| 1 | /* |
| 2 | * Copyright (c) 2000-2021 Apple Inc. All rights reserved. |
| 3 | * |
| 4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ |
| 5 | * |
| 6 | * This file contains Original Code and/or Modifications of Original Code |
| 7 | * as defined in and that are subject to the Apple Public Source License |
| 8 | * Version 2.0 (the 'License'). You may not use this file except in |
| 9 | * compliance with the License. The rights granted to you under the License |
| 10 | * may not be used to create, or enable the creation or redistribution of, |
| 11 | * unlawful or unlicensed copies of an Apple operating system, or to |
| 12 | * circumvent, violate, or enable the circumvention or violation of, any |
| 13 | * terms of an Apple operating system software license agreement. |
| 14 | * |
| 15 | * Please obtain a copy of the License at |
| 16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. |
| 17 | * |
| 18 | * The Original Code and all software distributed under the License are |
| 19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER |
| 20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
| 21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, |
| 22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
| 23 | * Please see the License for the specific language governing rights and |
| 24 | * limitations under the License. |
| 25 | * |
| 26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ |
| 27 | * |
| 28 | */ |
| 29 | /*- |
| 30 | * Copyright (c) 1999,2000,2001 Jonathan Lemon <jlemon@FreeBSD.org> |
| 31 | * All rights reserved. |
| 32 | * |
| 33 | * Redistribution and use in source and binary forms, with or without |
| 34 | * modification, are permitted provided that the following conditions |
| 35 | * are met: |
| 36 | * 1. Redistributions of source code must retain the above copyright |
| 37 | * notice, this list of conditions and the following disclaimer. |
| 38 | * 2. Redistributions in binary form must reproduce the above copyright |
| 39 | * notice, this list of conditions and the following disclaimer in the |
| 40 | * documentation and/or other materials provided with the distribution. |
| 41 | * |
| 42 | * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND |
| 43 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 44 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 45 | * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE |
| 46 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
| 47 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
| 48 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| 49 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
| 50 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
| 51 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
| 52 | * SUCH DAMAGE. |
| 53 | */ |
| 54 | /* |
| 55 | * @(#)kern_event.c 1.0 (3/31/2000) |
| 56 | */ |
| 57 | #include <stdint.h> |
| 58 | #include <machine/atomic.h> |
| 59 | |
| 60 | #include <sys/param.h> |
| 61 | #include <sys/systm.h> |
| 62 | #include <sys/filedesc.h> |
| 63 | #include <sys/kernel.h> |
| 64 | #include <sys/proc_internal.h> |
| 65 | #include <sys/kauth.h> |
| 66 | #include <sys/malloc.h> |
| 67 | #include <sys/unistd.h> |
| 68 | #include <sys/file_internal.h> |
| 69 | #include <sys/fcntl.h> |
| 70 | #include <sys/select.h> |
| 71 | #include <sys/queue.h> |
| 72 | #include <sys/event.h> |
| 73 | #include <sys/eventvar.h> |
| 74 | #include <sys/protosw.h> |
| 75 | #include <sys/socket.h> |
| 76 | #include <sys/socketvar.h> |
| 77 | #include <sys/stat.h> |
| 78 | #include <sys/syscall.h> // SYS_* constants |
| 79 | #include <sys/sysctl.h> |
| 80 | #include <sys/uio.h> |
| 81 | #include <sys/sysproto.h> |
| 82 | #include <sys/user.h> |
| 83 | #include <sys/vnode_internal.h> |
| 84 | #include <string.h> |
| 85 | #include <sys/proc_info.h> |
| 86 | #include <sys/codesign.h> |
| 87 | #include <sys/pthread_shims.h> |
| 88 | #include <sys/kdebug.h> |
| 89 | #include <os/base.h> |
| 90 | #include <pexpert/pexpert.h> |
| 91 | |
| 92 | #include <kern/thread_group.h> |
| 93 | #include <kern/locks.h> |
| 94 | #include <kern/clock.h> |
| 95 | #include <kern/cpu_data.h> |
| 96 | #include <kern/policy_internal.h> |
| 97 | #include <kern/thread_call.h> |
| 98 | #include <kern/sched_prim.h> |
| 99 | #include <kern/waitq.h> |
| 100 | #include <kern/zalloc.h> |
| 101 | #include <kern/kalloc.h> |
| 102 | #include <kern/assert.h> |
| 103 | #include <kern/ast.h> |
| 104 | #include <kern/thread.h> |
| 105 | #include <kern/kcdata.h> |
| 106 | #include <kern/work_interval.h> |
| 107 | |
| 108 | #include <pthread/priority_private.h> |
| 109 | #include <pthread/workqueue_syscalls.h> |
| 110 | #include <pthread/workqueue_internal.h> |
| 111 | #include <libkern/libkern.h> |
| 112 | |
| 113 | #include <os/log.h> |
| 114 | |
| 115 | #include "net/net_str_id.h" |
| 116 | |
| 117 | #if SKYWALK && defined(XNU_TARGET_OS_OSX) |
| 118 | #include <skywalk/lib/net_filter_event.h> |
| 119 | |
| 120 | extern bool net_check_compatible_alf(void); |
| 121 | #endif /* SKYWALK && XNU_TARGET_OS_OSX */ |
| 122 | |
| 123 | #include <mach/task.h> |
| 124 | #include <libkern/section_keywords.h> |
| 125 | |
| 126 | #if CONFIG_MEMORYSTATUS |
| 127 | #include <sys/kern_memorystatus.h> |
| 128 | #endif |
| 129 | |
| 130 | #if DEVELOPMENT || DEBUG |
| 131 | #define KEVENT_PANIC_ON_WORKLOOP_OWNERSHIP_LEAK (1U << 0) |
| 132 | #define KEVENT_PANIC_ON_NON_ENQUEUED_PROCESS (1U << 1) |
| 133 | TUNABLE(uint32_t, kevent_debug_flags, "kevent_debug" , 0); |
| 134 | #endif |
| 135 | |
| 136 | static LCK_GRP_DECLARE(kq_lck_grp, "kqueue" ); |
| 137 | SECURITY_READ_ONLY_EARLY(vm_packing_params_t) kn_kq_packing_params = |
| 138 | VM_PACKING_PARAMS(KNOTE_KQ_PACKED); |
| 139 | |
| 140 | extern mach_port_name_t ipc_entry_name_mask(mach_port_name_t name); /* osfmk/ipc/ipc_entry.h */ |
| 141 | extern int cansignal(struct proc *, kauth_cred_t, struct proc *, int); /* bsd/kern/kern_sig.c */ |
| 142 | |
| 143 | #define KEV_EVTID(code) BSDDBG_CODE(DBG_BSD_KEVENT, (code)) |
| 144 | |
| 145 | static int kqueue_select(struct fileproc *fp, int which, void *wq_link_id, |
| 146 | vfs_context_t ctx); |
| 147 | static int kqueue_close(struct fileglob *fg, vfs_context_t ctx); |
| 148 | static int kqueue_kqfilter(struct fileproc *fp, struct knote *kn, |
| 149 | struct kevent_qos_s *kev); |
| 150 | static int kqueue_drain(struct fileproc *fp, vfs_context_t ctx); |
| 151 | |
| 152 | static const struct fileops kqueueops = { |
| 153 | .fo_type = DTYPE_KQUEUE, |
| 154 | .fo_read = fo_no_read, |
| 155 | .fo_write = fo_no_write, |
| 156 | .fo_ioctl = fo_no_ioctl, |
| 157 | .fo_select = kqueue_select, |
| 158 | .fo_close = kqueue_close, |
| 159 | .fo_drain = kqueue_drain, |
| 160 | .fo_kqfilter = kqueue_kqfilter, |
| 161 | }; |
| 162 | |
| 163 | static inline int kevent_modern_copyout(struct kevent_qos_s *, user_addr_t *); |
| 164 | static int kevent_register_wait_prepare(struct knote *kn, struct kevent_qos_s *kev, int result); |
| 165 | static void kevent_register_wait_block(struct turnstile *ts, thread_t handoff_thread, |
| 166 | thread_continue_t cont, struct _kevent_register *cont_args) __dead2; |
| 167 | static void kevent_register_wait_return(struct _kevent_register *cont_args) __dead2; |
| 168 | static void kevent_register_wait_cleanup(struct knote *kn); |
| 169 | |
| 170 | static struct kqtailq *kqueue_get_suppressed_queue(kqueue_t kq, struct knote *kn); |
| 171 | static void kqueue_threadreq_initiate(struct kqueue *kq, workq_threadreq_t, kq_index_t qos, int flags); |
| 172 | |
| 173 | static void kqworkq_unbind(proc_t p, workq_threadreq_t); |
| 174 | static thread_qos_t kqworkq_unbind_locked(struct kqworkq *kqwq, workq_threadreq_t, thread_t thread); |
| 175 | static workq_threadreq_t kqworkq_get_request(struct kqworkq *kqwq, kq_index_t qos_index); |
| 176 | static void kqueue_update_iotier_override(kqueue_t kqu); |
| 177 | |
| 178 | static void kqworkloop_unbind(struct kqworkloop *kwql); |
| 179 | |
| 180 | enum kqwl_unbind_locked_mode { |
| 181 | KQWL_OVERRIDE_DROP_IMMEDIATELY, |
| 182 | KQWL_OVERRIDE_DROP_DELAYED, |
| 183 | }; |
| 184 | static void kqworkloop_unbind_locked(struct kqworkloop *kwql, thread_t thread, |
| 185 | enum kqwl_unbind_locked_mode how); |
| 186 | static void kqworkloop_unbind_delayed_override_drop(thread_t thread); |
| 187 | static kq_index_t kqworkloop_override(struct kqworkloop *kqwl); |
| 188 | static void kqworkloop_set_overcommit(struct kqworkloop *kqwl); |
| 189 | enum { |
| 190 | KQWL_UTQ_NONE, |
| 191 | /* |
| 192 | * The wakeup qos is the qos of QUEUED knotes. |
| 193 | * |
| 194 | * This QoS is accounted for with the events override in the |
| 195 | * kqr_override_index field. It is raised each time a new knote is queued at |
| 196 | * a given QoS. The kqwl_wakeup_qos field is a superset of the non empty |
| 197 | * knote buckets and is recomputed after each event delivery. |
| 198 | */ |
| 199 | KQWL_UTQ_UPDATE_WAKEUP_QOS, |
| 200 | KQWL_UTQ_RECOMPUTE_WAKEUP_QOS, |
| 201 | KQWL_UTQ_UNBINDING, /* attempt to rebind */ |
| 202 | KQWL_UTQ_PARKING, |
| 203 | /* |
| 204 | * The wakeup override is for suppressed knotes that have fired again at |
| 205 | * a higher QoS than the one for which they are suppressed already. |
| 206 | * This override is cleared when the knote suppressed list becomes empty. |
| 207 | */ |
| 208 | KQWL_UTQ_UPDATE_WAKEUP_OVERRIDE, |
| 209 | KQWL_UTQ_RESET_WAKEUP_OVERRIDE, |
| 210 | /* |
| 211 | * The QoS is the maximum QoS of an event enqueued on this workloop in |
| 212 | * userland. It is copied from the only EVFILT_WORKLOOP knote with |
| 213 | * a NOTE_WL_THREAD_REQUEST bit set allowed on this workloop. If there is no |
| 214 | * such knote, this QoS is 0. |
| 215 | */ |
| 216 | KQWL_UTQ_SET_QOS_INDEX, |
| 217 | KQWL_UTQ_REDRIVE_EVENTS, |
| 218 | }; |
| 219 | static void kqworkloop_update_threads_qos(struct kqworkloop *kqwl, int op, kq_index_t qos); |
| 220 | static int kqworkloop_end_processing(struct kqworkloop *kqwl, int flags, int kevent_flags); |
| 221 | |
| 222 | static struct knote *knote_alloc(void); |
| 223 | static void knote_free(struct knote *kn); |
| 224 | static int kq_add_knote(struct kqueue *kq, struct knote *kn, |
| 225 | struct knote_lock_ctx *knlc, struct proc *p); |
| 226 | static struct knote *kq_find_knote_and_kq_lock(struct kqueue *kq, |
| 227 | struct kevent_qos_s *kev, bool is_fd, struct proc *p); |
| 228 | |
| 229 | static void knote_activate(kqueue_t kqu, struct knote *kn, int result); |
| 230 | static void knote_dequeue(kqueue_t kqu, struct knote *kn); |
| 231 | |
| 232 | static void knote_apply_touch(kqueue_t kqu, struct knote *kn, |
| 233 | struct kevent_qos_s *kev, int result); |
| 234 | static void knote_suppress(kqueue_t kqu, struct knote *kn); |
| 235 | static void knote_unsuppress(kqueue_t kqu, struct knote *kn); |
| 236 | static void knote_drop(kqueue_t kqu, struct knote *kn, struct knote_lock_ctx *knlc); |
| 237 | |
| 238 | // both these functions may dequeue the knote and it is up to the caller |
| 239 | // to enqueue the knote back |
| 240 | static void knote_adjust_qos(struct kqueue *kq, struct knote *kn, int result); |
| 241 | static void knote_reset_priority(kqueue_t kqu, struct knote *kn, pthread_priority_t pp); |
| 242 | |
| 243 | static ZONE_DEFINE(knote_zone, "knote zone" , |
| 244 | sizeof(struct knote), ZC_CACHING | ZC_ZFREE_CLEARMEM); |
| 245 | static ZONE_DEFINE(kqfile_zone, "kqueue file zone" , |
| 246 | sizeof(struct kqfile), ZC_ZFREE_CLEARMEM | ZC_NOTBITAG); |
| 247 | static ZONE_DEFINE(kqworkq_zone, "kqueue workq zone" , |
| 248 | sizeof(struct kqworkq), ZC_ZFREE_CLEARMEM | ZC_NOTBITAG); |
| 249 | static ZONE_DEFINE(kqworkloop_zone, "kqueue workloop zone" , |
| 250 | sizeof(struct kqworkloop), ZC_CACHING | ZC_ZFREE_CLEARMEM | ZC_NOTBITAG); |
| 251 | |
| 252 | #define KN_HASH(val, mask) (((val) ^ (val >> 8)) & (mask)) |
| 253 | |
| 254 | static int filt_no_attach(struct knote *kn, struct kevent_qos_s *kev); |
| 255 | static void filt_no_detach(struct knote *kn); |
| 256 | static int filt_bad_event(struct knote *kn, long hint); |
| 257 | static int filt_bad_touch(struct knote *kn, struct kevent_qos_s *kev); |
| 258 | static int filt_bad_process(struct knote *kn, struct kevent_qos_s *kev); |
| 259 | |
| 260 | SECURITY_READ_ONLY_EARLY(static struct filterops) bad_filtops = { |
| 261 | .f_attach = filt_no_attach, |
| 262 | .f_detach = filt_no_detach, |
| 263 | .f_event = filt_bad_event, |
| 264 | .f_touch = filt_bad_touch, |
| 265 | .f_process = filt_bad_process, |
| 266 | }; |
| 267 | |
| 268 | #if CONFIG_MEMORYSTATUS |
| 269 | extern const struct filterops memorystatus_filtops; |
| 270 | #endif /* CONFIG_MEMORYSTATUS */ |
| 271 | extern const struct filterops fs_filtops; |
| 272 | extern const struct filterops sig_filtops; |
| 273 | extern const struct filterops machport_attach_filtops; |
| 274 | extern const struct filterops mach_port_filtops; |
| 275 | extern const struct filterops mach_port_set_filtops; |
| 276 | extern const struct filterops pipe_nfiltops; |
| 277 | extern const struct filterops pipe_rfiltops; |
| 278 | extern const struct filterops pipe_wfiltops; |
| 279 | extern const struct filterops ptsd_kqops; |
| 280 | extern const struct filterops ptmx_kqops; |
| 281 | extern const struct filterops soread_filtops; |
| 282 | extern const struct filterops sowrite_filtops; |
| 283 | extern const struct filterops sock_filtops; |
| 284 | extern const struct filterops soexcept_filtops; |
| 285 | extern const struct filterops spec_filtops; |
| 286 | extern const struct filterops bpfread_filtops; |
| 287 | extern const struct filterops necp_fd_rfiltops; |
| 288 | #if SKYWALK |
| 289 | extern const struct filterops skywalk_channel_rfiltops; |
| 290 | extern const struct filterops skywalk_channel_wfiltops; |
| 291 | extern const struct filterops skywalk_channel_efiltops; |
| 292 | #endif /* SKYWALK */ |
| 293 | extern const struct filterops fsevent_filtops; |
| 294 | extern const struct filterops vnode_filtops; |
| 295 | extern const struct filterops tty_filtops; |
| 296 | |
| 297 | const static struct filterops file_filtops; |
| 298 | const static struct filterops kqread_filtops; |
| 299 | const static struct filterops proc_filtops; |
| 300 | const static struct filterops timer_filtops; |
| 301 | const static struct filterops user_filtops; |
| 302 | const static struct filterops workloop_filtops; |
| 303 | #if CONFIG_EXCLAVES |
| 304 | extern const struct filterops exclaves_notification_filtops; |
| 305 | #endif /* CONFIG_EXCLAVES */ |
| 306 | |
| 307 | /* |
| 308 | * |
| 309 | * Rules for adding new filters to the system: |
| 310 | * Public filters: |
| 311 | * - Add a new "EVFILT_" option value to bsd/sys/event.h (typically a negative value) |
| 312 | * in the exported section of the header |
| 313 | * - Update the EVFILT_SYSCOUNT value to reflect the new addition |
| 314 | * - Add a filterops to the sysfilt_ops array. Public filters should be added at the end |
| 315 | * of the Public Filters section in the array. |
| 316 | * Private filters: |
| 317 | * - Add a new "EVFILT_" value to bsd/sys/event_private.h (typically a positive value) |
| 318 | * - Update the EVFILTID_MAX value to reflect the new addition |
| 319 | * - Add a filterops to the sysfilt_ops. Private filters should be added at the end of |
| 320 | * the Private filters section of the array. |
| 321 | */ |
| 322 | static_assert(EVFILTID_MAX < UINT8_MAX, "kn_filtid expects this to be true" ); |
| 323 | static const struct filterops * const sysfilt_ops[EVFILTID_MAX] = { |
| 324 | /* Public Filters */ |
| 325 | [~EVFILT_READ] = &file_filtops, |
| 326 | [~EVFILT_WRITE] = &file_filtops, |
| 327 | [~EVFILT_AIO] = &bad_filtops, |
| 328 | [~EVFILT_VNODE] = &file_filtops, |
| 329 | [~EVFILT_PROC] = &proc_filtops, |
| 330 | [~EVFILT_SIGNAL] = &sig_filtops, |
| 331 | [~EVFILT_TIMER] = &timer_filtops, |
| 332 | [~EVFILT_MACHPORT] = &machport_attach_filtops, |
| 333 | [~EVFILT_FS] = &fs_filtops, |
| 334 | [~EVFILT_USER] = &user_filtops, |
| 335 | [~EVFILT_UNUSED_11] = &bad_filtops, |
| 336 | [~EVFILT_VM] = &bad_filtops, |
| 337 | [~EVFILT_SOCK] = &file_filtops, |
| 338 | #if CONFIG_MEMORYSTATUS |
| 339 | [~EVFILT_MEMORYSTATUS] = &memorystatus_filtops, |
| 340 | #else |
| 341 | [~EVFILT_MEMORYSTATUS] = &bad_filtops, |
| 342 | #endif |
| 343 | [~EVFILT_EXCEPT] = &file_filtops, |
| 344 | #if SKYWALK |
| 345 | [~EVFILT_NW_CHANNEL] = &file_filtops, |
| 346 | #else /* !SKYWALK */ |
| 347 | [~EVFILT_NW_CHANNEL] = &bad_filtops, |
| 348 | #endif /* !SKYWALK */ |
| 349 | [~EVFILT_WORKLOOP] = &workloop_filtops, |
| 350 | #if CONFIG_EXCLAVES |
| 351 | [~EVFILT_EXCLAVES_NOTIFICATION] = &exclaves_notification_filtops, |
| 352 | #else /* !CONFIG_EXCLAVES */ |
| 353 | [~EVFILT_EXCLAVES_NOTIFICATION] = &bad_filtops, |
| 354 | #endif /* CONFIG_EXCLAVES*/ |
| 355 | |
| 356 | /* Private filters */ |
| 357 | [EVFILTID_KQREAD] = &kqread_filtops, |
| 358 | [EVFILTID_PIPE_N] = &pipe_nfiltops, |
| 359 | [EVFILTID_PIPE_R] = &pipe_rfiltops, |
| 360 | [EVFILTID_PIPE_W] = &pipe_wfiltops, |
| 361 | [EVFILTID_PTSD] = &ptsd_kqops, |
| 362 | [EVFILTID_SOREAD] = &soread_filtops, |
| 363 | [EVFILTID_SOWRITE] = &sowrite_filtops, |
| 364 | [EVFILTID_SCK] = &sock_filtops, |
| 365 | [EVFILTID_SOEXCEPT] = &soexcept_filtops, |
| 366 | [EVFILTID_SPEC] = &spec_filtops, |
| 367 | [EVFILTID_BPFREAD] = &bpfread_filtops, |
| 368 | [EVFILTID_NECP_FD] = &necp_fd_rfiltops, |
| 369 | #if SKYWALK |
| 370 | [EVFILTID_SKYWALK_CHANNEL_W] = &skywalk_channel_wfiltops, |
| 371 | [EVFILTID_SKYWALK_CHANNEL_R] = &skywalk_channel_rfiltops, |
| 372 | [EVFILTID_SKYWALK_CHANNEL_E] = &skywalk_channel_efiltops, |
| 373 | #else /* !SKYWALK */ |
| 374 | [EVFILTID_SKYWALK_CHANNEL_W] = &bad_filtops, |
| 375 | [EVFILTID_SKYWALK_CHANNEL_R] = &bad_filtops, |
| 376 | [EVFILTID_SKYWALK_CHANNEL_E] = &bad_filtops, |
| 377 | #endif /* !SKYWALK */ |
| 378 | [EVFILTID_FSEVENT] = &fsevent_filtops, |
| 379 | [EVFILTID_VN] = &vnode_filtops, |
| 380 | [EVFILTID_TTY] = &tty_filtops, |
| 381 | [EVFILTID_PTMX] = &ptmx_kqops, |
| 382 | [EVFILTID_MACH_PORT] = &mach_port_filtops, |
| 383 | [EVFILTID_MACH_PORT_SET] = &mach_port_set_filtops, |
| 384 | |
| 385 | /* fake filter for detached knotes, keep last */ |
| 386 | [EVFILTID_DETACHED] = &bad_filtops, |
| 387 | }; |
| 388 | |
| 389 | static inline bool |
| 390 | kqr_thread_bound(workq_threadreq_t kqr) |
| 391 | { |
| 392 | return kqr->tr_state == WORKQ_TR_STATE_BOUND; |
| 393 | } |
| 394 | |
| 395 | static inline bool |
| 396 | kqr_thread_requested_pending(workq_threadreq_t kqr) |
| 397 | { |
| 398 | workq_tr_state_t tr_state = kqr->tr_state; |
| 399 | return tr_state > WORKQ_TR_STATE_IDLE && tr_state < WORKQ_TR_STATE_BOUND; |
| 400 | } |
| 401 | |
| 402 | static inline bool |
| 403 | kqr_thread_requested(workq_threadreq_t kqr) |
| 404 | { |
| 405 | return kqr->tr_state != WORKQ_TR_STATE_IDLE; |
| 406 | } |
| 407 | |
| 408 | static inline thread_t |
| 409 | kqr_thread_fast(workq_threadreq_t kqr) |
| 410 | { |
| 411 | assert(kqr_thread_bound(kqr)); |
| 412 | return kqr->tr_thread; |
| 413 | } |
| 414 | |
| 415 | static inline thread_t |
| 416 | kqr_thread(workq_threadreq_t kqr) |
| 417 | { |
| 418 | return kqr_thread_bound(kqr) ? kqr->tr_thread : THREAD_NULL; |
| 419 | } |
| 420 | |
| 421 | static inline struct kqworkloop * |
| 422 | kqr_kqworkloop(workq_threadreq_t kqr) |
| 423 | { |
| 424 | if (kqr->tr_flags & WORKQ_TR_FLAG_WORKLOOP) { |
| 425 | return __container_of(kqr, struct kqworkloop, kqwl_request); |
| 426 | } |
| 427 | return NULL; |
| 428 | } |
| 429 | |
| 430 | static inline kqueue_t |
| 431 | kqr_kqueue(proc_t p, workq_threadreq_t kqr) |
| 432 | { |
| 433 | kqueue_t kqu; |
| 434 | if (kqr->tr_flags & WORKQ_TR_FLAG_WORKLOOP) { |
| 435 | kqu.kqwl = kqr_kqworkloop(kqr); |
| 436 | } else { |
| 437 | kqu.kqwq = p->p_fd.fd_wqkqueue; |
| 438 | assert(kqr >= kqu.kqwq->kqwq_request && |
| 439 | kqr < kqu.kqwq->kqwq_request + KQWQ_NBUCKETS); |
| 440 | } |
| 441 | return kqu; |
| 442 | } |
| 443 | |
| 444 | #if CONFIG_PREADOPT_TG |
| 445 | /* There are no guarantees about which locks are held when this is called */ |
| 446 | inline thread_group_qos_t |
| 447 | kqr_preadopt_thread_group(workq_threadreq_t req) |
| 448 | { |
| 449 | struct kqworkloop *kqwl = kqr_kqworkloop(kqr: req); |
| 450 | return kqwl ? os_atomic_load(&kqwl->kqwl_preadopt_tg, relaxed) : NULL; |
| 451 | } |
| 452 | |
| 453 | /* There are no guarantees about which locks are held when this is called */ |
| 454 | inline _Atomic(thread_group_qos_t) * |
| 455 | kqr_preadopt_thread_group_addr(workq_threadreq_t req) |
| 456 | { |
| 457 | struct kqworkloop *kqwl = kqr_kqworkloop(kqr: req); |
| 458 | return kqwl ? (&kqwl->kqwl_preadopt_tg) : NULL; |
| 459 | } |
| 460 | #endif |
| 461 | |
| 462 | /* |
| 463 | * kqueue/note lock implementations |
| 464 | * |
| 465 | * The kqueue lock guards the kq state, the state of its queues, |
| 466 | * and the kqueue-aware status and locks of individual knotes. |
| 467 | * |
| 468 | * The kqueue workq lock is used to protect state guarding the |
| 469 | * interaction of the kqueue with the workq. This state cannot |
| 470 | * be guarded by the kq lock - as it needs to be taken when we |
| 471 | * already have the waitq set lock held (during the waitq hook |
| 472 | * callback). It might be better to use the waitq lock itself |
| 473 | * for this, but the IRQ requirements make that difficult). |
| 474 | * |
| 475 | * Knote flags, filter flags, and associated data are protected |
| 476 | * by the underlying object lock - and are only ever looked at |
| 477 | * by calling the filter to get a [consistent] snapshot of that |
| 478 | * data. |
| 479 | */ |
| 480 | |
| 481 | static inline void |
| 482 | kqlock(kqueue_t kqu) |
| 483 | { |
| 484 | lck_spin_lock(lck: &kqu.kq->kq_lock); |
| 485 | } |
| 486 | |
| 487 | static inline void |
| 488 | kqlock_held(__assert_only kqueue_t kqu) |
| 489 | { |
| 490 | LCK_SPIN_ASSERT(&kqu.kq->kq_lock, LCK_ASSERT_OWNED); |
| 491 | } |
| 492 | |
| 493 | static inline void |
| 494 | kqunlock(kqueue_t kqu) |
| 495 | { |
| 496 | lck_spin_unlock(lck: &kqu.kq->kq_lock); |
| 497 | } |
| 498 | |
| 499 | static inline void |
| 500 | knhash_lock(struct filedesc *fdp) |
| 501 | { |
| 502 | lck_mtx_lock(lck: &fdp->fd_knhashlock); |
| 503 | } |
| 504 | |
| 505 | static inline void |
| 506 | knhash_unlock(struct filedesc *fdp) |
| 507 | { |
| 508 | lck_mtx_unlock(lck: &fdp->fd_knhashlock); |
| 509 | } |
| 510 | |
| 511 | /* wait event for knote locks */ |
| 512 | static inline event_t |
| 513 | knote_lock_wev(struct knote *kn) |
| 514 | { |
| 515 | return (event_t)(&kn->kn_hook); |
| 516 | } |
| 517 | |
| 518 | /* wait event for kevent_register_wait_* */ |
| 519 | static inline event64_t |
| 520 | knote_filt_wev64(struct knote *kn) |
| 521 | { |
| 522 | /* kdp_workloop_sync_wait_find_owner knows about this */ |
| 523 | return CAST_EVENT64_T(kn); |
| 524 | } |
| 525 | |
| 526 | /* wait event for knote_post/knote_drop */ |
| 527 | static inline event_t |
| 528 | knote_post_wev(struct knote *kn) |
| 529 | { |
| 530 | return &kn->kn_kevent; |
| 531 | } |
| 532 | |
| 533 | /*! |
| 534 | * @function knote_has_qos |
| 535 | * |
| 536 | * @brief |
| 537 | * Whether the knote has a regular QoS. |
| 538 | * |
| 539 | * @discussion |
| 540 | * kn_qos_override is: |
| 541 | * - 0 on kqfiles |
| 542 | * - THREAD_QOS_LAST for special buckets (manager) |
| 543 | * |
| 544 | * Other values mean the knote participates to QoS propagation. |
| 545 | */ |
| 546 | static inline bool |
| 547 | knote_has_qos(struct knote *kn) |
| 548 | { |
| 549 | return kn->kn_qos_override > 0 && kn->kn_qos_override < THREAD_QOS_LAST; |
| 550 | } |
| 551 | |
| 552 | #pragma mark knote locks |
| 553 | |
| 554 | /* |
| 555 | * Enum used by the knote_lock_* functions. |
| 556 | * |
| 557 | * KNOTE_KQ_LOCK_ALWAYS |
| 558 | * The function will always return with the kq lock held. |
| 559 | * |
| 560 | * KNOTE_KQ_LOCK_ON_SUCCESS |
| 561 | * The function will return with the kq lock held if it was successful |
| 562 | * (knote_lock() is the only function that can fail). |
| 563 | * |
| 564 | * KNOTE_KQ_LOCK_ON_FAILURE |
| 565 | * The function will return with the kq lock held if it was unsuccessful |
| 566 | * (knote_lock() is the only function that can fail). |
| 567 | * |
| 568 | * KNOTE_KQ_UNLOCK: |
| 569 | * The function returns with the kq unlocked. |
| 570 | */ |
| 571 | enum kqlocking { |
| 572 | KNOTE_KQ_LOCK_ALWAYS, |
| 573 | KNOTE_KQ_LOCK_ON_SUCCESS, |
| 574 | KNOTE_KQ_LOCK_ON_FAILURE, |
| 575 | KNOTE_KQ_UNLOCK, |
| 576 | }; |
| 577 | |
| 578 | static struct knote_lock_ctx * |
| 579 | knote_lock_ctx_find(kqueue_t kqu, struct knote *kn) |
| 580 | { |
| 581 | struct knote_lock_ctx *ctx; |
| 582 | LIST_FOREACH(ctx, &kqu.kq->kq_knlocks, knlc_link) { |
| 583 | if (ctx->knlc_knote == kn) { |
| 584 | return ctx; |
| 585 | } |
| 586 | } |
| 587 | panic("knote lock context not found: %p" , kn); |
| 588 | __builtin_trap(); |
| 589 | } |
| 590 | |
| 591 | /* slowpath of knote_lock() */ |
| 592 | __attribute__((noinline)) |
| 593 | static bool __result_use_check |
| 594 | knote_lock_slow(kqueue_t kqu, struct knote *kn, |
| 595 | struct knote_lock_ctx *knlc, int kqlocking) |
| 596 | { |
| 597 | struct knote_lock_ctx *owner_lc; |
| 598 | struct uthread *uth = current_uthread(); |
| 599 | wait_result_t wr; |
| 600 | |
| 601 | kqlock_held(kqu); |
| 602 | |
| 603 | owner_lc = knote_lock_ctx_find(kqu, kn); |
| 604 | #if DEBUG || DEVELOPMENT |
| 605 | knlc->knlc_state = KNOTE_LOCK_CTX_WAITING; |
| 606 | #endif |
| 607 | owner_lc->knlc_waiters++; |
| 608 | |
| 609 | /* |
| 610 | * Make our lock context visible to knote_unlock() |
| 611 | */ |
| 612 | uth->uu_knlock = knlc; |
| 613 | |
| 614 | wr = lck_spin_sleep_with_inheritor(lock: &kqu.kq->kq_lock, lck_sleep_action: LCK_SLEEP_UNLOCK, |
| 615 | event: knote_lock_wev(kn), inheritor: owner_lc->knlc_thread, |
| 616 | THREAD_UNINT | THREAD_WAIT_NOREPORT, TIMEOUT_WAIT_FOREVER); |
| 617 | |
| 618 | if (wr == THREAD_RESTART) { |
| 619 | /* |
| 620 | * We haven't been woken up by knote_unlock() but knote_unlock_cancel. |
| 621 | * We need to cleanup the state since no one did. |
| 622 | */ |
| 623 | uth->uu_knlock = NULL; |
| 624 | #if DEBUG || DEVELOPMENT |
| 625 | assert(knlc->knlc_state == KNOTE_LOCK_CTX_WAITING); |
| 626 | knlc->knlc_state = KNOTE_LOCK_CTX_UNLOCKED; |
| 627 | #endif |
| 628 | |
| 629 | if (kqlocking == KNOTE_KQ_LOCK_ALWAYS || |
| 630 | kqlocking == KNOTE_KQ_LOCK_ON_FAILURE) { |
| 631 | kqlock(kqu); |
| 632 | } |
| 633 | return false; |
| 634 | } else { |
| 635 | if (kqlocking == KNOTE_KQ_LOCK_ALWAYS || |
| 636 | kqlocking == KNOTE_KQ_LOCK_ON_SUCCESS) { |
| 637 | kqlock(kqu); |
| 638 | #if DEBUG || DEVELOPMENT |
| 639 | /* |
| 640 | * This state is set under the lock so we can't |
| 641 | * really assert this unless we hold the lock. |
| 642 | */ |
| 643 | assert(knlc->knlc_state == KNOTE_LOCK_CTX_LOCKED); |
| 644 | #endif |
| 645 | } |
| 646 | return true; |
| 647 | } |
| 648 | } |
| 649 | |
| 650 | /* |
| 651 | * Attempts to take the "knote" lock. |
| 652 | * |
| 653 | * Called with the kqueue lock held. |
| 654 | * |
| 655 | * Returns true if the knote lock is acquired, false if it has been dropped |
| 656 | */ |
| 657 | static bool __result_use_check |
| 658 | knote_lock(kqueue_t kqu, struct knote *kn, struct knote_lock_ctx *knlc, |
| 659 | enum kqlocking kqlocking) |
| 660 | { |
| 661 | kqlock_held(kqu); |
| 662 | |
| 663 | #if DEBUG || DEVELOPMENT |
| 664 | assert(knlc->knlc_state == KNOTE_LOCK_CTX_UNLOCKED); |
| 665 | #endif |
| 666 | knlc->knlc_knote = kn; |
| 667 | knlc->knlc_thread = current_thread(); |
| 668 | knlc->knlc_waiters = 0; |
| 669 | |
| 670 | if (__improbable(kn->kn_status & KN_LOCKED)) { |
| 671 | return knote_lock_slow(kqu, kn, knlc, kqlocking); |
| 672 | } |
| 673 | |
| 674 | /* |
| 675 | * When the knote will be dropped, the knote lock is taken before |
| 676 | * KN_DROPPING is set, and then the knote will be removed from any |
| 677 | * hash table that references it before the lock is canceled. |
| 678 | */ |
| 679 | assert((kn->kn_status & KN_DROPPING) == 0); |
| 680 | LIST_INSERT_HEAD(&kqu.kq->kq_knlocks, knlc, knlc_link); |
| 681 | kn->kn_status |= KN_LOCKED; |
| 682 | #if DEBUG || DEVELOPMENT |
| 683 | knlc->knlc_state = KNOTE_LOCK_CTX_LOCKED; |
| 684 | #endif |
| 685 | |
| 686 | if (kqlocking == KNOTE_KQ_UNLOCK || |
| 687 | kqlocking == KNOTE_KQ_LOCK_ON_FAILURE) { |
| 688 | kqunlock(kqu); |
| 689 | } |
| 690 | return true; |
| 691 | } |
| 692 | |
| 693 | /* |
| 694 | * Unlocks a knote successfully locked with knote_lock(). |
| 695 | * |
| 696 | * Called with the kqueue lock held. |
| 697 | * |
| 698 | * Returns with the kqueue lock held according to KNOTE_KQ_* mode. |
| 699 | */ |
| 700 | static void |
| 701 | knote_unlock(kqueue_t kqu, struct knote *kn, |
| 702 | struct knote_lock_ctx *knlc, enum kqlocking kqlocking) |
| 703 | { |
| 704 | kqlock_held(kqu); |
| 705 | |
| 706 | assert(knlc->knlc_knote == kn); |
| 707 | assert(kn->kn_status & KN_LOCKED); |
| 708 | #if DEBUG || DEVELOPMENT |
| 709 | assert(knlc->knlc_state == KNOTE_LOCK_CTX_LOCKED); |
| 710 | #endif |
| 711 | |
| 712 | LIST_REMOVE(knlc, knlc_link); |
| 713 | |
| 714 | if (knlc->knlc_waiters) { |
| 715 | thread_t thread = THREAD_NULL; |
| 716 | |
| 717 | wakeup_one_with_inheritor(event: knote_lock_wev(kn), THREAD_AWAKENED, |
| 718 | action: LCK_WAKE_DEFAULT, thread_wokenup: &thread); |
| 719 | |
| 720 | /* |
| 721 | * knote_lock_slow() publishes the lock context of waiters |
| 722 | * in uthread::uu_knlock. |
| 723 | * |
| 724 | * Reach out and make this context the new owner. |
| 725 | */ |
| 726 | struct uthread *ut = get_bsdthread_info(thread); |
| 727 | struct knote_lock_ctx *next_owner_lc = ut->uu_knlock; |
| 728 | |
| 729 | assert(next_owner_lc->knlc_knote == kn); |
| 730 | next_owner_lc->knlc_waiters = knlc->knlc_waiters - 1; |
| 731 | LIST_INSERT_HEAD(&kqu.kq->kq_knlocks, next_owner_lc, knlc_link); |
| 732 | #if DEBUG || DEVELOPMENT |
| 733 | next_owner_lc->knlc_state = KNOTE_LOCK_CTX_LOCKED; |
| 734 | #endif |
| 735 | ut->uu_knlock = NULL; |
| 736 | thread_deallocate_safe(thread); |
| 737 | } else { |
| 738 | kn->kn_status &= ~KN_LOCKED; |
| 739 | } |
| 740 | |
| 741 | if ((kn->kn_status & KN_MERGE_QOS) && !(kn->kn_status & KN_POSTING)) { |
| 742 | /* |
| 743 | * No f_event() in flight anymore, we can leave QoS "Merge" mode |
| 744 | * |
| 745 | * See knote_adjust_qos() |
| 746 | */ |
| 747 | kn->kn_status &= ~KN_MERGE_QOS; |
| 748 | } |
| 749 | if (kqlocking == KNOTE_KQ_UNLOCK) { |
| 750 | kqunlock(kqu); |
| 751 | } |
| 752 | #if DEBUG || DEVELOPMENT |
| 753 | knlc->knlc_state = KNOTE_LOCK_CTX_UNLOCKED; |
| 754 | #endif |
| 755 | } |
| 756 | |
| 757 | /* |
| 758 | * Aborts all waiters for a knote lock, and unlock the knote. |
| 759 | * |
| 760 | * Called with the kqueue lock held. |
| 761 | * |
| 762 | * Returns with the kqueue unlocked. |
| 763 | */ |
| 764 | static void |
| 765 | knote_unlock_cancel(struct kqueue *kq, struct knote *kn, |
| 766 | struct knote_lock_ctx *knlc) |
| 767 | { |
| 768 | kqlock_held(kqu: kq); |
| 769 | |
| 770 | assert(knlc->knlc_knote == kn); |
| 771 | assert(kn->kn_status & KN_LOCKED); |
| 772 | assert(kn->kn_status & KN_DROPPING); |
| 773 | |
| 774 | LIST_REMOVE(knlc, knlc_link); |
| 775 | kn->kn_status &= ~KN_LOCKED; |
| 776 | kqunlock(kqu: kq); |
| 777 | |
| 778 | if (knlc->knlc_waiters) { |
| 779 | wakeup_all_with_inheritor(event: knote_lock_wev(kn), THREAD_RESTART); |
| 780 | } |
| 781 | #if DEBUG || DEVELOPMENT |
| 782 | knlc->knlc_state = KNOTE_LOCK_CTX_UNLOCKED; |
| 783 | #endif |
| 784 | } |
| 785 | |
| 786 | /* |
| 787 | * Call the f_event hook of a given filter. |
| 788 | * |
| 789 | * Takes a use count to protect against concurrent drops. |
| 790 | * Called with the object lock held. |
| 791 | */ |
| 792 | static void |
| 793 | knote_post(struct knote *kn, long hint) |
| 794 | { |
| 795 | struct kqueue *kq = knote_get_kq(kn); |
| 796 | int dropping, result; |
| 797 | |
| 798 | kqlock(kqu: kq); |
| 799 | |
| 800 | if (__improbable(kn->kn_status & (KN_DROPPING | KN_VANISHED))) { |
| 801 | return kqunlock(kqu: kq); |
| 802 | } |
| 803 | |
| 804 | if (__improbable(kn->kn_status & KN_POSTING)) { |
| 805 | panic("KNOTE() called concurrently on knote %p" , kn); |
| 806 | } |
| 807 | |
| 808 | kn->kn_status |= KN_POSTING; |
| 809 | |
| 810 | kqunlock(kqu: kq); |
| 811 | result = filter_call(knote_fops(kn), f_event(kn, hint)); |
| 812 | kqlock(kqu: kq); |
| 813 | |
| 814 | /* Someone dropped the knote/the monitored object vanished while we |
| 815 | * were in f_event, swallow the side effects of the post. |
| 816 | */ |
| 817 | dropping = (kn->kn_status & (KN_DROPPING | KN_VANISHED)); |
| 818 | |
| 819 | if (!dropping && (result & FILTER_ADJUST_EVENT_IOTIER_BIT)) { |
| 820 | kqueue_update_iotier_override(kqu: kq); |
| 821 | } |
| 822 | |
| 823 | if (!dropping && (result & FILTER_ACTIVE)) { |
| 824 | knote_activate(kqu: kq, kn, result); |
| 825 | } |
| 826 | |
| 827 | if ((kn->kn_status & KN_LOCKED) == 0) { |
| 828 | /* |
| 829 | * There's no other f_* call in flight, we can leave QoS "Merge" mode. |
| 830 | * |
| 831 | * See knote_adjust_qos() |
| 832 | */ |
| 833 | kn->kn_status &= ~(KN_POSTING | KN_MERGE_QOS); |
| 834 | } else { |
| 835 | kn->kn_status &= ~KN_POSTING; |
| 836 | } |
| 837 | |
| 838 | if (__improbable(dropping)) { |
| 839 | thread_wakeup(knote_post_wev(kn)); |
| 840 | } |
| 841 | |
| 842 | kqunlock(kqu: kq); |
| 843 | } |
| 844 | |
| 845 | /* |
| 846 | * Called by knote_drop() and knote_fdclose() to wait for the last f_event() |
| 847 | * caller to be done. |
| 848 | * |
| 849 | * - kq locked at entry |
| 850 | * - kq unlocked at exit |
| 851 | */ |
| 852 | static void |
| 853 | knote_wait_for_post(struct kqueue *kq, struct knote *kn) |
| 854 | { |
| 855 | kqlock_held(kqu: kq); |
| 856 | |
| 857 | assert(kn->kn_status & (KN_DROPPING | KN_VANISHED)); |
| 858 | |
| 859 | if (kn->kn_status & KN_POSTING) { |
| 860 | lck_spin_sleep(lck: &kq->kq_lock, lck_sleep_action: LCK_SLEEP_UNLOCK, event: knote_post_wev(kn), |
| 861 | THREAD_UNINT | THREAD_WAIT_NOREPORT); |
| 862 | } else { |
| 863 | kqunlock(kqu: kq); |
| 864 | } |
| 865 | } |
| 866 | |
| 867 | #pragma mark knote helpers for filters |
| 868 | |
| 869 | OS_ALWAYS_INLINE |
| 870 | void * |
| 871 | knote_kn_hook_get_raw(struct knote *kn) |
| 872 | { |
| 873 | uintptr_t *addr = &kn->kn_hook; |
| 874 | |
| 875 | void *hook = (void *) *addr; |
| 876 | #if __has_feature(ptrauth_calls) |
| 877 | if (hook) { |
| 878 | uint16_t blend = kn->kn_filter; |
| 879 | blend |= (kn->kn_filtid << 8); |
| 880 | blend ^= OS_PTRAUTH_DISCRIMINATOR("kn.kn_hook" ); |
| 881 | |
| 882 | hook = ptrauth_auth_data(hook, ptrauth_key_process_independent_data, |
| 883 | ptrauth_blend_discriminator(addr, blend)); |
| 884 | } |
| 885 | #endif |
| 886 | |
| 887 | return hook; |
| 888 | } |
| 889 | |
| 890 | OS_ALWAYS_INLINE void |
| 891 | knote_kn_hook_set_raw(struct knote *kn, void *kn_hook) |
| 892 | { |
| 893 | uintptr_t *addr = &kn->kn_hook; |
| 894 | #if __has_feature(ptrauth_calls) |
| 895 | if (kn_hook) { |
| 896 | uint16_t blend = kn->kn_filter; |
| 897 | blend |= (kn->kn_filtid << 8); |
| 898 | blend ^= OS_PTRAUTH_DISCRIMINATOR("kn.kn_hook" ); |
| 899 | |
| 900 | kn_hook = ptrauth_sign_unauthenticated(kn_hook, |
| 901 | ptrauth_key_process_independent_data, |
| 902 | ptrauth_blend_discriminator(addr, blend)); |
| 903 | } |
| 904 | #endif |
| 905 | *addr = (uintptr_t) kn_hook; |
| 906 | } |
| 907 | |
| 908 | OS_ALWAYS_INLINE |
| 909 | void |
| 910 | knote_set_error(struct knote *kn, int error) |
| 911 | { |
| 912 | kn->kn_flags |= EV_ERROR; |
| 913 | kn->kn_sdata = error; |
| 914 | } |
| 915 | |
| 916 | OS_ALWAYS_INLINE |
| 917 | int64_t |
| 918 | knote_low_watermark(const struct knote *kn) |
| 919 | { |
| 920 | return (kn->kn_sfflags & NOTE_LOWAT) ? kn->kn_sdata : 1; |
| 921 | } |
| 922 | |
| 923 | /*! |
| 924 | * @function knote_fill_kevent_with_sdata |
| 925 | * |
| 926 | * @brief |
| 927 | * Fills in a kevent from the current content of a knote. |
| 928 | * |
| 929 | * @discussion |
| 930 | * This is meant to be called from filter's f_process hooks. |
| 931 | * The kevent data is filled with kn->kn_sdata. |
| 932 | * |
| 933 | * kn->kn_fflags is cleared if kn->kn_flags has EV_CLEAR set. |
| 934 | * |
| 935 | * Using knote_fill_kevent is typically preferred. |
| 936 | */ |
| 937 | OS_ALWAYS_INLINE |
| 938 | void |
| 939 | knote_fill_kevent_with_sdata(struct knote *kn, struct kevent_qos_s *kev) |
| 940 | { |
| 941 | #define knote_assert_aliases(name1, offs1, name2) \ |
| 942 | static_assert(offsetof(struct kevent_qos_s, name1) + offs1 == \ |
| 943 | offsetof(struct kevent_internal_s, name2), \ |
| 944 | "kevent_qos_s::" #name1 " and kevent_internal_s::" #name2 "need to alias") |
| 945 | /* |
| 946 | * All the code makes assumptions on these aliasing, |
| 947 | * so make sure we fail the build if we ever ever ever break them. |
| 948 | */ |
| 949 | knote_assert_aliases(ident, 0, kei_ident); |
| 950 | #ifdef __LITTLE_ENDIAN__ |
| 951 | knote_assert_aliases(filter, 0, kei_filter); // non trivial overlap |
| 952 | knote_assert_aliases(filter, 1, kei_filtid); // non trivial overlap |
| 953 | #else |
| 954 | knote_assert_aliases(filter, 0, kei_filtid); // non trivial overlap |
| 955 | knote_assert_aliases(filter, 1, kei_filter); // non trivial overlap |
| 956 | #endif |
| 957 | knote_assert_aliases(flags, 0, kei_flags); |
| 958 | knote_assert_aliases(qos, 0, kei_qos); |
| 959 | knote_assert_aliases(udata, 0, kei_udata); |
| 960 | knote_assert_aliases(fflags, 0, kei_fflags); |
| 961 | knote_assert_aliases(xflags, 0, kei_sfflags); // non trivial overlap |
| 962 | knote_assert_aliases(data, 0, kei_sdata); // non trivial overlap |
| 963 | knote_assert_aliases(ext, 0, kei_ext); |
| 964 | #undef knote_assert_aliases |
| 965 | |
| 966 | /* |
| 967 | * Fix the differences between kevent_qos_s and kevent_internal_s: |
| 968 | * - xflags is where kn_sfflags lives, we need to zero it |
| 969 | * - fixup the high bits of `filter` where kn_filtid lives |
| 970 | */ |
| 971 | *kev = *(struct kevent_qos_s *)&kn->kn_kevent; |
| 972 | kev->xflags = 0; |
| 973 | kev->filter |= 0xff00; |
| 974 | if (kn->kn_flags & EV_CLEAR) { |
| 975 | kn->kn_fflags = 0; |
| 976 | } |
| 977 | } |
| 978 | |
| 979 | /*! |
| 980 | * @function knote_fill_kevent |
| 981 | * |
| 982 | * @brief |
| 983 | * Fills in a kevent from the current content of a knote. |
| 984 | * |
| 985 | * @discussion |
| 986 | * This is meant to be called from filter's f_process hooks. |
| 987 | * The kevent data is filled with the passed in data. |
| 988 | * |
| 989 | * kn->kn_fflags is cleared if kn->kn_flags has EV_CLEAR set. |
| 990 | */ |
| 991 | OS_ALWAYS_INLINE |
| 992 | void |
| 993 | knote_fill_kevent(struct knote *kn, struct kevent_qos_s *kev, int64_t data) |
| 994 | { |
| 995 | knote_fill_kevent_with_sdata(kn, kev); |
| 996 | kev->filter = kn->kn_filter; |
| 997 | kev->data = data; |
| 998 | } |
| 999 | |
| 1000 | |
| 1001 | #pragma mark file_filtops |
| 1002 | |
| 1003 | static int |
| 1004 | filt_fileattach(struct knote *kn, struct kevent_qos_s *kev) |
| 1005 | { |
| 1006 | return fo_kqfilter(fp: kn->kn_fp, kn, kev); |
| 1007 | } |
| 1008 | |
| 1009 | SECURITY_READ_ONLY_EARLY(static struct filterops) file_filtops = { |
| 1010 | .f_isfd = 1, |
| 1011 | .f_attach = filt_fileattach, |
| 1012 | }; |
| 1013 | |
| 1014 | #pragma mark kqread_filtops |
| 1015 | |
| 1016 | #define f_flag fp_glob->fg_flag |
| 1017 | #define f_ops fp_glob->fg_ops |
| 1018 | #define f_lflags fp_glob->fg_lflags |
| 1019 | |
| 1020 | static void |
| 1021 | filt_kqdetach(struct knote *kn) |
| 1022 | { |
| 1023 | struct kqfile *kqf = (struct kqfile *)fp_get_data(fp: kn->kn_fp); |
| 1024 | struct kqueue *kq = &kqf->kqf_kqueue; |
| 1025 | |
| 1026 | kqlock(kqu: kq); |
| 1027 | KNOTE_DETACH(&kqf->kqf_sel.si_note, kn); |
| 1028 | kqunlock(kqu: kq); |
| 1029 | } |
| 1030 | |
| 1031 | static int |
| 1032 | filt_kqueue(struct knote *kn, __unused long hint) |
| 1033 | { |
| 1034 | struct kqueue *kq = (struct kqueue *)fp_get_data(fp: kn->kn_fp); |
| 1035 | |
| 1036 | return kq->kq_count > 0; |
| 1037 | } |
| 1038 | |
| 1039 | static int |
| 1040 | filt_kqtouch(struct knote *kn, struct kevent_qos_s *kev) |
| 1041 | { |
| 1042 | #pragma unused(kev) |
| 1043 | struct kqueue *kq = (struct kqueue *)fp_get_data(fp: kn->kn_fp); |
| 1044 | int res; |
| 1045 | |
| 1046 | kqlock(kqu: kq); |
| 1047 | res = (kq->kq_count > 0); |
| 1048 | kqunlock(kqu: kq); |
| 1049 | |
| 1050 | return res; |
| 1051 | } |
| 1052 | |
| 1053 | static int |
| 1054 | filt_kqprocess(struct knote *kn, struct kevent_qos_s *kev) |
| 1055 | { |
| 1056 | struct kqueue *kq = (struct kqueue *)fp_get_data(fp: kn->kn_fp); |
| 1057 | int res = 0; |
| 1058 | |
| 1059 | kqlock(kqu: kq); |
| 1060 | if (kq->kq_count) { |
| 1061 | knote_fill_kevent(kn, kev, data: kq->kq_count); |
| 1062 | res = 1; |
| 1063 | } |
| 1064 | kqunlock(kqu: kq); |
| 1065 | |
| 1066 | return res; |
| 1067 | } |
| 1068 | |
| 1069 | SECURITY_READ_ONLY_EARLY(static struct filterops) kqread_filtops = { |
| 1070 | .f_isfd = 1, |
| 1071 | .f_detach = filt_kqdetach, |
| 1072 | .f_event = filt_kqueue, |
| 1073 | .f_touch = filt_kqtouch, |
| 1074 | .f_process = filt_kqprocess, |
| 1075 | }; |
| 1076 | |
| 1077 | #pragma mark proc_filtops |
| 1078 | |
| 1079 | static int |
| 1080 | filt_procattach(struct knote *kn, __unused struct kevent_qos_s *kev) |
| 1081 | { |
| 1082 | struct proc *p; |
| 1083 | |
| 1084 | assert(PID_MAX < NOTE_PDATAMASK); |
| 1085 | |
| 1086 | if ((kn->kn_sfflags & (NOTE_TRACK | NOTE_TRACKERR | NOTE_CHILD)) != 0) { |
| 1087 | knote_set_error(kn, ENOTSUP); |
| 1088 | return 0; |
| 1089 | } |
| 1090 | |
| 1091 | p = proc_find(pid: (int)kn->kn_id); |
| 1092 | if (p == NULL) { |
| 1093 | knote_set_error(kn, ESRCH); |
| 1094 | return 0; |
| 1095 | } |
| 1096 | |
| 1097 | const uint32_t NoteExitStatusBits = NOTE_EXIT | NOTE_EXITSTATUS; |
| 1098 | |
| 1099 | if ((kn->kn_sfflags & NoteExitStatusBits) == NoteExitStatusBits) { |
| 1100 | do { |
| 1101 | pid_t selfpid = proc_selfpid(); |
| 1102 | |
| 1103 | if (p->p_ppid == selfpid) { |
| 1104 | break; /* parent => ok */ |
| 1105 | } |
| 1106 | if ((p->p_lflag & P_LTRACED) != 0 && |
| 1107 | (p->p_oppid == selfpid)) { |
| 1108 | break; /* parent-in-waiting => ok */ |
| 1109 | } |
| 1110 | if (cansignal(current_proc(), kauth_cred_get(), p, SIGKILL)) { |
| 1111 | break; /* allowed to signal => ok */ |
| 1112 | } |
| 1113 | proc_rele(p); |
| 1114 | knote_set_error(kn, EACCES); |
| 1115 | return 0; |
| 1116 | } while (0); |
| 1117 | } |
| 1118 | |
| 1119 | kn->kn_proc = p; |
| 1120 | kn->kn_flags |= EV_CLEAR; /* automatically set */ |
| 1121 | kn->kn_sdata = 0; /* incoming data is ignored */ |
| 1122 | |
| 1123 | proc_klist_lock(); |
| 1124 | |
| 1125 | KNOTE_ATTACH(&p->p_klist, kn); |
| 1126 | |
| 1127 | proc_klist_unlock(); |
| 1128 | |
| 1129 | proc_rele(p); |
| 1130 | |
| 1131 | /* |
| 1132 | * only captures edge-triggered events after this point |
| 1133 | * so it can't already be fired. |
| 1134 | */ |
| 1135 | return 0; |
| 1136 | } |
| 1137 | |
| 1138 | |
| 1139 | /* |
| 1140 | * The knote may be attached to a different process, which may exit, |
| 1141 | * leaving nothing for the knote to be attached to. In that case, |
| 1142 | * the pointer to the process will have already been nulled out. |
| 1143 | */ |
| 1144 | static void |
| 1145 | filt_procdetach(struct knote *kn) |
| 1146 | { |
| 1147 | struct proc *p; |
| 1148 | |
| 1149 | proc_klist_lock(); |
| 1150 | |
| 1151 | p = kn->kn_proc; |
| 1152 | if (p != PROC_NULL) { |
| 1153 | kn->kn_proc = PROC_NULL; |
| 1154 | KNOTE_DETACH(&p->p_klist, kn); |
| 1155 | } |
| 1156 | |
| 1157 | proc_klist_unlock(); |
| 1158 | } |
| 1159 | |
| 1160 | static int |
| 1161 | filt_procevent(struct knote *kn, long hint) |
| 1162 | { |
| 1163 | u_int event; |
| 1164 | |
| 1165 | /* ALWAYS CALLED WITH proc_klist_lock */ |
| 1166 | |
| 1167 | /* |
| 1168 | * Note: a lot of bits in hint may be obtained from the knote |
| 1169 | * To free some of those bits, see <rdar://problem/12592988> Freeing up |
| 1170 | * bits in hint for filt_procevent |
| 1171 | * |
| 1172 | * mask off extra data |
| 1173 | */ |
| 1174 | event = (u_int)hint & NOTE_PCTRLMASK; |
| 1175 | |
| 1176 | /* |
| 1177 | * termination lifecycle events can happen while a debugger |
| 1178 | * has reparented a process, in which case notifications |
| 1179 | * should be quashed except to the tracing parent. When |
| 1180 | * the debugger reaps the child (either via wait4(2) or |
| 1181 | * process exit), the child will be reparented to the original |
| 1182 | * parent and these knotes re-fired. |
| 1183 | */ |
| 1184 | if (event & NOTE_EXIT) { |
| 1185 | if ((kn->kn_proc->p_oppid != 0) |
| 1186 | && (proc_getpid(knote_get_kq(kn)->kq_p) != kn->kn_proc->p_ppid)) { |
| 1187 | /* |
| 1188 | * This knote is not for the current ptrace(2) parent, ignore. |
| 1189 | */ |
| 1190 | return 0; |
| 1191 | } |
| 1192 | } |
| 1193 | |
| 1194 | /* |
| 1195 | * if the user is interested in this event, record it. |
| 1196 | */ |
| 1197 | if (kn->kn_sfflags & event) { |
| 1198 | kn->kn_fflags |= event; |
| 1199 | } |
| 1200 | |
| 1201 | #pragma clang diagnostic push |
| 1202 | #pragma clang diagnostic ignored "-Wdeprecated-declarations" |
| 1203 | if ((event == NOTE_REAP) || ((event == NOTE_EXIT) && !(kn->kn_sfflags & NOTE_REAP))) { |
| 1204 | kn->kn_flags |= (EV_EOF | EV_ONESHOT); |
| 1205 | } |
| 1206 | #pragma clang diagnostic pop |
| 1207 | |
| 1208 | |
| 1209 | /* |
| 1210 | * The kernel has a wrapper in place that returns the same data |
| 1211 | * as is collected here, in kn_hook32. Any changes to how |
| 1212 | * NOTE_EXITSTATUS and NOTE_EXIT_DETAIL are collected |
| 1213 | * should also be reflected in the proc_pidnoteexit() wrapper. |
| 1214 | */ |
| 1215 | if (event == NOTE_EXIT) { |
| 1216 | kn->kn_hook32 = 0; |
| 1217 | if ((kn->kn_sfflags & NOTE_EXITSTATUS) != 0) { |
| 1218 | kn->kn_fflags |= NOTE_EXITSTATUS; |
| 1219 | kn->kn_hook32 |= (hint & NOTE_PDATAMASK); |
| 1220 | } |
| 1221 | if ((kn->kn_sfflags & NOTE_EXIT_DETAIL) != 0) { |
| 1222 | kn->kn_fflags |= NOTE_EXIT_DETAIL; |
| 1223 | if ((kn->kn_proc->p_lflag & |
| 1224 | P_LTERM_DECRYPTFAIL) != 0) { |
| 1225 | kn->kn_hook32 |= NOTE_EXIT_DECRYPTFAIL; |
| 1226 | } |
| 1227 | if ((kn->kn_proc->p_lflag & |
| 1228 | P_LTERM_JETSAM) != 0) { |
| 1229 | kn->kn_hook32 |= NOTE_EXIT_MEMORY; |
| 1230 | switch (kn->kn_proc->p_lflag & P_JETSAM_MASK) { |
| 1231 | case P_JETSAM_VMPAGESHORTAGE: |
| 1232 | kn->kn_hook32 |= NOTE_EXIT_MEMORY_VMPAGESHORTAGE; |
| 1233 | break; |
| 1234 | case P_JETSAM_VMTHRASHING: |
| 1235 | kn->kn_hook32 |= NOTE_EXIT_MEMORY_VMTHRASHING; |
| 1236 | break; |
| 1237 | case P_JETSAM_FCTHRASHING: |
| 1238 | kn->kn_hook32 |= NOTE_EXIT_MEMORY_FCTHRASHING; |
| 1239 | break; |
| 1240 | case P_JETSAM_VNODE: |
| 1241 | kn->kn_hook32 |= NOTE_EXIT_MEMORY_VNODE; |
| 1242 | break; |
| 1243 | case P_JETSAM_HIWAT: |
| 1244 | kn->kn_hook32 |= NOTE_EXIT_MEMORY_HIWAT; |
| 1245 | break; |
| 1246 | case P_JETSAM_PID: |
| 1247 | kn->kn_hook32 |= NOTE_EXIT_MEMORY_PID; |
| 1248 | break; |
| 1249 | case P_JETSAM_IDLEEXIT: |
| 1250 | kn->kn_hook32 |= NOTE_EXIT_MEMORY_IDLE; |
| 1251 | break; |
| 1252 | } |
| 1253 | } |
| 1254 | if ((proc_getcsflags(kn->kn_proc) & |
| 1255 | CS_KILLED) != 0) { |
| 1256 | kn->kn_hook32 |= NOTE_EXIT_CSERROR; |
| 1257 | } |
| 1258 | } |
| 1259 | } |
| 1260 | |
| 1261 | /* if we have any matching state, activate the knote */ |
| 1262 | return kn->kn_fflags != 0; |
| 1263 | } |
| 1264 | |
| 1265 | static int |
| 1266 | filt_proctouch(struct knote *kn, struct kevent_qos_s *kev) |
| 1267 | { |
| 1268 | int res; |
| 1269 | |
| 1270 | proc_klist_lock(); |
| 1271 | |
| 1272 | /* accept new filter flags and mask off output events no long interesting */ |
| 1273 | kn->kn_sfflags = kev->fflags; |
| 1274 | |
| 1275 | /* restrict the current results to the (smaller?) set of new interest */ |
| 1276 | /* |
| 1277 | * For compatibility with previous implementations, we leave kn_fflags |
| 1278 | * as they were before. |
| 1279 | */ |
| 1280 | //kn->kn_fflags &= kn->kn_sfflags; |
| 1281 | |
| 1282 | res = (kn->kn_fflags != 0); |
| 1283 | |
| 1284 | proc_klist_unlock(); |
| 1285 | |
| 1286 | return res; |
| 1287 | } |
| 1288 | |
| 1289 | static int |
| 1290 | filt_procprocess(struct knote *kn, struct kevent_qos_s *kev) |
| 1291 | { |
| 1292 | int res = 0; |
| 1293 | |
| 1294 | proc_klist_lock(); |
| 1295 | if (kn->kn_fflags) { |
| 1296 | knote_fill_kevent(kn, kev, data: kn->kn_hook32); |
| 1297 | kn->kn_hook32 = 0; |
| 1298 | res = 1; |
| 1299 | } |
| 1300 | proc_klist_unlock(); |
| 1301 | return res; |
| 1302 | } |
| 1303 | |
| 1304 | SECURITY_READ_ONLY_EARLY(static struct filterops) proc_filtops = { |
| 1305 | .f_attach = filt_procattach, |
| 1306 | .f_detach = filt_procdetach, |
| 1307 | .f_event = filt_procevent, |
| 1308 | .f_touch = filt_proctouch, |
| 1309 | .f_process = filt_procprocess, |
| 1310 | }; |
| 1311 | |
| 1312 | #pragma mark timer_filtops |
| 1313 | |
| 1314 | struct filt_timer_params { |
| 1315 | uint64_t deadline; /* deadline in abs/cont time |
| 1316 | * (or 0 if NOTE_ABSOLUTE and deadline is in past) */ |
| 1317 | uint64_t leeway; /* leeway in abstime, or 0 if none */ |
| 1318 | uint64_t interval; /* interval in abstime or 0 if non-repeating timer */ |
| 1319 | }; |
| 1320 | |
| 1321 | /* |
| 1322 | * Values stored in the knote at rest (using Mach absolute time units) |
| 1323 | * |
| 1324 | * kn->kn_thcall where the thread_call object is stored |
| 1325 | * kn->kn_ext[0] next deadline or 0 if immediate expiration |
| 1326 | * kn->kn_ext[1] leeway value |
| 1327 | * kn->kn_sdata interval timer: the interval |
| 1328 | * absolute/deadline timer: 0 |
| 1329 | * kn->kn_hook32 timer state (with gencount) |
| 1330 | * |
| 1331 | * TIMER_IDLE: |
| 1332 | * The timer has either never been scheduled or been cancelled. |
| 1333 | * It is safe to schedule a new one in this state. |
| 1334 | * |
| 1335 | * TIMER_ARMED: |
| 1336 | * The timer has been scheduled |
| 1337 | * |
| 1338 | * TIMER_FIRED |
| 1339 | * The timer has fired and an event needs to be delivered. |
| 1340 | * When in this state, the callout may still be running. |
| 1341 | * |
| 1342 | * TIMER_IMMEDIATE |
| 1343 | * The timer has fired at registration time, and the callout was never |
| 1344 | * dispatched. |
| 1345 | */ |
| 1346 | #define TIMER_IDLE 0x0 |
| 1347 | #define TIMER_ARMED 0x1 |
| 1348 | #define TIMER_FIRED 0x2 |
| 1349 | #define TIMER_IMMEDIATE 0x3 |
| 1350 | #define TIMER_STATE_MASK 0x3 |
| 1351 | #define TIMER_GEN_INC 0x4 |
| 1352 | |
| 1353 | static void |
| 1354 | filt_timer_set_params(struct knote *kn, struct filt_timer_params *params) |
| 1355 | { |
| 1356 | kn->kn_ext[0] = params->deadline; |
| 1357 | kn->kn_ext[1] = params->leeway; |
| 1358 | kn->kn_sdata = params->interval; |
| 1359 | } |
| 1360 | |
| 1361 | /* |
| 1362 | * filt_timervalidate - process data from user |
| 1363 | * |
| 1364 | * Sets up the deadline, interval, and leeway from the provided user data |
| 1365 | * |
| 1366 | * Input: |
| 1367 | * kn_sdata timer deadline or interval time |
| 1368 | * kn_sfflags style of timer, unit of measurement |
| 1369 | * |
| 1370 | * Output: |
| 1371 | * struct filter_timer_params to apply to the filter with |
| 1372 | * filt_timer_set_params when changes are ready to be commited. |
| 1373 | * |
| 1374 | * Returns: |
| 1375 | * EINVAL Invalid user data parameters |
| 1376 | * ERANGE Various overflows with the parameters |
| 1377 | * |
| 1378 | * Called with timer filter lock held. |
| 1379 | */ |
| 1380 | static int |
| 1381 | filt_timervalidate(const struct kevent_qos_s *kev, |
| 1382 | struct filt_timer_params *params) |
| 1383 | { |
| 1384 | /* |
| 1385 | * There are 5 knobs that need to be chosen for a timer registration: |
| 1386 | * |
| 1387 | * A) Units of time (what is the time duration of the specified number) |
| 1388 | * Absolute and interval take: |
| 1389 | * NOTE_SECONDS, NOTE_USECONDS, NOTE_NSECONDS, NOTE_MACHTIME |
| 1390 | * Defaults to milliseconds if not specified |
| 1391 | * |
| 1392 | * B) Clock epoch (what is the zero point of the specified number) |
| 1393 | * For interval, there is none |
| 1394 | * For absolute, defaults to the gettimeofday/calendar epoch |
| 1395 | * With NOTE_MACHTIME, uses mach_absolute_time() |
| 1396 | * With NOTE_MACHTIME and NOTE_MACH_CONTINUOUS_TIME, uses mach_continuous_time() |
| 1397 | * |
| 1398 | * C) The knote's behavior on delivery |
| 1399 | * Interval timer causes the knote to arm for the next interval unless one-shot is set |
| 1400 | * Absolute is a forced one-shot timer which deletes on delivery |
| 1401 | * TODO: Add a way for absolute to be not forced one-shot |
| 1402 | * |
| 1403 | * D) Whether the time duration is relative to now or absolute |
| 1404 | * Interval fires at now + duration when it is set up |
| 1405 | * Absolute fires at now + difference between now walltime and passed in walltime |
| 1406 | * With NOTE_MACHTIME it fires at an absolute MAT or MCT. |
| 1407 | * |
| 1408 | * E) Whether the timer continues to tick across sleep |
| 1409 | * By default all three do not. |
| 1410 | * For interval and absolute, NOTE_MACH_CONTINUOUS_TIME causes them to tick across sleep |
| 1411 | * With NOTE_ABSOLUTE | NOTE_MACHTIME | NOTE_MACH_CONTINUOUS_TIME: |
| 1412 | * expires when mach_continuous_time() is > the passed in value. |
| 1413 | */ |
| 1414 | |
| 1415 | uint64_t multiplier; |
| 1416 | |
| 1417 | boolean_t use_abstime = FALSE; |
| 1418 | |
| 1419 | switch (kev->fflags & (NOTE_SECONDS | NOTE_USECONDS | NOTE_NSECONDS | NOTE_MACHTIME)) { |
| 1420 | case NOTE_SECONDS: |
| 1421 | multiplier = NSEC_PER_SEC; |
| 1422 | break; |
| 1423 | case NOTE_USECONDS: |
| 1424 | multiplier = NSEC_PER_USEC; |
| 1425 | break; |
| 1426 | case NOTE_NSECONDS: |
| 1427 | multiplier = 1; |
| 1428 | break; |
| 1429 | case NOTE_MACHTIME: |
| 1430 | multiplier = 0; |
| 1431 | use_abstime = TRUE; |
| 1432 | break; |
| 1433 | case 0: /* milliseconds (default) */ |
| 1434 | multiplier = NSEC_PER_SEC / 1000; |
| 1435 | break; |
| 1436 | default: |
| 1437 | return EINVAL; |
| 1438 | } |
| 1439 | |
| 1440 | /* transform the leeway in kn_ext[1] to same time scale */ |
| 1441 | if (kev->fflags & NOTE_LEEWAY) { |
| 1442 | uint64_t leeway_abs; |
| 1443 | |
| 1444 | if (use_abstime) { |
| 1445 | leeway_abs = (uint64_t)kev->ext[1]; |
| 1446 | } else { |
| 1447 | uint64_t leeway_ns; |
| 1448 | if (os_mul_overflow((uint64_t)kev->ext[1], multiplier, &leeway_ns)) { |
| 1449 | return ERANGE; |
| 1450 | } |
| 1451 | |
| 1452 | nanoseconds_to_absolutetime(nanoseconds: leeway_ns, result: &leeway_abs); |
| 1453 | } |
| 1454 | |
| 1455 | params->leeway = leeway_abs; |
| 1456 | } else { |
| 1457 | params->leeway = 0; |
| 1458 | } |
| 1459 | |
| 1460 | if (kev->fflags & NOTE_ABSOLUTE) { |
| 1461 | uint64_t deadline_abs; |
| 1462 | |
| 1463 | if (use_abstime) { |
| 1464 | deadline_abs = (uint64_t)kev->data; |
| 1465 | } else { |
| 1466 | uint64_t calendar_deadline_ns; |
| 1467 | |
| 1468 | if (os_mul_overflow((uint64_t)kev->data, multiplier, &calendar_deadline_ns)) { |
| 1469 | return ERANGE; |
| 1470 | } |
| 1471 | |
| 1472 | /* calendar_deadline_ns is in nanoseconds since the epoch */ |
| 1473 | |
| 1474 | clock_sec_t seconds; |
| 1475 | clock_nsec_t nanoseconds; |
| 1476 | |
| 1477 | /* |
| 1478 | * Note that the conversion through wall-time is only done once. |
| 1479 | * |
| 1480 | * If the relationship between MAT and gettimeofday changes, |
| 1481 | * the underlying timer does not update. |
| 1482 | * |
| 1483 | * TODO: build a wall-time denominated timer_call queue |
| 1484 | * and a flag to request DTRTing with wall-time timers |
| 1485 | */ |
| 1486 | clock_get_calendar_nanotime(secs: &seconds, nanosecs: &nanoseconds); |
| 1487 | |
| 1488 | uint64_t calendar_now_ns = (uint64_t)seconds * NSEC_PER_SEC + nanoseconds; |
| 1489 | |
| 1490 | /* if deadline is in the future */ |
| 1491 | if (calendar_now_ns < calendar_deadline_ns) { |
| 1492 | uint64_t interval_ns = calendar_deadline_ns - calendar_now_ns; |
| 1493 | uint64_t interval_abs; |
| 1494 | |
| 1495 | nanoseconds_to_absolutetime(nanoseconds: interval_ns, result: &interval_abs); |
| 1496 | |
| 1497 | /* |
| 1498 | * Note that the NOTE_MACH_CONTINUOUS_TIME flag here only |
| 1499 | * causes the timer to keep ticking across sleep, but |
| 1500 | * it does not change the calendar timebase. |
| 1501 | */ |
| 1502 | |
| 1503 | if (kev->fflags & NOTE_MACH_CONTINUOUS_TIME) { |
| 1504 | clock_continuoustime_interval_to_deadline(abstime: interval_abs, |
| 1505 | result: &deadline_abs); |
| 1506 | } else { |
| 1507 | clock_absolutetime_interval_to_deadline(abstime: interval_abs, |
| 1508 | result: &deadline_abs); |
| 1509 | } |
| 1510 | } else { |
| 1511 | deadline_abs = 0; /* cause immediate expiration */ |
| 1512 | } |
| 1513 | } |
| 1514 | |
| 1515 | params->deadline = deadline_abs; |
| 1516 | params->interval = 0; /* NOTE_ABSOLUTE is non-repeating */ |
| 1517 | } else if (kev->data < 0) { |
| 1518 | /* |
| 1519 | * Negative interval timers fire immediately, once. |
| 1520 | * |
| 1521 | * Ideally a negative interval would be an error, but certain clients |
| 1522 | * pass negative values on accident, and expect an event back. |
| 1523 | * |
| 1524 | * In the old implementation the timer would repeat with no delay |
| 1525 | * N times until mach_absolute_time() + (N * interval) underflowed, |
| 1526 | * then it would wait ~forever by accidentally arming a timer for the far future. |
| 1527 | * |
| 1528 | * We now skip the power-wasting hot spin phase and go straight to the idle phase. |
| 1529 | */ |
| 1530 | |
| 1531 | params->deadline = 0; /* expire immediately */ |
| 1532 | params->interval = 0; /* non-repeating */ |
| 1533 | } else { |
| 1534 | uint64_t interval_abs = 0; |
| 1535 | |
| 1536 | if (use_abstime) { |
| 1537 | interval_abs = (uint64_t)kev->data; |
| 1538 | } else { |
| 1539 | uint64_t interval_ns; |
| 1540 | if (os_mul_overflow((uint64_t)kev->data, multiplier, &interval_ns)) { |
| 1541 | return ERANGE; |
| 1542 | } |
| 1543 | |
| 1544 | nanoseconds_to_absolutetime(nanoseconds: interval_ns, result: &interval_abs); |
| 1545 | } |
| 1546 | |
| 1547 | uint64_t deadline = 0; |
| 1548 | |
| 1549 | if (kev->fflags & NOTE_MACH_CONTINUOUS_TIME) { |
| 1550 | clock_continuoustime_interval_to_deadline(abstime: interval_abs, result: &deadline); |
| 1551 | } else { |
| 1552 | clock_absolutetime_interval_to_deadline(abstime: interval_abs, result: &deadline); |
| 1553 | } |
| 1554 | |
| 1555 | params->deadline = deadline; |
| 1556 | params->interval = interval_abs; |
| 1557 | } |
| 1558 | |
| 1559 | return 0; |
| 1560 | } |
| 1561 | |
| 1562 | /* |
| 1563 | * filt_timerexpire - the timer callout routine |
| 1564 | */ |
| 1565 | static void |
| 1566 | filt_timerexpire(void *knx, void *state_on_arm) |
| 1567 | { |
| 1568 | struct knote *kn = knx; |
| 1569 | |
| 1570 | uint32_t state = (uint32_t)(uintptr_t)state_on_arm; |
| 1571 | uint32_t fired_state = state ^ TIMER_ARMED ^ TIMER_FIRED; |
| 1572 | |
| 1573 | if (os_atomic_cmpxchg(&kn->kn_hook32, state, fired_state, relaxed)) { |
| 1574 | // our f_event always would say FILTER_ACTIVE, |
| 1575 | // so be leaner and just do it. |
| 1576 | struct kqueue *kq = knote_get_kq(kn); |
| 1577 | kqlock(kqu: kq); |
| 1578 | knote_activate(kqu: kq, kn, FILTER_ACTIVE); |
| 1579 | kqunlock(kqu: kq); |
| 1580 | } else { |
| 1581 | /* |
| 1582 | * The timer has been reprogrammed or canceled since it was armed, |
| 1583 | * and this is a late firing for the timer, just ignore it. |
| 1584 | */ |
| 1585 | } |
| 1586 | } |
| 1587 | |
| 1588 | /* |
| 1589 | * Does this deadline needs a timer armed for it, or has it expired? |
| 1590 | */ |
| 1591 | static bool |
| 1592 | filt_timer_is_ready(struct knote *kn) |
| 1593 | { |
| 1594 | uint64_t now, deadline = kn->kn_ext[0]; |
| 1595 | |
| 1596 | if (deadline == 0) { |
| 1597 | return true; |
| 1598 | } |
| 1599 | |
| 1600 | if (kn->kn_sfflags & NOTE_MACH_CONTINUOUS_TIME) { |
| 1601 | now = mach_continuous_time(); |
| 1602 | } else { |
| 1603 | now = mach_absolute_time(); |
| 1604 | } |
| 1605 | return deadline <= now; |
| 1606 | } |
| 1607 | |
| 1608 | /* |
| 1609 | * Arm a timer |
| 1610 | * |
| 1611 | * It is the responsibility of the caller to make sure the timer call |
| 1612 | * has completed or been cancelled properly prior to arming it. |
| 1613 | */ |
| 1614 | static void |
| 1615 | filt_timerarm(struct knote *kn) |
| 1616 | { |
| 1617 | uint64_t deadline = kn->kn_ext[0]; |
| 1618 | uint64_t leeway = kn->kn_ext[1]; |
| 1619 | uint32_t state; |
| 1620 | |
| 1621 | int filter_flags = kn->kn_sfflags; |
| 1622 | unsigned int timer_flags = 0; |
| 1623 | |
| 1624 | if (filter_flags & NOTE_CRITICAL) { |
| 1625 | timer_flags |= THREAD_CALL_DELAY_USER_CRITICAL; |
| 1626 | } else if (filter_flags & NOTE_BACKGROUND) { |
| 1627 | timer_flags |= THREAD_CALL_DELAY_USER_BACKGROUND; |
| 1628 | } else { |
| 1629 | timer_flags |= THREAD_CALL_DELAY_USER_NORMAL; |
| 1630 | } |
| 1631 | |
| 1632 | if (filter_flags & NOTE_LEEWAY) { |
| 1633 | timer_flags |= THREAD_CALL_DELAY_LEEWAY; |
| 1634 | } |
| 1635 | |
| 1636 | if (filter_flags & NOTE_MACH_CONTINUOUS_TIME) { |
| 1637 | timer_flags |= THREAD_CALL_CONTINUOUS; |
| 1638 | } |
| 1639 | |
| 1640 | /* |
| 1641 | * Move to ARMED. |
| 1642 | * |
| 1643 | * We increase the gencount, and setup the thread call with this expected |
| 1644 | * state. It means that if there was a previous generation of the timer in |
| 1645 | * flight that needs to be ignored, then 3 things are possible: |
| 1646 | * |
| 1647 | * - the timer fires first, filt_timerexpire() and sets the state to FIRED |
| 1648 | * but we clobber it with ARMED and a new gencount. The knote will still |
| 1649 | * be activated, but filt_timerprocess() which is serialized with this |
| 1650 | * call will not see the FIRED bit set and will not deliver an event. |
| 1651 | * |
| 1652 | * - this code runs first, but filt_timerexpire() comes second. Because it |
| 1653 | * knows an old gencount, it will debounce and not activate the knote. |
| 1654 | * |
| 1655 | * - filt_timerexpire() wasn't in flight yet, and thread_call_enter below |
| 1656 | * will just cancel it properly. |
| 1657 | * |
| 1658 | * This is important as userspace expects to never be woken up for past |
| 1659 | * timers after filt_timertouch ran. |
| 1660 | */ |
| 1661 | state = os_atomic_load(&kn->kn_hook32, relaxed); |
| 1662 | state &= ~TIMER_STATE_MASK; |
| 1663 | state += TIMER_GEN_INC + TIMER_ARMED; |
| 1664 | os_atomic_store(&kn->kn_hook32, state, relaxed); |
| 1665 | |
| 1666 | thread_call_enter_delayed_with_leeway(call: kn->kn_thcall, |
| 1667 | param1: (void *)(uintptr_t)state, deadline, leeway, flags: timer_flags); |
| 1668 | } |
| 1669 | |
| 1670 | /* |
| 1671 | * Mark a timer as "already fired" when it is being reprogrammed |
| 1672 | * |
| 1673 | * If there is a timer in flight, this will do a best effort at canceling it, |
| 1674 | * but will not wait. If the thread call was in flight, having set the |
| 1675 | * TIMER_IMMEDIATE bit will debounce a filt_timerexpire() racing with this |
| 1676 | * cancelation. |
| 1677 | */ |
| 1678 | static void |
| 1679 | filt_timerfire_immediate(struct knote *kn) |
| 1680 | { |
| 1681 | uint32_t state; |
| 1682 | |
| 1683 | static_assert(TIMER_IMMEDIATE == TIMER_STATE_MASK, |
| 1684 | "validate that this atomic or will transition to IMMEDIATE" ); |
| 1685 | state = os_atomic_or_orig(&kn->kn_hook32, TIMER_IMMEDIATE, relaxed); |
| 1686 | |
| 1687 | if ((state & TIMER_STATE_MASK) == TIMER_ARMED) { |
| 1688 | thread_call_cancel(call: kn->kn_thcall); |
| 1689 | } |
| 1690 | } |
| 1691 | |
| 1692 | /* |
| 1693 | * Allocate a thread call for the knote's lifetime, and kick off the timer. |
| 1694 | */ |
| 1695 | static int |
| 1696 | filt_timerattach(struct knote *kn, struct kevent_qos_s *kev) |
| 1697 | { |
| 1698 | thread_call_t callout; |
| 1699 | struct filt_timer_params params; |
| 1700 | int error; |
| 1701 | |
| 1702 | if ((error = filt_timervalidate(kev, params: ¶ms)) != 0) { |
| 1703 | knote_set_error(kn, error); |
| 1704 | return 0; |
| 1705 | } |
| 1706 | |
| 1707 | callout = thread_call_allocate_with_options(func: filt_timerexpire, |
| 1708 | param0: (thread_call_param_t)kn, pri: THREAD_CALL_PRIORITY_HIGH, |
| 1709 | options: THREAD_CALL_OPTIONS_ONCE); |
| 1710 | |
| 1711 | if (NULL == callout) { |
| 1712 | knote_set_error(kn, ENOMEM); |
| 1713 | return 0; |
| 1714 | } |
| 1715 | |
| 1716 | filt_timer_set_params(kn, params: ¶ms); |
| 1717 | kn->kn_thcall = callout; |
| 1718 | kn->kn_flags |= EV_CLEAR; |
| 1719 | os_atomic_store(&kn->kn_hook32, TIMER_IDLE, relaxed); |
| 1720 | |
| 1721 | /* NOTE_ABSOLUTE implies EV_ONESHOT */ |
| 1722 | if (kn->kn_sfflags & NOTE_ABSOLUTE) { |
| 1723 | kn->kn_flags |= EV_ONESHOT; |
| 1724 | } |
| 1725 | |
| 1726 | if (filt_timer_is_ready(kn)) { |
| 1727 | os_atomic_store(&kn->kn_hook32, TIMER_IMMEDIATE, relaxed); |
| 1728 | return FILTER_ACTIVE; |
| 1729 | } else { |
| 1730 | filt_timerarm(kn); |
| 1731 | return 0; |
| 1732 | } |
| 1733 | } |
| 1734 | |
| 1735 | /* |
| 1736 | * Shut down the timer if it's running, and free the callout. |
| 1737 | */ |
| 1738 | static void |
| 1739 | filt_timerdetach(struct knote *kn) |
| 1740 | { |
| 1741 | __assert_only boolean_t freed; |
| 1742 | |
| 1743 | /* |
| 1744 | * Unconditionally cancel to make sure there can't be any filt_timerexpire() |
| 1745 | * running anymore. |
| 1746 | */ |
| 1747 | thread_call_cancel_wait(call: kn->kn_thcall); |
| 1748 | freed = thread_call_free(call: kn->kn_thcall); |
| 1749 | assert(freed); |
| 1750 | } |
| 1751 | |
| 1752 | /* |
| 1753 | * filt_timertouch - update timer knote with new user input |
| 1754 | * |
| 1755 | * Cancel and restart the timer based on new user data. When |
| 1756 | * the user picks up a knote, clear the count of how many timer |
| 1757 | * pops have gone off (in kn_data). |
| 1758 | */ |
| 1759 | static int |
| 1760 | filt_timertouch(struct knote *kn, struct kevent_qos_s *kev) |
| 1761 | { |
| 1762 | struct filt_timer_params params; |
| 1763 | uint32_t changed_flags = (kn->kn_sfflags ^ kev->fflags); |
| 1764 | int error; |
| 1765 | |
| 1766 | if (kev->qos && (knote_get_kq(kn)->kq_state & KQ_WORKLOOP) && |
| 1767 | !_pthread_priority_thread_qos(pp: kev->qos)) { |
| 1768 | /* validate usage of FILTER_UPDATE_REQ_QOS */ |
| 1769 | kev->flags |= EV_ERROR; |
| 1770 | kev->data = ERANGE; |
| 1771 | return 0; |
| 1772 | } |
| 1773 | |
| 1774 | if (changed_flags & NOTE_ABSOLUTE) { |
| 1775 | kev->flags |= EV_ERROR; |
| 1776 | kev->data = EINVAL; |
| 1777 | return 0; |
| 1778 | } |
| 1779 | |
| 1780 | if ((error = filt_timervalidate(kev, params: ¶ms)) != 0) { |
| 1781 | kev->flags |= EV_ERROR; |
| 1782 | kev->data = error; |
| 1783 | return 0; |
| 1784 | } |
| 1785 | |
| 1786 | /* capture the new values used to compute deadline */ |
| 1787 | filt_timer_set_params(kn, params: ¶ms); |
| 1788 | kn->kn_sfflags = kev->fflags; |
| 1789 | |
| 1790 | if (filt_timer_is_ready(kn)) { |
| 1791 | filt_timerfire_immediate(kn); |
| 1792 | return FILTER_ACTIVE | FILTER_UPDATE_REQ_QOS; |
| 1793 | } else { |
| 1794 | filt_timerarm(kn); |
| 1795 | return FILTER_UPDATE_REQ_QOS; |
| 1796 | } |
| 1797 | } |
| 1798 | |
| 1799 | /* |
| 1800 | * filt_timerprocess - query state of knote and snapshot event data |
| 1801 | * |
| 1802 | * Determine if the timer has fired in the past, snapshot the state |
| 1803 | * of the kevent for returning to user-space, and clear pending event |
| 1804 | * counters for the next time. |
| 1805 | */ |
| 1806 | static int |
| 1807 | filt_timerprocess(struct knote *kn, struct kevent_qos_s *kev) |
| 1808 | { |
| 1809 | uint32_t state = os_atomic_load(&kn->kn_hook32, relaxed); |
| 1810 | |
| 1811 | /* |
| 1812 | * filt_timerprocess is serialized with any filter routine except for |
| 1813 | * filt_timerexpire which atomically does a TIMER_ARMED -> TIMER_FIRED |
| 1814 | * transition, and on success, activates the knote. |
| 1815 | * |
| 1816 | * Hence, we don't need atomic modifications of the state, only to peek at |
| 1817 | * whether we see any of the "FIRED" state, and if we do, it is safe to |
| 1818 | * do simple state machine transitions. |
| 1819 | */ |
| 1820 | switch (state & TIMER_STATE_MASK) { |
| 1821 | case TIMER_IDLE: |
| 1822 | case TIMER_ARMED: |
| 1823 | /* |
| 1824 | * This can happen if a touch resets a timer that had fired |
| 1825 | * without being processed |
| 1826 | */ |
| 1827 | return 0; |
| 1828 | } |
| 1829 | |
| 1830 | os_atomic_store(&kn->kn_hook32, state & ~TIMER_STATE_MASK, relaxed); |
| 1831 | |
| 1832 | /* |
| 1833 | * Copy out the interesting kevent state, |
| 1834 | * but don't leak out the raw time calculations. |
| 1835 | * |
| 1836 | * TODO: potential enhancements - tell the user about: |
| 1837 | * - deadline to which this timer thought it was expiring |
| 1838 | * - return kn_sfflags in the fflags field so the client can know |
| 1839 | * under what flags the timer fired |
| 1840 | */ |
| 1841 | knote_fill_kevent(kn, kev, data: 1); |
| 1842 | kev->ext[0] = 0; |
| 1843 | /* kev->ext[1] = 0; JMM - shouldn't we hide this too? */ |
| 1844 | |
| 1845 | if (kn->kn_sdata != 0) { |
| 1846 | /* |
| 1847 | * This is a 'repeating' timer, so we have to emit |
| 1848 | * how many intervals expired between the arm |
| 1849 | * and the process. |
| 1850 | * |
| 1851 | * A very strange style of interface, because |
| 1852 | * this could easily be done in the client... |
| 1853 | */ |
| 1854 | |
| 1855 | uint64_t now; |
| 1856 | |
| 1857 | if (kn->kn_sfflags & NOTE_MACH_CONTINUOUS_TIME) { |
| 1858 | now = mach_continuous_time(); |
| 1859 | } else { |
| 1860 | now = mach_absolute_time(); |
| 1861 | } |
| 1862 | |
| 1863 | uint64_t first_deadline = kn->kn_ext[0]; |
| 1864 | uint64_t interval_abs = kn->kn_sdata; |
| 1865 | uint64_t orig_arm_time = first_deadline - interval_abs; |
| 1866 | |
| 1867 | assert(now > orig_arm_time); |
| 1868 | assert(now > first_deadline); |
| 1869 | |
| 1870 | uint64_t elapsed = now - orig_arm_time; |
| 1871 | |
| 1872 | uint64_t num_fired = elapsed / interval_abs; |
| 1873 | |
| 1874 | /* |
| 1875 | * To reach this code, we must have seen the timer pop |
| 1876 | * and be in repeating mode, so therefore it must have been |
| 1877 | * more than 'interval' time since the attach or last |
| 1878 | * successful touch. |
| 1879 | */ |
| 1880 | assert(num_fired > 0); |
| 1881 | |
| 1882 | /* report how many intervals have elapsed to the user */ |
| 1883 | kev->data = (int64_t)num_fired; |
| 1884 | |
| 1885 | /* We only need to re-arm the timer if it's not about to be destroyed */ |
| 1886 | if ((kn->kn_flags & EV_ONESHOT) == 0) { |
| 1887 | /* fire at the end of the next interval */ |
| 1888 | uint64_t new_deadline = first_deadline + num_fired * interval_abs; |
| 1889 | |
| 1890 | assert(new_deadline > now); |
| 1891 | |
| 1892 | kn->kn_ext[0] = new_deadline; |
| 1893 | |
| 1894 | /* |
| 1895 | * This can't shortcut setting up the thread call, because |
| 1896 | * knote_process deactivates EV_CLEAR knotes unconditionnally. |
| 1897 | */ |
| 1898 | filt_timerarm(kn); |
| 1899 | } |
| 1900 | } |
| 1901 | |
| 1902 | return FILTER_ACTIVE; |
| 1903 | } |
| 1904 | |
| 1905 | SECURITY_READ_ONLY_EARLY(static struct filterops) timer_filtops = { |
| 1906 | .f_extended_codes = true, |
| 1907 | .f_attach = filt_timerattach, |
| 1908 | .f_detach = filt_timerdetach, |
| 1909 | .f_event = filt_bad_event, |
| 1910 | .f_touch = filt_timertouch, |
| 1911 | .f_process = filt_timerprocess, |
| 1912 | }; |
| 1913 | |
| 1914 | #pragma mark user_filtops |
| 1915 | |
| 1916 | static int |
| 1917 | filt_userattach(struct knote *kn, __unused struct kevent_qos_s *kev) |
| 1918 | { |
| 1919 | if (kn->kn_sfflags & NOTE_TRIGGER) { |
| 1920 | kn->kn_hook32 = FILTER_ACTIVE; |
| 1921 | } else { |
| 1922 | kn->kn_hook32 = 0; |
| 1923 | } |
| 1924 | return kn->kn_hook32; |
| 1925 | } |
| 1926 | |
| 1927 | static int |
| 1928 | filt_usertouch(struct knote *kn, struct kevent_qos_s *kev) |
| 1929 | { |
| 1930 | uint32_t ffctrl; |
| 1931 | int fflags; |
| 1932 | |
| 1933 | ffctrl = kev->fflags & NOTE_FFCTRLMASK; |
| 1934 | fflags = kev->fflags & NOTE_FFLAGSMASK; |
| 1935 | switch (ffctrl) { |
| 1936 | case NOTE_FFNOP: |
| 1937 | break; |
| 1938 | case NOTE_FFAND: |
| 1939 | kn->kn_sfflags &= fflags; |
| 1940 | break; |
| 1941 | case NOTE_FFOR: |
| 1942 | kn->kn_sfflags |= fflags; |
| 1943 | break; |
| 1944 | case NOTE_FFCOPY: |
| 1945 | kn->kn_sfflags = fflags; |
| 1946 | break; |
| 1947 | } |
| 1948 | kn->kn_sdata = kev->data; |
| 1949 | |
| 1950 | if (kev->fflags & NOTE_TRIGGER) { |
| 1951 | kn->kn_hook32 = FILTER_ACTIVE; |
| 1952 | } |
| 1953 | return (int)kn->kn_hook32; |
| 1954 | } |
| 1955 | |
| 1956 | static int |
| 1957 | filt_userprocess(struct knote *kn, struct kevent_qos_s *kev) |
| 1958 | { |
| 1959 | int result = (int)kn->kn_hook32; |
| 1960 | |
| 1961 | if (result) { |
| 1962 | /* EVFILT_USER returns the data that was passed in */ |
| 1963 | knote_fill_kevent_with_sdata(kn, kev); |
| 1964 | kev->fflags = kn->kn_sfflags; |
| 1965 | if (kn->kn_flags & EV_CLEAR) { |
| 1966 | /* knote_fill_kevent cleared kn_fflags */ |
| 1967 | kn->kn_hook32 = 0; |
| 1968 | } |
| 1969 | } |
| 1970 | |
| 1971 | return result; |
| 1972 | } |
| 1973 | |
| 1974 | SECURITY_READ_ONLY_EARLY(static struct filterops) user_filtops = { |
| 1975 | .f_extended_codes = true, |
| 1976 | .f_attach = filt_userattach, |
| 1977 | .f_detach = filt_no_detach, |
| 1978 | .f_event = filt_bad_event, |
| 1979 | .f_touch = filt_usertouch, |
| 1980 | .f_process = filt_userprocess, |
| 1981 | }; |
| 1982 | |
| 1983 | #pragma mark workloop_filtops |
| 1984 | |
| 1985 | #define EPREEMPTDISABLED (-1) |
| 1986 | |
| 1987 | static inline void |
| 1988 | filt_wllock(struct kqworkloop *kqwl) |
| 1989 | { |
| 1990 | lck_spin_lock(lck: &kqwl->kqwl_statelock); |
| 1991 | } |
| 1992 | |
| 1993 | static inline void |
| 1994 | filt_wlunlock(struct kqworkloop *kqwl) |
| 1995 | { |
| 1996 | lck_spin_unlock(lck: &kqwl->kqwl_statelock); |
| 1997 | } |
| 1998 | |
| 1999 | /* |
| 2000 | * Returns true when the interlock for the turnstile is the workqueue lock |
| 2001 | * |
| 2002 | * When this is the case, all turnstiles operations are delegated |
| 2003 | * to the workqueue subsystem. |
| 2004 | * |
| 2005 | * This is required because kqueue_threadreq_bind_prepost only holds the |
| 2006 | * workqueue lock but needs to move the inheritor from the workloop turnstile |
| 2007 | * away from the creator thread, so that this now fulfilled request cannot be |
| 2008 | * picked anymore by other threads. |
| 2009 | */ |
| 2010 | static inline bool |
| 2011 | filt_wlturnstile_interlock_is_workq(struct kqworkloop *kqwl) |
| 2012 | { |
| 2013 | return kqr_thread_requested_pending(kqr: &kqwl->kqwl_request); |
| 2014 | } |
| 2015 | |
| 2016 | static void |
| 2017 | filt_wlupdate_inheritor(struct kqworkloop *kqwl, struct turnstile *ts, |
| 2018 | turnstile_update_flags_t flags) |
| 2019 | { |
| 2020 | turnstile_inheritor_t inheritor = TURNSTILE_INHERITOR_NULL; |
| 2021 | workq_threadreq_t kqr = &kqwl->kqwl_request; |
| 2022 | |
| 2023 | /* |
| 2024 | * binding to the workq should always happen through |
| 2025 | * workq_kern_threadreq_update_inheritor() |
| 2026 | */ |
| 2027 | assert(!filt_wlturnstile_interlock_is_workq(kqwl)); |
| 2028 | |
| 2029 | if ((inheritor = kqwl->kqwl_owner)) { |
| 2030 | flags |= TURNSTILE_INHERITOR_THREAD; |
| 2031 | } else if ((inheritor = kqr_thread(kqr))) { |
| 2032 | flags |= TURNSTILE_INHERITOR_THREAD; |
| 2033 | } |
| 2034 | |
| 2035 | turnstile_update_inheritor(turnstile: ts, new_inheritor: inheritor, flags); |
| 2036 | } |
| 2037 | |
| 2038 | #define EVFILT_WORKLOOP_EFAULT_RETRY_COUNT 100 |
| 2039 | #define FILT_WLATTACH 0 |
| 2040 | #define FILT_WLTOUCH 1 |
| 2041 | #define FILT_WLDROP 2 |
| 2042 | |
| 2043 | __result_use_check |
| 2044 | static int |
| 2045 | filt_wlupdate(struct kqworkloop *kqwl, struct knote *kn, |
| 2046 | struct kevent_qos_s *kev, kq_index_t qos_index, int op) |
| 2047 | { |
| 2048 | user_addr_t uaddr = CAST_USER_ADDR_T(kev->ext[EV_EXTIDX_WL_ADDR]); |
| 2049 | workq_threadreq_t kqr = &kqwl->kqwl_request; |
| 2050 | thread_t cur_owner, new_owner, = THREAD_NULL; |
| 2051 | kq_index_t cur_override = THREAD_QOS_UNSPECIFIED; |
| 2052 | int efault_retry = EVFILT_WORKLOOP_EFAULT_RETRY_COUNT; |
| 2053 | int action = KQWL_UTQ_NONE, error = 0; |
| 2054 | bool wl_inheritor_updated = false, needs_wake = false; |
| 2055 | uint64_t kdata = kev->ext[EV_EXTIDX_WL_VALUE]; |
| 2056 | uint64_t mask = kev->ext[EV_EXTIDX_WL_MASK]; |
| 2057 | uint64_t udata = 0; |
| 2058 | struct turnstile *ts = TURNSTILE_NULL; |
| 2059 | |
| 2060 | filt_wllock(kqwl); |
| 2061 | |
| 2062 | again: |
| 2063 | new_owner = cur_owner = kqwl->kqwl_owner; |
| 2064 | |
| 2065 | /* |
| 2066 | * Phase 1: |
| 2067 | * |
| 2068 | * If asked, load the uint64 value at the user provided address and compare |
| 2069 | * it against the passed in mask and expected value. |
| 2070 | * |
| 2071 | * If NOTE_WL_DISCOVER_OWNER is specified, translate the loaded name as |
| 2072 | * a thread reference. |
| 2073 | * |
| 2074 | * If NOTE_WL_END_OWNERSHIP is specified and the currently known owner is |
| 2075 | * the current thread, then end ownership. |
| 2076 | * |
| 2077 | * Lastly decide whether we need to perform a QoS update. |
| 2078 | */ |
| 2079 | if (uaddr) { |
| 2080 | /* |
| 2081 | * Until <rdar://problem/24999882> exists, |
| 2082 | * disabling preemption copyin forces any |
| 2083 | * vm_fault we encounter to fail. |
| 2084 | */ |
| 2085 | error = copyin_atomic64(user_addr: uaddr, u64: &udata); |
| 2086 | |
| 2087 | /* |
| 2088 | * If we get EFAULT, drop locks, and retry. |
| 2089 | * If we still get an error report it, |
| 2090 | * else assume the memory has been faulted |
| 2091 | * and attempt to copyin under lock again. |
| 2092 | */ |
| 2093 | switch (error) { |
| 2094 | case 0: |
| 2095 | break; |
| 2096 | case EFAULT: |
| 2097 | if (efault_retry-- > 0) { |
| 2098 | filt_wlunlock(kqwl); |
| 2099 | error = copyin_atomic64(user_addr: uaddr, u64: &udata); |
| 2100 | filt_wllock(kqwl); |
| 2101 | if (error == 0) { |
| 2102 | goto again; |
| 2103 | } |
| 2104 | } |
| 2105 | OS_FALLTHROUGH; |
| 2106 | default: |
| 2107 | goto out; |
| 2108 | } |
| 2109 | |
| 2110 | /* Update state as copied in. */ |
| 2111 | kev->ext[EV_EXTIDX_WL_VALUE] = udata; |
| 2112 | |
| 2113 | if ((udata & mask) != (kdata & mask)) { |
| 2114 | error = ESTALE; |
| 2115 | } else if (kev->fflags & NOTE_WL_DISCOVER_OWNER) { |
| 2116 | /* |
| 2117 | * Decipher the owner port name, and translate accordingly. |
| 2118 | * The low 2 bits were borrowed for other flags, so mask them off. |
| 2119 | * |
| 2120 | * Then attempt translation to a thread reference or fail. |
| 2121 | */ |
| 2122 | mach_port_name_t name = (mach_port_name_t)udata & ~0x3; |
| 2123 | if (name != MACH_PORT_NULL) { |
| 2124 | name = ipc_entry_name_mask(name); |
| 2125 | extra_thread_ref = port_name_to_thread(port_name: name, |
| 2126 | options: PORT_INTRANS_THREAD_IN_CURRENT_TASK); |
| 2127 | if (extra_thread_ref == THREAD_NULL) { |
| 2128 | error = EOWNERDEAD; |
| 2129 | goto out; |
| 2130 | } |
| 2131 | new_owner = extra_thread_ref; |
| 2132 | } |
| 2133 | } |
| 2134 | } |
| 2135 | |
| 2136 | if ((kev->fflags & NOTE_WL_END_OWNERSHIP) && new_owner == current_thread()) { |
| 2137 | new_owner = THREAD_NULL; |
| 2138 | } |
| 2139 | |
| 2140 | if (error == 0) { |
| 2141 | if ((kev->fflags & NOTE_WL_THREAD_REQUEST) && (kev->flags & EV_DELETE)) { |
| 2142 | action = KQWL_UTQ_SET_QOS_INDEX; |
| 2143 | } else if (qos_index && kqr->tr_kq_qos_index != qos_index) { |
| 2144 | action = KQWL_UTQ_SET_QOS_INDEX; |
| 2145 | } |
| 2146 | |
| 2147 | if (op == FILT_WLTOUCH) { |
| 2148 | /* |
| 2149 | * Save off any additional fflags/data we just accepted |
| 2150 | * But only keep the last round of "update" bits we acted on which helps |
| 2151 | * debugging a lot. |
| 2152 | */ |
| 2153 | kn->kn_sfflags &= ~NOTE_WL_UPDATES_MASK; |
| 2154 | kn->kn_sfflags |= kev->fflags; |
| 2155 | if (kev->fflags & NOTE_WL_SYNC_WAKE) { |
| 2156 | needs_wake = (kn->kn_thread != THREAD_NULL); |
| 2157 | } |
| 2158 | } else if (op == FILT_WLDROP) { |
| 2159 | if ((kn->kn_sfflags & (NOTE_WL_SYNC_WAIT | NOTE_WL_SYNC_WAKE)) == |
| 2160 | NOTE_WL_SYNC_WAIT) { |
| 2161 | /* |
| 2162 | * When deleting a SYNC_WAIT knote that hasn't been woken up |
| 2163 | * explicitly, issue a wake up. |
| 2164 | */ |
| 2165 | kn->kn_sfflags |= NOTE_WL_SYNC_WAKE; |
| 2166 | needs_wake = (kn->kn_thread != THREAD_NULL); |
| 2167 | } |
| 2168 | } |
| 2169 | } |
| 2170 | |
| 2171 | /* |
| 2172 | * Phase 2: |
| 2173 | * |
| 2174 | * Commit ownership and QoS changes if any, possibly wake up waiters |
| 2175 | */ |
| 2176 | |
| 2177 | if (cur_owner == new_owner && action == KQWL_UTQ_NONE && !needs_wake) { |
| 2178 | goto out; |
| 2179 | } |
| 2180 | |
| 2181 | kqlock(kqu: kqwl); |
| 2182 | |
| 2183 | /* If already tracked as servicer, don't track as owner */ |
| 2184 | if (new_owner == kqr_thread(kqr)) { |
| 2185 | new_owner = THREAD_NULL; |
| 2186 | } |
| 2187 | |
| 2188 | if (cur_owner != new_owner) { |
| 2189 | kqwl->kqwl_owner = new_owner; |
| 2190 | if (new_owner == extra_thread_ref) { |
| 2191 | /* we just transfered this ref to kqwl_owner */ |
| 2192 | extra_thread_ref = THREAD_NULL; |
| 2193 | } |
| 2194 | cur_override = kqworkloop_override(kqwl); |
| 2195 | |
| 2196 | if (new_owner) { |
| 2197 | /* override it before we drop the old */ |
| 2198 | if (cur_override != THREAD_QOS_UNSPECIFIED) { |
| 2199 | thread_add_kevent_override(thread: new_owner, qos_override: cur_override); |
| 2200 | } |
| 2201 | if (kqr_thread_requested_pending(kqr)) { |
| 2202 | if (action == KQWL_UTQ_NONE) { |
| 2203 | action = KQWL_UTQ_REDRIVE_EVENTS; |
| 2204 | } |
| 2205 | } |
| 2206 | } else if (action == KQWL_UTQ_NONE && |
| 2207 | !kqr_thread_requested(kqr) && |
| 2208 | kqwl->kqwl_wakeup_qos) { |
| 2209 | action = KQWL_UTQ_REDRIVE_EVENTS; |
| 2210 | } |
| 2211 | } |
| 2212 | |
| 2213 | if (action != KQWL_UTQ_NONE) { |
| 2214 | kqworkloop_update_threads_qos(kqwl, op: action, qos: qos_index); |
| 2215 | } |
| 2216 | |
| 2217 | ts = kqwl->kqwl_turnstile; |
| 2218 | if (cur_owner != new_owner && ts) { |
| 2219 | if (action == KQWL_UTQ_REDRIVE_EVENTS) { |
| 2220 | /* |
| 2221 | * Note that when action is KQWL_UTQ_REDRIVE_EVENTS, |
| 2222 | * the code went through workq_kern_threadreq_initiate() |
| 2223 | * and the workqueue has set the inheritor already |
| 2224 | */ |
| 2225 | assert(filt_wlturnstile_interlock_is_workq(kqwl)); |
| 2226 | } else if (filt_wlturnstile_interlock_is_workq(kqwl)) { |
| 2227 | workq_kern_threadreq_lock(p: kqwl->kqwl_p); |
| 2228 | workq_kern_threadreq_update_inheritor(p: kqwl->kqwl_p, kqr, owner: new_owner, |
| 2229 | ts, flags: TURNSTILE_IMMEDIATE_UPDATE); |
| 2230 | workq_kern_threadreq_unlock(p: kqwl->kqwl_p); |
| 2231 | if (!filt_wlturnstile_interlock_is_workq(kqwl)) { |
| 2232 | /* |
| 2233 | * If the workq is no longer the interlock, then |
| 2234 | * workq_kern_threadreq_update_inheritor() has finished a bind |
| 2235 | * and we need to fallback to the regular path. |
| 2236 | */ |
| 2237 | filt_wlupdate_inheritor(kqwl, ts, flags: TURNSTILE_IMMEDIATE_UPDATE); |
| 2238 | } |
| 2239 | wl_inheritor_updated = true; |
| 2240 | } else { |
| 2241 | filt_wlupdate_inheritor(kqwl, ts, flags: TURNSTILE_IMMEDIATE_UPDATE); |
| 2242 | wl_inheritor_updated = true; |
| 2243 | } |
| 2244 | |
| 2245 | /* |
| 2246 | * We need a turnstile reference because we are dropping the interlock |
| 2247 | * and the caller has not called turnstile_prepare. |
| 2248 | */ |
| 2249 | if (wl_inheritor_updated) { |
| 2250 | turnstile_reference(turnstile: ts); |
| 2251 | } |
| 2252 | } |
| 2253 | |
| 2254 | if (needs_wake && ts) { |
| 2255 | waitq_wakeup64_thread(waitq: &ts->ts_waitq, wake_event: knote_filt_wev64(kn), |
| 2256 | thread: kn->kn_thread, THREAD_AWAKENED); |
| 2257 | if (op == FILT_WLATTACH || op == FILT_WLTOUCH) { |
| 2258 | disable_preemption(); |
| 2259 | error = EPREEMPTDISABLED; |
| 2260 | } |
| 2261 | } |
| 2262 | |
| 2263 | kqunlock(kqu: kqwl); |
| 2264 | |
| 2265 | out: |
| 2266 | /* |
| 2267 | * Phase 3: |
| 2268 | * |
| 2269 | * Unlock and cleanup various lingering references and things. |
| 2270 | */ |
| 2271 | filt_wlunlock(kqwl); |
| 2272 | |
| 2273 | #if CONFIG_WORKLOOP_DEBUG |
| 2274 | KQWL_HISTORY_WRITE_ENTRY(kqwl, { |
| 2275 | .updater = current_thread(), |
| 2276 | .servicer = kqr_thread(kqr), /* Note: racy */ |
| 2277 | .old_owner = cur_owner, |
| 2278 | .new_owner = new_owner, |
| 2279 | |
| 2280 | .kev_ident = kev->ident, |
| 2281 | .error = (int16_t)error, |
| 2282 | .kev_flags = kev->flags, |
| 2283 | .kev_fflags = kev->fflags, |
| 2284 | |
| 2285 | .kev_mask = mask, |
| 2286 | .kev_value = kdata, |
| 2287 | .in_value = udata, |
| 2288 | }); |
| 2289 | #endif // CONFIG_WORKLOOP_DEBUG |
| 2290 | |
| 2291 | if (wl_inheritor_updated) { |
| 2292 | turnstile_update_inheritor_complete(turnstile: ts, flags: TURNSTILE_INTERLOCK_NOT_HELD); |
| 2293 | turnstile_deallocate_safe(turnstile: ts); |
| 2294 | } |
| 2295 | |
| 2296 | if (cur_owner && new_owner != cur_owner) { |
| 2297 | if (cur_override != THREAD_QOS_UNSPECIFIED) { |
| 2298 | thread_drop_kevent_override(thread: cur_owner); |
| 2299 | } |
| 2300 | thread_deallocate_safe(thread: cur_owner); |
| 2301 | } |
| 2302 | if (extra_thread_ref) { |
| 2303 | thread_deallocate_safe(thread: extra_thread_ref); |
| 2304 | } |
| 2305 | return error; |
| 2306 | } |
| 2307 | |
| 2308 | /* |
| 2309 | * Remembers the last updated that came in from userspace for debugging reasons. |
| 2310 | * - fflags is mirrored from the userspace kevent |
| 2311 | * - ext[i, i != VALUE] is mirrored from the userspace kevent |
| 2312 | * - ext[VALUE] is set to what the kernel loaded atomically |
| 2313 | * - data is set to the error if any |
| 2314 | */ |
| 2315 | static inline void |
| 2316 | filt_wlremember_last_update(struct knote *kn, struct kevent_qos_s *kev, |
| 2317 | int error) |
| 2318 | { |
| 2319 | kn->kn_fflags = kev->fflags; |
| 2320 | kn->kn_sdata = error; |
| 2321 | memcpy(dst: kn->kn_ext, src: kev->ext, n: sizeof(kev->ext)); |
| 2322 | } |
| 2323 | |
| 2324 | static int |
| 2325 | filt_wlupdate_sync_ipc(struct kqworkloop *kqwl, struct knote *kn, |
| 2326 | struct kevent_qos_s *kev, int op) |
| 2327 | { |
| 2328 | user_addr_t uaddr = (user_addr_t) kev->ext[EV_EXTIDX_WL_ADDR]; |
| 2329 | uint64_t kdata = kev->ext[EV_EXTIDX_WL_VALUE]; |
| 2330 | uint64_t mask = kev->ext[EV_EXTIDX_WL_MASK]; |
| 2331 | uint64_t udata = 0; |
| 2332 | int efault_retry = EVFILT_WORKLOOP_EFAULT_RETRY_COUNT; |
| 2333 | int error = 0; |
| 2334 | |
| 2335 | if (op == FILT_WLATTACH) { |
| 2336 | (void)kqueue_alloc_turnstile(&kqwl->kqwl_kqueue); |
| 2337 | } else if (uaddr == 0) { |
| 2338 | return 0; |
| 2339 | } |
| 2340 | |
| 2341 | filt_wllock(kqwl); |
| 2342 | |
| 2343 | again: |
| 2344 | |
| 2345 | /* |
| 2346 | * Do the debounce thing, the lock serializing the state is the knote lock. |
| 2347 | */ |
| 2348 | if (uaddr) { |
| 2349 | /* |
| 2350 | * Until <rdar://problem/24999882> exists, |
| 2351 | * disabling preemption copyin forces any |
| 2352 | * vm_fault we encounter to fail. |
| 2353 | */ |
| 2354 | error = copyin_atomic64(user_addr: uaddr, u64: &udata); |
| 2355 | |
| 2356 | /* |
| 2357 | * If we get EFAULT, drop locks, and retry. |
| 2358 | * If we still get an error report it, |
| 2359 | * else assume the memory has been faulted |
| 2360 | * and attempt to copyin under lock again. |
| 2361 | */ |
| 2362 | switch (error) { |
| 2363 | case 0: |
| 2364 | break; |
| 2365 | case EFAULT: |
| 2366 | if (efault_retry-- > 0) { |
| 2367 | filt_wlunlock(kqwl); |
| 2368 | error = copyin_atomic64(user_addr: uaddr, u64: &udata); |
| 2369 | filt_wllock(kqwl); |
| 2370 | if (error == 0) { |
| 2371 | goto again; |
| 2372 | } |
| 2373 | } |
| 2374 | OS_FALLTHROUGH; |
| 2375 | default: |
| 2376 | goto out; |
| 2377 | } |
| 2378 | |
| 2379 | kev->ext[EV_EXTIDX_WL_VALUE] = udata; |
| 2380 | kn->kn_ext[EV_EXTIDX_WL_VALUE] = udata; |
| 2381 | |
| 2382 | if ((udata & mask) != (kdata & mask)) { |
| 2383 | error = ESTALE; |
| 2384 | goto out; |
| 2385 | } |
| 2386 | } |
| 2387 | |
| 2388 | if (op == FILT_WLATTACH) { |
| 2389 | error = filt_wlattach_sync_ipc(kn); |
| 2390 | if (error == 0) { |
| 2391 | disable_preemption(); |
| 2392 | error = EPREEMPTDISABLED; |
| 2393 | } |
| 2394 | } |
| 2395 | |
| 2396 | out: |
| 2397 | filt_wlunlock(kqwl); |
| 2398 | return error; |
| 2399 | } |
| 2400 | |
| 2401 | static int |
| 2402 | filt_wlattach(struct knote *kn, struct kevent_qos_s *kev) |
| 2403 | { |
| 2404 | struct kqueue *kq = knote_get_kq(kn); |
| 2405 | struct kqworkloop *kqwl = (struct kqworkloop *)kq; |
| 2406 | int error = 0, result = 0; |
| 2407 | kq_index_t qos_index = 0; |
| 2408 | |
| 2409 | if (__improbable((kq->kq_state & KQ_WORKLOOP) == 0)) { |
| 2410 | error = ENOTSUP; |
| 2411 | goto out; |
| 2412 | } |
| 2413 | |
| 2414 | uint32_t command = (kn->kn_sfflags & NOTE_WL_COMMANDS_MASK); |
| 2415 | switch (command) { |
| 2416 | case NOTE_WL_THREAD_REQUEST: |
| 2417 | if (kn->kn_id != kqwl->kqwl_dynamicid) { |
| 2418 | error = EINVAL; |
| 2419 | goto out; |
| 2420 | } |
| 2421 | qos_index = _pthread_priority_thread_qos(pp: kn->kn_qos); |
| 2422 | if (qos_index == THREAD_QOS_UNSPECIFIED) { |
| 2423 | error = ERANGE; |
| 2424 | goto out; |
| 2425 | } |
| 2426 | if (kqwl->kqwl_request.tr_kq_qos_index) { |
| 2427 | /* |
| 2428 | * There already is a thread request, and well, you're only allowed |
| 2429 | * one per workloop, so fail the attach. |
| 2430 | */ |
| 2431 | error = EALREADY; |
| 2432 | goto out; |
| 2433 | } |
| 2434 | break; |
| 2435 | case NOTE_WL_SYNC_WAIT: |
| 2436 | case NOTE_WL_SYNC_WAKE: |
| 2437 | if (kn->kn_id == kqwl->kqwl_dynamicid) { |
| 2438 | error = EINVAL; |
| 2439 | goto out; |
| 2440 | } |
| 2441 | if ((kn->kn_flags & EV_DISABLE) == 0) { |
| 2442 | error = EINVAL; |
| 2443 | goto out; |
| 2444 | } |
| 2445 | if (kn->kn_sfflags & NOTE_WL_END_OWNERSHIP) { |
| 2446 | error = EINVAL; |
| 2447 | goto out; |
| 2448 | } |
| 2449 | break; |
| 2450 | |
| 2451 | case NOTE_WL_SYNC_IPC: |
| 2452 | if ((kn->kn_flags & EV_DISABLE) == 0) { |
| 2453 | error = EINVAL; |
| 2454 | goto out; |
| 2455 | } |
| 2456 | if (kn->kn_sfflags & (NOTE_WL_UPDATE_QOS | NOTE_WL_DISCOVER_OWNER)) { |
| 2457 | error = EINVAL; |
| 2458 | goto out; |
| 2459 | } |
| 2460 | break; |
| 2461 | default: |
| 2462 | error = EINVAL; |
| 2463 | goto out; |
| 2464 | } |
| 2465 | |
| 2466 | if (command == NOTE_WL_SYNC_IPC) { |
| 2467 | error = filt_wlupdate_sync_ipc(kqwl, kn, kev, FILT_WLATTACH); |
| 2468 | } else { |
| 2469 | error = filt_wlupdate(kqwl, kn, kev, qos_index, FILT_WLATTACH); |
| 2470 | } |
| 2471 | |
| 2472 | if (error == EPREEMPTDISABLED) { |
| 2473 | error = 0; |
| 2474 | result = FILTER_THREADREQ_NODEFEER; |
| 2475 | } |
| 2476 | out: |
| 2477 | if (error) { |
| 2478 | /* If userland wants ESTALE to be hidden, fail the attach anyway */ |
| 2479 | if (error == ESTALE && (kn->kn_sfflags & NOTE_WL_IGNORE_ESTALE)) { |
| 2480 | error = 0; |
| 2481 | } |
| 2482 | knote_set_error(kn, error); |
| 2483 | return result; |
| 2484 | } |
| 2485 | if (command == NOTE_WL_SYNC_WAIT) { |
| 2486 | return kevent_register_wait_prepare(kn, kev, result); |
| 2487 | } |
| 2488 | /* Just attaching the thread request successfully will fire it */ |
| 2489 | if (command == NOTE_WL_THREAD_REQUEST) { |
| 2490 | /* |
| 2491 | * Thread Request knotes need an explicit touch to be active again, |
| 2492 | * so delivering an event needs to also consume it. |
| 2493 | */ |
| 2494 | kn->kn_flags |= EV_CLEAR; |
| 2495 | return result | FILTER_ACTIVE; |
| 2496 | } |
| 2497 | return result; |
| 2498 | } |
| 2499 | |
| 2500 | static void __dead2 |
| 2501 | filt_wlwait_continue(void *parameter, wait_result_t wr) |
| 2502 | { |
| 2503 | struct _kevent_register *cont_args = parameter; |
| 2504 | struct kqworkloop *kqwl = cont_args->kqwl; |
| 2505 | |
| 2506 | kqlock(kqu: kqwl); |
| 2507 | if (filt_wlturnstile_interlock_is_workq(kqwl)) { |
| 2508 | workq_kern_threadreq_lock(p: kqwl->kqwl_p); |
| 2509 | turnstile_complete(proprietor: (uintptr_t)kqwl, tstore: &kqwl->kqwl_turnstile, NULL, type: TURNSTILE_WORKLOOPS); |
| 2510 | workq_kern_threadreq_unlock(p: kqwl->kqwl_p); |
| 2511 | } else { |
| 2512 | turnstile_complete(proprietor: (uintptr_t)kqwl, tstore: &kqwl->kqwl_turnstile, NULL, type: TURNSTILE_WORKLOOPS); |
| 2513 | } |
| 2514 | kqunlock(kqu: kqwl); |
| 2515 | |
| 2516 | turnstile_cleanup(); |
| 2517 | |
| 2518 | if (wr == THREAD_INTERRUPTED) { |
| 2519 | cont_args->kev.flags |= EV_ERROR; |
| 2520 | cont_args->kev.data = EINTR; |
| 2521 | } else if (wr != THREAD_AWAKENED) { |
| 2522 | panic("Unexpected wait result: %d" , wr); |
| 2523 | } |
| 2524 | |
| 2525 | kevent_register_wait_return(cont_args); |
| 2526 | } |
| 2527 | |
| 2528 | /* |
| 2529 | * Called with the workloop mutex held, most of the time never returns as it |
| 2530 | * calls filt_wlwait_continue through a continuation. |
| 2531 | */ |
| 2532 | static void __dead2 |
| 2533 | filt_wlpost_register_wait(struct uthread *uth, struct knote *kn, |
| 2534 | struct _kevent_register *cont_args) |
| 2535 | { |
| 2536 | struct kqworkloop *kqwl = cont_args->kqwl; |
| 2537 | workq_threadreq_t kqr = &kqwl->kqwl_request; |
| 2538 | struct turnstile *ts; |
| 2539 | bool workq_locked = false; |
| 2540 | |
| 2541 | kqlock_held(kqu: kqwl); |
| 2542 | |
| 2543 | if (filt_wlturnstile_interlock_is_workq(kqwl)) { |
| 2544 | workq_kern_threadreq_lock(p: kqwl->kqwl_p); |
| 2545 | workq_locked = true; |
| 2546 | } |
| 2547 | |
| 2548 | ts = turnstile_prepare(proprietor: (uintptr_t)kqwl, tstore: &kqwl->kqwl_turnstile, |
| 2549 | TURNSTILE_NULL, type: TURNSTILE_WORKLOOPS); |
| 2550 | |
| 2551 | if (workq_locked) { |
| 2552 | workq_kern_threadreq_update_inheritor(p: kqwl->kqwl_p, |
| 2553 | kqr: &kqwl->kqwl_request, owner: kqwl->kqwl_owner, ts, |
| 2554 | flags: TURNSTILE_DELAYED_UPDATE); |
| 2555 | if (!filt_wlturnstile_interlock_is_workq(kqwl)) { |
| 2556 | /* |
| 2557 | * if the interlock is no longer the workqueue lock, |
| 2558 | * then we don't need to hold it anymore. |
| 2559 | */ |
| 2560 | workq_kern_threadreq_unlock(p: kqwl->kqwl_p); |
| 2561 | workq_locked = false; |
| 2562 | } |
| 2563 | } |
| 2564 | if (!workq_locked) { |
| 2565 | /* |
| 2566 | * If the interlock is the workloop's, then it's our responsibility to |
| 2567 | * call update_inheritor, so just do it. |
| 2568 | */ |
| 2569 | filt_wlupdate_inheritor(kqwl, ts, flags: TURNSTILE_DELAYED_UPDATE); |
| 2570 | } |
| 2571 | |
| 2572 | thread_set_pending_block_hint(thread: get_machthread(uth), block_hint: kThreadWaitWorkloopSyncWait); |
| 2573 | waitq_assert_wait64(waitq: &ts->ts_waitq, wait_event: knote_filt_wev64(kn), |
| 2574 | THREAD_ABORTSAFE, TIMEOUT_WAIT_FOREVER); |
| 2575 | |
| 2576 | if (workq_locked) { |
| 2577 | workq_kern_threadreq_unlock(p: kqwl->kqwl_p); |
| 2578 | } |
| 2579 | |
| 2580 | thread_t thread = kqwl->kqwl_owner ?: kqr_thread(kqr); |
| 2581 | if (thread) { |
| 2582 | thread_reference(thread); |
| 2583 | } |
| 2584 | |
| 2585 | kevent_register_wait_block(ts, handoff_thread: thread, cont: filt_wlwait_continue, cont_args); |
| 2586 | } |
| 2587 | |
| 2588 | /* called in stackshot context to report the thread responsible for blocking this thread */ |
| 2589 | void |
| 2590 | kdp_workloop_sync_wait_find_owner(__assert_only thread_t thread, |
| 2591 | event64_t event, thread_waitinfo_t *waitinfo) |
| 2592 | { |
| 2593 | struct knote *kn = (struct knote *)event; |
| 2594 | |
| 2595 | zone_require(zone: knote_zone, addr: kn); |
| 2596 | |
| 2597 | assert(kn->kn_thread == thread); |
| 2598 | |
| 2599 | struct kqueue *kq = knote_get_kq(kn); |
| 2600 | |
| 2601 | zone_require(zone: kqworkloop_zone, addr: kq); |
| 2602 | assert(kq->kq_state & KQ_WORKLOOP); |
| 2603 | |
| 2604 | struct kqworkloop *kqwl = (struct kqworkloop *)kq; |
| 2605 | workq_threadreq_t kqr = &kqwl->kqwl_request; |
| 2606 | |
| 2607 | thread_t kqwl_owner = kqwl->kqwl_owner; |
| 2608 | |
| 2609 | if (kqwl_owner != THREAD_NULL) { |
| 2610 | thread_require(thread: kqwl_owner); |
| 2611 | waitinfo->owner = thread_tid(thread: kqwl->kqwl_owner); |
| 2612 | } else if ((kqr->tr_state >= WORKQ_TR_STATE_BINDING) && (kqr->tr_thread != NULL)) { |
| 2613 | thread_require(thread: kqr->tr_thread); |
| 2614 | waitinfo->owner = thread_tid(thread: kqr->tr_thread); |
| 2615 | } else if (kqr_thread_requested_pending(kqr)) { /* > idle, < bound */ |
| 2616 | waitinfo->owner = STACKSHOT_WAITOWNER_THREQUESTED; |
| 2617 | } else { |
| 2618 | waitinfo->owner = 0; |
| 2619 | } |
| 2620 | |
| 2621 | waitinfo->context = kqwl->kqwl_dynamicid; |
| 2622 | } |
| 2623 | |
| 2624 | static void |
| 2625 | filt_wldetach(struct knote *kn) |
| 2626 | { |
| 2627 | if (kn->kn_sfflags & NOTE_WL_SYNC_IPC) { |
| 2628 | filt_wldetach_sync_ipc(kn); |
| 2629 | } else if (kn->kn_thread) { |
| 2630 | kevent_register_wait_cleanup(kn); |
| 2631 | } |
| 2632 | } |
| 2633 | |
| 2634 | static int |
| 2635 | filt_wlvalidate_kev_flags(struct knote *kn, struct kevent_qos_s *kev, |
| 2636 | thread_qos_t *qos_index) |
| 2637 | { |
| 2638 | uint32_t new_commands = kev->fflags & NOTE_WL_COMMANDS_MASK; |
| 2639 | uint32_t sav_commands = kn->kn_sfflags & NOTE_WL_COMMANDS_MASK; |
| 2640 | |
| 2641 | if ((kev->fflags & NOTE_WL_DISCOVER_OWNER) && (kev->flags & EV_DELETE)) { |
| 2642 | return EINVAL; |
| 2643 | } |
| 2644 | if (kev->fflags & NOTE_WL_UPDATE_QOS) { |
| 2645 | if (kev->flags & EV_DELETE) { |
| 2646 | return EINVAL; |
| 2647 | } |
| 2648 | if (sav_commands != NOTE_WL_THREAD_REQUEST) { |
| 2649 | return EINVAL; |
| 2650 | } |
| 2651 | if (!(*qos_index = _pthread_priority_thread_qos(pp: kev->qos))) { |
| 2652 | return ERANGE; |
| 2653 | } |
| 2654 | } |
| 2655 | |
| 2656 | switch (new_commands) { |
| 2657 | case NOTE_WL_THREAD_REQUEST: |
| 2658 | /* thread requests can only update themselves */ |
| 2659 | if (sav_commands != NOTE_WL_THREAD_REQUEST) { |
| 2660 | return EINVAL; |
| 2661 | } |
| 2662 | break; |
| 2663 | |
| 2664 | case NOTE_WL_SYNC_WAIT: |
| 2665 | if (kev->fflags & NOTE_WL_END_OWNERSHIP) { |
| 2666 | return EINVAL; |
| 2667 | } |
| 2668 | goto sync_checks; |
| 2669 | |
| 2670 | case NOTE_WL_SYNC_WAKE: |
| 2671 | sync_checks: |
| 2672 | if (!(sav_commands & (NOTE_WL_SYNC_WAIT | NOTE_WL_SYNC_WAKE))) { |
| 2673 | return EINVAL; |
| 2674 | } |
| 2675 | if ((kev->flags & (EV_ENABLE | EV_DELETE)) == EV_ENABLE) { |
| 2676 | return EINVAL; |
| 2677 | } |
| 2678 | break; |
| 2679 | |
| 2680 | case NOTE_WL_SYNC_IPC: |
| 2681 | if (sav_commands != NOTE_WL_SYNC_IPC) { |
| 2682 | return EINVAL; |
| 2683 | } |
| 2684 | if ((kev->flags & (EV_ENABLE | EV_DELETE)) == EV_ENABLE) { |
| 2685 | return EINVAL; |
| 2686 | } |
| 2687 | break; |
| 2688 | |
| 2689 | default: |
| 2690 | return EINVAL; |
| 2691 | } |
| 2692 | return 0; |
| 2693 | } |
| 2694 | |
| 2695 | static int |
| 2696 | filt_wltouch(struct knote *kn, struct kevent_qos_s *kev) |
| 2697 | { |
| 2698 | struct kqworkloop *kqwl = (struct kqworkloop *)knote_get_kq(kn); |
| 2699 | thread_qos_t qos_index = THREAD_QOS_UNSPECIFIED; |
| 2700 | int result = 0; |
| 2701 | |
| 2702 | int error = filt_wlvalidate_kev_flags(kn, kev, qos_index: &qos_index); |
| 2703 | if (error) { |
| 2704 | goto out; |
| 2705 | } |
| 2706 | |
| 2707 | uint32_t command = kev->fflags & NOTE_WL_COMMANDS_MASK; |
| 2708 | if (command == NOTE_WL_SYNC_IPC) { |
| 2709 | error = filt_wlupdate_sync_ipc(kqwl, kn, kev, FILT_WLTOUCH); |
| 2710 | } else { |
| 2711 | error = filt_wlupdate(kqwl, kn, kev, qos_index, FILT_WLTOUCH); |
| 2712 | filt_wlremember_last_update(kn, kev, error); |
| 2713 | } |
| 2714 | if (error == EPREEMPTDISABLED) { |
| 2715 | error = 0; |
| 2716 | result = FILTER_THREADREQ_NODEFEER; |
| 2717 | } |
| 2718 | |
| 2719 | out: |
| 2720 | if (error) { |
| 2721 | if (error == ESTALE && (kev->fflags & NOTE_WL_IGNORE_ESTALE)) { |
| 2722 | /* If userland wants ESTALE to be hidden, do not activate */ |
| 2723 | return result; |
| 2724 | } |
| 2725 | kev->flags |= EV_ERROR; |
| 2726 | kev->data = error; |
| 2727 | return result; |
| 2728 | } |
| 2729 | if (command == NOTE_WL_SYNC_WAIT && !(kn->kn_sfflags & NOTE_WL_SYNC_WAKE)) { |
| 2730 | return kevent_register_wait_prepare(kn, kev, result); |
| 2731 | } |
| 2732 | /* Just touching the thread request successfully will fire it */ |
| 2733 | if (command == NOTE_WL_THREAD_REQUEST) { |
| 2734 | if (kev->fflags & NOTE_WL_UPDATE_QOS) { |
| 2735 | result |= FILTER_UPDATE_REQ_QOS; |
| 2736 | } |
| 2737 | result |= FILTER_ACTIVE; |
| 2738 | } |
| 2739 | return result; |
| 2740 | } |
| 2741 | |
| 2742 | static bool |
| 2743 | filt_wlallow_drop(struct knote *kn, struct kevent_qos_s *kev) |
| 2744 | { |
| 2745 | struct kqworkloop *kqwl = (struct kqworkloop *)knote_get_kq(kn); |
| 2746 | |
| 2747 | int error = filt_wlvalidate_kev_flags(kn, kev, NULL); |
| 2748 | if (error) { |
| 2749 | goto out; |
| 2750 | } |
| 2751 | |
| 2752 | uint32_t command = (kev->fflags & NOTE_WL_COMMANDS_MASK); |
| 2753 | if (command == NOTE_WL_SYNC_IPC) { |
| 2754 | error = filt_wlupdate_sync_ipc(kqwl, kn, kev, FILT_WLDROP); |
| 2755 | } else { |
| 2756 | error = filt_wlupdate(kqwl, kn, kev, qos_index: 0, FILT_WLDROP); |
| 2757 | filt_wlremember_last_update(kn, kev, error); |
| 2758 | } |
| 2759 | assert(error != EPREEMPTDISABLED); |
| 2760 | |
| 2761 | out: |
| 2762 | if (error) { |
| 2763 | if (error == ESTALE && (kev->fflags & NOTE_WL_IGNORE_ESTALE)) { |
| 2764 | return false; |
| 2765 | } |
| 2766 | kev->flags |= EV_ERROR; |
| 2767 | kev->data = error; |
| 2768 | return false; |
| 2769 | } |
| 2770 | return true; |
| 2771 | } |
| 2772 | |
| 2773 | static int |
| 2774 | filt_wlprocess(struct knote *kn, struct kevent_qos_s *kev) |
| 2775 | { |
| 2776 | struct kqworkloop *kqwl = (struct kqworkloop *)knote_get_kq(kn); |
| 2777 | int rc = 0; |
| 2778 | |
| 2779 | assert(kn->kn_sfflags & NOTE_WL_THREAD_REQUEST); |
| 2780 | |
| 2781 | kqlock(kqu: kqwl); |
| 2782 | |
| 2783 | if (kqwl->kqwl_owner) { |
| 2784 | /* |
| 2785 | * <rdar://problem/33584321> userspace sometimes due to events being |
| 2786 | * delivered but not triggering a drain session can cause a process |
| 2787 | * of the thread request knote. |
| 2788 | * |
| 2789 | * When that happens, the automatic deactivation due to process |
| 2790 | * would swallow the event, so we have to activate the knote again. |
| 2791 | */ |
| 2792 | knote_activate(kqu: kqwl, kn, FILTER_ACTIVE); |
| 2793 | } else { |
| 2794 | #if DEBUG || DEVELOPMENT |
| 2795 | if (kevent_debug_flags & KEVENT_PANIC_ON_NON_ENQUEUED_PROCESS) { |
| 2796 | /* |
| 2797 | * see src/queue_internal.h in libdispatch |
| 2798 | */ |
| 2799 | #define DISPATCH_QUEUE_ENQUEUED 0x1ull |
| 2800 | user_addr_t addr = CAST_USER_ADDR_T(kn->kn_ext[EV_EXTIDX_WL_ADDR]); |
| 2801 | task_t t = current_task(); |
| 2802 | uint64_t val; |
| 2803 | if (addr && task_is_active(t) && !task_is_halting(t) && |
| 2804 | copyin_atomic64(addr, &val) == 0 && |
| 2805 | val && (val & DISPATCH_QUEUE_ENQUEUED) == 0 && |
| 2806 | (val >> 48) != 0xdead && (val >> 48) != 0 && (val >> 48) != 0xffff) { |
| 2807 | panic("kevent: workloop %#016llx is not enqueued " |
| 2808 | "(kn:%p dq_state:%#016llx kev.dq_state:%#016llx)" , |
| 2809 | kn->kn_udata, kn, val, kn->kn_ext[EV_EXTIDX_WL_VALUE]); |
| 2810 | } |
| 2811 | } |
| 2812 | #endif |
| 2813 | knote_fill_kevent(kn, kev, data: 0); |
| 2814 | kev->fflags = kn->kn_sfflags; |
| 2815 | rc |= FILTER_ACTIVE; |
| 2816 | } |
| 2817 | |
| 2818 | kqunlock(kqu: kqwl); |
| 2819 | |
| 2820 | if (rc & FILTER_ACTIVE) { |
| 2821 | workq_thread_set_max_qos(p: kqwl->kqwl_p, kqr: &kqwl->kqwl_request); |
| 2822 | } |
| 2823 | return rc; |
| 2824 | } |
| 2825 | |
| 2826 | SECURITY_READ_ONLY_EARLY(static struct filterops) workloop_filtops = { |
| 2827 | .f_extended_codes = true, |
| 2828 | .f_attach = filt_wlattach, |
| 2829 | .f_detach = filt_wldetach, |
| 2830 | .f_event = filt_bad_event, |
| 2831 | .f_touch = filt_wltouch, |
| 2832 | .f_process = filt_wlprocess, |
| 2833 | .f_allow_drop = filt_wlallow_drop, |
| 2834 | .f_post_register_wait = filt_wlpost_register_wait, |
| 2835 | }; |
| 2836 | |
| 2837 | #pragma mark - kqueues allocation and deallocation |
| 2838 | |
| 2839 | OS_NOINLINE |
| 2840 | static void |
| 2841 | kqworkloop_dealloc(struct kqworkloop *, bool hash_remove); |
| 2842 | |
| 2843 | static inline bool |
| 2844 | kqworkloop_try_retain(struct kqworkloop *kqwl) |
| 2845 | { |
| 2846 | return os_ref_retain_try_raw(&kqwl->kqwl_retains, NULL); |
| 2847 | } |
| 2848 | |
| 2849 | static inline void |
| 2850 | kqworkloop_retain(struct kqworkloop *kqwl) |
| 2851 | { |
| 2852 | return os_ref_retain_raw(&kqwl->kqwl_retains, NULL); |
| 2853 | } |
| 2854 | |
| 2855 | OS_ALWAYS_INLINE |
| 2856 | static inline void |
| 2857 | kqueue_retain(kqueue_t kqu) |
| 2858 | { |
| 2859 | if (kqu.kq->kq_state & KQ_DYNAMIC) { |
| 2860 | kqworkloop_retain(kqwl: kqu.kqwl); |
| 2861 | } |
| 2862 | } |
| 2863 | |
| 2864 | OS_ALWAYS_INLINE |
| 2865 | static inline void |
| 2866 | kqworkloop_release_live(struct kqworkloop *kqwl) |
| 2867 | { |
| 2868 | os_ref_release_live_raw(&kqwl->kqwl_retains, NULL); |
| 2869 | } |
| 2870 | |
| 2871 | OS_ALWAYS_INLINE |
| 2872 | static inline void |
| 2873 | kqueue_release_live(kqueue_t kqu) |
| 2874 | { |
| 2875 | if (kqu.kq->kq_state & KQ_DYNAMIC) { |
| 2876 | kqworkloop_release_live(kqwl: kqu.kqwl); |
| 2877 | } |
| 2878 | } |
| 2879 | |
| 2880 | OS_ALWAYS_INLINE |
| 2881 | static inline void |
| 2882 | kqworkloop_release(struct kqworkloop *kqwl) |
| 2883 | { |
| 2884 | if (os_ref_release_raw(&kqwl->kqwl_retains, NULL) == 0) { |
| 2885 | kqworkloop_dealloc(kqwl, true); |
| 2886 | } |
| 2887 | } |
| 2888 | |
| 2889 | OS_ALWAYS_INLINE |
| 2890 | static inline void |
| 2891 | kqueue_release(kqueue_t kqu) |
| 2892 | { |
| 2893 | if (kqu.kq->kq_state & KQ_DYNAMIC) { |
| 2894 | kqworkloop_release(kqwl: kqu.kqwl); |
| 2895 | } |
| 2896 | } |
| 2897 | |
| 2898 | /*! |
| 2899 | * @function kqueue_destroy |
| 2900 | * |
| 2901 | * @brief |
| 2902 | * Common part to all kqueue dealloc functions. |
| 2903 | */ |
| 2904 | OS_NOINLINE |
| 2905 | static void |
| 2906 | kqueue_destroy(kqueue_t kqu, zone_t zone) |
| 2907 | { |
| 2908 | lck_spin_destroy(lck: &kqu.kq->kq_lock, grp: &kq_lck_grp); |
| 2909 | |
| 2910 | zfree(zone, kqu.kq); |
| 2911 | } |
| 2912 | |
| 2913 | /*! |
| 2914 | * @function kqueue_init |
| 2915 | * |
| 2916 | * @brief |
| 2917 | * Common part to all kqueue alloc functions. |
| 2918 | */ |
| 2919 | static kqueue_t |
| 2920 | kqueue_init(kqueue_t kqu) |
| 2921 | { |
| 2922 | lck_spin_init(lck: &kqu.kq->kq_lock, grp: &kq_lck_grp, LCK_ATTR_NULL); |
| 2923 | return kqu; |
| 2924 | } |
| 2925 | |
| 2926 | #pragma mark kqfile allocation and deallocation |
| 2927 | |
| 2928 | /*! |
| 2929 | * @function kqueue_dealloc |
| 2930 | * |
| 2931 | * @brief |
| 2932 | * Detach all knotes from a kqfile and free it. |
| 2933 | * |
| 2934 | * @discussion |
| 2935 | * We walk each list looking for knotes referencing this |
| 2936 | * this kqueue. If we find one, we try to drop it. But |
| 2937 | * if we fail to get a drop reference, that will wait |
| 2938 | * until it is dropped. So, we can just restart again |
| 2939 | * safe in the assumption that the list will eventually |
| 2940 | * not contain any more references to this kqueue (either |
| 2941 | * we dropped them all, or someone else did). |
| 2942 | * |
| 2943 | * Assumes no new events are being added to the kqueue. |
| 2944 | * Nothing locked on entry or exit. |
| 2945 | */ |
| 2946 | void |
| 2947 | kqueue_dealloc(struct kqueue *kq) |
| 2948 | { |
| 2949 | KNOTE_LOCK_CTX(knlc); |
| 2950 | struct proc *p = kq->kq_p; |
| 2951 | struct filedesc *fdp = &p->p_fd; |
| 2952 | struct knote *kn; |
| 2953 | |
| 2954 | assert(kq && (kq->kq_state & (KQ_WORKLOOP | KQ_WORKQ)) == 0); |
| 2955 | |
| 2956 | proc_fdlock(p); |
| 2957 | for (int i = 0; i < fdp->fd_knlistsize; i++) { |
| 2958 | kn = SLIST_FIRST(&fdp->fd_knlist[i]); |
| 2959 | while (kn != NULL) { |
| 2960 | if (kq == knote_get_kq(kn)) { |
| 2961 | kqlock(kqu: kq); |
| 2962 | proc_fdunlock(p); |
| 2963 | if (knote_lock(kqu: kq, kn, knlc: &knlc, kqlocking: KNOTE_KQ_LOCK_ON_SUCCESS)) { |
| 2964 | knote_drop(kqu: kq, kn, knlc: &knlc); |
| 2965 | } |
| 2966 | proc_fdlock(p); |
| 2967 | /* start over at beginning of list */ |
| 2968 | kn = SLIST_FIRST(&fdp->fd_knlist[i]); |
| 2969 | continue; |
| 2970 | } |
| 2971 | kn = SLIST_NEXT(kn, kn_link); |
| 2972 | } |
| 2973 | } |
| 2974 | |
| 2975 | knhash_lock(fdp); |
| 2976 | proc_fdunlock(p); |
| 2977 | |
| 2978 | if (fdp->fd_knhashmask != 0) { |
| 2979 | for (int i = 0; i < (int)fdp->fd_knhashmask + 1; i++) { |
| 2980 | kn = SLIST_FIRST(&fdp->fd_knhash[i]); |
| 2981 | while (kn != NULL) { |
| 2982 | if (kq == knote_get_kq(kn)) { |
| 2983 | kqlock(kqu: kq); |
| 2984 | knhash_unlock(fdp); |
| 2985 | if (knote_lock(kqu: kq, kn, knlc: &knlc, kqlocking: KNOTE_KQ_LOCK_ON_SUCCESS)) { |
| 2986 | knote_drop(kqu: kq, kn, knlc: &knlc); |
| 2987 | } |
| 2988 | knhash_lock(fdp); |
| 2989 | /* start over at beginning of list */ |
| 2990 | kn = SLIST_FIRST(&fdp->fd_knhash[i]); |
| 2991 | continue; |
| 2992 | } |
| 2993 | kn = SLIST_NEXT(kn, kn_link); |
| 2994 | } |
| 2995 | } |
| 2996 | } |
| 2997 | knhash_unlock(fdp); |
| 2998 | |
| 2999 | kqueue_destroy(kqu: kq, zone: kqfile_zone); |
| 3000 | } |
| 3001 | |
| 3002 | /*! |
| 3003 | * @function kqueue_alloc |
| 3004 | * |
| 3005 | * @brief |
| 3006 | * Allocate a kqfile. |
| 3007 | */ |
| 3008 | struct kqueue * |
| 3009 | kqueue_alloc(struct proc *p) |
| 3010 | { |
| 3011 | struct kqfile *kqf; |
| 3012 | |
| 3013 | /* |
| 3014 | * kqfiles are created with kqueue() so we need to wait for |
| 3015 | * the first kevent syscall to know which bit among |
| 3016 | * KQ_KEV_{32,64,QOS} will be set in kqf_state |
| 3017 | */ |
| 3018 | kqf = zalloc_flags(kqfile_zone, Z_WAITOK | Z_ZERO); |
| 3019 | kqf->kqf_p = p; |
| 3020 | TAILQ_INIT_AFTER_BZERO(&kqf->kqf_queue); |
| 3021 | TAILQ_INIT_AFTER_BZERO(&kqf->kqf_suppressed); |
| 3022 | |
| 3023 | return kqueue_init(kqu: kqf).kq; |
| 3024 | } |
| 3025 | |
| 3026 | /*! |
| 3027 | * @function kqueue_internal |
| 3028 | * |
| 3029 | * @brief |
| 3030 | * Core implementation for kqueue and guarded_kqueue_np() |
| 3031 | */ |
| 3032 | int |
| 3033 | kqueue_internal(struct proc *p, fp_initfn_t fp_init, void *initarg, int32_t *retval) |
| 3034 | { |
| 3035 | struct kqueue *kq; |
| 3036 | struct fileproc *fp; |
| 3037 | int fd, error; |
| 3038 | |
| 3039 | error = falloc_withinit(p, p_cred: current_cached_proc_cred(p), |
| 3040 | ctx: vfs_context_current(), resultfp: &fp, resultfd: &fd, fp_init, initarg); |
| 3041 | if (error) { |
| 3042 | return error; |
| 3043 | } |
| 3044 | |
| 3045 | kq = kqueue_alloc(p); |
| 3046 | if (kq == NULL) { |
| 3047 | fp_free(p, fd, fp); |
| 3048 | return ENOMEM; |
| 3049 | } |
| 3050 | |
| 3051 | fp->fp_flags |= FP_CLOEXEC | FP_CLOFORK; |
| 3052 | fp->f_flag = FREAD | FWRITE; |
| 3053 | fp->f_ops = &kqueueops; |
| 3054 | fp_set_data(fp, fg_data: kq); |
| 3055 | fp->f_lflags |= FG_CONFINED; |
| 3056 | |
| 3057 | proc_fdlock(p); |
| 3058 | procfdtbl_releasefd(p, fd, NULL); |
| 3059 | fp_drop(p, fd, fp, locked: 1); |
| 3060 | proc_fdunlock(p); |
| 3061 | |
| 3062 | *retval = fd; |
| 3063 | return error; |
| 3064 | } |
| 3065 | |
| 3066 | /*! |
| 3067 | * @function kqueue |
| 3068 | * |
| 3069 | * @brief |
| 3070 | * The kqueue syscall. |
| 3071 | */ |
| 3072 | int |
| 3073 | kqueue(struct proc *p, __unused struct kqueue_args *uap, int32_t *retval) |
| 3074 | { |
| 3075 | return kqueue_internal(p, NULL, NULL, retval); |
| 3076 | } |
| 3077 | |
| 3078 | #pragma mark kqworkq allocation and deallocation |
| 3079 | |
| 3080 | /*! |
| 3081 | * @function kqworkq_dealloc |
| 3082 | * |
| 3083 | * @brief |
| 3084 | * Deallocates a workqueue kqueue. |
| 3085 | * |
| 3086 | * @discussion |
| 3087 | * This only happens at process death, or for races with concurrent |
| 3088 | * kevent_get_kqwq calls, hence we don't have to care about knotes referencing |
| 3089 | * this kqueue, either there are none, or someone else took care of them. |
| 3090 | */ |
| 3091 | void |
| 3092 | kqworkq_dealloc(struct kqworkq *kqwq) |
| 3093 | { |
| 3094 | kqueue_destroy(kqu: kqwq, zone: kqworkq_zone); |
| 3095 | } |
| 3096 | |
| 3097 | /*! |
| 3098 | * @function kqworkq_alloc |
| 3099 | * |
| 3100 | * @brief |
| 3101 | * Allocates a workqueue kqueue. |
| 3102 | * |
| 3103 | * @discussion |
| 3104 | * This is the slow path of kevent_get_kqwq. |
| 3105 | * This takes care of making sure procs have a single workq kqueue. |
| 3106 | */ |
| 3107 | OS_NOINLINE |
| 3108 | static struct kqworkq * |
| 3109 | kqworkq_alloc(struct proc *p, unsigned int flags) |
| 3110 | { |
| 3111 | struct kqworkq *kqwq, *tmp; |
| 3112 | |
| 3113 | kqwq = zalloc_flags(kqworkq_zone, Z_WAITOK | Z_ZERO); |
| 3114 | |
| 3115 | assert((flags & KEVENT_FLAG_LEGACY32) == 0); |
| 3116 | if (flags & KEVENT_FLAG_LEGACY64) { |
| 3117 | kqwq->kqwq_state = KQ_WORKQ | KQ_KEV64; |
| 3118 | } else { |
| 3119 | kqwq->kqwq_state = KQ_WORKQ | KQ_KEV_QOS; |
| 3120 | } |
| 3121 | kqwq->kqwq_p = p; |
| 3122 | |
| 3123 | for (int i = 0; i < KQWQ_NBUCKETS; i++) { |
| 3124 | TAILQ_INIT_AFTER_BZERO(&kqwq->kqwq_queue[i]); |
| 3125 | TAILQ_INIT_AFTER_BZERO(&kqwq->kqwq_suppressed[i]); |
| 3126 | } |
| 3127 | for (int i = 0; i < KQWQ_NBUCKETS; i++) { |
| 3128 | /* |
| 3129 | * Because of how the bucketized system works, we mix overcommit |
| 3130 | * sources with not overcommit: each time we move a knote from |
| 3131 | * one bucket to the next due to overrides, we'd had to track |
| 3132 | * overcommitness, and it's really not worth it in the workloop |
| 3133 | * enabled world that track this faithfully. |
| 3134 | * |
| 3135 | * Incidentally, this behaves like the original manager-based |
| 3136 | * kqwq where event delivery always happened (hence is |
| 3137 | * "overcommit") |
| 3138 | */ |
| 3139 | kqwq->kqwq_request[i].tr_state = WORKQ_TR_STATE_IDLE; |
| 3140 | kqwq->kqwq_request[i].tr_flags = WORKQ_TR_FLAG_KEVENT; |
| 3141 | if (i != KQWQ_QOS_MANAGER) { |
| 3142 | kqwq->kqwq_request[i].tr_flags |= WORKQ_TR_FLAG_OVERCOMMIT; |
| 3143 | } |
| 3144 | kqwq->kqwq_request[i].tr_kq_qos_index = (kq_index_t)i + 1; |
| 3145 | } |
| 3146 | |
| 3147 | kqueue_init(kqu: kqwq); |
| 3148 | |
| 3149 | if (!os_atomic_cmpxchgv(&p->p_fd.fd_wqkqueue, NULL, kqwq, &tmp, release)) { |
| 3150 | kqworkq_dealloc(kqwq); |
| 3151 | return tmp; |
| 3152 | } |
| 3153 | |
| 3154 | return kqwq; |
| 3155 | } |
| 3156 | |
| 3157 | #pragma mark kqworkloop allocation and deallocation |
| 3158 | |
| 3159 | #define KQ_HASH(val, mask) (((val) ^ (val >> 8)) & (mask)) |
| 3160 | #define CONFIG_KQ_HASHSIZE CONFIG_KN_HASHSIZE |
| 3161 | |
| 3162 | OS_ALWAYS_INLINE |
| 3163 | static inline void |
| 3164 | kqhash_lock(struct filedesc *fdp) |
| 3165 | { |
| 3166 | lck_mtx_lock_spin_always(lck: &fdp->fd_kqhashlock); |
| 3167 | } |
| 3168 | |
| 3169 | OS_ALWAYS_INLINE |
| 3170 | static inline void |
| 3171 | kqhash_unlock(struct filedesc *fdp) |
| 3172 | { |
| 3173 | lck_mtx_unlock(lck: &fdp->fd_kqhashlock); |
| 3174 | } |
| 3175 | |
| 3176 | OS_ALWAYS_INLINE |
| 3177 | static inline void |
| 3178 | kqworkloop_hash_insert_locked(struct filedesc *fdp, kqueue_id_t id, |
| 3179 | struct kqworkloop *kqwl) |
| 3180 | { |
| 3181 | struct kqwllist *list = &fdp->fd_kqhash[KQ_HASH(id, fdp->fd_kqhashmask)]; |
| 3182 | LIST_INSERT_HEAD(list, kqwl, kqwl_hashlink); |
| 3183 | } |
| 3184 | |
| 3185 | OS_ALWAYS_INLINE |
| 3186 | static inline struct kqworkloop * |
| 3187 | kqworkloop_hash_lookup_locked(struct filedesc *fdp, kqueue_id_t id) |
| 3188 | { |
| 3189 | struct kqwllist *list = &fdp->fd_kqhash[KQ_HASH(id, fdp->fd_kqhashmask)]; |
| 3190 | struct kqworkloop *kqwl; |
| 3191 | |
| 3192 | LIST_FOREACH(kqwl, list, kqwl_hashlink) { |
| 3193 | if (kqwl->kqwl_dynamicid == id) { |
| 3194 | return kqwl; |
| 3195 | } |
| 3196 | } |
| 3197 | return NULL; |
| 3198 | } |
| 3199 | |
| 3200 | static struct kqworkloop * |
| 3201 | kqworkloop_hash_lookup_and_retain(struct filedesc *fdp, kqueue_id_t kq_id) |
| 3202 | { |
| 3203 | struct kqworkloop *kqwl = NULL; |
| 3204 | |
| 3205 | kqhash_lock(fdp); |
| 3206 | if (__probable(fdp->fd_kqhash)) { |
| 3207 | kqwl = kqworkloop_hash_lookup_locked(fdp, id: kq_id); |
| 3208 | if (kqwl && !kqworkloop_try_retain(kqwl)) { |
| 3209 | kqwl = NULL; |
| 3210 | } |
| 3211 | } |
| 3212 | kqhash_unlock(fdp); |
| 3213 | return kqwl; |
| 3214 | } |
| 3215 | |
| 3216 | OS_NOINLINE |
| 3217 | static void |
| 3218 | kqworkloop_hash_init(struct filedesc *fdp) |
| 3219 | { |
| 3220 | struct kqwllist *alloc_hash; |
| 3221 | u_long alloc_mask; |
| 3222 | |
| 3223 | kqhash_unlock(fdp); |
| 3224 | alloc_hash = hashinit(CONFIG_KQ_HASHSIZE, M_KQUEUE, hashmask: &alloc_mask); |
| 3225 | kqhash_lock(fdp); |
| 3226 | |
| 3227 | /* See if we won the race */ |
| 3228 | if (__probable(fdp->fd_kqhashmask == 0)) { |
| 3229 | fdp->fd_kqhash = alloc_hash; |
| 3230 | fdp->fd_kqhashmask = alloc_mask; |
| 3231 | } else { |
| 3232 | kqhash_unlock(fdp); |
| 3233 | hashdestroy(alloc_hash, M_KQUEUE, hashmask: alloc_mask); |
| 3234 | kqhash_lock(fdp); |
| 3235 | } |
| 3236 | } |
| 3237 | |
| 3238 | /* |
| 3239 | * kqueue iotier override is only supported for kqueue that has |
| 3240 | * only one port as a mach port source. Updating the iotier |
| 3241 | * override on the mach port source will update the override |
| 3242 | * on kqueue as well. Since kqueue with iotier override will |
| 3243 | * only have one port attached, there is no logic for saturation |
| 3244 | * like qos override, the iotier override of mach port source |
| 3245 | * would be reflected in kevent iotier override. |
| 3246 | */ |
| 3247 | void |
| 3248 | kqueue_set_iotier_override(kqueue_t kqu, uint8_t iotier_override) |
| 3249 | { |
| 3250 | if (!(kqu.kq->kq_state & KQ_WORKLOOP)) { |
| 3251 | return; |
| 3252 | } |
| 3253 | |
| 3254 | struct kqworkloop *kqwl = kqu.kqwl; |
| 3255 | os_atomic_store(&kqwl->kqwl_iotier_override, iotier_override, relaxed); |
| 3256 | } |
| 3257 | |
| 3258 | uint8_t |
| 3259 | kqueue_get_iotier_override(kqueue_t kqu) |
| 3260 | { |
| 3261 | if (!(kqu.kq->kq_state & KQ_WORKLOOP)) { |
| 3262 | return THROTTLE_LEVEL_END; |
| 3263 | } |
| 3264 | |
| 3265 | struct kqworkloop *kqwl = kqu.kqwl; |
| 3266 | return os_atomic_load(&kqwl->kqwl_iotier_override, relaxed); |
| 3267 | } |
| 3268 | |
| 3269 | #if CONFIG_PREADOPT_TG |
| 3270 | /* |
| 3271 | * This function is called with a borrowed reference on the thread group without |
| 3272 | * kq lock held with the mqueue lock held. It may or may not have the knote lock |
| 3273 | * (called from both fevent as well as fattach/ftouch). Upon success, an |
| 3274 | * additional reference on the TG is taken |
| 3275 | */ |
| 3276 | void |
| 3277 | kqueue_set_preadopted_thread_group(kqueue_t kqu, struct thread_group *tg, thread_qos_t qos) |
| 3278 | { |
| 3279 | if (!(kqu.kq->kq_state & KQ_WORKLOOP)) { |
| 3280 | KDBG_RELEASE(MACHDBG_CODE(DBG_MACH_THREAD_GROUP, MACH_THREAD_GROUP_PREADOPT_NA), |
| 3281 | (uintptr_t)thread_tid(current_thread()), 0, 0, 0); |
| 3282 | return; |
| 3283 | } |
| 3284 | |
| 3285 | struct kqworkloop *kqwl = kqu.kqwl; |
| 3286 | |
| 3287 | assert(qos < THREAD_QOS_LAST); |
| 3288 | |
| 3289 | thread_group_retain(tg); |
| 3290 | |
| 3291 | thread_group_qos_t old_tg; thread_group_qos_t new_tg; |
| 3292 | int ret = os_atomic_rmw_loop(&kqwl->kqwl_preadopt_tg, old_tg, new_tg, relaxed, { |
| 3293 | if (!KQWL_CAN_ADOPT_PREADOPT_TG(old_tg)) { |
| 3294 | os_atomic_rmw_loop_give_up(break); |
| 3295 | } |
| 3296 | |
| 3297 | if (old_tg != KQWL_PREADOPTED_TG_NULL) { |
| 3298 | /* |
| 3299 | * Note that old_tg could be a NULL TG pointer but with a QoS |
| 3300 | * set. See also workq_thread_reset_pri. |
| 3301 | * |
| 3302 | * Compare the QoS of existing preadopted tg with new one and |
| 3303 | * only overwrite the thread group if we have one with a higher |
| 3304 | * QoS. |
| 3305 | */ |
| 3306 | thread_qos_t existing_qos = KQWL_GET_PREADOPTED_TG_QOS(old_tg); |
| 3307 | if (existing_qos >= qos) { |
| 3308 | os_atomic_rmw_loop_give_up(break); |
| 3309 | } |
| 3310 | } |
| 3311 | |
| 3312 | // Transfer the ref taken earlier in the function to the kqwl |
| 3313 | new_tg = KQWL_ENCODE_PREADOPTED_TG_QOS(tg, qos); |
| 3314 | }); |
| 3315 | |
| 3316 | if (ret) { |
| 3317 | KQWL_PREADOPT_TG_HISTORY_WRITE_ENTRY(kqwl, KQWL_PREADOPT_OP_INCOMING_IPC, old_tg, tg); |
| 3318 | |
| 3319 | if (KQWL_HAS_VALID_PREADOPTED_TG(old_tg)) { |
| 3320 | thread_group_deallocate_safe(KQWL_GET_PREADOPTED_TG(old_tg)); |
| 3321 | } |
| 3322 | |
| 3323 | os_atomic_store(&kqwl->kqwl_preadopt_tg_needs_redrive, KQWL_PREADOPT_TG_NEEDS_REDRIVE, release); |
| 3324 | } else { |
| 3325 | // We failed to write to the kqwl_preadopt_tg, drop the ref we took |
| 3326 | // earlier in the function |
| 3327 | thread_group_deallocate_safe(tg); |
| 3328 | } |
| 3329 | } |
| 3330 | |
| 3331 | /* |
| 3332 | * Called from fprocess of EVFILT_MACHPORT without the kqueue lock held. |
| 3333 | */ |
| 3334 | bool |
| 3335 | kqueue_process_preadopt_thread_group(thread_t thread, struct kqueue *kq, struct thread_group *tg) |
| 3336 | { |
| 3337 | bool success = false; |
| 3338 | if (kq->kq_state & KQ_WORKLOOP) { |
| 3339 | struct kqworkloop *kqwl = (struct kqworkloop *) kq; |
| 3340 | thread_group_qos_t old_tg; |
| 3341 | success = os_atomic_cmpxchgv(&kqwl->kqwl_preadopt_tg, |
| 3342 | KQWL_PREADOPTED_TG_SENTINEL, KQWL_PREADOPTED_TG_PROCESSED, |
| 3343 | &old_tg, relaxed); |
| 3344 | if (success) { |
| 3345 | thread_set_preadopt_thread_group(t: thread, tg); |
| 3346 | } else if (KQWL_HAS_PERMANENT_PREADOPTED_TG(old_tg)) { |
| 3347 | /* |
| 3348 | * Technically the following set_preadopt should be a no-op since this |
| 3349 | * servicer thread preadopts kqwl's permanent tg at bind time. |
| 3350 | * See kqueue_threadreq_bind. |
| 3351 | */ |
| 3352 | thread_set_preadopt_thread_group(t: thread, KQWL_GET_PREADOPTED_TG(old_tg)); |
| 3353 | } else { |
| 3354 | assert(old_tg == KQWL_PREADOPTED_TG_PROCESSED || |
| 3355 | old_tg == KQWL_PREADOPTED_TG_NEVER); |
| 3356 | } |
| 3357 | } |
| 3358 | return success; |
| 3359 | } |
| 3360 | #endif |
| 3361 | |
| 3362 | /*! |
| 3363 | * @function kqworkloop_dealloc |
| 3364 | * |
| 3365 | * @brief |
| 3366 | * Deallocates a workloop kqueue. |
| 3367 | * |
| 3368 | * @discussion |
| 3369 | * Knotes hold references on the workloop, so we can't really reach this |
| 3370 | * function unless all of these are already gone. |
| 3371 | * |
| 3372 | * Nothing locked on entry or exit. |
| 3373 | * |
| 3374 | * @param hash_remove |
| 3375 | * Whether to remove the workloop from its hash table. |
| 3376 | */ |
| 3377 | static void |
| 3378 | kqworkloop_dealloc(struct kqworkloop *kqwl, bool hash_remove) |
| 3379 | { |
| 3380 | thread_t cur_owner; |
| 3381 | |
| 3382 | cur_owner = kqwl->kqwl_owner; |
| 3383 | if (cur_owner) { |
| 3384 | if (kqworkloop_override(kqwl) != THREAD_QOS_UNSPECIFIED) { |
| 3385 | thread_drop_kevent_override(thread: cur_owner); |
| 3386 | } |
| 3387 | thread_deallocate(thread: cur_owner); |
| 3388 | kqwl->kqwl_owner = THREAD_NULL; |
| 3389 | } |
| 3390 | |
| 3391 | if (kqwl->kqwl_state & KQ_HAS_TURNSTILE) { |
| 3392 | struct turnstile *ts; |
| 3393 | turnstile_complete(proprietor: (uintptr_t)kqwl, tstore: &kqwl->kqwl_turnstile, |
| 3394 | turnstile: &ts, type: TURNSTILE_WORKLOOPS); |
| 3395 | turnstile_cleanup(); |
| 3396 | turnstile_deallocate(turnstile: ts); |
| 3397 | } |
| 3398 | |
| 3399 | if (hash_remove) { |
| 3400 | struct filedesc *fdp = &kqwl->kqwl_p->p_fd; |
| 3401 | |
| 3402 | kqhash_lock(fdp); |
| 3403 | LIST_REMOVE(kqwl, kqwl_hashlink); |
| 3404 | #if CONFIG_PROC_RESOURCE_LIMITS |
| 3405 | fdp->num_kqwls--; |
| 3406 | #endif |
| 3407 | kqhash_unlock(fdp); |
| 3408 | } |
| 3409 | |
| 3410 | #if CONFIG_PREADOPT_TG |
| 3411 | thread_group_qos_t tg = os_atomic_load(&kqwl->kqwl_preadopt_tg, relaxed); |
| 3412 | if (KQWL_HAS_VALID_PREADOPTED_TG(tg)) { |
| 3413 | thread_group_release(KQWL_GET_PREADOPTED_TG(tg)); |
| 3414 | } |
| 3415 | #endif |
| 3416 | |
| 3417 | assert(TAILQ_EMPTY(&kqwl->kqwl_suppressed)); |
| 3418 | assert(kqwl->kqwl_owner == THREAD_NULL); |
| 3419 | assert(kqwl->kqwl_turnstile == TURNSTILE_NULL); |
| 3420 | |
| 3421 | lck_spin_destroy(lck: &kqwl->kqwl_statelock, grp: &kq_lck_grp); |
| 3422 | kqueue_destroy(kqu: kqwl, zone: kqworkloop_zone); |
| 3423 | } |
| 3424 | |
| 3425 | /*! |
| 3426 | * @function kqworkloop_init |
| 3427 | * |
| 3428 | * @brief |
| 3429 | * Initializes an allocated kqworkloop. |
| 3430 | */ |
| 3431 | static void |
| 3432 | kqworkloop_init(struct kqworkloop *kqwl, proc_t p, |
| 3433 | kqueue_id_t id, workq_threadreq_param_t *trp |
| 3434 | #if CONFIG_PREADOPT_TG |
| 3435 | , struct thread_group *trp_permanent_preadopt_tg |
| 3436 | #endif |
| 3437 | ) |
| 3438 | { |
| 3439 | kqwl->kqwl_state = KQ_WORKLOOP | KQ_DYNAMIC | KQ_KEV_QOS; |
| 3440 | os_ref_init_raw(&kqwl->kqwl_retains, NULL); |
| 3441 | kqwl->kqwl_dynamicid = id; |
| 3442 | kqwl->kqwl_p = p; |
| 3443 | if (trp) { |
| 3444 | kqwl->kqwl_params = trp->trp_value; |
| 3445 | } |
| 3446 | |
| 3447 | workq_tr_flags_t tr_flags = WORKQ_TR_FLAG_WORKLOOP; |
| 3448 | if (trp) { |
| 3449 | if (trp->trp_flags & TRP_PRIORITY) { |
| 3450 | tr_flags |= WORKQ_TR_FLAG_WL_OUTSIDE_QOS; |
| 3451 | } |
| 3452 | if (trp->trp_flags) { |
| 3453 | tr_flags |= WORKQ_TR_FLAG_WL_PARAMS; |
| 3454 | } |
| 3455 | } |
| 3456 | kqwl->kqwl_request.tr_state = WORKQ_TR_STATE_IDLE; |
| 3457 | kqwl->kqwl_request.tr_flags = tr_flags; |
| 3458 | os_atomic_store(&kqwl->kqwl_iotier_override, (uint8_t)THROTTLE_LEVEL_END, relaxed); |
| 3459 | #if CONFIG_PREADOPT_TG |
| 3460 | if (trp_permanent_preadopt_tg) { |
| 3461 | /* |
| 3462 | * This kqwl is permanently configured with a thread group. |
| 3463 | * By using THREAD_QOS_LAST, we make sure kqueue_set_preadopted_thread_group |
| 3464 | * has no effect on kqwl_preadopt_tg. At this point, +1 ref on |
| 3465 | * trp_permanent_preadopt_tg is transferred to the kqwl. |
| 3466 | */ |
| 3467 | thread_group_qos_t kqwl_preadopt_tg; |
| 3468 | kqwl_preadopt_tg = KQWL_ENCODE_PERMANENT_PREADOPTED_TG(trp_permanent_preadopt_tg); |
| 3469 | os_atomic_store(&kqwl->kqwl_preadopt_tg, kqwl_preadopt_tg, relaxed); |
| 3470 | } else if (task_is_app(task: current_task())) { |
| 3471 | /* |
| 3472 | * Not a specially preconfigured kqwl so it is open to participate in sync IPC |
| 3473 | * thread group preadoption; but, apps will never adopt a thread group that |
| 3474 | * is not their own. This is a gross hack to simulate the post-process that |
| 3475 | * is done in the voucher subsystem today for thread groups. |
| 3476 | */ |
| 3477 | os_atomic_store(&kqwl->kqwl_preadopt_tg, KQWL_PREADOPTED_TG_NEVER, relaxed); |
| 3478 | } |
| 3479 | #endif |
| 3480 | |
| 3481 | for (int i = 0; i < KQWL_NBUCKETS; i++) { |
| 3482 | TAILQ_INIT_AFTER_BZERO(&kqwl->kqwl_queue[i]); |
| 3483 | } |
| 3484 | TAILQ_INIT_AFTER_BZERO(&kqwl->kqwl_suppressed); |
| 3485 | |
| 3486 | lck_spin_init(lck: &kqwl->kqwl_statelock, grp: &kq_lck_grp, LCK_ATTR_NULL); |
| 3487 | |
| 3488 | kqueue_init(kqu: kqwl); |
| 3489 | } |
| 3490 | |
| 3491 | #if CONFIG_PROC_RESOURCE_LIMITS |
| 3492 | void |
| 3493 | kqworkloop_check_limit_exceeded(struct filedesc *fdp) |
| 3494 | { |
| 3495 | int num_kqwls = fdp->num_kqwls; |
| 3496 | if (!kqwl_above_soft_limit_notified(fdp) && fdp->kqwl_dyn_soft_limit > 0 && |
| 3497 | num_kqwls > fdp->kqwl_dyn_soft_limit) { |
| 3498 | kqwl_above_soft_limit_send_notification(fdp); |
| 3499 | act_set_astproc_resource(current_thread()); |
| 3500 | } else if (!kqwl_above_hard_limit_notified(fdp) && fdp->kqwl_dyn_hard_limit > 0 |
| 3501 | && num_kqwls > fdp->kqwl_dyn_hard_limit) { |
| 3502 | kqwl_above_hard_limit_send_notification(fdp); |
| 3503 | act_set_astproc_resource(current_thread()); |
| 3504 | } |
| 3505 | } |
| 3506 | #endif |
| 3507 | |
| 3508 | /*! |
| 3509 | * @function kqworkloop_get_or_create |
| 3510 | * |
| 3511 | * @brief |
| 3512 | * Wrapper around kqworkloop_init that handles the uniquing of workloops. |
| 3513 | * |
| 3514 | * @returns |
| 3515 | * 0: success |
| 3516 | * EINVAL: invalid parameters |
| 3517 | * EEXIST: KEVENT_FLAG_DYNAMIC_KQ_MUST_NOT_EXIST is set and a collision exists. |
| 3518 | * ENOENT: KEVENT_FLAG_DYNAMIC_KQ_MUST_EXIST is set and the entry wasn't found. |
| 3519 | * ENOMEM: allocation failed |
| 3520 | */ |
| 3521 | static int |
| 3522 | kqworkloop_get_or_create(struct proc *p, kqueue_id_t id, |
| 3523 | workq_threadreq_param_t *trp, |
| 3524 | #if CONFIG_PREADOPT_TG |
| 3525 | struct thread_group *trp_permanent_preadopt_tg, |
| 3526 | #endif |
| 3527 | unsigned int flags, struct kqworkloop **kqwlp) |
| 3528 | { |
| 3529 | struct filedesc *fdp = &p->p_fd; |
| 3530 | struct kqworkloop *alloc_kqwl = NULL; |
| 3531 | struct kqworkloop *kqwl = NULL; |
| 3532 | int error = 0; |
| 3533 | |
| 3534 | assert(!trp || (flags & KEVENT_FLAG_DYNAMIC_KQ_MUST_NOT_EXIST)); |
| 3535 | |
| 3536 | if (id == 0 || id == (kqueue_id_t)-1) { |
| 3537 | return EINVAL; |
| 3538 | } |
| 3539 | |
| 3540 | for (;;) { |
| 3541 | kqhash_lock(fdp); |
| 3542 | if (__improbable(fdp->fd_kqhash == NULL)) { |
| 3543 | kqworkloop_hash_init(fdp); |
| 3544 | } |
| 3545 | |
| 3546 | kqwl = kqworkloop_hash_lookup_locked(fdp, id); |
| 3547 | if (kqwl) { |
| 3548 | if (__improbable(flags & KEVENT_FLAG_DYNAMIC_KQ_MUST_NOT_EXIST)) { |
| 3549 | /* |
| 3550 | * If MUST_NOT_EXIST was passed, even if we would have failed |
| 3551 | * the try_retain, it could have gone the other way, and |
| 3552 | * userspace can't tell. Let'em fix their race. |
| 3553 | */ |
| 3554 | error = EEXIST; |
| 3555 | break; |
| 3556 | } |
| 3557 | |
| 3558 | if (__probable(kqworkloop_try_retain(kqwl))) { |
| 3559 | /* |
| 3560 | * This is a valid live workloop ! |
| 3561 | */ |
| 3562 | *kqwlp = kqwl; |
| 3563 | error = 0; |
| 3564 | break; |
| 3565 | } |
| 3566 | } |
| 3567 | |
| 3568 | if (__improbable(flags & KEVENT_FLAG_DYNAMIC_KQ_MUST_EXIST)) { |
| 3569 | error = ENOENT; |
| 3570 | break; |
| 3571 | } |
| 3572 | |
| 3573 | /* |
| 3574 | * We didn't find what we were looking for. |
| 3575 | * |
| 3576 | * If this is the second time we reach this point (alloc_kqwl != NULL), |
| 3577 | * then we're done. |
| 3578 | * |
| 3579 | * If this is the first time we reach this point (alloc_kqwl == NULL), |
| 3580 | * then try to allocate one without blocking. |
| 3581 | */ |
| 3582 | if (__probable(alloc_kqwl == NULL)) { |
| 3583 | alloc_kqwl = zalloc_flags(kqworkloop_zone, Z_NOWAIT | Z_ZERO); |
| 3584 | } |
| 3585 | if (__probable(alloc_kqwl)) { |
| 3586 | #if CONFIG_PROC_RESOURCE_LIMITS |
| 3587 | fdp->num_kqwls++; |
| 3588 | kqworkloop_check_limit_exceeded(fdp); |
| 3589 | #endif |
| 3590 | kqworkloop_init(kqwl: alloc_kqwl, p, id, trp |
| 3591 | #if CONFIG_PREADOPT_TG |
| 3592 | , trp_permanent_preadopt_tg |
| 3593 | #endif |
| 3594 | ); |
| 3595 | kqworkloop_hash_insert_locked(fdp, id, kqwl: alloc_kqwl); |
| 3596 | kqhash_unlock(fdp); |
| 3597 | *kqwlp = alloc_kqwl; |
| 3598 | return 0; |
| 3599 | } |
| 3600 | |
| 3601 | /* |
| 3602 | * We have to block to allocate a workloop, drop the lock, |
| 3603 | * allocate one, but then we need to retry lookups as someone |
| 3604 | * else could race with us. |
| 3605 | */ |
| 3606 | kqhash_unlock(fdp); |
| 3607 | |
| 3608 | alloc_kqwl = zalloc_flags(kqworkloop_zone, Z_WAITOK | Z_ZERO); |
| 3609 | } |
| 3610 | |
| 3611 | kqhash_unlock(fdp); |
| 3612 | |
| 3613 | if (__improbable(alloc_kqwl)) { |
| 3614 | zfree(kqworkloop_zone, alloc_kqwl); |
| 3615 | } |
| 3616 | |
| 3617 | return error; |
| 3618 | } |
| 3619 | |
| 3620 | #pragma mark - knotes |
| 3621 | |
| 3622 | static int |
| 3623 | filt_no_attach(struct knote *kn, __unused struct kevent_qos_s *kev) |
| 3624 | { |
| 3625 | knote_set_error(kn, ENOTSUP); |
| 3626 | return 0; |
| 3627 | } |
| 3628 | |
| 3629 | static void |
| 3630 | filt_no_detach(__unused struct knote *kn) |
| 3631 | { |
| 3632 | } |
| 3633 | |
| 3634 | static int __dead2 |
| 3635 | filt_bad_event(struct knote *kn, long hint) |
| 3636 | { |
| 3637 | panic("%s[%d](%p, %ld)" , __func__, kn->kn_filter, kn, hint); |
| 3638 | } |
| 3639 | |
| 3640 | static int __dead2 |
| 3641 | filt_bad_touch(struct knote *kn, struct kevent_qos_s *kev) |
| 3642 | { |
| 3643 | panic("%s[%d](%p, %p)" , __func__, kn->kn_filter, kn, kev); |
| 3644 | } |
| 3645 | |
| 3646 | static int __dead2 |
| 3647 | filt_bad_process(struct knote *kn, struct kevent_qos_s *kev) |
| 3648 | { |
| 3649 | panic("%s[%d](%p, %p)" , __func__, kn->kn_filter, kn, kev); |
| 3650 | } |
| 3651 | |
| 3652 | /* |
| 3653 | * knotes_dealloc - detach all knotes for the process and drop them |
| 3654 | * |
| 3655 | * Process is in such a state that it will not try to allocate |
| 3656 | * any more knotes during this process (stopped for exit or exec). |
| 3657 | */ |
| 3658 | void |
| 3659 | knotes_dealloc(proc_t p) |
| 3660 | { |
| 3661 | struct filedesc *fdp = &p->p_fd; |
| 3662 | struct kqueue *kq; |
| 3663 | struct knote *kn; |
| 3664 | struct klist *kn_hash = NULL; |
| 3665 | u_long kn_hashmask; |
| 3666 | int i; |
| 3667 | |
| 3668 | proc_fdlock(p); |
| 3669 | |
| 3670 | /* Close all the fd-indexed knotes up front */ |
| 3671 | if (fdp->fd_knlistsize > 0) { |
| 3672 | for (i = 0; i < fdp->fd_knlistsize; i++) { |
| 3673 | while ((kn = SLIST_FIRST(&fdp->fd_knlist[i])) != NULL) { |
| 3674 | kq = knote_get_kq(kn); |
| 3675 | kqlock(kqu: kq); |
| 3676 | proc_fdunlock(p); |
| 3677 | knote_drop(kqu: kq, kn, NULL); |
| 3678 | proc_fdlock(p); |
| 3679 | } |
| 3680 | } |
| 3681 | /* free the table */ |
| 3682 | kfree_type(struct klist, fdp->fd_knlistsize, fdp->fd_knlist); |
| 3683 | } |
| 3684 | fdp->fd_knlistsize = 0; |
| 3685 | |
| 3686 | proc_fdunlock(p); |
| 3687 | |
| 3688 | knhash_lock(fdp); |
| 3689 | |
| 3690 | /* Clean out all the hashed knotes as well */ |
| 3691 | if (fdp->fd_knhashmask != 0) { |
| 3692 | for (i = 0; i <= (int)fdp->fd_knhashmask; i++) { |
| 3693 | while ((kn = SLIST_FIRST(&fdp->fd_knhash[i])) != NULL) { |
| 3694 | kq = knote_get_kq(kn); |
| 3695 | kqlock(kqu: kq); |
| 3696 | knhash_unlock(fdp); |
| 3697 | knote_drop(kqu: kq, kn, NULL); |
| 3698 | knhash_lock(fdp); |
| 3699 | } |
| 3700 | } |
| 3701 | kn_hash = fdp->fd_knhash; |
| 3702 | kn_hashmask = fdp->fd_knhashmask; |
| 3703 | fdp->fd_knhashmask = 0; |
| 3704 | fdp->fd_knhash = NULL; |
| 3705 | } |
| 3706 | |
| 3707 | knhash_unlock(fdp); |
| 3708 | |
| 3709 | if (kn_hash) { |
| 3710 | hashdestroy(kn_hash, M_KQUEUE, hashmask: kn_hashmask); |
| 3711 | } |
| 3712 | } |
| 3713 | |
| 3714 | /* |
| 3715 | * kqworkloops_dealloc - rebalance retains on kqworkloops created with |
| 3716 | * scheduling parameters |
| 3717 | * |
| 3718 | * Process is in such a state that it will not try to allocate |
| 3719 | * any more kqs or knotes during this process (stopped for exit or exec). |
| 3720 | */ |
| 3721 | void |
| 3722 | kqworkloops_dealloc(proc_t p) |
| 3723 | { |
| 3724 | struct filedesc *fdp = &p->p_fd; |
| 3725 | struct kqworkloop *kqwl, *kqwln; |
| 3726 | struct kqwllist tofree; |
| 3727 | |
| 3728 | if (!fdt_flag_test(fdp, FD_WORKLOOP)) { |
| 3729 | return; |
| 3730 | } |
| 3731 | |
| 3732 | kqhash_lock(fdp); |
| 3733 | |
| 3734 | if (fdp->fd_kqhashmask == 0) { |
| 3735 | kqhash_unlock(fdp); |
| 3736 | return; |
| 3737 | } |
| 3738 | |
| 3739 | LIST_INIT(&tofree); |
| 3740 | |
| 3741 | for (size_t i = 0; i <= fdp->fd_kqhashmask; i++) { |
| 3742 | LIST_FOREACH_SAFE(kqwl, &fdp->fd_kqhash[i], kqwl_hashlink, kqwln) { |
| 3743 | #if CONFIG_PREADOPT_TG |
| 3744 | /* |
| 3745 | * kqworkloops that have scheduling parameters have an |
| 3746 | * implicit retain from kqueue_workloop_ctl that needs |
| 3747 | * to be balanced on process exit. |
| 3748 | */ |
| 3749 | __assert_only thread_group_qos_t preadopt_tg; |
| 3750 | preadopt_tg = os_atomic_load(&kqwl->kqwl_preadopt_tg, relaxed); |
| 3751 | #endif |
| 3752 | assert(kqwl->kqwl_params |
| 3753 | #if CONFIG_PREADOPT_TG |
| 3754 | || KQWL_HAS_PERMANENT_PREADOPTED_TG(preadopt_tg) |
| 3755 | #endif |
| 3756 | ); |
| 3757 | |
| 3758 | LIST_REMOVE(kqwl, kqwl_hashlink); |
| 3759 | LIST_INSERT_HEAD(&tofree, kqwl, kqwl_hashlink); |
| 3760 | } |
| 3761 | } |
| 3762 | #if CONFIG_PROC_RESOURCE_LIMITS |
| 3763 | fdp->num_kqwls = 0; |
| 3764 | #endif |
| 3765 | kqhash_unlock(fdp); |
| 3766 | |
| 3767 | LIST_FOREACH_SAFE(kqwl, &tofree, kqwl_hashlink, kqwln) { |
| 3768 | uint32_t ref = os_ref_get_count_raw(rc: &kqwl->kqwl_retains); |
| 3769 | if (ref != 1) { |
| 3770 | panic("kq(%p) invalid refcount %d" , kqwl, ref); |
| 3771 | } |
| 3772 | kqworkloop_dealloc(kqwl, false); |
| 3773 | } |
| 3774 | } |
| 3775 | |
| 3776 | static int |
| 3777 | kevent_register_validate_priority(struct kqueue *kq, struct knote *kn, |
| 3778 | struct kevent_qos_s *kev) |
| 3779 | { |
| 3780 | /* We don't care about the priority of a disabled or deleted knote */ |
| 3781 | if (kev->flags & (EV_DISABLE | EV_DELETE)) { |
| 3782 | return 0; |
| 3783 | } |
| 3784 | |
| 3785 | if (kq->kq_state & KQ_WORKLOOP) { |
| 3786 | /* |
| 3787 | * Workloops need valid priorities with a QOS (excluding manager) for |
| 3788 | * any enabled knote. |
| 3789 | * |
| 3790 | * When it is pre-existing, just make sure it has a valid QoS as |
| 3791 | * kevent_register() will not use the incoming priority (filters who do |
| 3792 | * have the responsibility to validate it again, see filt_wltouch). |
| 3793 | * |
| 3794 | * If the knote is being made, validate the incoming priority. |
| 3795 | */ |
| 3796 | if (!_pthread_priority_thread_qos(pp: kn ? kn->kn_qos : kev->qos)) { |
| 3797 | return ERANGE; |
| 3798 | } |
| 3799 | } |
| 3800 | |
| 3801 | return 0; |
| 3802 | } |
| 3803 | |
| 3804 | /* |
| 3805 | * Prepare a filter for waiting after register. |
| 3806 | * |
| 3807 | * The f_post_register_wait hook will be called later by kevent_register() |
| 3808 | * and should call kevent_register_wait_block() |
| 3809 | */ |
| 3810 | static int |
| 3811 | kevent_register_wait_prepare(struct knote *kn, struct kevent_qos_s *kev, int rc) |
| 3812 | { |
| 3813 | thread_t thread = current_thread(); |
| 3814 | |
| 3815 | assert(knote_fops(kn)->f_extended_codes); |
| 3816 | |
| 3817 | if (kn->kn_thread == NULL) { |
| 3818 | thread_reference(thread); |
| 3819 | kn->kn_thread = thread; |
| 3820 | } else if (kn->kn_thread != thread) { |
| 3821 | /* |
| 3822 | * kn_thread may be set from a previous aborted wait |
| 3823 | * However, it has to be from the same thread. |
| 3824 | */ |
| 3825 | kev->flags |= EV_ERROR; |
| 3826 | kev->data = EXDEV; |
| 3827 | return 0; |
| 3828 | } |
| 3829 | |
| 3830 | return FILTER_REGISTER_WAIT | rc; |
| 3831 | } |
| 3832 | |
| 3833 | /* |
| 3834 | * Cleanup a kevent_register_wait_prepare() effect for threads that have been |
| 3835 | * aborted instead of properly woken up with thread_wakeup_thread(). |
| 3836 | */ |
| 3837 | static void |
| 3838 | kevent_register_wait_cleanup(struct knote *kn) |
| 3839 | { |
| 3840 | thread_t thread = kn->kn_thread; |
| 3841 | kn->kn_thread = NULL; |
| 3842 | thread_deallocate(thread); |
| 3843 | } |
| 3844 | |
| 3845 | /* |
| 3846 | * Must be called at the end of a f_post_register_wait call from a filter. |
| 3847 | */ |
| 3848 | static void |
| 3849 | kevent_register_wait_block(struct turnstile *ts, thread_t thread, |
| 3850 | thread_continue_t cont, struct _kevent_register *cont_args) |
| 3851 | { |
| 3852 | turnstile_update_inheritor_complete(turnstile: ts, flags: TURNSTILE_INTERLOCK_HELD); |
| 3853 | kqunlock(kqu: cont_args->kqwl); |
| 3854 | cont_args->handoff_thread = thread; |
| 3855 | thread_handoff_parameter(thread, continuation: cont, parameter: cont_args, THREAD_HANDOFF_NONE); |
| 3856 | } |
| 3857 | |
| 3858 | /* |
| 3859 | * Called by Filters using a f_post_register_wait to return from their wait. |
| 3860 | */ |
| 3861 | static void |
| 3862 | kevent_register_wait_return(struct _kevent_register *cont_args) |
| 3863 | { |
| 3864 | struct kqworkloop *kqwl = cont_args->kqwl; |
| 3865 | struct kevent_qos_s *kev = &cont_args->kev; |
| 3866 | int error = 0; |
| 3867 | |
| 3868 | if (cont_args->handoff_thread) { |
| 3869 | thread_deallocate(thread: cont_args->handoff_thread); |
| 3870 | } |
| 3871 | |
| 3872 | if (kev->flags & (EV_ERROR | EV_RECEIPT)) { |
| 3873 | if ((kev->flags & EV_ERROR) == 0) { |
| 3874 | kev->flags |= EV_ERROR; |
| 3875 | kev->data = 0; |
| 3876 | } |
| 3877 | error = kevent_modern_copyout(kev, &cont_args->ueventlist); |
| 3878 | if (error == 0) { |
| 3879 | cont_args->eventout++; |
| 3880 | } |
| 3881 | } |
| 3882 | |
| 3883 | kqworkloop_release(kqwl); |
| 3884 | if (error == 0) { |
| 3885 | *(int32_t *)¤t_uthread()->uu_rval = cont_args->eventout; |
| 3886 | } |
| 3887 | unix_syscall_return(error); |
| 3888 | } |
| 3889 | |
| 3890 | /* |
| 3891 | * kevent_register - add a new event to a kqueue |
| 3892 | * |
| 3893 | * Creates a mapping between the event source and |
| 3894 | * the kqueue via a knote data structure. |
| 3895 | * |
| 3896 | * Because many/most the event sources are file |
| 3897 | * descriptor related, the knote is linked off |
| 3898 | * the filedescriptor table for quick access. |
| 3899 | * |
| 3900 | * called with nothing locked |
| 3901 | * caller holds a reference on the kqueue |
| 3902 | */ |
| 3903 | |
| 3904 | int |
| 3905 | kevent_register(struct kqueue *kq, struct kevent_qos_s *kev, |
| 3906 | struct knote **kn_out) |
| 3907 | { |
| 3908 | struct proc *p = kq->kq_p; |
| 3909 | const struct filterops *fops; |
| 3910 | struct knote *kn = NULL; |
| 3911 | int result = 0, error = 0; |
| 3912 | unsigned short kev_flags = kev->flags; |
| 3913 | KNOTE_LOCK_CTX(knlc); |
| 3914 | |
| 3915 | if (__probable(kev->filter < 0 && kev->filter + EVFILT_SYSCOUNT >= 0)) { |
| 3916 | fops = sysfilt_ops[~kev->filter]; /* to 0-base index */ |
| 3917 | } else { |
| 3918 | error = EINVAL; |
| 3919 | goto out; |
| 3920 | } |
| 3921 | |
| 3922 | /* restrict EV_VANISHED to adding udata-specific dispatch kevents */ |
| 3923 | if (__improbable((kev->flags & EV_VANISHED) && |
| 3924 | (kev->flags & (EV_ADD | EV_DISPATCH2)) != (EV_ADD | EV_DISPATCH2))) { |
| 3925 | error = EINVAL; |
| 3926 | goto out; |
| 3927 | } |
| 3928 | |
| 3929 | /* Simplify the flags - delete and disable overrule */ |
| 3930 | if (kev->flags & EV_DELETE) { |
| 3931 | kev->flags &= ~EV_ADD; |
| 3932 | } |
| 3933 | if (kev->flags & EV_DISABLE) { |
| 3934 | kev->flags &= ~EV_ENABLE; |
| 3935 | } |
| 3936 | |
| 3937 | if (kq->kq_state & KQ_WORKLOOP) { |
| 3938 | KDBG_DEBUG(KEV_EVTID(BSD_KEVENT_KQWL_REGISTER), |
| 3939 | ((struct kqworkloop *)kq)->kqwl_dynamicid, |
| 3940 | kev->udata, kev->flags, kev->filter); |
| 3941 | } else if (kq->kq_state & KQ_WORKQ) { |
| 3942 | KDBG_DEBUG(KEV_EVTID(BSD_KEVENT_KQWQ_REGISTER), |
| 3943 | 0, kev->udata, kev->flags, kev->filter); |
| 3944 | } else { |
| 3945 | KDBG_DEBUG(KEV_EVTID(BSD_KEVENT_KQ_REGISTER), |
| 3946 | VM_KERNEL_UNSLIDE_OR_PERM(kq), |
| 3947 | kev->udata, kev->flags, kev->filter); |
| 3948 | } |
| 3949 | |
| 3950 | restart: |
| 3951 | /* find the matching knote from the fd tables/hashes */ |
| 3952 | kn = kq_find_knote_and_kq_lock(kq, kev, is_fd: fops->f_isfd, p); |
| 3953 | error = kevent_register_validate_priority(kq, kn, kev); |
| 3954 | result = 0; |
| 3955 | if (error) { |
| 3956 | if (kn) { |
| 3957 | kqunlock(kqu: kq); |
| 3958 | } |
| 3959 | goto out; |
| 3960 | } |
| 3961 | |
| 3962 | if (kn == NULL && (kev->flags & EV_ADD) == 0) { |
| 3963 | /* |
| 3964 | * No knote found, EV_ADD wasn't specified |
| 3965 | */ |
| 3966 | |
| 3967 | if ((kev_flags & EV_ADD) && (kev_flags & EV_DELETE) && |
| 3968 | (kq->kq_state & KQ_WORKLOOP)) { |
| 3969 | /* |
| 3970 | * For workloops, understand EV_ADD|EV_DELETE as a "soft" delete |
| 3971 | * that doesn't care about ENOENT, so just pretend the deletion |
| 3972 | * happened. |
| 3973 | */ |
| 3974 | } else { |
| 3975 | error = ENOENT; |
| 3976 | } |
| 3977 | goto out; |
| 3978 | } else if (kn == NULL) { |
| 3979 | /* |
| 3980 | * No knote found, need to attach a new one (attach) |
| 3981 | */ |
| 3982 | |
| 3983 | struct fileproc *knote_fp = NULL; |
| 3984 | |
| 3985 | /* grab a file reference for the new knote */ |
| 3986 | if (fops->f_isfd) { |
| 3987 | if ((error = fp_lookup(p, fd: (int)kev->ident, resultfp: &knote_fp, locked: 0)) != 0) { |
| 3988 | goto out; |
| 3989 | } |
| 3990 | } |
| 3991 | |
| 3992 | kn = knote_alloc(); |
| 3993 | kn->kn_fp = knote_fp; |
| 3994 | kn->kn_is_fd = fops->f_isfd; |
| 3995 | kn->kn_kq_packed = VM_PACK_POINTER((vm_offset_t)kq, KNOTE_KQ_PACKED); |
| 3996 | kn->kn_status = 0; |
| 3997 | |
| 3998 | /* was vanish support requested */ |
| 3999 | if (kev->flags & EV_VANISHED) { |
| 4000 | kev->flags &= ~EV_VANISHED; |
| 4001 | kn->kn_status |= KN_REQVANISH; |
| 4002 | } |
| 4003 | |
| 4004 | /* snapshot matching/dispatching protocol flags into knote */ |
| 4005 | if (kev->flags & EV_DISABLE) { |
| 4006 | kn->kn_status |= KN_DISABLED; |
| 4007 | } |
| 4008 | |
| 4009 | /* |
| 4010 | * copy the kevent state into knote |
| 4011 | * protocol is that fflags and data |
| 4012 | * are saved off, and cleared before |
| 4013 | * calling the attach routine. |
| 4014 | * |
| 4015 | * - kn->kn_sfflags aliases with kev->xflags |
| 4016 | * - kn->kn_sdata aliases with kev->data |
| 4017 | * - kn->kn_filter is the top 8 bits of kev->filter |
| 4018 | */ |
| 4019 | kn->kn_kevent = *(struct kevent_internal_s *)kev; |
| 4020 | kn->kn_sfflags = kev->fflags; |
| 4021 | kn->kn_filtid = (uint8_t)~kev->filter; |
| 4022 | kn->kn_fflags = 0; |
| 4023 | knote_reset_priority(kqu: kq, kn, pp: kev->qos); |
| 4024 | |
| 4025 | /* Add the knote for lookup thru the fd table */ |
| 4026 | error = kq_add_knote(kq, kn, knlc: &knlc, p); |
| 4027 | if (error) { |
| 4028 | knote_free(kn); |
| 4029 | if (knote_fp != NULL) { |
| 4030 | fp_drop(p, fd: (int)kev->ident, fp: knote_fp, locked: 0); |
| 4031 | } |
| 4032 | |
| 4033 | if (error == ERESTART) { |
| 4034 | goto restart; |
| 4035 | } |
| 4036 | goto out; |
| 4037 | } |
| 4038 | |
| 4039 | /* fp reference count now applies to knote */ |
| 4040 | |
| 4041 | /* |
| 4042 | * we can't use filter_call() because f_attach can change the filter ops |
| 4043 | * for a filter that supports f_extended_codes, so we need to reload |
| 4044 | * knote_fops() and not use `fops`. |
| 4045 | */ |
| 4046 | result = fops->f_attach(kn, kev); |
| 4047 | if (result && !knote_fops(kn)->f_extended_codes) { |
| 4048 | result = FILTER_ACTIVE; |
| 4049 | } |
| 4050 | |
| 4051 | kqlock(kqu: kq); |
| 4052 | |
| 4053 | if (result & FILTER_THREADREQ_NODEFEER) { |
| 4054 | enable_preemption(); |
| 4055 | } |
| 4056 | |
| 4057 | if (kn->kn_flags & EV_ERROR) { |
| 4058 | /* |
| 4059 | * Failed to attach correctly, so drop. |
| 4060 | */ |
| 4061 | kn->kn_filtid = EVFILTID_DETACHED; |
| 4062 | error = (int)kn->kn_sdata; |
| 4063 | knote_drop(kqu: kq, kn, knlc: &knlc); |
| 4064 | result = 0; |
| 4065 | goto out; |
| 4066 | } |
| 4067 | |
| 4068 | /* |
| 4069 | * end "attaching" phase - now just attached |
| 4070 | * |
| 4071 | * Mark the thread request overcommit, if appropos |
| 4072 | * |
| 4073 | * If the attach routine indicated that an |
| 4074 | * event is already fired, activate the knote. |
| 4075 | */ |
| 4076 | if ((kn->kn_qos & _PTHREAD_PRIORITY_OVERCOMMIT_FLAG) && |
| 4077 | (kq->kq_state & KQ_WORKLOOP)) { |
| 4078 | kqworkloop_set_overcommit(kqwl: (struct kqworkloop *)kq); |
| 4079 | } |
| 4080 | } else if (!knote_lock(kqu: kq, kn, knlc: &knlc, kqlocking: KNOTE_KQ_LOCK_ON_SUCCESS)) { |
| 4081 | /* |
| 4082 | * The knote was dropped while we were waiting for the lock, |
| 4083 | * we need to re-evaluate entirely |
| 4084 | */ |
| 4085 | |
| 4086 | goto restart; |
| 4087 | } else if (kev->flags & EV_DELETE) { |
| 4088 | /* |
| 4089 | * Deletion of a knote (drop) |
| 4090 | * |
| 4091 | * If the filter wants to filter drop events, let it do so. |
| 4092 | * |
| 4093 | * defer-delete: when trying to delete a disabled EV_DISPATCH2 knote, |
| 4094 | * we must wait for the knote to be re-enabled (unless it is being |
| 4095 | * re-enabled atomically here). |
| 4096 | */ |
| 4097 | |
| 4098 | if (knote_fops(kn)->f_allow_drop) { |
| 4099 | bool drop; |
| 4100 | |
| 4101 | kqunlock(kqu: kq); |
| 4102 | drop = knote_fops(kn)->f_allow_drop(kn, kev); |
| 4103 | kqlock(kqu: kq); |
| 4104 | |
| 4105 | if (!drop) { |
| 4106 | goto out_unlock; |
| 4107 | } |
| 4108 | } |
| 4109 | |
| 4110 | if ((kev->flags & EV_ENABLE) == 0 && |
| 4111 | (kn->kn_flags & EV_DISPATCH2) == EV_DISPATCH2 && |
| 4112 | (kn->kn_status & KN_DISABLED) != 0) { |
| 4113 | kn->kn_status |= KN_DEFERDELETE; |
| 4114 | error = EINPROGRESS; |
| 4115 | goto out_unlock; |
| 4116 | } |
| 4117 | |
| 4118 | knote_drop(kqu: kq, kn, knlc: &knlc); |
| 4119 | goto out; |
| 4120 | } else { |
| 4121 | /* |
| 4122 | * Regular update of a knote (touch) |
| 4123 | * |
| 4124 | * Call touch routine to notify filter of changes in filter values |
| 4125 | * (and to re-determine if any events are fired). |
| 4126 | * |
| 4127 | * If the knote is in defer-delete, avoid calling the filter touch |
| 4128 | * routine (it has delivered its last event already). |
| 4129 | * |
| 4130 | * If the touch routine had no failure, |
| 4131 | * apply the requested side effects to the knote. |
| 4132 | */ |
| 4133 | |
| 4134 | if (kn->kn_status & (KN_DEFERDELETE | KN_VANISHED)) { |
| 4135 | if (kev->flags & EV_ENABLE) { |
| 4136 | result = FILTER_ACTIVE; |
| 4137 | } |
| 4138 | } else { |
| 4139 | kqunlock(kqu: kq); |
| 4140 | result = filter_call(knote_fops(kn), f_touch(kn, kev)); |
| 4141 | kqlock(kqu: kq); |
| 4142 | if (result & FILTER_THREADREQ_NODEFEER) { |
| 4143 | enable_preemption(); |
| 4144 | } |
| 4145 | } |
| 4146 | |
| 4147 | if (kev->flags & EV_ERROR) { |
| 4148 | result = 0; |
| 4149 | goto out_unlock; |
| 4150 | } |
| 4151 | |
| 4152 | if ((kn->kn_flags & EV_UDATA_SPECIFIC) == 0 && |
| 4153 | kn->kn_udata != kev->udata) { |
| 4154 | // this allows klist_copy_udata() not to take locks |
| 4155 | os_atomic_store_wide(&kn->kn_udata, kev->udata, relaxed); |
| 4156 | } |
| 4157 | if ((kev->flags & EV_DISABLE) && !(kn->kn_status & KN_DISABLED)) { |
| 4158 | kn->kn_status |= KN_DISABLED; |
| 4159 | knote_dequeue(kqu: kq, kn); |
| 4160 | } |
| 4161 | } |
| 4162 | |
| 4163 | /* accept new kevent state */ |
| 4164 | knote_apply_touch(kqu: kq, kn, kev, result); |
| 4165 | |
| 4166 | out_unlock: |
| 4167 | /* |
| 4168 | * When the filter asked for a post-register wait, |
| 4169 | * we leave the kqueue locked for kevent_register() |
| 4170 | * to call the filter's f_post_register_wait hook. |
| 4171 | */ |
| 4172 | if (result & FILTER_REGISTER_WAIT) { |
| 4173 | knote_unlock(kqu: kq, kn, knlc: &knlc, kqlocking: KNOTE_KQ_LOCK_ALWAYS); |
| 4174 | *kn_out = kn; |
| 4175 | } else { |
| 4176 | knote_unlock(kqu: kq, kn, knlc: &knlc, kqlocking: KNOTE_KQ_UNLOCK); |
| 4177 | } |
| 4178 | |
| 4179 | out: |
| 4180 | /* output local errors through the kevent */ |
| 4181 | if (error) { |
| 4182 | kev->flags |= EV_ERROR; |
| 4183 | kev->data = error; |
| 4184 | } |
| 4185 | return result; |
| 4186 | } |
| 4187 | |
| 4188 | /* |
| 4189 | * knote_process - process a triggered event |
| 4190 | * |
| 4191 | * Validate that it is really still a triggered event |
| 4192 | * by calling the filter routines (if necessary). Hold |
| 4193 | * a use reference on the knote to avoid it being detached. |
| 4194 | * |
| 4195 | * If it is still considered triggered, we will have taken |
| 4196 | * a copy of the state under the filter lock. We use that |
| 4197 | * snapshot to dispatch the knote for future processing (or |
| 4198 | * not, if this was a lost event). |
| 4199 | * |
| 4200 | * Our caller assures us that nobody else can be processing |
| 4201 | * events from this knote during the whole operation. But |
| 4202 | * others can be touching or posting events to the knote |
| 4203 | * interspersed with our processing it. |
| 4204 | * |
| 4205 | * caller holds a reference on the kqueue. |
| 4206 | * kqueue locked on entry and exit - but may be dropped |
| 4207 | */ |
| 4208 | static int |
| 4209 | knote_process(struct knote *kn, kevent_ctx_t kectx, |
| 4210 | kevent_callback_t callback) |
| 4211 | { |
| 4212 | struct kevent_qos_s kev; |
| 4213 | struct kqueue *kq = knote_get_kq(kn); |
| 4214 | KNOTE_LOCK_CTX(knlc); |
| 4215 | int result = FILTER_ACTIVE; |
| 4216 | int error = 0; |
| 4217 | bool drop = false; |
| 4218 | |
| 4219 | /* |
| 4220 | * Must be active |
| 4221 | * Must be queued and not disabled/suppressed or dropping |
| 4222 | */ |
| 4223 | assert(kn->kn_status & KN_QUEUED); |
| 4224 | assert(kn->kn_status & KN_ACTIVE); |
| 4225 | assert(!(kn->kn_status & (KN_DISABLED | KN_SUPPRESSED | KN_DROPPING))); |
| 4226 | |
| 4227 | if (kq->kq_state & KQ_WORKLOOP) { |
| 4228 | KDBG_DEBUG(KEV_EVTID(BSD_KEVENT_KQWL_PROCESS), |
| 4229 | ((struct kqworkloop *)kq)->kqwl_dynamicid, |
| 4230 | kn->kn_udata, kn->kn_status | (kn->kn_id << 32), |
| 4231 | kn->kn_filtid); |
| 4232 | } else if (kq->kq_state & KQ_WORKQ) { |
| 4233 | KDBG_DEBUG(KEV_EVTID(BSD_KEVENT_KQWQ_PROCESS), |
| 4234 | 0, kn->kn_udata, kn->kn_status | (kn->kn_id << 32), |
| 4235 | kn->kn_filtid); |
| 4236 | } else { |
| 4237 | KDBG_DEBUG(KEV_EVTID(BSD_KEVENT_KQ_PROCESS), |
| 4238 | VM_KERNEL_UNSLIDE_OR_PERM(kq), kn->kn_udata, |
| 4239 | kn->kn_status | (kn->kn_id << 32), kn->kn_filtid); |
| 4240 | } |
| 4241 | |
| 4242 | if (!knote_lock(kqu: kq, kn, knlc: &knlc, kqlocking: KNOTE_KQ_LOCK_ALWAYS)) { |
| 4243 | /* |
| 4244 | * When the knote is dropping or has dropped, |
| 4245 | * then there's nothing we want to process. |
| 4246 | */ |
| 4247 | return EJUSTRETURN; |
| 4248 | } |
| 4249 | |
| 4250 | /* |
| 4251 | * While waiting for the knote lock, we may have dropped the kq lock. |
| 4252 | * and a touch may have disabled and dequeued the knote. |
| 4253 | */ |
| 4254 | if (!(kn->kn_status & KN_QUEUED)) { |
| 4255 | knote_unlock(kqu: kq, kn, knlc: &knlc, kqlocking: KNOTE_KQ_LOCK_ALWAYS); |
| 4256 | return EJUSTRETURN; |
| 4257 | } |
| 4258 | |
| 4259 | /* |
| 4260 | * For deferred-drop or vanished events, we just create a fake |
| 4261 | * event to acknowledge end-of-life. Otherwise, we call the |
| 4262 | * filter's process routine to snapshot the kevent state under |
| 4263 | * the filter's locking protocol. |
| 4264 | * |
| 4265 | * suppress knotes to avoid returning the same event multiple times in |
| 4266 | * a single call. |
| 4267 | */ |
| 4268 | knote_suppress(kqu: kq, kn); |
| 4269 | |
| 4270 | if (kn->kn_status & (KN_DEFERDELETE | KN_VANISHED)) { |
| 4271 | uint16_t kev_flags = EV_DISPATCH2 | EV_ONESHOT; |
| 4272 | if (kn->kn_status & KN_DEFERDELETE) { |
| 4273 | kev_flags |= EV_DELETE; |
| 4274 | } else { |
| 4275 | kev_flags |= EV_VANISHED; |
| 4276 | } |
| 4277 | |
| 4278 | /* create fake event */ |
| 4279 | kev = (struct kevent_qos_s){ |
| 4280 | .filter = kn->kn_filter, |
| 4281 | .ident = kn->kn_id, |
| 4282 | .flags = kev_flags, |
| 4283 | .udata = kn->kn_udata, |
| 4284 | }; |
| 4285 | } else { |
| 4286 | kqunlock(kqu: kq); |
| 4287 | kev = (struct kevent_qos_s) { }; |
| 4288 | result = filter_call(knote_fops(kn), f_process(kn, &kev)); |
| 4289 | kqlock(kqu: kq); |
| 4290 | } |
| 4291 | |
| 4292 | /* |
| 4293 | * Determine how to dispatch the knote for future event handling. |
| 4294 | * not-fired: just return (do not callout, leave deactivated). |
| 4295 | * One-shot: If dispatch2, enter deferred-delete mode (unless this is |
| 4296 | * is the deferred delete event delivery itself). Otherwise, |
| 4297 | * drop it. |
| 4298 | * Dispatch: don't clear state, just mark it disabled. |
| 4299 | * Cleared: just leave it deactivated. |
| 4300 | * Others: re-activate as there may be more events to handle. |
| 4301 | * This will not wake up more handlers right now, but |
| 4302 | * at the completion of handling events it may trigger |
| 4303 | * more handler threads (TODO: optimize based on more than |
| 4304 | * just this one event being detected by the filter). |
| 4305 | */ |
| 4306 | if ((result & FILTER_ACTIVE) == 0) { |
| 4307 | if ((kn->kn_status & KN_ACTIVE) == 0) { |
| 4308 | /* |
| 4309 | * Some knotes (like EVFILT_WORKLOOP) can be reactivated from |
| 4310 | * within f_process() but that doesn't necessarily make them |
| 4311 | * ready to process, so we should leave them be. |
| 4312 | * |
| 4313 | * For other knotes, since we will not return an event, |
| 4314 | * there's no point keeping the knote suppressed. |
| 4315 | */ |
| 4316 | knote_unsuppress(kqu: kq, kn); |
| 4317 | } |
| 4318 | knote_unlock(kqu: kq, kn, knlc: &knlc, kqlocking: KNOTE_KQ_LOCK_ALWAYS); |
| 4319 | return EJUSTRETURN; |
| 4320 | } |
| 4321 | |
| 4322 | if (result & FILTER_ADJUST_EVENT_QOS_BIT) { |
| 4323 | knote_adjust_qos(kq, kn, result); |
| 4324 | } |
| 4325 | |
| 4326 | if (result & FILTER_ADJUST_EVENT_IOTIER_BIT) { |
| 4327 | kqueue_update_iotier_override(kqu: kq); |
| 4328 | } |
| 4329 | |
| 4330 | kev.qos = _pthread_priority_combine(base_pp: kn->kn_qos, qos: kn->kn_qos_override); |
| 4331 | |
| 4332 | if (kev.flags & EV_ONESHOT) { |
| 4333 | if ((kn->kn_flags & EV_DISPATCH2) == EV_DISPATCH2 && |
| 4334 | (kn->kn_status & KN_DEFERDELETE) == 0) { |
| 4335 | /* defer dropping non-delete oneshot dispatch2 events */ |
| 4336 | kn->kn_status |= KN_DEFERDELETE | KN_DISABLED; |
| 4337 | } else { |
| 4338 | drop = true; |
| 4339 | } |
| 4340 | } else if (kn->kn_flags & EV_DISPATCH) { |
| 4341 | /* disable all dispatch knotes */ |
| 4342 | kn->kn_status |= KN_DISABLED; |
| 4343 | } else if ((kn->kn_flags & EV_CLEAR) == 0) { |
| 4344 | /* re-activate in case there are more events */ |
| 4345 | knote_activate(kqu: kq, kn, FILTER_ACTIVE); |
| 4346 | } |
| 4347 | |
| 4348 | /* |
| 4349 | * callback to handle each event as we find it. |
| 4350 | * If we have to detach and drop the knote, do |
| 4351 | * it while we have the kq unlocked. |
| 4352 | */ |
| 4353 | if (drop) { |
| 4354 | knote_drop(kqu: kq, kn, knlc: &knlc); |
| 4355 | } else { |
| 4356 | knote_unlock(kqu: kq, kn, knlc: &knlc, kqlocking: KNOTE_KQ_UNLOCK); |
| 4357 | } |
| 4358 | |
| 4359 | if (kev.flags & EV_VANISHED) { |
| 4360 | KDBG_DEBUG(KEV_EVTID(BSD_KEVENT_KNOTE_VANISHED), |
| 4361 | kev.ident, kn->kn_udata, kn->kn_status | (kn->kn_id << 32), |
| 4362 | kn->kn_filtid); |
| 4363 | } |
| 4364 | |
| 4365 | error = (callback)(&kev, kectx); |
| 4366 | kqlock(kqu: kq); |
| 4367 | return error; |
| 4368 | } |
| 4369 | |
| 4370 | /* |
| 4371 | * Returns -1 if the kqueue was unbound and processing should not happen |
| 4372 | */ |
| 4373 | #define KQWQAE_BEGIN_PROCESSING 1 |
| 4374 | #define KQWQAE_END_PROCESSING 2 |
| 4375 | #define KQWQAE_UNBIND 3 |
| 4376 | static int |
| 4377 | kqworkq_acknowledge_events(struct kqworkq *kqwq, workq_threadreq_t kqr, |
| 4378 | int kevent_flags, int kqwqae_op) |
| 4379 | { |
| 4380 | struct knote *kn; |
| 4381 | int rc = 0; |
| 4382 | bool unbind; |
| 4383 | struct kqtailq *suppressq = &kqwq->kqwq_suppressed[kqr->tr_kq_qos_index - 1]; |
| 4384 | struct kqtailq *queue = &kqwq->kqwq_queue[kqr->tr_kq_qos_index - 1]; |
| 4385 | |
| 4386 | kqlock_held(kqu: &kqwq->kqwq_kqueue); |
| 4387 | |
| 4388 | /* |
| 4389 | * Return suppressed knotes to their original state. |
| 4390 | * For workq kqueues, suppressed ones that are still |
| 4391 | * truly active (not just forced into the queue) will |
| 4392 | * set flags we check below to see if anything got |
| 4393 | * woken up. |
| 4394 | */ |
| 4395 | while ((kn = TAILQ_FIRST(suppressq)) != NULL) { |
| 4396 | knote_unsuppress(kqu: kqwq, kn); |
| 4397 | } |
| 4398 | |
| 4399 | if (kqwqae_op == KQWQAE_UNBIND) { |
| 4400 | unbind = true; |
| 4401 | } else if ((kevent_flags & KEVENT_FLAG_PARKING) == 0) { |
| 4402 | unbind = false; |
| 4403 | } else { |
| 4404 | unbind = TAILQ_EMPTY(queue); |
| 4405 | } |
| 4406 | if (unbind) { |
| 4407 | thread_t thread = kqr_thread_fast(kqr); |
| 4408 | thread_qos_t old_override; |
| 4409 | |
| 4410 | #if DEBUG || DEVELOPMENT |
| 4411 | thread_t self = current_thread(); |
| 4412 | struct uthread *ut = get_bsdthread_info(self); |
| 4413 | |
| 4414 | assert(thread == self); |
| 4415 | assert(ut->uu_kqr_bound == kqr); |
| 4416 | #endif // DEBUG || DEVELOPMENT |
| 4417 | |
| 4418 | old_override = kqworkq_unbind_locked(kqwq, kqr, thread); |
| 4419 | if (!TAILQ_EMPTY(queue)) { |
| 4420 | /* |
| 4421 | * Request a new thread if we didn't process the whole |
| 4422 | * queue. |
| 4423 | */ |
| 4424 | kqueue_threadreq_initiate(kq: &kqwq->kqwq_kqueue, kqr, |
| 4425 | qos: kqr->tr_kq_qos_index, flags: 0); |
| 4426 | } |
| 4427 | if (old_override) { |
| 4428 | thread_drop_kevent_override(thread); |
| 4429 | } |
| 4430 | rc = -1; |
| 4431 | } |
| 4432 | |
| 4433 | return rc; |
| 4434 | } |
| 4435 | |
| 4436 | /* |
| 4437 | * Return 0 to indicate that processing should proceed, |
| 4438 | * -1 if there is nothing to process. |
| 4439 | * |
| 4440 | * Called with kqueue locked and returns the same way, |
| 4441 | * but may drop lock temporarily. |
| 4442 | */ |
| 4443 | static int |
| 4444 | kqworkq_begin_processing(struct kqworkq *kqwq, workq_threadreq_t kqr, |
| 4445 | int kevent_flags) |
| 4446 | { |
| 4447 | int rc = 0; |
| 4448 | |
| 4449 | KDBG_DEBUG(KEV_EVTID(BSD_KEVENT_KQWQ_PROCESS_BEGIN) | DBG_FUNC_START, |
| 4450 | 0, kqr->tr_kq_qos_index); |
| 4451 | |
| 4452 | rc = kqworkq_acknowledge_events(kqwq, kqr, kevent_flags, |
| 4453 | KQWQAE_BEGIN_PROCESSING); |
| 4454 | |
| 4455 | KDBG_DEBUG(KEV_EVTID(BSD_KEVENT_KQWQ_PROCESS_BEGIN) | DBG_FUNC_END, |
| 4456 | thread_tid(kqr_thread(kqr)), |
| 4457 | !TAILQ_EMPTY(&kqwq->kqwq_queue[kqr->tr_kq_qos_index - 1])); |
| 4458 | |
| 4459 | return rc; |
| 4460 | } |
| 4461 | |
| 4462 | static thread_qos_t |
| 4463 | kqworkloop_acknowledge_events(struct kqworkloop *kqwl) |
| 4464 | { |
| 4465 | kq_index_t qos = THREAD_QOS_UNSPECIFIED; |
| 4466 | struct knote *kn, *tmp; |
| 4467 | |
| 4468 | kqlock_held(kqu: kqwl); |
| 4469 | |
| 4470 | TAILQ_FOREACH_SAFE(kn, &kqwl->kqwl_suppressed, kn_tqe, tmp) { |
| 4471 | /* |
| 4472 | * If a knote that can adjust QoS is disabled because of the automatic |
| 4473 | * behavior of EV_DISPATCH, the knotes should stay suppressed so that |
| 4474 | * further overrides keep pushing. |
| 4475 | */ |
| 4476 | if (knote_fops(kn)->f_adjusts_qos && |
| 4477 | (kn->kn_status & KN_DISABLED) != 0 && |
| 4478 | (kn->kn_status & KN_DROPPING) == 0 && |
| 4479 | (kn->kn_flags & (EV_DISPATCH | EV_DISABLE)) == EV_DISPATCH) { |
| 4480 | qos = MAX(qos, kn->kn_qos_override); |
| 4481 | continue; |
| 4482 | } |
| 4483 | knote_unsuppress(kqu: kqwl, kn); |
| 4484 | } |
| 4485 | |
| 4486 | return qos; |
| 4487 | } |
| 4488 | |
| 4489 | static int |
| 4490 | kqworkloop_begin_processing(struct kqworkloop *kqwl, unsigned int kevent_flags) |
| 4491 | { |
| 4492 | workq_threadreq_t kqr = &kqwl->kqwl_request; |
| 4493 | struct kqueue *kq = &kqwl->kqwl_kqueue; |
| 4494 | int rc = 0, op = KQWL_UTQ_NONE; |
| 4495 | |
| 4496 | kqlock_held(kqu: kq); |
| 4497 | |
| 4498 | KDBG_DEBUG(KEV_EVTID(BSD_KEVENT_KQWL_PROCESS_BEGIN) | DBG_FUNC_START, |
| 4499 | kqwl->kqwl_dynamicid, 0, 0); |
| 4500 | |
| 4501 | /* nobody else should still be processing */ |
| 4502 | assert((kq->kq_state & KQ_PROCESSING) == 0); |
| 4503 | |
| 4504 | kq->kq_state |= KQ_PROCESSING; |
| 4505 | |
| 4506 | if (kevent_flags & KEVENT_FLAG_PARKING) { |
| 4507 | /* |
| 4508 | * When "parking" we want to process events and if no events are found |
| 4509 | * unbind. |
| 4510 | * |
| 4511 | * However, non overcommit threads sometimes park even when they have |
| 4512 | * more work so that the pool can narrow. For these, we need to unbind |
| 4513 | * early, so that calling kqworkloop_update_threads_qos() can ask the |
| 4514 | * workqueue subsystem whether the thread should park despite having |
| 4515 | * pending events. |
| 4516 | */ |
| 4517 | if (kqr->tr_flags & WORKQ_TR_FLAG_OVERCOMMIT) { |
| 4518 | op = KQWL_UTQ_PARKING; |
| 4519 | } else { |
| 4520 | op = KQWL_UTQ_UNBINDING; |
| 4521 | } |
| 4522 | } else if (!TAILQ_EMPTY(&kqwl->kqwl_suppressed)) { |
| 4523 | op = KQWL_UTQ_RESET_WAKEUP_OVERRIDE; |
| 4524 | } |
| 4525 | |
| 4526 | if (op != KQWL_UTQ_NONE) { |
| 4527 | thread_qos_t qos_override; |
| 4528 | thread_t thread = kqr_thread_fast(kqr); |
| 4529 | |
| 4530 | qos_override = kqworkloop_acknowledge_events(kqwl); |
| 4531 | |
| 4532 | if (op == KQWL_UTQ_UNBINDING) { |
| 4533 | kqworkloop_unbind_locked(kwql: kqwl, thread, |
| 4534 | how: KQWL_OVERRIDE_DROP_IMMEDIATELY); |
| 4535 | kqworkloop_release_live(kqwl); |
| 4536 | } |
| 4537 | kqworkloop_update_threads_qos(kqwl, op, qos: qos_override); |
| 4538 | if (op == KQWL_UTQ_PARKING && |
| 4539 | (!kqwl->kqwl_count || kqwl->kqwl_owner)) { |
| 4540 | kqworkloop_unbind_locked(kwql: kqwl, thread, |
| 4541 | how: KQWL_OVERRIDE_DROP_DELAYED); |
| 4542 | kqworkloop_release_live(kqwl); |
| 4543 | rc = -1; |
| 4544 | } else if (op == KQWL_UTQ_UNBINDING && |
| 4545 | kqr_thread(kqr) != thread) { |
| 4546 | rc = -1; |
| 4547 | } |
| 4548 | |
| 4549 | if (rc == -1) { |
| 4550 | kq->kq_state &= ~KQ_PROCESSING; |
| 4551 | kqworkloop_unbind_delayed_override_drop(thread); |
| 4552 | } |
| 4553 | } |
| 4554 | |
| 4555 | KDBG_DEBUG(KEV_EVTID(BSD_KEVENT_KQWL_PROCESS_BEGIN) | DBG_FUNC_END, |
| 4556 | kqwl->kqwl_dynamicid, 0, 0); |
| 4557 | |
| 4558 | return rc; |
| 4559 | } |
| 4560 | |
| 4561 | /* |
| 4562 | * Return 0 to indicate that processing should proceed, |
| 4563 | * -1 if there is nothing to process. |
| 4564 | * EBADF if the kqueue is draining |
| 4565 | * |
| 4566 | * Called with kqueue locked and returns the same way, |
| 4567 | * but may drop lock temporarily. |
| 4568 | * May block. |
| 4569 | */ |
| 4570 | static int |
| 4571 | kqfile_begin_processing(struct kqfile *kq) |
| 4572 | { |
| 4573 | kqlock_held(kqu: kq); |
| 4574 | |
| 4575 | assert((kq->kqf_state & (KQ_WORKQ | KQ_WORKLOOP)) == 0); |
| 4576 | KDBG_DEBUG(KEV_EVTID(BSD_KEVENT_KQ_PROCESS_BEGIN) | DBG_FUNC_START, |
| 4577 | VM_KERNEL_UNSLIDE_OR_PERM(kq), 0); |
| 4578 | |
| 4579 | /* wait to become the exclusive processing thread */ |
| 4580 | while ((kq->kqf_state & (KQ_PROCESSING | KQ_DRAIN)) == KQ_PROCESSING) { |
| 4581 | kq->kqf_state |= KQ_PROCWAIT; |
| 4582 | lck_spin_sleep(lck: &kq->kqf_lock, lck_sleep_action: LCK_SLEEP_DEFAULT, |
| 4583 | event: &kq->kqf_suppressed, THREAD_UNINT | THREAD_WAIT_NOREPORT); |
| 4584 | } |
| 4585 | |
| 4586 | if (kq->kqf_state & KQ_DRAIN) { |
| 4587 | KDBG_DEBUG(KEV_EVTID(BSD_KEVENT_KQ_PROCESS_BEGIN) | DBG_FUNC_END, |
| 4588 | VM_KERNEL_UNSLIDE_OR_PERM(kq), 2); |
| 4589 | return EBADF; |
| 4590 | } |
| 4591 | |
| 4592 | /* Nobody else processing */ |
| 4593 | |
| 4594 | /* anything left to process? */ |
| 4595 | if (kq->kqf_count == 0) { |
| 4596 | KDBG_DEBUG(KEV_EVTID(BSD_KEVENT_KQ_PROCESS_BEGIN) | DBG_FUNC_END, |
| 4597 | VM_KERNEL_UNSLIDE_OR_PERM(kq), 1); |
| 4598 | return -1; |
| 4599 | } |
| 4600 | |
| 4601 | /* convert to processing mode */ |
| 4602 | kq->kqf_state |= KQ_PROCESSING; |
| 4603 | |
| 4604 | KDBG_DEBUG(KEV_EVTID(BSD_KEVENT_KQ_PROCESS_BEGIN) | DBG_FUNC_END, |
| 4605 | VM_KERNEL_UNSLIDE_OR_PERM(kq), 0); |
| 4606 | return 0; |
| 4607 | } |
| 4608 | |
| 4609 | /* |
| 4610 | * Try to end the processing, only called when a workq thread is attempting to |
| 4611 | * park (KEVENT_FLAG_PARKING is set). |
| 4612 | * |
| 4613 | * When returning -1, the kqworkq is setup again so that it is ready to be |
| 4614 | * processed. |
| 4615 | */ |
| 4616 | static int |
| 4617 | kqworkq_end_processing(struct kqworkq *kqwq, workq_threadreq_t kqr, |
| 4618 | int kevent_flags) |
| 4619 | { |
| 4620 | if (kevent_flags & KEVENT_FLAG_PARKING) { |
| 4621 | /* |
| 4622 | * if acknowledge events "succeeds" it means there are events, |
| 4623 | * which is a failure condition for end_processing. |
| 4624 | */ |
| 4625 | int rc = kqworkq_acknowledge_events(kqwq, kqr, kevent_flags, |
| 4626 | KQWQAE_END_PROCESSING); |
| 4627 | if (rc == 0) { |
| 4628 | return -1; |
| 4629 | } |
| 4630 | } |
| 4631 | |
| 4632 | return 0; |
| 4633 | } |
| 4634 | |
| 4635 | /* |
| 4636 | * Try to end the processing, only called when a workq thread is attempting to |
| 4637 | * park (KEVENT_FLAG_PARKING is set). |
| 4638 | * |
| 4639 | * When returning -1, the kqworkq is setup again so that it is ready to be |
| 4640 | * processed (as if kqworkloop_begin_processing had just been called). |
| 4641 | * |
| 4642 | * If successful and KEVENT_FLAG_PARKING was set in the kevent_flags, |
| 4643 | * the kqworkloop is unbound from its servicer as a side effect. |
| 4644 | */ |
| 4645 | static int |
| 4646 | kqworkloop_end_processing(struct kqworkloop *kqwl, int flags, int kevent_flags) |
| 4647 | { |
| 4648 | struct kqueue *kq = &kqwl->kqwl_kqueue; |
| 4649 | workq_threadreq_t kqr = &kqwl->kqwl_request; |
| 4650 | int rc = 0; |
| 4651 | |
| 4652 | kqlock_held(kqu: kq); |
| 4653 | |
| 4654 | KDBG_DEBUG(KEV_EVTID(BSD_KEVENT_KQWL_PROCESS_END) | DBG_FUNC_START, |
| 4655 | kqwl->kqwl_dynamicid, 0, 0); |
| 4656 | |
| 4657 | if (kevent_flags & KEVENT_FLAG_PARKING) { |
| 4658 | thread_t thread = kqr_thread_fast(kqr); |
| 4659 | thread_qos_t qos_override; |
| 4660 | |
| 4661 | /* |
| 4662 | * When KEVENT_FLAG_PARKING is set, we need to attempt |
| 4663 | * an unbind while still under the lock. |
| 4664 | * |
| 4665 | * So we do everything kqworkloop_unbind() would do, but because |
| 4666 | * we're inside kqueue_process(), if the workloop actually |
| 4667 | * received events while our locks were dropped, we have |
| 4668 | * the opportunity to fail the end processing and loop again. |
| 4669 | * |
| 4670 | * This avoids going through the process-wide workqueue lock |
| 4671 | * hence scales better. |
| 4672 | */ |
| 4673 | assert(flags & KQ_PROCESSING); |
| 4674 | qos_override = kqworkloop_acknowledge_events(kqwl); |
| 4675 | kqworkloop_update_threads_qos(kqwl, op: KQWL_UTQ_PARKING, qos: qos_override); |
| 4676 | |
| 4677 | if (kqwl->kqwl_wakeup_qos && !kqwl->kqwl_owner) { |
| 4678 | rc = -1; |
| 4679 | } else { |
| 4680 | kqworkloop_unbind_locked(kwql: kqwl, thread, how: KQWL_OVERRIDE_DROP_DELAYED); |
| 4681 | kqworkloop_release_live(kqwl); |
| 4682 | kq->kq_state &= ~flags; |
| 4683 | kqworkloop_unbind_delayed_override_drop(thread); |
| 4684 | } |
| 4685 | } else { |
| 4686 | kq->kq_state &= ~flags; |
| 4687 | kq->kq_state |= KQ_R2K_ARMED; |
| 4688 | kqworkloop_update_threads_qos(kqwl, op: KQWL_UTQ_RECOMPUTE_WAKEUP_QOS, qos: 0); |
| 4689 | } |
| 4690 | |
| 4691 | KDBG_DEBUG(KEV_EVTID(BSD_KEVENT_KQWL_PROCESS_END) | DBG_FUNC_END, |
| 4692 | kqwl->kqwl_dynamicid, 0, 0); |
| 4693 | |
| 4694 | return rc; |
| 4695 | } |
| 4696 | |
| 4697 | /* |
| 4698 | * Called with kqueue lock held. |
| 4699 | * |
| 4700 | * 0: no more events |
| 4701 | * -1: has more events |
| 4702 | * EBADF: kqueue is in draining mode |
| 4703 | */ |
| 4704 | static int |
| 4705 | kqfile_end_processing(struct kqfile *kq) |
| 4706 | { |
| 4707 | struct knote *kn; |
| 4708 | int procwait; |
| 4709 | |
| 4710 | kqlock_held(kqu: kq); |
| 4711 | |
| 4712 | assert((kq->kqf_state & (KQ_WORKQ | KQ_WORKLOOP)) == 0); |
| 4713 | |
| 4714 | KDBG_DEBUG(KEV_EVTID(BSD_KEVENT_KQ_PROCESS_END), |
| 4715 | VM_KERNEL_UNSLIDE_OR_PERM(kq), 0); |
| 4716 | |
| 4717 | /* |
| 4718 | * Return suppressed knotes to their original state. |
| 4719 | */ |
| 4720 | while ((kn = TAILQ_FIRST(&kq->kqf_suppressed)) != NULL) { |
| 4721 | knote_unsuppress(kqu: kq, kn); |
| 4722 | } |
| 4723 | |
| 4724 | procwait = (kq->kqf_state & KQ_PROCWAIT); |
| 4725 | kq->kqf_state &= ~(KQ_PROCESSING | KQ_PROCWAIT); |
| 4726 | |
| 4727 | if (procwait) { |
| 4728 | /* first wake up any thread already waiting to process */ |
| 4729 | thread_wakeup(&kq->kqf_suppressed); |
| 4730 | } |
| 4731 | |
| 4732 | if (kq->kqf_state & KQ_DRAIN) { |
| 4733 | return EBADF; |
| 4734 | } |
| 4735 | return kq->kqf_count != 0 ? -1 : 0; |
| 4736 | } |
| 4737 | |
| 4738 | static int |
| 4739 | kqueue_workloop_ctl_internal(proc_t p, uintptr_t cmd, uint64_t __unused options, |
| 4740 | struct kqueue_workloop_params *params, int *retval) |
| 4741 | { |
| 4742 | int error = 0; |
| 4743 | struct kqworkloop *kqwl; |
| 4744 | struct filedesc *fdp = &p->p_fd; |
| 4745 | workq_threadreq_param_t trp = { }; |
| 4746 | #if CONFIG_PREADOPT_TG |
| 4747 | struct thread_group *trp_permanent_preadopt_tg = NULL; |
| 4748 | integer_t trp_preadopt_priority = 0; |
| 4749 | integer_t trp_preadopt_policy = 0; |
| 4750 | #endif /* CONFIG_PREADOPT_TG */ |
| 4751 | |
| 4752 | switch (cmd) { |
| 4753 | case KQ_WORKLOOP_CREATE: |
| 4754 | if (!params->kqwlp_flags) { |
| 4755 | error = EINVAL; |
| 4756 | break; |
| 4757 | } |
| 4758 | |
| 4759 | if ((params->kqwlp_flags & KQ_WORKLOOP_CREATE_SCHED_PRI) && |
| 4760 | (params->kqwlp_sched_pri < 1 || |
| 4761 | params->kqwlp_sched_pri > 63 /* MAXPRI_USER */)) { |
| 4762 | error = EINVAL; |
| 4763 | break; |
| 4764 | } |
| 4765 | |
| 4766 | if ((params->kqwlp_flags & KQ_WORKLOOP_CREATE_SCHED_POL) && |
| 4767 | invalid_policy(params->kqwlp_sched_pol)) { |
| 4768 | error = EINVAL; |
| 4769 | break; |
| 4770 | } |
| 4771 | |
| 4772 | if ((params->kqwlp_flags & KQ_WORKLOOP_CREATE_CPU_PERCENT) && |
| 4773 | (params->kqwlp_cpu_percent <= 0 || |
| 4774 | params->kqwlp_cpu_percent > 100 || |
| 4775 | params->kqwlp_cpu_refillms <= 0 || |
| 4776 | params->kqwlp_cpu_refillms > 0x00ffffff)) { |
| 4777 | error = EINVAL; |
| 4778 | break; |
| 4779 | } |
| 4780 | |
| 4781 | if (params->kqwlp_flags & KQ_WORKLOOP_CREATE_WORK_INTERVAL) { |
| 4782 | #if CONFIG_PREADOPT_TG |
| 4783 | kern_return_t kr; |
| 4784 | kr = kern_work_interval_get_policy_from_port(port_name: params->kqwl_wi_port, |
| 4785 | policy: &trp_preadopt_policy, |
| 4786 | priority: &trp_preadopt_priority, |
| 4787 | tg: &trp_permanent_preadopt_tg); |
| 4788 | if (kr != KERN_SUCCESS) { |
| 4789 | error = EINVAL; |
| 4790 | break; |
| 4791 | } |
| 4792 | /* The work interval comes with scheduling policy. */ |
| 4793 | if (trp_preadopt_policy) { |
| 4794 | trp.trp_flags |= TRP_POLICY; |
| 4795 | trp.trp_pol = (uint8_t)trp_preadopt_policy; |
| 4796 | |
| 4797 | trp.trp_flags |= TRP_PRIORITY; |
| 4798 | trp.trp_pri = (uint8_t)trp_preadopt_priority; |
| 4799 | } |
| 4800 | /* |
| 4801 | * We take +1 ref on a thread group backing this work interval |
| 4802 | * via kern_work_interval_get_policy_from_port and pass it on to kqwl. |
| 4803 | * If, for whatever reasons, kqworkloop_get_or_create fails, we |
| 4804 | * get back this ref. |
| 4805 | */ |
| 4806 | #else |
| 4807 | error = ENOTSUP; |
| 4808 | break; |
| 4809 | #endif /* CONFIG_PREADOPT_TG */ |
| 4810 | } |
| 4811 | |
| 4812 | if (!(trp.trp_flags & (TRP_POLICY | TRP_PRIORITY))) { |
| 4813 | /* |
| 4814 | * We always prefer scheduling policy + priority that comes with |
| 4815 | * a work interval. It it does not exist, we fallback to what the user |
| 4816 | * has asked. |
| 4817 | */ |
| 4818 | if (params->kqwlp_flags & KQ_WORKLOOP_CREATE_SCHED_PRI) { |
| 4819 | trp.trp_flags |= TRP_PRIORITY; |
| 4820 | trp.trp_pri = (uint8_t)params->kqwlp_sched_pri; |
| 4821 | } |
| 4822 | if (params->kqwlp_flags & KQ_WORKLOOP_CREATE_SCHED_POL) { |
| 4823 | trp.trp_flags |= TRP_POLICY; |
| 4824 | trp.trp_pol = (uint8_t)params->kqwlp_sched_pol; |
| 4825 | } |
| 4826 | if (params->kqwlp_flags & KQ_WORKLOOP_CREATE_CPU_PERCENT) { |
| 4827 | trp.trp_flags |= TRP_CPUPERCENT; |
| 4828 | trp.trp_cpupercent = (uint8_t)params->kqwlp_cpu_percent; |
| 4829 | trp.trp_refillms = params->kqwlp_cpu_refillms; |
| 4830 | } |
| 4831 | } |
| 4832 | |
| 4833 | error = kqworkloop_get_or_create(p, id: params->kqwlp_id, trp: &trp, |
| 4834 | #if CONFIG_PREADOPT_TG |
| 4835 | trp_permanent_preadopt_tg, |
| 4836 | #endif /* CONFIG_PREADOPT_TG */ |
| 4837 | KEVENT_FLAG_DYNAMIC_KQUEUE | KEVENT_FLAG_WORKLOOP | |
| 4838 | KEVENT_FLAG_DYNAMIC_KQ_MUST_NOT_EXIST, kqwlp: &kqwl); |
| 4839 | if (error) { |
| 4840 | #if CONFIG_PREADOPT_TG |
| 4841 | /* In case of success, kqwl consumes this +1 ref. */ |
| 4842 | if (trp_permanent_preadopt_tg) { |
| 4843 | thread_group_release(tg: trp_permanent_preadopt_tg); |
| 4844 | } |
| 4845 | #endif |
| 4846 | break; |
| 4847 | } |
| 4848 | |
| 4849 | if (!fdt_flag_test(fdp, FD_WORKLOOP)) { |
| 4850 | /* FD_WORKLOOP indicates we've ever created a workloop |
| 4851 | * via this syscall but its only ever added to a process, never |
| 4852 | * removed. |
| 4853 | */ |
| 4854 | proc_fdlock(p); |
| 4855 | fdt_flag_set(fdp, FD_WORKLOOP); |
| 4856 | proc_fdunlock(p); |
| 4857 | } |
| 4858 | break; |
| 4859 | case KQ_WORKLOOP_DESTROY: |
| 4860 | error = kqworkloop_get_or_create(p, id: params->kqwlp_id, NULL, |
| 4861 | #if CONFIG_PREADOPT_TG |
| 4862 | NULL, |
| 4863 | #endif /* CONFIG_PREADOPT_TG */ |
| 4864 | KEVENT_FLAG_DYNAMIC_KQUEUE | KEVENT_FLAG_WORKLOOP | |
| 4865 | KEVENT_FLAG_DYNAMIC_KQ_MUST_EXIST, kqwlp: &kqwl); |
| 4866 | if (error) { |
| 4867 | break; |
| 4868 | } |
| 4869 | kqlock(kqu: kqwl); |
| 4870 | trp.trp_value = kqwl->kqwl_params; |
| 4871 | if (trp.trp_flags && !(trp.trp_flags & TRP_RELEASED)) { |
| 4872 | trp.trp_flags |= TRP_RELEASED; |
| 4873 | kqwl->kqwl_params = trp.trp_value; |
| 4874 | kqworkloop_release_live(kqwl); |
| 4875 | } else { |
| 4876 | error = EINVAL; |
| 4877 | } |
| 4878 | kqunlock(kqu: kqwl); |
| 4879 | kqworkloop_release(kqwl); |
| 4880 | break; |
| 4881 | } |
| 4882 | *retval = 0; |
| 4883 | return error; |
| 4884 | } |
| 4885 | |
| 4886 | int |
| 4887 | kqueue_workloop_ctl(proc_t p, struct kqueue_workloop_ctl_args *uap, int *retval) |
| 4888 | { |
| 4889 | struct kqueue_workloop_params params = { |
| 4890 | .kqwlp_id = 0, |
| 4891 | }; |
| 4892 | if (uap->sz < sizeof(params.kqwlp_version)) { |
| 4893 | return EINVAL; |
| 4894 | } |
| 4895 | |
| 4896 | size_t copyin_sz = MIN(sizeof(params), uap->sz); |
| 4897 | int rv = copyin(uap->addr, ¶ms, copyin_sz); |
| 4898 | if (rv) { |
| 4899 | return rv; |
| 4900 | } |
| 4901 | |
| 4902 | if (params.kqwlp_version != (int)uap->sz) { |
| 4903 | return EINVAL; |
| 4904 | } |
| 4905 | |
| 4906 | return kqueue_workloop_ctl_internal(p, cmd: uap->cmd, options: uap->options, params: ¶ms, |
| 4907 | retval); |
| 4908 | } |
| 4909 | |
| 4910 | static int |
| 4911 | kqueue_select(struct fileproc *fp, int which, void *wql, __unused vfs_context_t ctx) |
| 4912 | { |
| 4913 | struct kqfile *kq = (struct kqfile *)fp_get_data(fp); |
| 4914 | int retnum = 0; |
| 4915 | |
| 4916 | assert((kq->kqf_state & (KQ_WORKLOOP | KQ_WORKQ)) == 0); |
| 4917 | |
| 4918 | if (which == FREAD) { |
| 4919 | kqlock(kqu: kq); |
| 4920 | if (kqfile_begin_processing(kq) == 0) { |
| 4921 | retnum = kq->kqf_count; |
| 4922 | kqfile_end_processing(kq); |
| 4923 | } else if ((kq->kqf_state & KQ_DRAIN) == 0) { |
| 4924 | selrecord(selector: kq->kqf_p, &kq->kqf_sel, wql); |
| 4925 | } |
| 4926 | kqunlock(kqu: kq); |
| 4927 | } |
| 4928 | return retnum; |
| 4929 | } |
| 4930 | |
| 4931 | /* |
| 4932 | * kqueue_close - |
| 4933 | */ |
| 4934 | static int |
| 4935 | kqueue_close(struct fileglob *fg, __unused vfs_context_t ctx) |
| 4936 | { |
| 4937 | struct kqfile *kqf = fg_get_data(fg); |
| 4938 | |
| 4939 | assert((kqf->kqf_state & (KQ_WORKLOOP | KQ_WORKQ)) == 0); |
| 4940 | kqlock(kqu: kqf); |
| 4941 | selthreadclear(&kqf->kqf_sel); |
| 4942 | kqunlock(kqu: kqf); |
| 4943 | kqueue_dealloc(kq: &kqf->kqf_kqueue); |
| 4944 | fg_set_data(fg, NULL); |
| 4945 | return 0; |
| 4946 | } |
| 4947 | |
| 4948 | /* |
| 4949 | * Max depth of the nested kq path that can be created. |
| 4950 | * Note that this has to be less than the size of kq_level |
| 4951 | * to avoid wrapping around and mislabeling the level. We also |
| 4952 | * want to be aggressive about this so that we don't overflow the |
| 4953 | * kernel stack while posting kevents |
| 4954 | */ |
| 4955 | #define MAX_NESTED_KQ 10 |
| 4956 | |
| 4957 | /* |
| 4958 | * The callers has taken a use-count reference on this kqueue and will donate it |
| 4959 | * to the kqueue we are being added to. This keeps the kqueue from closing until |
| 4960 | * that relationship is torn down. |
| 4961 | */ |
| 4962 | static int |
| 4963 | kqueue_kqfilter(struct fileproc *fp, struct knote *kn, |
| 4964 | __unused struct kevent_qos_s *kev) |
| 4965 | { |
| 4966 | struct kqfile *kqf = (struct kqfile *)fp_get_data(fp); |
| 4967 | struct kqueue *kq = &kqf->kqf_kqueue; |
| 4968 | struct kqueue *parentkq = knote_get_kq(kn); |
| 4969 | |
| 4970 | assert((kqf->kqf_state & (KQ_WORKLOOP | KQ_WORKQ)) == 0); |
| 4971 | |
| 4972 | if (parentkq == kq || kn->kn_filter != EVFILT_READ) { |
| 4973 | knote_set_error(kn, EINVAL); |
| 4974 | return 0; |
| 4975 | } |
| 4976 | |
| 4977 | /* |
| 4978 | * We have to avoid creating a cycle when nesting kqueues |
| 4979 | * inside another. Rather than trying to walk the whole |
| 4980 | * potential DAG of nested kqueues, we just use a simple |
| 4981 | * ceiling protocol. When a kqueue is inserted into another, |
| 4982 | * we check that the (future) parent is not already nested |
| 4983 | * into another kqueue at a lower level than the potenial |
| 4984 | * child (because it could indicate a cycle). If that test |
| 4985 | * passes, we just mark the nesting levels accordingly. |
| 4986 | * |
| 4987 | * Only up to MAX_NESTED_KQ can be nested. |
| 4988 | * |
| 4989 | * Note: kqworkq and kqworkloop cannot be nested and have reused their |
| 4990 | * kq_level field, so ignore these as parent. |
| 4991 | */ |
| 4992 | |
| 4993 | kqlock(kqu: parentkq); |
| 4994 | |
| 4995 | if ((parentkq->kq_state & (KQ_WORKQ | KQ_WORKLOOP)) == 0) { |
| 4996 | if (parentkq->kq_level > 0 && |
| 4997 | parentkq->kq_level < kq->kq_level) { |
| 4998 | kqunlock(kqu: parentkq); |
| 4999 | knote_set_error(kn, EINVAL); |
| 5000 | return 0; |
| 5001 | } |
| 5002 | |
| 5003 | /* set parent level appropriately */ |
| 5004 | uint16_t plevel = (parentkq->kq_level == 0)? 2: parentkq->kq_level; |
| 5005 | if (plevel < kq->kq_level + 1) { |
| 5006 | if (kq->kq_level + 1 > MAX_NESTED_KQ) { |
| 5007 | kqunlock(kqu: parentkq); |
| 5008 | knote_set_error(kn, EINVAL); |
| 5009 | return 0; |
| 5010 | } |
| 5011 | plevel = kq->kq_level + 1; |
| 5012 | } |
| 5013 | |
| 5014 | parentkq->kq_level = plevel; |
| 5015 | } |
| 5016 | |
| 5017 | kqunlock(kqu: parentkq); |
| 5018 | |
| 5019 | kn->kn_filtid = EVFILTID_KQREAD; |
| 5020 | kqlock(kqu: kq); |
| 5021 | KNOTE_ATTACH(&kqf->kqf_sel.si_note, kn); |
| 5022 | /* indicate nesting in child, if needed */ |
| 5023 | if (kq->kq_level == 0) { |
| 5024 | kq->kq_level = 1; |
| 5025 | } |
| 5026 | |
| 5027 | int count = kq->kq_count; |
| 5028 | kqunlock(kqu: kq); |
| 5029 | return count > 0; |
| 5030 | } |
| 5031 | |
| 5032 | __attribute__((noinline)) |
| 5033 | static void |
| 5034 | kqfile_wakeup(struct kqfile *kqf, long hint, wait_result_t wr) |
| 5035 | { |
| 5036 | /* wakeup a thread waiting on this queue */ |
| 5037 | selwakeup(&kqf->kqf_sel); |
| 5038 | |
| 5039 | /* wake up threads in kqueue_scan() */ |
| 5040 | if (kqf->kqf_state & KQ_SLEEP) { |
| 5041 | kqf->kqf_state &= ~KQ_SLEEP; |
| 5042 | thread_wakeup_with_result(&kqf->kqf_count, wr); |
| 5043 | } |
| 5044 | |
| 5045 | if (hint == NOTE_REVOKE) { |
| 5046 | /* wakeup threads waiting their turn to process */ |
| 5047 | if (kqf->kqf_state & KQ_PROCWAIT) { |
| 5048 | assert(kqf->kqf_state & KQ_PROCESSING); |
| 5049 | kqf->kqf_state &= ~KQ_PROCWAIT; |
| 5050 | thread_wakeup(&kqf->kqf_suppressed); |
| 5051 | } |
| 5052 | |
| 5053 | /* no need to KNOTE: knote_fdclose() takes care of it */ |
| 5054 | } else { |
| 5055 | /* wakeup other kqueues/select sets we're inside */ |
| 5056 | KNOTE(&kqf->kqf_sel.si_note, hint); |
| 5057 | } |
| 5058 | } |
| 5059 | |
| 5060 | /* |
| 5061 | * kqueue_drain - called when kq is closed |
| 5062 | */ |
| 5063 | static int |
| 5064 | kqueue_drain(struct fileproc *fp, __unused vfs_context_t ctx) |
| 5065 | { |
| 5066 | struct kqfile *kqf = (struct kqfile *)fp_get_data(fp); |
| 5067 | |
| 5068 | assert((kqf->kqf_state & (KQ_WORKLOOP | KQ_WORKQ)) == 0); |
| 5069 | |
| 5070 | kqlock(kqu: kqf); |
| 5071 | kqf->kqf_state |= KQ_DRAIN; |
| 5072 | kqfile_wakeup(kqf, NOTE_REVOKE, THREAD_RESTART); |
| 5073 | kqunlock(kqu: kqf); |
| 5074 | return 0; |
| 5075 | } |
| 5076 | |
| 5077 | int |
| 5078 | kqueue_stat(struct kqueue *kq, void *ub, int isstat64, proc_t p) |
| 5079 | { |
| 5080 | assert((kq->kq_state & (KQ_WORKLOOP | KQ_WORKQ)) == 0); |
| 5081 | |
| 5082 | kqlock(kqu: kq); |
| 5083 | if (isstat64 != 0) { |
| 5084 | struct stat64 *sb64 = (struct stat64 *)ub; |
| 5085 | |
| 5086 | bzero(s: (void *)sb64, n: sizeof(*sb64)); |
| 5087 | sb64->st_size = kq->kq_count; |
| 5088 | if (kq->kq_state & KQ_KEV_QOS) { |
| 5089 | sb64->st_blksize = sizeof(struct kevent_qos_s); |
| 5090 | } else if (kq->kq_state & KQ_KEV64) { |
| 5091 | sb64->st_blksize = sizeof(struct kevent64_s); |
| 5092 | } else if (IS_64BIT_PROCESS(p)) { |
| 5093 | sb64->st_blksize = sizeof(struct user64_kevent); |
| 5094 | } else { |
| 5095 | sb64->st_blksize = sizeof(struct user32_kevent); |
| 5096 | } |
| 5097 | sb64->st_mode = S_IFIFO; |
| 5098 | } else { |
| 5099 | struct stat *sb = (struct stat *)ub; |
| 5100 | |
| 5101 | bzero(s: (void *)sb, n: sizeof(*sb)); |
| 5102 | sb->st_size = kq->kq_count; |
| 5103 | if (kq->kq_state & KQ_KEV_QOS) { |
| 5104 | sb->st_blksize = sizeof(struct kevent_qos_s); |
| 5105 | } else if (kq->kq_state & KQ_KEV64) { |
| 5106 | sb->st_blksize = sizeof(struct kevent64_s); |
| 5107 | } else if (IS_64BIT_PROCESS(p)) { |
| 5108 | sb->st_blksize = sizeof(struct user64_kevent); |
| 5109 | } else { |
| 5110 | sb->st_blksize = sizeof(struct user32_kevent); |
| 5111 | } |
| 5112 | sb->st_mode = S_IFIFO; |
| 5113 | } |
| 5114 | kqunlock(kqu: kq); |
| 5115 | return 0; |
| 5116 | } |
| 5117 | |
| 5118 | static inline bool |
| 5119 | kqueue_threadreq_can_use_ast(struct kqueue *kq) |
| 5120 | { |
| 5121 | if (current_proc() == kq->kq_p) { |
| 5122 | /* |
| 5123 | * Setting an AST from a non BSD syscall is unsafe: mach_msg_trap() can |
| 5124 | * do combined send/receive and in the case of self-IPC, the AST may bet |
| 5125 | * set on a thread that will not return to userspace and needs the |
| 5126 | * thread the AST would create to unblock itself. |
| 5127 | * |
| 5128 | * At this time, we really want to target: |
| 5129 | * |
| 5130 | * - kevent variants that can cause thread creations, and dispatch |
| 5131 | * really only uses kevent_qos and kevent_id, |
| 5132 | * |
| 5133 | * - workq_kernreturn (directly about thread creations) |
| 5134 | * |
| 5135 | * - bsdthread_ctl which is used for qos changes and has direct impact |
| 5136 | * on the creator thread scheduling decisions. |
| 5137 | */ |
| 5138 | switch (current_uthread()->syscall_code) { |
| 5139 | case SYS_kevent_qos: |
| 5140 | case SYS_kevent_id: |
| 5141 | case SYS_workq_kernreturn: |
| 5142 | case SYS_bsdthread_ctl: |
| 5143 | return true; |
| 5144 | } |
| 5145 | } |
| 5146 | return false; |
| 5147 | } |
| 5148 | |
| 5149 | /* |
| 5150 | * Interact with the pthread kext to request a servicing there at a specific QoS |
| 5151 | * level. |
| 5152 | * |
| 5153 | * - Caller holds the kqlock |
| 5154 | * |
| 5155 | * - May be called with the kqueue's wait queue set locked, |
| 5156 | * so cannot do anything that could recurse on that. |
| 5157 | */ |
| 5158 | static void |
| 5159 | kqueue_threadreq_initiate(kqueue_t kqu, workq_threadreq_t kqr, |
| 5160 | kq_index_t qos, int flags) |
| 5161 | { |
| 5162 | assert(kqr_thread(kqr) == THREAD_NULL); |
| 5163 | assert(!kqr_thread_requested(kqr)); |
| 5164 | struct turnstile *ts = TURNSTILE_NULL; |
| 5165 | |
| 5166 | if (workq_is_exiting(p: kqu.kq->kq_p)) { |
| 5167 | return; |
| 5168 | } |
| 5169 | |
| 5170 | kqlock_held(kqu); |
| 5171 | |
| 5172 | if (kqu.kq->kq_state & KQ_WORKLOOP) { |
| 5173 | struct kqworkloop *kqwl = kqu.kqwl; |
| 5174 | |
| 5175 | assert(kqwl->kqwl_owner == THREAD_NULL); |
| 5176 | KDBG_DEBUG(KEV_EVTID(BSD_KEVENT_KQWL_THREQUEST), |
| 5177 | kqwl->kqwl_dynamicid, 0, qos, kqwl->kqwl_wakeup_qos); |
| 5178 | ts = kqwl->kqwl_turnstile; |
| 5179 | /* Add a thread request reference on the kqueue. */ |
| 5180 | kqworkloop_retain(kqwl); |
| 5181 | |
| 5182 | #if CONFIG_PREADOPT_TG |
| 5183 | thread_group_qos_t kqwl_preadopt_tg = os_atomic_load( |
| 5184 | &kqwl->kqwl_preadopt_tg, relaxed); |
| 5185 | if (KQWL_HAS_PERMANENT_PREADOPTED_TG(kqwl_preadopt_tg)) { |
| 5186 | /* |
| 5187 | * This kqwl has been permanently configured with a thread group. |
| 5188 | * See kqworkloops with scheduling parameters. |
| 5189 | */ |
| 5190 | flags |= WORKQ_THREADREQ_REEVALUATE_PREADOPT_TG; |
| 5191 | } else { |
| 5192 | /* |
| 5193 | * This thread is the one which is ack-ing the thread group on the kqwl |
| 5194 | * under the kqlock and will take action accordingly, pairs with the |
| 5195 | * release barrier in kqueue_set_preadopted_thread_group |
| 5196 | */ |
| 5197 | uint16_t tg_acknowledged; |
| 5198 | if (os_atomic_cmpxchgv(&kqwl->kqwl_preadopt_tg_needs_redrive, |
| 5199 | KQWL_PREADOPT_TG_NEEDS_REDRIVE, KQWL_PREADOPT_TG_CLEAR_REDRIVE, |
| 5200 | &tg_acknowledged, acquire)) { |
| 5201 | flags |= WORKQ_THREADREQ_REEVALUATE_PREADOPT_TG; |
| 5202 | } |
| 5203 | } |
| 5204 | #endif |
| 5205 | } else { |
| 5206 | assert(kqu.kq->kq_state & KQ_WORKQ); |
| 5207 | KDBG_DEBUG(KEV_EVTID(BSD_KEVENT_KQWQ_THREQUEST), -1, 0, qos, |
| 5208 | !TAILQ_EMPTY(&kqu.kqwq->kqwq_queue[kqr->tr_kq_qos_index - 1])); |
| 5209 | } |
| 5210 | |
| 5211 | /* |
| 5212 | * New-style thread request supported. |
| 5213 | * Provide the pthread kext a pointer to a workq_threadreq_s structure for |
| 5214 | * its use until a corresponding kqueue_threadreq_bind callback. |
| 5215 | */ |
| 5216 | if (kqueue_threadreq_can_use_ast(kq: kqu.kq)) { |
| 5217 | flags |= WORKQ_THREADREQ_SET_AST_ON_FAILURE; |
| 5218 | } |
| 5219 | if (qos == KQWQ_QOS_MANAGER) { |
| 5220 | qos = WORKQ_THREAD_QOS_MANAGER; |
| 5221 | } |
| 5222 | |
| 5223 | if (!workq_kern_threadreq_initiate(p: kqu.kq->kq_p, kqr, ts, qos, flags)) { |
| 5224 | /* |
| 5225 | * Process is shutting down or exec'ing. |
| 5226 | * All the kqueues are going to be cleaned up |
| 5227 | * soon. Forget we even asked for a thread - |
| 5228 | * and make sure we don't ask for more. |
| 5229 | */ |
| 5230 | kqu.kq->kq_state &= ~KQ_R2K_ARMED; |
| 5231 | kqueue_release_live(kqu); |
| 5232 | } |
| 5233 | } |
| 5234 | |
| 5235 | /* |
| 5236 | * kqueue_threadreq_bind_prepost - prepost the bind to kevent |
| 5237 | * |
| 5238 | * This is used when kqueue_threadreq_bind may cause a lock inversion. |
| 5239 | */ |
| 5240 | __attribute__((always_inline)) |
| 5241 | void |
| 5242 | kqueue_threadreq_bind_prepost(struct proc *p __unused, workq_threadreq_t kqr, |
| 5243 | struct uthread *ut) |
| 5244 | { |
| 5245 | ut->uu_kqr_bound = kqr; |
| 5246 | kqr->tr_thread = get_machthread(ut); |
| 5247 | kqr->tr_state = WORKQ_TR_STATE_BINDING; |
| 5248 | } |
| 5249 | |
| 5250 | /* |
| 5251 | * kqueue_threadreq_bind_commit - commit a bind prepost |
| 5252 | * |
| 5253 | * The workq code has to commit any binding prepost before the thread has |
| 5254 | * a chance to come back to userspace (and do kevent syscalls) or be aborted. |
| 5255 | */ |
| 5256 | void |
| 5257 | kqueue_threadreq_bind_commit(struct proc *p, thread_t thread) |
| 5258 | { |
| 5259 | struct uthread *ut = get_bsdthread_info(thread); |
| 5260 | workq_threadreq_t kqr = ut->uu_kqr_bound; |
| 5261 | kqueue_t kqu = kqr_kqueue(p, kqr); |
| 5262 | |
| 5263 | kqlock(kqu); |
| 5264 | if (kqr->tr_state == WORKQ_TR_STATE_BINDING) { |
| 5265 | kqueue_threadreq_bind(p, req: kqr, thread, flags: 0); |
| 5266 | } |
| 5267 | kqunlock(kqu); |
| 5268 | } |
| 5269 | |
| 5270 | static void |
| 5271 | kqueue_threadreq_modify(kqueue_t kqu, workq_threadreq_t kqr, kq_index_t qos, |
| 5272 | workq_kern_threadreq_flags_t flags) |
| 5273 | { |
| 5274 | assert(kqr_thread_requested_pending(kqr)); |
| 5275 | |
| 5276 | kqlock_held(kqu); |
| 5277 | |
| 5278 | if (kqueue_threadreq_can_use_ast(kq: kqu.kq)) { |
| 5279 | flags |= WORKQ_THREADREQ_SET_AST_ON_FAILURE; |
| 5280 | } |
| 5281 | |
| 5282 | #if CONFIG_PREADOPT_TG |
| 5283 | if (kqu.kq->kq_state & KQ_WORKLOOP) { |
| 5284 | struct kqworkloop *kqwl = kqu.kqwl; |
| 5285 | thread_group_qos_t kqwl_preadopt_tg = os_atomic_load( |
| 5286 | &kqwl->kqwl_preadopt_tg, relaxed); |
| 5287 | if (KQWL_HAS_PERMANENT_PREADOPTED_TG(kqwl_preadopt_tg)) { |
| 5288 | /* |
| 5289 | * This kqwl has been permanently configured with a thread group. |
| 5290 | * See kqworkloops with scheduling parameters. |
| 5291 | */ |
| 5292 | flags |= WORKQ_THREADREQ_REEVALUATE_PREADOPT_TG; |
| 5293 | } else { |
| 5294 | uint16_t tg_ack_status; |
| 5295 | /* |
| 5296 | * This thread is the one which is ack-ing the thread group on the kqwl |
| 5297 | * under the kqlock and will take action accordingly, needs acquire |
| 5298 | * barrier. |
| 5299 | */ |
| 5300 | if (os_atomic_cmpxchgv(&kqwl->kqwl_preadopt_tg_needs_redrive, KQWL_PREADOPT_TG_NEEDS_REDRIVE, |
| 5301 | KQWL_PREADOPT_TG_CLEAR_REDRIVE, &tg_ack_status, acquire)) { |
| 5302 | flags |= WORKQ_THREADREQ_REEVALUATE_PREADOPT_TG; |
| 5303 | } |
| 5304 | } |
| 5305 | } |
| 5306 | #endif |
| 5307 | |
| 5308 | workq_kern_threadreq_modify(p: kqu.kq->kq_p, kqr, qos, flags); |
| 5309 | } |
| 5310 | |
| 5311 | /* |
| 5312 | * kqueue_threadreq_bind - bind thread to processing kqrequest |
| 5313 | * |
| 5314 | * The provided thread will be responsible for delivering events |
| 5315 | * associated with the given kqrequest. Bind it and get ready for |
| 5316 | * the thread to eventually arrive. |
| 5317 | */ |
| 5318 | void |
| 5319 | kqueue_threadreq_bind(struct proc *p, workq_threadreq_t kqr, thread_t thread, |
| 5320 | unsigned int flags) |
| 5321 | { |
| 5322 | kqueue_t kqu = kqr_kqueue(p, kqr); |
| 5323 | struct uthread *ut = get_bsdthread_info(thread); |
| 5324 | |
| 5325 | kqlock_held(kqu); |
| 5326 | |
| 5327 | assert(ut->uu_kqueue_override == 0); |
| 5328 | |
| 5329 | if (kqr->tr_state == WORKQ_TR_STATE_BINDING) { |
| 5330 | assert(ut->uu_kqr_bound == kqr); |
| 5331 | assert(kqr->tr_thread == thread); |
| 5332 | } else { |
| 5333 | assert(kqr_thread_requested_pending(kqr)); |
| 5334 | assert(kqr->tr_thread == THREAD_NULL); |
| 5335 | assert(ut->uu_kqr_bound == NULL); |
| 5336 | ut->uu_kqr_bound = kqr; |
| 5337 | kqr->tr_thread = thread; |
| 5338 | } |
| 5339 | |
| 5340 | kqr->tr_state = WORKQ_TR_STATE_BOUND; |
| 5341 | |
| 5342 | if (kqu.kq->kq_state & KQ_WORKLOOP) { |
| 5343 | struct turnstile *ts = kqu.kqwl->kqwl_turnstile; |
| 5344 | |
| 5345 | if (__improbable(thread == kqu.kqwl->kqwl_owner)) { |
| 5346 | /* |
| 5347 | * <rdar://problem/38626999> shows that asserting here is not ok. |
| 5348 | * |
| 5349 | * This is not supposed to happen for correct use of the interface, |
| 5350 | * but it is sadly possible for userspace (with the help of memory |
| 5351 | * corruption, such as over-release of a dispatch queue) to make |
| 5352 | * the creator thread the "owner" of a workloop. |
| 5353 | * |
| 5354 | * Once that happens, and that creator thread picks up the same |
| 5355 | * workloop as a servicer, we trip this codepath. We need to fixup |
| 5356 | * the state to forget about this thread being the owner, as the |
| 5357 | * entire workloop state machine expects servicers to never be |
| 5358 | * owners and everything would basically go downhill from here. |
| 5359 | */ |
| 5360 | kqu.kqwl->kqwl_owner = THREAD_NULL; |
| 5361 | if (kqworkloop_override(kqwl: kqu.kqwl)) { |
| 5362 | thread_drop_kevent_override(thread); |
| 5363 | } |
| 5364 | } |
| 5365 | |
| 5366 | if (ts && (flags & KQUEUE_THREADERQ_BIND_NO_INHERITOR_UPDATE) == 0) { |
| 5367 | /* |
| 5368 | * Past this point, the interlock is the kq req lock again, |
| 5369 | * so we can fix the inheritor for good. |
| 5370 | */ |
| 5371 | filt_wlupdate_inheritor(kqwl: kqu.kqwl, ts, flags: TURNSTILE_IMMEDIATE_UPDATE); |
| 5372 | turnstile_update_inheritor_complete(turnstile: ts, flags: TURNSTILE_INTERLOCK_HELD); |
| 5373 | } |
| 5374 | |
| 5375 | KDBG_DEBUG(KEV_EVTID(BSD_KEVENT_KQWL_BIND), kqu.kqwl->kqwl_dynamicid, |
| 5376 | thread_tid(thread), kqr->tr_kq_qos_index, |
| 5377 | (kqr->tr_kq_override_index << 16) | kqwl->kqwl_wakeup_qos); |
| 5378 | |
| 5379 | ut->uu_kqueue_override = kqr->tr_kq_override_index; |
| 5380 | if (kqr->tr_kq_override_index) { |
| 5381 | thread_add_servicer_override(thread, qos_override: kqr->tr_kq_override_index); |
| 5382 | } |
| 5383 | |
| 5384 | #if CONFIG_PREADOPT_TG |
| 5385 | /* Remove reference from kqwl and mark it as bound with the SENTINEL */ |
| 5386 | thread_group_qos_t old_tg; |
| 5387 | thread_group_qos_t new_tg; |
| 5388 | int ret = os_atomic_rmw_loop(kqr_preadopt_thread_group_addr(kqr), old_tg, new_tg, relaxed, { |
| 5389 | if ((old_tg == KQWL_PREADOPTED_TG_NEVER) || KQWL_HAS_PERMANENT_PREADOPTED_TG(old_tg)) { |
| 5390 | /* |
| 5391 | * Either an app or a kqwl permanently configured with a thread group. |
| 5392 | * Nothing to do. |
| 5393 | */ |
| 5394 | os_atomic_rmw_loop_give_up(break); |
| 5395 | } |
| 5396 | assert(old_tg != KQWL_PREADOPTED_TG_PROCESSED); |
| 5397 | new_tg = KQWL_PREADOPTED_TG_SENTINEL; |
| 5398 | }); |
| 5399 | |
| 5400 | if (ret) { |
| 5401 | KQWL_PREADOPT_TG_HISTORY_WRITE_ENTRY(kqu.kqwl, KQWL_PREADOPT_OP_SERVICER_BIND, old_tg, new_tg); |
| 5402 | |
| 5403 | if (KQWL_HAS_VALID_PREADOPTED_TG(old_tg)) { |
| 5404 | struct thread_group *tg = KQWL_GET_PREADOPTED_TG(old_tg); |
| 5405 | assert(tg != NULL); |
| 5406 | |
| 5407 | thread_set_preadopt_thread_group(t: thread, tg); |
| 5408 | thread_group_release_live(tg); // The thread has a reference |
| 5409 | } else { |
| 5410 | /* |
| 5411 | * The thread may already have a preadopt thread group on it - |
| 5412 | * we need to make sure to clear that. |
| 5413 | */ |
| 5414 | thread_set_preadopt_thread_group(t: thread, NULL); |
| 5415 | } |
| 5416 | |
| 5417 | /* We have taken action on the preadopted thread group set on the |
| 5418 | * set on the kqwl, clear any redrive requests */ |
| 5419 | os_atomic_store(&kqu.kqwl->kqwl_preadopt_tg_needs_redrive, KQWL_PREADOPT_TG_CLEAR_REDRIVE, relaxed); |
| 5420 | } else { |
| 5421 | if (KQWL_HAS_PERMANENT_PREADOPTED_TG(old_tg)) { |
| 5422 | struct thread_group *tg = KQWL_GET_PREADOPTED_TG(old_tg); |
| 5423 | assert(tg != NULL); |
| 5424 | thread_set_preadopt_thread_group(t: thread, tg); |
| 5425 | /* |
| 5426 | * From this point on, kqwl and thread both have +1 ref on this tg. |
| 5427 | */ |
| 5428 | } |
| 5429 | } |
| 5430 | #endif |
| 5431 | kqueue_update_iotier_override(kqu); |
| 5432 | } else { |
| 5433 | assert(kqr->tr_kq_override_index == 0); |
| 5434 | |
| 5435 | #if CONFIG_PREADOPT_TG |
| 5436 | /* |
| 5437 | * The thread may have a preadopt thread group on it already because it |
| 5438 | * got tagged with it as a creator thread. So we need to make sure to |
| 5439 | * clear that since we don't have preadopt thread groups for non-kqwl |
| 5440 | * cases |
| 5441 | */ |
| 5442 | thread_set_preadopt_thread_group(t: thread, NULL); |
| 5443 | #endif |
| 5444 | KDBG_DEBUG(KEV_EVTID(BSD_KEVENT_KQWQ_BIND), -1, |
| 5445 | thread_tid(thread), kqr->tr_kq_qos_index, |
| 5446 | (kqr->tr_kq_override_index << 16) | |
| 5447 | !TAILQ_EMPTY(&kqu.kqwq->kqwq_queue[kqr->tr_kq_qos_index - 1])); |
| 5448 | } |
| 5449 | } |
| 5450 | |
| 5451 | /* |
| 5452 | * kqueue_threadreq_cancel - abort a pending thread request |
| 5453 | * |
| 5454 | * Called when exiting/exec'ing. Forget our pending request. |
| 5455 | */ |
| 5456 | void |
| 5457 | kqueue_threadreq_cancel(struct proc *p, workq_threadreq_t kqr) |
| 5458 | { |
| 5459 | kqueue_release(kqu: kqr_kqueue(p, kqr)); |
| 5460 | } |
| 5461 | |
| 5462 | workq_threadreq_param_t |
| 5463 | kqueue_threadreq_workloop_param(workq_threadreq_t kqr) |
| 5464 | { |
| 5465 | struct kqworkloop *kqwl; |
| 5466 | workq_threadreq_param_t trp; |
| 5467 | |
| 5468 | assert(kqr->tr_flags & WORKQ_TR_FLAG_WORKLOOP); |
| 5469 | kqwl = __container_of(kqr, struct kqworkloop, kqwl_request); |
| 5470 | trp.trp_value = kqwl->kqwl_params; |
| 5471 | return trp; |
| 5472 | } |
| 5473 | |
| 5474 | /* |
| 5475 | * kqueue_threadreq_unbind - unbind thread from processing kqueue |
| 5476 | * |
| 5477 | * End processing the per-QoS bucket of events and allow other threads |
| 5478 | * to be requested for future servicing. |
| 5479 | * |
| 5480 | * caller holds a reference on the kqueue. |
| 5481 | */ |
| 5482 | void |
| 5483 | kqueue_threadreq_unbind(struct proc *p, workq_threadreq_t kqr) |
| 5484 | { |
| 5485 | if (kqr->tr_flags & WORKQ_TR_FLAG_WORKLOOP) { |
| 5486 | kqworkloop_unbind(kwql: kqr_kqworkloop(kqr)); |
| 5487 | } else { |
| 5488 | kqworkq_unbind(p, kqr); |
| 5489 | } |
| 5490 | } |
| 5491 | |
| 5492 | /* |
| 5493 | * If we aren't already busy processing events [for this QoS], |
| 5494 | * request workq thread support as appropriate. |
| 5495 | * |
| 5496 | * TBD - for now, we don't segregate out processing by QoS. |
| 5497 | * |
| 5498 | * - May be called with the kqueue's wait queue set locked, |
| 5499 | * so cannot do anything that could recurse on that. |
| 5500 | */ |
| 5501 | static void |
| 5502 | kqworkq_wakeup(struct kqworkq *kqwq, kq_index_t qos_index) |
| 5503 | { |
| 5504 | workq_threadreq_t kqr = kqworkq_get_request(kqwq, qos_index); |
| 5505 | |
| 5506 | /* convert to thread qos value */ |
| 5507 | assert(qos_index > 0 && qos_index <= KQWQ_NBUCKETS); |
| 5508 | |
| 5509 | if (!kqr_thread_requested(kqr)) { |
| 5510 | kqueue_threadreq_initiate(kqu: &kqwq->kqwq_kqueue, kqr, qos: qos_index, flags: 0); |
| 5511 | } |
| 5512 | } |
| 5513 | |
| 5514 | /* |
| 5515 | * This represent the asynchronous QoS a given workloop contributes, |
| 5516 | * hence is the max of the current active knotes (override index) |
| 5517 | * and the workloop max qos (userspace async qos). |
| 5518 | */ |
| 5519 | static kq_index_t |
| 5520 | kqworkloop_override(struct kqworkloop *kqwl) |
| 5521 | { |
| 5522 | workq_threadreq_t kqr = &kqwl->kqwl_request; |
| 5523 | return MAX(kqr->tr_kq_qos_index, kqr->tr_kq_override_index); |
| 5524 | } |
| 5525 | |
| 5526 | static inline void |
| 5527 | kqworkloop_request_fire_r2k_notification(struct kqworkloop *kqwl) |
| 5528 | { |
| 5529 | workq_threadreq_t kqr = &kqwl->kqwl_request; |
| 5530 | |
| 5531 | kqlock_held(kqu: kqwl); |
| 5532 | |
| 5533 | if (kqwl->kqwl_state & KQ_R2K_ARMED) { |
| 5534 | kqwl->kqwl_state &= ~KQ_R2K_ARMED; |
| 5535 | act_set_astkevent(thread: kqr_thread_fast(kqr), AST_KEVENT_RETURN_TO_KERNEL); |
| 5536 | } |
| 5537 | } |
| 5538 | |
| 5539 | static void |
| 5540 | kqworkloop_update_threads_qos(struct kqworkloop *kqwl, int op, kq_index_t qos) |
| 5541 | { |
| 5542 | workq_threadreq_t kqr = &kqwl->kqwl_request; |
| 5543 | struct kqueue *kq = &kqwl->kqwl_kqueue; |
| 5544 | kq_index_t old_override = kqworkloop_override(kqwl); |
| 5545 | |
| 5546 | kqlock_held(kqu: kqwl); |
| 5547 | |
| 5548 | switch (op) { |
| 5549 | case KQWL_UTQ_UPDATE_WAKEUP_QOS: |
| 5550 | kqwl->kqwl_wakeup_qos = qos; |
| 5551 | kqworkloop_request_fire_r2k_notification(kqwl); |
| 5552 | goto recompute; |
| 5553 | |
| 5554 | case KQWL_UTQ_RESET_WAKEUP_OVERRIDE: |
| 5555 | kqr->tr_kq_override_index = qos; |
| 5556 | goto recompute; |
| 5557 | |
| 5558 | case KQWL_UTQ_PARKING: |
| 5559 | case KQWL_UTQ_UNBINDING: |
| 5560 | kqr->tr_kq_override_index = qos; |
| 5561 | OS_FALLTHROUGH; |
| 5562 | |
| 5563 | case KQWL_UTQ_RECOMPUTE_WAKEUP_QOS: |
| 5564 | if (op == KQWL_UTQ_RECOMPUTE_WAKEUP_QOS) { |
| 5565 | assert(qos == THREAD_QOS_UNSPECIFIED); |
| 5566 | } |
| 5567 | if (TAILQ_EMPTY(&kqwl->kqwl_suppressed)) { |
| 5568 | kqr->tr_kq_override_index = THREAD_QOS_UNSPECIFIED; |
| 5569 | } |
| 5570 | kqwl->kqwl_wakeup_qos = 0; |
| 5571 | for (kq_index_t i = KQWL_NBUCKETS; i > 0; i--) { |
| 5572 | if (!TAILQ_EMPTY(&kqwl->kqwl_queue[i - 1])) { |
| 5573 | kqwl->kqwl_wakeup_qos = i; |
| 5574 | kqworkloop_request_fire_r2k_notification(kqwl); |
| 5575 | break; |
| 5576 | } |
| 5577 | } |
| 5578 | OS_FALLTHROUGH; |
| 5579 | |
| 5580 | case KQWL_UTQ_UPDATE_WAKEUP_OVERRIDE: |
| 5581 | recompute: |
| 5582 | /* |
| 5583 | * When modifying the wakeup QoS or the override QoS, we always need to |
| 5584 | * maintain our invariant that kqr_override_index is at least as large |
| 5585 | * as the highest QoS for which an event is fired. |
| 5586 | * |
| 5587 | * However this override index can be larger when there is an overriden |
| 5588 | * suppressed knote pushing on the kqueue. |
| 5589 | */ |
| 5590 | if (qos < kqwl->kqwl_wakeup_qos) { |
| 5591 | qos = kqwl->kqwl_wakeup_qos; |
| 5592 | } |
| 5593 | if (kqr->tr_kq_override_index < qos) { |
| 5594 | kqr->tr_kq_override_index = qos; |
| 5595 | } |
| 5596 | break; |
| 5597 | |
| 5598 | case KQWL_UTQ_REDRIVE_EVENTS: |
| 5599 | break; |
| 5600 | |
| 5601 | case KQWL_UTQ_SET_QOS_INDEX: |
| 5602 | kqr->tr_kq_qos_index = qos; |
| 5603 | break; |
| 5604 | |
| 5605 | default: |
| 5606 | panic("unknown kqwl thread qos update operation: %d" , op); |
| 5607 | } |
| 5608 | |
| 5609 | thread_t kqwl_owner = kqwl->kqwl_owner; |
| 5610 | thread_t servicer = kqr_thread(kqr); |
| 5611 | boolean_t qos_changed = FALSE; |
| 5612 | kq_index_t new_override = kqworkloop_override(kqwl); |
| 5613 | |
| 5614 | /* |
| 5615 | * Apply the diffs to the owner if applicable |
| 5616 | */ |
| 5617 | if (kqwl_owner) { |
| 5618 | #if 0 |
| 5619 | /* JMM - need new trace hooks for owner overrides */ |
| 5620 | KDBG_DEBUG(KEV_EVTID(BSD_KEVENT_KQWL_THADJUST), |
| 5621 | kqwl->kqwl_dynamicid, thread_tid(kqwl_owner), kqr->tr_kq_qos_index, |
| 5622 | (kqr->tr_kq_override_index << 16) | kqwl->kqwl_wakeup_qos); |
| 5623 | #endif |
| 5624 | if (new_override == old_override) { |
| 5625 | // nothing to do |
| 5626 | } else if (old_override == THREAD_QOS_UNSPECIFIED) { |
| 5627 | thread_add_kevent_override(thread: kqwl_owner, qos_override: new_override); |
| 5628 | } else if (new_override == THREAD_QOS_UNSPECIFIED) { |
| 5629 | thread_drop_kevent_override(thread: kqwl_owner); |
| 5630 | } else { /* old_override != new_override */ |
| 5631 | thread_update_kevent_override(thread: kqwl_owner, qos_override: new_override); |
| 5632 | } |
| 5633 | } |
| 5634 | |
| 5635 | /* |
| 5636 | * apply the diffs to the servicer |
| 5637 | */ |
| 5638 | |
| 5639 | if (!kqr_thread_requested(kqr)) { |
| 5640 | /* |
| 5641 | * No servicer, nor thread-request |
| 5642 | * |
| 5643 | * Make a new thread request, unless there is an owner (or the workloop |
| 5644 | * is suspended in userland) or if there is no asynchronous work in the |
| 5645 | * first place. |
| 5646 | */ |
| 5647 | |
| 5648 | if (kqwl_owner == NULL && kqwl->kqwl_wakeup_qos) { |
| 5649 | int initiate_flags = 0; |
| 5650 | if (op == KQWL_UTQ_UNBINDING) { |
| 5651 | initiate_flags = WORKQ_THREADREQ_ATTEMPT_REBIND; |
| 5652 | } |
| 5653 | |
| 5654 | /* kqueue_threadreq_initiate handles the acknowledgement of the TG |
| 5655 | * if needed */ |
| 5656 | kqueue_threadreq_initiate(kqu: kq, kqr, qos: new_override, flags: initiate_flags); |
| 5657 | } |
| 5658 | } else if (servicer) { |
| 5659 | /* |
| 5660 | * Servicer in flight |
| 5661 | * |
| 5662 | * Just apply the diff to the servicer |
| 5663 | */ |
| 5664 | |
| 5665 | #if CONFIG_PREADOPT_TG |
| 5666 | /* When there's a servicer for the kqwl already, then the servicer will |
| 5667 | * adopt the thread group in the kqr, we don't need to poke the |
| 5668 | * workqueue subsystem to make different decisions due to the thread |
| 5669 | * group. Consider the current request ack-ed. |
| 5670 | */ |
| 5671 | os_atomic_store(&kqwl->kqwl_preadopt_tg_needs_redrive, KQWL_PREADOPT_TG_CLEAR_REDRIVE, relaxed); |
| 5672 | #endif |
| 5673 | |
| 5674 | struct uthread *ut = get_bsdthread_info(servicer); |
| 5675 | if (ut->uu_kqueue_override != new_override) { |
| 5676 | if (ut->uu_kqueue_override == THREAD_QOS_UNSPECIFIED) { |
| 5677 | thread_add_servicer_override(thread: servicer, qos_override: new_override); |
| 5678 | } else if (new_override == THREAD_QOS_UNSPECIFIED) { |
| 5679 | thread_drop_servicer_override(thread: servicer); |
| 5680 | } else { /* ut->uu_kqueue_override != new_override */ |
| 5681 | thread_update_servicer_override(thread: servicer, qos_override: new_override); |
| 5682 | } |
| 5683 | ut->uu_kqueue_override = new_override; |
| 5684 | qos_changed = TRUE; |
| 5685 | } |
| 5686 | } else if (new_override == THREAD_QOS_UNSPECIFIED) { |
| 5687 | /* |
| 5688 | * No events to deliver anymore. |
| 5689 | * |
| 5690 | * However canceling with turnstiles is challenging, so the fact that |
| 5691 | * the request isn't useful will be discovered by the servicer himself |
| 5692 | * later on. |
| 5693 | */ |
| 5694 | } else if (old_override != new_override) { |
| 5695 | /* |
| 5696 | * Request is in flight |
| 5697 | * |
| 5698 | * Apply the diff to the thread request. |
| 5699 | */ |
| 5700 | kqueue_threadreq_modify(kqu: kq, kqr, qos: new_override, flags: WORKQ_THREADREQ_NONE); |
| 5701 | qos_changed = TRUE; |
| 5702 | } |
| 5703 | |
| 5704 | if (qos_changed) { |
| 5705 | KDBG_DEBUG(KEV_EVTID(BSD_KEVENT_KQWL_THADJUST), kqwl->kqwl_dynamicid, |
| 5706 | thread_tid(servicer), kqr->tr_kq_qos_index, |
| 5707 | (kqr->tr_kq_override_index << 16) | kqwl->kqwl_wakeup_qos); |
| 5708 | } |
| 5709 | } |
| 5710 | |
| 5711 | static void |
| 5712 | kqworkloop_update_iotier_override(struct kqworkloop *kqwl) |
| 5713 | { |
| 5714 | workq_threadreq_t kqr = &kqwl->kqwl_request; |
| 5715 | thread_t servicer = kqr_thread(kqr); |
| 5716 | uint8_t iotier = os_atomic_load(&kqwl->kqwl_iotier_override, relaxed); |
| 5717 | |
| 5718 | kqlock_held(kqu: kqwl); |
| 5719 | |
| 5720 | if (servicer) { |
| 5721 | thread_update_servicer_iotier_override(thread: servicer, iotier_override: iotier); |
| 5722 | } |
| 5723 | } |
| 5724 | |
| 5725 | static void |
| 5726 | kqworkloop_wakeup(struct kqworkloop *kqwl, kq_index_t qos) |
| 5727 | { |
| 5728 | if (qos <= kqwl->kqwl_wakeup_qos) { |
| 5729 | /* |
| 5730 | * Shortcut wakeups that really do nothing useful |
| 5731 | */ |
| 5732 | return; |
| 5733 | } |
| 5734 | |
| 5735 | if ((kqwl->kqwl_state & KQ_PROCESSING) && |
| 5736 | kqr_thread(kqr: &kqwl->kqwl_request) == current_thread()) { |
| 5737 | /* |
| 5738 | * kqworkloop_end_processing() will perform the required QoS |
| 5739 | * computations when it unsets the processing mode. |
| 5740 | */ |
| 5741 | return; |
| 5742 | } |
| 5743 | |
| 5744 | kqworkloop_update_threads_qos(kqwl, op: KQWL_UTQ_UPDATE_WAKEUP_QOS, qos); |
| 5745 | } |
| 5746 | |
| 5747 | static struct kqtailq * |
| 5748 | kqueue_get_suppressed_queue(kqueue_t kq, struct knote *kn) |
| 5749 | { |
| 5750 | if (kq.kq->kq_state & KQ_WORKLOOP) { |
| 5751 | return &kq.kqwl->kqwl_suppressed; |
| 5752 | } else if (kq.kq->kq_state & KQ_WORKQ) { |
| 5753 | return &kq.kqwq->kqwq_suppressed[kn->kn_qos_index - 1]; |
| 5754 | } else { |
| 5755 | return &kq.kqf->kqf_suppressed; |
| 5756 | } |
| 5757 | } |
| 5758 | |
| 5759 | struct turnstile * |
| 5760 | kqueue_alloc_turnstile(kqueue_t kqu) |
| 5761 | { |
| 5762 | struct kqworkloop *kqwl = kqu.kqwl; |
| 5763 | kq_state_t kq_state; |
| 5764 | |
| 5765 | kq_state = os_atomic_load(&kqu.kq->kq_state, dependency); |
| 5766 | if (kq_state & KQ_HAS_TURNSTILE) { |
| 5767 | /* force a dependency to pair with the atomic or with release below */ |
| 5768 | return os_atomic_load_with_dependency_on(&kqwl->kqwl_turnstile, |
| 5769 | (uintptr_t)kq_state); |
| 5770 | } |
| 5771 | |
| 5772 | if (!(kq_state & KQ_WORKLOOP)) { |
| 5773 | return TURNSTILE_NULL; |
| 5774 | } |
| 5775 | |
| 5776 | struct turnstile *ts = turnstile_alloc(), *free_ts = TURNSTILE_NULL; |
| 5777 | bool workq_locked = false; |
| 5778 | |
| 5779 | kqlock(kqu); |
| 5780 | |
| 5781 | if (filt_wlturnstile_interlock_is_workq(kqwl)) { |
| 5782 | workq_locked = true; |
| 5783 | workq_kern_threadreq_lock(p: kqwl->kqwl_p); |
| 5784 | } |
| 5785 | |
| 5786 | if (kqwl->kqwl_state & KQ_HAS_TURNSTILE) { |
| 5787 | free_ts = ts; |
| 5788 | ts = kqwl->kqwl_turnstile; |
| 5789 | } else { |
| 5790 | ts = turnstile_prepare(proprietor: (uintptr_t)kqwl, tstore: &kqwl->kqwl_turnstile, |
| 5791 | turnstile: ts, type: TURNSTILE_WORKLOOPS); |
| 5792 | |
| 5793 | /* release-barrier to pair with the unlocked load of kqwl_turnstile above */ |
| 5794 | os_atomic_or(&kqwl->kqwl_state, KQ_HAS_TURNSTILE, release); |
| 5795 | |
| 5796 | if (filt_wlturnstile_interlock_is_workq(kqwl)) { |
| 5797 | workq_kern_threadreq_update_inheritor(p: kqwl->kqwl_p, |
| 5798 | kqr: &kqwl->kqwl_request, owner: kqwl->kqwl_owner, |
| 5799 | ts, flags: TURNSTILE_IMMEDIATE_UPDATE); |
| 5800 | /* |
| 5801 | * The workq may no longer be the interlock after this. |
| 5802 | * In which case the inheritor wasn't updated. |
| 5803 | */ |
| 5804 | } |
| 5805 | if (!filt_wlturnstile_interlock_is_workq(kqwl)) { |
| 5806 | filt_wlupdate_inheritor(kqwl, ts, flags: TURNSTILE_IMMEDIATE_UPDATE); |
| 5807 | } |
| 5808 | } |
| 5809 | |
| 5810 | if (workq_locked) { |
| 5811 | workq_kern_threadreq_unlock(p: kqwl->kqwl_p); |
| 5812 | } |
| 5813 | |
| 5814 | kqunlock(kqu); |
| 5815 | |
| 5816 | if (free_ts) { |
| 5817 | turnstile_deallocate(turnstile: free_ts); |
| 5818 | } else { |
| 5819 | turnstile_update_inheritor_complete(turnstile: ts, flags: TURNSTILE_INTERLOCK_NOT_HELD); |
| 5820 | } |
| 5821 | return ts; |
| 5822 | } |
| 5823 | |
| 5824 | __attribute__((always_inline)) |
| 5825 | struct turnstile * |
| 5826 | kqueue_turnstile(kqueue_t kqu) |
| 5827 | { |
| 5828 | kq_state_t kq_state = os_atomic_load(&kqu.kq->kq_state, relaxed); |
| 5829 | if (kq_state & KQ_WORKLOOP) { |
| 5830 | return os_atomic_load(&kqu.kqwl->kqwl_turnstile, relaxed); |
| 5831 | } |
| 5832 | return TURNSTILE_NULL; |
| 5833 | } |
| 5834 | |
| 5835 | __attribute__((always_inline)) |
| 5836 | struct turnstile * |
| 5837 | kqueue_threadreq_get_turnstile(workq_threadreq_t kqr) |
| 5838 | { |
| 5839 | struct kqworkloop *kqwl = kqr_kqworkloop(kqr); |
| 5840 | if (kqwl) { |
| 5841 | return os_atomic_load(&kqwl->kqwl_turnstile, relaxed); |
| 5842 | } |
| 5843 | return TURNSTILE_NULL; |
| 5844 | } |
| 5845 | |
| 5846 | static void |
| 5847 | kqworkloop_set_overcommit(struct kqworkloop *kqwl) |
| 5848 | { |
| 5849 | workq_threadreq_t kqr = &kqwl->kqwl_request; |
| 5850 | |
| 5851 | /* |
| 5852 | * This test is racy, but since we never remove this bit, |
| 5853 | * it allows us to avoid taking a lock. |
| 5854 | */ |
| 5855 | if (kqr->tr_flags & WORKQ_TR_FLAG_OVERCOMMIT) { |
| 5856 | return; |
| 5857 | } |
| 5858 | |
| 5859 | kqlock_held(kqu: kqwl); |
| 5860 | |
| 5861 | if (kqr_thread_requested_pending(kqr)) { |
| 5862 | kqueue_threadreq_modify(kqu: kqwl, kqr, qos: kqr->tr_qos, |
| 5863 | flags: WORKQ_THREADREQ_MAKE_OVERCOMMIT); |
| 5864 | } else { |
| 5865 | kqr->tr_flags |= WORKQ_TR_FLAG_OVERCOMMIT; |
| 5866 | } |
| 5867 | } |
| 5868 | |
| 5869 | static void |
| 5870 | kqworkq_update_override(struct kqworkq *kqwq, struct knote *kn, |
| 5871 | kq_index_t override_index) |
| 5872 | { |
| 5873 | workq_threadreq_t kqr; |
| 5874 | kq_index_t old_override_index; |
| 5875 | kq_index_t queue_index = kn->kn_qos_index; |
| 5876 | |
| 5877 | if (override_index <= queue_index) { |
| 5878 | return; |
| 5879 | } |
| 5880 | |
| 5881 | kqr = kqworkq_get_request(kqwq, qos_index: queue_index); |
| 5882 | |
| 5883 | kqlock_held(kqu: kqwq); |
| 5884 | |
| 5885 | old_override_index = kqr->tr_kq_override_index; |
| 5886 | if (override_index > MAX(kqr->tr_kq_qos_index, old_override_index)) { |
| 5887 | thread_t servicer = kqr_thread(kqr); |
| 5888 | kqr->tr_kq_override_index = override_index; |
| 5889 | |
| 5890 | /* apply the override to [incoming?] servicing thread */ |
| 5891 | if (servicer) { |
| 5892 | if (old_override_index) { |
| 5893 | thread_update_kevent_override(thread: servicer, qos_override: override_index); |
| 5894 | } else { |
| 5895 | thread_add_kevent_override(thread: servicer, qos_override: override_index); |
| 5896 | } |
| 5897 | } |
| 5898 | } |
| 5899 | } |
| 5900 | |
| 5901 | static void |
| 5902 | kqueue_update_iotier_override(kqueue_t kqu) |
| 5903 | { |
| 5904 | if (kqu.kq->kq_state & KQ_WORKLOOP) { |
| 5905 | kqworkloop_update_iotier_override(kqwl: kqu.kqwl); |
| 5906 | } |
| 5907 | } |
| 5908 | |
| 5909 | static void |
| 5910 | kqueue_update_override(kqueue_t kqu, struct knote *kn, thread_qos_t qos) |
| 5911 | { |
| 5912 | if (kqu.kq->kq_state & KQ_WORKLOOP) { |
| 5913 | kqworkloop_update_threads_qos(kqwl: kqu.kqwl, op: KQWL_UTQ_UPDATE_WAKEUP_OVERRIDE, |
| 5914 | qos); |
| 5915 | } else { |
| 5916 | kqworkq_update_override(kqwq: kqu.kqwq, kn, override_index: qos); |
| 5917 | } |
| 5918 | } |
| 5919 | |
| 5920 | static void |
| 5921 | kqworkloop_unbind_locked(struct kqworkloop *kqwl, thread_t thread, |
| 5922 | enum kqwl_unbind_locked_mode how) |
| 5923 | { |
| 5924 | struct uthread *ut = get_bsdthread_info(thread); |
| 5925 | workq_threadreq_t kqr = &kqwl->kqwl_request; |
| 5926 | |
| 5927 | KDBG_DEBUG(KEV_EVTID(BSD_KEVENT_KQWL_UNBIND), kqwl->kqwl_dynamicid, |
| 5928 | thread_tid(thread), 0, 0); |
| 5929 | |
| 5930 | kqlock_held(kqu: kqwl); |
| 5931 | |
| 5932 | assert(ut->uu_kqr_bound == kqr); |
| 5933 | ut->uu_kqr_bound = NULL; |
| 5934 | if (how == KQWL_OVERRIDE_DROP_IMMEDIATELY && |
| 5935 | ut->uu_kqueue_override != THREAD_QOS_UNSPECIFIED) { |
| 5936 | thread_drop_servicer_override(thread); |
| 5937 | ut->uu_kqueue_override = THREAD_QOS_UNSPECIFIED; |
| 5938 | } |
| 5939 | |
| 5940 | if (kqwl->kqwl_owner == NULL && kqwl->kqwl_turnstile) { |
| 5941 | turnstile_update_inheritor(turnstile: kqwl->kqwl_turnstile, |
| 5942 | TURNSTILE_INHERITOR_NULL, flags: TURNSTILE_IMMEDIATE_UPDATE); |
| 5943 | turnstile_update_inheritor_complete(turnstile: kqwl->kqwl_turnstile, |
| 5944 | flags: TURNSTILE_INTERLOCK_HELD); |
| 5945 | } |
| 5946 | |
| 5947 | #if CONFIG_PREADOPT_TG |
| 5948 | /* The kqueue is able to adopt a thread group again */ |
| 5949 | |
| 5950 | thread_group_qos_t old_tg, new_tg = NULL; |
| 5951 | int ret = os_atomic_rmw_loop(kqr_preadopt_thread_group_addr(kqr), old_tg, new_tg, relaxed, { |
| 5952 | new_tg = old_tg; |
| 5953 | if (old_tg == KQWL_PREADOPTED_TG_SENTINEL || old_tg == KQWL_PREADOPTED_TG_PROCESSED) { |
| 5954 | new_tg = KQWL_PREADOPTED_TG_NULL; |
| 5955 | } |
| 5956 | }); |
| 5957 | |
| 5958 | if (ret) { |
| 5959 | KQWL_PREADOPT_TG_HISTORY_WRITE_ENTRY(kqwl, KQWL_PREADOPT_OP_SERVICER_UNBIND, old_tg, KQWL_PREADOPTED_TG_NULL); |
| 5960 | // Servicer can drop any preadopt thread group it has since it has |
| 5961 | // unbound. |
| 5962 | thread_set_preadopt_thread_group(t: thread, NULL); |
| 5963 | } |
| 5964 | #endif |
| 5965 | thread_update_servicer_iotier_override(thread, THROTTLE_LEVEL_END); |
| 5966 | |
| 5967 | kqr->tr_thread = THREAD_NULL; |
| 5968 | kqr->tr_state = WORKQ_TR_STATE_IDLE; |
| 5969 | kqwl->kqwl_state &= ~KQ_R2K_ARMED; |
| 5970 | } |
| 5971 | |
| 5972 | static void |
| 5973 | kqworkloop_unbind_delayed_override_drop(thread_t thread) |
| 5974 | { |
| 5975 | struct uthread *ut = get_bsdthread_info(thread); |
| 5976 | assert(ut->uu_kqr_bound == NULL); |
| 5977 | if (ut->uu_kqueue_override != THREAD_QOS_UNSPECIFIED) { |
| 5978 | thread_drop_servicer_override(thread); |
| 5979 | ut->uu_kqueue_override = THREAD_QOS_UNSPECIFIED; |
| 5980 | } |
| 5981 | } |
| 5982 | |
| 5983 | /* |
| 5984 | * kqworkloop_unbind - Unbind the servicer thread of a workloop kqueue |
| 5985 | * |
| 5986 | * It will acknowledge events, and possibly request a new thread if: |
| 5987 | * - there were active events left |
| 5988 | * - we pended waitq hook callouts during processing |
| 5989 | * - we pended wakeups while processing (or unsuppressing) |
| 5990 | * |
| 5991 | * Called with kqueue lock held. |
| 5992 | */ |
| 5993 | static void |
| 5994 | kqworkloop_unbind(struct kqworkloop *kqwl) |
| 5995 | { |
| 5996 | struct kqueue *kq = &kqwl->kqwl_kqueue; |
| 5997 | workq_threadreq_t kqr = &kqwl->kqwl_request; |
| 5998 | thread_t thread = kqr_thread_fast(kqr); |
| 5999 | int op = KQWL_UTQ_PARKING; |
| 6000 | kq_index_t qos_override = THREAD_QOS_UNSPECIFIED; |
| 6001 | |
| 6002 | assert(thread == current_thread()); |
| 6003 | |
| 6004 | kqlock(kqu: kqwl); |
| 6005 | |
| 6006 | /* |
| 6007 | * Forcing the KQ_PROCESSING flag allows for QoS updates because of |
| 6008 | * unsuppressing knotes not to be applied until the eventual call to |
| 6009 | * kqworkloop_update_threads_qos() below. |
| 6010 | */ |
| 6011 | assert((kq->kq_state & KQ_PROCESSING) == 0); |
| 6012 | if (!TAILQ_EMPTY(&kqwl->kqwl_suppressed)) { |
| 6013 | kq->kq_state |= KQ_PROCESSING; |
| 6014 | qos_override = kqworkloop_acknowledge_events(kqwl); |
| 6015 | kq->kq_state &= ~KQ_PROCESSING; |
| 6016 | } |
| 6017 | |
| 6018 | kqworkloop_unbind_locked(kqwl, thread, how: KQWL_OVERRIDE_DROP_DELAYED); |
| 6019 | kqworkloop_update_threads_qos(kqwl, op, qos: qos_override); |
| 6020 | |
| 6021 | kqunlock(kqu: kqwl); |
| 6022 | |
| 6023 | /* |
| 6024 | * Drop the override on the current thread last, after the call to |
| 6025 | * kqworkloop_update_threads_qos above. |
| 6026 | */ |
| 6027 | kqworkloop_unbind_delayed_override_drop(thread); |
| 6028 | |
| 6029 | /* If last reference, dealloc the workloop kq */ |
| 6030 | kqworkloop_release(kqwl); |
| 6031 | } |
| 6032 | |
| 6033 | static thread_qos_t |
| 6034 | kqworkq_unbind_locked(struct kqworkq *kqwq, |
| 6035 | workq_threadreq_t kqr, thread_t thread) |
| 6036 | { |
| 6037 | struct uthread *ut = get_bsdthread_info(thread); |
| 6038 | kq_index_t old_override = kqr->tr_kq_override_index; |
| 6039 | |
| 6040 | KDBG_DEBUG(KEV_EVTID(BSD_KEVENT_KQWQ_UNBIND), -1, |
| 6041 | thread_tid(kqr_thread(kqr)), kqr->tr_kq_qos_index, 0); |
| 6042 | |
| 6043 | kqlock_held(kqu: kqwq); |
| 6044 | |
| 6045 | assert(ut->uu_kqr_bound == kqr); |
| 6046 | ut->uu_kqr_bound = NULL; |
| 6047 | kqr->tr_thread = THREAD_NULL; |
| 6048 | kqr->tr_state = WORKQ_TR_STATE_IDLE; |
| 6049 | kqr->tr_kq_override_index = THREAD_QOS_UNSPECIFIED; |
| 6050 | kqwq->kqwq_state &= ~KQ_R2K_ARMED; |
| 6051 | |
| 6052 | return old_override; |
| 6053 | } |
| 6054 | |
| 6055 | /* |
| 6056 | * kqworkq_unbind - unbind of a workq kqueue from a thread |
| 6057 | * |
| 6058 | * We may have to request new threads. |
| 6059 | * This can happen there are no waiting processing threads and: |
| 6060 | * - there were active events we never got to (count > 0) |
| 6061 | * - we pended waitq hook callouts during processing |
| 6062 | * - we pended wakeups while processing (or unsuppressing) |
| 6063 | */ |
| 6064 | static void |
| 6065 | kqworkq_unbind(proc_t p, workq_threadreq_t kqr) |
| 6066 | { |
| 6067 | struct kqworkq *kqwq = (struct kqworkq *)p->p_fd.fd_wqkqueue; |
| 6068 | __assert_only int rc; |
| 6069 | |
| 6070 | kqlock(kqu: kqwq); |
| 6071 | rc = kqworkq_acknowledge_events(kqwq, kqr, kevent_flags: 0, KQWQAE_UNBIND); |
| 6072 | assert(rc == -1); |
| 6073 | kqunlock(kqu: kqwq); |
| 6074 | } |
| 6075 | |
| 6076 | workq_threadreq_t |
| 6077 | kqworkq_get_request(struct kqworkq *kqwq, kq_index_t qos_index) |
| 6078 | { |
| 6079 | assert(qos_index > 0 && qos_index <= KQWQ_NBUCKETS); |
| 6080 | return &kqwq->kqwq_request[qos_index - 1]; |
| 6081 | } |
| 6082 | |
| 6083 | static void |
| 6084 | knote_reset_priority(kqueue_t kqu, struct knote *kn, pthread_priority_t pp) |
| 6085 | { |
| 6086 | kq_index_t qos = _pthread_priority_thread_qos(pp); |
| 6087 | |
| 6088 | if (kqu.kq->kq_state & KQ_WORKLOOP) { |
| 6089 | assert((pp & _PTHREAD_PRIORITY_EVENT_MANAGER_FLAG) == 0); |
| 6090 | pp = _pthread_priority_normalize(pp); |
| 6091 | } else if (kqu.kq->kq_state & KQ_WORKQ) { |
| 6092 | if (qos == THREAD_QOS_UNSPECIFIED) { |
| 6093 | /* On workqueues, outside of QoS means MANAGER */ |
| 6094 | qos = KQWQ_QOS_MANAGER; |
| 6095 | pp = _PTHREAD_PRIORITY_EVENT_MANAGER_FLAG; |
| 6096 | } else { |
| 6097 | pp = _pthread_priority_normalize(pp); |
| 6098 | } |
| 6099 | } else { |
| 6100 | pp = _pthread_unspecified_priority(); |
| 6101 | qos = THREAD_QOS_UNSPECIFIED; |
| 6102 | } |
| 6103 | |
| 6104 | kn->kn_qos = (int32_t)pp; |
| 6105 | |
| 6106 | if ((kn->kn_status & KN_MERGE_QOS) == 0 || qos > kn->kn_qos_override) { |
| 6107 | /* Never lower QoS when in "Merge" mode */ |
| 6108 | kn->kn_qos_override = qos; |
| 6109 | } |
| 6110 | |
| 6111 | /* only adjust in-use qos index when not suppressed */ |
| 6112 | if (kn->kn_status & KN_SUPPRESSED) { |
| 6113 | kqueue_update_override(kqu, kn, qos); |
| 6114 | } else if (kn->kn_qos_index != qos) { |
| 6115 | knote_dequeue(kqu, kn); |
| 6116 | kn->kn_qos_index = qos; |
| 6117 | } |
| 6118 | } |
| 6119 | |
| 6120 | static void |
| 6121 | knote_adjust_qos(struct kqueue *kq, struct knote *kn, int result) |
| 6122 | { |
| 6123 | thread_qos_t qos_index = (result >> FILTER_ADJUST_EVENT_QOS_SHIFT) & 7; |
| 6124 | |
| 6125 | kqlock_held(kqu: kq); |
| 6126 | |
| 6127 | assert(result & FILTER_ADJUST_EVENT_QOS_BIT); |
| 6128 | assert(qos_index < THREAD_QOS_LAST); |
| 6129 | |
| 6130 | /* |
| 6131 | * Early exit for knotes that should not change QoS |
| 6132 | */ |
| 6133 | if (__improbable(!knote_fops(kn)->f_adjusts_qos)) { |
| 6134 | panic("filter %d cannot change QoS" , kn->kn_filtid); |
| 6135 | } else if (__improbable(!knote_has_qos(kn))) { |
| 6136 | return; |
| 6137 | } |
| 6138 | |
| 6139 | /* |
| 6140 | * knotes with the FALLBACK flag will only use their registration QoS if the |
| 6141 | * incoming event has no QoS, else, the registration QoS acts as a floor. |
| 6142 | */ |
| 6143 | thread_qos_t req_qos = _pthread_priority_thread_qos_fast(pp: kn->kn_qos); |
| 6144 | if (kn->kn_qos & _PTHREAD_PRIORITY_FALLBACK_FLAG) { |
| 6145 | if (qos_index == THREAD_QOS_UNSPECIFIED) { |
| 6146 | qos_index = req_qos; |
| 6147 | } |
| 6148 | } else { |
| 6149 | if (qos_index < req_qos) { |
| 6150 | qos_index = req_qos; |
| 6151 | } |
| 6152 | } |
| 6153 | if ((kn->kn_status & KN_MERGE_QOS) && (qos_index < kn->kn_qos_override)) { |
| 6154 | /* Never lower QoS when in "Merge" mode */ |
| 6155 | return; |
| 6156 | } |
| 6157 | |
| 6158 | if ((kn->kn_status & KN_LOCKED) && (kn->kn_status & KN_POSTING)) { |
| 6159 | /* |
| 6160 | * When we're trying to update the QoS override and that both an |
| 6161 | * f_event() and other f_* calls are running concurrently, any of these |
| 6162 | * in flight calls may want to perform overrides that aren't properly |
| 6163 | * serialized with each other. |
| 6164 | * |
| 6165 | * The first update that observes this racy situation enters a "Merge" |
| 6166 | * mode which causes subsequent override requests to saturate the |
| 6167 | * override instead of replacing its value. |
| 6168 | * |
| 6169 | * This mode is left when knote_unlock() or knote_post() |
| 6170 | * observe that no other f_* routine is in flight. |
| 6171 | */ |
| 6172 | kn->kn_status |= KN_MERGE_QOS; |
| 6173 | } |
| 6174 | |
| 6175 | /* |
| 6176 | * Now apply the override if it changed. |
| 6177 | */ |
| 6178 | |
| 6179 | if (kn->kn_qos_override == qos_index) { |
| 6180 | return; |
| 6181 | } |
| 6182 | |
| 6183 | kn->kn_qos_override = qos_index; |
| 6184 | |
| 6185 | if (kn->kn_status & KN_SUPPRESSED) { |
| 6186 | /* |
| 6187 | * For suppressed events, the kn_qos_index field cannot be touched as it |
| 6188 | * allows us to know on which supress queue the knote is for a kqworkq. |
| 6189 | * |
| 6190 | * Also, there's no natural push applied on the kqueues when this field |
| 6191 | * changes anyway. We hence need to apply manual overrides in this case, |
| 6192 | * which will be cleared when the events are later acknowledged. |
| 6193 | */ |
| 6194 | kqueue_update_override(kqu: kq, kn, qos: qos_index); |
| 6195 | } else if (kn->kn_qos_index != qos_index) { |
| 6196 | knote_dequeue(kqu: kq, kn); |
| 6197 | kn->kn_qos_index = qos_index; |
| 6198 | } |
| 6199 | } |
| 6200 | |
| 6201 | void |
| 6202 | klist_init(struct klist *list) |
| 6203 | { |
| 6204 | SLIST_INIT(list); |
| 6205 | } |
| 6206 | |
| 6207 | |
| 6208 | /* |
| 6209 | * Query/Post each knote in the object's list |
| 6210 | * |
| 6211 | * The object lock protects the list. It is assumed that the filter/event |
| 6212 | * routine for the object can determine that the object is already locked (via |
| 6213 | * the hint) and not deadlock itself. |
| 6214 | * |
| 6215 | * Autodetach is a specific contract which will detach all knotes from the |
| 6216 | * object prior to posting the final event for that knote. This is done while |
| 6217 | * under the object lock. A breadcrumb is left in the knote's next pointer to |
| 6218 | * indicate to future calls to f_detach routines that they need not reattempt |
| 6219 | * to knote_detach from the object's klist again. This is currently used by |
| 6220 | * EVFILTID_SPEC, EVFILTID_TTY, EVFILTID_PTMX |
| 6221 | * |
| 6222 | */ |
| 6223 | void |
| 6224 | knote(struct klist *list, long hint, bool autodetach) |
| 6225 | { |
| 6226 | struct knote *kn; |
| 6227 | struct knote *tmp_kn; |
| 6228 | SLIST_FOREACH_SAFE(kn, list, kn_selnext, tmp_kn) { |
| 6229 | /* |
| 6230 | * We can modify the knote's next pointer since since we are holding the |
| 6231 | * object lock and the list can't be concurrently modified. Anyone |
| 6232 | * determining auto-detached-ness of a knote should take the primitive lock |
| 6233 | * to synchronize. |
| 6234 | * |
| 6235 | * Note that we do this here instead of the filter's f_event since we may |
| 6236 | * not even post the event if the knote is being dropped. |
| 6237 | */ |
| 6238 | if (autodetach) { |
| 6239 | kn->kn_selnext.sle_next = KNOTE_AUTODETACHED; |
| 6240 | } |
| 6241 | knote_post(kn, hint); |
| 6242 | } |
| 6243 | |
| 6244 | /* Blast away the entire klist */ |
| 6245 | if (autodetach) { |
| 6246 | klist_init(list); |
| 6247 | } |
| 6248 | } |
| 6249 | |
| 6250 | /* |
| 6251 | * attach a knote to the specified list. Return true if this is the first entry. |
| 6252 | * The list is protected by whatever lock the object it is associated with uses. |
| 6253 | */ |
| 6254 | int |
| 6255 | knote_attach(struct klist *list, struct knote *kn) |
| 6256 | { |
| 6257 | int ret = SLIST_EMPTY(list); |
| 6258 | SLIST_INSERT_HEAD(list, kn, kn_selnext); |
| 6259 | return ret; |
| 6260 | } |
| 6261 | |
| 6262 | /* |
| 6263 | * detach a knote from the specified list. Return true if that was the last |
| 6264 | * entry. The list is protected by whatever lock the object it is associated |
| 6265 | * with uses. |
| 6266 | */ |
| 6267 | int |
| 6268 | knote_detach(struct klist *list, struct knote *kn) |
| 6269 | { |
| 6270 | assert(!KNOTE_IS_AUTODETACHED(kn)); |
| 6271 | |
| 6272 | SLIST_REMOVE(list, kn, knote, kn_selnext); |
| 6273 | return SLIST_EMPTY(list); |
| 6274 | } |
| 6275 | |
| 6276 | /* |
| 6277 | * knote_vanish - Indicate that the source has vanished |
| 6278 | * |
| 6279 | * Used only for vanishing ports - vanishing fds go |
| 6280 | * through knote_fdclose() |
| 6281 | * |
| 6282 | * If the knote has requested EV_VANISHED delivery, |
| 6283 | * arrange for that. Otherwise, deliver a NOTE_REVOKE |
| 6284 | * event for backward compatibility. |
| 6285 | * |
| 6286 | * The knote is marked as having vanished. The source's |
| 6287 | * reference to the knote is dropped by caller, but the knote's |
| 6288 | * source reference is only cleaned up later when the knote is dropped. |
| 6289 | * |
| 6290 | * Our caller already has the object lock held. Calling |
| 6291 | * the detach routine would try to take that lock |
| 6292 | * recursively - which likely is not supported. |
| 6293 | */ |
| 6294 | void |
| 6295 | knote_vanish(struct klist *list, bool make_active) |
| 6296 | { |
| 6297 | struct knote *kn; |
| 6298 | struct knote *kn_next; |
| 6299 | |
| 6300 | SLIST_FOREACH_SAFE(kn, list, kn_selnext, kn_next) { |
| 6301 | struct kqueue *kq = knote_get_kq(kn); |
| 6302 | |
| 6303 | kqlock(kqu: kq); |
| 6304 | if (__probable(kn->kn_status & KN_REQVANISH)) { |
| 6305 | /* |
| 6306 | * If EV_VANISH supported - prepare to deliver one |
| 6307 | */ |
| 6308 | kn->kn_status |= KN_VANISHED; |
| 6309 | } else { |
| 6310 | /* |
| 6311 | * Handle the legacy way to indicate that the port/portset was |
| 6312 | * deallocated or left the current Mach portspace (modern technique |
| 6313 | * is with an EV_VANISHED protocol). |
| 6314 | * |
| 6315 | * Deliver an EV_EOF event for these changes (hopefully it will get |
| 6316 | * delivered before the port name recycles to the same generation |
| 6317 | * count and someone tries to re-register a kevent for it or the |
| 6318 | * events are udata-specific - avoiding a conflict). |
| 6319 | */ |
| 6320 | kn->kn_flags |= EV_EOF | EV_ONESHOT; |
| 6321 | } |
| 6322 | if (make_active) { |
| 6323 | knote_activate(kqu: kq, kn, FILTER_ACTIVE); |
| 6324 | } |
| 6325 | kqunlock(kqu: kq); |
| 6326 | } |
| 6327 | } |
| 6328 | |
| 6329 | /* |
| 6330 | * remove all knotes referencing a specified fd |
| 6331 | * |
| 6332 | * Entered with the proc_fd lock already held. |
| 6333 | * It returns the same way, but may drop it temporarily. |
| 6334 | */ |
| 6335 | void |
| 6336 | knote_fdclose(struct proc *p, int fd) |
| 6337 | { |
| 6338 | struct filedesc *fdt = &p->p_fd; |
| 6339 | struct klist *list; |
| 6340 | struct knote *kn; |
| 6341 | KNOTE_LOCK_CTX(knlc); |
| 6342 | |
| 6343 | restart: |
| 6344 | list = &fdt->fd_knlist[fd]; |
| 6345 | SLIST_FOREACH(kn, list, kn_link) { |
| 6346 | struct kqueue *kq = knote_get_kq(kn); |
| 6347 | |
| 6348 | kqlock(kqu: kq); |
| 6349 | |
| 6350 | if (kq->kq_p != p) { |
| 6351 | panic("%s: proc mismatch (kq->kq_p=%p != p=%p)" , |
| 6352 | __func__, kq->kq_p, p); |
| 6353 | } |
| 6354 | |
| 6355 | /* |
| 6356 | * If the knote supports EV_VANISHED delivery, |
| 6357 | * transition it to vanished mode (or skip over |
| 6358 | * it if already vanished). |
| 6359 | */ |
| 6360 | if (kn->kn_status & KN_VANISHED) { |
| 6361 | kqunlock(kqu: kq); |
| 6362 | continue; |
| 6363 | } |
| 6364 | |
| 6365 | proc_fdunlock(p); |
| 6366 | if (!knote_lock(kqu: kq, kn, knlc: &knlc, kqlocking: KNOTE_KQ_LOCK_ON_SUCCESS)) { |
| 6367 | /* the knote was dropped by someone, nothing to do */ |
| 6368 | } else if (kn->kn_status & KN_REQVANISH) { |
| 6369 | /* |
| 6370 | * Since we have REQVANISH for this knote, we need to notify clients about |
| 6371 | * the EV_VANISHED. |
| 6372 | * |
| 6373 | * But unlike mach ports, we want to do the detach here as well and not |
| 6374 | * defer it so that we can release the iocount that is on the knote and |
| 6375 | * close the fp. |
| 6376 | */ |
| 6377 | kn->kn_status |= KN_VANISHED; |
| 6378 | |
| 6379 | /* |
| 6380 | * There may be a concurrent post happening, make sure to wait for it |
| 6381 | * before we detach. knote_wait_for_post() unlocks on kq on exit |
| 6382 | */ |
| 6383 | knote_wait_for_post(kq, kn); |
| 6384 | |
| 6385 | knote_fops(kn)->f_detach(kn); |
| 6386 | if (kn->kn_is_fd) { |
| 6387 | fp_drop(p, fd: (int)kn->kn_id, fp: kn->kn_fp, locked: 0); |
| 6388 | } |
| 6389 | kn->kn_filtid = EVFILTID_DETACHED; |
| 6390 | kqlock(kqu: kq); |
| 6391 | |
| 6392 | knote_activate(kqu: kq, kn, FILTER_ACTIVE); |
| 6393 | knote_unlock(kqu: kq, kn, knlc: &knlc, kqlocking: KNOTE_KQ_UNLOCK); |
| 6394 | } else { |
| 6395 | knote_drop(kqu: kq, kn, knlc: &knlc); |
| 6396 | } |
| 6397 | |
| 6398 | proc_fdlock(p); |
| 6399 | goto restart; |
| 6400 | } |
| 6401 | } |
| 6402 | |
| 6403 | /* |
| 6404 | * knote_fdfind - lookup a knote in the fd table for process |
| 6405 | * |
| 6406 | * If the filter is file-based, lookup based on fd index. |
| 6407 | * Otherwise use a hash based on the ident. |
| 6408 | * |
| 6409 | * Matching is based on kq, filter, and ident. Optionally, |
| 6410 | * it may also be based on the udata field in the kevent - |
| 6411 | * allowing multiple event registration for the file object |
| 6412 | * per kqueue. |
| 6413 | * |
| 6414 | * fd_knhashlock or fdlock held on entry (and exit) |
| 6415 | */ |
| 6416 | static struct knote * |
| 6417 | knote_fdfind(struct kqueue *kq, |
| 6418 | const struct kevent_internal_s *kev, |
| 6419 | bool is_fd, |
| 6420 | struct proc *p) |
| 6421 | { |
| 6422 | struct filedesc *fdp = &p->p_fd; |
| 6423 | struct klist *list = NULL; |
| 6424 | struct knote *kn = NULL; |
| 6425 | |
| 6426 | /* |
| 6427 | * determine where to look for the knote |
| 6428 | */ |
| 6429 | if (is_fd) { |
| 6430 | /* fd-based knotes are linked off the fd table */ |
| 6431 | if (kev->kei_ident < (u_int)fdp->fd_knlistsize) { |
| 6432 | list = &fdp->fd_knlist[kev->kei_ident]; |
| 6433 | } |
| 6434 | } else if (fdp->fd_knhashmask != 0) { |
| 6435 | /* hash non-fd knotes here too */ |
| 6436 | list = &fdp->fd_knhash[KN_HASH((u_long)kev->kei_ident, fdp->fd_knhashmask)]; |
| 6437 | } |
| 6438 | |
| 6439 | /* |
| 6440 | * scan the selected list looking for a match |
| 6441 | */ |
| 6442 | if (list != NULL) { |
| 6443 | SLIST_FOREACH(kn, list, kn_link) { |
| 6444 | if (kq == knote_get_kq(kn) && |
| 6445 | kev->kei_ident == kn->kn_id && |
| 6446 | kev->kei_filter == kn->kn_filter) { |
| 6447 | if (kev->kei_flags & EV_UDATA_SPECIFIC) { |
| 6448 | if ((kn->kn_flags & EV_UDATA_SPECIFIC) && |
| 6449 | kev->kei_udata == kn->kn_udata) { |
| 6450 | break; /* matching udata-specific knote */ |
| 6451 | } |
| 6452 | } else if ((kn->kn_flags & EV_UDATA_SPECIFIC) == 0) { |
| 6453 | break; /* matching non-udata-specific knote */ |
| 6454 | } |
| 6455 | } |
| 6456 | } |
| 6457 | } |
| 6458 | return kn; |
| 6459 | } |
| 6460 | |
| 6461 | /* |
| 6462 | * kq_add_knote- Add knote to the fd table for process |
| 6463 | * while checking for duplicates. |
| 6464 | * |
| 6465 | * All file-based filters associate a list of knotes by file |
| 6466 | * descriptor index. All other filters hash the knote by ident. |
| 6467 | * |
| 6468 | * May have to grow the table of knote lists to cover the |
| 6469 | * file descriptor index presented. |
| 6470 | * |
| 6471 | * fd_knhashlock and fdlock unheld on entry (and exit). |
| 6472 | * |
| 6473 | * Takes a rwlock boost if inserting the knote is successful. |
| 6474 | */ |
| 6475 | static int |
| 6476 | kq_add_knote(struct kqueue *kq, struct knote *kn, struct knote_lock_ctx *knlc, |
| 6477 | struct proc *p) |
| 6478 | { |
| 6479 | struct filedesc *fdp = &p->p_fd; |
| 6480 | struct klist *list = NULL; |
| 6481 | int ret = 0; |
| 6482 | bool is_fd = kn->kn_is_fd; |
| 6483 | |
| 6484 | if (is_fd) { |
| 6485 | proc_fdlock(p); |
| 6486 | } else { |
| 6487 | knhash_lock(fdp); |
| 6488 | } |
| 6489 | |
| 6490 | if (knote_fdfind(kq, kev: &kn->kn_kevent, is_fd, p) != NULL) { |
| 6491 | /* found an existing knote: we can't add this one */ |
| 6492 | ret = ERESTART; |
| 6493 | goto out_locked; |
| 6494 | } |
| 6495 | |
| 6496 | /* knote was not found: add it now */ |
| 6497 | if (!is_fd) { |
| 6498 | if (fdp->fd_knhashmask == 0) { |
| 6499 | u_long size = 0; |
| 6500 | |
| 6501 | list = hashinit(CONFIG_KN_HASHSIZE, M_KQUEUE, hashmask: &size); |
| 6502 | if (list == NULL) { |
| 6503 | ret = ENOMEM; |
| 6504 | goto out_locked; |
| 6505 | } |
| 6506 | |
| 6507 | fdp->fd_knhash = list; |
| 6508 | fdp->fd_knhashmask = size; |
| 6509 | } |
| 6510 | |
| 6511 | list = &fdp->fd_knhash[KN_HASH(kn->kn_id, fdp->fd_knhashmask)]; |
| 6512 | SLIST_INSERT_HEAD(list, kn, kn_link); |
| 6513 | ret = 0; |
| 6514 | goto out_locked; |
| 6515 | } else { |
| 6516 | /* knote is fd based */ |
| 6517 | |
| 6518 | if ((u_int)fdp->fd_knlistsize <= kn->kn_id) { |
| 6519 | u_int size = 0; |
| 6520 | |
| 6521 | /* Make sure that fd stays below current process's soft limit AND system allowed per-process limits */ |
| 6522 | if (kn->kn_id >= (uint64_t)proc_limitgetcur_nofile(p)) { |
| 6523 | ret = EINVAL; |
| 6524 | goto out_locked; |
| 6525 | } |
| 6526 | /* have to grow the fd_knlist */ |
| 6527 | size = fdp->fd_knlistsize; |
| 6528 | while (size <= kn->kn_id) { |
| 6529 | size += KQEXTENT; |
| 6530 | } |
| 6531 | |
| 6532 | if (size >= (UINT_MAX / sizeof(struct klist))) { |
| 6533 | ret = EINVAL; |
| 6534 | goto out_locked; |
| 6535 | } |
| 6536 | |
| 6537 | list = kalloc_type(struct klist, size, Z_WAITOK | Z_ZERO); |
| 6538 | if (list == NULL) { |
| 6539 | ret = ENOMEM; |
| 6540 | goto out_locked; |
| 6541 | } |
| 6542 | |
| 6543 | bcopy(src: fdp->fd_knlist, dst: list, |
| 6544 | n: fdp->fd_knlistsize * sizeof(struct klist)); |
| 6545 | kfree_type(struct klist, fdp->fd_knlistsize, fdp->fd_knlist); |
| 6546 | fdp->fd_knlist = list; |
| 6547 | fdp->fd_knlistsize = size; |
| 6548 | } |
| 6549 | |
| 6550 | list = &fdp->fd_knlist[kn->kn_id]; |
| 6551 | SLIST_INSERT_HEAD(list, kn, kn_link); |
| 6552 | ret = 0; |
| 6553 | goto out_locked; |
| 6554 | } |
| 6555 | |
| 6556 | out_locked: |
| 6557 | if (ret == 0) { |
| 6558 | kqlock(kqu: kq); |
| 6559 | assert((kn->kn_status & KN_LOCKED) == 0); |
| 6560 | (void)knote_lock(kqu: kq, kn, knlc, kqlocking: KNOTE_KQ_UNLOCK); |
| 6561 | kqueue_retain(kqu: kq); /* retain a kq ref */ |
| 6562 | } |
| 6563 | if (is_fd) { |
| 6564 | proc_fdunlock(p); |
| 6565 | } else { |
| 6566 | knhash_unlock(fdp); |
| 6567 | } |
| 6568 | |
| 6569 | return ret; |
| 6570 | } |
| 6571 | |
| 6572 | /* |
| 6573 | * kq_remove_knote - remove a knote from the fd table for process |
| 6574 | * |
| 6575 | * If the filter is file-based, remove based on fd index. |
| 6576 | * Otherwise remove from the hash based on the ident. |
| 6577 | * |
| 6578 | * fd_knhashlock and fdlock unheld on entry (and exit). |
| 6579 | */ |
| 6580 | static void |
| 6581 | kq_remove_knote(struct kqueue *kq, struct knote *kn, struct proc *p, |
| 6582 | struct knote_lock_ctx *knlc) |
| 6583 | { |
| 6584 | struct filedesc *fdp = &p->p_fd; |
| 6585 | struct klist *list = NULL; |
| 6586 | uint16_t kq_state; |
| 6587 | bool is_fd = kn->kn_is_fd; |
| 6588 | |
| 6589 | if (is_fd) { |
| 6590 | proc_fdlock(p); |
| 6591 | } else { |
| 6592 | knhash_lock(fdp); |
| 6593 | } |
| 6594 | |
| 6595 | if (is_fd) { |
| 6596 | assert((u_int)fdp->fd_knlistsize > kn->kn_id); |
| 6597 | list = &fdp->fd_knlist[kn->kn_id]; |
| 6598 | } else { |
| 6599 | list = &fdp->fd_knhash[KN_HASH(kn->kn_id, fdp->fd_knhashmask)]; |
| 6600 | } |
| 6601 | SLIST_REMOVE(list, kn, knote, kn_link); |
| 6602 | |
| 6603 | kqlock(kqu: kq); |
| 6604 | |
| 6605 | /* Update the servicer iotier override */ |
| 6606 | kqueue_update_iotier_override(kqu: kq); |
| 6607 | |
| 6608 | kq_state = kq->kq_state; |
| 6609 | if (knlc) { |
| 6610 | knote_unlock_cancel(kq, kn, knlc); |
| 6611 | } else { |
| 6612 | kqunlock(kqu: kq); |
| 6613 | } |
| 6614 | if (is_fd) { |
| 6615 | proc_fdunlock(p); |
| 6616 | } else { |
| 6617 | knhash_unlock(fdp); |
| 6618 | } |
| 6619 | |
| 6620 | if (kq_state & KQ_DYNAMIC) { |
| 6621 | kqworkloop_release(kqwl: (struct kqworkloop *)kq); |
| 6622 | } |
| 6623 | } |
| 6624 | |
| 6625 | /* |
| 6626 | * kq_find_knote_and_kq_lock - lookup a knote in the fd table for process |
| 6627 | * and, if the knote is found, acquires the kqlock while holding the fd table lock/spinlock. |
| 6628 | * |
| 6629 | * fd_knhashlock or fdlock unheld on entry (and exit) |
| 6630 | */ |
| 6631 | |
| 6632 | static struct knote * |
| 6633 | kq_find_knote_and_kq_lock(struct kqueue *kq, struct kevent_qos_s *kev, |
| 6634 | bool is_fd, struct proc *p) |
| 6635 | { |
| 6636 | struct filedesc *fdp = &p->p_fd; |
| 6637 | struct knote *kn; |
| 6638 | |
| 6639 | if (is_fd) { |
| 6640 | proc_fdlock(p); |
| 6641 | } else { |
| 6642 | knhash_lock(fdp); |
| 6643 | } |
| 6644 | |
| 6645 | /* |
| 6646 | * Temporary horrible hack: |
| 6647 | * this cast is gross and will go away in a future change. |
| 6648 | * It is OK to do because we don't look at xflags/s_fflags, |
| 6649 | * and that when we cast down the kev this way, |
| 6650 | * the truncated filter field works. |
| 6651 | */ |
| 6652 | kn = knote_fdfind(kq, kev: (struct kevent_internal_s *)kev, is_fd, p); |
| 6653 | |
| 6654 | if (kn) { |
| 6655 | kqlock(kqu: kq); |
| 6656 | assert(knote_get_kq(kn) == kq); |
| 6657 | } |
| 6658 | |
| 6659 | if (is_fd) { |
| 6660 | proc_fdunlock(p); |
| 6661 | } else { |
| 6662 | knhash_unlock(fdp); |
| 6663 | } |
| 6664 | |
| 6665 | return kn; |
| 6666 | } |
| 6667 | |
| 6668 | static struct kqtailq * |
| 6669 | knote_get_tailq(kqueue_t kqu, struct knote *kn) |
| 6670 | { |
| 6671 | kq_index_t qos_index = kn->kn_qos_index; |
| 6672 | |
| 6673 | if (kqu.kq->kq_state & KQ_WORKLOOP) { |
| 6674 | assert(qos_index > 0 && qos_index <= KQWL_NBUCKETS); |
| 6675 | return &kqu.kqwl->kqwl_queue[qos_index - 1]; |
| 6676 | } else if (kqu.kq->kq_state & KQ_WORKQ) { |
| 6677 | assert(qos_index > 0 && qos_index <= KQWQ_NBUCKETS); |
| 6678 | return &kqu.kqwq->kqwq_queue[qos_index - 1]; |
| 6679 | } else { |
| 6680 | assert(qos_index == QOS_INDEX_KQFILE); |
| 6681 | return &kqu.kqf->kqf_queue; |
| 6682 | } |
| 6683 | } |
| 6684 | |
| 6685 | static void |
| 6686 | knote_enqueue(kqueue_t kqu, struct knote *kn) |
| 6687 | { |
| 6688 | kqlock_held(kqu); |
| 6689 | |
| 6690 | if ((kn->kn_status & KN_ACTIVE) == 0) { |
| 6691 | return; |
| 6692 | } |
| 6693 | |
| 6694 | if (kn->kn_status & (KN_DISABLED | KN_SUPPRESSED | KN_DROPPING | KN_QUEUED)) { |
| 6695 | return; |
| 6696 | } |
| 6697 | |
| 6698 | struct kqtailq *queue = knote_get_tailq(kqu, kn); |
| 6699 | bool wakeup = TAILQ_EMPTY(queue); |
| 6700 | |
| 6701 | TAILQ_INSERT_TAIL(queue, kn, kn_tqe); |
| 6702 | kn->kn_status |= KN_QUEUED; |
| 6703 | kqu.kq->kq_count++; |
| 6704 | |
| 6705 | if (wakeup) { |
| 6706 | if (kqu.kq->kq_state & KQ_WORKLOOP) { |
| 6707 | kqworkloop_wakeup(kqwl: kqu.kqwl, qos: kn->kn_qos_index); |
| 6708 | } else if (kqu.kq->kq_state & KQ_WORKQ) { |
| 6709 | kqworkq_wakeup(kqwq: kqu.kqwq, qos_index: kn->kn_qos_index); |
| 6710 | } else { |
| 6711 | kqfile_wakeup(kqf: kqu.kqf, hint: 0, THREAD_AWAKENED); |
| 6712 | } |
| 6713 | } |
| 6714 | } |
| 6715 | |
| 6716 | __attribute__((always_inline)) |
| 6717 | static inline void |
| 6718 | knote_dequeue(kqueue_t kqu, struct knote *kn) |
| 6719 | { |
| 6720 | if (kn->kn_status & KN_QUEUED) { |
| 6721 | struct kqtailq *queue = knote_get_tailq(kqu, kn); |
| 6722 | |
| 6723 | // attaching the knote calls knote_reset_priority() without |
| 6724 | // the kqlock which is fine, so we can't call kqlock_held() |
| 6725 | // if we're not queued. |
| 6726 | kqlock_held(kqu); |
| 6727 | |
| 6728 | TAILQ_REMOVE(queue, kn, kn_tqe); |
| 6729 | kn->kn_status &= ~KN_QUEUED; |
| 6730 | kqu.kq->kq_count--; |
| 6731 | if ((kqu.kq->kq_state & (KQ_WORKQ | KQ_WORKLOOP)) == 0) { |
| 6732 | assert((kqu.kq->kq_count == 0) == |
| 6733 | (bool)TAILQ_EMPTY(queue)); |
| 6734 | } |
| 6735 | } |
| 6736 | } |
| 6737 | |
| 6738 | /* called with kqueue lock held */ |
| 6739 | static void |
| 6740 | knote_suppress(kqueue_t kqu, struct knote *kn) |
| 6741 | { |
| 6742 | struct kqtailq *suppressq; |
| 6743 | |
| 6744 | kqlock_held(kqu); |
| 6745 | |
| 6746 | assert((kn->kn_status & KN_SUPPRESSED) == 0); |
| 6747 | assert(kn->kn_status & KN_QUEUED); |
| 6748 | |
| 6749 | knote_dequeue(kqu, kn); |
| 6750 | /* deactivate - so new activations indicate a wakeup */ |
| 6751 | kn->kn_status &= ~KN_ACTIVE; |
| 6752 | kn->kn_status |= KN_SUPPRESSED; |
| 6753 | suppressq = kqueue_get_suppressed_queue(kq: kqu, kn); |
| 6754 | TAILQ_INSERT_TAIL(suppressq, kn, kn_tqe); |
| 6755 | } |
| 6756 | |
| 6757 | __attribute__((always_inline)) |
| 6758 | static inline void |
| 6759 | knote_unsuppress_noqueue(kqueue_t kqu, struct knote *kn) |
| 6760 | { |
| 6761 | struct kqtailq *suppressq; |
| 6762 | |
| 6763 | kqlock_held(kqu); |
| 6764 | |
| 6765 | assert(kn->kn_status & KN_SUPPRESSED); |
| 6766 | |
| 6767 | kn->kn_status &= ~KN_SUPPRESSED; |
| 6768 | suppressq = kqueue_get_suppressed_queue(kq: kqu, kn); |
| 6769 | TAILQ_REMOVE(suppressq, kn, kn_tqe); |
| 6770 | |
| 6771 | /* |
| 6772 | * If the knote is no longer active, reset its push, |
| 6773 | * and resynchronize kn_qos_index with kn_qos_override |
| 6774 | * for knotes with a real qos. |
| 6775 | */ |
| 6776 | if ((kn->kn_status & KN_ACTIVE) == 0 && knote_has_qos(kn)) { |
| 6777 | kn->kn_qos_override = _pthread_priority_thread_qos_fast(pp: kn->kn_qos); |
| 6778 | } |
| 6779 | kn->kn_qos_index = kn->kn_qos_override; |
| 6780 | } |
| 6781 | |
| 6782 | /* called with kqueue lock held */ |
| 6783 | static void |
| 6784 | knote_unsuppress(kqueue_t kqu, struct knote *kn) |
| 6785 | { |
| 6786 | knote_unsuppress_noqueue(kqu, kn); |
| 6787 | knote_enqueue(kqu, kn); |
| 6788 | } |
| 6789 | |
| 6790 | __attribute__((always_inline)) |
| 6791 | static inline void |
| 6792 | knote_mark_active(struct knote *kn) |
| 6793 | { |
| 6794 | if ((kn->kn_status & KN_ACTIVE) == 0) { |
| 6795 | KDBG_DEBUG(KEV_EVTID(BSD_KEVENT_KNOTE_ACTIVATE), |
| 6796 | kn->kn_udata, kn->kn_status | (kn->kn_id << 32), |
| 6797 | kn->kn_filtid); |
| 6798 | } |
| 6799 | |
| 6800 | kn->kn_status |= KN_ACTIVE; |
| 6801 | } |
| 6802 | |
| 6803 | /* called with kqueue lock held */ |
| 6804 | static void |
| 6805 | knote_activate(kqueue_t kqu, struct knote *kn, int result) |
| 6806 | { |
| 6807 | assert(result & FILTER_ACTIVE); |
| 6808 | if (result & FILTER_ADJUST_EVENT_QOS_BIT) { |
| 6809 | // may dequeue the knote |
| 6810 | knote_adjust_qos(kq: kqu.kq, kn, result); |
| 6811 | } |
| 6812 | knote_mark_active(kn); |
| 6813 | knote_enqueue(kqu, kn); |
| 6814 | } |
| 6815 | |
| 6816 | /* |
| 6817 | * This function applies changes requested by f_attach or f_touch for |
| 6818 | * a given filter. It proceeds in a carefully chosen order to help |
| 6819 | * every single transition do the minimal amount of work possible. |
| 6820 | */ |
| 6821 | static void |
| 6822 | knote_apply_touch(kqueue_t kqu, struct knote *kn, struct kevent_qos_s *kev, |
| 6823 | int result) |
| 6824 | { |
| 6825 | if ((kev->flags & EV_ENABLE) && (kn->kn_status & KN_DISABLED)) { |
| 6826 | kn->kn_status &= ~KN_DISABLED; |
| 6827 | |
| 6828 | /* |
| 6829 | * it is possible for userland to have knotes registered for a given |
| 6830 | * workloop `wl_orig` but really handled on another workloop `wl_new`. |
| 6831 | * |
| 6832 | * In that case, rearming will happen from the servicer thread of |
| 6833 | * `wl_new` which if `wl_orig` is no longer being serviced, would cause |
| 6834 | * this knote to stay suppressed forever if we only relied on |
| 6835 | * kqworkloop_acknowledge_events to be called by `wl_orig`. |
| 6836 | * |
| 6837 | * However if we see the KQ_PROCESSING bit on `wl_orig` set, we can't |
| 6838 | * unsuppress because that would mess with the processing phase of |
| 6839 | * `wl_orig`, however it also means kqworkloop_acknowledge_events() |
| 6840 | * will be called. |
| 6841 | */ |
| 6842 | if (__improbable(kn->kn_status & KN_SUPPRESSED)) { |
| 6843 | if ((kqu.kq->kq_state & KQ_PROCESSING) == 0) { |
| 6844 | knote_unsuppress_noqueue(kqu, kn); |
| 6845 | } |
| 6846 | } |
| 6847 | } |
| 6848 | |
| 6849 | if (result & FILTER_ADJUST_EVENT_IOTIER_BIT) { |
| 6850 | kqueue_update_iotier_override(kqu); |
| 6851 | } |
| 6852 | |
| 6853 | if ((result & FILTER_UPDATE_REQ_QOS) && kev->qos && kev->qos != kn->kn_qos) { |
| 6854 | // may dequeue the knote |
| 6855 | knote_reset_priority(kqu, kn, pp: kev->qos); |
| 6856 | } |
| 6857 | |
| 6858 | /* |
| 6859 | * When we unsuppress above, or because of knote_reset_priority(), |
| 6860 | * the knote may have been dequeued, we need to restore the invariant |
| 6861 | * that if the knote is active it needs to be queued now that |
| 6862 | * we're done applying changes. |
| 6863 | */ |
| 6864 | if (result & FILTER_ACTIVE) { |
| 6865 | knote_activate(kqu, kn, result); |
| 6866 | } else { |
| 6867 | knote_enqueue(kqu, kn); |
| 6868 | } |
| 6869 | |
| 6870 | if ((result & FILTER_THREADREQ_NODEFEER) && |
| 6871 | act_clear_astkevent(thread: current_thread(), AST_KEVENT_REDRIVE_THREADREQ)) { |
| 6872 | workq_kern_threadreq_redrive(p: kqu.kq->kq_p, flags: WORKQ_THREADREQ_NONE); |
| 6873 | } |
| 6874 | } |
| 6875 | |
| 6876 | /* |
| 6877 | * knote_drop - disconnect and drop the knote |
| 6878 | * |
| 6879 | * Called with the kqueue locked, returns with the kqueue unlocked. |
| 6880 | * |
| 6881 | * If a knote locking context is passed, it is canceled. |
| 6882 | * |
| 6883 | * The knote may have already been detached from |
| 6884 | * (or not yet attached to) its source object. |
| 6885 | */ |
| 6886 | static void |
| 6887 | knote_drop(struct kqueue *kq, struct knote *kn, struct knote_lock_ctx *knlc) |
| 6888 | { |
| 6889 | struct proc *p = kq->kq_p; |
| 6890 | |
| 6891 | kqlock_held(kqu: kq); |
| 6892 | |
| 6893 | assert((kn->kn_status & KN_DROPPING) == 0); |
| 6894 | if (knlc == NULL) { |
| 6895 | assert((kn->kn_status & KN_LOCKED) == 0); |
| 6896 | } |
| 6897 | kn->kn_status |= KN_DROPPING; |
| 6898 | |
| 6899 | if (kn->kn_status & KN_SUPPRESSED) { |
| 6900 | knote_unsuppress_noqueue(kqu: kq, kn); |
| 6901 | } else { |
| 6902 | knote_dequeue(kqu: kq, kn); |
| 6903 | } |
| 6904 | knote_wait_for_post(kq, kn); |
| 6905 | |
| 6906 | /* Even if we are autodetached, the filter may need to do cleanups of any |
| 6907 | * stuff stashed on the knote so always make the call and let each filter |
| 6908 | * handle the possibility of autodetached-ness */ |
| 6909 | knote_fops(kn)->f_detach(kn); |
| 6910 | |
| 6911 | /* kq may be freed when kq_remove_knote() returns */ |
| 6912 | kq_remove_knote(kq, kn, p, knlc); |
| 6913 | if (kn->kn_is_fd && ((kn->kn_status & KN_VANISHED) == 0)) { |
| 6914 | fp_drop(p, fd: (int)kn->kn_id, fp: kn->kn_fp, locked: 0); |
| 6915 | } |
| 6916 | |
| 6917 | knote_free(kn); |
| 6918 | } |
| 6919 | |
| 6920 | void |
| 6921 | knote_init(void) |
| 6922 | { |
| 6923 | #if CONFIG_MEMORYSTATUS |
| 6924 | /* Initialize the memorystatus list lock */ |
| 6925 | memorystatus_kevent_init(grp: &kq_lck_grp, LCK_ATTR_NULL); |
| 6926 | #endif |
| 6927 | } |
| 6928 | SYSINIT(knote, SI_SUB_PSEUDO, SI_ORDER_ANY, knote_init, NULL); |
| 6929 | |
| 6930 | const struct filterops * |
| 6931 | knote_fops(struct knote *kn) |
| 6932 | { |
| 6933 | return sysfilt_ops[kn->kn_filtid]; |
| 6934 | } |
| 6935 | |
| 6936 | static struct knote * |
| 6937 | knote_alloc(void) |
| 6938 | { |
| 6939 | return zalloc_flags(knote_zone, Z_WAITOK | Z_ZERO | Z_NOFAIL); |
| 6940 | } |
| 6941 | |
| 6942 | static void |
| 6943 | knote_free(struct knote *kn) |
| 6944 | { |
| 6945 | assert((kn->kn_status & (KN_LOCKED | KN_POSTING)) == 0); |
| 6946 | zfree(knote_zone, kn); |
| 6947 | } |
| 6948 | |
| 6949 | #pragma mark - syscalls: kevent, kevent64, kevent_qos, kevent_id |
| 6950 | |
| 6951 | kevent_ctx_t |
| 6952 | kevent_get_context(thread_t thread) |
| 6953 | { |
| 6954 | uthread_t ut = get_bsdthread_info(thread); |
| 6955 | return &ut->uu_save.uus_kevent; |
| 6956 | } |
| 6957 | |
| 6958 | static inline bool |
| 6959 | kevent_args_requesting_events(unsigned int flags, int nevents) |
| 6960 | { |
| 6961 | return !(flags & KEVENT_FLAG_ERROR_EVENTS) && nevents > 0; |
| 6962 | } |
| 6963 | |
| 6964 | static inline int |
| 6965 | kevent_adjust_flags_for_proc(proc_t p, int flags) |
| 6966 | { |
| 6967 | __builtin_assume(p); |
| 6968 | return flags | (IS_64BIT_PROCESS(p) ? KEVENT_FLAG_PROC64 : 0); |
| 6969 | } |
| 6970 | |
| 6971 | /*! |
| 6972 | * @function kevent_get_kqfile |
| 6973 | * |
| 6974 | * @brief |
| 6975 | * Lookup a kqfile by fd. |
| 6976 | * |
| 6977 | * @discussion |
| 6978 | * Callers: kevent, kevent64, kevent_qos |
| 6979 | * |
| 6980 | * This is not assumed to be a fastpath (kqfile interfaces are legacy) |
| 6981 | */ |
| 6982 | OS_NOINLINE |
| 6983 | static int |
| 6984 | kevent_get_kqfile(struct proc *p, int fd, int flags, |
| 6985 | struct fileproc **fpp, struct kqueue **kqp) |
| 6986 | { |
| 6987 | int error = 0; |
| 6988 | struct kqueue *kq; |
| 6989 | |
| 6990 | error = fp_get_ftype(p, fd, ftype: DTYPE_KQUEUE, EBADF, fpp); |
| 6991 | if (__improbable(error)) { |
| 6992 | return error; |
| 6993 | } |
| 6994 | kq = (struct kqueue *)fp_get_data(fp: (*fpp)); |
| 6995 | |
| 6996 | uint16_t kq_state = os_atomic_load(&kq->kq_state, relaxed); |
| 6997 | if (__improbable((kq_state & (KQ_KEV32 | KQ_KEV64 | KQ_KEV_QOS)) == 0)) { |
| 6998 | kqlock(kqu: kq); |
| 6999 | kq_state = kq->kq_state; |
| 7000 | if (!(kq_state & (KQ_KEV32 | KQ_KEV64 | KQ_KEV_QOS))) { |
| 7001 | if (flags & KEVENT_FLAG_LEGACY32) { |
| 7002 | kq_state |= KQ_KEV32; |
| 7003 | } else if (flags & KEVENT_FLAG_LEGACY64) { |
| 7004 | kq_state |= KQ_KEV64; |
| 7005 | } else { |
| 7006 | kq_state |= KQ_KEV_QOS; |
| 7007 | } |
| 7008 | kq->kq_state = kq_state; |
| 7009 | } |
| 7010 | kqunlock(kqu: kq); |
| 7011 | } |
| 7012 | |
| 7013 | /* |
| 7014 | * kqfiles can't be used through the legacy kevent() |
| 7015 | * and other interfaces at the same time. |
| 7016 | */ |
| 7017 | if (__improbable((bool)(flags & KEVENT_FLAG_LEGACY32) != |
| 7018 | (bool)(kq_state & KQ_KEV32))) { |
| 7019 | fp_drop(p, fd, fp: *fpp, locked: 0); |
| 7020 | return EINVAL; |
| 7021 | } |
| 7022 | |
| 7023 | *kqp = kq; |
| 7024 | return 0; |
| 7025 | } |
| 7026 | |
| 7027 | /*! |
| 7028 | * @function kevent_get_kqwq |
| 7029 | * |
| 7030 | * @brief |
| 7031 | * Lookup or create the process kqwq (faspath). |
| 7032 | * |
| 7033 | * @discussion |
| 7034 | * Callers: kevent64, kevent_qos |
| 7035 | */ |
| 7036 | OS_ALWAYS_INLINE |
| 7037 | static int |
| 7038 | kevent_get_kqwq(proc_t p, int flags, int nevents, struct kqueue **kqp) |
| 7039 | { |
| 7040 | struct kqworkq *kqwq = p->p_fd.fd_wqkqueue; |
| 7041 | |
| 7042 | if (__improbable(kevent_args_requesting_events(flags, nevents))) { |
| 7043 | return EINVAL; |
| 7044 | } |
| 7045 | if (__improbable(kqwq == NULL)) { |
| 7046 | kqwq = kqworkq_alloc(p, flags); |
| 7047 | if (__improbable(kqwq == NULL)) { |
| 7048 | return ENOMEM; |
| 7049 | } |
| 7050 | } |
| 7051 | |
| 7052 | *kqp = &kqwq->kqwq_kqueue; |
| 7053 | return 0; |
| 7054 | } |
| 7055 | |
| 7056 | #pragma mark kevent copyio |
| 7057 | |
| 7058 | /*! |
| 7059 | * @function kevent_get_data_size |
| 7060 | * |
| 7061 | * @brief |
| 7062 | * Copies in the extra data size from user-space. |
| 7063 | */ |
| 7064 | static int |
| 7065 | kevent_get_data_size(int flags, user_addr_t data_avail, user_addr_t data_out, |
| 7066 | kevent_ctx_t kectx) |
| 7067 | { |
| 7068 | if (!data_avail || !data_out) { |
| 7069 | kectx->kec_data_size = 0; |
| 7070 | kectx->kec_data_resid = 0; |
| 7071 | } else if (flags & KEVENT_FLAG_PROC64) { |
| 7072 | user64_size_t usize = 0; |
| 7073 | int error = copyin((user_addr_t)data_avail, &usize, sizeof(usize)); |
| 7074 | if (__improbable(error)) { |
| 7075 | return error; |
| 7076 | } |
| 7077 | kectx->kec_data_resid = kectx->kec_data_size = (user_size_t)usize; |
| 7078 | } else { |
| 7079 | user32_size_t usize = 0; |
| 7080 | int error = copyin((user_addr_t)data_avail, &usize, sizeof(usize)); |
| 7081 | if (__improbable(error)) { |
| 7082 | return error; |
| 7083 | } |
| 7084 | kectx->kec_data_avail = data_avail; |
| 7085 | kectx->kec_data_resid = kectx->kec_data_size = (user_size_t)usize; |
| 7086 | } |
| 7087 | kectx->kec_data_out = data_out; |
| 7088 | kectx->kec_data_avail = data_avail; |
| 7089 | return 0; |
| 7090 | } |
| 7091 | |
| 7092 | /*! |
| 7093 | * @function kevent_put_data_size |
| 7094 | * |
| 7095 | * @brief |
| 7096 | * Copies out the residual data size to user-space if any has been used. |
| 7097 | */ |
| 7098 | static int |
| 7099 | kevent_put_data_size(unsigned int flags, kevent_ctx_t kectx) |
| 7100 | { |
| 7101 | if (kectx->kec_data_resid == kectx->kec_data_size) { |
| 7102 | return 0; |
| 7103 | } |
| 7104 | if (flags & KEVENT_FLAG_KERNEL) { |
| 7105 | *(user_size_t *)(uintptr_t)kectx->kec_data_avail = kectx->kec_data_resid; |
| 7106 | return 0; |
| 7107 | } |
| 7108 | if (flags & KEVENT_FLAG_PROC64) { |
| 7109 | user64_size_t usize = (user64_size_t)kectx->kec_data_resid; |
| 7110 | return copyout(&usize, (user_addr_t)kectx->kec_data_avail, sizeof(usize)); |
| 7111 | } else { |
| 7112 | user32_size_t usize = (user32_size_t)kectx->kec_data_resid; |
| 7113 | return copyout(&usize, (user_addr_t)kectx->kec_data_avail, sizeof(usize)); |
| 7114 | } |
| 7115 | } |
| 7116 | |
| 7117 | /*! |
| 7118 | * @function kevent_legacy_copyin |
| 7119 | * |
| 7120 | * @brief |
| 7121 | * Handles the copyin of a kevent/kevent64 event. |
| 7122 | */ |
| 7123 | static int |
| 7124 | kevent_legacy_copyin(user_addr_t *addrp, struct kevent_qos_s *kevp, unsigned int flags) |
| 7125 | { |
| 7126 | int error; |
| 7127 | |
| 7128 | assert((flags & (KEVENT_FLAG_LEGACY32 | KEVENT_FLAG_LEGACY64)) != 0); |
| 7129 | |
| 7130 | if (flags & KEVENT_FLAG_LEGACY64) { |
| 7131 | struct kevent64_s kev64; |
| 7132 | |
| 7133 | error = copyin(*addrp, (caddr_t)&kev64, sizeof(kev64)); |
| 7134 | if (__improbable(error)) { |
| 7135 | return error; |
| 7136 | } |
| 7137 | *addrp += sizeof(kev64); |
| 7138 | *kevp = (struct kevent_qos_s){ |
| 7139 | .ident = kev64.ident, |
| 7140 | .filter = kev64.filter, |
| 7141 | /* Make sure user doesn't pass in any system flags */ |
| 7142 | .flags = kev64.flags & ~EV_SYSFLAGS, |
| 7143 | .udata = kev64.udata, |
| 7144 | .fflags = kev64.fflags, |
| 7145 | .data = kev64.data, |
| 7146 | .ext[0] = kev64.ext[0], |
| 7147 | .ext[1] = kev64.ext[1], |
| 7148 | }; |
| 7149 | } else if (flags & KEVENT_FLAG_PROC64) { |
| 7150 | struct user64_kevent kev64; |
| 7151 | |
| 7152 | error = copyin(*addrp, (caddr_t)&kev64, sizeof(kev64)); |
| 7153 | if (__improbable(error)) { |
| 7154 | return error; |
| 7155 | } |
| 7156 | *addrp += sizeof(kev64); |
| 7157 | *kevp = (struct kevent_qos_s){ |
| 7158 | .ident = kev64.ident, |
| 7159 | .filter = kev64.filter, |
| 7160 | /* Make sure user doesn't pass in any system flags */ |
| 7161 | .flags = kev64.flags & ~EV_SYSFLAGS, |
| 7162 | .udata = kev64.udata, |
| 7163 | .fflags = kev64.fflags, |
| 7164 | .data = kev64.data, |
| 7165 | }; |
| 7166 | } else { |
| 7167 | struct user32_kevent kev32; |
| 7168 | |
| 7169 | error = copyin(*addrp, (caddr_t)&kev32, sizeof(kev32)); |
| 7170 | if (__improbable(error)) { |
| 7171 | return error; |
| 7172 | } |
| 7173 | *addrp += sizeof(kev32); |
| 7174 | *kevp = (struct kevent_qos_s){ |
| 7175 | .ident = (uintptr_t)kev32.ident, |
| 7176 | .filter = kev32.filter, |
| 7177 | /* Make sure user doesn't pass in any system flags */ |
| 7178 | .flags = kev32.flags & ~EV_SYSFLAGS, |
| 7179 | .udata = CAST_USER_ADDR_T(kev32.udata), |
| 7180 | .fflags = kev32.fflags, |
| 7181 | .data = (intptr_t)kev32.data, |
| 7182 | }; |
| 7183 | } |
| 7184 | |
| 7185 | return 0; |
| 7186 | } |
| 7187 | |
| 7188 | /*! |
| 7189 | * @function kevent_modern_copyin |
| 7190 | * |
| 7191 | * @brief |
| 7192 | * Handles the copyin of a kevent_qos/kevent_id event. |
| 7193 | */ |
| 7194 | static int |
| 7195 | kevent_modern_copyin(user_addr_t *addrp, struct kevent_qos_s *kevp) |
| 7196 | { |
| 7197 | int error = copyin(*addrp, (caddr_t)kevp, sizeof(struct kevent_qos_s)); |
| 7198 | if (__probable(!error)) { |
| 7199 | /* Make sure user doesn't pass in any system flags */ |
| 7200 | *addrp += sizeof(struct kevent_qos_s); |
| 7201 | kevp->flags &= ~EV_SYSFLAGS; |
| 7202 | } |
| 7203 | return error; |
| 7204 | } |
| 7205 | |
| 7206 | /*! |
| 7207 | * @function kevent_legacy_copyout |
| 7208 | * |
| 7209 | * @brief |
| 7210 | * Handles the copyout of a kevent/kevent64 event. |
| 7211 | */ |
| 7212 | static int |
| 7213 | kevent_legacy_copyout(struct kevent_qos_s *kevp, user_addr_t *addrp, unsigned int flags) |
| 7214 | { |
| 7215 | int advance; |
| 7216 | int error; |
| 7217 | |
| 7218 | assert((flags & (KEVENT_FLAG_LEGACY32 | KEVENT_FLAG_LEGACY64)) != 0); |
| 7219 | |
| 7220 | /* |
| 7221 | * fully initialize the differnt output event structure |
| 7222 | * types from the internal kevent (and some universal |
| 7223 | * defaults for fields not represented in the internal |
| 7224 | * form). |
| 7225 | * |
| 7226 | * Note: these structures have no padding hence the C99 |
| 7227 | * initializers below do not leak kernel info. |
| 7228 | */ |
| 7229 | if (flags & KEVENT_FLAG_LEGACY64) { |
| 7230 | struct kevent64_s kev64 = { |
| 7231 | .ident = kevp->ident, |
| 7232 | .filter = kevp->filter, |
| 7233 | .flags = kevp->flags, |
| 7234 | .fflags = kevp->fflags, |
| 7235 | .data = (int64_t)kevp->data, |
| 7236 | .udata = kevp->udata, |
| 7237 | .ext[0] = kevp->ext[0], |
| 7238 | .ext[1] = kevp->ext[1], |
| 7239 | }; |
| 7240 | advance = sizeof(struct kevent64_s); |
| 7241 | error = copyout((caddr_t)&kev64, *addrp, advance); |
| 7242 | } else if (flags & KEVENT_FLAG_PROC64) { |
| 7243 | /* |
| 7244 | * deal with the special case of a user-supplied |
| 7245 | * value of (uintptr_t)-1. |
| 7246 | */ |
| 7247 | uint64_t ident = (kevp->ident == (uintptr_t)-1) ? |
| 7248 | (uint64_t)-1LL : (uint64_t)kevp->ident; |
| 7249 | struct user64_kevent kev64 = { |
| 7250 | .ident = ident, |
| 7251 | .filter = kevp->filter, |
| 7252 | .flags = kevp->flags, |
| 7253 | .fflags = kevp->fflags, |
| 7254 | .data = (int64_t) kevp->data, |
| 7255 | .udata = (user_addr_t) kevp->udata, |
| 7256 | }; |
| 7257 | advance = sizeof(kev64); |
| 7258 | error = copyout((caddr_t)&kev64, *addrp, advance); |
| 7259 | } else { |
| 7260 | struct user32_kevent kev32 = { |
| 7261 | .ident = (uint32_t)kevp->ident, |
| 7262 | .filter = kevp->filter, |
| 7263 | .flags = kevp->flags, |
| 7264 | .fflags = kevp->fflags, |
| 7265 | .data = (int32_t)kevp->data, |
| 7266 | .udata = (uint32_t)kevp->udata, |
| 7267 | }; |
| 7268 | advance = sizeof(kev32); |
| 7269 | error = copyout((caddr_t)&kev32, *addrp, advance); |
| 7270 | } |
| 7271 | if (__probable(!error)) { |
| 7272 | *addrp += advance; |
| 7273 | } |
| 7274 | return error; |
| 7275 | } |
| 7276 | |
| 7277 | /*! |
| 7278 | * @function kevent_modern_copyout |
| 7279 | * |
| 7280 | * @brief |
| 7281 | * Handles the copyout of a kevent_qos/kevent_id event. |
| 7282 | */ |
| 7283 | OS_ALWAYS_INLINE |
| 7284 | static inline int |
| 7285 | kevent_modern_copyout(struct kevent_qos_s *kevp, user_addr_t *addrp) |
| 7286 | { |
| 7287 | int error = copyout((caddr_t)kevp, *addrp, sizeof(struct kevent_qos_s)); |
| 7288 | if (__probable(!error)) { |
| 7289 | *addrp += sizeof(struct kevent_qos_s); |
| 7290 | } |
| 7291 | return error; |
| 7292 | } |
| 7293 | |
| 7294 | #pragma mark kevent core implementation |
| 7295 | |
| 7296 | /*! |
| 7297 | * @function kevent_callback_inline |
| 7298 | * |
| 7299 | * @brief |
| 7300 | * Callback for each individual event |
| 7301 | * |
| 7302 | * @discussion |
| 7303 | * This is meant to be inlined in kevent_modern_callback and |
| 7304 | * kevent_legacy_callback. |
| 7305 | */ |
| 7306 | OS_ALWAYS_INLINE |
| 7307 | static inline int |
| 7308 | kevent_callback_inline(struct kevent_qos_s *kevp, kevent_ctx_t kectx, bool legacy) |
| 7309 | { |
| 7310 | int error; |
| 7311 | |
| 7312 | assert(kectx->kec_process_noutputs < kectx->kec_process_nevents); |
| 7313 | |
| 7314 | /* |
| 7315 | * Copy out the appropriate amount of event data for this user. |
| 7316 | */ |
| 7317 | if (legacy) { |
| 7318 | error = kevent_legacy_copyout(kevp, addrp: &kectx->kec_process_eventlist, |
| 7319 | flags: kectx->kec_process_flags); |
| 7320 | } else { |
| 7321 | error = kevent_modern_copyout(kevp, addrp: &kectx->kec_process_eventlist); |
| 7322 | } |
| 7323 | |
| 7324 | /* |
| 7325 | * If there isn't space for additional events, return |
| 7326 | * a harmless error to stop the processing here |
| 7327 | */ |
| 7328 | if (error == 0 && ++kectx->kec_process_noutputs == kectx->kec_process_nevents) { |
| 7329 | error = EWOULDBLOCK; |
| 7330 | } |
| 7331 | return error; |
| 7332 | } |
| 7333 | |
| 7334 | /*! |
| 7335 | * @function kevent_modern_callback |
| 7336 | * |
| 7337 | * @brief |
| 7338 | * Callback for each individual modern event. |
| 7339 | * |
| 7340 | * @discussion |
| 7341 | * This callback handles kevent_qos/kevent_id events. |
| 7342 | */ |
| 7343 | static int |
| 7344 | kevent_modern_callback(struct kevent_qos_s *kevp, kevent_ctx_t kectx) |
| 7345 | { |
| 7346 | return kevent_callback_inline(kevp, kectx, /*legacy*/ false); |
| 7347 | } |
| 7348 | |
| 7349 | /*! |
| 7350 | * @function kevent_legacy_callback |
| 7351 | * |
| 7352 | * @brief |
| 7353 | * Callback for each individual legacy event. |
| 7354 | * |
| 7355 | * @discussion |
| 7356 | * This callback handles kevent/kevent64 events. |
| 7357 | */ |
| 7358 | static int |
| 7359 | kevent_legacy_callback(struct kevent_qos_s *kevp, kevent_ctx_t kectx) |
| 7360 | { |
| 7361 | return kevent_callback_inline(kevp, kectx, /*legacy*/ true); |
| 7362 | } |
| 7363 | |
| 7364 | /*! |
| 7365 | * @function kevent_cleanup |
| 7366 | * |
| 7367 | * @brief |
| 7368 | * Handles the cleanup returning from a kevent call. |
| 7369 | * |
| 7370 | * @discussion |
| 7371 | * kevent entry points will take a reference on workloops, |
| 7372 | * and a usecount on the fileglob of kqfiles. |
| 7373 | * |
| 7374 | * This function undoes this on the exit paths of kevents. |
| 7375 | * |
| 7376 | * @returns |
| 7377 | * The error to return to userspace. |
| 7378 | */ |
| 7379 | static int |
| 7380 | kevent_cleanup(kqueue_t kqu, int flags, int error, kevent_ctx_t kectx) |
| 7381 | { |
| 7382 | // poll should not call any codepath leading to this |
| 7383 | assert((flags & KEVENT_FLAG_POLL) == 0); |
| 7384 | |
| 7385 | if (flags & KEVENT_FLAG_WORKLOOP) { |
| 7386 | kqworkloop_release(kqwl: kqu.kqwl); |
| 7387 | } else if (flags & KEVENT_FLAG_WORKQ) { |
| 7388 | /* nothing held */ |
| 7389 | } else { |
| 7390 | fp_drop(p: kqu.kqf->kqf_p, fd: kectx->kec_fd, fp: kectx->kec_fp, locked: 0); |
| 7391 | } |
| 7392 | |
| 7393 | /* don't restart after signals... */ |
| 7394 | if (error == ERESTART) { |
| 7395 | error = EINTR; |
| 7396 | } else if (error == 0) { |
| 7397 | /* don't abandon other output just because of residual copyout failures */ |
| 7398 | (void)kevent_put_data_size(flags, kectx); |
| 7399 | } |
| 7400 | |
| 7401 | if (flags & KEVENT_FLAG_PARKING) { |
| 7402 | thread_t th = current_thread(); |
| 7403 | struct uthread *uth = get_bsdthread_info(th); |
| 7404 | if (uth->uu_kqr_bound) { |
| 7405 | thread_unfreeze_base_pri(thread: th); |
| 7406 | } |
| 7407 | } |
| 7408 | return error; |
| 7409 | } |
| 7410 | |
| 7411 | /*! |
| 7412 | * @function kqueue_process |
| 7413 | * |
| 7414 | * @brief |
| 7415 | * Process the triggered events in a kqueue. |
| 7416 | * |
| 7417 | * @discussion |
| 7418 | * Walk the queued knotes and validate that they are really still triggered |
| 7419 | * events by calling the filter routines (if necessary). |
| 7420 | * |
| 7421 | * For each event that is still considered triggered, invoke the callback |
| 7422 | * routine provided. |
| 7423 | * |
| 7424 | * caller holds a reference on the kqueue. |
| 7425 | * kqueue locked on entry and exit - but may be dropped |
| 7426 | * kqueue list locked (held for duration of call) |
| 7427 | * |
| 7428 | * This is only called by kqueue_scan() so that the compiler can inline it. |
| 7429 | * |
| 7430 | * @returns |
| 7431 | * - 0: no event was returned, no other error occured |
| 7432 | * - EBADF: the kqueue is being destroyed (KQ_DRAIN is set) |
| 7433 | * - EWOULDBLOCK: (not an error) events have been found and we should return |
| 7434 | * - EFAULT: copyout failed |
| 7435 | * - filter specific errors |
| 7436 | */ |
| 7437 | static int |
| 7438 | kqueue_process(kqueue_t kqu, int flags, kevent_ctx_t kectx, |
| 7439 | kevent_callback_t callback) |
| 7440 | { |
| 7441 | workq_threadreq_t kqr = current_uthread()->uu_kqr_bound; |
| 7442 | struct knote *kn; |
| 7443 | int error = 0, rc = 0; |
| 7444 | struct kqtailq *base_queue, *queue; |
| 7445 | uint16_t kq_type = (kqu.kq->kq_state & (KQ_WORKQ | KQ_WORKLOOP)); |
| 7446 | |
| 7447 | if (kq_type & KQ_WORKQ) { |
| 7448 | rc = kqworkq_begin_processing(kqwq: kqu.kqwq, kqr, kevent_flags: flags); |
| 7449 | } else if (kq_type & KQ_WORKLOOP) { |
| 7450 | rc = kqworkloop_begin_processing(kqwl: kqu.kqwl, kevent_flags: flags); |
| 7451 | } else { |
| 7452 | kqfile_retry: |
| 7453 | rc = kqfile_begin_processing(kq: kqu.kqf); |
| 7454 | if (rc == EBADF) { |
| 7455 | return EBADF; |
| 7456 | } |
| 7457 | } |
| 7458 | |
| 7459 | if (rc == -1) { |
| 7460 | /* Nothing to process */ |
| 7461 | return 0; |
| 7462 | } |
| 7463 | |
| 7464 | /* |
| 7465 | * loop through the enqueued knotes associated with this request, |
| 7466 | * processing each one. Each request may have several queues |
| 7467 | * of knotes to process (depending on the type of kqueue) so we |
| 7468 | * have to loop through all the queues as long as we have additional |
| 7469 | * space. |
| 7470 | */ |
| 7471 | |
| 7472 | process_again: |
| 7473 | if (kq_type & KQ_WORKQ) { |
| 7474 | base_queue = queue = &kqu.kqwq->kqwq_queue[kqr->tr_kq_qos_index - 1]; |
| 7475 | } else if (kq_type & KQ_WORKLOOP) { |
| 7476 | base_queue = &kqu.kqwl->kqwl_queue[0]; |
| 7477 | queue = &kqu.kqwl->kqwl_queue[KQWL_NBUCKETS - 1]; |
| 7478 | } else { |
| 7479 | base_queue = queue = &kqu.kqf->kqf_queue; |
| 7480 | } |
| 7481 | |
| 7482 | do { |
| 7483 | while ((kn = TAILQ_FIRST(queue)) != NULL) { |
| 7484 | error = knote_process(kn, kectx, callback); |
| 7485 | if (error == EJUSTRETURN) { |
| 7486 | error = 0; |
| 7487 | } else if (__improbable(error)) { |
| 7488 | /* error is EWOULDBLOCK when the out event array is full */ |
| 7489 | goto stop_processing; |
| 7490 | } |
| 7491 | } |
| 7492 | } while (queue-- > base_queue); |
| 7493 | |
| 7494 | if (kectx->kec_process_noutputs) { |
| 7495 | /* callers will transform this into no error */ |
| 7496 | error = EWOULDBLOCK; |
| 7497 | } |
| 7498 | |
| 7499 | stop_processing: |
| 7500 | /* |
| 7501 | * If KEVENT_FLAG_PARKING is set, and no kevents have been returned, |
| 7502 | * we want to unbind the kqrequest from the thread. |
| 7503 | * |
| 7504 | * However, because the kq locks are dropped several times during process, |
| 7505 | * new knotes may have fired again, in which case, we want to fail the end |
| 7506 | * processing and process again, until it converges. |
| 7507 | * |
| 7508 | * If we have an error or returned events, end processing never fails. |
| 7509 | */ |
| 7510 | if (error) { |
| 7511 | flags &= ~KEVENT_FLAG_PARKING; |
| 7512 | } |
| 7513 | if (kq_type & KQ_WORKQ) { |
| 7514 | rc = kqworkq_end_processing(kqwq: kqu.kqwq, kqr, kevent_flags: flags); |
| 7515 | } else if (kq_type & KQ_WORKLOOP) { |
| 7516 | rc = kqworkloop_end_processing(kqwl: kqu.kqwl, flags: KQ_PROCESSING, kevent_flags: flags); |
| 7517 | } else { |
| 7518 | rc = kqfile_end_processing(kq: kqu.kqf); |
| 7519 | } |
| 7520 | |
| 7521 | if (__probable(error)) { |
| 7522 | return error; |
| 7523 | } |
| 7524 | |
| 7525 | if (__probable(rc >= 0)) { |
| 7526 | assert(rc == 0 || rc == EBADF); |
| 7527 | return rc; |
| 7528 | } |
| 7529 | |
| 7530 | if (kq_type & (KQ_WORKQ | KQ_WORKLOOP)) { |
| 7531 | assert(flags & KEVENT_FLAG_PARKING); |
| 7532 | goto process_again; |
| 7533 | } else { |
| 7534 | goto kqfile_retry; |
| 7535 | } |
| 7536 | } |
| 7537 | |
| 7538 | /*! |
| 7539 | * @function kqueue_scan_continue |
| 7540 | * |
| 7541 | * @brief |
| 7542 | * The continuation used by kqueue_scan for kevent entry points. |
| 7543 | * |
| 7544 | * @discussion |
| 7545 | * Assumes we inherit a use/ref count on the kq or its fileglob. |
| 7546 | * |
| 7547 | * This is called by kqueue_scan if neither KEVENT_FLAG_POLL nor |
| 7548 | * KEVENT_FLAG_KERNEL was set, and the caller had to wait. |
| 7549 | */ |
| 7550 | OS_NORETURN OS_NOINLINE |
| 7551 | static void |
| 7552 | kqueue_scan_continue(void *data, wait_result_t wait_result) |
| 7553 | { |
| 7554 | uthread_t ut = current_uthread(); |
| 7555 | kevent_ctx_t kectx = &ut->uu_save.uus_kevent; |
| 7556 | int error = 0, flags = kectx->kec_process_flags; |
| 7557 | struct kqueue *kq = data; |
| 7558 | |
| 7559 | /* |
| 7560 | * only kevent variants call in here, so we know the callback is |
| 7561 | * kevent_legacy_callback or kevent_modern_callback. |
| 7562 | */ |
| 7563 | assert((flags & (KEVENT_FLAG_POLL | KEVENT_FLAG_KERNEL)) == 0); |
| 7564 | |
| 7565 | switch (wait_result) { |
| 7566 | case THREAD_AWAKENED: |
| 7567 | if (__improbable(flags & (KEVENT_FLAG_LEGACY32 | KEVENT_FLAG_LEGACY64))) { |
| 7568 | error = kqueue_scan(kq, flags, kectx, kevent_legacy_callback); |
| 7569 | } else { |
| 7570 | error = kqueue_scan(kq, flags, kectx, kevent_modern_callback); |
| 7571 | } |
| 7572 | break; |
| 7573 | case THREAD_TIMED_OUT: |
| 7574 | error = 0; |
| 7575 | break; |
| 7576 | case THREAD_INTERRUPTED: |
| 7577 | error = EINTR; |
| 7578 | break; |
| 7579 | case THREAD_RESTART: |
| 7580 | error = EBADF; |
| 7581 | break; |
| 7582 | default: |
| 7583 | panic("%s: - invalid wait_result (%d)" , __func__, wait_result); |
| 7584 | } |
| 7585 | |
| 7586 | |
| 7587 | error = kevent_cleanup(kqu: kq, flags, error, kectx); |
| 7588 | *(int32_t *)&ut->uu_rval = kectx->kec_process_noutputs; |
| 7589 | unix_syscall_return(error); |
| 7590 | } |
| 7591 | |
| 7592 | /*! |
| 7593 | * @function kqueue_scan |
| 7594 | * |
| 7595 | * @brief |
| 7596 | * Scan and wait for events in a kqueue (used by poll & kevent). |
| 7597 | * |
| 7598 | * @discussion |
| 7599 | * Process the triggered events in a kqueue. |
| 7600 | * |
| 7601 | * If there are no events triggered arrange to wait for them: |
| 7602 | * - unless KEVENT_FLAG_IMMEDIATE is set in kectx->kec_process_flags |
| 7603 | * - possibly until kectx->kec_deadline expires |
| 7604 | * |
| 7605 | * When it waits, and that neither KEVENT_FLAG_POLL nor KEVENT_FLAG_KERNEL |
| 7606 | * are set, then it will wait in the kqueue_scan_continue continuation. |
| 7607 | * |
| 7608 | * poll() will block in place, and KEVENT_FLAG_KERNEL calls |
| 7609 | * all pass KEVENT_FLAG_IMMEDIATE and will not wait. |
| 7610 | * |
| 7611 | * @param kqu |
| 7612 | * The kqueue being scanned. |
| 7613 | * |
| 7614 | * @param flags |
| 7615 | * The KEVENT_FLAG_* flags for this call. |
| 7616 | * |
| 7617 | * @param kectx |
| 7618 | * The context used for this scan. |
| 7619 | * The uthread_t::uu_save.uus_kevent storage is used for this purpose. |
| 7620 | * |
| 7621 | * @param callback |
| 7622 | * The callback to be called on events sucessfully processed. |
| 7623 | * (Either kevent_legacy_callback, kevent_modern_callback or poll_callback) |
| 7624 | */ |
| 7625 | int |
| 7626 | kqueue_scan(kqueue_t kqu, int flags, kevent_ctx_t kectx, |
| 7627 | kevent_callback_t callback) |
| 7628 | { |
| 7629 | int error; |
| 7630 | |
| 7631 | for (;;) { |
| 7632 | kqlock(kqu); |
| 7633 | error = kqueue_process(kqu, flags, kectx, callback); |
| 7634 | |
| 7635 | /* |
| 7636 | * If we got an error, events returned (EWOULDBLOCK) |
| 7637 | * or blocking was disallowed (KEVENT_FLAG_IMMEDIATE), |
| 7638 | * just return. |
| 7639 | */ |
| 7640 | if (__probable(error || (flags & KEVENT_FLAG_IMMEDIATE))) { |
| 7641 | kqunlock(kqu); |
| 7642 | return error == EWOULDBLOCK ? 0 : error; |
| 7643 | } |
| 7644 | |
| 7645 | assert((kqu.kq->kq_state & (KQ_WORKQ | KQ_WORKLOOP)) == 0); |
| 7646 | |
| 7647 | kqu.kqf->kqf_state |= KQ_SLEEP; |
| 7648 | assert_wait_deadline(event: &kqu.kqf->kqf_count, THREAD_ABORTSAFE, |
| 7649 | deadline: kectx->kec_deadline); |
| 7650 | kqunlock(kqu); |
| 7651 | |
| 7652 | if (__probable((flags & (KEVENT_FLAG_POLL | KEVENT_FLAG_KERNEL)) == 0)) { |
| 7653 | thread_block_parameter(continuation: kqueue_scan_continue, parameter: kqu.kqf); |
| 7654 | __builtin_unreachable(); |
| 7655 | } |
| 7656 | |
| 7657 | wait_result_t wr = thread_block(THREAD_CONTINUE_NULL); |
| 7658 | switch (wr) { |
| 7659 | case THREAD_AWAKENED: |
| 7660 | break; |
| 7661 | case THREAD_TIMED_OUT: |
| 7662 | return 0; |
| 7663 | case THREAD_INTERRUPTED: |
| 7664 | return EINTR; |
| 7665 | case THREAD_RESTART: |
| 7666 | return EBADF; |
| 7667 | default: |
| 7668 | panic("%s: - bad wait_result (%d)" , __func__, wr); |
| 7669 | } |
| 7670 | } |
| 7671 | } |
| 7672 | |
| 7673 | /*! |
| 7674 | * @function kevent_internal |
| 7675 | * |
| 7676 | * @brief |
| 7677 | * Common kevent code. |
| 7678 | * |
| 7679 | * @discussion |
| 7680 | * Needs to be inlined to specialize for legacy or modern and |
| 7681 | * eliminate dead code. |
| 7682 | * |
| 7683 | * This is the core logic of kevent entry points, that will: |
| 7684 | * - register kevents |
| 7685 | * - optionally scan the kqueue for events |
| 7686 | * |
| 7687 | * The caller is giving kevent_internal a reference on the kqueue |
| 7688 | * or its fileproc that needs to be cleaned up by kevent_cleanup(). |
| 7689 | */ |
| 7690 | OS_ALWAYS_INLINE |
| 7691 | static inline int |
| 7692 | kevent_internal(kqueue_t kqu, |
| 7693 | user_addr_t changelist, int nchanges, |
| 7694 | user_addr_t ueventlist, int nevents, |
| 7695 | int flags, kevent_ctx_t kectx, int32_t *retval, |
| 7696 | bool legacy) |
| 7697 | { |
| 7698 | int error = 0, noutputs = 0, register_rc; |
| 7699 | |
| 7700 | /* only bound threads can receive events on workloops */ |
| 7701 | if (!legacy && (flags & KEVENT_FLAG_WORKLOOP)) { |
| 7702 | #if CONFIG_WORKLOOP_DEBUG |
| 7703 | UU_KEVENT_HISTORY_WRITE_ENTRY(current_uthread(), { |
| 7704 | .uu_kqid = kqu.kqwl->kqwl_dynamicid, |
| 7705 | .uu_kq = error ? NULL : kqu.kq, |
| 7706 | .uu_error = error, |
| 7707 | .uu_nchanges = nchanges, |
| 7708 | .uu_nevents = nevents, |
| 7709 | .uu_flags = flags, |
| 7710 | }); |
| 7711 | #endif // CONFIG_WORKLOOP_DEBUG |
| 7712 | |
| 7713 | if (flags & KEVENT_FLAG_KERNEL) { |
| 7714 | /* see kevent_workq_internal */ |
| 7715 | error = copyout(&kqu.kqwl->kqwl_dynamicid, |
| 7716 | ueventlist - sizeof(kqueue_id_t), sizeof(kqueue_id_t)); |
| 7717 | kectx->kec_data_resid -= sizeof(kqueue_id_t); |
| 7718 | if (__improbable(error)) { |
| 7719 | goto out; |
| 7720 | } |
| 7721 | } |
| 7722 | |
| 7723 | if (kevent_args_requesting_events(flags, nevents)) { |
| 7724 | /* |
| 7725 | * Disable the R2K notification while doing a register, if the |
| 7726 | * caller wants events too, we don't want the AST to be set if we |
| 7727 | * will process these events soon. |
| 7728 | */ |
| 7729 | kqlock(kqu); |
| 7730 | kqu.kq->kq_state &= ~KQ_R2K_ARMED; |
| 7731 | kqunlock(kqu); |
| 7732 | flags |= KEVENT_FLAG_NEEDS_END_PROCESSING; |
| 7733 | } |
| 7734 | } |
| 7735 | |
| 7736 | /* register all the change requests the user provided... */ |
| 7737 | while (nchanges > 0 && error == 0) { |
| 7738 | struct kevent_qos_s kev; |
| 7739 | struct knote *kn = NULL; |
| 7740 | |
| 7741 | if (legacy) { |
| 7742 | error = kevent_legacy_copyin(addrp: &changelist, kevp: &kev, flags); |
| 7743 | } else { |
| 7744 | error = kevent_modern_copyin(addrp: &changelist, kevp: &kev); |
| 7745 | } |
| 7746 | if (error) { |
| 7747 | break; |
| 7748 | } |
| 7749 | |
| 7750 | register_rc = kevent_register(kq: kqu.kq, kev: &kev, kn_out: &kn); |
| 7751 | if (__improbable(!legacy && (register_rc & FILTER_REGISTER_WAIT))) { |
| 7752 | thread_t thread = current_thread(); |
| 7753 | |
| 7754 | kqlock_held(kqu); |
| 7755 | |
| 7756 | if (act_clear_astkevent(thread, AST_KEVENT_REDRIVE_THREADREQ)) { |
| 7757 | workq_kern_threadreq_redrive(p: kqu.kq->kq_p, flags: WORKQ_THREADREQ_NONE); |
| 7758 | } |
| 7759 | |
| 7760 | // f_post_register_wait is meant to call a continuation and not to |
| 7761 | // return, which is why we don't support FILTER_REGISTER_WAIT if |
| 7762 | // KEVENT_FLAG_ERROR_EVENTS is not passed, or if the event that |
| 7763 | // waits isn't the last. |
| 7764 | // |
| 7765 | // It is implementable, but not used by any userspace code at the |
| 7766 | // moment, so for now return ENOTSUP if someone tries to do it. |
| 7767 | if (nchanges == 1 && noutputs < nevents && |
| 7768 | (flags & KEVENT_FLAG_KERNEL) == 0 && |
| 7769 | (flags & KEVENT_FLAG_PARKING) == 0 && |
| 7770 | (flags & KEVENT_FLAG_ERROR_EVENTS) && |
| 7771 | (flags & KEVENT_FLAG_WORKLOOP)) { |
| 7772 | uthread_t ut = get_bsdthread_info(thread); |
| 7773 | |
| 7774 | /* |
| 7775 | * store the continuation/completion data in the uthread |
| 7776 | * |
| 7777 | * Note: the kectx aliases with this, |
| 7778 | * and is destroyed in the process. |
| 7779 | */ |
| 7780 | ut->uu_save.uus_kevent_register = (struct _kevent_register){ |
| 7781 | .kev = kev, |
| 7782 | .kqwl = kqu.kqwl, |
| 7783 | .eventout = noutputs, |
| 7784 | .ueventlist = ueventlist, |
| 7785 | }; |
| 7786 | knote_fops(kn)->f_post_register_wait(ut, kn, |
| 7787 | &ut->uu_save.uus_kevent_register); |
| 7788 | __builtin_unreachable(); |
| 7789 | } |
| 7790 | kqunlock(kqu); |
| 7791 | |
| 7792 | kev.flags |= EV_ERROR; |
| 7793 | kev.data = ENOTSUP; |
| 7794 | } else { |
| 7795 | assert((register_rc & FILTER_REGISTER_WAIT) == 0); |
| 7796 | } |
| 7797 | |
| 7798 | // keep in sync with kevent_register_wait_return() |
| 7799 | if (noutputs < nevents && (kev.flags & (EV_ERROR | EV_RECEIPT))) { |
| 7800 | if ((kev.flags & EV_ERROR) == 0) { |
| 7801 | kev.flags |= EV_ERROR; |
| 7802 | kev.data = 0; |
| 7803 | } |
| 7804 | if (legacy) { |
| 7805 | error = kevent_legacy_copyout(kevp: &kev, addrp: &ueventlist, flags); |
| 7806 | } else { |
| 7807 | error = kevent_modern_copyout(kevp: &kev, addrp: &ueventlist); |
| 7808 | } |
| 7809 | if (error == 0) { |
| 7810 | noutputs++; |
| 7811 | } |
| 7812 | } else if (kev.flags & EV_ERROR) { |
| 7813 | error = (int)kev.data; |
| 7814 | } |
| 7815 | nchanges--; |
| 7816 | } |
| 7817 | |
| 7818 | if ((flags & KEVENT_FLAG_ERROR_EVENTS) == 0 && |
| 7819 | nevents > 0 && noutputs == 0 && error == 0) { |
| 7820 | kectx->kec_process_flags = flags; |
| 7821 | kectx->kec_process_nevents = nevents; |
| 7822 | kectx->kec_process_noutputs = 0; |
| 7823 | kectx->kec_process_eventlist = ueventlist; |
| 7824 | |
| 7825 | if (legacy) { |
| 7826 | error = kqueue_scan(kqu: kqu.kq, flags, kectx, callback: kevent_legacy_callback); |
| 7827 | } else { |
| 7828 | error = kqueue_scan(kqu: kqu.kq, flags, kectx, callback: kevent_modern_callback); |
| 7829 | } |
| 7830 | |
| 7831 | noutputs = kectx->kec_process_noutputs; |
| 7832 | } else if (!legacy && (flags & KEVENT_FLAG_NEEDS_END_PROCESSING)) { |
| 7833 | /* |
| 7834 | * If we didn't through kqworkloop_end_processing(), |
| 7835 | * we need to do it here. |
| 7836 | * |
| 7837 | * kqueue_scan will call kqworkloop_end_processing(), |
| 7838 | * so we only need to do it if we didn't scan. |
| 7839 | */ |
| 7840 | kqlock(kqu); |
| 7841 | kqworkloop_end_processing(kqwl: kqu.kqwl, flags: 0, kevent_flags: 0); |
| 7842 | kqunlock(kqu); |
| 7843 | } |
| 7844 | |
| 7845 | *retval = noutputs; |
| 7846 | out: |
| 7847 | return kevent_cleanup(kqu: kqu.kq, flags, error, kectx); |
| 7848 | } |
| 7849 | |
| 7850 | #pragma mark modern syscalls: kevent_qos, kevent_id, kevent_workq_internal |
| 7851 | |
| 7852 | /*! |
| 7853 | * @function kevent_modern_internal |
| 7854 | * |
| 7855 | * @brief |
| 7856 | * The backend of the kevent_id and kevent_workq_internal entry points. |
| 7857 | * |
| 7858 | * @discussion |
| 7859 | * Needs to be inline due to the number of arguments. |
| 7860 | */ |
| 7861 | OS_NOINLINE |
| 7862 | static int |
| 7863 | kevent_modern_internal(kqueue_t kqu, |
| 7864 | user_addr_t changelist, int nchanges, |
| 7865 | user_addr_t ueventlist, int nevents, |
| 7866 | int flags, kevent_ctx_t kectx, int32_t *retval) |
| 7867 | { |
| 7868 | return kevent_internal(kqu: kqu.kq, changelist, nchanges, |
| 7869 | ueventlist, nevents, flags, kectx, retval, /*legacy*/ false); |
| 7870 | } |
| 7871 | |
| 7872 | /*! |
| 7873 | * @function kevent_id |
| 7874 | * |
| 7875 | * @brief |
| 7876 | * The kevent_id() syscall. |
| 7877 | */ |
| 7878 | int |
| 7879 | kevent_id(struct proc *p, struct kevent_id_args *uap, int32_t *retval) |
| 7880 | { |
| 7881 | int error, flags = uap->flags & KEVENT_FLAG_USER; |
| 7882 | uthread_t uth = current_uthread(); |
| 7883 | workq_threadreq_t kqr = uth->uu_kqr_bound; |
| 7884 | kevent_ctx_t kectx = &uth->uu_save.uus_kevent; |
| 7885 | kqueue_t kqu; |
| 7886 | |
| 7887 | flags = kevent_adjust_flags_for_proc(p, flags); |
| 7888 | flags |= KEVENT_FLAG_DYNAMIC_KQUEUE; |
| 7889 | |
| 7890 | if (__improbable((flags & (KEVENT_FLAG_WORKQ | KEVENT_FLAG_WORKLOOP)) != |
| 7891 | KEVENT_FLAG_WORKLOOP)) { |
| 7892 | return EINVAL; |
| 7893 | } |
| 7894 | |
| 7895 | error = kevent_get_data_size(flags, data_avail: uap->data_available, data_out: uap->data_out, kectx); |
| 7896 | if (__improbable(error)) { |
| 7897 | return error; |
| 7898 | } |
| 7899 | |
| 7900 | kectx->kec_deadline = 0; |
| 7901 | kectx->kec_fp = NULL; |
| 7902 | kectx->kec_fd = -1; |
| 7903 | /* the kec_process_* fields are filled if kqueue_scann is called only */ |
| 7904 | |
| 7905 | /* |
| 7906 | * Get the kq we are going to be working on |
| 7907 | * As a fastpath, look at the currently bound workloop. |
| 7908 | */ |
| 7909 | kqu.kqwl = kqr ? kqr_kqworkloop(kqr) : NULL; |
| 7910 | if (kqu.kqwl && kqu.kqwl->kqwl_dynamicid == uap->id) { |
| 7911 | if (__improbable(flags & KEVENT_FLAG_DYNAMIC_KQ_MUST_NOT_EXIST)) { |
| 7912 | return EEXIST; |
| 7913 | } |
| 7914 | kqworkloop_retain(kqwl: kqu.kqwl); |
| 7915 | } else if (__improbable(kevent_args_requesting_events(flags, uap->nevents))) { |
| 7916 | return EXDEV; |
| 7917 | } else { |
| 7918 | error = kqworkloop_get_or_create(p, id: uap->id, NULL, |
| 7919 | #if CONFIG_PREADOPT_TG |
| 7920 | NULL, |
| 7921 | #endif /* CONFIG_PREADOPT_TG */ |
| 7922 | flags, kqwlp: &kqu.kqwl); |
| 7923 | if (__improbable(error)) { |
| 7924 | return error; |
| 7925 | } |
| 7926 | } |
| 7927 | |
| 7928 | return kevent_modern_internal(kqu, changelist: uap->changelist, nchanges: uap->nchanges, |
| 7929 | ueventlist: uap->eventlist, nevents: uap->nevents, flags, kectx, retval); |
| 7930 | } |
| 7931 | |
| 7932 | /**! |
| 7933 | * @function kevent_workq_internal |
| 7934 | * |
| 7935 | * @discussion |
| 7936 | * This function is exported for the sake of the workqueue subsystem. |
| 7937 | * |
| 7938 | * It is called in two ways: |
| 7939 | * - when a thread is about to go to userspace to ask for pending event |
| 7940 | * - when a thread is returning from userspace with events back |
| 7941 | * |
| 7942 | * the workqueue subsystem will only use the following flags: |
| 7943 | * - KEVENT_FLAG_STACK_DATA (always) |
| 7944 | * - KEVENT_FLAG_IMMEDIATE (always) |
| 7945 | * - KEVENT_FLAG_PARKING (depending on whether it is going to or returning from |
| 7946 | * userspace). |
| 7947 | * |
| 7948 | * It implicitly acts on the bound kqueue, and for the case of workloops |
| 7949 | * will copyout the kqueue ID before anything else. |
| 7950 | * |
| 7951 | * |
| 7952 | * Pthread will have setup the various arguments to fit this stack layout: |
| 7953 | * |
| 7954 | * +-------....----+--------------+-----------+--------------------+ |
| 7955 | * | user stack | data avail | nevents | pthread_self() | |
| 7956 | * +-------....----+--------------+-----------+--------------------+ |
| 7957 | * ^ ^ |
| 7958 | * data_out eventlist |
| 7959 | * |
| 7960 | * When a workloop is used, the workloop ID is copied out right before |
| 7961 | * the eventlist and is taken from the data buffer. |
| 7962 | * |
| 7963 | * @warning |
| 7964 | * This function is carefuly tailored to not make any call except the final tail |
| 7965 | * call into kevent_modern_internal. (LTO inlines current_uthread()). |
| 7966 | * |
| 7967 | * This function is performance sensitive due to the workq subsystem. |
| 7968 | */ |
| 7969 | int |
| 7970 | kevent_workq_internal(struct proc *p, |
| 7971 | user_addr_t changelist, int nchanges, |
| 7972 | user_addr_t eventlist, int nevents, |
| 7973 | user_addr_t data_out, user_size_t *data_available, |
| 7974 | unsigned int flags, int32_t *retval) |
| 7975 | { |
| 7976 | uthread_t uth = current_uthread(); |
| 7977 | workq_threadreq_t kqr = uth->uu_kqr_bound; |
| 7978 | kevent_ctx_t kectx = &uth->uu_save.uus_kevent; |
| 7979 | kqueue_t kqu; |
| 7980 | |
| 7981 | assert(flags == (KEVENT_FLAG_STACK_DATA | KEVENT_FLAG_IMMEDIATE) || |
| 7982 | flags == (KEVENT_FLAG_STACK_DATA | KEVENT_FLAG_IMMEDIATE | KEVENT_FLAG_PARKING)); |
| 7983 | |
| 7984 | kectx->kec_data_out = data_out; |
| 7985 | kectx->kec_data_avail = (uint64_t)data_available; |
| 7986 | kectx->kec_data_size = *data_available; |
| 7987 | kectx->kec_data_resid = *data_available; |
| 7988 | kectx->kec_deadline = 0; |
| 7989 | kectx->kec_fp = NULL; |
| 7990 | kectx->kec_fd = -1; |
| 7991 | /* the kec_process_* fields are filled if kqueue_scann is called only */ |
| 7992 | |
| 7993 | flags = kevent_adjust_flags_for_proc(p, flags); |
| 7994 | |
| 7995 | if (kqr->tr_flags & WORKQ_TR_FLAG_WORKLOOP) { |
| 7996 | kqu.kqwl = __container_of(kqr, struct kqworkloop, kqwl_request); |
| 7997 | kqworkloop_retain(kqwl: kqu.kqwl); |
| 7998 | |
| 7999 | flags |= KEVENT_FLAG_WORKLOOP | KEVENT_FLAG_DYNAMIC_KQUEUE | |
| 8000 | KEVENT_FLAG_KERNEL; |
| 8001 | } else { |
| 8002 | kqu.kqwq = p->p_fd.fd_wqkqueue; |
| 8003 | |
| 8004 | flags |= KEVENT_FLAG_WORKQ | KEVENT_FLAG_KERNEL; |
| 8005 | } |
| 8006 | |
| 8007 | return kevent_modern_internal(kqu, changelist, nchanges, |
| 8008 | ueventlist: eventlist, nevents, flags, kectx, retval); |
| 8009 | } |
| 8010 | |
| 8011 | /*! |
| 8012 | * @function kevent_qos |
| 8013 | * |
| 8014 | * @brief |
| 8015 | * The kevent_qos() syscall. |
| 8016 | */ |
| 8017 | int |
| 8018 | kevent_qos(struct proc *p, struct kevent_qos_args *uap, int32_t *retval) |
| 8019 | { |
| 8020 | uthread_t uth = current_uthread(); |
| 8021 | kevent_ctx_t kectx = &uth->uu_save.uus_kevent; |
| 8022 | int error, flags = uap->flags & KEVENT_FLAG_USER; |
| 8023 | struct kqueue *kq; |
| 8024 | |
| 8025 | if (__improbable(flags & KEVENT_ID_FLAG_USER)) { |
| 8026 | return EINVAL; |
| 8027 | } |
| 8028 | |
| 8029 | flags = kevent_adjust_flags_for_proc(p, flags); |
| 8030 | |
| 8031 | error = kevent_get_data_size(flags, data_avail: uap->data_available, data_out: uap->data_out, kectx); |
| 8032 | if (__improbable(error)) { |
| 8033 | return error; |
| 8034 | } |
| 8035 | |
| 8036 | kectx->kec_deadline = 0; |
| 8037 | kectx->kec_fp = NULL; |
| 8038 | kectx->kec_fd = uap->fd; |
| 8039 | /* the kec_process_* fields are filled if kqueue_scann is called only */ |
| 8040 | |
| 8041 | /* get the kq we are going to be working on */ |
| 8042 | if (__probable(flags & KEVENT_FLAG_WORKQ)) { |
| 8043 | error = kevent_get_kqwq(p, flags, nevents: uap->nevents, kqp: &kq); |
| 8044 | } else { |
| 8045 | error = kevent_get_kqfile(p, fd: uap->fd, flags, fpp: &kectx->kec_fp, kqp: &kq); |
| 8046 | } |
| 8047 | if (__improbable(error)) { |
| 8048 | return error; |
| 8049 | } |
| 8050 | |
| 8051 | return kevent_modern_internal(kqu: kq, changelist: uap->changelist, nchanges: uap->nchanges, |
| 8052 | ueventlist: uap->eventlist, nevents: uap->nevents, flags, kectx, retval); |
| 8053 | } |
| 8054 | |
| 8055 | #pragma mark legacy syscalls: kevent, kevent64 |
| 8056 | |
| 8057 | /*! |
| 8058 | * @function kevent_legacy_get_deadline |
| 8059 | * |
| 8060 | * @brief |
| 8061 | * Compute the deadline for the legacy kevent syscalls. |
| 8062 | * |
| 8063 | * @discussion |
| 8064 | * This is not necessary if KEVENT_FLAG_IMMEDIATE is specified, |
| 8065 | * as this takes precedence over the deadline. |
| 8066 | * |
| 8067 | * This function will fail if utimeout is USER_ADDR_NULL |
| 8068 | * (the caller should check). |
| 8069 | */ |
| 8070 | static int |
| 8071 | kevent_legacy_get_deadline(int flags, user_addr_t utimeout, uint64_t *deadline) |
| 8072 | { |
| 8073 | struct timespec ts; |
| 8074 | |
| 8075 | if (flags & KEVENT_FLAG_PROC64) { |
| 8076 | struct user64_timespec ts64; |
| 8077 | int error = copyin(utimeout, &ts64, sizeof(ts64)); |
| 8078 | if (__improbable(error)) { |
| 8079 | return error; |
| 8080 | } |
| 8081 | ts.tv_sec = (unsigned long)ts64.tv_sec; |
| 8082 | ts.tv_nsec = (long)ts64.tv_nsec; |
| 8083 | } else { |
| 8084 | struct user32_timespec ts32; |
| 8085 | int error = copyin(utimeout, &ts32, sizeof(ts32)); |
| 8086 | if (__improbable(error)) { |
| 8087 | return error; |
| 8088 | } |
| 8089 | ts.tv_sec = ts32.tv_sec; |
| 8090 | ts.tv_nsec = ts32.tv_nsec; |
| 8091 | } |
| 8092 | if (!timespec_is_valid(&ts)) { |
| 8093 | return EINVAL; |
| 8094 | } |
| 8095 | |
| 8096 | clock_absolutetime_interval_to_deadline(abstime: tstoabstime(&ts), result: deadline); |
| 8097 | return 0; |
| 8098 | } |
| 8099 | |
| 8100 | /*! |
| 8101 | * @function kevent_legacy_internal |
| 8102 | * |
| 8103 | * @brief |
| 8104 | * The core implementation for kevent and kevent64 |
| 8105 | */ |
| 8106 | OS_NOINLINE |
| 8107 | static int |
| 8108 | kevent_legacy_internal(struct proc *p, struct kevent64_args *uap, |
| 8109 | int32_t *retval, int flags) |
| 8110 | { |
| 8111 | uthread_t uth = current_uthread(); |
| 8112 | kevent_ctx_t kectx = &uth->uu_save.uus_kevent; |
| 8113 | struct kqueue *kq; |
| 8114 | int error; |
| 8115 | |
| 8116 | if (__improbable(uap->flags & KEVENT_ID_FLAG_USER)) { |
| 8117 | return EINVAL; |
| 8118 | } |
| 8119 | |
| 8120 | flags = kevent_adjust_flags_for_proc(p, flags); |
| 8121 | |
| 8122 | kectx->kec_data_out = 0; |
| 8123 | kectx->kec_data_avail = 0; |
| 8124 | kectx->kec_data_size = 0; |
| 8125 | kectx->kec_data_resid = 0; |
| 8126 | kectx->kec_deadline = 0; |
| 8127 | kectx->kec_fp = NULL; |
| 8128 | kectx->kec_fd = uap->fd; |
| 8129 | /* the kec_process_* fields are filled if kqueue_scann is called only */ |
| 8130 | |
| 8131 | /* convert timeout to absolute - if we have one (and not immediate) */ |
| 8132 | if (__improbable(uap->timeout && !(flags & KEVENT_FLAG_IMMEDIATE))) { |
| 8133 | error = kevent_legacy_get_deadline(flags, utimeout: uap->timeout, |
| 8134 | deadline: &kectx->kec_deadline); |
| 8135 | if (__improbable(error)) { |
| 8136 | return error; |
| 8137 | } |
| 8138 | } |
| 8139 | |
| 8140 | /* get the kq we are going to be working on */ |
| 8141 | if (flags & KEVENT_FLAG_WORKQ) { |
| 8142 | error = kevent_get_kqwq(p, flags, nevents: uap->nevents, kqp: &kq); |
| 8143 | } else { |
| 8144 | error = kevent_get_kqfile(p, fd: uap->fd, flags, fpp: &kectx->kec_fp, kqp: &kq); |
| 8145 | } |
| 8146 | if (__improbable(error)) { |
| 8147 | return error; |
| 8148 | } |
| 8149 | |
| 8150 | return kevent_internal(kqu: kq, changelist: uap->changelist, nchanges: uap->nchanges, |
| 8151 | ueventlist: uap->eventlist, nevents: uap->nevents, flags, kectx, retval, |
| 8152 | /*legacy*/ true); |
| 8153 | } |
| 8154 | |
| 8155 | /*! |
| 8156 | * @function kevent |
| 8157 | * |
| 8158 | * @brief |
| 8159 | * The legacy kevent() syscall. |
| 8160 | */ |
| 8161 | int |
| 8162 | kevent(struct proc *p, struct kevent_args *uap, int32_t *retval) |
| 8163 | { |
| 8164 | struct kevent64_args args = { |
| 8165 | .fd = uap->fd, |
| 8166 | .changelist = uap->changelist, |
| 8167 | .nchanges = uap->nchanges, |
| 8168 | .eventlist = uap->eventlist, |
| 8169 | .nevents = uap->nevents, |
| 8170 | .timeout = uap->timeout, |
| 8171 | }; |
| 8172 | |
| 8173 | return kevent_legacy_internal(p, uap: &args, retval, KEVENT_FLAG_LEGACY32); |
| 8174 | } |
| 8175 | |
| 8176 | /*! |
| 8177 | * @function kevent64 |
| 8178 | * |
| 8179 | * @brief |
| 8180 | * The legacy kevent64() syscall. |
| 8181 | */ |
| 8182 | int |
| 8183 | kevent64(struct proc *p, struct kevent64_args *uap, int32_t *retval) |
| 8184 | { |
| 8185 | int flags = (uap->flags & KEVENT_FLAG_USER) | KEVENT_FLAG_LEGACY64; |
| 8186 | return kevent_legacy_internal(p, uap, retval, flags); |
| 8187 | } |
| 8188 | |
| 8189 | #pragma mark - socket interface |
| 8190 | |
| 8191 | #if SOCKETS |
| 8192 | #include <sys/param.h> |
| 8193 | #include <sys/socket.h> |
| 8194 | #include <sys/protosw.h> |
| 8195 | #include <sys/domain.h> |
| 8196 | #include <sys/mbuf.h> |
| 8197 | #include <sys/kern_event.h> |
| 8198 | #include <sys/malloc.h> |
| 8199 | #include <sys/sys_domain.h> |
| 8200 | #include <sys/syslog.h> |
| 8201 | |
| 8202 | #ifndef ROUNDUP64 |
| 8203 | #define ROUNDUP64(x) P2ROUNDUP((x), sizeof (u_int64_t)) |
| 8204 | #endif |
| 8205 | |
| 8206 | #ifndef ADVANCE64 |
| 8207 | #define ADVANCE64(p, n) (void*)((char *)(p) + ROUNDUP64(n)) |
| 8208 | #endif |
| 8209 | |
| 8210 | static LCK_GRP_DECLARE(kev_lck_grp, "Kernel Event Protocol" ); |
| 8211 | static LCK_RW_DECLARE(kev_rwlock, &kev_lck_grp); |
| 8212 | |
| 8213 | static int kev_attach(struct socket *so, int proto, struct proc *p); |
| 8214 | static int kev_detach(struct socket *so); |
| 8215 | static int kev_control(struct socket *so, u_long cmd, caddr_t data, |
| 8216 | struct ifnet *ifp, struct proc *p); |
| 8217 | static lck_mtx_t * event_getlock(struct socket *, int); |
| 8218 | static int event_lock(struct socket *, int, void *); |
| 8219 | static int event_unlock(struct socket *, int, void *); |
| 8220 | |
| 8221 | static int event_sofreelastref(struct socket *); |
| 8222 | static void kev_delete(struct kern_event_pcb *); |
| 8223 | |
| 8224 | static struct pr_usrreqs event_usrreqs = { |
| 8225 | .pru_attach = kev_attach, |
| 8226 | .pru_control = kev_control, |
| 8227 | .pru_detach = kev_detach, |
| 8228 | .pru_soreceive = soreceive, |
| 8229 | }; |
| 8230 | |
| 8231 | static struct protosw eventsw[] = { |
| 8232 | { |
| 8233 | .pr_type = SOCK_RAW, |
| 8234 | .pr_protocol = SYSPROTO_EVENT, |
| 8235 | .pr_flags = PR_ATOMIC, |
| 8236 | .pr_usrreqs = &event_usrreqs, |
| 8237 | .pr_lock = event_lock, |
| 8238 | .pr_unlock = event_unlock, |
| 8239 | .pr_getlock = event_getlock, |
| 8240 | } |
| 8241 | }; |
| 8242 | |
| 8243 | __private_extern__ int kevt_getstat SYSCTL_HANDLER_ARGS; |
| 8244 | __private_extern__ int kevt_pcblist SYSCTL_HANDLER_ARGS; |
| 8245 | |
| 8246 | SYSCTL_NODE(_net_systm, OID_AUTO, kevt, |
| 8247 | CTLFLAG_RW | CTLFLAG_LOCKED, 0, "Kernel event family" ); |
| 8248 | |
| 8249 | struct kevtstat kevtstat; |
| 8250 | SYSCTL_PROC(_net_systm_kevt, OID_AUTO, stats, |
| 8251 | CTLTYPE_STRUCT | CTLFLAG_RD | CTLFLAG_LOCKED, 0, 0, |
| 8252 | kevt_getstat, "S,kevtstat" , "" ); |
| 8253 | |
| 8254 | SYSCTL_PROC(_net_systm_kevt, OID_AUTO, pcblist, |
| 8255 | CTLTYPE_STRUCT | CTLFLAG_RD | CTLFLAG_LOCKED, 0, 0, |
| 8256 | kevt_pcblist, "S,xkevtpcb" , "" ); |
| 8257 | |
| 8258 | static lck_mtx_t * |
| 8259 | event_getlock(struct socket *so, int flags) |
| 8260 | { |
| 8261 | #pragma unused(flags) |
| 8262 | struct kern_event_pcb *ev_pcb = (struct kern_event_pcb *)so->so_pcb; |
| 8263 | |
| 8264 | if (so->so_pcb != NULL) { |
| 8265 | if (so->so_usecount < 0) { |
| 8266 | panic("%s: so=%p usecount=%d lrh= %s" , __func__, |
| 8267 | so, so->so_usecount, solockhistory_nr(so)); |
| 8268 | } |
| 8269 | /* NOTREACHED */ |
| 8270 | } else { |
| 8271 | panic("%s: so=%p NULL NO so_pcb %s" , __func__, |
| 8272 | so, solockhistory_nr(so)); |
| 8273 | /* NOTREACHED */ |
| 8274 | } |
| 8275 | return &ev_pcb->evp_mtx; |
| 8276 | } |
| 8277 | |
| 8278 | static int |
| 8279 | event_lock(struct socket *so, int refcount, void *lr) |
| 8280 | { |
| 8281 | void *lr_saved; |
| 8282 | |
| 8283 | if (lr == NULL) { |
| 8284 | lr_saved = __builtin_return_address(0); |
| 8285 | } else { |
| 8286 | lr_saved = lr; |
| 8287 | } |
| 8288 | |
| 8289 | if (so->so_pcb != NULL) { |
| 8290 | lck_mtx_lock(lck: &((struct kern_event_pcb *)so->so_pcb)->evp_mtx); |
| 8291 | } else { |
| 8292 | panic("%s: so=%p NO PCB! lr=%p lrh= %s" , __func__, |
| 8293 | so, lr_saved, solockhistory_nr(so)); |
| 8294 | /* NOTREACHED */ |
| 8295 | } |
| 8296 | |
| 8297 | if (so->so_usecount < 0) { |
| 8298 | panic("%s: so=%p so_pcb=%p lr=%p ref=%d lrh= %s" , __func__, |
| 8299 | so, so->so_pcb, lr_saved, so->so_usecount, |
| 8300 | solockhistory_nr(so)); |
| 8301 | /* NOTREACHED */ |
| 8302 | } |
| 8303 | |
| 8304 | if (refcount) { |
| 8305 | so->so_usecount++; |
| 8306 | } |
| 8307 | |
| 8308 | so->lock_lr[so->next_lock_lr] = lr_saved; |
| 8309 | so->next_lock_lr = (so->next_lock_lr + 1) % SO_LCKDBG_MAX; |
| 8310 | return 0; |
| 8311 | } |
| 8312 | |
| 8313 | static int |
| 8314 | event_unlock(struct socket *so, int refcount, void *lr) |
| 8315 | { |
| 8316 | void *lr_saved; |
| 8317 | lck_mtx_t *mutex_held; |
| 8318 | |
| 8319 | if (lr == NULL) { |
| 8320 | lr_saved = __builtin_return_address(0); |
| 8321 | } else { |
| 8322 | lr_saved = lr; |
| 8323 | } |
| 8324 | |
| 8325 | if (refcount) { |
| 8326 | so->so_usecount--; |
| 8327 | } |
| 8328 | if (so->so_usecount < 0) { |
| 8329 | panic("%s: so=%p usecount=%d lrh= %s" , __func__, |
| 8330 | so, so->so_usecount, solockhistory_nr(so)); |
| 8331 | /* NOTREACHED */ |
| 8332 | } |
| 8333 | if (so->so_pcb == NULL) { |
| 8334 | panic("%s: so=%p NO PCB usecount=%d lr=%p lrh= %s" , __func__, |
| 8335 | so, so->so_usecount, (void *)lr_saved, |
| 8336 | solockhistory_nr(so)); |
| 8337 | /* NOTREACHED */ |
| 8338 | } |
| 8339 | mutex_held = (&((struct kern_event_pcb *)so->so_pcb)->evp_mtx); |
| 8340 | |
| 8341 | LCK_MTX_ASSERT(mutex_held, LCK_MTX_ASSERT_OWNED); |
| 8342 | so->unlock_lr[so->next_unlock_lr] = lr_saved; |
| 8343 | so->next_unlock_lr = (so->next_unlock_lr + 1) % SO_LCKDBG_MAX; |
| 8344 | |
| 8345 | if (so->so_usecount == 0) { |
| 8346 | VERIFY(so->so_flags & SOF_PCBCLEARING); |
| 8347 | event_sofreelastref(so); |
| 8348 | } else { |
| 8349 | lck_mtx_unlock(lck: mutex_held); |
| 8350 | } |
| 8351 | |
| 8352 | return 0; |
| 8353 | } |
| 8354 | |
| 8355 | static int |
| 8356 | event_sofreelastref(struct socket *so) |
| 8357 | { |
| 8358 | struct kern_event_pcb *ev_pcb = (struct kern_event_pcb *)so->so_pcb; |
| 8359 | |
| 8360 | LCK_MTX_ASSERT(&(ev_pcb->evp_mtx), LCK_MTX_ASSERT_OWNED); |
| 8361 | |
| 8362 | so->so_pcb = NULL; |
| 8363 | |
| 8364 | /* |
| 8365 | * Disable upcall in the event another thread is in kev_post_msg() |
| 8366 | * appending record to the receive socket buffer, since sbwakeup() |
| 8367 | * may release the socket lock otherwise. |
| 8368 | */ |
| 8369 | so->so_rcv.sb_flags &= ~SB_UPCALL; |
| 8370 | so->so_snd.sb_flags &= ~SB_UPCALL; |
| 8371 | so->so_event = sonullevent; |
| 8372 | lck_mtx_unlock(lck: &(ev_pcb->evp_mtx)); |
| 8373 | |
| 8374 | LCK_MTX_ASSERT(&(ev_pcb->evp_mtx), LCK_MTX_ASSERT_NOTOWNED); |
| 8375 | lck_rw_lock_exclusive(lck: &kev_rwlock); |
| 8376 | LIST_REMOVE(ev_pcb, evp_link); |
| 8377 | kevtstat.kes_pcbcount--; |
| 8378 | kevtstat.kes_gencnt++; |
| 8379 | lck_rw_done(lck: &kev_rwlock); |
| 8380 | kev_delete(ev_pcb); |
| 8381 | |
| 8382 | sofreelastref(so, 1); |
| 8383 | return 0; |
| 8384 | } |
| 8385 | |
| 8386 | static int event_proto_count = (sizeof(eventsw) / sizeof(struct protosw)); |
| 8387 | |
| 8388 | static |
| 8389 | struct kern_event_head kern_event_head; |
| 8390 | |
| 8391 | static u_int32_t static_event_id = 0; |
| 8392 | |
| 8393 | static KALLOC_TYPE_DEFINE(ev_pcb_zone, struct kern_event_pcb, NET_KT_DEFAULT); |
| 8394 | |
| 8395 | /* |
| 8396 | * Install the protosw's for the NKE manager. Invoked at extension load time |
| 8397 | */ |
| 8398 | void |
| 8399 | kern_event_init(struct domain *dp) |
| 8400 | { |
| 8401 | struct protosw *pr; |
| 8402 | int i; |
| 8403 | |
| 8404 | VERIFY(!(dp->dom_flags & DOM_INITIALIZED)); |
| 8405 | VERIFY(dp == systemdomain); |
| 8406 | |
| 8407 | for (i = 0, pr = &eventsw[0]; i < event_proto_count; i++, pr++) { |
| 8408 | net_add_proto(pr, dp, 1); |
| 8409 | } |
| 8410 | } |
| 8411 | |
| 8412 | static int |
| 8413 | kev_attach(struct socket *so, __unused int proto, __unused struct proc *p) |
| 8414 | { |
| 8415 | int error = 0; |
| 8416 | struct kern_event_pcb *ev_pcb; |
| 8417 | |
| 8418 | error = soreserve(so, KEV_SNDSPACE, KEV_RECVSPACE); |
| 8419 | if (error != 0) { |
| 8420 | return error; |
| 8421 | } |
| 8422 | |
| 8423 | ev_pcb = zalloc_flags(ev_pcb_zone, Z_WAITOK | Z_ZERO); |
| 8424 | lck_mtx_init(lck: &ev_pcb->evp_mtx, grp: &kev_lck_grp, LCK_ATTR_NULL); |
| 8425 | |
| 8426 | ev_pcb->evp_socket = so; |
| 8427 | ev_pcb->evp_vendor_code_filter = 0xffffffff; |
| 8428 | |
| 8429 | so->so_pcb = (caddr_t) ev_pcb; |
| 8430 | lck_rw_lock_exclusive(lck: &kev_rwlock); |
| 8431 | LIST_INSERT_HEAD(&kern_event_head, ev_pcb, evp_link); |
| 8432 | kevtstat.kes_pcbcount++; |
| 8433 | kevtstat.kes_gencnt++; |
| 8434 | lck_rw_done(lck: &kev_rwlock); |
| 8435 | |
| 8436 | return error; |
| 8437 | } |
| 8438 | |
| 8439 | static void |
| 8440 | kev_delete(struct kern_event_pcb *ev_pcb) |
| 8441 | { |
| 8442 | VERIFY(ev_pcb != NULL); |
| 8443 | lck_mtx_destroy(lck: &ev_pcb->evp_mtx, grp: &kev_lck_grp); |
| 8444 | zfree(ev_pcb_zone, ev_pcb); |
| 8445 | } |
| 8446 | |
| 8447 | static int |
| 8448 | kev_detach(struct socket *so) |
| 8449 | { |
| 8450 | struct kern_event_pcb *ev_pcb = (struct kern_event_pcb *) so->so_pcb; |
| 8451 | |
| 8452 | if (ev_pcb != NULL) { |
| 8453 | soisdisconnected(so); |
| 8454 | so->so_flags |= SOF_PCBCLEARING; |
| 8455 | } |
| 8456 | |
| 8457 | return 0; |
| 8458 | } |
| 8459 | |
| 8460 | /* |
| 8461 | * For now, kev_vendor_code and mbuf_tags use the same |
| 8462 | * mechanism. |
| 8463 | */ |
| 8464 | errno_t |
| 8465 | kev_vendor_code_find( |
| 8466 | const char *string, |
| 8467 | u_int32_t *out_vendor_code) |
| 8468 | { |
| 8469 | if (strlen(s: string) >= KEV_VENDOR_CODE_MAX_STR_LEN) { |
| 8470 | return EINVAL; |
| 8471 | } |
| 8472 | return net_str_id_find_internal(string, out_vendor_code, |
| 8473 | NSI_VENDOR_CODE, 1); |
| 8474 | } |
| 8475 | |
| 8476 | errno_t |
| 8477 | kev_msg_post(struct kev_msg *event_msg) |
| 8478 | { |
| 8479 | mbuf_tag_id_t min_vendor, max_vendor; |
| 8480 | |
| 8481 | net_str_id_first_last(&min_vendor, &max_vendor, NSI_VENDOR_CODE); |
| 8482 | |
| 8483 | if (event_msg == NULL) { |
| 8484 | return EINVAL; |
| 8485 | } |
| 8486 | |
| 8487 | /* |
| 8488 | * Limit third parties to posting events for registered vendor codes |
| 8489 | * only |
| 8490 | */ |
| 8491 | if (event_msg->vendor_code < min_vendor || |
| 8492 | event_msg->vendor_code > max_vendor) { |
| 8493 | os_atomic_inc(&kevtstat.kes_badvendor, relaxed); |
| 8494 | return EINVAL; |
| 8495 | } |
| 8496 | return kev_post_msg(event: event_msg); |
| 8497 | } |
| 8498 | |
| 8499 | static int |
| 8500 | kev_post_msg_internal(struct kev_msg *event_msg, int wait) |
| 8501 | { |
| 8502 | struct mbuf *m, *m2; |
| 8503 | struct kern_event_pcb *ev_pcb; |
| 8504 | struct kern_event_msg *ev; |
| 8505 | char *tmp; |
| 8506 | u_int32_t total_size; |
| 8507 | int i; |
| 8508 | |
| 8509 | #if SKYWALK && defined(XNU_TARGET_OS_OSX) |
| 8510 | /* |
| 8511 | * Special hook for ALF state updates |
| 8512 | */ |
| 8513 | if (event_msg->vendor_code == KEV_VENDOR_APPLE && |
| 8514 | event_msg->kev_class == KEV_NKE_CLASS && |
| 8515 | event_msg->kev_subclass == KEV_NKE_ALF_SUBCLASS && |
| 8516 | event_msg->event_code == KEV_NKE_ALF_STATE_CHANGED) { |
| 8517 | #if (DEBUG || DEVELOPMENT) |
| 8518 | os_log_info(OS_LOG_DEFAULT, "KEV_NKE_ALF_STATE_CHANGED posted" ); |
| 8519 | #endif /* DEBUG || DEVELOPMENT */ |
| 8520 | net_filter_event_mark(subsystem: NET_FILTER_EVENT_ALF, |
| 8521 | compatible: net_check_compatible_alf()); |
| 8522 | } |
| 8523 | #endif /* SKYWALK && XNU_TARGET_OS_OSX */ |
| 8524 | |
| 8525 | /* Verify the message is small enough to fit in one mbuf w/o cluster */ |
| 8526 | total_size = KEV_MSG_HEADER_SIZE; |
| 8527 | |
| 8528 | for (i = 0; i < 5; i++) { |
| 8529 | if (event_msg->dv[i].data_length == 0) { |
| 8530 | break; |
| 8531 | } |
| 8532 | total_size += event_msg->dv[i].data_length; |
| 8533 | } |
| 8534 | |
| 8535 | if (total_size > MLEN) { |
| 8536 | os_atomic_inc(&kevtstat.kes_toobig, relaxed); |
| 8537 | return EMSGSIZE; |
| 8538 | } |
| 8539 | |
| 8540 | m = m_get(wait, MT_DATA); |
| 8541 | if (m == 0) { |
| 8542 | os_atomic_inc(&kevtstat.kes_nomem, relaxed); |
| 8543 | return ENOMEM; |
| 8544 | } |
| 8545 | ev = mtod(m, struct kern_event_msg *); |
| 8546 | total_size = KEV_MSG_HEADER_SIZE; |
| 8547 | |
| 8548 | tmp = (char *) &ev->event_data[0]; |
| 8549 | for (i = 0; i < 5; i++) { |
| 8550 | if (event_msg->dv[i].data_length == 0) { |
| 8551 | break; |
| 8552 | } |
| 8553 | |
| 8554 | total_size += event_msg->dv[i].data_length; |
| 8555 | bcopy(src: event_msg->dv[i].data_ptr, dst: tmp, |
| 8556 | n: event_msg->dv[i].data_length); |
| 8557 | tmp += event_msg->dv[i].data_length; |
| 8558 | } |
| 8559 | |
| 8560 | ev->id = ++static_event_id; |
| 8561 | ev->total_size = total_size; |
| 8562 | ev->vendor_code = event_msg->vendor_code; |
| 8563 | ev->kev_class = event_msg->kev_class; |
| 8564 | ev->kev_subclass = event_msg->kev_subclass; |
| 8565 | ev->event_code = event_msg->event_code; |
| 8566 | |
| 8567 | m->m_len = total_size; |
| 8568 | lck_rw_lock_shared(lck: &kev_rwlock); |
| 8569 | for (ev_pcb = LIST_FIRST(&kern_event_head); |
| 8570 | ev_pcb; |
| 8571 | ev_pcb = LIST_NEXT(ev_pcb, evp_link)) { |
| 8572 | lck_mtx_lock(lck: &ev_pcb->evp_mtx); |
| 8573 | if (ev_pcb->evp_socket->so_pcb == NULL) { |
| 8574 | lck_mtx_unlock(lck: &ev_pcb->evp_mtx); |
| 8575 | continue; |
| 8576 | } |
| 8577 | if (ev_pcb->evp_vendor_code_filter != KEV_ANY_VENDOR) { |
| 8578 | if (ev_pcb->evp_vendor_code_filter != ev->vendor_code) { |
| 8579 | lck_mtx_unlock(lck: &ev_pcb->evp_mtx); |
| 8580 | continue; |
| 8581 | } |
| 8582 | |
| 8583 | if (ev_pcb->evp_class_filter != KEV_ANY_CLASS) { |
| 8584 | if (ev_pcb->evp_class_filter != ev->kev_class) { |
| 8585 | lck_mtx_unlock(lck: &ev_pcb->evp_mtx); |
| 8586 | continue; |
| 8587 | } |
| 8588 | |
| 8589 | if ((ev_pcb->evp_subclass_filter != |
| 8590 | KEV_ANY_SUBCLASS) && |
| 8591 | (ev_pcb->evp_subclass_filter != |
| 8592 | ev->kev_subclass)) { |
| 8593 | lck_mtx_unlock(lck: &ev_pcb->evp_mtx); |
| 8594 | continue; |
| 8595 | } |
| 8596 | } |
| 8597 | } |
| 8598 | |
| 8599 | m2 = m_copym(m, 0, m->m_len, wait); |
| 8600 | if (m2 == 0) { |
| 8601 | os_atomic_inc(&kevtstat.kes_nomem, relaxed); |
| 8602 | m_free(m); |
| 8603 | lck_mtx_unlock(lck: &ev_pcb->evp_mtx); |
| 8604 | lck_rw_done(lck: &kev_rwlock); |
| 8605 | return ENOMEM; |
| 8606 | } |
| 8607 | if (sbappendrecord(sb: &ev_pcb->evp_socket->so_rcv, m0: m2)) { |
| 8608 | /* |
| 8609 | * We use "m" for the socket stats as it would be |
| 8610 | * unsafe to use "m2" |
| 8611 | */ |
| 8612 | so_inc_recv_data_stat(ev_pcb->evp_socket, |
| 8613 | 1, m->m_len, MBUF_TC_BE); |
| 8614 | |
| 8615 | sorwakeup(so: ev_pcb->evp_socket); |
| 8616 | os_atomic_inc(&kevtstat.kes_posted, relaxed); |
| 8617 | } else { |
| 8618 | os_atomic_inc(&kevtstat.kes_fullsock, relaxed); |
| 8619 | } |
| 8620 | lck_mtx_unlock(lck: &ev_pcb->evp_mtx); |
| 8621 | } |
| 8622 | m_free(m); |
| 8623 | lck_rw_done(lck: &kev_rwlock); |
| 8624 | |
| 8625 | return 0; |
| 8626 | } |
| 8627 | |
| 8628 | int |
| 8629 | kev_post_msg(struct kev_msg *event_msg) |
| 8630 | { |
| 8631 | return kev_post_msg_internal(event_msg, M_WAIT); |
| 8632 | } |
| 8633 | |
| 8634 | int |
| 8635 | kev_post_msg_nowait(struct kev_msg *event_msg) |
| 8636 | { |
| 8637 | return kev_post_msg_internal(event_msg, M_NOWAIT); |
| 8638 | } |
| 8639 | |
| 8640 | static int |
| 8641 | kev_control(struct socket *so, |
| 8642 | u_long cmd, |
| 8643 | caddr_t data, |
| 8644 | __unused struct ifnet *ifp, |
| 8645 | __unused struct proc *p) |
| 8646 | { |
| 8647 | struct kev_request *kev_req = (struct kev_request *) data; |
| 8648 | struct kern_event_pcb *ev_pcb; |
| 8649 | struct kev_vendor_code *kev_vendor; |
| 8650 | u_int32_t *id_value = (u_int32_t *) data; |
| 8651 | |
| 8652 | switch (cmd) { |
| 8653 | case SIOCGKEVID: |
| 8654 | *id_value = static_event_id; |
| 8655 | break; |
| 8656 | case SIOCSKEVFILT: |
| 8657 | ev_pcb = (struct kern_event_pcb *) so->so_pcb; |
| 8658 | ev_pcb->evp_vendor_code_filter = kev_req->vendor_code; |
| 8659 | ev_pcb->evp_class_filter = kev_req->kev_class; |
| 8660 | ev_pcb->evp_subclass_filter = kev_req->kev_subclass; |
| 8661 | break; |
| 8662 | case SIOCGKEVFILT: |
| 8663 | ev_pcb = (struct kern_event_pcb *) so->so_pcb; |
| 8664 | kev_req->vendor_code = ev_pcb->evp_vendor_code_filter; |
| 8665 | kev_req->kev_class = ev_pcb->evp_class_filter; |
| 8666 | kev_req->kev_subclass = ev_pcb->evp_subclass_filter; |
| 8667 | break; |
| 8668 | case SIOCGKEVVENDOR: |
| 8669 | kev_vendor = (struct kev_vendor_code *)data; |
| 8670 | /* Make sure string is NULL terminated */ |
| 8671 | kev_vendor->vendor_string[KEV_VENDOR_CODE_MAX_STR_LEN - 1] = 0; |
| 8672 | return net_str_id_find_internal(kev_vendor->vendor_string, |
| 8673 | &kev_vendor->vendor_code, NSI_VENDOR_CODE, 0); |
| 8674 | default: |
| 8675 | return ENOTSUP; |
| 8676 | } |
| 8677 | |
| 8678 | return 0; |
| 8679 | } |
| 8680 | |
| 8681 | int |
| 8682 | kevt_getstat SYSCTL_HANDLER_ARGS |
| 8683 | { |
| 8684 | #pragma unused(oidp, arg1, arg2) |
| 8685 | int error = 0; |
| 8686 | |
| 8687 | lck_rw_lock_shared(lck: &kev_rwlock); |
| 8688 | |
| 8689 | if (req->newptr != USER_ADDR_NULL) { |
| 8690 | error = EPERM; |
| 8691 | goto done; |
| 8692 | } |
| 8693 | if (req->oldptr == USER_ADDR_NULL) { |
| 8694 | req->oldidx = sizeof(struct kevtstat); |
| 8695 | goto done; |
| 8696 | } |
| 8697 | |
| 8698 | error = SYSCTL_OUT(req, &kevtstat, |
| 8699 | MIN(sizeof(struct kevtstat), req->oldlen)); |
| 8700 | done: |
| 8701 | lck_rw_done(lck: &kev_rwlock); |
| 8702 | |
| 8703 | return error; |
| 8704 | } |
| 8705 | |
| 8706 | __private_extern__ int |
| 8707 | kevt_pcblist SYSCTL_HANDLER_ARGS |
| 8708 | { |
| 8709 | #pragma unused(oidp, arg1, arg2) |
| 8710 | int error = 0; |
| 8711 | uint64_t n, i; |
| 8712 | struct xsystmgen xsg; |
| 8713 | void *buf = NULL; |
| 8714 | size_t item_size = ROUNDUP64(sizeof(struct xkevtpcb)) + |
| 8715 | ROUNDUP64(sizeof(struct xsocket_n)) + |
| 8716 | 2 * ROUNDUP64(sizeof(struct xsockbuf_n)) + |
| 8717 | ROUNDUP64(sizeof(struct xsockstat_n)); |
| 8718 | struct kern_event_pcb *ev_pcb; |
| 8719 | |
| 8720 | buf = kalloc_data(item_size, Z_WAITOK | Z_ZERO); |
| 8721 | if (buf == NULL) { |
| 8722 | return ENOMEM; |
| 8723 | } |
| 8724 | |
| 8725 | lck_rw_lock_shared(lck: &kev_rwlock); |
| 8726 | |
| 8727 | n = kevtstat.kes_pcbcount; |
| 8728 | |
| 8729 | if (req->oldptr == USER_ADDR_NULL) { |
| 8730 | req->oldidx = (size_t) ((n + n / 8) * item_size); |
| 8731 | goto done; |
| 8732 | } |
| 8733 | if (req->newptr != USER_ADDR_NULL) { |
| 8734 | error = EPERM; |
| 8735 | goto done; |
| 8736 | } |
| 8737 | bzero(s: &xsg, n: sizeof(xsg)); |
| 8738 | xsg.xg_len = sizeof(xsg); |
| 8739 | xsg.xg_count = n; |
| 8740 | xsg.xg_gen = kevtstat.kes_gencnt; |
| 8741 | xsg.xg_sogen = so_gencnt; |
| 8742 | error = SYSCTL_OUT(req, &xsg, sizeof(xsg)); |
| 8743 | if (error) { |
| 8744 | goto done; |
| 8745 | } |
| 8746 | /* |
| 8747 | * We are done if there is no pcb |
| 8748 | */ |
| 8749 | if (n == 0) { |
| 8750 | goto done; |
| 8751 | } |
| 8752 | |
| 8753 | i = 0; |
| 8754 | for (i = 0, ev_pcb = LIST_FIRST(&kern_event_head); |
| 8755 | i < n && ev_pcb != NULL; |
| 8756 | i++, ev_pcb = LIST_NEXT(ev_pcb, evp_link)) { |
| 8757 | struct xkevtpcb *xk = (struct xkevtpcb *)buf; |
| 8758 | struct xsocket_n *xso = (struct xsocket_n *) |
| 8759 | ADVANCE64(xk, sizeof(*xk)); |
| 8760 | struct xsockbuf_n *xsbrcv = (struct xsockbuf_n *) |
| 8761 | ADVANCE64(xso, sizeof(*xso)); |
| 8762 | struct xsockbuf_n *xsbsnd = (struct xsockbuf_n *) |
| 8763 | ADVANCE64(xsbrcv, sizeof(*xsbrcv)); |
| 8764 | struct xsockstat_n *xsostats = (struct xsockstat_n *) |
| 8765 | ADVANCE64(xsbsnd, sizeof(*xsbsnd)); |
| 8766 | |
| 8767 | bzero(s: buf, n: item_size); |
| 8768 | |
| 8769 | lck_mtx_lock(lck: &ev_pcb->evp_mtx); |
| 8770 | |
| 8771 | xk->kep_len = sizeof(struct xkevtpcb); |
| 8772 | xk->kep_kind = XSO_EVT; |
| 8773 | xk->kep_evtpcb = (uint64_t)VM_KERNEL_ADDRHASH(ev_pcb); |
| 8774 | xk->kep_vendor_code_filter = ev_pcb->evp_vendor_code_filter; |
| 8775 | xk->kep_class_filter = ev_pcb->evp_class_filter; |
| 8776 | xk->kep_subclass_filter = ev_pcb->evp_subclass_filter; |
| 8777 | |
| 8778 | sotoxsocket_n(ev_pcb->evp_socket, xso); |
| 8779 | sbtoxsockbuf_n(ev_pcb->evp_socket ? |
| 8780 | &ev_pcb->evp_socket->so_rcv : NULL, xsbrcv); |
| 8781 | sbtoxsockbuf_n(ev_pcb->evp_socket ? |
| 8782 | &ev_pcb->evp_socket->so_snd : NULL, xsbsnd); |
| 8783 | sbtoxsockstat_n(ev_pcb->evp_socket, xsostats); |
| 8784 | |
| 8785 | lck_mtx_unlock(lck: &ev_pcb->evp_mtx); |
| 8786 | |
| 8787 | error = SYSCTL_OUT(req, buf, item_size); |
| 8788 | } |
| 8789 | |
| 8790 | if (error == 0) { |
| 8791 | /* |
| 8792 | * Give the user an updated idea of our state. |
| 8793 | * If the generation differs from what we told |
| 8794 | * her before, she knows that something happened |
| 8795 | * while we were processing this request, and it |
| 8796 | * might be necessary to retry. |
| 8797 | */ |
| 8798 | bzero(s: &xsg, n: sizeof(xsg)); |
| 8799 | xsg.xg_len = sizeof(xsg); |
| 8800 | xsg.xg_count = n; |
| 8801 | xsg.xg_gen = kevtstat.kes_gencnt; |
| 8802 | xsg.xg_sogen = so_gencnt; |
| 8803 | error = SYSCTL_OUT(req, &xsg, sizeof(xsg)); |
| 8804 | if (error) { |
| 8805 | goto done; |
| 8806 | } |
| 8807 | } |
| 8808 | |
| 8809 | done: |
| 8810 | lck_rw_done(lck: &kev_rwlock); |
| 8811 | |
| 8812 | kfree_data(buf, item_size); |
| 8813 | return error; |
| 8814 | } |
| 8815 | |
| 8816 | #endif /* SOCKETS */ |
| 8817 | |
| 8818 | |
| 8819 | int |
| 8820 | fill_kqueueinfo(kqueue_t kqu, struct kqueue_info * kinfo) |
| 8821 | { |
| 8822 | struct vinfo_stat * st; |
| 8823 | |
| 8824 | st = &kinfo->kq_stat; |
| 8825 | |
| 8826 | st->vst_size = kqu.kq->kq_count; |
| 8827 | if (kqu.kq->kq_state & KQ_KEV_QOS) { |
| 8828 | st->vst_blksize = sizeof(struct kevent_qos_s); |
| 8829 | } else if (kqu.kq->kq_state & KQ_KEV64) { |
| 8830 | st->vst_blksize = sizeof(struct kevent64_s); |
| 8831 | } else { |
| 8832 | st->vst_blksize = sizeof(struct kevent); |
| 8833 | } |
| 8834 | st->vst_mode = S_IFIFO; |
| 8835 | st->vst_ino = (kqu.kq->kq_state & KQ_DYNAMIC) ? |
| 8836 | kqu.kqwl->kqwl_dynamicid : 0; |
| 8837 | |
| 8838 | /* flags exported to libproc as PROC_KQUEUE_* (sys/proc_info.h) */ |
| 8839 | #define PROC_KQUEUE_MASK (KQ_SLEEP|KQ_KEV32|KQ_KEV64|KQ_KEV_QOS|KQ_WORKQ|KQ_WORKLOOP) |
| 8840 | static_assert(PROC_KQUEUE_SLEEP == KQ_SLEEP); |
| 8841 | static_assert(PROC_KQUEUE_32 == KQ_KEV32); |
| 8842 | static_assert(PROC_KQUEUE_64 == KQ_KEV64); |
| 8843 | static_assert(PROC_KQUEUE_QOS == KQ_KEV_QOS); |
| 8844 | static_assert(PROC_KQUEUE_WORKQ == KQ_WORKQ); |
| 8845 | static_assert(PROC_KQUEUE_WORKLOOP == KQ_WORKLOOP); |
| 8846 | kinfo->kq_state = kqu.kq->kq_state & PROC_KQUEUE_MASK; |
| 8847 | if ((kqu.kq->kq_state & (KQ_WORKLOOP | KQ_WORKQ)) == 0) { |
| 8848 | if (kqu.kqf->kqf_sel.si_flags & SI_RECORDED) { |
| 8849 | kinfo->kq_state |= PROC_KQUEUE_SELECT; |
| 8850 | } |
| 8851 | } |
| 8852 | |
| 8853 | return 0; |
| 8854 | } |
| 8855 | |
| 8856 | static int |
| 8857 | fill_kqueue_dyninfo(struct kqworkloop *kqwl, struct kqueue_dyninfo *kqdi) |
| 8858 | { |
| 8859 | workq_threadreq_t kqr = &kqwl->kqwl_request; |
| 8860 | workq_threadreq_param_t trp = {}; |
| 8861 | int err; |
| 8862 | |
| 8863 | if ((kqwl->kqwl_state & KQ_WORKLOOP) == 0) { |
| 8864 | return EINVAL; |
| 8865 | } |
| 8866 | |
| 8867 | if ((err = fill_kqueueinfo(kqu: &kqwl->kqwl_kqueue, kinfo: &kqdi->kqdi_info))) { |
| 8868 | return err; |
| 8869 | } |
| 8870 | |
| 8871 | kqlock(kqu: kqwl); |
| 8872 | |
| 8873 | kqdi->kqdi_servicer = thread_tid(thread: kqr_thread(kqr)); |
| 8874 | kqdi->kqdi_owner = thread_tid(thread: kqwl->kqwl_owner); |
| 8875 | kqdi->kqdi_request_state = kqr->tr_state; |
| 8876 | kqdi->kqdi_async_qos = kqr->tr_kq_qos_index; |
| 8877 | kqdi->kqdi_events_qos = kqr->tr_kq_override_index; |
| 8878 | kqdi->kqdi_sync_waiters = 0; |
| 8879 | kqdi->kqdi_sync_waiter_qos = 0; |
| 8880 | |
| 8881 | trp.trp_value = kqwl->kqwl_params; |
| 8882 | if (trp.trp_flags & TRP_PRIORITY) { |
| 8883 | kqdi->kqdi_pri = trp.trp_pri; |
| 8884 | } else { |
| 8885 | kqdi->kqdi_pri = 0; |
| 8886 | } |
| 8887 | |
| 8888 | if (trp.trp_flags & TRP_POLICY) { |
| 8889 | kqdi->kqdi_pol = trp.trp_pol; |
| 8890 | } else { |
| 8891 | kqdi->kqdi_pol = 0; |
| 8892 | } |
| 8893 | |
| 8894 | if (trp.trp_flags & TRP_CPUPERCENT) { |
| 8895 | kqdi->kqdi_cpupercent = trp.trp_cpupercent; |
| 8896 | } else { |
| 8897 | kqdi->kqdi_cpupercent = 0; |
| 8898 | } |
| 8899 | |
| 8900 | kqunlock(kqu: kqwl); |
| 8901 | |
| 8902 | return 0; |
| 8903 | } |
| 8904 | |
| 8905 | |
| 8906 | static unsigned long |
| 8907 | kevent_extinfo_emit(struct kqueue *kq, struct knote *kn, struct kevent_extinfo *buf, |
| 8908 | unsigned long buflen, unsigned long nknotes) |
| 8909 | { |
| 8910 | for (; kn; kn = SLIST_NEXT(kn, kn_link)) { |
| 8911 | if (kq == knote_get_kq(kn)) { |
| 8912 | if (nknotes < buflen) { |
| 8913 | struct kevent_extinfo *info = &buf[nknotes]; |
| 8914 | |
| 8915 | kqlock(kqu: kq); |
| 8916 | |
| 8917 | if (knote_fops(kn)->f_sanitized_copyout) { |
| 8918 | knote_fops(kn)->f_sanitized_copyout(kn, &info->kqext_kev); |
| 8919 | } else { |
| 8920 | info->kqext_kev = *(struct kevent_qos_s *)&kn->kn_kevent; |
| 8921 | } |
| 8922 | |
| 8923 | if (knote_has_qos(kn)) { |
| 8924 | info->kqext_kev.qos = |
| 8925 | _pthread_priority_thread_qos_fast(pp: kn->kn_qos); |
| 8926 | } else { |
| 8927 | info->kqext_kev.qos = kn->kn_qos_override; |
| 8928 | } |
| 8929 | info->kqext_kev.filter |= 0xff00; /* sign extend filter */ |
| 8930 | info->kqext_kev.xflags = 0; /* this is where sfflags lives */ |
| 8931 | info->kqext_kev.data = 0; /* this is where sdata lives */ |
| 8932 | info->kqext_sdata = kn->kn_sdata; |
| 8933 | info->kqext_status = kn->kn_status; |
| 8934 | info->kqext_sfflags = kn->kn_sfflags; |
| 8935 | |
| 8936 | kqunlock(kqu: kq); |
| 8937 | } |
| 8938 | |
| 8939 | /* we return total number of knotes, which may be more than requested */ |
| 8940 | nknotes++; |
| 8941 | } |
| 8942 | } |
| 8943 | |
| 8944 | return nknotes; |
| 8945 | } |
| 8946 | |
| 8947 | int |
| 8948 | kevent_copyout_proc_dynkqids(void *proc, user_addr_t ubuf, uint32_t ubufsize, |
| 8949 | int32_t *nkqueues_out) |
| 8950 | { |
| 8951 | proc_t p = (proc_t)proc; |
| 8952 | struct filedesc *fdp = &p->p_fd; |
| 8953 | unsigned int nkqueues = 0; |
| 8954 | unsigned long ubuflen = ubufsize / sizeof(kqueue_id_t); |
| 8955 | size_t buflen, bufsize; |
| 8956 | kqueue_id_t *kq_ids = NULL; |
| 8957 | int err = 0; |
| 8958 | |
| 8959 | assert(p != NULL); |
| 8960 | |
| 8961 | if (ubuf == USER_ADDR_NULL && ubufsize != 0) { |
| 8962 | err = EINVAL; |
| 8963 | goto out; |
| 8964 | } |
| 8965 | |
| 8966 | buflen = MIN(ubuflen, PROC_PIDDYNKQUEUES_MAX); |
| 8967 | |
| 8968 | if (ubuflen != 0) { |
| 8969 | if (os_mul_overflow(sizeof(kqueue_id_t), buflen, &bufsize)) { |
| 8970 | err = ERANGE; |
| 8971 | goto out; |
| 8972 | } |
| 8973 | kq_ids = (kqueue_id_t *)kalloc_data(bufsize, Z_WAITOK | Z_ZERO); |
| 8974 | if (!kq_ids) { |
| 8975 | err = ENOMEM; |
| 8976 | goto out; |
| 8977 | } |
| 8978 | } |
| 8979 | |
| 8980 | kqhash_lock(fdp); |
| 8981 | |
| 8982 | u_long kqhashmask = fdp->fd_kqhashmask; |
| 8983 | if (kqhashmask > 0) { |
| 8984 | for (uint32_t i = 0; i < kqhashmask + 1; i++) { |
| 8985 | struct kqworkloop *kqwl; |
| 8986 | |
| 8987 | LIST_FOREACH(kqwl, &fdp->fd_kqhash[i], kqwl_hashlink) { |
| 8988 | /* report the number of kqueues, even if they don't all fit */ |
| 8989 | if (nkqueues < buflen) { |
| 8990 | kq_ids[nkqueues] = kqwl->kqwl_dynamicid; |
| 8991 | } |
| 8992 | nkqueues++; |
| 8993 | } |
| 8994 | |
| 8995 | /* |
| 8996 | * Drop the kqhash lock and take it again to give some breathing room |
| 8997 | */ |
| 8998 | kqhash_unlock(fdp); |
| 8999 | kqhash_lock(fdp); |
| 9000 | |
| 9001 | /* |
| 9002 | * Reevaluate to see if we have raced with someone who changed this - |
| 9003 | * if we have, we should bail out with the set of info captured so far |
| 9004 | */ |
| 9005 | if (fdp->fd_kqhashmask != kqhashmask) { |
| 9006 | break; |
| 9007 | } |
| 9008 | } |
| 9009 | } |
| 9010 | |
| 9011 | kqhash_unlock(fdp); |
| 9012 | |
| 9013 | if (kq_ids) { |
| 9014 | size_t copysize; |
| 9015 | if (os_mul_overflow(sizeof(kqueue_id_t), MIN(buflen, nkqueues), ©size)) { |
| 9016 | err = ERANGE; |
| 9017 | goto out; |
| 9018 | } |
| 9019 | |
| 9020 | assert(ubufsize >= copysize); |
| 9021 | err = copyout(kq_ids, ubuf, copysize); |
| 9022 | } |
| 9023 | |
| 9024 | out: |
| 9025 | if (kq_ids) { |
| 9026 | kfree_data(kq_ids, bufsize); |
| 9027 | } |
| 9028 | |
| 9029 | if (!err) { |
| 9030 | *nkqueues_out = (int)min(a: nkqueues, PROC_PIDDYNKQUEUES_MAX); |
| 9031 | } |
| 9032 | return err; |
| 9033 | } |
| 9034 | |
| 9035 | int |
| 9036 | kevent_copyout_dynkqinfo(void *proc, kqueue_id_t kq_id, user_addr_t ubuf, |
| 9037 | uint32_t ubufsize, int32_t *size_out) |
| 9038 | { |
| 9039 | proc_t p = (proc_t)proc; |
| 9040 | struct kqworkloop *kqwl; |
| 9041 | int err = 0; |
| 9042 | struct kqueue_dyninfo kqdi = { }; |
| 9043 | |
| 9044 | assert(p != NULL); |
| 9045 | |
| 9046 | if (ubufsize < sizeof(struct kqueue_info)) { |
| 9047 | return ENOBUFS; |
| 9048 | } |
| 9049 | |
| 9050 | kqwl = kqworkloop_hash_lookup_and_retain(fdp: &p->p_fd, kq_id); |
| 9051 | if (!kqwl) { |
| 9052 | return ESRCH; |
| 9053 | } |
| 9054 | |
| 9055 | /* |
| 9056 | * backward compatibility: allow the argument to this call to only be |
| 9057 | * a struct kqueue_info |
| 9058 | */ |
| 9059 | if (ubufsize >= sizeof(struct kqueue_dyninfo)) { |
| 9060 | ubufsize = sizeof(struct kqueue_dyninfo); |
| 9061 | err = fill_kqueue_dyninfo(kqwl, kqdi: &kqdi); |
| 9062 | } else { |
| 9063 | ubufsize = sizeof(struct kqueue_info); |
| 9064 | err = fill_kqueueinfo(kqu: &kqwl->kqwl_kqueue, kinfo: &kqdi.kqdi_info); |
| 9065 | } |
| 9066 | if (err == 0 && (err = copyout(&kqdi, ubuf, ubufsize)) == 0) { |
| 9067 | *size_out = ubufsize; |
| 9068 | } |
| 9069 | kqworkloop_release(kqwl); |
| 9070 | return err; |
| 9071 | } |
| 9072 | |
| 9073 | int |
| 9074 | kevent_copyout_dynkqextinfo(void *proc, kqueue_id_t kq_id, user_addr_t ubuf, |
| 9075 | uint32_t ubufsize, int32_t *nknotes_out) |
| 9076 | { |
| 9077 | proc_t p = (proc_t)proc; |
| 9078 | struct kqworkloop *kqwl; |
| 9079 | int err; |
| 9080 | |
| 9081 | kqwl = kqworkloop_hash_lookup_and_retain(fdp: &p->p_fd, kq_id); |
| 9082 | if (!kqwl) { |
| 9083 | return ESRCH; |
| 9084 | } |
| 9085 | |
| 9086 | err = pid_kqueue_extinfo(p, kq: &kqwl->kqwl_kqueue, buffer: ubuf, buffersize: ubufsize, retval: nknotes_out); |
| 9087 | kqworkloop_release(kqwl); |
| 9088 | return err; |
| 9089 | } |
| 9090 | |
| 9091 | int |
| 9092 | pid_kqueue_extinfo(proc_t p, struct kqueue *kq, user_addr_t ubuf, |
| 9093 | uint32_t bufsize, int32_t *retval) |
| 9094 | { |
| 9095 | struct knote *kn; |
| 9096 | int i; |
| 9097 | int err = 0; |
| 9098 | struct filedesc *fdp = &p->p_fd; |
| 9099 | unsigned long nknotes = 0; |
| 9100 | unsigned long buflen = bufsize / sizeof(struct kevent_extinfo); |
| 9101 | struct kevent_extinfo *kqext = NULL; |
| 9102 | |
| 9103 | /* arbitrary upper limit to cap kernel memory usage, copyout size, etc. */ |
| 9104 | buflen = MIN(buflen, PROC_PIDFDKQUEUE_KNOTES_MAX); |
| 9105 | |
| 9106 | kqext = (struct kevent_extinfo *)kalloc_data(buflen * sizeof(struct kevent_extinfo), Z_WAITOK | Z_ZERO); |
| 9107 | if (kqext == NULL) { |
| 9108 | err = ENOMEM; |
| 9109 | goto out; |
| 9110 | } |
| 9111 | |
| 9112 | proc_fdlock(p); |
| 9113 | u_long fd_knlistsize = fdp->fd_knlistsize; |
| 9114 | struct klist *fd_knlist = fdp->fd_knlist; |
| 9115 | |
| 9116 | for (i = 0; i < fd_knlistsize; i++) { |
| 9117 | kn = SLIST_FIRST(&fd_knlist[i]); |
| 9118 | nknotes = kevent_extinfo_emit(kq, kn, buf: kqext, buflen, nknotes); |
| 9119 | |
| 9120 | proc_fdunlock(p); |
| 9121 | proc_fdlock(p); |
| 9122 | /* |
| 9123 | * Reevaluate to see if we have raced with someone who changed this - |
| 9124 | * if we have, we return the set of info for fd_knlistsize we knew |
| 9125 | * in the beginning except if knotes_dealloc interleaves with us. |
| 9126 | * In that case, we bail out early with the set of info captured so far. |
| 9127 | */ |
| 9128 | if (fd_knlistsize != fdp->fd_knlistsize) { |
| 9129 | if (fdp->fd_knlistsize) { |
| 9130 | /* kq_add_knote might grow fdp->fd_knlist. */ |
| 9131 | fd_knlist = fdp->fd_knlist; |
| 9132 | } else { |
| 9133 | break; |
| 9134 | } |
| 9135 | } |
| 9136 | } |
| 9137 | proc_fdunlock(p); |
| 9138 | |
| 9139 | knhash_lock(fdp); |
| 9140 | u_long knhashmask = fdp->fd_knhashmask; |
| 9141 | |
| 9142 | if (knhashmask != 0) { |
| 9143 | for (i = 0; i < (int)knhashmask + 1; i++) { |
| 9144 | kn = SLIST_FIRST(&fdp->fd_knhash[i]); |
| 9145 | nknotes = kevent_extinfo_emit(kq, kn, buf: kqext, buflen, nknotes); |
| 9146 | |
| 9147 | knhash_unlock(fdp); |
| 9148 | knhash_lock(fdp); |
| 9149 | |
| 9150 | /* |
| 9151 | * Reevaluate to see if we have raced with someone who changed this - |
| 9152 | * if we have, we should bail out with the set of info captured so far |
| 9153 | */ |
| 9154 | if (fdp->fd_knhashmask != knhashmask) { |
| 9155 | break; |
| 9156 | } |
| 9157 | } |
| 9158 | } |
| 9159 | knhash_unlock(fdp); |
| 9160 | |
| 9161 | assert(bufsize >= sizeof(struct kevent_extinfo) * MIN(buflen, nknotes)); |
| 9162 | err = copyout(kqext, ubuf, sizeof(struct kevent_extinfo) * MIN(buflen, nknotes)); |
| 9163 | |
| 9164 | out: |
| 9165 | kfree_data(kqext, buflen * sizeof(struct kevent_extinfo)); |
| 9166 | |
| 9167 | if (!err) { |
| 9168 | *retval = (int32_t)MIN(nknotes, PROC_PIDFDKQUEUE_KNOTES_MAX); |
| 9169 | } |
| 9170 | return err; |
| 9171 | } |
| 9172 | |
| 9173 | static unsigned int |
| 9174 | klist_copy_udata(struct klist *list, uint64_t *buf, |
| 9175 | unsigned int buflen, unsigned int nknotes) |
| 9176 | { |
| 9177 | struct knote *kn; |
| 9178 | SLIST_FOREACH(kn, list, kn_link) { |
| 9179 | if (nknotes < buflen) { |
| 9180 | /* |
| 9181 | * kevent_register will always set kn_udata atomically |
| 9182 | * so that we don't have to take any kqlock here. |
| 9183 | */ |
| 9184 | buf[nknotes] = os_atomic_load_wide(&kn->kn_udata, relaxed); |
| 9185 | } |
| 9186 | /* we return total number of knotes, which may be more than requested */ |
| 9187 | nknotes++; |
| 9188 | } |
| 9189 | |
| 9190 | return nknotes; |
| 9191 | } |
| 9192 | |
| 9193 | int |
| 9194 | kevent_proc_copy_uptrs(void *proc, uint64_t *buf, uint32_t bufsize) |
| 9195 | { |
| 9196 | proc_t p = (proc_t)proc; |
| 9197 | struct filedesc *fdp = &p->p_fd; |
| 9198 | unsigned int nuptrs = 0; |
| 9199 | unsigned int buflen = bufsize / sizeof(uint64_t); |
| 9200 | struct kqworkloop *kqwl; |
| 9201 | u_long size = 0; |
| 9202 | struct klist *fd_knlist = NULL; |
| 9203 | |
| 9204 | if (buflen > 0) { |
| 9205 | assert(buf != NULL); |
| 9206 | } |
| 9207 | |
| 9208 | /* |
| 9209 | * Copyout the uptrs as much as possible but make sure to drop the respective |
| 9210 | * locks and take them again periodically so that we don't blow through |
| 9211 | * preemption disabled timeouts. Always reevaluate to see if we have raced |
| 9212 | * with someone who changed size of the hash - if we have, we return info for |
| 9213 | * the size of the hash we knew in the beginning except if it drops to 0. |
| 9214 | * In that case, we bail out with the set of info captured so far |
| 9215 | */ |
| 9216 | proc_fdlock(p); |
| 9217 | size = fdp->fd_knlistsize; |
| 9218 | fd_knlist = fdp->fd_knlist; |
| 9219 | |
| 9220 | for (int i = 0; i < size; i++) { |
| 9221 | nuptrs = klist_copy_udata(list: &fd_knlist[i], buf, buflen, nknotes: nuptrs); |
| 9222 | |
| 9223 | proc_fdunlock(p); |
| 9224 | proc_fdlock(p); |
| 9225 | if (size != fdp->fd_knlistsize) { |
| 9226 | if (fdp->fd_knlistsize) { |
| 9227 | /* kq_add_knote might grow fdp->fd_knlist. */ |
| 9228 | fd_knlist = fdp->fd_knlist; |
| 9229 | } else { |
| 9230 | break; |
| 9231 | } |
| 9232 | } |
| 9233 | } |
| 9234 | proc_fdunlock(p); |
| 9235 | |
| 9236 | knhash_lock(fdp); |
| 9237 | size = fdp->fd_knhashmask; |
| 9238 | |
| 9239 | if (size != 0) { |
| 9240 | for (size_t i = 0; i < size + 1; i++) { |
| 9241 | nuptrs = klist_copy_udata(list: &fdp->fd_knhash[i], buf, buflen, nknotes: nuptrs); |
| 9242 | |
| 9243 | knhash_unlock(fdp); |
| 9244 | knhash_lock(fdp); |
| 9245 | /* The only path that can interleave with us today is knotes_dealloc. */ |
| 9246 | if (size != fdp->fd_knhashmask) { |
| 9247 | break; |
| 9248 | } |
| 9249 | } |
| 9250 | } |
| 9251 | knhash_unlock(fdp); |
| 9252 | |
| 9253 | kqhash_lock(fdp); |
| 9254 | size = fdp->fd_kqhashmask; |
| 9255 | |
| 9256 | if (size != 0) { |
| 9257 | for (size_t i = 0; i < size + 1; i++) { |
| 9258 | LIST_FOREACH(kqwl, &fdp->fd_kqhash[i], kqwl_hashlink) { |
| 9259 | if (nuptrs < buflen) { |
| 9260 | buf[nuptrs] = kqwl->kqwl_dynamicid; |
| 9261 | } |
| 9262 | nuptrs++; |
| 9263 | } |
| 9264 | |
| 9265 | kqhash_unlock(fdp); |
| 9266 | kqhash_lock(fdp); |
| 9267 | if (size != fdp->fd_kqhashmask) { |
| 9268 | break; |
| 9269 | } |
| 9270 | } |
| 9271 | } |
| 9272 | kqhash_unlock(fdp); |
| 9273 | |
| 9274 | return (int)nuptrs; |
| 9275 | } |
| 9276 | |
| 9277 | static void |
| 9278 | kevent_set_return_to_kernel_user_tsd(proc_t p, thread_t thread) |
| 9279 | { |
| 9280 | uint64_t ast_addr; |
| 9281 | bool proc_is_64bit = !!(p->p_flag & P_LP64); |
| 9282 | size_t user_addr_size = proc_is_64bit ? 8 : 4; |
| 9283 | uint32_t ast_flags32 = 0; |
| 9284 | uint64_t ast_flags64 = 0; |
| 9285 | struct uthread *ut = get_bsdthread_info(thread); |
| 9286 | |
| 9287 | if (ut->uu_kqr_bound != NULL) { |
| 9288 | ast_flags64 |= R2K_WORKLOOP_PENDING_EVENTS; |
| 9289 | } |
| 9290 | |
| 9291 | if (ast_flags64 == 0) { |
| 9292 | return; |
| 9293 | } |
| 9294 | |
| 9295 | if (!(p->p_flag & P_LP64)) { |
| 9296 | ast_flags32 = (uint32_t)ast_flags64; |
| 9297 | assert(ast_flags64 < 0x100000000ull); |
| 9298 | } |
| 9299 | |
| 9300 | ast_addr = thread_rettokern_addr(thread); |
| 9301 | if (ast_addr == 0) { |
| 9302 | return; |
| 9303 | } |
| 9304 | |
| 9305 | if (copyout((proc_is_64bit ? (void *)&ast_flags64 : (void *)&ast_flags32), |
| 9306 | (user_addr_t)ast_addr, |
| 9307 | user_addr_size) != 0) { |
| 9308 | printf("pid %d (tid:%llu): copyout of return_to_kernel ast flags failed with " |
| 9309 | "ast_addr = %llu\n" , proc_getpid(p), thread_tid(thread: current_thread()), ast_addr); |
| 9310 | } |
| 9311 | } |
| 9312 | |
| 9313 | /* |
| 9314 | * Semantics of writing to TSD value: |
| 9315 | * |
| 9316 | * 1. It is written to by the kernel and cleared by userspace. |
| 9317 | * 2. When the userspace code clears the TSD field, it takes responsibility for |
| 9318 | * taking action on the quantum expiry action conveyed by kernel. |
| 9319 | * 3. The TSD value is always cleared upon entry into userspace and upon exit of |
| 9320 | * userspace back to kernel to make sure that it is never leaked across thread |
| 9321 | * requests. |
| 9322 | */ |
| 9323 | void |
| 9324 | kevent_set_workq_quantum_expiry_user_tsd(proc_t p, thread_t thread, |
| 9325 | uint64_t flags) |
| 9326 | { |
| 9327 | uint64_t ast_addr; |
| 9328 | bool proc_is_64bit = !!(p->p_flag & P_LP64); |
| 9329 | uint32_t ast_flags32 = 0; |
| 9330 | uint64_t ast_flags64 = flags; |
| 9331 | |
| 9332 | if (ast_flags64 == 0) { |
| 9333 | return; |
| 9334 | } |
| 9335 | |
| 9336 | if (!(p->p_flag & P_LP64)) { |
| 9337 | ast_flags32 = (uint32_t)ast_flags64; |
| 9338 | assert(ast_flags64 < 0x100000000ull); |
| 9339 | } |
| 9340 | |
| 9341 | ast_addr = thread_wqquantum_addr(thread); |
| 9342 | assert(ast_addr != 0); |
| 9343 | |
| 9344 | if (proc_is_64bit) { |
| 9345 | if (copyout_atomic64(u64: ast_flags64, user_addr: (user_addr_t) ast_addr)) { |
| 9346 | #if DEBUG || DEVELOPMENT |
| 9347 | printf("pid %d (tid:%llu): copyout of workq quantum ast flags failed with " |
| 9348 | "ast_addr = %llu\n" , proc_getpid(p), thread_tid(thread), ast_addr); |
| 9349 | #endif |
| 9350 | } |
| 9351 | } else { |
| 9352 | if (copyout_atomic32(u32: ast_flags32, user_addr: (user_addr_t) ast_addr)) { |
| 9353 | #if DEBUG || DEVELOPMENT |
| 9354 | printf("pid %d (tid:%llu): copyout of workq quantum ast flags failed with " |
| 9355 | "ast_addr = %llu\n" , proc_getpid(p), thread_tid(thread), ast_addr); |
| 9356 | #endif |
| 9357 | } |
| 9358 | } |
| 9359 | } |
| 9360 | |
| 9361 | void |
| 9362 | kevent_ast(thread_t thread, uint16_t bits) |
| 9363 | { |
| 9364 | proc_t p = current_proc(); |
| 9365 | |
| 9366 | |
| 9367 | if (bits & AST_KEVENT_REDRIVE_THREADREQ) { |
| 9368 | workq_kern_threadreq_redrive(p, flags: WORKQ_THREADREQ_CAN_CREATE_THREADS); |
| 9369 | } |
| 9370 | if (bits & AST_KEVENT_RETURN_TO_KERNEL) { |
| 9371 | kevent_set_return_to_kernel_user_tsd(p, thread); |
| 9372 | } |
| 9373 | |
| 9374 | if (bits & AST_KEVENT_WORKQ_QUANTUM_EXPIRED) { |
| 9375 | workq_kern_quantum_expiry_reevaluate(p, thread); |
| 9376 | } |
| 9377 | } |
| 9378 | |
| 9379 | #if DEVELOPMENT || DEBUG |
| 9380 | |
| 9381 | #define KEVENT_SYSCTL_BOUND_ID 1 |
| 9382 | |
| 9383 | static int |
| 9384 | kevent_sysctl SYSCTL_HANDLER_ARGS |
| 9385 | { |
| 9386 | #pragma unused(oidp, arg2) |
| 9387 | uintptr_t type = (uintptr_t)arg1; |
| 9388 | uint64_t bound_id = 0; |
| 9389 | |
| 9390 | if (type != KEVENT_SYSCTL_BOUND_ID) { |
| 9391 | return EINVAL; |
| 9392 | } |
| 9393 | |
| 9394 | if (req->newptr) { |
| 9395 | return EINVAL; |
| 9396 | } |
| 9397 | |
| 9398 | struct uthread *ut = current_uthread(); |
| 9399 | if (!ut) { |
| 9400 | return EFAULT; |
| 9401 | } |
| 9402 | |
| 9403 | workq_threadreq_t kqr = ut->uu_kqr_bound; |
| 9404 | if (kqr) { |
| 9405 | if (kqr->tr_flags & WORKQ_TR_FLAG_WORKLOOP) { |
| 9406 | bound_id = kqr_kqworkloop(kqr)->kqwl_dynamicid; |
| 9407 | } else { |
| 9408 | bound_id = -1; |
| 9409 | } |
| 9410 | } |
| 9411 | |
| 9412 | return sysctl_io_number(req, bound_id, sizeof(bound_id), NULL, NULL); |
| 9413 | } |
| 9414 | |
| 9415 | SYSCTL_NODE(_kern, OID_AUTO, kevent, CTLFLAG_RW | CTLFLAG_LOCKED, 0, |
| 9416 | "kevent information" ); |
| 9417 | |
| 9418 | SYSCTL_PROC(_kern_kevent, OID_AUTO, bound_id, |
| 9419 | CTLTYPE_QUAD | CTLFLAG_RD | CTLFLAG_LOCKED | CTLFLAG_MASKED, |
| 9420 | (void *)KEVENT_SYSCTL_BOUND_ID, |
| 9421 | sizeof(kqueue_id_t), kevent_sysctl, "Q" , |
| 9422 | "get the ID of the bound kqueue" ); |
| 9423 | |
| 9424 | #endif /* DEVELOPMENT || DEBUG */ |
| 9425 | |