| 1 | /* |
| 2 | * Copyright (c) 2000-2020 Apple Inc. All rights reserved. |
| 3 | * |
| 4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ |
| 5 | * |
| 6 | * This file contains Original Code and/or Modifications of Original Code |
| 7 | * as defined in and that are subject to the Apple Public Source License |
| 8 | * Version 2.0 (the 'License'). You may not use this file except in |
| 9 | * compliance with the License. The rights granted to you under the License |
| 10 | * may not be used to create, or enable the creation or redistribution of, |
| 11 | * unlawful or unlicensed copies of an Apple operating system, or to |
| 12 | * circumvent, violate, or enable the circumvention or violation of, any |
| 13 | * terms of an Apple operating system software license agreement. |
| 14 | * |
| 15 | * Please obtain a copy of the License at |
| 16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. |
| 17 | * |
| 18 | * The Original Code and all software distributed under the License are |
| 19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER |
| 20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
| 21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, |
| 22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
| 23 | * Please see the License for the specific language governing rights and |
| 24 | * limitations under the License. |
| 25 | * |
| 26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ |
| 27 | */ |
| 28 | /* Copyright (c) 1995, 1997 Apple Computer, Inc. All Rights Reserved */ |
| 29 | /* |
| 30 | * Copyright (c) 1982, 1986, 1989, 1991, 1993 |
| 31 | * The Regents of the University of California. All rights reserved. |
| 32 | * (c) UNIX System Laboratories, Inc. |
| 33 | * All or some portions of this file are derived from material licensed |
| 34 | * to the University of California by American Telephone and Telegraph |
| 35 | * Co. or Unix System Laboratories, Inc. and are reproduced herein with |
| 36 | * the permission of UNIX System Laboratories, Inc. |
| 37 | * |
| 38 | * Redistribution and use in source and binary forms, with or without |
| 39 | * modification, are permitted provided that the following conditions |
| 40 | * are met: |
| 41 | * 1. Redistributions of source code must retain the above copyright |
| 42 | * notice, this list of conditions and the following disclaimer. |
| 43 | * 2. Redistributions in binary form must reproduce the above copyright |
| 44 | * notice, this list of conditions and the following disclaimer in the |
| 45 | * documentation and/or other materials provided with the distribution. |
| 46 | * 3. All advertising materials mentioning features or use of this software |
| 47 | * must display the following acknowledgement: |
| 48 | * This product includes software developed by the University of |
| 49 | * California, Berkeley and its contributors. |
| 50 | * 4. Neither the name of the University nor the names of its contributors |
| 51 | * may be used to endorse or promote products derived from this software |
| 52 | * without specific prior written permission. |
| 53 | * |
| 54 | * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND |
| 55 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 56 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 57 | * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE |
| 58 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
| 59 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
| 60 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| 61 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
| 62 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
| 63 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
| 64 | * SUCH DAMAGE. |
| 65 | * |
| 66 | * @(#)kern_fork.c 8.8 (Berkeley) 2/14/95 |
| 67 | */ |
| 68 | /* |
| 69 | * NOTICE: This file was modified by McAfee Research in 2004 to introduce |
| 70 | * support for mandatory and extensible security protections. This notice |
| 71 | * is included in support of clause 2.2 (b) of the Apple Public License, |
| 72 | * Version 2.0. |
| 73 | */ |
| 74 | /* |
| 75 | * NOTICE: This file was modified by SPARTA, Inc. in 2005 to introduce |
| 76 | * support for mandatory and extensible security protections. This notice |
| 77 | * is included in support of clause 2.2 (b) of the Apple Public License, |
| 78 | * Version 2.0. |
| 79 | */ |
| 80 | |
| 81 | #include <kern/assert.h> |
| 82 | #include <kern/bits.h> |
| 83 | #include <sys/param.h> |
| 84 | #include <sys/systm.h> |
| 85 | #include <sys/filedesc.h> |
| 86 | #include <sys/kernel.h> |
| 87 | #include <sys/malloc.h> |
| 88 | #include <sys/proc_internal.h> |
| 89 | #include <sys/kauth.h> |
| 90 | #include <sys/user.h> |
| 91 | #include <sys/reason.h> |
| 92 | #include <sys/resourcevar.h> |
| 93 | #include <sys/vnode_internal.h> |
| 94 | #include <sys/file_internal.h> |
| 95 | #include <sys/acct.h> |
| 96 | #include <sys/codesign.h> |
| 97 | #include <sys/sysent.h> |
| 98 | #include <sys/sysproto.h> |
| 99 | #include <sys/ulock.h> |
| 100 | #if CONFIG_PERSONAS |
| 101 | #include <sys/persona.h> |
| 102 | #endif |
| 103 | #include <sys/doc_tombstone.h> |
| 104 | #if CONFIG_DTRACE |
| 105 | /* Do not include dtrace.h, it redefines kmem_[alloc/free] */ |
| 106 | extern void (*dtrace_proc_waitfor_exec_ptr)(proc_t); |
| 107 | extern void dtrace_proc_fork(proc_t, proc_t, int); |
| 108 | |
| 109 | /* |
| 110 | * Since dtrace_proc_waitfor_exec_ptr can be added/removed in dtrace_subr.c, |
| 111 | * we will store its value before actually calling it. |
| 112 | */ |
| 113 | static void (*dtrace_proc_waitfor_hook)(proc_t) = NULL; |
| 114 | |
| 115 | #include <sys/dtrace_ptss.h> |
| 116 | #endif |
| 117 | |
| 118 | #include <security/audit/audit.h> |
| 119 | |
| 120 | #include <mach/mach_types.h> |
| 121 | #include <kern/coalition.h> |
| 122 | #include <kern/kern_types.h> |
| 123 | #include <kern/kalloc.h> |
| 124 | #include <kern/mach_param.h> |
| 125 | #include <kern/task.h> |
| 126 | #include <kern/thread.h> |
| 127 | #include <kern/thread_call.h> |
| 128 | #include <kern/zalloc.h> |
| 129 | |
| 130 | #if CONFIG_MACF |
| 131 | #include <security/mac_framework.h> |
| 132 | #include <security/mac_mach_internal.h> |
| 133 | #endif |
| 134 | |
| 135 | #include <vm/vm_map.h> |
| 136 | #include <vm/vm_protos.h> |
| 137 | #include <vm/vm_shared_region.h> |
| 138 | |
| 139 | #include <sys/shm_internal.h> /* for shmfork() */ |
| 140 | #include <mach/task.h> /* for thread_create() */ |
| 141 | #include <mach/thread_act.h> /* for thread_resume() */ |
| 142 | |
| 143 | #include <sys/sdt.h> |
| 144 | |
| 145 | #if CONFIG_MEMORYSTATUS |
| 146 | #include <sys/kern_memorystatus.h> |
| 147 | #endif |
| 148 | |
| 149 | static const uint64_t startup_serial_num_procs = 300; |
| 150 | bool startup_serial_logging_active = true; |
| 151 | |
| 152 | /* XXX routines which should have Mach prototypes, but don't */ |
| 153 | extern void act_thread_catt(void *ctx); |
| 154 | void thread_set_child(thread_t child, int pid); |
| 155 | boolean_t thread_is_active(thread_t thread); |
| 156 | void *act_thread_csave(void); |
| 157 | extern boolean_t task_is_exec_copy(task_t); |
| 158 | int nextpidversion = 0; |
| 159 | |
| 160 | void ipc_task_enable(task_t task); |
| 161 | |
| 162 | proc_t forkproc(proc_t, cloneproc_flags_t); |
| 163 | void forkproc_free(proc_t); |
| 164 | thread_t fork_create_child(task_t parent_task, |
| 165 | coalition_t *parent_coalitions, |
| 166 | proc_t child, |
| 167 | int is_64bit_addr, |
| 168 | int is_64bit_data, |
| 169 | cloneproc_flags_t clone_flags); |
| 170 | |
| 171 | __private_extern__ const size_t uthread_size = sizeof(struct uthread); |
| 172 | static LCK_GRP_DECLARE(rethrottle_lock_grp, "rethrottle" ); |
| 173 | |
| 174 | os_refgrp_decl(, p_refgrp, "proc" , NULL); |
| 175 | |
| 176 | extern const size_t task_alignment; |
| 177 | const size_t proc_alignment = _Alignof(struct proc); |
| 178 | |
| 179 | extern size_t task_struct_size; |
| 180 | size_t proc_struct_size = sizeof(struct proc); |
| 181 | size_t proc_and_task_size; |
| 182 | |
| 183 | ZONE_DECLARE_ID(ZONE_ID_PROC_TASK, struct proc); |
| 184 | SECURITY_READ_ONLY_LATE(zone_t) proc_task_zone; |
| 185 | |
| 186 | KALLOC_TYPE_DEFINE(proc_stats_zone, struct pstats, KT_DEFAULT); |
| 187 | |
| 188 | /* |
| 189 | * fork1 |
| 190 | * |
| 191 | * Description: common code used by all new process creation other than the |
| 192 | * bootstrap of the initial process on the system |
| 193 | * |
| 194 | * Parameters: parent_proc parent process of the process being |
| 195 | * child_threadp pointer to location to receive the |
| 196 | * Mach thread_t of the child process |
| 197 | * created |
| 198 | * kind kind of creation being requested |
| 199 | * coalitions if spawn, the set of coalitions the |
| 200 | * child process should join, or NULL to |
| 201 | * inherit the parent's. On non-spawns, |
| 202 | * this param is ignored and the child |
| 203 | * always inherits the parent's |
| 204 | * coalitions. |
| 205 | * |
| 206 | * Notes: Permissable values for 'kind': |
| 207 | * |
| 208 | * PROC_CREATE_FORK Create a complete process which will |
| 209 | * return actively running in both the |
| 210 | * parent and the child; the child copies |
| 211 | * the parent address space. |
| 212 | * PROC_CREATE_SPAWN Create a complete process which will |
| 213 | * return actively running in the parent |
| 214 | * only after returning actively running |
| 215 | * in the child; the child address space |
| 216 | * is newly created by an image activator, |
| 217 | * after which the child is run. |
| 218 | * |
| 219 | * At first it may seem strange that we return the child thread |
| 220 | * address rather than process structure, since the process is |
| 221 | * the only part guaranteed to be "new"; however, since we do |
| 222 | * not actualy adjust other references between Mach and BSD, this |
| 223 | * is the only method which guarantees us the ability to get |
| 224 | * back to the other information. |
| 225 | */ |
| 226 | int |
| 227 | fork1(proc_t parent_proc, thread_t *child_threadp, int kind, coalition_t *coalitions) |
| 228 | { |
| 229 | proc_t child_proc = NULL; /* set in switch, but compiler... */ |
| 230 | thread_t child_thread = NULL; |
| 231 | uid_t uid; |
| 232 | size_t count; |
| 233 | int err = 0; |
| 234 | int spawn = 0; |
| 235 | rlim_t rlimit_nproc_cur; |
| 236 | |
| 237 | /* |
| 238 | * Although process entries are dynamically created, we still keep |
| 239 | * a global limit on the maximum number we will create. Don't allow |
| 240 | * a nonprivileged user to use the last process; don't let root |
| 241 | * exceed the limit. The variable nprocs is the current number of |
| 242 | * processes, maxproc is the limit. |
| 243 | */ |
| 244 | uid = kauth_getruid(); |
| 245 | proc_list_lock(); |
| 246 | if ((nprocs >= maxproc - 1 && uid != 0) || nprocs >= maxproc) { |
| 247 | #if (DEVELOPMENT || DEBUG) && !defined(XNU_TARGET_OS_OSX) |
| 248 | /* |
| 249 | * On the development kernel, panic so that the fact that we hit |
| 250 | * the process limit is obvious, as this may very well wedge the |
| 251 | * system. |
| 252 | */ |
| 253 | panic("The process table is full; parent pid=%d" , proc_getpid(parent_proc)); |
| 254 | #endif |
| 255 | proc_list_unlock(); |
| 256 | tablefull("proc" ); |
| 257 | return EAGAIN; |
| 258 | } |
| 259 | proc_list_unlock(); |
| 260 | |
| 261 | /* |
| 262 | * Increment the count of procs running with this uid. Don't allow |
| 263 | * a nonprivileged user to exceed their current limit, which is |
| 264 | * always less than what an rlim_t can hold. |
| 265 | * (locking protection is provided by list lock held in chgproccnt) |
| 266 | */ |
| 267 | count = chgproccnt(uid, diff: 1); |
| 268 | rlimit_nproc_cur = proc_limitgetcur(p: parent_proc, RLIMIT_NPROC); |
| 269 | if (uid != 0 && |
| 270 | (rlim_t)count > rlimit_nproc_cur) { |
| 271 | #if (DEVELOPMENT || DEBUG) && !defined(XNU_TARGET_OS_OSX) |
| 272 | /* |
| 273 | * On the development kernel, panic so that the fact that we hit |
| 274 | * the per user process limit is obvious. This may be less dire |
| 275 | * than hitting the global process limit, but we cannot rely on |
| 276 | * that. |
| 277 | */ |
| 278 | panic("The per-user process limit has been hit; parent pid=%d, uid=%d" , proc_getpid(parent_proc), uid); |
| 279 | #endif |
| 280 | err = EAGAIN; |
| 281 | goto bad; |
| 282 | } |
| 283 | |
| 284 | #if CONFIG_MACF |
| 285 | /* |
| 286 | * Determine if MAC policies applied to the process will allow |
| 287 | * it to fork. This is an advisory-only check. |
| 288 | */ |
| 289 | err = mac_proc_check_fork(proc: parent_proc); |
| 290 | if (err != 0) { |
| 291 | goto bad; |
| 292 | } |
| 293 | #endif |
| 294 | |
| 295 | switch (kind) { |
| 296 | case PROC_CREATE_SPAWN: |
| 297 | /* |
| 298 | * A spawned process differs from a forked process in that |
| 299 | * the spawned process does not carry around the parents |
| 300 | * baggage with regard to address space copying, dtrace, |
| 301 | * and so on. |
| 302 | */ |
| 303 | spawn = 1; |
| 304 | |
| 305 | OS_FALLTHROUGH; |
| 306 | |
| 307 | case PROC_CREATE_FORK: |
| 308 | /* |
| 309 | * When we clone the parent process, we are going to inherit |
| 310 | * its task attributes and memory, since when we fork, we |
| 311 | * will, in effect, create a duplicate of it, with only minor |
| 312 | * differences. Contrarily, spawned processes do not inherit. |
| 313 | */ |
| 314 | if ((child_thread = cloneproc(proc_task(parent_proc), |
| 315 | spawn ? coalitions : NULL, |
| 316 | parent_proc, |
| 317 | spawn ? CLONEPROC_SPAWN : CLONEPROC_FORK)) == NULL) { |
| 318 | /* Failed to create thread */ |
| 319 | err = EAGAIN; |
| 320 | goto bad; |
| 321 | } |
| 322 | |
| 323 | /* child_proc = child_thread->task->proc; */ |
| 324 | child_proc = (proc_t)(get_bsdtask_info(get_threadtask(child_thread))); |
| 325 | |
| 326 | if (!spawn) { |
| 327 | /* Copy current thread state into the child thread (only for fork) */ |
| 328 | thread_dup(child_thread); |
| 329 | } |
| 330 | |
| 331 | // XXX BEGIN: wants to move to be common code (and safe) |
| 332 | #if CONFIG_MACF |
| 333 | /* |
| 334 | * allow policies to associate the credential/label that |
| 335 | * we referenced from the parent ... with the child |
| 336 | * JMM - this really isn't safe, as we can drop that |
| 337 | * association without informing the policy in other |
| 338 | * situations (keep long enough to get policies changed) |
| 339 | */ |
| 340 | mac_cred_label_associate_fork(cred: proc_ucred_unsafe(p: child_proc), |
| 341 | child: child_proc); |
| 342 | #endif |
| 343 | |
| 344 | /* |
| 345 | * Propogate change of PID - may get new cred if auditing. |
| 346 | */ |
| 347 | set_security_token(p: child_proc, cred: proc_ucred_unsafe(p: child_proc)); |
| 348 | |
| 349 | AUDIT_ARG(pid, proc_getpid(child_proc)); |
| 350 | |
| 351 | // XXX END: wants to move to be common code (and safe) |
| 352 | |
| 353 | /* |
| 354 | * Blow thread state information; this is what gives the child |
| 355 | * process its "return" value from a fork() call. |
| 356 | * |
| 357 | * Note: this should probably move to fork() proper, since it |
| 358 | * is not relevent to spawn, and the value won't matter |
| 359 | * until we resume the child there. If you are in here |
| 360 | * refactoring code, consider doing this at the same time. |
| 361 | */ |
| 362 | thread_set_child(child: child_thread, pid: proc_getpid(child_proc)); |
| 363 | |
| 364 | child_proc->p_acflag = AFORK; /* forked but not exec'ed */ |
| 365 | |
| 366 | #if CONFIG_DTRACE |
| 367 | dtrace_proc_fork(parent_proc, child_proc, spawn); |
| 368 | #endif /* CONFIG_DTRACE */ |
| 369 | if (!spawn) { |
| 370 | /* |
| 371 | * Of note, we need to initialize the bank context behind |
| 372 | * the protection of the proc_trans lock to prevent a race with exit. |
| 373 | */ |
| 374 | task_bank_init(task: get_threadtask(child_thread)); |
| 375 | } |
| 376 | |
| 377 | break; |
| 378 | |
| 379 | default: |
| 380 | panic("fork1 called with unknown kind %d" , kind); |
| 381 | break; |
| 382 | } |
| 383 | |
| 384 | |
| 385 | /* return the thread pointer to the caller */ |
| 386 | *child_threadp = child_thread; |
| 387 | |
| 388 | bad: |
| 389 | /* |
| 390 | * In the error case, we return a 0 value for the returned pid (but |
| 391 | * it is ignored in the trampoline due to the error return); this |
| 392 | * is probably not necessary. |
| 393 | */ |
| 394 | if (err) { |
| 395 | (void)chgproccnt(uid, diff: -1); |
| 396 | } |
| 397 | |
| 398 | return err; |
| 399 | } |
| 400 | |
| 401 | |
| 402 | |
| 403 | |
| 404 | /* |
| 405 | * fork_create_child |
| 406 | * |
| 407 | * Description: Common operations associated with the creation of a child |
| 408 | * process. Return with new task and first thread's control port movable |
| 409 | * and not pinned. |
| 410 | * |
| 411 | * Parameters: parent_task parent task |
| 412 | * parent_coalitions parent's set of coalitions |
| 413 | * child_proc child process |
| 414 | * inherit_memory TRUE, if the parents address space is |
| 415 | * to be inherited by the child |
| 416 | * is_64bit_addr TRUE, if the child being created will |
| 417 | * be associated with a 64 bit address space |
| 418 | * is_64bit_data TRUE if the child being created will use a |
| 419 | * 64-bit register state |
| 420 | * in_exec TRUE, if called from execve or posix spawn set exec |
| 421 | * FALSE, if called from fork or vfexec |
| 422 | * |
| 423 | * Note: This code is called in the fork() case, from the execve() call |
| 424 | * graph, from the posix_spawn() call graph (which implicitly |
| 425 | * includes a vfork() equivalent call, and in the system |
| 426 | * bootstrap case. |
| 427 | * |
| 428 | * It creates a new task and thread (and as a side effect of the |
| 429 | * thread creation, a uthread) in the parent coalition set, which is |
| 430 | * then associated with the process 'child'. If the parent |
| 431 | * process address space is to be inherited, then a flag |
| 432 | * indicates that the newly created task should inherit this from |
| 433 | * the child task. |
| 434 | * |
| 435 | * As a special concession to bootstrapping the initial process |
| 436 | * in the system, it's possible for 'parent_task' to be TASK_NULL; |
| 437 | * in this case, 'inherit_memory' MUST be FALSE. |
| 438 | */ |
| 439 | thread_t |
| 440 | fork_create_child(task_t parent_task, |
| 441 | coalition_t *parent_coalitions, |
| 442 | proc_t child_proc, |
| 443 | int is_64bit_addr, |
| 444 | int is_64bit_data, |
| 445 | cloneproc_flags_t clone_flags) |
| 446 | { |
| 447 | thread_t child_thread = NULL; |
| 448 | task_t child_task; |
| 449 | kern_return_t result; |
| 450 | proc_ro_t proc_ro; |
| 451 | bool inherit_memory = !!(clone_flags & CLONEPROC_FORK); |
| 452 | bool in_exec = !!(clone_flags & CLONEPROC_EXEC); |
| 453 | /* |
| 454 | * Exec complete hook should be called for spawn and exec, but not for fork. |
| 455 | */ |
| 456 | uint8_t returnwaitflags = (!inherit_memory ? TRW_LEXEC_COMPLETE : 0) | |
| 457 | (TRW_LRETURNWAIT | TRW_LRETURNWAITER); |
| 458 | |
| 459 | proc_ro = proc_get_ro(p: child_proc); |
| 460 | if (proc_ro_task(pr: proc_ro) != NULL) { |
| 461 | panic("Proc_ro_task for newly created proc %p is not NULL" , child_proc); |
| 462 | } |
| 463 | |
| 464 | child_task = proc_get_task_raw(proc: child_proc); |
| 465 | |
| 466 | /* |
| 467 | * Create a new task for the child process, IPC access to the new task will |
| 468 | * be set up after task has been fully initialized. |
| 469 | */ |
| 470 | result = task_create_internal(parent_task, |
| 471 | proc_ro, |
| 472 | parent_coalitions, |
| 473 | inherit_memory, |
| 474 | is_64bit: is_64bit_addr, |
| 475 | is_64bit_data, |
| 476 | TF_NONE, |
| 477 | TF_NONE, |
| 478 | procflags: in_exec ? TPF_EXEC_COPY : TPF_NONE, /* Mark the task exec copy if in execve */ |
| 479 | t_returnwaitflags: returnwaitflags, /* All created threads will wait in task_wait_to_return */ |
| 480 | child_task); |
| 481 | if (result != KERN_SUCCESS) { |
| 482 | printf("%s: task_create_internal failed. Code: %d\n" , |
| 483 | __func__, result); |
| 484 | goto bad; |
| 485 | } |
| 486 | |
| 487 | /* Set the child proc process to child task */ |
| 488 | proc_set_task(child_proc, child_task); |
| 489 | |
| 490 | /* Set child task process to child proc */ |
| 491 | set_bsdtask_info(child_task, child_proc); |
| 492 | |
| 493 | /* Propagate CPU limit timer from parent */ |
| 494 | if (timerisset(&child_proc->p_rlim_cpu)) { |
| 495 | task_vtimer_set(task: child_task, TASK_VTIMER_RLIM); |
| 496 | } |
| 497 | |
| 498 | /* |
| 499 | * Set child process BSD visible scheduler priority if nice value |
| 500 | * inherited from parent |
| 501 | */ |
| 502 | if (child_proc->p_nice != 0) { |
| 503 | resetpriority(child_proc); |
| 504 | } |
| 505 | |
| 506 | /* |
| 507 | * Create main thread for the child process. Its control port is not immovable/pinned |
| 508 | * until main_thread_set_immovable_pinned(). |
| 509 | * |
| 510 | * The new thread is waiting on the event triggered by 'task_clear_return_wait' |
| 511 | */ |
| 512 | result = main_thread_create_waiting(task: child_task, |
| 513 | continuation: (thread_continue_t)task_wait_to_return, |
| 514 | event: task_get_return_wait_event(task: child_task), |
| 515 | new_thread: &child_thread); |
| 516 | |
| 517 | if (result != KERN_SUCCESS) { |
| 518 | printf("%s: thread_create failed. Code: %d\n" , |
| 519 | __func__, result); |
| 520 | task_deallocate(child_task); |
| 521 | child_task = NULL; |
| 522 | } |
| 523 | |
| 524 | /* |
| 525 | * Tag thread as being the first thread in its task. |
| 526 | */ |
| 527 | thread_set_tag(thread: child_thread, tag: THREAD_TAG_MAINTHREAD); |
| 528 | |
| 529 | bad: |
| 530 | thread_yield_internal(interval: 1); |
| 531 | |
| 532 | return child_thread; |
| 533 | } |
| 534 | |
| 535 | |
| 536 | /* |
| 537 | * fork |
| 538 | * |
| 539 | * Description: fork system call. |
| 540 | * |
| 541 | * Parameters: parent Parent process to fork |
| 542 | * uap (void) [unused] |
| 543 | * retval Return value |
| 544 | * |
| 545 | * Returns: 0 Success |
| 546 | * EAGAIN Resource unavailable, try again |
| 547 | * |
| 548 | * Notes: Attempts to create a new child process which inherits state |
| 549 | * from the parent process. If successful, the call returns |
| 550 | * having created an initially suspended child process with an |
| 551 | * extra Mach task and thread reference, for which the thread |
| 552 | * is initially suspended. Until we resume the child process, |
| 553 | * it is not yet running. |
| 554 | * |
| 555 | * The return information to the child is contained in the |
| 556 | * thread state structure of the new child, and does not |
| 557 | * become visible to the child through a normal return process, |
| 558 | * since it never made the call into the kernel itself in the |
| 559 | * first place. |
| 560 | * |
| 561 | * After resuming the thread, this function returns directly to |
| 562 | * the parent process which invoked the fork() system call. |
| 563 | * |
| 564 | * Important: The child thread_resume occurs before the parent returns; |
| 565 | * depending on scheduling latency, this means that it is not |
| 566 | * deterministic as to whether the parent or child is scheduled |
| 567 | * to run first. It is entirely possible that the child could |
| 568 | * run to completion prior to the parent running. |
| 569 | */ |
| 570 | int |
| 571 | fork(proc_t parent_proc, __unused struct fork_args *uap, int32_t *retval) |
| 572 | { |
| 573 | thread_t child_thread; |
| 574 | int err; |
| 575 | |
| 576 | retval[1] = 0; /* flag parent return for user space */ |
| 577 | |
| 578 | if ((err = fork1(parent_proc, child_threadp: &child_thread, PROC_CREATE_FORK, NULL)) == 0) { |
| 579 | task_t child_task; |
| 580 | proc_t child_proc; |
| 581 | |
| 582 | /* Return to the parent */ |
| 583 | child_proc = (proc_t)get_bsdthreadtask_info(child_thread); |
| 584 | retval[0] = proc_getpid(child_proc); |
| 585 | |
| 586 | child_task = (task_t)get_threadtask(child_thread); |
| 587 | assert(child_task != TASK_NULL); |
| 588 | |
| 589 | /* task_control_port_options has been inherited from parent, apply it */ |
| 590 | task_set_immovable_pinned(task: child_task); |
| 591 | main_thread_set_immovable_pinned(thread: child_thread); |
| 592 | |
| 593 | /* |
| 594 | * Since the task ports for this new task are now set to be immovable, |
| 595 | * we can enable them. |
| 596 | */ |
| 597 | ipc_task_enable(task: get_threadtask(child_thread)); |
| 598 | |
| 599 | /* |
| 600 | * Drop the signal lock on the child which was taken on our |
| 601 | * behalf by forkproc()/cloneproc() to prevent signals being |
| 602 | * received by the child in a partially constructed state. |
| 603 | */ |
| 604 | proc_signalend(child_proc, locked: 0); |
| 605 | proc_transend(child_proc, locked: 0); |
| 606 | |
| 607 | /* flag the fork has occurred */ |
| 608 | proc_knote(p: parent_proc, NOTE_FORK | proc_getpid(child_proc)); |
| 609 | DTRACE_PROC1(create, proc_t, child_proc); |
| 610 | |
| 611 | #if CONFIG_DTRACE |
| 612 | if ((dtrace_proc_waitfor_hook = dtrace_proc_waitfor_exec_ptr) != NULL) { |
| 613 | (*dtrace_proc_waitfor_hook)(child_proc); |
| 614 | } |
| 615 | #endif |
| 616 | |
| 617 | /* |
| 618 | * If current process died during the fork, the child would contain |
| 619 | * non consistent vmmap, kill the child and reap it internally. |
| 620 | */ |
| 621 | if (parent_proc->p_lflag & P_LEXIT || !thread_is_active(thread: current_thread())) { |
| 622 | task_terminate_internal(task: child_task); |
| 623 | proc_list_lock(); |
| 624 | child_proc->p_listflag |= P_LIST_DEADPARENT; |
| 625 | proc_list_unlock(); |
| 626 | } |
| 627 | |
| 628 | /* "Return" to the child */ |
| 629 | task_clear_return_wait(task: get_threadtask(child_thread), TCRW_CLEAR_ALL_WAIT); |
| 630 | |
| 631 | /* drop the extra references we got during the creation */ |
| 632 | task_deallocate(child_task); |
| 633 | thread_deallocate(thread: child_thread); |
| 634 | } |
| 635 | |
| 636 | return err; |
| 637 | } |
| 638 | |
| 639 | |
| 640 | /* |
| 641 | * cloneproc |
| 642 | * |
| 643 | * Description: Create a new process from a specified process. |
| 644 | * |
| 645 | * Parameters: parent_task The parent task to be cloned, or |
| 646 | * TASK_NULL is task characteristics |
| 647 | * are not to be inherited |
| 648 | * be cloned, or TASK_NULL if the new |
| 649 | * task is not to inherit the VM |
| 650 | * characteristics of the parent |
| 651 | * parent_proc The parent process to be cloned |
| 652 | * clone_flags Clone flags to specify if the cloned |
| 653 | * process should inherit memory, |
| 654 | * marked as memory stat internal, |
| 655 | * or if the cloneproc is called for exec. |
| 656 | * |
| 657 | * Returns: !NULL pointer to new child thread |
| 658 | * NULL Failure (unspecified) |
| 659 | * |
| 660 | * Note: On return newly created child process has signal lock held |
| 661 | * to block delivery of signal to it if called with lock set. |
| 662 | * fork() code needs to explicity remove this lock before |
| 663 | * signals can be delivered |
| 664 | * |
| 665 | * In the case of bootstrap, this function can be called from |
| 666 | * bsd_utaskbootstrap() in order to bootstrap the first process; |
| 667 | * the net effect is to provide a uthread structure for the |
| 668 | * kernel process associated with the kernel task. |
| 669 | * |
| 670 | * XXX: Tristating using the value parent_task as the major key |
| 671 | * and inherit_memory as the minor key is something we should |
| 672 | * refactor later; we owe the current semantics, ultimately, |
| 673 | * to the semantics of task_create_internal. For now, we will |
| 674 | * live with this being somewhat awkward. |
| 675 | */ |
| 676 | thread_t |
| 677 | cloneproc(task_t parent_task, coalition_t *parent_coalitions, proc_t parent_proc, cloneproc_flags_t clone_flags) |
| 678 | { |
| 679 | #if !CONFIG_MEMORYSTATUS |
| 680 | #pragma unused(cloning_initproc) |
| 681 | #endif |
| 682 | task_t child_task; |
| 683 | proc_t child_proc; |
| 684 | thread_t child_thread = NULL; |
| 685 | bool cloning_initproc = !!(clone_flags & CLONEPROC_INITPROC); |
| 686 | bool in_exec = !!(clone_flags & CLONEPROC_EXEC); |
| 687 | |
| 688 | if ((child_proc = forkproc(parent_proc, clone_flags)) == NULL) { |
| 689 | /* Failed to allocate new process */ |
| 690 | goto bad; |
| 691 | } |
| 692 | |
| 693 | /* |
| 694 | * In the case where the parent_task is TASK_NULL (during the init path) |
| 695 | * we make the assumption that the register size will be the same as the |
| 696 | * address space size since there's no way to determine the possible |
| 697 | * register size until an image is exec'd. |
| 698 | * |
| 699 | * The only architecture that has different address space and register sizes |
| 700 | * (arm64_32) isn't being used within kernel-space, so the above assumption |
| 701 | * always holds true for the init path. |
| 702 | */ |
| 703 | const int parent_64bit_addr = parent_proc->p_flag & P_LP64; |
| 704 | const int parent_64bit_data = (parent_task == TASK_NULL) ? parent_64bit_addr : task_get_64bit_data(task: parent_task); |
| 705 | |
| 706 | child_thread = fork_create_child(parent_task, |
| 707 | parent_coalitions, |
| 708 | child_proc, |
| 709 | is_64bit_addr: parent_64bit_addr, |
| 710 | is_64bit_data: parent_64bit_data, |
| 711 | clone_flags); |
| 712 | |
| 713 | if (child_thread == NULL) { |
| 714 | /* |
| 715 | * Failed to create thread; now we must deconstruct the new |
| 716 | * process previously obtained from forkproc(). |
| 717 | */ |
| 718 | forkproc_free(child_proc); |
| 719 | goto bad; |
| 720 | } |
| 721 | |
| 722 | child_task = get_threadtask(child_thread); |
| 723 | if (parent_64bit_addr) { |
| 724 | OSBitOrAtomic(P_LP64, (UInt32 *)&child_proc->p_flag); |
| 725 | get_bsdthread_info(child_thread)->uu_flag |= UT_LP64; |
| 726 | } else { |
| 727 | OSBitAndAtomic(~((uint32_t)P_LP64), (UInt32 *)&child_proc->p_flag); |
| 728 | get_bsdthread_info(child_thread)->uu_flag &= ~UT_LP64; |
| 729 | } |
| 730 | |
| 731 | #if CONFIG_MEMORYSTATUS |
| 732 | if (cloning_initproc || |
| 733 | (in_exec && (parent_proc->p_memstat_state & P_MEMSTAT_INTERNAL))) { |
| 734 | proc_list_lock(); |
| 735 | child_proc->p_memstat_state |= P_MEMSTAT_INTERNAL; |
| 736 | child_proc->p_memstat_effectivepriority = JETSAM_PRIORITY_INTERNAL; |
| 737 | child_proc->p_memstat_requestedpriority = JETSAM_PRIORITY_INTERNAL; |
| 738 | proc_list_unlock(); |
| 739 | } |
| 740 | if (in_exec && parent_proc->p_memstat_relaunch_flags != P_MEMSTAT_RELAUNCH_UNKNOWN) { |
| 741 | memorystatus_relaunch_flags_update(p: child_proc, relaunch_flags: parent_proc->p_memstat_relaunch_flags); |
| 742 | } |
| 743 | #endif |
| 744 | |
| 745 | /* make child visible */ |
| 746 | pinsertchild(parent: parent_proc, child: child_proc, in_exec); |
| 747 | |
| 748 | /* |
| 749 | * Make child runnable, set start time. |
| 750 | */ |
| 751 | child_proc->p_stat = SRUN; |
| 752 | bad: |
| 753 | return child_thread; |
| 754 | } |
| 755 | |
| 756 | void |
| 757 | proc_set_sigact(proc_t p, int sig, user_addr_t sigact) |
| 758 | { |
| 759 | assert((sig > 0) && (sig < NSIG)); |
| 760 | |
| 761 | p->p_sigacts.ps_sigact[sig] = sigact; |
| 762 | } |
| 763 | |
| 764 | void |
| 765 | proc_set_trampact(proc_t p, int sig, user_addr_t trampact) |
| 766 | { |
| 767 | assert((sig > 0) && (sig < NSIG)); |
| 768 | |
| 769 | p->p_sigacts.ps_trampact[sig] = trampact; |
| 770 | } |
| 771 | |
| 772 | void |
| 773 | proc_set_sigact_trampact(proc_t p, int sig, user_addr_t sigact, user_addr_t trampact) |
| 774 | { |
| 775 | assert((sig > 0) && (sig < NSIG)); |
| 776 | |
| 777 | p->p_sigacts.ps_sigact[sig] = sigact; |
| 778 | p->p_sigacts.ps_trampact[sig] = trampact; |
| 779 | } |
| 780 | |
| 781 | void |
| 782 | proc_reset_sigact(proc_t p, sigset_t sigs) |
| 783 | { |
| 784 | user_addr_t *sigacts = p->p_sigacts.ps_sigact; |
| 785 | int nc; |
| 786 | |
| 787 | while (sigs) { |
| 788 | nc = ffs((unsigned int)sigs); |
| 789 | if (sigacts[nc] != SIG_DFL) { |
| 790 | sigacts[nc] = SIG_DFL; |
| 791 | } |
| 792 | sigs &= ~sigmask(nc); |
| 793 | } |
| 794 | } |
| 795 | |
| 796 | /* |
| 797 | * Destroy a process structure that resulted from a call to forkproc(), but |
| 798 | * which must be returned to the system because of a subsequent failure |
| 799 | * preventing it from becoming active. |
| 800 | * |
| 801 | * Parameters: p The incomplete process from forkproc() |
| 802 | * |
| 803 | * Returns: (void) |
| 804 | * |
| 805 | * Note: This function should only be used in an error handler following |
| 806 | * a call to forkproc(). |
| 807 | * |
| 808 | * Operations occur in reverse order of those in forkproc(). |
| 809 | */ |
| 810 | void |
| 811 | forkproc_free(proc_t p) |
| 812 | { |
| 813 | struct pgrp *pg; |
| 814 | |
| 815 | #if CONFIG_PERSONAS |
| 816 | persona_proc_drop(p); |
| 817 | #endif /* CONFIG_PERSONAS */ |
| 818 | |
| 819 | #if PSYNCH |
| 820 | pth_proc_hashdelete(p); |
| 821 | #endif /* PSYNCH */ |
| 822 | |
| 823 | /* We held signal and a transition locks; drop them */ |
| 824 | proc_signalend(p, locked: 0); |
| 825 | proc_transend(p, locked: 0); |
| 826 | |
| 827 | /* |
| 828 | * If we have our own copy of the resource limits structure, we |
| 829 | * need to free it. If it's a shared copy, we need to drop our |
| 830 | * reference on it. |
| 831 | */ |
| 832 | proc_limitdrop(p); |
| 833 | |
| 834 | #if SYSV_SHM |
| 835 | /* Need to drop references to the shared memory segment(s), if any */ |
| 836 | if (p->vm_shm) { |
| 837 | /* |
| 838 | * Use shmexec(): we have no address space, so no mappings |
| 839 | * |
| 840 | * XXX Yes, the routine is badly named. |
| 841 | */ |
| 842 | shmexec(p); |
| 843 | } |
| 844 | #endif |
| 845 | |
| 846 | /* Need to undo the effects of the fdt_fork(), if any */ |
| 847 | fdt_invalidate(p); |
| 848 | fdt_destroy(p); |
| 849 | |
| 850 | /* |
| 851 | * Drop the reference on a text vnode pointer, if any |
| 852 | * XXX This code is broken in forkproc(); see <rdar://4256419>; |
| 853 | * XXX if anyone ever uses this field, we will be extremely unhappy. |
| 854 | */ |
| 855 | if (p->p_textvp) { |
| 856 | vnode_rele(vp: p->p_textvp); |
| 857 | p->p_textvp = NULL; |
| 858 | } |
| 859 | |
| 860 | /* Update the audit session proc count */ |
| 861 | AUDIT_SESSION_PROCEXIT(p); |
| 862 | |
| 863 | lck_mtx_destroy(lck: &p->p_mlock, grp: &proc_mlock_grp); |
| 864 | lck_mtx_destroy(lck: &p->p_ucred_mlock, grp: &proc_ucred_mlock_grp); |
| 865 | #if CONFIG_AUDIT |
| 866 | lck_mtx_destroy(lck: &p->p_audit_mlock, grp: &proc_ucred_mlock_grp); |
| 867 | #endif /* CONFIG_AUDIT */ |
| 868 | #if CONFIG_DTRACE |
| 869 | lck_mtx_destroy(lck: &p->p_dtrace_sprlock, grp: &proc_lck_grp); |
| 870 | #endif |
| 871 | lck_spin_destroy(lck: &p->p_slock, grp: &proc_slock_grp); |
| 872 | |
| 873 | proc_list_lock(); |
| 874 | /* Decrement the count of processes in the system */ |
| 875 | nprocs--; |
| 876 | |
| 877 | /* quit the group */ |
| 878 | pg = pgrp_leave_locked(p); |
| 879 | |
| 880 | /* Take it out of process hash */ |
| 881 | assert((os_ref_get_raw_mask(&p->p_refcount) >> P_REF_BITS) == 1); |
| 882 | assert((os_ref_get_raw_mask(&p->p_refcount) & P_REF_NEW) == P_REF_NEW); |
| 883 | os_atomic_xor(&p->p_refcount, P_REF_NEW | P_REF_DEAD, relaxed); |
| 884 | |
| 885 | /* Remove from hash if not a shadow proc */ |
| 886 | if (!proc_is_shadow(p)) { |
| 887 | phash_remove_locked(p); |
| 888 | } |
| 889 | |
| 890 | proc_list_unlock(); |
| 891 | |
| 892 | pgrp_rele(pgrp: pg); |
| 893 | |
| 894 | thread_call_free(call: p->p_rcall); |
| 895 | |
| 896 | /* Free allocated memory */ |
| 897 | zfree(proc_stats_zone, p->p_stats); |
| 898 | p->p_stats = NULL; |
| 899 | if (p->p_subsystem_root_path) { |
| 900 | zfree(ZV_NAMEI, p->p_subsystem_root_path); |
| 901 | p->p_subsystem_root_path = NULL; |
| 902 | } |
| 903 | |
| 904 | proc_checkdeadrefs(p); |
| 905 | proc_wait_release(p); |
| 906 | } |
| 907 | |
| 908 | |
| 909 | /* |
| 910 | * forkproc |
| 911 | * |
| 912 | * Description: Create a new process structure, given a parent process |
| 913 | * structure. |
| 914 | * |
| 915 | * Parameters: parent_proc The parent process |
| 916 | * |
| 917 | * Returns: !NULL The new process structure |
| 918 | * NULL Error (insufficient free memory) |
| 919 | * |
| 920 | * Note: When successful, the newly created process structure is |
| 921 | * partially initialized; if a caller needs to deconstruct the |
| 922 | * returned structure, they must call forkproc_free() to do so. |
| 923 | */ |
| 924 | proc_t |
| 925 | forkproc(proc_t parent_proc, cloneproc_flags_t clone_flags) |
| 926 | { |
| 927 | static uint64_t nextuniqueid = 0; |
| 928 | static pid_t lastpid = 0; |
| 929 | |
| 930 | proc_t child_proc; /* Our new process */ |
| 931 | int error = 0; |
| 932 | struct pgrp *pg; |
| 933 | uthread_t parent_uthread = current_uthread(); |
| 934 | rlim_t rlimit_cpu_cur; |
| 935 | pid_t pid; |
| 936 | struct proc_ro_data proc_ro_data = {}; |
| 937 | bool in_exec = !!(clone_flags & CLONEPROC_EXEC); |
| 938 | bool in_fork = !!(clone_flags & CLONEPROC_FORK); |
| 939 | |
| 940 | child_proc = zalloc_flags(proc_task_zone, Z_WAITOK | Z_ZERO); |
| 941 | |
| 942 | child_proc->p_stats = zalloc_flags(proc_stats_zone, Z_WAITOK | Z_ZERO); |
| 943 | child_proc->p_sigacts = parent_proc->p_sigacts; |
| 944 | os_ref_init_mask(&child_proc->p_refcount, P_REF_BITS, &p_refgrp, P_REF_NEW); |
| 945 | os_ref_init_raw(&child_proc->p_waitref, &p_refgrp); |
| 946 | proc_ref_hold_proc_task_struct(proc: child_proc); |
| 947 | |
| 948 | /* allocate a callout for use by interval timers */ |
| 949 | child_proc->p_rcall = thread_call_allocate(func: (thread_call_func_t)realitexpire, param0: child_proc); |
| 950 | |
| 951 | |
| 952 | /* |
| 953 | * Find an unused PID. |
| 954 | */ |
| 955 | |
| 956 | fdt_init(p: child_proc); |
| 957 | |
| 958 | proc_list_lock(); |
| 959 | |
| 960 | if (!in_exec) { |
| 961 | pid = lastpid; |
| 962 | do { |
| 963 | /* |
| 964 | * If the process ID prototype has wrapped around, |
| 965 | * restart somewhat above 0, as the low-numbered procs |
| 966 | * tend to include daemons that don't exit. |
| 967 | */ |
| 968 | if (++pid >= PID_MAX) { |
| 969 | pid = 100; |
| 970 | } |
| 971 | if (pid == lastpid) { |
| 972 | panic("Unable to allocate a new pid" ); |
| 973 | } |
| 974 | |
| 975 | /* if the pid stays in hash both for zombie and runniing state */ |
| 976 | } while (phash_find_locked(pid) != PROC_NULL || |
| 977 | pghash_exists_locked(pid) || |
| 978 | session_find_locked(sessid: pid) != SESSION_NULL); |
| 979 | |
| 980 | lastpid = pid; |
| 981 | nprocs++; |
| 982 | |
| 983 | child_proc->p_pid = pid; |
| 984 | proc_ro_data.p_idversion = OSIncrementAtomic(&nextpidversion); |
| 985 | /* kernel process is handcrafted and not from fork, so start from 1 */ |
| 986 | proc_ro_data.p_uniqueid = ++nextuniqueid; |
| 987 | |
| 988 | /* Insert in the hash, and inherit our group (and session) */ |
| 989 | phash_insert_locked(child_proc); |
| 990 | |
| 991 | /* Check if the proc is from App Cryptex */ |
| 992 | if (parent_proc->p_ladvflag & P_RSR) { |
| 993 | os_atomic_or(&child_proc->p_ladvflag, P_RSR, relaxed); |
| 994 | } |
| 995 | } else { |
| 996 | /* For exec copy of the proc, copy the pid, pidversion and uniqueid of original proc */ |
| 997 | pid = parent_proc->p_pid; |
| 998 | child_proc->p_pid = pid; |
| 999 | proc_ro_data.p_idversion = parent_proc->p_proc_ro->p_idversion; |
| 1000 | proc_ro_data.p_uniqueid = parent_proc->p_proc_ro->p_uniqueid; |
| 1001 | |
| 1002 | nprocs++; |
| 1003 | os_atomic_or(&child_proc->p_refcount, P_REF_SHADOW, relaxed); |
| 1004 | } |
| 1005 | pg = pgrp_enter_locked(parent: parent_proc, p: child_proc); |
| 1006 | proc_list_unlock(); |
| 1007 | |
| 1008 | if (proc_ro_data.p_uniqueid == startup_serial_num_procs) { |
| 1009 | /* |
| 1010 | * Turn off startup serial logging now that we have reached |
| 1011 | * the defined number of startup processes. |
| 1012 | */ |
| 1013 | startup_serial_logging_active = false; |
| 1014 | } |
| 1015 | |
| 1016 | /* |
| 1017 | * We've identified the PID we are going to use; |
| 1018 | * initialize the new process structure. |
| 1019 | */ |
| 1020 | child_proc->p_stat = SIDL; |
| 1021 | |
| 1022 | /* |
| 1023 | * The zero'ing of the proc was at the allocation time due to need |
| 1024 | * for insertion to hash. Copy the section that is to be copied |
| 1025 | * directly from the parent. |
| 1026 | */ |
| 1027 | child_proc->p_forkcopy = parent_proc->p_forkcopy; |
| 1028 | |
| 1029 | proc_ro_data.syscall_filter_mask = proc_syscall_filter_mask(parent_proc); |
| 1030 | proc_ro_data.p_platform_data = proc_get_ro(p: parent_proc)->p_platform_data; |
| 1031 | |
| 1032 | /* |
| 1033 | * Some flags are inherited from the parent. |
| 1034 | * Duplicate sub-structures as needed. |
| 1035 | * Increase reference counts on shared objects. |
| 1036 | * The p_stats substruct is set in vm_fork. |
| 1037 | */ |
| 1038 | #if CONFIG_DELAY_IDLE_SLEEP |
| 1039 | child_proc->p_flag = (parent_proc->p_flag & (P_LP64 | P_TRANSLATED | P_DISABLE_ASLR | P_DELAYIDLESLEEP | P_SUGID | P_AFFINITY)); |
| 1040 | #else /* CONFIG_DELAY_IDLE_SLEEP */ |
| 1041 | child_proc->p_flag = (parent_proc->p_flag & (P_LP64 | P_TRANSLATED | P_DISABLE_ASLR | P_SUGID | P_AFFINITY)); |
| 1042 | #endif /* CONFIG_DELAY_IDLE_SLEEP */ |
| 1043 | |
| 1044 | child_proc->p_vfs_iopolicy = (parent_proc->p_vfs_iopolicy & (P_VFS_IOPOLICY_INHERITED_MASK)); |
| 1045 | |
| 1046 | proc_set_responsible_pid(target_proc: child_proc, responsible_pid: parent_proc->p_responsible_pid); |
| 1047 | |
| 1048 | /* |
| 1049 | * Note that if the current thread has an assumed identity, this |
| 1050 | * credential will be granted to the new process. |
| 1051 | * This is OK to do in exec, because it will be over-written during image activation |
| 1052 | * before the proc is visible. |
| 1053 | */ |
| 1054 | kauth_cred_set(&proc_ro_data.p_ucred.__smr_ptr, kauth_cred_get()); |
| 1055 | |
| 1056 | lck_mtx_init(lck: &child_proc->p_mlock, grp: &proc_mlock_grp, attr: &proc_lck_attr); |
| 1057 | lck_mtx_init(lck: &child_proc->p_ucred_mlock, grp: &proc_ucred_mlock_grp, attr: &proc_lck_attr); |
| 1058 | #if CONFIG_AUDIT |
| 1059 | lck_mtx_init(lck: &child_proc->p_audit_mlock, grp: &proc_ucred_mlock_grp, attr: &proc_lck_attr); |
| 1060 | #endif /* CONFIG_AUDIT */ |
| 1061 | #if CONFIG_DTRACE |
| 1062 | lck_mtx_init(lck: &child_proc->p_dtrace_sprlock, grp: &proc_lck_grp, attr: &proc_lck_attr); |
| 1063 | #endif |
| 1064 | lck_spin_init(lck: &child_proc->p_slock, grp: &proc_slock_grp, attr: &proc_lck_attr); |
| 1065 | |
| 1066 | klist_init(list: &child_proc->p_klist); |
| 1067 | |
| 1068 | if (child_proc->p_textvp != NULLVP) { |
| 1069 | /* bump references to the text vnode */ |
| 1070 | /* Need to hold iocount across the ref call */ |
| 1071 | if ((error = vnode_getwithref(vp: child_proc->p_textvp)) == 0) { |
| 1072 | error = vnode_ref(vp: child_proc->p_textvp); |
| 1073 | vnode_put(vp: child_proc->p_textvp); |
| 1074 | } |
| 1075 | |
| 1076 | if (error != 0) { |
| 1077 | child_proc->p_textvp = NULLVP; |
| 1078 | } |
| 1079 | } |
| 1080 | uint64_t csflag_inherit_mask = ~CS_KILLED; |
| 1081 | if (!in_fork) { |
| 1082 | /* All non-fork paths should not inherit GTA flag */ |
| 1083 | csflag_inherit_mask &= ~CS_GET_TASK_ALLOW; |
| 1084 | } |
| 1085 | proc_ro_data.p_csflags = ((uint32_t)proc_getcsflags(parent_proc) & csflag_inherit_mask); |
| 1086 | |
| 1087 | child_proc->p_proc_ro = proc_ro_alloc(p: child_proc, p_data: &proc_ro_data, NULL, NULL); |
| 1088 | |
| 1089 | /* update cred on proc */ |
| 1090 | proc_update_creds_onproc(child_proc, cred: proc_ucred_unsafe(p: child_proc)); |
| 1091 | |
| 1092 | /* update audit session proc count */ |
| 1093 | AUDIT_SESSION_PROCNEW(child_proc); |
| 1094 | |
| 1095 | /* |
| 1096 | * Copy the parents per process open file table to the child; if |
| 1097 | * there is a per-thread current working directory, set the childs |
| 1098 | * per-process current working directory to that instead of the |
| 1099 | * parents. |
| 1100 | */ |
| 1101 | if (fdt_fork(child_fdt: &child_proc->p_fd, parent_p: parent_proc, uth_cdir: parent_uthread->uu_cdir, in_exec) != 0) { |
| 1102 | forkproc_free(p: child_proc); |
| 1103 | child_proc = NULL; |
| 1104 | goto bad; |
| 1105 | } |
| 1106 | |
| 1107 | #if SYSV_SHM |
| 1108 | if (parent_proc->vm_shm && !in_exec) { |
| 1109 | /* XXX may fail to attach shm to child */ |
| 1110 | (void)shmfork(parent_proc, child_proc); |
| 1111 | } |
| 1112 | #endif |
| 1113 | |
| 1114 | /* |
| 1115 | * Child inherits the parent's plimit |
| 1116 | */ |
| 1117 | proc_limitfork(parent: parent_proc, child: child_proc); |
| 1118 | |
| 1119 | rlimit_cpu_cur = proc_limitgetcur(p: child_proc, RLIMIT_CPU); |
| 1120 | if (rlimit_cpu_cur != RLIM_INFINITY) { |
| 1121 | child_proc->p_rlim_cpu.tv_sec = (rlimit_cpu_cur > __INT_MAX__) ? __INT_MAX__ : rlimit_cpu_cur; |
| 1122 | } |
| 1123 | |
| 1124 | if (in_exec) { |
| 1125 | /* Keep the original start time for exec'ed proc */ |
| 1126 | child_proc->p_stats->ps_start = parent_proc->p_stats->ps_start; |
| 1127 | child_proc->p_start.tv_sec = parent_proc->p_start.tv_sec; |
| 1128 | child_proc->p_start.tv_usec = parent_proc->p_start.tv_usec; |
| 1129 | } else { |
| 1130 | /* Intialize new process stats, including start time */ |
| 1131 | /* <rdar://6640543> non-zeroed portion contains garbage AFAICT */ |
| 1132 | microtime_with_abstime(tv: &child_proc->p_start, abstime: &child_proc->p_stats->ps_start); |
| 1133 | } |
| 1134 | |
| 1135 | if (pg->pg_session->s_ttyvp != NULL && parent_proc->p_flag & P_CONTROLT) { |
| 1136 | os_atomic_or(&child_proc->p_flag, P_CONTROLT, relaxed); |
| 1137 | } |
| 1138 | |
| 1139 | /* |
| 1140 | * block all signals to reach the process. |
| 1141 | * no transition race should be occuring with the child yet, |
| 1142 | * but indicate that the process is in (the creation) transition. |
| 1143 | */ |
| 1144 | proc_signalstart(child_proc, locked: 0); |
| 1145 | proc_transstart(child_proc, locked: 0, non_blocking: 0); |
| 1146 | |
| 1147 | child_proc->p_pcaction = 0; |
| 1148 | |
| 1149 | TAILQ_INIT(&child_proc->p_uthlist); |
| 1150 | TAILQ_INIT(&child_proc->p_aio_activeq); |
| 1151 | TAILQ_INIT(&child_proc->p_aio_doneq); |
| 1152 | |
| 1153 | /* |
| 1154 | * Copy work queue information |
| 1155 | * |
| 1156 | * Note: This should probably only happen in the case where we are |
| 1157 | * creating a child that is a copy of the parent; since this |
| 1158 | * routine is called in the non-duplication case of vfork() |
| 1159 | * or posix_spawn(), then this information should likely not |
| 1160 | * be duplicated. |
| 1161 | * |
| 1162 | * <rdar://6640553> Work queue pointers that no longer point to code |
| 1163 | */ |
| 1164 | child_proc->p_wqthread = parent_proc->p_wqthread; |
| 1165 | child_proc->p_threadstart = parent_proc->p_threadstart; |
| 1166 | child_proc->p_pthsize = parent_proc->p_pthsize; |
| 1167 | if ((parent_proc->p_lflag & P_LREGISTER) != 0) { |
| 1168 | child_proc->p_lflag |= P_LREGISTER; |
| 1169 | } |
| 1170 | child_proc->p_dispatchqueue_offset = parent_proc->p_dispatchqueue_offset; |
| 1171 | child_proc->p_dispatchqueue_serialno_offset = parent_proc->p_dispatchqueue_serialno_offset; |
| 1172 | child_proc->p_dispatchqueue_label_offset = parent_proc->p_dispatchqueue_label_offset; |
| 1173 | child_proc->p_return_to_kernel_offset = parent_proc->p_return_to_kernel_offset; |
| 1174 | child_proc->p_mach_thread_self_offset = parent_proc->p_mach_thread_self_offset; |
| 1175 | child_proc->p_pth_tsd_offset = parent_proc->p_pth_tsd_offset; |
| 1176 | child_proc->p_pthread_wq_quantum_offset = parent_proc->p_pthread_wq_quantum_offset; |
| 1177 | #if PSYNCH |
| 1178 | pth_proc_hashinit(child_proc); |
| 1179 | #endif /* PSYNCH */ |
| 1180 | |
| 1181 | #if CONFIG_PERSONAS |
| 1182 | child_proc->p_persona = NULL; |
| 1183 | if (parent_proc->p_persona) { |
| 1184 | struct persona *persona = proc_persona_get(p: parent_proc); |
| 1185 | |
| 1186 | if (persona) { |
| 1187 | error = persona_proc_adopt(p: child_proc, persona, NULL); |
| 1188 | if (error != 0) { |
| 1189 | printf("forkproc: persona_proc_inherit failed (persona %d being destroyed?)\n" , |
| 1190 | persona_get_id(persona)); |
| 1191 | forkproc_free(p: child_proc); |
| 1192 | child_proc = NULL; |
| 1193 | goto bad; |
| 1194 | } |
| 1195 | } |
| 1196 | } |
| 1197 | #endif |
| 1198 | |
| 1199 | #if CONFIG_MEMORYSTATUS |
| 1200 | /* Memorystatus init */ |
| 1201 | child_proc->p_memstat_state = 0; |
| 1202 | child_proc->p_memstat_effectivepriority = JETSAM_PRIORITY_DEFAULT; |
| 1203 | child_proc->p_memstat_requestedpriority = JETSAM_PRIORITY_DEFAULT; |
| 1204 | child_proc->p_memstat_assertionpriority = 0; |
| 1205 | child_proc->p_memstat_userdata = 0; |
| 1206 | child_proc->p_memstat_idle_start = 0; |
| 1207 | child_proc->p_memstat_idle_delta = 0; |
| 1208 | child_proc->p_memstat_memlimit = 0; |
| 1209 | child_proc->p_memstat_memlimit_active = 0; |
| 1210 | child_proc->p_memstat_memlimit_inactive = 0; |
| 1211 | child_proc->p_memstat_relaunch_flags = P_MEMSTAT_RELAUNCH_UNKNOWN; |
| 1212 | #if CONFIG_FREEZE |
| 1213 | child_proc->p_memstat_freeze_sharedanon_pages = 0; |
| 1214 | #endif |
| 1215 | child_proc->p_memstat_dirty = 0; |
| 1216 | child_proc->p_memstat_idledeadline = 0; |
| 1217 | #endif /* CONFIG_MEMORYSTATUS */ |
| 1218 | |
| 1219 | if (parent_proc->p_subsystem_root_path) { |
| 1220 | size_t parent_length = strlen(s: parent_proc->p_subsystem_root_path) + 1; |
| 1221 | assert(parent_length <= MAXPATHLEN); |
| 1222 | child_proc->p_subsystem_root_path = zalloc_flags(ZV_NAMEI, |
| 1223 | Z_WAITOK | Z_ZERO); |
| 1224 | memcpy(dst: child_proc->p_subsystem_root_path, src: parent_proc->p_subsystem_root_path, n: parent_length); |
| 1225 | } |
| 1226 | |
| 1227 | bad: |
| 1228 | return child_proc; |
| 1229 | } |
| 1230 | |
| 1231 | void |
| 1232 | proc_lock(proc_t p) |
| 1233 | { |
| 1234 | LCK_MTX_ASSERT(&proc_list_mlock, LCK_MTX_ASSERT_NOTOWNED); |
| 1235 | lck_mtx_lock(lck: &p->p_mlock); |
| 1236 | } |
| 1237 | |
| 1238 | void |
| 1239 | proc_unlock(proc_t p) |
| 1240 | { |
| 1241 | lck_mtx_unlock(lck: &p->p_mlock); |
| 1242 | } |
| 1243 | |
| 1244 | void |
| 1245 | proc_spinlock(proc_t p) |
| 1246 | { |
| 1247 | lck_spin_lock_grp(lck: &p->p_slock, grp: &proc_slock_grp); |
| 1248 | } |
| 1249 | |
| 1250 | void |
| 1251 | proc_spinunlock(proc_t p) |
| 1252 | { |
| 1253 | lck_spin_unlock(lck: &p->p_slock); |
| 1254 | } |
| 1255 | |
| 1256 | void |
| 1257 | proc_list_lock(void) |
| 1258 | { |
| 1259 | lck_mtx_lock(lck: &proc_list_mlock); |
| 1260 | } |
| 1261 | |
| 1262 | void |
| 1263 | proc_list_unlock(void) |
| 1264 | { |
| 1265 | lck_mtx_unlock(lck: &proc_list_mlock); |
| 1266 | } |
| 1267 | |
| 1268 | void |
| 1269 | proc_ucred_lock(proc_t p) |
| 1270 | { |
| 1271 | lck_mtx_lock(lck: &p->p_ucred_mlock); |
| 1272 | } |
| 1273 | |
| 1274 | void |
| 1275 | proc_ucred_unlock(proc_t p) |
| 1276 | { |
| 1277 | lck_mtx_unlock(lck: &p->p_ucred_mlock); |
| 1278 | } |
| 1279 | |
| 1280 | void |
| 1281 | proc_update_creds_onproc(proc_t p, kauth_cred_t cred) |
| 1282 | { |
| 1283 | p->p_uid = kauth_cred_getuid(cred: cred); |
| 1284 | p->p_gid = kauth_cred_getgid(cred: cred); |
| 1285 | p->p_ruid = kauth_cred_getruid(cred: cred); |
| 1286 | p->p_rgid = kauth_cred_getrgid(cred: cred); |
| 1287 | p->p_svuid = kauth_cred_getsvuid(cred: cred); |
| 1288 | p->p_svgid = kauth_cred_getsvgid(cred: cred); |
| 1289 | } |
| 1290 | |
| 1291 | |
| 1292 | bool |
| 1293 | uthread_is64bit(struct uthread *uth) |
| 1294 | { |
| 1295 | return uth->uu_flag & UT_LP64; |
| 1296 | } |
| 1297 | |
| 1298 | void |
| 1299 | uthread_init(task_t task, uthread_t uth, thread_ro_t tro_tpl, int workq_thread) |
| 1300 | { |
| 1301 | uthread_t uth_parent = current_uthread(); |
| 1302 | |
| 1303 | lck_spin_init(lck: &uth->uu_rethrottle_lock, grp: &rethrottle_lock_grp, |
| 1304 | LCK_ATTR_NULL); |
| 1305 | |
| 1306 | /* |
| 1307 | * Lazily set the thread on the kernel VFS context |
| 1308 | * to the first thread made which will be vm_pageout_scan_thread. |
| 1309 | */ |
| 1310 | if (__improbable(vfs_context0.vc_thread == NULL)) { |
| 1311 | extern thread_t vm_pageout_scan_thread; |
| 1312 | |
| 1313 | assert(task == kernel_task); |
| 1314 | assert(get_machthread(uth) == vm_pageout_scan_thread); |
| 1315 | vfs_context0.vc_thread = get_machthread(uth); |
| 1316 | } |
| 1317 | |
| 1318 | if (task_get_64bit_addr(task)) { |
| 1319 | uth->uu_flag |= UT_LP64; |
| 1320 | } |
| 1321 | |
| 1322 | /* |
| 1323 | * Thread inherits credential from the creating thread, if both |
| 1324 | * are in the same task. |
| 1325 | * |
| 1326 | * If the creating thread has no credential or is from another |
| 1327 | * task we can leave the new thread credential NULL. If it needs |
| 1328 | * one later, it will be lazily assigned from the task's process. |
| 1329 | */ |
| 1330 | if (task == kernel_task) { |
| 1331 | kauth_cred_set(&tro_tpl->tro_cred, vfs_context0.vc_ucred); |
| 1332 | kauth_cred_set(&tro_tpl->tro_realcred, vfs_context0.vc_ucred); |
| 1333 | tro_tpl->tro_proc = kernproc; |
| 1334 | tro_tpl->tro_proc_ro = kernproc->p_proc_ro; |
| 1335 | } else if (!task_is_a_corpse(task)) { |
| 1336 | thread_ro_t curtro = current_thread_ro(); |
| 1337 | proc_t p = get_bsdtask_info(task); |
| 1338 | |
| 1339 | if (task == curtro->tro_task) { |
| 1340 | kauth_cred_set(&tro_tpl->tro_realcred, |
| 1341 | curtro->tro_realcred); |
| 1342 | if (workq_thread) { |
| 1343 | kauth_cred_set(&tro_tpl->tro_cred, |
| 1344 | curtro->tro_realcred); |
| 1345 | } else { |
| 1346 | kauth_cred_set(&tro_tpl->tro_cred, |
| 1347 | curtro->tro_cred); |
| 1348 | } |
| 1349 | tro_tpl->tro_proc_ro = curtro->tro_proc_ro; |
| 1350 | } else { |
| 1351 | kauth_cred_t cred = kauth_cred_proc_ref(procp: p); |
| 1352 | kauth_cred_set(&tro_tpl->tro_realcred, cred); |
| 1353 | kauth_cred_set(&tro_tpl->tro_cred, cred); |
| 1354 | kauth_cred_unref(&cred); |
| 1355 | tro_tpl->tro_proc_ro = task_get_ro(t: task); |
| 1356 | } |
| 1357 | tro_tpl->tro_proc = p; |
| 1358 | |
| 1359 | proc_lock(p); |
| 1360 | if (workq_thread) { |
| 1361 | /* workq_thread threads will not inherit masks */ |
| 1362 | uth->uu_sigmask = ~workq_threadmask; |
| 1363 | } else if (uth_parent->uu_flag & UT_SAS_OLDMASK) { |
| 1364 | uth->uu_sigmask = uth_parent->uu_oldmask; |
| 1365 | } else { |
| 1366 | uth->uu_sigmask = uth_parent->uu_sigmask; |
| 1367 | } |
| 1368 | |
| 1369 | TAILQ_INSERT_TAIL(&p->p_uthlist, uth, uu_list); |
| 1370 | proc_unlock(p); |
| 1371 | |
| 1372 | #if CONFIG_DTRACE |
| 1373 | if (p->p_dtrace_ptss_pages != NULL) { |
| 1374 | uth->t_dtrace_scratch = dtrace_ptss_claim_entry(p); |
| 1375 | } |
| 1376 | #endif |
| 1377 | } else { |
| 1378 | tro_tpl->tro_proc_ro = task_get_ro(t: task); |
| 1379 | } |
| 1380 | |
| 1381 | uth->uu_pending_sigreturn = 0; |
| 1382 | uthread_init_proc_refcount(uth); |
| 1383 | } |
| 1384 | |
| 1385 | mach_port_name_t |
| 1386 | uthread_joiner_port(struct uthread *uth) |
| 1387 | { |
| 1388 | return uth->uu_save.uus_bsdthread_terminate.kport; |
| 1389 | } |
| 1390 | |
| 1391 | user_addr_t |
| 1392 | uthread_joiner_address(uthread_t uth) |
| 1393 | { |
| 1394 | return uth->uu_save.uus_bsdthread_terminate.ulock_addr; |
| 1395 | } |
| 1396 | |
| 1397 | void |
| 1398 | uthread_joiner_wake(task_t task, uthread_t uth) |
| 1399 | { |
| 1400 | struct _bsdthread_terminate bts = uth->uu_save.uus_bsdthread_terminate; |
| 1401 | |
| 1402 | assert(bts.ulock_addr); |
| 1403 | bzero(s: &uth->uu_save.uus_bsdthread_terminate, n: sizeof(bts)); |
| 1404 | |
| 1405 | int flags = UL_UNFAIR_LOCK | ULF_WAKE_ALL | ULF_WAKE_ALLOW_NON_OWNER; |
| 1406 | (void)ulock_wake(task, operation: flags, addr: bts.ulock_addr, wake_value: 0); |
| 1407 | mach_port_deallocate(task: get_task_ipcspace(t: task), name: bts.kport); |
| 1408 | } |
| 1409 | |
| 1410 | /* |
| 1411 | * This routine frees the thread name field of the uthread_t structure. Split out of |
| 1412 | * uthread_cleanup() so thread name does not get deallocated while generating a corpse fork. |
| 1413 | */ |
| 1414 | void |
| 1415 | uthread_cleanup_name(uthread_t uth) |
| 1416 | { |
| 1417 | /* |
| 1418 | * <rdar://17834538> |
| 1419 | * Set pth_name to NULL before calling free(). |
| 1420 | * Previously there was a race condition in the |
| 1421 | * case this code was executing during a stackshot |
| 1422 | * where the stackshot could try and copy pth_name |
| 1423 | * after it had been freed and before if was marked |
| 1424 | * as null. |
| 1425 | */ |
| 1426 | if (uth->pth_name != NULL) { |
| 1427 | void *pth_name = uth->pth_name; |
| 1428 | uth->pth_name = NULL; |
| 1429 | kfree_data(pth_name, MAXTHREADNAMESIZE); |
| 1430 | } |
| 1431 | return; |
| 1432 | } |
| 1433 | |
| 1434 | /* |
| 1435 | * This routine frees all the BSD context in uthread except the credential. |
| 1436 | * It does not free the uthread structure as well |
| 1437 | */ |
| 1438 | void |
| 1439 | uthread_cleanup(uthread_t uth, thread_ro_t tro) |
| 1440 | { |
| 1441 | task_t task = tro->tro_task; |
| 1442 | proc_t p = tro->tro_proc; |
| 1443 | |
| 1444 | uthread_assert_zero_proc_refcount(uth); |
| 1445 | |
| 1446 | if (uth->uu_lowpri_window || uth->uu_throttle_info) { |
| 1447 | /* |
| 1448 | * task is marked as a low priority I/O type |
| 1449 | * and we've somehow managed to not dismiss the throttle |
| 1450 | * through the normal exit paths back to user space... |
| 1451 | * no need to throttle this thread since its going away |
| 1452 | * but we do need to update our bookeeping w/r to throttled threads |
| 1453 | * |
| 1454 | * Calling this routine will clean up any throttle info reference |
| 1455 | * still inuse by the thread. |
| 1456 | */ |
| 1457 | throttle_lowpri_io(sleep_amount: 0); |
| 1458 | } |
| 1459 | |
| 1460 | #if CONFIG_AUDIT |
| 1461 | /* |
| 1462 | * Per-thread audit state should never last beyond system |
| 1463 | * call return. Since we don't audit the thread creation/ |
| 1464 | * removal, the thread state pointer should never be |
| 1465 | * non-NULL when we get here. |
| 1466 | */ |
| 1467 | assert(uth->uu_ar == NULL); |
| 1468 | #endif |
| 1469 | |
| 1470 | if (uth->uu_select.nbytes) { |
| 1471 | select_cleanup_uthread(&uth->uu_select); |
| 1472 | } |
| 1473 | |
| 1474 | if (uth->uu_cdir) { |
| 1475 | vnode_rele(vp: uth->uu_cdir); |
| 1476 | uth->uu_cdir = NULLVP; |
| 1477 | } |
| 1478 | |
| 1479 | if (uth->uu_selset) { |
| 1480 | select_set_free(selset: uth->uu_selset); |
| 1481 | uth->uu_selset = NULL; |
| 1482 | } |
| 1483 | |
| 1484 | os_reason_free(cur_reason: uth->uu_exit_reason); |
| 1485 | |
| 1486 | if ((task != kernel_task) && p) { |
| 1487 | /* |
| 1488 | * Remove the thread from the process list and |
| 1489 | * transfer [appropriate] pending signals to the process. |
| 1490 | * Do not remove the uthread from proc uthlist for exec |
| 1491 | * copy task, since they does not have a ref on proc and |
| 1492 | * would not have been added to the list. |
| 1493 | */ |
| 1494 | if (uth->uu_kqr_bound) { |
| 1495 | kqueue_threadreq_unbind(p, uth->uu_kqr_bound); |
| 1496 | } |
| 1497 | |
| 1498 | if (get_bsdtask_info(task) == p) { |
| 1499 | proc_lock(p); |
| 1500 | TAILQ_REMOVE(&p->p_uthlist, uth, uu_list); |
| 1501 | p->p_siglist |= (uth->uu_siglist & execmask & (~p->p_sigignore | sigcantmask)); |
| 1502 | proc_unlock(p); |
| 1503 | } |
| 1504 | |
| 1505 | #if CONFIG_DTRACE |
| 1506 | struct dtrace_ptss_page_entry *tmpptr = uth->t_dtrace_scratch; |
| 1507 | uth->t_dtrace_scratch = NULL; |
| 1508 | if (tmpptr != NULL) { |
| 1509 | dtrace_ptss_release_entry(p, e: tmpptr); |
| 1510 | } |
| 1511 | #endif |
| 1512 | } else { |
| 1513 | assert(!uth->uu_kqr_bound); |
| 1514 | } |
| 1515 | } |
| 1516 | |
| 1517 | /* This routine releases the credential stored in uthread */ |
| 1518 | void |
| 1519 | uthread_cred_ref(struct ucred *ucred) |
| 1520 | { |
| 1521 | kauth_cred_ref(cred: ucred); |
| 1522 | } |
| 1523 | |
| 1524 | void |
| 1525 | uthread_cred_free(struct ucred *ucred) |
| 1526 | { |
| 1527 | kauth_cred_set(&ucred, NOCRED); |
| 1528 | } |
| 1529 | |
| 1530 | /* This routine frees the uthread structure held in thread structure */ |
| 1531 | void |
| 1532 | uthread_destroy(uthread_t uth) |
| 1533 | { |
| 1534 | uthread_destroy_proc_refcount(uth); |
| 1535 | |
| 1536 | if (uth->t_tombstone) { |
| 1537 | kfree_type(struct doc_tombstone, uth->t_tombstone); |
| 1538 | uth->t_tombstone = NULL; |
| 1539 | } |
| 1540 | |
| 1541 | #if CONFIG_DEBUG_SYSCALL_REJECTION |
| 1542 | size_t const bitstr_len = BITMAP_SIZE(mach_trap_count + nsysent); |
| 1543 | |
| 1544 | if (uth->syscall_rejection_mask) { |
| 1545 | kfree_data(uth->syscall_rejection_mask, bitstr_len); |
| 1546 | uth->syscall_rejection_mask = NULL; |
| 1547 | } |
| 1548 | |
| 1549 | if (uth->syscall_rejection_once_mask) { |
| 1550 | kfree_data(uth->syscall_rejection_once_mask, bitstr_len); |
| 1551 | uth->syscall_rejection_once_mask = NULL; |
| 1552 | } |
| 1553 | #endif /* CONFIG_DEBUG_SYSCALL_REJECTION */ |
| 1554 | |
| 1555 | lck_spin_destroy(lck: &uth->uu_rethrottle_lock, grp: &rethrottle_lock_grp); |
| 1556 | |
| 1557 | uthread_cleanup_name(uth); |
| 1558 | } |
| 1559 | |
| 1560 | user_addr_t |
| 1561 | thread_get_sigreturn_token(thread_t thread) |
| 1562 | { |
| 1563 | uthread_t ut = (struct uthread *) get_bsdthread_info(thread); |
| 1564 | return ut->uu_sigreturn_token; |
| 1565 | } |
| 1566 | |
| 1567 | uint32_t |
| 1568 | thread_get_sigreturn_diversifier(thread_t thread) |
| 1569 | { |
| 1570 | uthread_t ut = (struct uthread *) get_bsdthread_info(thread); |
| 1571 | return ut->uu_sigreturn_diversifier; |
| 1572 | } |
| 1573 | |