| 1 | // Copyright (c) 2021 Apple Inc. All rights reserved. |
| 2 | // |
| 3 | // @APPLE_OSREFERENCE_LICENSE_HEADER_START@ |
| 4 | // |
| 5 | // This file contains Original Code and/or Modifications of Original Code |
| 6 | // as defined in and that are subject to the Apple Public Source License |
| 7 | // Version 2.0 (the 'License'). You may not use this file except in |
| 8 | // compliance with the License. The rights granted to you under the License |
| 9 | // may not be used to create, or enable the creation or redistribution of, |
| 10 | // unlawful or unlicensed copies of an Apple operating system, or to |
| 11 | // circumvent, violate, or enable the circumvention or violation of, any |
| 12 | // terms of an Apple operating system software license agreement. |
| 13 | // |
| 14 | // Please obtain a copy of the License at |
| 15 | // http://www.opensource.apple.com/apsl/ and read it before using this file. |
| 16 | // |
| 17 | // The Original Code and all software distributed under the License are |
| 18 | // distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER |
| 19 | // EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
| 20 | // INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, |
| 21 | // FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
| 22 | // Please see the License for the specific language governing rights and |
| 23 | // limitations under the License. |
| 24 | // |
| 25 | // @APPLE_OSREFERENCE_LICENSE_HEADER_END@ |
| 26 | |
| 27 | #include <kern/recount.h> |
| 28 | #include <machine/machine_routines.h> |
| 29 | #include <machine/smp.h> |
| 30 | #include <sys/proc_info.h> |
| 31 | #include <sys/resource_private.h> |
| 32 | #include <sys/sysproto.h> |
| 33 | #include <sys/systm.h> |
| 34 | #include <sys/types.h> |
| 35 | |
| 36 | // Recount's BSD-specific implementation for syscalls. |
| 37 | |
| 38 | #if CONFIG_PERVASIVE_CPI |
| 39 | |
| 40 | static struct thsc_cpi |
| 41 | _usage_to_cpi(struct recount_usage *usage) |
| 42 | { |
| 43 | return (struct thsc_cpi){ |
| 44 | .tcpi_instructions = recount_usage_instructions(usage), |
| 45 | .tcpi_cycles = recount_usage_cycles(usage), |
| 46 | }; |
| 47 | } |
| 48 | |
| 49 | static struct thsc_time_cpi |
| 50 | _usage_to_time_cpi(struct recount_usage *usage) |
| 51 | { |
| 52 | return (struct thsc_time_cpi){ |
| 53 | .ttci_instructions = recount_usage_instructions(usage), |
| 54 | .ttci_cycles = recount_usage_cycles(usage), |
| 55 | .ttci_system_time_mach = recount_usage_system_time_mach(usage), |
| 56 | .ttci_user_time_mach = usage->ru_metrics[RCT_LVL_USER].rm_time_mach, |
| 57 | }; |
| 58 | } |
| 59 | |
| 60 | static struct thsc_time_energy_cpi |
| 61 | _usage_to_time_energy_cpi(struct recount_usage *usage) |
| 62 | { |
| 63 | return (struct thsc_time_energy_cpi){ |
| 64 | .ttec_instructions = recount_usage_instructions(usage), |
| 65 | .ttec_cycles = recount_usage_cycles(usage), |
| 66 | .ttec_system_time_mach = recount_usage_system_time_mach(usage), |
| 67 | .ttec_user_time_mach = usage->ru_metrics[RCT_LVL_USER].rm_time_mach, |
| 68 | #if CONFIG_PERVASIVE_ENERGY |
| 69 | .ttec_energy_nj = usage->ru_energy_nj, |
| 70 | #endif // CONFIG_PERVASIVE_ENERGY |
| 71 | }; |
| 72 | } |
| 73 | |
| 74 | static recount_cpu_kind_t |
| 75 | _perflevel_index_to_cpu_kind(unsigned int perflevel) |
| 76 | { |
| 77 | #if __AMP__ |
| 78 | extern cluster_type_t cpu_type_for_perflevel(int perflevel); |
| 79 | cluster_type_t cluster = cpu_type_for_perflevel(perflevel); |
| 80 | #else // __AMP__ |
| 81 | cluster_type_t cluster = CLUSTER_TYPE_SMP; |
| 82 | #endif // !__AMP__ |
| 83 | |
| 84 | switch (cluster) { |
| 85 | case CLUSTER_TYPE_SMP: |
| 86 | // Default to first index for SMP. |
| 87 | return (recount_cpu_kind_t)0; |
| 88 | #if __AMP__ |
| 89 | case CLUSTER_TYPE_E: |
| 90 | return RCT_CPU_EFFICIENCY; |
| 91 | case CLUSTER_TYPE_P: |
| 92 | return RCT_CPU_PERFORMANCE; |
| 93 | #endif // __AMP__ |
| 94 | default: |
| 95 | panic("recount: unexpected CPU type %d for perflevel %d" , cluster, |
| 96 | perflevel); |
| 97 | } |
| 98 | } |
| 99 | |
| 100 | static int |
| 101 | _selfcounts(thread_selfcounts_kind_t kind, user_addr_t buf, size_t size) |
| 102 | { |
| 103 | struct recount_usage usage = { 0 }; |
| 104 | boolean_t interrupt_state = ml_set_interrupts_enabled(FALSE); |
| 105 | recount_current_thread_usage(&usage); |
| 106 | ml_set_interrupts_enabled(interrupt_state); |
| 107 | |
| 108 | switch (kind) { |
| 109 | case THSC_CPI: { |
| 110 | struct thsc_cpi counts = _usage_to_cpi(&usage); |
| 111 | return copyout(&counts, buf, MIN(sizeof(counts), size)); |
| 112 | } |
| 113 | case THSC_TIME_CPI: { |
| 114 | struct thsc_time_cpi counts = _usage_to_time_cpi(&usage); |
| 115 | return copyout(&counts, buf, MIN(sizeof(counts), size)); |
| 116 | } |
| 117 | case THSC_TIME_ENERGY_CPI: { |
| 118 | struct thsc_time_energy_cpi counts = _usage_to_time_energy_cpi(&usage); |
| 119 | return copyout(&counts, buf, MIN(sizeof(counts), size)); |
| 120 | } |
| 121 | default: |
| 122 | panic("recount: unexpected thread_selfcounts kind: %d" , kind); |
| 123 | } |
| 124 | } |
| 125 | |
| 126 | static int |
| 127 | _selfcounts_perf_level(thread_selfcounts_kind_t kind, user_addr_t buf, |
| 128 | size_t size) |
| 129 | { |
| 130 | struct recount_usage usages[RCT_CPU_KIND_COUNT] = { 0 }; |
| 131 | boolean_t interrupt_state = ml_set_interrupts_enabled(FALSE); |
| 132 | recount_current_thread_perf_level_usage(usages); |
| 133 | ml_set_interrupts_enabled(interrupt_state); |
| 134 | |
| 135 | unsigned int cpu_types = ml_get_cpu_types(); |
| 136 | unsigned int level_count = __builtin_popcount(cpu_types); |
| 137 | const size_t counts_len = MIN(MIN(recount_topo_count(RCT_TOPO_CPU_KIND), |
| 138 | RCT_CPU_KIND_COUNT), level_count); |
| 139 | |
| 140 | switch (kind) { |
| 141 | case THSC_CPI_PER_PERF_LEVEL: { |
| 142 | struct thsc_cpi counts[RCT_CPU_KIND_COUNT] = { 0 }; |
| 143 | for (unsigned int i = 0; i < counts_len; i++) { |
| 144 | const recount_cpu_kind_t cpu_kind = _perflevel_index_to_cpu_kind(i); |
| 145 | counts[i] = _usage_to_cpi(&usages[cpu_kind]); |
| 146 | } |
| 147 | return copyout(&counts, buf, MIN(sizeof(counts[0]) * counts_len, size)); |
| 148 | } |
| 149 | case THSC_TIME_CPI_PER_PERF_LEVEL: { |
| 150 | struct thsc_time_cpi counts[RCT_CPU_KIND_COUNT] = { 0 }; |
| 151 | for (unsigned int i = 0; i < counts_len; i++) { |
| 152 | const recount_cpu_kind_t cpu_kind = _perflevel_index_to_cpu_kind(i); |
| 153 | counts[i] = _usage_to_time_cpi(&usages[cpu_kind]); |
| 154 | } |
| 155 | return copyout(&counts, buf, MIN(sizeof(counts[0]) * counts_len, size)); |
| 156 | } |
| 157 | case THSC_TIME_ENERGY_CPI_PER_PERF_LEVEL: { |
| 158 | struct thsc_time_energy_cpi counts[RCT_CPU_KIND_COUNT] = { 0 }; |
| 159 | for (unsigned int i = 0; i < counts_len; i++) { |
| 160 | const recount_cpu_kind_t cpu_kind = _perflevel_index_to_cpu_kind(i); |
| 161 | counts[i] = _usage_to_time_energy_cpi(&usages[cpu_kind]); |
| 162 | } |
| 163 | return copyout(&counts, buf, MIN(sizeof(counts[0]) * counts_len, size)); |
| 164 | } |
| 165 | default: |
| 166 | panic("recount: unexpected thread_selfcounts kind: %d" , kind); |
| 167 | } |
| 168 | } |
| 169 | |
| 170 | int |
| 171 | thread_selfcounts(__unused struct proc *p, |
| 172 | struct thread_selfcounts_args *uap, __unused int *ret_out) |
| 173 | { |
| 174 | switch (uap->kind) { |
| 175 | case THSC_CPI: |
| 176 | case THSC_TIME_CPI: |
| 177 | case THSC_TIME_ENERGY_CPI: |
| 178 | return _selfcounts(uap->kind, uap->buf, uap->size); |
| 179 | |
| 180 | case THSC_CPI_PER_PERF_LEVEL: |
| 181 | case THSC_TIME_CPI_PER_PERF_LEVEL: |
| 182 | case THSC_TIME_ENERGY_CPI_PER_PERF_LEVEL: |
| 183 | return _selfcounts_perf_level(uap->kind, uap->buf, uap->size); |
| 184 | |
| 185 | default: |
| 186 | return ENOTSUP; |
| 187 | } |
| 188 | } |
| 189 | |
| 190 | static struct proc_threadcounts_data |
| 191 | _usage_to_proc_threadcounts(struct recount_usage *usage) |
| 192 | { |
| 193 | return (struct proc_threadcounts_data){ |
| 194 | .ptcd_instructions = recount_usage_instructions(usage), |
| 195 | .ptcd_cycles = recount_usage_cycles(usage), |
| 196 | .ptcd_system_time_mach = recount_usage_system_time_mach(usage), |
| 197 | .ptcd_user_time_mach = usage->ru_metrics[RCT_LVL_USER].rm_time_mach, |
| 198 | #if CONFIG_PERVASIVE_ENERGY |
| 199 | .ptcd_energy_nj = usage->ru_energy_nj, |
| 200 | #endif // CONFIG_PERVASIVE_ENERGY |
| 201 | }; |
| 202 | } |
| 203 | |
| 204 | int |
| 205 | proc_pidthreadcounts( |
| 206 | struct proc *p, |
| 207 | uint64_t tid, |
| 208 | user_addr_t uaddr, |
| 209 | size_t usize, |
| 210 | int *size_out) |
| 211 | { |
| 212 | struct recount_usage usages[RCT_CPU_KIND_COUNT] = { 0 }; |
| 213 | // Keep this in sync with proc_threadcounts_data -- this one just has the |
| 214 | // array length hard-coded to the maximum. |
| 215 | struct { |
| 216 | uint16_t counts_len; |
| 217 | uint16_t reserved0; |
| 218 | uint32_t reserved1; |
| 219 | struct proc_threadcounts_data counts[RCT_CPU_KIND_COUNT]; |
| 220 | } counts = { 0 }; |
| 221 | |
| 222 | task_t task = proc_task(p); |
| 223 | if (task == TASK_NULL) { |
| 224 | return ESRCH; |
| 225 | } |
| 226 | |
| 227 | bool found = recount_task_thread_perf_level_usage(task, tid, usages); |
| 228 | if (!found) { |
| 229 | return ESRCH; |
| 230 | } |
| 231 | |
| 232 | const size_t counts_len = MIN(recount_topo_count(RCT_TOPO_CPU_KIND), |
| 233 | RCT_CPU_KIND_COUNT); |
| 234 | counts.counts_len = (uint16_t)counts_len; |
| 235 | // The number of perflevels for this boot can be constrained by the `cpus=` |
| 236 | // boot-arg, so determine the runtime number to prevent unexpected calls |
| 237 | // into the machine-dependent layers from asserting. |
| 238 | unsigned int cpu_types = ml_get_cpu_types(); |
| 239 | unsigned int level_count = __builtin_popcount(cpu_types); |
| 240 | |
| 241 | for (unsigned int i = 0; i < counts_len; i++) { |
| 242 | if (i < level_count) { |
| 243 | const recount_cpu_kind_t cpu_kind = _perflevel_index_to_cpu_kind(i); |
| 244 | counts.counts[i] = _usage_to_proc_threadcounts(&usages[cpu_kind]); |
| 245 | } |
| 246 | } |
| 247 | size_t copyout_size = MIN(sizeof(uint64_t) + |
| 248 | counts_len * sizeof(struct proc_threadcounts_data), usize); |
| 249 | assert(copyout_size <= sizeof(counts)); |
| 250 | int error = copyout(&counts, uaddr, copyout_size); |
| 251 | if (error == 0) { |
| 252 | *size_out = (int)copyout_size; |
| 253 | } |
| 254 | return error; |
| 255 | } |
| 256 | |
| 257 | #else // CONFIG_PERVASIVE_CPI |
| 258 | |
| 259 | int |
| 260 | proc_pidthreadcounts( |
| 261 | __unused struct proc *p, |
| 262 | __unused uint64_t tid, |
| 263 | __unused user_addr_t uaddr, |
| 264 | __unused size_t usize, |
| 265 | __unused int *ret_out) |
| 266 | { |
| 267 | return ENOTSUP; |
| 268 | } |
| 269 | |
| 270 | int |
| 271 | thread_selfcounts(__unused struct proc *p, |
| 272 | __unused struct thread_selfcounts_args *uap, __unused int *ret_out) |
| 273 | { |
| 274 | return ENOTSUP; |
| 275 | } |
| 276 | |
| 277 | #endif // !CONFIG_PERVASIVE_CPI |
| 278 | |