| 1 | /* |
| 2 | * Copyright (c) 2000-2021 Apple Inc. All rights reserved. |
| 3 | * |
| 4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ |
| 5 | * |
| 6 | * This file contains Original Code and/or Modifications of Original Code |
| 7 | * as defined in and that are subject to the Apple Public Source License |
| 8 | * Version 2.0 (the 'License'). You may not use this file except in |
| 9 | * compliance with the License. The rights granted to you under the License |
| 10 | * may not be used to create, or enable the creation or redistribution of, |
| 11 | * unlawful or unlicensed copies of an Apple operating system, or to |
| 12 | * circumvent, violate, or enable the circumvention or violation of, any |
| 13 | * terms of an Apple operating system software license agreement. |
| 14 | * |
| 15 | * Please obtain a copy of the License at |
| 16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. |
| 17 | * |
| 18 | * The Original Code and all software distributed under the License are |
| 19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER |
| 20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
| 21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, |
| 22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
| 23 | * Please see the License for the specific language governing rights and |
| 24 | * limitations under the License. |
| 25 | * |
| 26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ |
| 27 | */ |
| 28 | /* |
| 29 | * @OSF_COPYRIGHT@ |
| 30 | */ |
| 31 | /* |
| 32 | * Mach Operating System |
| 33 | * Copyright (c) 1991,1990,1989,1988,1987 Carnegie Mellon University |
| 34 | * All Rights Reserved. |
| 35 | * |
| 36 | * Permission to use, copy, modify and distribute this software and its |
| 37 | * documentation is hereby granted, provided that both the copyright |
| 38 | * notice and this permission notice appear in all copies of the |
| 39 | * software, derivative works or modified versions, and any portions |
| 40 | * thereof, and that both notices appear in supporting documentation. |
| 41 | * |
| 42 | * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" |
| 43 | * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR |
| 44 | * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. |
| 45 | * |
| 46 | * Carnegie Mellon requests users of this software to return to |
| 47 | * |
| 48 | * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU |
| 49 | * School of Computer Science |
| 50 | * Carnegie Mellon University |
| 51 | * Pittsburgh PA 15213-3890 |
| 52 | * |
| 53 | * any improvements or extensions that they make and grant Carnegie Mellon |
| 54 | * the rights to redistribute these changes. |
| 55 | */ |
| 56 | /* |
| 57 | */ |
| 58 | /* |
| 59 | * File: vm/vm_map.c |
| 60 | * Author: Avadis Tevanian, Jr., Michael Wayne Young |
| 61 | * Date: 1985 |
| 62 | * |
| 63 | * Virtual memory mapping module. |
| 64 | */ |
| 65 | |
| 66 | #include <mach/vm_types.h> |
| 67 | #include <mach_assert.h> |
| 68 | |
| 69 | #include <vm/vm_options.h> |
| 70 | |
| 71 | #include <libkern/OSAtomic.h> |
| 72 | |
| 73 | #include <mach/kern_return.h> |
| 74 | #include <mach/port.h> |
| 75 | #include <mach/vm_attributes.h> |
| 76 | #include <mach/vm_param.h> |
| 77 | #include <mach/vm_behavior.h> |
| 78 | #include <mach/vm_statistics.h> |
| 79 | #include <mach/memory_object.h> |
| 80 | #include <mach/mach_vm.h> |
| 81 | #include <machine/cpu_capabilities.h> |
| 82 | #include <mach/sdt.h> |
| 83 | |
| 84 | #include <kern/assert.h> |
| 85 | #include <kern/backtrace.h> |
| 86 | #include <kern/counter.h> |
| 87 | #include <kern/exc_guard.h> |
| 88 | #include <kern/kalloc.h> |
| 89 | #include <kern/zalloc_internal.h> |
| 90 | |
| 91 | #include <vm/cpm.h> |
| 92 | #include <vm/vm_compressor.h> |
| 93 | #include <vm/vm_compressor_pager.h> |
| 94 | #include <vm/vm_init.h> |
| 95 | #include <vm/vm_fault.h> |
| 96 | #include <vm/vm_map_internal.h> |
| 97 | #include <vm/vm_object.h> |
| 98 | #include <vm/vm_page.h> |
| 99 | #include <vm/vm_pageout.h> |
| 100 | #include <vm/pmap.h> |
| 101 | #include <vm/vm_kern.h> |
| 102 | #include <ipc/ipc_port.h> |
| 103 | #include <kern/sched_prim.h> |
| 104 | #include <kern/misc_protos.h> |
| 105 | |
| 106 | #include <mach/vm_map_server.h> |
| 107 | #include <mach/mach_host_server.h> |
| 108 | #include <vm/vm_memtag.h> |
| 109 | #include <vm/vm_protos.h> |
| 110 | #include <vm/vm_purgeable_internal.h> |
| 111 | #include <vm/vm_reclaim_internal.h> |
| 112 | |
| 113 | #include <vm/vm_protos.h> |
| 114 | #include <vm/vm_shared_region.h> |
| 115 | #include <vm/vm_map_store.h> |
| 116 | |
| 117 | #include <san/kasan.h> |
| 118 | |
| 119 | #include <sys/resource.h> |
| 120 | #include <sys/random.h> |
| 121 | #include <sys/codesign.h> |
| 122 | #include <sys/code_signing.h> |
| 123 | #include <sys/mman.h> |
| 124 | #include <sys/reboot.h> |
| 125 | #include <sys/kdebug_triage.h> |
| 126 | |
| 127 | #include <libkern/section_keywords.h> |
| 128 | |
| 129 | #if DEVELOPMENT || DEBUG |
| 130 | extern int proc_selfcsflags(void); |
| 131 | int vm_log_xnu_user_debug = 0; |
| 132 | int panic_on_unsigned_execute = 0; |
| 133 | int panic_on_mlock_failure = 0; |
| 134 | #endif /* DEVELOPMENT || DEBUG */ |
| 135 | |
| 136 | #if MACH_ASSERT |
| 137 | int debug4k_filter = 0; |
| 138 | char debug4k_proc_name[1024] = "" ; |
| 139 | int debug4k_proc_filter = (int)-1 & ~(1 << __DEBUG4K_FAULT); |
| 140 | int debug4k_panic_on_misaligned_sharing = 0; |
| 141 | const char *debug4k_category_name[] = { |
| 142 | "error" , /* 0 */ |
| 143 | "life" , /* 1 */ |
| 144 | "load" , /* 2 */ |
| 145 | "fault" , /* 3 */ |
| 146 | "copy" , /* 4 */ |
| 147 | "share" , /* 5 */ |
| 148 | "adjust" , /* 6 */ |
| 149 | "pmap" , /* 7 */ |
| 150 | "mementry" , /* 8 */ |
| 151 | "iokit" , /* 9 */ |
| 152 | "upl" , /* 10 */ |
| 153 | "exc" , /* 11 */ |
| 154 | "vfs" /* 12 */ |
| 155 | }; |
| 156 | #endif /* MACH_ASSERT */ |
| 157 | int debug4k_no_cow_copyin = 0; |
| 158 | |
| 159 | |
| 160 | #if __arm64__ |
| 161 | extern const int fourk_binary_compatibility_unsafe; |
| 162 | extern const int fourk_binary_compatibility_allow_wx; |
| 163 | #endif /* __arm64__ */ |
| 164 | extern void qsort(void *a, size_t n, size_t es, int (*cmp)(const void *, const void *)); |
| 165 | extern int proc_selfpid(void); |
| 166 | extern char *proc_name_address(void *p); |
| 167 | extern char *proc_best_name(struct proc *p); |
| 168 | |
| 169 | #if VM_MAP_DEBUG_APPLE_PROTECT |
| 170 | int vm_map_debug_apple_protect = 0; |
| 171 | #endif /* VM_MAP_DEBUG_APPLE_PROTECT */ |
| 172 | #if VM_MAP_DEBUG_FOURK |
| 173 | int vm_map_debug_fourk = 0; |
| 174 | #endif /* VM_MAP_DEBUG_FOURK */ |
| 175 | |
| 176 | #if DEBUG || DEVELOPMENT |
| 177 | static TUNABLE(bool, vm_map_executable_immutable, |
| 178 | "vm_map_executable_immutable" , true); |
| 179 | #else |
| 180 | #define vm_map_executable_immutable true |
| 181 | #endif |
| 182 | |
| 183 | os_refgrp_decl(static, map_refgrp, "vm_map" , NULL); |
| 184 | |
| 185 | extern u_int32_t random(void); /* from <libkern/libkern.h> */ |
| 186 | /* Internal prototypes |
| 187 | */ |
| 188 | |
| 189 | typedef struct vm_map_zap { |
| 190 | vm_map_entry_t vmz_head; |
| 191 | vm_map_entry_t *vmz_tail; |
| 192 | } *vm_map_zap_t; |
| 193 | |
| 194 | #define VM_MAP_ZAP_DECLARE(zap) \ |
| 195 | struct vm_map_zap zap = { .vmz_tail = &zap.vmz_head } |
| 196 | |
| 197 | static vm_map_entry_t vm_map_entry_insert( |
| 198 | vm_map_t map, |
| 199 | vm_map_entry_t insp_entry, |
| 200 | vm_map_offset_t start, |
| 201 | vm_map_offset_t end, |
| 202 | vm_object_t object, |
| 203 | vm_object_offset_t offset, |
| 204 | vm_map_kernel_flags_t vmk_flags, |
| 205 | boolean_t needs_copy, |
| 206 | vm_prot_t cur_protection, |
| 207 | vm_prot_t max_protection, |
| 208 | vm_inherit_t inheritance, |
| 209 | boolean_t clear_map_aligned); |
| 210 | |
| 211 | static void vm_map_simplify_range( |
| 212 | vm_map_t map, |
| 213 | vm_map_offset_t start, |
| 214 | vm_map_offset_t end); /* forward */ |
| 215 | |
| 216 | static boolean_t vm_map_range_check( |
| 217 | vm_map_t map, |
| 218 | vm_map_offset_t start, |
| 219 | vm_map_offset_t end, |
| 220 | vm_map_entry_t *entry); |
| 221 | |
| 222 | static void vm_map_submap_pmap_clean( |
| 223 | vm_map_t map, |
| 224 | vm_map_offset_t start, |
| 225 | vm_map_offset_t end, |
| 226 | vm_map_t sub_map, |
| 227 | vm_map_offset_t offset); |
| 228 | |
| 229 | static void vm_map_pmap_enter( |
| 230 | vm_map_t map, |
| 231 | vm_map_offset_t addr, |
| 232 | vm_map_offset_t end_addr, |
| 233 | vm_object_t object, |
| 234 | vm_object_offset_t offset, |
| 235 | vm_prot_t protection); |
| 236 | |
| 237 | static void _vm_map_clip_end( |
| 238 | struct vm_map_header *, |
| 239 | vm_map_entry_t entry, |
| 240 | vm_map_offset_t end); |
| 241 | |
| 242 | static void _vm_map_clip_start( |
| 243 | struct vm_map_header *, |
| 244 | vm_map_entry_t entry, |
| 245 | vm_map_offset_t start); |
| 246 | |
| 247 | static kmem_return_t vm_map_delete( |
| 248 | vm_map_t map, |
| 249 | vm_map_offset_t start, |
| 250 | vm_map_offset_t end, |
| 251 | vmr_flags_t flags, |
| 252 | kmem_guard_t guard, |
| 253 | vm_map_zap_t zap); |
| 254 | |
| 255 | static void vm_map_copy_insert( |
| 256 | vm_map_t map, |
| 257 | vm_map_entry_t after_where, |
| 258 | vm_map_copy_t copy); |
| 259 | |
| 260 | static kern_return_t vm_map_copy_overwrite_unaligned( |
| 261 | vm_map_t dst_map, |
| 262 | vm_map_entry_t entry, |
| 263 | vm_map_copy_t copy, |
| 264 | vm_map_address_t start, |
| 265 | boolean_t discard_on_success); |
| 266 | |
| 267 | static kern_return_t vm_map_copy_overwrite_aligned( |
| 268 | vm_map_t dst_map, |
| 269 | vm_map_entry_t tmp_entry, |
| 270 | vm_map_copy_t copy, |
| 271 | vm_map_offset_t start, |
| 272 | pmap_t pmap); |
| 273 | |
| 274 | static kern_return_t vm_map_copyin_kernel_buffer( |
| 275 | vm_map_t src_map, |
| 276 | vm_map_address_t src_addr, |
| 277 | vm_map_size_t len, |
| 278 | boolean_t src_destroy, |
| 279 | vm_map_copy_t *copy_result); /* OUT */ |
| 280 | |
| 281 | static kern_return_t vm_map_copyout_kernel_buffer( |
| 282 | vm_map_t map, |
| 283 | vm_map_address_t *addr, /* IN/OUT */ |
| 284 | vm_map_copy_t copy, |
| 285 | vm_map_size_t copy_size, |
| 286 | boolean_t overwrite, |
| 287 | boolean_t consume_on_success); |
| 288 | |
| 289 | static void vm_map_fork_share( |
| 290 | vm_map_t old_map, |
| 291 | vm_map_entry_t old_entry, |
| 292 | vm_map_t new_map); |
| 293 | |
| 294 | static boolean_t vm_map_fork_copy( |
| 295 | vm_map_t old_map, |
| 296 | vm_map_entry_t *old_entry_p, |
| 297 | vm_map_t new_map, |
| 298 | int vm_map_copyin_flags); |
| 299 | |
| 300 | static kern_return_t vm_map_wire_nested( |
| 301 | vm_map_t map, |
| 302 | vm_map_offset_t start, |
| 303 | vm_map_offset_t end, |
| 304 | vm_prot_t caller_prot, |
| 305 | vm_tag_t tag, |
| 306 | boolean_t user_wire, |
| 307 | pmap_t map_pmap, |
| 308 | vm_map_offset_t pmap_addr, |
| 309 | ppnum_t *physpage_p); |
| 310 | |
| 311 | static kern_return_t vm_map_unwire_nested( |
| 312 | vm_map_t map, |
| 313 | vm_map_offset_t start, |
| 314 | vm_map_offset_t end, |
| 315 | boolean_t user_wire, |
| 316 | pmap_t map_pmap, |
| 317 | vm_map_offset_t pmap_addr); |
| 318 | |
| 319 | static kern_return_t vm_map_overwrite_submap_recurse( |
| 320 | vm_map_t dst_map, |
| 321 | vm_map_offset_t dst_addr, |
| 322 | vm_map_size_t dst_size); |
| 323 | |
| 324 | static kern_return_t vm_map_copy_overwrite_nested( |
| 325 | vm_map_t dst_map, |
| 326 | vm_map_offset_t dst_addr, |
| 327 | vm_map_copy_t copy, |
| 328 | boolean_t interruptible, |
| 329 | pmap_t pmap, |
| 330 | boolean_t discard_on_success); |
| 331 | |
| 332 | static kern_return_t vm_map_remap_extract( |
| 333 | vm_map_t map, |
| 334 | vm_map_offset_t addr, |
| 335 | vm_map_size_t size, |
| 336 | boolean_t copy, |
| 337 | vm_map_copy_t map_copy, |
| 338 | vm_prot_t *cur_protection, |
| 339 | vm_prot_t *max_protection, |
| 340 | vm_inherit_t inheritance, |
| 341 | vm_map_kernel_flags_t vmk_flags); |
| 342 | |
| 343 | static kern_return_t vm_map_remap_range_allocate( |
| 344 | vm_map_t map, |
| 345 | vm_map_address_t *address, |
| 346 | vm_map_size_t size, |
| 347 | vm_map_offset_t mask, |
| 348 | vm_map_kernel_flags_t vmk_flags, |
| 349 | vm_map_entry_t *map_entry, |
| 350 | vm_map_zap_t zap_list); |
| 351 | |
| 352 | static void vm_map_region_look_for_page( |
| 353 | vm_map_t map, |
| 354 | vm_map_offset_t va, |
| 355 | vm_object_t object, |
| 356 | vm_object_offset_t offset, |
| 357 | int max_refcnt, |
| 358 | unsigned short depth, |
| 359 | vm_region_extended_info_t extended, |
| 360 | mach_msg_type_number_t count); |
| 361 | |
| 362 | static int vm_map_region_count_obj_refs( |
| 363 | vm_map_entry_t entry, |
| 364 | vm_object_t object); |
| 365 | |
| 366 | |
| 367 | static kern_return_t vm_map_willneed( |
| 368 | vm_map_t map, |
| 369 | vm_map_offset_t start, |
| 370 | vm_map_offset_t end); |
| 371 | |
| 372 | static kern_return_t vm_map_reuse_pages( |
| 373 | vm_map_t map, |
| 374 | vm_map_offset_t start, |
| 375 | vm_map_offset_t end); |
| 376 | |
| 377 | static kern_return_t vm_map_reusable_pages( |
| 378 | vm_map_t map, |
| 379 | vm_map_offset_t start, |
| 380 | vm_map_offset_t end); |
| 381 | |
| 382 | static kern_return_t vm_map_can_reuse( |
| 383 | vm_map_t map, |
| 384 | vm_map_offset_t start, |
| 385 | vm_map_offset_t end); |
| 386 | |
| 387 | static kern_return_t vm_map_zero( |
| 388 | vm_map_t map, |
| 389 | vm_map_offset_t start, |
| 390 | vm_map_offset_t end); |
| 391 | |
| 392 | static kern_return_t vm_map_random_address_for_size( |
| 393 | vm_map_t map, |
| 394 | vm_map_offset_t *address, |
| 395 | vm_map_size_t size, |
| 396 | vm_map_kernel_flags_t vmk_flags); |
| 397 | |
| 398 | |
| 399 | #if CONFIG_MAP_RANGES |
| 400 | |
| 401 | static vm_map_range_id_t vm_map_user_range_resolve( |
| 402 | vm_map_t map, |
| 403 | mach_vm_address_t addr, |
| 404 | mach_vm_address_t size, |
| 405 | mach_vm_range_t range); |
| 406 | |
| 407 | #endif /* CONFIG_MAP_RANGES */ |
| 408 | #if MACH_ASSERT |
| 409 | static kern_return_t vm_map_pageout( |
| 410 | vm_map_t map, |
| 411 | vm_map_offset_t start, |
| 412 | vm_map_offset_t end); |
| 413 | #endif /* MACH_ASSERT */ |
| 414 | |
| 415 | kern_return_t vm_map_corpse_footprint_collect( |
| 416 | vm_map_t old_map, |
| 417 | vm_map_entry_t old_entry, |
| 418 | vm_map_t new_map); |
| 419 | void vm_map_corpse_footprint_collect_done( |
| 420 | vm_map_t new_map); |
| 421 | void vm_map_corpse_footprint_destroy( |
| 422 | vm_map_t map); |
| 423 | kern_return_t vm_map_corpse_footprint_query_page_info( |
| 424 | vm_map_t map, |
| 425 | vm_map_offset_t va, |
| 426 | int *disposition_p); |
| 427 | void vm_map_footprint_query_page_info( |
| 428 | vm_map_t map, |
| 429 | vm_map_entry_t map_entry, |
| 430 | vm_map_offset_t curr_s_offset, |
| 431 | int *disposition_p); |
| 432 | |
| 433 | #if CONFIG_MAP_RANGES |
| 434 | static void vm_map_range_map_init(void); |
| 435 | #endif /* CONFIG_MAP_RANGES */ |
| 436 | |
| 437 | pid_t find_largest_process_vm_map_entries(void); |
| 438 | |
| 439 | extern int exit_with_guard_exception(void *p, mach_exception_data_type_t code, |
| 440 | mach_exception_data_type_t subcode); |
| 441 | |
| 442 | /* |
| 443 | * Macros to copy a vm_map_entry. We must be careful to correctly |
| 444 | * manage the wired page count. vm_map_entry_copy() creates a new |
| 445 | * map entry to the same memory - the wired count in the new entry |
| 446 | * must be set to zero. vm_map_entry_copy_full() creates a new |
| 447 | * entry that is identical to the old entry. This preserves the |
| 448 | * wire count; it's used for map splitting and zone changing in |
| 449 | * vm_map_copyout. |
| 450 | */ |
| 451 | |
| 452 | static inline void |
| 453 | vm_map_entry_copy_csm_assoc( |
| 454 | vm_map_t map __unused, |
| 455 | vm_map_entry_t new __unused, |
| 456 | vm_map_entry_t old __unused) |
| 457 | { |
| 458 | #if CODE_SIGNING_MONITOR |
| 459 | /* when code signing monitor is enabled, we want to reset on copy */ |
| 460 | new->csm_associated = FALSE; |
| 461 | #else |
| 462 | /* when code signing monitor is not enabled, assert as a sanity check */ |
| 463 | assert(new->csm_associated == FALSE); |
| 464 | #endif |
| 465 | #if DEVELOPMENT || DEBUG |
| 466 | if (new->vme_xnu_user_debug && vm_log_xnu_user_debug) { |
| 467 | printf("FBDP %d[%s] %s:%d map %p entry %p [ 0x%llx 0x%llx ] resetting vme_xnu_user_debug\n" , |
| 468 | proc_selfpid(), |
| 469 | (get_bsdtask_info(current_task()) |
| 470 | ? proc_name_address(get_bsdtask_info(current_task())) |
| 471 | : "?" ), |
| 472 | __FUNCTION__, __LINE__, |
| 473 | map, new, new->vme_start, new->vme_end); |
| 474 | } |
| 475 | #endif /* DEVELOPMENT || DEBUG */ |
| 476 | new->vme_xnu_user_debug = FALSE; |
| 477 | } |
| 478 | |
| 479 | /* |
| 480 | * The "used_for_jit" flag was copied from OLD to NEW in vm_map_entry_copy(). |
| 481 | * But for security reasons on some platforms, we don't want the |
| 482 | * new mapping to be "used for jit", so we reset the flag here. |
| 483 | */ |
| 484 | static inline void |
| 485 | vm_map_entry_copy_code_signing( |
| 486 | vm_map_t map, |
| 487 | vm_map_entry_t new, |
| 488 | vm_map_entry_t old __unused) |
| 489 | { |
| 490 | if (VM_MAP_POLICY_ALLOW_JIT_COPY(map)) { |
| 491 | assert(new->used_for_jit == old->used_for_jit); |
| 492 | } else { |
| 493 | if (old->used_for_jit) { |
| 494 | DTRACE_VM3(cs_wx, |
| 495 | uint64_t, new->vme_start, |
| 496 | uint64_t, new->vme_end, |
| 497 | vm_prot_t, new->protection); |
| 498 | printf(format: "CODE SIGNING: %d[%s] %s: curprot cannot be write+execute. %s\n" , |
| 499 | proc_selfpid(), |
| 500 | (get_bsdtask_info(current_task()) |
| 501 | ? proc_name_address(p: get_bsdtask_info(current_task())) |
| 502 | : "?" ), |
| 503 | __FUNCTION__, |
| 504 | "removing execute access" ); |
| 505 | new->protection &= ~VM_PROT_EXECUTE; |
| 506 | new->max_protection &= ~VM_PROT_EXECUTE; |
| 507 | } |
| 508 | new->used_for_jit = FALSE; |
| 509 | } |
| 510 | } |
| 511 | |
| 512 | static inline void |
| 513 | vm_map_entry_copy_full( |
| 514 | vm_map_entry_t new, |
| 515 | vm_map_entry_t old) |
| 516 | { |
| 517 | #if MAP_ENTRY_CREATION_DEBUG |
| 518 | btref_put(new->vme_creation_bt); |
| 519 | btref_retain(old->vme_creation_bt); |
| 520 | #endif |
| 521 | #if MAP_ENTRY_INSERTION_DEBUG |
| 522 | btref_put(new->vme_insertion_bt); |
| 523 | btref_retain(old->vme_insertion_bt); |
| 524 | #endif |
| 525 | #if VM_BTLOG_TAGS |
| 526 | /* Discard the btref that might be in the new entry */ |
| 527 | if (new->vme_kernel_object) { |
| 528 | btref_put(new->vme_tag_btref); |
| 529 | } |
| 530 | /* Retain the btref in the old entry to account for its copy */ |
| 531 | if (old->vme_kernel_object) { |
| 532 | btref_retain(old->vme_tag_btref); |
| 533 | } |
| 534 | #endif /* VM_BTLOG_TAGS */ |
| 535 | *new = *old; |
| 536 | } |
| 537 | |
| 538 | static inline void |
| 539 | vm_map_entry_copy( |
| 540 | vm_map_t map, |
| 541 | vm_map_entry_t new, |
| 542 | vm_map_entry_t old) |
| 543 | { |
| 544 | vm_map_entry_copy_full(new, old); |
| 545 | |
| 546 | new->is_shared = FALSE; |
| 547 | new->needs_wakeup = FALSE; |
| 548 | new->in_transition = FALSE; |
| 549 | new->wired_count = 0; |
| 550 | new->user_wired_count = 0; |
| 551 | new->vme_permanent = FALSE; |
| 552 | vm_map_entry_copy_code_signing(map, new, old); |
| 553 | vm_map_entry_copy_csm_assoc(map, new, old); |
| 554 | if (new->iokit_acct) { |
| 555 | assertf(!new->use_pmap, "old %p new %p\n" , old, new); |
| 556 | new->iokit_acct = FALSE; |
| 557 | new->use_pmap = TRUE; |
| 558 | } |
| 559 | new->vme_resilient_codesign = FALSE; |
| 560 | new->vme_resilient_media = FALSE; |
| 561 | new->vme_atomic = FALSE; |
| 562 | new->vme_no_copy_on_read = FALSE; |
| 563 | } |
| 564 | |
| 565 | /* |
| 566 | * Normal lock_read_to_write() returns FALSE/0 on failure. |
| 567 | * These functions evaluate to zero on success and non-zero value on failure. |
| 568 | */ |
| 569 | __attribute__((always_inline)) |
| 570 | int |
| 571 | vm_map_lock_read_to_write(vm_map_t map) |
| 572 | { |
| 573 | if (lck_rw_lock_shared_to_exclusive(lck: &(map)->lock)) { |
| 574 | DTRACE_VM(vm_map_lock_upgrade); |
| 575 | return 0; |
| 576 | } |
| 577 | return 1; |
| 578 | } |
| 579 | |
| 580 | __attribute__((always_inline)) |
| 581 | boolean_t |
| 582 | vm_map_try_lock(vm_map_t map) |
| 583 | { |
| 584 | if (lck_rw_try_lock_exclusive(lck: &(map)->lock)) { |
| 585 | DTRACE_VM(vm_map_lock_w); |
| 586 | return TRUE; |
| 587 | } |
| 588 | return FALSE; |
| 589 | } |
| 590 | |
| 591 | __attribute__((always_inline)) |
| 592 | boolean_t |
| 593 | vm_map_try_lock_read(vm_map_t map) |
| 594 | { |
| 595 | if (lck_rw_try_lock_shared(lck: &(map)->lock)) { |
| 596 | DTRACE_VM(vm_map_lock_r); |
| 597 | return TRUE; |
| 598 | } |
| 599 | return FALSE; |
| 600 | } |
| 601 | |
| 602 | /*! |
| 603 | * @function kdp_vm_map_is_acquired_exclusive |
| 604 | * |
| 605 | * @abstract |
| 606 | * Checks if vm map is acquired exclusive. |
| 607 | * |
| 608 | * @discussion |
| 609 | * NOT SAFE: To be used only by kernel debugger. |
| 610 | * |
| 611 | * @param map map to check |
| 612 | * |
| 613 | * @returns TRUE if the map is acquired exclusively. |
| 614 | */ |
| 615 | boolean_t |
| 616 | kdp_vm_map_is_acquired_exclusive(vm_map_t map) |
| 617 | { |
| 618 | return kdp_lck_rw_lock_is_acquired_exclusive(lck: &map->lock); |
| 619 | } |
| 620 | |
| 621 | /* |
| 622 | * Routines to get the page size the caller should |
| 623 | * use while inspecting the target address space. |
| 624 | * Use the "_safely" variant if the caller is dealing with a user-provided |
| 625 | * array whose size depends on the page size, to avoid any overflow or |
| 626 | * underflow of a user-allocated buffer. |
| 627 | */ |
| 628 | int |
| 629 | vm_self_region_page_shift_safely( |
| 630 | vm_map_t target_map) |
| 631 | { |
| 632 | int effective_page_shift = 0; |
| 633 | |
| 634 | if (PAGE_SIZE == (4096)) { |
| 635 | /* x86_64 and 4k watches: always use 4k */ |
| 636 | return PAGE_SHIFT; |
| 637 | } |
| 638 | /* did caller provide an explicit page size for this thread to use? */ |
| 639 | effective_page_shift = thread_self_region_page_shift(); |
| 640 | if (effective_page_shift) { |
| 641 | /* use the explicitly-provided page size */ |
| 642 | return effective_page_shift; |
| 643 | } |
| 644 | /* no explicit page size: use the caller's page size... */ |
| 645 | effective_page_shift = VM_MAP_PAGE_SHIFT(current_map()); |
| 646 | if (effective_page_shift == VM_MAP_PAGE_SHIFT(map: target_map)) { |
| 647 | /* page size match: safe to use */ |
| 648 | return effective_page_shift; |
| 649 | } |
| 650 | /* page size mismatch */ |
| 651 | return -1; |
| 652 | } |
| 653 | int |
| 654 | vm_self_region_page_shift( |
| 655 | vm_map_t target_map) |
| 656 | { |
| 657 | int effective_page_shift; |
| 658 | |
| 659 | effective_page_shift = vm_self_region_page_shift_safely(target_map); |
| 660 | if (effective_page_shift == -1) { |
| 661 | /* no safe value but OK to guess for caller */ |
| 662 | effective_page_shift = MIN(VM_MAP_PAGE_SHIFT(current_map()), |
| 663 | VM_MAP_PAGE_SHIFT(target_map)); |
| 664 | } |
| 665 | return effective_page_shift; |
| 666 | } |
| 667 | |
| 668 | |
| 669 | /* |
| 670 | * Decide if we want to allow processes to execute from their data or stack areas. |
| 671 | * override_nx() returns true if we do. Data/stack execution can be enabled independently |
| 672 | * for 32 and 64 bit processes. Set the VM_ABI_32 or VM_ABI_64 flags in allow_data_exec |
| 673 | * or allow_stack_exec to enable data execution for that type of data area for that particular |
| 674 | * ABI (or both by or'ing the flags together). These are initialized in the architecture |
| 675 | * specific pmap files since the default behavior varies according to architecture. The |
| 676 | * main reason it varies is because of the need to provide binary compatibility with old |
| 677 | * applications that were written before these restrictions came into being. In the old |
| 678 | * days, an app could execute anything it could read, but this has slowly been tightened |
| 679 | * up over time. The default behavior is: |
| 680 | * |
| 681 | * 32-bit PPC apps may execute from both stack and data areas |
| 682 | * 32-bit Intel apps may exeucte from data areas but not stack |
| 683 | * 64-bit PPC/Intel apps may not execute from either data or stack |
| 684 | * |
| 685 | * An application on any architecture may override these defaults by explicitly |
| 686 | * adding PROT_EXEC permission to the page in question with the mprotect(2) |
| 687 | * system call. This code here just determines what happens when an app tries to |
| 688 | * execute from a page that lacks execute permission. |
| 689 | * |
| 690 | * Note that allow_data_exec or allow_stack_exec may also be modified by sysctl to change the |
| 691 | * default behavior for both 32 and 64 bit apps on a system-wide basis. Furthermore, |
| 692 | * a Mach-O header flag bit (MH_NO_HEAP_EXECUTION) can be used to forcibly disallow |
| 693 | * execution from data areas for a particular binary even if the arch normally permits it. As |
| 694 | * a final wrinkle, a posix_spawn attribute flag can be used to negate this opt-in header bit |
| 695 | * to support some complicated use cases, notably browsers with out-of-process plugins that |
| 696 | * are not all NX-safe. |
| 697 | */ |
| 698 | |
| 699 | extern int allow_data_exec, allow_stack_exec; |
| 700 | |
| 701 | int |
| 702 | override_nx(vm_map_t map, uint32_t user_tag) /* map unused on arm */ |
| 703 | { |
| 704 | int current_abi; |
| 705 | |
| 706 | if (map->pmap == kernel_pmap) { |
| 707 | return FALSE; |
| 708 | } |
| 709 | |
| 710 | /* |
| 711 | * Determine if the app is running in 32 or 64 bit mode. |
| 712 | */ |
| 713 | |
| 714 | if (vm_map_is_64bit(map)) { |
| 715 | current_abi = VM_ABI_64; |
| 716 | } else { |
| 717 | current_abi = VM_ABI_32; |
| 718 | } |
| 719 | |
| 720 | /* |
| 721 | * Determine if we should allow the execution based on whether it's a |
| 722 | * stack or data area and the current architecture. |
| 723 | */ |
| 724 | |
| 725 | if (user_tag == VM_MEMORY_STACK) { |
| 726 | return allow_stack_exec & current_abi; |
| 727 | } |
| 728 | |
| 729 | return (allow_data_exec & current_abi) && (map->map_disallow_data_exec == FALSE); |
| 730 | } |
| 731 | |
| 732 | |
| 733 | /* |
| 734 | * Virtual memory maps provide for the mapping, protection, |
| 735 | * and sharing of virtual memory objects. In addition, |
| 736 | * this module provides for an efficient virtual copy of |
| 737 | * memory from one map to another. |
| 738 | * |
| 739 | * Synchronization is required prior to most operations. |
| 740 | * |
| 741 | * Maps consist of an ordered doubly-linked list of simple |
| 742 | * entries; a single hint is used to speed up lookups. |
| 743 | * |
| 744 | * Sharing maps have been deleted from this version of Mach. |
| 745 | * All shared objects are now mapped directly into the respective |
| 746 | * maps. This requires a change in the copy on write strategy; |
| 747 | * the asymmetric (delayed) strategy is used for shared temporary |
| 748 | * objects instead of the symmetric (shadow) strategy. All maps |
| 749 | * are now "top level" maps (either task map, kernel map or submap |
| 750 | * of the kernel map). |
| 751 | * |
| 752 | * Since portions of maps are specified by start/end addreses, |
| 753 | * which may not align with existing map entries, all |
| 754 | * routines merely "clip" entries to these start/end values. |
| 755 | * [That is, an entry is split into two, bordering at a |
| 756 | * start or end value.] Note that these clippings may not |
| 757 | * always be necessary (as the two resulting entries are then |
| 758 | * not changed); however, the clipping is done for convenience. |
| 759 | * No attempt is currently made to "glue back together" two |
| 760 | * abutting entries. |
| 761 | * |
| 762 | * The symmetric (shadow) copy strategy implements virtual copy |
| 763 | * by copying VM object references from one map to |
| 764 | * another, and then marking both regions as copy-on-write. |
| 765 | * It is important to note that only one writeable reference |
| 766 | * to a VM object region exists in any map when this strategy |
| 767 | * is used -- this means that shadow object creation can be |
| 768 | * delayed until a write operation occurs. The symmetric (delayed) |
| 769 | * strategy allows multiple maps to have writeable references to |
| 770 | * the same region of a vm object, and hence cannot delay creating |
| 771 | * its copy objects. See vm_object_copy_quickly() in vm_object.c. |
| 772 | * Copying of permanent objects is completely different; see |
| 773 | * vm_object_copy_strategically() in vm_object.c. |
| 774 | */ |
| 775 | |
| 776 | ZONE_DECLARE_ID(ZONE_ID_VM_MAP_COPY, struct vm_map_copy); |
| 777 | |
| 778 | #define VM_MAP_ZONE_NAME "maps" |
| 779 | #define VM_MAP_ZFLAGS (ZC_NOENCRYPT | ZC_VM) |
| 780 | |
| 781 | #define VM_MAP_ENTRY_ZONE_NAME "VM map entries" |
| 782 | #define VM_MAP_ENTRY_ZFLAGS (ZC_NOENCRYPT | ZC_VM) |
| 783 | |
| 784 | #define VM_MAP_HOLES_ZONE_NAME "VM map holes" |
| 785 | #define VM_MAP_HOLES_ZFLAGS (ZC_NOENCRYPT | ZC_VM) |
| 786 | |
| 787 | /* |
| 788 | * Asserts that a vm_map_copy object is coming from the |
| 789 | * vm_map_copy_zone to ensure that it isn't a fake constructed |
| 790 | * anywhere else. |
| 791 | */ |
| 792 | void |
| 793 | vm_map_copy_require(struct vm_map_copy *copy) |
| 794 | { |
| 795 | zone_id_require(zone_id: ZONE_ID_VM_MAP_COPY, elem_size: sizeof(struct vm_map_copy), addr: copy); |
| 796 | } |
| 797 | |
| 798 | /* |
| 799 | * vm_map_require: |
| 800 | * |
| 801 | * Ensures that the argument is memory allocated from the genuine |
| 802 | * vm map zone. (See zone_id_require_allow_foreign). |
| 803 | */ |
| 804 | void |
| 805 | vm_map_require(vm_map_t map) |
| 806 | { |
| 807 | zone_id_require(zone_id: ZONE_ID_VM_MAP, elem_size: sizeof(struct _vm_map), addr: map); |
| 808 | } |
| 809 | |
| 810 | #define VM_MAP_EARLY_COUNT_MAX 16 |
| 811 | static __startup_data vm_offset_t map_data; |
| 812 | static __startup_data vm_size_t map_data_size; |
| 813 | static __startup_data vm_offset_t kentry_data; |
| 814 | static __startup_data vm_size_t kentry_data_size; |
| 815 | static __startup_data vm_offset_t map_holes_data; |
| 816 | static __startup_data vm_size_t map_holes_data_size; |
| 817 | static __startup_data vm_map_t *early_map_owners[VM_MAP_EARLY_COUNT_MAX]; |
| 818 | static __startup_data uint32_t early_map_count; |
| 819 | |
| 820 | #if XNU_TARGET_OS_OSX |
| 821 | #define NO_COALESCE_LIMIT ((1024 * 128) - 1) |
| 822 | #else /* XNU_TARGET_OS_OSX */ |
| 823 | #define NO_COALESCE_LIMIT 0 |
| 824 | #endif /* XNU_TARGET_OS_OSX */ |
| 825 | |
| 826 | /* Skip acquiring locks if we're in the midst of a kernel core dump */ |
| 827 | unsigned int not_in_kdp = 1; |
| 828 | |
| 829 | unsigned int vm_map_set_cache_attr_count = 0; |
| 830 | |
| 831 | kern_return_t |
| 832 | vm_map_set_cache_attr( |
| 833 | vm_map_t map, |
| 834 | vm_map_offset_t va) |
| 835 | { |
| 836 | vm_map_entry_t map_entry; |
| 837 | vm_object_t object; |
| 838 | kern_return_t kr = KERN_SUCCESS; |
| 839 | |
| 840 | vm_map_lock_read(map); |
| 841 | |
| 842 | if (!vm_map_lookup_entry(map, address: va, entry: &map_entry) || |
| 843 | map_entry->is_sub_map) { |
| 844 | /* |
| 845 | * that memory is not properly mapped |
| 846 | */ |
| 847 | kr = KERN_INVALID_ARGUMENT; |
| 848 | goto done; |
| 849 | } |
| 850 | object = VME_OBJECT(map_entry); |
| 851 | |
| 852 | if (object == VM_OBJECT_NULL) { |
| 853 | /* |
| 854 | * there should be a VM object here at this point |
| 855 | */ |
| 856 | kr = KERN_INVALID_ARGUMENT; |
| 857 | goto done; |
| 858 | } |
| 859 | vm_object_lock(object); |
| 860 | object->set_cache_attr = TRUE; |
| 861 | vm_object_unlock(object); |
| 862 | |
| 863 | vm_map_set_cache_attr_count++; |
| 864 | done: |
| 865 | vm_map_unlock_read(map); |
| 866 | |
| 867 | return kr; |
| 868 | } |
| 869 | |
| 870 | |
| 871 | #if CONFIG_CODE_DECRYPTION |
| 872 | /* |
| 873 | * vm_map_apple_protected: |
| 874 | * This remaps the requested part of the object with an object backed by |
| 875 | * the decrypting pager. |
| 876 | * crypt_info contains entry points and session data for the crypt module. |
| 877 | * The crypt_info block will be copied by vm_map_apple_protected. The data structures |
| 878 | * referenced in crypt_info must remain valid until crypt_info->crypt_end() is called. |
| 879 | */ |
| 880 | kern_return_t |
| 881 | vm_map_apple_protected( |
| 882 | vm_map_t map, |
| 883 | vm_map_offset_t start, |
| 884 | vm_map_offset_t end, |
| 885 | vm_object_offset_t crypto_backing_offset, |
| 886 | struct pager_crypt_info *crypt_info, |
| 887 | uint32_t cryptid) |
| 888 | { |
| 889 | boolean_t map_locked; |
| 890 | kern_return_t kr; |
| 891 | vm_map_entry_t map_entry; |
| 892 | struct vm_map_entry tmp_entry; |
| 893 | memory_object_t unprotected_mem_obj; |
| 894 | vm_object_t protected_object; |
| 895 | vm_map_offset_t map_addr; |
| 896 | vm_map_offset_t start_aligned, end_aligned; |
| 897 | vm_object_offset_t crypto_start, crypto_end; |
| 898 | boolean_t ; |
| 899 | |
| 900 | map_locked = FALSE; |
| 901 | unprotected_mem_obj = MEMORY_OBJECT_NULL; |
| 902 | |
| 903 | if (__improbable(vm_map_range_overflows(map, start, end - start))) { |
| 904 | return KERN_INVALID_ADDRESS; |
| 905 | } |
| 906 | start_aligned = vm_map_trunc_page(start, PAGE_MASK_64); |
| 907 | end_aligned = vm_map_round_page(end, PAGE_MASK_64); |
| 908 | start_aligned = vm_map_trunc_page(start_aligned, VM_MAP_PAGE_MASK(map)); |
| 909 | end_aligned = vm_map_round_page(end_aligned, VM_MAP_PAGE_MASK(map)); |
| 910 | |
| 911 | #if __arm64__ |
| 912 | /* |
| 913 | * "start" and "end" might be 4K-aligned but not 16K-aligned, |
| 914 | * so we might have to loop and establish up to 3 mappings: |
| 915 | * |
| 916 | * + the first 16K-page, which might overlap with the previous |
| 917 | * 4K-aligned mapping, |
| 918 | * + the center, |
| 919 | * + the last 16K-page, which might overlap with the next |
| 920 | * 4K-aligned mapping. |
| 921 | * Each of these mapping might be backed by a vnode pager (if |
| 922 | * properly page-aligned) or a "fourk_pager", itself backed by a |
| 923 | * vnode pager (if 4K-aligned but not page-aligned). |
| 924 | */ |
| 925 | #endif /* __arm64__ */ |
| 926 | |
| 927 | map_addr = start_aligned; |
| 928 | for (map_addr = start_aligned; |
| 929 | map_addr < end; |
| 930 | map_addr = tmp_entry.vme_end) { |
| 931 | vm_map_lock(map); |
| 932 | map_locked = TRUE; |
| 933 | |
| 934 | /* lookup the protected VM object */ |
| 935 | if (!vm_map_lookup_entry(map, |
| 936 | address: map_addr, |
| 937 | entry: &map_entry) || |
| 938 | map_entry->is_sub_map || |
| 939 | VME_OBJECT(map_entry) == VM_OBJECT_NULL) { |
| 940 | /* that memory is not properly mapped */ |
| 941 | kr = KERN_INVALID_ARGUMENT; |
| 942 | goto done; |
| 943 | } |
| 944 | |
| 945 | /* ensure mapped memory is mapped as executable except |
| 946 | * except for model decryption flow */ |
| 947 | if ((cryptid != CRYPTID_MODEL_ENCRYPTION) && |
| 948 | !(map_entry->protection & VM_PROT_EXECUTE)) { |
| 949 | kr = KERN_INVALID_ARGUMENT; |
| 950 | goto done; |
| 951 | } |
| 952 | |
| 953 | /* get the protected object to be decrypted */ |
| 954 | protected_object = VME_OBJECT(map_entry); |
| 955 | if (protected_object == VM_OBJECT_NULL) { |
| 956 | /* there should be a VM object here at this point */ |
| 957 | kr = KERN_INVALID_ARGUMENT; |
| 958 | goto done; |
| 959 | } |
| 960 | /* ensure protected object stays alive while map is unlocked */ |
| 961 | vm_object_reference(protected_object); |
| 962 | |
| 963 | /* limit the map entry to the area we want to cover */ |
| 964 | vm_map_clip_start(map, entry: map_entry, endaddr: start_aligned); |
| 965 | vm_map_clip_end(map, entry: map_entry, endaddr: end_aligned); |
| 966 | |
| 967 | tmp_entry = *map_entry; |
| 968 | map_entry = VM_MAP_ENTRY_NULL; /* not valid after unlocking map */ |
| 969 | vm_map_unlock(map); |
| 970 | map_locked = FALSE; |
| 971 | |
| 972 | /* |
| 973 | * This map entry might be only partially encrypted |
| 974 | * (if not fully "page-aligned"). |
| 975 | */ |
| 976 | crypto_start = 0; |
| 977 | crypto_end = tmp_entry.vme_end - tmp_entry.vme_start; |
| 978 | if (tmp_entry.vme_start < start) { |
| 979 | if (tmp_entry.vme_start != start_aligned) { |
| 980 | kr = KERN_INVALID_ADDRESS; |
| 981 | vm_object_deallocate(object: protected_object); |
| 982 | goto done; |
| 983 | } |
| 984 | crypto_start += (start - tmp_entry.vme_start); |
| 985 | } |
| 986 | if (tmp_entry.vme_end > end) { |
| 987 | if (tmp_entry.vme_end != end_aligned) { |
| 988 | kr = KERN_INVALID_ADDRESS; |
| 989 | vm_object_deallocate(object: protected_object); |
| 990 | goto done; |
| 991 | } |
| 992 | crypto_end -= (tmp_entry.vme_end - end); |
| 993 | } |
| 994 | |
| 995 | /* |
| 996 | * This "extra backing offset" is needed to get the decryption |
| 997 | * routine to use the right key. It adjusts for the possibly |
| 998 | * relative offset of an interposed "4K" pager... |
| 999 | */ |
| 1000 | if (crypto_backing_offset == (vm_object_offset_t) -1) { |
| 1001 | crypto_backing_offset = VME_OFFSET(entry: &tmp_entry); |
| 1002 | } |
| 1003 | |
| 1004 | cache_pager = TRUE; |
| 1005 | #if XNU_TARGET_OS_OSX |
| 1006 | if (vm_map_is_alien(map)) { |
| 1007 | cache_pager = FALSE; |
| 1008 | } |
| 1009 | #endif /* XNU_TARGET_OS_OSX */ |
| 1010 | |
| 1011 | /* |
| 1012 | * Lookup (and create if necessary) the protected memory object |
| 1013 | * matching that VM object. |
| 1014 | * If successful, this also grabs a reference on the memory object, |
| 1015 | * to guarantee that it doesn't go away before we get a chance to map |
| 1016 | * it. |
| 1017 | */ |
| 1018 | unprotected_mem_obj = apple_protect_pager_setup( |
| 1019 | backing_object: protected_object, |
| 1020 | backing_offset: VME_OFFSET(entry: &tmp_entry), |
| 1021 | crypto_backing_offset, |
| 1022 | crypt_info, |
| 1023 | crypto_start, |
| 1024 | crypto_end, |
| 1025 | cache_pager); |
| 1026 | |
| 1027 | /* release extra ref on protected object */ |
| 1028 | vm_object_deallocate(object: protected_object); |
| 1029 | |
| 1030 | if (unprotected_mem_obj == NULL) { |
| 1031 | kr = KERN_FAILURE; |
| 1032 | goto done; |
| 1033 | } |
| 1034 | |
| 1035 | /* can overwrite an immutable mapping */ |
| 1036 | vm_map_kernel_flags_t vmk_flags = { |
| 1037 | .vmf_fixed = true, |
| 1038 | .vmf_overwrite = true, |
| 1039 | .vmkf_overwrite_immutable = true, |
| 1040 | }; |
| 1041 | #if __arm64__ |
| 1042 | if (tmp_entry.used_for_jit && |
| 1043 | (VM_MAP_PAGE_SHIFT(map) != FOURK_PAGE_SHIFT || |
| 1044 | PAGE_SHIFT != FOURK_PAGE_SHIFT) && |
| 1045 | fourk_binary_compatibility_unsafe && |
| 1046 | fourk_binary_compatibility_allow_wx) { |
| 1047 | printf(format: "** FOURK_COMPAT [%d]: " |
| 1048 | "allowing write+execute at 0x%llx\n" , |
| 1049 | proc_selfpid(), tmp_entry.vme_start); |
| 1050 | vmk_flags.vmkf_map_jit = TRUE; |
| 1051 | } |
| 1052 | #endif /* __arm64__ */ |
| 1053 | |
| 1054 | /* map this memory object in place of the current one */ |
| 1055 | map_addr = tmp_entry.vme_start; |
| 1056 | kr = vm_map_enter_mem_object(map, |
| 1057 | address: &map_addr, |
| 1058 | size: (tmp_entry.vme_end - |
| 1059 | tmp_entry.vme_start), |
| 1060 | mask: (mach_vm_offset_t) 0, |
| 1061 | vmk_flags, |
| 1062 | port: (ipc_port_t)(uintptr_t) unprotected_mem_obj, |
| 1063 | offset: 0, |
| 1064 | TRUE, |
| 1065 | cur_protection: tmp_entry.protection, |
| 1066 | max_protection: tmp_entry.max_protection, |
| 1067 | inheritance: tmp_entry.inheritance); |
| 1068 | assertf(kr == KERN_SUCCESS, |
| 1069 | "kr = 0x%x\n" , kr); |
| 1070 | assertf(map_addr == tmp_entry.vme_start, |
| 1071 | "map_addr=0x%llx vme_start=0x%llx tmp_entry=%p\n" , |
| 1072 | (uint64_t)map_addr, |
| 1073 | (uint64_t) tmp_entry.vme_start, |
| 1074 | &tmp_entry); |
| 1075 | |
| 1076 | #if VM_MAP_DEBUG_APPLE_PROTECT |
| 1077 | if (vm_map_debug_apple_protect) { |
| 1078 | printf("APPLE_PROTECT: map %p [0x%llx:0x%llx] pager %p:" |
| 1079 | " backing:[object:%p,offset:0x%llx," |
| 1080 | "crypto_backing_offset:0x%llx," |
| 1081 | "crypto_start:0x%llx,crypto_end:0x%llx]\n" , |
| 1082 | map, |
| 1083 | (uint64_t) map_addr, |
| 1084 | (uint64_t) (map_addr + (tmp_entry.vme_end - |
| 1085 | tmp_entry.vme_start)), |
| 1086 | unprotected_mem_obj, |
| 1087 | protected_object, |
| 1088 | VME_OFFSET(&tmp_entry), |
| 1089 | crypto_backing_offset, |
| 1090 | crypto_start, |
| 1091 | crypto_end); |
| 1092 | } |
| 1093 | #endif /* VM_MAP_DEBUG_APPLE_PROTECT */ |
| 1094 | |
| 1095 | /* |
| 1096 | * Release the reference obtained by |
| 1097 | * apple_protect_pager_setup(). |
| 1098 | * The mapping (if it succeeded) is now holding a reference on |
| 1099 | * the memory object. |
| 1100 | */ |
| 1101 | memory_object_deallocate(object: unprotected_mem_obj); |
| 1102 | unprotected_mem_obj = MEMORY_OBJECT_NULL; |
| 1103 | |
| 1104 | /* continue with next map entry */ |
| 1105 | crypto_backing_offset += (tmp_entry.vme_end - |
| 1106 | tmp_entry.vme_start); |
| 1107 | crypto_backing_offset -= crypto_start; |
| 1108 | } |
| 1109 | kr = KERN_SUCCESS; |
| 1110 | |
| 1111 | done: |
| 1112 | if (map_locked) { |
| 1113 | vm_map_unlock(map); |
| 1114 | } |
| 1115 | return kr; |
| 1116 | } |
| 1117 | #endif /* CONFIG_CODE_DECRYPTION */ |
| 1118 | |
| 1119 | |
| 1120 | LCK_GRP_DECLARE(vm_map_lck_grp, "vm_map" ); |
| 1121 | LCK_ATTR_DECLARE(vm_map_lck_attr, 0, 0); |
| 1122 | LCK_ATTR_DECLARE(vm_map_lck_rw_attr, 0, LCK_ATTR_DEBUG); |
| 1123 | |
| 1124 | #if XNU_TARGET_OS_OSX |
| 1125 | #define MALLOC_NO_COW_DEFAULT 1 |
| 1126 | #define MALLOC_NO_COW_EXCEPT_FORK_DEFAULT 1 |
| 1127 | #else /* XNU_TARGET_OS_OSX */ |
| 1128 | #define MALLOC_NO_COW_DEFAULT 1 |
| 1129 | #define MALLOC_NO_COW_EXCEPT_FORK_DEFAULT 0 |
| 1130 | #endif /* XNU_TARGET_OS_OSX */ |
| 1131 | TUNABLE(int, malloc_no_cow, "malloc_no_cow" , MALLOC_NO_COW_DEFAULT); |
| 1132 | TUNABLE(int, malloc_no_cow_except_fork, "malloc_no_cow_except_fork" , MALLOC_NO_COW_EXCEPT_FORK_DEFAULT); |
| 1133 | uint64_t vm_memory_malloc_no_cow_mask = 0ULL; |
| 1134 | #if DEBUG |
| 1135 | int vm_check_map_sanity = 0; |
| 1136 | #endif |
| 1137 | |
| 1138 | /* |
| 1139 | * vm_map_init: |
| 1140 | * |
| 1141 | * Initialize the vm_map module. Must be called before |
| 1142 | * any other vm_map routines. |
| 1143 | * |
| 1144 | * Map and entry structures are allocated from zones -- we must |
| 1145 | * initialize those zones. |
| 1146 | * |
| 1147 | * There are three zones of interest: |
| 1148 | * |
| 1149 | * vm_map_zone: used to allocate maps. |
| 1150 | * vm_map_entry_zone: used to allocate map entries. |
| 1151 | * |
| 1152 | * LP32: |
| 1153 | * vm_map_entry_reserved_zone: fallback zone for kernel map entries |
| 1154 | * |
| 1155 | * The kernel allocates map entries from a special zone that is initially |
| 1156 | * "crammed" with memory. It would be difficult (perhaps impossible) for |
| 1157 | * the kernel to allocate more memory to a entry zone when it became |
| 1158 | * empty since the very act of allocating memory implies the creation |
| 1159 | * of a new entry. |
| 1160 | */ |
| 1161 | __startup_func |
| 1162 | void |
| 1163 | vm_map_init(void) |
| 1164 | { |
| 1165 | |
| 1166 | #if MACH_ASSERT |
| 1167 | PE_parse_boot_argn("debug4k_filter" , &debug4k_filter, |
| 1168 | sizeof(debug4k_filter)); |
| 1169 | #endif /* MACH_ASSERT */ |
| 1170 | |
| 1171 | zone_create_ext(VM_MAP_ZONE_NAME, size: sizeof(struct _vm_map), |
| 1172 | VM_MAP_ZFLAGS, desired_zid: ZONE_ID_VM_MAP, NULL); |
| 1173 | |
| 1174 | /* |
| 1175 | * Don't quarantine because we always need elements available |
| 1176 | * Disallow GC on this zone... to aid the GC. |
| 1177 | */ |
| 1178 | zone_create_ext(VM_MAP_ENTRY_ZONE_NAME, |
| 1179 | size: sizeof(struct vm_map_entry), VM_MAP_ENTRY_ZFLAGS, |
| 1180 | desired_zid: ZONE_ID_VM_MAP_ENTRY, extra_setup: ^(zone_t z) { |
| 1181 | z->z_elems_rsv = (uint16_t)(32 * |
| 1182 | (ml_early_cpu_max_number() + 1)); |
| 1183 | }); |
| 1184 | |
| 1185 | zone_create_ext(VM_MAP_HOLES_ZONE_NAME, |
| 1186 | size: sizeof(struct vm_map_links), VM_MAP_HOLES_ZFLAGS, |
| 1187 | desired_zid: ZONE_ID_VM_MAP_HOLES, extra_setup: ^(zone_t z) { |
| 1188 | z->z_elems_rsv = (uint16_t)(16 * 1024 / zone_elem_outer_size(zone: z)); |
| 1189 | }); |
| 1190 | |
| 1191 | zone_create_ext(name: "VM map copies" , size: sizeof(struct vm_map_copy), |
| 1192 | flags: ZC_NOENCRYPT, desired_zid: ZONE_ID_VM_MAP_COPY, NULL); |
| 1193 | |
| 1194 | /* |
| 1195 | * Add the stolen memory to zones, adjust zone size and stolen counts. |
| 1196 | */ |
| 1197 | zone_cram_early(vm_map_zone, newmem: map_data, size: map_data_size); |
| 1198 | zone_cram_early(vm_map_entry_zone, newmem: kentry_data, size: kentry_data_size); |
| 1199 | zone_cram_early(vm_map_holes_zone, newmem: map_holes_data, size: map_holes_data_size); |
| 1200 | printf(format: "VM boostrap: %d maps, %d entries and %d holes available\n" , |
| 1201 | zone_count_free(vm_map_zone), |
| 1202 | zone_count_free(vm_map_entry_zone), |
| 1203 | zone_count_free(vm_map_holes_zone)); |
| 1204 | |
| 1205 | /* |
| 1206 | * Since these are covered by zones, remove them from stolen page accounting. |
| 1207 | */ |
| 1208 | VM_PAGE_MOVE_STOLEN(atop_64(map_data_size) + atop_64(kentry_data_size) + atop_64(map_holes_data_size)); |
| 1209 | |
| 1210 | #if VM_MAP_DEBUG_APPLE_PROTECT |
| 1211 | PE_parse_boot_argn("vm_map_debug_apple_protect" , |
| 1212 | &vm_map_debug_apple_protect, |
| 1213 | sizeof(vm_map_debug_apple_protect)); |
| 1214 | #endif /* VM_MAP_DEBUG_APPLE_PROTECT */ |
| 1215 | #if VM_MAP_DEBUG_APPLE_FOURK |
| 1216 | PE_parse_boot_argn("vm_map_debug_fourk" , |
| 1217 | &vm_map_debug_fourk, |
| 1218 | sizeof(vm_map_debug_fourk)); |
| 1219 | #endif /* VM_MAP_DEBUG_FOURK */ |
| 1220 | |
| 1221 | if (malloc_no_cow) { |
| 1222 | vm_memory_malloc_no_cow_mask = 0ULL; |
| 1223 | vm_memory_malloc_no_cow_mask |= 1ULL << VM_MEMORY_MALLOC; |
| 1224 | vm_memory_malloc_no_cow_mask |= 1ULL << VM_MEMORY_MALLOC_SMALL; |
| 1225 | vm_memory_malloc_no_cow_mask |= 1ULL << VM_MEMORY_MALLOC_MEDIUM; |
| 1226 | #if XNU_TARGET_OS_OSX |
| 1227 | /* |
| 1228 | * On macOS, keep copy-on-write for MALLOC_LARGE because |
| 1229 | * realloc() may use vm_copy() to transfer the old contents |
| 1230 | * to the new location. |
| 1231 | */ |
| 1232 | #else /* XNU_TARGET_OS_OSX */ |
| 1233 | vm_memory_malloc_no_cow_mask |= 1ULL << VM_MEMORY_MALLOC_LARGE; |
| 1234 | vm_memory_malloc_no_cow_mask |= 1ULL << VM_MEMORY_MALLOC_LARGE_REUSABLE; |
| 1235 | vm_memory_malloc_no_cow_mask |= 1ULL << VM_MEMORY_MALLOC_LARGE_REUSED; |
| 1236 | #endif /* XNU_TARGET_OS_OSX */ |
| 1237 | // vm_memory_malloc_no_cow_mask |= 1ULL << VM_MEMORY_MALLOC_HUGE; |
| 1238 | // vm_memory_malloc_no_cow_mask |= 1ULL << VM_MEMORY_REALLOC; |
| 1239 | vm_memory_malloc_no_cow_mask |= 1ULL << VM_MEMORY_MALLOC_TINY; |
| 1240 | vm_memory_malloc_no_cow_mask |= 1ULL << VM_MEMORY_MALLOC_NANO; |
| 1241 | // vm_memory_malloc_no_cow_mask |= 1ULL << VM_MEMORY_TCMALLOC; |
| 1242 | PE_parse_boot_argn(arg_string: "vm_memory_malloc_no_cow_mask" , |
| 1243 | arg_ptr: &vm_memory_malloc_no_cow_mask, |
| 1244 | max_arg: sizeof(vm_memory_malloc_no_cow_mask)); |
| 1245 | } |
| 1246 | |
| 1247 | #if CONFIG_MAP_RANGES |
| 1248 | vm_map_range_map_init(); |
| 1249 | #endif /* CONFIG_MAP_RANGES */ |
| 1250 | |
| 1251 | #if DEBUG |
| 1252 | PE_parse_boot_argn("vm_check_map_sanity" , &vm_check_map_sanity, sizeof(vm_check_map_sanity)); |
| 1253 | if (vm_check_map_sanity) { |
| 1254 | kprintf("VM sanity checking enabled\n" ); |
| 1255 | } else { |
| 1256 | kprintf("VM sanity checking disabled. Set bootarg vm_check_map_sanity=1 to enable\n" ); |
| 1257 | } |
| 1258 | #endif /* DEBUG */ |
| 1259 | |
| 1260 | #if DEVELOPMENT || DEBUG |
| 1261 | PE_parse_boot_argn("panic_on_unsigned_execute" , |
| 1262 | &panic_on_unsigned_execute, |
| 1263 | sizeof(panic_on_unsigned_execute)); |
| 1264 | PE_parse_boot_argn("panic_on_mlock_failure" , |
| 1265 | &panic_on_mlock_failure, |
| 1266 | sizeof(panic_on_mlock_failure)); |
| 1267 | #endif /* DEVELOPMENT || DEBUG */ |
| 1268 | } |
| 1269 | |
| 1270 | __startup_func |
| 1271 | static void |
| 1272 | vm_map_steal_memory(void) |
| 1273 | { |
| 1274 | /* |
| 1275 | * We need to reserve enough memory to support boostraping VM maps |
| 1276 | * and the zone subsystem. |
| 1277 | * |
| 1278 | * The VM Maps that need to function before zones can support them |
| 1279 | * are the ones registered with vm_map_will_allocate_early_map(), |
| 1280 | * which are: |
| 1281 | * - the kernel map |
| 1282 | * - the various submaps used by zones (pgz, meta, ...) |
| 1283 | * |
| 1284 | * We also need enough entries and holes to support them |
| 1285 | * until zone_metadata_init() is called, which is when |
| 1286 | * the zone allocator becomes capable of expanding dynamically. |
| 1287 | * |
| 1288 | * We need: |
| 1289 | * - VM_MAP_EARLY_COUNT_MAX worth of VM Maps. |
| 1290 | * - To allow for 3-4 entries per map, but the kernel map |
| 1291 | * needs a multiple of VM_MAP_EARLY_COUNT_MAX entries |
| 1292 | * to describe the submaps, so double it (and make it 8x too) |
| 1293 | * - To allow for holes between entries, |
| 1294 | * hence needs the same budget as entries |
| 1295 | */ |
| 1296 | map_data_size = zone_get_early_alloc_size(VM_MAP_ZONE_NAME, |
| 1297 | elem_size: sizeof(struct _vm_map), VM_MAP_ZFLAGS, |
| 1298 | VM_MAP_EARLY_COUNT_MAX); |
| 1299 | |
| 1300 | kentry_data_size = zone_get_early_alloc_size(VM_MAP_ENTRY_ZONE_NAME, |
| 1301 | elem_size: sizeof(struct vm_map_entry), VM_MAP_ENTRY_ZFLAGS, |
| 1302 | min_elems: 8 * VM_MAP_EARLY_COUNT_MAX); |
| 1303 | |
| 1304 | map_holes_data_size = zone_get_early_alloc_size(VM_MAP_HOLES_ZONE_NAME, |
| 1305 | elem_size: sizeof(struct vm_map_links), VM_MAP_HOLES_ZFLAGS, |
| 1306 | min_elems: 8 * VM_MAP_EARLY_COUNT_MAX); |
| 1307 | |
| 1308 | /* |
| 1309 | * Steal a contiguous range of memory so that a simple range check |
| 1310 | * can validate early addresses being freed/crammed to these |
| 1311 | * zones |
| 1312 | */ |
| 1313 | map_data = zone_early_mem_init(size: map_data_size + kentry_data_size + |
| 1314 | map_holes_data_size); |
| 1315 | kentry_data = map_data + map_data_size; |
| 1316 | map_holes_data = kentry_data + kentry_data_size; |
| 1317 | } |
| 1318 | STARTUP(PMAP_STEAL, STARTUP_RANK_FIRST, vm_map_steal_memory); |
| 1319 | |
| 1320 | __startup_func |
| 1321 | static void |
| 1322 | vm_kernel_boostraped(void) |
| 1323 | { |
| 1324 | zone_enable_caching(zone: &zone_array[ZONE_ID_VM_MAP_ENTRY]); |
| 1325 | zone_enable_caching(zone: &zone_array[ZONE_ID_VM_MAP_HOLES]); |
| 1326 | zone_enable_caching(zone: &zone_array[ZONE_ID_VM_MAP_COPY]); |
| 1327 | |
| 1328 | printf(format: "VM bootstrap done: %d maps, %d entries and %d holes left\n" , |
| 1329 | zone_count_free(vm_map_zone), |
| 1330 | zone_count_free(vm_map_entry_zone), |
| 1331 | zone_count_free(vm_map_holes_zone)); |
| 1332 | } |
| 1333 | STARTUP(ZALLOC, STARTUP_RANK_SECOND, vm_kernel_boostraped); |
| 1334 | |
| 1335 | void |
| 1336 | vm_map_disable_hole_optimization(vm_map_t map) |
| 1337 | { |
| 1338 | vm_map_entry_t head_entry, hole_entry, next_hole_entry; |
| 1339 | |
| 1340 | if (map->holelistenabled) { |
| 1341 | head_entry = hole_entry = CAST_TO_VM_MAP_ENTRY(map->holes_list); |
| 1342 | |
| 1343 | while (hole_entry != NULL) { |
| 1344 | next_hole_entry = hole_entry->vme_next; |
| 1345 | |
| 1346 | hole_entry->vme_next = NULL; |
| 1347 | hole_entry->vme_prev = NULL; |
| 1348 | zfree_id(ZONE_ID_VM_MAP_HOLES, hole_entry); |
| 1349 | |
| 1350 | if (next_hole_entry == head_entry) { |
| 1351 | hole_entry = NULL; |
| 1352 | } else { |
| 1353 | hole_entry = next_hole_entry; |
| 1354 | } |
| 1355 | } |
| 1356 | |
| 1357 | map->holes_list = NULL; |
| 1358 | map->holelistenabled = FALSE; |
| 1359 | |
| 1360 | map->first_free = vm_map_first_entry(map); |
| 1361 | SAVE_HINT_HOLE_WRITE(map, NULL); |
| 1362 | } |
| 1363 | } |
| 1364 | |
| 1365 | boolean_t |
| 1366 | vm_kernel_map_is_kernel(vm_map_t map) |
| 1367 | { |
| 1368 | return map->pmap == kernel_pmap; |
| 1369 | } |
| 1370 | |
| 1371 | /* |
| 1372 | * vm_map_create: |
| 1373 | * |
| 1374 | * Creates and returns a new empty VM map with |
| 1375 | * the given physical map structure, and having |
| 1376 | * the given lower and upper address bounds. |
| 1377 | */ |
| 1378 | |
| 1379 | extern vm_map_t vm_map_create_external( |
| 1380 | pmap_t pmap, |
| 1381 | vm_map_offset_t min_off, |
| 1382 | vm_map_offset_t max_off, |
| 1383 | boolean_t pageable); |
| 1384 | |
| 1385 | vm_map_t |
| 1386 | vm_map_create_external( |
| 1387 | pmap_t pmap, |
| 1388 | vm_map_offset_t min, |
| 1389 | vm_map_offset_t max, |
| 1390 | boolean_t pageable) |
| 1391 | { |
| 1392 | vm_map_create_options_t options = VM_MAP_CREATE_DEFAULT; |
| 1393 | |
| 1394 | if (pageable) { |
| 1395 | options |= VM_MAP_CREATE_PAGEABLE; |
| 1396 | } |
| 1397 | return vm_map_create_options(pmap, min_off: min, max_off: max, options); |
| 1398 | } |
| 1399 | |
| 1400 | __startup_func |
| 1401 | void |
| 1402 | vm_map_will_allocate_early_map(vm_map_t *owner) |
| 1403 | { |
| 1404 | if (early_map_count >= VM_MAP_EARLY_COUNT_MAX) { |
| 1405 | panic("VM_MAP_EARLY_COUNT_MAX is too low" ); |
| 1406 | } |
| 1407 | |
| 1408 | early_map_owners[early_map_count++] = owner; |
| 1409 | } |
| 1410 | |
| 1411 | __startup_func |
| 1412 | void |
| 1413 | vm_map_relocate_early_maps(vm_offset_t delta) |
| 1414 | { |
| 1415 | for (uint32_t i = 0; i < early_map_count; i++) { |
| 1416 | vm_address_t addr = (vm_address_t)*early_map_owners[i]; |
| 1417 | |
| 1418 | *early_map_owners[i] = (vm_map_t)(addr + delta); |
| 1419 | } |
| 1420 | |
| 1421 | early_map_count = ~0u; |
| 1422 | } |
| 1423 | |
| 1424 | /* |
| 1425 | * Routine: vm_map_relocate_early_elem |
| 1426 | * |
| 1427 | * Purpose: |
| 1428 | * Early zone elements are allocated in a temporary part |
| 1429 | * of the address space. |
| 1430 | * |
| 1431 | * Once the zones live in their final place, the early |
| 1432 | * VM maps, map entries and map holes need to be relocated. |
| 1433 | * |
| 1434 | * It involves rewriting any vm_map_t, vm_map_entry_t or |
| 1435 | * pointers to vm_map_links. Other pointers to other types |
| 1436 | * are fine. |
| 1437 | * |
| 1438 | * Fortunately, pointers to those types are self-contained |
| 1439 | * in those zones, _except_ for pointers to VM maps, |
| 1440 | * which are tracked during early boot and fixed with |
| 1441 | * vm_map_relocate_early_maps(). |
| 1442 | */ |
| 1443 | __startup_func |
| 1444 | void |
| 1445 | vm_map_relocate_early_elem( |
| 1446 | uint32_t zone_id, |
| 1447 | vm_offset_t new_addr, |
| 1448 | vm_offset_t delta) |
| 1449 | { |
| 1450 | #define relocate(type_t, field) ({ \ |
| 1451 | typeof(((type_t)NULL)->field) *__field = &((type_t)new_addr)->field; \ |
| 1452 | if (*__field) { \ |
| 1453 | *__field = (typeof(*__field))((vm_offset_t)*__field + delta); \ |
| 1454 | } \ |
| 1455 | }) |
| 1456 | |
| 1457 | switch (zone_id) { |
| 1458 | case ZONE_ID_VM_MAP: |
| 1459 | case ZONE_ID_VM_MAP_ENTRY: |
| 1460 | case ZONE_ID_VM_MAP_HOLES: |
| 1461 | break; |
| 1462 | |
| 1463 | default: |
| 1464 | panic("Unexpected zone ID %d" , zone_id); |
| 1465 | } |
| 1466 | |
| 1467 | if (zone_id == ZONE_ID_VM_MAP) { |
| 1468 | relocate(vm_map_t, hdr.links.prev); |
| 1469 | relocate(vm_map_t, hdr.links.next); |
| 1470 | ((vm_map_t)new_addr)->pmap = kernel_pmap; |
| 1471 | #ifdef VM_MAP_STORE_USE_RB |
| 1472 | relocate(vm_map_t, hdr.rb_head_store.rbh_root); |
| 1473 | #endif /* VM_MAP_STORE_USE_RB */ |
| 1474 | relocate(vm_map_t, hint); |
| 1475 | relocate(vm_map_t, hole_hint); |
| 1476 | relocate(vm_map_t, first_free); |
| 1477 | return; |
| 1478 | } |
| 1479 | |
| 1480 | relocate(struct vm_map_links *, prev); |
| 1481 | relocate(struct vm_map_links *, next); |
| 1482 | |
| 1483 | if (zone_id == ZONE_ID_VM_MAP_ENTRY) { |
| 1484 | #ifdef VM_MAP_STORE_USE_RB |
| 1485 | relocate(vm_map_entry_t, store.entry.rbe_left); |
| 1486 | relocate(vm_map_entry_t, store.entry.rbe_right); |
| 1487 | relocate(vm_map_entry_t, store.entry.rbe_parent); |
| 1488 | #endif /* VM_MAP_STORE_USE_RB */ |
| 1489 | if (((vm_map_entry_t)new_addr)->is_sub_map) { |
| 1490 | /* no object to relocate because we haven't made any */ |
| 1491 | ((vm_map_entry_t)new_addr)->vme_submap += |
| 1492 | delta >> VME_SUBMAP_SHIFT; |
| 1493 | } |
| 1494 | #if MAP_ENTRY_CREATION_DEBUG |
| 1495 | relocate(vm_map_entry_t, vme_creation_maphdr); |
| 1496 | #endif /* MAP_ENTRY_CREATION_DEBUG */ |
| 1497 | } |
| 1498 | |
| 1499 | #undef relocate |
| 1500 | } |
| 1501 | |
| 1502 | vm_map_t |
| 1503 | vm_map_create_options( |
| 1504 | pmap_t pmap, |
| 1505 | vm_map_offset_t min, |
| 1506 | vm_map_offset_t max, |
| 1507 | vm_map_create_options_t options) |
| 1508 | { |
| 1509 | vm_map_t result; |
| 1510 | |
| 1511 | #if DEBUG || DEVELOPMENT |
| 1512 | if (__improbable(startup_phase < STARTUP_SUB_ZALLOC)) { |
| 1513 | if (early_map_count != ~0u && early_map_count != |
| 1514 | zone_count_allocated(vm_map_zone) + 1) { |
| 1515 | panic("allocating %dth early map, owner not known" , |
| 1516 | zone_count_allocated(vm_map_zone) + 1); |
| 1517 | } |
| 1518 | if (early_map_count != ~0u && pmap && pmap != kernel_pmap) { |
| 1519 | panic("allocating %dth early map for non kernel pmap" , |
| 1520 | early_map_count); |
| 1521 | } |
| 1522 | } |
| 1523 | #endif /* DEBUG || DEVELOPMENT */ |
| 1524 | |
| 1525 | result = zalloc_id(ZONE_ID_VM_MAP, Z_WAITOK | Z_NOFAIL | Z_ZERO); |
| 1526 | |
| 1527 | vm_map_store_init(header: &result->hdr); |
| 1528 | result->hdr.entries_pageable = (bool)(options & VM_MAP_CREATE_PAGEABLE); |
| 1529 | vm_map_set_page_shift(map: result, PAGE_SHIFT); |
| 1530 | |
| 1531 | result->size_limit = RLIM_INFINITY; /* default unlimited */ |
| 1532 | result->data_limit = RLIM_INFINITY; /* default unlimited */ |
| 1533 | result->user_wire_limit = MACH_VM_MAX_ADDRESS; /* default limit is unlimited */ |
| 1534 | os_ref_init_count_raw(&result->map_refcnt, &map_refgrp, 1); |
| 1535 | result->pmap = pmap; |
| 1536 | result->min_offset = min; |
| 1537 | result->max_offset = max; |
| 1538 | result->first_free = vm_map_to_entry(result); |
| 1539 | result->hint = vm_map_to_entry(result); |
| 1540 | |
| 1541 | if (options & VM_MAP_CREATE_NEVER_FAULTS) { |
| 1542 | assert(pmap == kernel_pmap); |
| 1543 | result->never_faults = true; |
| 1544 | } |
| 1545 | |
| 1546 | /* "has_corpse_footprint" and "holelistenabled" are mutually exclusive */ |
| 1547 | if (options & VM_MAP_CREATE_CORPSE_FOOTPRINT) { |
| 1548 | result->has_corpse_footprint = true; |
| 1549 | } else if (!(options & VM_MAP_CREATE_DISABLE_HOLELIST)) { |
| 1550 | struct vm_map_links *hole_entry; |
| 1551 | |
| 1552 | hole_entry = zalloc_id(ZONE_ID_VM_MAP_HOLES, Z_WAITOK | Z_NOFAIL); |
| 1553 | hole_entry->start = min; |
| 1554 | #if defined(__arm64__) |
| 1555 | hole_entry->end = result->max_offset; |
| 1556 | #else |
| 1557 | hole_entry->end = MAX(max, (vm_map_offset_t)MACH_VM_MAX_ADDRESS); |
| 1558 | #endif |
| 1559 | result->holes_list = result->hole_hint = hole_entry; |
| 1560 | hole_entry->prev = hole_entry->next = CAST_TO_VM_MAP_ENTRY(hole_entry); |
| 1561 | result->holelistenabled = true; |
| 1562 | } |
| 1563 | |
| 1564 | vm_map_lock_init(result); |
| 1565 | |
| 1566 | return result; |
| 1567 | } |
| 1568 | |
| 1569 | /* |
| 1570 | * Adjusts a submap that was made by kmem_suballoc() |
| 1571 | * before it knew where it would be mapped, |
| 1572 | * so that it has the right min/max offsets. |
| 1573 | * |
| 1574 | * We do not need to hold any locks: |
| 1575 | * only the caller knows about this map, |
| 1576 | * and it is not published on any entry yet. |
| 1577 | */ |
| 1578 | static void |
| 1579 | vm_map_adjust_offsets( |
| 1580 | vm_map_t map, |
| 1581 | vm_map_offset_t min_off, |
| 1582 | vm_map_offset_t max_off) |
| 1583 | { |
| 1584 | assert(map->min_offset == 0); |
| 1585 | assert(map->max_offset == max_off - min_off); |
| 1586 | assert(map->hdr.nentries == 0); |
| 1587 | assert(os_ref_get_count_raw(&map->map_refcnt) == 2); |
| 1588 | |
| 1589 | map->min_offset = min_off; |
| 1590 | map->max_offset = max_off; |
| 1591 | |
| 1592 | if (map->holelistenabled) { |
| 1593 | struct vm_map_links *hole = map->holes_list; |
| 1594 | |
| 1595 | hole->start = min_off; |
| 1596 | #if defined(__arm64__) |
| 1597 | hole->end = max_off; |
| 1598 | #else |
| 1599 | hole->end = MAX(max_off, (vm_map_offset_t)MACH_VM_MAX_ADDRESS); |
| 1600 | #endif |
| 1601 | } |
| 1602 | } |
| 1603 | |
| 1604 | |
| 1605 | vm_map_size_t |
| 1606 | vm_map_adjusted_size(vm_map_t map) |
| 1607 | { |
| 1608 | const struct vm_reserved_region *regions = NULL; |
| 1609 | size_t num_regions = 0; |
| 1610 | mach_vm_size_t reserved_size = 0, map_size = 0; |
| 1611 | |
| 1612 | if (map == NULL || (map->size == 0)) { |
| 1613 | return 0; |
| 1614 | } |
| 1615 | |
| 1616 | map_size = map->size; |
| 1617 | |
| 1618 | if (map->reserved_regions == FALSE || !vm_map_is_exotic(map) || map->terminated) { |
| 1619 | /* |
| 1620 | * No special reserved regions or not an exotic map or the task |
| 1621 | * is terminating and these special regions might have already |
| 1622 | * been deallocated. |
| 1623 | */ |
| 1624 | return map_size; |
| 1625 | } |
| 1626 | |
| 1627 | num_regions = ml_get_vm_reserved_regions(vm_is64bit: vm_map_is_64bit(map), regions: ®ions); |
| 1628 | assert((num_regions == 0) || (num_regions > 0 && regions != NULL)); |
| 1629 | |
| 1630 | while (num_regions) { |
| 1631 | reserved_size += regions[--num_regions].vmrr_size; |
| 1632 | } |
| 1633 | |
| 1634 | /* |
| 1635 | * There are a few places where the map is being switched out due to |
| 1636 | * 'termination' without that bit being set (e.g. exec and corpse purging). |
| 1637 | * In those cases, we could have the map's regions being deallocated on |
| 1638 | * a core while some accounting process is trying to get the map's size. |
| 1639 | * So this assert can't be enabled till all those places are uniform in |
| 1640 | * their use of the 'map->terminated' bit. |
| 1641 | * |
| 1642 | * assert(map_size >= reserved_size); |
| 1643 | */ |
| 1644 | |
| 1645 | return (map_size >= reserved_size) ? (map_size - reserved_size) : map_size; |
| 1646 | } |
| 1647 | |
| 1648 | /* |
| 1649 | * vm_map_entry_create: [ internal use only ] |
| 1650 | * |
| 1651 | * Allocates a VM map entry for insertion in the |
| 1652 | * given map (or map copy). No fields are filled. |
| 1653 | * |
| 1654 | * The VM entry will be zero initialized, except for: |
| 1655 | * - behavior set to VM_BEHAVIOR_DEFAULT |
| 1656 | * - inheritance set to VM_INHERIT_DEFAULT |
| 1657 | */ |
| 1658 | #define vm_map_entry_create(map) _vm_map_entry_create(&(map)->hdr) |
| 1659 | |
| 1660 | #define vm_map_copy_entry_create(copy) _vm_map_entry_create(&(copy)->cpy_hdr) |
| 1661 | |
| 1662 | static vm_map_entry_t |
| 1663 | _vm_map_entry_create( |
| 1664 | struct vm_map_header * __unused) |
| 1665 | { |
| 1666 | vm_map_entry_t entry = NULL; |
| 1667 | |
| 1668 | entry = zalloc_id(ZONE_ID_VM_MAP_ENTRY, Z_WAITOK | Z_ZERO); |
| 1669 | |
| 1670 | /* |
| 1671 | * Help the compiler with what we know to be true, |
| 1672 | * so that the further bitfields inits have good codegen. |
| 1673 | * |
| 1674 | * See rdar://87041299 |
| 1675 | */ |
| 1676 | __builtin_assume(entry->vme_object_value == 0); |
| 1677 | __builtin_assume(*(uint64_t *)(&entry->vme_object_value + 1) == 0); |
| 1678 | __builtin_assume(*(uint64_t *)(&entry->vme_object_value + 2) == 0); |
| 1679 | |
| 1680 | static_assert(VM_MAX_TAG_VALUE <= VME_ALIAS_MASK, |
| 1681 | "VME_ALIAS_MASK covers tags" ); |
| 1682 | |
| 1683 | static_assert(VM_BEHAVIOR_DEFAULT == 0, |
| 1684 | "can skip zeroing of the behavior field" ); |
| 1685 | entry->inheritance = VM_INHERIT_DEFAULT; |
| 1686 | |
| 1687 | #if MAP_ENTRY_CREATION_DEBUG |
| 1688 | entry->vme_creation_maphdr = map_header; |
| 1689 | entry->vme_creation_bt = btref_get(__builtin_frame_address(0), |
| 1690 | BTREF_GET_NOWAIT); |
| 1691 | #endif |
| 1692 | return entry; |
| 1693 | } |
| 1694 | |
| 1695 | /* |
| 1696 | * vm_map_entry_dispose: [ internal use only ] |
| 1697 | * |
| 1698 | * Inverse of vm_map_entry_create. |
| 1699 | * |
| 1700 | * write map lock held so no need to |
| 1701 | * do anything special to insure correctness |
| 1702 | * of the stores |
| 1703 | */ |
| 1704 | static void |
| 1705 | vm_map_entry_dispose( |
| 1706 | vm_map_entry_t entry) |
| 1707 | { |
| 1708 | #if VM_BTLOG_TAGS |
| 1709 | if (entry->vme_kernel_object) { |
| 1710 | btref_put(entry->vme_tag_btref); |
| 1711 | } |
| 1712 | #endif /* VM_BTLOG_TAGS */ |
| 1713 | #if MAP_ENTRY_CREATION_DEBUG |
| 1714 | btref_put(entry->vme_creation_bt); |
| 1715 | #endif |
| 1716 | #if MAP_ENTRY_INSERTION_DEBUG |
| 1717 | btref_put(entry->vme_insertion_bt); |
| 1718 | #endif |
| 1719 | zfree(vm_map_entry_zone, entry); |
| 1720 | } |
| 1721 | |
| 1722 | #define vm_map_copy_entry_dispose(copy_entry) \ |
| 1723 | vm_map_entry_dispose(copy_entry) |
| 1724 | |
| 1725 | static vm_map_entry_t |
| 1726 | vm_map_zap_first_entry( |
| 1727 | vm_map_zap_t list) |
| 1728 | { |
| 1729 | return list->vmz_head; |
| 1730 | } |
| 1731 | |
| 1732 | static vm_map_entry_t |
| 1733 | vm_map_zap_last_entry( |
| 1734 | vm_map_zap_t list) |
| 1735 | { |
| 1736 | assert(vm_map_zap_first_entry(list)); |
| 1737 | return __container_of(list->vmz_tail, struct vm_map_entry, vme_next); |
| 1738 | } |
| 1739 | |
| 1740 | static void |
| 1741 | vm_map_zap_append( |
| 1742 | vm_map_zap_t list, |
| 1743 | vm_map_entry_t entry) |
| 1744 | { |
| 1745 | entry->vme_next = VM_MAP_ENTRY_NULL; |
| 1746 | *list->vmz_tail = entry; |
| 1747 | list->vmz_tail = &entry->vme_next; |
| 1748 | } |
| 1749 | |
| 1750 | static vm_map_entry_t |
| 1751 | vm_map_zap_pop( |
| 1752 | vm_map_zap_t list) |
| 1753 | { |
| 1754 | vm_map_entry_t head = list->vmz_head; |
| 1755 | |
| 1756 | if (head != VM_MAP_ENTRY_NULL && |
| 1757 | (list->vmz_head = head->vme_next) == VM_MAP_ENTRY_NULL) { |
| 1758 | list->vmz_tail = &list->vmz_head; |
| 1759 | } |
| 1760 | |
| 1761 | return head; |
| 1762 | } |
| 1763 | |
| 1764 | static void |
| 1765 | vm_map_zap_dispose( |
| 1766 | vm_map_zap_t list) |
| 1767 | { |
| 1768 | vm_map_entry_t entry; |
| 1769 | |
| 1770 | while ((entry = vm_map_zap_pop(list))) { |
| 1771 | if (entry->is_sub_map) { |
| 1772 | vm_map_deallocate(VME_SUBMAP(entry)); |
| 1773 | } else { |
| 1774 | vm_object_deallocate(VME_OBJECT(entry)); |
| 1775 | } |
| 1776 | |
| 1777 | vm_map_entry_dispose(entry); |
| 1778 | } |
| 1779 | } |
| 1780 | |
| 1781 | #if MACH_ASSERT |
| 1782 | static boolean_t first_free_check = FALSE; |
| 1783 | boolean_t |
| 1784 | first_free_is_valid( |
| 1785 | vm_map_t map) |
| 1786 | { |
| 1787 | if (!first_free_check) { |
| 1788 | return TRUE; |
| 1789 | } |
| 1790 | |
| 1791 | return first_free_is_valid_store( map ); |
| 1792 | } |
| 1793 | #endif /* MACH_ASSERT */ |
| 1794 | |
| 1795 | |
| 1796 | #define vm_map_copy_entry_link(copy, after_where, entry) \ |
| 1797 | _vm_map_store_entry_link(&(copy)->cpy_hdr, after_where, (entry)) |
| 1798 | |
| 1799 | #define vm_map_copy_entry_unlink(copy, entry) \ |
| 1800 | _vm_map_store_entry_unlink(&(copy)->cpy_hdr, (entry), false) |
| 1801 | |
| 1802 | /* |
| 1803 | * vm_map_destroy: |
| 1804 | * |
| 1805 | * Actually destroy a map. |
| 1806 | */ |
| 1807 | void |
| 1808 | vm_map_destroy( |
| 1809 | vm_map_t map) |
| 1810 | { |
| 1811 | /* final cleanup: this is not allowed to fail */ |
| 1812 | vmr_flags_t flags = VM_MAP_REMOVE_NO_FLAGS; |
| 1813 | |
| 1814 | VM_MAP_ZAP_DECLARE(zap); |
| 1815 | |
| 1816 | vm_map_lock(map); |
| 1817 | |
| 1818 | map->terminated = true; |
| 1819 | /* clean up regular map entries */ |
| 1820 | (void)vm_map_delete(map, start: map->min_offset, end: map->max_offset, flags, |
| 1821 | KMEM_GUARD_NONE, zap: &zap); |
| 1822 | /* clean up leftover special mappings (commpage, GPU carveout, etc...) */ |
| 1823 | (void)vm_map_delete(map, start: 0x0, end: 0xFFFFFFFFFFFFF000ULL, flags, |
| 1824 | KMEM_GUARD_NONE, zap: &zap); |
| 1825 | |
| 1826 | vm_map_disable_hole_optimization(map); |
| 1827 | vm_map_corpse_footprint_destroy(map); |
| 1828 | |
| 1829 | vm_map_unlock(map); |
| 1830 | |
| 1831 | vm_map_zap_dispose(list: &zap); |
| 1832 | |
| 1833 | assert(map->hdr.nentries == 0); |
| 1834 | |
| 1835 | if (map->pmap) { |
| 1836 | pmap_destroy(pmap: map->pmap); |
| 1837 | } |
| 1838 | |
| 1839 | lck_rw_destroy(lck: &map->lock, grp: &vm_map_lck_grp); |
| 1840 | |
| 1841 | #if CONFIG_MAP_RANGES |
| 1842 | kfree_data(map->extra_ranges, |
| 1843 | map->extra_ranges_count * sizeof(struct vm_map_user_range)); |
| 1844 | #endif |
| 1845 | |
| 1846 | zfree_id(ZONE_ID_VM_MAP, map); |
| 1847 | } |
| 1848 | |
| 1849 | /* |
| 1850 | * Returns pid of the task with the largest number of VM map entries. |
| 1851 | * Used in the zone-map-exhaustion jetsam path. |
| 1852 | */ |
| 1853 | pid_t |
| 1854 | find_largest_process_vm_map_entries(void) |
| 1855 | { |
| 1856 | pid_t victim_pid = -1; |
| 1857 | int max_vm_map_entries = 0; |
| 1858 | task_t task = TASK_NULL; |
| 1859 | queue_head_t *task_list = &tasks; |
| 1860 | |
| 1861 | lck_mtx_lock(lck: &tasks_threads_lock); |
| 1862 | queue_iterate(task_list, task, task_t, tasks) { |
| 1863 | if (task == kernel_task || !task->active) { |
| 1864 | continue; |
| 1865 | } |
| 1866 | |
| 1867 | vm_map_t task_map = task->map; |
| 1868 | if (task_map != VM_MAP_NULL) { |
| 1869 | int task_vm_map_entries = task_map->hdr.nentries; |
| 1870 | if (task_vm_map_entries > max_vm_map_entries) { |
| 1871 | max_vm_map_entries = task_vm_map_entries; |
| 1872 | victim_pid = pid_from_task(task); |
| 1873 | } |
| 1874 | } |
| 1875 | } |
| 1876 | lck_mtx_unlock(lck: &tasks_threads_lock); |
| 1877 | |
| 1878 | printf(format: "zone_map_exhaustion: victim pid %d, vm region count: %d\n" , victim_pid, max_vm_map_entries); |
| 1879 | return victim_pid; |
| 1880 | } |
| 1881 | |
| 1882 | |
| 1883 | /* |
| 1884 | * vm_map_lookup_entry: [ internal use only ] |
| 1885 | * |
| 1886 | * Calls into the vm map store layer to find the map |
| 1887 | * entry containing (or immediately preceding) the |
| 1888 | * specified address in the given map; the entry is returned |
| 1889 | * in the "entry" parameter. The boolean |
| 1890 | * result indicates whether the address is |
| 1891 | * actually contained in the map. |
| 1892 | */ |
| 1893 | boolean_t |
| 1894 | vm_map_lookup_entry( |
| 1895 | vm_map_t map, |
| 1896 | vm_map_offset_t address, |
| 1897 | vm_map_entry_t *entry) /* OUT */ |
| 1898 | { |
| 1899 | if (VM_KERNEL_ADDRESS(address)) { |
| 1900 | address = VM_KERNEL_STRIP_UPTR(address); |
| 1901 | } |
| 1902 | |
| 1903 | |
| 1904 | #if CONFIG_PROB_GZALLOC |
| 1905 | if (map->pmap == kernel_pmap) { |
| 1906 | assertf(!pgz_owned(address), |
| 1907 | "it is the responsibility of callers to unguard PGZ addresses" ); |
| 1908 | } |
| 1909 | #endif /* CONFIG_PROB_GZALLOC */ |
| 1910 | return vm_map_store_lookup_entry( map, address, entryp: entry ); |
| 1911 | } |
| 1912 | |
| 1913 | boolean_t |
| 1914 | vm_map_lookup_entry_or_next( |
| 1915 | vm_map_t map, |
| 1916 | vm_map_offset_t address, |
| 1917 | vm_map_entry_t *entry) /* OUT */ |
| 1918 | { |
| 1919 | if (vm_map_lookup_entry(map, address, entry)) { |
| 1920 | return true; |
| 1921 | } |
| 1922 | |
| 1923 | *entry = (*entry)->vme_next; |
| 1924 | return false; |
| 1925 | } |
| 1926 | |
| 1927 | #if CONFIG_PROB_GZALLOC |
| 1928 | boolean_t |
| 1929 | vm_map_lookup_entry_allow_pgz( |
| 1930 | vm_map_t map, |
| 1931 | vm_map_offset_t address, |
| 1932 | vm_map_entry_t *entry) /* OUT */ |
| 1933 | { |
| 1934 | if (VM_KERNEL_ADDRESS(address)) { |
| 1935 | address = VM_KERNEL_STRIP_UPTR(address); |
| 1936 | } |
| 1937 | return vm_map_store_lookup_entry( map, address, entry ); |
| 1938 | } |
| 1939 | #endif /* CONFIG_PROB_GZALLOC */ |
| 1940 | |
| 1941 | /* |
| 1942 | * Routine: vm_map_range_invalid_panic |
| 1943 | * Purpose: |
| 1944 | * Panic on detection of an invalid range id. |
| 1945 | */ |
| 1946 | __abortlike |
| 1947 | static void |
| 1948 | vm_map_range_invalid_panic( |
| 1949 | vm_map_t map, |
| 1950 | vm_map_range_id_t range_id) |
| 1951 | { |
| 1952 | panic("invalid range ID (%u) for map %p" , range_id, map); |
| 1953 | } |
| 1954 | |
| 1955 | /* |
| 1956 | * Routine: vm_map_get_range |
| 1957 | * Purpose: |
| 1958 | * Adjust bounds based on security policy. |
| 1959 | */ |
| 1960 | static struct mach_vm_range |
| 1961 | vm_map_get_range( |
| 1962 | vm_map_t map, |
| 1963 | vm_map_address_t *address, |
| 1964 | vm_map_kernel_flags_t *vmk_flags, |
| 1965 | vm_map_size_t size, |
| 1966 | bool *is_ptr) |
| 1967 | { |
| 1968 | struct mach_vm_range effective_range = {}; |
| 1969 | vm_map_range_id_t range_id = vmk_flags->vmkf_range_id; |
| 1970 | |
| 1971 | if (map == kernel_map) { |
| 1972 | effective_range = kmem_ranges[range_id]; |
| 1973 | |
| 1974 | if (startup_phase >= STARTUP_SUB_KMEM) { |
| 1975 | /* |
| 1976 | * Hint provided by caller is zeroed as the range is restricted to a |
| 1977 | * subset of the entire kernel_map VA, which could put the hint outside |
| 1978 | * the range, causing vm_map_store_find_space to fail. |
| 1979 | */ |
| 1980 | *address = 0ull; |
| 1981 | /* |
| 1982 | * Ensure that range_id passed in by the caller is within meaningful |
| 1983 | * bounds. Range id of KMEM_RANGE_ID_NONE will cause vm_map_locate_space |
| 1984 | * to fail as the corresponding range is invalid. Range id larger than |
| 1985 | * KMEM_RANGE_ID_MAX will lead to an OOB access. |
| 1986 | */ |
| 1987 | if ((range_id == KMEM_RANGE_ID_NONE) || |
| 1988 | (range_id > KMEM_RANGE_ID_MAX)) { |
| 1989 | vm_map_range_invalid_panic(map, range_id); |
| 1990 | } |
| 1991 | |
| 1992 | /* |
| 1993 | * Pointer ranges use kmem_locate_space to do allocations. |
| 1994 | * |
| 1995 | * Non pointer fronts look like [ Small | Large | Permanent ] |
| 1996 | * Adjust range for allocations larger than KMEM_SMALLMAP_THRESHOLD. |
| 1997 | * Allocations smaller than KMEM_SMALLMAP_THRESHOLD are allowed to |
| 1998 | * use the entire range. |
| 1999 | */ |
| 2000 | if (range_id < KMEM_RANGE_ID_SPRAYQTN) { |
| 2001 | *is_ptr = true; |
| 2002 | } else if (size >= KMEM_SMALLMAP_THRESHOLD) { |
| 2003 | effective_range = kmem_large_ranges[range_id]; |
| 2004 | } |
| 2005 | } |
| 2006 | #if CONFIG_MAP_RANGES |
| 2007 | } else if (map->uses_user_ranges) { |
| 2008 | switch (range_id) { |
| 2009 | case UMEM_RANGE_ID_DEFAULT: |
| 2010 | effective_range = map->default_range; |
| 2011 | break; |
| 2012 | case UMEM_RANGE_ID_HEAP: |
| 2013 | effective_range = map->data_range; |
| 2014 | break; |
| 2015 | case UMEM_RANGE_ID_FIXED: |
| 2016 | /* |
| 2017 | * anywhere allocations with an address in "FIXED" |
| 2018 | * makes no sense, leave the range empty |
| 2019 | */ |
| 2020 | break; |
| 2021 | |
| 2022 | default: |
| 2023 | vm_map_range_invalid_panic(map, range_id); |
| 2024 | } |
| 2025 | #endif /* CONFIG_MAP_RANGES */ |
| 2026 | } else { |
| 2027 | /* |
| 2028 | * If minimum is 0, bump it up by PAGE_SIZE. We want to limit |
| 2029 | * allocations of PAGEZERO to explicit requests since its |
| 2030 | * normal use is to catch dereferences of NULL and many |
| 2031 | * applications also treat pointers with a value of 0 as |
| 2032 | * special and suddenly having address 0 contain useable |
| 2033 | * memory would tend to confuse those applications. |
| 2034 | */ |
| 2035 | effective_range.min_address = MAX(map->min_offset, VM_MAP_PAGE_SIZE(map)); |
| 2036 | effective_range.max_address = map->max_offset; |
| 2037 | } |
| 2038 | |
| 2039 | return effective_range; |
| 2040 | } |
| 2041 | |
| 2042 | /* |
| 2043 | * Routine: vm_map_locate_space |
| 2044 | * Purpose: |
| 2045 | * Finds a range in the specified virtual address map, |
| 2046 | * returning the start of that range, |
| 2047 | * as well as the entry right before it. |
| 2048 | */ |
| 2049 | kern_return_t |
| 2050 | vm_map_locate_space( |
| 2051 | vm_map_t map, |
| 2052 | vm_map_size_t size, |
| 2053 | vm_map_offset_t mask, |
| 2054 | vm_map_kernel_flags_t vmk_flags, |
| 2055 | vm_map_offset_t *start_inout, |
| 2056 | vm_map_entry_t *entry_out) |
| 2057 | { |
| 2058 | struct mach_vm_range effective_range = {}; |
| 2059 | vm_map_size_t guard_offset; |
| 2060 | vm_map_offset_t hint, limit; |
| 2061 | vm_map_entry_t entry; |
| 2062 | bool is_kmem_ptr_range = false; |
| 2063 | |
| 2064 | /* |
| 2065 | * Only supported by vm_map_enter() with a fixed address. |
| 2066 | */ |
| 2067 | assert(!vmk_flags.vmkf_beyond_max); |
| 2068 | |
| 2069 | if (__improbable(map->wait_for_space)) { |
| 2070 | /* |
| 2071 | * support for "wait_for_space" is minimal, |
| 2072 | * its only consumer is the ipc_kernel_copy_map. |
| 2073 | */ |
| 2074 | assert(!map->holelistenabled && |
| 2075 | !vmk_flags.vmkf_last_free && |
| 2076 | !vmk_flags.vmkf_keep_map_locked && |
| 2077 | !vmk_flags.vmkf_map_jit && |
| 2078 | !vmk_flags.vmf_random_addr && |
| 2079 | *start_inout <= map->min_offset); |
| 2080 | } else if (vmk_flags.vmkf_last_free) { |
| 2081 | assert(!vmk_flags.vmkf_map_jit && |
| 2082 | !vmk_flags.vmf_random_addr); |
| 2083 | } |
| 2084 | |
| 2085 | if (vmk_flags.vmkf_guard_before) { |
| 2086 | guard_offset = VM_MAP_PAGE_SIZE(map); |
| 2087 | assert(size > guard_offset); |
| 2088 | size -= guard_offset; |
| 2089 | } else { |
| 2090 | assert(size != 0); |
| 2091 | guard_offset = 0; |
| 2092 | } |
| 2093 | |
| 2094 | /* |
| 2095 | * Validate range_id from flags and get associated range |
| 2096 | */ |
| 2097 | effective_range = vm_map_get_range(map, address: start_inout, vmk_flags: &vmk_flags, size, |
| 2098 | is_ptr: &is_kmem_ptr_range); |
| 2099 | |
| 2100 | if (is_kmem_ptr_range) { |
| 2101 | return kmem_locate_space(size: size + guard_offset, range_id: vmk_flags.vmkf_range_id, |
| 2102 | direction: vmk_flags.vmkf_last_free, start_inout, entry_out); |
| 2103 | } |
| 2104 | |
| 2105 | #if XNU_TARGET_OS_OSX |
| 2106 | if (__improbable(vmk_flags.vmkf_32bit_map_va)) { |
| 2107 | assert(map != kernel_map); |
| 2108 | effective_range.max_address = MIN(map->max_offset, 0x00000000FFFFF000ULL); |
| 2109 | } |
| 2110 | #endif /* XNU_TARGET_OS_OSX */ |
| 2111 | |
| 2112 | again: |
| 2113 | if (vmk_flags.vmkf_last_free) { |
| 2114 | hint = *start_inout; |
| 2115 | |
| 2116 | if (hint == 0 || hint > effective_range.max_address) { |
| 2117 | hint = effective_range.max_address; |
| 2118 | } |
| 2119 | if (hint <= effective_range.min_address) { |
| 2120 | return KERN_NO_SPACE; |
| 2121 | } |
| 2122 | limit = effective_range.min_address; |
| 2123 | } else { |
| 2124 | hint = *start_inout; |
| 2125 | |
| 2126 | if (vmk_flags.vmkf_map_jit) { |
| 2127 | if (map->jit_entry_exists && |
| 2128 | !VM_MAP_POLICY_ALLOW_MULTIPLE_JIT(map)) { |
| 2129 | return KERN_INVALID_ARGUMENT; |
| 2130 | } |
| 2131 | if (VM_MAP_POLICY_ALLOW_JIT_RANDOM_ADDRESS(map)) { |
| 2132 | vmk_flags.vmf_random_addr = true; |
| 2133 | } |
| 2134 | } |
| 2135 | |
| 2136 | if (vmk_flags.vmf_random_addr) { |
| 2137 | kern_return_t kr; |
| 2138 | |
| 2139 | kr = vm_map_random_address_for_size(map, address: &hint, size, vmk_flags); |
| 2140 | if (kr != KERN_SUCCESS) { |
| 2141 | return kr; |
| 2142 | } |
| 2143 | } |
| 2144 | #if __x86_64__ |
| 2145 | else if ((hint == 0 || hint == vm_map_min(map)) && |
| 2146 | !map->disable_vmentry_reuse && |
| 2147 | map->vmmap_high_start != 0) { |
| 2148 | hint = map->vmmap_high_start; |
| 2149 | } |
| 2150 | #endif /* __x86_64__ */ |
| 2151 | |
| 2152 | if (hint < effective_range.min_address) { |
| 2153 | hint = effective_range.min_address; |
| 2154 | } |
| 2155 | if (effective_range.max_address <= hint) { |
| 2156 | return KERN_NO_SPACE; |
| 2157 | } |
| 2158 | |
| 2159 | limit = effective_range.max_address; |
| 2160 | } |
| 2161 | entry = vm_map_store_find_space(map, |
| 2162 | hint, limit, backwards: vmk_flags.vmkf_last_free, |
| 2163 | guard_offset, size, mask, |
| 2164 | addr_out: start_inout); |
| 2165 | |
| 2166 | if (__improbable(entry == NULL)) { |
| 2167 | if (map->wait_for_space && |
| 2168 | guard_offset + size <= |
| 2169 | effective_range.max_address - effective_range.min_address) { |
| 2170 | assert_wait(event: (event_t)map, THREAD_ABORTSAFE); |
| 2171 | vm_map_unlock(map); |
| 2172 | thread_block(THREAD_CONTINUE_NULL); |
| 2173 | vm_map_lock(map); |
| 2174 | goto again; |
| 2175 | } |
| 2176 | return KERN_NO_SPACE; |
| 2177 | } |
| 2178 | |
| 2179 | if (entry_out) { |
| 2180 | *entry_out = entry; |
| 2181 | } |
| 2182 | return KERN_SUCCESS; |
| 2183 | } |
| 2184 | |
| 2185 | |
| 2186 | /* |
| 2187 | * Routine: vm_map_find_space |
| 2188 | * Purpose: |
| 2189 | * Allocate a range in the specified virtual address map, |
| 2190 | * returning the entry allocated for that range. |
| 2191 | * Used by kmem_alloc, etc. |
| 2192 | * |
| 2193 | * The map must be NOT be locked. It will be returned locked |
| 2194 | * on KERN_SUCCESS, unlocked on failure. |
| 2195 | * |
| 2196 | * If an entry is allocated, the object/offset fields |
| 2197 | * are initialized to zero. |
| 2198 | */ |
| 2199 | kern_return_t |
| 2200 | vm_map_find_space( |
| 2201 | vm_map_t map, |
| 2202 | vm_map_offset_t hint_address, |
| 2203 | vm_map_size_t size, |
| 2204 | vm_map_offset_t mask, |
| 2205 | vm_map_kernel_flags_t vmk_flags, |
| 2206 | vm_map_entry_t *o_entry) /* OUT */ |
| 2207 | { |
| 2208 | vm_map_entry_t new_entry, entry; |
| 2209 | kern_return_t kr; |
| 2210 | |
| 2211 | if (size == 0) { |
| 2212 | return KERN_INVALID_ARGUMENT; |
| 2213 | } |
| 2214 | |
| 2215 | new_entry = vm_map_entry_create(map); |
| 2216 | new_entry->use_pmap = true; |
| 2217 | new_entry->protection = VM_PROT_DEFAULT; |
| 2218 | new_entry->max_protection = VM_PROT_ALL; |
| 2219 | |
| 2220 | if (VM_MAP_PAGE_SHIFT(map) != PAGE_SHIFT) { |
| 2221 | new_entry->map_aligned = true; |
| 2222 | } |
| 2223 | if (vmk_flags.vmf_permanent) { |
| 2224 | new_entry->vme_permanent = true; |
| 2225 | } |
| 2226 | |
| 2227 | vm_map_lock(map); |
| 2228 | |
| 2229 | kr = vm_map_locate_space(map, size, mask, vmk_flags, |
| 2230 | start_inout: &hint_address, entry_out: &entry); |
| 2231 | if (kr != KERN_SUCCESS) { |
| 2232 | vm_map_unlock(map); |
| 2233 | vm_map_entry_dispose(entry: new_entry); |
| 2234 | return kr; |
| 2235 | } |
| 2236 | new_entry->vme_start = hint_address; |
| 2237 | new_entry->vme_end = hint_address + size; |
| 2238 | |
| 2239 | /* |
| 2240 | * At this point, |
| 2241 | * |
| 2242 | * - new_entry's "vme_start" and "vme_end" should define |
| 2243 | * the endpoints of the available new range, |
| 2244 | * |
| 2245 | * - and "entry" should refer to the region before |
| 2246 | * the new range, |
| 2247 | * |
| 2248 | * - and the map should still be locked. |
| 2249 | */ |
| 2250 | |
| 2251 | assert(page_aligned(new_entry->vme_start)); |
| 2252 | assert(page_aligned(new_entry->vme_end)); |
| 2253 | assert(VM_MAP_PAGE_ALIGNED(new_entry->vme_start, VM_MAP_PAGE_MASK(map))); |
| 2254 | assert(VM_MAP_PAGE_ALIGNED(new_entry->vme_end, VM_MAP_PAGE_MASK(map))); |
| 2255 | |
| 2256 | /* |
| 2257 | * Insert the new entry into the list |
| 2258 | */ |
| 2259 | |
| 2260 | vm_map_store_entry_link(map, after_where: entry, entry: new_entry, |
| 2261 | VM_MAP_KERNEL_FLAGS_NONE); |
| 2262 | map->size += size; |
| 2263 | |
| 2264 | /* |
| 2265 | * Update the lookup hint |
| 2266 | */ |
| 2267 | SAVE_HINT_MAP_WRITE(map, new_entry); |
| 2268 | |
| 2269 | *o_entry = new_entry; |
| 2270 | return KERN_SUCCESS; |
| 2271 | } |
| 2272 | |
| 2273 | int vm_map_pmap_enter_print = FALSE; |
| 2274 | int vm_map_pmap_enter_enable = FALSE; |
| 2275 | |
| 2276 | /* |
| 2277 | * Routine: vm_map_pmap_enter [internal only] |
| 2278 | * |
| 2279 | * Description: |
| 2280 | * Force pages from the specified object to be entered into |
| 2281 | * the pmap at the specified address if they are present. |
| 2282 | * As soon as a page not found in the object the scan ends. |
| 2283 | * |
| 2284 | * Returns: |
| 2285 | * Nothing. |
| 2286 | * |
| 2287 | * In/out conditions: |
| 2288 | * The source map should not be locked on entry. |
| 2289 | */ |
| 2290 | __unused static void |
| 2291 | vm_map_pmap_enter( |
| 2292 | vm_map_t map, |
| 2293 | vm_map_offset_t addr, |
| 2294 | vm_map_offset_t end_addr, |
| 2295 | vm_object_t object, |
| 2296 | vm_object_offset_t offset, |
| 2297 | vm_prot_t protection) |
| 2298 | { |
| 2299 | int type_of_fault; |
| 2300 | kern_return_t kr; |
| 2301 | uint8_t object_lock_type = 0; |
| 2302 | struct vm_object_fault_info fault_info = {}; |
| 2303 | |
| 2304 | if (map->pmap == 0) { |
| 2305 | return; |
| 2306 | } |
| 2307 | |
| 2308 | assert(VM_MAP_PAGE_SHIFT(map) == PAGE_SHIFT); |
| 2309 | |
| 2310 | while (addr < end_addr) { |
| 2311 | vm_page_t m; |
| 2312 | |
| 2313 | |
| 2314 | /* |
| 2315 | * TODO: |
| 2316 | * From vm_map_enter(), we come into this function without the map |
| 2317 | * lock held or the object lock held. |
| 2318 | * We haven't taken a reference on the object either. |
| 2319 | * We should do a proper lookup on the map to make sure |
| 2320 | * that things are sane before we go locking objects that |
| 2321 | * could have been deallocated from under us. |
| 2322 | */ |
| 2323 | |
| 2324 | object_lock_type = OBJECT_LOCK_EXCLUSIVE; |
| 2325 | vm_object_lock(object); |
| 2326 | |
| 2327 | m = vm_page_lookup(object, offset); |
| 2328 | |
| 2329 | if (m == VM_PAGE_NULL || m->vmp_busy || m->vmp_fictitious || |
| 2330 | (m->vmp_unusual && (VMP_ERROR_GET(m) || m->vmp_restart || m->vmp_absent))) { |
| 2331 | vm_object_unlock(object); |
| 2332 | return; |
| 2333 | } |
| 2334 | |
| 2335 | if (vm_map_pmap_enter_print) { |
| 2336 | printf(format: "vm_map_pmap_enter:" ); |
| 2337 | printf(format: "map: %p, addr: %llx, object: %p, offset: %llx\n" , |
| 2338 | map, (unsigned long long)addr, object, (unsigned long long)offset); |
| 2339 | } |
| 2340 | type_of_fault = DBG_CACHE_HIT_FAULT; |
| 2341 | kr = vm_fault_enter(m, pmap: map->pmap, |
| 2342 | vaddr: addr, |
| 2343 | PAGE_SIZE, fault_phys_offset: 0, |
| 2344 | prot: protection, fault_type: protection, |
| 2345 | VM_PAGE_WIRED(m), |
| 2346 | FALSE, /* change_wiring */ |
| 2347 | VM_KERN_MEMORY_NONE, /* tag - not wiring */ |
| 2348 | fault_info: &fault_info, |
| 2349 | NULL, /* need_retry */ |
| 2350 | type_of_fault: &type_of_fault, |
| 2351 | object_lock_type: &object_lock_type); /* Exclusive lock mode. Will remain unchanged.*/ |
| 2352 | |
| 2353 | vm_object_unlock(object); |
| 2354 | |
| 2355 | offset += PAGE_SIZE_64; |
| 2356 | addr += PAGE_SIZE; |
| 2357 | } |
| 2358 | } |
| 2359 | |
| 2360 | #define MAX_TRIES_TO_GET_RANDOM_ADDRESS 1000 |
| 2361 | static kern_return_t |
| 2362 | vm_map_random_address_for_size( |
| 2363 | vm_map_t map, |
| 2364 | vm_map_offset_t *address, |
| 2365 | vm_map_size_t size, |
| 2366 | vm_map_kernel_flags_t vmk_flags) |
| 2367 | { |
| 2368 | kern_return_t kr = KERN_SUCCESS; |
| 2369 | int tries = 0; |
| 2370 | vm_map_offset_t random_addr = 0; |
| 2371 | vm_map_offset_t hole_end; |
| 2372 | |
| 2373 | vm_map_entry_t next_entry = VM_MAP_ENTRY_NULL; |
| 2374 | vm_map_entry_t prev_entry = VM_MAP_ENTRY_NULL; |
| 2375 | vm_map_size_t vm_hole_size = 0; |
| 2376 | vm_map_size_t addr_space_size; |
| 2377 | bool is_kmem_ptr; |
| 2378 | struct mach_vm_range effective_range; |
| 2379 | |
| 2380 | effective_range = vm_map_get_range(map, address, vmk_flags: &vmk_flags, size, |
| 2381 | is_ptr: &is_kmem_ptr); |
| 2382 | |
| 2383 | addr_space_size = effective_range.max_address - effective_range.min_address; |
| 2384 | if (size >= addr_space_size) { |
| 2385 | return KERN_NO_SPACE; |
| 2386 | } |
| 2387 | addr_space_size -= size; |
| 2388 | |
| 2389 | assert(VM_MAP_PAGE_ALIGNED(size, VM_MAP_PAGE_MASK(map))); |
| 2390 | |
| 2391 | while (tries < MAX_TRIES_TO_GET_RANDOM_ADDRESS) { |
| 2392 | if (startup_phase < STARTUP_SUB_ZALLOC) { |
| 2393 | random_addr = (vm_map_offset_t)early_random(); |
| 2394 | } else { |
| 2395 | random_addr = (vm_map_offset_t)random(); |
| 2396 | } |
| 2397 | random_addr <<= VM_MAP_PAGE_SHIFT(map); |
| 2398 | random_addr = vm_map_trunc_page( |
| 2399 | effective_range.min_address + (random_addr % addr_space_size), |
| 2400 | VM_MAP_PAGE_MASK(map)); |
| 2401 | |
| 2402 | #if CONFIG_PROB_GZALLOC |
| 2403 | if (map->pmap == kernel_pmap && pgz_owned(random_addr)) { |
| 2404 | continue; |
| 2405 | } |
| 2406 | #endif /* CONFIG_PROB_GZALLOC */ |
| 2407 | |
| 2408 | if (vm_map_lookup_entry(map, address: random_addr, entry: &prev_entry) == FALSE) { |
| 2409 | if (prev_entry == vm_map_to_entry(map)) { |
| 2410 | next_entry = vm_map_first_entry(map); |
| 2411 | } else { |
| 2412 | next_entry = prev_entry->vme_next; |
| 2413 | } |
| 2414 | if (next_entry == vm_map_to_entry(map)) { |
| 2415 | hole_end = vm_map_max(map); |
| 2416 | } else { |
| 2417 | hole_end = next_entry->vme_start; |
| 2418 | } |
| 2419 | vm_hole_size = hole_end - random_addr; |
| 2420 | if (vm_hole_size >= size) { |
| 2421 | *address = random_addr; |
| 2422 | break; |
| 2423 | } |
| 2424 | } |
| 2425 | tries++; |
| 2426 | } |
| 2427 | |
| 2428 | if (tries == MAX_TRIES_TO_GET_RANDOM_ADDRESS) { |
| 2429 | kr = KERN_NO_SPACE; |
| 2430 | } |
| 2431 | return kr; |
| 2432 | } |
| 2433 | |
| 2434 | static boolean_t |
| 2435 | vm_memory_malloc_no_cow( |
| 2436 | int alias) |
| 2437 | { |
| 2438 | uint64_t alias_mask; |
| 2439 | |
| 2440 | if (!malloc_no_cow) { |
| 2441 | return FALSE; |
| 2442 | } |
| 2443 | if (alias > 63) { |
| 2444 | return FALSE; |
| 2445 | } |
| 2446 | alias_mask = 1ULL << alias; |
| 2447 | if (alias_mask & vm_memory_malloc_no_cow_mask) { |
| 2448 | return TRUE; |
| 2449 | } |
| 2450 | return FALSE; |
| 2451 | } |
| 2452 | |
| 2453 | uint64_t vm_map_enter_RLIMIT_AS_count = 0; |
| 2454 | uint64_t vm_map_enter_RLIMIT_DATA_count = 0; |
| 2455 | /* |
| 2456 | * Routine: vm_map_enter |
| 2457 | * |
| 2458 | * Description: |
| 2459 | * Allocate a range in the specified virtual address map. |
| 2460 | * The resulting range will refer to memory defined by |
| 2461 | * the given memory object and offset into that object. |
| 2462 | * |
| 2463 | * Arguments are as defined in the vm_map call. |
| 2464 | */ |
| 2465 | static unsigned int vm_map_enter_restore_successes = 0; |
| 2466 | static unsigned int vm_map_enter_restore_failures = 0; |
| 2467 | kern_return_t |
| 2468 | vm_map_enter( |
| 2469 | vm_map_t map, |
| 2470 | vm_map_offset_t *address, /* IN/OUT */ |
| 2471 | vm_map_size_t size, |
| 2472 | vm_map_offset_t mask, |
| 2473 | vm_map_kernel_flags_t vmk_flags, |
| 2474 | vm_object_t object, |
| 2475 | vm_object_offset_t offset, |
| 2476 | boolean_t needs_copy, |
| 2477 | vm_prot_t cur_protection, |
| 2478 | vm_prot_t max_protection, |
| 2479 | vm_inherit_t inheritance) |
| 2480 | { |
| 2481 | vm_map_entry_t entry, new_entry; |
| 2482 | vm_map_offset_t start, tmp_start, tmp_offset; |
| 2483 | vm_map_offset_t end, tmp_end; |
| 2484 | vm_map_offset_t tmp2_start, tmp2_end; |
| 2485 | vm_map_offset_t step; |
| 2486 | kern_return_t result = KERN_SUCCESS; |
| 2487 | bool map_locked = FALSE; |
| 2488 | bool pmap_empty = TRUE; |
| 2489 | bool new_mapping_established = FALSE; |
| 2490 | const bool keep_map_locked = vmk_flags.vmkf_keep_map_locked; |
| 2491 | const bool anywhere = !vmk_flags.vmf_fixed; |
| 2492 | const bool purgable = vmk_flags.vmf_purgeable; |
| 2493 | const bool overwrite = vmk_flags.vmf_overwrite; |
| 2494 | const bool no_cache = vmk_flags.vmf_no_cache; |
| 2495 | const bool is_submap = vmk_flags.vmkf_submap; |
| 2496 | const bool permanent = vmk_flags.vmf_permanent; |
| 2497 | const bool no_copy_on_read = vmk_flags.vmkf_no_copy_on_read; |
| 2498 | const bool entry_for_jit = vmk_flags.vmkf_map_jit; |
| 2499 | const bool iokit_acct = vmk_flags.vmkf_iokit_acct; |
| 2500 | const bool resilient_codesign = vmk_flags.vmf_resilient_codesign; |
| 2501 | const bool resilient_media = vmk_flags.vmf_resilient_media; |
| 2502 | const bool entry_for_tpro = vmk_flags.vmf_tpro; |
| 2503 | const unsigned int superpage_size = vmk_flags.vmf_superpage_size; |
| 2504 | const vm_tag_t alias = vmk_flags.vm_tag; |
| 2505 | vm_tag_t user_alias; |
| 2506 | kern_return_t kr; |
| 2507 | bool clear_map_aligned = FALSE; |
| 2508 | vm_map_size_t chunk_size = 0; |
| 2509 | vm_object_t caller_object; |
| 2510 | VM_MAP_ZAP_DECLARE(zap_old_list); |
| 2511 | VM_MAP_ZAP_DECLARE(zap_new_list); |
| 2512 | |
| 2513 | caller_object = object; |
| 2514 | |
| 2515 | assertf(vmk_flags.__vmkf_unused == 0, "vmk_flags unused=0x%x\n" , vmk_flags.__vmkf_unused); |
| 2516 | |
| 2517 | if (vmk_flags.vmf_4gb_chunk) { |
| 2518 | #if defined(__LP64__) |
| 2519 | chunk_size = (4ULL * 1024 * 1024 * 1024); /* max. 4GB chunks for the new allocation */ |
| 2520 | #else /* __LP64__ */ |
| 2521 | chunk_size = ANON_CHUNK_SIZE; |
| 2522 | #endif /* __LP64__ */ |
| 2523 | } else { |
| 2524 | chunk_size = ANON_CHUNK_SIZE; |
| 2525 | } |
| 2526 | |
| 2527 | |
| 2528 | |
| 2529 | if (superpage_size) { |
| 2530 | switch (superpage_size) { |
| 2531 | /* |
| 2532 | * Note that the current implementation only supports |
| 2533 | * a single size for superpages, SUPERPAGE_SIZE, per |
| 2534 | * architecture. As soon as more sizes are supposed |
| 2535 | * to be supported, SUPERPAGE_SIZE has to be replaced |
| 2536 | * with a lookup of the size depending on superpage_size. |
| 2537 | */ |
| 2538 | #ifdef __x86_64__ |
| 2539 | case SUPERPAGE_SIZE_ANY: |
| 2540 | /* handle it like 2 MB and round up to page size */ |
| 2541 | size = (size + 2 * 1024 * 1024 - 1) & ~(2 * 1024 * 1024 - 1); |
| 2542 | OS_FALLTHROUGH; |
| 2543 | case SUPERPAGE_SIZE_2MB: |
| 2544 | break; |
| 2545 | #endif |
| 2546 | default: |
| 2547 | return KERN_INVALID_ARGUMENT; |
| 2548 | } |
| 2549 | mask = SUPERPAGE_SIZE - 1; |
| 2550 | if (size & (SUPERPAGE_SIZE - 1)) { |
| 2551 | return KERN_INVALID_ARGUMENT; |
| 2552 | } |
| 2553 | inheritance = VM_INHERIT_NONE; /* fork() children won't inherit superpages */ |
| 2554 | } |
| 2555 | |
| 2556 | |
| 2557 | if ((cur_protection & VM_PROT_WRITE) && |
| 2558 | (cur_protection & VM_PROT_EXECUTE) && |
| 2559 | #if XNU_TARGET_OS_OSX |
| 2560 | map->pmap != kernel_pmap && |
| 2561 | (cs_process_global_enforcement() || |
| 2562 | (vmk_flags.vmkf_cs_enforcement_override |
| 2563 | ? vmk_flags.vmkf_cs_enforcement |
| 2564 | : (vm_map_cs_enforcement(map) |
| 2565 | #if __arm64__ |
| 2566 | || !VM_MAP_IS_EXOTIC(map) |
| 2567 | #endif /* __arm64__ */ |
| 2568 | ))) && |
| 2569 | #endif /* XNU_TARGET_OS_OSX */ |
| 2570 | #if CODE_SIGNING_MONITOR |
| 2571 | (csm_address_space_exempt(map->pmap) != KERN_SUCCESS) && |
| 2572 | #endif |
| 2573 | (VM_MAP_POLICY_WX_FAIL(map) || |
| 2574 | VM_MAP_POLICY_WX_STRIP_X(map)) && |
| 2575 | !entry_for_jit) { |
| 2576 | boolean_t vm_protect_wx_fail = VM_MAP_POLICY_WX_FAIL(map); |
| 2577 | |
| 2578 | DTRACE_VM3(cs_wx, |
| 2579 | uint64_t, 0, |
| 2580 | uint64_t, 0, |
| 2581 | vm_prot_t, cur_protection); |
| 2582 | printf(format: "CODE SIGNING: %d[%s] %s: curprot cannot be write+execute. %s\n" , |
| 2583 | proc_selfpid(), |
| 2584 | (get_bsdtask_info(current_task()) |
| 2585 | ? proc_name_address(p: get_bsdtask_info(current_task())) |
| 2586 | : "?" ), |
| 2587 | __FUNCTION__, |
| 2588 | (vm_protect_wx_fail ? "failing" : "turning off execute" )); |
| 2589 | cur_protection &= ~VM_PROT_EXECUTE; |
| 2590 | if (vm_protect_wx_fail) { |
| 2591 | return KERN_PROTECTION_FAILURE; |
| 2592 | } |
| 2593 | } |
| 2594 | |
| 2595 | if (entry_for_jit |
| 2596 | && cur_protection != VM_PROT_ALL) { |
| 2597 | /* |
| 2598 | * Native macOS processes and all non-macOS processes are |
| 2599 | * expected to create JIT regions via mmap(MAP_JIT, RWX) but |
| 2600 | * the RWX requirement was not enforced, and thus, we must live |
| 2601 | * with our sins. We are now dealing with a JIT mapping without |
| 2602 | * RWX. |
| 2603 | * |
| 2604 | * We deal with these by letting the MAP_JIT stick in order |
| 2605 | * to avoid CS violations when these pages are mapped executable |
| 2606 | * down the line. In order to appease the page table monitor (you |
| 2607 | * know what I'm talking about), these pages will end up being |
| 2608 | * marked as XNU_USER_DEBUG, which will be allowed because we |
| 2609 | * don't enforce the code signing monitor on macOS systems. If |
| 2610 | * the user-space application ever changes permissions to RWX, |
| 2611 | * which they are allowed to since the mapping was originally |
| 2612 | * created with MAP_JIT, then they'll switch over to using the |
| 2613 | * XNU_USER_JIT type, and won't be allowed to downgrade any |
| 2614 | * more after that. |
| 2615 | * |
| 2616 | * When not on macOS, a MAP_JIT mapping without VM_PROT_ALL is |
| 2617 | * strictly disallowed. |
| 2618 | */ |
| 2619 | |
| 2620 | #if XNU_TARGET_OS_OSX |
| 2621 | /* |
| 2622 | * Continue to allow non-RWX JIT |
| 2623 | */ |
| 2624 | #else |
| 2625 | /* non-macOS: reject JIT regions without RWX */ |
| 2626 | DTRACE_VM3(cs_wx, |
| 2627 | uint64_t, 0, |
| 2628 | uint64_t, 0, |
| 2629 | vm_prot_t, cur_protection); |
| 2630 | printf("CODE SIGNING: %d[%s] %s(%d): JIT requires RWX: failing. \n" , |
| 2631 | proc_selfpid(), |
| 2632 | (get_bsdtask_info(current_task()) |
| 2633 | ? proc_name_address(get_bsdtask_info(current_task())) |
| 2634 | : "?" ), |
| 2635 | __FUNCTION__, |
| 2636 | cur_protection); |
| 2637 | return KERN_PROTECTION_FAILURE; |
| 2638 | #endif |
| 2639 | } |
| 2640 | |
| 2641 | /* |
| 2642 | * If the task has requested executable lockdown, |
| 2643 | * deny any new executable mapping. |
| 2644 | */ |
| 2645 | if (map->map_disallow_new_exec == TRUE) { |
| 2646 | if (cur_protection & VM_PROT_EXECUTE) { |
| 2647 | return KERN_PROTECTION_FAILURE; |
| 2648 | } |
| 2649 | } |
| 2650 | |
| 2651 | if (resilient_codesign) { |
| 2652 | assert(!is_submap); |
| 2653 | int reject_prot = (needs_copy ? VM_PROT_ALLEXEC : (VM_PROT_WRITE | VM_PROT_ALLEXEC)); |
| 2654 | if ((cur_protection | max_protection) & reject_prot) { |
| 2655 | return KERN_PROTECTION_FAILURE; |
| 2656 | } |
| 2657 | } |
| 2658 | |
| 2659 | if (resilient_media) { |
| 2660 | assert(!is_submap); |
| 2661 | // assert(!needs_copy); |
| 2662 | if (object != VM_OBJECT_NULL && |
| 2663 | !object->internal) { |
| 2664 | /* |
| 2665 | * This mapping is directly backed by an external |
| 2666 | * memory manager (e.g. a vnode pager for a file): |
| 2667 | * we would not have any safe place to inject |
| 2668 | * a zero-filled page if an actual page is not |
| 2669 | * available, without possibly impacting the actual |
| 2670 | * contents of the mapped object (e.g. the file), |
| 2671 | * so we can't provide any media resiliency here. |
| 2672 | */ |
| 2673 | return KERN_INVALID_ARGUMENT; |
| 2674 | } |
| 2675 | } |
| 2676 | |
| 2677 | if (entry_for_tpro) { |
| 2678 | /* |
| 2679 | * TPRO overrides the effective permissions of the region |
| 2680 | * and explicitly maps as RW. Ensure we have been passed |
| 2681 | * the expected permissions. We accept `cur_protections` |
| 2682 | * RO as that will be handled on fault. |
| 2683 | */ |
| 2684 | if (!(max_protection & VM_PROT_READ) || |
| 2685 | !(max_protection & VM_PROT_WRITE) || |
| 2686 | !(cur_protection & VM_PROT_READ)) { |
| 2687 | return KERN_PROTECTION_FAILURE; |
| 2688 | } |
| 2689 | |
| 2690 | /* |
| 2691 | * We can now downgrade the cur_protection to RO. This is a mild lie |
| 2692 | * to the VM layer. But TPRO will be responsible for toggling the |
| 2693 | * protections between RO/RW |
| 2694 | */ |
| 2695 | cur_protection = VM_PROT_READ; |
| 2696 | } |
| 2697 | |
| 2698 | if (is_submap) { |
| 2699 | vm_map_t submap; |
| 2700 | if (purgable) { |
| 2701 | /* submaps can not be purgeable */ |
| 2702 | return KERN_INVALID_ARGUMENT; |
| 2703 | } |
| 2704 | if (object == VM_OBJECT_NULL) { |
| 2705 | /* submaps can not be created lazily */ |
| 2706 | return KERN_INVALID_ARGUMENT; |
| 2707 | } |
| 2708 | submap = (vm_map_t) object; |
| 2709 | if (VM_MAP_PAGE_SHIFT(map: submap) != VM_MAP_PAGE_SHIFT(map)) { |
| 2710 | /* page size mismatch */ |
| 2711 | return KERN_INVALID_ARGUMENT; |
| 2712 | } |
| 2713 | } |
| 2714 | if (vmk_flags.vmkf_already) { |
| 2715 | /* |
| 2716 | * VM_FLAGS_ALREADY says that it's OK if the same mapping |
| 2717 | * is already present. For it to be meaningul, the requested |
| 2718 | * mapping has to be at a fixed address (!VM_FLAGS_ANYWHERE) and |
| 2719 | * we shouldn't try and remove what was mapped there first |
| 2720 | * (!VM_FLAGS_OVERWRITE). |
| 2721 | */ |
| 2722 | if (!vmk_flags.vmf_fixed || vmk_flags.vmf_overwrite) { |
| 2723 | return KERN_INVALID_ARGUMENT; |
| 2724 | } |
| 2725 | } |
| 2726 | |
| 2727 | if (size == 0 || |
| 2728 | (offset & MIN(VM_MAP_PAGE_MASK(map), PAGE_MASK_64)) != 0) { |
| 2729 | *address = 0; |
| 2730 | return KERN_INVALID_ARGUMENT; |
| 2731 | } |
| 2732 | |
| 2733 | if (map->pmap == kernel_pmap) { |
| 2734 | user_alias = VM_KERN_MEMORY_NONE; |
| 2735 | } else { |
| 2736 | user_alias = alias; |
| 2737 | } |
| 2738 | |
| 2739 | if (user_alias == VM_MEMORY_MALLOC_MEDIUM) { |
| 2740 | chunk_size = MALLOC_MEDIUM_CHUNK_SIZE; |
| 2741 | } |
| 2742 | |
| 2743 | #define RETURN(value) { result = value; goto BailOut; } |
| 2744 | |
| 2745 | assertf(VM_MAP_PAGE_ALIGNED(*address, FOURK_PAGE_MASK), "0x%llx" , (uint64_t)*address); |
| 2746 | assertf(VM_MAP_PAGE_ALIGNED(size, FOURK_PAGE_MASK), "0x%llx" , (uint64_t)size); |
| 2747 | if (VM_MAP_PAGE_MASK(map) >= PAGE_MASK) { |
| 2748 | assertf(page_aligned(*address), "0x%llx" , (uint64_t)*address); |
| 2749 | assertf(page_aligned(size), "0x%llx" , (uint64_t)size); |
| 2750 | } |
| 2751 | |
| 2752 | if (VM_MAP_PAGE_MASK(map) >= PAGE_MASK && |
| 2753 | !VM_MAP_PAGE_ALIGNED(size, VM_MAP_PAGE_MASK(map))) { |
| 2754 | /* |
| 2755 | * In most cases, the caller rounds the size up to the |
| 2756 | * map's page size. |
| 2757 | * If we get a size that is explicitly not map-aligned here, |
| 2758 | * we'll have to respect the caller's wish and mark the |
| 2759 | * mapping as "not map-aligned" to avoid tripping the |
| 2760 | * map alignment checks later. |
| 2761 | */ |
| 2762 | clear_map_aligned = TRUE; |
| 2763 | } |
| 2764 | if (!anywhere && |
| 2765 | VM_MAP_PAGE_MASK(map) >= PAGE_MASK && |
| 2766 | !VM_MAP_PAGE_ALIGNED(*address, VM_MAP_PAGE_MASK(map))) { |
| 2767 | /* |
| 2768 | * We've been asked to map at a fixed address and that |
| 2769 | * address is not aligned to the map's specific alignment. |
| 2770 | * The caller should know what it's doing (i.e. most likely |
| 2771 | * mapping some fragmented copy map, transferring memory from |
| 2772 | * a VM map with a different alignment), so clear map_aligned |
| 2773 | * for this new VM map entry and proceed. |
| 2774 | */ |
| 2775 | clear_map_aligned = TRUE; |
| 2776 | } |
| 2777 | |
| 2778 | /* |
| 2779 | * Only zero-fill objects are allowed to be purgable. |
| 2780 | * LP64todo - limit purgable objects to 32-bits for now |
| 2781 | */ |
| 2782 | if (purgable && |
| 2783 | (offset != 0 || |
| 2784 | (object != VM_OBJECT_NULL && |
| 2785 | (object->vo_size != size || |
| 2786 | object->purgable == VM_PURGABLE_DENY)) |
| 2787 | #if __LP64__ |
| 2788 | || size > ANON_MAX_SIZE |
| 2789 | #endif |
| 2790 | )) { |
| 2791 | return KERN_INVALID_ARGUMENT; |
| 2792 | } |
| 2793 | |
| 2794 | start = *address; |
| 2795 | |
| 2796 | if (anywhere) { |
| 2797 | vm_map_lock(map); |
| 2798 | map_locked = TRUE; |
| 2799 | |
| 2800 | result = vm_map_locate_space(map, size, mask, vmk_flags, |
| 2801 | start_inout: &start, entry_out: &entry); |
| 2802 | if (result != KERN_SUCCESS) { |
| 2803 | goto BailOut; |
| 2804 | } |
| 2805 | |
| 2806 | *address = start; |
| 2807 | end = start + size; |
| 2808 | assert(VM_MAP_PAGE_ALIGNED(*address, |
| 2809 | VM_MAP_PAGE_MASK(map))); |
| 2810 | } else { |
| 2811 | vm_map_offset_t effective_min_offset, effective_max_offset; |
| 2812 | |
| 2813 | effective_min_offset = map->min_offset; |
| 2814 | effective_max_offset = map->max_offset; |
| 2815 | |
| 2816 | if (vmk_flags.vmkf_beyond_max) { |
| 2817 | /* |
| 2818 | * Allow an insertion beyond the map's max offset. |
| 2819 | */ |
| 2820 | effective_max_offset = 0x00000000FFFFF000ULL; |
| 2821 | if (vm_map_is_64bit(map)) { |
| 2822 | effective_max_offset = 0xFFFFFFFFFFFFF000ULL; |
| 2823 | } |
| 2824 | #if XNU_TARGET_OS_OSX |
| 2825 | } else if (__improbable(vmk_flags.vmkf_32bit_map_va)) { |
| 2826 | effective_max_offset = MIN(map->max_offset, 0x00000000FFFFF000ULL); |
| 2827 | #endif /* XNU_TARGET_OS_OSX */ |
| 2828 | } |
| 2829 | |
| 2830 | if (VM_MAP_PAGE_SHIFT(map) < PAGE_SHIFT && |
| 2831 | !overwrite && |
| 2832 | user_alias == VM_MEMORY_REALLOC) { |
| 2833 | /* |
| 2834 | * Force realloc() to switch to a new allocation, |
| 2835 | * to prevent 4k-fragmented virtual ranges. |
| 2836 | */ |
| 2837 | // DEBUG4K_ERROR("no realloc in place"); |
| 2838 | return KERN_NO_SPACE; |
| 2839 | } |
| 2840 | |
| 2841 | /* |
| 2842 | * Verify that: |
| 2843 | * the address doesn't itself violate |
| 2844 | * the mask requirement. |
| 2845 | */ |
| 2846 | |
| 2847 | vm_map_lock(map); |
| 2848 | map_locked = TRUE; |
| 2849 | if ((start & mask) != 0) { |
| 2850 | RETURN(KERN_NO_SPACE); |
| 2851 | } |
| 2852 | |
| 2853 | #if CONFIG_MAP_RANGES |
| 2854 | if (map->uses_user_ranges) { |
| 2855 | struct mach_vm_range r; |
| 2856 | |
| 2857 | vm_map_user_range_resolve(map, start, 1, &r); |
| 2858 | if (r.max_address == 0) { |
| 2859 | RETURN(KERN_INVALID_ADDRESS); |
| 2860 | } |
| 2861 | effective_min_offset = r.min_address; |
| 2862 | effective_max_offset = r.max_address; |
| 2863 | } |
| 2864 | #endif /* CONFIG_MAP_RANGES */ |
| 2865 | |
| 2866 | if ((startup_phase >= STARTUP_SUB_KMEM) && !is_submap && |
| 2867 | (map == kernel_map)) { |
| 2868 | mach_vm_range_t r = kmem_validate_range_for_overwrite(addr: start, size); |
| 2869 | effective_min_offset = r->min_address; |
| 2870 | effective_max_offset = r->max_address; |
| 2871 | } |
| 2872 | |
| 2873 | /* |
| 2874 | * ... the address is within bounds |
| 2875 | */ |
| 2876 | |
| 2877 | end = start + size; |
| 2878 | |
| 2879 | if ((start < effective_min_offset) || |
| 2880 | (end > effective_max_offset) || |
| 2881 | (start >= end)) { |
| 2882 | RETURN(KERN_INVALID_ADDRESS); |
| 2883 | } |
| 2884 | |
| 2885 | if (overwrite) { |
| 2886 | vmr_flags_t remove_flags = VM_MAP_REMOVE_NO_MAP_ALIGN | VM_MAP_REMOVE_TO_OVERWRITE; |
| 2887 | kern_return_t remove_kr; |
| 2888 | |
| 2889 | /* |
| 2890 | * Fixed mapping and "overwrite" flag: attempt to |
| 2891 | * remove all existing mappings in the specified |
| 2892 | * address range, saving them in our "zap_old_list". |
| 2893 | * |
| 2894 | * This avoids releasing the VM map lock in |
| 2895 | * vm_map_entry_delete() and allows atomicity |
| 2896 | * when we want to replace some mappings with a new one. |
| 2897 | * It also allows us to restore the old VM mappings if the |
| 2898 | * new mapping fails. |
| 2899 | */ |
| 2900 | remove_flags |= VM_MAP_REMOVE_NO_YIELD; |
| 2901 | |
| 2902 | if (vmk_flags.vmkf_overwrite_immutable) { |
| 2903 | /* we can overwrite immutable mappings */ |
| 2904 | remove_flags |= VM_MAP_REMOVE_IMMUTABLE; |
| 2905 | } |
| 2906 | if (vmk_flags.vmkf_remap_prot_copy) { |
| 2907 | remove_flags |= VM_MAP_REMOVE_IMMUTABLE_CODE; |
| 2908 | } |
| 2909 | remove_kr = vm_map_delete(map, start, end, flags: remove_flags, |
| 2910 | KMEM_GUARD_NONE, zap: &zap_old_list).kmr_return; |
| 2911 | if (remove_kr) { |
| 2912 | /* XXX FBDP restore zap_old_list? */ |
| 2913 | RETURN(remove_kr); |
| 2914 | } |
| 2915 | } |
| 2916 | |
| 2917 | /* |
| 2918 | * ... the starting address isn't allocated |
| 2919 | */ |
| 2920 | |
| 2921 | if (vm_map_lookup_entry(map, address: start, entry: &entry)) { |
| 2922 | if (!(vmk_flags.vmkf_already)) { |
| 2923 | RETURN(KERN_NO_SPACE); |
| 2924 | } |
| 2925 | /* |
| 2926 | * Check if what's already there is what we want. |
| 2927 | */ |
| 2928 | tmp_start = start; |
| 2929 | tmp_offset = offset; |
| 2930 | if (entry->vme_start < start) { |
| 2931 | tmp_start -= start - entry->vme_start; |
| 2932 | tmp_offset -= start - entry->vme_start; |
| 2933 | } |
| 2934 | for (; entry->vme_start < end; |
| 2935 | entry = entry->vme_next) { |
| 2936 | /* |
| 2937 | * Check if the mapping's attributes |
| 2938 | * match the existing map entry. |
| 2939 | */ |
| 2940 | if (entry == vm_map_to_entry(map) || |
| 2941 | entry->vme_start != tmp_start || |
| 2942 | entry->is_sub_map != is_submap || |
| 2943 | VME_OFFSET(entry) != tmp_offset || |
| 2944 | entry->needs_copy != needs_copy || |
| 2945 | entry->protection != cur_protection || |
| 2946 | entry->max_protection != max_protection || |
| 2947 | entry->inheritance != inheritance || |
| 2948 | entry->iokit_acct != iokit_acct || |
| 2949 | VME_ALIAS(entry) != alias) { |
| 2950 | /* not the same mapping ! */ |
| 2951 | RETURN(KERN_NO_SPACE); |
| 2952 | } |
| 2953 | /* |
| 2954 | * Check if the same object is being mapped. |
| 2955 | */ |
| 2956 | if (is_submap) { |
| 2957 | if (VME_SUBMAP(entry) != |
| 2958 | (vm_map_t) object) { |
| 2959 | /* not the same submap */ |
| 2960 | RETURN(KERN_NO_SPACE); |
| 2961 | } |
| 2962 | } else { |
| 2963 | if (VME_OBJECT(entry) != object) { |
| 2964 | /* not the same VM object... */ |
| 2965 | vm_object_t obj2; |
| 2966 | |
| 2967 | obj2 = VME_OBJECT(entry); |
| 2968 | if ((obj2 == VM_OBJECT_NULL || |
| 2969 | obj2->internal) && |
| 2970 | (object == VM_OBJECT_NULL || |
| 2971 | object->internal)) { |
| 2972 | /* |
| 2973 | * ... but both are |
| 2974 | * anonymous memory, |
| 2975 | * so equivalent. |
| 2976 | */ |
| 2977 | } else { |
| 2978 | RETURN(KERN_NO_SPACE); |
| 2979 | } |
| 2980 | } |
| 2981 | } |
| 2982 | |
| 2983 | tmp_offset += entry->vme_end - entry->vme_start; |
| 2984 | tmp_start += entry->vme_end - entry->vme_start; |
| 2985 | if (entry->vme_end >= end) { |
| 2986 | /* reached the end of our mapping */ |
| 2987 | break; |
| 2988 | } |
| 2989 | } |
| 2990 | /* it all matches: let's use what's already there ! */ |
| 2991 | RETURN(KERN_MEMORY_PRESENT); |
| 2992 | } |
| 2993 | |
| 2994 | /* |
| 2995 | * ... the next region doesn't overlap the |
| 2996 | * end point. |
| 2997 | */ |
| 2998 | |
| 2999 | if ((entry->vme_next != vm_map_to_entry(map)) && |
| 3000 | (entry->vme_next->vme_start < end)) { |
| 3001 | RETURN(KERN_NO_SPACE); |
| 3002 | } |
| 3003 | } |
| 3004 | |
| 3005 | /* |
| 3006 | * At this point, |
| 3007 | * "start" and "end" should define the endpoints of the |
| 3008 | * available new range, and |
| 3009 | * "entry" should refer to the region before the new |
| 3010 | * range, and |
| 3011 | * |
| 3012 | * the map should be locked. |
| 3013 | */ |
| 3014 | |
| 3015 | /* |
| 3016 | * See whether we can avoid creating a new entry (and object) by |
| 3017 | * extending one of our neighbors. [So far, we only attempt to |
| 3018 | * extend from below.] Note that we can never extend/join |
| 3019 | * purgable objects because they need to remain distinct |
| 3020 | * entities in order to implement their "volatile object" |
| 3021 | * semantics. |
| 3022 | */ |
| 3023 | |
| 3024 | if (purgable || |
| 3025 | entry_for_jit || |
| 3026 | entry_for_tpro || |
| 3027 | vm_memory_malloc_no_cow(alias: user_alias)) { |
| 3028 | if (object == VM_OBJECT_NULL) { |
| 3029 | object = vm_object_allocate(size); |
| 3030 | vm_object_lock(object); |
| 3031 | object->copy_strategy = MEMORY_OBJECT_COPY_NONE; |
| 3032 | VM_OBJECT_SET_TRUE_SHARE(object, FALSE); |
| 3033 | if (malloc_no_cow_except_fork && |
| 3034 | !purgable && |
| 3035 | !entry_for_jit && |
| 3036 | !entry_for_tpro && |
| 3037 | vm_memory_malloc_no_cow(alias: user_alias)) { |
| 3038 | object->copy_strategy = MEMORY_OBJECT_COPY_DELAY_FORK; |
| 3039 | VM_OBJECT_SET_TRUE_SHARE(object, TRUE); |
| 3040 | } |
| 3041 | if (purgable) { |
| 3042 | task_t owner; |
| 3043 | VM_OBJECT_SET_PURGABLE(object, VM_PURGABLE_NONVOLATILE); |
| 3044 | if (map->pmap == kernel_pmap) { |
| 3045 | /* |
| 3046 | * Purgeable mappings made in a kernel |
| 3047 | * map are "owned" by the kernel itself |
| 3048 | * rather than the current user task |
| 3049 | * because they're likely to be used by |
| 3050 | * more than this user task (see |
| 3051 | * execargs_purgeable_allocate(), for |
| 3052 | * example). |
| 3053 | */ |
| 3054 | owner = kernel_task; |
| 3055 | } else { |
| 3056 | owner = current_task(); |
| 3057 | } |
| 3058 | assert(object->vo_owner == NULL); |
| 3059 | assert(object->resident_page_count == 0); |
| 3060 | assert(object->wired_page_count == 0); |
| 3061 | vm_purgeable_nonvolatile_enqueue(object, task: owner); |
| 3062 | } |
| 3063 | vm_object_unlock(object); |
| 3064 | offset = (vm_object_offset_t)0; |
| 3065 | } |
| 3066 | } else if (VM_MAP_PAGE_SHIFT(map) < PAGE_SHIFT) { |
| 3067 | /* no coalescing if address space uses sub-pages */ |
| 3068 | } else if ((is_submap == FALSE) && |
| 3069 | (object == VM_OBJECT_NULL) && |
| 3070 | (entry != vm_map_to_entry(map)) && |
| 3071 | (entry->vme_end == start) && |
| 3072 | (!entry->is_shared) && |
| 3073 | (!entry->is_sub_map) && |
| 3074 | (!entry->in_transition) && |
| 3075 | (!entry->needs_wakeup) && |
| 3076 | (entry->behavior == VM_BEHAVIOR_DEFAULT) && |
| 3077 | (entry->protection == cur_protection) && |
| 3078 | (entry->max_protection == max_protection) && |
| 3079 | (entry->inheritance == inheritance) && |
| 3080 | ((user_alias == VM_MEMORY_REALLOC) || |
| 3081 | (VME_ALIAS(entry) == alias)) && |
| 3082 | (entry->no_cache == no_cache) && |
| 3083 | (entry->vme_permanent == permanent) && |
| 3084 | /* no coalescing for immutable executable mappings */ |
| 3085 | !((entry->protection & VM_PROT_EXECUTE) && |
| 3086 | entry->vme_permanent) && |
| 3087 | (!entry->superpage_size && !superpage_size) && |
| 3088 | /* |
| 3089 | * No coalescing if not map-aligned, to avoid propagating |
| 3090 | * that condition any further than needed: |
| 3091 | */ |
| 3092 | (!entry->map_aligned || !clear_map_aligned) && |
| 3093 | (!entry->zero_wired_pages) && |
| 3094 | (!entry->used_for_jit && !entry_for_jit) && |
| 3095 | #if __arm64e__ |
| 3096 | (!entry->used_for_tpro && !entry_for_tpro) && |
| 3097 | #endif |
| 3098 | (!entry->csm_associated) && |
| 3099 | (entry->iokit_acct == iokit_acct) && |
| 3100 | (!entry->vme_resilient_codesign) && |
| 3101 | (!entry->vme_resilient_media) && |
| 3102 | (!entry->vme_atomic) && |
| 3103 | (entry->vme_no_copy_on_read == no_copy_on_read) && |
| 3104 | |
| 3105 | ((entry->vme_end - entry->vme_start) + size <= |
| 3106 | (user_alias == VM_MEMORY_REALLOC ? |
| 3107 | ANON_CHUNK_SIZE : |
| 3108 | NO_COALESCE_LIMIT)) && |
| 3109 | |
| 3110 | (entry->wired_count == 0)) { /* implies user_wired_count == 0 */ |
| 3111 | if (vm_object_coalesce(VME_OBJECT(entry), |
| 3112 | VM_OBJECT_NULL, |
| 3113 | prev_offset: VME_OFFSET(entry), |
| 3114 | next_offset: (vm_object_offset_t) 0, |
| 3115 | prev_size: (vm_map_size_t)(entry->vme_end - entry->vme_start), |
| 3116 | next_size: (vm_map_size_t)(end - entry->vme_end))) { |
| 3117 | /* |
| 3118 | * Coalesced the two objects - can extend |
| 3119 | * the previous map entry to include the |
| 3120 | * new range. |
| 3121 | */ |
| 3122 | map->size += (end - entry->vme_end); |
| 3123 | assert(entry->vme_start < end); |
| 3124 | assert(VM_MAP_PAGE_ALIGNED(end, |
| 3125 | VM_MAP_PAGE_MASK(map))); |
| 3126 | if (__improbable(vm_debug_events)) { |
| 3127 | DTRACE_VM5(map_entry_extend, vm_map_t, map, vm_map_entry_t, entry, vm_address_t, entry->vme_start, vm_address_t, entry->vme_end, vm_address_t, end); |
| 3128 | } |
| 3129 | entry->vme_end = end; |
| 3130 | if (map->holelistenabled) { |
| 3131 | vm_map_store_update_first_free(map, entry, TRUE); |
| 3132 | } else { |
| 3133 | vm_map_store_update_first_free(map, entry: map->first_free, TRUE); |
| 3134 | } |
| 3135 | new_mapping_established = TRUE; |
| 3136 | RETURN(KERN_SUCCESS); |
| 3137 | } |
| 3138 | } |
| 3139 | |
| 3140 | step = superpage_size ? SUPERPAGE_SIZE : (end - start); |
| 3141 | new_entry = NULL; |
| 3142 | |
| 3143 | if (vmk_flags.vmkf_submap_adjust) { |
| 3144 | vm_map_adjust_offsets(map: (vm_map_t)caller_object, min_off: start, max_off: end); |
| 3145 | offset = start; |
| 3146 | } |
| 3147 | |
| 3148 | for (tmp2_start = start; tmp2_start < end; tmp2_start += step) { |
| 3149 | tmp2_end = tmp2_start + step; |
| 3150 | /* |
| 3151 | * Create a new entry |
| 3152 | * |
| 3153 | * XXX FBDP |
| 3154 | * The reserved "page zero" in each process's address space can |
| 3155 | * be arbitrarily large. Splitting it into separate objects and |
| 3156 | * therefore different VM map entries serves no purpose and just |
| 3157 | * slows down operations on the VM map, so let's not split the |
| 3158 | * allocation into chunks if the max protection is NONE. That |
| 3159 | * memory should never be accessible, so it will never get to the |
| 3160 | * default pager. |
| 3161 | */ |
| 3162 | tmp_start = tmp2_start; |
| 3163 | if (!is_submap && |
| 3164 | object == VM_OBJECT_NULL && |
| 3165 | size > chunk_size && |
| 3166 | max_protection != VM_PROT_NONE && |
| 3167 | superpage_size == 0) { |
| 3168 | tmp_end = tmp_start + chunk_size; |
| 3169 | } else { |
| 3170 | tmp_end = tmp2_end; |
| 3171 | } |
| 3172 | do { |
| 3173 | if (!is_submap && |
| 3174 | object != VM_OBJECT_NULL && |
| 3175 | object->internal && |
| 3176 | offset + (tmp_end - tmp_start) > object->vo_size) { |
| 3177 | // printf("FBDP object %p size 0x%llx overmapping offset 0x%llx size 0x%llx\n", object, object->vo_size, offset, (uint64_t)(tmp_end - tmp_start)); |
| 3178 | DTRACE_VM5(vm_map_enter_overmap, |
| 3179 | vm_map_t, map, |
| 3180 | vm_map_address_t, tmp_start, |
| 3181 | vm_map_address_t, tmp_end, |
| 3182 | vm_object_offset_t, offset, |
| 3183 | vm_object_size_t, object->vo_size); |
| 3184 | } |
| 3185 | new_entry = vm_map_entry_insert(map, |
| 3186 | insp_entry: entry, start: tmp_start, end: tmp_end, |
| 3187 | object, offset, vmk_flags, |
| 3188 | needs_copy, |
| 3189 | cur_protection, max_protection, |
| 3190 | inheritance: (entry_for_jit && !VM_MAP_POLICY_ALLOW_JIT_INHERIT(map) ? |
| 3191 | VM_INHERIT_NONE : inheritance), |
| 3192 | clear_map_aligned); |
| 3193 | |
| 3194 | assert(!is_kernel_object(object) || (VM_KERN_MEMORY_NONE != alias)); |
| 3195 | |
| 3196 | if (resilient_codesign) { |
| 3197 | int reject_prot = (needs_copy ? VM_PROT_ALLEXEC : (VM_PROT_WRITE | VM_PROT_ALLEXEC)); |
| 3198 | if (!((cur_protection | max_protection) & reject_prot)) { |
| 3199 | new_entry->vme_resilient_codesign = TRUE; |
| 3200 | } |
| 3201 | } |
| 3202 | |
| 3203 | if (resilient_media && |
| 3204 | (object == VM_OBJECT_NULL || |
| 3205 | object->internal)) { |
| 3206 | new_entry->vme_resilient_media = TRUE; |
| 3207 | } |
| 3208 | |
| 3209 | assert(!new_entry->iokit_acct); |
| 3210 | if (!is_submap && |
| 3211 | object != VM_OBJECT_NULL && |
| 3212 | (object->purgable != VM_PURGABLE_DENY || |
| 3213 | object->vo_ledger_tag)) { |
| 3214 | assert(new_entry->use_pmap); |
| 3215 | assert(!new_entry->iokit_acct); |
| 3216 | /* |
| 3217 | * Turn off pmap accounting since |
| 3218 | * purgeable (or tagged) objects have their |
| 3219 | * own ledgers. |
| 3220 | */ |
| 3221 | new_entry->use_pmap = FALSE; |
| 3222 | } else if (!is_submap && |
| 3223 | iokit_acct && |
| 3224 | object != VM_OBJECT_NULL && |
| 3225 | object->internal) { |
| 3226 | /* alternate accounting */ |
| 3227 | assert(!new_entry->iokit_acct); |
| 3228 | assert(new_entry->use_pmap); |
| 3229 | new_entry->iokit_acct = TRUE; |
| 3230 | new_entry->use_pmap = FALSE; |
| 3231 | DTRACE_VM4( |
| 3232 | vm_map_iokit_mapped_region, |
| 3233 | vm_map_t, map, |
| 3234 | vm_map_offset_t, new_entry->vme_start, |
| 3235 | vm_map_offset_t, new_entry->vme_end, |
| 3236 | int, VME_ALIAS(new_entry)); |
| 3237 | vm_map_iokit_mapped_region( |
| 3238 | map, |
| 3239 | bytes: (new_entry->vme_end - |
| 3240 | new_entry->vme_start)); |
| 3241 | } else if (!is_submap) { |
| 3242 | assert(!new_entry->iokit_acct); |
| 3243 | assert(new_entry->use_pmap); |
| 3244 | } |
| 3245 | |
| 3246 | if (is_submap) { |
| 3247 | vm_map_t submap; |
| 3248 | boolean_t submap_is_64bit; |
| 3249 | boolean_t use_pmap; |
| 3250 | |
| 3251 | assert(new_entry->is_sub_map); |
| 3252 | assert(!new_entry->use_pmap); |
| 3253 | assert(!new_entry->iokit_acct); |
| 3254 | submap = (vm_map_t) object; |
| 3255 | submap_is_64bit = vm_map_is_64bit(map: submap); |
| 3256 | use_pmap = vmk_flags.vmkf_nested_pmap; |
| 3257 | #ifndef NO_NESTED_PMAP |
| 3258 | if (use_pmap && submap->pmap == NULL) { |
| 3259 | ledger_t ledger = map->pmap->ledger; |
| 3260 | /* we need a sub pmap to nest... */ |
| 3261 | submap->pmap = pmap_create_options(ledger, size: 0, |
| 3262 | flags: submap_is_64bit ? PMAP_CREATE_64BIT : 0); |
| 3263 | if (submap->pmap == NULL) { |
| 3264 | /* let's proceed without nesting... */ |
| 3265 | } |
| 3266 | #if defined(__arm64__) |
| 3267 | else { |
| 3268 | pmap_set_nested(pmap: submap->pmap); |
| 3269 | } |
| 3270 | #endif |
| 3271 | } |
| 3272 | if (use_pmap && submap->pmap != NULL) { |
| 3273 | if (VM_MAP_PAGE_SHIFT(map) != VM_MAP_PAGE_SHIFT(map: submap)) { |
| 3274 | DEBUG4K_ERROR("map %p (%d) submap %p (%d): incompatible page sizes\n" , map, VM_MAP_PAGE_SHIFT(map), submap, VM_MAP_PAGE_SHIFT(submap)); |
| 3275 | kr = KERN_FAILURE; |
| 3276 | } else { |
| 3277 | kr = pmap_nest(map->pmap, |
| 3278 | submap->pmap, |
| 3279 | tmp_start, |
| 3280 | tmp_end - tmp_start); |
| 3281 | } |
| 3282 | if (kr != KERN_SUCCESS) { |
| 3283 | printf(format: "vm_map_enter: " |
| 3284 | "pmap_nest(0x%llx,0x%llx) " |
| 3285 | "error 0x%x\n" , |
| 3286 | (long long)tmp_start, |
| 3287 | (long long)tmp_end, |
| 3288 | kr); |
| 3289 | } else { |
| 3290 | /* we're now nested ! */ |
| 3291 | new_entry->use_pmap = TRUE; |
| 3292 | pmap_empty = FALSE; |
| 3293 | } |
| 3294 | } |
| 3295 | #endif /* NO_NESTED_PMAP */ |
| 3296 | } |
| 3297 | entry = new_entry; |
| 3298 | |
| 3299 | if (superpage_size) { |
| 3300 | vm_page_t pages, m; |
| 3301 | vm_object_t sp_object; |
| 3302 | vm_object_offset_t sp_offset; |
| 3303 | |
| 3304 | VME_OFFSET_SET(entry, offset: 0); |
| 3305 | |
| 3306 | /* allocate one superpage */ |
| 3307 | kr = cpm_allocate(SUPERPAGE_SIZE, list: &pages, max_pnum: 0, SUPERPAGE_NBASEPAGES - 1, TRUE, flags: 0); |
| 3308 | if (kr != KERN_SUCCESS) { |
| 3309 | /* deallocate whole range... */ |
| 3310 | new_mapping_established = TRUE; |
| 3311 | /* ... but only up to "tmp_end" */ |
| 3312 | size -= end - tmp_end; |
| 3313 | RETURN(kr); |
| 3314 | } |
| 3315 | |
| 3316 | /* create one vm_object per superpage */ |
| 3317 | sp_object = vm_object_allocate(size: (vm_map_size_t)(entry->vme_end - entry->vme_start)); |
| 3318 | vm_object_lock(sp_object); |
| 3319 | sp_object->copy_strategy = MEMORY_OBJECT_COPY_NONE; |
| 3320 | VM_OBJECT_SET_PHYS_CONTIGUOUS(object: sp_object, TRUE); |
| 3321 | sp_object->vo_shadow_offset = (vm_object_offset_t)VM_PAGE_GET_PHYS_PAGE(m: pages) * PAGE_SIZE; |
| 3322 | VME_OBJECT_SET(entry, object: sp_object, false, context: 0); |
| 3323 | assert(entry->use_pmap); |
| 3324 | |
| 3325 | /* enter the base pages into the object */ |
| 3326 | for (sp_offset = 0; |
| 3327 | sp_offset < SUPERPAGE_SIZE; |
| 3328 | sp_offset += PAGE_SIZE) { |
| 3329 | m = pages; |
| 3330 | pmap_zero_page(pn: VM_PAGE_GET_PHYS_PAGE(m)); |
| 3331 | pages = NEXT_PAGE(m); |
| 3332 | *(NEXT_PAGE_PTR(m)) = VM_PAGE_NULL; |
| 3333 | vm_page_insert_wired(page: m, object: sp_object, offset: sp_offset, VM_KERN_MEMORY_OSFMK); |
| 3334 | } |
| 3335 | vm_object_unlock(sp_object); |
| 3336 | } |
| 3337 | } while (tmp_end != tmp2_end && |
| 3338 | (tmp_start = tmp_end) && |
| 3339 | (tmp_end = (tmp2_end - tmp_end > chunk_size) ? |
| 3340 | tmp_end + chunk_size : tmp2_end)); |
| 3341 | } |
| 3342 | |
| 3343 | new_mapping_established = TRUE; |
| 3344 | |
| 3345 | BailOut: |
| 3346 | assert(map_locked == TRUE); |
| 3347 | |
| 3348 | /* |
| 3349 | * Address space limit enforcement (RLIMIT_AS and RLIMIT_DATA): |
| 3350 | * If we have identified and possibly established the new mapping(s), |
| 3351 | * make sure we did not go beyond the address space limit. |
| 3352 | */ |
| 3353 | if (result == KERN_SUCCESS) { |
| 3354 | if (map->size_limit != RLIM_INFINITY && |
| 3355 | map->size > map->size_limit) { |
| 3356 | /* |
| 3357 | * Establishing the requested mappings would exceed |
| 3358 | * the process's RLIMIT_AS limit: fail with |
| 3359 | * KERN_NO_SPACE. |
| 3360 | */ |
| 3361 | result = KERN_NO_SPACE; |
| 3362 | printf(format: "%d[%s] %s: map size 0x%llx over RLIMIT_AS 0x%llx\n" , |
| 3363 | proc_selfpid(), |
| 3364 | (get_bsdtask_info(current_task()) |
| 3365 | ? proc_name_address(p: get_bsdtask_info(current_task())) |
| 3366 | : "?" ), |
| 3367 | __FUNCTION__, |
| 3368 | (uint64_t) map->size, |
| 3369 | (uint64_t) map->size_limit); |
| 3370 | DTRACE_VM2(vm_map_enter_RLIMIT_AS, |
| 3371 | vm_map_size_t, map->size, |
| 3372 | uint64_t, map->size_limit); |
| 3373 | vm_map_enter_RLIMIT_AS_count++; |
| 3374 | } else if (map->data_limit != RLIM_INFINITY && |
| 3375 | map->size > map->data_limit) { |
| 3376 | /* |
| 3377 | * Establishing the requested mappings would exceed |
| 3378 | * the process's RLIMIT_DATA limit: fail with |
| 3379 | * KERN_NO_SPACE. |
| 3380 | */ |
| 3381 | result = KERN_NO_SPACE; |
| 3382 | printf(format: "%d[%s] %s: map size 0x%llx over RLIMIT_DATA 0x%llx\n" , |
| 3383 | proc_selfpid(), |
| 3384 | (get_bsdtask_info(current_task()) |
| 3385 | ? proc_name_address(p: get_bsdtask_info(current_task())) |
| 3386 | : "?" ), |
| 3387 | __FUNCTION__, |
| 3388 | (uint64_t) map->size, |
| 3389 | (uint64_t) map->data_limit); |
| 3390 | DTRACE_VM2(vm_map_enter_RLIMIT_DATA, |
| 3391 | vm_map_size_t, map->size, |
| 3392 | uint64_t, map->data_limit); |
| 3393 | vm_map_enter_RLIMIT_DATA_count++; |
| 3394 | } |
| 3395 | } |
| 3396 | |
| 3397 | if (result == KERN_SUCCESS) { |
| 3398 | vm_prot_t ; |
| 3399 | memory_object_t ; |
| 3400 | |
| 3401 | #if DEBUG |
| 3402 | if (pmap_empty && |
| 3403 | !(vmk_flags.vmkf_no_pmap_check)) { |
| 3404 | assert(pmap_is_empty(map->pmap, |
| 3405 | *address, |
| 3406 | *address + size)); |
| 3407 | } |
| 3408 | #endif /* DEBUG */ |
| 3409 | |
| 3410 | /* |
| 3411 | * For "named" VM objects, let the pager know that the |
| 3412 | * memory object is being mapped. Some pagers need to keep |
| 3413 | * track of this, to know when they can reclaim the memory |
| 3414 | * object, for example. |
| 3415 | * VM calls memory_object_map() for each mapping (specifying |
| 3416 | * the protection of each mapping) and calls |
| 3417 | * memory_object_last_unmap() when all the mappings are gone. |
| 3418 | */ |
| 3419 | pager_prot = max_protection; |
| 3420 | if (needs_copy) { |
| 3421 | /* |
| 3422 | * Copy-On-Write mapping: won't modify |
| 3423 | * the memory object. |
| 3424 | */ |
| 3425 | pager_prot &= ~VM_PROT_WRITE; |
| 3426 | } |
| 3427 | if (!is_submap && |
| 3428 | object != VM_OBJECT_NULL && |
| 3429 | object->named && |
| 3430 | object->pager != MEMORY_OBJECT_NULL) { |
| 3431 | vm_object_lock(object); |
| 3432 | pager = object->pager; |
| 3433 | if (object->named && |
| 3434 | pager != MEMORY_OBJECT_NULL) { |
| 3435 | assert(object->pager_ready); |
| 3436 | vm_object_mapping_wait(object, THREAD_UNINT); |
| 3437 | vm_object_mapping_begin(object); |
| 3438 | vm_object_unlock(object); |
| 3439 | |
| 3440 | kr = memory_object_map(memory_object: pager, prot: pager_prot); |
| 3441 | assert(kr == KERN_SUCCESS); |
| 3442 | |
| 3443 | vm_object_lock(object); |
| 3444 | vm_object_mapping_end(object); |
| 3445 | } |
| 3446 | vm_object_unlock(object); |
| 3447 | } |
| 3448 | } |
| 3449 | |
| 3450 | assert(map_locked == TRUE); |
| 3451 | |
| 3452 | if (new_mapping_established) { |
| 3453 | /* |
| 3454 | * If we release the map lock for any reason below, |
| 3455 | * another thread could deallocate our new mapping, |
| 3456 | * releasing the caller's reference on "caller_object", |
| 3457 | * which was transferred to the mapping. |
| 3458 | * If this was the only reference, the object could be |
| 3459 | * destroyed. |
| 3460 | * |
| 3461 | * We need to take an extra reference on "caller_object" |
| 3462 | * to keep it alive if we need to return the caller's |
| 3463 | * reference to the caller in case of failure. |
| 3464 | */ |
| 3465 | if (is_submap) { |
| 3466 | vm_map_reference(map: (vm_map_t)caller_object); |
| 3467 | } else { |
| 3468 | vm_object_reference(caller_object); |
| 3469 | } |
| 3470 | } |
| 3471 | |
| 3472 | if (!keep_map_locked) { |
| 3473 | vm_map_unlock(map); |
| 3474 | map_locked = FALSE; |
| 3475 | entry = VM_MAP_ENTRY_NULL; |
| 3476 | new_entry = VM_MAP_ENTRY_NULL; |
| 3477 | } |
| 3478 | |
| 3479 | /* |
| 3480 | * We can't hold the map lock if we enter this block. |
| 3481 | */ |
| 3482 | |
| 3483 | if (result == KERN_SUCCESS) { |
| 3484 | /* Wire down the new entry if the user |
| 3485 | * requested all new map entries be wired. |
| 3486 | */ |
| 3487 | if ((map->wiring_required) || (superpage_size)) { |
| 3488 | assert(!keep_map_locked); |
| 3489 | pmap_empty = FALSE; /* pmap won't be empty */ |
| 3490 | kr = vm_map_wire_kernel(map, start, end, |
| 3491 | access_type: cur_protection, VM_KERN_MEMORY_MLOCK, |
| 3492 | TRUE); |
| 3493 | result = kr; |
| 3494 | } |
| 3495 | |
| 3496 | } |
| 3497 | |
| 3498 | if (result != KERN_SUCCESS) { |
| 3499 | if (new_mapping_established) { |
| 3500 | vmr_flags_t remove_flags = VM_MAP_REMOVE_NO_FLAGS; |
| 3501 | |
| 3502 | /* |
| 3503 | * We have to get rid of the new mappings since we |
| 3504 | * won't make them available to the user. |
| 3505 | * Try and do that atomically, to minimize the risk |
| 3506 | * that someone else create new mappings that range. |
| 3507 | */ |
| 3508 | if (!map_locked) { |
| 3509 | vm_map_lock(map); |
| 3510 | map_locked = TRUE; |
| 3511 | } |
| 3512 | remove_flags |= VM_MAP_REMOVE_NO_MAP_ALIGN; |
| 3513 | remove_flags |= VM_MAP_REMOVE_NO_YIELD; |
| 3514 | if (permanent) { |
| 3515 | remove_flags |= VM_MAP_REMOVE_IMMUTABLE; |
| 3516 | } |
| 3517 | (void) vm_map_delete(map, |
| 3518 | start: *address, end: *address + size, |
| 3519 | flags: remove_flags, |
| 3520 | KMEM_GUARD_NONE, zap: &zap_new_list); |
| 3521 | } |
| 3522 | |
| 3523 | if (vm_map_zap_first_entry(list: &zap_old_list)) { |
| 3524 | vm_map_entry_t entry1, entry2; |
| 3525 | |
| 3526 | /* |
| 3527 | * The new mapping failed. Attempt to restore |
| 3528 | * the old mappings, saved in the "zap_old_map". |
| 3529 | */ |
| 3530 | if (!map_locked) { |
| 3531 | vm_map_lock(map); |
| 3532 | map_locked = TRUE; |
| 3533 | } |
| 3534 | |
| 3535 | /* first check if the coast is still clear */ |
| 3536 | start = vm_map_zap_first_entry(list: &zap_old_list)->vme_start; |
| 3537 | end = vm_map_zap_last_entry(list: &zap_old_list)->vme_end; |
| 3538 | |
| 3539 | if (vm_map_lookup_entry(map, address: start, entry: &entry1) || |
| 3540 | vm_map_lookup_entry(map, address: end, entry: &entry2) || |
| 3541 | entry1 != entry2) { |
| 3542 | /* |
| 3543 | * Part of that range has already been |
| 3544 | * re-mapped: we can't restore the old |
| 3545 | * mappings... |
| 3546 | */ |
| 3547 | vm_map_enter_restore_failures++; |
| 3548 | } else { |
| 3549 | /* |
| 3550 | * Transfer the saved map entries from |
| 3551 | * "zap_old_map" to the original "map", |
| 3552 | * inserting them all after "entry1". |
| 3553 | */ |
| 3554 | while ((entry2 = vm_map_zap_pop(list: &zap_old_list))) { |
| 3555 | vm_map_size_t entry_size; |
| 3556 | |
| 3557 | entry_size = (entry2->vme_end - |
| 3558 | entry2->vme_start); |
| 3559 | vm_map_store_entry_link(map, after_where: entry1, entry: entry2, |
| 3560 | VM_MAP_KERNEL_FLAGS_NONE); |
| 3561 | map->size += entry_size; |
| 3562 | entry1 = entry2; |
| 3563 | } |
| 3564 | if (map->wiring_required) { |
| 3565 | /* |
| 3566 | * XXX TODO: we should rewire the |
| 3567 | * old pages here... |
| 3568 | */ |
| 3569 | } |
| 3570 | vm_map_enter_restore_successes++; |
| 3571 | } |
| 3572 | } |
| 3573 | } |
| 3574 | |
| 3575 | /* |
| 3576 | * The caller is responsible for releasing the lock if it requested to |
| 3577 | * keep the map locked. |
| 3578 | */ |
| 3579 | if (map_locked && !keep_map_locked) { |
| 3580 | vm_map_unlock(map); |
| 3581 | } |
| 3582 | |
| 3583 | vm_map_zap_dispose(list: &zap_old_list); |
| 3584 | vm_map_zap_dispose(list: &zap_new_list); |
| 3585 | |
| 3586 | if (new_mapping_established) { |
| 3587 | /* |
| 3588 | * The caller had a reference on "caller_object" and we |
| 3589 | * transferred that reference to the mapping. |
| 3590 | * We also took an extra reference on "caller_object" to keep |
| 3591 | * it alive while the map was unlocked. |
| 3592 | */ |
| 3593 | if (result == KERN_SUCCESS) { |
| 3594 | /* |
| 3595 | * On success, the caller's reference on the object gets |
| 3596 | * tranferred to the mapping. |
| 3597 | * Release our extra reference. |
| 3598 | */ |
| 3599 | if (is_submap) { |
| 3600 | vm_map_deallocate(map: (vm_map_t)caller_object); |
| 3601 | } else { |
| 3602 | vm_object_deallocate(object: caller_object); |
| 3603 | } |
| 3604 | } else { |
| 3605 | /* |
| 3606 | * On error, the caller expects to still have a |
| 3607 | * reference on the object it gave us. |
| 3608 | * Let's use our extra reference for that. |
| 3609 | */ |
| 3610 | } |
| 3611 | } |
| 3612 | |
| 3613 | return result; |
| 3614 | |
| 3615 | #undef RETURN |
| 3616 | } |
| 3617 | |
| 3618 | #if __arm64__ |
| 3619 | extern const struct memory_object_pager_ops ; |
| 3620 | kern_return_t |
| 3621 | vm_map_enter_fourk( |
| 3622 | vm_map_t map, |
| 3623 | vm_map_offset_t *address, /* IN/OUT */ |
| 3624 | vm_map_size_t size, |
| 3625 | vm_map_offset_t mask, |
| 3626 | vm_map_kernel_flags_t vmk_flags, |
| 3627 | vm_object_t object, |
| 3628 | vm_object_offset_t offset, |
| 3629 | boolean_t needs_copy, |
| 3630 | vm_prot_t cur_protection, |
| 3631 | vm_prot_t max_protection, |
| 3632 | vm_inherit_t inheritance) |
| 3633 | { |
| 3634 | vm_map_entry_t entry, new_entry; |
| 3635 | vm_map_offset_t start, fourk_start; |
| 3636 | vm_map_offset_t end, fourk_end; |
| 3637 | vm_map_size_t fourk_size; |
| 3638 | kern_return_t result = KERN_SUCCESS; |
| 3639 | boolean_t map_locked = FALSE; |
| 3640 | boolean_t pmap_empty = TRUE; |
| 3641 | boolean_t new_mapping_established = FALSE; |
| 3642 | const bool keep_map_locked = vmk_flags.vmkf_keep_map_locked; |
| 3643 | const bool anywhere = !vmk_flags.vmf_fixed; |
| 3644 | const bool purgable = vmk_flags.vmf_purgeable; |
| 3645 | const bool overwrite = vmk_flags.vmf_overwrite; |
| 3646 | const bool is_submap = vmk_flags.vmkf_submap; |
| 3647 | const bool entry_for_jit = vmk_flags.vmkf_map_jit; |
| 3648 | const unsigned int superpage_size = vmk_flags.vmf_superpage_size; |
| 3649 | vm_map_offset_t effective_min_offset, effective_max_offset; |
| 3650 | kern_return_t kr; |
| 3651 | boolean_t clear_map_aligned = FALSE; |
| 3652 | memory_object_t fourk_mem_obj; |
| 3653 | vm_object_t fourk_object; |
| 3654 | vm_map_offset_t ; |
| 3655 | int , ; |
| 3656 | int cur_idx; |
| 3657 | boolean_t fourk_copy; |
| 3658 | vm_object_t copy_object; |
| 3659 | vm_object_offset_t copy_offset; |
| 3660 | VM_MAP_ZAP_DECLARE(zap_list); |
| 3661 | |
| 3662 | if (VM_MAP_PAGE_MASK(map) < PAGE_MASK) { |
| 3663 | panic("%s:%d" , __FUNCTION__, __LINE__); |
| 3664 | } |
| 3665 | fourk_mem_obj = MEMORY_OBJECT_NULL; |
| 3666 | fourk_object = VM_OBJECT_NULL; |
| 3667 | |
| 3668 | if (superpage_size) { |
| 3669 | return KERN_NOT_SUPPORTED; |
| 3670 | } |
| 3671 | |
| 3672 | if ((cur_protection & VM_PROT_WRITE) && |
| 3673 | (cur_protection & VM_PROT_EXECUTE) && |
| 3674 | #if XNU_TARGET_OS_OSX |
| 3675 | map->pmap != kernel_pmap && |
| 3676 | (vm_map_cs_enforcement(map) |
| 3677 | #if __arm64__ |
| 3678 | || !VM_MAP_IS_EXOTIC(map) |
| 3679 | #endif /* __arm64__ */ |
| 3680 | ) && |
| 3681 | #endif /* XNU_TARGET_OS_OSX */ |
| 3682 | #if CODE_SIGNING_MONITOR |
| 3683 | (csm_address_space_exempt(map->pmap) != KERN_SUCCESS) && |
| 3684 | #endif |
| 3685 | !entry_for_jit) { |
| 3686 | DTRACE_VM3(cs_wx, |
| 3687 | uint64_t, 0, |
| 3688 | uint64_t, 0, |
| 3689 | vm_prot_t, cur_protection); |
| 3690 | printf(format: "CODE SIGNING: %d[%s] %s: curprot cannot be write+execute. " |
| 3691 | "turning off execute\n" , |
| 3692 | proc_selfpid(), |
| 3693 | (get_bsdtask_info(current_task()) |
| 3694 | ? proc_name_address(p: get_bsdtask_info(current_task())) |
| 3695 | : "?" ), |
| 3696 | __FUNCTION__); |
| 3697 | cur_protection &= ~VM_PROT_EXECUTE; |
| 3698 | } |
| 3699 | |
| 3700 | /* |
| 3701 | * If the task has requested executable lockdown, |
| 3702 | * deny any new executable mapping. |
| 3703 | */ |
| 3704 | if (map->map_disallow_new_exec == TRUE) { |
| 3705 | if (cur_protection & VM_PROT_EXECUTE) { |
| 3706 | return KERN_PROTECTION_FAILURE; |
| 3707 | } |
| 3708 | } |
| 3709 | |
| 3710 | if (is_submap) { |
| 3711 | return KERN_NOT_SUPPORTED; |
| 3712 | } |
| 3713 | if (vmk_flags.vmkf_already) { |
| 3714 | return KERN_NOT_SUPPORTED; |
| 3715 | } |
| 3716 | if (purgable || entry_for_jit) { |
| 3717 | return KERN_NOT_SUPPORTED; |
| 3718 | } |
| 3719 | |
| 3720 | effective_min_offset = map->min_offset; |
| 3721 | |
| 3722 | if (vmk_flags.vmkf_beyond_max) { |
| 3723 | return KERN_NOT_SUPPORTED; |
| 3724 | } else { |
| 3725 | effective_max_offset = map->max_offset; |
| 3726 | } |
| 3727 | |
| 3728 | if (size == 0 || |
| 3729 | (offset & FOURK_PAGE_MASK) != 0) { |
| 3730 | *address = 0; |
| 3731 | return KERN_INVALID_ARGUMENT; |
| 3732 | } |
| 3733 | |
| 3734 | #define RETURN(value) { result = value; goto BailOut; } |
| 3735 | |
| 3736 | assert(VM_MAP_PAGE_ALIGNED(*address, FOURK_PAGE_MASK)); |
| 3737 | assert(VM_MAP_PAGE_ALIGNED(size, FOURK_PAGE_MASK)); |
| 3738 | |
| 3739 | if (!anywhere && overwrite) { |
| 3740 | return KERN_NOT_SUPPORTED; |
| 3741 | } |
| 3742 | |
| 3743 | fourk_start = *address; |
| 3744 | fourk_size = size; |
| 3745 | fourk_end = fourk_start + fourk_size; |
| 3746 | |
| 3747 | start = vm_map_trunc_page(*address, VM_MAP_PAGE_MASK(map)); |
| 3748 | end = vm_map_round_page(fourk_end, VM_MAP_PAGE_MASK(map)); |
| 3749 | size = end - start; |
| 3750 | |
| 3751 | if (anywhere) { |
| 3752 | return KERN_NOT_SUPPORTED; |
| 3753 | } else { |
| 3754 | /* |
| 3755 | * Verify that: |
| 3756 | * the address doesn't itself violate |
| 3757 | * the mask requirement. |
| 3758 | */ |
| 3759 | |
| 3760 | vm_map_lock(map); |
| 3761 | map_locked = TRUE; |
| 3762 | if ((start & mask) != 0) { |
| 3763 | RETURN(KERN_NO_SPACE); |
| 3764 | } |
| 3765 | |
| 3766 | /* |
| 3767 | * ... the address is within bounds |
| 3768 | */ |
| 3769 | |
| 3770 | end = start + size; |
| 3771 | |
| 3772 | if ((start < effective_min_offset) || |
| 3773 | (end > effective_max_offset) || |
| 3774 | (start >= end)) { |
| 3775 | RETURN(KERN_INVALID_ADDRESS); |
| 3776 | } |
| 3777 | |
| 3778 | /* |
| 3779 | * ... the starting address isn't allocated |
| 3780 | */ |
| 3781 | if (vm_map_lookup_entry(map, address: start, entry: &entry)) { |
| 3782 | vm_object_t cur_object, shadow_object; |
| 3783 | |
| 3784 | /* |
| 3785 | * We might already some 4K mappings |
| 3786 | * in a 16K page here. |
| 3787 | */ |
| 3788 | |
| 3789 | if (entry->vme_end - entry->vme_start |
| 3790 | != SIXTEENK_PAGE_SIZE) { |
| 3791 | RETURN(KERN_NO_SPACE); |
| 3792 | } |
| 3793 | if (entry->is_sub_map) { |
| 3794 | RETURN(KERN_NO_SPACE); |
| 3795 | } |
| 3796 | if (VME_OBJECT(entry) == VM_OBJECT_NULL) { |
| 3797 | RETURN(KERN_NO_SPACE); |
| 3798 | } |
| 3799 | |
| 3800 | /* go all the way down the shadow chain */ |
| 3801 | cur_object = VME_OBJECT(entry); |
| 3802 | vm_object_lock(cur_object); |
| 3803 | while (cur_object->shadow != VM_OBJECT_NULL) { |
| 3804 | shadow_object = cur_object->shadow; |
| 3805 | vm_object_lock(shadow_object); |
| 3806 | vm_object_unlock(cur_object); |
| 3807 | cur_object = shadow_object; |
| 3808 | shadow_object = VM_OBJECT_NULL; |
| 3809 | } |
| 3810 | if (cur_object->internal || |
| 3811 | cur_object->pager == NULL) { |
| 3812 | vm_object_unlock(cur_object); |
| 3813 | RETURN(KERN_NO_SPACE); |
| 3814 | } |
| 3815 | if (cur_object->pager->mo_pager_ops |
| 3816 | != &fourk_pager_ops) { |
| 3817 | vm_object_unlock(cur_object); |
| 3818 | RETURN(KERN_NO_SPACE); |
| 3819 | } |
| 3820 | fourk_object = cur_object; |
| 3821 | fourk_mem_obj = fourk_object->pager; |
| 3822 | |
| 3823 | /* keep the "4K" object alive */ |
| 3824 | vm_object_reference_locked(fourk_object); |
| 3825 | memory_object_reference(object: fourk_mem_obj); |
| 3826 | vm_object_unlock(fourk_object); |
| 3827 | |
| 3828 | /* merge permissions */ |
| 3829 | entry->protection |= cur_protection; |
| 3830 | entry->max_protection |= max_protection; |
| 3831 | |
| 3832 | if ((entry->protection & VM_PROT_WRITE) && |
| 3833 | (entry->protection & VM_PROT_ALLEXEC) && |
| 3834 | fourk_binary_compatibility_unsafe && |
| 3835 | fourk_binary_compatibility_allow_wx) { |
| 3836 | /* write+execute: need to be "jit" */ |
| 3837 | entry->used_for_jit = TRUE; |
| 3838 | } |
| 3839 | goto map_in_fourk_pager; |
| 3840 | } |
| 3841 | |
| 3842 | /* |
| 3843 | * ... the next region doesn't overlap the |
| 3844 | * end point. |
| 3845 | */ |
| 3846 | |
| 3847 | if ((entry->vme_next != vm_map_to_entry(map)) && |
| 3848 | (entry->vme_next->vme_start < end)) { |
| 3849 | RETURN(KERN_NO_SPACE); |
| 3850 | } |
| 3851 | } |
| 3852 | |
| 3853 | /* |
| 3854 | * At this point, |
| 3855 | * "start" and "end" should define the endpoints of the |
| 3856 | * available new range, and |
| 3857 | * "entry" should refer to the region before the new |
| 3858 | * range, and |
| 3859 | * |
| 3860 | * the map should be locked. |
| 3861 | */ |
| 3862 | |
| 3863 | /* create a new "4K" pager */ |
| 3864 | fourk_mem_obj = fourk_pager_create(); |
| 3865 | fourk_object = fourk_pager_to_vm_object(mem_obj: fourk_mem_obj); |
| 3866 | assert(fourk_object); |
| 3867 | |
| 3868 | /* keep the "4" object alive */ |
| 3869 | vm_object_reference(fourk_object); |
| 3870 | |
| 3871 | /* create a "copy" object, to map the "4K" object copy-on-write */ |
| 3872 | fourk_copy = TRUE; |
| 3873 | result = vm_object_copy_strategically(src_object: fourk_object, |
| 3874 | src_offset: 0, |
| 3875 | size: end - start, |
| 3876 | false, /* forking */ |
| 3877 | dst_object: ©_object, |
| 3878 | dst_offset: ©_offset, |
| 3879 | dst_needs_copy: &fourk_copy); |
| 3880 | assert(result == KERN_SUCCESS); |
| 3881 | assert(copy_object != VM_OBJECT_NULL); |
| 3882 | assert(copy_offset == 0); |
| 3883 | |
| 3884 | /* map the "4K" pager's copy object */ |
| 3885 | new_entry = vm_map_entry_insert(map, |
| 3886 | insp_entry: entry, |
| 3887 | vm_map_trunc_page(start, VM_MAP_PAGE_MASK(map)), |
| 3888 | vm_map_round_page(end, VM_MAP_PAGE_MASK(map)), |
| 3889 | object: copy_object, |
| 3890 | offset: 0, /* offset */ |
| 3891 | vmk_flags, |
| 3892 | FALSE, /* needs_copy */ |
| 3893 | cur_protection, max_protection, |
| 3894 | inheritance: (entry_for_jit && !VM_MAP_POLICY_ALLOW_JIT_INHERIT(map) ? |
| 3895 | VM_INHERIT_NONE : inheritance), |
| 3896 | clear_map_aligned); |
| 3897 | entry = new_entry; |
| 3898 | |
| 3899 | #if VM_MAP_DEBUG_FOURK |
| 3900 | if (vm_map_debug_fourk) { |
| 3901 | printf("FOURK_PAGER: map %p [0x%llx:0x%llx] new pager %p\n" , |
| 3902 | map, |
| 3903 | (uint64_t) entry->vme_start, |
| 3904 | (uint64_t) entry->vme_end, |
| 3905 | fourk_mem_obj); |
| 3906 | } |
| 3907 | #endif /* VM_MAP_DEBUG_FOURK */ |
| 3908 | |
| 3909 | new_mapping_established = TRUE; |
| 3910 | |
| 3911 | : |
| 3912 | /* "map" the original "object" where it belongs in the "4K" pager */ |
| 3913 | fourk_pager_offset = (fourk_start & SIXTEENK_PAGE_MASK); |
| 3914 | fourk_pager_index_start = (int) (fourk_pager_offset / FOURK_PAGE_SIZE); |
| 3915 | if (fourk_size > SIXTEENK_PAGE_SIZE) { |
| 3916 | fourk_pager_index_num = 4; |
| 3917 | } else { |
| 3918 | fourk_pager_index_num = (int) (fourk_size / FOURK_PAGE_SIZE); |
| 3919 | } |
| 3920 | if (fourk_pager_index_start + fourk_pager_index_num > 4) { |
| 3921 | fourk_pager_index_num = 4 - fourk_pager_index_start; |
| 3922 | } |
| 3923 | for (cur_idx = 0; |
| 3924 | cur_idx < fourk_pager_index_num; |
| 3925 | cur_idx++) { |
| 3926 | vm_object_t old_object; |
| 3927 | vm_object_offset_t old_offset; |
| 3928 | |
| 3929 | kr = fourk_pager_populate(mem_obj: fourk_mem_obj, |
| 3930 | TRUE, /* overwrite */ |
| 3931 | index: fourk_pager_index_start + cur_idx, |
| 3932 | new_backing_object: object, |
| 3933 | new_backing_offset: (object |
| 3934 | ? (offset + |
| 3935 | (cur_idx * FOURK_PAGE_SIZE)) |
| 3936 | : 0), |
| 3937 | old_backing_object: &old_object, |
| 3938 | old_backing_offset: &old_offset); |
| 3939 | #if VM_MAP_DEBUG_FOURK |
| 3940 | if (vm_map_debug_fourk) { |
| 3941 | if (old_object == (vm_object_t) -1 && |
| 3942 | old_offset == (vm_object_offset_t) -1) { |
| 3943 | printf("FOURK_PAGER: map %p [0x%llx:0x%llx] " |
| 3944 | "pager [%p:0x%llx] " |
| 3945 | "populate[%d] " |
| 3946 | "[object:%p,offset:0x%llx]\n" , |
| 3947 | map, |
| 3948 | (uint64_t) entry->vme_start, |
| 3949 | (uint64_t) entry->vme_end, |
| 3950 | fourk_mem_obj, |
| 3951 | VME_OFFSET(entry), |
| 3952 | fourk_pager_index_start + cur_idx, |
| 3953 | object, |
| 3954 | (object |
| 3955 | ? (offset + (cur_idx * FOURK_PAGE_SIZE)) |
| 3956 | : 0)); |
| 3957 | } else { |
| 3958 | printf("FOURK_PAGER: map %p [0x%llx:0x%llx] " |
| 3959 | "pager [%p:0x%llx] " |
| 3960 | "populate[%d] [object:%p,offset:0x%llx] " |
| 3961 | "old [%p:0x%llx]\n" , |
| 3962 | map, |
| 3963 | (uint64_t) entry->vme_start, |
| 3964 | (uint64_t) entry->vme_end, |
| 3965 | fourk_mem_obj, |
| 3966 | VME_OFFSET(entry), |
| 3967 | fourk_pager_index_start + cur_idx, |
| 3968 | object, |
| 3969 | (object |
| 3970 | ? (offset + (cur_idx * FOURK_PAGE_SIZE)) |
| 3971 | : 0), |
| 3972 | old_object, |
| 3973 | old_offset); |
| 3974 | } |
| 3975 | } |
| 3976 | #endif /* VM_MAP_DEBUG_FOURK */ |
| 3977 | |
| 3978 | assert(kr == KERN_SUCCESS); |
| 3979 | if (object != old_object && |
| 3980 | object != VM_OBJECT_NULL && |
| 3981 | object != (vm_object_t) -1) { |
| 3982 | vm_object_reference(object); |
| 3983 | } |
| 3984 | if (object != old_object && |
| 3985 | old_object != VM_OBJECT_NULL && |
| 3986 | old_object != (vm_object_t) -1) { |
| 3987 | vm_object_deallocate(object: old_object); |
| 3988 | } |
| 3989 | } |
| 3990 | |
| 3991 | BailOut: |
| 3992 | assert(map_locked == TRUE); |
| 3993 | |
| 3994 | if (result == KERN_SUCCESS) { |
| 3995 | vm_prot_t ; |
| 3996 | memory_object_t ; |
| 3997 | |
| 3998 | #if DEBUG |
| 3999 | if (pmap_empty && |
| 4000 | !(vmk_flags.vmkf_no_pmap_check)) { |
| 4001 | assert(pmap_is_empty(map->pmap, |
| 4002 | *address, |
| 4003 | *address + size)); |
| 4004 | } |
| 4005 | #endif /* DEBUG */ |
| 4006 | |
| 4007 | /* |
| 4008 | * For "named" VM objects, let the pager know that the |
| 4009 | * memory object is being mapped. Some pagers need to keep |
| 4010 | * track of this, to know when they can reclaim the memory |
| 4011 | * object, for example. |
| 4012 | * VM calls memory_object_map() for each mapping (specifying |
| 4013 | * the protection of each mapping) and calls |
| 4014 | * memory_object_last_unmap() when all the mappings are gone. |
| 4015 | */ |
| 4016 | pager_prot = max_protection; |
| 4017 | if (needs_copy) { |
| 4018 | /* |
| 4019 | * Copy-On-Write mapping: won't modify |
| 4020 | * the memory object. |
| 4021 | */ |
| 4022 | pager_prot &= ~VM_PROT_WRITE; |
| 4023 | } |
| 4024 | if (!is_submap && |
| 4025 | object != VM_OBJECT_NULL && |
| 4026 | object->named && |
| 4027 | object->pager != MEMORY_OBJECT_NULL) { |
| 4028 | vm_object_lock(object); |
| 4029 | pager = object->pager; |
| 4030 | if (object->named && |
| 4031 | pager != MEMORY_OBJECT_NULL) { |
| 4032 | assert(object->pager_ready); |
| 4033 | vm_object_mapping_wait(object, THREAD_UNINT); |
| 4034 | vm_object_mapping_begin(object); |
| 4035 | vm_object_unlock(object); |
| 4036 | |
| 4037 | kr = memory_object_map(memory_object: pager, prot: pager_prot); |
| 4038 | assert(kr == KERN_SUCCESS); |
| 4039 | |
| 4040 | vm_object_lock(object); |
| 4041 | vm_object_mapping_end(object); |
| 4042 | } |
| 4043 | vm_object_unlock(object); |
| 4044 | } |
| 4045 | if (!is_submap && |
| 4046 | fourk_object != VM_OBJECT_NULL && |
| 4047 | fourk_object->named && |
| 4048 | fourk_object->pager != MEMORY_OBJECT_NULL) { |
| 4049 | vm_object_lock(fourk_object); |
| 4050 | pager = fourk_object->pager; |
| 4051 | if (fourk_object->named && |
| 4052 | pager != MEMORY_OBJECT_NULL) { |
| 4053 | assert(fourk_object->pager_ready); |
| 4054 | vm_object_mapping_wait(fourk_object, |
| 4055 | THREAD_UNINT); |
| 4056 | vm_object_mapping_begin(fourk_object); |
| 4057 | vm_object_unlock(fourk_object); |
| 4058 | |
| 4059 | kr = memory_object_map(memory_object: pager, VM_PROT_READ); |
| 4060 | assert(kr == KERN_SUCCESS); |
| 4061 | |
| 4062 | vm_object_lock(fourk_object); |
| 4063 | vm_object_mapping_end(fourk_object); |
| 4064 | } |
| 4065 | vm_object_unlock(fourk_object); |
| 4066 | } |
| 4067 | } |
| 4068 | |
| 4069 | if (fourk_object != VM_OBJECT_NULL) { |
| 4070 | vm_object_deallocate(object: fourk_object); |
| 4071 | fourk_object = VM_OBJECT_NULL; |
| 4072 | memory_object_deallocate(object: fourk_mem_obj); |
| 4073 | fourk_mem_obj = MEMORY_OBJECT_NULL; |
| 4074 | } |
| 4075 | |
| 4076 | assert(map_locked == TRUE); |
| 4077 | |
| 4078 | if (!keep_map_locked) { |
| 4079 | vm_map_unlock(map); |
| 4080 | map_locked = FALSE; |
| 4081 | } |
| 4082 | |
| 4083 | /* |
| 4084 | * We can't hold the map lock if we enter this block. |
| 4085 | */ |
| 4086 | |
| 4087 | if (result == KERN_SUCCESS) { |
| 4088 | /* Wire down the new entry if the user |
| 4089 | * requested all new map entries be wired. |
| 4090 | */ |
| 4091 | if ((map->wiring_required) || (superpage_size)) { |
| 4092 | assert(!keep_map_locked); |
| 4093 | pmap_empty = FALSE; /* pmap won't be empty */ |
| 4094 | kr = vm_map_wire_kernel(map, start, end, |
| 4095 | access_type: new_entry->protection, VM_KERN_MEMORY_MLOCK, |
| 4096 | TRUE); |
| 4097 | result = kr; |
| 4098 | } |
| 4099 | |
| 4100 | } |
| 4101 | |
| 4102 | if (result != KERN_SUCCESS) { |
| 4103 | if (new_mapping_established) { |
| 4104 | /* |
| 4105 | * We have to get rid of the new mappings since we |
| 4106 | * won't make them available to the user. |
| 4107 | * Try and do that atomically, to minimize the risk |
| 4108 | * that someone else create new mappings that range. |
| 4109 | */ |
| 4110 | |
| 4111 | if (!map_locked) { |
| 4112 | vm_map_lock(map); |
| 4113 | map_locked = TRUE; |
| 4114 | } |
| 4115 | (void)vm_map_delete(map, start: *address, end: *address + size, |
| 4116 | flags: VM_MAP_REMOVE_NO_MAP_ALIGN | VM_MAP_REMOVE_NO_YIELD, |
| 4117 | KMEM_GUARD_NONE, zap: &zap_list); |
| 4118 | } |
| 4119 | } |
| 4120 | |
| 4121 | /* |
| 4122 | * The caller is responsible for releasing the lock if it requested to |
| 4123 | * keep the map locked. |
| 4124 | */ |
| 4125 | if (map_locked && !keep_map_locked) { |
| 4126 | vm_map_unlock(map); |
| 4127 | } |
| 4128 | |
| 4129 | vm_map_zap_dispose(list: &zap_list); |
| 4130 | |
| 4131 | return result; |
| 4132 | |
| 4133 | #undef RETURN |
| 4134 | } |
| 4135 | #endif /* __arm64__ */ |
| 4136 | |
| 4137 | /* |
| 4138 | * Counters for the prefault optimization. |
| 4139 | */ |
| 4140 | int64_t vm_prefault_nb_pages = 0; |
| 4141 | int64_t vm_prefault_nb_bailout = 0; |
| 4142 | |
| 4143 | static kern_return_t |
| 4144 | vm_map_enter_mem_object_helper( |
| 4145 | vm_map_t target_map, |
| 4146 | vm_map_offset_t *address, |
| 4147 | vm_map_size_t initial_size, |
| 4148 | vm_map_offset_t mask, |
| 4149 | vm_map_kernel_flags_t vmk_flags, |
| 4150 | ipc_port_t port, |
| 4151 | vm_object_offset_t offset, |
| 4152 | boolean_t copy, |
| 4153 | vm_prot_t cur_protection, |
| 4154 | vm_prot_t max_protection, |
| 4155 | vm_inherit_t inheritance, |
| 4156 | upl_page_list_ptr_t page_list, |
| 4157 | unsigned int page_list_count) |
| 4158 | { |
| 4159 | vm_map_address_t map_addr; |
| 4160 | vm_map_size_t map_size; |
| 4161 | vm_object_t object; |
| 4162 | vm_object_size_t size; |
| 4163 | kern_return_t result; |
| 4164 | boolean_t mask_cur_protection, mask_max_protection; |
| 4165 | boolean_t kernel_prefault, try_prefault = (page_list_count != 0); |
| 4166 | vm_map_offset_t offset_in_mapping = 0; |
| 4167 | #if __arm64__ |
| 4168 | boolean_t fourk = vmk_flags.vmkf_fourk; |
| 4169 | #endif /* __arm64__ */ |
| 4170 | |
| 4171 | if (VM_MAP_PAGE_SHIFT(map: target_map) < PAGE_SHIFT) { |
| 4172 | /* XXX TODO4K prefaulting depends on page size... */ |
| 4173 | try_prefault = FALSE; |
| 4174 | } |
| 4175 | |
| 4176 | assertf(vmk_flags.__vmkf_unused == 0, "vmk_flags unused=0x%x\n" , vmk_flags.__vmkf_unused); |
| 4177 | vm_map_kernel_flags_update_range_id(flags: &vmk_flags, map: target_map); |
| 4178 | |
| 4179 | mask_cur_protection = cur_protection & VM_PROT_IS_MASK; |
| 4180 | mask_max_protection = max_protection & VM_PROT_IS_MASK; |
| 4181 | cur_protection &= ~VM_PROT_IS_MASK; |
| 4182 | max_protection &= ~VM_PROT_IS_MASK; |
| 4183 | |
| 4184 | /* |
| 4185 | * Check arguments for validity |
| 4186 | */ |
| 4187 | if ((target_map == VM_MAP_NULL) || |
| 4188 | (cur_protection & ~(VM_PROT_ALL | VM_PROT_ALLEXEC)) || |
| 4189 | (max_protection & ~(VM_PROT_ALL | VM_PROT_ALLEXEC)) || |
| 4190 | (inheritance > VM_INHERIT_LAST_VALID) || |
| 4191 | (try_prefault && (copy || !page_list)) || |
| 4192 | initial_size == 0) { |
| 4193 | return KERN_INVALID_ARGUMENT; |
| 4194 | } |
| 4195 | |
| 4196 | if (__improbable((cur_protection & max_protection) != cur_protection)) { |
| 4197 | /* cur is more permissive than max */ |
| 4198 | cur_protection &= max_protection; |
| 4199 | } |
| 4200 | |
| 4201 | #if __arm64__ |
| 4202 | if (cur_protection & VM_PROT_EXECUTE) { |
| 4203 | cur_protection |= VM_PROT_READ; |
| 4204 | } |
| 4205 | |
| 4206 | if (fourk && VM_MAP_PAGE_SHIFT(map: target_map) < PAGE_SHIFT) { |
| 4207 | /* no "fourk" if map is using a sub-page page size */ |
| 4208 | fourk = FALSE; |
| 4209 | } |
| 4210 | if (fourk) { |
| 4211 | map_addr = vm_map_trunc_page(*address, FOURK_PAGE_MASK); |
| 4212 | map_size = vm_map_round_page(initial_size, FOURK_PAGE_MASK); |
| 4213 | } else |
| 4214 | #endif /* __arm64__ */ |
| 4215 | { |
| 4216 | map_addr = vm_map_trunc_page(*address, |
| 4217 | VM_MAP_PAGE_MASK(target_map)); |
| 4218 | map_size = vm_map_round_page(initial_size, |
| 4219 | VM_MAP_PAGE_MASK(target_map)); |
| 4220 | } |
| 4221 | if (map_size == 0) { |
| 4222 | return KERN_INVALID_ARGUMENT; |
| 4223 | } |
| 4224 | size = vm_object_round_page(initial_size); |
| 4225 | |
| 4226 | /* |
| 4227 | * Find the vm object (if any) corresponding to this port. |
| 4228 | */ |
| 4229 | if (!IP_VALID(port)) { |
| 4230 | object = VM_OBJECT_NULL; |
| 4231 | offset = 0; |
| 4232 | copy = FALSE; |
| 4233 | } else if (ip_kotype(port) == IKOT_NAMED_ENTRY) { |
| 4234 | vm_named_entry_t named_entry; |
| 4235 | vm_object_offset_t data_offset; |
| 4236 | |
| 4237 | named_entry = mach_memory_entry_from_port(port); |
| 4238 | |
| 4239 | if (vmk_flags.vmf_return_data_addr || |
| 4240 | vmk_flags.vmf_return_4k_data_addr) { |
| 4241 | data_offset = named_entry->data_offset; |
| 4242 | offset += named_entry->data_offset; |
| 4243 | } else { |
| 4244 | data_offset = 0; |
| 4245 | } |
| 4246 | |
| 4247 | /* a few checks to make sure user is obeying rules */ |
| 4248 | if (mask_max_protection) { |
| 4249 | max_protection &= named_entry->protection; |
| 4250 | } |
| 4251 | if (mask_cur_protection) { |
| 4252 | cur_protection &= named_entry->protection; |
| 4253 | } |
| 4254 | if ((named_entry->protection & max_protection) != |
| 4255 | max_protection) { |
| 4256 | return KERN_INVALID_RIGHT; |
| 4257 | } |
| 4258 | if ((named_entry->protection & cur_protection) != |
| 4259 | cur_protection) { |
| 4260 | return KERN_INVALID_RIGHT; |
| 4261 | } |
| 4262 | if (offset + size <= offset) { |
| 4263 | /* overflow */ |
| 4264 | return KERN_INVALID_ARGUMENT; |
| 4265 | } |
| 4266 | if (named_entry->size < (offset + initial_size)) { |
| 4267 | return KERN_INVALID_ARGUMENT; |
| 4268 | } |
| 4269 | |
| 4270 | if (named_entry->is_copy) { |
| 4271 | /* for a vm_map_copy, we can only map it whole */ |
| 4272 | if ((size != named_entry->size) && |
| 4273 | (vm_map_round_page(size, |
| 4274 | VM_MAP_PAGE_MASK(target_map)) == |
| 4275 | named_entry->size)) { |
| 4276 | /* XXX FBDP use the rounded size... */ |
| 4277 | size = vm_map_round_page( |
| 4278 | size, |
| 4279 | VM_MAP_PAGE_MASK(target_map)); |
| 4280 | } |
| 4281 | } |
| 4282 | |
| 4283 | /* the callers parameter offset is defined to be the */ |
| 4284 | /* offset from beginning of named entry offset in object */ |
| 4285 | offset = offset + named_entry->offset; |
| 4286 | |
| 4287 | if (!VM_MAP_PAGE_ALIGNED(size, |
| 4288 | VM_MAP_PAGE_MASK(target_map))) { |
| 4289 | /* |
| 4290 | * Let's not map more than requested; |
| 4291 | * vm_map_enter() will handle this "not map-aligned" |
| 4292 | * case. |
| 4293 | */ |
| 4294 | map_size = size; |
| 4295 | } |
| 4296 | |
| 4297 | named_entry_lock(named_entry); |
| 4298 | if (named_entry->is_sub_map) { |
| 4299 | vm_map_t submap; |
| 4300 | |
| 4301 | if (vmk_flags.vmf_return_data_addr || |
| 4302 | vmk_flags.vmf_return_4k_data_addr) { |
| 4303 | panic("VM_FLAGS_RETURN_DATA_ADDR not expected for submap." ); |
| 4304 | } |
| 4305 | |
| 4306 | submap = named_entry->backing.map; |
| 4307 | vm_map_reference(map: submap); |
| 4308 | named_entry_unlock(named_entry); |
| 4309 | |
| 4310 | vmk_flags.vmkf_submap = TRUE; |
| 4311 | |
| 4312 | result = vm_map_enter(map: target_map, |
| 4313 | address: &map_addr, |
| 4314 | size: map_size, |
| 4315 | mask, |
| 4316 | vmk_flags, |
| 4317 | object: (vm_object_t)(uintptr_t) submap, |
| 4318 | offset, |
| 4319 | needs_copy: copy, |
| 4320 | cur_protection, |
| 4321 | max_protection, |
| 4322 | inheritance); |
| 4323 | if (result != KERN_SUCCESS) { |
| 4324 | vm_map_deallocate(map: submap); |
| 4325 | } else { |
| 4326 | /* |
| 4327 | * No need to lock "submap" just to check its |
| 4328 | * "mapped" flag: that flag is never reset |
| 4329 | * once it's been set and if we race, we'll |
| 4330 | * just end up setting it twice, which is OK. |
| 4331 | */ |
| 4332 | if (submap->mapped_in_other_pmaps == FALSE && |
| 4333 | vm_map_pmap(submap) != PMAP_NULL && |
| 4334 | vm_map_pmap(submap) != |
| 4335 | vm_map_pmap(target_map)) { |
| 4336 | /* |
| 4337 | * This submap is being mapped in a map |
| 4338 | * that uses a different pmap. |
| 4339 | * Set its "mapped_in_other_pmaps" flag |
| 4340 | * to indicate that we now need to |
| 4341 | * remove mappings from all pmaps rather |
| 4342 | * than just the submap's pmap. |
| 4343 | */ |
| 4344 | vm_map_lock(submap); |
| 4345 | submap->mapped_in_other_pmaps = TRUE; |
| 4346 | vm_map_unlock(submap); |
| 4347 | } |
| 4348 | *address = map_addr; |
| 4349 | } |
| 4350 | return result; |
| 4351 | } else if (named_entry->is_copy) { |
| 4352 | kern_return_t kr; |
| 4353 | vm_map_copy_t copy_map; |
| 4354 | vm_map_entry_t copy_entry; |
| 4355 | vm_map_offset_t copy_addr; |
| 4356 | vm_map_copy_t target_copy_map; |
| 4357 | vm_map_offset_t overmap_start, overmap_end; |
| 4358 | vm_map_offset_t trimmed_start; |
| 4359 | vm_map_size_t target_size; |
| 4360 | |
| 4361 | if (!vm_map_kernel_flags_check_vmflags(vmk_flags, |
| 4362 | vm_flags_mask: (VM_FLAGS_FIXED | |
| 4363 | VM_FLAGS_ANYWHERE | |
| 4364 | VM_FLAGS_OVERWRITE | |
| 4365 | VM_FLAGS_RETURN_4K_DATA_ADDR | |
| 4366 | VM_FLAGS_RETURN_DATA_ADDR))) { |
| 4367 | named_entry_unlock(named_entry); |
| 4368 | return KERN_INVALID_ARGUMENT; |
| 4369 | } |
| 4370 | |
| 4371 | copy_map = named_entry->backing.copy; |
| 4372 | assert(copy_map->type == VM_MAP_COPY_ENTRY_LIST); |
| 4373 | if (copy_map->type != VM_MAP_COPY_ENTRY_LIST) { |
| 4374 | /* unsupported type; should not happen */ |
| 4375 | printf(format: "vm_map_enter_mem_object: " |
| 4376 | "memory_entry->backing.copy " |
| 4377 | "unsupported type 0x%x\n" , |
| 4378 | copy_map->type); |
| 4379 | named_entry_unlock(named_entry); |
| 4380 | return KERN_INVALID_ARGUMENT; |
| 4381 | } |
| 4382 | |
| 4383 | if (VM_MAP_PAGE_SHIFT(map: target_map) != copy_map->cpy_hdr.page_shift) { |
| 4384 | DEBUG4K_SHARE("copy_map %p offset %llx size 0x%llx pgshift %d -> target_map %p pgshift %d\n" , copy_map, offset, (uint64_t)map_size, copy_map->cpy_hdr.page_shift, target_map, VM_MAP_PAGE_SHIFT(target_map)); |
| 4385 | } |
| 4386 | |
| 4387 | if (vmk_flags.vmf_return_data_addr || |
| 4388 | vmk_flags.vmf_return_4k_data_addr) { |
| 4389 | offset_in_mapping = offset & VM_MAP_PAGE_MASK(target_map); |
| 4390 | if (vmk_flags.vmf_return_4k_data_addr) { |
| 4391 | offset_in_mapping &= ~((signed)(0xFFF)); |
| 4392 | } |
| 4393 | } |
| 4394 | |
| 4395 | target_copy_map = VM_MAP_COPY_NULL; |
| 4396 | target_size = copy_map->size; |
| 4397 | overmap_start = 0; |
| 4398 | overmap_end = 0; |
| 4399 | trimmed_start = 0; |
| 4400 | if (copy_map->cpy_hdr.page_shift != VM_MAP_PAGE_SHIFT(map: target_map)) { |
| 4401 | DEBUG4K_ADJUST("adjusting...\n" ); |
| 4402 | kr = vm_map_copy_adjust_to_target( |
| 4403 | copy_map, |
| 4404 | offset /* includes data_offset */, |
| 4405 | size: initial_size, |
| 4406 | target_map, |
| 4407 | copy, |
| 4408 | target_copy_map_p: &target_copy_map, |
| 4409 | overmap_start_p: &overmap_start, |
| 4410 | overmap_end_p: &overmap_end, |
| 4411 | trimmed_start_p: &trimmed_start); |
| 4412 | if (kr != KERN_SUCCESS) { |
| 4413 | named_entry_unlock(named_entry); |
| 4414 | return kr; |
| 4415 | } |
| 4416 | target_size = target_copy_map->size; |
| 4417 | if (trimmed_start >= data_offset) { |
| 4418 | data_offset = offset & VM_MAP_PAGE_MASK(target_map); |
| 4419 | } else { |
| 4420 | data_offset -= trimmed_start; |
| 4421 | } |
| 4422 | } else { |
| 4423 | /* |
| 4424 | * Assert that the vm_map_copy is coming from the right |
| 4425 | * zone and hasn't been forged |
| 4426 | */ |
| 4427 | vm_map_copy_require(copy: copy_map); |
| 4428 | target_copy_map = copy_map; |
| 4429 | } |
| 4430 | |
| 4431 | vm_map_kernel_flags_t rsv_flags = vmk_flags; |
| 4432 | |
| 4433 | vm_map_kernel_flags_and_vmflags(vmk_flags: &rsv_flags, |
| 4434 | vm_flags_mask: (VM_FLAGS_FIXED | |
| 4435 | VM_FLAGS_ANYWHERE | |
| 4436 | VM_FLAGS_OVERWRITE | |
| 4437 | VM_FLAGS_RETURN_4K_DATA_ADDR | |
| 4438 | VM_FLAGS_RETURN_DATA_ADDR)); |
| 4439 | |
| 4440 | /* reserve a contiguous range */ |
| 4441 | kr = vm_map_enter(map: target_map, |
| 4442 | address: &map_addr, |
| 4443 | vm_map_round_page(target_size, VM_MAP_PAGE_MASK(target_map)), |
| 4444 | mask, |
| 4445 | vmk_flags: rsv_flags, |
| 4446 | VM_OBJECT_NULL, |
| 4447 | offset: 0, |
| 4448 | FALSE, /* copy */ |
| 4449 | cur_protection, |
| 4450 | max_protection, |
| 4451 | inheritance); |
| 4452 | if (kr != KERN_SUCCESS) { |
| 4453 | DEBUG4K_ERROR("kr 0x%x\n" , kr); |
| 4454 | if (target_copy_map != copy_map) { |
| 4455 | vm_map_copy_discard(copy: target_copy_map); |
| 4456 | target_copy_map = VM_MAP_COPY_NULL; |
| 4457 | } |
| 4458 | named_entry_unlock(named_entry); |
| 4459 | return kr; |
| 4460 | } |
| 4461 | |
| 4462 | copy_addr = map_addr; |
| 4463 | |
| 4464 | for (copy_entry = vm_map_copy_first_entry(target_copy_map); |
| 4465 | copy_entry != vm_map_copy_to_entry(target_copy_map); |
| 4466 | copy_entry = copy_entry->vme_next) { |
| 4467 | vm_map_t copy_submap = VM_MAP_NULL; |
| 4468 | vm_object_t copy_object = VM_OBJECT_NULL; |
| 4469 | vm_map_size_t copy_size; |
| 4470 | vm_object_offset_t copy_offset; |
| 4471 | boolean_t do_copy = false; |
| 4472 | |
| 4473 | if (copy_entry->is_sub_map) { |
| 4474 | copy_submap = VME_SUBMAP(copy_entry); |
| 4475 | copy_object = (vm_object_t)copy_submap; |
| 4476 | } else { |
| 4477 | copy_object = VME_OBJECT(copy_entry); |
| 4478 | } |
| 4479 | copy_offset = VME_OFFSET(entry: copy_entry); |
| 4480 | copy_size = (copy_entry->vme_end - |
| 4481 | copy_entry->vme_start); |
| 4482 | |
| 4483 | /* sanity check */ |
| 4484 | if ((copy_addr + copy_size) > |
| 4485 | (map_addr + |
| 4486 | overmap_start + overmap_end + |
| 4487 | named_entry->size /* XXX full size */)) { |
| 4488 | /* over-mapping too much !? */ |
| 4489 | kr = KERN_INVALID_ARGUMENT; |
| 4490 | DEBUG4K_ERROR("kr 0x%x\n" , kr); |
| 4491 | /* abort */ |
| 4492 | break; |
| 4493 | } |
| 4494 | |
| 4495 | /* take a reference on the object */ |
| 4496 | if (copy_entry->is_sub_map) { |
| 4497 | vm_map_reference(map: copy_submap); |
| 4498 | } else { |
| 4499 | if (!copy && |
| 4500 | copy_object != VM_OBJECT_NULL && |
| 4501 | copy_object->copy_strategy == MEMORY_OBJECT_COPY_SYMMETRIC) { |
| 4502 | bool is_writable; |
| 4503 | |
| 4504 | /* |
| 4505 | * We need to resolve our side of this |
| 4506 | * "symmetric" copy-on-write now; we |
| 4507 | * need a new object to map and share, |
| 4508 | * instead of the current one which |
| 4509 | * might still be shared with the |
| 4510 | * original mapping. |
| 4511 | * |
| 4512 | * Note: A "vm_map_copy_t" does not |
| 4513 | * have a lock but we're protected by |
| 4514 | * the named entry's lock here. |
| 4515 | */ |
| 4516 | // assert(copy_object->copy_strategy == MEMORY_OBJECT_COPY_SYMMETRIC); |
| 4517 | VME_OBJECT_SHADOW(entry: copy_entry, length: copy_size, TRUE); |
| 4518 | assert(copy_object != VME_OBJECT(copy_entry)); |
| 4519 | is_writable = false; |
| 4520 | if (copy_entry->protection & VM_PROT_WRITE) { |
| 4521 | is_writable = true; |
| 4522 | #if __arm64e__ |
| 4523 | } else if (copy_entry->used_for_tpro) { |
| 4524 | is_writable = true; |
| 4525 | #endif /* __arm64e__ */ |
| 4526 | } |
| 4527 | if (!copy_entry->needs_copy && is_writable) { |
| 4528 | vm_prot_t prot; |
| 4529 | |
| 4530 | prot = copy_entry->protection & ~VM_PROT_WRITE; |
| 4531 | vm_object_pmap_protect(object: copy_object, |
| 4532 | offset: copy_offset, |
| 4533 | size: copy_size, |
| 4534 | PMAP_NULL, |
| 4535 | PAGE_SIZE, |
| 4536 | pmap_start: 0, |
| 4537 | prot); |
| 4538 | } |
| 4539 | copy_entry->needs_copy = FALSE; |
| 4540 | copy_entry->is_shared = TRUE; |
| 4541 | copy_object = VME_OBJECT(copy_entry); |
| 4542 | copy_offset = VME_OFFSET(entry: copy_entry); |
| 4543 | vm_object_lock(copy_object); |
| 4544 | /* we're about to make a shared mapping of this object */ |
| 4545 | copy_object->copy_strategy = MEMORY_OBJECT_COPY_DELAY; |
| 4546 | VM_OBJECT_SET_TRUE_SHARE(object: copy_object, TRUE); |
| 4547 | vm_object_unlock(copy_object); |
| 4548 | } |
| 4549 | |
| 4550 | if (copy_object != VM_OBJECT_NULL && |
| 4551 | copy_object->named && |
| 4552 | copy_object->pager != MEMORY_OBJECT_NULL && |
| 4553 | copy_object->copy_strategy != MEMORY_OBJECT_COPY_NONE) { |
| 4554 | memory_object_t ; |
| 4555 | vm_prot_t ; |
| 4556 | |
| 4557 | /* |
| 4558 | * For "named" VM objects, let the pager know that the |
| 4559 | * memory object is being mapped. Some pagers need to keep |
| 4560 | * track of this, to know when they can reclaim the memory |
| 4561 | * object, for example. |
| 4562 | * VM calls memory_object_map() for each mapping (specifying |
| 4563 | * the protection of each mapping) and calls |
| 4564 | * memory_object_last_unmap() when all the mappings are gone. |
| 4565 | */ |
| 4566 | pager_prot = max_protection; |
| 4567 | if (copy) { |
| 4568 | /* |
| 4569 | * Copy-On-Write mapping: won't modify the |
| 4570 | * memory object. |
| 4571 | */ |
| 4572 | pager_prot &= ~VM_PROT_WRITE; |
| 4573 | } |
| 4574 | vm_object_lock(copy_object); |
| 4575 | pager = copy_object->pager; |
| 4576 | if (copy_object->named && |
| 4577 | pager != MEMORY_OBJECT_NULL && |
| 4578 | copy_object->copy_strategy != MEMORY_OBJECT_COPY_NONE) { |
| 4579 | assert(copy_object->pager_ready); |
| 4580 | vm_object_mapping_wait(copy_object, THREAD_UNINT); |
| 4581 | vm_object_mapping_begin(copy_object); |
| 4582 | vm_object_unlock(copy_object); |
| 4583 | |
| 4584 | kr = memory_object_map(memory_object: pager, prot: pager_prot); |
| 4585 | assert(kr == KERN_SUCCESS); |
| 4586 | |
| 4587 | vm_object_lock(copy_object); |
| 4588 | vm_object_mapping_end(copy_object); |
| 4589 | } |
| 4590 | vm_object_unlock(copy_object); |
| 4591 | } |
| 4592 | |
| 4593 | /* |
| 4594 | * Perform the copy if requested |
| 4595 | */ |
| 4596 | |
| 4597 | if (copy && copy_object != VM_OBJECT_NULL) { |
| 4598 | vm_object_t new_object; |
| 4599 | vm_object_offset_t new_offset; |
| 4600 | |
| 4601 | result = vm_object_copy_strategically(src_object: copy_object, src_offset: copy_offset, |
| 4602 | size: copy_size, |
| 4603 | false, /* forking */ |
| 4604 | dst_object: &new_object, dst_offset: &new_offset, |
| 4605 | dst_needs_copy: &do_copy); |
| 4606 | |
| 4607 | |
| 4608 | if (result == KERN_MEMORY_RESTART_COPY) { |
| 4609 | boolean_t success; |
| 4610 | boolean_t src_needs_copy; |
| 4611 | |
| 4612 | /* |
| 4613 | * XXX |
| 4614 | * We currently ignore src_needs_copy. |
| 4615 | * This really is the issue of how to make |
| 4616 | * MEMORY_OBJECT_COPY_SYMMETRIC safe for |
| 4617 | * non-kernel users to use. Solution forthcoming. |
| 4618 | * In the meantime, since we don't allow non-kernel |
| 4619 | * memory managers to specify symmetric copy, |
| 4620 | * we won't run into problems here. |
| 4621 | */ |
| 4622 | new_object = copy_object; |
| 4623 | new_offset = copy_offset; |
| 4624 | success = vm_object_copy_quickly(object: new_object, |
| 4625 | src_offset: new_offset, |
| 4626 | size: copy_size, |
| 4627 | src_needs_copy: &src_needs_copy, |
| 4628 | dst_needs_copy: &do_copy); |
| 4629 | assert(success); |
| 4630 | result = KERN_SUCCESS; |
| 4631 | } |
| 4632 | if (result != KERN_SUCCESS) { |
| 4633 | kr = result; |
| 4634 | break; |
| 4635 | } |
| 4636 | |
| 4637 | copy_object = new_object; |
| 4638 | copy_offset = new_offset; |
| 4639 | /* |
| 4640 | * No extra object reference for the mapping: |
| 4641 | * the mapping should be the only thing keeping |
| 4642 | * this new object alive. |
| 4643 | */ |
| 4644 | } else { |
| 4645 | /* |
| 4646 | * We already have the right object |
| 4647 | * to map. |
| 4648 | */ |
| 4649 | copy_object = VME_OBJECT(copy_entry); |
| 4650 | /* take an extra ref for the mapping below */ |
| 4651 | vm_object_reference(copy_object); |
| 4652 | } |
| 4653 | } |
| 4654 | |
| 4655 | /* |
| 4656 | * If the caller does not want a specific |
| 4657 | * tag for this new mapping: use |
| 4658 | * the tag of the original mapping. |
| 4659 | */ |
| 4660 | vm_map_kernel_flags_t vmk_remap_flags = { |
| 4661 | .vmkf_submap = copy_entry->is_sub_map, |
| 4662 | }; |
| 4663 | |
| 4664 | vm_map_kernel_flags_set_vmflags(vmk_flags: &vmk_remap_flags, |
| 4665 | vm_flags: vm_map_kernel_flags_vmflags(vmk_flags), |
| 4666 | vm_tag: vmk_flags.vm_tag ?: VME_ALIAS(copy_entry)); |
| 4667 | |
| 4668 | /* over-map the object into destination */ |
| 4669 | vmk_remap_flags.vmf_fixed = true; |
| 4670 | vmk_remap_flags.vmf_overwrite = true; |
| 4671 | |
| 4672 | if (!copy && !copy_entry->is_sub_map) { |
| 4673 | /* |
| 4674 | * copy-on-write should have been |
| 4675 | * resolved at this point, or we would |
| 4676 | * end up sharing instead of copying. |
| 4677 | */ |
| 4678 | assert(!copy_entry->needs_copy); |
| 4679 | } |
| 4680 | #if XNU_TARGET_OS_OSX |
| 4681 | if (copy_entry->used_for_jit) { |
| 4682 | vmk_remap_flags.vmkf_map_jit = TRUE; |
| 4683 | } |
| 4684 | #endif /* XNU_TARGET_OS_OSX */ |
| 4685 | |
| 4686 | kr = vm_map_enter(map: target_map, |
| 4687 | address: ©_addr, |
| 4688 | size: copy_size, |
| 4689 | mask: (vm_map_offset_t) 0, |
| 4690 | vmk_flags: vmk_remap_flags, |
| 4691 | object: copy_object, |
| 4692 | offset: copy_offset, |
| 4693 | needs_copy: ((copy_object == NULL) |
| 4694 | ? FALSE |
| 4695 | : (copy || copy_entry->needs_copy)), |
| 4696 | cur_protection, |
| 4697 | max_protection, |
| 4698 | inheritance); |
| 4699 | if (kr != KERN_SUCCESS) { |
| 4700 | DEBUG4K_SHARE("failed kr 0x%x\n" , kr); |
| 4701 | if (copy_entry->is_sub_map) { |
| 4702 | vm_map_deallocate(map: copy_submap); |
| 4703 | } else { |
| 4704 | vm_object_deallocate(object: copy_object); |
| 4705 | } |
| 4706 | /* abort */ |
| 4707 | break; |
| 4708 | } |
| 4709 | |
| 4710 | /* next mapping */ |
| 4711 | copy_addr += copy_size; |
| 4712 | } |
| 4713 | |
| 4714 | if (kr == KERN_SUCCESS) { |
| 4715 | if (vmk_flags.vmf_return_data_addr || |
| 4716 | vmk_flags.vmf_return_4k_data_addr) { |
| 4717 | *address = map_addr + offset_in_mapping; |
| 4718 | } else { |
| 4719 | *address = map_addr; |
| 4720 | } |
| 4721 | if (overmap_start) { |
| 4722 | *address += overmap_start; |
| 4723 | DEBUG4K_SHARE("map %p map_addr 0x%llx offset_in_mapping 0x%llx overmap_start 0x%llx -> *address 0x%llx\n" , target_map, (uint64_t)map_addr, (uint64_t) offset_in_mapping, (uint64_t)overmap_start, (uint64_t)*address); |
| 4724 | } |
| 4725 | } |
| 4726 | named_entry_unlock(named_entry); |
| 4727 | if (target_copy_map != copy_map) { |
| 4728 | vm_map_copy_discard(copy: target_copy_map); |
| 4729 | target_copy_map = VM_MAP_COPY_NULL; |
| 4730 | } |
| 4731 | |
| 4732 | if (kr != KERN_SUCCESS && !vmk_flags.vmf_overwrite) { |
| 4733 | /* deallocate the contiguous range */ |
| 4734 | (void) vm_deallocate(target_task: target_map, |
| 4735 | address: map_addr, |
| 4736 | size: map_size); |
| 4737 | } |
| 4738 | |
| 4739 | return kr; |
| 4740 | } |
| 4741 | |
| 4742 | if (named_entry->is_object) { |
| 4743 | unsigned int access; |
| 4744 | unsigned int wimg_mode; |
| 4745 | |
| 4746 | /* we are mapping a VM object */ |
| 4747 | |
| 4748 | access = named_entry->access; |
| 4749 | |
| 4750 | if (vmk_flags.vmf_return_data_addr || |
| 4751 | vmk_flags.vmf_return_4k_data_addr) { |
| 4752 | offset_in_mapping = offset - VM_MAP_TRUNC_PAGE(offset, VM_MAP_PAGE_MASK(target_map)); |
| 4753 | if (vmk_flags.vmf_return_4k_data_addr) { |
| 4754 | offset_in_mapping &= ~((signed)(0xFFF)); |
| 4755 | } |
| 4756 | offset = VM_MAP_TRUNC_PAGE(offset, VM_MAP_PAGE_MASK(target_map)); |
| 4757 | map_size = VM_MAP_ROUND_PAGE((offset + offset_in_mapping + initial_size) - offset, VM_MAP_PAGE_MASK(target_map)); |
| 4758 | } |
| 4759 | |
| 4760 | object = vm_named_entry_to_vm_object(named_entry); |
| 4761 | assert(object != VM_OBJECT_NULL); |
| 4762 | vm_object_lock(object); |
| 4763 | named_entry_unlock(named_entry); |
| 4764 | |
| 4765 | vm_object_reference_locked(object); |
| 4766 | |
| 4767 | wimg_mode = object->wimg_bits; |
| 4768 | vm_prot_to_wimg(prot: access, wimg: &wimg_mode); |
| 4769 | if (object->wimg_bits != wimg_mode) { |
| 4770 | vm_object_change_wimg_mode(object, wimg_mode); |
| 4771 | } |
| 4772 | |
| 4773 | vm_object_unlock(object); |
| 4774 | } else { |
| 4775 | panic("invalid VM named entry %p" , named_entry); |
| 4776 | } |
| 4777 | } else if (ip_kotype(port) == IKOT_MEMORY_OBJECT) { |
| 4778 | /* |
| 4779 | * JMM - This is temporary until we unify named entries |
| 4780 | * and raw memory objects. |
| 4781 | * |
| 4782 | * Detected fake ip_kotype for a memory object. In |
| 4783 | * this case, the port isn't really a port at all, but |
| 4784 | * instead is just a raw memory object. |
| 4785 | */ |
| 4786 | if (vmk_flags.vmf_return_data_addr || |
| 4787 | vmk_flags.vmf_return_4k_data_addr) { |
| 4788 | panic("VM_FLAGS_RETURN_DATA_ADDR not expected for raw memory object." ); |
| 4789 | } |
| 4790 | |
| 4791 | object = memory_object_to_vm_object(mem_obj: (memory_object_t)port); |
| 4792 | if (object == VM_OBJECT_NULL) { |
| 4793 | return KERN_INVALID_OBJECT; |
| 4794 | } |
| 4795 | vm_object_reference(object); |
| 4796 | |
| 4797 | /* wait for object (if any) to be ready */ |
| 4798 | if (object != VM_OBJECT_NULL) { |
| 4799 | if (is_kernel_object(object)) { |
| 4800 | printf(format: "Warning: Attempt to map kernel object" |
| 4801 | " by a non-private kernel entity\n" ); |
| 4802 | return KERN_INVALID_OBJECT; |
| 4803 | } |
| 4804 | if (!object->pager_ready) { |
| 4805 | vm_object_lock(object); |
| 4806 | |
| 4807 | while (!object->pager_ready) { |
| 4808 | vm_object_wait(object, |
| 4809 | VM_OBJECT_EVENT_PAGER_READY, |
| 4810 | THREAD_UNINT); |
| 4811 | vm_object_lock(object); |
| 4812 | } |
| 4813 | vm_object_unlock(object); |
| 4814 | } |
| 4815 | } |
| 4816 | } else { |
| 4817 | return KERN_INVALID_OBJECT; |
| 4818 | } |
| 4819 | |
| 4820 | if (object != VM_OBJECT_NULL && |
| 4821 | object->named && |
| 4822 | object->pager != MEMORY_OBJECT_NULL && |
| 4823 | object->copy_strategy != MEMORY_OBJECT_COPY_NONE) { |
| 4824 | memory_object_t ; |
| 4825 | vm_prot_t ; |
| 4826 | kern_return_t kr; |
| 4827 | |
| 4828 | /* |
| 4829 | * For "named" VM objects, let the pager know that the |
| 4830 | * memory object is being mapped. Some pagers need to keep |
| 4831 | * track of this, to know when they can reclaim the memory |
| 4832 | * object, for example. |
| 4833 | * VM calls memory_object_map() for each mapping (specifying |
| 4834 | * the protection of each mapping) and calls |
| 4835 | * memory_object_last_unmap() when all the mappings are gone. |
| 4836 | */ |
| 4837 | pager_prot = max_protection; |
| 4838 | if (copy) { |
| 4839 | /* |
| 4840 | * Copy-On-Write mapping: won't modify the |
| 4841 | * memory object. |
| 4842 | */ |
| 4843 | pager_prot &= ~VM_PROT_WRITE; |
| 4844 | } |
| 4845 | vm_object_lock(object); |
| 4846 | pager = object->pager; |
| 4847 | if (object->named && |
| 4848 | pager != MEMORY_OBJECT_NULL && |
| 4849 | object->copy_strategy != MEMORY_OBJECT_COPY_NONE) { |
| 4850 | assert(object->pager_ready); |
| 4851 | vm_object_mapping_wait(object, THREAD_UNINT); |
| 4852 | vm_object_mapping_begin(object); |
| 4853 | vm_object_unlock(object); |
| 4854 | |
| 4855 | kr = memory_object_map(memory_object: pager, prot: pager_prot); |
| 4856 | assert(kr == KERN_SUCCESS); |
| 4857 | |
| 4858 | vm_object_lock(object); |
| 4859 | vm_object_mapping_end(object); |
| 4860 | } |
| 4861 | vm_object_unlock(object); |
| 4862 | } |
| 4863 | |
| 4864 | /* |
| 4865 | * Perform the copy if requested |
| 4866 | */ |
| 4867 | |
| 4868 | if (copy) { |
| 4869 | vm_object_t new_object; |
| 4870 | vm_object_offset_t new_offset; |
| 4871 | |
| 4872 | result = vm_object_copy_strategically(src_object: object, src_offset: offset, |
| 4873 | size: map_size, |
| 4874 | false, /* forking */ |
| 4875 | dst_object: &new_object, dst_offset: &new_offset, |
| 4876 | dst_needs_copy: ©); |
| 4877 | |
| 4878 | |
| 4879 | if (result == KERN_MEMORY_RESTART_COPY) { |
| 4880 | boolean_t success; |
| 4881 | boolean_t src_needs_copy; |
| 4882 | |
| 4883 | /* |
| 4884 | * XXX |
| 4885 | * We currently ignore src_needs_copy. |
| 4886 | * This really is the issue of how to make |
| 4887 | * MEMORY_OBJECT_COPY_SYMMETRIC safe for |
| 4888 | * non-kernel users to use. Solution forthcoming. |
| 4889 | * In the meantime, since we don't allow non-kernel |
| 4890 | * memory managers to specify symmetric copy, |
| 4891 | * we won't run into problems here. |
| 4892 | */ |
| 4893 | new_object = object; |
| 4894 | new_offset = offset; |
| 4895 | success = vm_object_copy_quickly(object: new_object, |
| 4896 | src_offset: new_offset, |
| 4897 | size: map_size, |
| 4898 | src_needs_copy: &src_needs_copy, |
| 4899 | dst_needs_copy: ©); |
| 4900 | assert(success); |
| 4901 | result = KERN_SUCCESS; |
| 4902 | } |
| 4903 | /* |
| 4904 | * Throw away the reference to the |
| 4905 | * original object, as it won't be mapped. |
| 4906 | */ |
| 4907 | |
| 4908 | vm_object_deallocate(object); |
| 4909 | |
| 4910 | if (result != KERN_SUCCESS) { |
| 4911 | return result; |
| 4912 | } |
| 4913 | |
| 4914 | object = new_object; |
| 4915 | offset = new_offset; |
| 4916 | } |
| 4917 | |
| 4918 | /* |
| 4919 | * If non-kernel users want to try to prefault pages, the mapping and prefault |
| 4920 | * needs to be atomic. |
| 4921 | */ |
| 4922 | kernel_prefault = (try_prefault && vm_kernel_map_is_kernel(map: target_map)); |
| 4923 | vmk_flags.vmkf_keep_map_locked = (try_prefault && !kernel_prefault); |
| 4924 | |
| 4925 | #if __arm64__ |
| 4926 | if (fourk) { |
| 4927 | /* map this object in a "4K" pager */ |
| 4928 | result = vm_map_enter_fourk(map: target_map, |
| 4929 | address: &map_addr, |
| 4930 | size: map_size, |
| 4931 | mask: (vm_map_offset_t) mask, |
| 4932 | vmk_flags, |
| 4933 | object, |
| 4934 | offset, |
| 4935 | needs_copy: copy, |
| 4936 | cur_protection, |
| 4937 | max_protection, |
| 4938 | inheritance); |
| 4939 | } else |
| 4940 | #endif /* __arm64__ */ |
| 4941 | { |
| 4942 | result = vm_map_enter(map: target_map, |
| 4943 | address: &map_addr, size: map_size, |
| 4944 | mask: (vm_map_offset_t)mask, |
| 4945 | vmk_flags, |
| 4946 | object, offset, |
| 4947 | needs_copy: copy, |
| 4948 | cur_protection, max_protection, |
| 4949 | inheritance); |
| 4950 | } |
| 4951 | if (result != KERN_SUCCESS) { |
| 4952 | vm_object_deallocate(object); |
| 4953 | } |
| 4954 | |
| 4955 | /* |
| 4956 | * Try to prefault, and do not forget to release the vm map lock. |
| 4957 | */ |
| 4958 | if (result == KERN_SUCCESS && try_prefault) { |
| 4959 | mach_vm_address_t va = map_addr; |
| 4960 | kern_return_t kr = KERN_SUCCESS; |
| 4961 | unsigned int i = 0; |
| 4962 | int pmap_options; |
| 4963 | |
| 4964 | pmap_options = kernel_prefault ? 0 : PMAP_OPTIONS_NOWAIT; |
| 4965 | if (object->internal) { |
| 4966 | pmap_options |= PMAP_OPTIONS_INTERNAL; |
| 4967 | } |
| 4968 | |
| 4969 | for (i = 0; i < page_list_count; ++i) { |
| 4970 | if (!UPL_VALID_PAGE(page_list, i)) { |
| 4971 | if (kernel_prefault) { |
| 4972 | assertf(FALSE, "kernel_prefault && !UPL_VALID_PAGE" ); |
| 4973 | result = KERN_MEMORY_ERROR; |
| 4974 | break; |
| 4975 | } |
| 4976 | } else { |
| 4977 | /* |
| 4978 | * If this function call failed, we should stop |
| 4979 | * trying to optimize, other calls are likely |
| 4980 | * going to fail too. |
| 4981 | * |
| 4982 | * We are not gonna report an error for such |
| 4983 | * failure though. That's an optimization, not |
| 4984 | * something critical. |
| 4985 | */ |
| 4986 | kr = pmap_enter_options(pmap: target_map->pmap, |
| 4987 | v: va, UPL_PHYS_PAGE(page_list, i), |
| 4988 | prot: cur_protection, VM_PROT_NONE, |
| 4989 | flags: 0, TRUE, options: pmap_options, NULL, mapping_type: PMAP_MAPPING_TYPE_INFER); |
| 4990 | if (kr != KERN_SUCCESS) { |
| 4991 | OSIncrementAtomic64(address: &vm_prefault_nb_bailout); |
| 4992 | if (kernel_prefault) { |
| 4993 | result = kr; |
| 4994 | } |
| 4995 | break; |
| 4996 | } |
| 4997 | OSIncrementAtomic64(address: &vm_prefault_nb_pages); |
| 4998 | } |
| 4999 | |
| 5000 | /* Next virtual address */ |
| 5001 | va += PAGE_SIZE; |
| 5002 | } |
| 5003 | if (vmk_flags.vmkf_keep_map_locked) { |
| 5004 | vm_map_unlock(target_map); |
| 5005 | } |
| 5006 | } |
| 5007 | |
| 5008 | if (vmk_flags.vmf_return_data_addr || |
| 5009 | vmk_flags.vmf_return_4k_data_addr) { |
| 5010 | *address = map_addr + offset_in_mapping; |
| 5011 | } else { |
| 5012 | *address = map_addr; |
| 5013 | } |
| 5014 | return result; |
| 5015 | } |
| 5016 | |
| 5017 | kern_return_t |
| 5018 | vm_map_enter_mem_object( |
| 5019 | vm_map_t target_map, |
| 5020 | vm_map_offset_t *address, |
| 5021 | vm_map_size_t initial_size, |
| 5022 | vm_map_offset_t mask, |
| 5023 | vm_map_kernel_flags_t vmk_flags, |
| 5024 | ipc_port_t port, |
| 5025 | vm_object_offset_t offset, |
| 5026 | boolean_t copy, |
| 5027 | vm_prot_t cur_protection, |
| 5028 | vm_prot_t max_protection, |
| 5029 | vm_inherit_t inheritance) |
| 5030 | { |
| 5031 | kern_return_t ret; |
| 5032 | |
| 5033 | /* range_id is set by vm_map_enter_mem_object_helper */ |
| 5034 | ret = vm_map_enter_mem_object_helper(target_map, |
| 5035 | address, |
| 5036 | initial_size, |
| 5037 | mask, |
| 5038 | vmk_flags, |
| 5039 | port, |
| 5040 | offset, |
| 5041 | copy, |
| 5042 | cur_protection, |
| 5043 | max_protection, |
| 5044 | inheritance, |
| 5045 | NULL, |
| 5046 | page_list_count: 0); |
| 5047 | |
| 5048 | #if KASAN |
| 5049 | if (ret == KERN_SUCCESS && address && target_map->pmap == kernel_pmap) { |
| 5050 | kasan_notify_address(*address, initial_size); |
| 5051 | } |
| 5052 | #endif |
| 5053 | |
| 5054 | return ret; |
| 5055 | } |
| 5056 | |
| 5057 | kern_return_t |
| 5058 | vm_map_enter_mem_object_prefault( |
| 5059 | vm_map_t target_map, |
| 5060 | vm_map_offset_t *address, |
| 5061 | vm_map_size_t initial_size, |
| 5062 | vm_map_offset_t mask, |
| 5063 | vm_map_kernel_flags_t vmk_flags, |
| 5064 | ipc_port_t port, |
| 5065 | vm_object_offset_t offset, |
| 5066 | vm_prot_t cur_protection, |
| 5067 | vm_prot_t max_protection, |
| 5068 | upl_page_list_ptr_t page_list, |
| 5069 | unsigned int page_list_count) |
| 5070 | { |
| 5071 | kern_return_t ret; |
| 5072 | |
| 5073 | /* range_id is set by vm_map_enter_mem_object_helper */ |
| 5074 | ret = vm_map_enter_mem_object_helper(target_map, |
| 5075 | address, |
| 5076 | initial_size, |
| 5077 | mask, |
| 5078 | vmk_flags, |
| 5079 | port, |
| 5080 | offset, |
| 5081 | FALSE, |
| 5082 | cur_protection, |
| 5083 | max_protection, |
| 5084 | VM_INHERIT_DEFAULT, |
| 5085 | page_list, |
| 5086 | page_list_count); |
| 5087 | |
| 5088 | #if KASAN |
| 5089 | if (ret == KERN_SUCCESS && address && target_map->pmap == kernel_pmap) { |
| 5090 | kasan_notify_address(*address, initial_size); |
| 5091 | } |
| 5092 | #endif |
| 5093 | |
| 5094 | return ret; |
| 5095 | } |
| 5096 | |
| 5097 | |
| 5098 | kern_return_t |
| 5099 | vm_map_enter_mem_object_control( |
| 5100 | vm_map_t target_map, |
| 5101 | vm_map_offset_t *address, |
| 5102 | vm_map_size_t initial_size, |
| 5103 | vm_map_offset_t mask, |
| 5104 | vm_map_kernel_flags_t vmk_flags, |
| 5105 | memory_object_control_t control, |
| 5106 | vm_object_offset_t offset, |
| 5107 | boolean_t copy, |
| 5108 | vm_prot_t cur_protection, |
| 5109 | vm_prot_t max_protection, |
| 5110 | vm_inherit_t inheritance) |
| 5111 | { |
| 5112 | vm_map_address_t map_addr; |
| 5113 | vm_map_size_t map_size; |
| 5114 | vm_object_t object; |
| 5115 | vm_object_size_t size; |
| 5116 | kern_return_t result; |
| 5117 | memory_object_t ; |
| 5118 | vm_prot_t ; |
| 5119 | kern_return_t kr; |
| 5120 | #if __arm64__ |
| 5121 | boolean_t fourk = vmk_flags.vmkf_fourk; |
| 5122 | #endif /* __arm64__ */ |
| 5123 | |
| 5124 | /* |
| 5125 | * Check arguments for validity |
| 5126 | */ |
| 5127 | if ((target_map == VM_MAP_NULL) || |
| 5128 | (cur_protection & ~(VM_PROT_ALL | VM_PROT_ALLEXEC)) || |
| 5129 | (max_protection & ~(VM_PROT_ALL | VM_PROT_ALLEXEC)) || |
| 5130 | (inheritance > VM_INHERIT_LAST_VALID) || |
| 5131 | initial_size == 0) { |
| 5132 | return KERN_INVALID_ARGUMENT; |
| 5133 | } |
| 5134 | |
| 5135 | if (__improbable((cur_protection & max_protection) != cur_protection)) { |
| 5136 | /* cur is more permissive than max */ |
| 5137 | cur_protection &= max_protection; |
| 5138 | } |
| 5139 | |
| 5140 | #if __arm64__ |
| 5141 | if (fourk && VM_MAP_PAGE_MASK(target_map) < PAGE_MASK) { |
| 5142 | fourk = FALSE; |
| 5143 | } |
| 5144 | |
| 5145 | if (fourk) { |
| 5146 | map_addr = vm_map_trunc_page(*address, |
| 5147 | FOURK_PAGE_MASK); |
| 5148 | map_size = vm_map_round_page(initial_size, |
| 5149 | FOURK_PAGE_MASK); |
| 5150 | } else |
| 5151 | #endif /* __arm64__ */ |
| 5152 | { |
| 5153 | map_addr = vm_map_trunc_page(*address, |
| 5154 | VM_MAP_PAGE_MASK(target_map)); |
| 5155 | map_size = vm_map_round_page(initial_size, |
| 5156 | VM_MAP_PAGE_MASK(target_map)); |
| 5157 | } |
| 5158 | size = vm_object_round_page(initial_size); |
| 5159 | |
| 5160 | object = memory_object_control_to_vm_object(control); |
| 5161 | |
| 5162 | if (object == VM_OBJECT_NULL) { |
| 5163 | return KERN_INVALID_OBJECT; |
| 5164 | } |
| 5165 | |
| 5166 | if (is_kernel_object(object)) { |
| 5167 | printf(format: "Warning: Attempt to map kernel object" |
| 5168 | " by a non-private kernel entity\n" ); |
| 5169 | return KERN_INVALID_OBJECT; |
| 5170 | } |
| 5171 | |
| 5172 | vm_object_lock(object); |
| 5173 | object->ref_count++; |
| 5174 | |
| 5175 | /* |
| 5176 | * For "named" VM objects, let the pager know that the |
| 5177 | * memory object is being mapped. Some pagers need to keep |
| 5178 | * track of this, to know when they can reclaim the memory |
| 5179 | * object, for example. |
| 5180 | * VM calls memory_object_map() for each mapping (specifying |
| 5181 | * the protection of each mapping) and calls |
| 5182 | * memory_object_last_unmap() when all the mappings are gone. |
| 5183 | */ |
| 5184 | pager_prot = max_protection; |
| 5185 | if (copy) { |
| 5186 | pager_prot &= ~VM_PROT_WRITE; |
| 5187 | } |
| 5188 | pager = object->pager; |
| 5189 | if (object->named && |
| 5190 | pager != MEMORY_OBJECT_NULL && |
| 5191 | object->copy_strategy != MEMORY_OBJECT_COPY_NONE) { |
| 5192 | assert(object->pager_ready); |
| 5193 | vm_object_mapping_wait(object, THREAD_UNINT); |
| 5194 | vm_object_mapping_begin(object); |
| 5195 | vm_object_unlock(object); |
| 5196 | |
| 5197 | kr = memory_object_map(memory_object: pager, prot: pager_prot); |
| 5198 | assert(kr == KERN_SUCCESS); |
| 5199 | |
| 5200 | vm_object_lock(object); |
| 5201 | vm_object_mapping_end(object); |
| 5202 | } |
| 5203 | vm_object_unlock(object); |
| 5204 | |
| 5205 | /* |
| 5206 | * Perform the copy if requested |
| 5207 | */ |
| 5208 | |
| 5209 | if (copy) { |
| 5210 | vm_object_t new_object; |
| 5211 | vm_object_offset_t new_offset; |
| 5212 | |
| 5213 | result = vm_object_copy_strategically(src_object: object, src_offset: offset, size, |
| 5214 | false, /* forking */ |
| 5215 | dst_object: &new_object, dst_offset: &new_offset, |
| 5216 | dst_needs_copy: ©); |
| 5217 | |
| 5218 | |
| 5219 | if (result == KERN_MEMORY_RESTART_COPY) { |
| 5220 | boolean_t success; |
| 5221 | boolean_t src_needs_copy; |
| 5222 | |
| 5223 | /* |
| 5224 | * XXX |
| 5225 | * We currently ignore src_needs_copy. |
| 5226 | * This really is the issue of how to make |
| 5227 | * MEMORY_OBJECT_COPY_SYMMETRIC safe for |
| 5228 | * non-kernel users to use. Solution forthcoming. |
| 5229 | * In the meantime, since we don't allow non-kernel |
| 5230 | * memory managers to specify symmetric copy, |
| 5231 | * we won't run into problems here. |
| 5232 | */ |
| 5233 | new_object = object; |
| 5234 | new_offset = offset; |
| 5235 | success = vm_object_copy_quickly(object: new_object, |
| 5236 | src_offset: new_offset, size, |
| 5237 | src_needs_copy: &src_needs_copy, |
| 5238 | dst_needs_copy: ©); |
| 5239 | assert(success); |
| 5240 | result = KERN_SUCCESS; |
| 5241 | } |
| 5242 | /* |
| 5243 | * Throw away the reference to the |
| 5244 | * original object, as it won't be mapped. |
| 5245 | */ |
| 5246 | |
| 5247 | vm_object_deallocate(object); |
| 5248 | |
| 5249 | if (result != KERN_SUCCESS) { |
| 5250 | return result; |
| 5251 | } |
| 5252 | |
| 5253 | object = new_object; |
| 5254 | offset = new_offset; |
| 5255 | } |
| 5256 | |
| 5257 | #if __arm64__ |
| 5258 | if (fourk) { |
| 5259 | result = vm_map_enter_fourk(map: target_map, |
| 5260 | address: &map_addr, |
| 5261 | size: map_size, |
| 5262 | mask: (vm_map_offset_t)mask, |
| 5263 | vmk_flags, |
| 5264 | object, offset, |
| 5265 | needs_copy: copy, |
| 5266 | cur_protection, max_protection, |
| 5267 | inheritance); |
| 5268 | } else |
| 5269 | #endif /* __arm64__ */ |
| 5270 | { |
| 5271 | result = vm_map_enter(map: target_map, |
| 5272 | address: &map_addr, size: map_size, |
| 5273 | mask: (vm_map_offset_t)mask, |
| 5274 | vmk_flags, |
| 5275 | object, offset, |
| 5276 | needs_copy: copy, |
| 5277 | cur_protection, max_protection, |
| 5278 | inheritance); |
| 5279 | } |
| 5280 | if (result != KERN_SUCCESS) { |
| 5281 | vm_object_deallocate(object); |
| 5282 | } |
| 5283 | *address = map_addr; |
| 5284 | |
| 5285 | return result; |
| 5286 | } |
| 5287 | |
| 5288 | |
| 5289 | #if VM_CPM |
| 5290 | |
| 5291 | #ifdef MACH_ASSERT |
| 5292 | extern pmap_paddr_t avail_start, avail_end; |
| 5293 | #endif |
| 5294 | |
| 5295 | /* |
| 5296 | * Allocate memory in the specified map, with the caveat that |
| 5297 | * the memory is physically contiguous. This call may fail |
| 5298 | * if the system can't find sufficient contiguous memory. |
| 5299 | * This call may cause or lead to heart-stopping amounts of |
| 5300 | * paging activity. |
| 5301 | * |
| 5302 | * Memory obtained from this call should be freed in the |
| 5303 | * normal way, viz., via vm_deallocate. |
| 5304 | */ |
| 5305 | kern_return_t |
| 5306 | vm_map_enter_cpm( |
| 5307 | vm_map_t map, |
| 5308 | vm_map_offset_t *addr, |
| 5309 | vm_map_size_t size, |
| 5310 | vm_map_kernel_flags_t vmk_flags) |
| 5311 | { |
| 5312 | vm_object_t cpm_obj; |
| 5313 | pmap_t pmap; |
| 5314 | vm_page_t m, pages; |
| 5315 | kern_return_t kr; |
| 5316 | vm_map_offset_t va, start, end, offset; |
| 5317 | #if MACH_ASSERT |
| 5318 | vm_map_offset_t prev_addr = 0; |
| 5319 | #endif /* MACH_ASSERT */ |
| 5320 | uint8_t object_lock_type = 0; |
| 5321 | |
| 5322 | if (VM_MAP_PAGE_SHIFT(map) != PAGE_SHIFT) { |
| 5323 | /* XXX TODO4K do we need to support this? */ |
| 5324 | *addr = 0; |
| 5325 | return KERN_NOT_SUPPORTED; |
| 5326 | } |
| 5327 | |
| 5328 | if (size == 0) { |
| 5329 | *addr = 0; |
| 5330 | return KERN_SUCCESS; |
| 5331 | } |
| 5332 | if (vmk_flags.vmf_fixed) { |
| 5333 | *addr = vm_map_trunc_page(*addr, |
| 5334 | VM_MAP_PAGE_MASK(map)); |
| 5335 | } else { |
| 5336 | *addr = vm_map_min(map); |
| 5337 | } |
| 5338 | size = vm_map_round_page(size, |
| 5339 | VM_MAP_PAGE_MASK(map)); |
| 5340 | |
| 5341 | /* |
| 5342 | * LP64todo - cpm_allocate should probably allow |
| 5343 | * allocations of >4GB, but not with the current |
| 5344 | * algorithm, so just cast down the size for now. |
| 5345 | */ |
| 5346 | if (size > VM_MAX_ADDRESS) { |
| 5347 | return KERN_RESOURCE_SHORTAGE; |
| 5348 | } |
| 5349 | if ((kr = cpm_allocate(CAST_DOWN(vm_size_t, size), |
| 5350 | &pages, 0, 0, TRUE, flags)) != KERN_SUCCESS) { |
| 5351 | return kr; |
| 5352 | } |
| 5353 | |
| 5354 | cpm_obj = vm_object_allocate((vm_object_size_t)size); |
| 5355 | assert(cpm_obj != VM_OBJECT_NULL); |
| 5356 | assert(cpm_obj->internal); |
| 5357 | assert(cpm_obj->vo_size == (vm_object_size_t)size); |
| 5358 | assert(cpm_obj->can_persist == FALSE); |
| 5359 | assert(cpm_obj->pager_created == FALSE); |
| 5360 | assert(cpm_obj->pageout == FALSE); |
| 5361 | assert(cpm_obj->shadow == VM_OBJECT_NULL); |
| 5362 | |
| 5363 | /* |
| 5364 | * Insert pages into object. |
| 5365 | */ |
| 5366 | object_lock_type = OBJECT_LOCK_EXCLUSIVE; |
| 5367 | vm_object_lock(cpm_obj); |
| 5368 | for (offset = 0; offset < size; offset += PAGE_SIZE) { |
| 5369 | m = pages; |
| 5370 | pages = NEXT_PAGE(m); |
| 5371 | *(NEXT_PAGE_PTR(m)) = VM_PAGE_NULL; |
| 5372 | |
| 5373 | assert(!m->vmp_gobbled); |
| 5374 | assert(!m->vmp_wanted); |
| 5375 | assert(!m->vmp_pageout); |
| 5376 | assert(!m->vmp_tabled); |
| 5377 | assert(VM_PAGE_WIRED(m)); |
| 5378 | assert(m->vmp_busy); |
| 5379 | assert(VM_PAGE_GET_PHYS_PAGE(m) >= (avail_start >> PAGE_SHIFT) && VM_PAGE_GET_PHYS_PAGE(m) <= (avail_end >> PAGE_SHIFT)); |
| 5380 | |
| 5381 | m->vmp_busy = FALSE; |
| 5382 | vm_page_insert(m, cpm_obj, offset); |
| 5383 | } |
| 5384 | assert(cpm_obj->resident_page_count == size / PAGE_SIZE); |
| 5385 | vm_object_unlock(cpm_obj); |
| 5386 | |
| 5387 | /* |
| 5388 | * Hang onto a reference on the object in case a |
| 5389 | * multi-threaded application for some reason decides |
| 5390 | * to deallocate the portion of the address space into |
| 5391 | * which we will insert this object. |
| 5392 | * |
| 5393 | * Unfortunately, we must insert the object now before |
| 5394 | * we can talk to the pmap module about which addresses |
| 5395 | * must be wired down. Hence, the race with a multi- |
| 5396 | * threaded app. |
| 5397 | */ |
| 5398 | vm_object_reference(cpm_obj); |
| 5399 | |
| 5400 | /* |
| 5401 | * Insert object into map. |
| 5402 | */ |
| 5403 | |
| 5404 | kr = vm_map_enter( |
| 5405 | map, |
| 5406 | addr, |
| 5407 | size, |
| 5408 | (vm_map_offset_t)0, |
| 5409 | vmk_flags, |
| 5410 | cpm_obj, |
| 5411 | (vm_object_offset_t)0, |
| 5412 | FALSE, |
| 5413 | VM_PROT_ALL, |
| 5414 | VM_PROT_ALL, |
| 5415 | VM_INHERIT_DEFAULT); |
| 5416 | |
| 5417 | if (kr != KERN_SUCCESS) { |
| 5418 | /* |
| 5419 | * A CPM object doesn't have can_persist set, |
| 5420 | * so all we have to do is deallocate it to |
| 5421 | * free up these pages. |
| 5422 | */ |
| 5423 | assert(cpm_obj->pager_created == FALSE); |
| 5424 | assert(cpm_obj->can_persist == FALSE); |
| 5425 | assert(cpm_obj->pageout == FALSE); |
| 5426 | assert(cpm_obj->shadow == VM_OBJECT_NULL); |
| 5427 | vm_object_deallocate(cpm_obj); /* kill acquired ref */ |
| 5428 | vm_object_deallocate(cpm_obj); /* kill creation ref */ |
| 5429 | } |
| 5430 | |
| 5431 | /* |
| 5432 | * Inform the physical mapping system that the |
| 5433 | * range of addresses may not fault, so that |
| 5434 | * page tables and such can be locked down as well. |
| 5435 | */ |
| 5436 | start = *addr; |
| 5437 | end = start + size; |
| 5438 | pmap = vm_map_pmap(map); |
| 5439 | pmap_pageable(pmap, start, end, FALSE); |
| 5440 | |
| 5441 | /* |
| 5442 | * Enter each page into the pmap, to avoid faults. |
| 5443 | * Note that this loop could be coded more efficiently, |
| 5444 | * if the need arose, rather than looking up each page |
| 5445 | * again. |
| 5446 | */ |
| 5447 | for (offset = 0, va = start; offset < size; |
| 5448 | va += PAGE_SIZE, offset += PAGE_SIZE) { |
| 5449 | int type_of_fault; |
| 5450 | |
| 5451 | vm_object_lock(cpm_obj); |
| 5452 | m = vm_page_lookup(cpm_obj, (vm_object_offset_t)offset); |
| 5453 | assert(m != VM_PAGE_NULL); |
| 5454 | |
| 5455 | vm_page_zero_fill(m); |
| 5456 | |
| 5457 | type_of_fault = DBG_ZERO_FILL_FAULT; |
| 5458 | |
| 5459 | vm_fault_enter(m, pmap, va, |
| 5460 | PAGE_SIZE, 0, |
| 5461 | VM_PROT_ALL, VM_PROT_WRITE, |
| 5462 | VM_PAGE_WIRED(m), |
| 5463 | FALSE, /* change_wiring */ |
| 5464 | VM_KERN_MEMORY_NONE, /* tag - not wiring */ |
| 5465 | FALSE, /* cs_bypass */ |
| 5466 | 0, /* user_tag */ |
| 5467 | 0, /* pmap_options */ |
| 5468 | NULL, /* need_retry */ |
| 5469 | &type_of_fault, |
| 5470 | &object_lock_type); /* Exclusive lock mode. Will remain unchanged.*/ |
| 5471 | |
| 5472 | vm_object_unlock(cpm_obj); |
| 5473 | } |
| 5474 | |
| 5475 | #if MACH_ASSERT |
| 5476 | /* |
| 5477 | * Verify ordering in address space. |
| 5478 | */ |
| 5479 | for (offset = 0; offset < size; offset += PAGE_SIZE) { |
| 5480 | vm_object_lock(cpm_obj); |
| 5481 | m = vm_page_lookup(cpm_obj, (vm_object_offset_t)offset); |
| 5482 | vm_object_unlock(cpm_obj); |
| 5483 | if (m == VM_PAGE_NULL) { |
| 5484 | panic("vm_allocate_cpm: obj %p off 0x%llx no page" , |
| 5485 | cpm_obj, (uint64_t)offset); |
| 5486 | } |
| 5487 | assert(m->vmp_tabled); |
| 5488 | assert(!m->vmp_busy); |
| 5489 | assert(!m->vmp_wanted); |
| 5490 | assert(!m->vmp_fictitious); |
| 5491 | assert(!m->vmp_private); |
| 5492 | assert(!m->vmp_absent); |
| 5493 | assert(!m->vmp_cleaning); |
| 5494 | assert(!m->vmp_laundry); |
| 5495 | assert(!m->vmp_precious); |
| 5496 | assert(!m->vmp_clustered); |
| 5497 | if (offset != 0) { |
| 5498 | if (VM_PAGE_GET_PHYS_PAGE(m) != prev_addr + 1) { |
| 5499 | printf("start 0x%llx end 0x%llx va 0x%llx\n" , |
| 5500 | (uint64_t)start, (uint64_t)end, (uint64_t)va); |
| 5501 | printf("obj %p off 0x%llx\n" , cpm_obj, (uint64_t)offset); |
| 5502 | printf("m %p prev_address 0x%llx\n" , m, (uint64_t)prev_addr); |
| 5503 | panic("vm_allocate_cpm: pages not contig!" ); |
| 5504 | } |
| 5505 | } |
| 5506 | prev_addr = VM_PAGE_GET_PHYS_PAGE(m); |
| 5507 | } |
| 5508 | #endif /* MACH_ASSERT */ |
| 5509 | |
| 5510 | vm_object_deallocate(cpm_obj); /* kill extra ref */ |
| 5511 | |
| 5512 | return kr; |
| 5513 | } |
| 5514 | |
| 5515 | |
| 5516 | #else /* VM_CPM */ |
| 5517 | |
| 5518 | /* |
| 5519 | * Interface is defined in all cases, but unless the kernel |
| 5520 | * is built explicitly for this option, the interface does |
| 5521 | * nothing. |
| 5522 | */ |
| 5523 | |
| 5524 | kern_return_t |
| 5525 | vm_map_enter_cpm( |
| 5526 | __unused vm_map_t map, |
| 5527 | __unused vm_map_offset_t *addr, |
| 5528 | __unused vm_map_size_t size, |
| 5529 | __unused vm_map_kernel_flags_t vmk_flags) |
| 5530 | { |
| 5531 | return KERN_FAILURE; |
| 5532 | } |
| 5533 | #endif /* VM_CPM */ |
| 5534 | |
| 5535 | /* Not used without nested pmaps */ |
| 5536 | #ifndef NO_NESTED_PMAP |
| 5537 | /* |
| 5538 | * Clip and unnest a portion of a nested submap mapping. |
| 5539 | */ |
| 5540 | |
| 5541 | |
| 5542 | static void |
| 5543 | vm_map_clip_unnest( |
| 5544 | vm_map_t map, |
| 5545 | vm_map_entry_t entry, |
| 5546 | vm_map_offset_t start_unnest, |
| 5547 | vm_map_offset_t end_unnest) |
| 5548 | { |
| 5549 | vm_map_offset_t old_start_unnest = start_unnest; |
| 5550 | vm_map_offset_t old_end_unnest = end_unnest; |
| 5551 | |
| 5552 | assert(entry->is_sub_map); |
| 5553 | assert(VME_SUBMAP(entry) != NULL); |
| 5554 | assert(entry->use_pmap); |
| 5555 | |
| 5556 | /* |
| 5557 | * Query the platform for the optimal unnest range. |
| 5558 | * DRK: There's some duplication of effort here, since |
| 5559 | * callers may have adjusted the range to some extent. This |
| 5560 | * routine was introduced to support 1GiB subtree nesting |
| 5561 | * for x86 platforms, which can also nest on 2MiB boundaries |
| 5562 | * depending on size/alignment. |
| 5563 | */ |
| 5564 | if (pmap_adjust_unnest_parameters(map->pmap, &start_unnest, &end_unnest)) { |
| 5565 | assert(VME_SUBMAP(entry)->is_nested_map); |
| 5566 | assert(!VME_SUBMAP(entry)->disable_vmentry_reuse); |
| 5567 | log_unnest_badness(map, |
| 5568 | start_unnest: old_start_unnest, |
| 5569 | end_unnest: old_end_unnest, |
| 5570 | VME_SUBMAP(entry)->is_nested_map, |
| 5571 | lowest_unnestable_addr: (entry->vme_start + |
| 5572 | VME_SUBMAP(entry)->lowest_unnestable_start - |
| 5573 | VME_OFFSET(entry))); |
| 5574 | } |
| 5575 | |
| 5576 | if (entry->vme_start > start_unnest || |
| 5577 | entry->vme_end < end_unnest) { |
| 5578 | panic("vm_map_clip_unnest(0x%llx,0x%llx): " |
| 5579 | "bad nested entry: start=0x%llx end=0x%llx\n" , |
| 5580 | (long long)start_unnest, (long long)end_unnest, |
| 5581 | (long long)entry->vme_start, (long long)entry->vme_end); |
| 5582 | } |
| 5583 | |
| 5584 | if (start_unnest > entry->vme_start) { |
| 5585 | _vm_map_clip_start(map_header: &map->hdr, |
| 5586 | entry, |
| 5587 | start: start_unnest); |
| 5588 | if (map->holelistenabled) { |
| 5589 | vm_map_store_update_first_free(map, NULL, FALSE); |
| 5590 | } else { |
| 5591 | vm_map_store_update_first_free(map, entry: map->first_free, FALSE); |
| 5592 | } |
| 5593 | } |
| 5594 | if (entry->vme_end > end_unnest) { |
| 5595 | _vm_map_clip_end(map_header: &map->hdr, |
| 5596 | entry, |
| 5597 | end: end_unnest); |
| 5598 | if (map->holelistenabled) { |
| 5599 | vm_map_store_update_first_free(map, NULL, FALSE); |
| 5600 | } else { |
| 5601 | vm_map_store_update_first_free(map, entry: map->first_free, FALSE); |
| 5602 | } |
| 5603 | } |
| 5604 | |
| 5605 | pmap_unnest(map->pmap, |
| 5606 | entry->vme_start, |
| 5607 | entry->vme_end - entry->vme_start); |
| 5608 | if ((map->mapped_in_other_pmaps) && os_ref_get_count_raw(rc: &map->map_refcnt) != 0) { |
| 5609 | /* clean up parent map/maps */ |
| 5610 | vm_map_submap_pmap_clean( |
| 5611 | map, start: entry->vme_start, |
| 5612 | end: entry->vme_end, |
| 5613 | VME_SUBMAP(entry), |
| 5614 | offset: VME_OFFSET(entry)); |
| 5615 | } |
| 5616 | entry->use_pmap = FALSE; |
| 5617 | if ((map->pmap != kernel_pmap) && |
| 5618 | (VME_ALIAS(entry) == VM_MEMORY_SHARED_PMAP)) { |
| 5619 | VME_ALIAS_SET(entry, VM_MEMORY_UNSHARED_PMAP); |
| 5620 | } |
| 5621 | } |
| 5622 | #endif /* NO_NESTED_PMAP */ |
| 5623 | |
| 5624 | __abortlike |
| 5625 | static void |
| 5626 | __vm_map_clip_atomic_entry_panic( |
| 5627 | vm_map_t map, |
| 5628 | vm_map_entry_t entry, |
| 5629 | vm_map_offset_t where) |
| 5630 | { |
| 5631 | panic("vm_map_clip(%p): Attempting to clip an atomic VM map entry " |
| 5632 | "%p [0x%llx:0x%llx] at 0x%llx" , map, entry, |
| 5633 | (uint64_t)entry->vme_start, |
| 5634 | (uint64_t)entry->vme_end, |
| 5635 | (uint64_t)where); |
| 5636 | } |
| 5637 | |
| 5638 | /* |
| 5639 | * vm_map_clip_start: [ internal use only ] |
| 5640 | * |
| 5641 | * Asserts that the given entry begins at or after |
| 5642 | * the specified address; if necessary, |
| 5643 | * it splits the entry into two. |
| 5644 | */ |
| 5645 | void |
| 5646 | vm_map_clip_start( |
| 5647 | vm_map_t map, |
| 5648 | vm_map_entry_t entry, |
| 5649 | vm_map_offset_t startaddr) |
| 5650 | { |
| 5651 | #ifndef NO_NESTED_PMAP |
| 5652 | if (entry->is_sub_map && |
| 5653 | entry->use_pmap && |
| 5654 | startaddr >= entry->vme_start) { |
| 5655 | vm_map_offset_t start_unnest, end_unnest; |
| 5656 | |
| 5657 | /* |
| 5658 | * Make sure "startaddr" is no longer in a nested range |
| 5659 | * before we clip. Unnest only the minimum range the platform |
| 5660 | * can handle. |
| 5661 | * vm_map_clip_unnest may perform additional adjustments to |
| 5662 | * the unnest range. |
| 5663 | */ |
| 5664 | start_unnest = startaddr & ~(pmap_shared_region_size_min(map: map->pmap) - 1); |
| 5665 | end_unnest = start_unnest + pmap_shared_region_size_min(map: map->pmap); |
| 5666 | vm_map_clip_unnest(map, entry, start_unnest, end_unnest); |
| 5667 | } |
| 5668 | #endif /* NO_NESTED_PMAP */ |
| 5669 | if (startaddr > entry->vme_start) { |
| 5670 | if (!entry->is_sub_map && |
| 5671 | VME_OBJECT(entry) && |
| 5672 | VME_OBJECT(entry)->phys_contiguous) { |
| 5673 | pmap_remove(map: map->pmap, |
| 5674 | s: (addr64_t)(entry->vme_start), |
| 5675 | e: (addr64_t)(entry->vme_end)); |
| 5676 | } |
| 5677 | if (entry->vme_atomic) { |
| 5678 | __vm_map_clip_atomic_entry_panic(map, entry, where: startaddr); |
| 5679 | } |
| 5680 | |
| 5681 | DTRACE_VM5( |
| 5682 | vm_map_clip_start, |
| 5683 | vm_map_t, map, |
| 5684 | vm_map_offset_t, entry->vme_start, |
| 5685 | vm_map_offset_t, entry->vme_end, |
| 5686 | vm_map_offset_t, startaddr, |
| 5687 | int, VME_ALIAS(entry)); |
| 5688 | |
| 5689 | _vm_map_clip_start(map_header: &map->hdr, entry, start: startaddr); |
| 5690 | if (map->holelistenabled) { |
| 5691 | vm_map_store_update_first_free(map, NULL, FALSE); |
| 5692 | } else { |
| 5693 | vm_map_store_update_first_free(map, entry: map->first_free, FALSE); |
| 5694 | } |
| 5695 | } |
| 5696 | } |
| 5697 | |
| 5698 | |
| 5699 | #define vm_map_copy_clip_start(copy, entry, startaddr) \ |
| 5700 | MACRO_BEGIN \ |
| 5701 | if ((startaddr) > (entry)->vme_start) \ |
| 5702 | _vm_map_clip_start(&(copy)->cpy_hdr,(entry),(startaddr)); \ |
| 5703 | MACRO_END |
| 5704 | |
| 5705 | /* |
| 5706 | * This routine is called only when it is known that |
| 5707 | * the entry must be split. |
| 5708 | */ |
| 5709 | static void |
| 5710 | _vm_map_clip_start( |
| 5711 | struct vm_map_header *, |
| 5712 | vm_map_entry_t entry, |
| 5713 | vm_map_offset_t start) |
| 5714 | { |
| 5715 | vm_map_entry_t new_entry; |
| 5716 | |
| 5717 | /* |
| 5718 | * Split off the front portion -- |
| 5719 | * note that we must insert the new |
| 5720 | * entry BEFORE this one, so that |
| 5721 | * this entry has the specified starting |
| 5722 | * address. |
| 5723 | */ |
| 5724 | |
| 5725 | if (entry->map_aligned) { |
| 5726 | assert(VM_MAP_PAGE_ALIGNED(start, |
| 5727 | VM_MAP_HDR_PAGE_MASK(map_header))); |
| 5728 | } |
| 5729 | |
| 5730 | new_entry = _vm_map_entry_create(map_header); |
| 5731 | vm_map_entry_copy_full(new: new_entry, old: entry); |
| 5732 | |
| 5733 | new_entry->vme_end = start; |
| 5734 | assert(new_entry->vme_start < new_entry->vme_end); |
| 5735 | VME_OFFSET_SET(entry, offset: VME_OFFSET(entry) + (start - entry->vme_start)); |
| 5736 | if (__improbable(start >= entry->vme_end)) { |
| 5737 | panic("mapHdr %p entry %p start 0x%llx end 0x%llx new start 0x%llx" , map_header, entry, entry->vme_start, entry->vme_end, start); |
| 5738 | } |
| 5739 | assert(start < entry->vme_end); |
| 5740 | entry->vme_start = start; |
| 5741 | |
| 5742 | #if VM_BTLOG_TAGS |
| 5743 | if (new_entry->vme_kernel_object) { |
| 5744 | btref_retain(new_entry->vme_tag_btref); |
| 5745 | } |
| 5746 | #endif /* VM_BTLOG_TAGS */ |
| 5747 | |
| 5748 | _vm_map_store_entry_link(header: map_header, after_where: entry->vme_prev, entry: new_entry); |
| 5749 | |
| 5750 | if (entry->is_sub_map) { |
| 5751 | vm_map_reference(VME_SUBMAP(new_entry)); |
| 5752 | } else { |
| 5753 | vm_object_reference(VME_OBJECT(new_entry)); |
| 5754 | } |
| 5755 | } |
| 5756 | |
| 5757 | |
| 5758 | /* |
| 5759 | * vm_map_clip_end: [ internal use only ] |
| 5760 | * |
| 5761 | * Asserts that the given entry ends at or before |
| 5762 | * the specified address; if necessary, |
| 5763 | * it splits the entry into two. |
| 5764 | */ |
| 5765 | void |
| 5766 | vm_map_clip_end( |
| 5767 | vm_map_t map, |
| 5768 | vm_map_entry_t entry, |
| 5769 | vm_map_offset_t endaddr) |
| 5770 | { |
| 5771 | if (endaddr > entry->vme_end) { |
| 5772 | /* |
| 5773 | * Within the scope of this clipping, limit "endaddr" to |
| 5774 | * the end of this map entry... |
| 5775 | */ |
| 5776 | endaddr = entry->vme_end; |
| 5777 | } |
| 5778 | #ifndef NO_NESTED_PMAP |
| 5779 | if (entry->is_sub_map && entry->use_pmap) { |
| 5780 | vm_map_offset_t start_unnest, end_unnest; |
| 5781 | |
| 5782 | /* |
| 5783 | * Make sure the range between the start of this entry and |
| 5784 | * the new "endaddr" is no longer nested before we clip. |
| 5785 | * Unnest only the minimum range the platform can handle. |
| 5786 | * vm_map_clip_unnest may perform additional adjustments to |
| 5787 | * the unnest range. |
| 5788 | */ |
| 5789 | start_unnest = entry->vme_start; |
| 5790 | end_unnest = |
| 5791 | (endaddr + pmap_shared_region_size_min(map: map->pmap) - 1) & |
| 5792 | ~(pmap_shared_region_size_min(map: map->pmap) - 1); |
| 5793 | vm_map_clip_unnest(map, entry, start_unnest, end_unnest); |
| 5794 | } |
| 5795 | #endif /* NO_NESTED_PMAP */ |
| 5796 | if (endaddr < entry->vme_end) { |
| 5797 | if (!entry->is_sub_map && |
| 5798 | VME_OBJECT(entry) && |
| 5799 | VME_OBJECT(entry)->phys_contiguous) { |
| 5800 | pmap_remove(map: map->pmap, |
| 5801 | s: (addr64_t)(entry->vme_start), |
| 5802 | e: (addr64_t)(entry->vme_end)); |
| 5803 | } |
| 5804 | if (entry->vme_atomic) { |
| 5805 | __vm_map_clip_atomic_entry_panic(map, entry, where: endaddr); |
| 5806 | } |
| 5807 | DTRACE_VM5( |
| 5808 | vm_map_clip_end, |
| 5809 | vm_map_t, map, |
| 5810 | vm_map_offset_t, entry->vme_start, |
| 5811 | vm_map_offset_t, entry->vme_end, |
| 5812 | vm_map_offset_t, endaddr, |
| 5813 | int, VME_ALIAS(entry)); |
| 5814 | |
| 5815 | _vm_map_clip_end(map_header: &map->hdr, entry, end: endaddr); |
| 5816 | if (map->holelistenabled) { |
| 5817 | vm_map_store_update_first_free(map, NULL, FALSE); |
| 5818 | } else { |
| 5819 | vm_map_store_update_first_free(map, entry: map->first_free, FALSE); |
| 5820 | } |
| 5821 | } |
| 5822 | } |
| 5823 | |
| 5824 | |
| 5825 | #define vm_map_copy_clip_end(copy, entry, endaddr) \ |
| 5826 | MACRO_BEGIN \ |
| 5827 | if ((endaddr) < (entry)->vme_end) \ |
| 5828 | _vm_map_clip_end(&(copy)->cpy_hdr,(entry),(endaddr)); \ |
| 5829 | MACRO_END |
| 5830 | |
| 5831 | /* |
| 5832 | * This routine is called only when it is known that |
| 5833 | * the entry must be split. |
| 5834 | */ |
| 5835 | static void |
| 5836 | _vm_map_clip_end( |
| 5837 | struct vm_map_header *, |
| 5838 | vm_map_entry_t entry, |
| 5839 | vm_map_offset_t end) |
| 5840 | { |
| 5841 | vm_map_entry_t new_entry; |
| 5842 | |
| 5843 | /* |
| 5844 | * Create a new entry and insert it |
| 5845 | * AFTER the specified entry |
| 5846 | */ |
| 5847 | |
| 5848 | if (entry->map_aligned) { |
| 5849 | assert(VM_MAP_PAGE_ALIGNED(end, |
| 5850 | VM_MAP_HDR_PAGE_MASK(map_header))); |
| 5851 | } |
| 5852 | |
| 5853 | new_entry = _vm_map_entry_create(map_header); |
| 5854 | vm_map_entry_copy_full(new: new_entry, old: entry); |
| 5855 | |
| 5856 | if (__improbable(end <= entry->vme_start)) { |
| 5857 | panic("mapHdr %p entry %p start 0x%llx end 0x%llx new end 0x%llx" , map_header, entry, entry->vme_start, entry->vme_end, end); |
| 5858 | } |
| 5859 | assert(entry->vme_start < end); |
| 5860 | new_entry->vme_start = entry->vme_end = end; |
| 5861 | VME_OFFSET_SET(entry: new_entry, |
| 5862 | offset: VME_OFFSET(entry: new_entry) + (end - entry->vme_start)); |
| 5863 | assert(new_entry->vme_start < new_entry->vme_end); |
| 5864 | |
| 5865 | #if VM_BTLOG_TAGS |
| 5866 | if (new_entry->vme_kernel_object) { |
| 5867 | btref_retain(new_entry->vme_tag_btref); |
| 5868 | } |
| 5869 | #endif /* VM_BTLOG_TAGS */ |
| 5870 | |
| 5871 | _vm_map_store_entry_link(header: map_header, after_where: entry, entry: new_entry); |
| 5872 | |
| 5873 | if (entry->is_sub_map) { |
| 5874 | vm_map_reference(VME_SUBMAP(new_entry)); |
| 5875 | } else { |
| 5876 | vm_object_reference(VME_OBJECT(new_entry)); |
| 5877 | } |
| 5878 | } |
| 5879 | |
| 5880 | |
| 5881 | /* |
| 5882 | * VM_MAP_RANGE_CHECK: [ internal use only ] |
| 5883 | * |
| 5884 | * Asserts that the starting and ending region |
| 5885 | * addresses fall within the valid range of the map. |
| 5886 | */ |
| 5887 | #define VM_MAP_RANGE_CHECK(map, start, end) \ |
| 5888 | MACRO_BEGIN \ |
| 5889 | if (start < vm_map_min(map)) \ |
| 5890 | start = vm_map_min(map); \ |
| 5891 | if (end > vm_map_max(map)) \ |
| 5892 | end = vm_map_max(map); \ |
| 5893 | if (start > end) \ |
| 5894 | start = end; \ |
| 5895 | MACRO_END |
| 5896 | |
| 5897 | /* |
| 5898 | * vm_map_range_check: [ internal use only ] |
| 5899 | * |
| 5900 | * Check that the region defined by the specified start and |
| 5901 | * end addresses are wholly contained within a single map |
| 5902 | * entry or set of adjacent map entries of the spacified map, |
| 5903 | * i.e. the specified region contains no unmapped space. |
| 5904 | * If any or all of the region is unmapped, FALSE is returned. |
| 5905 | * Otherwise, TRUE is returned and if the output argument 'entry' |
| 5906 | * is not NULL it points to the map entry containing the start |
| 5907 | * of the region. |
| 5908 | * |
| 5909 | * The map is locked for reading on entry and is left locked. |
| 5910 | */ |
| 5911 | static boolean_t |
| 5912 | vm_map_range_check( |
| 5913 | vm_map_t map, |
| 5914 | vm_map_offset_t start, |
| 5915 | vm_map_offset_t end, |
| 5916 | vm_map_entry_t *entry) |
| 5917 | { |
| 5918 | vm_map_entry_t cur; |
| 5919 | vm_map_offset_t prev; |
| 5920 | |
| 5921 | /* |
| 5922 | * Basic sanity checks first |
| 5923 | */ |
| 5924 | if (start < vm_map_min(map) || end > vm_map_max(map) || start > end) { |
| 5925 | return FALSE; |
| 5926 | } |
| 5927 | |
| 5928 | /* |
| 5929 | * Check first if the region starts within a valid |
| 5930 | * mapping for the map. |
| 5931 | */ |
| 5932 | if (!vm_map_lookup_entry(map, address: start, entry: &cur)) { |
| 5933 | return FALSE; |
| 5934 | } |
| 5935 | |
| 5936 | /* |
| 5937 | * Optimize for the case that the region is contained |
| 5938 | * in a single map entry. |
| 5939 | */ |
| 5940 | if (entry != (vm_map_entry_t *) NULL) { |
| 5941 | *entry = cur; |
| 5942 | } |
| 5943 | if (end <= cur->vme_end) { |
| 5944 | return TRUE; |
| 5945 | } |
| 5946 | |
| 5947 | /* |
| 5948 | * If the region is not wholly contained within a |
| 5949 | * single entry, walk the entries looking for holes. |
| 5950 | */ |
| 5951 | prev = cur->vme_end; |
| 5952 | cur = cur->vme_next; |
| 5953 | while ((cur != vm_map_to_entry(map)) && (prev == cur->vme_start)) { |
| 5954 | if (end <= cur->vme_end) { |
| 5955 | return TRUE; |
| 5956 | } |
| 5957 | prev = cur->vme_end; |
| 5958 | cur = cur->vme_next; |
| 5959 | } |
| 5960 | return FALSE; |
| 5961 | } |
| 5962 | |
| 5963 | /* |
| 5964 | * vm_map_protect: |
| 5965 | * |
| 5966 | * Sets the protection of the specified address |
| 5967 | * region in the target map. If "set_max" is |
| 5968 | * specified, the maximum protection is to be set; |
| 5969 | * otherwise, only the current protection is affected. |
| 5970 | */ |
| 5971 | kern_return_t |
| 5972 | vm_map_protect( |
| 5973 | vm_map_t map, |
| 5974 | vm_map_offset_t start, |
| 5975 | vm_map_offset_t end, |
| 5976 | vm_prot_t new_prot, |
| 5977 | boolean_t set_max) |
| 5978 | { |
| 5979 | vm_map_entry_t current; |
| 5980 | vm_map_offset_t prev; |
| 5981 | vm_map_entry_t entry; |
| 5982 | vm_prot_t new_max; |
| 5983 | int pmap_options = 0; |
| 5984 | kern_return_t kr; |
| 5985 | |
| 5986 | if (__improbable(vm_map_range_overflows(map, start, end - start))) { |
| 5987 | return KERN_INVALID_ARGUMENT; |
| 5988 | } |
| 5989 | |
| 5990 | if (new_prot & VM_PROT_COPY) { |
| 5991 | vm_map_offset_t new_start; |
| 5992 | vm_prot_t cur_prot, max_prot; |
| 5993 | vm_map_kernel_flags_t kflags; |
| 5994 | |
| 5995 | /* LP64todo - see below */ |
| 5996 | if (start >= map->max_offset) { |
| 5997 | return KERN_INVALID_ADDRESS; |
| 5998 | } |
| 5999 | |
| 6000 | if ((new_prot & VM_PROT_ALLEXEC) && |
| 6001 | map->pmap != kernel_pmap && |
| 6002 | (vm_map_cs_enforcement(map) |
| 6003 | #if XNU_TARGET_OS_OSX && __arm64__ |
| 6004 | || !VM_MAP_IS_EXOTIC(map) |
| 6005 | #endif /* XNU_TARGET_OS_OSX && __arm64__ */ |
| 6006 | ) && |
| 6007 | VM_MAP_POLICY_WX_FAIL(map)) { |
| 6008 | DTRACE_VM3(cs_wx, |
| 6009 | uint64_t, (uint64_t) start, |
| 6010 | uint64_t, (uint64_t) end, |
| 6011 | vm_prot_t, new_prot); |
| 6012 | printf(format: "CODE SIGNING: %d[%s] %s:%d(0x%llx,0x%llx,0x%x) can't have both write and exec at the same time\n" , |
| 6013 | proc_selfpid(), |
| 6014 | (get_bsdtask_info(current_task()) |
| 6015 | ? proc_name_address(p: get_bsdtask_info(current_task())) |
| 6016 | : "?" ), |
| 6017 | __FUNCTION__, __LINE__, |
| 6018 | #if DEVELOPMENT || DEBUG |
| 6019 | (uint64_t)start, |
| 6020 | (uint64_t)end, |
| 6021 | #else /* DEVELOPMENT || DEBUG */ |
| 6022 | (uint64_t)0, |
| 6023 | (uint64_t)0, |
| 6024 | #endif /* DEVELOPMENT || DEBUG */ |
| 6025 | new_prot); |
| 6026 | return KERN_PROTECTION_FAILURE; |
| 6027 | } |
| 6028 | |
| 6029 | /* |
| 6030 | * Let vm_map_remap_extract() know that it will need to: |
| 6031 | * + make a copy of the mapping |
| 6032 | * + add VM_PROT_WRITE to the max protections |
| 6033 | * + remove any protections that are no longer allowed from the |
| 6034 | * max protections (to avoid any WRITE/EXECUTE conflict, for |
| 6035 | * example). |
| 6036 | * Note that "max_prot" is an IN/OUT parameter only for this |
| 6037 | * specific (VM_PROT_COPY) case. It's usually an OUT parameter |
| 6038 | * only. |
| 6039 | */ |
| 6040 | max_prot = new_prot & (VM_PROT_ALL | VM_PROT_ALLEXEC); |
| 6041 | cur_prot = VM_PROT_NONE; |
| 6042 | kflags = VM_MAP_KERNEL_FLAGS_FIXED(.vmf_overwrite = true); |
| 6043 | kflags.vmkf_remap_prot_copy = true; |
| 6044 | kflags.vmkf_tpro_enforcement_override = !vm_map_tpro_enforcement(map); |
| 6045 | new_start = start; |
| 6046 | kr = vm_map_remap(target_map: map, |
| 6047 | address: &new_start, |
| 6048 | size: end - start, |
| 6049 | mask: 0, /* mask */ |
| 6050 | vmk_flags: kflags, |
| 6051 | src_map: map, |
| 6052 | memory_address: start, |
| 6053 | TRUE, /* copy-on-write remapping! */ |
| 6054 | cur_protection: &cur_prot, /* IN/OUT */ |
| 6055 | max_protection: &max_prot, /* IN/OUT */ |
| 6056 | VM_INHERIT_DEFAULT); |
| 6057 | if (kr != KERN_SUCCESS) { |
| 6058 | return kr; |
| 6059 | } |
| 6060 | new_prot &= ~VM_PROT_COPY; |
| 6061 | } |
| 6062 | |
| 6063 | vm_map_lock(map); |
| 6064 | |
| 6065 | /* LP64todo - remove this check when vm_map_commpage64() |
| 6066 | * no longer has to stuff in a map_entry for the commpage |
| 6067 | * above the map's max_offset. |
| 6068 | */ |
| 6069 | if (start >= map->max_offset) { |
| 6070 | vm_map_unlock(map); |
| 6071 | return KERN_INVALID_ADDRESS; |
| 6072 | } |
| 6073 | |
| 6074 | while (1) { |
| 6075 | /* |
| 6076 | * Lookup the entry. If it doesn't start in a valid |
| 6077 | * entry, return an error. |
| 6078 | */ |
| 6079 | if (!vm_map_lookup_entry(map, address: start, entry: &entry)) { |
| 6080 | vm_map_unlock(map); |
| 6081 | return KERN_INVALID_ADDRESS; |
| 6082 | } |
| 6083 | |
| 6084 | if (entry->superpage_size && (start & (SUPERPAGE_SIZE - 1))) { /* extend request to whole entry */ |
| 6085 | start = SUPERPAGE_ROUND_DOWN(start); |
| 6086 | continue; |
| 6087 | } |
| 6088 | break; |
| 6089 | } |
| 6090 | if (entry->superpage_size) { |
| 6091 | end = SUPERPAGE_ROUND_UP(end); |
| 6092 | } |
| 6093 | |
| 6094 | /* |
| 6095 | * Make a first pass to check for protection and address |
| 6096 | * violations. |
| 6097 | */ |
| 6098 | |
| 6099 | current = entry; |
| 6100 | prev = current->vme_start; |
| 6101 | while ((current != vm_map_to_entry(map)) && |
| 6102 | (current->vme_start < end)) { |
| 6103 | /* |
| 6104 | * If there is a hole, return an error. |
| 6105 | */ |
| 6106 | if (current->vme_start != prev) { |
| 6107 | vm_map_unlock(map); |
| 6108 | return KERN_INVALID_ADDRESS; |
| 6109 | } |
| 6110 | |
| 6111 | new_max = current->max_protection; |
| 6112 | |
| 6113 | #if defined(__x86_64__) |
| 6114 | /* Allow max mask to include execute prot bits if this map doesn't enforce CS */ |
| 6115 | if (set_max && (new_prot & VM_PROT_ALLEXEC) && !vm_map_cs_enforcement(map)) { |
| 6116 | new_max = (new_max & ~VM_PROT_ALLEXEC) | (new_prot & VM_PROT_ALLEXEC); |
| 6117 | } |
| 6118 | #elif CODE_SIGNING_MONITOR |
| 6119 | if (set_max && (new_prot & VM_PROT_EXECUTE) && (csm_address_space_exempt(map->pmap) == KERN_SUCCESS)) { |
| 6120 | new_max |= VM_PROT_EXECUTE; |
| 6121 | } |
| 6122 | #endif |
| 6123 | if ((new_prot & new_max) != new_prot) { |
| 6124 | vm_map_unlock(map); |
| 6125 | return KERN_PROTECTION_FAILURE; |
| 6126 | } |
| 6127 | |
| 6128 | if (current->used_for_jit && |
| 6129 | pmap_has_prot_policy(pmap: map->pmap, translated_allow_execute: current->translated_allow_execute, prot: current->protection)) { |
| 6130 | vm_map_unlock(map); |
| 6131 | return KERN_PROTECTION_FAILURE; |
| 6132 | } |
| 6133 | |
| 6134 | #if __arm64e__ |
| 6135 | /* Disallow remapping hw assisted TPRO mappings */ |
| 6136 | if (current->used_for_tpro) { |
| 6137 | vm_map_unlock(map); |
| 6138 | return KERN_PROTECTION_FAILURE; |
| 6139 | } |
| 6140 | #endif /* __arm64e__ */ |
| 6141 | |
| 6142 | |
| 6143 | if ((new_prot & VM_PROT_WRITE) && |
| 6144 | (new_prot & VM_PROT_ALLEXEC) && |
| 6145 | #if XNU_TARGET_OS_OSX |
| 6146 | map->pmap != kernel_pmap && |
| 6147 | (vm_map_cs_enforcement(map) |
| 6148 | #if __arm64__ |
| 6149 | || !VM_MAP_IS_EXOTIC(map) |
| 6150 | #endif /* __arm64__ */ |
| 6151 | ) && |
| 6152 | #endif /* XNU_TARGET_OS_OSX */ |
| 6153 | #if CODE_SIGNING_MONITOR |
| 6154 | (csm_address_space_exempt(map->pmap) != KERN_SUCCESS) && |
| 6155 | #endif |
| 6156 | !(current->used_for_jit)) { |
| 6157 | DTRACE_VM3(cs_wx, |
| 6158 | uint64_t, (uint64_t) current->vme_start, |
| 6159 | uint64_t, (uint64_t) current->vme_end, |
| 6160 | vm_prot_t, new_prot); |
| 6161 | printf(format: "CODE SIGNING: %d[%s] %s:%d(0x%llx,0x%llx,0x%x) can't have both write and exec at the same time\n" , |
| 6162 | proc_selfpid(), |
| 6163 | (get_bsdtask_info(current_task()) |
| 6164 | ? proc_name_address(p: get_bsdtask_info(current_task())) |
| 6165 | : "?" ), |
| 6166 | __FUNCTION__, __LINE__, |
| 6167 | #if DEVELOPMENT || DEBUG |
| 6168 | (uint64_t)current->vme_start, |
| 6169 | (uint64_t)current->vme_end, |
| 6170 | #else /* DEVELOPMENT || DEBUG */ |
| 6171 | (uint64_t)0, |
| 6172 | (uint64_t)0, |
| 6173 | #endif /* DEVELOPMENT || DEBUG */ |
| 6174 | new_prot); |
| 6175 | new_prot &= ~VM_PROT_ALLEXEC; |
| 6176 | if (VM_MAP_POLICY_WX_FAIL(map)) { |
| 6177 | vm_map_unlock(map); |
| 6178 | return KERN_PROTECTION_FAILURE; |
| 6179 | } |
| 6180 | } |
| 6181 | |
| 6182 | /* |
| 6183 | * If the task has requested executable lockdown, |
| 6184 | * deny both: |
| 6185 | * - adding executable protections OR |
| 6186 | * - adding write protections to an existing executable mapping. |
| 6187 | */ |
| 6188 | if (map->map_disallow_new_exec == TRUE) { |
| 6189 | if ((new_prot & VM_PROT_ALLEXEC) || |
| 6190 | ((current->protection & VM_PROT_EXECUTE) && (new_prot & VM_PROT_WRITE))) { |
| 6191 | vm_map_unlock(map); |
| 6192 | return KERN_PROTECTION_FAILURE; |
| 6193 | } |
| 6194 | } |
| 6195 | |
| 6196 | prev = current->vme_end; |
| 6197 | current = current->vme_next; |
| 6198 | } |
| 6199 | |
| 6200 | #if __arm64__ |
| 6201 | if (end > prev && |
| 6202 | end == vm_map_round_page(prev, VM_MAP_PAGE_MASK(map))) { |
| 6203 | vm_map_entry_t prev_entry; |
| 6204 | |
| 6205 | prev_entry = current->vme_prev; |
| 6206 | if (prev_entry != vm_map_to_entry(map) && |
| 6207 | !prev_entry->map_aligned && |
| 6208 | (vm_map_round_page(prev_entry->vme_end, |
| 6209 | VM_MAP_PAGE_MASK(map)) |
| 6210 | == end)) { |
| 6211 | /* |
| 6212 | * The last entry in our range is not "map-aligned" |
| 6213 | * but it would have reached all the way to "end" |
| 6214 | * if it had been map-aligned, so this is not really |
| 6215 | * a hole in the range and we can proceed. |
| 6216 | */ |
| 6217 | prev = end; |
| 6218 | } |
| 6219 | } |
| 6220 | #endif /* __arm64__ */ |
| 6221 | |
| 6222 | if (end > prev) { |
| 6223 | vm_map_unlock(map); |
| 6224 | return KERN_INVALID_ADDRESS; |
| 6225 | } |
| 6226 | |
| 6227 | /* |
| 6228 | * Go back and fix up protections. |
| 6229 | * Clip to start here if the range starts within |
| 6230 | * the entry. |
| 6231 | */ |
| 6232 | |
| 6233 | current = entry; |
| 6234 | if (current != vm_map_to_entry(map)) { |
| 6235 | /* clip and unnest if necessary */ |
| 6236 | vm_map_clip_start(map, entry: current, startaddr: start); |
| 6237 | } |
| 6238 | |
| 6239 | while ((current != vm_map_to_entry(map)) && |
| 6240 | (current->vme_start < end)) { |
| 6241 | vm_prot_t old_prot; |
| 6242 | |
| 6243 | vm_map_clip_end(map, entry: current, endaddr: end); |
| 6244 | |
| 6245 | #if DEVELOPMENT || DEBUG |
| 6246 | if (current->csm_associated && vm_log_xnu_user_debug) { |
| 6247 | printf("FBDP %d[%s] %s(0x%llx,0x%llx,0x%x) on map %p entry %p [0x%llx:0x%llx 0x%x/0x%x] csm_associated\n" , |
| 6248 | proc_selfpid(), |
| 6249 | (get_bsdtask_info(current_task()) |
| 6250 | ? proc_name_address(get_bsdtask_info(current_task())) |
| 6251 | : "?" ), |
| 6252 | __FUNCTION__, |
| 6253 | (uint64_t)start, |
| 6254 | (uint64_t)end, |
| 6255 | new_prot, |
| 6256 | map, current, |
| 6257 | current->vme_start, |
| 6258 | current->vme_end, |
| 6259 | current->protection, |
| 6260 | current->max_protection); |
| 6261 | } |
| 6262 | #endif /* DEVELOPMENT || DEBUG */ |
| 6263 | |
| 6264 | if (current->is_sub_map) { |
| 6265 | /* clipping did unnest if needed */ |
| 6266 | assert(!current->use_pmap); |
| 6267 | } |
| 6268 | |
| 6269 | old_prot = current->protection; |
| 6270 | |
| 6271 | if (set_max) { |
| 6272 | current->max_protection = new_prot; |
| 6273 | /* Consider either EXECUTE or UEXEC as EXECUTE for this masking */ |
| 6274 | current->protection = (new_prot & old_prot); |
| 6275 | } else { |
| 6276 | current->protection = new_prot; |
| 6277 | } |
| 6278 | |
| 6279 | #if CODE_SIGNING_MONITOR |
| 6280 | if (!current->vme_xnu_user_debug && |
| 6281 | /* a !csm_associated mapping becoming executable */ |
| 6282 | ((!current->csm_associated && |
| 6283 | !(old_prot & VM_PROT_EXECUTE) && |
| 6284 | (current->protection & VM_PROT_EXECUTE)) |
| 6285 | || |
| 6286 | /* a csm_associated mapping becoming writable */ |
| 6287 | (current->csm_associated && |
| 6288 | !(old_prot & VM_PROT_WRITE) && |
| 6289 | (current->protection & VM_PROT_WRITE)))) { |
| 6290 | /* |
| 6291 | * This mapping has not already been marked as |
| 6292 | * "user_debug" and it is either: |
| 6293 | * 1. not code-signing-monitored and becoming executable |
| 6294 | * 2. code-signing-monitored and becoming writable, |
| 6295 | * so inform the CodeSigningMonitor and mark the |
| 6296 | * mapping as "user_debug" if appropriate. |
| 6297 | */ |
| 6298 | vm_map_kernel_flags_t vmk_flags; |
| 6299 | vmk_flags = VM_MAP_KERNEL_FLAGS_NONE; |
| 6300 | /* pretend it's a vm_protect(VM_PROT_COPY)... */ |
| 6301 | vmk_flags.vmkf_remap_prot_copy = true; |
| 6302 | kr = vm_map_entry_cs_associate(map, current, vmk_flags); |
| 6303 | #if DEVELOPMENT || DEBUG |
| 6304 | if (vm_log_xnu_user_debug) { |
| 6305 | printf("FBDP %d[%s] %s:%d map %p entry %p [ 0x%llx 0x%llx ] prot 0x%x -> 0x%x cs_associate -> %d user_debug=%d\n" , |
| 6306 | proc_selfpid(), |
| 6307 | (get_bsdtask_info(current_task()) ? proc_name_address(get_bsdtask_info(current_task())) : "?" ), |
| 6308 | __FUNCTION__, __LINE__, |
| 6309 | map, current, |
| 6310 | current->vme_start, current->vme_end, |
| 6311 | old_prot, current->protection, |
| 6312 | kr, current->vme_xnu_user_debug); |
| 6313 | } |
| 6314 | #endif /* DEVELOPMENT || DEBUG */ |
| 6315 | } |
| 6316 | #endif /* CODE_SIGNING_MONITOR */ |
| 6317 | |
| 6318 | /* |
| 6319 | * Update physical map if necessary. |
| 6320 | * If the request is to turn off write protection, |
| 6321 | * we won't do it for real (in pmap). This is because |
| 6322 | * it would cause copy-on-write to fail. We've already |
| 6323 | * set, the new protection in the map, so if a |
| 6324 | * write-protect fault occurred, it will be fixed up |
| 6325 | * properly, COW or not. |
| 6326 | */ |
| 6327 | if (current->protection != old_prot) { |
| 6328 | /* Look one level in we support nested pmaps */ |
| 6329 | /* from mapped submaps which are direct entries */ |
| 6330 | /* in our map */ |
| 6331 | |
| 6332 | vm_prot_t prot; |
| 6333 | |
| 6334 | prot = current->protection; |
| 6335 | if (current->is_sub_map || (VME_OBJECT(current) == NULL) || (VME_OBJECT(current) != compressor_object)) { |
| 6336 | prot &= ~VM_PROT_WRITE; |
| 6337 | } else { |
| 6338 | assert(!VME_OBJECT(current)->code_signed); |
| 6339 | assert(VME_OBJECT(current)->copy_strategy == MEMORY_OBJECT_COPY_NONE); |
| 6340 | if (prot & VM_PROT_WRITE) { |
| 6341 | /* |
| 6342 | * For write requests on the |
| 6343 | * compressor, we wil ask the |
| 6344 | * pmap layer to prevent us from |
| 6345 | * taking a write fault when we |
| 6346 | * attempt to access the mapping |
| 6347 | * next. |
| 6348 | */ |
| 6349 | pmap_options |= PMAP_OPTIONS_PROTECT_IMMEDIATE; |
| 6350 | } |
| 6351 | } |
| 6352 | |
| 6353 | if (override_nx(map, VME_ALIAS(current)) && prot) { |
| 6354 | prot |= VM_PROT_EXECUTE; |
| 6355 | } |
| 6356 | |
| 6357 | #if DEVELOPMENT || DEBUG |
| 6358 | if (!(old_prot & VM_PROT_EXECUTE) && |
| 6359 | (prot & VM_PROT_EXECUTE) && |
| 6360 | panic_on_unsigned_execute && |
| 6361 | (proc_selfcsflags() & CS_KILL)) { |
| 6362 | panic("vm_map_protect(%p,0x%llx,0x%llx) old=0x%x new=0x%x - <rdar://23770418> code-signing bypass?" , map, (uint64_t)current->vme_start, (uint64_t)current->vme_end, old_prot, prot); |
| 6363 | } |
| 6364 | #endif /* DEVELOPMENT || DEBUG */ |
| 6365 | |
| 6366 | if (pmap_has_prot_policy(pmap: map->pmap, translated_allow_execute: current->translated_allow_execute, prot)) { |
| 6367 | if (current->wired_count) { |
| 6368 | panic("vm_map_protect(%p,0x%llx,0x%llx) new=0x%x wired=%x" , |
| 6369 | map, (uint64_t)current->vme_start, (uint64_t)current->vme_end, prot, current->wired_count); |
| 6370 | } |
| 6371 | |
| 6372 | /* If the pmap layer cares about this |
| 6373 | * protection type, force a fault for |
| 6374 | * each page so that vm_fault will |
| 6375 | * repopulate the page with the full |
| 6376 | * set of protections. |
| 6377 | */ |
| 6378 | /* |
| 6379 | * TODO: We don't seem to need this, |
| 6380 | * but this is due to an internal |
| 6381 | * implementation detail of |
| 6382 | * pmap_protect. Do we want to rely |
| 6383 | * on this? |
| 6384 | */ |
| 6385 | prot = VM_PROT_NONE; |
| 6386 | } |
| 6387 | |
| 6388 | if (current->is_sub_map && current->use_pmap) { |
| 6389 | pmap_protect(VME_SUBMAP(current)->pmap, |
| 6390 | s: current->vme_start, |
| 6391 | e: current->vme_end, |
| 6392 | prot); |
| 6393 | } else { |
| 6394 | pmap_protect_options(map: map->pmap, |
| 6395 | s: current->vme_start, |
| 6396 | e: current->vme_end, |
| 6397 | prot, |
| 6398 | options: pmap_options, |
| 6399 | NULL); |
| 6400 | } |
| 6401 | } |
| 6402 | current = current->vme_next; |
| 6403 | } |
| 6404 | |
| 6405 | current = entry; |
| 6406 | while ((current != vm_map_to_entry(map)) && |
| 6407 | (current->vme_start <= end)) { |
| 6408 | vm_map_simplify_entry(map, this_entry: current); |
| 6409 | current = current->vme_next; |
| 6410 | } |
| 6411 | |
| 6412 | vm_map_unlock(map); |
| 6413 | return KERN_SUCCESS; |
| 6414 | } |
| 6415 | |
| 6416 | /* |
| 6417 | * vm_map_inherit: |
| 6418 | * |
| 6419 | * Sets the inheritance of the specified address |
| 6420 | * range in the target map. Inheritance |
| 6421 | * affects how the map will be shared with |
| 6422 | * child maps at the time of vm_map_fork. |
| 6423 | */ |
| 6424 | kern_return_t |
| 6425 | vm_map_inherit( |
| 6426 | vm_map_t map, |
| 6427 | vm_map_offset_t start, |
| 6428 | vm_map_offset_t end, |
| 6429 | vm_inherit_t new_inheritance) |
| 6430 | { |
| 6431 | vm_map_entry_t entry; |
| 6432 | vm_map_entry_t temp_entry; |
| 6433 | |
| 6434 | vm_map_lock(map); |
| 6435 | |
| 6436 | VM_MAP_RANGE_CHECK(map, start, end); |
| 6437 | |
| 6438 | if (__improbable(vm_map_range_overflows(map, start, end - start))) { |
| 6439 | vm_map_unlock(map); |
| 6440 | return KERN_INVALID_ADDRESS; |
| 6441 | } |
| 6442 | |
| 6443 | if (vm_map_lookup_entry(map, address: start, entry: &temp_entry)) { |
| 6444 | entry = temp_entry; |
| 6445 | } else { |
| 6446 | temp_entry = temp_entry->vme_next; |
| 6447 | entry = temp_entry; |
| 6448 | } |
| 6449 | |
| 6450 | /* first check entire range for submaps which can't support the */ |
| 6451 | /* given inheritance. */ |
| 6452 | while ((entry != vm_map_to_entry(map)) && (entry->vme_start < end)) { |
| 6453 | if (entry->is_sub_map) { |
| 6454 | if (new_inheritance == VM_INHERIT_COPY) { |
| 6455 | vm_map_unlock(map); |
| 6456 | return KERN_INVALID_ARGUMENT; |
| 6457 | } |
| 6458 | } |
| 6459 | |
| 6460 | entry = entry->vme_next; |
| 6461 | } |
| 6462 | |
| 6463 | entry = temp_entry; |
| 6464 | if (entry != vm_map_to_entry(map)) { |
| 6465 | /* clip and unnest if necessary */ |
| 6466 | vm_map_clip_start(map, entry, startaddr: start); |
| 6467 | } |
| 6468 | |
| 6469 | while ((entry != vm_map_to_entry(map)) && (entry->vme_start < end)) { |
| 6470 | vm_map_clip_end(map, entry, endaddr: end); |
| 6471 | if (entry->is_sub_map) { |
| 6472 | /* clip did unnest if needed */ |
| 6473 | assert(!entry->use_pmap); |
| 6474 | } |
| 6475 | |
| 6476 | entry->inheritance = new_inheritance; |
| 6477 | |
| 6478 | entry = entry->vme_next; |
| 6479 | } |
| 6480 | |
| 6481 | vm_map_unlock(map); |
| 6482 | return KERN_SUCCESS; |
| 6483 | } |
| 6484 | |
| 6485 | /* |
| 6486 | * Update the accounting for the amount of wired memory in this map. If the user has |
| 6487 | * exceeded the defined limits, then we fail. Wiring on behalf of the kernel never fails. |
| 6488 | */ |
| 6489 | |
| 6490 | static kern_return_t |
| 6491 | add_wire_counts( |
| 6492 | vm_map_t map, |
| 6493 | vm_map_entry_t entry, |
| 6494 | boolean_t user_wire) |
| 6495 | { |
| 6496 | vm_map_size_t size; |
| 6497 | |
| 6498 | bool first_wire = entry->wired_count == 0 && entry->user_wired_count == 0; |
| 6499 | |
| 6500 | if (user_wire) { |
| 6501 | unsigned int total_wire_count = vm_page_wire_count + vm_lopage_free_count; |
| 6502 | |
| 6503 | /* |
| 6504 | * We're wiring memory at the request of the user. Check if this is the first time the user is wiring |
| 6505 | * this map entry. |
| 6506 | */ |
| 6507 | |
| 6508 | if (entry->user_wired_count == 0) { |
| 6509 | size = entry->vme_end - entry->vme_start; |
| 6510 | |
| 6511 | /* |
| 6512 | * Since this is the first time the user is wiring this map entry, check to see if we're |
| 6513 | * exceeding the user wire limits. There is a per map limit which is the smaller of either |
| 6514 | * the process's rlimit or the global vm_per_task_user_wire_limit which caps this value. There is also |
| 6515 | * a system-wide limit on the amount of memory all users can wire. If the user is over either |
| 6516 | * limit, then we fail. |
| 6517 | */ |
| 6518 | |
| 6519 | if (size + map->user_wire_size > MIN(map->user_wire_limit, vm_per_task_user_wire_limit) || |
| 6520 | size + ptoa_64(total_wire_count) > vm_global_user_wire_limit) { |
| 6521 | if (size + ptoa_64(total_wire_count) > vm_global_user_wire_limit) { |
| 6522 | #if DEVELOPMENT || DEBUG |
| 6523 | if (panic_on_mlock_failure) { |
| 6524 | panic("mlock: Over global wire limit. %llu bytes wired and requested to wire %llu bytes more" , ptoa_64(total_wire_count), (uint64_t) size); |
| 6525 | } |
| 6526 | #endif /* DEVELOPMENT || DEBUG */ |
| 6527 | os_atomic_inc(&vm_add_wire_count_over_global_limit, relaxed); |
| 6528 | } else { |
| 6529 | os_atomic_inc(&vm_add_wire_count_over_user_limit, relaxed); |
| 6530 | #if DEVELOPMENT || DEBUG |
| 6531 | if (panic_on_mlock_failure) { |
| 6532 | panic("mlock: Over process wire limit. %llu bytes wired and requested to wire %llu bytes more" , (uint64_t) map->user_wire_size, (uint64_t) size); |
| 6533 | } |
| 6534 | #endif /* DEVELOPMENT || DEBUG */ |
| 6535 | } |
| 6536 | return KERN_RESOURCE_SHORTAGE; |
| 6537 | } |
| 6538 | |
| 6539 | /* |
| 6540 | * The first time the user wires an entry, we also increment the wired_count and add this to |
| 6541 | * the total that has been wired in the map. |
| 6542 | */ |
| 6543 | |
| 6544 | if (entry->wired_count >= MAX_WIRE_COUNT) { |
| 6545 | return KERN_FAILURE; |
| 6546 | } |
| 6547 | |
| 6548 | entry->wired_count++; |
| 6549 | map->user_wire_size += size; |
| 6550 | } |
| 6551 | |
| 6552 | if (entry->user_wired_count >= MAX_WIRE_COUNT) { |
| 6553 | return KERN_FAILURE; |
| 6554 | } |
| 6555 | |
| 6556 | entry->user_wired_count++; |
| 6557 | } else { |
| 6558 | /* |
| 6559 | * The kernel's wiring the memory. Just bump the count and continue. |
| 6560 | */ |
| 6561 | |
| 6562 | if (entry->wired_count >= MAX_WIRE_COUNT) { |
| 6563 | panic("vm_map_wire: too many wirings" ); |
| 6564 | } |
| 6565 | |
| 6566 | entry->wired_count++; |
| 6567 | } |
| 6568 | |
| 6569 | if (first_wire) { |
| 6570 | vme_btref_consider_and_set(entry, fp: __builtin_frame_address(0)); |
| 6571 | } |
| 6572 | |
| 6573 | return KERN_SUCCESS; |
| 6574 | } |
| 6575 | |
| 6576 | /* |
| 6577 | * Update the memory wiring accounting now that the given map entry is being unwired. |
| 6578 | */ |
| 6579 | |
| 6580 | static void |
| 6581 | subtract_wire_counts( |
| 6582 | vm_map_t map, |
| 6583 | vm_map_entry_t entry, |
| 6584 | boolean_t user_wire) |
| 6585 | { |
| 6586 | if (user_wire) { |
| 6587 | /* |
| 6588 | * We're unwiring memory at the request of the user. See if we're removing the last user wire reference. |
| 6589 | */ |
| 6590 | |
| 6591 | if (entry->user_wired_count == 1) { |
| 6592 | /* |
| 6593 | * We're removing the last user wire reference. Decrement the wired_count and the total |
| 6594 | * user wired memory for this map. |
| 6595 | */ |
| 6596 | |
| 6597 | assert(entry->wired_count >= 1); |
| 6598 | entry->wired_count--; |
| 6599 | map->user_wire_size -= entry->vme_end - entry->vme_start; |
| 6600 | } |
| 6601 | |
| 6602 | assert(entry->user_wired_count >= 1); |
| 6603 | entry->user_wired_count--; |
| 6604 | } else { |
| 6605 | /* |
| 6606 | * The kernel is unwiring the memory. Just update the count. |
| 6607 | */ |
| 6608 | |
| 6609 | assert(entry->wired_count >= 1); |
| 6610 | entry->wired_count--; |
| 6611 | } |
| 6612 | |
| 6613 | vme_btref_consider_and_put(entry); |
| 6614 | } |
| 6615 | |
| 6616 | int cs_executable_wire = 0; |
| 6617 | |
| 6618 | /* |
| 6619 | * vm_map_wire: |
| 6620 | * |
| 6621 | * Sets the pageability of the specified address range in the |
| 6622 | * target map as wired. Regions specified as not pageable require |
| 6623 | * locked-down physical memory and physical page maps. The |
| 6624 | * access_type variable indicates types of accesses that must not |
| 6625 | * generate page faults. This is checked against protection of |
| 6626 | * memory being locked-down. |
| 6627 | * |
| 6628 | * The map must not be locked, but a reference must remain to the |
| 6629 | * map throughout the call. |
| 6630 | */ |
| 6631 | static kern_return_t |
| 6632 | vm_map_wire_nested( |
| 6633 | vm_map_t map, |
| 6634 | vm_map_offset_t start, |
| 6635 | vm_map_offset_t end, |
| 6636 | vm_prot_t caller_prot, |
| 6637 | vm_tag_t tag, |
| 6638 | boolean_t user_wire, |
| 6639 | pmap_t map_pmap, |
| 6640 | vm_map_offset_t pmap_addr, |
| 6641 | ppnum_t *physpage_p) |
| 6642 | { |
| 6643 | vm_map_entry_t entry; |
| 6644 | vm_prot_t access_type; |
| 6645 | struct vm_map_entry *first_entry, tmp_entry; |
| 6646 | vm_map_t real_map; |
| 6647 | vm_map_offset_t s, e; |
| 6648 | kern_return_t rc; |
| 6649 | boolean_t need_wakeup; |
| 6650 | boolean_t main_map = FALSE; |
| 6651 | wait_interrupt_t interruptible_state; |
| 6652 | thread_t cur_thread; |
| 6653 | unsigned int last_timestamp; |
| 6654 | vm_map_size_t size; |
| 6655 | boolean_t wire_and_extract; |
| 6656 | vm_prot_t ; |
| 6657 | |
| 6658 | extra_prots = VM_PROT_COPY; |
| 6659 | extra_prots |= VM_PROT_COPY_FAIL_IF_EXECUTABLE; |
| 6660 | #if XNU_TARGET_OS_OSX |
| 6661 | if (map->pmap == kernel_pmap || |
| 6662 | !vm_map_cs_enforcement(map)) { |
| 6663 | extra_prots &= ~VM_PROT_COPY_FAIL_IF_EXECUTABLE; |
| 6664 | } |
| 6665 | #endif /* XNU_TARGET_OS_OSX */ |
| 6666 | #if CODE_SIGNING_MONITOR |
| 6667 | if (csm_address_space_exempt(map->pmap) == KERN_SUCCESS) { |
| 6668 | extra_prots &= ~VM_PROT_COPY_FAIL_IF_EXECUTABLE; |
| 6669 | } |
| 6670 | #endif /* CODE_SIGNING_MONITOR */ |
| 6671 | |
| 6672 | access_type = (caller_prot & (VM_PROT_ALL | VM_PROT_ALLEXEC)); |
| 6673 | |
| 6674 | wire_and_extract = FALSE; |
| 6675 | if (physpage_p != NULL) { |
| 6676 | /* |
| 6677 | * The caller wants the physical page number of the |
| 6678 | * wired page. We return only one physical page number |
| 6679 | * so this works for only one page at a time. |
| 6680 | */ |
| 6681 | if ((end - start) != PAGE_SIZE) { |
| 6682 | return KERN_INVALID_ARGUMENT; |
| 6683 | } |
| 6684 | wire_and_extract = TRUE; |
| 6685 | *physpage_p = 0; |
| 6686 | } |
| 6687 | |
| 6688 | vm_map_lock(map); |
| 6689 | if (map_pmap == NULL) { |
| 6690 | main_map = TRUE; |
| 6691 | } |
| 6692 | last_timestamp = map->timestamp; |
| 6693 | |
| 6694 | VM_MAP_RANGE_CHECK(map, start, end); |
| 6695 | assert(VM_MAP_PAGE_ALIGNED(start, VM_MAP_PAGE_MASK(map))); |
| 6696 | assert(VM_MAP_PAGE_ALIGNED(end, VM_MAP_PAGE_MASK(map))); |
| 6697 | |
| 6698 | if (start == end) { |
| 6699 | /* We wired what the caller asked for, zero pages */ |
| 6700 | vm_map_unlock(map); |
| 6701 | return KERN_SUCCESS; |
| 6702 | } |
| 6703 | |
| 6704 | if (__improbable(vm_map_range_overflows(map, start, end - start))) { |
| 6705 | vm_map_unlock(map); |
| 6706 | return KERN_INVALID_ADDRESS; |
| 6707 | } |
| 6708 | |
| 6709 | need_wakeup = FALSE; |
| 6710 | cur_thread = current_thread(); |
| 6711 | |
| 6712 | s = start; |
| 6713 | rc = KERN_SUCCESS; |
| 6714 | |
| 6715 | if (vm_map_lookup_entry(map, address: s, entry: &first_entry)) { |
| 6716 | entry = first_entry; |
| 6717 | /* |
| 6718 | * vm_map_clip_start will be done later. |
| 6719 | * We don't want to unnest any nested submaps here ! |
| 6720 | */ |
| 6721 | } else { |
| 6722 | /* Start address is not in map */ |
| 6723 | rc = KERN_INVALID_ADDRESS; |
| 6724 | goto done; |
| 6725 | } |
| 6726 | |
| 6727 | while ((entry != vm_map_to_entry(map)) && (s < end)) { |
| 6728 | /* |
| 6729 | * At this point, we have wired from "start" to "s". |
| 6730 | * We still need to wire from "s" to "end". |
| 6731 | * |
| 6732 | * "entry" hasn't been clipped, so it could start before "s" |
| 6733 | * and/or end after "end". |
| 6734 | */ |
| 6735 | |
| 6736 | /* "e" is how far we want to wire in this entry */ |
| 6737 | e = entry->vme_end; |
| 6738 | if (e > end) { |
| 6739 | e = end; |
| 6740 | } |
| 6741 | |
| 6742 | /* |
| 6743 | * If another thread is wiring/unwiring this entry then |
| 6744 | * block after informing other thread to wake us up. |
| 6745 | */ |
| 6746 | if (entry->in_transition) { |
| 6747 | wait_result_t wait_result; |
| 6748 | |
| 6749 | /* |
| 6750 | * We have not clipped the entry. Make sure that |
| 6751 | * the start address is in range so that the lookup |
| 6752 | * below will succeed. |
| 6753 | * "s" is the current starting point: we've already |
| 6754 | * wired from "start" to "s" and we still have |
| 6755 | * to wire from "s" to "end". |
| 6756 | */ |
| 6757 | |
| 6758 | entry->needs_wakeup = TRUE; |
| 6759 | |
| 6760 | /* |
| 6761 | * wake up anybody waiting on entries that we have |
| 6762 | * already wired. |
| 6763 | */ |
| 6764 | if (need_wakeup) { |
| 6765 | vm_map_entry_wakeup(map); |
| 6766 | need_wakeup = FALSE; |
| 6767 | } |
| 6768 | /* |
| 6769 | * User wiring is interruptible |
| 6770 | */ |
| 6771 | wait_result = vm_map_entry_wait(map, |
| 6772 | (user_wire) ? THREAD_ABORTSAFE : |
| 6773 | THREAD_UNINT); |
| 6774 | if (user_wire && wait_result == THREAD_INTERRUPTED) { |
| 6775 | /* |
| 6776 | * undo the wirings we have done so far |
| 6777 | * We do not clear the needs_wakeup flag, |
| 6778 | * because we cannot tell if we were the |
| 6779 | * only one waiting. |
| 6780 | */ |
| 6781 | rc = KERN_FAILURE; |
| 6782 | goto done; |
| 6783 | } |
| 6784 | |
| 6785 | /* |
| 6786 | * Cannot avoid a lookup here. reset timestamp. |
| 6787 | */ |
| 6788 | last_timestamp = map->timestamp; |
| 6789 | |
| 6790 | /* |
| 6791 | * The entry could have been clipped, look it up again. |
| 6792 | * Worse that can happen is, it may not exist anymore. |
| 6793 | */ |
| 6794 | if (!vm_map_lookup_entry(map, address: s, entry: &first_entry)) { |
| 6795 | /* |
| 6796 | * User: undo everything upto the previous |
| 6797 | * entry. let vm_map_unwire worry about |
| 6798 | * checking the validity of the range. |
| 6799 | */ |
| 6800 | rc = KERN_FAILURE; |
| 6801 | goto done; |
| 6802 | } |
| 6803 | entry = first_entry; |
| 6804 | continue; |
| 6805 | } |
| 6806 | |
| 6807 | if (entry->is_sub_map) { |
| 6808 | vm_map_offset_t sub_start; |
| 6809 | vm_map_offset_t sub_end; |
| 6810 | vm_map_offset_t local_start; |
| 6811 | vm_map_offset_t local_end; |
| 6812 | pmap_t pmap; |
| 6813 | |
| 6814 | if (wire_and_extract) { |
| 6815 | /* |
| 6816 | * Wiring would result in copy-on-write |
| 6817 | * which would not be compatible with |
| 6818 | * the sharing we have with the original |
| 6819 | * provider of this memory. |
| 6820 | */ |
| 6821 | rc = KERN_INVALID_ARGUMENT; |
| 6822 | goto done; |
| 6823 | } |
| 6824 | |
| 6825 | vm_map_clip_start(map, entry, startaddr: s); |
| 6826 | vm_map_clip_end(map, entry, endaddr: end); |
| 6827 | |
| 6828 | sub_start = VME_OFFSET(entry); |
| 6829 | sub_end = entry->vme_end; |
| 6830 | sub_end += VME_OFFSET(entry) - entry->vme_start; |
| 6831 | |
| 6832 | local_end = entry->vme_end; |
| 6833 | if (map_pmap == NULL) { |
| 6834 | vm_object_t object; |
| 6835 | vm_object_offset_t offset; |
| 6836 | vm_prot_t prot; |
| 6837 | boolean_t wired; |
| 6838 | vm_map_entry_t local_entry; |
| 6839 | vm_map_version_t version; |
| 6840 | vm_map_t lookup_map; |
| 6841 | |
| 6842 | if (entry->use_pmap) { |
| 6843 | pmap = VME_SUBMAP(entry)->pmap; |
| 6844 | /* ppc implementation requires that */ |
| 6845 | /* submaps pmap address ranges line */ |
| 6846 | /* up with parent map */ |
| 6847 | #ifdef notdef |
| 6848 | pmap_addr = sub_start; |
| 6849 | #endif |
| 6850 | pmap_addr = s; |
| 6851 | } else { |
| 6852 | pmap = map->pmap; |
| 6853 | pmap_addr = s; |
| 6854 | } |
| 6855 | |
| 6856 | if (entry->wired_count) { |
| 6857 | if ((rc = add_wire_counts(map, entry, user_wire)) != KERN_SUCCESS) { |
| 6858 | goto done; |
| 6859 | } |
| 6860 | |
| 6861 | /* |
| 6862 | * The map was not unlocked: |
| 6863 | * no need to goto re-lookup. |
| 6864 | * Just go directly to next entry. |
| 6865 | */ |
| 6866 | entry = entry->vme_next; |
| 6867 | s = entry->vme_start; |
| 6868 | continue; |
| 6869 | } |
| 6870 | |
| 6871 | /* call vm_map_lookup_and_lock_object to */ |
| 6872 | /* cause any needs copy to be */ |
| 6873 | /* evaluated */ |
| 6874 | local_start = entry->vme_start; |
| 6875 | lookup_map = map; |
| 6876 | vm_map_lock_write_to_read(map); |
| 6877 | rc = vm_map_lookup_and_lock_object( |
| 6878 | var_map: &lookup_map, vaddr: local_start, |
| 6879 | fault_type: (access_type | extra_prots), |
| 6880 | OBJECT_LOCK_EXCLUSIVE, |
| 6881 | out_version: &version, object: &object, |
| 6882 | offset: &offset, out_prot: &prot, wired: &wired, |
| 6883 | NULL, |
| 6884 | real_map: &real_map, NULL); |
| 6885 | if (rc != KERN_SUCCESS) { |
| 6886 | vm_map_unlock_read(lookup_map); |
| 6887 | assert(map_pmap == NULL); |
| 6888 | vm_map_unwire(map, start, |
| 6889 | end: s, user_wire); |
| 6890 | return rc; |
| 6891 | } |
| 6892 | vm_object_unlock(object); |
| 6893 | if (real_map != lookup_map) { |
| 6894 | vm_map_unlock(real_map); |
| 6895 | } |
| 6896 | vm_map_unlock_read(lookup_map); |
| 6897 | vm_map_lock(map); |
| 6898 | |
| 6899 | /* we unlocked, so must re-lookup */ |
| 6900 | if (!vm_map_lookup_entry(map, |
| 6901 | address: local_start, |
| 6902 | entry: &local_entry)) { |
| 6903 | rc = KERN_FAILURE; |
| 6904 | goto done; |
| 6905 | } |
| 6906 | |
| 6907 | /* |
| 6908 | * entry could have been "simplified", |
| 6909 | * so re-clip |
| 6910 | */ |
| 6911 | entry = local_entry; |
| 6912 | assert(s == local_start); |
| 6913 | vm_map_clip_start(map, entry, startaddr: s); |
| 6914 | vm_map_clip_end(map, entry, endaddr: end); |
| 6915 | /* re-compute "e" */ |
| 6916 | e = entry->vme_end; |
| 6917 | if (e > end) { |
| 6918 | e = end; |
| 6919 | } |
| 6920 | |
| 6921 | /* did we have a change of type? */ |
| 6922 | if (!entry->is_sub_map) { |
| 6923 | last_timestamp = map->timestamp; |
| 6924 | continue; |
| 6925 | } |
| 6926 | } else { |
| 6927 | local_start = entry->vme_start; |
| 6928 | pmap = map_pmap; |
| 6929 | } |
| 6930 | |
| 6931 | if ((rc = add_wire_counts(map, entry, user_wire)) != KERN_SUCCESS) { |
| 6932 | goto done; |
| 6933 | } |
| 6934 | |
| 6935 | entry->in_transition = TRUE; |
| 6936 | |
| 6937 | vm_map_unlock(map); |
| 6938 | rc = vm_map_wire_nested(VME_SUBMAP(entry), |
| 6939 | start: sub_start, end: sub_end, |
| 6940 | caller_prot, tag, |
| 6941 | user_wire, map_pmap: pmap, pmap_addr, |
| 6942 | NULL); |
| 6943 | vm_map_lock(map); |
| 6944 | |
| 6945 | /* |
| 6946 | * Find the entry again. It could have been clipped |
| 6947 | * after we unlocked the map. |
| 6948 | */ |
| 6949 | if (!vm_map_lookup_entry(map, address: local_start, |
| 6950 | entry: &first_entry)) { |
| 6951 | panic("vm_map_wire: re-lookup failed" ); |
| 6952 | } |
| 6953 | entry = first_entry; |
| 6954 | |
| 6955 | assert(local_start == s); |
| 6956 | /* re-compute "e" */ |
| 6957 | e = entry->vme_end; |
| 6958 | if (e > end) { |
| 6959 | e = end; |
| 6960 | } |
| 6961 | |
| 6962 | last_timestamp = map->timestamp; |
| 6963 | while ((entry != vm_map_to_entry(map)) && |
| 6964 | (entry->vme_start < e)) { |
| 6965 | assert(entry->in_transition); |
| 6966 | entry->in_transition = FALSE; |
| 6967 | if (entry->needs_wakeup) { |
| 6968 | entry->needs_wakeup = FALSE; |
| 6969 | need_wakeup = TRUE; |
| 6970 | } |
| 6971 | if (rc != KERN_SUCCESS) {/* from vm_*_wire */ |
| 6972 | subtract_wire_counts(map, entry, user_wire); |
| 6973 | } |
| 6974 | entry = entry->vme_next; |
| 6975 | } |
| 6976 | if (rc != KERN_SUCCESS) { /* from vm_*_wire */ |
| 6977 | goto done; |
| 6978 | } |
| 6979 | |
| 6980 | /* no need to relookup again */ |
| 6981 | s = entry->vme_start; |
| 6982 | continue; |
| 6983 | } |
| 6984 | |
| 6985 | /* |
| 6986 | * If this entry is already wired then increment |
| 6987 | * the appropriate wire reference count. |
| 6988 | */ |
| 6989 | if (entry->wired_count) { |
| 6990 | if ((entry->protection & access_type) != access_type) { |
| 6991 | /* found a protection problem */ |
| 6992 | |
| 6993 | /* |
| 6994 | * XXX FBDP |
| 6995 | * We should always return an error |
| 6996 | * in this case but since we didn't |
| 6997 | * enforce it before, let's do |
| 6998 | * it only for the new "wire_and_extract" |
| 6999 | * code path for now... |
| 7000 | */ |
| 7001 | if (wire_and_extract) { |
| 7002 | rc = KERN_PROTECTION_FAILURE; |
| 7003 | goto done; |
| 7004 | } |
| 7005 | } |
| 7006 | |
| 7007 | /* |
| 7008 | * entry is already wired down, get our reference |
| 7009 | * after clipping to our range. |
| 7010 | */ |
| 7011 | vm_map_clip_start(map, entry, startaddr: s); |
| 7012 | vm_map_clip_end(map, entry, endaddr: end); |
| 7013 | |
| 7014 | if ((rc = add_wire_counts(map, entry, user_wire)) != KERN_SUCCESS) { |
| 7015 | goto done; |
| 7016 | } |
| 7017 | |
| 7018 | if (wire_and_extract) { |
| 7019 | vm_object_t object; |
| 7020 | vm_object_offset_t offset; |
| 7021 | vm_page_t m; |
| 7022 | |
| 7023 | /* |
| 7024 | * We don't have to "wire" the page again |
| 7025 | * bit we still have to "extract" its |
| 7026 | * physical page number, after some sanity |
| 7027 | * checks. |
| 7028 | */ |
| 7029 | assert((entry->vme_end - entry->vme_start) |
| 7030 | == PAGE_SIZE); |
| 7031 | assert(!entry->needs_copy); |
| 7032 | assert(!entry->is_sub_map); |
| 7033 | assert(VME_OBJECT(entry)); |
| 7034 | if (((entry->vme_end - entry->vme_start) |
| 7035 | != PAGE_SIZE) || |
| 7036 | entry->needs_copy || |
| 7037 | entry->is_sub_map || |
| 7038 | VME_OBJECT(entry) == VM_OBJECT_NULL) { |
| 7039 | rc = KERN_INVALID_ARGUMENT; |
| 7040 | goto done; |
| 7041 | } |
| 7042 | |
| 7043 | object = VME_OBJECT(entry); |
| 7044 | offset = VME_OFFSET(entry); |
| 7045 | /* need exclusive lock to update m->dirty */ |
| 7046 | if (entry->protection & VM_PROT_WRITE) { |
| 7047 | vm_object_lock(object); |
| 7048 | } else { |
| 7049 | vm_object_lock_shared(object); |
| 7050 | } |
| 7051 | m = vm_page_lookup(object, offset); |
| 7052 | assert(m != VM_PAGE_NULL); |
| 7053 | assert(VM_PAGE_WIRED(m)); |
| 7054 | if (m != VM_PAGE_NULL && VM_PAGE_WIRED(m)) { |
| 7055 | *physpage_p = VM_PAGE_GET_PHYS_PAGE(m); |
| 7056 | if (entry->protection & VM_PROT_WRITE) { |
| 7057 | vm_object_lock_assert_exclusive( |
| 7058 | object); |
| 7059 | m->vmp_dirty = TRUE; |
| 7060 | } |
| 7061 | } else { |
| 7062 | /* not already wired !? */ |
| 7063 | *physpage_p = 0; |
| 7064 | } |
| 7065 | vm_object_unlock(object); |
| 7066 | } |
| 7067 | |
| 7068 | /* map was not unlocked: no need to relookup */ |
| 7069 | entry = entry->vme_next; |
| 7070 | s = entry->vme_start; |
| 7071 | continue; |
| 7072 | } |
| 7073 | |
| 7074 | /* |
| 7075 | * Unwired entry or wire request transmitted via submap |
| 7076 | */ |
| 7077 | |
| 7078 | /* |
| 7079 | * Wiring would copy the pages to the shadow object. |
| 7080 | * The shadow object would not be code-signed so |
| 7081 | * attempting to execute code from these copied pages |
| 7082 | * would trigger a code-signing violation. |
| 7083 | */ |
| 7084 | |
| 7085 | if ((entry->protection & VM_PROT_EXECUTE) |
| 7086 | #if XNU_TARGET_OS_OSX |
| 7087 | && |
| 7088 | map->pmap != kernel_pmap && |
| 7089 | (vm_map_cs_enforcement(map) |
| 7090 | #if __arm64__ |
| 7091 | || !VM_MAP_IS_EXOTIC(map) |
| 7092 | #endif /* __arm64__ */ |
| 7093 | ) |
| 7094 | #endif /* XNU_TARGET_OS_OSX */ |
| 7095 | #if CODE_SIGNING_MONITOR |
| 7096 | && |
| 7097 | (csm_address_space_exempt(map->pmap) != KERN_SUCCESS) |
| 7098 | #endif |
| 7099 | ) { |
| 7100 | #if MACH_ASSERT |
| 7101 | printf("pid %d[%s] wiring executable range from " |
| 7102 | "0x%llx to 0x%llx: rejected to preserve " |
| 7103 | "code-signing\n" , |
| 7104 | proc_selfpid(), |
| 7105 | (get_bsdtask_info(current_task()) |
| 7106 | ? proc_name_address(get_bsdtask_info(current_task())) |
| 7107 | : "?" ), |
| 7108 | (uint64_t) entry->vme_start, |
| 7109 | (uint64_t) entry->vme_end); |
| 7110 | #endif /* MACH_ASSERT */ |
| 7111 | DTRACE_VM2(cs_executable_wire, |
| 7112 | uint64_t, (uint64_t)entry->vme_start, |
| 7113 | uint64_t, (uint64_t)entry->vme_end); |
| 7114 | cs_executable_wire++; |
| 7115 | rc = KERN_PROTECTION_FAILURE; |
| 7116 | goto done; |
| 7117 | } |
| 7118 | |
| 7119 | /* |
| 7120 | * Perform actions of vm_map_lookup that need the write |
| 7121 | * lock on the map: create a shadow object for a |
| 7122 | * copy-on-write region, or an object for a zero-fill |
| 7123 | * region. |
| 7124 | */ |
| 7125 | size = entry->vme_end - entry->vme_start; |
| 7126 | /* |
| 7127 | * If wiring a copy-on-write page, we need to copy it now |
| 7128 | * even if we're only (currently) requesting read access. |
| 7129 | * This is aggressive, but once it's wired we can't move it. |
| 7130 | */ |
| 7131 | if (entry->needs_copy) { |
| 7132 | if (wire_and_extract) { |
| 7133 | /* |
| 7134 | * We're supposed to share with the original |
| 7135 | * provider so should not be "needs_copy" |
| 7136 | */ |
| 7137 | rc = KERN_INVALID_ARGUMENT; |
| 7138 | goto done; |
| 7139 | } |
| 7140 | |
| 7141 | VME_OBJECT_SHADOW(entry, length: size, |
| 7142 | always: vm_map_always_shadow(map)); |
| 7143 | entry->needs_copy = FALSE; |
| 7144 | } else if (VME_OBJECT(entry) == VM_OBJECT_NULL) { |
| 7145 | if (wire_and_extract) { |
| 7146 | /* |
| 7147 | * We're supposed to share with the original |
| 7148 | * provider so should already have an object. |
| 7149 | */ |
| 7150 | rc = KERN_INVALID_ARGUMENT; |
| 7151 | goto done; |
| 7152 | } |
| 7153 | VME_OBJECT_SET(entry, object: vm_object_allocate(size), false, context: 0); |
| 7154 | VME_OFFSET_SET(entry, offset: (vm_object_offset_t)0); |
| 7155 | assert(entry->use_pmap); |
| 7156 | } else if (VME_OBJECT(entry)->copy_strategy == MEMORY_OBJECT_COPY_SYMMETRIC) { |
| 7157 | if (wire_and_extract) { |
| 7158 | /* |
| 7159 | * We're supposed to share with the original |
| 7160 | * provider so should not be COPY_SYMMETRIC. |
| 7161 | */ |
| 7162 | rc = KERN_INVALID_ARGUMENT; |
| 7163 | goto done; |
| 7164 | } |
| 7165 | /* |
| 7166 | * Force an unrequested "copy-on-write" but only for |
| 7167 | * the range we're wiring. |
| 7168 | */ |
| 7169 | // printf("FBDP %s:%d map %p entry %p [ 0x%llx 0x%llx ] s 0x%llx end 0x%llx wire&extract=%d\n", __FUNCTION__, __LINE__, map, entry, (uint64_t)entry->vme_start, (uint64_t)entry->vme_end, (uint64_t)s, (uint64_t)end, wire_and_extract); |
| 7170 | vm_map_clip_start(map, entry, startaddr: s); |
| 7171 | vm_map_clip_end(map, entry, endaddr: end); |
| 7172 | /* recompute "size" */ |
| 7173 | size = entry->vme_end - entry->vme_start; |
| 7174 | /* make a shadow object */ |
| 7175 | vm_object_t orig_object; |
| 7176 | vm_object_offset_t orig_offset; |
| 7177 | orig_object = VME_OBJECT(entry); |
| 7178 | orig_offset = VME_OFFSET(entry); |
| 7179 | VME_OBJECT_SHADOW(entry, length: size, always: vm_map_always_shadow(map)); |
| 7180 | if (VME_OBJECT(entry) != orig_object) { |
| 7181 | /* |
| 7182 | * This mapping has not been shared (or it would be |
| 7183 | * COPY_DELAY instead of COPY_SYMMETRIC) and it has |
| 7184 | * not been copied-on-write (or it would be marked |
| 7185 | * as "needs_copy" and would have been handled above |
| 7186 | * and also already write-protected). |
| 7187 | * We still need to write-protect here to prevent |
| 7188 | * other threads from modifying these pages while |
| 7189 | * we're in the process of copying and wiring |
| 7190 | * the copied pages. |
| 7191 | * Since the mapping is neither shared nor COWed, |
| 7192 | * we only need to write-protect the PTEs for this |
| 7193 | * mapping. |
| 7194 | */ |
| 7195 | vm_object_pmap_protect(object: orig_object, |
| 7196 | offset: orig_offset, |
| 7197 | size, |
| 7198 | pmap: map->pmap, |
| 7199 | VM_MAP_PAGE_SIZE(map), |
| 7200 | pmap_start: entry->vme_start, |
| 7201 | prot: entry->protection & ~VM_PROT_WRITE); |
| 7202 | } |
| 7203 | } |
| 7204 | if (VME_OBJECT(entry)->copy_strategy == MEMORY_OBJECT_COPY_SYMMETRIC) { |
| 7205 | /* |
| 7206 | * Make the object COPY_DELAY to get a stable object |
| 7207 | * to wire. |
| 7208 | * That should avoid creating long shadow chains while |
| 7209 | * wiring/unwiring the same range repeatedly. |
| 7210 | * That also prevents part of the object from being |
| 7211 | * wired while another part is "needs_copy", which |
| 7212 | * could result in conflicting rules wrt copy-on-write. |
| 7213 | */ |
| 7214 | vm_object_t object; |
| 7215 | |
| 7216 | object = VME_OBJECT(entry); |
| 7217 | vm_object_lock(object); |
| 7218 | if (object->copy_strategy == MEMORY_OBJECT_COPY_SYMMETRIC) { |
| 7219 | assertf(vm_object_round_page(VME_OFFSET(entry) + size) - vm_object_trunc_page(VME_OFFSET(entry)) == object->vo_size, |
| 7220 | "object %p size 0x%llx entry %p [0x%llx:0x%llx:0x%llx] size 0x%llx\n" , |
| 7221 | object, (uint64_t)object->vo_size, |
| 7222 | entry, |
| 7223 | (uint64_t)entry->vme_start, |
| 7224 | (uint64_t)entry->vme_end, |
| 7225 | (uint64_t)VME_OFFSET(entry), |
| 7226 | (uint64_t)size); |
| 7227 | assertf(object->ref_count == 1, |
| 7228 | "object %p ref_count %d\n" , |
| 7229 | object, object->ref_count); |
| 7230 | assertf(!entry->needs_copy, |
| 7231 | "entry %p\n" , entry); |
| 7232 | object->copy_strategy = MEMORY_OBJECT_COPY_DELAY; |
| 7233 | VM_OBJECT_SET_TRUE_SHARE(object, TRUE); |
| 7234 | } |
| 7235 | vm_object_unlock(object); |
| 7236 | } |
| 7237 | |
| 7238 | vm_map_clip_start(map, entry, startaddr: s); |
| 7239 | vm_map_clip_end(map, entry, endaddr: end); |
| 7240 | |
| 7241 | /* re-compute "e" */ |
| 7242 | e = entry->vme_end; |
| 7243 | if (e > end) { |
| 7244 | e = end; |
| 7245 | } |
| 7246 | |
| 7247 | /* |
| 7248 | * Check for holes and protection mismatch. |
| 7249 | * Holes: Next entry should be contiguous unless this |
| 7250 | * is the end of the region. |
| 7251 | * Protection: Access requested must be allowed, unless |
| 7252 | * wiring is by protection class |
| 7253 | */ |
| 7254 | if ((entry->vme_end < end) && |
| 7255 | ((entry->vme_next == vm_map_to_entry(map)) || |
| 7256 | (entry->vme_next->vme_start > entry->vme_end))) { |
| 7257 | /* found a hole */ |
| 7258 | rc = KERN_INVALID_ADDRESS; |
| 7259 | goto done; |
| 7260 | } |
| 7261 | if ((entry->protection & access_type) != access_type) { |
| 7262 | /* found a protection problem */ |
| 7263 | rc = KERN_PROTECTION_FAILURE; |
| 7264 | goto done; |
| 7265 | } |
| 7266 | |
| 7267 | assert(entry->wired_count == 0 && entry->user_wired_count == 0); |
| 7268 | |
| 7269 | if ((rc = add_wire_counts(map, entry, user_wire)) != KERN_SUCCESS) { |
| 7270 | goto done; |
| 7271 | } |
| 7272 | |
| 7273 | entry->in_transition = TRUE; |
| 7274 | |
| 7275 | /* |
| 7276 | * This entry might get split once we unlock the map. |
| 7277 | * In vm_fault_wire(), we need the current range as |
| 7278 | * defined by this entry. In order for this to work |
| 7279 | * along with a simultaneous clip operation, we make a |
| 7280 | * temporary copy of this entry and use that for the |
| 7281 | * wiring. Note that the underlying objects do not |
| 7282 | * change during a clip. |
| 7283 | */ |
| 7284 | tmp_entry = *entry; |
| 7285 | |
| 7286 | /* |
| 7287 | * The in_transition state guarentees that the entry |
| 7288 | * (or entries for this range, if split occured) will be |
| 7289 | * there when the map lock is acquired for the second time. |
| 7290 | */ |
| 7291 | vm_map_unlock(map); |
| 7292 | |
| 7293 | if (!user_wire && cur_thread != THREAD_NULL) { |
| 7294 | interruptible_state = thread_interrupt_level(THREAD_UNINT); |
| 7295 | } else { |
| 7296 | interruptible_state = THREAD_UNINT; |
| 7297 | } |
| 7298 | |
| 7299 | if (map_pmap) { |
| 7300 | rc = vm_fault_wire(map, |
| 7301 | entry: &tmp_entry, prot: caller_prot, wire_tag: tag, pmap: map_pmap, pmap_addr, |
| 7302 | physpage_p); |
| 7303 | } else { |
| 7304 | rc = vm_fault_wire(map, |
| 7305 | entry: &tmp_entry, prot: caller_prot, wire_tag: tag, pmap: map->pmap, |
| 7306 | pmap_addr: tmp_entry.vme_start, |
| 7307 | physpage_p); |
| 7308 | } |
| 7309 | |
| 7310 | if (!user_wire && cur_thread != THREAD_NULL) { |
| 7311 | thread_interrupt_level(interruptible: interruptible_state); |
| 7312 | } |
| 7313 | |
| 7314 | vm_map_lock(map); |
| 7315 | |
| 7316 | if (last_timestamp + 1 != map->timestamp) { |
| 7317 | /* |
| 7318 | * Find the entry again. It could have been clipped |
| 7319 | * after we unlocked the map. |
| 7320 | */ |
| 7321 | if (!vm_map_lookup_entry(map, address: tmp_entry.vme_start, |
| 7322 | entry: &first_entry)) { |
| 7323 | panic("vm_map_wire: re-lookup failed" ); |
| 7324 | } |
| 7325 | |
| 7326 | entry = first_entry; |
| 7327 | } |
| 7328 | |
| 7329 | last_timestamp = map->timestamp; |
| 7330 | |
| 7331 | while ((entry != vm_map_to_entry(map)) && |
| 7332 | (entry->vme_start < tmp_entry.vme_end)) { |
| 7333 | assert(entry->in_transition); |
| 7334 | entry->in_transition = FALSE; |
| 7335 | if (entry->needs_wakeup) { |
| 7336 | entry->needs_wakeup = FALSE; |
| 7337 | need_wakeup = TRUE; |
| 7338 | } |
| 7339 | if (rc != KERN_SUCCESS) { /* from vm_*_wire */ |
| 7340 | subtract_wire_counts(map, entry, user_wire); |
| 7341 | } |
| 7342 | entry = entry->vme_next; |
| 7343 | } |
| 7344 | |
| 7345 | if (rc != KERN_SUCCESS) { /* from vm_*_wire */ |
| 7346 | goto done; |
| 7347 | } |
| 7348 | |
| 7349 | if ((entry != vm_map_to_entry(map)) && /* we still have entries in the map */ |
| 7350 | (tmp_entry.vme_end != end) && /* AND, we are not at the end of the requested range */ |
| 7351 | (entry->vme_start != tmp_entry.vme_end)) { /* AND, the next entry is not contiguous. */ |
| 7352 | /* found a "new" hole */ |
| 7353 | s = tmp_entry.vme_end; |
| 7354 | rc = KERN_INVALID_ADDRESS; |
| 7355 | goto done; |
| 7356 | } |
| 7357 | |
| 7358 | s = entry->vme_start; |
| 7359 | } /* end while loop through map entries */ |
| 7360 | |
| 7361 | done: |
| 7362 | if (rc == KERN_SUCCESS) { |
| 7363 | /* repair any damage we may have made to the VM map */ |
| 7364 | vm_map_simplify_range(map, start, end); |
| 7365 | } |
| 7366 | |
| 7367 | vm_map_unlock(map); |
| 7368 | |
| 7369 | /* |
| 7370 | * wake up anybody waiting on entries we wired. |
| 7371 | */ |
| 7372 | if (need_wakeup) { |
| 7373 | vm_map_entry_wakeup(map); |
| 7374 | } |
| 7375 | |
| 7376 | if (rc != KERN_SUCCESS) { |
| 7377 | /* undo what has been wired so far */ |
| 7378 | vm_map_unwire_nested(map, start, end: s, user_wire, |
| 7379 | map_pmap, pmap_addr); |
| 7380 | if (physpage_p) { |
| 7381 | *physpage_p = 0; |
| 7382 | } |
| 7383 | } |
| 7384 | |
| 7385 | return rc; |
| 7386 | } |
| 7387 | |
| 7388 | kern_return_t |
| 7389 | vm_map_wire_external( |
| 7390 | vm_map_t map, |
| 7391 | vm_map_offset_t start, |
| 7392 | vm_map_offset_t end, |
| 7393 | vm_prot_t caller_prot, |
| 7394 | boolean_t user_wire) |
| 7395 | { |
| 7396 | kern_return_t kret; |
| 7397 | |
| 7398 | kret = vm_map_wire_nested(map, start, end, caller_prot, tag: vm_tag_bt(), |
| 7399 | user_wire, map_pmap: (pmap_t)NULL, pmap_addr: 0, NULL); |
| 7400 | return kret; |
| 7401 | } |
| 7402 | |
| 7403 | kern_return_t |
| 7404 | vm_map_wire_kernel( |
| 7405 | vm_map_t map, |
| 7406 | vm_map_offset_t start, |
| 7407 | vm_map_offset_t end, |
| 7408 | vm_prot_t caller_prot, |
| 7409 | vm_tag_t tag, |
| 7410 | boolean_t user_wire) |
| 7411 | { |
| 7412 | kern_return_t kret; |
| 7413 | |
| 7414 | kret = vm_map_wire_nested(map, start, end, caller_prot, tag, |
| 7415 | user_wire, map_pmap: (pmap_t)NULL, pmap_addr: 0, NULL); |
| 7416 | return kret; |
| 7417 | } |
| 7418 | |
| 7419 | kern_return_t |
| 7420 | vm_map_wire_and_extract_external( |
| 7421 | vm_map_t map, |
| 7422 | vm_map_offset_t start, |
| 7423 | vm_prot_t caller_prot, |
| 7424 | boolean_t user_wire, |
| 7425 | ppnum_t *physpage_p) |
| 7426 | { |
| 7427 | kern_return_t kret; |
| 7428 | |
| 7429 | kret = vm_map_wire_nested(map, |
| 7430 | start, |
| 7431 | end: start + VM_MAP_PAGE_SIZE(map), |
| 7432 | caller_prot, |
| 7433 | tag: vm_tag_bt(), |
| 7434 | user_wire, |
| 7435 | map_pmap: (pmap_t)NULL, |
| 7436 | pmap_addr: 0, |
| 7437 | physpage_p); |
| 7438 | if (kret != KERN_SUCCESS && |
| 7439 | physpage_p != NULL) { |
| 7440 | *physpage_p = 0; |
| 7441 | } |
| 7442 | return kret; |
| 7443 | } |
| 7444 | |
| 7445 | /* |
| 7446 | * vm_map_unwire: |
| 7447 | * |
| 7448 | * Sets the pageability of the specified address range in the target |
| 7449 | * as pageable. Regions specified must have been wired previously. |
| 7450 | * |
| 7451 | * The map must not be locked, but a reference must remain to the map |
| 7452 | * throughout the call. |
| 7453 | * |
| 7454 | * Kernel will panic on failures. User unwire ignores holes and |
| 7455 | * unwired and intransition entries to avoid losing memory by leaving |
| 7456 | * it unwired. |
| 7457 | */ |
| 7458 | static kern_return_t |
| 7459 | vm_map_unwire_nested( |
| 7460 | vm_map_t map, |
| 7461 | vm_map_offset_t start, |
| 7462 | vm_map_offset_t end, |
| 7463 | boolean_t user_wire, |
| 7464 | pmap_t map_pmap, |
| 7465 | vm_map_offset_t pmap_addr) |
| 7466 | { |
| 7467 | vm_map_entry_t entry; |
| 7468 | struct vm_map_entry *first_entry, tmp_entry; |
| 7469 | boolean_t need_wakeup; |
| 7470 | boolean_t main_map = FALSE; |
| 7471 | unsigned int last_timestamp; |
| 7472 | |
| 7473 | vm_map_lock(map); |
| 7474 | if (map_pmap == NULL) { |
| 7475 | main_map = TRUE; |
| 7476 | } |
| 7477 | last_timestamp = map->timestamp; |
| 7478 | |
| 7479 | VM_MAP_RANGE_CHECK(map, start, end); |
| 7480 | assert(VM_MAP_PAGE_ALIGNED(start, VM_MAP_PAGE_MASK(map))); |
| 7481 | assert(VM_MAP_PAGE_ALIGNED(end, VM_MAP_PAGE_MASK(map))); |
| 7482 | |
| 7483 | if (start == end) { |
| 7484 | /* We unwired what the caller asked for: zero pages */ |
| 7485 | vm_map_unlock(map); |
| 7486 | return KERN_SUCCESS; |
| 7487 | } |
| 7488 | |
| 7489 | if (__improbable(vm_map_range_overflows(map, start, end - start))) { |
| 7490 | vm_map_unlock(map); |
| 7491 | return KERN_INVALID_ADDRESS; |
| 7492 | } |
| 7493 | |
| 7494 | if (vm_map_lookup_entry(map, address: start, entry: &first_entry)) { |
| 7495 | entry = first_entry; |
| 7496 | /* |
| 7497 | * vm_map_clip_start will be done later. |
| 7498 | * We don't want to unnest any nested sub maps here ! |
| 7499 | */ |
| 7500 | } else { |
| 7501 | if (!user_wire) { |
| 7502 | panic("vm_map_unwire: start not found" ); |
| 7503 | } |
| 7504 | /* Start address is not in map. */ |
| 7505 | vm_map_unlock(map); |
| 7506 | return KERN_INVALID_ADDRESS; |
| 7507 | } |
| 7508 | |
| 7509 | if (entry->superpage_size) { |
| 7510 | /* superpages are always wired */ |
| 7511 | vm_map_unlock(map); |
| 7512 | return KERN_INVALID_ADDRESS; |
| 7513 | } |
| 7514 | |
| 7515 | need_wakeup = FALSE; |
| 7516 | while ((entry != vm_map_to_entry(map)) && (entry->vme_start < end)) { |
| 7517 | if (entry->in_transition) { |
| 7518 | /* |
| 7519 | * 1) |
| 7520 | * Another thread is wiring down this entry. Note |
| 7521 | * that if it is not for the other thread we would |
| 7522 | * be unwiring an unwired entry. This is not |
| 7523 | * permitted. If we wait, we will be unwiring memory |
| 7524 | * we did not wire. |
| 7525 | * |
| 7526 | * 2) |
| 7527 | * Another thread is unwiring this entry. We did not |
| 7528 | * have a reference to it, because if we did, this |
| 7529 | * entry will not be getting unwired now. |
| 7530 | */ |
| 7531 | if (!user_wire) { |
| 7532 | /* |
| 7533 | * XXX FBDP |
| 7534 | * This could happen: there could be some |
| 7535 | * overlapping vslock/vsunlock operations |
| 7536 | * going on. |
| 7537 | * We should probably just wait and retry, |
| 7538 | * but then we have to be careful that this |
| 7539 | * entry could get "simplified" after |
| 7540 | * "in_transition" gets unset and before |
| 7541 | * we re-lookup the entry, so we would |
| 7542 | * have to re-clip the entry to avoid |
| 7543 | * re-unwiring what we have already unwired... |
| 7544 | * See vm_map_wire_nested(). |
| 7545 | * |
| 7546 | * Or we could just ignore "in_transition" |
| 7547 | * here and proceed to decement the wired |
| 7548 | * count(s) on this entry. That should be fine |
| 7549 | * as long as "wired_count" doesn't drop all |
| 7550 | * the way to 0 (and we should panic if THAT |
| 7551 | * happens). |
| 7552 | */ |
| 7553 | panic("vm_map_unwire: in_transition entry" ); |
| 7554 | } |
| 7555 | |
| 7556 | entry = entry->vme_next; |
| 7557 | continue; |
| 7558 | } |
| 7559 | |
| 7560 | if (entry->is_sub_map) { |
| 7561 | vm_map_offset_t sub_start; |
| 7562 | vm_map_offset_t sub_end; |
| 7563 | vm_map_offset_t local_end; |
| 7564 | pmap_t pmap; |
| 7565 | |
| 7566 | vm_map_clip_start(map, entry, startaddr: start); |
| 7567 | vm_map_clip_end(map, entry, endaddr: end); |
| 7568 | |
| 7569 | sub_start = VME_OFFSET(entry); |
| 7570 | sub_end = entry->vme_end - entry->vme_start; |
| 7571 | sub_end += VME_OFFSET(entry); |
| 7572 | local_end = entry->vme_end; |
| 7573 | if (map_pmap == NULL) { |
| 7574 | if (entry->use_pmap) { |
| 7575 | pmap = VME_SUBMAP(entry)->pmap; |
| 7576 | pmap_addr = sub_start; |
| 7577 | } else { |
| 7578 | pmap = map->pmap; |
| 7579 | pmap_addr = start; |
| 7580 | } |
| 7581 | if (entry->wired_count == 0 || |
| 7582 | (user_wire && entry->user_wired_count == 0)) { |
| 7583 | if (!user_wire) { |
| 7584 | panic("vm_map_unwire: entry is unwired" ); |
| 7585 | } |
| 7586 | entry = entry->vme_next; |
| 7587 | continue; |
| 7588 | } |
| 7589 | |
| 7590 | /* |
| 7591 | * Check for holes |
| 7592 | * Holes: Next entry should be contiguous unless |
| 7593 | * this is the end of the region. |
| 7594 | */ |
| 7595 | if (((entry->vme_end < end) && |
| 7596 | ((entry->vme_next == vm_map_to_entry(map)) || |
| 7597 | (entry->vme_next->vme_start |
| 7598 | > entry->vme_end)))) { |
| 7599 | if (!user_wire) { |
| 7600 | panic("vm_map_unwire: non-contiguous region" ); |
| 7601 | } |
| 7602 | /* |
| 7603 | * entry = entry->vme_next; |
| 7604 | * continue; |
| 7605 | */ |
| 7606 | } |
| 7607 | |
| 7608 | subtract_wire_counts(map, entry, user_wire); |
| 7609 | |
| 7610 | if (entry->wired_count != 0) { |
| 7611 | entry = entry->vme_next; |
| 7612 | continue; |
| 7613 | } |
| 7614 | |
| 7615 | entry->in_transition = TRUE; |
| 7616 | tmp_entry = *entry;/* see comment in vm_map_wire() */ |
| 7617 | |
| 7618 | /* |
| 7619 | * We can unlock the map now. The in_transition state |
| 7620 | * guarantees existance of the entry. |
| 7621 | */ |
| 7622 | vm_map_unlock(map); |
| 7623 | vm_map_unwire_nested(VME_SUBMAP(entry), |
| 7624 | start: sub_start, end: sub_end, user_wire, map_pmap: pmap, pmap_addr); |
| 7625 | vm_map_lock(map); |
| 7626 | |
| 7627 | if (last_timestamp + 1 != map->timestamp) { |
| 7628 | /* |
| 7629 | * Find the entry again. It could have been |
| 7630 | * clipped or deleted after we unlocked the map. |
| 7631 | */ |
| 7632 | if (!vm_map_lookup_entry(map, |
| 7633 | address: tmp_entry.vme_start, |
| 7634 | entry: &first_entry)) { |
| 7635 | if (!user_wire) { |
| 7636 | panic("vm_map_unwire: re-lookup failed" ); |
| 7637 | } |
| 7638 | entry = first_entry->vme_next; |
| 7639 | } else { |
| 7640 | entry = first_entry; |
| 7641 | } |
| 7642 | } |
| 7643 | last_timestamp = map->timestamp; |
| 7644 | |
| 7645 | /* |
| 7646 | * clear transition bit for all constituent entries |
| 7647 | * that were in the original entry (saved in |
| 7648 | * tmp_entry). Also check for waiters. |
| 7649 | */ |
| 7650 | while ((entry != vm_map_to_entry(map)) && |
| 7651 | (entry->vme_start < tmp_entry.vme_end)) { |
| 7652 | assert(entry->in_transition); |
| 7653 | entry->in_transition = FALSE; |
| 7654 | if (entry->needs_wakeup) { |
| 7655 | entry->needs_wakeup = FALSE; |
| 7656 | need_wakeup = TRUE; |
| 7657 | } |
| 7658 | entry = entry->vme_next; |
| 7659 | } |
| 7660 | continue; |
| 7661 | } else { |
| 7662 | tmp_entry = *entry; |
| 7663 | vm_map_unlock(map); |
| 7664 | vm_map_unwire_nested(VME_SUBMAP(entry), |
| 7665 | start: sub_start, end: sub_end, user_wire, map_pmap, |
| 7666 | pmap_addr); |
| 7667 | vm_map_lock(map); |
| 7668 | |
| 7669 | if (last_timestamp + 1 != map->timestamp) { |
| 7670 | /* |
| 7671 | * Find the entry again. It could have been |
| 7672 | * clipped or deleted after we unlocked the map. |
| 7673 | */ |
| 7674 | if (!vm_map_lookup_entry(map, |
| 7675 | address: tmp_entry.vme_start, |
| 7676 | entry: &first_entry)) { |
| 7677 | if (!user_wire) { |
| 7678 | panic("vm_map_unwire: re-lookup failed" ); |
| 7679 | } |
| 7680 | entry = first_entry->vme_next; |
| 7681 | } else { |
| 7682 | entry = first_entry; |
| 7683 | } |
| 7684 | } |
| 7685 | last_timestamp = map->timestamp; |
| 7686 | } |
| 7687 | } |
| 7688 | |
| 7689 | |
| 7690 | if ((entry->wired_count == 0) || |
| 7691 | (user_wire && entry->user_wired_count == 0)) { |
| 7692 | if (!user_wire) { |
| 7693 | panic("vm_map_unwire: entry is unwired" ); |
| 7694 | } |
| 7695 | |
| 7696 | entry = entry->vme_next; |
| 7697 | continue; |
| 7698 | } |
| 7699 | |
| 7700 | assert(entry->wired_count > 0 && |
| 7701 | (!user_wire || entry->user_wired_count > 0)); |
| 7702 | |
| 7703 | vm_map_clip_start(map, entry, startaddr: start); |
| 7704 | vm_map_clip_end(map, entry, endaddr: end); |
| 7705 | |
| 7706 | /* |
| 7707 | * Check for holes |
| 7708 | * Holes: Next entry should be contiguous unless |
| 7709 | * this is the end of the region. |
| 7710 | */ |
| 7711 | if (((entry->vme_end < end) && |
| 7712 | ((entry->vme_next == vm_map_to_entry(map)) || |
| 7713 | (entry->vme_next->vme_start > entry->vme_end)))) { |
| 7714 | if (!user_wire) { |
| 7715 | panic("vm_map_unwire: non-contiguous region" ); |
| 7716 | } |
| 7717 | entry = entry->vme_next; |
| 7718 | continue; |
| 7719 | } |
| 7720 | |
| 7721 | subtract_wire_counts(map, entry, user_wire); |
| 7722 | |
| 7723 | if (entry->wired_count != 0) { |
| 7724 | entry = entry->vme_next; |
| 7725 | continue; |
| 7726 | } |
| 7727 | |
| 7728 | if (entry->zero_wired_pages) { |
| 7729 | entry->zero_wired_pages = FALSE; |
| 7730 | } |
| 7731 | |
| 7732 | entry->in_transition = TRUE; |
| 7733 | tmp_entry = *entry; /* see comment in vm_map_wire() */ |
| 7734 | |
| 7735 | /* |
| 7736 | * We can unlock the map now. The in_transition state |
| 7737 | * guarantees existance of the entry. |
| 7738 | */ |
| 7739 | vm_map_unlock(map); |
| 7740 | if (map_pmap) { |
| 7741 | vm_fault_unwire(map, entry: &tmp_entry, FALSE, pmap: map_pmap, |
| 7742 | pmap_addr, end_addr: tmp_entry.vme_end); |
| 7743 | } else { |
| 7744 | vm_fault_unwire(map, entry: &tmp_entry, FALSE, pmap: map->pmap, |
| 7745 | pmap_addr: tmp_entry.vme_start, end_addr: tmp_entry.vme_end); |
| 7746 | } |
| 7747 | vm_map_lock(map); |
| 7748 | |
| 7749 | if (last_timestamp + 1 != map->timestamp) { |
| 7750 | /* |
| 7751 | * Find the entry again. It could have been clipped |
| 7752 | * or deleted after we unlocked the map. |
| 7753 | */ |
| 7754 | if (!vm_map_lookup_entry(map, address: tmp_entry.vme_start, |
| 7755 | entry: &first_entry)) { |
| 7756 | if (!user_wire) { |
| 7757 | panic("vm_map_unwire: re-lookup failed" ); |
| 7758 | } |
| 7759 | entry = first_entry->vme_next; |
| 7760 | } else { |
| 7761 | entry = first_entry; |
| 7762 | } |
| 7763 | } |
| 7764 | last_timestamp = map->timestamp; |
| 7765 | |
| 7766 | /* |
| 7767 | * clear transition bit for all constituent entries that |
| 7768 | * were in the original entry (saved in tmp_entry). Also |
| 7769 | * check for waiters. |
| 7770 | */ |
| 7771 | while ((entry != vm_map_to_entry(map)) && |
| 7772 | (entry->vme_start < tmp_entry.vme_end)) { |
| 7773 | assert(entry->in_transition); |
| 7774 | entry->in_transition = FALSE; |
| 7775 | if (entry->needs_wakeup) { |
| 7776 | entry->needs_wakeup = FALSE; |
| 7777 | need_wakeup = TRUE; |
| 7778 | } |
| 7779 | entry = entry->vme_next; |
| 7780 | } |
| 7781 | } |
| 7782 | |
| 7783 | /* |
| 7784 | * We might have fragmented the address space when we wired this |
| 7785 | * range of addresses. Attempt to re-coalesce these VM map entries |
| 7786 | * with their neighbors now that they're no longer wired. |
| 7787 | * Under some circumstances, address space fragmentation can |
| 7788 | * prevent VM object shadow chain collapsing, which can cause |
| 7789 | * swap space leaks. |
| 7790 | */ |
| 7791 | vm_map_simplify_range(map, start, end); |
| 7792 | |
| 7793 | vm_map_unlock(map); |
| 7794 | /* |
| 7795 | * wake up anybody waiting on entries that we have unwired. |
| 7796 | */ |
| 7797 | if (need_wakeup) { |
| 7798 | vm_map_entry_wakeup(map); |
| 7799 | } |
| 7800 | return KERN_SUCCESS; |
| 7801 | } |
| 7802 | |
| 7803 | kern_return_t |
| 7804 | vm_map_unwire( |
| 7805 | vm_map_t map, |
| 7806 | vm_map_offset_t start, |
| 7807 | vm_map_offset_t end, |
| 7808 | boolean_t user_wire) |
| 7809 | { |
| 7810 | return vm_map_unwire_nested(map, start, end, |
| 7811 | user_wire, map_pmap: (pmap_t)NULL, pmap_addr: 0); |
| 7812 | } |
| 7813 | |
| 7814 | |
| 7815 | /* |
| 7816 | * vm_map_entry_zap: [ internal use only ] |
| 7817 | * |
| 7818 | * Remove the entry from the target map |
| 7819 | * and put it on a zap list. |
| 7820 | */ |
| 7821 | static void |
| 7822 | vm_map_entry_zap( |
| 7823 | vm_map_t map, |
| 7824 | vm_map_entry_t entry, |
| 7825 | vm_map_zap_t zap) |
| 7826 | { |
| 7827 | vm_map_offset_t s, e; |
| 7828 | |
| 7829 | s = entry->vme_start; |
| 7830 | e = entry->vme_end; |
| 7831 | assert(VM_MAP_PAGE_ALIGNED(s, FOURK_PAGE_MASK)); |
| 7832 | assert(VM_MAP_PAGE_ALIGNED(e, FOURK_PAGE_MASK)); |
| 7833 | if (VM_MAP_PAGE_MASK(map) >= PAGE_MASK) { |
| 7834 | assert(page_aligned(s)); |
| 7835 | assert(page_aligned(e)); |
| 7836 | } |
| 7837 | if (entry->map_aligned == TRUE) { |
| 7838 | assert(VM_MAP_PAGE_ALIGNED(s, VM_MAP_PAGE_MASK(map))); |
| 7839 | assert(VM_MAP_PAGE_ALIGNED(e, VM_MAP_PAGE_MASK(map))); |
| 7840 | } |
| 7841 | assert(entry->wired_count == 0); |
| 7842 | assert(entry->user_wired_count == 0); |
| 7843 | assert(!entry->vme_permanent); |
| 7844 | |
| 7845 | vm_map_store_entry_unlink(map, entry, false); |
| 7846 | map->size -= e - s; |
| 7847 | |
| 7848 | vm_map_zap_append(list: zap, entry); |
| 7849 | } |
| 7850 | |
| 7851 | static void |
| 7852 | vm_map_submap_pmap_clean( |
| 7853 | vm_map_t map, |
| 7854 | vm_map_offset_t start, |
| 7855 | vm_map_offset_t end, |
| 7856 | vm_map_t sub_map, |
| 7857 | vm_map_offset_t offset) |
| 7858 | { |
| 7859 | vm_map_offset_t submap_start; |
| 7860 | vm_map_offset_t submap_end; |
| 7861 | vm_map_size_t remove_size; |
| 7862 | vm_map_entry_t entry; |
| 7863 | |
| 7864 | submap_end = offset + (end - start); |
| 7865 | submap_start = offset; |
| 7866 | |
| 7867 | vm_map_lock_read(sub_map); |
| 7868 | if (vm_map_lookup_entry(map: sub_map, address: offset, entry: &entry)) { |
| 7869 | remove_size = (entry->vme_end - entry->vme_start); |
| 7870 | if (offset > entry->vme_start) { |
| 7871 | remove_size -= offset - entry->vme_start; |
| 7872 | } |
| 7873 | |
| 7874 | |
| 7875 | if (submap_end < entry->vme_end) { |
| 7876 | remove_size -= |
| 7877 | entry->vme_end - submap_end; |
| 7878 | } |
| 7879 | if (entry->is_sub_map) { |
| 7880 | vm_map_submap_pmap_clean( |
| 7881 | map: sub_map, |
| 7882 | start, |
| 7883 | end: start + remove_size, |
| 7884 | VME_SUBMAP(entry), |
| 7885 | offset: VME_OFFSET(entry)); |
| 7886 | } else { |
| 7887 | if (map->mapped_in_other_pmaps && |
| 7888 | os_ref_get_count_raw(rc: &map->map_refcnt) != 0 && |
| 7889 | VME_OBJECT(entry) != NULL) { |
| 7890 | vm_object_pmap_protect_options( |
| 7891 | VME_OBJECT(entry), |
| 7892 | offset: (VME_OFFSET(entry) + |
| 7893 | offset - |
| 7894 | entry->vme_start), |
| 7895 | size: remove_size, |
| 7896 | PMAP_NULL, |
| 7897 | PAGE_SIZE, |
| 7898 | pmap_start: entry->vme_start, |
| 7899 | VM_PROT_NONE, |
| 7900 | PMAP_OPTIONS_REMOVE); |
| 7901 | } else { |
| 7902 | pmap_remove(map: map->pmap, |
| 7903 | s: (addr64_t)start, |
| 7904 | e: (addr64_t)(start + remove_size)); |
| 7905 | } |
| 7906 | } |
| 7907 | } |
| 7908 | |
| 7909 | entry = entry->vme_next; |
| 7910 | |
| 7911 | while ((entry != vm_map_to_entry(sub_map)) |
| 7912 | && (entry->vme_start < submap_end)) { |
| 7913 | remove_size = (entry->vme_end - entry->vme_start); |
| 7914 | if (submap_end < entry->vme_end) { |
| 7915 | remove_size -= entry->vme_end - submap_end; |
| 7916 | } |
| 7917 | if (entry->is_sub_map) { |
| 7918 | vm_map_submap_pmap_clean( |
| 7919 | map: sub_map, |
| 7920 | start: (start + entry->vme_start) - offset, |
| 7921 | end: ((start + entry->vme_start) - offset) + remove_size, |
| 7922 | VME_SUBMAP(entry), |
| 7923 | offset: VME_OFFSET(entry)); |
| 7924 | } else { |
| 7925 | if (map->mapped_in_other_pmaps && |
| 7926 | os_ref_get_count_raw(rc: &map->map_refcnt) != 0 && |
| 7927 | VME_OBJECT(entry) != NULL) { |
| 7928 | vm_object_pmap_protect_options( |
| 7929 | VME_OBJECT(entry), |
| 7930 | offset: VME_OFFSET(entry), |
| 7931 | size: remove_size, |
| 7932 | PMAP_NULL, |
| 7933 | PAGE_SIZE, |
| 7934 | pmap_start: entry->vme_start, |
| 7935 | VM_PROT_NONE, |
| 7936 | PMAP_OPTIONS_REMOVE); |
| 7937 | } else { |
| 7938 | pmap_remove(map: map->pmap, |
| 7939 | s: (addr64_t)((start + entry->vme_start) |
| 7940 | - offset), |
| 7941 | e: (addr64_t)(((start + entry->vme_start) |
| 7942 | - offset) + remove_size)); |
| 7943 | } |
| 7944 | } |
| 7945 | entry = entry->vme_next; |
| 7946 | } |
| 7947 | vm_map_unlock_read(sub_map); |
| 7948 | return; |
| 7949 | } |
| 7950 | |
| 7951 | /* |
| 7952 | * virt_memory_guard_ast: |
| 7953 | * |
| 7954 | * Handle the AST callout for a virtual memory guard. |
| 7955 | * raise an EXC_GUARD exception and terminate the task |
| 7956 | * if configured to do so. |
| 7957 | */ |
| 7958 | void |
| 7959 | virt_memory_guard_ast( |
| 7960 | thread_t thread, |
| 7961 | mach_exception_data_type_t code, |
| 7962 | mach_exception_data_type_t subcode) |
| 7963 | { |
| 7964 | task_t task = get_threadtask(thread); |
| 7965 | assert(task != kernel_task); |
| 7966 | assert(task == current_task()); |
| 7967 | kern_return_t sync_exception_result; |
| 7968 | uint32_t behavior; |
| 7969 | |
| 7970 | behavior = task->task_exc_guard; |
| 7971 | |
| 7972 | /* Is delivery enabled */ |
| 7973 | if ((behavior & TASK_EXC_GUARD_VM_DELIVER) == 0) { |
| 7974 | return; |
| 7975 | } |
| 7976 | |
| 7977 | /* If only once, make sure we're that once */ |
| 7978 | while (behavior & TASK_EXC_GUARD_VM_ONCE) { |
| 7979 | uint32_t new_behavior = behavior & ~TASK_EXC_GUARD_VM_DELIVER; |
| 7980 | |
| 7981 | if (OSCompareAndSwap(behavior, new_behavior, &task->task_exc_guard)) { |
| 7982 | break; |
| 7983 | } |
| 7984 | behavior = task->task_exc_guard; |
| 7985 | if ((behavior & TASK_EXC_GUARD_VM_DELIVER) == 0) { |
| 7986 | return; |
| 7987 | } |
| 7988 | } |
| 7989 | |
| 7990 | const bool fatal = task->task_exc_guard & TASK_EXC_GUARD_VM_FATAL; |
| 7991 | /* Raise exception synchronously and see if handler claimed it */ |
| 7992 | sync_exception_result = task_exception_notify(EXC_GUARD, code, subcode, fatal); |
| 7993 | |
| 7994 | if (fatal) { |
| 7995 | /* |
| 7996 | * If Synchronous EXC_GUARD delivery was successful then |
| 7997 | * kill the process and return, else kill the process |
| 7998 | * and deliver the exception via EXC_CORPSE_NOTIFY. |
| 7999 | */ |
| 8000 | if (sync_exception_result == KERN_SUCCESS) { |
| 8001 | task_bsdtask_kill(current_task()); |
| 8002 | } else { |
| 8003 | exit_with_guard_exception(p: current_proc(), code, subcode); |
| 8004 | } |
| 8005 | } else if (task->task_exc_guard & TASK_EXC_GUARD_VM_CORPSE) { |
| 8006 | /* |
| 8007 | * If the synchronous EXC_GUARD delivery was not successful, |
| 8008 | * raise a simulated crash. |
| 8009 | */ |
| 8010 | if (sync_exception_result != KERN_SUCCESS) { |
| 8011 | task_violated_guard(code, subcode, NULL, FALSE); |
| 8012 | } |
| 8013 | } |
| 8014 | } |
| 8015 | |
| 8016 | /* |
| 8017 | * vm_map_guard_exception: |
| 8018 | * |
| 8019 | * Generate a GUARD_TYPE_VIRTUAL_MEMORY EXC_GUARD exception. |
| 8020 | * |
| 8021 | * Right now, we do this when we find nothing mapped, or a |
| 8022 | * gap in the mapping when a user address space deallocate |
| 8023 | * was requested. We report the address of the first gap found. |
| 8024 | */ |
| 8025 | static void |
| 8026 | vm_map_guard_exception( |
| 8027 | vm_map_offset_t gap_start, |
| 8028 | unsigned reason) |
| 8029 | { |
| 8030 | mach_exception_code_t code = 0; |
| 8031 | unsigned int guard_type = GUARD_TYPE_VIRT_MEMORY; |
| 8032 | unsigned int target = 0; /* should we pass in pid associated with map? */ |
| 8033 | mach_exception_data_type_t subcode = (uint64_t)gap_start; |
| 8034 | boolean_t fatal = FALSE; |
| 8035 | |
| 8036 | task_t task = current_task_early(); |
| 8037 | |
| 8038 | /* Can't deliver exceptions to a NULL task (early boot) or kernel task */ |
| 8039 | if (task == NULL || task == kernel_task) { |
| 8040 | return; |
| 8041 | } |
| 8042 | |
| 8043 | EXC_GUARD_ENCODE_TYPE(code, guard_type); |
| 8044 | EXC_GUARD_ENCODE_FLAVOR(code, reason); |
| 8045 | EXC_GUARD_ENCODE_TARGET(code, target); |
| 8046 | |
| 8047 | if (task->task_exc_guard & TASK_EXC_GUARD_VM_FATAL) { |
| 8048 | fatal = TRUE; |
| 8049 | } |
| 8050 | thread_guard_violation(current_thread(), code, subcode, fatal); |
| 8051 | } |
| 8052 | |
| 8053 | static kern_return_t |
| 8054 | vm_map_delete_submap_recurse( |
| 8055 | vm_map_t submap, |
| 8056 | vm_map_offset_t submap_start, |
| 8057 | vm_map_offset_t submap_end) |
| 8058 | { |
| 8059 | vm_map_entry_t submap_entry; |
| 8060 | |
| 8061 | /* |
| 8062 | * Verify that the submap does not contain any "permanent" entries |
| 8063 | * within the specified range. |
| 8064 | * We do not care about gaps. |
| 8065 | */ |
| 8066 | |
| 8067 | vm_map_lock(submap); |
| 8068 | |
| 8069 | if (!vm_map_lookup_entry(map: submap, address: submap_start, entry: &submap_entry)) { |
| 8070 | submap_entry = submap_entry->vme_next; |
| 8071 | } |
| 8072 | |
| 8073 | for (; |
| 8074 | submap_entry != vm_map_to_entry(submap) && |
| 8075 | submap_entry->vme_start < submap_end; |
| 8076 | submap_entry = submap_entry->vme_next) { |
| 8077 | if (submap_entry->vme_permanent) { |
| 8078 | /* "permanent" entry -> fail */ |
| 8079 | vm_map_unlock(submap); |
| 8080 | return KERN_PROTECTION_FAILURE; |
| 8081 | } |
| 8082 | } |
| 8083 | /* no "permanent" entries in the range -> success */ |
| 8084 | vm_map_unlock(submap); |
| 8085 | return KERN_SUCCESS; |
| 8086 | } |
| 8087 | |
| 8088 | __abortlike |
| 8089 | static void |
| 8090 | __vm_map_delete_misaligned_panic( |
| 8091 | vm_map_t map, |
| 8092 | vm_map_offset_t start, |
| 8093 | vm_map_offset_t end) |
| 8094 | { |
| 8095 | panic("vm_map_delete(%p,0x%llx,0x%llx): start is not aligned to 0x%x" , |
| 8096 | map, (uint64_t)start, (uint64_t)end, VM_MAP_PAGE_SIZE(map)); |
| 8097 | } |
| 8098 | |
| 8099 | __abortlike |
| 8100 | static void |
| 8101 | __vm_map_delete_failed_panic( |
| 8102 | vm_map_t map, |
| 8103 | vm_map_offset_t start, |
| 8104 | vm_map_offset_t end, |
| 8105 | kern_return_t kr) |
| 8106 | { |
| 8107 | panic("vm_map_delete(%p,0x%llx,0x%llx): failed unexpected with %d" , |
| 8108 | map, (uint64_t)start, (uint64_t)end, kr); |
| 8109 | } |
| 8110 | |
| 8111 | __abortlike |
| 8112 | static void |
| 8113 | __vm_map_delete_gap_panic( |
| 8114 | vm_map_t map, |
| 8115 | vm_map_offset_t where, |
| 8116 | vm_map_offset_t start, |
| 8117 | vm_map_offset_t end) |
| 8118 | { |
| 8119 | panic("vm_map_delete(%p,0x%llx,0x%llx): no map entry at 0x%llx" , |
| 8120 | map, (uint64_t)start, (uint64_t)end, (uint64_t)where); |
| 8121 | } |
| 8122 | |
| 8123 | __abortlike |
| 8124 | static void |
| 8125 | __vm_map_delete_permanent_panic( |
| 8126 | vm_map_t map, |
| 8127 | vm_map_offset_t start, |
| 8128 | vm_map_offset_t end, |
| 8129 | vm_map_entry_t entry) |
| 8130 | { |
| 8131 | panic("vm_map_delete(%p,0x%llx,0x%llx): " |
| 8132 | "Attempting to remove permanent VM map entry %p [0x%llx:0x%llx]" , |
| 8133 | map, (uint64_t)start, (uint64_t)end, entry, |
| 8134 | (uint64_t)entry->vme_start, |
| 8135 | (uint64_t)entry->vme_end); |
| 8136 | } |
| 8137 | |
| 8138 | __options_decl(vm_map_delete_state_t, uint32_t, { |
| 8139 | VMDS_NONE = 0x0000, |
| 8140 | |
| 8141 | VMDS_FOUND_GAP = 0x0001, |
| 8142 | VMDS_GAPS_OK = 0x0002, |
| 8143 | |
| 8144 | VMDS_KERNEL_PMAP = 0x0004, |
| 8145 | VMDS_NEEDS_LOOKUP = 0x0008, |
| 8146 | VMDS_NEEDS_WAKEUP = 0x0010, |
| 8147 | VMDS_KERNEL_KMEMPTR = 0x0020 |
| 8148 | }); |
| 8149 | |
| 8150 | /* |
| 8151 | * vm_map_delete: [ internal use only ] |
| 8152 | * |
| 8153 | * Deallocates the given address range from the target map. |
| 8154 | * Removes all user wirings. Unwires one kernel wiring if |
| 8155 | * VM_MAP_REMOVE_KUNWIRE is set. Waits for kernel wirings to go |
| 8156 | * away if VM_MAP_REMOVE_WAIT_FOR_KWIRE is set. Sleeps |
| 8157 | * interruptibly if VM_MAP_REMOVE_INTERRUPTIBLE is set. |
| 8158 | * |
| 8159 | * |
| 8160 | * When the map is a kernel map, then any error in removing mappings |
| 8161 | * will lead to a panic so that clients do not have to repeat the panic |
| 8162 | * code at each call site. If VM_MAP_REMOVE_INTERRUPTIBLE |
| 8163 | * is also passed, then KERN_ABORTED will not lead to a panic. |
| 8164 | * |
| 8165 | * This routine is called with map locked and leaves map locked. |
| 8166 | */ |
| 8167 | static kmem_return_t |
| 8168 | vm_map_delete( |
| 8169 | vm_map_t map, |
| 8170 | vm_map_offset_t start, |
| 8171 | vm_map_offset_t end, |
| 8172 | vmr_flags_t flags, |
| 8173 | kmem_guard_t guard, |
| 8174 | vm_map_zap_t zap_list) |
| 8175 | { |
| 8176 | vm_map_entry_t entry, next; |
| 8177 | int interruptible; |
| 8178 | vm_map_offset_t gap_start = 0; |
| 8179 | vm_map_offset_t clear_in_transition_end = 0; |
| 8180 | __unused vm_map_offset_t save_start = start; |
| 8181 | __unused vm_map_offset_t save_end = end; |
| 8182 | vm_map_delete_state_t state = VMDS_NONE; |
| 8183 | kmem_return_t ret = { }; |
| 8184 | vm_map_range_id_t range_id = 0; |
| 8185 | struct kmem_page_meta *meta = NULL; |
| 8186 | uint32_t size_idx, slot_idx; |
| 8187 | struct mach_vm_range slot; |
| 8188 | |
| 8189 | if (vm_map_pmap(map) == kernel_pmap) { |
| 8190 | state |= VMDS_KERNEL_PMAP; |
| 8191 | range_id = kmem_addr_get_range(addr: start, size: end - start); |
| 8192 | if (kmem_is_ptr_range(range_id)) { |
| 8193 | state |= VMDS_KERNEL_KMEMPTR; |
| 8194 | slot_idx = kmem_addr_get_slot_idx(start, end, range_id, meta: &meta, |
| 8195 | size_idx: &size_idx, slot: &slot); |
| 8196 | } |
| 8197 | } |
| 8198 | |
| 8199 | if (map->terminated || os_ref_get_count_raw(rc: &map->map_refcnt) == 0) { |
| 8200 | state |= VMDS_GAPS_OK; |
| 8201 | } |
| 8202 | |
| 8203 | if (map->corpse_source && |
| 8204 | !(flags & VM_MAP_REMOVE_TO_OVERWRITE) && |
| 8205 | !map->terminated) { |
| 8206 | /* |
| 8207 | * The map is being used for corpses related diagnostics. |
| 8208 | * So skip any entry removal to avoid perturbing the map state. |
| 8209 | * The cleanup will happen in task_terminate_internal after the |
| 8210 | * call to task_port_no_senders. |
| 8211 | */ |
| 8212 | goto out; |
| 8213 | } |
| 8214 | |
| 8215 | interruptible = (flags & VM_MAP_REMOVE_INTERRUPTIBLE) ? |
| 8216 | THREAD_ABORTSAFE : THREAD_UNINT; |
| 8217 | |
| 8218 | if ((flags & VM_MAP_REMOVE_NO_MAP_ALIGN) == 0 && |
| 8219 | (start & VM_MAP_PAGE_MASK(map))) { |
| 8220 | __vm_map_delete_misaligned_panic(map, start, end); |
| 8221 | } |
| 8222 | |
| 8223 | if ((state & VMDS_GAPS_OK) == 0) { |
| 8224 | /* |
| 8225 | * If the map isn't terminated then all deletions must have |
| 8226 | * no gaps, and be within the [min, max) of the map. |
| 8227 | * |
| 8228 | * We got here without VM_MAP_RANGE_CHECK() being called, |
| 8229 | * and hence must validate bounds manually. |
| 8230 | * |
| 8231 | * It is worth noting that because vm_deallocate() will |
| 8232 | * round_page() the deallocation size, it's possible for "end" |
| 8233 | * to be 0 here due to overflow. We hence must treat it as being |
| 8234 | * beyond vm_map_max(map). |
| 8235 | * |
| 8236 | * Similarly, end < start means some wrap around happend, |
| 8237 | * which should cause an error or panic. |
| 8238 | */ |
| 8239 | if (end == 0 || end > vm_map_max(map)) { |
| 8240 | state |= VMDS_FOUND_GAP; |
| 8241 | gap_start = vm_map_max(map); |
| 8242 | if (state & VMDS_KERNEL_PMAP) { |
| 8243 | __vm_map_delete_gap_panic(map, |
| 8244 | where: gap_start, start, end); |
| 8245 | } |
| 8246 | goto out; |
| 8247 | } |
| 8248 | |
| 8249 | if (end < start) { |
| 8250 | if (state & VMDS_KERNEL_PMAP) { |
| 8251 | __vm_map_delete_gap_panic(map, |
| 8252 | vm_map_max(map), start, end); |
| 8253 | } |
| 8254 | ret.kmr_return = KERN_INVALID_ARGUMENT; |
| 8255 | goto out; |
| 8256 | } |
| 8257 | |
| 8258 | if (start < vm_map_min(map)) { |
| 8259 | state |= VMDS_FOUND_GAP; |
| 8260 | gap_start = start; |
| 8261 | if (state & VMDS_KERNEL_PMAP) { |
| 8262 | __vm_map_delete_gap_panic(map, |
| 8263 | where: gap_start, start, end); |
| 8264 | } |
| 8265 | goto out; |
| 8266 | } |
| 8267 | } else { |
| 8268 | /* |
| 8269 | * If the map is terminated, we must accept start/end |
| 8270 | * being beyond the boundaries of the map as this is |
| 8271 | * how some of the mappings like commpage mappings |
| 8272 | * can be destroyed (they're outside of those bounds). |
| 8273 | * |
| 8274 | * end < start is still something we can't cope with, |
| 8275 | * so just bail. |
| 8276 | */ |
| 8277 | if (end < start) { |
| 8278 | goto out; |
| 8279 | } |
| 8280 | } |
| 8281 | |
| 8282 | |
| 8283 | /* |
| 8284 | * Find the start of the region. |
| 8285 | * |
| 8286 | * If in a superpage, extend the range |
| 8287 | * to include the start of the mapping. |
| 8288 | */ |
| 8289 | while (vm_map_lookup_entry_or_next(map, address: start, entry: &entry)) { |
| 8290 | if (entry->superpage_size && (start & ~SUPERPAGE_MASK)) { |
| 8291 | start = SUPERPAGE_ROUND_DOWN(start); |
| 8292 | } else { |
| 8293 | SAVE_HINT_MAP_WRITE(map, entry->vme_prev); |
| 8294 | break; |
| 8295 | } |
| 8296 | } |
| 8297 | |
| 8298 | if (entry->superpage_size) { |
| 8299 | end = SUPERPAGE_ROUND_UP(end); |
| 8300 | } |
| 8301 | |
| 8302 | /* |
| 8303 | * Step through all entries in this region |
| 8304 | */ |
| 8305 | for (vm_map_offset_t s = start; s < end;) { |
| 8306 | /* |
| 8307 | * At this point, we have deleted all the memory entries |
| 8308 | * in [start, s) and are proceeding with the [s, end) range. |
| 8309 | * |
| 8310 | * This loop might drop the map lock, and it is possible that |
| 8311 | * some memory was already reallocated within [start, s) |
| 8312 | * and we don't want to mess with those entries. |
| 8313 | * |
| 8314 | * Some of those entries could even have been re-assembled |
| 8315 | * with an entry after "s" (in vm_map_simplify_entry()), so |
| 8316 | * we may have to vm_map_clip_start() again. |
| 8317 | * |
| 8318 | * When clear_in_transition_end is set, the we had marked |
| 8319 | * [start, clear_in_transition_end) as "in_transition" |
| 8320 | * during a previous iteration and we need to clear it. |
| 8321 | */ |
| 8322 | |
| 8323 | /* |
| 8324 | * Step 1: If needed (because we dropped locks), |
| 8325 | * lookup the entry again. |
| 8326 | * |
| 8327 | * If we're coming back from unwiring (Step 5), |
| 8328 | * we also need to mark the entries as no longer |
| 8329 | * in transition after that. |
| 8330 | */ |
| 8331 | |
| 8332 | if (state & VMDS_NEEDS_LOOKUP) { |
| 8333 | state &= ~VMDS_NEEDS_LOOKUP; |
| 8334 | |
| 8335 | if (vm_map_lookup_entry_or_next(map, address: s, entry: &entry)) { |
| 8336 | SAVE_HINT_MAP_WRITE(map, entry->vme_prev); |
| 8337 | } |
| 8338 | |
| 8339 | if (state & VMDS_KERNEL_KMEMPTR) { |
| 8340 | kmem_validate_slot(addr: s, meta, size_idx, slot_idx); |
| 8341 | } |
| 8342 | } |
| 8343 | |
| 8344 | if (clear_in_transition_end) { |
| 8345 | for (vm_map_entry_t it = entry; |
| 8346 | it != vm_map_to_entry(map) && |
| 8347 | it->vme_start < clear_in_transition_end; |
| 8348 | it = it->vme_next) { |
| 8349 | assert(it->in_transition); |
| 8350 | it->in_transition = FALSE; |
| 8351 | if (it->needs_wakeup) { |
| 8352 | it->needs_wakeup = FALSE; |
| 8353 | state |= VMDS_NEEDS_WAKEUP; |
| 8354 | } |
| 8355 | } |
| 8356 | |
| 8357 | clear_in_transition_end = 0; |
| 8358 | } |
| 8359 | |
| 8360 | |
| 8361 | /* |
| 8362 | * Step 2: Perform various policy checks |
| 8363 | * before we do _anything_ to this entry. |
| 8364 | */ |
| 8365 | |
| 8366 | if (entry == vm_map_to_entry(map) || s < entry->vme_start) { |
| 8367 | if (state & (VMDS_GAPS_OK | VMDS_FOUND_GAP)) { |
| 8368 | /* |
| 8369 | * Either we found a gap already, |
| 8370 | * or we are tearing down a map, |
| 8371 | * keep going. |
| 8372 | */ |
| 8373 | } else if (state & VMDS_KERNEL_PMAP) { |
| 8374 | __vm_map_delete_gap_panic(map, where: s, start, end); |
| 8375 | } else if (s < end) { |
| 8376 | state |= VMDS_FOUND_GAP; |
| 8377 | gap_start = s; |
| 8378 | } |
| 8379 | |
| 8380 | if (entry == vm_map_to_entry(map) || |
| 8381 | end <= entry->vme_start) { |
| 8382 | break; |
| 8383 | } |
| 8384 | |
| 8385 | s = entry->vme_start; |
| 8386 | } |
| 8387 | |
| 8388 | if (state & VMDS_KERNEL_PMAP) { |
| 8389 | /* |
| 8390 | * In the kernel map and its submaps, |
| 8391 | * permanent entries never die, even |
| 8392 | * if VM_MAP_REMOVE_IMMUTABLE is passed. |
| 8393 | */ |
| 8394 | if (entry->vme_permanent) { |
| 8395 | __vm_map_delete_permanent_panic(map, start, end, entry); |
| 8396 | } |
| 8397 | |
| 8398 | if (flags & VM_MAP_REMOVE_GUESS_SIZE) { |
| 8399 | end = entry->vme_end; |
| 8400 | flags &= ~VM_MAP_REMOVE_GUESS_SIZE; |
| 8401 | } |
| 8402 | |
| 8403 | /* |
| 8404 | * In the kernel map and its submaps, |
| 8405 | * the removal of an atomic/guarded entry is strict. |
| 8406 | * |
| 8407 | * An atomic entry is processed only if it was |
| 8408 | * specifically targeted. |
| 8409 | * |
| 8410 | * We might have deleted non-atomic entries before |
| 8411 | * we reach this this point however... |
| 8412 | */ |
| 8413 | kmem_entry_validate_guard(map, entry, |
| 8414 | addr: start, size: end - start, guard); |
| 8415 | } |
| 8416 | |
| 8417 | /* |
| 8418 | * Step 2.1: handle "permanent" and "submap" entries |
| 8419 | * *before* clipping to avoid triggering some unnecessary |
| 8420 | * un-nesting of the shared region. |
| 8421 | */ |
| 8422 | if (entry->vme_permanent && entry->is_sub_map) { |
| 8423 | // printf("FBDP %s:%d permanent submap...\n", __FUNCTION__, __LINE__); |
| 8424 | /* |
| 8425 | * Un-mapping a "permanent" mapping of a user-space |
| 8426 | * submap is not allowed unless... |
| 8427 | */ |
| 8428 | if (flags & VM_MAP_REMOVE_IMMUTABLE) { |
| 8429 | /* |
| 8430 | * a. explicitly requested by the kernel caller. |
| 8431 | */ |
| 8432 | // printf("FBDP %s:%d flags & REMOVE_IMMUTABLE\n", __FUNCTION__, __LINE__); |
| 8433 | } else if ((flags & VM_MAP_REMOVE_IMMUTABLE_CODE) && |
| 8434 | developer_mode_state()) { |
| 8435 | /* |
| 8436 | * b. we're in "developer" mode (for |
| 8437 | * breakpoints, dtrace probes, ...). |
| 8438 | */ |
| 8439 | // printf("FBDP %s:%d flags & REMOVE_IMMUTABLE_CODE\n", __FUNCTION__, __LINE__); |
| 8440 | } else if (map->terminated) { |
| 8441 | /* |
| 8442 | * c. this is the final address space cleanup. |
| 8443 | */ |
| 8444 | // printf("FBDP %s:%d map->terminated\n", __FUNCTION__, __LINE__); |
| 8445 | } else { |
| 8446 | vm_map_offset_t submap_start, submap_end; |
| 8447 | kern_return_t submap_kr; |
| 8448 | |
| 8449 | /* |
| 8450 | * Check if there are any "permanent" mappings |
| 8451 | * in this range in the submap. |
| 8452 | */ |
| 8453 | if (entry->in_transition) { |
| 8454 | /* can that even happen ? */ |
| 8455 | goto in_transition; |
| 8456 | } |
| 8457 | /* compute the clipped range in the submap */ |
| 8458 | submap_start = s - entry->vme_start; |
| 8459 | submap_start += VME_OFFSET(entry); |
| 8460 | submap_end = end - entry->vme_start; |
| 8461 | submap_end += VME_OFFSET(entry); |
| 8462 | submap_kr = vm_map_delete_submap_recurse( |
| 8463 | VME_SUBMAP(entry), |
| 8464 | submap_start, |
| 8465 | submap_end); |
| 8466 | if (submap_kr != KERN_SUCCESS) { |
| 8467 | /* |
| 8468 | * There are some "permanent" mappings |
| 8469 | * in the submap: we are not allowed |
| 8470 | * to remove this range. |
| 8471 | */ |
| 8472 | printf(format: "%d[%s] removing permanent submap entry " |
| 8473 | "%p [0x%llx:0x%llx] prot 0x%x/0x%x -> KERN_PROT_FAILURE\n" , |
| 8474 | proc_selfpid(), |
| 8475 | (get_bsdtask_info(current_task()) |
| 8476 | ? proc_name_address(p: get_bsdtask_info(current_task())) |
| 8477 | : "?" ), entry, |
| 8478 | (uint64_t)entry->vme_start, |
| 8479 | (uint64_t)entry->vme_end, |
| 8480 | entry->protection, |
| 8481 | entry->max_protection); |
| 8482 | DTRACE_VM6(vm_map_delete_permanent_deny_submap, |
| 8483 | vm_map_entry_t, entry, |
| 8484 | vm_map_offset_t, entry->vme_start, |
| 8485 | vm_map_offset_t, entry->vme_end, |
| 8486 | vm_prot_t, entry->protection, |
| 8487 | vm_prot_t, entry->max_protection, |
| 8488 | int, VME_ALIAS(entry)); |
| 8489 | ret.kmr_return = KERN_PROTECTION_FAILURE; |
| 8490 | goto out; |
| 8491 | } |
| 8492 | /* no permanent mappings: proceed */ |
| 8493 | } |
| 8494 | } |
| 8495 | |
| 8496 | /* |
| 8497 | * Step 3: Perform any clipping needed. |
| 8498 | * |
| 8499 | * After this, "entry" starts at "s", ends before "end" |
| 8500 | */ |
| 8501 | |
| 8502 | if (entry->vme_start < s) { |
| 8503 | if ((flags & VM_MAP_REMOVE_NO_MAP_ALIGN) && |
| 8504 | entry->map_aligned && |
| 8505 | !VM_MAP_PAGE_ALIGNED(s, VM_MAP_PAGE_MASK(map))) { |
| 8506 | /* |
| 8507 | * The entry will no longer be map-aligned |
| 8508 | * after clipping and the caller said it's OK. |
| 8509 | */ |
| 8510 | entry->map_aligned = FALSE; |
| 8511 | } |
| 8512 | vm_map_clip_start(map, entry, startaddr: s); |
| 8513 | SAVE_HINT_MAP_WRITE(map, entry->vme_prev); |
| 8514 | } |
| 8515 | |
| 8516 | if (end < entry->vme_end) { |
| 8517 | if ((flags & VM_MAP_REMOVE_NO_MAP_ALIGN) && |
| 8518 | entry->map_aligned && |
| 8519 | !VM_MAP_PAGE_ALIGNED(end, VM_MAP_PAGE_MASK(map))) { |
| 8520 | /* |
| 8521 | * The entry will no longer be map-aligned |
| 8522 | * after clipping and the caller said it's OK. |
| 8523 | */ |
| 8524 | entry->map_aligned = FALSE; |
| 8525 | } |
| 8526 | vm_map_clip_end(map, entry, endaddr: end); |
| 8527 | } |
| 8528 | |
| 8529 | if (entry->vme_permanent && entry->is_sub_map) { |
| 8530 | /* |
| 8531 | * We already went through step 2.1 which did not deny |
| 8532 | * the removal of this "permanent" and "is_sub_map" |
| 8533 | * entry. |
| 8534 | * Now that we've clipped what we actually want to |
| 8535 | * delete, undo the "permanent" part to allow the |
| 8536 | * removal to proceed. |
| 8537 | */ |
| 8538 | DTRACE_VM6(vm_map_delete_permanent_allow_submap, |
| 8539 | vm_map_entry_t, entry, |
| 8540 | vm_map_offset_t, entry->vme_start, |
| 8541 | vm_map_offset_t, entry->vme_end, |
| 8542 | vm_prot_t, entry->protection, |
| 8543 | vm_prot_t, entry->max_protection, |
| 8544 | int, VME_ALIAS(entry)); |
| 8545 | entry->vme_permanent = false; |
| 8546 | } |
| 8547 | |
| 8548 | assert(s == entry->vme_start); |
| 8549 | assert(entry->vme_end <= end); |
| 8550 | |
| 8551 | |
| 8552 | /* |
| 8553 | * Step 4: If the entry is in flux, wait for this to resolve. |
| 8554 | */ |
| 8555 | |
| 8556 | if (entry->in_transition) { |
| 8557 | wait_result_t wait_result; |
| 8558 | |
| 8559 | in_transition: |
| 8560 | /* |
| 8561 | * Another thread is wiring/unwiring this entry. |
| 8562 | * Let the other thread know we are waiting. |
| 8563 | */ |
| 8564 | |
| 8565 | entry->needs_wakeup = TRUE; |
| 8566 | |
| 8567 | /* |
| 8568 | * wake up anybody waiting on entries that we have |
| 8569 | * already unwired/deleted. |
| 8570 | */ |
| 8571 | if (state & VMDS_NEEDS_WAKEUP) { |
| 8572 | vm_map_entry_wakeup(map); |
| 8573 | state &= ~VMDS_NEEDS_WAKEUP; |
| 8574 | } |
| 8575 | |
| 8576 | wait_result = vm_map_entry_wait(map, interruptible); |
| 8577 | |
| 8578 | if (interruptible && |
| 8579 | wait_result == THREAD_INTERRUPTED) { |
| 8580 | /* |
| 8581 | * We do not clear the needs_wakeup flag, |
| 8582 | * since we cannot tell if we were the only one. |
| 8583 | */ |
| 8584 | ret.kmr_return = KERN_ABORTED; |
| 8585 | return ret; |
| 8586 | } |
| 8587 | |
| 8588 | /* |
| 8589 | * The entry could have been clipped or it |
| 8590 | * may not exist anymore. Look it up again. |
| 8591 | */ |
| 8592 | state |= VMDS_NEEDS_LOOKUP; |
| 8593 | continue; |
| 8594 | } |
| 8595 | |
| 8596 | |
| 8597 | /* |
| 8598 | * Step 5: Handle wiring |
| 8599 | */ |
| 8600 | |
| 8601 | if (entry->wired_count) { |
| 8602 | struct vm_map_entry tmp_entry; |
| 8603 | boolean_t user_wire; |
| 8604 | unsigned int last_timestamp; |
| 8605 | |
| 8606 | user_wire = entry->user_wired_count > 0; |
| 8607 | |
| 8608 | /* |
| 8609 | * Remove a kernel wiring if requested |
| 8610 | */ |
| 8611 | if (flags & VM_MAP_REMOVE_KUNWIRE) { |
| 8612 | entry->wired_count--; |
| 8613 | vme_btref_consider_and_put(entry); |
| 8614 | } |
| 8615 | |
| 8616 | /* |
| 8617 | * Remove all user wirings for proper accounting |
| 8618 | */ |
| 8619 | while (entry->user_wired_count) { |
| 8620 | subtract_wire_counts(map, entry, user_wire); |
| 8621 | } |
| 8622 | |
| 8623 | /* |
| 8624 | * All our DMA I/O operations in IOKit are currently |
| 8625 | * done by wiring through the map entries of the task |
| 8626 | * requesting the I/O. |
| 8627 | * |
| 8628 | * Because of this, we must always wait for kernel wirings |
| 8629 | * to go away on the entries before deleting them. |
| 8630 | * |
| 8631 | * Any caller who wants to actually remove a kernel wiring |
| 8632 | * should explicitly set the VM_MAP_REMOVE_KUNWIRE flag to |
| 8633 | * properly remove one wiring instead of blasting through |
| 8634 | * them all. |
| 8635 | */ |
| 8636 | if (entry->wired_count != 0) { |
| 8637 | assert(map != kernel_map); |
| 8638 | /* |
| 8639 | * Cannot continue. Typical case is when |
| 8640 | * a user thread has physical io pending on |
| 8641 | * on this page. Either wait for the |
| 8642 | * kernel wiring to go away or return an |
| 8643 | * error. |
| 8644 | */ |
| 8645 | wait_result_t wait_result; |
| 8646 | |
| 8647 | entry->needs_wakeup = TRUE; |
| 8648 | wait_result = vm_map_entry_wait(map, |
| 8649 | interruptible); |
| 8650 | |
| 8651 | if (interruptible && |
| 8652 | wait_result == THREAD_INTERRUPTED) { |
| 8653 | /* |
| 8654 | * We do not clear the |
| 8655 | * needs_wakeup flag, since we |
| 8656 | * cannot tell if we were the |
| 8657 | * only one. |
| 8658 | */ |
| 8659 | ret.kmr_return = KERN_ABORTED; |
| 8660 | return ret; |
| 8661 | } |
| 8662 | |
| 8663 | |
| 8664 | /* |
| 8665 | * The entry could have been clipped or |
| 8666 | * it may not exist anymore. Look it |
| 8667 | * up again. |
| 8668 | */ |
| 8669 | state |= VMDS_NEEDS_LOOKUP; |
| 8670 | continue; |
| 8671 | } |
| 8672 | |
| 8673 | /* |
| 8674 | * We can unlock the map now. |
| 8675 | * |
| 8676 | * The entry might be split once we unlock the map, |
| 8677 | * but we need the range as defined by this entry |
| 8678 | * to be stable. So we must make a local copy. |
| 8679 | * |
| 8680 | * The underlying objects do not change during clips, |
| 8681 | * and the in_transition state guarentees existence |
| 8682 | * of the entry. |
| 8683 | */ |
| 8684 | last_timestamp = map->timestamp; |
| 8685 | entry->in_transition = TRUE; |
| 8686 | tmp_entry = *entry; |
| 8687 | vm_map_unlock(map); |
| 8688 | |
| 8689 | if (tmp_entry.is_sub_map) { |
| 8690 | vm_map_t sub_map; |
| 8691 | vm_map_offset_t sub_start, sub_end; |
| 8692 | pmap_t pmap; |
| 8693 | vm_map_offset_t pmap_addr; |
| 8694 | |
| 8695 | |
| 8696 | sub_map = VME_SUBMAP(&tmp_entry); |
| 8697 | sub_start = VME_OFFSET(entry: &tmp_entry); |
| 8698 | sub_end = sub_start + (tmp_entry.vme_end - |
| 8699 | tmp_entry.vme_start); |
| 8700 | if (tmp_entry.use_pmap) { |
| 8701 | pmap = sub_map->pmap; |
| 8702 | pmap_addr = tmp_entry.vme_start; |
| 8703 | } else { |
| 8704 | pmap = map->pmap; |
| 8705 | pmap_addr = tmp_entry.vme_start; |
| 8706 | } |
| 8707 | (void) vm_map_unwire_nested(map: sub_map, |
| 8708 | start: sub_start, end: sub_end, |
| 8709 | user_wire, |
| 8710 | map_pmap: pmap, pmap_addr); |
| 8711 | } else { |
| 8712 | vm_map_offset_t entry_end = tmp_entry.vme_end; |
| 8713 | vm_map_offset_t max_end; |
| 8714 | |
| 8715 | if (flags & VM_MAP_REMOVE_NOKUNWIRE_LAST) { |
| 8716 | max_end = end - VM_MAP_PAGE_SIZE(map); |
| 8717 | if (entry_end > max_end) { |
| 8718 | entry_end = max_end; |
| 8719 | } |
| 8720 | } |
| 8721 | |
| 8722 | if (tmp_entry.vme_kernel_object) { |
| 8723 | pmap_protect_options( |
| 8724 | map: map->pmap, |
| 8725 | s: tmp_entry.vme_start, |
| 8726 | e: entry_end, |
| 8727 | VM_PROT_NONE, |
| 8728 | PMAP_OPTIONS_REMOVE, |
| 8729 | NULL); |
| 8730 | } |
| 8731 | vm_fault_unwire(map, entry: &tmp_entry, |
| 8732 | deallocate: tmp_entry.vme_kernel_object, pmap: map->pmap, |
| 8733 | pmap_addr: tmp_entry.vme_start, end_addr: entry_end); |
| 8734 | } |
| 8735 | |
| 8736 | vm_map_lock(map); |
| 8737 | |
| 8738 | /* |
| 8739 | * Unwiring happened, we can now go back to deleting |
| 8740 | * them (after we clear the in_transition bit for the range). |
| 8741 | */ |
| 8742 | if (last_timestamp + 1 != map->timestamp) { |
| 8743 | state |= VMDS_NEEDS_LOOKUP; |
| 8744 | } |
| 8745 | clear_in_transition_end = tmp_entry.vme_end; |
| 8746 | continue; |
| 8747 | } |
| 8748 | |
| 8749 | assert(entry->wired_count == 0); |
| 8750 | assert(entry->user_wired_count == 0); |
| 8751 | |
| 8752 | |
| 8753 | /* |
| 8754 | * Step 6: Entry is unwired and ready for us to delete ! |
| 8755 | */ |
| 8756 | |
| 8757 | if (!entry->vme_permanent) { |
| 8758 | /* |
| 8759 | * Typical case: the entry really shouldn't be permanent |
| 8760 | */ |
| 8761 | } else if ((flags & VM_MAP_REMOVE_IMMUTABLE_CODE) && |
| 8762 | (entry->protection & VM_PROT_EXECUTE) && |
| 8763 | developer_mode_state()) { |
| 8764 | /* |
| 8765 | * Allow debuggers to undo executable mappings |
| 8766 | * when developer mode is on. |
| 8767 | */ |
| 8768 | #if 0 |
| 8769 | printf("FBDP %d[%s] removing permanent executable entry " |
| 8770 | "%p [0x%llx:0x%llx] prot 0x%x/0x%x\n" , |
| 8771 | proc_selfpid(), |
| 8772 | (current_task()->bsd_info |
| 8773 | ? proc_name_address(current_task()->bsd_info) |
| 8774 | : "?" ), entry, |
| 8775 | (uint64_t)entry->vme_start, |
| 8776 | (uint64_t)entry->vme_end, |
| 8777 | entry->protection, |
| 8778 | entry->max_protection); |
| 8779 | #endif |
| 8780 | entry->vme_permanent = FALSE; |
| 8781 | } else if ((flags & VM_MAP_REMOVE_IMMUTABLE) || map->terminated) { |
| 8782 | #if 0 |
| 8783 | printf("FBDP %d[%s] removing permanent entry " |
| 8784 | "%p [0x%llx:0x%llx] prot 0x%x/0x%x\n" , |
| 8785 | proc_selfpid(), |
| 8786 | (current_task()->bsd_info |
| 8787 | ? proc_name_address(current_task()->bsd_info) |
| 8788 | : "?" ), entry, |
| 8789 | (uint64_t)entry->vme_start, |
| 8790 | (uint64_t)entry->vme_end, |
| 8791 | entry->protection, |
| 8792 | entry->max_protection); |
| 8793 | #endif |
| 8794 | entry->vme_permanent = FALSE; |
| 8795 | #if CODE_SIGNING_MONITOR |
| 8796 | } else if ((entry->protection & VM_PROT_EXECUTE) && !csm_enabled()) { |
| 8797 | entry->vme_permanent = FALSE; |
| 8798 | |
| 8799 | printf("%d[%s] %s(0x%llx,0x%llx): " |
| 8800 | "code signing monitor disabled, allowing for permanent executable entry [0x%llx:0x%llx] " |
| 8801 | "prot 0x%x/0x%x\n" , |
| 8802 | proc_selfpid(), |
| 8803 | (get_bsdtask_info(current_task()) |
| 8804 | ? proc_name_address(get_bsdtask_info(current_task())) |
| 8805 | : "?" ), |
| 8806 | __FUNCTION__, |
| 8807 | (uint64_t)start, |
| 8808 | (uint64_t)end, |
| 8809 | (uint64_t)entry->vme_start, |
| 8810 | (uint64_t)entry->vme_end, |
| 8811 | entry->protection, |
| 8812 | entry->max_protection); |
| 8813 | #endif |
| 8814 | } else { |
| 8815 | DTRACE_VM6(vm_map_delete_permanent, |
| 8816 | vm_map_entry_t, entry, |
| 8817 | vm_map_offset_t, entry->vme_start, |
| 8818 | vm_map_offset_t, entry->vme_end, |
| 8819 | vm_prot_t, entry->protection, |
| 8820 | vm_prot_t, entry->max_protection, |
| 8821 | int, VME_ALIAS(entry)); |
| 8822 | } |
| 8823 | |
| 8824 | if (entry->is_sub_map) { |
| 8825 | assertf(VM_MAP_PAGE_SHIFT(VME_SUBMAP(entry)) >= VM_MAP_PAGE_SHIFT(map), |
| 8826 | "map %p (%d) entry %p submap %p (%d)\n" , |
| 8827 | map, VM_MAP_PAGE_SHIFT(map), entry, |
| 8828 | VME_SUBMAP(entry), |
| 8829 | VM_MAP_PAGE_SHIFT(VME_SUBMAP(entry))); |
| 8830 | if (entry->use_pmap) { |
| 8831 | #ifndef NO_NESTED_PMAP |
| 8832 | int pmap_flags; |
| 8833 | |
| 8834 | if (map->terminated) { |
| 8835 | /* |
| 8836 | * This is the final cleanup of the |
| 8837 | * address space being terminated. |
| 8838 | * No new mappings are expected and |
| 8839 | * we don't really need to unnest the |
| 8840 | * shared region (and lose the "global" |
| 8841 | * pmap mappings, if applicable). |
| 8842 | * |
| 8843 | * Tell the pmap layer that we're |
| 8844 | * "clean" wrt nesting. |
| 8845 | */ |
| 8846 | pmap_flags = PMAP_UNNEST_CLEAN; |
| 8847 | } else { |
| 8848 | /* |
| 8849 | * We're unmapping part of the nested |
| 8850 | * shared region, so we can't keep the |
| 8851 | * nested pmap. |
| 8852 | */ |
| 8853 | pmap_flags = 0; |
| 8854 | } |
| 8855 | pmap_unnest_options( |
| 8856 | map->pmap, |
| 8857 | (addr64_t)entry->vme_start, |
| 8858 | entry->vme_end - entry->vme_start, |
| 8859 | pmap_flags); |
| 8860 | #endif /* NO_NESTED_PMAP */ |
| 8861 | if (map->mapped_in_other_pmaps && |
| 8862 | os_ref_get_count_raw(rc: &map->map_refcnt) != 0) { |
| 8863 | /* clean up parent map/maps */ |
| 8864 | vm_map_submap_pmap_clean( |
| 8865 | map, start: entry->vme_start, |
| 8866 | end: entry->vme_end, |
| 8867 | VME_SUBMAP(entry), |
| 8868 | offset: VME_OFFSET(entry)); |
| 8869 | } |
| 8870 | } else { |
| 8871 | vm_map_submap_pmap_clean( |
| 8872 | map, start: entry->vme_start, end: entry->vme_end, |
| 8873 | VME_SUBMAP(entry), |
| 8874 | offset: VME_OFFSET(entry)); |
| 8875 | } |
| 8876 | } else if (entry->vme_kernel_object || |
| 8877 | VME_OBJECT(entry) == compressor_object) { |
| 8878 | /* |
| 8879 | * nothing to do |
| 8880 | */ |
| 8881 | } else if (map->mapped_in_other_pmaps && |
| 8882 | os_ref_get_count_raw(rc: &map->map_refcnt) != 0) { |
| 8883 | vm_object_pmap_protect_options( |
| 8884 | VME_OBJECT(entry), offset: VME_OFFSET(entry), |
| 8885 | size: entry->vme_end - entry->vme_start, |
| 8886 | PMAP_NULL, |
| 8887 | PAGE_SIZE, |
| 8888 | pmap_start: entry->vme_start, |
| 8889 | VM_PROT_NONE, |
| 8890 | PMAP_OPTIONS_REMOVE); |
| 8891 | } else if ((VME_OBJECT(entry) != VM_OBJECT_NULL) || |
| 8892 | (state & VMDS_KERNEL_PMAP)) { |
| 8893 | /* Remove translations associated |
| 8894 | * with this range unless the entry |
| 8895 | * does not have an object, or |
| 8896 | * it's the kernel map or a descendant |
| 8897 | * since the platform could potentially |
| 8898 | * create "backdoor" mappings invisible |
| 8899 | * to the VM. It is expected that |
| 8900 | * objectless, non-kernel ranges |
| 8901 | * do not have such VM invisible |
| 8902 | * translations. |
| 8903 | */ |
| 8904 | pmap_remove_options(map: map->pmap, |
| 8905 | s: (addr64_t)entry->vme_start, |
| 8906 | e: (addr64_t)entry->vme_end, |
| 8907 | PMAP_OPTIONS_REMOVE); |
| 8908 | } |
| 8909 | |
| 8910 | #if DEBUG |
| 8911 | /* |
| 8912 | * All pmap mappings for this map entry must have been |
| 8913 | * cleared by now. |
| 8914 | */ |
| 8915 | assert(pmap_is_empty(map->pmap, |
| 8916 | entry->vme_start, |
| 8917 | entry->vme_end)); |
| 8918 | #endif /* DEBUG */ |
| 8919 | |
| 8920 | if (entry->iokit_acct) { |
| 8921 | /* alternate accounting */ |
| 8922 | DTRACE_VM4(vm_map_iokit_unmapped_region, |
| 8923 | vm_map_t, map, |
| 8924 | vm_map_offset_t, entry->vme_start, |
| 8925 | vm_map_offset_t, entry->vme_end, |
| 8926 | int, VME_ALIAS(entry)); |
| 8927 | vm_map_iokit_unmapped_region(map, |
| 8928 | bytes: (entry->vme_end - |
| 8929 | entry->vme_start)); |
| 8930 | entry->iokit_acct = FALSE; |
| 8931 | entry->use_pmap = FALSE; |
| 8932 | } |
| 8933 | |
| 8934 | /* move "s" forward */ |
| 8935 | s = entry->vme_end; |
| 8936 | next = entry->vme_next; |
| 8937 | if (!entry->map_aligned) { |
| 8938 | vm_map_offset_t rounded_s; |
| 8939 | |
| 8940 | /* |
| 8941 | * Skip artificial gap due to mis-aligned entry |
| 8942 | * on devices with a page size smaller than the |
| 8943 | * map's page size (i.e. 16k task on a 4k device). |
| 8944 | */ |
| 8945 | rounded_s = VM_MAP_ROUND_PAGE(s, VM_MAP_PAGE_MASK(map)); |
| 8946 | if (next == vm_map_to_entry(map)) { |
| 8947 | s = rounded_s; |
| 8948 | } else if (s < rounded_s) { |
| 8949 | s = MIN(rounded_s, next->vme_start); |
| 8950 | } |
| 8951 | } |
| 8952 | ret.kmr_size += s - entry->vme_start; |
| 8953 | |
| 8954 | if (entry->vme_permanent) { |
| 8955 | /* |
| 8956 | * A permanent entry can not be removed, so leave it |
| 8957 | * in place but remove all access permissions. |
| 8958 | */ |
| 8959 | if (!entry->csm_associated) { |
| 8960 | printf(format: "%s:%d %d[%s] map %p entry %p [ 0x%llx - 0x%llx ] submap %d prot 0x%x/0x%x -> 0/0\n" , |
| 8961 | __FUNCTION__, __LINE__, |
| 8962 | proc_selfpid(), |
| 8963 | (get_bsdtask_info(current_task()) |
| 8964 | ? proc_name_address(p: get_bsdtask_info(current_task())) |
| 8965 | : "?" ), |
| 8966 | map, |
| 8967 | entry, |
| 8968 | (uint64_t)entry->vme_start, |
| 8969 | (uint64_t)entry->vme_end, |
| 8970 | entry->is_sub_map, |
| 8971 | entry->protection, |
| 8972 | entry->max_protection); |
| 8973 | } |
| 8974 | DTRACE_VM6(vm_map_delete_permanent_prot_none, |
| 8975 | vm_map_entry_t, entry, |
| 8976 | vm_map_offset_t, entry->vme_start, |
| 8977 | vm_map_offset_t, entry->vme_end, |
| 8978 | vm_prot_t, entry->protection, |
| 8979 | vm_prot_t, entry->max_protection, |
| 8980 | int, VME_ALIAS(entry)); |
| 8981 | entry->protection = VM_PROT_NONE; |
| 8982 | entry->max_protection = VM_PROT_NONE; |
| 8983 | } else { |
| 8984 | vm_map_entry_zap(map, entry, zap: zap_list); |
| 8985 | } |
| 8986 | |
| 8987 | entry = next; |
| 8988 | next = VM_MAP_ENTRY_NULL; |
| 8989 | |
| 8990 | if ((flags & VM_MAP_REMOVE_NO_YIELD) == 0 && s < end) { |
| 8991 | unsigned int last_timestamp = map->timestamp++; |
| 8992 | |
| 8993 | if (lck_rw_lock_yield_exclusive(lck: &map->lock, |
| 8994 | mode: LCK_RW_YIELD_ANY_WAITER)) { |
| 8995 | if (last_timestamp != map->timestamp + 1) { |
| 8996 | state |= VMDS_NEEDS_LOOKUP; |
| 8997 | } |
| 8998 | } else { |
| 8999 | /* we didn't yield, undo our change */ |
| 9000 | map->timestamp--; |
| 9001 | } |
| 9002 | } |
| 9003 | } |
| 9004 | |
| 9005 | if (map->wait_for_space) { |
| 9006 | thread_wakeup((event_t) map); |
| 9007 | } |
| 9008 | |
| 9009 | if (state & VMDS_NEEDS_WAKEUP) { |
| 9010 | vm_map_entry_wakeup(map); |
| 9011 | } |
| 9012 | |
| 9013 | out: |
| 9014 | if ((state & VMDS_KERNEL_PMAP) && ret.kmr_return) { |
| 9015 | __vm_map_delete_failed_panic(map, start, end, kr: ret.kmr_return); |
| 9016 | } |
| 9017 | |
| 9018 | if (state & VMDS_KERNEL_KMEMPTR) { |
| 9019 | kmem_free_space(start, end, range_id, slot: &slot); |
| 9020 | } |
| 9021 | |
| 9022 | if (state & VMDS_FOUND_GAP) { |
| 9023 | DTRACE_VM3(kern_vm_deallocate_gap, |
| 9024 | vm_map_offset_t, gap_start, |
| 9025 | vm_map_offset_t, save_start, |
| 9026 | vm_map_offset_t, save_end); |
| 9027 | if (flags & VM_MAP_REMOVE_GAPS_FAIL) { |
| 9028 | ret.kmr_return = KERN_INVALID_VALUE; |
| 9029 | } else { |
| 9030 | vm_map_guard_exception(gap_start, reason: kGUARD_EXC_DEALLOC_GAP); |
| 9031 | } |
| 9032 | } |
| 9033 | |
| 9034 | return ret; |
| 9035 | } |
| 9036 | |
| 9037 | kmem_return_t |
| 9038 | vm_map_remove_and_unlock( |
| 9039 | vm_map_t map, |
| 9040 | vm_map_offset_t start, |
| 9041 | vm_map_offset_t end, |
| 9042 | vmr_flags_t flags, |
| 9043 | kmem_guard_t guard) |
| 9044 | { |
| 9045 | kmem_return_t ret; |
| 9046 | VM_MAP_ZAP_DECLARE(zap); |
| 9047 | |
| 9048 | ret = vm_map_delete(map, start, end, flags, guard, zap_list: &zap); |
| 9049 | vm_map_unlock(map); |
| 9050 | |
| 9051 | vm_map_zap_dispose(list: &zap); |
| 9052 | |
| 9053 | return ret; |
| 9054 | } |
| 9055 | |
| 9056 | /* |
| 9057 | * vm_map_remove_guard: |
| 9058 | * |
| 9059 | * Remove the given address range from the target map. |
| 9060 | * This is the exported form of vm_map_delete. |
| 9061 | */ |
| 9062 | kmem_return_t |
| 9063 | vm_map_remove_guard( |
| 9064 | vm_map_t map, |
| 9065 | vm_map_offset_t start, |
| 9066 | vm_map_offset_t end, |
| 9067 | vmr_flags_t flags, |
| 9068 | kmem_guard_t guard) |
| 9069 | { |
| 9070 | vm_map_lock(map); |
| 9071 | return vm_map_remove_and_unlock(map, start, end, flags, guard); |
| 9072 | } |
| 9073 | |
| 9074 | /* |
| 9075 | * vm_map_terminate: |
| 9076 | * |
| 9077 | * Clean out a task's map. |
| 9078 | */ |
| 9079 | kern_return_t |
| 9080 | vm_map_terminate( |
| 9081 | vm_map_t map) |
| 9082 | { |
| 9083 | vm_map_lock(map); |
| 9084 | map->terminated = TRUE; |
| 9085 | vm_map_disable_hole_optimization(map); |
| 9086 | (void)vm_map_remove_and_unlock(map, start: map->min_offset, end: map->max_offset, |
| 9087 | flags: VM_MAP_REMOVE_NO_FLAGS, KMEM_GUARD_NONE); |
| 9088 | return KERN_SUCCESS; |
| 9089 | } |
| 9090 | |
| 9091 | /* |
| 9092 | * Routine: vm_map_copy_allocate |
| 9093 | * |
| 9094 | * Description: |
| 9095 | * Allocates and initializes a map copy object. |
| 9096 | */ |
| 9097 | static vm_map_copy_t |
| 9098 | vm_map_copy_allocate(uint16_t type) |
| 9099 | { |
| 9100 | vm_map_copy_t new_copy; |
| 9101 | |
| 9102 | new_copy = zalloc_id(ZONE_ID_VM_MAP_COPY, Z_WAITOK | Z_ZERO); |
| 9103 | new_copy->type = type; |
| 9104 | if (type == VM_MAP_COPY_ENTRY_LIST) { |
| 9105 | new_copy->c_u.hdr.rb_head_store.rbh_root = (void*)(int)SKIP_RB_TREE; |
| 9106 | vm_map_store_init(header: &new_copy->cpy_hdr); |
| 9107 | } |
| 9108 | return new_copy; |
| 9109 | } |
| 9110 | |
| 9111 | /* |
| 9112 | * Routine: vm_map_copy_discard |
| 9113 | * |
| 9114 | * Description: |
| 9115 | * Dispose of a map copy object (returned by |
| 9116 | * vm_map_copyin). |
| 9117 | */ |
| 9118 | void |
| 9119 | vm_map_copy_discard( |
| 9120 | vm_map_copy_t copy) |
| 9121 | { |
| 9122 | if (copy == VM_MAP_COPY_NULL) { |
| 9123 | return; |
| 9124 | } |
| 9125 | |
| 9126 | /* |
| 9127 | * Assert that the vm_map_copy is coming from the right |
| 9128 | * zone and hasn't been forged |
| 9129 | */ |
| 9130 | vm_map_copy_require(copy); |
| 9131 | |
| 9132 | switch (copy->type) { |
| 9133 | case VM_MAP_COPY_ENTRY_LIST: |
| 9134 | while (vm_map_copy_first_entry(copy) != |
| 9135 | vm_map_copy_to_entry(copy)) { |
| 9136 | vm_map_entry_t entry = vm_map_copy_first_entry(copy); |
| 9137 | |
| 9138 | vm_map_copy_entry_unlink(copy, entry); |
| 9139 | if (entry->is_sub_map) { |
| 9140 | vm_map_deallocate(VME_SUBMAP(entry)); |
| 9141 | } else { |
| 9142 | vm_object_deallocate(VME_OBJECT(entry)); |
| 9143 | } |
| 9144 | vm_map_copy_entry_dispose(entry); |
| 9145 | } |
| 9146 | break; |
| 9147 | case VM_MAP_COPY_KERNEL_BUFFER: |
| 9148 | |
| 9149 | /* |
| 9150 | * The vm_map_copy_t and possibly the data buffer were |
| 9151 | * allocated by a single call to kalloc_data(), i.e. the |
| 9152 | * vm_map_copy_t was not allocated out of the zone. |
| 9153 | */ |
| 9154 | if (copy->size > msg_ool_size_small || copy->offset) { |
| 9155 | panic("Invalid vm_map_copy_t sz:%lld, ofst:%lld" , |
| 9156 | (long long)copy->size, (long long)copy->offset); |
| 9157 | } |
| 9158 | kfree_data(copy->cpy_kdata, copy->size); |
| 9159 | } |
| 9160 | zfree_id(ZONE_ID_VM_MAP_COPY, copy); |
| 9161 | } |
| 9162 | |
| 9163 | #if XNU_PLATFORM_MacOSX |
| 9164 | |
| 9165 | /* |
| 9166 | * Routine: vm_map_copy_copy |
| 9167 | * |
| 9168 | * Description: |
| 9169 | * Move the information in a map copy object to |
| 9170 | * a new map copy object, leaving the old one |
| 9171 | * empty. |
| 9172 | * |
| 9173 | * This is used by kernel routines that need |
| 9174 | * to look at out-of-line data (in copyin form) |
| 9175 | * before deciding whether to return SUCCESS. |
| 9176 | * If the routine returns FAILURE, the original |
| 9177 | * copy object will be deallocated; therefore, |
| 9178 | * these routines must make a copy of the copy |
| 9179 | * object and leave the original empty so that |
| 9180 | * deallocation will not fail. |
| 9181 | */ |
| 9182 | vm_map_copy_t |
| 9183 | vm_map_copy_copy( |
| 9184 | vm_map_copy_t copy) |
| 9185 | { |
| 9186 | vm_map_copy_t new_copy; |
| 9187 | |
| 9188 | if (copy == VM_MAP_COPY_NULL) { |
| 9189 | return VM_MAP_COPY_NULL; |
| 9190 | } |
| 9191 | |
| 9192 | /* |
| 9193 | * Assert that the vm_map_copy is coming from the right |
| 9194 | * zone and hasn't been forged |
| 9195 | */ |
| 9196 | vm_map_copy_require(copy); |
| 9197 | |
| 9198 | /* |
| 9199 | * Allocate a new copy object, and copy the information |
| 9200 | * from the old one into it. |
| 9201 | */ |
| 9202 | |
| 9203 | new_copy = zalloc_id(ZONE_ID_VM_MAP_COPY, Z_WAITOK | Z_ZERO | Z_NOFAIL); |
| 9204 | memcpy(dst: (void *) new_copy, src: (void *) copy, n: sizeof(struct vm_map_copy)); |
| 9205 | #if __has_feature(ptrauth_calls) |
| 9206 | if (copy->type == VM_MAP_COPY_KERNEL_BUFFER) { |
| 9207 | new_copy->cpy_kdata = copy->cpy_kdata; |
| 9208 | } |
| 9209 | #endif |
| 9210 | |
| 9211 | if (copy->type == VM_MAP_COPY_ENTRY_LIST) { |
| 9212 | /* |
| 9213 | * The links in the entry chain must be |
| 9214 | * changed to point to the new copy object. |
| 9215 | */ |
| 9216 | vm_map_copy_first_entry(copy)->vme_prev |
| 9217 | = vm_map_copy_to_entry(new_copy); |
| 9218 | vm_map_copy_last_entry(copy)->vme_next |
| 9219 | = vm_map_copy_to_entry(new_copy); |
| 9220 | } |
| 9221 | |
| 9222 | /* |
| 9223 | * Change the old copy object into one that contains |
| 9224 | * nothing to be deallocated. |
| 9225 | */ |
| 9226 | bzero(s: copy, n: sizeof(struct vm_map_copy)); |
| 9227 | copy->type = VM_MAP_COPY_KERNEL_BUFFER; |
| 9228 | |
| 9229 | /* |
| 9230 | * Return the new object. |
| 9231 | */ |
| 9232 | return new_copy; |
| 9233 | } |
| 9234 | |
| 9235 | #endif /* XNU_PLATFORM_MacOSX */ |
| 9236 | |
| 9237 | static boolean_t |
| 9238 | vm_map_entry_is_overwritable( |
| 9239 | vm_map_t dst_map __unused, |
| 9240 | vm_map_entry_t entry) |
| 9241 | { |
| 9242 | if (!(entry->protection & VM_PROT_WRITE)) { |
| 9243 | /* can't overwrite if not writable */ |
| 9244 | return FALSE; |
| 9245 | } |
| 9246 | #if !__x86_64__ |
| 9247 | if (entry->used_for_jit && |
| 9248 | vm_map_cs_enforcement(map: dst_map) && |
| 9249 | !dst_map->cs_debugged) { |
| 9250 | /* |
| 9251 | * Can't overwrite a JIT region while cs_enforced |
| 9252 | * and not cs_debugged. |
| 9253 | */ |
| 9254 | return FALSE; |
| 9255 | } |
| 9256 | |
| 9257 | #if __arm64e__ |
| 9258 | /* Do not allow overwrite HW assisted TPRO entries */ |
| 9259 | if (entry->used_for_tpro) { |
| 9260 | return FALSE; |
| 9261 | } |
| 9262 | #endif /* __arm64e__ */ |
| 9263 | |
| 9264 | if (entry->vme_permanent) { |
| 9265 | if (entry->is_sub_map) { |
| 9266 | /* |
| 9267 | * We can't tell if the submap contains "permanent" |
| 9268 | * entries within the range targeted by the caller. |
| 9269 | * The caller will have to check for that with |
| 9270 | * vm_map_overwrite_submap_recurse() for example. |
| 9271 | */ |
| 9272 | } else { |
| 9273 | /* |
| 9274 | * Do not allow overwriting of a "permanent" |
| 9275 | * entry. |
| 9276 | */ |
| 9277 | DTRACE_VM6(vm_map_delete_permanent_deny_overwrite, |
| 9278 | vm_map_entry_t, entry, |
| 9279 | vm_map_offset_t, entry->vme_start, |
| 9280 | vm_map_offset_t, entry->vme_end, |
| 9281 | vm_prot_t, entry->protection, |
| 9282 | vm_prot_t, entry->max_protection, |
| 9283 | int, VME_ALIAS(entry)); |
| 9284 | return FALSE; |
| 9285 | } |
| 9286 | } |
| 9287 | #endif /* !__x86_64__ */ |
| 9288 | return TRUE; |
| 9289 | } |
| 9290 | |
| 9291 | static kern_return_t |
| 9292 | vm_map_overwrite_submap_recurse( |
| 9293 | vm_map_t dst_map, |
| 9294 | vm_map_offset_t dst_addr, |
| 9295 | vm_map_size_t dst_size) |
| 9296 | { |
| 9297 | vm_map_offset_t dst_end; |
| 9298 | vm_map_entry_t tmp_entry; |
| 9299 | vm_map_entry_t entry; |
| 9300 | kern_return_t result; |
| 9301 | boolean_t encountered_sub_map = FALSE; |
| 9302 | |
| 9303 | |
| 9304 | |
| 9305 | /* |
| 9306 | * Verify that the destination is all writeable |
| 9307 | * initially. We have to trunc the destination |
| 9308 | * address and round the copy size or we'll end up |
| 9309 | * splitting entries in strange ways. |
| 9310 | */ |
| 9311 | |
| 9312 | dst_end = vm_map_round_page(dst_addr + dst_size, |
| 9313 | VM_MAP_PAGE_MASK(dst_map)); |
| 9314 | vm_map_lock(dst_map); |
| 9315 | |
| 9316 | start_pass_1: |
| 9317 | if (!vm_map_lookup_entry(map: dst_map, address: dst_addr, entry: &tmp_entry)) { |
| 9318 | vm_map_unlock(dst_map); |
| 9319 | return KERN_INVALID_ADDRESS; |
| 9320 | } |
| 9321 | |
| 9322 | vm_map_clip_start(map: dst_map, |
| 9323 | entry: tmp_entry, |
| 9324 | vm_map_trunc_page(dst_addr, |
| 9325 | VM_MAP_PAGE_MASK(dst_map))); |
| 9326 | if (tmp_entry->is_sub_map) { |
| 9327 | /* clipping did unnest if needed */ |
| 9328 | assert(!tmp_entry->use_pmap); |
| 9329 | } |
| 9330 | |
| 9331 | for (entry = tmp_entry;;) { |
| 9332 | vm_map_entry_t next; |
| 9333 | |
| 9334 | next = entry->vme_next; |
| 9335 | while (entry->is_sub_map) { |
| 9336 | vm_map_offset_t sub_start; |
| 9337 | vm_map_offset_t sub_end; |
| 9338 | vm_map_offset_t local_end; |
| 9339 | |
| 9340 | if (entry->in_transition) { |
| 9341 | /* |
| 9342 | * Say that we are waiting, and wait for entry. |
| 9343 | */ |
| 9344 | entry->needs_wakeup = TRUE; |
| 9345 | vm_map_entry_wait(dst_map, THREAD_UNINT); |
| 9346 | |
| 9347 | goto start_pass_1; |
| 9348 | } |
| 9349 | |
| 9350 | encountered_sub_map = TRUE; |
| 9351 | sub_start = VME_OFFSET(entry); |
| 9352 | |
| 9353 | if (entry->vme_end < dst_end) { |
| 9354 | sub_end = entry->vme_end; |
| 9355 | } else { |
| 9356 | sub_end = dst_end; |
| 9357 | } |
| 9358 | sub_end -= entry->vme_start; |
| 9359 | sub_end += VME_OFFSET(entry); |
| 9360 | local_end = entry->vme_end; |
| 9361 | vm_map_unlock(dst_map); |
| 9362 | |
| 9363 | result = vm_map_overwrite_submap_recurse( |
| 9364 | VME_SUBMAP(entry), |
| 9365 | dst_addr: sub_start, |
| 9366 | dst_size: sub_end - sub_start); |
| 9367 | |
| 9368 | if (result != KERN_SUCCESS) { |
| 9369 | return result; |
| 9370 | } |
| 9371 | if (dst_end <= entry->vme_end) { |
| 9372 | return KERN_SUCCESS; |
| 9373 | } |
| 9374 | vm_map_lock(dst_map); |
| 9375 | if (!vm_map_lookup_entry(map: dst_map, address: local_end, |
| 9376 | entry: &tmp_entry)) { |
| 9377 | vm_map_unlock(dst_map); |
| 9378 | return KERN_INVALID_ADDRESS; |
| 9379 | } |
| 9380 | entry = tmp_entry; |
| 9381 | next = entry->vme_next; |
| 9382 | } |
| 9383 | |
| 9384 | if (!(entry->protection & VM_PROT_WRITE)) { |
| 9385 | vm_map_unlock(dst_map); |
| 9386 | return KERN_PROTECTION_FAILURE; |
| 9387 | } |
| 9388 | |
| 9389 | if (!vm_map_entry_is_overwritable(dst_map, entry)) { |
| 9390 | vm_map_unlock(dst_map); |
| 9391 | return KERN_PROTECTION_FAILURE; |
| 9392 | } |
| 9393 | |
| 9394 | /* |
| 9395 | * If the entry is in transition, we must wait |
| 9396 | * for it to exit that state. Anything could happen |
| 9397 | * when we unlock the map, so start over. |
| 9398 | */ |
| 9399 | if (entry->in_transition) { |
| 9400 | /* |
| 9401 | * Say that we are waiting, and wait for entry. |
| 9402 | */ |
| 9403 | entry->needs_wakeup = TRUE; |
| 9404 | vm_map_entry_wait(dst_map, THREAD_UNINT); |
| 9405 | |
| 9406 | goto start_pass_1; |
| 9407 | } |
| 9408 | |
| 9409 | /* |
| 9410 | * our range is contained completely within this map entry |
| 9411 | */ |
| 9412 | if (dst_end <= entry->vme_end) { |
| 9413 | vm_map_unlock(dst_map); |
| 9414 | return KERN_SUCCESS; |
| 9415 | } |
| 9416 | /* |
| 9417 | * check that range specified is contiguous region |
| 9418 | */ |
| 9419 | if ((next == vm_map_to_entry(dst_map)) || |
| 9420 | (next->vme_start != entry->vme_end)) { |
| 9421 | vm_map_unlock(dst_map); |
| 9422 | return KERN_INVALID_ADDRESS; |
| 9423 | } |
| 9424 | |
| 9425 | /* |
| 9426 | * Check for permanent objects in the destination. |
| 9427 | */ |
| 9428 | if ((VME_OBJECT(entry) != VM_OBJECT_NULL) && |
| 9429 | ((!VME_OBJECT(entry)->internal) || |
| 9430 | (VME_OBJECT(entry)->true_share))) { |
| 9431 | if (encountered_sub_map) { |
| 9432 | vm_map_unlock(dst_map); |
| 9433 | return KERN_FAILURE; |
| 9434 | } |
| 9435 | } |
| 9436 | |
| 9437 | |
| 9438 | entry = next; |
| 9439 | }/* for */ |
| 9440 | vm_map_unlock(dst_map); |
| 9441 | return KERN_SUCCESS; |
| 9442 | } |
| 9443 | |
| 9444 | /* |
| 9445 | * Routine: vm_map_copy_overwrite |
| 9446 | * |
| 9447 | * Description: |
| 9448 | * Copy the memory described by the map copy |
| 9449 | * object (copy; returned by vm_map_copyin) onto |
| 9450 | * the specified destination region (dst_map, dst_addr). |
| 9451 | * The destination must be writeable. |
| 9452 | * |
| 9453 | * Unlike vm_map_copyout, this routine actually |
| 9454 | * writes over previously-mapped memory. If the |
| 9455 | * previous mapping was to a permanent (user-supplied) |
| 9456 | * memory object, it is preserved. |
| 9457 | * |
| 9458 | * The attributes (protection and inheritance) of the |
| 9459 | * destination region are preserved. |
| 9460 | * |
| 9461 | * If successful, consumes the copy object. |
| 9462 | * Otherwise, the caller is responsible for it. |
| 9463 | * |
| 9464 | * Implementation notes: |
| 9465 | * To overwrite aligned temporary virtual memory, it is |
| 9466 | * sufficient to remove the previous mapping and insert |
| 9467 | * the new copy. This replacement is done either on |
| 9468 | * the whole region (if no permanent virtual memory |
| 9469 | * objects are embedded in the destination region) or |
| 9470 | * in individual map entries. |
| 9471 | * |
| 9472 | * To overwrite permanent virtual memory , it is necessary |
| 9473 | * to copy each page, as the external memory management |
| 9474 | * interface currently does not provide any optimizations. |
| 9475 | * |
| 9476 | * Unaligned memory also has to be copied. It is possible |
| 9477 | * to use 'vm_trickery' to copy the aligned data. This is |
| 9478 | * not done but not hard to implement. |
| 9479 | * |
| 9480 | * Once a page of permanent memory has been overwritten, |
| 9481 | * it is impossible to interrupt this function; otherwise, |
| 9482 | * the call would be neither atomic nor location-independent. |
| 9483 | * The kernel-state portion of a user thread must be |
| 9484 | * interruptible. |
| 9485 | * |
| 9486 | * It may be expensive to forward all requests that might |
| 9487 | * overwrite permanent memory (vm_write, vm_copy) to |
| 9488 | * uninterruptible kernel threads. This routine may be |
| 9489 | * called by interruptible threads; however, success is |
| 9490 | * not guaranteed -- if the request cannot be performed |
| 9491 | * atomically and interruptibly, an error indication is |
| 9492 | * returned. |
| 9493 | * |
| 9494 | * Callers of this function must call vm_map_copy_require on |
| 9495 | * previously created vm_map_copy_t or pass a newly created |
| 9496 | * one to ensure that it hasn't been forged. |
| 9497 | */ |
| 9498 | static kern_return_t |
| 9499 | vm_map_copy_overwrite_nested( |
| 9500 | vm_map_t dst_map, |
| 9501 | vm_map_address_t dst_addr, |
| 9502 | vm_map_copy_t copy, |
| 9503 | boolean_t interruptible, |
| 9504 | pmap_t pmap, |
| 9505 | boolean_t discard_on_success) |
| 9506 | { |
| 9507 | vm_map_offset_t dst_end; |
| 9508 | vm_map_entry_t tmp_entry; |
| 9509 | vm_map_entry_t entry; |
| 9510 | kern_return_t kr; |
| 9511 | boolean_t aligned = TRUE; |
| 9512 | boolean_t contains_permanent_objects = FALSE; |
| 9513 | boolean_t encountered_sub_map = FALSE; |
| 9514 | vm_map_offset_t base_addr; |
| 9515 | vm_map_size_t copy_size; |
| 9516 | vm_map_size_t total_size; |
| 9517 | uint16_t copy_page_shift; |
| 9518 | |
| 9519 | /* |
| 9520 | * Check for special kernel buffer allocated |
| 9521 | * by new_ipc_kmsg_copyin. |
| 9522 | */ |
| 9523 | |
| 9524 | if (copy->type == VM_MAP_COPY_KERNEL_BUFFER) { |
| 9525 | kr = vm_map_copyout_kernel_buffer( |
| 9526 | map: dst_map, addr: &dst_addr, |
| 9527 | copy, copy_size: copy->size, TRUE, consume_on_success: discard_on_success); |
| 9528 | return kr; |
| 9529 | } |
| 9530 | |
| 9531 | /* |
| 9532 | * Only works for entry lists at the moment. Will |
| 9533 | * support page lists later. |
| 9534 | */ |
| 9535 | |
| 9536 | assert(copy->type == VM_MAP_COPY_ENTRY_LIST); |
| 9537 | |
| 9538 | if (copy->size == 0) { |
| 9539 | if (discard_on_success) { |
| 9540 | vm_map_copy_discard(copy); |
| 9541 | } |
| 9542 | return KERN_SUCCESS; |
| 9543 | } |
| 9544 | |
| 9545 | copy_page_shift = copy->cpy_hdr.page_shift; |
| 9546 | |
| 9547 | /* |
| 9548 | * Verify that the destination is all writeable |
| 9549 | * initially. We have to trunc the destination |
| 9550 | * address and round the copy size or we'll end up |
| 9551 | * splitting entries in strange ways. |
| 9552 | */ |
| 9553 | |
| 9554 | if (!VM_MAP_PAGE_ALIGNED(copy->size, |
| 9555 | VM_MAP_PAGE_MASK(dst_map)) || |
| 9556 | !VM_MAP_PAGE_ALIGNED(copy->offset, |
| 9557 | VM_MAP_PAGE_MASK(dst_map)) || |
| 9558 | !VM_MAP_PAGE_ALIGNED(dst_addr, |
| 9559 | VM_MAP_PAGE_MASK(dst_map)) || |
| 9560 | copy_page_shift != VM_MAP_PAGE_SHIFT(map: dst_map)) { |
| 9561 | aligned = FALSE; |
| 9562 | dst_end = vm_map_round_page(dst_addr + copy->size, |
| 9563 | VM_MAP_PAGE_MASK(dst_map)); |
| 9564 | } else { |
| 9565 | dst_end = dst_addr + copy->size; |
| 9566 | } |
| 9567 | |
| 9568 | vm_map_lock(dst_map); |
| 9569 | |
| 9570 | /* LP64todo - remove this check when vm_map_commpage64() |
| 9571 | * no longer has to stuff in a map_entry for the commpage |
| 9572 | * above the map's max_offset. |
| 9573 | */ |
| 9574 | if (dst_addr >= dst_map->max_offset) { |
| 9575 | vm_map_unlock(dst_map); |
| 9576 | return KERN_INVALID_ADDRESS; |
| 9577 | } |
| 9578 | |
| 9579 | start_pass_1: |
| 9580 | if (!vm_map_lookup_entry(map: dst_map, address: dst_addr, entry: &tmp_entry)) { |
| 9581 | vm_map_unlock(dst_map); |
| 9582 | return KERN_INVALID_ADDRESS; |
| 9583 | } |
| 9584 | vm_map_clip_start(map: dst_map, |
| 9585 | entry: tmp_entry, |
| 9586 | vm_map_trunc_page(dst_addr, |
| 9587 | VM_MAP_PAGE_MASK(dst_map))); |
| 9588 | for (entry = tmp_entry;;) { |
| 9589 | vm_map_entry_t next = entry->vme_next; |
| 9590 | |
| 9591 | while (entry->is_sub_map) { |
| 9592 | vm_map_offset_t sub_start; |
| 9593 | vm_map_offset_t sub_end; |
| 9594 | vm_map_offset_t local_end; |
| 9595 | |
| 9596 | if (entry->in_transition) { |
| 9597 | /* |
| 9598 | * Say that we are waiting, and wait for entry. |
| 9599 | */ |
| 9600 | entry->needs_wakeup = TRUE; |
| 9601 | vm_map_entry_wait(dst_map, THREAD_UNINT); |
| 9602 | |
| 9603 | goto start_pass_1; |
| 9604 | } |
| 9605 | |
| 9606 | local_end = entry->vme_end; |
| 9607 | if (!(entry->needs_copy)) { |
| 9608 | /* if needs_copy we are a COW submap */ |
| 9609 | /* in such a case we just replace so */ |
| 9610 | /* there is no need for the follow- */ |
| 9611 | /* ing check. */ |
| 9612 | encountered_sub_map = TRUE; |
| 9613 | sub_start = VME_OFFSET(entry); |
| 9614 | |
| 9615 | if (entry->vme_end < dst_end) { |
| 9616 | sub_end = entry->vme_end; |
| 9617 | } else { |
| 9618 | sub_end = dst_end; |
| 9619 | } |
| 9620 | sub_end -= entry->vme_start; |
| 9621 | sub_end += VME_OFFSET(entry); |
| 9622 | vm_map_unlock(dst_map); |
| 9623 | |
| 9624 | kr = vm_map_overwrite_submap_recurse( |
| 9625 | VME_SUBMAP(entry), |
| 9626 | dst_addr: sub_start, |
| 9627 | dst_size: sub_end - sub_start); |
| 9628 | if (kr != KERN_SUCCESS) { |
| 9629 | return kr; |
| 9630 | } |
| 9631 | vm_map_lock(dst_map); |
| 9632 | } |
| 9633 | |
| 9634 | if (dst_end <= entry->vme_end) { |
| 9635 | goto start_overwrite; |
| 9636 | } |
| 9637 | if (!vm_map_lookup_entry(map: dst_map, address: local_end, |
| 9638 | entry: &entry)) { |
| 9639 | vm_map_unlock(dst_map); |
| 9640 | return KERN_INVALID_ADDRESS; |
| 9641 | } |
| 9642 | next = entry->vme_next; |
| 9643 | } |
| 9644 | |
| 9645 | if (!(entry->protection & VM_PROT_WRITE)) { |
| 9646 | vm_map_unlock(dst_map); |
| 9647 | return KERN_PROTECTION_FAILURE; |
| 9648 | } |
| 9649 | |
| 9650 | if (!vm_map_entry_is_overwritable(dst_map, entry)) { |
| 9651 | vm_map_unlock(dst_map); |
| 9652 | return KERN_PROTECTION_FAILURE; |
| 9653 | } |
| 9654 | |
| 9655 | /* |
| 9656 | * If the entry is in transition, we must wait |
| 9657 | * for it to exit that state. Anything could happen |
| 9658 | * when we unlock the map, so start over. |
| 9659 | */ |
| 9660 | if (entry->in_transition) { |
| 9661 | /* |
| 9662 | * Say that we are waiting, and wait for entry. |
| 9663 | */ |
| 9664 | entry->needs_wakeup = TRUE; |
| 9665 | vm_map_entry_wait(dst_map, THREAD_UNINT); |
| 9666 | |
| 9667 | goto start_pass_1; |
| 9668 | } |
| 9669 | |
| 9670 | /* |
| 9671 | * our range is contained completely within this map entry |
| 9672 | */ |
| 9673 | if (dst_end <= entry->vme_end) { |
| 9674 | break; |
| 9675 | } |
| 9676 | /* |
| 9677 | * check that range specified is contiguous region |
| 9678 | */ |
| 9679 | if ((next == vm_map_to_entry(dst_map)) || |
| 9680 | (next->vme_start != entry->vme_end)) { |
| 9681 | vm_map_unlock(dst_map); |
| 9682 | return KERN_INVALID_ADDRESS; |
| 9683 | } |
| 9684 | |
| 9685 | |
| 9686 | /* |
| 9687 | * Check for permanent objects in the destination. |
| 9688 | */ |
| 9689 | if ((VME_OBJECT(entry) != VM_OBJECT_NULL) && |
| 9690 | ((!VME_OBJECT(entry)->internal) || |
| 9691 | (VME_OBJECT(entry)->true_share))) { |
| 9692 | contains_permanent_objects = TRUE; |
| 9693 | } |
| 9694 | |
| 9695 | entry = next; |
| 9696 | }/* for */ |
| 9697 | |
| 9698 | start_overwrite: |
| 9699 | /* |
| 9700 | * If there are permanent objects in the destination, then |
| 9701 | * the copy cannot be interrupted. |
| 9702 | */ |
| 9703 | |
| 9704 | if (interruptible && contains_permanent_objects) { |
| 9705 | vm_map_unlock(dst_map); |
| 9706 | return KERN_FAILURE; /* XXX */ |
| 9707 | } |
| 9708 | |
| 9709 | /* |
| 9710 | * |
| 9711 | * Make a second pass, overwriting the data |
| 9712 | * At the beginning of each loop iteration, |
| 9713 | * the next entry to be overwritten is "tmp_entry" |
| 9714 | * (initially, the value returned from the lookup above), |
| 9715 | * and the starting address expected in that entry |
| 9716 | * is "start". |
| 9717 | */ |
| 9718 | |
| 9719 | total_size = copy->size; |
| 9720 | if (encountered_sub_map) { |
| 9721 | copy_size = 0; |
| 9722 | /* re-calculate tmp_entry since we've had the map */ |
| 9723 | /* unlocked */ |
| 9724 | if (!vm_map_lookup_entry( map: dst_map, address: dst_addr, entry: &tmp_entry)) { |
| 9725 | vm_map_unlock(dst_map); |
| 9726 | return KERN_INVALID_ADDRESS; |
| 9727 | } |
| 9728 | } else { |
| 9729 | copy_size = copy->size; |
| 9730 | } |
| 9731 | |
| 9732 | base_addr = dst_addr; |
| 9733 | while (TRUE) { |
| 9734 | /* deconstruct the copy object and do in parts */ |
| 9735 | /* only in sub_map, interruptable case */ |
| 9736 | vm_map_entry_t copy_entry; |
| 9737 | vm_map_entry_t previous_prev = VM_MAP_ENTRY_NULL; |
| 9738 | vm_map_entry_t next_copy = VM_MAP_ENTRY_NULL; |
| 9739 | int nentries; |
| 9740 | int remaining_entries = 0; |
| 9741 | vm_map_offset_t new_offset = 0; |
| 9742 | |
| 9743 | for (entry = tmp_entry; copy_size == 0;) { |
| 9744 | vm_map_entry_t next; |
| 9745 | |
| 9746 | next = entry->vme_next; |
| 9747 | |
| 9748 | /* tmp_entry and base address are moved along */ |
| 9749 | /* each time we encounter a sub-map. Otherwise */ |
| 9750 | /* entry can outpase tmp_entry, and the copy_size */ |
| 9751 | /* may reflect the distance between them */ |
| 9752 | /* if the current entry is found to be in transition */ |
| 9753 | /* we will start over at the beginning or the last */ |
| 9754 | /* encounter of a submap as dictated by base_addr */ |
| 9755 | /* we will zero copy_size accordingly. */ |
| 9756 | if (entry->in_transition) { |
| 9757 | /* |
| 9758 | * Say that we are waiting, and wait for entry. |
| 9759 | */ |
| 9760 | entry->needs_wakeup = TRUE; |
| 9761 | vm_map_entry_wait(dst_map, THREAD_UNINT); |
| 9762 | |
| 9763 | if (!vm_map_lookup_entry(map: dst_map, address: base_addr, |
| 9764 | entry: &tmp_entry)) { |
| 9765 | vm_map_unlock(dst_map); |
| 9766 | return KERN_INVALID_ADDRESS; |
| 9767 | } |
| 9768 | copy_size = 0; |
| 9769 | entry = tmp_entry; |
| 9770 | continue; |
| 9771 | } |
| 9772 | if (entry->is_sub_map) { |
| 9773 | vm_map_offset_t sub_start; |
| 9774 | vm_map_offset_t sub_end; |
| 9775 | vm_map_offset_t local_end; |
| 9776 | |
| 9777 | if (entry->needs_copy) { |
| 9778 | /* if this is a COW submap */ |
| 9779 | /* just back the range with a */ |
| 9780 | /* anonymous entry */ |
| 9781 | assert(!entry->vme_permanent); |
| 9782 | if (entry->vme_end < dst_end) { |
| 9783 | sub_end = entry->vme_end; |
| 9784 | } else { |
| 9785 | sub_end = dst_end; |
| 9786 | } |
| 9787 | if (entry->vme_start < base_addr) { |
| 9788 | sub_start = base_addr; |
| 9789 | } else { |
| 9790 | sub_start = entry->vme_start; |
| 9791 | } |
| 9792 | vm_map_clip_end( |
| 9793 | map: dst_map, entry, endaddr: sub_end); |
| 9794 | vm_map_clip_start( |
| 9795 | map: dst_map, entry, startaddr: sub_start); |
| 9796 | assert(!entry->use_pmap); |
| 9797 | assert(!entry->iokit_acct); |
| 9798 | entry->use_pmap = TRUE; |
| 9799 | vm_map_deallocate(VME_SUBMAP(entry)); |
| 9800 | assert(!entry->vme_permanent); |
| 9801 | VME_OBJECT_SET(entry, VM_OBJECT_NULL, false, context: 0); |
| 9802 | VME_OFFSET_SET(entry, offset: 0); |
| 9803 | entry->is_shared = FALSE; |
| 9804 | entry->needs_copy = FALSE; |
| 9805 | entry->protection = VM_PROT_DEFAULT; |
| 9806 | entry->max_protection = VM_PROT_ALL; |
| 9807 | entry->wired_count = 0; |
| 9808 | entry->user_wired_count = 0; |
| 9809 | if (entry->inheritance |
| 9810 | == VM_INHERIT_SHARE) { |
| 9811 | entry->inheritance = VM_INHERIT_COPY; |
| 9812 | } |
| 9813 | continue; |
| 9814 | } |
| 9815 | /* first take care of any non-sub_map */ |
| 9816 | /* entries to send */ |
| 9817 | if (base_addr < entry->vme_start) { |
| 9818 | /* stuff to send */ |
| 9819 | copy_size = |
| 9820 | entry->vme_start - base_addr; |
| 9821 | break; |
| 9822 | } |
| 9823 | sub_start = VME_OFFSET(entry); |
| 9824 | |
| 9825 | if (entry->vme_end < dst_end) { |
| 9826 | sub_end = entry->vme_end; |
| 9827 | } else { |
| 9828 | sub_end = dst_end; |
| 9829 | } |
| 9830 | sub_end -= entry->vme_start; |
| 9831 | sub_end += VME_OFFSET(entry); |
| 9832 | local_end = entry->vme_end; |
| 9833 | vm_map_unlock(dst_map); |
| 9834 | copy_size = sub_end - sub_start; |
| 9835 | |
| 9836 | /* adjust the copy object */ |
| 9837 | if (total_size > copy_size) { |
| 9838 | vm_map_size_t local_size = 0; |
| 9839 | vm_map_size_t entry_size; |
| 9840 | |
| 9841 | nentries = 1; |
| 9842 | new_offset = copy->offset; |
| 9843 | copy_entry = vm_map_copy_first_entry(copy); |
| 9844 | while (copy_entry != |
| 9845 | vm_map_copy_to_entry(copy)) { |
| 9846 | entry_size = copy_entry->vme_end - |
| 9847 | copy_entry->vme_start; |
| 9848 | if ((local_size < copy_size) && |
| 9849 | ((local_size + entry_size) |
| 9850 | >= copy_size)) { |
| 9851 | vm_map_copy_clip_end(copy, |
| 9852 | copy_entry, |
| 9853 | copy_entry->vme_start + |
| 9854 | (copy_size - local_size)); |
| 9855 | entry_size = copy_entry->vme_end - |
| 9856 | copy_entry->vme_start; |
| 9857 | local_size += entry_size; |
| 9858 | new_offset += entry_size; |
| 9859 | } |
| 9860 | if (local_size >= copy_size) { |
| 9861 | next_copy = copy_entry->vme_next; |
| 9862 | copy_entry->vme_next = |
| 9863 | vm_map_copy_to_entry(copy); |
| 9864 | previous_prev = |
| 9865 | copy->cpy_hdr.links.prev; |
| 9866 | copy->cpy_hdr.links.prev = copy_entry; |
| 9867 | copy->size = copy_size; |
| 9868 | remaining_entries = |
| 9869 | copy->cpy_hdr.nentries; |
| 9870 | remaining_entries -= nentries; |
| 9871 | copy->cpy_hdr.nentries = nentries; |
| 9872 | break; |
| 9873 | } else { |
| 9874 | local_size += entry_size; |
| 9875 | new_offset += entry_size; |
| 9876 | nentries++; |
| 9877 | } |
| 9878 | copy_entry = copy_entry->vme_next; |
| 9879 | } |
| 9880 | } |
| 9881 | |
| 9882 | if ((entry->use_pmap) && (pmap == NULL)) { |
| 9883 | kr = vm_map_copy_overwrite_nested( |
| 9884 | VME_SUBMAP(entry), |
| 9885 | dst_addr: sub_start, |
| 9886 | copy, |
| 9887 | interruptible, |
| 9888 | VME_SUBMAP(entry)->pmap, |
| 9889 | TRUE); |
| 9890 | } else if (pmap != NULL) { |
| 9891 | kr = vm_map_copy_overwrite_nested( |
| 9892 | VME_SUBMAP(entry), |
| 9893 | dst_addr: sub_start, |
| 9894 | copy, |
| 9895 | interruptible, pmap, |
| 9896 | TRUE); |
| 9897 | } else { |
| 9898 | kr = vm_map_copy_overwrite_nested( |
| 9899 | VME_SUBMAP(entry), |
| 9900 | dst_addr: sub_start, |
| 9901 | copy, |
| 9902 | interruptible, |
| 9903 | pmap: dst_map->pmap, |
| 9904 | TRUE); |
| 9905 | } |
| 9906 | if (kr != KERN_SUCCESS) { |
| 9907 | if (next_copy != NULL) { |
| 9908 | copy->cpy_hdr.nentries += |
| 9909 | remaining_entries; |
| 9910 | copy->cpy_hdr.links.prev->vme_next = |
| 9911 | next_copy; |
| 9912 | copy->cpy_hdr.links.prev |
| 9913 | = previous_prev; |
| 9914 | copy->size = total_size; |
| 9915 | } |
| 9916 | return kr; |
| 9917 | } |
| 9918 | if (dst_end <= local_end) { |
| 9919 | return KERN_SUCCESS; |
| 9920 | } |
| 9921 | /* otherwise copy no longer exists, it was */ |
| 9922 | /* destroyed after successful copy_overwrite */ |
| 9923 | copy = vm_map_copy_allocate(VM_MAP_COPY_ENTRY_LIST); |
| 9924 | copy->offset = new_offset; |
| 9925 | copy->cpy_hdr.page_shift = copy_page_shift; |
| 9926 | |
| 9927 | total_size -= copy_size; |
| 9928 | copy_size = 0; |
| 9929 | /* put back remainder of copy in container */ |
| 9930 | if (next_copy != NULL) { |
| 9931 | copy->cpy_hdr.nentries = remaining_entries; |
| 9932 | copy->cpy_hdr.links.next = next_copy; |
| 9933 | copy->cpy_hdr.links.prev = previous_prev; |
| 9934 | copy->size = total_size; |
| 9935 | next_copy->vme_prev = |
| 9936 | vm_map_copy_to_entry(copy); |
| 9937 | next_copy = NULL; |
| 9938 | } |
| 9939 | base_addr = local_end; |
| 9940 | vm_map_lock(dst_map); |
| 9941 | if (!vm_map_lookup_entry(map: dst_map, |
| 9942 | address: local_end, entry: &tmp_entry)) { |
| 9943 | vm_map_unlock(dst_map); |
| 9944 | return KERN_INVALID_ADDRESS; |
| 9945 | } |
| 9946 | entry = tmp_entry; |
| 9947 | continue; |
| 9948 | } |
| 9949 | if (dst_end <= entry->vme_end) { |
| 9950 | copy_size = dst_end - base_addr; |
| 9951 | break; |
| 9952 | } |
| 9953 | |
| 9954 | if ((next == vm_map_to_entry(dst_map)) || |
| 9955 | (next->vme_start != entry->vme_end)) { |
| 9956 | vm_map_unlock(dst_map); |
| 9957 | return KERN_INVALID_ADDRESS; |
| 9958 | } |
| 9959 | |
| 9960 | entry = next; |
| 9961 | }/* for */ |
| 9962 | |
| 9963 | next_copy = NULL; |
| 9964 | nentries = 1; |
| 9965 | |
| 9966 | /* adjust the copy object */ |
| 9967 | if (total_size > copy_size) { |
| 9968 | vm_map_size_t local_size = 0; |
| 9969 | vm_map_size_t entry_size; |
| 9970 | |
| 9971 | new_offset = copy->offset; |
| 9972 | copy_entry = vm_map_copy_first_entry(copy); |
| 9973 | while (copy_entry != vm_map_copy_to_entry(copy)) { |
| 9974 | entry_size = copy_entry->vme_end - |
| 9975 | copy_entry->vme_start; |
| 9976 | if ((local_size < copy_size) && |
| 9977 | ((local_size + entry_size) |
| 9978 | >= copy_size)) { |
| 9979 | vm_map_copy_clip_end(copy, copy_entry, |
| 9980 | copy_entry->vme_start + |
| 9981 | (copy_size - local_size)); |
| 9982 | entry_size = copy_entry->vme_end - |
| 9983 | copy_entry->vme_start; |
| 9984 | local_size += entry_size; |
| 9985 | new_offset += entry_size; |
| 9986 | } |
| 9987 | if (local_size >= copy_size) { |
| 9988 | next_copy = copy_entry->vme_next; |
| 9989 | copy_entry->vme_next = |
| 9990 | vm_map_copy_to_entry(copy); |
| 9991 | previous_prev = |
| 9992 | copy->cpy_hdr.links.prev; |
| 9993 | copy->cpy_hdr.links.prev = copy_entry; |
| 9994 | copy->size = copy_size; |
| 9995 | remaining_entries = |
| 9996 | copy->cpy_hdr.nentries; |
| 9997 | remaining_entries -= nentries; |
| 9998 | copy->cpy_hdr.nentries = nentries; |
| 9999 | break; |
| 10000 | } else { |
| 10001 | local_size += entry_size; |
| 10002 | new_offset += entry_size; |
| 10003 | nentries++; |
| 10004 | } |
| 10005 | copy_entry = copy_entry->vme_next; |
| 10006 | } |
| 10007 | } |
| 10008 | |
| 10009 | if (aligned) { |
| 10010 | pmap_t local_pmap; |
| 10011 | |
| 10012 | if (pmap) { |
| 10013 | local_pmap = pmap; |
| 10014 | } else { |
| 10015 | local_pmap = dst_map->pmap; |
| 10016 | } |
| 10017 | |
| 10018 | if ((kr = vm_map_copy_overwrite_aligned( |
| 10019 | dst_map, tmp_entry, copy, |
| 10020 | start: base_addr, pmap: local_pmap)) != KERN_SUCCESS) { |
| 10021 | if (next_copy != NULL) { |
| 10022 | copy->cpy_hdr.nentries += |
| 10023 | remaining_entries; |
| 10024 | copy->cpy_hdr.links.prev->vme_next = |
| 10025 | next_copy; |
| 10026 | copy->cpy_hdr.links.prev = |
| 10027 | previous_prev; |
| 10028 | copy->size += copy_size; |
| 10029 | } |
| 10030 | return kr; |
| 10031 | } |
| 10032 | vm_map_unlock(dst_map); |
| 10033 | } else { |
| 10034 | /* |
| 10035 | * Performance gain: |
| 10036 | * |
| 10037 | * if the copy and dst address are misaligned but the same |
| 10038 | * offset within the page we can copy_not_aligned the |
| 10039 | * misaligned parts and copy aligned the rest. If they are |
| 10040 | * aligned but len is unaligned we simply need to copy |
| 10041 | * the end bit unaligned. We'll need to split the misaligned |
| 10042 | * bits of the region in this case ! |
| 10043 | */ |
| 10044 | /* ALWAYS UNLOCKS THE dst_map MAP */ |
| 10045 | kr = vm_map_copy_overwrite_unaligned( |
| 10046 | dst_map, |
| 10047 | entry: tmp_entry, |
| 10048 | copy, |
| 10049 | start: base_addr, |
| 10050 | discard_on_success); |
| 10051 | if (kr != KERN_SUCCESS) { |
| 10052 | if (next_copy != NULL) { |
| 10053 | copy->cpy_hdr.nentries += |
| 10054 | remaining_entries; |
| 10055 | copy->cpy_hdr.links.prev->vme_next = |
| 10056 | next_copy; |
| 10057 | copy->cpy_hdr.links.prev = |
| 10058 | previous_prev; |
| 10059 | copy->size += copy_size; |
| 10060 | } |
| 10061 | return kr; |
| 10062 | } |
| 10063 | } |
| 10064 | total_size -= copy_size; |
| 10065 | if (total_size == 0) { |
| 10066 | break; |
| 10067 | } |
| 10068 | base_addr += copy_size; |
| 10069 | copy_size = 0; |
| 10070 | copy->offset = new_offset; |
| 10071 | if (next_copy != NULL) { |
| 10072 | copy->cpy_hdr.nentries = remaining_entries; |
| 10073 | copy->cpy_hdr.links.next = next_copy; |
| 10074 | copy->cpy_hdr.links.prev = previous_prev; |
| 10075 | next_copy->vme_prev = vm_map_copy_to_entry(copy); |
| 10076 | copy->size = total_size; |
| 10077 | } |
| 10078 | vm_map_lock(dst_map); |
| 10079 | while (TRUE) { |
| 10080 | if (!vm_map_lookup_entry(map: dst_map, |
| 10081 | address: base_addr, entry: &tmp_entry)) { |
| 10082 | vm_map_unlock(dst_map); |
| 10083 | return KERN_INVALID_ADDRESS; |
| 10084 | } |
| 10085 | if (tmp_entry->in_transition) { |
| 10086 | entry->needs_wakeup = TRUE; |
| 10087 | vm_map_entry_wait(dst_map, THREAD_UNINT); |
| 10088 | } else { |
| 10089 | break; |
| 10090 | } |
| 10091 | } |
| 10092 | vm_map_clip_start(map: dst_map, |
| 10093 | entry: tmp_entry, |
| 10094 | vm_map_trunc_page(base_addr, |
| 10095 | VM_MAP_PAGE_MASK(dst_map))); |
| 10096 | |
| 10097 | entry = tmp_entry; |
| 10098 | } /* while */ |
| 10099 | |
| 10100 | /* |
| 10101 | * Throw away the vm_map_copy object |
| 10102 | */ |
| 10103 | if (discard_on_success) { |
| 10104 | vm_map_copy_discard(copy); |
| 10105 | } |
| 10106 | |
| 10107 | return KERN_SUCCESS; |
| 10108 | }/* vm_map_copy_overwrite */ |
| 10109 | |
| 10110 | kern_return_t |
| 10111 | vm_map_copy_overwrite( |
| 10112 | vm_map_t dst_map, |
| 10113 | vm_map_offset_t dst_addr, |
| 10114 | vm_map_copy_t copy, |
| 10115 | vm_map_size_t copy_size, |
| 10116 | boolean_t interruptible) |
| 10117 | { |
| 10118 | vm_map_size_t head_size, tail_size; |
| 10119 | vm_map_copy_t head_copy, tail_copy; |
| 10120 | vm_map_offset_t head_addr, tail_addr; |
| 10121 | vm_map_entry_t entry; |
| 10122 | kern_return_t kr; |
| 10123 | vm_map_offset_t effective_page_mask, effective_page_size; |
| 10124 | uint16_t copy_page_shift; |
| 10125 | |
| 10126 | head_size = 0; |
| 10127 | tail_size = 0; |
| 10128 | head_copy = NULL; |
| 10129 | tail_copy = NULL; |
| 10130 | head_addr = 0; |
| 10131 | tail_addr = 0; |
| 10132 | |
| 10133 | /* |
| 10134 | * Check for null copy object. |
| 10135 | */ |
| 10136 | if (copy == VM_MAP_COPY_NULL) { |
| 10137 | return KERN_SUCCESS; |
| 10138 | } |
| 10139 | |
| 10140 | if (__improbable(vm_map_range_overflows(dst_map, dst_addr, copy_size))) { |
| 10141 | return KERN_INVALID_ADDRESS; |
| 10142 | } |
| 10143 | |
| 10144 | /* |
| 10145 | * Assert that the vm_map_copy is coming from the right |
| 10146 | * zone and hasn't been forged |
| 10147 | */ |
| 10148 | vm_map_copy_require(copy); |
| 10149 | |
| 10150 | if (interruptible || |
| 10151 | copy->type != VM_MAP_COPY_ENTRY_LIST) { |
| 10152 | /* |
| 10153 | * We can't split the "copy" map if we're interruptible |
| 10154 | * or if we don't have a "copy" map... |
| 10155 | */ |
| 10156 | blunt_copy: |
| 10157 | kr = vm_map_copy_overwrite_nested(dst_map, |
| 10158 | dst_addr, |
| 10159 | copy, |
| 10160 | interruptible, |
| 10161 | pmap: (pmap_t) NULL, |
| 10162 | TRUE); |
| 10163 | if (kr) { |
| 10164 | ktriage_record(thread_id: thread_tid(thread: current_thread()), KDBG_TRIAGE_EVENTID(KDBG_TRIAGE_SUBSYS_VM, KDBG_TRIAGE_RESERVED, KDBG_TRIAGE_VM_COPYOVERWRITE_FULL_NESTED_ERROR), arg: kr /* arg */); |
| 10165 | } |
| 10166 | return kr; |
| 10167 | } |
| 10168 | |
| 10169 | copy_page_shift = VM_MAP_COPY_PAGE_SHIFT(copy); |
| 10170 | if (copy_page_shift < PAGE_SHIFT || |
| 10171 | VM_MAP_PAGE_SHIFT(map: dst_map) < PAGE_SHIFT) { |
| 10172 | goto blunt_copy; |
| 10173 | } |
| 10174 | |
| 10175 | if (VM_MAP_PAGE_SHIFT(map: dst_map) < PAGE_SHIFT) { |
| 10176 | effective_page_mask = VM_MAP_PAGE_MASK(dst_map); |
| 10177 | } else { |
| 10178 | effective_page_mask = MAX(VM_MAP_PAGE_MASK(dst_map), PAGE_MASK); |
| 10179 | effective_page_mask = MAX(VM_MAP_COPY_PAGE_MASK(copy), |
| 10180 | effective_page_mask); |
| 10181 | } |
| 10182 | effective_page_size = effective_page_mask + 1; |
| 10183 | |
| 10184 | if (copy_size < VM_MAP_COPY_OVERWRITE_OPTIMIZATION_THRESHOLD_PAGES * effective_page_size) { |
| 10185 | /* |
| 10186 | * Too small to bother with optimizing... |
| 10187 | */ |
| 10188 | goto blunt_copy; |
| 10189 | } |
| 10190 | |
| 10191 | if ((dst_addr & effective_page_mask) != |
| 10192 | (copy->offset & effective_page_mask)) { |
| 10193 | /* |
| 10194 | * Incompatible mis-alignment of source and destination... |
| 10195 | */ |
| 10196 | goto blunt_copy; |
| 10197 | } |
| 10198 | |
| 10199 | /* |
| 10200 | * Proper alignment or identical mis-alignment at the beginning. |
| 10201 | * Let's try and do a small unaligned copy first (if needed) |
| 10202 | * and then an aligned copy for the rest. |
| 10203 | */ |
| 10204 | if (!vm_map_page_aligned(offset: dst_addr, mask: effective_page_mask)) { |
| 10205 | head_addr = dst_addr; |
| 10206 | head_size = (effective_page_size - |
| 10207 | (copy->offset & effective_page_mask)); |
| 10208 | head_size = MIN(head_size, copy_size); |
| 10209 | } |
| 10210 | if (!vm_map_page_aligned(offset: copy->offset + copy_size, |
| 10211 | mask: effective_page_mask)) { |
| 10212 | /* |
| 10213 | * Mis-alignment at the end. |
| 10214 | * Do an aligned copy up to the last page and |
| 10215 | * then an unaligned copy for the remaining bytes. |
| 10216 | */ |
| 10217 | tail_size = ((copy->offset + copy_size) & |
| 10218 | effective_page_mask); |
| 10219 | tail_size = MIN(tail_size, copy_size); |
| 10220 | tail_addr = dst_addr + copy_size - tail_size; |
| 10221 | assert(tail_addr >= head_addr + head_size); |
| 10222 | } |
| 10223 | assert(head_size + tail_size <= copy_size); |
| 10224 | |
| 10225 | if (head_size + tail_size == copy_size) { |
| 10226 | /* |
| 10227 | * It's all unaligned, no optimization possible... |
| 10228 | */ |
| 10229 | goto blunt_copy; |
| 10230 | } |
| 10231 | |
| 10232 | /* |
| 10233 | * Can't optimize if there are any submaps in the |
| 10234 | * destination due to the way we free the "copy" map |
| 10235 | * progressively in vm_map_copy_overwrite_nested() |
| 10236 | * in that case. |
| 10237 | */ |
| 10238 | vm_map_lock_read(dst_map); |
| 10239 | if (!vm_map_lookup_entry(map: dst_map, address: dst_addr, entry: &entry)) { |
| 10240 | vm_map_unlock_read(dst_map); |
| 10241 | goto blunt_copy; |
| 10242 | } |
| 10243 | for (; |
| 10244 | (entry != vm_map_to_entry(dst_map) && |
| 10245 | entry->vme_start < dst_addr + copy_size); |
| 10246 | entry = entry->vme_next) { |
| 10247 | if (entry->is_sub_map) { |
| 10248 | vm_map_unlock_read(dst_map); |
| 10249 | goto blunt_copy; |
| 10250 | } |
| 10251 | } |
| 10252 | vm_map_unlock_read(dst_map); |
| 10253 | |
| 10254 | if (head_size) { |
| 10255 | /* |
| 10256 | * Unaligned copy of the first "head_size" bytes, to reach |
| 10257 | * a page boundary. |
| 10258 | */ |
| 10259 | |
| 10260 | /* |
| 10261 | * Extract "head_copy" out of "copy". |
| 10262 | */ |
| 10263 | head_copy = vm_map_copy_allocate(VM_MAP_COPY_ENTRY_LIST); |
| 10264 | head_copy->cpy_hdr.entries_pageable = |
| 10265 | copy->cpy_hdr.entries_pageable; |
| 10266 | head_copy->cpy_hdr.page_shift = copy_page_shift; |
| 10267 | |
| 10268 | entry = vm_map_copy_first_entry(copy); |
| 10269 | if (entry->vme_end < copy->offset + head_size) { |
| 10270 | head_size = entry->vme_end - copy->offset; |
| 10271 | } |
| 10272 | |
| 10273 | head_copy->offset = copy->offset; |
| 10274 | head_copy->size = head_size; |
| 10275 | copy->offset += head_size; |
| 10276 | copy->size -= head_size; |
| 10277 | copy_size -= head_size; |
| 10278 | assert(copy_size > 0); |
| 10279 | |
| 10280 | vm_map_copy_clip_end(copy, entry, copy->offset); |
| 10281 | vm_map_copy_entry_unlink(copy, entry); |
| 10282 | vm_map_copy_entry_link(head_copy, |
| 10283 | vm_map_copy_to_entry(head_copy), |
| 10284 | entry); |
| 10285 | |
| 10286 | /* |
| 10287 | * Do the unaligned copy. |
| 10288 | */ |
| 10289 | kr = vm_map_copy_overwrite_nested(dst_map, |
| 10290 | dst_addr: head_addr, |
| 10291 | copy: head_copy, |
| 10292 | interruptible, |
| 10293 | pmap: (pmap_t) NULL, |
| 10294 | FALSE); |
| 10295 | if (kr != KERN_SUCCESS) { |
| 10296 | ktriage_record(thread_id: thread_tid(thread: current_thread()), KDBG_TRIAGE_EVENTID(KDBG_TRIAGE_SUBSYS_VM, KDBG_TRIAGE_RESERVED, KDBG_TRIAGE_VM_COPYOVERWRITE_PARTIAL_HEAD_NESTED_ERROR), arg: kr /* arg */); |
| 10297 | goto done; |
| 10298 | } |
| 10299 | } |
| 10300 | |
| 10301 | if (tail_size) { |
| 10302 | /* |
| 10303 | * Extract "tail_copy" out of "copy". |
| 10304 | */ |
| 10305 | tail_copy = vm_map_copy_allocate(VM_MAP_COPY_ENTRY_LIST); |
| 10306 | tail_copy->cpy_hdr.entries_pageable = |
| 10307 | copy->cpy_hdr.entries_pageable; |
| 10308 | tail_copy->cpy_hdr.page_shift = copy_page_shift; |
| 10309 | |
| 10310 | tail_copy->offset = copy->offset + copy_size - tail_size; |
| 10311 | tail_copy->size = tail_size; |
| 10312 | |
| 10313 | copy->size -= tail_size; |
| 10314 | copy_size -= tail_size; |
| 10315 | assert(copy_size > 0); |
| 10316 | |
| 10317 | entry = vm_map_copy_last_entry(copy); |
| 10318 | vm_map_copy_clip_start(copy, entry, tail_copy->offset); |
| 10319 | entry = vm_map_copy_last_entry(copy); |
| 10320 | vm_map_copy_entry_unlink(copy, entry); |
| 10321 | vm_map_copy_entry_link(tail_copy, |
| 10322 | vm_map_copy_last_entry(tail_copy), |
| 10323 | entry); |
| 10324 | } |
| 10325 | |
| 10326 | /* |
| 10327 | * If we are here from ipc_kmsg_copyout_ool_descriptor(), |
| 10328 | * we want to avoid TOCTOU issues w.r.t copy->size but |
| 10329 | * we don't need to change vm_map_copy_overwrite_nested() |
| 10330 | * and all other vm_map_copy_overwrite variants. |
| 10331 | * |
| 10332 | * So we assign the original copy_size that was passed into |
| 10333 | * this routine back to copy. |
| 10334 | * |
| 10335 | * This use of local 'copy_size' passed into this routine is |
| 10336 | * to try and protect against TOCTOU attacks where the kernel |
| 10337 | * has been exploited. We don't expect this to be an issue |
| 10338 | * during normal system operation. |
| 10339 | */ |
| 10340 | assertf(copy->size == copy_size, |
| 10341 | "Mismatch of copy sizes. Expected 0x%llx, Got 0x%llx\n" , (uint64_t) copy_size, (uint64_t) copy->size); |
| 10342 | copy->size = copy_size; |
| 10343 | |
| 10344 | /* |
| 10345 | * Copy most (or possibly all) of the data. |
| 10346 | */ |
| 10347 | kr = vm_map_copy_overwrite_nested(dst_map, |
| 10348 | dst_addr: dst_addr + head_size, |
| 10349 | copy, |
| 10350 | interruptible, |
| 10351 | pmap: (pmap_t) NULL, |
| 10352 | FALSE); |
| 10353 | if (kr != KERN_SUCCESS) { |
| 10354 | ktriage_record(thread_id: thread_tid(thread: current_thread()), KDBG_TRIAGE_EVENTID(KDBG_TRIAGE_SUBSYS_VM, KDBG_TRIAGE_RESERVED, KDBG_TRIAGE_VM_COPYOVERWRITE_PARTIAL_NESTED_ERROR), arg: kr /* arg */); |
| 10355 | goto done; |
| 10356 | } |
| 10357 | |
| 10358 | if (tail_size) { |
| 10359 | kr = vm_map_copy_overwrite_nested(dst_map, |
| 10360 | dst_addr: tail_addr, |
| 10361 | copy: tail_copy, |
| 10362 | interruptible, |
| 10363 | pmap: (pmap_t) NULL, |
| 10364 | FALSE); |
| 10365 | if (kr) { |
| 10366 | ktriage_record(thread_id: thread_tid(thread: current_thread()), KDBG_TRIAGE_EVENTID(KDBG_TRIAGE_SUBSYS_VM, KDBG_TRIAGE_RESERVED, KDBG_TRIAGE_VM_COPYOVERWRITE_PARTIAL_TAIL_NESTED_ERROR), arg: kr /* arg */); |
| 10367 | } |
| 10368 | } |
| 10369 | |
| 10370 | done: |
| 10371 | assert(copy->type == VM_MAP_COPY_ENTRY_LIST); |
| 10372 | if (kr == KERN_SUCCESS) { |
| 10373 | /* |
| 10374 | * Discard all the copy maps. |
| 10375 | */ |
| 10376 | if (head_copy) { |
| 10377 | vm_map_copy_discard(copy: head_copy); |
| 10378 | head_copy = NULL; |
| 10379 | } |
| 10380 | vm_map_copy_discard(copy); |
| 10381 | if (tail_copy) { |
| 10382 | vm_map_copy_discard(copy: tail_copy); |
| 10383 | tail_copy = NULL; |
| 10384 | } |
| 10385 | } else { |
| 10386 | /* |
| 10387 | * Re-assemble the original copy map. |
| 10388 | */ |
| 10389 | if (head_copy) { |
| 10390 | entry = vm_map_copy_first_entry(head_copy); |
| 10391 | vm_map_copy_entry_unlink(head_copy, entry); |
| 10392 | vm_map_copy_entry_link(copy, |
| 10393 | vm_map_copy_to_entry(copy), |
| 10394 | entry); |
| 10395 | copy->offset -= head_size; |
| 10396 | copy->size += head_size; |
| 10397 | vm_map_copy_discard(copy: head_copy); |
| 10398 | head_copy = NULL; |
| 10399 | } |
| 10400 | if (tail_copy) { |
| 10401 | entry = vm_map_copy_last_entry(tail_copy); |
| 10402 | vm_map_copy_entry_unlink(tail_copy, entry); |
| 10403 | vm_map_copy_entry_link(copy, |
| 10404 | vm_map_copy_last_entry(copy), |
| 10405 | entry); |
| 10406 | copy->size += tail_size; |
| 10407 | vm_map_copy_discard(copy: tail_copy); |
| 10408 | tail_copy = NULL; |
| 10409 | } |
| 10410 | } |
| 10411 | return kr; |
| 10412 | } |
| 10413 | |
| 10414 | |
| 10415 | /* |
| 10416 | * Routine: vm_map_copy_overwrite_unaligned [internal use only] |
| 10417 | * |
| 10418 | * Decription: |
| 10419 | * Physically copy unaligned data |
| 10420 | * |
| 10421 | * Implementation: |
| 10422 | * Unaligned parts of pages have to be physically copied. We use |
| 10423 | * a modified form of vm_fault_copy (which understands none-aligned |
| 10424 | * page offsets and sizes) to do the copy. We attempt to copy as |
| 10425 | * much memory in one go as possibly, however vm_fault_copy copies |
| 10426 | * within 1 memory object so we have to find the smaller of "amount left" |
| 10427 | * "source object data size" and "target object data size". With |
| 10428 | * unaligned data we don't need to split regions, therefore the source |
| 10429 | * (copy) object should be one map entry, the target range may be split |
| 10430 | * over multiple map entries however. In any event we are pessimistic |
| 10431 | * about these assumptions. |
| 10432 | * |
| 10433 | * Callers of this function must call vm_map_copy_require on |
| 10434 | * previously created vm_map_copy_t or pass a newly created |
| 10435 | * one to ensure that it hasn't been forged. |
| 10436 | * |
| 10437 | * Assumptions: |
| 10438 | * dst_map is locked on entry and is return locked on success, |
| 10439 | * unlocked on error. |
| 10440 | */ |
| 10441 | |
| 10442 | static kern_return_t |
| 10443 | vm_map_copy_overwrite_unaligned( |
| 10444 | vm_map_t dst_map, |
| 10445 | vm_map_entry_t entry, |
| 10446 | vm_map_copy_t copy, |
| 10447 | vm_map_offset_t start, |
| 10448 | boolean_t discard_on_success) |
| 10449 | { |
| 10450 | vm_map_entry_t copy_entry; |
| 10451 | vm_map_entry_t copy_entry_next; |
| 10452 | vm_map_version_t version; |
| 10453 | vm_object_t dst_object; |
| 10454 | vm_object_offset_t dst_offset; |
| 10455 | vm_object_offset_t src_offset; |
| 10456 | vm_object_offset_t entry_offset; |
| 10457 | vm_map_offset_t entry_end; |
| 10458 | vm_map_size_t src_size, |
| 10459 | dst_size, |
| 10460 | copy_size, |
| 10461 | amount_left; |
| 10462 | kern_return_t kr = KERN_SUCCESS; |
| 10463 | |
| 10464 | |
| 10465 | copy_entry = vm_map_copy_first_entry(copy); |
| 10466 | |
| 10467 | vm_map_lock_write_to_read(dst_map); |
| 10468 | |
| 10469 | src_offset = copy->offset - trunc_page_mask_64(copy->offset, VM_MAP_COPY_PAGE_MASK(copy)); |
| 10470 | amount_left = copy->size; |
| 10471 | /* |
| 10472 | * unaligned so we never clipped this entry, we need the offset into |
| 10473 | * the vm_object not just the data. |
| 10474 | */ |
| 10475 | while (amount_left > 0) { |
| 10476 | if (entry == vm_map_to_entry(dst_map)) { |
| 10477 | vm_map_unlock_read(dst_map); |
| 10478 | return KERN_INVALID_ADDRESS; |
| 10479 | } |
| 10480 | |
| 10481 | /* "start" must be within the current map entry */ |
| 10482 | assert((start >= entry->vme_start) && (start < entry->vme_end)); |
| 10483 | |
| 10484 | /* |
| 10485 | * Check protection again |
| 10486 | */ |
| 10487 | if (!(entry->protection & VM_PROT_WRITE)) { |
| 10488 | vm_map_unlock_read(dst_map); |
| 10489 | return KERN_PROTECTION_FAILURE; |
| 10490 | } |
| 10491 | if (!vm_map_entry_is_overwritable(dst_map, entry)) { |
| 10492 | vm_map_unlock_read(dst_map); |
| 10493 | return KERN_PROTECTION_FAILURE; |
| 10494 | } |
| 10495 | |
| 10496 | /* |
| 10497 | * If the entry is in transition, we must wait |
| 10498 | * for it to exit that state. Anything could happen |
| 10499 | * when we unlock the map, so start over. |
| 10500 | */ |
| 10501 | if (entry->in_transition) { |
| 10502 | /* |
| 10503 | * Say that we are waiting, and wait for entry. |
| 10504 | */ |
| 10505 | entry->needs_wakeup = TRUE; |
| 10506 | vm_map_entry_wait(dst_map, THREAD_UNINT); |
| 10507 | |
| 10508 | goto RetryLookup; |
| 10509 | } |
| 10510 | |
| 10511 | dst_offset = start - entry->vme_start; |
| 10512 | |
| 10513 | dst_size = entry->vme_end - start; |
| 10514 | |
| 10515 | src_size = copy_entry->vme_end - |
| 10516 | (copy_entry->vme_start + src_offset); |
| 10517 | |
| 10518 | if (dst_size < src_size) { |
| 10519 | /* |
| 10520 | * we can only copy dst_size bytes before |
| 10521 | * we have to get the next destination entry |
| 10522 | */ |
| 10523 | copy_size = dst_size; |
| 10524 | } else { |
| 10525 | /* |
| 10526 | * we can only copy src_size bytes before |
| 10527 | * we have to get the next source copy entry |
| 10528 | */ |
| 10529 | copy_size = src_size; |
| 10530 | } |
| 10531 | |
| 10532 | if (copy_size > amount_left) { |
| 10533 | copy_size = amount_left; |
| 10534 | } |
| 10535 | /* |
| 10536 | * Entry needs copy, create a shadow shadow object for |
| 10537 | * Copy on write region. |
| 10538 | */ |
| 10539 | if (entry->needs_copy) { |
| 10540 | if (vm_map_lock_read_to_write(map: dst_map)) { |
| 10541 | vm_map_lock_read(dst_map); |
| 10542 | goto RetryLookup; |
| 10543 | } |
| 10544 | VME_OBJECT_SHADOW(entry, |
| 10545 | length: (vm_map_size_t)(entry->vme_end |
| 10546 | - entry->vme_start), |
| 10547 | always: vm_map_always_shadow(map: dst_map)); |
| 10548 | entry->needs_copy = FALSE; |
| 10549 | vm_map_lock_write_to_read(dst_map); |
| 10550 | } |
| 10551 | dst_object = VME_OBJECT(entry); |
| 10552 | /* |
| 10553 | * unlike with the virtual (aligned) copy we're going |
| 10554 | * to fault on it therefore we need a target object. |
| 10555 | */ |
| 10556 | if (dst_object == VM_OBJECT_NULL) { |
| 10557 | if (vm_map_lock_read_to_write(map: dst_map)) { |
| 10558 | vm_map_lock_read(dst_map); |
| 10559 | goto RetryLookup; |
| 10560 | } |
| 10561 | dst_object = vm_object_allocate(size: (vm_map_size_t) |
| 10562 | entry->vme_end - entry->vme_start); |
| 10563 | VME_OBJECT_SET(entry, object: dst_object, false, context: 0); |
| 10564 | VME_OFFSET_SET(entry, offset: 0); |
| 10565 | assert(entry->use_pmap); |
| 10566 | vm_map_lock_write_to_read(dst_map); |
| 10567 | } |
| 10568 | /* |
| 10569 | * Take an object reference and unlock map. The "entry" may |
| 10570 | * disappear or change when the map is unlocked. |
| 10571 | */ |
| 10572 | vm_object_reference(dst_object); |
| 10573 | version.main_timestamp = dst_map->timestamp; |
| 10574 | entry_offset = VME_OFFSET(entry); |
| 10575 | entry_end = entry->vme_end; |
| 10576 | vm_map_unlock_read(dst_map); |
| 10577 | /* |
| 10578 | * Copy as much as possible in one pass |
| 10579 | */ |
| 10580 | kr = vm_fault_copy( |
| 10581 | VME_OBJECT(copy_entry), |
| 10582 | src_offset: VME_OFFSET(entry: copy_entry) + src_offset, |
| 10583 | copy_size: ©_size, |
| 10584 | dst_object, |
| 10585 | dst_offset: entry_offset + dst_offset, |
| 10586 | dst_map, |
| 10587 | dst_version: &version, |
| 10588 | THREAD_UNINT ); |
| 10589 | |
| 10590 | start += copy_size; |
| 10591 | src_offset += copy_size; |
| 10592 | amount_left -= copy_size; |
| 10593 | /* |
| 10594 | * Release the object reference |
| 10595 | */ |
| 10596 | vm_object_deallocate(object: dst_object); |
| 10597 | /* |
| 10598 | * If a hard error occurred, return it now |
| 10599 | */ |
| 10600 | if (kr != KERN_SUCCESS) { |
| 10601 | return kr; |
| 10602 | } |
| 10603 | |
| 10604 | if ((copy_entry->vme_start + src_offset) == copy_entry->vme_end |
| 10605 | || amount_left == 0) { |
| 10606 | /* |
| 10607 | * all done with this copy entry, dispose. |
| 10608 | */ |
| 10609 | copy_entry_next = copy_entry->vme_next; |
| 10610 | |
| 10611 | if (discard_on_success) { |
| 10612 | vm_map_copy_entry_unlink(copy, copy_entry); |
| 10613 | assert(!copy_entry->is_sub_map); |
| 10614 | vm_object_deallocate(VME_OBJECT(copy_entry)); |
| 10615 | vm_map_copy_entry_dispose(copy_entry); |
| 10616 | } |
| 10617 | |
| 10618 | if (copy_entry_next == vm_map_copy_to_entry(copy) && |
| 10619 | amount_left) { |
| 10620 | /* |
| 10621 | * not finished copying but run out of source |
| 10622 | */ |
| 10623 | return KERN_INVALID_ADDRESS; |
| 10624 | } |
| 10625 | |
| 10626 | copy_entry = copy_entry_next; |
| 10627 | |
| 10628 | src_offset = 0; |
| 10629 | } |
| 10630 | |
| 10631 | if (amount_left == 0) { |
| 10632 | return KERN_SUCCESS; |
| 10633 | } |
| 10634 | |
| 10635 | vm_map_lock_read(dst_map); |
| 10636 | if (version.main_timestamp == dst_map->timestamp) { |
| 10637 | if (start == entry_end) { |
| 10638 | /* |
| 10639 | * destination region is split. Use the version |
| 10640 | * information to avoid a lookup in the normal |
| 10641 | * case. |
| 10642 | */ |
| 10643 | entry = entry->vme_next; |
| 10644 | /* |
| 10645 | * should be contiguous. Fail if we encounter |
| 10646 | * a hole in the destination. |
| 10647 | */ |
| 10648 | if (start != entry->vme_start) { |
| 10649 | vm_map_unlock_read(dst_map); |
| 10650 | return KERN_INVALID_ADDRESS; |
| 10651 | } |
| 10652 | } |
| 10653 | } else { |
| 10654 | /* |
| 10655 | * Map version check failed. |
| 10656 | * we must lookup the entry because somebody |
| 10657 | * might have changed the map behind our backs. |
| 10658 | */ |
| 10659 | RetryLookup: |
| 10660 | if (!vm_map_lookup_entry(map: dst_map, address: start, entry: &entry)) { |
| 10661 | vm_map_unlock_read(dst_map); |
| 10662 | return KERN_INVALID_ADDRESS; |
| 10663 | } |
| 10664 | } |
| 10665 | }/* while */ |
| 10666 | |
| 10667 | return KERN_SUCCESS; |
| 10668 | }/* vm_map_copy_overwrite_unaligned */ |
| 10669 | |
| 10670 | /* |
| 10671 | * Routine: vm_map_copy_overwrite_aligned [internal use only] |
| 10672 | * |
| 10673 | * Description: |
| 10674 | * Does all the vm_trickery possible for whole pages. |
| 10675 | * |
| 10676 | * Implementation: |
| 10677 | * |
| 10678 | * If there are no permanent objects in the destination, |
| 10679 | * and the source and destination map entry zones match, |
| 10680 | * and the destination map entry is not shared, |
| 10681 | * then the map entries can be deleted and replaced |
| 10682 | * with those from the copy. The following code is the |
| 10683 | * basic idea of what to do, but there are lots of annoying |
| 10684 | * little details about getting protection and inheritance |
| 10685 | * right. Should add protection, inheritance, and sharing checks |
| 10686 | * to the above pass and make sure that no wiring is involved. |
| 10687 | * |
| 10688 | * Callers of this function must call vm_map_copy_require on |
| 10689 | * previously created vm_map_copy_t or pass a newly created |
| 10690 | * one to ensure that it hasn't been forged. |
| 10691 | */ |
| 10692 | |
| 10693 | int vm_map_copy_overwrite_aligned_src_not_internal = 0; |
| 10694 | int vm_map_copy_overwrite_aligned_src_not_symmetric = 0; |
| 10695 | int vm_map_copy_overwrite_aligned_src_large = 0; |
| 10696 | |
| 10697 | static kern_return_t |
| 10698 | vm_map_copy_overwrite_aligned( |
| 10699 | vm_map_t dst_map, |
| 10700 | vm_map_entry_t tmp_entry, |
| 10701 | vm_map_copy_t copy, |
| 10702 | vm_map_offset_t start, |
| 10703 | __unused pmap_t pmap) |
| 10704 | { |
| 10705 | vm_object_t object; |
| 10706 | vm_map_entry_t copy_entry; |
| 10707 | vm_map_size_t copy_size; |
| 10708 | vm_map_size_t size; |
| 10709 | vm_map_entry_t entry; |
| 10710 | |
| 10711 | while ((copy_entry = vm_map_copy_first_entry(copy)) |
| 10712 | != vm_map_copy_to_entry(copy)) { |
| 10713 | copy_size = (copy_entry->vme_end - copy_entry->vme_start); |
| 10714 | |
| 10715 | entry = tmp_entry; |
| 10716 | if (entry->is_sub_map) { |
| 10717 | /* unnested when clipped earlier */ |
| 10718 | assert(!entry->use_pmap); |
| 10719 | } |
| 10720 | if (entry == vm_map_to_entry(dst_map)) { |
| 10721 | vm_map_unlock(dst_map); |
| 10722 | return KERN_INVALID_ADDRESS; |
| 10723 | } |
| 10724 | size = (entry->vme_end - entry->vme_start); |
| 10725 | /* |
| 10726 | * Make sure that no holes popped up in the |
| 10727 | * address map, and that the protection is |
| 10728 | * still valid, in case the map was unlocked |
| 10729 | * earlier. |
| 10730 | */ |
| 10731 | |
| 10732 | if ((entry->vme_start != start) || ((entry->is_sub_map) |
| 10733 | && !entry->needs_copy)) { |
| 10734 | vm_map_unlock(dst_map); |
| 10735 | return KERN_INVALID_ADDRESS; |
| 10736 | } |
| 10737 | assert(entry != vm_map_to_entry(dst_map)); |
| 10738 | |
| 10739 | /* |
| 10740 | * Check protection again |
| 10741 | */ |
| 10742 | |
| 10743 | if (!(entry->protection & VM_PROT_WRITE)) { |
| 10744 | vm_map_unlock(dst_map); |
| 10745 | return KERN_PROTECTION_FAILURE; |
| 10746 | } |
| 10747 | |
| 10748 | if (!vm_map_entry_is_overwritable(dst_map, entry)) { |
| 10749 | vm_map_unlock(dst_map); |
| 10750 | return KERN_PROTECTION_FAILURE; |
| 10751 | } |
| 10752 | |
| 10753 | /* |
| 10754 | * If the entry is in transition, we must wait |
| 10755 | * for it to exit that state. Anything could happen |
| 10756 | * when we unlock the map, so start over. |
| 10757 | */ |
| 10758 | if (entry->in_transition) { |
| 10759 | /* |
| 10760 | * Say that we are waiting, and wait for entry. |
| 10761 | */ |
| 10762 | entry->needs_wakeup = TRUE; |
| 10763 | vm_map_entry_wait(dst_map, THREAD_UNINT); |
| 10764 | |
| 10765 | goto RetryLookup; |
| 10766 | } |
| 10767 | |
| 10768 | /* |
| 10769 | * Adjust to source size first |
| 10770 | */ |
| 10771 | |
| 10772 | if (copy_size < size) { |
| 10773 | if (entry->map_aligned && |
| 10774 | !VM_MAP_PAGE_ALIGNED(entry->vme_start + copy_size, |
| 10775 | VM_MAP_PAGE_MASK(dst_map))) { |
| 10776 | /* no longer map-aligned */ |
| 10777 | entry->map_aligned = FALSE; |
| 10778 | } |
| 10779 | vm_map_clip_end(map: dst_map, entry, endaddr: entry->vme_start + copy_size); |
| 10780 | size = copy_size; |
| 10781 | } |
| 10782 | |
| 10783 | /* |
| 10784 | * Adjust to destination size |
| 10785 | */ |
| 10786 | |
| 10787 | if (size < copy_size) { |
| 10788 | vm_map_copy_clip_end(copy, copy_entry, |
| 10789 | copy_entry->vme_start + size); |
| 10790 | copy_size = size; |
| 10791 | } |
| 10792 | |
| 10793 | assert((entry->vme_end - entry->vme_start) == size); |
| 10794 | assert((tmp_entry->vme_end - tmp_entry->vme_start) == size); |
| 10795 | assert((copy_entry->vme_end - copy_entry->vme_start) == size); |
| 10796 | |
| 10797 | /* |
| 10798 | * If the destination contains temporary unshared memory, |
| 10799 | * we can perform the copy by throwing it away and |
| 10800 | * installing the source data. |
| 10801 | * |
| 10802 | * Exceptions for mappings with special semantics: |
| 10803 | * + "permanent" entries, |
| 10804 | * + JIT regions, |
| 10805 | * + TPRO regions, |
| 10806 | * + pmap-specific protection policies, |
| 10807 | * + VM objects with COPY_NONE copy strategy. |
| 10808 | */ |
| 10809 | |
| 10810 | object = VME_OBJECT(entry); |
| 10811 | if ((!entry->is_shared && |
| 10812 | !entry->vme_permanent && |
| 10813 | !entry->used_for_jit && |
| 10814 | #if __arm64e__ |
| 10815 | !entry->used_for_tpro && |
| 10816 | #endif /* __arm64e__ */ |
| 10817 | !(entry->protection & VM_PROT_EXECUTE) && |
| 10818 | !pmap_has_prot_policy(pmap: dst_map->pmap, translated_allow_execute: entry->translated_allow_execute, prot: entry->protection) && |
| 10819 | ((object == VM_OBJECT_NULL) || |
| 10820 | (object->internal && |
| 10821 | !object->true_share && |
| 10822 | object->copy_strategy != MEMORY_OBJECT_COPY_NONE))) || |
| 10823 | entry->needs_copy) { |
| 10824 | vm_object_t old_object = VME_OBJECT(entry); |
| 10825 | vm_object_offset_t old_offset = VME_OFFSET(entry); |
| 10826 | vm_object_offset_t offset; |
| 10827 | |
| 10828 | /* |
| 10829 | * Ensure that the source and destination aren't |
| 10830 | * identical |
| 10831 | */ |
| 10832 | if (old_object == VME_OBJECT(copy_entry) && |
| 10833 | old_offset == VME_OFFSET(entry: copy_entry)) { |
| 10834 | vm_map_copy_entry_unlink(copy, copy_entry); |
| 10835 | vm_map_copy_entry_dispose(copy_entry); |
| 10836 | |
| 10837 | if (old_object != VM_OBJECT_NULL) { |
| 10838 | vm_object_deallocate(object: old_object); |
| 10839 | } |
| 10840 | |
| 10841 | start = tmp_entry->vme_end; |
| 10842 | tmp_entry = tmp_entry->vme_next; |
| 10843 | continue; |
| 10844 | } |
| 10845 | |
| 10846 | #if XNU_TARGET_OS_OSX |
| 10847 | #define __TRADEOFF1_OBJ_SIZE (64 * 1024 * 1024) /* 64 MB */ |
| 10848 | #define __TRADEOFF1_COPY_SIZE (128 * 1024) /* 128 KB */ |
| 10849 | if (VME_OBJECT(copy_entry) != VM_OBJECT_NULL && |
| 10850 | VME_OBJECT(copy_entry)->vo_size >= __TRADEOFF1_OBJ_SIZE && |
| 10851 | copy_size <= __TRADEOFF1_COPY_SIZE) { |
| 10852 | /* |
| 10853 | * Virtual vs. Physical copy tradeoff #1. |
| 10854 | * |
| 10855 | * Copying only a few pages out of a large |
| 10856 | * object: do a physical copy instead of |
| 10857 | * a virtual copy, to avoid possibly keeping |
| 10858 | * the entire large object alive because of |
| 10859 | * those few copy-on-write pages. |
| 10860 | */ |
| 10861 | vm_map_copy_overwrite_aligned_src_large++; |
| 10862 | goto slow_copy; |
| 10863 | } |
| 10864 | #endif /* XNU_TARGET_OS_OSX */ |
| 10865 | |
| 10866 | if ((dst_map->pmap != kernel_pmap) && |
| 10867 | (VME_ALIAS(entry) >= VM_MEMORY_MALLOC) && |
| 10868 | (VME_ALIAS(entry) <= VM_MEMORY_MALLOC_MEDIUM)) { |
| 10869 | vm_object_t new_object, new_shadow; |
| 10870 | |
| 10871 | /* |
| 10872 | * We're about to map something over a mapping |
| 10873 | * established by malloc()... |
| 10874 | */ |
| 10875 | new_object = VME_OBJECT(copy_entry); |
| 10876 | if (new_object != VM_OBJECT_NULL) { |
| 10877 | vm_object_lock_shared(new_object); |
| 10878 | } |
| 10879 | while (new_object != VM_OBJECT_NULL && |
| 10880 | #if XNU_TARGET_OS_OSX |
| 10881 | !new_object->true_share && |
| 10882 | new_object->copy_strategy == MEMORY_OBJECT_COPY_SYMMETRIC && |
| 10883 | #endif /* XNU_TARGET_OS_OSX */ |
| 10884 | new_object->internal) { |
| 10885 | new_shadow = new_object->shadow; |
| 10886 | if (new_shadow == VM_OBJECT_NULL) { |
| 10887 | break; |
| 10888 | } |
| 10889 | vm_object_lock_shared(new_shadow); |
| 10890 | vm_object_unlock(new_object); |
| 10891 | new_object = new_shadow; |
| 10892 | } |
| 10893 | if (new_object != VM_OBJECT_NULL) { |
| 10894 | if (!new_object->internal) { |
| 10895 | /* |
| 10896 | * The new mapping is backed |
| 10897 | * by an external object. We |
| 10898 | * don't want malloc'ed memory |
| 10899 | * to be replaced with such a |
| 10900 | * non-anonymous mapping, so |
| 10901 | * let's go off the optimized |
| 10902 | * path... |
| 10903 | */ |
| 10904 | vm_map_copy_overwrite_aligned_src_not_internal++; |
| 10905 | vm_object_unlock(new_object); |
| 10906 | goto slow_copy; |
| 10907 | } |
| 10908 | #if XNU_TARGET_OS_OSX |
| 10909 | if (new_object->true_share || |
| 10910 | new_object->copy_strategy != MEMORY_OBJECT_COPY_SYMMETRIC) { |
| 10911 | /* |
| 10912 | * Same if there's a "true_share" |
| 10913 | * object in the shadow chain, or |
| 10914 | * an object with a non-default |
| 10915 | * (SYMMETRIC) copy strategy. |
| 10916 | */ |
| 10917 | vm_map_copy_overwrite_aligned_src_not_symmetric++; |
| 10918 | vm_object_unlock(new_object); |
| 10919 | goto slow_copy; |
| 10920 | } |
| 10921 | #endif /* XNU_TARGET_OS_OSX */ |
| 10922 | vm_object_unlock(new_object); |
| 10923 | } |
| 10924 | /* |
| 10925 | * The new mapping is still backed by |
| 10926 | * anonymous (internal) memory, so it's |
| 10927 | * OK to substitute it for the original |
| 10928 | * malloc() mapping. |
| 10929 | */ |
| 10930 | } |
| 10931 | |
| 10932 | if (old_object != VM_OBJECT_NULL) { |
| 10933 | assert(!entry->vme_permanent); |
| 10934 | if (entry->is_sub_map) { |
| 10935 | if (entry->use_pmap) { |
| 10936 | #ifndef NO_NESTED_PMAP |
| 10937 | pmap_unnest(dst_map->pmap, |
| 10938 | (addr64_t)entry->vme_start, |
| 10939 | entry->vme_end - entry->vme_start); |
| 10940 | #endif /* NO_NESTED_PMAP */ |
| 10941 | if (dst_map->mapped_in_other_pmaps) { |
| 10942 | /* clean up parent */ |
| 10943 | /* map/maps */ |
| 10944 | vm_map_submap_pmap_clean( |
| 10945 | map: dst_map, start: entry->vme_start, |
| 10946 | end: entry->vme_end, |
| 10947 | VME_SUBMAP(entry), |
| 10948 | offset: VME_OFFSET(entry)); |
| 10949 | } |
| 10950 | } else { |
| 10951 | vm_map_submap_pmap_clean( |
| 10952 | map: dst_map, start: entry->vme_start, |
| 10953 | end: entry->vme_end, |
| 10954 | VME_SUBMAP(entry), |
| 10955 | offset: VME_OFFSET(entry)); |
| 10956 | } |
| 10957 | vm_map_deallocate(VME_SUBMAP(entry)); |
| 10958 | } else { |
| 10959 | if (dst_map->mapped_in_other_pmaps) { |
| 10960 | vm_object_pmap_protect_options( |
| 10961 | VME_OBJECT(entry), |
| 10962 | offset: VME_OFFSET(entry), |
| 10963 | size: entry->vme_end |
| 10964 | - entry->vme_start, |
| 10965 | PMAP_NULL, |
| 10966 | PAGE_SIZE, |
| 10967 | pmap_start: entry->vme_start, |
| 10968 | VM_PROT_NONE, |
| 10969 | PMAP_OPTIONS_REMOVE); |
| 10970 | } else { |
| 10971 | pmap_remove_options( |
| 10972 | map: dst_map->pmap, |
| 10973 | s: (addr64_t)(entry->vme_start), |
| 10974 | e: (addr64_t)(entry->vme_end), |
| 10975 | PMAP_OPTIONS_REMOVE); |
| 10976 | } |
| 10977 | vm_object_deallocate(object: old_object); |
| 10978 | } |
| 10979 | } |
| 10980 | |
| 10981 | if (entry->iokit_acct) { |
| 10982 | /* keep using iokit accounting */ |
| 10983 | entry->use_pmap = FALSE; |
| 10984 | } else { |
| 10985 | /* use pmap accounting */ |
| 10986 | entry->use_pmap = TRUE; |
| 10987 | } |
| 10988 | assert(!entry->vme_permanent); |
| 10989 | VME_OBJECT_SET(entry, VME_OBJECT(copy_entry), false, context: 0); |
| 10990 | object = VME_OBJECT(entry); |
| 10991 | entry->needs_copy = copy_entry->needs_copy; |
| 10992 | entry->wired_count = 0; |
| 10993 | entry->user_wired_count = 0; |
| 10994 | offset = VME_OFFSET(entry: copy_entry); |
| 10995 | VME_OFFSET_SET(entry, offset); |
| 10996 | |
| 10997 | vm_map_copy_entry_unlink(copy, copy_entry); |
| 10998 | vm_map_copy_entry_dispose(copy_entry); |
| 10999 | |
| 11000 | /* |
| 11001 | * we could try to push pages into the pmap at this point, BUT |
| 11002 | * this optimization only saved on average 2 us per page if ALL |
| 11003 | * the pages in the source were currently mapped |
| 11004 | * and ALL the pages in the dest were touched, if there were fewer |
| 11005 | * than 2/3 of the pages touched, this optimization actually cost more cycles |
| 11006 | * it also puts a lot of pressure on the pmap layer w/r to mapping structures |
| 11007 | */ |
| 11008 | |
| 11009 | /* |
| 11010 | * Set up for the next iteration. The map |
| 11011 | * has not been unlocked, so the next |
| 11012 | * address should be at the end of this |
| 11013 | * entry, and the next map entry should be |
| 11014 | * the one following it. |
| 11015 | */ |
| 11016 | |
| 11017 | start = tmp_entry->vme_end; |
| 11018 | tmp_entry = tmp_entry->vme_next; |
| 11019 | } else { |
| 11020 | vm_map_version_t version; |
| 11021 | vm_object_t dst_object; |
| 11022 | vm_object_offset_t dst_offset; |
| 11023 | kern_return_t r; |
| 11024 | |
| 11025 | slow_copy: |
| 11026 | if (entry->needs_copy) { |
| 11027 | VME_OBJECT_SHADOW(entry, |
| 11028 | length: (entry->vme_end - |
| 11029 | entry->vme_start), |
| 11030 | always: vm_map_always_shadow(map: dst_map)); |
| 11031 | entry->needs_copy = FALSE; |
| 11032 | } |
| 11033 | |
| 11034 | dst_object = VME_OBJECT(entry); |
| 11035 | dst_offset = VME_OFFSET(entry); |
| 11036 | |
| 11037 | /* |
| 11038 | * Take an object reference, and record |
| 11039 | * the map version information so that the |
| 11040 | * map can be safely unlocked. |
| 11041 | */ |
| 11042 | |
| 11043 | if (dst_object == VM_OBJECT_NULL) { |
| 11044 | /* |
| 11045 | * We would usually have just taken the |
| 11046 | * optimized path above if the destination |
| 11047 | * object has not been allocated yet. But we |
| 11048 | * now disable that optimization if the copy |
| 11049 | * entry's object is not backed by anonymous |
| 11050 | * memory to avoid replacing malloc'ed |
| 11051 | * (i.e. re-usable) anonymous memory with a |
| 11052 | * not-so-anonymous mapping. |
| 11053 | * So we have to handle this case here and |
| 11054 | * allocate a new VM object for this map entry. |
| 11055 | */ |
| 11056 | dst_object = vm_object_allocate( |
| 11057 | size: entry->vme_end - entry->vme_start); |
| 11058 | dst_offset = 0; |
| 11059 | VME_OBJECT_SET(entry, object: dst_object, false, context: 0); |
| 11060 | VME_OFFSET_SET(entry, offset: dst_offset); |
| 11061 | assert(entry->use_pmap); |
| 11062 | } |
| 11063 | |
| 11064 | vm_object_reference(dst_object); |
| 11065 | |
| 11066 | /* account for unlock bumping up timestamp */ |
| 11067 | version.main_timestamp = dst_map->timestamp + 1; |
| 11068 | |
| 11069 | vm_map_unlock(dst_map); |
| 11070 | |
| 11071 | /* |
| 11072 | * Copy as much as possible in one pass |
| 11073 | */ |
| 11074 | |
| 11075 | copy_size = size; |
| 11076 | r = vm_fault_copy( |
| 11077 | VME_OBJECT(copy_entry), |
| 11078 | src_offset: VME_OFFSET(entry: copy_entry), |
| 11079 | copy_size: ©_size, |
| 11080 | dst_object, |
| 11081 | dst_offset, |
| 11082 | dst_map, |
| 11083 | dst_version: &version, |
| 11084 | THREAD_UNINT ); |
| 11085 | |
| 11086 | /* |
| 11087 | * Release the object reference |
| 11088 | */ |
| 11089 | |
| 11090 | vm_object_deallocate(object: dst_object); |
| 11091 | |
| 11092 | /* |
| 11093 | * If a hard error occurred, return it now |
| 11094 | */ |
| 11095 | |
| 11096 | if (r != KERN_SUCCESS) { |
| 11097 | return r; |
| 11098 | } |
| 11099 | |
| 11100 | if (copy_size != 0) { |
| 11101 | /* |
| 11102 | * Dispose of the copied region |
| 11103 | */ |
| 11104 | |
| 11105 | vm_map_copy_clip_end(copy, copy_entry, |
| 11106 | copy_entry->vme_start + copy_size); |
| 11107 | vm_map_copy_entry_unlink(copy, copy_entry); |
| 11108 | vm_object_deallocate(VME_OBJECT(copy_entry)); |
| 11109 | vm_map_copy_entry_dispose(copy_entry); |
| 11110 | } |
| 11111 | |
| 11112 | /* |
| 11113 | * Pick up in the destination map where we left off. |
| 11114 | * |
| 11115 | * Use the version information to avoid a lookup |
| 11116 | * in the normal case. |
| 11117 | */ |
| 11118 | |
| 11119 | start += copy_size; |
| 11120 | vm_map_lock(dst_map); |
| 11121 | if (version.main_timestamp == dst_map->timestamp && |
| 11122 | copy_size != 0) { |
| 11123 | /* We can safely use saved tmp_entry value */ |
| 11124 | |
| 11125 | if (tmp_entry->map_aligned && |
| 11126 | !VM_MAP_PAGE_ALIGNED( |
| 11127 | start, |
| 11128 | VM_MAP_PAGE_MASK(dst_map))) { |
| 11129 | /* no longer map-aligned */ |
| 11130 | tmp_entry->map_aligned = FALSE; |
| 11131 | } |
| 11132 | vm_map_clip_end(map: dst_map, entry: tmp_entry, endaddr: start); |
| 11133 | tmp_entry = tmp_entry->vme_next; |
| 11134 | } else { |
| 11135 | /* Must do lookup of tmp_entry */ |
| 11136 | |
| 11137 | RetryLookup: |
| 11138 | if (!vm_map_lookup_entry(map: dst_map, address: start, entry: &tmp_entry)) { |
| 11139 | vm_map_unlock(dst_map); |
| 11140 | return KERN_INVALID_ADDRESS; |
| 11141 | } |
| 11142 | if (tmp_entry->map_aligned && |
| 11143 | !VM_MAP_PAGE_ALIGNED( |
| 11144 | start, |
| 11145 | VM_MAP_PAGE_MASK(dst_map))) { |
| 11146 | /* no longer map-aligned */ |
| 11147 | tmp_entry->map_aligned = FALSE; |
| 11148 | } |
| 11149 | vm_map_clip_start(map: dst_map, entry: tmp_entry, startaddr: start); |
| 11150 | } |
| 11151 | } |
| 11152 | }/* while */ |
| 11153 | |
| 11154 | return KERN_SUCCESS; |
| 11155 | }/* vm_map_copy_overwrite_aligned */ |
| 11156 | |
| 11157 | /* |
| 11158 | * Routine: vm_map_copyin_kernel_buffer [internal use only] |
| 11159 | * |
| 11160 | * Description: |
| 11161 | * Copy in data to a kernel buffer from space in the |
| 11162 | * source map. The original space may be optionally |
| 11163 | * deallocated. |
| 11164 | * |
| 11165 | * If successful, returns a new copy object. |
| 11166 | */ |
| 11167 | static kern_return_t |
| 11168 | vm_map_copyin_kernel_buffer( |
| 11169 | vm_map_t src_map, |
| 11170 | vm_map_offset_t src_addr, |
| 11171 | vm_map_size_t len, |
| 11172 | boolean_t src_destroy, |
| 11173 | vm_map_copy_t *copy_result) |
| 11174 | { |
| 11175 | kern_return_t kr; |
| 11176 | vm_map_copy_t copy; |
| 11177 | void *kdata; |
| 11178 | |
| 11179 | if (len > msg_ool_size_small) { |
| 11180 | return KERN_INVALID_ARGUMENT; |
| 11181 | } |
| 11182 | |
| 11183 | kdata = kalloc_data(len, Z_WAITOK); |
| 11184 | if (kdata == NULL) { |
| 11185 | return KERN_RESOURCE_SHORTAGE; |
| 11186 | } |
| 11187 | kr = copyinmap(map: src_map, fromaddr: src_addr, todata: kdata, length: (vm_size_t)len); |
| 11188 | if (kr != KERN_SUCCESS) { |
| 11189 | kfree_data(kdata, len); |
| 11190 | return kr; |
| 11191 | } |
| 11192 | |
| 11193 | copy = vm_map_copy_allocate(VM_MAP_COPY_KERNEL_BUFFER); |
| 11194 | copy->cpy_kdata = kdata; |
| 11195 | copy->size = len; |
| 11196 | copy->offset = 0; |
| 11197 | |
| 11198 | if (src_destroy) { |
| 11199 | vmr_flags_t flags = VM_MAP_REMOVE_INTERRUPTIBLE; |
| 11200 | |
| 11201 | if (src_map == kernel_map) { |
| 11202 | flags |= VM_MAP_REMOVE_KUNWIRE; |
| 11203 | } |
| 11204 | |
| 11205 | (void)vm_map_remove_guard(map: src_map, |
| 11206 | vm_map_trunc_page(src_addr, VM_MAP_PAGE_MASK(src_map)), |
| 11207 | vm_map_round_page(src_addr + len, VM_MAP_PAGE_MASK(src_map)), |
| 11208 | flags, KMEM_GUARD_NONE); |
| 11209 | } |
| 11210 | |
| 11211 | *copy_result = copy; |
| 11212 | return KERN_SUCCESS; |
| 11213 | } |
| 11214 | |
| 11215 | /* |
| 11216 | * Routine: vm_map_copyout_kernel_buffer [internal use only] |
| 11217 | * |
| 11218 | * Description: |
| 11219 | * Copy out data from a kernel buffer into space in the |
| 11220 | * destination map. The space may be otpionally dynamically |
| 11221 | * allocated. |
| 11222 | * |
| 11223 | * If successful, consumes the copy object. |
| 11224 | * Otherwise, the caller is responsible for it. |
| 11225 | * |
| 11226 | * Callers of this function must call vm_map_copy_require on |
| 11227 | * previously created vm_map_copy_t or pass a newly created |
| 11228 | * one to ensure that it hasn't been forged. |
| 11229 | */ |
| 11230 | static int vm_map_copyout_kernel_buffer_failures = 0; |
| 11231 | static kern_return_t |
| 11232 | vm_map_copyout_kernel_buffer( |
| 11233 | vm_map_t map, |
| 11234 | vm_map_address_t *addr, /* IN/OUT */ |
| 11235 | vm_map_copy_t copy, |
| 11236 | vm_map_size_t copy_size, |
| 11237 | boolean_t overwrite, |
| 11238 | boolean_t consume_on_success) |
| 11239 | { |
| 11240 | kern_return_t kr = KERN_SUCCESS; |
| 11241 | thread_t thread = current_thread(); |
| 11242 | |
| 11243 | assert(copy->size == copy_size); |
| 11244 | |
| 11245 | /* |
| 11246 | * check for corrupted vm_map_copy structure |
| 11247 | */ |
| 11248 | if (copy_size > msg_ool_size_small || copy->offset) { |
| 11249 | panic("Invalid vm_map_copy_t sz:%lld, ofst:%lld" , |
| 11250 | (long long)copy->size, (long long)copy->offset); |
| 11251 | } |
| 11252 | |
| 11253 | if (!overwrite) { |
| 11254 | /* |
| 11255 | * Allocate space in the target map for the data |
| 11256 | */ |
| 11257 | vm_map_kernel_flags_t vmk_flags = VM_MAP_KERNEL_FLAGS_ANYWHERE(); |
| 11258 | |
| 11259 | if (map == kernel_map) { |
| 11260 | vmk_flags.vmkf_range_id = KMEM_RANGE_ID_DATA; |
| 11261 | } |
| 11262 | |
| 11263 | *addr = 0; |
| 11264 | kr = vm_map_enter(map, |
| 11265 | address: addr, |
| 11266 | vm_map_round_page(copy_size, |
| 11267 | VM_MAP_PAGE_MASK(map)), |
| 11268 | mask: (vm_map_offset_t) 0, |
| 11269 | vmk_flags, |
| 11270 | VM_OBJECT_NULL, |
| 11271 | offset: (vm_object_offset_t) 0, |
| 11272 | FALSE, |
| 11273 | VM_PROT_DEFAULT, |
| 11274 | VM_PROT_ALL, |
| 11275 | VM_INHERIT_DEFAULT); |
| 11276 | if (kr != KERN_SUCCESS) { |
| 11277 | return kr; |
| 11278 | } |
| 11279 | #if KASAN |
| 11280 | if (map->pmap == kernel_pmap) { |
| 11281 | kasan_notify_address(*addr, copy->size); |
| 11282 | } |
| 11283 | #endif |
| 11284 | } |
| 11285 | |
| 11286 | /* |
| 11287 | * Copyout the data from the kernel buffer to the target map. |
| 11288 | */ |
| 11289 | if (thread->map == map) { |
| 11290 | /* |
| 11291 | * If the target map is the current map, just do |
| 11292 | * the copy. |
| 11293 | */ |
| 11294 | assert((vm_size_t)copy_size == copy_size); |
| 11295 | if (copyout(copy->cpy_kdata, *addr, (vm_size_t)copy_size)) { |
| 11296 | kr = KERN_INVALID_ADDRESS; |
| 11297 | } |
| 11298 | } else { |
| 11299 | vm_map_t oldmap; |
| 11300 | |
| 11301 | /* |
| 11302 | * If the target map is another map, assume the |
| 11303 | * target's address space identity for the duration |
| 11304 | * of the copy. |
| 11305 | */ |
| 11306 | vm_map_reference(map); |
| 11307 | oldmap = vm_map_switch(map); |
| 11308 | |
| 11309 | assert((vm_size_t)copy_size == copy_size); |
| 11310 | if (copyout(copy->cpy_kdata, *addr, (vm_size_t)copy_size)) { |
| 11311 | vm_map_copyout_kernel_buffer_failures++; |
| 11312 | kr = KERN_INVALID_ADDRESS; |
| 11313 | } |
| 11314 | |
| 11315 | (void) vm_map_switch(map: oldmap); |
| 11316 | vm_map_deallocate(map); |
| 11317 | } |
| 11318 | |
| 11319 | if (kr != KERN_SUCCESS) { |
| 11320 | /* the copy failed, clean up */ |
| 11321 | if (!overwrite) { |
| 11322 | /* |
| 11323 | * Deallocate the space we allocated in the target map. |
| 11324 | */ |
| 11325 | (void) vm_map_remove(map, |
| 11326 | vm_map_trunc_page(*addr, |
| 11327 | VM_MAP_PAGE_MASK(map)), |
| 11328 | vm_map_round_page((*addr + |
| 11329 | vm_map_round_page(copy_size, |
| 11330 | VM_MAP_PAGE_MASK(map))), |
| 11331 | VM_MAP_PAGE_MASK(map))); |
| 11332 | *addr = 0; |
| 11333 | } |
| 11334 | } else { |
| 11335 | /* copy was successful, dicard the copy structure */ |
| 11336 | if (consume_on_success) { |
| 11337 | kfree_data(copy->cpy_kdata, copy_size); |
| 11338 | zfree_id(ZONE_ID_VM_MAP_COPY, copy); |
| 11339 | } |
| 11340 | } |
| 11341 | |
| 11342 | return kr; |
| 11343 | } |
| 11344 | |
| 11345 | /* |
| 11346 | * Routine: vm_map_copy_insert [internal use only] |
| 11347 | * |
| 11348 | * Description: |
| 11349 | * Link a copy chain ("copy") into a map at the |
| 11350 | * specified location (after "where"). |
| 11351 | * |
| 11352 | * Callers of this function must call vm_map_copy_require on |
| 11353 | * previously created vm_map_copy_t or pass a newly created |
| 11354 | * one to ensure that it hasn't been forged. |
| 11355 | * Side effects: |
| 11356 | * The copy chain is destroyed. |
| 11357 | */ |
| 11358 | static void |
| 11359 | vm_map_copy_insert( |
| 11360 | vm_map_t map, |
| 11361 | vm_map_entry_t after_where, |
| 11362 | vm_map_copy_t copy) |
| 11363 | { |
| 11364 | vm_map_entry_t entry; |
| 11365 | |
| 11366 | while (vm_map_copy_first_entry(copy) != vm_map_copy_to_entry(copy)) { |
| 11367 | entry = vm_map_copy_first_entry(copy); |
| 11368 | vm_map_copy_entry_unlink(copy, entry); |
| 11369 | vm_map_store_entry_link(map, after_where, entry, |
| 11370 | VM_MAP_KERNEL_FLAGS_NONE); |
| 11371 | after_where = entry; |
| 11372 | } |
| 11373 | zfree_id(ZONE_ID_VM_MAP_COPY, copy); |
| 11374 | } |
| 11375 | |
| 11376 | /* |
| 11377 | * Callers of this function must call vm_map_copy_require on |
| 11378 | * previously created vm_map_copy_t or pass a newly created |
| 11379 | * one to ensure that it hasn't been forged. |
| 11380 | */ |
| 11381 | void |
| 11382 | vm_map_copy_remap( |
| 11383 | vm_map_t map, |
| 11384 | vm_map_entry_t where, |
| 11385 | vm_map_copy_t copy, |
| 11386 | vm_map_offset_t adjustment, |
| 11387 | vm_prot_t cur_prot, |
| 11388 | vm_prot_t max_prot, |
| 11389 | vm_inherit_t inheritance) |
| 11390 | { |
| 11391 | vm_map_entry_t copy_entry, new_entry; |
| 11392 | |
| 11393 | for (copy_entry = vm_map_copy_first_entry(copy); |
| 11394 | copy_entry != vm_map_copy_to_entry(copy); |
| 11395 | copy_entry = copy_entry->vme_next) { |
| 11396 | /* get a new VM map entry for the map */ |
| 11397 | new_entry = vm_map_entry_create(map); |
| 11398 | /* copy the "copy entry" to the new entry */ |
| 11399 | vm_map_entry_copy(map, new: new_entry, old: copy_entry); |
| 11400 | /* adjust "start" and "end" */ |
| 11401 | new_entry->vme_start += adjustment; |
| 11402 | new_entry->vme_end += adjustment; |
| 11403 | /* clear some attributes */ |
| 11404 | new_entry->inheritance = inheritance; |
| 11405 | new_entry->protection = cur_prot; |
| 11406 | new_entry->max_protection = max_prot; |
| 11407 | new_entry->behavior = VM_BEHAVIOR_DEFAULT; |
| 11408 | /* take an extra reference on the entry's "object" */ |
| 11409 | if (new_entry->is_sub_map) { |
| 11410 | assert(!new_entry->use_pmap); /* not nested */ |
| 11411 | vm_map_reference(VME_SUBMAP(new_entry)); |
| 11412 | } else { |
| 11413 | vm_object_reference(VME_OBJECT(new_entry)); |
| 11414 | } |
| 11415 | /* insert the new entry in the map */ |
| 11416 | vm_map_store_entry_link(map, after_where: where, entry: new_entry, |
| 11417 | VM_MAP_KERNEL_FLAGS_NONE); |
| 11418 | /* continue inserting the "copy entries" after the new entry */ |
| 11419 | where = new_entry; |
| 11420 | } |
| 11421 | } |
| 11422 | |
| 11423 | |
| 11424 | /* |
| 11425 | * Returns true if *size matches (or is in the range of) copy->size. |
| 11426 | * Upon returning true, the *size field is updated with the actual size of the |
| 11427 | * copy object (may be different for VM_MAP_COPY_ENTRY_LIST types) |
| 11428 | */ |
| 11429 | boolean_t |
| 11430 | vm_map_copy_validate_size( |
| 11431 | vm_map_t dst_map, |
| 11432 | vm_map_copy_t copy, |
| 11433 | vm_map_size_t *size) |
| 11434 | { |
| 11435 | if (copy == VM_MAP_COPY_NULL) { |
| 11436 | return FALSE; |
| 11437 | } |
| 11438 | |
| 11439 | /* |
| 11440 | * Assert that the vm_map_copy is coming from the right |
| 11441 | * zone and hasn't been forged |
| 11442 | */ |
| 11443 | vm_map_copy_require(copy); |
| 11444 | |
| 11445 | vm_map_size_t copy_sz = copy->size; |
| 11446 | vm_map_size_t sz = *size; |
| 11447 | switch (copy->type) { |
| 11448 | case VM_MAP_COPY_KERNEL_BUFFER: |
| 11449 | if (sz == copy_sz) { |
| 11450 | return TRUE; |
| 11451 | } |
| 11452 | break; |
| 11453 | case VM_MAP_COPY_ENTRY_LIST: |
| 11454 | /* |
| 11455 | * potential page-size rounding prevents us from exactly |
| 11456 | * validating this flavor of vm_map_copy, but we can at least |
| 11457 | * assert that it's within a range. |
| 11458 | */ |
| 11459 | if (copy_sz >= sz && |
| 11460 | copy_sz <= vm_map_round_page(sz, VM_MAP_PAGE_MASK(dst_map))) { |
| 11461 | *size = copy_sz; |
| 11462 | return TRUE; |
| 11463 | } |
| 11464 | break; |
| 11465 | default: |
| 11466 | break; |
| 11467 | } |
| 11468 | return FALSE; |
| 11469 | } |
| 11470 | |
| 11471 | /* |
| 11472 | * Routine: vm_map_copyout_size |
| 11473 | * |
| 11474 | * Description: |
| 11475 | * Copy out a copy chain ("copy") into newly-allocated |
| 11476 | * space in the destination map. Uses a prevalidated |
| 11477 | * size for the copy object (vm_map_copy_validate_size). |
| 11478 | * |
| 11479 | * If successful, consumes the copy object. |
| 11480 | * Otherwise, the caller is responsible for it. |
| 11481 | */ |
| 11482 | kern_return_t |
| 11483 | vm_map_copyout_size( |
| 11484 | vm_map_t dst_map, |
| 11485 | vm_map_address_t *dst_addr, /* OUT */ |
| 11486 | vm_map_copy_t copy, |
| 11487 | vm_map_size_t copy_size) |
| 11488 | { |
| 11489 | return vm_map_copyout_internal(dst_map, dst_addr, copy, copy_size, |
| 11490 | TRUE, /* consume_on_success */ |
| 11491 | VM_PROT_DEFAULT, |
| 11492 | VM_PROT_ALL, |
| 11493 | VM_INHERIT_DEFAULT); |
| 11494 | } |
| 11495 | |
| 11496 | /* |
| 11497 | * Routine: vm_map_copyout |
| 11498 | * |
| 11499 | * Description: |
| 11500 | * Copy out a copy chain ("copy") into newly-allocated |
| 11501 | * space in the destination map. |
| 11502 | * |
| 11503 | * If successful, consumes the copy object. |
| 11504 | * Otherwise, the caller is responsible for it. |
| 11505 | */ |
| 11506 | kern_return_t |
| 11507 | vm_map_copyout( |
| 11508 | vm_map_t dst_map, |
| 11509 | vm_map_address_t *dst_addr, /* OUT */ |
| 11510 | vm_map_copy_t copy) |
| 11511 | { |
| 11512 | return vm_map_copyout_internal(dst_map, dst_addr, copy, copy_size: copy ? copy->size : 0, |
| 11513 | TRUE, /* consume_on_success */ |
| 11514 | VM_PROT_DEFAULT, |
| 11515 | VM_PROT_ALL, |
| 11516 | VM_INHERIT_DEFAULT); |
| 11517 | } |
| 11518 | |
| 11519 | kern_return_t |
| 11520 | vm_map_copyout_internal( |
| 11521 | vm_map_t dst_map, |
| 11522 | vm_map_address_t *dst_addr, /* OUT */ |
| 11523 | vm_map_copy_t copy, |
| 11524 | vm_map_size_t copy_size, |
| 11525 | boolean_t consume_on_success, |
| 11526 | vm_prot_t cur_protection, |
| 11527 | vm_prot_t max_protection, |
| 11528 | vm_inherit_t inheritance) |
| 11529 | { |
| 11530 | vm_map_size_t size; |
| 11531 | vm_map_size_t adjustment; |
| 11532 | vm_map_offset_t start; |
| 11533 | vm_object_offset_t vm_copy_start; |
| 11534 | vm_map_entry_t last; |
| 11535 | vm_map_entry_t entry; |
| 11536 | vm_map_copy_t original_copy; |
| 11537 | kern_return_t kr; |
| 11538 | vm_map_kernel_flags_t vmk_flags = VM_MAP_KERNEL_FLAGS_ANYWHERE(); |
| 11539 | |
| 11540 | /* |
| 11541 | * Check for null copy object. |
| 11542 | */ |
| 11543 | |
| 11544 | if (copy == VM_MAP_COPY_NULL) { |
| 11545 | *dst_addr = 0; |
| 11546 | return KERN_SUCCESS; |
| 11547 | } |
| 11548 | |
| 11549 | /* |
| 11550 | * Assert that the vm_map_copy is coming from the right |
| 11551 | * zone and hasn't been forged |
| 11552 | */ |
| 11553 | vm_map_copy_require(copy); |
| 11554 | |
| 11555 | if (copy->size != copy_size) { |
| 11556 | *dst_addr = 0; |
| 11557 | ktriage_record(thread_id: thread_tid(thread: current_thread()), KDBG_TRIAGE_EVENTID(KDBG_TRIAGE_SUBSYS_VM, KDBG_TRIAGE_RESERVED, KDBG_TRIAGE_VM_COPYOUT_INTERNAL_SIZE_ERROR), KERN_FAILURE /* arg */); |
| 11558 | return KERN_FAILURE; |
| 11559 | } |
| 11560 | |
| 11561 | /* |
| 11562 | * Check for special kernel buffer allocated |
| 11563 | * by new_ipc_kmsg_copyin. |
| 11564 | */ |
| 11565 | |
| 11566 | if (copy->type == VM_MAP_COPY_KERNEL_BUFFER) { |
| 11567 | kr = vm_map_copyout_kernel_buffer(map: dst_map, addr: dst_addr, |
| 11568 | copy, copy_size, FALSE, |
| 11569 | consume_on_success); |
| 11570 | if (kr) { |
| 11571 | ktriage_record(thread_id: thread_tid(thread: current_thread()), KDBG_TRIAGE_EVENTID(KDBG_TRIAGE_SUBSYS_VM, KDBG_TRIAGE_RESERVED, KDBG_TRIAGE_VM_COPYOUT_KERNEL_BUFFER_ERROR), arg: kr /* arg */); |
| 11572 | } |
| 11573 | return kr; |
| 11574 | } |
| 11575 | |
| 11576 | original_copy = copy; |
| 11577 | if (copy->cpy_hdr.page_shift != VM_MAP_PAGE_SHIFT(map: dst_map)) { |
| 11578 | vm_map_copy_t target_copy; |
| 11579 | vm_map_offset_t overmap_start, overmap_end, trimmed_start; |
| 11580 | |
| 11581 | target_copy = VM_MAP_COPY_NULL; |
| 11582 | DEBUG4K_ADJUST("adjusting...\n" ); |
| 11583 | kr = vm_map_copy_adjust_to_target( |
| 11584 | copy_map: copy, |
| 11585 | offset: 0, /* offset */ |
| 11586 | size: copy->size, /* size */ |
| 11587 | target_map: dst_map, |
| 11588 | TRUE, /* copy */ |
| 11589 | target_copy_map_p: &target_copy, |
| 11590 | overmap_start_p: &overmap_start, |
| 11591 | overmap_end_p: &overmap_end, |
| 11592 | trimmed_start_p: &trimmed_start); |
| 11593 | if (kr != KERN_SUCCESS) { |
| 11594 | DEBUG4K_COPY("adjust failed 0x%x\n" , kr); |
| 11595 | ktriage_record(thread_id: thread_tid(thread: current_thread()), KDBG_TRIAGE_EVENTID(KDBG_TRIAGE_SUBSYS_VM, KDBG_TRIAGE_RESERVED, KDBG_TRIAGE_VM_COPYOUT_INTERNAL_ADJUSTING_ERROR), arg: kr /* arg */); |
| 11596 | return kr; |
| 11597 | } |
| 11598 | DEBUG4K_COPY("copy %p (%d 0x%llx 0x%llx) dst_map %p (%d) target_copy %p (%d 0x%llx 0x%llx) overmap_start 0x%llx overmap_end 0x%llx trimmed_start 0x%llx\n" , copy, copy->cpy_hdr.page_shift, copy->offset, (uint64_t)copy->size, dst_map, VM_MAP_PAGE_SHIFT(dst_map), target_copy, target_copy->cpy_hdr.page_shift, target_copy->offset, (uint64_t)target_copy->size, (uint64_t)overmap_start, (uint64_t)overmap_end, (uint64_t)trimmed_start); |
| 11599 | if (target_copy != copy) { |
| 11600 | copy = target_copy; |
| 11601 | } |
| 11602 | copy_size = copy->size; |
| 11603 | } |
| 11604 | |
| 11605 | /* |
| 11606 | * Find space for the data |
| 11607 | */ |
| 11608 | |
| 11609 | vm_copy_start = vm_map_trunc_page((vm_map_size_t)copy->offset, |
| 11610 | VM_MAP_COPY_PAGE_MASK(copy)); |
| 11611 | size = vm_map_round_page((vm_map_size_t)copy->offset + copy_size, |
| 11612 | VM_MAP_COPY_PAGE_MASK(copy)) |
| 11613 | - vm_copy_start; |
| 11614 | |
| 11615 | vm_map_kernel_flags_update_range_id(flags: &vmk_flags, map: dst_map); |
| 11616 | |
| 11617 | vm_map_lock(dst_map); |
| 11618 | kr = vm_map_locate_space(map: dst_map, size, mask: 0, vmk_flags, |
| 11619 | start_inout: &start, entry_out: &last); |
| 11620 | if (kr != KERN_SUCCESS) { |
| 11621 | vm_map_unlock(dst_map); |
| 11622 | ktriage_record(thread_id: thread_tid(thread: current_thread()), KDBG_TRIAGE_EVENTID(KDBG_TRIAGE_SUBSYS_VM, KDBG_TRIAGE_RESERVED, KDBG_TRIAGE_VM_COPYOUT_INTERNAL_SPACE_ERROR), arg: kr /* arg */); |
| 11623 | return kr; |
| 11624 | } |
| 11625 | |
| 11626 | adjustment = start - vm_copy_start; |
| 11627 | if (!consume_on_success) { |
| 11628 | /* |
| 11629 | * We're not allowed to consume "copy", so we'll have to |
| 11630 | * copy its map entries into the destination map below. |
| 11631 | * No need to re-allocate map entries from the correct |
| 11632 | * (pageable or not) zone, since we'll get new map entries |
| 11633 | * during the transfer. |
| 11634 | * We'll also adjust the map entries's "start" and "end" |
| 11635 | * during the transfer, to keep "copy"'s entries consistent |
| 11636 | * with its "offset". |
| 11637 | */ |
| 11638 | goto after_adjustments; |
| 11639 | } |
| 11640 | |
| 11641 | /* |
| 11642 | * Since we're going to just drop the map |
| 11643 | * entries from the copy into the destination |
| 11644 | * map, they must come from the same pool. |
| 11645 | */ |
| 11646 | |
| 11647 | if (copy->cpy_hdr.entries_pageable != dst_map->hdr.entries_pageable) { |
| 11648 | /* |
| 11649 | * Mismatches occur when dealing with the default |
| 11650 | * pager. |
| 11651 | */ |
| 11652 | vm_map_entry_t next, new; |
| 11653 | |
| 11654 | /* |
| 11655 | * Find the zone that the copies were allocated from |
| 11656 | */ |
| 11657 | |
| 11658 | entry = vm_map_copy_first_entry(copy); |
| 11659 | |
| 11660 | /* |
| 11661 | * Reinitialize the copy so that vm_map_copy_entry_link |
| 11662 | * will work. |
| 11663 | */ |
| 11664 | vm_map_store_copy_reset(copy_map: copy, entry); |
| 11665 | copy->cpy_hdr.entries_pageable = dst_map->hdr.entries_pageable; |
| 11666 | |
| 11667 | /* |
| 11668 | * Copy each entry. |
| 11669 | */ |
| 11670 | while (entry != vm_map_copy_to_entry(copy)) { |
| 11671 | new = vm_map_copy_entry_create(copy); |
| 11672 | vm_map_entry_copy_full(new, old: entry); |
| 11673 | new->vme_no_copy_on_read = FALSE; |
| 11674 | assert(!new->iokit_acct); |
| 11675 | if (new->is_sub_map) { |
| 11676 | /* clr address space specifics */ |
| 11677 | new->use_pmap = FALSE; |
| 11678 | } |
| 11679 | vm_map_copy_entry_link(copy, |
| 11680 | vm_map_copy_last_entry(copy), |
| 11681 | new); |
| 11682 | next = entry->vme_next; |
| 11683 | vm_map_entry_dispose(entry); |
| 11684 | entry = next; |
| 11685 | } |
| 11686 | } |
| 11687 | |
| 11688 | /* |
| 11689 | * Adjust the addresses in the copy chain, and |
| 11690 | * reset the region attributes. |
| 11691 | */ |
| 11692 | |
| 11693 | for (entry = vm_map_copy_first_entry(copy); |
| 11694 | entry != vm_map_copy_to_entry(copy); |
| 11695 | entry = entry->vme_next) { |
| 11696 | if (VM_MAP_PAGE_SHIFT(map: dst_map) == PAGE_SHIFT) { |
| 11697 | /* |
| 11698 | * We're injecting this copy entry into a map that |
| 11699 | * has the standard page alignment, so clear |
| 11700 | * "map_aligned" (which might have been inherited |
| 11701 | * from the original map entry). |
| 11702 | */ |
| 11703 | entry->map_aligned = FALSE; |
| 11704 | } |
| 11705 | |
| 11706 | entry->vme_start += adjustment; |
| 11707 | entry->vme_end += adjustment; |
| 11708 | |
| 11709 | if (entry->map_aligned) { |
| 11710 | assert(VM_MAP_PAGE_ALIGNED(entry->vme_start, |
| 11711 | VM_MAP_PAGE_MASK(dst_map))); |
| 11712 | assert(VM_MAP_PAGE_ALIGNED(entry->vme_end, |
| 11713 | VM_MAP_PAGE_MASK(dst_map))); |
| 11714 | } |
| 11715 | |
| 11716 | entry->inheritance = VM_INHERIT_DEFAULT; |
| 11717 | entry->protection = VM_PROT_DEFAULT; |
| 11718 | entry->max_protection = VM_PROT_ALL; |
| 11719 | entry->behavior = VM_BEHAVIOR_DEFAULT; |
| 11720 | |
| 11721 | /* |
| 11722 | * If the entry is now wired, |
| 11723 | * map the pages into the destination map. |
| 11724 | */ |
| 11725 | if (entry->wired_count != 0) { |
| 11726 | vm_map_offset_t va; |
| 11727 | vm_object_offset_t offset; |
| 11728 | vm_object_t object; |
| 11729 | vm_prot_t prot; |
| 11730 | int type_of_fault; |
| 11731 | uint8_t object_lock_type = OBJECT_LOCK_EXCLUSIVE; |
| 11732 | |
| 11733 | /* TODO4K would need to use actual page size */ |
| 11734 | assert(VM_MAP_PAGE_SHIFT(dst_map) == PAGE_SHIFT); |
| 11735 | |
| 11736 | object = VME_OBJECT(entry); |
| 11737 | offset = VME_OFFSET(entry); |
| 11738 | va = entry->vme_start; |
| 11739 | |
| 11740 | pmap_pageable(dst_map->pmap, |
| 11741 | entry->vme_start, |
| 11742 | entry->vme_end, |
| 11743 | TRUE); |
| 11744 | |
| 11745 | while (va < entry->vme_end) { |
| 11746 | vm_page_t m; |
| 11747 | struct vm_object_fault_info fault_info = {}; |
| 11748 | |
| 11749 | /* |
| 11750 | * Look up the page in the object. |
| 11751 | * Assert that the page will be found in the |
| 11752 | * top object: |
| 11753 | * either |
| 11754 | * the object was newly created by |
| 11755 | * vm_object_copy_slowly, and has |
| 11756 | * copies of all of the pages from |
| 11757 | * the source object |
| 11758 | * or |
| 11759 | * the object was moved from the old |
| 11760 | * map entry; because the old map |
| 11761 | * entry was wired, all of the pages |
| 11762 | * were in the top-level object. |
| 11763 | * (XXX not true if we wire pages for |
| 11764 | * reading) |
| 11765 | */ |
| 11766 | vm_object_lock(object); |
| 11767 | |
| 11768 | m = vm_page_lookup(object, offset); |
| 11769 | if (m == VM_PAGE_NULL || !VM_PAGE_WIRED(m) || |
| 11770 | m->vmp_absent) { |
| 11771 | panic("vm_map_copyout: wiring %p" , m); |
| 11772 | } |
| 11773 | |
| 11774 | prot = entry->protection; |
| 11775 | |
| 11776 | if (override_nx(map: dst_map, VME_ALIAS(entry)) && |
| 11777 | prot) { |
| 11778 | prot |= VM_PROT_EXECUTE; |
| 11779 | } |
| 11780 | |
| 11781 | type_of_fault = DBG_CACHE_HIT_FAULT; |
| 11782 | |
| 11783 | fault_info.user_tag = VME_ALIAS(entry); |
| 11784 | fault_info.pmap_options = 0; |
| 11785 | if (entry->iokit_acct || |
| 11786 | (!entry->is_sub_map && !entry->use_pmap)) { |
| 11787 | fault_info.pmap_options |= PMAP_OPTIONS_ALT_ACCT; |
| 11788 | } |
| 11789 | if (entry->vme_xnu_user_debug && |
| 11790 | !VM_PAGE_OBJECT(m)->code_signed) { |
| 11791 | /* |
| 11792 | * Modified code-signed executable |
| 11793 | * region: this page does not belong |
| 11794 | * to a code-signed VM object, so it |
| 11795 | * must have been copied and should |
| 11796 | * therefore be typed XNU_USER_DEBUG |
| 11797 | * rather than XNU_USER_EXEC. |
| 11798 | */ |
| 11799 | fault_info.pmap_options |= PMAP_OPTIONS_XNU_USER_DEBUG; |
| 11800 | } |
| 11801 | |
| 11802 | vm_fault_enter(m, |
| 11803 | pmap: dst_map->pmap, |
| 11804 | vaddr: va, |
| 11805 | PAGE_SIZE, fault_phys_offset: 0, |
| 11806 | prot, |
| 11807 | fault_type: prot, |
| 11808 | VM_PAGE_WIRED(m), |
| 11809 | FALSE, /* change_wiring */ |
| 11810 | VM_KERN_MEMORY_NONE, /* tag - not wiring */ |
| 11811 | fault_info: &fault_info, |
| 11812 | NULL, /* need_retry */ |
| 11813 | type_of_fault: &type_of_fault, |
| 11814 | object_lock_type: &object_lock_type); /*Exclusive mode lock. Will remain unchanged.*/ |
| 11815 | |
| 11816 | vm_object_unlock(object); |
| 11817 | |
| 11818 | offset += PAGE_SIZE_64; |
| 11819 | va += PAGE_SIZE; |
| 11820 | } |
| 11821 | } |
| 11822 | } |
| 11823 | |
| 11824 | after_adjustments: |
| 11825 | |
| 11826 | /* |
| 11827 | * Correct the page alignment for the result |
| 11828 | */ |
| 11829 | |
| 11830 | *dst_addr = start + (copy->offset - vm_copy_start); |
| 11831 | |
| 11832 | #if KASAN |
| 11833 | kasan_notify_address(*dst_addr, size); |
| 11834 | #endif |
| 11835 | |
| 11836 | /* |
| 11837 | * Update the hints and the map size |
| 11838 | */ |
| 11839 | |
| 11840 | if (consume_on_success) { |
| 11841 | SAVE_HINT_MAP_WRITE(dst_map, vm_map_copy_last_entry(copy)); |
| 11842 | } else { |
| 11843 | SAVE_HINT_MAP_WRITE(dst_map, last); |
| 11844 | } |
| 11845 | |
| 11846 | dst_map->size += size; |
| 11847 | |
| 11848 | /* |
| 11849 | * Link in the copy |
| 11850 | */ |
| 11851 | |
| 11852 | if (consume_on_success) { |
| 11853 | vm_map_copy_insert(map: dst_map, after_where: last, copy); |
| 11854 | if (copy != original_copy) { |
| 11855 | vm_map_copy_discard(copy: original_copy); |
| 11856 | original_copy = VM_MAP_COPY_NULL; |
| 11857 | } |
| 11858 | } else { |
| 11859 | vm_map_copy_remap(map: dst_map, where: last, copy, adjustment, |
| 11860 | cur_prot: cur_protection, max_prot: max_protection, |
| 11861 | inheritance); |
| 11862 | if (copy != original_copy && original_copy != VM_MAP_COPY_NULL) { |
| 11863 | vm_map_copy_discard(copy); |
| 11864 | copy = original_copy; |
| 11865 | } |
| 11866 | } |
| 11867 | |
| 11868 | |
| 11869 | vm_map_unlock(dst_map); |
| 11870 | |
| 11871 | /* |
| 11872 | * XXX If wiring_required, call vm_map_pageable |
| 11873 | */ |
| 11874 | |
| 11875 | return KERN_SUCCESS; |
| 11876 | } |
| 11877 | |
| 11878 | /* |
| 11879 | * Routine: vm_map_copyin |
| 11880 | * |
| 11881 | * Description: |
| 11882 | * see vm_map_copyin_common. Exported via Unsupported.exports. |
| 11883 | * |
| 11884 | */ |
| 11885 | |
| 11886 | #undef vm_map_copyin |
| 11887 | |
| 11888 | kern_return_t |
| 11889 | vm_map_copyin( |
| 11890 | vm_map_t src_map, |
| 11891 | vm_map_address_t src_addr, |
| 11892 | vm_map_size_t len, |
| 11893 | boolean_t src_destroy, |
| 11894 | vm_map_copy_t *copy_result) /* OUT */ |
| 11895 | { |
| 11896 | return vm_map_copyin_common(src_map, src_addr, len, src_destroy, |
| 11897 | FALSE, copy_result, FALSE); |
| 11898 | } |
| 11899 | |
| 11900 | /* |
| 11901 | * Routine: vm_map_copyin_common |
| 11902 | * |
| 11903 | * Description: |
| 11904 | * Copy the specified region (src_addr, len) from the |
| 11905 | * source address space (src_map), possibly removing |
| 11906 | * the region from the source address space (src_destroy). |
| 11907 | * |
| 11908 | * Returns: |
| 11909 | * A vm_map_copy_t object (copy_result), suitable for |
| 11910 | * insertion into another address space (using vm_map_copyout), |
| 11911 | * copying over another address space region (using |
| 11912 | * vm_map_copy_overwrite). If the copy is unused, it |
| 11913 | * should be destroyed (using vm_map_copy_discard). |
| 11914 | * |
| 11915 | * In/out conditions: |
| 11916 | * The source map should not be locked on entry. |
| 11917 | */ |
| 11918 | |
| 11919 | typedef struct submap_map { |
| 11920 | vm_map_t parent_map; |
| 11921 | vm_map_offset_t base_start; |
| 11922 | vm_map_offset_t base_end; |
| 11923 | vm_map_size_t base_len; |
| 11924 | struct submap_map *next; |
| 11925 | } submap_map_t; |
| 11926 | |
| 11927 | kern_return_t |
| 11928 | vm_map_copyin_common( |
| 11929 | vm_map_t src_map, |
| 11930 | vm_map_address_t src_addr, |
| 11931 | vm_map_size_t len, |
| 11932 | boolean_t src_destroy, |
| 11933 | __unused boolean_t src_volatile, |
| 11934 | vm_map_copy_t *copy_result, /* OUT */ |
| 11935 | boolean_t use_maxprot) |
| 11936 | { |
| 11937 | int flags; |
| 11938 | |
| 11939 | flags = 0; |
| 11940 | if (src_destroy) { |
| 11941 | flags |= VM_MAP_COPYIN_SRC_DESTROY; |
| 11942 | } |
| 11943 | if (use_maxprot) { |
| 11944 | flags |= VM_MAP_COPYIN_USE_MAXPROT; |
| 11945 | } |
| 11946 | return vm_map_copyin_internal(src_map, |
| 11947 | src_addr, |
| 11948 | len, |
| 11949 | flags, |
| 11950 | copy_result); |
| 11951 | } |
| 11952 | kern_return_t |
| 11953 | vm_map_copyin_internal( |
| 11954 | vm_map_t src_map, |
| 11955 | vm_map_address_t src_addr, |
| 11956 | vm_map_size_t len, |
| 11957 | int flags, |
| 11958 | vm_map_copy_t *copy_result) /* OUT */ |
| 11959 | { |
| 11960 | vm_map_entry_t tmp_entry; /* Result of last map lookup -- |
| 11961 | * in multi-level lookup, this |
| 11962 | * entry contains the actual |
| 11963 | * vm_object/offset. |
| 11964 | */ |
| 11965 | vm_map_entry_t new_entry = VM_MAP_ENTRY_NULL; /* Map entry for copy */ |
| 11966 | |
| 11967 | vm_map_offset_t src_start; /* Start of current entry -- |
| 11968 | * where copy is taking place now |
| 11969 | */ |
| 11970 | vm_map_offset_t src_end; /* End of entire region to be |
| 11971 | * copied */ |
| 11972 | vm_map_offset_t src_base; |
| 11973 | vm_map_t base_map = src_map; |
| 11974 | boolean_t map_share = FALSE; |
| 11975 | submap_map_t *parent_maps = NULL; |
| 11976 | |
| 11977 | vm_map_copy_t copy; /* Resulting copy */ |
| 11978 | vm_map_address_t copy_addr; |
| 11979 | vm_map_size_t copy_size; |
| 11980 | boolean_t src_destroy; |
| 11981 | boolean_t use_maxprot; |
| 11982 | boolean_t preserve_purgeable; |
| 11983 | boolean_t entry_was_shared; |
| 11984 | vm_map_entry_t saved_src_entry; |
| 11985 | |
| 11986 | |
| 11987 | if (flags & ~VM_MAP_COPYIN_ALL_FLAGS) { |
| 11988 | return KERN_INVALID_ARGUMENT; |
| 11989 | } |
| 11990 | |
| 11991 | #if CONFIG_KERNEL_TAGGING |
| 11992 | if (src_map->pmap == kernel_pmap) { |
| 11993 | src_addr = vm_memtag_canonicalize_address(src_addr); |
| 11994 | } |
| 11995 | #endif /* CONFIG_KERNEL_TAGGING */ |
| 11996 | |
| 11997 | src_destroy = (flags & VM_MAP_COPYIN_SRC_DESTROY) ? TRUE : FALSE; |
| 11998 | use_maxprot = (flags & VM_MAP_COPYIN_USE_MAXPROT) ? TRUE : FALSE; |
| 11999 | preserve_purgeable = |
| 12000 | (flags & VM_MAP_COPYIN_PRESERVE_PURGEABLE) ? TRUE : FALSE; |
| 12001 | |
| 12002 | /* |
| 12003 | * Check for copies of zero bytes. |
| 12004 | */ |
| 12005 | |
| 12006 | if (len == 0) { |
| 12007 | *copy_result = VM_MAP_COPY_NULL; |
| 12008 | return KERN_SUCCESS; |
| 12009 | } |
| 12010 | |
| 12011 | /* |
| 12012 | * Check that the end address doesn't overflow |
| 12013 | */ |
| 12014 | if (__improbable(vm_map_range_overflows(src_map, src_addr, len))) { |
| 12015 | return KERN_INVALID_ADDRESS; |
| 12016 | } |
| 12017 | src_end = src_addr + len; |
| 12018 | if (src_end < src_addr) { |
| 12019 | return KERN_INVALID_ADDRESS; |
| 12020 | } |
| 12021 | |
| 12022 | /* |
| 12023 | * Compute (page aligned) start and end of region |
| 12024 | */ |
| 12025 | src_start = vm_map_trunc_page(src_addr, |
| 12026 | VM_MAP_PAGE_MASK(src_map)); |
| 12027 | src_end = vm_map_round_page(src_end, |
| 12028 | VM_MAP_PAGE_MASK(src_map)); |
| 12029 | if (src_end < src_addr) { |
| 12030 | return KERN_INVALID_ADDRESS; |
| 12031 | } |
| 12032 | |
| 12033 | /* |
| 12034 | * If the copy is sufficiently small, use a kernel buffer instead |
| 12035 | * of making a virtual copy. The theory being that the cost of |
| 12036 | * setting up VM (and taking C-O-W faults) dominates the copy costs |
| 12037 | * for small regions. |
| 12038 | */ |
| 12039 | if ((len <= msg_ool_size_small) && |
| 12040 | !use_maxprot && |
| 12041 | !preserve_purgeable && |
| 12042 | !(flags & VM_MAP_COPYIN_ENTRY_LIST) && |
| 12043 | /* |
| 12044 | * Since the "msg_ool_size_small" threshold was increased and |
| 12045 | * vm_map_copyin_kernel_buffer() doesn't handle accesses beyond the |
| 12046 | * address space limits, we revert to doing a virtual copy if the |
| 12047 | * copied range goes beyond those limits. Otherwise, mach_vm_read() |
| 12048 | * of the commpage would now fail when it used to work. |
| 12049 | */ |
| 12050 | (src_start >= vm_map_min(src_map) && |
| 12051 | src_start < vm_map_max(src_map) && |
| 12052 | src_end >= vm_map_min(src_map) && |
| 12053 | src_end < vm_map_max(src_map))) { |
| 12054 | return vm_map_copyin_kernel_buffer(src_map, src_addr, len, |
| 12055 | src_destroy, copy_result); |
| 12056 | } |
| 12057 | |
| 12058 | /* |
| 12059 | * Allocate a header element for the list. |
| 12060 | * |
| 12061 | * Use the start and end in the header to |
| 12062 | * remember the endpoints prior to rounding. |
| 12063 | */ |
| 12064 | |
| 12065 | copy = vm_map_copy_allocate(VM_MAP_COPY_ENTRY_LIST); |
| 12066 | copy->cpy_hdr.entries_pageable = TRUE; |
| 12067 | copy->cpy_hdr.page_shift = (uint16_t)VM_MAP_PAGE_SHIFT(map: src_map); |
| 12068 | copy->offset = src_addr; |
| 12069 | copy->size = len; |
| 12070 | |
| 12071 | new_entry = vm_map_copy_entry_create(copy); |
| 12072 | |
| 12073 | #define RETURN(x) \ |
| 12074 | MACRO_BEGIN \ |
| 12075 | vm_map_unlock(src_map); \ |
| 12076 | if(src_map != base_map) \ |
| 12077 | vm_map_deallocate(src_map); \ |
| 12078 | if (new_entry != VM_MAP_ENTRY_NULL) \ |
| 12079 | vm_map_copy_entry_dispose(new_entry); \ |
| 12080 | vm_map_copy_discard(copy); \ |
| 12081 | { \ |
| 12082 | submap_map_t *_ptr; \ |
| 12083 | \ |
| 12084 | for(_ptr = parent_maps; _ptr != NULL; _ptr = parent_maps) { \ |
| 12085 | parent_maps=parent_maps->next; \ |
| 12086 | if (_ptr->parent_map != base_map) \ |
| 12087 | vm_map_deallocate(_ptr->parent_map); \ |
| 12088 | kfree_type(submap_map_t, _ptr); \ |
| 12089 | } \ |
| 12090 | } \ |
| 12091 | MACRO_RETURN(x); \ |
| 12092 | MACRO_END |
| 12093 | |
| 12094 | /* |
| 12095 | * Find the beginning of the region. |
| 12096 | */ |
| 12097 | |
| 12098 | vm_map_lock(src_map); |
| 12099 | |
| 12100 | /* |
| 12101 | * Lookup the original "src_addr" rather than the truncated |
| 12102 | * "src_start", in case "src_start" falls in a non-map-aligned |
| 12103 | * map entry *before* the map entry that contains "src_addr"... |
| 12104 | */ |
| 12105 | if (!vm_map_lookup_entry(map: src_map, address: src_addr, entry: &tmp_entry)) { |
| 12106 | RETURN(KERN_INVALID_ADDRESS); |
| 12107 | } |
| 12108 | if (!tmp_entry->is_sub_map) { |
| 12109 | /* |
| 12110 | * ... but clip to the map-rounded "src_start" rather than |
| 12111 | * "src_addr" to preserve map-alignment. We'll adjust the |
| 12112 | * first copy entry at the end, if needed. |
| 12113 | */ |
| 12114 | vm_map_clip_start(map: src_map, entry: tmp_entry, startaddr: src_start); |
| 12115 | } |
| 12116 | if (src_start < tmp_entry->vme_start) { |
| 12117 | /* |
| 12118 | * Move "src_start" up to the start of the |
| 12119 | * first map entry to copy. |
| 12120 | */ |
| 12121 | src_start = tmp_entry->vme_start; |
| 12122 | } |
| 12123 | /* set for later submap fix-up */ |
| 12124 | copy_addr = src_start; |
| 12125 | |
| 12126 | /* |
| 12127 | * Go through entries until we get to the end. |
| 12128 | */ |
| 12129 | |
| 12130 | while (TRUE) { |
| 12131 | vm_map_entry_t src_entry = tmp_entry; /* Top-level entry */ |
| 12132 | vm_map_size_t src_size; /* Size of source |
| 12133 | * map entry (in both |
| 12134 | * maps) |
| 12135 | */ |
| 12136 | |
| 12137 | vm_object_t src_object; /* Object to copy */ |
| 12138 | vm_object_offset_t src_offset; |
| 12139 | |
| 12140 | vm_object_t new_copy_object;/* vm_object_copy_* result */ |
| 12141 | |
| 12142 | boolean_t src_needs_copy; /* Should source map |
| 12143 | * be made read-only |
| 12144 | * for copy-on-write? |
| 12145 | */ |
| 12146 | |
| 12147 | boolean_t new_entry_needs_copy; /* Will new entry be COW? */ |
| 12148 | |
| 12149 | boolean_t was_wired; /* Was source wired? */ |
| 12150 | boolean_t saved_used_for_jit; /* Saved used_for_jit. */ |
| 12151 | vm_map_version_t version; /* Version before locks |
| 12152 | * dropped to make copy |
| 12153 | */ |
| 12154 | kern_return_t result; /* Return value from |
| 12155 | * copy_strategically. |
| 12156 | */ |
| 12157 | while (tmp_entry->is_sub_map) { |
| 12158 | vm_map_size_t submap_len; |
| 12159 | submap_map_t *ptr; |
| 12160 | |
| 12161 | ptr = kalloc_type(submap_map_t, Z_WAITOK); |
| 12162 | ptr->next = parent_maps; |
| 12163 | parent_maps = ptr; |
| 12164 | ptr->parent_map = src_map; |
| 12165 | ptr->base_start = src_start; |
| 12166 | ptr->base_end = src_end; |
| 12167 | submap_len = tmp_entry->vme_end - src_start; |
| 12168 | if (submap_len > (src_end - src_start)) { |
| 12169 | submap_len = src_end - src_start; |
| 12170 | } |
| 12171 | ptr->base_len = submap_len; |
| 12172 | |
| 12173 | src_start -= tmp_entry->vme_start; |
| 12174 | src_start += VME_OFFSET(entry: tmp_entry); |
| 12175 | src_end = src_start + submap_len; |
| 12176 | src_map = VME_SUBMAP(tmp_entry); |
| 12177 | vm_map_lock(src_map); |
| 12178 | /* keep an outstanding reference for all maps in */ |
| 12179 | /* the parents tree except the base map */ |
| 12180 | vm_map_reference(map: src_map); |
| 12181 | vm_map_unlock(ptr->parent_map); |
| 12182 | if (!vm_map_lookup_entry( |
| 12183 | map: src_map, address: src_start, entry: &tmp_entry)) { |
| 12184 | RETURN(KERN_INVALID_ADDRESS); |
| 12185 | } |
| 12186 | map_share = TRUE; |
| 12187 | if (!tmp_entry->is_sub_map) { |
| 12188 | vm_map_clip_start(map: src_map, entry: tmp_entry, startaddr: src_start); |
| 12189 | } |
| 12190 | src_entry = tmp_entry; |
| 12191 | } |
| 12192 | /* we are now in the lowest level submap... */ |
| 12193 | |
| 12194 | if ((VME_OBJECT(tmp_entry) != VM_OBJECT_NULL) && |
| 12195 | (VME_OBJECT(tmp_entry)->phys_contiguous)) { |
| 12196 | /* This is not, supported for now.In future */ |
| 12197 | /* we will need to detect the phys_contig */ |
| 12198 | /* condition and then upgrade copy_slowly */ |
| 12199 | /* to do physical copy from the device mem */ |
| 12200 | /* based object. We can piggy-back off of */ |
| 12201 | /* the was wired boolean to set-up the */ |
| 12202 | /* proper handling */ |
| 12203 | RETURN(KERN_PROTECTION_FAILURE); |
| 12204 | } |
| 12205 | /* |
| 12206 | * Create a new address map entry to hold the result. |
| 12207 | * Fill in the fields from the appropriate source entries. |
| 12208 | * We must unlock the source map to do this if we need |
| 12209 | * to allocate a map entry. |
| 12210 | */ |
| 12211 | if (new_entry == VM_MAP_ENTRY_NULL) { |
| 12212 | version.main_timestamp = src_map->timestamp; |
| 12213 | vm_map_unlock(src_map); |
| 12214 | |
| 12215 | new_entry = vm_map_copy_entry_create(copy); |
| 12216 | |
| 12217 | vm_map_lock(src_map); |
| 12218 | if ((version.main_timestamp + 1) != src_map->timestamp) { |
| 12219 | if (!vm_map_lookup_entry(map: src_map, address: src_start, |
| 12220 | entry: &tmp_entry)) { |
| 12221 | RETURN(KERN_INVALID_ADDRESS); |
| 12222 | } |
| 12223 | if (!tmp_entry->is_sub_map) { |
| 12224 | vm_map_clip_start(map: src_map, entry: tmp_entry, startaddr: src_start); |
| 12225 | } |
| 12226 | continue; /* restart w/ new tmp_entry */ |
| 12227 | } |
| 12228 | } |
| 12229 | |
| 12230 | /* |
| 12231 | * Verify that the region can be read. |
| 12232 | */ |
| 12233 | if (((src_entry->protection & VM_PROT_READ) == VM_PROT_NONE && |
| 12234 | !use_maxprot) || |
| 12235 | (src_entry->max_protection & VM_PROT_READ) == 0) { |
| 12236 | RETURN(KERN_PROTECTION_FAILURE); |
| 12237 | } |
| 12238 | |
| 12239 | /* |
| 12240 | * Clip against the endpoints of the entire region. |
| 12241 | */ |
| 12242 | |
| 12243 | vm_map_clip_end(map: src_map, entry: src_entry, endaddr: src_end); |
| 12244 | |
| 12245 | src_size = src_entry->vme_end - src_start; |
| 12246 | src_object = VME_OBJECT(src_entry); |
| 12247 | src_offset = VME_OFFSET(entry: src_entry); |
| 12248 | was_wired = (src_entry->wired_count != 0); |
| 12249 | |
| 12250 | vm_map_entry_copy(map: src_map, new: new_entry, old: src_entry); |
| 12251 | if (new_entry->is_sub_map) { |
| 12252 | /* clr address space specifics */ |
| 12253 | new_entry->use_pmap = FALSE; |
| 12254 | } else { |
| 12255 | /* |
| 12256 | * We're dealing with a copy-on-write operation, |
| 12257 | * so the resulting mapping should not inherit the |
| 12258 | * original mapping's accounting settings. |
| 12259 | * "iokit_acct" should have been cleared in |
| 12260 | * vm_map_entry_copy(). |
| 12261 | * "use_pmap" should be reset to its default (TRUE) |
| 12262 | * so that the new mapping gets accounted for in |
| 12263 | * the task's memory footprint. |
| 12264 | */ |
| 12265 | assert(!new_entry->iokit_acct); |
| 12266 | new_entry->use_pmap = TRUE; |
| 12267 | } |
| 12268 | |
| 12269 | /* |
| 12270 | * Attempt non-blocking copy-on-write optimizations. |
| 12271 | */ |
| 12272 | |
| 12273 | /* |
| 12274 | * If we are destroying the source, and the object |
| 12275 | * is internal, we could move the object reference |
| 12276 | * from the source to the copy. The copy is |
| 12277 | * copy-on-write only if the source is. |
| 12278 | * We make another reference to the object, because |
| 12279 | * destroying the source entry will deallocate it. |
| 12280 | * |
| 12281 | * This memory transfer has to be atomic, (to prevent |
| 12282 | * the VM object from being shared or copied while |
| 12283 | * it's being moved here), so we could only do this |
| 12284 | * if we won't have to unlock the VM map until the |
| 12285 | * original mapping has been fully removed. |
| 12286 | */ |
| 12287 | |
| 12288 | RestartCopy: |
| 12289 | if ((src_object == VM_OBJECT_NULL || |
| 12290 | (!was_wired && !map_share && !tmp_entry->is_shared |
| 12291 | && !(debug4k_no_cow_copyin && VM_MAP_PAGE_SHIFT(map: src_map) < PAGE_SHIFT))) && |
| 12292 | vm_object_copy_quickly( |
| 12293 | VME_OBJECT(new_entry), |
| 12294 | src_offset, |
| 12295 | size: src_size, |
| 12296 | src_needs_copy: &src_needs_copy, |
| 12297 | dst_needs_copy: &new_entry_needs_copy)) { |
| 12298 | new_entry->needs_copy = new_entry_needs_copy; |
| 12299 | |
| 12300 | /* |
| 12301 | * Handle copy-on-write obligations |
| 12302 | */ |
| 12303 | |
| 12304 | if (src_needs_copy && !tmp_entry->needs_copy) { |
| 12305 | vm_prot_t prot; |
| 12306 | |
| 12307 | prot = src_entry->protection & ~VM_PROT_WRITE; |
| 12308 | |
| 12309 | if (override_nx(map: src_map, VME_ALIAS(src_entry)) |
| 12310 | && prot) { |
| 12311 | prot |= VM_PROT_EXECUTE; |
| 12312 | } |
| 12313 | |
| 12314 | vm_object_pmap_protect( |
| 12315 | object: src_object, |
| 12316 | offset: src_offset, |
| 12317 | size: src_size, |
| 12318 | pmap: (src_entry->is_shared ? |
| 12319 | PMAP_NULL |
| 12320 | : src_map->pmap), |
| 12321 | VM_MAP_PAGE_SIZE(src_map), |
| 12322 | pmap_start: src_entry->vme_start, |
| 12323 | prot); |
| 12324 | |
| 12325 | assert(tmp_entry->wired_count == 0); |
| 12326 | tmp_entry->needs_copy = TRUE; |
| 12327 | } |
| 12328 | |
| 12329 | /* |
| 12330 | * The map has never been unlocked, so it's safe |
| 12331 | * to move to the next entry rather than doing |
| 12332 | * another lookup. |
| 12333 | */ |
| 12334 | |
| 12335 | goto CopySuccessful; |
| 12336 | } |
| 12337 | |
| 12338 | entry_was_shared = tmp_entry->is_shared; |
| 12339 | |
| 12340 | /* |
| 12341 | * Take an object reference, so that we may |
| 12342 | * release the map lock(s). |
| 12343 | */ |
| 12344 | |
| 12345 | assert(src_object != VM_OBJECT_NULL); |
| 12346 | vm_object_reference(src_object); |
| 12347 | |
| 12348 | /* |
| 12349 | * Record the timestamp for later verification. |
| 12350 | * Unlock the map. |
| 12351 | */ |
| 12352 | |
| 12353 | version.main_timestamp = src_map->timestamp; |
| 12354 | vm_map_unlock(src_map); /* Increments timestamp once! */ |
| 12355 | saved_src_entry = src_entry; |
| 12356 | tmp_entry = VM_MAP_ENTRY_NULL; |
| 12357 | src_entry = VM_MAP_ENTRY_NULL; |
| 12358 | |
| 12359 | /* |
| 12360 | * Perform the copy |
| 12361 | */ |
| 12362 | |
| 12363 | if (was_wired || |
| 12364 | (src_object->copy_strategy == MEMORY_OBJECT_COPY_DELAY_FORK && |
| 12365 | !(flags & VM_MAP_COPYIN_FORK)) || |
| 12366 | (debug4k_no_cow_copyin && |
| 12367 | VM_MAP_PAGE_SHIFT(map: src_map) < PAGE_SHIFT)) { |
| 12368 | CopySlowly: |
| 12369 | vm_object_lock(src_object); |
| 12370 | result = vm_object_copy_slowly( |
| 12371 | src_object, |
| 12372 | src_offset, |
| 12373 | size: src_size, |
| 12374 | THREAD_UNINT, |
| 12375 | result_object: &new_copy_object); |
| 12376 | /* VME_OBJECT_SET will reset used_for_jit|tpro, so preserve it. */ |
| 12377 | saved_used_for_jit = new_entry->used_for_jit; |
| 12378 | VME_OBJECT_SET(entry: new_entry, object: new_copy_object, false, context: 0); |
| 12379 | new_entry->used_for_jit = saved_used_for_jit; |
| 12380 | VME_OFFSET_SET(entry: new_entry, |
| 12381 | offset: src_offset - vm_object_trunc_page(src_offset)); |
| 12382 | new_entry->needs_copy = FALSE; |
| 12383 | } else if (src_object->copy_strategy == MEMORY_OBJECT_COPY_SYMMETRIC && |
| 12384 | (entry_was_shared || map_share)) { |
| 12385 | vm_object_t new_object; |
| 12386 | |
| 12387 | vm_object_lock_shared(src_object); |
| 12388 | new_object = vm_object_copy_delayed( |
| 12389 | src_object, |
| 12390 | src_offset, |
| 12391 | size: src_size, |
| 12392 | TRUE); |
| 12393 | if (new_object == VM_OBJECT_NULL) { |
| 12394 | goto CopySlowly; |
| 12395 | } |
| 12396 | |
| 12397 | VME_OBJECT_SET(entry: new_entry, object: new_object, false, context: 0); |
| 12398 | assert(new_entry->wired_count == 0); |
| 12399 | new_entry->needs_copy = TRUE; |
| 12400 | assert(!new_entry->iokit_acct); |
| 12401 | assert(new_object->purgable == VM_PURGABLE_DENY); |
| 12402 | assertf(new_entry->use_pmap, "src_map %p new_entry %p\n" , src_map, new_entry); |
| 12403 | result = KERN_SUCCESS; |
| 12404 | } else { |
| 12405 | vm_object_offset_t new_offset; |
| 12406 | new_offset = VME_OFFSET(entry: new_entry); |
| 12407 | result = vm_object_copy_strategically(src_object, |
| 12408 | src_offset, |
| 12409 | size: src_size, |
| 12410 | forking: (flags & VM_MAP_COPYIN_FORK), |
| 12411 | dst_object: &new_copy_object, |
| 12412 | dst_offset: &new_offset, |
| 12413 | dst_needs_copy: &new_entry_needs_copy); |
| 12414 | /* VME_OBJECT_SET will reset used_for_jit, so preserve it. */ |
| 12415 | saved_used_for_jit = new_entry->used_for_jit; |
| 12416 | VME_OBJECT_SET(entry: new_entry, object: new_copy_object, false, context: 0); |
| 12417 | new_entry->used_for_jit = saved_used_for_jit; |
| 12418 | if (new_offset != VME_OFFSET(entry: new_entry)) { |
| 12419 | VME_OFFSET_SET(entry: new_entry, offset: new_offset); |
| 12420 | } |
| 12421 | |
| 12422 | new_entry->needs_copy = new_entry_needs_copy; |
| 12423 | } |
| 12424 | |
| 12425 | if (result == KERN_SUCCESS && |
| 12426 | ((preserve_purgeable && |
| 12427 | src_object->purgable != VM_PURGABLE_DENY) || |
| 12428 | new_entry->used_for_jit)) { |
| 12429 | /* |
| 12430 | * Purgeable objects should be COPY_NONE, true share; |
| 12431 | * this should be propogated to the copy. |
| 12432 | * |
| 12433 | * Also force mappings the pmap specially protects to |
| 12434 | * be COPY_NONE; trying to COW these mappings would |
| 12435 | * change the effective protections, which could have |
| 12436 | * side effects if the pmap layer relies on the |
| 12437 | * specified protections. |
| 12438 | */ |
| 12439 | |
| 12440 | vm_object_t new_object; |
| 12441 | |
| 12442 | new_object = VME_OBJECT(new_entry); |
| 12443 | assert(new_object != src_object); |
| 12444 | vm_object_lock(new_object); |
| 12445 | assert(new_object->ref_count == 1); |
| 12446 | assert(new_object->shadow == VM_OBJECT_NULL); |
| 12447 | assert(new_object->vo_copy == VM_OBJECT_NULL); |
| 12448 | assert(new_object->vo_owner == NULL); |
| 12449 | |
| 12450 | new_object->copy_strategy = MEMORY_OBJECT_COPY_NONE; |
| 12451 | |
| 12452 | if (preserve_purgeable && |
| 12453 | src_object->purgable != VM_PURGABLE_DENY) { |
| 12454 | VM_OBJECT_SET_TRUE_SHARE(object: new_object, TRUE); |
| 12455 | |
| 12456 | /* start as non-volatile with no owner... */ |
| 12457 | VM_OBJECT_SET_PURGABLE(object: new_object, VM_PURGABLE_NONVOLATILE); |
| 12458 | vm_purgeable_nonvolatile_enqueue(object: new_object, NULL); |
| 12459 | /* ... and move to src_object's purgeable state */ |
| 12460 | if (src_object->purgable != VM_PURGABLE_NONVOLATILE) { |
| 12461 | int state; |
| 12462 | state = src_object->purgable; |
| 12463 | vm_object_purgable_control( |
| 12464 | object: new_object, |
| 12465 | VM_PURGABLE_SET_STATE_FROM_KERNEL, |
| 12466 | state: &state); |
| 12467 | } |
| 12468 | /* no pmap accounting for purgeable objects */ |
| 12469 | new_entry->use_pmap = FALSE; |
| 12470 | } |
| 12471 | |
| 12472 | vm_object_unlock(new_object); |
| 12473 | new_object = VM_OBJECT_NULL; |
| 12474 | } |
| 12475 | |
| 12476 | if (result != KERN_SUCCESS && |
| 12477 | result != KERN_MEMORY_RESTART_COPY) { |
| 12478 | vm_map_lock(src_map); |
| 12479 | RETURN(result); |
| 12480 | } |
| 12481 | |
| 12482 | /* |
| 12483 | * Throw away the extra reference |
| 12484 | */ |
| 12485 | |
| 12486 | vm_object_deallocate(object: src_object); |
| 12487 | |
| 12488 | /* |
| 12489 | * Verify that the map has not substantially |
| 12490 | * changed while the copy was being made. |
| 12491 | */ |
| 12492 | |
| 12493 | vm_map_lock(src_map); |
| 12494 | |
| 12495 | if ((version.main_timestamp + 1) == src_map->timestamp) { |
| 12496 | /* src_map hasn't changed: src_entry is still valid */ |
| 12497 | src_entry = saved_src_entry; |
| 12498 | goto VerificationSuccessful; |
| 12499 | } |
| 12500 | |
| 12501 | /* |
| 12502 | * Simple version comparison failed. |
| 12503 | * |
| 12504 | * Retry the lookup and verify that the |
| 12505 | * same object/offset are still present. |
| 12506 | * |
| 12507 | * [Note: a memory manager that colludes with |
| 12508 | * the calling task can detect that we have |
| 12509 | * cheated. While the map was unlocked, the |
| 12510 | * mapping could have been changed and restored.] |
| 12511 | */ |
| 12512 | |
| 12513 | if (!vm_map_lookup_entry(map: src_map, address: src_start, entry: &tmp_entry)) { |
| 12514 | if (result != KERN_MEMORY_RESTART_COPY) { |
| 12515 | vm_object_deallocate(VME_OBJECT(new_entry)); |
| 12516 | VME_OBJECT_SET(entry: new_entry, VM_OBJECT_NULL, false, context: 0); |
| 12517 | /* reset accounting state */ |
| 12518 | new_entry->iokit_acct = FALSE; |
| 12519 | new_entry->use_pmap = TRUE; |
| 12520 | } |
| 12521 | RETURN(KERN_INVALID_ADDRESS); |
| 12522 | } |
| 12523 | |
| 12524 | src_entry = tmp_entry; |
| 12525 | vm_map_clip_start(map: src_map, entry: src_entry, startaddr: src_start); |
| 12526 | |
| 12527 | if ((((src_entry->protection & VM_PROT_READ) == VM_PROT_NONE) && |
| 12528 | !use_maxprot) || |
| 12529 | ((src_entry->max_protection & VM_PROT_READ) == 0)) { |
| 12530 | goto VerificationFailed; |
| 12531 | } |
| 12532 | |
| 12533 | if (src_entry->vme_end < new_entry->vme_end) { |
| 12534 | /* |
| 12535 | * This entry might have been shortened |
| 12536 | * (vm_map_clip_end) or been replaced with |
| 12537 | * an entry that ends closer to "src_start" |
| 12538 | * than before. |
| 12539 | * Adjust "new_entry" accordingly; copying |
| 12540 | * less memory would be correct but we also |
| 12541 | * redo the copy (see below) if the new entry |
| 12542 | * no longer points at the same object/offset. |
| 12543 | */ |
| 12544 | assert(VM_MAP_PAGE_ALIGNED(src_entry->vme_end, |
| 12545 | VM_MAP_COPY_PAGE_MASK(copy))); |
| 12546 | new_entry->vme_end = src_entry->vme_end; |
| 12547 | src_size = new_entry->vme_end - src_start; |
| 12548 | } else if (src_entry->vme_end > new_entry->vme_end) { |
| 12549 | /* |
| 12550 | * This entry might have been extended |
| 12551 | * (vm_map_entry_simplify() or coalesce) |
| 12552 | * or been replaced with an entry that ends farther |
| 12553 | * from "src_start" than before. |
| 12554 | * |
| 12555 | * We've called vm_object_copy_*() only on |
| 12556 | * the previous <start:end> range, so we can't |
| 12557 | * just extend new_entry. We have to re-do |
| 12558 | * the copy based on the new entry as if it was |
| 12559 | * pointing at a different object/offset (see |
| 12560 | * "Verification failed" below). |
| 12561 | */ |
| 12562 | } |
| 12563 | |
| 12564 | if ((VME_OBJECT(src_entry) != src_object) || |
| 12565 | (VME_OFFSET(entry: src_entry) != src_offset) || |
| 12566 | (src_entry->vme_end > new_entry->vme_end)) { |
| 12567 | /* |
| 12568 | * Verification failed. |
| 12569 | * |
| 12570 | * Start over with this top-level entry. |
| 12571 | */ |
| 12572 | |
| 12573 | VerificationFailed: ; |
| 12574 | |
| 12575 | vm_object_deallocate(VME_OBJECT(new_entry)); |
| 12576 | tmp_entry = src_entry; |
| 12577 | continue; |
| 12578 | } |
| 12579 | |
| 12580 | /* |
| 12581 | * Verification succeeded. |
| 12582 | */ |
| 12583 | |
| 12584 | VerificationSuccessful:; |
| 12585 | |
| 12586 | if (result == KERN_MEMORY_RESTART_COPY) { |
| 12587 | goto RestartCopy; |
| 12588 | } |
| 12589 | |
| 12590 | /* |
| 12591 | * Copy succeeded. |
| 12592 | */ |
| 12593 | |
| 12594 | CopySuccessful: ; |
| 12595 | |
| 12596 | /* |
| 12597 | * Link in the new copy entry. |
| 12598 | */ |
| 12599 | |
| 12600 | vm_map_copy_entry_link(copy, vm_map_copy_last_entry(copy), |
| 12601 | new_entry); |
| 12602 | |
| 12603 | /* |
| 12604 | * Determine whether the entire region |
| 12605 | * has been copied. |
| 12606 | */ |
| 12607 | src_base = src_start; |
| 12608 | src_start = new_entry->vme_end; |
| 12609 | new_entry = VM_MAP_ENTRY_NULL; |
| 12610 | while ((src_start >= src_end) && (src_end != 0)) { |
| 12611 | submap_map_t *ptr; |
| 12612 | |
| 12613 | if (src_map == base_map) { |
| 12614 | /* back to the top */ |
| 12615 | break; |
| 12616 | } |
| 12617 | |
| 12618 | ptr = parent_maps; |
| 12619 | assert(ptr != NULL); |
| 12620 | parent_maps = parent_maps->next; |
| 12621 | |
| 12622 | /* fix up the damage we did in that submap */ |
| 12623 | vm_map_simplify_range(map: src_map, |
| 12624 | start: src_base, |
| 12625 | end: src_end); |
| 12626 | |
| 12627 | vm_map_unlock(src_map); |
| 12628 | vm_map_deallocate(map: src_map); |
| 12629 | vm_map_lock(ptr->parent_map); |
| 12630 | src_map = ptr->parent_map; |
| 12631 | src_base = ptr->base_start; |
| 12632 | src_start = ptr->base_start + ptr->base_len; |
| 12633 | src_end = ptr->base_end; |
| 12634 | if (!vm_map_lookup_entry(map: src_map, |
| 12635 | address: src_start, |
| 12636 | entry: &tmp_entry) && |
| 12637 | (src_end > src_start)) { |
| 12638 | RETURN(KERN_INVALID_ADDRESS); |
| 12639 | } |
| 12640 | kfree_type(submap_map_t, ptr); |
| 12641 | if (parent_maps == NULL) { |
| 12642 | map_share = FALSE; |
| 12643 | } |
| 12644 | src_entry = tmp_entry->vme_prev; |
| 12645 | } |
| 12646 | |
| 12647 | if ((VM_MAP_PAGE_SHIFT(map: src_map) != PAGE_SHIFT) && |
| 12648 | (src_start >= src_addr + len) && |
| 12649 | (src_addr + len != 0)) { |
| 12650 | /* |
| 12651 | * Stop copying now, even though we haven't reached |
| 12652 | * "src_end". We'll adjust the end of the last copy |
| 12653 | * entry at the end, if needed. |
| 12654 | * |
| 12655 | * If src_map's aligment is different from the |
| 12656 | * system's page-alignment, there could be |
| 12657 | * extra non-map-aligned map entries between |
| 12658 | * the original (non-rounded) "src_addr + len" |
| 12659 | * and the rounded "src_end". |
| 12660 | * We do not want to copy those map entries since |
| 12661 | * they're not part of the copied range. |
| 12662 | */ |
| 12663 | break; |
| 12664 | } |
| 12665 | |
| 12666 | if ((src_start >= src_end) && (src_end != 0)) { |
| 12667 | break; |
| 12668 | } |
| 12669 | |
| 12670 | /* |
| 12671 | * Verify that there are no gaps in the region |
| 12672 | */ |
| 12673 | |
| 12674 | tmp_entry = src_entry->vme_next; |
| 12675 | if ((tmp_entry->vme_start != src_start) || |
| 12676 | (tmp_entry == vm_map_to_entry(src_map))) { |
| 12677 | RETURN(KERN_INVALID_ADDRESS); |
| 12678 | } |
| 12679 | } |
| 12680 | |
| 12681 | /* |
| 12682 | * If the source should be destroyed, do it now, since the |
| 12683 | * copy was successful. |
| 12684 | */ |
| 12685 | if (src_destroy) { |
| 12686 | vmr_flags_t remove_flags = VM_MAP_REMOVE_NO_FLAGS; |
| 12687 | |
| 12688 | if (src_map == kernel_map) { |
| 12689 | remove_flags |= VM_MAP_REMOVE_KUNWIRE; |
| 12690 | } |
| 12691 | (void)vm_map_remove_and_unlock(map: src_map, |
| 12692 | vm_map_trunc_page(src_addr, VM_MAP_PAGE_MASK(src_map)), |
| 12693 | end: src_end, |
| 12694 | flags: remove_flags, |
| 12695 | KMEM_GUARD_NONE); |
| 12696 | } else { |
| 12697 | /* fix up the damage we did in the base map */ |
| 12698 | vm_map_simplify_range( |
| 12699 | map: src_map, |
| 12700 | vm_map_trunc_page(src_addr, |
| 12701 | VM_MAP_PAGE_MASK(src_map)), |
| 12702 | vm_map_round_page(src_end, |
| 12703 | VM_MAP_PAGE_MASK(src_map))); |
| 12704 | vm_map_unlock(src_map); |
| 12705 | } |
| 12706 | |
| 12707 | tmp_entry = VM_MAP_ENTRY_NULL; |
| 12708 | |
| 12709 | if (VM_MAP_PAGE_SHIFT(map: src_map) > PAGE_SHIFT && |
| 12710 | VM_MAP_PAGE_SHIFT(map: src_map) != VM_MAP_COPY_PAGE_SHIFT(copy)) { |
| 12711 | vm_map_offset_t original_start, original_offset, original_end; |
| 12712 | |
| 12713 | assert(VM_MAP_COPY_PAGE_MASK(copy) == PAGE_MASK); |
| 12714 | |
| 12715 | /* adjust alignment of first copy_entry's "vme_start" */ |
| 12716 | tmp_entry = vm_map_copy_first_entry(copy); |
| 12717 | if (tmp_entry != vm_map_copy_to_entry(copy)) { |
| 12718 | vm_map_offset_t adjustment; |
| 12719 | |
| 12720 | original_start = tmp_entry->vme_start; |
| 12721 | original_offset = VME_OFFSET(entry: tmp_entry); |
| 12722 | |
| 12723 | /* map-align the start of the first copy entry... */ |
| 12724 | adjustment = (tmp_entry->vme_start - |
| 12725 | vm_map_trunc_page( |
| 12726 | tmp_entry->vme_start, |
| 12727 | VM_MAP_PAGE_MASK(src_map))); |
| 12728 | tmp_entry->vme_start -= adjustment; |
| 12729 | VME_OFFSET_SET(entry: tmp_entry, |
| 12730 | offset: VME_OFFSET(entry: tmp_entry) - adjustment); |
| 12731 | copy_addr -= adjustment; |
| 12732 | assert(tmp_entry->vme_start < tmp_entry->vme_end); |
| 12733 | /* ... adjust for mis-aligned start of copy range */ |
| 12734 | adjustment = |
| 12735 | (vm_map_trunc_page(copy->offset, |
| 12736 | PAGE_MASK) - |
| 12737 | vm_map_trunc_page(copy->offset, |
| 12738 | VM_MAP_PAGE_MASK(src_map))); |
| 12739 | if (adjustment) { |
| 12740 | assert(page_aligned(adjustment)); |
| 12741 | assert(adjustment < VM_MAP_PAGE_SIZE(src_map)); |
| 12742 | tmp_entry->vme_start += adjustment; |
| 12743 | VME_OFFSET_SET(entry: tmp_entry, |
| 12744 | offset: (VME_OFFSET(entry: tmp_entry) + |
| 12745 | adjustment)); |
| 12746 | copy_addr += adjustment; |
| 12747 | assert(tmp_entry->vme_start < tmp_entry->vme_end); |
| 12748 | } |
| 12749 | |
| 12750 | /* |
| 12751 | * Assert that the adjustments haven't exposed |
| 12752 | * more than was originally copied... |
| 12753 | */ |
| 12754 | assert(tmp_entry->vme_start >= original_start); |
| 12755 | assert(VME_OFFSET(tmp_entry) >= original_offset); |
| 12756 | /* |
| 12757 | * ... and that it did not adjust outside of a |
| 12758 | * a single 16K page. |
| 12759 | */ |
| 12760 | assert(vm_map_trunc_page(tmp_entry->vme_start, |
| 12761 | VM_MAP_PAGE_MASK(src_map)) == |
| 12762 | vm_map_trunc_page(original_start, |
| 12763 | VM_MAP_PAGE_MASK(src_map))); |
| 12764 | } |
| 12765 | |
| 12766 | /* adjust alignment of last copy_entry's "vme_end" */ |
| 12767 | tmp_entry = vm_map_copy_last_entry(copy); |
| 12768 | if (tmp_entry != vm_map_copy_to_entry(copy)) { |
| 12769 | vm_map_offset_t adjustment; |
| 12770 | |
| 12771 | original_end = tmp_entry->vme_end; |
| 12772 | |
| 12773 | /* map-align the end of the last copy entry... */ |
| 12774 | tmp_entry->vme_end = |
| 12775 | vm_map_round_page(tmp_entry->vme_end, |
| 12776 | VM_MAP_PAGE_MASK(src_map)); |
| 12777 | /* ... adjust for mis-aligned end of copy range */ |
| 12778 | adjustment = |
| 12779 | (vm_map_round_page((copy->offset + |
| 12780 | copy->size), |
| 12781 | VM_MAP_PAGE_MASK(src_map)) - |
| 12782 | vm_map_round_page((copy->offset + |
| 12783 | copy->size), |
| 12784 | PAGE_MASK)); |
| 12785 | if (adjustment) { |
| 12786 | assert(page_aligned(adjustment)); |
| 12787 | assert(adjustment < VM_MAP_PAGE_SIZE(src_map)); |
| 12788 | tmp_entry->vme_end -= adjustment; |
| 12789 | assert(tmp_entry->vme_start < tmp_entry->vme_end); |
| 12790 | } |
| 12791 | |
| 12792 | /* |
| 12793 | * Assert that the adjustments haven't exposed |
| 12794 | * more than was originally copied... |
| 12795 | */ |
| 12796 | assert(tmp_entry->vme_end <= original_end); |
| 12797 | /* |
| 12798 | * ... and that it did not adjust outside of a |
| 12799 | * a single 16K page. |
| 12800 | */ |
| 12801 | assert(vm_map_round_page(tmp_entry->vme_end, |
| 12802 | VM_MAP_PAGE_MASK(src_map)) == |
| 12803 | vm_map_round_page(original_end, |
| 12804 | VM_MAP_PAGE_MASK(src_map))); |
| 12805 | } |
| 12806 | } |
| 12807 | |
| 12808 | /* Fix-up start and end points in copy. This is necessary */ |
| 12809 | /* when the various entries in the copy object were picked */ |
| 12810 | /* up from different sub-maps */ |
| 12811 | |
| 12812 | tmp_entry = vm_map_copy_first_entry(copy); |
| 12813 | copy_size = 0; /* compute actual size */ |
| 12814 | while (tmp_entry != vm_map_copy_to_entry(copy)) { |
| 12815 | assert(VM_MAP_PAGE_ALIGNED( |
| 12816 | copy_addr + (tmp_entry->vme_end - |
| 12817 | tmp_entry->vme_start), |
| 12818 | MIN(VM_MAP_COPY_PAGE_MASK(copy), PAGE_MASK))); |
| 12819 | assert(VM_MAP_PAGE_ALIGNED( |
| 12820 | copy_addr, |
| 12821 | MIN(VM_MAP_COPY_PAGE_MASK(copy), PAGE_MASK))); |
| 12822 | |
| 12823 | /* |
| 12824 | * The copy_entries will be injected directly into the |
| 12825 | * destination map and might not be "map aligned" there... |
| 12826 | */ |
| 12827 | tmp_entry->map_aligned = FALSE; |
| 12828 | |
| 12829 | tmp_entry->vme_end = copy_addr + |
| 12830 | (tmp_entry->vme_end - tmp_entry->vme_start); |
| 12831 | tmp_entry->vme_start = copy_addr; |
| 12832 | assert(tmp_entry->vme_start < tmp_entry->vme_end); |
| 12833 | copy_addr += tmp_entry->vme_end - tmp_entry->vme_start; |
| 12834 | copy_size += tmp_entry->vme_end - tmp_entry->vme_start; |
| 12835 | tmp_entry = (struct vm_map_entry *)tmp_entry->vme_next; |
| 12836 | } |
| 12837 | |
| 12838 | if (VM_MAP_PAGE_SHIFT(map: src_map) != PAGE_SHIFT && |
| 12839 | copy_size < copy->size) { |
| 12840 | /* |
| 12841 | * The actual size of the VM map copy is smaller than what |
| 12842 | * was requested by the caller. This must be because some |
| 12843 | * PAGE_SIZE-sized pages are missing at the end of the last |
| 12844 | * VM_MAP_PAGE_SIZE(src_map)-sized chunk of the range. |
| 12845 | * The caller might not have been aware of those missing |
| 12846 | * pages and might not want to be aware of it, which is |
| 12847 | * fine as long as they don't try to access (and crash on) |
| 12848 | * those missing pages. |
| 12849 | * Let's adjust the size of the "copy", to avoid failing |
| 12850 | * in vm_map_copyout() or vm_map_copy_overwrite(). |
| 12851 | */ |
| 12852 | assert(vm_map_round_page(copy_size, |
| 12853 | VM_MAP_PAGE_MASK(src_map)) == |
| 12854 | vm_map_round_page(copy->size, |
| 12855 | VM_MAP_PAGE_MASK(src_map))); |
| 12856 | copy->size = copy_size; |
| 12857 | } |
| 12858 | |
| 12859 | *copy_result = copy; |
| 12860 | return KERN_SUCCESS; |
| 12861 | |
| 12862 | #undef RETURN |
| 12863 | } |
| 12864 | |
| 12865 | kern_return_t |
| 12866 | ( |
| 12867 | vm_map_t src_map, |
| 12868 | vm_map_address_t src_addr, |
| 12869 | vm_map_size_t len, |
| 12870 | boolean_t do_copy, |
| 12871 | vm_map_copy_t *copy_result, /* OUT */ |
| 12872 | vm_prot_t *cur_prot, /* IN/OUT */ |
| 12873 | vm_prot_t *max_prot, /* IN/OUT */ |
| 12874 | vm_inherit_t inheritance, |
| 12875 | vm_map_kernel_flags_t vmk_flags) |
| 12876 | { |
| 12877 | vm_map_copy_t copy; |
| 12878 | kern_return_t kr; |
| 12879 | vm_prot_t required_cur_prot, required_max_prot; |
| 12880 | |
| 12881 | /* |
| 12882 | * Check for copies of zero bytes. |
| 12883 | */ |
| 12884 | |
| 12885 | if (len == 0) { |
| 12886 | *copy_result = VM_MAP_COPY_NULL; |
| 12887 | return KERN_SUCCESS; |
| 12888 | } |
| 12889 | |
| 12890 | /* |
| 12891 | * Check that the end address doesn't overflow |
| 12892 | */ |
| 12893 | if (src_addr + len < src_addr) { |
| 12894 | return KERN_INVALID_ADDRESS; |
| 12895 | } |
| 12896 | if (__improbable(vm_map_range_overflows(src_map, src_addr, len))) { |
| 12897 | return KERN_INVALID_ADDRESS; |
| 12898 | } |
| 12899 | |
| 12900 | if (VM_MAP_PAGE_SIZE(src_map) < PAGE_SIZE) { |
| 12901 | DEBUG4K_SHARE("src_map %p src_addr 0x%llx src_end 0x%llx\n" , src_map, (uint64_t)src_addr, (uint64_t)(src_addr + len)); |
| 12902 | } |
| 12903 | |
| 12904 | required_cur_prot = *cur_prot; |
| 12905 | required_max_prot = *max_prot; |
| 12906 | |
| 12907 | /* |
| 12908 | * Allocate a header element for the list. |
| 12909 | * |
| 12910 | * Use the start and end in the header to |
| 12911 | * remember the endpoints prior to rounding. |
| 12912 | */ |
| 12913 | |
| 12914 | copy = vm_map_copy_allocate(VM_MAP_COPY_ENTRY_LIST); |
| 12915 | copy->cpy_hdr.entries_pageable = vmk_flags.vmkf_copy_pageable; |
| 12916 | copy->offset = 0; |
| 12917 | copy->size = len; |
| 12918 | |
| 12919 | kr = vm_map_remap_extract(map: src_map, |
| 12920 | addr: src_addr, |
| 12921 | size: len, |
| 12922 | copy: do_copy, /* copy */ |
| 12923 | map_copy: copy, |
| 12924 | cur_protection: cur_prot, /* IN/OUT */ |
| 12925 | max_protection: max_prot, /* IN/OUT */ |
| 12926 | inheritance, |
| 12927 | vmk_flags); |
| 12928 | if (kr != KERN_SUCCESS) { |
| 12929 | vm_map_copy_discard(copy); |
| 12930 | return kr; |
| 12931 | } |
| 12932 | if (required_cur_prot != VM_PROT_NONE) { |
| 12933 | assert((*cur_prot & required_cur_prot) == required_cur_prot); |
| 12934 | assert((*max_prot & required_max_prot) == required_max_prot); |
| 12935 | } |
| 12936 | |
| 12937 | *copy_result = copy; |
| 12938 | return KERN_SUCCESS; |
| 12939 | } |
| 12940 | |
| 12941 | static void |
| 12942 | vm_map_fork_share( |
| 12943 | vm_map_t old_map, |
| 12944 | vm_map_entry_t old_entry, |
| 12945 | vm_map_t new_map) |
| 12946 | { |
| 12947 | vm_object_t object; |
| 12948 | vm_map_entry_t new_entry; |
| 12949 | |
| 12950 | /* |
| 12951 | * New sharing code. New map entry |
| 12952 | * references original object. Internal |
| 12953 | * objects use asynchronous copy algorithm for |
| 12954 | * future copies. First make sure we have |
| 12955 | * the right object. If we need a shadow, |
| 12956 | * or someone else already has one, then |
| 12957 | * make a new shadow and share it. |
| 12958 | */ |
| 12959 | |
| 12960 | if (!old_entry->is_sub_map) { |
| 12961 | object = VME_OBJECT(old_entry); |
| 12962 | } |
| 12963 | |
| 12964 | if (old_entry->is_sub_map) { |
| 12965 | assert(old_entry->wired_count == 0); |
| 12966 | #ifndef NO_NESTED_PMAP |
| 12967 | #if !PMAP_FORK_NEST |
| 12968 | if (old_entry->use_pmap) { |
| 12969 | kern_return_t result; |
| 12970 | |
| 12971 | result = pmap_nest(new_map->pmap, |
| 12972 | (VME_SUBMAP(old_entry))->pmap, |
| 12973 | (addr64_t)old_entry->vme_start, |
| 12974 | (uint64_t)(old_entry->vme_end - old_entry->vme_start)); |
| 12975 | if (result) { |
| 12976 | panic("vm_map_fork_share: pmap_nest failed!" ); |
| 12977 | } |
| 12978 | } |
| 12979 | #endif /* !PMAP_FORK_NEST */ |
| 12980 | #endif /* NO_NESTED_PMAP */ |
| 12981 | } else if (object == VM_OBJECT_NULL) { |
| 12982 | object = vm_object_allocate(size: (vm_map_size_t)(old_entry->vme_end - |
| 12983 | old_entry->vme_start)); |
| 12984 | VME_OFFSET_SET(entry: old_entry, offset: 0); |
| 12985 | VME_OBJECT_SET(entry: old_entry, object, false, context: 0); |
| 12986 | old_entry->use_pmap = TRUE; |
| 12987 | // assert(!old_entry->needs_copy); |
| 12988 | } else if (object->copy_strategy != |
| 12989 | MEMORY_OBJECT_COPY_SYMMETRIC) { |
| 12990 | /* |
| 12991 | * We are already using an asymmetric |
| 12992 | * copy, and therefore we already have |
| 12993 | * the right object. |
| 12994 | */ |
| 12995 | |
| 12996 | assert(!old_entry->needs_copy); |
| 12997 | } else if (old_entry->needs_copy || /* case 1 */ |
| 12998 | object->shadowed || /* case 2 */ |
| 12999 | (!object->true_share && /* case 3 */ |
| 13000 | !old_entry->is_shared && |
| 13001 | (object->vo_size > |
| 13002 | (vm_map_size_t)(old_entry->vme_end - |
| 13003 | old_entry->vme_start)))) { |
| 13004 | bool is_writable; |
| 13005 | |
| 13006 | /* |
| 13007 | * We need to create a shadow. |
| 13008 | * There are three cases here. |
| 13009 | * In the first case, we need to |
| 13010 | * complete a deferred symmetrical |
| 13011 | * copy that we participated in. |
| 13012 | * In the second and third cases, |
| 13013 | * we need to create the shadow so |
| 13014 | * that changes that we make to the |
| 13015 | * object do not interfere with |
| 13016 | * any symmetrical copies which |
| 13017 | * have occured (case 2) or which |
| 13018 | * might occur (case 3). |
| 13019 | * |
| 13020 | * The first case is when we had |
| 13021 | * deferred shadow object creation |
| 13022 | * via the entry->needs_copy mechanism. |
| 13023 | * This mechanism only works when |
| 13024 | * only one entry points to the source |
| 13025 | * object, and we are about to create |
| 13026 | * a second entry pointing to the |
| 13027 | * same object. The problem is that |
| 13028 | * there is no way of mapping from |
| 13029 | * an object to the entries pointing |
| 13030 | * to it. (Deferred shadow creation |
| 13031 | * works with one entry because occurs |
| 13032 | * at fault time, and we walk from the |
| 13033 | * entry to the object when handling |
| 13034 | * the fault.) |
| 13035 | * |
| 13036 | * The second case is when the object |
| 13037 | * to be shared has already been copied |
| 13038 | * with a symmetric copy, but we point |
| 13039 | * directly to the object without |
| 13040 | * needs_copy set in our entry. (This |
| 13041 | * can happen because different ranges |
| 13042 | * of an object can be pointed to by |
| 13043 | * different entries. In particular, |
| 13044 | * a single entry pointing to an object |
| 13045 | * can be split by a call to vm_inherit, |
| 13046 | * which, combined with task_create, can |
| 13047 | * result in the different entries |
| 13048 | * having different needs_copy values.) |
| 13049 | * The shadowed flag in the object allows |
| 13050 | * us to detect this case. The problem |
| 13051 | * with this case is that if this object |
| 13052 | * has or will have shadows, then we |
| 13053 | * must not perform an asymmetric copy |
| 13054 | * of this object, since such a copy |
| 13055 | * allows the object to be changed, which |
| 13056 | * will break the previous symmetrical |
| 13057 | * copies (which rely upon the object |
| 13058 | * not changing). In a sense, the shadowed |
| 13059 | * flag says "don't change this object". |
| 13060 | * We fix this by creating a shadow |
| 13061 | * object for this object, and sharing |
| 13062 | * that. This works because we are free |
| 13063 | * to change the shadow object (and thus |
| 13064 | * to use an asymmetric copy strategy); |
| 13065 | * this is also semantically correct, |
| 13066 | * since this object is temporary, and |
| 13067 | * therefore a copy of the object is |
| 13068 | * as good as the object itself. (This |
| 13069 | * is not true for permanent objects, |
| 13070 | * since the pager needs to see changes, |
| 13071 | * which won't happen if the changes |
| 13072 | * are made to a copy.) |
| 13073 | * |
| 13074 | * The third case is when the object |
| 13075 | * to be shared has parts sticking |
| 13076 | * outside of the entry we're working |
| 13077 | * with, and thus may in the future |
| 13078 | * be subject to a symmetrical copy. |
| 13079 | * (This is a preemptive version of |
| 13080 | * case 2.) |
| 13081 | */ |
| 13082 | VME_OBJECT_SHADOW(entry: old_entry, |
| 13083 | length: (vm_map_size_t) (old_entry->vme_end - |
| 13084 | old_entry->vme_start), |
| 13085 | always: vm_map_always_shadow(map: old_map)); |
| 13086 | |
| 13087 | /* |
| 13088 | * If we're making a shadow for other than |
| 13089 | * copy on write reasons, then we have |
| 13090 | * to remove write permission. |
| 13091 | */ |
| 13092 | |
| 13093 | is_writable = false; |
| 13094 | if (old_entry->protection & VM_PROT_WRITE) { |
| 13095 | is_writable = true; |
| 13096 | #if __arm64e__ |
| 13097 | } else if (old_entry->used_for_tpro) { |
| 13098 | is_writable = true; |
| 13099 | #endif /* __arm64e__ */ |
| 13100 | } |
| 13101 | if (!old_entry->needs_copy && is_writable) { |
| 13102 | vm_prot_t prot; |
| 13103 | |
| 13104 | if (pmap_has_prot_policy(pmap: old_map->pmap, translated_allow_execute: old_entry->translated_allow_execute, prot: old_entry->protection)) { |
| 13105 | panic("%s: map %p pmap %p entry %p 0x%llx:0x%llx prot 0x%x" , |
| 13106 | __FUNCTION__, old_map, old_map->pmap, |
| 13107 | old_entry, |
| 13108 | (uint64_t)old_entry->vme_start, |
| 13109 | (uint64_t)old_entry->vme_end, |
| 13110 | old_entry->protection); |
| 13111 | } |
| 13112 | |
| 13113 | prot = old_entry->protection & ~VM_PROT_WRITE; |
| 13114 | |
| 13115 | if (pmap_has_prot_policy(pmap: old_map->pmap, translated_allow_execute: old_entry->translated_allow_execute, prot)) { |
| 13116 | panic("%s: map %p pmap %p entry %p 0x%llx:0x%llx prot 0x%x" , |
| 13117 | __FUNCTION__, old_map, old_map->pmap, |
| 13118 | old_entry, |
| 13119 | (uint64_t)old_entry->vme_start, |
| 13120 | (uint64_t)old_entry->vme_end, |
| 13121 | prot); |
| 13122 | } |
| 13123 | |
| 13124 | if (override_nx(map: old_map, VME_ALIAS(old_entry)) && prot) { |
| 13125 | prot |= VM_PROT_EXECUTE; |
| 13126 | } |
| 13127 | |
| 13128 | |
| 13129 | if (old_map->mapped_in_other_pmaps) { |
| 13130 | vm_object_pmap_protect( |
| 13131 | VME_OBJECT(old_entry), |
| 13132 | offset: VME_OFFSET(entry: old_entry), |
| 13133 | size: (old_entry->vme_end - |
| 13134 | old_entry->vme_start), |
| 13135 | PMAP_NULL, |
| 13136 | PAGE_SIZE, |
| 13137 | pmap_start: old_entry->vme_start, |
| 13138 | prot); |
| 13139 | } else { |
| 13140 | pmap_protect(map: old_map->pmap, |
| 13141 | s: old_entry->vme_start, |
| 13142 | e: old_entry->vme_end, |
| 13143 | prot); |
| 13144 | } |
| 13145 | } |
| 13146 | |
| 13147 | old_entry->needs_copy = FALSE; |
| 13148 | object = VME_OBJECT(old_entry); |
| 13149 | } |
| 13150 | |
| 13151 | |
| 13152 | /* |
| 13153 | * If object was using a symmetric copy strategy, |
| 13154 | * change its copy strategy to the default |
| 13155 | * asymmetric copy strategy, which is copy_delay |
| 13156 | * in the non-norma case and copy_call in the |
| 13157 | * norma case. Bump the reference count for the |
| 13158 | * new entry. |
| 13159 | */ |
| 13160 | |
| 13161 | if (old_entry->is_sub_map) { |
| 13162 | vm_map_reference(VME_SUBMAP(old_entry)); |
| 13163 | } else { |
| 13164 | vm_object_lock(object); |
| 13165 | vm_object_reference_locked(object); |
| 13166 | if (object->copy_strategy == MEMORY_OBJECT_COPY_SYMMETRIC) { |
| 13167 | object->copy_strategy = MEMORY_OBJECT_COPY_DELAY; |
| 13168 | } |
| 13169 | vm_object_unlock(object); |
| 13170 | } |
| 13171 | |
| 13172 | /* |
| 13173 | * Clone the entry, using object ref from above. |
| 13174 | * Mark both entries as shared. |
| 13175 | */ |
| 13176 | |
| 13177 | new_entry = vm_map_entry_create(new_map); /* Never the kernel map or descendants */ |
| 13178 | vm_map_entry_copy(map: old_map, new: new_entry, old: old_entry); |
| 13179 | old_entry->is_shared = TRUE; |
| 13180 | new_entry->is_shared = TRUE; |
| 13181 | |
| 13182 | /* |
| 13183 | * We're dealing with a shared mapping, so the resulting mapping |
| 13184 | * should inherit some of the original mapping's accounting settings. |
| 13185 | * "iokit_acct" should have been cleared in vm_map_entry_copy(). |
| 13186 | * "use_pmap" should stay the same as before (if it hasn't been reset |
| 13187 | * to TRUE when we cleared "iokit_acct"). |
| 13188 | */ |
| 13189 | assert(!new_entry->iokit_acct); |
| 13190 | |
| 13191 | /* |
| 13192 | * If old entry's inheritence is VM_INHERIT_NONE, |
| 13193 | * the new entry is for corpse fork, remove the |
| 13194 | * write permission from the new entry. |
| 13195 | */ |
| 13196 | if (old_entry->inheritance == VM_INHERIT_NONE) { |
| 13197 | new_entry->protection &= ~VM_PROT_WRITE; |
| 13198 | new_entry->max_protection &= ~VM_PROT_WRITE; |
| 13199 | } |
| 13200 | |
| 13201 | /* |
| 13202 | * Insert the entry into the new map -- we |
| 13203 | * know we're inserting at the end of the new |
| 13204 | * map. |
| 13205 | */ |
| 13206 | |
| 13207 | vm_map_store_entry_link(map: new_map, vm_map_last_entry(new_map), entry: new_entry, |
| 13208 | VM_MAP_KERNEL_FLAGS_NONE); |
| 13209 | |
| 13210 | /* |
| 13211 | * Update the physical map |
| 13212 | */ |
| 13213 | |
| 13214 | if (old_entry->is_sub_map) { |
| 13215 | /* Bill Angell pmap support goes here */ |
| 13216 | } else { |
| 13217 | pmap_copy(new_map->pmap, old_map->pmap, new_entry->vme_start, |
| 13218 | old_entry->vme_end - old_entry->vme_start, |
| 13219 | old_entry->vme_start); |
| 13220 | } |
| 13221 | } |
| 13222 | |
| 13223 | static boolean_t |
| 13224 | vm_map_fork_copy( |
| 13225 | vm_map_t old_map, |
| 13226 | vm_map_entry_t *old_entry_p, |
| 13227 | vm_map_t new_map, |
| 13228 | int vm_map_copyin_flags) |
| 13229 | { |
| 13230 | vm_map_entry_t old_entry = *old_entry_p; |
| 13231 | vm_map_size_t entry_size = old_entry->vme_end - old_entry->vme_start; |
| 13232 | vm_map_offset_t start = old_entry->vme_start; |
| 13233 | vm_map_copy_t copy; |
| 13234 | vm_map_entry_t last = vm_map_last_entry(new_map); |
| 13235 | |
| 13236 | vm_map_unlock(old_map); |
| 13237 | /* |
| 13238 | * Use maxprot version of copyin because we |
| 13239 | * care about whether this memory can ever |
| 13240 | * be accessed, not just whether it's accessible |
| 13241 | * right now. |
| 13242 | */ |
| 13243 | vm_map_copyin_flags |= VM_MAP_COPYIN_USE_MAXPROT; |
| 13244 | if (vm_map_copyin_internal(src_map: old_map, src_addr: start, len: entry_size, |
| 13245 | flags: vm_map_copyin_flags, copy_result: ©) |
| 13246 | != KERN_SUCCESS) { |
| 13247 | /* |
| 13248 | * The map might have changed while it |
| 13249 | * was unlocked, check it again. Skip |
| 13250 | * any blank space or permanently |
| 13251 | * unreadable region. |
| 13252 | */ |
| 13253 | vm_map_lock(old_map); |
| 13254 | if (!vm_map_lookup_entry(map: old_map, address: start, entry: &last) || |
| 13255 | (last->max_protection & VM_PROT_READ) == VM_PROT_NONE) { |
| 13256 | last = last->vme_next; |
| 13257 | } |
| 13258 | *old_entry_p = last; |
| 13259 | |
| 13260 | /* |
| 13261 | * XXX For some error returns, want to |
| 13262 | * XXX skip to the next element. Note |
| 13263 | * that INVALID_ADDRESS and |
| 13264 | * PROTECTION_FAILURE are handled above. |
| 13265 | */ |
| 13266 | |
| 13267 | return FALSE; |
| 13268 | } |
| 13269 | |
| 13270 | /* |
| 13271 | * Assert that the vm_map_copy is coming from the right |
| 13272 | * zone and hasn't been forged |
| 13273 | */ |
| 13274 | vm_map_copy_require(copy); |
| 13275 | |
| 13276 | /* |
| 13277 | * Insert the copy into the new map |
| 13278 | */ |
| 13279 | vm_map_copy_insert(map: new_map, after_where: last, copy); |
| 13280 | |
| 13281 | /* |
| 13282 | * Pick up the traversal at the end of |
| 13283 | * the copied region. |
| 13284 | */ |
| 13285 | |
| 13286 | vm_map_lock(old_map); |
| 13287 | start += entry_size; |
| 13288 | if (!vm_map_lookup_entry(map: old_map, address: start, entry: &last)) { |
| 13289 | last = last->vme_next; |
| 13290 | } else { |
| 13291 | if (last->vme_start == start) { |
| 13292 | /* |
| 13293 | * No need to clip here and we don't |
| 13294 | * want to cause any unnecessary |
| 13295 | * unnesting... |
| 13296 | */ |
| 13297 | } else { |
| 13298 | vm_map_clip_start(map: old_map, entry: last, startaddr: start); |
| 13299 | } |
| 13300 | } |
| 13301 | *old_entry_p = last; |
| 13302 | |
| 13303 | return TRUE; |
| 13304 | } |
| 13305 | |
| 13306 | #if PMAP_FORK_NEST |
| 13307 | #define PMAP_FORK_NEST_DEBUG 0 |
| 13308 | static inline void |
| 13309 | vm_map_fork_unnest( |
| 13310 | pmap_t new_pmap, |
| 13311 | vm_map_offset_t pre_nested_start, |
| 13312 | vm_map_offset_t pre_nested_end, |
| 13313 | vm_map_offset_t start, |
| 13314 | vm_map_offset_t end) |
| 13315 | { |
| 13316 | kern_return_t kr; |
| 13317 | vm_map_offset_t nesting_mask, start_unnest, end_unnest; |
| 13318 | |
| 13319 | assertf(pre_nested_start <= pre_nested_end, |
| 13320 | "pre_nested start 0x%llx end 0x%llx" , |
| 13321 | (uint64_t)pre_nested_start, (uint64_t)pre_nested_end); |
| 13322 | assertf(start <= end, |
| 13323 | "start 0x%llx end 0x%llx" , |
| 13324 | (uint64_t) start, (uint64_t)end); |
| 13325 | |
| 13326 | if (pre_nested_start == pre_nested_end) { |
| 13327 | /* nothing was pre-nested: done */ |
| 13328 | return; |
| 13329 | } |
| 13330 | if (end <= pre_nested_start) { |
| 13331 | /* fully before pre-nested range: done */ |
| 13332 | return; |
| 13333 | } |
| 13334 | if (start >= pre_nested_end) { |
| 13335 | /* fully after pre-nested range: done */ |
| 13336 | return; |
| 13337 | } |
| 13338 | /* ignore parts of range outside of pre_nested range */ |
| 13339 | if (start < pre_nested_start) { |
| 13340 | start = pre_nested_start; |
| 13341 | } |
| 13342 | if (end > pre_nested_end) { |
| 13343 | end = pre_nested_end; |
| 13344 | } |
| 13345 | nesting_mask = pmap_shared_region_size_min(new_pmap) - 1; |
| 13346 | start_unnest = start & ~nesting_mask; |
| 13347 | end_unnest = (end + nesting_mask) & ~nesting_mask; |
| 13348 | kr = pmap_unnest(new_pmap, |
| 13349 | (addr64_t)start_unnest, |
| 13350 | (uint64_t)(end_unnest - start_unnest)); |
| 13351 | #if PMAP_FORK_NEST_DEBUG |
| 13352 | printf("PMAP_FORK_NEST %s:%d new_pmap %p 0x%llx:0x%llx -> pmap_unnest 0x%llx:0x%llx kr 0x%x\n" , __FUNCTION__, __LINE__, new_pmap, (uint64_t)start, (uint64_t)end, (uint64_t)start_unnest, (uint64_t)end_unnest, kr); |
| 13353 | #endif /* PMAP_FORK_NEST_DEBUG */ |
| 13354 | assertf(kr == KERN_SUCCESS, |
| 13355 | "0x%llx 0x%llx pmap_unnest(%p, 0x%llx, 0x%llx) -> 0x%x" , |
| 13356 | (uint64_t)start, (uint64_t)end, new_pmap, |
| 13357 | (uint64_t)start_unnest, (uint64_t)(end_unnest - start_unnest), |
| 13358 | kr); |
| 13359 | } |
| 13360 | #endif /* PMAP_FORK_NEST */ |
| 13361 | |
| 13362 | void |
| 13363 | vm_map_inherit_limits(vm_map_t new_map, const struct _vm_map *old_map) |
| 13364 | { |
| 13365 | new_map->size_limit = old_map->size_limit; |
| 13366 | new_map->data_limit = old_map->data_limit; |
| 13367 | new_map->user_wire_limit = old_map->user_wire_limit; |
| 13368 | new_map->reserved_regions = old_map->reserved_regions; |
| 13369 | } |
| 13370 | |
| 13371 | /* |
| 13372 | * vm_map_fork: |
| 13373 | * |
| 13374 | * Create and return a new map based on the old |
| 13375 | * map, according to the inheritance values on the |
| 13376 | * regions in that map and the options. |
| 13377 | * |
| 13378 | * The source map must not be locked. |
| 13379 | */ |
| 13380 | vm_map_t |
| 13381 | vm_map_fork( |
| 13382 | ledger_t ledger, |
| 13383 | vm_map_t old_map, |
| 13384 | int options) |
| 13385 | { |
| 13386 | pmap_t new_pmap; |
| 13387 | vm_map_t new_map; |
| 13388 | vm_map_entry_t old_entry; |
| 13389 | vm_map_size_t new_size = 0, entry_size; |
| 13390 | vm_map_entry_t new_entry; |
| 13391 | boolean_t src_needs_copy; |
| 13392 | boolean_t new_entry_needs_copy; |
| 13393 | boolean_t pmap_is64bit; |
| 13394 | int vm_map_copyin_flags; |
| 13395 | vm_inherit_t old_entry_inheritance; |
| 13396 | int map_create_options; |
| 13397 | kern_return_t ; |
| 13398 | |
| 13399 | if (options & ~(VM_MAP_FORK_SHARE_IF_INHERIT_NONE | |
| 13400 | VM_MAP_FORK_PRESERVE_PURGEABLE | |
| 13401 | VM_MAP_FORK_CORPSE_FOOTPRINT)) { |
| 13402 | /* unsupported option */ |
| 13403 | return VM_MAP_NULL; |
| 13404 | } |
| 13405 | |
| 13406 | pmap_is64bit = |
| 13407 | #if defined(__i386__) || defined(__x86_64__) |
| 13408 | old_map->pmap->pm_task_map != TASK_MAP_32BIT; |
| 13409 | #elif defined(__arm64__) |
| 13410 | old_map->pmap->is_64bit; |
| 13411 | #else |
| 13412 | #error Unknown architecture. |
| 13413 | #endif |
| 13414 | |
| 13415 | unsigned int pmap_flags = 0; |
| 13416 | pmap_flags |= pmap_is64bit ? PMAP_CREATE_64BIT : 0; |
| 13417 | #if defined(HAS_APPLE_PAC) |
| 13418 | pmap_flags |= old_map->pmap->disable_jop ? PMAP_CREATE_DISABLE_JOP : 0; |
| 13419 | #endif |
| 13420 | #if CONFIG_ROSETTA |
| 13421 | pmap_flags |= old_map->pmap->is_rosetta ? PMAP_CREATE_ROSETTA : 0; |
| 13422 | #endif |
| 13423 | #if PMAP_CREATE_FORCE_4K_PAGES |
| 13424 | if (VM_MAP_PAGE_SIZE(old_map) == FOURK_PAGE_SIZE && |
| 13425 | PAGE_SIZE != FOURK_PAGE_SIZE) { |
| 13426 | pmap_flags |= PMAP_CREATE_FORCE_4K_PAGES; |
| 13427 | } |
| 13428 | #endif /* PMAP_CREATE_FORCE_4K_PAGES */ |
| 13429 | new_pmap = pmap_create_options(ledger, size: (vm_map_size_t) 0, flags: pmap_flags); |
| 13430 | if (new_pmap == NULL) { |
| 13431 | return VM_MAP_NULL; |
| 13432 | } |
| 13433 | |
| 13434 | vm_map_reference(map: old_map); |
| 13435 | vm_map_lock(old_map); |
| 13436 | |
| 13437 | map_create_options = 0; |
| 13438 | if (old_map->hdr.entries_pageable) { |
| 13439 | map_create_options |= VM_MAP_CREATE_PAGEABLE; |
| 13440 | } |
| 13441 | if (options & VM_MAP_FORK_CORPSE_FOOTPRINT) { |
| 13442 | map_create_options |= VM_MAP_CREATE_CORPSE_FOOTPRINT; |
| 13443 | footprint_collect_kr = KERN_SUCCESS; |
| 13444 | } |
| 13445 | new_map = vm_map_create_options(pmap: new_pmap, |
| 13446 | min: old_map->min_offset, |
| 13447 | max: old_map->max_offset, |
| 13448 | options: map_create_options); |
| 13449 | |
| 13450 | /* inherit cs_enforcement */ |
| 13451 | vm_map_cs_enforcement_set(map: new_map, val: old_map->cs_enforcement); |
| 13452 | |
| 13453 | vm_map_lock(new_map); |
| 13454 | vm_commit_pagezero_status(tmap: new_map); |
| 13455 | /* inherit the parent map's page size */ |
| 13456 | vm_map_set_page_shift(map: new_map, pageshift: VM_MAP_PAGE_SHIFT(map: old_map)); |
| 13457 | |
| 13458 | /* inherit the parent rlimits */ |
| 13459 | vm_map_inherit_limits(new_map, old_map); |
| 13460 | |
| 13461 | #if CONFIG_MAP_RANGES |
| 13462 | /* inherit the parent map's VM ranges */ |
| 13463 | vm_map_range_fork(new_map, old_map); |
| 13464 | #endif |
| 13465 | |
| 13466 | #if CODE_SIGNING_MONITOR |
| 13467 | /* Prepare the monitor for the fork */ |
| 13468 | csm_fork_prepare(old_map->pmap, new_pmap); |
| 13469 | #endif |
| 13470 | |
| 13471 | #if PMAP_FORK_NEST |
| 13472 | /* |
| 13473 | * Pre-nest the shared region's pmap. |
| 13474 | */ |
| 13475 | vm_map_offset_t pre_nested_start = 0, pre_nested_end = 0; |
| 13476 | pmap_fork_nest(old_map->pmap, new_pmap, |
| 13477 | &pre_nested_start, &pre_nested_end); |
| 13478 | #if PMAP_FORK_NEST_DEBUG |
| 13479 | printf("PMAP_FORK_NEST %s:%d old %p new %p pre_nested start 0x%llx end 0x%llx\n" , __FUNCTION__, __LINE__, old_map->pmap, new_pmap, (uint64_t)pre_nested_start, (uint64_t)pre_nested_end); |
| 13480 | #endif /* PMAP_FORK_NEST_DEBUG */ |
| 13481 | #endif /* PMAP_FORK_NEST */ |
| 13482 | |
| 13483 | for (old_entry = vm_map_first_entry(old_map); old_entry != vm_map_to_entry(old_map);) { |
| 13484 | /* |
| 13485 | * Abort any corpse collection if the system is shutting down. |
| 13486 | */ |
| 13487 | if ((options & VM_MAP_FORK_CORPSE_FOOTPRINT) && |
| 13488 | get_system_inshutdown()) { |
| 13489 | #if PMAP_FORK_NEST |
| 13490 | new_entry = vm_map_last_entry(new_map); |
| 13491 | if (new_entry == vm_map_to_entry(new_map)) { |
| 13492 | /* unnest all that was pre-nested */ |
| 13493 | vm_map_fork_unnest(new_pmap, |
| 13494 | pre_nested_start, pre_nested_end, |
| 13495 | vm_map_min(new_map), vm_map_max(new_map)); |
| 13496 | } else if (new_entry->vme_end < vm_map_max(new_map)) { |
| 13497 | /* unnest hole at the end, if pre-nested */ |
| 13498 | vm_map_fork_unnest(new_pmap, |
| 13499 | pre_nested_start, pre_nested_end, |
| 13500 | new_entry->vme_end, vm_map_max(new_map)); |
| 13501 | } |
| 13502 | #endif /* PMAP_FORK_NEST */ |
| 13503 | vm_map_corpse_footprint_collect_done(new_map); |
| 13504 | vm_map_unlock(new_map); |
| 13505 | vm_map_unlock(old_map); |
| 13506 | vm_map_deallocate(map: new_map); |
| 13507 | vm_map_deallocate(map: old_map); |
| 13508 | printf(format: "Aborting corpse map due to system shutdown\n" ); |
| 13509 | return VM_MAP_NULL; |
| 13510 | } |
| 13511 | |
| 13512 | entry_size = old_entry->vme_end - old_entry->vme_start; |
| 13513 | |
| 13514 | #if PMAP_FORK_NEST |
| 13515 | /* |
| 13516 | * Undo any unnecessary pre-nesting. |
| 13517 | */ |
| 13518 | vm_map_offset_t prev_end; |
| 13519 | if (old_entry == vm_map_first_entry(old_map)) { |
| 13520 | prev_end = vm_map_min(old_map); |
| 13521 | } else { |
| 13522 | prev_end = old_entry->vme_prev->vme_end; |
| 13523 | } |
| 13524 | if (prev_end < old_entry->vme_start) { |
| 13525 | /* unnest hole before this entry, if pre-nested */ |
| 13526 | vm_map_fork_unnest(new_pmap, |
| 13527 | pre_nested_start, pre_nested_end, |
| 13528 | prev_end, old_entry->vme_start); |
| 13529 | } |
| 13530 | if (old_entry->is_sub_map && old_entry->use_pmap) { |
| 13531 | /* keep this entry nested in the child */ |
| 13532 | #if PMAP_FORK_NEST_DEBUG |
| 13533 | printf("PMAP_FORK_NEST %s:%d new_pmap %p keeping 0x%llx:0x%llx nested\n" , __FUNCTION__, __LINE__, new_pmap, (uint64_t)old_entry->vme_start, (uint64_t)old_entry->vme_end); |
| 13534 | #endif /* PMAP_FORK_NEST_DEBUG */ |
| 13535 | } else { |
| 13536 | /* undo nesting for this entry, if pre-nested */ |
| 13537 | vm_map_fork_unnest(new_pmap, |
| 13538 | pre_nested_start, pre_nested_end, |
| 13539 | old_entry->vme_start, old_entry->vme_end); |
| 13540 | } |
| 13541 | #endif /* PMAP_FORK_NEST */ |
| 13542 | |
| 13543 | old_entry_inheritance = old_entry->inheritance; |
| 13544 | /* |
| 13545 | * If caller used the VM_MAP_FORK_SHARE_IF_INHERIT_NONE option |
| 13546 | * share VM_INHERIT_NONE entries that are not backed by a |
| 13547 | * device pager. |
| 13548 | */ |
| 13549 | if (old_entry_inheritance == VM_INHERIT_NONE && |
| 13550 | (options & VM_MAP_FORK_SHARE_IF_INHERIT_NONE) && |
| 13551 | (old_entry->protection & VM_PROT_READ) && |
| 13552 | !(!old_entry->is_sub_map && |
| 13553 | VME_OBJECT(old_entry) != NULL && |
| 13554 | VME_OBJECT(old_entry)->pager != NULL && |
| 13555 | is_device_pager_ops( |
| 13556 | VME_OBJECT(old_entry)->pager->mo_pager_ops))) { |
| 13557 | old_entry_inheritance = VM_INHERIT_SHARE; |
| 13558 | } |
| 13559 | |
| 13560 | if (old_entry_inheritance != VM_INHERIT_NONE && |
| 13561 | (options & VM_MAP_FORK_CORPSE_FOOTPRINT) && |
| 13562 | footprint_collect_kr == KERN_SUCCESS) { |
| 13563 | /* |
| 13564 | * The corpse won't have old_map->pmap to query |
| 13565 | * footprint information, so collect that data now |
| 13566 | * and store it in new_map->vmmap_corpse_footprint |
| 13567 | * for later autopsy. |
| 13568 | */ |
| 13569 | footprint_collect_kr = |
| 13570 | vm_map_corpse_footprint_collect(old_map, |
| 13571 | old_entry, |
| 13572 | new_map); |
| 13573 | } |
| 13574 | |
| 13575 | switch (old_entry_inheritance) { |
| 13576 | case VM_INHERIT_NONE: |
| 13577 | break; |
| 13578 | |
| 13579 | case VM_INHERIT_SHARE: |
| 13580 | vm_map_fork_share(old_map, old_entry, new_map); |
| 13581 | new_size += entry_size; |
| 13582 | break; |
| 13583 | |
| 13584 | case VM_INHERIT_COPY: |
| 13585 | |
| 13586 | /* |
| 13587 | * Inline the copy_quickly case; |
| 13588 | * upon failure, fall back on call |
| 13589 | * to vm_map_fork_copy. |
| 13590 | */ |
| 13591 | |
| 13592 | if (old_entry->is_sub_map) { |
| 13593 | break; |
| 13594 | } |
| 13595 | if ((old_entry->wired_count != 0) || |
| 13596 | ((VME_OBJECT(old_entry) != NULL) && |
| 13597 | (VME_OBJECT(old_entry)->true_share))) { |
| 13598 | goto slow_vm_map_fork_copy; |
| 13599 | } |
| 13600 | |
| 13601 | new_entry = vm_map_entry_create(new_map); /* never the kernel map or descendants */ |
| 13602 | vm_map_entry_copy(map: old_map, new: new_entry, old: old_entry); |
| 13603 | if (old_entry->vme_permanent) { |
| 13604 | /* inherit "permanent" on fork() */ |
| 13605 | new_entry->vme_permanent = TRUE; |
| 13606 | } |
| 13607 | |
| 13608 | if (new_entry->used_for_jit == TRUE && new_map->jit_entry_exists == FALSE) { |
| 13609 | new_map->jit_entry_exists = TRUE; |
| 13610 | } |
| 13611 | |
| 13612 | if (new_entry->is_sub_map) { |
| 13613 | /* clear address space specifics */ |
| 13614 | new_entry->use_pmap = FALSE; |
| 13615 | } else { |
| 13616 | /* |
| 13617 | * We're dealing with a copy-on-write operation, |
| 13618 | * so the resulting mapping should not inherit |
| 13619 | * the original mapping's accounting settings. |
| 13620 | * "iokit_acct" should have been cleared in |
| 13621 | * vm_map_entry_copy(). |
| 13622 | * "use_pmap" should be reset to its default |
| 13623 | * (TRUE) so that the new mapping gets |
| 13624 | * accounted for in the task's memory footprint. |
| 13625 | */ |
| 13626 | assert(!new_entry->iokit_acct); |
| 13627 | new_entry->use_pmap = TRUE; |
| 13628 | } |
| 13629 | |
| 13630 | if (!vm_object_copy_quickly( |
| 13631 | VME_OBJECT(new_entry), |
| 13632 | src_offset: VME_OFFSET(entry: old_entry), |
| 13633 | size: (old_entry->vme_end - |
| 13634 | old_entry->vme_start), |
| 13635 | src_needs_copy: &src_needs_copy, |
| 13636 | dst_needs_copy: &new_entry_needs_copy)) { |
| 13637 | vm_map_entry_dispose(entry: new_entry); |
| 13638 | goto slow_vm_map_fork_copy; |
| 13639 | } |
| 13640 | |
| 13641 | /* |
| 13642 | * Handle copy-on-write obligations |
| 13643 | */ |
| 13644 | |
| 13645 | if (src_needs_copy && !old_entry->needs_copy) { |
| 13646 | vm_prot_t prot; |
| 13647 | |
| 13648 | if (pmap_has_prot_policy(pmap: old_map->pmap, translated_allow_execute: old_entry->translated_allow_execute, prot: old_entry->protection)) { |
| 13649 | panic("%s: map %p pmap %p entry %p 0x%llx:0x%llx prot 0x%x" , |
| 13650 | __FUNCTION__, |
| 13651 | old_map, old_map->pmap, old_entry, |
| 13652 | (uint64_t)old_entry->vme_start, |
| 13653 | (uint64_t)old_entry->vme_end, |
| 13654 | old_entry->protection); |
| 13655 | } |
| 13656 | |
| 13657 | prot = old_entry->protection & ~VM_PROT_WRITE; |
| 13658 | |
| 13659 | if (override_nx(map: old_map, VME_ALIAS(old_entry)) |
| 13660 | && prot) { |
| 13661 | prot |= VM_PROT_EXECUTE; |
| 13662 | } |
| 13663 | |
| 13664 | if (pmap_has_prot_policy(pmap: old_map->pmap, translated_allow_execute: old_entry->translated_allow_execute, prot)) { |
| 13665 | panic("%s: map %p pmap %p entry %p 0x%llx:0x%llx prot 0x%x" , |
| 13666 | __FUNCTION__, |
| 13667 | old_map, old_map->pmap, old_entry, |
| 13668 | (uint64_t)old_entry->vme_start, |
| 13669 | (uint64_t)old_entry->vme_end, |
| 13670 | prot); |
| 13671 | } |
| 13672 | |
| 13673 | vm_object_pmap_protect( |
| 13674 | VME_OBJECT(old_entry), |
| 13675 | offset: VME_OFFSET(entry: old_entry), |
| 13676 | size: (old_entry->vme_end - |
| 13677 | old_entry->vme_start), |
| 13678 | pmap: ((old_entry->is_shared |
| 13679 | || old_map->mapped_in_other_pmaps) |
| 13680 | ? PMAP_NULL : |
| 13681 | old_map->pmap), |
| 13682 | VM_MAP_PAGE_SIZE(old_map), |
| 13683 | pmap_start: old_entry->vme_start, |
| 13684 | prot); |
| 13685 | |
| 13686 | assert(old_entry->wired_count == 0); |
| 13687 | old_entry->needs_copy = TRUE; |
| 13688 | } |
| 13689 | new_entry->needs_copy = new_entry_needs_copy; |
| 13690 | |
| 13691 | /* |
| 13692 | * Insert the entry at the end |
| 13693 | * of the map. |
| 13694 | */ |
| 13695 | |
| 13696 | vm_map_store_entry_link(map: new_map, |
| 13697 | vm_map_last_entry(new_map), |
| 13698 | entry: new_entry, |
| 13699 | VM_MAP_KERNEL_FLAGS_NONE); |
| 13700 | new_size += entry_size; |
| 13701 | break; |
| 13702 | |
| 13703 | slow_vm_map_fork_copy: |
| 13704 | vm_map_copyin_flags = VM_MAP_COPYIN_FORK; |
| 13705 | if (options & VM_MAP_FORK_PRESERVE_PURGEABLE) { |
| 13706 | vm_map_copyin_flags |= |
| 13707 | VM_MAP_COPYIN_PRESERVE_PURGEABLE; |
| 13708 | } |
| 13709 | if (vm_map_fork_copy(old_map, |
| 13710 | old_entry_p: &old_entry, |
| 13711 | new_map, |
| 13712 | vm_map_copyin_flags)) { |
| 13713 | new_size += entry_size; |
| 13714 | } |
| 13715 | continue; |
| 13716 | } |
| 13717 | old_entry = old_entry->vme_next; |
| 13718 | } |
| 13719 | |
| 13720 | #if PMAP_FORK_NEST |
| 13721 | new_entry = vm_map_last_entry(new_map); |
| 13722 | if (new_entry == vm_map_to_entry(new_map)) { |
| 13723 | /* unnest all that was pre-nested */ |
| 13724 | vm_map_fork_unnest(new_pmap, |
| 13725 | pre_nested_start, pre_nested_end, |
| 13726 | vm_map_min(new_map), vm_map_max(new_map)); |
| 13727 | } else if (new_entry->vme_end < vm_map_max(new_map)) { |
| 13728 | /* unnest hole at the end, if pre-nested */ |
| 13729 | vm_map_fork_unnest(new_pmap, |
| 13730 | pre_nested_start, pre_nested_end, |
| 13731 | new_entry->vme_end, vm_map_max(new_map)); |
| 13732 | } |
| 13733 | #endif /* PMAP_FORK_NEST */ |
| 13734 | |
| 13735 | #if defined(__arm64__) |
| 13736 | pmap_insert_commpage(pmap: new_map->pmap); |
| 13737 | #endif /* __arm64__ */ |
| 13738 | |
| 13739 | new_map->size = new_size; |
| 13740 | |
| 13741 | if (options & VM_MAP_FORK_CORPSE_FOOTPRINT) { |
| 13742 | vm_map_corpse_footprint_collect_done(new_map); |
| 13743 | } |
| 13744 | |
| 13745 | /* Propagate JIT entitlement for the pmap layer. */ |
| 13746 | if (pmap_get_jit_entitled(pmap: old_map->pmap)) { |
| 13747 | /* Tell the pmap that it supports JIT. */ |
| 13748 | pmap_set_jit_entitled(pmap: new_map->pmap); |
| 13749 | } |
| 13750 | |
| 13751 | /* Propagate TPRO settings for the pmap layer */ |
| 13752 | if (pmap_get_tpro(pmap: old_map->pmap)) { |
| 13753 | /* Tell the pmap that it supports TPRO */ |
| 13754 | pmap_set_tpro(pmap: new_map->pmap); |
| 13755 | } |
| 13756 | |
| 13757 | |
| 13758 | vm_map_unlock(new_map); |
| 13759 | vm_map_unlock(old_map); |
| 13760 | vm_map_deallocate(map: old_map); |
| 13761 | |
| 13762 | return new_map; |
| 13763 | } |
| 13764 | |
| 13765 | /* |
| 13766 | * vm_map_exec: |
| 13767 | * |
| 13768 | * Setup the "new_map" with the proper execution environment according |
| 13769 | * to the type of executable (platform, 64bit, chroot environment). |
| 13770 | * Map the comm page and shared region, etc... |
| 13771 | */ |
| 13772 | kern_return_t |
| 13773 | vm_map_exec( |
| 13774 | vm_map_t new_map, |
| 13775 | task_t task, |
| 13776 | boolean_t is64bit, |
| 13777 | void *fsroot, |
| 13778 | cpu_type_t cpu, |
| 13779 | cpu_subtype_t cpu_subtype, |
| 13780 | boolean_t reslide, |
| 13781 | boolean_t is_driverkit, |
| 13782 | uint32_t rsr_version) |
| 13783 | { |
| 13784 | SHARED_REGION_TRACE_DEBUG( |
| 13785 | ("shared_region: task %p: vm_map_exec(%p,%p,%p,0x%x,0x%x): ->\n" , |
| 13786 | (void *)VM_KERNEL_ADDRPERM(current_task()), |
| 13787 | (void *)VM_KERNEL_ADDRPERM(new_map), |
| 13788 | (void *)VM_KERNEL_ADDRPERM(task), |
| 13789 | (void *)VM_KERNEL_ADDRPERM(fsroot), |
| 13790 | cpu, |
| 13791 | cpu_subtype)); |
| 13792 | (void) vm_commpage_enter(map: new_map, task, is64bit); |
| 13793 | |
| 13794 | (void) vm_shared_region_enter(map: new_map, task, is_64bit: is64bit, fsroot, cpu, cpu_subtype, reslide, is_driverkit, rsr_version); |
| 13795 | |
| 13796 | SHARED_REGION_TRACE_DEBUG( |
| 13797 | ("shared_region: task %p: vm_map_exec(%p,%p,%p,0x%x,0x%x): <-\n" , |
| 13798 | (void *)VM_KERNEL_ADDRPERM(current_task()), |
| 13799 | (void *)VM_KERNEL_ADDRPERM(new_map), |
| 13800 | (void *)VM_KERNEL_ADDRPERM(task), |
| 13801 | (void *)VM_KERNEL_ADDRPERM(fsroot), |
| 13802 | cpu, |
| 13803 | cpu_subtype)); |
| 13804 | |
| 13805 | /* |
| 13806 | * Some devices have region(s) of memory that shouldn't get allocated by |
| 13807 | * user processes. The following code creates dummy vm_map_entry_t's for each |
| 13808 | * of the regions that needs to be reserved to prevent any allocations in |
| 13809 | * those regions. |
| 13810 | */ |
| 13811 | kern_return_t kr = KERN_FAILURE; |
| 13812 | vm_map_kernel_flags_t vmk_flags = VM_MAP_KERNEL_FLAGS_FIXED_PERMANENT(); |
| 13813 | vmk_flags.vmkf_beyond_max = true; |
| 13814 | |
| 13815 | const struct vm_reserved_region *regions = NULL; |
| 13816 | size_t num_regions = ml_get_vm_reserved_regions(vm_is64bit: is64bit, regions: ®ions); |
| 13817 | assert((num_regions == 0) || (num_regions > 0 && regions != NULL)); |
| 13818 | |
| 13819 | for (size_t i = 0; i < num_regions; ++i) { |
| 13820 | vm_map_offset_t address = regions[i].vmrr_addr; |
| 13821 | |
| 13822 | kr = vm_map_enter( |
| 13823 | map: new_map, |
| 13824 | address: &address, |
| 13825 | size: regions[i].vmrr_size, |
| 13826 | mask: (vm_map_offset_t)0, |
| 13827 | vmk_flags, |
| 13828 | VM_OBJECT_NULL, |
| 13829 | offset: (vm_object_offset_t)0, |
| 13830 | FALSE, |
| 13831 | VM_PROT_NONE, |
| 13832 | VM_PROT_NONE, |
| 13833 | VM_INHERIT_COPY); |
| 13834 | |
| 13835 | if (kr != KERN_SUCCESS) { |
| 13836 | panic("Failed to reserve %s region in user map %p %d" , regions[i].vmrr_name, new_map, kr); |
| 13837 | } |
| 13838 | } |
| 13839 | |
| 13840 | new_map->reserved_regions = (num_regions ? TRUE : FALSE); |
| 13841 | |
| 13842 | return KERN_SUCCESS; |
| 13843 | } |
| 13844 | |
| 13845 | uint64_t vm_map_lookup_and_lock_object_copy_slowly_count = 0; |
| 13846 | uint64_t vm_map_lookup_and_lock_object_copy_slowly_size = 0; |
| 13847 | uint64_t vm_map_lookup_and_lock_object_copy_slowly_max = 0; |
| 13848 | uint64_t vm_map_lookup_and_lock_object_copy_slowly_restart = 0; |
| 13849 | uint64_t vm_map_lookup_and_lock_object_copy_slowly_error = 0; |
| 13850 | uint64_t vm_map_lookup_and_lock_object_copy_strategically_count = 0; |
| 13851 | uint64_t vm_map_lookup_and_lock_object_copy_strategically_size = 0; |
| 13852 | uint64_t vm_map_lookup_and_lock_object_copy_strategically_max = 0; |
| 13853 | uint64_t vm_map_lookup_and_lock_object_copy_strategically_restart = 0; |
| 13854 | uint64_t vm_map_lookup_and_lock_object_copy_strategically_error = 0; |
| 13855 | uint64_t vm_map_lookup_and_lock_object_copy_shadow_count = 0; |
| 13856 | uint64_t vm_map_lookup_and_lock_object_copy_shadow_size = 0; |
| 13857 | uint64_t vm_map_lookup_and_lock_object_copy_shadow_max = 0; |
| 13858 | /* |
| 13859 | * vm_map_lookup_and_lock_object: |
| 13860 | * |
| 13861 | * Finds the VM object, offset, and |
| 13862 | * protection for a given virtual address in the |
| 13863 | * specified map, assuming a page fault of the |
| 13864 | * type specified. |
| 13865 | * |
| 13866 | * Returns the (object, offset, protection) for |
| 13867 | * this address, whether it is wired down, and whether |
| 13868 | * this map has the only reference to the data in question. |
| 13869 | * In order to later verify this lookup, a "version" |
| 13870 | * is returned. |
| 13871 | * If contended != NULL, *contended will be set to |
| 13872 | * true iff the thread had to spin or block to acquire |
| 13873 | * an exclusive lock. |
| 13874 | * |
| 13875 | * The map MUST be locked by the caller and WILL be |
| 13876 | * locked on exit. In order to guarantee the |
| 13877 | * existence of the returned object, it is returned |
| 13878 | * locked. |
| 13879 | * |
| 13880 | * If a lookup is requested with "write protection" |
| 13881 | * specified, the map may be changed to perform virtual |
| 13882 | * copying operations, although the data referenced will |
| 13883 | * remain the same. |
| 13884 | */ |
| 13885 | kern_return_t |
| 13886 | vm_map_lookup_and_lock_object( |
| 13887 | vm_map_t *var_map, /* IN/OUT */ |
| 13888 | vm_map_offset_t vaddr, |
| 13889 | vm_prot_t fault_type, |
| 13890 | int object_lock_type, |
| 13891 | vm_map_version_t *out_version, /* OUT */ |
| 13892 | vm_object_t *object, /* OUT */ |
| 13893 | vm_object_offset_t *offset, /* OUT */ |
| 13894 | vm_prot_t *out_prot, /* OUT */ |
| 13895 | boolean_t *wired, /* OUT */ |
| 13896 | vm_object_fault_info_t fault_info, /* OUT */ |
| 13897 | vm_map_t *real_map, /* OUT */ |
| 13898 | bool *contended) /* OUT */ |
| 13899 | { |
| 13900 | vm_map_entry_t entry; |
| 13901 | vm_map_t map = *var_map; |
| 13902 | vm_map_t old_map = *var_map; |
| 13903 | vm_map_t cow_sub_map_parent = VM_MAP_NULL; |
| 13904 | vm_map_offset_t cow_parent_vaddr = 0; |
| 13905 | vm_map_offset_t old_start = 0; |
| 13906 | vm_map_offset_t old_end = 0; |
| 13907 | vm_prot_t prot; |
| 13908 | boolean_t mask_protections; |
| 13909 | boolean_t force_copy; |
| 13910 | boolean_t no_force_copy_if_executable; |
| 13911 | boolean_t submap_needed_copy; |
| 13912 | vm_prot_t original_fault_type; |
| 13913 | vm_map_size_t fault_page_mask; |
| 13914 | |
| 13915 | /* |
| 13916 | * VM_PROT_MASK means that the caller wants us to use "fault_type" |
| 13917 | * as a mask against the mapping's actual protections, not as an |
| 13918 | * absolute value. |
| 13919 | */ |
| 13920 | mask_protections = (fault_type & VM_PROT_IS_MASK) ? TRUE : FALSE; |
| 13921 | force_copy = (fault_type & VM_PROT_COPY) ? TRUE : FALSE; |
| 13922 | no_force_copy_if_executable = (fault_type & VM_PROT_COPY_FAIL_IF_EXECUTABLE) ? TRUE : FALSE; |
| 13923 | fault_type &= VM_PROT_ALL; |
| 13924 | original_fault_type = fault_type; |
| 13925 | if (contended) { |
| 13926 | *contended = false; |
| 13927 | } |
| 13928 | |
| 13929 | *real_map = map; |
| 13930 | |
| 13931 | fault_page_mask = MIN(VM_MAP_PAGE_MASK(map), PAGE_MASK); |
| 13932 | vaddr = VM_MAP_TRUNC_PAGE(vaddr, fault_page_mask); |
| 13933 | |
| 13934 | RetryLookup: |
| 13935 | fault_type = original_fault_type; |
| 13936 | |
| 13937 | /* |
| 13938 | * If the map has an interesting hint, try it before calling |
| 13939 | * full blown lookup routine. |
| 13940 | */ |
| 13941 | entry = map->hint; |
| 13942 | |
| 13943 | if ((entry == vm_map_to_entry(map)) || |
| 13944 | (vaddr < entry->vme_start) || (vaddr >= entry->vme_end)) { |
| 13945 | vm_map_entry_t tmp_entry; |
| 13946 | |
| 13947 | /* |
| 13948 | * Entry was either not a valid hint, or the vaddr |
| 13949 | * was not contained in the entry, so do a full lookup. |
| 13950 | */ |
| 13951 | if (!vm_map_lookup_entry(map, address: vaddr, entry: &tmp_entry)) { |
| 13952 | if ((cow_sub_map_parent) && (cow_sub_map_parent != map)) { |
| 13953 | vm_map_unlock(cow_sub_map_parent); |
| 13954 | } |
| 13955 | if ((*real_map != map) |
| 13956 | && (*real_map != cow_sub_map_parent)) { |
| 13957 | vm_map_unlock(*real_map); |
| 13958 | } |
| 13959 | return KERN_INVALID_ADDRESS; |
| 13960 | } |
| 13961 | |
| 13962 | entry = tmp_entry; |
| 13963 | } |
| 13964 | if (map == old_map) { |
| 13965 | old_start = entry->vme_start; |
| 13966 | old_end = entry->vme_end; |
| 13967 | } |
| 13968 | |
| 13969 | /* |
| 13970 | * Handle submaps. Drop lock on upper map, submap is |
| 13971 | * returned locked. |
| 13972 | */ |
| 13973 | |
| 13974 | submap_needed_copy = FALSE; |
| 13975 | submap_recurse: |
| 13976 | if (entry->is_sub_map) { |
| 13977 | vm_map_offset_t local_vaddr; |
| 13978 | vm_map_offset_t end_delta; |
| 13979 | vm_map_offset_t start_delta; |
| 13980 | vm_map_offset_t top_entry_saved_start; |
| 13981 | vm_object_offset_t top_entry_saved_offset; |
| 13982 | vm_map_entry_t submap_entry, saved_submap_entry; |
| 13983 | vm_object_offset_t submap_entry_offset; |
| 13984 | vm_object_size_t submap_entry_size; |
| 13985 | vm_prot_t subentry_protection; |
| 13986 | vm_prot_t subentry_max_protection; |
| 13987 | boolean_t subentry_no_copy_on_read; |
| 13988 | boolean_t subentry_permanent; |
| 13989 | boolean_t subentry_csm_associated; |
| 13990 | #if __arm64e__ |
| 13991 | boolean_t subentry_used_for_tpro; |
| 13992 | #endif /* __arm64e__ */ |
| 13993 | boolean_t mapped_needs_copy = FALSE; |
| 13994 | vm_map_version_t version; |
| 13995 | |
| 13996 | assertf(VM_MAP_PAGE_SHIFT(VME_SUBMAP(entry)) >= VM_MAP_PAGE_SHIFT(map), |
| 13997 | "map %p (%d) entry %p submap %p (%d)\n" , |
| 13998 | map, VM_MAP_PAGE_SHIFT(map), entry, |
| 13999 | VME_SUBMAP(entry), VM_MAP_PAGE_SHIFT(VME_SUBMAP(entry))); |
| 14000 | |
| 14001 | local_vaddr = vaddr; |
| 14002 | top_entry_saved_start = entry->vme_start; |
| 14003 | top_entry_saved_offset = VME_OFFSET(entry); |
| 14004 | |
| 14005 | if ((entry->use_pmap && |
| 14006 | !((fault_type & VM_PROT_WRITE) || |
| 14007 | force_copy))) { |
| 14008 | /* if real_map equals map we unlock below */ |
| 14009 | if ((*real_map != map) && |
| 14010 | (*real_map != cow_sub_map_parent)) { |
| 14011 | vm_map_unlock(*real_map); |
| 14012 | } |
| 14013 | *real_map = VME_SUBMAP(entry); |
| 14014 | } |
| 14015 | |
| 14016 | if (entry->needs_copy && |
| 14017 | ((fault_type & VM_PROT_WRITE) || |
| 14018 | force_copy)) { |
| 14019 | if (!mapped_needs_copy) { |
| 14020 | if (vm_map_lock_read_to_write(map)) { |
| 14021 | vm_map_lock_read(map); |
| 14022 | *real_map = map; |
| 14023 | goto RetryLookup; |
| 14024 | } |
| 14025 | vm_map_lock_read(VME_SUBMAP(entry)); |
| 14026 | *var_map = VME_SUBMAP(entry); |
| 14027 | cow_sub_map_parent = map; |
| 14028 | /* reset base to map before cow object */ |
| 14029 | /* this is the map which will accept */ |
| 14030 | /* the new cow object */ |
| 14031 | old_start = entry->vme_start; |
| 14032 | old_end = entry->vme_end; |
| 14033 | cow_parent_vaddr = vaddr; |
| 14034 | mapped_needs_copy = TRUE; |
| 14035 | } else { |
| 14036 | vm_map_lock_read(VME_SUBMAP(entry)); |
| 14037 | *var_map = VME_SUBMAP(entry); |
| 14038 | if ((cow_sub_map_parent != map) && |
| 14039 | (*real_map != map)) { |
| 14040 | vm_map_unlock(map); |
| 14041 | } |
| 14042 | } |
| 14043 | } else { |
| 14044 | if (entry->needs_copy) { |
| 14045 | submap_needed_copy = TRUE; |
| 14046 | } |
| 14047 | vm_map_lock_read(VME_SUBMAP(entry)); |
| 14048 | *var_map = VME_SUBMAP(entry); |
| 14049 | /* leave map locked if it is a target */ |
| 14050 | /* cow sub_map above otherwise, just */ |
| 14051 | /* follow the maps down to the object */ |
| 14052 | /* here we unlock knowing we are not */ |
| 14053 | /* revisiting the map. */ |
| 14054 | if ((*real_map != map) && (map != cow_sub_map_parent)) { |
| 14055 | vm_map_unlock_read(map); |
| 14056 | } |
| 14057 | } |
| 14058 | |
| 14059 | entry = NULL; |
| 14060 | map = *var_map; |
| 14061 | |
| 14062 | /* calculate the offset in the submap for vaddr */ |
| 14063 | local_vaddr = (local_vaddr - top_entry_saved_start) + top_entry_saved_offset; |
| 14064 | assertf(VM_MAP_PAGE_ALIGNED(local_vaddr, fault_page_mask), |
| 14065 | "local_vaddr 0x%llx entry->vme_start 0x%llx fault_page_mask 0x%llx\n" , |
| 14066 | (uint64_t)local_vaddr, (uint64_t)top_entry_saved_start, (uint64_t)fault_page_mask); |
| 14067 | |
| 14068 | RetrySubMap: |
| 14069 | if (!vm_map_lookup_entry(map, address: local_vaddr, entry: &submap_entry)) { |
| 14070 | if ((cow_sub_map_parent) && (cow_sub_map_parent != map)) { |
| 14071 | vm_map_unlock(cow_sub_map_parent); |
| 14072 | } |
| 14073 | if ((*real_map != map) |
| 14074 | && (*real_map != cow_sub_map_parent)) { |
| 14075 | vm_map_unlock(*real_map); |
| 14076 | } |
| 14077 | *real_map = map; |
| 14078 | return KERN_INVALID_ADDRESS; |
| 14079 | } |
| 14080 | |
| 14081 | /* find the attenuated shadow of the underlying object */ |
| 14082 | /* on our target map */ |
| 14083 | |
| 14084 | /* in english the submap object may extend beyond the */ |
| 14085 | /* region mapped by the entry or, may only fill a portion */ |
| 14086 | /* of it. For our purposes, we only care if the object */ |
| 14087 | /* doesn't fill. In this case the area which will */ |
| 14088 | /* ultimately be clipped in the top map will only need */ |
| 14089 | /* to be as big as the portion of the underlying entry */ |
| 14090 | /* which is mapped */ |
| 14091 | start_delta = submap_entry->vme_start > top_entry_saved_offset ? |
| 14092 | submap_entry->vme_start - top_entry_saved_offset : 0; |
| 14093 | |
| 14094 | end_delta = |
| 14095 | (top_entry_saved_offset + start_delta + (old_end - old_start)) <= |
| 14096 | submap_entry->vme_end ? |
| 14097 | 0 : (top_entry_saved_offset + |
| 14098 | (old_end - old_start)) |
| 14099 | - submap_entry->vme_end; |
| 14100 | |
| 14101 | old_start += start_delta; |
| 14102 | old_end -= end_delta; |
| 14103 | |
| 14104 | if (submap_entry->is_sub_map) { |
| 14105 | entry = submap_entry; |
| 14106 | vaddr = local_vaddr; |
| 14107 | goto submap_recurse; |
| 14108 | } |
| 14109 | |
| 14110 | if (((fault_type & VM_PROT_WRITE) || |
| 14111 | force_copy) |
| 14112 | && cow_sub_map_parent) { |
| 14113 | vm_object_t sub_object, copy_object; |
| 14114 | vm_object_offset_t copy_offset; |
| 14115 | vm_map_offset_t local_start; |
| 14116 | vm_map_offset_t local_end; |
| 14117 | boolean_t object_copied = FALSE; |
| 14118 | vm_object_offset_t object_copied_offset = 0; |
| 14119 | boolean_t object_copied_needs_copy = FALSE; |
| 14120 | kern_return_t kr = KERN_SUCCESS; |
| 14121 | |
| 14122 | if (vm_map_lock_read_to_write(map)) { |
| 14123 | vm_map_lock_read(map); |
| 14124 | old_start -= start_delta; |
| 14125 | old_end += end_delta; |
| 14126 | goto RetrySubMap; |
| 14127 | } |
| 14128 | |
| 14129 | |
| 14130 | sub_object = VME_OBJECT(submap_entry); |
| 14131 | if (sub_object == VM_OBJECT_NULL) { |
| 14132 | sub_object = |
| 14133 | vm_object_allocate( |
| 14134 | size: (vm_map_size_t) |
| 14135 | (submap_entry->vme_end - |
| 14136 | submap_entry->vme_start)); |
| 14137 | VME_OBJECT_SET(entry: submap_entry, object: sub_object, false, context: 0); |
| 14138 | VME_OFFSET_SET(entry: submap_entry, offset: 0); |
| 14139 | assert(!submap_entry->is_sub_map); |
| 14140 | assert(submap_entry->use_pmap); |
| 14141 | } |
| 14142 | local_start = local_vaddr - |
| 14143 | (cow_parent_vaddr - old_start); |
| 14144 | local_end = local_vaddr + |
| 14145 | (old_end - cow_parent_vaddr); |
| 14146 | vm_map_clip_start(map, entry: submap_entry, startaddr: local_start); |
| 14147 | vm_map_clip_end(map, entry: submap_entry, endaddr: local_end); |
| 14148 | if (submap_entry->is_sub_map) { |
| 14149 | /* unnesting was done when clipping */ |
| 14150 | assert(!submap_entry->use_pmap); |
| 14151 | } |
| 14152 | |
| 14153 | /* This is the COW case, lets connect */ |
| 14154 | /* an entry in our space to the underlying */ |
| 14155 | /* object in the submap, bypassing the */ |
| 14156 | /* submap. */ |
| 14157 | submap_entry_offset = VME_OFFSET(entry: submap_entry); |
| 14158 | submap_entry_size = submap_entry->vme_end - submap_entry->vme_start; |
| 14159 | |
| 14160 | if ((submap_entry->wired_count != 0 || |
| 14161 | sub_object->copy_strategy != MEMORY_OBJECT_COPY_SYMMETRIC) && |
| 14162 | (submap_entry->protection & VM_PROT_EXECUTE) && |
| 14163 | no_force_copy_if_executable) { |
| 14164 | // printf("FBDP map %p entry %p start 0x%llx end 0x%llx wired %d strat %d\n", map, submap_entry, (uint64_t)local_start, (uint64_t)local_end, submap_entry->wired_count, sub_object->copy_strategy); |
| 14165 | if ((cow_sub_map_parent) && (cow_sub_map_parent != map)) { |
| 14166 | vm_map_unlock(cow_sub_map_parent); |
| 14167 | } |
| 14168 | if ((*real_map != map) |
| 14169 | && (*real_map != cow_sub_map_parent)) { |
| 14170 | vm_map_unlock(*real_map); |
| 14171 | } |
| 14172 | *real_map = map; |
| 14173 | ktriage_record(thread_id: thread_tid(thread: current_thread()), KDBG_TRIAGE_EVENTID(KDBG_TRIAGE_SUBSYS_VM, KDBG_TRIAGE_RESERVED, KDBG_TRIAGE_VM_SUBMAP_NO_COW_ON_EXECUTABLE), arg: 0 /* arg */); |
| 14174 | vm_map_lock_write_to_read(map); |
| 14175 | kr = KERN_PROTECTION_FAILURE; |
| 14176 | DTRACE_VM4(submap_no_copy_executable, |
| 14177 | vm_map_t, map, |
| 14178 | vm_object_offset_t, submap_entry_offset, |
| 14179 | vm_object_size_t, submap_entry_size, |
| 14180 | int, kr); |
| 14181 | return kr; |
| 14182 | } |
| 14183 | |
| 14184 | if (submap_entry->wired_count != 0) { |
| 14185 | vm_object_reference(sub_object); |
| 14186 | |
| 14187 | assertf(VM_MAP_PAGE_ALIGNED(VME_OFFSET(submap_entry), VM_MAP_PAGE_MASK(map)), |
| 14188 | "submap_entry %p offset 0x%llx\n" , |
| 14189 | submap_entry, VME_OFFSET(submap_entry)); |
| 14190 | |
| 14191 | DTRACE_VM6(submap_copy_slowly, |
| 14192 | vm_map_t, cow_sub_map_parent, |
| 14193 | vm_map_offset_t, vaddr, |
| 14194 | vm_map_t, map, |
| 14195 | vm_object_size_t, submap_entry_size, |
| 14196 | int, submap_entry->wired_count, |
| 14197 | int, sub_object->copy_strategy); |
| 14198 | |
| 14199 | saved_submap_entry = submap_entry; |
| 14200 | version.main_timestamp = map->timestamp; |
| 14201 | vm_map_unlock(map); /* Increments timestamp by 1 */ |
| 14202 | submap_entry = VM_MAP_ENTRY_NULL; |
| 14203 | |
| 14204 | vm_object_lock(sub_object); |
| 14205 | kr = vm_object_copy_slowly(src_object: sub_object, |
| 14206 | src_offset: submap_entry_offset, |
| 14207 | size: submap_entry_size, |
| 14208 | FALSE, |
| 14209 | result_object: ©_object); |
| 14210 | object_copied = TRUE; |
| 14211 | object_copied_offset = 0; |
| 14212 | /* 4k: account for extra offset in physical page */ |
| 14213 | object_copied_offset += submap_entry_offset - vm_object_trunc_page(submap_entry_offset); |
| 14214 | object_copied_needs_copy = FALSE; |
| 14215 | vm_object_deallocate(object: sub_object); |
| 14216 | |
| 14217 | vm_map_lock(map); |
| 14218 | |
| 14219 | if (kr != KERN_SUCCESS && |
| 14220 | kr != KERN_MEMORY_RESTART_COPY) { |
| 14221 | if ((cow_sub_map_parent) && (cow_sub_map_parent != map)) { |
| 14222 | vm_map_unlock(cow_sub_map_parent); |
| 14223 | } |
| 14224 | if ((*real_map != map) |
| 14225 | && (*real_map != cow_sub_map_parent)) { |
| 14226 | vm_map_unlock(*real_map); |
| 14227 | } |
| 14228 | *real_map = map; |
| 14229 | vm_object_deallocate(object: copy_object); |
| 14230 | copy_object = VM_OBJECT_NULL; |
| 14231 | ktriage_record(thread_id: thread_tid(thread: current_thread()), KDBG_TRIAGE_EVENTID(KDBG_TRIAGE_SUBSYS_VM, KDBG_TRIAGE_RESERVED, KDBG_TRIAGE_VM_SUBMAP_COPY_SLOWLY_FAILED), arg: 0 /* arg */); |
| 14232 | vm_map_lock_write_to_read(map); |
| 14233 | DTRACE_VM4(submap_copy_error_slowly, |
| 14234 | vm_object_t, sub_object, |
| 14235 | vm_object_offset_t, submap_entry_offset, |
| 14236 | vm_object_size_t, submap_entry_size, |
| 14237 | int, kr); |
| 14238 | vm_map_lookup_and_lock_object_copy_slowly_error++; |
| 14239 | return kr; |
| 14240 | } |
| 14241 | |
| 14242 | if ((kr == KERN_SUCCESS) && |
| 14243 | (version.main_timestamp + 1) == map->timestamp) { |
| 14244 | submap_entry = saved_submap_entry; |
| 14245 | } else { |
| 14246 | saved_submap_entry = NULL; |
| 14247 | old_start -= start_delta; |
| 14248 | old_end += end_delta; |
| 14249 | vm_object_deallocate(object: copy_object); |
| 14250 | copy_object = VM_OBJECT_NULL; |
| 14251 | vm_map_lock_write_to_read(map); |
| 14252 | vm_map_lookup_and_lock_object_copy_slowly_restart++; |
| 14253 | goto RetrySubMap; |
| 14254 | } |
| 14255 | vm_map_lookup_and_lock_object_copy_slowly_count++; |
| 14256 | vm_map_lookup_and_lock_object_copy_slowly_size += submap_entry_size; |
| 14257 | if (submap_entry_size > vm_map_lookup_and_lock_object_copy_slowly_max) { |
| 14258 | vm_map_lookup_and_lock_object_copy_slowly_max = submap_entry_size; |
| 14259 | } |
| 14260 | } else if (sub_object->copy_strategy != MEMORY_OBJECT_COPY_SYMMETRIC) { |
| 14261 | submap_entry_offset = VME_OFFSET(entry: submap_entry); |
| 14262 | copy_object = VM_OBJECT_NULL; |
| 14263 | object_copied_offset = submap_entry_offset; |
| 14264 | object_copied_needs_copy = FALSE; |
| 14265 | DTRACE_VM6(submap_copy_strategically, |
| 14266 | vm_map_t, cow_sub_map_parent, |
| 14267 | vm_map_offset_t, vaddr, |
| 14268 | vm_map_t, map, |
| 14269 | vm_object_size_t, submap_entry_size, |
| 14270 | int, submap_entry->wired_count, |
| 14271 | int, sub_object->copy_strategy); |
| 14272 | kr = vm_object_copy_strategically( |
| 14273 | src_object: sub_object, |
| 14274 | src_offset: submap_entry_offset, |
| 14275 | size: submap_entry->vme_end - submap_entry->vme_start, |
| 14276 | false, /* forking */ |
| 14277 | dst_object: ©_object, |
| 14278 | dst_offset: &object_copied_offset, |
| 14279 | dst_needs_copy: &object_copied_needs_copy); |
| 14280 | if (kr == KERN_MEMORY_RESTART_COPY) { |
| 14281 | old_start -= start_delta; |
| 14282 | old_end += end_delta; |
| 14283 | vm_object_deallocate(object: copy_object); |
| 14284 | copy_object = VM_OBJECT_NULL; |
| 14285 | vm_map_lock_write_to_read(map); |
| 14286 | vm_map_lookup_and_lock_object_copy_strategically_restart++; |
| 14287 | goto RetrySubMap; |
| 14288 | } |
| 14289 | if (kr != KERN_SUCCESS) { |
| 14290 | if ((cow_sub_map_parent) && (cow_sub_map_parent != map)) { |
| 14291 | vm_map_unlock(cow_sub_map_parent); |
| 14292 | } |
| 14293 | if ((*real_map != map) |
| 14294 | && (*real_map != cow_sub_map_parent)) { |
| 14295 | vm_map_unlock(*real_map); |
| 14296 | } |
| 14297 | *real_map = map; |
| 14298 | vm_object_deallocate(object: copy_object); |
| 14299 | copy_object = VM_OBJECT_NULL; |
| 14300 | ktriage_record(thread_id: thread_tid(thread: current_thread()), KDBG_TRIAGE_EVENTID(KDBG_TRIAGE_SUBSYS_VM, KDBG_TRIAGE_RESERVED, KDBG_TRIAGE_VM_SUBMAP_COPY_STRAT_FAILED), arg: 0 /* arg */); |
| 14301 | vm_map_lock_write_to_read(map); |
| 14302 | DTRACE_VM4(submap_copy_error_strategically, |
| 14303 | vm_object_t, sub_object, |
| 14304 | vm_object_offset_t, submap_entry_offset, |
| 14305 | vm_object_size_t, submap_entry_size, |
| 14306 | int, kr); |
| 14307 | vm_map_lookup_and_lock_object_copy_strategically_error++; |
| 14308 | return kr; |
| 14309 | } |
| 14310 | assert(copy_object != VM_OBJECT_NULL); |
| 14311 | assert(copy_object != sub_object); |
| 14312 | object_copied = TRUE; |
| 14313 | vm_map_lookup_and_lock_object_copy_strategically_count++; |
| 14314 | vm_map_lookup_and_lock_object_copy_strategically_size += submap_entry_size; |
| 14315 | if (submap_entry_size > vm_map_lookup_and_lock_object_copy_strategically_max) { |
| 14316 | vm_map_lookup_and_lock_object_copy_strategically_max = submap_entry_size; |
| 14317 | } |
| 14318 | } else { |
| 14319 | /* set up shadow object */ |
| 14320 | object_copied = FALSE; |
| 14321 | copy_object = sub_object; |
| 14322 | vm_object_lock(sub_object); |
| 14323 | vm_object_reference_locked(sub_object); |
| 14324 | VM_OBJECT_SET_SHADOWED(object: sub_object, TRUE); |
| 14325 | vm_object_unlock(sub_object); |
| 14326 | |
| 14327 | assert(submap_entry->wired_count == 0); |
| 14328 | submap_entry->needs_copy = TRUE; |
| 14329 | |
| 14330 | prot = submap_entry->protection; |
| 14331 | if (pmap_has_prot_policy(pmap: map->pmap, translated_allow_execute: submap_entry->translated_allow_execute, prot)) { |
| 14332 | panic("%s: map %p pmap %p entry %p 0x%llx:0x%llx prot 0x%x" , |
| 14333 | __FUNCTION__, |
| 14334 | map, map->pmap, submap_entry, |
| 14335 | (uint64_t)submap_entry->vme_start, |
| 14336 | (uint64_t)submap_entry->vme_end, |
| 14337 | prot); |
| 14338 | } |
| 14339 | prot = prot & ~VM_PROT_WRITE; |
| 14340 | if (pmap_has_prot_policy(pmap: map->pmap, translated_allow_execute: submap_entry->translated_allow_execute, prot)) { |
| 14341 | panic("%s: map %p pmap %p entry %p 0x%llx:0x%llx prot 0x%x" , |
| 14342 | __FUNCTION__, |
| 14343 | map, map->pmap, submap_entry, |
| 14344 | (uint64_t)submap_entry->vme_start, |
| 14345 | (uint64_t)submap_entry->vme_end, |
| 14346 | prot); |
| 14347 | } |
| 14348 | |
| 14349 | if (override_nx(map: old_map, |
| 14350 | VME_ALIAS(submap_entry)) |
| 14351 | && prot) { |
| 14352 | prot |= VM_PROT_EXECUTE; |
| 14353 | } |
| 14354 | |
| 14355 | vm_object_pmap_protect( |
| 14356 | object: sub_object, |
| 14357 | offset: VME_OFFSET(entry: submap_entry), |
| 14358 | size: submap_entry->vme_end - |
| 14359 | submap_entry->vme_start, |
| 14360 | pmap: (submap_entry->is_shared |
| 14361 | || map->mapped_in_other_pmaps) ? |
| 14362 | PMAP_NULL : map->pmap, |
| 14363 | VM_MAP_PAGE_SIZE(map), |
| 14364 | pmap_start: submap_entry->vme_start, |
| 14365 | prot); |
| 14366 | vm_map_lookup_and_lock_object_copy_shadow_count++; |
| 14367 | vm_map_lookup_and_lock_object_copy_shadow_size += submap_entry_size; |
| 14368 | if (submap_entry_size > vm_map_lookup_and_lock_object_copy_shadow_max) { |
| 14369 | vm_map_lookup_and_lock_object_copy_shadow_max = submap_entry_size; |
| 14370 | } |
| 14371 | } |
| 14372 | |
| 14373 | /* |
| 14374 | * Adjust the fault offset to the submap entry. |
| 14375 | */ |
| 14376 | copy_offset = (local_vaddr - |
| 14377 | submap_entry->vme_start + |
| 14378 | VME_OFFSET(entry: submap_entry)); |
| 14379 | |
| 14380 | /* This works diffently than the */ |
| 14381 | /* normal submap case. We go back */ |
| 14382 | /* to the parent of the cow map and*/ |
| 14383 | /* clip out the target portion of */ |
| 14384 | /* the sub_map, substituting the */ |
| 14385 | /* new copy object, */ |
| 14386 | |
| 14387 | subentry_protection = submap_entry->protection; |
| 14388 | subentry_max_protection = submap_entry->max_protection; |
| 14389 | subentry_no_copy_on_read = submap_entry->vme_no_copy_on_read; |
| 14390 | subentry_permanent = submap_entry->vme_permanent; |
| 14391 | subentry_csm_associated = submap_entry->csm_associated; |
| 14392 | #if __arm64e__ |
| 14393 | subentry_used_for_tpro = submap_entry->used_for_tpro; |
| 14394 | #endif // __arm64e__ |
| 14395 | vm_map_unlock(map); |
| 14396 | submap_entry = NULL; /* not valid after map unlock */ |
| 14397 | |
| 14398 | local_start = old_start; |
| 14399 | local_end = old_end; |
| 14400 | map = cow_sub_map_parent; |
| 14401 | *var_map = cow_sub_map_parent; |
| 14402 | vaddr = cow_parent_vaddr; |
| 14403 | cow_sub_map_parent = NULL; |
| 14404 | |
| 14405 | if (!vm_map_lookup_entry(map, |
| 14406 | address: vaddr, entry: &entry)) { |
| 14407 | if ((cow_sub_map_parent) && (cow_sub_map_parent != map)) { |
| 14408 | vm_map_unlock(cow_sub_map_parent); |
| 14409 | } |
| 14410 | if ((*real_map != map) |
| 14411 | && (*real_map != cow_sub_map_parent)) { |
| 14412 | vm_map_unlock(*real_map); |
| 14413 | } |
| 14414 | *real_map = map; |
| 14415 | vm_object_deallocate( |
| 14416 | object: copy_object); |
| 14417 | copy_object = VM_OBJECT_NULL; |
| 14418 | vm_map_lock_write_to_read(map); |
| 14419 | DTRACE_VM4(submap_lookup_post_unlock, |
| 14420 | uint64_t, (uint64_t)entry->vme_start, |
| 14421 | uint64_t, (uint64_t)entry->vme_end, |
| 14422 | vm_map_offset_t, vaddr, |
| 14423 | int, object_copied); |
| 14424 | return KERN_INVALID_ADDRESS; |
| 14425 | } |
| 14426 | |
| 14427 | /* clip out the portion of space */ |
| 14428 | /* mapped by the sub map which */ |
| 14429 | /* corresponds to the underlying */ |
| 14430 | /* object */ |
| 14431 | |
| 14432 | /* |
| 14433 | * Clip (and unnest) the smallest nested chunk |
| 14434 | * possible around the faulting address... |
| 14435 | */ |
| 14436 | local_start = vaddr & ~(pmap_shared_region_size_min(map: map->pmap) - 1); |
| 14437 | local_end = local_start + pmap_shared_region_size_min(map: map->pmap); |
| 14438 | /* |
| 14439 | * ... but don't go beyond the "old_start" to "old_end" |
| 14440 | * range, to avoid spanning over another VM region |
| 14441 | * with a possibly different VM object and/or offset. |
| 14442 | */ |
| 14443 | if (local_start < old_start) { |
| 14444 | local_start = old_start; |
| 14445 | } |
| 14446 | if (local_end > old_end) { |
| 14447 | local_end = old_end; |
| 14448 | } |
| 14449 | /* |
| 14450 | * Adjust copy_offset to the start of the range. |
| 14451 | */ |
| 14452 | copy_offset -= (vaddr - local_start); |
| 14453 | |
| 14454 | vm_map_clip_start(map, entry, startaddr: local_start); |
| 14455 | vm_map_clip_end(map, entry, endaddr: local_end); |
| 14456 | if (entry->is_sub_map) { |
| 14457 | /* unnesting was done when clipping */ |
| 14458 | assert(!entry->use_pmap); |
| 14459 | } |
| 14460 | |
| 14461 | /* substitute copy object for */ |
| 14462 | /* shared map entry */ |
| 14463 | vm_map_deallocate(VME_SUBMAP(entry)); |
| 14464 | assert(!entry->iokit_acct); |
| 14465 | entry->use_pmap = TRUE; |
| 14466 | VME_OBJECT_SET(entry, object: copy_object, false, context: 0); |
| 14467 | |
| 14468 | /* propagate the submap entry's protections */ |
| 14469 | if (entry->protection != VM_PROT_READ) { |
| 14470 | /* |
| 14471 | * Someone has already altered the top entry's |
| 14472 | * protections via vm_protect(VM_PROT_COPY). |
| 14473 | * Respect these new values and ignore the |
| 14474 | * submap entry's protections. |
| 14475 | */ |
| 14476 | } else { |
| 14477 | /* |
| 14478 | * Regular copy-on-write: propagate the submap |
| 14479 | * entry's protections to the top map entry. |
| 14480 | */ |
| 14481 | entry->protection |= subentry_protection; |
| 14482 | } |
| 14483 | entry->max_protection |= subentry_max_protection; |
| 14484 | /* propagate some attributes from subentry */ |
| 14485 | entry->vme_no_copy_on_read = subentry_no_copy_on_read; |
| 14486 | entry->vme_permanent = subentry_permanent; |
| 14487 | entry->csm_associated = subentry_csm_associated; |
| 14488 | #if __arm64e__ |
| 14489 | /* propagate TPRO iff the destination map has TPRO enabled */ |
| 14490 | if (subentry_used_for_tpro && vm_map_tpro(map)) { |
| 14491 | entry->used_for_tpro = subentry_used_for_tpro; |
| 14492 | } |
| 14493 | #endif /* __arm64e */ |
| 14494 | if ((entry->protection & VM_PROT_WRITE) && |
| 14495 | (entry->protection & VM_PROT_EXECUTE) && |
| 14496 | #if XNU_TARGET_OS_OSX |
| 14497 | map->pmap != kernel_pmap && |
| 14498 | (vm_map_cs_enforcement(map) |
| 14499 | #if __arm64__ |
| 14500 | || !VM_MAP_IS_EXOTIC(map) |
| 14501 | #endif /* __arm64__ */ |
| 14502 | ) && |
| 14503 | #endif /* XNU_TARGET_OS_OSX */ |
| 14504 | #if CODE_SIGNING_MONITOR |
| 14505 | (csm_address_space_exempt(map->pmap) != KERN_SUCCESS) && |
| 14506 | #endif |
| 14507 | !(entry->used_for_jit) && |
| 14508 | VM_MAP_POLICY_WX_STRIP_X(map)) { |
| 14509 | DTRACE_VM3(cs_wx, |
| 14510 | uint64_t, (uint64_t)entry->vme_start, |
| 14511 | uint64_t, (uint64_t)entry->vme_end, |
| 14512 | vm_prot_t, entry->protection); |
| 14513 | printf(format: "CODE SIGNING: %d[%s] %s:%d(0x%llx,0x%llx,0x%x) can't have both write and exec at the same time\n" , |
| 14514 | proc_selfpid(), |
| 14515 | (get_bsdtask_info(current_task()) |
| 14516 | ? proc_name_address(p: get_bsdtask_info(current_task())) |
| 14517 | : "?" ), |
| 14518 | __FUNCTION__, __LINE__, |
| 14519 | #if DEVELOPMENT || DEBUG |
| 14520 | (uint64_t)entry->vme_start, |
| 14521 | (uint64_t)entry->vme_end, |
| 14522 | #else /* DEVELOPMENT || DEBUG */ |
| 14523 | (uint64_t)0, |
| 14524 | (uint64_t)0, |
| 14525 | #endif /* DEVELOPMENT || DEBUG */ |
| 14526 | entry->protection); |
| 14527 | entry->protection &= ~VM_PROT_EXECUTE; |
| 14528 | } |
| 14529 | |
| 14530 | if (object_copied) { |
| 14531 | VME_OFFSET_SET(entry, offset: local_start - old_start + object_copied_offset); |
| 14532 | entry->needs_copy = object_copied_needs_copy; |
| 14533 | entry->is_shared = FALSE; |
| 14534 | } else { |
| 14535 | assert(VME_OBJECT(entry) != VM_OBJECT_NULL); |
| 14536 | assert(VME_OBJECT(entry)->copy_strategy == MEMORY_OBJECT_COPY_SYMMETRIC); |
| 14537 | assert(entry->wired_count == 0); |
| 14538 | VME_OFFSET_SET(entry, offset: copy_offset); |
| 14539 | entry->needs_copy = TRUE; |
| 14540 | if (map != old_map) { |
| 14541 | entry->is_shared = TRUE; |
| 14542 | } |
| 14543 | } |
| 14544 | if (entry->inheritance == VM_INHERIT_SHARE) { |
| 14545 | entry->inheritance = VM_INHERIT_COPY; |
| 14546 | } |
| 14547 | |
| 14548 | vm_map_lock_write_to_read(map); |
| 14549 | } else { |
| 14550 | if ((cow_sub_map_parent) |
| 14551 | && (cow_sub_map_parent != *real_map) |
| 14552 | && (cow_sub_map_parent != map)) { |
| 14553 | vm_map_unlock(cow_sub_map_parent); |
| 14554 | } |
| 14555 | entry = submap_entry; |
| 14556 | vaddr = local_vaddr; |
| 14557 | } |
| 14558 | } |
| 14559 | |
| 14560 | /* |
| 14561 | * Check whether this task is allowed to have |
| 14562 | * this page. |
| 14563 | */ |
| 14564 | |
| 14565 | prot = entry->protection; |
| 14566 | |
| 14567 | if (override_nx(map: old_map, VME_ALIAS(entry)) && prot) { |
| 14568 | /* |
| 14569 | * HACK -- if not a stack, then allow execution |
| 14570 | */ |
| 14571 | prot |= VM_PROT_EXECUTE; |
| 14572 | } |
| 14573 | |
| 14574 | #if __arm64e__ |
| 14575 | /* |
| 14576 | * If the entry we're dealing with is TPRO and we have a write |
| 14577 | * fault, inject VM_PROT_WRITE into protections. This allows us |
| 14578 | * to maintain RO permissions when not marked as TPRO. |
| 14579 | */ |
| 14580 | if (entry->used_for_tpro && (fault_type & VM_PROT_WRITE)) { |
| 14581 | prot |= VM_PROT_WRITE; |
| 14582 | } |
| 14583 | #endif /* __arm64e__ */ |
| 14584 | if (mask_protections) { |
| 14585 | fault_type &= prot; |
| 14586 | if (fault_type == VM_PROT_NONE) { |
| 14587 | goto protection_failure; |
| 14588 | } |
| 14589 | } |
| 14590 | if (((fault_type & prot) != fault_type) |
| 14591 | #if __arm64__ |
| 14592 | /* prefetch abort in execute-only page */ |
| 14593 | && !(prot == VM_PROT_EXECUTE && fault_type == (VM_PROT_READ | VM_PROT_EXECUTE)) |
| 14594 | #elif defined(__x86_64__) |
| 14595 | /* Consider the UEXEC bit when handling an EXECUTE fault */ |
| 14596 | && !((fault_type & VM_PROT_EXECUTE) && !(prot & VM_PROT_EXECUTE) && (prot & VM_PROT_UEXEC)) |
| 14597 | #endif |
| 14598 | ) { |
| 14599 | protection_failure: |
| 14600 | if (*real_map != map) { |
| 14601 | vm_map_unlock(*real_map); |
| 14602 | } |
| 14603 | *real_map = map; |
| 14604 | |
| 14605 | if ((fault_type & VM_PROT_EXECUTE) && prot) { |
| 14606 | log_stack_execution_failure(vaddr: (addr64_t)vaddr, prot); |
| 14607 | } |
| 14608 | |
| 14609 | DTRACE_VM2(prot_fault, int, 1, (uint64_t *), NULL); |
| 14610 | DTRACE_VM3(prot_fault_detailed, vm_prot_t, fault_type, vm_prot_t, prot, void *, vaddr); |
| 14611 | /* |
| 14612 | * Noisy (esp. internally) and can be inferred from CrashReports. So OFF for now. |
| 14613 | * |
| 14614 | * ktriage_record(thread_tid(current_thread()), KDBG_TRIAGE_EVENTID(KDBG_TRIAGE_SUBSYS_VM, KDBG_TRIAGE_RESERVED, KDBG_TRIAGE_VM_PROTECTION_FAILURE), 0); |
| 14615 | */ |
| 14616 | return KERN_PROTECTION_FAILURE; |
| 14617 | } |
| 14618 | |
| 14619 | /* |
| 14620 | * If this page is not pageable, we have to get |
| 14621 | * it for all possible accesses. |
| 14622 | */ |
| 14623 | |
| 14624 | *wired = (entry->wired_count != 0); |
| 14625 | if (*wired) { |
| 14626 | fault_type = prot; |
| 14627 | } |
| 14628 | |
| 14629 | /* |
| 14630 | * If the entry was copy-on-write, we either ... |
| 14631 | */ |
| 14632 | |
| 14633 | if (entry->needs_copy) { |
| 14634 | /* |
| 14635 | * If we want to write the page, we may as well |
| 14636 | * handle that now since we've got the map locked. |
| 14637 | * |
| 14638 | * If we don't need to write the page, we just |
| 14639 | * demote the permissions allowed. |
| 14640 | */ |
| 14641 | |
| 14642 | if ((fault_type & VM_PROT_WRITE) || *wired || force_copy) { |
| 14643 | /* |
| 14644 | * Make a new object, and place it in the |
| 14645 | * object chain. Note that no new references |
| 14646 | * have appeared -- one just moved from the |
| 14647 | * map to the new object. |
| 14648 | */ |
| 14649 | |
| 14650 | if (vm_map_lock_read_to_write(map)) { |
| 14651 | vm_map_lock_read(map); |
| 14652 | goto RetryLookup; |
| 14653 | } |
| 14654 | |
| 14655 | if (VME_OBJECT(entry)->shadowed == FALSE) { |
| 14656 | vm_object_lock(VME_OBJECT(entry)); |
| 14657 | VM_OBJECT_SET_SHADOWED(VME_OBJECT(entry), TRUE); |
| 14658 | vm_object_unlock(VME_OBJECT(entry)); |
| 14659 | } |
| 14660 | VME_OBJECT_SHADOW(entry, |
| 14661 | length: (vm_map_size_t) (entry->vme_end - |
| 14662 | entry->vme_start), |
| 14663 | always: vm_map_always_shadow(map)); |
| 14664 | entry->needs_copy = FALSE; |
| 14665 | |
| 14666 | vm_map_lock_write_to_read(map); |
| 14667 | } |
| 14668 | if ((fault_type & VM_PROT_WRITE) == 0 && *wired == 0) { |
| 14669 | /* |
| 14670 | * We're attempting to read a copy-on-write |
| 14671 | * page -- don't allow writes. |
| 14672 | */ |
| 14673 | |
| 14674 | prot &= (~VM_PROT_WRITE); |
| 14675 | } |
| 14676 | } |
| 14677 | |
| 14678 | if (submap_needed_copy && (prot & VM_PROT_WRITE)) { |
| 14679 | /* |
| 14680 | * We went through a "needs_copy" submap without triggering |
| 14681 | * a copy, so granting write access to the page would bypass |
| 14682 | * that submap's "needs_copy". |
| 14683 | */ |
| 14684 | assert(!(fault_type & VM_PROT_WRITE)); |
| 14685 | assert(!*wired); |
| 14686 | assert(!force_copy); |
| 14687 | // printf("FBDP %d[%s] submap_needed_copy for %p 0x%llx\n", proc_selfpid(), proc_name_address(current_task()->bsd_info), map, vaddr); |
| 14688 | prot &= ~VM_PROT_WRITE; |
| 14689 | } |
| 14690 | |
| 14691 | /* |
| 14692 | * Create an object if necessary. |
| 14693 | */ |
| 14694 | if (VME_OBJECT(entry) == VM_OBJECT_NULL) { |
| 14695 | if (vm_map_lock_read_to_write(map)) { |
| 14696 | vm_map_lock_read(map); |
| 14697 | goto RetryLookup; |
| 14698 | } |
| 14699 | |
| 14700 | VME_OBJECT_SET(entry, |
| 14701 | object: vm_object_allocate( |
| 14702 | size: (vm_map_size_t)(entry->vme_end - |
| 14703 | entry->vme_start)), false, context: 0); |
| 14704 | VME_OFFSET_SET(entry, offset: 0); |
| 14705 | assert(entry->use_pmap); |
| 14706 | vm_map_lock_write_to_read(map); |
| 14707 | } |
| 14708 | |
| 14709 | /* |
| 14710 | * Return the object/offset from this entry. If the entry |
| 14711 | * was copy-on-write or empty, it has been fixed up. Also |
| 14712 | * return the protection. |
| 14713 | */ |
| 14714 | |
| 14715 | *offset = (vaddr - entry->vme_start) + VME_OFFSET(entry); |
| 14716 | *object = VME_OBJECT(entry); |
| 14717 | *out_prot = prot; |
| 14718 | KDBG_FILTERED(MACHDBG_CODE(DBG_MACH_WORKINGSET, VM_MAP_LOOKUP_OBJECT), VM_KERNEL_UNSLIDE_OR_PERM(*object), (unsigned long) VME_ALIAS(entry), 0, 0); |
| 14719 | |
| 14720 | if (fault_info) { |
| 14721 | fault_info->interruptible = THREAD_UNINT; /* for now... */ |
| 14722 | /* ... the caller will change "interruptible" if needed */ |
| 14723 | fault_info->cluster_size = 0; |
| 14724 | fault_info->user_tag = VME_ALIAS(entry); |
| 14725 | fault_info->pmap_options = 0; |
| 14726 | if (entry->iokit_acct || |
| 14727 | (!entry->is_sub_map && !entry->use_pmap)) { |
| 14728 | fault_info->pmap_options |= PMAP_OPTIONS_ALT_ACCT; |
| 14729 | } |
| 14730 | fault_info->behavior = entry->behavior; |
| 14731 | fault_info->lo_offset = VME_OFFSET(entry); |
| 14732 | fault_info->hi_offset = |
| 14733 | (entry->vme_end - entry->vme_start) + VME_OFFSET(entry); |
| 14734 | fault_info->no_cache = entry->no_cache; |
| 14735 | fault_info->stealth = FALSE; |
| 14736 | fault_info->io_sync = FALSE; |
| 14737 | if (entry->used_for_jit || |
| 14738 | #if CODE_SIGNING_MONITOR |
| 14739 | (csm_address_space_exempt(map->pmap) == KERN_SUCCESS) || |
| 14740 | #endif |
| 14741 | entry->vme_resilient_codesign) { |
| 14742 | fault_info->cs_bypass = TRUE; |
| 14743 | } else { |
| 14744 | fault_info->cs_bypass = FALSE; |
| 14745 | } |
| 14746 | fault_info->csm_associated = FALSE; |
| 14747 | #if CODE_SIGNING_MONITOR |
| 14748 | if (entry->csm_associated) { |
| 14749 | /* |
| 14750 | * The pmap layer will validate this page |
| 14751 | * before allowing it to be executed from. |
| 14752 | */ |
| 14753 | fault_info->csm_associated = TRUE; |
| 14754 | } |
| 14755 | #endif |
| 14756 | fault_info->mark_zf_absent = FALSE; |
| 14757 | fault_info->batch_pmap_op = FALSE; |
| 14758 | fault_info->resilient_media = entry->vme_resilient_media; |
| 14759 | fault_info->fi_xnu_user_debug = entry->vme_xnu_user_debug; |
| 14760 | fault_info->no_copy_on_read = entry->vme_no_copy_on_read; |
| 14761 | #if __arm64e__ |
| 14762 | fault_info->fi_used_for_tpro = entry->used_for_tpro; |
| 14763 | #else /* __arm64e__ */ |
| 14764 | fault_info->fi_used_for_tpro = FALSE; |
| 14765 | #endif |
| 14766 | if (entry->translated_allow_execute) { |
| 14767 | fault_info->pmap_options |= PMAP_OPTIONS_TRANSLATED_ALLOW_EXECUTE; |
| 14768 | } |
| 14769 | } |
| 14770 | |
| 14771 | /* |
| 14772 | * Lock the object to prevent it from disappearing |
| 14773 | */ |
| 14774 | if (object_lock_type == OBJECT_LOCK_EXCLUSIVE) { |
| 14775 | if (contended == NULL) { |
| 14776 | vm_object_lock(*object); |
| 14777 | } else { |
| 14778 | *contended = vm_object_lock_check_contended(*object); |
| 14779 | } |
| 14780 | } else { |
| 14781 | vm_object_lock_shared(*object); |
| 14782 | } |
| 14783 | |
| 14784 | /* |
| 14785 | * Save the version number |
| 14786 | */ |
| 14787 | |
| 14788 | out_version->main_timestamp = map->timestamp; |
| 14789 | |
| 14790 | return KERN_SUCCESS; |
| 14791 | } |
| 14792 | |
| 14793 | |
| 14794 | /* |
| 14795 | * vm_map_verify: |
| 14796 | * |
| 14797 | * Verifies that the map in question has not changed |
| 14798 | * since the given version. The map has to be locked |
| 14799 | * ("shared" mode is fine) before calling this function |
| 14800 | * and it will be returned locked too. |
| 14801 | */ |
| 14802 | boolean_t |
| 14803 | vm_map_verify( |
| 14804 | vm_map_t map, |
| 14805 | vm_map_version_t *version) /* REF */ |
| 14806 | { |
| 14807 | boolean_t result; |
| 14808 | |
| 14809 | vm_map_lock_assert_held(map); |
| 14810 | result = (map->timestamp == version->main_timestamp); |
| 14811 | |
| 14812 | return result; |
| 14813 | } |
| 14814 | |
| 14815 | /* |
| 14816 | * TEMPORARYTEMPORARYTEMPORARYTEMPORARYTEMPORARYTEMPORARY |
| 14817 | * Goes away after regular vm_region_recurse function migrates to |
| 14818 | * 64 bits |
| 14819 | * vm_region_recurse: A form of vm_region which follows the |
| 14820 | * submaps in a target map |
| 14821 | * |
| 14822 | */ |
| 14823 | |
| 14824 | kern_return_t |
| 14825 | vm_map_region_recurse_64( |
| 14826 | vm_map_t map, |
| 14827 | vm_map_offset_t *address, /* IN/OUT */ |
| 14828 | vm_map_size_t *size, /* OUT */ |
| 14829 | natural_t *nesting_depth, /* IN/OUT */ |
| 14830 | vm_region_submap_info_64_t submap_info, /* IN/OUT */ |
| 14831 | mach_msg_type_number_t *count) /* IN/OUT */ |
| 14832 | { |
| 14833 | mach_msg_type_number_t original_count; |
| 14834 | vm_region_extended_info_data_t extended; |
| 14835 | vm_map_entry_t tmp_entry; |
| 14836 | vm_map_offset_t user_address; |
| 14837 | unsigned int user_max_depth; |
| 14838 | |
| 14839 | /* |
| 14840 | * "curr_entry" is the VM map entry preceding or including the |
| 14841 | * address we're looking for. |
| 14842 | * "curr_map" is the map or sub-map containing "curr_entry". |
| 14843 | * "curr_address" is the equivalent of the top map's "user_address" |
| 14844 | * in the current map. |
| 14845 | * "curr_offset" is the cumulated offset of "curr_map" in the |
| 14846 | * target task's address space. |
| 14847 | * "curr_depth" is the depth of "curr_map" in the chain of |
| 14848 | * sub-maps. |
| 14849 | * |
| 14850 | * "curr_max_below" and "curr_max_above" limit the range (around |
| 14851 | * "curr_address") we should take into account in the current (sub)map. |
| 14852 | * They limit the range to what's visible through the map entries |
| 14853 | * we've traversed from the top map to the current map. |
| 14854 | * |
| 14855 | */ |
| 14856 | vm_map_entry_t curr_entry; |
| 14857 | vm_map_address_t curr_address; |
| 14858 | vm_map_offset_t curr_offset; |
| 14859 | vm_map_t curr_map; |
| 14860 | unsigned int curr_depth; |
| 14861 | vm_map_offset_t curr_max_below, curr_max_above; |
| 14862 | vm_map_offset_t curr_skip; |
| 14863 | |
| 14864 | /* |
| 14865 | * "next_" is the same as "curr_" but for the VM region immediately |
| 14866 | * after the address we're looking for. We need to keep track of this |
| 14867 | * too because we want to return info about that region if the |
| 14868 | * address we're looking for is not mapped. |
| 14869 | */ |
| 14870 | vm_map_entry_t next_entry; |
| 14871 | vm_map_offset_t next_offset; |
| 14872 | vm_map_offset_t next_address; |
| 14873 | vm_map_t next_map; |
| 14874 | unsigned int next_depth; |
| 14875 | vm_map_offset_t next_max_below, next_max_above; |
| 14876 | vm_map_offset_t next_skip; |
| 14877 | |
| 14878 | boolean_t look_for_pages; |
| 14879 | vm_region_submap_short_info_64_t short_info; |
| 14880 | boolean_t ; |
| 14881 | int effective_page_size, effective_page_shift; |
| 14882 | boolean_t submap_needed_copy; |
| 14883 | |
| 14884 | if (map == VM_MAP_NULL) { |
| 14885 | /* no address space to work on */ |
| 14886 | return KERN_INVALID_ARGUMENT; |
| 14887 | } |
| 14888 | |
| 14889 | effective_page_shift = vm_self_region_page_shift(target_map: map); |
| 14890 | effective_page_size = (1 << effective_page_shift); |
| 14891 | |
| 14892 | if (*count < VM_REGION_SUBMAP_SHORT_INFO_COUNT_64) { |
| 14893 | /* |
| 14894 | * "info" structure is not big enough and |
| 14895 | * would overflow |
| 14896 | */ |
| 14897 | return KERN_INVALID_ARGUMENT; |
| 14898 | } |
| 14899 | |
| 14900 | do_region_footprint = task_self_region_footprint(); |
| 14901 | original_count = *count; |
| 14902 | |
| 14903 | if (original_count < VM_REGION_SUBMAP_INFO_V0_COUNT_64) { |
| 14904 | *count = VM_REGION_SUBMAP_SHORT_INFO_COUNT_64; |
| 14905 | look_for_pages = FALSE; |
| 14906 | short_info = (vm_region_submap_short_info_64_t) submap_info; |
| 14907 | submap_info = NULL; |
| 14908 | } else { |
| 14909 | look_for_pages = TRUE; |
| 14910 | *count = VM_REGION_SUBMAP_INFO_V0_COUNT_64; |
| 14911 | short_info = NULL; |
| 14912 | |
| 14913 | if (original_count >= VM_REGION_SUBMAP_INFO_V1_COUNT_64) { |
| 14914 | *count = VM_REGION_SUBMAP_INFO_V1_COUNT_64; |
| 14915 | } |
| 14916 | if (original_count >= VM_REGION_SUBMAP_INFO_V2_COUNT_64) { |
| 14917 | *count = VM_REGION_SUBMAP_INFO_V2_COUNT_64; |
| 14918 | } |
| 14919 | } |
| 14920 | |
| 14921 | user_address = *address; |
| 14922 | user_max_depth = *nesting_depth; |
| 14923 | submap_needed_copy = FALSE; |
| 14924 | |
| 14925 | if (not_in_kdp) { |
| 14926 | vm_map_lock_read(map); |
| 14927 | } |
| 14928 | |
| 14929 | recurse_again: |
| 14930 | curr_entry = NULL; |
| 14931 | curr_map = map; |
| 14932 | curr_address = user_address; |
| 14933 | curr_offset = 0; |
| 14934 | curr_skip = 0; |
| 14935 | curr_depth = 0; |
| 14936 | curr_max_above = ((vm_map_offset_t) -1) - curr_address; |
| 14937 | curr_max_below = curr_address; |
| 14938 | |
| 14939 | next_entry = NULL; |
| 14940 | next_map = NULL; |
| 14941 | next_address = 0; |
| 14942 | next_offset = 0; |
| 14943 | next_skip = 0; |
| 14944 | next_depth = 0; |
| 14945 | next_max_above = (vm_map_offset_t) -1; |
| 14946 | next_max_below = (vm_map_offset_t) -1; |
| 14947 | |
| 14948 | for (;;) { |
| 14949 | if (vm_map_lookup_entry(map: curr_map, |
| 14950 | address: curr_address, |
| 14951 | entry: &tmp_entry)) { |
| 14952 | /* tmp_entry contains the address we're looking for */ |
| 14953 | curr_entry = tmp_entry; |
| 14954 | } else { |
| 14955 | vm_map_offset_t skip; |
| 14956 | /* |
| 14957 | * The address is not mapped. "tmp_entry" is the |
| 14958 | * map entry preceding the address. We want the next |
| 14959 | * one, if it exists. |
| 14960 | */ |
| 14961 | curr_entry = tmp_entry->vme_next; |
| 14962 | |
| 14963 | if (curr_entry == vm_map_to_entry(curr_map) || |
| 14964 | (curr_entry->vme_start >= |
| 14965 | curr_address + curr_max_above)) { |
| 14966 | /* no next entry at this level: stop looking */ |
| 14967 | if (not_in_kdp) { |
| 14968 | vm_map_unlock_read(curr_map); |
| 14969 | } |
| 14970 | curr_entry = NULL; |
| 14971 | curr_map = NULL; |
| 14972 | curr_skip = 0; |
| 14973 | curr_offset = 0; |
| 14974 | curr_depth = 0; |
| 14975 | curr_max_above = 0; |
| 14976 | curr_max_below = 0; |
| 14977 | break; |
| 14978 | } |
| 14979 | |
| 14980 | /* adjust current address and offset */ |
| 14981 | skip = curr_entry->vme_start - curr_address; |
| 14982 | curr_address = curr_entry->vme_start; |
| 14983 | curr_skip += skip; |
| 14984 | curr_offset += skip; |
| 14985 | curr_max_above -= skip; |
| 14986 | curr_max_below = 0; |
| 14987 | } |
| 14988 | |
| 14989 | /* |
| 14990 | * Is the next entry at this level closer to the address (or |
| 14991 | * deeper in the submap chain) than the one we had |
| 14992 | * so far ? |
| 14993 | */ |
| 14994 | tmp_entry = curr_entry->vme_next; |
| 14995 | if (tmp_entry == vm_map_to_entry(curr_map)) { |
| 14996 | /* no next entry at this level */ |
| 14997 | } else if (tmp_entry->vme_start >= |
| 14998 | curr_address + curr_max_above) { |
| 14999 | /* |
| 15000 | * tmp_entry is beyond the scope of what we mapped of |
| 15001 | * this submap in the upper level: ignore it. |
| 15002 | */ |
| 15003 | } else if ((next_entry == NULL) || |
| 15004 | (tmp_entry->vme_start + curr_offset <= |
| 15005 | next_entry->vme_start + next_offset)) { |
| 15006 | /* |
| 15007 | * We didn't have a "next_entry" or this one is |
| 15008 | * closer to the address we're looking for: |
| 15009 | * use this "tmp_entry" as the new "next_entry". |
| 15010 | */ |
| 15011 | if (next_entry != NULL) { |
| 15012 | /* unlock the last "next_map" */ |
| 15013 | if (next_map != curr_map && not_in_kdp) { |
| 15014 | vm_map_unlock_read(next_map); |
| 15015 | } |
| 15016 | } |
| 15017 | next_entry = tmp_entry; |
| 15018 | next_map = curr_map; |
| 15019 | next_depth = curr_depth; |
| 15020 | next_address = next_entry->vme_start; |
| 15021 | next_skip = curr_skip; |
| 15022 | next_skip += (next_address - curr_address); |
| 15023 | next_offset = curr_offset; |
| 15024 | next_offset += (next_address - curr_address); |
| 15025 | next_max_above = MIN(next_max_above, curr_max_above); |
| 15026 | next_max_above = MIN(next_max_above, |
| 15027 | next_entry->vme_end - next_address); |
| 15028 | next_max_below = MIN(next_max_below, curr_max_below); |
| 15029 | next_max_below = MIN(next_max_below, |
| 15030 | next_address - next_entry->vme_start); |
| 15031 | } |
| 15032 | |
| 15033 | /* |
| 15034 | * "curr_max_{above,below}" allow us to keep track of the |
| 15035 | * portion of the submap that is actually mapped at this level: |
| 15036 | * the rest of that submap is irrelevant to us, since it's not |
| 15037 | * mapped here. |
| 15038 | * The relevant portion of the map starts at |
| 15039 | * "VME_OFFSET(curr_entry)" up to the size of "curr_entry". |
| 15040 | */ |
| 15041 | curr_max_above = MIN(curr_max_above, |
| 15042 | curr_entry->vme_end - curr_address); |
| 15043 | curr_max_below = MIN(curr_max_below, |
| 15044 | curr_address - curr_entry->vme_start); |
| 15045 | |
| 15046 | if (!curr_entry->is_sub_map || |
| 15047 | curr_depth >= user_max_depth) { |
| 15048 | /* |
| 15049 | * We hit a leaf map or we reached the maximum depth |
| 15050 | * we could, so stop looking. Keep the current map |
| 15051 | * locked. |
| 15052 | */ |
| 15053 | break; |
| 15054 | } |
| 15055 | |
| 15056 | /* |
| 15057 | * Get down to the next submap level. |
| 15058 | */ |
| 15059 | |
| 15060 | if (curr_entry->needs_copy) { |
| 15061 | /* everything below this is effectively copy-on-write */ |
| 15062 | submap_needed_copy = TRUE; |
| 15063 | } |
| 15064 | |
| 15065 | /* |
| 15066 | * Lock the next level and unlock the current level, |
| 15067 | * unless we need to keep it locked to access the "next_entry" |
| 15068 | * later. |
| 15069 | */ |
| 15070 | if (not_in_kdp) { |
| 15071 | vm_map_lock_read(VME_SUBMAP(curr_entry)); |
| 15072 | } |
| 15073 | if (curr_map == next_map) { |
| 15074 | /* keep "next_map" locked in case we need it */ |
| 15075 | } else { |
| 15076 | /* release this map */ |
| 15077 | if (not_in_kdp) { |
| 15078 | vm_map_unlock_read(curr_map); |
| 15079 | } |
| 15080 | } |
| 15081 | |
| 15082 | /* |
| 15083 | * Adjust the offset. "curr_entry" maps the submap |
| 15084 | * at relative address "curr_entry->vme_start" in the |
| 15085 | * curr_map but skips the first "VME_OFFSET(curr_entry)" |
| 15086 | * bytes of the submap. |
| 15087 | * "curr_offset" always represents the offset of a virtual |
| 15088 | * address in the curr_map relative to the absolute address |
| 15089 | * space (i.e. the top-level VM map). |
| 15090 | */ |
| 15091 | curr_offset += |
| 15092 | (VME_OFFSET(entry: curr_entry) - curr_entry->vme_start); |
| 15093 | curr_address = user_address + curr_offset; |
| 15094 | /* switch to the submap */ |
| 15095 | curr_map = VME_SUBMAP(curr_entry); |
| 15096 | curr_depth++; |
| 15097 | curr_entry = NULL; |
| 15098 | } |
| 15099 | |
| 15100 | // LP64todo: all the current tools are 32bit, obviously never worked for 64b |
| 15101 | // so probably should be a real 32b ID vs. ptr. |
| 15102 | // Current users just check for equality |
| 15103 | |
| 15104 | if (curr_entry == NULL) { |
| 15105 | /* no VM region contains the address... */ |
| 15106 | |
| 15107 | if (do_region_footprint && /* we want footprint numbers */ |
| 15108 | next_entry == NULL && /* & there are no more regions */ |
| 15109 | /* & we haven't already provided our fake region: */ |
| 15110 | user_address <= vm_map_last_entry(map)->vme_end) { |
| 15111 | ledger_amount_t ledger_resident, ledger_compressed; |
| 15112 | |
| 15113 | /* |
| 15114 | * Add a fake memory region to account for |
| 15115 | * purgeable and/or ledger-tagged memory that |
| 15116 | * counts towards this task's memory footprint, |
| 15117 | * i.e. the resident/compressed pages of non-volatile |
| 15118 | * objects owned by that task. |
| 15119 | */ |
| 15120 | task_ledgers_footprint(ledger: map->pmap->ledger, |
| 15121 | ledger_resident: &ledger_resident, |
| 15122 | ledger_compressed: &ledger_compressed); |
| 15123 | if (ledger_resident + ledger_compressed == 0) { |
| 15124 | /* no purgeable memory usage to report */ |
| 15125 | return KERN_INVALID_ADDRESS; |
| 15126 | } |
| 15127 | /* fake region to show nonvolatile footprint */ |
| 15128 | if (look_for_pages) { |
| 15129 | submap_info->protection = VM_PROT_DEFAULT; |
| 15130 | submap_info->max_protection = VM_PROT_DEFAULT; |
| 15131 | submap_info->inheritance = VM_INHERIT_DEFAULT; |
| 15132 | submap_info->offset = 0; |
| 15133 | submap_info->user_tag = -1; |
| 15134 | submap_info->pages_resident = (unsigned int) (ledger_resident / effective_page_size); |
| 15135 | submap_info->pages_shared_now_private = 0; |
| 15136 | submap_info->pages_swapped_out = (unsigned int) (ledger_compressed / effective_page_size); |
| 15137 | submap_info->pages_dirtied = submap_info->pages_resident; |
| 15138 | submap_info->ref_count = 1; |
| 15139 | submap_info->shadow_depth = 0; |
| 15140 | submap_info->external_pager = 0; |
| 15141 | submap_info->share_mode = SM_PRIVATE; |
| 15142 | if (submap_needed_copy) { |
| 15143 | submap_info->share_mode = SM_COW; |
| 15144 | } |
| 15145 | submap_info->is_submap = 0; |
| 15146 | submap_info->behavior = VM_BEHAVIOR_DEFAULT; |
| 15147 | submap_info->object_id = VM_OBJECT_ID_FAKE(map, task_ledgers.purgeable_nonvolatile); |
| 15148 | submap_info->user_wired_count = 0; |
| 15149 | submap_info->pages_reusable = 0; |
| 15150 | } else { |
| 15151 | short_info->user_tag = -1; |
| 15152 | short_info->offset = 0; |
| 15153 | short_info->protection = VM_PROT_DEFAULT; |
| 15154 | short_info->inheritance = VM_INHERIT_DEFAULT; |
| 15155 | short_info->max_protection = VM_PROT_DEFAULT; |
| 15156 | short_info->behavior = VM_BEHAVIOR_DEFAULT; |
| 15157 | short_info->user_wired_count = 0; |
| 15158 | short_info->is_submap = 0; |
| 15159 | short_info->object_id = VM_OBJECT_ID_FAKE(map, task_ledgers.purgeable_nonvolatile); |
| 15160 | short_info->external_pager = 0; |
| 15161 | short_info->shadow_depth = 0; |
| 15162 | short_info->share_mode = SM_PRIVATE; |
| 15163 | if (submap_needed_copy) { |
| 15164 | short_info->share_mode = SM_COW; |
| 15165 | } |
| 15166 | short_info->ref_count = 1; |
| 15167 | } |
| 15168 | *nesting_depth = 0; |
| 15169 | *size = (vm_map_size_t) (ledger_resident + ledger_compressed); |
| 15170 | // *address = user_address; |
| 15171 | *address = vm_map_last_entry(map)->vme_end; |
| 15172 | return KERN_SUCCESS; |
| 15173 | } |
| 15174 | |
| 15175 | if (next_entry == NULL) { |
| 15176 | /* ... and no VM region follows it either */ |
| 15177 | return KERN_INVALID_ADDRESS; |
| 15178 | } |
| 15179 | /* ... gather info about the next VM region */ |
| 15180 | curr_entry = next_entry; |
| 15181 | curr_map = next_map; /* still locked ... */ |
| 15182 | curr_address = next_address; |
| 15183 | curr_skip = next_skip; |
| 15184 | curr_offset = next_offset; |
| 15185 | curr_depth = next_depth; |
| 15186 | curr_max_above = next_max_above; |
| 15187 | curr_max_below = next_max_below; |
| 15188 | } else { |
| 15189 | /* we won't need "next_entry" after all */ |
| 15190 | if (next_entry != NULL) { |
| 15191 | /* release "next_map" */ |
| 15192 | if (next_map != curr_map && not_in_kdp) { |
| 15193 | vm_map_unlock_read(next_map); |
| 15194 | } |
| 15195 | } |
| 15196 | } |
| 15197 | next_entry = NULL; |
| 15198 | next_map = NULL; |
| 15199 | next_offset = 0; |
| 15200 | next_skip = 0; |
| 15201 | next_depth = 0; |
| 15202 | next_max_below = -1; |
| 15203 | next_max_above = -1; |
| 15204 | |
| 15205 | if (curr_entry->is_sub_map && |
| 15206 | curr_depth < user_max_depth) { |
| 15207 | /* |
| 15208 | * We're not as deep as we could be: we must have |
| 15209 | * gone back up after not finding anything mapped |
| 15210 | * below the original top-level map entry's. |
| 15211 | * Let's move "curr_address" forward and recurse again. |
| 15212 | */ |
| 15213 | user_address = curr_address; |
| 15214 | goto recurse_again; |
| 15215 | } |
| 15216 | |
| 15217 | *nesting_depth = curr_depth; |
| 15218 | *size = curr_max_above + curr_max_below; |
| 15219 | *address = user_address + curr_skip - curr_max_below; |
| 15220 | |
| 15221 | if (look_for_pages) { |
| 15222 | submap_info->user_tag = VME_ALIAS(curr_entry); |
| 15223 | submap_info->offset = VME_OFFSET(entry: curr_entry); |
| 15224 | submap_info->protection = curr_entry->protection; |
| 15225 | submap_info->inheritance = curr_entry->inheritance; |
| 15226 | submap_info->max_protection = curr_entry->max_protection; |
| 15227 | submap_info->behavior = curr_entry->behavior; |
| 15228 | submap_info->user_wired_count = curr_entry->user_wired_count; |
| 15229 | submap_info->is_submap = curr_entry->is_sub_map; |
| 15230 | if (curr_entry->is_sub_map) { |
| 15231 | submap_info->object_id = VM_OBJECT_ID(VME_SUBMAP(curr_entry)); |
| 15232 | } else { |
| 15233 | submap_info->object_id = VM_OBJECT_ID(VME_OBJECT(curr_entry)); |
| 15234 | } |
| 15235 | } else { |
| 15236 | short_info->user_tag = VME_ALIAS(curr_entry); |
| 15237 | short_info->offset = VME_OFFSET(entry: curr_entry); |
| 15238 | short_info->protection = curr_entry->protection; |
| 15239 | short_info->inheritance = curr_entry->inheritance; |
| 15240 | short_info->max_protection = curr_entry->max_protection; |
| 15241 | short_info->behavior = curr_entry->behavior; |
| 15242 | short_info->user_wired_count = curr_entry->user_wired_count; |
| 15243 | short_info->is_submap = curr_entry->is_sub_map; |
| 15244 | if (curr_entry->is_sub_map) { |
| 15245 | short_info->object_id = VM_OBJECT_ID(VME_SUBMAP(curr_entry)); |
| 15246 | } else { |
| 15247 | short_info->object_id = VM_OBJECT_ID(VME_OBJECT(curr_entry)); |
| 15248 | } |
| 15249 | } |
| 15250 | |
| 15251 | extended.pages_resident = 0; |
| 15252 | extended.pages_swapped_out = 0; |
| 15253 | extended.pages_shared_now_private = 0; |
| 15254 | extended.pages_dirtied = 0; |
| 15255 | extended.pages_reusable = 0; |
| 15256 | extended.external_pager = 0; |
| 15257 | extended.shadow_depth = 0; |
| 15258 | extended.share_mode = SM_EMPTY; |
| 15259 | extended.ref_count = 0; |
| 15260 | |
| 15261 | if (not_in_kdp) { |
| 15262 | if (!curr_entry->is_sub_map) { |
| 15263 | vm_map_offset_t range_start, range_end; |
| 15264 | range_start = MAX((curr_address - curr_max_below), |
| 15265 | curr_entry->vme_start); |
| 15266 | range_end = MIN((curr_address + curr_max_above), |
| 15267 | curr_entry->vme_end); |
| 15268 | vm_map_region_walk(map: curr_map, |
| 15269 | va: range_start, |
| 15270 | entry: curr_entry, |
| 15271 | offset: (VME_OFFSET(entry: curr_entry) + |
| 15272 | (range_start - |
| 15273 | curr_entry->vme_start)), |
| 15274 | range: range_end - range_start, |
| 15275 | extended: &extended, |
| 15276 | look_for_pages, VM_REGION_EXTENDED_INFO_COUNT); |
| 15277 | if (extended.external_pager && |
| 15278 | extended.ref_count == 2 && |
| 15279 | extended.share_mode == SM_SHARED) { |
| 15280 | extended.share_mode = SM_PRIVATE; |
| 15281 | } |
| 15282 | if (submap_needed_copy) { |
| 15283 | extended.share_mode = SM_COW; |
| 15284 | } |
| 15285 | } else { |
| 15286 | if (curr_entry->use_pmap) { |
| 15287 | extended.share_mode = SM_TRUESHARED; |
| 15288 | } else { |
| 15289 | extended.share_mode = SM_PRIVATE; |
| 15290 | } |
| 15291 | extended.ref_count = os_ref_get_count_raw(rc: &VME_SUBMAP(curr_entry)->map_refcnt); |
| 15292 | } |
| 15293 | } |
| 15294 | |
| 15295 | if (look_for_pages) { |
| 15296 | submap_info->pages_resident = extended.pages_resident; |
| 15297 | submap_info->pages_swapped_out = extended.pages_swapped_out; |
| 15298 | submap_info->pages_shared_now_private = |
| 15299 | extended.pages_shared_now_private; |
| 15300 | submap_info->pages_dirtied = extended.pages_dirtied; |
| 15301 | submap_info->external_pager = extended.external_pager; |
| 15302 | submap_info->shadow_depth = extended.shadow_depth; |
| 15303 | submap_info->share_mode = extended.share_mode; |
| 15304 | submap_info->ref_count = extended.ref_count; |
| 15305 | |
| 15306 | if (original_count >= VM_REGION_SUBMAP_INFO_V1_COUNT_64) { |
| 15307 | submap_info->pages_reusable = extended.pages_reusable; |
| 15308 | } |
| 15309 | if (original_count >= VM_REGION_SUBMAP_INFO_V2_COUNT_64) { |
| 15310 | if (curr_entry->is_sub_map) { |
| 15311 | submap_info->object_id_full = (vm_object_id_t)VM_KERNEL_ADDRHASH(VME_SUBMAP(curr_entry)); |
| 15312 | } else if (VME_OBJECT(curr_entry)) { |
| 15313 | submap_info->object_id_full = (vm_object_id_t)VM_KERNEL_ADDRHASH(VME_OBJECT(curr_entry)); |
| 15314 | } else { |
| 15315 | submap_info->object_id_full = 0ull; |
| 15316 | } |
| 15317 | } |
| 15318 | } else { |
| 15319 | short_info->external_pager = extended.external_pager; |
| 15320 | short_info->shadow_depth = extended.shadow_depth; |
| 15321 | short_info->share_mode = extended.share_mode; |
| 15322 | short_info->ref_count = extended.ref_count; |
| 15323 | } |
| 15324 | |
| 15325 | if (not_in_kdp) { |
| 15326 | vm_map_unlock_read(curr_map); |
| 15327 | } |
| 15328 | |
| 15329 | return KERN_SUCCESS; |
| 15330 | } |
| 15331 | |
| 15332 | /* |
| 15333 | * vm_region: |
| 15334 | * |
| 15335 | * User call to obtain information about a region in |
| 15336 | * a task's address map. Currently, only one flavor is |
| 15337 | * supported. |
| 15338 | * |
| 15339 | * XXX The reserved and behavior fields cannot be filled |
| 15340 | * in until the vm merge from the IK is completed, and |
| 15341 | * vm_reserve is implemented. |
| 15342 | */ |
| 15343 | |
| 15344 | kern_return_t |
| 15345 | vm_map_region( |
| 15346 | vm_map_t map, |
| 15347 | vm_map_offset_t *address, /* IN/OUT */ |
| 15348 | vm_map_size_t *size, /* OUT */ |
| 15349 | vm_region_flavor_t flavor, /* IN */ |
| 15350 | vm_region_info_t info, /* OUT */ |
| 15351 | mach_msg_type_number_t *count, /* IN/OUT */ |
| 15352 | mach_port_t *object_name) /* OUT */ |
| 15353 | { |
| 15354 | vm_map_entry_t tmp_entry; |
| 15355 | vm_map_entry_t entry; |
| 15356 | vm_map_offset_t start; |
| 15357 | |
| 15358 | if (map == VM_MAP_NULL) { |
| 15359 | return KERN_INVALID_ARGUMENT; |
| 15360 | } |
| 15361 | |
| 15362 | switch (flavor) { |
| 15363 | case VM_REGION_BASIC_INFO: |
| 15364 | /* legacy for old 32-bit objects info */ |
| 15365 | { |
| 15366 | vm_region_basic_info_t basic; |
| 15367 | |
| 15368 | if (*count < VM_REGION_BASIC_INFO_COUNT) { |
| 15369 | return KERN_INVALID_ARGUMENT; |
| 15370 | } |
| 15371 | |
| 15372 | basic = (vm_region_basic_info_t) info; |
| 15373 | *count = VM_REGION_BASIC_INFO_COUNT; |
| 15374 | |
| 15375 | vm_map_lock_read(map); |
| 15376 | |
| 15377 | start = *address; |
| 15378 | if (!vm_map_lookup_entry(map, address: start, entry: &tmp_entry)) { |
| 15379 | if ((entry = tmp_entry->vme_next) == vm_map_to_entry(map)) { |
| 15380 | vm_map_unlock_read(map); |
| 15381 | return KERN_INVALID_ADDRESS; |
| 15382 | } |
| 15383 | } else { |
| 15384 | entry = tmp_entry; |
| 15385 | } |
| 15386 | |
| 15387 | start = entry->vme_start; |
| 15388 | |
| 15389 | basic->offset = (uint32_t)VME_OFFSET(entry); |
| 15390 | basic->protection = entry->protection; |
| 15391 | basic->inheritance = entry->inheritance; |
| 15392 | basic->max_protection = entry->max_protection; |
| 15393 | basic->behavior = entry->behavior; |
| 15394 | basic->user_wired_count = entry->user_wired_count; |
| 15395 | basic->reserved = entry->is_sub_map; |
| 15396 | *address = start; |
| 15397 | *size = (entry->vme_end - start); |
| 15398 | |
| 15399 | if (object_name) { |
| 15400 | *object_name = IP_NULL; |
| 15401 | } |
| 15402 | if (entry->is_sub_map) { |
| 15403 | basic->shared = FALSE; |
| 15404 | } else { |
| 15405 | basic->shared = entry->is_shared; |
| 15406 | } |
| 15407 | |
| 15408 | vm_map_unlock_read(map); |
| 15409 | return KERN_SUCCESS; |
| 15410 | } |
| 15411 | |
| 15412 | case VM_REGION_BASIC_INFO_64: |
| 15413 | { |
| 15414 | vm_region_basic_info_64_t basic; |
| 15415 | |
| 15416 | if (*count < VM_REGION_BASIC_INFO_COUNT_64) { |
| 15417 | return KERN_INVALID_ARGUMENT; |
| 15418 | } |
| 15419 | |
| 15420 | basic = (vm_region_basic_info_64_t) info; |
| 15421 | *count = VM_REGION_BASIC_INFO_COUNT_64; |
| 15422 | |
| 15423 | vm_map_lock_read(map); |
| 15424 | |
| 15425 | start = *address; |
| 15426 | if (!vm_map_lookup_entry(map, address: start, entry: &tmp_entry)) { |
| 15427 | if ((entry = tmp_entry->vme_next) == vm_map_to_entry(map)) { |
| 15428 | vm_map_unlock_read(map); |
| 15429 | return KERN_INVALID_ADDRESS; |
| 15430 | } |
| 15431 | } else { |
| 15432 | entry = tmp_entry; |
| 15433 | } |
| 15434 | |
| 15435 | start = entry->vme_start; |
| 15436 | |
| 15437 | basic->offset = VME_OFFSET(entry); |
| 15438 | basic->protection = entry->protection; |
| 15439 | basic->inheritance = entry->inheritance; |
| 15440 | basic->max_protection = entry->max_protection; |
| 15441 | basic->behavior = entry->behavior; |
| 15442 | basic->user_wired_count = entry->user_wired_count; |
| 15443 | basic->reserved = entry->is_sub_map; |
| 15444 | *address = start; |
| 15445 | *size = (entry->vme_end - start); |
| 15446 | |
| 15447 | if (object_name) { |
| 15448 | *object_name = IP_NULL; |
| 15449 | } |
| 15450 | if (entry->is_sub_map) { |
| 15451 | basic->shared = FALSE; |
| 15452 | } else { |
| 15453 | basic->shared = entry->is_shared; |
| 15454 | } |
| 15455 | |
| 15456 | vm_map_unlock_read(map); |
| 15457 | return KERN_SUCCESS; |
| 15458 | } |
| 15459 | case VM_REGION_EXTENDED_INFO: |
| 15460 | if (*count < VM_REGION_EXTENDED_INFO_COUNT) { |
| 15461 | return KERN_INVALID_ARGUMENT; |
| 15462 | } |
| 15463 | OS_FALLTHROUGH; |
| 15464 | case VM_REGION_EXTENDED_INFO__legacy: |
| 15465 | if (*count < VM_REGION_EXTENDED_INFO_COUNT__legacy) { |
| 15466 | return KERN_INVALID_ARGUMENT; |
| 15467 | } |
| 15468 | |
| 15469 | { |
| 15470 | vm_region_extended_info_t extended; |
| 15471 | mach_msg_type_number_t original_count; |
| 15472 | int effective_page_size, effective_page_shift; |
| 15473 | |
| 15474 | extended = (vm_region_extended_info_t) info; |
| 15475 | |
| 15476 | effective_page_shift = vm_self_region_page_shift(target_map: map); |
| 15477 | effective_page_size = (1 << effective_page_shift); |
| 15478 | |
| 15479 | vm_map_lock_read(map); |
| 15480 | |
| 15481 | start = *address; |
| 15482 | if (!vm_map_lookup_entry(map, address: start, entry: &tmp_entry)) { |
| 15483 | if ((entry = tmp_entry->vme_next) == vm_map_to_entry(map)) { |
| 15484 | vm_map_unlock_read(map); |
| 15485 | return KERN_INVALID_ADDRESS; |
| 15486 | } |
| 15487 | } else { |
| 15488 | entry = tmp_entry; |
| 15489 | } |
| 15490 | start = entry->vme_start; |
| 15491 | |
| 15492 | extended->protection = entry->protection; |
| 15493 | extended->user_tag = VME_ALIAS(entry); |
| 15494 | extended->pages_resident = 0; |
| 15495 | extended->pages_swapped_out = 0; |
| 15496 | extended->pages_shared_now_private = 0; |
| 15497 | extended->pages_dirtied = 0; |
| 15498 | extended->external_pager = 0; |
| 15499 | extended->shadow_depth = 0; |
| 15500 | |
| 15501 | original_count = *count; |
| 15502 | if (flavor == VM_REGION_EXTENDED_INFO__legacy) { |
| 15503 | *count = VM_REGION_EXTENDED_INFO_COUNT__legacy; |
| 15504 | } else { |
| 15505 | extended->pages_reusable = 0; |
| 15506 | *count = VM_REGION_EXTENDED_INFO_COUNT; |
| 15507 | } |
| 15508 | |
| 15509 | vm_map_region_walk(map, va: start, entry, offset: VME_OFFSET(entry), range: entry->vme_end - start, extended, TRUE, count: *count); |
| 15510 | |
| 15511 | if (extended->external_pager && extended->ref_count == 2 && extended->share_mode == SM_SHARED) { |
| 15512 | extended->share_mode = SM_PRIVATE; |
| 15513 | } |
| 15514 | |
| 15515 | if (object_name) { |
| 15516 | *object_name = IP_NULL; |
| 15517 | } |
| 15518 | *address = start; |
| 15519 | *size = (entry->vme_end - start); |
| 15520 | |
| 15521 | vm_map_unlock_read(map); |
| 15522 | return KERN_SUCCESS; |
| 15523 | } |
| 15524 | case VM_REGION_TOP_INFO: |
| 15525 | { |
| 15526 | vm_region_top_info_t top; |
| 15527 | |
| 15528 | if (*count < VM_REGION_TOP_INFO_COUNT) { |
| 15529 | return KERN_INVALID_ARGUMENT; |
| 15530 | } |
| 15531 | |
| 15532 | top = (vm_region_top_info_t) info; |
| 15533 | *count = VM_REGION_TOP_INFO_COUNT; |
| 15534 | |
| 15535 | vm_map_lock_read(map); |
| 15536 | |
| 15537 | start = *address; |
| 15538 | if (!vm_map_lookup_entry(map, address: start, entry: &tmp_entry)) { |
| 15539 | if ((entry = tmp_entry->vme_next) == vm_map_to_entry(map)) { |
| 15540 | vm_map_unlock_read(map); |
| 15541 | return KERN_INVALID_ADDRESS; |
| 15542 | } |
| 15543 | } else { |
| 15544 | entry = tmp_entry; |
| 15545 | } |
| 15546 | start = entry->vme_start; |
| 15547 | |
| 15548 | top->private_pages_resident = 0; |
| 15549 | top->shared_pages_resident = 0; |
| 15550 | |
| 15551 | vm_map_region_top_walk(entry, top); |
| 15552 | |
| 15553 | if (object_name) { |
| 15554 | *object_name = IP_NULL; |
| 15555 | } |
| 15556 | *address = start; |
| 15557 | *size = (entry->vme_end - start); |
| 15558 | |
| 15559 | vm_map_unlock_read(map); |
| 15560 | return KERN_SUCCESS; |
| 15561 | } |
| 15562 | default: |
| 15563 | return KERN_INVALID_ARGUMENT; |
| 15564 | } |
| 15565 | } |
| 15566 | |
| 15567 | #define OBJ_RESIDENT_COUNT(obj, entry_size) \ |
| 15568 | MIN((entry_size), \ |
| 15569 | ((obj)->all_reusable ? \ |
| 15570 | (obj)->wired_page_count : \ |
| 15571 | (obj)->resident_page_count - (obj)->reusable_page_count)) |
| 15572 | |
| 15573 | void |
| 15574 | vm_map_region_top_walk( |
| 15575 | vm_map_entry_t entry, |
| 15576 | vm_region_top_info_t top) |
| 15577 | { |
| 15578 | if (entry->is_sub_map || VME_OBJECT(entry) == 0) { |
| 15579 | top->share_mode = SM_EMPTY; |
| 15580 | top->ref_count = 0; |
| 15581 | top->obj_id = 0; |
| 15582 | return; |
| 15583 | } |
| 15584 | |
| 15585 | { |
| 15586 | struct vm_object *obj, *tmp_obj; |
| 15587 | int ref_count; |
| 15588 | uint32_t entry_size; |
| 15589 | |
| 15590 | entry_size = (uint32_t) ((entry->vme_end - entry->vme_start) / PAGE_SIZE_64); |
| 15591 | |
| 15592 | obj = VME_OBJECT(entry); |
| 15593 | |
| 15594 | vm_object_lock(obj); |
| 15595 | |
| 15596 | if ((ref_count = obj->ref_count) > 1 && obj->paging_in_progress) { |
| 15597 | ref_count--; |
| 15598 | } |
| 15599 | |
| 15600 | assert(obj->reusable_page_count <= obj->resident_page_count); |
| 15601 | if (obj->shadow) { |
| 15602 | if (ref_count == 1) { |
| 15603 | top->private_pages_resident = |
| 15604 | OBJ_RESIDENT_COUNT(obj, entry_size); |
| 15605 | } else { |
| 15606 | top->shared_pages_resident = |
| 15607 | OBJ_RESIDENT_COUNT(obj, entry_size); |
| 15608 | } |
| 15609 | top->ref_count = ref_count; |
| 15610 | top->share_mode = SM_COW; |
| 15611 | |
| 15612 | while ((tmp_obj = obj->shadow)) { |
| 15613 | vm_object_lock(tmp_obj); |
| 15614 | vm_object_unlock(obj); |
| 15615 | obj = tmp_obj; |
| 15616 | |
| 15617 | if ((ref_count = obj->ref_count) > 1 && obj->paging_in_progress) { |
| 15618 | ref_count--; |
| 15619 | } |
| 15620 | |
| 15621 | assert(obj->reusable_page_count <= obj->resident_page_count); |
| 15622 | top->shared_pages_resident += |
| 15623 | OBJ_RESIDENT_COUNT(obj, entry_size); |
| 15624 | top->ref_count += ref_count - 1; |
| 15625 | } |
| 15626 | } else { |
| 15627 | if (entry->superpage_size) { |
| 15628 | top->share_mode = SM_LARGE_PAGE; |
| 15629 | top->shared_pages_resident = 0; |
| 15630 | top->private_pages_resident = entry_size; |
| 15631 | } else if (entry->needs_copy) { |
| 15632 | top->share_mode = SM_COW; |
| 15633 | top->shared_pages_resident = |
| 15634 | OBJ_RESIDENT_COUNT(obj, entry_size); |
| 15635 | } else { |
| 15636 | if (ref_count == 1 || |
| 15637 | (ref_count == 2 && obj->named)) { |
| 15638 | top->share_mode = SM_PRIVATE; |
| 15639 | top->private_pages_resident = |
| 15640 | OBJ_RESIDENT_COUNT(obj, |
| 15641 | entry_size); |
| 15642 | } else { |
| 15643 | top->share_mode = SM_SHARED; |
| 15644 | top->shared_pages_resident = |
| 15645 | OBJ_RESIDENT_COUNT(obj, |
| 15646 | entry_size); |
| 15647 | } |
| 15648 | } |
| 15649 | top->ref_count = ref_count; |
| 15650 | } |
| 15651 | |
| 15652 | vm_object_unlock(obj); |
| 15653 | |
| 15654 | /* XXX K64: obj_id will be truncated */ |
| 15655 | top->obj_id = (unsigned int) (uintptr_t)VM_KERNEL_ADDRHASH(obj); |
| 15656 | } |
| 15657 | } |
| 15658 | |
| 15659 | void |
| 15660 | vm_map_region_walk( |
| 15661 | vm_map_t map, |
| 15662 | vm_map_offset_t va, |
| 15663 | vm_map_entry_t entry, |
| 15664 | vm_object_offset_t offset, |
| 15665 | vm_object_size_t range, |
| 15666 | vm_region_extended_info_t extended, |
| 15667 | boolean_t look_for_pages, |
| 15668 | mach_msg_type_number_t count) |
| 15669 | { |
| 15670 | struct vm_object *obj, *tmp_obj; |
| 15671 | vm_map_offset_t last_offset; |
| 15672 | int i; |
| 15673 | int ref_count; |
| 15674 | struct vm_object *shadow_object; |
| 15675 | unsigned short shadow_depth; |
| 15676 | boolean_t ; |
| 15677 | int effective_page_size, effective_page_shift; |
| 15678 | vm_map_offset_t effective_page_mask; |
| 15679 | |
| 15680 | do_region_footprint = task_self_region_footprint(); |
| 15681 | |
| 15682 | if ((entry->is_sub_map) || |
| 15683 | (VME_OBJECT(entry) == 0) || |
| 15684 | (VME_OBJECT(entry)->phys_contiguous && |
| 15685 | !entry->superpage_size)) { |
| 15686 | extended->share_mode = SM_EMPTY; |
| 15687 | extended->ref_count = 0; |
| 15688 | return; |
| 15689 | } |
| 15690 | |
| 15691 | if (entry->superpage_size) { |
| 15692 | extended->shadow_depth = 0; |
| 15693 | extended->share_mode = SM_LARGE_PAGE; |
| 15694 | extended->ref_count = 1; |
| 15695 | extended->external_pager = 0; |
| 15696 | |
| 15697 | /* TODO4K: Superpage in 4k mode? */ |
| 15698 | extended->pages_resident = (unsigned int)(range >> PAGE_SHIFT); |
| 15699 | extended->shadow_depth = 0; |
| 15700 | return; |
| 15701 | } |
| 15702 | |
| 15703 | effective_page_shift = vm_self_region_page_shift(target_map: map); |
| 15704 | effective_page_size = (1 << effective_page_shift); |
| 15705 | effective_page_mask = effective_page_size - 1; |
| 15706 | |
| 15707 | offset = vm_map_trunc_page(offset, effective_page_mask); |
| 15708 | |
| 15709 | obj = VME_OBJECT(entry); |
| 15710 | |
| 15711 | vm_object_lock(obj); |
| 15712 | |
| 15713 | if ((ref_count = obj->ref_count) > 1 && obj->paging_in_progress) { |
| 15714 | ref_count--; |
| 15715 | } |
| 15716 | |
| 15717 | if (look_for_pages) { |
| 15718 | for (last_offset = offset + range; |
| 15719 | offset < last_offset; |
| 15720 | offset += effective_page_size, va += effective_page_size) { |
| 15721 | if (do_region_footprint) { |
| 15722 | int disp; |
| 15723 | |
| 15724 | disp = 0; |
| 15725 | if (map->has_corpse_footprint) { |
| 15726 | /* |
| 15727 | * Query the page info data we saved |
| 15728 | * while forking the corpse. |
| 15729 | */ |
| 15730 | vm_map_corpse_footprint_query_page_info( |
| 15731 | map, |
| 15732 | va, |
| 15733 | disposition_p: &disp); |
| 15734 | } else { |
| 15735 | /* |
| 15736 | * Query the pmap. |
| 15737 | */ |
| 15738 | vm_map_footprint_query_page_info( |
| 15739 | map, |
| 15740 | map_entry: entry, |
| 15741 | curr_s_offset: va, |
| 15742 | disposition_p: &disp); |
| 15743 | } |
| 15744 | if (disp & VM_PAGE_QUERY_PAGE_PRESENT) { |
| 15745 | extended->pages_resident++; |
| 15746 | } |
| 15747 | if (disp & VM_PAGE_QUERY_PAGE_REUSABLE) { |
| 15748 | extended->pages_reusable++; |
| 15749 | } |
| 15750 | if (disp & VM_PAGE_QUERY_PAGE_DIRTY) { |
| 15751 | extended->pages_dirtied++; |
| 15752 | } |
| 15753 | if (disp & PMAP_QUERY_PAGE_COMPRESSED) { |
| 15754 | extended->pages_swapped_out++; |
| 15755 | } |
| 15756 | continue; |
| 15757 | } |
| 15758 | |
| 15759 | vm_map_region_look_for_page(map, va, object: obj, |
| 15760 | vm_object_trunc_page(offset), max_refcnt: ref_count, |
| 15761 | depth: 0, extended, count); |
| 15762 | } |
| 15763 | |
| 15764 | if (do_region_footprint) { |
| 15765 | goto collect_object_info; |
| 15766 | } |
| 15767 | } else { |
| 15768 | collect_object_info: |
| 15769 | shadow_object = obj->shadow; |
| 15770 | shadow_depth = 0; |
| 15771 | |
| 15772 | if (!(obj->internal)) { |
| 15773 | extended->external_pager = 1; |
| 15774 | } |
| 15775 | |
| 15776 | if (shadow_object != VM_OBJECT_NULL) { |
| 15777 | vm_object_lock(shadow_object); |
| 15778 | for (; |
| 15779 | shadow_object != VM_OBJECT_NULL; |
| 15780 | shadow_depth++) { |
| 15781 | vm_object_t next_shadow; |
| 15782 | |
| 15783 | if (!(shadow_object->internal)) { |
| 15784 | extended->external_pager = 1; |
| 15785 | } |
| 15786 | |
| 15787 | next_shadow = shadow_object->shadow; |
| 15788 | if (next_shadow) { |
| 15789 | vm_object_lock(next_shadow); |
| 15790 | } |
| 15791 | vm_object_unlock(shadow_object); |
| 15792 | shadow_object = next_shadow; |
| 15793 | } |
| 15794 | } |
| 15795 | extended->shadow_depth = shadow_depth; |
| 15796 | } |
| 15797 | |
| 15798 | if (extended->shadow_depth || entry->needs_copy) { |
| 15799 | extended->share_mode = SM_COW; |
| 15800 | } else { |
| 15801 | if (ref_count == 1) { |
| 15802 | extended->share_mode = SM_PRIVATE; |
| 15803 | } else { |
| 15804 | if (obj->true_share) { |
| 15805 | extended->share_mode = SM_TRUESHARED; |
| 15806 | } else { |
| 15807 | extended->share_mode = SM_SHARED; |
| 15808 | } |
| 15809 | } |
| 15810 | } |
| 15811 | extended->ref_count = ref_count - extended->shadow_depth; |
| 15812 | |
| 15813 | for (i = 0; i < extended->shadow_depth; i++) { |
| 15814 | if ((tmp_obj = obj->shadow) == 0) { |
| 15815 | break; |
| 15816 | } |
| 15817 | vm_object_lock(tmp_obj); |
| 15818 | vm_object_unlock(obj); |
| 15819 | |
| 15820 | if ((ref_count = tmp_obj->ref_count) > 1 && tmp_obj->paging_in_progress) { |
| 15821 | ref_count--; |
| 15822 | } |
| 15823 | |
| 15824 | extended->ref_count += ref_count; |
| 15825 | obj = tmp_obj; |
| 15826 | } |
| 15827 | vm_object_unlock(obj); |
| 15828 | |
| 15829 | if (extended->share_mode == SM_SHARED) { |
| 15830 | vm_map_entry_t cur; |
| 15831 | vm_map_entry_t last; |
| 15832 | int my_refs; |
| 15833 | |
| 15834 | obj = VME_OBJECT(entry); |
| 15835 | last = vm_map_to_entry(map); |
| 15836 | my_refs = 0; |
| 15837 | |
| 15838 | if ((ref_count = obj->ref_count) > 1 && obj->paging_in_progress) { |
| 15839 | ref_count--; |
| 15840 | } |
| 15841 | for (cur = vm_map_first_entry(map); cur != last; cur = cur->vme_next) { |
| 15842 | my_refs += vm_map_region_count_obj_refs(entry: cur, object: obj); |
| 15843 | } |
| 15844 | |
| 15845 | if (my_refs == ref_count) { |
| 15846 | extended->share_mode = SM_PRIVATE_ALIASED; |
| 15847 | } else if (my_refs > 1) { |
| 15848 | extended->share_mode = SM_SHARED_ALIASED; |
| 15849 | } |
| 15850 | } |
| 15851 | } |
| 15852 | |
| 15853 | |
| 15854 | /* object is locked on entry and locked on return */ |
| 15855 | |
| 15856 | |
| 15857 | static void |
| 15858 | vm_map_region_look_for_page( |
| 15859 | __unused vm_map_t map, |
| 15860 | __unused vm_map_offset_t va, |
| 15861 | vm_object_t object, |
| 15862 | vm_object_offset_t offset, |
| 15863 | int max_refcnt, |
| 15864 | unsigned short depth, |
| 15865 | vm_region_extended_info_t extended, |
| 15866 | mach_msg_type_number_t count) |
| 15867 | { |
| 15868 | vm_page_t p; |
| 15869 | vm_object_t shadow; |
| 15870 | int ref_count; |
| 15871 | vm_object_t caller_object; |
| 15872 | |
| 15873 | shadow = object->shadow; |
| 15874 | caller_object = object; |
| 15875 | |
| 15876 | |
| 15877 | while (TRUE) { |
| 15878 | if (!(object->internal)) { |
| 15879 | extended->external_pager = 1; |
| 15880 | } |
| 15881 | |
| 15882 | if ((p = vm_page_lookup(object, offset)) != VM_PAGE_NULL) { |
| 15883 | if (shadow && (max_refcnt == 1)) { |
| 15884 | extended->pages_shared_now_private++; |
| 15885 | } |
| 15886 | |
| 15887 | if (!p->vmp_fictitious && |
| 15888 | (p->vmp_dirty || pmap_is_modified(pn: VM_PAGE_GET_PHYS_PAGE(m: p)))) { |
| 15889 | extended->pages_dirtied++; |
| 15890 | } else if (count >= VM_REGION_EXTENDED_INFO_COUNT) { |
| 15891 | if (p->vmp_reusable || object->all_reusable) { |
| 15892 | extended->pages_reusable++; |
| 15893 | } |
| 15894 | } |
| 15895 | |
| 15896 | extended->pages_resident++; |
| 15897 | |
| 15898 | if (object != caller_object) { |
| 15899 | vm_object_unlock(object); |
| 15900 | } |
| 15901 | |
| 15902 | return; |
| 15903 | } |
| 15904 | if (object->internal && |
| 15905 | object->alive && |
| 15906 | !object->terminating && |
| 15907 | object->pager_ready) { |
| 15908 | if (VM_COMPRESSOR_PAGER_STATE_GET(object, offset) |
| 15909 | == VM_EXTERNAL_STATE_EXISTS) { |
| 15910 | /* the pager has that page */ |
| 15911 | extended->pages_swapped_out++; |
| 15912 | if (object != caller_object) { |
| 15913 | vm_object_unlock(object); |
| 15914 | } |
| 15915 | return; |
| 15916 | } |
| 15917 | } |
| 15918 | |
| 15919 | if (shadow) { |
| 15920 | vm_object_lock(shadow); |
| 15921 | |
| 15922 | if ((ref_count = shadow->ref_count) > 1 && shadow->paging_in_progress) { |
| 15923 | ref_count--; |
| 15924 | } |
| 15925 | |
| 15926 | if (++depth > extended->shadow_depth) { |
| 15927 | extended->shadow_depth = depth; |
| 15928 | } |
| 15929 | |
| 15930 | if (ref_count > max_refcnt) { |
| 15931 | max_refcnt = ref_count; |
| 15932 | } |
| 15933 | |
| 15934 | if (object != caller_object) { |
| 15935 | vm_object_unlock(object); |
| 15936 | } |
| 15937 | |
| 15938 | offset = offset + object->vo_shadow_offset; |
| 15939 | object = shadow; |
| 15940 | shadow = object->shadow; |
| 15941 | continue; |
| 15942 | } |
| 15943 | if (object != caller_object) { |
| 15944 | vm_object_unlock(object); |
| 15945 | } |
| 15946 | break; |
| 15947 | } |
| 15948 | } |
| 15949 | |
| 15950 | static int |
| 15951 | vm_map_region_count_obj_refs( |
| 15952 | vm_map_entry_t entry, |
| 15953 | vm_object_t object) |
| 15954 | { |
| 15955 | int ref_count; |
| 15956 | vm_object_t chk_obj; |
| 15957 | vm_object_t tmp_obj; |
| 15958 | |
| 15959 | if (entry->is_sub_map || VME_OBJECT(entry) == VM_OBJECT_NULL) { |
| 15960 | return 0; |
| 15961 | } |
| 15962 | |
| 15963 | ref_count = 0; |
| 15964 | chk_obj = VME_OBJECT(entry); |
| 15965 | vm_object_lock(chk_obj); |
| 15966 | |
| 15967 | while (chk_obj) { |
| 15968 | if (chk_obj == object) { |
| 15969 | ref_count++; |
| 15970 | } |
| 15971 | tmp_obj = chk_obj->shadow; |
| 15972 | if (tmp_obj) { |
| 15973 | vm_object_lock(tmp_obj); |
| 15974 | } |
| 15975 | vm_object_unlock(chk_obj); |
| 15976 | |
| 15977 | chk_obj = tmp_obj; |
| 15978 | } |
| 15979 | |
| 15980 | return ref_count; |
| 15981 | } |
| 15982 | |
| 15983 | |
| 15984 | /* |
| 15985 | * Routine: vm_map_simplify |
| 15986 | * |
| 15987 | * Description: |
| 15988 | * Attempt to simplify the map representation in |
| 15989 | * the vicinity of the given starting address. |
| 15990 | * Note: |
| 15991 | * This routine is intended primarily to keep the |
| 15992 | * kernel maps more compact -- they generally don't |
| 15993 | * benefit from the "expand a map entry" technology |
| 15994 | * at allocation time because the adjacent entry |
| 15995 | * is often wired down. |
| 15996 | */ |
| 15997 | void |
| 15998 | vm_map_simplify_entry( |
| 15999 | vm_map_t map, |
| 16000 | vm_map_entry_t this_entry) |
| 16001 | { |
| 16002 | vm_map_entry_t prev_entry; |
| 16003 | |
| 16004 | prev_entry = this_entry->vme_prev; |
| 16005 | |
| 16006 | if ((this_entry != vm_map_to_entry(map)) && |
| 16007 | (prev_entry != vm_map_to_entry(map)) && |
| 16008 | |
| 16009 | (prev_entry->vme_end == this_entry->vme_start) && |
| 16010 | |
| 16011 | (prev_entry->is_sub_map == this_entry->is_sub_map) && |
| 16012 | (prev_entry->vme_object_value == this_entry->vme_object_value) && |
| 16013 | (prev_entry->vme_kernel_object == this_entry->vme_kernel_object) && |
| 16014 | ((VME_OFFSET(entry: prev_entry) + (prev_entry->vme_end - |
| 16015 | prev_entry->vme_start)) |
| 16016 | == VME_OFFSET(entry: this_entry)) && |
| 16017 | |
| 16018 | (prev_entry->behavior == this_entry->behavior) && |
| 16019 | (prev_entry->needs_copy == this_entry->needs_copy) && |
| 16020 | (prev_entry->protection == this_entry->protection) && |
| 16021 | (prev_entry->max_protection == this_entry->max_protection) && |
| 16022 | (prev_entry->inheritance == this_entry->inheritance) && |
| 16023 | (prev_entry->use_pmap == this_entry->use_pmap) && |
| 16024 | (VME_ALIAS(prev_entry) == VME_ALIAS(this_entry)) && |
| 16025 | (prev_entry->no_cache == this_entry->no_cache) && |
| 16026 | (prev_entry->vme_permanent == this_entry->vme_permanent) && |
| 16027 | (prev_entry->map_aligned == this_entry->map_aligned) && |
| 16028 | (prev_entry->zero_wired_pages == this_entry->zero_wired_pages) && |
| 16029 | (prev_entry->used_for_jit == this_entry->used_for_jit) && |
| 16030 | #if __arm64e__ |
| 16031 | (prev_entry->used_for_tpro == this_entry->used_for_tpro) && |
| 16032 | #endif |
| 16033 | (prev_entry->csm_associated == this_entry->csm_associated) && |
| 16034 | (prev_entry->vme_xnu_user_debug == this_entry->vme_xnu_user_debug) && |
| 16035 | (prev_entry->iokit_acct == this_entry->iokit_acct) && |
| 16036 | (prev_entry->vme_resilient_codesign == |
| 16037 | this_entry->vme_resilient_codesign) && |
| 16038 | (prev_entry->vme_resilient_media == |
| 16039 | this_entry->vme_resilient_media) && |
| 16040 | (prev_entry->vme_no_copy_on_read == this_entry->vme_no_copy_on_read) && |
| 16041 | (prev_entry->translated_allow_execute == this_entry->translated_allow_execute) && |
| 16042 | |
| 16043 | (prev_entry->wired_count == this_entry->wired_count) && |
| 16044 | (prev_entry->user_wired_count == this_entry->user_wired_count) && |
| 16045 | |
| 16046 | ((prev_entry->vme_atomic == FALSE) && (this_entry->vme_atomic == FALSE)) && |
| 16047 | (prev_entry->in_transition == FALSE) && |
| 16048 | (this_entry->in_transition == FALSE) && |
| 16049 | (prev_entry->needs_wakeup == FALSE) && |
| 16050 | (this_entry->needs_wakeup == FALSE) && |
| 16051 | (prev_entry->is_shared == this_entry->is_shared) && |
| 16052 | (prev_entry->superpage_size == FALSE) && |
| 16053 | (this_entry->superpage_size == FALSE) |
| 16054 | ) { |
| 16055 | if (prev_entry->vme_permanent) { |
| 16056 | assert(this_entry->vme_permanent); |
| 16057 | prev_entry->vme_permanent = false; |
| 16058 | } |
| 16059 | vm_map_store_entry_unlink(map, entry: prev_entry, true); |
| 16060 | assert(prev_entry->vme_start < this_entry->vme_end); |
| 16061 | if (prev_entry->map_aligned) { |
| 16062 | assert(VM_MAP_PAGE_ALIGNED(prev_entry->vme_start, |
| 16063 | VM_MAP_PAGE_MASK(map))); |
| 16064 | } |
| 16065 | this_entry->vme_start = prev_entry->vme_start; |
| 16066 | VME_OFFSET_SET(entry: this_entry, offset: VME_OFFSET(entry: prev_entry)); |
| 16067 | |
| 16068 | if (map->holelistenabled) { |
| 16069 | vm_map_store_update_first_free(map, entry: this_entry, TRUE); |
| 16070 | } |
| 16071 | |
| 16072 | if (prev_entry->is_sub_map) { |
| 16073 | vm_map_deallocate(VME_SUBMAP(prev_entry)); |
| 16074 | } else { |
| 16075 | vm_object_deallocate(VME_OBJECT(prev_entry)); |
| 16076 | } |
| 16077 | vm_map_entry_dispose(entry: prev_entry); |
| 16078 | SAVE_HINT_MAP_WRITE(map, this_entry); |
| 16079 | } |
| 16080 | } |
| 16081 | |
| 16082 | void |
| 16083 | vm_map_simplify( |
| 16084 | vm_map_t map, |
| 16085 | vm_map_offset_t start) |
| 16086 | { |
| 16087 | vm_map_entry_t this_entry; |
| 16088 | |
| 16089 | vm_map_lock(map); |
| 16090 | if (vm_map_lookup_entry(map, address: start, entry: &this_entry)) { |
| 16091 | vm_map_simplify_entry(map, this_entry); |
| 16092 | vm_map_simplify_entry(map, this_entry: this_entry->vme_next); |
| 16093 | } |
| 16094 | vm_map_unlock(map); |
| 16095 | } |
| 16096 | |
| 16097 | static void |
| 16098 | vm_map_simplify_range( |
| 16099 | vm_map_t map, |
| 16100 | vm_map_offset_t start, |
| 16101 | vm_map_offset_t end) |
| 16102 | { |
| 16103 | vm_map_entry_t entry; |
| 16104 | |
| 16105 | /* |
| 16106 | * The map should be locked (for "write") by the caller. |
| 16107 | */ |
| 16108 | |
| 16109 | if (start >= end) { |
| 16110 | /* invalid address range */ |
| 16111 | return; |
| 16112 | } |
| 16113 | |
| 16114 | start = vm_map_trunc_page(start, |
| 16115 | VM_MAP_PAGE_MASK(map)); |
| 16116 | end = vm_map_round_page(end, |
| 16117 | VM_MAP_PAGE_MASK(map)); |
| 16118 | |
| 16119 | if (!vm_map_lookup_entry(map, address: start, entry: &entry)) { |
| 16120 | /* "start" is not mapped and "entry" ends before "start" */ |
| 16121 | if (entry == vm_map_to_entry(map)) { |
| 16122 | /* start with first entry in the map */ |
| 16123 | entry = vm_map_first_entry(map); |
| 16124 | } else { |
| 16125 | /* start with next entry */ |
| 16126 | entry = entry->vme_next; |
| 16127 | } |
| 16128 | } |
| 16129 | |
| 16130 | while (entry != vm_map_to_entry(map) && |
| 16131 | entry->vme_start <= end) { |
| 16132 | /* try and coalesce "entry" with its previous entry */ |
| 16133 | vm_map_simplify_entry(map, this_entry: entry); |
| 16134 | entry = entry->vme_next; |
| 16135 | } |
| 16136 | } |
| 16137 | |
| 16138 | |
| 16139 | /* |
| 16140 | * Routine: vm_map_machine_attribute |
| 16141 | * Purpose: |
| 16142 | * Provide machine-specific attributes to mappings, |
| 16143 | * such as cachability etc. for machines that provide |
| 16144 | * them. NUMA architectures and machines with big/strange |
| 16145 | * caches will use this. |
| 16146 | * Note: |
| 16147 | * Responsibilities for locking and checking are handled here, |
| 16148 | * everything else in the pmap module. If any non-volatile |
| 16149 | * information must be kept, the pmap module should handle |
| 16150 | * it itself. [This assumes that attributes do not |
| 16151 | * need to be inherited, which seems ok to me] |
| 16152 | */ |
| 16153 | kern_return_t |
| 16154 | vm_map_machine_attribute( |
| 16155 | vm_map_t map, |
| 16156 | vm_map_offset_t start, |
| 16157 | vm_map_offset_t end, |
| 16158 | vm_machine_attribute_t attribute, |
| 16159 | vm_machine_attribute_val_t* value) /* IN/OUT */ |
| 16160 | { |
| 16161 | kern_return_t ret; |
| 16162 | vm_map_size_t sync_size; |
| 16163 | vm_map_entry_t entry; |
| 16164 | |
| 16165 | if (start < vm_map_min(map) || end > vm_map_max(map)) { |
| 16166 | return KERN_INVALID_ADDRESS; |
| 16167 | } |
| 16168 | if (__improbable(vm_map_range_overflows(map, start, end - start))) { |
| 16169 | return KERN_INVALID_ADDRESS; |
| 16170 | } |
| 16171 | |
| 16172 | /* Figure how much memory we need to flush (in page increments) */ |
| 16173 | sync_size = end - start; |
| 16174 | |
| 16175 | vm_map_lock(map); |
| 16176 | |
| 16177 | if (attribute != MATTR_CACHE) { |
| 16178 | /* If we don't have to find physical addresses, we */ |
| 16179 | /* don't have to do an explicit traversal here. */ |
| 16180 | ret = pmap_attribute(map->pmap, start, end - start, |
| 16181 | attribute, value); |
| 16182 | vm_map_unlock(map); |
| 16183 | return ret; |
| 16184 | } |
| 16185 | |
| 16186 | ret = KERN_SUCCESS; /* Assume it all worked */ |
| 16187 | |
| 16188 | while (sync_size) { |
| 16189 | if (vm_map_lookup_entry(map, address: start, entry: &entry)) { |
| 16190 | vm_map_size_t sub_size; |
| 16191 | if ((entry->vme_end - start) > sync_size) { |
| 16192 | sub_size = sync_size; |
| 16193 | sync_size = 0; |
| 16194 | } else { |
| 16195 | sub_size = entry->vme_end - start; |
| 16196 | sync_size -= sub_size; |
| 16197 | } |
| 16198 | if (entry->is_sub_map) { |
| 16199 | vm_map_offset_t sub_start; |
| 16200 | vm_map_offset_t sub_end; |
| 16201 | |
| 16202 | sub_start = (start - entry->vme_start) |
| 16203 | + VME_OFFSET(entry); |
| 16204 | sub_end = sub_start + sub_size; |
| 16205 | vm_map_machine_attribute( |
| 16206 | VME_SUBMAP(entry), |
| 16207 | start: sub_start, |
| 16208 | end: sub_end, |
| 16209 | attribute, value); |
| 16210 | } else if (VME_OBJECT(entry)) { |
| 16211 | vm_page_t m; |
| 16212 | vm_object_t object; |
| 16213 | vm_object_t base_object; |
| 16214 | vm_object_t last_object; |
| 16215 | vm_object_offset_t offset; |
| 16216 | vm_object_offset_t base_offset; |
| 16217 | vm_map_size_t range; |
| 16218 | range = sub_size; |
| 16219 | offset = (start - entry->vme_start) |
| 16220 | + VME_OFFSET(entry); |
| 16221 | offset = vm_object_trunc_page(offset); |
| 16222 | base_offset = offset; |
| 16223 | object = VME_OBJECT(entry); |
| 16224 | base_object = object; |
| 16225 | last_object = NULL; |
| 16226 | |
| 16227 | vm_object_lock(object); |
| 16228 | |
| 16229 | while (range) { |
| 16230 | m = vm_page_lookup( |
| 16231 | object, offset); |
| 16232 | |
| 16233 | if (m && !m->vmp_fictitious) { |
| 16234 | ret = |
| 16235 | pmap_attribute_cache_sync( |
| 16236 | pn: VM_PAGE_GET_PHYS_PAGE(m), |
| 16237 | PAGE_SIZE, |
| 16238 | attribute, value); |
| 16239 | } else if (object->shadow) { |
| 16240 | offset = offset + object->vo_shadow_offset; |
| 16241 | last_object = object; |
| 16242 | object = object->shadow; |
| 16243 | vm_object_lock(last_object->shadow); |
| 16244 | vm_object_unlock(last_object); |
| 16245 | continue; |
| 16246 | } |
| 16247 | if (range < PAGE_SIZE) { |
| 16248 | range = 0; |
| 16249 | } else { |
| 16250 | range -= PAGE_SIZE; |
| 16251 | } |
| 16252 | |
| 16253 | if (base_object != object) { |
| 16254 | vm_object_unlock(object); |
| 16255 | vm_object_lock(base_object); |
| 16256 | object = base_object; |
| 16257 | } |
| 16258 | /* Bump to the next page */ |
| 16259 | base_offset += PAGE_SIZE; |
| 16260 | offset = base_offset; |
| 16261 | } |
| 16262 | vm_object_unlock(object); |
| 16263 | } |
| 16264 | start += sub_size; |
| 16265 | } else { |
| 16266 | vm_map_unlock(map); |
| 16267 | return KERN_FAILURE; |
| 16268 | } |
| 16269 | } |
| 16270 | |
| 16271 | vm_map_unlock(map); |
| 16272 | |
| 16273 | return ret; |
| 16274 | } |
| 16275 | |
| 16276 | /* |
| 16277 | * vm_map_behavior_set: |
| 16278 | * |
| 16279 | * Sets the paging reference behavior of the specified address |
| 16280 | * range in the target map. Paging reference behavior affects |
| 16281 | * how pagein operations resulting from faults on the map will be |
| 16282 | * clustered. |
| 16283 | */ |
| 16284 | kern_return_t |
| 16285 | vm_map_behavior_set( |
| 16286 | vm_map_t map, |
| 16287 | vm_map_offset_t start, |
| 16288 | vm_map_offset_t end, |
| 16289 | vm_behavior_t new_behavior) |
| 16290 | { |
| 16291 | vm_map_entry_t entry; |
| 16292 | vm_map_entry_t temp_entry; |
| 16293 | |
| 16294 | if (start > end || |
| 16295 | start < vm_map_min(map) || |
| 16296 | end > vm_map_max(map)) { |
| 16297 | return KERN_NO_SPACE; |
| 16298 | } |
| 16299 | if (__improbable(vm_map_range_overflows(map, start, end - start))) { |
| 16300 | return KERN_INVALID_ADDRESS; |
| 16301 | } |
| 16302 | |
| 16303 | switch (new_behavior) { |
| 16304 | /* |
| 16305 | * This first block of behaviors all set a persistent state on the specified |
| 16306 | * memory range. All we have to do here is to record the desired behavior |
| 16307 | * in the vm_map_entry_t's. |
| 16308 | */ |
| 16309 | |
| 16310 | case VM_BEHAVIOR_DEFAULT: |
| 16311 | case VM_BEHAVIOR_RANDOM: |
| 16312 | case VM_BEHAVIOR_SEQUENTIAL: |
| 16313 | case VM_BEHAVIOR_RSEQNTL: |
| 16314 | case VM_BEHAVIOR_ZERO_WIRED_PAGES: |
| 16315 | vm_map_lock(map); |
| 16316 | |
| 16317 | /* |
| 16318 | * The entire address range must be valid for the map. |
| 16319 | * Note that vm_map_range_check() does a |
| 16320 | * vm_map_lookup_entry() internally and returns the |
| 16321 | * entry containing the start of the address range if |
| 16322 | * the entire range is valid. |
| 16323 | */ |
| 16324 | if (vm_map_range_check(map, start, end, entry: &temp_entry)) { |
| 16325 | entry = temp_entry; |
| 16326 | vm_map_clip_start(map, entry, startaddr: start); |
| 16327 | } else { |
| 16328 | vm_map_unlock(map); |
| 16329 | return KERN_INVALID_ADDRESS; |
| 16330 | } |
| 16331 | |
| 16332 | while ((entry != vm_map_to_entry(map)) && (entry->vme_start < end)) { |
| 16333 | vm_map_clip_end(map, entry, endaddr: end); |
| 16334 | if (entry->is_sub_map) { |
| 16335 | assert(!entry->use_pmap); |
| 16336 | } |
| 16337 | |
| 16338 | if (new_behavior == VM_BEHAVIOR_ZERO_WIRED_PAGES) { |
| 16339 | entry->zero_wired_pages = TRUE; |
| 16340 | } else { |
| 16341 | entry->behavior = new_behavior; |
| 16342 | } |
| 16343 | entry = entry->vme_next; |
| 16344 | } |
| 16345 | |
| 16346 | vm_map_unlock(map); |
| 16347 | break; |
| 16348 | |
| 16349 | /* |
| 16350 | * The rest of these are different from the above in that they cause |
| 16351 | * an immediate action to take place as opposed to setting a behavior that |
| 16352 | * affects future actions. |
| 16353 | */ |
| 16354 | |
| 16355 | case VM_BEHAVIOR_WILLNEED: |
| 16356 | return vm_map_willneed(map, start, end); |
| 16357 | |
| 16358 | case VM_BEHAVIOR_DONTNEED: |
| 16359 | return vm_map_msync(map, address: start, size: end - start, VM_SYNC_DEACTIVATE | VM_SYNC_CONTIGUOUS); |
| 16360 | |
| 16361 | case VM_BEHAVIOR_FREE: |
| 16362 | return vm_map_msync(map, address: start, size: end - start, VM_SYNC_KILLPAGES | VM_SYNC_CONTIGUOUS); |
| 16363 | |
| 16364 | case VM_BEHAVIOR_REUSABLE: |
| 16365 | return vm_map_reusable_pages(map, start, end); |
| 16366 | |
| 16367 | case VM_BEHAVIOR_REUSE: |
| 16368 | return vm_map_reuse_pages(map, start, end); |
| 16369 | |
| 16370 | case VM_BEHAVIOR_CAN_REUSE: |
| 16371 | return vm_map_can_reuse(map, start, end); |
| 16372 | |
| 16373 | #if MACH_ASSERT |
| 16374 | case VM_BEHAVIOR_PAGEOUT: |
| 16375 | return vm_map_pageout(map, start, end); |
| 16376 | #endif /* MACH_ASSERT */ |
| 16377 | |
| 16378 | case VM_BEHAVIOR_ZERO: |
| 16379 | return vm_map_zero(map, start, end); |
| 16380 | |
| 16381 | default: |
| 16382 | return KERN_INVALID_ARGUMENT; |
| 16383 | } |
| 16384 | |
| 16385 | return KERN_SUCCESS; |
| 16386 | } |
| 16387 | |
| 16388 | |
| 16389 | /* |
| 16390 | * Internals for madvise(MADV_WILLNEED) system call. |
| 16391 | * |
| 16392 | * The implementation is to do:- |
| 16393 | * a) read-ahead if the mapping corresponds to a mapped regular file |
| 16394 | * b) or, fault in the pages (zero-fill, decompress etc) if it's an anonymous mapping |
| 16395 | */ |
| 16396 | |
| 16397 | |
| 16398 | static kern_return_t |
| 16399 | vm_map_willneed( |
| 16400 | vm_map_t map, |
| 16401 | vm_map_offset_t start, |
| 16402 | vm_map_offset_t end |
| 16403 | ) |
| 16404 | { |
| 16405 | vm_map_entry_t entry; |
| 16406 | vm_object_t object; |
| 16407 | memory_object_t ; |
| 16408 | struct vm_object_fault_info fault_info = {}; |
| 16409 | kern_return_t kr; |
| 16410 | vm_object_size_t len; |
| 16411 | vm_object_offset_t offset; |
| 16412 | |
| 16413 | fault_info.interruptible = THREAD_UNINT; /* ignored value */ |
| 16414 | fault_info.behavior = VM_BEHAVIOR_SEQUENTIAL; |
| 16415 | fault_info.stealth = TRUE; |
| 16416 | |
| 16417 | /* |
| 16418 | * The MADV_WILLNEED operation doesn't require any changes to the |
| 16419 | * vm_map_entry_t's, so the read lock is sufficient. |
| 16420 | */ |
| 16421 | |
| 16422 | vm_map_lock_read(map); |
| 16423 | |
| 16424 | /* |
| 16425 | * The madvise semantics require that the address range be fully |
| 16426 | * allocated with no holes. Otherwise, we're required to return |
| 16427 | * an error. |
| 16428 | */ |
| 16429 | |
| 16430 | if (!vm_map_range_check(map, start, end, entry: &entry)) { |
| 16431 | vm_map_unlock_read(map); |
| 16432 | return KERN_INVALID_ADDRESS; |
| 16433 | } |
| 16434 | |
| 16435 | /* |
| 16436 | * Examine each vm_map_entry_t in the range. |
| 16437 | */ |
| 16438 | for (; entry != vm_map_to_entry(map) && start < end;) { |
| 16439 | /* |
| 16440 | * The first time through, the start address could be anywhere |
| 16441 | * within the vm_map_entry we found. So adjust the offset to |
| 16442 | * correspond. After that, the offset will always be zero to |
| 16443 | * correspond to the beginning of the current vm_map_entry. |
| 16444 | */ |
| 16445 | offset = (start - entry->vme_start) + VME_OFFSET(entry); |
| 16446 | |
| 16447 | /* |
| 16448 | * Set the length so we don't go beyond the end of the |
| 16449 | * map_entry or beyond the end of the range we were given. |
| 16450 | * This range could span also multiple map entries all of which |
| 16451 | * map different files, so make sure we only do the right amount |
| 16452 | * of I/O for each object. Note that it's possible for there |
| 16453 | * to be multiple map entries all referring to the same object |
| 16454 | * but with different page permissions, but it's not worth |
| 16455 | * trying to optimize that case. |
| 16456 | */ |
| 16457 | len = MIN(entry->vme_end - start, end - start); |
| 16458 | |
| 16459 | if ((vm_size_t) len != len) { |
| 16460 | /* 32-bit overflow */ |
| 16461 | len = (vm_size_t) (0 - PAGE_SIZE); |
| 16462 | } |
| 16463 | fault_info.cluster_size = (vm_size_t) len; |
| 16464 | fault_info.lo_offset = offset; |
| 16465 | fault_info.hi_offset = offset + len; |
| 16466 | fault_info.user_tag = VME_ALIAS(entry); |
| 16467 | fault_info.pmap_options = 0; |
| 16468 | if (entry->iokit_acct || |
| 16469 | (!entry->is_sub_map && !entry->use_pmap)) { |
| 16470 | fault_info.pmap_options |= PMAP_OPTIONS_ALT_ACCT; |
| 16471 | } |
| 16472 | fault_info.fi_xnu_user_debug = entry->vme_xnu_user_debug; |
| 16473 | |
| 16474 | /* |
| 16475 | * If the entry is a submap OR there's no read permission |
| 16476 | * to this mapping, then just skip it. |
| 16477 | */ |
| 16478 | if ((entry->is_sub_map) || (entry->protection & VM_PROT_READ) == 0) { |
| 16479 | entry = entry->vme_next; |
| 16480 | start = entry->vme_start; |
| 16481 | continue; |
| 16482 | } |
| 16483 | |
| 16484 | object = VME_OBJECT(entry); |
| 16485 | |
| 16486 | if (object == NULL || |
| 16487 | (object && object->internal)) { |
| 16488 | /* |
| 16489 | * Memory range backed by anonymous memory. |
| 16490 | */ |
| 16491 | vm_size_t region_size = 0, effective_page_size = 0; |
| 16492 | vm_map_offset_t addr = 0, effective_page_mask = 0; |
| 16493 | |
| 16494 | region_size = len; |
| 16495 | addr = start; |
| 16496 | |
| 16497 | effective_page_mask = MIN(vm_map_page_mask(current_map()), PAGE_MASK); |
| 16498 | effective_page_size = effective_page_mask + 1; |
| 16499 | |
| 16500 | vm_map_unlock_read(map); |
| 16501 | |
| 16502 | while (region_size) { |
| 16503 | vm_pre_fault( |
| 16504 | vm_map_trunc_page(addr, effective_page_mask), |
| 16505 | VM_PROT_READ | VM_PROT_WRITE); |
| 16506 | |
| 16507 | region_size -= effective_page_size; |
| 16508 | addr += effective_page_size; |
| 16509 | } |
| 16510 | } else { |
| 16511 | /* |
| 16512 | * Find the file object backing this map entry. If there is |
| 16513 | * none, then we simply ignore the "will need" advice for this |
| 16514 | * entry and go on to the next one. |
| 16515 | */ |
| 16516 | if ((object = find_vnode_object(entry)) == VM_OBJECT_NULL) { |
| 16517 | entry = entry->vme_next; |
| 16518 | start = entry->vme_start; |
| 16519 | continue; |
| 16520 | } |
| 16521 | |
| 16522 | vm_object_paging_begin(object); |
| 16523 | pager = object->pager; |
| 16524 | vm_object_unlock(object); |
| 16525 | |
| 16526 | /* |
| 16527 | * The data_request() could take a long time, so let's |
| 16528 | * release the map lock to avoid blocking other threads. |
| 16529 | */ |
| 16530 | vm_map_unlock_read(map); |
| 16531 | |
| 16532 | /* |
| 16533 | * Get the data from the object asynchronously. |
| 16534 | * |
| 16535 | * Note that memory_object_data_request() places limits on the |
| 16536 | * amount of I/O it will do. Regardless of the len we |
| 16537 | * specified, it won't do more than MAX_UPL_TRANSFER_BYTES and it |
| 16538 | * silently truncates the len to that size. This isn't |
| 16539 | * necessarily bad since madvise shouldn't really be used to |
| 16540 | * page in unlimited amounts of data. Other Unix variants |
| 16541 | * limit the willneed case as well. If this turns out to be an |
| 16542 | * issue for developers, then we can always adjust the policy |
| 16543 | * here and still be backwards compatible since this is all |
| 16544 | * just "advice". |
| 16545 | */ |
| 16546 | kr = memory_object_data_request( |
| 16547 | memory_object: pager, |
| 16548 | vm_object_trunc_page(offset) + object->paging_offset, |
| 16549 | length: 0, /* ignored */ |
| 16550 | VM_PROT_READ, |
| 16551 | fault_info: (memory_object_fault_info_t)&fault_info); |
| 16552 | |
| 16553 | vm_object_lock(object); |
| 16554 | vm_object_paging_end(object); |
| 16555 | vm_object_unlock(object); |
| 16556 | |
| 16557 | /* |
| 16558 | * If we couldn't do the I/O for some reason, just give up on |
| 16559 | * the madvise. We still return success to the user since |
| 16560 | * madvise isn't supposed to fail when the advice can't be |
| 16561 | * taken. |
| 16562 | */ |
| 16563 | |
| 16564 | if (kr != KERN_SUCCESS) { |
| 16565 | return KERN_SUCCESS; |
| 16566 | } |
| 16567 | } |
| 16568 | |
| 16569 | start += len; |
| 16570 | if (start >= end) { |
| 16571 | /* done */ |
| 16572 | return KERN_SUCCESS; |
| 16573 | } |
| 16574 | |
| 16575 | /* look up next entry */ |
| 16576 | vm_map_lock_read(map); |
| 16577 | if (!vm_map_lookup_entry(map, address: start, entry: &entry)) { |
| 16578 | /* |
| 16579 | * There's a new hole in the address range. |
| 16580 | */ |
| 16581 | vm_map_unlock_read(map); |
| 16582 | return KERN_INVALID_ADDRESS; |
| 16583 | } |
| 16584 | } |
| 16585 | |
| 16586 | vm_map_unlock_read(map); |
| 16587 | return KERN_SUCCESS; |
| 16588 | } |
| 16589 | |
| 16590 | static boolean_t |
| 16591 | vm_map_entry_is_reusable( |
| 16592 | vm_map_entry_t entry) |
| 16593 | { |
| 16594 | /* Only user map entries */ |
| 16595 | |
| 16596 | vm_object_t object; |
| 16597 | |
| 16598 | if (entry->is_sub_map) { |
| 16599 | return FALSE; |
| 16600 | } |
| 16601 | |
| 16602 | switch (VME_ALIAS(entry)) { |
| 16603 | case VM_MEMORY_MALLOC: |
| 16604 | case VM_MEMORY_MALLOC_SMALL: |
| 16605 | case VM_MEMORY_MALLOC_LARGE: |
| 16606 | case VM_MEMORY_REALLOC: |
| 16607 | case VM_MEMORY_MALLOC_TINY: |
| 16608 | case VM_MEMORY_MALLOC_LARGE_REUSABLE: |
| 16609 | case VM_MEMORY_MALLOC_LARGE_REUSED: |
| 16610 | /* |
| 16611 | * This is a malloc() memory region: check if it's still |
| 16612 | * in its original state and can be re-used for more |
| 16613 | * malloc() allocations. |
| 16614 | */ |
| 16615 | break; |
| 16616 | default: |
| 16617 | /* |
| 16618 | * Not a malloc() memory region: let the caller decide if |
| 16619 | * it's re-usable. |
| 16620 | */ |
| 16621 | return TRUE; |
| 16622 | } |
| 16623 | |
| 16624 | if (/*entry->is_shared ||*/ |
| 16625 | entry->is_sub_map || |
| 16626 | entry->in_transition || |
| 16627 | entry->protection != VM_PROT_DEFAULT || |
| 16628 | entry->max_protection != VM_PROT_ALL || |
| 16629 | entry->inheritance != VM_INHERIT_DEFAULT || |
| 16630 | entry->no_cache || |
| 16631 | entry->vme_permanent || |
| 16632 | entry->superpage_size != FALSE || |
| 16633 | entry->zero_wired_pages || |
| 16634 | entry->wired_count != 0 || |
| 16635 | entry->user_wired_count != 0) { |
| 16636 | return FALSE; |
| 16637 | } |
| 16638 | |
| 16639 | object = VME_OBJECT(entry); |
| 16640 | if (object == VM_OBJECT_NULL) { |
| 16641 | return TRUE; |
| 16642 | } |
| 16643 | if ( |
| 16644 | #if 0 |
| 16645 | /* |
| 16646 | * Let's proceed even if the VM object is potentially |
| 16647 | * shared. |
| 16648 | * We check for this later when processing the actual |
| 16649 | * VM pages, so the contents will be safe if shared. |
| 16650 | * |
| 16651 | * But we can still mark this memory region as "reusable" to |
| 16652 | * acknowledge that the caller did let us know that the memory |
| 16653 | * could be re-used and should not be penalized for holding |
| 16654 | * on to it. This allows its "resident size" to not include |
| 16655 | * the reusable range. |
| 16656 | */ |
| 16657 | object->ref_count == 1 && |
| 16658 | #endif |
| 16659 | object->vo_copy == VM_OBJECT_NULL && |
| 16660 | object->shadow == VM_OBJECT_NULL && |
| 16661 | object->internal && |
| 16662 | object->purgable == VM_PURGABLE_DENY && |
| 16663 | object->wimg_bits == VM_WIMG_USE_DEFAULT && |
| 16664 | !object->code_signed) { |
| 16665 | return TRUE; |
| 16666 | } |
| 16667 | return FALSE; |
| 16668 | } |
| 16669 | |
| 16670 | static kern_return_t |
| 16671 | vm_map_reuse_pages( |
| 16672 | vm_map_t map, |
| 16673 | vm_map_offset_t start, |
| 16674 | vm_map_offset_t end) |
| 16675 | { |
| 16676 | vm_map_entry_t entry; |
| 16677 | vm_object_t object; |
| 16678 | vm_object_offset_t start_offset, end_offset; |
| 16679 | |
| 16680 | /* |
| 16681 | * The MADV_REUSE operation doesn't require any changes to the |
| 16682 | * vm_map_entry_t's, so the read lock is sufficient. |
| 16683 | */ |
| 16684 | |
| 16685 | if (VM_MAP_PAGE_SHIFT(map) < PAGE_SHIFT) { |
| 16686 | /* |
| 16687 | * XXX TODO4K |
| 16688 | * need to figure out what reusable means for a |
| 16689 | * portion of a native page. |
| 16690 | */ |
| 16691 | return KERN_SUCCESS; |
| 16692 | } |
| 16693 | |
| 16694 | vm_map_lock_read(map); |
| 16695 | assert(map->pmap != kernel_pmap); /* protect alias access */ |
| 16696 | |
| 16697 | /* |
| 16698 | * The madvise semantics require that the address range be fully |
| 16699 | * allocated with no holes. Otherwise, we're required to return |
| 16700 | * an error. |
| 16701 | */ |
| 16702 | |
| 16703 | if (!vm_map_range_check(map, start, end, entry: &entry)) { |
| 16704 | vm_map_unlock_read(map); |
| 16705 | vm_page_stats_reusable.reuse_pages_failure++; |
| 16706 | return KERN_INVALID_ADDRESS; |
| 16707 | } |
| 16708 | |
| 16709 | /* |
| 16710 | * Examine each vm_map_entry_t in the range. |
| 16711 | */ |
| 16712 | for (; entry != vm_map_to_entry(map) && entry->vme_start < end; |
| 16713 | entry = entry->vme_next) { |
| 16714 | /* |
| 16715 | * Sanity check on the VM map entry. |
| 16716 | */ |
| 16717 | if (!vm_map_entry_is_reusable(entry)) { |
| 16718 | vm_map_unlock_read(map); |
| 16719 | vm_page_stats_reusable.reuse_pages_failure++; |
| 16720 | return KERN_INVALID_ADDRESS; |
| 16721 | } |
| 16722 | |
| 16723 | /* |
| 16724 | * The first time through, the start address could be anywhere |
| 16725 | * within the vm_map_entry we found. So adjust the offset to |
| 16726 | * correspond. |
| 16727 | */ |
| 16728 | if (entry->vme_start < start) { |
| 16729 | start_offset = start - entry->vme_start; |
| 16730 | } else { |
| 16731 | start_offset = 0; |
| 16732 | } |
| 16733 | end_offset = MIN(end, entry->vme_end) - entry->vme_start; |
| 16734 | start_offset += VME_OFFSET(entry); |
| 16735 | end_offset += VME_OFFSET(entry); |
| 16736 | |
| 16737 | object = VME_OBJECT(entry); |
| 16738 | if (object != VM_OBJECT_NULL) { |
| 16739 | vm_object_lock(object); |
| 16740 | vm_object_reuse_pages(object, start_offset, end_offset, |
| 16741 | TRUE); |
| 16742 | vm_object_unlock(object); |
| 16743 | } |
| 16744 | |
| 16745 | if (VME_ALIAS(entry) == VM_MEMORY_MALLOC_LARGE_REUSABLE) { |
| 16746 | /* |
| 16747 | * XXX |
| 16748 | * We do not hold the VM map exclusively here. |
| 16749 | * The "alias" field is not that critical, so it's |
| 16750 | * safe to update it here, as long as it is the only |
| 16751 | * one that can be modified while holding the VM map |
| 16752 | * "shared". |
| 16753 | */ |
| 16754 | VME_ALIAS_SET(entry, VM_MEMORY_MALLOC_LARGE_REUSED); |
| 16755 | } |
| 16756 | } |
| 16757 | |
| 16758 | vm_map_unlock_read(map); |
| 16759 | vm_page_stats_reusable.reuse_pages_success++; |
| 16760 | return KERN_SUCCESS; |
| 16761 | } |
| 16762 | |
| 16763 | |
| 16764 | static kern_return_t |
| 16765 | vm_map_reusable_pages( |
| 16766 | vm_map_t map, |
| 16767 | vm_map_offset_t start, |
| 16768 | vm_map_offset_t end) |
| 16769 | { |
| 16770 | vm_map_entry_t entry; |
| 16771 | vm_object_t object; |
| 16772 | vm_object_offset_t start_offset, end_offset; |
| 16773 | vm_map_offset_t pmap_offset; |
| 16774 | |
| 16775 | if (VM_MAP_PAGE_SHIFT(map) < PAGE_SHIFT) { |
| 16776 | /* |
| 16777 | * XXX TODO4K |
| 16778 | * need to figure out what reusable means for a portion |
| 16779 | * of a native page. |
| 16780 | */ |
| 16781 | return KERN_SUCCESS; |
| 16782 | } |
| 16783 | |
| 16784 | /* |
| 16785 | * The MADV_REUSABLE operation doesn't require any changes to the |
| 16786 | * vm_map_entry_t's, so the read lock is sufficient. |
| 16787 | */ |
| 16788 | |
| 16789 | vm_map_lock_read(map); |
| 16790 | assert(map->pmap != kernel_pmap); /* protect alias access */ |
| 16791 | |
| 16792 | /* |
| 16793 | * The madvise semantics require that the address range be fully |
| 16794 | * allocated with no holes. Otherwise, we're required to return |
| 16795 | * an error. |
| 16796 | */ |
| 16797 | |
| 16798 | if (!vm_map_range_check(map, start, end, entry: &entry)) { |
| 16799 | vm_map_unlock_read(map); |
| 16800 | vm_page_stats_reusable.reusable_pages_failure++; |
| 16801 | return KERN_INVALID_ADDRESS; |
| 16802 | } |
| 16803 | |
| 16804 | /* |
| 16805 | * Examine each vm_map_entry_t in the range. |
| 16806 | */ |
| 16807 | for (; entry != vm_map_to_entry(map) && entry->vme_start < end; |
| 16808 | entry = entry->vme_next) { |
| 16809 | int kill_pages = 0; |
| 16810 | boolean_t reusable_no_write = FALSE; |
| 16811 | |
| 16812 | /* |
| 16813 | * Sanity check on the VM map entry. |
| 16814 | */ |
| 16815 | if (!vm_map_entry_is_reusable(entry)) { |
| 16816 | vm_map_unlock_read(map); |
| 16817 | vm_page_stats_reusable.reusable_pages_failure++; |
| 16818 | return KERN_INVALID_ADDRESS; |
| 16819 | } |
| 16820 | |
| 16821 | if (!(entry->protection & VM_PROT_WRITE) && !entry->used_for_jit |
| 16822 | #if __arm64e__ |
| 16823 | && !entry->used_for_tpro |
| 16824 | #endif |
| 16825 | ) { |
| 16826 | /* not writable: can't discard contents */ |
| 16827 | vm_map_unlock_read(map); |
| 16828 | vm_page_stats_reusable.reusable_nonwritable++; |
| 16829 | vm_page_stats_reusable.reusable_pages_failure++; |
| 16830 | return KERN_PROTECTION_FAILURE; |
| 16831 | } |
| 16832 | |
| 16833 | /* |
| 16834 | * The first time through, the start address could be anywhere |
| 16835 | * within the vm_map_entry we found. So adjust the offset to |
| 16836 | * correspond. |
| 16837 | */ |
| 16838 | if (entry->vme_start < start) { |
| 16839 | start_offset = start - entry->vme_start; |
| 16840 | pmap_offset = start; |
| 16841 | } else { |
| 16842 | start_offset = 0; |
| 16843 | pmap_offset = entry->vme_start; |
| 16844 | } |
| 16845 | end_offset = MIN(end, entry->vme_end) - entry->vme_start; |
| 16846 | start_offset += VME_OFFSET(entry); |
| 16847 | end_offset += VME_OFFSET(entry); |
| 16848 | |
| 16849 | object = VME_OBJECT(entry); |
| 16850 | if (object == VM_OBJECT_NULL) { |
| 16851 | continue; |
| 16852 | } |
| 16853 | |
| 16854 | if (entry->protection & VM_PROT_EXECUTE) { |
| 16855 | /* |
| 16856 | * Executable mappings might be write-protected by |
| 16857 | * hardware, so do not attempt to write to these pages. |
| 16858 | */ |
| 16859 | reusable_no_write = TRUE; |
| 16860 | } |
| 16861 | |
| 16862 | if (entry->vme_xnu_user_debug) { |
| 16863 | /* |
| 16864 | * User debug pages might be write-protected by hardware, |
| 16865 | * so do not attempt to write to these pages. |
| 16866 | */ |
| 16867 | reusable_no_write = TRUE; |
| 16868 | } |
| 16869 | |
| 16870 | vm_object_lock(object); |
| 16871 | if (((object->ref_count == 1) || |
| 16872 | (object->copy_strategy != MEMORY_OBJECT_COPY_SYMMETRIC && |
| 16873 | object->vo_copy == VM_OBJECT_NULL)) && |
| 16874 | object->shadow == VM_OBJECT_NULL && |
| 16875 | /* |
| 16876 | * "iokit_acct" entries are billed for their virtual size |
| 16877 | * (rather than for their resident pages only), so they |
| 16878 | * wouldn't benefit from making pages reusable, and it |
| 16879 | * would be hard to keep track of pages that are both |
| 16880 | * "iokit_acct" and "reusable" in the pmap stats and |
| 16881 | * ledgers. |
| 16882 | */ |
| 16883 | !(entry->iokit_acct || |
| 16884 | (!entry->is_sub_map && !entry->use_pmap))) { |
| 16885 | if (object->ref_count != 1) { |
| 16886 | vm_page_stats_reusable.reusable_shared++; |
| 16887 | } |
| 16888 | kill_pages = 1; |
| 16889 | } else { |
| 16890 | kill_pages = -1; |
| 16891 | } |
| 16892 | if (kill_pages != -1) { |
| 16893 | vm_object_deactivate_pages(object, |
| 16894 | offset: start_offset, |
| 16895 | size: end_offset - start_offset, |
| 16896 | kill_page: kill_pages, |
| 16897 | TRUE /*reusable_pages*/, |
| 16898 | reusable_no_write, |
| 16899 | pmap: map->pmap, |
| 16900 | pmap_offset); |
| 16901 | } else { |
| 16902 | vm_page_stats_reusable.reusable_pages_shared++; |
| 16903 | DTRACE_VM4(vm_map_reusable_pages_shared, |
| 16904 | unsigned int, VME_ALIAS(entry), |
| 16905 | vm_map_t, map, |
| 16906 | vm_map_entry_t, entry, |
| 16907 | vm_object_t, object); |
| 16908 | } |
| 16909 | vm_object_unlock(object); |
| 16910 | |
| 16911 | if (VME_ALIAS(entry) == VM_MEMORY_MALLOC_LARGE || |
| 16912 | VME_ALIAS(entry) == VM_MEMORY_MALLOC_LARGE_REUSED) { |
| 16913 | /* |
| 16914 | * XXX |
| 16915 | * We do not hold the VM map exclusively here. |
| 16916 | * The "alias" field is not that critical, so it's |
| 16917 | * safe to update it here, as long as it is the only |
| 16918 | * one that can be modified while holding the VM map |
| 16919 | * "shared". |
| 16920 | */ |
| 16921 | VME_ALIAS_SET(entry, VM_MEMORY_MALLOC_LARGE_REUSABLE); |
| 16922 | } |
| 16923 | } |
| 16924 | |
| 16925 | vm_map_unlock_read(map); |
| 16926 | vm_page_stats_reusable.reusable_pages_success++; |
| 16927 | return KERN_SUCCESS; |
| 16928 | } |
| 16929 | |
| 16930 | |
| 16931 | static kern_return_t |
| 16932 | vm_map_can_reuse( |
| 16933 | vm_map_t map, |
| 16934 | vm_map_offset_t start, |
| 16935 | vm_map_offset_t end) |
| 16936 | { |
| 16937 | vm_map_entry_t entry; |
| 16938 | |
| 16939 | /* |
| 16940 | * The MADV_REUSABLE operation doesn't require any changes to the |
| 16941 | * vm_map_entry_t's, so the read lock is sufficient. |
| 16942 | */ |
| 16943 | |
| 16944 | vm_map_lock_read(map); |
| 16945 | assert(map->pmap != kernel_pmap); /* protect alias access */ |
| 16946 | |
| 16947 | /* |
| 16948 | * The madvise semantics require that the address range be fully |
| 16949 | * allocated with no holes. Otherwise, we're required to return |
| 16950 | * an error. |
| 16951 | */ |
| 16952 | |
| 16953 | if (!vm_map_range_check(map, start, end, entry: &entry)) { |
| 16954 | vm_map_unlock_read(map); |
| 16955 | vm_page_stats_reusable.can_reuse_failure++; |
| 16956 | return KERN_INVALID_ADDRESS; |
| 16957 | } |
| 16958 | |
| 16959 | /* |
| 16960 | * Examine each vm_map_entry_t in the range. |
| 16961 | */ |
| 16962 | for (; entry != vm_map_to_entry(map) && entry->vme_start < end; |
| 16963 | entry = entry->vme_next) { |
| 16964 | /* |
| 16965 | * Sanity check on the VM map entry. |
| 16966 | */ |
| 16967 | if (!vm_map_entry_is_reusable(entry)) { |
| 16968 | vm_map_unlock_read(map); |
| 16969 | vm_page_stats_reusable.can_reuse_failure++; |
| 16970 | return KERN_INVALID_ADDRESS; |
| 16971 | } |
| 16972 | } |
| 16973 | |
| 16974 | vm_map_unlock_read(map); |
| 16975 | vm_page_stats_reusable.can_reuse_success++; |
| 16976 | return KERN_SUCCESS; |
| 16977 | } |
| 16978 | |
| 16979 | |
| 16980 | #if MACH_ASSERT |
| 16981 | static kern_return_t |
| 16982 | vm_map_pageout( |
| 16983 | vm_map_t map, |
| 16984 | vm_map_offset_t start, |
| 16985 | vm_map_offset_t end) |
| 16986 | { |
| 16987 | vm_map_entry_t entry; |
| 16988 | |
| 16989 | /* |
| 16990 | * The MADV_PAGEOUT operation doesn't require any changes to the |
| 16991 | * vm_map_entry_t's, so the read lock is sufficient. |
| 16992 | */ |
| 16993 | |
| 16994 | vm_map_lock_read(map); |
| 16995 | |
| 16996 | /* |
| 16997 | * The madvise semantics require that the address range be fully |
| 16998 | * allocated with no holes. Otherwise, we're required to return |
| 16999 | * an error. |
| 17000 | */ |
| 17001 | |
| 17002 | if (!vm_map_range_check(map, start, end, &entry)) { |
| 17003 | vm_map_unlock_read(map); |
| 17004 | return KERN_INVALID_ADDRESS; |
| 17005 | } |
| 17006 | |
| 17007 | /* |
| 17008 | * Examine each vm_map_entry_t in the range. |
| 17009 | */ |
| 17010 | for (; entry != vm_map_to_entry(map) && entry->vme_start < end; |
| 17011 | entry = entry->vme_next) { |
| 17012 | vm_object_t object; |
| 17013 | |
| 17014 | /* |
| 17015 | * Sanity check on the VM map entry. |
| 17016 | */ |
| 17017 | if (entry->is_sub_map) { |
| 17018 | vm_map_t submap; |
| 17019 | vm_map_offset_t submap_start; |
| 17020 | vm_map_offset_t submap_end; |
| 17021 | vm_map_entry_t submap_entry; |
| 17022 | |
| 17023 | submap = VME_SUBMAP(entry); |
| 17024 | submap_start = VME_OFFSET(entry); |
| 17025 | submap_end = submap_start + (entry->vme_end - |
| 17026 | entry->vme_start); |
| 17027 | |
| 17028 | vm_map_lock_read(submap); |
| 17029 | |
| 17030 | if (!vm_map_range_check(submap, |
| 17031 | submap_start, |
| 17032 | submap_end, |
| 17033 | &submap_entry)) { |
| 17034 | vm_map_unlock_read(submap); |
| 17035 | vm_map_unlock_read(map); |
| 17036 | return KERN_INVALID_ADDRESS; |
| 17037 | } |
| 17038 | |
| 17039 | if (submap_entry->is_sub_map) { |
| 17040 | vm_map_unlock_read(submap); |
| 17041 | continue; |
| 17042 | } |
| 17043 | |
| 17044 | object = VME_OBJECT(submap_entry); |
| 17045 | if (object == VM_OBJECT_NULL || !object->internal) { |
| 17046 | vm_map_unlock_read(submap); |
| 17047 | continue; |
| 17048 | } |
| 17049 | |
| 17050 | vm_object_pageout(object); |
| 17051 | |
| 17052 | vm_map_unlock_read(submap); |
| 17053 | submap = VM_MAP_NULL; |
| 17054 | submap_entry = VM_MAP_ENTRY_NULL; |
| 17055 | continue; |
| 17056 | } |
| 17057 | |
| 17058 | object = VME_OBJECT(entry); |
| 17059 | if (object == VM_OBJECT_NULL || !object->internal) { |
| 17060 | continue; |
| 17061 | } |
| 17062 | |
| 17063 | vm_object_pageout(object); |
| 17064 | } |
| 17065 | |
| 17066 | vm_map_unlock_read(map); |
| 17067 | return KERN_SUCCESS; |
| 17068 | } |
| 17069 | #endif /* MACH_ASSERT */ |
| 17070 | |
| 17071 | /* |
| 17072 | * This function determines if the zero operation can be run on the |
| 17073 | * respective entry. Additional checks on the object are in |
| 17074 | * vm_object_zero_preflight. |
| 17075 | */ |
| 17076 | static kern_return_t |
| 17077 | vm_map_zero_entry_preflight(vm_map_entry_t entry) |
| 17078 | { |
| 17079 | /* |
| 17080 | * Zeroing is restricted to writable non-executable entries and non-JIT |
| 17081 | * regions. |
| 17082 | */ |
| 17083 | if (!(entry->protection & VM_PROT_WRITE) || |
| 17084 | (entry->protection & VM_PROT_EXECUTE) || |
| 17085 | entry->used_for_jit || |
| 17086 | entry->vme_xnu_user_debug) { |
| 17087 | return KERN_PROTECTION_FAILURE; |
| 17088 | } |
| 17089 | |
| 17090 | /* |
| 17091 | * Zeroing for copy on write isn't yet supported. Zeroing is also not |
| 17092 | * allowed for submaps. |
| 17093 | */ |
| 17094 | if (entry->needs_copy || entry->is_sub_map) { |
| 17095 | return KERN_NO_ACCESS; |
| 17096 | } |
| 17097 | |
| 17098 | return KERN_SUCCESS; |
| 17099 | } |
| 17100 | |
| 17101 | /* |
| 17102 | * This function translates entry's start and end to offsets in the object |
| 17103 | */ |
| 17104 | static void |
| 17105 | vm_map_get_bounds_in_object( |
| 17106 | vm_map_entry_t entry, |
| 17107 | vm_map_offset_t start, |
| 17108 | vm_map_offset_t end, |
| 17109 | vm_map_offset_t *start_offset, |
| 17110 | vm_map_offset_t *end_offset) |
| 17111 | { |
| 17112 | if (entry->vme_start < start) { |
| 17113 | *start_offset = start - entry->vme_start; |
| 17114 | } else { |
| 17115 | *start_offset = 0; |
| 17116 | } |
| 17117 | *end_offset = MIN(end, entry->vme_end) - entry->vme_start; |
| 17118 | *start_offset += VME_OFFSET(entry); |
| 17119 | *end_offset += VME_OFFSET(entry); |
| 17120 | } |
| 17121 | |
| 17122 | /* |
| 17123 | * This function iterates through the entries in the requested range |
| 17124 | * and zeroes any resident pages in the corresponding objects. Compressed |
| 17125 | * pages are dropped instead of being faulted in and zeroed. |
| 17126 | */ |
| 17127 | static kern_return_t |
| 17128 | vm_map_zero( |
| 17129 | vm_map_t map, |
| 17130 | vm_map_offset_t start, |
| 17131 | vm_map_offset_t end) |
| 17132 | { |
| 17133 | vm_map_entry_t entry; |
| 17134 | vm_map_offset_t cur = start; |
| 17135 | kern_return_t ret; |
| 17136 | |
| 17137 | /* |
| 17138 | * This operation isn't supported where the map page size is less than |
| 17139 | * the hardware page size. Caller will need to handle error and |
| 17140 | * explicitly zero memory if needed. |
| 17141 | */ |
| 17142 | if (VM_MAP_PAGE_SHIFT(map) < PAGE_SHIFT) { |
| 17143 | return KERN_NO_ACCESS; |
| 17144 | } |
| 17145 | |
| 17146 | /* |
| 17147 | * The MADV_ZERO operation doesn't require any changes to the |
| 17148 | * vm_map_entry_t's, so the read lock is sufficient. |
| 17149 | */ |
| 17150 | vm_map_lock_read(map); |
| 17151 | assert(map->pmap != kernel_pmap); /* protect alias access */ |
| 17152 | |
| 17153 | /* |
| 17154 | * The madvise semantics require that the address range be fully |
| 17155 | * allocated with no holes. Otherwise, we're required to return |
| 17156 | * an error. This check needs to be redone if the map has changed. |
| 17157 | */ |
| 17158 | if (!vm_map_range_check(map, start: cur, end, entry: &entry)) { |
| 17159 | vm_map_unlock_read(map); |
| 17160 | return KERN_INVALID_ADDRESS; |
| 17161 | } |
| 17162 | |
| 17163 | /* |
| 17164 | * Examine each vm_map_entry_t in the range. |
| 17165 | */ |
| 17166 | while (entry != vm_map_to_entry(map) && entry->vme_start < end) { |
| 17167 | vm_map_offset_t cur_offset; |
| 17168 | vm_map_offset_t end_offset; |
| 17169 | unsigned int last_timestamp = map->timestamp; |
| 17170 | vm_object_t object = VME_OBJECT(entry); |
| 17171 | |
| 17172 | ret = vm_map_zero_entry_preflight(entry); |
| 17173 | if (ret != KERN_SUCCESS) { |
| 17174 | vm_map_unlock_read(map); |
| 17175 | return ret; |
| 17176 | } |
| 17177 | |
| 17178 | if (object == VM_OBJECT_NULL) { |
| 17179 | entry = entry->vme_next; |
| 17180 | continue; |
| 17181 | } |
| 17182 | |
| 17183 | vm_map_get_bounds_in_object(entry, start: cur, end, start_offset: &cur_offset, end_offset: &end_offset); |
| 17184 | vm_object_lock(object); |
| 17185 | /* |
| 17186 | * Take a reference on the object as vm_object_zero will drop the object |
| 17187 | * lock when it encounters a busy page. |
| 17188 | */ |
| 17189 | vm_object_reference_locked(object); |
| 17190 | vm_map_unlock_read(map); |
| 17191 | |
| 17192 | ret = vm_object_zero(object, cur_offset, end_offset); |
| 17193 | vm_object_unlock(object); |
| 17194 | vm_object_deallocate(object); |
| 17195 | if (ret != KERN_SUCCESS) { |
| 17196 | return ret; |
| 17197 | } |
| 17198 | /* |
| 17199 | * Update cur as vm_object_zero has succeeded. |
| 17200 | */ |
| 17201 | cur += (end_offset - cur_offset); |
| 17202 | if (cur == end) { |
| 17203 | return KERN_SUCCESS; |
| 17204 | } |
| 17205 | |
| 17206 | /* |
| 17207 | * If the map timestamp has changed, restart by relooking up cur in the |
| 17208 | * map |
| 17209 | */ |
| 17210 | vm_map_lock_read(map); |
| 17211 | if (last_timestamp != map->timestamp) { |
| 17212 | /* |
| 17213 | * Relookup cur in the map |
| 17214 | */ |
| 17215 | if (!vm_map_range_check(map, start: cur, end, entry: &entry)) { |
| 17216 | vm_map_unlock_read(map); |
| 17217 | return KERN_INVALID_ADDRESS; |
| 17218 | } |
| 17219 | continue; |
| 17220 | } |
| 17221 | /* |
| 17222 | * If the map hasn't changed proceed with the next entry |
| 17223 | */ |
| 17224 | entry = entry->vme_next; |
| 17225 | } |
| 17226 | |
| 17227 | vm_map_unlock_read(map); |
| 17228 | return KERN_SUCCESS; |
| 17229 | } |
| 17230 | |
| 17231 | |
| 17232 | /* |
| 17233 | * Routine: vm_map_entry_insert |
| 17234 | * |
| 17235 | * Description: This routine inserts a new vm_entry in a locked map. |
| 17236 | */ |
| 17237 | static vm_map_entry_t |
| 17238 | vm_map_entry_insert( |
| 17239 | vm_map_t map, |
| 17240 | vm_map_entry_t insp_entry, |
| 17241 | vm_map_offset_t start, |
| 17242 | vm_map_offset_t end, |
| 17243 | vm_object_t object, |
| 17244 | vm_object_offset_t offset, |
| 17245 | vm_map_kernel_flags_t vmk_flags, |
| 17246 | boolean_t needs_copy, |
| 17247 | vm_prot_t cur_protection, |
| 17248 | vm_prot_t max_protection, |
| 17249 | vm_inherit_t inheritance, |
| 17250 | boolean_t clear_map_aligned) |
| 17251 | { |
| 17252 | vm_map_entry_t new_entry; |
| 17253 | boolean_t map_aligned = FALSE; |
| 17254 | |
| 17255 | assert(insp_entry != (vm_map_entry_t)0); |
| 17256 | vm_map_lock_assert_exclusive(map); |
| 17257 | |
| 17258 | #if DEVELOPMENT || DEBUG |
| 17259 | vm_object_offset_t end_offset = 0; |
| 17260 | assertf(!os_add_overflow(end - start, offset, &end_offset), "size 0x%llx, offset 0x%llx caused overflow" , (uint64_t)(end - start), offset); |
| 17261 | #endif /* DEVELOPMENT || DEBUG */ |
| 17262 | |
| 17263 | if (VM_MAP_PAGE_SHIFT(map) != PAGE_SHIFT) { |
| 17264 | map_aligned = TRUE; |
| 17265 | } |
| 17266 | if (clear_map_aligned && |
| 17267 | (!VM_MAP_PAGE_ALIGNED(start, VM_MAP_PAGE_MASK(map)) || |
| 17268 | !VM_MAP_PAGE_ALIGNED(end, VM_MAP_PAGE_MASK(map)))) { |
| 17269 | map_aligned = FALSE; |
| 17270 | } |
| 17271 | if (map_aligned) { |
| 17272 | assert(VM_MAP_PAGE_ALIGNED(start, VM_MAP_PAGE_MASK(map))); |
| 17273 | assert(VM_MAP_PAGE_ALIGNED(end, VM_MAP_PAGE_MASK(map))); |
| 17274 | } else { |
| 17275 | assert(page_aligned(start)); |
| 17276 | assert(page_aligned(end)); |
| 17277 | } |
| 17278 | assert(start < end); |
| 17279 | |
| 17280 | new_entry = vm_map_entry_create(map); |
| 17281 | |
| 17282 | new_entry->vme_start = start; |
| 17283 | new_entry->vme_end = end; |
| 17284 | |
| 17285 | if (vmk_flags.vmkf_submap) { |
| 17286 | new_entry->vme_atomic = vmk_flags.vmkf_submap_atomic; |
| 17287 | VME_SUBMAP_SET(entry: new_entry, submap: (vm_map_t)object); |
| 17288 | } else { |
| 17289 | VME_OBJECT_SET(entry: new_entry, object, false, context: 0); |
| 17290 | } |
| 17291 | VME_OFFSET_SET(entry: new_entry, offset); |
| 17292 | VME_ALIAS_SET(entry: new_entry, alias: vmk_flags.vm_tag); |
| 17293 | |
| 17294 | new_entry->map_aligned = map_aligned; |
| 17295 | new_entry->needs_copy = needs_copy; |
| 17296 | new_entry->inheritance = inheritance; |
| 17297 | new_entry->protection = cur_protection; |
| 17298 | new_entry->max_protection = max_protection; |
| 17299 | /* |
| 17300 | * submap: "use_pmap" means "nested". |
| 17301 | * default: false. |
| 17302 | * |
| 17303 | * object: "use_pmap" means "use pmap accounting" for footprint. |
| 17304 | * default: true. |
| 17305 | */ |
| 17306 | new_entry->use_pmap = !vmk_flags.vmkf_submap; |
| 17307 | new_entry->no_cache = vmk_flags.vmf_no_cache; |
| 17308 | new_entry->vme_permanent = vmk_flags.vmf_permanent; |
| 17309 | new_entry->translated_allow_execute = vmk_flags.vmkf_translated_allow_execute; |
| 17310 | new_entry->vme_no_copy_on_read = vmk_flags.vmkf_no_copy_on_read; |
| 17311 | new_entry->superpage_size = (vmk_flags.vmf_superpage_size != 0); |
| 17312 | |
| 17313 | if (vmk_flags.vmkf_map_jit) { |
| 17314 | if (!(map->jit_entry_exists) || |
| 17315 | VM_MAP_POLICY_ALLOW_MULTIPLE_JIT(map)) { |
| 17316 | new_entry->used_for_jit = TRUE; |
| 17317 | map->jit_entry_exists = TRUE; |
| 17318 | } |
| 17319 | } |
| 17320 | |
| 17321 | /* |
| 17322 | * Insert the new entry into the list. |
| 17323 | */ |
| 17324 | |
| 17325 | vm_map_store_entry_link(map, after_where: insp_entry, entry: new_entry, vmk_flags); |
| 17326 | map->size += end - start; |
| 17327 | |
| 17328 | /* |
| 17329 | * Update the free space hint and the lookup hint. |
| 17330 | */ |
| 17331 | |
| 17332 | SAVE_HINT_MAP_WRITE(map, new_entry); |
| 17333 | return new_entry; |
| 17334 | } |
| 17335 | |
| 17336 | /* |
| 17337 | * Routine: vm_map_remap_extract |
| 17338 | * |
| 17339 | * Description: This routine returns a vm_entry list from a map. |
| 17340 | */ |
| 17341 | static kern_return_t |
| 17342 | ( |
| 17343 | vm_map_t map, |
| 17344 | vm_map_offset_t addr, |
| 17345 | vm_map_size_t size, |
| 17346 | boolean_t copy, |
| 17347 | vm_map_copy_t map_copy, |
| 17348 | vm_prot_t *cur_protection, /* IN/OUT */ |
| 17349 | vm_prot_t *max_protection, /* IN/OUT */ |
| 17350 | /* What, no behavior? */ |
| 17351 | vm_inherit_t inheritance, |
| 17352 | vm_map_kernel_flags_t vmk_flags) |
| 17353 | { |
| 17354 | struct vm_map_header * = &map_copy->cpy_hdr; |
| 17355 | kern_return_t result; |
| 17356 | vm_map_size_t mapped_size; |
| 17357 | vm_map_size_t tmp_size; |
| 17358 | vm_map_entry_t src_entry; /* result of last map lookup */ |
| 17359 | vm_map_entry_t new_entry; |
| 17360 | vm_object_offset_t offset; |
| 17361 | vm_map_offset_t map_address; |
| 17362 | vm_map_offset_t src_start; /* start of entry to map */ |
| 17363 | vm_map_offset_t src_end; /* end of region to be mapped */ |
| 17364 | vm_object_t object; |
| 17365 | vm_map_version_t version; |
| 17366 | boolean_t src_needs_copy; |
| 17367 | boolean_t new_entry_needs_copy; |
| 17368 | vm_map_entry_t saved_src_entry; |
| 17369 | boolean_t src_entry_was_wired; |
| 17370 | vm_prot_t max_prot_for_prot_copy; |
| 17371 | vm_map_offset_t effective_page_mask; |
| 17372 | bool pageable, same_map; |
| 17373 | boolean_t vm_remap_legacy; |
| 17374 | vm_prot_t required_cur_prot, required_max_prot; |
| 17375 | vm_object_t new_copy_object; /* vm_object_copy_* result */ |
| 17376 | boolean_t saved_used_for_jit; /* Saved used_for_jit. */ |
| 17377 | |
| 17378 | pageable = vmk_flags.vmkf_copy_pageable; |
| 17379 | same_map = vmk_flags.vmkf_copy_same_map; |
| 17380 | |
| 17381 | effective_page_mask = MIN(PAGE_MASK, VM_MAP_PAGE_MASK(map)); |
| 17382 | |
| 17383 | assert(map != VM_MAP_NULL); |
| 17384 | assert(size != 0); |
| 17385 | assert(size == vm_map_round_page(size, effective_page_mask)); |
| 17386 | assert(inheritance == VM_INHERIT_NONE || |
| 17387 | inheritance == VM_INHERIT_COPY || |
| 17388 | inheritance == VM_INHERIT_SHARE); |
| 17389 | assert(!(*cur_protection & ~(VM_PROT_ALL | VM_PROT_ALLEXEC))); |
| 17390 | assert(!(*max_protection & ~(VM_PROT_ALL | VM_PROT_ALLEXEC))); |
| 17391 | assert((*cur_protection & *max_protection) == *cur_protection); |
| 17392 | |
| 17393 | /* |
| 17394 | * Compute start and end of region. |
| 17395 | */ |
| 17396 | src_start = vm_map_trunc_page(addr, effective_page_mask); |
| 17397 | src_end = vm_map_round_page(src_start + size, effective_page_mask); |
| 17398 | |
| 17399 | /* |
| 17400 | * Initialize map_header. |
| 17401 | */ |
| 17402 | map_header->nentries = 0; |
| 17403 | map_header->entries_pageable = pageable; |
| 17404 | // map_header->page_shift = MIN(VM_MAP_PAGE_SHIFT(map), PAGE_SHIFT); |
| 17405 | map_header->page_shift = (uint16_t)VM_MAP_PAGE_SHIFT(map); |
| 17406 | map_header->rb_head_store.rbh_root = (void *)(int)SKIP_RB_TREE; |
| 17407 | vm_map_store_init(header: map_header); |
| 17408 | |
| 17409 | if (copy && vmk_flags.vmkf_remap_prot_copy) { |
| 17410 | /* |
| 17411 | * Special case for vm_map_protect(VM_PROT_COPY): |
| 17412 | * we want to set the new mappings' max protection to the |
| 17413 | * specified *max_protection... |
| 17414 | */ |
| 17415 | max_prot_for_prot_copy = *max_protection & (VM_PROT_ALL | VM_PROT_ALLEXEC); |
| 17416 | /* ... but we want to use the vm_remap() legacy mode */ |
| 17417 | *max_protection = VM_PROT_NONE; |
| 17418 | *cur_protection = VM_PROT_NONE; |
| 17419 | } else { |
| 17420 | max_prot_for_prot_copy = VM_PROT_NONE; |
| 17421 | } |
| 17422 | |
| 17423 | if (*cur_protection == VM_PROT_NONE && |
| 17424 | *max_protection == VM_PROT_NONE) { |
| 17425 | /* |
| 17426 | * vm_remap() legacy mode: |
| 17427 | * Extract all memory regions in the specified range and |
| 17428 | * collect the strictest set of protections allowed on the |
| 17429 | * entire range, so the caller knows what they can do with |
| 17430 | * the remapped range. |
| 17431 | * We start with VM_PROT_ALL and we'll remove the protections |
| 17432 | * missing from each memory region. |
| 17433 | */ |
| 17434 | vm_remap_legacy = TRUE; |
| 17435 | *cur_protection = VM_PROT_ALL; |
| 17436 | *max_protection = VM_PROT_ALL; |
| 17437 | required_cur_prot = VM_PROT_NONE; |
| 17438 | required_max_prot = VM_PROT_NONE; |
| 17439 | } else { |
| 17440 | /* |
| 17441 | * vm_remap_new() mode: |
| 17442 | * Extract all memory regions in the specified range and |
| 17443 | * ensure that they have at least the protections specified |
| 17444 | * by the caller via *cur_protection and *max_protection. |
| 17445 | * The resulting mapping should have these protections. |
| 17446 | */ |
| 17447 | vm_remap_legacy = FALSE; |
| 17448 | if (copy) { |
| 17449 | required_cur_prot = VM_PROT_NONE; |
| 17450 | required_max_prot = VM_PROT_READ; |
| 17451 | } else { |
| 17452 | required_cur_prot = *cur_protection; |
| 17453 | required_max_prot = *max_protection; |
| 17454 | } |
| 17455 | } |
| 17456 | |
| 17457 | map_address = 0; |
| 17458 | mapped_size = 0; |
| 17459 | result = KERN_SUCCESS; |
| 17460 | |
| 17461 | /* |
| 17462 | * The specified source virtual space might correspond to |
| 17463 | * multiple map entries, need to loop on them. |
| 17464 | */ |
| 17465 | vm_map_lock(map); |
| 17466 | |
| 17467 | if (map->pmap == kernel_pmap) { |
| 17468 | map_copy->is_kernel_range = true; |
| 17469 | map_copy->orig_range = kmem_addr_get_range(addr, size); |
| 17470 | #if CONFIG_MAP_RANGES |
| 17471 | } else if (map->uses_user_ranges) { |
| 17472 | map_copy->is_user_range = true; |
| 17473 | map_copy->orig_range = vm_map_user_range_resolve(map, addr, size, NULL); |
| 17474 | #endif /* CONFIG_MAP_RANGES */ |
| 17475 | } |
| 17476 | |
| 17477 | if (VM_MAP_PAGE_SHIFT(map) < PAGE_SHIFT) { |
| 17478 | /* |
| 17479 | * This address space uses sub-pages so the range might |
| 17480 | * not be re-mappable in an address space with larger |
| 17481 | * pages. Re-assemble any broken-up VM map entries to |
| 17482 | * improve our chances of making it work. |
| 17483 | */ |
| 17484 | vm_map_simplify_range(map, start: src_start, end: src_end); |
| 17485 | } |
| 17486 | while (mapped_size != size) { |
| 17487 | vm_map_size_t entry_size; |
| 17488 | |
| 17489 | /* |
| 17490 | * Find the beginning of the region. |
| 17491 | */ |
| 17492 | if (!vm_map_lookup_entry(map, address: src_start, entry: &src_entry)) { |
| 17493 | result = KERN_INVALID_ADDRESS; |
| 17494 | break; |
| 17495 | } |
| 17496 | |
| 17497 | if (src_start < src_entry->vme_start || |
| 17498 | (mapped_size && src_start != src_entry->vme_start)) { |
| 17499 | result = KERN_INVALID_ADDRESS; |
| 17500 | break; |
| 17501 | } |
| 17502 | |
| 17503 | tmp_size = size - mapped_size; |
| 17504 | if (src_end > src_entry->vme_end) { |
| 17505 | tmp_size -= (src_end - src_entry->vme_end); |
| 17506 | } |
| 17507 | |
| 17508 | entry_size = (vm_map_size_t)(src_entry->vme_end - |
| 17509 | src_entry->vme_start); |
| 17510 | |
| 17511 | if (src_entry->is_sub_map && |
| 17512 | vmk_flags.vmkf_copy_single_object) { |
| 17513 | vm_map_t submap; |
| 17514 | vm_map_offset_t submap_start; |
| 17515 | vm_map_size_t submap_size; |
| 17516 | boolean_t submap_needs_copy; |
| 17517 | |
| 17518 | /* |
| 17519 | * No check for "required protection" on "src_entry" |
| 17520 | * because the protections that matter are the ones |
| 17521 | * on the submap's VM map entry, which will be checked |
| 17522 | * during the call to vm_map_remap_extract() below. |
| 17523 | */ |
| 17524 | submap_size = src_entry->vme_end - src_start; |
| 17525 | if (submap_size > size) { |
| 17526 | submap_size = size; |
| 17527 | } |
| 17528 | submap_start = VME_OFFSET(entry: src_entry) + src_start - src_entry->vme_start; |
| 17529 | submap = VME_SUBMAP(src_entry); |
| 17530 | if (copy) { |
| 17531 | /* |
| 17532 | * The caller wants a copy-on-write re-mapping, |
| 17533 | * so let's extract from the submap accordingly. |
| 17534 | */ |
| 17535 | submap_needs_copy = TRUE; |
| 17536 | } else if (src_entry->needs_copy) { |
| 17537 | /* |
| 17538 | * The caller wants a shared re-mapping but the |
| 17539 | * submap is mapped with "needs_copy", so its |
| 17540 | * contents can't be shared as is. Extract the |
| 17541 | * contents of the submap as "copy-on-write". |
| 17542 | * The re-mapping won't be shared with the |
| 17543 | * original mapping but this is equivalent to |
| 17544 | * what happened with the original "remap from |
| 17545 | * submap" code. |
| 17546 | * The shared region is mapped "needs_copy", for |
| 17547 | * example. |
| 17548 | */ |
| 17549 | submap_needs_copy = TRUE; |
| 17550 | } else { |
| 17551 | /* |
| 17552 | * The caller wants a shared re-mapping and |
| 17553 | * this mapping can be shared (no "needs_copy"), |
| 17554 | * so let's extract from the submap accordingly. |
| 17555 | * Kernel submaps are mapped without |
| 17556 | * "needs_copy", for example. |
| 17557 | */ |
| 17558 | submap_needs_copy = FALSE; |
| 17559 | } |
| 17560 | vm_map_reference(map: submap); |
| 17561 | vm_map_unlock(map); |
| 17562 | src_entry = NULL; |
| 17563 | if (vm_remap_legacy) { |
| 17564 | *cur_protection = VM_PROT_NONE; |
| 17565 | *max_protection = VM_PROT_NONE; |
| 17566 | } |
| 17567 | |
| 17568 | DTRACE_VM7(remap_submap_recurse, |
| 17569 | vm_map_t, map, |
| 17570 | vm_map_offset_t, addr, |
| 17571 | vm_map_size_t, size, |
| 17572 | boolean_t, copy, |
| 17573 | vm_map_offset_t, submap_start, |
| 17574 | vm_map_size_t, submap_size, |
| 17575 | boolean_t, submap_needs_copy); |
| 17576 | |
| 17577 | result = vm_map_remap_extract(map: submap, |
| 17578 | addr: submap_start, |
| 17579 | size: submap_size, |
| 17580 | copy: submap_needs_copy, |
| 17581 | map_copy, |
| 17582 | cur_protection, |
| 17583 | max_protection, |
| 17584 | inheritance, |
| 17585 | vmk_flags); |
| 17586 | vm_map_deallocate(map: submap); |
| 17587 | |
| 17588 | if (result == KERN_SUCCESS && |
| 17589 | submap_needs_copy && |
| 17590 | !copy) { |
| 17591 | /* |
| 17592 | * We were asked for a "shared" |
| 17593 | * re-mapping but had to ask for a |
| 17594 | * "copy-on-write" remapping of the |
| 17595 | * submap's mapping to honor the |
| 17596 | * submap's "needs_copy". |
| 17597 | * We now need to resolve that |
| 17598 | * pending "copy-on-write" to |
| 17599 | * get something we can share. |
| 17600 | */ |
| 17601 | vm_map_entry_t copy_entry; |
| 17602 | vm_object_offset_t copy_offset; |
| 17603 | vm_map_size_t copy_size; |
| 17604 | vm_object_t copy_object; |
| 17605 | copy_entry = vm_map_copy_first_entry(map_copy); |
| 17606 | copy_size = copy_entry->vme_end - copy_entry->vme_start; |
| 17607 | copy_object = VME_OBJECT(copy_entry); |
| 17608 | copy_offset = VME_OFFSET(entry: copy_entry); |
| 17609 | if (copy_object == VM_OBJECT_NULL) { |
| 17610 | assert(copy_offset == 0); |
| 17611 | assert(!copy_entry->needs_copy); |
| 17612 | if (copy_entry->max_protection == VM_PROT_NONE) { |
| 17613 | assert(copy_entry->protection == VM_PROT_NONE); |
| 17614 | /* nothing to share */ |
| 17615 | } else { |
| 17616 | assert(copy_offset == 0); |
| 17617 | copy_object = vm_object_allocate(size: copy_size); |
| 17618 | VME_OFFSET_SET(entry: copy_entry, offset: 0); |
| 17619 | VME_OBJECT_SET(entry: copy_entry, object: copy_object, false, context: 0); |
| 17620 | assert(copy_entry->use_pmap); |
| 17621 | } |
| 17622 | } else if (copy_object->copy_strategy != MEMORY_OBJECT_COPY_SYMMETRIC) { |
| 17623 | /* already shareable */ |
| 17624 | assert(!copy_entry->needs_copy); |
| 17625 | } else if (copy_entry->needs_copy || |
| 17626 | copy_object->shadowed || |
| 17627 | (object->internal && |
| 17628 | !object->true_share && |
| 17629 | !copy_entry->is_shared && |
| 17630 | copy_object->vo_size > copy_size)) { |
| 17631 | VME_OBJECT_SHADOW(entry: copy_entry, length: copy_size, TRUE); |
| 17632 | assert(copy_entry->use_pmap); |
| 17633 | if (copy_entry->needs_copy) { |
| 17634 | /* already write-protected */ |
| 17635 | } else { |
| 17636 | vm_prot_t prot; |
| 17637 | prot = copy_entry->protection & ~VM_PROT_WRITE; |
| 17638 | vm_object_pmap_protect(object: copy_object, |
| 17639 | offset: copy_offset, |
| 17640 | size: copy_size, |
| 17641 | PMAP_NULL, |
| 17642 | PAGE_SIZE, |
| 17643 | pmap_start: 0, |
| 17644 | prot); |
| 17645 | } |
| 17646 | copy_entry->needs_copy = FALSE; |
| 17647 | } |
| 17648 | copy_object = VME_OBJECT(copy_entry); |
| 17649 | copy_offset = VME_OFFSET(entry: copy_entry); |
| 17650 | if (copy_object && |
| 17651 | copy_object->copy_strategy == MEMORY_OBJECT_COPY_SYMMETRIC) { |
| 17652 | copy_object->copy_strategy = MEMORY_OBJECT_COPY_DELAY; |
| 17653 | copy_object->true_share = TRUE; |
| 17654 | } |
| 17655 | } |
| 17656 | |
| 17657 | return result; |
| 17658 | } |
| 17659 | |
| 17660 | if (src_entry->is_sub_map) { |
| 17661 | /* protections for submap mapping are irrelevant here */ |
| 17662 | } else if (((src_entry->protection & required_cur_prot) != |
| 17663 | required_cur_prot) || |
| 17664 | ((src_entry->max_protection & required_max_prot) != |
| 17665 | required_max_prot)) { |
| 17666 | if (vmk_flags.vmkf_copy_single_object && |
| 17667 | mapped_size != 0) { |
| 17668 | /* |
| 17669 | * Single object extraction. |
| 17670 | * We can't extract more with the required |
| 17671 | * protection but we've extracted some, so |
| 17672 | * stop there and declare success. |
| 17673 | * The caller should check the size of |
| 17674 | * the copy entry we've extracted. |
| 17675 | */ |
| 17676 | result = KERN_SUCCESS; |
| 17677 | } else { |
| 17678 | /* |
| 17679 | * VM range extraction. |
| 17680 | * Required proctection is not available |
| 17681 | * for this part of the range: fail. |
| 17682 | */ |
| 17683 | result = KERN_PROTECTION_FAILURE; |
| 17684 | } |
| 17685 | break; |
| 17686 | } |
| 17687 | |
| 17688 | if (src_entry->is_sub_map) { |
| 17689 | vm_map_t submap; |
| 17690 | vm_map_offset_t submap_start; |
| 17691 | vm_map_size_t submap_size; |
| 17692 | vm_map_copy_t submap_copy; |
| 17693 | vm_prot_t submap_curprot, submap_maxprot; |
| 17694 | boolean_t submap_needs_copy; |
| 17695 | |
| 17696 | /* |
| 17697 | * No check for "required protection" on "src_entry" |
| 17698 | * because the protections that matter are the ones |
| 17699 | * on the submap's VM map entry, which will be checked |
| 17700 | * during the call to vm_map_copy_extract() below. |
| 17701 | */ |
| 17702 | object = VM_OBJECT_NULL; |
| 17703 | submap_copy = VM_MAP_COPY_NULL; |
| 17704 | |
| 17705 | /* find equivalent range in the submap */ |
| 17706 | submap = VME_SUBMAP(src_entry); |
| 17707 | submap_start = VME_OFFSET(entry: src_entry) + src_start - src_entry->vme_start; |
| 17708 | submap_size = tmp_size; |
| 17709 | if (copy) { |
| 17710 | /* |
| 17711 | * The caller wants a copy-on-write re-mapping, |
| 17712 | * so let's extract from the submap accordingly. |
| 17713 | */ |
| 17714 | submap_needs_copy = TRUE; |
| 17715 | } else if (src_entry->needs_copy) { |
| 17716 | /* |
| 17717 | * The caller wants a shared re-mapping but the |
| 17718 | * submap is mapped with "needs_copy", so its |
| 17719 | * contents can't be shared as is. Extract the |
| 17720 | * contents of the submap as "copy-on-write". |
| 17721 | * The re-mapping won't be shared with the |
| 17722 | * original mapping but this is equivalent to |
| 17723 | * what happened with the original "remap from |
| 17724 | * submap" code. |
| 17725 | * The shared region is mapped "needs_copy", for |
| 17726 | * example. |
| 17727 | */ |
| 17728 | submap_needs_copy = TRUE; |
| 17729 | } else { |
| 17730 | /* |
| 17731 | * The caller wants a shared re-mapping and |
| 17732 | * this mapping can be shared (no "needs_copy"), |
| 17733 | * so let's extract from the submap accordingly. |
| 17734 | * Kernel submaps are mapped without |
| 17735 | * "needs_copy", for example. |
| 17736 | */ |
| 17737 | submap_needs_copy = FALSE; |
| 17738 | } |
| 17739 | /* extra ref to keep submap alive */ |
| 17740 | vm_map_reference(map: submap); |
| 17741 | |
| 17742 | DTRACE_VM7(remap_submap_recurse, |
| 17743 | vm_map_t, map, |
| 17744 | vm_map_offset_t, addr, |
| 17745 | vm_map_size_t, size, |
| 17746 | boolean_t, copy, |
| 17747 | vm_map_offset_t, submap_start, |
| 17748 | vm_map_size_t, submap_size, |
| 17749 | boolean_t, submap_needs_copy); |
| 17750 | |
| 17751 | /* |
| 17752 | * The map can be safely unlocked since we |
| 17753 | * already hold a reference on the submap. |
| 17754 | * |
| 17755 | * No timestamp since we don't care if the map |
| 17756 | * gets modified while we're down in the submap. |
| 17757 | * We'll resume the extraction at src_start + tmp_size |
| 17758 | * anyway. |
| 17759 | */ |
| 17760 | vm_map_unlock(map); |
| 17761 | src_entry = NULL; /* not valid once map is unlocked */ |
| 17762 | |
| 17763 | if (vm_remap_legacy) { |
| 17764 | submap_curprot = VM_PROT_NONE; |
| 17765 | submap_maxprot = VM_PROT_NONE; |
| 17766 | if (max_prot_for_prot_copy) { |
| 17767 | submap_maxprot = max_prot_for_prot_copy; |
| 17768 | } |
| 17769 | } else { |
| 17770 | assert(!max_prot_for_prot_copy); |
| 17771 | submap_curprot = *cur_protection; |
| 17772 | submap_maxprot = *max_protection; |
| 17773 | } |
| 17774 | result = vm_map_copy_extract(src_map: submap, |
| 17775 | src_addr: submap_start, |
| 17776 | len: submap_size, |
| 17777 | do_copy: submap_needs_copy, |
| 17778 | copy_result: &submap_copy, |
| 17779 | cur_prot: &submap_curprot, |
| 17780 | max_prot: &submap_maxprot, |
| 17781 | inheritance, |
| 17782 | vmk_flags); |
| 17783 | |
| 17784 | /* release extra ref on submap */ |
| 17785 | vm_map_deallocate(map: submap); |
| 17786 | submap = VM_MAP_NULL; |
| 17787 | |
| 17788 | if (result != KERN_SUCCESS) { |
| 17789 | vm_map_lock(map); |
| 17790 | break; |
| 17791 | } |
| 17792 | |
| 17793 | /* transfer submap_copy entries to map_header */ |
| 17794 | while (vm_map_copy_first_entry(submap_copy) != |
| 17795 | vm_map_copy_to_entry(submap_copy)) { |
| 17796 | vm_map_entry_t copy_entry; |
| 17797 | vm_map_size_t copy_entry_size; |
| 17798 | |
| 17799 | copy_entry = vm_map_copy_first_entry(submap_copy); |
| 17800 | |
| 17801 | /* |
| 17802 | * Prevent kernel_object from being exposed to |
| 17803 | * user space. |
| 17804 | */ |
| 17805 | if (__improbable(copy_entry->vme_kernel_object)) { |
| 17806 | printf(format: "%d[%s]: rejecting attempt to extract from kernel_object\n" , |
| 17807 | proc_selfpid(), |
| 17808 | (get_bsdtask_info(current_task()) |
| 17809 | ? proc_name_address(p: get_bsdtask_info(current_task())) |
| 17810 | : "?" )); |
| 17811 | DTRACE_VM(extract_kernel_only); |
| 17812 | result = KERN_INVALID_RIGHT; |
| 17813 | vm_map_copy_discard(copy: submap_copy); |
| 17814 | submap_copy = VM_MAP_COPY_NULL; |
| 17815 | vm_map_lock(map); |
| 17816 | break; |
| 17817 | } |
| 17818 | |
| 17819 | #ifdef __arm64e__ |
| 17820 | if (vmk_flags.vmkf_tpro_enforcement_override) { |
| 17821 | copy_entry->used_for_tpro = FALSE; |
| 17822 | } |
| 17823 | #endif /* __arm64e__ */ |
| 17824 | |
| 17825 | vm_map_copy_entry_unlink(submap_copy, copy_entry); |
| 17826 | copy_entry_size = copy_entry->vme_end - copy_entry->vme_start; |
| 17827 | copy_entry->vme_start = map_address; |
| 17828 | copy_entry->vme_end = map_address + copy_entry_size; |
| 17829 | map_address += copy_entry_size; |
| 17830 | mapped_size += copy_entry_size; |
| 17831 | src_start += copy_entry_size; |
| 17832 | assert(src_start <= src_end); |
| 17833 | _vm_map_store_entry_link(header: map_header, |
| 17834 | after_where: map_header->links.prev, |
| 17835 | entry: copy_entry); |
| 17836 | } |
| 17837 | /* done with submap_copy */ |
| 17838 | vm_map_copy_discard(copy: submap_copy); |
| 17839 | |
| 17840 | if (vm_remap_legacy) { |
| 17841 | *cur_protection &= submap_curprot; |
| 17842 | *max_protection &= submap_maxprot; |
| 17843 | } |
| 17844 | |
| 17845 | /* re-acquire the map lock and continue to next entry */ |
| 17846 | vm_map_lock(map); |
| 17847 | continue; |
| 17848 | } else { |
| 17849 | object = VME_OBJECT(src_entry); |
| 17850 | |
| 17851 | /* |
| 17852 | * Prevent kernel_object from being exposed to |
| 17853 | * user space. |
| 17854 | */ |
| 17855 | if (__improbable(is_kernel_object(object))) { |
| 17856 | printf(format: "%d[%s]: rejecting attempt to extract from kernel_object\n" , |
| 17857 | proc_selfpid(), |
| 17858 | (get_bsdtask_info(current_task()) |
| 17859 | ? proc_name_address(p: get_bsdtask_info(current_task())) |
| 17860 | : "?" )); |
| 17861 | DTRACE_VM(extract_kernel_only); |
| 17862 | result = KERN_INVALID_RIGHT; |
| 17863 | break; |
| 17864 | } |
| 17865 | |
| 17866 | if (src_entry->iokit_acct) { |
| 17867 | /* |
| 17868 | * This entry uses "IOKit accounting". |
| 17869 | */ |
| 17870 | } else if (object != VM_OBJECT_NULL && |
| 17871 | (object->purgable != VM_PURGABLE_DENY || |
| 17872 | object->vo_ledger_tag != VM_LEDGER_TAG_NONE)) { |
| 17873 | /* |
| 17874 | * Purgeable objects have their own accounting: |
| 17875 | * no pmap accounting for them. |
| 17876 | */ |
| 17877 | assertf(!src_entry->use_pmap, |
| 17878 | "map=%p src_entry=%p [0x%llx:0x%llx] 0x%x/0x%x %d" , |
| 17879 | map, |
| 17880 | src_entry, |
| 17881 | (uint64_t)src_entry->vme_start, |
| 17882 | (uint64_t)src_entry->vme_end, |
| 17883 | src_entry->protection, |
| 17884 | src_entry->max_protection, |
| 17885 | VME_ALIAS(src_entry)); |
| 17886 | } else { |
| 17887 | /* |
| 17888 | * Not IOKit or purgeable: |
| 17889 | * must be accounted by pmap stats. |
| 17890 | */ |
| 17891 | assertf(src_entry->use_pmap, |
| 17892 | "map=%p src_entry=%p [0x%llx:0x%llx] 0x%x/0x%x %d" , |
| 17893 | map, |
| 17894 | src_entry, |
| 17895 | (uint64_t)src_entry->vme_start, |
| 17896 | (uint64_t)src_entry->vme_end, |
| 17897 | src_entry->protection, |
| 17898 | src_entry->max_protection, |
| 17899 | VME_ALIAS(src_entry)); |
| 17900 | } |
| 17901 | |
| 17902 | if (object == VM_OBJECT_NULL) { |
| 17903 | assert(!src_entry->needs_copy); |
| 17904 | if (src_entry->max_protection == VM_PROT_NONE) { |
| 17905 | assert(src_entry->protection == VM_PROT_NONE); |
| 17906 | /* |
| 17907 | * No VM object and no permissions: |
| 17908 | * this must be a reserved range with |
| 17909 | * nothing to share or copy. |
| 17910 | * There could also be all sorts of |
| 17911 | * pmap shenanigans within that reserved |
| 17912 | * range, so let's just copy the map |
| 17913 | * entry as is to remap a similar |
| 17914 | * reserved range. |
| 17915 | */ |
| 17916 | offset = 0; /* no object => no offset */ |
| 17917 | goto copy_src_entry; |
| 17918 | } |
| 17919 | object = vm_object_allocate(size: entry_size); |
| 17920 | VME_OFFSET_SET(entry: src_entry, offset: 0); |
| 17921 | VME_OBJECT_SET(entry: src_entry, object, false, context: 0); |
| 17922 | assert(src_entry->use_pmap); |
| 17923 | assert(!map->mapped_in_other_pmaps); |
| 17924 | } else if (src_entry->wired_count || |
| 17925 | object->copy_strategy != MEMORY_OBJECT_COPY_SYMMETRIC) { |
| 17926 | /* |
| 17927 | * A wired memory region should not have |
| 17928 | * any pending copy-on-write and needs to |
| 17929 | * keep pointing at the VM object that |
| 17930 | * contains the wired pages. |
| 17931 | * If we're sharing this memory (copy=false), |
| 17932 | * we'll share this VM object. |
| 17933 | * If we're copying this memory (copy=true), |
| 17934 | * we'll call vm_object_copy_slowly() below |
| 17935 | * and use the new VM object for the remapping. |
| 17936 | * |
| 17937 | * Or, we are already using an asymmetric |
| 17938 | * copy, and therefore we already have |
| 17939 | * the right object. |
| 17940 | */ |
| 17941 | assert(!src_entry->needs_copy); |
| 17942 | } else if (src_entry->needs_copy || object->shadowed || |
| 17943 | (object->internal && !object->true_share && |
| 17944 | !src_entry->is_shared && |
| 17945 | object->vo_size > entry_size)) { |
| 17946 | bool is_writable; |
| 17947 | |
| 17948 | VME_OBJECT_SHADOW(entry: src_entry, length: entry_size, |
| 17949 | always: vm_map_always_shadow(map)); |
| 17950 | assert(src_entry->use_pmap); |
| 17951 | |
| 17952 | is_writable = false; |
| 17953 | if (src_entry->protection & VM_PROT_WRITE) { |
| 17954 | is_writable = true; |
| 17955 | #if __arm64e__ |
| 17956 | } else if (src_entry->used_for_tpro) { |
| 17957 | is_writable = true; |
| 17958 | #endif /* __arm64e__ */ |
| 17959 | } |
| 17960 | if (!src_entry->needs_copy && is_writable) { |
| 17961 | vm_prot_t prot; |
| 17962 | |
| 17963 | if (pmap_has_prot_policy(pmap: map->pmap, translated_allow_execute: src_entry->translated_allow_execute, prot: src_entry->protection)) { |
| 17964 | panic("%s: map %p pmap %p entry %p 0x%llx:0x%llx prot 0x%x" , |
| 17965 | __FUNCTION__, |
| 17966 | map, map->pmap, |
| 17967 | src_entry, |
| 17968 | (uint64_t)src_entry->vme_start, |
| 17969 | (uint64_t)src_entry->vme_end, |
| 17970 | src_entry->protection); |
| 17971 | } |
| 17972 | |
| 17973 | prot = src_entry->protection & ~VM_PROT_WRITE; |
| 17974 | |
| 17975 | if (override_nx(map, |
| 17976 | VME_ALIAS(src_entry)) |
| 17977 | && prot) { |
| 17978 | prot |= VM_PROT_EXECUTE; |
| 17979 | } |
| 17980 | |
| 17981 | if (pmap_has_prot_policy(pmap: map->pmap, translated_allow_execute: src_entry->translated_allow_execute, prot)) { |
| 17982 | panic("%s: map %p pmap %p entry %p 0x%llx:0x%llx prot 0x%x" , |
| 17983 | __FUNCTION__, |
| 17984 | map, map->pmap, |
| 17985 | src_entry, |
| 17986 | (uint64_t)src_entry->vme_start, |
| 17987 | (uint64_t)src_entry->vme_end, |
| 17988 | prot); |
| 17989 | } |
| 17990 | |
| 17991 | if (map->mapped_in_other_pmaps) { |
| 17992 | vm_object_pmap_protect( |
| 17993 | VME_OBJECT(src_entry), |
| 17994 | offset: VME_OFFSET(entry: src_entry), |
| 17995 | size: entry_size, |
| 17996 | PMAP_NULL, |
| 17997 | PAGE_SIZE, |
| 17998 | pmap_start: src_entry->vme_start, |
| 17999 | prot); |
| 18000 | #if MACH_ASSERT |
| 18001 | } else if (__improbable(map->pmap == PMAP_NULL)) { |
| 18002 | extern boolean_t vm_tests_in_progress; |
| 18003 | assert(vm_tests_in_progress); |
| 18004 | /* |
| 18005 | * Some VM tests (in vm_tests.c) |
| 18006 | * sometimes want to use a VM |
| 18007 | * map without a pmap. |
| 18008 | * Otherwise, this should never |
| 18009 | * happen. |
| 18010 | */ |
| 18011 | #endif /* MACH_ASSERT */ |
| 18012 | } else { |
| 18013 | pmap_protect(vm_map_pmap(map), |
| 18014 | s: src_entry->vme_start, |
| 18015 | e: src_entry->vme_end, |
| 18016 | prot); |
| 18017 | } |
| 18018 | } |
| 18019 | |
| 18020 | object = VME_OBJECT(src_entry); |
| 18021 | src_entry->needs_copy = FALSE; |
| 18022 | } |
| 18023 | |
| 18024 | |
| 18025 | vm_object_lock(object); |
| 18026 | vm_object_reference_locked(object); /* object ref. for new entry */ |
| 18027 | assert(!src_entry->needs_copy); |
| 18028 | if (object->copy_strategy == |
| 18029 | MEMORY_OBJECT_COPY_SYMMETRIC) { |
| 18030 | /* |
| 18031 | * If we want to share this object (copy==0), |
| 18032 | * it needs to be COPY_DELAY. |
| 18033 | * If we want to copy this object (copy==1), |
| 18034 | * we can't just set "needs_copy" on our side |
| 18035 | * and expect the other side to do the same |
| 18036 | * (symmetrically), so we can't let the object |
| 18037 | * stay COPY_SYMMETRIC. |
| 18038 | * So we always switch from COPY_SYMMETRIC to |
| 18039 | * COPY_DELAY. |
| 18040 | */ |
| 18041 | object->copy_strategy = |
| 18042 | MEMORY_OBJECT_COPY_DELAY; |
| 18043 | VM_OBJECT_SET_TRUE_SHARE(object, TRUE); |
| 18044 | } |
| 18045 | vm_object_unlock(object); |
| 18046 | } |
| 18047 | |
| 18048 | offset = (VME_OFFSET(entry: src_entry) + |
| 18049 | (src_start - src_entry->vme_start)); |
| 18050 | |
| 18051 | copy_src_entry: |
| 18052 | new_entry = _vm_map_entry_create(map_header); |
| 18053 | vm_map_entry_copy(map, new: new_entry, old: src_entry); |
| 18054 | if (new_entry->is_sub_map) { |
| 18055 | /* clr address space specifics */ |
| 18056 | new_entry->use_pmap = FALSE; |
| 18057 | } else if (copy) { |
| 18058 | /* |
| 18059 | * We're dealing with a copy-on-write operation, |
| 18060 | * so the resulting mapping should not inherit the |
| 18061 | * original mapping's accounting settings. |
| 18062 | * "use_pmap" should be reset to its default (TRUE) |
| 18063 | * so that the new mapping gets accounted for in |
| 18064 | * the task's memory footprint. |
| 18065 | */ |
| 18066 | new_entry->use_pmap = TRUE; |
| 18067 | } |
| 18068 | /* "iokit_acct" was cleared in vm_map_entry_copy() */ |
| 18069 | assert(!new_entry->iokit_acct); |
| 18070 | |
| 18071 | new_entry->map_aligned = FALSE; |
| 18072 | |
| 18073 | new_entry->vme_start = map_address; |
| 18074 | new_entry->vme_end = map_address + tmp_size; |
| 18075 | assert(new_entry->vme_start < new_entry->vme_end); |
| 18076 | if (copy && vmk_flags.vmkf_remap_prot_copy) { |
| 18077 | /* security: keep "permanent" and "csm_associated" */ |
| 18078 | new_entry->vme_permanent = src_entry->vme_permanent; |
| 18079 | new_entry->csm_associated = src_entry->csm_associated; |
| 18080 | /* |
| 18081 | * Remapping for vm_map_protect(VM_PROT_COPY) |
| 18082 | * to convert a read-only mapping into a |
| 18083 | * copy-on-write version of itself but |
| 18084 | * with write access: |
| 18085 | * keep the original inheritance but let's not |
| 18086 | * add VM_PROT_WRITE to the max protection yet |
| 18087 | * since we want to do more security checks against |
| 18088 | * the target map. |
| 18089 | */ |
| 18090 | new_entry->inheritance = src_entry->inheritance; |
| 18091 | new_entry->protection &= max_prot_for_prot_copy; |
| 18092 | } else { |
| 18093 | new_entry->inheritance = inheritance; |
| 18094 | if (!vm_remap_legacy) { |
| 18095 | new_entry->protection = *cur_protection; |
| 18096 | new_entry->max_protection = *max_protection; |
| 18097 | } |
| 18098 | } |
| 18099 | #ifdef __arm64e__ |
| 18100 | if (copy && vmk_flags.vmkf_tpro_enforcement_override) { |
| 18101 | new_entry->used_for_tpro = FALSE; |
| 18102 | } |
| 18103 | #endif /* __arm64e__ */ |
| 18104 | VME_OFFSET_SET(entry: new_entry, offset); |
| 18105 | |
| 18106 | /* |
| 18107 | * The new region has to be copied now if required. |
| 18108 | */ |
| 18109 | RestartCopy: |
| 18110 | if (!copy) { |
| 18111 | if (src_entry->used_for_jit == TRUE) { |
| 18112 | if (same_map) { |
| 18113 | } else if (!VM_MAP_POLICY_ALLOW_JIT_SHARING(map)) { |
| 18114 | /* |
| 18115 | * Cannot allow an entry describing a JIT |
| 18116 | * region to be shared across address spaces. |
| 18117 | */ |
| 18118 | result = KERN_INVALID_ARGUMENT; |
| 18119 | vm_object_deallocate(object); |
| 18120 | vm_map_entry_dispose(entry: new_entry); |
| 18121 | new_entry = VM_MAP_ENTRY_NULL; |
| 18122 | break; |
| 18123 | } |
| 18124 | } |
| 18125 | |
| 18126 | src_entry->is_shared = TRUE; |
| 18127 | new_entry->is_shared = TRUE; |
| 18128 | if (!(new_entry->is_sub_map)) { |
| 18129 | new_entry->needs_copy = FALSE; |
| 18130 | } |
| 18131 | } else if (src_entry->is_sub_map) { |
| 18132 | /* make this a COW sub_map if not already */ |
| 18133 | assert(new_entry->wired_count == 0); |
| 18134 | new_entry->needs_copy = TRUE; |
| 18135 | object = VM_OBJECT_NULL; |
| 18136 | } else if (src_entry->wired_count == 0 && |
| 18137 | !(debug4k_no_cow_copyin && VM_MAP_PAGE_SHIFT(map) < PAGE_SHIFT) && |
| 18138 | vm_object_copy_quickly(VME_OBJECT(new_entry), |
| 18139 | src_offset: VME_OFFSET(entry: new_entry), |
| 18140 | size: (new_entry->vme_end - |
| 18141 | new_entry->vme_start), |
| 18142 | src_needs_copy: &src_needs_copy, |
| 18143 | dst_needs_copy: &new_entry_needs_copy)) { |
| 18144 | new_entry->needs_copy = new_entry_needs_copy; |
| 18145 | new_entry->is_shared = FALSE; |
| 18146 | assertf(new_entry->use_pmap, "map %p new_entry %p\n" , map, new_entry); |
| 18147 | |
| 18148 | /* |
| 18149 | * Handle copy_on_write semantics. |
| 18150 | */ |
| 18151 | if (src_needs_copy && !src_entry->needs_copy) { |
| 18152 | vm_prot_t prot; |
| 18153 | |
| 18154 | if (pmap_has_prot_policy(pmap: map->pmap, translated_allow_execute: src_entry->translated_allow_execute, prot: src_entry->protection)) { |
| 18155 | panic("%s: map %p pmap %p entry %p 0x%llx:0x%llx prot 0x%x" , |
| 18156 | __FUNCTION__, |
| 18157 | map, map->pmap, src_entry, |
| 18158 | (uint64_t)src_entry->vme_start, |
| 18159 | (uint64_t)src_entry->vme_end, |
| 18160 | src_entry->protection); |
| 18161 | } |
| 18162 | |
| 18163 | prot = src_entry->protection & ~VM_PROT_WRITE; |
| 18164 | |
| 18165 | if (override_nx(map, |
| 18166 | VME_ALIAS(src_entry)) |
| 18167 | && prot) { |
| 18168 | prot |= VM_PROT_EXECUTE; |
| 18169 | } |
| 18170 | |
| 18171 | if (pmap_has_prot_policy(pmap: map->pmap, translated_allow_execute: src_entry->translated_allow_execute, prot)) { |
| 18172 | panic("%s: map %p pmap %p entry %p 0x%llx:0x%llx prot 0x%x" , |
| 18173 | __FUNCTION__, |
| 18174 | map, map->pmap, src_entry, |
| 18175 | (uint64_t)src_entry->vme_start, |
| 18176 | (uint64_t)src_entry->vme_end, |
| 18177 | prot); |
| 18178 | } |
| 18179 | |
| 18180 | vm_object_pmap_protect(object, |
| 18181 | offset, |
| 18182 | size: entry_size, |
| 18183 | pmap: ((src_entry->is_shared |
| 18184 | || map->mapped_in_other_pmaps) ? |
| 18185 | PMAP_NULL : map->pmap), |
| 18186 | VM_MAP_PAGE_SIZE(map), |
| 18187 | pmap_start: src_entry->vme_start, |
| 18188 | prot); |
| 18189 | |
| 18190 | assert(src_entry->wired_count == 0); |
| 18191 | src_entry->needs_copy = TRUE; |
| 18192 | } |
| 18193 | /* |
| 18194 | * Throw away the old object reference of the new entry. |
| 18195 | */ |
| 18196 | vm_object_deallocate(object); |
| 18197 | } else { |
| 18198 | new_entry->is_shared = FALSE; |
| 18199 | assertf(new_entry->use_pmap, "map %p new_entry %p\n" , map, new_entry); |
| 18200 | |
| 18201 | src_entry_was_wired = (src_entry->wired_count > 0); |
| 18202 | saved_src_entry = src_entry; |
| 18203 | src_entry = VM_MAP_ENTRY_NULL; |
| 18204 | |
| 18205 | /* |
| 18206 | * The map can be safely unlocked since we |
| 18207 | * already hold a reference on the object. |
| 18208 | * |
| 18209 | * Record the timestamp of the map for later |
| 18210 | * verification, and unlock the map. |
| 18211 | */ |
| 18212 | version.main_timestamp = map->timestamp; |
| 18213 | vm_map_unlock(map); /* Increments timestamp once! */ |
| 18214 | |
| 18215 | /* |
| 18216 | * Perform the copy. |
| 18217 | */ |
| 18218 | if (src_entry_was_wired > 0 || |
| 18219 | (debug4k_no_cow_copyin && |
| 18220 | VM_MAP_PAGE_SHIFT(map) < PAGE_SHIFT)) { |
| 18221 | vm_object_lock(object); |
| 18222 | result = vm_object_copy_slowly( |
| 18223 | src_object: object, |
| 18224 | src_offset: offset, |
| 18225 | size: (new_entry->vme_end - |
| 18226 | new_entry->vme_start), |
| 18227 | THREAD_UNINT, |
| 18228 | result_object: &new_copy_object); |
| 18229 | /* VME_OBJECT_SET will reset used_for_jit, so preserve it. */ |
| 18230 | saved_used_for_jit = new_entry->used_for_jit; |
| 18231 | VME_OBJECT_SET(entry: new_entry, object: new_copy_object, false, context: 0); |
| 18232 | new_entry->used_for_jit = saved_used_for_jit; |
| 18233 | VME_OFFSET_SET(entry: new_entry, offset: offset - vm_object_trunc_page(offset)); |
| 18234 | new_entry->needs_copy = FALSE; |
| 18235 | } else { |
| 18236 | vm_object_offset_t new_offset; |
| 18237 | |
| 18238 | new_offset = VME_OFFSET(entry: new_entry); |
| 18239 | result = vm_object_copy_strategically( |
| 18240 | src_object: object, |
| 18241 | src_offset: offset, |
| 18242 | size: (new_entry->vme_end - |
| 18243 | new_entry->vme_start), |
| 18244 | false, /* forking */ |
| 18245 | dst_object: &new_copy_object, |
| 18246 | dst_offset: &new_offset, |
| 18247 | dst_needs_copy: &new_entry_needs_copy); |
| 18248 | /* VME_OBJECT_SET will reset used_for_jit, so preserve it. */ |
| 18249 | saved_used_for_jit = new_entry->used_for_jit; |
| 18250 | VME_OBJECT_SET(entry: new_entry, object: new_copy_object, false, context: 0); |
| 18251 | new_entry->used_for_jit = saved_used_for_jit; |
| 18252 | if (new_offset != VME_OFFSET(entry: new_entry)) { |
| 18253 | VME_OFFSET_SET(entry: new_entry, offset: new_offset); |
| 18254 | } |
| 18255 | |
| 18256 | new_entry->needs_copy = new_entry_needs_copy; |
| 18257 | } |
| 18258 | |
| 18259 | /* |
| 18260 | * Throw away the old object reference of the new entry. |
| 18261 | */ |
| 18262 | vm_object_deallocate(object); |
| 18263 | |
| 18264 | if (result != KERN_SUCCESS && |
| 18265 | result != KERN_MEMORY_RESTART_COPY) { |
| 18266 | vm_map_entry_dispose(entry: new_entry); |
| 18267 | vm_map_lock(map); |
| 18268 | break; |
| 18269 | } |
| 18270 | |
| 18271 | /* |
| 18272 | * Verify that the map has not substantially |
| 18273 | * changed while the copy was being made. |
| 18274 | */ |
| 18275 | |
| 18276 | vm_map_lock(map); |
| 18277 | if (version.main_timestamp + 1 != map->timestamp) { |
| 18278 | /* |
| 18279 | * Simple version comparison failed. |
| 18280 | * |
| 18281 | * Retry the lookup and verify that the |
| 18282 | * same object/offset are still present. |
| 18283 | */ |
| 18284 | saved_src_entry = VM_MAP_ENTRY_NULL; |
| 18285 | vm_object_deallocate(VME_OBJECT(new_entry)); |
| 18286 | vm_map_entry_dispose(entry: new_entry); |
| 18287 | if (result == KERN_MEMORY_RESTART_COPY) { |
| 18288 | result = KERN_SUCCESS; |
| 18289 | } |
| 18290 | continue; |
| 18291 | } |
| 18292 | /* map hasn't changed: src_entry is still valid */ |
| 18293 | src_entry = saved_src_entry; |
| 18294 | saved_src_entry = VM_MAP_ENTRY_NULL; |
| 18295 | |
| 18296 | if (result == KERN_MEMORY_RESTART_COPY) { |
| 18297 | vm_object_reference(object); |
| 18298 | goto RestartCopy; |
| 18299 | } |
| 18300 | } |
| 18301 | |
| 18302 | _vm_map_store_entry_link(header: map_header, |
| 18303 | after_where: map_header->links.prev, entry: new_entry); |
| 18304 | |
| 18305 | /* protections for submap mapping are irrelevant here */ |
| 18306 | if (vm_remap_legacy && !src_entry->is_sub_map) { |
| 18307 | *cur_protection &= src_entry->protection; |
| 18308 | *max_protection &= src_entry->max_protection; |
| 18309 | } |
| 18310 | |
| 18311 | map_address += tmp_size; |
| 18312 | mapped_size += tmp_size; |
| 18313 | src_start += tmp_size; |
| 18314 | |
| 18315 | if (vmk_flags.vmkf_copy_single_object) { |
| 18316 | if (mapped_size != size) { |
| 18317 | DEBUG4K_SHARE("map %p addr 0x%llx size 0x%llx clipped copy at mapped_size 0x%llx\n" , |
| 18318 | map, (uint64_t)addr, (uint64_t)size, (uint64_t)mapped_size); |
| 18319 | if (src_entry->vme_next != vm_map_to_entry(map) && |
| 18320 | src_entry->vme_next->vme_object_value == |
| 18321 | src_entry->vme_object_value) { |
| 18322 | /* XXX TODO4K */ |
| 18323 | DEBUG4K_ERROR("could have extended copy to next entry...\n" ); |
| 18324 | } |
| 18325 | } |
| 18326 | break; |
| 18327 | } |
| 18328 | } /* end while */ |
| 18329 | |
| 18330 | vm_map_unlock(map); |
| 18331 | if (result != KERN_SUCCESS) { |
| 18332 | /* |
| 18333 | * Free all allocated elements. |
| 18334 | */ |
| 18335 | for (src_entry = map_header->links.next; |
| 18336 | src_entry != CAST_TO_VM_MAP_ENTRY(&map_header->links); |
| 18337 | src_entry = new_entry) { |
| 18338 | new_entry = src_entry->vme_next; |
| 18339 | _vm_map_store_entry_unlink(header: map_header, entry: src_entry, false); |
| 18340 | if (src_entry->is_sub_map) { |
| 18341 | vm_map_deallocate(VME_SUBMAP(src_entry)); |
| 18342 | } else { |
| 18343 | vm_object_deallocate(VME_OBJECT(src_entry)); |
| 18344 | } |
| 18345 | vm_map_entry_dispose(entry: src_entry); |
| 18346 | } |
| 18347 | } |
| 18348 | return result; |
| 18349 | } |
| 18350 | |
| 18351 | bool |
| 18352 | vm_map_is_exotic( |
| 18353 | vm_map_t map) |
| 18354 | { |
| 18355 | return VM_MAP_IS_EXOTIC(map); |
| 18356 | } |
| 18357 | |
| 18358 | bool |
| 18359 | vm_map_is_alien( |
| 18360 | vm_map_t map) |
| 18361 | { |
| 18362 | return VM_MAP_IS_ALIEN(map); |
| 18363 | } |
| 18364 | |
| 18365 | #if XNU_TARGET_OS_OSX |
| 18366 | void |
| 18367 | vm_map_mark_alien( |
| 18368 | vm_map_t map) |
| 18369 | { |
| 18370 | vm_map_lock(map); |
| 18371 | map->is_alien = true; |
| 18372 | vm_map_unlock(map); |
| 18373 | } |
| 18374 | |
| 18375 | void |
| 18376 | vm_map_single_jit( |
| 18377 | vm_map_t map) |
| 18378 | { |
| 18379 | vm_map_lock(map); |
| 18380 | map->single_jit = true; |
| 18381 | vm_map_unlock(map); |
| 18382 | } |
| 18383 | #endif /* XNU_TARGET_OS_OSX */ |
| 18384 | |
| 18385 | |
| 18386 | /* |
| 18387 | * Callers of this function must call vm_map_copy_require on |
| 18388 | * previously created vm_map_copy_t or pass a newly created |
| 18389 | * one to ensure that it hasn't been forged. |
| 18390 | */ |
| 18391 | static kern_return_t |
| 18392 | vm_map_copy_to_physcopy( |
| 18393 | vm_map_copy_t copy_map, |
| 18394 | vm_map_t target_map) |
| 18395 | { |
| 18396 | vm_map_size_t size; |
| 18397 | vm_map_entry_t entry; |
| 18398 | vm_map_entry_t new_entry; |
| 18399 | vm_object_t new_object; |
| 18400 | unsigned int pmap_flags; |
| 18401 | pmap_t new_pmap; |
| 18402 | vm_map_t new_map; |
| 18403 | vm_map_address_t src_start, src_end, src_cur; |
| 18404 | vm_map_address_t dst_start, dst_end, dst_cur; |
| 18405 | kern_return_t kr; |
| 18406 | void *kbuf; |
| 18407 | |
| 18408 | /* |
| 18409 | * Perform the equivalent of vm_allocate() and memcpy(). |
| 18410 | * Replace the mappings in "copy_map" with the newly allocated mapping. |
| 18411 | */ |
| 18412 | DEBUG4K_COPY("copy_map %p (%d %d 0x%llx 0x%llx) BEFORE\n" , copy_map, copy_map->cpy_hdr.page_shift, copy_map->cpy_hdr.nentries, copy_map->offset, (uint64_t)copy_map->size); |
| 18413 | |
| 18414 | assert(copy_map->cpy_hdr.page_shift != VM_MAP_PAGE_MASK(target_map)); |
| 18415 | |
| 18416 | /* create a new pmap to map "copy_map" */ |
| 18417 | pmap_flags = 0; |
| 18418 | assert(copy_map->cpy_hdr.page_shift == FOURK_PAGE_SHIFT); |
| 18419 | #if PMAP_CREATE_FORCE_4K_PAGES |
| 18420 | pmap_flags |= PMAP_CREATE_FORCE_4K_PAGES; |
| 18421 | #endif /* PMAP_CREATE_FORCE_4K_PAGES */ |
| 18422 | pmap_flags |= PMAP_CREATE_64BIT; |
| 18423 | new_pmap = pmap_create_options(NULL, size: (vm_map_size_t)0, flags: pmap_flags); |
| 18424 | if (new_pmap == NULL) { |
| 18425 | return KERN_RESOURCE_SHORTAGE; |
| 18426 | } |
| 18427 | |
| 18428 | /* allocate new VM object */ |
| 18429 | size = VM_MAP_ROUND_PAGE(copy_map->size, PAGE_MASK); |
| 18430 | new_object = vm_object_allocate(size); |
| 18431 | assert(new_object); |
| 18432 | |
| 18433 | /* allocate new VM map entry */ |
| 18434 | new_entry = vm_map_copy_entry_create(copy_map); |
| 18435 | assert(new_entry); |
| 18436 | |
| 18437 | /* finish initializing new VM map entry */ |
| 18438 | new_entry->protection = VM_PROT_DEFAULT; |
| 18439 | new_entry->max_protection = VM_PROT_DEFAULT; |
| 18440 | new_entry->use_pmap = TRUE; |
| 18441 | |
| 18442 | /* make new VM map entry point to new VM object */ |
| 18443 | new_entry->vme_start = 0; |
| 18444 | new_entry->vme_end = size; |
| 18445 | VME_OBJECT_SET(entry: new_entry, object: new_object, false, context: 0); |
| 18446 | VME_OFFSET_SET(entry: new_entry, offset: 0); |
| 18447 | |
| 18448 | /* create a new pageable VM map to map "copy_map" */ |
| 18449 | new_map = vm_map_create_options(pmap: new_pmap, min: 0, MACH_VM_MAX_ADDRESS, |
| 18450 | options: VM_MAP_CREATE_PAGEABLE); |
| 18451 | assert(new_map); |
| 18452 | vm_map_set_page_shift(map: new_map, pageshift: copy_map->cpy_hdr.page_shift); |
| 18453 | |
| 18454 | /* map "copy_map" in the new VM map */ |
| 18455 | src_start = 0; |
| 18456 | kr = vm_map_copyout_internal( |
| 18457 | dst_map: new_map, |
| 18458 | dst_addr: &src_start, |
| 18459 | copy: copy_map, |
| 18460 | copy_size: copy_map->size, |
| 18461 | FALSE, /* consume_on_success */ |
| 18462 | VM_PROT_DEFAULT, |
| 18463 | VM_PROT_DEFAULT, |
| 18464 | VM_INHERIT_DEFAULT); |
| 18465 | assert(kr == KERN_SUCCESS); |
| 18466 | src_end = src_start + copy_map->size; |
| 18467 | |
| 18468 | /* map "new_object" in the new VM map */ |
| 18469 | vm_object_reference(new_object); |
| 18470 | dst_start = 0; |
| 18471 | kr = vm_map_enter(map: new_map, |
| 18472 | address: &dst_start, |
| 18473 | size, |
| 18474 | mask: 0, /* mask */ |
| 18475 | VM_MAP_KERNEL_FLAGS_ANYWHERE(.vm_tag = VM_KERN_MEMORY_OSFMK), |
| 18476 | object: new_object, |
| 18477 | offset: 0, /* offset */ |
| 18478 | FALSE, /* needs copy */ |
| 18479 | VM_PROT_DEFAULT, |
| 18480 | VM_PROT_DEFAULT, |
| 18481 | VM_INHERIT_DEFAULT); |
| 18482 | assert(kr == KERN_SUCCESS); |
| 18483 | dst_end = dst_start + size; |
| 18484 | |
| 18485 | /* get a kernel buffer */ |
| 18486 | kbuf = kalloc_data(PAGE_SIZE, Z_WAITOK | Z_NOFAIL); |
| 18487 | |
| 18488 | /* physically copy "copy_map" mappings to new VM object */ |
| 18489 | for (src_cur = src_start, dst_cur = dst_start; |
| 18490 | src_cur < src_end; |
| 18491 | src_cur += PAGE_SIZE, dst_cur += PAGE_SIZE) { |
| 18492 | vm_size_t bytes; |
| 18493 | |
| 18494 | bytes = PAGE_SIZE; |
| 18495 | if (src_cur + PAGE_SIZE > src_end) { |
| 18496 | /* partial copy for last page */ |
| 18497 | bytes = src_end - src_cur; |
| 18498 | assert(bytes > 0 && bytes < PAGE_SIZE); |
| 18499 | /* rest of dst page should be zero-filled */ |
| 18500 | } |
| 18501 | /* get bytes from src mapping */ |
| 18502 | kr = copyinmap(map: new_map, fromaddr: src_cur, todata: kbuf, length: bytes); |
| 18503 | if (kr != KERN_SUCCESS) { |
| 18504 | DEBUG4K_COPY("copyinmap(%p, 0x%llx, %p, 0x%llx) kr 0x%x\n" , new_map, (uint64_t)src_cur, kbuf, (uint64_t)bytes, kr); |
| 18505 | } |
| 18506 | /* put bytes in dst mapping */ |
| 18507 | assert(dst_cur < dst_end); |
| 18508 | assert(dst_cur + bytes <= dst_end); |
| 18509 | kr = copyoutmap(map: new_map, fromdata: kbuf, toaddr: dst_cur, length: bytes); |
| 18510 | if (kr != KERN_SUCCESS) { |
| 18511 | DEBUG4K_COPY("copyoutmap(%p, %p, 0x%llx, 0x%llx) kr 0x%x\n" , new_map, kbuf, (uint64_t)dst_cur, (uint64_t)bytes, kr); |
| 18512 | } |
| 18513 | } |
| 18514 | |
| 18515 | /* free kernel buffer */ |
| 18516 | kfree_data(kbuf, PAGE_SIZE); |
| 18517 | |
| 18518 | /* destroy new map */ |
| 18519 | vm_map_destroy(map: new_map); |
| 18520 | new_map = VM_MAP_NULL; |
| 18521 | |
| 18522 | /* dispose of the old map entries in "copy_map" */ |
| 18523 | while (vm_map_copy_first_entry(copy_map) != |
| 18524 | vm_map_copy_to_entry(copy_map)) { |
| 18525 | entry = vm_map_copy_first_entry(copy_map); |
| 18526 | vm_map_copy_entry_unlink(copy_map, entry); |
| 18527 | if (entry->is_sub_map) { |
| 18528 | vm_map_deallocate(VME_SUBMAP(entry)); |
| 18529 | } else { |
| 18530 | vm_object_deallocate(VME_OBJECT(entry)); |
| 18531 | } |
| 18532 | vm_map_copy_entry_dispose(entry); |
| 18533 | } |
| 18534 | |
| 18535 | /* change "copy_map"'s page_size to match "target_map" */ |
| 18536 | copy_map->cpy_hdr.page_shift = (uint16_t)VM_MAP_PAGE_SHIFT(map: target_map); |
| 18537 | copy_map->offset = 0; |
| 18538 | copy_map->size = size; |
| 18539 | |
| 18540 | /* insert new map entry in "copy_map" */ |
| 18541 | assert(vm_map_copy_last_entry(copy_map) == vm_map_copy_to_entry(copy_map)); |
| 18542 | vm_map_copy_entry_link(copy_map, vm_map_copy_last_entry(copy_map), new_entry); |
| 18543 | |
| 18544 | DEBUG4K_COPY("copy_map %p (%d %d 0x%llx 0x%llx) AFTER\n" , copy_map, copy_map->cpy_hdr.page_shift, copy_map->cpy_hdr.nentries, copy_map->offset, (uint64_t)copy_map->size); |
| 18545 | return KERN_SUCCESS; |
| 18546 | } |
| 18547 | |
| 18548 | void |
| 18549 | vm_map_copy_adjust_get_target_copy_map( |
| 18550 | vm_map_copy_t copy_map, |
| 18551 | vm_map_copy_t *target_copy_map_p); |
| 18552 | void |
| 18553 | vm_map_copy_adjust_get_target_copy_map( |
| 18554 | vm_map_copy_t copy_map, |
| 18555 | vm_map_copy_t *target_copy_map_p) |
| 18556 | { |
| 18557 | vm_map_copy_t target_copy_map; |
| 18558 | vm_map_entry_t entry, target_entry; |
| 18559 | |
| 18560 | if (*target_copy_map_p != VM_MAP_COPY_NULL) { |
| 18561 | /* the caller already has a "target_copy_map": use it */ |
| 18562 | return; |
| 18563 | } |
| 18564 | |
| 18565 | /* the caller wants us to create a new copy of "copy_map" */ |
| 18566 | assert(copy_map->type == VM_MAP_COPY_ENTRY_LIST); |
| 18567 | target_copy_map = vm_map_copy_allocate(type: copy_map->type); |
| 18568 | target_copy_map->offset = copy_map->offset; |
| 18569 | target_copy_map->size = copy_map->size; |
| 18570 | target_copy_map->cpy_hdr.page_shift = copy_map->cpy_hdr.page_shift; |
| 18571 | for (entry = vm_map_copy_first_entry(copy_map); |
| 18572 | entry != vm_map_copy_to_entry(copy_map); |
| 18573 | entry = entry->vme_next) { |
| 18574 | target_entry = vm_map_copy_entry_create(target_copy_map); |
| 18575 | vm_map_entry_copy_full(new: target_entry, old: entry); |
| 18576 | if (target_entry->is_sub_map) { |
| 18577 | vm_map_reference(VME_SUBMAP(target_entry)); |
| 18578 | } else { |
| 18579 | vm_object_reference(VME_OBJECT(target_entry)); |
| 18580 | } |
| 18581 | vm_map_copy_entry_link( |
| 18582 | target_copy_map, |
| 18583 | vm_map_copy_last_entry(target_copy_map), |
| 18584 | target_entry); |
| 18585 | } |
| 18586 | entry = VM_MAP_ENTRY_NULL; |
| 18587 | *target_copy_map_p = target_copy_map; |
| 18588 | } |
| 18589 | |
| 18590 | /* |
| 18591 | * Callers of this function must call vm_map_copy_require on |
| 18592 | * previously created vm_map_copy_t or pass a newly created |
| 18593 | * one to ensure that it hasn't been forged. |
| 18594 | */ |
| 18595 | static void |
| 18596 | vm_map_copy_trim( |
| 18597 | vm_map_copy_t copy_map, |
| 18598 | uint16_t new_page_shift, |
| 18599 | vm_map_offset_t trim_start, |
| 18600 | vm_map_offset_t trim_end) |
| 18601 | { |
| 18602 | uint16_t copy_page_shift; |
| 18603 | vm_map_entry_t entry, next_entry; |
| 18604 | |
| 18605 | assert(copy_map->type == VM_MAP_COPY_ENTRY_LIST); |
| 18606 | assert(copy_map->cpy_hdr.nentries > 0); |
| 18607 | |
| 18608 | trim_start += vm_map_copy_first_entry(copy_map)->vme_start; |
| 18609 | trim_end += vm_map_copy_first_entry(copy_map)->vme_start; |
| 18610 | |
| 18611 | /* use the new page_shift to do the clipping */ |
| 18612 | copy_page_shift = VM_MAP_COPY_PAGE_SHIFT(copy_map); |
| 18613 | copy_map->cpy_hdr.page_shift = new_page_shift; |
| 18614 | |
| 18615 | for (entry = vm_map_copy_first_entry(copy_map); |
| 18616 | entry != vm_map_copy_to_entry(copy_map); |
| 18617 | entry = next_entry) { |
| 18618 | next_entry = entry->vme_next; |
| 18619 | if (entry->vme_end <= trim_start) { |
| 18620 | /* entry fully before trim range: skip */ |
| 18621 | continue; |
| 18622 | } |
| 18623 | if (entry->vme_start >= trim_end) { |
| 18624 | /* entry fully after trim range: done */ |
| 18625 | break; |
| 18626 | } |
| 18627 | /* clip entry if needed */ |
| 18628 | vm_map_copy_clip_start(copy_map, entry, trim_start); |
| 18629 | vm_map_copy_clip_end(copy_map, entry, trim_end); |
| 18630 | /* dispose of entry */ |
| 18631 | copy_map->size -= entry->vme_end - entry->vme_start; |
| 18632 | vm_map_copy_entry_unlink(copy_map, entry); |
| 18633 | if (entry->is_sub_map) { |
| 18634 | vm_map_deallocate(VME_SUBMAP(entry)); |
| 18635 | } else { |
| 18636 | vm_object_deallocate(VME_OBJECT(entry)); |
| 18637 | } |
| 18638 | vm_map_copy_entry_dispose(entry); |
| 18639 | entry = VM_MAP_ENTRY_NULL; |
| 18640 | } |
| 18641 | |
| 18642 | /* restore copy_map's original page_shift */ |
| 18643 | copy_map->cpy_hdr.page_shift = copy_page_shift; |
| 18644 | } |
| 18645 | |
| 18646 | /* |
| 18647 | * Make any necessary adjustments to "copy_map" to allow it to be |
| 18648 | * mapped into "target_map". |
| 18649 | * If no changes were necessary, "target_copy_map" points to the |
| 18650 | * untouched "copy_map". |
| 18651 | * If changes are necessary, changes will be made to "target_copy_map". |
| 18652 | * If "target_copy_map" was NULL, we create a new "vm_map_copy_t" and |
| 18653 | * copy the original "copy_map" to it before applying the changes. |
| 18654 | * The caller should discard "target_copy_map" if it's not the same as |
| 18655 | * the original "copy_map". |
| 18656 | */ |
| 18657 | /* TODO4K: also adjust to sub-range in the copy_map -> add start&end? */ |
| 18658 | kern_return_t |
| 18659 | vm_map_copy_adjust_to_target( |
| 18660 | vm_map_copy_t src_copy_map, |
| 18661 | vm_map_offset_t offset, |
| 18662 | vm_map_size_t size, |
| 18663 | vm_map_t target_map, |
| 18664 | boolean_t copy, |
| 18665 | vm_map_copy_t *target_copy_map_p, |
| 18666 | vm_map_offset_t *overmap_start_p, |
| 18667 | vm_map_offset_t *overmap_end_p, |
| 18668 | vm_map_offset_t *trimmed_start_p) |
| 18669 | { |
| 18670 | vm_map_copy_t copy_map, target_copy_map; |
| 18671 | vm_map_size_t target_size; |
| 18672 | vm_map_size_t src_copy_map_size; |
| 18673 | vm_map_size_t overmap_start, overmap_end; |
| 18674 | int misalignments; |
| 18675 | vm_map_entry_t entry, target_entry; |
| 18676 | vm_map_offset_t addr_adjustment; |
| 18677 | vm_map_offset_t new_start, new_end; |
| 18678 | int copy_page_mask, target_page_mask; |
| 18679 | uint16_t copy_page_shift, target_page_shift; |
| 18680 | vm_map_offset_t trimmed_end; |
| 18681 | |
| 18682 | /* |
| 18683 | * Assert that the vm_map_copy is coming from the right |
| 18684 | * zone and hasn't been forged |
| 18685 | */ |
| 18686 | vm_map_copy_require(copy: src_copy_map); |
| 18687 | assert(src_copy_map->type == VM_MAP_COPY_ENTRY_LIST); |
| 18688 | |
| 18689 | /* |
| 18690 | * Start working with "src_copy_map" but we'll switch |
| 18691 | * to "target_copy_map" as soon as we start making adjustments. |
| 18692 | */ |
| 18693 | copy_map = src_copy_map; |
| 18694 | src_copy_map_size = src_copy_map->size; |
| 18695 | |
| 18696 | copy_page_shift = VM_MAP_COPY_PAGE_SHIFT(copy_map); |
| 18697 | copy_page_mask = VM_MAP_COPY_PAGE_MASK(copy_map); |
| 18698 | target_page_shift = (uint16_t)VM_MAP_PAGE_SHIFT(map: target_map); |
| 18699 | target_page_mask = VM_MAP_PAGE_MASK(target_map); |
| 18700 | |
| 18701 | DEBUG4K_ADJUST("copy_map %p (%d offset 0x%llx size 0x%llx) target_map %p (%d) copy %d offset 0x%llx size 0x%llx target_copy_map %p...\n" , copy_map, copy_page_shift, (uint64_t)copy_map->offset, (uint64_t)copy_map->size, target_map, target_page_shift, copy, (uint64_t)offset, (uint64_t)size, *target_copy_map_p); |
| 18702 | |
| 18703 | target_copy_map = *target_copy_map_p; |
| 18704 | if (target_copy_map != VM_MAP_COPY_NULL) { |
| 18705 | vm_map_copy_require(copy: target_copy_map); |
| 18706 | } |
| 18707 | |
| 18708 | if (offset + size > copy_map->size) { |
| 18709 | DEBUG4K_ERROR("copy_map %p (%d->%d) copy_map->size 0x%llx offset 0x%llx size 0x%llx KERN_INVALID_ARGUMENT\n" , copy_map, copy_page_shift, target_page_shift, (uint64_t)copy_map->size, (uint64_t)offset, (uint64_t)size); |
| 18710 | return KERN_INVALID_ARGUMENT; |
| 18711 | } |
| 18712 | |
| 18713 | /* trim the end */ |
| 18714 | trimmed_end = 0; |
| 18715 | new_end = VM_MAP_ROUND_PAGE(offset + size, target_page_mask); |
| 18716 | if (new_end < copy_map->size) { |
| 18717 | trimmed_end = src_copy_map_size - new_end; |
| 18718 | DEBUG4K_ADJUST("copy_map %p (%d->%d) copy %d offset 0x%llx size 0x%llx target_copy_map %p... trim end from 0x%llx to 0x%llx\n" , copy_map, copy_page_shift, target_page_shift, copy, (uint64_t)offset, (uint64_t)size, target_copy_map, (uint64_t)new_end, (uint64_t)copy_map->size); |
| 18719 | /* get "target_copy_map" if needed and adjust it */ |
| 18720 | vm_map_copy_adjust_get_target_copy_map(copy_map, |
| 18721 | target_copy_map_p: &target_copy_map); |
| 18722 | copy_map = target_copy_map; |
| 18723 | vm_map_copy_trim(copy_map: target_copy_map, new_page_shift: target_page_shift, |
| 18724 | trim_start: new_end, trim_end: copy_map->size); |
| 18725 | } |
| 18726 | |
| 18727 | /* trim the start */ |
| 18728 | new_start = VM_MAP_TRUNC_PAGE(offset, target_page_mask); |
| 18729 | if (new_start != 0) { |
| 18730 | DEBUG4K_ADJUST("copy_map %p (%d->%d) copy %d offset 0x%llx size 0x%llx target_copy_map %p... trim start from 0x%llx to 0x%llx\n" , copy_map, copy_page_shift, target_page_shift, copy, (uint64_t)offset, (uint64_t)size, target_copy_map, (uint64_t)0, (uint64_t)new_start); |
| 18731 | /* get "target_copy_map" if needed and adjust it */ |
| 18732 | vm_map_copy_adjust_get_target_copy_map(copy_map, |
| 18733 | target_copy_map_p: &target_copy_map); |
| 18734 | copy_map = target_copy_map; |
| 18735 | vm_map_copy_trim(copy_map: target_copy_map, new_page_shift: target_page_shift, |
| 18736 | trim_start: 0, trim_end: new_start); |
| 18737 | } |
| 18738 | *trimmed_start_p = new_start; |
| 18739 | |
| 18740 | /* target_size starts with what's left after trimming */ |
| 18741 | target_size = copy_map->size; |
| 18742 | assertf(target_size == src_copy_map_size - *trimmed_start_p - trimmed_end, |
| 18743 | "target_size 0x%llx src_copy_map_size 0x%llx trimmed_start 0x%llx trimmed_end 0x%llx\n" , |
| 18744 | (uint64_t)target_size, (uint64_t)src_copy_map_size, |
| 18745 | (uint64_t)*trimmed_start_p, (uint64_t)trimmed_end); |
| 18746 | |
| 18747 | /* check for misalignments but don't adjust yet */ |
| 18748 | misalignments = 0; |
| 18749 | overmap_start = 0; |
| 18750 | overmap_end = 0; |
| 18751 | if (copy_page_shift < target_page_shift) { |
| 18752 | /* |
| 18753 | * Remapping from 4K to 16K: check the VM object alignments |
| 18754 | * throughout the range. |
| 18755 | * If the start and end of the range are mis-aligned, we can |
| 18756 | * over-map to re-align, and adjust the "overmap" start/end |
| 18757 | * and "target_size" of the range accordingly. |
| 18758 | * If there is any mis-alignment within the range: |
| 18759 | * if "copy": |
| 18760 | * we can do immediate-copy instead of copy-on-write, |
| 18761 | * else: |
| 18762 | * no way to remap and share; fail. |
| 18763 | */ |
| 18764 | for (entry = vm_map_copy_first_entry(copy_map); |
| 18765 | entry != vm_map_copy_to_entry(copy_map); |
| 18766 | entry = entry->vme_next) { |
| 18767 | vm_object_offset_t object_offset_start, object_offset_end; |
| 18768 | |
| 18769 | object_offset_start = VME_OFFSET(entry); |
| 18770 | object_offset_end = object_offset_start; |
| 18771 | object_offset_end += entry->vme_end - entry->vme_start; |
| 18772 | if (object_offset_start & target_page_mask) { |
| 18773 | if (entry == vm_map_copy_first_entry(copy_map) && !copy) { |
| 18774 | overmap_start++; |
| 18775 | } else { |
| 18776 | misalignments++; |
| 18777 | } |
| 18778 | } |
| 18779 | if (object_offset_end & target_page_mask) { |
| 18780 | if (entry->vme_next == vm_map_copy_to_entry(copy_map) && !copy) { |
| 18781 | overmap_end++; |
| 18782 | } else { |
| 18783 | misalignments++; |
| 18784 | } |
| 18785 | } |
| 18786 | } |
| 18787 | } |
| 18788 | entry = VM_MAP_ENTRY_NULL; |
| 18789 | |
| 18790 | /* decide how to deal with misalignments */ |
| 18791 | assert(overmap_start <= 1); |
| 18792 | assert(overmap_end <= 1); |
| 18793 | if (!overmap_start && !overmap_end && !misalignments) { |
| 18794 | /* copy_map is properly aligned for target_map ... */ |
| 18795 | if (*trimmed_start_p) { |
| 18796 | /* ... but we trimmed it, so still need to adjust */ |
| 18797 | } else { |
| 18798 | /* ... and we didn't trim anything: we're done */ |
| 18799 | if (target_copy_map == VM_MAP_COPY_NULL) { |
| 18800 | target_copy_map = copy_map; |
| 18801 | } |
| 18802 | *target_copy_map_p = target_copy_map; |
| 18803 | *overmap_start_p = 0; |
| 18804 | *overmap_end_p = 0; |
| 18805 | DEBUG4K_ADJUST("copy_map %p (%d offset 0x%llx size 0x%llx) target_map %p (%d) copy %d target_copy_map %p (%d offset 0x%llx size 0x%llx) -> trimmed 0x%llx overmap start 0x%llx end 0x%llx KERN_SUCCESS\n" , copy_map, copy_page_shift, (uint64_t)copy_map->offset, (uint64_t)copy_map->size, target_map, target_page_shift, copy, *target_copy_map_p, VM_MAP_COPY_PAGE_SHIFT(*target_copy_map_p), (uint64_t)(*target_copy_map_p)->offset, (uint64_t)(*target_copy_map_p)->size, (uint64_t)*trimmed_start_p, (uint64_t)*overmap_start_p, (uint64_t)*overmap_end_p); |
| 18806 | return KERN_SUCCESS; |
| 18807 | } |
| 18808 | } else if (misalignments && !copy) { |
| 18809 | /* can't "share" if misaligned */ |
| 18810 | DEBUG4K_ADJUST("unsupported sharing\n" ); |
| 18811 | #if MACH_ASSERT |
| 18812 | if (debug4k_panic_on_misaligned_sharing) { |
| 18813 | panic("DEBUG4k %s:%d unsupported sharing" , __FUNCTION__, __LINE__); |
| 18814 | } |
| 18815 | #endif /* MACH_ASSERT */ |
| 18816 | DEBUG4K_ADJUST("copy_map %p (%d) target_map %p (%d) copy %d target_copy_map %p -> KERN_NOT_SUPPORTED\n" , copy_map, copy_page_shift, target_map, target_page_shift, copy, *target_copy_map_p); |
| 18817 | return KERN_NOT_SUPPORTED; |
| 18818 | } else { |
| 18819 | /* can't virtual-copy if misaligned (but can physical-copy) */ |
| 18820 | DEBUG4K_ADJUST("mis-aligned copying\n" ); |
| 18821 | } |
| 18822 | |
| 18823 | /* get a "target_copy_map" if needed and switch to it */ |
| 18824 | vm_map_copy_adjust_get_target_copy_map(copy_map, target_copy_map_p: &target_copy_map); |
| 18825 | copy_map = target_copy_map; |
| 18826 | |
| 18827 | if (misalignments && copy) { |
| 18828 | vm_map_size_t target_copy_map_size; |
| 18829 | |
| 18830 | /* |
| 18831 | * Can't do copy-on-write with misaligned mappings. |
| 18832 | * Replace the mappings with a physical copy of the original |
| 18833 | * mappings' contents. |
| 18834 | */ |
| 18835 | target_copy_map_size = target_copy_map->size; |
| 18836 | kern_return_t kr = vm_map_copy_to_physcopy(copy_map: target_copy_map, target_map); |
| 18837 | if (kr != KERN_SUCCESS) { |
| 18838 | return kr; |
| 18839 | } |
| 18840 | *target_copy_map_p = target_copy_map; |
| 18841 | *overmap_start_p = 0; |
| 18842 | *overmap_end_p = target_copy_map->size - target_copy_map_size; |
| 18843 | DEBUG4K_ADJUST("copy_map %p (%d offset 0x%llx size 0x%llx) target_map %p (%d) copy %d target_copy_map %p (%d offset 0x%llx size 0x%llx)-> trimmed 0x%llx overmap start 0x%llx end 0x%llx PHYSCOPY\n" , copy_map, copy_page_shift, (uint64_t)copy_map->offset, (uint64_t)copy_map->size, target_map, target_page_shift, copy, *target_copy_map_p, VM_MAP_COPY_PAGE_SHIFT(*target_copy_map_p), (uint64_t)(*target_copy_map_p)->offset, (uint64_t)(*target_copy_map_p)->size, (uint64_t)*trimmed_start_p, (uint64_t)*overmap_start_p, (uint64_t)*overmap_end_p); |
| 18844 | return KERN_SUCCESS; |
| 18845 | } |
| 18846 | |
| 18847 | /* apply the adjustments */ |
| 18848 | misalignments = 0; |
| 18849 | overmap_start = 0; |
| 18850 | overmap_end = 0; |
| 18851 | /* remove copy_map->offset, so that everything starts at offset 0 */ |
| 18852 | addr_adjustment = copy_map->offset; |
| 18853 | /* also remove whatever we trimmed from the start */ |
| 18854 | addr_adjustment += *trimmed_start_p; |
| 18855 | for (target_entry = vm_map_copy_first_entry(target_copy_map); |
| 18856 | target_entry != vm_map_copy_to_entry(target_copy_map); |
| 18857 | target_entry = target_entry->vme_next) { |
| 18858 | vm_object_offset_t object_offset_start, object_offset_end; |
| 18859 | |
| 18860 | DEBUG4K_ADJUST("copy %p (%d 0x%llx 0x%llx) entry %p [ 0x%llx 0x%llx ] object %p offset 0x%llx BEFORE\n" , target_copy_map, VM_MAP_COPY_PAGE_SHIFT(target_copy_map), target_copy_map->offset, (uint64_t)target_copy_map->size, target_entry, (uint64_t)target_entry->vme_start, (uint64_t)target_entry->vme_end, VME_OBJECT(target_entry), VME_OFFSET(target_entry)); |
| 18861 | object_offset_start = VME_OFFSET(entry: target_entry); |
| 18862 | if (object_offset_start & target_page_mask) { |
| 18863 | DEBUG4K_ADJUST("copy %p (%d 0x%llx 0x%llx) entry %p [ 0x%llx 0x%llx ] object %p offset 0x%llx misaligned at start\n" , target_copy_map, VM_MAP_COPY_PAGE_SHIFT(target_copy_map), target_copy_map->offset, (uint64_t)target_copy_map->size, target_entry, (uint64_t)target_entry->vme_start, (uint64_t)target_entry->vme_end, VME_OBJECT(target_entry), VME_OFFSET(target_entry)); |
| 18864 | if (target_entry == vm_map_copy_first_entry(target_copy_map)) { |
| 18865 | /* |
| 18866 | * start of 1st entry is mis-aligned: |
| 18867 | * re-adjust by over-mapping. |
| 18868 | */ |
| 18869 | overmap_start = object_offset_start - trunc_page_mask_64(object_offset_start, target_page_mask); |
| 18870 | DEBUG4K_ADJUST("entry %p offset 0x%llx copy %d -> overmap_start 0x%llx\n" , target_entry, VME_OFFSET(target_entry), copy, (uint64_t)overmap_start); |
| 18871 | VME_OFFSET_SET(entry: target_entry, offset: VME_OFFSET(entry: target_entry) - overmap_start); |
| 18872 | } else { |
| 18873 | misalignments++; |
| 18874 | DEBUG4K_ADJUST("entry %p offset 0x%llx copy %d -> misalignments %d\n" , target_entry, VME_OFFSET(target_entry), copy, misalignments); |
| 18875 | assert(copy); |
| 18876 | } |
| 18877 | } |
| 18878 | |
| 18879 | if (target_entry == vm_map_copy_first_entry(target_copy_map)) { |
| 18880 | target_size += overmap_start; |
| 18881 | } else { |
| 18882 | target_entry->vme_start += overmap_start; |
| 18883 | } |
| 18884 | target_entry->vme_end += overmap_start; |
| 18885 | |
| 18886 | object_offset_end = VME_OFFSET(entry: target_entry) + target_entry->vme_end - target_entry->vme_start; |
| 18887 | if (object_offset_end & target_page_mask) { |
| 18888 | DEBUG4K_ADJUST("copy %p (%d 0x%llx 0x%llx) entry %p [ 0x%llx 0x%llx ] object %p offset 0x%llx misaligned at end\n" , target_copy_map, VM_MAP_COPY_PAGE_SHIFT(target_copy_map), target_copy_map->offset, (uint64_t)target_copy_map->size, target_entry, (uint64_t)target_entry->vme_start, (uint64_t)target_entry->vme_end, VME_OBJECT(target_entry), VME_OFFSET(target_entry)); |
| 18889 | if (target_entry->vme_next == vm_map_copy_to_entry(target_copy_map)) { |
| 18890 | /* |
| 18891 | * end of last entry is mis-aligned: re-adjust by over-mapping. |
| 18892 | */ |
| 18893 | overmap_end = round_page_mask_64(object_offset_end, target_page_mask) - object_offset_end; |
| 18894 | DEBUG4K_ADJUST("entry %p offset 0x%llx copy %d -> overmap_end 0x%llx\n" , target_entry, VME_OFFSET(target_entry), copy, (uint64_t)overmap_end); |
| 18895 | target_entry->vme_end += overmap_end; |
| 18896 | target_size += overmap_end; |
| 18897 | } else { |
| 18898 | misalignments++; |
| 18899 | DEBUG4K_ADJUST("entry %p offset 0x%llx copy %d -> misalignments %d\n" , target_entry, VME_OFFSET(target_entry), copy, misalignments); |
| 18900 | assert(copy); |
| 18901 | } |
| 18902 | } |
| 18903 | target_entry->vme_start -= addr_adjustment; |
| 18904 | target_entry->vme_end -= addr_adjustment; |
| 18905 | DEBUG4K_ADJUST("copy %p (%d 0x%llx 0x%llx) entry %p [ 0x%llx 0x%llx ] object %p offset 0x%llx AFTER\n" , target_copy_map, VM_MAP_COPY_PAGE_SHIFT(target_copy_map), target_copy_map->offset, (uint64_t)target_copy_map->size, target_entry, (uint64_t)target_entry->vme_start, (uint64_t)target_entry->vme_end, VME_OBJECT(target_entry), VME_OFFSET(target_entry)); |
| 18906 | } |
| 18907 | |
| 18908 | target_copy_map->size = target_size; |
| 18909 | target_copy_map->offset += overmap_start; |
| 18910 | target_copy_map->offset -= addr_adjustment; |
| 18911 | target_copy_map->cpy_hdr.page_shift = target_page_shift; |
| 18912 | |
| 18913 | // assert(VM_MAP_PAGE_ALIGNED(target_copy_map->size, target_page_mask)); |
| 18914 | // assert(VM_MAP_PAGE_ALIGNED(target_copy_map->offset, FOURK_PAGE_MASK)); |
| 18915 | assert(overmap_start < VM_MAP_PAGE_SIZE(target_map)); |
| 18916 | assert(overmap_end < VM_MAP_PAGE_SIZE(target_map)); |
| 18917 | |
| 18918 | *target_copy_map_p = target_copy_map; |
| 18919 | *overmap_start_p = overmap_start; |
| 18920 | *overmap_end_p = overmap_end; |
| 18921 | |
| 18922 | DEBUG4K_ADJUST("copy_map %p (%d offset 0x%llx size 0x%llx) target_map %p (%d) copy %d target_copy_map %p (%d offset 0x%llx size 0x%llx) -> trimmed 0x%llx overmap start 0x%llx end 0x%llx KERN_SUCCESS\n" , copy_map, copy_page_shift, (uint64_t)copy_map->offset, (uint64_t)copy_map->size, target_map, target_page_shift, copy, *target_copy_map_p, VM_MAP_COPY_PAGE_SHIFT(*target_copy_map_p), (uint64_t)(*target_copy_map_p)->offset, (uint64_t)(*target_copy_map_p)->size, (uint64_t)*trimmed_start_p, (uint64_t)*overmap_start_p, (uint64_t)*overmap_end_p); |
| 18923 | return KERN_SUCCESS; |
| 18924 | } |
| 18925 | |
| 18926 | kern_return_t |
| 18927 | vm_map_range_physical_size( |
| 18928 | vm_map_t map, |
| 18929 | vm_map_address_t start, |
| 18930 | mach_vm_size_t size, |
| 18931 | mach_vm_size_t * phys_size) |
| 18932 | { |
| 18933 | kern_return_t kr; |
| 18934 | vm_map_copy_t copy_map, target_copy_map; |
| 18935 | vm_map_offset_t adjusted_start, adjusted_end; |
| 18936 | vm_map_size_t adjusted_size; |
| 18937 | vm_prot_t cur_prot, max_prot; |
| 18938 | vm_map_offset_t overmap_start, overmap_end, trimmed_start, end; |
| 18939 | vm_map_kernel_flags_t vmk_flags; |
| 18940 | |
| 18941 | if (size == 0) { |
| 18942 | DEBUG4K_SHARE("map %p start 0x%llx size 0x%llx -> phys_size 0!\n" , map, (uint64_t)start, (uint64_t)size); |
| 18943 | *phys_size = 0; |
| 18944 | return KERN_SUCCESS; |
| 18945 | } |
| 18946 | |
| 18947 | adjusted_start = vm_map_trunc_page(start, VM_MAP_PAGE_MASK(map)); |
| 18948 | adjusted_end = vm_map_round_page(start + size, VM_MAP_PAGE_MASK(map)); |
| 18949 | if (__improbable(os_add_overflow(start, size, &end) || |
| 18950 | adjusted_end <= adjusted_start)) { |
| 18951 | /* wraparound */ |
| 18952 | printf(format: "%s:%d(start=0x%llx, size=0x%llx) pgmask 0x%x: wraparound\n" , __FUNCTION__, __LINE__, (uint64_t)start, (uint64_t)size, VM_MAP_PAGE_MASK(map)); |
| 18953 | *phys_size = 0; |
| 18954 | return KERN_INVALID_ARGUMENT; |
| 18955 | } |
| 18956 | if (__improbable(vm_map_range_overflows(map, start, size))) { |
| 18957 | *phys_size = 0; |
| 18958 | return KERN_INVALID_ADDRESS; |
| 18959 | } |
| 18960 | assert(adjusted_end > adjusted_start); |
| 18961 | adjusted_size = adjusted_end - adjusted_start; |
| 18962 | *phys_size = adjusted_size; |
| 18963 | if (VM_MAP_PAGE_SIZE(map) == PAGE_SIZE) { |
| 18964 | return KERN_SUCCESS; |
| 18965 | } |
| 18966 | if (start == 0) { |
| 18967 | adjusted_start = vm_map_trunc_page(start, PAGE_MASK); |
| 18968 | adjusted_end = vm_map_round_page(start + size, PAGE_MASK); |
| 18969 | if (__improbable(adjusted_end <= adjusted_start)) { |
| 18970 | /* wraparound */ |
| 18971 | printf(format: "%s:%d(start=0x%llx, size=0x%llx) pgmask 0x%x: wraparound\n" , __FUNCTION__, __LINE__, (uint64_t)start, (uint64_t)size, PAGE_MASK); |
| 18972 | *phys_size = 0; |
| 18973 | return KERN_INVALID_ARGUMENT; |
| 18974 | } |
| 18975 | assert(adjusted_end > adjusted_start); |
| 18976 | adjusted_size = adjusted_end - adjusted_start; |
| 18977 | *phys_size = adjusted_size; |
| 18978 | return KERN_SUCCESS; |
| 18979 | } |
| 18980 | |
| 18981 | vmk_flags = VM_MAP_KERNEL_FLAGS_NONE; |
| 18982 | vmk_flags.vmkf_copy_pageable = TRUE; |
| 18983 | vmk_flags.vmkf_copy_same_map = TRUE; |
| 18984 | assert(adjusted_size != 0); |
| 18985 | cur_prot = VM_PROT_NONE; /* legacy mode */ |
| 18986 | max_prot = VM_PROT_NONE; /* legacy mode */ |
| 18987 | kr = vm_map_copy_extract(src_map: map, src_addr: adjusted_start, len: adjusted_size, |
| 18988 | FALSE /* copy */, |
| 18989 | copy_result: ©_map, |
| 18990 | cur_prot: &cur_prot, max_prot: &max_prot, VM_INHERIT_DEFAULT, |
| 18991 | vmk_flags); |
| 18992 | if (kr != KERN_SUCCESS) { |
| 18993 | DEBUG4K_ERROR("map %p start 0x%llx 0x%llx size 0x%llx 0x%llx kr 0x%x\n" , map, (uint64_t)start, (uint64_t)adjusted_start, size, (uint64_t)adjusted_size, kr); |
| 18994 | //assert(0); |
| 18995 | *phys_size = 0; |
| 18996 | return kr; |
| 18997 | } |
| 18998 | assert(copy_map != VM_MAP_COPY_NULL); |
| 18999 | target_copy_map = copy_map; |
| 19000 | DEBUG4K_ADJUST("adjusting...\n" ); |
| 19001 | kr = vm_map_copy_adjust_to_target( |
| 19002 | src_copy_map: copy_map, |
| 19003 | offset: start - adjusted_start, /* offset */ |
| 19004 | size, /* size */ |
| 19005 | target_map: kernel_map, |
| 19006 | FALSE, /* copy */ |
| 19007 | target_copy_map_p: &target_copy_map, |
| 19008 | overmap_start_p: &overmap_start, |
| 19009 | overmap_end_p: &overmap_end, |
| 19010 | trimmed_start_p: &trimmed_start); |
| 19011 | if (kr == KERN_SUCCESS) { |
| 19012 | if (target_copy_map->size != *phys_size) { |
| 19013 | DEBUG4K_ADJUST("map %p (%d) start 0x%llx size 0x%llx adjusted_start 0x%llx adjusted_end 0x%llx overmap_start 0x%llx overmap_end 0x%llx trimmed_start 0x%llx phys_size 0x%llx -> 0x%llx\n" , map, VM_MAP_PAGE_SHIFT(map), (uint64_t)start, (uint64_t)size, (uint64_t)adjusted_start, (uint64_t)adjusted_end, (uint64_t)overmap_start, (uint64_t)overmap_end, (uint64_t)trimmed_start, (uint64_t)*phys_size, (uint64_t)target_copy_map->size); |
| 19014 | } |
| 19015 | *phys_size = target_copy_map->size; |
| 19016 | } else { |
| 19017 | DEBUG4K_ERROR("map %p start 0x%llx 0x%llx size 0x%llx 0x%llx kr 0x%x\n" , map, (uint64_t)start, (uint64_t)adjusted_start, size, (uint64_t)adjusted_size, kr); |
| 19018 | //assert(0); |
| 19019 | *phys_size = 0; |
| 19020 | } |
| 19021 | vm_map_copy_discard(copy: copy_map); |
| 19022 | copy_map = VM_MAP_COPY_NULL; |
| 19023 | |
| 19024 | return kr; |
| 19025 | } |
| 19026 | |
| 19027 | |
| 19028 | kern_return_t |
| 19029 | memory_entry_check_for_adjustment( |
| 19030 | vm_map_t src_map, |
| 19031 | ipc_port_t port, |
| 19032 | vm_map_offset_t *overmap_start, |
| 19033 | vm_map_offset_t *overmap_end) |
| 19034 | { |
| 19035 | kern_return_t kr = KERN_SUCCESS; |
| 19036 | vm_map_copy_t copy_map = VM_MAP_COPY_NULL, target_copy_map = VM_MAP_COPY_NULL; |
| 19037 | |
| 19038 | assert(port); |
| 19039 | assertf(ip_kotype(port) == IKOT_NAMED_ENTRY, "Port Type expected: %d...received:%d\n" , IKOT_NAMED_ENTRY, ip_kotype(port)); |
| 19040 | |
| 19041 | vm_named_entry_t named_entry; |
| 19042 | |
| 19043 | named_entry = mach_memory_entry_from_port(port); |
| 19044 | named_entry_lock(named_entry); |
| 19045 | copy_map = named_entry->backing.copy; |
| 19046 | target_copy_map = copy_map; |
| 19047 | |
| 19048 | if (src_map && VM_MAP_PAGE_SHIFT(map: src_map) < PAGE_SHIFT) { |
| 19049 | vm_map_offset_t trimmed_start; |
| 19050 | |
| 19051 | trimmed_start = 0; |
| 19052 | DEBUG4K_ADJUST("adjusting...\n" ); |
| 19053 | kr = vm_map_copy_adjust_to_target( |
| 19054 | src_copy_map: copy_map, |
| 19055 | offset: 0, /* offset */ |
| 19056 | size: copy_map->size, /* size */ |
| 19057 | target_map: src_map, |
| 19058 | FALSE, /* copy */ |
| 19059 | target_copy_map_p: &target_copy_map, |
| 19060 | overmap_start_p: overmap_start, |
| 19061 | overmap_end_p: overmap_end, |
| 19062 | trimmed_start_p: &trimmed_start); |
| 19063 | assert(trimmed_start == 0); |
| 19064 | } |
| 19065 | named_entry_unlock(named_entry); |
| 19066 | |
| 19067 | return kr; |
| 19068 | } |
| 19069 | |
| 19070 | |
| 19071 | /* |
| 19072 | * Routine: vm_remap |
| 19073 | * |
| 19074 | * Map portion of a task's address space. |
| 19075 | * Mapped region must not overlap more than |
| 19076 | * one vm memory object. Protections and |
| 19077 | * inheritance attributes remain the same |
| 19078 | * as in the original task and are out parameters. |
| 19079 | * Source and Target task can be identical |
| 19080 | * Other attributes are identical as for vm_map() |
| 19081 | */ |
| 19082 | kern_return_t |
| 19083 | vm_map_remap( |
| 19084 | vm_map_t target_map, |
| 19085 | vm_map_address_t *address, |
| 19086 | vm_map_size_t size, |
| 19087 | vm_map_offset_t mask, |
| 19088 | vm_map_kernel_flags_t vmk_flags, |
| 19089 | vm_map_t src_map, |
| 19090 | vm_map_offset_t memory_address, |
| 19091 | boolean_t copy, |
| 19092 | vm_prot_t *cur_protection, /* IN/OUT */ |
| 19093 | vm_prot_t *max_protection, /* IN/OUT */ |
| 19094 | vm_inherit_t inheritance) |
| 19095 | { |
| 19096 | kern_return_t result; |
| 19097 | vm_map_entry_t entry; |
| 19098 | vm_map_entry_t insp_entry = VM_MAP_ENTRY_NULL; |
| 19099 | vm_map_entry_t new_entry; |
| 19100 | vm_map_copy_t copy_map; |
| 19101 | vm_map_offset_t offset_in_mapping; |
| 19102 | vm_map_size_t target_size = 0; |
| 19103 | vm_map_size_t src_page_mask, target_page_mask; |
| 19104 | vm_map_offset_t overmap_start, overmap_end, trimmed_start; |
| 19105 | vm_map_offset_t initial_memory_address; |
| 19106 | vm_map_size_t initial_size; |
| 19107 | VM_MAP_ZAP_DECLARE(zap_list); |
| 19108 | |
| 19109 | if (target_map == VM_MAP_NULL) { |
| 19110 | return KERN_INVALID_ARGUMENT; |
| 19111 | } |
| 19112 | |
| 19113 | if (__improbable(vm_map_range_overflows(src_map, memory_address, size))) { |
| 19114 | return KERN_INVALID_ARGUMENT; |
| 19115 | } |
| 19116 | |
| 19117 | if (__improbable((*cur_protection & *max_protection) != *cur_protection)) { |
| 19118 | /* cur is more permissive than max */ |
| 19119 | return KERN_INVALID_ARGUMENT; |
| 19120 | } |
| 19121 | |
| 19122 | initial_memory_address = memory_address; |
| 19123 | initial_size = size; |
| 19124 | src_page_mask = VM_MAP_PAGE_MASK(src_map); |
| 19125 | target_page_mask = VM_MAP_PAGE_MASK(target_map); |
| 19126 | |
| 19127 | switch (inheritance) { |
| 19128 | case VM_INHERIT_NONE: |
| 19129 | case VM_INHERIT_COPY: |
| 19130 | case VM_INHERIT_SHARE: |
| 19131 | if (size != 0 && src_map != VM_MAP_NULL) { |
| 19132 | break; |
| 19133 | } |
| 19134 | OS_FALLTHROUGH; |
| 19135 | default: |
| 19136 | return KERN_INVALID_ARGUMENT; |
| 19137 | } |
| 19138 | |
| 19139 | if (src_page_mask != target_page_mask) { |
| 19140 | if (copy) { |
| 19141 | DEBUG4K_COPY("src_map %p pgsz 0x%x addr 0x%llx size 0x%llx copy %d -> target_map %p pgsz 0x%x\n" , src_map, VM_MAP_PAGE_SIZE(src_map), (uint64_t)memory_address, (uint64_t)size, copy, target_map, VM_MAP_PAGE_SIZE(target_map)); |
| 19142 | } else { |
| 19143 | DEBUG4K_SHARE("src_map %p pgsz 0x%x addr 0x%llx size 0x%llx copy %d -> target_map %p pgsz 0x%x\n" , src_map, VM_MAP_PAGE_SIZE(src_map), (uint64_t)memory_address, (uint64_t)size, copy, target_map, VM_MAP_PAGE_SIZE(target_map)); |
| 19144 | } |
| 19145 | } |
| 19146 | |
| 19147 | /* |
| 19148 | * If the user is requesting that we return the address of the |
| 19149 | * first byte of the data (rather than the base of the page), |
| 19150 | * then we use different rounding semantics: specifically, |
| 19151 | * we assume that (memory_address, size) describes a region |
| 19152 | * all of whose pages we must cover, rather than a base to be truncated |
| 19153 | * down and a size to be added to that base. So we figure out |
| 19154 | * the highest page that the requested region includes and make |
| 19155 | * sure that the size will cover it. |
| 19156 | * |
| 19157 | * The key example we're worried about it is of the form: |
| 19158 | * |
| 19159 | * memory_address = 0x1ff0, size = 0x20 |
| 19160 | * |
| 19161 | * With the old semantics, we round down the memory_address to 0x1000 |
| 19162 | * and round up the size to 0x1000, resulting in our covering *only* |
| 19163 | * page 0x1000. With the new semantics, we'd realize that the region covers |
| 19164 | * 0x1ff0-0x2010, and compute a size of 0x2000. Thus, we cover both page |
| 19165 | * 0x1000 and page 0x2000 in the region we remap. |
| 19166 | */ |
| 19167 | if (vmk_flags.vmf_return_data_addr) { |
| 19168 | vm_map_offset_t range_start, range_end; |
| 19169 | |
| 19170 | range_start = vm_map_trunc_page(memory_address, src_page_mask); |
| 19171 | range_end = vm_map_round_page(memory_address + size, src_page_mask); |
| 19172 | memory_address = range_start; |
| 19173 | size = range_end - range_start; |
| 19174 | offset_in_mapping = initial_memory_address - memory_address; |
| 19175 | } else { |
| 19176 | /* |
| 19177 | * IMPORTANT: |
| 19178 | * This legacy code path is broken: for the range mentioned |
| 19179 | * above [ memory_address = 0x1ff0,size = 0x20 ], which spans |
| 19180 | * two 4k pages, it yields [ memory_address = 0x1000, |
| 19181 | * size = 0x1000 ], which covers only the first 4k page. |
| 19182 | * BUT some code unfortunately depends on this bug, so we |
| 19183 | * can't fix it without breaking something. |
| 19184 | * New code should get automatically opted in the new |
| 19185 | * behavior with the new VM_FLAGS_RETURN_DATA_ADDR flags. |
| 19186 | */ |
| 19187 | offset_in_mapping = 0; |
| 19188 | memory_address = vm_map_trunc_page(memory_address, src_page_mask); |
| 19189 | size = vm_map_round_page(size, src_page_mask); |
| 19190 | initial_memory_address = memory_address; |
| 19191 | initial_size = size; |
| 19192 | } |
| 19193 | |
| 19194 | |
| 19195 | if (size == 0) { |
| 19196 | return KERN_INVALID_ARGUMENT; |
| 19197 | } |
| 19198 | |
| 19199 | if (vmk_flags.vmf_resilient_media) { |
| 19200 | /* must be copy-on-write to be "media resilient" */ |
| 19201 | if (!copy) { |
| 19202 | return KERN_INVALID_ARGUMENT; |
| 19203 | } |
| 19204 | } |
| 19205 | |
| 19206 | vmk_flags.vmkf_copy_pageable = target_map->hdr.entries_pageable; |
| 19207 | vmk_flags.vmkf_copy_same_map = (src_map == target_map); |
| 19208 | |
| 19209 | assert(size != 0); |
| 19210 | result = vm_map_copy_extract(src_map, |
| 19211 | src_addr: memory_address, |
| 19212 | len: size, |
| 19213 | do_copy: copy, copy_result: ©_map, |
| 19214 | cur_prot: cur_protection, /* IN/OUT */ |
| 19215 | max_prot: max_protection, /* IN/OUT */ |
| 19216 | inheritance, |
| 19217 | vmk_flags); |
| 19218 | if (result != KERN_SUCCESS) { |
| 19219 | return result; |
| 19220 | } |
| 19221 | assert(copy_map != VM_MAP_COPY_NULL); |
| 19222 | |
| 19223 | /* |
| 19224 | * Handle the policy for vm map ranges |
| 19225 | * |
| 19226 | * If the maps differ, the target_map policy applies like for vm_map() |
| 19227 | * For same mapping remaps, we preserve the range. |
| 19228 | */ |
| 19229 | if (vmk_flags.vmkf_copy_same_map) { |
| 19230 | vmk_flags.vmkf_range_id = copy_map->orig_range; |
| 19231 | } else { |
| 19232 | vm_map_kernel_flags_update_range_id(flags: &vmk_flags, map: target_map); |
| 19233 | } |
| 19234 | |
| 19235 | overmap_start = 0; |
| 19236 | overmap_end = 0; |
| 19237 | trimmed_start = 0; |
| 19238 | target_size = size; |
| 19239 | if (src_page_mask != target_page_mask) { |
| 19240 | vm_map_copy_t target_copy_map; |
| 19241 | |
| 19242 | target_copy_map = copy_map; /* can modify "copy_map" itself */ |
| 19243 | DEBUG4K_ADJUST("adjusting...\n" ); |
| 19244 | result = vm_map_copy_adjust_to_target( |
| 19245 | src_copy_map: copy_map, |
| 19246 | offset: offset_in_mapping, /* offset */ |
| 19247 | size: initial_size, |
| 19248 | target_map, |
| 19249 | copy, |
| 19250 | target_copy_map_p: &target_copy_map, |
| 19251 | overmap_start_p: &overmap_start, |
| 19252 | overmap_end_p: &overmap_end, |
| 19253 | trimmed_start_p: &trimmed_start); |
| 19254 | if (result != KERN_SUCCESS) { |
| 19255 | DEBUG4K_COPY("failed to adjust 0x%x\n" , result); |
| 19256 | vm_map_copy_discard(copy: copy_map); |
| 19257 | return result; |
| 19258 | } |
| 19259 | if (trimmed_start == 0) { |
| 19260 | /* nothing trimmed: no adjustment needed */ |
| 19261 | } else if (trimmed_start >= offset_in_mapping) { |
| 19262 | /* trimmed more than offset_in_mapping: nothing left */ |
| 19263 | assert(overmap_start == 0); |
| 19264 | assert(overmap_end == 0); |
| 19265 | offset_in_mapping = 0; |
| 19266 | } else { |
| 19267 | /* trimmed some of offset_in_mapping: adjust */ |
| 19268 | assert(overmap_start == 0); |
| 19269 | assert(overmap_end == 0); |
| 19270 | offset_in_mapping -= trimmed_start; |
| 19271 | } |
| 19272 | offset_in_mapping += overmap_start; |
| 19273 | target_size = target_copy_map->size; |
| 19274 | } |
| 19275 | |
| 19276 | /* |
| 19277 | * Allocate/check a range of free virtual address |
| 19278 | * space for the target |
| 19279 | */ |
| 19280 | *address = vm_map_trunc_page(*address, target_page_mask); |
| 19281 | vm_map_lock(target_map); |
| 19282 | target_size = vm_map_round_page(target_size, target_page_mask); |
| 19283 | result = vm_map_remap_range_allocate(map: target_map, address, |
| 19284 | size: target_size, mask, vmk_flags, |
| 19285 | map_entry: &insp_entry, zap_list: &zap_list); |
| 19286 | |
| 19287 | for (entry = vm_map_copy_first_entry(copy_map); |
| 19288 | entry != vm_map_copy_to_entry(copy_map); |
| 19289 | entry = new_entry) { |
| 19290 | new_entry = entry->vme_next; |
| 19291 | vm_map_copy_entry_unlink(copy_map, entry); |
| 19292 | if (result == KERN_SUCCESS) { |
| 19293 | if (vmk_flags.vmkf_remap_prot_copy) { |
| 19294 | /* |
| 19295 | * This vm_map_remap() is for a |
| 19296 | * vm_protect(VM_PROT_COPY), so the caller |
| 19297 | * expects to be allowed to add write access |
| 19298 | * to this new mapping. This is done by |
| 19299 | * adding VM_PROT_WRITE to each entry's |
| 19300 | * max_protection... unless some security |
| 19301 | * settings disallow it. |
| 19302 | */ |
| 19303 | bool allow_write = false; |
| 19304 | if (entry->vme_permanent) { |
| 19305 | /* immutable mapping... */ |
| 19306 | if ((entry->max_protection & VM_PROT_EXECUTE) && |
| 19307 | developer_mode_state()) { |
| 19308 | /* |
| 19309 | * ... but executable and |
| 19310 | * possibly being debugged, |
| 19311 | * so let's allow it to become |
| 19312 | * writable, for breakpoints |
| 19313 | * and dtrace probes, for |
| 19314 | * example. |
| 19315 | */ |
| 19316 | allow_write = true; |
| 19317 | } else { |
| 19318 | printf(format: "%d[%s] vm_remap(0x%llx,0x%llx) VM_PROT_COPY denied on permanent mapping prot 0x%x/0x%x developer %d\n" , |
| 19319 | proc_selfpid(), |
| 19320 | (get_bsdtask_info(current_task()) |
| 19321 | ? proc_name_address(p: get_bsdtask_info(current_task())) |
| 19322 | : "?" ), |
| 19323 | (uint64_t)memory_address, |
| 19324 | (uint64_t)size, |
| 19325 | entry->protection, |
| 19326 | entry->max_protection, |
| 19327 | developer_mode_state()); |
| 19328 | DTRACE_VM6(vm_map_delete_permanent_deny_protcopy, |
| 19329 | vm_map_entry_t, entry, |
| 19330 | vm_map_offset_t, entry->vme_start, |
| 19331 | vm_map_offset_t, entry->vme_end, |
| 19332 | vm_prot_t, entry->protection, |
| 19333 | vm_prot_t, entry->max_protection, |
| 19334 | int, VME_ALIAS(entry)); |
| 19335 | } |
| 19336 | } else { |
| 19337 | allow_write = true; |
| 19338 | } |
| 19339 | |
| 19340 | /* |
| 19341 | * VM_PROT_COPY: allow this mapping to become |
| 19342 | * writable, unless it was "permanent". |
| 19343 | */ |
| 19344 | if (allow_write) { |
| 19345 | entry->max_protection |= VM_PROT_WRITE; |
| 19346 | } |
| 19347 | } |
| 19348 | if (vmk_flags.vmf_resilient_codesign) { |
| 19349 | /* no codesigning -> read-only access */ |
| 19350 | entry->max_protection = VM_PROT_READ; |
| 19351 | entry->protection = VM_PROT_READ; |
| 19352 | entry->vme_resilient_codesign = TRUE; |
| 19353 | } |
| 19354 | entry->vme_start += *address; |
| 19355 | entry->vme_end += *address; |
| 19356 | assert(!entry->map_aligned); |
| 19357 | if (vmk_flags.vmf_resilient_media && |
| 19358 | !entry->is_sub_map && |
| 19359 | (VME_OBJECT(entry) == VM_OBJECT_NULL || |
| 19360 | VME_OBJECT(entry)->internal)) { |
| 19361 | entry->vme_resilient_media = TRUE; |
| 19362 | } |
| 19363 | assert(VM_MAP_PAGE_ALIGNED(entry->vme_start, MIN(target_page_mask, PAGE_MASK))); |
| 19364 | assert(VM_MAP_PAGE_ALIGNED(entry->vme_end, MIN(target_page_mask, PAGE_MASK))); |
| 19365 | assert(VM_MAP_PAGE_ALIGNED(VME_OFFSET(entry), MIN(target_page_mask, PAGE_MASK))); |
| 19366 | vm_map_store_entry_link(map: target_map, after_where: insp_entry, entry, |
| 19367 | vmk_flags); |
| 19368 | insp_entry = entry; |
| 19369 | } else { |
| 19370 | if (!entry->is_sub_map) { |
| 19371 | vm_object_deallocate(VME_OBJECT(entry)); |
| 19372 | } else { |
| 19373 | vm_map_deallocate(VME_SUBMAP(entry)); |
| 19374 | } |
| 19375 | vm_map_copy_entry_dispose(entry); |
| 19376 | } |
| 19377 | } |
| 19378 | |
| 19379 | if (vmk_flags.vmf_resilient_codesign) { |
| 19380 | *cur_protection = VM_PROT_READ; |
| 19381 | *max_protection = VM_PROT_READ; |
| 19382 | } |
| 19383 | |
| 19384 | if (result == KERN_SUCCESS) { |
| 19385 | target_map->size += target_size; |
| 19386 | SAVE_HINT_MAP_WRITE(target_map, insp_entry); |
| 19387 | } |
| 19388 | vm_map_unlock(target_map); |
| 19389 | |
| 19390 | vm_map_zap_dispose(list: &zap_list); |
| 19391 | |
| 19392 | if (result == KERN_SUCCESS && target_map->wiring_required) { |
| 19393 | result = vm_map_wire_kernel(map: target_map, start: *address, |
| 19394 | end: *address + size, caller_prot: *cur_protection, VM_KERN_MEMORY_MLOCK, |
| 19395 | TRUE); |
| 19396 | } |
| 19397 | |
| 19398 | /* |
| 19399 | * If requested, return the address of the data pointed to by the |
| 19400 | * request, rather than the base of the resulting page. |
| 19401 | */ |
| 19402 | if (vmk_flags.vmf_return_data_addr) { |
| 19403 | *address += offset_in_mapping; |
| 19404 | } |
| 19405 | |
| 19406 | if (src_page_mask != target_page_mask) { |
| 19407 | DEBUG4K_SHARE("vm_remap(%p 0x%llx 0x%llx copy=%d-> %p 0x%llx 0x%llx result=0x%x\n" , src_map, (uint64_t)memory_address, (uint64_t)size, copy, target_map, (uint64_t)*address, (uint64_t)offset_in_mapping, result); |
| 19408 | } |
| 19409 | vm_map_copy_discard(copy: copy_map); |
| 19410 | copy_map = VM_MAP_COPY_NULL; |
| 19411 | |
| 19412 | return result; |
| 19413 | } |
| 19414 | |
| 19415 | /* |
| 19416 | * Routine: vm_map_remap_range_allocate |
| 19417 | * |
| 19418 | * Description: |
| 19419 | * Allocate a range in the specified virtual address map. |
| 19420 | * returns the address and the map entry just before the allocated |
| 19421 | * range |
| 19422 | * |
| 19423 | * Map must be locked. |
| 19424 | */ |
| 19425 | |
| 19426 | static kern_return_t |
| 19427 | vm_map_remap_range_allocate( |
| 19428 | vm_map_t map, |
| 19429 | vm_map_address_t *address, /* IN/OUT */ |
| 19430 | vm_map_size_t size, |
| 19431 | vm_map_offset_t mask, |
| 19432 | vm_map_kernel_flags_t vmk_flags, |
| 19433 | vm_map_entry_t *map_entry, /* OUT */ |
| 19434 | vm_map_zap_t zap_list) |
| 19435 | { |
| 19436 | vm_map_entry_t entry; |
| 19437 | vm_map_offset_t start; |
| 19438 | kern_return_t kr; |
| 19439 | |
| 19440 | start = *address; |
| 19441 | |
| 19442 | if (!vmk_flags.vmf_fixed) { |
| 19443 | kr = vm_map_locate_space(map, size, mask, vmk_flags, |
| 19444 | start_inout: &start, entry_out: &entry); |
| 19445 | if (kr != KERN_SUCCESS) { |
| 19446 | return kr; |
| 19447 | } |
| 19448 | *address = start; |
| 19449 | } else { |
| 19450 | vm_map_offset_t effective_min_offset, effective_max_offset; |
| 19451 | vm_map_entry_t temp_entry; |
| 19452 | vm_map_offset_t end; |
| 19453 | |
| 19454 | effective_min_offset = map->min_offset; |
| 19455 | effective_max_offset = map->max_offset; |
| 19456 | |
| 19457 | /* |
| 19458 | * Verify that: |
| 19459 | * the address doesn't itself violate |
| 19460 | * the mask requirement. |
| 19461 | */ |
| 19462 | |
| 19463 | if ((start & mask) != 0) { |
| 19464 | return KERN_NO_SPACE; |
| 19465 | } |
| 19466 | |
| 19467 | #if CONFIG_MAP_RANGES |
| 19468 | if (map->uses_user_ranges) { |
| 19469 | struct mach_vm_range r; |
| 19470 | |
| 19471 | vm_map_user_range_resolve(map, start, 1, &r); |
| 19472 | if (r.max_address == 0) { |
| 19473 | return KERN_INVALID_ADDRESS; |
| 19474 | } |
| 19475 | |
| 19476 | effective_min_offset = r.min_address; |
| 19477 | effective_max_offset = r.max_address; |
| 19478 | } |
| 19479 | #endif /* CONFIG_MAP_RANGES */ |
| 19480 | if (map == kernel_map) { |
| 19481 | mach_vm_range_t r = kmem_validate_range_for_overwrite(addr: start, size); |
| 19482 | effective_min_offset = r->min_address; |
| 19483 | effective_min_offset = r->max_address; |
| 19484 | } |
| 19485 | |
| 19486 | /* |
| 19487 | * ... the address is within bounds |
| 19488 | */ |
| 19489 | |
| 19490 | end = start + size; |
| 19491 | |
| 19492 | if ((start < effective_min_offset) || |
| 19493 | (end > effective_max_offset) || |
| 19494 | (start >= end)) { |
| 19495 | return KERN_INVALID_ADDRESS; |
| 19496 | } |
| 19497 | |
| 19498 | /* |
| 19499 | * If we're asked to overwrite whatever was mapped in that |
| 19500 | * range, first deallocate that range. |
| 19501 | */ |
| 19502 | if (vmk_flags.vmf_overwrite) { |
| 19503 | vmr_flags_t remove_flags = VM_MAP_REMOVE_NO_MAP_ALIGN; |
| 19504 | |
| 19505 | /* |
| 19506 | * We use a "zap_list" to avoid having to unlock |
| 19507 | * the "map" in vm_map_delete(), which would compromise |
| 19508 | * the atomicity of the "deallocate" and then "remap" |
| 19509 | * combination. |
| 19510 | */ |
| 19511 | remove_flags |= VM_MAP_REMOVE_NO_YIELD; |
| 19512 | |
| 19513 | if (vmk_flags.vmkf_overwrite_immutable) { |
| 19514 | remove_flags |= VM_MAP_REMOVE_IMMUTABLE; |
| 19515 | } |
| 19516 | if (vmk_flags.vmkf_remap_prot_copy) { |
| 19517 | remove_flags |= VM_MAP_REMOVE_IMMUTABLE_CODE; |
| 19518 | } |
| 19519 | kr = vm_map_delete(map, start, end, flags: remove_flags, |
| 19520 | KMEM_GUARD_NONE, zap_list).kmr_return; |
| 19521 | if (kr != KERN_SUCCESS) { |
| 19522 | /* XXX FBDP restore zap_list? */ |
| 19523 | return kr; |
| 19524 | } |
| 19525 | } |
| 19526 | |
| 19527 | /* |
| 19528 | * ... the starting address isn't allocated |
| 19529 | */ |
| 19530 | |
| 19531 | if (vm_map_lookup_entry(map, address: start, entry: &temp_entry)) { |
| 19532 | return KERN_NO_SPACE; |
| 19533 | } |
| 19534 | |
| 19535 | entry = temp_entry; |
| 19536 | |
| 19537 | /* |
| 19538 | * ... the next region doesn't overlap the |
| 19539 | * end point. |
| 19540 | */ |
| 19541 | |
| 19542 | if ((entry->vme_next != vm_map_to_entry(map)) && |
| 19543 | (entry->vme_next->vme_start < end)) { |
| 19544 | return KERN_NO_SPACE; |
| 19545 | } |
| 19546 | } |
| 19547 | *map_entry = entry; |
| 19548 | return KERN_SUCCESS; |
| 19549 | } |
| 19550 | |
| 19551 | /* |
| 19552 | * vm_map_switch: |
| 19553 | * |
| 19554 | * Set the address map for the current thread to the specified map |
| 19555 | */ |
| 19556 | |
| 19557 | vm_map_t |
| 19558 | vm_map_switch( |
| 19559 | vm_map_t map) |
| 19560 | { |
| 19561 | thread_t thread = current_thread(); |
| 19562 | vm_map_t oldmap = thread->map; |
| 19563 | |
| 19564 | |
| 19565 | /* |
| 19566 | * Deactivate the current map and activate the requested map |
| 19567 | */ |
| 19568 | mp_disable_preemption(); |
| 19569 | PMAP_SWITCH_USER(thread, map, cpu_number()); |
| 19570 | mp_enable_preemption(); |
| 19571 | return oldmap; |
| 19572 | } |
| 19573 | |
| 19574 | |
| 19575 | /* |
| 19576 | * Routine: vm_map_write_user |
| 19577 | * |
| 19578 | * Description: |
| 19579 | * Copy out data from a kernel space into space in the |
| 19580 | * destination map. The space must already exist in the |
| 19581 | * destination map. |
| 19582 | * NOTE: This routine should only be called by threads |
| 19583 | * which can block on a page fault. i.e. kernel mode user |
| 19584 | * threads. |
| 19585 | * |
| 19586 | */ |
| 19587 | kern_return_t |
| 19588 | vm_map_write_user( |
| 19589 | vm_map_t map, |
| 19590 | void *src_p, |
| 19591 | vm_map_address_t dst_addr, |
| 19592 | vm_size_t size) |
| 19593 | { |
| 19594 | kern_return_t kr = KERN_SUCCESS; |
| 19595 | |
| 19596 | if (__improbable(vm_map_range_overflows(map, dst_addr, size))) { |
| 19597 | return KERN_INVALID_ADDRESS; |
| 19598 | } |
| 19599 | |
| 19600 | if (current_map() == map) { |
| 19601 | if (copyout(src_p, dst_addr, size)) { |
| 19602 | kr = KERN_INVALID_ADDRESS; |
| 19603 | } |
| 19604 | } else { |
| 19605 | vm_map_t oldmap; |
| 19606 | |
| 19607 | /* take on the identity of the target map while doing */ |
| 19608 | /* the transfer */ |
| 19609 | |
| 19610 | vm_map_reference(map); |
| 19611 | oldmap = vm_map_switch(map); |
| 19612 | if (copyout(src_p, dst_addr, size)) { |
| 19613 | kr = KERN_INVALID_ADDRESS; |
| 19614 | } |
| 19615 | vm_map_switch(map: oldmap); |
| 19616 | vm_map_deallocate(map); |
| 19617 | } |
| 19618 | return kr; |
| 19619 | } |
| 19620 | |
| 19621 | /* |
| 19622 | * Routine: vm_map_read_user |
| 19623 | * |
| 19624 | * Description: |
| 19625 | * Copy in data from a user space source map into the |
| 19626 | * kernel map. The space must already exist in the |
| 19627 | * kernel map. |
| 19628 | * NOTE: This routine should only be called by threads |
| 19629 | * which can block on a page fault. i.e. kernel mode user |
| 19630 | * threads. |
| 19631 | * |
| 19632 | */ |
| 19633 | kern_return_t |
| 19634 | vm_map_read_user( |
| 19635 | vm_map_t map, |
| 19636 | vm_map_address_t src_addr, |
| 19637 | void *dst_p, |
| 19638 | vm_size_t size) |
| 19639 | { |
| 19640 | kern_return_t kr = KERN_SUCCESS; |
| 19641 | |
| 19642 | if (__improbable(vm_map_range_overflows(map, src_addr, size))) { |
| 19643 | return KERN_INVALID_ADDRESS; |
| 19644 | } |
| 19645 | |
| 19646 | if (current_map() == map) { |
| 19647 | if (copyin(src_addr, dst_p, size)) { |
| 19648 | kr = KERN_INVALID_ADDRESS; |
| 19649 | } |
| 19650 | } else { |
| 19651 | vm_map_t oldmap; |
| 19652 | |
| 19653 | /* take on the identity of the target map while doing */ |
| 19654 | /* the transfer */ |
| 19655 | |
| 19656 | vm_map_reference(map); |
| 19657 | oldmap = vm_map_switch(map); |
| 19658 | if (copyin(src_addr, dst_p, size)) { |
| 19659 | kr = KERN_INVALID_ADDRESS; |
| 19660 | } |
| 19661 | vm_map_switch(map: oldmap); |
| 19662 | vm_map_deallocate(map); |
| 19663 | } |
| 19664 | return kr; |
| 19665 | } |
| 19666 | |
| 19667 | |
| 19668 | /* |
| 19669 | * vm_map_check_protection: |
| 19670 | * |
| 19671 | * Assert that the target map allows the specified |
| 19672 | * privilege on the entire address region given. |
| 19673 | * The entire region must be allocated. |
| 19674 | */ |
| 19675 | boolean_t |
| 19676 | vm_map_check_protection(vm_map_t map, vm_map_offset_t start, |
| 19677 | vm_map_offset_t end, vm_prot_t protection) |
| 19678 | { |
| 19679 | vm_map_entry_t entry; |
| 19680 | vm_map_entry_t tmp_entry; |
| 19681 | |
| 19682 | if (__improbable(vm_map_range_overflows(map, start, end - start))) { |
| 19683 | return FALSE; |
| 19684 | } |
| 19685 | |
| 19686 | vm_map_lock(map); |
| 19687 | |
| 19688 | if (start < vm_map_min(map) || end > vm_map_max(map) || start > end) { |
| 19689 | vm_map_unlock(map); |
| 19690 | return FALSE; |
| 19691 | } |
| 19692 | |
| 19693 | if (!vm_map_lookup_entry(map, address: start, entry: &tmp_entry)) { |
| 19694 | vm_map_unlock(map); |
| 19695 | return FALSE; |
| 19696 | } |
| 19697 | |
| 19698 | entry = tmp_entry; |
| 19699 | |
| 19700 | while (start < end) { |
| 19701 | if (entry == vm_map_to_entry(map)) { |
| 19702 | vm_map_unlock(map); |
| 19703 | return FALSE; |
| 19704 | } |
| 19705 | |
| 19706 | /* |
| 19707 | * No holes allowed! |
| 19708 | */ |
| 19709 | |
| 19710 | if (start < entry->vme_start) { |
| 19711 | vm_map_unlock(map); |
| 19712 | return FALSE; |
| 19713 | } |
| 19714 | |
| 19715 | /* |
| 19716 | * Check protection associated with entry. |
| 19717 | */ |
| 19718 | |
| 19719 | if ((entry->protection & protection) != protection) { |
| 19720 | vm_map_unlock(map); |
| 19721 | return FALSE; |
| 19722 | } |
| 19723 | |
| 19724 | /* go to next entry */ |
| 19725 | |
| 19726 | start = entry->vme_end; |
| 19727 | entry = entry->vme_next; |
| 19728 | } |
| 19729 | vm_map_unlock(map); |
| 19730 | return TRUE; |
| 19731 | } |
| 19732 | |
| 19733 | kern_return_t |
| 19734 | vm_map_purgable_control( |
| 19735 | vm_map_t map, |
| 19736 | vm_map_offset_t address, |
| 19737 | vm_purgable_t control, |
| 19738 | int *state) |
| 19739 | { |
| 19740 | vm_map_entry_t entry; |
| 19741 | vm_object_t object; |
| 19742 | kern_return_t kr; |
| 19743 | boolean_t was_nonvolatile; |
| 19744 | |
| 19745 | /* |
| 19746 | * Vet all the input parameters and current type and state of the |
| 19747 | * underlaying object. Return with an error if anything is amiss. |
| 19748 | */ |
| 19749 | if (map == VM_MAP_NULL) { |
| 19750 | return KERN_INVALID_ARGUMENT; |
| 19751 | } |
| 19752 | |
| 19753 | if (control != VM_PURGABLE_SET_STATE && |
| 19754 | control != VM_PURGABLE_GET_STATE && |
| 19755 | control != VM_PURGABLE_PURGE_ALL && |
| 19756 | control != VM_PURGABLE_SET_STATE_FROM_KERNEL) { |
| 19757 | return KERN_INVALID_ARGUMENT; |
| 19758 | } |
| 19759 | |
| 19760 | if (control == VM_PURGABLE_PURGE_ALL) { |
| 19761 | vm_purgeable_object_purge_all(); |
| 19762 | return KERN_SUCCESS; |
| 19763 | } |
| 19764 | |
| 19765 | if ((control == VM_PURGABLE_SET_STATE || |
| 19766 | control == VM_PURGABLE_SET_STATE_FROM_KERNEL) && |
| 19767 | (((*state & ~(VM_PURGABLE_ALL_MASKS)) != 0) || |
| 19768 | ((*state & VM_PURGABLE_STATE_MASK) > VM_PURGABLE_STATE_MASK))) { |
| 19769 | return KERN_INVALID_ARGUMENT; |
| 19770 | } |
| 19771 | |
| 19772 | vm_map_lock_read(map); |
| 19773 | |
| 19774 | if (!vm_map_lookup_entry(map, address, entry: &entry) || entry->is_sub_map) { |
| 19775 | /* |
| 19776 | * Must pass a valid non-submap address. |
| 19777 | */ |
| 19778 | vm_map_unlock_read(map); |
| 19779 | return KERN_INVALID_ADDRESS; |
| 19780 | } |
| 19781 | |
| 19782 | if ((entry->protection & VM_PROT_WRITE) == 0 && |
| 19783 | control != VM_PURGABLE_GET_STATE) { |
| 19784 | /* |
| 19785 | * Can't apply purgable controls to something you can't write. |
| 19786 | */ |
| 19787 | vm_map_unlock_read(map); |
| 19788 | return KERN_PROTECTION_FAILURE; |
| 19789 | } |
| 19790 | |
| 19791 | object = VME_OBJECT(entry); |
| 19792 | if (object == VM_OBJECT_NULL || |
| 19793 | object->purgable == VM_PURGABLE_DENY) { |
| 19794 | /* |
| 19795 | * Object must already be present and be purgeable. |
| 19796 | */ |
| 19797 | vm_map_unlock_read(map); |
| 19798 | return KERN_INVALID_ARGUMENT; |
| 19799 | } |
| 19800 | |
| 19801 | vm_object_lock(object); |
| 19802 | |
| 19803 | #if 00 |
| 19804 | if (VME_OFFSET(entry) != 0 || |
| 19805 | entry->vme_end - entry->vme_start != object->vo_size) { |
| 19806 | /* |
| 19807 | * Can only apply purgable controls to the whole (existing) |
| 19808 | * object at once. |
| 19809 | */ |
| 19810 | vm_map_unlock_read(map); |
| 19811 | vm_object_unlock(object); |
| 19812 | return KERN_INVALID_ARGUMENT; |
| 19813 | } |
| 19814 | #endif |
| 19815 | |
| 19816 | assert(!entry->is_sub_map); |
| 19817 | assert(!entry->use_pmap); /* purgeable has its own accounting */ |
| 19818 | |
| 19819 | vm_map_unlock_read(map); |
| 19820 | |
| 19821 | was_nonvolatile = (object->purgable == VM_PURGABLE_NONVOLATILE); |
| 19822 | |
| 19823 | kr = vm_object_purgable_control(object, control, state); |
| 19824 | |
| 19825 | if (was_nonvolatile && |
| 19826 | object->purgable != VM_PURGABLE_NONVOLATILE && |
| 19827 | map->pmap == kernel_pmap) { |
| 19828 | #if DEBUG |
| 19829 | object->vo_purgeable_volatilizer = kernel_task; |
| 19830 | #endif /* DEBUG */ |
| 19831 | } |
| 19832 | |
| 19833 | vm_object_unlock(object); |
| 19834 | |
| 19835 | return kr; |
| 19836 | } |
| 19837 | |
| 19838 | void |
| 19839 | ( |
| 19840 | vm_map_t map, |
| 19841 | vm_map_entry_t map_entry, |
| 19842 | vm_map_offset_t curr_s_offset, |
| 19843 | int *disposition_p) |
| 19844 | { |
| 19845 | int pmap_disp; |
| 19846 | vm_object_t object = VM_OBJECT_NULL; |
| 19847 | int disposition; |
| 19848 | int effective_page_size; |
| 19849 | |
| 19850 | vm_map_lock_assert_held(map); |
| 19851 | assert(!map->has_corpse_footprint); |
| 19852 | assert(curr_s_offset >= map_entry->vme_start); |
| 19853 | assert(curr_s_offset < map_entry->vme_end); |
| 19854 | |
| 19855 | if (map_entry->is_sub_map) { |
| 19856 | if (!map_entry->use_pmap) { |
| 19857 | /* nested pmap: no footprint */ |
| 19858 | *disposition_p = 0; |
| 19859 | return; |
| 19860 | } |
| 19861 | } else { |
| 19862 | object = VME_OBJECT(map_entry); |
| 19863 | if (object == VM_OBJECT_NULL) { |
| 19864 | /* nothing mapped here: no need to ask */ |
| 19865 | *disposition_p = 0; |
| 19866 | return; |
| 19867 | } |
| 19868 | } |
| 19869 | |
| 19870 | effective_page_size = MIN(PAGE_SIZE, VM_MAP_PAGE_SIZE(map)); |
| 19871 | |
| 19872 | pmap_disp = 0; |
| 19873 | |
| 19874 | /* |
| 19875 | * Query the pmap. |
| 19876 | */ |
| 19877 | pmap_query_page_info(pmap: map->pmap, va: curr_s_offset, disp: &pmap_disp); |
| 19878 | |
| 19879 | /* |
| 19880 | * Compute this page's disposition. |
| 19881 | */ |
| 19882 | disposition = 0; |
| 19883 | |
| 19884 | /* deal with "alternate accounting" first */ |
| 19885 | if (!map_entry->is_sub_map && |
| 19886 | object->vo_no_footprint) { |
| 19887 | /* does not count in footprint */ |
| 19888 | assertf(!map_entry->use_pmap, "offset 0x%llx map_entry %p" , (uint64_t) curr_s_offset, map_entry); |
| 19889 | } else if (!map_entry->is_sub_map && |
| 19890 | (object->purgable == VM_PURGABLE_NONVOLATILE || |
| 19891 | (object->purgable == VM_PURGABLE_DENY && |
| 19892 | object->vo_ledger_tag)) && |
| 19893 | VM_OBJECT_OWNER(object) != NULL && |
| 19894 | VM_OBJECT_OWNER(object)->map == map) { |
| 19895 | assertf(!map_entry->use_pmap, "offset 0x%llx map_entry %p" , (uint64_t) curr_s_offset, map_entry); |
| 19896 | if ((((curr_s_offset |
| 19897 | - map_entry->vme_start |
| 19898 | + VME_OFFSET(entry: map_entry)) |
| 19899 | / effective_page_size) < |
| 19900 | (object->resident_page_count + |
| 19901 | vm_compressor_pager_get_count(mem_obj: object->pager)))) { |
| 19902 | /* |
| 19903 | * Non-volatile purgeable object owned |
| 19904 | * by this task: report the first |
| 19905 | * "#resident + #compressed" pages as |
| 19906 | * "resident" (to show that they |
| 19907 | * contribute to the footprint) but not |
| 19908 | * "dirty" (to avoid double-counting |
| 19909 | * with the fake "non-volatile" region |
| 19910 | * we'll report at the end of the |
| 19911 | * address space to account for all |
| 19912 | * (mapped or not) non-volatile memory |
| 19913 | * owned by this task. |
| 19914 | */ |
| 19915 | disposition |= VM_PAGE_QUERY_PAGE_PRESENT; |
| 19916 | } |
| 19917 | } else if (!map_entry->is_sub_map && |
| 19918 | (object->purgable == VM_PURGABLE_VOLATILE || |
| 19919 | object->purgable == VM_PURGABLE_EMPTY) && |
| 19920 | VM_OBJECT_OWNER(object) != NULL && |
| 19921 | VM_OBJECT_OWNER(object)->map == map) { |
| 19922 | assertf(!map_entry->use_pmap, "offset 0x%llx map_entry %p" , (uint64_t) curr_s_offset, map_entry); |
| 19923 | if ((((curr_s_offset |
| 19924 | - map_entry->vme_start |
| 19925 | + VME_OFFSET(entry: map_entry)) |
| 19926 | / effective_page_size) < |
| 19927 | object->wired_page_count)) { |
| 19928 | /* |
| 19929 | * Volatile|empty purgeable object owned |
| 19930 | * by this task: report the first |
| 19931 | * "#wired" pages as "resident" (to |
| 19932 | * show that they contribute to the |
| 19933 | * footprint) but not "dirty" (to avoid |
| 19934 | * double-counting with the fake |
| 19935 | * "non-volatile" region we'll report |
| 19936 | * at the end of the address space to |
| 19937 | * account for all (mapped or not) |
| 19938 | * non-volatile memory owned by this |
| 19939 | * task. |
| 19940 | */ |
| 19941 | disposition |= VM_PAGE_QUERY_PAGE_PRESENT; |
| 19942 | } |
| 19943 | } else if (!map_entry->is_sub_map && |
| 19944 | map_entry->iokit_acct && |
| 19945 | object->internal && |
| 19946 | object->purgable == VM_PURGABLE_DENY) { |
| 19947 | /* |
| 19948 | * Non-purgeable IOKit memory: phys_footprint |
| 19949 | * includes the entire virtual mapping. |
| 19950 | */ |
| 19951 | assertf(!map_entry->use_pmap, "offset 0x%llx map_entry %p" , (uint64_t) curr_s_offset, map_entry); |
| 19952 | disposition |= VM_PAGE_QUERY_PAGE_PRESENT; |
| 19953 | disposition |= VM_PAGE_QUERY_PAGE_DIRTY; |
| 19954 | } else if (pmap_disp & (PMAP_QUERY_PAGE_ALTACCT | |
| 19955 | PMAP_QUERY_PAGE_COMPRESSED_ALTACCT)) { |
| 19956 | /* alternate accounting */ |
| 19957 | #if __arm64__ && (DEVELOPMENT || DEBUG) |
| 19958 | if (map->pmap->footprint_was_suspended) { |
| 19959 | /* |
| 19960 | * The assertion below can fail if dyld |
| 19961 | * suspended footprint accounting |
| 19962 | * while doing some adjustments to |
| 19963 | * this page; the mapping would say |
| 19964 | * "use pmap accounting" but the page |
| 19965 | * would be marked "alternate |
| 19966 | * accounting". |
| 19967 | */ |
| 19968 | } else |
| 19969 | #endif /* __arm64__ && (DEVELOPMENT || DEBUG) */ |
| 19970 | { |
| 19971 | assertf(!map_entry->use_pmap, "offset 0x%llx map_entry %p" , (uint64_t) curr_s_offset, map_entry); |
| 19972 | } |
| 19973 | disposition = 0; |
| 19974 | } else { |
| 19975 | if (pmap_disp & PMAP_QUERY_PAGE_PRESENT) { |
| 19976 | assertf(map_entry->use_pmap, "offset 0x%llx map_entry %p" , (uint64_t) curr_s_offset, map_entry); |
| 19977 | disposition |= VM_PAGE_QUERY_PAGE_PRESENT; |
| 19978 | disposition |= VM_PAGE_QUERY_PAGE_REF; |
| 19979 | if (pmap_disp & PMAP_QUERY_PAGE_INTERNAL) { |
| 19980 | disposition |= VM_PAGE_QUERY_PAGE_DIRTY; |
| 19981 | } else { |
| 19982 | disposition |= VM_PAGE_QUERY_PAGE_EXTERNAL; |
| 19983 | } |
| 19984 | if (pmap_disp & PMAP_QUERY_PAGE_REUSABLE) { |
| 19985 | disposition |= VM_PAGE_QUERY_PAGE_REUSABLE; |
| 19986 | } |
| 19987 | } else if (pmap_disp & PMAP_QUERY_PAGE_COMPRESSED) { |
| 19988 | assertf(map_entry->use_pmap, "offset 0x%llx map_entry %p" , (uint64_t) curr_s_offset, map_entry); |
| 19989 | disposition |= VM_PAGE_QUERY_PAGE_PAGED_OUT; |
| 19990 | } |
| 19991 | } |
| 19992 | |
| 19993 | *disposition_p = disposition; |
| 19994 | } |
| 19995 | |
| 19996 | kern_return_t |
| 19997 | vm_map_page_query_internal( |
| 19998 | vm_map_t target_map, |
| 19999 | vm_map_offset_t offset, |
| 20000 | int *disposition, |
| 20001 | int *ref_count) |
| 20002 | { |
| 20003 | kern_return_t kr; |
| 20004 | vm_page_info_basic_data_t info; |
| 20005 | mach_msg_type_number_t count; |
| 20006 | |
| 20007 | count = VM_PAGE_INFO_BASIC_COUNT; |
| 20008 | kr = vm_map_page_info(map: target_map, |
| 20009 | offset, |
| 20010 | VM_PAGE_INFO_BASIC, |
| 20011 | info: (vm_page_info_t) &info, |
| 20012 | count: &count); |
| 20013 | if (kr == KERN_SUCCESS) { |
| 20014 | *disposition = info.disposition; |
| 20015 | *ref_count = info.ref_count; |
| 20016 | } else { |
| 20017 | *disposition = 0; |
| 20018 | *ref_count = 0; |
| 20019 | } |
| 20020 | |
| 20021 | return kr; |
| 20022 | } |
| 20023 | |
| 20024 | kern_return_t |
| 20025 | vm_map_page_info( |
| 20026 | vm_map_t map, |
| 20027 | vm_map_offset_t offset, |
| 20028 | vm_page_info_flavor_t flavor, |
| 20029 | vm_page_info_t info, |
| 20030 | mach_msg_type_number_t *count) |
| 20031 | { |
| 20032 | return vm_map_page_range_info_internal(map, |
| 20033 | start_offset: offset, /* start of range */ |
| 20034 | end_offset: (offset + 1), /* this will get rounded in the call to the page boundary */ |
| 20035 | effective_page_shift: (int)-1, /* effective_page_shift: unspecified */ |
| 20036 | flavor, |
| 20037 | info, |
| 20038 | count); |
| 20039 | } |
| 20040 | |
| 20041 | kern_return_t |
| 20042 | vm_map_page_range_info_internal( |
| 20043 | vm_map_t map, |
| 20044 | vm_map_offset_t start_offset, |
| 20045 | vm_map_offset_t end_offset, |
| 20046 | int effective_page_shift, |
| 20047 | vm_page_info_flavor_t flavor, |
| 20048 | vm_page_info_t info, |
| 20049 | mach_msg_type_number_t *count) |
| 20050 | { |
| 20051 | vm_map_entry_t map_entry = VM_MAP_ENTRY_NULL; |
| 20052 | vm_object_t object = VM_OBJECT_NULL, curr_object = VM_OBJECT_NULL; |
| 20053 | vm_page_t m = VM_PAGE_NULL; |
| 20054 | kern_return_t retval = KERN_SUCCESS; |
| 20055 | int disposition = 0; |
| 20056 | int ref_count = 0; |
| 20057 | int depth = 0, info_idx = 0; |
| 20058 | vm_page_info_basic_t basic_info = 0; |
| 20059 | vm_map_offset_t offset_in_page = 0, offset_in_object = 0, curr_offset_in_object = 0; |
| 20060 | vm_map_offset_t start = 0, end = 0, curr_s_offset = 0, curr_e_offset = 0; |
| 20061 | boolean_t ; |
| 20062 | ledger_amount_t ledger_resident, ledger_compressed; |
| 20063 | int effective_page_size; |
| 20064 | vm_map_offset_t effective_page_mask; |
| 20065 | |
| 20066 | switch (flavor) { |
| 20067 | case VM_PAGE_INFO_BASIC: |
| 20068 | if (*count != VM_PAGE_INFO_BASIC_COUNT) { |
| 20069 | /* |
| 20070 | * The "vm_page_info_basic_data" structure was not |
| 20071 | * properly padded, so allow the size to be off by |
| 20072 | * one to maintain backwards binary compatibility... |
| 20073 | */ |
| 20074 | if (*count != VM_PAGE_INFO_BASIC_COUNT - 1) { |
| 20075 | return KERN_INVALID_ARGUMENT; |
| 20076 | } |
| 20077 | } |
| 20078 | break; |
| 20079 | default: |
| 20080 | return KERN_INVALID_ARGUMENT; |
| 20081 | } |
| 20082 | |
| 20083 | if (effective_page_shift == -1) { |
| 20084 | effective_page_shift = vm_self_region_page_shift_safely(target_map: map); |
| 20085 | if (effective_page_shift == -1) { |
| 20086 | return KERN_INVALID_ARGUMENT; |
| 20087 | } |
| 20088 | } |
| 20089 | effective_page_size = (1 << effective_page_shift); |
| 20090 | effective_page_mask = effective_page_size - 1; |
| 20091 | |
| 20092 | do_region_footprint = task_self_region_footprint(); |
| 20093 | disposition = 0; |
| 20094 | ref_count = 0; |
| 20095 | depth = 0; |
| 20096 | info_idx = 0; /* Tracks the next index within the info structure to be filled.*/ |
| 20097 | retval = KERN_SUCCESS; |
| 20098 | |
| 20099 | if (__improbable(vm_map_range_overflows(map, start_offset, end_offset - start_offset))) { |
| 20100 | return KERN_INVALID_ADDRESS; |
| 20101 | } |
| 20102 | |
| 20103 | offset_in_page = start_offset & effective_page_mask; |
| 20104 | start = vm_map_trunc_page(start_offset, effective_page_mask); |
| 20105 | end = vm_map_round_page(end_offset, effective_page_mask); |
| 20106 | |
| 20107 | if (end < start) { |
| 20108 | return KERN_INVALID_ARGUMENT; |
| 20109 | } |
| 20110 | |
| 20111 | assert((end - start) <= MAX_PAGE_RANGE_QUERY); |
| 20112 | |
| 20113 | vm_map_lock_read(map); |
| 20114 | |
| 20115 | task_ledgers_footprint(ledger: map->pmap->ledger, ledger_resident: &ledger_resident, ledger_compressed: &ledger_compressed); |
| 20116 | |
| 20117 | for (curr_s_offset = start; curr_s_offset < end;) { |
| 20118 | /* |
| 20119 | * New lookup needs reset of these variables. |
| 20120 | */ |
| 20121 | curr_object = object = VM_OBJECT_NULL; |
| 20122 | offset_in_object = 0; |
| 20123 | ref_count = 0; |
| 20124 | depth = 0; |
| 20125 | |
| 20126 | if (do_region_footprint && |
| 20127 | curr_s_offset >= vm_map_last_entry(map)->vme_end) { |
| 20128 | /* |
| 20129 | * Request for "footprint" info about a page beyond |
| 20130 | * the end of address space: this must be for |
| 20131 | * the fake region vm_map_region_recurse_64() |
| 20132 | * reported to account for non-volatile purgeable |
| 20133 | * memory owned by this task. |
| 20134 | */ |
| 20135 | disposition = 0; |
| 20136 | |
| 20137 | if (curr_s_offset - vm_map_last_entry(map)->vme_end <= |
| 20138 | (unsigned) ledger_compressed) { |
| 20139 | /* |
| 20140 | * We haven't reported all the "non-volatile |
| 20141 | * compressed" pages yet, so report this fake |
| 20142 | * page as "compressed". |
| 20143 | */ |
| 20144 | disposition |= VM_PAGE_QUERY_PAGE_PAGED_OUT; |
| 20145 | } else { |
| 20146 | /* |
| 20147 | * We've reported all the non-volatile |
| 20148 | * compressed page but not all the non-volatile |
| 20149 | * pages , so report this fake page as |
| 20150 | * "resident dirty". |
| 20151 | */ |
| 20152 | disposition |= VM_PAGE_QUERY_PAGE_PRESENT; |
| 20153 | disposition |= VM_PAGE_QUERY_PAGE_DIRTY; |
| 20154 | disposition |= VM_PAGE_QUERY_PAGE_REF; |
| 20155 | } |
| 20156 | switch (flavor) { |
| 20157 | case VM_PAGE_INFO_BASIC: |
| 20158 | basic_info = (vm_page_info_basic_t) (((uintptr_t) info) + (info_idx * sizeof(struct vm_page_info_basic))); |
| 20159 | basic_info->disposition = disposition; |
| 20160 | basic_info->ref_count = 1; |
| 20161 | basic_info->object_id = VM_OBJECT_ID_FAKE(map, task_ledgers.purgeable_nonvolatile); |
| 20162 | basic_info->offset = 0; |
| 20163 | basic_info->depth = 0; |
| 20164 | |
| 20165 | info_idx++; |
| 20166 | break; |
| 20167 | } |
| 20168 | curr_s_offset += effective_page_size; |
| 20169 | continue; |
| 20170 | } |
| 20171 | |
| 20172 | /* |
| 20173 | * First, find the map entry covering "curr_s_offset", going down |
| 20174 | * submaps if necessary. |
| 20175 | */ |
| 20176 | if (!vm_map_lookup_entry(map, address: curr_s_offset, entry: &map_entry)) { |
| 20177 | /* no entry -> no object -> no page */ |
| 20178 | |
| 20179 | if (curr_s_offset < vm_map_min(map)) { |
| 20180 | /* |
| 20181 | * Illegal address that falls below map min. |
| 20182 | */ |
| 20183 | curr_e_offset = MIN(end, vm_map_min(map)); |
| 20184 | } else if (curr_s_offset >= vm_map_max(map)) { |
| 20185 | /* |
| 20186 | * Illegal address that falls on/after map max. |
| 20187 | */ |
| 20188 | curr_e_offset = end; |
| 20189 | } else if (map_entry == vm_map_to_entry(map)) { |
| 20190 | /* |
| 20191 | * Hit a hole. |
| 20192 | */ |
| 20193 | if (map_entry->vme_next == vm_map_to_entry(map)) { |
| 20194 | /* |
| 20195 | * Empty map. |
| 20196 | */ |
| 20197 | curr_e_offset = MIN(map->max_offset, end); |
| 20198 | } else { |
| 20199 | /* |
| 20200 | * Hole at start of the map. |
| 20201 | */ |
| 20202 | curr_e_offset = MIN(map_entry->vme_next->vme_start, end); |
| 20203 | } |
| 20204 | } else { |
| 20205 | if (map_entry->vme_next == vm_map_to_entry(map)) { |
| 20206 | /* |
| 20207 | * Hole at the end of the map. |
| 20208 | */ |
| 20209 | curr_e_offset = MIN(map->max_offset, end); |
| 20210 | } else { |
| 20211 | curr_e_offset = MIN(map_entry->vme_next->vme_start, end); |
| 20212 | } |
| 20213 | } |
| 20214 | |
| 20215 | assert(curr_e_offset >= curr_s_offset); |
| 20216 | |
| 20217 | uint64_t num_pages = (curr_e_offset - curr_s_offset) >> effective_page_shift; |
| 20218 | |
| 20219 | void *info_ptr = (void*) (((uintptr_t) info) + (info_idx * sizeof(struct vm_page_info_basic))); |
| 20220 | |
| 20221 | bzero(s: info_ptr, n: num_pages * sizeof(struct vm_page_info_basic)); |
| 20222 | |
| 20223 | curr_s_offset = curr_e_offset; |
| 20224 | |
| 20225 | info_idx += num_pages; |
| 20226 | |
| 20227 | continue; |
| 20228 | } |
| 20229 | |
| 20230 | /* compute offset from this map entry's start */ |
| 20231 | offset_in_object = curr_s_offset - map_entry->vme_start; |
| 20232 | |
| 20233 | /* compute offset into this map entry's object (or submap) */ |
| 20234 | offset_in_object += VME_OFFSET(entry: map_entry); |
| 20235 | |
| 20236 | if (map_entry->is_sub_map) { |
| 20237 | vm_map_t sub_map = VM_MAP_NULL; |
| 20238 | vm_page_info_t submap_info = 0; |
| 20239 | vm_map_offset_t submap_s_offset = 0, submap_e_offset = 0, range_len = 0; |
| 20240 | |
| 20241 | range_len = MIN(map_entry->vme_end, end) - curr_s_offset; |
| 20242 | |
| 20243 | submap_s_offset = offset_in_object; |
| 20244 | submap_e_offset = submap_s_offset + range_len; |
| 20245 | |
| 20246 | sub_map = VME_SUBMAP(map_entry); |
| 20247 | |
| 20248 | vm_map_reference(map: sub_map); |
| 20249 | vm_map_unlock_read(map); |
| 20250 | |
| 20251 | submap_info = (vm_page_info_t) (((uintptr_t) info) + (info_idx * sizeof(struct vm_page_info_basic))); |
| 20252 | |
| 20253 | assertf(VM_MAP_PAGE_SHIFT(sub_map) >= VM_MAP_PAGE_SHIFT(map), |
| 20254 | "Submap page size (%d) differs from current map (%d)\n" , VM_MAP_PAGE_SIZE(sub_map), VM_MAP_PAGE_SIZE(map)); |
| 20255 | |
| 20256 | retval = vm_map_page_range_info_internal(map: sub_map, |
| 20257 | start_offset: submap_s_offset, |
| 20258 | end_offset: submap_e_offset, |
| 20259 | effective_page_shift, |
| 20260 | VM_PAGE_INFO_BASIC, |
| 20261 | info: (vm_page_info_t) submap_info, |
| 20262 | count); |
| 20263 | |
| 20264 | assert(retval == KERN_SUCCESS); |
| 20265 | |
| 20266 | vm_map_lock_read(map); |
| 20267 | vm_map_deallocate(map: sub_map); |
| 20268 | |
| 20269 | /* Move the "info" index by the number of pages we inspected.*/ |
| 20270 | info_idx += range_len >> effective_page_shift; |
| 20271 | |
| 20272 | /* Move our current offset by the size of the range we inspected.*/ |
| 20273 | curr_s_offset += range_len; |
| 20274 | |
| 20275 | continue; |
| 20276 | } |
| 20277 | |
| 20278 | object = VME_OBJECT(map_entry); |
| 20279 | |
| 20280 | if (object == VM_OBJECT_NULL) { |
| 20281 | /* |
| 20282 | * We don't have an object here and, hence, |
| 20283 | * no pages to inspect. We'll fill up the |
| 20284 | * info structure appropriately. |
| 20285 | */ |
| 20286 | |
| 20287 | curr_e_offset = MIN(map_entry->vme_end, end); |
| 20288 | |
| 20289 | uint64_t num_pages = (curr_e_offset - curr_s_offset) >> effective_page_shift; |
| 20290 | |
| 20291 | void *info_ptr = (void*) (((uintptr_t) info) + (info_idx * sizeof(struct vm_page_info_basic))); |
| 20292 | |
| 20293 | bzero(s: info_ptr, n: num_pages * sizeof(struct vm_page_info_basic)); |
| 20294 | |
| 20295 | curr_s_offset = curr_e_offset; |
| 20296 | |
| 20297 | info_idx += num_pages; |
| 20298 | |
| 20299 | continue; |
| 20300 | } |
| 20301 | |
| 20302 | if (do_region_footprint) { |
| 20303 | disposition = 0; |
| 20304 | if (map->has_corpse_footprint) { |
| 20305 | /* |
| 20306 | * Query the page info data we saved |
| 20307 | * while forking the corpse. |
| 20308 | */ |
| 20309 | vm_map_corpse_footprint_query_page_info( |
| 20310 | map, |
| 20311 | va: curr_s_offset, |
| 20312 | disposition_p: &disposition); |
| 20313 | } else { |
| 20314 | /* |
| 20315 | * Query the live pmap for footprint info |
| 20316 | * about this page. |
| 20317 | */ |
| 20318 | vm_map_footprint_query_page_info( |
| 20319 | map, |
| 20320 | map_entry, |
| 20321 | curr_s_offset, |
| 20322 | disposition_p: &disposition); |
| 20323 | } |
| 20324 | switch (flavor) { |
| 20325 | case VM_PAGE_INFO_BASIC: |
| 20326 | basic_info = (vm_page_info_basic_t) (((uintptr_t) info) + (info_idx * sizeof(struct vm_page_info_basic))); |
| 20327 | basic_info->disposition = disposition; |
| 20328 | basic_info->ref_count = 1; |
| 20329 | basic_info->object_id = VM_OBJECT_ID_FAKE(map, task_ledgers.purgeable_nonvolatile); |
| 20330 | basic_info->offset = 0; |
| 20331 | basic_info->depth = 0; |
| 20332 | |
| 20333 | info_idx++; |
| 20334 | break; |
| 20335 | } |
| 20336 | curr_s_offset += effective_page_size; |
| 20337 | continue; |
| 20338 | } |
| 20339 | |
| 20340 | vm_object_reference(object); |
| 20341 | /* |
| 20342 | * Shared mode -- so we can allow other readers |
| 20343 | * to grab the lock too. |
| 20344 | */ |
| 20345 | vm_object_lock_shared(object); |
| 20346 | |
| 20347 | curr_e_offset = MIN(map_entry->vme_end, end); |
| 20348 | |
| 20349 | vm_map_unlock_read(map); |
| 20350 | |
| 20351 | map_entry = NULL; /* map is unlocked, the entry is no longer valid. */ |
| 20352 | |
| 20353 | curr_object = object; |
| 20354 | |
| 20355 | for (; curr_s_offset < curr_e_offset;) { |
| 20356 | if (object == curr_object) { |
| 20357 | ref_count = curr_object->ref_count - 1; /* account for our object reference above. */ |
| 20358 | } else { |
| 20359 | ref_count = curr_object->ref_count; |
| 20360 | } |
| 20361 | |
| 20362 | curr_offset_in_object = offset_in_object; |
| 20363 | |
| 20364 | for (;;) { |
| 20365 | m = vm_page_lookup(object: curr_object, vm_object_trunc_page(curr_offset_in_object)); |
| 20366 | |
| 20367 | if (m != VM_PAGE_NULL) { |
| 20368 | disposition |= VM_PAGE_QUERY_PAGE_PRESENT; |
| 20369 | break; |
| 20370 | } else { |
| 20371 | if (curr_object->internal && |
| 20372 | curr_object->alive && |
| 20373 | !curr_object->terminating && |
| 20374 | curr_object->pager_ready) { |
| 20375 | if (VM_COMPRESSOR_PAGER_STATE_GET(curr_object, vm_object_trunc_page(curr_offset_in_object)) |
| 20376 | == VM_EXTERNAL_STATE_EXISTS) { |
| 20377 | /* the pager has that page */ |
| 20378 | disposition |= VM_PAGE_QUERY_PAGE_PAGED_OUT; |
| 20379 | break; |
| 20380 | } |
| 20381 | } |
| 20382 | |
| 20383 | /* |
| 20384 | * Go down the VM object shadow chain until we find the page |
| 20385 | * we're looking for. |
| 20386 | */ |
| 20387 | |
| 20388 | if (curr_object->shadow != VM_OBJECT_NULL) { |
| 20389 | vm_object_t shadow = VM_OBJECT_NULL; |
| 20390 | |
| 20391 | curr_offset_in_object += curr_object->vo_shadow_offset; |
| 20392 | shadow = curr_object->shadow; |
| 20393 | |
| 20394 | vm_object_lock_shared(shadow); |
| 20395 | vm_object_unlock(curr_object); |
| 20396 | |
| 20397 | curr_object = shadow; |
| 20398 | depth++; |
| 20399 | continue; |
| 20400 | } else { |
| 20401 | break; |
| 20402 | } |
| 20403 | } |
| 20404 | } |
| 20405 | |
| 20406 | /* The ref_count is not strictly accurate, it measures the number */ |
| 20407 | /* of entities holding a ref on the object, they may not be mapping */ |
| 20408 | /* the object or may not be mapping the section holding the */ |
| 20409 | /* target page but its still a ball park number and though an over- */ |
| 20410 | /* count, it picks up the copy-on-write cases */ |
| 20411 | |
| 20412 | /* We could also get a picture of page sharing from pmap_attributes */ |
| 20413 | /* but this would under count as only faulted-in mappings would */ |
| 20414 | /* show up. */ |
| 20415 | |
| 20416 | if ((curr_object == object) && curr_object->shadow) { |
| 20417 | disposition |= VM_PAGE_QUERY_PAGE_COPIED; |
| 20418 | } |
| 20419 | |
| 20420 | if (!curr_object->internal) { |
| 20421 | disposition |= VM_PAGE_QUERY_PAGE_EXTERNAL; |
| 20422 | } |
| 20423 | |
| 20424 | if (m != VM_PAGE_NULL) { |
| 20425 | if (m->vmp_fictitious) { |
| 20426 | disposition |= VM_PAGE_QUERY_PAGE_FICTITIOUS; |
| 20427 | } else { |
| 20428 | if (m->vmp_dirty || pmap_is_modified(pn: VM_PAGE_GET_PHYS_PAGE(m))) { |
| 20429 | disposition |= VM_PAGE_QUERY_PAGE_DIRTY; |
| 20430 | } |
| 20431 | |
| 20432 | if (m->vmp_reference || pmap_is_referenced(pn: VM_PAGE_GET_PHYS_PAGE(m))) { |
| 20433 | disposition |= VM_PAGE_QUERY_PAGE_REF; |
| 20434 | } |
| 20435 | |
| 20436 | if (m->vmp_q_state == VM_PAGE_ON_SPECULATIVE_Q) { |
| 20437 | disposition |= VM_PAGE_QUERY_PAGE_SPECULATIVE; |
| 20438 | } |
| 20439 | |
| 20440 | /* |
| 20441 | * XXX TODO4K: |
| 20442 | * when this routine deals with 4k |
| 20443 | * pages, check the appropriate CS bit |
| 20444 | * here. |
| 20445 | */ |
| 20446 | if (m->vmp_cs_validated) { |
| 20447 | disposition |= VM_PAGE_QUERY_PAGE_CS_VALIDATED; |
| 20448 | } |
| 20449 | if (m->vmp_cs_tainted) { |
| 20450 | disposition |= VM_PAGE_QUERY_PAGE_CS_TAINTED; |
| 20451 | } |
| 20452 | if (m->vmp_cs_nx) { |
| 20453 | disposition |= VM_PAGE_QUERY_PAGE_CS_NX; |
| 20454 | } |
| 20455 | if (m->vmp_reusable || curr_object->all_reusable) { |
| 20456 | disposition |= VM_PAGE_QUERY_PAGE_REUSABLE; |
| 20457 | } |
| 20458 | } |
| 20459 | } |
| 20460 | |
| 20461 | switch (flavor) { |
| 20462 | case VM_PAGE_INFO_BASIC: |
| 20463 | basic_info = (vm_page_info_basic_t) (((uintptr_t) info) + (info_idx * sizeof(struct vm_page_info_basic))); |
| 20464 | basic_info->disposition = disposition; |
| 20465 | basic_info->ref_count = ref_count; |
| 20466 | basic_info->object_id = (vm_object_id_t) (uintptr_t) |
| 20467 | VM_KERNEL_ADDRHASH(curr_object); |
| 20468 | basic_info->offset = |
| 20469 | (memory_object_offset_t) curr_offset_in_object + offset_in_page; |
| 20470 | basic_info->depth = depth; |
| 20471 | |
| 20472 | info_idx++; |
| 20473 | break; |
| 20474 | } |
| 20475 | |
| 20476 | disposition = 0; |
| 20477 | offset_in_page = 0; // This doesn't really make sense for any offset other than the starting offset. |
| 20478 | |
| 20479 | /* |
| 20480 | * Move to next offset in the range and in our object. |
| 20481 | */ |
| 20482 | curr_s_offset += effective_page_size; |
| 20483 | offset_in_object += effective_page_size; |
| 20484 | curr_offset_in_object = offset_in_object; |
| 20485 | |
| 20486 | if (curr_object != object) { |
| 20487 | vm_object_unlock(curr_object); |
| 20488 | |
| 20489 | curr_object = object; |
| 20490 | |
| 20491 | vm_object_lock_shared(curr_object); |
| 20492 | } else { |
| 20493 | vm_object_lock_yield_shared(curr_object); |
| 20494 | } |
| 20495 | } |
| 20496 | |
| 20497 | vm_object_unlock(curr_object); |
| 20498 | vm_object_deallocate(object: curr_object); |
| 20499 | |
| 20500 | vm_map_lock_read(map); |
| 20501 | } |
| 20502 | |
| 20503 | vm_map_unlock_read(map); |
| 20504 | return retval; |
| 20505 | } |
| 20506 | |
| 20507 | /* |
| 20508 | * vm_map_msync |
| 20509 | * |
| 20510 | * Synchronises the memory range specified with its backing store |
| 20511 | * image by either flushing or cleaning the contents to the appropriate |
| 20512 | * memory manager engaging in a memory object synchronize dialog with |
| 20513 | * the manager. The client doesn't return until the manager issues |
| 20514 | * m_o_s_completed message. MIG Magically converts user task parameter |
| 20515 | * to the task's address map. |
| 20516 | * |
| 20517 | * interpretation of sync_flags |
| 20518 | * VM_SYNC_INVALIDATE - discard pages, only return precious |
| 20519 | * pages to manager. |
| 20520 | * |
| 20521 | * VM_SYNC_INVALIDATE & (VM_SYNC_SYNCHRONOUS | VM_SYNC_ASYNCHRONOUS) |
| 20522 | * - discard pages, write dirty or precious |
| 20523 | * pages back to memory manager. |
| 20524 | * |
| 20525 | * VM_SYNC_SYNCHRONOUS | VM_SYNC_ASYNCHRONOUS |
| 20526 | * - write dirty or precious pages back to |
| 20527 | * the memory manager. |
| 20528 | * |
| 20529 | * VM_SYNC_CONTIGUOUS - does everything normally, but if there |
| 20530 | * is a hole in the region, and we would |
| 20531 | * have returned KERN_SUCCESS, return |
| 20532 | * KERN_INVALID_ADDRESS instead. |
| 20533 | * |
| 20534 | * NOTE |
| 20535 | * The memory object attributes have not yet been implemented, this |
| 20536 | * function will have to deal with the invalidate attribute |
| 20537 | * |
| 20538 | * RETURNS |
| 20539 | * KERN_INVALID_TASK Bad task parameter |
| 20540 | * KERN_INVALID_ARGUMENT both sync and async were specified. |
| 20541 | * KERN_SUCCESS The usual. |
| 20542 | * KERN_INVALID_ADDRESS There was a hole in the region. |
| 20543 | */ |
| 20544 | |
| 20545 | kern_return_t |
| 20546 | vm_map_msync( |
| 20547 | vm_map_t map, |
| 20548 | vm_map_address_t address, |
| 20549 | vm_map_size_t size, |
| 20550 | vm_sync_t sync_flags) |
| 20551 | { |
| 20552 | vm_map_entry_t entry; |
| 20553 | vm_map_size_t amount_left; |
| 20554 | vm_object_offset_t offset; |
| 20555 | vm_object_offset_t start_offset, end_offset; |
| 20556 | boolean_t do_sync_req; |
| 20557 | boolean_t had_hole = FALSE; |
| 20558 | vm_map_offset_t pmap_offset; |
| 20559 | |
| 20560 | if ((sync_flags & VM_SYNC_ASYNCHRONOUS) && |
| 20561 | (sync_flags & VM_SYNC_SYNCHRONOUS)) { |
| 20562 | return KERN_INVALID_ARGUMENT; |
| 20563 | } |
| 20564 | |
| 20565 | if (__improbable(vm_map_range_overflows(map, address, size))) { |
| 20566 | return KERN_INVALID_ADDRESS; |
| 20567 | } |
| 20568 | |
| 20569 | if (VM_MAP_PAGE_MASK(map) < PAGE_MASK) { |
| 20570 | DEBUG4K_SHARE("map %p address 0x%llx size 0x%llx flags 0x%x\n" , map, (uint64_t)address, (uint64_t)size, sync_flags); |
| 20571 | } |
| 20572 | |
| 20573 | /* |
| 20574 | * align address and size on page boundaries |
| 20575 | */ |
| 20576 | size = (vm_map_round_page(address + size, |
| 20577 | VM_MAP_PAGE_MASK(map)) - |
| 20578 | vm_map_trunc_page(address, |
| 20579 | VM_MAP_PAGE_MASK(map))); |
| 20580 | address = vm_map_trunc_page(address, |
| 20581 | VM_MAP_PAGE_MASK(map)); |
| 20582 | |
| 20583 | if (map == VM_MAP_NULL) { |
| 20584 | return KERN_INVALID_TASK; |
| 20585 | } |
| 20586 | |
| 20587 | if (size == 0) { |
| 20588 | return KERN_SUCCESS; |
| 20589 | } |
| 20590 | |
| 20591 | amount_left = size; |
| 20592 | |
| 20593 | while (amount_left > 0) { |
| 20594 | vm_object_size_t flush_size; |
| 20595 | vm_object_t object; |
| 20596 | |
| 20597 | vm_map_lock(map); |
| 20598 | if (!vm_map_lookup_entry(map, |
| 20599 | address, |
| 20600 | entry: &entry)) { |
| 20601 | vm_map_size_t skip; |
| 20602 | |
| 20603 | /* |
| 20604 | * hole in the address map. |
| 20605 | */ |
| 20606 | had_hole = TRUE; |
| 20607 | |
| 20608 | if (sync_flags & VM_SYNC_KILLPAGES) { |
| 20609 | /* |
| 20610 | * For VM_SYNC_KILLPAGES, there should be |
| 20611 | * no holes in the range, since we couldn't |
| 20612 | * prevent someone else from allocating in |
| 20613 | * that hole and we wouldn't want to "kill" |
| 20614 | * their pages. |
| 20615 | */ |
| 20616 | vm_map_unlock(map); |
| 20617 | break; |
| 20618 | } |
| 20619 | |
| 20620 | /* |
| 20621 | * Check for empty map. |
| 20622 | */ |
| 20623 | if (entry == vm_map_to_entry(map) && |
| 20624 | entry->vme_next == entry) { |
| 20625 | vm_map_unlock(map); |
| 20626 | break; |
| 20627 | } |
| 20628 | /* |
| 20629 | * Check that we don't wrap and that |
| 20630 | * we have at least one real map entry. |
| 20631 | */ |
| 20632 | if ((map->hdr.nentries == 0) || |
| 20633 | (entry->vme_next->vme_start < address)) { |
| 20634 | vm_map_unlock(map); |
| 20635 | break; |
| 20636 | } |
| 20637 | /* |
| 20638 | * Move up to the next entry if needed |
| 20639 | */ |
| 20640 | skip = (entry->vme_next->vme_start - address); |
| 20641 | if (skip >= amount_left) { |
| 20642 | amount_left = 0; |
| 20643 | } else { |
| 20644 | amount_left -= skip; |
| 20645 | } |
| 20646 | address = entry->vme_next->vme_start; |
| 20647 | vm_map_unlock(map); |
| 20648 | continue; |
| 20649 | } |
| 20650 | |
| 20651 | offset = address - entry->vme_start; |
| 20652 | pmap_offset = address; |
| 20653 | |
| 20654 | /* |
| 20655 | * do we have more to flush than is contained in this |
| 20656 | * entry ? |
| 20657 | */ |
| 20658 | if (amount_left + entry->vme_start + offset > entry->vme_end) { |
| 20659 | flush_size = entry->vme_end - |
| 20660 | (entry->vme_start + offset); |
| 20661 | } else { |
| 20662 | flush_size = amount_left; |
| 20663 | } |
| 20664 | amount_left -= flush_size; |
| 20665 | address += flush_size; |
| 20666 | |
| 20667 | if (entry->is_sub_map == TRUE) { |
| 20668 | vm_map_t local_map; |
| 20669 | vm_map_offset_t local_offset; |
| 20670 | |
| 20671 | local_map = VME_SUBMAP(entry); |
| 20672 | local_offset = VME_OFFSET(entry); |
| 20673 | vm_map_reference(map: local_map); |
| 20674 | vm_map_unlock(map); |
| 20675 | if (vm_map_msync( |
| 20676 | map: local_map, |
| 20677 | address: local_offset, |
| 20678 | size: flush_size, |
| 20679 | sync_flags) == KERN_INVALID_ADDRESS) { |
| 20680 | had_hole = TRUE; |
| 20681 | } |
| 20682 | vm_map_deallocate(map: local_map); |
| 20683 | continue; |
| 20684 | } |
| 20685 | object = VME_OBJECT(entry); |
| 20686 | |
| 20687 | /* |
| 20688 | * We can't sync this object if the object has not been |
| 20689 | * created yet |
| 20690 | */ |
| 20691 | if (object == VM_OBJECT_NULL) { |
| 20692 | vm_map_unlock(map); |
| 20693 | continue; |
| 20694 | } |
| 20695 | offset += VME_OFFSET(entry); |
| 20696 | |
| 20697 | vm_object_lock(object); |
| 20698 | |
| 20699 | if (sync_flags & (VM_SYNC_KILLPAGES | VM_SYNC_DEACTIVATE)) { |
| 20700 | int kill_pages = 0; |
| 20701 | |
| 20702 | if (VM_MAP_PAGE_MASK(map) < PAGE_MASK) { |
| 20703 | /* |
| 20704 | * This is a destructive operation and so we |
| 20705 | * err on the side of limiting the range of |
| 20706 | * the operation. |
| 20707 | */ |
| 20708 | start_offset = vm_object_round_page(offset); |
| 20709 | end_offset = vm_object_trunc_page(offset + flush_size); |
| 20710 | |
| 20711 | if (end_offset <= start_offset) { |
| 20712 | vm_object_unlock(object); |
| 20713 | vm_map_unlock(map); |
| 20714 | continue; |
| 20715 | } |
| 20716 | |
| 20717 | pmap_offset += start_offset - offset; |
| 20718 | } else { |
| 20719 | start_offset = offset; |
| 20720 | end_offset = offset + flush_size; |
| 20721 | } |
| 20722 | |
| 20723 | if (sync_flags & VM_SYNC_KILLPAGES) { |
| 20724 | if (((object->ref_count == 1) || |
| 20725 | ((object->copy_strategy != |
| 20726 | MEMORY_OBJECT_COPY_SYMMETRIC) && |
| 20727 | (object->vo_copy == VM_OBJECT_NULL))) && |
| 20728 | (object->shadow == VM_OBJECT_NULL)) { |
| 20729 | if (object->ref_count != 1) { |
| 20730 | vm_page_stats_reusable.free_shared++; |
| 20731 | } |
| 20732 | kill_pages = 1; |
| 20733 | } else { |
| 20734 | kill_pages = -1; |
| 20735 | } |
| 20736 | } |
| 20737 | if (kill_pages != -1) { |
| 20738 | vm_object_deactivate_pages( |
| 20739 | object, |
| 20740 | offset: start_offset, |
| 20741 | size: (vm_object_size_t) (end_offset - start_offset), |
| 20742 | kill_page: kill_pages, |
| 20743 | FALSE, /* reusable_pages */ |
| 20744 | FALSE, /* reusable_no_write */ |
| 20745 | pmap: map->pmap, |
| 20746 | pmap_offset); |
| 20747 | } |
| 20748 | vm_object_unlock(object); |
| 20749 | vm_map_unlock(map); |
| 20750 | continue; |
| 20751 | } |
| 20752 | /* |
| 20753 | * We can't sync this object if there isn't a pager. |
| 20754 | * Don't bother to sync internal objects, since there can't |
| 20755 | * be any "permanent" storage for these objects anyway. |
| 20756 | */ |
| 20757 | if ((object->pager == MEMORY_OBJECT_NULL) || |
| 20758 | (object->internal) || (object->private)) { |
| 20759 | vm_object_unlock(object); |
| 20760 | vm_map_unlock(map); |
| 20761 | continue; |
| 20762 | } |
| 20763 | /* |
| 20764 | * keep reference on the object until syncing is done |
| 20765 | */ |
| 20766 | vm_object_reference_locked(object); |
| 20767 | vm_object_unlock(object); |
| 20768 | |
| 20769 | vm_map_unlock(map); |
| 20770 | |
| 20771 | if (VM_MAP_PAGE_MASK(map) < PAGE_MASK) { |
| 20772 | start_offset = vm_object_trunc_page(offset); |
| 20773 | end_offset = vm_object_round_page(offset + flush_size); |
| 20774 | } else { |
| 20775 | start_offset = offset; |
| 20776 | end_offset = offset + flush_size; |
| 20777 | } |
| 20778 | |
| 20779 | do_sync_req = vm_object_sync(object, |
| 20780 | offset: start_offset, |
| 20781 | size: (end_offset - start_offset), |
| 20782 | should_flush: sync_flags & VM_SYNC_INVALIDATE, |
| 20783 | should_return: ((sync_flags & VM_SYNC_SYNCHRONOUS) || |
| 20784 | (sync_flags & VM_SYNC_ASYNCHRONOUS)), |
| 20785 | should_iosync: sync_flags & VM_SYNC_SYNCHRONOUS); |
| 20786 | |
| 20787 | if ((sync_flags & VM_SYNC_INVALIDATE) && object->resident_page_count == 0) { |
| 20788 | /* |
| 20789 | * clear out the clustering and read-ahead hints |
| 20790 | */ |
| 20791 | vm_object_lock(object); |
| 20792 | |
| 20793 | object->pages_created = 0; |
| 20794 | object->pages_used = 0; |
| 20795 | object->sequential = 0; |
| 20796 | object->last_alloc = 0; |
| 20797 | |
| 20798 | vm_object_unlock(object); |
| 20799 | } |
| 20800 | vm_object_deallocate(object); |
| 20801 | } /* while */ |
| 20802 | |
| 20803 | /* for proper msync() behaviour */ |
| 20804 | if (had_hole == TRUE && (sync_flags & VM_SYNC_CONTIGUOUS)) { |
| 20805 | return KERN_INVALID_ADDRESS; |
| 20806 | } |
| 20807 | |
| 20808 | return KERN_SUCCESS; |
| 20809 | }/* vm_msync */ |
| 20810 | |
| 20811 | void |
| 20812 | vm_named_entry_associate_vm_object( |
| 20813 | vm_named_entry_t named_entry, |
| 20814 | vm_object_t object, |
| 20815 | vm_object_offset_t offset, |
| 20816 | vm_object_size_t size, |
| 20817 | vm_prot_t prot) |
| 20818 | { |
| 20819 | vm_map_copy_t copy; |
| 20820 | vm_map_entry_t copy_entry; |
| 20821 | |
| 20822 | assert(!named_entry->is_sub_map); |
| 20823 | assert(!named_entry->is_copy); |
| 20824 | assert(!named_entry->is_object); |
| 20825 | assert(!named_entry->internal); |
| 20826 | assert(named_entry->backing.copy == VM_MAP_COPY_NULL); |
| 20827 | |
| 20828 | copy = vm_map_copy_allocate(VM_MAP_COPY_ENTRY_LIST); |
| 20829 | copy->offset = offset; |
| 20830 | copy->size = size; |
| 20831 | copy->cpy_hdr.page_shift = (uint16_t)PAGE_SHIFT; |
| 20832 | |
| 20833 | copy_entry = vm_map_copy_entry_create(copy); |
| 20834 | copy_entry->protection = prot; |
| 20835 | copy_entry->max_protection = prot; |
| 20836 | copy_entry->use_pmap = TRUE; |
| 20837 | copy_entry->vme_start = VM_MAP_TRUNC_PAGE(offset, PAGE_MASK); |
| 20838 | copy_entry->vme_end = VM_MAP_ROUND_PAGE(offset + size, PAGE_MASK); |
| 20839 | VME_OBJECT_SET(entry: copy_entry, object, false, context: 0); |
| 20840 | VME_OFFSET_SET(entry: copy_entry, vm_object_trunc_page(offset)); |
| 20841 | vm_map_copy_entry_link(copy, vm_map_copy_last_entry(copy), copy_entry); |
| 20842 | |
| 20843 | named_entry->backing.copy = copy; |
| 20844 | named_entry->is_object = TRUE; |
| 20845 | if (object->internal) { |
| 20846 | named_entry->internal = TRUE; |
| 20847 | } |
| 20848 | |
| 20849 | DEBUG4K_MEMENTRY("named_entry %p copy %p object %p offset 0x%llx size 0x%llx prot 0x%x\n" , |
| 20850 | named_entry, copy, object, offset, size, prot); |
| 20851 | } |
| 20852 | |
| 20853 | vm_object_t |
| 20854 | vm_named_entry_to_vm_object( |
| 20855 | vm_named_entry_t named_entry) |
| 20856 | { |
| 20857 | vm_map_copy_t copy; |
| 20858 | vm_map_entry_t copy_entry; |
| 20859 | vm_object_t object; |
| 20860 | |
| 20861 | assert(!named_entry->is_sub_map); |
| 20862 | assert(!named_entry->is_copy); |
| 20863 | assert(named_entry->is_object); |
| 20864 | copy = named_entry->backing.copy; |
| 20865 | assert(copy != VM_MAP_COPY_NULL); |
| 20866 | /* |
| 20867 | * Assert that the vm_map_copy is coming from the right |
| 20868 | * zone and hasn't been forged |
| 20869 | */ |
| 20870 | vm_map_copy_require(copy); |
| 20871 | assert(copy->cpy_hdr.nentries == 1); |
| 20872 | copy_entry = vm_map_copy_first_entry(copy); |
| 20873 | object = VME_OBJECT(copy_entry); |
| 20874 | |
| 20875 | DEBUG4K_MEMENTRY("%p -> %p -> %p [0x%llx 0x%llx 0x%llx 0x%x/0x%x ] -> %p offset 0x%llx size 0x%llx prot 0x%x\n" , named_entry, copy, copy_entry, (uint64_t)copy_entry->vme_start, (uint64_t)copy_entry->vme_end, copy_entry->vme_offset, copy_entry->protection, copy_entry->max_protection, object, named_entry->offset, named_entry->size, named_entry->protection); |
| 20876 | |
| 20877 | return object; |
| 20878 | } |
| 20879 | |
| 20880 | /* |
| 20881 | * Routine: convert_port_entry_to_map |
| 20882 | * Purpose: |
| 20883 | * Convert from a port specifying an entry or a task |
| 20884 | * to a map. Doesn't consume the port ref; produces a map ref, |
| 20885 | * which may be null. Unlike convert_port_to_map, the |
| 20886 | * port may be task or a named entry backed. |
| 20887 | * Conditions: |
| 20888 | * Nothing locked. |
| 20889 | */ |
| 20890 | |
| 20891 | vm_map_t |
| 20892 | convert_port_entry_to_map( |
| 20893 | ipc_port_t port) |
| 20894 | { |
| 20895 | vm_map_t map = VM_MAP_NULL; |
| 20896 | vm_named_entry_t named_entry; |
| 20897 | |
| 20898 | if (!IP_VALID(port)) { |
| 20899 | return VM_MAP_NULL; |
| 20900 | } |
| 20901 | |
| 20902 | if (ip_kotype(port) != IKOT_NAMED_ENTRY) { |
| 20903 | return convert_port_to_map(port); |
| 20904 | } |
| 20905 | |
| 20906 | named_entry = mach_memory_entry_from_port(port); |
| 20907 | |
| 20908 | if ((named_entry->is_sub_map) && |
| 20909 | (named_entry->protection & VM_PROT_WRITE)) { |
| 20910 | map = named_entry->backing.map; |
| 20911 | if (map->pmap != PMAP_NULL) { |
| 20912 | if (map->pmap == kernel_pmap) { |
| 20913 | panic("userspace has access " |
| 20914 | "to a kernel map %p" , map); |
| 20915 | } |
| 20916 | pmap_require(pmap: map->pmap); |
| 20917 | } |
| 20918 | vm_map_reference(map); |
| 20919 | } |
| 20920 | |
| 20921 | return map; |
| 20922 | } |
| 20923 | |
| 20924 | /* |
| 20925 | * Export routines to other components for the things we access locally through |
| 20926 | * macros. |
| 20927 | */ |
| 20928 | #undef current_map |
| 20929 | vm_map_t |
| 20930 | current_map(void) |
| 20931 | { |
| 20932 | return current_map_fast(); |
| 20933 | } |
| 20934 | |
| 20935 | /* |
| 20936 | * vm_map_reference: |
| 20937 | * |
| 20938 | * Takes a reference on the specified map. |
| 20939 | */ |
| 20940 | void |
| 20941 | vm_map_reference( |
| 20942 | vm_map_t map) |
| 20943 | { |
| 20944 | if (__probable(map != VM_MAP_NULL)) { |
| 20945 | vm_map_require(map); |
| 20946 | os_ref_retain_raw(&map->map_refcnt, &map_refgrp); |
| 20947 | } |
| 20948 | } |
| 20949 | |
| 20950 | /* |
| 20951 | * vm_map_deallocate: |
| 20952 | * |
| 20953 | * Removes a reference from the specified map, |
| 20954 | * destroying it if no references remain. |
| 20955 | * The map should not be locked. |
| 20956 | */ |
| 20957 | void |
| 20958 | vm_map_deallocate( |
| 20959 | vm_map_t map) |
| 20960 | { |
| 20961 | if (__probable(map != VM_MAP_NULL)) { |
| 20962 | vm_map_require(map); |
| 20963 | if (os_ref_release_raw(&map->map_refcnt, &map_refgrp) == 0) { |
| 20964 | vm_map_destroy(map); |
| 20965 | } |
| 20966 | } |
| 20967 | } |
| 20968 | |
| 20969 | void |
| 20970 | vm_map_inspect_deallocate( |
| 20971 | vm_map_inspect_t map) |
| 20972 | { |
| 20973 | vm_map_deallocate(map: (vm_map_t)map); |
| 20974 | } |
| 20975 | |
| 20976 | void |
| 20977 | vm_map_read_deallocate( |
| 20978 | vm_map_read_t map) |
| 20979 | { |
| 20980 | vm_map_deallocate(map: (vm_map_t)map); |
| 20981 | } |
| 20982 | |
| 20983 | |
| 20984 | void |
| 20985 | vm_map_disable_NX(vm_map_t map) |
| 20986 | { |
| 20987 | if (map == NULL) { |
| 20988 | return; |
| 20989 | } |
| 20990 | if (map->pmap == NULL) { |
| 20991 | return; |
| 20992 | } |
| 20993 | |
| 20994 | pmap_disable_NX(pmap: map->pmap); |
| 20995 | } |
| 20996 | |
| 20997 | void |
| 20998 | vm_map_disallow_data_exec(vm_map_t map) |
| 20999 | { |
| 21000 | if (map == NULL) { |
| 21001 | return; |
| 21002 | } |
| 21003 | |
| 21004 | map->map_disallow_data_exec = TRUE; |
| 21005 | } |
| 21006 | |
| 21007 | /* XXX Consider making these constants (VM_MAX_ADDRESS and MACH_VM_MAX_ADDRESS) |
| 21008 | * more descriptive. |
| 21009 | */ |
| 21010 | void |
| 21011 | vm_map_set_32bit(vm_map_t map) |
| 21012 | { |
| 21013 | #if defined(__arm64__) |
| 21014 | map->max_offset = pmap_max_offset(FALSE, ARM_PMAP_MAX_OFFSET_DEVICE); |
| 21015 | #else |
| 21016 | map->max_offset = (vm_map_offset_t)VM_MAX_ADDRESS; |
| 21017 | #endif |
| 21018 | } |
| 21019 | |
| 21020 | |
| 21021 | void |
| 21022 | vm_map_set_64bit(vm_map_t map) |
| 21023 | { |
| 21024 | #if defined(__arm64__) |
| 21025 | map->max_offset = pmap_max_offset(TRUE, ARM_PMAP_MAX_OFFSET_DEVICE); |
| 21026 | #else |
| 21027 | map->max_offset = (vm_map_offset_t)MACH_VM_MAX_ADDRESS; |
| 21028 | #endif |
| 21029 | } |
| 21030 | |
| 21031 | /* |
| 21032 | * Expand the maximum size of an existing map to the maximum supported. |
| 21033 | */ |
| 21034 | void |
| 21035 | vm_map_set_jumbo(vm_map_t map) |
| 21036 | { |
| 21037 | #if defined (__arm64__) && !XNU_TARGET_OS_OSX |
| 21038 | vm_map_set_max_addr(map, ~0); |
| 21039 | #else /* arm64 */ |
| 21040 | (void) map; |
| 21041 | #endif |
| 21042 | } |
| 21043 | |
| 21044 | /* |
| 21045 | * This map has a JIT entitlement |
| 21046 | */ |
| 21047 | void |
| 21048 | vm_map_set_jit_entitled(vm_map_t map) |
| 21049 | { |
| 21050 | #if defined (__arm64__) |
| 21051 | pmap_set_jit_entitled(pmap: map->pmap); |
| 21052 | #else /* arm64 */ |
| 21053 | (void) map; |
| 21054 | #endif |
| 21055 | } |
| 21056 | |
| 21057 | /* |
| 21058 | * Get status of this maps TPRO flag |
| 21059 | */ |
| 21060 | boolean_t |
| 21061 | vm_map_tpro(vm_map_t map) |
| 21062 | { |
| 21063 | #if defined (__arm64e__) |
| 21064 | return pmap_get_tpro(pmap: map->pmap); |
| 21065 | #else /* arm64e */ |
| 21066 | (void) map; |
| 21067 | return FALSE; |
| 21068 | #endif |
| 21069 | } |
| 21070 | |
| 21071 | /* |
| 21072 | * This map has TPRO enabled |
| 21073 | */ |
| 21074 | void |
| 21075 | vm_map_set_tpro(vm_map_t map) |
| 21076 | { |
| 21077 | #if defined (__arm64e__) |
| 21078 | pmap_set_tpro(pmap: map->pmap); |
| 21079 | #else /* arm64e */ |
| 21080 | (void) map; |
| 21081 | #endif |
| 21082 | } |
| 21083 | |
| 21084 | /* |
| 21085 | * Does this map have TPRO enforcement enabled |
| 21086 | */ |
| 21087 | boolean_t |
| 21088 | vm_map_tpro_enforcement(vm_map_t map) |
| 21089 | { |
| 21090 | return map->tpro_enforcement; |
| 21091 | } |
| 21092 | |
| 21093 | /* |
| 21094 | * Set TPRO enforcement for this map |
| 21095 | */ |
| 21096 | void |
| 21097 | vm_map_set_tpro_enforcement(vm_map_t map) |
| 21098 | { |
| 21099 | if (vm_map_tpro(map)) { |
| 21100 | vm_map_lock(map); |
| 21101 | map->tpro_enforcement = TRUE; |
| 21102 | vm_map_unlock(map); |
| 21103 | } |
| 21104 | } |
| 21105 | |
| 21106 | /* |
| 21107 | * Enable TPRO on the requested region |
| 21108 | * |
| 21109 | * Note: |
| 21110 | * This routine is primarily intended to be called during/soon after map |
| 21111 | * creation before the associated task has been released to run. It is only |
| 21112 | * currently safe when we have no resident pages. |
| 21113 | */ |
| 21114 | boolean_t |
| 21115 | vm_map_set_tpro_range( |
| 21116 | __unused vm_map_t map, |
| 21117 | __unused vm_map_address_t start, |
| 21118 | __unused vm_map_address_t end) |
| 21119 | { |
| 21120 | return TRUE; |
| 21121 | } |
| 21122 | |
| 21123 | /* |
| 21124 | * Expand the maximum size of an existing map. |
| 21125 | */ |
| 21126 | void |
| 21127 | vm_map_set_max_addr(vm_map_t map, vm_map_offset_t new_max_offset) |
| 21128 | { |
| 21129 | #if defined(__arm64__) |
| 21130 | vm_map_offset_t max_supported_offset; |
| 21131 | vm_map_offset_t old_max_offset; |
| 21132 | |
| 21133 | vm_map_lock(map); |
| 21134 | |
| 21135 | old_max_offset = map->max_offset; |
| 21136 | max_supported_offset = pmap_max_offset(is64: vm_map_is_64bit(map), ARM_PMAP_MAX_OFFSET_JUMBO); |
| 21137 | |
| 21138 | new_max_offset = trunc_page(new_max_offset); |
| 21139 | |
| 21140 | /* The address space cannot be shrunk using this routine. */ |
| 21141 | if (old_max_offset >= new_max_offset) { |
| 21142 | vm_map_unlock(map); |
| 21143 | return; |
| 21144 | } |
| 21145 | |
| 21146 | if (max_supported_offset < new_max_offset) { |
| 21147 | new_max_offset = max_supported_offset; |
| 21148 | } |
| 21149 | |
| 21150 | map->max_offset = new_max_offset; |
| 21151 | |
| 21152 | if (map->holelistenabled) { |
| 21153 | if (map->holes_list->prev->vme_end == old_max_offset) { |
| 21154 | /* |
| 21155 | * There is already a hole at the end of the map; simply make it bigger. |
| 21156 | */ |
| 21157 | map->holes_list->prev->vme_end = map->max_offset; |
| 21158 | } else { |
| 21159 | /* |
| 21160 | * There is no hole at the end, so we need to create a new hole |
| 21161 | * for the new empty space we're creating. |
| 21162 | */ |
| 21163 | struct vm_map_links *new_hole; |
| 21164 | |
| 21165 | new_hole = zalloc_id(ZONE_ID_VM_MAP_HOLES, Z_WAITOK | Z_NOFAIL); |
| 21166 | new_hole->start = old_max_offset; |
| 21167 | new_hole->end = map->max_offset; |
| 21168 | new_hole->prev = map->holes_list->prev; |
| 21169 | new_hole->next = (struct vm_map_entry *)map->holes_list; |
| 21170 | map->holes_list->prev->vme_next = (struct vm_map_entry *)new_hole; |
| 21171 | map->holes_list->prev = (struct vm_map_entry *)new_hole; |
| 21172 | } |
| 21173 | } |
| 21174 | |
| 21175 | vm_map_unlock(map); |
| 21176 | #else |
| 21177 | (void)map; |
| 21178 | (void)new_max_offset; |
| 21179 | #endif |
| 21180 | } |
| 21181 | |
| 21182 | vm_map_offset_t |
| 21183 | vm_compute_max_offset(boolean_t is64) |
| 21184 | { |
| 21185 | #if defined(__arm64__) |
| 21186 | return pmap_max_offset(is64, ARM_PMAP_MAX_OFFSET_DEVICE); |
| 21187 | #else |
| 21188 | return is64 ? (vm_map_offset_t)MACH_VM_MAX_ADDRESS : (vm_map_offset_t)VM_MAX_ADDRESS; |
| 21189 | #endif |
| 21190 | } |
| 21191 | |
| 21192 | void |
| 21193 | vm_map_get_max_aslr_slide_section( |
| 21194 | vm_map_t map __unused, |
| 21195 | int64_t *max_sections, |
| 21196 | int64_t *section_size) |
| 21197 | { |
| 21198 | #if defined(__arm64__) |
| 21199 | *max_sections = 3; |
| 21200 | *section_size = ARM_TT_TWIG_SIZE; |
| 21201 | #else |
| 21202 | *max_sections = 1; |
| 21203 | *section_size = 0; |
| 21204 | #endif |
| 21205 | } |
| 21206 | |
| 21207 | uint64_t |
| 21208 | vm_map_get_max_aslr_slide_pages(vm_map_t map) |
| 21209 | { |
| 21210 | #if defined(__arm64__) |
| 21211 | /* Limit arm64 slide to 16MB to conserve contiguous VA space in the more |
| 21212 | * limited embedded address space; this is also meant to minimize pmap |
| 21213 | * memory usage on 16KB page systems. |
| 21214 | */ |
| 21215 | return 1 << (24 - VM_MAP_PAGE_SHIFT(map)); |
| 21216 | #else |
| 21217 | return 1 << (vm_map_is_64bit(map) ? 16 : 8); |
| 21218 | #endif |
| 21219 | } |
| 21220 | |
| 21221 | uint64_t |
| 21222 | vm_map_get_max_loader_aslr_slide_pages(vm_map_t map) |
| 21223 | { |
| 21224 | #if defined(__arm64__) |
| 21225 | /* We limit the loader slide to 4MB, in order to ensure at least 8 bits |
| 21226 | * of independent entropy on 16KB page systems. |
| 21227 | */ |
| 21228 | return 1 << (22 - VM_MAP_PAGE_SHIFT(map)); |
| 21229 | #else |
| 21230 | return 1 << (vm_map_is_64bit(map) ? 16 : 8); |
| 21231 | #endif |
| 21232 | } |
| 21233 | |
| 21234 | boolean_t |
| 21235 | vm_map_is_64bit( |
| 21236 | vm_map_t map) |
| 21237 | { |
| 21238 | return map->max_offset > ((vm_map_offset_t)VM_MAX_ADDRESS); |
| 21239 | } |
| 21240 | |
| 21241 | boolean_t |
| 21242 | vm_map_has_hard_pagezero( |
| 21243 | vm_map_t map, |
| 21244 | vm_map_offset_t pagezero_size) |
| 21245 | { |
| 21246 | /* |
| 21247 | * XXX FBDP |
| 21248 | * We should lock the VM map (for read) here but we can get away |
| 21249 | * with it for now because there can't really be any race condition: |
| 21250 | * the VM map's min_offset is changed only when the VM map is created |
| 21251 | * and when the zero page is established (when the binary gets loaded), |
| 21252 | * and this routine gets called only when the task terminates and the |
| 21253 | * VM map is being torn down, and when a new map is created via |
| 21254 | * load_machfile()/execve(). |
| 21255 | */ |
| 21256 | return map->min_offset >= pagezero_size; |
| 21257 | } |
| 21258 | |
| 21259 | /* |
| 21260 | * Raise a VM map's maximun offset. |
| 21261 | */ |
| 21262 | kern_return_t |
| 21263 | vm_map_raise_max_offset( |
| 21264 | vm_map_t map, |
| 21265 | vm_map_offset_t new_max_offset) |
| 21266 | { |
| 21267 | kern_return_t ret; |
| 21268 | |
| 21269 | vm_map_lock(map); |
| 21270 | ret = KERN_INVALID_ADDRESS; |
| 21271 | |
| 21272 | if (new_max_offset >= map->max_offset) { |
| 21273 | if (!vm_map_is_64bit(map)) { |
| 21274 | if (new_max_offset <= (vm_map_offset_t)VM_MAX_ADDRESS) { |
| 21275 | map->max_offset = new_max_offset; |
| 21276 | ret = KERN_SUCCESS; |
| 21277 | } |
| 21278 | } else { |
| 21279 | if (new_max_offset <= (vm_map_offset_t)MACH_VM_MAX_ADDRESS) { |
| 21280 | map->max_offset = new_max_offset; |
| 21281 | ret = KERN_SUCCESS; |
| 21282 | } |
| 21283 | } |
| 21284 | } |
| 21285 | |
| 21286 | vm_map_unlock(map); |
| 21287 | return ret; |
| 21288 | } |
| 21289 | |
| 21290 | |
| 21291 | /* |
| 21292 | * Raise a VM map's minimum offset. |
| 21293 | * To strictly enforce "page zero" reservation. |
| 21294 | */ |
| 21295 | kern_return_t |
| 21296 | vm_map_raise_min_offset( |
| 21297 | vm_map_t map, |
| 21298 | vm_map_offset_t new_min_offset) |
| 21299 | { |
| 21300 | vm_map_entry_t first_entry; |
| 21301 | |
| 21302 | new_min_offset = vm_map_round_page(new_min_offset, |
| 21303 | VM_MAP_PAGE_MASK(map)); |
| 21304 | |
| 21305 | vm_map_lock(map); |
| 21306 | |
| 21307 | if (new_min_offset < map->min_offset) { |
| 21308 | /* |
| 21309 | * Can't move min_offset backwards, as that would expose |
| 21310 | * a part of the address space that was previously, and for |
| 21311 | * possibly good reasons, inaccessible. |
| 21312 | */ |
| 21313 | vm_map_unlock(map); |
| 21314 | return KERN_INVALID_ADDRESS; |
| 21315 | } |
| 21316 | if (new_min_offset >= map->max_offset) { |
| 21317 | /* can't go beyond the end of the address space */ |
| 21318 | vm_map_unlock(map); |
| 21319 | return KERN_INVALID_ADDRESS; |
| 21320 | } |
| 21321 | |
| 21322 | first_entry = vm_map_first_entry(map); |
| 21323 | if (first_entry != vm_map_to_entry(map) && |
| 21324 | first_entry->vme_start < new_min_offset) { |
| 21325 | /* |
| 21326 | * Some memory was already allocated below the new |
| 21327 | * minimun offset. It's too late to change it now... |
| 21328 | */ |
| 21329 | vm_map_unlock(map); |
| 21330 | return KERN_NO_SPACE; |
| 21331 | } |
| 21332 | |
| 21333 | map->min_offset = new_min_offset; |
| 21334 | |
| 21335 | if (map->holelistenabled) { |
| 21336 | assert(map->holes_list); |
| 21337 | map->holes_list->start = new_min_offset; |
| 21338 | assert(new_min_offset < map->holes_list->end); |
| 21339 | } |
| 21340 | |
| 21341 | vm_map_unlock(map); |
| 21342 | |
| 21343 | return KERN_SUCCESS; |
| 21344 | } |
| 21345 | |
| 21346 | /* |
| 21347 | * Set the limit on the maximum amount of address space and user wired memory allowed for this map. |
| 21348 | * This is basically a copy of the RLIMIT_AS and RLIMIT_MEMLOCK rlimit value maintained by the BSD |
| 21349 | * side of the kernel. The limits are checked in the mach VM side, so we keep a copy so we don't |
| 21350 | * have to reach over to the BSD data structures. |
| 21351 | */ |
| 21352 | |
| 21353 | uint64_t vm_map_set_size_limit_count = 0; |
| 21354 | kern_return_t |
| 21355 | vm_map_set_size_limit(vm_map_t map, uint64_t new_size_limit) |
| 21356 | { |
| 21357 | kern_return_t kr; |
| 21358 | |
| 21359 | vm_map_lock(map); |
| 21360 | if (new_size_limit < map->size) { |
| 21361 | /* new limit should not be lower than its current size */ |
| 21362 | DTRACE_VM2(vm_map_set_size_limit_fail, |
| 21363 | vm_map_size_t, map->size, |
| 21364 | uint64_t, new_size_limit); |
| 21365 | kr = KERN_FAILURE; |
| 21366 | } else if (new_size_limit == map->size_limit) { |
| 21367 | /* no change */ |
| 21368 | kr = KERN_SUCCESS; |
| 21369 | } else { |
| 21370 | /* set new limit */ |
| 21371 | DTRACE_VM2(vm_map_set_size_limit, |
| 21372 | vm_map_size_t, map->size, |
| 21373 | uint64_t, new_size_limit); |
| 21374 | if (new_size_limit != RLIM_INFINITY) { |
| 21375 | vm_map_set_size_limit_count++; |
| 21376 | } |
| 21377 | map->size_limit = new_size_limit; |
| 21378 | kr = KERN_SUCCESS; |
| 21379 | } |
| 21380 | vm_map_unlock(map); |
| 21381 | return kr; |
| 21382 | } |
| 21383 | |
| 21384 | uint64_t vm_map_set_data_limit_count = 0; |
| 21385 | kern_return_t |
| 21386 | vm_map_set_data_limit(vm_map_t map, uint64_t new_data_limit) |
| 21387 | { |
| 21388 | kern_return_t kr; |
| 21389 | |
| 21390 | vm_map_lock(map); |
| 21391 | if (new_data_limit < map->size) { |
| 21392 | /* new limit should not be lower than its current size */ |
| 21393 | DTRACE_VM2(vm_map_set_data_limit_fail, |
| 21394 | vm_map_size_t, map->size, |
| 21395 | uint64_t, new_data_limit); |
| 21396 | kr = KERN_FAILURE; |
| 21397 | } else if (new_data_limit == map->data_limit) { |
| 21398 | /* no change */ |
| 21399 | kr = KERN_SUCCESS; |
| 21400 | } else { |
| 21401 | /* set new limit */ |
| 21402 | DTRACE_VM2(vm_map_set_data_limit, |
| 21403 | vm_map_size_t, map->size, |
| 21404 | uint64_t, new_data_limit); |
| 21405 | if (new_data_limit != RLIM_INFINITY) { |
| 21406 | vm_map_set_data_limit_count++; |
| 21407 | } |
| 21408 | map->data_limit = new_data_limit; |
| 21409 | kr = KERN_SUCCESS; |
| 21410 | } |
| 21411 | vm_map_unlock(map); |
| 21412 | return kr; |
| 21413 | } |
| 21414 | |
| 21415 | void |
| 21416 | vm_map_set_user_wire_limit(vm_map_t map, |
| 21417 | vm_size_t limit) |
| 21418 | { |
| 21419 | vm_map_lock(map); |
| 21420 | map->user_wire_limit = limit; |
| 21421 | vm_map_unlock(map); |
| 21422 | } |
| 21423 | |
| 21424 | |
| 21425 | void |
| 21426 | vm_map_switch_protect(vm_map_t map, |
| 21427 | boolean_t val) |
| 21428 | { |
| 21429 | vm_map_lock(map); |
| 21430 | map->switch_protect = val; |
| 21431 | vm_map_unlock(map); |
| 21432 | } |
| 21433 | |
| 21434 | extern int cs_process_enforcement_enable; |
| 21435 | boolean_t |
| 21436 | vm_map_cs_enforcement( |
| 21437 | vm_map_t map) |
| 21438 | { |
| 21439 | if (cs_process_enforcement_enable) { |
| 21440 | return TRUE; |
| 21441 | } |
| 21442 | return map->cs_enforcement; |
| 21443 | } |
| 21444 | |
| 21445 | kern_return_t |
| 21446 | vm_map_cs_wx_enable( |
| 21447 | __unused vm_map_t map) |
| 21448 | { |
| 21449 | #if CODE_SIGNING_MONITOR |
| 21450 | kern_return_t ret = csm_allow_invalid_code(vm_map_pmap(map)); |
| 21451 | if ((ret == KERN_SUCCESS) || (ret == KERN_NOT_SUPPORTED)) { |
| 21452 | return KERN_SUCCESS; |
| 21453 | } |
| 21454 | return ret; |
| 21455 | #else |
| 21456 | /* The VM manages WX memory entirely on its own */ |
| 21457 | return KERN_SUCCESS; |
| 21458 | #endif |
| 21459 | } |
| 21460 | |
| 21461 | kern_return_t |
| 21462 | vm_map_csm_allow_jit( |
| 21463 | __unused vm_map_t map) |
| 21464 | { |
| 21465 | #if CODE_SIGNING_MONITOR |
| 21466 | return csm_allow_jit_region(vm_map_pmap(map)); |
| 21467 | #else |
| 21468 | /* No code signing monitor to enforce JIT policy */ |
| 21469 | return KERN_SUCCESS; |
| 21470 | #endif |
| 21471 | } |
| 21472 | |
| 21473 | void |
| 21474 | vm_map_cs_debugged_set( |
| 21475 | vm_map_t map, |
| 21476 | boolean_t val) |
| 21477 | { |
| 21478 | vm_map_lock(map); |
| 21479 | map->cs_debugged = val; |
| 21480 | vm_map_unlock(map); |
| 21481 | } |
| 21482 | |
| 21483 | void |
| 21484 | vm_map_cs_enforcement_set( |
| 21485 | vm_map_t map, |
| 21486 | boolean_t val) |
| 21487 | { |
| 21488 | vm_map_lock(map); |
| 21489 | map->cs_enforcement = val; |
| 21490 | pmap_set_vm_map_cs_enforced(pmap: map->pmap, new_value: val); |
| 21491 | vm_map_unlock(map); |
| 21492 | } |
| 21493 | |
| 21494 | /* |
| 21495 | * IOKit has mapped a region into this map; adjust the pmap's ledgers appropriately. |
| 21496 | * phys_footprint is a composite limit consisting of iokit + physmem, so we need to |
| 21497 | * bump both counters. |
| 21498 | */ |
| 21499 | void |
| 21500 | vm_map_iokit_mapped_region(vm_map_t map, vm_size_t bytes) |
| 21501 | { |
| 21502 | pmap_t pmap = vm_map_pmap(map); |
| 21503 | |
| 21504 | ledger_credit(ledger: pmap->ledger, entry: task_ledgers.iokit_mapped, amount: bytes); |
| 21505 | ledger_credit(ledger: pmap->ledger, entry: task_ledgers.phys_footprint, amount: bytes); |
| 21506 | } |
| 21507 | |
| 21508 | void |
| 21509 | vm_map_iokit_unmapped_region(vm_map_t map, vm_size_t bytes) |
| 21510 | { |
| 21511 | pmap_t pmap = vm_map_pmap(map); |
| 21512 | |
| 21513 | ledger_debit(ledger: pmap->ledger, entry: task_ledgers.iokit_mapped, amount: bytes); |
| 21514 | ledger_debit(ledger: pmap->ledger, entry: task_ledgers.phys_footprint, amount: bytes); |
| 21515 | } |
| 21516 | |
| 21517 | /* Add (generate) code signature for memory range */ |
| 21518 | #if CONFIG_DYNAMIC_CODE_SIGNING |
| 21519 | kern_return_t |
| 21520 | vm_map_sign(vm_map_t map, |
| 21521 | vm_map_offset_t start, |
| 21522 | vm_map_offset_t end) |
| 21523 | { |
| 21524 | vm_map_entry_t entry; |
| 21525 | vm_page_t m; |
| 21526 | vm_object_t object; |
| 21527 | |
| 21528 | /* |
| 21529 | * Vet all the input parameters and current type and state of the |
| 21530 | * underlaying object. Return with an error if anything is amiss. |
| 21531 | */ |
| 21532 | if (map == VM_MAP_NULL) { |
| 21533 | return KERN_INVALID_ARGUMENT; |
| 21534 | } |
| 21535 | |
| 21536 | if (__improbable(vm_map_range_overflows(map, start, end - start))) { |
| 21537 | return KERN_INVALID_ADDRESS; |
| 21538 | } |
| 21539 | |
| 21540 | vm_map_lock_read(map); |
| 21541 | |
| 21542 | if (!vm_map_lookup_entry(map, start, &entry) || entry->is_sub_map) { |
| 21543 | /* |
| 21544 | * Must pass a valid non-submap address. |
| 21545 | */ |
| 21546 | vm_map_unlock_read(map); |
| 21547 | return KERN_INVALID_ADDRESS; |
| 21548 | } |
| 21549 | |
| 21550 | if ((entry->vme_start > start) || (entry->vme_end < end)) { |
| 21551 | /* |
| 21552 | * Map entry doesn't cover the requested range. Not handling |
| 21553 | * this situation currently. |
| 21554 | */ |
| 21555 | vm_map_unlock_read(map); |
| 21556 | return KERN_INVALID_ARGUMENT; |
| 21557 | } |
| 21558 | |
| 21559 | object = VME_OBJECT(entry); |
| 21560 | if (object == VM_OBJECT_NULL) { |
| 21561 | /* |
| 21562 | * Object must already be present or we can't sign. |
| 21563 | */ |
| 21564 | vm_map_unlock_read(map); |
| 21565 | return KERN_INVALID_ARGUMENT; |
| 21566 | } |
| 21567 | |
| 21568 | vm_object_lock(object); |
| 21569 | vm_map_unlock_read(map); |
| 21570 | |
| 21571 | while (start < end) { |
| 21572 | uint32_t refmod; |
| 21573 | |
| 21574 | m = vm_page_lookup(object, |
| 21575 | start - entry->vme_start + VME_OFFSET(entry)); |
| 21576 | if (m == VM_PAGE_NULL) { |
| 21577 | /* shoud we try to fault a page here? we can probably |
| 21578 | * demand it exists and is locked for this request */ |
| 21579 | vm_object_unlock(object); |
| 21580 | return KERN_FAILURE; |
| 21581 | } |
| 21582 | /* deal with special page status */ |
| 21583 | if (m->vmp_busy || |
| 21584 | (m->vmp_unusual && (VMP_ERROR_GET(m) || m->vmp_restart || m->vmp_private || m->vmp_absent))) { |
| 21585 | vm_object_unlock(object); |
| 21586 | return KERN_FAILURE; |
| 21587 | } |
| 21588 | |
| 21589 | /* Page is OK... now "validate" it */ |
| 21590 | /* This is the place where we'll call out to create a code |
| 21591 | * directory, later */ |
| 21592 | /* XXX TODO4K: deal with 4k subpages individually? */ |
| 21593 | m->vmp_cs_validated = VMP_CS_ALL_TRUE; |
| 21594 | |
| 21595 | /* The page is now "clean" for codesigning purposes. That means |
| 21596 | * we don't consider it as modified (wpmapped) anymore. But |
| 21597 | * we'll disconnect the page so we note any future modification |
| 21598 | * attempts. */ |
| 21599 | m->vmp_wpmapped = FALSE; |
| 21600 | refmod = pmap_disconnect(VM_PAGE_GET_PHYS_PAGE(m)); |
| 21601 | |
| 21602 | /* Pull the dirty status from the pmap, since we cleared the |
| 21603 | * wpmapped bit */ |
| 21604 | if ((refmod & VM_MEM_MODIFIED) && !m->vmp_dirty) { |
| 21605 | SET_PAGE_DIRTY(m, FALSE); |
| 21606 | } |
| 21607 | |
| 21608 | /* On to the next page */ |
| 21609 | start += PAGE_SIZE; |
| 21610 | } |
| 21611 | vm_object_unlock(object); |
| 21612 | |
| 21613 | return KERN_SUCCESS; |
| 21614 | } |
| 21615 | #endif |
| 21616 | |
| 21617 | kern_return_t |
| 21618 | vm_map_partial_reap(vm_map_t map, unsigned int *reclaimed_resident, unsigned int *reclaimed_compressed) |
| 21619 | { |
| 21620 | vm_map_entry_t entry = VM_MAP_ENTRY_NULL; |
| 21621 | vm_map_entry_t next_entry; |
| 21622 | kern_return_t kr = KERN_SUCCESS; |
| 21623 | VM_MAP_ZAP_DECLARE(zap_list); |
| 21624 | |
| 21625 | vm_map_lock(map); |
| 21626 | |
| 21627 | for (entry = vm_map_first_entry(map); |
| 21628 | entry != vm_map_to_entry(map); |
| 21629 | entry = next_entry) { |
| 21630 | next_entry = entry->vme_next; |
| 21631 | |
| 21632 | if (!entry->is_sub_map && |
| 21633 | VME_OBJECT(entry) && |
| 21634 | (VME_OBJECT(entry)->internal == TRUE) && |
| 21635 | (VME_OBJECT(entry)->ref_count == 1)) { |
| 21636 | *reclaimed_resident += VME_OBJECT(entry)->resident_page_count; |
| 21637 | *reclaimed_compressed += vm_compressor_pager_get_count(VME_OBJECT(entry)->pager); |
| 21638 | |
| 21639 | (void)vm_map_delete(map, start: entry->vme_start, |
| 21640 | end: entry->vme_end, flags: VM_MAP_REMOVE_NO_YIELD, |
| 21641 | KMEM_GUARD_NONE, zap_list: &zap_list); |
| 21642 | } |
| 21643 | } |
| 21644 | |
| 21645 | vm_map_unlock(map); |
| 21646 | |
| 21647 | vm_map_zap_dispose(list: &zap_list); |
| 21648 | |
| 21649 | return kr; |
| 21650 | } |
| 21651 | |
| 21652 | |
| 21653 | #if DEVELOPMENT || DEBUG |
| 21654 | |
| 21655 | int |
| 21656 | vm_map_disconnect_page_mappings( |
| 21657 | vm_map_t map, |
| 21658 | boolean_t do_unnest) |
| 21659 | { |
| 21660 | vm_map_entry_t entry; |
| 21661 | ledger_amount_t byte_count = 0; |
| 21662 | |
| 21663 | if (do_unnest == TRUE) { |
| 21664 | #ifndef NO_NESTED_PMAP |
| 21665 | vm_map_lock(map); |
| 21666 | |
| 21667 | for (entry = vm_map_first_entry(map); |
| 21668 | entry != vm_map_to_entry(map); |
| 21669 | entry = entry->vme_next) { |
| 21670 | if (entry->is_sub_map && entry->use_pmap) { |
| 21671 | /* |
| 21672 | * Make sure the range between the start of this entry and |
| 21673 | * the end of this entry is no longer nested, so that |
| 21674 | * we will only remove mappings from the pmap in use by this |
| 21675 | * this task |
| 21676 | */ |
| 21677 | vm_map_clip_unnest(map, entry, entry->vme_start, entry->vme_end); |
| 21678 | } |
| 21679 | } |
| 21680 | vm_map_unlock(map); |
| 21681 | #endif |
| 21682 | } |
| 21683 | vm_map_lock_read(map); |
| 21684 | |
| 21685 | ledger_get_balance(map->pmap->ledger, task_ledgers.phys_mem, &byte_count); |
| 21686 | |
| 21687 | for (entry = vm_map_first_entry(map); |
| 21688 | entry != vm_map_to_entry(map); |
| 21689 | entry = entry->vme_next) { |
| 21690 | if (!entry->is_sub_map && ((VME_OBJECT(entry) == 0) || |
| 21691 | (VME_OBJECT(entry)->phys_contiguous))) { |
| 21692 | continue; |
| 21693 | } |
| 21694 | if (entry->is_sub_map) { |
| 21695 | assert(!entry->use_pmap); |
| 21696 | } |
| 21697 | |
| 21698 | pmap_remove_options(map->pmap, entry->vme_start, entry->vme_end, 0); |
| 21699 | } |
| 21700 | vm_map_unlock_read(map); |
| 21701 | |
| 21702 | return (int) (byte_count / VM_MAP_PAGE_SIZE(map)); |
| 21703 | } |
| 21704 | |
| 21705 | kern_return_t |
| 21706 | vm_map_inject_error(vm_map_t map, vm_map_offset_t vaddr) |
| 21707 | { |
| 21708 | vm_object_t object = NULL; |
| 21709 | vm_object_offset_t offset; |
| 21710 | vm_prot_t prot; |
| 21711 | boolean_t wired; |
| 21712 | vm_map_version_t version; |
| 21713 | vm_map_t real_map; |
| 21714 | int result = KERN_FAILURE; |
| 21715 | |
| 21716 | vaddr = vm_map_trunc_page(vaddr, PAGE_MASK); |
| 21717 | vm_map_lock(map); |
| 21718 | |
| 21719 | result = vm_map_lookup_and_lock_object(&map, vaddr, VM_PROT_READ, |
| 21720 | OBJECT_LOCK_EXCLUSIVE, &version, &object, &offset, &prot, &wired, |
| 21721 | NULL, &real_map, NULL); |
| 21722 | if (object == NULL) { |
| 21723 | result = KERN_MEMORY_ERROR; |
| 21724 | } else if (object->pager) { |
| 21725 | result = vm_compressor_pager_inject_error(object->pager, |
| 21726 | offset); |
| 21727 | } else { |
| 21728 | result = KERN_MEMORY_PRESENT; |
| 21729 | } |
| 21730 | |
| 21731 | if (object != NULL) { |
| 21732 | vm_object_unlock(object); |
| 21733 | } |
| 21734 | |
| 21735 | if (real_map != map) { |
| 21736 | vm_map_unlock(real_map); |
| 21737 | } |
| 21738 | vm_map_unlock(map); |
| 21739 | |
| 21740 | return result; |
| 21741 | } |
| 21742 | |
| 21743 | #endif |
| 21744 | |
| 21745 | |
| 21746 | #if CONFIG_FREEZE |
| 21747 | |
| 21748 | |
| 21749 | extern struct freezer_context freezer_context_global; |
| 21750 | AbsoluteTime c_freezer_last_yield_ts = 0; |
| 21751 | |
| 21752 | extern unsigned int memorystatus_freeze_private_shared_pages_ratio; |
| 21753 | extern unsigned int memorystatus_freeze_shared_mb_per_process_max; |
| 21754 | |
| 21755 | kern_return_t |
| 21756 | vm_map_freeze( |
| 21757 | task_t task, |
| 21758 | unsigned int *purgeable_count, |
| 21759 | unsigned int *wired_count, |
| 21760 | unsigned int *clean_count, |
| 21761 | unsigned int *dirty_count, |
| 21762 | unsigned int dirty_budget, |
| 21763 | unsigned int *shared_count, |
| 21764 | int *freezer_error_code, |
| 21765 | boolean_t eval_only) |
| 21766 | { |
| 21767 | vm_map_entry_t entry2 = VM_MAP_ENTRY_NULL; |
| 21768 | kern_return_t kr = KERN_SUCCESS; |
| 21769 | boolean_t evaluation_phase = TRUE; |
| 21770 | vm_object_t cur_shared_object = NULL; |
| 21771 | int cur_shared_obj_ref_cnt = 0; |
| 21772 | unsigned int dirty_private_count = 0, dirty_shared_count = 0, obj_pages_snapshot = 0; |
| 21773 | |
| 21774 | *purgeable_count = *wired_count = *clean_count = *dirty_count = *shared_count = 0; |
| 21775 | |
| 21776 | /* |
| 21777 | * We need the exclusive lock here so that we can |
| 21778 | * block any page faults or lookups while we are |
| 21779 | * in the middle of freezing this vm map. |
| 21780 | */ |
| 21781 | vm_map_t map = task->map; |
| 21782 | |
| 21783 | vm_map_lock(map); |
| 21784 | |
| 21785 | assert(VM_CONFIG_COMPRESSOR_IS_PRESENT); |
| 21786 | |
| 21787 | if (vm_compressor_low_on_space() || vm_swap_low_on_space()) { |
| 21788 | if (vm_compressor_low_on_space()) { |
| 21789 | *freezer_error_code = FREEZER_ERROR_NO_COMPRESSOR_SPACE; |
| 21790 | } |
| 21791 | |
| 21792 | if (vm_swap_low_on_space()) { |
| 21793 | *freezer_error_code = FREEZER_ERROR_NO_SWAP_SPACE; |
| 21794 | } |
| 21795 | |
| 21796 | kr = KERN_NO_SPACE; |
| 21797 | goto done; |
| 21798 | } |
| 21799 | |
| 21800 | if (VM_CONFIG_FREEZER_SWAP_IS_ACTIVE == FALSE) { |
| 21801 | /* |
| 21802 | * In-memory compressor backing the freezer. No disk. |
| 21803 | * So no need to do the evaluation phase. |
| 21804 | */ |
| 21805 | evaluation_phase = FALSE; |
| 21806 | |
| 21807 | if (eval_only == TRUE) { |
| 21808 | /* |
| 21809 | * We don't support 'eval_only' mode |
| 21810 | * in this non-swap config. |
| 21811 | */ |
| 21812 | *freezer_error_code = FREEZER_ERROR_GENERIC; |
| 21813 | kr = KERN_INVALID_ARGUMENT; |
| 21814 | goto done; |
| 21815 | } |
| 21816 | |
| 21817 | freezer_context_global.freezer_ctx_uncompressed_pages = 0; |
| 21818 | clock_get_uptime(&c_freezer_last_yield_ts); |
| 21819 | } |
| 21820 | again: |
| 21821 | |
| 21822 | for (entry2 = vm_map_first_entry(map); |
| 21823 | entry2 != vm_map_to_entry(map); |
| 21824 | entry2 = entry2->vme_next) { |
| 21825 | vm_object_t src_object; |
| 21826 | |
| 21827 | if (entry2->is_sub_map) { |
| 21828 | continue; |
| 21829 | } |
| 21830 | |
| 21831 | src_object = VME_OBJECT(entry2); |
| 21832 | if (!src_object || |
| 21833 | src_object->phys_contiguous || |
| 21834 | !src_object->internal) { |
| 21835 | continue; |
| 21836 | } |
| 21837 | |
| 21838 | /* If eligible, scan the entry, moving eligible pages over to our parent object */ |
| 21839 | |
| 21840 | if (VM_CONFIG_FREEZER_SWAP_IS_ACTIVE) { |
| 21841 | /* |
| 21842 | * We skip purgeable objects during evaluation phase only. |
| 21843 | * If we decide to freeze this process, we'll explicitly |
| 21844 | * purge these objects before we go around again with |
| 21845 | * 'evaluation_phase' set to FALSE. |
| 21846 | */ |
| 21847 | |
| 21848 | if ((src_object->purgable == VM_PURGABLE_EMPTY) || (src_object->purgable == VM_PURGABLE_VOLATILE)) { |
| 21849 | /* |
| 21850 | * We want to purge objects that may not belong to this task but are mapped |
| 21851 | * in this task alone. Since we already purged this task's purgeable memory |
| 21852 | * at the end of a successful evaluation phase, we want to avoid doing no-op calls |
| 21853 | * on this task's purgeable objects. Hence the check for only volatile objects. |
| 21854 | */ |
| 21855 | if (evaluation_phase || |
| 21856 | src_object->purgable != VM_PURGABLE_VOLATILE || |
| 21857 | src_object->ref_count != 1) { |
| 21858 | continue; |
| 21859 | } |
| 21860 | vm_object_lock(src_object); |
| 21861 | if (src_object->purgable == VM_PURGABLE_VOLATILE && |
| 21862 | src_object->ref_count == 1) { |
| 21863 | purgeable_q_t old_queue; |
| 21864 | |
| 21865 | /* object should be on a purgeable queue */ |
| 21866 | assert(src_object->objq.next != NULL && |
| 21867 | src_object->objq.prev != NULL); |
| 21868 | /* move object from its volatile queue to the nonvolatile queue */ |
| 21869 | old_queue = vm_purgeable_object_remove(src_object); |
| 21870 | assert(old_queue); |
| 21871 | if (src_object->purgeable_when_ripe) { |
| 21872 | /* remove a token from that volatile queue */ |
| 21873 | vm_page_lock_queues(); |
| 21874 | vm_purgeable_token_delete_first(old_queue); |
| 21875 | vm_page_unlock_queues(); |
| 21876 | } |
| 21877 | /* purge the object */ |
| 21878 | vm_object_purge(src_object, 0); |
| 21879 | } |
| 21880 | vm_object_unlock(src_object); |
| 21881 | continue; |
| 21882 | } |
| 21883 | |
| 21884 | /* |
| 21885 | * Pages belonging to this object could be swapped to disk. |
| 21886 | * Make sure it's not a shared object because we could end |
| 21887 | * up just bringing it back in again. |
| 21888 | * |
| 21889 | * We try to optimize somewhat by checking for objects that are mapped |
| 21890 | * more than once within our own map. But we don't do full searches, |
| 21891 | * we just look at the entries following our current entry. |
| 21892 | */ |
| 21893 | |
| 21894 | if (src_object->ref_count > 1) { |
| 21895 | if (src_object != cur_shared_object) { |
| 21896 | obj_pages_snapshot = (src_object->resident_page_count - src_object->wired_page_count) + vm_compressor_pager_get_count(src_object->pager); |
| 21897 | dirty_shared_count += obj_pages_snapshot; |
| 21898 | |
| 21899 | cur_shared_object = src_object; |
| 21900 | cur_shared_obj_ref_cnt = 1; |
| 21901 | continue; |
| 21902 | } else { |
| 21903 | cur_shared_obj_ref_cnt++; |
| 21904 | if (src_object->ref_count == cur_shared_obj_ref_cnt) { |
| 21905 | /* |
| 21906 | * Fall through to below and treat this object as private. |
| 21907 | * So deduct its pages from our shared total and add it to the |
| 21908 | * private total. |
| 21909 | */ |
| 21910 | |
| 21911 | dirty_shared_count -= obj_pages_snapshot; |
| 21912 | dirty_private_count += obj_pages_snapshot; |
| 21913 | } else { |
| 21914 | continue; |
| 21915 | } |
| 21916 | } |
| 21917 | } |
| 21918 | |
| 21919 | |
| 21920 | if (src_object->ref_count == 1) { |
| 21921 | dirty_private_count += (src_object->resident_page_count - src_object->wired_page_count) + vm_compressor_pager_get_count(src_object->pager); |
| 21922 | } |
| 21923 | |
| 21924 | if (evaluation_phase == TRUE) { |
| 21925 | continue; |
| 21926 | } |
| 21927 | } |
| 21928 | |
| 21929 | uint32_t paged_out_count = vm_object_compressed_freezer_pageout(src_object, dirty_budget); |
| 21930 | *wired_count += src_object->wired_page_count; |
| 21931 | |
| 21932 | if (vm_compressor_low_on_space() || vm_swap_low_on_space()) { |
| 21933 | if (vm_compressor_low_on_space()) { |
| 21934 | *freezer_error_code = FREEZER_ERROR_NO_COMPRESSOR_SPACE; |
| 21935 | } |
| 21936 | |
| 21937 | if (vm_swap_low_on_space()) { |
| 21938 | *freezer_error_code = FREEZER_ERROR_NO_SWAP_SPACE; |
| 21939 | } |
| 21940 | |
| 21941 | kr = KERN_NO_SPACE; |
| 21942 | break; |
| 21943 | } |
| 21944 | if (paged_out_count >= dirty_budget) { |
| 21945 | break; |
| 21946 | } |
| 21947 | dirty_budget -= paged_out_count; |
| 21948 | } |
| 21949 | |
| 21950 | *shared_count = (unsigned int) ((dirty_shared_count * PAGE_SIZE_64) / (1024 * 1024ULL)); |
| 21951 | if (evaluation_phase) { |
| 21952 | unsigned int shared_pages_threshold = (memorystatus_freeze_shared_mb_per_process_max * 1024 * 1024ULL) / PAGE_SIZE_64; |
| 21953 | |
| 21954 | if (dirty_shared_count > shared_pages_threshold) { |
| 21955 | *freezer_error_code = FREEZER_ERROR_EXCESS_SHARED_MEMORY; |
| 21956 | kr = KERN_FAILURE; |
| 21957 | goto done; |
| 21958 | } |
| 21959 | |
| 21960 | if (dirty_shared_count && |
| 21961 | ((dirty_private_count / dirty_shared_count) < memorystatus_freeze_private_shared_pages_ratio)) { |
| 21962 | *freezer_error_code = FREEZER_ERROR_LOW_PRIVATE_SHARED_RATIO; |
| 21963 | kr = KERN_FAILURE; |
| 21964 | goto done; |
| 21965 | } |
| 21966 | |
| 21967 | evaluation_phase = FALSE; |
| 21968 | dirty_shared_count = dirty_private_count = 0; |
| 21969 | |
| 21970 | freezer_context_global.freezer_ctx_uncompressed_pages = 0; |
| 21971 | clock_get_uptime(&c_freezer_last_yield_ts); |
| 21972 | |
| 21973 | if (eval_only) { |
| 21974 | kr = KERN_SUCCESS; |
| 21975 | goto done; |
| 21976 | } |
| 21977 | |
| 21978 | vm_purgeable_purge_task_owned(task); |
| 21979 | |
| 21980 | goto again; |
| 21981 | } else { |
| 21982 | kr = KERN_SUCCESS; |
| 21983 | } |
| 21984 | |
| 21985 | done: |
| 21986 | vm_map_unlock(map); |
| 21987 | |
| 21988 | if ((eval_only == FALSE) && (kr == KERN_SUCCESS)) { |
| 21989 | vm_object_compressed_freezer_done(); |
| 21990 | } |
| 21991 | return kr; |
| 21992 | } |
| 21993 | |
| 21994 | #endif |
| 21995 | |
| 21996 | /* |
| 21997 | * vm_map_entry_should_cow_for_true_share: |
| 21998 | * |
| 21999 | * Determines if the map entry should be clipped and setup for copy-on-write |
| 22000 | * to avoid applying "true_share" to a large VM object when only a subset is |
| 22001 | * targeted. |
| 22002 | * |
| 22003 | * For now, we target only the map entries created for the Objective C |
| 22004 | * Garbage Collector, which initially have the following properties: |
| 22005 | * - alias == VM_MEMORY_MALLOC |
| 22006 | * - wired_count == 0 |
| 22007 | * - !needs_copy |
| 22008 | * and a VM object with: |
| 22009 | * - internal |
| 22010 | * - copy_strategy == MEMORY_OBJECT_COPY_SYMMETRIC |
| 22011 | * - !true_share |
| 22012 | * - vo_size == ANON_CHUNK_SIZE |
| 22013 | * |
| 22014 | * Only non-kernel map entries. |
| 22015 | */ |
| 22016 | boolean_t |
| 22017 | vm_map_entry_should_cow_for_true_share( |
| 22018 | vm_map_entry_t entry) |
| 22019 | { |
| 22020 | vm_object_t object; |
| 22021 | |
| 22022 | if (entry->is_sub_map) { |
| 22023 | /* entry does not point at a VM object */ |
| 22024 | return FALSE; |
| 22025 | } |
| 22026 | |
| 22027 | if (entry->needs_copy) { |
| 22028 | /* already set for copy_on_write: done! */ |
| 22029 | return FALSE; |
| 22030 | } |
| 22031 | |
| 22032 | if (VME_ALIAS(entry) != VM_MEMORY_MALLOC && |
| 22033 | VME_ALIAS(entry) != VM_MEMORY_MALLOC_SMALL) { |
| 22034 | /* not a malloc heap or Obj-C Garbage Collector heap */ |
| 22035 | return FALSE; |
| 22036 | } |
| 22037 | |
| 22038 | if (entry->wired_count) { |
| 22039 | /* wired: can't change the map entry... */ |
| 22040 | vm_counters.should_cow_but_wired++; |
| 22041 | return FALSE; |
| 22042 | } |
| 22043 | |
| 22044 | object = VME_OBJECT(entry); |
| 22045 | |
| 22046 | if (object == VM_OBJECT_NULL) { |
| 22047 | /* no object yet... */ |
| 22048 | return FALSE; |
| 22049 | } |
| 22050 | |
| 22051 | if (!object->internal) { |
| 22052 | /* not an internal object */ |
| 22053 | return FALSE; |
| 22054 | } |
| 22055 | |
| 22056 | if (object->copy_strategy != MEMORY_OBJECT_COPY_SYMMETRIC) { |
| 22057 | /* not the default copy strategy */ |
| 22058 | return FALSE; |
| 22059 | } |
| 22060 | |
| 22061 | if (object->true_share) { |
| 22062 | /* already true_share: too late to avoid it */ |
| 22063 | return FALSE; |
| 22064 | } |
| 22065 | |
| 22066 | if (VME_ALIAS(entry) == VM_MEMORY_MALLOC && |
| 22067 | object->vo_size != ANON_CHUNK_SIZE) { |
| 22068 | /* ... not an object created for the ObjC Garbage Collector */ |
| 22069 | return FALSE; |
| 22070 | } |
| 22071 | |
| 22072 | if (VME_ALIAS(entry) == VM_MEMORY_MALLOC_SMALL && |
| 22073 | object->vo_size != 2048 * 4096) { |
| 22074 | /* ... not a "MALLOC_SMALL" heap */ |
| 22075 | return FALSE; |
| 22076 | } |
| 22077 | |
| 22078 | /* |
| 22079 | * All the criteria match: we have a large object being targeted for "true_share". |
| 22080 | * To limit the adverse side-effects linked with "true_share", tell the caller to |
| 22081 | * try and avoid setting up the entire object for "true_share" by clipping the |
| 22082 | * targeted range and setting it up for copy-on-write. |
| 22083 | */ |
| 22084 | return TRUE; |
| 22085 | } |
| 22086 | |
| 22087 | uint64_t vm_map_range_overflows_count = 0; |
| 22088 | TUNABLE_WRITEABLE(boolean_t, vm_map_range_overflows_log, "vm_map_range_overflows_log" , FALSE); |
| 22089 | bool |
| 22090 | vm_map_range_overflows( |
| 22091 | vm_map_t map, |
| 22092 | vm_map_offset_t addr, |
| 22093 | vm_map_size_t size) |
| 22094 | { |
| 22095 | vm_map_offset_t start, end, sum; |
| 22096 | vm_map_offset_t pgmask; |
| 22097 | |
| 22098 | if (size == 0) { |
| 22099 | /* empty range -> no overflow */ |
| 22100 | return false; |
| 22101 | } |
| 22102 | pgmask = vm_map_page_mask(map); |
| 22103 | start = vm_map_trunc_page_mask(offset: addr, mask: pgmask); |
| 22104 | end = vm_map_round_page_mask(offset: addr + size, mask: pgmask); |
| 22105 | if (__improbable(os_add_overflow(addr, size, &sum) || end <= start)) { |
| 22106 | vm_map_range_overflows_count++; |
| 22107 | if (vm_map_range_overflows_log) { |
| 22108 | printf(format: "%d[%s] vm_map_range_overflows addr 0x%llx size 0x%llx pgmask 0x%llx\n" , |
| 22109 | proc_selfpid(), |
| 22110 | proc_best_name(p: current_proc()), |
| 22111 | (uint64_t)addr, |
| 22112 | (uint64_t)size, |
| 22113 | (uint64_t)pgmask); |
| 22114 | } |
| 22115 | DTRACE_VM4(vm_map_range_overflows, |
| 22116 | vm_map_t, map, |
| 22117 | uint32_t, pgmask, |
| 22118 | uint64_t, (uint64_t)addr, |
| 22119 | uint64_t, (uint64_t)size); |
| 22120 | return true; |
| 22121 | } |
| 22122 | return false; |
| 22123 | } |
| 22124 | |
| 22125 | vm_map_offset_t |
| 22126 | vm_map_round_page_mask( |
| 22127 | vm_map_offset_t offset, |
| 22128 | vm_map_offset_t mask) |
| 22129 | { |
| 22130 | return VM_MAP_ROUND_PAGE(offset, mask); |
| 22131 | } |
| 22132 | |
| 22133 | vm_map_offset_t |
| 22134 | vm_map_trunc_page_mask( |
| 22135 | vm_map_offset_t offset, |
| 22136 | vm_map_offset_t mask) |
| 22137 | { |
| 22138 | return VM_MAP_TRUNC_PAGE(offset, mask); |
| 22139 | } |
| 22140 | |
| 22141 | boolean_t |
| 22142 | vm_map_page_aligned( |
| 22143 | vm_map_offset_t offset, |
| 22144 | vm_map_offset_t mask) |
| 22145 | { |
| 22146 | return ((offset) & mask) == 0; |
| 22147 | } |
| 22148 | |
| 22149 | int |
| 22150 | vm_map_page_shift( |
| 22151 | vm_map_t map) |
| 22152 | { |
| 22153 | return VM_MAP_PAGE_SHIFT(map); |
| 22154 | } |
| 22155 | |
| 22156 | int |
| 22157 | vm_map_page_size( |
| 22158 | vm_map_t map) |
| 22159 | { |
| 22160 | return VM_MAP_PAGE_SIZE(map); |
| 22161 | } |
| 22162 | |
| 22163 | vm_map_offset_t |
| 22164 | vm_map_page_mask( |
| 22165 | vm_map_t map) |
| 22166 | { |
| 22167 | return VM_MAP_PAGE_MASK(map); |
| 22168 | } |
| 22169 | |
| 22170 | kern_return_t |
| 22171 | vm_map_set_page_shift( |
| 22172 | vm_map_t map, |
| 22173 | int pageshift) |
| 22174 | { |
| 22175 | if (map->hdr.nentries != 0) { |
| 22176 | /* too late to change page size */ |
| 22177 | return KERN_FAILURE; |
| 22178 | } |
| 22179 | |
| 22180 | map->hdr.page_shift = (uint16_t)pageshift; |
| 22181 | |
| 22182 | return KERN_SUCCESS; |
| 22183 | } |
| 22184 | |
| 22185 | kern_return_t |
| 22186 | vm_map_query_volatile( |
| 22187 | vm_map_t map, |
| 22188 | mach_vm_size_t *volatile_virtual_size_p, |
| 22189 | mach_vm_size_t *volatile_resident_size_p, |
| 22190 | mach_vm_size_t *volatile_compressed_size_p, |
| 22191 | mach_vm_size_t *volatile_pmap_size_p, |
| 22192 | mach_vm_size_t *volatile_compressed_pmap_size_p) |
| 22193 | { |
| 22194 | mach_vm_size_t volatile_virtual_size; |
| 22195 | mach_vm_size_t volatile_resident_count; |
| 22196 | mach_vm_size_t volatile_compressed_count; |
| 22197 | mach_vm_size_t volatile_pmap_count; |
| 22198 | mach_vm_size_t volatile_compressed_pmap_count; |
| 22199 | mach_vm_size_t resident_count; |
| 22200 | vm_map_entry_t entry; |
| 22201 | vm_object_t object; |
| 22202 | |
| 22203 | /* map should be locked by caller */ |
| 22204 | |
| 22205 | volatile_virtual_size = 0; |
| 22206 | volatile_resident_count = 0; |
| 22207 | volatile_compressed_count = 0; |
| 22208 | volatile_pmap_count = 0; |
| 22209 | volatile_compressed_pmap_count = 0; |
| 22210 | |
| 22211 | for (entry = vm_map_first_entry(map); |
| 22212 | entry != vm_map_to_entry(map); |
| 22213 | entry = entry->vme_next) { |
| 22214 | mach_vm_size_t pmap_resident_bytes, pmap_compressed_bytes; |
| 22215 | |
| 22216 | if (entry->is_sub_map) { |
| 22217 | continue; |
| 22218 | } |
| 22219 | if (!(entry->protection & VM_PROT_WRITE)) { |
| 22220 | continue; |
| 22221 | } |
| 22222 | object = VME_OBJECT(entry); |
| 22223 | if (object == VM_OBJECT_NULL) { |
| 22224 | continue; |
| 22225 | } |
| 22226 | if (object->purgable != VM_PURGABLE_VOLATILE && |
| 22227 | object->purgable != VM_PURGABLE_EMPTY) { |
| 22228 | continue; |
| 22229 | } |
| 22230 | if (VME_OFFSET(entry)) { |
| 22231 | /* |
| 22232 | * If the map entry has been split and the object now |
| 22233 | * appears several times in the VM map, we don't want |
| 22234 | * to count the object's resident_page_count more than |
| 22235 | * once. We count it only for the first one, starting |
| 22236 | * at offset 0 and ignore the other VM map entries. |
| 22237 | */ |
| 22238 | continue; |
| 22239 | } |
| 22240 | resident_count = object->resident_page_count; |
| 22241 | if ((VME_OFFSET(entry) / PAGE_SIZE) >= resident_count) { |
| 22242 | resident_count = 0; |
| 22243 | } else { |
| 22244 | resident_count -= (VME_OFFSET(entry) / PAGE_SIZE); |
| 22245 | } |
| 22246 | |
| 22247 | volatile_virtual_size += entry->vme_end - entry->vme_start; |
| 22248 | volatile_resident_count += resident_count; |
| 22249 | if (object->pager) { |
| 22250 | volatile_compressed_count += |
| 22251 | vm_compressor_pager_get_count(mem_obj: object->pager); |
| 22252 | } |
| 22253 | pmap_compressed_bytes = 0; |
| 22254 | pmap_resident_bytes = |
| 22255 | pmap_query_resident(pmap: map->pmap, |
| 22256 | s: entry->vme_start, |
| 22257 | e: entry->vme_end, |
| 22258 | compressed_bytes_p: &pmap_compressed_bytes); |
| 22259 | volatile_pmap_count += (pmap_resident_bytes / PAGE_SIZE); |
| 22260 | volatile_compressed_pmap_count += (pmap_compressed_bytes |
| 22261 | / PAGE_SIZE); |
| 22262 | } |
| 22263 | |
| 22264 | /* map is still locked on return */ |
| 22265 | |
| 22266 | *volatile_virtual_size_p = volatile_virtual_size; |
| 22267 | *volatile_resident_size_p = volatile_resident_count * PAGE_SIZE; |
| 22268 | *volatile_compressed_size_p = volatile_compressed_count * PAGE_SIZE; |
| 22269 | *volatile_pmap_size_p = volatile_pmap_count * PAGE_SIZE; |
| 22270 | *volatile_compressed_pmap_size_p = volatile_compressed_pmap_count * PAGE_SIZE; |
| 22271 | |
| 22272 | return KERN_SUCCESS; |
| 22273 | } |
| 22274 | |
| 22275 | void |
| 22276 | vm_map_sizes(vm_map_t map, |
| 22277 | vm_map_size_t * psize, |
| 22278 | vm_map_size_t * pfree, |
| 22279 | vm_map_size_t * plargest_free) |
| 22280 | { |
| 22281 | vm_map_entry_t entry; |
| 22282 | vm_map_offset_t prev; |
| 22283 | vm_map_size_t free, total_free, largest_free; |
| 22284 | boolean_t end; |
| 22285 | |
| 22286 | if (!map) { |
| 22287 | *psize = *pfree = *plargest_free = 0; |
| 22288 | return; |
| 22289 | } |
| 22290 | total_free = largest_free = 0; |
| 22291 | |
| 22292 | vm_map_lock_read(map); |
| 22293 | if (psize) { |
| 22294 | *psize = map->max_offset - map->min_offset; |
| 22295 | } |
| 22296 | |
| 22297 | prev = map->min_offset; |
| 22298 | for (entry = vm_map_first_entry(map);; entry = entry->vme_next) { |
| 22299 | end = (entry == vm_map_to_entry(map)); |
| 22300 | |
| 22301 | if (end) { |
| 22302 | free = entry->vme_end - prev; |
| 22303 | } else { |
| 22304 | free = entry->vme_start - prev; |
| 22305 | } |
| 22306 | |
| 22307 | total_free += free; |
| 22308 | if (free > largest_free) { |
| 22309 | largest_free = free; |
| 22310 | } |
| 22311 | |
| 22312 | if (end) { |
| 22313 | break; |
| 22314 | } |
| 22315 | prev = entry->vme_end; |
| 22316 | } |
| 22317 | vm_map_unlock_read(map); |
| 22318 | if (pfree) { |
| 22319 | *pfree = total_free; |
| 22320 | } |
| 22321 | if (plargest_free) { |
| 22322 | *plargest_free = largest_free; |
| 22323 | } |
| 22324 | } |
| 22325 | |
| 22326 | #if VM_SCAN_FOR_SHADOW_CHAIN |
| 22327 | int vm_map_shadow_max(vm_map_t map); |
| 22328 | int |
| 22329 | vm_map_shadow_max( |
| 22330 | vm_map_t map) |
| 22331 | { |
| 22332 | int shadows, shadows_max; |
| 22333 | vm_map_entry_t entry; |
| 22334 | vm_object_t object, next_object; |
| 22335 | |
| 22336 | if (map == NULL) { |
| 22337 | return 0; |
| 22338 | } |
| 22339 | |
| 22340 | shadows_max = 0; |
| 22341 | |
| 22342 | vm_map_lock_read(map); |
| 22343 | |
| 22344 | for (entry = vm_map_first_entry(map); |
| 22345 | entry != vm_map_to_entry(map); |
| 22346 | entry = entry->vme_next) { |
| 22347 | if (entry->is_sub_map) { |
| 22348 | continue; |
| 22349 | } |
| 22350 | object = VME_OBJECT(entry); |
| 22351 | if (object == NULL) { |
| 22352 | continue; |
| 22353 | } |
| 22354 | vm_object_lock_shared(object); |
| 22355 | for (shadows = 0; |
| 22356 | object->shadow != NULL; |
| 22357 | shadows++, object = next_object) { |
| 22358 | next_object = object->shadow; |
| 22359 | vm_object_lock_shared(next_object); |
| 22360 | vm_object_unlock(object); |
| 22361 | } |
| 22362 | vm_object_unlock(object); |
| 22363 | if (shadows > shadows_max) { |
| 22364 | shadows_max = shadows; |
| 22365 | } |
| 22366 | } |
| 22367 | |
| 22368 | vm_map_unlock_read(map); |
| 22369 | |
| 22370 | return shadows_max; |
| 22371 | } |
| 22372 | #endif /* VM_SCAN_FOR_SHADOW_CHAIN */ |
| 22373 | |
| 22374 | void |
| 22375 | vm_commit_pagezero_status(vm_map_t lmap) |
| 22376 | { |
| 22377 | pmap_advise_pagezero_range(lmap->pmap, lmap->min_offset); |
| 22378 | } |
| 22379 | |
| 22380 | #if __x86_64__ |
| 22381 | void |
| 22382 | vm_map_set_high_start( |
| 22383 | vm_map_t map, |
| 22384 | vm_map_offset_t high_start) |
| 22385 | { |
| 22386 | map->vmmap_high_start = high_start; |
| 22387 | } |
| 22388 | #endif /* __x86_64__ */ |
| 22389 | |
| 22390 | #if CODE_SIGNING_MONITOR |
| 22391 | |
| 22392 | kern_return_t |
| 22393 | vm_map_entry_cs_associate( |
| 22394 | vm_map_t map, |
| 22395 | vm_map_entry_t entry, |
| 22396 | vm_map_kernel_flags_t vmk_flags) |
| 22397 | { |
| 22398 | vm_object_t cs_object, cs_shadow, backing_object; |
| 22399 | vm_object_offset_t cs_offset, backing_offset; |
| 22400 | void *cs_blobs; |
| 22401 | struct vnode *cs_vnode; |
| 22402 | kern_return_t cs_ret; |
| 22403 | |
| 22404 | if (map->pmap == NULL || |
| 22405 | entry->is_sub_map || /* XXX FBDP: recurse on sub-range? */ |
| 22406 | (csm_address_space_exempt(map->pmap) == KERN_SUCCESS) || |
| 22407 | VME_OBJECT(entry) == VM_OBJECT_NULL) { |
| 22408 | return KERN_SUCCESS; |
| 22409 | } |
| 22410 | |
| 22411 | if (!(entry->protection & VM_PROT_EXECUTE)) { |
| 22412 | /* |
| 22413 | * This memory region is not executable, so the code-signing |
| 22414 | * monitor would usually not care about it... |
| 22415 | */ |
| 22416 | if (vmk_flags.vmkf_remap_prot_copy && |
| 22417 | (entry->max_protection & VM_PROT_EXECUTE)) { |
| 22418 | /* |
| 22419 | * ... except if the memory region is being remapped |
| 22420 | * from r-x/r-x to rw-/rwx via vm_protect(VM_PROT_COPY) |
| 22421 | * which is what a debugger or dtrace would be doing |
| 22422 | * to prepare to modify an executable page to insert |
| 22423 | * a breakpoint or activate a probe. |
| 22424 | * In that case, fall through so that we can mark |
| 22425 | * this region as being "debugged" and no longer |
| 22426 | * strictly code-signed. |
| 22427 | */ |
| 22428 | } else { |
| 22429 | /* |
| 22430 | * Really not executable, so no need to tell the |
| 22431 | * code-signing monitor. |
| 22432 | */ |
| 22433 | return KERN_SUCCESS; |
| 22434 | } |
| 22435 | } |
| 22436 | |
| 22437 | vm_map_lock_assert_exclusive(map); |
| 22438 | |
| 22439 | /* |
| 22440 | * Check for a debug association mapping before we check for used_for_jit. This |
| 22441 | * allows non-RWX JIT on macOS systems to masquerade their mappings as USER_DEBUG |
| 22442 | * pages instead of USER_JIT. These non-RWX JIT pages cannot be marked as USER_JIT |
| 22443 | * since they are mapped with RW or RX permissions, which the page table monitor |
| 22444 | * denies on USER_JIT pages. Given that, if they're not mapped as USER_DEBUG, |
| 22445 | * they will be mapped as USER_EXEC, and that will cause another page table monitor |
| 22446 | * violation when those USER_EXEC pages are mapped as RW. |
| 22447 | * |
| 22448 | * Since these pages switch between RW and RX through mprotect, they mimic what |
| 22449 | * we expect a debugger to do. As the code signing monitor does not enforce mappings |
| 22450 | * on macOS systems, this works in our favor here and allows us to continue to |
| 22451 | * support these legacy-programmed applications without sacrificing security on |
| 22452 | * the page table or the code signing monitor. We don't need to explicitly check |
| 22453 | * for entry_for_jit here and the mapping permissions. If the initial mapping is |
| 22454 | * created with RX, then the application must map it as RW in order to first write |
| 22455 | * to the page (MAP_JIT mappings must be private and anonymous). The switch to |
| 22456 | * RX will cause vm_map_protect to mark the entry as vmkf_remap_prot_copy. |
| 22457 | * Similarly, if the mapping was created as RW, and then switched to RX, |
| 22458 | * vm_map_protect will again mark the entry as a copy, and both these cases |
| 22459 | * lead to this if-statement being entered. |
| 22460 | * |
| 22461 | * For more information: rdar://115313336. |
| 22462 | */ |
| 22463 | if (vmk_flags.vmkf_remap_prot_copy) { |
| 22464 | cs_ret = csm_associate_debug_region( |
| 22465 | map->pmap, |
| 22466 | entry->vme_start, |
| 22467 | entry->vme_end - entry->vme_start); |
| 22468 | |
| 22469 | /* |
| 22470 | * csm_associate_debug_region returns not supported when the code signing |
| 22471 | * monitor is disabled. This is intentional, since cs_ret is checked towards |
| 22472 | * the end of the function, and if it is not supported, then we still want the |
| 22473 | * VM to perform code-signing enforcement on this entry. That said, if we don't |
| 22474 | * mark this as a xnu_user_debug page when the code-signing monitor is disabled, |
| 22475 | * then it never gets retyped to XNU_USER_DEBUG frame type, which then causes |
| 22476 | * an issue with debugging (since it'll be mapped in as XNU_USER_EXEC in some |
| 22477 | * cases, which will cause a violation when attempted to be mapped as writable). |
| 22478 | */ |
| 22479 | if ((cs_ret == KERN_SUCCESS) || (cs_ret == KERN_NOT_SUPPORTED)) { |
| 22480 | entry->vme_xnu_user_debug = TRUE; |
| 22481 | } |
| 22482 | #if DEVELOPMENT || DEBUG |
| 22483 | if (vm_log_xnu_user_debug) { |
| 22484 | printf("FBDP %d[%s] %s:%d map %p entry %p [ 0x%llx 0x%llx ] vme_xnu_user_debug=%d cs_ret %d\n" , |
| 22485 | proc_selfpid(), |
| 22486 | (get_bsdtask_info(current_task()) ? proc_name_address(get_bsdtask_info(current_task())) : "?" ), |
| 22487 | __FUNCTION__, __LINE__, |
| 22488 | map, entry, |
| 22489 | (uint64_t)entry->vme_start, (uint64_t)entry->vme_end, |
| 22490 | entry->vme_xnu_user_debug, |
| 22491 | cs_ret); |
| 22492 | } |
| 22493 | #endif /* DEVELOPMENT || DEBUG */ |
| 22494 | goto done; |
| 22495 | } |
| 22496 | |
| 22497 | if (entry->used_for_jit) { |
| 22498 | cs_ret = csm_associate_jit_region( |
| 22499 | map->pmap, |
| 22500 | entry->vme_start, |
| 22501 | entry->vme_end - entry->vme_start); |
| 22502 | goto done; |
| 22503 | } |
| 22504 | |
| 22505 | cs_object = VME_OBJECT(entry); |
| 22506 | vm_object_lock_shared(cs_object); |
| 22507 | cs_offset = VME_OFFSET(entry); |
| 22508 | |
| 22509 | /* find the VM object backed by the code-signed vnode */ |
| 22510 | for (;;) { |
| 22511 | /* go to the bottom of cs_object's shadow chain */ |
| 22512 | for (; |
| 22513 | cs_object->shadow != VM_OBJECT_NULL; |
| 22514 | cs_object = cs_shadow) { |
| 22515 | cs_shadow = cs_object->shadow; |
| 22516 | cs_offset += cs_object->vo_shadow_offset; |
| 22517 | vm_object_lock_shared(cs_shadow); |
| 22518 | vm_object_unlock(cs_object); |
| 22519 | } |
| 22520 | if (cs_object->internal || |
| 22521 | cs_object->pager == MEMORY_OBJECT_NULL) { |
| 22522 | vm_object_unlock(cs_object); |
| 22523 | return KERN_SUCCESS; |
| 22524 | } |
| 22525 | |
| 22526 | cs_offset += cs_object->paging_offset; |
| 22527 | |
| 22528 | /* |
| 22529 | * cs_object could be backed by a: |
| 22530 | * vnode_pager |
| 22531 | * apple_protect_pager |
| 22532 | * shared_region_pager |
| 22533 | * fourk_pager (multiple backing objects -> fail?) |
| 22534 | * ask the pager if it has a backing VM object |
| 22535 | */ |
| 22536 | if (!memory_object_backing_object(cs_object->pager, |
| 22537 | cs_offset, |
| 22538 | &backing_object, |
| 22539 | &backing_offset)) { |
| 22540 | /* no backing object: cs_object is it */ |
| 22541 | break; |
| 22542 | } |
| 22543 | |
| 22544 | /* look down the backing object's shadow chain */ |
| 22545 | vm_object_lock_shared(backing_object); |
| 22546 | vm_object_unlock(cs_object); |
| 22547 | cs_object = backing_object; |
| 22548 | cs_offset = backing_offset; |
| 22549 | } |
| 22550 | |
| 22551 | cs_vnode = vnode_pager_lookup_vnode(cs_object->pager); |
| 22552 | if (cs_vnode == NULL) { |
| 22553 | /* no vnode, no code signatures to associate */ |
| 22554 | cs_ret = KERN_SUCCESS; |
| 22555 | } else { |
| 22556 | cs_ret = vnode_pager_get_cs_blobs(cs_vnode, |
| 22557 | &cs_blobs); |
| 22558 | assert(cs_ret == KERN_SUCCESS); |
| 22559 | cs_ret = cs_associate_blob_with_mapping(map->pmap, |
| 22560 | entry->vme_start, |
| 22561 | (entry->vme_end - entry->vme_start), |
| 22562 | cs_offset, |
| 22563 | cs_blobs); |
| 22564 | } |
| 22565 | vm_object_unlock(cs_object); |
| 22566 | cs_object = VM_OBJECT_NULL; |
| 22567 | |
| 22568 | done: |
| 22569 | if (cs_ret == KERN_SUCCESS) { |
| 22570 | DTRACE_VM2(vm_map_entry_cs_associate_success, |
| 22571 | vm_map_offset_t, entry->vme_start, |
| 22572 | vm_map_offset_t, entry->vme_end); |
| 22573 | if (vm_map_executable_immutable) { |
| 22574 | /* |
| 22575 | * Prevent this executable |
| 22576 | * mapping from being unmapped |
| 22577 | * or modified. |
| 22578 | */ |
| 22579 | entry->vme_permanent = TRUE; |
| 22580 | } |
| 22581 | /* |
| 22582 | * pmap says it will validate the |
| 22583 | * code-signing validity of pages |
| 22584 | * faulted in via this mapping, so |
| 22585 | * this map entry should be marked so |
| 22586 | * that vm_fault() bypasses code-signing |
| 22587 | * validation for faults coming through |
| 22588 | * this mapping. |
| 22589 | */ |
| 22590 | entry->csm_associated = TRUE; |
| 22591 | } else if (cs_ret == KERN_NOT_SUPPORTED) { |
| 22592 | /* |
| 22593 | * pmap won't check the code-signing |
| 22594 | * validity of pages faulted in via |
| 22595 | * this mapping, so VM should keep |
| 22596 | * doing it. |
| 22597 | */ |
| 22598 | DTRACE_VM3(vm_map_entry_cs_associate_off, |
| 22599 | vm_map_offset_t, entry->vme_start, |
| 22600 | vm_map_offset_t, entry->vme_end, |
| 22601 | int, cs_ret); |
| 22602 | } else { |
| 22603 | /* |
| 22604 | * A real error: do not allow |
| 22605 | * execution in this mapping. |
| 22606 | */ |
| 22607 | DTRACE_VM3(vm_map_entry_cs_associate_failure, |
| 22608 | vm_map_offset_t, entry->vme_start, |
| 22609 | vm_map_offset_t, entry->vme_end, |
| 22610 | int, cs_ret); |
| 22611 | if (vmk_flags.vmkf_overwrite_immutable) { |
| 22612 | /* |
| 22613 | * We can get here when we remap an apple_protect pager |
| 22614 | * on top of an already cs_associated executable mapping |
| 22615 | * with the same code signatures, so we don't want to |
| 22616 | * lose VM_PROT_EXECUTE in that case... |
| 22617 | */ |
| 22618 | } else { |
| 22619 | entry->protection &= ~VM_PROT_ALLEXEC; |
| 22620 | entry->max_protection &= ~VM_PROT_ALLEXEC; |
| 22621 | } |
| 22622 | } |
| 22623 | |
| 22624 | return cs_ret; |
| 22625 | } |
| 22626 | |
| 22627 | #endif /* CODE_SIGNING_MONITOR */ |
| 22628 | |
| 22629 | inline bool |
| 22630 | vm_map_is_corpse_source(vm_map_t map) |
| 22631 | { |
| 22632 | bool status = false; |
| 22633 | if (map) { |
| 22634 | vm_map_lock_read(map); |
| 22635 | status = map->corpse_source; |
| 22636 | vm_map_unlock_read(map); |
| 22637 | } |
| 22638 | return status; |
| 22639 | } |
| 22640 | |
| 22641 | inline void |
| 22642 | vm_map_set_corpse_source(vm_map_t map) |
| 22643 | { |
| 22644 | if (map) { |
| 22645 | vm_map_lock(map); |
| 22646 | map->corpse_source = true; |
| 22647 | vm_map_unlock(map); |
| 22648 | } |
| 22649 | } |
| 22650 | |
| 22651 | inline void |
| 22652 | vm_map_unset_corpse_source(vm_map_t map) |
| 22653 | { |
| 22654 | if (map) { |
| 22655 | vm_map_lock(map); |
| 22656 | map->corpse_source = false; |
| 22657 | vm_map_unlock(map); |
| 22658 | } |
| 22659 | } |
| 22660 | /* |
| 22661 | * FORKED CORPSE FOOTPRINT |
| 22662 | * |
| 22663 | * A forked corpse gets a copy of the original VM map but its pmap is mostly |
| 22664 | * empty since it never ran and never got to fault in any pages. |
| 22665 | * Collecting footprint info (via "sysctl vm.self_region_footprint") for |
| 22666 | * a forked corpse would therefore return very little information. |
| 22667 | * |
| 22668 | * When forking a corpse, we can pass the VM_MAP_FORK_CORPSE_FOOTPRINT option |
| 22669 | * to vm_map_fork() to collect footprint information from the original VM map |
| 22670 | * and its pmap, and store it in the forked corpse's VM map. That information |
| 22671 | * is stored in place of the VM map's "hole list" since we'll never need to |
| 22672 | * lookup for holes in the corpse's map. |
| 22673 | * |
| 22674 | * The corpse's footprint info looks like this: |
| 22675 | * |
| 22676 | * vm_map->vmmap_corpse_footprint points to pageable kernel memory laid out |
| 22677 | * as follows: |
| 22678 | * +---------------------------------------+ |
| 22679 | * header-> | cf_size | |
| 22680 | * +-------------------+-------------------+ |
| 22681 | * | cf_last_region | cf_last_zeroes | |
| 22682 | * +-------------------+-------------------+ |
| 22683 | * region1-> | cfr_vaddr | |
| 22684 | * +-------------------+-------------------+ |
| 22685 | * | cfr_num_pages | d0 | d1 | d2 | d3 | |
| 22686 | * +---------------------------------------+ |
| 22687 | * | d4 | d5 | ... | |
| 22688 | * +---------------------------------------+ |
| 22689 | * | ... | |
| 22690 | * +-------------------+-------------------+ |
| 22691 | * | dy | dz | na | na | cfr_vaddr... | <-region2 |
| 22692 | * +-------------------+-------------------+ |
| 22693 | * | cfr_vaddr (ctd) | cfr_num_pages | |
| 22694 | * +---------------------------------------+ |
| 22695 | * | d0 | d1 ... | |
| 22696 | * +---------------------------------------+ |
| 22697 | * ... |
| 22698 | * +---------------------------------------+ |
| 22699 | * last region-> | cfr_vaddr | |
| 22700 | * +---------------------------------------+ |
| 22701 | * + cfr_num_pages | d0 | d1 | d2 | d3 | |
| 22702 | * +---------------------------------------+ |
| 22703 | * ... |
| 22704 | * +---------------------------------------+ |
| 22705 | * | dx | dy | dz | na | na | na | na | na | |
| 22706 | * +---------------------------------------+ |
| 22707 | * |
| 22708 | * where: |
| 22709 | * cf_size: total size of the buffer (rounded to page size) |
| 22710 | * cf_last_region: offset in the buffer of the last "region" sub-header |
| 22711 | * cf_last_zeroes: number of trailing "zero" dispositions at the end |
| 22712 | * of last region |
| 22713 | * cfr_vaddr: virtual address of the start of the covered "region" |
| 22714 | * cfr_num_pages: number of pages in the covered "region" |
| 22715 | * d*: disposition of the page at that virtual address |
| 22716 | * Regions in the buffer are word-aligned. |
| 22717 | * |
| 22718 | * We estimate the size of the buffer based on the number of memory regions |
| 22719 | * and the virtual size of the address space. While copying each memory region |
| 22720 | * during vm_map_fork(), we also collect the footprint info for that region |
| 22721 | * and store it in the buffer, packing it as much as possible (coalescing |
| 22722 | * contiguous memory regions to avoid having too many region headers and |
| 22723 | * avoiding long streaks of "zero" page dispositions by splitting footprint |
| 22724 | * "regions", so the number of regions in the footprint buffer might not match |
| 22725 | * the number of memory regions in the address space. |
| 22726 | * |
| 22727 | * We also have to copy the original task's "nonvolatile" ledgers since that's |
| 22728 | * part of the footprint and will need to be reported to any tool asking for |
| 22729 | * the footprint information of the forked corpse. |
| 22730 | */ |
| 22731 | |
| 22732 | uint64_t = 0; |
| 22733 | uint64_t = 0; |
| 22734 | uint64_t = 0; |
| 22735 | uint64_t = 0; |
| 22736 | uint64_t = 0; |
| 22737 | |
| 22738 | struct { |
| 22739 | vm_size_t ; /* allocated buffer size */ |
| 22740 | uint32_t ; /* offset of last region in buffer */ |
| 22741 | union { |
| 22742 | uint32_t ; /* during creation: |
| 22743 | * number of "zero" dispositions at |
| 22744 | * end of last region */ |
| 22745 | uint32_t ; /* during lookup: |
| 22746 | * offset of last looked up region */ |
| 22747 | #define cf_last_zeroes cfu.cfu_last_zeroes |
| 22748 | #define cf_hint_region cfu.cfu_hint_region |
| 22749 | } ; |
| 22750 | }; |
| 22751 | typedef uint8_t cf_disp_t; |
| 22752 | struct { |
| 22753 | vm_map_offset_t ; /* region start virtual address */ |
| 22754 | uint32_t ; /* number of pages in this "region" */ |
| 22755 | cf_disp_t [0]; /* disposition of each page */ |
| 22756 | } __attribute__((packed)); |
| 22757 | |
| 22758 | static cf_disp_t |
| 22759 | vm_page_disposition_to_cf_disp( |
| 22760 | int disposition) |
| 22761 | { |
| 22762 | assert(sizeof(cf_disp_t) == 1); |
| 22763 | /* relocate bits that don't fit in a "uint8_t" */ |
| 22764 | if (disposition & VM_PAGE_QUERY_PAGE_REUSABLE) { |
| 22765 | disposition |= VM_PAGE_QUERY_PAGE_FICTITIOUS; |
| 22766 | } |
| 22767 | /* cast gets rid of extra bits */ |
| 22768 | return (cf_disp_t) disposition; |
| 22769 | } |
| 22770 | |
| 22771 | static int |
| 22772 | vm_page_cf_disp_to_disposition( |
| 22773 | cf_disp_t cf_disp) |
| 22774 | { |
| 22775 | int disposition; |
| 22776 | |
| 22777 | assert(sizeof(cf_disp_t) == 1); |
| 22778 | disposition = (int) cf_disp; |
| 22779 | /* move relocated bits back in place */ |
| 22780 | if (cf_disp & VM_PAGE_QUERY_PAGE_FICTITIOUS) { |
| 22781 | disposition |= VM_PAGE_QUERY_PAGE_REUSABLE; |
| 22782 | disposition &= ~VM_PAGE_QUERY_PAGE_FICTITIOUS; |
| 22783 | } |
| 22784 | return disposition; |
| 22785 | } |
| 22786 | |
| 22787 | /* |
| 22788 | * vm_map_corpse_footprint_new_region: |
| 22789 | * closes the current footprint "region" and creates a new one |
| 22790 | * |
| 22791 | * Returns NULL if there's not enough space in the buffer for a new region. |
| 22792 | */ |
| 22793 | static struct vm_map_corpse_footprint_region * |
| 22794 | ( |
| 22795 | struct vm_map_corpse_footprint_header *) |
| 22796 | { |
| 22797 | uintptr_t ; |
| 22798 | uint32_t new_region_offset; |
| 22799 | struct vm_map_corpse_footprint_region *; |
| 22800 | struct vm_map_corpse_footprint_region *; |
| 22801 | |
| 22802 | footprint_edge = ((uintptr_t)footprint_header + |
| 22803 | footprint_header->cf_size); |
| 22804 | footprint_region = ((struct vm_map_corpse_footprint_region *) |
| 22805 | ((char *)footprint_header + |
| 22806 | footprint_header->cf_last_region)); |
| 22807 | assert((uintptr_t)footprint_region + sizeof(*footprint_region) <= |
| 22808 | footprint_edge); |
| 22809 | |
| 22810 | /* get rid of trailing zeroes in the last region */ |
| 22811 | assert(footprint_region->cfr_num_pages >= |
| 22812 | footprint_header->cf_last_zeroes); |
| 22813 | footprint_region->cfr_num_pages -= |
| 22814 | footprint_header->cf_last_zeroes; |
| 22815 | footprint_header->cf_last_zeroes = 0; |
| 22816 | |
| 22817 | /* reuse this region if it's now empty */ |
| 22818 | if (footprint_region->cfr_num_pages == 0) { |
| 22819 | return footprint_region; |
| 22820 | } |
| 22821 | |
| 22822 | /* compute offset of new region */ |
| 22823 | new_region_offset = footprint_header->cf_last_region; |
| 22824 | new_region_offset += sizeof(*footprint_region); |
| 22825 | new_region_offset += (footprint_region->cfr_num_pages * sizeof(cf_disp_t)); |
| 22826 | new_region_offset = roundup(new_region_offset, sizeof(int)); |
| 22827 | |
| 22828 | /* check if we're going over the edge */ |
| 22829 | if (((uintptr_t)footprint_header + |
| 22830 | new_region_offset + |
| 22831 | sizeof(*footprint_region)) >= |
| 22832 | footprint_edge) { |
| 22833 | /* over the edge: no new region */ |
| 22834 | return NULL; |
| 22835 | } |
| 22836 | |
| 22837 | /* adjust offset of last region in header */ |
| 22838 | footprint_header->cf_last_region = new_region_offset; |
| 22839 | |
| 22840 | new_footprint_region = (struct vm_map_corpse_footprint_region *) |
| 22841 | ((char *)footprint_header + |
| 22842 | footprint_header->cf_last_region); |
| 22843 | new_footprint_region->cfr_vaddr = 0; |
| 22844 | new_footprint_region->cfr_num_pages = 0; |
| 22845 | /* caller needs to initialize new region */ |
| 22846 | |
| 22847 | return new_footprint_region; |
| 22848 | } |
| 22849 | |
| 22850 | /* |
| 22851 | * vm_map_corpse_footprint_collect: |
| 22852 | * collect footprint information for "old_entry" in "old_map" and |
| 22853 | * stores it in "new_map"'s vmmap_footprint_info. |
| 22854 | */ |
| 22855 | kern_return_t |
| 22856 | ( |
| 22857 | vm_map_t old_map, |
| 22858 | vm_map_entry_t old_entry, |
| 22859 | vm_map_t new_map) |
| 22860 | { |
| 22861 | vm_map_offset_t va; |
| 22862 | kern_return_t kr; |
| 22863 | struct vm_map_corpse_footprint_header *; |
| 22864 | struct vm_map_corpse_footprint_region *; |
| 22865 | struct vm_map_corpse_footprint_region *; |
| 22866 | cf_disp_t *next_disp_p; |
| 22867 | uintptr_t ; |
| 22868 | uint32_t num_pages_tmp; |
| 22869 | int effective_page_size; |
| 22870 | |
| 22871 | effective_page_size = MIN(PAGE_SIZE, VM_MAP_PAGE_SIZE(old_map)); |
| 22872 | |
| 22873 | va = old_entry->vme_start; |
| 22874 | |
| 22875 | vm_map_lock_assert_exclusive(old_map); |
| 22876 | vm_map_lock_assert_exclusive(new_map); |
| 22877 | |
| 22878 | assert(new_map->has_corpse_footprint); |
| 22879 | assert(!old_map->has_corpse_footprint); |
| 22880 | if (!new_map->has_corpse_footprint || |
| 22881 | old_map->has_corpse_footprint) { |
| 22882 | /* |
| 22883 | * This can only transfer footprint info from a |
| 22884 | * map with a live pmap to a map with a corpse footprint. |
| 22885 | */ |
| 22886 | return KERN_NOT_SUPPORTED; |
| 22887 | } |
| 22888 | |
| 22889 | if (new_map->vmmap_corpse_footprint == NULL) { |
| 22890 | vm_offset_t buf; |
| 22891 | vm_size_t buf_size; |
| 22892 | |
| 22893 | buf = 0; |
| 22894 | buf_size = (sizeof(*footprint_header) + |
| 22895 | (old_map->hdr.nentries |
| 22896 | * |
| 22897 | (sizeof(*footprint_region) + |
| 22898 | +3)) /* potential alignment for each region */ |
| 22899 | + |
| 22900 | ((old_map->size / effective_page_size) |
| 22901 | * |
| 22902 | sizeof(cf_disp_t))); /* disposition for each page */ |
| 22903 | // printf("FBDP corpse map %p guestimate footprint size 0x%llx\n", new_map, (uint64_t) buf_size); |
| 22904 | buf_size = round_page(x: buf_size); |
| 22905 | |
| 22906 | /* limit buffer to 1 page to validate overflow detection */ |
| 22907 | // buf_size = PAGE_SIZE; |
| 22908 | |
| 22909 | /* limit size to a somewhat sane amount */ |
| 22910 | #if XNU_TARGET_OS_OSX |
| 22911 | #define (8*1024*1024) /* 8MB */ |
| 22912 | #else /* XNU_TARGET_OS_OSX */ |
| 22913 | #define VM_MAP_CORPSE_FOOTPRINT_INFO_MAX_SIZE (256*1024) /* 256KB */ |
| 22914 | #endif /* XNU_TARGET_OS_OSX */ |
| 22915 | if (buf_size > VM_MAP_CORPSE_FOOTPRINT_INFO_MAX_SIZE) { |
| 22916 | buf_size = VM_MAP_CORPSE_FOOTPRINT_INFO_MAX_SIZE; |
| 22917 | } |
| 22918 | |
| 22919 | /* |
| 22920 | * Allocate the pageable buffer (with a trailing guard page). |
| 22921 | * It will be zero-filled on demand. |
| 22922 | */ |
| 22923 | kr = kmem_alloc(map: kernel_map, addrp: &buf, size: buf_size + PAGE_SIZE, |
| 22924 | flags: KMA_DATA | KMA_PAGEABLE | KMA_GUARD_LAST, |
| 22925 | VM_KERN_MEMORY_DIAG); |
| 22926 | if (kr != KERN_SUCCESS) { |
| 22927 | vm_map_corpse_footprint_no_buf++; |
| 22928 | return kr; |
| 22929 | } |
| 22930 | |
| 22931 | /* initialize header and 1st region */ |
| 22932 | footprint_header = (struct vm_map_corpse_footprint_header *)buf; |
| 22933 | new_map->vmmap_corpse_footprint = footprint_header; |
| 22934 | |
| 22935 | footprint_header->cf_size = buf_size; |
| 22936 | footprint_header->cf_last_region = |
| 22937 | sizeof(*footprint_header); |
| 22938 | footprint_header->cf_last_zeroes = 0; |
| 22939 | |
| 22940 | footprint_region = (struct vm_map_corpse_footprint_region *) |
| 22941 | ((char *)footprint_header + |
| 22942 | footprint_header->cf_last_region); |
| 22943 | footprint_region->cfr_vaddr = 0; |
| 22944 | footprint_region->cfr_num_pages = 0; |
| 22945 | } else { |
| 22946 | /* retrieve header and last region */ |
| 22947 | footprint_header = (struct vm_map_corpse_footprint_header *) |
| 22948 | new_map->vmmap_corpse_footprint; |
| 22949 | footprint_region = (struct vm_map_corpse_footprint_region *) |
| 22950 | ((char *)footprint_header + |
| 22951 | footprint_header->cf_last_region); |
| 22952 | } |
| 22953 | footprint_edge = ((uintptr_t)footprint_header + |
| 22954 | footprint_header->cf_size); |
| 22955 | |
| 22956 | if ((footprint_region->cfr_vaddr + |
| 22957 | (((vm_map_offset_t)footprint_region->cfr_num_pages) * |
| 22958 | effective_page_size)) |
| 22959 | != old_entry->vme_start) { |
| 22960 | uint64_t num_pages_delta, num_pages_delta_size; |
| 22961 | uint32_t region_offset_delta_size; |
| 22962 | |
| 22963 | /* |
| 22964 | * Not the next contiguous virtual address: |
| 22965 | * start a new region or store "zero" dispositions for |
| 22966 | * the missing pages? |
| 22967 | */ |
| 22968 | /* size of gap in actual page dispositions */ |
| 22969 | num_pages_delta = ((old_entry->vme_start - |
| 22970 | footprint_region->cfr_vaddr) / effective_page_size) |
| 22971 | - footprint_region->cfr_num_pages; |
| 22972 | num_pages_delta_size = num_pages_delta * sizeof(cf_disp_t); |
| 22973 | /* size of gap as a new footprint region header */ |
| 22974 | region_offset_delta_size = |
| 22975 | (sizeof(*footprint_region) + |
| 22976 | roundup(((footprint_region->cfr_num_pages - |
| 22977 | footprint_header->cf_last_zeroes) * sizeof(cf_disp_t)), |
| 22978 | sizeof(int)) - |
| 22979 | ((footprint_region->cfr_num_pages - |
| 22980 | footprint_header->cf_last_zeroes) * sizeof(cf_disp_t))); |
| 22981 | // printf("FBDP %s:%d region 0x%x 0x%llx 0x%x vme_start 0x%llx pages_delta 0x%llx region_delta 0x%x\n", __FUNCTION__, __LINE__, footprint_header->cf_last_region, footprint_region->cfr_vaddr, footprint_region->cfr_num_pages, old_entry->vme_start, num_pages_delta, region_offset_delta); |
| 22982 | if (region_offset_delta_size < num_pages_delta_size || |
| 22983 | os_add3_overflow(footprint_region->cfr_num_pages, |
| 22984 | (uint32_t) num_pages_delta, |
| 22985 | 1, |
| 22986 | &num_pages_tmp)) { |
| 22987 | /* |
| 22988 | * Storing data for this gap would take more space |
| 22989 | * than inserting a new footprint region header: |
| 22990 | * let's start a new region and save space. If it's a |
| 22991 | * tie, let's avoid using a new region, since that |
| 22992 | * would require more region hops to find the right |
| 22993 | * range during lookups. |
| 22994 | * |
| 22995 | * If the current region's cfr_num_pages would overflow |
| 22996 | * if we added "zero" page dispositions for the gap, |
| 22997 | * no choice but to start a new region. |
| 22998 | */ |
| 22999 | // printf("FBDP %s:%d new region\n", __FUNCTION__, __LINE__); |
| 23000 | new_footprint_region = |
| 23001 | vm_map_corpse_footprint_new_region(footprint_header); |
| 23002 | /* check that we're not going over the edge */ |
| 23003 | if (new_footprint_region == NULL) { |
| 23004 | goto over_the_edge; |
| 23005 | } |
| 23006 | footprint_region = new_footprint_region; |
| 23007 | /* initialize new region as empty */ |
| 23008 | footprint_region->cfr_vaddr = old_entry->vme_start; |
| 23009 | footprint_region->cfr_num_pages = 0; |
| 23010 | } else { |
| 23011 | /* |
| 23012 | * Store "zero" page dispositions for the missing |
| 23013 | * pages. |
| 23014 | */ |
| 23015 | // printf("FBDP %s:%d zero gap\n", __FUNCTION__, __LINE__); |
| 23016 | for (; num_pages_delta > 0; num_pages_delta--) { |
| 23017 | next_disp_p = (cf_disp_t *) |
| 23018 | ((uintptr_t) footprint_region + |
| 23019 | sizeof(*footprint_region)); |
| 23020 | next_disp_p += footprint_region->cfr_num_pages; |
| 23021 | /* check that we're not going over the edge */ |
| 23022 | if ((uintptr_t)next_disp_p >= footprint_edge) { |
| 23023 | goto over_the_edge; |
| 23024 | } |
| 23025 | /* store "zero" disposition for this gap page */ |
| 23026 | footprint_region->cfr_num_pages++; |
| 23027 | *next_disp_p = (cf_disp_t) 0; |
| 23028 | footprint_header->cf_last_zeroes++; |
| 23029 | } |
| 23030 | } |
| 23031 | } |
| 23032 | |
| 23033 | for (va = old_entry->vme_start; |
| 23034 | va < old_entry->vme_end; |
| 23035 | va += effective_page_size) { |
| 23036 | int disposition; |
| 23037 | cf_disp_t cf_disp; |
| 23038 | |
| 23039 | vm_map_footprint_query_page_info(map: old_map, |
| 23040 | map_entry: old_entry, |
| 23041 | curr_s_offset: va, |
| 23042 | disposition_p: &disposition); |
| 23043 | cf_disp = vm_page_disposition_to_cf_disp(disposition); |
| 23044 | |
| 23045 | // if (va < SHARED_REGION_BASE_ARM64) printf("FBDP collect map %p va 0x%llx disp 0x%x\n", new_map, va, disp); |
| 23046 | |
| 23047 | if (cf_disp == 0 && footprint_region->cfr_num_pages == 0) { |
| 23048 | /* |
| 23049 | * Ignore "zero" dispositions at start of |
| 23050 | * region: just move start of region. |
| 23051 | */ |
| 23052 | footprint_region->cfr_vaddr += effective_page_size; |
| 23053 | continue; |
| 23054 | } |
| 23055 | |
| 23056 | /* would region's cfr_num_pages overflow? */ |
| 23057 | if (os_add_overflow(footprint_region->cfr_num_pages, 1, |
| 23058 | &num_pages_tmp)) { |
| 23059 | /* overflow: create a new region */ |
| 23060 | new_footprint_region = |
| 23061 | vm_map_corpse_footprint_new_region( |
| 23062 | footprint_header); |
| 23063 | if (new_footprint_region == NULL) { |
| 23064 | goto over_the_edge; |
| 23065 | } |
| 23066 | footprint_region = new_footprint_region; |
| 23067 | footprint_region->cfr_vaddr = va; |
| 23068 | footprint_region->cfr_num_pages = 0; |
| 23069 | } |
| 23070 | |
| 23071 | next_disp_p = (cf_disp_t *) ((uintptr_t) footprint_region + |
| 23072 | sizeof(*footprint_region)); |
| 23073 | next_disp_p += footprint_region->cfr_num_pages; |
| 23074 | /* check that we're not going over the edge */ |
| 23075 | if ((uintptr_t)next_disp_p >= footprint_edge) { |
| 23076 | goto over_the_edge; |
| 23077 | } |
| 23078 | /* store this dispostion */ |
| 23079 | *next_disp_p = cf_disp; |
| 23080 | footprint_region->cfr_num_pages++; |
| 23081 | |
| 23082 | if (cf_disp != 0) { |
| 23083 | /* non-zero disp: break the current zero streak */ |
| 23084 | footprint_header->cf_last_zeroes = 0; |
| 23085 | /* done */ |
| 23086 | continue; |
| 23087 | } |
| 23088 | |
| 23089 | /* zero disp: add to the current streak of zeroes */ |
| 23090 | footprint_header->cf_last_zeroes++; |
| 23091 | if ((footprint_header->cf_last_zeroes + |
| 23092 | roundup(((footprint_region->cfr_num_pages - |
| 23093 | footprint_header->cf_last_zeroes) * sizeof(cf_disp_t)) & |
| 23094 | (sizeof(int) - 1), |
| 23095 | sizeof(int))) < |
| 23096 | (sizeof(*footprint_header))) { |
| 23097 | /* |
| 23098 | * There are not enough trailing "zero" dispositions |
| 23099 | * (+ the extra padding we would need for the previous |
| 23100 | * region); creating a new region would not save space |
| 23101 | * at this point, so let's keep this "zero" disposition |
| 23102 | * in this region and reconsider later. |
| 23103 | */ |
| 23104 | continue; |
| 23105 | } |
| 23106 | /* |
| 23107 | * Create a new region to avoid having too many consecutive |
| 23108 | * "zero" dispositions. |
| 23109 | */ |
| 23110 | new_footprint_region = |
| 23111 | vm_map_corpse_footprint_new_region(footprint_header); |
| 23112 | if (new_footprint_region == NULL) { |
| 23113 | goto over_the_edge; |
| 23114 | } |
| 23115 | footprint_region = new_footprint_region; |
| 23116 | /* initialize the new region as empty ... */ |
| 23117 | footprint_region->cfr_num_pages = 0; |
| 23118 | /* ... and skip this "zero" disp */ |
| 23119 | footprint_region->cfr_vaddr = va + effective_page_size; |
| 23120 | } |
| 23121 | |
| 23122 | return KERN_SUCCESS; |
| 23123 | |
| 23124 | over_the_edge: |
| 23125 | // printf("FBDP map %p footprint was full for va 0x%llx\n", new_map, va); |
| 23126 | vm_map_corpse_footprint_full++; |
| 23127 | return KERN_RESOURCE_SHORTAGE; |
| 23128 | } |
| 23129 | |
| 23130 | /* |
| 23131 | * vm_map_corpse_footprint_collect_done: |
| 23132 | * completes the footprint collection by getting rid of any remaining |
| 23133 | * trailing "zero" dispositions and trimming the unused part of the |
| 23134 | * kernel buffer |
| 23135 | */ |
| 23136 | void |
| 23137 | ( |
| 23138 | vm_map_t new_map) |
| 23139 | { |
| 23140 | struct vm_map_corpse_footprint_header *; |
| 23141 | struct vm_map_corpse_footprint_region *; |
| 23142 | vm_size_t buf_size, actual_size; |
| 23143 | kern_return_t kr; |
| 23144 | |
| 23145 | assert(new_map->has_corpse_footprint); |
| 23146 | if (!new_map->has_corpse_footprint || |
| 23147 | new_map->vmmap_corpse_footprint == NULL) { |
| 23148 | return; |
| 23149 | } |
| 23150 | |
| 23151 | footprint_header = (struct vm_map_corpse_footprint_header *) |
| 23152 | new_map->vmmap_corpse_footprint; |
| 23153 | buf_size = footprint_header->cf_size; |
| 23154 | |
| 23155 | footprint_region = (struct vm_map_corpse_footprint_region *) |
| 23156 | ((char *)footprint_header + |
| 23157 | footprint_header->cf_last_region); |
| 23158 | |
| 23159 | /* get rid of trailing zeroes in last region */ |
| 23160 | assert(footprint_region->cfr_num_pages >= footprint_header->cf_last_zeroes); |
| 23161 | footprint_region->cfr_num_pages -= footprint_header->cf_last_zeroes; |
| 23162 | footprint_header->cf_last_zeroes = 0; |
| 23163 | |
| 23164 | actual_size = (vm_size_t)(footprint_header->cf_last_region + |
| 23165 | sizeof(*footprint_region) + |
| 23166 | (footprint_region->cfr_num_pages * sizeof(cf_disp_t))); |
| 23167 | |
| 23168 | // printf("FBDP map %p buf_size 0x%llx actual_size 0x%llx\n", new_map, (uint64_t) buf_size, (uint64_t) actual_size); |
| 23169 | vm_map_corpse_footprint_size_avg = |
| 23170 | (((vm_map_corpse_footprint_size_avg * |
| 23171 | vm_map_corpse_footprint_count) + |
| 23172 | actual_size) / |
| 23173 | (vm_map_corpse_footprint_count + 1)); |
| 23174 | vm_map_corpse_footprint_count++; |
| 23175 | if (actual_size > vm_map_corpse_footprint_size_max) { |
| 23176 | vm_map_corpse_footprint_size_max = actual_size; |
| 23177 | } |
| 23178 | |
| 23179 | actual_size = round_page(x: actual_size); |
| 23180 | if (buf_size > actual_size) { |
| 23181 | kr = vm_deallocate(target_task: kernel_map, |
| 23182 | address: ((vm_address_t)footprint_header + |
| 23183 | actual_size + |
| 23184 | PAGE_SIZE), /* trailing guard page */ |
| 23185 | size: (buf_size - actual_size)); |
| 23186 | assertf(kr == KERN_SUCCESS, |
| 23187 | "trim: footprint_header %p buf_size 0x%llx actual_size 0x%llx kr=0x%x\n" , |
| 23188 | footprint_header, |
| 23189 | (uint64_t) buf_size, |
| 23190 | (uint64_t) actual_size, |
| 23191 | kr); |
| 23192 | kr = vm_protect(target_task: kernel_map, |
| 23193 | address: ((vm_address_t)footprint_header + |
| 23194 | actual_size), |
| 23195 | PAGE_SIZE, |
| 23196 | FALSE, /* set_maximum */ |
| 23197 | VM_PROT_NONE); |
| 23198 | assertf(kr == KERN_SUCCESS, |
| 23199 | "guard: footprint_header %p buf_size 0x%llx actual_size 0x%llx kr=0x%x\n" , |
| 23200 | footprint_header, |
| 23201 | (uint64_t) buf_size, |
| 23202 | (uint64_t) actual_size, |
| 23203 | kr); |
| 23204 | } |
| 23205 | |
| 23206 | footprint_header->cf_size = actual_size; |
| 23207 | } |
| 23208 | |
| 23209 | /* |
| 23210 | * vm_map_corpse_footprint_query_page_info: |
| 23211 | * retrieves the disposition of the page at virtual address "vaddr" |
| 23212 | * in the forked corpse's VM map |
| 23213 | * |
| 23214 | * This is the equivalent of vm_map_footprint_query_page_info() for a forked corpse. |
| 23215 | */ |
| 23216 | kern_return_t |
| 23217 | ( |
| 23218 | vm_map_t map, |
| 23219 | vm_map_offset_t va, |
| 23220 | int *disposition_p) |
| 23221 | { |
| 23222 | struct vm_map_corpse_footprint_header *; |
| 23223 | struct vm_map_corpse_footprint_region *; |
| 23224 | uint32_t ; |
| 23225 | vm_map_offset_t region_start, region_end; |
| 23226 | int disp_idx; |
| 23227 | kern_return_t kr; |
| 23228 | int effective_page_size; |
| 23229 | cf_disp_t cf_disp; |
| 23230 | |
| 23231 | if (!map->has_corpse_footprint) { |
| 23232 | *disposition_p = 0; |
| 23233 | kr = KERN_INVALID_ARGUMENT; |
| 23234 | goto done; |
| 23235 | } |
| 23236 | |
| 23237 | footprint_header = map->vmmap_corpse_footprint; |
| 23238 | if (footprint_header == NULL) { |
| 23239 | *disposition_p = 0; |
| 23240 | // if (va < SHARED_REGION_BASE_ARM64) printf("FBDP %d query map %p va 0x%llx disp 0x%x\n", __LINE__, map, va, *disposition_p); |
| 23241 | kr = KERN_INVALID_ARGUMENT; |
| 23242 | goto done; |
| 23243 | } |
| 23244 | |
| 23245 | /* start looking at the hint ("cf_hint_region") */ |
| 23246 | footprint_region_offset = footprint_header->cf_hint_region; |
| 23247 | |
| 23248 | effective_page_size = MIN(PAGE_SIZE, VM_MAP_PAGE_SIZE(map)); |
| 23249 | |
| 23250 | lookup_again: |
| 23251 | if (footprint_region_offset < sizeof(*footprint_header)) { |
| 23252 | /* hint too low: start from 1st region */ |
| 23253 | footprint_region_offset = sizeof(*footprint_header); |
| 23254 | } |
| 23255 | if (footprint_region_offset >= footprint_header->cf_last_region) { |
| 23256 | /* hint too high: re-start from 1st region */ |
| 23257 | footprint_region_offset = sizeof(*footprint_header); |
| 23258 | } |
| 23259 | footprint_region = (struct vm_map_corpse_footprint_region *) |
| 23260 | ((char *)footprint_header + footprint_region_offset); |
| 23261 | region_start = footprint_region->cfr_vaddr; |
| 23262 | region_end = (region_start + |
| 23263 | ((vm_map_offset_t)(footprint_region->cfr_num_pages) * |
| 23264 | effective_page_size)); |
| 23265 | if (va < region_start && |
| 23266 | footprint_region_offset != sizeof(*footprint_header)) { |
| 23267 | /* our range starts before the hint region */ |
| 23268 | |
| 23269 | /* reset the hint (in a racy way...) */ |
| 23270 | footprint_header->cf_hint_region = sizeof(*footprint_header); |
| 23271 | /* lookup "va" again from 1st region */ |
| 23272 | footprint_region_offset = sizeof(*footprint_header); |
| 23273 | goto lookup_again; |
| 23274 | } |
| 23275 | |
| 23276 | while (va >= region_end) { |
| 23277 | if (footprint_region_offset >= footprint_header->cf_last_region) { |
| 23278 | break; |
| 23279 | } |
| 23280 | /* skip the region's header */ |
| 23281 | footprint_region_offset += sizeof(*footprint_region); |
| 23282 | /* skip the region's page dispositions */ |
| 23283 | footprint_region_offset += (footprint_region->cfr_num_pages * sizeof(cf_disp_t)); |
| 23284 | /* align to next word boundary */ |
| 23285 | footprint_region_offset = |
| 23286 | roundup(footprint_region_offset, |
| 23287 | sizeof(int)); |
| 23288 | footprint_region = (struct vm_map_corpse_footprint_region *) |
| 23289 | ((char *)footprint_header + footprint_region_offset); |
| 23290 | region_start = footprint_region->cfr_vaddr; |
| 23291 | region_end = (region_start + |
| 23292 | ((vm_map_offset_t)(footprint_region->cfr_num_pages) * |
| 23293 | effective_page_size)); |
| 23294 | } |
| 23295 | if (va < region_start || va >= region_end) { |
| 23296 | /* page not found */ |
| 23297 | *disposition_p = 0; |
| 23298 | // if (va < SHARED_REGION_BASE_ARM64) printf("FBDP %d query map %p va 0x%llx disp 0x%x\n", __LINE__, map, va, *disposition_p); |
| 23299 | kr = KERN_SUCCESS; |
| 23300 | goto done; |
| 23301 | } |
| 23302 | |
| 23303 | /* "va" found: set the lookup hint for next lookup (in a racy way...) */ |
| 23304 | footprint_header->cf_hint_region = footprint_region_offset; |
| 23305 | |
| 23306 | /* get page disposition for "va" in this region */ |
| 23307 | disp_idx = (int) ((va - footprint_region->cfr_vaddr) / effective_page_size); |
| 23308 | cf_disp = footprint_region->cfr_disposition[disp_idx]; |
| 23309 | *disposition_p = vm_page_cf_disp_to_disposition(cf_disp); |
| 23310 | kr = KERN_SUCCESS; |
| 23311 | done: |
| 23312 | // if (va < SHARED_REGION_BASE_ARM64) printf("FBDP %d query map %p va 0x%llx disp 0x%x\n", __LINE__, map, va, *disposition_p); |
| 23313 | /* dtrace -n 'vminfo:::footprint_query_page_info { printf("map 0x%p va 0x%llx disp 0x%x kr 0x%x", arg0, arg1, arg2, arg3); }' */ |
| 23314 | DTRACE_VM4(footprint_query_page_info, |
| 23315 | vm_map_t, map, |
| 23316 | vm_map_offset_t, va, |
| 23317 | int, *disposition_p, |
| 23318 | kern_return_t, kr); |
| 23319 | |
| 23320 | return kr; |
| 23321 | } |
| 23322 | |
| 23323 | void |
| 23324 | ( |
| 23325 | vm_map_t map) |
| 23326 | { |
| 23327 | if (map->has_corpse_footprint && |
| 23328 | map->vmmap_corpse_footprint != 0) { |
| 23329 | struct vm_map_corpse_footprint_header *; |
| 23330 | vm_size_t buf_size; |
| 23331 | kern_return_t kr; |
| 23332 | |
| 23333 | footprint_header = map->vmmap_corpse_footprint; |
| 23334 | buf_size = footprint_header->cf_size; |
| 23335 | kr = vm_deallocate(target_task: kernel_map, |
| 23336 | address: (vm_offset_t) map->vmmap_corpse_footprint, |
| 23337 | size: ((vm_size_t) buf_size |
| 23338 | + PAGE_SIZE)); /* trailing guard page */ |
| 23339 | assertf(kr == KERN_SUCCESS, "kr=0x%x\n" , kr); |
| 23340 | map->vmmap_corpse_footprint = 0; |
| 23341 | map->has_corpse_footprint = FALSE; |
| 23342 | } |
| 23343 | } |
| 23344 | |
| 23345 | /* |
| 23346 | * vm_map_copy_footprint_ledgers: |
| 23347 | * copies any ledger that's relevant to the memory footprint of "old_task" |
| 23348 | * into the forked corpse's task ("new_task") |
| 23349 | */ |
| 23350 | void |
| 23351 | ( |
| 23352 | task_t old_task, |
| 23353 | task_t new_task) |
| 23354 | { |
| 23355 | vm_map_copy_ledger(old_task, new_task, ledger_entry: task_ledgers.phys_footprint); |
| 23356 | vm_map_copy_ledger(old_task, new_task, ledger_entry: task_ledgers.purgeable_nonvolatile); |
| 23357 | vm_map_copy_ledger(old_task, new_task, ledger_entry: task_ledgers.purgeable_nonvolatile_compressed); |
| 23358 | vm_map_copy_ledger(old_task, new_task, ledger_entry: task_ledgers.internal); |
| 23359 | vm_map_copy_ledger(old_task, new_task, ledger_entry: task_ledgers.internal_compressed); |
| 23360 | vm_map_copy_ledger(old_task, new_task, ledger_entry: task_ledgers.iokit_mapped); |
| 23361 | vm_map_copy_ledger(old_task, new_task, ledger_entry: task_ledgers.alternate_accounting); |
| 23362 | vm_map_copy_ledger(old_task, new_task, ledger_entry: task_ledgers.alternate_accounting_compressed); |
| 23363 | vm_map_copy_ledger(old_task, new_task, ledger_entry: task_ledgers.page_table); |
| 23364 | vm_map_copy_ledger(old_task, new_task, ledger_entry: task_ledgers.tagged_footprint); |
| 23365 | vm_map_copy_ledger(old_task, new_task, ledger_entry: task_ledgers.tagged_footprint_compressed); |
| 23366 | vm_map_copy_ledger(old_task, new_task, ledger_entry: task_ledgers.network_nonvolatile); |
| 23367 | vm_map_copy_ledger(old_task, new_task, ledger_entry: task_ledgers.network_nonvolatile_compressed); |
| 23368 | vm_map_copy_ledger(old_task, new_task, ledger_entry: task_ledgers.media_footprint); |
| 23369 | vm_map_copy_ledger(old_task, new_task, ledger_entry: task_ledgers.media_footprint_compressed); |
| 23370 | vm_map_copy_ledger(old_task, new_task, ledger_entry: task_ledgers.graphics_footprint); |
| 23371 | vm_map_copy_ledger(old_task, new_task, ledger_entry: task_ledgers.graphics_footprint_compressed); |
| 23372 | vm_map_copy_ledger(old_task, new_task, ledger_entry: task_ledgers.neural_footprint); |
| 23373 | vm_map_copy_ledger(old_task, new_task, ledger_entry: task_ledgers.neural_footprint_compressed); |
| 23374 | vm_map_copy_ledger(old_task, new_task, ledger_entry: task_ledgers.wired_mem); |
| 23375 | } |
| 23376 | |
| 23377 | /* |
| 23378 | * vm_map_copy_ledger: |
| 23379 | * copy a single ledger from "old_task" to "new_task" |
| 23380 | */ |
| 23381 | void |
| 23382 | vm_map_copy_ledger( |
| 23383 | task_t old_task, |
| 23384 | task_t new_task, |
| 23385 | int ledger_entry) |
| 23386 | { |
| 23387 | ledger_amount_t old_balance, new_balance, delta; |
| 23388 | |
| 23389 | assert(new_task->map->has_corpse_footprint); |
| 23390 | if (!new_task->map->has_corpse_footprint) { |
| 23391 | return; |
| 23392 | } |
| 23393 | |
| 23394 | /* turn off sanity checks for the ledger we're about to mess with */ |
| 23395 | ledger_disable_panic_on_negative(ledger: new_task->ledger, |
| 23396 | entry: ledger_entry); |
| 23397 | |
| 23398 | /* adjust "new_task" to match "old_task" */ |
| 23399 | ledger_get_balance(ledger: old_task->ledger, |
| 23400 | entry: ledger_entry, |
| 23401 | balance: &old_balance); |
| 23402 | ledger_get_balance(ledger: new_task->ledger, |
| 23403 | entry: ledger_entry, |
| 23404 | balance: &new_balance); |
| 23405 | if (new_balance == old_balance) { |
| 23406 | /* new == old: done */ |
| 23407 | } else if (new_balance > old_balance) { |
| 23408 | /* new > old ==> new -= new - old */ |
| 23409 | delta = new_balance - old_balance; |
| 23410 | ledger_debit(ledger: new_task->ledger, |
| 23411 | entry: ledger_entry, |
| 23412 | amount: delta); |
| 23413 | } else { |
| 23414 | /* new < old ==> new += old - new */ |
| 23415 | delta = old_balance - new_balance; |
| 23416 | ledger_credit(ledger: new_task->ledger, |
| 23417 | entry: ledger_entry, |
| 23418 | amount: delta); |
| 23419 | } |
| 23420 | } |
| 23421 | |
| 23422 | /* |
| 23423 | * vm_map_get_pmap: |
| 23424 | * returns the pmap associated with the vm_map |
| 23425 | */ |
| 23426 | pmap_t |
| 23427 | vm_map_get_pmap(vm_map_t map) |
| 23428 | { |
| 23429 | return vm_map_pmap(map); |
| 23430 | } |
| 23431 | |
| 23432 | #if CONFIG_MAP_RANGES |
| 23433 | static bitmap_t vm_map_user_range_heap_map[BITMAP_LEN(VM_MEMORY_COUNT)]; |
| 23434 | |
| 23435 | static_assert(UMEM_RANGE_ID_DEFAULT == MACH_VM_RANGE_DEFAULT); |
| 23436 | static_assert(UMEM_RANGE_ID_HEAP == MACH_VM_RANGE_DATA); |
| 23437 | |
| 23438 | /* |
| 23439 | * vm_map_range_map_init: |
| 23440 | * initializes the VM range ID map to enable index lookup |
| 23441 | * of user VM ranges based on VM tag from userspace. |
| 23442 | */ |
| 23443 | static void |
| 23444 | vm_map_range_map_init(void) |
| 23445 | { |
| 23446 | /* |
| 23447 | * VM_MEMORY_MALLOC{,_NANO} are skipped on purpose: |
| 23448 | * - the former is malloc metadata which should be kept separate |
| 23449 | * - the latter has its own ranges |
| 23450 | */ |
| 23451 | bitmap_set(vm_map_user_range_heap_map, VM_MEMORY_MALLOC_HUGE); |
| 23452 | bitmap_set(vm_map_user_range_heap_map, VM_MEMORY_MALLOC_LARGE); |
| 23453 | bitmap_set(vm_map_user_range_heap_map, VM_MEMORY_MALLOC_LARGE_REUSED); |
| 23454 | bitmap_set(vm_map_user_range_heap_map, VM_MEMORY_MALLOC_MEDIUM); |
| 23455 | bitmap_set(vm_map_user_range_heap_map, VM_MEMORY_MALLOC_PROB_GUARD); |
| 23456 | bitmap_set(vm_map_user_range_heap_map, VM_MEMORY_MALLOC_SMALL); |
| 23457 | bitmap_set(vm_map_user_range_heap_map, VM_MEMORY_MALLOC_TINY); |
| 23458 | bitmap_set(vm_map_user_range_heap_map, VM_MEMORY_TCMALLOC); |
| 23459 | bitmap_set(vm_map_user_range_heap_map, VM_MEMORY_LIBNETWORK); |
| 23460 | bitmap_set(vm_map_user_range_heap_map, VM_MEMORY_IOACCELERATOR); |
| 23461 | bitmap_set(vm_map_user_range_heap_map, VM_MEMORY_IOSURFACE); |
| 23462 | bitmap_set(vm_map_user_range_heap_map, VM_MEMORY_IMAGEIO); |
| 23463 | bitmap_set(vm_map_user_range_heap_map, VM_MEMORY_COREGRAPHICS); |
| 23464 | bitmap_set(vm_map_user_range_heap_map, VM_MEMORY_CORESERVICES); |
| 23465 | bitmap_set(vm_map_user_range_heap_map, VM_MEMORY_COREDATA); |
| 23466 | bitmap_set(vm_map_user_range_heap_map, VM_MEMORY_LAYERKIT); |
| 23467 | } |
| 23468 | |
| 23469 | static struct mach_vm_range |
| 23470 | vm_map_range_random_uniform( |
| 23471 | vm_map_size_t req_size, |
| 23472 | vm_map_offset_t min_addr, |
| 23473 | vm_map_offset_t max_addr, |
| 23474 | vm_map_offset_t offmask) |
| 23475 | { |
| 23476 | vm_map_offset_t random_addr; |
| 23477 | struct mach_vm_range alloc; |
| 23478 | |
| 23479 | req_size = (req_size + offmask) & ~offmask; |
| 23480 | min_addr = (min_addr + offmask) & ~offmask; |
| 23481 | max_addr = max_addr & ~offmask; |
| 23482 | |
| 23483 | read_random(&random_addr, sizeof(random_addr)); |
| 23484 | random_addr %= (max_addr - req_size - min_addr); |
| 23485 | random_addr &= ~offmask; |
| 23486 | |
| 23487 | alloc.min_address = min_addr + random_addr; |
| 23488 | alloc.max_address = min_addr + random_addr + req_size; |
| 23489 | return alloc; |
| 23490 | } |
| 23491 | |
| 23492 | static vm_map_offset_t |
| 23493 | vm_map_range_offmask(void) |
| 23494 | { |
| 23495 | uint32_t pte_depth; |
| 23496 | |
| 23497 | /* |
| 23498 | * PTE optimizations |
| 23499 | * |
| 23500 | * |
| 23501 | * 16k pages systems |
| 23502 | * ~~~~~~~~~~~~~~~~~ |
| 23503 | * |
| 23504 | * A single L1 (sub-)page covers the address space. |
| 23505 | * - L2 pages cover 64G, |
| 23506 | * - L3 pages cover 32M. |
| 23507 | * |
| 23508 | * On embedded, the dynamic VA range is 64G and uses a single L2 page. |
| 23509 | * As a result, we really only need to align the ranges to 32M to avoid |
| 23510 | * partial L3 pages. |
| 23511 | * |
| 23512 | * On macOS, the usage of L2 pages will increase, so as a result we will |
| 23513 | * want to align ranges to 64G in order to utilize them fully. |
| 23514 | * |
| 23515 | * |
| 23516 | * 4k pages systems |
| 23517 | * ~~~~~~~~~~~~~~~~ |
| 23518 | * |
| 23519 | * A single L0 (sub-)page covers the address space. |
| 23520 | * - L1 pages cover 512G, |
| 23521 | * - L2 pages cover 1G, |
| 23522 | * - L3 pages cover 2M. |
| 23523 | * |
| 23524 | * The long tail of processes on a system will tend to have a VA usage |
| 23525 | * (ignoring the shared regions) in the 100s of MB order of magnitnude. |
| 23526 | * This is achievable with a single L1 and a few L2s without |
| 23527 | * randomization. |
| 23528 | * |
| 23529 | * However once randomization is introduced, the system will immediately |
| 23530 | * need several L1s and many more L2s. As a result: |
| 23531 | * |
| 23532 | * - on embedded devices, the cost of these extra pages isn't |
| 23533 | * sustainable, and we just disable the feature entirely, |
| 23534 | * |
| 23535 | * - on macOS we align ranges to a 512G boundary so that the extra L1 |
| 23536 | * pages can be used to their full potential. |
| 23537 | */ |
| 23538 | |
| 23539 | /* |
| 23540 | * note, this function assumes _non exotic mappings_ |
| 23541 | * which is why it uses the native kernel's PAGE_SHIFT. |
| 23542 | */ |
| 23543 | #if XNU_PLATFORM_MacOSX |
| 23544 | pte_depth = PAGE_SHIFT > 12 ? 2 : 3; |
| 23545 | #else /* !XNU_PLATFORM_MacOSX */ |
| 23546 | pte_depth = PAGE_SHIFT > 12 ? 1 : 0; |
| 23547 | #endif /* !XNU_PLATFORM_MacOSX */ |
| 23548 | |
| 23549 | if (pte_depth == 0) { |
| 23550 | return 0; |
| 23551 | } |
| 23552 | |
| 23553 | return (1ull << ((PAGE_SHIFT - 3) * pte_depth + PAGE_SHIFT)) - 1; |
| 23554 | } |
| 23555 | |
| 23556 | /* |
| 23557 | * vm_map_range_configure: |
| 23558 | * configures the user vm_map ranges by increasing the maximum VA range of |
| 23559 | * the map and carving out a range at the end of VA space (searching backwards |
| 23560 | * in the newly expanded map). |
| 23561 | */ |
| 23562 | kern_return_t |
| 23563 | vm_map_range_configure(vm_map_t map) |
| 23564 | { |
| 23565 | const vm_map_offset_t offmask = vm_map_range_offmask(); |
| 23566 | struct mach_vm_range data_range; |
| 23567 | vm_map_offset_t default_end; |
| 23568 | kern_return_t kr; |
| 23569 | |
| 23570 | if (!vm_map_is_64bit(map) || vm_map_is_exotic(map) || offmask == 0) { |
| 23571 | /* |
| 23572 | * No point doing vm ranges in a 32bit address space. |
| 23573 | */ |
| 23574 | return KERN_NOT_SUPPORTED; |
| 23575 | } |
| 23576 | |
| 23577 | /* Should not be applying ranges to kernel map or kernel map submaps */ |
| 23578 | assert(vm_map_pmap(map) != kernel_pmap); |
| 23579 | |
| 23580 | #if XNU_PLATFORM_MacOSX |
| 23581 | |
| 23582 | /* |
| 23583 | * on macOS, the address space is a massive 47 bits (128T), |
| 23584 | * with several carve outs that processes can't use: |
| 23585 | * - the shared region |
| 23586 | * - the commpage region |
| 23587 | * - the GPU carve out (if applicable) |
| 23588 | * |
| 23589 | * and when nano-malloc is in use it desires memory at the 96T mark. |
| 23590 | * |
| 23591 | * However, their location is architecture dependent: |
| 23592 | * - On intel, the shared region and commpage are |
| 23593 | * at the very end of the usable address space (above +127T), |
| 23594 | * and there is no GPU carve out, and pthread wants to place |
| 23595 | * threads at the 112T mark (0x70T). |
| 23596 | * |
| 23597 | * - On arm64, these are in the same spot as on embedded devices: |
| 23598 | * o shared region: [ 6G, 10G) [ will likely grow over time ] |
| 23599 | * o commpage region: [63G, 64G) |
| 23600 | * o GPU carve out: [64G, 448G) |
| 23601 | * |
| 23602 | * This is conveninent because the mappings at the end of the address |
| 23603 | * space (when they exist) are made by the kernel. |
| 23604 | * |
| 23605 | * The policy is to allocate a random 1T for the data heap |
| 23606 | * in the end of the address-space in the: |
| 23607 | * - [0x71, 0x7f) range on Intel (to leave space for pthread stacks) |
| 23608 | * - [0x61, 0x7f) range on ASM (to leave space for Nano malloc). |
| 23609 | */ |
| 23610 | |
| 23611 | /* see NANOZONE_SIGNATURE in libmalloc */ |
| 23612 | #if __x86_64__ |
| 23613 | default_end = 0x71ull << 40; |
| 23614 | #else |
| 23615 | default_end = 0x61ull << 40; |
| 23616 | #endif |
| 23617 | data_range = vm_map_range_random_uniform(1ull << 40, |
| 23618 | default_end, 0x7full << 40, offmask); |
| 23619 | |
| 23620 | #else /* !XNU_PLATFORM_MacOSX */ |
| 23621 | |
| 23622 | /* |
| 23623 | * Embedded devices: |
| 23624 | * |
| 23625 | * The default VA Size scales with the device physical memory. |
| 23626 | * |
| 23627 | * Out of that: |
| 23628 | * - the "zero" page typically uses 4G + some slide |
| 23629 | * - the shared region uses SHARED_REGION_SIZE bytes (4G) |
| 23630 | * |
| 23631 | * Without the use of jumbo or any adjustment to the address space, |
| 23632 | * a default VM map typically looks like this: |
| 23633 | * |
| 23634 | * 0G -->╒════════════╕ |
| 23635 | * │ pagezero │ |
| 23636 | * │ + slide │ |
| 23637 | * ~4G -->╞════════════╡<-- vm_map_min(map) |
| 23638 | * │ │ |
| 23639 | * 6G -->├────────────┤ |
| 23640 | * │ shared │ |
| 23641 | * │ region │ |
| 23642 | * 10G -->├────────────┤ |
| 23643 | * │ │ |
| 23644 | * max_va -->├────────────┤<-- vm_map_max(map) |
| 23645 | * │ │ |
| 23646 | * ╎ jumbo ╎ |
| 23647 | * ╎ ╎ |
| 23648 | * │ │ |
| 23649 | * 63G -->╞════════════╡<-- MACH_VM_MAX_ADDRESS |
| 23650 | * │ commpage │ |
| 23651 | * 64G -->├────────────┤<-- MACH_VM_MIN_GPU_CARVEOUT_ADDRESS |
| 23652 | * │ │ |
| 23653 | * ╎ GPU ╎ |
| 23654 | * ╎ carveout ╎ |
| 23655 | * │ │ |
| 23656 | * 448G -->├────────────┤<-- MACH_VM_MAX_GPU_CARVEOUT_ADDRESS |
| 23657 | * │ │ |
| 23658 | * ╎ ╎ |
| 23659 | * ╎ ╎ |
| 23660 | * │ │ |
| 23661 | * 512G -->╘════════════╛<-- (1ull << ARM_16K_TT_L1_SHIFT) |
| 23662 | * |
| 23663 | * When this drawing was made, "max_va" was smaller than |
| 23664 | * ARM64_MAX_OFFSET_DEVICE_LARGE (~15.5G), leaving shy of |
| 23665 | * 12G of address space for the zero-page, slide, files, |
| 23666 | * binaries, heap ... |
| 23667 | * |
| 23668 | * We will want to make a "heap/data" carve out inside |
| 23669 | * the jumbo range of half of that usable space, assuming |
| 23670 | * that this is less than a forth of the jumbo range. |
| 23671 | * |
| 23672 | * The assert below intends to catch when max_va grows |
| 23673 | * too large for this heuristic. |
| 23674 | */ |
| 23675 | |
| 23676 | vm_map_lock_read(map); |
| 23677 | default_end = vm_map_max(map); |
| 23678 | vm_map_unlock_read(map); |
| 23679 | |
| 23680 | /* |
| 23681 | * Check that we're not already jumbo'd, |
| 23682 | * or our address space was somehow modified. |
| 23683 | * |
| 23684 | * If so we cannot guarantee that we can set up the ranges |
| 23685 | * safely without interfering with the existing map. |
| 23686 | */ |
| 23687 | if (default_end > vm_compute_max_offset(true)) { |
| 23688 | return KERN_NO_SPACE; |
| 23689 | } |
| 23690 | |
| 23691 | if (pmap_max_offset(true, ARM_PMAP_MAX_OFFSET_DEFAULT)) { |
| 23692 | /* |
| 23693 | * an override boot-arg was set, disable user-ranges |
| 23694 | * |
| 23695 | * XXX: this is problematic because it means these boot-args |
| 23696 | * no longer test the behavior changing the value |
| 23697 | * of ARM64_MAX_OFFSET_DEVICE_* would have. |
| 23698 | */ |
| 23699 | return KERN_NOT_SUPPORTED; |
| 23700 | } |
| 23701 | |
| 23702 | /* expand the default VM space to the largest possible address */ |
| 23703 | vm_map_set_jumbo(map); |
| 23704 | |
| 23705 | assert3u(7 * GiB(10) / 2, <=, vm_map_max(map) - default_end); |
| 23706 | data_range = vm_map_range_random_uniform(GiB(10), |
| 23707 | default_end + PAGE_SIZE, vm_map_max(map), offmask); |
| 23708 | |
| 23709 | #endif /* !XNU_PLATFORM_MacOSX */ |
| 23710 | |
| 23711 | /* |
| 23712 | * Poke holes so that ASAN or people listing regions |
| 23713 | * do not think this space is free. |
| 23714 | */ |
| 23715 | |
| 23716 | if (default_end != data_range.min_address) { |
| 23717 | kr = vm_map_enter(map, &default_end, |
| 23718 | data_range.min_address - default_end, |
| 23719 | 0, VM_MAP_KERNEL_FLAGS_FIXED_PERMANENT(), VM_OBJECT_NULL, |
| 23720 | 0, FALSE, VM_PROT_NONE, VM_PROT_NONE, VM_INHERIT_DEFAULT); |
| 23721 | assert(kr == KERN_SUCCESS); |
| 23722 | } |
| 23723 | |
| 23724 | if (data_range.max_address != vm_map_max(map)) { |
| 23725 | vm_map_entry_t entry; |
| 23726 | vm_size_t size; |
| 23727 | |
| 23728 | vm_map_lock_read(map); |
| 23729 | vm_map_lookup_entry_or_next(map, data_range.max_address, &entry); |
| 23730 | if (entry != vm_map_to_entry(map)) { |
| 23731 | size = vm_map_max(map) - data_range.max_address; |
| 23732 | } else { |
| 23733 | size = entry->vme_start - data_range.max_address; |
| 23734 | } |
| 23735 | vm_map_unlock_read(map); |
| 23736 | |
| 23737 | kr = vm_map_enter(map, &data_range.max_address, size, |
| 23738 | 0, VM_MAP_KERNEL_FLAGS_FIXED_PERMANENT(), VM_OBJECT_NULL, |
| 23739 | 0, FALSE, VM_PROT_NONE, VM_PROT_NONE, VM_INHERIT_DEFAULT); |
| 23740 | assert(kr == KERN_SUCCESS); |
| 23741 | } |
| 23742 | |
| 23743 | vm_map_lock(map); |
| 23744 | map->default_range.min_address = vm_map_min(map); |
| 23745 | map->default_range.max_address = default_end; |
| 23746 | map->data_range = data_range; |
| 23747 | map->uses_user_ranges = true; |
| 23748 | vm_map_unlock(map); |
| 23749 | |
| 23750 | return KERN_SUCCESS; |
| 23751 | } |
| 23752 | |
| 23753 | /* |
| 23754 | * vm_map_range_fork: |
| 23755 | * clones the array of ranges from old_map to new_map in support |
| 23756 | * of a VM map fork. |
| 23757 | */ |
| 23758 | void |
| 23759 | vm_map_range_fork(vm_map_t new_map, vm_map_t old_map) |
| 23760 | { |
| 23761 | if (!old_map->uses_user_ranges) { |
| 23762 | /* nothing to do */ |
| 23763 | return; |
| 23764 | } |
| 23765 | |
| 23766 | new_map->default_range = old_map->default_range; |
| 23767 | new_map->data_range = old_map->data_range; |
| 23768 | |
| 23769 | if (old_map->extra_ranges_count) { |
| 23770 | vm_map_user_range_t otable, ntable; |
| 23771 | uint16_t count; |
| 23772 | |
| 23773 | otable = old_map->extra_ranges; |
| 23774 | count = old_map->extra_ranges_count; |
| 23775 | ntable = kalloc_data(count * sizeof(struct vm_map_user_range), |
| 23776 | Z_WAITOK | Z_ZERO | Z_NOFAIL); |
| 23777 | memcpy(ntable, otable, |
| 23778 | count * sizeof(struct vm_map_user_range)); |
| 23779 | |
| 23780 | new_map->extra_ranges_count = count; |
| 23781 | new_map->extra_ranges = ntable; |
| 23782 | } |
| 23783 | |
| 23784 | new_map->uses_user_ranges = true; |
| 23785 | } |
| 23786 | |
| 23787 | /* |
| 23788 | * vm_map_get_user_range: |
| 23789 | * copy the VM user range for the given VM map and range ID. |
| 23790 | */ |
| 23791 | kern_return_t |
| 23792 | vm_map_get_user_range( |
| 23793 | vm_map_t map, |
| 23794 | vm_map_range_id_t range_id, |
| 23795 | mach_vm_range_t range) |
| 23796 | { |
| 23797 | if (map == NULL || !map->uses_user_ranges || range == NULL) { |
| 23798 | return KERN_INVALID_ARGUMENT; |
| 23799 | } |
| 23800 | |
| 23801 | switch (range_id) { |
| 23802 | case UMEM_RANGE_ID_DEFAULT: |
| 23803 | *range = map->default_range; |
| 23804 | return KERN_SUCCESS; |
| 23805 | |
| 23806 | case UMEM_RANGE_ID_HEAP: |
| 23807 | *range = map->data_range; |
| 23808 | return KERN_SUCCESS; |
| 23809 | |
| 23810 | default: |
| 23811 | return KERN_INVALID_ARGUMENT; |
| 23812 | } |
| 23813 | } |
| 23814 | |
| 23815 | static vm_map_range_id_t |
| 23816 | vm_map_user_range_resolve( |
| 23817 | vm_map_t map, |
| 23818 | mach_vm_address_t addr, |
| 23819 | mach_vm_size_t size, |
| 23820 | mach_vm_range_t range) |
| 23821 | { |
| 23822 | struct mach_vm_range tmp; |
| 23823 | |
| 23824 | vm_map_lock_assert_held(map); |
| 23825 | |
| 23826 | static_assert(UMEM_RANGE_ID_DEFAULT == MACH_VM_RANGE_DEFAULT); |
| 23827 | static_assert(UMEM_RANGE_ID_HEAP == MACH_VM_RANGE_DATA); |
| 23828 | |
| 23829 | if (mach_vm_range_contains(&map->default_range, addr, size)) { |
| 23830 | if (range) { |
| 23831 | *range = map->default_range; |
| 23832 | } |
| 23833 | return UMEM_RANGE_ID_DEFAULT; |
| 23834 | } |
| 23835 | |
| 23836 | if (mach_vm_range_contains(&map->data_range, addr, size)) { |
| 23837 | if (range) { |
| 23838 | *range = map->data_range; |
| 23839 | } |
| 23840 | return UMEM_RANGE_ID_HEAP; |
| 23841 | } |
| 23842 | |
| 23843 | for (size_t i = 0; i < map->extra_ranges_count; i++) { |
| 23844 | vm_map_user_range_t r = &map->extra_ranges[i]; |
| 23845 | |
| 23846 | tmp.min_address = r->vmur_min_address; |
| 23847 | tmp.max_address = r->vmur_max_address; |
| 23848 | |
| 23849 | if (mach_vm_range_contains(&tmp, addr, size)) { |
| 23850 | if (range) { |
| 23851 | *range = tmp; |
| 23852 | } |
| 23853 | return r->vmur_range_id; |
| 23854 | } |
| 23855 | } |
| 23856 | |
| 23857 | if (range) { |
| 23858 | range->min_address = range->max_address = 0; |
| 23859 | } |
| 23860 | return UMEM_RANGE_ID_DEFAULT; |
| 23861 | } |
| 23862 | |
| 23863 | static int |
| 23864 | vm_map_user_range_cmp(const void *e1, const void *e2) |
| 23865 | { |
| 23866 | const struct vm_map_user_range *r1 = e1; |
| 23867 | const struct vm_map_user_range *r2 = e2; |
| 23868 | |
| 23869 | if (r1->vmur_min_address != r2->vmur_min_address) { |
| 23870 | return r1->vmur_min_address < r2->vmur_min_address ? -1 : 1; |
| 23871 | } |
| 23872 | |
| 23873 | return 0; |
| 23874 | } |
| 23875 | |
| 23876 | static int |
| 23877 | mach_vm_range_recipe_v1_cmp(const void *e1, const void *e2) |
| 23878 | { |
| 23879 | const mach_vm_range_recipe_v1_t *r1 = e1; |
| 23880 | const mach_vm_range_recipe_v1_t *r2 = e2; |
| 23881 | |
| 23882 | if (r1->range.min_address != r2->range.min_address) { |
| 23883 | return r1->range.min_address < r2->range.min_address ? -1 : 1; |
| 23884 | } |
| 23885 | |
| 23886 | return 0; |
| 23887 | } |
| 23888 | |
| 23889 | /*! |
| 23890 | * @function mach_vm_range_create_v1() |
| 23891 | * |
| 23892 | * @brief |
| 23893 | * Handle the backend for mach_vm_range_create() for the |
| 23894 | * MACH_VM_RANGE_FLAVOR_V1 flavor. |
| 23895 | * |
| 23896 | * @description |
| 23897 | * This call allows to create "ranges" in the map of a task |
| 23898 | * that have special semantics/policies around placement of |
| 23899 | * new allocations (in the vm_map_locate_space() sense). |
| 23900 | * |
| 23901 | * @returns |
| 23902 | * - KERN_SUCCESS on success |
| 23903 | * - KERN_INVALID_ARGUMENT for incorrect arguments |
| 23904 | * - KERN_NO_SPACE if the maximum amount of ranges would be exceeded |
| 23905 | * - KERN_MEMORY_PRESENT if any of the requested ranges |
| 23906 | * overlaps with existing ranges or allocations in the map. |
| 23907 | */ |
| 23908 | static kern_return_t |
| 23909 | mach_vm_range_create_v1( |
| 23910 | vm_map_t map, |
| 23911 | mach_vm_range_recipe_v1_t *recipe, |
| 23912 | uint32_t new_count) |
| 23913 | { |
| 23914 | const vm_offset_t mask = VM_MAP_PAGE_MASK(map); |
| 23915 | vm_map_user_range_t table; |
| 23916 | kern_return_t kr = KERN_SUCCESS; |
| 23917 | uint16_t count; |
| 23918 | |
| 23919 | struct mach_vm_range void1 = { |
| 23920 | .min_address = map->default_range.max_address, |
| 23921 | .max_address = map->data_range.min_address, |
| 23922 | }; |
| 23923 | struct mach_vm_range void2 = { |
| 23924 | .min_address = map->data_range.max_address, |
| 23925 | .max_address = vm_map_max(map), |
| 23926 | }; |
| 23927 | |
| 23928 | qsort(recipe, new_count, sizeof(mach_vm_range_recipe_v1_t), |
| 23929 | mach_vm_range_recipe_v1_cmp); |
| 23930 | |
| 23931 | /* |
| 23932 | * Step 1: Validate that the recipes have no intersections. |
| 23933 | */ |
| 23934 | |
| 23935 | for (size_t i = 0; i < new_count; i++) { |
| 23936 | mach_vm_range_t r = &recipe[i].range; |
| 23937 | mach_vm_size_t s; |
| 23938 | |
| 23939 | if (recipe[i].flags) { |
| 23940 | return KERN_INVALID_ARGUMENT; |
| 23941 | } |
| 23942 | |
| 23943 | static_assert(UMEM_RANGE_ID_FIXED == MACH_VM_RANGE_FIXED); |
| 23944 | switch (recipe[i].range_tag) { |
| 23945 | case MACH_VM_RANGE_FIXED: |
| 23946 | break; |
| 23947 | default: |
| 23948 | return KERN_INVALID_ARGUMENT; |
| 23949 | } |
| 23950 | |
| 23951 | if (!VM_MAP_PAGE_ALIGNED(r->min_address, mask) || |
| 23952 | !VM_MAP_PAGE_ALIGNED(r->max_address, mask) || |
| 23953 | r->min_address >= r->max_address) { |
| 23954 | return KERN_INVALID_ARGUMENT; |
| 23955 | } |
| 23956 | |
| 23957 | s = mach_vm_range_size(r); |
| 23958 | if (!mach_vm_range_contains(&void1, r->min_address, s) && |
| 23959 | !mach_vm_range_contains(&void2, r->min_address, s)) { |
| 23960 | return KERN_INVALID_ARGUMENT; |
| 23961 | } |
| 23962 | |
| 23963 | if (i > 0 && recipe[i - 1].range.max_address > |
| 23964 | recipe[i].range.min_address) { |
| 23965 | return KERN_INVALID_ARGUMENT; |
| 23966 | } |
| 23967 | } |
| 23968 | |
| 23969 | vm_map_lock(map); |
| 23970 | |
| 23971 | table = map->extra_ranges; |
| 23972 | count = map->extra_ranges_count; |
| 23973 | |
| 23974 | if (count + new_count > VM_MAP_EXTRA_RANGES_MAX) { |
| 23975 | kr = KERN_NO_SPACE; |
| 23976 | goto out_unlock; |
| 23977 | } |
| 23978 | |
| 23979 | /* |
| 23980 | * Step 2: Check that there is no intersection with existing ranges. |
| 23981 | */ |
| 23982 | |
| 23983 | for (size_t i = 0, j = 0; i < new_count && j < count;) { |
| 23984 | mach_vm_range_t r1 = &recipe[i].range; |
| 23985 | vm_map_user_range_t r2 = &table[j]; |
| 23986 | |
| 23987 | if (r1->max_address <= r2->vmur_min_address) { |
| 23988 | i++; |
| 23989 | } else if (r2->vmur_max_address <= r1->min_address) { |
| 23990 | j++; |
| 23991 | } else { |
| 23992 | kr = KERN_MEMORY_PRESENT; |
| 23993 | goto out_unlock; |
| 23994 | } |
| 23995 | } |
| 23996 | |
| 23997 | /* |
| 23998 | * Step 4: commit the new ranges. |
| 23999 | */ |
| 24000 | |
| 24001 | static_assert(VM_MAP_EXTRA_RANGES_MAX * sizeof(struct vm_map_user_range) <= |
| 24002 | KALLOC_SAFE_ALLOC_SIZE); |
| 24003 | |
| 24004 | table = krealloc_data(table, |
| 24005 | count * sizeof(struct vm_map_user_range), |
| 24006 | (count + new_count) * sizeof(struct vm_map_user_range), |
| 24007 | Z_ZERO | Z_WAITOK | Z_NOFAIL); |
| 24008 | |
| 24009 | for (size_t i = 0; i < new_count; i++) { |
| 24010 | static_assert(MACH_VM_MAX_ADDRESS < (1ull << 56)); |
| 24011 | |
| 24012 | table[count + i] = (struct vm_map_user_range){ |
| 24013 | .vmur_min_address = recipe[i].range.min_address, |
| 24014 | .vmur_max_address = recipe[i].range.max_address, |
| 24015 | .vmur_range_id = (vm_map_range_id_t)recipe[i].range_tag, |
| 24016 | }; |
| 24017 | } |
| 24018 | |
| 24019 | qsort(table, count + new_count, |
| 24020 | sizeof(struct vm_map_user_range), vm_map_user_range_cmp); |
| 24021 | |
| 24022 | map->extra_ranges_count += new_count; |
| 24023 | map->extra_ranges = table; |
| 24024 | |
| 24025 | out_unlock: |
| 24026 | vm_map_unlock(map); |
| 24027 | |
| 24028 | if (kr == KERN_SUCCESS) { |
| 24029 | for (size_t i = 0; i < new_count; i++) { |
| 24030 | vm_map_kernel_flags_t vmk_flags = { |
| 24031 | .vmf_fixed = true, |
| 24032 | .vmf_overwrite = true, |
| 24033 | .vmkf_overwrite_immutable = true, |
| 24034 | .vm_tag = recipe[i].vm_tag, |
| 24035 | }; |
| 24036 | __assert_only kern_return_t kr2; |
| 24037 | |
| 24038 | kr2 = vm_map_enter(map, &recipe[i].range.min_address, |
| 24039 | mach_vm_range_size(&recipe[i].range), |
| 24040 | 0, vmk_flags, VM_OBJECT_NULL, 0, FALSE, |
| 24041 | VM_PROT_NONE, VM_PROT_ALL, |
| 24042 | VM_INHERIT_DEFAULT); |
| 24043 | assert(kr2 == KERN_SUCCESS); |
| 24044 | } |
| 24045 | } |
| 24046 | return kr; |
| 24047 | } |
| 24048 | |
| 24049 | kern_return_t |
| 24050 | mach_vm_range_create( |
| 24051 | vm_map_t map, |
| 24052 | mach_vm_range_flavor_t flavor, |
| 24053 | mach_vm_range_recipes_raw_t recipe, |
| 24054 | natural_t size) |
| 24055 | { |
| 24056 | if (map != current_map()) { |
| 24057 | return KERN_INVALID_ARGUMENT; |
| 24058 | } |
| 24059 | |
| 24060 | if (!map->uses_user_ranges) { |
| 24061 | return KERN_NOT_SUPPORTED; |
| 24062 | } |
| 24063 | |
| 24064 | if (size == 0) { |
| 24065 | return KERN_SUCCESS; |
| 24066 | } |
| 24067 | |
| 24068 | if (flavor == MACH_VM_RANGE_FLAVOR_V1) { |
| 24069 | mach_vm_range_recipe_v1_t *array; |
| 24070 | |
| 24071 | if (size % sizeof(mach_vm_range_recipe_v1_t)) { |
| 24072 | return KERN_INVALID_ARGUMENT; |
| 24073 | } |
| 24074 | |
| 24075 | size /= sizeof(mach_vm_range_recipe_v1_t); |
| 24076 | if (size > VM_MAP_EXTRA_RANGES_MAX) { |
| 24077 | return KERN_NO_SPACE; |
| 24078 | } |
| 24079 | |
| 24080 | array = (mach_vm_range_recipe_v1_t *)recipe; |
| 24081 | return mach_vm_range_create_v1(map, array, size); |
| 24082 | } |
| 24083 | |
| 24084 | return KERN_INVALID_ARGUMENT; |
| 24085 | } |
| 24086 | |
| 24087 | #else /* !CONFIG_MAP_RANGES */ |
| 24088 | |
| 24089 | kern_return_t |
| 24090 | mach_vm_range_create( |
| 24091 | vm_map_t map, |
| 24092 | mach_vm_range_flavor_t flavor, |
| 24093 | mach_vm_range_recipes_raw_t recipe, |
| 24094 | natural_t size) |
| 24095 | { |
| 24096 | #pragma unused(map, flavor, recipe, size) |
| 24097 | return KERN_NOT_SUPPORTED; |
| 24098 | } |
| 24099 | |
| 24100 | #endif /* !CONFIG_MAP_RANGES */ |
| 24101 | |
| 24102 | void |
| 24103 | vm_map_kernel_flags_update_range_id(vm_map_kernel_flags_t *vmkf, vm_map_t map) |
| 24104 | { |
| 24105 | if (map == kernel_map) { |
| 24106 | if (vmkf->vmkf_range_id == KMEM_RANGE_ID_NONE) { |
| 24107 | vmkf->vmkf_range_id = KMEM_RANGE_ID_DATA; |
| 24108 | } |
| 24109 | #if CONFIG_MAP_RANGES |
| 24110 | } else if (vmkf->vm_tag < VM_MEMORY_COUNT && |
| 24111 | vmkf->vmkf_range_id == UMEM_RANGE_ID_DEFAULT && |
| 24112 | bitmap_test(vm_map_user_range_heap_map, vmkf->vm_tag)) { |
| 24113 | vmkf->vmkf_range_id = UMEM_RANGE_ID_HEAP; |
| 24114 | #endif /* CONFIG_MAP_RANGES */ |
| 24115 | } |
| 24116 | } |
| 24117 | |
| 24118 | /* |
| 24119 | * vm_map_entry_has_device_pager: |
| 24120 | * Check if the vm map entry specified by the virtual address has a device pager. |
| 24121 | * If the vm map entry does not exist or if the map is NULL, this returns FALSE. |
| 24122 | */ |
| 24123 | boolean_t |
| 24124 | (vm_map_t map, vm_map_offset_t vaddr) |
| 24125 | { |
| 24126 | vm_map_entry_t entry; |
| 24127 | vm_object_t object; |
| 24128 | boolean_t result; |
| 24129 | |
| 24130 | if (map == NULL) { |
| 24131 | return FALSE; |
| 24132 | } |
| 24133 | |
| 24134 | vm_map_lock(map); |
| 24135 | while (TRUE) { |
| 24136 | if (!vm_map_lookup_entry(map, address: vaddr, entry: &entry)) { |
| 24137 | result = FALSE; |
| 24138 | break; |
| 24139 | } |
| 24140 | if (entry->is_sub_map) { |
| 24141 | // Check the submap |
| 24142 | vm_map_t submap = VME_SUBMAP(entry); |
| 24143 | assert(submap != NULL); |
| 24144 | vm_map_lock(submap); |
| 24145 | vm_map_unlock(map); |
| 24146 | map = submap; |
| 24147 | continue; |
| 24148 | } |
| 24149 | object = VME_OBJECT(entry); |
| 24150 | if (object != NULL && object->pager != NULL && is_device_pager_ops(pager_ops: object->pager->mo_pager_ops)) { |
| 24151 | result = TRUE; |
| 24152 | break; |
| 24153 | } |
| 24154 | result = FALSE; |
| 24155 | break; |
| 24156 | } |
| 24157 | |
| 24158 | vm_map_unlock(map); |
| 24159 | return result; |
| 24160 | } |
| 24161 | |
| 24162 | |
| 24163 | #if MACH_ASSERT |
| 24164 | |
| 24165 | extern int pmap_ledgers_panic; |
| 24166 | extern int pmap_ledgers_panic_leeway; |
| 24167 | |
| 24168 | #define LEDGER_DRIFT(__LEDGER) \ |
| 24169 | int __LEDGER##_over; \ |
| 24170 | ledger_amount_t __LEDGER##_over_total; \ |
| 24171 | ledger_amount_t __LEDGER##_over_max; \ |
| 24172 | int __LEDGER##_under; \ |
| 24173 | ledger_amount_t __LEDGER##_under_total; \ |
| 24174 | ledger_amount_t __LEDGER##_under_max |
| 24175 | |
| 24176 | struct { |
| 24177 | uint64_t num_pmaps_checked; |
| 24178 | |
| 24179 | LEDGER_DRIFT(phys_footprint); |
| 24180 | LEDGER_DRIFT(internal); |
| 24181 | LEDGER_DRIFT(internal_compressed); |
| 24182 | LEDGER_DRIFT(external); |
| 24183 | LEDGER_DRIFT(reusable); |
| 24184 | LEDGER_DRIFT(iokit_mapped); |
| 24185 | LEDGER_DRIFT(alternate_accounting); |
| 24186 | LEDGER_DRIFT(alternate_accounting_compressed); |
| 24187 | LEDGER_DRIFT(page_table); |
| 24188 | LEDGER_DRIFT(purgeable_volatile); |
| 24189 | LEDGER_DRIFT(purgeable_nonvolatile); |
| 24190 | LEDGER_DRIFT(purgeable_volatile_compressed); |
| 24191 | LEDGER_DRIFT(purgeable_nonvolatile_compressed); |
| 24192 | LEDGER_DRIFT(tagged_nofootprint); |
| 24193 | LEDGER_DRIFT(tagged_footprint); |
| 24194 | LEDGER_DRIFT(tagged_nofootprint_compressed); |
| 24195 | LEDGER_DRIFT(tagged_footprint_compressed); |
| 24196 | LEDGER_DRIFT(network_volatile); |
| 24197 | LEDGER_DRIFT(network_nonvolatile); |
| 24198 | LEDGER_DRIFT(network_volatile_compressed); |
| 24199 | LEDGER_DRIFT(network_nonvolatile_compressed); |
| 24200 | LEDGER_DRIFT(media_nofootprint); |
| 24201 | LEDGER_DRIFT(media_footprint); |
| 24202 | LEDGER_DRIFT(media_nofootprint_compressed); |
| 24203 | LEDGER_DRIFT(media_footprint_compressed); |
| 24204 | LEDGER_DRIFT(graphics_nofootprint); |
| 24205 | LEDGER_DRIFT(graphics_footprint); |
| 24206 | LEDGER_DRIFT(graphics_nofootprint_compressed); |
| 24207 | LEDGER_DRIFT(graphics_footprint_compressed); |
| 24208 | LEDGER_DRIFT(neural_nofootprint); |
| 24209 | LEDGER_DRIFT(neural_footprint); |
| 24210 | LEDGER_DRIFT(neural_nofootprint_compressed); |
| 24211 | LEDGER_DRIFT(neural_footprint_compressed); |
| 24212 | } pmap_ledgers_drift; |
| 24213 | |
| 24214 | void |
| 24215 | vm_map_pmap_check_ledgers( |
| 24216 | pmap_t pmap, |
| 24217 | ledger_t ledger, |
| 24218 | int pid, |
| 24219 | char *procname) |
| 24220 | { |
| 24221 | ledger_amount_t bal; |
| 24222 | boolean_t do_panic; |
| 24223 | |
| 24224 | do_panic = FALSE; |
| 24225 | |
| 24226 | pmap_ledgers_drift.num_pmaps_checked++; |
| 24227 | |
| 24228 | #define LEDGER_CHECK_BALANCE(__LEDGER) \ |
| 24229 | MACRO_BEGIN \ |
| 24230 | int panic_on_negative = TRUE; \ |
| 24231 | ledger_get_balance(ledger, \ |
| 24232 | task_ledgers.__LEDGER, \ |
| 24233 | &bal); \ |
| 24234 | ledger_get_panic_on_negative(ledger, \ |
| 24235 | task_ledgers.__LEDGER, \ |
| 24236 | &panic_on_negative); \ |
| 24237 | if (bal != 0) { \ |
| 24238 | if (panic_on_negative || \ |
| 24239 | (pmap_ledgers_panic && \ |
| 24240 | pmap_ledgers_panic_leeway > 0 && \ |
| 24241 | (bal > (pmap_ledgers_panic_leeway * PAGE_SIZE) || \ |
| 24242 | bal < (-pmap_ledgers_panic_leeway * PAGE_SIZE)))) { \ |
| 24243 | do_panic = TRUE; \ |
| 24244 | } \ |
| 24245 | printf("LEDGER BALANCE proc %d (%s) " \ |
| 24246 | "\"%s\" = %lld\n", \ |
| 24247 | pid, procname, #__LEDGER, bal); \ |
| 24248 | if (bal > 0) { \ |
| 24249 | pmap_ledgers_drift.__LEDGER##_over++; \ |
| 24250 | pmap_ledgers_drift.__LEDGER##_over_total += bal; \ |
| 24251 | if (bal > pmap_ledgers_drift.__LEDGER##_over_max) { \ |
| 24252 | pmap_ledgers_drift.__LEDGER##_over_max = bal; \ |
| 24253 | } \ |
| 24254 | } else if (bal < 0) { \ |
| 24255 | pmap_ledgers_drift.__LEDGER##_under++; \ |
| 24256 | pmap_ledgers_drift.__LEDGER##_under_total += bal; \ |
| 24257 | if (bal < pmap_ledgers_drift.__LEDGER##_under_max) { \ |
| 24258 | pmap_ledgers_drift.__LEDGER##_under_max = bal; \ |
| 24259 | } \ |
| 24260 | } \ |
| 24261 | } \ |
| 24262 | MACRO_END |
| 24263 | |
| 24264 | LEDGER_CHECK_BALANCE(phys_footprint); |
| 24265 | LEDGER_CHECK_BALANCE(internal); |
| 24266 | LEDGER_CHECK_BALANCE(internal_compressed); |
| 24267 | LEDGER_CHECK_BALANCE(external); |
| 24268 | LEDGER_CHECK_BALANCE(reusable); |
| 24269 | LEDGER_CHECK_BALANCE(iokit_mapped); |
| 24270 | LEDGER_CHECK_BALANCE(alternate_accounting); |
| 24271 | LEDGER_CHECK_BALANCE(alternate_accounting_compressed); |
| 24272 | LEDGER_CHECK_BALANCE(page_table); |
| 24273 | LEDGER_CHECK_BALANCE(purgeable_volatile); |
| 24274 | LEDGER_CHECK_BALANCE(purgeable_nonvolatile); |
| 24275 | LEDGER_CHECK_BALANCE(purgeable_volatile_compressed); |
| 24276 | LEDGER_CHECK_BALANCE(purgeable_nonvolatile_compressed); |
| 24277 | LEDGER_CHECK_BALANCE(tagged_nofootprint); |
| 24278 | LEDGER_CHECK_BALANCE(tagged_footprint); |
| 24279 | LEDGER_CHECK_BALANCE(tagged_nofootprint_compressed); |
| 24280 | LEDGER_CHECK_BALANCE(tagged_footprint_compressed); |
| 24281 | LEDGER_CHECK_BALANCE(network_volatile); |
| 24282 | LEDGER_CHECK_BALANCE(network_nonvolatile); |
| 24283 | LEDGER_CHECK_BALANCE(network_volatile_compressed); |
| 24284 | LEDGER_CHECK_BALANCE(network_nonvolatile_compressed); |
| 24285 | LEDGER_CHECK_BALANCE(media_nofootprint); |
| 24286 | LEDGER_CHECK_BALANCE(media_footprint); |
| 24287 | LEDGER_CHECK_BALANCE(media_nofootprint_compressed); |
| 24288 | LEDGER_CHECK_BALANCE(media_footprint_compressed); |
| 24289 | LEDGER_CHECK_BALANCE(graphics_nofootprint); |
| 24290 | LEDGER_CHECK_BALANCE(graphics_footprint); |
| 24291 | LEDGER_CHECK_BALANCE(graphics_nofootprint_compressed); |
| 24292 | LEDGER_CHECK_BALANCE(graphics_footprint_compressed); |
| 24293 | LEDGER_CHECK_BALANCE(neural_nofootprint); |
| 24294 | LEDGER_CHECK_BALANCE(neural_footprint); |
| 24295 | LEDGER_CHECK_BALANCE(neural_nofootprint_compressed); |
| 24296 | LEDGER_CHECK_BALANCE(neural_footprint_compressed); |
| 24297 | |
| 24298 | if (do_panic) { |
| 24299 | if (pmap_ledgers_panic) { |
| 24300 | panic("pmap_destroy(%p) %d[%s] has imbalanced ledgers" , |
| 24301 | pmap, pid, procname); |
| 24302 | } else { |
| 24303 | printf("pmap_destroy(%p) %d[%s] has imbalanced ledgers\n" , |
| 24304 | pmap, pid, procname); |
| 24305 | } |
| 24306 | } |
| 24307 | } |
| 24308 | |
| 24309 | void |
| 24310 | vm_map_pmap_set_process( |
| 24311 | vm_map_t map, |
| 24312 | int pid, |
| 24313 | char *procname) |
| 24314 | { |
| 24315 | pmap_set_process(vm_map_pmap(map), pid, procname); |
| 24316 | } |
| 24317 | |
| 24318 | #endif /* MACH_ASSERT */ |
| 24319 | |