1 | /* |
2 | * Copyright (c) 2000-2008 Apple Inc. All rights reserved. |
3 | * |
4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ |
5 | * |
6 | * This file contains Original Code and/or Modifications of Original Code |
7 | * as defined in and that are subject to the Apple Public Source License |
8 | * Version 2.0 (the 'License'). You may not use this file except in |
9 | * compliance with the License. The rights granted to you under the License |
10 | * may not be used to create, or enable the creation or redistribution of, |
11 | * unlawful or unlicensed copies of an Apple operating system, or to |
12 | * circumvent, violate, or enable the circumvention or violation of, any |
13 | * terms of an Apple operating system software license agreement. |
14 | * |
15 | * Please obtain a copy of the License at |
16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. |
17 | * |
18 | * The Original Code and all software distributed under the License are |
19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER |
20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, |
22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
23 | * Please see the License for the specific language governing rights and |
24 | * limitations under the License. |
25 | * |
26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ |
27 | */ |
28 | /* Copyright (c) 1995 NeXT Computer, Inc. All Rights Reserved */ |
29 | /* |
30 | * Copyright (c) 1982, 1986, 1989, 1993 |
31 | * The Regents of the University of California. All rights reserved. |
32 | * |
33 | * Redistribution and use in source and binary forms, with or without |
34 | * modification, are permitted provided that the following conditions |
35 | * are met: |
36 | * 1. Redistributions of source code must retain the above copyright |
37 | * notice, this list of conditions and the following disclaimer. |
38 | * 2. Redistributions in binary form must reproduce the above copyright |
39 | * notice, this list of conditions and the following disclaimer in the |
40 | * documentation and/or other materials provided with the distribution. |
41 | * 3. All advertising materials mentioning features or use of this software |
42 | * must display the following acknowledgement: |
43 | * This product includes software developed by the University of |
44 | * California, Berkeley and its contributors. |
45 | * 4. Neither the name of the University nor the names of its contributors |
46 | * may be used to endorse or promote products derived from this software |
47 | * without specific prior written permission. |
48 | * |
49 | * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND |
50 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
51 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
52 | * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE |
53 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
54 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
55 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
56 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
57 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
58 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
59 | * SUCH DAMAGE. |
60 | * |
61 | * @(#)kern_time.c 8.4 (Berkeley) 5/26/95 |
62 | */ |
63 | /* |
64 | * NOTICE: This file was modified by SPARTA, Inc. in 2005 to introduce |
65 | * support for mandatory and extensible security protections. This notice |
66 | * is included in support of clause 2.2 (b) of the Apple Public License, |
67 | * Version 2.0. |
68 | */ |
69 | |
70 | #include <sys/param.h> |
71 | #include <sys/resourcevar.h> |
72 | #include <sys/kernel.h> |
73 | #include <sys/systm.h> |
74 | #include <sys/proc_internal.h> |
75 | #include <sys/kauth.h> |
76 | #include <sys/vnode.h> |
77 | #include <sys/time.h> |
78 | #include <sys/priv.h> |
79 | |
80 | #include <sys/mount_internal.h> |
81 | #include <sys/sysproto.h> |
82 | #include <sys/signalvar.h> |
83 | #include <sys/protosw.h> /* for net_uptime2timeval() */ |
84 | |
85 | #include <kern/clock.h> |
86 | #include <kern/task.h> |
87 | #include <kern/thread_call.h> |
88 | #if CONFIG_MACF |
89 | #include <security/mac_framework.h> |
90 | #endif |
91 | #include <IOKit/IOBSD.h> |
92 | #include <sys/time.h> |
93 | #include <kern/remote_time.h> |
94 | |
95 | #define HZ 100 /* XXX */ |
96 | |
97 | /* simple lock used to access timezone, tz structure */ |
98 | static LCK_GRP_DECLARE(tz_slock_grp, "tzlock" ); |
99 | static LCK_SPIN_DECLARE(tz_slock, &tz_slock_grp); |
100 | |
101 | static void setthetime( |
102 | struct timeval *tv); |
103 | |
104 | static boolean_t timeval_fixusec(struct timeval *t1); |
105 | |
106 | /* |
107 | * Time of day and interval timer support. |
108 | * |
109 | * These routines provide the kernel entry points to get and set |
110 | * the time-of-day and per-process interval timers. Subroutines |
111 | * here provide support for adding and subtracting timeval structures |
112 | * and decrementing interval timers, optionally reloading the interval |
113 | * timers when they expire. |
114 | */ |
115 | /* ARGSUSED */ |
116 | int |
117 | gettimeofday( |
118 | struct proc *p, |
119 | struct gettimeofday_args *uap, |
120 | __unused int32_t *retval) |
121 | { |
122 | int error = 0; |
123 | struct timezone ltz; /* local copy */ |
124 | clock_sec_t secs; |
125 | clock_usec_t usecs; |
126 | uint64_t mach_time; |
127 | |
128 | if (uap->tp || uap->mach_absolute_time) { |
129 | clock_gettimeofday_and_absolute_time(secs: &secs, microsecs: &usecs, absolute_time: &mach_time); |
130 | } |
131 | |
132 | if (uap->tp) { |
133 | /* Casting secs through a uint32_t to match arm64 commpage */ |
134 | if (IS_64BIT_PROCESS(p)) { |
135 | struct user64_timeval user_atv = {}; |
136 | user_atv.tv_sec = (uint32_t)secs; |
137 | user_atv.tv_usec = usecs; |
138 | error = copyout(&user_atv, uap->tp, sizeof(user_atv)); |
139 | } else { |
140 | struct user32_timeval user_atv = {}; |
141 | user_atv.tv_sec = (uint32_t)secs; |
142 | user_atv.tv_usec = usecs; |
143 | error = copyout(&user_atv, uap->tp, sizeof(user_atv)); |
144 | } |
145 | if (error) { |
146 | return error; |
147 | } |
148 | } |
149 | |
150 | if (uap->tzp) { |
151 | lck_spin_lock(lck: &tz_slock); |
152 | ltz = tz; |
153 | lck_spin_unlock(lck: &tz_slock); |
154 | |
155 | error = copyout((caddr_t)<z, CAST_USER_ADDR_T(uap->tzp), sizeof(tz)); |
156 | } |
157 | |
158 | if (error == 0 && uap->mach_absolute_time) { |
159 | error = copyout(&mach_time, uap->mach_absolute_time, sizeof(mach_time)); |
160 | } |
161 | |
162 | return error; |
163 | } |
164 | |
165 | /* |
166 | * XXX Y2038 bug because of setthetime() argument |
167 | */ |
168 | /* ARGSUSED */ |
169 | int |
170 | settimeofday(__unused struct proc *p, struct settimeofday_args *uap, __unused int32_t *retval) |
171 | { |
172 | struct timeval atv; |
173 | struct timezone atz; |
174 | int error; |
175 | |
176 | bzero(s: &atv, n: sizeof(atv)); |
177 | |
178 | /* Check that this task is entitled to set the time or it is root */ |
179 | if (!IOCurrentTaskHasEntitlement(SETTIME_ENTITLEMENT)) { |
180 | #if CONFIG_MACF |
181 | error = mac_system_check_settime(cred: kauth_cred_get()); |
182 | if (error) { |
183 | return error; |
184 | } |
185 | #endif |
186 | #if defined(XNU_TARGET_OS_OSX) |
187 | if ((error = suser(cred: kauth_cred_get(), acflag: &p->p_acflag))) { |
188 | return error; |
189 | } |
190 | #endif |
191 | } |
192 | |
193 | /* Verify all parameters before changing time */ |
194 | if (uap->tv) { |
195 | if (IS_64BIT_PROCESS(p)) { |
196 | struct user64_timeval user_atv; |
197 | error = copyin(uap->tv, &user_atv, sizeof(user_atv)); |
198 | atv.tv_sec = (__darwin_time_t)user_atv.tv_sec; |
199 | atv.tv_usec = user_atv.tv_usec; |
200 | } else { |
201 | struct user32_timeval user_atv; |
202 | error = copyin(uap->tv, &user_atv, sizeof(user_atv)); |
203 | atv.tv_sec = user_atv.tv_sec; |
204 | atv.tv_usec = user_atv.tv_usec; |
205 | } |
206 | if (error) { |
207 | return error; |
208 | } |
209 | } |
210 | if (uap->tzp && (error = copyin(uap->tzp, (caddr_t)&atz, sizeof(atz)))) { |
211 | return error; |
212 | } |
213 | if (uap->tv) { |
214 | /* only positive values of sec/usec are accepted */ |
215 | if (atv.tv_sec < 0 || atv.tv_usec < 0) { |
216 | return EPERM; |
217 | } |
218 | if (!timeval_fixusec(t1: &atv)) { |
219 | return EPERM; |
220 | } |
221 | setthetime(&atv); |
222 | } |
223 | if (uap->tzp) { |
224 | lck_spin_lock(lck: &tz_slock); |
225 | tz = atz; |
226 | lck_spin_unlock(lck: &tz_slock); |
227 | } |
228 | return 0; |
229 | } |
230 | |
231 | static void |
232 | setthetime( |
233 | struct timeval *tv) |
234 | { |
235 | clock_set_calendar_microtime(secs: tv->tv_sec, microsecs: tv->tv_usec); |
236 | } |
237 | |
238 | /* |
239 | * Verify the calendar value. If negative, |
240 | * reset to zero (the epoch). |
241 | */ |
242 | void |
243 | inittodr( |
244 | __unused time_t base) |
245 | { |
246 | struct timeval tv; |
247 | |
248 | /* |
249 | * Assertion: |
250 | * The calendar has already been |
251 | * set up from the platform clock. |
252 | * |
253 | * The value returned by microtime() |
254 | * is gotten from the calendar. |
255 | */ |
256 | microtime(tv: &tv); |
257 | |
258 | if (tv.tv_sec < 0 || tv.tv_usec < 0) { |
259 | printf("WARNING: preposterous time in Real Time Clock" ); |
260 | tv.tv_sec = 0; /* the UNIX epoch */ |
261 | tv.tv_usec = 0; |
262 | setthetime(&tv); |
263 | printf(" -- CHECK AND RESET THE DATE!\n" ); |
264 | } |
265 | } |
266 | |
267 | time_t |
268 | boottime_sec(void) |
269 | { |
270 | clock_sec_t secs; |
271 | clock_nsec_t nanosecs; |
272 | |
273 | clock_get_boottime_nanotime(secs: &secs, nanosecs: &nanosecs); |
274 | return secs; |
275 | } |
276 | |
277 | void |
278 | boottime_timeval(struct timeval *tv) |
279 | { |
280 | clock_sec_t secs; |
281 | clock_usec_t microsecs; |
282 | |
283 | clock_get_boottime_microtime(secs: &secs, microsecs: µsecs); |
284 | |
285 | tv->tv_sec = secs; |
286 | tv->tv_usec = microsecs; |
287 | } |
288 | |
289 | /* |
290 | * Get value of an interval timer. The process virtual and |
291 | * profiling virtual time timers are kept internally in the |
292 | * way they are specified externally: in time until they expire. |
293 | * |
294 | * The real time interval timer expiration time (p_rtime) |
295 | * is kept as an absolute time rather than as a delta, so that |
296 | * it is easy to keep periodic real-time signals from drifting. |
297 | * |
298 | * The real time timer is processed by a callout routine. |
299 | * Since a callout may be delayed in real time due to |
300 | * other processing in the system, it is possible for the real |
301 | * time callout routine (realitexpire, given below), to be delayed |
302 | * in real time past when it is supposed to occur. It does not |
303 | * suffice, therefore, to reload the real time .it_value from the |
304 | * real time .it_interval. Rather, we compute the next time in |
305 | * absolute time when the timer should go off. |
306 | * |
307 | * Returns: 0 Success |
308 | * EINVAL Invalid argument |
309 | * copyout:EFAULT Bad address |
310 | */ |
311 | /* ARGSUSED */ |
312 | int |
313 | getitimer(struct proc *p, struct getitimer_args *uap, __unused int32_t *retval) |
314 | { |
315 | struct itimerval aitv; |
316 | |
317 | if (uap->which > ITIMER_PROF) { |
318 | return EINVAL; |
319 | } |
320 | |
321 | bzero(s: &aitv, n: sizeof(aitv)); |
322 | |
323 | proc_spinlock(p); |
324 | switch (uap->which) { |
325 | case ITIMER_REAL: |
326 | /* |
327 | * If time for real time timer has passed return 0, |
328 | * else return difference between current time and |
329 | * time for the timer to go off. |
330 | */ |
331 | aitv = p->p_realtimer; |
332 | if (timerisset(&p->p_rtime)) { |
333 | struct timeval now; |
334 | |
335 | microuptime(tv: &now); |
336 | if (timercmp(&p->p_rtime, &now, <)) { |
337 | timerclear(&aitv.it_value); |
338 | } else { |
339 | aitv.it_value = p->p_rtime; |
340 | timevalsub(t1: &aitv.it_value, t2: &now); |
341 | } |
342 | } else { |
343 | timerclear(&aitv.it_value); |
344 | } |
345 | break; |
346 | |
347 | case ITIMER_VIRTUAL: |
348 | aitv = p->p_vtimer_user; |
349 | break; |
350 | |
351 | case ITIMER_PROF: |
352 | aitv = p->p_vtimer_prof; |
353 | break; |
354 | } |
355 | |
356 | proc_spinunlock(p); |
357 | |
358 | if (IS_64BIT_PROCESS(p)) { |
359 | struct user64_itimerval user_itv; |
360 | bzero(s: &user_itv, n: sizeof(user_itv)); |
361 | user_itv.it_interval.tv_sec = aitv.it_interval.tv_sec; |
362 | user_itv.it_interval.tv_usec = aitv.it_interval.tv_usec; |
363 | user_itv.it_value.tv_sec = aitv.it_value.tv_sec; |
364 | user_itv.it_value.tv_usec = aitv.it_value.tv_usec; |
365 | return copyout((caddr_t)&user_itv, uap->itv, sizeof(user_itv)); |
366 | } else { |
367 | struct user32_itimerval user_itv; |
368 | bzero(s: &user_itv, n: sizeof(user_itv)); |
369 | user_itv.it_interval.tv_sec = (user32_time_t)aitv.it_interval.tv_sec; |
370 | user_itv.it_interval.tv_usec = aitv.it_interval.tv_usec; |
371 | user_itv.it_value.tv_sec = (user32_time_t)aitv.it_value.tv_sec; |
372 | user_itv.it_value.tv_usec = aitv.it_value.tv_usec; |
373 | return copyout((caddr_t)&user_itv, uap->itv, sizeof(user_itv)); |
374 | } |
375 | } |
376 | |
377 | /* |
378 | * Returns: 0 Success |
379 | * EINVAL Invalid argument |
380 | * copyin:EFAULT Bad address |
381 | * getitimer:EINVAL Invalid argument |
382 | * getitimer:EFAULT Bad address |
383 | */ |
384 | /* ARGSUSED */ |
385 | int |
386 | setitimer(struct proc *p, struct setitimer_args *uap, int32_t *retval) |
387 | { |
388 | struct itimerval aitv; |
389 | user_addr_t itvp; |
390 | int error; |
391 | |
392 | bzero(s: &aitv, n: sizeof(aitv)); |
393 | |
394 | if (uap->which > ITIMER_PROF) { |
395 | return EINVAL; |
396 | } |
397 | if ((itvp = uap->itv)) { |
398 | if (IS_64BIT_PROCESS(p)) { |
399 | struct user64_itimerval user_itv; |
400 | if ((error = copyin(itvp, (caddr_t)&user_itv, sizeof(user_itv)))) { |
401 | return error; |
402 | } |
403 | aitv.it_interval.tv_sec = (__darwin_time_t)user_itv.it_interval.tv_sec; |
404 | aitv.it_interval.tv_usec = user_itv.it_interval.tv_usec; |
405 | aitv.it_value.tv_sec = (__darwin_time_t)user_itv.it_value.tv_sec; |
406 | aitv.it_value.tv_usec = user_itv.it_value.tv_usec; |
407 | } else { |
408 | struct user32_itimerval user_itv; |
409 | if ((error = copyin(itvp, (caddr_t)&user_itv, sizeof(user_itv)))) { |
410 | return error; |
411 | } |
412 | aitv.it_interval.tv_sec = user_itv.it_interval.tv_sec; |
413 | aitv.it_interval.tv_usec = user_itv.it_interval.tv_usec; |
414 | aitv.it_value.tv_sec = user_itv.it_value.tv_sec; |
415 | aitv.it_value.tv_usec = user_itv.it_value.tv_usec; |
416 | } |
417 | } |
418 | if ((uap->itv = uap->oitv) && (error = getitimer(p, uap: (struct getitimer_args *)uap, retval))) { |
419 | return error; |
420 | } |
421 | if (itvp == 0) { |
422 | return 0; |
423 | } |
424 | if (itimerfix(tv: &aitv.it_value) || itimerfix(tv: &aitv.it_interval)) { |
425 | return EINVAL; |
426 | } |
427 | |
428 | switch (uap->which) { |
429 | case ITIMER_REAL: |
430 | proc_spinlock(p); |
431 | if (timerisset(&aitv.it_value)) { |
432 | microuptime(tv: &p->p_rtime); |
433 | timevaladd(t1: &p->p_rtime, t2: &aitv.it_value); |
434 | p->p_realtimer = aitv; |
435 | if (!thread_call_enter_delayed_with_leeway(call: p->p_rcall, NULL, |
436 | deadline: tvtoabstime(&p->p_rtime), leeway: 0, THREAD_CALL_DELAY_USER_NORMAL)) { |
437 | p->p_ractive++; |
438 | } |
439 | } else { |
440 | timerclear(&p->p_rtime); |
441 | p->p_realtimer = aitv; |
442 | if (thread_call_cancel(call: p->p_rcall)) { |
443 | p->p_ractive--; |
444 | } |
445 | } |
446 | proc_spinunlock(p); |
447 | |
448 | break; |
449 | |
450 | |
451 | case ITIMER_VIRTUAL: |
452 | if (timerisset(&aitv.it_value)) { |
453 | task_vtimer_set(task: proc_task(p), TASK_VTIMER_USER); |
454 | } else { |
455 | task_vtimer_clear(task: proc_task(p), TASK_VTIMER_USER); |
456 | } |
457 | |
458 | proc_spinlock(p); |
459 | p->p_vtimer_user = aitv; |
460 | proc_spinunlock(p); |
461 | break; |
462 | |
463 | case ITIMER_PROF: |
464 | if (timerisset(&aitv.it_value)) { |
465 | task_vtimer_set(task: proc_task(p), TASK_VTIMER_PROF); |
466 | } else { |
467 | task_vtimer_clear(task: proc_task(p), TASK_VTIMER_PROF); |
468 | } |
469 | |
470 | proc_spinlock(p); |
471 | p->p_vtimer_prof = aitv; |
472 | proc_spinunlock(p); |
473 | break; |
474 | } |
475 | |
476 | return 0; |
477 | } |
478 | |
479 | void |
480 | proc_inherit_itimers(struct proc *old_proc, struct proc *new_proc) |
481 | { |
482 | struct itimerval real_itv, vuser_itv, vprof_itv; |
483 | |
484 | /* Snapshot the old timer values */ |
485 | proc_spinlock(old_proc); |
486 | real_itv = old_proc->p_realtimer; |
487 | vuser_itv = old_proc->p_vtimer_user; |
488 | vprof_itv = old_proc->p_vtimer_prof; |
489 | proc_spinunlock(old_proc); |
490 | |
491 | if (timerisset(&vuser_itv.it_value)) { |
492 | task_vtimer_set(task: proc_task(new_proc), TASK_VTIMER_USER); |
493 | } else { |
494 | task_vtimer_clear(task: proc_task(new_proc), TASK_VTIMER_USER); |
495 | } |
496 | |
497 | if (timerisset(&vprof_itv.it_value)) { |
498 | task_vtimer_set(task: proc_task(new_proc), TASK_VTIMER_PROF); |
499 | } else { |
500 | task_vtimer_clear(task: proc_task(new_proc), TASK_VTIMER_PROF); |
501 | } |
502 | |
503 | /* Update the timer values on new proc */ |
504 | proc_spinlock(new_proc); |
505 | |
506 | if (timerisset(&real_itv.it_value)) { |
507 | microuptime(tv: &new_proc->p_rtime); |
508 | timevaladd(t1: &new_proc->p_rtime, t2: &real_itv.it_value); |
509 | new_proc->p_realtimer = real_itv; |
510 | if (!thread_call_enter_delayed_with_leeway(call: new_proc->p_rcall, NULL, |
511 | deadline: tvtoabstime(&new_proc->p_rtime), leeway: 0, THREAD_CALL_DELAY_USER_NORMAL)) { |
512 | new_proc->p_ractive++; |
513 | } |
514 | } else { |
515 | timerclear(&new_proc->p_rtime); |
516 | new_proc->p_realtimer = real_itv; |
517 | } |
518 | |
519 | new_proc->p_vtimer_user = vuser_itv; |
520 | new_proc->p_vtimer_prof = vprof_itv; |
521 | |
522 | proc_spinunlock(new_proc); |
523 | } |
524 | |
525 | /* |
526 | * Real interval timer expired: |
527 | * send process whose timer expired an alarm signal. |
528 | * If time is not set up to reload, then just return. |
529 | * Else compute next time timer should go off which is > current time. |
530 | * This is where delay in processing this timeout causes multiple |
531 | * SIGALRM calls to be compressed into one. |
532 | */ |
533 | void |
534 | realitexpire( |
535 | struct proc *p, |
536 | __unused void *p2) |
537 | { |
538 | struct proc *r; |
539 | struct timeval t; |
540 | |
541 | r = proc_find(pid: proc_getpid(p)); |
542 | |
543 | proc_spinlock(p); |
544 | |
545 | assert(p->p_ractive > 0); |
546 | |
547 | if (--p->p_ractive > 0 || r != p) { |
548 | /* |
549 | * bail, because either proc is exiting |
550 | * or there's another active thread call |
551 | */ |
552 | proc_spinunlock(p); |
553 | |
554 | if (r != NULL) { |
555 | proc_rele(p: r); |
556 | } |
557 | return; |
558 | } |
559 | |
560 | if (!timerisset(&p->p_realtimer.it_interval)) { |
561 | /* |
562 | * p_realtimer was cleared while this call was pending, |
563 | * send one last SIGALRM, but don't re-arm |
564 | */ |
565 | timerclear(&p->p_rtime); |
566 | proc_spinunlock(p); |
567 | |
568 | psignal(p, SIGALRM); |
569 | proc_rele(p); |
570 | return; |
571 | } |
572 | |
573 | proc_spinunlock(p); |
574 | |
575 | /* |
576 | * Send the signal before re-arming the next thread call, |
577 | * so in case psignal blocks, we won't create yet another thread call. |
578 | */ |
579 | |
580 | psignal(p, SIGALRM); |
581 | |
582 | proc_spinlock(p); |
583 | |
584 | /* Should we still re-arm the next thread call? */ |
585 | if (!timerisset(&p->p_realtimer.it_interval)) { |
586 | timerclear(&p->p_rtime); |
587 | proc_spinunlock(p); |
588 | |
589 | proc_rele(p); |
590 | return; |
591 | } |
592 | |
593 | microuptime(tv: &t); |
594 | timevaladd(t1: &p->p_rtime, t2: &p->p_realtimer.it_interval); |
595 | |
596 | if (timercmp(&p->p_rtime, &t, <=)) { |
597 | if ((p->p_rtime.tv_sec + 2) >= t.tv_sec) { |
598 | for (;;) { |
599 | timevaladd(t1: &p->p_rtime, t2: &p->p_realtimer.it_interval); |
600 | if (timercmp(&p->p_rtime, &t, >)) { |
601 | break; |
602 | } |
603 | } |
604 | } else { |
605 | p->p_rtime = p->p_realtimer.it_interval; |
606 | timevaladd(t1: &p->p_rtime, t2: &t); |
607 | } |
608 | } |
609 | |
610 | assert(p->p_rcall != NULL); |
611 | |
612 | if (!thread_call_enter_delayed_with_leeway(call: p->p_rcall, NULL, deadline: tvtoabstime(&p->p_rtime), leeway: 0, |
613 | THREAD_CALL_DELAY_USER_NORMAL)) { |
614 | p->p_ractive++; |
615 | } |
616 | |
617 | proc_spinunlock(p); |
618 | |
619 | proc_rele(p); |
620 | } |
621 | |
622 | /* |
623 | * Called once in proc_exit to clean up after an armed or pending realitexpire |
624 | * |
625 | * This will only be called after the proc refcount is drained, |
626 | * so realitexpire cannot be currently holding a proc ref. |
627 | * i.e. it will/has gotten PROC_NULL from proc_find. |
628 | */ |
629 | void |
630 | proc_free_realitimer(proc_t p) |
631 | { |
632 | proc_spinlock(p); |
633 | |
634 | assert(p->p_rcall != NULL); |
635 | assert(proc_list_exited(p)); |
636 | |
637 | timerclear(&p->p_realtimer.it_interval); |
638 | |
639 | if (thread_call_cancel(call: p->p_rcall)) { |
640 | assert(p->p_ractive > 0); |
641 | p->p_ractive--; |
642 | } |
643 | |
644 | while (p->p_ractive > 0) { |
645 | proc_spinunlock(p); |
646 | |
647 | delay(usec: 1); |
648 | |
649 | proc_spinlock(p); |
650 | } |
651 | |
652 | thread_call_t call = p->p_rcall; |
653 | p->p_rcall = NULL; |
654 | |
655 | proc_spinunlock(p); |
656 | |
657 | thread_call_free(call); |
658 | } |
659 | |
660 | /* |
661 | * Check that a proposed value to load into the .it_value or |
662 | * .it_interval part of an interval timer is acceptable. |
663 | */ |
664 | int |
665 | itimerfix( |
666 | struct timeval *tv) |
667 | { |
668 | if (tv->tv_sec < 0 || tv->tv_sec > 100000000 || |
669 | tv->tv_usec < 0 || tv->tv_usec >= 1000000) { |
670 | return EINVAL; |
671 | } |
672 | return 0; |
673 | } |
674 | |
675 | int |
676 | timespec_is_valid(const struct timespec *ts) |
677 | { |
678 | /* The INT32_MAX limit ensures the timespec is safe for clock_*() functions |
679 | * which accept 32-bit ints. */ |
680 | if (ts->tv_sec < 0 || ts->tv_sec > INT32_MAX || |
681 | ts->tv_nsec < 0 || (unsigned long long)ts->tv_nsec > NSEC_PER_SEC) { |
682 | return 0; |
683 | } |
684 | return 1; |
685 | } |
686 | |
687 | /* |
688 | * Decrement an interval timer by a specified number |
689 | * of microseconds, which must be less than a second, |
690 | * i.e. < 1000000. If the timer expires, then reload |
691 | * it. In this case, carry over (usec - old value) to |
692 | * reduce the value reloaded into the timer so that |
693 | * the timer does not drift. This routine assumes |
694 | * that it is called in a context where the timers |
695 | * on which it is operating cannot change in value. |
696 | */ |
697 | int |
698 | itimerdecr(proc_t p, |
699 | struct itimerval *itp, int usec) |
700 | { |
701 | proc_spinlock(p); |
702 | |
703 | if (itp->it_value.tv_usec < usec) { |
704 | if (itp->it_value.tv_sec == 0) { |
705 | /* expired, and already in next interval */ |
706 | usec -= itp->it_value.tv_usec; |
707 | goto expire; |
708 | } |
709 | itp->it_value.tv_usec += 1000000; |
710 | itp->it_value.tv_sec--; |
711 | } |
712 | itp->it_value.tv_usec -= usec; |
713 | usec = 0; |
714 | if (timerisset(&itp->it_value)) { |
715 | proc_spinunlock(p); |
716 | return 1; |
717 | } |
718 | /* expired, exactly at end of interval */ |
719 | expire: |
720 | if (timerisset(&itp->it_interval)) { |
721 | itp->it_value = itp->it_interval; |
722 | if (itp->it_value.tv_sec > 0) { |
723 | itp->it_value.tv_usec -= usec; |
724 | if (itp->it_value.tv_usec < 0) { |
725 | itp->it_value.tv_usec += 1000000; |
726 | itp->it_value.tv_sec--; |
727 | } |
728 | } |
729 | } else { |
730 | itp->it_value.tv_usec = 0; /* sec is already 0 */ |
731 | } |
732 | proc_spinunlock(p); |
733 | return 0; |
734 | } |
735 | |
736 | /* |
737 | * Add and subtract routines for timevals. |
738 | * N.B.: subtract routine doesn't deal with |
739 | * results which are before the beginning, |
740 | * it just gets very confused in this case. |
741 | * Caveat emptor. |
742 | */ |
743 | void |
744 | timevaladd( |
745 | struct timeval *t1, |
746 | struct timeval *t2) |
747 | { |
748 | t1->tv_sec += t2->tv_sec; |
749 | t1->tv_usec += t2->tv_usec; |
750 | timevalfix(t1); |
751 | } |
752 | void |
753 | timevalsub( |
754 | struct timeval *t1, |
755 | struct timeval *t2) |
756 | { |
757 | t1->tv_sec -= t2->tv_sec; |
758 | t1->tv_usec -= t2->tv_usec; |
759 | timevalfix(t1); |
760 | } |
761 | void |
762 | timevalfix( |
763 | struct timeval *t1) |
764 | { |
765 | if (t1->tv_usec < 0) { |
766 | t1->tv_sec--; |
767 | t1->tv_usec += 1000000; |
768 | } |
769 | if (t1->tv_usec >= 1000000) { |
770 | t1->tv_sec++; |
771 | t1->tv_usec -= 1000000; |
772 | } |
773 | } |
774 | |
775 | static boolean_t |
776 | timeval_fixusec( |
777 | struct timeval *t1) |
778 | { |
779 | assert(t1->tv_usec >= 0); |
780 | assert(t1->tv_sec >= 0); |
781 | |
782 | if (t1->tv_usec >= 1000000) { |
783 | if (os_add_overflow(t1->tv_sec, t1->tv_usec / 1000000, &t1->tv_sec)) { |
784 | return FALSE; |
785 | } |
786 | t1->tv_usec = t1->tv_usec % 1000000; |
787 | } |
788 | |
789 | return TRUE; |
790 | } |
791 | |
792 | /* |
793 | * Return the best possible estimate of the time in the timeval |
794 | * to which tvp points. |
795 | */ |
796 | void |
797 | microtime( |
798 | struct timeval *tvp) |
799 | { |
800 | clock_sec_t tv_sec; |
801 | clock_usec_t tv_usec; |
802 | |
803 | clock_get_calendar_microtime(secs: &tv_sec, microsecs: &tv_usec); |
804 | |
805 | tvp->tv_sec = tv_sec; |
806 | tvp->tv_usec = tv_usec; |
807 | } |
808 | |
809 | void |
810 | microtime_with_abstime( |
811 | struct timeval *tvp, uint64_t *abstime) |
812 | { |
813 | clock_sec_t tv_sec; |
814 | clock_usec_t tv_usec; |
815 | |
816 | clock_get_calendar_absolute_and_microtime(secs: &tv_sec, microsecs: &tv_usec, abstime); |
817 | |
818 | tvp->tv_sec = tv_sec; |
819 | tvp->tv_usec = tv_usec; |
820 | } |
821 | |
822 | void |
823 | microuptime( |
824 | struct timeval *tvp) |
825 | { |
826 | clock_sec_t tv_sec; |
827 | clock_usec_t tv_usec; |
828 | |
829 | clock_get_system_microtime(secs: &tv_sec, microsecs: &tv_usec); |
830 | |
831 | tvp->tv_sec = tv_sec; |
832 | tvp->tv_usec = tv_usec; |
833 | } |
834 | |
835 | /* |
836 | * Ditto for timespec. |
837 | */ |
838 | void |
839 | nanotime( |
840 | struct timespec *tsp) |
841 | { |
842 | clock_sec_t tv_sec; |
843 | clock_nsec_t tv_nsec; |
844 | |
845 | clock_get_calendar_nanotime(secs: &tv_sec, nanosecs: &tv_nsec); |
846 | |
847 | tsp->tv_sec = tv_sec; |
848 | tsp->tv_nsec = tv_nsec; |
849 | } |
850 | |
851 | void |
852 | nanouptime( |
853 | struct timespec *tsp) |
854 | { |
855 | clock_sec_t tv_sec; |
856 | clock_nsec_t tv_nsec; |
857 | |
858 | clock_get_system_nanotime(secs: &tv_sec, nanosecs: &tv_nsec); |
859 | |
860 | tsp->tv_sec = tv_sec; |
861 | tsp->tv_nsec = tv_nsec; |
862 | } |
863 | |
864 | uint64_t |
865 | tvtoabstime( |
866 | struct timeval *tvp) |
867 | { |
868 | uint64_t result, usresult; |
869 | |
870 | clock_interval_to_absolutetime_interval( |
871 | interval: (uint32_t)tvp->tv_sec, NSEC_PER_SEC, result: &result); |
872 | clock_interval_to_absolutetime_interval( |
873 | interval: tvp->tv_usec, NSEC_PER_USEC, result: &usresult); |
874 | |
875 | return result + usresult; |
876 | } |
877 | |
878 | uint64_t |
879 | tstoabstime(struct timespec *ts) |
880 | { |
881 | uint64_t abstime_s, abstime_ns; |
882 | clock_interval_to_absolutetime_interval(interval: (uint32_t)ts->tv_sec, NSEC_PER_SEC, result: &abstime_s); |
883 | clock_interval_to_absolutetime_interval(interval: (uint32_t)ts->tv_nsec, scale_factor: 1, result: &abstime_ns); |
884 | return abstime_s + abstime_ns; |
885 | } |
886 | |
887 | #if NETWORKING |
888 | /* |
889 | * ratecheck(): simple time-based rate-limit checking. |
890 | */ |
891 | int |
892 | ratecheck(struct timeval *lasttime, const struct timeval *mininterval) |
893 | { |
894 | struct timeval tv, delta; |
895 | int rv = 0; |
896 | |
897 | net_uptime2timeval(&tv); |
898 | delta = tv; |
899 | timevalsub(t1: &delta, t2: lasttime); |
900 | |
901 | /* |
902 | * check for 0,0 is so that the message will be seen at least once, |
903 | * even if interval is huge. |
904 | */ |
905 | if (timevalcmp(&delta, mininterval, >=) || |
906 | (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) { |
907 | *lasttime = tv; |
908 | rv = 1; |
909 | } |
910 | |
911 | return rv; |
912 | } |
913 | |
914 | /* |
915 | * ppsratecheck(): packets (or events) per second limitation. |
916 | */ |
917 | int |
918 | ppsratecheck(struct timeval *lasttime, int *curpps, int maxpps) |
919 | { |
920 | struct timeval tv, delta; |
921 | int rv; |
922 | |
923 | net_uptime2timeval(&tv); |
924 | |
925 | timersub(&tv, lasttime, &delta); |
926 | |
927 | /* |
928 | * Check for 0,0 so that the message will be seen at least once. |
929 | * If more than one second has passed since the last update of |
930 | * lasttime, reset the counter. |
931 | * |
932 | * we do increment *curpps even in *curpps < maxpps case, as some may |
933 | * try to use *curpps for stat purposes as well. |
934 | */ |
935 | if ((lasttime->tv_sec == 0 && lasttime->tv_usec == 0) || |
936 | delta.tv_sec >= 1) { |
937 | *lasttime = tv; |
938 | *curpps = 0; |
939 | rv = 1; |
940 | } else if (maxpps < 0) { |
941 | rv = 1; |
942 | } else if (*curpps < maxpps) { |
943 | rv = 1; |
944 | } else { |
945 | rv = 0; |
946 | } |
947 | |
948 | /* be careful about wrap-around */ |
949 | if (*curpps < INT_MAX) { |
950 | *curpps = *curpps + 1; |
951 | } |
952 | |
953 | return rv; |
954 | } |
955 | #endif /* NETWORKING */ |
956 | |
957 | int |
958 | __mach_bridge_remote_time(__unused struct proc *p, struct __mach_bridge_remote_time_args *mbrt_args, uint64_t *retval) |
959 | { |
960 | *retval = mach_bridge_remote_time(mbrt_args->local_timestamp); |
961 | return 0; |
962 | } |
963 | |