| 1 | /* |
| 2 | * Copyright (c) 2022 Apple Computer, Inc. All rights reserved. |
| 3 | * |
| 4 | * @APPLE_LICENSE_HEADER_START@ |
| 5 | * |
| 6 | * The contents of this file constitute Original Code as defined in and |
| 7 | * are subject to the Apple Public Source License Version 1.1 (the |
| 8 | * "License"). You may not use this file except in compliance with the |
| 9 | * License. Please obtain a copy of the License at |
| 10 | * http://www.apple.com/publicsource and read it before using this file. |
| 11 | * |
| 12 | * This Original Code and all software distributed under the License are |
| 13 | * distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, EITHER |
| 14 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
| 15 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, |
| 16 | * FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT. Please see the |
| 17 | * License for the specific language governing rights and limitations |
| 18 | * under the License. |
| 19 | * |
| 20 | * @APPLE_LICENSE_HEADER_END@ |
| 21 | */ |
| 22 | |
| 23 | #include <stdarg.h> |
| 24 | #include <stdatomic.h> |
| 25 | #include <os/overflow.h> |
| 26 | #include <machine/atomic.h> |
| 27 | #include <mach/vm_param.h> |
| 28 | #include <mach/vm_map.h> |
| 29 | #include <mach/shared_region.h> |
| 30 | #include <vm/vm_kern.h> |
| 31 | #include <kern/zalloc.h> |
| 32 | #include <kern/kalloc.h> |
| 33 | #include <kern/assert.h> |
| 34 | #include <kern/locks.h> |
| 35 | #include <kern/recount.h> |
| 36 | #include <kern/sched_prim.h> |
| 37 | #include <kern/lock_rw.h> |
| 38 | #include <libkern/libkern.h> |
| 39 | #include <libkern/section_keywords.h> |
| 40 | #include <libkern/coretrust/coretrust.h> |
| 41 | #include <libkern/amfi/amfi.h> |
| 42 | #include <pexpert/pexpert.h> |
| 43 | #include <sys/vm.h> |
| 44 | #include <sys/proc.h> |
| 45 | #include <sys/codesign.h> |
| 46 | #include <sys/code_signing.h> |
| 47 | #include <uuid/uuid.h> |
| 48 | #include <IOKit/IOBSD.h> |
| 49 | |
| 50 | #if CONFIG_SPTM |
| 51 | /* |
| 52 | * The TrustedExecutionMonitor environment works in tandem with the SPTM to provide code |
| 53 | * signing and memory isolation enforcement for data structures critical to ensuring that |
| 54 | * all code executed on the system is authorized to do so. |
| 55 | * |
| 56 | * Unless the data is managed by TXM itself, XNU needs to page-align everything, make the |
| 57 | * relevant type transfer, and then reference the memory as read-only. |
| 58 | * |
| 59 | * TXM enforces concurrency on its side, but through the use of try-locks. Upon a failure |
| 60 | * in acquiring the lock, TXM will panic. As a result, in order to ensure single-threaded |
| 61 | * behavior, the kernel also has to take some locks on its side befor calling into TXM. |
| 62 | */ |
| 63 | #include <sys/trusted_execution_monitor.h> |
| 64 | #include <pexpert/arm64/board_config.h> |
| 65 | |
| 66 | /* Lock group used for all locks within the kernel for TXM */ |
| 67 | LCK_GRP_DECLARE(txm_lck_grp, "txm_code_signing_lck_grp" ); |
| 68 | |
| 69 | #pragma mark Utilities |
| 70 | |
| 71 | /* Number of thread stacks is known at build-time */ |
| 72 | #define NUM_TXM_THREAD_STACKS (MAX_CPUS) |
| 73 | txm_thread_stack_t thread_stacks[NUM_TXM_THREAD_STACKS] = {0}; |
| 74 | |
| 75 | /* Singly-linked-list head for thread stacks */ |
| 76 | SLIST_HEAD(thread_stack_head, _txm_thread_stack) thread_stacks_head = |
| 77 | SLIST_HEAD_INITIALIZER(thread_stacks_head); |
| 78 | |
| 79 | static decl_lck_mtx_data(, thread_stacks_lock); |
| 80 | static void *thread_stack_event = NULL; |
| 81 | |
| 82 | static void |
| 83 | setup_thread_stacks(void) |
| 84 | { |
| 85 | extern const sptm_bootstrap_args_xnu_t *SPTMArgs; |
| 86 | txm_thread_stack_t *thread_stack = NULL; |
| 87 | |
| 88 | /* Initialize each thread stack and add it to the list */ |
| 89 | for (uint32_t i = 0; i < NUM_TXM_THREAD_STACKS; i++) { |
| 90 | thread_stack = &thread_stacks[i]; |
| 91 | |
| 92 | /* Acquire the thread stack virtual mapping */ |
| 93 | thread_stack->thread_stack_papt = SPTMArgs->txm_thread_stacks[i]; |
| 94 | |
| 95 | /* Acquire the thread stack physical page */ |
| 96 | thread_stack->thread_stack_phys = (uintptr_t)kvtophys_nofail( |
| 97 | thread_stack->thread_stack_papt); |
| 98 | |
| 99 | /* Resolve the pointer to the thread stack data */ |
| 100 | thread_stack->thread_stack_data = |
| 101 | (TXMThreadStack_t*)(thread_stack->thread_stack_papt + (PAGE_SIZE - 1024)); |
| 102 | |
| 103 | /* Add thread stack to the list head */ |
| 104 | SLIST_INSERT_HEAD(&thread_stacks_head, thread_stack, link); |
| 105 | } |
| 106 | |
| 107 | /* Initialize the thread stacks lock */ |
| 108 | lck_mtx_init(&thread_stacks_lock, &txm_lck_grp, 0); |
| 109 | } |
| 110 | |
| 111 | static txm_thread_stack_t* |
| 112 | acquire_thread_stack(void) |
| 113 | { |
| 114 | txm_thread_stack_t *thread_stack = NULL; |
| 115 | |
| 116 | /* Lock the thread stack list */ |
| 117 | lck_mtx_lock(&thread_stacks_lock); |
| 118 | |
| 119 | while (SLIST_EMPTY(&thread_stacks_head) == true) { |
| 120 | lck_mtx_sleep( |
| 121 | &thread_stacks_lock, |
| 122 | LCK_SLEEP_DEFAULT, |
| 123 | &thread_stack_event, |
| 124 | THREAD_UNINT); |
| 125 | } |
| 126 | |
| 127 | if (SLIST_EMPTY(&thread_stacks_head) == true) { |
| 128 | panic("unable to acquire a thread stack for TXM" ); |
| 129 | } |
| 130 | |
| 131 | /* Use the first available thread stack */ |
| 132 | thread_stack = SLIST_FIRST(&thread_stacks_head); |
| 133 | |
| 134 | /* Remove the thread stack from the list */ |
| 135 | SLIST_REMOVE_HEAD(&thread_stacks_head, link); |
| 136 | |
| 137 | /* Unlock the thread stack list */ |
| 138 | lck_mtx_unlock(&thread_stacks_lock); |
| 139 | |
| 140 | /* Associate the thread stack with the current thread */ |
| 141 | thread_associate_txm_thread_stack(thread_stack->thread_stack_phys); |
| 142 | |
| 143 | return thread_stack; |
| 144 | } |
| 145 | |
| 146 | static void |
| 147 | release_thread_stack( |
| 148 | txm_thread_stack_t* thread_stack) |
| 149 | { |
| 150 | /* Remove the TXM thread stack association with the current thread */ |
| 151 | thread_disassociate_txm_thread_stack(thread_stack->thread_stack_phys); |
| 152 | |
| 153 | /* Lock the thread stack list */ |
| 154 | lck_mtx_lock(&thread_stacks_lock); |
| 155 | |
| 156 | /* Add the thread stack at the list head */ |
| 157 | SLIST_INSERT_HEAD(&thread_stacks_head, thread_stack, link); |
| 158 | |
| 159 | /* Unlock the thread stack list */ |
| 160 | lck_mtx_unlock(&thread_stacks_lock); |
| 161 | |
| 162 | /* Wake up any threads waiting to acquire a thread stack */ |
| 163 | thread_wakeup(&thread_stack_event); |
| 164 | } |
| 165 | |
| 166 | static kern_return_t |
| 167 | txm_parse_return( |
| 168 | TXMReturn_t txm_ret) |
| 169 | { |
| 170 | switch (txm_ret.returnCode) { |
| 171 | case kTXMSuccess: |
| 172 | return KERN_SUCCESS; |
| 173 | |
| 174 | case kTXMReturnOutOfMemory: |
| 175 | return KERN_RESOURCE_SHORTAGE; |
| 176 | |
| 177 | case kTXMReturnNotFound: |
| 178 | return KERN_NOT_FOUND; |
| 179 | |
| 180 | default: |
| 181 | return KERN_FAILURE; |
| 182 | } |
| 183 | } |
| 184 | |
| 185 | static void |
| 186 | txm_print_return( |
| 187 | TXMKernelSelector_t selector, |
| 188 | TXMReturn_t txm_ret) |
| 189 | { |
| 190 | if (txm_ret.returnCode == kTXMSuccess) { |
| 191 | return; |
| 192 | } else if (txm_ret.returnCode == kTXMReturnTrustCache) { |
| 193 | printf("TXM [Error]: TrustCache: selector: %u | 0x%02X | 0x%02X | %u\n" , |
| 194 | selector, txm_ret.tcRet.component, txm_ret.tcRet.error, txm_ret.tcRet.uniqueError); |
| 195 | } else if (txm_ret.returnCode == kTXMReturnCodeSignature) { |
| 196 | printf("TXM [Error]: CodeSignature: selector: %u | 0x%02X | 0x%02X | %u\n" , |
| 197 | selector, txm_ret.csRet.component, txm_ret.csRet.error, txm_ret.csRet.uniqueError); |
| 198 | } else if (txm_ret.returnCode == kTXMReturnCodeErrno) { |
| 199 | printf("TXM [Error]: Errno: selector: %u | %d\n" , |
| 200 | selector, txm_ret.errnoRet); |
| 201 | } else { |
| 202 | printf("TXM [Error]: selector: %u | %u\n" , |
| 203 | selector, txm_ret.returnCode); |
| 204 | } |
| 205 | } |
| 206 | |
| 207 | #pragma mark Page Allocation |
| 208 | |
| 209 | static void |
| 210 | txm_add_page(void) |
| 211 | { |
| 212 | txm_call_t txm_call = { |
| 213 | .selector = kTXMKernelSelectorAddFreeListPage, |
| 214 | .failure_fatal = true, |
| 215 | .num_input_args = 1 |
| 216 | }; |
| 217 | |
| 218 | /* Allocate a page from the VM -- transfers page to TXM internally */ |
| 219 | vm_map_address_t phys_addr = pmap_txm_allocate_page(); |
| 220 | |
| 221 | /* Add this page to the TXM free list */ |
| 222 | txm_kernel_call(&txm_call, phys_addr); |
| 223 | } |
| 224 | |
| 225 | #pragma mark Calls |
| 226 | |
| 227 | static void |
| 228 | txm_kernel_call_registers_setup( |
| 229 | txm_call_t *parameters, |
| 230 | sptm_call_regs_t *registers, |
| 231 | va_list args) |
| 232 | { |
| 233 | /* |
| 234 | * We are only ever allowed a maximum of 7 arguments for calling into TXM. |
| 235 | * This is because the SPTM dispatch only sets up registers x0-x7 for the |
| 236 | * call, and x0 is always reserved for passing in a thread stack for TXM |
| 237 | * to operate on. |
| 238 | */ |
| 239 | |
| 240 | switch (parameters->num_input_args) { |
| 241 | case 7: |
| 242 | registers->x1 = va_arg(args, uintptr_t); |
| 243 | registers->x2 = va_arg(args, uintptr_t); |
| 244 | registers->x3 = va_arg(args, uintptr_t); |
| 245 | registers->x4 = va_arg(args, uintptr_t); |
| 246 | registers->x5 = va_arg(args, uintptr_t); |
| 247 | registers->x6 = va_arg(args, uintptr_t); |
| 248 | registers->x7 = va_arg(args, uintptr_t); |
| 249 | break; |
| 250 | |
| 251 | case 6: |
| 252 | registers->x1 = va_arg(args, uintptr_t); |
| 253 | registers->x2 = va_arg(args, uintptr_t); |
| 254 | registers->x3 = va_arg(args, uintptr_t); |
| 255 | registers->x4 = va_arg(args, uintptr_t); |
| 256 | registers->x5 = va_arg(args, uintptr_t); |
| 257 | registers->x6 = va_arg(args, uintptr_t); |
| 258 | break; |
| 259 | |
| 260 | case 5: |
| 261 | registers->x1 = va_arg(args, uintptr_t); |
| 262 | registers->x2 = va_arg(args, uintptr_t); |
| 263 | registers->x3 = va_arg(args, uintptr_t); |
| 264 | registers->x4 = va_arg(args, uintptr_t); |
| 265 | registers->x5 = va_arg(args, uintptr_t); |
| 266 | break; |
| 267 | |
| 268 | case 4: |
| 269 | registers->x1 = va_arg(args, uintptr_t); |
| 270 | registers->x2 = va_arg(args, uintptr_t); |
| 271 | registers->x3 = va_arg(args, uintptr_t); |
| 272 | registers->x4 = va_arg(args, uintptr_t); |
| 273 | break; |
| 274 | |
| 275 | case 3: |
| 276 | registers->x1 = va_arg(args, uintptr_t); |
| 277 | registers->x2 = va_arg(args, uintptr_t); |
| 278 | registers->x3 = va_arg(args, uintptr_t); |
| 279 | break; |
| 280 | |
| 281 | case 2: |
| 282 | registers->x1 = va_arg(args, uintptr_t); |
| 283 | registers->x2 = va_arg(args, uintptr_t); |
| 284 | break; |
| 285 | |
| 286 | case 1: |
| 287 | registers->x1 = va_arg(args, uintptr_t); |
| 288 | break; |
| 289 | |
| 290 | case 0: |
| 291 | break; |
| 292 | |
| 293 | default: |
| 294 | panic("invalid number of arguments to TXM: selector: %u | %u" , |
| 295 | parameters->selector, parameters->num_input_args); |
| 296 | } |
| 297 | } |
| 298 | |
| 299 | static TXMReturn_t |
| 300 | txm_kernel_call_internal( |
| 301 | txm_call_t *parameters, |
| 302 | va_list args) |
| 303 | { |
| 304 | TXMReturn_t txm_ret = (TXMReturn_t){.returnCode = kTXMReturnGeneric}; |
| 305 | sptm_call_regs_t txm_registers = {0}; |
| 306 | txm_thread_stack_t *thread_stack = NULL; |
| 307 | const TXMThreadStack_t *thread_stack_data = NULL; |
| 308 | const TXMSharedContextData_t *shared_context_data = NULL; |
| 309 | |
| 310 | /* Obtain a stack for this call */ |
| 311 | thread_stack = acquire_thread_stack(); |
| 312 | thread_stack_data = thread_stack->thread_stack_data; |
| 313 | shared_context_data = &thread_stack_data->sharedData; |
| 314 | |
| 315 | /* Setup argument registers */ |
| 316 | txm_registers.x0 = thread_stack->thread_stack_phys; |
| 317 | txm_kernel_call_registers_setup(parameters, &txm_registers, args); |
| 318 | |
| 319 | /* Track resource usage */ |
| 320 | recount_enter_secure(); |
| 321 | |
| 322 | /* Call into TXM */ |
| 323 | txm_enter(parameters->selector, &txm_registers); |
| 324 | |
| 325 | recount_leave_secure(); |
| 326 | |
| 327 | txm_ret = (TXMReturn_t){.rawValue = shared_context_data->txmReturnCode}; |
| 328 | parameters->txm_ret = txm_ret; |
| 329 | |
| 330 | if (parameters->txm_ret.returnCode == kTXMSuccess) { |
| 331 | parameters->num_return_words = shared_context_data->txmNumReturnWords; |
| 332 | if (parameters->num_return_words > kTXMStackReturnWords) { |
| 333 | panic("received excessive return words from TXM: selector: %u | %llu" , |
| 334 | parameters->selector, parameters->num_return_words); |
| 335 | } |
| 336 | |
| 337 | for (uint64_t i = 0; i < parameters->num_return_words; i++) { |
| 338 | parameters->return_words[i] = shared_context_data->txmReturnWords[i]; |
| 339 | } |
| 340 | } |
| 341 | |
| 342 | /* Release the thread stack as it is no longer needed */ |
| 343 | release_thread_stack(thread_stack); |
| 344 | thread_stack_data = NULL; |
| 345 | shared_context_data = NULL; |
| 346 | |
| 347 | return txm_ret; |
| 348 | } |
| 349 | |
| 350 | kern_return_t |
| 351 | txm_kernel_call( |
| 352 | txm_call_t *parameters, ...) |
| 353 | { |
| 354 | TXMReturn_t txm_ret = (TXMReturn_t){.returnCode = kTXMReturnGeneric}; |
| 355 | kern_return_t ret = KERN_DENIED; |
| 356 | va_list args; |
| 357 | |
| 358 | /* Start the variadic arguments list */ |
| 359 | va_start(args, parameters); |
| 360 | |
| 361 | do { |
| 362 | txm_ret = txm_kernel_call_internal(parameters, args); |
| 363 | if (txm_ret.returnCode == kTXMReturnOutOfMemory) { |
| 364 | if (parameters->selector == kTXMKernelSelectorAddFreeListPage) { |
| 365 | panic("received out-of-memory error when adding a free page to TXM" ); |
| 366 | } |
| 367 | txm_add_page(); |
| 368 | } |
| 369 | } while (txm_ret.returnCode == kTXMReturnOutOfMemory); |
| 370 | |
| 371 | /* Clean up the variadic arguments list */ |
| 372 | va_end(args); |
| 373 | |
| 374 | /* Print all TXM logs from the log buffer */ |
| 375 | if (parameters->skip_logs == false) { |
| 376 | txm_print_logs(); |
| 377 | } |
| 378 | |
| 379 | /* Print the return code from TXM -- only prints for an error */ |
| 380 | if (parameters->failure_silent != true) { |
| 381 | if (parameters->failure_code_silent != txm_ret.returnCode) { |
| 382 | txm_print_return(parameters->selector, txm_ret); |
| 383 | } |
| 384 | } |
| 385 | |
| 386 | /* |
| 387 | * To ease the process of calling into TXM, and to also reduce the number of |
| 388 | * lines of code for each call site, the txm_call_t offers some properties |
| 389 | * we can enforce over here. Go through these, and panic in case they aren't |
| 390 | * honored. |
| 391 | * |
| 392 | * NOTE: We check for "<" instead of "!=" for the number of return words we |
| 393 | * get back from TXM since this helps in forward development. If the kernel |
| 394 | * and TXM are proceeding at different project cadences, we do not want to |
| 395 | * gate adding more return words from TXM on the kernel first adopting the |
| 396 | * new number of return words. |
| 397 | */ |
| 398 | ret = txm_parse_return(txm_ret); |
| 399 | |
| 400 | if (parameters->failure_fatal && (ret != KERN_SUCCESS)) { |
| 401 | panic("received fatal error for a selector from TXM: selector: %u | 0x%0llX" , |
| 402 | parameters->selector, txm_ret.rawValue); |
| 403 | } else if (parameters->num_return_words < parameters->num_output_args) { |
| 404 | /* Only panic if return was a success */ |
| 405 | if (ret == KERN_SUCCESS) { |
| 406 | panic("received fewer than expected return words from TXM: selector: %u | %llu" , |
| 407 | parameters->selector, parameters->num_return_words); |
| 408 | } |
| 409 | } |
| 410 | |
| 411 | return ret; |
| 412 | } |
| 413 | |
| 414 | void |
| 415 | txm_transfer_region( |
| 416 | vm_address_t addr, |
| 417 | vm_size_t size) |
| 418 | { |
| 419 | vm_address_t addr_end = 0; |
| 420 | vm_size_t size_aligned = round_page(size); |
| 421 | |
| 422 | if ((addr & PAGE_MASK) != 0) { |
| 423 | panic("attempted to transfer non-page-aligned memory to TXM: %p" , (void*)addr); |
| 424 | } else if (os_add_overflow(addr, size_aligned, &addr_end)) { |
| 425 | panic("overflow on range to be transferred to TXM: %p | %lu" , |
| 426 | (void*)addr, size); |
| 427 | } |
| 428 | |
| 429 | /* Make the memory read-only first (transfer will panic otherwise) */ |
| 430 | vm_protect(kernel_map, addr, size_aligned, false, VM_PROT_READ); |
| 431 | |
| 432 | /* Transfer each physical page to be TXM_DEFAULT */ |
| 433 | for (vm_address_t page = addr; page < addr_end; page += PAGE_SIZE) { |
| 434 | pmap_txm_transfer_page(page); |
| 435 | } |
| 436 | } |
| 437 | |
| 438 | void |
| 439 | txm_reclaim_region( |
| 440 | vm_address_t addr, |
| 441 | vm_size_t size) |
| 442 | { |
| 443 | vm_address_t addr_end = 0; |
| 444 | vm_size_t size_aligned = round_page(size); |
| 445 | |
| 446 | if ((addr & PAGE_MASK) != 0) { |
| 447 | panic("attempted to reclaim non-page-aligned memory from TXM: %p" , (void*)addr); |
| 448 | } else if (os_add_overflow(addr, size_aligned, &addr_end)) { |
| 449 | panic("overflow on range to be reclaimed from TXM: %p | %lu" , |
| 450 | (void*)addr, size); |
| 451 | } |
| 452 | |
| 453 | /* |
| 454 | * We can only reclaim once TXM has transferred the memory range back to the |
| 455 | * kernel. Hence, we simply try and switch permissions to read-write. If TXM |
| 456 | * hasn't transferred pages, this then should panic. |
| 457 | */ |
| 458 | vm_protect(kernel_map, addr, size_aligned, false, VM_PROT_READ | VM_PROT_WRITE); |
| 459 | } |
| 460 | |
| 461 | static SECURITY_READ_ONLY_LATE(const char*) txm_log_page = NULL; |
| 462 | static SECURITY_READ_ONLY_LATE(const uint32_t*) txm_log_head = NULL; |
| 463 | static SECURITY_READ_ONLY_LATE(const uint32_t*) txm_log_sync = NULL; |
| 464 | |
| 465 | static decl_lck_mtx_data(, log_lock); |
| 466 | static uint32_t log_head = 0; |
| 467 | |
| 468 | void |
| 469 | txm_print_logs(void) |
| 470 | { |
| 471 | uint32_t start_index = 0; |
| 472 | uint32_t end_index = 0; |
| 473 | |
| 474 | /* |
| 475 | * The design here is very simple. TXM keeps adding slots to its circular buffer |
| 476 | * and the kernel attempts to read each one and print it, maintaining its own head |
| 477 | * for the log. |
| 478 | * |
| 479 | * This design is by nature lazy. TXM doesn't know or care if the kernel has gone |
| 480 | * through and printed any of the logs, so it'll just keep writing into its buffer |
| 481 | * and then circle around when it becomes full. |
| 482 | * |
| 483 | * This is fine most of the time since there are a decent amount of slots in the |
| 484 | * log buffer. We mostly have an issue when TXM is adding so many logs so quickly |
| 485 | * such that it wraps around and starts overwriting logs which haven't been seen |
| 486 | * by the kernel. If this were to happen, TXM's log head may circle around the |
| 487 | * head maintained by the kernel, causing a lot of logs to be missed, since the |
| 488 | * kernel only attempts the number of logs in-between the two heads. |
| 489 | * |
| 490 | * The fix for that is complicated, and until we see an actual impact, we're going |
| 491 | * to keep the simpler design in place. |
| 492 | */ |
| 493 | |
| 494 | /* Return if the logging hasn't been setup yet */ |
| 495 | if (txm_log_sync == NULL) { |
| 496 | return; |
| 497 | } |
| 498 | |
| 499 | /* |
| 500 | * Holding the log lock and printing can cause lots of issues since printing can |
| 501 | * be rather slow. While we make it a point to keep the logging buffer quiet, some |
| 502 | * actions (such as loading trust caches) are still very chatty. |
| 503 | * |
| 504 | * As a result, we optimize this routine to ensure that the lock itself isn't held |
| 505 | * for very long. All we need to do within the critical section is calculate the |
| 506 | * starting and ending index of the log buffer. The actual printing doesn't need |
| 507 | * to be done with the lock held. |
| 508 | */ |
| 509 | lck_mtx_lock(&log_lock); |
| 510 | |
| 511 | start_index = log_head; |
| 512 | end_index = os_atomic_load(txm_log_head, relaxed) % kTXMLogSlots; |
| 513 | |
| 514 | /* Update the log head with the new index */ |
| 515 | log_head = end_index; |
| 516 | |
| 517 | /* Release the log lock */ |
| 518 | lck_mtx_unlock(&log_lock); |
| 519 | |
| 520 | if (start_index != end_index) { |
| 521 | /* Use load acquire here to sync up with all writes to the buffer */ |
| 522 | os_atomic_load(txm_log_sync, acquire); |
| 523 | |
| 524 | while (start_index != end_index) { |
| 525 | const char *slot = txm_log_page + (start_index * kTXMLogSlotSize); |
| 526 | |
| 527 | /* We add newlines after each log statement since TXM does not */ |
| 528 | printf("%s\n" , slot); |
| 529 | |
| 530 | start_index = (start_index + 1) % kTXMLogSlots; |
| 531 | } |
| 532 | } |
| 533 | } |
| 534 | |
| 535 | #pragma mark Initialization |
| 536 | |
| 537 | SECURITY_READ_ONLY_LATE(const TXMReadOnlyData_t*) txm_ro_data = NULL; |
| 538 | SECURITY_READ_ONLY_LATE(const TXMStatistics_t*) txm_stats = NULL; |
| 539 | SECURITY_READ_ONLY_LATE(const CSConfig_t*) txm_cs_config = NULL; |
| 540 | |
| 541 | SECURITY_READ_ONLY_LATE(bool*) developer_mode_enabled = NULL; |
| 542 | static SECURITY_READ_ONLY_LATE(bool) code_signing_enabled = true; |
| 543 | static SECURITY_READ_ONLY_LATE(uint32_t) managed_signature_size = 0; |
| 544 | |
| 545 | static decl_lck_mtx_data(, compilation_service_lock); |
| 546 | static decl_lck_mtx_data(, unregister_sync_lock); |
| 547 | |
| 548 | static void |
| 549 | get_logging_info(void) |
| 550 | { |
| 551 | txm_call_t txm_call = { |
| 552 | .selector = kTXMKernelSelectorGetLogInfo, |
| 553 | .failure_fatal = true, |
| 554 | .num_output_args = 3 |
| 555 | }; |
| 556 | txm_kernel_call(&txm_call); |
| 557 | |
| 558 | txm_log_page = (const char*)txm_call.return_words[0]; |
| 559 | txm_log_head = (const uint32_t*)txm_call.return_words[1]; |
| 560 | txm_log_sync = (const uint32_t*)txm_call.return_words[2]; |
| 561 | } |
| 562 | |
| 563 | static void |
| 564 | get_code_signing_info(void) |
| 565 | { |
| 566 | txm_call_t txm_call = { |
| 567 | .selector = kTXMKernelSelectorGetCodeSigningInfo, |
| 568 | .failure_fatal = true, |
| 569 | .num_output_args = 6 |
| 570 | }; |
| 571 | txm_kernel_call(&txm_call); |
| 572 | |
| 573 | /* |
| 574 | * Not using txm_call.return_words[0] for now. This was previously the |
| 575 | * code_signing_enabled field, but we've since switched to acquiring that |
| 576 | * value from TXM's read-only data. |
| 577 | * |
| 578 | * Not using txm_call.return_words[4] for now. This was previously the |
| 579 | * txm_cs_config field, but we've since switched to acquiring that value |
| 580 | * from TXM's read-only data. |
| 581 | */ |
| 582 | |
| 583 | developer_mode_enabled = (bool*)txm_call.return_words[1]; |
| 584 | txm_stats = (TXMStatistics_t*)txm_call.return_words[2]; |
| 585 | managed_signature_size = (uint32_t)txm_call.return_words[3]; |
| 586 | txm_ro_data = (TXMReadOnlyData_t*)txm_call.return_words[5]; |
| 587 | |
| 588 | /* Set code_signing_disabled based on read-only data */ |
| 589 | code_signing_enabled = txm_ro_data->codeSigningDisabled == false; |
| 590 | |
| 591 | /* Set txm_cs_config based on read-only data */ |
| 592 | txm_cs_config = &txm_ro_data->CSConfiguration; |
| 593 | } |
| 594 | |
| 595 | static void |
| 596 | set_shared_region_base_address(void) |
| 597 | { |
| 598 | txm_call_t txm_call = { |
| 599 | .selector = kTXMKernelSelectorSetSharedRegionBaseAddress, |
| 600 | .failure_fatal = true, |
| 601 | .num_input_args = 2, |
| 602 | }; |
| 603 | |
| 604 | txm_kernel_call(&txm_call, |
| 605 | SHARED_REGION_BASE, |
| 606 | SHARED_REGION_SIZE); |
| 607 | } |
| 608 | |
| 609 | void |
| 610 | code_signing_init(void) |
| 611 | { |
| 612 | /* Setup the thread stacks used by TXM */ |
| 613 | setup_thread_stacks(); |
| 614 | |
| 615 | /* Setup the logging lock */ |
| 616 | lck_mtx_init(&log_lock, &txm_lck_grp, 0); |
| 617 | |
| 618 | /* Setup TXM logging information */ |
| 619 | get_logging_info(); |
| 620 | |
| 621 | /* Setup code signing configuration */ |
| 622 | get_code_signing_info(); |
| 623 | |
| 624 | /* Setup all the other locks we need */ |
| 625 | lck_mtx_init(&compilation_service_lock, &txm_lck_grp, 0); |
| 626 | lck_mtx_init(&unregister_sync_lock, &txm_lck_grp, 0); |
| 627 | |
| 628 | /* |
| 629 | * We need to let TXM know what the shared region base address is going |
| 630 | * to be for this boot. |
| 631 | */ |
| 632 | set_shared_region_base_address(); |
| 633 | |
| 634 | /* Require signed code when monitor is enabled */ |
| 635 | if (code_signing_enabled == true) { |
| 636 | cs_debug_fail_on_unsigned_code = 1; |
| 637 | } |
| 638 | } |
| 639 | |
| 640 | void |
| 641 | txm_enter_lockdown_mode(void) |
| 642 | { |
| 643 | #if kTXMKernelAPIVersion >= 3 |
| 644 | txm_call_t txm_call = { |
| 645 | .selector = kTXMKernelSelectorEnterLockdownMode, |
| 646 | .failure_fatal = true, |
| 647 | }; |
| 648 | |
| 649 | txm_kernel_call(&txm_call); |
| 650 | #endif |
| 651 | } |
| 652 | |
| 653 | #pragma mark Developer Mode |
| 654 | |
| 655 | void |
| 656 | txm_toggle_developer_mode(bool state) |
| 657 | { |
| 658 | txm_call_t txm_call = { |
| 659 | .selector = kTXMKernelSelectorDeveloperModeToggle, |
| 660 | .failure_fatal = true, |
| 661 | .num_input_args = 1 |
| 662 | }; |
| 663 | |
| 664 | txm_kernel_call(&txm_call, state); |
| 665 | } |
| 666 | |
| 667 | #pragma mark Code Signing and Provisioning Profiles |
| 668 | |
| 669 | bool |
| 670 | txm_code_signing_enabled(void) |
| 671 | { |
| 672 | return code_signing_enabled; |
| 673 | } |
| 674 | |
| 675 | vm_size_t |
| 676 | txm_managed_code_signature_size(void) |
| 677 | { |
| 678 | return managed_signature_size; |
| 679 | } |
| 680 | |
| 681 | kern_return_t |
| 682 | txm_register_provisioning_profile( |
| 683 | const void *profile_blob, |
| 684 | const size_t profile_blob_size, |
| 685 | void **profile_obj) |
| 686 | { |
| 687 | txm_call_t txm_call = { |
| 688 | .selector = kTXMKernelSelectorRegisterProvisioningProfile, |
| 689 | .num_input_args = 2, |
| 690 | .num_output_args = 1 |
| 691 | }; |
| 692 | vm_address_t payload_addr = 0; |
| 693 | kern_return_t ret = KERN_DENIED; |
| 694 | |
| 695 | /* We need to allocate page-wise in order to transfer the range to TXM */ |
| 696 | ret = kmem_alloc(kernel_map, &payload_addr, profile_blob_size, |
| 697 | KMA_KOBJECT | KMA_DATA, VM_KERN_MEMORY_SECURITY); |
| 698 | if (ret != KERN_SUCCESS) { |
| 699 | printf("unable to allocate memory for profile payload: %d\n" , ret); |
| 700 | goto exit; |
| 701 | } |
| 702 | |
| 703 | /* Copy the contents into the allocation */ |
| 704 | memcpy((void*)payload_addr, profile_blob, profile_blob_size); |
| 705 | |
| 706 | /* Transfer the memory range to TXM */ |
| 707 | txm_transfer_region(payload_addr, profile_blob_size); |
| 708 | |
| 709 | ret = txm_kernel_call(&txm_call, payload_addr, profile_blob_size); |
| 710 | if (ret == KERN_SUCCESS) { |
| 711 | *profile_obj = (void*)txm_call.return_words[0]; |
| 712 | } |
| 713 | |
| 714 | exit: |
| 715 | if ((ret != KERN_SUCCESS) && (payload_addr != 0)) { |
| 716 | /* Reclaim this memory range */ |
| 717 | txm_reclaim_region(payload_addr, profile_blob_size); |
| 718 | |
| 719 | /* Free the memory range */ |
| 720 | kmem_free(kernel_map, payload_addr, profile_blob_size); |
| 721 | payload_addr = 0; |
| 722 | } |
| 723 | |
| 724 | return ret; |
| 725 | } |
| 726 | |
| 727 | kern_return_t |
| 728 | txm_unregister_provisioning_profile( |
| 729 | void *profile_obj) |
| 730 | { |
| 731 | txm_call_t txm_call = { |
| 732 | .selector = kTXMKernelSelectorUnregisterProvisioningProfile, |
| 733 | .num_input_args = 1, |
| 734 | .num_output_args = 2 |
| 735 | }; |
| 736 | vm_address_t profile_addr = 0; |
| 737 | vm_size_t profile_size = 0; |
| 738 | kern_return_t ret = KERN_DENIED; |
| 739 | |
| 740 | ret = txm_kernel_call(&txm_call, profile_obj); |
| 741 | if (ret != KERN_SUCCESS) { |
| 742 | return ret; |
| 743 | } |
| 744 | |
| 745 | profile_addr = txm_call.return_words[0]; |
| 746 | profile_size = txm_call.return_words[1]; |
| 747 | |
| 748 | /* Reclaim this memory range */ |
| 749 | txm_reclaim_region(profile_addr, profile_size); |
| 750 | |
| 751 | /* Free the memory range */ |
| 752 | kmem_free(kernel_map, profile_addr, profile_size); |
| 753 | |
| 754 | return KERN_SUCCESS; |
| 755 | } |
| 756 | |
| 757 | kern_return_t |
| 758 | txm_associate_provisioning_profile( |
| 759 | void *sig_obj, |
| 760 | void *profile_obj) |
| 761 | { |
| 762 | txm_call_t txm_call = { |
| 763 | .selector = kTXMKernelSelectorAssociateProvisioningProfile, |
| 764 | .num_input_args = 2, |
| 765 | }; |
| 766 | |
| 767 | return txm_kernel_call(&txm_call, sig_obj, profile_obj); |
| 768 | } |
| 769 | |
| 770 | kern_return_t |
| 771 | txm_disassociate_provisioning_profile( |
| 772 | void *sig_obj) |
| 773 | { |
| 774 | txm_call_t txm_call = { |
| 775 | .selector = kTXMKernelSelectorDisassociateProvisioningProfile, |
| 776 | .num_input_args = 1, |
| 777 | }; |
| 778 | |
| 779 | /* |
| 780 | * Take the unregistration sync lock. |
| 781 | * For more information: rdar://99205627. |
| 782 | */ |
| 783 | lck_mtx_lock(&unregister_sync_lock); |
| 784 | |
| 785 | /* Disassociate the profile from the signature */ |
| 786 | kern_return_t ret = txm_kernel_call(&txm_call, sig_obj); |
| 787 | |
| 788 | /* Release the unregistration sync lock */ |
| 789 | lck_mtx_unlock(&unregister_sync_lock); |
| 790 | |
| 791 | return ret; |
| 792 | } |
| 793 | |
| 794 | void |
| 795 | txm_set_compilation_service_cdhash( |
| 796 | const uint8_t cdhash[CS_CDHASH_LEN]) |
| 797 | { |
| 798 | txm_call_t txm_call = { |
| 799 | .selector = kTXMKernelSelectorAuthorizeCompilationServiceCDHash, |
| 800 | .num_input_args = 1, |
| 801 | }; |
| 802 | |
| 803 | lck_mtx_lock(&compilation_service_lock); |
| 804 | txm_kernel_call(&txm_call, cdhash); |
| 805 | lck_mtx_unlock(&compilation_service_lock); |
| 806 | } |
| 807 | |
| 808 | bool |
| 809 | txm_match_compilation_service_cdhash( |
| 810 | const uint8_t cdhash[CS_CDHASH_LEN]) |
| 811 | { |
| 812 | txm_call_t txm_call = { |
| 813 | .selector = kTXMKernelSelectorMatchCompilationServiceCDHash, |
| 814 | .failure_silent = true, |
| 815 | .num_input_args = 1, |
| 816 | .num_output_args = 1, |
| 817 | }; |
| 818 | kern_return_t ret = KERN_DENIED; |
| 819 | |
| 820 | /* Be safe and take the lock (avoid thread collisions) */ |
| 821 | lck_mtx_lock(&compilation_service_lock); |
| 822 | ret = txm_kernel_call(&txm_call, cdhash); |
| 823 | lck_mtx_unlock(&compilation_service_lock); |
| 824 | |
| 825 | if (ret == KERN_SUCCESS) { |
| 826 | return true; |
| 827 | } |
| 828 | return false; |
| 829 | } |
| 830 | |
| 831 | void |
| 832 | txm_set_local_signing_public_key( |
| 833 | const uint8_t public_key[XNU_LOCAL_SIGNING_KEY_SIZE]) |
| 834 | { |
| 835 | txm_call_t txm_call = { |
| 836 | .selector = kTXMKernelSelectorSetLocalSigningPublicKey, |
| 837 | .num_input_args = 1, |
| 838 | }; |
| 839 | |
| 840 | txm_kernel_call(&txm_call, public_key); |
| 841 | } |
| 842 | |
| 843 | uint8_t* |
| 844 | txm_get_local_signing_public_key(void) |
| 845 | { |
| 846 | txm_call_t txm_call = { |
| 847 | .selector = kTXMKernelSelectorGetLocalSigningPublicKey, |
| 848 | .num_output_args = 1, |
| 849 | }; |
| 850 | kern_return_t ret = KERN_DENIED; |
| 851 | |
| 852 | ret = txm_kernel_call(&txm_call); |
| 853 | if (ret != KERN_SUCCESS) { |
| 854 | return NULL; |
| 855 | } |
| 856 | |
| 857 | return (uint8_t*)txm_call.return_words[0]; |
| 858 | } |
| 859 | |
| 860 | void |
| 861 | txm_unrestrict_local_signing_cdhash( |
| 862 | const uint8_t cdhash[CS_CDHASH_LEN]) |
| 863 | { |
| 864 | txm_call_t txm_call = { |
| 865 | .selector = kTXMKernelSelectorAuthorizeLocalSigningCDHash, |
| 866 | .num_input_args = 1, |
| 867 | }; |
| 868 | |
| 869 | txm_kernel_call(&txm_call, cdhash); |
| 870 | } |
| 871 | |
| 872 | kern_return_t |
| 873 | txm_register_code_signature( |
| 874 | const vm_address_t signature_addr, |
| 875 | const vm_size_t signature_size, |
| 876 | const vm_offset_t code_directory_offset, |
| 877 | const char *signature_path, |
| 878 | void **sig_obj, |
| 879 | vm_address_t *txm_signature_addr) |
| 880 | { |
| 881 | txm_call_t txm_call = { |
| 882 | .selector = kTXMKernelSelectorRegisterCodeSignature, |
| 883 | .num_input_args = 3, |
| 884 | .num_output_args = 2, |
| 885 | }; |
| 886 | kern_return_t ret = KERN_DENIED; |
| 887 | |
| 888 | /* |
| 889 | * TXM performs more exhaustive validation of the code signature and figures |
| 890 | * out the best code directory to use on its own. As a result, this offset here |
| 891 | * is not used. |
| 892 | */ |
| 893 | (void)code_directory_offset; |
| 894 | |
| 895 | /* |
| 896 | * If the signature is large enough to not fit within TXM's managed signature |
| 897 | * size, then we need to transfer it over so it is owned by TXM. |
| 898 | */ |
| 899 | if (signature_size > txm_managed_code_signature_size()) { |
| 900 | txm_transfer_region(signature_addr, signature_size); |
| 901 | } |
| 902 | |
| 903 | ret = txm_kernel_call( |
| 904 | &txm_call, |
| 905 | signature_addr, |
| 906 | signature_size, |
| 907 | signature_path); |
| 908 | |
| 909 | if (ret != KERN_SUCCESS) { |
| 910 | goto exit; |
| 911 | } |
| 912 | |
| 913 | *sig_obj = (void*)txm_call.return_words[0]; |
| 914 | *txm_signature_addr = txm_call.return_words[1]; |
| 915 | |
| 916 | exit: |
| 917 | if ((ret != KERN_SUCCESS) && (signature_size > txm_managed_code_signature_size())) { |
| 918 | txm_reclaim_region(signature_addr, signature_size); |
| 919 | } |
| 920 | |
| 921 | return ret; |
| 922 | } |
| 923 | |
| 924 | kern_return_t |
| 925 | txm_unregister_code_signature( |
| 926 | void *sig_obj) |
| 927 | { |
| 928 | txm_call_t txm_call = { |
| 929 | .selector = kTXMKernelSelectorUnregisterCodeSignature, |
| 930 | .failure_fatal = true, |
| 931 | .num_input_args = 1, |
| 932 | .num_output_args = 2, |
| 933 | }; |
| 934 | TXMCodeSignature_t *cs_obj = sig_obj; |
| 935 | vm_address_t signature_addr = 0; |
| 936 | vm_size_t signature_size = 0; |
| 937 | bool txm_managed = false; |
| 938 | |
| 939 | /* Check if the signature memory is TXM managed */ |
| 940 | txm_managed = cs_obj->sptmType != TXM_BULK_DATA; |
| 941 | |
| 942 | /* |
| 943 | * Take the unregistration sync lock. |
| 944 | * For more information: rdar://99205627. |
| 945 | */ |
| 946 | lck_mtx_lock(&unregister_sync_lock); |
| 947 | |
| 948 | /* Unregister the signature from TXM -- cannot fail */ |
| 949 | txm_kernel_call(&txm_call, sig_obj); |
| 950 | |
| 951 | /* Release the unregistration sync lock */ |
| 952 | lck_mtx_unlock(&unregister_sync_lock); |
| 953 | |
| 954 | signature_addr = txm_call.return_words[0]; |
| 955 | signature_size = txm_call.return_words[1]; |
| 956 | |
| 957 | /* Reclaim the memory range in case we need to */ |
| 958 | if (txm_managed == false) { |
| 959 | txm_reclaim_region(signature_addr, signature_size); |
| 960 | } |
| 961 | |
| 962 | return KERN_SUCCESS; |
| 963 | } |
| 964 | |
| 965 | kern_return_t |
| 966 | txm_verify_code_signature( |
| 967 | void *sig_obj) |
| 968 | { |
| 969 | txm_call_t txm_call = { |
| 970 | .selector = kTXMKernelSelectorValidateCodeSignature, |
| 971 | .num_input_args = 1, |
| 972 | }; |
| 973 | kern_return_t ret = KERN_DENIED; |
| 974 | |
| 975 | /* |
| 976 | * Verification of the code signature may perform a trust cache look up. |
| 977 | * In order to avoid any collisions with threads which may be loading a |
| 978 | * trust cache, we take a reader lock on the trust cache runtime. |
| 979 | */ |
| 980 | |
| 981 | lck_rw_lock_shared(&txm_trust_cache_lck); |
| 982 | ret = txm_kernel_call(&txm_call, sig_obj); |
| 983 | lck_rw_unlock_shared(&txm_trust_cache_lck); |
| 984 | |
| 985 | return ret; |
| 986 | } |
| 987 | |
| 988 | kern_return_t |
| 989 | txm_reconstitute_code_signature( |
| 990 | void *sig_obj, |
| 991 | vm_address_t *unneeded_addr, |
| 992 | vm_size_t *unneeded_size) |
| 993 | { |
| 994 | txm_call_t txm_call = { |
| 995 | .selector = kTXMKernelSelectorReconstituteCodeSignature, |
| 996 | .failure_fatal = true, |
| 997 | .num_input_args = 1, |
| 998 | .num_output_args = 2, |
| 999 | }; |
| 1000 | vm_address_t return_addr = 0; |
| 1001 | vm_size_t return_size = 0; |
| 1002 | |
| 1003 | /* Reconstitute the code signature -- cannot fail */ |
| 1004 | txm_kernel_call(&txm_call, sig_obj); |
| 1005 | |
| 1006 | return_addr = txm_call.return_words[0]; |
| 1007 | return_size = txm_call.return_words[1]; |
| 1008 | |
| 1009 | /* Reclaim the memory region if we need to */ |
| 1010 | if ((return_addr != 0) && (return_size != 0)) { |
| 1011 | txm_reclaim_region(return_addr, return_size); |
| 1012 | } |
| 1013 | |
| 1014 | *unneeded_addr = return_addr; |
| 1015 | *unneeded_size = return_size; |
| 1016 | |
| 1017 | return KERN_SUCCESS; |
| 1018 | } |
| 1019 | |
| 1020 | #pragma mark Address Spaces |
| 1021 | |
| 1022 | kern_return_t |
| 1023 | txm_register_address_space( |
| 1024 | pmap_t pmap, |
| 1025 | uint16_t addr_space_id, |
| 1026 | TXMAddressSpaceFlags_t flags) |
| 1027 | { |
| 1028 | txm_call_t txm_call = { |
| 1029 | .selector = kTXMKernelSelectorRegisterAddressSpace, |
| 1030 | .failure_fatal = true, |
| 1031 | .num_input_args = 2, |
| 1032 | .num_output_args = 1, |
| 1033 | }; |
| 1034 | TXMAddressSpace_t *txm_addr_space = NULL; |
| 1035 | |
| 1036 | /* Register the address space -- cannot fail */ |
| 1037 | txm_kernel_call(&txm_call, addr_space_id, flags); |
| 1038 | |
| 1039 | /* Set the address space object within the PMAP */ |
| 1040 | txm_addr_space = (TXMAddressSpace_t*)txm_call.return_words[0]; |
| 1041 | pmap_txm_set_addr_space(pmap, txm_addr_space); |
| 1042 | |
| 1043 | return KERN_SUCCESS; |
| 1044 | } |
| 1045 | |
| 1046 | kern_return_t |
| 1047 | txm_unregister_address_space( |
| 1048 | pmap_t pmap) |
| 1049 | { |
| 1050 | txm_call_t txm_call = { |
| 1051 | .selector = kTXMKernelSelectorUnregisterAddressSpace, |
| 1052 | .failure_fatal = true, |
| 1053 | .num_input_args = 1, |
| 1054 | }; |
| 1055 | TXMAddressSpace_t *txm_addr_space = pmap_txm_addr_space(pmap); |
| 1056 | |
| 1057 | /* |
| 1058 | * Take the unregistration sync lock. |
| 1059 | * For more information: rdar://99205627. |
| 1060 | */ |
| 1061 | lck_mtx_lock(&unregister_sync_lock); |
| 1062 | |
| 1063 | /* Unregister the address space -- cannot fail */ |
| 1064 | txm_kernel_call(&txm_call, txm_addr_space); |
| 1065 | |
| 1066 | /* Release the unregistration sync lock */ |
| 1067 | lck_mtx_unlock(&unregister_sync_lock); |
| 1068 | |
| 1069 | /* Remove the address space from the pmap */ |
| 1070 | pmap_txm_set_addr_space(pmap, NULL); |
| 1071 | |
| 1072 | return KERN_SUCCESS; |
| 1073 | } |
| 1074 | |
| 1075 | kern_return_t |
| 1076 | txm_associate_code_signature( |
| 1077 | pmap_t pmap, |
| 1078 | void *sig_obj, |
| 1079 | const vm_address_t region_addr, |
| 1080 | const vm_size_t region_size, |
| 1081 | const vm_offset_t region_offset) |
| 1082 | { |
| 1083 | txm_call_t txm_call = { |
| 1084 | .selector = kTXMKernelSelectorAssociateCodeSignature, |
| 1085 | .num_input_args = 5, |
| 1086 | }; |
| 1087 | TXMAddressSpace_t *txm_addr_space = pmap_txm_addr_space(pmap); |
| 1088 | kern_return_t ret = KERN_DENIED; |
| 1089 | |
| 1090 | /* |
| 1091 | * Associating a code signature may require exclusive access to the TXM address |
| 1092 | * space lock within TXM. |
| 1093 | */ |
| 1094 | pmap_txm_acquire_exclusive_lock(pmap); |
| 1095 | |
| 1096 | /* |
| 1097 | * If the address space in question is a nested address space, then all associations |
| 1098 | * need to go into the shared region base range. The VM layer is inconsistent with |
| 1099 | * how it makes associations with TXM vs. how it maps pages into the shared region. |
| 1100 | * |
| 1101 | * For TXM, the associations are made without taking the base range into account, |
| 1102 | * but when mappings are entered into the shared region, the base range is taken |
| 1103 | * into account. To normalize this, we add the base range address here. |
| 1104 | */ |
| 1105 | vm_address_t adjusted_region_addr = region_addr; |
| 1106 | if (txm_addr_space->addrSpaceID.type == kTXMAddressSpaceIDTypeSharedRegion) { |
| 1107 | adjusted_region_addr += SHARED_REGION_BASE; |
| 1108 | } |
| 1109 | |
| 1110 | /* |
| 1111 | * The VM tries a bunch of weird mappings within launchd for some platform code |
| 1112 | * which isn't mapped contiguously. These mappings don't succeed, but the failure |
| 1113 | * is fairly harmless since everything seems to work. However, since the call to |
| 1114 | * TXM fails, we make a series of logs. Hence, for launchd, we suppress failure |
| 1115 | * logs. |
| 1116 | */ |
| 1117 | if (txm_addr_space->addrSpaceID.type == kTXMAddressSpaceIDTypeAddressSpace) { |
| 1118 | /* TXMTODO: Scope this to launchd better */ |
| 1119 | txm_call.failure_code_silent = kTXMReturnPlatformCodeMapping; |
| 1120 | } |
| 1121 | |
| 1122 | /* Check if the main region has been set on the address space */ |
| 1123 | bool main_region_set = txm_addr_space->mainRegion != NULL; |
| 1124 | bool main_region_set_after = false; |
| 1125 | |
| 1126 | ret = txm_kernel_call( |
| 1127 | &txm_call, |
| 1128 | txm_addr_space, |
| 1129 | sig_obj, |
| 1130 | adjusted_region_addr, |
| 1131 | region_size, |
| 1132 | region_offset); |
| 1133 | |
| 1134 | /* |
| 1135 | * If the main region wasn't set on the address space before hand, but this new |
| 1136 | * call into TXM was successful and sets the main region, it means this signature |
| 1137 | * object is associated with the main region on the address space. With this, we |
| 1138 | * can now set the appropriate trust level on the PMAP. |
| 1139 | */ |
| 1140 | if (ret == KERN_SUCCESS) { |
| 1141 | main_region_set_after = txm_addr_space->mainRegion != NULL; |
| 1142 | } |
| 1143 | |
| 1144 | /* Unlock the TXM address space lock */ |
| 1145 | pmap_txm_release_exclusive_lock(pmap); |
| 1146 | |
| 1147 | /* Check if we should set the trust level on the PMAP */ |
| 1148 | if (!main_region_set && main_region_set_after) { |
| 1149 | const TXMCodeSignature_t *cs_obj = sig_obj; |
| 1150 | const SignatureValidation_t *sig = &cs_obj->sig; |
| 1151 | |
| 1152 | /* |
| 1153 | * This is gross, as we're dereferencing into a private data structure type. |
| 1154 | * There are 2 ways to clean this up in the future: |
| 1155 | * 1. Import libCodeSignature, so we can use "codeSignatureGetTrustLevel". |
| 1156 | * 2. Cache the trust level on the address space within TXM and then use it. |
| 1157 | */ |
| 1158 | pmap_txm_set_trust_level(pmap, sig->trustLevel); |
| 1159 | } |
| 1160 | |
| 1161 | return ret; |
| 1162 | } |
| 1163 | |
| 1164 | kern_return_t |
| 1165 | txm_allow_jit_region( |
| 1166 | pmap_t pmap) |
| 1167 | { |
| 1168 | txm_call_t txm_call = { |
| 1169 | .selector = kTXMKernelSelectorAllowJITRegion, |
| 1170 | .num_input_args = 1, |
| 1171 | }; |
| 1172 | TXMAddressSpace_t *txm_addr_space = pmap_txm_addr_space(pmap); |
| 1173 | kern_return_t ret = KERN_DENIED; |
| 1174 | |
| 1175 | pmap_txm_acquire_shared_lock(pmap); |
| 1176 | ret = txm_kernel_call(&txm_call, txm_addr_space); |
| 1177 | pmap_txm_release_shared_lock(pmap); |
| 1178 | |
| 1179 | return ret; |
| 1180 | } |
| 1181 | |
| 1182 | kern_return_t |
| 1183 | txm_associate_jit_region( |
| 1184 | pmap_t pmap, |
| 1185 | const vm_address_t region_addr, |
| 1186 | const vm_size_t region_size) |
| 1187 | { |
| 1188 | txm_call_t txm_call = { |
| 1189 | .selector = kTXMKernelSelectorAssociateJITRegion, |
| 1190 | .num_input_args = 3, |
| 1191 | }; |
| 1192 | TXMAddressSpace_t *txm_addr_space = pmap_txm_addr_space(pmap); |
| 1193 | kern_return_t ret = KERN_DENIED; |
| 1194 | |
| 1195 | /* |
| 1196 | * Associating a JIT region may require exclusive access to the TXM address |
| 1197 | * space lock within TXM. |
| 1198 | */ |
| 1199 | pmap_txm_acquire_exclusive_lock(pmap); |
| 1200 | |
| 1201 | ret = txm_kernel_call( |
| 1202 | &txm_call, |
| 1203 | txm_addr_space, |
| 1204 | region_addr, |
| 1205 | region_size); |
| 1206 | |
| 1207 | /* Unlock the TXM address space lock */ |
| 1208 | pmap_txm_release_exclusive_lock(pmap); |
| 1209 | |
| 1210 | return ret; |
| 1211 | } |
| 1212 | |
| 1213 | kern_return_t |
| 1214 | txm_address_space_debugged( |
| 1215 | pmap_t pmap) |
| 1216 | { |
| 1217 | TXMAddressSpace_t *txm_addr_space = pmap_txm_addr_space(pmap); |
| 1218 | bool debug_regions_allowed = false; |
| 1219 | |
| 1220 | /* |
| 1221 | * We do not actually need to trap into the monitor for this function for |
| 1222 | * now. It might be a tad bit more secure to actually trap into the monitor |
| 1223 | * as it implicitly verifies all of our pointers, but since this is a simple |
| 1224 | * state check against the address space, the real policy around it lies |
| 1225 | * within the kernel still, in which case entering the monitor doesn't |
| 1226 | * really provide much more security. |
| 1227 | */ |
| 1228 | |
| 1229 | pmap_txm_acquire_shared_lock(pmap); |
| 1230 | debug_regions_allowed = os_atomic_load(&txm_addr_space->allowsInvalidCode, relaxed); |
| 1231 | pmap_txm_release_shared_lock(pmap); |
| 1232 | |
| 1233 | if (debug_regions_allowed == true) { |
| 1234 | return KERN_SUCCESS; |
| 1235 | } |
| 1236 | return KERN_DENIED; |
| 1237 | } |
| 1238 | |
| 1239 | kern_return_t |
| 1240 | txm_associate_debug_region( |
| 1241 | pmap_t pmap, |
| 1242 | const vm_address_t region_addr, |
| 1243 | const vm_size_t region_size) |
| 1244 | { |
| 1245 | /* |
| 1246 | * This function is an interesting one. There is no need for us to make |
| 1247 | * a call into TXM for this one and instead, all we need to do here is |
| 1248 | * to verify that the TXM address space actually allows debug regions to |
| 1249 | * be mapped in or not. |
| 1250 | */ |
| 1251 | (void)region_addr; |
| 1252 | (void)region_size; |
| 1253 | |
| 1254 | kern_return_t ret = txm_address_space_debugged(pmap); |
| 1255 | if (ret != KERN_SUCCESS) { |
| 1256 | printf("address space does not allow creating debug regions\n" ); |
| 1257 | } |
| 1258 | |
| 1259 | return ret; |
| 1260 | } |
| 1261 | |
| 1262 | kern_return_t |
| 1263 | txm_allow_invalid_code( |
| 1264 | pmap_t pmap) |
| 1265 | { |
| 1266 | txm_call_t txm_call = { |
| 1267 | .selector = kTXMKernelSelectorAllowInvalidCode, |
| 1268 | .num_input_args = 1, |
| 1269 | }; |
| 1270 | TXMAddressSpace_t *txm_addr_space = pmap_txm_addr_space(pmap); |
| 1271 | kern_return_t ret = KERN_DENIED; |
| 1272 | |
| 1273 | /* |
| 1274 | * Allowing invalid code may require exclusive access to the TXM address |
| 1275 | * space lock within TXM. |
| 1276 | */ |
| 1277 | |
| 1278 | pmap_txm_acquire_exclusive_lock(pmap); |
| 1279 | ret = txm_kernel_call(&txm_call, txm_addr_space); |
| 1280 | pmap_txm_release_exclusive_lock(pmap); |
| 1281 | |
| 1282 | return ret; |
| 1283 | } |
| 1284 | |
| 1285 | kern_return_t |
| 1286 | txm_get_trust_level_kdp( |
| 1287 | pmap_t pmap, |
| 1288 | uint32_t *trust_level) |
| 1289 | { |
| 1290 | CSTrust_t txm_trust_level = kCSTrustUntrusted; |
| 1291 | |
| 1292 | kern_return_t ret = pmap_txm_get_trust_level_kdp(pmap, &txm_trust_level); |
| 1293 | if (ret != KERN_SUCCESS) { |
| 1294 | return ret; |
| 1295 | } |
| 1296 | |
| 1297 | if (trust_level != NULL) { |
| 1298 | *trust_level = txm_trust_level; |
| 1299 | } |
| 1300 | return KERN_SUCCESS; |
| 1301 | } |
| 1302 | |
| 1303 | kern_return_t |
| 1304 | txm_address_space_exempt( |
| 1305 | const pmap_t pmap) |
| 1306 | { |
| 1307 | if (pmap_performs_stage2_translations(pmap) == true) { |
| 1308 | return KERN_SUCCESS; |
| 1309 | } |
| 1310 | |
| 1311 | return KERN_DENIED; |
| 1312 | } |
| 1313 | |
| 1314 | kern_return_t |
| 1315 | txm_fork_prepare( |
| 1316 | pmap_t old_pmap, |
| 1317 | pmap_t new_pmap) |
| 1318 | { |
| 1319 | /* |
| 1320 | * We'll add support for this as the need for it becomes more important. |
| 1321 | * TXMTODO: Complete this implementation. |
| 1322 | */ |
| 1323 | (void)old_pmap; |
| 1324 | (void)new_pmap; |
| 1325 | |
| 1326 | return KERN_SUCCESS; |
| 1327 | } |
| 1328 | |
| 1329 | kern_return_t |
| 1330 | txm_acquire_signing_identifier( |
| 1331 | const void *sig_obj, |
| 1332 | const char **signing_id) |
| 1333 | { |
| 1334 | txm_call_t txm_call = { |
| 1335 | .selector = kTXMKernelSelectorAcquireSigningIdentifier, |
| 1336 | .num_input_args = 1, |
| 1337 | .num_output_args = 1, |
| 1338 | .failure_fatal = true, |
| 1339 | }; |
| 1340 | |
| 1341 | /* Get the signing ID -- should not fail */ |
| 1342 | txm_kernel_call(&txm_call, sig_obj); |
| 1343 | |
| 1344 | if (signing_id != NULL) { |
| 1345 | *signing_id = (const char*)txm_call.return_words[0]; |
| 1346 | } |
| 1347 | return KERN_SUCCESS; |
| 1348 | } |
| 1349 | |
| 1350 | #pragma mark Entitlements |
| 1351 | |
| 1352 | kern_return_t |
| 1353 | txm_associate_kernel_entitlements( |
| 1354 | void *sig_obj, |
| 1355 | const void *kernel_entitlements) |
| 1356 | { |
| 1357 | txm_call_t txm_call = { |
| 1358 | .selector = kTXMKernelSelectorAssociateKernelEntitlements, |
| 1359 | .num_input_args = 2, |
| 1360 | .failure_fatal = true, |
| 1361 | }; |
| 1362 | |
| 1363 | /* Associate the kernel entitlements -- should not fail */ |
| 1364 | txm_kernel_call(&txm_call, sig_obj, kernel_entitlements); |
| 1365 | |
| 1366 | return KERN_SUCCESS; |
| 1367 | } |
| 1368 | |
| 1369 | kern_return_t |
| 1370 | txm_resolve_kernel_entitlements( |
| 1371 | pmap_t pmap, |
| 1372 | const void **kernel_entitlements) |
| 1373 | { |
| 1374 | txm_call_t txm_call = { |
| 1375 | .selector = kTXMKernelSelectorResolveKernelEntitlementsAddressSpace, |
| 1376 | .skip_logs = true, |
| 1377 | .num_input_args = 1, |
| 1378 | .num_output_args = 1, |
| 1379 | .failure_silent = true, |
| 1380 | }; |
| 1381 | TXMAddressSpace_t *txm_addr_space = NULL; |
| 1382 | kern_return_t ret = KERN_DENIED; |
| 1383 | |
| 1384 | if (pmap == pmap_txm_kernel_pmap()) { |
| 1385 | return KERN_NOT_FOUND; |
| 1386 | } |
| 1387 | txm_addr_space = pmap_txm_addr_space(pmap); |
| 1388 | |
| 1389 | pmap_txm_acquire_shared_lock(pmap); |
| 1390 | ret = txm_kernel_call(&txm_call, txm_addr_space); |
| 1391 | pmap_txm_release_shared_lock(pmap); |
| 1392 | |
| 1393 | if ((ret == KERN_SUCCESS) && (kernel_entitlements != NULL)) { |
| 1394 | *kernel_entitlements = (const void*)txm_call.return_words[0]; |
| 1395 | } |
| 1396 | return ret; |
| 1397 | } |
| 1398 | |
| 1399 | kern_return_t |
| 1400 | txm_accelerate_entitlements( |
| 1401 | void *sig_obj, |
| 1402 | CEQueryContext_t *ce_ctx) |
| 1403 | { |
| 1404 | txm_call_t txm_call = { |
| 1405 | .selector = kTXMKernelSelectorAccelerateEntitlements, |
| 1406 | .num_input_args = 1, |
| 1407 | .num_output_args = 1, |
| 1408 | }; |
| 1409 | kern_return_t ret = KERN_DENIED; |
| 1410 | |
| 1411 | ret = txm_kernel_call(&txm_call, sig_obj); |
| 1412 | if ((ret == KERN_SUCCESS) && (ce_ctx != NULL)) { |
| 1413 | *ce_ctx = (CEQueryContext_t)txm_call.return_words[0]; |
| 1414 | } |
| 1415 | |
| 1416 | return ret; |
| 1417 | } |
| 1418 | |
| 1419 | #pragma mark Image4 |
| 1420 | |
| 1421 | void* |
| 1422 | txm_image4_storage_data( |
| 1423 | __unused size_t *allocated_size) |
| 1424 | { |
| 1425 | /* |
| 1426 | * AppleImage4 builds a variant of TXM which TXM should link against statically |
| 1427 | * thereby removing the need for the kernel to allocate some data on behalf of |
| 1428 | * the kernel extension. |
| 1429 | */ |
| 1430 | panic("unsupported AppleImage4 interface" ); |
| 1431 | } |
| 1432 | |
| 1433 | void |
| 1434 | txm_image4_set_nonce( |
| 1435 | const img4_nonce_domain_index_t ndi, |
| 1436 | const img4_nonce_t *nonce) |
| 1437 | { |
| 1438 | txm_call_t txm_call = { |
| 1439 | .selector = kTXMKernelSelectorImage4SetNonce, |
| 1440 | .failure_fatal = true, |
| 1441 | .num_input_args = 2, |
| 1442 | }; |
| 1443 | |
| 1444 | txm_kernel_call(&txm_call, ndi, nonce); |
| 1445 | } |
| 1446 | |
| 1447 | void |
| 1448 | txm_image4_roll_nonce( |
| 1449 | const img4_nonce_domain_index_t ndi) |
| 1450 | { |
| 1451 | txm_call_t txm_call = { |
| 1452 | .selector = kTXMKernelSelectorImage4RollNonce, |
| 1453 | .failure_fatal = true, |
| 1454 | .num_input_args = 1, |
| 1455 | }; |
| 1456 | |
| 1457 | txm_kernel_call(&txm_call, ndi); |
| 1458 | } |
| 1459 | |
| 1460 | errno_t |
| 1461 | txm_image4_copy_nonce( |
| 1462 | const img4_nonce_domain_index_t ndi, |
| 1463 | img4_nonce_t *nonce_out) |
| 1464 | { |
| 1465 | txm_call_t txm_call = { |
| 1466 | .selector = kTXMKernelSelectorImage4GetNonce, |
| 1467 | .num_input_args = 1, |
| 1468 | .num_output_args = 1, |
| 1469 | }; |
| 1470 | const img4_nonce_t *nonce = NULL; |
| 1471 | TXMReturn_t txm_ret = {0}; |
| 1472 | kern_return_t ret = KERN_DENIED; |
| 1473 | |
| 1474 | ret = txm_kernel_call(&txm_call, ndi); |
| 1475 | if (ret != KERN_SUCCESS) { |
| 1476 | txm_ret = txm_call.txm_ret; |
| 1477 | if (txm_ret.returnCode != kTXMReturnCodeErrno) { |
| 1478 | return EPERM; |
| 1479 | } |
| 1480 | return txm_ret.errnoRet; |
| 1481 | } |
| 1482 | |
| 1483 | /* Acquire a pointer to the nonce from TXM */ |
| 1484 | nonce = (const img4_nonce_t*)txm_call.return_words[0]; |
| 1485 | |
| 1486 | if (nonce_out) { |
| 1487 | *nonce_out = *nonce; |
| 1488 | } |
| 1489 | return 0; |
| 1490 | } |
| 1491 | |
| 1492 | errno_t |
| 1493 | txm_image4_execute_object( |
| 1494 | img4_runtime_object_spec_index_t obj_spec_index, |
| 1495 | const img4_buff_t *payload, |
| 1496 | const img4_buff_t *manifest) |
| 1497 | { |
| 1498 | /* Not supported within TXM yet */ |
| 1499 | (void)obj_spec_index; |
| 1500 | (void)payload; |
| 1501 | (void)manifest; |
| 1502 | |
| 1503 | printf("image4 object execution isn't supported by TXM\n" ); |
| 1504 | return ENOSYS; |
| 1505 | } |
| 1506 | |
| 1507 | errno_t |
| 1508 | txm_image4_copy_object( |
| 1509 | img4_runtime_object_spec_index_t obj_spec_index, |
| 1510 | vm_address_t object_out, |
| 1511 | size_t *object_length) |
| 1512 | { |
| 1513 | /* Not supported within TXM yet */ |
| 1514 | (void)obj_spec_index; |
| 1515 | (void)object_out; |
| 1516 | (void)object_length; |
| 1517 | |
| 1518 | printf("image4 object copying isn't supported by TXM\n" ); |
| 1519 | return ENOSYS; |
| 1520 | } |
| 1521 | |
| 1522 | const void* |
| 1523 | txm_image4_get_monitor_exports(void) |
| 1524 | { |
| 1525 | txm_call_t txm_call = { |
| 1526 | .selector = kTXMKernelSelectorImage4GetExports, |
| 1527 | .failure_fatal = true, |
| 1528 | .num_output_args = 1, |
| 1529 | }; |
| 1530 | |
| 1531 | txm_kernel_call(&txm_call); |
| 1532 | return (const void*)txm_call.return_words[0]; |
| 1533 | } |
| 1534 | |
| 1535 | errno_t |
| 1536 | txm_image4_set_release_type( |
| 1537 | const char *release_type) |
| 1538 | { |
| 1539 | txm_call_t txm_call = { |
| 1540 | .selector = kTXMKernelSelectorImage4SetReleaseType, |
| 1541 | .failure_fatal = true, |
| 1542 | .num_input_args = 1, |
| 1543 | }; |
| 1544 | |
| 1545 | /* Set the release type -- cannot fail */ |
| 1546 | txm_kernel_call(&txm_call, release_type); |
| 1547 | |
| 1548 | return 0; |
| 1549 | } |
| 1550 | |
| 1551 | errno_t |
| 1552 | txm_image4_set_bnch_shadow( |
| 1553 | const img4_nonce_domain_index_t ndi) |
| 1554 | { |
| 1555 | txm_call_t txm_call = { |
| 1556 | .selector = kTXMKernelSelectorImage4SetBootNonceShadow, |
| 1557 | .failure_fatal = true, |
| 1558 | .num_input_args = 1, |
| 1559 | }; |
| 1560 | |
| 1561 | /* Set the release type -- cannot fail */ |
| 1562 | txm_kernel_call(&txm_call, ndi); |
| 1563 | |
| 1564 | return 0; |
| 1565 | } |
| 1566 | |
| 1567 | #pragma mark Image4 - New |
| 1568 | |
| 1569 | static inline bool |
| 1570 | _txm_image4_monitor_trap_supported( |
| 1571 | image4_cs_trap_t selector) |
| 1572 | { |
| 1573 | switch (selector) { |
| 1574 | #if kTXMImage4APIVersion >= 1 |
| 1575 | case IMAGE4_CS_TRAP_KMOD_SET_RELEASE_TYPE: |
| 1576 | case IMAGE4_CS_TRAP_KMOD_PIN_ROOT: |
| 1577 | case IMAGE4_CS_TRAP_KMOD_EVALUATE_TRUST: |
| 1578 | case IMAGE4_CS_TRAP_NONCE_SET: |
| 1579 | case IMAGE4_CS_TRAP_NONCE_ROLL: |
| 1580 | case IMAGE4_CS_TRAP_IMAGE_ACTIVATE: |
| 1581 | return true; |
| 1582 | #endif |
| 1583 | |
| 1584 | default: |
| 1585 | return false; |
| 1586 | } |
| 1587 | } |
| 1588 | |
| 1589 | kern_return_t |
| 1590 | txm_image4_transfer_region( |
| 1591 | image4_cs_trap_t selector, |
| 1592 | vm_address_t region_addr, |
| 1593 | vm_size_t region_size) |
| 1594 | { |
| 1595 | if (_txm_image4_monitor_trap_supported(selector) == true) { |
| 1596 | txm_transfer_region(region_addr, region_size); |
| 1597 | } |
| 1598 | return KERN_SUCCESS; |
| 1599 | } |
| 1600 | |
| 1601 | kern_return_t |
| 1602 | txm_image4_reclaim_region( |
| 1603 | image4_cs_trap_t selector, |
| 1604 | vm_address_t region_addr, |
| 1605 | vm_size_t region_size) |
| 1606 | { |
| 1607 | if (_txm_image4_monitor_trap_supported(selector) == true) { |
| 1608 | txm_reclaim_region(region_addr, region_size); |
| 1609 | } |
| 1610 | return KERN_SUCCESS; |
| 1611 | } |
| 1612 | |
| 1613 | errno_t |
| 1614 | txm_image4_monitor_trap( |
| 1615 | image4_cs_trap_t selector, |
| 1616 | __unused const void *input_data, |
| 1617 | __unused size_t input_size) |
| 1618 | { |
| 1619 | #if kTXMKernelAPIVersion >= 2 |
| 1620 | txm_call_t txm_call = { |
| 1621 | .selector = kTXMKernelSelectorImage4Dispatch, |
| 1622 | .num_input_args = 5, |
| 1623 | }; |
| 1624 | |
| 1625 | kern_return_t ret = txm_kernel_call( |
| 1626 | &txm_call, selector, |
| 1627 | input_data, input_size, |
| 1628 | NULL, NULL); |
| 1629 | |
| 1630 | /* Return 0 for success */ |
| 1631 | if (ret == KERN_SUCCESS) { |
| 1632 | return 0; |
| 1633 | } |
| 1634 | |
| 1635 | /* Check for an errno_t return */ |
| 1636 | if (txm_call.txm_ret.returnCode == kTXMReturnCodeErrno) { |
| 1637 | if (txm_call.txm_ret.errnoRet == 0) { |
| 1638 | panic("image4 dispatch: unexpected success errno_t: %llu" , selector); |
| 1639 | } |
| 1640 | return txm_call.txm_ret.errnoRet; |
| 1641 | } |
| 1642 | |
| 1643 | /* Return a generic error */ |
| 1644 | return EPERM; |
| 1645 | #else |
| 1646 | printf("image4 dispatch: traps not supported: %llu\n" , selector); |
| 1647 | return ENOSYS; |
| 1648 | #endif |
| 1649 | } |
| 1650 | |
| 1651 | #endif /* CONFIG_SPTM */ |
| 1652 | |