| 1 | /* |
| 2 | * Copyright (c) 2019-2022 Apple Inc. All rights reserved. |
| 3 | * |
| 4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ |
| 5 | * |
| 6 | * This file contains Original Code and/or Modifications of Original Code |
| 7 | * as defined in and that are subject to the Apple Public Source License |
| 8 | * Version 2.0 (the 'License'). You may not use this file except in |
| 9 | * compliance with the License. The rights granted to you under the License |
| 10 | * may not be used to create, or enable the creation or redistribution of, |
| 11 | * unlawful or unlicensed copies of an Apple operating system, or to |
| 12 | * circumvent, violate, or enable the circumvention or violation of, any |
| 13 | * terms of an Apple operating system software license agreement. |
| 14 | * |
| 15 | * Please obtain a copy of the License at |
| 16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. |
| 17 | * |
| 18 | * The Original Code and all software distributed under the License are |
| 19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER |
| 20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
| 21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, |
| 22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
| 23 | * Please see the License for the specific language governing rights and |
| 24 | * limitations under the License. |
| 25 | * |
| 26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ |
| 27 | */ |
| 28 | /* |
| 29 | * Copyright (c) 1982, 1986, 1989, 1993 |
| 30 | * The Regents of the University of California. All rights reserved. |
| 31 | * |
| 32 | * This code is derived from software contributed to Berkeley by |
| 33 | * Scooter Morris at Genentech Inc. |
| 34 | * |
| 35 | * Redistribution and use in source and binary forms, with or without |
| 36 | * modification, are permitted provided that the following conditions |
| 37 | * are met: |
| 38 | * 1. Redistributions of source code must retain the above copyright |
| 39 | * notice, this list of conditions and the following disclaimer. |
| 40 | * 2. Redistributions in binary form must reproduce the above copyright |
| 41 | * notice, this list of conditions and the following disclaimer in the |
| 42 | * documentation and/or other materials provided with the distribution. |
| 43 | * 4. Neither the name of the University nor the names of its contributors |
| 44 | * may be used to endorse or promote products derived from this software |
| 45 | * without specific prior written permission. |
| 46 | * |
| 47 | * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND |
| 48 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 49 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 50 | * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE |
| 51 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
| 52 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
| 53 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| 54 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
| 55 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
| 56 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
| 57 | * SUCH DAMAGE. |
| 58 | * |
| 59 | * @(#)ufs_lockf.c 8.3 (Berkeley) 1/6/94 |
| 60 | */ |
| 61 | |
| 62 | #include <sys/cdefs.h> |
| 63 | #include <sys/param.h> |
| 64 | #include <sys/systm.h> |
| 65 | #include <sys/kernel.h> |
| 66 | #include <sys/lock.h> |
| 67 | #include <sys/mount.h> |
| 68 | #include <sys/proc.h> |
| 69 | #include <sys/signalvar.h> |
| 70 | #include <sys/unistd.h> |
| 71 | #include <sys/user.h> |
| 72 | #include <sys/vnode.h> |
| 73 | #include <sys/vnode_internal.h> |
| 74 | #include <sys/vnode_if.h> |
| 75 | #include <sys/malloc.h> |
| 76 | #include <sys/fcntl.h> |
| 77 | #include <sys/lockf.h> |
| 78 | #include <sys/sdt.h> |
| 79 | #include <kern/policy_internal.h> |
| 80 | |
| 81 | #include <sys/file_internal.h> |
| 82 | |
| 83 | #if (DEVELOPMENT || DEBUG) |
| 84 | #define LOCKF_DEBUGGING 1 |
| 85 | #endif |
| 86 | |
| 87 | #ifdef LOCKF_DEBUGGING |
| 88 | #include <sys/sysctl.h> |
| 89 | void lf_print(const char *tag, struct lockf *lock); |
| 90 | void lf_printlist(const char *tag, struct lockf *lock); |
| 91 | |
| 92 | #define LF_DBG_LOCKOP (1 << 0) /* setlk, getlk, clearlk */ |
| 93 | #define LF_DBG_LIST (1 << 1) /* split, coalesce */ |
| 94 | #define LF_DBG_IMPINH (1 << 2) /* importance inheritance */ |
| 95 | #define LF_DBG_TRACE (1 << 3) /* errors, exit */ |
| 96 | #define LF_DBG_DEADLOCK (1 << 4) /* deadlock detection */ |
| 97 | |
| 98 | static int lockf_debug = 0; /* was 2, could be 3 ;-) */ |
| 99 | SYSCTL_INT(_debug, OID_AUTO, lockf_debug, CTLFLAG_RW | CTLFLAG_LOCKED, &lockf_debug, 0, "" ); |
| 100 | |
| 101 | /* |
| 102 | * If the selector is set, then output the debugging diagnostic. |
| 103 | */ |
| 104 | #define LOCKF_DEBUG(mask, ...) \ |
| 105 | do { \ |
| 106 | if ((mask) & lockf_debug) { \ |
| 107 | printf("%s>", __FUNCTION__); \ |
| 108 | printf(__VA_ARGS__); \ |
| 109 | } \ |
| 110 | } while(0) |
| 111 | |
| 112 | #define LOCKF_DEBUGP(mask) \ |
| 113 | ({ \ |
| 114 | ((mask) & lockf_debug); \ |
| 115 | }) |
| 116 | #else /* !LOCKF_DEBUGGING */ |
| 117 | #define LOCKF_DEBUG(mask, ...) /* mask */ |
| 118 | #endif /* !LOCKF_DEBUGGING */ |
| 119 | |
| 120 | KALLOC_TYPE_DEFINE(KT_LOCKF, struct lockf, KT_PRIV_ACCT); |
| 121 | |
| 122 | #define NOLOCKF (struct lockf *)0 |
| 123 | #define SELF 0x1 |
| 124 | #define OTHERS 0x2 |
| 125 | #define OFF_MAX 0x7fffffffffffffffULL /* max off_t */ |
| 126 | |
| 127 | /* return the effective end of a 'struct lockf': lf_end == -1 is OFF_MAX */ |
| 128 | #define LF_END(l) ((l)->lf_end == -1 ? OFF_MAX : (l)->lf_end) |
| 129 | |
| 130 | /* |
| 131 | * Overlapping lock states |
| 132 | * |
| 133 | * For lk_find_overlap(..., SELF, ...), the possible sequences are a single: |
| 134 | * - OVERLAP_NONE, |
| 135 | * - OVERLAP_EQUALS_LOCK, or |
| 136 | * - OVERLAP_CONTAINS_LOCK |
| 137 | * |
| 138 | * or the following sequence: |
| 139 | * - optional OVERLAP_STARTS_BEFORE_LOCK |
| 140 | * - zero or more OVERLAP_CONTAINED_BY_LOCK |
| 141 | * - optional OVERLAP_ENDS_AFTER_LOCK |
| 142 | * - OVERLAP_NONE |
| 143 | * |
| 144 | * In the annotations: |
| 145 | * - the search lock is [SS, SE] and |
| 146 | * - the returned overlap lock is [OS,OE]. |
| 147 | */ |
| 148 | typedef enum { |
| 149 | OVERLAP_NONE = 0, |
| 150 | OVERLAP_EQUALS_LOCK, /* OS == SS && OE == SE */ |
| 151 | OVERLAP_CONTAINS_LOCK, /* OS <= SS && OE >= SE */ |
| 152 | OVERLAP_CONTAINED_BY_LOCK, /* OS >= SS && OE <= SE */ |
| 153 | OVERLAP_STARTS_BEFORE_LOCK, /* OS < SS && OE >= SS */ |
| 154 | OVERLAP_ENDS_AFTER_LOCK /* OS > SS && OE > SE */ |
| 155 | } overlap_t; |
| 156 | |
| 157 | static int lf_clearlock(struct lockf *); |
| 158 | static int lf_transferlock(struct lockf *); |
| 159 | static overlap_t lf_findoverlap(struct lockf *, |
| 160 | struct lockf *, int, struct lockf ***, struct lockf **); |
| 161 | static struct lockf *lf_getblock(struct lockf *, pid_t); |
| 162 | static int lf_getlock(struct lockf *, struct flock *, pid_t); |
| 163 | static int lf_setlock(struct lockf *, struct timespec *); |
| 164 | static int lf_split(struct lockf *, struct lockf *); |
| 165 | static void lf_wakelock(struct lockf *, boolean_t); |
| 166 | #if IMPORTANCE_INHERITANCE |
| 167 | static void lf_hold_assertion(task_t, struct lockf *); |
| 168 | static void lf_jump_to_queue_head(struct lockf *, struct lockf *); |
| 169 | static void lf_drop_assertion(struct lockf *); |
| 170 | static void lf_boost_blocking_proc(struct lockf *, struct lockf *); |
| 171 | static void lf_adjust_assertion(struct lockf *block); |
| 172 | #endif /* IMPORTANCE_INHERITANCE */ |
| 173 | |
| 174 | static LCK_GRP_DECLARE(lf_dead_lock_grp, "lf_dead_lock" ); |
| 175 | static LCK_MTX_DECLARE(lf_dead_lock, &lf_dead_lock_grp); |
| 176 | |
| 177 | /* |
| 178 | * lf_advlock |
| 179 | * |
| 180 | * Description: Advisory record locking support |
| 181 | * |
| 182 | * Parameters: ap Argument pointer to a vnop_advlock_args |
| 183 | * argument descriptor structure for the |
| 184 | * lock operation to be attempted. |
| 185 | * |
| 186 | * Returns: 0 Success |
| 187 | * EOVERFLOW |
| 188 | * EINVAL |
| 189 | * ENOLCK Number of locked regions exceeds limit |
| 190 | * lf_setlock:EAGAIN |
| 191 | * lf_setlock:EDEADLK |
| 192 | * lf_setlock:EINTR |
| 193 | * lf_setlock:ENOLCK |
| 194 | * lf_setlock:ETIMEDOUT |
| 195 | * lf_clearlock:ENOLCK |
| 196 | * vnode_size:??? |
| 197 | * |
| 198 | * Notes: We return ENOLCK when we run out of memory to support locks; as |
| 199 | * such, there is no specific expectation limit other than the |
| 200 | * amount of available resources. |
| 201 | */ |
| 202 | int |
| 203 | lf_advlock(struct vnop_advlock_args *ap) |
| 204 | { |
| 205 | struct vnode *vp = ap->a_vp; |
| 206 | struct flock *fl = ap->a_fl; |
| 207 | vfs_context_t context = ap->a_context; |
| 208 | struct lockf *lock; |
| 209 | off_t start, end, oadd; |
| 210 | u_quad_t size; |
| 211 | int error; |
| 212 | struct lockf **head = &vp->v_lockf; |
| 213 | |
| 214 | /* XXX HFS may need a !vnode_isreg(vp) EISDIR error here */ |
| 215 | |
| 216 | /* |
| 217 | * Avoid the common case of unlocking when inode has no locks. |
| 218 | */ |
| 219 | if (*head == (struct lockf *)0) { |
| 220 | if (ap->a_op != F_SETLK) { |
| 221 | fl->l_type = F_UNLCK; |
| 222 | LOCKF_DEBUG(LF_DBG_TRACE, |
| 223 | "lf_advlock: '%s' unlock without lock\n" , |
| 224 | vfs_context_proc(context)->p_comm); |
| 225 | return 0; |
| 226 | } |
| 227 | } |
| 228 | |
| 229 | /* |
| 230 | * Convert the flock structure into a start and end. |
| 231 | */ |
| 232 | switch (fl->l_whence) { |
| 233 | case SEEK_SET: |
| 234 | case SEEK_CUR: |
| 235 | /* |
| 236 | * Caller is responsible for adding any necessary offset |
| 237 | * when SEEK_CUR is used. |
| 238 | */ |
| 239 | start = fl->l_start; |
| 240 | break; |
| 241 | |
| 242 | case SEEK_END: |
| 243 | |
| 244 | /* |
| 245 | * It's OK to cast the u_quad_t to and off_t here, since they |
| 246 | * are the same storage size, and the value of the returned |
| 247 | * contents will never overflow into the sign bit. We need to |
| 248 | * do this because we will use size to force range checks. |
| 249 | */ |
| 250 | if ((error = vnode_size(vp, (off_t *)&size, context))) { |
| 251 | LOCKF_DEBUG(LF_DBG_TRACE, |
| 252 | "lf_advlock: vnode_getattr failed: %d\n" , error); |
| 253 | return error; |
| 254 | } |
| 255 | |
| 256 | if (size > OFF_MAX || |
| 257 | (fl->l_start > 0 && |
| 258 | size > (u_quad_t)(OFF_MAX - fl->l_start))) { |
| 259 | return EOVERFLOW; |
| 260 | } |
| 261 | start = size + fl->l_start; |
| 262 | break; |
| 263 | |
| 264 | default: |
| 265 | LOCKF_DEBUG(LF_DBG_TRACE, "lf_advlock: unknown whence %d\n" , |
| 266 | fl->l_whence); |
| 267 | return EINVAL; |
| 268 | } |
| 269 | if (start < 0) { |
| 270 | LOCKF_DEBUG(LF_DBG_TRACE, "lf_advlock: start < 0 (%qd)\n" , |
| 271 | start); |
| 272 | return EINVAL; |
| 273 | } |
| 274 | if (fl->l_len < 0) { |
| 275 | if (start == 0) { |
| 276 | LOCKF_DEBUG(LF_DBG_TRACE, |
| 277 | "lf_advlock: len < 0 & start == 0\n" ); |
| 278 | return EINVAL; |
| 279 | } |
| 280 | end = start - 1; |
| 281 | start += fl->l_len; |
| 282 | if (start < 0) { |
| 283 | LOCKF_DEBUG(LF_DBG_TRACE, |
| 284 | "lf_advlock: start < 0 (%qd)\n" , start); |
| 285 | return EINVAL; |
| 286 | } |
| 287 | } else if (fl->l_len == 0) { |
| 288 | end = -1; |
| 289 | } else { |
| 290 | oadd = fl->l_len - 1; |
| 291 | if (oadd > (off_t)(OFF_MAX - start)) { |
| 292 | LOCKF_DEBUG(LF_DBG_TRACE, "lf_advlock: overflow\n" ); |
| 293 | return EOVERFLOW; |
| 294 | } |
| 295 | end = start + oadd; |
| 296 | } |
| 297 | /* |
| 298 | * Create the lockf structure |
| 299 | */ |
| 300 | lock = zalloc_flags(KT_LOCKF, Z_WAITOK | Z_NOFAIL); |
| 301 | lock->lf_start = start; |
| 302 | lock->lf_end = end; |
| 303 | lock->lf_id = ap->a_id; |
| 304 | lock->lf_vnode = vp; |
| 305 | lock->lf_type = fl->l_type; |
| 306 | lock->lf_head = head; |
| 307 | lock->lf_next = (struct lockf *)0; |
| 308 | TAILQ_INIT(&lock->lf_blkhd); |
| 309 | lock->lf_flags = (short)ap->a_flags; |
| 310 | #if IMPORTANCE_INHERITANCE |
| 311 | lock->lf_boosted = LF_NOT_BOOSTED; |
| 312 | #endif |
| 313 | if (ap->a_flags & F_POSIX) { |
| 314 | lock->lf_owner = (struct proc *)lock->lf_id; |
| 315 | } else { |
| 316 | lock->lf_owner = NULL; |
| 317 | } |
| 318 | |
| 319 | if (ap->a_flags & F_FLOCK) { |
| 320 | lock->lf_flags |= F_WAKE1_SAFE; |
| 321 | } |
| 322 | |
| 323 | lck_mtx_lock(lck: &vp->v_lock); /* protect the lockf list */ |
| 324 | /* |
| 325 | * Do the requested operation. |
| 326 | */ |
| 327 | switch (ap->a_op) { |
| 328 | case F_SETLK: |
| 329 | /* |
| 330 | * For OFD locks, lf_id is derived from the fileglob. |
| 331 | * Record an "lf_owner" iff this is a confined fd |
| 332 | * i.e. it cannot escape this process and will be |
| 333 | * F_UNLCKed before the owner exits. (This is |
| 334 | * the implicit guarantee needed to ensure lf_owner |
| 335 | * remains a valid reference.) |
| 336 | */ |
| 337 | if ((ap->a_flags & F_OFD_LOCK) && (ap->a_flags & F_CONFINED)) { |
| 338 | lock->lf_owner = current_proc(); |
| 339 | } |
| 340 | error = lf_setlock(lock, ap->a_timeout); |
| 341 | break; |
| 342 | |
| 343 | case F_UNLCK: |
| 344 | error = lf_clearlock(lock); |
| 345 | zfree(KT_LOCKF, lock); |
| 346 | break; |
| 347 | |
| 348 | case F_TRANSFER: |
| 349 | /* |
| 350 | * The new owner is passed in the context, set the new owner |
| 351 | * in the lf_owner field. |
| 352 | */ |
| 353 | lock->lf_owner = vfs_context_proc(ctx: context); |
| 354 | assert(lock->lf_owner != current_proc()); |
| 355 | error = lf_transferlock(lock); |
| 356 | zfree(KT_LOCKF, lock); |
| 357 | break; |
| 358 | |
| 359 | case F_GETLK: |
| 360 | error = lf_getlock(lock, fl, -1); |
| 361 | zfree(KT_LOCKF, lock); |
| 362 | break; |
| 363 | |
| 364 | case F_GETLKPID: |
| 365 | error = lf_getlock(lock, fl, fl->l_pid); |
| 366 | zfree(KT_LOCKF, lock); |
| 367 | break; |
| 368 | |
| 369 | default: |
| 370 | zfree(KT_LOCKF, lock); |
| 371 | error = EINVAL; |
| 372 | break; |
| 373 | } |
| 374 | lck_mtx_unlock(lck: &vp->v_lock); /* done manipulating the list */ |
| 375 | |
| 376 | LOCKF_DEBUG(LF_DBG_TRACE, "lf_advlock: normal exit: %d\n" , error); |
| 377 | return error; |
| 378 | } |
| 379 | |
| 380 | /* |
| 381 | * Empty the queue of msleeping requests for a lock on the given vnode. |
| 382 | * Called with the vnode already locked. Used for forced unmount, where |
| 383 | * a flock(2) invoker sleeping on a blocked lock holds an iocount reference |
| 384 | * that prevents the vnode from ever being drained. Force unmounting wins. |
| 385 | */ |
| 386 | void |
| 387 | lf_abort_advlocks(vnode_t vp) |
| 388 | { |
| 389 | struct lockf *lock; |
| 390 | |
| 391 | if ((lock = vp->v_lockf) == NULL) { |
| 392 | return; |
| 393 | } |
| 394 | |
| 395 | lck_mtx_assert(lck: &vp->v_lock, LCK_MTX_ASSERT_OWNED); |
| 396 | |
| 397 | if (!TAILQ_EMPTY(&lock->lf_blkhd)) { |
| 398 | struct lockf *tlock; |
| 399 | |
| 400 | TAILQ_FOREACH(tlock, &lock->lf_blkhd, lf_block) { |
| 401 | /* |
| 402 | * Setting this flag should cause all |
| 403 | * currently blocked F_SETLK request to |
| 404 | * return to userland with an errno. |
| 405 | */ |
| 406 | tlock->lf_flags |= F_ABORT; |
| 407 | } |
| 408 | lf_wakelock(lock, TRUE); |
| 409 | } |
| 410 | } |
| 411 | |
| 412 | /* |
| 413 | * Take any lock attempts which are currently blocked by a given lock ("from") |
| 414 | * and mark them as blocked by a different lock ("to"). Used in the case |
| 415 | * where a byte range currently occupied by "from" is to be occupied by "to." |
| 416 | */ |
| 417 | static void |
| 418 | lf_move_blocked(struct lockf *to, struct lockf *from) |
| 419 | { |
| 420 | struct lockf *tlock; |
| 421 | |
| 422 | TAILQ_FOREACH(tlock, &from->lf_blkhd, lf_block) { |
| 423 | tlock->lf_next = to; |
| 424 | } |
| 425 | |
| 426 | TAILQ_CONCAT(&to->lf_blkhd, &from->lf_blkhd, lf_block); |
| 427 | } |
| 428 | |
| 429 | /* |
| 430 | * lf_coalesce_adjacent |
| 431 | * |
| 432 | * Description: Helper function: when setting a lock, coalesce adjacent |
| 433 | * locks. Needed because adjacent locks are not overlapping, |
| 434 | * but POSIX requires that they be coalesced. |
| 435 | * |
| 436 | * Parameters: lock The new lock which may be adjacent |
| 437 | * to already locked regions, and which |
| 438 | * should therefore be coalesced with them |
| 439 | * |
| 440 | * Returns: <void> |
| 441 | */ |
| 442 | static void |
| 443 | lf_coalesce_adjacent(struct lockf *lock) |
| 444 | { |
| 445 | struct lockf **lf = lock->lf_head; |
| 446 | |
| 447 | while (*lf != NOLOCKF) { |
| 448 | /* reject locks that obviously could not be coalesced */ |
| 449 | if ((*lf == lock) || |
| 450 | ((*lf)->lf_id != lock->lf_id) || |
| 451 | ((*lf)->lf_type != lock->lf_type)) { |
| 452 | lf = &(*lf)->lf_next; |
| 453 | continue; |
| 454 | } |
| 455 | |
| 456 | /* |
| 457 | * NOTE: Assumes that if two locks are adjacent on the number line |
| 458 | * and belong to the same owner, then they are adjacent on the list. |
| 459 | */ |
| 460 | if (LF_END(*lf) < OFF_MAX && |
| 461 | (LF_END(*lf) + 1) == lock->lf_start) { |
| 462 | struct lockf *adjacent = *lf; |
| 463 | |
| 464 | LOCKF_DEBUG(LF_DBG_LIST, "lf_coalesce_adjacent: coalesce adjacent previous\n" ); |
| 465 | lock->lf_start = (*lf)->lf_start; |
| 466 | *lf = lock; |
| 467 | lf = &(*lf)->lf_next; |
| 468 | |
| 469 | lf_move_blocked(to: lock, from: adjacent); |
| 470 | |
| 471 | zfree(KT_LOCKF, adjacent); |
| 472 | continue; |
| 473 | } |
| 474 | /* If the lock starts adjacent to us, we can coalesce it */ |
| 475 | if (LF_END(lock) < OFF_MAX && |
| 476 | (LF_END(lock) + 1) == (*lf)->lf_start) { |
| 477 | struct lockf *adjacent = *lf; |
| 478 | |
| 479 | LOCKF_DEBUG(LF_DBG_LIST, "lf_coalesce_adjacent: coalesce adjacent following\n" ); |
| 480 | lock->lf_end = (*lf)->lf_end; |
| 481 | lock->lf_next = (*lf)->lf_next; |
| 482 | lf = &lock->lf_next; |
| 483 | |
| 484 | lf_move_blocked(to: lock, from: adjacent); |
| 485 | |
| 486 | zfree(KT_LOCKF, adjacent); |
| 487 | continue; |
| 488 | } |
| 489 | |
| 490 | /* no matching conditions; go on to next lock */ |
| 491 | lf = &(*lf)->lf_next; |
| 492 | } |
| 493 | } |
| 494 | |
| 495 | /* |
| 496 | * lf_setlock |
| 497 | * |
| 498 | * Description: Set a byte-range lock. |
| 499 | * |
| 500 | * Parameters: lock The lock structure describing the lock |
| 501 | * to be set; allocated by the caller, it |
| 502 | * will be linked into the lock list if |
| 503 | * the set is successful, and freed if the |
| 504 | * set is unsuccessful. |
| 505 | * |
| 506 | * timeout Timeout specified in the case of |
| 507 | * SETLKWTIMEOUT. |
| 508 | * |
| 509 | * Returns: 0 Success |
| 510 | * EAGAIN |
| 511 | * EDEADLK |
| 512 | * lf_split:ENOLCK |
| 513 | * lf_clearlock:ENOLCK |
| 514 | * msleep:EINTR |
| 515 | * msleep:ETIMEDOUT |
| 516 | * |
| 517 | * Notes: We add the lock to the provisional lock list. We do not |
| 518 | * coalesce at this time; this has implications for other lock |
| 519 | * requestors in the blocker search mechanism. |
| 520 | */ |
| 521 | static int |
| 522 | lf_setlock(struct lockf *lock, struct timespec *timeout) |
| 523 | { |
| 524 | struct lockf *block; |
| 525 | struct lockf **head = lock->lf_head; |
| 526 | struct lockf **prev, *overlap; |
| 527 | static const char lockstr[] = "lockf" ; |
| 528 | int priority, needtolink, error; |
| 529 | struct vnode *vp = lock->lf_vnode; |
| 530 | overlap_t ovcase; |
| 531 | |
| 532 | #ifdef LOCKF_DEBUGGING |
| 533 | if (LOCKF_DEBUGP(LF_DBG_LOCKOP)) { |
| 534 | lf_print("lf_setlock" , lock); |
| 535 | lf_printlist("lf_setlock(in)" , lock); |
| 536 | } |
| 537 | #endif /* LOCKF_DEBUGGING */ |
| 538 | LOCKF_DEBUG(LF_DBG_DEADLOCK, "lock %p Looking for deadlock, vnode %p\n" , lock, lock->lf_vnode); |
| 539 | |
| 540 | /* |
| 541 | * Set the priority |
| 542 | */ |
| 543 | priority = PLOCK; |
| 544 | if (lock->lf_type == F_WRLCK) { |
| 545 | priority += 4; |
| 546 | } |
| 547 | priority |= PCATCH; |
| 548 | scan: |
| 549 | /* |
| 550 | * Scan lock list for this file looking for locks that would block us. |
| 551 | */ |
| 552 | while ((block = lf_getblock(lock, -1))) { |
| 553 | /* |
| 554 | * Free the structure and return if nonblocking. |
| 555 | */ |
| 556 | if ((lock->lf_flags & F_WAIT) == 0) { |
| 557 | DTRACE_FSINFO(advlock__nowait, vnode_t, vp); |
| 558 | zfree(KT_LOCKF, lock); |
| 559 | return EAGAIN; |
| 560 | } |
| 561 | |
| 562 | LOCKF_DEBUG(LF_DBG_DEADLOCK, "lock %p found blocking lock %p\n" , lock, block); |
| 563 | |
| 564 | /* |
| 565 | * We are blocked. Since flock style locks cover |
| 566 | * the whole file, there is no chance for deadlock. |
| 567 | * |
| 568 | * OFD byte-range locks currently do NOT support |
| 569 | * deadlock detection. |
| 570 | * |
| 571 | * For POSIX byte-range locks we must check for deadlock. |
| 572 | * |
| 573 | * Deadlock detection is done by looking through the |
| 574 | * wait channels to see if there are any cycles that |
| 575 | * involve us. |
| 576 | */ |
| 577 | if ((lock->lf_flags & F_POSIX) && |
| 578 | (block->lf_flags & F_POSIX)) { |
| 579 | lck_mtx_lock(lck: &lf_dead_lock); |
| 580 | |
| 581 | /* The blocked process is waiting on something */ |
| 582 | struct proc *wproc = block->lf_owner; |
| 583 | proc_lock(wproc); |
| 584 | |
| 585 | LOCKF_DEBUG(LF_DBG_DEADLOCK, "lock %p owned by pid %d\n" , lock, proc_pid(wproc)); |
| 586 | |
| 587 | struct uthread *ut; |
| 588 | TAILQ_FOREACH(ut, &wproc->p_uthlist, uu_list) { |
| 589 | /* |
| 590 | * If the thread is (a) asleep (uu_wchan != 0) |
| 591 | * and (b) in this code (uu_wmesg == lockstr) |
| 592 | * then check to see if the lock is blocked behind |
| 593 | * someone blocked behind us. |
| 594 | * |
| 595 | * Note: (i) vp->v_lock is held, preventing other |
| 596 | * threads from mutating the blocking list for our vnode. |
| 597 | * and (ii) the proc_lock is held i.e the thread list |
| 598 | * is stable. |
| 599 | * |
| 600 | * HOWEVER some thread in wproc might be sleeping on a lockf |
| 601 | * structure for a different vnode, and be woken at any |
| 602 | * time. Thus the waitblock list could mutate while |
| 603 | * it's being inspected by this thread, and what |
| 604 | * ut->uu_wchan was just pointing at could even be freed. |
| 605 | * |
| 606 | * Nevertheless this is safe here because of lf_dead_lock; if |
| 607 | * any thread blocked with uu_wmesg == lockstr wakes (see below) |
| 608 | * it will try to acquire lf_dead_lock which is already held |
| 609 | * here. Holding that lock prevents the lockf structure being |
| 610 | * pointed at by ut->uu_wchan from going away. Thus the vnode |
| 611 | * involved can be found and locked, and the corresponding |
| 612 | * blocking chain can then be examined safely. |
| 613 | */ |
| 614 | const struct lockf *waitblock = (const void *)ut->uu_wchan; |
| 615 | if ((waitblock != NULL) && (ut->uu_wmesg == lockstr)) { |
| 616 | LOCKF_DEBUG(LF_DBG_DEADLOCK, "lock %p which is also blocked on lock %p vnode %p\n" , lock, waitblock, waitblock->lf_vnode); |
| 617 | |
| 618 | vnode_t othervp = NULL; |
| 619 | if (waitblock->lf_vnode != vp) { |
| 620 | /* |
| 621 | * This thread in wproc is waiting for a lock |
| 622 | * on a different vnode; grab the lock on it |
| 623 | * that protects lf_next while we examine it. |
| 624 | */ |
| 625 | othervp = waitblock->lf_vnode; |
| 626 | if (!lck_mtx_try_lock(lck: &othervp->v_lock)) { |
| 627 | /* |
| 628 | * avoid kernel deadlock: drop all |
| 629 | * locks, pause for a bit to let the |
| 630 | * other thread do what it needs to do, |
| 631 | * then (because we drop and retake |
| 632 | * v_lock) retry the scan. |
| 633 | */ |
| 634 | proc_unlock(wproc); |
| 635 | lck_mtx_unlock(lck: &lf_dead_lock); |
| 636 | static struct timespec ts = { |
| 637 | .tv_sec = 0, |
| 638 | .tv_nsec = 2 * NSEC_PER_MSEC, |
| 639 | }; |
| 640 | static const char pausestr[] = "lockf:pause" ; |
| 641 | (void) msleep(chan: lock, mtx: &vp->v_lock, pri: priority, wmesg: pausestr, ts: &ts); |
| 642 | LOCKF_DEBUG(LF_DBG_DEADLOCK, "lock %p contention for vp %p => restart\n" , lock, othervp); |
| 643 | goto scan; |
| 644 | } |
| 645 | } |
| 646 | |
| 647 | /* |
| 648 | * Get the lock blocking the lock |
| 649 | * which would block us, and make |
| 650 | * certain it hasn't become unblocked |
| 651 | * (been granted, e.g. between the time |
| 652 | * we called lf_getblock, and the time |
| 653 | * we successfully acquired the |
| 654 | * proc_lock). |
| 655 | */ |
| 656 | const struct lockf *nextblock = waitblock->lf_next; |
| 657 | if (nextblock == NULL) { |
| 658 | if (othervp) { |
| 659 | lck_mtx_unlock(lck: &othervp->v_lock); |
| 660 | } |
| 661 | LOCKF_DEBUG(LF_DBG_DEADLOCK, "lock %p with waitblock %p and no lf_next; othervp %p\n" , lock, waitblock, othervp); |
| 662 | continue; |
| 663 | } |
| 664 | LOCKF_DEBUG(LF_DBG_DEADLOCK, "lock %p which is also blocked on lock %p vnode %p\n" , lock, nextblock, nextblock->lf_vnode); |
| 665 | |
| 666 | /* |
| 667 | * Make sure it's an advisory range |
| 668 | * lock and not any other kind of lock; |
| 669 | * if we mix lock types, it's our own |
| 670 | * fault. |
| 671 | */ |
| 672 | if ((nextblock->lf_flags & F_POSIX) == 0) { |
| 673 | if (othervp) { |
| 674 | lck_mtx_unlock(lck: &othervp->v_lock); |
| 675 | } |
| 676 | continue; |
| 677 | } |
| 678 | |
| 679 | /* |
| 680 | * If the owner of the lock that's |
| 681 | * blocking a lock that's blocking us |
| 682 | * getting the requested lock, then we |
| 683 | * would deadlock, so error out. |
| 684 | */ |
| 685 | struct proc *bproc = nextblock->lf_owner; |
| 686 | const boolean_t deadlocked = bproc == lock->lf_owner; |
| 687 | |
| 688 | if (othervp) { |
| 689 | lck_mtx_unlock(lck: &othervp->v_lock); |
| 690 | } |
| 691 | LOCKF_DEBUG(LF_DBG_DEADLOCK, "lock %p owned by pid %d\n" , lock, proc_pid(bproc)); |
| 692 | if (deadlocked) { |
| 693 | LOCKF_DEBUG(LF_DBG_DEADLOCK, "lock %p which is me, so EDEADLK\n" , lock); |
| 694 | proc_unlock(wproc); |
| 695 | lck_mtx_unlock(lck: &lf_dead_lock); |
| 696 | zfree(KT_LOCKF, lock); |
| 697 | return EDEADLK; |
| 698 | } |
| 699 | } |
| 700 | LOCKF_DEBUG(LF_DBG_DEADLOCK, "lock %p bottom of thread loop\n" , lock); |
| 701 | } |
| 702 | proc_unlock(wproc); |
| 703 | lck_mtx_unlock(lck: &lf_dead_lock); |
| 704 | } |
| 705 | |
| 706 | /* |
| 707 | * For flock type locks, we must first remove |
| 708 | * any shared locks that we hold before we sleep |
| 709 | * waiting for an exclusive lock. |
| 710 | */ |
| 711 | if ((lock->lf_flags & F_FLOCK) && |
| 712 | lock->lf_type == F_WRLCK) { |
| 713 | lock->lf_type = F_UNLCK; |
| 714 | if ((error = lf_clearlock(lock)) != 0) { |
| 715 | zfree(KT_LOCKF, lock); |
| 716 | return error; |
| 717 | } |
| 718 | lock->lf_type = F_WRLCK; |
| 719 | } |
| 720 | /* |
| 721 | * Add our lock to the blocked list and sleep until we're free. |
| 722 | * Remember who blocked us (for deadlock detection). |
| 723 | */ |
| 724 | lock->lf_next = block; |
| 725 | TAILQ_INSERT_TAIL(&block->lf_blkhd, lock, lf_block); |
| 726 | |
| 727 | if (!(lock->lf_flags & F_FLOCK)) { |
| 728 | block->lf_flags &= ~F_WAKE1_SAFE; |
| 729 | } |
| 730 | |
| 731 | #if IMPORTANCE_INHERITANCE |
| 732 | /* |
| 733 | * Importance donation is done only for cases where the |
| 734 | * owning task can be unambiguously determined. |
| 735 | * |
| 736 | * POSIX type locks are not inherited by child processes; |
| 737 | * we maintain a 1:1 mapping between a lock and its owning |
| 738 | * process. |
| 739 | * |
| 740 | * Flock type locks are inherited across fork() and there is |
| 741 | * no 1:1 mapping in the general case. However, the fileglobs |
| 742 | * used by OFD locks *may* be confined to the process that |
| 743 | * created them, and thus have an "owner", in which case |
| 744 | * we also attempt importance donation. |
| 745 | */ |
| 746 | if ((lock->lf_flags & block->lf_flags & F_POSIX) != 0) { |
| 747 | lf_boost_blocking_proc(lock, block); |
| 748 | } else if ((lock->lf_flags & block->lf_flags & F_OFD_LOCK) && |
| 749 | lock->lf_owner != block->lf_owner && |
| 750 | NULL != lock->lf_owner && NULL != block->lf_owner) { |
| 751 | lf_boost_blocking_proc(lock, block); |
| 752 | } |
| 753 | #endif /* IMPORTANCE_INHERITANCE */ |
| 754 | |
| 755 | #ifdef LOCKF_DEBUGGING |
| 756 | if (LOCKF_DEBUGP(LF_DBG_LOCKOP)) { |
| 757 | lf_print("lf_setlock: blocking on" , block); |
| 758 | lf_printlist("lf_setlock(block)" , block); |
| 759 | } |
| 760 | #endif /* LOCKF_DEBUGGING */ |
| 761 | DTRACE_FSINFO(advlock__wait, vnode_t, vp); |
| 762 | |
| 763 | if (lock->lf_flags & F_POSIX) { |
| 764 | error = msleep(chan: lock, mtx: &vp->v_lock, pri: priority, wmesg: lockstr, ts: timeout); |
| 765 | /* |
| 766 | * Ensure that 'lock' doesn't get mutated or freed if a |
| 767 | * wakeup occurs while hunting for deadlocks (and holding |
| 768 | * lf_dead_lock - see above) |
| 769 | */ |
| 770 | lck_mtx_lock(lck: &lf_dead_lock); |
| 771 | lck_mtx_unlock(lck: &lf_dead_lock); |
| 772 | } else { |
| 773 | static const char lockstr_np[] = "lockf:np" ; |
| 774 | error = msleep(chan: lock, mtx: &vp->v_lock, pri: priority, wmesg: lockstr_np, ts: timeout); |
| 775 | } |
| 776 | |
| 777 | if (error == 0 && (lock->lf_flags & F_ABORT) != 0) { |
| 778 | error = EBADF; |
| 779 | } |
| 780 | |
| 781 | if (lock->lf_next) { |
| 782 | /* |
| 783 | * lf_wakelock() always sets wakelock->lf_next to |
| 784 | * NULL before a wakeup; so we've been woken early |
| 785 | * - perhaps by a debugger, signal or other event. |
| 786 | * |
| 787 | * Remove 'lock' from the block list (avoids double-add |
| 788 | * in the spurious case, which would create a cycle) |
| 789 | */ |
| 790 | TAILQ_REMOVE(&lock->lf_next->lf_blkhd, lock, lf_block); |
| 791 | #if IMPORTANCE_INHERITANCE |
| 792 | /* |
| 793 | * Adjust the boost on lf_next. |
| 794 | */ |
| 795 | lf_adjust_assertion(block: lock->lf_next); |
| 796 | #endif /* IMPORTANCE_INHERITANCE */ |
| 797 | lock->lf_next = NULL; |
| 798 | |
| 799 | if (error == 0) { |
| 800 | /* |
| 801 | * If this was a spurious wakeup, retry |
| 802 | */ |
| 803 | printf("%s: spurious wakeup, retrying lock\n" , |
| 804 | __func__); |
| 805 | continue; |
| 806 | } |
| 807 | } |
| 808 | |
| 809 | if (!TAILQ_EMPTY(&lock->lf_blkhd)) { |
| 810 | if ((block = lf_getblock(lock, -1)) != NULL) { |
| 811 | lf_move_blocked(to: block, from: lock); |
| 812 | } |
| 813 | } |
| 814 | |
| 815 | if (error) { |
| 816 | if (!TAILQ_EMPTY(&lock->lf_blkhd)) { |
| 817 | lf_wakelock(lock, TRUE); |
| 818 | } |
| 819 | zfree(KT_LOCKF, lock); |
| 820 | /* Return ETIMEDOUT if timeout occoured. */ |
| 821 | if (error == EWOULDBLOCK) { |
| 822 | error = ETIMEDOUT; |
| 823 | } |
| 824 | return error; |
| 825 | } |
| 826 | } |
| 827 | |
| 828 | /* |
| 829 | * No blocks!! Add the lock. Note that we will |
| 830 | * downgrade or upgrade any overlapping locks this |
| 831 | * process already owns. |
| 832 | * |
| 833 | * Skip over locks owned by other processes. |
| 834 | * Handle any locks that overlap and are owned by ourselves. |
| 835 | */ |
| 836 | prev = head; |
| 837 | block = *head; |
| 838 | needtolink = 1; |
| 839 | for (;;) { |
| 840 | const off_t lkend = LF_END(lock); |
| 841 | ovcase = lf_findoverlap(block, lock, SELF, &prev, &overlap); |
| 842 | if (ovcase) { |
| 843 | block = overlap->lf_next; |
| 844 | } |
| 845 | /* |
| 846 | * Six cases: |
| 847 | * 0) no overlap |
| 848 | * 1) overlap == lock |
| 849 | * 2) overlap contains lock |
| 850 | * 3) lock contains overlap |
| 851 | * 4) overlap starts before lock |
| 852 | * 5) overlap ends after lock |
| 853 | */ |
| 854 | switch (ovcase) { |
| 855 | case OVERLAP_NONE: |
| 856 | if (needtolink) { |
| 857 | *prev = lock; |
| 858 | lock->lf_next = overlap; |
| 859 | } |
| 860 | break; |
| 861 | |
| 862 | case OVERLAP_EQUALS_LOCK: |
| 863 | /* |
| 864 | * If downgrading lock, others may be |
| 865 | * able to acquire it. |
| 866 | */ |
| 867 | if (lock->lf_type == F_RDLCK && |
| 868 | overlap->lf_type == F_WRLCK) { |
| 869 | lf_wakelock(overlap, TRUE); |
| 870 | } |
| 871 | overlap->lf_type = lock->lf_type; |
| 872 | lf_move_blocked(to: overlap, from: lock); |
| 873 | zfree(KT_LOCKF, lock); |
| 874 | lock = overlap; /* for lf_coalesce_adjacent() */ |
| 875 | break; |
| 876 | |
| 877 | case OVERLAP_CONTAINS_LOCK: |
| 878 | /* |
| 879 | * Check for common starting point and different types. |
| 880 | */ |
| 881 | if (overlap->lf_type == lock->lf_type) { |
| 882 | lf_move_blocked(to: overlap, from: lock); |
| 883 | zfree(KT_LOCKF, lock); |
| 884 | lock = overlap; /* for lf_coalesce_adjacent() */ |
| 885 | break; |
| 886 | } |
| 887 | if (overlap->lf_start == lock->lf_start) { |
| 888 | *prev = lock; |
| 889 | lock->lf_next = overlap; |
| 890 | assert(lkend < OFF_MAX); |
| 891 | overlap->lf_start = lkend + 1; |
| 892 | } else { |
| 893 | /* |
| 894 | * If we can't split the lock, we can't |
| 895 | * grant it. Claim a system limit for the |
| 896 | * resource shortage. |
| 897 | */ |
| 898 | if (lf_split(overlap, lock)) { |
| 899 | zfree(KT_LOCKF, lock); |
| 900 | return ENOLCK; |
| 901 | } |
| 902 | } |
| 903 | lf_wakelock(overlap, TRUE); |
| 904 | break; |
| 905 | |
| 906 | case OVERLAP_CONTAINED_BY_LOCK: |
| 907 | /* |
| 908 | * If downgrading lock, others may be able to |
| 909 | * acquire it, otherwise take the list. |
| 910 | */ |
| 911 | if (lock->lf_type == F_RDLCK && |
| 912 | overlap->lf_type == F_WRLCK) { |
| 913 | lf_wakelock(overlap, TRUE); |
| 914 | } else { |
| 915 | lf_move_blocked(to: lock, from: overlap); |
| 916 | } |
| 917 | /* |
| 918 | * Add the new lock if necessary and delete the overlap. |
| 919 | */ |
| 920 | if (needtolink) { |
| 921 | *prev = lock; |
| 922 | lock->lf_next = overlap->lf_next; |
| 923 | prev = &lock->lf_next; |
| 924 | needtolink = 0; |
| 925 | } else { |
| 926 | *prev = overlap->lf_next; |
| 927 | } |
| 928 | zfree(KT_LOCKF, overlap); |
| 929 | continue; |
| 930 | |
| 931 | case OVERLAP_STARTS_BEFORE_LOCK: |
| 932 | /* |
| 933 | * Add lock after overlap on the list. |
| 934 | */ |
| 935 | lock->lf_next = overlap->lf_next; |
| 936 | overlap->lf_next = lock; |
| 937 | assert(lock->lf_start > 0); |
| 938 | overlap->lf_end = lock->lf_start - 1; |
| 939 | prev = &lock->lf_next; |
| 940 | lf_wakelock(overlap, TRUE); |
| 941 | needtolink = 0; |
| 942 | continue; |
| 943 | |
| 944 | case OVERLAP_ENDS_AFTER_LOCK: |
| 945 | /* |
| 946 | * Add the new lock before overlap. |
| 947 | */ |
| 948 | if (needtolink) { |
| 949 | *prev = lock; |
| 950 | lock->lf_next = overlap; |
| 951 | } |
| 952 | assert(lkend < OFF_MAX); |
| 953 | overlap->lf_start = lkend + 1; |
| 954 | lf_wakelock(overlap, TRUE); |
| 955 | break; |
| 956 | } |
| 957 | break; |
| 958 | } |
| 959 | /* Coalesce adjacent locks with identical attributes */ |
| 960 | lf_coalesce_adjacent(lock); |
| 961 | #ifdef LOCKF_DEBUGGING |
| 962 | if (LOCKF_DEBUGP(LF_DBG_LOCKOP)) { |
| 963 | lf_print("lf_setlock: got the lock" , lock); |
| 964 | lf_printlist("lf_setlock(out)" , lock); |
| 965 | } |
| 966 | #endif /* LOCKF_DEBUGGING */ |
| 967 | return 0; |
| 968 | } |
| 969 | |
| 970 | |
| 971 | /* |
| 972 | * lf_clearlock |
| 973 | * |
| 974 | * Description: Remove a byte-range lock on an vnode. Generally, find the |
| 975 | * lock (or an overlap to that lock) and remove it (or shrink |
| 976 | * it), then wakeup anyone we can. |
| 977 | * |
| 978 | * Parameters: unlock The lock to clear |
| 979 | * |
| 980 | * Returns: 0 Success |
| 981 | * lf_split:ENOLCK |
| 982 | * |
| 983 | * Notes: A caller may unlock all the locks owned by the caller by |
| 984 | * specifying the entire file range; locks owned by other |
| 985 | * callers are not effected by this operation. |
| 986 | */ |
| 987 | static int |
| 988 | lf_clearlock(struct lockf *unlock) |
| 989 | { |
| 990 | struct lockf **head = unlock->lf_head; |
| 991 | struct lockf *lf = *head; |
| 992 | struct lockf *overlap, **prev; |
| 993 | overlap_t ovcase; |
| 994 | |
| 995 | if (lf == NOLOCKF) { |
| 996 | return 0; |
| 997 | } |
| 998 | #ifdef LOCKF_DEBUGGING |
| 999 | if (unlock->lf_type != F_UNLCK) { |
| 1000 | panic("lf_clearlock: bad type" ); |
| 1001 | } |
| 1002 | if (LOCKF_DEBUGP(LF_DBG_LOCKOP)) { |
| 1003 | lf_print("lf_clearlock" , unlock); |
| 1004 | } |
| 1005 | #endif /* LOCKF_DEBUGGING */ |
| 1006 | prev = head; |
| 1007 | while ((ovcase = lf_findoverlap(lf, unlock, SELF, &prev, &overlap)) != OVERLAP_NONE) { |
| 1008 | const off_t unlkend = LF_END(unlock); |
| 1009 | /* |
| 1010 | * Wakeup the list of locks to be retried. |
| 1011 | */ |
| 1012 | lf_wakelock(overlap, FALSE); |
| 1013 | #if IMPORTANCE_INHERITANCE |
| 1014 | if (overlap->lf_boosted == LF_BOOSTED) { |
| 1015 | lf_drop_assertion(overlap); |
| 1016 | } |
| 1017 | #endif /* IMPORTANCE_INHERITANCE */ |
| 1018 | |
| 1019 | switch (ovcase) { |
| 1020 | case OVERLAP_NONE: /* satisfy compiler enum/switch */ |
| 1021 | break; |
| 1022 | |
| 1023 | case OVERLAP_EQUALS_LOCK: |
| 1024 | *prev = overlap->lf_next; |
| 1025 | zfree(KT_LOCKF, overlap); |
| 1026 | break; |
| 1027 | |
| 1028 | case OVERLAP_CONTAINS_LOCK: /* split it */ |
| 1029 | if (overlap->lf_start == unlock->lf_start) { |
| 1030 | assert(unlkend < OFF_MAX); |
| 1031 | overlap->lf_start = unlkend + 1; |
| 1032 | break; |
| 1033 | } |
| 1034 | /* |
| 1035 | * If we can't split the lock, we can't grant it. |
| 1036 | * Claim a system limit for the resource shortage. |
| 1037 | */ |
| 1038 | if (lf_split(overlap, unlock)) { |
| 1039 | return ENOLCK; |
| 1040 | } |
| 1041 | overlap->lf_next = unlock->lf_next; |
| 1042 | break; |
| 1043 | |
| 1044 | case OVERLAP_CONTAINED_BY_LOCK: |
| 1045 | *prev = overlap->lf_next; |
| 1046 | lf = overlap->lf_next; |
| 1047 | zfree(KT_LOCKF, overlap); |
| 1048 | continue; |
| 1049 | |
| 1050 | case OVERLAP_STARTS_BEFORE_LOCK: |
| 1051 | assert(unlock->lf_start > 0); |
| 1052 | overlap->lf_end = unlock->lf_start - 1; |
| 1053 | prev = &overlap->lf_next; |
| 1054 | lf = overlap->lf_next; |
| 1055 | continue; |
| 1056 | |
| 1057 | case OVERLAP_ENDS_AFTER_LOCK: |
| 1058 | assert(unlkend < OFF_MAX); |
| 1059 | overlap->lf_start = unlkend + 1; |
| 1060 | break; |
| 1061 | } |
| 1062 | break; |
| 1063 | } |
| 1064 | #ifdef LOCKF_DEBUGGING |
| 1065 | if (LOCKF_DEBUGP(LF_DBG_LOCKOP)) { |
| 1066 | lf_printlist("lf_clearlock" , unlock); |
| 1067 | } |
| 1068 | #endif /* LOCKF_DEBUGGING */ |
| 1069 | return 0; |
| 1070 | } |
| 1071 | |
| 1072 | |
| 1073 | /* |
| 1074 | * lf_transferlock |
| 1075 | * |
| 1076 | * Description: Transfer a give lock from old_proc to new proc during exec |
| 1077 | * |
| 1078 | * Parameters: unlock The lock to transfer |
| 1079 | * |
| 1080 | * Returns: 0 Success |
| 1081 | * |
| 1082 | * Notes: A caller may transfer all the locks owned by the caller by |
| 1083 | * specifying the entire file range; locks owned by other |
| 1084 | * callers are not effected by this operation. |
| 1085 | */ |
| 1086 | static int |
| 1087 | lf_transferlock(struct lockf *transfer) |
| 1088 | { |
| 1089 | struct lockf **head = transfer->lf_head; |
| 1090 | struct lockf *lf = *head; |
| 1091 | struct lockf *overlap, **prev; |
| 1092 | overlap_t ovcase; |
| 1093 | |
| 1094 | if (lf == NOLOCKF) { |
| 1095 | return 0; |
| 1096 | } |
| 1097 | #ifdef LOCKF_DEBUGGING |
| 1098 | if (transfer->lf_type != F_TRANSFER) { |
| 1099 | panic("lf_transferlock: bad type" ); |
| 1100 | } |
| 1101 | if (LOCKF_DEBUGP(LF_DBG_LOCKOP)) { |
| 1102 | lf_print("lf_transferlock" , transfer); |
| 1103 | } |
| 1104 | #endif /* LOCKF_DEBUGGING */ |
| 1105 | prev = head; |
| 1106 | while ((ovcase = lf_findoverlap(lf, transfer, SELF, &prev, &overlap)) != OVERLAP_NONE) { |
| 1107 | /* For POSIX Locks, change lf_id and lf_owner */ |
| 1108 | if (overlap->lf_flags & F_POSIX) { |
| 1109 | overlap->lf_id = (caddr_t)transfer->lf_owner; |
| 1110 | overlap->lf_owner = transfer->lf_owner; |
| 1111 | } else if (overlap->lf_flags & F_OFD_LOCK) { |
| 1112 | /* Change the owner of the ofd style lock, if there is an owner */ |
| 1113 | if (overlap->lf_owner) { |
| 1114 | overlap->lf_owner = transfer->lf_owner; |
| 1115 | } |
| 1116 | } |
| 1117 | /* Find the next lock */ |
| 1118 | lf = overlap->lf_next; |
| 1119 | } |
| 1120 | #ifdef LOCKF_DEBUGGING |
| 1121 | if (LOCKF_DEBUGP(LF_DBG_LOCKOP)) { |
| 1122 | lf_printlist("lf_transferlock" , transfer); |
| 1123 | } |
| 1124 | #endif /* LOCKF_DEBUGGING */ |
| 1125 | return 0; |
| 1126 | } |
| 1127 | |
| 1128 | |
| 1129 | /* |
| 1130 | * lf_getlock |
| 1131 | * |
| 1132 | * Description: Check whether there is a blocking lock, and if so return |
| 1133 | * its process identifier into the lock being requested. |
| 1134 | * |
| 1135 | * Parameters: lock Pointer to lock to test for blocks |
| 1136 | * fl Pointer to flock structure to receive |
| 1137 | * the blocking lock information, if a |
| 1138 | * blocking lock is found. |
| 1139 | * matchpid -1, or pid value to match in lookup. |
| 1140 | * |
| 1141 | * Returns: 0 Success |
| 1142 | * |
| 1143 | * Implicit Returns: |
| 1144 | * *fl Contents modified to reflect the |
| 1145 | * blocking lock, if one is found; not |
| 1146 | * modified otherwise |
| 1147 | * |
| 1148 | * Notes: fl->l_pid will be (-1) for file locks and will only be set to |
| 1149 | * the blocking process ID for advisory record locks. |
| 1150 | */ |
| 1151 | static int |
| 1152 | lf_getlock(struct lockf *lock, struct flock *fl, pid_t matchpid) |
| 1153 | { |
| 1154 | struct lockf *block; |
| 1155 | |
| 1156 | #ifdef LOCKF_DEBUGGING |
| 1157 | if (LOCKF_DEBUGP(LF_DBG_LOCKOP)) { |
| 1158 | lf_print("lf_getlock" , lock); |
| 1159 | } |
| 1160 | #endif /* LOCKF_DEBUGGING */ |
| 1161 | |
| 1162 | if ((block = lf_getblock(lock, matchpid))) { |
| 1163 | fl->l_type = block->lf_type; |
| 1164 | fl->l_whence = SEEK_SET; |
| 1165 | fl->l_start = block->lf_start; |
| 1166 | if (block->lf_end == -1 || |
| 1167 | (block->lf_start == 0 && LF_END(block) == OFF_MAX)) { |
| 1168 | fl->l_len = 0; |
| 1169 | } else { |
| 1170 | fl->l_len = LF_END(block) - block->lf_start + 1; |
| 1171 | } |
| 1172 | if (NULL != block->lf_owner) { |
| 1173 | /* |
| 1174 | * lf_owner is only non-NULL when the lock |
| 1175 | * "owner" can be unambiguously determined |
| 1176 | */ |
| 1177 | fl->l_pid = proc_pid(block->lf_owner); |
| 1178 | } else { |
| 1179 | fl->l_pid = -1; |
| 1180 | } |
| 1181 | } else { |
| 1182 | fl->l_type = F_UNLCK; |
| 1183 | } |
| 1184 | return 0; |
| 1185 | } |
| 1186 | |
| 1187 | /* |
| 1188 | * lf_getblock |
| 1189 | * |
| 1190 | * Description: Walk the list of locks for an inode and return the first |
| 1191 | * blocking lock. A lock is considered blocking if we are not |
| 1192 | * the lock owner; otherwise, we are permitted to upgrade or |
| 1193 | * downgrade it, and it's not considered blocking. |
| 1194 | * |
| 1195 | * Parameters: lock The lock for which we are interested |
| 1196 | * in obtaining the blocking lock, if any |
| 1197 | * matchpid -1, or pid value to match in lookup. |
| 1198 | * |
| 1199 | * Returns: NOLOCKF No blocking lock exists |
| 1200 | * !NOLOCKF The address of the blocking lock's |
| 1201 | * struct lockf. |
| 1202 | */ |
| 1203 | static struct lockf * |
| 1204 | lf_getblock(struct lockf *lock, pid_t matchpid) |
| 1205 | { |
| 1206 | struct lockf **prev, *overlap, *lf = *(lock->lf_head); |
| 1207 | |
| 1208 | for (prev = lock->lf_head; |
| 1209 | lf_findoverlap(lf, lock, OTHERS, &prev, &overlap) != OVERLAP_NONE; |
| 1210 | lf = overlap->lf_next) { |
| 1211 | /* |
| 1212 | * Found an overlap. |
| 1213 | * |
| 1214 | * If we're matching pids, and it's a record lock, |
| 1215 | * or it's an OFD lock on a process-confined fd, |
| 1216 | * but the pid doesn't match, then keep on looking .. |
| 1217 | */ |
| 1218 | if (matchpid != -1 && |
| 1219 | (overlap->lf_flags & (F_POSIX | F_OFD_LOCK)) != 0 && |
| 1220 | proc_pid(overlap->lf_owner) != matchpid) { |
| 1221 | continue; |
| 1222 | } |
| 1223 | |
| 1224 | /* |
| 1225 | * does it block us? |
| 1226 | */ |
| 1227 | if ((lock->lf_type == F_WRLCK || overlap->lf_type == F_WRLCK)) { |
| 1228 | return overlap; |
| 1229 | } |
| 1230 | } |
| 1231 | return NOLOCKF; |
| 1232 | } |
| 1233 | |
| 1234 | |
| 1235 | /* |
| 1236 | * lf_findoverlap |
| 1237 | * |
| 1238 | * Description: Walk the list of locks to find an overlapping lock (if any). |
| 1239 | * |
| 1240 | * Parameters: lf First lock on lock list |
| 1241 | * lock The lock we are checking for an overlap |
| 1242 | * check Check type |
| 1243 | * prev pointer to pointer pointer to contain |
| 1244 | * address of pointer to previous lock |
| 1245 | * pointer to overlapping lock, if overlap |
| 1246 | * overlap pointer to pointer to contain address |
| 1247 | * of overlapping lock |
| 1248 | * |
| 1249 | * Returns: OVERLAP_NONE |
| 1250 | * OVERLAP_EQUALS_LOCK |
| 1251 | * OVERLAP_CONTAINS_LOCK |
| 1252 | * OVERLAP_CONTAINED_BY_LOCK |
| 1253 | * OVERLAP_STARTS_BEFORE_LOCK |
| 1254 | * OVERLAP_ENDS_AFTER_LOCK |
| 1255 | * |
| 1256 | * Implicit Returns: |
| 1257 | * *prev The address of the next pointer in the |
| 1258 | * lock previous to the overlapping lock; |
| 1259 | * this is generally used to relink the |
| 1260 | * lock list, avoiding a second iteration. |
| 1261 | * *overlap The pointer to the overlapping lock |
| 1262 | * itself; this is used to return data in |
| 1263 | * the check == OTHERS case, and for the |
| 1264 | * caller to modify the overlapping lock, |
| 1265 | * in the check == SELF case |
| 1266 | * |
| 1267 | * Note: This returns only the FIRST overlapping lock. There may be |
| 1268 | * more than one. lf_getlock will return the first blocking lock, |
| 1269 | * while lf_setlock will iterate over all overlapping locks to |
| 1270 | * |
| 1271 | * The check parameter can be SELF, meaning we are looking for |
| 1272 | * overlapping locks owned by us, or it can be OTHERS, meaning |
| 1273 | * we are looking for overlapping locks owned by someone else so |
| 1274 | * we can report a blocking lock on an F_GETLK request. |
| 1275 | * |
| 1276 | * The value of *overlap and *prev are modified, even if there is |
| 1277 | * no overlapping lock found; always check the return code. |
| 1278 | */ |
| 1279 | static overlap_t |
| 1280 | lf_findoverlap(struct lockf *lf, struct lockf *lock, int type, |
| 1281 | struct lockf ***prev, struct lockf **overlap) |
| 1282 | { |
| 1283 | int found_self = 0; |
| 1284 | |
| 1285 | *overlap = lf; |
| 1286 | if (lf == NOLOCKF) { |
| 1287 | return 0; |
| 1288 | } |
| 1289 | #ifdef LOCKF_DEBUGGING |
| 1290 | if (LOCKF_DEBUGP(LF_DBG_LIST)) { |
| 1291 | lf_print("lf_findoverlap: looking for overlap in" , lock); |
| 1292 | } |
| 1293 | #endif /* LOCKF_DEBUGGING */ |
| 1294 | const off_t start = lock->lf_start; |
| 1295 | const off_t end = LF_END(lock); |
| 1296 | while (lf != NOLOCKF) { |
| 1297 | if (((type & SELF) && lf->lf_id != lock->lf_id) || |
| 1298 | ((type & OTHERS) && lf->lf_id == lock->lf_id)) { |
| 1299 | /* |
| 1300 | * Locks belonging to one process are adjacent on the |
| 1301 | * list, so if we've found any locks belonging to us, |
| 1302 | * and we're now seeing something else, then we've |
| 1303 | * examined all "self" locks. Note that bailing out |
| 1304 | * here is quite important; for coalescing, we assume |
| 1305 | * numerically adjacent locks from the same owner to |
| 1306 | * be adjacent on the list. |
| 1307 | */ |
| 1308 | if ((type & SELF) && found_self) { |
| 1309 | return OVERLAP_NONE; |
| 1310 | } |
| 1311 | |
| 1312 | *prev = &lf->lf_next; |
| 1313 | *overlap = lf = lf->lf_next; |
| 1314 | continue; |
| 1315 | } |
| 1316 | |
| 1317 | if ((type & SELF)) { |
| 1318 | found_self = 1; |
| 1319 | } |
| 1320 | |
| 1321 | #ifdef LOCKF_DEBUGGING |
| 1322 | if (LOCKF_DEBUGP(LF_DBG_LIST)) { |
| 1323 | lf_print("\tchecking" , lf); |
| 1324 | } |
| 1325 | #endif /* LOCKF_DEBUGGING */ |
| 1326 | /* |
| 1327 | * OK, check for overlap |
| 1328 | */ |
| 1329 | const off_t lfstart = lf->lf_start; |
| 1330 | const off_t lfend = LF_END(lf); |
| 1331 | |
| 1332 | if ((start > lfend) || (lfstart > end)) { |
| 1333 | /* Case 0 */ |
| 1334 | LOCKF_DEBUG(LF_DBG_LIST, "no overlap\n" ); |
| 1335 | |
| 1336 | /* |
| 1337 | * NOTE: assumes that locks for the same process are |
| 1338 | * nonintersecting and ordered. |
| 1339 | */ |
| 1340 | if ((type & SELF) && lfstart > end) { |
| 1341 | return OVERLAP_NONE; |
| 1342 | } |
| 1343 | *prev = &lf->lf_next; |
| 1344 | *overlap = lf = lf->lf_next; |
| 1345 | continue; |
| 1346 | } |
| 1347 | if ((lfstart == start) && (lfend == end)) { |
| 1348 | LOCKF_DEBUG(LF_DBG_LIST, "overlap == lock\n" ); |
| 1349 | return OVERLAP_EQUALS_LOCK; |
| 1350 | } |
| 1351 | if ((lfstart <= start) && (lfend >= end)) { |
| 1352 | LOCKF_DEBUG(LF_DBG_LIST, "overlap contains lock\n" ); |
| 1353 | return OVERLAP_CONTAINS_LOCK; |
| 1354 | } |
| 1355 | if ((start <= lfstart) && (end >= lfend)) { |
| 1356 | LOCKF_DEBUG(LF_DBG_LIST, "lock contains overlap\n" ); |
| 1357 | return OVERLAP_CONTAINED_BY_LOCK; |
| 1358 | } |
| 1359 | if ((lfstart < start) && (lfend >= start)) { |
| 1360 | LOCKF_DEBUG(LF_DBG_LIST, "overlap starts before lock\n" ); |
| 1361 | return OVERLAP_STARTS_BEFORE_LOCK; |
| 1362 | } |
| 1363 | if ((lfstart > start) && (lfend > end)) { |
| 1364 | LOCKF_DEBUG(LF_DBG_LIST, "overlap ends after lock\n" ); |
| 1365 | return OVERLAP_ENDS_AFTER_LOCK; |
| 1366 | } |
| 1367 | panic("lf_findoverlap: default" ); |
| 1368 | } |
| 1369 | return OVERLAP_NONE; |
| 1370 | } |
| 1371 | |
| 1372 | |
| 1373 | /* |
| 1374 | * lf_split |
| 1375 | * |
| 1376 | * Description: Split a lock and a contained region into two or three locks |
| 1377 | * as necessary. |
| 1378 | * |
| 1379 | * Parameters: lock1 Lock to split |
| 1380 | * lock2 Overlapping lock region requiring the |
| 1381 | * split (upgrade/downgrade/unlock) |
| 1382 | * |
| 1383 | * Returns: 0 Success |
| 1384 | * ENOLCK No memory for new lock |
| 1385 | * |
| 1386 | * Implicit Returns: |
| 1387 | * *lock1 Modified original lock |
| 1388 | * *lock2 Overlapping lock (inserted into list) |
| 1389 | * (new lock) Potential new lock inserted into list |
| 1390 | * if split results in 3 locks |
| 1391 | * |
| 1392 | * Notes: This operation can only fail if the split would result in three |
| 1393 | * locks, and there is insufficient memory to allocate the third |
| 1394 | * lock; in that case, neither of the locks will be modified. |
| 1395 | */ |
| 1396 | static int |
| 1397 | lf_split(struct lockf *lock1, struct lockf *lock2) |
| 1398 | { |
| 1399 | struct lockf *splitlock; |
| 1400 | |
| 1401 | #ifdef LOCKF_DEBUGGING |
| 1402 | if (LOCKF_DEBUGP(LF_DBG_LIST)) { |
| 1403 | lf_print("lf_split" , lock1); |
| 1404 | lf_print("splitting from" , lock2); |
| 1405 | } |
| 1406 | #endif /* LOCKF_DEBUGGING */ |
| 1407 | /* |
| 1408 | * Check to see if splitting into only two pieces. |
| 1409 | */ |
| 1410 | if (lock1->lf_start == lock2->lf_start) { |
| 1411 | assert(LF_END(lock2) < OFF_MAX); |
| 1412 | lock1->lf_start = LF_END(lock2) + 1; |
| 1413 | lock2->lf_next = lock1; |
| 1414 | return 0; |
| 1415 | } |
| 1416 | if (LF_END(lock1) == LF_END(lock2)) { |
| 1417 | assert(lock2->lf_start > 0); |
| 1418 | lock1->lf_end = lock2->lf_start - 1; |
| 1419 | lock2->lf_next = lock1->lf_next; |
| 1420 | lock1->lf_next = lock2; |
| 1421 | return 0; |
| 1422 | } |
| 1423 | /* |
| 1424 | * Make a new lock consisting of the last part of |
| 1425 | * the encompassing lock |
| 1426 | */ |
| 1427 | splitlock = zalloc_flags(KT_LOCKF, Z_WAITOK | Z_NOFAIL); |
| 1428 | bcopy(src: lock1, dst: splitlock, n: sizeof *splitlock); |
| 1429 | assert(LF_END(lock2) < OFF_MAX); |
| 1430 | splitlock->lf_start = LF_END(lock2) + 1; |
| 1431 | TAILQ_INIT(&splitlock->lf_blkhd); |
| 1432 | assert(lock2->lf_start > 0); |
| 1433 | lock1->lf_end = lock2->lf_start - 1; |
| 1434 | /* |
| 1435 | * OK, now link it in |
| 1436 | */ |
| 1437 | splitlock->lf_next = lock1->lf_next; |
| 1438 | lock2->lf_next = splitlock; |
| 1439 | lock1->lf_next = lock2; |
| 1440 | |
| 1441 | return 0; |
| 1442 | } |
| 1443 | |
| 1444 | |
| 1445 | /* |
| 1446 | * lf_wakelock |
| 1447 | * |
| 1448 | * Wakeup a blocklist in the case of a downgrade or unlock, since others |
| 1449 | * waiting on the lock may now be able to acquire it. |
| 1450 | * |
| 1451 | * Parameters: listhead Lock list head on which waiters may |
| 1452 | * have pending locks |
| 1453 | * |
| 1454 | * Returns: <void> |
| 1455 | * |
| 1456 | * Notes: This function iterates a list of locks and wakes all waiters, |
| 1457 | * rather than only waiters for the contended regions. Because |
| 1458 | * of this, for heavily contended files, this can result in a |
| 1459 | * "thundering herd" situation. Refactoring the code could make |
| 1460 | * this operation more efficient, if heavy contention ever results |
| 1461 | * in a real-world performance problem. |
| 1462 | */ |
| 1463 | static void |
| 1464 | lf_wakelock(struct lockf *listhead, boolean_t force_all) |
| 1465 | { |
| 1466 | struct lockf *wakelock; |
| 1467 | boolean_t wake_all = TRUE; |
| 1468 | |
| 1469 | if (force_all == FALSE && (listhead->lf_flags & F_WAKE1_SAFE)) { |
| 1470 | wake_all = FALSE; |
| 1471 | } |
| 1472 | |
| 1473 | while (!TAILQ_EMPTY(&listhead->lf_blkhd)) { |
| 1474 | wakelock = TAILQ_FIRST(&listhead->lf_blkhd); |
| 1475 | TAILQ_REMOVE(&listhead->lf_blkhd, wakelock, lf_block); |
| 1476 | |
| 1477 | wakelock->lf_next = NOLOCKF; |
| 1478 | #ifdef LOCKF_DEBUGGING |
| 1479 | if (LOCKF_DEBUGP(LF_DBG_LOCKOP)) { |
| 1480 | lf_print("lf_wakelock: awakening" , wakelock); |
| 1481 | } |
| 1482 | #endif /* LOCKF_DEBUGGING */ |
| 1483 | if (wake_all == FALSE) { |
| 1484 | /* |
| 1485 | * If there are items on the list head block list, |
| 1486 | * move them to the wakelock list instead, and then |
| 1487 | * correct their lf_next pointers. |
| 1488 | */ |
| 1489 | if (!TAILQ_EMPTY(&listhead->lf_blkhd)) { |
| 1490 | TAILQ_CONCAT(&wakelock->lf_blkhd, &listhead->lf_blkhd, lf_block); |
| 1491 | |
| 1492 | struct lockf *tlock; |
| 1493 | |
| 1494 | TAILQ_FOREACH(tlock, &wakelock->lf_blkhd, lf_block) { |
| 1495 | if (TAILQ_NEXT(tlock, lf_block) == tlock) { |
| 1496 | /* See rdar://10887303 */ |
| 1497 | panic("cycle in wakelock list" ); |
| 1498 | } |
| 1499 | tlock->lf_next = wakelock; |
| 1500 | } |
| 1501 | } |
| 1502 | } |
| 1503 | wakeup(chan: wakelock); |
| 1504 | |
| 1505 | if (wake_all == FALSE) { |
| 1506 | break; |
| 1507 | } |
| 1508 | } |
| 1509 | } |
| 1510 | |
| 1511 | |
| 1512 | #ifdef LOCKF_DEBUGGING |
| 1513 | #define GET_LF_OWNER_PID(lf) (proc_pid((lf)->lf_owner)) |
| 1514 | |
| 1515 | /* |
| 1516 | * lf_print DEBUG |
| 1517 | * |
| 1518 | * Print out a lock; lock information is prefixed by the string in 'tag' |
| 1519 | * |
| 1520 | * Parameters: tag A string tag for debugging |
| 1521 | * lock The lock whose information should be |
| 1522 | * displayed |
| 1523 | * |
| 1524 | * Returns: <void> |
| 1525 | */ |
| 1526 | void |
| 1527 | lf_print(const char *tag, struct lockf *lock) |
| 1528 | { |
| 1529 | printf("%s: lock %p for " , tag, (void *)lock); |
| 1530 | if (lock->lf_flags & F_POSIX) { |
| 1531 | printf("proc %p (owner %d)" , |
| 1532 | lock->lf_id, GET_LF_OWNER_PID(lock)); |
| 1533 | } else if (lock->lf_flags & F_OFD_LOCK) { |
| 1534 | printf("fg %p (owner %d)" , |
| 1535 | lock->lf_id, GET_LF_OWNER_PID(lock)); |
| 1536 | } else { |
| 1537 | printf("id %p" , (void *)lock->lf_id); |
| 1538 | } |
| 1539 | if (lock->lf_vnode != 0) { |
| 1540 | printf(" in vno %p, %s, start 0x%016llx, end 0x%016llx" , |
| 1541 | lock->lf_vnode, |
| 1542 | lock->lf_type == F_RDLCK ? "shared" : |
| 1543 | lock->lf_type == F_WRLCK ? "exclusive" : |
| 1544 | lock->lf_type == F_UNLCK ? "unlock" : "unknown" , |
| 1545 | (uint64_t)lock->lf_start, (uint64_t)lock->lf_end); |
| 1546 | } else { |
| 1547 | printf(" %s, start 0x%016llx, end 0x%016llx" , |
| 1548 | lock->lf_type == F_RDLCK ? "shared" : |
| 1549 | lock->lf_type == F_WRLCK ? "exclusive" : |
| 1550 | lock->lf_type == F_UNLCK ? "unlock" : "unknown" , |
| 1551 | (uint64_t)lock->lf_start, (uint64_t)lock->lf_end); |
| 1552 | } |
| 1553 | if (!TAILQ_EMPTY(&lock->lf_blkhd)) { |
| 1554 | printf(" block %p\n" , (void *)TAILQ_FIRST(&lock->lf_blkhd)); |
| 1555 | } else { |
| 1556 | printf("\n" ); |
| 1557 | } |
| 1558 | } |
| 1559 | |
| 1560 | |
| 1561 | /* |
| 1562 | * lf_printlist DEBUG |
| 1563 | * |
| 1564 | * Print out a lock list for the vnode associated with 'lock'; lock information |
| 1565 | * is prefixed by the string in 'tag' |
| 1566 | * |
| 1567 | * Parameters: tag A string tag for debugging |
| 1568 | * lock The lock whose vnode's lock list should |
| 1569 | * be displayed |
| 1570 | * |
| 1571 | * Returns: <void> |
| 1572 | */ |
| 1573 | void |
| 1574 | lf_printlist(const char *tag, struct lockf *lock) |
| 1575 | { |
| 1576 | struct lockf *lf, *blk; |
| 1577 | |
| 1578 | if (lock->lf_vnode == 0) { |
| 1579 | return; |
| 1580 | } |
| 1581 | |
| 1582 | printf("%s: Lock list for vno %p:\n" , |
| 1583 | tag, lock->lf_vnode); |
| 1584 | for (lf = lock->lf_vnode->v_lockf; lf; lf = lf->lf_next) { |
| 1585 | printf("\tlock %p for " , (void *)lf); |
| 1586 | if (lf->lf_flags & F_POSIX) { |
| 1587 | printf("proc %p (owner %d)" , |
| 1588 | lf->lf_id, GET_LF_OWNER_PID(lf)); |
| 1589 | } else if (lf->lf_flags & F_OFD_LOCK) { |
| 1590 | printf("fg %p (owner %d)" , |
| 1591 | lf->lf_id, GET_LF_OWNER_PID(lf)); |
| 1592 | } else { |
| 1593 | printf("id %p" , (void *)lf->lf_id); |
| 1594 | } |
| 1595 | printf(", %s, start 0x%016llx, end 0x%016llx" , |
| 1596 | lf->lf_type == F_RDLCK ? "shared" : |
| 1597 | lf->lf_type == F_WRLCK ? "exclusive" : |
| 1598 | lf->lf_type == F_UNLCK ? "unlock" : |
| 1599 | "unknown" , (uint64_t)lf->lf_start, (uint64_t)lf->lf_end); |
| 1600 | TAILQ_FOREACH(blk, &lf->lf_blkhd, lf_block) { |
| 1601 | printf("\n\t\tlock request %p for " , (void *)blk); |
| 1602 | if (blk->lf_flags & F_POSIX) { |
| 1603 | printf("proc %p (owner %d)" , |
| 1604 | blk->lf_id, GET_LF_OWNER_PID(blk)); |
| 1605 | } else if (blk->lf_flags & F_OFD_LOCK) { |
| 1606 | printf("fg %p (owner %d)" , |
| 1607 | blk->lf_id, GET_LF_OWNER_PID(blk)); |
| 1608 | } else { |
| 1609 | printf("id %p" , (void *)blk->lf_id); |
| 1610 | } |
| 1611 | printf(", %s, start 0x%016llx, end 0x%016llx" , |
| 1612 | blk->lf_type == F_RDLCK ? "shared" : |
| 1613 | blk->lf_type == F_WRLCK ? "exclusive" : |
| 1614 | blk->lf_type == F_UNLCK ? "unlock" : |
| 1615 | "unknown" , (uint64_t)blk->lf_start, |
| 1616 | (uint64_t)blk->lf_end); |
| 1617 | if (!TAILQ_EMPTY(&blk->lf_blkhd)) { |
| 1618 | panic("lf_printlist: bad list" ); |
| 1619 | } |
| 1620 | } |
| 1621 | printf("\n" ); |
| 1622 | } |
| 1623 | } |
| 1624 | #endif /* LOCKF_DEBUGGING */ |
| 1625 | |
| 1626 | #if IMPORTANCE_INHERITANCE |
| 1627 | |
| 1628 | /* |
| 1629 | * lf_hold_assertion |
| 1630 | * |
| 1631 | * Call task importance hold assertion on the owner of the lock. |
| 1632 | * |
| 1633 | * Parameters: block_task Owner of the lock blocking |
| 1634 | * current thread. |
| 1635 | * |
| 1636 | * block lock on which the current thread |
| 1637 | * is blocking on. |
| 1638 | * |
| 1639 | * Returns: <void> |
| 1640 | * |
| 1641 | * Notes: The task reference on block_task is not needed to be hold since |
| 1642 | * the current thread has vnode lock and block_task has a file |
| 1643 | * lock, thus removing file lock in exit requires block_task to |
| 1644 | * grab the vnode lock. |
| 1645 | */ |
| 1646 | static void |
| 1647 | lf_hold_assertion(task_t block_task, struct lockf *block) |
| 1648 | { |
| 1649 | if (task_importance_hold_file_lock_assertion(target_task: block_task, count: 1) == 0) { |
| 1650 | block->lf_boosted = LF_BOOSTED; |
| 1651 | LOCKF_DEBUG(LF_DBG_IMPINH, |
| 1652 | "lf: importance hold file lock assert on pid %d lock %p\n" , |
| 1653 | proc_pid(block->lf_owner), block); |
| 1654 | } |
| 1655 | } |
| 1656 | |
| 1657 | |
| 1658 | /* |
| 1659 | * lf_jump_to_queue_head |
| 1660 | * |
| 1661 | * Jump the lock from the tail of the block queue to the head of |
| 1662 | * the queue. |
| 1663 | * |
| 1664 | * Parameters: block lockf struct containing the |
| 1665 | * block queue. |
| 1666 | * lock lockf struct to be jumped to the |
| 1667 | * front. |
| 1668 | * |
| 1669 | * Returns: <void> |
| 1670 | */ |
| 1671 | static void |
| 1672 | lf_jump_to_queue_head(struct lockf *block, struct lockf *lock) |
| 1673 | { |
| 1674 | /* Move the lock to the head of the block queue. */ |
| 1675 | TAILQ_REMOVE(&block->lf_blkhd, lock, lf_block); |
| 1676 | TAILQ_INSERT_HEAD(&block->lf_blkhd, lock, lf_block); |
| 1677 | } |
| 1678 | |
| 1679 | |
| 1680 | /* |
| 1681 | * lf_drop_assertion |
| 1682 | * |
| 1683 | * Drops the task hold assertion. |
| 1684 | * |
| 1685 | * Parameters: block lockf struct holding the assertion. |
| 1686 | * |
| 1687 | * Returns: <void> |
| 1688 | */ |
| 1689 | static void |
| 1690 | lf_drop_assertion(struct lockf *block) |
| 1691 | { |
| 1692 | LOCKF_DEBUG(LF_DBG_IMPINH, "lf: %d: dropping assertion for lock %p\n" , |
| 1693 | proc_pid(block->lf_owner), block); |
| 1694 | |
| 1695 | task_t current_task = proc_task(block->lf_owner); |
| 1696 | task_importance_drop_file_lock_assertion(target_task: current_task, count: 1); |
| 1697 | block->lf_boosted = LF_NOT_BOOSTED; |
| 1698 | } |
| 1699 | |
| 1700 | /* |
| 1701 | * lf_adjust_assertion |
| 1702 | * |
| 1703 | * Adjusts importance assertion of file lock. Goes through |
| 1704 | * all the blocking locks and checks if the file lock needs |
| 1705 | * to be boosted anymore. |
| 1706 | * |
| 1707 | * Parameters: block lockf structure which needs to be adjusted. |
| 1708 | * |
| 1709 | * Returns: <void> |
| 1710 | */ |
| 1711 | static void |
| 1712 | lf_adjust_assertion(struct lockf *block) |
| 1713 | { |
| 1714 | boolean_t drop_boost = TRUE; |
| 1715 | struct lockf *next; |
| 1716 | |
| 1717 | /* Return if the lock is not boosted */ |
| 1718 | if (block->lf_boosted == LF_NOT_BOOSTED) { |
| 1719 | return; |
| 1720 | } |
| 1721 | |
| 1722 | TAILQ_FOREACH(next, &block->lf_blkhd, lf_block) { |
| 1723 | /* Check if block and next are same type of locks */ |
| 1724 | if (((block->lf_flags & next->lf_flags & F_POSIX) != 0) || |
| 1725 | ((block->lf_flags & next->lf_flags & F_OFD_LOCK) && |
| 1726 | (block->lf_owner != next->lf_owner) && |
| 1727 | (NULL != block->lf_owner && NULL != next->lf_owner))) { |
| 1728 | /* Check if next would be boosting block */ |
| 1729 | if (task_is_importance_donor(task: proc_task(next->lf_owner)) && |
| 1730 | task_is_importance_receiver_type(task: proc_task(block->lf_owner))) { |
| 1731 | /* Found a lock boosting block */ |
| 1732 | drop_boost = FALSE; |
| 1733 | break; |
| 1734 | } |
| 1735 | } |
| 1736 | } |
| 1737 | |
| 1738 | if (drop_boost) { |
| 1739 | lf_drop_assertion(block); |
| 1740 | } |
| 1741 | } |
| 1742 | |
| 1743 | static void |
| 1744 | lf_boost_blocking_proc(struct lockf *lock, struct lockf *block) |
| 1745 | { |
| 1746 | task_t ltask = proc_task(lock->lf_owner); |
| 1747 | task_t btask = proc_task(block->lf_owner); |
| 1748 | |
| 1749 | /* |
| 1750 | * Check if ltask can donate importance. The |
| 1751 | * check of imp_donor bit is done without holding |
| 1752 | * any lock. The value may change after you read it, |
| 1753 | * but it is ok to boost a task while someone else is |
| 1754 | * unboosting you. |
| 1755 | * |
| 1756 | * TODO: Support live inheritance on file locks. |
| 1757 | */ |
| 1758 | if (task_is_importance_donor(task: ltask)) { |
| 1759 | LOCKF_DEBUG(LF_DBG_IMPINH, |
| 1760 | "lf: %d: attempt to boost pid %d that holds lock %p\n" , |
| 1761 | proc_pid(lock->lf_owner), proc_pid(block->lf_owner), block); |
| 1762 | |
| 1763 | if (block->lf_boosted != LF_BOOSTED && |
| 1764 | task_is_importance_receiver_type(task: btask)) { |
| 1765 | lf_hold_assertion(block_task: btask, block); |
| 1766 | } |
| 1767 | lf_jump_to_queue_head(block, lock); |
| 1768 | } |
| 1769 | } |
| 1770 | #endif /* IMPORTANCE_INHERITANCE */ |
| 1771 | |