | mb_expand_bigcl_cnt++; |
| 8293 | /* Adjust to current number of 4 KB cluster in use */ |
| 8294 | n = m_region_expand(MC_BIGCL) - |
| 8295 | (m_total(MC_BIGCL) - m_infree(MC_BIGCL)); |
| 8296 | if ((n + m_total(MC_BIGCL)) > m_maxlimit(MC_BIGCL)) { |
| 8297 | n = m_maxlimit(MC_BIGCL) - m_total(MC_BIGCL); |
| 8298 | } |
| 8299 | if (n > 0) { |
| 8300 | mb_expand_bigcl_total += n; |
| 8301 | } |
| 8302 | m_region_expand(MC_BIGCL) = 0; |
| 8303 | |
| 8304 | if (n > 0) { |
| 8305 | mbwdog_logger("expanding MC_BIGCL by %d" , n); |
| 8306 | freelist_populate(MC_BIGCL, n, M_WAIT); |
| 8307 | } |
| 8308 | } |
| 8309 | if (m_region_expand(MC_16KCL) > 0) { |
| 8310 | int n; |
| 8311 | mb_expand_16kcl_cnt++; |
| 8312 | /* Adjust to current number of 16 KB cluster in use */ |
| 8313 | n = m_region_expand(MC_16KCL) - |
| 8314 | (m_total(MC_16KCL) - m_infree(MC_16KCL)); |
| 8315 | if ((n + m_total(MC_16KCL)) > m_maxlimit(MC_16KCL)) { |
| 8316 | n = m_maxlimit(MC_16KCL) - m_total(MC_16KCL); |
| 8317 | } |
| 8318 | if (n > 0) { |
| 8319 | mb_expand_16kcl_total += n; |
| 8320 | } |
| 8321 | m_region_expand(MC_16KCL) = 0; |
| 8322 | |
| 8323 | if (n > 0) { |
| 8324 | mbwdog_logger("expanding MC_16KCL by %d" , n); |
| 8325 | (void) freelist_populate(MC_16KCL, n, M_WAIT); |
| 8326 | } |
| 8327 | } |
| 8328 | |
| 8329 | /* |
| 8330 | * Because we can run out of memory before filling the mbuf |
| 8331 | * map, we should not allocate more clusters than they are |
| 8332 | * mbufs -- otherwise we could have a large number of useless |
| 8333 | * clusters allocated. |
| 8334 | */ |
| 8335 | mbwdog_logger("totals: MC_MBUF %d MC_BIGCL %d MC_CL %d MC_16KCL %d" , |
| 8336 | m_total(MC_MBUF), m_total(MC_BIGCL), m_total(MC_CL), |
| 8337 | m_total(MC_16KCL)); |
| 8338 | uint32_t total_mbufs = m_total(MC_MBUF); |
| 8339 | uint32_t total_clusters = m_total(MC_BIGCL) + m_total(MC_CL) + |
| 8340 | m_total(MC_16KCL); |
| 8341 | if (total_mbufs < total_clusters) { |
| 8342 | mbwdog_logger("expanding MC_MBUF by %d" , |
| 8343 | total_clusters - total_mbufs); |
| 8344 | } |
| 8345 | while (total_mbufs < total_clusters) { |
| 8346 | mb_expand_cnt++; |
| 8347 | if (freelist_populate(MC_MBUF, 1, M_WAIT) == 0) { |
| 8348 | break; |
| 8349 | } |
| 8350 | total_mbufs = m_total(MC_MBUF); |
| 8351 | total_clusters = m_total(MC_BIGCL) + m_total(MC_CL) + |
| 8352 | m_total(MC_16KCL); |
| 8353 | } |
| 8354 | |
| 8355 | mbuf_worker_needs_wakeup = TRUE; |
| 8356 | /* |
| 8357 | * If there's a deadlock and we're not sending / receiving |
| 8358 | * packets, net_uptime() won't be updated. Update it here |
| 8359 | * so we are sure it's correct. |
| 8360 | */ |
| 8361 | net_update_uptime(); |
| 8362 | mbuf_worker_last_runtime = net_uptime(); |
| 8363 | assert_wait((caddr_t)&mbuf_worker_needs_wakeup, |
| 8364 | THREAD_UNINT); |
| 8365 | mbwdog_logger("worker thread sleeping" ); |
| 8366 | lck_mtx_unlock(mbuf_mlock); |
| 8367 | (void) thread_block((thread_continue_t)mbuf_worker_thread); |
| 8368 | } |
| 8369 | } |
| 8370 | |
| 8371 | __attribute__((noreturn)) |
| 8372 | static void |
| 8373 | mbuf_worker_thread_init(void) |
| 8374 | { |
| 8375 | mbuf_worker_ready++; |
| 8376 | mbuf_worker_thread(); |
| 8377 | } |
| 8378 | |
| 8379 | static mcl_slab_t * |
| 8380 | slab_get(void *buf) |
| 8381 | { |
| 8382 | mcl_slabg_t *slg; |
| 8383 | unsigned int ix, k; |
| 8384 | |
| 8385 | LCK_MTX_ASSERT(mbuf_mlock, LCK_MTX_ASSERT_OWNED); |
| 8386 | |
| 8387 | VERIFY(MBUF_IN_MAP(buf)); |
| 8388 | ix = ((unsigned char *)buf - mbutl) >> MBSHIFT; |
| 8389 | VERIFY(ix < maxslabgrp); |
| 8390 | |
| 8391 | if ((slg = slabstbl[ix]) == NULL) { |
| 8392 | /* |
| 8393 | * In the current implementation, we never shrink the slabs |
| 8394 | * table; if we attempt to reallocate a cluster group when |
| 8395 | * it's already allocated, panic since this is a sign of a |
| 8396 | * memory corruption (slabstbl[ix] got nullified). |
| 8397 | */ |
| 8398 | ++slabgrp; |
| 8399 | VERIFY(ix < slabgrp); |
| 8400 | /* |
| 8401 | * Slabs expansion can only be done single threaded; when |
| 8402 | * we get here, it must be as a result of m_clalloc() which |
| 8403 | * is serialized and therefore mb_clalloc_busy must be set. |
| 8404 | */ |
| 8405 | VERIFY(mb_clalloc_busy); |
| 8406 | lck_mtx_unlock(mbuf_mlock); |
| 8407 | |
| 8408 | /* This is a new buffer; create the slabs group for it */ |
| 8409 | slg = zalloc_permanent_type(mcl_slabg_t); |
| 8410 | slg->slg_slab = zalloc_permanent(sizeof(mcl_slab_t) * NSLABSPMB, |
| 8411 | ZALIGN(mcl_slab_t)); |
| 8412 | |
| 8413 | lck_mtx_lock(mbuf_mlock); |
| 8414 | /* |
| 8415 | * No other thread could have gone into m_clalloc() after |
| 8416 | * we dropped the lock above, so verify that it's true. |
| 8417 | */ |
| 8418 | VERIFY(mb_clalloc_busy); |
| 8419 | |
| 8420 | slabstbl[ix] = slg; |
| 8421 | |
| 8422 | /* Chain each slab in the group to its forward neighbor */ |
| 8423 | for (k = 1; k < NSLABSPMB; k++) { |
| 8424 | slg->slg_slab[k - 1].sl_next = &slg->slg_slab[k]; |
| 8425 | } |
| 8426 | VERIFY(slg->slg_slab[NSLABSPMB - 1].sl_next == NULL); |
| 8427 | |
| 8428 | /* And chain the last slab in the previous group to this */ |
| 8429 | if (ix > 0) { |
| 8430 | VERIFY(slabstbl[ix - 1]-> |
| 8431 | slg_slab[NSLABSPMB - 1].sl_next == NULL); |
| 8432 | slabstbl[ix - 1]->slg_slab[NSLABSPMB - 1].sl_next = |
| 8433 | &slg->slg_slab[0]; |
| 8434 | } |
| 8435 | } |
| 8436 | |
| 8437 | ix = MTOPG(buf) % NSLABSPMB; |
| 8438 | VERIFY(ix < NSLABSPMB); |
| 8439 | |
| 8440 | return &slg->slg_slab[ix]; |
| 8441 | } |
| 8442 | |
| 8443 | static void |
| 8444 | slab_init(mcl_slab_t *sp, mbuf_class_t class, u_int32_t flags, |
| 8445 | void *base, void *head, unsigned int len, int refcnt, int chunks) |
| 8446 | { |
| 8447 | sp->sl_class = class; |
| 8448 | sp->sl_flags = flags; |
| 8449 | sp->sl_base = base; |
| 8450 | sp->sl_head = head; |
| 8451 | sp->sl_len = len; |
| 8452 | sp->sl_refcnt = refcnt; |
| 8453 | sp->sl_chunks = chunks; |
| 8454 | slab_detach(sp); |
| 8455 | } |
| 8456 | |
| 8457 | static void |
| 8458 | slab_insert(mcl_slab_t *sp, mbuf_class_t class) |
| 8459 | { |
| 8460 | VERIFY(slab_is_detached(sp)); |
| 8461 | m_slab_cnt(class)++; |
| 8462 | TAILQ_INSERT_TAIL(&m_slablist(class), sp, sl_link); |
| 8463 | sp->sl_flags &= ~SLF_DETACHED; |
| 8464 | |
| 8465 | /* |
| 8466 | * If a buffer spans multiple contiguous pages then mark them as |
| 8467 | * detached too |
| 8468 | */ |
| 8469 | if (class == MC_16KCL) { |
| 8470 | int k; |
| 8471 | for (k = 1; k < NSLABSP16KB; k++) { |
| 8472 | sp = sp->sl_next; |
| 8473 | /* Next slab must already be present */ |
| 8474 | VERIFY(sp != NULL && slab_is_detached(sp)); |
| 8475 | sp->sl_flags &= ~SLF_DETACHED; |
| 8476 | } |
| 8477 | } |
| 8478 | } |
| 8479 | |
| 8480 | static void |
| 8481 | slab_remove(mcl_slab_t *sp, mbuf_class_t class) |
| 8482 | { |
| 8483 | int k; |
| 8484 | VERIFY(!slab_is_detached(sp)); |
| 8485 | VERIFY(m_slab_cnt(class) > 0); |
| 8486 | m_slab_cnt(class)--; |
| 8487 | TAILQ_REMOVE(&m_slablist(class), sp, sl_link); |
| 8488 | slab_detach(sp); |
| 8489 | if (class == MC_16KCL) { |
| 8490 | for (k = 1; k < NSLABSP16KB; k++) { |
| 8491 | sp = sp->sl_next; |
| 8492 | /* Next slab must already be present */ |
| 8493 | VERIFY(sp != NULL); |
| 8494 | VERIFY(!slab_is_detached(sp)); |
| 8495 | slab_detach(sp); |
| 8496 | } |
| 8497 | } |
| 8498 | } |
| 8499 | |
| 8500 | static boolean_t |
| 8501 | slab_inrange(mcl_slab_t *sp, void *buf) |
| 8502 | { |
| 8503 | return (uintptr_t)buf >= (uintptr_t)sp->sl_base && |
| 8504 | (uintptr_t)buf < ((uintptr_t)sp->sl_base + sp->sl_len); |
| 8505 | } |
| 8506 | |
| 8507 | #undef panic |
| 8508 | |
| 8509 | static void |
| 8510 | slab_nextptr_panic(mcl_slab_t *sp, void *addr) |
| 8511 | { |
| 8512 | int i; |
| 8513 | unsigned int chunk_len = sp->sl_len / sp->sl_chunks; |
| 8514 | uintptr_t buf = (uintptr_t)sp->sl_base; |
| 8515 | |
| 8516 | for (i = 0; i < sp->sl_chunks; i++, buf += chunk_len) { |
| 8517 | void *next = ((mcache_obj_t *)buf)->obj_next; |
| 8518 | if (next != addr) { |
| 8519 | continue; |
| 8520 | } |
| 8521 | if (!mclverify) { |
| 8522 | if (next != NULL && !MBUF_IN_MAP(next)) { |
| 8523 | mcache_t *cp = m_cache(sp->sl_class); |
| 8524 | panic("%s: %s buffer %p in slab %p modified " |
| 8525 | "after free at offset 0: %p out of range " |
| 8526 | "[%p-%p)\n" , __func__, cp->mc_name, |
| 8527 | (void *)buf, sp, next, mbutl, embutl); |
| 8528 | /* NOTREACHED */ |
| 8529 | } |
| 8530 | } else { |
| 8531 | mcache_audit_t *mca = mcl_audit_buf2mca(sp->sl_class, |
| 8532 | (mcache_obj_t *)buf); |
| 8533 | mcl_audit_verify_nextptr(next, mca); |
| 8534 | } |
| 8535 | } |
| 8536 | } |
| 8537 | |
| 8538 | static void |
| 8539 | slab_detach(mcl_slab_t *sp) |
| 8540 | { |
| 8541 | sp->sl_link.tqe_next = (mcl_slab_t *)-1; |
| 8542 | sp->sl_link.tqe_prev = (mcl_slab_t **)-1; |
| 8543 | sp->sl_flags |= SLF_DETACHED; |
| 8544 | } |
| 8545 | |
| 8546 | static boolean_t |
| 8547 | slab_is_detached(mcl_slab_t *sp) |
| 8548 | { |
| 8549 | return (intptr_t)sp->sl_link.tqe_next == -1 && |
| 8550 | (intptr_t)sp->sl_link.tqe_prev == -1 && |
| 8551 | (sp->sl_flags & SLF_DETACHED); |
| 8552 | } |
| 8553 | |
| 8554 | static void |
| 8555 | mcl_audit_init(void *buf, mcache_audit_t **mca_list, |
| 8556 | mcache_obj_t **con_list, size_t con_size, unsigned int num) |
| 8557 | { |
| 8558 | mcache_audit_t *mca, *mca_tail; |
| 8559 | mcache_obj_t *con = NULL; |
| 8560 | boolean_t save_contents = (con_list != NULL); |
| 8561 | unsigned int i, ix; |
| 8562 | |
| 8563 | ASSERT(num <= NMBPG); |
| 8564 | ASSERT(con_list == NULL || con_size != 0); |
| 8565 | |
| 8566 | ix = MTOPG(buf); |
| 8567 | VERIFY(ix < maxclaudit); |
| 8568 | |
| 8569 | /* Make sure we haven't been here before */ |
| 8570 | for (i = 0; i < num; i++) { |
| 8571 | VERIFY(mclaudit[ix].cl_audit[i] == NULL); |
| 8572 | } |
| 8573 | |
| 8574 | mca = mca_tail = *mca_list; |
| 8575 | if (save_contents) { |
| 8576 | con = *con_list; |
| 8577 | } |
| 8578 | |
| 8579 | for (i = 0; i < num; i++) { |
| 8580 | mcache_audit_t *next; |
| 8581 | |
| 8582 | next = mca->mca_next; |
| 8583 | bzero(mca, sizeof(*mca)); |
| 8584 | mca->mca_next = next; |
| 8585 | mclaudit[ix].cl_audit[i] = mca; |
| 8586 | |
| 8587 | /* Attach the contents buffer if requested */ |
| 8588 | if (save_contents) { |
| 8589 | mcl_saved_contents_t *msc = |
| 8590 | (mcl_saved_contents_t *)(void *)con; |
| 8591 | |
| 8592 | VERIFY(msc != NULL); |
| 8593 | VERIFY(IS_P2ALIGNED(msc, sizeof(u_int64_t))); |
| 8594 | VERIFY(con_size == sizeof(*msc)); |
| 8595 | mca->mca_contents_size = con_size; |
| 8596 | mca->mca_contents = msc; |
| 8597 | con = con->obj_next; |
| 8598 | bzero(mca->mca_contents, mca->mca_contents_size); |
| 8599 | } |
| 8600 | |
| 8601 | mca_tail = mca; |
| 8602 | mca = mca->mca_next; |
| 8603 | } |
| 8604 | |
| 8605 | if (save_contents) { |
| 8606 | *con_list = con; |
| 8607 | } |
| 8608 | |
| 8609 | *mca_list = mca_tail->mca_next; |
| 8610 | mca_tail->mca_next = NULL; |
| 8611 | } |
| 8612 | |
| 8613 | static void |
| 8614 | mcl_audit_free(void *buf, unsigned int num) |
| 8615 | { |
| 8616 | unsigned int i, ix; |
| 8617 | mcache_audit_t *mca, *mca_list; |
| 8618 | |
| 8619 | ix = MTOPG(buf); |
| 8620 | VERIFY(ix < maxclaudit); |
| 8621 | |
| 8622 | if (mclaudit[ix].cl_audit[0] != NULL) { |
| 8623 | mca_list = mclaudit[ix].cl_audit[0]; |
| 8624 | for (i = 0; i < num; i++) { |
| 8625 | mca = mclaudit[ix].cl_audit[i]; |
| 8626 | mclaudit[ix].cl_audit[i] = NULL; |
| 8627 | if (mca->mca_contents) { |
| 8628 | mcache_free(mcl_audit_con_cache, |
| 8629 | mca->mca_contents); |
| 8630 | } |
| 8631 | } |
| 8632 | mcache_free_ext(mcache_audit_cache, |
| 8633 | (mcache_obj_t *)mca_list); |
| 8634 | } |
| 8635 | } |
| 8636 | |
| 8637 | /* |
| 8638 | * Given an address of a buffer (mbuf/2KB/4KB/16KB), return |
| 8639 | * the corresponding audit structure for that buffer. |
| 8640 | */ |
| 8641 | static mcache_audit_t * |
| 8642 | mcl_audit_buf2mca(mbuf_class_t class, mcache_obj_t *mobj) |
| 8643 | { |
| 8644 | mcache_audit_t *mca = NULL; |
| 8645 | int ix = MTOPG(mobj), m_idx = 0; |
| 8646 | unsigned char *page_addr; |
| 8647 | |
| 8648 | VERIFY(ix < maxclaudit); |
| 8649 | VERIFY(IS_P2ALIGNED(mobj, MIN(m_maxsize(class), PAGE_SIZE))); |
| 8650 | |
| 8651 | page_addr = PGTOM(ix); |
| 8652 | |
| 8653 | switch (class) { |
| 8654 | case MC_MBUF: |
| 8655 | /* |
| 8656 | * For the mbuf case, find the index of the page |
| 8657 | * used by the mbuf and use that index to locate the |
| 8658 | * base address of the page. Then find out the |
| 8659 | * mbuf index relative to the page base and use |
| 8660 | * it to locate the audit structure. |
| 8661 | */ |
| 8662 | m_idx = MBPAGEIDX(page_addr, mobj); |
| 8663 | VERIFY(m_idx < (int)NMBPG); |
| 8664 | mca = mclaudit[ix].cl_audit[m_idx]; |
| 8665 | break; |
| 8666 | |
| 8667 | case MC_CL: |
| 8668 | /* |
| 8669 | * Same thing as above, but for 2KB clusters in a page. |
| 8670 | */ |
| 8671 | m_idx = CLPAGEIDX(page_addr, mobj); |
| 8672 | VERIFY(m_idx < (int)NCLPG); |
| 8673 | mca = mclaudit[ix].cl_audit[m_idx]; |
| 8674 | break; |
| 8675 | |
| 8676 | case MC_BIGCL: |
| 8677 | m_idx = BCLPAGEIDX(page_addr, mobj); |
| 8678 | VERIFY(m_idx < (int)NBCLPG); |
| 8679 | mca = mclaudit[ix].cl_audit[m_idx]; |
| 8680 | break; |
| 8681 | case MC_16KCL: |
| 8682 | /* |
| 8683 | * Same as above, but only return the first element. |
| 8684 | */ |
| 8685 | mca = mclaudit[ix].cl_audit[0]; |
| 8686 | break; |
| 8687 | |
| 8688 | default: |
| 8689 | VERIFY(0); |
| 8690 | /* NOTREACHED */ |
| 8691 | } |
| 8692 | |
| 8693 | return mca; |
| 8694 | } |
| 8695 | |
| 8696 | static void |
| 8697 | mcl_audit_mbuf(mcache_audit_t *mca, void *addr, boolean_t composite, |
| 8698 | boolean_t alloc) |
| 8699 | { |
| 8700 | struct mbuf *m = addr; |
| 8701 | mcache_obj_t *next = ((mcache_obj_t *)m)->obj_next; |
| 8702 | |
| 8703 | VERIFY(mca->mca_contents != NULL && |
| 8704 | mca->mca_contents_size == AUDIT_CONTENTS_SIZE); |
| 8705 | |
| 8706 | if (mclverify) { |
| 8707 | mcl_audit_verify_nextptr(next, mca); |
| 8708 | } |
| 8709 | |
| 8710 | if (!alloc) { |
| 8711 | /* Save constructed mbuf fields */ |
| 8712 | mcl_audit_save_mbuf(m, mca); |
| 8713 | if (mclverify) { |
| 8714 | mcache_set_pattern(MCACHE_FREE_PATTERN, m, |
| 8715 | m_maxsize(MC_MBUF)); |
| 8716 | } |
| 8717 | ((mcache_obj_t *)m)->obj_next = next; |
| 8718 | return; |
| 8719 | } |
| 8720 | |
| 8721 | /* Check if the buffer has been corrupted while in freelist */ |
| 8722 | if (mclverify) { |
| 8723 | mcache_audit_free_verify_set(mca, addr, 0, m_maxsize(MC_MBUF)); |
| 8724 | } |
| 8725 | /* Restore constructed mbuf fields */ |
| 8726 | mcl_audit_restore_mbuf(m, mca, composite); |
| 8727 | } |
| 8728 | |
| 8729 | static void |
| 8730 | mcl_audit_restore_mbuf(struct mbuf *m, mcache_audit_t *mca, boolean_t composite) |
| 8731 | { |
| 8732 | struct mbuf *ms = MCA_SAVED_MBUF_PTR(mca); |
| 8733 | |
| 8734 | if (composite) { |
| 8735 | struct mbuf *next = m->m_next; |
| 8736 | VERIFY(ms->m_flags == M_EXT && m_get_rfa(ms) != NULL && |
| 8737 | MBUF_IS_COMPOSITE(ms)); |
| 8738 | VERIFY(mca->mca_contents_size == AUDIT_CONTENTS_SIZE); |
| 8739 | /* |
| 8740 | * We could have hand-picked the mbuf fields and restore |
| 8741 | * them individually, but that will be a maintenance |
| 8742 | * headache. Instead, restore everything that was saved; |
| 8743 | * the mbuf layer will recheck and reinitialize anyway. |
| 8744 | */ |
| 8745 | bcopy(ms, m, MCA_SAVED_MBUF_SIZE); |
| 8746 | m->m_next = next; |
| 8747 | } else { |
| 8748 | /* |
| 8749 | * For a regular mbuf (no cluster attached) there's nothing |
| 8750 | * to restore other than the type field, which is expected |
| 8751 | * to be MT_FREE. |
| 8752 | */ |
| 8753 | m->m_type = ms->m_type; |
| 8754 | } |
| 8755 | _MCHECK(m); |
| 8756 | } |
| 8757 | |
| 8758 | static void |
| 8759 | mcl_audit_save_mbuf(struct mbuf *m, mcache_audit_t *mca) |
| 8760 | { |
| 8761 | VERIFY(mca->mca_contents_size == AUDIT_CONTENTS_SIZE); |
| 8762 | _MCHECK(m); |
| 8763 | bcopy(m, MCA_SAVED_MBUF_PTR(mca), MCA_SAVED_MBUF_SIZE); |
| 8764 | } |
| 8765 | |
| 8766 | static void |
| 8767 | mcl_audit_cluster(mcache_audit_t *mca, void *addr, size_t size, boolean_t alloc, |
| 8768 | boolean_t save_next) |
| 8769 | { |
| 8770 | mcache_obj_t *next = ((mcache_obj_t *)addr)->obj_next; |
| 8771 | |
| 8772 | if (!alloc) { |
| 8773 | if (mclverify) { |
| 8774 | mcache_set_pattern(MCACHE_FREE_PATTERN, addr, size); |
| 8775 | } |
| 8776 | if (save_next) { |
| 8777 | mcl_audit_verify_nextptr(next, mca); |
| 8778 | ((mcache_obj_t *)addr)->obj_next = next; |
| 8779 | } |
| 8780 | } else if (mclverify) { |
| 8781 | /* Check if the buffer has been corrupted while in freelist */ |
| 8782 | mcl_audit_verify_nextptr(next, mca); |
| 8783 | mcache_audit_free_verify_set(mca, addr, 0, size); |
| 8784 | } |
| 8785 | } |
| 8786 | |
| 8787 | static void |
| 8788 | mcl_audit_scratch(mcache_audit_t *mca) |
| 8789 | { |
| 8790 | void *stack[MCACHE_STACK_DEPTH + 1]; |
| 8791 | mcl_scratch_audit_t *msa; |
| 8792 | struct timeval now; |
| 8793 | |
| 8794 | VERIFY(mca->mca_contents != NULL); |
| 8795 | msa = MCA_SAVED_SCRATCH_PTR(mca); |
| 8796 | |
| 8797 | msa->msa_pthread = msa->msa_thread; |
| 8798 | msa->msa_thread = current_thread(); |
| 8799 | bcopy(msa->msa_stack, msa->msa_pstack, sizeof(msa->msa_pstack)); |
| 8800 | msa->msa_pdepth = msa->msa_depth; |
| 8801 | bzero(stack, sizeof(stack)); |
| 8802 | msa->msa_depth = OSBacktrace(stack, MCACHE_STACK_DEPTH + 1) - 1; |
| 8803 | bcopy(&stack[1], msa->msa_stack, sizeof(msa->msa_stack)); |
| 8804 | |
| 8805 | msa->msa_ptstamp = msa->msa_tstamp; |
| 8806 | microuptime(&now); |
| 8807 | /* tstamp is in ms relative to base_ts */ |
| 8808 | msa->msa_tstamp = ((now.tv_usec - mb_start.tv_usec) / 1000); |
| 8809 | if ((now.tv_sec - mb_start.tv_sec) > 0) { |
| 8810 | msa->msa_tstamp += ((now.tv_sec - mb_start.tv_sec) * 1000); |
| 8811 | } |
| 8812 | } |
| 8813 | |
| 8814 | __abortlike |
| 8815 | static void |
| 8816 | mcl_audit_mcheck_panic(struct mbuf *m) |
| 8817 | { |
| 8818 | char buf[DUMP_MCA_BUF_SIZE]; |
| 8819 | mcache_audit_t *mca; |
| 8820 | |
| 8821 | MRANGE(m); |
| 8822 | mca = mcl_audit_buf2mca(MC_MBUF, (mcache_obj_t *)m); |
| 8823 | |
| 8824 | panic("mcl_audit: freed mbuf %p with type 0x%x (instead of 0x%x)\n%s" , |
| 8825 | m, (u_int16_t)m->m_type, MT_FREE, mcache_dump_mca(buf, mca)); |
| 8826 | /* NOTREACHED */ |
| 8827 | } |
| 8828 | |
| 8829 | __abortlike |
| 8830 | static void |
| 8831 | mcl_audit_verify_nextptr_panic(void *next, mcache_audit_t *mca) |
| 8832 | { |
| 8833 | char buf[DUMP_MCA_BUF_SIZE]; |
| 8834 | panic("mcl_audit: buffer %p modified after free at offset 0: " |
| 8835 | "%p out of range [%p-%p)\n%s\n" , |
| 8836 | mca->mca_addr, next, mbutl, embutl, mcache_dump_mca(buf, mca)); |
| 8837 | /* NOTREACHED */ |
| 8838 | } |
| 8839 | |
| 8840 | static void |
| 8841 | mcl_audit_verify_nextptr(void *next, mcache_audit_t *mca) |
| 8842 | { |
| 8843 | if (next != NULL && !MBUF_IN_MAP(next) && |
| 8844 | (next != (void *)MCACHE_FREE_PATTERN || !mclverify)) { |
| 8845 | mcl_audit_verify_nextptr_panic(next, mca); |
| 8846 | } |
| 8847 | } |
| 8848 | |
| 8849 | static uintptr_t |
| 8850 | hash_mix(uintptr_t x) |
| 8851 | { |
| 8852 | #ifndef __LP64__ |
| 8853 | x += ~(x << 15); |
| 8854 | x ^= (x >> 10); |
| 8855 | x += (x << 3); |
| 8856 | x ^= (x >> 6); |
| 8857 | x += ~(x << 11); |
| 8858 | x ^= (x >> 16); |
| 8859 | #else |
| 8860 | x += ~(x << 32); |
| 8861 | x ^= (x >> 22); |
| 8862 | x += ~(x << 13); |
| 8863 | x ^= (x >> 8); |
| 8864 | x += (x << 3); |
| 8865 | x ^= (x >> 15); |
| 8866 | x += ~(x << 27); |
| 8867 | x ^= (x >> 31); |
| 8868 | #endif |
| 8869 | return x; |
| 8870 | } |
| 8871 | |
| 8872 | static uint32_t |
| 8873 | hashbacktrace(uintptr_t* bt, uint32_t depth, uint32_t max_size) |
| 8874 | { |
| 8875 | uintptr_t hash = 0; |
| 8876 | uintptr_t mask = max_size - 1; |
| 8877 | |
| 8878 | while (depth) { |
| 8879 | hash += bt[--depth]; |
| 8880 | } |
| 8881 | |
| 8882 | hash = hash_mix(hash) & mask; |
| 8883 | |
| 8884 | assert(hash < max_size); |
| 8885 | |
| 8886 | return (uint32_t) hash; |
| 8887 | } |
| 8888 | |
| 8889 | static uint32_t |
| 8890 | hashaddr(uintptr_t pt, uint32_t max_size) |
| 8891 | { |
| 8892 | uintptr_t hash = 0; |
| 8893 | uintptr_t mask = max_size - 1; |
| 8894 | |
| 8895 | hash = hash_mix(pt) & mask; |
| 8896 | |
| 8897 | assert(hash < max_size); |
| 8898 | |
| 8899 | return (uint32_t) hash; |
| 8900 | } |
| 8901 | |
| 8902 | /* This function turns on mbuf leak detection */ |
| 8903 | static void |
| 8904 | mleak_activate(void) |
| 8905 | { |
| 8906 | mleak_table.mleak_sample_factor = MLEAK_SAMPLE_FACTOR; |
| 8907 | PE_parse_boot_argn("mleak_sample_factor" , |
| 8908 | &mleak_table.mleak_sample_factor, |
| 8909 | sizeof(mleak_table.mleak_sample_factor)); |
| 8910 | |
| 8911 | if (mleak_table.mleak_sample_factor == 0) { |
| 8912 | mclfindleak = 0; |
| 8913 | } |
| 8914 | |
| 8915 | if (mclfindleak == 0) { |
| 8916 | return; |
| 8917 | } |
| 8918 | |
| 8919 | vm_size_t alloc_size = |
| 8920 | mleak_alloc_buckets * sizeof(struct mallocation); |
| 8921 | vm_size_t trace_size = mleak_trace_buckets * sizeof(struct mtrace); |
| 8922 | |
| 8923 | mleak_allocations = zalloc_permanent(alloc_size, ZALIGN(struct mallocation)); |
| 8924 | mleak_traces = zalloc_permanent(trace_size, ZALIGN(struct mtrace)); |
| 8925 | mleak_stat = zalloc_permanent(MLEAK_STAT_SIZE(MLEAK_NUM_TRACES), |
| 8926 | ZALIGN(mleak_stat_t)); |
| 8927 | |
| 8928 | mleak_stat->ml_cnt = MLEAK_NUM_TRACES; |
| 8929 | #ifdef __LP64__ |
| 8930 | mleak_stat->ml_isaddr64 = 1; |
| 8931 | #endif /* __LP64__ */ |
| 8932 | } |
| 8933 | |
| 8934 | static void |
| 8935 | mleak_logger(u_int32_t num, mcache_obj_t *addr, boolean_t alloc) |
| 8936 | { |
| 8937 | int temp; |
| 8938 | |
| 8939 | if (mclfindleak == 0) { |
| 8940 | return; |
| 8941 | } |
| 8942 | |
| 8943 | if (!alloc) { |
| 8944 | return mleak_free(addr); |
| 8945 | } |
| 8946 | |
| 8947 | temp = os_atomic_inc_orig(&mleak_table.mleak_capture, relaxed); |
| 8948 | |
| 8949 | if ((temp % mleak_table.mleak_sample_factor) == 0 && addr != NULL) { |
| 8950 | uintptr_t bt[MLEAK_STACK_DEPTH]; |
| 8951 | unsigned int logged = backtrace(bt, MLEAK_STACK_DEPTH, NULL, NULL); |
| 8952 | mleak_log(bt, addr, logged, num); |
| 8953 | } |
| 8954 | } |
| 8955 | |
| 8956 | /* |
| 8957 | * This function records the allocation in the mleak_allocations table |
| 8958 | * and the backtrace in the mleak_traces table; if allocation slot is in use, |
| 8959 | * replace old allocation with new one if the trace slot is in use, return |
| 8960 | * (or increment refcount if same trace). |
| 8961 | */ |
| 8962 | static boolean_t |
| 8963 | mleak_log(uintptr_t *bt, mcache_obj_t *addr, uint32_t depth, int num) |
| 8964 | { |
| 8965 | struct mallocation *allocation; |
| 8966 | struct mtrace *trace; |
| 8967 | uint32_t trace_index; |
| 8968 | |
| 8969 | /* Quit if someone else modifying the tables */ |
| 8970 | if (!lck_mtx_try_lock_spin(mleak_lock)) { |
| 8971 | mleak_table.total_conflicts++; |
| 8972 | return FALSE; |
| 8973 | } |
| 8974 | |
| 8975 | allocation = &mleak_allocations[hashaddr((uintptr_t)addr, |
| 8976 | mleak_alloc_buckets)]; |
| 8977 | trace_index = hashbacktrace(bt, depth, mleak_trace_buckets); |
| 8978 | trace = &mleak_traces[trace_index]; |
| 8979 | |
| 8980 | VERIFY(allocation <= &mleak_allocations[mleak_alloc_buckets - 1]); |
| 8981 | VERIFY(trace <= &mleak_traces[mleak_trace_buckets - 1]); |
| 8982 | |
| 8983 | allocation->hitcount++; |
| 8984 | trace->hitcount++; |
| 8985 | |
| 8986 | /* |
| 8987 | * If the allocation bucket we want is occupied |
| 8988 | * and the occupier has the same trace, just bail. |
| 8989 | */ |
| 8990 | if (allocation->element != NULL && |
| 8991 | trace_index == allocation->trace_index) { |
| 8992 | mleak_table.alloc_collisions++; |
| 8993 | lck_mtx_unlock(mleak_lock); |
| 8994 | return TRUE; |
| 8995 | } |
| 8996 | |
| 8997 | /* |
| 8998 | * Store the backtrace in the traces array; |
| 8999 | * Size of zero = trace bucket is free. |
| 9000 | */ |
| 9001 | if (trace->allocs > 0 && |
| 9002 | bcmp(trace->addr, bt, (depth * sizeof(uintptr_t))) != 0) { |
| 9003 | /* Different, unique trace, but the same hash! Bail out. */ |
| 9004 | trace->collisions++; |
| 9005 | mleak_table.trace_collisions++; |
| 9006 | lck_mtx_unlock(mleak_lock); |
| 9007 | return TRUE; |
| 9008 | } else if (trace->allocs > 0) { |
| 9009 | /* Same trace, already added, so increment refcount */ |
| 9010 | trace->allocs++; |
| 9011 | } else { |
| 9012 | /* Found an unused trace bucket, so record the trace here */ |
| 9013 | if (trace->depth != 0) { |
| 9014 | /* this slot previously used but not currently in use */ |
| 9015 | mleak_table.trace_overwrites++; |
| 9016 | } |
| 9017 | mleak_table.trace_recorded++; |
| 9018 | trace->allocs = 1; |
| 9019 | memcpy(trace->addr, bt, (depth * sizeof(uintptr_t))); |
| 9020 | trace->depth = depth; |
| 9021 | trace->collisions = 0; |
| 9022 | } |
| 9023 | |
| 9024 | /* Step 2: Store the allocation record in the allocations array */ |
| 9025 | if (allocation->element != NULL) { |
| 9026 | /* |
| 9027 | * Replace an existing allocation. No need to preserve |
| 9028 | * because only a subset of the allocations are being |
| 9029 | * recorded anyway. |
| 9030 | */ |
| 9031 | mleak_table.alloc_collisions++; |
| 9032 | } else if (allocation->trace_index != 0) { |
| 9033 | mleak_table.alloc_overwrites++; |
| 9034 | } |
| 9035 | allocation->element = addr; |
| 9036 | allocation->trace_index = trace_index; |
| 9037 | allocation->count = num; |
| 9038 | mleak_table.alloc_recorded++; |
| 9039 | mleak_table.outstanding_allocs++; |
| 9040 | |
| 9041 | lck_mtx_unlock(mleak_lock); |
| 9042 | return TRUE; |
| 9043 | } |
| 9044 | |
| 9045 | static void |
| 9046 | mleak_free(mcache_obj_t *addr) |
| 9047 | { |
| 9048 | while (addr != NULL) { |
| 9049 | struct mallocation *allocation = &mleak_allocations |
| 9050 | [hashaddr((uintptr_t)addr, mleak_alloc_buckets)]; |
| 9051 | |
| 9052 | if (allocation->element == addr && |
| 9053 | allocation->trace_index < mleak_trace_buckets) { |
| 9054 | lck_mtx_lock_spin(mleak_lock); |
| 9055 | if (allocation->element == addr && |
| 9056 | allocation->trace_index < mleak_trace_buckets) { |
| 9057 | struct mtrace *trace; |
| 9058 | trace = &mleak_traces[allocation->trace_index]; |
| 9059 | /* allocs = 0 means trace bucket is unused */ |
| 9060 | if (trace->allocs > 0) { |
| 9061 | trace->allocs--; |
| 9062 | } |
| 9063 | if (trace->allocs == 0) { |
| 9064 | trace->depth = 0; |
| 9065 | } |
| 9066 | /* NULL element means alloc bucket is unused */ |
| 9067 | allocation->element = NULL; |
| 9068 | mleak_table.outstanding_allocs--; |
| 9069 | } |
| 9070 | lck_mtx_unlock(mleak_lock); |
| 9071 | } |
| 9072 | addr = addr->obj_next; |
| 9073 | } |
| 9074 | } |
| 9075 | |
| 9076 | static void |
| 9077 | mleak_sort_traces() |
| 9078 | { |
| 9079 | int i, j, k; |
| 9080 | struct mtrace *swap; |
| 9081 | |
| 9082 | for (i = 0; i < MLEAK_NUM_TRACES; i++) { |
| 9083 | mleak_top_trace[i] = NULL; |
| 9084 | } |
| 9085 | |
| 9086 | for (i = 0, j = 0; j < MLEAK_NUM_TRACES && i < mleak_trace_buckets; i++) { |
| 9087 | if (mleak_traces[i].allocs <= 0) { |
| 9088 | continue; |
| 9089 | } |
| 9090 | |
| 9091 | mleak_top_trace[j] = &mleak_traces[i]; |
| 9092 | for (k = j; k > 0; k--) { |
| 9093 | if (mleak_top_trace[k]->allocs <= |
| 9094 | mleak_top_trace[k - 1]->allocs) { |
| 9095 | break; |
| 9096 | } |
| 9097 | |
| 9098 | swap = mleak_top_trace[k - 1]; |
| 9099 | mleak_top_trace[k - 1] = mleak_top_trace[k]; |
| 9100 | mleak_top_trace[k] = swap; |
| 9101 | } |
| 9102 | j++; |
| 9103 | } |
| 9104 | |
| 9105 | j--; |
| 9106 | for (; i < mleak_trace_buckets; i++) { |
| 9107 | if (mleak_traces[i].allocs <= mleak_top_trace[j]->allocs) { |
| 9108 | continue; |
| 9109 | } |
| 9110 | |
| 9111 | mleak_top_trace[j] = &mleak_traces[i]; |
| 9112 | |
| 9113 | for (k = j; k > 0; k--) { |
| 9114 | if (mleak_top_trace[k]->allocs <= |
| 9115 | mleak_top_trace[k - 1]->allocs) { |
| 9116 | break; |
| 9117 | } |
| 9118 | |
| 9119 | swap = mleak_top_trace[k - 1]; |
| 9120 | mleak_top_trace[k - 1] = mleak_top_trace[k]; |
| 9121 | mleak_top_trace[k] = swap; |
| 9122 | } |
| 9123 | } |
| 9124 | } |
| 9125 | |
| 9126 | static void |
| 9127 | mleak_update_stats() |
| 9128 | { |
| 9129 | mleak_trace_stat_t *mltr; |
| 9130 | int i; |
| 9131 | |
| 9132 | VERIFY(mleak_stat != NULL); |
| 9133 | #ifdef __LP64__ |
| 9134 | VERIFY(mleak_stat->ml_isaddr64); |
| 9135 | #else |
| 9136 | VERIFY(!mleak_stat->ml_isaddr64); |
| 9137 | #endif /* !__LP64__ */ |
| 9138 | VERIFY(mleak_stat->ml_cnt == MLEAK_NUM_TRACES); |
| 9139 | |
| 9140 | mleak_sort_traces(); |
| 9141 | |
| 9142 | mltr = &mleak_stat->ml_trace[0]; |
| 9143 | bzero(mltr, sizeof(*mltr) * MLEAK_NUM_TRACES); |
| 9144 | for (i = 0; i < MLEAK_NUM_TRACES; i++) { |
| 9145 | int j; |
| 9146 | |
| 9147 | if (mleak_top_trace[i] == NULL || |
| 9148 | mleak_top_trace[i]->allocs == 0) { |
| 9149 | continue; |
| 9150 | } |
| 9151 | |
| 9152 | mltr->mltr_collisions = mleak_top_trace[i]->collisions; |
| 9153 | mltr->mltr_hitcount = mleak_top_trace[i]->hitcount; |
| 9154 | mltr->mltr_allocs = mleak_top_trace[i]->allocs; |
| 9155 | mltr->mltr_depth = mleak_top_trace[i]->depth; |
| 9156 | |
| 9157 | VERIFY(mltr->mltr_depth <= MLEAK_STACK_DEPTH); |
| 9158 | for (j = 0; j < mltr->mltr_depth; j++) { |
| 9159 | mltr->mltr_addr[j] = mleak_top_trace[i]->addr[j]; |
| 9160 | } |
| 9161 | |
| 9162 | mltr++; |
| 9163 | } |
| 9164 | } |
| 9165 | |
| 9166 | static struct mbtypes { |
| 9167 | int mt_type; |
| 9168 | const char *mt_name; |
| 9169 | } mbtypes[] = { |
| 9170 | { MT_DATA, "data" }, |
| 9171 | { MT_OOBDATA, "oob data" }, |
| 9172 | { MT_CONTROL, "ancillary data" }, |
| 9173 | { MT_HEADER, "packet headers" }, |
| 9174 | { MT_SOCKET, "socket structures" }, |
| 9175 | { MT_PCB, "protocol control blocks" }, |
| 9176 | { MT_RTABLE, "routing table entries" }, |
| 9177 | { MT_HTABLE, "IMP host table entries" }, |
| 9178 | { MT_ATABLE, "address resolution tables" }, |
| 9179 | { MT_FTABLE, "fragment reassembly queue headers" }, |
| 9180 | { MT_SONAME, "socket names and addresses" }, |
| 9181 | { MT_SOOPTS, "socket options" }, |
| 9182 | { MT_RIGHTS, "access rights" }, |
| 9183 | { MT_IFADDR, "interface addresses" }, |
| 9184 | { MT_TAG, "packet tags" }, |
| 9185 | { 0, NULL } |
| 9186 | }; |
| 9187 | |
| 9188 | #define MBUF_DUMP_BUF_CHK() { \ |
| 9189 | clen -= k; \ |
| 9190 | if (clen < 1) \ |
| 9191 | goto done; \ |
| 9192 | c += k; \ |
| 9193 | } |
| 9194 | |
| 9195 | static char * |
| 9196 | mbuf_dump(void) |
| 9197 | { |
| 9198 | unsigned long totmem = 0, totfree = 0, totmbufs, totused, totpct, |
| 9199 | totreturned = 0; |
| 9200 | u_int32_t m_mbufs = 0, m_clfree = 0, m_bigclfree = 0; |
| 9201 | u_int32_t m_mbufclfree = 0, m_mbufbigclfree = 0; |
| 9202 | u_int32_t m_16kclusters = 0, m_16kclfree = 0, m_mbuf16kclfree = 0; |
| 9203 | int nmbtypes = sizeof(mbstat.m_mtypes) / sizeof(short); |
| 9204 | uint8_t seen[256]; |
| 9205 | struct mbtypes *mp; |
| 9206 | mb_class_stat_t *sp; |
| 9207 | mleak_trace_stat_t *mltr; |
| 9208 | char *c = mbuf_dump_buf; |
| 9209 | int i, j, k, clen = MBUF_DUMP_BUF_SIZE; |
| 9210 | struct mbuf_watchdog_defunct_args args = {}; |
| 9211 | |
| 9212 | mbuf_dump_buf[0] = '\0'; |
| 9213 | |
| 9214 | /* synchronize all statistics in the mbuf table */ |
| 9215 | mbuf_stat_sync(); |
| 9216 | mbuf_mtypes_sync(TRUE); |
| 9217 | |
| 9218 | sp = &mb_stat->mbs_class[0]; |
| 9219 | for (i = 0; i < mb_stat->mbs_cnt; i++, sp++) { |
| 9220 | u_int32_t mem; |
| 9221 | |
| 9222 | if (m_class(i) == MC_MBUF) { |
| 9223 | m_mbufs = sp->mbcl_active; |
| 9224 | } else if (m_class(i) == MC_CL) { |
| 9225 | m_clfree = sp->mbcl_total - sp->mbcl_active; |
| 9226 | } else if (m_class(i) == MC_BIGCL) { |
| 9227 | m_bigclfree = sp->mbcl_total - sp->mbcl_active; |
| 9228 | } else if (njcl > 0 && m_class(i) == MC_16KCL) { |
| 9229 | m_16kclfree = sp->mbcl_total - sp->mbcl_active; |
| 9230 | m_16kclusters = sp->mbcl_total; |
| 9231 | } else if (m_class(i) == MC_MBUF_CL) { |
| 9232 | m_mbufclfree = sp->mbcl_total - sp->mbcl_active; |
| 9233 | } else if (m_class(i) == MC_MBUF_BIGCL) { |
| 9234 | m_mbufbigclfree = sp->mbcl_total - sp->mbcl_active; |
| 9235 | } else if (njcl > 0 && m_class(i) == MC_MBUF_16KCL) { |
| 9236 | m_mbuf16kclfree = sp->mbcl_total - sp->mbcl_active; |
| 9237 | } |
| 9238 | |
| 9239 | mem = sp->mbcl_ctotal * sp->mbcl_size; |
| 9240 | totmem += mem; |
| 9241 | totfree += (sp->mbcl_mc_cached + sp->mbcl_infree) * |
| 9242 | sp->mbcl_size; |
| 9243 | totreturned += sp->mbcl_release_cnt; |
| 9244 | } |
| 9245 | |
| 9246 | /* adjust free counts to include composite caches */ |
| 9247 | m_clfree += m_mbufclfree; |
| 9248 | m_bigclfree += m_mbufbigclfree; |
| 9249 | m_16kclfree += m_mbuf16kclfree; |
| 9250 | |
| 9251 | totmbufs = 0; |
| 9252 | for (mp = mbtypes; mp->mt_name != NULL; mp++) { |
| 9253 | totmbufs += mbstat.m_mtypes[mp->mt_type]; |
| 9254 | } |
| 9255 | if (totmbufs > m_mbufs) { |
| 9256 | totmbufs = m_mbufs; |
| 9257 | } |
| 9258 | k = scnprintf(c, clen, "%lu/%u mbufs in use:\n" , totmbufs, m_mbufs); |
| 9259 | MBUF_DUMP_BUF_CHK(); |
| 9260 | |
| 9261 | bzero(&seen, sizeof(seen)); |
| 9262 | for (mp = mbtypes; mp->mt_name != NULL; mp++) { |
| 9263 | if (mbstat.m_mtypes[mp->mt_type] != 0) { |
| 9264 | seen[mp->mt_type] = 1; |
| 9265 | k = scnprintf(c, clen, "\t%u mbufs allocated to %s\n" , |
| 9266 | mbstat.m_mtypes[mp->mt_type], mp->mt_name); |
| 9267 | MBUF_DUMP_BUF_CHK(); |
| 9268 | } |
| 9269 | } |
| 9270 | seen[MT_FREE] = 1; |
| 9271 | for (i = 0; i < nmbtypes; i++) { |
| 9272 | if (!seen[i] && mbstat.m_mtypes[i] != 0) { |
| 9273 | k = scnprintf(c, clen, "\t%u mbufs allocated to " |
| 9274 | "<mbuf type %d>\n" , mbstat.m_mtypes[i], i); |
| 9275 | MBUF_DUMP_BUF_CHK(); |
| 9276 | } |
| 9277 | } |
| 9278 | if ((m_mbufs - totmbufs) > 0) { |
| 9279 | k = scnprintf(c, clen, "\t%lu mbufs allocated to caches\n" , |
| 9280 | m_mbufs - totmbufs); |
| 9281 | MBUF_DUMP_BUF_CHK(); |
| 9282 | } |
| 9283 | k = scnprintf(c, clen, "%u/%u mbuf 2KB clusters in use\n" |
| 9284 | "%u/%u mbuf 4KB clusters in use\n" , |
| 9285 | (unsigned int)(mbstat.m_clusters - m_clfree), |
| 9286 | (unsigned int)mbstat.m_clusters, |
| 9287 | (unsigned int)(mbstat.m_bigclusters - m_bigclfree), |
| 9288 | (unsigned int)mbstat.m_bigclusters); |
| 9289 | MBUF_DUMP_BUF_CHK(); |
| 9290 | |
| 9291 | if (njcl > 0) { |
| 9292 | k = scnprintf(c, clen, "%u/%u mbuf %uKB clusters in use\n" , |
| 9293 | m_16kclusters - m_16kclfree, m_16kclusters, |
| 9294 | njclbytes / 1024); |
| 9295 | MBUF_DUMP_BUF_CHK(); |
| 9296 | } |
| 9297 | totused = totmem - totfree; |
| 9298 | if (totmem == 0) { |
| 9299 | totpct = 0; |
| 9300 | } else if (totused < (ULONG_MAX / 100)) { |
| 9301 | totpct = (totused * 100) / totmem; |
| 9302 | } else { |
| 9303 | u_long totmem1 = totmem / 100; |
| 9304 | u_long totused1 = totused / 100; |
| 9305 | totpct = (totused1 * 100) / totmem1; |
| 9306 | } |
| 9307 | k = scnprintf(c, clen, "%lu KB allocated to network (approx. %lu%% " |
| 9308 | "in use)\n" , totmem / 1024, totpct); |
| 9309 | MBUF_DUMP_BUF_CHK(); |
| 9310 | k = scnprintf(c, clen, "%lu KB returned to the system\n" , |
| 9311 | totreturned / 1024); |
| 9312 | MBUF_DUMP_BUF_CHK(); |
| 9313 | |
| 9314 | net_update_uptime(); |
| 9315 | |
| 9316 | k = scnprintf(c, clen, |
| 9317 | "worker thread runs: %u, expansions: %llu, cl %llu/%llu, " |
| 9318 | "bigcl %llu/%llu, 16k %llu/%llu\n" , mbuf_worker_run_cnt, |
| 9319 | mb_expand_cnt, mb_expand_cl_cnt, mb_expand_cl_total, |
| 9320 | mb_expand_bigcl_cnt, mb_expand_bigcl_total, mb_expand_16kcl_cnt, |
| 9321 | mb_expand_16kcl_total); |
| 9322 | MBUF_DUMP_BUF_CHK(); |
| 9323 | if (mbuf_worker_last_runtime != 0) { |
| 9324 | k = scnprintf(c, clen, "worker thread last run time: " |
| 9325 | "%llu (%llu seconds ago)\n" , |
| 9326 | mbuf_worker_last_runtime, |
| 9327 | net_uptime() - mbuf_worker_last_runtime); |
| 9328 | MBUF_DUMP_BUF_CHK(); |
| 9329 | } |
| 9330 | if (mbuf_drain_last_runtime != 0) { |
| 9331 | k = scnprintf(c, clen, "drain routine last run time: " |
| 9332 | "%llu (%llu seconds ago)\n" , |
| 9333 | mbuf_drain_last_runtime, |
| 9334 | net_uptime() - mbuf_drain_last_runtime); |
| 9335 | MBUF_DUMP_BUF_CHK(); |
| 9336 | } |
| 9337 | |
| 9338 | /* |
| 9339 | * Log where the most mbufs have accumulated: |
| 9340 | * - Process socket buffers |
| 9341 | * - TCP reassembly queue |
| 9342 | * - Interface AQM queue (output) and DLIL input queue |
| 9343 | */ |
| 9344 | args.non_blocking = true; |
| 9345 | proc_iterate(PROC_ALLPROCLIST, |
| 9346 | mbuf_watchdog_defunct_iterate, &args, NULL, NULL); |
| 9347 | if (args.top_app != NULL) { |
| 9348 | k = scnprintf(c, clen, "\ntop proc mbuf space %u bytes by %s:%d\n" , |
| 9349 | args.top_app_space_used, |
| 9350 | proc_name_address(args.top_app), |
| 9351 | proc_pid(args.top_app)); |
| 9352 | proc_rele(args.top_app); |
| 9353 | } |
| 9354 | MBUF_DUMP_BUF_CHK(); |
| 9355 | |
| 9356 | #if INET |
| 9357 | k = dump_tcp_reass_qlen(c, clen); |
| 9358 | MBUF_DUMP_BUF_CHK(); |
| 9359 | #endif /* INET */ |
| 9360 | |
| 9361 | #if MPTCP |
| 9362 | k = dump_mptcp_reass_qlen(c, clen); |
| 9363 | MBUF_DUMP_BUF_CHK(); |
| 9364 | #endif /* MPTCP */ |
| 9365 | |
| 9366 | #if NETWORKING |
| 9367 | k = dlil_dump_top_if_qlen(c, clen); |
| 9368 | MBUF_DUMP_BUF_CHK(); |
| 9369 | #endif /* NETWORKING */ |
| 9370 | |
| 9371 | /* mbuf leak detection statistics */ |
| 9372 | mleak_update_stats(); |
| 9373 | |
| 9374 | k = scnprintf(c, clen, "\nmbuf leak detection table:\n" ); |
| 9375 | MBUF_DUMP_BUF_CHK(); |
| 9376 | k = scnprintf(c, clen, "\ttotal captured: %u (one per %u)\n" , |
| 9377 | mleak_table.mleak_capture / mleak_table.mleak_sample_factor, |
| 9378 | mleak_table.mleak_sample_factor); |
| 9379 | MBUF_DUMP_BUF_CHK(); |
| 9380 | k = scnprintf(c, clen, "\ttotal allocs outstanding: %llu\n" , |
| 9381 | mleak_table.outstanding_allocs); |
| 9382 | MBUF_DUMP_BUF_CHK(); |
| 9383 | k = scnprintf(c, clen, "\tnew hash recorded: %llu allocs, %llu traces\n" , |
| 9384 | mleak_table.alloc_recorded, mleak_table.trace_recorded); |
| 9385 | MBUF_DUMP_BUF_CHK(); |
| 9386 | k = scnprintf(c, clen, "\thash collisions: %llu allocs, %llu traces\n" , |
| 9387 | mleak_table.alloc_collisions, mleak_table.trace_collisions); |
| 9388 | MBUF_DUMP_BUF_CHK(); |
| 9389 | k = scnprintf(c, clen, "\toverwrites: %llu allocs, %llu traces\n" , |
| 9390 | mleak_table.alloc_overwrites, mleak_table.trace_overwrites); |
| 9391 | MBUF_DUMP_BUF_CHK(); |
| 9392 | k = scnprintf(c, clen, "\tlock conflicts: %llu\n\n" , |
| 9393 | mleak_table.total_conflicts); |
| 9394 | MBUF_DUMP_BUF_CHK(); |
| 9395 | |
| 9396 | k = scnprintf(c, clen, "top %d outstanding traces:\n" , |
| 9397 | mleak_stat->ml_cnt); |
| 9398 | MBUF_DUMP_BUF_CHK(); |
| 9399 | for (i = 0; i < mleak_stat->ml_cnt; i++) { |
| 9400 | mltr = &mleak_stat->ml_trace[i]; |
| 9401 | k = scnprintf(c, clen, "[%d] %llu outstanding alloc(s), " |
| 9402 | "%llu hit(s), %llu collision(s)\n" , (i + 1), |
| 9403 | mltr->mltr_allocs, mltr->mltr_hitcount, |
| 9404 | mltr->mltr_collisions); |
| 9405 | MBUF_DUMP_BUF_CHK(); |
| 9406 | } |
| 9407 | |
| 9408 | if (mleak_stat->ml_isaddr64) { |
| 9409 | k = scnprintf(c, clen, MB_LEAK_HDR_64); |
| 9410 | } else { |
| 9411 | k = scnprintf(c, clen, MB_LEAK_HDR_32); |
| 9412 | } |
| 9413 | MBUF_DUMP_BUF_CHK(); |
| 9414 | |
| 9415 | for (i = 0; i < MLEAK_STACK_DEPTH; i++) { |
| 9416 | k = scnprintf(c, clen, "%2d: " , (i + 1)); |
| 9417 | MBUF_DUMP_BUF_CHK(); |
| 9418 | for (j = 0; j < mleak_stat->ml_cnt; j++) { |
| 9419 | mltr = &mleak_stat->ml_trace[j]; |
| 9420 | if (i < mltr->mltr_depth) { |
| 9421 | if (mleak_stat->ml_isaddr64) { |
| 9422 | k = scnprintf(c, clen, "0x%0llx " , |
| 9423 | (uint64_t)VM_KERNEL_UNSLIDE( |
| 9424 | mltr->mltr_addr[i])); |
| 9425 | } else { |
| 9426 | k = scnprintf(c, clen, |
| 9427 | "0x%08x " , |
| 9428 | (uint32_t)VM_KERNEL_UNSLIDE( |
| 9429 | mltr->mltr_addr[i])); |
| 9430 | } |
| 9431 | } else { |
| 9432 | if (mleak_stat->ml_isaddr64) { |
| 9433 | k = scnprintf(c, clen, |
| 9434 | MB_LEAK_SPACING_64); |
| 9435 | } else { |
| 9436 | k = scnprintf(c, clen, |
| 9437 | MB_LEAK_SPACING_32); |
| 9438 | } |
| 9439 | } |
| 9440 | MBUF_DUMP_BUF_CHK(); |
| 9441 | } |
| 9442 | k = scnprintf(c, clen, "\n" ); |
| 9443 | MBUF_DUMP_BUF_CHK(); |
| 9444 | } |
| 9445 | |
| 9446 | done: |
| 9447 | return mbuf_dump_buf; |
| 9448 | } |
| 9449 | |
| 9450 | #undef MBUF_DUMP_BUF_CHK |
| 9451 | #endif /* CONFIG_MBUF_MCACHE */ |
| 9452 | |
| 9453 | /* |
| 9454 | * Convert between a regular and a packet header mbuf. Caller is responsible |
| 9455 | * for setting or clearing M_PKTHDR; this routine does the rest of the work. |
| 9456 | */ |
| 9457 | int |
| 9458 | m_reinit(struct mbuf *m, int hdr) |
| 9459 | { |
| 9460 | int ret = 0; |
| 9461 | |
| 9462 | if (hdr) { |
| 9463 | VERIFY(!(m->m_flags & M_PKTHDR)); |
| 9464 | if (!(m->m_flags & M_EXT) && |
| 9465 | (m->m_data != (uintptr_t)m->m_dat || m->m_len > 0)) { |
| 9466 | /* |
| 9467 | * If there's no external cluster attached and the |
| 9468 | * mbuf appears to contain user data, we cannot |
| 9469 | * safely convert this to a packet header mbuf, |
| 9470 | * as the packet header structure might overlap |
| 9471 | * with the data. |
| 9472 | */ |
| 9473 | printf("%s: cannot set M_PKTHDR on altered mbuf %llx, " |
| 9474 | "m_data %llx (expected %llx), " |
| 9475 | "m_len %d (expected 0)\n" , |
| 9476 | __func__, |
| 9477 | (uint64_t)VM_KERNEL_ADDRPERM((uintptr_t)m), |
| 9478 | (uint64_t)VM_KERNEL_ADDRPERM((uintptr_t)m->m_data), |
| 9479 | (uint64_t)VM_KERNEL_ADDRPERM((uintptr_t)(m->m_dat)), m->m_len); |
| 9480 | ret = EBUSY; |
| 9481 | } else { |
| 9482 | VERIFY((m->m_flags & M_EXT) || m->m_data == (uintptr_t)m->m_dat); |
| 9483 | m->m_flags |= M_PKTHDR; |
| 9484 | MBUF_INIT_PKTHDR(m); |
| 9485 | } |
| 9486 | } else { |
| 9487 | /* Check for scratch area overflow */ |
| 9488 | m_redzone_verify(m); |
| 9489 | /* Free the aux data and tags if there is any */ |
| 9490 | m_tag_delete_chain(m); |
| 9491 | m_do_tx_compl_callback(m, NULL); |
| 9492 | m->m_flags &= ~M_PKTHDR; |
| 9493 | } |
| 9494 | |
| 9495 | return ret; |
| 9496 | } |
| 9497 | |
| 9498 | int |
| 9499 | m_ext_set_prop(struct mbuf *m, uint32_t o, uint32_t n) |
| 9500 | { |
| 9501 | ASSERT(m->m_flags & M_EXT); |
| 9502 | return os_atomic_cmpxchg(&MEXT_PRIV(m), o, n, acq_rel); |
| 9503 | } |
| 9504 | |
| 9505 | uint32_t |
| 9506 | m_ext_get_prop(struct mbuf *m) |
| 9507 | { |
| 9508 | ASSERT(m->m_flags & M_EXT); |
| 9509 | return MEXT_PRIV(m); |
| 9510 | } |
| 9511 | |
| 9512 | int |
| 9513 | m_ext_paired_is_active(struct mbuf *m) |
| 9514 | { |
| 9515 | return MBUF_IS_PAIRED(m) ? (MEXT_PREF(m) > MEXT_MINREF(m)) : 1; |
| 9516 | } |
| 9517 | |
| 9518 | void |
| 9519 | m_ext_paired_activate(struct mbuf *m) |
| 9520 | { |
| 9521 | struct ext_ref *rfa; |
| 9522 | int hdr, type; |
| 9523 | caddr_t extbuf; |
| 9524 | m_ext_free_func_t extfree; |
| 9525 | u_int extsize; |
| 9526 | |
| 9527 | VERIFY(MBUF_IS_PAIRED(m)); |
| 9528 | VERIFY(MEXT_REF(m) == MEXT_MINREF(m)); |
| 9529 | VERIFY(MEXT_PREF(m) == MEXT_MINREF(m)); |
| 9530 | |
| 9531 | hdr = (m->m_flags & M_PKTHDR); |
| 9532 | type = m->m_type; |
| 9533 | extbuf = m->m_ext.ext_buf; |
| 9534 | extfree = m_get_ext_free(m); |
| 9535 | extsize = m->m_ext.ext_size; |
| 9536 | rfa = m_get_rfa(m); |
| 9537 | |
| 9538 | VERIFY(extbuf != NULL && rfa != NULL); |
| 9539 | |
| 9540 | /* |
| 9541 | * Safe to reinitialize packet header tags, since it's |
| 9542 | * already taken care of at m_free() time. Similar to |
| 9543 | * what's done in m_clattach() for the cluster. Bump |
| 9544 | * up MEXT_PREF to indicate activation. |
| 9545 | */ |
| 9546 | MBUF_INIT(m, hdr, type); |
| 9547 | MEXT_INIT(m, buf: extbuf, size: extsize, free: extfree, free_arg: (caddr_t)m, rfa, |
| 9548 | min: 1, ref: 1, pref: 2, EXTF_PAIRED, MEXT_PRIV(m), pm: m); |
| 9549 | } |
| 9550 | |
| 9551 | void |
| 9552 | m_scratch_init(struct mbuf *m) |
| 9553 | { |
| 9554 | struct pkthdr *pkt = &m->m_pkthdr; |
| 9555 | |
| 9556 | VERIFY(m->m_flags & M_PKTHDR); |
| 9557 | |
| 9558 | /* See comments in <rdar://problem/14040693> */ |
| 9559 | if (pkt->pkt_flags & PKTF_PRIV_GUARDED) { |
| 9560 | panic_plain("Invalid attempt to modify guarded module-private " |
| 9561 | "area: mbuf %p, pkt_flags 0x%x\n" , m, pkt->pkt_flags); |
| 9562 | /* NOTREACHED */ |
| 9563 | } |
| 9564 | |
| 9565 | bzero(s: &pkt->pkt_mpriv, n: sizeof(pkt->pkt_mpriv)); |
| 9566 | } |
| 9567 | |
| 9568 | /* |
| 9569 | * This routine is reserved for mbuf_get_driver_scratch(); clients inside |
| 9570 | * xnu that intend on utilizing the module-private area should directly |
| 9571 | * refer to the pkt_mpriv structure in the pkthdr. They are also expected |
| 9572 | * to set and clear PKTF_PRIV_GUARDED, while owning the packet and prior |
| 9573 | * to handing it off to another module, respectively. |
| 9574 | */ |
| 9575 | u_int32_t |
| 9576 | m_scratch_get(struct mbuf *m, u_int8_t **p) |
| 9577 | { |
| 9578 | struct pkthdr *pkt = &m->m_pkthdr; |
| 9579 | |
| 9580 | VERIFY(m->m_flags & M_PKTHDR); |
| 9581 | |
| 9582 | /* See comments in <rdar://problem/14040693> */ |
| 9583 | if (pkt->pkt_flags & PKTF_PRIV_GUARDED) { |
| 9584 | panic_plain("Invalid attempt to access guarded module-private " |
| 9585 | "area: mbuf %p, pkt_flags 0x%x\n" , m, pkt->pkt_flags); |
| 9586 | /* NOTREACHED */ |
| 9587 | } |
| 9588 | |
| 9589 | #if CONFIG_MBUF_MCACHE |
| 9590 | if (mcltrace) { |
| 9591 | mcache_audit_t *mca; |
| 9592 | |
| 9593 | lck_mtx_lock(mbuf_mlock); |
| 9594 | mca = mcl_audit_buf2mca(MC_MBUF, (mcache_obj_t *)m); |
| 9595 | if (mca->mca_uflags & MB_SCVALID) { |
| 9596 | mcl_audit_scratch(mca); |
| 9597 | } |
| 9598 | lck_mtx_unlock(mbuf_mlock); |
| 9599 | } |
| 9600 | #endif /* CONFIG_MBUF_MCACHE */ |
| 9601 | |
| 9602 | *p = (u_int8_t *)&pkt->pkt_mpriv; |
| 9603 | return sizeof(pkt->pkt_mpriv); |
| 9604 | } |
| 9605 | |
| 9606 | void |
| 9607 | m_add_crumb(struct mbuf *m, uint16_t crumb) |
| 9608 | { |
| 9609 | VERIFY(m->m_flags & M_PKTHDR); |
| 9610 | |
| 9611 | m->m_pkthdr.pkt_crumbs |= crumb; |
| 9612 | } |
| 9613 | |
| 9614 | static void |
| 9615 | m_redzone_init(struct mbuf *m) |
| 9616 | { |
| 9617 | VERIFY(m->m_flags & M_PKTHDR); |
| 9618 | /* |
| 9619 | * Each mbuf has a unique red zone pattern, which is a XOR |
| 9620 | * of the red zone cookie and the address of the mbuf. |
| 9621 | */ |
| 9622 | m->m_pkthdr.redzone = ((u_int32_t)(uintptr_t)m) ^ mb_redzone_cookie; |
| 9623 | } |
| 9624 | |
| 9625 | static void |
| 9626 | m_redzone_verify(struct mbuf *m) |
| 9627 | { |
| 9628 | u_int32_t mb_redzone; |
| 9629 | |
| 9630 | VERIFY(m->m_flags & M_PKTHDR); |
| 9631 | |
| 9632 | mb_redzone = ((u_int32_t)(uintptr_t)m) ^ mb_redzone_cookie; |
| 9633 | if (m->m_pkthdr.redzone != mb_redzone) { |
| 9634 | panic("mbuf %p redzone violation with value 0x%x " |
| 9635 | "(instead of 0x%x, using cookie 0x%x)\n" , |
| 9636 | m, m->m_pkthdr.redzone, mb_redzone, mb_redzone_cookie); |
| 9637 | /* NOTREACHED */ |
| 9638 | } |
| 9639 | } |
| 9640 | |
| 9641 | __private_extern__ inline void |
| 9642 | m_set_ext(struct mbuf *m, struct ext_ref *rfa, m_ext_free_func_t ext_free, |
| 9643 | caddr_t ext_arg) |
| 9644 | { |
| 9645 | VERIFY(m->m_flags & M_EXT); |
| 9646 | if (rfa != NULL) { |
| 9647 | m_set_rfa(m, rfa); |
| 9648 | if (ext_free != NULL) { |
| 9649 | rfa->ext_token = ((uintptr_t)&rfa->ext_token) ^ |
| 9650 | mb_obscure_extfree; |
| 9651 | uintptr_t ext_free_val = ptrauth_nop_cast(uintptr_t, ext_free) ^ rfa->ext_token; |
| 9652 | m->m_ext.ext_free = ptrauth_nop_cast(m_ext_free_func_t, ext_free_val); |
| 9653 | if (ext_arg != NULL) { |
| 9654 | m->m_ext.ext_arg = |
| 9655 | (caddr_t)(((uintptr_t)ext_arg) ^ rfa->ext_token); |
| 9656 | } else { |
| 9657 | m->m_ext.ext_arg = NULL; |
| 9658 | } |
| 9659 | } else { |
| 9660 | rfa->ext_token = 0; |
| 9661 | m->m_ext.ext_free = NULL; |
| 9662 | m->m_ext.ext_arg = NULL; |
| 9663 | } |
| 9664 | } else { |
| 9665 | /* |
| 9666 | * If we are going to loose the cookie in ext_token by |
| 9667 | * resetting the rfa, we should use the global cookie |
| 9668 | * to obscure the ext_free and ext_arg pointers. |
| 9669 | */ |
| 9670 | if (ext_free != NULL) { |
| 9671 | uintptr_t ext_free_val = ptrauth_nop_cast(uintptr_t, ext_free) ^ mb_obscure_extfree; |
| 9672 | m->m_ext.ext_free = ptrauth_nop_cast(m_ext_free_func_t, ext_free_val); |
| 9673 | if (ext_arg != NULL) { |
| 9674 | m->m_ext.ext_arg = |
| 9675 | (caddr_t)((uintptr_t)ext_arg ^ |
| 9676 | mb_obscure_extfree); |
| 9677 | } else { |
| 9678 | m->m_ext.ext_arg = NULL; |
| 9679 | } |
| 9680 | } else { |
| 9681 | m->m_ext.ext_free = NULL; |
| 9682 | m->m_ext.ext_arg = NULL; |
| 9683 | } |
| 9684 | m->m_ext.ext_refflags = NULL; |
| 9685 | } |
| 9686 | } |
| 9687 | |
| 9688 | __private_extern__ inline struct ext_ref * |
| 9689 | m_get_rfa(struct mbuf *m) |
| 9690 | { |
| 9691 | if (m->m_ext.ext_refflags == NULL) { |
| 9692 | return NULL; |
| 9693 | } else { |
| 9694 | return (struct ext_ref *)(((uintptr_t)m->m_ext.ext_refflags) ^ mb_obscure_extref); |
| 9695 | } |
| 9696 | } |
| 9697 | |
| 9698 | static inline void |
| 9699 | m_set_rfa(struct mbuf *m, struct ext_ref *rfa) |
| 9700 | { |
| 9701 | if (rfa != NULL) { |
| 9702 | m->m_ext.ext_refflags = |
| 9703 | (struct ext_ref *)(((uintptr_t)rfa) ^ mb_obscure_extref); |
| 9704 | } else { |
| 9705 | m->m_ext.ext_refflags = NULL; |
| 9706 | } |
| 9707 | } |
| 9708 | |
| 9709 | __private_extern__ inline m_ext_free_func_t |
| 9710 | m_get_ext_free(struct mbuf *m) |
| 9711 | { |
| 9712 | struct ext_ref *rfa; |
| 9713 | if (m->m_ext.ext_free == NULL) { |
| 9714 | return NULL; |
| 9715 | } |
| 9716 | |
| 9717 | rfa = m_get_rfa(m); |
| 9718 | if (rfa == NULL) { |
| 9719 | uintptr_t ext_free_val = ptrauth_nop_cast(uintptr_t, m->m_ext.ext_free) ^ mb_obscure_extfree; |
| 9720 | return ptrauth_nop_cast(m_ext_free_func_t, ext_free_val); |
| 9721 | } else { |
| 9722 | uintptr_t ext_free_val = ptrauth_nop_cast(uintptr_t, m->m_ext.ext_free) ^ rfa->ext_token; |
| 9723 | return ptrauth_nop_cast(m_ext_free_func_t, ext_free_val); |
| 9724 | } |
| 9725 | } |
| 9726 | |
| 9727 | __private_extern__ inline caddr_t |
| 9728 | m_get_ext_arg(struct mbuf *m) |
| 9729 | { |
| 9730 | struct ext_ref *rfa; |
| 9731 | if (m->m_ext.ext_arg == NULL) { |
| 9732 | return NULL; |
| 9733 | } |
| 9734 | |
| 9735 | rfa = m_get_rfa(m); |
| 9736 | if (rfa == NULL) { |
| 9737 | return (caddr_t)((uintptr_t)m->m_ext.ext_arg ^ mb_obscure_extfree); |
| 9738 | } else { |
| 9739 | return (caddr_t)(((uintptr_t)m->m_ext.ext_arg) ^ |
| 9740 | rfa->ext_token); |
| 9741 | } |
| 9742 | } |
| 9743 | |
| 9744 | #if CONFIG_MBUF_MCACHE |
| 9745 | /* |
| 9746 | * Simple routine to avoid taking the lock when we can't run the |
| 9747 | * mbuf drain. |
| 9748 | */ |
| 9749 | static int |
| 9750 | mbuf_drain_checks(boolean_t ignore_waiters) |
| 9751 | { |
| 9752 | if (mb_drain_maxint == 0) { |
| 9753 | return 0; |
| 9754 | } |
| 9755 | if (!ignore_waiters && mb_waiters != 0) { |
| 9756 | return 0; |
| 9757 | } |
| 9758 | |
| 9759 | return 1; |
| 9760 | } |
| 9761 | |
| 9762 | /* |
| 9763 | * Called by the VM when there's memory pressure or when we exhausted |
| 9764 | * the 4k/16k reserved space. |
| 9765 | */ |
| 9766 | static void |
| 9767 | mbuf_drain_locked(boolean_t ignore_waiters) |
| 9768 | { |
| 9769 | mbuf_class_t mc; |
| 9770 | mcl_slab_t *sp, *sp_tmp, *nsp; |
| 9771 | unsigned int num, k, interval, released = 0; |
| 9772 | unsigned long total_mem = 0, use_mem = 0; |
| 9773 | boolean_t ret, purge_caches = FALSE; |
| 9774 | ppnum_t offset; |
| 9775 | mcache_obj_t *obj; |
| 9776 | unsigned long per; |
| 9777 | static unsigned char scratch[32]; |
| 9778 | static ppnum_t scratch_pa = 0; |
| 9779 | |
| 9780 | LCK_MTX_ASSERT(mbuf_mlock, LCK_MTX_ASSERT_OWNED); |
| 9781 | if (!mbuf_drain_checks(ignore_waiters)) { |
| 9782 | return; |
| 9783 | } |
| 9784 | if (scratch_pa == 0) { |
| 9785 | bzero(scratch, sizeof(scratch)); |
| 9786 | scratch_pa = pmap_find_phys(kernel_pmap, (addr64_t)scratch); |
| 9787 | VERIFY(scratch_pa); |
| 9788 | } else if (mclverify) { |
| 9789 | /* |
| 9790 | * Panic if a driver wrote to our scratch memory. |
| 9791 | */ |
| 9792 | for (k = 0; k < sizeof(scratch); k++) { |
| 9793 | if (scratch[k]) { |
| 9794 | panic("suspect DMA to freed address" ); |
| 9795 | } |
| 9796 | } |
| 9797 | } |
| 9798 | /* |
| 9799 | * Don't free memory too often as that could cause excessive |
| 9800 | * waiting times for mbufs. Purge caches if we were asked to drain |
| 9801 | * in the last 5 minutes. |
| 9802 | */ |
| 9803 | if (mbuf_drain_last_runtime != 0) { |
| 9804 | interval = net_uptime() - mbuf_drain_last_runtime; |
| 9805 | if (interval <= mb_drain_maxint) { |
| 9806 | return; |
| 9807 | } |
| 9808 | if (interval <= mb_drain_maxint * 5) { |
| 9809 | purge_caches = TRUE; |
| 9810 | } |
| 9811 | } |
| 9812 | mbuf_drain_last_runtime = net_uptime(); |
| 9813 | /* |
| 9814 | * Don't free any memory if we're using 60% or more. |
| 9815 | */ |
| 9816 | for (mc = 0; mc < NELEM(mbuf_table); mc++) { |
| 9817 | total_mem += m_total(mc) * m_maxsize(mc); |
| 9818 | use_mem += m_active(mc) * m_maxsize(mc); |
| 9819 | } |
| 9820 | per = (use_mem * 100) / total_mem; |
| 9821 | if (per >= 60) { |
| 9822 | return; |
| 9823 | } |
| 9824 | /* |
| 9825 | * Purge all the caches. This effectively disables |
| 9826 | * caching for a few seconds, but the mbuf worker thread will |
| 9827 | * re-enable them again. |
| 9828 | */ |
| 9829 | if (purge_caches == TRUE) { |
| 9830 | for (mc = 0; mc < NELEM(mbuf_table); mc++) { |
| 9831 | if (m_total(mc) < m_avgtotal(mc)) { |
| 9832 | continue; |
| 9833 | } |
| 9834 | lck_mtx_unlock(mbuf_mlock); |
| 9835 | ret = mcache_purge_cache(m_cache(mc), FALSE); |
| 9836 | lck_mtx_lock(mbuf_mlock); |
| 9837 | if (ret == TRUE) { |
| 9838 | m_purge_cnt(mc)++; |
| 9839 | } |
| 9840 | } |
| 9841 | } |
| 9842 | /* |
| 9843 | * Move the objects from the composite class freelist to |
| 9844 | * the rudimentary slabs list, but keep at least 10% of the average |
| 9845 | * total in the freelist. |
| 9846 | */ |
| 9847 | for (mc = 0; mc < NELEM(mbuf_table); mc++) { |
| 9848 | while (m_cobjlist(mc) && |
| 9849 | m_total(mc) < m_avgtotal(mc) && |
| 9850 | m_infree(mc) > 0.1 * m_avgtotal(mc) + m_minlimit(mc)) { |
| 9851 | obj = m_cobjlist(mc); |
| 9852 | m_cobjlist(mc) = obj->obj_next; |
| 9853 | obj->obj_next = NULL; |
| 9854 | num = cslab_free(mc, obj, 1); |
| 9855 | VERIFY(num == 1); |
| 9856 | m_free_cnt(mc)++; |
| 9857 | m_infree(mc)--; |
| 9858 | /* cslab_free() handles m_total */ |
| 9859 | } |
| 9860 | } |
| 9861 | /* |
| 9862 | * Free the buffers present in the slab list up to 10% of the total |
| 9863 | * average per class. |
| 9864 | * |
| 9865 | * We walk the list backwards in an attempt to reduce fragmentation. |
| 9866 | */ |
| 9867 | for (mc = NELEM(mbuf_table) - 1; (int)mc >= 0; mc--) { |
| 9868 | TAILQ_FOREACH_SAFE(sp, &m_slablist(mc), sl_link, sp_tmp) { |
| 9869 | /* |
| 9870 | * Process only unused slabs occupying memory. |
| 9871 | */ |
| 9872 | if (sp->sl_refcnt != 0 || sp->sl_len == 0 || |
| 9873 | sp->sl_base == NULL) { |
| 9874 | continue; |
| 9875 | } |
| 9876 | if (m_total(mc) < m_avgtotal(mc) || |
| 9877 | m_infree(mc) < 0.1 * m_avgtotal(mc) + m_minlimit(mc)) { |
| 9878 | break; |
| 9879 | } |
| 9880 | slab_remove(sp, mc); |
| 9881 | switch (mc) { |
| 9882 | case MC_MBUF: |
| 9883 | m_infree(mc) -= NMBPG; |
| 9884 | m_total(mc) -= NMBPG; |
| 9885 | if (mclaudit != NULL) { |
| 9886 | mcl_audit_free(sp->sl_base, NMBPG); |
| 9887 | } |
| 9888 | break; |
| 9889 | case MC_CL: |
| 9890 | m_infree(mc) -= NCLPG; |
| 9891 | m_total(mc) -= NCLPG; |
| 9892 | if (mclaudit != NULL) { |
| 9893 | mcl_audit_free(sp->sl_base, NMBPG); |
| 9894 | } |
| 9895 | break; |
| 9896 | case MC_BIGCL: |
| 9897 | { |
| 9898 | m_infree(mc) -= NBCLPG; |
| 9899 | m_total(mc) -= NBCLPG; |
| 9900 | if (mclaudit != NULL) { |
| 9901 | mcl_audit_free(sp->sl_base, NMBPG); |
| 9902 | } |
| 9903 | break; |
| 9904 | } |
| 9905 | case MC_16KCL: |
| 9906 | m_infree(mc)--; |
| 9907 | m_total(mc)--; |
| 9908 | for (nsp = sp, k = 1; k < NSLABSP16KB; k++) { |
| 9909 | nsp = nsp->sl_next; |
| 9910 | VERIFY(nsp->sl_refcnt == 0 && |
| 9911 | nsp->sl_base != NULL && |
| 9912 | nsp->sl_len == 0); |
| 9913 | slab_init(nsp, 0, 0, NULL, NULL, 0, 0, |
| 9914 | 0); |
| 9915 | nsp->sl_flags = 0; |
| 9916 | } |
| 9917 | if (mclaudit != NULL) { |
| 9918 | if (sp->sl_len == PAGE_SIZE) { |
| 9919 | mcl_audit_free(sp->sl_base, |
| 9920 | NMBPG); |
| 9921 | } else { |
| 9922 | mcl_audit_free(sp->sl_base, 1); |
| 9923 | } |
| 9924 | } |
| 9925 | break; |
| 9926 | default: |
| 9927 | /* |
| 9928 | * The composite classes have their own |
| 9929 | * freelist (m_cobjlist), so we only |
| 9930 | * process rudimentary classes here. |
| 9931 | */ |
| 9932 | VERIFY(0); |
| 9933 | } |
| 9934 | m_release_cnt(mc) += m_size(mc); |
| 9935 | released += m_size(mc); |
| 9936 | VERIFY(sp->sl_base != NULL && |
| 9937 | sp->sl_len >= PAGE_SIZE); |
| 9938 | offset = MTOPG(sp->sl_base); |
| 9939 | /* |
| 9940 | * Make sure the IOMapper points to a valid, but |
| 9941 | * bogus, address. This should prevent further DMA |
| 9942 | * accesses to freed memory. |
| 9943 | */ |
| 9944 | IOMapperInsertPage(mcl_paddr_base, offset, scratch_pa); |
| 9945 | mcl_paddr[offset] = 0; |
| 9946 | kmem_free(mb_map, (vm_offset_t)sp->sl_base, |
| 9947 | sp->sl_len); |
| 9948 | slab_init(sp, 0, 0, NULL, NULL, 0, 0, 0); |
| 9949 | sp->sl_flags = 0; |
| 9950 | } |
| 9951 | } |
| 9952 | mbstat.m_drain++; |
| 9953 | mbstat.m_bigclusters = m_total(MC_BIGCL); |
| 9954 | mbstat.m_clusters = m_total(MC_CL); |
| 9955 | mbstat.m_mbufs = m_total(MC_MBUF); |
| 9956 | mbuf_stat_sync(); |
| 9957 | mbuf_mtypes_sync(TRUE); |
| 9958 | } |
| 9959 | |
| 9960 | __private_extern__ void |
| 9961 | mbuf_drain(boolean_t ignore_waiters) |
| 9962 | { |
| 9963 | LCK_MTX_ASSERT(mbuf_mlock, LCK_MTX_ASSERT_NOTOWNED); |
| 9964 | if (!mbuf_drain_checks(ignore_waiters)) { |
| 9965 | return; |
| 9966 | } |
| 9967 | lck_mtx_lock(mbuf_mlock); |
| 9968 | mbuf_drain_locked(ignore_waiters); |
| 9969 | lck_mtx_unlock(mbuf_mlock); |
| 9970 | } |
| 9971 | |
| 9972 | |
| 9973 | static int |
| 9974 | m_drain_force_sysctl SYSCTL_HANDLER_ARGS |
| 9975 | { |
| 9976 | #pragma unused(arg1, arg2) |
| 9977 | int val = 0, err; |
| 9978 | |
| 9979 | err = sysctl_handle_int(oidp, &val, 0, req); |
| 9980 | if (err != 0 || req->newptr == USER_ADDR_NULL) { |
| 9981 | return err; |
| 9982 | } |
| 9983 | if (val) { |
| 9984 | mbuf_drain(TRUE); |
| 9985 | } |
| 9986 | |
| 9987 | return err; |
| 9988 | } |
| 9989 | |
| 9990 | #if DEBUG || DEVELOPMENT |
| 9991 | __printflike(3, 4) |
| 9992 | static void |
| 9993 | _mbwdog_logger(const char *func, const int line, const char *fmt, ...) |
| 9994 | { |
| 9995 | va_list ap; |
| 9996 | struct timeval now; |
| 9997 | char str[384], p[256]; |
| 9998 | int len; |
| 9999 | |
| 10000 | LCK_MTX_ASSERT(mbuf_mlock, LCK_MTX_ASSERT_OWNED); |
| 10001 | if (mbwdog_logging == NULL) { |
| 10002 | /* |
| 10003 | * This might block under a mutex, which isn't really great, |
| 10004 | * but this happens once, so we'll live. |
| 10005 | */ |
| 10006 | mbwdog_logging = zalloc_permanent(mbwdog_logging_size, |
| 10007 | ZALIGN_NONE); |
| 10008 | } |
| 10009 | va_start(ap, fmt); |
| 10010 | vsnprintf(p, sizeof(p), fmt, ap); |
| 10011 | va_end(ap); |
| 10012 | microuptime(&now); |
| 10013 | len = scnprintf(str, sizeof(str), |
| 10014 | "\n%ld.%d (%d/%llx) %s:%d %s" , |
| 10015 | now.tv_sec, now.tv_usec, |
| 10016 | proc_getpid(current_proc()), |
| 10017 | (uint64_t)VM_KERNEL_ADDRPERM(current_thread()), |
| 10018 | func, line, p); |
| 10019 | if (len < 0) { |
| 10020 | return; |
| 10021 | } |
| 10022 | if (mbwdog_logging_used + len > mbwdog_logging_size) { |
| 10023 | mbwdog_logging_used = mbwdog_logging_used / 2; |
| 10024 | memmove(mbwdog_logging, mbwdog_logging + mbwdog_logging_used, |
| 10025 | mbwdog_logging_size - mbwdog_logging_used); |
| 10026 | mbwdog_logging[mbwdog_logging_used] = 0; |
| 10027 | } |
| 10028 | strlcat(mbwdog_logging, str, mbwdog_logging_size); |
| 10029 | mbwdog_logging_used += len; |
| 10030 | } |
| 10031 | |
| 10032 | #endif // DEBUG || DEVELOPMENT |
| 10033 | |
| 10034 | static void |
| 10035 | mtracelarge_register(size_t size) |
| 10036 | { |
| 10037 | int i; |
| 10038 | struct mtracelarge *trace; |
| 10039 | uintptr_t bt[MLEAK_STACK_DEPTH]; |
| 10040 | unsigned int depth; |
| 10041 | |
| 10042 | depth = backtrace(bt, MLEAK_STACK_DEPTH, NULL, NULL); |
| 10043 | /* Check if this entry is already on the list. */ |
| 10044 | for (i = 0; i < MTRACELARGE_NUM_TRACES; i++) { |
| 10045 | trace = &mtracelarge_table[i]; |
| 10046 | if (trace->size == size && trace->depth == depth && |
| 10047 | memcmp(bt, trace->addr, depth * sizeof(uintptr_t)) == 0) { |
| 10048 | return; |
| 10049 | } |
| 10050 | } |
| 10051 | for (i = 0; i < MTRACELARGE_NUM_TRACES; i++) { |
| 10052 | trace = &mtracelarge_table[i]; |
| 10053 | if (size > trace->size) { |
| 10054 | trace->depth = depth; |
| 10055 | memcpy(trace->addr, bt, depth * sizeof(uintptr_t)); |
| 10056 | trace->size = size; |
| 10057 | break; |
| 10058 | } |
| 10059 | } |
| 10060 | } |
| 10061 | |
| 10062 | #if DEBUG || DEVELOPMENT |
| 10063 | |
| 10064 | static int |
| 10065 | mbuf_wd_dump_sysctl SYSCTL_HANDLER_ARGS |
| 10066 | { |
| 10067 | char *str; |
| 10068 | |
| 10069 | ifnet_head_lock_shared(); |
| 10070 | lck_mtx_lock(mbuf_mlock); |
| 10071 | |
| 10072 | str = mbuf_dump(); |
| 10073 | |
| 10074 | lck_mtx_unlock(mbuf_mlock); |
| 10075 | ifnet_head_done(); |
| 10076 | |
| 10077 | return sysctl_io_string(req, str, 0, 0, NULL); |
| 10078 | } |
| 10079 | |
| 10080 | #endif /* DEBUG || DEVELOPMENT */ |
| 10081 | #endif /* CONFIG_MBUF_MCACHE */ |
| 10082 | |
| 10083 | SYSCTL_DECL(_kern_ipc); |
| 10084 | #if DEBUG || DEVELOPMENT |
| 10085 | #if SKYWALK && CONFIG_MBUF_MCACHE |
| 10086 | SYSCTL_UINT(_kern_ipc, OID_AUTO, mc_threshold_scale_factor, |
| 10087 | CTLFLAG_RW | CTLFLAG_LOCKED, &mc_threshold_scale_down_factor, |
| 10088 | MC_THRESHOLD_SCALE_DOWN_FACTOR, |
| 10089 | "scale down factor for mbuf cache thresholds" ); |
| 10090 | #endif /* SKYWALK && CONFIG_MBUF_MCACHE */ |
| 10091 | #if CONFIG_MBUF_MCACHE |
| 10092 | SYSCTL_PROC(_kern_ipc, OID_AUTO, mb_wd_dump, |
| 10093 | CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_LOCKED, |
| 10094 | 0, 0, mbuf_wd_dump_sysctl, "A" , "mbuf watchdog dump" ); |
| 10095 | #endif /* CONFIG_MBUF_MCACHE */ |
| 10096 | #endif /* DEBUG || DEVELOPMENT */ |
| 10097 | SYSCTL_PROC(_kern_ipc, KIPC_MBSTAT, mbstat, |
| 10098 | CTLTYPE_STRUCT | CTLFLAG_RD | CTLFLAG_LOCKED, |
| 10099 | 0, 0, mbstat_sysctl, "S,mbstat" , "" ); |
| 10100 | SYSCTL_PROC(_kern_ipc, OID_AUTO, mb_stat, |
| 10101 | CTLTYPE_STRUCT | CTLFLAG_RD | CTLFLAG_LOCKED, |
| 10102 | 0, 0, mb_stat_sysctl, "S,mb_stat" , "" ); |
| 10103 | #if CONFIG_MBUF_MCACHE |
| 10104 | SYSCTL_PROC(_kern_ipc, OID_AUTO, mleak_top_trace, |
| 10105 | CTLTYPE_STRUCT | CTLFLAG_RD | CTLFLAG_LOCKED, |
| 10106 | 0, 0, mleak_top_trace_sysctl, "S,mb_top_trace" , "" ); |
| 10107 | SYSCTL_PROC(_kern_ipc, OID_AUTO, mleak_table, |
| 10108 | CTLTYPE_STRUCT | CTLFLAG_RD | CTLFLAG_LOCKED, |
| 10109 | 0, 0, mleak_table_sysctl, "S,mleak_table" , "" ); |
| 10110 | SYSCTL_INT(_kern_ipc, OID_AUTO, mleak_sample_factor, |
| 10111 | CTLFLAG_RW | CTLFLAG_LOCKED, &mleak_table.mleak_sample_factor, 0, "" ); |
| 10112 | SYSCTL_INT(_kern_ipc, OID_AUTO, mb_normalized, |
| 10113 | CTLFLAG_RD | CTLFLAG_LOCKED, &mb_normalized, 0, "" ); |
| 10114 | SYSCTL_INT(_kern_ipc, OID_AUTO, mb_watchdog, |
| 10115 | CTLFLAG_RW | CTLFLAG_LOCKED, &mb_watchdog, 0, "" ); |
| 10116 | SYSCTL_PROC(_kern_ipc, OID_AUTO, mb_drain_force, |
| 10117 | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED, NULL, 0, |
| 10118 | m_drain_force_sysctl, "I" , |
| 10119 | "Forces the mbuf garbage collection to run" ); |
| 10120 | SYSCTL_INT(_kern_ipc, OID_AUTO, mb_drain_maxint, |
| 10121 | CTLFLAG_RW | CTLFLAG_LOCKED, &mb_drain_maxint, 0, |
| 10122 | "Minimum time interval between garbage collection" ); |
| 10123 | #endif /* CONFIG_MBUF_MCACHE */ |
| 10124 | SYSCTL_INT(_kern_ipc, OID_AUTO, mb_memory_pressure_percentage, |
| 10125 | CTLFLAG_RW | CTLFLAG_LOCKED, &mb_memory_pressure_percentage, 0, |
| 10126 | "Percentage of when we trigger memory-pressure for an mbuf-class" ); |
| 10127 | #if CONFIG_MBUF_MCACHE |
| 10128 | static int mb_uses_mcache = 1; |
| 10129 | #else |
| 10130 | static int mb_uses_mcache = 0; |
| 10131 | #endif /* CONFIG_MBUF_MCACHE */ |
| 10132 | SYSCTL_INT(_kern_ipc, OID_AUTO, mb_uses_mcache, |
| 10133 | CTLFLAG_LOCKED, &mb_uses_mcache, 0, |
| 10134 | "Whether mbufs use mcache" ); |
| 10135 | |