| 1 | /* |
| 2 | * Copyright (c) 2021 Apple Computer, Inc. All rights reserved. |
| 3 | * |
| 4 | * @APPLE_LICENSE_HEADER_START@ |
| 5 | * |
| 6 | * The contents of this file constitute Original Code as defined in and |
| 7 | * are subject to the Apple Public Source License Version 1.1 (the |
| 8 | * "License"). You may not use this file except in compliance with the |
| 9 | * License. Please obtain a copy of the License at |
| 10 | * http://www.apple.com/publicsource and read it before using this file. |
| 11 | * |
| 12 | * This Original Code and all software distributed under the License are |
| 13 | * distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, EITHER |
| 14 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
| 15 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, |
| 16 | * FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT. Please see the |
| 17 | * License for the specific language governing rights and limitations |
| 18 | * under the License. |
| 19 | * |
| 20 | * @APPLE_LICENSE_HEADER_END@ |
| 21 | */ |
| 22 | |
| 23 | #include <os/overflow.h> |
| 24 | #include <pexpert/pexpert.h> |
| 25 | #include <pexpert/device_tree.h> |
| 26 | #include <mach/boolean.h> |
| 27 | #include <mach/vm_param.h> |
| 28 | #include <vm/vm_kern.h> |
| 29 | #include <vm/pmap_cs.h> |
| 30 | #include <kern/zalloc.h> |
| 31 | #include <kern/kalloc.h> |
| 32 | #include <kern/assert.h> |
| 33 | #include <kern/lock_rw.h> |
| 34 | #include <libkern/libkern.h> |
| 35 | #include <libkern/section_keywords.h> |
| 36 | #include <libkern/img4/interface.h> |
| 37 | #include <libkern/amfi/amfi.h> |
| 38 | #include <sys/vm.h> |
| 39 | #include <sys/proc.h> |
| 40 | #include <sys/codesign.h> |
| 41 | #include <sys/trust_caches.h> |
| 42 | #include <IOKit/IOBSD.h> |
| 43 | #include <img4/firmware.h> |
| 44 | #include <TrustCache/API.h> |
| 45 | |
| 46 | static bool boot_os_tc_loaded = false; |
| 47 | static bool boot_app_tc_loaded = false; |
| 48 | |
| 49 | #if CONFIG_SPTM |
| 50 | /* |
| 51 | * We have the TrustedExecutionMonitor environment available. All of our artifacts |
| 52 | * need to be page-aligned, and transferred to the appropriate TXM type before we |
| 53 | * call into TXM to load the trust cache. |
| 54 | * |
| 55 | * The trust cache runtime is managed independently by TXM. All initialization work |
| 56 | * is done by the TXM bootstrap and there is nothing more we need to do here. |
| 57 | */ |
| 58 | #include <sys/trusted_execution_monitor.h> |
| 59 | |
| 60 | LCK_GRP_DECLARE(txm_trust_cache_lck_grp, "txm_trust_cache_lck_grp" ); |
| 61 | decl_lck_rw_data(, txm_trust_cache_lck); |
| 62 | |
| 63 | /* Immutable part of the runtime */ |
| 64 | SECURITY_READ_ONLY_LATE(TrustCacheRuntime_t*) trust_cache_rt = NULL; |
| 65 | |
| 66 | /* Mutable part of the runtime */ |
| 67 | SECURITY_READ_ONLY_LATE(TrustCacheMutableRuntime_t*) trust_cache_mut_rt = NULL; |
| 68 | |
| 69 | /* Static trust cache information collected from TXM */ |
| 70 | SECURITY_READ_ONLY_LATE(uint32_t) num_static_trust_caches = 0; |
| 71 | SECURITY_READ_ONLY_LATE(TCCapabilities_t) static_trust_cache_capabilities0 = 0; |
| 72 | SECURITY_READ_ONLY_LATE(TCCapabilities_t) static_trust_cache_capabilities1 = 0; |
| 73 | |
| 74 | static void |
| 75 | get_trust_cache_info(void) |
| 76 | { |
| 77 | txm_call_t txm_call = { |
| 78 | .selector = kTXMKernelSelectorGetTrustCacheInfo, |
| 79 | .failure_fatal = true, |
| 80 | .num_output_args = 4 |
| 81 | }; |
| 82 | txm_kernel_call(&txm_call); |
| 83 | |
| 84 | /* |
| 85 | * The monitor returns the libTrustCache runtime it uses within the first |
| 86 | * returned word. The kernel doesn't currently have a use-case for this, so |
| 87 | * we don't use it. But we continue to return this value from the monitor |
| 88 | * in case it ever comes in use later down the line. |
| 89 | */ |
| 90 | |
| 91 | num_static_trust_caches = (uint32_t)txm_call.return_words[1]; |
| 92 | static_trust_cache_capabilities0 = (TCCapabilities_t)txm_call.return_words[2]; |
| 93 | static_trust_cache_capabilities1 = (TCCapabilities_t)txm_call.return_words[3]; |
| 94 | } |
| 95 | |
| 96 | void |
| 97 | trust_cache_runtime_init(void) |
| 98 | { |
| 99 | /* Image4 interface needs to be available */ |
| 100 | if (img4if == NULL) { |
| 101 | panic("image4 interface not available" ); |
| 102 | } |
| 103 | |
| 104 | /* AMFI interface needs to be available */ |
| 105 | if (amfi == NULL) { |
| 106 | panic("amfi interface not available" ); |
| 107 | } else if (amfi->TrustCache.version < 2) { |
| 108 | panic("amfi interface is stale: %u" , amfi->TrustCache.version); |
| 109 | } |
| 110 | |
| 111 | /* Initialize the TXM trust cache read-write lock */ |
| 112 | lck_rw_init(&txm_trust_cache_lck, &txm_trust_cache_lck_grp, 0); |
| 113 | |
| 114 | /* Acquire trust cache information from the monitor */ |
| 115 | get_trust_cache_info(); |
| 116 | } |
| 117 | |
| 118 | static kern_return_t |
| 119 | txm_load_trust_cache( |
| 120 | TCType_t type, |
| 121 | const uint8_t *img4_payload, const size_t img4_payload_len, |
| 122 | const uint8_t *img4_manifest, const size_t img4_manifest_len, |
| 123 | const uint8_t *img4_aux_manifest, const size_t img4_aux_manifest_len) |
| 124 | { |
| 125 | txm_call_t txm_call = { |
| 126 | .selector = kTXMKernelSelectorLoadTrustCache, |
| 127 | .num_input_args = 7 |
| 128 | }; |
| 129 | vm_address_t payload_addr = 0; |
| 130 | vm_address_t manifest_addr = 0; |
| 131 | kern_return_t ret = KERN_DENIED; |
| 132 | |
| 133 | /* We don't support the auxiliary manifest for now */ |
| 134 | (void)img4_aux_manifest; |
| 135 | (void)img4_aux_manifest_len; |
| 136 | |
| 137 | ret = kmem_alloc(kernel_map, &payload_addr, img4_payload_len, |
| 138 | KMA_KOBJECT | KMA_DATA | KMA_ZERO, VM_KERN_MEMORY_SECURITY); |
| 139 | if (ret != KERN_SUCCESS) { |
| 140 | printf("unable to allocate memory for image4 payload: %d\n" , ret); |
| 141 | goto out; |
| 142 | } |
| 143 | memcpy((void*)payload_addr, img4_payload, img4_payload_len); |
| 144 | |
| 145 | ret = kmem_alloc(kernel_map, &manifest_addr, img4_manifest_len, |
| 146 | KMA_KOBJECT | KMA_DATA | KMA_ZERO, VM_KERN_MEMORY_SECURITY); |
| 147 | if (ret != KERN_SUCCESS) { |
| 148 | printf("unable to allocate memory for image4 manifest: %d\n" , ret); |
| 149 | goto out; |
| 150 | } |
| 151 | memcpy((void*)manifest_addr, img4_manifest, img4_manifest_len); |
| 152 | |
| 153 | /* Transfer both regions to be TXM owned */ |
| 154 | txm_transfer_region(payload_addr, img4_payload_len); |
| 155 | txm_transfer_region(manifest_addr, img4_manifest_len); |
| 156 | |
| 157 | /* Take the trust cache lock exclusively */ |
| 158 | lck_rw_lock_exclusive(&txm_trust_cache_lck); |
| 159 | |
| 160 | /* TXM will round-up to page length itself */ |
| 161 | ret = txm_kernel_call( |
| 162 | &txm_call, |
| 163 | type, |
| 164 | payload_addr, img4_payload_len, |
| 165 | manifest_addr, img4_manifest_len, |
| 166 | 0, 0); |
| 167 | |
| 168 | /* Release the trust cache lock */ |
| 169 | lck_rw_unlock_exclusive(&txm_trust_cache_lck); |
| 170 | |
| 171 | /* Check for duplicate trust cache error */ |
| 172 | if (txm_call.txm_ret.returnCode == kTXMReturnTrustCache) { |
| 173 | if (txm_call.txm_ret.tcRet.error == kTCReturnDuplicate) { |
| 174 | ret = KERN_ALREADY_IN_SET; |
| 175 | } |
| 176 | } |
| 177 | |
| 178 | out: |
| 179 | if (manifest_addr != 0) { |
| 180 | /* Reclaim the manifest region */ |
| 181 | txm_reclaim_region(manifest_addr, img4_manifest_len); |
| 182 | |
| 183 | /* Free the manifest region */ |
| 184 | kmem_free(kernel_map, manifest_addr, img4_manifest_len); |
| 185 | manifest_addr = 0; |
| 186 | } |
| 187 | |
| 188 | if ((ret != KERN_SUCCESS) && (payload_addr != 0)) { |
| 189 | /* Reclaim the payload region */ |
| 190 | txm_reclaim_region(payload_addr, img4_payload_len); |
| 191 | |
| 192 | /* Free the payload region */ |
| 193 | kmem_free(kernel_map, payload_addr, img4_payload_len); |
| 194 | payload_addr = 0; |
| 195 | } |
| 196 | |
| 197 | return ret; |
| 198 | } |
| 199 | |
| 200 | static kern_return_t |
| 201 | txm_load_legacy_trust_cache( |
| 202 | __unused const uint8_t *module_data, __unused const size_t module_size) |
| 203 | { |
| 204 | panic("legacy trust caches are not supported on this platform" ); |
| 205 | } |
| 206 | |
| 207 | static kern_return_t |
| 208 | txm_query_trust_cache( |
| 209 | TCQueryType_t query_type, |
| 210 | const uint8_t cdhash[kTCEntryHashSize], |
| 211 | TrustCacheQueryToken_t *query_token) |
| 212 | { |
| 213 | txm_call_t txm_call = { |
| 214 | .selector = kTXMKernelSelectorQueryTrustCache, |
| 215 | .failure_silent = true, |
| 216 | .num_input_args = 2, |
| 217 | .num_output_args = 2, |
| 218 | }; |
| 219 | kern_return_t ret = KERN_NOT_FOUND; |
| 220 | |
| 221 | lck_rw_lock_shared(&txm_trust_cache_lck); |
| 222 | ret = txm_kernel_call(&txm_call, query_type, cdhash); |
| 223 | lck_rw_unlock_shared(&txm_trust_cache_lck); |
| 224 | |
| 225 | if (ret == KERN_SUCCESS) { |
| 226 | if (query_token) { |
| 227 | query_token->trustCache = (const TrustCache_t*)txm_call.return_words[0]; |
| 228 | query_token->trustCacheEntry = (const void*)txm_call.return_words[1]; |
| 229 | } |
| 230 | return KERN_SUCCESS; |
| 231 | } |
| 232 | |
| 233 | /* Check for not-found trust cache error */ |
| 234 | if (txm_call.txm_ret.returnCode == kTXMReturnTrustCache) { |
| 235 | if (txm_call.txm_ret.tcRet.error == kTCReturnNotFound) { |
| 236 | ret = KERN_NOT_FOUND; |
| 237 | } |
| 238 | } |
| 239 | |
| 240 | return ret; |
| 241 | } |
| 242 | |
| 243 | static kern_return_t |
| 244 | txm_check_trust_cache_runtime_for_uuid( |
| 245 | const uint8_t check_uuid[kUUIDSize]) |
| 246 | { |
| 247 | txm_call_t txm_call = { |
| 248 | .selector = kTXMKernelSelectorCheckTrustCacheRuntimeForUUID, |
| 249 | .failure_silent = true, |
| 250 | .num_input_args = 1 |
| 251 | }; |
| 252 | kern_return_t ret = KERN_DENIED; |
| 253 | |
| 254 | lck_rw_lock_shared(&txm_trust_cache_lck); |
| 255 | ret = txm_kernel_call(&txm_call, check_uuid); |
| 256 | lck_rw_unlock_shared(&txm_trust_cache_lck); |
| 257 | |
| 258 | /* Check for not-found trust cache error */ |
| 259 | if (txm_call.txm_ret.returnCode == kTXMReturnTrustCache) { |
| 260 | if (txm_call.txm_ret.tcRet.error == kTCReturnNotFound) { |
| 261 | ret = KERN_NOT_FOUND; |
| 262 | } |
| 263 | } |
| 264 | |
| 265 | return ret; |
| 266 | } |
| 267 | |
| 268 | #elif PMAP_CS_PPL_MONITOR |
| 269 | /* |
| 270 | * We have the Page Protection Layer environment available. All of our artifacts |
| 271 | * need to be page-aligned. The PPL will lockdown the artifacts before it begins |
| 272 | * the validation. |
| 273 | * |
| 274 | * Even though the runtimes are PPL owned, we expect the runtime init function |
| 275 | * to be called before the PPL has been locked down, which allows us to write |
| 276 | * to them. |
| 277 | */ |
| 278 | |
| 279 | /* Immutable part of the runtime */ |
| 280 | SECURITY_READ_ONLY_LATE(TrustCacheRuntime_t*) trust_cache_rt = &ppl_trust_cache_rt; |
| 281 | |
| 282 | /* Mutable part of the runtime */ |
| 283 | SECURITY_READ_ONLY_LATE(TrustCacheMutableRuntime_t*) trust_cache_mut_rt = &ppl_trust_cache_mut_rt; |
| 284 | |
| 285 | void |
| 286 | trust_cache_runtime_init(void) |
| 287 | { |
| 288 | bool allow_second_static_cache = false; |
| 289 | bool allow_engineering_caches = false; |
| 290 | |
| 291 | #if CONFIG_SECOND_STATIC_TRUST_CACHE |
| 292 | allow_second_static_cache = true; |
| 293 | #endif |
| 294 | |
| 295 | #if PMAP_CS_INCLUDE_INTERNAL_CODE |
| 296 | allow_engineering_caches = true; |
| 297 | #endif |
| 298 | |
| 299 | /* Image4 interface needs to be available */ |
| 300 | if (img4if == NULL) { |
| 301 | panic("image4 interface not available" ); |
| 302 | } |
| 303 | |
| 304 | /* AMFI interface needs to be available */ |
| 305 | if (amfi == NULL) { |
| 306 | panic("amfi interface not available" ); |
| 307 | } else if (amfi->TrustCache.version < 2) { |
| 308 | panic("amfi interface is stale: %u" , amfi->TrustCache.version); |
| 309 | } |
| 310 | |
| 311 | trustCacheInitializeRuntime( |
| 312 | trust_cache_rt, |
| 313 | trust_cache_mut_rt, |
| 314 | allow_second_static_cache, |
| 315 | allow_engineering_caches, |
| 316 | false, |
| 317 | IMG4_RUNTIME_PMAP_CS); |
| 318 | |
| 319 | /* Locks are initialized in "pmap_bootstrap()" */ |
| 320 | } |
| 321 | |
| 322 | static kern_return_t |
| 323 | ppl_load_trust_cache( |
| 324 | TCType_t type, |
| 325 | const uint8_t *img4_payload, const size_t img4_payload_len, |
| 326 | const uint8_t *img4_manifest, const size_t img4_manifest_len, |
| 327 | const uint8_t *img4_aux_manifest, const size_t img4_aux_manifest_len) |
| 328 | { |
| 329 | kern_return_t ret = KERN_DENIED; |
| 330 | vm_address_t payload_addr = 0; |
| 331 | vm_size_t payload_len = 0; |
| 332 | vm_size_t payload_len_aligned = 0; |
| 333 | vm_address_t manifest_addr = 0; |
| 334 | vm_size_t manifest_len_aligned = 0; |
| 335 | vm_address_t aux_manifest_addr = 0; |
| 336 | vm_size_t aux_manifest_len_aligned = 0; |
| 337 | |
| 338 | /* The trust cache data structure is bundled with the img4 payload */ |
| 339 | if (os_add_overflow(img4_payload_len, sizeof(pmap_img4_payload_t), &payload_len)) { |
| 340 | panic("overflow on pmap img4 payload: %lu" , img4_payload_len); |
| 341 | } |
| 342 | payload_len_aligned = round_page(payload_len); |
| 343 | manifest_len_aligned = round_page(img4_manifest_len); |
| 344 | aux_manifest_len_aligned = round_page(img4_aux_manifest_len); |
| 345 | |
| 346 | ret = kmem_alloc(kernel_map, &payload_addr, payload_len_aligned, |
| 347 | KMA_KOBJECT | KMA_ZERO, VM_KERN_MEMORY_SECURITY); |
| 348 | if (ret != KERN_SUCCESS) { |
| 349 | printf("unable to allocate memory for pmap image4 payload: %d\n" , ret); |
| 350 | goto out; |
| 351 | } |
| 352 | |
| 353 | pmap_img4_payload_t *pmap_payload = (pmap_img4_payload_t*)payload_addr; |
| 354 | memcpy(pmap_payload->img4_payload, img4_payload, img4_payload_len); |
| 355 | |
| 356 | /* Allocate storage for the manifest */ |
| 357 | ret = kmem_alloc(kernel_map, &manifest_addr, manifest_len_aligned, |
| 358 | KMA_KOBJECT | KMA_DATA | KMA_ZERO, VM_KERN_MEMORY_SECURITY); |
| 359 | if (ret != KERN_SUCCESS) { |
| 360 | printf("unable to allocate memory for image4 manifest: %d\n" , ret); |
| 361 | goto out; |
| 362 | } |
| 363 | memcpy((void*)manifest_addr, img4_manifest, img4_manifest_len); |
| 364 | |
| 365 | if (aux_manifest_len_aligned != 0) { |
| 366 | /* Allocate storage for the auxiliary manifest */ |
| 367 | ret = kmem_alloc(kernel_map, &aux_manifest_addr, aux_manifest_len_aligned, |
| 368 | KMA_KOBJECT | KMA_DATA | KMA_ZERO, VM_KERN_MEMORY_SECURITY); |
| 369 | if (ret != KERN_SUCCESS) { |
| 370 | printf("unable to allocate memory for auxiliary image4 manifest: %d\n" , ret); |
| 371 | goto out; |
| 372 | } |
| 373 | memcpy((void*)aux_manifest_addr, img4_aux_manifest, img4_aux_manifest_len); |
| 374 | } |
| 375 | |
| 376 | /* The PPL will round up the length to page size itself */ |
| 377 | ret = pmap_load_trust_cache_with_type( |
| 378 | type, |
| 379 | payload_addr, payload_len, |
| 380 | manifest_addr, img4_manifest_len, |
| 381 | aux_manifest_addr, img4_aux_manifest_len); |
| 382 | |
| 383 | out: |
| 384 | if (aux_manifest_addr != 0) { |
| 385 | kmem_free(kernel_map, aux_manifest_addr, aux_manifest_len_aligned); |
| 386 | aux_manifest_addr = 0; |
| 387 | aux_manifest_len_aligned = 0; |
| 388 | } |
| 389 | |
| 390 | if (manifest_addr != 0) { |
| 391 | kmem_free(kernel_map, manifest_addr, manifest_len_aligned); |
| 392 | manifest_addr = 0; |
| 393 | manifest_len_aligned = 0; |
| 394 | } |
| 395 | |
| 396 | if ((ret != KERN_SUCCESS) && (payload_addr != 0)) { |
| 397 | kmem_free(kernel_map, payload_addr, payload_len_aligned); |
| 398 | payload_addr = 0; |
| 399 | payload_len_aligned = 0; |
| 400 | } |
| 401 | |
| 402 | return ret; |
| 403 | } |
| 404 | |
| 405 | static kern_return_t |
| 406 | ppl_load_legacy_trust_cache( |
| 407 | __unused const uint8_t *module_data, __unused const size_t module_size) |
| 408 | { |
| 409 | panic("legacy trust caches are not supported on this platform" ); |
| 410 | } |
| 411 | |
| 412 | static kern_return_t |
| 413 | ppl_query_trust_cache( |
| 414 | TCQueryType_t query_type, |
| 415 | const uint8_t cdhash[kTCEntryHashSize], |
| 416 | TrustCacheQueryToken_t *query_token) |
| 417 | { |
| 418 | /* |
| 419 | * We need to query by trapping into the PPL since the PPL trust cache runtime |
| 420 | * lock needs to be held. We cannot hold the lock from outside the PPL. |
| 421 | */ |
| 422 | return pmap_query_trust_cache(query_type, cdhash, query_token); |
| 423 | } |
| 424 | |
| 425 | static kern_return_t |
| 426 | ppl_check_trust_cache_runtime_for_uuid( |
| 427 | const uint8_t check_uuid[kUUIDSize]) |
| 428 | { |
| 429 | return pmap_check_trust_cache_runtime_for_uuid(check_uuid); |
| 430 | } |
| 431 | |
| 432 | #else |
| 433 | /* |
| 434 | * We don't have a monitor environment available. This means someone with a kernel |
| 435 | * memory exploit will be able to inject a trust cache into the system. There is |
| 436 | * not much we can do here, since this is older HW. |
| 437 | */ |
| 438 | |
| 439 | /* Lock for the runtime */ |
| 440 | LCK_GRP_DECLARE(trust_cache_lck_grp, "trust_cache_lck_grp" ); |
| 441 | decl_lck_rw_data(, trust_cache_rt_lock); |
| 442 | |
| 443 | /* Immutable part of the runtime */ |
| 444 | SECURITY_READ_ONLY_LATE(TrustCacheRuntime_t) trust_cache_rt_storage; |
| 445 | SECURITY_READ_ONLY_LATE(TrustCacheRuntime_t*) trust_cache_rt = &trust_cache_rt_storage; |
| 446 | |
| 447 | /* Mutable part of the runtime */ |
| 448 | TrustCacheMutableRuntime_t trust_cache_mut_rt_storage; |
| 449 | SECURITY_READ_ONLY_LATE(TrustCacheMutableRuntime_t*) trust_cache_mut_rt = &trust_cache_mut_rt_storage; |
| 450 | |
| 451 | void |
| 452 | trust_cache_runtime_init(void) |
| 453 | { |
| 454 | bool allow_second_static_cache = false; |
| 455 | bool allow_engineering_caches = false; |
| 456 | bool allow_legacy_caches = false; |
| 457 | |
| 458 | #if CONFIG_SECOND_STATIC_TRUST_CACHE |
| 459 | allow_second_static_cache = true; |
| 460 | #endif |
| 461 | |
| 462 | #if TRUST_CACHE_INCLUDE_INTERNAL_CODE |
| 463 | allow_engineering_caches = true; |
| 464 | #endif |
| 465 | |
| 466 | #ifdef XNU_PLATFORM_BridgeOS |
| 467 | allow_legacy_caches = true; |
| 468 | #endif |
| 469 | |
| 470 | /* Image4 interface needs to be available */ |
| 471 | if (img4if == NULL) { |
| 472 | panic("image4 interface not available" ); |
| 473 | } |
| 474 | |
| 475 | /* AMFI interface needs to be available */ |
| 476 | if (amfi == NULL) { |
| 477 | panic("amfi interface not available" ); |
| 478 | } else if (amfi->TrustCache.version < 2) { |
| 479 | panic("amfi interface is stale: %u" , amfi->TrustCache.version); |
| 480 | } |
| 481 | |
| 482 | trustCacheInitializeRuntime( |
| 483 | runtime: trust_cache_rt, |
| 484 | mutableRT: trust_cache_mut_rt, |
| 485 | allowSecondStaticTC: allow_second_static_cache, |
| 486 | allowEngineeringTC: allow_engineering_caches, |
| 487 | allowLegacyTC: allow_legacy_caches, |
| 488 | IMG4_RUNTIME_DEFAULT); |
| 489 | |
| 490 | /* Initialize the read-write lock */ |
| 491 | lck_rw_init(lck: &trust_cache_rt_lock, grp: &trust_cache_lck_grp, attr: 0); |
| 492 | } |
| 493 | |
| 494 | static kern_return_t |
| 495 | xnu_load_trust_cache( |
| 496 | TCType_t type, |
| 497 | const uint8_t *img4_payload, const size_t img4_payload_len, |
| 498 | const uint8_t *img4_manifest, const size_t img4_manifest_len, |
| 499 | const uint8_t *img4_aux_manifest, const size_t img4_aux_manifest_len) |
| 500 | { |
| 501 | kern_return_t ret = KERN_DENIED; |
| 502 | |
| 503 | /* Ignore the auxiliary manifest until we add support for it */ |
| 504 | (void)img4_aux_manifest; |
| 505 | (void)img4_aux_manifest_len; |
| 506 | |
| 507 | /* Allocate the trust cache data structure -- Z_WAITOK_ZERO means this can't fail */ |
| 508 | TrustCache_t *trust_cache = kalloc_type(TrustCache_t, Z_WAITOK_ZERO); |
| 509 | assert(trust_cache != NULL); |
| 510 | |
| 511 | /* |
| 512 | * The manifests aren't needed after the validation is complete, but the payload needs |
| 513 | * to persist. The caller of this API expects us to make our own allocations. Since we |
| 514 | * don't need the manifests after validation, we can use the manifests passed in to us |
| 515 | * but we need to make a new allocation for the payload, since that needs to persist. |
| 516 | * |
| 517 | * Z_WAITOK implies that this allocation can never fail. |
| 518 | */ |
| 519 | uint8_t *payload = (uint8_t*)kalloc_data(img4_payload_len, Z_WAITOK); |
| 520 | assert(payload != NULL); |
| 521 | |
| 522 | /* Copy the payload into our allocation */ |
| 523 | memcpy(dst: payload, src: img4_payload, n: img4_payload_len); |
| 524 | |
| 525 | /* Exclusively lock the runtime */ |
| 526 | lck_rw_lock_exclusive(lck: &trust_cache_rt_lock); |
| 527 | |
| 528 | TCReturn_t tc_ret = amfi->TrustCache.load( |
| 529 | trust_cache_rt, |
| 530 | type, |
| 531 | trust_cache, |
| 532 | (const uintptr_t)payload, img4_payload_len, |
| 533 | (const uintptr_t)img4_manifest, img4_manifest_len); |
| 534 | |
| 535 | /* Unlock the runtime */ |
| 536 | lck_rw_unlock_exclusive(lck: &trust_cache_rt_lock); |
| 537 | |
| 538 | if (tc_ret.error == kTCReturnSuccess) { |
| 539 | ret = KERN_SUCCESS; |
| 540 | } else if (tc_ret.error == kTCReturnDuplicate) { |
| 541 | ret = KERN_ALREADY_IN_SET; |
| 542 | } else { |
| 543 | printf("unable to load trust cache (TCReturn: 0x%02X | 0x%02X | %u)\n" , |
| 544 | tc_ret.component, tc_ret.error, tc_ret.uniqueError); |
| 545 | |
| 546 | ret = KERN_FAILURE; |
| 547 | } |
| 548 | |
| 549 | if (ret != KERN_SUCCESS) { |
| 550 | kfree_data(payload, img4_payload_len); |
| 551 | payload = NULL; |
| 552 | |
| 553 | kfree_type(TrustCache_t, trust_cache); |
| 554 | trust_cache = NULL; |
| 555 | } |
| 556 | return ret; |
| 557 | } |
| 558 | |
| 559 | static kern_return_t |
| 560 | xnu_load_legacy_trust_cache( |
| 561 | __unused const uint8_t *module_data, __unused const size_t module_size) |
| 562 | { |
| 563 | #if XNU_HAS_LEGACY_TRUST_CACHE_LOADING |
| 564 | kern_return_t ret = KERN_DENIED; |
| 565 | |
| 566 | /* Allocate the trust cache data structure -- Z_WAITOK_ZERO means this can't fail */ |
| 567 | TrustCache_t *trust_cache = kalloc_type(TrustCache_t, Z_WAITOK_ZERO); |
| 568 | assert(trust_cache != NULL); |
| 569 | |
| 570 | /* Allocate storage for the module -- Z_WAITOK means this can't fail */ |
| 571 | uint8_t *module = (uint8_t*)kalloc_data(module_size, Z_WAITOK); |
| 572 | assert(module != NULL); |
| 573 | |
| 574 | /* Copy the module into our allocation */ |
| 575 | memcpy(module, module_data, module_size); |
| 576 | |
| 577 | /* Exclusively lock the runtime */ |
| 578 | lck_rw_lock_exclusive(&trust_cache_rt_lock); |
| 579 | |
| 580 | TCReturn_t tc_ret = amfi->TrustCache.loadModule( |
| 581 | trust_cache_rt, |
| 582 | kTCTypeLegacy, |
| 583 | trust_cache, |
| 584 | (const uintptr_t)module, module_size); |
| 585 | |
| 586 | /* Unlock the runtime */ |
| 587 | lck_rw_unlock_exclusive(&trust_cache_rt_lock); |
| 588 | |
| 589 | if (tc_ret.error == kTCReturnSuccess) { |
| 590 | ret = KERN_SUCCESS; |
| 591 | } else if (tc_ret.error == kTCReturnDuplicate) { |
| 592 | ret = KERN_ALREADY_IN_SET; |
| 593 | } else { |
| 594 | printf("unable to load legacy trust cache (TCReturn: 0x%02X | 0x%02X | %u)\n" , |
| 595 | tc_ret.component, tc_ret.error, tc_ret.uniqueError); |
| 596 | |
| 597 | ret = KERN_FAILURE; |
| 598 | } |
| 599 | |
| 600 | if (ret != KERN_SUCCESS) { |
| 601 | kfree_data(module, module_size); |
| 602 | module = NULL; |
| 603 | |
| 604 | kfree_type(TrustCache_t, trust_cache); |
| 605 | trust_cache = NULL; |
| 606 | } |
| 607 | return ret; |
| 608 | #else |
| 609 | panic("legacy trust caches are not supported on this platform" ); |
| 610 | #endif /* XNU_HAS_LEGACY_TRUST_CACHE_LOADING */ |
| 611 | } |
| 612 | |
| 613 | static kern_return_t |
| 614 | xnu_query_trust_cache( |
| 615 | TCQueryType_t query_type, |
| 616 | const uint8_t cdhash[kTCEntryHashSize], |
| 617 | TrustCacheQueryToken_t *query_token) |
| 618 | { |
| 619 | kern_return_t ret = KERN_NOT_FOUND; |
| 620 | |
| 621 | /* Validate the query type preemptively */ |
| 622 | if (query_type >= kTCQueryTypeTotal) { |
| 623 | printf("unable to query trust cache: invalid query type: %u\n" , query_type); |
| 624 | return KERN_INVALID_ARGUMENT; |
| 625 | } |
| 626 | |
| 627 | /* Lock the runtime as shared */ |
| 628 | lck_rw_lock_shared(lck: &trust_cache_rt_lock); |
| 629 | |
| 630 | TCReturn_t tc_ret = amfi->TrustCache.query( |
| 631 | trust_cache_rt, |
| 632 | query_type, |
| 633 | cdhash, |
| 634 | query_token); |
| 635 | |
| 636 | /* Unlock the runtime */ |
| 637 | lck_rw_unlock_shared(lck: &trust_cache_rt_lock); |
| 638 | |
| 639 | if (tc_ret.error == kTCReturnSuccess) { |
| 640 | ret = KERN_SUCCESS; |
| 641 | } else if (tc_ret.error == kTCReturnNotFound) { |
| 642 | ret = KERN_NOT_FOUND; |
| 643 | } else { |
| 644 | ret = KERN_FAILURE; |
| 645 | printf("trust cache query failed (TCReturn: 0x%02X | 0x%02X | %u)\n" , |
| 646 | tc_ret.component, tc_ret.error, tc_ret.uniqueError); |
| 647 | } |
| 648 | |
| 649 | return ret; |
| 650 | } |
| 651 | |
| 652 | static kern_return_t |
| 653 | xnu_check_trust_cache_runtime_for_uuid( |
| 654 | const uint8_t check_uuid[kUUIDSize]) |
| 655 | { |
| 656 | kern_return_t ret = KERN_DENIED; |
| 657 | |
| 658 | if (amfi->TrustCache.version < 3) { |
| 659 | /* AMFI change hasn't landed in the build */ |
| 660 | printf("unable to check for loaded trust cache: interface not supported\n" ); |
| 661 | return KERN_NOT_SUPPORTED; |
| 662 | } |
| 663 | |
| 664 | /* Lock the runtime as shared */ |
| 665 | lck_rw_lock_shared(lck: &trust_cache_rt_lock); |
| 666 | |
| 667 | TCReturn_t tc_ret = amfi->TrustCache.checkRuntimeForUUID( |
| 668 | trust_cache_rt, |
| 669 | check_uuid, |
| 670 | NULL); |
| 671 | |
| 672 | /* Unlock the runtime */ |
| 673 | lck_rw_unlock_shared(lck: &trust_cache_rt_lock); |
| 674 | |
| 675 | if (tc_ret.error == kTCReturnSuccess) { |
| 676 | ret = KERN_SUCCESS; |
| 677 | } else if (tc_ret.error == kTCReturnNotFound) { |
| 678 | ret = KERN_NOT_FOUND; |
| 679 | } else { |
| 680 | ret = KERN_FAILURE; |
| 681 | printf("trust cache UUID check failed (TCReturn: 0x%02X | 0x%02X | %u)\n" , |
| 682 | tc_ret.component, tc_ret.error, tc_ret.uniqueError); |
| 683 | } |
| 684 | |
| 685 | return ret; |
| 686 | } |
| 687 | |
| 688 | #endif /* CONFIG_SPTM */ |
| 689 | |
| 690 | kern_return_t |
| 691 | check_trust_cache_runtime_for_uuid( |
| 692 | const uint8_t check_uuid[kUUIDSize]) |
| 693 | { |
| 694 | kern_return_t ret = KERN_DENIED; |
| 695 | |
| 696 | if (check_uuid == NULL) { |
| 697 | return KERN_INVALID_ARGUMENT; |
| 698 | } |
| 699 | |
| 700 | #if CONFIG_SPTM |
| 701 | ret = txm_check_trust_cache_runtime_for_uuid(check_uuid); |
| 702 | #elif PMAP_CS_PPL_MONITOR |
| 703 | ret = ppl_check_trust_cache_runtime_for_uuid(check_uuid); |
| 704 | #else |
| 705 | ret = xnu_check_trust_cache_runtime_for_uuid(check_uuid); |
| 706 | #endif |
| 707 | |
| 708 | return ret; |
| 709 | } |
| 710 | |
| 711 | kern_return_t |
| 712 | load_trust_cache( |
| 713 | const uint8_t *img4_object, const size_t img4_object_len, |
| 714 | const uint8_t *img4_ext_manifest, const size_t img4_ext_manifest_len) |
| 715 | { |
| 716 | TCType_t type = kTCTypeInvalid; |
| 717 | kern_return_t ret = KERN_DENIED; |
| 718 | |
| 719 | /* Start from the first valid type and attempt to validate through each */ |
| 720 | for (type = kTCTypeLTRS; type < kTCTypeTotal; type += 1) { |
| 721 | ret = load_trust_cache_with_type( |
| 722 | type, |
| 723 | img4_object, img4_object_len, |
| 724 | img4_ext_manifest, img4_ext_manifest_len, |
| 725 | NULL, img4_aux_manifest_len: 0); |
| 726 | |
| 727 | if ((ret == KERN_SUCCESS) || (ret == KERN_ALREADY_IN_SET)) { |
| 728 | return ret; |
| 729 | } |
| 730 | } |
| 731 | |
| 732 | #if TRUST_CACHE_INCLUDE_INTERNAL_CODE |
| 733 | /* Attempt to load as an engineering root */ |
| 734 | ret = load_trust_cache_with_type( |
| 735 | kTCTypeDTRS, |
| 736 | img4_object, img4_object_len, |
| 737 | img4_ext_manifest, img4_ext_manifest_len, |
| 738 | NULL, 0); |
| 739 | #endif |
| 740 | |
| 741 | return ret; |
| 742 | } |
| 743 | |
| 744 | kern_return_t |
| 745 | load_trust_cache_with_type( |
| 746 | TCType_t type, |
| 747 | const uint8_t *img4_object, const size_t img4_object_len, |
| 748 | const uint8_t *img4_ext_manifest, const size_t img4_ext_manifest_len, |
| 749 | const uint8_t *img4_aux_manifest, const size_t img4_aux_manifest_len) |
| 750 | { |
| 751 | kern_return_t ret = KERN_DENIED; |
| 752 | uintptr_t length_check = 0; |
| 753 | const uint8_t *img4_payload = NULL; |
| 754 | size_t img4_payload_len = 0; |
| 755 | const uint8_t *img4_manifest = NULL; |
| 756 | size_t img4_manifest_len = 0; |
| 757 | |
| 758 | /* img4_object is required */ |
| 759 | if (!img4_object || (img4_object_len == 0)) { |
| 760 | printf("unable to load trust cache (type: %u): no img4_object provided\n" , type); |
| 761 | return KERN_INVALID_ARGUMENT; |
| 762 | } else if (os_add_overflow((uintptr_t)img4_object, img4_object_len, &length_check)) { |
| 763 | panic("overflow on the img4 object: %p | %lu" , img4_object, img4_object_len); |
| 764 | } |
| 765 | |
| 766 | /* img4_ext_manifest is optional */ |
| 767 | if (img4_ext_manifest_len != 0) { |
| 768 | if (!img4_ext_manifest) { |
| 769 | printf("unable to load trust cache (type: %u): img4_ext_manifest expected\n" , type); |
| 770 | return KERN_INVALID_ARGUMENT; |
| 771 | } else if (os_add_overflow((uintptr_t)img4_ext_manifest, img4_ext_manifest_len, &length_check)) { |
| 772 | panic("overflow on the ext manifest: %p | %lu" , img4_ext_manifest, img4_ext_manifest_len); |
| 773 | } |
| 774 | } |
| 775 | |
| 776 | /* img4_aux_manifest is optional */ |
| 777 | if (img4_aux_manifest_len != 0) { |
| 778 | if (!img4_aux_manifest) { |
| 779 | printf("unable to load trust cache (type: %u): img4_aux_manifest expected\n" , type); |
| 780 | return KERN_INVALID_ARGUMENT; |
| 781 | } else if (os_add_overflow((uintptr_t)img4_aux_manifest, img4_aux_manifest_len, &length_check)) { |
| 782 | panic("overflow on the ext manifest: %p | %lu" , img4_aux_manifest, img4_aux_manifest_len); |
| 783 | } |
| 784 | } |
| 785 | |
| 786 | /* |
| 787 | * If we don't have an external manifest provided, we expect the img4_object to have |
| 788 | * the manifest embedded. In this case, we need to extract the different artifacts |
| 789 | * out of the object. |
| 790 | */ |
| 791 | if (img4_ext_manifest_len != 0) { |
| 792 | img4_payload = img4_object; |
| 793 | img4_payload_len = img4_object_len; |
| 794 | img4_manifest = img4_ext_manifest; |
| 795 | img4_manifest_len = img4_ext_manifest_len; |
| 796 | } else { |
| 797 | if (img4if->i4if_version < 15) { |
| 798 | /* AppleImage4 change hasn't landed in the build */ |
| 799 | printf("unable to extract payload and manifest from object\n" ); |
| 800 | return KERN_NOT_SUPPORTED; |
| 801 | } |
| 802 | img4_buff_t img4_buff = IMG4_BUFF_INIT; |
| 803 | |
| 804 | /* Extract the payload */ |
| 805 | if (img4_get_payload(img4_object, img4_object_len, &img4_buff) == NULL) { |
| 806 | printf("unable to find payload within img4 object\n" ); |
| 807 | return KERN_NOT_FOUND; |
| 808 | } |
| 809 | img4_payload = img4_buff.i4b_bytes; |
| 810 | img4_payload_len = img4_buff.i4b_len; |
| 811 | |
| 812 | /* Extract the manifest */ |
| 813 | if (img4_get_manifest(img4_object, img4_object_len, &img4_buff) == NULL) { |
| 814 | printf("unable to find manifest within img4 object\n" ); |
| 815 | return KERN_NOT_FOUND; |
| 816 | } |
| 817 | img4_manifest = img4_buff.i4b_bytes; |
| 818 | img4_manifest_len = img4_buff.i4b_len; |
| 819 | } |
| 820 | |
| 821 | if ((type == kTCTypeStatic) || (type == kTCTypeEngineering) || (type == kTCTypeLegacy)) { |
| 822 | printf("unable to load trust cache: invalid type: %u\n" , type); |
| 823 | return KERN_INVALID_ARGUMENT; |
| 824 | } else if (type >= kTCTypeTotal) { |
| 825 | printf("unable to load trust cache: unknown type: %u\n" , type); |
| 826 | return KERN_INVALID_ARGUMENT; |
| 827 | } |
| 828 | |
| 829 | /* Validate entitlement for the calling process */ |
| 830 | if (TCTypeConfig[type].entitlementValue != NULL) { |
| 831 | const bool entitlement_satisfied = IOCurrentTaskHasStringEntitlement( |
| 832 | entitlement: "com.apple.private.pmap.load-trust-cache" , |
| 833 | value: TCTypeConfig[type].entitlementValue); |
| 834 | |
| 835 | if (entitlement_satisfied == false) { |
| 836 | printf("unable to load trust cache (type: %u): unsatisfied entitlement\n" , type); |
| 837 | return KERN_DENIED; |
| 838 | } |
| 839 | } |
| 840 | |
| 841 | if ((type == kTCTypeCryptex1BootOS) && boot_os_tc_loaded) { |
| 842 | printf("disallowed to load multiple kTCTypeCryptex1BootOS trust caches\n" ); |
| 843 | return KERN_DENIED; |
| 844 | } else if ((type == kTCTypeCryptex1BootApp) && boot_app_tc_loaded) { |
| 845 | printf("disallowed to load multiple kTCTypeCryptex1BootApp trust caches\n" ); |
| 846 | return KERN_DENIED; |
| 847 | } |
| 848 | |
| 849 | #if CONFIG_SPTM |
| 850 | ret = txm_load_trust_cache( |
| 851 | type, |
| 852 | img4_payload, img4_payload_len, |
| 853 | img4_manifest, img4_manifest_len, |
| 854 | img4_aux_manifest, img4_aux_manifest_len); |
| 855 | #elif PMAP_CS_PPL_MONITOR |
| 856 | ret = ppl_load_trust_cache( |
| 857 | type, |
| 858 | img4_payload, img4_payload_len, |
| 859 | img4_manifest, img4_manifest_len, |
| 860 | img4_aux_manifest, img4_aux_manifest_len); |
| 861 | #else |
| 862 | ret = xnu_load_trust_cache( |
| 863 | type, |
| 864 | img4_payload, img4_payload_len, |
| 865 | img4_manifest, img4_manifest_len, |
| 866 | img4_aux_manifest, img4_aux_manifest_len); |
| 867 | #endif |
| 868 | |
| 869 | if (ret != KERN_SUCCESS) { |
| 870 | printf("unable to load trust cache (type: %u): %d\n" , type, ret); |
| 871 | } else { |
| 872 | if (type == kTCTypeCryptex1BootOS) { |
| 873 | boot_os_tc_loaded = true; |
| 874 | } else if (type == kTCTypeCryptex1BootApp) { |
| 875 | boot_app_tc_loaded = true; |
| 876 | } |
| 877 | printf("successfully loaded trust cache of type: %u\n" , type); |
| 878 | } |
| 879 | |
| 880 | return ret; |
| 881 | } |
| 882 | |
| 883 | kern_return_t |
| 884 | load_legacy_trust_cache( |
| 885 | const uint8_t *module_data, const size_t module_size) |
| 886 | { |
| 887 | kern_return_t ret = KERN_DENIED; |
| 888 | uintptr_t length_check = 0; |
| 889 | |
| 890 | /* Module is required */ |
| 891 | if (!module_data || (module_size == 0)) { |
| 892 | printf("unable to load legacy trust cache: no module provided\n" ); |
| 893 | return KERN_INVALID_ARGUMENT; |
| 894 | } else if (os_add_overflow((uintptr_t)module_data, module_size, &length_check)) { |
| 895 | panic("overflow on the module: %p | %lu" , module_data, module_size); |
| 896 | } |
| 897 | |
| 898 | #if CONFIG_SPTM |
| 899 | ret = txm_load_legacy_trust_cache(module_data, module_size); |
| 900 | #elif PMAP_CS_PPL_MONITOR |
| 901 | ret = ppl_load_legacy_trust_cache(module_data, module_size); |
| 902 | #else |
| 903 | ret = xnu_load_legacy_trust_cache(module_data, module_size); |
| 904 | #endif |
| 905 | |
| 906 | if (ret != KERN_SUCCESS) { |
| 907 | printf("unable to load legacy trust cache: %d\n" , ret); |
| 908 | } else { |
| 909 | printf("successfully loaded legacy trust cache\n" ); |
| 910 | } |
| 911 | |
| 912 | return ret; |
| 913 | } |
| 914 | |
| 915 | kern_return_t |
| 916 | query_trust_cache( |
| 917 | TCQueryType_t query_type, |
| 918 | const uint8_t cdhash[kTCEntryHashSize], |
| 919 | TrustCacheQueryToken_t *query_token) |
| 920 | { |
| 921 | kern_return_t ret = KERN_NOT_FOUND; |
| 922 | |
| 923 | if (cdhash == NULL) { |
| 924 | printf("unable to query trust caches: no cdhash provided\n" ); |
| 925 | return KERN_INVALID_ARGUMENT; |
| 926 | } |
| 927 | |
| 928 | #if CONFIG_SPTM |
| 929 | ret = txm_query_trust_cache(query_type, cdhash, query_token); |
| 930 | #elif PMAP_CS_PPL_MONITOR |
| 931 | ret = ppl_query_trust_cache(query_type, cdhash, query_token); |
| 932 | #else |
| 933 | ret = xnu_query_trust_cache(query_type, cdhash, query_token); |
| 934 | #endif |
| 935 | |
| 936 | return ret; |
| 937 | } |
| 938 | |
| 939 | /* |
| 940 | * The trust cache management library uses a wrapper data structure to manage each |
| 941 | * of the trust cache modules. We know the exact number of static trust caches we |
| 942 | * expect, so we keep around a read-only-late allocation of the data structure for |
| 943 | * use. |
| 944 | * |
| 945 | * Since engineering trust caches are only ever allowed on development builds, they |
| 946 | * are not protected through the read-only-late property, and instead allocated |
| 947 | * dynamically. |
| 948 | */ |
| 949 | |
| 950 | SECURITY_READ_ONLY_LATE(bool) trust_cache_static_init = false; |
| 951 | SECURITY_READ_ONLY_LATE(bool) trust_cache_static_loaded = false; |
| 952 | SECURITY_READ_ONLY_LATE(TrustCache_t) trust_cache_static0 = {0}; |
| 953 | |
| 954 | #if CONFIG_SECOND_STATIC_TRUST_CACHE |
| 955 | SECURITY_READ_ONLY_LATE(TrustCache_t) trust_cache_static1 = {0}; |
| 956 | #endif |
| 957 | |
| 958 | #if defined(__arm64__) |
| 959 | |
| 960 | typedef uint64_t pmap_paddr_t __kernel_ptr_semantics; |
| 961 | extern vm_map_address_t phystokv(pmap_paddr_t pa); |
| 962 | |
| 963 | #else /* x86_64 */ |
| 964 | /* |
| 965 | * We need this duplicate definition because it is hidden behind the MACH_KERNEL_PRIVATE |
| 966 | * macro definition, which makes it inaccessible to this part of the code base. |
| 967 | */ |
| 968 | extern uint64_t physmap_base, physmap_max; |
| 969 | |
| 970 | static inline void* |
| 971 | PHYSMAP_PTOV_check(void *paddr) |
| 972 | { |
| 973 | uint64_t pvaddr = (uint64_t)paddr + physmap_base; |
| 974 | |
| 975 | if (__improbable(pvaddr >= physmap_max)) { |
| 976 | panic("PHYSMAP_PTOV bounds exceeded, 0x%qx, 0x%qx, 0x%qx" , |
| 977 | pvaddr, physmap_base, physmap_max); |
| 978 | } |
| 979 | |
| 980 | return (void*)pvaddr; |
| 981 | } |
| 982 | |
| 983 | #define PHYSMAP_PTOV(x) (PHYSMAP_PTOV_check((void*) (x))) |
| 984 | #define phystokv(x) ((vm_offset_t)(PHYSMAP_PTOV(x))) |
| 985 | |
| 986 | #endif /* defined(__arm__) || defined(__arm64__) */ |
| 987 | |
| 988 | void |
| 989 | load_static_trust_cache(void) |
| 990 | { |
| 991 | DTEntry memory_map = {0}; |
| 992 | const DTTrustCacheRange *tc_range = NULL; |
| 993 | trust_cache_offsets_t *tc_offsets = NULL; |
| 994 | unsigned int tc_dt_prop_length = 0; |
| 995 | size_t tc_segment_length = 0; |
| 996 | |
| 997 | /* Mark this function as having been called */ |
| 998 | trust_cache_static_init = true; |
| 999 | |
| 1000 | /* Nothing to do when the runtime isn't set */ |
| 1001 | if (trust_cache_rt == NULL) { |
| 1002 | return; |
| 1003 | } |
| 1004 | |
| 1005 | if (amfi->TrustCache.version < 1) { |
| 1006 | /* AMFI change hasn't landed in the build */ |
| 1007 | printf("unable to load static trust cache: interface not supported\n" ); |
| 1008 | return; |
| 1009 | } |
| 1010 | |
| 1011 | int err = SecureDTLookupEntry(NULL, pathName: "chosen/memory-map" , foundEntry: &memory_map); |
| 1012 | if (err != kSuccess) { |
| 1013 | printf("unable to find chosen/memory-map in the device tree: %d\n" , err); |
| 1014 | return; |
| 1015 | } |
| 1016 | |
| 1017 | err = SecureDTGetProperty(entry: memory_map, propertyName: "TrustCache" , propertyValue: (const void **)&tc_range, propertySize: &tc_dt_prop_length); |
| 1018 | if (err == kSuccess) { |
| 1019 | if (tc_dt_prop_length != sizeof(DTTrustCacheRange)) { |
| 1020 | panic("unexpected size for TrustCache property: %u != %zu" , |
| 1021 | tc_dt_prop_length, sizeof(DTTrustCacheRange)); |
| 1022 | } |
| 1023 | |
| 1024 | tc_offsets = (void*)phystokv(pa: tc_range->paddr); |
| 1025 | tc_segment_length = tc_range->length; |
| 1026 | } |
| 1027 | |
| 1028 | /* x86_64 devices aren't expected to have trust caches */ |
| 1029 | if (tc_segment_length == 0) { |
| 1030 | if (tc_offsets && tc_offsets->num_caches != 0) { |
| 1031 | panic("trust cache segment is zero length but trust caches are available: %u" , |
| 1032 | tc_offsets->num_caches); |
| 1033 | } |
| 1034 | |
| 1035 | printf("no external trust caches found (segment length is zero)\n" ); |
| 1036 | return; |
| 1037 | } else if (tc_offsets->num_caches == 0) { |
| 1038 | panic("trust cache segment isn't zero but no trust caches available: %lu" , |
| 1039 | (unsigned long)tc_segment_length); |
| 1040 | } |
| 1041 | |
| 1042 | size_t offsets_length = 0; |
| 1043 | size_t struct_length = 0; |
| 1044 | if (os_mul_overflow(tc_offsets->num_caches, sizeof(uint32_t), &offsets_length)) { |
| 1045 | panic("overflow on the number of trust caches provided: %u" , tc_offsets->num_caches); |
| 1046 | } else if (os_add_overflow(offsets_length, sizeof(trust_cache_offsets_t), &struct_length)) { |
| 1047 | panic("overflow on length of the trust cache offsets: %lu" , |
| 1048 | (unsigned long)offsets_length); |
| 1049 | } else if (tc_segment_length < struct_length) { |
| 1050 | panic("trust cache segment length smaller than required: %lu | %lu" , |
| 1051 | (unsigned long)tc_segment_length, (unsigned long)struct_length); |
| 1052 | } |
| 1053 | const uintptr_t tc_region_end = (uintptr_t)tc_offsets + tc_segment_length; |
| 1054 | |
| 1055 | printf("attempting to load %u external trust cache modules\n" , tc_offsets->num_caches); |
| 1056 | |
| 1057 | for (uint32_t i = 0; i < tc_offsets->num_caches; i++) { |
| 1058 | TCReturn_t tc_ret = (TCReturn_t){.error = kTCReturnError}; |
| 1059 | TCType_t tc_type = kTCTypeEngineering; |
| 1060 | TrustCache_t *trust_cache = NULL; |
| 1061 | |
| 1062 | uintptr_t tc_module = 0; |
| 1063 | if (os_add_overflow((uintptr_t)tc_offsets, tc_offsets->offsets[i], &tc_module)) { |
| 1064 | panic("trust cache module start overflows: %u | %lu | %u" , |
| 1065 | i, (unsigned long)tc_offsets, tc_offsets->offsets[i]); |
| 1066 | } else if (tc_module >= tc_region_end) { |
| 1067 | panic("trust cache module begins after segment ends: %u | %lx | %lx" , |
| 1068 | i, (unsigned long)tc_module, tc_region_end); |
| 1069 | } |
| 1070 | |
| 1071 | /* Should be safe for underflow */ |
| 1072 | const size_t buffer_length = tc_region_end - tc_module; |
| 1073 | |
| 1074 | /* The first module is always the static trust cache */ |
| 1075 | if (i == 0) { |
| 1076 | tc_type = kTCTypeStatic; |
| 1077 | trust_cache = &trust_cache_static0; |
| 1078 | } |
| 1079 | |
| 1080 | #if CONFIG_SECOND_STATIC_TRUST_CACHE |
| 1081 | if (trust_cache_rt->allowSecondStaticTC && (i == 1)) { |
| 1082 | tc_type = kTCTypeStatic; |
| 1083 | trust_cache = &trust_cache_static1; |
| 1084 | } |
| 1085 | #endif |
| 1086 | |
| 1087 | if (tc_type == kTCTypeEngineering) { |
| 1088 | if (trust_cache_rt->allowEngineeringTC == false) { |
| 1089 | printf("skipping engineering trust cache module: %u\n" , i); |
| 1090 | continue; |
| 1091 | } |
| 1092 | |
| 1093 | /* Allocate the trust cache data structure -- Z_WAITOK_ZERO means this can't fail */ |
| 1094 | trust_cache = kalloc_type(TrustCache_t, Z_WAITOK_ZERO); |
| 1095 | assert(trust_cache != NULL); |
| 1096 | } |
| 1097 | |
| 1098 | tc_ret = amfi->TrustCache.loadModule( |
| 1099 | trust_cache_rt, |
| 1100 | tc_type, |
| 1101 | trust_cache, |
| 1102 | tc_module, buffer_length); |
| 1103 | |
| 1104 | if (tc_ret.error != kTCReturnSuccess) { |
| 1105 | printf("unable to load trust cache module: %u (TCReturn: 0x%02X | 0x%02X | %u)\n" , |
| 1106 | i, tc_ret.component, tc_ret.error, tc_ret.uniqueError); |
| 1107 | |
| 1108 | if (tc_type == kTCTypeStatic) { |
| 1109 | panic("failed to load static trust cache module: %u" , i); |
| 1110 | } |
| 1111 | continue; |
| 1112 | } |
| 1113 | printf("loaded external trust cache module: %u\n" , i); |
| 1114 | |
| 1115 | /* |
| 1116 | * The first module is always loaded as a static trust cache. If loading it failed, |
| 1117 | * then this function would've panicked. If we reach here, it means we've loaded a |
| 1118 | * static trust cache on the system. |
| 1119 | */ |
| 1120 | trust_cache_static_loaded = true; |
| 1121 | } |
| 1122 | |
| 1123 | printf("completed loading external trust cache modules\n" ); |
| 1124 | } |
| 1125 | |
| 1126 | kern_return_t |
| 1127 | static_trust_cache_capabilities( |
| 1128 | uint32_t *num_static_trust_caches_ret, |
| 1129 | TCCapabilities_t *capabilities0_ret, |
| 1130 | TCCapabilities_t *capabilities1_ret) |
| 1131 | { |
| 1132 | TCReturn_t tcRet = {.error = kTCReturnError}; |
| 1133 | |
| 1134 | *num_static_trust_caches_ret = 0; |
| 1135 | *capabilities0_ret = kTCCapabilityNone; |
| 1136 | *capabilities1_ret = kTCCapabilityNone; |
| 1137 | |
| 1138 | /* Ensure static trust caches have been initialized */ |
| 1139 | if (trust_cache_static_init == false) { |
| 1140 | panic("attempted to query static trust cache capabilities without init" ); |
| 1141 | } |
| 1142 | |
| 1143 | #if CONFIG_SPTM |
| 1144 | if (num_static_trust_caches > 0) { |
| 1145 | /* Copy in the data received from TrustedExecutionMonitor */ |
| 1146 | *num_static_trust_caches_ret = num_static_trust_caches; |
| 1147 | *capabilities0_ret = static_trust_cache_capabilities0; |
| 1148 | *capabilities1_ret = static_trust_cache_capabilities1; |
| 1149 | |
| 1150 | /* Return successfully */ |
| 1151 | return KERN_SUCCESS; |
| 1152 | } |
| 1153 | #endif |
| 1154 | |
| 1155 | if (amfi->TrustCache.version < 2) { |
| 1156 | /* AMFI change hasn't landed in the build */ |
| 1157 | printf("unable to get static trust cache capabilities: interface not supported\n" ); |
| 1158 | return KERN_NOT_SUPPORTED; |
| 1159 | } else if (trust_cache_static_loaded == false) { |
| 1160 | /* Return arguments already set */ |
| 1161 | return KERN_SUCCESS; |
| 1162 | } |
| 1163 | |
| 1164 | tcRet = amfi->TrustCache.getCapabilities(&trust_cache_static0, capabilities0_ret); |
| 1165 | assert(tcRet.error == kTCReturnSuccess); |
| 1166 | *num_static_trust_caches_ret += 1; |
| 1167 | |
| 1168 | #if CONFIG_SECOND_STATIC_TRUST_CACHE |
| 1169 | tcRet = amfi->TrustCache.getCapabilities(&trust_cache_static1, capabilities1_ret); |
| 1170 | assert(tcRet.error == kTCReturnSuccess); |
| 1171 | *num_static_trust_caches_ret += 1; |
| 1172 | #endif |
| 1173 | |
| 1174 | return KERN_SUCCESS; |
| 1175 | } |
| 1176 | |