| 1 | /* |
| 2 | * Copyright (c) 2000-2004 Apple Computer, Inc. All rights reserved. |
| 3 | * |
| 4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ |
| 5 | * |
| 6 | * This file contains Original Code and/or Modifications of Original Code |
| 7 | * as defined in and that are subject to the Apple Public Source License |
| 8 | * Version 2.0 (the 'License'). You may not use this file except in |
| 9 | * compliance with the License. The rights granted to you under the License |
| 10 | * may not be used to create, or enable the creation or redistribution of, |
| 11 | * unlawful or unlicensed copies of an Apple operating system, or to |
| 12 | * circumvent, violate, or enable the circumvention or violation of, any |
| 13 | * terms of an Apple operating system software license agreement. |
| 14 | * |
| 15 | * Please obtain a copy of the License at |
| 16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. |
| 17 | * |
| 18 | * The Original Code and all software distributed under the License are |
| 19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER |
| 20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
| 21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, |
| 22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
| 23 | * Please see the License for the specific language governing rights and |
| 24 | * limitations under the License. |
| 25 | * |
| 26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ |
| 27 | */ |
| 28 | /* |
| 29 | * @OSF_FREE_COPYRIGHT@ |
| 30 | */ |
| 31 | |
| 32 | #include <pexpert/protos.h> |
| 33 | #include <pexpert/boot.h> |
| 34 | #include <pexpert/device_tree.h> |
| 35 | |
| 36 | #include <mach/mach_types.h> |
| 37 | #include <mach/machine/vm_types.h> |
| 38 | #include <kern/debug.h> |
| 39 | #include <kern/kern_types.h> |
| 40 | #include <kern/kalloc.h> |
| 41 | #include <libkern/kernel_mach_header.h> |
| 42 | #include <os/overflow.h> |
| 43 | |
| 44 | #if defined(KERNEL_INTEGRITY_KTRR) || defined(KERNEL_INTEGRITY_CTRR) |
| 45 | extern addr64_t kvtophys(vm_offset_t va); |
| 46 | #endif /* defined(KERNEL_INTEGRITY_KTRR) || defined(KERNEL_INTEGRITY_CTRR) */ |
| 47 | |
| 48 | #include <sys/types.h> |
| 49 | |
| 50 | SECURITY_READ_ONLY_LATE(static int) DTInitialized; |
| 51 | SECURITY_READ_ONLY_LATE(RealDTEntry) DTRootNode; |
| 52 | SECURITY_READ_ONLY_LATE(static vm_size_t) DTSize; |
| 53 | SECURITY_READ_ONLY_LATE(static vm_offset_t) DTEnd; |
| 54 | |
| 55 | /* |
| 56 | * |
| 57 | * Support Routines |
| 58 | * |
| 59 | */ |
| 60 | |
| 61 | static inline void |
| 62 | assert_in_dt_region(vm_offset_t const start, vm_offset_t const end, void const *p) |
| 63 | { |
| 64 | if ((vm_offset_t)p < start || (vm_offset_t)p > end) { |
| 65 | panic("Device tree pointer outside of device tree region: pointer %p, DTEnd %lx" , p, (unsigned long)DTEnd); |
| 66 | } |
| 67 | } |
| 68 | #define ASSERT_IN_DT(p) assert_in_dt_region((vm_offset_t)DTRootNode, (vm_offset_t)DTEnd, (p)) |
| 69 | |
| 70 | static inline void |
| 71 | assert_prop_in_dt_region(vm_offset_t const start, vm_offset_t const end, DeviceTreeNodeProperty const *prop) |
| 72 | { |
| 73 | vm_offset_t prop_end; |
| 74 | |
| 75 | assert_in_dt_region(start, end, p: prop); |
| 76 | assert_in_dt_region(start, end, p: (uint8_t const *)prop + sizeof(DeviceTreeNodeProperty)); |
| 77 | if (os_add3_overflow((vm_offset_t)prop, sizeof(DeviceTreeNodeProperty), prop->length, &prop_end)) { |
| 78 | panic("Device tree property overflow: prop %p, length 0x%x" , prop, prop->length); |
| 79 | } |
| 80 | assert_in_dt_region(start, end, p: (void*)prop_end); |
| 81 | } |
| 82 | #define ASSERT_PROP_IN_DT(prop) assert_prop_in_dt_region((vm_offset_t)DTRootNode, (vm_offset_t)DTEnd, (prop)) |
| 83 | |
| 84 | #define (start, end, p, size) assert_in_dt_region((start), (end), (uint8_t const *)(p) + (size)) |
| 85 | #define (p, size) ASSERT_IN_DT((uint8_t const *)(p) + (size)) |
| 86 | |
| 87 | /* |
| 88 | * Since there is no way to know the size of a device tree node |
| 89 | * without fully walking it, we employ the following principle to make |
| 90 | * sure that the accessed device tree is fully within its memory |
| 91 | * region: |
| 92 | * |
| 93 | * Internally, we check anything we want to access just before we want |
| 94 | * to access it (not after creating a pointer). |
| 95 | * |
| 96 | * Then, before returning a DTEntry to the caller, we check whether |
| 97 | * the start address (only!) of the entry is still within the device |
| 98 | * tree region. |
| 99 | * |
| 100 | * Before returning a property value the caller, we check whether the |
| 101 | * property is fully within the region. |
| 102 | * |
| 103 | * "DTEntry"s are opaque to the caller, so only checking their |
| 104 | * starting address is enough to satisfy existence within the device |
| 105 | * tree region, while for property values we need to make sure that |
| 106 | * they are fully within the region. |
| 107 | */ |
| 108 | |
| 109 | static inline DeviceTreeNodeProperty const * |
| 110 | next_prop_region(vm_offset_t const start, vm_offset_t end, DeviceTreeNodeProperty const *prop) |
| 111 | { |
| 112 | uintptr_t next_addr; |
| 113 | |
| 114 | ASSERT_HEADER_IN_DT_REGION(start, end, prop, sizeof(DeviceTreeNodeProperty)); |
| 115 | |
| 116 | if (os_add3_overflow((uintptr_t)prop, prop->length, sizeof(DeviceTreeNodeProperty) + 3, &next_addr)) { |
| 117 | panic("Device tree property overflow: prop %p, length 0x%x" , prop, prop->length); |
| 118 | } |
| 119 | |
| 120 | next_addr &= ~(3ULL); |
| 121 | |
| 122 | return (DeviceTreeNodeProperty*)next_addr; |
| 123 | } |
| 124 | #define next_prop(prop) next_prop_region((vm_offset_t)DTRootNode, (vm_offset_t)DTEnd, (prop)) |
| 125 | |
| 126 | static RealDTEntry |
| 127 | skipProperties(RealDTEntry entry) |
| 128 | { |
| 129 | DeviceTreeNodeProperty const *prop; |
| 130 | unsigned int k; |
| 131 | |
| 132 | if (entry == NULL) { |
| 133 | return NULL; |
| 134 | } |
| 135 | |
| 136 | ASSERT_HEADER_IN_DT(entry, sizeof(DeviceTreeNode)); |
| 137 | |
| 138 | if (entry->nProperties == 0) { |
| 139 | return NULL; |
| 140 | } else { |
| 141 | prop = (DeviceTreeNodeProperty const *) (entry + 1); |
| 142 | for (k = 0; k < entry->nProperties; k++) { |
| 143 | prop = next_prop(prop); |
| 144 | } |
| 145 | } |
| 146 | ASSERT_IN_DT(prop); |
| 147 | return (RealDTEntry) prop; |
| 148 | } |
| 149 | |
| 150 | static RealDTEntry |
| 151 | skipTree(RealDTEntry root) |
| 152 | { |
| 153 | RealDTEntry entry; |
| 154 | unsigned int k; |
| 155 | |
| 156 | ASSERT_HEADER_IN_DT(root, sizeof(DeviceTreeNode)); |
| 157 | |
| 158 | entry = skipProperties(entry: root); |
| 159 | if (entry == NULL) { |
| 160 | return NULL; |
| 161 | } |
| 162 | for (k = 0; k < root->nChildren; k++) { |
| 163 | entry = skipTree(root: entry); |
| 164 | } |
| 165 | return entry; |
| 166 | } |
| 167 | |
| 168 | static RealDTEntry |
| 169 | GetFirstChild(RealDTEntry parent) |
| 170 | { |
| 171 | return skipProperties(entry: parent); |
| 172 | } |
| 173 | |
| 174 | static RealDTEntry |
| 175 | GetNextChild(RealDTEntry sibling) |
| 176 | { |
| 177 | return skipTree(root: sibling); |
| 178 | } |
| 179 | |
| 180 | static const char * |
| 181 | GetNextComponent(const char *cp, char *bp) |
| 182 | { |
| 183 | size_t length = 0; |
| 184 | char *origbp = bp; |
| 185 | |
| 186 | while (*cp != 0) { |
| 187 | if (*cp == kDTPathNameSeparator) { |
| 188 | cp++; |
| 189 | break; |
| 190 | } |
| 191 | if (++length > kDTMaxEntryNameLength) { |
| 192 | *origbp = '\0'; |
| 193 | return cp; |
| 194 | } |
| 195 | *bp++ = *cp++; |
| 196 | } |
| 197 | *bp = 0; |
| 198 | return cp; |
| 199 | } |
| 200 | |
| 201 | static RealDTEntry |
| 202 | FindChild(RealDTEntry cur, char *buf) |
| 203 | { |
| 204 | RealDTEntry child; |
| 205 | unsigned long index; |
| 206 | char const * str; |
| 207 | unsigned int dummy; |
| 208 | |
| 209 | ASSERT_HEADER_IN_DT(cur, sizeof(DeviceTreeNode)); |
| 210 | |
| 211 | if (cur->nChildren == 0) { |
| 212 | return NULL; |
| 213 | } |
| 214 | index = 1; |
| 215 | child = GetFirstChild(parent: cur); |
| 216 | while (1) { |
| 217 | if (SecureDTGetProperty(entry: child, propertyName: "name" , propertyValue: (void const **)&str, propertySize: &dummy) != kSuccess) { |
| 218 | break; |
| 219 | } |
| 220 | if (strcmp(s1: str, s2: buf) == 0) { |
| 221 | return child; |
| 222 | } |
| 223 | if (index >= cur->nChildren) { |
| 224 | break; |
| 225 | } |
| 226 | child = GetNextChild(sibling: child); |
| 227 | index++; |
| 228 | } |
| 229 | return NULL; |
| 230 | } |
| 231 | |
| 232 | /* |
| 233 | * External Routines |
| 234 | */ |
| 235 | void |
| 236 | SecureDTInit(void const *base, size_t size) |
| 237 | { |
| 238 | if ((uintptr_t)base + size < (uintptr_t)base) { |
| 239 | panic("DeviceTree overflow: %p, size %#zx" , base, size); |
| 240 | } |
| 241 | DTRootNode = base; |
| 242 | DTSize = size; |
| 243 | DTEnd = (vm_offset_t)DTRootNode + DTSize; |
| 244 | DTInitialized = (DTRootNode != 0); |
| 245 | } |
| 246 | |
| 247 | bool |
| 248 | SecureDTIsLockedDown(void) |
| 249 | { |
| 250 | #if CONFIG_SPTM |
| 251 | return true; |
| 252 | #elif defined(KERNEL_INTEGRITY_KTRR) || defined(KERNEL_INTEGRITY_CTRR) |
| 253 | /* |
| 254 | * We cannot check if the DT is in the CTRR region early on, |
| 255 | * because knowledge of the CTRR region is set up later. But the |
| 256 | * DT is used in all kinds of early bootstrapping before that. |
| 257 | * |
| 258 | * Luckily, we know that the device tree must be in front of the |
| 259 | * kernel if set up in EXTRADATA (which means it's covered by |
| 260 | * CTRR), and after it otherwise. |
| 261 | */ |
| 262 | addr64_t exec_header_phys = kvtophys((vm_offset_t)&_mh_execute_header); |
| 263 | |
| 264 | if (kvtophys((vm_offset_t)DTRootNode) < exec_header_phys) { |
| 265 | assert(kvtophys(DTEnd) <= exec_header_phys); |
| 266 | return true; |
| 267 | } |
| 268 | #endif |
| 269 | return false; |
| 270 | } |
| 271 | |
| 272 | int |
| 273 | SecureDTEntryIsEqual(const DTEntry ref1, const DTEntry ref2) |
| 274 | { |
| 275 | /* equality of pointers */ |
| 276 | return ref1 == ref2; |
| 277 | } |
| 278 | |
| 279 | static char const *startingP; // needed for find_entry |
| 280 | int find_entry(const char *propName, const char *propValue, DTEntry *entryH); |
| 281 | |
| 282 | int |
| 283 | SecureDTFindEntry(const char *propName, const char *propValue, DTEntry *entryH) |
| 284 | { |
| 285 | if (!DTInitialized) { |
| 286 | return kError; |
| 287 | } |
| 288 | |
| 289 | startingP = (char const *)DTRootNode; |
| 290 | return find_entry(propName, propValue, entryH); |
| 291 | } |
| 292 | |
| 293 | int |
| 294 | find_entry(const char *propName, const char *propValue, DTEntry *entryH) |
| 295 | { |
| 296 | DeviceTreeNode const *nodeP = (DeviceTreeNode const *) (void const *) startingP; |
| 297 | unsigned int k; |
| 298 | |
| 299 | ASSERT_HEADER_IN_DT(nodeP, sizeof(DeviceTreeNode)); |
| 300 | |
| 301 | if (nodeP->nProperties == 0) { |
| 302 | return kError; // End of the list of nodes |
| 303 | } |
| 304 | startingP = (char const *) (nodeP + 1); |
| 305 | |
| 306 | // Search current entry |
| 307 | for (k = 0; k < nodeP->nProperties; ++k) { |
| 308 | DeviceTreeNodeProperty const *propP = (DeviceTreeNodeProperty const *) (void const *) startingP; |
| 309 | ASSERT_PROP_IN_DT(propP); |
| 310 | |
| 311 | startingP += sizeof(*propP) + ((propP->length + 3) & -4); |
| 312 | |
| 313 | if (strcmp(s1: propP->name, s2: propName) == 0) { |
| 314 | if (propValue == NULL || strcmp(s1: (char const *)(propP + 1), s2: propValue) == 0) { |
| 315 | *entryH = (DTEntry)nodeP; |
| 316 | ASSERT_HEADER_IN_DT(*entryH, sizeof(DeviceTreeNode)); |
| 317 | return kSuccess; |
| 318 | } |
| 319 | } |
| 320 | } |
| 321 | |
| 322 | // Search child nodes |
| 323 | for (k = 0; k < nodeP->nChildren; ++k) { |
| 324 | if (find_entry(propName, propValue, entryH) == kSuccess) { |
| 325 | return kSuccess; |
| 326 | } |
| 327 | } |
| 328 | return kError; |
| 329 | } |
| 330 | |
| 331 | int |
| 332 | SecureDTLookupEntry(const DTEntry searchPoint, const char *pathName, DTEntry *foundEntry) |
| 333 | { |
| 334 | DTEntryNameBuf buf; |
| 335 | RealDTEntry cur; |
| 336 | const char * cp; |
| 337 | |
| 338 | if (!DTInitialized) { |
| 339 | return kError; |
| 340 | } |
| 341 | if (searchPoint == NULL) { |
| 342 | cur = DTRootNode; |
| 343 | } else { |
| 344 | cur = searchPoint; |
| 345 | } |
| 346 | ASSERT_IN_DT(cur); |
| 347 | cp = pathName; |
| 348 | if (*cp == kDTPathNameSeparator) { |
| 349 | cp++; |
| 350 | if (*cp == 0) { |
| 351 | *foundEntry = cur; |
| 352 | return kSuccess; |
| 353 | } |
| 354 | } |
| 355 | do { |
| 356 | cp = GetNextComponent(cp, bp: buf); |
| 357 | |
| 358 | /* Check for done */ |
| 359 | if (*buf == 0) { |
| 360 | if (*cp == 0) { |
| 361 | *foundEntry = cur; |
| 362 | return kSuccess; |
| 363 | } |
| 364 | break; |
| 365 | } |
| 366 | |
| 367 | cur = FindChild(cur, buf); |
| 368 | } while (cur != NULL); |
| 369 | |
| 370 | return kError; |
| 371 | } |
| 372 | |
| 373 | int |
| 374 | SecureDTInitEntryIterator(const DTEntry startEntry, DTEntryIterator iter) |
| 375 | { |
| 376 | if (!DTInitialized) { |
| 377 | return kError; |
| 378 | } |
| 379 | |
| 380 | if (startEntry != NULL) { |
| 381 | iter->outerScope = (RealDTEntry) startEntry; |
| 382 | iter->currentScope = (RealDTEntry) startEntry; |
| 383 | } else { |
| 384 | iter->outerScope = DTRootNode; |
| 385 | iter->currentScope = DTRootNode; |
| 386 | } |
| 387 | iter->currentEntry = NULL; |
| 388 | iter->savedScope = NULL; |
| 389 | iter->currentIndex = 0; |
| 390 | |
| 391 | return kSuccess; |
| 392 | } |
| 393 | |
| 394 | int |
| 395 | SecureDTEnterEntry(DTEntryIterator iter, DTEntry childEntry) |
| 396 | { |
| 397 | DTSavedScopePtr newScope; |
| 398 | |
| 399 | if (childEntry == NULL) { |
| 400 | return kError; |
| 401 | } |
| 402 | newScope = (DTSavedScopePtr) kalloc_type(struct DTSavedScope, Z_WAITOK); |
| 403 | newScope->nextScope = iter->savedScope; |
| 404 | newScope->scope = iter->currentScope; |
| 405 | newScope->entry = iter->currentEntry; |
| 406 | newScope->index = iter->currentIndex; |
| 407 | |
| 408 | iter->currentScope = childEntry; |
| 409 | iter->currentEntry = NULL; |
| 410 | iter->savedScope = newScope; |
| 411 | iter->currentIndex = 0; |
| 412 | |
| 413 | return kSuccess; |
| 414 | } |
| 415 | |
| 416 | int |
| 417 | SecureDTExitEntry(DTEntryIterator iter, DTEntry *currentPosition) |
| 418 | { |
| 419 | DTSavedScopePtr newScope; |
| 420 | |
| 421 | newScope = iter->savedScope; |
| 422 | if (newScope == NULL) { |
| 423 | return kError; |
| 424 | } |
| 425 | iter->savedScope = newScope->nextScope; |
| 426 | iter->currentScope = newScope->scope; |
| 427 | iter->currentEntry = newScope->entry; |
| 428 | iter->currentIndex = newScope->index; |
| 429 | *currentPosition = iter->currentEntry; |
| 430 | |
| 431 | kfree_type(struct DTSavedScope, newScope); |
| 432 | |
| 433 | return kSuccess; |
| 434 | } |
| 435 | |
| 436 | int |
| 437 | SecureDTIterateEntries(DTEntryIterator iter, DTEntry *nextEntry) |
| 438 | { |
| 439 | if (iter->currentIndex >= iter->currentScope->nChildren) { |
| 440 | *nextEntry = NULL; |
| 441 | return kIterationDone; |
| 442 | } else { |
| 443 | iter->currentIndex++; |
| 444 | if (iter->currentIndex == 1) { |
| 445 | iter->currentEntry = GetFirstChild(parent: iter->currentScope); |
| 446 | } else { |
| 447 | iter->currentEntry = GetNextChild(sibling: iter->currentEntry); |
| 448 | } |
| 449 | ASSERT_IN_DT(iter->currentEntry); |
| 450 | *nextEntry = iter->currentEntry; |
| 451 | return kSuccess; |
| 452 | } |
| 453 | } |
| 454 | |
| 455 | int |
| 456 | SecureDTRestartEntryIteration(DTEntryIterator iter) |
| 457 | { |
| 458 | #if 0 |
| 459 | // This commented out code allows a second argument (outer) |
| 460 | // which (if true) causes restarting at the outer scope |
| 461 | // rather than the current scope. |
| 462 | DTSavedScopePtr scope; |
| 463 | |
| 464 | if (outer) { |
| 465 | while ((scope = iter->savedScope) != NULL) { |
| 466 | iter->savedScope = scope->nextScope; |
| 467 | kfree_type(struct DTSavedScope, scope); |
| 468 | } |
| 469 | iter->currentScope = iter->outerScope; |
| 470 | } |
| 471 | #endif |
| 472 | iter->currentEntry = NULL; |
| 473 | iter->currentIndex = 0; |
| 474 | return kSuccess; |
| 475 | } |
| 476 | |
| 477 | static int |
| 478 | SecureDTGetPropertyInternal(const DTEntry entry, const char *propertyName, void const **propertyValue, unsigned int *propertySize, vm_offset_t const region_start, vm_size_t region_size) |
| 479 | { |
| 480 | DeviceTreeNodeProperty const *prop; |
| 481 | unsigned int k; |
| 482 | |
| 483 | if (entry == NULL) { |
| 484 | return kError; |
| 485 | } |
| 486 | |
| 487 | ASSERT_HEADER_IN_DT_REGION(region_start, region_start + region_size, entry, sizeof(DeviceTreeNode)); |
| 488 | |
| 489 | if (entry->nProperties == 0) { |
| 490 | return kError; |
| 491 | } else { |
| 492 | prop = (DeviceTreeNodeProperty const *) (entry + 1); |
| 493 | for (k = 0; k < entry->nProperties; k++) { |
| 494 | assert_prop_in_dt_region(start: region_start, end: region_start + region_size, prop); |
| 495 | if (strcmp(s1: prop->name, s2: propertyName) == 0) { |
| 496 | *propertyValue = (void const *) (((uintptr_t)prop) |
| 497 | + sizeof(DeviceTreeNodeProperty)); |
| 498 | *propertySize = prop->length; |
| 499 | return kSuccess; |
| 500 | } |
| 501 | prop = next_prop_region(start: region_start, end: region_start + region_size, prop); |
| 502 | } |
| 503 | } |
| 504 | return kError; |
| 505 | } |
| 506 | |
| 507 | int |
| 508 | SecureDTGetProperty(const DTEntry entry, const char *propertyName, void const **propertyValue, unsigned int *propertySize) |
| 509 | { |
| 510 | return SecureDTGetPropertyInternal(entry, propertyName, propertyValue, propertySize, |
| 511 | region_start: (vm_offset_t)DTRootNode, region_size: (vm_size_t)((uintptr_t)DTEnd - (uintptr_t)DTRootNode)); |
| 512 | } |
| 513 | |
| 514 | int |
| 515 | SecureDTGetPropertyRegion(const DTEntry entry, const char *propertyName, void const **propertyValue, unsigned int *propertySize, vm_offset_t const region_start, vm_size_t region_size) |
| 516 | { |
| 517 | return SecureDTGetPropertyInternal(entry, propertyName, propertyValue, propertySize, |
| 518 | region_start, region_size); |
| 519 | } |
| 520 | |
| 521 | |
| 522 | int |
| 523 | SecureDTInitPropertyIterator(const DTEntry entry, DTPropertyIterator iter) |
| 524 | { |
| 525 | iter->entry = entry; |
| 526 | iter->currentProperty = NULL; |
| 527 | iter->currentIndex = 0; |
| 528 | return kSuccess; |
| 529 | } |
| 530 | |
| 531 | int |
| 532 | SecureDTIterateProperties(DTPropertyIterator iter, char const **foundProperty) |
| 533 | { |
| 534 | if (iter->currentIndex >= iter->entry->nProperties) { |
| 535 | *foundProperty = NULL; |
| 536 | return kIterationDone; |
| 537 | } else { |
| 538 | iter->currentIndex++; |
| 539 | if (iter->currentIndex == 1) { |
| 540 | iter->currentProperty = (DeviceTreeNodeProperty const *) (iter->entry + 1); |
| 541 | } else { |
| 542 | iter->currentProperty = next_prop(iter->currentProperty); |
| 543 | } |
| 544 | ASSERT_PROP_IN_DT(iter->currentProperty); |
| 545 | *foundProperty = iter->currentProperty->name; |
| 546 | return kSuccess; |
| 547 | } |
| 548 | } |
| 549 | |
| 550 | int |
| 551 | SecureDTRestartPropertyIteration(DTPropertyIterator iter) |
| 552 | { |
| 553 | iter->currentProperty = NULL; |
| 554 | iter->currentIndex = 0; |
| 555 | return kSuccess; |
| 556 | } |
| 557 | |