1/*
2 * Copyright (c) 2000-2007 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28/*
29 * @OSF_COPYRIGHT@
30 */
31/*
32 * Mach Operating System
33 * Copyright (c) 1991,1990,1989,1988,1987 Carnegie Mellon University
34 * All Rights Reserved.
35 *
36 * Permission to use, copy, modify and distribute this software and its
37 * documentation is hereby granted, provided that both the copyright
38 * notice and this permission notice appear in all copies of the
39 * software, derivative works or modified versions, and any portions
40 * thereof, and that both notices appear in supporting documentation.
41 *
42 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
43 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR
44 * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
45 *
46 * Carnegie Mellon requests users of this software to return to
47 *
48 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
49 * School of Computer Science
50 * Carnegie Mellon University
51 * Pittsburgh PA 15213-3890
52 *
53 * any improvements or extensions that they make and grant Carnegie Mellon
54 * the rights to redistribute these changes.
55 */
56/*
57 */
58/*
59 * File: vm/vm_object.c
60 * Author: Avadis Tevanian, Jr., Michael Wayne Young
61 *
62 * Virtual memory object module.
63 */
64
65#include <debug.h>
66#include <mach_pagemap.h>
67#include <task_swapper.h>
68
69#include <mach/mach_types.h>
70#include <mach/memory_object.h>
71#include <mach/memory_object_default.h>
72#include <mach/memory_object_control_server.h>
73#include <mach/vm_param.h>
74
75#include <mach/sdt.h>
76
77#include <ipc/ipc_types.h>
78#include <ipc/ipc_port.h>
79
80#include <kern/kern_types.h>
81#include <kern/assert.h>
82#include <kern/queue.h>
83#include <kern/xpr.h>
84#include <kern/kalloc.h>
85#include <kern/zalloc.h>
86#include <kern/host.h>
87#include <kern/host_statistics.h>
88#include <kern/processor.h>
89#include <kern/misc_protos.h>
90#include <kern/policy_internal.h>
91
92#include <vm/memory_object.h>
93#include <vm/vm_compressor_pager.h>
94#include <vm/vm_fault.h>
95#include <vm/vm_map.h>
96#include <vm/vm_object.h>
97#include <vm/vm_page.h>
98#include <vm/vm_pageout.h>
99#include <vm/vm_protos.h>
100#include <vm/vm_purgeable_internal.h>
101
102#include <vm/vm_compressor.h>
103
104#if CONFIG_PHANTOM_CACHE
105#include <vm/vm_phantom_cache.h>
106#endif
107
108#if VM_OBJECT_ACCESS_TRACKING
109uint64_t vm_object_access_tracking_reads = 0;
110uint64_t vm_object_access_tracking_writes = 0;
111#endif /* VM_OBJECT_ACCESS_TRACKING */
112
113boolean_t vm_object_collapse_compressor_allowed = TRUE;
114
115struct vm_counters vm_counters;
116
117#if VM_OBJECT_TRACKING
118boolean_t vm_object_tracking_inited = FALSE;
119btlog_t *vm_object_tracking_btlog;
120
121void
122vm_object_tracking_init(void)
123{
124 int vm_object_tracking;
125
126 vm_object_tracking = 1;
127 PE_parse_boot_argn("vm_object_tracking", &vm_object_tracking,
128 sizeof (vm_object_tracking));
129
130 if (vm_object_tracking) {
131 vm_object_tracking_btlog = btlog_create(
132 VM_OBJECT_TRACKING_NUM_RECORDS,
133 VM_OBJECT_TRACKING_BTDEPTH,
134 TRUE /* caller_will_remove_entries_for_element? */);
135 assert(vm_object_tracking_btlog);
136 vm_object_tracking_inited = TRUE;
137 }
138}
139#endif /* VM_OBJECT_TRACKING */
140
141/*
142 * Virtual memory objects maintain the actual data
143 * associated with allocated virtual memory. A given
144 * page of memory exists within exactly one object.
145 *
146 * An object is only deallocated when all "references"
147 * are given up.
148 *
149 * Associated with each object is a list of all resident
150 * memory pages belonging to that object; this list is
151 * maintained by the "vm_page" module, but locked by the object's
152 * lock.
153 *
154 * Each object also records the memory object reference
155 * that is used by the kernel to request and write
156 * back data (the memory object, field "pager"), etc...
157 *
158 * Virtual memory objects are allocated to provide
159 * zero-filled memory (vm_allocate) or map a user-defined
160 * memory object into a virtual address space (vm_map).
161 *
162 * Virtual memory objects that refer to a user-defined
163 * memory object are called "permanent", because all changes
164 * made in virtual memory are reflected back to the
165 * memory manager, which may then store it permanently.
166 * Other virtual memory objects are called "temporary",
167 * meaning that changes need be written back only when
168 * necessary to reclaim pages, and that storage associated
169 * with the object can be discarded once it is no longer
170 * mapped.
171 *
172 * A permanent memory object may be mapped into more
173 * than one virtual address space. Moreover, two threads
174 * may attempt to make the first mapping of a memory
175 * object concurrently. Only one thread is allowed to
176 * complete this mapping; all others wait for the
177 * "pager_initialized" field is asserted, indicating
178 * that the first thread has initialized all of the
179 * necessary fields in the virtual memory object structure.
180 *
181 * The kernel relies on a *default memory manager* to
182 * provide backing storage for the zero-filled virtual
183 * memory objects. The pager memory objects associated
184 * with these temporary virtual memory objects are only
185 * requested from the default memory manager when it
186 * becomes necessary. Virtual memory objects
187 * that depend on the default memory manager are called
188 * "internal". The "pager_created" field is provided to
189 * indicate whether these ports have ever been allocated.
190 *
191 * The kernel may also create virtual memory objects to
192 * hold changed pages after a copy-on-write operation.
193 * In this case, the virtual memory object (and its
194 * backing storage -- its memory object) only contain
195 * those pages that have been changed. The "shadow"
196 * field refers to the virtual memory object that contains
197 * the remainder of the contents. The "shadow_offset"
198 * field indicates where in the "shadow" these contents begin.
199 * The "copy" field refers to a virtual memory object
200 * to which changed pages must be copied before changing
201 * this object, in order to implement another form
202 * of copy-on-write optimization.
203 *
204 * The virtual memory object structure also records
205 * the attributes associated with its memory object.
206 * The "pager_ready", "can_persist" and "copy_strategy"
207 * fields represent those attributes. The "cached_list"
208 * field is used in the implementation of the persistence
209 * attribute.
210 *
211 * ZZZ Continue this comment.
212 */
213
214/* Forward declarations for internal functions. */
215static kern_return_t vm_object_terminate(
216 vm_object_t object);
217
218static kern_return_t vm_object_copy_call(
219 vm_object_t src_object,
220 vm_object_offset_t src_offset,
221 vm_object_size_t size,
222 vm_object_t *_result_object);
223
224static void vm_object_do_collapse(
225 vm_object_t object,
226 vm_object_t backing_object);
227
228static void vm_object_do_bypass(
229 vm_object_t object,
230 vm_object_t backing_object);
231
232static void vm_object_release_pager(
233 memory_object_t pager);
234
235zone_t vm_object_zone; /* vm backing store zone */
236
237/*
238 * All wired-down kernel memory belongs to a single virtual
239 * memory object (kernel_object) to avoid wasting data structures.
240 */
241static struct vm_object kernel_object_store __attribute__((aligned(VM_PACKED_POINTER_ALIGNMENT)));
242vm_object_t kernel_object;
243
244static struct vm_object compressor_object_store __attribute__((aligned(VM_PACKED_POINTER_ALIGNMENT)));
245vm_object_t compressor_object = &compressor_object_store;
246
247/*
248 * The submap object is used as a placeholder for vm_map_submap
249 * operations. The object is declared in vm_map.c because it
250 * is exported by the vm_map module. The storage is declared
251 * here because it must be initialized here.
252 */
253static struct vm_object vm_submap_object_store __attribute__((aligned(VM_PACKED_POINTER_ALIGNMENT)));
254
255/*
256 * Virtual memory objects are initialized from
257 * a template (see vm_object_allocate).
258 *
259 * When adding a new field to the virtual memory
260 * object structure, be sure to add initialization
261 * (see _vm_object_allocate()).
262 */
263static struct vm_object vm_object_template;
264
265unsigned int vm_page_purged_wired = 0;
266unsigned int vm_page_purged_busy = 0;
267unsigned int vm_page_purged_others = 0;
268
269static queue_head_t vm_object_cached_list;
270static uint32_t vm_object_cache_pages_freed = 0;
271static uint32_t vm_object_cache_pages_moved = 0;
272static uint32_t vm_object_cache_pages_skipped = 0;
273static uint32_t vm_object_cache_adds = 0;
274static uint32_t vm_object_cached_count = 0;
275static lck_mtx_t vm_object_cached_lock_data;
276static lck_mtx_ext_t vm_object_cached_lock_data_ext;
277
278static uint32_t vm_object_page_grab_failed = 0;
279static uint32_t vm_object_page_grab_skipped = 0;
280static uint32_t vm_object_page_grab_returned = 0;
281static uint32_t vm_object_page_grab_pmapped = 0;
282static uint32_t vm_object_page_grab_reactivations = 0;
283
284#define vm_object_cache_lock_spin() \
285 lck_mtx_lock_spin(&vm_object_cached_lock_data)
286#define vm_object_cache_unlock() \
287 lck_mtx_unlock(&vm_object_cached_lock_data)
288
289static void vm_object_cache_remove_locked(vm_object_t);
290
291
292static void vm_object_reap(vm_object_t object);
293static void vm_object_reap_async(vm_object_t object);
294static void vm_object_reaper_thread(void);
295
296static lck_mtx_t vm_object_reaper_lock_data;
297static lck_mtx_ext_t vm_object_reaper_lock_data_ext;
298
299static queue_head_t vm_object_reaper_queue; /* protected by vm_object_reaper_lock() */
300unsigned int vm_object_reap_count = 0;
301unsigned int vm_object_reap_count_async = 0;
302
303#define vm_object_reaper_lock() \
304 lck_mtx_lock(&vm_object_reaper_lock_data)
305#define vm_object_reaper_lock_spin() \
306 lck_mtx_lock_spin(&vm_object_reaper_lock_data)
307#define vm_object_reaper_unlock() \
308 lck_mtx_unlock(&vm_object_reaper_lock_data)
309
310#if CONFIG_IOSCHED
311/* I/O Re-prioritization request list */
312queue_head_t io_reprioritize_list;
313lck_spin_t io_reprioritize_list_lock;
314
315#define IO_REPRIORITIZE_LIST_LOCK() \
316 lck_spin_lock(&io_reprioritize_list_lock)
317#define IO_REPRIORITIZE_LIST_UNLOCK() \
318 lck_spin_unlock(&io_reprioritize_list_lock)
319
320#define MAX_IO_REPRIORITIZE_REQS 8192
321zone_t io_reprioritize_req_zone;
322
323/* I/O Re-prioritization thread */
324int io_reprioritize_wakeup = 0;
325static void io_reprioritize_thread(void *param __unused, wait_result_t wr __unused);
326
327#define IO_REPRIO_THREAD_WAKEUP() thread_wakeup((event_t)&io_reprioritize_wakeup)
328#define IO_REPRIO_THREAD_CONTINUATION() \
329{ \
330 assert_wait(&io_reprioritize_wakeup, THREAD_UNINT); \
331 thread_block(io_reprioritize_thread); \
332}
333
334void vm_page_request_reprioritize(vm_object_t, uint64_t, uint32_t, int);
335void vm_page_handle_prio_inversion(vm_object_t, vm_page_t);
336void vm_decmp_upl_reprioritize(upl_t, int);
337#endif
338
339#if 0
340#undef KERNEL_DEBUG
341#define KERNEL_DEBUG KERNEL_DEBUG_CONSTANT
342#endif
343
344
345/*
346 * vm_object_allocate:
347 *
348 * Returns a new object with the given size.
349 */
350
351__private_extern__ void
352_vm_object_allocate(
353 vm_object_size_t size,
354 vm_object_t object)
355{
356 XPR(XPR_VM_OBJECT,
357 "vm_object_allocate, object 0x%X size 0x%X\n",
358 object, size, 0,0,0);
359
360 *object = vm_object_template;
361 vm_page_queue_init(&object->memq);
362#if UPL_DEBUG || CONFIG_IOSCHED
363 queue_init(&object->uplq);
364#endif
365 vm_object_lock_init(object);
366 object->vo_size = size;
367
368#if VM_OBJECT_TRACKING_OP_CREATED
369 if (vm_object_tracking_inited) {
370 void *bt[VM_OBJECT_TRACKING_BTDEPTH];
371 int numsaved = 0;
372
373 numsaved = OSBacktrace(bt, VM_OBJECT_TRACKING_BTDEPTH);
374 btlog_add_entry(vm_object_tracking_btlog,
375 object,
376 VM_OBJECT_TRACKING_OP_CREATED,
377 bt,
378 numsaved);
379 }
380#endif /* VM_OBJECT_TRACKING_OP_CREATED */
381}
382
383__private_extern__ vm_object_t
384vm_object_allocate(
385 vm_object_size_t size)
386{
387 vm_object_t object;
388
389 object = (vm_object_t) zalloc(vm_object_zone);
390
391// dbgLog(object, size, 0, 2); /* (TEST/DEBUG) */
392
393 if (object != VM_OBJECT_NULL)
394 _vm_object_allocate(size, object);
395
396 return object;
397}
398
399
400lck_grp_t vm_object_lck_grp;
401lck_grp_t vm_object_cache_lck_grp;
402lck_grp_attr_t vm_object_lck_grp_attr;
403lck_attr_t vm_object_lck_attr;
404lck_attr_t kernel_object_lck_attr;
405lck_attr_t compressor_object_lck_attr;
406
407extern void vm_named_entry_init(void);
408
409int workaround_41447923 = 0;
410
411/*
412 * vm_object_bootstrap:
413 *
414 * Initialize the VM objects module.
415 */
416__private_extern__ void
417vm_object_bootstrap(void)
418{
419 vm_size_t vm_object_size;
420
421 assert(sizeof (mo_ipc_object_bits_t) == sizeof (ipc_object_bits_t));
422
423 vm_object_size = (sizeof(struct vm_object) + (VM_PACKED_POINTER_ALIGNMENT-1)) & ~(VM_PACKED_POINTER_ALIGNMENT - 1);
424
425 vm_object_zone = zinit(vm_object_size,
426 round_page(512*1024),
427 round_page(12*1024),
428 "vm objects");
429 zone_change(vm_object_zone, Z_CALLERACCT, FALSE); /* don't charge caller */
430 zone_change(vm_object_zone, Z_NOENCRYPT, TRUE);
431 zone_change(vm_object_zone, Z_ALIGNMENT_REQUIRED, TRUE);
432
433 vm_object_init_lck_grp();
434
435 queue_init(&vm_object_cached_list);
436
437 lck_mtx_init_ext(&vm_object_cached_lock_data,
438 &vm_object_cached_lock_data_ext,
439 &vm_object_cache_lck_grp,
440 &vm_object_lck_attr);
441
442 queue_init(&vm_object_reaper_queue);
443
444 lck_mtx_init_ext(&vm_object_reaper_lock_data,
445 &vm_object_reaper_lock_data_ext,
446 &vm_object_lck_grp,
447 &vm_object_lck_attr);
448
449
450 /*
451 * Fill in a template object, for quick initialization
452 */
453
454 /* memq; Lock; init after allocation */
455
456 vm_object_template.memq.prev = 0;
457 vm_object_template.memq.next = 0;
458#if 0
459 /*
460 * We can't call vm_object_lock_init() here because that will
461 * allocate some memory and VM is not fully initialized yet.
462 * The lock will be initialized for each allocated object in
463 * _vm_object_allocate(), so we don't need to initialize it in
464 * the vm_object_template.
465 */
466 vm_object_lock_init(&vm_object_template);
467#endif
468#if DEVELOPMENT || DEBUG
469 vm_object_template.Lock_owner = 0;
470#endif
471 vm_object_template.vo_size = 0;
472 vm_object_template.memq_hint = VM_PAGE_NULL;
473 vm_object_template.ref_count = 1;
474#if TASK_SWAPPER
475 vm_object_template.res_count = 1;
476#endif /* TASK_SWAPPER */
477 vm_object_template.resident_page_count = 0;
478 vm_object_template.wired_page_count = 0;
479 vm_object_template.reusable_page_count = 0;
480 vm_object_template.copy = VM_OBJECT_NULL;
481 vm_object_template.shadow = VM_OBJECT_NULL;
482 vm_object_template.vo_shadow_offset = (vm_object_offset_t) 0;
483 vm_object_template.pager = MEMORY_OBJECT_NULL;
484 vm_object_template.paging_offset = 0;
485 vm_object_template.pager_control = MEMORY_OBJECT_CONTROL_NULL;
486 vm_object_template.copy_strategy = MEMORY_OBJECT_COPY_SYMMETRIC;
487 vm_object_template.paging_in_progress = 0;
488#if __LP64__
489 vm_object_template.__object1_unused_bits = 0;
490#endif /* __LP64__ */
491 vm_object_template.activity_in_progress = 0;
492
493 /* Begin bitfields */
494 vm_object_template.all_wanted = 0; /* all bits FALSE */
495 vm_object_template.pager_created = FALSE;
496 vm_object_template.pager_initialized = FALSE;
497 vm_object_template.pager_ready = FALSE;
498 vm_object_template.pager_trusted = FALSE;
499 vm_object_template.can_persist = FALSE;
500 vm_object_template.internal = TRUE;
501 vm_object_template.private = FALSE;
502 vm_object_template.pageout = FALSE;
503 vm_object_template.alive = TRUE;
504 vm_object_template.purgable = VM_PURGABLE_DENY;
505 vm_object_template.purgeable_when_ripe = FALSE;
506 vm_object_template.purgeable_only_by_kernel = FALSE;
507 vm_object_template.shadowed = FALSE;
508 vm_object_template.true_share = FALSE;
509 vm_object_template.terminating = FALSE;
510 vm_object_template.named = FALSE;
511 vm_object_template.shadow_severed = FALSE;
512 vm_object_template.phys_contiguous = FALSE;
513 vm_object_template.nophyscache = FALSE;
514 /* End bitfields */
515
516 vm_object_template.cached_list.prev = NULL;
517 vm_object_template.cached_list.next = NULL;
518
519 vm_object_template.last_alloc = (vm_object_offset_t) 0;
520 vm_object_template.sequential = (vm_object_offset_t) 0;
521 vm_object_template.pages_created = 0;
522 vm_object_template.pages_used = 0;
523 vm_object_template.scan_collisions = 0;
524#if CONFIG_PHANTOM_CACHE
525 vm_object_template.phantom_object_id = 0;
526#endif
527 vm_object_template.cow_hint = ~(vm_offset_t)0;
528
529 /* cache bitfields */
530 vm_object_template.wimg_bits = VM_WIMG_USE_DEFAULT;
531 vm_object_template.set_cache_attr = FALSE;
532 vm_object_template.object_is_shared_cache = FALSE;
533 vm_object_template.code_signed = FALSE;
534 vm_object_template.transposed = FALSE;
535 vm_object_template.mapping_in_progress = FALSE;
536 vm_object_template.phantom_isssd = FALSE;
537 vm_object_template.volatile_empty = FALSE;
538 vm_object_template.volatile_fault = FALSE;
539 vm_object_template.all_reusable = FALSE;
540 vm_object_template.blocked_access = FALSE;
541 vm_object_template.vo_ledger_tag = VM_OBJECT_LEDGER_TAG_NONE;
542 vm_object_template.__object2_unused_bits = 0;
543#if CONFIG_IOSCHED || UPL_DEBUG
544 vm_object_template.uplq.prev = NULL;
545 vm_object_template.uplq.next = NULL;
546#endif /* UPL_DEBUG */
547#ifdef VM_PIP_DEBUG
548 bzero(&vm_object_template.pip_holders,
549 sizeof (vm_object_template.pip_holders));
550#endif /* VM_PIP_DEBUG */
551
552 vm_object_template.objq.next = NULL;
553 vm_object_template.objq.prev = NULL;
554 vm_object_template.task_objq.next = NULL;
555 vm_object_template.task_objq.prev = NULL;
556
557 vm_object_template.purgeable_queue_type = PURGEABLE_Q_TYPE_MAX;
558 vm_object_template.purgeable_queue_group = 0;
559
560 vm_object_template.vo_cache_ts = 0;
561
562 vm_object_template.wire_tag = VM_KERN_MEMORY_NONE;
563#if ! VM_TAG_ACTIVE_UPDATE
564 vm_object_template.wired_objq.next = NULL;
565 vm_object_template.wired_objq.prev = NULL;
566#endif /* ! VM_TAG_ACTIVE_UPDATE */
567
568 vm_object_template.io_tracking = FALSE;
569
570#if CONFIG_SECLUDED_MEMORY
571 vm_object_template.eligible_for_secluded = FALSE;
572 vm_object_template.can_grab_secluded = FALSE;
573#else /* CONFIG_SECLUDED_MEMORY */
574 vm_object_template.__object3_unused_bits = 0;
575#endif /* CONFIG_SECLUDED_MEMORY */
576
577#if VM_OBJECT_ACCESS_TRACKING
578 vm_object_template.access_tracking = FALSE;
579 vm_object_template.access_tracking_reads = 0;
580 vm_object_template.access_tracking_writes = 0;
581#endif /* VM_OBJECT_ACCESS_TRACKING */
582
583#if DEBUG
584 bzero(&vm_object_template.purgeable_owner_bt[0],
585 sizeof (vm_object_template.purgeable_owner_bt));
586 vm_object_template.vo_purgeable_volatilizer = NULL;
587 bzero(&vm_object_template.purgeable_volatilizer_bt[0],
588 sizeof (vm_object_template.purgeable_volatilizer_bt));
589#endif /* DEBUG */
590
591 /*
592 * Initialize the "kernel object"
593 */
594
595 kernel_object = &kernel_object_store;
596
597/*
598 * Note that in the following size specifications, we need to add 1 because
599 * VM_MAX_KERNEL_ADDRESS (vm_last_addr) is a maximum address, not a size.
600 */
601
602 _vm_object_allocate(VM_MAX_KERNEL_ADDRESS + 1,
603 kernel_object);
604
605 _vm_object_allocate(VM_MAX_KERNEL_ADDRESS + 1,
606 compressor_object);
607 kernel_object->copy_strategy = MEMORY_OBJECT_COPY_NONE;
608 compressor_object->copy_strategy = MEMORY_OBJECT_COPY_NONE;
609 kernel_object->no_tag_update = TRUE;
610
611 /*
612 * Initialize the "submap object". Make it as large as the
613 * kernel object so that no limit is imposed on submap sizes.
614 */
615
616 vm_submap_object = &vm_submap_object_store;
617 _vm_object_allocate(VM_MAX_KERNEL_ADDRESS + 1,
618 vm_submap_object);
619 vm_submap_object->copy_strategy = MEMORY_OBJECT_COPY_NONE;
620
621 /*
622 * Create an "extra" reference to this object so that we never
623 * try to deallocate it; zfree doesn't like to be called with
624 * non-zone memory.
625 */
626 vm_object_reference(vm_submap_object);
627
628 vm_named_entry_init();
629
630 PE_parse_boot_argn("workaround_41447923", &workaround_41447923,
631 sizeof (workaround_41447923));
632}
633
634#if CONFIG_IOSCHED
635void
636vm_io_reprioritize_init(void)
637{
638 kern_return_t result;
639 thread_t thread = THREAD_NULL;
640
641 /* Initialze the I/O reprioritization subsystem */
642 lck_spin_init(&io_reprioritize_list_lock, &vm_object_lck_grp, &vm_object_lck_attr);
643 queue_init(&io_reprioritize_list);
644
645 io_reprioritize_req_zone = zinit(sizeof(struct io_reprioritize_req),
646 MAX_IO_REPRIORITIZE_REQS * sizeof(struct io_reprioritize_req),
647 4096, "io_reprioritize_req");
648 zone_change(io_reprioritize_req_zone, Z_COLLECT, FALSE);
649
650 result = kernel_thread_start_priority(io_reprioritize_thread, NULL, 95 /* MAXPRI_KERNEL */, &thread);
651 if (result == KERN_SUCCESS) {
652 thread_deallocate(thread);
653 } else {
654 panic("Could not create io_reprioritize_thread");
655 }
656}
657#endif
658
659void
660vm_object_reaper_init(void)
661{
662 kern_return_t kr;
663 thread_t thread;
664
665 kr = kernel_thread_start_priority(
666 (thread_continue_t) vm_object_reaper_thread,
667 NULL,
668 BASEPRI_VM,
669 &thread);
670 if (kr != KERN_SUCCESS) {
671 panic("failed to launch vm_object_reaper_thread kr=0x%x", kr);
672 }
673 thread_deallocate(thread);
674}
675
676__private_extern__ void
677vm_object_init(void)
678{
679 /*
680 * Finish initializing the kernel object.
681 */
682}
683
684
685__private_extern__ void
686vm_object_init_lck_grp(void)
687{
688 /*
689 * initialze the vm_object lock world
690 */
691 lck_grp_attr_setdefault(&vm_object_lck_grp_attr);
692 lck_grp_init(&vm_object_lck_grp, "vm_object", &vm_object_lck_grp_attr);
693 lck_grp_init(&vm_object_cache_lck_grp, "vm_object_cache", &vm_object_lck_grp_attr);
694 lck_attr_setdefault(&vm_object_lck_attr);
695 lck_attr_setdefault(&kernel_object_lck_attr);
696 lck_attr_cleardebug(&kernel_object_lck_attr);
697 lck_attr_setdefault(&compressor_object_lck_attr);
698 lck_attr_cleardebug(&compressor_object_lck_attr);
699}
700
701
702/*
703 * vm_object_deallocate:
704 *
705 * Release a reference to the specified object,
706 * gained either through a vm_object_allocate
707 * or a vm_object_reference call. When all references
708 * are gone, storage associated with this object
709 * may be relinquished.
710 *
711 * No object may be locked.
712 */
713unsigned long vm_object_deallocate_shared_successes = 0;
714unsigned long vm_object_deallocate_shared_failures = 0;
715unsigned long vm_object_deallocate_shared_swap_failures = 0;
716
717__private_extern__ void
718vm_object_deallocate(
719 vm_object_t object)
720{
721 vm_object_t shadow = VM_OBJECT_NULL;
722
723// if(object)dbgLog(object, object->ref_count, object->can_persist, 3); /* (TEST/DEBUG) */
724// else dbgLog(object, 0, 0, 3); /* (TEST/DEBUG) */
725
726 if (object == VM_OBJECT_NULL)
727 return;
728
729 if (object == kernel_object || object == compressor_object) {
730 vm_object_lock_shared(object);
731
732 OSAddAtomic(-1, &object->ref_count);
733
734 if (object->ref_count == 0) {
735 if (object == kernel_object)
736 panic("vm_object_deallocate: losing kernel_object\n");
737 else
738 panic("vm_object_deallocate: losing compressor_object\n");
739 }
740 vm_object_unlock(object);
741 return;
742 }
743
744 if (object->ref_count == 2 &&
745 object->named) {
746 /*
747 * This "named" object's reference count is about to
748 * drop from 2 to 1:
749 * we'll need to call memory_object_last_unmap().
750 */
751 } else if (object->ref_count == 2 &&
752 object->internal &&
753 object->shadow != VM_OBJECT_NULL) {
754 /*
755 * This internal object's reference count is about to
756 * drop from 2 to 1 and it has a shadow object:
757 * we'll want to try and collapse this object with its
758 * shadow.
759 */
760 } else if (object->ref_count >= 2) {
761 UInt32 original_ref_count;
762 volatile UInt32 *ref_count_p;
763 Boolean atomic_swap;
764
765 /*
766 * The object currently looks like it is not being
767 * kept alive solely by the reference we're about to release.
768 * Let's try and release our reference without taking
769 * all the locks we would need if we had to terminate the
770 * object (cache lock + exclusive object lock).
771 * Lock the object "shared" to make sure we don't race with
772 * anyone holding it "exclusive".
773 */
774 vm_object_lock_shared(object);
775 ref_count_p = (volatile UInt32 *) &object->ref_count;
776 original_ref_count = object->ref_count;
777 /*
778 * Test again as "ref_count" could have changed.
779 * "named" shouldn't change.
780 */
781 if (original_ref_count == 2 &&
782 object->named) {
783 /* need to take slow path for m_o_last_unmap() */
784 atomic_swap = FALSE;
785 } else if (original_ref_count == 2 &&
786 object->internal &&
787 object->shadow != VM_OBJECT_NULL) {
788 /* need to take slow path for vm_object_collapse() */
789 atomic_swap = FALSE;
790 } else if (original_ref_count < 2) {
791 /* need to take slow path for vm_object_terminate() */
792 atomic_swap = FALSE;
793 } else {
794 /* try an atomic update with the shared lock */
795 atomic_swap = OSCompareAndSwap(
796 original_ref_count,
797 original_ref_count - 1,
798 (UInt32 *) &object->ref_count);
799 if (atomic_swap == FALSE) {
800 vm_object_deallocate_shared_swap_failures++;
801 /* fall back to the slow path... */
802 }
803 }
804
805 vm_object_unlock(object);
806
807 if (atomic_swap) {
808 /*
809 * ref_count was updated atomically !
810 */
811 vm_object_deallocate_shared_successes++;
812 return;
813 }
814
815 /*
816 * Someone else updated the ref_count at the same
817 * time and we lost the race. Fall back to the usual
818 * slow but safe path...
819 */
820 vm_object_deallocate_shared_failures++;
821 }
822
823 while (object != VM_OBJECT_NULL) {
824
825 vm_object_lock(object);
826
827 assert(object->ref_count > 0);
828
829 /*
830 * If the object has a named reference, and only
831 * that reference would remain, inform the pager
832 * about the last "mapping" reference going away.
833 */
834 if ((object->ref_count == 2) && (object->named)) {
835 memory_object_t pager = object->pager;
836
837 /* Notify the Pager that there are no */
838 /* more mappers for this object */
839
840 if (pager != MEMORY_OBJECT_NULL) {
841 vm_object_mapping_wait(object, THREAD_UNINT);
842 vm_object_mapping_begin(object);
843 vm_object_unlock(object);
844
845 memory_object_last_unmap(pager);
846
847 vm_object_lock(object);
848 vm_object_mapping_end(object);
849 }
850 assert(object->ref_count > 0);
851 }
852
853 /*
854 * Lose the reference. If other references
855 * remain, then we are done, unless we need
856 * to retry a cache trim.
857 * If it is the last reference, then keep it
858 * until any pending initialization is completed.
859 */
860
861 /* if the object is terminating, it cannot go into */
862 /* the cache and we obviously should not call */
863 /* terminate again. */
864
865 if ((object->ref_count > 1) || object->terminating) {
866 vm_object_lock_assert_exclusive(object);
867 object->ref_count--;
868 vm_object_res_deallocate(object);
869
870 if (object->ref_count == 1 &&
871 object->shadow != VM_OBJECT_NULL) {
872 /*
873 * There's only one reference left on this
874 * VM object. We can't tell if it's a valid
875 * one (from a mapping for example) or if this
876 * object is just part of a possibly stale and
877 * useless shadow chain.
878 * We would like to try and collapse it into
879 * its parent, but we don't have any pointers
880 * back to this parent object.
881 * But we can try and collapse this object with
882 * its own shadows, in case these are useless
883 * too...
884 * We can't bypass this object though, since we
885 * don't know if this last reference on it is
886 * meaningful or not.
887 */
888 vm_object_collapse(object, 0, FALSE);
889 }
890 vm_object_unlock(object);
891 return;
892 }
893
894 /*
895 * We have to wait for initialization
896 * before destroying or caching the object.
897 */
898
899 if (object->pager_created && ! object->pager_initialized) {
900 assert(! object->can_persist);
901 vm_object_assert_wait(object,
902 VM_OBJECT_EVENT_INITIALIZED,
903 THREAD_UNINT);
904 vm_object_unlock(object);
905
906 thread_block(THREAD_CONTINUE_NULL);
907 continue;
908 }
909
910 XPR(XPR_VM_OBJECT,
911 "vm_o_deallocate: 0x%X res %d paging_ops %d thread 0x%p ref %d\n",
912 object, object->resident_page_count,
913 object->paging_in_progress,
914 (void *)current_thread(),object->ref_count);
915
916 VM_OBJ_RES_DECR(object); /* XXX ? */
917 /*
918 * Terminate this object. If it had a shadow,
919 * then deallocate it; otherwise, if we need
920 * to retry a cache trim, do so now; otherwise,
921 * we are done. "pageout" objects have a shadow,
922 * but maintain a "paging reference" rather than
923 * a normal reference.
924 */
925 shadow = object->pageout?VM_OBJECT_NULL:object->shadow;
926
927 if (vm_object_terminate(object) != KERN_SUCCESS) {
928 return;
929 }
930 if (shadow != VM_OBJECT_NULL) {
931 object = shadow;
932 continue;
933 }
934 return;
935 }
936}
937
938
939
940vm_page_t
941vm_object_page_grab(
942 vm_object_t object)
943{
944 vm_page_t p, next_p;
945 int p_limit = 0;
946 int p_skipped = 0;
947
948 vm_object_lock_assert_exclusive(object);
949
950 next_p = (vm_page_t)vm_page_queue_first(&object->memq);
951 p_limit = MIN(50, object->resident_page_count);
952
953 while (!vm_page_queue_end(&object->memq, (vm_page_queue_entry_t)next_p) && --p_limit > 0) {
954
955 p = next_p;
956 next_p = (vm_page_t)vm_page_queue_next(&next_p->vmp_listq);
957
958 if (VM_PAGE_WIRED(p) || p->vmp_busy || p->vmp_cleaning || p->vmp_laundry || p->vmp_fictitious)
959 goto move_page_in_obj;
960
961 if (p->vmp_pmapped || p->vmp_dirty || p->vmp_precious) {
962 vm_page_lockspin_queues();
963
964 if (p->vmp_pmapped) {
965 int refmod_state;
966
967 vm_object_page_grab_pmapped++;
968
969 if (p->vmp_reference == FALSE || p->vmp_dirty == FALSE) {
970
971 refmod_state = pmap_get_refmod(VM_PAGE_GET_PHYS_PAGE(p));
972
973 if (refmod_state & VM_MEM_REFERENCED)
974 p->vmp_reference = TRUE;
975 if (refmod_state & VM_MEM_MODIFIED) {
976 SET_PAGE_DIRTY(p, FALSE);
977 }
978 }
979 if (p->vmp_dirty == FALSE && p->vmp_precious == FALSE) {
980
981 refmod_state = pmap_disconnect(VM_PAGE_GET_PHYS_PAGE(p));
982
983 if (refmod_state & VM_MEM_REFERENCED)
984 p->vmp_reference = TRUE;
985 if (refmod_state & VM_MEM_MODIFIED) {
986 SET_PAGE_DIRTY(p, FALSE);
987 }
988
989 if (p->vmp_dirty == FALSE)
990 goto take_page;
991 }
992 }
993 if ((p->vmp_q_state != VM_PAGE_ON_ACTIVE_Q) && p->vmp_reference == TRUE) {
994 vm_page_activate(p);
995
996 VM_STAT_INCR(reactivations);
997 vm_object_page_grab_reactivations++;
998 }
999 vm_page_unlock_queues();
1000move_page_in_obj:
1001 vm_page_queue_remove(&object->memq, p, vm_page_t, vmp_listq);
1002 vm_page_queue_enter(&object->memq, p, vm_page_t, vmp_listq);
1003
1004 p_skipped++;
1005 continue;
1006 }
1007 vm_page_lockspin_queues();
1008take_page:
1009 vm_page_free_prepare_queues(p);
1010 vm_object_page_grab_returned++;
1011 vm_object_page_grab_skipped += p_skipped;
1012
1013 vm_page_unlock_queues();
1014
1015 vm_page_free_prepare_object(p, TRUE);
1016
1017 return (p);
1018 }
1019 vm_object_page_grab_skipped += p_skipped;
1020 vm_object_page_grab_failed++;
1021
1022 return (NULL);
1023}
1024
1025
1026
1027#define EVICT_PREPARE_LIMIT 64
1028#define EVICT_AGE 10
1029
1030static clock_sec_t vm_object_cache_aging_ts = 0;
1031
1032static void
1033vm_object_cache_remove_locked(
1034 vm_object_t object)
1035{
1036 assert(object->purgable == VM_PURGABLE_DENY);
1037
1038 queue_remove(&vm_object_cached_list, object, vm_object_t, cached_list);
1039 object->cached_list.next = NULL;
1040 object->cached_list.prev = NULL;
1041
1042 vm_object_cached_count--;
1043}
1044
1045void
1046vm_object_cache_remove(
1047 vm_object_t object)
1048{
1049 vm_object_cache_lock_spin();
1050
1051 if (object->cached_list.next &&
1052 object->cached_list.prev)
1053 vm_object_cache_remove_locked(object);
1054
1055 vm_object_cache_unlock();
1056}
1057
1058void
1059vm_object_cache_add(
1060 vm_object_t object)
1061{
1062 clock_sec_t sec;
1063 clock_nsec_t nsec;
1064
1065 assert(object->purgable == VM_PURGABLE_DENY);
1066
1067 if (object->resident_page_count == 0)
1068 return;
1069 clock_get_system_nanotime(&sec, &nsec);
1070
1071 vm_object_cache_lock_spin();
1072
1073 if (object->cached_list.next == NULL &&
1074 object->cached_list.prev == NULL) {
1075 queue_enter(&vm_object_cached_list, object, vm_object_t, cached_list);
1076 object->vo_cache_ts = sec + EVICT_AGE;
1077 object->vo_cache_pages_to_scan = object->resident_page_count;
1078
1079 vm_object_cached_count++;
1080 vm_object_cache_adds++;
1081 }
1082 vm_object_cache_unlock();
1083}
1084
1085int
1086vm_object_cache_evict(
1087 int num_to_evict,
1088 int max_objects_to_examine)
1089{
1090 vm_object_t object = VM_OBJECT_NULL;
1091 vm_object_t next_obj = VM_OBJECT_NULL;
1092 vm_page_t local_free_q = VM_PAGE_NULL;
1093 vm_page_t p;
1094 vm_page_t next_p;
1095 int object_cnt = 0;
1096 vm_page_t ep_array[EVICT_PREPARE_LIMIT];
1097 int ep_count;
1098 int ep_limit;
1099 int ep_index;
1100 int ep_freed = 0;
1101 int ep_moved = 0;
1102 uint32_t ep_skipped = 0;
1103 clock_sec_t sec;
1104 clock_nsec_t nsec;
1105
1106 KERNEL_DEBUG(0x13001ec | DBG_FUNC_START, 0, 0, 0, 0, 0);
1107 /*
1108 * do a couple of quick checks to see if it's
1109 * worthwhile grabbing the lock
1110 */
1111 if (queue_empty(&vm_object_cached_list)) {
1112 KERNEL_DEBUG(0x13001ec | DBG_FUNC_END, 0, 0, 0, 0, 0);
1113 return (0);
1114 }
1115 clock_get_system_nanotime(&sec, &nsec);
1116
1117 /*
1118 * the object on the head of the queue has not
1119 * yet sufficiently aged
1120 */
1121 if (sec < vm_object_cache_aging_ts) {
1122 KERNEL_DEBUG(0x13001ec | DBG_FUNC_END, 0, 0, 0, 0, 0);
1123 return (0);
1124 }
1125 /*
1126 * don't need the queue lock to find
1127 * and lock an object on the cached list
1128 */
1129 vm_page_unlock_queues();
1130
1131 vm_object_cache_lock_spin();
1132
1133 for (;;) {
1134 next_obj = (vm_object_t)queue_first(&vm_object_cached_list);
1135
1136 while (!queue_end(&vm_object_cached_list, (queue_entry_t)next_obj) && object_cnt++ < max_objects_to_examine) {
1137
1138 object = next_obj;
1139 next_obj = (vm_object_t)queue_next(&next_obj->cached_list);
1140
1141 assert(object->purgable == VM_PURGABLE_DENY);
1142
1143 if (sec < object->vo_cache_ts) {
1144 KERNEL_DEBUG(0x130020c, object, object->resident_page_count, object->vo_cache_ts, sec, 0);
1145
1146 vm_object_cache_aging_ts = object->vo_cache_ts;
1147 object = VM_OBJECT_NULL;
1148 break;
1149 }
1150 if (!vm_object_lock_try_scan(object)) {
1151 /*
1152 * just skip over this guy for now... if we find
1153 * an object to steal pages from, we'll revist in a bit...
1154 * hopefully, the lock will have cleared
1155 */
1156 KERNEL_DEBUG(0x13001f8, object, object->resident_page_count, 0, 0, 0);
1157
1158 object = VM_OBJECT_NULL;
1159 continue;
1160 }
1161 if (vm_page_queue_empty(&object->memq) || object->vo_cache_pages_to_scan == 0) {
1162 /*
1163 * this case really shouldn't happen, but it's not fatal
1164 * so deal with it... if we don't remove the object from
1165 * the list, we'll never move past it.
1166 */
1167 KERNEL_DEBUG(0x13001fc, object, object->resident_page_count, ep_freed, ep_moved, 0);
1168
1169 vm_object_cache_remove_locked(object);
1170 vm_object_unlock(object);
1171 object = VM_OBJECT_NULL;
1172 continue;
1173 }
1174 /*
1175 * we have a locked object with pages...
1176 * time to start harvesting
1177 */
1178 break;
1179 }
1180 vm_object_cache_unlock();
1181
1182 if (object == VM_OBJECT_NULL)
1183 break;
1184
1185 /*
1186 * object is locked at this point and
1187 * has resident pages
1188 */
1189 next_p = (vm_page_t)vm_page_queue_first(&object->memq);
1190
1191 /*
1192 * break the page scan into 2 pieces to minimize the time spent
1193 * behind the page queue lock...
1194 * the list of pages on these unused objects is likely to be cold
1195 * w/r to the cpu cache which increases the time to scan the list
1196 * tenfold... and we may have a 'run' of pages we can't utilize that
1197 * needs to be skipped over...
1198 */
1199 if ((ep_limit = num_to_evict - (ep_freed + ep_moved)) > EVICT_PREPARE_LIMIT)
1200 ep_limit = EVICT_PREPARE_LIMIT;
1201 ep_count = 0;
1202
1203 while (!vm_page_queue_end(&object->memq, (vm_page_queue_entry_t)next_p) && object->vo_cache_pages_to_scan && ep_count < ep_limit) {
1204
1205 p = next_p;
1206 next_p = (vm_page_t)vm_page_queue_next(&next_p->vmp_listq);
1207
1208 object->vo_cache_pages_to_scan--;
1209
1210 if (VM_PAGE_WIRED(p) || p->vmp_busy || p->vmp_cleaning || p->vmp_laundry) {
1211 vm_page_queue_remove(&object->memq, p, vm_page_t, vmp_listq);
1212 vm_page_queue_enter(&object->memq, p, vm_page_t, vmp_listq);
1213
1214 ep_skipped++;
1215 continue;
1216 }
1217 if (p->vmp_wpmapped || p->vmp_dirty || p->vmp_precious) {
1218 vm_page_queue_remove(&object->memq, p, vm_page_t, vmp_listq);
1219 vm_page_queue_enter(&object->memq, p, vm_page_t, vmp_listq);
1220
1221 pmap_clear_reference(VM_PAGE_GET_PHYS_PAGE(p));
1222 }
1223 ep_array[ep_count++] = p;
1224 }
1225 KERNEL_DEBUG(0x13001f4 | DBG_FUNC_START, object, object->resident_page_count, ep_freed, ep_moved, 0);
1226
1227 vm_page_lockspin_queues();
1228
1229 for (ep_index = 0; ep_index < ep_count; ep_index++) {
1230
1231 p = ep_array[ep_index];
1232
1233 if (p->vmp_wpmapped || p->vmp_dirty || p->vmp_precious) {
1234 p->vmp_reference = FALSE;
1235 p->vmp_no_cache = FALSE;
1236
1237 /*
1238 * we've already filtered out pages that are in the laundry
1239 * so if we get here, this page can't be on the pageout queue
1240 */
1241 vm_page_queues_remove(p, FALSE);
1242 vm_page_enqueue_inactive(p, TRUE);
1243
1244 ep_moved++;
1245 } else {
1246#if CONFIG_PHANTOM_CACHE
1247 vm_phantom_cache_add_ghost(p);
1248#endif
1249 vm_page_free_prepare_queues(p);
1250
1251 assert(p->vmp_pageq.next == 0 && p->vmp_pageq.prev == 0);
1252 /*
1253 * Add this page to our list of reclaimed pages,
1254 * to be freed later.
1255 */
1256 p->vmp_snext = local_free_q;
1257 local_free_q = p;
1258
1259 ep_freed++;
1260 }
1261 }
1262 vm_page_unlock_queues();
1263
1264 KERNEL_DEBUG(0x13001f4 | DBG_FUNC_END, object, object->resident_page_count, ep_freed, ep_moved, 0);
1265
1266 if (local_free_q) {
1267 vm_page_free_list(local_free_q, TRUE);
1268 local_free_q = VM_PAGE_NULL;
1269 }
1270 if (object->vo_cache_pages_to_scan == 0) {
1271 KERNEL_DEBUG(0x1300208, object, object->resident_page_count, ep_freed, ep_moved, 0);
1272
1273 vm_object_cache_remove(object);
1274
1275 KERNEL_DEBUG(0x13001fc, object, object->resident_page_count, ep_freed, ep_moved, 0);
1276 }
1277 /*
1278 * done with this object
1279 */
1280 vm_object_unlock(object);
1281 object = VM_OBJECT_NULL;
1282
1283 /*
1284 * at this point, we are not holding any locks
1285 */
1286 if ((ep_freed + ep_moved) >= num_to_evict) {
1287 /*
1288 * we've reached our target for the
1289 * number of pages to evict
1290 */
1291 break;
1292 }
1293 vm_object_cache_lock_spin();
1294 }
1295 /*
1296 * put the page queues lock back to the caller's
1297 * idea of it
1298 */
1299 vm_page_lock_queues();
1300
1301 vm_object_cache_pages_freed += ep_freed;
1302 vm_object_cache_pages_moved += ep_moved;
1303 vm_object_cache_pages_skipped += ep_skipped;
1304
1305 KERNEL_DEBUG(0x13001ec | DBG_FUNC_END, ep_freed, 0, 0, 0, 0);
1306 return (ep_freed);
1307}
1308
1309/*
1310 * Routine: vm_object_terminate
1311 * Purpose:
1312 * Free all resources associated with a vm_object.
1313 * In/out conditions:
1314 * Upon entry, the object must be locked,
1315 * and the object must have exactly one reference.
1316 *
1317 * The shadow object reference is left alone.
1318 *
1319 * The object must be unlocked if its found that pages
1320 * must be flushed to a backing object. If someone
1321 * manages to map the object while it is being flushed
1322 * the object is returned unlocked and unchanged. Otherwise,
1323 * upon exit, the cache will be unlocked, and the
1324 * object will cease to exist.
1325 */
1326static kern_return_t
1327vm_object_terminate(
1328 vm_object_t object)
1329{
1330 vm_object_t shadow_object;
1331
1332 XPR(XPR_VM_OBJECT, "vm_object_terminate, object 0x%X ref %d\n",
1333 object, object->ref_count, 0, 0, 0);
1334
1335 vm_object_lock_assert_exclusive(object);
1336
1337 if (!object->pageout && (!object->internal && object->can_persist) &&
1338 (object->pager != NULL || object->shadow_severed)) {
1339 /*
1340 * Clear pager_trusted bit so that the pages get yanked
1341 * out of the object instead of cleaned in place. This
1342 * prevents a deadlock in XMM and makes more sense anyway.
1343 */
1344 object->pager_trusted = FALSE;
1345
1346 vm_object_reap_pages(object, REAP_TERMINATE);
1347 }
1348 /*
1349 * Make sure the object isn't already being terminated
1350 */
1351 if (object->terminating) {
1352 vm_object_lock_assert_exclusive(object);
1353 object->ref_count--;
1354 assert(object->ref_count > 0);
1355 vm_object_unlock(object);
1356 return KERN_FAILURE;
1357 }
1358
1359 /*
1360 * Did somebody get a reference to the object while we were
1361 * cleaning it?
1362 */
1363 if (object->ref_count != 1) {
1364 vm_object_lock_assert_exclusive(object);
1365 object->ref_count--;
1366 assert(object->ref_count > 0);
1367 vm_object_res_deallocate(object);
1368 vm_object_unlock(object);
1369 return KERN_FAILURE;
1370 }
1371
1372 /*
1373 * Make sure no one can look us up now.
1374 */
1375
1376 object->terminating = TRUE;
1377 object->alive = FALSE;
1378
1379 if (!object->internal &&
1380 object->cached_list.next &&
1381 object->cached_list.prev)
1382 vm_object_cache_remove(object);
1383
1384 /*
1385 * Detach the object from its shadow if we are the shadow's
1386 * copy. The reference we hold on the shadow must be dropped
1387 * by our caller.
1388 */
1389 if (((shadow_object = object->shadow) != VM_OBJECT_NULL) &&
1390 !(object->pageout)) {
1391 vm_object_lock(shadow_object);
1392 if (shadow_object->copy == object)
1393 shadow_object->copy = VM_OBJECT_NULL;
1394 vm_object_unlock(shadow_object);
1395 }
1396
1397 if (object->paging_in_progress != 0 ||
1398 object->activity_in_progress != 0) {
1399 /*
1400 * There are still some paging_in_progress references
1401 * on this object, meaning that there are some paging
1402 * or other I/O operations in progress for this VM object.
1403 * Such operations take some paging_in_progress references
1404 * up front to ensure that the object doesn't go away, but
1405 * they may also need to acquire a reference on the VM object,
1406 * to map it in kernel space, for example. That means that
1407 * they may end up releasing the last reference on the VM
1408 * object, triggering its termination, while still holding
1409 * paging_in_progress references. Waiting for these
1410 * pending paging_in_progress references to go away here would
1411 * deadlock.
1412 *
1413 * To avoid deadlocking, we'll let the vm_object_reaper_thread
1414 * complete the VM object termination if it still holds
1415 * paging_in_progress references at this point.
1416 *
1417 * No new paging_in_progress should appear now that the
1418 * VM object is "terminating" and not "alive".
1419 */
1420 vm_object_reap_async(object);
1421 vm_object_unlock(object);
1422 /*
1423 * Return KERN_FAILURE to let the caller know that we
1424 * haven't completed the termination and it can't drop this
1425 * object's reference on its shadow object yet.
1426 * The reaper thread will take care of that once it has
1427 * completed this object's termination.
1428 */
1429 return KERN_FAILURE;
1430 }
1431 /*
1432 * complete the VM object termination
1433 */
1434 vm_object_reap(object);
1435 object = VM_OBJECT_NULL;
1436
1437 /*
1438 * the object lock was released by vm_object_reap()
1439 *
1440 * KERN_SUCCESS means that this object has been terminated
1441 * and no longer needs its shadow object but still holds a
1442 * reference on it.
1443 * The caller is responsible for dropping that reference.
1444 * We can't call vm_object_deallocate() here because that
1445 * would create a recursion.
1446 */
1447 return KERN_SUCCESS;
1448}
1449
1450
1451/*
1452 * vm_object_reap():
1453 *
1454 * Complete the termination of a VM object after it's been marked
1455 * as "terminating" and "!alive" by vm_object_terminate().
1456 *
1457 * The VM object must be locked by caller.
1458 * The lock will be released on return and the VM object is no longer valid.
1459 */
1460
1461void
1462vm_object_reap(
1463 vm_object_t object)
1464{
1465 memory_object_t pager;
1466
1467 vm_object_lock_assert_exclusive(object);
1468 assert(object->paging_in_progress == 0);
1469 assert(object->activity_in_progress == 0);
1470
1471 vm_object_reap_count++;
1472
1473 /*
1474 * Disown this purgeable object to cleanup its owner's purgeable
1475 * ledgers. We need to do this before disconnecting the object
1476 * from its pager, to properly account for compressed pages.
1477 */
1478 if (object->internal &&
1479 (object->purgable != VM_PURGABLE_DENY ||
1480 object->vo_ledger_tag)) {
1481 assert(!object->alive);
1482 assert(object->terminating);
1483 vm_object_ownership_change(object,
1484 object->vo_ledger_tag, /* unchanged */
1485 NULL, /* no owner */
1486 FALSE); /* task_objq not locked */
1487 assert(object->vo_owner == NULL);
1488 }
1489
1490 pager = object->pager;
1491 object->pager = MEMORY_OBJECT_NULL;
1492
1493 if (pager != MEMORY_OBJECT_NULL)
1494 memory_object_control_disable(object->pager_control);
1495
1496 object->ref_count--;
1497#if TASK_SWAPPER
1498 assert(object->res_count == 0);
1499#endif /* TASK_SWAPPER */
1500
1501 assert (object->ref_count == 0);
1502
1503 /*
1504 * remove from purgeable queue if it's on
1505 */
1506 if (object->internal) {
1507 assert(VM_OBJECT_OWNER(object) == TASK_NULL);
1508
1509 VM_OBJECT_UNWIRED(object);
1510
1511 if (object->purgable == VM_PURGABLE_DENY) {
1512 /* not purgeable: nothing to do */
1513 } else if (object->purgable == VM_PURGABLE_VOLATILE) {
1514 purgeable_q_t queue;
1515
1516 queue = vm_purgeable_object_remove(object);
1517 assert(queue);
1518
1519 if (object->purgeable_when_ripe) {
1520 /*
1521 * Must take page lock for this -
1522 * using it to protect token queue
1523 */
1524 vm_page_lock_queues();
1525 vm_purgeable_token_delete_first(queue);
1526
1527 assert(queue->debug_count_objects>=0);
1528 vm_page_unlock_queues();
1529 }
1530
1531 /*
1532 * Update "vm_page_purgeable_count" in bulk and mark
1533 * object as VM_PURGABLE_EMPTY to avoid updating
1534 * "vm_page_purgeable_count" again in vm_page_remove()
1535 * when reaping the pages.
1536 */
1537 unsigned int delta;
1538 assert(object->resident_page_count >=
1539 object->wired_page_count);
1540 delta = (object->resident_page_count -
1541 object->wired_page_count);
1542 if (delta != 0) {
1543 assert(vm_page_purgeable_count >= delta);
1544 OSAddAtomic(-delta,
1545 (SInt32 *)&vm_page_purgeable_count);
1546 }
1547 if (object->wired_page_count != 0) {
1548 assert(vm_page_purgeable_wired_count >=
1549 object->wired_page_count);
1550 OSAddAtomic(-object->wired_page_count,
1551 (SInt32 *)&vm_page_purgeable_wired_count);
1552 }
1553 object->purgable = VM_PURGABLE_EMPTY;
1554 }
1555 else if (object->purgable == VM_PURGABLE_NONVOLATILE ||
1556 object->purgable == VM_PURGABLE_EMPTY) {
1557 /* remove from nonvolatile queue */
1558 vm_purgeable_nonvolatile_dequeue(object);
1559 } else {
1560 panic("object %p in unexpected purgeable state 0x%x\n",
1561 object, object->purgable);
1562 }
1563 if (object->transposed &&
1564 object->cached_list.next != NULL &&
1565 object->cached_list.prev == NULL) {
1566 /*
1567 * object->cached_list.next "points" to the
1568 * object that was transposed with this object.
1569 */
1570 } else {
1571 assert(object->cached_list.next == NULL);
1572 }
1573 assert(object->cached_list.prev == NULL);
1574 }
1575
1576 if (object->pageout) {
1577 /*
1578 * free all remaining pages tabled on
1579 * this object
1580 * clean up it's shadow
1581 */
1582 assert(object->shadow != VM_OBJECT_NULL);
1583
1584 vm_pageout_object_terminate(object);
1585
1586 } else if (object->resident_page_count) {
1587 /*
1588 * free all remaining pages tabled on
1589 * this object
1590 */
1591 vm_object_reap_pages(object, REAP_REAP);
1592 }
1593 assert(vm_page_queue_empty(&object->memq));
1594 assert(object->paging_in_progress == 0);
1595 assert(object->activity_in_progress == 0);
1596 assert(object->ref_count == 0);
1597
1598 /*
1599 * If the pager has not already been released by
1600 * vm_object_destroy, we need to terminate it and
1601 * release our reference to it here.
1602 */
1603 if (pager != MEMORY_OBJECT_NULL) {
1604 vm_object_unlock(object);
1605 vm_object_release_pager(pager);
1606 vm_object_lock(object);
1607 }
1608
1609 /* kick off anyone waiting on terminating */
1610 object->terminating = FALSE;
1611 vm_object_paging_begin(object);
1612 vm_object_paging_end(object);
1613 vm_object_unlock(object);
1614
1615 object->shadow = VM_OBJECT_NULL;
1616
1617#if VM_OBJECT_TRACKING
1618 if (vm_object_tracking_inited) {
1619 btlog_remove_entries_for_element(vm_object_tracking_btlog,
1620 object);
1621 }
1622#endif /* VM_OBJECT_TRACKING */
1623
1624 vm_object_lock_destroy(object);
1625 /*
1626 * Free the space for the object.
1627 */
1628 zfree(vm_object_zone, object);
1629 object = VM_OBJECT_NULL;
1630}
1631
1632
1633unsigned int vm_max_batch = 256;
1634
1635#define V_O_R_MAX_BATCH 128
1636
1637#define BATCH_LIMIT(max) (vm_max_batch >= max ? max : vm_max_batch)
1638
1639
1640#define VM_OBJ_REAP_FREELIST(_local_free_q, do_disconnect) \
1641 MACRO_BEGIN \
1642 if (_local_free_q) { \
1643 if (do_disconnect) { \
1644 vm_page_t m; \
1645 for (m = _local_free_q; \
1646 m != VM_PAGE_NULL; \
1647 m = m->vmp_snext) { \
1648 if (m->vmp_pmapped) { \
1649 pmap_disconnect(VM_PAGE_GET_PHYS_PAGE(m)); \
1650 } \
1651 } \
1652 } \
1653 vm_page_free_list(_local_free_q, TRUE); \
1654 _local_free_q = VM_PAGE_NULL; \
1655 } \
1656 MACRO_END
1657
1658
1659void
1660vm_object_reap_pages(
1661 vm_object_t object,
1662 int reap_type)
1663{
1664 vm_page_t p;
1665 vm_page_t next;
1666 vm_page_t local_free_q = VM_PAGE_NULL;
1667 int loop_count;
1668 boolean_t disconnect_on_release;
1669 pmap_flush_context pmap_flush_context_storage;
1670
1671 if (reap_type == REAP_DATA_FLUSH) {
1672 /*
1673 * We need to disconnect pages from all pmaps before
1674 * releasing them to the free list
1675 */
1676 disconnect_on_release = TRUE;
1677 } else {
1678 /*
1679 * Either the caller has already disconnected the pages
1680 * from all pmaps, or we disconnect them here as we add
1681 * them to out local list of pages to be released.
1682 * No need to re-disconnect them when we release the pages
1683 * to the free list.
1684 */
1685 disconnect_on_release = FALSE;
1686 }
1687
1688restart_after_sleep:
1689 if (vm_page_queue_empty(&object->memq))
1690 return;
1691 loop_count = BATCH_LIMIT(V_O_R_MAX_BATCH);
1692
1693 if (reap_type == REAP_PURGEABLE)
1694 pmap_flush_context_init(&pmap_flush_context_storage);
1695
1696 vm_page_lockspin_queues();
1697
1698 next = (vm_page_t)vm_page_queue_first(&object->memq);
1699
1700 while (!vm_page_queue_end(&object->memq, (vm_page_queue_entry_t)next)) {
1701
1702 p = next;
1703 next = (vm_page_t)vm_page_queue_next(&next->vmp_listq);
1704
1705 if (--loop_count == 0) {
1706
1707 vm_page_unlock_queues();
1708
1709 if (local_free_q) {
1710
1711 if (reap_type == REAP_PURGEABLE) {
1712 pmap_flush(&pmap_flush_context_storage);
1713 pmap_flush_context_init(&pmap_flush_context_storage);
1714 }
1715 /*
1716 * Free the pages we reclaimed so far
1717 * and take a little break to avoid
1718 * hogging the page queue lock too long
1719 */
1720 VM_OBJ_REAP_FREELIST(local_free_q,
1721 disconnect_on_release);
1722 } else
1723 mutex_pause(0);
1724
1725 loop_count = BATCH_LIMIT(V_O_R_MAX_BATCH);
1726
1727 vm_page_lockspin_queues();
1728 }
1729 if (reap_type == REAP_DATA_FLUSH || reap_type == REAP_TERMINATE) {
1730
1731 if (p->vmp_busy || p->vmp_cleaning) {
1732
1733 vm_page_unlock_queues();
1734 /*
1735 * free the pages reclaimed so far
1736 */
1737 VM_OBJ_REAP_FREELIST(local_free_q,
1738 disconnect_on_release);
1739
1740 PAGE_SLEEP(object, p, THREAD_UNINT);
1741
1742 goto restart_after_sleep;
1743 }
1744 if (p->vmp_laundry)
1745 vm_pageout_steal_laundry(p, TRUE);
1746 }
1747 switch (reap_type) {
1748
1749 case REAP_DATA_FLUSH:
1750 if (VM_PAGE_WIRED(p)) {
1751 /*
1752 * this is an odd case... perhaps we should
1753 * zero-fill this page since we're conceptually
1754 * tossing its data at this point, but leaving
1755 * it on the object to honor the 'wire' contract
1756 */
1757 continue;
1758 }
1759 break;
1760
1761 case REAP_PURGEABLE:
1762 if (VM_PAGE_WIRED(p)) {
1763 /*
1764 * can't purge a wired page
1765 */
1766 vm_page_purged_wired++;
1767 continue;
1768 }
1769 if (p->vmp_laundry && !p->vmp_busy && !p->vmp_cleaning)
1770 vm_pageout_steal_laundry(p, TRUE);
1771
1772 if (p->vmp_cleaning || p->vmp_laundry || p->vmp_absent) {
1773 /*
1774 * page is being acted upon,
1775 * so don't mess with it
1776 */
1777 vm_page_purged_others++;
1778 continue;
1779 }
1780 if (p->vmp_busy) {
1781 /*
1782 * We can't reclaim a busy page but we can
1783 * make it more likely to be paged (it's not wired) to make
1784 * sure that it gets considered by
1785 * vm_pageout_scan() later.
1786 */
1787 if (VM_PAGE_PAGEABLE(p))
1788 vm_page_deactivate(p);
1789 vm_page_purged_busy++;
1790 continue;
1791 }
1792
1793 assert(VM_PAGE_OBJECT(p) != kernel_object);
1794
1795 /*
1796 * we can discard this page...
1797 */
1798 if (p->vmp_pmapped == TRUE) {
1799 /*
1800 * unmap the page
1801 */
1802 pmap_disconnect_options(VM_PAGE_GET_PHYS_PAGE(p), PMAP_OPTIONS_NOFLUSH | PMAP_OPTIONS_NOREFMOD, (void *)&pmap_flush_context_storage);
1803 }
1804 vm_page_purged_count++;
1805
1806 break;
1807
1808 case REAP_TERMINATE:
1809 if (p->vmp_absent || p->vmp_private) {
1810 /*
1811 * For private pages, VM_PAGE_FREE just
1812 * leaves the page structure around for
1813 * its owner to clean up. For absent
1814 * pages, the structure is returned to
1815 * the appropriate pool.
1816 */
1817 break;
1818 }
1819 if (p->vmp_fictitious) {
1820 assert (VM_PAGE_GET_PHYS_PAGE(p) == vm_page_guard_addr);
1821 break;
1822 }
1823 if (!p->vmp_dirty && p->vmp_wpmapped)
1824 p->vmp_dirty = pmap_is_modified(VM_PAGE_GET_PHYS_PAGE(p));
1825
1826 if ((p->vmp_dirty || p->vmp_precious) && !p->vmp_error && object->alive) {
1827
1828 assert(!object->internal);
1829
1830 p->vmp_free_when_done = TRUE;
1831
1832 if (!p->vmp_laundry) {
1833 vm_page_queues_remove(p, TRUE);
1834 /*
1835 * flush page... page will be freed
1836 * upon completion of I/O
1837 */
1838 vm_pageout_cluster(p);
1839 }
1840 vm_page_unlock_queues();
1841 /*
1842 * free the pages reclaimed so far
1843 */
1844 VM_OBJ_REAP_FREELIST(local_free_q,
1845 disconnect_on_release);
1846
1847 vm_object_paging_wait(object, THREAD_UNINT);
1848
1849 goto restart_after_sleep;
1850 }
1851 break;
1852
1853 case REAP_REAP:
1854 break;
1855 }
1856 vm_page_free_prepare_queues(p);
1857 assert(p->vmp_pageq.next == 0 && p->vmp_pageq.prev == 0);
1858 /*
1859 * Add this page to our list of reclaimed pages,
1860 * to be freed later.
1861 */
1862 p->vmp_snext = local_free_q;
1863 local_free_q = p;
1864 }
1865 vm_page_unlock_queues();
1866
1867 /*
1868 * Free the remaining reclaimed pages
1869 */
1870 if (reap_type == REAP_PURGEABLE)
1871 pmap_flush(&pmap_flush_context_storage);
1872
1873 VM_OBJ_REAP_FREELIST(local_free_q,
1874 disconnect_on_release);
1875}
1876
1877
1878void
1879vm_object_reap_async(
1880 vm_object_t object)
1881{
1882 vm_object_lock_assert_exclusive(object);
1883
1884 vm_object_reaper_lock_spin();
1885
1886 vm_object_reap_count_async++;
1887
1888 /* enqueue the VM object... */
1889 queue_enter(&vm_object_reaper_queue, object,
1890 vm_object_t, cached_list);
1891
1892 vm_object_reaper_unlock();
1893
1894 /* ... and wake up the reaper thread */
1895 thread_wakeup((event_t) &vm_object_reaper_queue);
1896}
1897
1898
1899void
1900vm_object_reaper_thread(void)
1901{
1902 vm_object_t object, shadow_object;
1903
1904 vm_object_reaper_lock_spin();
1905
1906 while (!queue_empty(&vm_object_reaper_queue)) {
1907 queue_remove_first(&vm_object_reaper_queue,
1908 object,
1909 vm_object_t,
1910 cached_list);
1911
1912 vm_object_reaper_unlock();
1913 vm_object_lock(object);
1914
1915 assert(object->terminating);
1916 assert(!object->alive);
1917
1918 /*
1919 * The pageout daemon might be playing with our pages.
1920 * Now that the object is dead, it won't touch any more
1921 * pages, but some pages might already be on their way out.
1922 * Hence, we wait until the active paging activities have
1923 * ceased before we break the association with the pager
1924 * itself.
1925 */
1926 while (object->paging_in_progress != 0 ||
1927 object->activity_in_progress != 0) {
1928 vm_object_wait(object,
1929 VM_OBJECT_EVENT_PAGING_IN_PROGRESS,
1930 THREAD_UNINT);
1931 vm_object_lock(object);
1932 }
1933
1934 shadow_object =
1935 object->pageout ? VM_OBJECT_NULL : object->shadow;
1936
1937 vm_object_reap(object);
1938 /* cache is unlocked and object is no longer valid */
1939 object = VM_OBJECT_NULL;
1940
1941 if (shadow_object != VM_OBJECT_NULL) {
1942 /*
1943 * Drop the reference "object" was holding on
1944 * its shadow object.
1945 */
1946 vm_object_deallocate(shadow_object);
1947 shadow_object = VM_OBJECT_NULL;
1948 }
1949 vm_object_reaper_lock_spin();
1950 }
1951
1952 /* wait for more work... */
1953 assert_wait((event_t) &vm_object_reaper_queue, THREAD_UNINT);
1954
1955 vm_object_reaper_unlock();
1956
1957 thread_block((thread_continue_t) vm_object_reaper_thread);
1958 /*NOTREACHED*/
1959}
1960
1961/*
1962 * Routine: vm_object_release_pager
1963 * Purpose: Terminate the pager and, upon completion,
1964 * release our last reference to it.
1965 */
1966static void
1967vm_object_release_pager(
1968 memory_object_t pager)
1969{
1970
1971 /*
1972 * Terminate the pager.
1973 */
1974
1975 (void) memory_object_terminate(pager);
1976
1977 /*
1978 * Release reference to pager.
1979 */
1980 memory_object_deallocate(pager);
1981}
1982
1983/*
1984 * Routine: vm_object_destroy
1985 * Purpose:
1986 * Shut down a VM object, despite the
1987 * presence of address map (or other) references
1988 * to the vm_object.
1989 */
1990kern_return_t
1991vm_object_destroy(
1992 vm_object_t object,
1993 __unused kern_return_t reason)
1994{
1995 memory_object_t old_pager;
1996
1997 if (object == VM_OBJECT_NULL)
1998 return(KERN_SUCCESS);
1999
2000 /*
2001 * Remove the pager association immediately.
2002 *
2003 * This will prevent the memory manager from further
2004 * meddling. [If it wanted to flush data or make
2005 * other changes, it should have done so before performing
2006 * the destroy call.]
2007 */
2008
2009 vm_object_lock(object);
2010 object->can_persist = FALSE;
2011 object->named = FALSE;
2012 object->alive = FALSE;
2013
2014 old_pager = object->pager;
2015 object->pager = MEMORY_OBJECT_NULL;
2016 if (old_pager != MEMORY_OBJECT_NULL)
2017 memory_object_control_disable(object->pager_control);
2018
2019 /*
2020 * Wait for the existing paging activity (that got
2021 * through before we nulled out the pager) to subside.
2022 */
2023
2024 vm_object_paging_wait(object, THREAD_UNINT);
2025 vm_object_unlock(object);
2026
2027 /*
2028 * Terminate the object now.
2029 */
2030 if (old_pager != MEMORY_OBJECT_NULL) {
2031 vm_object_release_pager(old_pager);
2032
2033 /*
2034 * JMM - Release the caller's reference. This assumes the
2035 * caller had a reference to release, which is a big (but
2036 * currently valid) assumption if this is driven from the
2037 * vnode pager (it is holding a named reference when making
2038 * this call)..
2039 */
2040 vm_object_deallocate(object);
2041
2042 }
2043 return(KERN_SUCCESS);
2044}
2045
2046/*
2047 * The "chunk" macros are used by routines below when looking for pages to deactivate. These
2048 * exist because of the need to handle shadow chains. When deactivating pages, we only
2049 * want to deactive the ones at the top most level in the object chain. In order to do
2050 * this efficiently, the specified address range is divided up into "chunks" and we use
2051 * a bit map to keep track of which pages have already been processed as we descend down
2052 * the shadow chain. These chunk macros hide the details of the bit map implementation
2053 * as much as we can.
2054 *
2055 * For convenience, we use a 64-bit data type as the bit map, and therefore a chunk is
2056 * set to 64 pages. The bit map is indexed from the low-order end, so that the lowest
2057 * order bit represents page 0 in the current range and highest order bit represents
2058 * page 63.
2059 *
2060 * For further convenience, we also use negative logic for the page state in the bit map.
2061 * The bit is set to 1 to indicate it has not yet been seen, and to 0 to indicate it has
2062 * been processed. This way we can simply test the 64-bit long word to see if it's zero
2063 * to easily tell if the whole range has been processed. Therefore, the bit map starts
2064 * out with all the bits set. The macros below hide all these details from the caller.
2065 */
2066
2067#define PAGES_IN_A_CHUNK 64 /* The number of pages in the chunk must */
2068 /* be the same as the number of bits in */
2069 /* the chunk_state_t type. We use 64 */
2070 /* just for convenience. */
2071
2072#define CHUNK_SIZE (PAGES_IN_A_CHUNK * PAGE_SIZE_64) /* Size of a chunk in bytes */
2073
2074typedef uint64_t chunk_state_t;
2075
2076/*
2077 * The bit map uses negative logic, so we start out with all 64 bits set to indicate
2078 * that no pages have been processed yet. Also, if len is less than the full CHUNK_SIZE,
2079 * then we mark pages beyond the len as having been "processed" so that we don't waste time
2080 * looking at pages in that range. This can save us from unnecessarily chasing down the
2081 * shadow chain.
2082 */
2083
2084#define CHUNK_INIT(c, len) \
2085 MACRO_BEGIN \
2086 uint64_t p; \
2087 \
2088 (c) = 0xffffffffffffffffLL; \
2089 \
2090 for (p = (len) / PAGE_SIZE_64; p < PAGES_IN_A_CHUNK; p++) \
2091 MARK_PAGE_HANDLED(c, p); \
2092 MACRO_END
2093
2094
2095/*
2096 * Return true if all pages in the chunk have not yet been processed.
2097 */
2098
2099#define CHUNK_NOT_COMPLETE(c) ((c) != 0)
2100
2101/*
2102 * Return true if the page at offset 'p' in the bit map has already been handled
2103 * while processing a higher level object in the shadow chain.
2104 */
2105
2106#define PAGE_ALREADY_HANDLED(c, p) (((c) & (1LL << (p))) == 0)
2107
2108/*
2109 * Mark the page at offset 'p' in the bit map as having been processed.
2110 */
2111
2112#define MARK_PAGE_HANDLED(c, p) \
2113MACRO_BEGIN \
2114 (c) = (c) & ~(1LL << (p)); \
2115MACRO_END
2116
2117
2118/*
2119 * Return true if the page at the given offset has been paged out. Object is
2120 * locked upon entry and returned locked.
2121 */
2122
2123static boolean_t
2124page_is_paged_out(
2125 vm_object_t object,
2126 vm_object_offset_t offset)
2127{
2128 if (object->internal &&
2129 object->alive &&
2130 !object->terminating &&
2131 object->pager_ready) {
2132
2133 if (VM_COMPRESSOR_PAGER_STATE_GET(object, offset)
2134 == VM_EXTERNAL_STATE_EXISTS) {
2135 return TRUE;
2136 }
2137 }
2138 return FALSE;
2139}
2140
2141
2142
2143/*
2144 * madvise_free_debug
2145 *
2146 * To help debug madvise(MADV_FREE*) mis-usage, this triggers a
2147 * zero-fill as soon as a page is affected by a madvise(MADV_FREE*), to
2148 * simulate the loss of the page's contents as if the page had been
2149 * reclaimed and then re-faulted.
2150 */
2151#if DEVELOPMENT || DEBUG
2152int madvise_free_debug = 1;
2153#else /* DEBUG */
2154int madvise_free_debug = 0;
2155#endif /* DEBUG */
2156
2157/*
2158 * Deactivate the pages in the specified object and range. If kill_page is set, also discard any
2159 * page modified state from the pmap. Update the chunk_state as we go along. The caller must specify
2160 * a size that is less than or equal to the CHUNK_SIZE.
2161 */
2162
2163static void
2164deactivate_pages_in_object(
2165 vm_object_t object,
2166 vm_object_offset_t offset,
2167 vm_object_size_t size,
2168 boolean_t kill_page,
2169 boolean_t reusable_page,
2170 boolean_t all_reusable,
2171 chunk_state_t *chunk_state,
2172 pmap_flush_context *pfc,
2173 struct pmap *pmap,
2174 vm_map_offset_t pmap_offset)
2175{
2176 vm_page_t m;
2177 int p;
2178 struct vm_page_delayed_work dw_array[DEFAULT_DELAYED_WORK_LIMIT];
2179 struct vm_page_delayed_work *dwp;
2180 int dw_count;
2181 int dw_limit;
2182 unsigned int reusable = 0;
2183
2184 /*
2185 * Examine each page in the chunk. The variable 'p' is the page number relative to the start of the
2186 * chunk. Since this routine is called once for each level in the shadow chain, the chunk_state may
2187 * have pages marked as having been processed already. We stop the loop early if we find we've handled
2188 * all the pages in the chunk.
2189 */
2190
2191 dwp = &dw_array[0];
2192 dw_count = 0;
2193 dw_limit = DELAYED_WORK_LIMIT(DEFAULT_DELAYED_WORK_LIMIT);
2194
2195 for(p = 0; size && CHUNK_NOT_COMPLETE(*chunk_state); p++, size -= PAGE_SIZE_64, offset += PAGE_SIZE_64, pmap_offset += PAGE_SIZE_64) {
2196
2197 /*
2198 * If this offset has already been found and handled in a higher level object, then don't
2199 * do anything with it in the current shadow object.
2200 */
2201
2202 if (PAGE_ALREADY_HANDLED(*chunk_state, p))
2203 continue;
2204
2205 /*
2206 * See if the page at this offset is around. First check to see if the page is resident,
2207 * then if not, check the existence map or with the pager.
2208 */
2209
2210 if ((m = vm_page_lookup(object, offset)) != VM_PAGE_NULL) {
2211
2212 /*
2213 * We found a page we were looking for. Mark it as "handled" now in the chunk_state
2214 * so that we won't bother looking for a page at this offset again if there are more
2215 * shadow objects. Then deactivate the page.
2216 */
2217
2218 MARK_PAGE_HANDLED(*chunk_state, p);
2219
2220 if (( !VM_PAGE_WIRED(m)) && (!m->vmp_private) && (!m->vmp_gobbled) && (!m->vmp_busy) &&
2221 (!m->vmp_laundry) && (!m->vmp_cleaning) && !(m->vmp_free_when_done)) {
2222 int clear_refmod;
2223 int pmap_options;
2224
2225 dwp->dw_mask = 0;
2226
2227 pmap_options = 0;
2228 clear_refmod = VM_MEM_REFERENCED;
2229 dwp->dw_mask |= DW_clear_reference;
2230
2231 if ((kill_page) && (object->internal)) {
2232 if (madvise_free_debug) {
2233 /*
2234 * zero-fill the page now
2235 * to simulate it being
2236 * reclaimed and re-faulted.
2237 */
2238 pmap_zero_page(VM_PAGE_GET_PHYS_PAGE(m));
2239 }
2240 m->vmp_precious = FALSE;
2241 m->vmp_dirty = FALSE;
2242
2243 clear_refmod |= VM_MEM_MODIFIED;
2244 if (m->vmp_q_state == VM_PAGE_ON_THROTTLED_Q) {
2245 /*
2246 * This page is now clean and
2247 * reclaimable. Move it out
2248 * of the throttled queue, so
2249 * that vm_pageout_scan() can
2250 * find it.
2251 */
2252 dwp->dw_mask |= DW_move_page;
2253 }
2254
2255 VM_COMPRESSOR_PAGER_STATE_CLR(object, offset);
2256
2257 if (reusable_page && !m->vmp_reusable) {
2258 assert(!all_reusable);
2259 assert(!object->all_reusable);
2260 m->vmp_reusable = TRUE;
2261 object->reusable_page_count++;
2262 assert(object->resident_page_count >= object->reusable_page_count);
2263 reusable++;
2264 /*
2265 * Tell pmap this page is now
2266 * "reusable" (to update pmap
2267 * stats for all mappings).
2268 */
2269 pmap_options |= PMAP_OPTIONS_SET_REUSABLE;
2270 }
2271 }
2272 pmap_options |= PMAP_OPTIONS_NOFLUSH;
2273 pmap_clear_refmod_options(VM_PAGE_GET_PHYS_PAGE(m),
2274 clear_refmod,
2275 pmap_options,
2276 (void *)pfc);
2277
2278 if ((m->vmp_q_state != VM_PAGE_ON_THROTTLED_Q) && !(reusable_page || all_reusable))
2279 dwp->dw_mask |= DW_move_page;
2280
2281 if (dwp->dw_mask)
2282 VM_PAGE_ADD_DELAYED_WORK(dwp, m,
2283 dw_count);
2284
2285 if (dw_count >= dw_limit) {
2286 if (reusable) {
2287 OSAddAtomic(reusable,
2288 &vm_page_stats_reusable.reusable_count);
2289 vm_page_stats_reusable.reusable += reusable;
2290 reusable = 0;
2291 }
2292 vm_page_do_delayed_work(object, VM_KERN_MEMORY_NONE, &dw_array[0], dw_count);
2293
2294 dwp = &dw_array[0];
2295 dw_count = 0;
2296 }
2297 }
2298
2299 } else {
2300
2301 /*
2302 * The page at this offset isn't memory resident, check to see if it's
2303 * been paged out. If so, mark it as handled so we don't bother looking
2304 * for it in the shadow chain.
2305 */
2306
2307 if (page_is_paged_out(object, offset)) {
2308 MARK_PAGE_HANDLED(*chunk_state, p);
2309
2310 /*
2311 * If we're killing a non-resident page, then clear the page in the existence
2312 * map so we don't bother paging it back in if it's touched again in the future.
2313 */
2314
2315 if ((kill_page) && (object->internal)) {
2316
2317 VM_COMPRESSOR_PAGER_STATE_CLR(object, offset);
2318
2319 if (pmap != PMAP_NULL) {
2320 /*
2321 * Tell pmap that this page
2322 * is no longer mapped, to
2323 * adjust the footprint ledger
2324 * because this page is no
2325 * longer compressed.
2326 */
2327 pmap_remove_options(
2328 pmap,
2329 pmap_offset,
2330 (pmap_offset +
2331 PAGE_SIZE),
2332 PMAP_OPTIONS_REMOVE);
2333 }
2334 }
2335 }
2336 }
2337 }
2338
2339 if (reusable) {
2340 OSAddAtomic(reusable, &vm_page_stats_reusable.reusable_count);
2341 vm_page_stats_reusable.reusable += reusable;
2342 reusable = 0;
2343 }
2344
2345 if (dw_count)
2346 vm_page_do_delayed_work(object, VM_KERN_MEMORY_NONE, &dw_array[0], dw_count);
2347}
2348
2349
2350/*
2351 * Deactive a "chunk" of the given range of the object starting at offset. A "chunk"
2352 * will always be less than or equal to the given size. The total range is divided up
2353 * into chunks for efficiency and performance related to the locks and handling the shadow
2354 * chain. This routine returns how much of the given "size" it actually processed. It's
2355 * up to the caler to loop and keep calling this routine until the entire range they want
2356 * to process has been done.
2357 */
2358
2359static vm_object_size_t
2360deactivate_a_chunk(
2361 vm_object_t orig_object,
2362 vm_object_offset_t offset,
2363 vm_object_size_t size,
2364 boolean_t kill_page,
2365 boolean_t reusable_page,
2366 boolean_t all_reusable,
2367 pmap_flush_context *pfc,
2368 struct pmap *pmap,
2369 vm_map_offset_t pmap_offset)
2370{
2371 vm_object_t object;
2372 vm_object_t tmp_object;
2373 vm_object_size_t length;
2374 chunk_state_t chunk_state;
2375
2376
2377 /*
2378 * Get set to do a chunk. We'll do up to CHUNK_SIZE, but no more than the
2379 * remaining size the caller asked for.
2380 */
2381
2382 length = MIN(size, CHUNK_SIZE);
2383
2384 /*
2385 * The chunk_state keeps track of which pages we've already processed if there's
2386 * a shadow chain on this object. At this point, we haven't done anything with this
2387 * range of pages yet, so initialize the state to indicate no pages processed yet.
2388 */
2389
2390 CHUNK_INIT(chunk_state, length);
2391 object = orig_object;
2392
2393 /*
2394 * Start at the top level object and iterate around the loop once for each object
2395 * in the shadow chain. We stop processing early if we've already found all the pages
2396 * in the range. Otherwise we stop when we run out of shadow objects.
2397 */
2398
2399 while (object && CHUNK_NOT_COMPLETE(chunk_state)) {
2400 vm_object_paging_begin(object);
2401
2402 deactivate_pages_in_object(object, offset, length, kill_page, reusable_page, all_reusable, &chunk_state, pfc, pmap, pmap_offset);
2403
2404 vm_object_paging_end(object);
2405
2406 /*
2407 * We've finished with this object, see if there's a shadow object. If
2408 * there is, update the offset and lock the new object. We also turn off
2409 * kill_page at this point since we only kill pages in the top most object.
2410 */
2411
2412 tmp_object = object->shadow;
2413
2414 if (tmp_object) {
2415 kill_page = FALSE;
2416 reusable_page = FALSE;
2417 all_reusable = FALSE;
2418 offset += object->vo_shadow_offset;
2419 vm_object_lock(tmp_object);
2420 }
2421
2422 if (object != orig_object)
2423 vm_object_unlock(object);
2424
2425 object = tmp_object;
2426 }
2427
2428 if (object && object != orig_object)
2429 vm_object_unlock(object);
2430
2431 return length;
2432}
2433
2434
2435
2436/*
2437 * Move any resident pages in the specified range to the inactive queue. If kill_page is set,
2438 * we also clear the modified status of the page and "forget" any changes that have been made
2439 * to the page.
2440 */
2441
2442__private_extern__ void
2443vm_object_deactivate_pages(
2444 vm_object_t object,
2445 vm_object_offset_t offset,
2446 vm_object_size_t size,
2447 boolean_t kill_page,
2448 boolean_t reusable_page,
2449 struct pmap *pmap,
2450 vm_map_offset_t pmap_offset)
2451{
2452 vm_object_size_t length;
2453 boolean_t all_reusable;
2454 pmap_flush_context pmap_flush_context_storage;
2455
2456 /*
2457 * We break the range up into chunks and do one chunk at a time. This is for
2458 * efficiency and performance while handling the shadow chains and the locks.
2459 * The deactivate_a_chunk() function returns how much of the range it processed.
2460 * We keep calling this routine until the given size is exhausted.
2461 */
2462
2463
2464 all_reusable = FALSE;
2465#if 11
2466 /*
2467 * For the sake of accurate "reusable" pmap stats, we need
2468 * to tell pmap about each page that is no longer "reusable",
2469 * so we can't do the "all_reusable" optimization.
2470 */
2471#else
2472 if (reusable_page &&
2473 object->internal &&
2474 object->vo_size != 0 &&
2475 object->vo_size == size &&
2476 object->reusable_page_count == 0) {
2477 all_reusable = TRUE;
2478 reusable_page = FALSE;
2479 }
2480#endif
2481
2482 if ((reusable_page || all_reusable) && object->all_reusable) {
2483 /* This means MADV_FREE_REUSABLE has been called twice, which
2484 * is probably illegal. */
2485 return;
2486 }
2487
2488 pmap_flush_context_init(&pmap_flush_context_storage);
2489
2490 while (size) {
2491 length = deactivate_a_chunk(object, offset, size, kill_page, reusable_page, all_reusable, &pmap_flush_context_storage, pmap, pmap_offset);
2492
2493 size -= length;
2494 offset += length;
2495 pmap_offset += length;
2496 }
2497 pmap_flush(&pmap_flush_context_storage);
2498
2499 if (all_reusable) {
2500 if (!object->all_reusable) {
2501 unsigned int reusable;
2502
2503 object->all_reusable = TRUE;
2504 assert(object->reusable_page_count == 0);
2505 /* update global stats */
2506 reusable = object->resident_page_count;
2507 OSAddAtomic(reusable,
2508 &vm_page_stats_reusable.reusable_count);
2509 vm_page_stats_reusable.reusable += reusable;
2510 vm_page_stats_reusable.all_reusable_calls++;
2511 }
2512 } else if (reusable_page) {
2513 vm_page_stats_reusable.partial_reusable_calls++;
2514 }
2515}
2516
2517void
2518vm_object_reuse_pages(
2519 vm_object_t object,
2520 vm_object_offset_t start_offset,
2521 vm_object_offset_t end_offset,
2522 boolean_t allow_partial_reuse)
2523{
2524 vm_object_offset_t cur_offset;
2525 vm_page_t m;
2526 unsigned int reused, reusable;
2527
2528#define VM_OBJECT_REUSE_PAGE(object, m, reused) \
2529 MACRO_BEGIN \
2530 if ((m) != VM_PAGE_NULL && \
2531 (m)->vmp_reusable) { \
2532 assert((object)->reusable_page_count <= \
2533 (object)->resident_page_count); \
2534 assert((object)->reusable_page_count > 0); \
2535 (object)->reusable_page_count--; \
2536 (m)->vmp_reusable = FALSE; \
2537 (reused)++; \
2538 /* \
2539 * Tell pmap that this page is no longer \
2540 * "reusable", to update the "reusable" stats \
2541 * for all the pmaps that have mapped this \
2542 * page. \
2543 */ \
2544 pmap_clear_refmod_options(VM_PAGE_GET_PHYS_PAGE((m)), \
2545 0, /* refmod */ \
2546 (PMAP_OPTIONS_CLEAR_REUSABLE \
2547 | PMAP_OPTIONS_NOFLUSH), \
2548 NULL); \
2549 } \
2550 MACRO_END
2551
2552 reused = 0;
2553 reusable = 0;
2554
2555 vm_object_lock_assert_exclusive(object);
2556
2557 if (object->all_reusable) {
2558 panic("object %p all_reusable: can't update pmap stats\n",
2559 object);
2560 assert(object->reusable_page_count == 0);
2561 object->all_reusable = FALSE;
2562 if (end_offset - start_offset == object->vo_size ||
2563 !allow_partial_reuse) {
2564 vm_page_stats_reusable.all_reuse_calls++;
2565 reused = object->resident_page_count;
2566 } else {
2567 vm_page_stats_reusable.partial_reuse_calls++;
2568 vm_page_queue_iterate(&object->memq, m, vm_page_t, vmp_listq) {
2569 if (m->vmp_offset < start_offset ||
2570 m->vmp_offset >= end_offset) {
2571 m->vmp_reusable = TRUE;
2572 object->reusable_page_count++;
2573 assert(object->resident_page_count >= object->reusable_page_count);
2574 continue;
2575 } else {
2576 assert(!m->vmp_reusable);
2577 reused++;
2578 }
2579 }
2580 }
2581 } else if (object->resident_page_count >
2582 ((end_offset - start_offset) >> PAGE_SHIFT)) {
2583 vm_page_stats_reusable.partial_reuse_calls++;
2584 for (cur_offset = start_offset;
2585 cur_offset < end_offset;
2586 cur_offset += PAGE_SIZE_64) {
2587 if (object->reusable_page_count == 0) {
2588 break;
2589 }
2590 m = vm_page_lookup(object, cur_offset);
2591 VM_OBJECT_REUSE_PAGE(object, m, reused);
2592 }
2593 } else {
2594 vm_page_stats_reusable.partial_reuse_calls++;
2595 vm_page_queue_iterate(&object->memq, m, vm_page_t, vmp_listq) {
2596 if (object->reusable_page_count == 0) {
2597 break;
2598 }
2599 if (m->vmp_offset < start_offset ||
2600 m->vmp_offset >= end_offset) {
2601 continue;
2602 }
2603 VM_OBJECT_REUSE_PAGE(object, m, reused);
2604 }
2605 }
2606
2607 /* update global stats */
2608 OSAddAtomic(reusable-reused, &vm_page_stats_reusable.reusable_count);
2609 vm_page_stats_reusable.reused += reused;
2610 vm_page_stats_reusable.reusable += reusable;
2611}
2612
2613/*
2614 * Routine: vm_object_pmap_protect
2615 *
2616 * Purpose:
2617 * Reduces the permission for all physical
2618 * pages in the specified object range.
2619 *
2620 * If removing write permission only, it is
2621 * sufficient to protect only the pages in
2622 * the top-level object; only those pages may
2623 * have write permission.
2624 *
2625 * If removing all access, we must follow the
2626 * shadow chain from the top-level object to
2627 * remove access to all pages in shadowed objects.
2628 *
2629 * The object must *not* be locked. The object must
2630 * be internal.
2631 *
2632 * If pmap is not NULL, this routine assumes that
2633 * the only mappings for the pages are in that
2634 * pmap.
2635 */
2636
2637__private_extern__ void
2638vm_object_pmap_protect(
2639 vm_object_t object,
2640 vm_object_offset_t offset,
2641 vm_object_size_t size,
2642 pmap_t pmap,
2643 vm_map_offset_t pmap_start,
2644 vm_prot_t prot)
2645{
2646 vm_object_pmap_protect_options(object, offset, size,
2647 pmap, pmap_start, prot, 0);
2648}
2649
2650__private_extern__ void
2651vm_object_pmap_protect_options(
2652 vm_object_t object,
2653 vm_object_offset_t offset,
2654 vm_object_size_t size,
2655 pmap_t pmap,
2656 vm_map_offset_t pmap_start,
2657 vm_prot_t prot,
2658 int options)
2659{
2660 pmap_flush_context pmap_flush_context_storage;
2661 boolean_t delayed_pmap_flush = FALSE;
2662
2663 if (object == VM_OBJECT_NULL)
2664 return;
2665 size = vm_object_round_page(size);
2666 offset = vm_object_trunc_page(offset);
2667
2668 vm_object_lock(object);
2669
2670 if (object->phys_contiguous) {
2671 if (pmap != NULL) {
2672 vm_object_unlock(object);
2673 pmap_protect_options(pmap,
2674 pmap_start,
2675 pmap_start + size,
2676 prot,
2677 options & ~PMAP_OPTIONS_NOFLUSH,
2678 NULL);
2679 } else {
2680 vm_object_offset_t phys_start, phys_end, phys_addr;
2681
2682 phys_start = object->vo_shadow_offset + offset;
2683 phys_end = phys_start + size;
2684 assert(phys_start <= phys_end);
2685 assert(phys_end <= object->vo_shadow_offset + object->vo_size);
2686 vm_object_unlock(object);
2687
2688 pmap_flush_context_init(&pmap_flush_context_storage);
2689 delayed_pmap_flush = FALSE;
2690
2691 for (phys_addr = phys_start;
2692 phys_addr < phys_end;
2693 phys_addr += PAGE_SIZE_64) {
2694 pmap_page_protect_options(
2695 (ppnum_t) (phys_addr >> PAGE_SHIFT),
2696 prot,
2697 options | PMAP_OPTIONS_NOFLUSH,
2698 (void *)&pmap_flush_context_storage);
2699 delayed_pmap_flush = TRUE;
2700 }
2701 if (delayed_pmap_flush == TRUE)
2702 pmap_flush(&pmap_flush_context_storage);
2703 }
2704 return;
2705 }
2706
2707 assert(object->internal);
2708
2709 while (TRUE) {
2710 if (ptoa_64(object->resident_page_count) > size/2 && pmap != PMAP_NULL) {
2711 vm_object_unlock(object);
2712 pmap_protect_options(pmap, pmap_start, pmap_start + size, prot,
2713 options & ~PMAP_OPTIONS_NOFLUSH, NULL);
2714 return;
2715 }
2716
2717 pmap_flush_context_init(&pmap_flush_context_storage);
2718 delayed_pmap_flush = FALSE;
2719
2720 /*
2721 * if we are doing large ranges with respect to resident
2722 * page count then we should interate over pages otherwise
2723 * inverse page look-up will be faster
2724 */
2725 if (ptoa_64(object->resident_page_count / 4) < size) {
2726 vm_page_t p;
2727 vm_object_offset_t end;
2728
2729 end = offset + size;
2730
2731 vm_page_queue_iterate(&object->memq, p, vm_page_t, vmp_listq) {
2732 if (!p->vmp_fictitious && (offset <= p->vmp_offset) && (p->vmp_offset < end)) {
2733 vm_map_offset_t start;
2734
2735 start = pmap_start + p->vmp_offset - offset;
2736
2737 if (pmap != PMAP_NULL)
2738 pmap_protect_options(
2739 pmap,
2740 start,
2741 start + PAGE_SIZE_64,
2742 prot,
2743 options | PMAP_OPTIONS_NOFLUSH,
2744 &pmap_flush_context_storage);
2745 else
2746 pmap_page_protect_options(
2747 VM_PAGE_GET_PHYS_PAGE(p),
2748 prot,
2749 options | PMAP_OPTIONS_NOFLUSH,
2750 &pmap_flush_context_storage);
2751 delayed_pmap_flush = TRUE;
2752 }
2753 }
2754
2755 } else {
2756 vm_page_t p;
2757 vm_object_offset_t end;
2758 vm_object_offset_t target_off;
2759
2760 end = offset + size;
2761
2762 for (target_off = offset;
2763 target_off < end; target_off += PAGE_SIZE) {
2764
2765 p = vm_page_lookup(object, target_off);
2766
2767 if (p != VM_PAGE_NULL) {
2768 vm_object_offset_t start;
2769
2770 start = pmap_start + (p->vmp_offset - offset);
2771
2772 if (pmap != PMAP_NULL)
2773 pmap_protect_options(
2774 pmap,
2775 start,
2776 start + PAGE_SIZE_64,
2777 prot,
2778 options | PMAP_OPTIONS_NOFLUSH,
2779 &pmap_flush_context_storage);
2780 else
2781 pmap_page_protect_options(
2782 VM_PAGE_GET_PHYS_PAGE(p),
2783 prot,
2784 options | PMAP_OPTIONS_NOFLUSH,
2785 &pmap_flush_context_storage);
2786 delayed_pmap_flush = TRUE;
2787 }
2788 }
2789 }
2790 if (delayed_pmap_flush == TRUE)
2791 pmap_flush(&pmap_flush_context_storage);
2792
2793 if (prot == VM_PROT_NONE) {
2794 /*
2795 * Must follow shadow chain to remove access
2796 * to pages in shadowed objects.
2797 */
2798 vm_object_t next_object;
2799
2800 next_object = object->shadow;
2801 if (next_object != VM_OBJECT_NULL) {
2802 offset += object->vo_shadow_offset;
2803 vm_object_lock(next_object);
2804 vm_object_unlock(object);
2805 object = next_object;
2806 }
2807 else {
2808 /*
2809 * End of chain - we are done.
2810 */
2811 break;
2812 }
2813 }
2814 else {
2815 /*
2816 * Pages in shadowed objects may never have
2817 * write permission - we may stop here.
2818 */
2819 break;
2820 }
2821 }
2822
2823 vm_object_unlock(object);
2824}
2825
2826uint32_t vm_page_busy_absent_skipped = 0;
2827
2828/*
2829 * Routine: vm_object_copy_slowly
2830 *
2831 * Description:
2832 * Copy the specified range of the source
2833 * virtual memory object without using
2834 * protection-based optimizations (such
2835 * as copy-on-write). The pages in the
2836 * region are actually copied.
2837 *
2838 * In/out conditions:
2839 * The caller must hold a reference and a lock
2840 * for the source virtual memory object. The source
2841 * object will be returned *unlocked*.
2842 *
2843 * Results:
2844 * If the copy is completed successfully, KERN_SUCCESS is
2845 * returned. If the caller asserted the interruptible
2846 * argument, and an interruption occurred while waiting
2847 * for a user-generated event, MACH_SEND_INTERRUPTED is
2848 * returned. Other values may be returned to indicate
2849 * hard errors during the copy operation.
2850 *
2851 * A new virtual memory object is returned in a
2852 * parameter (_result_object). The contents of this
2853 * new object, starting at a zero offset, are a copy
2854 * of the source memory region. In the event of
2855 * an error, this parameter will contain the value
2856 * VM_OBJECT_NULL.
2857 */
2858__private_extern__ kern_return_t
2859vm_object_copy_slowly(
2860 vm_object_t src_object,
2861 vm_object_offset_t src_offset,
2862 vm_object_size_t size,
2863 boolean_t interruptible,
2864 vm_object_t *_result_object) /* OUT */
2865{
2866 vm_object_t new_object;
2867 vm_object_offset_t new_offset;
2868
2869 struct vm_object_fault_info fault_info = {};
2870
2871 XPR(XPR_VM_OBJECT, "v_o_c_slowly obj 0x%x off 0x%x size 0x%x\n",
2872 src_object, src_offset, size, 0, 0);
2873
2874 if (size == 0) {
2875 vm_object_unlock(src_object);
2876 *_result_object = VM_OBJECT_NULL;
2877 return(KERN_INVALID_ARGUMENT);
2878 }
2879
2880 /*
2881 * Prevent destruction of the source object while we copy.
2882 */
2883
2884 vm_object_reference_locked(src_object);
2885 vm_object_unlock(src_object);
2886
2887 /*
2888 * Create a new object to hold the copied pages.
2889 * A few notes:
2890 * We fill the new object starting at offset 0,
2891 * regardless of the input offset.
2892 * We don't bother to lock the new object within
2893 * this routine, since we have the only reference.
2894 */
2895
2896 new_object = vm_object_allocate(size);
2897 new_offset = 0;
2898
2899 assert(size == trunc_page_64(size)); /* Will the loop terminate? */
2900
2901 fault_info.interruptible = interruptible;
2902 fault_info.behavior = VM_BEHAVIOR_SEQUENTIAL;
2903 fault_info.lo_offset = src_offset;
2904 fault_info.hi_offset = src_offset + size;
2905 fault_info.stealth = TRUE;
2906
2907 for ( ;
2908 size != 0 ;
2909 src_offset += PAGE_SIZE_64,
2910 new_offset += PAGE_SIZE_64, size -= PAGE_SIZE_64
2911 ) {
2912 vm_page_t new_page;
2913 vm_fault_return_t result;
2914
2915 vm_object_lock(new_object);
2916
2917 while ((new_page = vm_page_alloc(new_object, new_offset))
2918 == VM_PAGE_NULL) {
2919
2920 vm_object_unlock(new_object);
2921
2922 if (!vm_page_wait(interruptible)) {
2923 vm_object_deallocate(new_object);
2924 vm_object_deallocate(src_object);
2925 *_result_object = VM_OBJECT_NULL;
2926 return(MACH_SEND_INTERRUPTED);
2927 }
2928 vm_object_lock(new_object);
2929 }
2930 vm_object_unlock(new_object);
2931
2932 do {
2933 vm_prot_t prot = VM_PROT_READ;
2934 vm_page_t _result_page;
2935 vm_page_t top_page;
2936 vm_page_t result_page;
2937 kern_return_t error_code;
2938 vm_object_t result_page_object;
2939
2940
2941 vm_object_lock(src_object);
2942
2943 if (src_object->internal &&
2944 src_object->shadow == VM_OBJECT_NULL &&
2945 (src_object->pager == NULL ||
2946 (VM_COMPRESSOR_PAGER_STATE_GET(src_object,
2947 src_offset) ==
2948 VM_EXTERNAL_STATE_ABSENT))) {
2949 boolean_t can_skip_page;
2950
2951 _result_page = vm_page_lookup(src_object,
2952 src_offset);
2953 if (_result_page == VM_PAGE_NULL) {
2954 /*
2955 * This page is neither resident nor
2956 * compressed and there's no shadow
2957 * object below "src_object", so this
2958 * page is really missing.
2959 * There's no need to zero-fill it just
2960 * to copy it: let's leave it missing
2961 * in "new_object" and get zero-filled
2962 * on demand.
2963 */
2964 can_skip_page = TRUE;
2965 } else if (workaround_41447923 &&
2966 src_object->pager == NULL &&
2967 _result_page != VM_PAGE_NULL &&
2968 _result_page->vmp_busy &&
2969 _result_page->vmp_absent &&
2970 src_object->purgable == VM_PURGABLE_DENY &&
2971 !src_object->blocked_access) {
2972 /*
2973 * This page is "busy" and "absent"
2974 * but not because we're waiting for
2975 * it to be decompressed. It must
2976 * be because it's a "no zero fill"
2977 * page that is currently not
2978 * accessible until it gets overwritten
2979 * by a device driver.
2980 * Since its initial state would have
2981 * been "zero-filled", let's leave the
2982 * copy page missing and get zero-filled
2983 * on demand.
2984 */
2985 assert(src_object->internal);
2986 assert(src_object->shadow == NULL);
2987 assert(src_object->pager == NULL);
2988 can_skip_page = TRUE;
2989 vm_page_busy_absent_skipped++;
2990 } else {
2991 can_skip_page = FALSE;
2992 }
2993 if (can_skip_page) {
2994 vm_object_unlock(src_object);
2995 /* free the unused "new_page"... */
2996 vm_object_lock(new_object);
2997 VM_PAGE_FREE(new_page);
2998 new_page = VM_PAGE_NULL;
2999 vm_object_unlock(new_object);
3000 /* ...and go to next page in "src_object" */
3001 result = VM_FAULT_SUCCESS;
3002 break;
3003 }
3004 }
3005
3006 vm_object_paging_begin(src_object);
3007
3008 /* cap size at maximum UPL size */
3009 upl_size_t cluster_size;
3010 if (os_convert_overflow(size, &cluster_size)) {
3011 cluster_size = 0 - (upl_size_t)PAGE_SIZE;
3012 }
3013 fault_info.cluster_size = cluster_size;
3014
3015 XPR(XPR_VM_FAULT,"vm_object_copy_slowly -> vm_fault_page",0,0,0,0,0);
3016 _result_page = VM_PAGE_NULL;
3017 result = vm_fault_page(src_object, src_offset,
3018 VM_PROT_READ, FALSE,
3019 FALSE, /* page not looked up */
3020 &prot, &_result_page, &top_page,
3021 (int *)0,
3022 &error_code, FALSE, FALSE, &fault_info);
3023
3024 switch(result) {
3025 case VM_FAULT_SUCCESS:
3026 result_page = _result_page;
3027 result_page_object = VM_PAGE_OBJECT(result_page);
3028
3029 /*
3030 * Copy the page to the new object.
3031 *
3032 * POLICY DECISION:
3033 * If result_page is clean,
3034 * we could steal it instead
3035 * of copying.
3036 */
3037
3038 vm_page_copy(result_page, new_page);
3039 vm_object_unlock(result_page_object);
3040
3041 /*
3042 * Let go of both pages (make them
3043 * not busy, perform wakeup, activate).
3044 */
3045 vm_object_lock(new_object);
3046 SET_PAGE_DIRTY(new_page, FALSE);
3047 PAGE_WAKEUP_DONE(new_page);
3048 vm_object_unlock(new_object);
3049
3050 vm_object_lock(result_page_object);
3051 PAGE_WAKEUP_DONE(result_page);
3052
3053 vm_page_lockspin_queues();
3054 if ((result_page->vmp_q_state == VM_PAGE_ON_SPECULATIVE_Q) ||
3055 (result_page->vmp_q_state == VM_PAGE_NOT_ON_Q)) {
3056 vm_page_activate(result_page);
3057 }
3058 vm_page_activate(new_page);
3059 vm_page_unlock_queues();
3060
3061 /*
3062 * Release paging references and
3063 * top-level placeholder page, if any.
3064 */
3065
3066 vm_fault_cleanup(result_page_object,
3067 top_page);
3068
3069 break;
3070
3071 case VM_FAULT_RETRY:
3072 break;
3073
3074 case VM_FAULT_MEMORY_SHORTAGE:
3075 if (vm_page_wait(interruptible))
3076 break;
3077 /* fall thru */
3078
3079 case VM_FAULT_INTERRUPTED:
3080 vm_object_lock(new_object);
3081 VM_PAGE_FREE(new_page);
3082 vm_object_unlock(new_object);
3083
3084 vm_object_deallocate(new_object);
3085 vm_object_deallocate(src_object);
3086 *_result_object = VM_OBJECT_NULL;
3087 return(MACH_SEND_INTERRUPTED);
3088
3089 case VM_FAULT_SUCCESS_NO_VM_PAGE:
3090 /* success but no VM page: fail */
3091 vm_object_paging_end(src_object);
3092 vm_object_unlock(src_object);
3093 /*FALLTHROUGH*/
3094 case VM_FAULT_MEMORY_ERROR:
3095 /*
3096 * A policy choice:
3097 * (a) ignore pages that we can't
3098 * copy
3099 * (b) return the null object if
3100 * any page fails [chosen]
3101 */
3102
3103 vm_object_lock(new_object);
3104 VM_PAGE_FREE(new_page);
3105 vm_object_unlock(new_object);
3106
3107 vm_object_deallocate(new_object);
3108 vm_object_deallocate(src_object);
3109 *_result_object = VM_OBJECT_NULL;
3110 return(error_code ? error_code:
3111 KERN_MEMORY_ERROR);
3112
3113 default:
3114 panic("vm_object_copy_slowly: unexpected error"
3115 " 0x%x from vm_fault_page()\n", result);
3116 }
3117 } while (result != VM_FAULT_SUCCESS);
3118 }
3119
3120 /*
3121 * Lose the extra reference, and return our object.
3122 */
3123 vm_object_deallocate(src_object);
3124 *_result_object = new_object;
3125 return(KERN_SUCCESS);
3126}
3127
3128/*
3129 * Routine: vm_object_copy_quickly
3130 *
3131 * Purpose:
3132 * Copy the specified range of the source virtual
3133 * memory object, if it can be done without waiting
3134 * for user-generated events.
3135 *
3136 * Results:
3137 * If the copy is successful, the copy is returned in
3138 * the arguments; otherwise, the arguments are not
3139 * affected.
3140 *
3141 * In/out conditions:
3142 * The object should be unlocked on entry and exit.
3143 */
3144
3145/*ARGSUSED*/
3146__private_extern__ boolean_t
3147vm_object_copy_quickly(
3148 vm_object_t *_object, /* INOUT */
3149 __unused vm_object_offset_t offset, /* IN */
3150 __unused vm_object_size_t size, /* IN */
3151 boolean_t *_src_needs_copy, /* OUT */
3152 boolean_t *_dst_needs_copy) /* OUT */
3153{
3154 vm_object_t object = *_object;
3155 memory_object_copy_strategy_t copy_strategy;
3156
3157 XPR(XPR_VM_OBJECT, "v_o_c_quickly obj 0x%x off 0x%x size 0x%x\n",
3158 *_object, offset, size, 0, 0);
3159 if (object == VM_OBJECT_NULL) {
3160 *_src_needs_copy = FALSE;
3161 *_dst_needs_copy = FALSE;
3162 return(TRUE);
3163 }
3164
3165 vm_object_lock(object);
3166
3167 copy_strategy = object->copy_strategy;
3168
3169 switch (copy_strategy) {
3170 case MEMORY_OBJECT_COPY_SYMMETRIC:
3171
3172 /*
3173 * Symmetric copy strategy.
3174 * Make another reference to the object.
3175 * Leave object/offset unchanged.
3176 */
3177
3178 vm_object_reference_locked(object);
3179 object->shadowed = TRUE;
3180 vm_object_unlock(object);
3181
3182 /*
3183 * Both source and destination must make
3184 * shadows, and the source must be made
3185 * read-only if not already.
3186 */
3187
3188 *_src_needs_copy = TRUE;
3189 *_dst_needs_copy = TRUE;
3190
3191 break;
3192
3193 case MEMORY_OBJECT_COPY_DELAY:
3194 vm_object_unlock(object);
3195 return(FALSE);
3196
3197 default:
3198 vm_object_unlock(object);
3199 return(FALSE);
3200 }
3201 return(TRUE);
3202}
3203
3204static int copy_call_count = 0;
3205static int copy_call_sleep_count = 0;
3206static int copy_call_restart_count = 0;
3207
3208/*
3209 * Routine: vm_object_copy_call [internal]
3210 *
3211 * Description:
3212 * Copy the source object (src_object), using the
3213 * user-managed copy algorithm.
3214 *
3215 * In/out conditions:
3216 * The source object must be locked on entry. It
3217 * will be *unlocked* on exit.
3218 *
3219 * Results:
3220 * If the copy is successful, KERN_SUCCESS is returned.
3221 * A new object that represents the copied virtual
3222 * memory is returned in a parameter (*_result_object).
3223 * If the return value indicates an error, this parameter
3224 * is not valid.
3225 */
3226static kern_return_t
3227vm_object_copy_call(
3228 vm_object_t src_object,
3229 vm_object_offset_t src_offset,
3230 vm_object_size_t size,
3231 vm_object_t *_result_object) /* OUT */
3232{
3233 kern_return_t kr;
3234 vm_object_t copy;
3235 boolean_t check_ready = FALSE;
3236 uint32_t try_failed_count = 0;
3237
3238 /*
3239 * If a copy is already in progress, wait and retry.
3240 *
3241 * XXX
3242 * Consider making this call interruptable, as Mike
3243 * intended it to be.
3244 *
3245 * XXXO
3246 * Need a counter or version or something to allow
3247 * us to use the copy that the currently requesting
3248 * thread is obtaining -- is it worth adding to the
3249 * vm object structure? Depends how common this case it.
3250 */
3251 copy_call_count++;
3252 while (vm_object_wanted(src_object, VM_OBJECT_EVENT_COPY_CALL)) {
3253 vm_object_sleep(src_object, VM_OBJECT_EVENT_COPY_CALL,
3254 THREAD_UNINT);
3255 copy_call_restart_count++;
3256 }
3257
3258 /*
3259 * Indicate (for the benefit of memory_object_create_copy)
3260 * that we want a copy for src_object. (Note that we cannot
3261 * do a real assert_wait before calling memory_object_copy,
3262 * so we simply set the flag.)
3263 */
3264
3265 vm_object_set_wanted(src_object, VM_OBJECT_EVENT_COPY_CALL);
3266 vm_object_unlock(src_object);
3267
3268 /*
3269 * Ask the memory manager to give us a memory object
3270 * which represents a copy of the src object.
3271 * The memory manager may give us a memory object
3272 * which we already have, or it may give us a
3273 * new memory object. This memory object will arrive
3274 * via memory_object_create_copy.
3275 */
3276
3277 kr = KERN_FAILURE; /* XXX need to change memory_object.defs */
3278 if (kr != KERN_SUCCESS) {
3279 return kr;
3280 }
3281
3282 /*
3283 * Wait for the copy to arrive.
3284 */
3285 vm_object_lock(src_object);
3286 while (vm_object_wanted(src_object, VM_OBJECT_EVENT_COPY_CALL)) {
3287 vm_object_sleep(src_object, VM_OBJECT_EVENT_COPY_CALL,
3288 THREAD_UNINT);
3289 copy_call_sleep_count++;
3290 }
3291Retry:
3292 assert(src_object->copy != VM_OBJECT_NULL);
3293 copy = src_object->copy;
3294 if (!vm_object_lock_try(copy)) {
3295 vm_object_unlock(src_object);
3296
3297 try_failed_count++;
3298 mutex_pause(try_failed_count); /* wait a bit */
3299
3300 vm_object_lock(src_object);
3301 goto Retry;
3302 }
3303 if (copy->vo_size < src_offset+size)
3304 copy->vo_size = src_offset+size;
3305
3306 if (!copy->pager_ready)
3307 check_ready = TRUE;
3308
3309 /*
3310 * Return the copy.
3311 */
3312 *_result_object = copy;
3313 vm_object_unlock(copy);
3314 vm_object_unlock(src_object);
3315
3316 /* Wait for the copy to be ready. */
3317 if (check_ready == TRUE) {
3318 vm_object_lock(copy);
3319 while (!copy->pager_ready) {
3320 vm_object_sleep(copy, VM_OBJECT_EVENT_PAGER_READY, THREAD_UNINT);
3321 }
3322 vm_object_unlock(copy);
3323 }
3324
3325 return KERN_SUCCESS;
3326}
3327
3328static int copy_delayed_lock_collisions = 0;
3329static int copy_delayed_max_collisions = 0;
3330static int copy_delayed_lock_contention = 0;
3331static int copy_delayed_protect_iterate = 0;
3332
3333/*
3334 * Routine: vm_object_copy_delayed [internal]
3335 *
3336 * Description:
3337 * Copy the specified virtual memory object, using
3338 * the asymmetric copy-on-write algorithm.
3339 *
3340 * In/out conditions:
3341 * The src_object must be locked on entry. It will be unlocked
3342 * on exit - so the caller must also hold a reference to it.
3343 *
3344 * This routine will not block waiting for user-generated
3345 * events. It is not interruptible.
3346 */
3347__private_extern__ vm_object_t
3348vm_object_copy_delayed(
3349 vm_object_t src_object,
3350 vm_object_offset_t src_offset,
3351 vm_object_size_t size,
3352 boolean_t src_object_shared)
3353{
3354 vm_object_t new_copy = VM_OBJECT_NULL;
3355 vm_object_t old_copy;
3356 vm_page_t p;
3357 vm_object_size_t copy_size = src_offset + size;
3358 pmap_flush_context pmap_flush_context_storage;
3359 boolean_t delayed_pmap_flush = FALSE;
3360
3361
3362 int collisions = 0;
3363 /*
3364 * The user-level memory manager wants to see all of the changes
3365 * to this object, but it has promised not to make any changes on
3366 * its own.
3367 *
3368 * Perform an asymmetric copy-on-write, as follows:
3369 * Create a new object, called a "copy object" to hold
3370 * pages modified by the new mapping (i.e., the copy,
3371 * not the original mapping).
3372 * Record the original object as the backing object for
3373 * the copy object. If the original mapping does not
3374 * change a page, it may be used read-only by the copy.
3375 * Record the copy object in the original object.
3376 * When the original mapping causes a page to be modified,
3377 * it must be copied to a new page that is "pushed" to
3378 * the copy object.
3379 * Mark the new mapping (the copy object) copy-on-write.
3380 * This makes the copy object itself read-only, allowing
3381 * it to be reused if the original mapping makes no
3382 * changes, and simplifying the synchronization required
3383 * in the "push" operation described above.
3384 *
3385 * The copy-on-write is said to be assymetric because the original
3386 * object is *not* marked copy-on-write. A copied page is pushed
3387 * to the copy object, regardless which party attempted to modify
3388 * the page.
3389 *
3390 * Repeated asymmetric copy operations may be done. If the
3391 * original object has not been changed since the last copy, its
3392 * copy object can be reused. Otherwise, a new copy object can be
3393 * inserted between the original object and its previous copy
3394 * object. Since any copy object is read-only, this cannot affect
3395 * affect the contents of the previous copy object.
3396 *
3397 * Note that a copy object is higher in the object tree than the
3398 * original object; therefore, use of the copy object recorded in
3399 * the original object must be done carefully, to avoid deadlock.
3400 */
3401
3402 copy_size = vm_object_round_page(copy_size);
3403 Retry:
3404
3405 /*
3406 * Wait for paging in progress.
3407 */
3408 if (!src_object->true_share &&
3409 (src_object->paging_in_progress != 0 ||
3410 src_object->activity_in_progress != 0)) {
3411 if (src_object_shared == TRUE) {
3412 vm_object_unlock(src_object);
3413 vm_object_lock(src_object);
3414 src_object_shared = FALSE;
3415 goto Retry;
3416 }
3417 vm_object_paging_wait(src_object, THREAD_UNINT);
3418 }
3419 /*
3420 * See whether we can reuse the result of a previous
3421 * copy operation.
3422 */
3423
3424 old_copy = src_object->copy;
3425 if (old_copy != VM_OBJECT_NULL) {
3426 int lock_granted;
3427
3428 /*
3429 * Try to get the locks (out of order)
3430 */
3431 if (src_object_shared == TRUE)
3432 lock_granted = vm_object_lock_try_shared(old_copy);
3433 else
3434 lock_granted = vm_object_lock_try(old_copy);
3435
3436 if (!lock_granted) {
3437 vm_object_unlock(src_object);
3438
3439 if (collisions++ == 0)
3440 copy_delayed_lock_contention++;
3441 mutex_pause(collisions);
3442
3443 /* Heisenberg Rules */
3444 copy_delayed_lock_collisions++;
3445
3446 if (collisions > copy_delayed_max_collisions)
3447 copy_delayed_max_collisions = collisions;
3448
3449 if (src_object_shared == TRUE)
3450 vm_object_lock_shared(src_object);
3451 else
3452 vm_object_lock(src_object);
3453
3454 goto Retry;
3455 }
3456
3457 /*
3458 * Determine whether the old copy object has
3459 * been modified.
3460 */
3461
3462 if (old_copy->resident_page_count == 0 &&
3463 !old_copy->pager_created) {
3464 /*
3465 * It has not been modified.
3466 *
3467 * Return another reference to
3468 * the existing copy-object if
3469 * we can safely grow it (if
3470 * needed).
3471 */
3472
3473 if (old_copy->vo_size < copy_size) {
3474 if (src_object_shared == TRUE) {
3475 vm_object_unlock(old_copy);
3476 vm_object_unlock(src_object);
3477
3478 vm_object_lock(src_object);
3479 src_object_shared = FALSE;
3480 goto Retry;
3481 }
3482 /*
3483 * We can't perform a delayed copy if any of the
3484 * pages in the extended range are wired (because
3485 * we can't safely take write permission away from
3486 * wired pages). If the pages aren't wired, then
3487 * go ahead and protect them.
3488 */
3489 copy_delayed_protect_iterate++;
3490
3491 pmap_flush_context_init(&pmap_flush_context_storage);
3492 delayed_pmap_flush = FALSE;
3493
3494 vm_page_queue_iterate(&src_object->memq, p, vm_page_t, vmp_listq) {
3495 if (!p->vmp_fictitious &&
3496 p->vmp_offset >= old_copy->vo_size &&
3497 p->vmp_offset < copy_size) {
3498 if (VM_PAGE_WIRED(p)) {
3499 vm_object_unlock(old_copy);
3500 vm_object_unlock(src_object);
3501
3502 if (new_copy != VM_OBJECT_NULL) {
3503 vm_object_unlock(new_copy);
3504 vm_object_deallocate(new_copy);
3505 }
3506 if (delayed_pmap_flush == TRUE)
3507 pmap_flush(&pmap_flush_context_storage);
3508
3509 return VM_OBJECT_NULL;
3510 } else {
3511 pmap_page_protect_options(VM_PAGE_GET_PHYS_PAGE(p), (VM_PROT_ALL & ~VM_PROT_WRITE),
3512 PMAP_OPTIONS_NOFLUSH, (void *)&pmap_flush_context_storage);
3513 delayed_pmap_flush = TRUE;
3514 }
3515 }
3516 }
3517 if (delayed_pmap_flush == TRUE)
3518 pmap_flush(&pmap_flush_context_storage);
3519
3520 old_copy->vo_size = copy_size;
3521 }
3522 if (src_object_shared == TRUE)
3523 vm_object_reference_shared(old_copy);
3524 else
3525 vm_object_reference_locked(old_copy);
3526 vm_object_unlock(old_copy);
3527 vm_object_unlock(src_object);
3528
3529 if (new_copy != VM_OBJECT_NULL) {
3530 vm_object_unlock(new_copy);
3531 vm_object_deallocate(new_copy);
3532 }
3533 return(old_copy);
3534 }
3535
3536
3537
3538 /*
3539 * Adjust the size argument so that the newly-created
3540 * copy object will be large enough to back either the
3541 * old copy object or the new mapping.
3542 */
3543 if (old_copy->vo_size > copy_size)
3544 copy_size = old_copy->vo_size;
3545
3546 if (new_copy == VM_OBJECT_NULL) {
3547 vm_object_unlock(old_copy);
3548 vm_object_unlock(src_object);
3549 new_copy = vm_object_allocate(copy_size);
3550 vm_object_lock(src_object);
3551 vm_object_lock(new_copy);
3552
3553 src_object_shared = FALSE;
3554 goto Retry;
3555 }
3556 new_copy->vo_size = copy_size;
3557
3558 /*
3559 * The copy-object is always made large enough to
3560 * completely shadow the original object, since
3561 * it may have several users who want to shadow
3562 * the original object at different points.
3563 */
3564
3565 assert((old_copy->shadow == src_object) &&
3566 (old_copy->vo_shadow_offset == (vm_object_offset_t) 0));
3567
3568 } else if (new_copy == VM_OBJECT_NULL) {
3569 vm_object_unlock(src_object);
3570 new_copy = vm_object_allocate(copy_size);
3571 vm_object_lock(src_object);
3572 vm_object_lock(new_copy);
3573
3574 src_object_shared = FALSE;
3575 goto Retry;
3576 }
3577
3578 /*
3579 * We now have the src object locked, and the new copy object
3580 * allocated and locked (and potentially the old copy locked).
3581 * Before we go any further, make sure we can still perform
3582 * a delayed copy, as the situation may have changed.
3583 *
3584 * Specifically, we can't perform a delayed copy if any of the
3585 * pages in the range are wired (because we can't safely take
3586 * write permission away from wired pages). If the pages aren't
3587 * wired, then go ahead and protect them.
3588 */
3589 copy_delayed_protect_iterate++;
3590
3591 pmap_flush_context_init(&pmap_flush_context_storage);
3592 delayed_pmap_flush = FALSE;
3593
3594 vm_page_queue_iterate(&src_object->memq, p, vm_page_t, vmp_listq) {
3595 if (!p->vmp_fictitious && p->vmp_offset < copy_size) {
3596 if (VM_PAGE_WIRED(p)) {
3597 if (old_copy)
3598 vm_object_unlock(old_copy);
3599 vm_object_unlock(src_object);
3600 vm_object_unlock(new_copy);
3601 vm_object_deallocate(new_copy);
3602
3603 if (delayed_pmap_flush == TRUE)
3604 pmap_flush(&pmap_flush_context_storage);
3605
3606 return VM_OBJECT_NULL;
3607 } else {
3608 pmap_page_protect_options(VM_PAGE_GET_PHYS_PAGE(p), (VM_PROT_ALL & ~VM_PROT_WRITE),
3609 PMAP_OPTIONS_NOFLUSH, (void *)&pmap_flush_context_storage);
3610 delayed_pmap_flush = TRUE;
3611 }
3612 }
3613 }
3614 if (delayed_pmap_flush == TRUE)
3615 pmap_flush(&pmap_flush_context_storage);
3616
3617 if (old_copy != VM_OBJECT_NULL) {
3618 /*
3619 * Make the old copy-object shadow the new one.
3620 * It will receive no more pages from the original
3621 * object.
3622 */
3623
3624 /* remove ref. from old_copy */
3625 vm_object_lock_assert_exclusive(src_object);
3626 src_object->ref_count--;
3627 assert(src_object->ref_count > 0);
3628 vm_object_lock_assert_exclusive(old_copy);
3629 old_copy->shadow = new_copy;
3630 vm_object_lock_assert_exclusive(new_copy);
3631 assert(new_copy->ref_count > 0);
3632 new_copy->ref_count++; /* for old_copy->shadow ref. */
3633
3634#if TASK_SWAPPER
3635 if (old_copy->res_count) {
3636 VM_OBJ_RES_INCR(new_copy);
3637 VM_OBJ_RES_DECR(src_object);
3638 }
3639#endif
3640
3641 vm_object_unlock(old_copy); /* done with old_copy */
3642 }
3643
3644 /*
3645 * Point the new copy at the existing object.
3646 */
3647 vm_object_lock_assert_exclusive(new_copy);
3648 new_copy->shadow = src_object;
3649 new_copy->vo_shadow_offset = 0;
3650 new_copy->shadowed = TRUE; /* caller must set needs_copy */
3651
3652 vm_object_lock_assert_exclusive(src_object);
3653 vm_object_reference_locked(src_object);
3654 src_object->copy = new_copy;
3655 vm_object_unlock(src_object);
3656 vm_object_unlock(new_copy);
3657
3658 XPR(XPR_VM_OBJECT,
3659 "vm_object_copy_delayed: used copy object %X for source %X\n",
3660 new_copy, src_object, 0, 0, 0);
3661
3662 return new_copy;
3663}
3664
3665/*
3666 * Routine: vm_object_copy_strategically
3667 *
3668 * Purpose:
3669 * Perform a copy according to the source object's
3670 * declared strategy. This operation may block,
3671 * and may be interrupted.
3672 */
3673__private_extern__ kern_return_t
3674vm_object_copy_strategically(
3675 vm_object_t src_object,
3676 vm_object_offset_t src_offset,
3677 vm_object_size_t size,
3678 vm_object_t *dst_object, /* OUT */
3679 vm_object_offset_t *dst_offset, /* OUT */
3680 boolean_t *dst_needs_copy) /* OUT */
3681{
3682 boolean_t result;
3683 boolean_t interruptible = THREAD_ABORTSAFE; /* XXX */
3684 boolean_t object_lock_shared = FALSE;
3685 memory_object_copy_strategy_t copy_strategy;
3686
3687 assert(src_object != VM_OBJECT_NULL);
3688
3689 copy_strategy = src_object->copy_strategy;
3690
3691 if (copy_strategy == MEMORY_OBJECT_COPY_DELAY) {
3692 vm_object_lock_shared(src_object);
3693 object_lock_shared = TRUE;
3694 } else
3695 vm_object_lock(src_object);
3696
3697 /*
3698 * The copy strategy is only valid if the memory manager
3699 * is "ready". Internal objects are always ready.
3700 */
3701
3702 while (!src_object->internal && !src_object->pager_ready) {
3703 wait_result_t wait_result;
3704
3705 if (object_lock_shared == TRUE) {
3706 vm_object_unlock(src_object);
3707 vm_object_lock(src_object);
3708 object_lock_shared = FALSE;
3709 continue;
3710 }
3711 wait_result = vm_object_sleep( src_object,
3712 VM_OBJECT_EVENT_PAGER_READY,
3713 interruptible);
3714 if (wait_result != THREAD_AWAKENED) {
3715 vm_object_unlock(src_object);
3716 *dst_object = VM_OBJECT_NULL;
3717 *dst_offset = 0;
3718 *dst_needs_copy = FALSE;
3719 return(MACH_SEND_INTERRUPTED);
3720 }
3721 }
3722
3723 /*
3724 * Use the appropriate copy strategy.
3725 */
3726
3727 switch (copy_strategy) {
3728 case MEMORY_OBJECT_COPY_DELAY:
3729 *dst_object = vm_object_copy_delayed(src_object,
3730 src_offset, size, object_lock_shared);
3731 if (*dst_object != VM_OBJECT_NULL) {
3732 *dst_offset = src_offset;
3733 *dst_needs_copy = TRUE;
3734 result = KERN_SUCCESS;
3735 break;
3736 }
3737 vm_object_lock(src_object);
3738 /* fall thru when delayed copy not allowed */
3739
3740 case MEMORY_OBJECT_COPY_NONE:
3741 result = vm_object_copy_slowly(src_object, src_offset, size,
3742 interruptible, dst_object);
3743 if (result == KERN_SUCCESS) {
3744 *dst_offset = 0;
3745 *dst_needs_copy = FALSE;
3746 }
3747 break;
3748
3749 case MEMORY_OBJECT_COPY_CALL:
3750 result = vm_object_copy_call(src_object, src_offset, size,
3751 dst_object);
3752 if (result == KERN_SUCCESS) {
3753 *dst_offset = src_offset;
3754 *dst_needs_copy = TRUE;
3755 }
3756 break;
3757
3758 case MEMORY_OBJECT_COPY_SYMMETRIC:
3759 XPR(XPR_VM_OBJECT, "v_o_c_strategically obj 0x%x off 0x%x size 0x%x\n", src_object, src_offset, size, 0, 0);
3760 vm_object_unlock(src_object);
3761 result = KERN_MEMORY_RESTART_COPY;
3762 break;
3763
3764 default:
3765 panic("copy_strategically: bad strategy");
3766 result = KERN_INVALID_ARGUMENT;
3767 }
3768 return(result);
3769}
3770
3771/*
3772 * vm_object_shadow:
3773 *
3774 * Create a new object which is backed by the
3775 * specified existing object range. The source
3776 * object reference is deallocated.
3777 *
3778 * The new object and offset into that object
3779 * are returned in the source parameters.
3780 */
3781boolean_t vm_object_shadow_check = TRUE;
3782
3783__private_extern__ boolean_t
3784vm_object_shadow(
3785 vm_object_t *object, /* IN/OUT */
3786 vm_object_offset_t *offset, /* IN/OUT */
3787 vm_object_size_t length)
3788{
3789 vm_object_t source;
3790 vm_object_t result;
3791
3792 source = *object;
3793 assert(source != VM_OBJECT_NULL);
3794 if (source == VM_OBJECT_NULL)
3795 return FALSE;
3796
3797#if 0
3798 /*
3799 * XXX FBDP
3800 * This assertion is valid but it gets triggered by Rosetta for example
3801 * due to a combination of vm_remap() that changes a VM object's
3802 * copy_strategy from SYMMETRIC to DELAY and vm_protect(VM_PROT_COPY)
3803 * that then sets "needs_copy" on its map entry. This creates a
3804 * mapping situation that VM should never see and doesn't know how to
3805 * handle.
3806 * It's not clear if this can create any real problem but we should
3807 * look into fixing this, probably by having vm_protect(VM_PROT_COPY)
3808 * do more than just set "needs_copy" to handle the copy-on-write...
3809 * In the meantime, let's disable the assertion.
3810 */
3811 assert(source->copy_strategy == MEMORY_OBJECT_COPY_SYMMETRIC);
3812#endif
3813
3814 /*
3815 * Determine if we really need a shadow.
3816 *
3817 * If the source object is larger than what we are trying
3818 * to create, then force the shadow creation even if the
3819 * ref count is 1. This will allow us to [potentially]
3820 * collapse the underlying object away in the future
3821 * (freeing up the extra data it might contain and that
3822 * we don't need).
3823 */
3824
3825 assert(source->copy_strategy != MEMORY_OBJECT_COPY_NONE); /* Purgeable objects shouldn't have shadow objects. */
3826
3827 if (vm_object_shadow_check &&
3828 source->vo_size == length &&
3829 source->ref_count == 1 &&
3830 (source->shadow == VM_OBJECT_NULL ||
3831 source->shadow->copy == VM_OBJECT_NULL) )
3832 {
3833 /* lock the object and check again */
3834 vm_object_lock(source);
3835 if (source->vo_size == length &&
3836 source->ref_count == 1 &&
3837 (source->shadow == VM_OBJECT_NULL ||
3838 source->shadow->copy == VM_OBJECT_NULL))
3839 {
3840 source->shadowed = FALSE;
3841 vm_object_unlock(source);
3842 return FALSE;
3843 }
3844 /* things changed while we were locking "source"... */
3845 vm_object_unlock(source);
3846 }
3847
3848 /*
3849 * Allocate a new object with the given length
3850 */
3851
3852 if ((result = vm_object_allocate(length)) == VM_OBJECT_NULL)
3853 panic("vm_object_shadow: no object for shadowing");
3854
3855 /*
3856 * The new object shadows the source object, adding
3857 * a reference to it. Our caller changes his reference
3858 * to point to the new object, removing a reference to
3859 * the source object. Net result: no change of reference
3860 * count.
3861 */
3862 result->shadow = source;
3863
3864 /*
3865 * Store the offset into the source object,
3866 * and fix up the offset into the new object.
3867 */
3868
3869 result->vo_shadow_offset = *offset;
3870
3871 /*
3872 * Return the new things
3873 */
3874
3875 *offset = 0;
3876 *object = result;
3877 return TRUE;
3878}
3879
3880/*
3881 * The relationship between vm_object structures and
3882 * the memory_object requires careful synchronization.
3883 *
3884 * All associations are created by memory_object_create_named
3885 * for external pagers and vm_object_compressor_pager_create for internal
3886 * objects as follows:
3887 *
3888 * pager: the memory_object itself, supplied by
3889 * the user requesting a mapping (or the kernel,
3890 * when initializing internal objects); the
3891 * kernel simulates holding send rights by keeping
3892 * a port reference;
3893 *
3894 * pager_request:
3895 * the memory object control port,
3896 * created by the kernel; the kernel holds
3897 * receive (and ownership) rights to this
3898 * port, but no other references.
3899 *
3900 * When initialization is complete, the "initialized" field
3901 * is asserted. Other mappings using a particular memory object,
3902 * and any references to the vm_object gained through the
3903 * port association must wait for this initialization to occur.
3904 *
3905 * In order to allow the memory manager to set attributes before
3906 * requests (notably virtual copy operations, but also data or
3907 * unlock requests) are made, a "ready" attribute is made available.
3908 * Only the memory manager may affect the value of this attribute.
3909 * Its value does not affect critical kernel functions, such as
3910 * internal object initialization or destruction. [Furthermore,
3911 * memory objects created by the kernel are assumed to be ready
3912 * immediately; the default memory manager need not explicitly
3913 * set the "ready" attribute.]
3914 *
3915 * [Both the "initialized" and "ready" attribute wait conditions
3916 * use the "pager" field as the wait event.]
3917 *
3918 * The port associations can be broken down by any of the
3919 * following routines:
3920 * vm_object_terminate:
3921 * No references to the vm_object remain, and
3922 * the object cannot (or will not) be cached.
3923 * This is the normal case, and is done even
3924 * though one of the other cases has already been
3925 * done.
3926 * memory_object_destroy:
3927 * The memory manager has requested that the
3928 * kernel relinquish references to the memory
3929 * object. [The memory manager may not want to
3930 * destroy the memory object, but may wish to
3931 * refuse or tear down existing memory mappings.]
3932 *
3933 * Each routine that breaks an association must break all of
3934 * them at once. At some later time, that routine must clear
3935 * the pager field and release the memory object references.
3936 * [Furthermore, each routine must cope with the simultaneous
3937 * or previous operations of the others.]
3938 *
3939 * Because the pager field may be cleared spontaneously, it
3940 * cannot be used to determine whether a memory object has
3941 * ever been associated with a particular vm_object. [This
3942 * knowledge is important to the shadow object mechanism.]
3943 * For this reason, an additional "created" attribute is
3944 * provided.
3945 *
3946 * During various paging operations, the pager reference found in the
3947 * vm_object must be valid. To prevent this from being released,
3948 * (other than being removed, i.e., made null), routines may use
3949 * the vm_object_paging_begin/end routines [actually, macros].
3950 * The implementation uses the "paging_in_progress" and "wanted" fields.
3951 * [Operations that alter the validity of the pager values include the
3952 * termination routines and vm_object_collapse.]
3953 */
3954
3955
3956/*
3957 * Routine: vm_object_memory_object_associate
3958 * Purpose:
3959 * Associate a VM object to the given pager.
3960 * If a VM object is not provided, create one.
3961 * Initialize the pager.
3962 */
3963vm_object_t
3964vm_object_memory_object_associate(
3965 memory_object_t pager,
3966 vm_object_t object,
3967 vm_object_size_t size,
3968 boolean_t named)
3969{
3970 memory_object_control_t control;
3971
3972 assert(pager != MEMORY_OBJECT_NULL);
3973
3974 if (object != VM_OBJECT_NULL) {
3975 assert(object->internal);
3976 assert(object->pager_created);
3977 assert(!object->pager_initialized);
3978 assert(!object->pager_ready);
3979 } else {
3980 object = vm_object_allocate(size);
3981 assert(object != VM_OBJECT_NULL);
3982 object->internal = FALSE;
3983 object->pager_trusted = FALSE;
3984 /* copy strategy invalid until set by memory manager */
3985 object->copy_strategy = MEMORY_OBJECT_COPY_INVALID;
3986 }
3987
3988 /*
3989 * Allocate request port.
3990 */
3991
3992 control = memory_object_control_allocate(object);
3993 assert (control != MEMORY_OBJECT_CONTROL_NULL);
3994
3995 vm_object_lock(object);
3996
3997 assert(!object->pager_ready);
3998 assert(!object->pager_initialized);
3999 assert(object->pager == NULL);
4000 assert(object->pager_control == NULL);
4001
4002 /*
4003 * Copy the reference we were given.
4004 */
4005
4006 memory_object_reference(pager);
4007 object->pager_created = TRUE;
4008 object->pager = pager;
4009 object->pager_control = control;
4010 object->pager_ready = FALSE;
4011
4012 vm_object_unlock(object);
4013
4014 /*
4015 * Let the pager know we're using it.
4016 */
4017
4018 (void) memory_object_init(pager,
4019 object->pager_control,
4020 PAGE_SIZE);
4021
4022 vm_object_lock(object);
4023 if (named)
4024 object->named = TRUE;
4025 if (object->internal) {
4026 object->pager_ready = TRUE;
4027 vm_object_wakeup(object, VM_OBJECT_EVENT_PAGER_READY);
4028 }
4029
4030 object->pager_initialized = TRUE;
4031 vm_object_wakeup(object, VM_OBJECT_EVENT_INITIALIZED);
4032
4033 vm_object_unlock(object);
4034
4035 return object;
4036}
4037
4038/*
4039 * Routine: vm_object_compressor_pager_create
4040 * Purpose:
4041 * Create a memory object for an internal object.
4042 * In/out conditions:
4043 * The object is locked on entry and exit;
4044 * it may be unlocked within this call.
4045 * Limitations:
4046 * Only one thread may be performing a
4047 * vm_object_compressor_pager_create on an object at
4048 * a time. Presumably, only the pageout
4049 * daemon will be using this routine.
4050 */
4051
4052void
4053vm_object_compressor_pager_create(
4054 vm_object_t object)
4055{
4056 memory_object_t pager;
4057 vm_object_t pager_object = VM_OBJECT_NULL;
4058
4059 assert(object != kernel_object);
4060
4061 /*
4062 * Prevent collapse or termination by holding a paging reference
4063 */
4064
4065 vm_object_paging_begin(object);
4066 if (object->pager_created) {
4067 /*
4068 * Someone else got to it first...
4069 * wait for them to finish initializing the ports
4070 */
4071 while (!object->pager_initialized) {
4072 vm_object_sleep(object,
4073 VM_OBJECT_EVENT_INITIALIZED,
4074 THREAD_UNINT);
4075 }
4076 vm_object_paging_end(object);
4077 return;
4078 }
4079
4080 if ((uint32_t) (object->vo_size/PAGE_SIZE) !=
4081 (object->vo_size/PAGE_SIZE)) {
4082#if DEVELOPMENT || DEBUG
4083 printf("vm_object_compressor_pager_create(%p): "
4084 "object size 0x%llx >= 0x%llx\n",
4085 object,
4086 (uint64_t) object->vo_size,
4087 0x0FFFFFFFFULL*PAGE_SIZE);
4088#endif /* DEVELOPMENT || DEBUG */
4089 vm_object_paging_end(object);
4090 return;
4091 }
4092
4093 /*
4094 * Indicate that a memory object has been assigned
4095 * before dropping the lock, to prevent a race.
4096 */
4097
4098 object->pager_created = TRUE;
4099 object->paging_offset = 0;
4100
4101 vm_object_unlock(object);
4102
4103 /*
4104 * Create the [internal] pager, and associate it with this object.
4105 *
4106 * We make the association here so that vm_object_enter()
4107 * can look up the object to complete initializing it. No
4108 * user will ever map this object.
4109 */
4110 {
4111 /* create our new memory object */
4112 assert((uint32_t) (object->vo_size/PAGE_SIZE) ==
4113 (object->vo_size/PAGE_SIZE));
4114 (void) compressor_memory_object_create(
4115 (memory_object_size_t) object->vo_size,
4116 &pager);
4117 if (pager == NULL) {
4118 panic("vm_object_compressor_pager_create(): "
4119 "no pager for object %p size 0x%llx\n",
4120 object, (uint64_t) object->vo_size);
4121 }
4122 }
4123
4124 /*
4125 * A reference was returned by
4126 * memory_object_create(), and it is
4127 * copied by vm_object_memory_object_associate().
4128 */
4129
4130 pager_object = vm_object_memory_object_associate(pager,
4131 object,
4132 object->vo_size,
4133 FALSE);
4134 if (pager_object != object) {
4135 panic("vm_object_compressor_pager_create: mismatch (pager: %p, pager_object: %p, orig_object: %p, orig_object size: 0x%llx)\n", pager, pager_object, object, (uint64_t) object->vo_size);
4136 }
4137
4138 /*
4139 * Drop the reference we were passed.
4140 */
4141 memory_object_deallocate(pager);
4142
4143 vm_object_lock(object);
4144
4145 /*
4146 * Release the paging reference
4147 */
4148 vm_object_paging_end(object);
4149}
4150
4151/*
4152 * Global variables for vm_object_collapse():
4153 *
4154 * Counts for normal collapses and bypasses.
4155 * Debugging variables, to watch or disable collapse.
4156 */
4157static long object_collapses = 0;
4158static long object_bypasses = 0;
4159
4160static boolean_t vm_object_collapse_allowed = TRUE;
4161static boolean_t vm_object_bypass_allowed = TRUE;
4162
4163void vm_object_do_collapse_compressor(vm_object_t object,
4164 vm_object_t backing_object);
4165void
4166vm_object_do_collapse_compressor(
4167 vm_object_t object,
4168 vm_object_t backing_object)
4169{
4170 vm_object_offset_t new_offset, backing_offset;
4171 vm_object_size_t size;
4172
4173 vm_counters.do_collapse_compressor++;
4174
4175 vm_object_lock_assert_exclusive(object);
4176 vm_object_lock_assert_exclusive(backing_object);
4177
4178 size = object->vo_size;
4179
4180 /*
4181 * Move all compressed pages from backing_object
4182 * to the parent.
4183 */
4184
4185 for (backing_offset = object->vo_shadow_offset;
4186 backing_offset < object->vo_shadow_offset + object->vo_size;
4187 backing_offset += PAGE_SIZE) {
4188 memory_object_offset_t backing_pager_offset;
4189
4190 /* find the next compressed page at or after this offset */
4191 backing_pager_offset = (backing_offset +
4192 backing_object->paging_offset);
4193 backing_pager_offset = vm_compressor_pager_next_compressed(
4194 backing_object->pager,
4195 backing_pager_offset);
4196 if (backing_pager_offset == (memory_object_offset_t) -1) {
4197 /* no more compressed pages */
4198 break;
4199 }
4200 backing_offset = (backing_pager_offset -
4201 backing_object->paging_offset);
4202
4203 new_offset = backing_offset - object->vo_shadow_offset;
4204
4205 if (new_offset >= object->vo_size) {
4206 /* we're out of the scope of "object": done */
4207 break;
4208 }
4209
4210 if ((vm_page_lookup(object, new_offset) != VM_PAGE_NULL) ||
4211 (vm_compressor_pager_state_get(object->pager,
4212 (new_offset +
4213 object->paging_offset)) ==
4214 VM_EXTERNAL_STATE_EXISTS)) {
4215 /*
4216 * This page already exists in object, resident or
4217 * compressed.
4218 * We don't need this compressed page in backing_object
4219 * and it will be reclaimed when we release
4220 * backing_object.
4221 */
4222 continue;
4223 }
4224
4225 /*
4226 * backing_object has this page in the VM compressor and
4227 * we need to transfer it to object.
4228 */
4229 vm_counters.do_collapse_compressor_pages++;
4230 vm_compressor_pager_transfer(
4231 /* destination: */
4232 object->pager,
4233 (new_offset + object->paging_offset),
4234 /* source: */
4235 backing_object->pager,
4236 (backing_offset + backing_object->paging_offset));
4237 }
4238}
4239
4240/*
4241 * Routine: vm_object_do_collapse
4242 * Purpose:
4243 * Collapse an object with the object backing it.
4244 * Pages in the backing object are moved into the
4245 * parent, and the backing object is deallocated.
4246 * Conditions:
4247 * Both objects and the cache are locked; the page
4248 * queues are unlocked.
4249 *
4250 */
4251static void
4252vm_object_do_collapse(
4253 vm_object_t object,
4254 vm_object_t backing_object)
4255{
4256 vm_page_t p, pp;
4257 vm_object_offset_t new_offset, backing_offset;
4258 vm_object_size_t size;
4259
4260 vm_object_lock_assert_exclusive(object);
4261 vm_object_lock_assert_exclusive(backing_object);
4262
4263 assert(object->purgable == VM_PURGABLE_DENY);
4264 assert(backing_object->purgable == VM_PURGABLE_DENY);
4265
4266 backing_offset = object->vo_shadow_offset;
4267 size = object->vo_size;
4268
4269 /*
4270 * Move all in-memory pages from backing_object
4271 * to the parent. Pages that have been paged out
4272 * will be overwritten by any of the parent's
4273 * pages that shadow them.
4274 */
4275
4276 while (!vm_page_queue_empty(&backing_object->memq)) {
4277
4278 p = (vm_page_t) vm_page_queue_first(&backing_object->memq);
4279
4280 new_offset = (p->vmp_offset - backing_offset);
4281
4282 assert(!p->vmp_busy || p->vmp_absent);
4283
4284 /*
4285 * If the parent has a page here, or if
4286 * this page falls outside the parent,
4287 * dispose of it.
4288 *
4289 * Otherwise, move it as planned.
4290 */
4291
4292 if (p->vmp_offset < backing_offset || new_offset >= size) {
4293 VM_PAGE_FREE(p);
4294 } else {
4295 pp = vm_page_lookup(object, new_offset);
4296 if (pp == VM_PAGE_NULL) {
4297
4298 if (VM_COMPRESSOR_PAGER_STATE_GET(object,
4299 new_offset)
4300 == VM_EXTERNAL_STATE_EXISTS) {
4301 /*
4302 * Parent object has this page
4303 * in the VM compressor.
4304 * Throw away the backing
4305 * object's page.
4306 */
4307 VM_PAGE_FREE(p);
4308 } else {
4309 /*
4310 * Parent now has no page.
4311 * Move the backing object's page
4312 * up.
4313 */
4314 vm_page_rename(p, object, new_offset);
4315 }
4316 } else {
4317 assert(! pp->vmp_absent);
4318
4319 /*
4320 * Parent object has a real page.
4321 * Throw away the backing object's
4322 * page.
4323 */
4324 VM_PAGE_FREE(p);
4325 }
4326 }
4327 }
4328
4329 if (vm_object_collapse_compressor_allowed &&
4330 object->pager != MEMORY_OBJECT_NULL &&
4331 backing_object->pager != MEMORY_OBJECT_NULL) {
4332
4333 /* move compressed pages from backing_object to object */
4334 vm_object_do_collapse_compressor(object, backing_object);
4335
4336 } else if (backing_object->pager != MEMORY_OBJECT_NULL) {
4337
4338 assert((!object->pager_created &&
4339 (object->pager == MEMORY_OBJECT_NULL)) ||
4340 (!backing_object->pager_created &&
4341 (backing_object->pager == MEMORY_OBJECT_NULL)));
4342 /*
4343 * Move the pager from backing_object to object.
4344 *
4345 * XXX We're only using part of the paging space
4346 * for keeps now... we ought to discard the
4347 * unused portion.
4348 */
4349
4350 assert(!object->paging_in_progress);
4351 assert(!object->activity_in_progress);
4352 assert(!object->pager_created);
4353 assert(object->pager == NULL);
4354 object->pager = backing_object->pager;
4355
4356 object->pager_created = backing_object->pager_created;
4357 object->pager_control = backing_object->pager_control;
4358 object->pager_ready = backing_object->pager_ready;
4359 object->pager_initialized = backing_object->pager_initialized;
4360 object->paging_offset =
4361 backing_object->paging_offset + backing_offset;
4362 if (object->pager_control != MEMORY_OBJECT_CONTROL_NULL) {
4363 memory_object_control_collapse(object->pager_control,
4364 object);
4365 }
4366 /* the backing_object has lost its pager: reset all fields */
4367 backing_object->pager_created = FALSE;
4368 backing_object->pager_control = NULL;
4369 backing_object->pager_ready = FALSE;
4370 backing_object->paging_offset = 0;
4371 backing_object->pager = NULL;
4372 }
4373 /*
4374 * Object now shadows whatever backing_object did.
4375 * Note that the reference to backing_object->shadow
4376 * moves from within backing_object to within object.
4377 */
4378
4379 assert(!object->phys_contiguous);
4380 assert(!backing_object->phys_contiguous);
4381 object->shadow = backing_object->shadow;
4382 if (object->shadow) {
4383 object->vo_shadow_offset += backing_object->vo_shadow_offset;
4384 /* "backing_object" gave its shadow to "object" */
4385 backing_object->shadow = VM_OBJECT_NULL;
4386 backing_object->vo_shadow_offset = 0;
4387 } else {
4388 /* no shadow, therefore no shadow offset... */
4389 object->vo_shadow_offset = 0;
4390 }
4391 assert((object->shadow == VM_OBJECT_NULL) ||
4392 (object->shadow->copy != backing_object));
4393
4394 /*
4395 * Discard backing_object.
4396 *
4397 * Since the backing object has no pages, no
4398 * pager left, and no object references within it,
4399 * all that is necessary is to dispose of it.
4400 */
4401 object_collapses++;
4402
4403 assert(backing_object->ref_count == 1);
4404 assert(backing_object->resident_page_count == 0);
4405 assert(backing_object->paging_in_progress == 0);
4406 assert(backing_object->activity_in_progress == 0);
4407 assert(backing_object->shadow == VM_OBJECT_NULL);
4408 assert(backing_object->vo_shadow_offset == 0);
4409
4410 if (backing_object->pager != MEMORY_OBJECT_NULL) {
4411 /* ... unless it has a pager; need to terminate pager too */
4412 vm_counters.do_collapse_terminate++;
4413 if (vm_object_terminate(backing_object) != KERN_SUCCESS) {
4414 vm_counters.do_collapse_terminate_failure++;
4415 }
4416 return;
4417 }
4418
4419 assert(backing_object->pager == NULL);
4420
4421 backing_object->alive = FALSE;
4422 vm_object_unlock(backing_object);
4423
4424 XPR(XPR_VM_OBJECT, "vm_object_collapse, collapsed 0x%X\n",
4425 backing_object, 0,0,0,0);
4426
4427#if VM_OBJECT_TRACKING
4428 if (vm_object_tracking_inited) {
4429 btlog_remove_entries_for_element(vm_object_tracking_btlog,
4430 backing_object);
4431 }
4432#endif /* VM_OBJECT_TRACKING */
4433
4434 vm_object_lock_destroy(backing_object);
4435
4436 zfree(vm_object_zone, backing_object);
4437
4438}
4439
4440static void
4441vm_object_do_bypass(
4442 vm_object_t object,
4443 vm_object_t backing_object)
4444{
4445 /*
4446 * Make the parent shadow the next object
4447 * in the chain.
4448 */
4449
4450 vm_object_lock_assert_exclusive(object);
4451 vm_object_lock_assert_exclusive(backing_object);
4452
4453#if TASK_SWAPPER
4454 /*
4455 * Do object reference in-line to
4456 * conditionally increment shadow's
4457 * residence count. If object is not
4458 * resident, leave residence count
4459 * on shadow alone.
4460 */
4461 if (backing_object->shadow != VM_OBJECT_NULL) {
4462 vm_object_lock(backing_object->shadow);
4463 vm_object_lock_assert_exclusive(backing_object->shadow);
4464 backing_object->shadow->ref_count++;
4465 if (object->res_count != 0)
4466 vm_object_res_reference(backing_object->shadow);
4467 vm_object_unlock(backing_object->shadow);
4468 }
4469#else /* TASK_SWAPPER */
4470 vm_object_reference(backing_object->shadow);
4471#endif /* TASK_SWAPPER */
4472
4473 assert(!object->phys_contiguous);
4474 assert(!backing_object->phys_contiguous);
4475 object->shadow = backing_object->shadow;
4476 if (object->shadow) {
4477 object->vo_shadow_offset += backing_object->vo_shadow_offset;
4478 } else {
4479 /* no shadow, therefore no shadow offset... */
4480 object->vo_shadow_offset = 0;
4481 }
4482
4483 /*
4484 * Backing object might have had a copy pointer
4485 * to us. If it did, clear it.
4486 */
4487 if (backing_object->copy == object) {
4488 backing_object->copy = VM_OBJECT_NULL;
4489 }
4490
4491 /*
4492 * Drop the reference count on backing_object.
4493#if TASK_SWAPPER
4494 * Since its ref_count was at least 2, it
4495 * will not vanish; so we don't need to call
4496 * vm_object_deallocate.
4497 * [with a caveat for "named" objects]
4498 *
4499 * The res_count on the backing object is
4500 * conditionally decremented. It's possible
4501 * (via vm_pageout_scan) to get here with
4502 * a "swapped" object, which has a 0 res_count,
4503 * in which case, the backing object res_count
4504 * is already down by one.
4505#else
4506 * Don't call vm_object_deallocate unless
4507 * ref_count drops to zero.
4508 *
4509 * The ref_count can drop to zero here if the
4510 * backing object could be bypassed but not
4511 * collapsed, such as when the backing object
4512 * is temporary and cachable.
4513#endif
4514 */
4515 if (backing_object->ref_count > 2 ||
4516 (!backing_object->named && backing_object->ref_count > 1)) {
4517 vm_object_lock_assert_exclusive(backing_object);
4518 backing_object->ref_count--;
4519#if TASK_SWAPPER
4520 if (object->res_count != 0)
4521 vm_object_res_deallocate(backing_object);
4522 assert(backing_object->ref_count > 0);
4523#endif /* TASK_SWAPPER */
4524 vm_object_unlock(backing_object);
4525 } else {
4526
4527 /*
4528 * Drop locks so that we can deallocate
4529 * the backing object.
4530 */
4531
4532#if TASK_SWAPPER
4533 if (object->res_count == 0) {
4534 /* XXX get a reference for the deallocate below */
4535 vm_object_res_reference(backing_object);
4536 }
4537#endif /* TASK_SWAPPER */
4538 /*
4539 * vm_object_collapse (the caller of this function) is
4540 * now called from contexts that may not guarantee that a
4541 * valid reference is held on the object... w/o a valid
4542 * reference, it is unsafe and unwise (you will definitely
4543 * regret it) to unlock the object and then retake the lock
4544 * since the object may be terminated and recycled in between.
4545 * The "activity_in_progress" reference will keep the object
4546 * 'stable'.
4547 */
4548 vm_object_activity_begin(object);
4549 vm_object_unlock(object);
4550
4551 vm_object_unlock(backing_object);
4552 vm_object_deallocate(backing_object);
4553
4554 /*
4555 * Relock object. We don't have to reverify
4556 * its state since vm_object_collapse will
4557 * do that for us as it starts at the
4558 * top of its loop.
4559 */
4560
4561 vm_object_lock(object);
4562 vm_object_activity_end(object);
4563 }
4564
4565 object_bypasses++;
4566}
4567
4568
4569/*
4570 * vm_object_collapse:
4571 *
4572 * Perform an object collapse or an object bypass if appropriate.
4573 * The real work of collapsing and bypassing is performed in
4574 * the routines vm_object_do_collapse and vm_object_do_bypass.
4575 *
4576 * Requires that the object be locked and the page queues be unlocked.
4577 *
4578 */
4579static unsigned long vm_object_collapse_calls = 0;
4580static unsigned long vm_object_collapse_objects = 0;
4581static unsigned long vm_object_collapse_do_collapse = 0;
4582static unsigned long vm_object_collapse_do_bypass = 0;
4583
4584__private_extern__ void
4585vm_object_collapse(
4586 vm_object_t object,
4587 vm_object_offset_t hint_offset,
4588 boolean_t can_bypass)
4589{
4590 vm_object_t backing_object;
4591 unsigned int rcount;
4592 unsigned int size;
4593 vm_object_t original_object;
4594 int object_lock_type;
4595 int backing_object_lock_type;
4596
4597 vm_object_collapse_calls++;
4598
4599 if (! vm_object_collapse_allowed &&
4600 ! (can_bypass && vm_object_bypass_allowed)) {
4601 return;
4602 }
4603
4604 XPR(XPR_VM_OBJECT, "vm_object_collapse, obj 0x%X\n",
4605 object, 0,0,0,0);
4606
4607 if (object == VM_OBJECT_NULL)
4608 return;
4609
4610 original_object = object;
4611
4612 /*
4613 * The top object was locked "exclusive" by the caller.
4614 * In the first pass, to determine if we can collapse the shadow chain,
4615 * take a "shared" lock on the shadow objects. If we can collapse,
4616 * we'll have to go down the chain again with exclusive locks.
4617 */
4618 object_lock_type = OBJECT_LOCK_EXCLUSIVE;
4619 backing_object_lock_type = OBJECT_LOCK_SHARED;
4620
4621retry:
4622 object = original_object;
4623 vm_object_lock_assert_exclusive(object);
4624
4625 while (TRUE) {
4626 vm_object_collapse_objects++;
4627 /*
4628 * Verify that the conditions are right for either
4629 * collapse or bypass:
4630 */
4631
4632 /*
4633 * There is a backing object, and
4634 */
4635
4636 backing_object = object->shadow;
4637 if (backing_object == VM_OBJECT_NULL) {
4638 if (object != original_object) {
4639 vm_object_unlock(object);
4640 }
4641 return;
4642 }
4643 if (backing_object_lock_type == OBJECT_LOCK_SHARED) {
4644 vm_object_lock_shared(backing_object);
4645 } else {
4646 vm_object_lock(backing_object);
4647 }
4648
4649 /*
4650 * No pages in the object are currently
4651 * being paged out, and
4652 */
4653 if (object->paging_in_progress != 0 ||
4654 object->activity_in_progress != 0) {
4655 /* try and collapse the rest of the shadow chain */
4656 if (object != original_object) {
4657 vm_object_unlock(object);
4658 }
4659 object = backing_object;
4660 object_lock_type = backing_object_lock_type;
4661 continue;
4662 }
4663
4664 /*
4665 * ...
4666 * The backing object is not read_only,
4667 * and no pages in the backing object are
4668 * currently being paged out.
4669 * The backing object is internal.
4670 *
4671 */
4672
4673 if (!backing_object->internal ||
4674 backing_object->paging_in_progress != 0 ||
4675 backing_object->activity_in_progress != 0) {
4676 /* try and collapse the rest of the shadow chain */
4677 if (object != original_object) {
4678 vm_object_unlock(object);
4679 }
4680 object = backing_object;
4681 object_lock_type = backing_object_lock_type;
4682 continue;
4683 }
4684
4685 /*
4686 * Purgeable objects are not supposed to engage in
4687 * copy-on-write activities, so should not have
4688 * any shadow objects or be a shadow object to another
4689 * object.
4690 * Collapsing a purgeable object would require some
4691 * updates to the purgeable compressed ledgers.
4692 */
4693 if (object->purgable != VM_PURGABLE_DENY ||
4694 backing_object->purgable != VM_PURGABLE_DENY) {
4695 panic("vm_object_collapse() attempting to collapse "
4696 "purgeable object: %p(%d) %p(%d)\n",
4697 object, object->purgable,
4698 backing_object, backing_object->purgable);
4699 /* try and collapse the rest of the shadow chain */
4700 if (object != original_object) {
4701 vm_object_unlock(object);
4702 }
4703 object = backing_object;
4704 object_lock_type = backing_object_lock_type;
4705 continue;
4706 }
4707
4708 /*
4709 * The backing object can't be a copy-object:
4710 * the shadow_offset for the copy-object must stay
4711 * as 0. Furthermore (for the 'we have all the
4712 * pages' case), if we bypass backing_object and
4713 * just shadow the next object in the chain, old
4714 * pages from that object would then have to be copied
4715 * BOTH into the (former) backing_object and into the
4716 * parent object.
4717 */
4718 if (backing_object->shadow != VM_OBJECT_NULL &&
4719 backing_object->shadow->copy == backing_object) {
4720 /* try and collapse the rest of the shadow chain */
4721 if (object != original_object) {
4722 vm_object_unlock(object);
4723 }
4724 object = backing_object;
4725 object_lock_type = backing_object_lock_type;
4726 continue;
4727 }
4728
4729 /*
4730 * We can now try to either collapse the backing
4731 * object (if the parent is the only reference to
4732 * it) or (perhaps) remove the parent's reference
4733 * to it.
4734 *
4735 * If there is exactly one reference to the backing
4736 * object, we may be able to collapse it into the
4737 * parent.
4738 *
4739 * As long as one of the objects is still not known
4740 * to the pager, we can collapse them.
4741 */
4742 if (backing_object->ref_count == 1 &&
4743 (vm_object_collapse_compressor_allowed ||
4744 !object->pager_created
4745 || (!backing_object->pager_created)
4746 ) && vm_object_collapse_allowed) {
4747
4748 /*
4749 * We need the exclusive lock on the VM objects.
4750 */
4751 if (backing_object_lock_type != OBJECT_LOCK_EXCLUSIVE) {
4752 /*
4753 * We have an object and its shadow locked
4754 * "shared". We can't just upgrade the locks
4755 * to "exclusive", as some other thread might
4756 * also have these objects locked "shared" and
4757 * attempt to upgrade one or the other to
4758 * "exclusive". The upgrades would block
4759 * forever waiting for the other "shared" locks
4760 * to get released.
4761 * So we have to release the locks and go
4762 * down the shadow chain again (since it could
4763 * have changed) with "exclusive" locking.
4764 */
4765 vm_object_unlock(backing_object);
4766 if (object != original_object)
4767 vm_object_unlock(object);
4768 object_lock_type = OBJECT_LOCK_EXCLUSIVE;
4769 backing_object_lock_type = OBJECT_LOCK_EXCLUSIVE;
4770 goto retry;
4771 }
4772
4773 XPR(XPR_VM_OBJECT,
4774 "vm_object_collapse: %x to %x, pager %x, pager_control %x\n",
4775 backing_object, object,
4776 backing_object->pager,
4777 backing_object->pager_control, 0);
4778
4779 /*
4780 * Collapse the object with its backing
4781 * object, and try again with the object's
4782 * new backing object.
4783 */
4784
4785 vm_object_do_collapse(object, backing_object);
4786 vm_object_collapse_do_collapse++;
4787 continue;
4788 }
4789
4790 /*
4791 * Collapsing the backing object was not possible
4792 * or permitted, so let's try bypassing it.
4793 */
4794
4795 if (! (can_bypass && vm_object_bypass_allowed)) {
4796 /* try and collapse the rest of the shadow chain */
4797 if (object != original_object) {
4798 vm_object_unlock(object);
4799 }
4800 object = backing_object;
4801 object_lock_type = backing_object_lock_type;
4802 continue;
4803 }
4804
4805
4806 /*
4807 * If the object doesn't have all its pages present,
4808 * we have to make sure no pages in the backing object
4809 * "show through" before bypassing it.
4810 */
4811 size = (unsigned int)atop(object->vo_size);
4812 rcount = object->resident_page_count;
4813
4814 if (rcount != size) {
4815 vm_object_offset_t offset;
4816 vm_object_offset_t backing_offset;
4817 unsigned int backing_rcount;
4818
4819 /*
4820 * If the backing object has a pager but no pagemap,
4821 * then we cannot bypass it, because we don't know
4822 * what pages it has.
4823 */
4824 if (backing_object->pager_created) {
4825 /* try and collapse the rest of the shadow chain */
4826 if (object != original_object) {
4827 vm_object_unlock(object);
4828 }
4829 object = backing_object;
4830 object_lock_type = backing_object_lock_type;
4831 continue;
4832 }
4833
4834 /*
4835 * If the object has a pager but no pagemap,
4836 * then we cannot bypass it, because we don't know
4837 * what pages it has.
4838 */
4839 if (object->pager_created) {
4840 /* try and collapse the rest of the shadow chain */
4841 if (object != original_object) {
4842 vm_object_unlock(object);
4843 }
4844 object = backing_object;
4845 object_lock_type = backing_object_lock_type;
4846 continue;
4847 }
4848
4849 backing_offset = object->vo_shadow_offset;
4850 backing_rcount = backing_object->resident_page_count;
4851
4852 if ( (int)backing_rcount - (int)(atop(backing_object->vo_size) - size) > (int)rcount) {
4853 /*
4854 * we have enough pages in the backing object to guarantee that
4855 * at least 1 of them must be 'uncovered' by a resident page
4856 * in the object we're evaluating, so move on and
4857 * try to collapse the rest of the shadow chain
4858 */
4859 if (object != original_object) {
4860 vm_object_unlock(object);
4861 }
4862 object = backing_object;
4863 object_lock_type = backing_object_lock_type;
4864 continue;
4865 }
4866
4867 /*
4868 * If all of the pages in the backing object are
4869 * shadowed by the parent object, the parent
4870 * object no longer has to shadow the backing
4871 * object; it can shadow the next one in the
4872 * chain.
4873 *
4874 * If the backing object has existence info,
4875 * we must check examine its existence info
4876 * as well.
4877 *
4878 */
4879
4880#define EXISTS_IN_OBJECT(obj, off, rc) \
4881 ((VM_COMPRESSOR_PAGER_STATE_GET((obj), (off)) \
4882 == VM_EXTERNAL_STATE_EXISTS) || \
4883 ((rc) && vm_page_lookup((obj), (off)) != VM_PAGE_NULL && (rc)--))
4884
4885 /*
4886 * Check the hint location first
4887 * (since it is often the quickest way out of here).
4888 */
4889 if (object->cow_hint != ~(vm_offset_t)0)
4890 hint_offset = (vm_object_offset_t)object->cow_hint;
4891 else
4892 hint_offset = (hint_offset > 8 * PAGE_SIZE_64) ?
4893 (hint_offset - 8 * PAGE_SIZE_64) : 0;
4894
4895 if (EXISTS_IN_OBJECT(backing_object, hint_offset +
4896 backing_offset, backing_rcount) &&
4897 !EXISTS_IN_OBJECT(object, hint_offset, rcount)) {
4898 /* dependency right at the hint */
4899 object->cow_hint = (vm_offset_t) hint_offset; /* atomic */
4900 /* try and collapse the rest of the shadow chain */
4901 if (object != original_object) {
4902 vm_object_unlock(object);
4903 }
4904 object = backing_object;
4905 object_lock_type = backing_object_lock_type;
4906 continue;
4907 }
4908
4909 /*
4910 * If the object's window onto the backing_object
4911 * is large compared to the number of resident
4912 * pages in the backing object, it makes sense to
4913 * walk the backing_object's resident pages first.
4914 *
4915 * NOTE: Pages may be in both the existence map and/or
4916 * resident, so if we don't find a dependency while
4917 * walking the backing object's resident page list
4918 * directly, and there is an existence map, we'll have
4919 * to run the offset based 2nd pass. Because we may
4920 * have to run both passes, we need to be careful
4921 * not to decrement 'rcount' in the 1st pass
4922 */
4923 if (backing_rcount && backing_rcount < (size / 8)) {
4924 unsigned int rc = rcount;
4925 vm_page_t p;
4926
4927 backing_rcount = backing_object->resident_page_count;
4928 p = (vm_page_t)vm_page_queue_first(&backing_object->memq);
4929 do {
4930 offset = (p->vmp_offset - backing_offset);
4931
4932 if (offset < object->vo_size &&
4933 offset != hint_offset &&
4934 !EXISTS_IN_OBJECT(object, offset, rc)) {
4935 /* found a dependency */
4936 object->cow_hint = (vm_offset_t) offset; /* atomic */
4937
4938 break;
4939 }
4940 p = (vm_page_t) vm_page_queue_next(&p->vmp_listq);
4941
4942 } while (--backing_rcount);
4943 if (backing_rcount != 0 ) {
4944 /* try and collapse the rest of the shadow chain */
4945 if (object != original_object) {
4946 vm_object_unlock(object);
4947 }
4948 object = backing_object;
4949 object_lock_type = backing_object_lock_type;
4950 continue;
4951 }
4952 }
4953
4954 /*
4955 * Walk through the offsets looking for pages in the
4956 * backing object that show through to the object.
4957 */
4958 if (backing_rcount) {
4959 offset = hint_offset;
4960
4961 while((offset =
4962 (offset + PAGE_SIZE_64 < object->vo_size) ?
4963 (offset + PAGE_SIZE_64) : 0) != hint_offset) {
4964
4965 if (EXISTS_IN_OBJECT(backing_object, offset +
4966 backing_offset, backing_rcount) &&
4967 !EXISTS_IN_OBJECT(object, offset, rcount)) {
4968 /* found a dependency */
4969 object->cow_hint = (vm_offset_t) offset; /* atomic */
4970 break;
4971 }
4972 }
4973 if (offset != hint_offset) {
4974 /* try and collapse the rest of the shadow chain */
4975 if (object != original_object) {
4976 vm_object_unlock(object);
4977 }
4978 object = backing_object;
4979 object_lock_type = backing_object_lock_type;
4980 continue;
4981 }
4982 }
4983 }
4984
4985 /*
4986 * We need "exclusive" locks on the 2 VM objects.
4987 */
4988 if (backing_object_lock_type != OBJECT_LOCK_EXCLUSIVE) {
4989 vm_object_unlock(backing_object);
4990 if (object != original_object)
4991 vm_object_unlock(object);
4992 object_lock_type = OBJECT_LOCK_EXCLUSIVE;
4993 backing_object_lock_type = OBJECT_LOCK_EXCLUSIVE;
4994 goto retry;
4995 }
4996
4997 /* reset the offset hint for any objects deeper in the chain */
4998 object->cow_hint = (vm_offset_t)0;
4999
5000 /*
5001 * All interesting pages in the backing object
5002 * already live in the parent or its pager.
5003 * Thus we can bypass the backing object.
5004 */
5005
5006 vm_object_do_bypass(object, backing_object);
5007 vm_object_collapse_do_bypass++;
5008
5009 /*
5010 * Try again with this object's new backing object.
5011 */
5012
5013 continue;
5014 }
5015
5016 /* NOT REACHED */
5017 /*
5018 if (object != original_object) {
5019 vm_object_unlock(object);
5020 }
5021 */
5022}
5023
5024/*
5025 * Routine: vm_object_page_remove: [internal]
5026 * Purpose:
5027 * Removes all physical pages in the specified
5028 * object range from the object's list of pages.
5029 *
5030 * In/out conditions:
5031 * The object must be locked.
5032 * The object must not have paging_in_progress, usually
5033 * guaranteed by not having a pager.
5034 */
5035unsigned int vm_object_page_remove_lookup = 0;
5036unsigned int vm_object_page_remove_iterate = 0;
5037
5038__private_extern__ void
5039vm_object_page_remove(
5040 vm_object_t object,
5041 vm_object_offset_t start,
5042 vm_object_offset_t end)
5043{
5044 vm_page_t p, next;
5045
5046 /*
5047 * One and two page removals are most popular.
5048 * The factor of 16 here is somewhat arbitrary.
5049 * It balances vm_object_lookup vs iteration.
5050 */
5051
5052 if (atop_64(end - start) < (unsigned)object->resident_page_count/16) {
5053 vm_object_page_remove_lookup++;
5054
5055 for (; start < end; start += PAGE_SIZE_64) {
5056 p = vm_page_lookup(object, start);
5057 if (p != VM_PAGE_NULL) {
5058 assert(!p->vmp_cleaning && !p->vmp_laundry);
5059 if (!p->vmp_fictitious && p->vmp_pmapped)
5060 pmap_disconnect(VM_PAGE_GET_PHYS_PAGE(p));
5061 VM_PAGE_FREE(p);
5062 }
5063 }
5064 } else {
5065 vm_object_page_remove_iterate++;
5066
5067 p = (vm_page_t) vm_page_queue_first(&object->memq);
5068 while (!vm_page_queue_end(&object->memq, (vm_page_queue_entry_t) p)) {
5069 next = (vm_page_t) vm_page_queue_next(&p->vmp_listq);
5070 if ((start <= p->vmp_offset) && (p->vmp_offset < end)) {
5071 assert(!p->vmp_cleaning && !p->vmp_laundry);
5072 if (!p->vmp_fictitious && p->vmp_pmapped)
5073 pmap_disconnect(VM_PAGE_GET_PHYS_PAGE(p));
5074 VM_PAGE_FREE(p);
5075 }
5076 p = next;
5077 }
5078 }
5079}
5080
5081
5082/*
5083 * Routine: vm_object_coalesce
5084 * Function: Coalesces two objects backing up adjoining
5085 * regions of memory into a single object.
5086 *
5087 * returns TRUE if objects were combined.
5088 *
5089 * NOTE: Only works at the moment if the second object is NULL -
5090 * if it's not, which object do we lock first?
5091 *
5092 * Parameters:
5093 * prev_object First object to coalesce
5094 * prev_offset Offset into prev_object
5095 * next_object Second object into coalesce
5096 * next_offset Offset into next_object
5097 *
5098 * prev_size Size of reference to prev_object
5099 * next_size Size of reference to next_object
5100 *
5101 * Conditions:
5102 * The object(s) must *not* be locked. The map must be locked
5103 * to preserve the reference to the object(s).
5104 */
5105static int vm_object_coalesce_count = 0;
5106
5107__private_extern__ boolean_t
5108vm_object_coalesce(
5109 vm_object_t prev_object,
5110 vm_object_t next_object,
5111 vm_object_offset_t prev_offset,
5112 __unused vm_object_offset_t next_offset,
5113 vm_object_size_t prev_size,
5114 vm_object_size_t next_size)
5115{
5116 vm_object_size_t newsize;
5117
5118#ifdef lint
5119 next_offset++;
5120#endif /* lint */
5121
5122 if (next_object != VM_OBJECT_NULL) {
5123 return(FALSE);
5124 }
5125
5126 if (prev_object == VM_OBJECT_NULL) {
5127 return(TRUE);
5128 }
5129
5130 XPR(XPR_VM_OBJECT,
5131 "vm_object_coalesce: 0x%X prev_off 0x%X prev_size 0x%X next_size 0x%X\n",
5132 prev_object, prev_offset, prev_size, next_size, 0);
5133
5134 vm_object_lock(prev_object);
5135
5136 /*
5137 * Try to collapse the object first
5138 */
5139 vm_object_collapse(prev_object, prev_offset, TRUE);
5140
5141 /*
5142 * Can't coalesce if pages not mapped to
5143 * prev_entry may be in use any way:
5144 * . more than one reference
5145 * . paged out
5146 * . shadows another object
5147 * . has a copy elsewhere
5148 * . is purgeable
5149 * . paging references (pages might be in page-list)
5150 */
5151
5152 if ((prev_object->ref_count > 1) ||
5153 prev_object->pager_created ||
5154 (prev_object->shadow != VM_OBJECT_NULL) ||
5155 (prev_object->copy != VM_OBJECT_NULL) ||
5156 (prev_object->true_share != FALSE) ||
5157 (prev_object->purgable != VM_PURGABLE_DENY) ||
5158 (prev_object->paging_in_progress != 0) ||
5159 (prev_object->activity_in_progress != 0)) {
5160 vm_object_unlock(prev_object);
5161 return(FALSE);
5162 }
5163
5164 vm_object_coalesce_count++;
5165
5166 /*
5167 * Remove any pages that may still be in the object from
5168 * a previous deallocation.
5169 */
5170 vm_object_page_remove(prev_object,
5171 prev_offset + prev_size,
5172 prev_offset + prev_size + next_size);
5173
5174 /*
5175 * Extend the object if necessary.
5176 */
5177 newsize = prev_offset + prev_size + next_size;
5178 if (newsize > prev_object->vo_size) {
5179 prev_object->vo_size = newsize;
5180 }
5181
5182 vm_object_unlock(prev_object);
5183 return(TRUE);
5184}
5185
5186kern_return_t
5187vm_object_populate_with_private(
5188 vm_object_t object,
5189 vm_object_offset_t offset,
5190 ppnum_t phys_page,
5191 vm_size_t size)
5192{
5193 ppnum_t base_page;
5194 vm_object_offset_t base_offset;
5195
5196
5197 if (!object->private)
5198 return KERN_FAILURE;
5199
5200 base_page = phys_page;
5201
5202 vm_object_lock(object);
5203
5204 if (!object->phys_contiguous) {
5205 vm_page_t m;
5206
5207 if ((base_offset = trunc_page_64(offset)) != offset) {
5208 vm_object_unlock(object);
5209 return KERN_FAILURE;
5210 }
5211 base_offset += object->paging_offset;
5212
5213 while (size) {
5214 m = vm_page_lookup(object, base_offset);
5215
5216 if (m != VM_PAGE_NULL) {
5217 if (m->vmp_fictitious) {
5218 if (VM_PAGE_GET_PHYS_PAGE(m) != vm_page_guard_addr) {
5219
5220 vm_page_lockspin_queues();
5221 m->vmp_private = TRUE;
5222 vm_page_unlock_queues();
5223
5224 m->vmp_fictitious = FALSE;
5225 VM_PAGE_SET_PHYS_PAGE(m, base_page);
5226 }
5227 } else if (VM_PAGE_GET_PHYS_PAGE(m) != base_page) {
5228
5229 if ( !m->vmp_private) {
5230 /*
5231 * we'd leak a real page... that can't be right
5232 */
5233 panic("vm_object_populate_with_private - %p not private", m);
5234 }
5235 if (m->vmp_pmapped) {
5236 /*
5237 * pmap call to clear old mapping
5238 */
5239 pmap_disconnect(VM_PAGE_GET_PHYS_PAGE(m));
5240 }
5241 VM_PAGE_SET_PHYS_PAGE(m, base_page);
5242 }
5243
5244 } else {
5245 while ((m = vm_page_grab_fictitious()) == VM_PAGE_NULL)
5246 vm_page_more_fictitious();
5247
5248 /*
5249 * private normally requires lock_queues but since we
5250 * are initializing the page, its not necessary here
5251 */
5252 m->vmp_private = TRUE;
5253 m->vmp_fictitious = FALSE;
5254 VM_PAGE_SET_PHYS_PAGE(m, base_page);
5255 m->vmp_unusual = TRUE;
5256 m->vmp_busy = FALSE;
5257
5258 vm_page_insert(m, object, base_offset);
5259 }
5260 base_page++; /* Go to the next physical page */
5261 base_offset += PAGE_SIZE;
5262 size -= PAGE_SIZE;
5263 }
5264 } else {
5265 /* NOTE: we should check the original settings here */
5266 /* if we have a size > zero a pmap call should be made */
5267 /* to disable the range */
5268
5269 /* pmap_? */
5270
5271 /* shadows on contiguous memory are not allowed */
5272 /* we therefore can use the offset field */
5273 object->vo_shadow_offset = (vm_object_offset_t)phys_page << PAGE_SHIFT;
5274 object->vo_size = size;
5275 }
5276 vm_object_unlock(object);
5277
5278 return KERN_SUCCESS;
5279}
5280
5281
5282kern_return_t
5283memory_object_create_named(
5284 memory_object_t pager,
5285 memory_object_offset_t size,
5286 memory_object_control_t *control)
5287{
5288 vm_object_t object;
5289
5290 *control = MEMORY_OBJECT_CONTROL_NULL;
5291 if (pager == MEMORY_OBJECT_NULL)
5292 return KERN_INVALID_ARGUMENT;
5293
5294 object = vm_object_memory_object_associate(pager,
5295 VM_OBJECT_NULL,
5296 size,
5297 TRUE);
5298 if (object == VM_OBJECT_NULL) {
5299 return KERN_INVALID_OBJECT;
5300 }
5301
5302 /* wait for object (if any) to be ready */
5303 if (object != VM_OBJECT_NULL) {
5304 vm_object_lock(object);
5305 object->named = TRUE;
5306 while (!object->pager_ready) {
5307 vm_object_sleep(object,
5308 VM_OBJECT_EVENT_PAGER_READY,
5309 THREAD_UNINT);
5310 }
5311 *control = object->pager_control;
5312 vm_object_unlock(object);
5313 }
5314 return (KERN_SUCCESS);
5315}
5316
5317
5318/*
5319 * Routine: memory_object_recover_named [user interface]
5320 * Purpose:
5321 * Attempt to recover a named reference for a VM object.
5322 * VM will verify that the object has not already started
5323 * down the termination path, and if it has, will optionally
5324 * wait for that to finish.
5325 * Returns:
5326 * KERN_SUCCESS - we recovered a named reference on the object
5327 * KERN_FAILURE - we could not recover a reference (object dead)
5328 * KERN_INVALID_ARGUMENT - bad memory object control
5329 */
5330kern_return_t
5331memory_object_recover_named(
5332 memory_object_control_t control,
5333 boolean_t wait_on_terminating)
5334{
5335 vm_object_t object;
5336
5337 object = memory_object_control_to_vm_object(control);
5338 if (object == VM_OBJECT_NULL) {
5339 return (KERN_INVALID_ARGUMENT);
5340 }
5341restart:
5342 vm_object_lock(object);
5343
5344 if (object->terminating && wait_on_terminating) {
5345 vm_object_wait(object,
5346 VM_OBJECT_EVENT_PAGING_IN_PROGRESS,
5347 THREAD_UNINT);
5348 goto restart;
5349 }
5350
5351 if (!object->alive) {
5352 vm_object_unlock(object);
5353 return KERN_FAILURE;
5354 }
5355
5356 if (object->named == TRUE) {
5357 vm_object_unlock(object);
5358 return KERN_SUCCESS;
5359 }
5360 object->named = TRUE;
5361 vm_object_lock_assert_exclusive(object);
5362 object->ref_count++;
5363 vm_object_res_reference(object);
5364 while (!object->pager_ready) {
5365 vm_object_sleep(object,
5366 VM_OBJECT_EVENT_PAGER_READY,
5367 THREAD_UNINT);
5368 }
5369 vm_object_unlock(object);
5370 return (KERN_SUCCESS);
5371}
5372
5373
5374/*
5375 * vm_object_release_name:
5376 *
5377 * Enforces name semantic on memory_object reference count decrement
5378 * This routine should not be called unless the caller holds a name
5379 * reference gained through the memory_object_create_named.
5380 *
5381 * If the TERMINATE_IDLE flag is set, the call will return if the
5382 * reference count is not 1. i.e. idle with the only remaining reference
5383 * being the name.
5384 * If the decision is made to proceed the name field flag is set to
5385 * false and the reference count is decremented. If the RESPECT_CACHE
5386 * flag is set and the reference count has gone to zero, the
5387 * memory_object is checked to see if it is cacheable otherwise when
5388 * the reference count is zero, it is simply terminated.
5389 */
5390
5391__private_extern__ kern_return_t
5392vm_object_release_name(
5393 vm_object_t object,
5394 int flags)
5395{
5396 vm_object_t shadow;
5397 boolean_t original_object = TRUE;
5398
5399 while (object != VM_OBJECT_NULL) {
5400
5401 vm_object_lock(object);
5402
5403 assert(object->alive);
5404 if (original_object)
5405 assert(object->named);
5406 assert(object->ref_count > 0);
5407
5408 /*
5409 * We have to wait for initialization before
5410 * destroying or caching the object.
5411 */
5412
5413 if (object->pager_created && !object->pager_initialized) {
5414 assert(!object->can_persist);
5415 vm_object_assert_wait(object,
5416 VM_OBJECT_EVENT_INITIALIZED,
5417 THREAD_UNINT);
5418 vm_object_unlock(object);
5419 thread_block(THREAD_CONTINUE_NULL);
5420 continue;
5421 }
5422
5423 if (((object->ref_count > 1)
5424 && (flags & MEMORY_OBJECT_TERMINATE_IDLE))
5425 || (object->terminating)) {
5426 vm_object_unlock(object);
5427 return KERN_FAILURE;
5428 } else {
5429 if (flags & MEMORY_OBJECT_RELEASE_NO_OP) {
5430 vm_object_unlock(object);
5431 return KERN_SUCCESS;
5432 }
5433 }
5434
5435 if ((flags & MEMORY_OBJECT_RESPECT_CACHE) &&
5436 (object->ref_count == 1)) {
5437 if (original_object)
5438 object->named = FALSE;
5439 vm_object_unlock(object);
5440 /* let vm_object_deallocate push this thing into */
5441 /* the cache, if that it is where it is bound */
5442 vm_object_deallocate(object);
5443 return KERN_SUCCESS;
5444 }
5445 VM_OBJ_RES_DECR(object);
5446 shadow = object->pageout?VM_OBJECT_NULL:object->shadow;
5447
5448 if (object->ref_count == 1) {
5449 if (vm_object_terminate(object) != KERN_SUCCESS) {
5450 if (original_object) {
5451 return KERN_FAILURE;
5452 } else {
5453 return KERN_SUCCESS;
5454 }
5455 }
5456 if (shadow != VM_OBJECT_NULL) {
5457 original_object = FALSE;
5458 object = shadow;
5459 continue;
5460 }
5461 return KERN_SUCCESS;
5462 } else {
5463 vm_object_lock_assert_exclusive(object);
5464 object->ref_count--;
5465 assert(object->ref_count > 0);
5466 if(original_object)
5467 object->named = FALSE;
5468 vm_object_unlock(object);
5469 return KERN_SUCCESS;
5470 }
5471 }
5472 /*NOTREACHED*/
5473 assert(0);
5474 return KERN_FAILURE;
5475}
5476
5477
5478__private_extern__ kern_return_t
5479vm_object_lock_request(
5480 vm_object_t object,
5481 vm_object_offset_t offset,
5482 vm_object_size_t size,
5483 memory_object_return_t should_return,
5484 int flags,
5485 vm_prot_t prot)
5486{
5487 __unused boolean_t should_flush;
5488
5489 should_flush = flags & MEMORY_OBJECT_DATA_FLUSH;
5490
5491 XPR(XPR_MEMORY_OBJECT,
5492 "vm_o_lock_request, obj 0x%X off 0x%X size 0x%X flags %X prot %X\n",
5493 object, offset, size,
5494 (((should_return&1)<<1)|should_flush), prot);
5495
5496 /*
5497 * Check for bogus arguments.
5498 */
5499 if (object == VM_OBJECT_NULL)
5500 return (KERN_INVALID_ARGUMENT);
5501
5502 if ((prot & ~VM_PROT_ALL) != 0 && prot != VM_PROT_NO_CHANGE)
5503 return (KERN_INVALID_ARGUMENT);
5504
5505 size = round_page_64(size);
5506
5507 /*
5508 * Lock the object, and acquire a paging reference to
5509 * prevent the memory_object reference from being released.
5510 */
5511 vm_object_lock(object);
5512 vm_object_paging_begin(object);
5513
5514 (void)vm_object_update(object,
5515 offset, size, NULL, NULL, should_return, flags, prot);
5516
5517 vm_object_paging_end(object);
5518 vm_object_unlock(object);
5519
5520 return (KERN_SUCCESS);
5521}
5522
5523/*
5524 * Empty a purgeable object by grabbing the physical pages assigned to it and
5525 * putting them on the free queue without writing them to backing store, etc.
5526 * When the pages are next touched they will be demand zero-fill pages. We
5527 * skip pages which are busy, being paged in/out, wired, etc. We do _not_
5528 * skip referenced/dirty pages, pages on the active queue, etc. We're more
5529 * than happy to grab these since this is a purgeable object. We mark the
5530 * object as "empty" after reaping its pages.
5531 *
5532 * On entry the object must be locked and it must be
5533 * purgeable with no delayed copies pending.
5534 */
5535uint64_t
5536vm_object_purge(vm_object_t object, int flags)
5537{
5538 unsigned int object_page_count = 0, pgcount = 0;
5539 uint64_t total_purged_pgcount = 0;
5540 boolean_t skipped_object = FALSE;
5541
5542 vm_object_lock_assert_exclusive(object);
5543
5544 if (object->purgable == VM_PURGABLE_DENY)
5545 return 0;
5546
5547 assert(object->copy == VM_OBJECT_NULL);
5548 assert(object->copy_strategy == MEMORY_OBJECT_COPY_NONE);
5549
5550 /*
5551 * We need to set the object's state to VM_PURGABLE_EMPTY *before*
5552 * reaping its pages. We update vm_page_purgeable_count in bulk
5553 * and we don't want vm_page_remove() to update it again for each
5554 * page we reap later.
5555 *
5556 * For the purgeable ledgers, pages from VOLATILE and EMPTY objects
5557 * are all accounted for in the "volatile" ledgers, so this does not
5558 * make any difference.
5559 * If we transitioned directly from NONVOLATILE to EMPTY,
5560 * vm_page_purgeable_count must have been updated when the object
5561 * was dequeued from its volatile queue and the purgeable ledgers
5562 * must have also been updated accordingly at that time (in
5563 * vm_object_purgable_control()).
5564 */
5565 if (object->purgable == VM_PURGABLE_VOLATILE) {
5566 unsigned int delta;
5567 assert(object->resident_page_count >=
5568 object->wired_page_count);
5569 delta = (object->resident_page_count -
5570 object->wired_page_count);
5571 if (delta != 0) {
5572 assert(vm_page_purgeable_count >=
5573 delta);
5574 OSAddAtomic(-delta,
5575 (SInt32 *)&vm_page_purgeable_count);
5576 }
5577 if (object->wired_page_count != 0) {
5578 assert(vm_page_purgeable_wired_count >=
5579 object->wired_page_count);
5580 OSAddAtomic(-object->wired_page_count,
5581 (SInt32 *)&vm_page_purgeable_wired_count);
5582 }
5583 object->purgable = VM_PURGABLE_EMPTY;
5584 }
5585 assert(object->purgable == VM_PURGABLE_EMPTY);
5586
5587 object_page_count = object->resident_page_count;
5588
5589 vm_object_reap_pages(object, REAP_PURGEABLE);
5590
5591 if (object->resident_page_count >= object_page_count) {
5592 total_purged_pgcount = 0;
5593 } else {
5594 total_purged_pgcount = object_page_count - object->resident_page_count;
5595 }
5596
5597 if (object->pager != NULL) {
5598
5599 assert(VM_CONFIG_COMPRESSOR_IS_PRESENT);
5600
5601 if (object->activity_in_progress == 0 &&
5602 object->paging_in_progress == 0) {
5603 /*
5604 * Also reap any memory coming from this object
5605 * in the VM compressor.
5606 *
5607 * There are no operations in progress on the VM object
5608 * and no operation can start while we're holding the
5609 * VM object lock, so it's safe to reap the compressed
5610 * pages and update the page counts.
5611 */
5612 pgcount = vm_compressor_pager_get_count(object->pager);
5613 if (pgcount) {
5614 pgcount = vm_compressor_pager_reap_pages(object->pager, flags);
5615 vm_compressor_pager_count(object->pager,
5616 -pgcount,
5617 FALSE, /* shared */
5618 object);
5619 vm_object_owner_compressed_update(object,
5620 -pgcount);
5621 }
5622 if ( !(flags & C_DONT_BLOCK)) {
5623 assert(vm_compressor_pager_get_count(object->pager)
5624 == 0);
5625 }
5626 } else {
5627 /*
5628 * There's some kind of paging activity in progress
5629 * for this object, which could result in a page
5630 * being compressed or decompressed, possibly while
5631 * the VM object is not locked, so it could race
5632 * with us.
5633 *
5634 * We can't really synchronize this without possibly
5635 * causing a deadlock when the compressor needs to
5636 * allocate or free memory while compressing or
5637 * decompressing a page from a purgeable object
5638 * mapped in the kernel_map...
5639 *
5640 * So let's not attempt to purge the compressor
5641 * pager if there's any kind of operation in
5642 * progress on the VM object.
5643 */
5644 skipped_object = TRUE;
5645 }
5646 }
5647
5648 vm_object_lock_assert_exclusive(object);
5649
5650 total_purged_pgcount += pgcount;
5651
5652 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, (MACHDBG_CODE(DBG_MACH_VM, OBJECT_PURGE_ONE)),
5653 VM_KERNEL_UNSLIDE_OR_PERM(object), /* purged object */
5654 object_page_count,
5655 total_purged_pgcount,
5656 skipped_object,
5657 0);
5658
5659 return total_purged_pgcount;
5660}
5661
5662
5663/*
5664 * vm_object_purgeable_control() allows the caller to control and investigate the
5665 * state of a purgeable object. A purgeable object is created via a call to
5666 * vm_allocate() with VM_FLAGS_PURGABLE specified. A purgeable object will
5667 * never be coalesced with any other object -- even other purgeable objects --
5668 * and will thus always remain a distinct object. A purgeable object has
5669 * special semantics when its reference count is exactly 1. If its reference
5670 * count is greater than 1, then a purgeable object will behave like a normal
5671 * object and attempts to use this interface will result in an error return
5672 * of KERN_INVALID_ARGUMENT.
5673 *
5674 * A purgeable object may be put into a "volatile" state which will make the
5675 * object's pages elligable for being reclaimed without paging to backing
5676 * store if the system runs low on memory. If the pages in a volatile
5677 * purgeable object are reclaimed, the purgeable object is said to have been
5678 * "emptied." When a purgeable object is emptied the system will reclaim as
5679 * many pages from the object as it can in a convenient manner (pages already
5680 * en route to backing store or busy for other reasons are left as is). When
5681 * a purgeable object is made volatile, its pages will generally be reclaimed
5682 * before other pages in the application's working set. This semantic is
5683 * generally used by applications which can recreate the data in the object
5684 * faster than it can be paged in. One such example might be media assets
5685 * which can be reread from a much faster RAID volume.
5686 *
5687 * A purgeable object may be designated as "non-volatile" which means it will
5688 * behave like all other objects in the system with pages being written to and
5689 * read from backing store as needed to satisfy system memory needs. If the
5690 * object was emptied before the object was made non-volatile, that fact will
5691 * be returned as the old state of the purgeable object (see
5692 * VM_PURGABLE_SET_STATE below). In this case, any pages of the object which
5693 * were reclaimed as part of emptying the object will be refaulted in as
5694 * zero-fill on demand. It is up to the application to note that an object
5695 * was emptied and recreate the objects contents if necessary. When a
5696 * purgeable object is made non-volatile, its pages will generally not be paged
5697 * out to backing store in the immediate future. A purgeable object may also
5698 * be manually emptied.
5699 *
5700 * Finally, the current state (non-volatile, volatile, volatile & empty) of a
5701 * volatile purgeable object may be queried at any time. This information may
5702 * be used as a control input to let the application know when the system is
5703 * experiencing memory pressure and is reclaiming memory.
5704 *
5705 * The specified address may be any address within the purgeable object. If
5706 * the specified address does not represent any object in the target task's
5707 * virtual address space, then KERN_INVALID_ADDRESS will be returned. If the
5708 * object containing the specified address is not a purgeable object, then
5709 * KERN_INVALID_ARGUMENT will be returned. Otherwise, KERN_SUCCESS will be
5710 * returned.
5711 *
5712 * The control parameter may be any one of VM_PURGABLE_SET_STATE or
5713 * VM_PURGABLE_GET_STATE. For VM_PURGABLE_SET_STATE, the in/out parameter
5714 * state is used to set the new state of the purgeable object and return its
5715 * old state. For VM_PURGABLE_GET_STATE, the current state of the purgeable
5716 * object is returned in the parameter state.
5717 *
5718 * The in/out parameter state may be one of VM_PURGABLE_NONVOLATILE,
5719 * VM_PURGABLE_VOLATILE or VM_PURGABLE_EMPTY. These, respectively, represent
5720 * the non-volatile, volatile and volatile/empty states described above.
5721 * Setting the state of a purgeable object to VM_PURGABLE_EMPTY will
5722 * immediately reclaim as many pages in the object as can be conveniently
5723 * collected (some may have already been written to backing store or be
5724 * otherwise busy).
5725 *
5726 * The process of making a purgeable object non-volatile and determining its
5727 * previous state is atomic. Thus, if a purgeable object is made
5728 * VM_PURGABLE_NONVOLATILE and the old state is returned as
5729 * VM_PURGABLE_VOLATILE, then the purgeable object's previous contents are
5730 * completely intact and will remain so until the object is made volatile
5731 * again. If the old state is returned as VM_PURGABLE_EMPTY then the object
5732 * was reclaimed while it was in a volatile state and its previous contents
5733 * have been lost.
5734 */
5735/*
5736 * The object must be locked.
5737 */
5738kern_return_t
5739vm_object_purgable_control(
5740 vm_object_t object,
5741 vm_purgable_t control,
5742 int *state)
5743{
5744 int old_state;
5745 int new_state;
5746
5747 if (object == VM_OBJECT_NULL) {
5748 /*
5749 * Object must already be present or it can't be purgeable.
5750 */
5751 return KERN_INVALID_ARGUMENT;
5752 }
5753
5754 vm_object_lock_assert_exclusive(object);
5755
5756 /*
5757 * Get current state of the purgeable object.
5758 */
5759 old_state = object->purgable;
5760 if (old_state == VM_PURGABLE_DENY)
5761 return KERN_INVALID_ARGUMENT;
5762
5763 /* purgeable cant have delayed copies - now or in the future */
5764 assert(object->copy == VM_OBJECT_NULL);
5765 assert(object->copy_strategy == MEMORY_OBJECT_COPY_NONE);
5766
5767 /*
5768 * Execute the desired operation.
5769 */
5770 if (control == VM_PURGABLE_GET_STATE) {
5771 *state = old_state;
5772 return KERN_SUCCESS;
5773 }
5774
5775 if (control == VM_PURGABLE_SET_STATE &&
5776 object->purgeable_only_by_kernel) {
5777 return KERN_PROTECTION_FAILURE;
5778 }
5779
5780 if (control != VM_PURGABLE_SET_STATE &&
5781 control != VM_PURGABLE_SET_STATE_FROM_KERNEL) {
5782 return KERN_INVALID_ARGUMENT;
5783 }
5784
5785 if ((*state) & VM_PURGABLE_DEBUG_EMPTY) {
5786 object->volatile_empty = TRUE;
5787 }
5788 if ((*state) & VM_PURGABLE_DEBUG_FAULT) {
5789 object->volatile_fault = TRUE;
5790 }
5791
5792 new_state = *state & VM_PURGABLE_STATE_MASK;
5793 if (new_state == VM_PURGABLE_VOLATILE) {
5794 if (old_state == VM_PURGABLE_EMPTY) {
5795 /* what's been emptied must stay empty */
5796 new_state = VM_PURGABLE_EMPTY;
5797 }
5798 if (object->volatile_empty) {
5799 /* debugging mode: go straight to empty */
5800 new_state = VM_PURGABLE_EMPTY;
5801 }
5802 }
5803
5804 switch (new_state) {
5805 case VM_PURGABLE_DENY:
5806 /*
5807 * Attempting to convert purgeable memory to non-purgeable:
5808 * not allowed.
5809 */
5810 return KERN_INVALID_ARGUMENT;
5811 case VM_PURGABLE_NONVOLATILE:
5812 object->purgable = new_state;
5813
5814 if (old_state == VM_PURGABLE_VOLATILE) {
5815 unsigned int delta;
5816
5817 assert(object->resident_page_count >=
5818 object->wired_page_count);
5819 delta = (object->resident_page_count -
5820 object->wired_page_count);
5821
5822 assert(vm_page_purgeable_count >= delta);
5823
5824 if (delta != 0) {
5825 OSAddAtomic(-delta,
5826 (SInt32 *)&vm_page_purgeable_count);
5827 }
5828 if (object->wired_page_count != 0) {
5829 assert(vm_page_purgeable_wired_count >=
5830 object->wired_page_count);
5831 OSAddAtomic(-object->wired_page_count,
5832 (SInt32 *)&vm_page_purgeable_wired_count);
5833 }
5834
5835 vm_page_lock_queues();
5836
5837 /* object should be on a queue */
5838 assert(object->objq.next != NULL &&
5839 object->objq.prev != NULL);
5840 purgeable_q_t queue;
5841
5842 /*
5843 * Move object from its volatile queue to the
5844 * non-volatile queue...
5845 */
5846 queue = vm_purgeable_object_remove(object);
5847 assert(queue);
5848
5849 if (object->purgeable_when_ripe) {
5850 vm_purgeable_token_delete_last(queue);
5851 }
5852 assert(queue->debug_count_objects>=0);
5853
5854 vm_page_unlock_queues();
5855 }
5856 if (old_state == VM_PURGABLE_VOLATILE ||
5857 old_state == VM_PURGABLE_EMPTY) {
5858 /*
5859 * Transfer the object's pages from the volatile to
5860 * non-volatile ledgers.
5861 */
5862 vm_purgeable_accounting(object, VM_PURGABLE_VOLATILE);
5863 }
5864
5865 break;
5866
5867 case VM_PURGABLE_VOLATILE:
5868 if (object->volatile_fault) {
5869 vm_page_t p;
5870 int refmod;
5871
5872 vm_page_queue_iterate(&object->memq, p, vm_page_t, vmp_listq) {
5873 if (p->vmp_busy ||
5874 VM_PAGE_WIRED(p) ||
5875 p->vmp_fictitious) {
5876 continue;
5877 }
5878 refmod = pmap_disconnect(VM_PAGE_GET_PHYS_PAGE(p));
5879 if ((refmod & VM_MEM_MODIFIED) &&
5880 !p->vmp_dirty) {
5881 SET_PAGE_DIRTY(p, FALSE);
5882 }
5883 }
5884 }
5885
5886 assert(old_state != VM_PURGABLE_EMPTY);
5887
5888 purgeable_q_t queue;
5889
5890 /* find the correct queue */
5891 if ((*state&VM_PURGABLE_ORDERING_MASK) == VM_PURGABLE_ORDERING_OBSOLETE)
5892 queue = &purgeable_queues[PURGEABLE_Q_TYPE_OBSOLETE];
5893 else {
5894 if ((*state&VM_PURGABLE_BEHAVIOR_MASK) == VM_PURGABLE_BEHAVIOR_FIFO)
5895 queue = &purgeable_queues[PURGEABLE_Q_TYPE_FIFO];
5896 else
5897 queue = &purgeable_queues[PURGEABLE_Q_TYPE_LIFO];
5898 }
5899
5900 if (old_state == VM_PURGABLE_NONVOLATILE ||
5901 old_state == VM_PURGABLE_EMPTY) {
5902 unsigned int delta;
5903
5904 if ((*state & VM_PURGABLE_NO_AGING_MASK) ==
5905 VM_PURGABLE_NO_AGING) {
5906 object->purgeable_when_ripe = FALSE;
5907 } else {
5908 object->purgeable_when_ripe = TRUE;
5909 }
5910
5911 if (object->purgeable_when_ripe) {
5912 kern_return_t result;
5913
5914 /* try to add token... this can fail */
5915 vm_page_lock_queues();
5916
5917 result = vm_purgeable_token_add(queue);
5918 if (result != KERN_SUCCESS) {
5919 vm_page_unlock_queues();
5920 return result;
5921 }
5922 vm_page_unlock_queues();
5923 }
5924
5925 assert(object->resident_page_count >=
5926 object->wired_page_count);
5927 delta = (object->resident_page_count -
5928 object->wired_page_count);
5929
5930 if (delta != 0) {
5931 OSAddAtomic(delta,
5932 &vm_page_purgeable_count);
5933 }
5934 if (object->wired_page_count != 0) {
5935 OSAddAtomic(object->wired_page_count,
5936 &vm_page_purgeable_wired_count);
5937 }
5938
5939 object->purgable = new_state;
5940
5941 /* object should be on "non-volatile" queue */
5942 assert(object->objq.next != NULL);
5943 assert(object->objq.prev != NULL);
5944 }
5945 else if (old_state == VM_PURGABLE_VOLATILE) {
5946 purgeable_q_t old_queue;
5947 boolean_t purgeable_when_ripe;
5948
5949 /*
5950 * if reassigning priorities / purgeable groups, we don't change the
5951 * token queue. So moving priorities will not make pages stay around longer.
5952 * Reasoning is that the algorithm gives most priority to the most important
5953 * object. If a new token is added, the most important object' priority is boosted.
5954 * This biases the system already for purgeable queues that move a lot.
5955 * It doesn't seem more biasing is neccessary in this case, where no new object is added.
5956 */
5957 assert(object->objq.next != NULL && object->objq.prev != NULL); /* object should be on a queue */
5958
5959 old_queue = vm_purgeable_object_remove(object);
5960 assert(old_queue);
5961
5962 if ((*state & VM_PURGABLE_NO_AGING_MASK) ==
5963 VM_PURGABLE_NO_AGING) {
5964 purgeable_when_ripe = FALSE;
5965 } else {
5966 purgeable_when_ripe = TRUE;
5967 }
5968
5969 if (old_queue != queue ||
5970 (purgeable_when_ripe !=
5971 object->purgeable_when_ripe)) {
5972 kern_return_t result;
5973
5974 /* Changing queue. Have to move token. */
5975 vm_page_lock_queues();
5976 if (object->purgeable_when_ripe) {
5977 vm_purgeable_token_delete_last(old_queue);
5978 }
5979 object->purgeable_when_ripe = purgeable_when_ripe;
5980 if (object->purgeable_when_ripe) {
5981 result = vm_purgeable_token_add(queue);
5982 assert(result==KERN_SUCCESS); /* this should never fail since we just freed a token */
5983 }
5984 vm_page_unlock_queues();
5985
5986 }
5987 };
5988 vm_purgeable_object_add(object, queue, (*state&VM_VOLATILE_GROUP_MASK)>>VM_VOLATILE_GROUP_SHIFT );
5989 if (old_state == VM_PURGABLE_NONVOLATILE) {
5990 vm_purgeable_accounting(object,
5991 VM_PURGABLE_NONVOLATILE);
5992 }
5993
5994 assert(queue->debug_count_objects>=0);
5995
5996 break;
5997
5998
5999 case VM_PURGABLE_EMPTY:
6000 if (object->volatile_fault) {
6001 vm_page_t p;
6002 int refmod;
6003
6004 vm_page_queue_iterate(&object->memq, p, vm_page_t, vmp_listq) {
6005 if (p->vmp_busy ||
6006 VM_PAGE_WIRED(p) ||
6007 p->vmp_fictitious) {
6008 continue;
6009 }
6010 refmod = pmap_disconnect(VM_PAGE_GET_PHYS_PAGE(p));
6011 if ((refmod & VM_MEM_MODIFIED) &&
6012 !p->vmp_dirty) {
6013 SET_PAGE_DIRTY(p, FALSE);
6014 }
6015 }
6016 }
6017
6018 if (old_state == VM_PURGABLE_VOLATILE) {
6019 purgeable_q_t old_queue;
6020
6021 /* object should be on a queue */
6022 assert(object->objq.next != NULL &&
6023 object->objq.prev != NULL);
6024
6025 old_queue = vm_purgeable_object_remove(object);
6026 assert(old_queue);
6027 if (object->purgeable_when_ripe) {
6028 vm_page_lock_queues();
6029 vm_purgeable_token_delete_first(old_queue);
6030 vm_page_unlock_queues();
6031 }
6032 }
6033
6034 if (old_state == VM_PURGABLE_NONVOLATILE) {
6035 /*
6036 * This object's pages were previously accounted as
6037 * "non-volatile" and now need to be accounted as
6038 * "volatile".
6039 */
6040 vm_purgeable_accounting(object,
6041 VM_PURGABLE_NONVOLATILE);
6042 /*
6043 * Set to VM_PURGABLE_EMPTY because the pages are no
6044 * longer accounted in the "non-volatile" ledger
6045 * and are also not accounted for in
6046 * "vm_page_purgeable_count".
6047 */
6048 object->purgable = VM_PURGABLE_EMPTY;
6049 }
6050
6051 (void) vm_object_purge(object, 0);
6052 assert(object->purgable == VM_PURGABLE_EMPTY);
6053
6054 break;
6055 }
6056
6057 *state = old_state;
6058
6059 vm_object_lock_assert_exclusive(object);
6060
6061 return KERN_SUCCESS;
6062}
6063
6064kern_return_t
6065vm_object_get_page_counts(
6066 vm_object_t object,
6067 vm_object_offset_t offset,
6068 vm_object_size_t size,
6069 unsigned int *resident_page_count,
6070 unsigned int *dirty_page_count)
6071{
6072
6073 kern_return_t kr = KERN_SUCCESS;
6074 boolean_t count_dirty_pages = FALSE;
6075 vm_page_t p = VM_PAGE_NULL;
6076 unsigned int local_resident_count = 0;
6077 unsigned int local_dirty_count = 0;
6078 vm_object_offset_t cur_offset = 0;
6079 vm_object_offset_t end_offset = 0;
6080
6081 if (object == VM_OBJECT_NULL)
6082 return KERN_INVALID_ARGUMENT;
6083
6084
6085 cur_offset = offset;
6086
6087 end_offset = offset + size;
6088
6089 vm_object_lock_assert_exclusive(object);
6090
6091 if (dirty_page_count != NULL) {
6092
6093 count_dirty_pages = TRUE;
6094 }
6095
6096 if (resident_page_count != NULL && count_dirty_pages == FALSE) {
6097 /*
6098 * Fast path when:
6099 * - we only want the resident page count, and,
6100 * - the entire object is exactly covered by the request.
6101 */
6102 if (offset == 0 && (object->vo_size == size)) {
6103
6104 *resident_page_count = object->resident_page_count;
6105 goto out;
6106 }
6107 }
6108
6109 if (object->resident_page_count <= (size >> PAGE_SHIFT)) {
6110
6111 vm_page_queue_iterate(&object->memq, p, vm_page_t, vmp_listq) {
6112
6113 if (p->vmp_offset >= cur_offset && p->vmp_offset < end_offset) {
6114
6115 local_resident_count++;
6116
6117 if (count_dirty_pages) {
6118
6119 if (p->vmp_dirty || (p->vmp_wpmapped && pmap_is_modified(VM_PAGE_GET_PHYS_PAGE(p)))) {
6120
6121 local_dirty_count++;
6122 }
6123 }
6124 }
6125 }
6126 } else {
6127
6128 for (cur_offset = offset; cur_offset < end_offset; cur_offset += PAGE_SIZE_64) {
6129
6130 p = vm_page_lookup(object, cur_offset);
6131
6132 if (p != VM_PAGE_NULL) {
6133
6134 local_resident_count++;
6135
6136 if (count_dirty_pages) {
6137
6138 if (p->vmp_dirty || (p->vmp_wpmapped && pmap_is_modified(VM_PAGE_GET_PHYS_PAGE(p)))) {
6139
6140 local_dirty_count++;
6141 }
6142 }
6143 }
6144 }
6145
6146 }
6147
6148 if (resident_page_count != NULL) {
6149 *resident_page_count = local_resident_count;
6150 }
6151
6152 if (dirty_page_count != NULL) {
6153 *dirty_page_count = local_dirty_count;
6154 }
6155
6156out:
6157 return kr;
6158}
6159
6160
6161#if TASK_SWAPPER
6162/*
6163 * vm_object_res_deallocate
6164 *
6165 * (recursively) decrement residence counts on vm objects and their shadows.
6166 * Called from vm_object_deallocate and when swapping out an object.
6167 *
6168 * The object is locked, and remains locked throughout the function,
6169 * even as we iterate down the shadow chain. Locks on intermediate objects
6170 * will be dropped, but not the original object.
6171 *
6172 * NOTE: this function used to use recursion, rather than iteration.
6173 */
6174
6175__private_extern__ void
6176vm_object_res_deallocate(
6177 vm_object_t object)
6178{
6179 vm_object_t orig_object = object;
6180 /*
6181 * Object is locked so it can be called directly
6182 * from vm_object_deallocate. Original object is never
6183 * unlocked.
6184 */
6185 assert(object->res_count > 0);
6186 while (--object->res_count == 0) {
6187 assert(object->ref_count >= object->res_count);
6188 vm_object_deactivate_all_pages(object);
6189 /* iterate on shadow, if present */
6190 if (object->shadow != VM_OBJECT_NULL) {
6191 vm_object_t tmp_object = object->shadow;
6192 vm_object_lock(tmp_object);
6193 if (object != orig_object)
6194 vm_object_unlock(object);
6195 object = tmp_object;
6196 assert(object->res_count > 0);
6197 } else
6198 break;
6199 }
6200 if (object != orig_object)
6201 vm_object_unlock(object);
6202}
6203
6204/*
6205 * vm_object_res_reference
6206 *
6207 * Internal function to increment residence count on a vm object
6208 * and its shadows. It is called only from vm_object_reference, and
6209 * when swapping in a vm object, via vm_map_swap.
6210 *
6211 * The object is locked, and remains locked throughout the function,
6212 * even as we iterate down the shadow chain. Locks on intermediate objects
6213 * will be dropped, but not the original object.
6214 *
6215 * NOTE: this function used to use recursion, rather than iteration.
6216 */
6217
6218__private_extern__ void
6219vm_object_res_reference(
6220 vm_object_t object)
6221{
6222 vm_object_t orig_object = object;
6223 /*
6224 * Object is locked, so this can be called directly
6225 * from vm_object_reference. This lock is never released.
6226 */
6227 while ((++object->res_count == 1) &&
6228 (object->shadow != VM_OBJECT_NULL)) {
6229 vm_object_t tmp_object = object->shadow;
6230
6231 assert(object->ref_count >= object->res_count);
6232 vm_object_lock(tmp_object);
6233 if (object != orig_object)
6234 vm_object_unlock(object);
6235 object = tmp_object;
6236 }
6237 if (object != orig_object)
6238 vm_object_unlock(object);
6239 assert(orig_object->ref_count >= orig_object->res_count);
6240}
6241#endif /* TASK_SWAPPER */
6242
6243/*
6244 * vm_object_reference:
6245 *
6246 * Gets another reference to the given object.
6247 */
6248#ifdef vm_object_reference
6249#undef vm_object_reference
6250#endif
6251__private_extern__ void
6252vm_object_reference(
6253 vm_object_t object)
6254{
6255 if (object == VM_OBJECT_NULL)
6256 return;
6257
6258 vm_object_lock(object);
6259 assert(object->ref_count > 0);
6260 vm_object_reference_locked(object);
6261 vm_object_unlock(object);
6262}
6263
6264/*
6265 * vm_object_transpose
6266 *
6267 * This routine takes two VM objects of the same size and exchanges
6268 * their backing store.
6269 * The objects should be "quiesced" via a UPL operation with UPL_SET_IO_WIRE
6270 * and UPL_BLOCK_ACCESS if they are referenced anywhere.
6271 *
6272 * The VM objects must not be locked by caller.
6273 */
6274unsigned int vm_object_transpose_count = 0;
6275kern_return_t
6276vm_object_transpose(
6277 vm_object_t object1,
6278 vm_object_t object2,
6279 vm_object_size_t transpose_size)
6280{
6281 vm_object_t tmp_object;
6282 kern_return_t retval;
6283 boolean_t object1_locked, object2_locked;
6284 vm_page_t page;
6285 vm_object_offset_t page_offset;
6286
6287 tmp_object = VM_OBJECT_NULL;
6288 object1_locked = FALSE; object2_locked = FALSE;
6289
6290 if (object1 == object2 ||
6291 object1 == VM_OBJECT_NULL ||
6292 object2 == VM_OBJECT_NULL) {
6293 /*
6294 * If the 2 VM objects are the same, there's
6295 * no point in exchanging their backing store.
6296 */
6297 retval = KERN_INVALID_VALUE;
6298 goto done;
6299 }
6300
6301 /*
6302 * Since we need to lock both objects at the same time,
6303 * make sure we always lock them in the same order to
6304 * avoid deadlocks.
6305 */
6306 if (object1 > object2) {
6307 tmp_object = object1;
6308 object1 = object2;
6309 object2 = tmp_object;
6310 }
6311
6312 /*
6313 * Allocate a temporary VM object to hold object1's contents
6314 * while we copy object2 to object1.
6315 */
6316 tmp_object = vm_object_allocate(transpose_size);
6317 vm_object_lock(tmp_object);
6318 tmp_object->can_persist = FALSE;
6319
6320
6321 /*
6322 * Grab control of the 1st VM object.
6323 */
6324 vm_object_lock(object1);
6325 object1_locked = TRUE;
6326 if (!object1->alive || object1->terminating ||
6327 object1->copy || object1->shadow || object1->shadowed ||
6328 object1->purgable != VM_PURGABLE_DENY) {
6329 /*
6330 * We don't deal with copy or shadow objects (yet).
6331 */
6332 retval = KERN_INVALID_VALUE;
6333 goto done;
6334 }
6335 /*
6336 * We're about to mess with the object's backing store and
6337 * taking a "paging_in_progress" reference wouldn't be enough
6338 * to prevent any paging activity on this object, so the caller should
6339 * have "quiesced" the objects beforehand, via a UPL operation with
6340 * UPL_SET_IO_WIRE (to make sure all the pages are there and wired)
6341 * and UPL_BLOCK_ACCESS (to mark the pages "busy").
6342 *
6343 * Wait for any paging operation to complete (but only paging, not
6344 * other kind of activities not linked to the pager). After we're
6345 * statisfied that there's no more paging in progress, we keep the
6346 * object locked, to guarantee that no one tries to access its pager.
6347 */
6348 vm_object_paging_only_wait(object1, THREAD_UNINT);
6349
6350 /*
6351 * Same as above for the 2nd object...
6352 */
6353 vm_object_lock(object2);
6354 object2_locked = TRUE;
6355 if (! object2->alive || object2->terminating ||
6356 object2->copy || object2->shadow || object2->shadowed ||
6357 object2->purgable != VM_PURGABLE_DENY) {
6358 retval = KERN_INVALID_VALUE;
6359 goto done;
6360 }
6361 vm_object_paging_only_wait(object2, THREAD_UNINT);
6362
6363
6364 if (object1->vo_size != object2->vo_size ||
6365 object1->vo_size != transpose_size) {
6366 /*
6367 * If the 2 objects don't have the same size, we can't
6368 * exchange their backing stores or one would overflow.
6369 * If their size doesn't match the caller's
6370 * "transpose_size", we can't do it either because the
6371 * transpose operation will affect the entire span of
6372 * the objects.
6373 */
6374 retval = KERN_INVALID_VALUE;
6375 goto done;
6376 }
6377
6378
6379 /*
6380 * Transpose the lists of resident pages.
6381 * This also updates the resident_page_count and the memq_hint.
6382 */
6383 if (object1->phys_contiguous || vm_page_queue_empty(&object1->memq)) {
6384 /*
6385 * No pages in object1, just transfer pages
6386 * from object2 to object1. No need to go through
6387 * an intermediate object.
6388 */
6389 while (!vm_page_queue_empty(&object2->memq)) {
6390 page = (vm_page_t) vm_page_queue_first(&object2->memq);
6391 vm_page_rename(page, object1, page->vmp_offset);
6392 }
6393 assert(vm_page_queue_empty(&object2->memq));
6394 } else if (object2->phys_contiguous || vm_page_queue_empty(&object2->memq)) {
6395 /*
6396 * No pages in object2, just transfer pages
6397 * from object1 to object2. No need to go through
6398 * an intermediate object.
6399 */
6400 while (!vm_page_queue_empty(&object1->memq)) {
6401 page = (vm_page_t) vm_page_queue_first(&object1->memq);
6402 vm_page_rename(page, object2, page->vmp_offset);
6403 }
6404 assert(vm_page_queue_empty(&object1->memq));
6405 } else {
6406 /* transfer object1's pages to tmp_object */
6407 while (!vm_page_queue_empty(&object1->memq)) {
6408 page = (vm_page_t) vm_page_queue_first(&object1->memq);
6409 page_offset = page->vmp_offset;
6410 vm_page_remove(page, TRUE);
6411 page->vmp_offset = page_offset;
6412 vm_page_queue_enter(&tmp_object->memq, page, vm_page_t, vmp_listq);
6413 }
6414 assert(vm_page_queue_empty(&object1->memq));
6415 /* transfer object2's pages to object1 */
6416 while (!vm_page_queue_empty(&object2->memq)) {
6417 page = (vm_page_t) vm_page_queue_first(&object2->memq);
6418 vm_page_rename(page, object1, page->vmp_offset);
6419 }
6420 assert(vm_page_queue_empty(&object2->memq));
6421 /* transfer tmp_object's pages to object2 */
6422 while (!vm_page_queue_empty(&tmp_object->memq)) {
6423 page = (vm_page_t) vm_page_queue_first(&tmp_object->memq);
6424 vm_page_queue_remove(&tmp_object->memq, page,
6425 vm_page_t, vmp_listq);
6426 vm_page_insert(page, object2, page->vmp_offset);
6427 }
6428 assert(vm_page_queue_empty(&tmp_object->memq));
6429 }
6430
6431#define __TRANSPOSE_FIELD(field) \
6432MACRO_BEGIN \
6433 tmp_object->field = object1->field; \
6434 object1->field = object2->field; \
6435 object2->field = tmp_object->field; \
6436MACRO_END
6437
6438 /* "Lock" refers to the object not its contents */
6439 /* "size" should be identical */
6440 assert(object1->vo_size == object2->vo_size);
6441 /* "memq_hint" was updated above when transposing pages */
6442 /* "ref_count" refers to the object not its contents */
6443 assert(object1->ref_count >= 1);
6444 assert(object2->ref_count >= 1);
6445#if TASK_SWAPPER
6446 /* "res_count" refers to the object not its contents */
6447#endif
6448 /* "resident_page_count" was updated above when transposing pages */
6449 /* "wired_page_count" was updated above when transposing pages */
6450#if ! VM_TAG_ACTIVE_UPDATE
6451 /* "wired_objq" was dealt with along with "wired_page_count" */
6452#endif /* ! VM_TAG_ACTIVE_UPDATE */
6453 /* "reusable_page_count" was updated above when transposing pages */
6454 /* there should be no "copy" */
6455 assert(!object1->copy);
6456 assert(!object2->copy);
6457 /* there should be no "shadow" */
6458 assert(!object1->shadow);
6459 assert(!object2->shadow);
6460 __TRANSPOSE_FIELD(vo_shadow_offset); /* used by phys_contiguous objects */
6461 __TRANSPOSE_FIELD(pager);
6462 __TRANSPOSE_FIELD(paging_offset);
6463 __TRANSPOSE_FIELD(pager_control);
6464 /* update the memory_objects' pointers back to the VM objects */
6465 if (object1->pager_control != MEMORY_OBJECT_CONTROL_NULL) {
6466 memory_object_control_collapse(object1->pager_control,
6467 object1);
6468 }
6469 if (object2->pager_control != MEMORY_OBJECT_CONTROL_NULL) {
6470 memory_object_control_collapse(object2->pager_control,
6471 object2);
6472 }
6473 __TRANSPOSE_FIELD(copy_strategy);
6474 /* "paging_in_progress" refers to the object not its contents */
6475 assert(!object1->paging_in_progress);
6476 assert(!object2->paging_in_progress);
6477 assert(object1->activity_in_progress);
6478 assert(object2->activity_in_progress);
6479 /* "all_wanted" refers to the object not its contents */
6480 __TRANSPOSE_FIELD(pager_created);
6481 __TRANSPOSE_FIELD(pager_initialized);
6482 __TRANSPOSE_FIELD(pager_ready);
6483 __TRANSPOSE_FIELD(pager_trusted);
6484 __TRANSPOSE_FIELD(can_persist);
6485 __TRANSPOSE_FIELD(internal);
6486 __TRANSPOSE_FIELD(private);
6487 __TRANSPOSE_FIELD(pageout);
6488 /* "alive" should be set */
6489 assert(object1->alive);
6490 assert(object2->alive);
6491 /* "purgeable" should be non-purgeable */
6492 assert(object1->purgable == VM_PURGABLE_DENY);
6493 assert(object2->purgable == VM_PURGABLE_DENY);
6494 /* "shadowed" refers to the the object not its contents */
6495 __TRANSPOSE_FIELD(purgeable_when_ripe);
6496 __TRANSPOSE_FIELD(true_share);
6497 /* "terminating" should not be set */
6498 assert(!object1->terminating);
6499 assert(!object2->terminating);
6500 /* transfer "named" reference if needed */
6501 if (object1->named && !object2->named) {
6502 assert(object1->ref_count >= 2);
6503 assert(object2->ref_count >= 1);
6504 object1->ref_count--;
6505 object2->ref_count++;
6506 } else if (!object1->named && object2->named) {
6507 assert(object1->ref_count >= 1);
6508 assert(object2->ref_count >= 2);
6509 object1->ref_count++;
6510 object2->ref_count--;
6511 }
6512 __TRANSPOSE_FIELD(named);
6513 /* "shadow_severed" refers to the object not its contents */
6514 __TRANSPOSE_FIELD(phys_contiguous);
6515 __TRANSPOSE_FIELD(nophyscache);
6516 /* "cached_list.next" points to transposed object */
6517 object1->cached_list.next = (queue_entry_t) object2;
6518 object2->cached_list.next = (queue_entry_t) object1;
6519 /* "cached_list.prev" should be NULL */
6520 assert(object1->cached_list.prev == NULL);
6521 assert(object2->cached_list.prev == NULL);
6522 __TRANSPOSE_FIELD(last_alloc);
6523 __TRANSPOSE_FIELD(sequential);
6524 __TRANSPOSE_FIELD(pages_created);
6525 __TRANSPOSE_FIELD(pages_used);
6526 __TRANSPOSE_FIELD(scan_collisions);
6527 __TRANSPOSE_FIELD(cow_hint);
6528 __TRANSPOSE_FIELD(wimg_bits);
6529 __TRANSPOSE_FIELD(set_cache_attr);
6530 __TRANSPOSE_FIELD(code_signed);
6531 object1->transposed = TRUE;
6532 object2->transposed = TRUE;
6533 __TRANSPOSE_FIELD(mapping_in_progress);
6534 __TRANSPOSE_FIELD(volatile_empty);
6535 __TRANSPOSE_FIELD(volatile_fault);
6536 __TRANSPOSE_FIELD(all_reusable);
6537 assert(object1->blocked_access);
6538 assert(object2->blocked_access);
6539 __TRANSPOSE_FIELD(set_cache_attr);
6540 assert(!object1->object_is_shared_cache);
6541 assert(!object2->object_is_shared_cache);
6542 /* ignore purgeable_queue_type and purgeable_queue_group */
6543 assert(!object1->io_tracking);
6544 assert(!object2->io_tracking);
6545#if VM_OBJECT_ACCESS_TRACKING
6546 assert(!object1->access_tracking);
6547 assert(!object2->access_tracking);
6548#endif /* VM_OBJECT_ACCESS_TRACKING */
6549 __TRANSPOSE_FIELD(no_tag_update);
6550#if CONFIG_SECLUDED_MEMORY
6551 assert(!object1->eligible_for_secluded);
6552 assert(!object2->eligible_for_secluded);
6553 assert(!object1->can_grab_secluded);
6554 assert(!object2->can_grab_secluded);
6555#else /* CONFIG_SECLUDED_MEMORY */
6556 assert(object1->__object3_unused_bits == 0);
6557 assert(object2->__object3_unused_bits == 0);
6558#endif /* CONFIG_SECLUDED_MEMORY */
6559 assert(object1->__object2_unused_bits == 0);
6560 assert(object2->__object2_unused_bits == 0);
6561#if UPL_DEBUG
6562 /* "uplq" refers to the object not its contents (see upl_transpose()) */
6563#endif
6564 assert((object1->purgable == VM_PURGABLE_DENY) || (object1->objq.next == NULL));
6565 assert((object1->purgable == VM_PURGABLE_DENY) || (object1->objq.prev == NULL));
6566 assert((object2->purgable == VM_PURGABLE_DENY) || (object2->objq.next == NULL));
6567 assert((object2->purgable == VM_PURGABLE_DENY) || (object2->objq.prev == NULL));
6568
6569#undef __TRANSPOSE_FIELD
6570
6571 retval = KERN_SUCCESS;
6572
6573done:
6574 /*
6575 * Cleanup.
6576 */
6577 if (tmp_object != VM_OBJECT_NULL) {
6578 vm_object_unlock(tmp_object);
6579 /*
6580 * Re-initialize the temporary object to avoid
6581 * deallocating a real pager.
6582 */
6583 _vm_object_allocate(transpose_size, tmp_object);
6584 vm_object_deallocate(tmp_object);
6585 tmp_object = VM_OBJECT_NULL;
6586 }
6587
6588 if (object1_locked) {
6589 vm_object_unlock(object1);
6590 object1_locked = FALSE;
6591 }
6592 if (object2_locked) {
6593 vm_object_unlock(object2);
6594 object2_locked = FALSE;
6595 }
6596
6597 vm_object_transpose_count++;
6598
6599 return retval;
6600}
6601
6602
6603/*
6604 * vm_object_cluster_size
6605 *
6606 * Determine how big a cluster we should issue an I/O for...
6607 *
6608 * Inputs: *start == offset of page needed
6609 * *length == maximum cluster pager can handle
6610 * Outputs: *start == beginning offset of cluster
6611 * *length == length of cluster to try
6612 *
6613 * The original *start will be encompassed by the cluster
6614 *
6615 */
6616extern int speculative_reads_disabled;
6617
6618/*
6619 * Try to always keep these values an even multiple of PAGE_SIZE. We use these values
6620 * to derive min_ph_bytes and max_ph_bytes (IMP: bytes not # of pages) and expect those values to
6621 * always be page-aligned. The derivation could involve operations (e.g. division)
6622 * that could give us non-page-size aligned values if we start out with values that
6623 * are odd multiples of PAGE_SIZE.
6624 */
6625#if CONFIG_EMBEDDED
6626 unsigned int preheat_max_bytes = (1024 * 512);
6627#else /* CONFIG_EMBEDDED */
6628 unsigned int preheat_max_bytes = MAX_UPL_TRANSFER_BYTES;
6629#endif /* CONFIG_EMBEDDED */
6630unsigned int preheat_min_bytes = (1024 * 32);
6631
6632
6633__private_extern__ void
6634vm_object_cluster_size(vm_object_t object, vm_object_offset_t *start,
6635 vm_size_t *length, vm_object_fault_info_t fault_info, uint32_t *io_streaming)
6636{
6637 vm_size_t pre_heat_size;
6638 vm_size_t tail_size;
6639 vm_size_t head_size;
6640 vm_size_t max_length;
6641 vm_size_t cluster_size;
6642 vm_object_offset_t object_size;
6643 vm_object_offset_t orig_start;
6644 vm_object_offset_t target_start;
6645 vm_object_offset_t offset;
6646 vm_behavior_t behavior;
6647 boolean_t look_behind = TRUE;
6648 boolean_t look_ahead = TRUE;
6649 boolean_t isSSD = FALSE;
6650 uint32_t throttle_limit;
6651 int sequential_run;
6652 int sequential_behavior = VM_BEHAVIOR_SEQUENTIAL;
6653 vm_size_t max_ph_size;
6654 vm_size_t min_ph_size;
6655
6656 assert( !(*length & PAGE_MASK));
6657 assert( !(*start & PAGE_MASK_64));
6658
6659 /*
6660 * remember maxiumum length of run requested
6661 */
6662 max_length = *length;
6663 /*
6664 * we'll always return a cluster size of at least
6665 * 1 page, since the original fault must always
6666 * be processed
6667 */
6668 *length = PAGE_SIZE;
6669 *io_streaming = 0;
6670
6671 if (speculative_reads_disabled || fault_info == NULL) {
6672 /*
6673 * no cluster... just fault the page in
6674 */
6675 return;
6676 }
6677 orig_start = *start;
6678 target_start = orig_start;
6679 cluster_size = round_page(fault_info->cluster_size);
6680 behavior = fault_info->behavior;
6681
6682 vm_object_lock(object);
6683
6684 if (object->pager == MEMORY_OBJECT_NULL)
6685 goto out; /* pager is gone for this object, nothing more to do */
6686
6687 vnode_pager_get_isSSD(object->pager, &isSSD);
6688
6689 min_ph_size = round_page(preheat_min_bytes);
6690 max_ph_size = round_page(preheat_max_bytes);
6691
6692#if !CONFIG_EMBEDDED
6693 if (isSSD) {
6694 min_ph_size /= 2;
6695 max_ph_size /= 8;
6696
6697 if (min_ph_size & PAGE_MASK_64) {
6698 min_ph_size = trunc_page(min_ph_size);
6699 }
6700
6701 if (max_ph_size & PAGE_MASK_64) {
6702 max_ph_size = trunc_page(max_ph_size);
6703 }
6704 }
6705#endif /* !CONFIG_EMBEDDED */
6706
6707 if (min_ph_size < PAGE_SIZE)
6708 min_ph_size = PAGE_SIZE;
6709
6710 if (max_ph_size < PAGE_SIZE)
6711 max_ph_size = PAGE_SIZE;
6712 else if (max_ph_size > MAX_UPL_TRANSFER_BYTES)
6713 max_ph_size = MAX_UPL_TRANSFER_BYTES;
6714
6715 if (max_length > max_ph_size)
6716 max_length = max_ph_size;
6717
6718 if (max_length <= PAGE_SIZE)
6719 goto out;
6720
6721 if (object->internal)
6722 object_size = object->vo_size;
6723 else
6724 vnode_pager_get_object_size(object->pager, &object_size);
6725
6726 object_size = round_page_64(object_size);
6727
6728 if (orig_start >= object_size) {
6729 /*
6730 * fault occurred beyond the EOF...
6731 * we need to punt w/o changing the
6732 * starting offset
6733 */
6734 goto out;
6735 }
6736 if (object->pages_used > object->pages_created) {
6737 /*
6738 * must have wrapped our 32 bit counters
6739 * so reset
6740 */
6741 object->pages_used = object->pages_created = 0;
6742 }
6743 if ((sequential_run = object->sequential)) {
6744 if (sequential_run < 0) {
6745 sequential_behavior = VM_BEHAVIOR_RSEQNTL;
6746 sequential_run = 0 - sequential_run;
6747 } else {
6748 sequential_behavior = VM_BEHAVIOR_SEQUENTIAL;
6749 }
6750
6751 }
6752 switch (behavior) {
6753
6754 default:
6755 behavior = VM_BEHAVIOR_DEFAULT;
6756
6757 case VM_BEHAVIOR_DEFAULT:
6758 if (object->internal && fault_info->user_tag == VM_MEMORY_STACK)
6759 goto out;
6760
6761 if (sequential_run >= (3 * PAGE_SIZE)) {
6762 pre_heat_size = sequential_run + PAGE_SIZE;
6763
6764 if (sequential_behavior == VM_BEHAVIOR_SEQUENTIAL)
6765 look_behind = FALSE;
6766 else
6767 look_ahead = FALSE;
6768
6769 *io_streaming = 1;
6770 } else {
6771
6772 if (object->pages_created < (20 * (min_ph_size >> PAGE_SHIFT))) {
6773 /*
6774 * prime the pump
6775 */
6776 pre_heat_size = min_ph_size;
6777 } else {
6778 /*
6779 * Linear growth in PH size: The maximum size is max_length...
6780 * this cacluation will result in a size that is neither a
6781 * power of 2 nor a multiple of PAGE_SIZE... so round
6782 * it up to the nearest PAGE_SIZE boundary
6783 */
6784 pre_heat_size = (max_length * (uint64_t)object->pages_used) / object->pages_created;
6785
6786 if (pre_heat_size < min_ph_size)
6787 pre_heat_size = min_ph_size;
6788 else
6789 pre_heat_size = round_page(pre_heat_size);
6790 }
6791 }
6792 break;
6793
6794 case VM_BEHAVIOR_RANDOM:
6795 if ((pre_heat_size = cluster_size) <= PAGE_SIZE)
6796 goto out;
6797 break;
6798
6799 case VM_BEHAVIOR_SEQUENTIAL:
6800 if ((pre_heat_size = cluster_size) == 0)
6801 pre_heat_size = sequential_run + PAGE_SIZE;
6802 look_behind = FALSE;
6803 *io_streaming = 1;
6804
6805 break;
6806
6807 case VM_BEHAVIOR_RSEQNTL:
6808 if ((pre_heat_size = cluster_size) == 0)
6809 pre_heat_size = sequential_run + PAGE_SIZE;
6810 look_ahead = FALSE;
6811 *io_streaming = 1;
6812
6813 break;
6814
6815 }
6816 throttle_limit = (uint32_t) max_length;
6817 assert(throttle_limit == max_length);
6818
6819 if (vnode_pager_get_throttle_io_limit(object->pager, &throttle_limit) == KERN_SUCCESS) {
6820 if (max_length > throttle_limit)
6821 max_length = throttle_limit;
6822 }
6823 if (pre_heat_size > max_length)
6824 pre_heat_size = max_length;
6825
6826 if (behavior == VM_BEHAVIOR_DEFAULT && (pre_heat_size > min_ph_size)) {
6827
6828 unsigned int consider_free = vm_page_free_count + vm_page_cleaned_count;
6829
6830 if (consider_free < vm_page_throttle_limit) {
6831 pre_heat_size = trunc_page(pre_heat_size / 16);
6832 } else if (consider_free < vm_page_free_target) {
6833 pre_heat_size = trunc_page(pre_heat_size / 4);
6834 }
6835
6836 if (pre_heat_size < min_ph_size)
6837 pre_heat_size = min_ph_size;
6838 }
6839 if (look_ahead == TRUE) {
6840 if (look_behind == TRUE) {
6841 /*
6842 * if we get here its due to a random access...
6843 * so we want to center the original fault address
6844 * within the cluster we will issue... make sure
6845 * to calculate 'head_size' as a multiple of PAGE_SIZE...
6846 * 'pre_heat_size' is a multiple of PAGE_SIZE but not
6847 * necessarily an even number of pages so we need to truncate
6848 * the result to a PAGE_SIZE boundary
6849 */
6850 head_size = trunc_page(pre_heat_size / 2);
6851
6852 if (target_start > head_size)
6853 target_start -= head_size;
6854 else
6855 target_start = 0;
6856
6857 /*
6858 * 'target_start' at this point represents the beginning offset
6859 * of the cluster we are considering... 'orig_start' will be in
6860 * the center of this cluster if we didn't have to clip the start
6861 * due to running into the start of the file
6862 */
6863 }
6864 if ((target_start + pre_heat_size) > object_size)
6865 pre_heat_size = (vm_size_t)(round_page_64(object_size - target_start));
6866 /*
6867 * at this point caclulate the number of pages beyond the original fault
6868 * address that we want to consider... this is guaranteed not to extend beyond
6869 * the current EOF...
6870 */
6871 assert((vm_size_t)(orig_start - target_start) == (orig_start - target_start));
6872 tail_size = pre_heat_size - (vm_size_t)(orig_start - target_start) - PAGE_SIZE;
6873 } else {
6874 if (pre_heat_size > target_start) {
6875 /*
6876 * since pre_heat_size is always smaller then 2^32,
6877 * if it is larger then target_start (a 64 bit value)
6878 * it is safe to clip target_start to 32 bits
6879 */
6880 pre_heat_size = (vm_size_t) target_start;
6881 }
6882 tail_size = 0;
6883 }
6884 assert( !(target_start & PAGE_MASK_64));
6885 assert( !(pre_heat_size & PAGE_MASK_64));
6886
6887 if (pre_heat_size <= PAGE_SIZE)
6888 goto out;
6889
6890 if (look_behind == TRUE) {
6891 /*
6892 * take a look at the pages before the original
6893 * faulting offset... recalculate this in case
6894 * we had to clip 'pre_heat_size' above to keep
6895 * from running past the EOF.
6896 */
6897 head_size = pre_heat_size - tail_size - PAGE_SIZE;
6898
6899 for (offset = orig_start - PAGE_SIZE_64; head_size; offset -= PAGE_SIZE_64, head_size -= PAGE_SIZE) {
6900 /*
6901 * don't poke below the lowest offset
6902 */
6903 if (offset < fault_info->lo_offset)
6904 break;
6905 /*
6906 * for external objects or internal objects w/o a pager,
6907 * VM_COMPRESSOR_PAGER_STATE_GET will return VM_EXTERNAL_STATE_UNKNOWN
6908 */
6909 if (VM_COMPRESSOR_PAGER_STATE_GET(object, offset) == VM_EXTERNAL_STATE_ABSENT) {
6910 break;
6911 }
6912 if (vm_page_lookup(object, offset) != VM_PAGE_NULL) {
6913 /*
6914 * don't bridge resident pages
6915 */
6916 break;
6917 }
6918 *start = offset;
6919 *length += PAGE_SIZE;
6920 }
6921 }
6922 if (look_ahead == TRUE) {
6923 for (offset = orig_start + PAGE_SIZE_64; tail_size; offset += PAGE_SIZE_64, tail_size -= PAGE_SIZE) {
6924 /*
6925 * don't poke above the highest offset
6926 */
6927 if (offset >= fault_info->hi_offset)
6928 break;
6929 assert(offset < object_size);
6930
6931 /*
6932 * for external objects or internal objects w/o a pager,
6933 * VM_COMPRESSOR_PAGER_STATE_GET will return VM_EXTERNAL_STATE_UNKNOWN
6934 */
6935 if (VM_COMPRESSOR_PAGER_STATE_GET(object, offset) == VM_EXTERNAL_STATE_ABSENT) {
6936 break;
6937 }
6938 if (vm_page_lookup(object, offset) != VM_PAGE_NULL) {
6939 /*
6940 * don't bridge resident pages
6941 */
6942 break;
6943 }
6944 *length += PAGE_SIZE;
6945 }
6946 }
6947out:
6948 if (*length > max_length)
6949 *length = max_length;
6950
6951 vm_object_unlock(object);
6952
6953 DTRACE_VM1(clustersize, vm_size_t, *length);
6954}
6955
6956
6957/*
6958 * Allow manipulation of individual page state. This is actually part of
6959 * the UPL regimen but takes place on the VM object rather than on a UPL
6960 */
6961
6962kern_return_t
6963vm_object_page_op(
6964 vm_object_t object,
6965 vm_object_offset_t offset,
6966 int ops,
6967 ppnum_t *phys_entry,
6968 int *flags)
6969{
6970 vm_page_t dst_page;
6971
6972 vm_object_lock(object);
6973
6974 if(ops & UPL_POP_PHYSICAL) {
6975 if(object->phys_contiguous) {
6976 if (phys_entry) {
6977 *phys_entry = (ppnum_t)
6978 (object->vo_shadow_offset >> PAGE_SHIFT);
6979 }
6980 vm_object_unlock(object);
6981 return KERN_SUCCESS;
6982 } else {
6983 vm_object_unlock(object);
6984 return KERN_INVALID_OBJECT;
6985 }
6986 }
6987 if(object->phys_contiguous) {
6988 vm_object_unlock(object);
6989 return KERN_INVALID_OBJECT;
6990 }
6991
6992 while(TRUE) {
6993 if((dst_page = vm_page_lookup(object,offset)) == VM_PAGE_NULL) {
6994 vm_object_unlock(object);
6995 return KERN_FAILURE;
6996 }
6997
6998 /* Sync up on getting the busy bit */
6999 if((dst_page->vmp_busy || dst_page->vmp_cleaning) &&
7000 (((ops & UPL_POP_SET) &&
7001 (ops & UPL_POP_BUSY)) || (ops & UPL_POP_DUMP))) {
7002 /* someone else is playing with the page, we will */
7003 /* have to wait */
7004 PAGE_SLEEP(object, dst_page, THREAD_UNINT);
7005 continue;
7006 }
7007
7008 if (ops & UPL_POP_DUMP) {
7009 if (dst_page->vmp_pmapped == TRUE)
7010 pmap_disconnect(VM_PAGE_GET_PHYS_PAGE(dst_page));
7011
7012 VM_PAGE_FREE(dst_page);
7013 break;
7014 }
7015
7016 if (flags) {
7017 *flags = 0;
7018
7019 /* Get the condition of flags before requested ops */
7020 /* are undertaken */
7021
7022 if(dst_page->vmp_dirty) *flags |= UPL_POP_DIRTY;
7023 if(dst_page->vmp_free_when_done) *flags |= UPL_POP_PAGEOUT;
7024 if(dst_page->vmp_precious) *flags |= UPL_POP_PRECIOUS;
7025 if(dst_page->vmp_absent) *flags |= UPL_POP_ABSENT;
7026 if(dst_page->vmp_busy) *flags |= UPL_POP_BUSY;
7027 }
7028
7029 /* The caller should have made a call either contingent with */
7030 /* or prior to this call to set UPL_POP_BUSY */
7031 if(ops & UPL_POP_SET) {
7032 /* The protection granted with this assert will */
7033 /* not be complete. If the caller violates the */
7034 /* convention and attempts to change page state */
7035 /* without first setting busy we may not see it */
7036 /* because the page may already be busy. However */
7037 /* if such violations occur we will assert sooner */
7038 /* or later. */
7039 assert(dst_page->vmp_busy || (ops & UPL_POP_BUSY));
7040 if (ops & UPL_POP_DIRTY) {
7041 SET_PAGE_DIRTY(dst_page, FALSE);
7042 }
7043 if (ops & UPL_POP_PAGEOUT) dst_page->vmp_free_when_done = TRUE;
7044 if (ops & UPL_POP_PRECIOUS) dst_page->vmp_precious = TRUE;
7045 if (ops & UPL_POP_ABSENT) dst_page->vmp_absent = TRUE;
7046 if (ops & UPL_POP_BUSY) dst_page->vmp_busy = TRUE;
7047 }
7048
7049 if(ops & UPL_POP_CLR) {
7050 assert(dst_page->vmp_busy);
7051 if (ops & UPL_POP_DIRTY) dst_page->vmp_dirty = FALSE;
7052 if (ops & UPL_POP_PAGEOUT) dst_page->vmp_free_when_done = FALSE;
7053 if (ops & UPL_POP_PRECIOUS) dst_page->vmp_precious = FALSE;
7054 if (ops & UPL_POP_ABSENT) dst_page->vmp_absent = FALSE;
7055 if (ops & UPL_POP_BUSY) {
7056 dst_page->vmp_busy = FALSE;
7057 PAGE_WAKEUP(dst_page);
7058 }
7059 }
7060 if (phys_entry) {
7061 /*
7062 * The physical page number will remain valid
7063 * only if the page is kept busy.
7064 */
7065 assert(dst_page->vmp_busy);
7066 *phys_entry = VM_PAGE_GET_PHYS_PAGE(dst_page);
7067 }
7068
7069 break;
7070 }
7071
7072 vm_object_unlock(object);
7073 return KERN_SUCCESS;
7074
7075}
7076
7077/*
7078 * vm_object_range_op offers performance enhancement over
7079 * vm_object_page_op for page_op functions which do not require page
7080 * level state to be returned from the call. Page_op was created to provide
7081 * a low-cost alternative to page manipulation via UPLs when only a single
7082 * page was involved. The range_op call establishes the ability in the _op
7083 * family of functions to work on multiple pages where the lack of page level
7084 * state handling allows the caller to avoid the overhead of the upl structures.
7085 */
7086
7087kern_return_t
7088vm_object_range_op(
7089 vm_object_t object,
7090 vm_object_offset_t offset_beg,
7091 vm_object_offset_t offset_end,
7092 int ops,
7093 uint32_t *range)
7094{
7095 vm_object_offset_t offset;
7096 vm_page_t dst_page;
7097
7098 if (offset_end - offset_beg > (uint32_t) -1) {
7099 /* range is too big and would overflow "*range" */
7100 return KERN_INVALID_ARGUMENT;
7101 }
7102 if (object->resident_page_count == 0) {
7103 if (range) {
7104 if (ops & UPL_ROP_PRESENT) {
7105 *range = 0;
7106 } else {
7107 *range = (uint32_t) (offset_end - offset_beg);
7108 assert(*range == (offset_end - offset_beg));
7109 }
7110 }
7111 return KERN_SUCCESS;
7112 }
7113 vm_object_lock(object);
7114
7115 if (object->phys_contiguous) {
7116 vm_object_unlock(object);
7117 return KERN_INVALID_OBJECT;
7118 }
7119
7120 offset = offset_beg & ~PAGE_MASK_64;
7121
7122 while (offset < offset_end) {
7123 dst_page = vm_page_lookup(object, offset);
7124 if (dst_page != VM_PAGE_NULL) {
7125 if (ops & UPL_ROP_DUMP) {
7126 if (dst_page->vmp_busy || dst_page->vmp_cleaning) {
7127 /*
7128 * someone else is playing with the
7129 * page, we will have to wait
7130 */
7131 PAGE_SLEEP(object, dst_page, THREAD_UNINT);
7132 /*
7133 * need to relook the page up since it's
7134 * state may have changed while we slept
7135 * it might even belong to a different object
7136 * at this point
7137 */
7138 continue;
7139 }
7140 if (dst_page->vmp_laundry)
7141 vm_pageout_steal_laundry(dst_page, FALSE);
7142
7143 if (dst_page->vmp_pmapped == TRUE)
7144 pmap_disconnect(VM_PAGE_GET_PHYS_PAGE(dst_page));
7145
7146 VM_PAGE_FREE(dst_page);
7147
7148 } else if ((ops & UPL_ROP_ABSENT)
7149 && (!dst_page->vmp_absent || dst_page->vmp_busy)) {
7150 break;
7151 }
7152 } else if (ops & UPL_ROP_PRESENT)
7153 break;
7154
7155 offset += PAGE_SIZE;
7156 }
7157 vm_object_unlock(object);
7158
7159 if (range) {
7160 if (offset > offset_end)
7161 offset = offset_end;
7162 if(offset > offset_beg) {
7163 *range = (uint32_t) (offset - offset_beg);
7164 assert(*range == (offset - offset_beg));
7165 } else {
7166 *range = 0;
7167 }
7168 }
7169 return KERN_SUCCESS;
7170}
7171
7172/*
7173 * Used to point a pager directly to a range of memory (when the pager may be associated
7174 * with a non-device vnode). Takes a virtual address, an offset, and a size. We currently
7175 * expect that the virtual address will denote the start of a range that is physically contiguous.
7176 */
7177kern_return_t pager_map_to_phys_contiguous(
7178 memory_object_control_t object,
7179 memory_object_offset_t offset,
7180 addr64_t base_vaddr,
7181 vm_size_t size)
7182{
7183 ppnum_t page_num;
7184 boolean_t clobbered_private;
7185 kern_return_t retval;
7186 vm_object_t pager_object;
7187
7188 page_num = pmap_find_phys(kernel_pmap, base_vaddr);
7189
7190 if (!page_num) {
7191 retval = KERN_FAILURE;
7192 goto out;
7193 }
7194
7195 pager_object = memory_object_control_to_vm_object(object);
7196
7197 if (!pager_object) {
7198 retval = KERN_FAILURE;
7199 goto out;
7200 }
7201
7202 clobbered_private = pager_object->private;
7203 if (pager_object->private != TRUE) {
7204 vm_object_lock(pager_object);
7205 pager_object->private = TRUE;
7206 vm_object_unlock(pager_object);
7207 }
7208 retval = vm_object_populate_with_private(pager_object, offset, page_num, size);
7209
7210 if (retval != KERN_SUCCESS) {
7211 if (pager_object->private != clobbered_private) {
7212 vm_object_lock(pager_object);
7213 pager_object->private = clobbered_private;
7214 vm_object_unlock(pager_object);
7215 }
7216 }
7217
7218out:
7219 return retval;
7220}
7221
7222uint32_t scan_object_collision = 0;
7223
7224void
7225vm_object_lock(vm_object_t object)
7226{
7227 if (object == vm_pageout_scan_wants_object) {
7228 scan_object_collision++;
7229 mutex_pause(2);
7230 }
7231 lck_rw_lock_exclusive(&object->Lock);
7232#if DEVELOPMENT || DEBUG
7233 object->Lock_owner = current_thread();
7234#endif
7235}
7236
7237boolean_t
7238vm_object_lock_avoid(vm_object_t object)
7239{
7240 if (object == vm_pageout_scan_wants_object) {
7241 scan_object_collision++;
7242 return TRUE;
7243 }
7244 return FALSE;
7245}
7246
7247boolean_t
7248_vm_object_lock_try(vm_object_t object)
7249{
7250 boolean_t retval;
7251
7252 retval = lck_rw_try_lock_exclusive(&object->Lock);
7253#if DEVELOPMENT || DEBUG
7254 if (retval == TRUE)
7255 object->Lock_owner = current_thread();
7256#endif
7257 return (retval);
7258}
7259
7260boolean_t
7261vm_object_lock_try(vm_object_t object)
7262{
7263 /*
7264 * Called from hibernate path so check before blocking.
7265 */
7266 if (vm_object_lock_avoid(object) && ml_get_interrupts_enabled() && get_preemption_level()==0) {
7267 mutex_pause(2);
7268 }
7269 return _vm_object_lock_try(object);
7270}
7271
7272void
7273vm_object_lock_shared(vm_object_t object)
7274{
7275 if (vm_object_lock_avoid(object)) {
7276 mutex_pause(2);
7277 }
7278 lck_rw_lock_shared(&object->Lock);
7279}
7280
7281boolean_t
7282vm_object_lock_yield_shared(vm_object_t object)
7283{
7284 boolean_t retval = FALSE, force_yield = FALSE;;
7285
7286 vm_object_lock_assert_shared(object);
7287
7288 force_yield = vm_object_lock_avoid(object);
7289
7290 retval = lck_rw_lock_yield_shared(&object->Lock, force_yield);
7291
7292 return (retval);
7293}
7294
7295boolean_t
7296vm_object_lock_try_shared(vm_object_t object)
7297{
7298 if (vm_object_lock_avoid(object)) {
7299 mutex_pause(2);
7300 }
7301 return (lck_rw_try_lock_shared(&object->Lock));
7302}
7303
7304boolean_t
7305vm_object_lock_upgrade(vm_object_t object)
7306{ boolean_t retval;
7307
7308 retval = lck_rw_lock_shared_to_exclusive(&object->Lock);
7309#if DEVELOPMENT || DEBUG
7310 if (retval == TRUE)
7311 object->Lock_owner = current_thread();
7312#endif
7313 return (retval);
7314}
7315
7316void
7317vm_object_unlock(vm_object_t object)
7318{
7319#if DEVELOPMENT || DEBUG
7320 if (object->Lock_owner) {
7321 if (object->Lock_owner != current_thread())
7322 panic("vm_object_unlock: not owner - %p\n", object);
7323 object->Lock_owner = 0;
7324 }
7325#endif
7326 lck_rw_done(&object->Lock);
7327}
7328
7329
7330unsigned int vm_object_change_wimg_mode_count = 0;
7331
7332/*
7333 * The object must be locked
7334 */
7335void
7336vm_object_change_wimg_mode(vm_object_t object, unsigned int wimg_mode)
7337{
7338 vm_page_t p;
7339
7340 vm_object_lock_assert_exclusive(object);
7341
7342 vm_object_paging_wait(object, THREAD_UNINT);
7343
7344 vm_page_queue_iterate(&object->memq, p, vm_page_t, vmp_listq) {
7345
7346 if (!p->vmp_fictitious)
7347 pmap_set_cache_attributes(VM_PAGE_GET_PHYS_PAGE(p), wimg_mode);
7348 }
7349 if (wimg_mode == VM_WIMG_USE_DEFAULT)
7350 object->set_cache_attr = FALSE;
7351 else
7352 object->set_cache_attr = TRUE;
7353
7354 object->wimg_bits = wimg_mode;
7355
7356 vm_object_change_wimg_mode_count++;
7357}
7358
7359#if CONFIG_FREEZE
7360
7361/*
7362 * This routine does the "relocation" of previously
7363 * compressed pages belonging to this object that are
7364 * residing in a number of compressed segments into
7365 * a set of compressed segments dedicated to hold
7366 * compressed pages belonging to this object.
7367 */
7368
7369extern void *freezer_chead;
7370extern char *freezer_compressor_scratch_buf;
7371extern int c_freezer_compression_count;
7372extern AbsoluteTime c_freezer_last_yield_ts;
7373
7374#define MAX_FREE_BATCH 32
7375#define FREEZER_DUTY_CYCLE_ON_MS 5
7376#define FREEZER_DUTY_CYCLE_OFF_MS 5
7377
7378static int c_freezer_should_yield(void);
7379
7380
7381static int
7382c_freezer_should_yield()
7383{
7384 AbsoluteTime cur_time;
7385 uint64_t nsecs;
7386
7387 assert(c_freezer_last_yield_ts);
7388 clock_get_uptime(&cur_time);
7389
7390 SUB_ABSOLUTETIME(&cur_time, &c_freezer_last_yield_ts);
7391 absolutetime_to_nanoseconds(cur_time, &nsecs);
7392
7393 if (nsecs > 1000 * 1000 * FREEZER_DUTY_CYCLE_ON_MS)
7394 return (1);
7395 return (0);
7396}
7397
7398
7399void
7400vm_object_compressed_freezer_done()
7401{
7402 vm_compressor_finished_filling(&freezer_chead);
7403}
7404
7405
7406void
7407vm_object_compressed_freezer_pageout(
7408 vm_object_t object)
7409{
7410 vm_page_t p;
7411 vm_page_t local_freeq = NULL;
7412 int local_freed = 0;
7413 kern_return_t retval = KERN_SUCCESS;
7414 int obj_resident_page_count_snapshot = 0;
7415
7416 assert(object != VM_OBJECT_NULL);
7417 assert(object->internal);
7418
7419 vm_object_lock(object);
7420
7421 if (!object->pager_initialized || object->pager == MEMORY_OBJECT_NULL) {
7422
7423 if (!object->pager_initialized) {
7424
7425 vm_object_collapse(object, (vm_object_offset_t) 0, TRUE);
7426
7427 if (!object->pager_initialized)
7428 vm_object_compressor_pager_create(object);
7429 }
7430
7431 if (!object->pager_initialized || object->pager == MEMORY_OBJECT_NULL) {
7432 vm_object_unlock(object);
7433 return;
7434 }
7435 }
7436
7437 if (VM_CONFIG_FREEZER_SWAP_IS_ACTIVE) {
7438 vm_object_offset_t curr_offset = 0;
7439
7440 /*
7441 * Go through the object and make sure that any
7442 * previously compressed pages are relocated into
7443 * a compressed segment associated with our "freezer_chead".
7444 */
7445 while (curr_offset < object->vo_size) {
7446
7447 curr_offset = vm_compressor_pager_next_compressed(object->pager, curr_offset);
7448
7449 if (curr_offset == (vm_object_offset_t) -1)
7450 break;
7451
7452 retval = vm_compressor_pager_relocate(object->pager, curr_offset, &freezer_chead);
7453
7454 if (retval != KERN_SUCCESS)
7455 break;
7456
7457 curr_offset += PAGE_SIZE_64;
7458 }
7459 }
7460
7461 /*
7462 * We can't hold the object lock while heading down into the compressed pager
7463 * layer because we might need the kernel map lock down there to allocate new
7464 * compressor data structures. And if this same object is mapped in the kernel
7465 * and there's a fault on it, then that thread will want the object lock while
7466 * holding the kernel map lock.
7467 *
7468 * Since we are going to drop/grab the object lock repeatedly, we must make sure
7469 * we won't be stuck in an infinite loop if the same page(s) keep getting
7470 * decompressed. So we grab a snapshot of the number of pages in the object and
7471 * we won't process any more than that number of pages.
7472 */
7473
7474 obj_resident_page_count_snapshot = object->resident_page_count;
7475
7476 vm_object_activity_begin(object);
7477
7478 while ((obj_resident_page_count_snapshot--) && !vm_page_queue_empty(&object->memq)) {
7479
7480 p = (vm_page_t)vm_page_queue_first(&object->memq);
7481
7482 KERNEL_DEBUG(0xe0430004 | DBG_FUNC_START, object, local_freed, 0, 0, 0);
7483
7484 vm_page_lockspin_queues();
7485
7486 if (p->vmp_cleaning || p->vmp_fictitious || p->vmp_busy || p->vmp_absent || p->vmp_unusual || p->vmp_error || VM_PAGE_WIRED(p)) {
7487
7488 vm_page_unlock_queues();
7489
7490 KERNEL_DEBUG(0xe0430004 | DBG_FUNC_END, object, local_freed, 1, 0, 0);
7491
7492 vm_page_queue_remove(&object->memq, p, vm_page_t, vmp_listq);
7493 vm_page_queue_enter(&object->memq, p, vm_page_t, vmp_listq);
7494
7495 continue;
7496 }
7497
7498 if (p->vmp_pmapped == TRUE) {
7499 int refmod_state, pmap_flags;
7500
7501 if (p->vmp_dirty || p->vmp_precious) {
7502 pmap_flags = PMAP_OPTIONS_COMPRESSOR;
7503 } else {
7504 pmap_flags = PMAP_OPTIONS_COMPRESSOR_IFF_MODIFIED;
7505 }
7506
7507 refmod_state = pmap_disconnect_options(VM_PAGE_GET_PHYS_PAGE(p), pmap_flags, NULL);
7508 if (refmod_state & VM_MEM_MODIFIED) {
7509 SET_PAGE_DIRTY(p, FALSE);
7510 }
7511 }
7512
7513 if (p->vmp_dirty == FALSE && p->vmp_precious == FALSE) {
7514 /*
7515 * Clean and non-precious page.
7516 */
7517 vm_page_unlock_queues();
7518 VM_PAGE_FREE(p);
7519
7520 KERNEL_DEBUG(0xe0430004 | DBG_FUNC_END, object, local_freed, 2, 0, 0);
7521 continue;
7522 }
7523
7524 if (p->vmp_laundry)
7525 vm_pageout_steal_laundry(p, TRUE);
7526
7527 vm_page_queues_remove(p, TRUE);
7528
7529 vm_page_unlock_queues();
7530
7531
7532 /*
7533 * In case the compressor fails to compress this page, we need it at
7534 * the back of the object memq so that we don't keep trying to process it.
7535 * Make the move here while we have the object lock held.
7536 */
7537
7538 vm_page_queue_remove(&object->memq, p, vm_page_t, vmp_listq);
7539 vm_page_queue_enter(&object->memq, p, vm_page_t, vmp_listq);
7540
7541 /*
7542 * Grab an activity_in_progress here for vm_pageout_compress_page() to consume.
7543 *
7544 * Mark the page busy so no one messes with it while we have the object lock dropped.
7545 */
7546 p->vmp_busy = TRUE;
7547
7548 vm_object_activity_begin(object);
7549
7550 vm_object_unlock(object);
7551
7552 if (vm_pageout_compress_page(&freezer_chead, freezer_compressor_scratch_buf, p) == KERN_SUCCESS) {
7553 /*
7554 * page has already been un-tabled from the object via 'vm_page_remove'
7555 */
7556 p->vmp_snext = local_freeq;
7557 local_freeq = p;
7558 local_freed++;
7559
7560 if (local_freed >= MAX_FREE_BATCH) {
7561
7562 OSAddAtomic64(local_freed, &vm_pageout_vminfo.vm_pageout_compressions);
7563
7564 vm_page_free_list(local_freeq, TRUE);
7565
7566 local_freeq = NULL;
7567 local_freed = 0;
7568 }
7569 c_freezer_compression_count++;
7570 }
7571 KERNEL_DEBUG(0xe0430004 | DBG_FUNC_END, object, local_freed, 0, 0, 0);
7572
7573 if (local_freed == 0 && c_freezer_should_yield()) {
7574
7575 thread_yield_internal(FREEZER_DUTY_CYCLE_OFF_MS);
7576 clock_get_uptime(&c_freezer_last_yield_ts);
7577 }
7578
7579 vm_object_lock(object);
7580 }
7581
7582 if (local_freeq) {
7583 OSAddAtomic64(local_freed, &vm_pageout_vminfo.vm_pageout_compressions);
7584
7585 vm_page_free_list(local_freeq, TRUE);
7586
7587 local_freeq = NULL;
7588 local_freed = 0;
7589 }
7590
7591 vm_object_activity_end(object);
7592
7593 vm_object_unlock(object);
7594
7595 if (c_freezer_should_yield()) {
7596
7597 thread_yield_internal(FREEZER_DUTY_CYCLE_OFF_MS);
7598 clock_get_uptime(&c_freezer_last_yield_ts);
7599 }
7600}
7601
7602#endif /* CONFIG_FREEZE */
7603
7604
7605void
7606vm_object_pageout(
7607 vm_object_t object)
7608{
7609 vm_page_t p, next;
7610 struct vm_pageout_queue *iq;
7611
7612 if (!VM_CONFIG_COMPRESSOR_IS_PRESENT)
7613 return;
7614
7615 iq = &vm_pageout_queue_internal;
7616
7617 assert(object != VM_OBJECT_NULL );
7618
7619 vm_object_lock(object);
7620
7621 if (!object->internal ||
7622 object->terminating ||
7623 !object->alive) {
7624 vm_object_unlock(object);
7625 return;
7626 }
7627
7628 if (!object->pager_initialized || object->pager == MEMORY_OBJECT_NULL) {
7629
7630 if (!object->pager_initialized) {
7631
7632 vm_object_collapse(object, (vm_object_offset_t) 0, TRUE);
7633
7634 if (!object->pager_initialized)
7635 vm_object_compressor_pager_create(object);
7636 }
7637
7638 if (!object->pager_initialized || object->pager == MEMORY_OBJECT_NULL) {
7639 vm_object_unlock(object);
7640 return;
7641 }
7642 }
7643
7644ReScan:
7645 next = (vm_page_t)vm_page_queue_first(&object->memq);
7646
7647 while (!vm_page_queue_end(&object->memq, (vm_page_queue_entry_t)next)) {
7648 p = next;
7649 next = (vm_page_t)vm_page_queue_next(&next->vmp_listq);
7650
7651 assert(p->vmp_q_state != VM_PAGE_ON_FREE_Q);
7652
7653 if ((p->vmp_q_state == VM_PAGE_ON_THROTTLED_Q) ||
7654 p->vmp_cleaning ||
7655 p->vmp_laundry ||
7656 p->vmp_busy ||
7657 p->vmp_absent ||
7658 p->vmp_error ||
7659 p->vmp_fictitious ||
7660 VM_PAGE_WIRED(p)) {
7661 /*
7662 * Page is already being cleaned or can't be cleaned.
7663 */
7664 continue;
7665 }
7666 if (vm_compressor_low_on_space()) {
7667 break;
7668 }
7669
7670 /* Throw to the pageout queue */
7671
7672 vm_page_lockspin_queues();
7673
7674 if (VM_PAGE_Q_THROTTLED(iq)) {
7675
7676 iq->pgo_draining = TRUE;
7677
7678 assert_wait((event_t) (&iq->pgo_laundry + 1),
7679 THREAD_INTERRUPTIBLE);
7680 vm_page_unlock_queues();
7681 vm_object_unlock(object);
7682
7683 thread_block(THREAD_CONTINUE_NULL);
7684
7685 vm_object_lock(object);
7686 goto ReScan;
7687 }
7688
7689 assert(!p->vmp_fictitious);
7690 assert(!p->vmp_busy);
7691 assert(!p->vmp_absent);
7692 assert(!p->vmp_unusual);
7693 assert(!p->vmp_error);
7694 assert(!VM_PAGE_WIRED(p));
7695 assert(!p->vmp_cleaning);
7696
7697 if (p->vmp_pmapped == TRUE) {
7698 int refmod_state;
7699 int pmap_options;
7700
7701 /*
7702 * Tell pmap the page should be accounted
7703 * for as "compressed" if it's been modified.
7704 */
7705 pmap_options =
7706 PMAP_OPTIONS_COMPRESSOR_IFF_MODIFIED;
7707 if (p->vmp_dirty || p->vmp_precious) {
7708 /*
7709 * We already know it's been modified,
7710 * so tell pmap to account for it
7711 * as "compressed".
7712 */
7713 pmap_options = PMAP_OPTIONS_COMPRESSOR;
7714 }
7715 refmod_state = pmap_disconnect_options(VM_PAGE_GET_PHYS_PAGE(p),
7716 pmap_options,
7717 NULL);
7718 if (refmod_state & VM_MEM_MODIFIED) {
7719 SET_PAGE_DIRTY(p, FALSE);
7720 }
7721 }
7722
7723 if (!p->vmp_dirty && !p->vmp_precious) {
7724 vm_page_unlock_queues();
7725 VM_PAGE_FREE(p);
7726 continue;
7727 }
7728 vm_page_queues_remove(p, TRUE);
7729
7730 vm_pageout_cluster(p);
7731
7732 vm_page_unlock_queues();
7733 }
7734 vm_object_unlock(object);
7735}
7736
7737
7738#if CONFIG_IOSCHED
7739void
7740vm_page_request_reprioritize(vm_object_t o, uint64_t blkno, uint32_t len, int prio)
7741{
7742 io_reprioritize_req_t req;
7743 struct vnode *devvp = NULL;
7744
7745 if(vnode_pager_get_object_devvp(o->pager, (uintptr_t *)&devvp) != KERN_SUCCESS)
7746 return;
7747
7748 /*
7749 * Create the request for I/O reprioritization.
7750 * We use the noblock variant of zalloc because we're holding the object
7751 * lock here and we could cause a deadlock in low memory conditions.
7752 */
7753 req = (io_reprioritize_req_t)zalloc_noblock(io_reprioritize_req_zone);
7754 if (req == NULL)
7755 return;
7756 req->blkno = blkno;
7757 req->len = len;
7758 req->priority = prio;
7759 req->devvp = devvp;
7760
7761 /* Insert request into the reprioritization list */
7762 IO_REPRIORITIZE_LIST_LOCK();
7763 queue_enter(&io_reprioritize_list, req, io_reprioritize_req_t, io_reprioritize_list);
7764 IO_REPRIORITIZE_LIST_UNLOCK();
7765
7766 /* Wakeup reprioritize thread */
7767 IO_REPRIO_THREAD_WAKEUP();
7768
7769 return;
7770}
7771
7772void
7773vm_decmp_upl_reprioritize(upl_t upl, int prio)
7774{
7775 int offset;
7776 vm_object_t object;
7777 io_reprioritize_req_t req;
7778 struct vnode *devvp = NULL;
7779 uint64_t blkno;
7780 uint32_t len;
7781 upl_t io_upl;
7782 uint64_t *io_upl_reprio_info;
7783 int io_upl_size;
7784
7785 if ((upl->flags & UPL_TRACKED_BY_OBJECT) == 0 || (upl->flags & UPL_EXPEDITE_SUPPORTED) == 0)
7786 return;
7787
7788 /*
7789 * We dont want to perform any allocations with the upl lock held since that might
7790 * result in a deadlock. If the system is low on memory, the pageout thread would
7791 * try to pageout stuff and might wait on this lock. If we are waiting for the memory to
7792 * be freed up by the pageout thread, it would be a deadlock.
7793 */
7794
7795
7796 /* First step is just to get the size of the upl to find out how big the reprio info is */
7797 if(!upl_try_lock(upl))
7798 return;
7799
7800 if (upl->decmp_io_upl == NULL) {
7801 /* The real I/O upl was destroyed by the time we came in here. Nothing to do. */
7802 upl_unlock(upl);
7803 return;
7804 }
7805
7806 io_upl = upl->decmp_io_upl;
7807 assert((io_upl->flags & UPL_DECMP_REAL_IO) != 0);
7808 io_upl_size = io_upl->size;
7809 upl_unlock(upl);
7810
7811 /* Now perform the allocation */
7812 io_upl_reprio_info = (uint64_t *)kalloc(sizeof(uint64_t) * (io_upl_size / PAGE_SIZE));
7813 if (io_upl_reprio_info == NULL)
7814 return;
7815
7816 /* Now again take the lock, recheck the state and grab out the required info */
7817 if(!upl_try_lock(upl))
7818 goto out;
7819
7820 if (upl->decmp_io_upl == NULL || upl->decmp_io_upl != io_upl) {
7821 /* The real I/O upl was destroyed by the time we came in here. Nothing to do. */
7822 upl_unlock(upl);
7823 goto out;
7824 }
7825 memcpy(io_upl_reprio_info, io_upl->upl_reprio_info, sizeof(uint64_t) * (io_upl_size / PAGE_SIZE));
7826
7827 /* Get the VM object for this UPL */
7828 if (io_upl->flags & UPL_SHADOWED) {
7829 object = io_upl->map_object->shadow;
7830 } else {
7831 object = io_upl->map_object;
7832 }
7833
7834 /* Get the dev vnode ptr for this object */
7835 if(!object || !object->pager ||
7836 vnode_pager_get_object_devvp(object->pager, (uintptr_t *)&devvp) != KERN_SUCCESS) {
7837 upl_unlock(upl);
7838 goto out;
7839 }
7840
7841 upl_unlock(upl);
7842
7843 /* Now we have all the information needed to do the expedite */
7844
7845 offset = 0;
7846 while (offset < io_upl_size) {
7847 blkno = io_upl_reprio_info[(offset / PAGE_SIZE)] & UPL_REPRIO_INFO_MASK;
7848 len = (io_upl_reprio_info[(offset / PAGE_SIZE)] >> UPL_REPRIO_INFO_SHIFT) & UPL_REPRIO_INFO_MASK;
7849
7850 /*
7851 * This implementation may cause some spurious expedites due to the
7852 * fact that we dont cleanup the blkno & len from the upl_reprio_info
7853 * even after the I/O is complete.
7854 */
7855
7856 if (blkno != 0 && len != 0) {
7857 /* Create the request for I/O reprioritization */
7858 req = (io_reprioritize_req_t)zalloc(io_reprioritize_req_zone);
7859 assert(req != NULL);
7860 req->blkno = blkno;
7861 req->len = len;
7862 req->priority = prio;
7863 req->devvp = devvp;
7864
7865 /* Insert request into the reprioritization list */
7866 IO_REPRIORITIZE_LIST_LOCK();
7867 queue_enter(&io_reprioritize_list, req, io_reprioritize_req_t, io_reprioritize_list);
7868 IO_REPRIORITIZE_LIST_UNLOCK();
7869
7870 offset += len;
7871 } else {
7872 offset += PAGE_SIZE;
7873 }
7874 }
7875
7876 /* Wakeup reprioritize thread */
7877 IO_REPRIO_THREAD_WAKEUP();
7878
7879out:
7880 kfree(io_upl_reprio_info, sizeof(uint64_t) * (io_upl_size / PAGE_SIZE));
7881 return;
7882}
7883
7884void
7885vm_page_handle_prio_inversion(vm_object_t o, vm_page_t m)
7886{
7887 upl_t upl;
7888 upl_page_info_t *pl;
7889 unsigned int i, num_pages;
7890 int cur_tier;
7891
7892 cur_tier = proc_get_effective_thread_policy(current_thread(), TASK_POLICY_IO);
7893
7894 /*
7895 Scan through all UPLs associated with the object to find the
7896 UPL containing the contended page.
7897 */
7898 queue_iterate(&o->uplq, upl, upl_t, uplq) {
7899 if (((upl->flags & UPL_EXPEDITE_SUPPORTED) == 0) || upl->upl_priority <= cur_tier)
7900 continue;
7901 pl = UPL_GET_INTERNAL_PAGE_LIST(upl);
7902 num_pages = (upl->size / PAGE_SIZE);
7903
7904 /*
7905 For each page in the UPL page list, see if it matches the contended
7906 page and was issued as a low prio I/O.
7907 */
7908 for(i=0; i < num_pages; i++) {
7909 if(UPL_PAGE_PRESENT(pl,i) && VM_PAGE_GET_PHYS_PAGE(m) == pl[i].phys_addr) {
7910 if ((upl->flags & UPL_DECMP_REQ) && upl->decmp_io_upl) {
7911 KERNEL_DEBUG_CONSTANT((MACHDBG_CODE(DBG_MACH_VM, VM_PAGE_EXPEDITE)) | DBG_FUNC_NONE, VM_KERNEL_UNSLIDE_OR_PERM(upl->upl_creator), VM_KERNEL_UNSLIDE_OR_PERM(m),
7912 VM_KERNEL_UNSLIDE_OR_PERM(upl), upl->upl_priority, 0);
7913 vm_decmp_upl_reprioritize(upl, cur_tier);
7914 break;
7915 }
7916 KERNEL_DEBUG_CONSTANT((MACHDBG_CODE(DBG_MACH_VM, VM_PAGE_EXPEDITE)) | DBG_FUNC_NONE, VM_KERNEL_UNSLIDE_OR_PERM(upl->upl_creator), VM_KERNEL_UNSLIDE_OR_PERM(m),
7917 upl->upl_reprio_info[i], upl->upl_priority, 0);
7918 if (UPL_REPRIO_INFO_BLKNO(upl, i) != 0 && UPL_REPRIO_INFO_LEN(upl, i) != 0)
7919 vm_page_request_reprioritize(o, UPL_REPRIO_INFO_BLKNO(upl, i), UPL_REPRIO_INFO_LEN(upl, i), cur_tier);
7920 break;
7921 }
7922 }
7923 /* Check if we found any hits */
7924 if (i != num_pages)
7925 break;
7926 }
7927
7928 return;
7929}
7930
7931wait_result_t
7932vm_page_sleep(vm_object_t o, vm_page_t m, int interruptible)
7933{
7934 wait_result_t ret;
7935
7936 KERNEL_DEBUG((MACHDBG_CODE(DBG_MACH_VM, VM_PAGE_SLEEP)) | DBG_FUNC_START, o, m, 0, 0, 0);
7937
7938 if (o->io_tracking && ((m->vmp_busy == TRUE) || (m->vmp_cleaning == TRUE) || VM_PAGE_WIRED(m))) {
7939 /*
7940 Indicates page is busy due to an I/O. Issue a reprioritize request if necessary.
7941 */
7942 vm_page_handle_prio_inversion(o,m);
7943 }
7944 m->vmp_wanted = TRUE;
7945 ret = thread_sleep_vm_object(o, m, interruptible);
7946 KERNEL_DEBUG((MACHDBG_CODE(DBG_MACH_VM, VM_PAGE_SLEEP)) | DBG_FUNC_END, o, m, 0, 0, 0);
7947 return ret;
7948}
7949
7950static void
7951io_reprioritize_thread(void *param __unused, wait_result_t wr __unused)
7952{
7953 io_reprioritize_req_t req = NULL;
7954
7955 while(1) {
7956
7957 IO_REPRIORITIZE_LIST_LOCK();
7958 if (queue_empty(&io_reprioritize_list)) {
7959 IO_REPRIORITIZE_LIST_UNLOCK();
7960 break;
7961 }
7962
7963 queue_remove_first(&io_reprioritize_list, req, io_reprioritize_req_t, io_reprioritize_list);
7964 IO_REPRIORITIZE_LIST_UNLOCK();
7965
7966 vnode_pager_issue_reprioritize_io(req->devvp, req->blkno, req->len, req->priority);
7967 zfree(io_reprioritize_req_zone, req);
7968 }
7969
7970 IO_REPRIO_THREAD_CONTINUATION();
7971}
7972#endif
7973
7974#if VM_OBJECT_ACCESS_TRACKING
7975void
7976vm_object_access_tracking(
7977 vm_object_t object,
7978 int *access_tracking_p,
7979 uint32_t *access_tracking_reads_p,
7980 uint32_t *access_tracking_writes_p)
7981{
7982 int access_tracking;
7983
7984 access_tracking = !!*access_tracking_p;
7985
7986 vm_object_lock(object);
7987 *access_tracking_p = object->access_tracking;
7988 if (access_tracking_reads_p) {
7989 *access_tracking_reads_p = object->access_tracking_reads;
7990 }
7991 if (access_tracking_writes_p) {
7992 *access_tracking_writes_p = object->access_tracking_writes;
7993 }
7994 object->access_tracking = access_tracking;
7995 object->access_tracking_reads = 0;
7996 object->access_tracking_writes = 0;
7997 vm_object_unlock(object);
7998
7999 if (access_tracking) {
8000 vm_object_pmap_protect_options(object,
8001 0,
8002 object->vo_size,
8003 PMAP_NULL,
8004 0,
8005 VM_PROT_NONE,
8006 0);
8007 }
8008}
8009#endif /* VM_OBJECT_ACCESS_TRACKING */
8010
8011void
8012vm_object_ledger_tag_ledgers(
8013 vm_object_t object,
8014 int *ledger_idx_volatile,
8015 int *ledger_idx_nonvolatile,
8016 int *ledger_idx_volatile_compressed,
8017 int *ledger_idx_nonvolatile_compressed,
8018 boolean_t *do_footprint)
8019{
8020 assert(object->shadow == VM_OBJECT_NULL);
8021
8022 switch (object->vo_ledger_tag) {
8023 case VM_OBJECT_LEDGER_TAG_NONE:
8024 /* regular purgeable memory */
8025 assert(object->purgable != VM_PURGABLE_DENY);
8026 *ledger_idx_volatile = task_ledgers.purgeable_volatile;
8027 *ledger_idx_nonvolatile = task_ledgers.purgeable_nonvolatile;
8028 *ledger_idx_volatile_compressed = task_ledgers.purgeable_volatile_compressed;
8029 *ledger_idx_nonvolatile_compressed = task_ledgers.purgeable_nonvolatile_compressed;
8030 *do_footprint = TRUE;
8031 break;
8032 case VM_OBJECT_LEDGER_TAG_NETWORK:
8033 *ledger_idx_volatile = task_ledgers.network_volatile;
8034 *ledger_idx_volatile_compressed = task_ledgers.network_volatile_compressed;
8035 *ledger_idx_nonvolatile = task_ledgers.network_nonvolatile;
8036 *ledger_idx_nonvolatile_compressed = task_ledgers.network_nonvolatile_compressed;
8037 *do_footprint = FALSE;
8038 break;
8039 case VM_OBJECT_LEDGER_TAG_MEDIA:
8040 default:
8041 panic("%s: object %p has unsupported ledger_tag %d\n",
8042 __FUNCTION__, object, object->vo_ledger_tag);
8043 }
8044}
8045
8046kern_return_t
8047vm_object_ownership_change(
8048 vm_object_t object,
8049 int new_ledger_tag,
8050 task_t new_owner,
8051 boolean_t task_objq_locked)
8052{
8053 int old_ledger_tag;
8054 task_t old_owner;
8055 int resident_count, wired_count;
8056 unsigned int compressed_count;
8057 int ledger_idx_volatile;
8058 int ledger_idx_nonvolatile;
8059 int ledger_idx_volatile_compressed;
8060 int ledger_idx_nonvolatile_compressed;
8061 int ledger_idx;
8062 int ledger_idx_compressed;
8063 boolean_t do_footprint;
8064
8065 vm_object_lock_assert_exclusive(object);
8066 assert(object->internal);
8067
8068 old_ledger_tag = object->vo_ledger_tag;
8069 old_owner = VM_OBJECT_OWNER(object);
8070
8071 resident_count = object->resident_page_count - object->wired_page_count;
8072 wired_count = object->wired_page_count;
8073 compressed_count = vm_compressor_pager_get_count(object->pager);
8074
8075 /*
8076 * Deal with the old owner and/or ledger tag, if needed.
8077 */
8078 if (old_owner != TASK_NULL &&
8079 ((old_owner != new_owner) /* new owner ... */
8080 || /* ... or ... */
8081 (old_ledger_tag && /* ... new ledger */
8082 old_ledger_tag != new_ledger_tag))) {
8083 /*
8084 * Take this object off of the old owner's ledgers.
8085 */
8086 vm_object_ledger_tag_ledgers(object,
8087 &ledger_idx_volatile,
8088 &ledger_idx_nonvolatile,
8089 &ledger_idx_volatile_compressed,
8090 &ledger_idx_nonvolatile_compressed,
8091 &do_footprint);
8092 if (object->purgable == VM_PURGABLE_VOLATILE ||
8093 object->purgable == VM_PURGABLE_EMPTY) {
8094 ledger_idx = ledger_idx_volatile;
8095 ledger_idx_compressed = ledger_idx_volatile_compressed;
8096 } else {
8097 ledger_idx = ledger_idx_nonvolatile;
8098 ledger_idx_compressed = ledger_idx_nonvolatile_compressed;
8099 }
8100 if (resident_count) {
8101 /*
8102 * Adjust the appropriate old owners's ledgers by the
8103 * number of resident pages.
8104 */
8105 ledger_debit(old_owner->ledger,
8106 ledger_idx,
8107 ptoa_64(resident_count));
8108 /* adjust old owner's footprint */
8109 if (do_footprint &&
8110 object->purgable != VM_PURGABLE_VOLATILE &&
8111 object->purgable != VM_PURGABLE_EMPTY) {
8112 ledger_debit(old_owner->ledger,
8113 task_ledgers.phys_footprint,
8114 ptoa_64(resident_count));
8115 }
8116 }
8117 if (wired_count) {
8118 /* wired pages are always nonvolatile */
8119 ledger_debit(old_owner->ledger,
8120 ledger_idx_nonvolatile,
8121 ptoa_64(wired_count));
8122 if (do_footprint) {
8123 ledger_debit(old_owner->ledger,
8124 task_ledgers.phys_footprint,
8125 ptoa_64(wired_count));
8126 }
8127 }
8128 if (compressed_count) {
8129 /*
8130 * Adjust the appropriate old owner's ledgers
8131 * by the number of compressed pages.
8132 */
8133 ledger_debit(old_owner->ledger,
8134 ledger_idx_compressed,
8135 ptoa_64(compressed_count));
8136 if (do_footprint &&
8137 object->purgable != VM_PURGABLE_VOLATILE &&
8138 object->purgable != VM_PURGABLE_EMPTY) {
8139 ledger_debit(old_owner->ledger,
8140 task_ledgers.phys_footprint,
8141 ptoa_64(compressed_count));
8142 }
8143 }
8144 if (old_owner != new_owner) {
8145 /* remove object from old_owner's list of owned objects */
8146 DTRACE_VM2(object_owner_remove,
8147 vm_object_t, object,
8148 task_t, new_owner);
8149 if (!task_objq_locked) {
8150 task_objq_lock(old_owner);
8151 }
8152 queue_remove(&old_owner->task_objq, object,
8153 vm_object_t, task_objq);
8154 switch (object->purgable) {
8155 case VM_PURGABLE_NONVOLATILE:
8156 case VM_PURGABLE_EMPTY:
8157 vm_purgeable_nonvolatile_owner_update(old_owner,
8158 -1);
8159 break;
8160 case VM_PURGABLE_VOLATILE:
8161 vm_purgeable_volatile_owner_update(old_owner,
8162 -1);
8163 break;
8164 default:
8165 break;
8166 }
8167 if (!task_objq_locked) {
8168 task_objq_unlock(old_owner);
8169 }
8170 }
8171 }
8172
8173 /*
8174 * Switch to new ledger tag and/or owner.
8175 */
8176 object->vo_ledger_tag = new_ledger_tag;
8177 object->vo_owner = new_owner;
8178
8179 if (new_owner == VM_OBJECT_OWNER_DISOWNED) {
8180 assert(old_owner != kernel_task);
8181 new_owner = kernel_task;
8182 }
8183
8184 /*
8185 * Deal with the new owner and/or ledger tag, if needed.
8186 */
8187 if (new_owner != TASK_NULL &&
8188 ((new_owner != old_owner) /* new owner ... */
8189 || /* ... or ... */
8190 (new_ledger_tag && /* ... new ledger */
8191 new_ledger_tag != old_ledger_tag))) {
8192 /*
8193 * Add this object to the new owner's ledgers.
8194 */
8195 vm_object_ledger_tag_ledgers(object,
8196 &ledger_idx_volatile,
8197 &ledger_idx_nonvolatile,
8198 &ledger_idx_volatile_compressed,
8199 &ledger_idx_nonvolatile_compressed,
8200 &do_footprint);
8201 if (object->purgable == VM_PURGABLE_VOLATILE ||
8202 object->purgable == VM_PURGABLE_EMPTY) {
8203 ledger_idx = ledger_idx_volatile;
8204 ledger_idx_compressed = ledger_idx_volatile_compressed;
8205 } else {
8206 ledger_idx = ledger_idx_nonvolatile;
8207 ledger_idx_compressed = ledger_idx_nonvolatile_compressed;
8208 }
8209 if (resident_count) {
8210 /*
8211 * Adjust the appropriate new owners's ledgers by the
8212 * number of resident pages.
8213 */
8214 ledger_credit(new_owner->ledger,
8215 ledger_idx,
8216 ptoa_64(resident_count));
8217 /* adjust new owner's footprint */
8218 if (do_footprint &&
8219 object->purgable != VM_PURGABLE_VOLATILE &&
8220 object->purgable != VM_PURGABLE_EMPTY) {
8221 ledger_credit(new_owner->ledger,
8222 task_ledgers.phys_footprint,
8223 ptoa_64(resident_count));
8224 }
8225 }
8226 if (wired_count) {
8227 /* wired pages are always nonvolatile */
8228 ledger_credit(new_owner->ledger,
8229 ledger_idx_nonvolatile,
8230 ptoa_64(wired_count));
8231 if (do_footprint) {
8232 ledger_credit(new_owner->ledger,
8233 task_ledgers.phys_footprint,
8234 ptoa_64(wired_count));
8235 }
8236 }
8237 if (compressed_count) {
8238 /*
8239 * Adjust the new owner's ledgers by the number of
8240 * compressed pages.
8241 */
8242 ledger_credit(new_owner->ledger,
8243 ledger_idx_compressed,
8244 ptoa_64(compressed_count));
8245 if (do_footprint &&
8246 object->purgable != VM_PURGABLE_VOLATILE &&
8247 object->purgable != VM_PURGABLE_EMPTY) {
8248 ledger_credit(new_owner->ledger,
8249 task_ledgers.phys_footprint,
8250 ptoa_64(compressed_count));
8251 }
8252 }
8253 if (new_owner != old_owner) {
8254 /* add object to new_owner's list of owned objects */
8255 DTRACE_VM2(object_owner_add,
8256 vm_object_t, object,
8257 task_t, new_owner);
8258 task_objq_lock(new_owner);
8259 queue_enter(&new_owner->task_objq, object,
8260 vm_object_t, task_objq);
8261 switch (object->purgable) {
8262 case VM_PURGABLE_NONVOLATILE:
8263 case VM_PURGABLE_EMPTY:
8264 vm_purgeable_nonvolatile_owner_update(new_owner,
8265 +1);
8266 break;
8267 case VM_PURGABLE_VOLATILE:
8268 vm_purgeable_volatile_owner_update(new_owner,
8269 +1);
8270 break;
8271 default:
8272 break;
8273 }
8274 task_objq_unlock(new_owner);
8275 }
8276 }
8277
8278 return KERN_SUCCESS;
8279}
8280