1/*
2 * Copyright (c) 1995-2016 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28/*
29 * Copyright (c) 1982, 1986, 1989, 1991, 1993
30 * The Regents of the University of California. All rights reserved.
31 * (c) UNIX System Laboratories, Inc.
32 * All or some portions of this file are derived from material licensed
33 * to the University of California by American Telephone and Telegraph
34 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
35 * the permission of UNIX System Laboratories, Inc.
36 *
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 * 1. Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in the
44 * documentation and/or other materials provided with the distribution.
45 * 3. All advertising materials mentioning features or use of this software
46 * must display the following acknowledgement:
47 * This product includes software developed by the University of
48 * California, Berkeley and its contributors.
49 * 4. Neither the name of the University nor the names of its contributors
50 * may be used to endorse or promote products derived from this software
51 * without specific prior written permission.
52 *
53 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
54 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
55 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
56 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
57 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
58 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
59 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63 * SUCH DAMAGE.
64 *
65 * @(#)kern_sig.c 8.7 (Berkeley) 4/18/94
66 */
67/*
68 * NOTICE: This file was modified by SPARTA, Inc. in 2005 to introduce
69 * support for mandatory and extensible security protections. This notice
70 * is included in support of clause 2.2 (b) of the Apple Public License,
71 * Version 2.0.
72 */
73
74#define SIGPROP /* include signal properties table */
75#include <sys/param.h>
76#include <sys/resourcevar.h>
77#include <sys/proc_internal.h>
78#include <sys/kauth.h>
79#include <sys/systm.h>
80#include <sys/timeb.h>
81#include <sys/times.h>
82#include <sys/acct.h>
83#include <sys/file_internal.h>
84#include <sys/kernel.h>
85#include <sys/wait.h>
86#include <sys/signalvar.h>
87#include <sys/syslog.h>
88#include <sys/stat.h>
89#include <sys/lock.h>
90#include <sys/kdebug.h>
91#include <sys/reason.h>
92
93#include <sys/mount.h>
94#include <sys/sysproto.h>
95
96#include <security/audit/audit.h>
97
98#include <kern/cpu_number.h>
99
100#include <sys/vm.h>
101#include <sys/user.h> /* for coredump */
102#include <kern/ast.h> /* for APC support */
103#include <kern/kalloc.h>
104#include <kern/task.h> /* extern void *get_bsdtask_info(task_t); */
105#include <kern/thread.h>
106#include <kern/sched_prim.h>
107#include <kern/thread_call.h>
108#include <kern/policy_internal.h>
109#include <kern/sync_sema.h>
110
111#include <os/log.h>
112
113#include <mach/exception.h>
114#include <mach/task.h>
115#include <mach/thread_act.h>
116#include <libkern/OSAtomic.h>
117
118#include <sys/sdt.h>
119#include <sys/codesign.h>
120#include <sys/random.h>
121#include <libkern/section_keywords.h>
122
123#if CONFIG_MACF
124#include <security/mac_framework.h>
125#endif
126
127/*
128 * Missing prototypes that Mach should export
129 *
130 * +++
131 */
132extern int thread_enable_fpe(thread_t act, int onoff);
133extern kern_return_t get_signalact(task_t, thread_t *, int);
134extern unsigned int get_useraddr(void);
135extern boolean_t task_did_exec(task_t task);
136extern boolean_t task_is_exec_copy(task_t task);
137extern void vm_shared_region_reslide_stale(boolean_t driverkit);
138
139/*
140 * ---
141 */
142
143extern void doexception(int exc, mach_exception_code_t code,
144 mach_exception_subcode_t sub);
145
146static void stop(proc_t, proc_t);
147static int cansignal_nomac(proc_t, kauth_cred_t, proc_t, int);
148int cansignal(proc_t, kauth_cred_t, proc_t, int);
149int killpg1(proc_t, int, int, int, int);
150kern_return_t do_bsdexception(int, int, int);
151void __posix_sem_syscall_return(kern_return_t);
152char *proc_name_address(void *p);
153
154static int filt_sigattach(struct knote *kn, struct kevent_qos_s *kev);
155static void filt_sigdetach(struct knote *kn);
156static int filt_signal(struct knote *kn, long hint);
157static int filt_signaltouch(struct knote *kn, struct kevent_qos_s *kev);
158static int filt_signalprocess(struct knote *kn, struct kevent_qos_s *kev);
159
160SECURITY_READ_ONLY_EARLY(struct filterops) sig_filtops = {
161 .f_attach = filt_sigattach,
162 .f_detach = filt_sigdetach,
163 .f_event = filt_signal,
164 .f_touch = filt_signaltouch,
165 .f_process = filt_signalprocess,
166};
167
168/* structures and fns for killpg1 iterartion callback and filters */
169struct killpg1_filtargs {
170 bool posix;
171 proc_t curproc;
172};
173
174struct killpg1_iterargs {
175 proc_t curproc;
176 kauth_cred_t uc;
177 int signum;
178 int nfound;
179};
180
181static int killpg1_allfilt(proc_t p, void * arg);
182static int killpg1_callback(proc_t p, void * arg);
183
184static int pgsignal_callback(proc_t p, void * arg);
185static kern_return_t get_signalthread(proc_t, int, thread_t *);
186
187
188/* flags for psignal_internal */
189#define PSIG_LOCKED 0x1
190#define PSIG_VFORK 0x2
191#define PSIG_THREAD 0x4
192#define PSIG_TRY_THREAD 0x8
193
194static os_reason_t build_signal_reason(int signum, const char *procname);
195static void psignal_internal(proc_t p, task_t task, thread_t thread, int flavor, int signum, os_reason_t signal_reason);
196
197/*
198 * NOTE: Source and target may *NOT* overlap! (target is smaller)
199 */
200static void
201sigaltstack_kern_to_user32(struct kern_sigaltstack *in, struct user32_sigaltstack *out)
202{
203 out->ss_sp = CAST_DOWN_EXPLICIT(user32_addr_t, in->ss_sp);
204 out->ss_size = CAST_DOWN_EXPLICIT(user32_size_t, in->ss_size);
205 out->ss_flags = in->ss_flags;
206}
207
208static void
209sigaltstack_kern_to_user64(struct kern_sigaltstack *in, struct user64_sigaltstack *out)
210{
211 out->ss_sp = in->ss_sp;
212 out->ss_size = in->ss_size;
213 out->ss_flags = in->ss_flags;
214}
215
216/*
217 * NOTE: Source and target may are permitted to overlap! (source is smaller);
218 * this works because we copy fields in order from the end of the struct to
219 * the beginning.
220 */
221static void
222sigaltstack_user32_to_kern(struct user32_sigaltstack *in, struct kern_sigaltstack *out)
223{
224 out->ss_flags = in->ss_flags;
225 out->ss_size = in->ss_size;
226 out->ss_sp = CAST_USER_ADDR_T(in->ss_sp);
227}
228static void
229sigaltstack_user64_to_kern(struct user64_sigaltstack *in, struct kern_sigaltstack *out)
230{
231 out->ss_flags = in->ss_flags;
232 out->ss_size = (user_size_t)in->ss_size;
233 out->ss_sp = (user_addr_t)in->ss_sp;
234}
235
236static void
237sigaction_kern_to_user32(struct kern_sigaction *in, struct user32_sigaction *out)
238{
239 /* This assumes 32 bit __sa_handler is of type sig_t */
240 out->__sigaction_u.__sa_handler = CAST_DOWN_EXPLICIT(user32_addr_t, in->__sigaction_u.__sa_handler);
241 out->sa_mask = in->sa_mask;
242 out->sa_flags = in->sa_flags;
243}
244static void
245sigaction_kern_to_user64(struct kern_sigaction *in, struct user64_sigaction *out)
246{
247 /* This assumes 32 bit __sa_handler is of type sig_t */
248 out->__sigaction_u.__sa_handler = in->__sigaction_u.__sa_handler;
249 out->sa_mask = in->sa_mask;
250 out->sa_flags = in->sa_flags;
251}
252
253static void
254__sigaction_user32_to_kern(struct __user32_sigaction *in, struct __kern_sigaction *out)
255{
256 out->__sigaction_u.__sa_handler = CAST_USER_ADDR_T(in->__sigaction_u.__sa_handler);
257 out->sa_tramp = CAST_USER_ADDR_T(in->sa_tramp);
258 out->sa_mask = in->sa_mask;
259 out->sa_flags = in->sa_flags;
260
261 kern_return_t kr;
262 kr = machine_thread_function_pointers_convert_from_user(thread: current_thread(),
263 fptrs: &out->sa_tramp, count: 1);
264 assert(kr == KERN_SUCCESS);
265}
266
267static void
268__sigaction_user64_to_kern(struct __user64_sigaction *in, struct __kern_sigaction *out)
269{
270 out->__sigaction_u.__sa_handler = (user_addr_t)in->__sigaction_u.__sa_handler;
271 out->sa_tramp = (user_addr_t)in->sa_tramp;
272 out->sa_mask = in->sa_mask;
273 out->sa_flags = in->sa_flags;
274
275 kern_return_t kr;
276 kr = machine_thread_function_pointers_convert_from_user(thread: current_thread(),
277 fptrs: &out->sa_tramp, count: 1);
278 assert(kr == KERN_SUCCESS);
279}
280
281#if SIGNAL_DEBUG
282void ram_printf(int);
283int ram_debug = 0;
284unsigned int rdebug_proc = 0;
285void
286ram_printf(int x)
287{
288 printf("x is %d", x);
289}
290#endif /* SIGNAL_DEBUG */
291
292
293void
294signal_setast(thread_t sig_actthread)
295{
296 act_set_astbsd(sig_actthread);
297}
298
299static int
300cansignal_nomac(proc_t src, kauth_cred_t uc_src, proc_t dst, int signum)
301{
302 /* you can signal yourself */
303 if (src == dst) {
304 return 1;
305 }
306
307 /* you can't send the init proc SIGKILL, even if root */
308 if (signum == SIGKILL && dst == initproc) {
309 return 0;
310 }
311
312 /* otherwise, root can always signal */
313 if (kauth_cred_issuser(cred: uc_src)) {
314 return 1;
315 }
316
317 /* processes in the same session can send SIGCONT to each other */
318 if (signum == SIGCONT && proc_sessionid(p: src) == proc_sessionid(p: dst)) {
319 return 1;
320 }
321
322#if XNU_TARGET_OS_IOS
323 // Allow debugging of third party drivers on iOS
324 if (proc_is_third_party_debuggable_driver(dst)) {
325 return 1;
326 }
327#endif /* XNU_TARGET_OS_IOS */
328
329 /* the source process must be authorized to signal the target */
330 {
331 int allowed = 0;
332 kauth_cred_t uc_dst = NOCRED, uc_ref = NOCRED;
333
334 uc_dst = uc_ref = kauth_cred_proc_ref(procp: dst);
335
336 /*
337 * If the real or effective UID of the sender matches the real or saved
338 * UID of the target, allow the signal to be sent.
339 */
340 if (kauth_cred_getruid(cred: uc_src) == kauth_cred_getruid(cred: uc_dst) ||
341 kauth_cred_getruid(cred: uc_src) == kauth_cred_getsvuid(cred: uc_dst) ||
342 kauth_cred_getuid(cred: uc_src) == kauth_cred_getruid(cred: uc_dst) ||
343 kauth_cred_getuid(cred: uc_src) == kauth_cred_getsvuid(cred: uc_dst)) {
344 allowed = 1;
345 }
346
347 if (uc_ref != NOCRED) {
348 kauth_cred_unref(&uc_ref);
349 uc_ref = NOCRED;
350 }
351
352 return allowed;
353 }
354}
355
356/*
357 * Can process `src`, with ucred `uc_src`, send the signal `signum` to process
358 * `dst`? The ucred is referenced by the caller so internal fileds can be used
359 * safely.
360 */
361int
362cansignal(proc_t src, kauth_cred_t uc_src, proc_t dst, int signum)
363{
364#if CONFIG_MACF
365 if (mac_proc_check_signal(proc1: src, proc2: dst, signum)) {
366 return 0;
367 }
368#endif
369
370 return cansignal_nomac(src, uc_src, dst, signum);
371}
372
373/*
374 * <rdar://problem/21952708> Some signals can be restricted from being handled,
375 * forcing the default action for that signal. This behavior applies only to
376 * non-root (EUID != 0) processes, and is configured with the "sigrestrict=x"
377 * bootarg:
378 *
379 * 0 (default): Disallow use of restricted signals. Trying to register a handler
380 * returns ENOTSUP, which userspace may use to take special action (e.g. abort).
381 * 1: As above, but return EINVAL. Restricted signals behave similarly to SIGKILL.
382 * 2: Usual POSIX semantics.
383 */
384static TUNABLE(unsigned, sigrestrict_arg, "sigrestrict", 0);
385
386#if XNU_PLATFORM_WatchOS
387static int
388sigrestrictmask(void)
389{
390 if (kauth_getuid() != 0 && sigrestrict_arg != 2) {
391 return SIGRESTRICTMASK;
392 }
393 return 0;
394}
395
396static int
397signal_is_restricted(proc_t p, int signum)
398{
399 if (sigmask(signum) & sigrestrictmask()) {
400 if (sigrestrict_arg == 0 &&
401 task_get_apptype(proc_task(p)) == TASK_APPTYPE_APP_DEFAULT) {
402 return ENOTSUP;
403 } else {
404 return EINVAL;
405 }
406 }
407 return 0;
408}
409
410#else
411
412static inline int
413signal_is_restricted(proc_t p, int signum)
414{
415 (void)p;
416 (void)signum;
417 return 0;
418}
419#endif /* !XNU_PLATFORM_WatchOS */
420
421/*
422 * Returns: 0 Success
423 * EINVAL
424 * copyout:EFAULT
425 * copyin:EFAULT
426 *
427 * Notes: Uses current thread as a parameter to inform PPC to enable
428 * FPU exceptions via setsigvec(); this operation is not proxy
429 * safe!
430 */
431/* ARGSUSED */
432int
433sigaction(proc_t p, struct sigaction_args *uap, __unused int32_t *retval)
434{
435 struct kern_sigaction vec;
436 struct __kern_sigaction __vec;
437
438 struct kern_sigaction *sa = &vec;
439 struct sigacts *ps = &p->p_sigacts;
440
441 int signum;
442 int bit, error = 0;
443 uint32_t sigreturn_validation = PS_SIGRETURN_VALIDATION_DEFAULT;
444
445 signum = uap->signum;
446 if (signum <= 0 || signum >= NSIG ||
447 signum == SIGKILL || signum == SIGSTOP) {
448 return EINVAL;
449 }
450
451 if (uap->nsa) {
452 if (IS_64BIT_PROCESS(p)) {
453 struct __user64_sigaction __vec64;
454 error = copyin(uap->nsa, &__vec64, sizeof(__vec64));
455 __sigaction_user64_to_kern(in: &__vec64, out: &__vec);
456 } else {
457 struct __user32_sigaction __vec32;
458 error = copyin(uap->nsa, &__vec32, sizeof(__vec32));
459 __sigaction_user32_to_kern(in: &__vec32, out: &__vec);
460 }
461 if (error) {
462 return error;
463 }
464
465 sigreturn_validation = (__vec.sa_flags & SA_VALIDATE_SIGRETURN_FROM_SIGTRAMP) ?
466 PS_SIGRETURN_VALIDATION_ENABLED : PS_SIGRETURN_VALIDATION_DISABLED;
467 __vec.sa_flags &= SA_USERSPACE_MASK; /* Only pass on valid sa_flags */
468
469 if ((__vec.sa_flags & SA_SIGINFO) || __vec.sa_handler != SIG_DFL) {
470 if ((error = signal_is_restricted(p, signum))) {
471 if (error == ENOTSUP) {
472 printf("%s(%d): denied attempt to register action for signal %d\n",
473 proc_name_address(p), proc_pid(p), signum);
474 }
475 return error;
476 }
477 }
478 }
479
480 if (uap->osa) {
481 sa->sa_handler = SIGACTION(p, signum);
482 sa->sa_mask = ps->ps_catchmask[signum];
483 bit = sigmask(signum);
484 sa->sa_flags = 0;
485 if ((ps->ps_sigonstack & bit) != 0) {
486 sa->sa_flags |= SA_ONSTACK;
487 }
488 if ((ps->ps_sigintr & bit) == 0) {
489 sa->sa_flags |= SA_RESTART;
490 }
491 if (ps->ps_siginfo & bit) {
492 sa->sa_flags |= SA_SIGINFO;
493 }
494 if (ps->ps_signodefer & bit) {
495 sa->sa_flags |= SA_NODEFER;
496 }
497 if ((signum == SIGCHLD) && (p->p_flag & P_NOCLDSTOP)) {
498 sa->sa_flags |= SA_NOCLDSTOP;
499 }
500 if ((signum == SIGCHLD) && (p->p_flag & P_NOCLDWAIT)) {
501 sa->sa_flags |= SA_NOCLDWAIT;
502 }
503
504 if (IS_64BIT_PROCESS(p)) {
505 struct user64_sigaction vec64 = {};
506 sigaction_kern_to_user64(in: sa, out: &vec64);
507 error = copyout(&vec64, uap->osa, sizeof(vec64));
508 } else {
509 struct user32_sigaction vec32 = {};
510 sigaction_kern_to_user32(in: sa, out: &vec32);
511 error = copyout(&vec32, uap->osa, sizeof(vec32));
512 }
513 if (error) {
514 return error;
515 }
516 }
517
518 if (uap->nsa) {
519 uint32_t old_sigreturn_validation = atomic_load_explicit(
520 &ps->ps_sigreturn_validation, memory_order_relaxed);
521 if (old_sigreturn_validation == PS_SIGRETURN_VALIDATION_DEFAULT) {
522 atomic_compare_exchange_strong_explicit(&ps->ps_sigreturn_validation,
523 &old_sigreturn_validation, sigreturn_validation,
524 memory_order_relaxed, memory_order_relaxed);
525 }
526 error = setsigvec(p, current_thread(), signum, &__vec, FALSE);
527 }
528
529 return error;
530}
531
532/* Routines to manipulate bits on all threads */
533int
534clear_procsiglist(proc_t p, int bit, boolean_t in_signalstart)
535{
536 struct uthread * uth;
537
538 proc_lock(p);
539 if (!in_signalstart) {
540 proc_signalstart(p, locked: 1);
541 }
542
543
544 TAILQ_FOREACH(uth, &p->p_uthlist, uu_list) {
545 uth->uu_siglist &= ~bit;
546 }
547 p->p_siglist &= ~bit;
548 if (!in_signalstart) {
549 proc_signalend(p, locked: 1);
550 }
551 proc_unlock(p);
552
553 return 0;
554}
555
556
557static int
558unblock_procsigmask(proc_t p, int bit)
559{
560 struct uthread * uth;
561
562 proc_lock(p);
563 proc_signalstart(p, locked: 1);
564
565
566 TAILQ_FOREACH(uth, &p->p_uthlist, uu_list) {
567 uth->uu_sigmask &= ~bit;
568 }
569 p->p_sigmask &= ~bit;
570
571 proc_signalend(p, locked: 1);
572 proc_unlock(p);
573 return 0;
574}
575
576static int
577block_procsigmask(proc_t p, int bit)
578{
579 struct uthread * uth;
580
581 proc_lock(p);
582 proc_signalstart(p, locked: 1);
583
584
585 TAILQ_FOREACH(uth, &p->p_uthlist, uu_list) {
586 uth->uu_sigmask |= bit;
587 }
588 p->p_sigmask |= bit;
589
590 proc_signalend(p, locked: 1);
591 proc_unlock(p);
592 return 0;
593}
594
595int
596set_procsigmask(proc_t p, int bit)
597{
598 struct uthread * uth;
599
600 proc_lock(p);
601 proc_signalstart(p, locked: 1);
602
603
604 TAILQ_FOREACH(uth, &p->p_uthlist, uu_list) {
605 uth->uu_sigmask = bit;
606 }
607 p->p_sigmask = bit;
608 proc_signalend(p, locked: 1);
609 proc_unlock(p);
610
611 return 0;
612}
613
614/* XXX should be static? */
615/*
616 * Notes: The thread parameter is used in the PPC case to select the
617 * thread on which the floating point exception will be enabled
618 * or disabled. We can't simply take current_thread(), since
619 * this is called from posix_spawn() on the not currently running
620 * process/thread pair.
621 *
622 * We mark thread as unused to alow compilation without warning
623 * on non-PPC platforms.
624 */
625int
626setsigvec(proc_t p, __unused thread_t thread, int signum, struct __kern_sigaction *sa, boolean_t in_sigstart)
627{
628 struct sigacts *ps = &p->p_sigacts;
629 int bit;
630
631 assert(signum < NSIG);
632
633 if ((signum == SIGKILL || signum == SIGSTOP) &&
634 sa->sa_handler != SIG_DFL) {
635 return EINVAL;
636 }
637 bit = sigmask(signum);
638 /*
639 * Change setting atomically.
640 */
641 proc_set_sigact_trampact(p, signum, sa->sa_handler, sa->sa_tramp);
642 ps->ps_catchmask[signum] = sa->sa_mask & ~sigcantmask;
643 if (sa->sa_flags & SA_SIGINFO) {
644 ps->ps_siginfo |= bit;
645 } else {
646 ps->ps_siginfo &= ~bit;
647 }
648 if ((sa->sa_flags & SA_RESTART) == 0) {
649 ps->ps_sigintr |= bit;
650 } else {
651 ps->ps_sigintr &= ~bit;
652 }
653 if (sa->sa_flags & SA_ONSTACK) {
654 ps->ps_sigonstack |= bit;
655 } else {
656 ps->ps_sigonstack &= ~bit;
657 }
658 if (sa->sa_flags & SA_RESETHAND) {
659 ps->ps_sigreset |= bit;
660 } else {
661 ps->ps_sigreset &= ~bit;
662 }
663 if (sa->sa_flags & SA_NODEFER) {
664 ps->ps_signodefer |= bit;
665 } else {
666 ps->ps_signodefer &= ~bit;
667 }
668 if (signum == SIGCHLD) {
669 if (sa->sa_flags & SA_NOCLDSTOP) {
670 OSBitOrAtomic(P_NOCLDSTOP, &p->p_flag);
671 } else {
672 OSBitAndAtomic(~((uint32_t)P_NOCLDSTOP), &p->p_flag);
673 }
674 if ((sa->sa_flags & SA_NOCLDWAIT) || (sa->sa_handler == SIG_IGN)) {
675 OSBitOrAtomic(P_NOCLDWAIT, &p->p_flag);
676 } else {
677 OSBitAndAtomic(~((uint32_t)P_NOCLDWAIT), &p->p_flag);
678 }
679 }
680
681 /*
682 * Set bit in p_sigignore for signals that are set to SIG_IGN,
683 * and for signals set to SIG_DFL where the default is to ignore.
684 * However, don't put SIGCONT in p_sigignore,
685 * as we have to restart the process.
686 */
687 if (sa->sa_handler == SIG_IGN ||
688 (sigprop[signum] & SA_IGNORE && sa->sa_handler == SIG_DFL)) {
689 clear_procsiglist(p, bit, in_signalstart: in_sigstart);
690 if (signum != SIGCONT) {
691 p->p_sigignore |= bit; /* easier in psignal */
692 }
693 p->p_sigcatch &= ~bit;
694 } else {
695 p->p_sigignore &= ~bit;
696 if (sa->sa_handler == SIG_DFL) {
697 p->p_sigcatch &= ~bit;
698 } else {
699 p->p_sigcatch |= bit;
700 }
701 }
702 return 0;
703}
704
705/*
706 * Initialize signal state for process 0;
707 * set to ignore signals that are ignored by default.
708 */
709void
710siginit(proc_t p)
711{
712 int i;
713
714 for (i = 1; i < NSIG; i++) {
715 if (sigprop[i] & SA_IGNORE && i != SIGCONT) {
716 p->p_sigignore |= sigmask(i);
717 }
718 }
719}
720
721/*
722 * Reset signals for an exec of the specified process.
723 */
724void
725execsigs(proc_t p, thread_t thread)
726{
727 struct sigacts *ps = &p->p_sigacts;
728 int nc, mask;
729 struct uthread *ut;
730
731 ut = (struct uthread *)get_bsdthread_info(thread);
732
733 /*
734 * transfer saved signal states from the process
735 * back to the current thread.
736 *
737 * NOTE: We do this without the process locked,
738 * because we are guaranteed to be single-threaded
739 * by this point in exec and the p_siglist is
740 * only accessed by threads inside the process.
741 */
742 ut->uu_siglist |= p->p_siglist;
743 p->p_siglist = 0;
744
745 /*
746 * Reset caught signals. Held signals remain held
747 * through p_sigmask (unless they were caught,
748 * and are now ignored by default).
749 */
750 proc_reset_sigact(p, p->p_sigcatch);
751 while (p->p_sigcatch) {
752 nc = ffs((unsigned int)p->p_sigcatch);
753 mask = sigmask(nc);
754 p->p_sigcatch &= ~mask;
755 if (sigprop[nc] & SA_IGNORE) {
756 if (nc != SIGCONT) {
757 p->p_sigignore |= mask;
758 }
759 ut->uu_siglist &= ~mask;
760 }
761 }
762
763 atomic_store_explicit(&ps->ps_sigreturn_validation,
764 PS_SIGRETURN_VALIDATION_DEFAULT, memory_order_relaxed);
765
766 /*
767 * Reset stack state to the user stack.
768 * Clear set of signals caught on the signal stack.
769 */
770 /* thread */
771 ut->uu_sigstk.ss_flags = SA_DISABLE;
772 ut->uu_sigstk.ss_size = 0;
773 ut->uu_sigstk.ss_sp = USER_ADDR_NULL;
774 ut->uu_flag &= ~UT_ALTSTACK;
775 /* process */
776 ps->ps_sigonstack = 0;
777}
778
779/*
780 * Manipulate signal mask.
781 * Note that we receive new mask, not pointer,
782 * and return old mask as return value;
783 * the library stub does the rest.
784 */
785int
786sigprocmask(proc_t p, struct sigprocmask_args *uap, __unused int32_t *retval)
787{
788 int error = 0;
789 sigset_t oldmask, nmask;
790 user_addr_t omask = uap->omask;
791 struct uthread *ut;
792
793 ut = current_uthread();
794 oldmask = ut->uu_sigmask;
795
796 if (uap->mask == USER_ADDR_NULL) {
797 /* just want old mask */
798 goto out;
799 }
800 error = copyin(uap->mask, &nmask, sizeof(sigset_t));
801 if (error) {
802 goto out;
803 }
804
805 switch (uap->how) {
806 case SIG_BLOCK:
807 block_procsigmask(p, bit: (nmask & ~sigcantmask));
808 signal_setast(sig_actthread: current_thread());
809 break;
810
811 case SIG_UNBLOCK:
812 unblock_procsigmask(p, bit: (nmask & ~sigcantmask));
813 signal_setast(sig_actthread: current_thread());
814 break;
815
816 case SIG_SETMASK:
817 set_procsigmask(p, bit: (nmask & ~sigcantmask));
818 signal_setast(sig_actthread: current_thread());
819 break;
820
821 default:
822 error = EINVAL;
823 break;
824 }
825out:
826 if (!error && omask != USER_ADDR_NULL) {
827 copyout(&oldmask, omask, sizeof(sigset_t));
828 }
829 return error;
830}
831
832int
833sigpending(__unused proc_t p, struct sigpending_args *uap, __unused int32_t *retval)
834{
835 struct uthread *ut;
836 sigset_t pendlist;
837
838 ut = current_uthread();
839 pendlist = ut->uu_siglist;
840
841 if (uap->osv) {
842 copyout(&pendlist, uap->osv, sizeof(sigset_t));
843 }
844 return 0;
845}
846
847/*
848 * Suspend process until signal, providing mask to be set
849 * in the meantime. Note nonstandard calling convention:
850 * libc stub passes mask, not pointer, to save a copyin.
851 */
852
853static int
854sigcontinue(__unused int error)
855{
856// struct uthread *ut = current_uthread();
857 unix_syscall_return(EINTR);
858}
859
860int
861sigsuspend(proc_t p, struct sigsuspend_args *uap, int32_t *retval)
862{
863 __pthread_testcancel(presyscall: 1);
864 return sigsuspend_nocancel(p, (struct sigsuspend_nocancel_args *)uap, retval);
865}
866
867int
868sigsuspend_nocancel(proc_t p, struct sigsuspend_nocancel_args *uap, __unused int32_t *retval)
869{
870 struct uthread *ut;
871
872 ut = current_uthread();
873
874 /*
875 * When returning from sigpause, we want
876 * the old mask to be restored after the
877 * signal handler has finished. Thus, we
878 * save it here and mark the sigacts structure
879 * to indicate this.
880 */
881 ut->uu_oldmask = ut->uu_sigmask;
882 ut->uu_flag |= UT_SAS_OLDMASK;
883 ut->uu_sigmask = (uap->mask & ~sigcantmask);
884 (void) tsleep0(chan: (caddr_t) p, PPAUSE | PCATCH, wmesg: "pause", timo: 0, continuation: sigcontinue);
885 /* always return EINTR rather than ERESTART... */
886 return EINTR;
887}
888
889
890int
891__disable_threadsignal(__unused proc_t p,
892 __unused struct __disable_threadsignal_args *uap,
893 __unused int32_t *retval)
894{
895 struct uthread *uth;
896
897 uth = current_uthread();
898
899 /* No longer valid to have any signal delivered */
900 uth->uu_flag |= (UT_NO_SIGMASK | UT_CANCELDISABLE);
901
902 return 0;
903}
904
905void
906__pthread_testcancel(int presyscall)
907{
908 thread_t self = current_thread();
909 struct uthread * uthread;
910
911 uthread = (struct uthread *)get_bsdthread_info(self);
912
913
914 uthread->uu_flag &= ~UT_NOTCANCELPT;
915
916 if ((uthread->uu_flag & (UT_CANCELDISABLE | UT_CANCEL | UT_CANCELED)) == UT_CANCEL) {
917 if (presyscall != 0) {
918 unix_syscall_return(EINTR);
919 /* NOTREACHED */
920 } else {
921 thread_abort_safely(target_act: self);
922 }
923 }
924}
925
926
927
928int
929__pthread_markcancel(__unused proc_t p,
930 struct __pthread_markcancel_args *uap, __unused int32_t *retval)
931{
932 thread_act_t target_act;
933 int error = 0;
934 struct uthread *uth;
935
936 target_act = (thread_act_t)port_name_to_thread(port_name: uap->thread_port,
937 options: PORT_INTRANS_THREAD_IN_CURRENT_TASK);
938
939 if (target_act == THR_ACT_NULL) {
940 return ESRCH;
941 }
942
943 uth = (struct uthread *)get_bsdthread_info(target_act);
944
945 if ((uth->uu_flag & (UT_CANCEL | UT_CANCELED)) == 0) {
946 uth->uu_flag |= (UT_CANCEL | UT_NO_SIGMASK);
947 if (((uth->uu_flag & UT_NOTCANCELPT) == 0)
948 && ((uth->uu_flag & UT_CANCELDISABLE) == 0)) {
949 thread_abort_safely(target_act);
950 }
951 }
952
953 thread_deallocate(thread: target_act);
954 return error;
955}
956
957/* if action =0 ; return the cancellation state ,
958 * if marked for cancellation, make the thread canceled
959 * if action = 1 ; Enable the cancel handling
960 * if action = 2; Disable the cancel handling
961 */
962int
963__pthread_canceled(__unused proc_t p,
964 struct __pthread_canceled_args *uap, __unused int32_t *retval)
965{
966 thread_act_t thread;
967 struct uthread *uth;
968 int action = uap->action;
969
970 thread = current_thread();
971 uth = (struct uthread *)get_bsdthread_info(thread);
972
973 switch (action) {
974 case 1:
975 uth->uu_flag &= ~UT_CANCELDISABLE;
976 return 0;
977 case 2:
978 uth->uu_flag |= UT_CANCELDISABLE;
979 return 0;
980 case 0:
981 default:
982 if ((uth->uu_flag & (UT_CANCELDISABLE | UT_CANCEL | UT_CANCELED)) == UT_CANCEL) {
983 uth->uu_flag &= ~UT_CANCEL;
984 uth->uu_flag |= (UT_CANCELED | UT_NO_SIGMASK);
985 return 0;
986 }
987 return EINVAL;
988 }
989 return EINVAL;
990}
991
992__attribute__((noreturn))
993void
994__posix_sem_syscall_return(kern_return_t kern_result)
995{
996 int error = 0;
997
998 if (kern_result == KERN_SUCCESS) {
999 error = 0;
1000 } else if (kern_result == KERN_ABORTED) {
1001 error = EINTR;
1002 } else if (kern_result == KERN_OPERATION_TIMED_OUT) {
1003 error = ETIMEDOUT;
1004 } else {
1005 error = EINVAL;
1006 }
1007 unix_syscall_return(error);
1008 /* does not return */
1009}
1010
1011/*
1012 * Returns: 0 Success
1013 * EINTR
1014 * ETIMEDOUT
1015 * EINVAL
1016 * EFAULT if timespec is NULL
1017 */
1018int
1019__semwait_signal(proc_t p, struct __semwait_signal_args *uap,
1020 int32_t *retval)
1021{
1022 __pthread_testcancel(presyscall: 0);
1023 return __semwait_signal_nocancel(p, (struct __semwait_signal_nocancel_args *)uap, retval);
1024}
1025
1026int
1027__semwait_signal_nocancel(__unused proc_t p, struct __semwait_signal_nocancel_args *uap,
1028 __unused int32_t *retval)
1029{
1030 kern_return_t kern_result;
1031 mach_timespec_t then;
1032 struct timespec now;
1033 struct user_timespec ts;
1034 boolean_t truncated_timeout = FALSE;
1035
1036 if (uap->timeout) {
1037 ts.tv_sec = (user_time_t)uap->tv_sec;
1038 ts.tv_nsec = uap->tv_nsec;
1039
1040 if ((ts.tv_sec & 0xFFFFFFFF00000000ULL) != 0) {
1041 ts.tv_sec = 0xFFFFFFFF;
1042 ts.tv_nsec = 0;
1043 truncated_timeout = TRUE;
1044 }
1045
1046 if (uap->relative) {
1047 then.tv_sec = (unsigned int)ts.tv_sec;
1048 then.tv_nsec = (clock_res_t)ts.tv_nsec;
1049 } else {
1050 nanotime(ts: &now);
1051
1052 /* if time has elapsed, set time to null timepsec to bailout rightaway */
1053 if (now.tv_sec == ts.tv_sec ?
1054 now.tv_nsec > ts.tv_nsec :
1055 now.tv_sec > ts.tv_sec) {
1056 then.tv_sec = 0;
1057 then.tv_nsec = 0;
1058 } else {
1059 then.tv_sec = (unsigned int)(ts.tv_sec - now.tv_sec);
1060 then.tv_nsec = (clock_res_t)(ts.tv_nsec - now.tv_nsec);
1061 if (then.tv_nsec < 0) {
1062 then.tv_nsec += NSEC_PER_SEC;
1063 then.tv_sec--;
1064 }
1065 }
1066 }
1067
1068 if (uap->mutex_sem == 0) {
1069 kern_result = semaphore_timedwait_trap_internal(name: (mach_port_name_t)uap->cond_sem, sec: then.tv_sec, nsec: then.tv_nsec, __posix_sem_syscall_return);
1070 } else {
1071 kern_result = semaphore_timedwait_signal_trap_internal(wait_name: uap->cond_sem, signal_name: uap->mutex_sem, sec: then.tv_sec, nsec: then.tv_nsec, __posix_sem_syscall_return);
1072 }
1073 } else {
1074 if (uap->mutex_sem == 0) {
1075 kern_result = semaphore_wait_trap_internal(name: uap->cond_sem, __posix_sem_syscall_return);
1076 } else {
1077 kern_result = semaphore_wait_signal_trap_internal(wait_name: uap->cond_sem, signal_name: uap->mutex_sem, __posix_sem_syscall_return);
1078 }
1079 }
1080
1081 if (kern_result == KERN_SUCCESS && !truncated_timeout) {
1082 return 0;
1083 } else if (kern_result == KERN_SUCCESS && truncated_timeout) {
1084 return EINTR; /* simulate an exceptional condition because Mach doesn't support a longer timeout */
1085 } else if (kern_result == KERN_ABORTED) {
1086 return EINTR;
1087 } else if (kern_result == KERN_OPERATION_TIMED_OUT) {
1088 return ETIMEDOUT;
1089 } else {
1090 return EINVAL;
1091 }
1092}
1093
1094
1095int
1096__pthread_kill(__unused proc_t p, struct __pthread_kill_args *uap,
1097 __unused int32_t *retval)
1098{
1099 thread_t target_act;
1100 int error = 0;
1101 int signum = uap->sig;
1102 struct uthread *uth;
1103
1104 target_act = (thread_t)port_name_to_thread(port_name: uap->thread_port,
1105 options: PORT_INTRANS_OPTIONS_NONE);
1106
1107 if (target_act == THREAD_NULL) {
1108 return ESRCH;
1109 }
1110 if ((u_int)signum >= NSIG) {
1111 error = EINVAL;
1112 goto out;
1113 }
1114
1115 uth = (struct uthread *)get_bsdthread_info(target_act);
1116
1117 if (uth->uu_flag & UT_NO_SIGMASK) {
1118 error = ESRCH;
1119 goto out;
1120 }
1121
1122 /*
1123 * workq threads must have kills enabled through either
1124 * BSDTHREAD_CTL_WORKQ_ALLOW_KILL or BSDTHREAD_CTL_WORKQ_ALLOW_SIGMASK
1125 */
1126 if ((thread_get_tag(thread: target_act) & THREAD_TAG_WORKQUEUE) &&
1127 !(uth->uu_workq_pthread_kill_allowed || p->p_workq_allow_sigmask)) {
1128 error = ENOTSUP;
1129 goto out;
1130 }
1131
1132 if (signum) {
1133 psignal_uthread(target_act, signum);
1134 }
1135out:
1136 thread_deallocate(thread: target_act);
1137 return error;
1138}
1139
1140
1141int
1142__pthread_sigmask(__unused proc_t p, struct __pthread_sigmask_args *uap,
1143 __unused int32_t *retval)
1144{
1145 user_addr_t set = uap->set;
1146 user_addr_t oset = uap->oset;
1147 sigset_t nset;
1148 int error = 0;
1149 struct uthread *ut;
1150 sigset_t oldset;
1151
1152 ut = current_uthread();
1153 oldset = ut->uu_sigmask;
1154
1155 if (set == USER_ADDR_NULL) {
1156 /* need only old mask */
1157 goto out;
1158 }
1159
1160 error = copyin(set, &nset, sizeof(sigset_t));
1161 if (error) {
1162 goto out;
1163 }
1164
1165 switch (uap->how) {
1166 case SIG_BLOCK:
1167 ut->uu_sigmask |= (nset & ~sigcantmask);
1168 break;
1169
1170 case SIG_UNBLOCK:
1171 ut->uu_sigmask &= ~(nset);
1172 signal_setast(sig_actthread: current_thread());
1173 break;
1174
1175 case SIG_SETMASK:
1176 ut->uu_sigmask = (nset & ~sigcantmask);
1177 signal_setast(sig_actthread: current_thread());
1178 break;
1179
1180 default:
1181 error = EINVAL;
1182 }
1183out:
1184 if (!error && oset != USER_ADDR_NULL) {
1185 copyout(&oldset, oset, sizeof(sigset_t));
1186 }
1187
1188 return error;
1189}
1190
1191/*
1192 * Returns: 0 Success
1193 * EINVAL
1194 * copyin:EFAULT
1195 * copyout:EFAULT
1196 */
1197int
1198__sigwait(proc_t p, struct __sigwait_args *uap, int32_t *retval)
1199{
1200 __pthread_testcancel(presyscall: 1);
1201 return __sigwait_nocancel(p, (struct __sigwait_nocancel_args *)uap, retval);
1202}
1203
1204int
1205__sigwait_nocancel(proc_t p, struct __sigwait_nocancel_args *uap, __unused int32_t *retval)
1206{
1207 struct uthread *ut;
1208 struct uthread *uth;
1209 int error = 0;
1210 sigset_t mask;
1211 sigset_t siglist;
1212 sigset_t sigw = 0;
1213 int signum;
1214
1215 ut = current_uthread();
1216
1217 if (uap->set == USER_ADDR_NULL) {
1218 return EINVAL;
1219 }
1220
1221 error = copyin(uap->set, &mask, sizeof(sigset_t));
1222 if (error) {
1223 return error;
1224 }
1225
1226 siglist = (mask & ~sigcantmask);
1227
1228 if (siglist == 0) {
1229 return EINVAL;
1230 }
1231
1232 proc_lock(p);
1233
1234 proc_signalstart(p, locked: 1);
1235 TAILQ_FOREACH(uth, &p->p_uthlist, uu_list) {
1236 if ((sigw = uth->uu_siglist & siglist)) {
1237 break;
1238 }
1239 }
1240 proc_signalend(p, locked: 1);
1241
1242 if (sigw) {
1243 /* The signal was pending on a thread */
1244 goto sigwait1;
1245 }
1246 /*
1247 * When returning from sigwait, we want
1248 * the old mask to be restored after the
1249 * signal handler has finished. Thus, we
1250 * save it here and mark the sigacts structure
1251 * to indicate this.
1252 */
1253 uth = ut; /* wait for it to be delivered to us */
1254 ut->uu_oldmask = ut->uu_sigmask;
1255 ut->uu_flag |= UT_SAS_OLDMASK;
1256 if (siglist == (sigset_t)0) {
1257 proc_unlock(p);
1258 return EINVAL;
1259 }
1260 /* SIGKILL and SIGSTOP are not maskable as well */
1261 ut->uu_sigmask = ~(siglist | sigcantmask);
1262 ut->uu_sigwait = siglist;
1263
1264 /* No Continuations for now */
1265 error = msleep(chan: (caddr_t)&ut->uu_sigwait, mtx: &p->p_mlock, PPAUSE | PCATCH, wmesg: "pause", ts: 0);
1266
1267 if (error == ERESTART) {
1268 error = 0;
1269 }
1270
1271 sigw = (ut->uu_sigwait & siglist);
1272 ut->uu_sigmask = ut->uu_oldmask;
1273 ut->uu_oldmask = 0;
1274 ut->uu_flag &= ~UT_SAS_OLDMASK;
1275sigwait1:
1276 ut->uu_sigwait = 0;
1277 if (!error) {
1278 signum = ffs((unsigned int)sigw);
1279 if (!signum) {
1280 panic("sigwait with no signal wakeup");
1281 }
1282 /* Clear the pending signal in the thread it was delivered */
1283 uth->uu_siglist &= ~(sigmask(signum));
1284
1285#if CONFIG_DTRACE
1286 DTRACE_PROC2(signal__clear, int, signum, siginfo_t *, &(ut->t_dtrace_siginfo));
1287#endif
1288
1289 proc_unlock(p);
1290 if (uap->sig != USER_ADDR_NULL) {
1291 error = copyout(&signum, uap->sig, sizeof(int));
1292 }
1293 } else {
1294 proc_unlock(p);
1295 }
1296
1297 return error;
1298}
1299
1300int
1301sigaltstack(__unused proc_t p, struct sigaltstack_args *uap, __unused int32_t *retval)
1302{
1303 struct kern_sigaltstack ss;
1304 struct kern_sigaltstack *pstk;
1305 int error;
1306 struct uthread *uth;
1307 int onstack;
1308
1309 uth = current_uthread();
1310
1311 pstk = &uth->uu_sigstk;
1312 if ((uth->uu_flag & UT_ALTSTACK) == 0) {
1313 uth->uu_sigstk.ss_flags |= SA_DISABLE;
1314 }
1315 onstack = pstk->ss_flags & SA_ONSTACK;
1316 if (uap->oss) {
1317 if (IS_64BIT_PROCESS(p)) {
1318 struct user64_sigaltstack ss64 = {};
1319 sigaltstack_kern_to_user64(in: pstk, out: &ss64);
1320 error = copyout(&ss64, uap->oss, sizeof(ss64));
1321 } else {
1322 struct user32_sigaltstack ss32 = {};
1323 sigaltstack_kern_to_user32(in: pstk, out: &ss32);
1324 error = copyout(&ss32, uap->oss, sizeof(ss32));
1325 }
1326 if (error) {
1327 return error;
1328 }
1329 }
1330 if (uap->nss == USER_ADDR_NULL) {
1331 return 0;
1332 }
1333 if (IS_64BIT_PROCESS(p)) {
1334 struct user64_sigaltstack ss64;
1335 error = copyin(uap->nss, &ss64, sizeof(ss64));
1336 sigaltstack_user64_to_kern(in: &ss64, out: &ss);
1337 } else {
1338 struct user32_sigaltstack ss32;
1339 error = copyin(uap->nss, &ss32, sizeof(ss32));
1340 sigaltstack_user32_to_kern(in: &ss32, out: &ss);
1341 }
1342 if (error) {
1343 return error;
1344 }
1345 if ((ss.ss_flags & ~SA_DISABLE) != 0) {
1346 return EINVAL;
1347 }
1348
1349 if (ss.ss_flags & SA_DISABLE) {
1350 /* if we are here we are not in the signal handler ;so no need to check */
1351 if (uth->uu_sigstk.ss_flags & SA_ONSTACK) {
1352 return EINVAL;
1353 }
1354 uth->uu_flag &= ~UT_ALTSTACK;
1355 uth->uu_sigstk.ss_flags = ss.ss_flags;
1356 return 0;
1357 }
1358 if (onstack) {
1359 return EPERM;
1360 }
1361/* The older stacksize was 8K, enforce that one so no compat problems */
1362#define OLDMINSIGSTKSZ 8*1024
1363 if (ss.ss_size < OLDMINSIGSTKSZ) {
1364 return ENOMEM;
1365 }
1366 uth->uu_flag |= UT_ALTSTACK;
1367 uth->uu_sigstk = ss;
1368 return 0;
1369}
1370
1371int
1372kill(proc_t cp, struct kill_args *uap, __unused int32_t *retval)
1373{
1374 proc_t p;
1375 kauth_cred_t uc = kauth_cred_get();
1376 int posix = uap->posix; /* !0 if posix behaviour desired */
1377
1378 AUDIT_ARG(pid, uap->pid);
1379 AUDIT_ARG(signum, uap->signum);
1380
1381 if ((u_int)uap->signum >= NSIG) {
1382 return EINVAL;
1383 }
1384 if (uap->pid > 0) {
1385 /* kill single process */
1386 if ((p = proc_find(pid: uap->pid)) == NULL) {
1387 if ((p = pzfind(uap->pid)) != NULL) {
1388 /*
1389 * POSIX 1003.1-2001 requires returning success when killing a
1390 * zombie; see Rationale for kill(2).
1391 */
1392 return 0;
1393 }
1394 return ESRCH;
1395 }
1396 AUDIT_ARG(process, p);
1397 if (!cansignal(src: cp, uc_src: uc, dst: p, signum: uap->signum)) {
1398 proc_rele(p);
1399 return EPERM;
1400 }
1401 if (uap->signum) {
1402 psignal(p, sig: uap->signum);
1403 }
1404 proc_rele(p);
1405 return 0;
1406 }
1407 switch (uap->pid) {
1408 case -1: /* broadcast signal */
1409 return killpg1(cp, uap->signum, 0, 1, posix);
1410 case 0: /* signal own process group */
1411 return killpg1(cp, uap->signum, 0, 0, posix);
1412 default: /* negative explicit process group */
1413 return killpg1(cp, uap->signum, -(uap->pid), 0, posix);
1414 }
1415 /* NOTREACHED */
1416}
1417
1418os_reason_t
1419build_userspace_exit_reason(uint32_t reason_namespace, uint64_t reason_code, user_addr_t payload, uint32_t payload_size,
1420 user_addr_t reason_string, uint64_t reason_flags)
1421{
1422 os_reason_t exit_reason = OS_REASON_NULL;
1423
1424 int error = 0;
1425 int num_items_to_copy = 0;
1426 uint32_t user_data_to_copy = 0;
1427 char *reason_user_desc = NULL;
1428 size_t reason_user_desc_len = 0;
1429
1430 exit_reason = os_reason_create(osr_namespace: reason_namespace, osr_code: reason_code);
1431 if (exit_reason == OS_REASON_NULL) {
1432 os_log(OS_LOG_DEFAULT, "build_userspace_exit_reason: failed to allocate exit reason\n");
1433 return exit_reason;
1434 }
1435
1436 exit_reason->osr_flags |= OS_REASON_FLAG_FROM_USERSPACE;
1437
1438 /*
1439 * Only apply flags that are allowed to be passed from userspace.
1440 */
1441 reason_flags = reason_flags & OS_REASON_FLAG_MASK_ALLOWED_FROM_USER;
1442 exit_reason->osr_flags |= reason_flags;
1443
1444 if (!(exit_reason->osr_flags & OS_REASON_FLAG_NO_CRASH_REPORT)) {
1445 exit_reason->osr_flags |= OS_REASON_FLAG_GENERATE_CRASH_REPORT;
1446 }
1447
1448 if (payload != USER_ADDR_NULL) {
1449 if (payload_size == 0) {
1450 os_log(OS_LOG_DEFAULT, "build_userspace_exit_reason: exit reason with namespace %u,"
1451 " nonzero payload but zero length\n", reason_namespace);
1452 exit_reason->osr_flags |= OS_REASON_FLAG_BAD_PARAMS;
1453 payload = USER_ADDR_NULL;
1454 } else {
1455 num_items_to_copy++;
1456
1457 if (payload_size > EXIT_REASON_PAYLOAD_MAX_LEN) {
1458 exit_reason->osr_flags |= OS_REASON_FLAG_PAYLOAD_TRUNCATED;
1459 payload_size = EXIT_REASON_PAYLOAD_MAX_LEN;
1460 }
1461
1462 user_data_to_copy += payload_size;
1463 }
1464 }
1465
1466 if (reason_string != USER_ADDR_NULL) {
1467 reason_user_desc = (char *)kalloc_data(EXIT_REASON_USER_DESC_MAX_LEN, Z_WAITOK);
1468
1469 if (reason_user_desc != NULL) {
1470 error = copyinstr(uaddr: reason_string, kaddr: (void *) reason_user_desc,
1471 EXIT_REASON_USER_DESC_MAX_LEN, done: &reason_user_desc_len);
1472
1473 if (error == 0) {
1474 num_items_to_copy++;
1475 user_data_to_copy += reason_user_desc_len;
1476 } else if (error == ENAMETOOLONG) {
1477 num_items_to_copy++;
1478 reason_user_desc[EXIT_REASON_USER_DESC_MAX_LEN - 1] = '\0';
1479 user_data_to_copy += reason_user_desc_len;
1480 } else {
1481 exit_reason->osr_flags |= OS_REASON_FLAG_FAILED_DATA_COPYIN;
1482 kfree_data(reason_user_desc, EXIT_REASON_USER_DESC_MAX_LEN);
1483 reason_user_desc = NULL;
1484 reason_user_desc_len = 0;
1485 }
1486 }
1487 }
1488
1489 if (num_items_to_copy != 0) {
1490 uint32_t reason_buffer_size_estimate = 0;
1491 mach_vm_address_t data_addr = 0;
1492
1493 reason_buffer_size_estimate = kcdata_estimate_required_buffer_size(num_items: num_items_to_copy, payload_size: user_data_to_copy);
1494
1495 error = os_reason_alloc_buffer(cur_reason: exit_reason, osr_bufsize: reason_buffer_size_estimate);
1496 if (error != 0) {
1497 os_log(OS_LOG_DEFAULT, "build_userspace_exit_reason: failed to allocate signal reason buffer\n");
1498 goto out_failed_copyin;
1499 }
1500
1501 if (reason_user_desc != NULL && reason_user_desc_len != 0) {
1502 if (KERN_SUCCESS == kcdata_get_memory_addr(data: &exit_reason->osr_kcd_descriptor,
1503 EXIT_REASON_USER_DESC,
1504 size: (uint32_t)reason_user_desc_len,
1505 user_addr: &data_addr)) {
1506 kcdata_memcpy(data: &exit_reason->osr_kcd_descriptor, dst_addr: (mach_vm_address_t) data_addr,
1507 src_addr: reason_user_desc, size: (uint32_t)reason_user_desc_len);
1508 } else {
1509 os_log(OS_LOG_DEFAULT, "build_userspace_exit_reason: failed to allocate space for reason string\n");
1510 goto out_failed_copyin;
1511 }
1512 }
1513
1514 if (payload != USER_ADDR_NULL) {
1515 if (KERN_SUCCESS ==
1516 kcdata_get_memory_addr(data: &exit_reason->osr_kcd_descriptor,
1517 EXIT_REASON_USER_PAYLOAD,
1518 size: payload_size,
1519 user_addr: &data_addr)) {
1520 error = copyin(payload, (void *) data_addr, payload_size);
1521 if (error) {
1522 os_log(OS_LOG_DEFAULT, "build_userspace_exit_reason: failed to copy in payload data with error %d\n", error);
1523 goto out_failed_copyin;
1524 }
1525 } else {
1526 os_log(OS_LOG_DEFAULT, "build_userspace_exit_reason: failed to allocate space for payload data\n");
1527 goto out_failed_copyin;
1528 }
1529 }
1530 }
1531
1532 if (reason_user_desc != NULL) {
1533 kfree_data(reason_user_desc, EXIT_REASON_USER_DESC_MAX_LEN);
1534 reason_user_desc = NULL;
1535 reason_user_desc_len = 0;
1536 }
1537
1538 return exit_reason;
1539
1540out_failed_copyin:
1541
1542 if (reason_user_desc != NULL) {
1543 kfree_data(reason_user_desc, EXIT_REASON_USER_DESC_MAX_LEN);
1544 reason_user_desc = NULL;
1545 reason_user_desc_len = 0;
1546 }
1547
1548 exit_reason->osr_flags |= OS_REASON_FLAG_FAILED_DATA_COPYIN;
1549 os_reason_alloc_buffer(cur_reason: exit_reason, osr_bufsize: 0);
1550 return exit_reason;
1551}
1552
1553static int
1554terminate_with_payload_internal(struct proc *cur_proc, int target_pid, uint32_t reason_namespace,
1555 uint64_t reason_code, user_addr_t payload, uint32_t payload_size,
1556 user_addr_t reason_string, uint64_t reason_flags)
1557{
1558 proc_t target_proc = PROC_NULL;
1559 kauth_cred_t cur_cred = kauth_cred_get();
1560
1561 os_reason_t signal_reason = OS_REASON_NULL;
1562
1563 AUDIT_ARG(pid, target_pid);
1564 if ((target_pid <= 0)) {
1565 return EINVAL;
1566 }
1567
1568 target_proc = proc_find(pid: target_pid);
1569 if (target_proc == PROC_NULL) {
1570 return ESRCH;
1571 }
1572
1573 AUDIT_ARG(process, target_proc);
1574
1575 if (!cansignal(src: cur_proc, uc_src: cur_cred, dst: target_proc, SIGKILL)) {
1576 proc_rele(p: target_proc);
1577 return EPERM;
1578 }
1579
1580 if (target_pid != proc_getpid(cur_proc)) {
1581 /*
1582 * FLAG_ABORT should only be set on terminate_with_reason(getpid()) that
1583 * was a fallback from an unsuccessful abort_with_reason(). In that case
1584 * caller's pid matches the target one. Otherwise remove the flag.
1585 */
1586 reason_flags &= ~((typeof(reason_flags))OS_REASON_FLAG_ABORT);
1587 }
1588
1589 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_PROC, BSD_PROC_EXITREASON_CREATE) | DBG_FUNC_NONE,
1590 proc_getpid(target_proc), reason_namespace,
1591 reason_code, 0, 0);
1592
1593 signal_reason = build_userspace_exit_reason(reason_namespace, reason_code, payload, payload_size,
1594 reason_string, reason_flags: (reason_flags | OS_REASON_FLAG_NO_CRASHED_TID));
1595
1596 if (target_pid == proc_getpid(cur_proc)) {
1597 /*
1598 * psignal_thread_with_reason() will pend a SIGKILL on the specified thread or
1599 * return if the thread and/or task are already terminating. Either way, the
1600 * current thread won't return to userspace.
1601 */
1602 psignal_thread_with_reason(target_proc, current_thread(), SIGKILL, signal_reason);
1603 } else {
1604 psignal_with_reason(p: target_proc, SIGKILL, signal_reason);
1605 }
1606
1607 proc_rele(p: target_proc);
1608
1609 return 0;
1610}
1611
1612int
1613terminate_with_payload(struct proc *cur_proc, struct terminate_with_payload_args *args,
1614 __unused int32_t *retval)
1615{
1616 return terminate_with_payload_internal(cur_proc, target_pid: args->pid, reason_namespace: args->reason_namespace, reason_code: args->reason_code, payload: args->payload,
1617 payload_size: args->payload_size, reason_string: args->reason_string, reason_flags: args->reason_flags);
1618}
1619
1620static int
1621killpg1_allfilt(proc_t p, void * arg)
1622{
1623 struct killpg1_filtargs * kfargp = (struct killpg1_filtargs *)arg;
1624
1625 /*
1626 * Don't signal initproc, a system process, or the current process if POSIX
1627 * isn't specified.
1628 */
1629 return proc_getpid(p) > 1 && !(p->p_flag & P_SYSTEM) &&
1630 (kfargp->posix ? true : p != kfargp->curproc);
1631}
1632
1633static int
1634killpg1_callback(proc_t p, void *arg)
1635{
1636 struct killpg1_iterargs *kargp = (struct killpg1_iterargs *)arg;
1637 int signum = kargp->signum;
1638
1639 if (proc_list_exited(p)) {
1640 /*
1641 * Count zombies as found for the purposes of signalling, since POSIX
1642 * 1003.1-2001 sees signalling zombies as successful. If killpg(2) or
1643 * kill(2) with pid -1 only finds zombies that can be signalled, it
1644 * shouldn't return ESRCH. See the Rationale for kill(2).
1645 *
1646 * Don't call into MAC -- it's not expecting signal checks for exited
1647 * processes.
1648 */
1649 if (cansignal_nomac(src: kargp->curproc, uc_src: kargp->uc, dst: p, signum)) {
1650 kargp->nfound++;
1651 }
1652 } else if (cansignal(src: kargp->curproc, uc_src: kargp->uc, dst: p, signum)) {
1653 kargp->nfound++;
1654
1655 if (signum != 0) {
1656 psignal(p, sig: signum);
1657 }
1658 }
1659
1660 return PROC_RETURNED;
1661}
1662
1663/*
1664 * Common code for kill process group/broadcast kill.
1665 */
1666int
1667killpg1(proc_t curproc, int signum, int pgid, int all, int posix)
1668{
1669 kauth_cred_t uc;
1670 struct pgrp *pgrp;
1671 int error = 0;
1672
1673 uc = kauth_cred_proc_ref(procp: curproc);
1674 struct killpg1_iterargs karg = {
1675 .curproc = curproc, .uc = uc, .nfound = 0, .signum = signum
1676 };
1677
1678 if (all) {
1679 /*
1680 * Broadcast to all processes that the user can signal (pid was -1).
1681 */
1682 struct killpg1_filtargs kfarg = {
1683 .posix = posix, .curproc = curproc
1684 };
1685 proc_iterate(PROC_ALLPROCLIST | PROC_ZOMBPROCLIST, callout: killpg1_callback,
1686 arg: &karg, filterfn: killpg1_allfilt, filterarg: &kfarg);
1687 } else {
1688 if (pgid == 0) {
1689 /*
1690 * Send to current the current process' process group.
1691 */
1692 pgrp = proc_pgrp(curproc, NULL);
1693 } else {
1694 pgrp = pgrp_find(pgid);
1695 if (pgrp == NULL) {
1696 error = ESRCH;
1697 goto out;
1698 }
1699 }
1700
1701 pgrp_iterate(pgrp, callout: killpg1_callback, arg: &karg, filterfn: ^bool (proc_t p) {
1702 if (p == kernproc || p == initproc) {
1703 return false;
1704 }
1705 /* XXX shouldn't this allow signalling zombies? */
1706 return !(p->p_flag & P_SYSTEM) && p->p_stat != SZOMB;
1707 });
1708 pgrp_rele(pgrp);
1709 }
1710 error = (karg.nfound > 0 ? 0 : (posix ? EPERM : ESRCH));
1711out:
1712 kauth_cred_unref(&uc);
1713 return error;
1714}
1715
1716/*
1717 * Send a signal to a process group.
1718 */
1719void
1720gsignal(int pgid, int signum)
1721{
1722 struct pgrp *pgrp;
1723
1724 if (pgid && (pgrp = pgrp_find(pgid))) {
1725 pgsignal(pgrp, sig: signum, checkctty: 0);
1726 pgrp_rele(pgrp);
1727 }
1728}
1729
1730/*
1731 * Send a signal to a process group. If checkctty is 1,
1732 * limit to members which have a controlling terminal.
1733 */
1734
1735static int
1736pgsignal_callback(proc_t p, void * arg)
1737{
1738 int signum = *(int*)arg;
1739
1740 psignal(p, sig: signum);
1741 return PROC_RETURNED;
1742}
1743
1744void
1745pgsignal(struct pgrp *pgrp, int signum, int checkctty)
1746{
1747 if (pgrp == PGRP_NULL) {
1748 return;
1749 }
1750
1751 bool (^filter)(proc_t) = ^bool (proc_t p) {
1752 return p->p_flag & P_CONTROLT;
1753 };
1754
1755 pgrp_iterate(pgrp, callout: pgsignal_callback, arg: &signum, filterfn: checkctty ? filter : NULL);
1756}
1757
1758
1759void
1760tty_pgsignal_locked(struct tty *tp, int signum, int checkctty)
1761{
1762 struct pgrp * pg;
1763
1764 pg = tty_pgrp_locked(tp);
1765 if (pg != PGRP_NULL) {
1766 tty_unlock(tp);
1767 pgsignal(pgrp: pg, signum, checkctty);
1768 pgrp_rele(pgrp: pg);
1769 tty_lock(tp);
1770 }
1771}
1772/*
1773 * Send a signal caused by a trap to a specific thread.
1774 */
1775void
1776threadsignal(thread_t sig_actthread, int signum, mach_exception_code_t code, boolean_t set_exitreason)
1777{
1778 struct uthread *uth;
1779 struct task * sig_task;
1780 proc_t p;
1781 int mask;
1782
1783 if ((u_int)signum >= NSIG || signum == 0) {
1784 return;
1785 }
1786
1787 mask = sigmask(signum);
1788 if ((mask & threadmask) == 0) {
1789 return;
1790 }
1791 sig_task = get_threadtask(sig_actthread);
1792 p = (proc_t)(get_bsdtask_info(sig_task));
1793
1794 uth = get_bsdthread_info(sig_actthread);
1795
1796 proc_lock(p);
1797 if (!(p->p_lflag & P_LTRACED) && (p->p_sigignore & mask)) {
1798 proc_unlock(p);
1799 return;
1800 }
1801
1802 uth->uu_siglist |= mask;
1803 uth->uu_code = code;
1804
1805 /* Attempt to establish whether the signal will be fatal (mirrors logic in psignal_internal()) */
1806 if (set_exitreason && ((p->p_lflag & P_LTRACED) || (!(uth->uu_sigwait & mask)
1807 && !(uth->uu_sigmask & mask) && !(p->p_sigcatch & mask))) &&
1808 !(mask & stopsigmask) && !(mask & contsigmask)) {
1809 if (uth->uu_exit_reason == OS_REASON_NULL) {
1810 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_PROC, BSD_PROC_EXITREASON_CREATE) | DBG_FUNC_NONE,
1811 proc_getpid(p), OS_REASON_SIGNAL, signum, 0, 0);
1812
1813 os_reason_t signal_reason = build_signal_reason(signum, procname: "exc handler");
1814
1815 set_thread_exit_reason(th: sig_actthread, reason: signal_reason, TRUE);
1816
1817 /* We dropped/consumed the reference in set_thread_exit_reason() */
1818 signal_reason = OS_REASON_NULL;
1819 }
1820 }
1821
1822 proc_unlock(p);
1823
1824 /* mark on process as well */
1825 signal_setast(sig_actthread);
1826}
1827
1828/* Called with proc locked */
1829static void
1830set_thread_extra_flags(task_t task, struct uthread *uth, os_reason_t reason)
1831{
1832 extern int vm_shared_region_reslide_restrict;
1833 boolean_t reslide_shared_region = FALSE;
1834 boolean_t driver = task_is_driver(task);
1835 assert(uth != NULL);
1836 /*
1837 * Check whether the userland fault address falls within the shared
1838 * region and notify userland if so. To limit the occurrences of shared
1839 * cache resliding - and its associated memory tax - only investigate the
1840 * fault if it is consequence of accessing unmapped memory (SIGSEGV) or
1841 * accessing with incorrect permissions (SIGBUS - KERN_PROTECTION_FAILURE).
1842 *
1843 * This allows launchd to apply special policies around this fault type.
1844 */
1845 if (reason->osr_namespace == OS_REASON_SIGNAL &&
1846 (reason->osr_code == SIGSEGV ||
1847 (reason->osr_code == SIGBUS && uth->uu_code == KERN_PROTECTION_FAILURE))) {
1848 mach_vm_address_t fault_address = uth->uu_subcode;
1849
1850 /* Address is in userland, so we hard clear any non-canonical bits to 0 here */
1851 fault_address = VM_USER_STRIP_PTR(fault_address);
1852
1853 if (fault_address >= SHARED_REGION_BASE &&
1854 fault_address <= SHARED_REGION_BASE + SHARED_REGION_SIZE) {
1855 /*
1856 * Always report whether the fault happened within the shared cache
1857 * region, but only stale the slide if the resliding is extended
1858 * to all processes or if the process faulting is a platform one.
1859 */
1860 reason->osr_flags |= OS_REASON_FLAG_SHAREDREGION_FAULT;
1861
1862#if __has_feature(ptrauth_calls)
1863 if (!vm_shared_region_reslide_restrict || task_is_hardened_binary(current_task())) {
1864 reslide_shared_region = TRUE;
1865 }
1866#endif /* __has_feature(ptrauth_calls) */
1867 }
1868
1869 if (driver) {
1870 /*
1871 * Always reslide the DriverKit shared region if the driver faulted.
1872 * The memory cost is acceptable because the DriverKit shared cache is small
1873 * and there are relatively few driver processes.
1874 */
1875 reslide_shared_region = TRUE;
1876 }
1877 }
1878
1879 if (reslide_shared_region) {
1880 vm_shared_region_reslide_stale(driverkit: driver);
1881 }
1882}
1883
1884void
1885set_thread_exit_reason(void *th, void *reason, boolean_t proc_locked)
1886{
1887 struct uthread *targ_uth = get_bsdthread_info(th);
1888 struct task *targ_task = get_threadtask(th);
1889 proc_t targ_proc = NULL;
1890
1891 os_reason_t exit_reason = (os_reason_t)reason;
1892
1893 if (exit_reason == OS_REASON_NULL) {
1894 return;
1895 }
1896
1897 if (!proc_locked) {
1898 targ_proc = (proc_t)(get_bsdtask_info(targ_task));
1899
1900 proc_lock(targ_proc);
1901 }
1902
1903 set_thread_extra_flags(task: targ_task, uth: targ_uth, reason: exit_reason);
1904
1905 if (targ_uth->uu_exit_reason == OS_REASON_NULL) {
1906 targ_uth->uu_exit_reason = exit_reason;
1907 } else {
1908 /* The caller expects that we drop a reference on the exit reason */
1909 os_reason_free(cur_reason: exit_reason);
1910 }
1911
1912 if (!proc_locked) {
1913 assert(targ_proc != NULL);
1914 proc_unlock(targ_proc);
1915 }
1916}
1917
1918/*
1919 * get_signalthread
1920 *
1921 * Picks an appropriate thread from a process to target with a signal.
1922 *
1923 * Called with proc locked.
1924 * Returns thread with BSD ast set.
1925 *
1926 * We attempt to deliver a proc-wide signal to the first thread in the task.
1927 * This allows single threaded applications which use signals to
1928 * be able to be linked with multithreaded libraries.
1929 */
1930static kern_return_t
1931get_signalthread(proc_t p, int signum, thread_t * thr)
1932{
1933 struct uthread *uth;
1934 sigset_t mask = sigmask(signum);
1935 bool skip_wqthreads = true;
1936
1937 *thr = THREAD_NULL;
1938
1939
1940again:
1941 TAILQ_FOREACH(uth, &p->p_uthlist, uu_list) {
1942 if (((uth->uu_flag & UT_NO_SIGMASK) == 0) &&
1943 (((uth->uu_sigmask & mask) == 0) || (uth->uu_sigwait & mask))) {
1944 thread_t th = get_machthread(uth);
1945 if (skip_wqthreads && (thread_get_tag(thread: th) & THREAD_TAG_WORKQUEUE)) {
1946 /* Workqueue threads may be parked in the kernel unable to
1947 * deliver signals for an extended period of time, so skip them
1948 * in favor of pthreads in a first pass. (rdar://50054475). */
1949 } else if (check_actforsig(task: proc_task(p), thread: th, setast: 1) == KERN_SUCCESS) {
1950 *thr = th;
1951 return KERN_SUCCESS;
1952 }
1953 }
1954 }
1955 if (skip_wqthreads) {
1956 skip_wqthreads = false;
1957 goto again;
1958 }
1959 if (get_signalact(proc_task(p), thr, 1) == KERN_SUCCESS) {
1960 return KERN_SUCCESS;
1961 }
1962
1963 return KERN_FAILURE;
1964}
1965
1966static os_reason_t
1967build_signal_reason(int signum, const char *procname)
1968{
1969 os_reason_t signal_reason = OS_REASON_NULL;
1970 proc_t sender_proc = current_proc();
1971 uint32_t reason_buffer_size_estimate = 0, proc_name_length = 0;
1972 const char *default_sender_procname = "unknown";
1973 mach_vm_address_t data_addr;
1974 int ret;
1975
1976 signal_reason = os_reason_create(OS_REASON_SIGNAL, osr_code: signum);
1977 if (signal_reason == OS_REASON_NULL) {
1978 printf("build_signal_reason: unable to allocate signal reason structure.\n");
1979 return signal_reason;
1980 }
1981
1982 reason_buffer_size_estimate = kcdata_estimate_required_buffer_size(num_items: 2, payload_size: sizeof(sender_proc->p_name) +
1983 sizeof(pid_t));
1984
1985 ret = os_reason_alloc_buffer_noblock(cur_reason: signal_reason, osr_bufsize: reason_buffer_size_estimate);
1986 if (ret != 0) {
1987 printf("build_signal_reason: unable to allocate signal reason buffer.\n");
1988 return signal_reason;
1989 }
1990
1991 if (KERN_SUCCESS == kcdata_get_memory_addr(data: &signal_reason->osr_kcd_descriptor, KCDATA_TYPE_PID,
1992 size: sizeof(pid_t), user_addr: &data_addr)) {
1993 pid_t pid = proc_getpid(sender_proc);
1994 kcdata_memcpy(data: &signal_reason->osr_kcd_descriptor, dst_addr: data_addr, src_addr: &pid, size: sizeof(pid));
1995 } else {
1996 printf("build_signal_reason: exceeded space in signal reason buf, unable to log PID\n");
1997 }
1998
1999 proc_name_length = sizeof(sender_proc->p_name);
2000 if (KERN_SUCCESS == kcdata_get_memory_addr(data: &signal_reason->osr_kcd_descriptor, KCDATA_TYPE_PROCNAME,
2001 size: proc_name_length, user_addr: &data_addr)) {
2002 if (procname) {
2003 char truncated_procname[proc_name_length];
2004 strncpy((char *) &truncated_procname, procname, proc_name_length);
2005 truncated_procname[proc_name_length - 1] = '\0';
2006
2007 kcdata_memcpy(data: &signal_reason->osr_kcd_descriptor, dst_addr: data_addr, src_addr: truncated_procname,
2008 size: (uint32_t)strlen(s: (char *) &truncated_procname));
2009 } else if (*sender_proc->p_name) {
2010 kcdata_memcpy(data: &signal_reason->osr_kcd_descriptor, dst_addr: data_addr, src_addr: &sender_proc->p_name,
2011 size: sizeof(sender_proc->p_name));
2012 } else {
2013 kcdata_memcpy(data: &signal_reason->osr_kcd_descriptor, dst_addr: data_addr, src_addr: &default_sender_procname,
2014 size: (uint32_t)strlen(s: default_sender_procname) + 1);
2015 }
2016 } else {
2017 printf("build_signal_reason: exceeded space in signal reason buf, unable to log procname\n");
2018 }
2019
2020 return signal_reason;
2021}
2022
2023/*
2024 * Send the signal to the process. If the signal has an action, the action
2025 * is usually performed by the target process rather than the caller; we add
2026 * the signal to the set of pending signals for the process.
2027 *
2028 * Always drops a reference on a signal_reason if one is provided, whether via
2029 * passing it to a thread or deallocating directly.
2030 *
2031 * Exceptions:
2032 * o When a stop signal is sent to a sleeping process that takes the
2033 * default action, the process is stopped without awakening it.
2034 * o SIGCONT restarts stopped processes (or puts them back to sleep)
2035 * regardless of the signal action (eg, blocked or ignored).
2036 *
2037 * Other ignored signals are discarded immediately.
2038 */
2039static void
2040psignal_internal(proc_t p, task_t task, thread_t thread, int flavor, int signum, os_reason_t signal_reason)
2041{
2042 int prop;
2043 user_addr_t action = USER_ADDR_NULL;
2044 proc_t sig_proc;
2045 thread_t sig_thread;
2046 task_t sig_task;
2047 int mask;
2048 struct uthread *uth;
2049 kern_return_t kret;
2050 uid_t r_uid;
2051 proc_t pp;
2052 kauth_cred_t my_cred;
2053 char *launchd_exit_reason_desc = NULL;
2054 boolean_t update_thread_policy = FALSE;
2055
2056 if ((u_int)signum >= NSIG || signum == 0) {
2057 panic("psignal: bad signal number %d", signum);
2058 }
2059
2060 mask = sigmask(signum);
2061 prop = sigprop[signum];
2062
2063#if SIGNAL_DEBUG
2064 if (rdebug_proc && (p != PROC_NULL) && (p == rdebug_proc)) {
2065 ram_printf(3);
2066 }
2067#endif /* SIGNAL_DEBUG */
2068
2069 /* catch unexpected initproc kills early for easier debuggging */
2070 if (signum == SIGKILL && p == initproc) {
2071 if (signal_reason == NULL) {
2072 panic_plain("unexpected SIGKILL of %s %s (no reason provided)",
2073 (p->p_name[0] != '\0' ? p->p_name : "initproc"),
2074 ((proc_getcsflags(p) & CS_KILLED) ? "(CS_KILLED)" : ""));
2075 } else {
2076 launchd_exit_reason_desc = exit_reason_get_string_desc(exit_reason: signal_reason);
2077 panic_plain("unexpected SIGKILL of %s %s with reason -- namespace %d code 0x%llx description %." LAUNCHD_PANIC_REASON_STRING_MAXLEN "s",
2078 (p->p_name[0] != '\0' ? p->p_name : "initproc"),
2079 ((proc_getcsflags(p) & CS_KILLED) ? "(CS_KILLED)" : ""),
2080 signal_reason->osr_namespace, signal_reason->osr_code,
2081 launchd_exit_reason_desc ? launchd_exit_reason_desc : "none");
2082 }
2083 }
2084
2085 /*
2086 * We will need the task pointer later. Grab it now to
2087 * check for a zombie process. Also don't send signals
2088 * to kernel internal tasks.
2089 */
2090 if (flavor & PSIG_VFORK) {
2091 sig_task = task;
2092 sig_thread = thread;
2093 sig_proc = p;
2094 } else if (flavor & PSIG_THREAD) {
2095 sig_task = get_threadtask(thread);
2096 sig_thread = thread;
2097 sig_proc = (proc_t)get_bsdtask_info(sig_task);
2098 } else if (flavor & PSIG_TRY_THREAD) {
2099 assert((thread == current_thread()) && (p == current_proc()));
2100 sig_task = proc_task(p);
2101 sig_thread = thread;
2102 sig_proc = p;
2103 } else {
2104 sig_task = proc_task(p);
2105 sig_thread = THREAD_NULL;
2106 sig_proc = p;
2107 }
2108
2109 if ((sig_task == TASK_NULL) || is_kerneltask(task: sig_task)) {
2110 os_reason_free(cur_reason: signal_reason);
2111 return;
2112 }
2113
2114 if ((flavor & (PSIG_VFORK | PSIG_THREAD)) == 0) {
2115 proc_knote(p: sig_proc, NOTE_SIGNAL | signum);
2116 }
2117
2118 if ((flavor & PSIG_LOCKED) == 0) {
2119 proc_signalstart(sig_proc, locked: 0);
2120 }
2121
2122 /* Don't send signals to a process that has ignored them. */
2123 if (((flavor & PSIG_VFORK) == 0) && ((sig_proc->p_lflag & P_LTRACED) == 0) && (sig_proc->p_sigignore & mask)) {
2124 DTRACE_PROC3(signal__discard, thread_t, sig_thread, proc_t, sig_proc, int, signum);
2125 goto sigout_unlocked;
2126 }
2127
2128 /*
2129 * The proc_lock prevents the targeted thread from being deallocated
2130 * or handling the signal until we're done signaling it.
2131 *
2132 * Once the proc_lock is dropped, we have no guarantee the thread or uthread exists anymore.
2133 *
2134 * XXX: What if the thread goes inactive after the thread passes bsd ast point?
2135 */
2136 proc_lock(sig_proc);
2137
2138 /*
2139 * Don't send signals to a process which has already exited and thus
2140 * committed to a particular p_xstat exit code.
2141 * Additionally, don't abort the process running 'reboot'.
2142 */
2143 if (ISSET(sig_proc->p_flag, P_REBOOT) || ISSET(sig_proc->p_lflag, P_LEXIT)) {
2144 DTRACE_PROC3(signal__discard, thread_t, sig_thread, proc_t, sig_proc, int, signum);
2145 goto sigout_locked;
2146 }
2147
2148 if (flavor & PSIG_VFORK) {
2149 action = SIG_DFL;
2150 act_set_astbsd(sig_thread);
2151 kret = KERN_SUCCESS;
2152 } else if (flavor & PSIG_TRY_THREAD) {
2153 uth = get_bsdthread_info(sig_thread);
2154 if (((uth->uu_flag & UT_NO_SIGMASK) == 0) &&
2155 (((uth->uu_sigmask & mask) == 0) || (uth->uu_sigwait & mask)) &&
2156 ((kret = check_actforsig(task: proc_task(sig_proc), thread: sig_thread, setast: 1)) == KERN_SUCCESS)) {
2157 /* deliver to specified thread */
2158 } else {
2159 /* deliver to any willing thread */
2160 kret = get_signalthread(p: sig_proc, signum, thr: &sig_thread);
2161 }
2162 } else if (flavor & PSIG_THREAD) {
2163 /* If successful return with ast set */
2164 kret = check_actforsig(task: sig_task, thread: sig_thread, setast: 1);
2165 } else {
2166 /* If successful return with ast set */
2167 kret = get_signalthread(p: sig_proc, signum, thr: &sig_thread);
2168 }
2169
2170 if (kret != KERN_SUCCESS) {
2171 DTRACE_PROC3(signal__discard, thread_t, sig_thread, proc_t, sig_proc, int, signum);
2172 proc_unlock(sig_proc);
2173 goto sigout_unlocked;
2174 }
2175
2176 uth = get_bsdthread_info(sig_thread);
2177
2178 /*
2179 * If proc is traced, always give parent a chance.
2180 */
2181
2182 if ((flavor & PSIG_VFORK) == 0) {
2183 if (sig_proc->p_lflag & P_LTRACED) {
2184 action = SIG_DFL;
2185 } else {
2186 /*
2187 * If the signal is being ignored,
2188 * then we forget about it immediately.
2189 * (Note: we don't set SIGCONT in p_sigignore,
2190 * and if it is set to SIG_IGN,
2191 * action will be SIG_DFL here.)
2192 */
2193 if (sig_proc->p_sigignore & mask) {
2194 goto sigout_locked;
2195 }
2196
2197 if (uth->uu_sigwait & mask) {
2198 action = KERN_SIG_WAIT;
2199 } else if (uth->uu_sigmask & mask) {
2200 action = KERN_SIG_HOLD;
2201 } else if (sig_proc->p_sigcatch & mask) {
2202 action = KERN_SIG_CATCH;
2203 } else {
2204 action = SIG_DFL;
2205 }
2206 }
2207 }
2208
2209 /* TODO: p_nice isn't hooked up to the scheduler... */
2210 if (sig_proc->p_nice > NZERO && action == SIG_DFL && (prop & SA_KILL) &&
2211 (sig_proc->p_lflag & P_LTRACED) == 0) {
2212 sig_proc->p_nice = NZERO;
2213 }
2214
2215 if (prop & SA_CONT) {
2216 uth->uu_siglist &= ~stopsigmask;
2217 }
2218
2219 if (prop & SA_STOP) {
2220 struct pgrp *pg;
2221 /*
2222 * If sending a tty stop signal to a member of an orphaned
2223 * process group, discard the signal here if the action
2224 * is default; don't stop the process below if sleeping,
2225 * and don't clear any pending SIGCONT.
2226 */
2227 pg = proc_pgrp(sig_proc, NULL);
2228 if (prop & SA_TTYSTOP && pg->pg_jobc == 0 &&
2229 action == SIG_DFL) {
2230 pgrp_rele(pgrp: pg);
2231 goto sigout_locked;
2232 }
2233 pgrp_rele(pgrp: pg);
2234 uth->uu_siglist &= ~contsigmask;
2235 }
2236
2237 uth->uu_siglist |= mask;
2238
2239 /*
2240 * Defer further processing for signals which are held,
2241 * except that stopped processes must be continued by SIGCONT.
2242 */
2243 if ((action == KERN_SIG_HOLD) && ((prop & SA_CONT) == 0 || sig_proc->p_stat != SSTOP)) {
2244 goto sigout_locked;
2245 }
2246
2247 /*
2248 * SIGKILL priority twiddling moved here from above because
2249 * it needs sig_thread. Could merge it into large switch
2250 * below if we didn't care about priority for tracing
2251 * as SIGKILL's action is always SIG_DFL.
2252 *
2253 * TODO: p_nice isn't hooked up to the scheduler...
2254 */
2255 if ((signum == SIGKILL) && (sig_proc->p_nice > NZERO)) {
2256 sig_proc->p_nice = NZERO;
2257 }
2258
2259 /*
2260 * Process is traced - wake it up (if not already
2261 * stopped) so that it can discover the signal in
2262 * issig() and stop for the parent.
2263 */
2264 if (sig_proc->p_lflag & P_LTRACED) {
2265 if (sig_proc->p_stat != SSTOP) {
2266 goto runlocked;
2267 } else {
2268 goto sigout_locked;
2269 }
2270 }
2271
2272 if ((flavor & PSIG_VFORK) != 0) {
2273 goto runlocked;
2274 }
2275
2276 if (action == KERN_SIG_WAIT) {
2277#if CONFIG_DTRACE
2278 /*
2279 * DTrace proc signal-clear returns a siginfo_t. Collect the needed info.
2280 */
2281 r_uid = kauth_getruid(); /* per thread credential; protected by our thread context */
2282
2283 bzero(s: (caddr_t)&(uth->t_dtrace_siginfo), n: sizeof(uth->t_dtrace_siginfo));
2284
2285 uth->t_dtrace_siginfo.si_signo = signum;
2286 uth->t_dtrace_siginfo.si_pid = proc_getpid(current_proc());
2287 uth->t_dtrace_siginfo.si_status = W_EXITCODE(signum, 0);
2288 uth->t_dtrace_siginfo.si_uid = r_uid;
2289 uth->t_dtrace_siginfo.si_code = 0;
2290#endif
2291 uth->uu_sigwait = mask;
2292 uth->uu_siglist &= ~mask;
2293 wakeup(chan: &uth->uu_sigwait);
2294 /* if it is SIGCONT resume whole process */
2295 if (prop & SA_CONT) {
2296 OSBitOrAtomic(P_CONTINUED, &sig_proc->p_flag);
2297 sig_proc->p_contproc = proc_getpid(current_proc());
2298 (void) task_resume_internal(task: sig_task);
2299 }
2300 goto sigout_locked;
2301 }
2302
2303 if (action != SIG_DFL) {
2304 /*
2305 * User wants to catch the signal.
2306 * Wake up the thread, but don't un-suspend it
2307 * (except for SIGCONT).
2308 */
2309 if (prop & SA_CONT) {
2310 OSBitOrAtomic(P_CONTINUED, &sig_proc->p_flag);
2311 (void) task_resume_internal(task: sig_task);
2312 sig_proc->p_stat = SRUN;
2313 } else if (sig_proc->p_stat == SSTOP) {
2314 goto sigout_locked;
2315 }
2316 /*
2317 * Fill out siginfo structure information to pass to the
2318 * signalled process/thread sigaction handler, when it
2319 * wakes up. si_code is 0 because this is an ordinary
2320 * signal, not a SIGCHLD, and so si_status is the signal
2321 * number itself, instead of the child process exit status.
2322 * We shift this left because it will be shifted right before
2323 * it is passed to user space. kind of ugly to use W_EXITCODE
2324 * this way, but it beats defining a new macro.
2325 *
2326 * Note: Avoid the SIGCHLD recursion case!
2327 */
2328 if (signum != SIGCHLD) {
2329 r_uid = kauth_getruid();
2330
2331 sig_proc->si_pid = proc_getpid(current_proc());
2332 sig_proc->si_status = W_EXITCODE(signum, 0);
2333 sig_proc->si_uid = r_uid;
2334 sig_proc->si_code = 0;
2335 }
2336
2337 goto runlocked;
2338 } else {
2339 /* Default action - varies */
2340 if (mask & stopsigmask) {
2341 assert(signal_reason == NULL);
2342 /*
2343 * These are the signals which by default
2344 * stop a process.
2345 *
2346 * Don't clog system with children of init
2347 * stopped from the keyboard.
2348 */
2349 if (!(prop & SA_STOP) && sig_proc->p_pptr == initproc) {
2350 uth->uu_siglist &= ~mask;
2351 proc_unlock(sig_proc);
2352 /* siglock still locked, proc_lock not locked */
2353 psignal_locked(sig_proc, SIGKILL);
2354 goto sigout_unlocked;
2355 }
2356
2357 /*
2358 * Stop the task
2359 * if task hasn't already been stopped by
2360 * a signal.
2361 */
2362 uth->uu_siglist &= ~mask;
2363 if (sig_proc->p_stat != SSTOP) {
2364 sig_proc->p_xstat = signum;
2365 sig_proc->p_stat = SSTOP;
2366 OSBitAndAtomic(~((uint32_t)P_CONTINUED), &sig_proc->p_flag);
2367 sig_proc->p_lflag &= ~P_LWAITED;
2368 proc_signalend(sig_proc, locked: 1);
2369 proc_unlock(sig_proc);
2370
2371 pp = proc_parentholdref(sig_proc);
2372 proc_signalstart(sig_proc, locked: 0);
2373 stop(sig_proc, pp);
2374 if ((pp != PROC_NULL) && ((pp->p_flag & P_NOCLDSTOP) == 0)) {
2375 my_cred = kauth_cred_proc_ref(procp: sig_proc);
2376 r_uid = kauth_cred_getruid(cred: my_cred);
2377 kauth_cred_unref(&my_cred);
2378
2379 proc_lock(sig_proc);
2380 pp->si_pid = proc_getpid(sig_proc);
2381 /*
2382 * POSIX: sigaction for a stopped child
2383 * when sent to the parent must set the
2384 * child's signal number into si_status.
2385 */
2386 if (signum != SIGSTOP) {
2387 pp->si_status = WEXITSTATUS(sig_proc->p_xstat);
2388 } else {
2389 pp->si_status = W_EXITCODE(signum, signum);
2390 }
2391 pp->si_code = CLD_STOPPED;
2392 pp->si_uid = r_uid;
2393 proc_unlock(sig_proc);
2394
2395 psignal(p: pp, SIGCHLD);
2396 }
2397 if (pp != PROC_NULL) {
2398 proc_parentdropref(pp, 0);
2399 }
2400
2401 goto sigout_unlocked;
2402 }
2403
2404 goto sigout_locked;
2405 }
2406
2407 DTRACE_PROC3(signal__send, thread_t, sig_thread, proc_t, p, int, signum);
2408
2409 switch (signum) {
2410 /*
2411 * Signals ignored by default have been dealt
2412 * with already, since their bits are on in
2413 * p_sigignore.
2414 */
2415
2416 case SIGKILL:
2417 /*
2418 * Kill signal always sets process running and
2419 * unsuspends it.
2420 */
2421 /*
2422 * Process will be running after 'run'
2423 */
2424 sig_proc->p_stat = SRUN;
2425 /*
2426 * In scenarios where suspend/resume are racing
2427 * the signal we are missing AST_BSD by the time
2428 * we get here, set again to avoid races. This
2429 * was the scenario with spindump enabled shutdowns.
2430 * We would need to cover this approp down the line.
2431 */
2432 act_set_astbsd(sig_thread);
2433 kret = thread_abort(target_act: sig_thread);
2434 update_thread_policy = (kret == KERN_SUCCESS);
2435
2436 if (uth->uu_exit_reason == OS_REASON_NULL) {
2437 if (signal_reason == OS_REASON_NULL) {
2438 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_PROC, BSD_PROC_EXITREASON_CREATE) | DBG_FUNC_NONE,
2439 proc_getpid(sig_proc), OS_REASON_SIGNAL, signum, 0, 0);
2440
2441 signal_reason = build_signal_reason(signum, NULL);
2442 }
2443
2444 os_reason_ref(cur_reason: signal_reason);
2445 set_thread_exit_reason(th: sig_thread, reason: signal_reason, TRUE);
2446 }
2447
2448 goto sigout_locked;
2449
2450 case SIGCONT:
2451 /*
2452 * Let the process run. If it's sleeping on an
2453 * event, it remains so.
2454 */
2455 assert(signal_reason == NULL);
2456 OSBitOrAtomic(P_CONTINUED, &sig_proc->p_flag);
2457 sig_proc->p_contproc = proc_getpid(sig_proc);
2458 sig_proc->p_xstat = signum;
2459
2460 (void) task_resume_internal(task: sig_task);
2461
2462 /*
2463 * When processing a SIGCONT, we need to check
2464 * to see if there are signals pending that
2465 * were not delivered because we had been
2466 * previously stopped. If that's the case,
2467 * we need to thread_abort_safely() to trigger
2468 * interruption of the current system call to
2469 * cause their handlers to fire. If it's only
2470 * the SIGCONT, then don't wake up.
2471 */
2472 if (((flavor & (PSIG_VFORK | PSIG_THREAD)) == 0) && (((uth->uu_siglist & ~uth->uu_sigmask) & ~sig_proc->p_sigignore) & ~mask)) {
2473 uth->uu_siglist &= ~mask;
2474 sig_proc->p_stat = SRUN;
2475 goto runlocked;
2476 }
2477
2478 uth->uu_siglist &= ~mask;
2479 sig_proc->p_stat = SRUN;
2480 goto sigout_locked;
2481
2482 default:
2483 {
2484 /*
2485 * A signal which has a default action of killing
2486 * the process, and for which there is no handler,
2487 * needs to act like SIGKILL
2488 *
2489 * The thread_sstop condition is a remnant of a fix
2490 * where PSIG_THREAD exit reasons were not set
2491 * correctly (93593933). We keep the behavior with
2492 * SSTOP the same as before.
2493 */
2494 const bool default_kill = (action == SIG_DFL) && (prop & SA_KILL);
2495 const bool thread_sstop = (flavor & PSIG_THREAD) && (sig_proc->p_stat == SSTOP);
2496
2497 if (default_kill && !thread_sstop) {
2498 sig_proc->p_stat = SRUN;
2499 kret = thread_abort(target_act: sig_thread);
2500 update_thread_policy = (kret == KERN_SUCCESS);
2501
2502 if (uth->uu_exit_reason == OS_REASON_NULL) {
2503 if (signal_reason == OS_REASON_NULL) {
2504 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_PROC, BSD_PROC_EXITREASON_CREATE) | DBG_FUNC_NONE,
2505 proc_getpid(sig_proc), OS_REASON_SIGNAL, signum, 0, 0);
2506
2507 signal_reason = build_signal_reason(signum, NULL);
2508 }
2509
2510 os_reason_ref(cur_reason: signal_reason);
2511 set_thread_exit_reason(th: sig_thread, reason: signal_reason, TRUE);
2512 }
2513
2514 goto sigout_locked;
2515 }
2516
2517 /*
2518 * All other signals wake up the process, but don't
2519 * resume it.
2520 */
2521 if (sig_proc->p_stat == SSTOP) {
2522 goto sigout_locked;
2523 }
2524 goto runlocked;
2525 }
2526 }
2527 }
2528 /*NOTREACHED*/
2529
2530runlocked:
2531 /*
2532 * If we're being traced (possibly because someone attached us
2533 * while we were stopped), check for a signal from the debugger.
2534 */
2535 if (sig_proc->p_stat == SSTOP) {
2536 if ((sig_proc->p_lflag & P_LTRACED) != 0 && sig_proc->p_xstat != 0) {
2537 uth->uu_siglist |= sigmask(sig_proc->p_xstat);
2538 }
2539
2540 if ((flavor & PSIG_VFORK) != 0) {
2541 sig_proc->p_stat = SRUN;
2542 }
2543 } else {
2544 /*
2545 * setrunnable(p) in BSD and
2546 * Wake up the thread if it is interruptible.
2547 */
2548 sig_proc->p_stat = SRUN;
2549 if ((flavor & PSIG_VFORK) == 0) {
2550 thread_abort_safely(target_act: sig_thread);
2551 }
2552 }
2553
2554sigout_locked:
2555 if (update_thread_policy) {
2556 /*
2557 * Update the thread policy to heading to terminate, increase priority if
2558 * necessary. This needs to be done before we drop the proc lock because the
2559 * thread can take the fatal signal once it's dropped.
2560 */
2561 proc_set_thread_policy(thread: sig_thread, TASK_POLICY_ATTRIBUTE, TASK_POLICY_TERMINATED, TASK_POLICY_ENABLE);
2562 }
2563
2564 proc_unlock(sig_proc);
2565
2566sigout_unlocked:
2567 os_reason_free(cur_reason: signal_reason);
2568 if ((flavor & PSIG_LOCKED) == 0) {
2569 proc_signalend(sig_proc, locked: 0);
2570 }
2571}
2572
2573void
2574psignal(proc_t p, int signum)
2575{
2576 psignal_internal(p, NULL, NULL, flavor: 0, signum, NULL);
2577}
2578
2579void
2580psignal_with_reason(proc_t p, int signum, struct os_reason *signal_reason)
2581{
2582 psignal_internal(p, NULL, NULL, flavor: 0, signum, signal_reason);
2583}
2584
2585void
2586psignal_sigkill_with_reason(struct proc *p, struct os_reason *signal_reason)
2587{
2588 psignal_internal(p, NULL, NULL, flavor: 0, SIGKILL, signal_reason);
2589}
2590
2591void
2592psignal_locked(proc_t p, int signum)
2593{
2594 psignal_internal(p, NULL, NULL, PSIG_LOCKED, signum, NULL);
2595}
2596
2597void
2598psignal_vfork_with_reason(proc_t p, task_t new_task, thread_t thread, int signum, struct os_reason *signal_reason)
2599{
2600 psignal_internal(p, task: new_task, thread, PSIG_VFORK, signum, signal_reason);
2601}
2602
2603void
2604psignal_vfork(proc_t p, task_t new_task, thread_t thread, int signum)
2605{
2606 psignal_internal(p, task: new_task, thread, PSIG_VFORK, signum, NULL);
2607}
2608
2609void
2610psignal_uthread(thread_t thread, int signum)
2611{
2612 psignal_internal(PROC_NULL, TASK_NULL, thread, PSIG_THREAD, signum, NULL);
2613}
2614
2615/* same as psignal(), but prefer delivery to 'thread' if possible */
2616void
2617psignal_try_thread(proc_t p, thread_t thread, int signum)
2618{
2619 psignal_internal(p, NULL, thread, PSIG_TRY_THREAD, signum, NULL);
2620}
2621
2622void
2623psignal_try_thread_with_reason(proc_t p, thread_t thread, int signum, struct os_reason *signal_reason)
2624{
2625 psignal_internal(p, TASK_NULL, thread, PSIG_TRY_THREAD, signum, signal_reason);
2626}
2627
2628void
2629psignal_thread_with_reason(proc_t p, thread_t thread, int signum, struct os_reason *signal_reason)
2630{
2631 psignal_internal(p, TASK_NULL, thread, PSIG_THREAD, signum, signal_reason);
2632}
2633
2634/*
2635 * If the current process has received a signal (should be caught or cause
2636 * termination, should interrupt current syscall), return the signal number.
2637 * Stop signals with default action are processed immediately, then cleared;
2638 * they aren't returned. This is checked after each entry to the system for
2639 * a syscall or trap (though this can usually be done without calling issignal
2640 * by checking the pending signal masks in the CURSIG macro.) The normal call
2641 * sequence is
2642 *
2643 * while (signum = CURSIG(curproc))
2644 * postsig(signum);
2645 */
2646int
2647issignal_locked(proc_t p)
2648{
2649 int signum, mask, prop, sigbits;
2650 thread_t cur_act;
2651 struct uthread * ut;
2652 proc_t pp;
2653 kauth_cred_t my_cred;
2654 int retval = 0;
2655 uid_t r_uid;
2656
2657 cur_act = current_thread();
2658
2659#if SIGNAL_DEBUG
2660 if (rdebug_proc && (p == rdebug_proc)) {
2661 ram_printf(3);
2662 }
2663#endif /* SIGNAL_DEBUG */
2664
2665 /*
2666 * Try to grab the signal lock.
2667 */
2668 if (sig_try_locked(p) <= 0) {
2669 return 0;
2670 }
2671
2672 proc_signalstart(p, locked: 1);
2673
2674 ut = get_bsdthread_info(cur_act);
2675 for (;;) {
2676 sigbits = ut->uu_siglist & ~ut->uu_sigmask;
2677
2678 if (p->p_lflag & P_LPPWAIT) {
2679 sigbits &= ~stopsigmask;
2680 }
2681 if (sigbits == 0) { /* no signal to send */
2682 retval = 0;
2683 goto out;
2684 }
2685
2686 signum = ffs((unsigned int)sigbits);
2687 mask = sigmask(signum);
2688 prop = sigprop[signum];
2689
2690 /*
2691 * We should see pending but ignored signals
2692 * only if P_LTRACED was on when they were posted.
2693 */
2694 if (mask & p->p_sigignore && (p->p_lflag & P_LTRACED) == 0) {
2695 ut->uu_siglist &= ~mask;
2696 continue;
2697 }
2698
2699 if (p->p_lflag & P_LTRACED && (p->p_lflag & P_LPPWAIT) == 0) {
2700 /*
2701 * If traced, deliver the signal to the debugger, and wait to be
2702 * released.
2703 */
2704 task_t task;
2705 p->p_xstat = signum;
2706
2707 if (p->p_lflag & P_LSIGEXC) {
2708 p->sigwait = TRUE;
2709 p->sigwait_thread = cur_act;
2710 p->p_stat = SSTOP;
2711 OSBitAndAtomic(~((uint32_t)P_CONTINUED), &p->p_flag);
2712 p->p_lflag &= ~P_LWAITED;
2713 ut->uu_siglist &= ~mask; /* clear the current signal from the pending list */
2714 proc_signalend(p, locked: 1);
2715 proc_unlock(p);
2716 do_bsdexception(EXC_SOFTWARE, EXC_SOFT_SIGNAL, signum);
2717 proc_lock(p);
2718 proc_signalstart(p, locked: 1);
2719 } else {
2720 proc_unlock(p);
2721 my_cred = kauth_cred_proc_ref(procp: p);
2722 r_uid = kauth_cred_getruid(cred: my_cred);
2723 kauth_cred_unref(&my_cred);
2724
2725 /*
2726 * XXX Have to really stop for debuggers;
2727 * XXX stop() doesn't do the right thing.
2728 */
2729 task = proc_task(p);
2730 task_suspend_internal(task);
2731
2732 proc_lock(p);
2733 p->sigwait = TRUE;
2734 p->sigwait_thread = cur_act;
2735 p->p_stat = SSTOP;
2736 OSBitAndAtomic(~((uint32_t)P_CONTINUED), &p->p_flag);
2737 p->p_lflag &= ~P_LWAITED;
2738 ut->uu_siglist &= ~mask;
2739
2740 proc_signalend(p, locked: 1);
2741 proc_unlock(p);
2742
2743 pp = proc_parentholdref(p);
2744 if (pp != PROC_NULL) {
2745 proc_lock(pp);
2746 pp->si_pid = proc_getpid(p);
2747 pp->p_xhighbits = p->p_xhighbits;
2748 p->p_xhighbits = 0;
2749 pp->si_status = p->p_xstat;
2750 pp->si_code = CLD_TRAPPED;
2751 pp->si_uid = r_uid;
2752 proc_unlock(pp);
2753
2754 psignal(p: pp, SIGCHLD);
2755 proc_list_lock();
2756 wakeup(chan: (caddr_t)pp);
2757 proc_parentdropref(pp, 1);
2758 proc_list_unlock();
2759 }
2760
2761 assert_wait(event: (caddr_t)&p->sigwait, interruptible: (THREAD_INTERRUPTIBLE));
2762 thread_block(THREAD_CONTINUE_NULL);
2763 proc_lock(p);
2764 proc_signalstart(p, locked: 1);
2765 }
2766
2767 p->sigwait = FALSE;
2768 p->sigwait_thread = NULL;
2769 wakeup(chan: (caddr_t)&p->sigwait_thread);
2770
2771 if (signum == SIGKILL || ut->uu_siglist & sigmask(SIGKILL)) {
2772 /*
2773 * Deliver a pending sigkill even if it's not the current signal.
2774 * Necessary for PT_KILL, which should not be delivered to the
2775 * debugger, but we can't differentiate it from any other KILL.
2776 */
2777 signum = SIGKILL;
2778 goto deliver_sig;
2779 }
2780
2781 /* We may have to quit. */
2782 if (thread_should_abort(current_thread())) {
2783 retval = 0;
2784 goto out;
2785 }
2786
2787 /*
2788 * If parent wants us to take the signal,
2789 * then it will leave it in p->p_xstat;
2790 * otherwise we just look for signals again.
2791 */
2792 signum = p->p_xstat;
2793 if (signum == 0) {
2794 continue;
2795 }
2796
2797 /*
2798 * Put the new signal into p_siglist. If the
2799 * signal is being masked, look for other signals.
2800 */
2801 mask = sigmask(signum);
2802 ut->uu_siglist |= mask;
2803 if (ut->uu_sigmask & mask) {
2804 continue;
2805 }
2806 }
2807
2808 /*
2809 * Decide whether the signal should be returned.
2810 * Return the signal's number, or fall through
2811 * to clear it from the pending mask.
2812 */
2813
2814 switch ((long)SIGACTION(p, signum)) {
2815 case (long)SIG_DFL:
2816 /*
2817 * If there is a pending stop signal to process
2818 * with default action, stop here,
2819 * then clear the signal. However,
2820 * if process is member of an orphaned
2821 * process group, ignore tty stop signals.
2822 */
2823 if (prop & SA_STOP) {
2824 struct pgrp * pg;
2825
2826 proc_unlock(p);
2827 pg = proc_pgrp(p, NULL);
2828 if (p->p_lflag & P_LTRACED ||
2829 (pg->pg_jobc == 0 &&
2830 prop & SA_TTYSTOP)) {
2831 proc_lock(p);
2832 pgrp_rele(pgrp: pg);
2833 break; /* ignore signal */
2834 }
2835 pgrp_rele(pgrp: pg);
2836 if (p->p_stat != SSTOP) {
2837 proc_lock(p);
2838 p->p_xstat = signum;
2839 p->p_stat = SSTOP;
2840 p->p_lflag &= ~P_LWAITED;
2841 proc_signalend(p, locked: 1);
2842 proc_unlock(p);
2843
2844 pp = proc_parentholdref(p);
2845 proc_signalstart(p, locked: 0);
2846 stop(p, pp);
2847 if ((pp != PROC_NULL) && ((pp->p_flag & P_NOCLDSTOP) == 0)) {
2848 my_cred = kauth_cred_proc_ref(procp: p);
2849 r_uid = kauth_cred_getruid(cred: my_cred);
2850 kauth_cred_unref(&my_cred);
2851
2852 proc_lock(pp);
2853 pp->si_pid = proc_getpid(p);
2854 pp->si_status = WEXITSTATUS(p->p_xstat);
2855 pp->si_code = CLD_STOPPED;
2856 pp->si_uid = r_uid;
2857 proc_unlock(pp);
2858
2859 psignal(p: pp, SIGCHLD);
2860 }
2861 if (pp != PROC_NULL) {
2862 proc_parentdropref(pp, 0);
2863 }
2864 }
2865 proc_lock(p);
2866 break;
2867 } else if (prop & SA_IGNORE) {
2868 /*
2869 * Except for SIGCONT, shouldn't get here.
2870 * Default action is to ignore; drop it.
2871 */
2872 break; /* ignore signal */
2873 } else {
2874 goto deliver_sig;
2875 }
2876
2877 case (long)SIG_IGN:
2878 /*
2879 * Masking above should prevent us ever trying
2880 * to take action on an ignored signal other
2881 * than SIGCONT, unless process is traced.
2882 */
2883 if ((prop & SA_CONT) == 0 &&
2884 (p->p_lflag & P_LTRACED) == 0) {
2885 printf("issignal\n");
2886 }
2887 break; /* ignore signal */
2888
2889 default:
2890 /* This signal has an action - deliver it. */
2891 goto deliver_sig;
2892 }
2893
2894 /* If we dropped through, the signal was ignored - remove it from pending list. */
2895 ut->uu_siglist &= ~mask;
2896 } /* for(;;) */
2897
2898 /* NOTREACHED */
2899
2900deliver_sig:
2901 ut->uu_siglist &= ~mask;
2902 retval = signum;
2903
2904out:
2905 proc_signalend(p, locked: 1);
2906 return retval;
2907}
2908
2909/* called from _sleep */
2910int
2911CURSIG(proc_t p)
2912{
2913 int signum, mask, prop, sigbits;
2914 thread_t cur_act;
2915 struct uthread * ut;
2916 int retnum = 0;
2917
2918
2919 cur_act = current_thread();
2920
2921 ut = get_bsdthread_info(cur_act);
2922
2923 if (ut->uu_siglist == 0) {
2924 return 0;
2925 }
2926
2927 if (((ut->uu_siglist & ~ut->uu_sigmask) == 0) && ((p->p_lflag & P_LTRACED) == 0)) {
2928 return 0;
2929 }
2930
2931 sigbits = ut->uu_siglist & ~ut->uu_sigmask;
2932
2933 for (;;) {
2934 if (p->p_lflag & P_LPPWAIT) {
2935 sigbits &= ~stopsigmask;
2936 }
2937 if (sigbits == 0) { /* no signal to send */
2938 return retnum;
2939 }
2940
2941 signum = ffs((unsigned int)sigbits);
2942 mask = sigmask(signum);
2943 prop = sigprop[signum];
2944 sigbits &= ~mask; /* take the signal out */
2945
2946 /*
2947 * We should see pending but ignored signals
2948 * only if P_LTRACED was on when they were posted.
2949 */
2950 if (mask & p->p_sigignore && (p->p_lflag & P_LTRACED) == 0) {
2951 continue;
2952 }
2953
2954 if (p->p_lflag & P_LTRACED && (p->p_lflag & P_LPPWAIT) == 0) {
2955 return signum;
2956 }
2957
2958 /*
2959 * Decide whether the signal should be returned.
2960 * Return the signal's number, or fall through
2961 * to clear it from the pending mask.
2962 */
2963
2964 switch ((long)SIGACTION(p, signum)) {
2965 case (long)SIG_DFL:
2966 /*
2967 * If there is a pending stop signal to process
2968 * with default action, stop here,
2969 * then clear the signal. However,
2970 * if process is member of an orphaned
2971 * process group, ignore tty stop signals.
2972 */
2973 if (prop & SA_STOP) {
2974 struct pgrp *pg;
2975
2976 pg = proc_pgrp(p, NULL);
2977
2978 if (p->p_lflag & P_LTRACED ||
2979 (pg->pg_jobc == 0 &&
2980 prop & SA_TTYSTOP)) {
2981 pgrp_rele(pgrp: pg);
2982 break; /* == ignore */
2983 }
2984 pgrp_rele(pgrp: pg);
2985 retnum = signum;
2986 break;
2987 } else if (prop & SA_IGNORE) {
2988 /*
2989 * Except for SIGCONT, shouldn't get here.
2990 * Default action is to ignore; drop it.
2991 */
2992 break; /* == ignore */
2993 } else {
2994 return signum;
2995 }
2996 /*NOTREACHED*/
2997
2998 case (long)SIG_IGN:
2999 /*
3000 * Masking above should prevent us ever trying
3001 * to take action on an ignored signal other
3002 * than SIGCONT, unless process is traced.
3003 */
3004 if ((prop & SA_CONT) == 0 &&
3005 (p->p_lflag & P_LTRACED) == 0) {
3006 printf("issignal\n");
3007 }
3008 break; /* == ignore */
3009
3010 default:
3011 /*
3012 * This signal has an action, let
3013 * postsig() process it.
3014 */
3015 return signum;
3016 }
3017 }
3018 /* NOTREACHED */
3019}
3020
3021/*
3022 * Put the argument process into the stopped state and notify the parent
3023 * via wakeup. Signals are handled elsewhere. The process must not be
3024 * on the run queue.
3025 */
3026static void
3027stop(proc_t p, proc_t parent)
3028{
3029 OSBitAndAtomic(~((uint32_t)P_CONTINUED), &p->p_flag);
3030 if ((parent != PROC_NULL) && (parent->p_stat != SSTOP)) {
3031 proc_list_lock();
3032 wakeup(chan: (caddr_t)parent);
3033 proc_list_unlock();
3034 }
3035 (void) task_suspend_internal(task: proc_task(p));
3036}
3037
3038/*
3039 * Take the action for the specified signal
3040 * from the current set of pending signals.
3041 */
3042void
3043postsig_locked(int signum)
3044{
3045 proc_t p = current_proc();
3046 struct sigacts *ps = &p->p_sigacts;
3047 user_addr_t catcher;
3048 uint32_t code;
3049 int mask, returnmask;
3050 struct uthread * ut;
3051 os_reason_t ut_exit_reason = OS_REASON_NULL;
3052 int coredump_flags = 0;
3053
3054#if DIAGNOSTIC
3055 if (signum == 0) {
3056 panic("postsig");
3057 }
3058 /*
3059 * This must be called on master cpu
3060 */
3061 if (cpu_number() != master_cpu) {
3062 panic("psig not on master");
3063 }
3064#endif
3065
3066 /*
3067 * Try to grab the signal lock.
3068 */
3069 if (sig_try_locked(p) <= 0) {
3070 return;
3071 }
3072
3073 proc_signalstart(p, locked: 1);
3074
3075 ut = current_uthread();
3076 mask = sigmask(signum);
3077 ut->uu_siglist &= ~mask;
3078 catcher = SIGACTION(p, signum);
3079 if (catcher == SIG_DFL) {
3080 /*
3081 * Default catcher, where the default is to kill
3082 * the process. (Other cases were ignored above.)
3083 */
3084
3085 /*
3086 * exit_with_reason() below will consume a reference to the thread's exit reason, so we take another
3087 * reference so the thread still has one even after we call exit_with_reason(). The thread's reference will
3088 * ultimately be destroyed in uthread_cleanup().
3089 */
3090 ut_exit_reason = ut->uu_exit_reason;
3091 os_reason_ref(cur_reason: ut_exit_reason);
3092
3093 p->p_acflag |= AXSIG;
3094 if (sigprop[signum] & SA_CORE) {
3095 p->p_sigacts.ps_sig = signum;
3096 proc_signalend(p, locked: 1);
3097 proc_unlock(p);
3098 if (task_is_driver(task: proc_task(p))) {
3099 coredump_flags |= COREDUMP_FULLFSYNC;
3100 }
3101#if CONFIG_COREDUMP
3102 if (coredump(p, reserve_mb: 0, coredump_flags) == 0) {
3103 signum |= WCOREFLAG;
3104 }
3105#endif
3106 } else {
3107 proc_signalend(p, locked: 1);
3108 proc_unlock(p);
3109 }
3110
3111#if CONFIG_DTRACE
3112 bzero(s: (caddr_t)&(ut->t_dtrace_siginfo), n: sizeof(ut->t_dtrace_siginfo));
3113
3114 ut->t_dtrace_siginfo.si_signo = signum;
3115 ut->t_dtrace_siginfo.si_pid = p->si_pid;
3116 ut->t_dtrace_siginfo.si_uid = p->si_uid;
3117 ut->t_dtrace_siginfo.si_status = WEXITSTATUS(p->si_status);
3118
3119 /* Fire DTrace proc:::fault probe when signal is generated by hardware. */
3120 switch (signum) {
3121 case SIGILL: case SIGBUS: case SIGSEGV: case SIGFPE: case SIGTRAP:
3122 DTRACE_PROC2(fault, int, (int)(ut->uu_code), siginfo_t *, &(ut->t_dtrace_siginfo));
3123 break;
3124 default:
3125 break;
3126 }
3127
3128
3129 DTRACE_PROC3(signal__handle, int, signum, siginfo_t *, &(ut->t_dtrace_siginfo),
3130 void (*)(void), SIG_DFL);
3131#endif
3132
3133 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_PROC, BSD_PROC_FRCEXIT) | DBG_FUNC_NONE,
3134 proc_getpid(p), W_EXITCODE(0, signum), 3, 0, 0);
3135
3136 exit_with_reason(p, W_EXITCODE(0, signum), (int *)NULL, TRUE, TRUE, 0, ut_exit_reason);
3137
3138 proc_lock(p);
3139 return;
3140 } else {
3141 /*
3142 * If we get here, the signal must be caught.
3143 */
3144#if DIAGNOSTIC
3145 if (catcher == SIG_IGN || (ut->uu_sigmask & mask)) {
3146 log(LOG_WARNING,
3147 "postsig: processing masked or ignored signal\n");
3148 }
3149#endif
3150
3151 /*
3152 * Set the new mask value and also defer further
3153 * occurences of this signal.
3154 *
3155 * Special case: user has done a sigpause. Here the
3156 * current mask is not of interest, but rather the
3157 * mask from before the sigpause is what we want
3158 * restored after the signal processing is completed.
3159 */
3160 if (ut->uu_flag & UT_SAS_OLDMASK) {
3161 returnmask = ut->uu_oldmask;
3162 ut->uu_flag &= ~UT_SAS_OLDMASK;
3163 ut->uu_oldmask = 0;
3164 } else {
3165 returnmask = ut->uu_sigmask;
3166 }
3167 ut->uu_sigmask |= ps->ps_catchmask[signum];
3168 if ((ps->ps_signodefer & mask) == 0) {
3169 ut->uu_sigmask |= mask;
3170 }
3171 sigset_t siginfo = ps->ps_siginfo;
3172 if ((signum != SIGILL) && (signum != SIGTRAP) && (ps->ps_sigreset & mask)) {
3173 if ((signum != SIGCONT) && (sigprop[signum] & SA_IGNORE)) {
3174 p->p_sigignore |= mask;
3175 }
3176 if (SIGACTION(p, signum) != SIG_DFL) {
3177 proc_set_sigact(p, signum, SIG_DFL);
3178 }
3179 ps->ps_siginfo &= ~mask;
3180 ps->ps_signodefer &= ~mask;
3181 }
3182
3183 if (ps->ps_sig != signum) {
3184 code = 0;
3185 } else {
3186 code = ps->ps_code;
3187 ps->ps_code = 0;
3188 }
3189 OSIncrementAtomicLong(address: &p->p_stats->p_ru.ru_nsignals);
3190 sendsig(p, action: catcher, sig: signum, returnmask, code, siginfo);
3191 }
3192 proc_signalend(p, locked: 1);
3193}
3194
3195/*
3196 * Attach a signal knote to the list of knotes for this process.
3197 *
3198 * Signal knotes share the knote list with proc knotes. This
3199 * could be avoided by using a signal-specific knote list, but
3200 * probably isn't worth the trouble.
3201 */
3202
3203static int
3204filt_sigattach(struct knote *kn, __unused struct kevent_qos_s *kev)
3205{
3206 proc_t p = current_proc(); /* can attach only to oneself */
3207
3208 proc_klist_lock();
3209
3210 kn->kn_proc = p;
3211 kn->kn_flags |= EV_CLEAR; /* automatically set */
3212 kn->kn_sdata = 0; /* incoming data is ignored */
3213
3214 KNOTE_ATTACH(&p->p_klist, kn);
3215
3216 proc_klist_unlock();
3217
3218 /* edge-triggered events can't have fired before we attached */
3219 return 0;
3220}
3221
3222/*
3223 * remove the knote from the process list, if it hasn't already
3224 * been removed by exit processing.
3225 */
3226
3227static void
3228filt_sigdetach(struct knote *kn)
3229{
3230 proc_t p;
3231
3232 proc_klist_lock();
3233 p = kn->kn_proc;
3234 if (p != NULL) {
3235 kn->kn_proc = NULL;
3236 KNOTE_DETACH(&p->p_klist, kn);
3237 }
3238 proc_klist_unlock();
3239}
3240
3241/*
3242 * Post an event to the signal filter. Because we share the same list
3243 * as process knotes, we have to filter out and handle only signal events.
3244 *
3245 * We assume that we process fdt_invalidate() before we post the NOTE_EXIT for
3246 * a process during exit. Therefore, since signal filters can only be
3247 * set up "in-process", we should have already torn down the kqueue
3248 * hosting the EVFILT_SIGNAL knote and should never see NOTE_EXIT.
3249 */
3250static int
3251filt_signal(struct knote *kn, long hint)
3252{
3253 if (hint & NOTE_SIGNAL) {
3254 hint &= ~NOTE_SIGNAL;
3255
3256 if (kn->kn_id == (unsigned int)hint) {
3257 kn->kn_hook32++;
3258 }
3259 } else if (hint & NOTE_EXIT) {
3260 panic("filt_signal: detected NOTE_EXIT event");
3261 }
3262
3263 return kn->kn_hook32 != 0;
3264}
3265
3266static int
3267filt_signaltouch(struct knote *kn, struct kevent_qos_s *kev)
3268{
3269#pragma unused(kev)
3270
3271 int res;
3272
3273 proc_klist_lock();
3274
3275 /*
3276 * No data to save - just capture if it is already fired
3277 */
3278 res = (kn->kn_hook32 > 0);
3279
3280 proc_klist_unlock();
3281
3282 return res;
3283}
3284
3285static int
3286filt_signalprocess(struct knote *kn, struct kevent_qos_s *kev)
3287{
3288 int res = 0;
3289
3290 /*
3291 * Snapshot the event data.
3292 */
3293
3294 proc_klist_lock();
3295 if (kn->kn_hook32) {
3296 knote_fill_kevent(kn, kev, data: kn->kn_hook32);
3297 kn->kn_hook32 = 0;
3298 res = 1;
3299 }
3300 proc_klist_unlock();
3301 return res;
3302}
3303
3304void
3305bsd_ast(thread_t thread)
3306{
3307 proc_t p = current_proc();
3308 struct uthread *ut = get_bsdthread_info(thread);
3309 int signum;
3310 static int bsd_init_done = 0;
3311
3312 if (p == NULL) {
3313 return;
3314 }
3315
3316 if (timerisset(&p->p_vtimer_user.it_value)) {
3317 uint32_t microsecs;
3318
3319 task_vtimer_update(task: proc_task(p), TASK_VTIMER_USER, microsecs: &microsecs);
3320
3321 if (!itimerdecr(p, itp: &p->p_vtimer_user, usec: microsecs)) {
3322 if (timerisset(&p->p_vtimer_user.it_value)) {
3323 task_vtimer_set(task: proc_task(p), TASK_VTIMER_USER);
3324 } else {
3325 task_vtimer_clear(task: proc_task(p), TASK_VTIMER_USER);
3326 }
3327
3328 psignal_try_thread(p, thread, SIGVTALRM);
3329 }
3330 }
3331
3332 if (timerisset(&p->p_vtimer_prof.it_value)) {
3333 uint32_t microsecs;
3334
3335 task_vtimer_update(task: proc_task(p), TASK_VTIMER_PROF, microsecs: &microsecs);
3336
3337 if (!itimerdecr(p, itp: &p->p_vtimer_prof, usec: microsecs)) {
3338 if (timerisset(&p->p_vtimer_prof.it_value)) {
3339 task_vtimer_set(task: proc_task(p), TASK_VTIMER_PROF);
3340 } else {
3341 task_vtimer_clear(task: proc_task(p), TASK_VTIMER_PROF);
3342 }
3343
3344 psignal_try_thread(p, thread, SIGPROF);
3345 }
3346 }
3347
3348 if (timerisset(&p->p_rlim_cpu)) {
3349 struct timeval tv;
3350
3351 task_vtimer_update(task: proc_task(p), TASK_VTIMER_RLIM, microsecs: (uint32_t *) &tv.tv_usec);
3352
3353 proc_spinlock(p);
3354 if (p->p_rlim_cpu.tv_sec > 0 || p->p_rlim_cpu.tv_usec > tv.tv_usec) {
3355 tv.tv_sec = 0;
3356 timersub(&p->p_rlim_cpu, &tv, &p->p_rlim_cpu);
3357 proc_spinunlock(p);
3358 } else {
3359 timerclear(&p->p_rlim_cpu);
3360 proc_spinunlock(p);
3361
3362 task_vtimer_clear(task: proc_task(p), TASK_VTIMER_RLIM);
3363
3364 psignal_try_thread(p, thread, SIGXCPU);
3365 }
3366 }
3367
3368#if CONFIG_DTRACE
3369 if (ut->t_dtrace_sig) {
3370 uint8_t dt_action_sig = ut->t_dtrace_sig;
3371 ut->t_dtrace_sig = 0;
3372 psignal(p, signum: dt_action_sig);
3373 }
3374
3375 if (ut->t_dtrace_stop) {
3376 ut->t_dtrace_stop = 0;
3377 proc_lock(p);
3378 p->p_dtrace_stop = 1;
3379 proc_unlock(p);
3380 (void)task_suspend_internal(task: proc_task(p));
3381 }
3382
3383 if (ut->t_dtrace_resumepid) {
3384 proc_t resumeproc = proc_find(pid: (int)ut->t_dtrace_resumepid);
3385 ut->t_dtrace_resumepid = 0;
3386 if (resumeproc != PROC_NULL) {
3387 proc_lock(resumeproc);
3388 /* We only act on processes stopped by dtrace */
3389 if (resumeproc->p_dtrace_stop) {
3390 resumeproc->p_dtrace_stop = 0;
3391 proc_unlock(resumeproc);
3392 task_resume_internal(task: proc_task(resumeproc));
3393 } else {
3394 proc_unlock(resumeproc);
3395 }
3396 proc_rele(p: resumeproc);
3397 }
3398 }
3399
3400#endif /* CONFIG_DTRACE */
3401
3402 proc_lock(p);
3403 if (CHECK_SIGNALS(p, current_thread(), ut)) {
3404 while ((signum = issignal_locked(p))) {
3405 postsig_locked(signum);
3406 }
3407 }
3408 proc_unlock(p);
3409
3410 if (!bsd_init_done) {
3411 bsd_init_done = 1;
3412 bsdinit_task();
3413 }
3414}
3415
3416/* ptrace set runnable */
3417void
3418pt_setrunnable(proc_t p)
3419{
3420 task_t task;
3421
3422 task = proc_task(p);
3423
3424 if (p->p_lflag & P_LTRACED) {
3425 proc_lock(p);
3426 p->p_stat = SRUN;
3427 proc_unlock(p);
3428 if (p->sigwait) {
3429 wakeup(chan: (caddr_t)&(p->sigwait));
3430 if ((p->p_lflag & P_LSIGEXC) == 0) { // 5878479
3431 task_release(task);
3432 }
3433 }
3434 }
3435}
3436
3437kern_return_t
3438do_bsdexception(
3439 int exc,
3440 int code,
3441 int sub)
3442{
3443 mach_exception_data_type_t codes[EXCEPTION_CODE_MAX];
3444
3445 codes[0] = code;
3446 codes[1] = sub;
3447 return bsd_exception(exc, codes, 2);
3448}
3449
3450int
3451proc_pendingsignals(proc_t p, sigset_t mask)
3452{
3453 struct uthread * uth;
3454 sigset_t bits = 0;
3455
3456 proc_lock(p);
3457 /* If the process is in proc exit return no signal info */
3458 if (p->p_lflag & P_LPEXIT) {
3459 goto out;
3460 }
3461
3462
3463 bits = 0;
3464 TAILQ_FOREACH(uth, &p->p_uthlist, uu_list) {
3465 bits |= (((uth->uu_siglist & ~uth->uu_sigmask) & ~p->p_sigignore) & mask);
3466 }
3467out:
3468 proc_unlock(p);
3469 return bits;
3470}
3471
3472int
3473thread_issignal(proc_t p, thread_t th, sigset_t mask)
3474{
3475 struct uthread * uth;
3476 sigset_t bits = 0;
3477
3478 proc_lock(p);
3479 uth = (struct uthread *)get_bsdthread_info(th);
3480 if (uth) {
3481 bits = (((uth->uu_siglist & ~uth->uu_sigmask) & ~p->p_sigignore) & mask);
3482 }
3483 proc_unlock(p);
3484 return bits;
3485}
3486
3487/*
3488 * Allow external reads of the sigprop array.
3489 */
3490int
3491hassigprop(int sig, int prop)
3492{
3493 return sigprop[sig] & prop;
3494}
3495
3496void
3497pgsigio(pid_t pgid, int sig)
3498{
3499 proc_t p = PROC_NULL;
3500
3501 if (pgid < 0) {
3502 gsignal(pgid: -(pgid), signum: sig);
3503 } else if (pgid > 0 && (p = proc_find(pid: pgid)) != 0) {
3504 psignal(p, signum: sig);
3505 }
3506 if (p != PROC_NULL) {
3507 proc_rele(p);
3508 }
3509}
3510
3511void
3512proc_signalstart(proc_t p, int locked)
3513{
3514 if (!locked) {
3515 proc_lock(p);
3516 }
3517
3518 if (p->p_signalholder == current_thread()) {
3519 panic("proc_signalstart: thread attempting to signal a process for which it holds the signal lock");
3520 }
3521
3522 p->p_sigwaitcnt++;
3523 while ((p->p_lflag & P_LINSIGNAL) == P_LINSIGNAL) {
3524 msleep(chan: &p->p_sigmask, mtx: &p->p_mlock, pri: 0, wmesg: "proc_signstart", NULL);
3525 }
3526 p->p_sigwaitcnt--;
3527
3528 p->p_lflag |= P_LINSIGNAL;
3529 p->p_signalholder = current_thread();
3530 if (!locked) {
3531 proc_unlock(p);
3532 }
3533}
3534
3535void
3536proc_signalend(proc_t p, int locked)
3537{
3538 if (!locked) {
3539 proc_lock(p);
3540 }
3541 p->p_lflag &= ~P_LINSIGNAL;
3542
3543 if (p->p_sigwaitcnt > 0) {
3544 wakeup(chan: &p->p_sigmask);
3545 }
3546
3547 p->p_signalholder = NULL;
3548 if (!locked) {
3549 proc_unlock(p);
3550 }
3551}
3552
3553void
3554sig_lock_to_exit(proc_t p)
3555{
3556 thread_t self = current_thread();
3557
3558 p->exit_thread = self;
3559 proc_unlock(p);
3560
3561 task_hold_and_wait(task: proc_task(p));
3562
3563 proc_lock(p);
3564}
3565
3566int
3567sig_try_locked(proc_t p)
3568{
3569 thread_t self = current_thread();
3570
3571 while (p->sigwait || p->exit_thread) {
3572 if (p->exit_thread) {
3573 return 0;
3574 }
3575 msleep(chan: (caddr_t)&p->sigwait_thread, mtx: &p->p_mlock, PCATCH | PDROP, wmesg: 0, ts: 0);
3576 if (thread_should_abort(self)) {
3577 /*
3578 * Terminate request - clean up.
3579 */
3580 proc_lock(p);
3581 return -1;
3582 }
3583 proc_lock(p);
3584 }
3585 return 1;
3586}
3587