| 1 | /* |
| 2 | * Copyright (c) 2000-2021 Apple Inc. All rights reserved. |
| 3 | * |
| 4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ |
| 5 | * |
| 6 | * This file contains Original Code and/or Modifications of Original Code |
| 7 | * as defined in and that are subject to the Apple Public Source License |
| 8 | * Version 2.0 (the 'License'). You may not use this file except in |
| 9 | * compliance with the License. The rights granted to you under the License |
| 10 | * may not be used to create, or enable the creation or redistribution of, |
| 11 | * unlawful or unlicensed copies of an Apple operating system, or to |
| 12 | * circumvent, violate, or enable the circumvention or violation of, any |
| 13 | * terms of an Apple operating system software license agreement. |
| 14 | * |
| 15 | * Please obtain a copy of the License at |
| 16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. |
| 17 | * |
| 18 | * The Original Code and all software distributed under the License are |
| 19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER |
| 20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
| 21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, |
| 22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
| 23 | * Please see the License for the specific language governing rights and |
| 24 | * limitations under the License. |
| 25 | * |
| 26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ |
| 27 | */ |
| 28 | /* |
| 29 | * @OSF_COPYRIGHT@ |
| 30 | */ |
| 31 | /* |
| 32 | * Mach Operating System |
| 33 | * Copyright (c) 1991,1990,1989,1988,1987 Carnegie Mellon University |
| 34 | * All Rights Reserved. |
| 35 | * |
| 36 | * Permission to use, copy, modify and distribute this software and its |
| 37 | * documentation is hereby granted, provided that both the copyright |
| 38 | * notice and this permission notice appear in all copies of the |
| 39 | * software, derivative works or modified versions, and any portions |
| 40 | * thereof, and that both notices appear in supporting documentation. |
| 41 | * |
| 42 | * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" |
| 43 | * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR |
| 44 | * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. |
| 45 | * |
| 46 | * Carnegie Mellon requests users of this software to return to |
| 47 | * |
| 48 | * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU |
| 49 | * School of Computer Science |
| 50 | * Carnegie Mellon University |
| 51 | * Pittsburgh PA 15213-3890 |
| 52 | * |
| 53 | * any improvements or extensions that they make and grant Carnegie Mellon |
| 54 | * the rights to redistribute these changes. |
| 55 | */ |
| 56 | /* |
| 57 | */ |
| 58 | /* |
| 59 | * File: vm_fault.c |
| 60 | * Author: Avadis Tevanian, Jr., Michael Wayne Young |
| 61 | * |
| 62 | * Page fault handling module. |
| 63 | */ |
| 64 | |
| 65 | #include <libkern/OSAtomic.h> |
| 66 | |
| 67 | #include <mach/mach_types.h> |
| 68 | #include <mach/kern_return.h> |
| 69 | #include <mach/message.h> /* for error codes */ |
| 70 | #include <mach/vm_param.h> |
| 71 | #include <mach/vm_behavior.h> |
| 72 | #include <mach/memory_object.h> |
| 73 | /* For memory_object_data_{request,unlock} */ |
| 74 | #include <mach/sdt.h> |
| 75 | |
| 76 | #include <kern/kern_types.h> |
| 77 | #include <kern/host_statistics.h> |
| 78 | #include <kern/counter.h> |
| 79 | #include <kern/task.h> |
| 80 | #include <kern/thread.h> |
| 81 | #include <kern/sched_prim.h> |
| 82 | #include <kern/host.h> |
| 83 | #include <kern/mach_param.h> |
| 84 | #include <kern/macro_help.h> |
| 85 | #include <kern/zalloc_internal.h> |
| 86 | #include <kern/misc_protos.h> |
| 87 | #include <kern/policy_internal.h> |
| 88 | |
| 89 | #include <vm/vm_compressor.h> |
| 90 | #include <vm/vm_compressor_pager.h> |
| 91 | #include <vm/vm_fault.h> |
| 92 | #include <vm/vm_map.h> |
| 93 | #include <vm/vm_object.h> |
| 94 | #include <vm/vm_page.h> |
| 95 | #include <vm/vm_kern.h> |
| 96 | #include <vm/pmap.h> |
| 97 | #include <vm/vm_pageout.h> |
| 98 | #include <vm/vm_protos.h> |
| 99 | #include <vm/vm_external.h> |
| 100 | #include <vm/memory_object.h> |
| 101 | #include <vm/vm_purgeable_internal.h> /* Needed by some vm_page.h macros */ |
| 102 | #include <vm/vm_shared_region.h> |
| 103 | |
| 104 | #include <sys/codesign.h> |
| 105 | #include <sys/code_signing.h> |
| 106 | #include <sys/reason.h> |
| 107 | #include <sys/signalvar.h> |
| 108 | |
| 109 | #include <sys/kdebug_triage.h> |
| 110 | |
| 111 | #include <san/kasan.h> |
| 112 | #include <libkern/coreanalytics/coreanalytics.h> |
| 113 | |
| 114 | #define VM_FAULT_CLASSIFY 0 |
| 115 | |
| 116 | #define TRACEFAULTPAGE 0 /* (TEST/DEBUG) */ |
| 117 | |
| 118 | int vm_protect_privileged_from_untrusted = 1; |
| 119 | |
| 120 | unsigned int vm_object_pagein_throttle = 16; |
| 121 | |
| 122 | /* |
| 123 | * We apply a hard throttle to the demand zero rate of tasks that we believe are running out of control which |
| 124 | * kicks in when swap space runs out. 64-bit programs have massive address spaces and can leak enormous amounts |
| 125 | * of memory if they're buggy and can run the system completely out of swap space. If this happens, we |
| 126 | * impose a hard throttle on them to prevent them from taking the last bit of memory left. This helps |
| 127 | * keep the UI active so that the user has a chance to kill the offending task before the system |
| 128 | * completely hangs. |
| 129 | * |
| 130 | * The hard throttle is only applied when the system is nearly completely out of swap space and is only applied |
| 131 | * to tasks that appear to be bloated. When swap runs out, any task using more than vm_hard_throttle_threshold |
| 132 | * will be throttled. The throttling is done by giving the thread that's trying to demand zero a page a |
| 133 | * delay of HARD_THROTTLE_DELAY microseconds before being allowed to try the page fault again. |
| 134 | */ |
| 135 | |
| 136 | extern void throttle_lowpri_io(int); |
| 137 | |
| 138 | extern struct vnode *(memory_object_t); |
| 139 | |
| 140 | uint64_t vm_hard_throttle_threshold; |
| 141 | |
| 142 | #if DEBUG || DEVELOPMENT |
| 143 | static bool vmtc_panic_instead = false; |
| 144 | int panic_object_not_alive = 1; |
| 145 | #endif /* DEBUG || DEVELOPMENT */ |
| 146 | |
| 147 | OS_ALWAYS_INLINE |
| 148 | boolean_t |
| 149 | NEED_TO_HARD_THROTTLE_THIS_TASK(void) |
| 150 | { |
| 151 | return vm_wants_task_throttled(current_task()) || |
| 152 | ((vm_page_free_count < vm_page_throttle_limit || |
| 153 | HARD_THROTTLE_LIMIT_REACHED()) && |
| 154 | proc_get_effective_thread_policy(thread: current_thread(), TASK_POLICY_IO) >= THROTTLE_LEVEL_THROTTLED); |
| 155 | } |
| 156 | |
| 157 | #define HARD_THROTTLE_DELAY 10000 /* 10000 us == 10 ms */ |
| 158 | #define SOFT_THROTTLE_DELAY 200 /* 200 us == .2 ms */ |
| 159 | |
| 160 | #define VM_PAGE_CREATION_THROTTLE_PERIOD_SECS 6 |
| 161 | #define VM_PAGE_CREATION_THROTTLE_RATE_PER_SEC 20000 |
| 162 | |
| 163 | |
| 164 | #define VM_STAT_DECOMPRESSIONS() \ |
| 165 | MACRO_BEGIN \ |
| 166 | counter_inc(&vm_statistics_decompressions); \ |
| 167 | current_thread()->decompressions++; \ |
| 168 | MACRO_END |
| 169 | |
| 170 | boolean_t current_thread_aborted(void); |
| 171 | |
| 172 | /* Forward declarations of internal routines. */ |
| 173 | static kern_return_t vm_fault_wire_fast( |
| 174 | vm_map_t map, |
| 175 | vm_map_offset_t va, |
| 176 | vm_prot_t prot, |
| 177 | vm_tag_t wire_tag, |
| 178 | vm_map_entry_t entry, |
| 179 | pmap_t pmap, |
| 180 | vm_map_offset_t pmap_addr, |
| 181 | ppnum_t *physpage_p); |
| 182 | |
| 183 | static kern_return_t vm_fault_internal( |
| 184 | vm_map_t map, |
| 185 | vm_map_offset_t vaddr, |
| 186 | vm_prot_t caller_prot, |
| 187 | boolean_t change_wiring, |
| 188 | vm_tag_t wire_tag, |
| 189 | int interruptible, |
| 190 | pmap_t pmap, |
| 191 | vm_map_offset_t pmap_addr, |
| 192 | ppnum_t *physpage_p); |
| 193 | |
| 194 | static void vm_fault_copy_cleanup( |
| 195 | vm_page_t page, |
| 196 | vm_page_t top_page); |
| 197 | |
| 198 | static void vm_fault_copy_dst_cleanup( |
| 199 | vm_page_t page); |
| 200 | |
| 201 | #if VM_FAULT_CLASSIFY |
| 202 | extern void vm_fault_classify(vm_object_t object, |
| 203 | vm_object_offset_t offset, |
| 204 | vm_prot_t fault_type); |
| 205 | |
| 206 | extern void vm_fault_classify_init(void); |
| 207 | #endif |
| 208 | |
| 209 | unsigned long vm_pmap_enter_blocked = 0; |
| 210 | unsigned long vm_pmap_enter_retried = 0; |
| 211 | |
| 212 | unsigned long vm_cs_validates = 0; |
| 213 | unsigned long vm_cs_revalidates = 0; |
| 214 | unsigned long vm_cs_query_modified = 0; |
| 215 | unsigned long vm_cs_validated_dirtied = 0; |
| 216 | unsigned long vm_cs_bitmap_validated = 0; |
| 217 | |
| 218 | #if CODE_SIGNING_MONITOR |
| 219 | uint64_t vm_cs_defer_to_csm = 0; |
| 220 | uint64_t vm_cs_defer_to_csm_not = 0; |
| 221 | #endif /* CODE_SIGNING_MONITOR */ |
| 222 | |
| 223 | void vm_pre_fault(vm_map_offset_t, vm_prot_t); |
| 224 | |
| 225 | extern char *kdp_compressor_decompressed_page; |
| 226 | extern addr64_t kdp_compressor_decompressed_page_paddr; |
| 227 | extern ppnum_t kdp_compressor_decompressed_page_ppnum; |
| 228 | |
| 229 | struct vmrtfr { |
| 230 | int vmrtfr_maxi; |
| 231 | int vmrtfr_curi; |
| 232 | int64_t vmrtf_total; |
| 233 | vm_rtfault_record_t *vm_rtf_records; |
| 234 | } vmrtfrs; |
| 235 | #define VMRTF_DEFAULT_BUFSIZE (4096) |
| 236 | #define VMRTF_NUM_RECORDS_DEFAULT (VMRTF_DEFAULT_BUFSIZE / sizeof(vm_rtfault_record_t)) |
| 237 | TUNABLE(int, vmrtf_num_records, "vm_rtfault_records" , VMRTF_NUM_RECORDS_DEFAULT); |
| 238 | |
| 239 | static void vm_rtfrecord_lock(void); |
| 240 | static void vm_rtfrecord_unlock(void); |
| 241 | static void vm_record_rtfault(thread_t, uint64_t, vm_map_offset_t, int); |
| 242 | |
| 243 | extern lck_grp_t vm_page_lck_grp_bucket; |
| 244 | extern lck_attr_t vm_page_lck_attr; |
| 245 | LCK_SPIN_DECLARE_ATTR(vm_rtfr_slock, &vm_page_lck_grp_bucket, &vm_page_lck_attr); |
| 246 | |
| 247 | #if DEVELOPMENT || DEBUG |
| 248 | extern int madvise_free_debug; |
| 249 | extern int madvise_free_debug_sometimes; |
| 250 | #endif /* DEVELOPMENT || DEBUG */ |
| 251 | |
| 252 | extern int vm_pageout_protect_realtime; |
| 253 | |
| 254 | #if CONFIG_FREEZE |
| 255 | #endif /* CONFIG_FREEZE */ |
| 256 | |
| 257 | /* |
| 258 | * Routine: vm_fault_init |
| 259 | * Purpose: |
| 260 | * Initialize our private data structures. |
| 261 | */ |
| 262 | __startup_func |
| 263 | void |
| 264 | vm_fault_init(void) |
| 265 | { |
| 266 | int i, vm_compressor_temp; |
| 267 | boolean_t need_default_val = TRUE; |
| 268 | /* |
| 269 | * Choose a value for the hard throttle threshold based on the amount of ram. The threshold is |
| 270 | * computed as a percentage of available memory, and the percentage used is scaled inversely with |
| 271 | * the amount of memory. The percentage runs between 10% and 35%. We use 35% for small memory systems |
| 272 | * and reduce the value down to 10% for very large memory configurations. This helps give us a |
| 273 | * definition of a memory hog that makes more sense relative to the amount of ram in the machine. |
| 274 | * The formula here simply uses the number of gigabytes of ram to adjust the percentage. |
| 275 | */ |
| 276 | |
| 277 | vm_hard_throttle_threshold = sane_size * (35 - MIN((int)(sane_size / (1024 * 1024 * 1024)), 25)) / 100; |
| 278 | |
| 279 | /* |
| 280 | * Configure compressed pager behavior. A boot arg takes precedence over a device tree entry. |
| 281 | */ |
| 282 | |
| 283 | if (PE_parse_boot_argn(arg_string: "vm_compressor" , arg_ptr: &vm_compressor_temp, max_arg: sizeof(vm_compressor_temp))) { |
| 284 | for (i = 0; i < VM_PAGER_MAX_MODES; i++) { |
| 285 | if (((vm_compressor_temp & (1 << i)) == vm_compressor_temp)) { |
| 286 | need_default_val = FALSE; |
| 287 | vm_compressor_mode = vm_compressor_temp; |
| 288 | break; |
| 289 | } |
| 290 | } |
| 291 | if (need_default_val) { |
| 292 | printf(format: "Ignoring \"vm_compressor\" boot arg %d\n" , vm_compressor_temp); |
| 293 | } |
| 294 | } |
| 295 | #if CONFIG_FREEZE |
| 296 | if (need_default_val) { |
| 297 | if (osenvironment_is_diagnostics()) { |
| 298 | printf("osenvironment == \"diagnostics\". Setting \"vm_compressor_mode\" to in-core compressor only\n" ); |
| 299 | vm_compressor_mode = VM_PAGER_COMPRESSOR_NO_SWAP; |
| 300 | need_default_val = false; |
| 301 | } |
| 302 | } |
| 303 | #endif /* CONFIG_FREEZE */ |
| 304 | if (need_default_val) { |
| 305 | /* If no boot arg or incorrect boot arg, try device tree. */ |
| 306 | PE_get_default(property_name: "kern.vm_compressor" , property_ptr: &vm_compressor_mode, max_property: sizeof(vm_compressor_mode)); |
| 307 | } |
| 308 | printf(format: "\"vm_compressor_mode\" is %d\n" , vm_compressor_mode); |
| 309 | vm_config_init(); |
| 310 | |
| 311 | PE_parse_boot_argn(arg_string: "vm_protect_privileged_from_untrusted" , |
| 312 | arg_ptr: &vm_protect_privileged_from_untrusted, |
| 313 | max_arg: sizeof(vm_protect_privileged_from_untrusted)); |
| 314 | |
| 315 | #if DEBUG || DEVELOPMENT |
| 316 | (void)PE_parse_boot_argn("text_corruption_panic" , &vmtc_panic_instead, sizeof(vmtc_panic_instead)); |
| 317 | |
| 318 | if (kern_feature_override(KF_MADVISE_FREE_DEBUG_OVRD)) { |
| 319 | madvise_free_debug = 0; |
| 320 | madvise_free_debug_sometimes = 0; |
| 321 | } |
| 322 | |
| 323 | PE_parse_boot_argn("panic_object_not_alive" , &panic_object_not_alive, sizeof(panic_object_not_alive)); |
| 324 | #endif /* DEBUG || DEVELOPMENT */ |
| 325 | } |
| 326 | |
| 327 | __startup_func |
| 328 | static void |
| 329 | vm_rtfault_record_init(void) |
| 330 | { |
| 331 | size_t size; |
| 332 | |
| 333 | vmrtf_num_records = MAX(vmrtf_num_records, 1); |
| 334 | size = vmrtf_num_records * sizeof(vm_rtfault_record_t); |
| 335 | vmrtfrs.vm_rtf_records = zalloc_permanent_tag(size, |
| 336 | ZALIGN(vm_rtfault_record_t), VM_KERN_MEMORY_DIAG); |
| 337 | vmrtfrs.vmrtfr_maxi = vmrtf_num_records - 1; |
| 338 | } |
| 339 | STARTUP(ZALLOC, STARTUP_RANK_MIDDLE, vm_rtfault_record_init); |
| 340 | |
| 341 | /* |
| 342 | * Routine: vm_fault_cleanup |
| 343 | * Purpose: |
| 344 | * Clean up the result of vm_fault_page. |
| 345 | * Results: |
| 346 | * The paging reference for "object" is released. |
| 347 | * "object" is unlocked. |
| 348 | * If "top_page" is not null, "top_page" is |
| 349 | * freed and the paging reference for the object |
| 350 | * containing it is released. |
| 351 | * |
| 352 | * In/out conditions: |
| 353 | * "object" must be locked. |
| 354 | */ |
| 355 | void |
| 356 | vm_fault_cleanup( |
| 357 | vm_object_t object, |
| 358 | vm_page_t top_page) |
| 359 | { |
| 360 | vm_object_paging_end(object); |
| 361 | vm_object_unlock(object); |
| 362 | |
| 363 | if (top_page != VM_PAGE_NULL) { |
| 364 | object = VM_PAGE_OBJECT(top_page); |
| 365 | |
| 366 | vm_object_lock(object); |
| 367 | VM_PAGE_FREE(top_page); |
| 368 | vm_object_paging_end(object); |
| 369 | vm_object_unlock(object); |
| 370 | } |
| 371 | } |
| 372 | |
| 373 | #define ALIGNED(x) (((x) & (PAGE_SIZE_64 - 1)) == 0) |
| 374 | |
| 375 | |
| 376 | boolean_t vm_page_deactivate_behind = TRUE; |
| 377 | /* |
| 378 | * default sizes given VM_BEHAVIOR_DEFAULT reference behavior |
| 379 | */ |
| 380 | #define VM_DEFAULT_DEACTIVATE_BEHIND_WINDOW 128 |
| 381 | #define VM_DEFAULT_DEACTIVATE_BEHIND_CLUSTER 16 /* don't make this too big... */ |
| 382 | /* we use it to size an array on the stack */ |
| 383 | |
| 384 | int vm_default_behind = VM_DEFAULT_DEACTIVATE_BEHIND_WINDOW; |
| 385 | |
| 386 | #define MAX_SEQUENTIAL_RUN (1024 * 1024 * 1024) |
| 387 | |
| 388 | /* |
| 389 | * vm_page_is_sequential |
| 390 | * |
| 391 | * Determine if sequential access is in progress |
| 392 | * in accordance with the behavior specified. |
| 393 | * Update state to indicate current access pattern. |
| 394 | * |
| 395 | * object must have at least the shared lock held |
| 396 | */ |
| 397 | static |
| 398 | void |
| 399 | vm_fault_is_sequential( |
| 400 | vm_object_t object, |
| 401 | vm_object_offset_t offset, |
| 402 | vm_behavior_t behavior) |
| 403 | { |
| 404 | vm_object_offset_t last_alloc; |
| 405 | int sequential; |
| 406 | int orig_sequential; |
| 407 | |
| 408 | last_alloc = object->last_alloc; |
| 409 | sequential = object->sequential; |
| 410 | orig_sequential = sequential; |
| 411 | |
| 412 | offset = vm_object_trunc_page(offset); |
| 413 | if (offset == last_alloc && behavior != VM_BEHAVIOR_RANDOM) { |
| 414 | /* re-faulting in the same page: no change in behavior */ |
| 415 | return; |
| 416 | } |
| 417 | |
| 418 | switch (behavior) { |
| 419 | case VM_BEHAVIOR_RANDOM: |
| 420 | /* |
| 421 | * reset indicator of sequential behavior |
| 422 | */ |
| 423 | sequential = 0; |
| 424 | break; |
| 425 | |
| 426 | case VM_BEHAVIOR_SEQUENTIAL: |
| 427 | if (offset && last_alloc == offset - PAGE_SIZE_64) { |
| 428 | /* |
| 429 | * advance indicator of sequential behavior |
| 430 | */ |
| 431 | if (sequential < MAX_SEQUENTIAL_RUN) { |
| 432 | sequential += PAGE_SIZE; |
| 433 | } |
| 434 | } else { |
| 435 | /* |
| 436 | * reset indicator of sequential behavior |
| 437 | */ |
| 438 | sequential = 0; |
| 439 | } |
| 440 | break; |
| 441 | |
| 442 | case VM_BEHAVIOR_RSEQNTL: |
| 443 | if (last_alloc && last_alloc == offset + PAGE_SIZE_64) { |
| 444 | /* |
| 445 | * advance indicator of sequential behavior |
| 446 | */ |
| 447 | if (sequential > -MAX_SEQUENTIAL_RUN) { |
| 448 | sequential -= PAGE_SIZE; |
| 449 | } |
| 450 | } else { |
| 451 | /* |
| 452 | * reset indicator of sequential behavior |
| 453 | */ |
| 454 | sequential = 0; |
| 455 | } |
| 456 | break; |
| 457 | |
| 458 | case VM_BEHAVIOR_DEFAULT: |
| 459 | default: |
| 460 | if (offset && last_alloc == (offset - PAGE_SIZE_64)) { |
| 461 | /* |
| 462 | * advance indicator of sequential behavior |
| 463 | */ |
| 464 | if (sequential < 0) { |
| 465 | sequential = 0; |
| 466 | } |
| 467 | if (sequential < MAX_SEQUENTIAL_RUN) { |
| 468 | sequential += PAGE_SIZE; |
| 469 | } |
| 470 | } else if (last_alloc && last_alloc == (offset + PAGE_SIZE_64)) { |
| 471 | /* |
| 472 | * advance indicator of sequential behavior |
| 473 | */ |
| 474 | if (sequential > 0) { |
| 475 | sequential = 0; |
| 476 | } |
| 477 | if (sequential > -MAX_SEQUENTIAL_RUN) { |
| 478 | sequential -= PAGE_SIZE; |
| 479 | } |
| 480 | } else { |
| 481 | /* |
| 482 | * reset indicator of sequential behavior |
| 483 | */ |
| 484 | sequential = 0; |
| 485 | } |
| 486 | break; |
| 487 | } |
| 488 | if (sequential != orig_sequential) { |
| 489 | if (!OSCompareAndSwap(orig_sequential, sequential, (UInt32 *)&object->sequential)) { |
| 490 | /* |
| 491 | * if someone else has already updated object->sequential |
| 492 | * don't bother trying to update it or object->last_alloc |
| 493 | */ |
| 494 | return; |
| 495 | } |
| 496 | } |
| 497 | /* |
| 498 | * I'd like to do this with a OSCompareAndSwap64, but that |
| 499 | * doesn't exist for PPC... however, it shouldn't matter |
| 500 | * that much... last_alloc is maintained so that we can determine |
| 501 | * if a sequential access pattern is taking place... if only |
| 502 | * one thread is banging on this object, no problem with the unprotected |
| 503 | * update... if 2 or more threads are banging away, we run the risk of |
| 504 | * someone seeing a mangled update... however, in the face of multiple |
| 505 | * accesses, no sequential access pattern can develop anyway, so we |
| 506 | * haven't lost any real info. |
| 507 | */ |
| 508 | object->last_alloc = offset; |
| 509 | } |
| 510 | |
| 511 | #if DEVELOPMENT || DEBUG |
| 512 | uint64_t vm_page_deactivate_behind_count = 0; |
| 513 | #endif /* DEVELOPMENT || DEBUG */ |
| 514 | |
| 515 | /* |
| 516 | * vm_page_deactivate_behind |
| 517 | * |
| 518 | * Determine if sequential access is in progress |
| 519 | * in accordance with the behavior specified. If |
| 520 | * so, compute a potential page to deactivate and |
| 521 | * deactivate it. |
| 522 | * |
| 523 | * object must be locked. |
| 524 | * |
| 525 | * return TRUE if we actually deactivate a page |
| 526 | */ |
| 527 | static |
| 528 | boolean_t |
| 529 | vm_fault_deactivate_behind( |
| 530 | vm_object_t object, |
| 531 | vm_object_offset_t offset, |
| 532 | vm_behavior_t behavior) |
| 533 | { |
| 534 | int n; |
| 535 | int pages_in_run = 0; |
| 536 | int max_pages_in_run = 0; |
| 537 | int sequential_run; |
| 538 | int sequential_behavior = VM_BEHAVIOR_SEQUENTIAL; |
| 539 | vm_object_offset_t run_offset = 0; |
| 540 | vm_object_offset_t pg_offset = 0; |
| 541 | vm_page_t m; |
| 542 | vm_page_t page_run[VM_DEFAULT_DEACTIVATE_BEHIND_CLUSTER]; |
| 543 | |
| 544 | pages_in_run = 0; |
| 545 | #if TRACEFAULTPAGE |
| 546 | dbgTrace(0xBEEF0018, (unsigned int) object, (unsigned int) vm_fault_deactivate_behind); /* (TEST/DEBUG) */ |
| 547 | #endif |
| 548 | if (is_kernel_object(object) || vm_page_deactivate_behind == FALSE || (vm_object_trunc_page(offset) != offset)) { |
| 549 | /* |
| 550 | * Do not deactivate pages from the kernel object: they |
| 551 | * are not intended to become pageable. |
| 552 | * or we've disabled the deactivate behind mechanism |
| 553 | * or we are dealing with an offset that is not aligned to |
| 554 | * the system's PAGE_SIZE because in that case we will |
| 555 | * handle the deactivation on the aligned offset and, thus, |
| 556 | * the full PAGE_SIZE page once. This helps us avoid the redundant |
| 557 | * deactivates and the extra faults. |
| 558 | */ |
| 559 | return FALSE; |
| 560 | } |
| 561 | if ((sequential_run = object->sequential)) { |
| 562 | if (sequential_run < 0) { |
| 563 | sequential_behavior = VM_BEHAVIOR_RSEQNTL; |
| 564 | sequential_run = 0 - sequential_run; |
| 565 | } else { |
| 566 | sequential_behavior = VM_BEHAVIOR_SEQUENTIAL; |
| 567 | } |
| 568 | } |
| 569 | switch (behavior) { |
| 570 | case VM_BEHAVIOR_RANDOM: |
| 571 | break; |
| 572 | case VM_BEHAVIOR_SEQUENTIAL: |
| 573 | if (sequential_run >= (int)PAGE_SIZE) { |
| 574 | run_offset = 0 - PAGE_SIZE_64; |
| 575 | max_pages_in_run = 1; |
| 576 | } |
| 577 | break; |
| 578 | case VM_BEHAVIOR_RSEQNTL: |
| 579 | if (sequential_run >= (int)PAGE_SIZE) { |
| 580 | run_offset = PAGE_SIZE_64; |
| 581 | max_pages_in_run = 1; |
| 582 | } |
| 583 | break; |
| 584 | case VM_BEHAVIOR_DEFAULT: |
| 585 | default: |
| 586 | { vm_object_offset_t behind = vm_default_behind * PAGE_SIZE_64; |
| 587 | |
| 588 | /* |
| 589 | * determine if the run of sequential accesss has been |
| 590 | * long enough on an object with default access behavior |
| 591 | * to consider it for deactivation |
| 592 | */ |
| 593 | if ((uint64_t)sequential_run >= behind && (sequential_run % (VM_DEFAULT_DEACTIVATE_BEHIND_CLUSTER * PAGE_SIZE)) == 0) { |
| 594 | /* |
| 595 | * the comparisons between offset and behind are done |
| 596 | * in this kind of odd fashion in order to prevent wrap around |
| 597 | * at the end points |
| 598 | */ |
| 599 | if (sequential_behavior == VM_BEHAVIOR_SEQUENTIAL) { |
| 600 | if (offset >= behind) { |
| 601 | run_offset = 0 - behind; |
| 602 | pg_offset = PAGE_SIZE_64; |
| 603 | max_pages_in_run = VM_DEFAULT_DEACTIVATE_BEHIND_CLUSTER; |
| 604 | } |
| 605 | } else { |
| 606 | if (offset < -behind) { |
| 607 | run_offset = behind; |
| 608 | pg_offset = 0 - PAGE_SIZE_64; |
| 609 | max_pages_in_run = VM_DEFAULT_DEACTIVATE_BEHIND_CLUSTER; |
| 610 | } |
| 611 | } |
| 612 | } |
| 613 | break;} |
| 614 | } |
| 615 | for (n = 0; n < max_pages_in_run; n++) { |
| 616 | m = vm_page_lookup(object, offset: offset + run_offset + (n * pg_offset)); |
| 617 | |
| 618 | if (m && !m->vmp_laundry && !m->vmp_busy && !m->vmp_no_cache && (m->vmp_q_state != VM_PAGE_ON_THROTTLED_Q) && !m->vmp_fictitious && !m->vmp_absent) { |
| 619 | page_run[pages_in_run++] = m; |
| 620 | |
| 621 | /* |
| 622 | * by not passing in a pmap_flush_context we will forgo any TLB flushing, local or otherwise... |
| 623 | * |
| 624 | * a TLB flush isn't really needed here since at worst we'll miss the reference bit being |
| 625 | * updated in the PTE if a remote processor still has this mapping cached in its TLB when the |
| 626 | * new reference happens. If no futher references happen on the page after that remote TLB flushes |
| 627 | * we'll see a clean, non-referenced page when it eventually gets pulled out of the inactive queue |
| 628 | * by pageout_scan, which is just fine since the last reference would have happened quite far |
| 629 | * in the past (TLB caches don't hang around for very long), and of course could just as easily |
| 630 | * have happened before we did the deactivate_behind. |
| 631 | */ |
| 632 | pmap_clear_refmod_options(pn: VM_PAGE_GET_PHYS_PAGE(m), VM_MEM_REFERENCED, PMAP_OPTIONS_NOFLUSH, (void *)NULL); |
| 633 | } |
| 634 | } |
| 635 | if (pages_in_run) { |
| 636 | vm_page_lockspin_queues(); |
| 637 | |
| 638 | for (n = 0; n < pages_in_run; n++) { |
| 639 | m = page_run[n]; |
| 640 | |
| 641 | vm_page_deactivate_internal(page: m, FALSE); |
| 642 | |
| 643 | #if DEVELOPMENT || DEBUG |
| 644 | vm_page_deactivate_behind_count++; |
| 645 | #endif /* DEVELOPMENT || DEBUG */ |
| 646 | |
| 647 | #if TRACEFAULTPAGE |
| 648 | dbgTrace(0xBEEF0019, (unsigned int) object, (unsigned int) m); /* (TEST/DEBUG) */ |
| 649 | #endif |
| 650 | } |
| 651 | vm_page_unlock_queues(); |
| 652 | |
| 653 | return TRUE; |
| 654 | } |
| 655 | return FALSE; |
| 656 | } |
| 657 | |
| 658 | |
| 659 | #if (DEVELOPMENT || DEBUG) |
| 660 | uint32_t vm_page_creation_throttled_hard = 0; |
| 661 | uint32_t vm_page_creation_throttled_soft = 0; |
| 662 | uint64_t vm_page_creation_throttle_avoided = 0; |
| 663 | #endif /* DEVELOPMENT || DEBUG */ |
| 664 | |
| 665 | static int |
| 666 | vm_page_throttled(boolean_t page_kept) |
| 667 | { |
| 668 | clock_sec_t elapsed_sec; |
| 669 | clock_sec_t tv_sec; |
| 670 | clock_usec_t tv_usec; |
| 671 | task_t curtask = current_task_early(); |
| 672 | |
| 673 | thread_t thread = current_thread(); |
| 674 | |
| 675 | if (thread->options & TH_OPT_VMPRIV) { |
| 676 | return 0; |
| 677 | } |
| 678 | |
| 679 | if (curtask && !curtask->active) { |
| 680 | return 0; |
| 681 | } |
| 682 | |
| 683 | if (thread->t_page_creation_throttled) { |
| 684 | thread->t_page_creation_throttled = 0; |
| 685 | |
| 686 | if (page_kept == FALSE) { |
| 687 | goto no_throttle; |
| 688 | } |
| 689 | } |
| 690 | if (NEED_TO_HARD_THROTTLE_THIS_TASK()) { |
| 691 | #if (DEVELOPMENT || DEBUG) |
| 692 | thread->t_page_creation_throttled_hard++; |
| 693 | OSAddAtomic(1, &vm_page_creation_throttled_hard); |
| 694 | #endif /* DEVELOPMENT || DEBUG */ |
| 695 | return HARD_THROTTLE_DELAY; |
| 696 | } |
| 697 | |
| 698 | if ((vm_page_free_count < vm_page_throttle_limit || (VM_CONFIG_COMPRESSOR_IS_PRESENT && SWAPPER_NEEDS_TO_UNTHROTTLE())) && |
| 699 | thread->t_page_creation_count > (VM_PAGE_CREATION_THROTTLE_PERIOD_SECS * VM_PAGE_CREATION_THROTTLE_RATE_PER_SEC)) { |
| 700 | if (vm_page_free_wanted == 0 && vm_page_free_wanted_privileged == 0) { |
| 701 | #if (DEVELOPMENT || DEBUG) |
| 702 | OSAddAtomic64(1, &vm_page_creation_throttle_avoided); |
| 703 | #endif |
| 704 | goto no_throttle; |
| 705 | } |
| 706 | clock_get_system_microtime(secs: &tv_sec, microsecs: &tv_usec); |
| 707 | |
| 708 | elapsed_sec = tv_sec - thread->t_page_creation_time; |
| 709 | |
| 710 | if (elapsed_sec <= VM_PAGE_CREATION_THROTTLE_PERIOD_SECS || |
| 711 | (thread->t_page_creation_count / elapsed_sec) >= VM_PAGE_CREATION_THROTTLE_RATE_PER_SEC) { |
| 712 | if (elapsed_sec >= (3 * VM_PAGE_CREATION_THROTTLE_PERIOD_SECS)) { |
| 713 | /* |
| 714 | * we'll reset our stats to give a well behaved app |
| 715 | * that was unlucky enough to accumulate a bunch of pages |
| 716 | * over a long period of time a chance to get out of |
| 717 | * the throttled state... we reset the counter and timestamp |
| 718 | * so that if it stays under the rate limit for the next second |
| 719 | * it will be back in our good graces... if it exceeds it, it |
| 720 | * will remain in the throttled state |
| 721 | */ |
| 722 | thread->t_page_creation_time = tv_sec; |
| 723 | thread->t_page_creation_count = VM_PAGE_CREATION_THROTTLE_RATE_PER_SEC * (VM_PAGE_CREATION_THROTTLE_PERIOD_SECS - 1); |
| 724 | } |
| 725 | VM_PAGEOUT_DEBUG(vm_page_throttle_count, 1); |
| 726 | |
| 727 | thread->t_page_creation_throttled = 1; |
| 728 | |
| 729 | if (VM_CONFIG_COMPRESSOR_IS_PRESENT && HARD_THROTTLE_LIMIT_REACHED()) { |
| 730 | #if (DEVELOPMENT || DEBUG) |
| 731 | thread->t_page_creation_throttled_hard++; |
| 732 | OSAddAtomic(1, &vm_page_creation_throttled_hard); |
| 733 | #endif /* DEVELOPMENT || DEBUG */ |
| 734 | return HARD_THROTTLE_DELAY; |
| 735 | } else { |
| 736 | #if (DEVELOPMENT || DEBUG) |
| 737 | thread->t_page_creation_throttled_soft++; |
| 738 | OSAddAtomic(1, &vm_page_creation_throttled_soft); |
| 739 | #endif /* DEVELOPMENT || DEBUG */ |
| 740 | return SOFT_THROTTLE_DELAY; |
| 741 | } |
| 742 | } |
| 743 | thread->t_page_creation_time = tv_sec; |
| 744 | thread->t_page_creation_count = 0; |
| 745 | } |
| 746 | no_throttle: |
| 747 | thread->t_page_creation_count++; |
| 748 | |
| 749 | return 0; |
| 750 | } |
| 751 | |
| 752 | extern boolean_t vm_pageout_running; |
| 753 | static __attribute__((noinline, not_tail_called)) void |
| 754 | __VM_FAULT_THROTTLE_FOR_PAGEOUT_SCAN__( |
| 755 | int throttle_delay) |
| 756 | { |
| 757 | /* make sure vm_pageout_scan() gets to work while we're throttled */ |
| 758 | if (!vm_pageout_running) { |
| 759 | thread_wakeup((event_t)&vm_page_free_wanted); |
| 760 | } |
| 761 | delay(usec: throttle_delay); |
| 762 | } |
| 763 | |
| 764 | |
| 765 | /* |
| 766 | * check for various conditions that would |
| 767 | * prevent us from creating a ZF page... |
| 768 | * cleanup is based on being called from vm_fault_page |
| 769 | * |
| 770 | * object must be locked |
| 771 | * object == m->vmp_object |
| 772 | */ |
| 773 | static vm_fault_return_t |
| 774 | vm_fault_check(vm_object_t object, vm_page_t m, vm_page_t first_m, wait_interrupt_t interruptible_state, boolean_t page_throttle) |
| 775 | { |
| 776 | int throttle_delay; |
| 777 | |
| 778 | if (object->shadow_severed || |
| 779 | VM_OBJECT_PURGEABLE_FAULT_ERROR(object)) { |
| 780 | /* |
| 781 | * Either: |
| 782 | * 1. the shadow chain was severed, |
| 783 | * 2. the purgeable object is volatile or empty and is marked |
| 784 | * to fault on access while volatile. |
| 785 | * Just have to return an error at this point |
| 786 | */ |
| 787 | if (m != VM_PAGE_NULL) { |
| 788 | VM_PAGE_FREE(m); |
| 789 | } |
| 790 | vm_fault_cleanup(object, top_page: first_m); |
| 791 | |
| 792 | thread_interrupt_level(interruptible: interruptible_state); |
| 793 | |
| 794 | if (VM_OBJECT_PURGEABLE_FAULT_ERROR(object)) { |
| 795 | ktriage_record(thread_id: thread_tid(thread: current_thread()), KDBG_TRIAGE_EVENTID(KDBG_TRIAGE_SUBSYS_VM, KDBG_TRIAGE_RESERVED, KDBG_TRIAGE_VM_PURGEABLE_FAULT_ERROR), arg: 0 /* arg */); |
| 796 | } |
| 797 | |
| 798 | if (object->shadow_severed) { |
| 799 | ktriage_record(thread_id: thread_tid(thread: current_thread()), KDBG_TRIAGE_EVENTID(KDBG_TRIAGE_SUBSYS_VM, KDBG_TRIAGE_RESERVED, KDBG_TRIAGE_VM_OBJECT_SHADOW_SEVERED), arg: 0 /* arg */); |
| 800 | } |
| 801 | return VM_FAULT_MEMORY_ERROR; |
| 802 | } |
| 803 | if (page_throttle == TRUE) { |
| 804 | if ((throttle_delay = vm_page_throttled(FALSE))) { |
| 805 | /* |
| 806 | * we're throttling zero-fills... |
| 807 | * treat this as if we couldn't grab a page |
| 808 | */ |
| 809 | if (m != VM_PAGE_NULL) { |
| 810 | VM_PAGE_FREE(m); |
| 811 | } |
| 812 | vm_fault_cleanup(object, top_page: first_m); |
| 813 | |
| 814 | VM_DEBUG_EVENT(vmf_check_zfdelay, VMF_CHECK_ZFDELAY, DBG_FUNC_NONE, throttle_delay, 0, 0, 0); |
| 815 | |
| 816 | __VM_FAULT_THROTTLE_FOR_PAGEOUT_SCAN__(throttle_delay); |
| 817 | |
| 818 | if (current_thread_aborted()) { |
| 819 | thread_interrupt_level(interruptible: interruptible_state); |
| 820 | ktriage_record(thread_id: thread_tid(thread: current_thread()), KDBG_TRIAGE_EVENTID(KDBG_TRIAGE_SUBSYS_VM, KDBG_TRIAGE_RESERVED, KDBG_TRIAGE_VM_FAULT_INTERRUPTED), arg: 0 /* arg */); |
| 821 | return VM_FAULT_INTERRUPTED; |
| 822 | } |
| 823 | thread_interrupt_level(interruptible: interruptible_state); |
| 824 | |
| 825 | return VM_FAULT_MEMORY_SHORTAGE; |
| 826 | } |
| 827 | } |
| 828 | return VM_FAULT_SUCCESS; |
| 829 | } |
| 830 | |
| 831 | /* |
| 832 | * Clear the code signing bits on the given page_t |
| 833 | */ |
| 834 | static void |
| 835 | vm_fault_cs_clear(vm_page_t m) |
| 836 | { |
| 837 | m->vmp_cs_validated = VMP_CS_ALL_FALSE; |
| 838 | m->vmp_cs_tainted = VMP_CS_ALL_FALSE; |
| 839 | m->vmp_cs_nx = VMP_CS_ALL_FALSE; |
| 840 | } |
| 841 | |
| 842 | /* |
| 843 | * Enqueues the given page on the throttled queue. |
| 844 | * The caller must hold the vm_page_queue_lock and it will be held on return. |
| 845 | */ |
| 846 | static void |
| 847 | vm_fault_enqueue_throttled_locked(vm_page_t m) |
| 848 | { |
| 849 | LCK_MTX_ASSERT(&vm_page_queue_lock, LCK_MTX_ASSERT_OWNED); |
| 850 | assert(!VM_PAGE_WIRED(m)); |
| 851 | |
| 852 | /* |
| 853 | * can't be on the pageout queue since we don't |
| 854 | * have a pager to try and clean to |
| 855 | */ |
| 856 | vm_page_queues_remove(mem: m, TRUE); |
| 857 | vm_page_check_pageable_safe(page: m); |
| 858 | vm_page_queue_enter(&vm_page_queue_throttled, m, vmp_pageq); |
| 859 | m->vmp_q_state = VM_PAGE_ON_THROTTLED_Q; |
| 860 | vm_page_throttled_count++; |
| 861 | } |
| 862 | |
| 863 | /* |
| 864 | * do the work to zero fill a page and |
| 865 | * inject it into the correct paging queue |
| 866 | * |
| 867 | * m->vmp_object must be locked |
| 868 | * page queue lock must NOT be held |
| 869 | */ |
| 870 | static int |
| 871 | vm_fault_zero_page(vm_page_t m, boolean_t no_zero_fill) |
| 872 | { |
| 873 | int my_fault = DBG_ZERO_FILL_FAULT; |
| 874 | vm_object_t object; |
| 875 | |
| 876 | object = VM_PAGE_OBJECT(m); |
| 877 | |
| 878 | /* |
| 879 | * This is is a zero-fill page fault... |
| 880 | * |
| 881 | * Checking the page lock is a waste of |
| 882 | * time; this page was absent, so |
| 883 | * it can't be page locked by a pager. |
| 884 | * |
| 885 | * we also consider it undefined |
| 886 | * with respect to instruction |
| 887 | * execution. i.e. it is the responsibility |
| 888 | * of higher layers to call for an instruction |
| 889 | * sync after changing the contents and before |
| 890 | * sending a program into this area. We |
| 891 | * choose this approach for performance |
| 892 | */ |
| 893 | vm_fault_cs_clear(m); |
| 894 | m->vmp_pmapped = TRUE; |
| 895 | |
| 896 | if (no_zero_fill == TRUE) { |
| 897 | my_fault = DBG_NZF_PAGE_FAULT; |
| 898 | |
| 899 | if (m->vmp_absent && m->vmp_busy) { |
| 900 | return my_fault; |
| 901 | } |
| 902 | } else { |
| 903 | vm_page_zero_fill(page: m); |
| 904 | |
| 905 | counter_inc(&vm_statistics_zero_fill_count); |
| 906 | DTRACE_VM2(zfod, int, 1, (uint64_t *), NULL); |
| 907 | } |
| 908 | assert(!m->vmp_laundry); |
| 909 | assert(!is_kernel_object(object)); |
| 910 | //assert(m->vmp_pageq.next == 0 && m->vmp_pageq.prev == 0); |
| 911 | if (!VM_DYNAMIC_PAGING_ENABLED() && |
| 912 | (object->purgable == VM_PURGABLE_DENY || |
| 913 | object->purgable == VM_PURGABLE_NONVOLATILE || |
| 914 | object->purgable == VM_PURGABLE_VOLATILE)) { |
| 915 | vm_page_lockspin_queues(); |
| 916 | if (!VM_DYNAMIC_PAGING_ENABLED()) { |
| 917 | vm_fault_enqueue_throttled_locked(m); |
| 918 | } |
| 919 | vm_page_unlock_queues(); |
| 920 | } |
| 921 | return my_fault; |
| 922 | } |
| 923 | |
| 924 | |
| 925 | /* |
| 926 | * Routine: vm_fault_page |
| 927 | * Purpose: |
| 928 | * Find the resident page for the virtual memory |
| 929 | * specified by the given virtual memory object |
| 930 | * and offset. |
| 931 | * Additional arguments: |
| 932 | * The required permissions for the page is given |
| 933 | * in "fault_type". Desired permissions are included |
| 934 | * in "protection". |
| 935 | * fault_info is passed along to determine pagein cluster |
| 936 | * limits... it contains the expected reference pattern, |
| 937 | * cluster size if available, etc... |
| 938 | * |
| 939 | * If the desired page is known to be resident (for |
| 940 | * example, because it was previously wired down), asserting |
| 941 | * the "unwiring" parameter will speed the search. |
| 942 | * |
| 943 | * If the operation can be interrupted (by thread_abort |
| 944 | * or thread_terminate), then the "interruptible" |
| 945 | * parameter should be asserted. |
| 946 | * |
| 947 | * Results: |
| 948 | * The page containing the proper data is returned |
| 949 | * in "result_page". |
| 950 | * |
| 951 | * In/out conditions: |
| 952 | * The source object must be locked and referenced, |
| 953 | * and must donate one paging reference. The reference |
| 954 | * is not affected. The paging reference and lock are |
| 955 | * consumed. |
| 956 | * |
| 957 | * If the call succeeds, the object in which "result_page" |
| 958 | * resides is left locked and holding a paging reference. |
| 959 | * If this is not the original object, a busy page in the |
| 960 | * original object is returned in "top_page", to prevent other |
| 961 | * callers from pursuing this same data, along with a paging |
| 962 | * reference for the original object. The "top_page" should |
| 963 | * be destroyed when this guarantee is no longer required. |
| 964 | * The "result_page" is also left busy. It is not removed |
| 965 | * from the pageout queues. |
| 966 | * Special Case: |
| 967 | * A return value of VM_FAULT_SUCCESS_NO_PAGE means that the |
| 968 | * fault succeeded but there's no VM page (i.e. the VM object |
| 969 | * does not actually hold VM pages, but device memory or |
| 970 | * large pages). The object is still locked and we still hold a |
| 971 | * paging_in_progress reference. |
| 972 | */ |
| 973 | unsigned int vm_fault_page_blocked_access = 0; |
| 974 | unsigned int vm_fault_page_forced_retry = 0; |
| 975 | |
| 976 | vm_fault_return_t |
| 977 | vm_fault_page( |
| 978 | /* Arguments: */ |
| 979 | vm_object_t first_object, /* Object to begin search */ |
| 980 | vm_object_offset_t first_offset, /* Offset into object */ |
| 981 | vm_prot_t fault_type, /* What access is requested */ |
| 982 | boolean_t must_be_resident,/* Must page be resident? */ |
| 983 | boolean_t caller_lookup, /* caller looked up page */ |
| 984 | /* Modifies in place: */ |
| 985 | vm_prot_t *protection, /* Protection for mapping */ |
| 986 | vm_page_t *result_page, /* Page found, if successful */ |
| 987 | /* Returns: */ |
| 988 | vm_page_t *top_page, /* Page in top object, if |
| 989 | * not result_page. */ |
| 990 | int *type_of_fault, /* if non-null, fill in with type of fault |
| 991 | * COW, zero-fill, etc... returned in trace point */ |
| 992 | /* More arguments: */ |
| 993 | kern_return_t *error_code, /* code if page is in error */ |
| 994 | boolean_t no_zero_fill, /* don't zero fill absent pages */ |
| 995 | vm_object_fault_info_t fault_info) |
| 996 | { |
| 997 | vm_page_t m; |
| 998 | vm_object_t object; |
| 999 | vm_object_offset_t offset; |
| 1000 | vm_page_t first_m; |
| 1001 | vm_object_t next_object; |
| 1002 | vm_object_t copy_object; |
| 1003 | boolean_t look_for_page; |
| 1004 | boolean_t force_fault_retry = FALSE; |
| 1005 | vm_prot_t access_required = fault_type; |
| 1006 | vm_prot_t wants_copy_flag; |
| 1007 | kern_return_t wait_result; |
| 1008 | wait_interrupt_t interruptible_state; |
| 1009 | boolean_t data_already_requested = FALSE; |
| 1010 | vm_behavior_t orig_behavior; |
| 1011 | vm_size_t orig_cluster_size; |
| 1012 | vm_fault_return_t error; |
| 1013 | int my_fault; |
| 1014 | uint32_t try_failed_count; |
| 1015 | int interruptible; /* how may fault be interrupted? */ |
| 1016 | int external_state = VM_EXTERNAL_STATE_UNKNOWN; |
| 1017 | memory_object_t ; |
| 1018 | vm_fault_return_t retval; |
| 1019 | int grab_options; |
| 1020 | bool clear_absent_on_error = false; |
| 1021 | |
| 1022 | /* |
| 1023 | * MUST_ASK_PAGER() evaluates to TRUE if the page specified by object/offset is |
| 1024 | * marked as paged out in the compressor pager or the pager doesn't exist. |
| 1025 | * Note also that if the pager for an internal object |
| 1026 | * has not been created, the pager is not invoked regardless of the value |
| 1027 | * of MUST_ASK_PAGER(). |
| 1028 | * |
| 1029 | * PAGED_OUT() evaluates to TRUE if the page specified by the object/offset |
| 1030 | * is marked as paged out in the compressor pager. |
| 1031 | * PAGED_OUT() is used to determine if a page has already been pushed |
| 1032 | * into a copy object in order to avoid a redundant page out operation. |
| 1033 | */ |
| 1034 | #define (o, f, s) \ |
| 1035 | ((s = VM_COMPRESSOR_PAGER_STATE_GET((o), (f))) != VM_EXTERNAL_STATE_ABSENT) |
| 1036 | |
| 1037 | #define PAGED_OUT(o, f) \ |
| 1038 | (VM_COMPRESSOR_PAGER_STATE_GET((o), (f)) == VM_EXTERNAL_STATE_EXISTS) |
| 1039 | |
| 1040 | /* |
| 1041 | * Recovery actions |
| 1042 | */ |
| 1043 | #define RELEASE_PAGE(m) \ |
| 1044 | MACRO_BEGIN \ |
| 1045 | PAGE_WAKEUP_DONE(m); \ |
| 1046 | if ( !VM_PAGE_PAGEABLE(m)) { \ |
| 1047 | vm_page_lockspin_queues(); \ |
| 1048 | if (clear_absent_on_error && m->vmp_absent) {\ |
| 1049 | vm_page_zero_fill(m); \ |
| 1050 | counter_inc(&vm_statistics_zero_fill_count);\ |
| 1051 | DTRACE_VM2(zfod, int, 1, (uint64_t *), NULL);\ |
| 1052 | m->vmp_absent = false; \ |
| 1053 | } \ |
| 1054 | if ( !VM_PAGE_PAGEABLE(m)) { \ |
| 1055 | if (VM_CONFIG_COMPRESSOR_IS_ACTIVE) \ |
| 1056 | vm_page_deactivate(m); \ |
| 1057 | else \ |
| 1058 | vm_page_activate(m); \ |
| 1059 | } \ |
| 1060 | vm_page_unlock_queues(); \ |
| 1061 | } \ |
| 1062 | clear_absent_on_error = false; \ |
| 1063 | MACRO_END |
| 1064 | |
| 1065 | #if TRACEFAULTPAGE |
| 1066 | dbgTrace(0xBEEF0002, (unsigned int) first_object, (unsigned int) first_offset); /* (TEST/DEBUG) */ |
| 1067 | #endif |
| 1068 | |
| 1069 | interruptible = fault_info->interruptible; |
| 1070 | interruptible_state = thread_interrupt_level(interruptible); |
| 1071 | |
| 1072 | /* |
| 1073 | * INVARIANTS (through entire routine): |
| 1074 | * |
| 1075 | * 1) At all times, we must either have the object |
| 1076 | * lock or a busy page in some object to prevent |
| 1077 | * some other thread from trying to bring in |
| 1078 | * the same page. |
| 1079 | * |
| 1080 | * Note that we cannot hold any locks during the |
| 1081 | * pager access or when waiting for memory, so |
| 1082 | * we use a busy page then. |
| 1083 | * |
| 1084 | * 2) To prevent another thread from racing us down the |
| 1085 | * shadow chain and entering a new page in the top |
| 1086 | * object before we do, we must keep a busy page in |
| 1087 | * the top object while following the shadow chain. |
| 1088 | * |
| 1089 | * 3) We must increment paging_in_progress on any object |
| 1090 | * for which we have a busy page before dropping |
| 1091 | * the object lock |
| 1092 | * |
| 1093 | * 4) We leave busy pages on the pageout queues. |
| 1094 | * If the pageout daemon comes across a busy page, |
| 1095 | * it will remove the page from the pageout queues. |
| 1096 | */ |
| 1097 | |
| 1098 | object = first_object; |
| 1099 | offset = first_offset; |
| 1100 | first_m = VM_PAGE_NULL; |
| 1101 | access_required = fault_type; |
| 1102 | |
| 1103 | /* |
| 1104 | * default type of fault |
| 1105 | */ |
| 1106 | my_fault = DBG_CACHE_HIT_FAULT; |
| 1107 | thread_pri_floor_t token; |
| 1108 | bool drop_floor = false; |
| 1109 | |
| 1110 | while (TRUE) { |
| 1111 | #if TRACEFAULTPAGE |
| 1112 | dbgTrace(0xBEEF0003, (unsigned int) 0, (unsigned int) 0); /* (TEST/DEBUG) */ |
| 1113 | #endif |
| 1114 | |
| 1115 | grab_options = 0; |
| 1116 | #if CONFIG_SECLUDED_MEMORY |
| 1117 | if (object->can_grab_secluded) { |
| 1118 | grab_options |= VM_PAGE_GRAB_SECLUDED; |
| 1119 | } |
| 1120 | #endif /* CONFIG_SECLUDED_MEMORY */ |
| 1121 | |
| 1122 | if (!object->alive) { |
| 1123 | /* |
| 1124 | * object is no longer valid |
| 1125 | * clean up and return error |
| 1126 | */ |
| 1127 | #if DEVELOPMENT || DEBUG |
| 1128 | printf("FBDP rdar://93769854 %s:%d object %p internal %d pager %p (%s) copy %p shadow %p alive %d terminating %d named %d ref %d shadow_severed %d\n" , __FUNCTION__, __LINE__, object, object->internal, object->pager, object->pager ? object->pager->mo_pager_ops->memory_object_pager_name : "?" , object->vo_copy, object->shadow, object->alive, object->terminating, object->named, object->ref_count, object->shadow_severed); |
| 1129 | if (panic_object_not_alive) { |
| 1130 | panic("FBDP rdar://93769854 %s:%d object %p internal %d pager %p (%s) copy %p shadow %p alive %d terminating %d named %d ref %d shadow_severed %d\n" , __FUNCTION__, __LINE__, object, object->internal, object->pager, object->pager ? object->pager->mo_pager_ops->memory_object_pager_name : "?" , object->vo_copy, object->shadow, object->alive, object->terminating, object->named, object->ref_count, object->shadow_severed); |
| 1131 | } |
| 1132 | #endif /* DEVELOPMENT || DEBUG */ |
| 1133 | vm_fault_cleanup(object, top_page: first_m); |
| 1134 | thread_interrupt_level(interruptible: interruptible_state); |
| 1135 | |
| 1136 | ktriage_record(thread_id: thread_tid(thread: current_thread()), KDBG_TRIAGE_EVENTID(KDBG_TRIAGE_SUBSYS_VM, KDBG_TRIAGE_RESERVED, KDBG_TRIAGE_VM_OBJECT_NOT_ALIVE), arg: 0 /* arg */); |
| 1137 | return VM_FAULT_MEMORY_ERROR; |
| 1138 | } |
| 1139 | |
| 1140 | if (!object->pager_created && object->phys_contiguous) { |
| 1141 | /* |
| 1142 | * A physically-contiguous object without a pager: |
| 1143 | * must be a "large page" object. We do not deal |
| 1144 | * with VM pages for this object. |
| 1145 | */ |
| 1146 | caller_lookup = FALSE; |
| 1147 | m = VM_PAGE_NULL; |
| 1148 | goto phys_contig_object; |
| 1149 | } |
| 1150 | |
| 1151 | if (object->blocked_access) { |
| 1152 | /* |
| 1153 | * Access to this VM object has been blocked. |
| 1154 | * Replace our "paging_in_progress" reference with |
| 1155 | * a "activity_in_progress" reference and wait for |
| 1156 | * access to be unblocked. |
| 1157 | */ |
| 1158 | caller_lookup = FALSE; /* no longer valid after sleep */ |
| 1159 | vm_object_activity_begin(object); |
| 1160 | vm_object_paging_end(object); |
| 1161 | while (object->blocked_access) { |
| 1162 | vm_object_sleep(object, |
| 1163 | VM_OBJECT_EVENT_UNBLOCKED, |
| 1164 | THREAD_UNINT); |
| 1165 | } |
| 1166 | vm_fault_page_blocked_access++; |
| 1167 | vm_object_paging_begin(object); |
| 1168 | vm_object_activity_end(object); |
| 1169 | } |
| 1170 | |
| 1171 | /* |
| 1172 | * See whether the page at 'offset' is resident |
| 1173 | */ |
| 1174 | if (caller_lookup == TRUE) { |
| 1175 | /* |
| 1176 | * The caller has already looked up the page |
| 1177 | * and gave us the result in "result_page". |
| 1178 | * We can use this for the first lookup but |
| 1179 | * it loses its validity as soon as we unlock |
| 1180 | * the object. |
| 1181 | */ |
| 1182 | m = *result_page; |
| 1183 | caller_lookup = FALSE; /* no longer valid after that */ |
| 1184 | } else { |
| 1185 | m = vm_page_lookup(object, vm_object_trunc_page(offset)); |
| 1186 | } |
| 1187 | #if TRACEFAULTPAGE |
| 1188 | dbgTrace(0xBEEF0004, (unsigned int) m, (unsigned int) object); /* (TEST/DEBUG) */ |
| 1189 | #endif |
| 1190 | if (m != VM_PAGE_NULL) { |
| 1191 | if (m->vmp_busy) { |
| 1192 | /* |
| 1193 | * The page is being brought in, |
| 1194 | * wait for it and then retry. |
| 1195 | */ |
| 1196 | #if TRACEFAULTPAGE |
| 1197 | dbgTrace(0xBEEF0005, (unsigned int) m, (unsigned int) 0); /* (TEST/DEBUG) */ |
| 1198 | #endif |
| 1199 | wait_result = PAGE_SLEEP(object, m, interruptible); |
| 1200 | |
| 1201 | if (wait_result != THREAD_AWAKENED) { |
| 1202 | vm_fault_cleanup(object, top_page: first_m); |
| 1203 | thread_interrupt_level(interruptible: interruptible_state); |
| 1204 | |
| 1205 | if (wait_result == THREAD_RESTART) { |
| 1206 | return VM_FAULT_RETRY; |
| 1207 | } else { |
| 1208 | ktriage_record(thread_id: thread_tid(thread: current_thread()), KDBG_TRIAGE_EVENTID(KDBG_TRIAGE_SUBSYS_VM, KDBG_TRIAGE_RESERVED, KDBG_TRIAGE_VM_BUSYPAGE_WAIT_INTERRUPTED), arg: 0 /* arg */); |
| 1209 | return VM_FAULT_INTERRUPTED; |
| 1210 | } |
| 1211 | } |
| 1212 | continue; |
| 1213 | } |
| 1214 | if (m->vmp_laundry) { |
| 1215 | m->vmp_free_when_done = FALSE; |
| 1216 | |
| 1217 | if (!m->vmp_cleaning) { |
| 1218 | vm_pageout_steal_laundry(page: m, FALSE); |
| 1219 | } |
| 1220 | } |
| 1221 | vm_object_lock_assert_exclusive(VM_PAGE_OBJECT(m)); |
| 1222 | if (VM_PAGE_GET_PHYS_PAGE(m) == vm_page_guard_addr) { |
| 1223 | /* |
| 1224 | * Guard page: off limits ! |
| 1225 | */ |
| 1226 | if (fault_type == VM_PROT_NONE) { |
| 1227 | /* |
| 1228 | * The fault is not requesting any |
| 1229 | * access to the guard page, so it must |
| 1230 | * be just to wire or unwire it. |
| 1231 | * Let's pretend it succeeded... |
| 1232 | */ |
| 1233 | m->vmp_busy = TRUE; |
| 1234 | *result_page = m; |
| 1235 | assert(first_m == VM_PAGE_NULL); |
| 1236 | *top_page = first_m; |
| 1237 | if (type_of_fault) { |
| 1238 | *type_of_fault = DBG_GUARD_FAULT; |
| 1239 | } |
| 1240 | thread_interrupt_level(interruptible: interruptible_state); |
| 1241 | return VM_FAULT_SUCCESS; |
| 1242 | } else { |
| 1243 | /* |
| 1244 | * The fault requests access to the |
| 1245 | * guard page: let's deny that ! |
| 1246 | */ |
| 1247 | vm_fault_cleanup(object, top_page: first_m); |
| 1248 | thread_interrupt_level(interruptible: interruptible_state); |
| 1249 | ktriage_record(thread_id: thread_tid(thread: current_thread()), KDBG_TRIAGE_EVENTID(KDBG_TRIAGE_SUBSYS_VM, KDBG_TRIAGE_RESERVED, KDBG_TRIAGE_VM_GUARDPAGE_FAULT), arg: 0 /* arg */); |
| 1250 | return VM_FAULT_MEMORY_ERROR; |
| 1251 | } |
| 1252 | } |
| 1253 | |
| 1254 | |
| 1255 | if (m->vmp_error) { |
| 1256 | /* |
| 1257 | * The page is in error, give up now. |
| 1258 | */ |
| 1259 | #if TRACEFAULTPAGE |
| 1260 | dbgTrace(0xBEEF0006, (unsigned int) m, (unsigned int) error_code); /* (TEST/DEBUG) */ |
| 1261 | #endif |
| 1262 | if (error_code) { |
| 1263 | *error_code = KERN_MEMORY_ERROR; |
| 1264 | } |
| 1265 | VM_PAGE_FREE(m); |
| 1266 | |
| 1267 | vm_fault_cleanup(object, top_page: first_m); |
| 1268 | thread_interrupt_level(interruptible: interruptible_state); |
| 1269 | |
| 1270 | ktriage_record(thread_id: thread_tid(thread: current_thread()), KDBG_TRIAGE_EVENTID(KDBG_TRIAGE_SUBSYS_VM, KDBG_TRIAGE_RESERVED, KDBG_TRIAGE_VM_PAGE_HAS_ERROR), arg: 0 /* arg */); |
| 1271 | return VM_FAULT_MEMORY_ERROR; |
| 1272 | } |
| 1273 | if (m->vmp_restart) { |
| 1274 | /* |
| 1275 | * The pager wants us to restart |
| 1276 | * at the top of the chain, |
| 1277 | * typically because it has moved the |
| 1278 | * page to another pager, then do so. |
| 1279 | */ |
| 1280 | #if TRACEFAULTPAGE |
| 1281 | dbgTrace(0xBEEF0007, (unsigned int) m, (unsigned int) 0); /* (TEST/DEBUG) */ |
| 1282 | #endif |
| 1283 | VM_PAGE_FREE(m); |
| 1284 | |
| 1285 | vm_fault_cleanup(object, top_page: first_m); |
| 1286 | thread_interrupt_level(interruptible: interruptible_state); |
| 1287 | |
| 1288 | ktriage_record(thread_id: thread_tid(thread: current_thread()), KDBG_TRIAGE_EVENTID(KDBG_TRIAGE_SUBSYS_VM, KDBG_TRIAGE_RESERVED, KDBG_TRIAGE_VM_PAGE_HAS_RESTART), arg: 0 /* arg */); |
| 1289 | return VM_FAULT_RETRY; |
| 1290 | } |
| 1291 | if (m->vmp_absent) { |
| 1292 | /* |
| 1293 | * The page isn't busy, but is absent, |
| 1294 | * therefore it's deemed "unavailable". |
| 1295 | * |
| 1296 | * Remove the non-existent page (unless it's |
| 1297 | * in the top object) and move on down to the |
| 1298 | * next object (if there is one). |
| 1299 | */ |
| 1300 | #if TRACEFAULTPAGE |
| 1301 | dbgTrace(0xBEEF0008, (unsigned int) m, (unsigned int) object->shadow); /* (TEST/DEBUG) */ |
| 1302 | #endif |
| 1303 | next_object = object->shadow; |
| 1304 | |
| 1305 | if (next_object == VM_OBJECT_NULL) { |
| 1306 | /* |
| 1307 | * Absent page at bottom of shadow |
| 1308 | * chain; zero fill the page we left |
| 1309 | * busy in the first object, and free |
| 1310 | * the absent page. |
| 1311 | */ |
| 1312 | assert(!must_be_resident); |
| 1313 | |
| 1314 | /* |
| 1315 | * check for any conditions that prevent |
| 1316 | * us from creating a new zero-fill page |
| 1317 | * vm_fault_check will do all of the |
| 1318 | * fault cleanup in the case of an error condition |
| 1319 | * including resetting the thread_interrupt_level |
| 1320 | */ |
| 1321 | error = vm_fault_check(object, m, first_m, interruptible_state, page_throttle: (type_of_fault == NULL) ? TRUE : FALSE); |
| 1322 | |
| 1323 | if (error != VM_FAULT_SUCCESS) { |
| 1324 | return error; |
| 1325 | } |
| 1326 | |
| 1327 | if (object != first_object) { |
| 1328 | /* |
| 1329 | * free the absent page we just found |
| 1330 | */ |
| 1331 | VM_PAGE_FREE(m); |
| 1332 | |
| 1333 | /* |
| 1334 | * drop reference and lock on current object |
| 1335 | */ |
| 1336 | vm_object_paging_end(object); |
| 1337 | vm_object_unlock(object); |
| 1338 | |
| 1339 | /* |
| 1340 | * grab the original page we |
| 1341 | * 'soldered' in place and |
| 1342 | * retake lock on 'first_object' |
| 1343 | */ |
| 1344 | m = first_m; |
| 1345 | first_m = VM_PAGE_NULL; |
| 1346 | |
| 1347 | object = first_object; |
| 1348 | offset = first_offset; |
| 1349 | |
| 1350 | vm_object_lock(object); |
| 1351 | } else { |
| 1352 | /* |
| 1353 | * we're going to use the absent page we just found |
| 1354 | * so convert it to a 'busy' page |
| 1355 | */ |
| 1356 | m->vmp_absent = FALSE; |
| 1357 | m->vmp_busy = TRUE; |
| 1358 | } |
| 1359 | if (fault_info->mark_zf_absent && no_zero_fill == TRUE) { |
| 1360 | m->vmp_absent = TRUE; |
| 1361 | clear_absent_on_error = true; |
| 1362 | } |
| 1363 | /* |
| 1364 | * zero-fill the page and put it on |
| 1365 | * the correct paging queue |
| 1366 | */ |
| 1367 | my_fault = vm_fault_zero_page(m, no_zero_fill); |
| 1368 | |
| 1369 | break; |
| 1370 | } else { |
| 1371 | if (must_be_resident) { |
| 1372 | vm_object_paging_end(object); |
| 1373 | } else if (object != first_object) { |
| 1374 | vm_object_paging_end(object); |
| 1375 | VM_PAGE_FREE(m); |
| 1376 | } else { |
| 1377 | first_m = m; |
| 1378 | m->vmp_absent = FALSE; |
| 1379 | m->vmp_busy = TRUE; |
| 1380 | |
| 1381 | vm_page_lockspin_queues(); |
| 1382 | vm_page_queues_remove(mem: m, FALSE); |
| 1383 | vm_page_unlock_queues(); |
| 1384 | } |
| 1385 | |
| 1386 | offset += object->vo_shadow_offset; |
| 1387 | fault_info->lo_offset += object->vo_shadow_offset; |
| 1388 | fault_info->hi_offset += object->vo_shadow_offset; |
| 1389 | access_required = VM_PROT_READ; |
| 1390 | |
| 1391 | vm_object_lock(next_object); |
| 1392 | vm_object_unlock(object); |
| 1393 | object = next_object; |
| 1394 | vm_object_paging_begin(object); |
| 1395 | |
| 1396 | /* |
| 1397 | * reset to default type of fault |
| 1398 | */ |
| 1399 | my_fault = DBG_CACHE_HIT_FAULT; |
| 1400 | |
| 1401 | continue; |
| 1402 | } |
| 1403 | } |
| 1404 | if ((m->vmp_cleaning) |
| 1405 | && ((object != first_object) || (object->vo_copy != VM_OBJECT_NULL)) |
| 1406 | && (fault_type & VM_PROT_WRITE)) { |
| 1407 | /* |
| 1408 | * This is a copy-on-write fault that will |
| 1409 | * cause us to revoke access to this page, but |
| 1410 | * this page is in the process of being cleaned |
| 1411 | * in a clustered pageout. We must wait until |
| 1412 | * the cleaning operation completes before |
| 1413 | * revoking access to the original page, |
| 1414 | * otherwise we might attempt to remove a |
| 1415 | * wired mapping. |
| 1416 | */ |
| 1417 | #if TRACEFAULTPAGE |
| 1418 | dbgTrace(0xBEEF0009, (unsigned int) m, (unsigned int) offset); /* (TEST/DEBUG) */ |
| 1419 | #endif |
| 1420 | /* |
| 1421 | * take an extra ref so that object won't die |
| 1422 | */ |
| 1423 | vm_object_reference_locked(object); |
| 1424 | |
| 1425 | vm_fault_cleanup(object, top_page: first_m); |
| 1426 | |
| 1427 | vm_object_lock(object); |
| 1428 | assert(object->ref_count > 0); |
| 1429 | |
| 1430 | m = vm_page_lookup(object, vm_object_trunc_page(offset)); |
| 1431 | |
| 1432 | if (m != VM_PAGE_NULL && m->vmp_cleaning) { |
| 1433 | PAGE_ASSERT_WAIT(m, interruptible); |
| 1434 | |
| 1435 | vm_object_unlock(object); |
| 1436 | wait_result = thread_block(THREAD_CONTINUE_NULL); |
| 1437 | vm_object_deallocate(object); |
| 1438 | |
| 1439 | goto backoff; |
| 1440 | } else { |
| 1441 | vm_object_unlock(object); |
| 1442 | |
| 1443 | vm_object_deallocate(object); |
| 1444 | thread_interrupt_level(interruptible: interruptible_state); |
| 1445 | |
| 1446 | return VM_FAULT_RETRY; |
| 1447 | } |
| 1448 | } |
| 1449 | if (type_of_fault == NULL && (m->vmp_q_state == VM_PAGE_ON_SPECULATIVE_Q) && |
| 1450 | !(fault_info != NULL && fault_info->stealth)) { |
| 1451 | /* |
| 1452 | * If we were passed a non-NULL pointer for |
| 1453 | * "type_of_fault", than we came from |
| 1454 | * vm_fault... we'll let it deal with |
| 1455 | * this condition, since it |
| 1456 | * needs to see m->vmp_speculative to correctly |
| 1457 | * account the pageins, otherwise... |
| 1458 | * take it off the speculative queue, we'll |
| 1459 | * let the caller of vm_fault_page deal |
| 1460 | * with getting it onto the correct queue |
| 1461 | * |
| 1462 | * If the caller specified in fault_info that |
| 1463 | * it wants a "stealth" fault, we also leave |
| 1464 | * the page in the speculative queue. |
| 1465 | */ |
| 1466 | vm_page_lockspin_queues(); |
| 1467 | if (m->vmp_q_state == VM_PAGE_ON_SPECULATIVE_Q) { |
| 1468 | vm_page_queues_remove(mem: m, FALSE); |
| 1469 | } |
| 1470 | vm_page_unlock_queues(); |
| 1471 | } |
| 1472 | assert(object == VM_PAGE_OBJECT(m)); |
| 1473 | |
| 1474 | if (object->code_signed) { |
| 1475 | /* |
| 1476 | * CODE SIGNING: |
| 1477 | * We just paged in a page from a signed |
| 1478 | * memory object but we don't need to |
| 1479 | * validate it now. We'll validate it if |
| 1480 | * when it gets mapped into a user address |
| 1481 | * space for the first time or when the page |
| 1482 | * gets copied to another object as a result |
| 1483 | * of a copy-on-write. |
| 1484 | */ |
| 1485 | } |
| 1486 | |
| 1487 | /* |
| 1488 | * We mark the page busy and leave it on |
| 1489 | * the pageout queues. If the pageout |
| 1490 | * deamon comes across it, then it will |
| 1491 | * remove the page from the queue, but not the object |
| 1492 | */ |
| 1493 | #if TRACEFAULTPAGE |
| 1494 | dbgTrace(0xBEEF000B, (unsigned int) m, (unsigned int) 0); /* (TEST/DEBUG) */ |
| 1495 | #endif |
| 1496 | assert(!m->vmp_busy); |
| 1497 | assert(!m->vmp_absent); |
| 1498 | |
| 1499 | m->vmp_busy = TRUE; |
| 1500 | break; |
| 1501 | } |
| 1502 | |
| 1503 | /* |
| 1504 | * we get here when there is no page present in the object at |
| 1505 | * the offset we're interested in... we'll allocate a page |
| 1506 | * at this point if the pager associated with |
| 1507 | * this object can provide the data or we're the top object... |
| 1508 | * object is locked; m == NULL |
| 1509 | */ |
| 1510 | |
| 1511 | if (must_be_resident) { |
| 1512 | if (fault_type == VM_PROT_NONE && |
| 1513 | is_kernel_object(object)) { |
| 1514 | /* |
| 1515 | * We've been called from vm_fault_unwire() |
| 1516 | * while removing a map entry that was allocated |
| 1517 | * with KMA_KOBJECT and KMA_VAONLY. This page |
| 1518 | * is not present and there's nothing more to |
| 1519 | * do here (nothing to unwire). |
| 1520 | */ |
| 1521 | vm_fault_cleanup(object, top_page: first_m); |
| 1522 | thread_interrupt_level(interruptible: interruptible_state); |
| 1523 | |
| 1524 | return VM_FAULT_MEMORY_ERROR; |
| 1525 | } |
| 1526 | |
| 1527 | goto dont_look_for_page; |
| 1528 | } |
| 1529 | |
| 1530 | /* Don't expect to fault pages into the kernel object. */ |
| 1531 | assert(!is_kernel_object(object)); |
| 1532 | |
| 1533 | look_for_page = (object->pager_created && (MUST_ASK_PAGER(object, offset, external_state) == TRUE)); |
| 1534 | |
| 1535 | #if TRACEFAULTPAGE |
| 1536 | dbgTrace(0xBEEF000C, (unsigned int) look_for_page, (unsigned int) object); /* (TEST/DEBUG) */ |
| 1537 | #endif |
| 1538 | if (!look_for_page && object == first_object && !object->phys_contiguous) { |
| 1539 | /* |
| 1540 | * Allocate a new page for this object/offset pair as a placeholder |
| 1541 | */ |
| 1542 | m = vm_page_grab_options(flags: grab_options); |
| 1543 | #if TRACEFAULTPAGE |
| 1544 | dbgTrace(0xBEEF000D, (unsigned int) m, (unsigned int) object); /* (TEST/DEBUG) */ |
| 1545 | #endif |
| 1546 | if (m == VM_PAGE_NULL) { |
| 1547 | vm_fault_cleanup(object, top_page: first_m); |
| 1548 | thread_interrupt_level(interruptible: interruptible_state); |
| 1549 | |
| 1550 | return VM_FAULT_MEMORY_SHORTAGE; |
| 1551 | } |
| 1552 | |
| 1553 | if (fault_info && fault_info->batch_pmap_op == TRUE) { |
| 1554 | vm_page_insert_internal(page: m, object, |
| 1555 | vm_object_trunc_page(offset), |
| 1556 | VM_KERN_MEMORY_NONE, FALSE, TRUE, TRUE, FALSE, NULL); |
| 1557 | } else { |
| 1558 | vm_page_insert(page: m, object, vm_object_trunc_page(offset)); |
| 1559 | } |
| 1560 | } |
| 1561 | if (look_for_page) { |
| 1562 | kern_return_t rc; |
| 1563 | int my_fault_type; |
| 1564 | |
| 1565 | /* |
| 1566 | * If the memory manager is not ready, we |
| 1567 | * cannot make requests. |
| 1568 | */ |
| 1569 | if (!object->pager_ready) { |
| 1570 | #if TRACEFAULTPAGE |
| 1571 | dbgTrace(0xBEEF000E, (unsigned int) 0, (unsigned int) 0); /* (TEST/DEBUG) */ |
| 1572 | #endif |
| 1573 | if (m != VM_PAGE_NULL) { |
| 1574 | VM_PAGE_FREE(m); |
| 1575 | } |
| 1576 | |
| 1577 | /* |
| 1578 | * take an extra ref so object won't die |
| 1579 | */ |
| 1580 | vm_object_reference_locked(object); |
| 1581 | vm_fault_cleanup(object, top_page: first_m); |
| 1582 | |
| 1583 | vm_object_lock(object); |
| 1584 | assert(object->ref_count > 0); |
| 1585 | |
| 1586 | if (!object->pager_ready) { |
| 1587 | wait_result = vm_object_assert_wait(object, VM_OBJECT_EVENT_PAGER_READY, interruptible); |
| 1588 | |
| 1589 | vm_object_unlock(object); |
| 1590 | if (wait_result == THREAD_WAITING) { |
| 1591 | wait_result = thread_block(THREAD_CONTINUE_NULL); |
| 1592 | } |
| 1593 | vm_object_deallocate(object); |
| 1594 | |
| 1595 | goto backoff; |
| 1596 | } else { |
| 1597 | vm_object_unlock(object); |
| 1598 | vm_object_deallocate(object); |
| 1599 | thread_interrupt_level(interruptible: interruptible_state); |
| 1600 | |
| 1601 | return VM_FAULT_RETRY; |
| 1602 | } |
| 1603 | } |
| 1604 | if (!object->internal && !object->phys_contiguous && object->paging_in_progress > vm_object_pagein_throttle) { |
| 1605 | /* |
| 1606 | * If there are too many outstanding page |
| 1607 | * requests pending on this external object, we |
| 1608 | * wait for them to be resolved now. |
| 1609 | */ |
| 1610 | #if TRACEFAULTPAGE |
| 1611 | dbgTrace(0xBEEF0010, (unsigned int) m, (unsigned int) 0); /* (TEST/DEBUG) */ |
| 1612 | #endif |
| 1613 | if (m != VM_PAGE_NULL) { |
| 1614 | VM_PAGE_FREE(m); |
| 1615 | } |
| 1616 | /* |
| 1617 | * take an extra ref so object won't die |
| 1618 | */ |
| 1619 | vm_object_reference_locked(object); |
| 1620 | |
| 1621 | vm_fault_cleanup(object, top_page: first_m); |
| 1622 | |
| 1623 | vm_object_lock(object); |
| 1624 | assert(object->ref_count > 0); |
| 1625 | |
| 1626 | if (object->paging_in_progress >= vm_object_pagein_throttle) { |
| 1627 | vm_object_assert_wait(object, VM_OBJECT_EVENT_PAGING_ONLY_IN_PROGRESS, interruptible); |
| 1628 | |
| 1629 | vm_object_unlock(object); |
| 1630 | wait_result = thread_block(THREAD_CONTINUE_NULL); |
| 1631 | vm_object_deallocate(object); |
| 1632 | |
| 1633 | goto backoff; |
| 1634 | } else { |
| 1635 | vm_object_unlock(object); |
| 1636 | vm_object_deallocate(object); |
| 1637 | thread_interrupt_level(interruptible: interruptible_state); |
| 1638 | |
| 1639 | return VM_FAULT_RETRY; |
| 1640 | } |
| 1641 | } |
| 1642 | if (object->internal) { |
| 1643 | int compressed_count_delta; |
| 1644 | |
| 1645 | assert(VM_CONFIG_COMPRESSOR_IS_PRESENT); |
| 1646 | |
| 1647 | if (m == VM_PAGE_NULL) { |
| 1648 | /* |
| 1649 | * Allocate a new page for this object/offset pair as a placeholder |
| 1650 | */ |
| 1651 | m = vm_page_grab_options(flags: grab_options); |
| 1652 | #if TRACEFAULTPAGE |
| 1653 | dbgTrace(0xBEEF000D, (unsigned int) m, (unsigned int) object); /* (TEST/DEBUG) */ |
| 1654 | #endif |
| 1655 | if (m == VM_PAGE_NULL) { |
| 1656 | vm_fault_cleanup(object, top_page: first_m); |
| 1657 | thread_interrupt_level(interruptible: interruptible_state); |
| 1658 | |
| 1659 | return VM_FAULT_MEMORY_SHORTAGE; |
| 1660 | } |
| 1661 | |
| 1662 | m->vmp_absent = TRUE; |
| 1663 | if (fault_info && fault_info->batch_pmap_op == TRUE) { |
| 1664 | vm_page_insert_internal(page: m, object, vm_object_trunc_page(offset), VM_KERN_MEMORY_NONE, FALSE, TRUE, TRUE, FALSE, NULL); |
| 1665 | } else { |
| 1666 | vm_page_insert(page: m, object, vm_object_trunc_page(offset)); |
| 1667 | } |
| 1668 | } |
| 1669 | assert(m->vmp_busy); |
| 1670 | |
| 1671 | m->vmp_absent = TRUE; |
| 1672 | pager = object->pager; |
| 1673 | |
| 1674 | assert(object->paging_in_progress > 0); |
| 1675 | vm_object_unlock(object); |
| 1676 | |
| 1677 | rc = vm_compressor_pager_get( |
| 1678 | mem_obj: pager, |
| 1679 | offset: offset + object->paging_offset, |
| 1680 | ppnum: VM_PAGE_GET_PHYS_PAGE(m), |
| 1681 | my_fault_type: &my_fault_type, |
| 1682 | flags: 0, |
| 1683 | compressed_count_delta_p: &compressed_count_delta); |
| 1684 | |
| 1685 | if (type_of_fault == NULL) { |
| 1686 | int throttle_delay; |
| 1687 | |
| 1688 | /* |
| 1689 | * we weren't called from vm_fault, so we |
| 1690 | * need to apply page creation throttling |
| 1691 | * do it before we re-acquire any locks |
| 1692 | */ |
| 1693 | if (my_fault_type == DBG_COMPRESSOR_FAULT) { |
| 1694 | if ((throttle_delay = vm_page_throttled(TRUE))) { |
| 1695 | VM_DEBUG_EVENT(vmf_compressordelay, VMF_COMPRESSORDELAY, DBG_FUNC_NONE, throttle_delay, 0, 1, 0); |
| 1696 | __VM_FAULT_THROTTLE_FOR_PAGEOUT_SCAN__(throttle_delay); |
| 1697 | } |
| 1698 | } |
| 1699 | } |
| 1700 | vm_object_lock(object); |
| 1701 | assert(object->paging_in_progress > 0); |
| 1702 | |
| 1703 | vm_compressor_pager_count( |
| 1704 | mem_obj: pager, |
| 1705 | compressed_count_delta, |
| 1706 | FALSE, /* shared_lock */ |
| 1707 | object); |
| 1708 | |
| 1709 | switch (rc) { |
| 1710 | case KERN_SUCCESS: |
| 1711 | m->vmp_absent = FALSE; |
| 1712 | m->vmp_dirty = TRUE; |
| 1713 | if ((object->wimg_bits & |
| 1714 | VM_WIMG_MASK) != |
| 1715 | VM_WIMG_USE_DEFAULT) { |
| 1716 | /* |
| 1717 | * If the page is not cacheable, |
| 1718 | * we can't let its contents |
| 1719 | * linger in the data cache |
| 1720 | * after the decompression. |
| 1721 | */ |
| 1722 | pmap_sync_page_attributes_phys( |
| 1723 | pa: VM_PAGE_GET_PHYS_PAGE(m)); |
| 1724 | } else { |
| 1725 | m->vmp_written_by_kernel = TRUE; |
| 1726 | } |
| 1727 | #if CONFIG_TRACK_UNMODIFIED_ANON_PAGES |
| 1728 | if ((fault_type & VM_PROT_WRITE) == 0) { |
| 1729 | vm_object_lock_assert_exclusive(object); |
| 1730 | vm_page_lockspin_queues(); |
| 1731 | m->vmp_unmodified_ro = true; |
| 1732 | vm_page_unlock_queues(); |
| 1733 | os_atomic_inc(&compressor_ro_uncompressed, relaxed); |
| 1734 | *protection &= ~VM_PROT_WRITE; |
| 1735 | } |
| 1736 | #endif /* CONFIG_TRACK_UNMODIFIED_ANON_PAGES */ |
| 1737 | |
| 1738 | /* |
| 1739 | * If the object is purgeable, its |
| 1740 | * owner's purgeable ledgers have been |
| 1741 | * updated in vm_page_insert() but the |
| 1742 | * page was also accounted for in a |
| 1743 | * "compressed purgeable" ledger, so |
| 1744 | * update that now. |
| 1745 | */ |
| 1746 | if (((object->purgable != |
| 1747 | VM_PURGABLE_DENY) || |
| 1748 | object->vo_ledger_tag) && |
| 1749 | (object->vo_owner != |
| 1750 | NULL)) { |
| 1751 | /* |
| 1752 | * One less compressed |
| 1753 | * purgeable/tagged page. |
| 1754 | */ |
| 1755 | if (compressed_count_delta) { |
| 1756 | vm_object_owner_compressed_update( |
| 1757 | object, |
| 1758 | delta: -1); |
| 1759 | } |
| 1760 | } |
| 1761 | |
| 1762 | break; |
| 1763 | case KERN_MEMORY_FAILURE: |
| 1764 | m->vmp_unusual = TRUE; |
| 1765 | m->vmp_error = TRUE; |
| 1766 | m->vmp_absent = FALSE; |
| 1767 | break; |
| 1768 | case KERN_MEMORY_ERROR: |
| 1769 | assert(m->vmp_absent); |
| 1770 | break; |
| 1771 | default: |
| 1772 | panic("vm_fault_page(): unexpected " |
| 1773 | "error %d from " |
| 1774 | "vm_compressor_pager_get()\n" , |
| 1775 | rc); |
| 1776 | } |
| 1777 | PAGE_WAKEUP_DONE(m); |
| 1778 | |
| 1779 | rc = KERN_SUCCESS; |
| 1780 | goto data_requested; |
| 1781 | } |
| 1782 | my_fault_type = DBG_PAGEIN_FAULT; |
| 1783 | |
| 1784 | if (m != VM_PAGE_NULL) { |
| 1785 | VM_PAGE_FREE(m); |
| 1786 | m = VM_PAGE_NULL; |
| 1787 | } |
| 1788 | |
| 1789 | #if TRACEFAULTPAGE |
| 1790 | dbgTrace(0xBEEF0012, (unsigned int) object, (unsigned int) 0); /* (TEST/DEBUG) */ |
| 1791 | #endif |
| 1792 | |
| 1793 | /* |
| 1794 | * It's possible someone called vm_object_destroy while we weren't |
| 1795 | * holding the object lock. If that has happened, then bail out |
| 1796 | * here. |
| 1797 | */ |
| 1798 | |
| 1799 | pager = object->pager; |
| 1800 | |
| 1801 | if (pager == MEMORY_OBJECT_NULL) { |
| 1802 | vm_fault_cleanup(object, top_page: first_m); |
| 1803 | thread_interrupt_level(interruptible: interruptible_state); |
| 1804 | |
| 1805 | static const enum vm_subsys_error_codes object_destroy_errors[VM_OBJECT_DESTROY_MAX + 1] = { |
| 1806 | [VM_OBJECT_DESTROY_UNKNOWN_REASON] = KDBG_TRIAGE_VM_OBJECT_NO_PAGER, |
| 1807 | [VM_OBJECT_DESTROY_FORCED_UNMOUNT] = KDBG_TRIAGE_VM_OBJECT_NO_PAGER_FORCED_UNMOUNT, |
| 1808 | [VM_OBJECT_DESTROY_UNGRAFT] = KDBG_TRIAGE_VM_OBJECT_NO_PAGER_UNGRAFT, |
| 1809 | }; |
| 1810 | enum vm_subsys_error_codes kdbg_code = object_destroy_errors[(vm_object_destroy_reason_t)object->no_pager_reason]; |
| 1811 | ktriage_record(thread_id: thread_tid(thread: current_thread()), KDBG_TRIAGE_EVENTID(KDBG_TRIAGE_SUBSYS_VM, KDBG_TRIAGE_RESERVED, kdbg_code), arg: 0 /* arg */); |
| 1812 | return VM_FAULT_MEMORY_ERROR; |
| 1813 | } |
| 1814 | |
| 1815 | /* |
| 1816 | * We have an absent page in place for the faulting offset, |
| 1817 | * so we can release the object lock. |
| 1818 | */ |
| 1819 | |
| 1820 | if (object->object_is_shared_cache) { |
| 1821 | token = thread_priority_floor_start(); |
| 1822 | /* |
| 1823 | * A non-native shared cache object might |
| 1824 | * be getting set up in parallel with this |
| 1825 | * fault and so we can't assume that this |
| 1826 | * check will be valid after we drop the |
| 1827 | * object lock below. |
| 1828 | */ |
| 1829 | drop_floor = true; |
| 1830 | } |
| 1831 | |
| 1832 | vm_object_unlock(object); |
| 1833 | |
| 1834 | /* |
| 1835 | * If this object uses a copy_call strategy, |
| 1836 | * and we are interested in a copy of this object |
| 1837 | * (having gotten here only by following a |
| 1838 | * shadow chain), then tell the memory manager |
| 1839 | * via a flag added to the desired_access |
| 1840 | * parameter, so that it can detect a race |
| 1841 | * between our walking down the shadow chain |
| 1842 | * and its pushing pages up into a copy of |
| 1843 | * the object that it manages. |
| 1844 | */ |
| 1845 | if (object->copy_strategy == MEMORY_OBJECT_COPY_CALL && object != first_object) { |
| 1846 | wants_copy_flag = VM_PROT_WANTS_COPY; |
| 1847 | } else { |
| 1848 | wants_copy_flag = VM_PROT_NONE; |
| 1849 | } |
| 1850 | |
| 1851 | if (object->vo_copy == first_object) { |
| 1852 | /* |
| 1853 | * if we issue the memory_object_data_request in |
| 1854 | * this state, we are subject to a deadlock with |
| 1855 | * the underlying filesystem if it is trying to |
| 1856 | * shrink the file resulting in a push of pages |
| 1857 | * into the copy object... that push will stall |
| 1858 | * on the placeholder page, and if the pushing thread |
| 1859 | * is holding a lock that is required on the pagein |
| 1860 | * path (such as a truncate lock), we'll deadlock... |
| 1861 | * to avoid this potential deadlock, we throw away |
| 1862 | * our placeholder page before calling memory_object_data_request |
| 1863 | * and force this thread to retry the vm_fault_page after |
| 1864 | * we have issued the I/O. the second time through this path |
| 1865 | * we will find the page already in the cache (presumably still |
| 1866 | * busy waiting for the I/O to complete) and then complete |
| 1867 | * the fault w/o having to go through memory_object_data_request again |
| 1868 | */ |
| 1869 | assert(first_m != VM_PAGE_NULL); |
| 1870 | assert(VM_PAGE_OBJECT(first_m) == first_object); |
| 1871 | |
| 1872 | vm_object_lock(first_object); |
| 1873 | VM_PAGE_FREE(first_m); |
| 1874 | vm_object_paging_end(first_object); |
| 1875 | vm_object_unlock(first_object); |
| 1876 | |
| 1877 | first_m = VM_PAGE_NULL; |
| 1878 | force_fault_retry = TRUE; |
| 1879 | |
| 1880 | vm_fault_page_forced_retry++; |
| 1881 | } |
| 1882 | |
| 1883 | if (data_already_requested == TRUE) { |
| 1884 | orig_behavior = fault_info->behavior; |
| 1885 | orig_cluster_size = fault_info->cluster_size; |
| 1886 | |
| 1887 | fault_info->behavior = VM_BEHAVIOR_RANDOM; |
| 1888 | fault_info->cluster_size = PAGE_SIZE; |
| 1889 | } |
| 1890 | /* |
| 1891 | * Call the memory manager to retrieve the data. |
| 1892 | */ |
| 1893 | rc = memory_object_data_request( |
| 1894 | memory_object: pager, |
| 1895 | vm_object_trunc_page(offset) + object->paging_offset, |
| 1896 | PAGE_SIZE, |
| 1897 | desired_access: access_required | wants_copy_flag, |
| 1898 | fault_info: (memory_object_fault_info_t)fault_info); |
| 1899 | |
| 1900 | if (data_already_requested == TRUE) { |
| 1901 | fault_info->behavior = orig_behavior; |
| 1902 | fault_info->cluster_size = orig_cluster_size; |
| 1903 | } else { |
| 1904 | data_already_requested = TRUE; |
| 1905 | } |
| 1906 | |
| 1907 | DTRACE_VM2(maj_fault, int, 1, (uint64_t *), NULL); |
| 1908 | #if TRACEFAULTPAGE |
| 1909 | dbgTrace(0xBEEF0013, (unsigned int) object, (unsigned int) rc); /* (TEST/DEBUG) */ |
| 1910 | #endif |
| 1911 | vm_object_lock(object); |
| 1912 | |
| 1913 | if (drop_floor && object->object_is_shared_cache) { |
| 1914 | thread_priority_floor_end(token: &token); |
| 1915 | drop_floor = false; |
| 1916 | } |
| 1917 | |
| 1918 | data_requested: |
| 1919 | if (rc != KERN_SUCCESS) { |
| 1920 | vm_fault_cleanup(object, top_page: first_m); |
| 1921 | thread_interrupt_level(interruptible: interruptible_state); |
| 1922 | |
| 1923 | ktriage_record(thread_id: thread_tid(thread: current_thread()), KDBG_TRIAGE_EVENTID(KDBG_TRIAGE_SUBSYS_VM, KDBG_TRIAGE_RESERVED, KDBG_TRIAGE_VM_NO_DATA), arg: 0 /* arg */); |
| 1924 | |
| 1925 | return (rc == MACH_SEND_INTERRUPTED) ? |
| 1926 | VM_FAULT_INTERRUPTED : |
| 1927 | VM_FAULT_MEMORY_ERROR; |
| 1928 | } else { |
| 1929 | clock_sec_t tv_sec; |
| 1930 | clock_usec_t tv_usec; |
| 1931 | |
| 1932 | if (my_fault_type == DBG_PAGEIN_FAULT) { |
| 1933 | clock_get_system_microtime(secs: &tv_sec, microsecs: &tv_usec); |
| 1934 | current_thread()->t_page_creation_time = tv_sec; |
| 1935 | current_thread()->t_page_creation_count = 0; |
| 1936 | } |
| 1937 | } |
| 1938 | if ((interruptible != THREAD_UNINT) && (current_thread()->sched_flags & TH_SFLAG_ABORT)) { |
| 1939 | vm_fault_cleanup(object, top_page: first_m); |
| 1940 | thread_interrupt_level(interruptible: interruptible_state); |
| 1941 | |
| 1942 | ktriage_record(thread_id: thread_tid(thread: current_thread()), KDBG_TRIAGE_EVENTID(KDBG_TRIAGE_SUBSYS_VM, KDBG_TRIAGE_RESERVED, KDBG_TRIAGE_VM_FAULT_INTERRUPTED), arg: 0 /* arg */); |
| 1943 | return VM_FAULT_INTERRUPTED; |
| 1944 | } |
| 1945 | if (force_fault_retry == TRUE) { |
| 1946 | vm_fault_cleanup(object, top_page: first_m); |
| 1947 | thread_interrupt_level(interruptible: interruptible_state); |
| 1948 | |
| 1949 | return VM_FAULT_RETRY; |
| 1950 | } |
| 1951 | if (m == VM_PAGE_NULL && object->phys_contiguous) { |
| 1952 | /* |
| 1953 | * No page here means that the object we |
| 1954 | * initially looked up was "physically |
| 1955 | * contiguous" (i.e. device memory). However, |
| 1956 | * with Virtual VRAM, the object might not |
| 1957 | * be backed by that device memory anymore, |
| 1958 | * so we're done here only if the object is |
| 1959 | * still "phys_contiguous". |
| 1960 | * Otherwise, if the object is no longer |
| 1961 | * "phys_contiguous", we need to retry the |
| 1962 | * page fault against the object's new backing |
| 1963 | * store (different memory object). |
| 1964 | */ |
| 1965 | phys_contig_object: |
| 1966 | assert(object->copy_strategy == MEMORY_OBJECT_COPY_NONE); |
| 1967 | assert(object == first_object); |
| 1968 | goto done; |
| 1969 | } |
| 1970 | /* |
| 1971 | * potentially a pagein fault |
| 1972 | * if we make it through the state checks |
| 1973 | * above, than we'll count it as such |
| 1974 | */ |
| 1975 | my_fault = my_fault_type; |
| 1976 | |
| 1977 | /* |
| 1978 | * Retry with same object/offset, since new data may |
| 1979 | * be in a different page (i.e., m is meaningless at |
| 1980 | * this point). |
| 1981 | */ |
| 1982 | continue; |
| 1983 | } |
| 1984 | dont_look_for_page: |
| 1985 | /* |
| 1986 | * We get here if the object has no pager, or an existence map |
| 1987 | * exists and indicates the page isn't present on the pager |
| 1988 | * or we're unwiring a page. If a pager exists, but there |
| 1989 | * is no existence map, then the m->vmp_absent case above handles |
| 1990 | * the ZF case when the pager can't provide the page |
| 1991 | */ |
| 1992 | #if TRACEFAULTPAGE |
| 1993 | dbgTrace(0xBEEF0014, (unsigned int) object, (unsigned int) m); /* (TEST/DEBUG) */ |
| 1994 | #endif |
| 1995 | if (object == first_object) { |
| 1996 | first_m = m; |
| 1997 | } else { |
| 1998 | assert(m == VM_PAGE_NULL); |
| 1999 | } |
| 2000 | |
| 2001 | next_object = object->shadow; |
| 2002 | |
| 2003 | if (next_object == VM_OBJECT_NULL) { |
| 2004 | /* |
| 2005 | * we've hit the bottom of the shadown chain, |
| 2006 | * fill the page in the top object with zeros. |
| 2007 | */ |
| 2008 | assert(!must_be_resident); |
| 2009 | |
| 2010 | if (object != first_object) { |
| 2011 | vm_object_paging_end(object); |
| 2012 | vm_object_unlock(object); |
| 2013 | |
| 2014 | object = first_object; |
| 2015 | offset = first_offset; |
| 2016 | vm_object_lock(object); |
| 2017 | } |
| 2018 | m = first_m; |
| 2019 | assert(VM_PAGE_OBJECT(m) == object); |
| 2020 | first_m = VM_PAGE_NULL; |
| 2021 | |
| 2022 | /* |
| 2023 | * check for any conditions that prevent |
| 2024 | * us from creating a new zero-fill page |
| 2025 | * vm_fault_check will do all of the |
| 2026 | * fault cleanup in the case of an error condition |
| 2027 | * including resetting the thread_interrupt_level |
| 2028 | */ |
| 2029 | error = vm_fault_check(object, m, first_m, interruptible_state, page_throttle: (type_of_fault == NULL) ? TRUE : FALSE); |
| 2030 | |
| 2031 | if (error != VM_FAULT_SUCCESS) { |
| 2032 | return error; |
| 2033 | } |
| 2034 | |
| 2035 | if (m == VM_PAGE_NULL) { |
| 2036 | m = vm_page_grab_options(flags: grab_options); |
| 2037 | |
| 2038 | if (m == VM_PAGE_NULL) { |
| 2039 | vm_fault_cleanup(object, VM_PAGE_NULL); |
| 2040 | thread_interrupt_level(interruptible: interruptible_state); |
| 2041 | |
| 2042 | return VM_FAULT_MEMORY_SHORTAGE; |
| 2043 | } |
| 2044 | vm_page_insert(page: m, object, vm_object_trunc_page(offset)); |
| 2045 | } |
| 2046 | if (fault_info->mark_zf_absent && no_zero_fill == TRUE) { |
| 2047 | m->vmp_absent = TRUE; |
| 2048 | clear_absent_on_error = true; |
| 2049 | } |
| 2050 | |
| 2051 | my_fault = vm_fault_zero_page(m, no_zero_fill); |
| 2052 | |
| 2053 | break; |
| 2054 | } else { |
| 2055 | /* |
| 2056 | * Move on to the next object. Lock the next |
| 2057 | * object before unlocking the current one. |
| 2058 | */ |
| 2059 | if ((object != first_object) || must_be_resident) { |
| 2060 | vm_object_paging_end(object); |
| 2061 | } |
| 2062 | |
| 2063 | offset += object->vo_shadow_offset; |
| 2064 | fault_info->lo_offset += object->vo_shadow_offset; |
| 2065 | fault_info->hi_offset += object->vo_shadow_offset; |
| 2066 | access_required = VM_PROT_READ; |
| 2067 | |
| 2068 | vm_object_lock(next_object); |
| 2069 | vm_object_unlock(object); |
| 2070 | |
| 2071 | object = next_object; |
| 2072 | vm_object_paging_begin(object); |
| 2073 | } |
| 2074 | } |
| 2075 | |
| 2076 | /* |
| 2077 | * PAGE HAS BEEN FOUND. |
| 2078 | * |
| 2079 | * This page (m) is: |
| 2080 | * busy, so that we can play with it; |
| 2081 | * not absent, so that nobody else will fill it; |
| 2082 | * possibly eligible for pageout; |
| 2083 | * |
| 2084 | * The top-level page (first_m) is: |
| 2085 | * VM_PAGE_NULL if the page was found in the |
| 2086 | * top-level object; |
| 2087 | * busy, not absent, and ineligible for pageout. |
| 2088 | * |
| 2089 | * The current object (object) is locked. A paging |
| 2090 | * reference is held for the current and top-level |
| 2091 | * objects. |
| 2092 | */ |
| 2093 | |
| 2094 | #if TRACEFAULTPAGE |
| 2095 | dbgTrace(0xBEEF0015, (unsigned int) object, (unsigned int) m); /* (TEST/DEBUG) */ |
| 2096 | #endif |
| 2097 | #if EXTRA_ASSERTIONS |
| 2098 | assert(m->vmp_busy && !m->vmp_absent); |
| 2099 | assert((first_m == VM_PAGE_NULL) || |
| 2100 | (first_m->vmp_busy && !first_m->vmp_absent && |
| 2101 | !first_m->vmp_active && !first_m->vmp_inactive && !first_m->vmp_secluded)); |
| 2102 | #endif /* EXTRA_ASSERTIONS */ |
| 2103 | |
| 2104 | /* |
| 2105 | * If the page is being written, but isn't |
| 2106 | * already owned by the top-level object, |
| 2107 | * we have to copy it into a new page owned |
| 2108 | * by the top-level object. |
| 2109 | */ |
| 2110 | if (object != first_object) { |
| 2111 | #if TRACEFAULTPAGE |
| 2112 | dbgTrace(0xBEEF0016, (unsigned int) object, (unsigned int) fault_type); /* (TEST/DEBUG) */ |
| 2113 | #endif |
| 2114 | if (fault_type & VM_PROT_WRITE) { |
| 2115 | vm_page_t copy_m; |
| 2116 | |
| 2117 | /* |
| 2118 | * We only really need to copy if we |
| 2119 | * want to write it. |
| 2120 | */ |
| 2121 | assert(!must_be_resident); |
| 2122 | |
| 2123 | /* |
| 2124 | * If we try to collapse first_object at this |
| 2125 | * point, we may deadlock when we try to get |
| 2126 | * the lock on an intermediate object (since we |
| 2127 | * have the bottom object locked). We can't |
| 2128 | * unlock the bottom object, because the page |
| 2129 | * we found may move (by collapse) if we do. |
| 2130 | * |
| 2131 | * Instead, we first copy the page. Then, when |
| 2132 | * we have no more use for the bottom object, |
| 2133 | * we unlock it and try to collapse. |
| 2134 | * |
| 2135 | * Note that we copy the page even if we didn't |
| 2136 | * need to... that's the breaks. |
| 2137 | */ |
| 2138 | |
| 2139 | /* |
| 2140 | * Allocate a page for the copy |
| 2141 | */ |
| 2142 | copy_m = vm_page_grab_options(flags: grab_options); |
| 2143 | |
| 2144 | if (copy_m == VM_PAGE_NULL) { |
| 2145 | RELEASE_PAGE(m); |
| 2146 | |
| 2147 | vm_fault_cleanup(object, top_page: first_m); |
| 2148 | thread_interrupt_level(interruptible: interruptible_state); |
| 2149 | |
| 2150 | return VM_FAULT_MEMORY_SHORTAGE; |
| 2151 | } |
| 2152 | |
| 2153 | vm_page_copy(src_page: m, dest_page: copy_m); |
| 2154 | |
| 2155 | /* |
| 2156 | * If another map is truly sharing this |
| 2157 | * page with us, we have to flush all |
| 2158 | * uses of the original page, since we |
| 2159 | * can't distinguish those which want the |
| 2160 | * original from those which need the |
| 2161 | * new copy. |
| 2162 | * |
| 2163 | * XXXO If we know that only one map has |
| 2164 | * access to this page, then we could |
| 2165 | * avoid the pmap_disconnect() call. |
| 2166 | */ |
| 2167 | if (m->vmp_pmapped) { |
| 2168 | pmap_disconnect(phys: VM_PAGE_GET_PHYS_PAGE(m)); |
| 2169 | } |
| 2170 | |
| 2171 | if (m->vmp_clustered) { |
| 2172 | VM_PAGE_COUNT_AS_PAGEIN(m); |
| 2173 | VM_PAGE_CONSUME_CLUSTERED(m); |
| 2174 | } |
| 2175 | assert(!m->vmp_cleaning); |
| 2176 | |
| 2177 | /* |
| 2178 | * We no longer need the old page or object. |
| 2179 | */ |
| 2180 | RELEASE_PAGE(m); |
| 2181 | |
| 2182 | /* |
| 2183 | * This check helps with marking the object as having a sequential pattern |
| 2184 | * Normally we'll miss doing this below because this fault is about COW to |
| 2185 | * the first_object i.e. bring page in from disk, push to object above but |
| 2186 | * don't update the file object's sequential pattern. |
| 2187 | */ |
| 2188 | if (object->internal == FALSE) { |
| 2189 | vm_fault_is_sequential(object, offset, behavior: fault_info->behavior); |
| 2190 | } |
| 2191 | |
| 2192 | vm_object_paging_end(object); |
| 2193 | vm_object_unlock(object); |
| 2194 | |
| 2195 | my_fault = DBG_COW_FAULT; |
| 2196 | counter_inc(&vm_statistics_cow_faults); |
| 2197 | DTRACE_VM2(cow_fault, int, 1, (uint64_t *), NULL); |
| 2198 | counter_inc(¤t_task()->cow_faults); |
| 2199 | |
| 2200 | object = first_object; |
| 2201 | offset = first_offset; |
| 2202 | |
| 2203 | vm_object_lock(object); |
| 2204 | /* |
| 2205 | * get rid of the place holder |
| 2206 | * page that we soldered in earlier |
| 2207 | */ |
| 2208 | VM_PAGE_FREE(first_m); |
| 2209 | first_m = VM_PAGE_NULL; |
| 2210 | |
| 2211 | /* |
| 2212 | * and replace it with the |
| 2213 | * page we just copied into |
| 2214 | */ |
| 2215 | assert(copy_m->vmp_busy); |
| 2216 | vm_page_insert(page: copy_m, object, vm_object_trunc_page(offset)); |
| 2217 | SET_PAGE_DIRTY(copy_m, TRUE); |
| 2218 | |
| 2219 | m = copy_m; |
| 2220 | /* |
| 2221 | * Now that we've gotten the copy out of the |
| 2222 | * way, let's try to collapse the top object. |
| 2223 | * But we have to play ugly games with |
| 2224 | * paging_in_progress to do that... |
| 2225 | */ |
| 2226 | vm_object_paging_end(object); |
| 2227 | vm_object_collapse(object, vm_object_trunc_page(offset), TRUE); |
| 2228 | vm_object_paging_begin(object); |
| 2229 | } else { |
| 2230 | *protection &= (~VM_PROT_WRITE); |
| 2231 | } |
| 2232 | } |
| 2233 | /* |
| 2234 | * Now check whether the page needs to be pushed into the |
| 2235 | * copy object. The use of asymmetric copy on write for |
| 2236 | * shared temporary objects means that we may do two copies to |
| 2237 | * satisfy the fault; one above to get the page from a |
| 2238 | * shadowed object, and one here to push it into the copy. |
| 2239 | */ |
| 2240 | try_failed_count = 0; |
| 2241 | |
| 2242 | while ((copy_object = first_object->vo_copy) != VM_OBJECT_NULL) { |
| 2243 | vm_object_offset_t copy_offset; |
| 2244 | vm_page_t copy_m; |
| 2245 | |
| 2246 | #if TRACEFAULTPAGE |
| 2247 | dbgTrace(0xBEEF0017, (unsigned int) copy_object, (unsigned int) fault_type); /* (TEST/DEBUG) */ |
| 2248 | #endif |
| 2249 | /* |
| 2250 | * If the page is being written, but hasn't been |
| 2251 | * copied to the copy-object, we have to copy it there. |
| 2252 | */ |
| 2253 | if ((fault_type & VM_PROT_WRITE) == 0) { |
| 2254 | *protection &= ~VM_PROT_WRITE; |
| 2255 | break; |
| 2256 | } |
| 2257 | |
| 2258 | /* |
| 2259 | * If the page was guaranteed to be resident, |
| 2260 | * we must have already performed the copy. |
| 2261 | */ |
| 2262 | if (must_be_resident) { |
| 2263 | break; |
| 2264 | } |
| 2265 | |
| 2266 | /* |
| 2267 | * Try to get the lock on the copy_object. |
| 2268 | */ |
| 2269 | if (!vm_object_lock_try(copy_object)) { |
| 2270 | vm_object_unlock(object); |
| 2271 | try_failed_count++; |
| 2272 | |
| 2273 | mutex_pause(try_failed_count); /* wait a bit */ |
| 2274 | vm_object_lock(object); |
| 2275 | |
| 2276 | continue; |
| 2277 | } |
| 2278 | try_failed_count = 0; |
| 2279 | |
| 2280 | /* |
| 2281 | * Make another reference to the copy-object, |
| 2282 | * to keep it from disappearing during the |
| 2283 | * copy. |
| 2284 | */ |
| 2285 | vm_object_reference_locked(copy_object); |
| 2286 | |
| 2287 | /* |
| 2288 | * Does the page exist in the copy? |
| 2289 | */ |
| 2290 | copy_offset = first_offset - copy_object->vo_shadow_offset; |
| 2291 | copy_offset = vm_object_trunc_page(copy_offset); |
| 2292 | |
| 2293 | if (copy_object->vo_size <= copy_offset) { |
| 2294 | /* |
| 2295 | * Copy object doesn't cover this page -- do nothing. |
| 2296 | */ |
| 2297 | ; |
| 2298 | } else if ((copy_m = vm_page_lookup(object: copy_object, offset: copy_offset)) != VM_PAGE_NULL) { |
| 2299 | /* |
| 2300 | * Page currently exists in the copy object |
| 2301 | */ |
| 2302 | if (copy_m->vmp_busy) { |
| 2303 | /* |
| 2304 | * If the page is being brought |
| 2305 | * in, wait for it and then retry. |
| 2306 | */ |
| 2307 | RELEASE_PAGE(m); |
| 2308 | |
| 2309 | /* |
| 2310 | * take an extra ref so object won't die |
| 2311 | */ |
| 2312 | vm_object_reference_locked(copy_object); |
| 2313 | vm_object_unlock(copy_object); |
| 2314 | vm_fault_cleanup(object, top_page: first_m); |
| 2315 | |
| 2316 | vm_object_lock(copy_object); |
| 2317 | assert(copy_object->ref_count > 0); |
| 2318 | vm_object_lock_assert_exclusive(copy_object); |
| 2319 | copy_object->ref_count--; |
| 2320 | assert(copy_object->ref_count > 0); |
| 2321 | copy_m = vm_page_lookup(object: copy_object, offset: copy_offset); |
| 2322 | |
| 2323 | if (copy_m != VM_PAGE_NULL && copy_m->vmp_busy) { |
| 2324 | PAGE_ASSERT_WAIT(copy_m, interruptible); |
| 2325 | |
| 2326 | vm_object_unlock(copy_object); |
| 2327 | wait_result = thread_block(THREAD_CONTINUE_NULL); |
| 2328 | vm_object_deallocate(object: copy_object); |
| 2329 | |
| 2330 | goto backoff; |
| 2331 | } else { |
| 2332 | vm_object_unlock(copy_object); |
| 2333 | vm_object_deallocate(object: copy_object); |
| 2334 | thread_interrupt_level(interruptible: interruptible_state); |
| 2335 | |
| 2336 | return VM_FAULT_RETRY; |
| 2337 | } |
| 2338 | } |
| 2339 | } else if (!PAGED_OUT(copy_object, copy_offset)) { |
| 2340 | /* |
| 2341 | * If PAGED_OUT is TRUE, then the page used to exist |
| 2342 | * in the copy-object, and has already been paged out. |
| 2343 | * We don't need to repeat this. If PAGED_OUT is |
| 2344 | * FALSE, then either we don't know (!pager_created, |
| 2345 | * for example) or it hasn't been paged out. |
| 2346 | * (VM_EXTERNAL_STATE_UNKNOWN||VM_EXTERNAL_STATE_ABSENT) |
| 2347 | * We must copy the page to the copy object. |
| 2348 | * |
| 2349 | * Allocate a page for the copy |
| 2350 | */ |
| 2351 | copy_m = vm_page_alloc(object: copy_object, offset: copy_offset); |
| 2352 | |
| 2353 | if (copy_m == VM_PAGE_NULL) { |
| 2354 | RELEASE_PAGE(m); |
| 2355 | |
| 2356 | vm_object_lock_assert_exclusive(copy_object); |
| 2357 | copy_object->ref_count--; |
| 2358 | assert(copy_object->ref_count > 0); |
| 2359 | |
| 2360 | vm_object_unlock(copy_object); |
| 2361 | vm_fault_cleanup(object, top_page: first_m); |
| 2362 | thread_interrupt_level(interruptible: interruptible_state); |
| 2363 | |
| 2364 | return VM_FAULT_MEMORY_SHORTAGE; |
| 2365 | } |
| 2366 | /* |
| 2367 | * Must copy page into copy-object. |
| 2368 | */ |
| 2369 | vm_page_copy(src_page: m, dest_page: copy_m); |
| 2370 | |
| 2371 | /* |
| 2372 | * If the old page was in use by any users |
| 2373 | * of the copy-object, it must be removed |
| 2374 | * from all pmaps. (We can't know which |
| 2375 | * pmaps use it.) |
| 2376 | */ |
| 2377 | if (m->vmp_pmapped) { |
| 2378 | pmap_disconnect(phys: VM_PAGE_GET_PHYS_PAGE(m)); |
| 2379 | } |
| 2380 | |
| 2381 | if (m->vmp_clustered) { |
| 2382 | VM_PAGE_COUNT_AS_PAGEIN(m); |
| 2383 | VM_PAGE_CONSUME_CLUSTERED(m); |
| 2384 | } |
| 2385 | /* |
| 2386 | * If there's a pager, then immediately |
| 2387 | * page out this page, using the "initialize" |
| 2388 | * option. Else, we use the copy. |
| 2389 | */ |
| 2390 | if ((!copy_object->pager_ready) |
| 2391 | || VM_COMPRESSOR_PAGER_STATE_GET(copy_object, copy_offset) == VM_EXTERNAL_STATE_ABSENT |
| 2392 | ) { |
| 2393 | vm_page_lockspin_queues(); |
| 2394 | assert(!m->vmp_cleaning); |
| 2395 | vm_page_activate(page: copy_m); |
| 2396 | vm_page_unlock_queues(); |
| 2397 | |
| 2398 | SET_PAGE_DIRTY(copy_m, TRUE); |
| 2399 | PAGE_WAKEUP_DONE(copy_m); |
| 2400 | } else { |
| 2401 | assert(copy_m->vmp_busy == TRUE); |
| 2402 | assert(!m->vmp_cleaning); |
| 2403 | |
| 2404 | /* |
| 2405 | * dirty is protected by the object lock |
| 2406 | */ |
| 2407 | SET_PAGE_DIRTY(copy_m, TRUE); |
| 2408 | |
| 2409 | /* |
| 2410 | * The page is already ready for pageout: |
| 2411 | * not on pageout queues and busy. |
| 2412 | * Unlock everything except the |
| 2413 | * copy_object itself. |
| 2414 | */ |
| 2415 | vm_object_unlock(object); |
| 2416 | |
| 2417 | /* |
| 2418 | * Write the page to the copy-object, |
| 2419 | * flushing it from the kernel. |
| 2420 | */ |
| 2421 | vm_pageout_initialize_page(m: copy_m); |
| 2422 | |
| 2423 | /* |
| 2424 | * Since the pageout may have |
| 2425 | * temporarily dropped the |
| 2426 | * copy_object's lock, we |
| 2427 | * check whether we'll have |
| 2428 | * to deallocate the hard way. |
| 2429 | */ |
| 2430 | if ((copy_object->shadow != object) || (copy_object->ref_count == 1)) { |
| 2431 | vm_object_unlock(copy_object); |
| 2432 | vm_object_deallocate(object: copy_object); |
| 2433 | vm_object_lock(object); |
| 2434 | |
| 2435 | continue; |
| 2436 | } |
| 2437 | /* |
| 2438 | * Pick back up the old object's |
| 2439 | * lock. [It is safe to do so, |
| 2440 | * since it must be deeper in the |
| 2441 | * object tree.] |
| 2442 | */ |
| 2443 | vm_object_lock(object); |
| 2444 | } |
| 2445 | |
| 2446 | /* |
| 2447 | * Because we're pushing a page upward |
| 2448 | * in the object tree, we must restart |
| 2449 | * any faults that are waiting here. |
| 2450 | * [Note that this is an expansion of |
| 2451 | * PAGE_WAKEUP that uses the THREAD_RESTART |
| 2452 | * wait result]. Can't turn off the page's |
| 2453 | * busy bit because we're not done with it. |
| 2454 | */ |
| 2455 | if (m->vmp_wanted) { |
| 2456 | m->vmp_wanted = FALSE; |
| 2457 | thread_wakeup_with_result((event_t) m, THREAD_RESTART); |
| 2458 | } |
| 2459 | } |
| 2460 | /* |
| 2461 | * The reference count on copy_object must be |
| 2462 | * at least 2: one for our extra reference, |
| 2463 | * and at least one from the outside world |
| 2464 | * (we checked that when we last locked |
| 2465 | * copy_object). |
| 2466 | */ |
| 2467 | vm_object_lock_assert_exclusive(copy_object); |
| 2468 | copy_object->ref_count--; |
| 2469 | assert(copy_object->ref_count > 0); |
| 2470 | |
| 2471 | vm_object_unlock(copy_object); |
| 2472 | |
| 2473 | break; |
| 2474 | } |
| 2475 | |
| 2476 | done: |
| 2477 | *result_page = m; |
| 2478 | *top_page = first_m; |
| 2479 | |
| 2480 | if (m != VM_PAGE_NULL) { |
| 2481 | assert(VM_PAGE_OBJECT(m) == object); |
| 2482 | |
| 2483 | retval = VM_FAULT_SUCCESS; |
| 2484 | |
| 2485 | if (my_fault == DBG_PAGEIN_FAULT) { |
| 2486 | VM_PAGE_COUNT_AS_PAGEIN(m); |
| 2487 | |
| 2488 | if (object->internal) { |
| 2489 | my_fault = DBG_PAGEIND_FAULT; |
| 2490 | } else { |
| 2491 | my_fault = DBG_PAGEINV_FAULT; |
| 2492 | } |
| 2493 | |
| 2494 | /* |
| 2495 | * evaluate access pattern and update state |
| 2496 | * vm_fault_deactivate_behind depends on the |
| 2497 | * state being up to date |
| 2498 | */ |
| 2499 | vm_fault_is_sequential(object, offset, behavior: fault_info->behavior); |
| 2500 | vm_fault_deactivate_behind(object, offset, behavior: fault_info->behavior); |
| 2501 | } else if (type_of_fault == NULL && my_fault == DBG_CACHE_HIT_FAULT) { |
| 2502 | /* |
| 2503 | * we weren't called from vm_fault, so handle the |
| 2504 | * accounting here for hits in the cache |
| 2505 | */ |
| 2506 | if (m->vmp_clustered) { |
| 2507 | VM_PAGE_COUNT_AS_PAGEIN(m); |
| 2508 | VM_PAGE_CONSUME_CLUSTERED(m); |
| 2509 | } |
| 2510 | vm_fault_is_sequential(object, offset, behavior: fault_info->behavior); |
| 2511 | vm_fault_deactivate_behind(object, offset, behavior: fault_info->behavior); |
| 2512 | } else if (my_fault == DBG_COMPRESSOR_FAULT || my_fault == DBG_COMPRESSOR_SWAPIN_FAULT) { |
| 2513 | VM_STAT_DECOMPRESSIONS(); |
| 2514 | } |
| 2515 | if (type_of_fault) { |
| 2516 | *type_of_fault = my_fault; |
| 2517 | } |
| 2518 | } else { |
| 2519 | ktriage_record(thread_id: thread_tid(thread: current_thread()), KDBG_TRIAGE_EVENTID(KDBG_TRIAGE_SUBSYS_VM, KDBG_TRIAGE_RESERVED, KDBG_TRIAGE_VM_SUCCESS_NO_PAGE), arg: 0 /* arg */); |
| 2520 | retval = VM_FAULT_SUCCESS_NO_VM_PAGE; |
| 2521 | assert(first_m == VM_PAGE_NULL); |
| 2522 | assert(object == first_object); |
| 2523 | } |
| 2524 | |
| 2525 | thread_interrupt_level(interruptible: interruptible_state); |
| 2526 | |
| 2527 | #if TRACEFAULTPAGE |
| 2528 | dbgTrace(0xBEEF001A, (unsigned int) VM_FAULT_SUCCESS, 0); /* (TEST/DEBUG) */ |
| 2529 | #endif |
| 2530 | return retval; |
| 2531 | |
| 2532 | backoff: |
| 2533 | thread_interrupt_level(interruptible: interruptible_state); |
| 2534 | |
| 2535 | if (wait_result == THREAD_INTERRUPTED) { |
| 2536 | ktriage_record(thread_id: thread_tid(thread: current_thread()), KDBG_TRIAGE_EVENTID(KDBG_TRIAGE_SUBSYS_VM, KDBG_TRIAGE_RESERVED, KDBG_TRIAGE_VM_FAULT_INTERRUPTED), arg: 0 /* arg */); |
| 2537 | return VM_FAULT_INTERRUPTED; |
| 2538 | } |
| 2539 | return VM_FAULT_RETRY; |
| 2540 | |
| 2541 | #undef RELEASE_PAGE |
| 2542 | } |
| 2543 | |
| 2544 | #if MACH_ASSERT && (XNU_PLATFORM_WatchOS || __x86_64__) |
| 2545 | #define PANIC_ON_CS_KILLED_DEFAULT true |
| 2546 | #else |
| 2547 | #define PANIC_ON_CS_KILLED_DEFAULT false |
| 2548 | #endif |
| 2549 | static TUNABLE(bool, panic_on_cs_killed, "panic_on_cs_killed" , |
| 2550 | PANIC_ON_CS_KILLED_DEFAULT); |
| 2551 | |
| 2552 | extern int proc_selfpid(void); |
| 2553 | extern char *proc_name_address(struct proc *p); |
| 2554 | extern char *proc_best_name(struct proc *); |
| 2555 | unsigned long cs_enter_tainted_rejected = 0; |
| 2556 | unsigned long cs_enter_tainted_accepted = 0; |
| 2557 | |
| 2558 | /* |
| 2559 | * CODE SIGNING: |
| 2560 | * When soft faulting a page, we have to validate the page if: |
| 2561 | * 1. the page is being mapped in user space |
| 2562 | * 2. the page hasn't already been found to be "tainted" |
| 2563 | * 3. the page belongs to a code-signed object |
| 2564 | * 4. the page has not been validated yet or has been mapped for write. |
| 2565 | */ |
| 2566 | static bool |
| 2567 | vm_fault_cs_need_validation( |
| 2568 | pmap_t pmap, |
| 2569 | vm_page_t page, |
| 2570 | vm_object_t page_obj, |
| 2571 | vm_map_size_t fault_page_size, |
| 2572 | vm_map_offset_t fault_phys_offset) |
| 2573 | { |
| 2574 | if (pmap == kernel_pmap) { |
| 2575 | /* 1 - not user space */ |
| 2576 | return false; |
| 2577 | } |
| 2578 | if (!page_obj->code_signed) { |
| 2579 | /* 3 - page does not belong to a code-signed object */ |
| 2580 | return false; |
| 2581 | } |
| 2582 | if (fault_page_size == PAGE_SIZE) { |
| 2583 | /* looking at the whole page */ |
| 2584 | assertf(fault_phys_offset == 0, |
| 2585 | "fault_page_size 0x%llx fault_phys_offset 0x%llx\n" , |
| 2586 | (uint64_t)fault_page_size, |
| 2587 | (uint64_t)fault_phys_offset); |
| 2588 | if (page->vmp_cs_tainted == VMP_CS_ALL_TRUE) { |
| 2589 | /* 2 - page is all tainted */ |
| 2590 | return false; |
| 2591 | } |
| 2592 | if (page->vmp_cs_validated == VMP_CS_ALL_TRUE && |
| 2593 | !page->vmp_wpmapped) { |
| 2594 | /* 4 - already fully validated and never mapped writable */ |
| 2595 | return false; |
| 2596 | } |
| 2597 | } else { |
| 2598 | /* looking at a specific sub-page */ |
| 2599 | if (VMP_CS_TAINTED(p: page, fault_page_size, fault_phys_offset)) { |
| 2600 | /* 2 - sub-page was already marked as tainted */ |
| 2601 | return false; |
| 2602 | } |
| 2603 | if (VMP_CS_VALIDATED(p: page, fault_page_size, fault_phys_offset) && |
| 2604 | !page->vmp_wpmapped) { |
| 2605 | /* 4 - already validated and never mapped writable */ |
| 2606 | return false; |
| 2607 | } |
| 2608 | } |
| 2609 | /* page needs to be validated */ |
| 2610 | return true; |
| 2611 | } |
| 2612 | |
| 2613 | |
| 2614 | static bool |
| 2615 | vm_fault_cs_page_immutable( |
| 2616 | vm_page_t m, |
| 2617 | vm_map_size_t fault_page_size, |
| 2618 | vm_map_offset_t fault_phys_offset, |
| 2619 | vm_prot_t prot __unused) |
| 2620 | { |
| 2621 | if (VMP_CS_VALIDATED(p: m, fault_page_size, fault_phys_offset) |
| 2622 | /*&& ((prot) & VM_PROT_EXECUTE)*/) { |
| 2623 | return true; |
| 2624 | } |
| 2625 | return false; |
| 2626 | } |
| 2627 | |
| 2628 | static bool |
| 2629 | vm_fault_cs_page_nx( |
| 2630 | vm_page_t m, |
| 2631 | vm_map_size_t fault_page_size, |
| 2632 | vm_map_offset_t fault_phys_offset) |
| 2633 | { |
| 2634 | return VMP_CS_NX(p: m, fault_page_size, fault_phys_offset); |
| 2635 | } |
| 2636 | |
| 2637 | /* |
| 2638 | * Check if the page being entered into the pmap violates code signing. |
| 2639 | */ |
| 2640 | static kern_return_t |
| 2641 | vm_fault_cs_check_violation( |
| 2642 | bool cs_bypass, |
| 2643 | vm_object_t object, |
| 2644 | vm_page_t m, |
| 2645 | pmap_t pmap, |
| 2646 | vm_prot_t prot, |
| 2647 | vm_prot_t caller_prot, |
| 2648 | vm_map_size_t fault_page_size, |
| 2649 | vm_map_offset_t fault_phys_offset, |
| 2650 | vm_object_fault_info_t fault_info, |
| 2651 | bool map_is_switched, |
| 2652 | bool map_is_switch_protected, |
| 2653 | bool *cs_violation) |
| 2654 | { |
| 2655 | #if !CODE_SIGNING_MONITOR |
| 2656 | #pragma unused(caller_prot) |
| 2657 | #pragma unused(fault_info) |
| 2658 | #endif /* !CODE_SIGNING_MONITOR */ |
| 2659 | |
| 2660 | int cs_enforcement_enabled; |
| 2661 | if (!cs_bypass && |
| 2662 | vm_fault_cs_need_validation(pmap, page: m, page_obj: object, |
| 2663 | fault_page_size, fault_phys_offset)) { |
| 2664 | vm_object_lock_assert_exclusive(object); |
| 2665 | |
| 2666 | if (VMP_CS_VALIDATED(p: m, fault_page_size, fault_phys_offset)) { |
| 2667 | vm_cs_revalidates++; |
| 2668 | } |
| 2669 | |
| 2670 | /* VM map is locked, so 1 ref will remain on VM object - |
| 2671 | * so no harm if vm_page_validate_cs drops the object lock */ |
| 2672 | |
| 2673 | #if CODE_SIGNING_MONITOR |
| 2674 | if (fault_info->csm_associated && |
| 2675 | csm_enabled() && |
| 2676 | !VMP_CS_VALIDATED(m, fault_page_size, fault_phys_offset) && |
| 2677 | !VMP_CS_TAINTED(m, fault_page_size, fault_phys_offset) && |
| 2678 | !VMP_CS_NX(m, fault_page_size, fault_phys_offset) && |
| 2679 | (prot & VM_PROT_EXECUTE) && |
| 2680 | (caller_prot & VM_PROT_EXECUTE)) { |
| 2681 | /* |
| 2682 | * When we have a code signing monitor, the monitor will evaluate the code signature |
| 2683 | * for any executable page mapping. No need for the VM to also validate the page. |
| 2684 | * In the code signing monitor we trust :) |
| 2685 | */ |
| 2686 | vm_cs_defer_to_csm++; |
| 2687 | } else { |
| 2688 | vm_cs_defer_to_csm_not++; |
| 2689 | vm_page_validate_cs(m, fault_page_size, fault_phys_offset); |
| 2690 | } |
| 2691 | #else /* CODE_SIGNING_MONITOR */ |
| 2692 | vm_page_validate_cs(page: m, fault_page_size, fault_phys_offset); |
| 2693 | #endif /* CODE_SIGNING_MONITOR */ |
| 2694 | } |
| 2695 | |
| 2696 | /* If the map is switched, and is switch-protected, we must protect |
| 2697 | * some pages from being write-faulted: immutable pages because by |
| 2698 | * definition they may not be written, and executable pages because that |
| 2699 | * would provide a way to inject unsigned code. |
| 2700 | * If the page is immutable, we can simply return. However, we can't |
| 2701 | * immediately determine whether a page is executable anywhere. But, |
| 2702 | * we can disconnect it everywhere and remove the executable protection |
| 2703 | * from the current map. We do that below right before we do the |
| 2704 | * PMAP_ENTER. |
| 2705 | */ |
| 2706 | if (pmap == kernel_pmap) { |
| 2707 | /* kernel fault: cs_enforcement does not apply */ |
| 2708 | cs_enforcement_enabled = 0; |
| 2709 | } else { |
| 2710 | cs_enforcement_enabled = pmap_get_vm_map_cs_enforced(pmap); |
| 2711 | } |
| 2712 | |
| 2713 | if (cs_enforcement_enabled && map_is_switched && |
| 2714 | map_is_switch_protected && |
| 2715 | vm_fault_cs_page_immutable(m, fault_page_size, fault_phys_offset, prot) && |
| 2716 | (prot & VM_PROT_WRITE)) { |
| 2717 | ktriage_record(thread_id: thread_tid(thread: current_thread()), KDBG_TRIAGE_EVENTID(KDBG_TRIAGE_SUBSYS_VM, KDBG_TRIAGE_RESERVED, KDBG_TRIAGE_VM_FAILED_IMMUTABLE_PAGE_WRITE), arg: 0 /* arg */); |
| 2718 | return KERN_CODESIGN_ERROR; |
| 2719 | } |
| 2720 | |
| 2721 | if (cs_enforcement_enabled && |
| 2722 | vm_fault_cs_page_nx(m, fault_page_size, fault_phys_offset) && |
| 2723 | (prot & VM_PROT_EXECUTE)) { |
| 2724 | if (cs_debug) { |
| 2725 | printf(format: "page marked to be NX, not letting it be mapped EXEC\n" ); |
| 2726 | } |
| 2727 | ktriage_record(thread_id: thread_tid(thread: current_thread()), KDBG_TRIAGE_EVENTID(KDBG_TRIAGE_SUBSYS_VM, KDBG_TRIAGE_RESERVED, KDBG_TRIAGE_VM_FAILED_NX_PAGE_EXEC_MAPPING), arg: 0 /* arg */); |
| 2728 | return KERN_CODESIGN_ERROR; |
| 2729 | } |
| 2730 | |
| 2731 | /* A page could be tainted, or pose a risk of being tainted later. |
| 2732 | * Check whether the receiving process wants it, and make it feel |
| 2733 | * the consequences (that hapens in cs_invalid_page()). |
| 2734 | * For CS Enforcement, two other conditions will |
| 2735 | * cause that page to be tainted as well: |
| 2736 | * - pmapping an unsigned page executable - this means unsigned code; |
| 2737 | * - writeable mapping of a validated page - the content of that page |
| 2738 | * can be changed without the kernel noticing, therefore unsigned |
| 2739 | * code can be created |
| 2740 | */ |
| 2741 | if (cs_bypass) { |
| 2742 | /* code-signing is bypassed */ |
| 2743 | *cs_violation = FALSE; |
| 2744 | } else if (VMP_CS_TAINTED(p: m, fault_page_size, fault_phys_offset)) { |
| 2745 | /* tainted page */ |
| 2746 | *cs_violation = TRUE; |
| 2747 | } else if (!cs_enforcement_enabled) { |
| 2748 | /* no further code-signing enforcement */ |
| 2749 | *cs_violation = FALSE; |
| 2750 | } else if (vm_fault_cs_page_immutable(m, fault_page_size, fault_phys_offset, prot) && |
| 2751 | ((prot & VM_PROT_WRITE) || |
| 2752 | m->vmp_wpmapped)) { |
| 2753 | /* |
| 2754 | * The page should be immutable, but is in danger of being |
| 2755 | * modified. |
| 2756 | * This is the case where we want policy from the code |
| 2757 | * directory - is the page immutable or not? For now we have |
| 2758 | * to assume that code pages will be immutable, data pages not. |
| 2759 | * We'll assume a page is a code page if it has a code directory |
| 2760 | * and we fault for execution. |
| 2761 | * That is good enough since if we faulted the code page for |
| 2762 | * writing in another map before, it is wpmapped; if we fault |
| 2763 | * it for writing in this map later it will also be faulted for |
| 2764 | * executing at the same time; and if we fault for writing in |
| 2765 | * another map later, we will disconnect it from this pmap so |
| 2766 | * we'll notice the change. |
| 2767 | */ |
| 2768 | *cs_violation = TRUE; |
| 2769 | } else if (!VMP_CS_VALIDATED(p: m, fault_page_size, fault_phys_offset) && |
| 2770 | (prot & VM_PROT_EXECUTE) |
| 2771 | #if CODE_SIGNING_MONITOR |
| 2772 | /* |
| 2773 | * Executable pages will be validated by the code signing monitor. If the |
| 2774 | * code signing monitor is turned off, then this is a code-signing violation. |
| 2775 | */ |
| 2776 | && !csm_enabled() |
| 2777 | #endif /* CODE_SIGNING_MONITOR */ |
| 2778 | ) { |
| 2779 | *cs_violation = TRUE; |
| 2780 | } else { |
| 2781 | *cs_violation = FALSE; |
| 2782 | } |
| 2783 | return KERN_SUCCESS; |
| 2784 | } |
| 2785 | |
| 2786 | /* |
| 2787 | * Handles a code signing violation by either rejecting the page or forcing a disconnect. |
| 2788 | * @param must_disconnect This value will be set to true if the caller must disconnect |
| 2789 | * this page. |
| 2790 | * @return If this function does not return KERN_SUCCESS, the caller must abort the page fault. |
| 2791 | */ |
| 2792 | static kern_return_t |
| 2793 | vm_fault_cs_handle_violation( |
| 2794 | vm_object_t object, |
| 2795 | vm_page_t m, |
| 2796 | pmap_t pmap, |
| 2797 | vm_prot_t prot, |
| 2798 | vm_map_offset_t vaddr, |
| 2799 | vm_map_size_t fault_page_size, |
| 2800 | vm_map_offset_t fault_phys_offset, |
| 2801 | bool map_is_switched, |
| 2802 | bool map_is_switch_protected, |
| 2803 | bool *must_disconnect) |
| 2804 | { |
| 2805 | #if !MACH_ASSERT |
| 2806 | #pragma unused(pmap) |
| 2807 | #pragma unused(map_is_switch_protected) |
| 2808 | #endif /* !MACH_ASSERT */ |
| 2809 | /* |
| 2810 | * We will have a tainted page. Have to handle the special case |
| 2811 | * of a switched map now. If the map is not switched, standard |
| 2812 | * procedure applies - call cs_invalid_page(). |
| 2813 | * If the map is switched, the real owner is invalid already. |
| 2814 | * There is no point in invalidating the switching process since |
| 2815 | * it will not be executing from the map. So we don't call |
| 2816 | * cs_invalid_page() in that case. |
| 2817 | */ |
| 2818 | boolean_t reject_page, cs_killed; |
| 2819 | kern_return_t kr; |
| 2820 | if (map_is_switched) { |
| 2821 | assert(pmap == vm_map_pmap(current_thread()->map)); |
| 2822 | assert(!(prot & VM_PROT_WRITE) || (map_is_switch_protected == FALSE)); |
| 2823 | reject_page = FALSE; |
| 2824 | } else { |
| 2825 | if (cs_debug > 5) { |
| 2826 | printf(format: "vm_fault: signed: %s validate: %s tainted: %s wpmapped: %s prot: 0x%x\n" , |
| 2827 | object->code_signed ? "yes" : "no" , |
| 2828 | VMP_CS_VALIDATED(p: m, fault_page_size, fault_phys_offset) ? "yes" : "no" , |
| 2829 | VMP_CS_TAINTED(p: m, fault_page_size, fault_phys_offset) ? "yes" : "no" , |
| 2830 | m->vmp_wpmapped ? "yes" : "no" , |
| 2831 | (int)prot); |
| 2832 | } |
| 2833 | reject_page = cs_invalid_page(vaddr: (addr64_t) vaddr, cs_killed: &cs_killed); |
| 2834 | } |
| 2835 | |
| 2836 | if (reject_page) { |
| 2837 | /* reject the invalid page: abort the page fault */ |
| 2838 | int pid; |
| 2839 | const char *procname; |
| 2840 | task_t task; |
| 2841 | vm_object_t file_object, shadow; |
| 2842 | vm_object_offset_t file_offset; |
| 2843 | char *pathname, *filename; |
| 2844 | vm_size_t pathname_len, filename_len; |
| 2845 | boolean_t truncated_path; |
| 2846 | #define __PATH_MAX 1024 |
| 2847 | struct timespec mtime, cs_mtime; |
| 2848 | int shadow_depth; |
| 2849 | os_reason_t codesigning_exit_reason = OS_REASON_NULL; |
| 2850 | |
| 2851 | kr = KERN_CODESIGN_ERROR; |
| 2852 | cs_enter_tainted_rejected++; |
| 2853 | |
| 2854 | /* get process name and pid */ |
| 2855 | procname = "?" ; |
| 2856 | task = current_task(); |
| 2857 | pid = proc_selfpid(); |
| 2858 | if (get_bsdtask_info(task) != NULL) { |
| 2859 | procname = proc_name_address(p: get_bsdtask_info(task)); |
| 2860 | } |
| 2861 | |
| 2862 | /* get file's VM object */ |
| 2863 | file_object = object; |
| 2864 | file_offset = m->vmp_offset; |
| 2865 | for (shadow = file_object->shadow, |
| 2866 | shadow_depth = 0; |
| 2867 | shadow != VM_OBJECT_NULL; |
| 2868 | shadow = file_object->shadow, |
| 2869 | shadow_depth++) { |
| 2870 | vm_object_lock_shared(shadow); |
| 2871 | if (file_object != object) { |
| 2872 | vm_object_unlock(file_object); |
| 2873 | } |
| 2874 | file_offset += file_object->vo_shadow_offset; |
| 2875 | file_object = shadow; |
| 2876 | } |
| 2877 | |
| 2878 | mtime.tv_sec = 0; |
| 2879 | mtime.tv_nsec = 0; |
| 2880 | cs_mtime.tv_sec = 0; |
| 2881 | cs_mtime.tv_nsec = 0; |
| 2882 | |
| 2883 | /* get file's pathname and/or filename */ |
| 2884 | pathname = NULL; |
| 2885 | filename = NULL; |
| 2886 | pathname_len = 0; |
| 2887 | filename_len = 0; |
| 2888 | truncated_path = FALSE; |
| 2889 | /* no pager -> no file -> no pathname, use "<nil>" in that case */ |
| 2890 | if (file_object->pager != NULL) { |
| 2891 | pathname = kalloc_data(__PATH_MAX * 2, Z_WAITOK); |
| 2892 | if (pathname) { |
| 2893 | pathname[0] = '\0'; |
| 2894 | pathname_len = __PATH_MAX; |
| 2895 | filename = pathname + pathname_len; |
| 2896 | filename_len = __PATH_MAX; |
| 2897 | |
| 2898 | if (vnode_pager_get_object_name(mem_obj: file_object->pager, |
| 2899 | pathname, |
| 2900 | pathname_len, |
| 2901 | filename, |
| 2902 | filename_len, |
| 2903 | truncated_path_p: &truncated_path) == KERN_SUCCESS) { |
| 2904 | /* safety first... */ |
| 2905 | pathname[__PATH_MAX - 1] = '\0'; |
| 2906 | filename[__PATH_MAX - 1] = '\0'; |
| 2907 | |
| 2908 | vnode_pager_get_object_mtime(mem_obj: file_object->pager, |
| 2909 | mtime: &mtime, |
| 2910 | cs_mtime: &cs_mtime); |
| 2911 | } else { |
| 2912 | kfree_data(pathname, __PATH_MAX * 2); |
| 2913 | pathname = NULL; |
| 2914 | filename = NULL; |
| 2915 | pathname_len = 0; |
| 2916 | filename_len = 0; |
| 2917 | truncated_path = FALSE; |
| 2918 | } |
| 2919 | } |
| 2920 | } |
| 2921 | printf(format: "CODE SIGNING: process %d[%s]: " |
| 2922 | "rejecting invalid page at address 0x%llx " |
| 2923 | "from offset 0x%llx in file \"%s%s%s\" " |
| 2924 | "(cs_mtime:%lu.%ld %s mtime:%lu.%ld) " |
| 2925 | "(signed:%d validated:%d tainted:%d nx:%d " |
| 2926 | "wpmapped:%d dirty:%d depth:%d)\n" , |
| 2927 | pid, procname, (addr64_t) vaddr, |
| 2928 | file_offset, |
| 2929 | (pathname ? pathname : "<nil>" ), |
| 2930 | (truncated_path ? "/.../" : "" ), |
| 2931 | (truncated_path ? filename : "" ), |
| 2932 | cs_mtime.tv_sec, cs_mtime.tv_nsec, |
| 2933 | ((cs_mtime.tv_sec == mtime.tv_sec && |
| 2934 | cs_mtime.tv_nsec == mtime.tv_nsec) |
| 2935 | ? "==" |
| 2936 | : "!=" ), |
| 2937 | mtime.tv_sec, mtime.tv_nsec, |
| 2938 | object->code_signed, |
| 2939 | VMP_CS_VALIDATED(p: m, fault_page_size, fault_phys_offset), |
| 2940 | VMP_CS_TAINTED(p: m, fault_page_size, fault_phys_offset), |
| 2941 | VMP_CS_NX(p: m, fault_page_size, fault_phys_offset), |
| 2942 | m->vmp_wpmapped, |
| 2943 | m->vmp_dirty, |
| 2944 | shadow_depth); |
| 2945 | |
| 2946 | /* |
| 2947 | * We currently only generate an exit reason if cs_invalid_page directly killed a process. If cs_invalid_page |
| 2948 | * did not kill the process (more the case on desktop), vm_fault_enter will not satisfy the fault and whether the |
| 2949 | * process dies is dependent on whether there is a signal handler registered for SIGSEGV and how that handler |
| 2950 | * will deal with the segmentation fault. |
| 2951 | */ |
| 2952 | if (cs_killed) { |
| 2953 | KDBG(BSDDBG_CODE(DBG_BSD_PROC, BSD_PROC_EXITREASON_CREATE) | DBG_FUNC_NONE, |
| 2954 | pid, OS_REASON_CODESIGNING, CODESIGNING_EXIT_REASON_INVALID_PAGE); |
| 2955 | |
| 2956 | codesigning_exit_reason = os_reason_create(OS_REASON_CODESIGNING, CODESIGNING_EXIT_REASON_INVALID_PAGE); |
| 2957 | if (codesigning_exit_reason == NULL) { |
| 2958 | printf(format: "vm_fault_enter: failed to allocate codesigning exit reason\n" ); |
| 2959 | } else { |
| 2960 | mach_vm_address_t data_addr = 0; |
| 2961 | struct codesigning_exit_reason_info *ceri = NULL; |
| 2962 | uint32_t reason_buffer_size_estimate = kcdata_estimate_required_buffer_size(num_items: 1, payload_size: sizeof(*ceri)); |
| 2963 | |
| 2964 | if (os_reason_alloc_buffer_noblock(cur_reason: codesigning_exit_reason, osr_bufsize: reason_buffer_size_estimate)) { |
| 2965 | printf(format: "vm_fault_enter: failed to allocate buffer for codesigning exit reason\n" ); |
| 2966 | } else { |
| 2967 | if (KERN_SUCCESS == kcdata_get_memory_addr(data: &codesigning_exit_reason->osr_kcd_descriptor, |
| 2968 | EXIT_REASON_CODESIGNING_INFO, size: sizeof(*ceri), user_addr: &data_addr)) { |
| 2969 | ceri = (struct codesigning_exit_reason_info *)data_addr; |
| 2970 | static_assert(__PATH_MAX == sizeof(ceri->ceri_pathname)); |
| 2971 | |
| 2972 | ceri->ceri_virt_addr = vaddr; |
| 2973 | ceri->ceri_file_offset = file_offset; |
| 2974 | if (pathname) { |
| 2975 | strncpy((char *)&ceri->ceri_pathname, pathname, sizeof(ceri->ceri_pathname)); |
| 2976 | } else { |
| 2977 | ceri->ceri_pathname[0] = '\0'; |
| 2978 | } |
| 2979 | if (filename) { |
| 2980 | strncpy((char *)&ceri->ceri_filename, filename, sizeof(ceri->ceri_filename)); |
| 2981 | } else { |
| 2982 | ceri->ceri_filename[0] = '\0'; |
| 2983 | } |
| 2984 | ceri->ceri_path_truncated = (truncated_path ? 1 : 0); |
| 2985 | ceri->ceri_codesig_modtime_secs = cs_mtime.tv_sec; |
| 2986 | ceri->ceri_codesig_modtime_nsecs = cs_mtime.tv_nsec; |
| 2987 | ceri->ceri_page_modtime_secs = mtime.tv_sec; |
| 2988 | ceri->ceri_page_modtime_nsecs = mtime.tv_nsec; |
| 2989 | ceri->ceri_object_codesigned = (object->code_signed); |
| 2990 | ceri->ceri_page_codesig_validated = VMP_CS_VALIDATED(p: m, fault_page_size, fault_phys_offset); |
| 2991 | ceri->ceri_page_codesig_tainted = VMP_CS_TAINTED(p: m, fault_page_size, fault_phys_offset); |
| 2992 | ceri->ceri_page_codesig_nx = VMP_CS_NX(p: m, fault_page_size, fault_phys_offset); |
| 2993 | ceri->ceri_page_wpmapped = (m->vmp_wpmapped); |
| 2994 | ceri->ceri_page_slid = 0; |
| 2995 | ceri->ceri_page_dirty = (m->vmp_dirty); |
| 2996 | ceri->ceri_page_shadow_depth = shadow_depth; |
| 2997 | } else { |
| 2998 | #if DEBUG || DEVELOPMENT |
| 2999 | panic("vm_fault_enter: failed to allocate kcdata for codesigning exit reason" ); |
| 3000 | #else |
| 3001 | printf(format: "vm_fault_enter: failed to allocate kcdata for codesigning exit reason\n" ); |
| 3002 | #endif /* DEBUG || DEVELOPMENT */ |
| 3003 | /* Free the buffer */ |
| 3004 | os_reason_alloc_buffer_noblock(cur_reason: codesigning_exit_reason, osr_bufsize: 0); |
| 3005 | } |
| 3006 | } |
| 3007 | } |
| 3008 | |
| 3009 | set_thread_exit_reason(th: current_thread(), reason: codesigning_exit_reason, FALSE); |
| 3010 | } |
| 3011 | if (panic_on_cs_killed && |
| 3012 | object->object_is_shared_cache) { |
| 3013 | char *tainted_contents; |
| 3014 | vm_map_offset_t src_vaddr; |
| 3015 | src_vaddr = (vm_map_offset_t) phystokv(pa: (pmap_paddr_t)VM_PAGE_GET_PHYS_PAGE(m) << PAGE_SHIFT); |
| 3016 | tainted_contents = kalloc_data(PAGE_SIZE, Z_WAITOK); |
| 3017 | bcopy(src: (const char *)src_vaddr, dst: tainted_contents, PAGE_SIZE); |
| 3018 | printf(format: "CODE SIGNING: tainted page %p phys 0x%x phystokv 0x%llx copied to %p\n" , m, VM_PAGE_GET_PHYS_PAGE(m), (uint64_t)src_vaddr, tainted_contents); |
| 3019 | panic("CODE SIGNING: process %d[%s]: " |
| 3020 | "rejecting invalid page (phys#0x%x) at address 0x%llx " |
| 3021 | "from offset 0x%llx in file \"%s%s%s\" " |
| 3022 | "(cs_mtime:%lu.%ld %s mtime:%lu.%ld) " |
| 3023 | "(signed:%d validated:%d tainted:%d nx:%d" |
| 3024 | "wpmapped:%d dirty:%d depth:%d)\n" , |
| 3025 | pid, procname, |
| 3026 | VM_PAGE_GET_PHYS_PAGE(m), |
| 3027 | (addr64_t) vaddr, |
| 3028 | file_offset, |
| 3029 | (pathname ? pathname : "<nil>" ), |
| 3030 | (truncated_path ? "/.../" : "" ), |
| 3031 | (truncated_path ? filename : "" ), |
| 3032 | cs_mtime.tv_sec, cs_mtime.tv_nsec, |
| 3033 | ((cs_mtime.tv_sec == mtime.tv_sec && |
| 3034 | cs_mtime.tv_nsec == mtime.tv_nsec) |
| 3035 | ? "==" |
| 3036 | : "!=" ), |
| 3037 | mtime.tv_sec, mtime.tv_nsec, |
| 3038 | object->code_signed, |
| 3039 | VMP_CS_VALIDATED(m, fault_page_size, fault_phys_offset), |
| 3040 | VMP_CS_TAINTED(m, fault_page_size, fault_phys_offset), |
| 3041 | VMP_CS_NX(m, fault_page_size, fault_phys_offset), |
| 3042 | m->vmp_wpmapped, |
| 3043 | m->vmp_dirty, |
| 3044 | shadow_depth); |
| 3045 | } |
| 3046 | |
| 3047 | if (file_object != object) { |
| 3048 | vm_object_unlock(file_object); |
| 3049 | } |
| 3050 | if (pathname_len != 0) { |
| 3051 | kfree_data(pathname, __PATH_MAX * 2); |
| 3052 | pathname = NULL; |
| 3053 | filename = NULL; |
| 3054 | } |
| 3055 | } else { |
| 3056 | /* proceed with the invalid page */ |
| 3057 | kr = KERN_SUCCESS; |
| 3058 | if (!VMP_CS_VALIDATED(p: m, fault_page_size, fault_phys_offset) && |
| 3059 | !object->code_signed) { |
| 3060 | /* |
| 3061 | * This page has not been (fully) validated but |
| 3062 | * does not belong to a code-signed object |
| 3063 | * so it should not be forcefully considered |
| 3064 | * as tainted. |
| 3065 | * We're just concerned about it here because |
| 3066 | * we've been asked to "execute" it but that |
| 3067 | * does not mean that it should cause other |
| 3068 | * accesses to fail. |
| 3069 | * This happens when a debugger sets a |
| 3070 | * breakpoint and we then execute code in |
| 3071 | * that page. Marking the page as "tainted" |
| 3072 | * would cause any inspection tool ("leaks", |
| 3073 | * "vmmap", "CrashReporter", ...) to get killed |
| 3074 | * due to code-signing violation on that page, |
| 3075 | * even though they're just reading it and not |
| 3076 | * executing from it. |
| 3077 | */ |
| 3078 | } else { |
| 3079 | /* |
| 3080 | * Page might have been tainted before or not; |
| 3081 | * now it definitively is. If the page wasn't |
| 3082 | * tainted, we must disconnect it from all |
| 3083 | * pmaps later, to force existing mappings |
| 3084 | * through that code path for re-consideration |
| 3085 | * of the validity of that page. |
| 3086 | */ |
| 3087 | if (!VMP_CS_TAINTED(p: m, fault_page_size, fault_phys_offset)) { |
| 3088 | *must_disconnect = TRUE; |
| 3089 | VMP_CS_SET_TAINTED(p: m, fault_page_size, fault_phys_offset, TRUE); |
| 3090 | } |
| 3091 | } |
| 3092 | cs_enter_tainted_accepted++; |
| 3093 | } |
| 3094 | if (kr != KERN_SUCCESS) { |
| 3095 | if (cs_debug) { |
| 3096 | printf(format: "CODESIGNING: vm_fault_enter(0x%llx): " |
| 3097 | "*** INVALID PAGE ***\n" , |
| 3098 | (long long)vaddr); |
| 3099 | } |
| 3100 | #if !SECURE_KERNEL |
| 3101 | if (cs_enforcement_panic) { |
| 3102 | panic("CODESIGNING: panicking on invalid page" ); |
| 3103 | } |
| 3104 | #endif |
| 3105 | } |
| 3106 | return kr; |
| 3107 | } |
| 3108 | |
| 3109 | /* |
| 3110 | * Check that the code signature is valid for the given page being inserted into |
| 3111 | * the pmap. |
| 3112 | * |
| 3113 | * @param must_disconnect This value will be set to true if the caller must disconnect |
| 3114 | * this page. |
| 3115 | * @return If this function does not return KERN_SUCCESS, the caller must abort the page fault. |
| 3116 | */ |
| 3117 | static kern_return_t |
| 3118 | vm_fault_validate_cs( |
| 3119 | bool cs_bypass, |
| 3120 | vm_object_t object, |
| 3121 | vm_page_t m, |
| 3122 | pmap_t pmap, |
| 3123 | vm_map_offset_t vaddr, |
| 3124 | vm_prot_t prot, |
| 3125 | vm_prot_t caller_prot, |
| 3126 | vm_map_size_t fault_page_size, |
| 3127 | vm_map_offset_t fault_phys_offset, |
| 3128 | vm_object_fault_info_t fault_info, |
| 3129 | bool *must_disconnect) |
| 3130 | { |
| 3131 | bool map_is_switched, map_is_switch_protected, cs_violation; |
| 3132 | kern_return_t kr; |
| 3133 | /* Validate code signature if necessary. */ |
| 3134 | map_is_switched = ((pmap != vm_map_pmap(current_task()->map)) && |
| 3135 | (pmap == vm_map_pmap(current_thread()->map))); |
| 3136 | map_is_switch_protected = current_thread()->map->switch_protect; |
| 3137 | kr = vm_fault_cs_check_violation(cs_bypass, object, m, pmap, |
| 3138 | prot, caller_prot, fault_page_size, fault_phys_offset, fault_info, |
| 3139 | map_is_switched, map_is_switch_protected, cs_violation: &cs_violation); |
| 3140 | if (kr != KERN_SUCCESS) { |
| 3141 | return kr; |
| 3142 | } |
| 3143 | if (cs_violation) { |
| 3144 | kr = vm_fault_cs_handle_violation(object, m, pmap, prot, vaddr, |
| 3145 | fault_page_size, fault_phys_offset, |
| 3146 | map_is_switched, map_is_switch_protected, must_disconnect); |
| 3147 | } |
| 3148 | return kr; |
| 3149 | } |
| 3150 | |
| 3151 | /* |
| 3152 | * Enqueue the page on the appropriate paging queue. |
| 3153 | */ |
| 3154 | static void |
| 3155 | vm_fault_enqueue_page( |
| 3156 | vm_object_t object, |
| 3157 | vm_page_t m, |
| 3158 | bool wired, |
| 3159 | bool change_wiring, |
| 3160 | vm_tag_t wire_tag, |
| 3161 | bool no_cache, |
| 3162 | int *type_of_fault, |
| 3163 | kern_return_t kr) |
| 3164 | { |
| 3165 | assert((m->vmp_q_state == VM_PAGE_USED_BY_COMPRESSOR) || object != compressor_object); |
| 3166 | boolean_t page_queues_locked = FALSE; |
| 3167 | boolean_t previously_pmapped = m->vmp_pmapped; |
| 3168 | #define __VM_PAGE_LOCKSPIN_QUEUES_IF_NEEDED() \ |
| 3169 | MACRO_BEGIN \ |
| 3170 | if (! page_queues_locked) { \ |
| 3171 | page_queues_locked = TRUE; \ |
| 3172 | vm_page_lockspin_queues(); \ |
| 3173 | } \ |
| 3174 | MACRO_END |
| 3175 | #define __VM_PAGE_UNLOCK_QUEUES_IF_NEEDED() \ |
| 3176 | MACRO_BEGIN \ |
| 3177 | if (page_queues_locked) { \ |
| 3178 | page_queues_locked = FALSE; \ |
| 3179 | vm_page_unlock_queues(); \ |
| 3180 | } \ |
| 3181 | MACRO_END |
| 3182 | |
| 3183 | vm_page_update_special_state(mem: m); |
| 3184 | if (m->vmp_q_state == VM_PAGE_USED_BY_COMPRESSOR) { |
| 3185 | /* |
| 3186 | * Compressor pages are neither wired |
| 3187 | * nor pageable and should never change. |
| 3188 | */ |
| 3189 | assert(object == compressor_object); |
| 3190 | } else if (change_wiring) { |
| 3191 | __VM_PAGE_LOCKSPIN_QUEUES_IF_NEEDED(); |
| 3192 | |
| 3193 | if (wired) { |
| 3194 | if (kr == KERN_SUCCESS) { |
| 3195 | vm_page_wire(page: m, tag: wire_tag, TRUE); |
| 3196 | } |
| 3197 | } else { |
| 3198 | vm_page_unwire(page: m, TRUE); |
| 3199 | } |
| 3200 | /* we keep the page queues lock, if we need it later */ |
| 3201 | } else { |
| 3202 | if (object->internal == TRUE) { |
| 3203 | /* |
| 3204 | * don't allow anonymous pages on |
| 3205 | * the speculative queues |
| 3206 | */ |
| 3207 | no_cache = FALSE; |
| 3208 | } |
| 3209 | if (kr != KERN_SUCCESS) { |
| 3210 | __VM_PAGE_LOCKSPIN_QUEUES_IF_NEEDED(); |
| 3211 | vm_page_deactivate(page: m); |
| 3212 | /* we keep the page queues lock, if we need it later */ |
| 3213 | } else if (((m->vmp_q_state == VM_PAGE_NOT_ON_Q) || |
| 3214 | (m->vmp_q_state == VM_PAGE_ON_SPECULATIVE_Q) || |
| 3215 | (m->vmp_q_state == VM_PAGE_ON_INACTIVE_CLEANED_Q) || |
| 3216 | ((m->vmp_q_state != VM_PAGE_ON_THROTTLED_Q) && no_cache)) && |
| 3217 | !VM_PAGE_WIRED(m)) { |
| 3218 | if (vm_page_local_q && |
| 3219 | (*type_of_fault == DBG_COW_FAULT || |
| 3220 | *type_of_fault == DBG_ZERO_FILL_FAULT)) { |
| 3221 | struct vpl *lq; |
| 3222 | uint32_t lid; |
| 3223 | |
| 3224 | assert(m->vmp_q_state == VM_PAGE_NOT_ON_Q); |
| 3225 | |
| 3226 | __VM_PAGE_UNLOCK_QUEUES_IF_NEEDED(); |
| 3227 | vm_object_lock_assert_exclusive(object); |
| 3228 | |
| 3229 | /* |
| 3230 | * we got a local queue to stuff this |
| 3231 | * new page on... |
| 3232 | * its safe to manipulate local and |
| 3233 | * local_id at this point since we're |
| 3234 | * behind an exclusive object lock and |
| 3235 | * the page is not on any global queue. |
| 3236 | * |
| 3237 | * we'll use the current cpu number to |
| 3238 | * select the queue note that we don't |
| 3239 | * need to disable preemption... we're |
| 3240 | * going to be behind the local queue's |
| 3241 | * lock to do the real work |
| 3242 | */ |
| 3243 | lid = cpu_number(); |
| 3244 | |
| 3245 | lq = zpercpu_get_cpu(vm_page_local_q, lid); |
| 3246 | |
| 3247 | VPL_LOCK(&lq->vpl_lock); |
| 3248 | |
| 3249 | vm_page_check_pageable_safe(page: m); |
| 3250 | vm_page_queue_enter(&lq->vpl_queue, m, vmp_pageq); |
| 3251 | m->vmp_q_state = VM_PAGE_ON_ACTIVE_LOCAL_Q; |
| 3252 | m->vmp_local_id = lid; |
| 3253 | lq->vpl_count++; |
| 3254 | |
| 3255 | if (object->internal) { |
| 3256 | lq->vpl_internal_count++; |
| 3257 | } else { |
| 3258 | lq->vpl_external_count++; |
| 3259 | } |
| 3260 | |
| 3261 | VPL_UNLOCK(&lq->vpl_lock); |
| 3262 | |
| 3263 | if (lq->vpl_count > vm_page_local_q_soft_limit) { |
| 3264 | /* |
| 3265 | * we're beyond the soft limit |
| 3266 | * for the local queue |
| 3267 | * vm_page_reactivate_local will |
| 3268 | * 'try' to take the global page |
| 3269 | * queue lock... if it can't |
| 3270 | * that's ok... we'll let the |
| 3271 | * queue continue to grow up |
| 3272 | * to the hard limit... at that |
| 3273 | * point we'll wait for the |
| 3274 | * lock... once we've got the |
| 3275 | * lock, we'll transfer all of |
| 3276 | * the pages from the local |
| 3277 | * queue to the global active |
| 3278 | * queue |
| 3279 | */ |
| 3280 | vm_page_reactivate_local(lid, FALSE, FALSE); |
| 3281 | } |
| 3282 | } else { |
| 3283 | __VM_PAGE_LOCKSPIN_QUEUES_IF_NEEDED(); |
| 3284 | |
| 3285 | /* |
| 3286 | * test again now that we hold the |
| 3287 | * page queue lock |
| 3288 | */ |
| 3289 | if (!VM_PAGE_WIRED(m)) { |
| 3290 | if (m->vmp_q_state == VM_PAGE_ON_INACTIVE_CLEANED_Q) { |
| 3291 | vm_page_queues_remove(mem: m, FALSE); |
| 3292 | |
| 3293 | VM_PAGEOUT_DEBUG(vm_pageout_cleaned_reactivated, 1); |
| 3294 | VM_PAGEOUT_DEBUG(vm_pageout_cleaned_fault_reactivated, 1); |
| 3295 | } |
| 3296 | |
| 3297 | if (!VM_PAGE_ACTIVE_OR_INACTIVE(m) || |
| 3298 | no_cache) { |
| 3299 | /* |
| 3300 | * If this is a no_cache mapping |
| 3301 | * and the page has never been |
| 3302 | * mapped before or was |
| 3303 | * previously a no_cache page, |
| 3304 | * then we want to leave pages |
| 3305 | * in the speculative state so |
| 3306 | * that they can be readily |
| 3307 | * recycled if free memory runs |
| 3308 | * low. Otherwise the page is |
| 3309 | * activated as normal. |
| 3310 | */ |
| 3311 | |
| 3312 | if (no_cache && |
| 3313 | (!previously_pmapped || |
| 3314 | m->vmp_no_cache)) { |
| 3315 | m->vmp_no_cache = TRUE; |
| 3316 | |
| 3317 | if (m->vmp_q_state != VM_PAGE_ON_SPECULATIVE_Q) { |
| 3318 | vm_page_speculate(page: m, FALSE); |
| 3319 | } |
| 3320 | } else if (!VM_PAGE_ACTIVE_OR_INACTIVE(m)) { |
| 3321 | vm_page_activate(page: m); |
| 3322 | } |
| 3323 | } |
| 3324 | } |
| 3325 | /* we keep the page queues lock, if we need it later */ |
| 3326 | } |
| 3327 | } |
| 3328 | } |
| 3329 | /* we're done with the page queues lock, if we ever took it */ |
| 3330 | __VM_PAGE_UNLOCK_QUEUES_IF_NEEDED(); |
| 3331 | } |
| 3332 | |
| 3333 | /* |
| 3334 | * Sets the pmmpped, xpmapped, and wpmapped bits on the vm_page_t and updates accounting. |
| 3335 | * @return true if the page needs to be sync'ed via pmap_sync-page_data_physo |
| 3336 | * before being inserted into the pmap. |
| 3337 | */ |
| 3338 | static bool |
| 3339 | vm_fault_enter_set_mapped( |
| 3340 | vm_object_t object, |
| 3341 | vm_page_t m, |
| 3342 | vm_prot_t prot, |
| 3343 | vm_prot_t fault_type) |
| 3344 | { |
| 3345 | bool page_needs_sync = false; |
| 3346 | /* |
| 3347 | * NOTE: we may only hold the vm_object lock SHARED |
| 3348 | * at this point, so we need the phys_page lock to |
| 3349 | * properly serialize updating the pmapped and |
| 3350 | * xpmapped bits |
| 3351 | */ |
| 3352 | if ((prot & VM_PROT_EXECUTE) && !m->vmp_xpmapped) { |
| 3353 | ppnum_t phys_page = VM_PAGE_GET_PHYS_PAGE(m); |
| 3354 | |
| 3355 | pmap_lock_phys_page(pn: phys_page); |
| 3356 | m->vmp_pmapped = TRUE; |
| 3357 | |
| 3358 | if (!m->vmp_xpmapped) { |
| 3359 | m->vmp_xpmapped = TRUE; |
| 3360 | |
| 3361 | pmap_unlock_phys_page(pn: phys_page); |
| 3362 | |
| 3363 | if (!object->internal) { |
| 3364 | OSAddAtomic(1, &vm_page_xpmapped_external_count); |
| 3365 | } |
| 3366 | |
| 3367 | #if defined(__arm64__) |
| 3368 | page_needs_sync = true; |
| 3369 | #else |
| 3370 | if (object->internal && |
| 3371 | object->pager != NULL) { |
| 3372 | /* |
| 3373 | * This page could have been |
| 3374 | * uncompressed by the |
| 3375 | * compressor pager and its |
| 3376 | * contents might be only in |
| 3377 | * the data cache. |
| 3378 | * Since it's being mapped for |
| 3379 | * "execute" for the fist time, |
| 3380 | * make sure the icache is in |
| 3381 | * sync. |
| 3382 | */ |
| 3383 | assert(VM_CONFIG_COMPRESSOR_IS_PRESENT); |
| 3384 | page_needs_sync = true; |
| 3385 | } |
| 3386 | #endif |
| 3387 | } else { |
| 3388 | pmap_unlock_phys_page(pn: phys_page); |
| 3389 | } |
| 3390 | } else { |
| 3391 | if (m->vmp_pmapped == FALSE) { |
| 3392 | ppnum_t phys_page = VM_PAGE_GET_PHYS_PAGE(m); |
| 3393 | |
| 3394 | pmap_lock_phys_page(pn: phys_page); |
| 3395 | m->vmp_pmapped = TRUE; |
| 3396 | pmap_unlock_phys_page(pn: phys_page); |
| 3397 | } |
| 3398 | } |
| 3399 | |
| 3400 | if (fault_type & VM_PROT_WRITE) { |
| 3401 | if (m->vmp_wpmapped == FALSE) { |
| 3402 | vm_object_lock_assert_exclusive(object); |
| 3403 | if (!object->internal && object->pager) { |
| 3404 | task_update_logical_writes(task: current_task(), PAGE_SIZE, TASK_WRITE_DEFERRED, vp: vnode_pager_lookup_vnode(object->pager)); |
| 3405 | } |
| 3406 | m->vmp_wpmapped = TRUE; |
| 3407 | } |
| 3408 | } |
| 3409 | return page_needs_sync; |
| 3410 | } |
| 3411 | |
| 3412 | /* |
| 3413 | * wrapper for pmap_enter_options() |
| 3414 | */ |
| 3415 | static kern_return_t |
| 3416 | pmap_enter_options_check( |
| 3417 | pmap_t pmap, |
| 3418 | vm_map_address_t virtual_address, |
| 3419 | vm_map_offset_t fault_phys_offset, |
| 3420 | vm_page_t page, |
| 3421 | vm_prot_t protection, |
| 3422 | vm_prot_t fault_type, |
| 3423 | unsigned int flags, |
| 3424 | boolean_t wired, |
| 3425 | unsigned int options) |
| 3426 | { |
| 3427 | int = 0; |
| 3428 | vm_object_t obj; |
| 3429 | |
| 3430 | if (page->vmp_error) { |
| 3431 | return KERN_MEMORY_FAILURE; |
| 3432 | } |
| 3433 | obj = VM_PAGE_OBJECT(page); |
| 3434 | if (obj->internal) { |
| 3435 | extra_options |= PMAP_OPTIONS_INTERNAL; |
| 3436 | } |
| 3437 | if (page->vmp_reusable || obj->all_reusable) { |
| 3438 | extra_options |= PMAP_OPTIONS_REUSABLE; |
| 3439 | } |
| 3440 | return pmap_enter_options_addr(pmap, |
| 3441 | v: virtual_address, |
| 3442 | pa: (pmap_paddr_t)ptoa(VM_PAGE_GET_PHYS_PAGE(page)) + fault_phys_offset, |
| 3443 | prot: protection, |
| 3444 | fault_type, |
| 3445 | flags, |
| 3446 | wired, |
| 3447 | options: options | extra_options, |
| 3448 | NULL, |
| 3449 | mapping_type: PMAP_MAPPING_TYPE_INFER); |
| 3450 | } |
| 3451 | |
| 3452 | /* |
| 3453 | * Try to enter the given page into the pmap. |
| 3454 | * Will retry without execute permission if the code signing monitor is enabled and |
| 3455 | * we encounter a codesigning failure on a non-execute fault. |
| 3456 | */ |
| 3457 | static kern_return_t |
| 3458 | vm_fault_attempt_pmap_enter( |
| 3459 | pmap_t pmap, |
| 3460 | vm_map_offset_t vaddr, |
| 3461 | vm_map_size_t fault_page_size, |
| 3462 | vm_map_offset_t fault_phys_offset, |
| 3463 | vm_page_t m, |
| 3464 | vm_prot_t *prot, |
| 3465 | vm_prot_t caller_prot, |
| 3466 | vm_prot_t fault_type, |
| 3467 | bool wired, |
| 3468 | int pmap_options) |
| 3469 | { |
| 3470 | #if !CODE_SIGNING_MONITOR |
| 3471 | #pragma unused(caller_prot) |
| 3472 | #endif /* !CODE_SIGNING_MONITOR */ |
| 3473 | |
| 3474 | kern_return_t kr; |
| 3475 | if (fault_page_size != PAGE_SIZE) { |
| 3476 | DEBUG4K_FAULT("pmap %p va 0x%llx pa 0x%llx (0x%llx+0x%llx) prot 0x%x fault_type 0x%x\n" , pmap, (uint64_t)vaddr, (uint64_t)((((pmap_paddr_t)VM_PAGE_GET_PHYS_PAGE(m)) << PAGE_SHIFT) + fault_phys_offset), (uint64_t)(((pmap_paddr_t)VM_PAGE_GET_PHYS_PAGE(m)) << PAGE_SHIFT), (uint64_t)fault_phys_offset, *prot, fault_type); |
| 3477 | assertf((!(fault_phys_offset & FOURK_PAGE_MASK) && |
| 3478 | fault_phys_offset < PAGE_SIZE), |
| 3479 | "0x%llx\n" , (uint64_t)fault_phys_offset); |
| 3480 | } else { |
| 3481 | assertf(fault_phys_offset == 0, |
| 3482 | "0x%llx\n" , (uint64_t)fault_phys_offset); |
| 3483 | } |
| 3484 | |
| 3485 | kr = pmap_enter_options_check(pmap, virtual_address: vaddr, |
| 3486 | fault_phys_offset, |
| 3487 | page: m, protection: *prot, fault_type, flags: 0, |
| 3488 | wired, |
| 3489 | options: pmap_options); |
| 3490 | |
| 3491 | #if CODE_SIGNING_MONITOR |
| 3492 | /* |
| 3493 | * Retry without execute permission if we encountered a codesigning |
| 3494 | * failure on a non-execute fault. This allows applications which |
| 3495 | * don't actually need to execute code to still map it for read access. |
| 3496 | */ |
| 3497 | if (kr == KERN_CODESIGN_ERROR && |
| 3498 | csm_enabled() && |
| 3499 | (*prot & VM_PROT_EXECUTE) && |
| 3500 | !(caller_prot & VM_PROT_EXECUTE)) { |
| 3501 | *prot &= ~VM_PROT_EXECUTE; |
| 3502 | kr = pmap_enter_options_check(pmap, vaddr, |
| 3503 | fault_phys_offset, |
| 3504 | m, *prot, fault_type, 0, |
| 3505 | wired, |
| 3506 | pmap_options); |
| 3507 | } |
| 3508 | #endif /* CODE_SIGNING_MONITOR */ |
| 3509 | |
| 3510 | return kr; |
| 3511 | } |
| 3512 | |
| 3513 | /* |
| 3514 | * Enter the given page into the pmap. |
| 3515 | * The map must be locked shared. |
| 3516 | * The vm object must NOT be locked. |
| 3517 | * |
| 3518 | * @param need_retry if not null, avoid making a (potentially) blocking call into |
| 3519 | * the pmap layer. When such a call would be necessary, return true in this boolean instead. |
| 3520 | */ |
| 3521 | static kern_return_t |
| 3522 | vm_fault_pmap_enter( |
| 3523 | pmap_t pmap, |
| 3524 | vm_map_offset_t vaddr, |
| 3525 | vm_map_size_t fault_page_size, |
| 3526 | vm_map_offset_t fault_phys_offset, |
| 3527 | vm_page_t m, |
| 3528 | vm_prot_t *prot, |
| 3529 | vm_prot_t caller_prot, |
| 3530 | vm_prot_t fault_type, |
| 3531 | bool wired, |
| 3532 | int pmap_options, |
| 3533 | boolean_t *need_retry) |
| 3534 | { |
| 3535 | kern_return_t kr; |
| 3536 | if (need_retry != NULL) { |
| 3537 | /* |
| 3538 | * Although we don't hold a lock on this object, we hold a lock |
| 3539 | * on the top object in the chain. To prevent a deadlock, we |
| 3540 | * can't allow the pmap layer to block. |
| 3541 | */ |
| 3542 | pmap_options |= PMAP_OPTIONS_NOWAIT; |
| 3543 | } |
| 3544 | kr = vm_fault_attempt_pmap_enter(pmap, vaddr, |
| 3545 | fault_page_size, fault_phys_offset, |
| 3546 | m, prot, caller_prot, fault_type, wired, pmap_options); |
| 3547 | if (kr == KERN_RESOURCE_SHORTAGE) { |
| 3548 | if (need_retry) { |
| 3549 | /* |
| 3550 | * There's nothing we can do here since we hold the |
| 3551 | * lock on the top object in the chain. The caller |
| 3552 | * will need to deal with this by dropping that lock and retrying. |
| 3553 | */ |
| 3554 | *need_retry = TRUE; |
| 3555 | vm_pmap_enter_retried++; |
| 3556 | } |
| 3557 | } |
| 3558 | return kr; |
| 3559 | } |
| 3560 | |
| 3561 | /* |
| 3562 | * Enter the given page into the pmap. |
| 3563 | * The vm map must be locked shared. |
| 3564 | * The vm object must be locked exclusive, unless this is a soft fault. |
| 3565 | * For a soft fault, the object must be locked shared or exclusive. |
| 3566 | * |
| 3567 | * @param need_retry if not null, avoid making a (potentially) blocking call into |
| 3568 | * the pmap layer. When such a call would be necessary, return true in this boolean instead. |
| 3569 | */ |
| 3570 | static kern_return_t |
| 3571 | vm_fault_pmap_enter_with_object_lock( |
| 3572 | vm_object_t object, |
| 3573 | pmap_t pmap, |
| 3574 | vm_map_offset_t vaddr, |
| 3575 | vm_map_size_t fault_page_size, |
| 3576 | vm_map_offset_t fault_phys_offset, |
| 3577 | vm_page_t m, |
| 3578 | vm_prot_t *prot, |
| 3579 | vm_prot_t caller_prot, |
| 3580 | vm_prot_t fault_type, |
| 3581 | bool wired, |
| 3582 | int pmap_options, |
| 3583 | boolean_t *need_retry, |
| 3584 | uint8_t *object_lock_type) |
| 3585 | { |
| 3586 | kern_return_t kr; |
| 3587 | /* |
| 3588 | * Prevent a deadlock by not |
| 3589 | * holding the object lock if we need to wait for a page in |
| 3590 | * pmap_enter() - <rdar://problem/7138958> |
| 3591 | */ |
| 3592 | kr = vm_fault_attempt_pmap_enter(pmap, vaddr, |
| 3593 | fault_page_size, fault_phys_offset, |
| 3594 | m, prot, caller_prot, fault_type, wired, pmap_options: pmap_options | PMAP_OPTIONS_NOWAIT); |
| 3595 | #if __x86_64__ |
| 3596 | if (kr == KERN_INVALID_ARGUMENT && |
| 3597 | pmap == PMAP_NULL && |
| 3598 | wired) { |
| 3599 | /* |
| 3600 | * Wiring a page in a pmap-less VM map: |
| 3601 | * VMware's "vmmon" kernel extension does this |
| 3602 | * to grab pages. |
| 3603 | * Let it proceed even though the PMAP_ENTER() failed. |
| 3604 | */ |
| 3605 | kr = KERN_SUCCESS; |
| 3606 | } |
| 3607 | #endif /* __x86_64__ */ |
| 3608 | |
| 3609 | if (kr == KERN_RESOURCE_SHORTAGE) { |
| 3610 | if (need_retry) { |
| 3611 | /* |
| 3612 | * this will be non-null in the case where we hold the lock |
| 3613 | * on the top-object in this chain... we can't just drop |
| 3614 | * the lock on the object we're inserting the page into |
| 3615 | * and recall the PMAP_ENTER since we can still cause |
| 3616 | * a deadlock if one of the critical paths tries to |
| 3617 | * acquire the lock on the top-object and we're blocked |
| 3618 | * in PMAP_ENTER waiting for memory... our only recourse |
| 3619 | * is to deal with it at a higher level where we can |
| 3620 | * drop both locks. |
| 3621 | */ |
| 3622 | *need_retry = TRUE; |
| 3623 | vm_pmap_enter_retried++; |
| 3624 | goto done; |
| 3625 | } |
| 3626 | /* |
| 3627 | * The nonblocking version of pmap_enter did not succeed. |
| 3628 | * and we don't need to drop other locks and retry |
| 3629 | * at the level above us, so |
| 3630 | * use the blocking version instead. Requires marking |
| 3631 | * the page busy and unlocking the object |
| 3632 | */ |
| 3633 | boolean_t was_busy = m->vmp_busy; |
| 3634 | |
| 3635 | vm_object_lock_assert_exclusive(object); |
| 3636 | |
| 3637 | m->vmp_busy = TRUE; |
| 3638 | vm_object_unlock(object); |
| 3639 | |
| 3640 | kr = pmap_enter_options_check(pmap, virtual_address: vaddr, |
| 3641 | fault_phys_offset, |
| 3642 | page: m, protection: *prot, fault_type, |
| 3643 | flags: 0, wired, |
| 3644 | options: pmap_options); |
| 3645 | |
| 3646 | assert(VM_PAGE_OBJECT(m) == object); |
| 3647 | |
| 3648 | /* Take the object lock again. */ |
| 3649 | vm_object_lock(object); |
| 3650 | |
| 3651 | /* If the page was busy, someone else will wake it up. |
| 3652 | * Otherwise, we have to do it now. */ |
| 3653 | assert(m->vmp_busy); |
| 3654 | if (!was_busy) { |
| 3655 | PAGE_WAKEUP_DONE(m); |
| 3656 | } |
| 3657 | vm_pmap_enter_blocked++; |
| 3658 | } |
| 3659 | |
| 3660 | #if CONFIG_TRACK_UNMODIFIED_ANON_PAGES |
| 3661 | if ((*prot & VM_PROT_WRITE) && m->vmp_unmodified_ro) { |
| 3662 | if (*object_lock_type == OBJECT_LOCK_SHARED) { |
| 3663 | boolean_t was_busy = m->vmp_busy; |
| 3664 | m->vmp_busy = TRUE; |
| 3665 | |
| 3666 | *object_lock_type = OBJECT_LOCK_EXCLUSIVE; |
| 3667 | |
| 3668 | if (vm_object_lock_upgrade(object) == FALSE) { |
| 3669 | vm_object_lock(object); |
| 3670 | } |
| 3671 | |
| 3672 | if (!was_busy) { |
| 3673 | PAGE_WAKEUP_DONE(m); |
| 3674 | } |
| 3675 | } |
| 3676 | vm_object_lock_assert_exclusive(object); |
| 3677 | vm_page_lockspin_queues(); |
| 3678 | m->vmp_unmodified_ro = false; |
| 3679 | vm_page_unlock_queues(); |
| 3680 | os_atomic_dec(&compressor_ro_uncompressed, relaxed); |
| 3681 | |
| 3682 | VM_COMPRESSOR_PAGER_STATE_CLR(VM_PAGE_OBJECT(m), m->vmp_offset); |
| 3683 | } |
| 3684 | #else /* CONFIG_TRACK_UNMODIFIED_ANON_PAGES */ |
| 3685 | #pragma unused(object_lock_type) |
| 3686 | #endif /* CONFIG_TRACK_UNMODIFIED_ANON_PAGES */ |
| 3687 | |
| 3688 | done: |
| 3689 | return kr; |
| 3690 | } |
| 3691 | |
| 3692 | /* |
| 3693 | * Prepare to enter a page into the pmap by checking CS, protection bits, |
| 3694 | * and setting mapped bits on the page_t. |
| 3695 | * Does not modify the page's paging queue. |
| 3696 | * |
| 3697 | * page queue lock must NOT be held |
| 3698 | * m->vmp_object must be locked |
| 3699 | * |
| 3700 | * NOTE: m->vmp_object could be locked "shared" only if we are called |
| 3701 | * from vm_fault() as part of a soft fault. |
| 3702 | */ |
| 3703 | static kern_return_t |
| 3704 | vm_fault_enter_prepare( |
| 3705 | vm_page_t m, |
| 3706 | pmap_t pmap, |
| 3707 | vm_map_offset_t vaddr, |
| 3708 | vm_prot_t *prot, |
| 3709 | vm_prot_t caller_prot, |
| 3710 | vm_map_size_t fault_page_size, |
| 3711 | vm_map_offset_t fault_phys_offset, |
| 3712 | boolean_t change_wiring, |
| 3713 | vm_prot_t fault_type, |
| 3714 | vm_object_fault_info_t fault_info, |
| 3715 | int *type_of_fault, |
| 3716 | bool *page_needs_data_sync) |
| 3717 | { |
| 3718 | kern_return_t kr; |
| 3719 | bool is_tainted = false; |
| 3720 | vm_object_t object; |
| 3721 | boolean_t cs_bypass = fault_info->cs_bypass; |
| 3722 | |
| 3723 | object = VM_PAGE_OBJECT(m); |
| 3724 | |
| 3725 | vm_object_lock_assert_held(object); |
| 3726 | |
| 3727 | #if KASAN |
| 3728 | if (pmap == kernel_pmap) { |
| 3729 | kasan_notify_address(vaddr, PAGE_SIZE); |
| 3730 | } |
| 3731 | #endif |
| 3732 | |
| 3733 | #if CODE_SIGNING_MONITOR |
| 3734 | if (csm_address_space_exempt(pmap) == KERN_SUCCESS) { |
| 3735 | cs_bypass = TRUE; |
| 3736 | } |
| 3737 | #endif |
| 3738 | |
| 3739 | LCK_MTX_ASSERT(&vm_page_queue_lock, LCK_MTX_ASSERT_NOTOWNED); |
| 3740 | |
| 3741 | if (*type_of_fault == DBG_ZERO_FILL_FAULT) { |
| 3742 | vm_object_lock_assert_exclusive(object); |
| 3743 | } else if ((fault_type & VM_PROT_WRITE) == 0 && |
| 3744 | !change_wiring && |
| 3745 | (!m->vmp_wpmapped |
| 3746 | #if VM_OBJECT_ACCESS_TRACKING |
| 3747 | || object->access_tracking |
| 3748 | #endif /* VM_OBJECT_ACCESS_TRACKING */ |
| 3749 | )) { |
| 3750 | /* |
| 3751 | * This is not a "write" fault, so we |
| 3752 | * might not have taken the object lock |
| 3753 | * exclusively and we might not be able |
| 3754 | * to update the "wpmapped" bit in |
| 3755 | * vm_fault_enter(). |
| 3756 | * Let's just grant read access to |
| 3757 | * the page for now and we'll |
| 3758 | * soft-fault again if we need write |
| 3759 | * access later... |
| 3760 | */ |
| 3761 | |
| 3762 | /* This had better not be a JIT page. */ |
| 3763 | if (pmap_has_prot_policy(pmap, translated_allow_execute: fault_info->pmap_options & PMAP_OPTIONS_TRANSLATED_ALLOW_EXECUTE, prot: *prot)) { |
| 3764 | /* |
| 3765 | * This pmap enforces extra constraints for this set of |
| 3766 | * protections, so we can't modify them. |
| 3767 | */ |
| 3768 | if (!cs_bypass) { |
| 3769 | panic("%s: pmap %p vaddr 0x%llx prot 0x%x options 0x%x !cs_bypass" , |
| 3770 | __FUNCTION__, pmap, (uint64_t)vaddr, |
| 3771 | *prot, fault_info->pmap_options); |
| 3772 | } |
| 3773 | } else { |
| 3774 | *prot &= ~VM_PROT_WRITE; |
| 3775 | } |
| 3776 | } |
| 3777 | if (m->vmp_pmapped == FALSE) { |
| 3778 | if (m->vmp_clustered) { |
| 3779 | if (*type_of_fault == DBG_CACHE_HIT_FAULT) { |
| 3780 | /* |
| 3781 | * found it in the cache, but this |
| 3782 | * is the first fault-in of the page (m->vmp_pmapped == FALSE) |
| 3783 | * so it must have come in as part of |
| 3784 | * a cluster... account 1 pagein against it |
| 3785 | */ |
| 3786 | if (object->internal) { |
| 3787 | *type_of_fault = DBG_PAGEIND_FAULT; |
| 3788 | } else { |
| 3789 | *type_of_fault = DBG_PAGEINV_FAULT; |
| 3790 | } |
| 3791 | |
| 3792 | VM_PAGE_COUNT_AS_PAGEIN(m); |
| 3793 | } |
| 3794 | VM_PAGE_CONSUME_CLUSTERED(m); |
| 3795 | } |
| 3796 | } |
| 3797 | |
| 3798 | if (*type_of_fault != DBG_COW_FAULT) { |
| 3799 | DTRACE_VM2(as_fault, int, 1, (uint64_t *), NULL); |
| 3800 | |
| 3801 | if (pmap == kernel_pmap) { |
| 3802 | DTRACE_VM2(kernel_asflt, int, 1, (uint64_t *), NULL); |
| 3803 | } |
| 3804 | } |
| 3805 | |
| 3806 | kr = vm_fault_validate_cs(cs_bypass, object, m, pmap, vaddr, |
| 3807 | prot: *prot, caller_prot, fault_page_size, fault_phys_offset, |
| 3808 | fault_info, must_disconnect: &is_tainted); |
| 3809 | if (kr == KERN_SUCCESS) { |
| 3810 | /* |
| 3811 | * We either have a good page, or a tainted page that has been accepted by the process. |
| 3812 | * In both cases the page will be entered into the pmap. |
| 3813 | */ |
| 3814 | *page_needs_data_sync = vm_fault_enter_set_mapped(object, m, prot: *prot, fault_type); |
| 3815 | if ((fault_type & VM_PROT_WRITE) && is_tainted) { |
| 3816 | /* |
| 3817 | * This page is tainted but we're inserting it anyways. |
| 3818 | * Since it's writeable, we need to disconnect it from other pmaps |
| 3819 | * now so those processes can take note. |
| 3820 | */ |
| 3821 | |
| 3822 | /* |
| 3823 | * We can only get here |
| 3824 | * because of the CSE logic |
| 3825 | */ |
| 3826 | assert(pmap_get_vm_map_cs_enforced(pmap)); |
| 3827 | pmap_disconnect(phys: VM_PAGE_GET_PHYS_PAGE(m)); |
| 3828 | /* |
| 3829 | * If we are faulting for a write, we can clear |
| 3830 | * the execute bit - that will ensure the page is |
| 3831 | * checked again before being executable, which |
| 3832 | * protects against a map switch. |
| 3833 | * This only happens the first time the page |
| 3834 | * gets tainted, so we won't get stuck here |
| 3835 | * to make an already writeable page executable. |
| 3836 | */ |
| 3837 | if (!cs_bypass) { |
| 3838 | if (pmap_has_prot_policy(pmap, translated_allow_execute: fault_info->pmap_options & PMAP_OPTIONS_TRANSLATED_ALLOW_EXECUTE, prot: *prot)) { |
| 3839 | /* |
| 3840 | * This pmap enforces extra constraints |
| 3841 | * for this set of protections, so we |
| 3842 | * can't change the protections. |
| 3843 | */ |
| 3844 | panic("%s: pmap %p vaddr 0x%llx prot 0x%x options 0x%x" , |
| 3845 | __FUNCTION__, pmap, |
| 3846 | (uint64_t)vaddr, *prot, |
| 3847 | fault_info->pmap_options); |
| 3848 | } |
| 3849 | *prot &= ~VM_PROT_EXECUTE; |
| 3850 | } |
| 3851 | } |
| 3852 | assert(VM_PAGE_OBJECT(m) == object); |
| 3853 | |
| 3854 | #if VM_OBJECT_ACCESS_TRACKING |
| 3855 | if (object->access_tracking) { |
| 3856 | DTRACE_VM2(access_tracking, vm_map_offset_t, vaddr, int, fault_type); |
| 3857 | if (fault_type & VM_PROT_WRITE) { |
| 3858 | object->access_tracking_writes++; |
| 3859 | vm_object_access_tracking_writes++; |
| 3860 | } else { |
| 3861 | object->access_tracking_reads++; |
| 3862 | vm_object_access_tracking_reads++; |
| 3863 | } |
| 3864 | } |
| 3865 | #endif /* VM_OBJECT_ACCESS_TRACKING */ |
| 3866 | } |
| 3867 | |
| 3868 | return kr; |
| 3869 | } |
| 3870 | |
| 3871 | /* |
| 3872 | * page queue lock must NOT be held |
| 3873 | * m->vmp_object must be locked |
| 3874 | * |
| 3875 | * NOTE: m->vmp_object could be locked "shared" only if we are called |
| 3876 | * from vm_fault() as part of a soft fault. If so, we must be |
| 3877 | * careful not to modify the VM object in any way that is not |
| 3878 | * legal under a shared lock... |
| 3879 | */ |
| 3880 | kern_return_t |
| 3881 | vm_fault_enter( |
| 3882 | vm_page_t m, |
| 3883 | pmap_t pmap, |
| 3884 | vm_map_offset_t vaddr, |
| 3885 | vm_map_size_t fault_page_size, |
| 3886 | vm_map_offset_t fault_phys_offset, |
| 3887 | vm_prot_t prot, |
| 3888 | vm_prot_t caller_prot, |
| 3889 | boolean_t wired, |
| 3890 | boolean_t change_wiring, |
| 3891 | vm_tag_t wire_tag, |
| 3892 | vm_object_fault_info_t fault_info, |
| 3893 | boolean_t *need_retry, |
| 3894 | int *type_of_fault, |
| 3895 | uint8_t *object_lock_type) |
| 3896 | { |
| 3897 | kern_return_t kr; |
| 3898 | vm_object_t object; |
| 3899 | bool page_needs_data_sync; |
| 3900 | vm_prot_t fault_type; |
| 3901 | int pmap_options = fault_info->pmap_options; |
| 3902 | |
| 3903 | if (VM_PAGE_GET_PHYS_PAGE(m) == vm_page_guard_addr) { |
| 3904 | assert(m->vmp_fictitious); |
| 3905 | return KERN_SUCCESS; |
| 3906 | } |
| 3907 | |
| 3908 | fault_type = change_wiring ? VM_PROT_NONE : caller_prot; |
| 3909 | |
| 3910 | assertf(VM_PAGE_OBJECT(m) != VM_OBJECT_NULL, "m=%p" , m); |
| 3911 | kr = vm_fault_enter_prepare(m, pmap, vaddr, prot: &prot, caller_prot, |
| 3912 | fault_page_size, fault_phys_offset, change_wiring, fault_type, |
| 3913 | fault_info, type_of_fault, page_needs_data_sync: &page_needs_data_sync); |
| 3914 | object = VM_PAGE_OBJECT(m); |
| 3915 | |
| 3916 | vm_fault_enqueue_page(object, m, wired, change_wiring, wire_tag, no_cache: fault_info->no_cache, type_of_fault, kr); |
| 3917 | |
| 3918 | if (kr == KERN_SUCCESS) { |
| 3919 | if (page_needs_data_sync) { |
| 3920 | pmap_sync_page_data_phys(pa: VM_PAGE_GET_PHYS_PAGE(m)); |
| 3921 | } |
| 3922 | |
| 3923 | if (fault_info->fi_xnu_user_debug && !object->code_signed) { |
| 3924 | pmap_options |= PMAP_OPTIONS_XNU_USER_DEBUG; |
| 3925 | } |
| 3926 | |
| 3927 | |
| 3928 | kr = vm_fault_pmap_enter_with_object_lock(object, pmap, vaddr, |
| 3929 | fault_page_size, fault_phys_offset, m, |
| 3930 | prot: &prot, caller_prot, fault_type, wired, pmap_options, need_retry, object_lock_type); |
| 3931 | } |
| 3932 | |
| 3933 | return kr; |
| 3934 | } |
| 3935 | |
| 3936 | void |
| 3937 | vm_pre_fault(vm_map_offset_t vaddr, vm_prot_t prot) |
| 3938 | { |
| 3939 | if (pmap_find_phys(current_map()->pmap, va: vaddr) == 0) { |
| 3940 | vm_fault(current_map(), /* map */ |
| 3941 | vaddr, /* vaddr */ |
| 3942 | fault_type: prot, /* fault_type */ |
| 3943 | FALSE, /* change_wiring */ |
| 3944 | VM_KERN_MEMORY_NONE, /* tag - not wiring */ |
| 3945 | THREAD_UNINT, /* interruptible */ |
| 3946 | NULL, /* caller_pmap */ |
| 3947 | pmap_addr: 0 /* caller_pmap_addr */); |
| 3948 | } |
| 3949 | } |
| 3950 | |
| 3951 | |
| 3952 | /* |
| 3953 | * Routine: vm_fault |
| 3954 | * Purpose: |
| 3955 | * Handle page faults, including pseudo-faults |
| 3956 | * used to change the wiring status of pages. |
| 3957 | * Returns: |
| 3958 | * Explicit continuations have been removed. |
| 3959 | * Implementation: |
| 3960 | * vm_fault and vm_fault_page save mucho state |
| 3961 | * in the moral equivalent of a closure. The state |
| 3962 | * structure is allocated when first entering vm_fault |
| 3963 | * and deallocated when leaving vm_fault. |
| 3964 | */ |
| 3965 | |
| 3966 | extern uint64_t get_current_unique_pid(void); |
| 3967 | |
| 3968 | unsigned long vm_fault_collapse_total = 0; |
| 3969 | unsigned long vm_fault_collapse_skipped = 0; |
| 3970 | |
| 3971 | |
| 3972 | kern_return_t |
| 3973 | vm_fault_external( |
| 3974 | vm_map_t map, |
| 3975 | vm_map_offset_t vaddr, |
| 3976 | vm_prot_t fault_type, |
| 3977 | boolean_t change_wiring, |
| 3978 | int interruptible, |
| 3979 | pmap_t caller_pmap, |
| 3980 | vm_map_offset_t caller_pmap_addr) |
| 3981 | { |
| 3982 | return vm_fault_internal(map, vaddr, caller_prot: fault_type, change_wiring, |
| 3983 | wire_tag: change_wiring ? vm_tag_bt() : VM_KERN_MEMORY_NONE, |
| 3984 | interruptible, pmap: caller_pmap, pmap_addr: caller_pmap_addr, |
| 3985 | NULL); |
| 3986 | } |
| 3987 | |
| 3988 | kern_return_t |
| 3989 | vm_fault( |
| 3990 | vm_map_t map, |
| 3991 | vm_map_offset_t vaddr, |
| 3992 | vm_prot_t fault_type, |
| 3993 | boolean_t change_wiring, |
| 3994 | vm_tag_t wire_tag, /* if wiring must pass tag != VM_KERN_MEMORY_NONE */ |
| 3995 | int interruptible, |
| 3996 | pmap_t caller_pmap, |
| 3997 | vm_map_offset_t caller_pmap_addr) |
| 3998 | { |
| 3999 | return vm_fault_internal(map, vaddr, caller_prot: fault_type, change_wiring, wire_tag, |
| 4000 | interruptible, pmap: caller_pmap, pmap_addr: caller_pmap_addr, |
| 4001 | NULL); |
| 4002 | } |
| 4003 | |
| 4004 | static boolean_t |
| 4005 | current_proc_is_privileged(void) |
| 4006 | { |
| 4007 | return csproc_get_platform_binary(current_proc()); |
| 4008 | } |
| 4009 | |
| 4010 | uint64_t vm_copied_on_read = 0; |
| 4011 | |
| 4012 | /* |
| 4013 | * Cleanup after a vm_fault_enter. |
| 4014 | * At this point, the fault should either have failed (kr != KERN_SUCCESS) |
| 4015 | * or the page should be in the pmap and on the correct paging queue. |
| 4016 | * |
| 4017 | * Precondition: |
| 4018 | * map must be locked shared. |
| 4019 | * m_object must be locked. |
| 4020 | * If top_object != VM_OBJECT_NULL, it must be locked. |
| 4021 | * real_map must be locked. |
| 4022 | * |
| 4023 | * Postcondition: |
| 4024 | * map will be unlocked |
| 4025 | * m_object will be unlocked |
| 4026 | * top_object will be unlocked |
| 4027 | * If real_map != map, it will be unlocked |
| 4028 | */ |
| 4029 | static void |
| 4030 | vm_fault_complete( |
| 4031 | vm_map_t map, |
| 4032 | vm_map_t real_map, |
| 4033 | vm_object_t object, |
| 4034 | vm_object_t m_object, |
| 4035 | vm_page_t m, |
| 4036 | vm_map_offset_t offset, |
| 4037 | vm_map_offset_t trace_real_vaddr, |
| 4038 | vm_object_fault_info_t fault_info, |
| 4039 | vm_prot_t caller_prot, |
| 4040 | #if CONFIG_DTRACE |
| 4041 | vm_map_offset_t real_vaddr, |
| 4042 | #else |
| 4043 | __unused vm_map_offset_t real_vaddr, |
| 4044 | #endif /* CONFIG_DTRACE */ |
| 4045 | int type_of_fault, |
| 4046 | boolean_t need_retry, |
| 4047 | kern_return_t kr, |
| 4048 | ppnum_t *physpage_p, |
| 4049 | vm_prot_t prot, |
| 4050 | vm_object_t top_object, |
| 4051 | boolean_t need_collapse, |
| 4052 | vm_map_offset_t cur_offset, |
| 4053 | vm_prot_t fault_type, |
| 4054 | vm_object_t *written_on_object, |
| 4055 | memory_object_t *, |
| 4056 | vm_object_offset_t *written_on_offset) |
| 4057 | { |
| 4058 | int event_code = 0; |
| 4059 | vm_map_lock_assert_shared(map); |
| 4060 | vm_object_lock_assert_held(m_object); |
| 4061 | if (top_object != VM_OBJECT_NULL) { |
| 4062 | vm_object_lock_assert_held(top_object); |
| 4063 | } |
| 4064 | vm_map_lock_assert_held(real_map); |
| 4065 | |
| 4066 | if (m_object->internal) { |
| 4067 | event_code = (MACHDBG_CODE(DBG_MACH_WORKINGSET, VM_REAL_FAULT_ADDR_INTERNAL)); |
| 4068 | } else if (m_object->object_is_shared_cache) { |
| 4069 | event_code = (MACHDBG_CODE(DBG_MACH_WORKINGSET, VM_REAL_FAULT_ADDR_SHAREDCACHE)); |
| 4070 | } else { |
| 4071 | event_code = (MACHDBG_CODE(DBG_MACH_WORKINGSET, VM_REAL_FAULT_ADDR_EXTERNAL)); |
| 4072 | } |
| 4073 | KDBG_RELEASE(event_code | DBG_FUNC_NONE, trace_real_vaddr, (fault_info->user_tag << 16) | (caller_prot << 8) | type_of_fault, m->vmp_offset, get_current_unique_pid()); |
| 4074 | if (need_retry == FALSE) { |
| 4075 | KDBG_FILTERED(MACHDBG_CODE(DBG_MACH_WORKINGSET, VM_REAL_FAULT_FAST), get_current_unique_pid()); |
| 4076 | } |
| 4077 | DTRACE_VM6(real_fault, vm_map_offset_t, real_vaddr, vm_map_offset_t, m->vmp_offset, int, event_code, int, caller_prot, int, type_of_fault, int, fault_info->user_tag); |
| 4078 | if (kr == KERN_SUCCESS && |
| 4079 | physpage_p != NULL) { |
| 4080 | /* for vm_map_wire_and_extract() */ |
| 4081 | *physpage_p = VM_PAGE_GET_PHYS_PAGE(m); |
| 4082 | if (prot & VM_PROT_WRITE) { |
| 4083 | vm_object_lock_assert_exclusive(m_object); |
| 4084 | m->vmp_dirty = TRUE; |
| 4085 | } |
| 4086 | } |
| 4087 | |
| 4088 | if (top_object != VM_OBJECT_NULL) { |
| 4089 | /* |
| 4090 | * It's safe to drop the top object |
| 4091 | * now that we've done our |
| 4092 | * vm_fault_enter(). Any other fault |
| 4093 | * in progress for that virtual |
| 4094 | * address will either find our page |
| 4095 | * and translation or put in a new page |
| 4096 | * and translation. |
| 4097 | */ |
| 4098 | vm_object_unlock(top_object); |
| 4099 | top_object = VM_OBJECT_NULL; |
| 4100 | } |
| 4101 | |
| 4102 | if (need_collapse == TRUE) { |
| 4103 | vm_object_collapse(object, vm_object_trunc_page(offset), TRUE); |
| 4104 | } |
| 4105 | |
| 4106 | if (need_retry == FALSE && |
| 4107 | (type_of_fault == DBG_PAGEIND_FAULT || type_of_fault == DBG_PAGEINV_FAULT || type_of_fault == DBG_CACHE_HIT_FAULT)) { |
| 4108 | /* |
| 4109 | * evaluate access pattern and update state |
| 4110 | * vm_fault_deactivate_behind depends on the |
| 4111 | * state being up to date |
| 4112 | */ |
| 4113 | vm_fault_is_sequential(object: m_object, offset: cur_offset, behavior: fault_info->behavior); |
| 4114 | |
| 4115 | vm_fault_deactivate_behind(object: m_object, offset: cur_offset, behavior: fault_info->behavior); |
| 4116 | } |
| 4117 | /* |
| 4118 | * That's it, clean up and return. |
| 4119 | */ |
| 4120 | if (m->vmp_busy) { |
| 4121 | vm_object_lock_assert_exclusive(m_object); |
| 4122 | PAGE_WAKEUP_DONE(m); |
| 4123 | } |
| 4124 | |
| 4125 | if (need_retry == FALSE && !m_object->internal && (fault_type & VM_PROT_WRITE)) { |
| 4126 | vm_object_paging_begin(m_object); |
| 4127 | |
| 4128 | assert(*written_on_object == VM_OBJECT_NULL); |
| 4129 | *written_on_object = m_object; |
| 4130 | *written_on_pager = m_object->pager; |
| 4131 | *written_on_offset = m_object->paging_offset + m->vmp_offset; |
| 4132 | } |
| 4133 | vm_object_unlock(object); |
| 4134 | |
| 4135 | vm_map_unlock_read(map); |
| 4136 | if (real_map != map) { |
| 4137 | vm_map_unlock(real_map); |
| 4138 | } |
| 4139 | } |
| 4140 | |
| 4141 | static inline int |
| 4142 | vm_fault_type_for_tracing(boolean_t need_copy_on_read, int type_of_fault) |
| 4143 | { |
| 4144 | if (need_copy_on_read && type_of_fault == DBG_COW_FAULT) { |
| 4145 | return DBG_COR_FAULT; |
| 4146 | } |
| 4147 | return type_of_fault; |
| 4148 | } |
| 4149 | |
| 4150 | uint64_t vm_fault_resilient_media_initiate = 0; |
| 4151 | uint64_t vm_fault_resilient_media_retry = 0; |
| 4152 | uint64_t vm_fault_resilient_media_proceed = 0; |
| 4153 | uint64_t vm_fault_resilient_media_release = 0; |
| 4154 | uint64_t vm_fault_resilient_media_abort1 = 0; |
| 4155 | uint64_t vm_fault_resilient_media_abort2 = 0; |
| 4156 | |
| 4157 | #if MACH_ASSERT |
| 4158 | int vm_fault_resilient_media_inject_error1_rate = 0; |
| 4159 | int vm_fault_resilient_media_inject_error1 = 0; |
| 4160 | int vm_fault_resilient_media_inject_error2_rate = 0; |
| 4161 | int vm_fault_resilient_media_inject_error2 = 0; |
| 4162 | int vm_fault_resilient_media_inject_error3_rate = 0; |
| 4163 | int vm_fault_resilient_media_inject_error3 = 0; |
| 4164 | #endif /* MACH_ASSERT */ |
| 4165 | |
| 4166 | kern_return_t |
| 4167 | vm_fault_internal( |
| 4168 | vm_map_t map, |
| 4169 | vm_map_offset_t vaddr, |
| 4170 | vm_prot_t caller_prot, |
| 4171 | boolean_t change_wiring, |
| 4172 | vm_tag_t wire_tag, /* if wiring must pass tag != VM_KERN_MEMORY_NONE */ |
| 4173 | int interruptible, |
| 4174 | pmap_t caller_pmap, |
| 4175 | vm_map_offset_t caller_pmap_addr, |
| 4176 | ppnum_t *physpage_p) |
| 4177 | { |
| 4178 | vm_map_version_t version; /* Map version for verificiation */ |
| 4179 | boolean_t wired; /* Should mapping be wired down? */ |
| 4180 | vm_object_t object; /* Top-level object */ |
| 4181 | vm_object_offset_t offset; /* Top-level offset */ |
| 4182 | vm_prot_t prot; /* Protection for mapping */ |
| 4183 | vm_object_t old_copy_object; /* Saved copy object */ |
| 4184 | uint32_t old_copy_version; |
| 4185 | vm_page_t result_page; /* Result of vm_fault_page */ |
| 4186 | vm_page_t top_page; /* Placeholder page */ |
| 4187 | kern_return_t kr; |
| 4188 | |
| 4189 | vm_page_t m; /* Fast access to result_page */ |
| 4190 | kern_return_t error_code; |
| 4191 | vm_object_t cur_object; |
| 4192 | vm_object_t m_object = NULL; |
| 4193 | vm_object_offset_t cur_offset; |
| 4194 | vm_page_t cur_m; |
| 4195 | vm_object_t new_object; |
| 4196 | int type_of_fault; |
| 4197 | pmap_t pmap; |
| 4198 | wait_interrupt_t interruptible_state; |
| 4199 | vm_map_t real_map = map; |
| 4200 | vm_map_t original_map = map; |
| 4201 | bool object_locks_dropped = FALSE; |
| 4202 | vm_prot_t fault_type; |
| 4203 | vm_prot_t original_fault_type; |
| 4204 | struct vm_object_fault_info fault_info = {}; |
| 4205 | bool need_collapse = FALSE; |
| 4206 | boolean_t need_retry = FALSE; |
| 4207 | boolean_t *need_retry_ptr = NULL; |
| 4208 | uint8_t object_lock_type = 0; |
| 4209 | uint8_t cur_object_lock_type; |
| 4210 | vm_object_t top_object = VM_OBJECT_NULL; |
| 4211 | vm_object_t written_on_object = VM_OBJECT_NULL; |
| 4212 | memory_object_t = NULL; |
| 4213 | vm_object_offset_t written_on_offset = 0; |
| 4214 | int throttle_delay; |
| 4215 | int compressed_count_delta; |
| 4216 | uint8_t grab_options; |
| 4217 | bool need_copy; |
| 4218 | bool need_copy_on_read; |
| 4219 | vm_map_offset_t trace_vaddr; |
| 4220 | vm_map_offset_t trace_real_vaddr; |
| 4221 | vm_map_size_t fault_page_size; |
| 4222 | vm_map_size_t fault_page_mask; |
| 4223 | int fault_page_shift; |
| 4224 | vm_map_offset_t fault_phys_offset; |
| 4225 | vm_map_offset_t real_vaddr; |
| 4226 | bool resilient_media_retry = false; |
| 4227 | bool resilient_media_ref_transfer = false; |
| 4228 | vm_object_t resilient_media_object = VM_OBJECT_NULL; |
| 4229 | vm_object_offset_t resilient_media_offset = (vm_object_offset_t)-1; |
| 4230 | bool page_needs_data_sync = false; |
| 4231 | /* |
| 4232 | * Was the VM object contended when vm_map_lookup_and_lock_object locked it? |
| 4233 | * If so, the zero fill path will drop the lock |
| 4234 | * NB: Ideally we would always drop the lock rather than rely on |
| 4235 | * this heuristic, but vm_object_unlock currently takes > 30 cycles. |
| 4236 | */ |
| 4237 | bool object_is_contended = false; |
| 4238 | |
| 4239 | |
| 4240 | real_vaddr = vaddr; |
| 4241 | trace_real_vaddr = vaddr; |
| 4242 | |
| 4243 | /* |
| 4244 | * Some (kernel) submaps are marked with "should never fault". |
| 4245 | * |
| 4246 | * We do this for two reasons: |
| 4247 | * - PGZ which is inside the zone map range can't go down the normal |
| 4248 | * lookup path (vm_map_lookup_entry() would panic). |
| 4249 | * |
| 4250 | * - we want for guard pages to not have to use fictitious pages at all |
| 4251 | * to prevent from ZFOD pages to be made. |
| 4252 | * |
| 4253 | * We also want capture the fault address easily so that the zone |
| 4254 | * allocator might present an enhanced panic log. |
| 4255 | */ |
| 4256 | if (map->never_faults || (pgz_owned(vaddr) && map->pmap == kernel_pmap)) { |
| 4257 | assert(map->pmap == kernel_pmap); |
| 4258 | return KERN_INVALID_ADDRESS; |
| 4259 | } |
| 4260 | |
| 4261 | if (VM_MAP_PAGE_SIZE(original_map) < PAGE_SIZE) { |
| 4262 | fault_phys_offset = (vm_map_offset_t)-1; |
| 4263 | fault_page_size = VM_MAP_PAGE_SIZE(original_map); |
| 4264 | fault_page_mask = VM_MAP_PAGE_MASK(original_map); |
| 4265 | fault_page_shift = VM_MAP_PAGE_SHIFT(map: original_map); |
| 4266 | if (fault_page_size < PAGE_SIZE) { |
| 4267 | DEBUG4K_FAULT("map %p vaddr 0x%llx caller_prot 0x%x\n" , map, (uint64_t)trace_real_vaddr, caller_prot); |
| 4268 | vaddr = vm_map_trunc_page(vaddr, fault_page_mask); |
| 4269 | } |
| 4270 | } else { |
| 4271 | fault_phys_offset = 0; |
| 4272 | fault_page_size = PAGE_SIZE; |
| 4273 | fault_page_mask = PAGE_MASK; |
| 4274 | fault_page_shift = PAGE_SHIFT; |
| 4275 | vaddr = vm_map_trunc_page(vaddr, PAGE_MASK); |
| 4276 | } |
| 4277 | |
| 4278 | if (map == kernel_map) { |
| 4279 | trace_vaddr = VM_KERNEL_ADDRHIDE(vaddr); |
| 4280 | trace_real_vaddr = VM_KERNEL_ADDRHIDE(trace_real_vaddr); |
| 4281 | } else { |
| 4282 | trace_vaddr = vaddr; |
| 4283 | } |
| 4284 | |
| 4285 | KDBG_RELEASE( |
| 4286 | (MACHDBG_CODE(DBG_MACH_VM, 2)) | DBG_FUNC_START, |
| 4287 | ((uint64_t)trace_vaddr >> 32), |
| 4288 | trace_vaddr, |
| 4289 | (map == kernel_map)); |
| 4290 | |
| 4291 | if (get_preemption_level() != 0) { |
| 4292 | KDBG_RELEASE( |
| 4293 | (MACHDBG_CODE(DBG_MACH_VM, 2)) | DBG_FUNC_END, |
| 4294 | ((uint64_t)trace_vaddr >> 32), |
| 4295 | trace_vaddr, |
| 4296 | KERN_FAILURE); |
| 4297 | |
| 4298 | ktriage_record(thread_id: thread_tid(thread: current_thread()), KDBG_TRIAGE_EVENTID(KDBG_TRIAGE_SUBSYS_VM, KDBG_TRIAGE_RESERVED, KDBG_TRIAGE_VM_NONZERO_PREEMPTION_LEVEL), arg: 0 /* arg */); |
| 4299 | return KERN_FAILURE; |
| 4300 | } |
| 4301 | |
| 4302 | thread_t cthread = current_thread(); |
| 4303 | bool rtfault = (cthread->sched_mode == TH_MODE_REALTIME); |
| 4304 | uint64_t fstart = 0; |
| 4305 | |
| 4306 | if (rtfault) { |
| 4307 | fstart = mach_continuous_time(); |
| 4308 | } |
| 4309 | |
| 4310 | interruptible_state = thread_interrupt_level(interruptible); |
| 4311 | |
| 4312 | fault_type = (change_wiring ? VM_PROT_NONE : caller_prot); |
| 4313 | |
| 4314 | counter_inc(&vm_statistics_faults); |
| 4315 | counter_inc(¤t_task()->faults); |
| 4316 | original_fault_type = fault_type; |
| 4317 | |
| 4318 | need_copy = FALSE; |
| 4319 | if (fault_type & VM_PROT_WRITE) { |
| 4320 | need_copy = TRUE; |
| 4321 | } |
| 4322 | |
| 4323 | if (need_copy || change_wiring) { |
| 4324 | object_lock_type = OBJECT_LOCK_EXCLUSIVE; |
| 4325 | } else { |
| 4326 | object_lock_type = OBJECT_LOCK_SHARED; |
| 4327 | } |
| 4328 | |
| 4329 | cur_object_lock_type = OBJECT_LOCK_SHARED; |
| 4330 | |
| 4331 | if ((map == kernel_map) && (caller_prot & VM_PROT_WRITE)) { |
| 4332 | if (compressor_map) { |
| 4333 | if ((vaddr >= vm_map_min(compressor_map)) && (vaddr < vm_map_max(compressor_map))) { |
| 4334 | panic("Write fault on compressor map, va: %p type: %u bounds: %p->%p" , (void *) vaddr, caller_prot, (void *) vm_map_min(compressor_map), (void *) vm_map_max(compressor_map)); |
| 4335 | } |
| 4336 | } |
| 4337 | } |
| 4338 | RetryFault: |
| 4339 | assert(written_on_object == VM_OBJECT_NULL); |
| 4340 | |
| 4341 | /* |
| 4342 | * assume we will hit a page in the cache |
| 4343 | * otherwise, explicitly override with |
| 4344 | * the real fault type once we determine it |
| 4345 | */ |
| 4346 | type_of_fault = DBG_CACHE_HIT_FAULT; |
| 4347 | |
| 4348 | /* |
| 4349 | * Find the backing store object and offset into |
| 4350 | * it to begin the search. |
| 4351 | */ |
| 4352 | fault_type = original_fault_type; |
| 4353 | map = original_map; |
| 4354 | vm_map_lock_read(map); |
| 4355 | |
| 4356 | if (resilient_media_retry) { |
| 4357 | /* |
| 4358 | * If we have to insert a fake zero-filled page to hide |
| 4359 | * a media failure to provide the real page, we need to |
| 4360 | * resolve any pending copy-on-write on this mapping. |
| 4361 | * VM_PROT_COPY tells vm_map_lookup_and_lock_object() to deal |
| 4362 | * with that even if this is not a "write" fault. |
| 4363 | */ |
| 4364 | need_copy = TRUE; |
| 4365 | object_lock_type = OBJECT_LOCK_EXCLUSIVE; |
| 4366 | vm_fault_resilient_media_retry++; |
| 4367 | } |
| 4368 | |
| 4369 | kr = vm_map_lookup_and_lock_object(var_map: &map, vaddr, |
| 4370 | fault_type: (fault_type | (need_copy ? VM_PROT_COPY : 0)), |
| 4371 | object_lock_type, out_version: &version, |
| 4372 | object: &object, offset: &offset, out_prot: &prot, wired: &wired, |
| 4373 | fault_info: &fault_info, |
| 4374 | real_map: &real_map, |
| 4375 | contended: &object_is_contended); |
| 4376 | object_is_contended = false; /* avoid unsafe optimization */ |
| 4377 | |
| 4378 | if (kr != KERN_SUCCESS) { |
| 4379 | vm_map_unlock_read(map); |
| 4380 | /* |
| 4381 | * This can be seen in a crash report if indeed the |
| 4382 | * thread is crashing due to an invalid access in a non-existent |
| 4383 | * range. |
| 4384 | * Turning this OFF for now because it is noisy and not always fatal |
| 4385 | * eg prefaulting. |
| 4386 | * |
| 4387 | * if (kr == KERN_INVALID_ADDRESS) { |
| 4388 | * ktriage_record(thread_tid(current_thread()), KDBG_TRIAGE_EVENTID(KDBG_TRIAGE_SUBSYS_VM, KDBG_TRIAGE_RESERVED, KDBG_TRIAGE_VM_ADDRESS_NOT_FOUND), 0); |
| 4389 | * } |
| 4390 | */ |
| 4391 | goto done; |
| 4392 | } |
| 4393 | |
| 4394 | |
| 4395 | pmap = real_map->pmap; |
| 4396 | fault_info.interruptible = interruptible; |
| 4397 | fault_info.stealth = FALSE; |
| 4398 | fault_info.io_sync = FALSE; |
| 4399 | fault_info.mark_zf_absent = FALSE; |
| 4400 | fault_info.batch_pmap_op = FALSE; |
| 4401 | |
| 4402 | if (resilient_media_retry) { |
| 4403 | /* |
| 4404 | * We're retrying this fault after having detected a media |
| 4405 | * failure from a "resilient_media" mapping. |
| 4406 | * Check that the mapping is still pointing at the object |
| 4407 | * that just failed to provide a page. |
| 4408 | */ |
| 4409 | assert(resilient_media_object != VM_OBJECT_NULL); |
| 4410 | assert(resilient_media_offset != (vm_object_offset_t)-1); |
| 4411 | if ((object != VM_OBJECT_NULL && |
| 4412 | object == resilient_media_object && |
| 4413 | offset == resilient_media_offset && |
| 4414 | fault_info.resilient_media) |
| 4415 | #if MACH_ASSERT |
| 4416 | && (vm_fault_resilient_media_inject_error1_rate == 0 || |
| 4417 | (++vm_fault_resilient_media_inject_error1 % vm_fault_resilient_media_inject_error1_rate) != 0) |
| 4418 | #endif /* MACH_ASSERT */ |
| 4419 | ) { |
| 4420 | /* |
| 4421 | * This mapping still points at the same object |
| 4422 | * and is still "resilient_media": proceed in |
| 4423 | * "recovery-from-media-failure" mode, where we'll |
| 4424 | * insert a zero-filled page in the top object. |
| 4425 | */ |
| 4426 | // printf("RESILIENT_MEDIA %s:%d recovering for object %p offset 0x%llx\n", __FUNCTION__, __LINE__, object, offset); |
| 4427 | vm_fault_resilient_media_proceed++; |
| 4428 | } else { |
| 4429 | /* not recovering: reset state and retry fault */ |
| 4430 | // printf("RESILIENT_MEDIA %s:%d no recovery resilient %d object %p/%p offset 0x%llx/0x%llx\n", __FUNCTION__, __LINE__, fault_info.resilient_media, object, resilient_media_object, offset, resilient_media_offset); |
| 4431 | vm_object_unlock(object); |
| 4432 | if (real_map != map) { |
| 4433 | vm_map_unlock(real_map); |
| 4434 | } |
| 4435 | vm_map_unlock_read(map); |
| 4436 | /* release our extra reference on failed object */ |
| 4437 | // printf("FBDP %s:%d resilient_media_object %p deallocate\n", __FUNCTION__, __LINE__, resilient_media_object); |
| 4438 | vm_object_deallocate(object: resilient_media_object); |
| 4439 | resilient_media_object = VM_OBJECT_NULL; |
| 4440 | resilient_media_offset = (vm_object_offset_t)-1; |
| 4441 | resilient_media_retry = false; |
| 4442 | vm_fault_resilient_media_abort1++; |
| 4443 | goto RetryFault; |
| 4444 | } |
| 4445 | } else { |
| 4446 | assert(resilient_media_object == VM_OBJECT_NULL); |
| 4447 | resilient_media_offset = (vm_object_offset_t)-1; |
| 4448 | } |
| 4449 | |
| 4450 | /* |
| 4451 | * If the page is wired, we must fault for the current protection |
| 4452 | * value, to avoid further faults. |
| 4453 | */ |
| 4454 | if (wired) { |
| 4455 | fault_type = prot | VM_PROT_WRITE; |
| 4456 | } |
| 4457 | if (wired || need_copy) { |
| 4458 | /* |
| 4459 | * since we're treating this fault as a 'write' |
| 4460 | * we must hold the top object lock exclusively |
| 4461 | */ |
| 4462 | if (object_lock_type == OBJECT_LOCK_SHARED) { |
| 4463 | object_lock_type = OBJECT_LOCK_EXCLUSIVE; |
| 4464 | |
| 4465 | if (vm_object_lock_upgrade(object) == FALSE) { |
| 4466 | /* |
| 4467 | * couldn't upgrade, so explictly |
| 4468 | * take the lock exclusively |
| 4469 | */ |
| 4470 | vm_object_lock(object); |
| 4471 | } |
| 4472 | } |
| 4473 | } |
| 4474 | |
| 4475 | #if VM_FAULT_CLASSIFY |
| 4476 | /* |
| 4477 | * Temporary data gathering code |
| 4478 | */ |
| 4479 | vm_fault_classify(object, offset, fault_type); |
| 4480 | #endif |
| 4481 | /* |
| 4482 | * Fast fault code. The basic idea is to do as much as |
| 4483 | * possible while holding the map lock and object locks. |
| 4484 | * Busy pages are not used until the object lock has to |
| 4485 | * be dropped to do something (copy, zero fill, pmap enter). |
| 4486 | * Similarly, paging references aren't acquired until that |
| 4487 | * point, and object references aren't used. |
| 4488 | * |
| 4489 | * If we can figure out what to do |
| 4490 | * (zero fill, copy on write, pmap enter) while holding |
| 4491 | * the locks, then it gets done. Otherwise, we give up, |
| 4492 | * and use the original fault path (which doesn't hold |
| 4493 | * the map lock, and relies on busy pages). |
| 4494 | * The give up cases include: |
| 4495 | * - Have to talk to pager. |
| 4496 | * - Page is busy, absent or in error. |
| 4497 | * - Pager has locked out desired access. |
| 4498 | * - Fault needs to be restarted. |
| 4499 | * - Have to push page into copy object. |
| 4500 | * |
| 4501 | * The code is an infinite loop that moves one level down |
| 4502 | * the shadow chain each time. cur_object and cur_offset |
| 4503 | * refer to the current object being examined. object and offset |
| 4504 | * are the original object from the map. The loop is at the |
| 4505 | * top level if and only if object and cur_object are the same. |
| 4506 | * |
| 4507 | * Invariants: Map lock is held throughout. Lock is held on |
| 4508 | * original object and cur_object (if different) when |
| 4509 | * continuing or exiting loop. |
| 4510 | * |
| 4511 | */ |
| 4512 | |
| 4513 | #if defined(__arm64__) |
| 4514 | /* |
| 4515 | * Fail if reading an execute-only page in a |
| 4516 | * pmap that enforces execute-only protection. |
| 4517 | */ |
| 4518 | if (fault_type == VM_PROT_READ && |
| 4519 | (prot & VM_PROT_EXECUTE) && |
| 4520 | !(prot & VM_PROT_READ) && |
| 4521 | pmap_enforces_execute_only(pmap)) { |
| 4522 | vm_object_unlock(object); |
| 4523 | vm_map_unlock_read(map); |
| 4524 | if (real_map != map) { |
| 4525 | vm_map_unlock(real_map); |
| 4526 | } |
| 4527 | kr = KERN_PROTECTION_FAILURE; |
| 4528 | goto done; |
| 4529 | } |
| 4530 | #endif |
| 4531 | |
| 4532 | fault_phys_offset = (vm_map_offset_t)offset - vm_map_trunc_page((vm_map_offset_t)offset, PAGE_MASK); |
| 4533 | |
| 4534 | /* |
| 4535 | * If this page is to be inserted in a copy delay object |
| 4536 | * for writing, and if the object has a copy, then the |
| 4537 | * copy delay strategy is implemented in the slow fault page. |
| 4538 | */ |
| 4539 | if ((object->copy_strategy == MEMORY_OBJECT_COPY_DELAY || |
| 4540 | object->copy_strategy == MEMORY_OBJECT_COPY_DELAY_FORK) && |
| 4541 | object->vo_copy != VM_OBJECT_NULL && (fault_type & VM_PROT_WRITE)) { |
| 4542 | goto handle_copy_delay; |
| 4543 | } |
| 4544 | |
| 4545 | cur_object = object; |
| 4546 | cur_offset = offset; |
| 4547 | |
| 4548 | grab_options = 0; |
| 4549 | #if CONFIG_SECLUDED_MEMORY |
| 4550 | if (object->can_grab_secluded) { |
| 4551 | grab_options |= VM_PAGE_GRAB_SECLUDED; |
| 4552 | } |
| 4553 | #endif /* CONFIG_SECLUDED_MEMORY */ |
| 4554 | |
| 4555 | while (TRUE) { |
| 4556 | if (!cur_object->pager_created && |
| 4557 | cur_object->phys_contiguous) { /* superpage */ |
| 4558 | break; |
| 4559 | } |
| 4560 | |
| 4561 | if (cur_object->blocked_access) { |
| 4562 | /* |
| 4563 | * Access to this VM object has been blocked. |
| 4564 | * Let the slow path handle it. |
| 4565 | */ |
| 4566 | break; |
| 4567 | } |
| 4568 | |
| 4569 | m = vm_page_lookup(object: cur_object, vm_object_trunc_page(cur_offset)); |
| 4570 | m_object = NULL; |
| 4571 | |
| 4572 | if (m != VM_PAGE_NULL) { |
| 4573 | m_object = cur_object; |
| 4574 | |
| 4575 | if (m->vmp_busy) { |
| 4576 | wait_result_t result; |
| 4577 | |
| 4578 | /* |
| 4579 | * in order to do the PAGE_ASSERT_WAIT, we must |
| 4580 | * have object that 'm' belongs to locked exclusively |
| 4581 | */ |
| 4582 | if (object != cur_object) { |
| 4583 | if (cur_object_lock_type == OBJECT_LOCK_SHARED) { |
| 4584 | cur_object_lock_type = OBJECT_LOCK_EXCLUSIVE; |
| 4585 | |
| 4586 | if (vm_object_lock_upgrade(cur_object) == FALSE) { |
| 4587 | /* |
| 4588 | * couldn't upgrade so go do a full retry |
| 4589 | * immediately since we can no longer be |
| 4590 | * certain about cur_object (since we |
| 4591 | * don't hold a reference on it)... |
| 4592 | * first drop the top object lock |
| 4593 | */ |
| 4594 | vm_object_unlock(object); |
| 4595 | |
| 4596 | vm_map_unlock_read(map); |
| 4597 | if (real_map != map) { |
| 4598 | vm_map_unlock(real_map); |
| 4599 | } |
| 4600 | |
| 4601 | goto RetryFault; |
| 4602 | } |
| 4603 | } |
| 4604 | } else if (object_lock_type == OBJECT_LOCK_SHARED) { |
| 4605 | object_lock_type = OBJECT_LOCK_EXCLUSIVE; |
| 4606 | |
| 4607 | if (vm_object_lock_upgrade(object) == FALSE) { |
| 4608 | /* |
| 4609 | * couldn't upgrade, so explictly take the lock |
| 4610 | * exclusively and go relookup the page since we |
| 4611 | * will have dropped the object lock and |
| 4612 | * a different thread could have inserted |
| 4613 | * a page at this offset |
| 4614 | * no need for a full retry since we're |
| 4615 | * at the top level of the object chain |
| 4616 | */ |
| 4617 | vm_object_lock(object); |
| 4618 | |
| 4619 | continue; |
| 4620 | } |
| 4621 | } |
| 4622 | if ((m->vmp_q_state == VM_PAGE_ON_PAGEOUT_Q) && m_object->internal) { |
| 4623 | /* |
| 4624 | * m->vmp_busy == TRUE and the object is locked exclusively |
| 4625 | * if m->pageout_queue == TRUE after we acquire the |
| 4626 | * queues lock, we are guaranteed that it is stable on |
| 4627 | * the pageout queue and therefore reclaimable |
| 4628 | * |
| 4629 | * NOTE: this is only true for the internal pageout queue |
| 4630 | * in the compressor world |
| 4631 | */ |
| 4632 | assert(VM_CONFIG_COMPRESSOR_IS_PRESENT); |
| 4633 | |
| 4634 | vm_page_lock_queues(); |
| 4635 | |
| 4636 | if (m->vmp_q_state == VM_PAGE_ON_PAGEOUT_Q) { |
| 4637 | vm_pageout_throttle_up(page: m); |
| 4638 | vm_page_unlock_queues(); |
| 4639 | |
| 4640 | PAGE_WAKEUP_DONE(m); |
| 4641 | goto reclaimed_from_pageout; |
| 4642 | } |
| 4643 | vm_page_unlock_queues(); |
| 4644 | } |
| 4645 | if (object != cur_object) { |
| 4646 | vm_object_unlock(object); |
| 4647 | } |
| 4648 | |
| 4649 | vm_map_unlock_read(map); |
| 4650 | if (real_map != map) { |
| 4651 | vm_map_unlock(real_map); |
| 4652 | } |
| 4653 | |
| 4654 | result = PAGE_ASSERT_WAIT(m, interruptible); |
| 4655 | |
| 4656 | vm_object_unlock(cur_object); |
| 4657 | |
| 4658 | if (result == THREAD_WAITING) { |
| 4659 | result = thread_block(THREAD_CONTINUE_NULL); |
| 4660 | } |
| 4661 | if (result == THREAD_AWAKENED || result == THREAD_RESTART) { |
| 4662 | goto RetryFault; |
| 4663 | } |
| 4664 | |
| 4665 | ktriage_record(thread_id: thread_tid(thread: current_thread()), KDBG_TRIAGE_EVENTID(KDBG_TRIAGE_SUBSYS_VM, KDBG_TRIAGE_RESERVED, KDBG_TRIAGE_VM_BUSYPAGE_WAIT_INTERRUPTED), arg: 0 /* arg */); |
| 4666 | kr = KERN_ABORTED; |
| 4667 | goto done; |
| 4668 | } |
| 4669 | reclaimed_from_pageout: |
| 4670 | if (m->vmp_laundry) { |
| 4671 | if (object != cur_object) { |
| 4672 | if (cur_object_lock_type == OBJECT_LOCK_SHARED) { |
| 4673 | cur_object_lock_type = OBJECT_LOCK_EXCLUSIVE; |
| 4674 | |
| 4675 | vm_object_unlock(object); |
| 4676 | vm_object_unlock(cur_object); |
| 4677 | |
| 4678 | vm_map_unlock_read(map); |
| 4679 | if (real_map != map) { |
| 4680 | vm_map_unlock(real_map); |
| 4681 | } |
| 4682 | |
| 4683 | goto RetryFault; |
| 4684 | } |
| 4685 | } else if (object_lock_type == OBJECT_LOCK_SHARED) { |
| 4686 | object_lock_type = OBJECT_LOCK_EXCLUSIVE; |
| 4687 | |
| 4688 | if (vm_object_lock_upgrade(object) == FALSE) { |
| 4689 | /* |
| 4690 | * couldn't upgrade, so explictly take the lock |
| 4691 | * exclusively and go relookup the page since we |
| 4692 | * will have dropped the object lock and |
| 4693 | * a different thread could have inserted |
| 4694 | * a page at this offset |
| 4695 | * no need for a full retry since we're |
| 4696 | * at the top level of the object chain |
| 4697 | */ |
| 4698 | vm_object_lock(object); |
| 4699 | |
| 4700 | continue; |
| 4701 | } |
| 4702 | } |
| 4703 | vm_object_lock_assert_exclusive(VM_PAGE_OBJECT(m)); |
| 4704 | vm_pageout_steal_laundry(page: m, FALSE); |
| 4705 | } |
| 4706 | |
| 4707 | |
| 4708 | if (VM_PAGE_GET_PHYS_PAGE(m) == vm_page_guard_addr) { |
| 4709 | /* |
| 4710 | * Guard page: let the slow path deal with it |
| 4711 | */ |
| 4712 | break; |
| 4713 | } |
| 4714 | if (m->vmp_unusual && (m->vmp_error || m->vmp_restart || m->vmp_private || m->vmp_absent)) { |
| 4715 | /* |
| 4716 | * Unusual case... let the slow path deal with it |
| 4717 | */ |
| 4718 | break; |
| 4719 | } |
| 4720 | if (VM_OBJECT_PURGEABLE_FAULT_ERROR(m_object)) { |
| 4721 | if (object != cur_object) { |
| 4722 | vm_object_unlock(object); |
| 4723 | } |
| 4724 | vm_map_unlock_read(map); |
| 4725 | if (real_map != map) { |
| 4726 | vm_map_unlock(real_map); |
| 4727 | } |
| 4728 | vm_object_unlock(cur_object); |
| 4729 | ktriage_record(thread_id: thread_tid(thread: current_thread()), KDBG_TRIAGE_EVENTID(KDBG_TRIAGE_SUBSYS_VM, KDBG_TRIAGE_RESERVED, KDBG_TRIAGE_VM_PURGEABLE_FAULT_ERROR), arg: 0 /* arg */); |
| 4730 | kr = KERN_MEMORY_ERROR; |
| 4731 | goto done; |
| 4732 | } |
| 4733 | assert(m_object == VM_PAGE_OBJECT(m)); |
| 4734 | |
| 4735 | if (vm_fault_cs_need_validation(pmap: map->pmap, page: m, page_obj: m_object, |
| 4736 | PAGE_SIZE, fault_phys_offset: 0) || |
| 4737 | (physpage_p != NULL && (prot & VM_PROT_WRITE))) { |
| 4738 | upgrade_lock_and_retry: |
| 4739 | /* |
| 4740 | * We might need to validate this page |
| 4741 | * against its code signature, so we |
| 4742 | * want to hold the VM object exclusively. |
| 4743 | */ |
| 4744 | if (object != cur_object) { |
| 4745 | if (cur_object_lock_type == OBJECT_LOCK_SHARED) { |
| 4746 | vm_object_unlock(object); |
| 4747 | vm_object_unlock(cur_object); |
| 4748 | |
| 4749 | cur_object_lock_type = OBJECT_LOCK_EXCLUSIVE; |
| 4750 | |
| 4751 | vm_map_unlock_read(map); |
| 4752 | if (real_map != map) { |
| 4753 | vm_map_unlock(real_map); |
| 4754 | } |
| 4755 | |
| 4756 | goto RetryFault; |
| 4757 | } |
| 4758 | } else if (object_lock_type == OBJECT_LOCK_SHARED) { |
| 4759 | object_lock_type = OBJECT_LOCK_EXCLUSIVE; |
| 4760 | |
| 4761 | if (vm_object_lock_upgrade(object) == FALSE) { |
| 4762 | /* |
| 4763 | * couldn't upgrade, so explictly take the lock |
| 4764 | * exclusively and go relookup the page since we |
| 4765 | * will have dropped the object lock and |
| 4766 | * a different thread could have inserted |
| 4767 | * a page at this offset |
| 4768 | * no need for a full retry since we're |
| 4769 | * at the top level of the object chain |
| 4770 | */ |
| 4771 | vm_object_lock(object); |
| 4772 | |
| 4773 | continue; |
| 4774 | } |
| 4775 | } |
| 4776 | } |
| 4777 | /* |
| 4778 | * Two cases of map in faults: |
| 4779 | * - At top level w/o copy object. |
| 4780 | * - Read fault anywhere. |
| 4781 | * --> must disallow write. |
| 4782 | */ |
| 4783 | |
| 4784 | if (object == cur_object && object->vo_copy == VM_OBJECT_NULL) { |
| 4785 | #if CONFIG_TRACK_UNMODIFIED_ANON_PAGES |
| 4786 | if ((fault_type & VM_PROT_WRITE) && m->vmp_unmodified_ro) { |
| 4787 | assert(cur_object == VM_PAGE_OBJECT(m)); |
| 4788 | assert(cur_object->internal); |
| 4789 | vm_object_lock_assert_exclusive(cur_object); |
| 4790 | vm_page_lockspin_queues(); |
| 4791 | m->vmp_unmodified_ro = false; |
| 4792 | vm_page_unlock_queues(); |
| 4793 | os_atomic_dec(&compressor_ro_uncompressed, relaxed); |
| 4794 | VM_COMPRESSOR_PAGER_STATE_CLR(cur_object, m->vmp_offset); |
| 4795 | } |
| 4796 | #endif /* CONFIG_TRACK_UNMODIFIED_ANON_PAGES */ |
| 4797 | goto FastPmapEnter; |
| 4798 | } |
| 4799 | |
| 4800 | if (!need_copy && |
| 4801 | !fault_info.no_copy_on_read && |
| 4802 | cur_object != object && |
| 4803 | !cur_object->internal && |
| 4804 | !cur_object->pager_trusted && |
| 4805 | vm_protect_privileged_from_untrusted && |
| 4806 | !cur_object->code_signed && |
| 4807 | current_proc_is_privileged()) { |
| 4808 | /* |
| 4809 | * We're faulting on a page in "object" and |
| 4810 | * went down the shadow chain to "cur_object" |
| 4811 | * to find out that "cur_object"'s pager |
| 4812 | * is not "trusted", i.e. we can not trust it |
| 4813 | * to always return the same contents. |
| 4814 | * Since the target is a "privileged" process, |
| 4815 | * let's treat this as a copy-on-read fault, as |
| 4816 | * if it was a copy-on-write fault. |
| 4817 | * Once "object" gets a copy of this page, it |
| 4818 | * won't have to rely on "cur_object" to |
| 4819 | * provide the contents again. |
| 4820 | * |
| 4821 | * This is done by setting "need_copy" and |
| 4822 | * retrying the fault from the top with the |
| 4823 | * appropriate locking. |
| 4824 | * |
| 4825 | * Special case: if the mapping is executable |
| 4826 | * and the untrusted object is code-signed and |
| 4827 | * the process is "cs_enforced", we do not |
| 4828 | * copy-on-read because that would break |
| 4829 | * code-signing enforcement expectations (an |
| 4830 | * executable page must belong to a code-signed |
| 4831 | * object) and we can rely on code-signing |
| 4832 | * to re-validate the page if it gets evicted |
| 4833 | * and paged back in. |
| 4834 | */ |
| 4835 | // printf("COPY-ON-READ %s:%d map %p va 0x%llx page %p object %p offset 0x%llx UNTRUSTED: need copy-on-read!\n", __FUNCTION__, __LINE__, map, (uint64_t)vaddr, m, VM_PAGE_OBJECT(m), m->vmp_offset); |
| 4836 | vm_copied_on_read++; |
| 4837 | need_copy = TRUE; |
| 4838 | |
| 4839 | vm_object_unlock(object); |
| 4840 | vm_object_unlock(cur_object); |
| 4841 | object_lock_type = OBJECT_LOCK_EXCLUSIVE; |
| 4842 | vm_map_unlock_read(map); |
| 4843 | if (real_map != map) { |
| 4844 | vm_map_unlock(real_map); |
| 4845 | } |
| 4846 | goto RetryFault; |
| 4847 | } |
| 4848 | |
| 4849 | if (!(fault_type & VM_PROT_WRITE) && !need_copy) { |
| 4850 | if (pmap_has_prot_policy(pmap, translated_allow_execute: fault_info.pmap_options & PMAP_OPTIONS_TRANSLATED_ALLOW_EXECUTE, prot)) { |
| 4851 | /* |
| 4852 | * For a protection that the pmap cares |
| 4853 | * about, we must hand over the full |
| 4854 | * set of protections (so that the pmap |
| 4855 | * layer can apply any desired policy). |
| 4856 | * This means that cs_bypass must be |
| 4857 | * set, as this can force us to pass |
| 4858 | * RWX. |
| 4859 | */ |
| 4860 | if (!fault_info.cs_bypass) { |
| 4861 | panic("%s: pmap %p vaddr 0x%llx prot 0x%x options 0x%x" , |
| 4862 | __FUNCTION__, pmap, |
| 4863 | (uint64_t)vaddr, prot, |
| 4864 | fault_info.pmap_options); |
| 4865 | } |
| 4866 | } else { |
| 4867 | prot &= ~VM_PROT_WRITE; |
| 4868 | } |
| 4869 | |
| 4870 | if (object != cur_object) { |
| 4871 | /* |
| 4872 | * We still need to hold the top object |
| 4873 | * lock here to prevent a race between |
| 4874 | * a read fault (taking only "shared" |
| 4875 | * locks) and a write fault (taking |
| 4876 | * an "exclusive" lock on the top |
| 4877 | * object. |
| 4878 | * Otherwise, as soon as we release the |
| 4879 | * top lock, the write fault could |
| 4880 | * proceed and actually complete before |
| 4881 | * the read fault, and the copied page's |
| 4882 | * translation could then be overwritten |
| 4883 | * by the read fault's translation for |
| 4884 | * the original page. |
| 4885 | * |
| 4886 | * Let's just record what the top object |
| 4887 | * is and we'll release it later. |
| 4888 | */ |
| 4889 | top_object = object; |
| 4890 | |
| 4891 | /* |
| 4892 | * switch to the object that has the new page |
| 4893 | */ |
| 4894 | object = cur_object; |
| 4895 | object_lock_type = cur_object_lock_type; |
| 4896 | } |
| 4897 | FastPmapEnter: |
| 4898 | assert(m_object == VM_PAGE_OBJECT(m)); |
| 4899 | |
| 4900 | /* |
| 4901 | * prepare for the pmap_enter... |
| 4902 | * object and map are both locked |
| 4903 | * m contains valid data |
| 4904 | * object == m->vmp_object |
| 4905 | * cur_object == NULL or it's been unlocked |
| 4906 | * no paging references on either object or cur_object |
| 4907 | */ |
| 4908 | if (top_object != VM_OBJECT_NULL || object_lock_type != OBJECT_LOCK_EXCLUSIVE) { |
| 4909 | need_retry_ptr = &need_retry; |
| 4910 | } else { |
| 4911 | need_retry_ptr = NULL; |
| 4912 | } |
| 4913 | |
| 4914 | if (fault_page_size < PAGE_SIZE) { |
| 4915 | DEBUG4K_FAULT("map %p original %p pmap %p va 0x%llx caller pmap %p va 0x%llx pa 0x%llx (0x%llx+0x%llx) prot 0x%x caller_prot 0x%x\n" , map, original_map, pmap, (uint64_t)vaddr, caller_pmap, (uint64_t)caller_pmap_addr, (uint64_t)((((pmap_paddr_t)VM_PAGE_GET_PHYS_PAGE(m)) << PAGE_SHIFT) + fault_phys_offset), (uint64_t)(((pmap_paddr_t)VM_PAGE_GET_PHYS_PAGE(m)) << PAGE_SHIFT), (uint64_t)fault_phys_offset, prot, caller_prot); |
| 4916 | assertf((!(fault_phys_offset & FOURK_PAGE_MASK) && |
| 4917 | fault_phys_offset < PAGE_SIZE), |
| 4918 | "0x%llx\n" , (uint64_t)fault_phys_offset); |
| 4919 | } else { |
| 4920 | assertf(fault_phys_offset == 0, |
| 4921 | "0x%llx\n" , (uint64_t)fault_phys_offset); |
| 4922 | } |
| 4923 | |
| 4924 | if (__improbable(rtfault && |
| 4925 | !m->vmp_realtime && |
| 4926 | vm_pageout_protect_realtime)) { |
| 4927 | vm_page_lock_queues(); |
| 4928 | if (!m->vmp_realtime) { |
| 4929 | m->vmp_realtime = true; |
| 4930 | vm_page_realtime_count++; |
| 4931 | } |
| 4932 | vm_page_unlock_queues(); |
| 4933 | } |
| 4934 | assertf(VM_PAGE_OBJECT(m) == m_object, "m=%p m_object=%p object=%p" , m, m_object, object); |
| 4935 | assert(VM_PAGE_OBJECT(m) != VM_OBJECT_NULL); |
| 4936 | if (caller_pmap) { |
| 4937 | kr = vm_fault_enter(m, |
| 4938 | pmap: caller_pmap, |
| 4939 | vaddr: caller_pmap_addr, |
| 4940 | fault_page_size, |
| 4941 | fault_phys_offset, |
| 4942 | prot, |
| 4943 | caller_prot, |
| 4944 | wired, |
| 4945 | change_wiring, |
| 4946 | wire_tag, |
| 4947 | fault_info: &fault_info, |
| 4948 | need_retry: need_retry_ptr, |
| 4949 | type_of_fault: &type_of_fault, |
| 4950 | object_lock_type: &object_lock_type); |
| 4951 | } else { |
| 4952 | kr = vm_fault_enter(m, |
| 4953 | pmap, |
| 4954 | vaddr, |
| 4955 | fault_page_size, |
| 4956 | fault_phys_offset, |
| 4957 | prot, |
| 4958 | caller_prot, |
| 4959 | wired, |
| 4960 | change_wiring, |
| 4961 | wire_tag, |
| 4962 | fault_info: &fault_info, |
| 4963 | need_retry: need_retry_ptr, |
| 4964 | type_of_fault: &type_of_fault, |
| 4965 | object_lock_type: &object_lock_type); |
| 4966 | } |
| 4967 | |
| 4968 | vm_fault_complete( |
| 4969 | map, |
| 4970 | real_map, |
| 4971 | object, |
| 4972 | m_object, |
| 4973 | m, |
| 4974 | offset, |
| 4975 | trace_real_vaddr, |
| 4976 | fault_info: &fault_info, |
| 4977 | caller_prot, |
| 4978 | real_vaddr, |
| 4979 | type_of_fault: vm_fault_type_for_tracing(need_copy_on_read, type_of_fault), |
| 4980 | need_retry, |
| 4981 | kr, |
| 4982 | physpage_p, |
| 4983 | prot, |
| 4984 | top_object, |
| 4985 | need_collapse, |
| 4986 | cur_offset, |
| 4987 | fault_type, |
| 4988 | written_on_object: &written_on_object, |
| 4989 | written_on_pager: &written_on_pager, |
| 4990 | written_on_offset: &written_on_offset); |
| 4991 | top_object = VM_OBJECT_NULL; |
| 4992 | if (need_retry == TRUE) { |
| 4993 | /* |
| 4994 | * vm_fault_enter couldn't complete the PMAP_ENTER... |
| 4995 | * at this point we don't hold any locks so it's safe |
| 4996 | * to ask the pmap layer to expand the page table to |
| 4997 | * accommodate this mapping... once expanded, we'll |
| 4998 | * re-drive the fault which should result in vm_fault_enter |
| 4999 | * being able to successfully enter the mapping this time around |
| 5000 | */ |
| 5001 | (void)pmap_enter_options( |
| 5002 | pmap, v: vaddr, pn: 0, prot: 0, fault_type: 0, flags: 0, wired: 0, |
| 5003 | PMAP_OPTIONS_NOENTER, NULL, mapping_type: PMAP_MAPPING_TYPE_INFER); |
| 5004 | |
| 5005 | need_retry = FALSE; |
| 5006 | goto RetryFault; |
| 5007 | } |
| 5008 | goto done; |
| 5009 | } |
| 5010 | /* |
| 5011 | * COPY ON WRITE FAULT |
| 5012 | */ |
| 5013 | assert(object_lock_type == OBJECT_LOCK_EXCLUSIVE); |
| 5014 | |
| 5015 | /* |
| 5016 | * If objects match, then |
| 5017 | * object->vo_copy must not be NULL (else control |
| 5018 | * would be in previous code block), and we |
| 5019 | * have a potential push into the copy object |
| 5020 | * with which we can't cope with here. |
| 5021 | */ |
| 5022 | if (cur_object == object) { |
| 5023 | /* |
| 5024 | * must take the slow path to |
| 5025 | * deal with the copy push |
| 5026 | */ |
| 5027 | break; |
| 5028 | } |
| 5029 | |
| 5030 | /* |
| 5031 | * This is now a shadow based copy on write |
| 5032 | * fault -- it requires a copy up the shadow |
| 5033 | * chain. |
| 5034 | */ |
| 5035 | assert(m_object == VM_PAGE_OBJECT(m)); |
| 5036 | |
| 5037 | if ((cur_object_lock_type == OBJECT_LOCK_SHARED) && |
| 5038 | vm_fault_cs_need_validation(NULL, page: m, page_obj: m_object, |
| 5039 | PAGE_SIZE, fault_phys_offset: 0)) { |
| 5040 | goto upgrade_lock_and_retry; |
| 5041 | } |
| 5042 | |
| 5043 | #if MACH_ASSERT |
| 5044 | if (resilient_media_retry && |
| 5045 | vm_fault_resilient_media_inject_error2_rate != 0 && |
| 5046 | (++vm_fault_resilient_media_inject_error2 % vm_fault_resilient_media_inject_error2_rate) == 0) { |
| 5047 | /* inject an error */ |
| 5048 | cur_m = m; |
| 5049 | m = VM_PAGE_NULL; |
| 5050 | m_object = VM_OBJECT_NULL; |
| 5051 | break; |
| 5052 | } |
| 5053 | #endif /* MACH_ASSERT */ |
| 5054 | /* |
| 5055 | * Allocate a page in the original top level |
| 5056 | * object. Give up if allocate fails. Also |
| 5057 | * need to remember current page, as it's the |
| 5058 | * source of the copy. |
| 5059 | * |
| 5060 | * at this point we hold locks on both |
| 5061 | * object and cur_object... no need to take |
| 5062 | * paging refs or mark pages BUSY since |
| 5063 | * we don't drop either object lock until |
| 5064 | * the page has been copied and inserted |
| 5065 | */ |
| 5066 | cur_m = m; |
| 5067 | m = vm_page_grab_options(flags: grab_options); |
| 5068 | m_object = NULL; |
| 5069 | |
| 5070 | if (m == VM_PAGE_NULL) { |
| 5071 | /* |
| 5072 | * no free page currently available... |
| 5073 | * must take the slow path |
| 5074 | */ |
| 5075 | break; |
| 5076 | } |
| 5077 | |
| 5078 | /* |
| 5079 | * Now do the copy. Mark the source page busy... |
| 5080 | * |
| 5081 | * NOTE: This code holds the map lock across |
| 5082 | * the page copy. |
| 5083 | */ |
| 5084 | vm_page_copy(src_page: cur_m, dest_page: m); |
| 5085 | vm_page_insert(page: m, object, vm_object_trunc_page(offset)); |
| 5086 | if (VM_MAP_PAGE_MASK(map) != PAGE_MASK) { |
| 5087 | DEBUG4K_FAULT("map %p vaddr 0x%llx page %p [%p 0x%llx] copied to %p [%p 0x%llx]\n" , map, (uint64_t)vaddr, cur_m, VM_PAGE_OBJECT(cur_m), cur_m->vmp_offset, m, VM_PAGE_OBJECT(m), m->vmp_offset); |
| 5088 | } |
| 5089 | m_object = object; |
| 5090 | SET_PAGE_DIRTY(m, FALSE); |
| 5091 | |
| 5092 | /* |
| 5093 | * Now cope with the source page and object |
| 5094 | */ |
| 5095 | if (object->ref_count > 1 && cur_m->vmp_pmapped) { |
| 5096 | pmap_disconnect(phys: VM_PAGE_GET_PHYS_PAGE(m: cur_m)); |
| 5097 | } else if (VM_MAP_PAGE_SIZE(map) < PAGE_SIZE) { |
| 5098 | /* |
| 5099 | * We've copied the full 16K page but we're |
| 5100 | * about to call vm_fault_enter() only for |
| 5101 | * the 4K chunk we're faulting on. The other |
| 5102 | * three 4K chunks in that page could still |
| 5103 | * be pmapped in this pmap. |
| 5104 | * Since the VM object layer thinks that the |
| 5105 | * entire page has been dealt with and the |
| 5106 | * original page might no longer be needed, |
| 5107 | * it might collapse/bypass the original VM |
| 5108 | * object and free its pages, which would be |
| 5109 | * bad (and would trigger pmap_verify_free() |
| 5110 | * assertions) if the other 4K chunks are still |
| 5111 | * pmapped. |
| 5112 | */ |
| 5113 | /* |
| 5114 | * XXX FBDP TODO4K: to be revisisted |
| 5115 | * Technically, we need to pmap_disconnect() |
| 5116 | * only the target pmap's mappings for the 4K |
| 5117 | * chunks of this 16K VM page. If other pmaps |
| 5118 | * have PTEs on these chunks, that means that |
| 5119 | * the associated VM map must have a reference |
| 5120 | * on the VM object, so no need to worry about |
| 5121 | * those. |
| 5122 | * pmap_protect() for each 4K chunk would be |
| 5123 | * better but we'd have to check which chunks |
| 5124 | * are actually mapped before and after this |
| 5125 | * one. |
| 5126 | * A full-blown pmap_disconnect() is easier |
| 5127 | * for now but not efficient. |
| 5128 | */ |
| 5129 | DEBUG4K_FAULT("pmap_disconnect() page %p object %p offset 0x%llx phys 0x%x\n" , cur_m, VM_PAGE_OBJECT(cur_m), cur_m->vmp_offset, VM_PAGE_GET_PHYS_PAGE(cur_m)); |
| 5130 | pmap_disconnect(phys: VM_PAGE_GET_PHYS_PAGE(m: cur_m)); |
| 5131 | } |
| 5132 | |
| 5133 | if (cur_m->vmp_clustered) { |
| 5134 | VM_PAGE_COUNT_AS_PAGEIN(cur_m); |
| 5135 | VM_PAGE_CONSUME_CLUSTERED(cur_m); |
| 5136 | vm_fault_is_sequential(object: cur_object, offset: cur_offset, behavior: fault_info.behavior); |
| 5137 | } |
| 5138 | need_collapse = TRUE; |
| 5139 | |
| 5140 | if (!cur_object->internal && |
| 5141 | cur_object->copy_strategy == MEMORY_OBJECT_COPY_DELAY) { |
| 5142 | /* |
| 5143 | * The object from which we've just |
| 5144 | * copied a page is most probably backed |
| 5145 | * by a vnode. We don't want to waste too |
| 5146 | * much time trying to collapse the VM objects |
| 5147 | * and create a bottleneck when several tasks |
| 5148 | * map the same file. |
| 5149 | */ |
| 5150 | if (cur_object->vo_copy == object) { |
| 5151 | /* |
| 5152 | * Shared mapping or no COW yet. |
| 5153 | * We can never collapse a copy |
| 5154 | * object into its backing object. |
| 5155 | */ |
| 5156 | need_collapse = FALSE; |
| 5157 | } else if (cur_object->vo_copy == object->shadow && |
| 5158 | object->shadow->resident_page_count == 0) { |
| 5159 | /* |
| 5160 | * Shared mapping after a COW occurred. |
| 5161 | */ |
| 5162 | need_collapse = FALSE; |
| 5163 | } |
| 5164 | } |
| 5165 | vm_object_unlock(cur_object); |
| 5166 | |
| 5167 | if (need_collapse == FALSE) { |
| 5168 | vm_fault_collapse_skipped++; |
| 5169 | } |
| 5170 | vm_fault_collapse_total++; |
| 5171 | |
| 5172 | type_of_fault = DBG_COW_FAULT; |
| 5173 | counter_inc(&vm_statistics_cow_faults); |
| 5174 | DTRACE_VM2(cow_fault, int, 1, (uint64_t *), NULL); |
| 5175 | counter_inc(¤t_task()->cow_faults); |
| 5176 | |
| 5177 | goto FastPmapEnter; |
| 5178 | } else { |
| 5179 | /* |
| 5180 | * No page at cur_object, cur_offset... m == NULL |
| 5181 | */ |
| 5182 | if (cur_object->pager_created) { |
| 5183 | vm_external_state_t compressor_external_state = VM_EXTERNAL_STATE_UNKNOWN; |
| 5184 | |
| 5185 | if (MUST_ASK_PAGER(cur_object, cur_offset, compressor_external_state) == TRUE) { |
| 5186 | int my_fault_type; |
| 5187 | vm_compressor_options_t c_flags = C_DONT_BLOCK; |
| 5188 | bool insert_cur_object = FALSE; |
| 5189 | |
| 5190 | /* |
| 5191 | * May have to talk to a pager... |
| 5192 | * if so, take the slow path by |
| 5193 | * doing a 'break' from the while (TRUE) loop |
| 5194 | * |
| 5195 | * external_state will only be set to VM_EXTERNAL_STATE_EXISTS |
| 5196 | * if the compressor is active and the page exists there |
| 5197 | */ |
| 5198 | if (compressor_external_state != VM_EXTERNAL_STATE_EXISTS) { |
| 5199 | break; |
| 5200 | } |
| 5201 | |
| 5202 | if (map == kernel_map || real_map == kernel_map) { |
| 5203 | /* |
| 5204 | * can't call into the compressor with the kernel_map |
| 5205 | * lock held, since the compressor may try to operate |
| 5206 | * on the kernel map in order to return an empty c_segment |
| 5207 | */ |
| 5208 | break; |
| 5209 | } |
| 5210 | if (object != cur_object) { |
| 5211 | if (fault_type & VM_PROT_WRITE) { |
| 5212 | c_flags |= C_KEEP; |
| 5213 | } else { |
| 5214 | insert_cur_object = TRUE; |
| 5215 | } |
| 5216 | } |
| 5217 | if (insert_cur_object == TRUE) { |
| 5218 | if (cur_object_lock_type == OBJECT_LOCK_SHARED) { |
| 5219 | cur_object_lock_type = OBJECT_LOCK_EXCLUSIVE; |
| 5220 | |
| 5221 | if (vm_object_lock_upgrade(cur_object) == FALSE) { |
| 5222 | /* |
| 5223 | * couldn't upgrade so go do a full retry |
| 5224 | * immediately since we can no longer be |
| 5225 | * certain about cur_object (since we |
| 5226 | * don't hold a reference on it)... |
| 5227 | * first drop the top object lock |
| 5228 | */ |
| 5229 | vm_object_unlock(object); |
| 5230 | |
| 5231 | vm_map_unlock_read(map); |
| 5232 | if (real_map != map) { |
| 5233 | vm_map_unlock(real_map); |
| 5234 | } |
| 5235 | |
| 5236 | goto RetryFault; |
| 5237 | } |
| 5238 | } |
| 5239 | } else if (object_lock_type == OBJECT_LOCK_SHARED) { |
| 5240 | object_lock_type = OBJECT_LOCK_EXCLUSIVE; |
| 5241 | |
| 5242 | if (object != cur_object) { |
| 5243 | /* |
| 5244 | * we can't go for the upgrade on the top |
| 5245 | * lock since the upgrade may block waiting |
| 5246 | * for readers to drain... since we hold |
| 5247 | * cur_object locked at this point, waiting |
| 5248 | * for the readers to drain would represent |
| 5249 | * a lock order inversion since the lock order |
| 5250 | * for objects is the reference order in the |
| 5251 | * shadown chain |
| 5252 | */ |
| 5253 | vm_object_unlock(object); |
| 5254 | vm_object_unlock(cur_object); |
| 5255 | |
| 5256 | vm_map_unlock_read(map); |
| 5257 | if (real_map != map) { |
| 5258 | vm_map_unlock(real_map); |
| 5259 | } |
| 5260 | |
| 5261 | goto RetryFault; |
| 5262 | } |
| 5263 | if (vm_object_lock_upgrade(object) == FALSE) { |
| 5264 | /* |
| 5265 | * couldn't upgrade, so explictly take the lock |
| 5266 | * exclusively and go relookup the page since we |
| 5267 | * will have dropped the object lock and |
| 5268 | * a different thread could have inserted |
| 5269 | * a page at this offset |
| 5270 | * no need for a full retry since we're |
| 5271 | * at the top level of the object chain |
| 5272 | */ |
| 5273 | vm_object_lock(object); |
| 5274 | |
| 5275 | continue; |
| 5276 | } |
| 5277 | } |
| 5278 | m = vm_page_grab_options(flags: grab_options); |
| 5279 | m_object = NULL; |
| 5280 | |
| 5281 | if (m == VM_PAGE_NULL) { |
| 5282 | /* |
| 5283 | * no free page currently available... |
| 5284 | * must take the slow path |
| 5285 | */ |
| 5286 | break; |
| 5287 | } |
| 5288 | |
| 5289 | /* |
| 5290 | * The object is and remains locked |
| 5291 | * so no need to take a |
| 5292 | * "paging_in_progress" reference. |
| 5293 | */ |
| 5294 | bool shared_lock; |
| 5295 | if ((object == cur_object && |
| 5296 | object_lock_type == OBJECT_LOCK_EXCLUSIVE) || |
| 5297 | (object != cur_object && |
| 5298 | cur_object_lock_type == OBJECT_LOCK_EXCLUSIVE)) { |
| 5299 | shared_lock = FALSE; |
| 5300 | } else { |
| 5301 | shared_lock = TRUE; |
| 5302 | } |
| 5303 | |
| 5304 | kr = vm_compressor_pager_get( |
| 5305 | mem_obj: cur_object->pager, |
| 5306 | offset: (vm_object_trunc_page(cur_offset) |
| 5307 | + cur_object->paging_offset), |
| 5308 | ppnum: VM_PAGE_GET_PHYS_PAGE(m), |
| 5309 | my_fault_type: &my_fault_type, |
| 5310 | flags: c_flags, |
| 5311 | compressed_count_delta_p: &compressed_count_delta); |
| 5312 | |
| 5313 | vm_compressor_pager_count( |
| 5314 | mem_obj: cur_object->pager, |
| 5315 | compressed_count_delta, |
| 5316 | shared_lock, |
| 5317 | object: cur_object); |
| 5318 | |
| 5319 | if (kr != KERN_SUCCESS) { |
| 5320 | vm_page_release(page: m, FALSE); |
| 5321 | m = VM_PAGE_NULL; |
| 5322 | } |
| 5323 | /* |
| 5324 | * If vm_compressor_pager_get() returns |
| 5325 | * KERN_MEMORY_FAILURE, then the |
| 5326 | * compressed data is permanently lost, |
| 5327 | * so return this error immediately. |
| 5328 | */ |
| 5329 | if (kr == KERN_MEMORY_FAILURE) { |
| 5330 | if (object != cur_object) { |
| 5331 | vm_object_unlock(cur_object); |
| 5332 | } |
| 5333 | vm_object_unlock(object); |
| 5334 | vm_map_unlock_read(map); |
| 5335 | if (real_map != map) { |
| 5336 | vm_map_unlock(real_map); |
| 5337 | } |
| 5338 | |
| 5339 | goto done; |
| 5340 | } else if (kr != KERN_SUCCESS) { |
| 5341 | break; |
| 5342 | } |
| 5343 | m->vmp_dirty = TRUE; |
| 5344 | #if CONFIG_TRACK_UNMODIFIED_ANON_PAGES |
| 5345 | if ((fault_type & VM_PROT_WRITE) == 0) { |
| 5346 | prot &= ~VM_PROT_WRITE; |
| 5347 | /* |
| 5348 | * The page, m, has yet to be inserted |
| 5349 | * into an object. So we are fine with |
| 5350 | * the object/cur_object lock being held |
| 5351 | * shared. |
| 5352 | */ |
| 5353 | vm_page_lockspin_queues(); |
| 5354 | m->vmp_unmodified_ro = true; |
| 5355 | vm_page_unlock_queues(); |
| 5356 | os_atomic_inc(&compressor_ro_uncompressed, relaxed); |
| 5357 | } |
| 5358 | #endif /* CONFIG_TRACK_UNMODIFIED_ANON_PAGES */ |
| 5359 | |
| 5360 | /* |
| 5361 | * If the object is purgeable, its |
| 5362 | * owner's purgeable ledgers will be |
| 5363 | * updated in vm_page_insert() but the |
| 5364 | * page was also accounted for in a |
| 5365 | * "compressed purgeable" ledger, so |
| 5366 | * update that now. |
| 5367 | */ |
| 5368 | if (object != cur_object && |
| 5369 | !insert_cur_object) { |
| 5370 | /* |
| 5371 | * We're not going to insert |
| 5372 | * the decompressed page into |
| 5373 | * the object it came from. |
| 5374 | * |
| 5375 | * We're dealing with a |
| 5376 | * copy-on-write fault on |
| 5377 | * "object". |
| 5378 | * We're going to decompress |
| 5379 | * the page directly into the |
| 5380 | * target "object" while |
| 5381 | * keepin the compressed |
| 5382 | * page for "cur_object", so |
| 5383 | * no ledger update in that |
| 5384 | * case. |
| 5385 | */ |
| 5386 | } else if (((cur_object->purgable == |
| 5387 | VM_PURGABLE_DENY) && |
| 5388 | (!cur_object->vo_ledger_tag)) || |
| 5389 | (cur_object->vo_owner == |
| 5390 | NULL)) { |
| 5391 | /* |
| 5392 | * "cur_object" is not purgeable |
| 5393 | * and is not ledger-taged, or |
| 5394 | * there's no owner for it, |
| 5395 | * so no owner's ledgers to |
| 5396 | * update. |
| 5397 | */ |
| 5398 | } else { |
| 5399 | /* |
| 5400 | * One less compressed |
| 5401 | * purgeable/tagged page for |
| 5402 | * cur_object's owner. |
| 5403 | */ |
| 5404 | if (compressed_count_delta) { |
| 5405 | vm_object_owner_compressed_update( |
| 5406 | object: cur_object, |
| 5407 | delta: -1); |
| 5408 | } |
| 5409 | } |
| 5410 | |
| 5411 | if (insert_cur_object) { |
| 5412 | vm_page_insert(page: m, object: cur_object, vm_object_trunc_page(cur_offset)); |
| 5413 | m_object = cur_object; |
| 5414 | } else { |
| 5415 | vm_page_insert(page: m, object, vm_object_trunc_page(offset)); |
| 5416 | m_object = object; |
| 5417 | } |
| 5418 | |
| 5419 | if ((m_object->wimg_bits & VM_WIMG_MASK) != VM_WIMG_USE_DEFAULT) { |
| 5420 | /* |
| 5421 | * If the page is not cacheable, |
| 5422 | * we can't let its contents |
| 5423 | * linger in the data cache |
| 5424 | * after the decompression. |
| 5425 | */ |
| 5426 | pmap_sync_page_attributes_phys(pa: VM_PAGE_GET_PHYS_PAGE(m)); |
| 5427 | } |
| 5428 | |
| 5429 | type_of_fault = my_fault_type; |
| 5430 | |
| 5431 | VM_STAT_DECOMPRESSIONS(); |
| 5432 | |
| 5433 | if (cur_object != object) { |
| 5434 | if (insert_cur_object) { |
| 5435 | top_object = object; |
| 5436 | /* |
| 5437 | * switch to the object that has the new page |
| 5438 | */ |
| 5439 | object = cur_object; |
| 5440 | object_lock_type = cur_object_lock_type; |
| 5441 | } else { |
| 5442 | vm_object_unlock(cur_object); |
| 5443 | cur_object = object; |
| 5444 | } |
| 5445 | } |
| 5446 | goto FastPmapEnter; |
| 5447 | } |
| 5448 | /* |
| 5449 | * existence map present and indicates |
| 5450 | * that the pager doesn't have this page |
| 5451 | */ |
| 5452 | } |
| 5453 | if (cur_object->shadow == VM_OBJECT_NULL || |
| 5454 | resilient_media_retry) { |
| 5455 | /* |
| 5456 | * Zero fill fault. Page gets |
| 5457 | * inserted into the original object. |
| 5458 | */ |
| 5459 | if (cur_object->shadow_severed || |
| 5460 | VM_OBJECT_PURGEABLE_FAULT_ERROR(cur_object) || |
| 5461 | cur_object == compressor_object || |
| 5462 | is_kernel_object(cur_object)) { |
| 5463 | if (object != cur_object) { |
| 5464 | vm_object_unlock(cur_object); |
| 5465 | } |
| 5466 | vm_object_unlock(object); |
| 5467 | |
| 5468 | vm_map_unlock_read(map); |
| 5469 | if (real_map != map) { |
| 5470 | vm_map_unlock(real_map); |
| 5471 | } |
| 5472 | if (VM_OBJECT_PURGEABLE_FAULT_ERROR(cur_object)) { |
| 5473 | ktriage_record(thread_id: thread_tid(thread: current_thread()), KDBG_TRIAGE_EVENTID(KDBG_TRIAGE_SUBSYS_VM, KDBG_TRIAGE_RESERVED, KDBG_TRIAGE_VM_PURGEABLE_FAULT_ERROR), arg: 0 /* arg */); |
| 5474 | } |
| 5475 | |
| 5476 | if (cur_object->shadow_severed) { |
| 5477 | ktriage_record(thread_id: thread_tid(thread: current_thread()), KDBG_TRIAGE_EVENTID(KDBG_TRIAGE_SUBSYS_VM, KDBG_TRIAGE_RESERVED, KDBG_TRIAGE_VM_OBJECT_SHADOW_SEVERED), arg: 0 /* arg */); |
| 5478 | } |
| 5479 | |
| 5480 | kr = KERN_MEMORY_ERROR; |
| 5481 | goto done; |
| 5482 | } |
| 5483 | if (cur_object != object) { |
| 5484 | vm_object_unlock(cur_object); |
| 5485 | |
| 5486 | cur_object = object; |
| 5487 | } |
| 5488 | if (object_lock_type == OBJECT_LOCK_SHARED) { |
| 5489 | object_lock_type = OBJECT_LOCK_EXCLUSIVE; |
| 5490 | |
| 5491 | if (vm_object_lock_upgrade(object) == FALSE) { |
| 5492 | /* |
| 5493 | * couldn't upgrade so do a full retry on the fault |
| 5494 | * since we dropped the object lock which |
| 5495 | * could allow another thread to insert |
| 5496 | * a page at this offset |
| 5497 | */ |
| 5498 | vm_map_unlock_read(map); |
| 5499 | if (real_map != map) { |
| 5500 | vm_map_unlock(real_map); |
| 5501 | } |
| 5502 | |
| 5503 | goto RetryFault; |
| 5504 | } |
| 5505 | } |
| 5506 | if (!object->internal) { |
| 5507 | panic("%s:%d should not zero-fill page at offset 0x%llx in external object %p" , __FUNCTION__, __LINE__, (uint64_t)offset, object); |
| 5508 | } |
| 5509 | #if MACH_ASSERT |
| 5510 | if (resilient_media_retry && |
| 5511 | vm_fault_resilient_media_inject_error3_rate != 0 && |
| 5512 | (++vm_fault_resilient_media_inject_error3 % vm_fault_resilient_media_inject_error3_rate) == 0) { |
| 5513 | /* inject an error */ |
| 5514 | m_object = NULL; |
| 5515 | break; |
| 5516 | } |
| 5517 | #endif /* MACH_ASSERT */ |
| 5518 | m = vm_page_alloc(object, vm_object_trunc_page(offset)); |
| 5519 | m_object = NULL; |
| 5520 | |
| 5521 | if (m == VM_PAGE_NULL) { |
| 5522 | /* |
| 5523 | * no free page currently available... |
| 5524 | * must take the slow path |
| 5525 | */ |
| 5526 | break; |
| 5527 | } |
| 5528 | m_object = object; |
| 5529 | |
| 5530 | if ((prot & VM_PROT_WRITE) && |
| 5531 | !(fault_type & VM_PROT_WRITE) && |
| 5532 | object->vo_copy != VM_OBJECT_NULL) { |
| 5533 | /* |
| 5534 | * This is not a write fault and |
| 5535 | * we might have a copy-on-write |
| 5536 | * obligation to honor (copy object or |
| 5537 | * "needs_copy" map entry), so do not |
| 5538 | * give write access yet. |
| 5539 | * We'll need to catch the first write |
| 5540 | * to resolve the copy-on-write by |
| 5541 | * pushing this page to a copy object |
| 5542 | * or making a shadow object. |
| 5543 | */ |
| 5544 | if (pmap_has_prot_policy(pmap, translated_allow_execute: fault_info.pmap_options & PMAP_OPTIONS_TRANSLATED_ALLOW_EXECUTE, prot)) { |
| 5545 | /* |
| 5546 | * This pmap enforces extra |
| 5547 | * constraints for this set of |
| 5548 | * protections, so we can't |
| 5549 | * change the protections. |
| 5550 | * We would expect code-signing |
| 5551 | * to be bypassed in this case. |
| 5552 | */ |
| 5553 | if (!fault_info.cs_bypass) { |
| 5554 | panic("%s: pmap %p vaddr 0x%llx prot 0x%x options 0x%x" , |
| 5555 | __FUNCTION__, |
| 5556 | pmap, |
| 5557 | (uint64_t)vaddr, |
| 5558 | prot, |
| 5559 | fault_info.pmap_options); |
| 5560 | } |
| 5561 | } else { |
| 5562 | prot &= ~VM_PROT_WRITE; |
| 5563 | } |
| 5564 | } |
| 5565 | assertf(!((fault_type & VM_PROT_WRITE) && object->vo_copy), |
| 5566 | "map %p va 0x%llx wrong path for write fault (fault_type 0x%x) on object %p with copy %p\n" , |
| 5567 | map, (uint64_t)vaddr, fault_type, object, object->vo_copy); |
| 5568 | |
| 5569 | vm_object_t saved_copy_object; |
| 5570 | uint32_t saved_copy_version; |
| 5571 | saved_copy_object = object->vo_copy; |
| 5572 | saved_copy_version = object->vo_copy_version; |
| 5573 | |
| 5574 | /* |
| 5575 | * Zeroing the page and entering into it into the pmap |
| 5576 | * represents a significant amount of the zero fill fault handler's work. |
| 5577 | * |
| 5578 | * To improve fault scalability, we'll drop the object lock, if it appears contended, |
| 5579 | * now that we've inserted the page into the vm object. |
| 5580 | * Before dropping the lock, we need to check protection bits and set the |
| 5581 | * mapped bits on the page. Then we can mark the page busy, drop the lock, |
| 5582 | * zero it, and do the pmap enter. We'll need to reacquire the lock |
| 5583 | * to clear the busy bit and wake up any waiters. |
| 5584 | */ |
| 5585 | vm_fault_cs_clear(m); |
| 5586 | m->vmp_pmapped = TRUE; |
| 5587 | if (map->no_zero_fill) { |
| 5588 | type_of_fault = DBG_NZF_PAGE_FAULT; |
| 5589 | } else { |
| 5590 | type_of_fault = DBG_ZERO_FILL_FAULT; |
| 5591 | } |
| 5592 | { |
| 5593 | pmap_t destination_pmap; |
| 5594 | vm_map_offset_t destination_pmap_vaddr; |
| 5595 | vm_prot_t enter_fault_type; |
| 5596 | if (caller_pmap) { |
| 5597 | destination_pmap = caller_pmap; |
| 5598 | destination_pmap_vaddr = caller_pmap_addr; |
| 5599 | } else { |
| 5600 | destination_pmap = pmap; |
| 5601 | destination_pmap_vaddr = vaddr; |
| 5602 | } |
| 5603 | if (change_wiring) { |
| 5604 | enter_fault_type = VM_PROT_NONE; |
| 5605 | } else { |
| 5606 | enter_fault_type = caller_prot; |
| 5607 | } |
| 5608 | assertf(VM_PAGE_OBJECT(m) == object, "m=%p object=%p" , m, object); |
| 5609 | kr = vm_fault_enter_prepare(m, |
| 5610 | pmap: destination_pmap, |
| 5611 | vaddr: destination_pmap_vaddr, |
| 5612 | prot: &prot, |
| 5613 | caller_prot, |
| 5614 | fault_page_size, |
| 5615 | fault_phys_offset, |
| 5616 | change_wiring, |
| 5617 | fault_type: enter_fault_type, |
| 5618 | fault_info: &fault_info, |
| 5619 | type_of_fault: &type_of_fault, |
| 5620 | page_needs_data_sync: &page_needs_data_sync); |
| 5621 | if (kr != KERN_SUCCESS) { |
| 5622 | goto zero_fill_cleanup; |
| 5623 | } |
| 5624 | |
| 5625 | if (object_is_contended) { |
| 5626 | /* |
| 5627 | * At this point the page is in the vm object, but not on a paging queue. |
| 5628 | * Since it's accessible to another thread but its contents are invalid |
| 5629 | * (it hasn't been zeroed) mark it busy before dropping the object lock. |
| 5630 | */ |
| 5631 | m->vmp_busy = TRUE; |
| 5632 | vm_object_paging_begin(object); /* keep object alive */ |
| 5633 | vm_object_unlock(object); |
| 5634 | } |
| 5635 | if (type_of_fault == DBG_ZERO_FILL_FAULT) { |
| 5636 | /* |
| 5637 | * Now zero fill page... |
| 5638 | * the page is probably going to |
| 5639 | * be written soon, so don't bother |
| 5640 | * to clear the modified bit |
| 5641 | * |
| 5642 | * NOTE: This code holds the map |
| 5643 | * lock across the zero fill. |
| 5644 | */ |
| 5645 | vm_page_zero_fill(page: m); |
| 5646 | counter_inc(&vm_statistics_zero_fill_count); |
| 5647 | DTRACE_VM2(zfod, int, 1, (uint64_t *), NULL); |
| 5648 | } |
| 5649 | |
| 5650 | if (object_is_contended) { |
| 5651 | /* |
| 5652 | * It's not safe to do the pmap_enter() without holding |
| 5653 | * the object lock because its "vo_copy" could change. |
| 5654 | */ |
| 5655 | object_is_contended = false; /* get out of that code path */ |
| 5656 | |
| 5657 | vm_object_lock(object); |
| 5658 | vm_object_paging_end(object); |
| 5659 | if (object->vo_copy != saved_copy_object || |
| 5660 | object->vo_copy_version != saved_copy_version) { |
| 5661 | /* |
| 5662 | * The COPY_DELAY copy-on-write situation for |
| 5663 | * this VM object has changed while it was |
| 5664 | * unlocked, so do not grant write access to |
| 5665 | * this page. |
| 5666 | * The write access will fault again and we'll |
| 5667 | * resolve the copy-on-write then. |
| 5668 | */ |
| 5669 | if (pmap_has_prot_policy(pmap, |
| 5670 | translated_allow_execute: fault_info.pmap_options & PMAP_OPTIONS_TRANSLATED_ALLOW_EXECUTE, |
| 5671 | prot)) { |
| 5672 | /* we should not do CoW on pmap_has_prot_policy mappings */ |
| 5673 | panic("%s: map %p va 0x%llx obj %p,%u saved %p,%u: unexpected CoW" , |
| 5674 | __FUNCTION__, |
| 5675 | map, (uint64_t)vaddr, |
| 5676 | object, object->vo_copy_version, |
| 5677 | saved_copy_object, saved_copy_version); |
| 5678 | } else { |
| 5679 | /* the pmap layer is OK with changing the PTE's prot */ |
| 5680 | prot &= ~VM_PROT_WRITE; |
| 5681 | } |
| 5682 | } |
| 5683 | } |
| 5684 | |
| 5685 | if (page_needs_data_sync) { |
| 5686 | pmap_sync_page_data_phys(pa: VM_PAGE_GET_PHYS_PAGE(m)); |
| 5687 | } |
| 5688 | |
| 5689 | if (top_object != VM_OBJECT_NULL) { |
| 5690 | need_retry_ptr = &need_retry; |
| 5691 | } else { |
| 5692 | need_retry_ptr = NULL; |
| 5693 | } |
| 5694 | if (fault_info.fi_xnu_user_debug && |
| 5695 | !object->code_signed) { |
| 5696 | fault_info.pmap_options |= PMAP_OPTIONS_XNU_USER_DEBUG; |
| 5697 | } |
| 5698 | if (object_is_contended) { |
| 5699 | panic("object_is_contended" ); |
| 5700 | kr = vm_fault_pmap_enter(pmap: destination_pmap, vaddr: destination_pmap_vaddr, |
| 5701 | fault_page_size, fault_phys_offset, |
| 5702 | m, prot: &prot, caller_prot, fault_type: enter_fault_type, wired, |
| 5703 | pmap_options: fault_info.pmap_options, need_retry: need_retry_ptr); |
| 5704 | vm_object_lock(object); |
| 5705 | assertf(!((prot & VM_PROT_WRITE) && object->vo_copy), |
| 5706 | "prot 0x%x object %p copy %p\n" , |
| 5707 | prot, object, object->vo_copy); |
| 5708 | } else { |
| 5709 | kr = vm_fault_pmap_enter_with_object_lock(object, pmap: destination_pmap, vaddr: destination_pmap_vaddr, |
| 5710 | fault_page_size, fault_phys_offset, |
| 5711 | m, prot: &prot, caller_prot, fault_type: enter_fault_type, wired, |
| 5712 | pmap_options: fault_info.pmap_options, need_retry: need_retry_ptr, object_lock_type: &object_lock_type); |
| 5713 | } |
| 5714 | } |
| 5715 | zero_fill_cleanup: |
| 5716 | if (!VM_DYNAMIC_PAGING_ENABLED() && |
| 5717 | (object->purgable == VM_PURGABLE_DENY || |
| 5718 | object->purgable == VM_PURGABLE_NONVOLATILE || |
| 5719 | object->purgable == VM_PURGABLE_VOLATILE)) { |
| 5720 | vm_page_lockspin_queues(); |
| 5721 | if (!VM_DYNAMIC_PAGING_ENABLED()) { |
| 5722 | vm_fault_enqueue_throttled_locked(m); |
| 5723 | } |
| 5724 | vm_page_unlock_queues(); |
| 5725 | } |
| 5726 | vm_fault_enqueue_page(object, m, wired, change_wiring, wire_tag, no_cache: fault_info.no_cache, type_of_fault: &type_of_fault, kr); |
| 5727 | |
| 5728 | if (__improbable(rtfault && |
| 5729 | !m->vmp_realtime && |
| 5730 | vm_pageout_protect_realtime)) { |
| 5731 | vm_page_lock_queues(); |
| 5732 | if (!m->vmp_realtime) { |
| 5733 | m->vmp_realtime = true; |
| 5734 | vm_page_realtime_count++; |
| 5735 | } |
| 5736 | vm_page_unlock_queues(); |
| 5737 | } |
| 5738 | vm_fault_complete( |
| 5739 | map, |
| 5740 | real_map, |
| 5741 | object, |
| 5742 | m_object, |
| 5743 | m, |
| 5744 | offset, |
| 5745 | trace_real_vaddr, |
| 5746 | fault_info: &fault_info, |
| 5747 | caller_prot, |
| 5748 | real_vaddr, |
| 5749 | type_of_fault, |
| 5750 | need_retry, |
| 5751 | kr, |
| 5752 | physpage_p, |
| 5753 | prot, |
| 5754 | top_object, |
| 5755 | need_collapse, |
| 5756 | cur_offset, |
| 5757 | fault_type, |
| 5758 | written_on_object: &written_on_object, |
| 5759 | written_on_pager: &written_on_pager, |
| 5760 | written_on_offset: &written_on_offset); |
| 5761 | top_object = VM_OBJECT_NULL; |
| 5762 | if (need_retry == TRUE) { |
| 5763 | /* |
| 5764 | * vm_fault_enter couldn't complete the PMAP_ENTER... |
| 5765 | * at this point we don't hold any locks so it's safe |
| 5766 | * to ask the pmap layer to expand the page table to |
| 5767 | * accommodate this mapping... once expanded, we'll |
| 5768 | * re-drive the fault which should result in vm_fault_enter |
| 5769 | * being able to successfully enter the mapping this time around |
| 5770 | */ |
| 5771 | (void)pmap_enter_options( |
| 5772 | pmap, v: vaddr, pn: 0, prot: 0, fault_type: 0, flags: 0, wired: 0, |
| 5773 | PMAP_OPTIONS_NOENTER, NULL, mapping_type: PMAP_MAPPING_TYPE_INFER); |
| 5774 | |
| 5775 | need_retry = FALSE; |
| 5776 | goto RetryFault; |
| 5777 | } |
| 5778 | goto done; |
| 5779 | } |
| 5780 | /* |
| 5781 | * On to the next level in the shadow chain |
| 5782 | */ |
| 5783 | cur_offset += cur_object->vo_shadow_offset; |
| 5784 | new_object = cur_object->shadow; |
| 5785 | fault_phys_offset = cur_offset - vm_object_trunc_page(cur_offset); |
| 5786 | |
| 5787 | /* |
| 5788 | * take the new_object's lock with the indicated state |
| 5789 | */ |
| 5790 | if (cur_object_lock_type == OBJECT_LOCK_SHARED) { |
| 5791 | vm_object_lock_shared(new_object); |
| 5792 | } else { |
| 5793 | vm_object_lock(new_object); |
| 5794 | } |
| 5795 | |
| 5796 | if (cur_object != object) { |
| 5797 | vm_object_unlock(cur_object); |
| 5798 | } |
| 5799 | |
| 5800 | cur_object = new_object; |
| 5801 | |
| 5802 | continue; |
| 5803 | } |
| 5804 | } |
| 5805 | /* |
| 5806 | * Cleanup from fast fault failure. Drop any object |
| 5807 | * lock other than original and drop map lock. |
| 5808 | */ |
| 5809 | if (object != cur_object) { |
| 5810 | vm_object_unlock(cur_object); |
| 5811 | } |
| 5812 | |
| 5813 | /* |
| 5814 | * must own the object lock exclusively at this point |
| 5815 | */ |
| 5816 | if (object_lock_type == OBJECT_LOCK_SHARED) { |
| 5817 | object_lock_type = OBJECT_LOCK_EXCLUSIVE; |
| 5818 | |
| 5819 | if (vm_object_lock_upgrade(object) == FALSE) { |
| 5820 | /* |
| 5821 | * couldn't upgrade, so explictly |
| 5822 | * take the lock exclusively |
| 5823 | * no need to retry the fault at this |
| 5824 | * point since "vm_fault_page" will |
| 5825 | * completely re-evaluate the state |
| 5826 | */ |
| 5827 | vm_object_lock(object); |
| 5828 | } |
| 5829 | } |
| 5830 | |
| 5831 | handle_copy_delay: |
| 5832 | vm_map_unlock_read(map); |
| 5833 | if (real_map != map) { |
| 5834 | vm_map_unlock(real_map); |
| 5835 | } |
| 5836 | |
| 5837 | if (__improbable(object == compressor_object || |
| 5838 | is_kernel_object(object))) { |
| 5839 | /* |
| 5840 | * These objects are explicitly managed and populated by the |
| 5841 | * kernel. The virtual ranges backed by these objects should |
| 5842 | * either have wired pages or "holes" that are not supposed to |
| 5843 | * be accessed at all until they get explicitly populated. |
| 5844 | * We should never have to resolve a fault on a mapping backed |
| 5845 | * by one of these VM objects and providing a zero-filled page |
| 5846 | * would be wrong here, so let's fail the fault and let the |
| 5847 | * caller crash or recover. |
| 5848 | */ |
| 5849 | vm_object_unlock(object); |
| 5850 | kr = KERN_MEMORY_ERROR; |
| 5851 | goto done; |
| 5852 | } |
| 5853 | |
| 5854 | resilient_media_ref_transfer = false; |
| 5855 | if (resilient_media_retry) { |
| 5856 | /* |
| 5857 | * We could get here if we failed to get a free page |
| 5858 | * to zero-fill and had to take the slow path again. |
| 5859 | * Reset our "recovery-from-failed-media" state. |
| 5860 | */ |
| 5861 | assert(resilient_media_object != VM_OBJECT_NULL); |
| 5862 | assert(resilient_media_offset != (vm_object_offset_t)-1); |
| 5863 | /* release our extra reference on failed object */ |
| 5864 | // printf("FBDP %s:%d resilient_media_object %p deallocate\n", __FUNCTION__, __LINE__, resilient_media_object); |
| 5865 | if (object == resilient_media_object) { |
| 5866 | /* |
| 5867 | * We're holding "object"'s lock, so we can't release |
| 5868 | * our extra reference at this point. |
| 5869 | * We need an extra reference on "object" anyway |
| 5870 | * (see below), so let's just transfer this reference. |
| 5871 | */ |
| 5872 | resilient_media_ref_transfer = true; |
| 5873 | } else { |
| 5874 | vm_object_deallocate(object: resilient_media_object); |
| 5875 | } |
| 5876 | resilient_media_object = VM_OBJECT_NULL; |
| 5877 | resilient_media_offset = (vm_object_offset_t)-1; |
| 5878 | resilient_media_retry = false; |
| 5879 | vm_fault_resilient_media_abort2++; |
| 5880 | } |
| 5881 | |
| 5882 | /* |
| 5883 | * Make a reference to this object to |
| 5884 | * prevent its disposal while we are messing with |
| 5885 | * it. Once we have the reference, the map is free |
| 5886 | * to be diddled. Since objects reference their |
| 5887 | * shadows (and copies), they will stay around as well. |
| 5888 | */ |
| 5889 | if (resilient_media_ref_transfer) { |
| 5890 | /* we already have an extra reference on this object */ |
| 5891 | resilient_media_ref_transfer = false; |
| 5892 | } else { |
| 5893 | vm_object_reference_locked(object); |
| 5894 | } |
| 5895 | vm_object_paging_begin(object); |
| 5896 | |
| 5897 | set_thread_pagein_error(cthread, 0); |
| 5898 | error_code = 0; |
| 5899 | |
| 5900 | result_page = VM_PAGE_NULL; |
| 5901 | kr = vm_fault_page(first_object: object, first_offset: offset, fault_type, |
| 5902 | must_be_resident: (change_wiring && !wired), |
| 5903 | FALSE, /* page not looked up */ |
| 5904 | protection: &prot, result_page: &result_page, top_page: &top_page, |
| 5905 | type_of_fault: &type_of_fault, |
| 5906 | error_code: &error_code, no_zero_fill: map->no_zero_fill, |
| 5907 | fault_info: &fault_info); |
| 5908 | |
| 5909 | /* |
| 5910 | * if kr != VM_FAULT_SUCCESS, then the paging reference |
| 5911 | * has been dropped and the object unlocked... the ref_count |
| 5912 | * is still held |
| 5913 | * |
| 5914 | * if kr == VM_FAULT_SUCCESS, then the paging reference |
| 5915 | * is still held along with the ref_count on the original object |
| 5916 | * |
| 5917 | * the object is returned locked with a paging reference |
| 5918 | * |
| 5919 | * if top_page != NULL, then it's BUSY and the |
| 5920 | * object it belongs to has a paging reference |
| 5921 | * but is returned unlocked |
| 5922 | */ |
| 5923 | if (kr != VM_FAULT_SUCCESS && |
| 5924 | kr != VM_FAULT_SUCCESS_NO_VM_PAGE) { |
| 5925 | if (kr == VM_FAULT_MEMORY_ERROR && |
| 5926 | fault_info.resilient_media) { |
| 5927 | assertf(object->internal, "object %p" , object); |
| 5928 | /* |
| 5929 | * This fault failed but the mapping was |
| 5930 | * "media resilient", so we'll retry the fault in |
| 5931 | * recovery mode to get a zero-filled page in the |
| 5932 | * top object. |
| 5933 | * Keep the reference on the failing object so |
| 5934 | * that we can check that the mapping is still |
| 5935 | * pointing to it when we retry the fault. |
| 5936 | */ |
| 5937 | // printf("RESILIENT_MEDIA %s:%d: object %p offset 0x%llx recover from media error 0x%x kr 0x%x top_page %p result_page %p\n", __FUNCTION__, __LINE__, object, offset, error_code, kr, top_page, result_page); |
| 5938 | assert(!resilient_media_retry); /* no double retry */ |
| 5939 | assert(resilient_media_object == VM_OBJECT_NULL); |
| 5940 | assert(resilient_media_offset == (vm_object_offset_t)-1); |
| 5941 | resilient_media_retry = true; |
| 5942 | resilient_media_object = object; |
| 5943 | resilient_media_offset = offset; |
| 5944 | // printf("FBDP %s:%d resilient_media_object %p offset 0x%llx kept reference\n", __FUNCTION__, __LINE__, resilient_media_object, resilient_mmedia_offset); |
| 5945 | vm_fault_resilient_media_initiate++; |
| 5946 | goto RetryFault; |
| 5947 | } else { |
| 5948 | /* |
| 5949 | * we didn't succeed, lose the object reference |
| 5950 | * immediately. |
| 5951 | */ |
| 5952 | vm_object_deallocate(object); |
| 5953 | object = VM_OBJECT_NULL; /* no longer valid */ |
| 5954 | } |
| 5955 | |
| 5956 | /* |
| 5957 | * See why we failed, and take corrective action. |
| 5958 | */ |
| 5959 | switch (kr) { |
| 5960 | case VM_FAULT_MEMORY_SHORTAGE: |
| 5961 | if (vm_page_wait(interruptible: (change_wiring) ? |
| 5962 | THREAD_UNINT : |
| 5963 | THREAD_ABORTSAFE)) { |
| 5964 | goto RetryFault; |
| 5965 | } |
| 5966 | ktriage_record(thread_id: thread_tid(thread: current_thread()), KDBG_TRIAGE_EVENTID(KDBG_TRIAGE_SUBSYS_VM, KDBG_TRIAGE_RESERVED, KDBG_TRIAGE_VM_FAULT_MEMORY_SHORTAGE), arg: 0 /* arg */); |
| 5967 | OS_FALLTHROUGH; |
| 5968 | case VM_FAULT_INTERRUPTED: |
| 5969 | ktriage_record(thread_id: thread_tid(thread: current_thread()), KDBG_TRIAGE_EVENTID(KDBG_TRIAGE_SUBSYS_VM, KDBG_TRIAGE_RESERVED, KDBG_TRIAGE_VM_FAULT_INTERRUPTED), arg: 0 /* arg */); |
| 5970 | kr = KERN_ABORTED; |
| 5971 | goto done; |
| 5972 | case VM_FAULT_RETRY: |
| 5973 | goto RetryFault; |
| 5974 | case VM_FAULT_MEMORY_ERROR: |
| 5975 | if (error_code) { |
| 5976 | kr = error_code; |
| 5977 | } else { |
| 5978 | kr = KERN_MEMORY_ERROR; |
| 5979 | } |
| 5980 | goto done; |
| 5981 | default: |
| 5982 | panic("vm_fault: unexpected error 0x%x from " |
| 5983 | "vm_fault_page()\n" , kr); |
| 5984 | } |
| 5985 | } |
| 5986 | m = result_page; |
| 5987 | m_object = NULL; |
| 5988 | |
| 5989 | if (m != VM_PAGE_NULL) { |
| 5990 | m_object = VM_PAGE_OBJECT(m); |
| 5991 | assert((change_wiring && !wired) ? |
| 5992 | (top_page == VM_PAGE_NULL) : |
| 5993 | ((top_page == VM_PAGE_NULL) == (m_object == object))); |
| 5994 | } |
| 5995 | |
| 5996 | /* |
| 5997 | * What to do with the resulting page from vm_fault_page |
| 5998 | * if it doesn't get entered into the physical map: |
| 5999 | */ |
| 6000 | #define RELEASE_PAGE(m) \ |
| 6001 | MACRO_BEGIN \ |
| 6002 | PAGE_WAKEUP_DONE(m); \ |
| 6003 | if ( !VM_PAGE_PAGEABLE(m)) { \ |
| 6004 | vm_page_lockspin_queues(); \ |
| 6005 | if ( !VM_PAGE_PAGEABLE(m)) \ |
| 6006 | vm_page_activate(m); \ |
| 6007 | vm_page_unlock_queues(); \ |
| 6008 | } \ |
| 6009 | MACRO_END |
| 6010 | |
| 6011 | |
| 6012 | object_locks_dropped = FALSE; |
| 6013 | /* |
| 6014 | * We must verify that the maps have not changed |
| 6015 | * since our last lookup. vm_map_verify() needs the |
| 6016 | * map lock (shared) but we are holding object locks. |
| 6017 | * So we do a try_lock() first and, if that fails, we |
| 6018 | * drop the object locks and go in for the map lock again. |
| 6019 | */ |
| 6020 | if (m != VM_PAGE_NULL) { |
| 6021 | old_copy_object = m_object->vo_copy; |
| 6022 | old_copy_version = m_object->vo_copy_version; |
| 6023 | } else { |
| 6024 | old_copy_object = VM_OBJECT_NULL; |
| 6025 | old_copy_version = 0; |
| 6026 | } |
| 6027 | if (!vm_map_try_lock_read(map: original_map)) { |
| 6028 | if (m != VM_PAGE_NULL) { |
| 6029 | vm_object_unlock(m_object); |
| 6030 | } else { |
| 6031 | vm_object_unlock(object); |
| 6032 | } |
| 6033 | |
| 6034 | object_locks_dropped = TRUE; |
| 6035 | |
| 6036 | vm_map_lock_read(original_map); |
| 6037 | } |
| 6038 | |
| 6039 | if ((map != original_map) || !vm_map_verify(map, version: &version)) { |
| 6040 | if (object_locks_dropped == FALSE) { |
| 6041 | if (m != VM_PAGE_NULL) { |
| 6042 | vm_object_unlock(m_object); |
| 6043 | } else { |
| 6044 | vm_object_unlock(object); |
| 6045 | } |
| 6046 | |
| 6047 | object_locks_dropped = TRUE; |
| 6048 | } |
| 6049 | |
| 6050 | /* |
| 6051 | * no object locks are held at this point |
| 6052 | */ |
| 6053 | vm_object_t retry_object; |
| 6054 | vm_object_offset_t retry_offset; |
| 6055 | vm_prot_t retry_prot; |
| 6056 | |
| 6057 | /* |
| 6058 | * To avoid trying to write_lock the map while another |
| 6059 | * thread has it read_locked (in vm_map_pageable), we |
| 6060 | * do not try for write permission. If the page is |
| 6061 | * still writable, we will get write permission. If it |
| 6062 | * is not, or has been marked needs_copy, we enter the |
| 6063 | * mapping without write permission, and will merely |
| 6064 | * take another fault. |
| 6065 | */ |
| 6066 | map = original_map; |
| 6067 | |
| 6068 | kr = vm_map_lookup_and_lock_object(var_map: &map, vaddr, |
| 6069 | fault_type: fault_type & ~VM_PROT_WRITE, |
| 6070 | OBJECT_LOCK_EXCLUSIVE, out_version: &version, |
| 6071 | object: &retry_object, offset: &retry_offset, out_prot: &retry_prot, |
| 6072 | wired: &wired, |
| 6073 | fault_info: &fault_info, |
| 6074 | real_map: &real_map, |
| 6075 | NULL); |
| 6076 | pmap = real_map->pmap; |
| 6077 | |
| 6078 | if (kr != KERN_SUCCESS) { |
| 6079 | vm_map_unlock_read(map); |
| 6080 | |
| 6081 | if (m != VM_PAGE_NULL) { |
| 6082 | assert(VM_PAGE_OBJECT(m) == m_object); |
| 6083 | |
| 6084 | /* |
| 6085 | * retake the lock so that |
| 6086 | * we can drop the paging reference |
| 6087 | * in vm_fault_cleanup and do the |
| 6088 | * PAGE_WAKEUP_DONE in RELEASE_PAGE |
| 6089 | */ |
| 6090 | vm_object_lock(m_object); |
| 6091 | |
| 6092 | RELEASE_PAGE(m); |
| 6093 | |
| 6094 | vm_fault_cleanup(object: m_object, top_page); |
| 6095 | } else { |
| 6096 | /* |
| 6097 | * retake the lock so that |
| 6098 | * we can drop the paging reference |
| 6099 | * in vm_fault_cleanup |
| 6100 | */ |
| 6101 | vm_object_lock(object); |
| 6102 | |
| 6103 | vm_fault_cleanup(object, top_page); |
| 6104 | } |
| 6105 | vm_object_deallocate(object); |
| 6106 | |
| 6107 | if (kr == KERN_INVALID_ADDRESS) { |
| 6108 | ktriage_record(thread_id: thread_tid(thread: current_thread()), KDBG_TRIAGE_EVENTID(KDBG_TRIAGE_SUBSYS_VM, KDBG_TRIAGE_RESERVED, KDBG_TRIAGE_VM_ADDRESS_NOT_FOUND), arg: 0 /* arg */); |
| 6109 | } |
| 6110 | goto done; |
| 6111 | } |
| 6112 | vm_object_unlock(retry_object); |
| 6113 | |
| 6114 | if ((retry_object != object) || (retry_offset != offset)) { |
| 6115 | vm_map_unlock_read(map); |
| 6116 | if (real_map != map) { |
| 6117 | vm_map_unlock(real_map); |
| 6118 | } |
| 6119 | |
| 6120 | if (m != VM_PAGE_NULL) { |
| 6121 | assert(VM_PAGE_OBJECT(m) == m_object); |
| 6122 | |
| 6123 | /* |
| 6124 | * retake the lock so that |
| 6125 | * we can drop the paging reference |
| 6126 | * in vm_fault_cleanup and do the |
| 6127 | * PAGE_WAKEUP_DONE in RELEASE_PAGE |
| 6128 | */ |
| 6129 | vm_object_lock(m_object); |
| 6130 | |
| 6131 | RELEASE_PAGE(m); |
| 6132 | |
| 6133 | vm_fault_cleanup(object: m_object, top_page); |
| 6134 | } else { |
| 6135 | /* |
| 6136 | * retake the lock so that |
| 6137 | * we can drop the paging reference |
| 6138 | * in vm_fault_cleanup |
| 6139 | */ |
| 6140 | vm_object_lock(object); |
| 6141 | |
| 6142 | vm_fault_cleanup(object, top_page); |
| 6143 | } |
| 6144 | vm_object_deallocate(object); |
| 6145 | |
| 6146 | goto RetryFault; |
| 6147 | } |
| 6148 | /* |
| 6149 | * Check whether the protection has changed or the object |
| 6150 | * has been copied while we left the map unlocked. |
| 6151 | */ |
| 6152 | if (pmap_has_prot_policy(pmap, translated_allow_execute: fault_info.pmap_options & PMAP_OPTIONS_TRANSLATED_ALLOW_EXECUTE, prot: retry_prot)) { |
| 6153 | /* If the pmap layer cares, pass the full set. */ |
| 6154 | prot = retry_prot; |
| 6155 | } else { |
| 6156 | prot &= retry_prot; |
| 6157 | } |
| 6158 | } |
| 6159 | |
| 6160 | if (object_locks_dropped == TRUE) { |
| 6161 | if (m != VM_PAGE_NULL) { |
| 6162 | assertf(VM_PAGE_OBJECT(m) == m_object, "m=%p m_object=%p" , m, m_object); |
| 6163 | assert(VM_PAGE_OBJECT(m) != VM_OBJECT_NULL); |
| 6164 | vm_object_lock(m_object); |
| 6165 | } else { |
| 6166 | vm_object_lock(object); |
| 6167 | } |
| 6168 | |
| 6169 | object_locks_dropped = FALSE; |
| 6170 | } |
| 6171 | |
| 6172 | if ((prot & VM_PROT_WRITE) && |
| 6173 | m != VM_PAGE_NULL && |
| 6174 | (m_object->vo_copy != old_copy_object || |
| 6175 | m_object->vo_copy_version != old_copy_version)) { |
| 6176 | /* |
| 6177 | * The copy object changed while the top-level object |
| 6178 | * was unlocked, so take away write permission. |
| 6179 | */ |
| 6180 | if (pmap_has_prot_policy(pmap, translated_allow_execute: fault_info.pmap_options & PMAP_OPTIONS_TRANSLATED_ALLOW_EXECUTE, prot)) { |
| 6181 | /* |
| 6182 | * This pmap enforces extra constraints for this set |
| 6183 | * of protections, so we can't change the protections. |
| 6184 | * This mapping should have been setup to avoid |
| 6185 | * copy-on-write since that requires removing write |
| 6186 | * access. |
| 6187 | */ |
| 6188 | panic("%s: pmap %p vaddr 0x%llx prot 0x%x options 0x%x m%p obj %p copyobj %p" , |
| 6189 | __FUNCTION__, pmap, (uint64_t)vaddr, prot, |
| 6190 | fault_info.pmap_options, |
| 6191 | m, m_object, m_object->vo_copy); |
| 6192 | } |
| 6193 | prot &= ~VM_PROT_WRITE; |
| 6194 | } |
| 6195 | |
| 6196 | if (!need_copy && |
| 6197 | !fault_info.no_copy_on_read && |
| 6198 | m != VM_PAGE_NULL && |
| 6199 | VM_PAGE_OBJECT(m) != object && |
| 6200 | !VM_PAGE_OBJECT(m)->pager_trusted && |
| 6201 | vm_protect_privileged_from_untrusted && |
| 6202 | !VM_PAGE_OBJECT(m)->code_signed && |
| 6203 | current_proc_is_privileged()) { |
| 6204 | /* |
| 6205 | * We found the page we want in an "untrusted" VM object |
| 6206 | * down the shadow chain. Since the target is "privileged" |
| 6207 | * we want to perform a copy-on-read of that page, so that the |
| 6208 | * mapped object gets a stable copy and does not have to |
| 6209 | * rely on the "untrusted" object to provide the same |
| 6210 | * contents if the page gets reclaimed and has to be paged |
| 6211 | * in again later on. |
| 6212 | * |
| 6213 | * Special case: if the mapping is executable and the untrusted |
| 6214 | * object is code-signed and the process is "cs_enforced", we |
| 6215 | * do not copy-on-read because that would break code-signing |
| 6216 | * enforcement expectations (an executable page must belong |
| 6217 | * to a code-signed object) and we can rely on code-signing |
| 6218 | * to re-validate the page if it gets evicted and paged back in. |
| 6219 | */ |
| 6220 | // printf("COPY-ON-READ %s:%d map %p vaddr 0x%llx obj %p offset 0x%llx found page %p (obj %p offset 0x%llx) UNTRUSTED -> need copy-on-read\n", __FUNCTION__, __LINE__, map, (uint64_t)vaddr, object, offset, m, VM_PAGE_OBJECT(m), m->vmp_offset); |
| 6221 | vm_copied_on_read++; |
| 6222 | need_copy_on_read = TRUE; |
| 6223 | need_copy = TRUE; |
| 6224 | } else { |
| 6225 | need_copy_on_read = FALSE; |
| 6226 | } |
| 6227 | |
| 6228 | /* |
| 6229 | * If we want to wire down this page, but no longer have |
| 6230 | * adequate permissions, we must start all over. |
| 6231 | * If we decided to copy-on-read, we must also start all over. |
| 6232 | */ |
| 6233 | if ((wired && (fault_type != (prot | VM_PROT_WRITE))) || |
| 6234 | need_copy_on_read) { |
| 6235 | vm_map_unlock_read(map); |
| 6236 | if (real_map != map) { |
| 6237 | vm_map_unlock(real_map); |
| 6238 | } |
| 6239 | |
| 6240 | if (m != VM_PAGE_NULL) { |
| 6241 | assert(VM_PAGE_OBJECT(m) == m_object); |
| 6242 | |
| 6243 | RELEASE_PAGE(m); |
| 6244 | |
| 6245 | vm_fault_cleanup(object: m_object, top_page); |
| 6246 | } else { |
| 6247 | vm_fault_cleanup(object, top_page); |
| 6248 | } |
| 6249 | |
| 6250 | vm_object_deallocate(object); |
| 6251 | |
| 6252 | goto RetryFault; |
| 6253 | } |
| 6254 | if (m != VM_PAGE_NULL) { |
| 6255 | /* |
| 6256 | * Put this page into the physical map. |
| 6257 | * We had to do the unlock above because pmap_enter |
| 6258 | * may cause other faults. The page may be on |
| 6259 | * the pageout queues. If the pageout daemon comes |
| 6260 | * across the page, it will remove it from the queues. |
| 6261 | */ |
| 6262 | if (fault_page_size < PAGE_SIZE) { |
| 6263 | DEBUG4K_FAULT("map %p original %p pmap %p va 0x%llx pa 0x%llx(0x%llx+0x%llx) prot 0x%x caller_prot 0x%x\n" , map, original_map, pmap, (uint64_t)vaddr, (uint64_t)((((pmap_paddr_t)VM_PAGE_GET_PHYS_PAGE(m)) << PAGE_SHIFT) + fault_phys_offset), (uint64_t)(((pmap_paddr_t)VM_PAGE_GET_PHYS_PAGE(m)) << PAGE_SHIFT), (uint64_t)fault_phys_offset, prot, caller_prot); |
| 6264 | assertf((!(fault_phys_offset & FOURK_PAGE_MASK) && |
| 6265 | fault_phys_offset < PAGE_SIZE), |
| 6266 | "0x%llx\n" , (uint64_t)fault_phys_offset); |
| 6267 | } else { |
| 6268 | assertf(fault_phys_offset == 0, |
| 6269 | "0x%llx\n" , (uint64_t)fault_phys_offset); |
| 6270 | } |
| 6271 | assertf(VM_PAGE_OBJECT(m) == m_object, "m=%p m_object=%p" , m, m_object); |
| 6272 | assert(VM_PAGE_OBJECT(m) != VM_OBJECT_NULL); |
| 6273 | if (caller_pmap) { |
| 6274 | kr = vm_fault_enter(m, |
| 6275 | pmap: caller_pmap, |
| 6276 | vaddr: caller_pmap_addr, |
| 6277 | fault_page_size, |
| 6278 | fault_phys_offset, |
| 6279 | prot, |
| 6280 | caller_prot, |
| 6281 | wired, |
| 6282 | change_wiring, |
| 6283 | wire_tag, |
| 6284 | fault_info: &fault_info, |
| 6285 | NULL, |
| 6286 | type_of_fault: &type_of_fault, |
| 6287 | object_lock_type: &object_lock_type); |
| 6288 | } else { |
| 6289 | kr = vm_fault_enter(m, |
| 6290 | pmap, |
| 6291 | vaddr, |
| 6292 | fault_page_size, |
| 6293 | fault_phys_offset, |
| 6294 | prot, |
| 6295 | caller_prot, |
| 6296 | wired, |
| 6297 | change_wiring, |
| 6298 | wire_tag, |
| 6299 | fault_info: &fault_info, |
| 6300 | NULL, |
| 6301 | type_of_fault: &type_of_fault, |
| 6302 | object_lock_type: &object_lock_type); |
| 6303 | } |
| 6304 | assert(VM_PAGE_OBJECT(m) == m_object); |
| 6305 | |
| 6306 | { |
| 6307 | int event_code = 0; |
| 6308 | |
| 6309 | if (m_object->internal) { |
| 6310 | event_code = (MACHDBG_CODE(DBG_MACH_WORKINGSET, VM_REAL_FAULT_ADDR_INTERNAL)); |
| 6311 | } else if (m_object->object_is_shared_cache) { |
| 6312 | event_code = (MACHDBG_CODE(DBG_MACH_WORKINGSET, VM_REAL_FAULT_ADDR_SHAREDCACHE)); |
| 6313 | } else { |
| 6314 | event_code = (MACHDBG_CODE(DBG_MACH_WORKINGSET, VM_REAL_FAULT_ADDR_EXTERNAL)); |
| 6315 | } |
| 6316 | |
| 6317 | KDBG_RELEASE(event_code | DBG_FUNC_NONE, trace_real_vaddr, (fault_info.user_tag << 16) | (caller_prot << 8) | vm_fault_type_for_tracing(need_copy_on_read, type_of_fault), m->vmp_offset, get_current_unique_pid()); |
| 6318 | KDBG_FILTERED(MACHDBG_CODE(DBG_MACH_WORKINGSET, VM_REAL_FAULT_SLOW), get_current_unique_pid()); |
| 6319 | |
| 6320 | DTRACE_VM6(real_fault, vm_map_offset_t, real_vaddr, vm_map_offset_t, m->vmp_offset, int, event_code, int, caller_prot, int, type_of_fault, int, fault_info.user_tag); |
| 6321 | } |
| 6322 | if (kr != KERN_SUCCESS) { |
| 6323 | /* abort this page fault */ |
| 6324 | vm_map_unlock_read(map); |
| 6325 | if (real_map != map) { |
| 6326 | vm_map_unlock(real_map); |
| 6327 | } |
| 6328 | PAGE_WAKEUP_DONE(m); |
| 6329 | vm_fault_cleanup(object: m_object, top_page); |
| 6330 | vm_object_deallocate(object); |
| 6331 | goto done; |
| 6332 | } |
| 6333 | if (physpage_p != NULL) { |
| 6334 | /* for vm_map_wire_and_extract() */ |
| 6335 | *physpage_p = VM_PAGE_GET_PHYS_PAGE(m); |
| 6336 | if (prot & VM_PROT_WRITE) { |
| 6337 | vm_object_lock_assert_exclusive(m_object); |
| 6338 | m->vmp_dirty = TRUE; |
| 6339 | } |
| 6340 | } |
| 6341 | } else { |
| 6342 | vm_map_entry_t entry; |
| 6343 | vm_map_offset_t laddr; |
| 6344 | vm_map_offset_t ldelta, hdelta; |
| 6345 | |
| 6346 | /* |
| 6347 | * do a pmap block mapping from the physical address |
| 6348 | * in the object |
| 6349 | */ |
| 6350 | |
| 6351 | if (real_map != map) { |
| 6352 | vm_map_unlock(real_map); |
| 6353 | } |
| 6354 | |
| 6355 | if (original_map != map) { |
| 6356 | vm_map_unlock_read(map); |
| 6357 | vm_map_lock_read(original_map); |
| 6358 | map = original_map; |
| 6359 | } |
| 6360 | real_map = map; |
| 6361 | |
| 6362 | laddr = vaddr; |
| 6363 | hdelta = ldelta = (vm_map_offset_t)0xFFFFFFFFFFFFF000ULL; |
| 6364 | |
| 6365 | while (vm_map_lookup_entry(map, address: laddr, entry: &entry)) { |
| 6366 | if (ldelta > (laddr - entry->vme_start)) { |
| 6367 | ldelta = laddr - entry->vme_start; |
| 6368 | } |
| 6369 | if (hdelta > (entry->vme_end - laddr)) { |
| 6370 | hdelta = entry->vme_end - laddr; |
| 6371 | } |
| 6372 | if (entry->is_sub_map) { |
| 6373 | laddr = ((laddr - entry->vme_start) |
| 6374 | + VME_OFFSET(entry)); |
| 6375 | vm_map_lock_read(VME_SUBMAP(entry)); |
| 6376 | |
| 6377 | if (map != real_map) { |
| 6378 | vm_map_unlock_read(map); |
| 6379 | } |
| 6380 | if (entry->use_pmap) { |
| 6381 | vm_map_unlock_read(real_map); |
| 6382 | real_map = VME_SUBMAP(entry); |
| 6383 | } |
| 6384 | map = VME_SUBMAP(entry); |
| 6385 | } else { |
| 6386 | break; |
| 6387 | } |
| 6388 | } |
| 6389 | |
| 6390 | if (vm_map_lookup_entry(map, address: laddr, entry: &entry) && |
| 6391 | (!entry->is_sub_map) && |
| 6392 | (object != VM_OBJECT_NULL) && |
| 6393 | (VME_OBJECT(entry) == object)) { |
| 6394 | uint16_t superpage; |
| 6395 | |
| 6396 | if (!object->pager_created && |
| 6397 | object->phys_contiguous && |
| 6398 | VME_OFFSET(entry) == 0 && |
| 6399 | (entry->vme_end - entry->vme_start == object->vo_size) && |
| 6400 | VM_MAP_PAGE_ALIGNED(entry->vme_start, (object->vo_size - 1))) { |
| 6401 | superpage = VM_MEM_SUPERPAGE; |
| 6402 | } else { |
| 6403 | superpage = 0; |
| 6404 | } |
| 6405 | |
| 6406 | if (superpage && physpage_p) { |
| 6407 | /* for vm_map_wire_and_extract() */ |
| 6408 | *physpage_p = (ppnum_t) |
| 6409 | ((((vm_map_offset_t) |
| 6410 | object->vo_shadow_offset) |
| 6411 | + VME_OFFSET(entry) |
| 6412 | + (laddr - entry->vme_start)) |
| 6413 | >> PAGE_SHIFT); |
| 6414 | } |
| 6415 | |
| 6416 | if (caller_pmap) { |
| 6417 | /* |
| 6418 | * Set up a block mapped area |
| 6419 | */ |
| 6420 | assert((uint32_t)((ldelta + hdelta) >> fault_page_shift) == ((ldelta + hdelta) >> fault_page_shift)); |
| 6421 | kr = pmap_map_block_addr(pmap: caller_pmap, |
| 6422 | va: (addr64_t)(caller_pmap_addr - ldelta), |
| 6423 | pa: (pmap_paddr_t)(((vm_map_offset_t) (object->vo_shadow_offset)) + |
| 6424 | VME_OFFSET(entry) + (laddr - entry->vme_start) - ldelta), |
| 6425 | size: (uint32_t)((ldelta + hdelta) >> fault_page_shift), prot, |
| 6426 | attr: (VM_WIMG_MASK & (int)object->wimg_bits) | superpage, flags: 0); |
| 6427 | |
| 6428 | if (kr != KERN_SUCCESS) { |
| 6429 | goto cleanup; |
| 6430 | } |
| 6431 | } else { |
| 6432 | /* |
| 6433 | * Set up a block mapped area |
| 6434 | */ |
| 6435 | assert((uint32_t)((ldelta + hdelta) >> fault_page_shift) == ((ldelta + hdelta) >> fault_page_shift)); |
| 6436 | kr = pmap_map_block_addr(pmap: real_map->pmap, |
| 6437 | va: (addr64_t)(vaddr - ldelta), |
| 6438 | pa: (pmap_paddr_t)(((vm_map_offset_t)(object->vo_shadow_offset)) + |
| 6439 | VME_OFFSET(entry) + (laddr - entry->vme_start) - ldelta), |
| 6440 | size: (uint32_t)((ldelta + hdelta) >> fault_page_shift), prot, |
| 6441 | attr: (VM_WIMG_MASK & (int)object->wimg_bits) | superpage, flags: 0); |
| 6442 | |
| 6443 | if (kr != KERN_SUCCESS) { |
| 6444 | goto cleanup; |
| 6445 | } |
| 6446 | } |
| 6447 | } |
| 6448 | } |
| 6449 | |
| 6450 | /* |
| 6451 | * Success |
| 6452 | */ |
| 6453 | kr = KERN_SUCCESS; |
| 6454 | |
| 6455 | /* |
| 6456 | * TODO: could most of the done cases just use cleanup? |
| 6457 | */ |
| 6458 | cleanup: |
| 6459 | /* |
| 6460 | * Unlock everything, and return |
| 6461 | */ |
| 6462 | vm_map_unlock_read(map); |
| 6463 | if (real_map != map) { |
| 6464 | vm_map_unlock(real_map); |
| 6465 | } |
| 6466 | |
| 6467 | if (m != VM_PAGE_NULL) { |
| 6468 | if (__improbable(rtfault && |
| 6469 | !m->vmp_realtime && |
| 6470 | vm_pageout_protect_realtime)) { |
| 6471 | vm_page_lock_queues(); |
| 6472 | if (!m->vmp_realtime) { |
| 6473 | m->vmp_realtime = true; |
| 6474 | vm_page_realtime_count++; |
| 6475 | } |
| 6476 | vm_page_unlock_queues(); |
| 6477 | } |
| 6478 | assert(VM_PAGE_OBJECT(m) == m_object); |
| 6479 | |
| 6480 | if (!m_object->internal && (fault_type & VM_PROT_WRITE)) { |
| 6481 | vm_object_paging_begin(m_object); |
| 6482 | |
| 6483 | assert(written_on_object == VM_OBJECT_NULL); |
| 6484 | written_on_object = m_object; |
| 6485 | written_on_pager = m_object->pager; |
| 6486 | written_on_offset = m_object->paging_offset + m->vmp_offset; |
| 6487 | } |
| 6488 | PAGE_WAKEUP_DONE(m); |
| 6489 | |
| 6490 | vm_fault_cleanup(object: m_object, top_page); |
| 6491 | } else { |
| 6492 | vm_fault_cleanup(object, top_page); |
| 6493 | } |
| 6494 | |
| 6495 | vm_object_deallocate(object); |
| 6496 | |
| 6497 | #undef RELEASE_PAGE |
| 6498 | |
| 6499 | done: |
| 6500 | thread_interrupt_level(interruptible: interruptible_state); |
| 6501 | |
| 6502 | if (resilient_media_object != VM_OBJECT_NULL) { |
| 6503 | assert(resilient_media_retry); |
| 6504 | assert(resilient_media_offset != (vm_object_offset_t)-1); |
| 6505 | /* release extra reference on failed object */ |
| 6506 | // printf("FBDP %s:%d resilient_media_object %p deallocate\n", __FUNCTION__, __LINE__, resilient_media_object); |
| 6507 | vm_object_deallocate(object: resilient_media_object); |
| 6508 | resilient_media_object = VM_OBJECT_NULL; |
| 6509 | resilient_media_offset = (vm_object_offset_t)-1; |
| 6510 | resilient_media_retry = false; |
| 6511 | vm_fault_resilient_media_release++; |
| 6512 | } |
| 6513 | assert(!resilient_media_retry); |
| 6514 | |
| 6515 | /* |
| 6516 | * Only I/O throttle on faults which cause a pagein/swapin. |
| 6517 | */ |
| 6518 | if ((type_of_fault == DBG_PAGEIND_FAULT) || (type_of_fault == DBG_PAGEINV_FAULT) || (type_of_fault == DBG_COMPRESSOR_SWAPIN_FAULT)) { |
| 6519 | throttle_lowpri_io(1); |
| 6520 | } else { |
| 6521 | if (kr == KERN_SUCCESS && type_of_fault != DBG_CACHE_HIT_FAULT && type_of_fault != DBG_GUARD_FAULT) { |
| 6522 | if ((throttle_delay = vm_page_throttled(TRUE))) { |
| 6523 | if (vm_debug_events) { |
| 6524 | if (type_of_fault == DBG_COMPRESSOR_FAULT) { |
| 6525 | VM_DEBUG_EVENT(vmf_compressordelay, VMF_COMPRESSORDELAY, DBG_FUNC_NONE, throttle_delay, 0, 0, 0); |
| 6526 | } else if (type_of_fault == DBG_COW_FAULT) { |
| 6527 | VM_DEBUG_EVENT(vmf_cowdelay, VMF_COWDELAY, DBG_FUNC_NONE, throttle_delay, 0, 0, 0); |
| 6528 | } else { |
| 6529 | VM_DEBUG_EVENT(vmf_zfdelay, VMF_ZFDELAY, DBG_FUNC_NONE, throttle_delay, 0, 0, 0); |
| 6530 | } |
| 6531 | } |
| 6532 | __VM_FAULT_THROTTLE_FOR_PAGEOUT_SCAN__(throttle_delay); |
| 6533 | } |
| 6534 | } |
| 6535 | } |
| 6536 | |
| 6537 | if (written_on_object) { |
| 6538 | vnode_pager_dirtied(written_on_pager, written_on_offset, written_on_offset + PAGE_SIZE_64); |
| 6539 | |
| 6540 | vm_object_lock(written_on_object); |
| 6541 | vm_object_paging_end(written_on_object); |
| 6542 | vm_object_unlock(written_on_object); |
| 6543 | |
| 6544 | written_on_object = VM_OBJECT_NULL; |
| 6545 | } |
| 6546 | |
| 6547 | if (rtfault) { |
| 6548 | vm_record_rtfault(cthread, fstart, trace_vaddr, type_of_fault); |
| 6549 | } |
| 6550 | |
| 6551 | KDBG_RELEASE( |
| 6552 | (MACHDBG_CODE(DBG_MACH_VM, 2)) | DBG_FUNC_END, |
| 6553 | ((uint64_t)trace_vaddr >> 32), |
| 6554 | trace_vaddr, |
| 6555 | kr, |
| 6556 | vm_fault_type_for_tracing(need_copy_on_read, type_of_fault)); |
| 6557 | |
| 6558 | if (fault_page_size < PAGE_SIZE && kr != KERN_SUCCESS) { |
| 6559 | DEBUG4K_FAULT("map %p original %p vaddr 0x%llx -> 0x%x\n" , map, original_map, (uint64_t)trace_real_vaddr, kr); |
| 6560 | } |
| 6561 | |
| 6562 | return kr; |
| 6563 | } |
| 6564 | |
| 6565 | /* |
| 6566 | * vm_fault_wire: |
| 6567 | * |
| 6568 | * Wire down a range of virtual addresses in a map. |
| 6569 | */ |
| 6570 | kern_return_t |
| 6571 | vm_fault_wire( |
| 6572 | vm_map_t map, |
| 6573 | vm_map_entry_t entry, |
| 6574 | vm_prot_t prot, |
| 6575 | vm_tag_t wire_tag, |
| 6576 | pmap_t pmap, |
| 6577 | vm_map_offset_t pmap_addr, |
| 6578 | ppnum_t *physpage_p) |
| 6579 | { |
| 6580 | vm_map_offset_t va; |
| 6581 | vm_map_offset_t end_addr = entry->vme_end; |
| 6582 | kern_return_t rc; |
| 6583 | vm_map_size_t effective_page_size; |
| 6584 | |
| 6585 | assert(entry->in_transition); |
| 6586 | |
| 6587 | if (!entry->is_sub_map && |
| 6588 | VME_OBJECT(entry) != VM_OBJECT_NULL && |
| 6589 | VME_OBJECT(entry)->phys_contiguous) { |
| 6590 | return KERN_SUCCESS; |
| 6591 | } |
| 6592 | |
| 6593 | /* |
| 6594 | * Inform the physical mapping system that the |
| 6595 | * range of addresses may not fault, so that |
| 6596 | * page tables and such can be locked down as well. |
| 6597 | */ |
| 6598 | |
| 6599 | pmap_pageable(pmap, pmap_addr, |
| 6600 | pmap_addr + (end_addr - entry->vme_start), FALSE); |
| 6601 | |
| 6602 | /* |
| 6603 | * We simulate a fault to get the page and enter it |
| 6604 | * in the physical map. |
| 6605 | */ |
| 6606 | |
| 6607 | effective_page_size = MIN(VM_MAP_PAGE_SIZE(map), PAGE_SIZE); |
| 6608 | for (va = entry->vme_start; |
| 6609 | va < end_addr; |
| 6610 | va += effective_page_size) { |
| 6611 | rc = vm_fault_wire_fast(map, va, prot, wire_tag, entry, pmap, |
| 6612 | pmap_addr: pmap_addr + (va - entry->vme_start), |
| 6613 | physpage_p); |
| 6614 | if (rc != KERN_SUCCESS) { |
| 6615 | rc = vm_fault_internal(map, vaddr: va, caller_prot: prot, TRUE, wire_tag, |
| 6616 | interruptible: ((pmap == kernel_pmap) |
| 6617 | ? THREAD_UNINT |
| 6618 | : THREAD_ABORTSAFE), |
| 6619 | caller_pmap: pmap, |
| 6620 | caller_pmap_addr: (pmap_addr + |
| 6621 | (va - entry->vme_start)), |
| 6622 | physpage_p); |
| 6623 | DTRACE_VM2(softlock, int, 1, (uint64_t *), NULL); |
| 6624 | } |
| 6625 | |
| 6626 | if (rc != KERN_SUCCESS) { |
| 6627 | struct vm_map_entry tmp_entry = *entry; |
| 6628 | |
| 6629 | /* unwire wired pages */ |
| 6630 | tmp_entry.vme_end = va; |
| 6631 | vm_fault_unwire(map, entry: &tmp_entry, FALSE, |
| 6632 | pmap, pmap_addr, end_addr: tmp_entry.vme_end); |
| 6633 | |
| 6634 | return rc; |
| 6635 | } |
| 6636 | } |
| 6637 | return KERN_SUCCESS; |
| 6638 | } |
| 6639 | |
| 6640 | /* |
| 6641 | * vm_fault_unwire: |
| 6642 | * |
| 6643 | * Unwire a range of virtual addresses in a map. |
| 6644 | */ |
| 6645 | void |
| 6646 | vm_fault_unwire( |
| 6647 | vm_map_t map, |
| 6648 | vm_map_entry_t entry, |
| 6649 | boolean_t deallocate, |
| 6650 | pmap_t pmap, |
| 6651 | vm_map_offset_t pmap_addr, |
| 6652 | vm_map_offset_t end_addr) |
| 6653 | { |
| 6654 | vm_map_offset_t va; |
| 6655 | vm_object_t object; |
| 6656 | struct vm_object_fault_info fault_info = {}; |
| 6657 | unsigned int unwired_pages; |
| 6658 | vm_map_size_t effective_page_size; |
| 6659 | |
| 6660 | object = (entry->is_sub_map) ? VM_OBJECT_NULL : VME_OBJECT(entry); |
| 6661 | |
| 6662 | /* |
| 6663 | * If it's marked phys_contiguous, then vm_fault_wire() didn't actually |
| 6664 | * do anything since such memory is wired by default. So we don't have |
| 6665 | * anything to undo here. |
| 6666 | */ |
| 6667 | |
| 6668 | if (object != VM_OBJECT_NULL && object->phys_contiguous) { |
| 6669 | return; |
| 6670 | } |
| 6671 | |
| 6672 | fault_info.interruptible = THREAD_UNINT; |
| 6673 | fault_info.behavior = entry->behavior; |
| 6674 | fault_info.user_tag = VME_ALIAS(entry); |
| 6675 | if (entry->iokit_acct || |
| 6676 | (!entry->is_sub_map && !entry->use_pmap)) { |
| 6677 | fault_info.pmap_options |= PMAP_OPTIONS_ALT_ACCT; |
| 6678 | } |
| 6679 | fault_info.lo_offset = VME_OFFSET(entry); |
| 6680 | fault_info.hi_offset = (entry->vme_end - entry->vme_start) + VME_OFFSET(entry); |
| 6681 | fault_info.no_cache = entry->no_cache; |
| 6682 | fault_info.stealth = TRUE; |
| 6683 | if (entry->vme_xnu_user_debug) { |
| 6684 | /* |
| 6685 | * Modified code-signed executable region: wired pages must |
| 6686 | * have been copied, so they should be XNU_USER_DEBUG rather |
| 6687 | * than XNU_USER_EXEC. |
| 6688 | */ |
| 6689 | fault_info.pmap_options |= PMAP_OPTIONS_XNU_USER_DEBUG; |
| 6690 | } |
| 6691 | |
| 6692 | unwired_pages = 0; |
| 6693 | |
| 6694 | /* |
| 6695 | * Since the pages are wired down, we must be able to |
| 6696 | * get their mappings from the physical map system. |
| 6697 | */ |
| 6698 | |
| 6699 | effective_page_size = MIN(VM_MAP_PAGE_SIZE(map), PAGE_SIZE); |
| 6700 | for (va = entry->vme_start; |
| 6701 | va < end_addr; |
| 6702 | va += effective_page_size) { |
| 6703 | if (object == VM_OBJECT_NULL) { |
| 6704 | if (pmap) { |
| 6705 | pmap_change_wiring(pmap, |
| 6706 | va: pmap_addr + (va - entry->vme_start), FALSE); |
| 6707 | } |
| 6708 | (void) vm_fault(map, vaddr: va, VM_PROT_NONE, |
| 6709 | TRUE, VM_KERN_MEMORY_NONE, THREAD_UNINT, caller_pmap: pmap, caller_pmap_addr: pmap_addr); |
| 6710 | } else { |
| 6711 | vm_prot_t prot; |
| 6712 | vm_page_t result_page; |
| 6713 | vm_page_t top_page; |
| 6714 | vm_object_t result_object; |
| 6715 | vm_fault_return_t result; |
| 6716 | |
| 6717 | /* cap cluster size at maximum UPL size */ |
| 6718 | upl_size_t cluster_size; |
| 6719 | if (os_sub_overflow(end_addr, va, &cluster_size)) { |
| 6720 | cluster_size = 0 - (upl_size_t)PAGE_SIZE; |
| 6721 | } |
| 6722 | fault_info.cluster_size = cluster_size; |
| 6723 | |
| 6724 | do { |
| 6725 | prot = VM_PROT_NONE; |
| 6726 | |
| 6727 | vm_object_lock(object); |
| 6728 | vm_object_paging_begin(object); |
| 6729 | result_page = VM_PAGE_NULL; |
| 6730 | result = vm_fault_page( |
| 6731 | first_object: object, |
| 6732 | first_offset: (VME_OFFSET(entry) + |
| 6733 | (va - entry->vme_start)), |
| 6734 | VM_PROT_NONE, TRUE, |
| 6735 | FALSE, /* page not looked up */ |
| 6736 | protection: &prot, result_page: &result_page, top_page: &top_page, |
| 6737 | type_of_fault: (int *)0, |
| 6738 | NULL, no_zero_fill: map->no_zero_fill, |
| 6739 | fault_info: &fault_info); |
| 6740 | } while (result == VM_FAULT_RETRY); |
| 6741 | |
| 6742 | /* |
| 6743 | * If this was a mapping to a file on a device that has been forcibly |
| 6744 | * unmounted, then we won't get a page back from vm_fault_page(). Just |
| 6745 | * move on to the next one in case the remaining pages are mapped from |
| 6746 | * different objects. During a forced unmount, the object is terminated |
| 6747 | * so the alive flag will be false if this happens. A forced unmount will |
| 6748 | * will occur when an external disk is unplugged before the user does an |
| 6749 | * eject, so we don't want to panic in that situation. |
| 6750 | */ |
| 6751 | |
| 6752 | if (result == VM_FAULT_MEMORY_ERROR) { |
| 6753 | if (!object->alive) { |
| 6754 | continue; |
| 6755 | } |
| 6756 | if (!object->internal && object->pager == NULL) { |
| 6757 | continue; |
| 6758 | } |
| 6759 | } |
| 6760 | |
| 6761 | if (result == VM_FAULT_MEMORY_ERROR && |
| 6762 | is_kernel_object(object)) { |
| 6763 | /* |
| 6764 | * This must have been allocated with |
| 6765 | * KMA_KOBJECT and KMA_VAONLY and there's |
| 6766 | * no physical page at this offset. |
| 6767 | * We're done (no page to free). |
| 6768 | */ |
| 6769 | assert(deallocate); |
| 6770 | continue; |
| 6771 | } |
| 6772 | |
| 6773 | if (result != VM_FAULT_SUCCESS) { |
| 6774 | panic("vm_fault_unwire: failure" ); |
| 6775 | } |
| 6776 | |
| 6777 | result_object = VM_PAGE_OBJECT(result_page); |
| 6778 | |
| 6779 | if (deallocate) { |
| 6780 | assert(VM_PAGE_GET_PHYS_PAGE(result_page) != |
| 6781 | vm_page_fictitious_addr); |
| 6782 | pmap_disconnect(phys: VM_PAGE_GET_PHYS_PAGE(m: result_page)); |
| 6783 | if (VM_PAGE_WIRED(result_page)) { |
| 6784 | unwired_pages++; |
| 6785 | } |
| 6786 | VM_PAGE_FREE(result_page); |
| 6787 | } else { |
| 6788 | if ((pmap) && (VM_PAGE_GET_PHYS_PAGE(m: result_page) != vm_page_guard_addr)) { |
| 6789 | pmap_change_wiring(pmap, |
| 6790 | va: pmap_addr + (va - entry->vme_start), FALSE); |
| 6791 | } |
| 6792 | |
| 6793 | |
| 6794 | if (VM_PAGE_WIRED(result_page)) { |
| 6795 | vm_page_lockspin_queues(); |
| 6796 | vm_page_unwire(page: result_page, TRUE); |
| 6797 | vm_page_unlock_queues(); |
| 6798 | unwired_pages++; |
| 6799 | } |
| 6800 | if (entry->zero_wired_pages) { |
| 6801 | pmap_zero_page(pn: VM_PAGE_GET_PHYS_PAGE(m: result_page)); |
| 6802 | entry->zero_wired_pages = FALSE; |
| 6803 | } |
| 6804 | |
| 6805 | PAGE_WAKEUP_DONE(result_page); |
| 6806 | } |
| 6807 | vm_fault_cleanup(object: result_object, top_page); |
| 6808 | } |
| 6809 | } |
| 6810 | |
| 6811 | /* |
| 6812 | * Inform the physical mapping system that the range |
| 6813 | * of addresses may fault, so that page tables and |
| 6814 | * such may be unwired themselves. |
| 6815 | */ |
| 6816 | |
| 6817 | pmap_pageable(pmap, pmap_addr, |
| 6818 | pmap_addr + (end_addr - entry->vme_start), TRUE); |
| 6819 | |
| 6820 | if (is_kernel_object(object)) { |
| 6821 | /* |
| 6822 | * Would like to make user_tag in vm_object_fault_info |
| 6823 | * vm_tag_t (unsigned short) but user_tag derives its value from |
| 6824 | * VME_ALIAS(entry) at a few places and VME_ALIAS, in turn, casts |
| 6825 | * to an _unsigned int_ which is used by non-fault_info paths throughout the |
| 6826 | * code at many places. |
| 6827 | * |
| 6828 | * So, for now, an explicit truncation to unsigned short (vm_tag_t). |
| 6829 | */ |
| 6830 | assertf((fault_info.user_tag & VME_ALIAS_MASK) == fault_info.user_tag, |
| 6831 | "VM Tag truncated from 0x%x to 0x%x\n" , fault_info.user_tag, (fault_info.user_tag & VME_ALIAS_MASK)); |
| 6832 | vm_tag_update_size(tag: (vm_tag_t) fault_info.user_tag, size: -ptoa_64(unwired_pages), NULL); |
| 6833 | } |
| 6834 | } |
| 6835 | |
| 6836 | /* |
| 6837 | * vm_fault_wire_fast: |
| 6838 | * |
| 6839 | * Handle common case of a wire down page fault at the given address. |
| 6840 | * If successful, the page is inserted into the associated physical map. |
| 6841 | * The map entry is passed in to avoid the overhead of a map lookup. |
| 6842 | * |
| 6843 | * NOTE: the given address should be truncated to the |
| 6844 | * proper page address. |
| 6845 | * |
| 6846 | * KERN_SUCCESS is returned if the page fault is handled; otherwise, |
| 6847 | * a standard error specifying why the fault is fatal is returned. |
| 6848 | * |
| 6849 | * The map in question must be referenced, and remains so. |
| 6850 | * Caller has a read lock on the map. |
| 6851 | * |
| 6852 | * This is a stripped version of vm_fault() for wiring pages. Anything |
| 6853 | * other than the common case will return KERN_FAILURE, and the caller |
| 6854 | * is expected to call vm_fault(). |
| 6855 | */ |
| 6856 | static kern_return_t |
| 6857 | vm_fault_wire_fast( |
| 6858 | __unused vm_map_t map, |
| 6859 | vm_map_offset_t va, |
| 6860 | __unused vm_prot_t caller_prot, |
| 6861 | vm_tag_t wire_tag, |
| 6862 | vm_map_entry_t entry, |
| 6863 | pmap_t pmap, |
| 6864 | vm_map_offset_t pmap_addr, |
| 6865 | ppnum_t *physpage_p) |
| 6866 | { |
| 6867 | vm_object_t object; |
| 6868 | vm_object_offset_t offset; |
| 6869 | vm_page_t m; |
| 6870 | vm_prot_t prot; |
| 6871 | thread_t thread = current_thread(); |
| 6872 | int type_of_fault; |
| 6873 | kern_return_t kr; |
| 6874 | vm_map_size_t fault_page_size; |
| 6875 | vm_map_offset_t fault_phys_offset; |
| 6876 | struct vm_object_fault_info fault_info = {}; |
| 6877 | uint8_t object_lock_type = 0; |
| 6878 | |
| 6879 | counter_inc(&vm_statistics_faults); |
| 6880 | |
| 6881 | if (thread != THREAD_NULL) { |
| 6882 | counter_inc(&get_threadtask(thread)->faults); |
| 6883 | } |
| 6884 | |
| 6885 | /* |
| 6886 | * Recovery actions |
| 6887 | */ |
| 6888 | |
| 6889 | #undef RELEASE_PAGE |
| 6890 | #define RELEASE_PAGE(m) { \ |
| 6891 | PAGE_WAKEUP_DONE(m); \ |
| 6892 | vm_page_lockspin_queues(); \ |
| 6893 | vm_page_unwire(m, TRUE); \ |
| 6894 | vm_page_unlock_queues(); \ |
| 6895 | } |
| 6896 | |
| 6897 | |
| 6898 | #undef UNLOCK_THINGS |
| 6899 | #define UNLOCK_THINGS { \ |
| 6900 | vm_object_paging_end(object); \ |
| 6901 | vm_object_unlock(object); \ |
| 6902 | } |
| 6903 | |
| 6904 | #undef UNLOCK_AND_DEALLOCATE |
| 6905 | #define UNLOCK_AND_DEALLOCATE { \ |
| 6906 | UNLOCK_THINGS; \ |
| 6907 | vm_object_deallocate(object); \ |
| 6908 | } |
| 6909 | /* |
| 6910 | * Give up and have caller do things the hard way. |
| 6911 | */ |
| 6912 | |
| 6913 | #define GIVE_UP { \ |
| 6914 | UNLOCK_AND_DEALLOCATE; \ |
| 6915 | return(KERN_FAILURE); \ |
| 6916 | } |
| 6917 | |
| 6918 | |
| 6919 | /* |
| 6920 | * If this entry is not directly to a vm_object, bail out. |
| 6921 | */ |
| 6922 | if (entry->is_sub_map) { |
| 6923 | assert(physpage_p == NULL); |
| 6924 | return KERN_FAILURE; |
| 6925 | } |
| 6926 | |
| 6927 | /* |
| 6928 | * Find the backing store object and offset into it. |
| 6929 | */ |
| 6930 | |
| 6931 | object = VME_OBJECT(entry); |
| 6932 | offset = (va - entry->vme_start) + VME_OFFSET(entry); |
| 6933 | prot = entry->protection; |
| 6934 | |
| 6935 | /* |
| 6936 | * Make a reference to this object to prevent its |
| 6937 | * disposal while we are messing with it. |
| 6938 | */ |
| 6939 | |
| 6940 | object_lock_type = OBJECT_LOCK_EXCLUSIVE; |
| 6941 | vm_object_lock(object); |
| 6942 | vm_object_reference_locked(object); |
| 6943 | vm_object_paging_begin(object); |
| 6944 | |
| 6945 | /* |
| 6946 | * INVARIANTS (through entire routine): |
| 6947 | * |
| 6948 | * 1) At all times, we must either have the object |
| 6949 | * lock or a busy page in some object to prevent |
| 6950 | * some other thread from trying to bring in |
| 6951 | * the same page. |
| 6952 | * |
| 6953 | * 2) Once we have a busy page, we must remove it from |
| 6954 | * the pageout queues, so that the pageout daemon |
| 6955 | * will not grab it away. |
| 6956 | * |
| 6957 | */ |
| 6958 | |
| 6959 | /* |
| 6960 | * Look for page in top-level object. If it's not there or |
| 6961 | * there's something going on, give up. |
| 6962 | */ |
| 6963 | m = vm_page_lookup(object, vm_object_trunc_page(offset)); |
| 6964 | if ((m == VM_PAGE_NULL) || (m->vmp_busy) || |
| 6965 | (m->vmp_unusual && (m->vmp_error || m->vmp_restart || m->vmp_absent))) { |
| 6966 | GIVE_UP; |
| 6967 | } |
| 6968 | if (m->vmp_fictitious && |
| 6969 | VM_PAGE_GET_PHYS_PAGE(m) == vm_page_guard_addr) { |
| 6970 | /* |
| 6971 | * Guard pages are fictitious pages and are never |
| 6972 | * entered into a pmap, so let's say it's been wired... |
| 6973 | */ |
| 6974 | kr = KERN_SUCCESS; |
| 6975 | goto done; |
| 6976 | } |
| 6977 | |
| 6978 | /* |
| 6979 | * Wire the page down now. All bail outs beyond this |
| 6980 | * point must unwire the page. |
| 6981 | */ |
| 6982 | |
| 6983 | vm_page_lockspin_queues(); |
| 6984 | vm_page_wire(page: m, tag: wire_tag, TRUE); |
| 6985 | vm_page_unlock_queues(); |
| 6986 | |
| 6987 | /* |
| 6988 | * Mark page busy for other threads. |
| 6989 | */ |
| 6990 | assert(!m->vmp_busy); |
| 6991 | m->vmp_busy = TRUE; |
| 6992 | assert(!m->vmp_absent); |
| 6993 | |
| 6994 | /* |
| 6995 | * Give up if the page is being written and there's a copy object |
| 6996 | */ |
| 6997 | if ((object->vo_copy != VM_OBJECT_NULL) && (prot & VM_PROT_WRITE)) { |
| 6998 | RELEASE_PAGE(m); |
| 6999 | GIVE_UP; |
| 7000 | } |
| 7001 | |
| 7002 | fault_info.user_tag = VME_ALIAS(entry); |
| 7003 | fault_info.pmap_options = 0; |
| 7004 | if (entry->iokit_acct || |
| 7005 | (!entry->is_sub_map && !entry->use_pmap)) { |
| 7006 | fault_info.pmap_options |= PMAP_OPTIONS_ALT_ACCT; |
| 7007 | } |
| 7008 | if (entry->vme_xnu_user_debug) { |
| 7009 | /* |
| 7010 | * Modified code-signed executable region: wiring will |
| 7011 | * copy the pages, so they should be XNU_USER_DEBUG rather |
| 7012 | * than XNU_USER_EXEC. |
| 7013 | */ |
| 7014 | fault_info.pmap_options |= PMAP_OPTIONS_XNU_USER_DEBUG; |
| 7015 | } |
| 7016 | |
| 7017 | fault_page_size = MIN(VM_MAP_PAGE_SIZE(map), PAGE_SIZE); |
| 7018 | fault_phys_offset = offset - vm_object_trunc_page(offset); |
| 7019 | |
| 7020 | /* |
| 7021 | * Put this page into the physical map. |
| 7022 | */ |
| 7023 | type_of_fault = DBG_CACHE_HIT_FAULT; |
| 7024 | assertf(VM_PAGE_OBJECT(m) == object, "m=%p object=%p" , m, object); |
| 7025 | assert(VM_PAGE_OBJECT(m) != VM_OBJECT_NULL); |
| 7026 | kr = vm_fault_enter(m, |
| 7027 | pmap, |
| 7028 | vaddr: pmap_addr, |
| 7029 | fault_page_size, |
| 7030 | fault_phys_offset, |
| 7031 | prot, |
| 7032 | caller_prot: prot, |
| 7033 | TRUE, /* wired */ |
| 7034 | FALSE, /* change_wiring */ |
| 7035 | wire_tag, |
| 7036 | fault_info: &fault_info, |
| 7037 | NULL, |
| 7038 | type_of_fault: &type_of_fault, |
| 7039 | object_lock_type: &object_lock_type); /* Exclusive lock mode. Will remain unchanged.*/ |
| 7040 | if (kr != KERN_SUCCESS) { |
| 7041 | RELEASE_PAGE(m); |
| 7042 | GIVE_UP; |
| 7043 | } |
| 7044 | |
| 7045 | done: |
| 7046 | /* |
| 7047 | * Unlock everything, and return |
| 7048 | */ |
| 7049 | |
| 7050 | if (physpage_p) { |
| 7051 | /* for vm_map_wire_and_extract() */ |
| 7052 | if (kr == KERN_SUCCESS) { |
| 7053 | assert(object == VM_PAGE_OBJECT(m)); |
| 7054 | *physpage_p = VM_PAGE_GET_PHYS_PAGE(m); |
| 7055 | if (prot & VM_PROT_WRITE) { |
| 7056 | vm_object_lock_assert_exclusive(object); |
| 7057 | m->vmp_dirty = TRUE; |
| 7058 | } |
| 7059 | } else { |
| 7060 | *physpage_p = 0; |
| 7061 | } |
| 7062 | } |
| 7063 | |
| 7064 | PAGE_WAKEUP_DONE(m); |
| 7065 | UNLOCK_AND_DEALLOCATE; |
| 7066 | |
| 7067 | return kr; |
| 7068 | } |
| 7069 | |
| 7070 | /* |
| 7071 | * Routine: vm_fault_copy_cleanup |
| 7072 | * Purpose: |
| 7073 | * Release a page used by vm_fault_copy. |
| 7074 | */ |
| 7075 | |
| 7076 | static void |
| 7077 | vm_fault_copy_cleanup( |
| 7078 | vm_page_t page, |
| 7079 | vm_page_t top_page) |
| 7080 | { |
| 7081 | vm_object_t object = VM_PAGE_OBJECT(page); |
| 7082 | |
| 7083 | vm_object_lock(object); |
| 7084 | PAGE_WAKEUP_DONE(page); |
| 7085 | if (!VM_PAGE_PAGEABLE(page)) { |
| 7086 | vm_page_lockspin_queues(); |
| 7087 | if (!VM_PAGE_PAGEABLE(page)) { |
| 7088 | vm_page_activate(page); |
| 7089 | } |
| 7090 | vm_page_unlock_queues(); |
| 7091 | } |
| 7092 | vm_fault_cleanup(object, top_page); |
| 7093 | } |
| 7094 | |
| 7095 | static void |
| 7096 | vm_fault_copy_dst_cleanup( |
| 7097 | vm_page_t page) |
| 7098 | { |
| 7099 | vm_object_t object; |
| 7100 | |
| 7101 | if (page != VM_PAGE_NULL) { |
| 7102 | object = VM_PAGE_OBJECT(page); |
| 7103 | vm_object_lock(object); |
| 7104 | vm_page_lockspin_queues(); |
| 7105 | vm_page_unwire(page, TRUE); |
| 7106 | vm_page_unlock_queues(); |
| 7107 | vm_object_paging_end(object); |
| 7108 | vm_object_unlock(object); |
| 7109 | } |
| 7110 | } |
| 7111 | |
| 7112 | /* |
| 7113 | * Routine: vm_fault_copy |
| 7114 | * |
| 7115 | * Purpose: |
| 7116 | * Copy pages from one virtual memory object to another -- |
| 7117 | * neither the source nor destination pages need be resident. |
| 7118 | * |
| 7119 | * Before actually copying a page, the version associated with |
| 7120 | * the destination address map wil be verified. |
| 7121 | * |
| 7122 | * In/out conditions: |
| 7123 | * The caller must hold a reference, but not a lock, to |
| 7124 | * each of the source and destination objects and to the |
| 7125 | * destination map. |
| 7126 | * |
| 7127 | * Results: |
| 7128 | * Returns KERN_SUCCESS if no errors were encountered in |
| 7129 | * reading or writing the data. Returns KERN_INTERRUPTED if |
| 7130 | * the operation was interrupted (only possible if the |
| 7131 | * "interruptible" argument is asserted). Other return values |
| 7132 | * indicate a permanent error in copying the data. |
| 7133 | * |
| 7134 | * The actual amount of data copied will be returned in the |
| 7135 | * "copy_size" argument. In the event that the destination map |
| 7136 | * verification failed, this amount may be less than the amount |
| 7137 | * requested. |
| 7138 | */ |
| 7139 | kern_return_t |
| 7140 | vm_fault_copy( |
| 7141 | vm_object_t src_object, |
| 7142 | vm_object_offset_t src_offset, |
| 7143 | vm_map_size_t *copy_size, /* INOUT */ |
| 7144 | vm_object_t dst_object, |
| 7145 | vm_object_offset_t dst_offset, |
| 7146 | vm_map_t dst_map, |
| 7147 | vm_map_version_t *dst_version, |
| 7148 | int interruptible) |
| 7149 | { |
| 7150 | vm_page_t result_page; |
| 7151 | |
| 7152 | vm_page_t src_page; |
| 7153 | vm_page_t src_top_page; |
| 7154 | vm_prot_t src_prot; |
| 7155 | |
| 7156 | vm_page_t dst_page; |
| 7157 | vm_page_t dst_top_page; |
| 7158 | vm_prot_t dst_prot; |
| 7159 | |
| 7160 | vm_map_size_t amount_left; |
| 7161 | vm_object_t old_copy_object; |
| 7162 | uint32_t old_copy_version; |
| 7163 | vm_object_t result_page_object = NULL; |
| 7164 | kern_return_t error = 0; |
| 7165 | vm_fault_return_t result; |
| 7166 | |
| 7167 | vm_map_size_t part_size; |
| 7168 | struct vm_object_fault_info fault_info_src = {}; |
| 7169 | struct vm_object_fault_info fault_info_dst = {}; |
| 7170 | |
| 7171 | /* |
| 7172 | * In order not to confuse the clustered pageins, align |
| 7173 | * the different offsets on a page boundary. |
| 7174 | */ |
| 7175 | |
| 7176 | #define RETURN(x) \ |
| 7177 | MACRO_BEGIN \ |
| 7178 | *copy_size -= amount_left; \ |
| 7179 | MACRO_RETURN(x); \ |
| 7180 | MACRO_END |
| 7181 | |
| 7182 | amount_left = *copy_size; |
| 7183 | |
| 7184 | fault_info_src.interruptible = interruptible; |
| 7185 | fault_info_src.behavior = VM_BEHAVIOR_SEQUENTIAL; |
| 7186 | fault_info_src.lo_offset = vm_object_trunc_page(src_offset); |
| 7187 | fault_info_src.hi_offset = fault_info_src.lo_offset + amount_left; |
| 7188 | fault_info_src.stealth = TRUE; |
| 7189 | |
| 7190 | fault_info_dst.interruptible = interruptible; |
| 7191 | fault_info_dst.behavior = VM_BEHAVIOR_SEQUENTIAL; |
| 7192 | fault_info_dst.lo_offset = vm_object_trunc_page(dst_offset); |
| 7193 | fault_info_dst.hi_offset = fault_info_dst.lo_offset + amount_left; |
| 7194 | fault_info_dst.stealth = TRUE; |
| 7195 | |
| 7196 | do { /* while (amount_left > 0) */ |
| 7197 | /* |
| 7198 | * There may be a deadlock if both source and destination |
| 7199 | * pages are the same. To avoid this deadlock, the copy must |
| 7200 | * start by getting the destination page in order to apply |
| 7201 | * COW semantics if any. |
| 7202 | */ |
| 7203 | |
| 7204 | RetryDestinationFault:; |
| 7205 | |
| 7206 | dst_prot = VM_PROT_WRITE | VM_PROT_READ; |
| 7207 | |
| 7208 | vm_object_lock(dst_object); |
| 7209 | vm_object_paging_begin(dst_object); |
| 7210 | |
| 7211 | /* cap cluster size at maximum UPL size */ |
| 7212 | upl_size_t cluster_size; |
| 7213 | if (os_convert_overflow(amount_left, &cluster_size)) { |
| 7214 | cluster_size = 0 - (upl_size_t)PAGE_SIZE; |
| 7215 | } |
| 7216 | fault_info_dst.cluster_size = cluster_size; |
| 7217 | |
| 7218 | dst_page = VM_PAGE_NULL; |
| 7219 | result = vm_fault_page(first_object: dst_object, |
| 7220 | vm_object_trunc_page(dst_offset), |
| 7221 | VM_PROT_WRITE | VM_PROT_READ, |
| 7222 | FALSE, |
| 7223 | FALSE, /* page not looked up */ |
| 7224 | protection: &dst_prot, result_page: &dst_page, top_page: &dst_top_page, |
| 7225 | type_of_fault: (int *)0, |
| 7226 | error_code: &error, |
| 7227 | no_zero_fill: dst_map->no_zero_fill, |
| 7228 | fault_info: &fault_info_dst); |
| 7229 | switch (result) { |
| 7230 | case VM_FAULT_SUCCESS: |
| 7231 | break; |
| 7232 | case VM_FAULT_RETRY: |
| 7233 | goto RetryDestinationFault; |
| 7234 | case VM_FAULT_MEMORY_SHORTAGE: |
| 7235 | if (vm_page_wait(interruptible)) { |
| 7236 | goto RetryDestinationFault; |
| 7237 | } |
| 7238 | ktriage_record(thread_id: thread_tid(thread: current_thread()), KDBG_TRIAGE_EVENTID(KDBG_TRIAGE_SUBSYS_VM, KDBG_TRIAGE_RESERVED, KDBG_TRIAGE_VM_FAULT_COPY_MEMORY_SHORTAGE), arg: 0 /* arg */); |
| 7239 | OS_FALLTHROUGH; |
| 7240 | case VM_FAULT_INTERRUPTED: |
| 7241 | RETURN(MACH_SEND_INTERRUPTED); |
| 7242 | case VM_FAULT_SUCCESS_NO_VM_PAGE: |
| 7243 | /* success but no VM page: fail the copy */ |
| 7244 | vm_object_paging_end(dst_object); |
| 7245 | vm_object_unlock(dst_object); |
| 7246 | OS_FALLTHROUGH; |
| 7247 | case VM_FAULT_MEMORY_ERROR: |
| 7248 | if (error) { |
| 7249 | return error; |
| 7250 | } else { |
| 7251 | return KERN_MEMORY_ERROR; |
| 7252 | } |
| 7253 | default: |
| 7254 | panic("vm_fault_copy: unexpected error 0x%x from " |
| 7255 | "vm_fault_page()\n" , result); |
| 7256 | } |
| 7257 | assert((dst_prot & VM_PROT_WRITE) != VM_PROT_NONE); |
| 7258 | |
| 7259 | assert(dst_object == VM_PAGE_OBJECT(dst_page)); |
| 7260 | old_copy_object = dst_object->vo_copy; |
| 7261 | old_copy_version = dst_object->vo_copy_version; |
| 7262 | |
| 7263 | /* |
| 7264 | * There exists the possiblity that the source and |
| 7265 | * destination page are the same. But we can't |
| 7266 | * easily determine that now. If they are the |
| 7267 | * same, the call to vm_fault_page() for the |
| 7268 | * destination page will deadlock. To prevent this we |
| 7269 | * wire the page so we can drop busy without having |
| 7270 | * the page daemon steal the page. We clean up the |
| 7271 | * top page but keep the paging reference on the object |
| 7272 | * holding the dest page so it doesn't go away. |
| 7273 | */ |
| 7274 | |
| 7275 | vm_page_lockspin_queues(); |
| 7276 | vm_page_wire(page: dst_page, VM_KERN_MEMORY_OSFMK, TRUE); |
| 7277 | vm_page_unlock_queues(); |
| 7278 | PAGE_WAKEUP_DONE(dst_page); |
| 7279 | vm_object_unlock(dst_object); |
| 7280 | |
| 7281 | if (dst_top_page != VM_PAGE_NULL) { |
| 7282 | vm_object_lock(dst_object); |
| 7283 | VM_PAGE_FREE(dst_top_page); |
| 7284 | vm_object_paging_end(dst_object); |
| 7285 | vm_object_unlock(dst_object); |
| 7286 | } |
| 7287 | |
| 7288 | RetrySourceFault:; |
| 7289 | |
| 7290 | if (src_object == VM_OBJECT_NULL) { |
| 7291 | /* |
| 7292 | * No source object. We will just |
| 7293 | * zero-fill the page in dst_object. |
| 7294 | */ |
| 7295 | src_page = VM_PAGE_NULL; |
| 7296 | result_page = VM_PAGE_NULL; |
| 7297 | } else { |
| 7298 | vm_object_lock(src_object); |
| 7299 | src_page = vm_page_lookup(object: src_object, |
| 7300 | vm_object_trunc_page(src_offset)); |
| 7301 | if (src_page == dst_page) { |
| 7302 | src_prot = dst_prot; |
| 7303 | result_page = VM_PAGE_NULL; |
| 7304 | } else { |
| 7305 | src_prot = VM_PROT_READ; |
| 7306 | vm_object_paging_begin(src_object); |
| 7307 | |
| 7308 | /* cap cluster size at maximum UPL size */ |
| 7309 | if (os_convert_overflow(amount_left, &cluster_size)) { |
| 7310 | cluster_size = 0 - (upl_size_t)PAGE_SIZE; |
| 7311 | } |
| 7312 | fault_info_src.cluster_size = cluster_size; |
| 7313 | |
| 7314 | result_page = VM_PAGE_NULL; |
| 7315 | result = vm_fault_page( |
| 7316 | first_object: src_object, |
| 7317 | vm_object_trunc_page(src_offset), |
| 7318 | VM_PROT_READ, FALSE, |
| 7319 | FALSE, /* page not looked up */ |
| 7320 | protection: &src_prot, |
| 7321 | result_page: &result_page, top_page: &src_top_page, |
| 7322 | type_of_fault: (int *)0, error_code: &error, FALSE, |
| 7323 | fault_info: &fault_info_src); |
| 7324 | |
| 7325 | switch (result) { |
| 7326 | case VM_FAULT_SUCCESS: |
| 7327 | break; |
| 7328 | case VM_FAULT_RETRY: |
| 7329 | goto RetrySourceFault; |
| 7330 | case VM_FAULT_MEMORY_SHORTAGE: |
| 7331 | if (vm_page_wait(interruptible)) { |
| 7332 | goto RetrySourceFault; |
| 7333 | } |
| 7334 | OS_FALLTHROUGH; |
| 7335 | case VM_FAULT_INTERRUPTED: |
| 7336 | vm_fault_copy_dst_cleanup(page: dst_page); |
| 7337 | RETURN(MACH_SEND_INTERRUPTED); |
| 7338 | case VM_FAULT_SUCCESS_NO_VM_PAGE: |
| 7339 | /* success but no VM page: fail */ |
| 7340 | vm_object_paging_end(src_object); |
| 7341 | vm_object_unlock(src_object); |
| 7342 | OS_FALLTHROUGH; |
| 7343 | case VM_FAULT_MEMORY_ERROR: |
| 7344 | vm_fault_copy_dst_cleanup(page: dst_page); |
| 7345 | if (error) { |
| 7346 | return error; |
| 7347 | } else { |
| 7348 | return KERN_MEMORY_ERROR; |
| 7349 | } |
| 7350 | default: |
| 7351 | panic("vm_fault_copy(2): unexpected " |
| 7352 | "error 0x%x from " |
| 7353 | "vm_fault_page()\n" , result); |
| 7354 | } |
| 7355 | |
| 7356 | result_page_object = VM_PAGE_OBJECT(result_page); |
| 7357 | assert((src_top_page == VM_PAGE_NULL) == |
| 7358 | (result_page_object == src_object)); |
| 7359 | } |
| 7360 | assert((src_prot & VM_PROT_READ) != VM_PROT_NONE); |
| 7361 | vm_object_unlock(result_page_object); |
| 7362 | } |
| 7363 | |
| 7364 | vm_map_lock_read(dst_map); |
| 7365 | |
| 7366 | if (!vm_map_verify(map: dst_map, version: dst_version)) { |
| 7367 | vm_map_unlock_read(dst_map); |
| 7368 | if (result_page != VM_PAGE_NULL && src_page != dst_page) { |
| 7369 | vm_fault_copy_cleanup(page: result_page, top_page: src_top_page); |
| 7370 | } |
| 7371 | vm_fault_copy_dst_cleanup(page: dst_page); |
| 7372 | break; |
| 7373 | } |
| 7374 | assert(dst_object == VM_PAGE_OBJECT(dst_page)); |
| 7375 | |
| 7376 | vm_object_lock(dst_object); |
| 7377 | |
| 7378 | if ((dst_object->vo_copy != old_copy_object || |
| 7379 | dst_object->vo_copy_version != old_copy_version)) { |
| 7380 | vm_object_unlock(dst_object); |
| 7381 | vm_map_unlock_read(dst_map); |
| 7382 | if (result_page != VM_PAGE_NULL && src_page != dst_page) { |
| 7383 | vm_fault_copy_cleanup(page: result_page, top_page: src_top_page); |
| 7384 | } |
| 7385 | vm_fault_copy_dst_cleanup(page: dst_page); |
| 7386 | break; |
| 7387 | } |
| 7388 | vm_object_unlock(dst_object); |
| 7389 | |
| 7390 | /* |
| 7391 | * Copy the page, and note that it is dirty |
| 7392 | * immediately. |
| 7393 | */ |
| 7394 | |
| 7395 | if (!page_aligned(src_offset) || |
| 7396 | !page_aligned(dst_offset) || |
| 7397 | !page_aligned(amount_left)) { |
| 7398 | vm_object_offset_t src_po, |
| 7399 | dst_po; |
| 7400 | |
| 7401 | src_po = src_offset - vm_object_trunc_page(src_offset); |
| 7402 | dst_po = dst_offset - vm_object_trunc_page(dst_offset); |
| 7403 | |
| 7404 | if (dst_po > src_po) { |
| 7405 | part_size = PAGE_SIZE - dst_po; |
| 7406 | } else { |
| 7407 | part_size = PAGE_SIZE - src_po; |
| 7408 | } |
| 7409 | if (part_size > (amount_left)) { |
| 7410 | part_size = amount_left; |
| 7411 | } |
| 7412 | |
| 7413 | if (result_page == VM_PAGE_NULL) { |
| 7414 | assert((vm_offset_t) dst_po == dst_po); |
| 7415 | assert((vm_size_t) part_size == part_size); |
| 7416 | vm_page_part_zero_fill(m: dst_page, |
| 7417 | m_pa: (vm_offset_t) dst_po, |
| 7418 | len: (vm_size_t) part_size); |
| 7419 | } else { |
| 7420 | assert((vm_offset_t) src_po == src_po); |
| 7421 | assert((vm_offset_t) dst_po == dst_po); |
| 7422 | assert((vm_size_t) part_size == part_size); |
| 7423 | vm_page_part_copy(src_m: result_page, |
| 7424 | src_pa: (vm_offset_t) src_po, |
| 7425 | dst_m: dst_page, |
| 7426 | dst_pa: (vm_offset_t) dst_po, |
| 7427 | len: (vm_size_t)part_size); |
| 7428 | if (!dst_page->vmp_dirty) { |
| 7429 | vm_object_lock(dst_object); |
| 7430 | SET_PAGE_DIRTY(dst_page, TRUE); |
| 7431 | vm_object_unlock(dst_object); |
| 7432 | } |
| 7433 | } |
| 7434 | } else { |
| 7435 | part_size = PAGE_SIZE; |
| 7436 | |
| 7437 | if (result_page == VM_PAGE_NULL) { |
| 7438 | vm_page_zero_fill(page: dst_page); |
| 7439 | } else { |
| 7440 | vm_object_lock(result_page_object); |
| 7441 | vm_page_copy(src_page: result_page, dest_page: dst_page); |
| 7442 | vm_object_unlock(result_page_object); |
| 7443 | |
| 7444 | if (!dst_page->vmp_dirty) { |
| 7445 | vm_object_lock(dst_object); |
| 7446 | SET_PAGE_DIRTY(dst_page, TRUE); |
| 7447 | vm_object_unlock(dst_object); |
| 7448 | } |
| 7449 | } |
| 7450 | } |
| 7451 | |
| 7452 | /* |
| 7453 | * Unlock everything, and return |
| 7454 | */ |
| 7455 | |
| 7456 | vm_map_unlock_read(dst_map); |
| 7457 | |
| 7458 | if (result_page != VM_PAGE_NULL && src_page != dst_page) { |
| 7459 | vm_fault_copy_cleanup(page: result_page, top_page: src_top_page); |
| 7460 | } |
| 7461 | vm_fault_copy_dst_cleanup(page: dst_page); |
| 7462 | |
| 7463 | amount_left -= part_size; |
| 7464 | src_offset += part_size; |
| 7465 | dst_offset += part_size; |
| 7466 | } while (amount_left > 0); |
| 7467 | |
| 7468 | RETURN(KERN_SUCCESS); |
| 7469 | #undef RETURN |
| 7470 | |
| 7471 | /*NOTREACHED*/ |
| 7472 | } |
| 7473 | |
| 7474 | #if VM_FAULT_CLASSIFY |
| 7475 | /* |
| 7476 | * Temporary statistics gathering support. |
| 7477 | */ |
| 7478 | |
| 7479 | /* |
| 7480 | * Statistics arrays: |
| 7481 | */ |
| 7482 | #define VM_FAULT_TYPES_MAX 5 |
| 7483 | #define VM_FAULT_LEVEL_MAX 8 |
| 7484 | |
| 7485 | int vm_fault_stats[VM_FAULT_TYPES_MAX][VM_FAULT_LEVEL_MAX]; |
| 7486 | |
| 7487 | #define VM_FAULT_TYPE_ZERO_FILL 0 |
| 7488 | #define VM_FAULT_TYPE_MAP_IN 1 |
| 7489 | #define VM_FAULT_TYPE_PAGER 2 |
| 7490 | #define VM_FAULT_TYPE_COPY 3 |
| 7491 | #define VM_FAULT_TYPE_OTHER 4 |
| 7492 | |
| 7493 | |
| 7494 | void |
| 7495 | vm_fault_classify(vm_object_t object, |
| 7496 | vm_object_offset_t offset, |
| 7497 | vm_prot_t fault_type) |
| 7498 | { |
| 7499 | int type, level = 0; |
| 7500 | vm_page_t m; |
| 7501 | |
| 7502 | while (TRUE) { |
| 7503 | m = vm_page_lookup(object, offset); |
| 7504 | if (m != VM_PAGE_NULL) { |
| 7505 | if (m->vmp_busy || m->vmp_error || m->vmp_restart || m->vmp_absent) { |
| 7506 | type = VM_FAULT_TYPE_OTHER; |
| 7507 | break; |
| 7508 | } |
| 7509 | if (((fault_type & VM_PROT_WRITE) == 0) || |
| 7510 | ((level == 0) && object->vo_copy == VM_OBJECT_NULL)) { |
| 7511 | type = VM_FAULT_TYPE_MAP_IN; |
| 7512 | break; |
| 7513 | } |
| 7514 | type = VM_FAULT_TYPE_COPY; |
| 7515 | break; |
| 7516 | } else { |
| 7517 | if (object->pager_created) { |
| 7518 | type = VM_FAULT_TYPE_PAGER; |
| 7519 | break; |
| 7520 | } |
| 7521 | if (object->shadow == VM_OBJECT_NULL) { |
| 7522 | type = VM_FAULT_TYPE_ZERO_FILL; |
| 7523 | break; |
| 7524 | } |
| 7525 | |
| 7526 | offset += object->vo_shadow_offset; |
| 7527 | object = object->shadow; |
| 7528 | level++; |
| 7529 | continue; |
| 7530 | } |
| 7531 | } |
| 7532 | |
| 7533 | if (level > VM_FAULT_LEVEL_MAX) { |
| 7534 | level = VM_FAULT_LEVEL_MAX; |
| 7535 | } |
| 7536 | |
| 7537 | vm_fault_stats[type][level] += 1; |
| 7538 | |
| 7539 | return; |
| 7540 | } |
| 7541 | |
| 7542 | /* cleanup routine to call from debugger */ |
| 7543 | |
| 7544 | void |
| 7545 | vm_fault_classify_init(void) |
| 7546 | { |
| 7547 | int type, level; |
| 7548 | |
| 7549 | for (type = 0; type < VM_FAULT_TYPES_MAX; type++) { |
| 7550 | for (level = 0; level < VM_FAULT_LEVEL_MAX; level++) { |
| 7551 | vm_fault_stats[type][level] = 0; |
| 7552 | } |
| 7553 | } |
| 7554 | |
| 7555 | return; |
| 7556 | } |
| 7557 | #endif /* VM_FAULT_CLASSIFY */ |
| 7558 | |
| 7559 | vm_offset_t |
| 7560 | kdp_lightweight_fault(vm_map_t map, vm_offset_t cur_target_addr) |
| 7561 | { |
| 7562 | vm_map_entry_t entry; |
| 7563 | vm_object_t object; |
| 7564 | vm_offset_t object_offset; |
| 7565 | vm_page_t m; |
| 7566 | int compressor_external_state, compressed_count_delta; |
| 7567 | vm_compressor_options_t compressor_flags = (C_DONT_BLOCK | C_KEEP | C_KDP); |
| 7568 | int my_fault_type = VM_PROT_READ; |
| 7569 | kern_return_t kr; |
| 7570 | int effective_page_mask, effective_page_size; |
| 7571 | |
| 7572 | if (VM_MAP_PAGE_SHIFT(map) < PAGE_SHIFT) { |
| 7573 | effective_page_mask = VM_MAP_PAGE_MASK(map); |
| 7574 | effective_page_size = VM_MAP_PAGE_SIZE(map); |
| 7575 | } else { |
| 7576 | effective_page_mask = PAGE_MASK; |
| 7577 | effective_page_size = PAGE_SIZE; |
| 7578 | } |
| 7579 | |
| 7580 | if (not_in_kdp) { |
| 7581 | panic("kdp_lightweight_fault called from outside of debugger context" ); |
| 7582 | } |
| 7583 | |
| 7584 | assert(map != VM_MAP_NULL); |
| 7585 | |
| 7586 | assert((cur_target_addr & effective_page_mask) == 0); |
| 7587 | if ((cur_target_addr & effective_page_mask) != 0) { |
| 7588 | return 0; |
| 7589 | } |
| 7590 | |
| 7591 | if (kdp_lck_rw_lock_is_acquired_exclusive(lck: &map->lock)) { |
| 7592 | return 0; |
| 7593 | } |
| 7594 | |
| 7595 | if (!vm_map_lookup_entry(map, address: cur_target_addr, entry: &entry)) { |
| 7596 | return 0; |
| 7597 | } |
| 7598 | |
| 7599 | if (entry->is_sub_map) { |
| 7600 | return 0; |
| 7601 | } |
| 7602 | |
| 7603 | object = VME_OBJECT(entry); |
| 7604 | if (object == VM_OBJECT_NULL) { |
| 7605 | return 0; |
| 7606 | } |
| 7607 | |
| 7608 | object_offset = cur_target_addr - entry->vme_start + VME_OFFSET(entry); |
| 7609 | |
| 7610 | while (TRUE) { |
| 7611 | if (kdp_lck_rw_lock_is_acquired_exclusive(lck: &object->Lock)) { |
| 7612 | return 0; |
| 7613 | } |
| 7614 | |
| 7615 | if (object->pager_created && (object->paging_in_progress || |
| 7616 | object->activity_in_progress)) { |
| 7617 | return 0; |
| 7618 | } |
| 7619 | |
| 7620 | m = kdp_vm_page_lookup(object, vm_object_trunc_page(object_offset)); |
| 7621 | |
| 7622 | if (m != VM_PAGE_NULL) { |
| 7623 | if ((object->wimg_bits & VM_WIMG_MASK) != VM_WIMG_DEFAULT) { |
| 7624 | return 0; |
| 7625 | } |
| 7626 | |
| 7627 | if (m->vmp_laundry || m->vmp_busy || m->vmp_free_when_done || m->vmp_absent || VMP_ERROR_GET(m) || m->vmp_cleaning || |
| 7628 | m->vmp_overwriting || m->vmp_restart || m->vmp_unusual) { |
| 7629 | return 0; |
| 7630 | } |
| 7631 | |
| 7632 | assert(!m->vmp_private); |
| 7633 | if (m->vmp_private) { |
| 7634 | return 0; |
| 7635 | } |
| 7636 | |
| 7637 | assert(!m->vmp_fictitious); |
| 7638 | if (m->vmp_fictitious) { |
| 7639 | return 0; |
| 7640 | } |
| 7641 | |
| 7642 | assert(m->vmp_q_state != VM_PAGE_USED_BY_COMPRESSOR); |
| 7643 | if (m->vmp_q_state == VM_PAGE_USED_BY_COMPRESSOR) { |
| 7644 | return 0; |
| 7645 | } |
| 7646 | |
| 7647 | return ptoa(VM_PAGE_GET_PHYS_PAGE(m)); |
| 7648 | } |
| 7649 | |
| 7650 | compressor_external_state = VM_EXTERNAL_STATE_UNKNOWN; |
| 7651 | |
| 7652 | if (object->pager_created && MUST_ASK_PAGER(object, object_offset, compressor_external_state)) { |
| 7653 | if (compressor_external_state == VM_EXTERNAL_STATE_EXISTS) { |
| 7654 | kr = vm_compressor_pager_get(mem_obj: object->pager, |
| 7655 | vm_object_trunc_page(object_offset + object->paging_offset), |
| 7656 | ppnum: kdp_compressor_decompressed_page_ppnum, my_fault_type: &my_fault_type, |
| 7657 | flags: compressor_flags, compressed_count_delta_p: &compressed_count_delta); |
| 7658 | if (kr == KERN_SUCCESS) { |
| 7659 | return kdp_compressor_decompressed_page_paddr; |
| 7660 | } else { |
| 7661 | return 0; |
| 7662 | } |
| 7663 | } |
| 7664 | } |
| 7665 | |
| 7666 | if (object->shadow == VM_OBJECT_NULL) { |
| 7667 | return 0; |
| 7668 | } |
| 7669 | |
| 7670 | object_offset += object->vo_shadow_offset; |
| 7671 | object = object->shadow; |
| 7672 | } |
| 7673 | } |
| 7674 | |
| 7675 | /* |
| 7676 | * vm_page_validate_cs_fast(): |
| 7677 | * Performs a few quick checks to determine if the page's code signature |
| 7678 | * really needs to be fully validated. It could: |
| 7679 | * 1. have been modified (i.e. automatically tainted), |
| 7680 | * 2. have already been validated, |
| 7681 | * 3. have already been found to be tainted, |
| 7682 | * 4. no longer have a backing store. |
| 7683 | * Returns FALSE if the page needs to be fully validated. |
| 7684 | */ |
| 7685 | static boolean_t |
| 7686 | vm_page_validate_cs_fast( |
| 7687 | vm_page_t page, |
| 7688 | vm_map_size_t fault_page_size, |
| 7689 | vm_map_offset_t fault_phys_offset) |
| 7690 | { |
| 7691 | vm_object_t object; |
| 7692 | |
| 7693 | object = VM_PAGE_OBJECT(page); |
| 7694 | vm_object_lock_assert_held(object); |
| 7695 | |
| 7696 | if (page->vmp_wpmapped && |
| 7697 | !VMP_CS_TAINTED(p: page, fault_page_size, fault_phys_offset)) { |
| 7698 | /* |
| 7699 | * This page was mapped for "write" access sometime in the |
| 7700 | * past and could still be modifiable in the future. |
| 7701 | * Consider it tainted. |
| 7702 | * [ If the page was already found to be "tainted", no |
| 7703 | * need to re-validate. ] |
| 7704 | */ |
| 7705 | vm_object_lock_assert_exclusive(object); |
| 7706 | VMP_CS_SET_VALIDATED(p: page, fault_page_size, fault_phys_offset, TRUE); |
| 7707 | VMP_CS_SET_TAINTED(p: page, fault_page_size, fault_phys_offset, TRUE); |
| 7708 | if (cs_debug) { |
| 7709 | printf(format: "CODESIGNING: %s: " |
| 7710 | "page %p obj %p off 0x%llx " |
| 7711 | "was modified\n" , |
| 7712 | __FUNCTION__, |
| 7713 | page, object, page->vmp_offset); |
| 7714 | } |
| 7715 | vm_cs_validated_dirtied++; |
| 7716 | } |
| 7717 | |
| 7718 | if (VMP_CS_VALIDATED(p: page, fault_page_size, fault_phys_offset) || |
| 7719 | VMP_CS_TAINTED(p: page, fault_page_size, fault_phys_offset)) { |
| 7720 | return TRUE; |
| 7721 | } |
| 7722 | vm_object_lock_assert_exclusive(object); |
| 7723 | |
| 7724 | #if CHECK_CS_VALIDATION_BITMAP |
| 7725 | kern_return_t kr; |
| 7726 | |
| 7727 | kr = vnode_pager_cs_check_validation_bitmap( |
| 7728 | object->pager, |
| 7729 | page->vmp_offset + object->paging_offset, |
| 7730 | CS_BITMAP_CHECK); |
| 7731 | if (kr == KERN_SUCCESS) { |
| 7732 | page->vmp_cs_validated = VMP_CS_ALL_TRUE; |
| 7733 | page->vmp_cs_tainted = VMP_CS_ALL_FALSE; |
| 7734 | vm_cs_bitmap_validated++; |
| 7735 | return TRUE; |
| 7736 | } |
| 7737 | #endif /* CHECK_CS_VALIDATION_BITMAP */ |
| 7738 | |
| 7739 | if (!object->alive || object->terminating || object->pager == NULL) { |
| 7740 | /* |
| 7741 | * The object is terminating and we don't have its pager |
| 7742 | * so we can't validate the data... |
| 7743 | */ |
| 7744 | return TRUE; |
| 7745 | } |
| 7746 | |
| 7747 | /* we need to really validate this page */ |
| 7748 | vm_object_lock_assert_exclusive(object); |
| 7749 | return FALSE; |
| 7750 | } |
| 7751 | |
| 7752 | void |
| 7753 | vm_page_validate_cs_mapped_slow( |
| 7754 | vm_page_t page, |
| 7755 | const void *kaddr) |
| 7756 | { |
| 7757 | vm_object_t object; |
| 7758 | memory_object_offset_t mo_offset; |
| 7759 | memory_object_t ; |
| 7760 | struct vnode *vnode; |
| 7761 | int validated, tainted, nx; |
| 7762 | |
| 7763 | assert(page->vmp_busy); |
| 7764 | object = VM_PAGE_OBJECT(page); |
| 7765 | vm_object_lock_assert_exclusive(object); |
| 7766 | |
| 7767 | vm_cs_validates++; |
| 7768 | |
| 7769 | /* |
| 7770 | * Since we get here to validate a page that was brought in by |
| 7771 | * the pager, we know that this pager is all setup and ready |
| 7772 | * by now. |
| 7773 | */ |
| 7774 | assert(object->code_signed); |
| 7775 | assert(!object->internal); |
| 7776 | assert(object->pager != NULL); |
| 7777 | assert(object->pager_ready); |
| 7778 | |
| 7779 | pager = object->pager; |
| 7780 | assert(object->paging_in_progress); |
| 7781 | vnode = vnode_pager_lookup_vnode(pager); |
| 7782 | mo_offset = page->vmp_offset + object->paging_offset; |
| 7783 | |
| 7784 | /* verify the SHA1 hash for this page */ |
| 7785 | validated = 0; |
| 7786 | tainted = 0; |
| 7787 | nx = 0; |
| 7788 | cs_validate_page(vp: vnode, |
| 7789 | pager, |
| 7790 | offset: mo_offset, |
| 7791 | data: (const void *)((const char *)kaddr), |
| 7792 | validated_p: &validated, |
| 7793 | tainted_p: &tainted, |
| 7794 | nx_p: &nx); |
| 7795 | |
| 7796 | page->vmp_cs_validated |= validated; |
| 7797 | page->vmp_cs_tainted |= tainted; |
| 7798 | page->vmp_cs_nx |= nx; |
| 7799 | |
| 7800 | #if CHECK_CS_VALIDATION_BITMAP |
| 7801 | if (page->vmp_cs_validated == VMP_CS_ALL_TRUE && |
| 7802 | page->vmp_cs_tainted == VMP_CS_ALL_FALSE) { |
| 7803 | vnode_pager_cs_check_validation_bitmap(object->pager, |
| 7804 | mo_offset, |
| 7805 | CS_BITMAP_SET); |
| 7806 | } |
| 7807 | #endif /* CHECK_CS_VALIDATION_BITMAP */ |
| 7808 | } |
| 7809 | |
| 7810 | void |
| 7811 | vm_page_validate_cs_mapped( |
| 7812 | vm_page_t page, |
| 7813 | vm_map_size_t fault_page_size, |
| 7814 | vm_map_offset_t fault_phys_offset, |
| 7815 | const void *kaddr) |
| 7816 | { |
| 7817 | if (!vm_page_validate_cs_fast(page, fault_page_size, fault_phys_offset)) { |
| 7818 | vm_page_validate_cs_mapped_slow(page, kaddr); |
| 7819 | } |
| 7820 | } |
| 7821 | |
| 7822 | static void |
| 7823 | vm_page_map_and_validate_cs( |
| 7824 | vm_object_t object, |
| 7825 | vm_page_t page) |
| 7826 | { |
| 7827 | vm_object_offset_t offset; |
| 7828 | vm_map_offset_t koffset; |
| 7829 | vm_map_size_t ksize; |
| 7830 | vm_offset_t kaddr; |
| 7831 | kern_return_t kr; |
| 7832 | boolean_t busy_page; |
| 7833 | boolean_t need_unmap; |
| 7834 | |
| 7835 | vm_object_lock_assert_exclusive(object); |
| 7836 | |
| 7837 | assert(object->code_signed); |
| 7838 | offset = page->vmp_offset; |
| 7839 | |
| 7840 | busy_page = page->vmp_busy; |
| 7841 | if (!busy_page) { |
| 7842 | /* keep page busy while we map (and unlock) the VM object */ |
| 7843 | page->vmp_busy = TRUE; |
| 7844 | } |
| 7845 | |
| 7846 | /* |
| 7847 | * Take a paging reference on the VM object |
| 7848 | * to protect it from collapse or bypass, |
| 7849 | * and keep it from disappearing too. |
| 7850 | */ |
| 7851 | vm_object_paging_begin(object); |
| 7852 | |
| 7853 | /* map the page in the kernel address space */ |
| 7854 | ksize = PAGE_SIZE_64; |
| 7855 | koffset = 0; |
| 7856 | need_unmap = FALSE; |
| 7857 | kr = vm_paging_map_object(page, |
| 7858 | object, |
| 7859 | offset, |
| 7860 | VM_PROT_READ, |
| 7861 | FALSE, /* can't unlock object ! */ |
| 7862 | size: &ksize, |
| 7863 | address: &koffset, |
| 7864 | need_unmap: &need_unmap); |
| 7865 | if (kr != KERN_SUCCESS) { |
| 7866 | panic("%s: could not map page: 0x%x" , __FUNCTION__, kr); |
| 7867 | } |
| 7868 | kaddr = CAST_DOWN(vm_offset_t, koffset); |
| 7869 | |
| 7870 | /* validate the mapped page */ |
| 7871 | vm_page_validate_cs_mapped_slow(page, kaddr: (const void *) kaddr); |
| 7872 | |
| 7873 | assert(page->vmp_busy); |
| 7874 | assert(object == VM_PAGE_OBJECT(page)); |
| 7875 | vm_object_lock_assert_exclusive(object); |
| 7876 | |
| 7877 | if (!busy_page) { |
| 7878 | PAGE_WAKEUP_DONE(page); |
| 7879 | } |
| 7880 | if (need_unmap) { |
| 7881 | /* unmap the map from the kernel address space */ |
| 7882 | vm_paging_unmap_object(object, start: koffset, end: koffset + ksize); |
| 7883 | koffset = 0; |
| 7884 | ksize = 0; |
| 7885 | kaddr = 0; |
| 7886 | } |
| 7887 | vm_object_paging_end(object); |
| 7888 | } |
| 7889 | |
| 7890 | void |
| 7891 | vm_page_validate_cs( |
| 7892 | vm_page_t page, |
| 7893 | vm_map_size_t fault_page_size, |
| 7894 | vm_map_offset_t fault_phys_offset) |
| 7895 | { |
| 7896 | vm_object_t object; |
| 7897 | |
| 7898 | object = VM_PAGE_OBJECT(page); |
| 7899 | vm_object_lock_assert_held(object); |
| 7900 | |
| 7901 | if (vm_page_validate_cs_fast(page, fault_page_size, fault_phys_offset)) { |
| 7902 | return; |
| 7903 | } |
| 7904 | vm_page_map_and_validate_cs(object, page); |
| 7905 | } |
| 7906 | |
| 7907 | void |
| 7908 | vm_page_validate_cs_mapped_chunk( |
| 7909 | vm_page_t page, |
| 7910 | const void *kaddr, |
| 7911 | vm_offset_t chunk_offset, |
| 7912 | vm_size_t chunk_size, |
| 7913 | boolean_t *validated_p, |
| 7914 | unsigned *tainted_p) |
| 7915 | { |
| 7916 | vm_object_t object; |
| 7917 | vm_object_offset_t offset, offset_in_page; |
| 7918 | memory_object_t ; |
| 7919 | struct vnode *vnode; |
| 7920 | boolean_t validated; |
| 7921 | unsigned tainted; |
| 7922 | |
| 7923 | *validated_p = FALSE; |
| 7924 | *tainted_p = 0; |
| 7925 | |
| 7926 | assert(page->vmp_busy); |
| 7927 | object = VM_PAGE_OBJECT(page); |
| 7928 | vm_object_lock_assert_exclusive(object); |
| 7929 | |
| 7930 | assert(object->code_signed); |
| 7931 | offset = page->vmp_offset; |
| 7932 | |
| 7933 | if (!object->alive || object->terminating || object->pager == NULL) { |
| 7934 | /* |
| 7935 | * The object is terminating and we don't have its pager |
| 7936 | * so we can't validate the data... |
| 7937 | */ |
| 7938 | return; |
| 7939 | } |
| 7940 | /* |
| 7941 | * Since we get here to validate a page that was brought in by |
| 7942 | * the pager, we know that this pager is all setup and ready |
| 7943 | * by now. |
| 7944 | */ |
| 7945 | assert(!object->internal); |
| 7946 | assert(object->pager != NULL); |
| 7947 | assert(object->pager_ready); |
| 7948 | |
| 7949 | pager = object->pager; |
| 7950 | assert(object->paging_in_progress); |
| 7951 | vnode = vnode_pager_lookup_vnode(pager); |
| 7952 | |
| 7953 | /* verify the signature for this chunk */ |
| 7954 | offset_in_page = chunk_offset; |
| 7955 | assert(offset_in_page < PAGE_SIZE); |
| 7956 | |
| 7957 | tainted = 0; |
| 7958 | validated = cs_validate_range(vp: vnode, |
| 7959 | pager, |
| 7960 | offset: (object->paging_offset + |
| 7961 | offset + |
| 7962 | offset_in_page), |
| 7963 | data: (const void *)((const char *)kaddr |
| 7964 | + offset_in_page), |
| 7965 | size: chunk_size, |
| 7966 | result: &tainted); |
| 7967 | if (validated) { |
| 7968 | *validated_p = TRUE; |
| 7969 | } |
| 7970 | if (tainted) { |
| 7971 | *tainted_p = tainted; |
| 7972 | } |
| 7973 | } |
| 7974 | |
| 7975 | static void |
| 7976 | vm_rtfrecord_lock(void) |
| 7977 | { |
| 7978 | lck_spin_lock(lck: &vm_rtfr_slock); |
| 7979 | } |
| 7980 | |
| 7981 | static void |
| 7982 | vm_rtfrecord_unlock(void) |
| 7983 | { |
| 7984 | lck_spin_unlock(lck: &vm_rtfr_slock); |
| 7985 | } |
| 7986 | |
| 7987 | unsigned int |
| 7988 | vmrtfaultinfo_bufsz(void) |
| 7989 | { |
| 7990 | return vmrtf_num_records * sizeof(vm_rtfault_record_t); |
| 7991 | } |
| 7992 | |
| 7993 | #include <kern/backtrace.h> |
| 7994 | |
| 7995 | __attribute__((noinline)) |
| 7996 | static void |
| 7997 | vm_record_rtfault(thread_t cthread, uint64_t fstart, vm_map_offset_t fault_vaddr, int type_of_fault) |
| 7998 | { |
| 7999 | uint64_t fend = mach_continuous_time(); |
| 8000 | |
| 8001 | uint64_t cfpc = 0; |
| 8002 | uint64_t ctid = cthread->thread_id; |
| 8003 | uint64_t cupid = get_current_unique_pid(); |
| 8004 | |
| 8005 | uintptr_t bpc = 0; |
| 8006 | errno_t btr = 0; |
| 8007 | |
| 8008 | /* |
| 8009 | * Capture a single-frame backtrace. This extracts just the program |
| 8010 | * counter at the point of the fault, and should not use copyin to get |
| 8011 | * Rosetta save state. |
| 8012 | */ |
| 8013 | struct backtrace_control ctl = { |
| 8014 | .btc_user_thread = cthread, |
| 8015 | .btc_user_copy = backtrace_user_copy_error, |
| 8016 | }; |
| 8017 | unsigned int bfrs = backtrace_user(bt: &bpc, btlen: 1U, ctl: &ctl, NULL); |
| 8018 | if ((btr == 0) && (bfrs > 0)) { |
| 8019 | cfpc = bpc; |
| 8020 | } |
| 8021 | |
| 8022 | assert((fstart != 0) && fend >= fstart); |
| 8023 | vm_rtfrecord_lock(); |
| 8024 | assert(vmrtfrs.vmrtfr_curi <= vmrtfrs.vmrtfr_maxi); |
| 8025 | |
| 8026 | vmrtfrs.vmrtf_total++; |
| 8027 | vm_rtfault_record_t *cvmr = &vmrtfrs.vm_rtf_records[vmrtfrs.vmrtfr_curi++]; |
| 8028 | |
| 8029 | cvmr->rtfabstime = fstart; |
| 8030 | cvmr->rtfduration = fend - fstart; |
| 8031 | cvmr->rtfaddr = fault_vaddr; |
| 8032 | cvmr->rtfpc = cfpc; |
| 8033 | cvmr->rtftype = type_of_fault; |
| 8034 | cvmr->rtfupid = cupid; |
| 8035 | cvmr->rtftid = ctid; |
| 8036 | |
| 8037 | if (vmrtfrs.vmrtfr_curi > vmrtfrs.vmrtfr_maxi) { |
| 8038 | vmrtfrs.vmrtfr_curi = 0; |
| 8039 | } |
| 8040 | |
| 8041 | vm_rtfrecord_unlock(); |
| 8042 | } |
| 8043 | |
| 8044 | int |
| 8045 | (uint64_t cupid, __unused boolean_t isroot, unsigned long vrecordsz, void *vrecords, unsigned long *vmrtfrv) |
| 8046 | { |
| 8047 | vm_rtfault_record_t *cvmrd = vrecords; |
| 8048 | size_t residue = vrecordsz; |
| 8049 | size_t = 0; |
| 8050 | boolean_t early_exit = FALSE; |
| 8051 | |
| 8052 | vm_rtfrecord_lock(); |
| 8053 | |
| 8054 | for (int vmfi = 0; vmfi <= vmrtfrs.vmrtfr_maxi; vmfi++) { |
| 8055 | if (residue < sizeof(vm_rtfault_record_t)) { |
| 8056 | early_exit = TRUE; |
| 8057 | break; |
| 8058 | } |
| 8059 | |
| 8060 | if (vmrtfrs.vm_rtf_records[vmfi].rtfupid != cupid) { |
| 8061 | #if DEVELOPMENT || DEBUG |
| 8062 | if (isroot == FALSE) { |
| 8063 | continue; |
| 8064 | } |
| 8065 | #else |
| 8066 | continue; |
| 8067 | #endif /* DEVDEBUG */ |
| 8068 | } |
| 8069 | |
| 8070 | *cvmrd = vmrtfrs.vm_rtf_records[vmfi]; |
| 8071 | cvmrd++; |
| 8072 | residue -= sizeof(vm_rtfault_record_t); |
| 8073 | numextracted++; |
| 8074 | } |
| 8075 | |
| 8076 | vm_rtfrecord_unlock(); |
| 8077 | |
| 8078 | *vmrtfrv = numextracted; |
| 8079 | return early_exit; |
| 8080 | } |
| 8081 | |
| 8082 | /* |
| 8083 | * Only allow one diagnosis to be in flight at a time, to avoid |
| 8084 | * creating too much additional memory usage. |
| 8085 | */ |
| 8086 | static volatile uint_t vmtc_diagnosing; |
| 8087 | unsigned int vmtc_total = 0; |
| 8088 | |
| 8089 | /* |
| 8090 | * Type used to update telemetry for the diagnosis counts. |
| 8091 | */ |
| 8092 | CA_EVENT(vmtc_telemetry, |
| 8093 | CA_INT, vmtc_num_byte, /* number of corrupt bytes found */ |
| 8094 | CA_BOOL, vmtc_undiagnosed, /* undiagnosed because more than 1 at a time */ |
| 8095 | CA_BOOL, vmtc_not_eligible, /* the page didn't qualify */ |
| 8096 | CA_BOOL, vmtc_copyin_fail, /* unable to copy in the page */ |
| 8097 | CA_BOOL, vmtc_not_found, /* no corruption found even though CS failed */ |
| 8098 | CA_BOOL, vmtc_one_bit_flip, /* single bit flip */ |
| 8099 | CA_BOOL, vmtc_testing); /* caused on purpose by testing */ |
| 8100 | |
| 8101 | #if DEVELOPMENT || DEBUG |
| 8102 | /* |
| 8103 | * Buffers used to compare before/after page contents. |
| 8104 | * Stashed to aid when debugging crashes. |
| 8105 | */ |
| 8106 | static size_t vmtc_last_buffer_size = 0; |
| 8107 | static uint64_t *vmtc_last_before_buffer = NULL; |
| 8108 | static uint64_t *vmtc_last_after_buffer = NULL; |
| 8109 | |
| 8110 | /* |
| 8111 | * Needed to record corruptions due to testing. |
| 8112 | */ |
| 8113 | static uintptr_t corruption_test_va = 0; |
| 8114 | #endif /* DEVELOPMENT || DEBUG */ |
| 8115 | |
| 8116 | /* |
| 8117 | * Stash a copy of data from a possibly corrupt page. |
| 8118 | */ |
| 8119 | static uint64_t * |
| 8120 | vmtc_get_page_data( |
| 8121 | vm_map_offset_t code_addr, |
| 8122 | vm_page_t page) |
| 8123 | { |
| 8124 | uint64_t *buffer = NULL; |
| 8125 | addr64_t buffer_paddr; |
| 8126 | addr64_t page_paddr; |
| 8127 | extern void bcopy_phys(addr64_t from, addr64_t to, vm_size_t bytes); |
| 8128 | uint_t size = MIN(vm_map_page_size(current_map()), PAGE_SIZE); |
| 8129 | |
| 8130 | /* |
| 8131 | * Need an aligned buffer to do a physical copy. |
| 8132 | */ |
| 8133 | if (kernel_memory_allocate(map: kernel_map, addrp: (vm_offset_t *)&buffer, |
| 8134 | size, mask: size - 1, flags: KMA_KOBJECT, VM_KERN_MEMORY_DIAG) != KERN_SUCCESS) { |
| 8135 | return NULL; |
| 8136 | } |
| 8137 | buffer_paddr = kvtophys(va: (vm_offset_t)buffer); |
| 8138 | page_paddr = ptoa(VM_PAGE_GET_PHYS_PAGE(page)); |
| 8139 | |
| 8140 | /* adjust the page start address if we need only 4K of a 16K page */ |
| 8141 | if (size < PAGE_SIZE) { |
| 8142 | uint_t subpage_start = ((code_addr & (PAGE_SIZE - 1)) & ~(size - 1)); |
| 8143 | page_paddr += subpage_start; |
| 8144 | } |
| 8145 | |
| 8146 | bcopy_phys(from: page_paddr, to: buffer_paddr, bytes: size); |
| 8147 | return buffer; |
| 8148 | } |
| 8149 | |
| 8150 | /* |
| 8151 | * Set things up so we can diagnose a potential text page corruption. |
| 8152 | */ |
| 8153 | static uint64_t * |
| 8154 | vmtc_text_page_diagnose_setup( |
| 8155 | vm_map_offset_t code_addr, |
| 8156 | vm_page_t page, |
| 8157 | CA_EVENT_TYPE(vmtc_telemetry) *event) |
| 8158 | { |
| 8159 | uint64_t *buffer = NULL; |
| 8160 | |
| 8161 | /* |
| 8162 | * If another is being diagnosed, skip this one. |
| 8163 | */ |
| 8164 | if (!OSCompareAndSwap(0, 1, &vmtc_diagnosing)) { |
| 8165 | event->vmtc_undiagnosed = true; |
| 8166 | return NULL; |
| 8167 | } |
| 8168 | |
| 8169 | /* |
| 8170 | * Get the contents of the corrupt page. |
| 8171 | */ |
| 8172 | buffer = vmtc_get_page_data(code_addr, page); |
| 8173 | if (buffer == NULL) { |
| 8174 | event->vmtc_copyin_fail = true; |
| 8175 | if (!OSCompareAndSwap(1, 0, &vmtc_diagnosing)) { |
| 8176 | panic("Bad compare and swap in setup!" ); |
| 8177 | } |
| 8178 | return NULL; |
| 8179 | } |
| 8180 | return buffer; |
| 8181 | } |
| 8182 | |
| 8183 | /* |
| 8184 | * Diagnose the text page by comparing its contents with |
| 8185 | * the one we've previously saved. |
| 8186 | */ |
| 8187 | static void |
| 8188 | vmtc_text_page_diagnose( |
| 8189 | vm_map_offset_t code_addr, |
| 8190 | uint64_t *old_code_buffer, |
| 8191 | CA_EVENT_TYPE(vmtc_telemetry) *event) |
| 8192 | { |
| 8193 | uint64_t *new_code_buffer; |
| 8194 | size_t size = MIN(vm_map_page_size(current_map()), PAGE_SIZE); |
| 8195 | uint_t count = (uint_t)size / sizeof(uint64_t); |
| 8196 | uint_t diff_count = 0; |
| 8197 | bool bit_flip = false; |
| 8198 | uint_t b; |
| 8199 | uint64_t *new; |
| 8200 | uint64_t *old; |
| 8201 | |
| 8202 | new_code_buffer = kalloc_data(size, Z_WAITOK); |
| 8203 | assert(new_code_buffer != NULL); |
| 8204 | if (copyin((user_addr_t)vm_map_trunc_page(code_addr, size - 1), new_code_buffer, size) != 0) { |
| 8205 | /* copyin error, so undo things */ |
| 8206 | event->vmtc_copyin_fail = true; |
| 8207 | goto done; |
| 8208 | } |
| 8209 | |
| 8210 | new = new_code_buffer; |
| 8211 | old = old_code_buffer; |
| 8212 | for (; count-- > 0; ++new, ++old) { |
| 8213 | if (*new == *old) { |
| 8214 | continue; |
| 8215 | } |
| 8216 | |
| 8217 | /* |
| 8218 | * On first diff, check for a single bit flip |
| 8219 | */ |
| 8220 | if (diff_count == 0) { |
| 8221 | uint64_t x = (*new ^ *old); |
| 8222 | assert(x != 0); |
| 8223 | if ((x & (x - 1)) == 0) { |
| 8224 | bit_flip = true; |
| 8225 | ++diff_count; |
| 8226 | continue; |
| 8227 | } |
| 8228 | } |
| 8229 | |
| 8230 | /* |
| 8231 | * count up the number of different bytes. |
| 8232 | */ |
| 8233 | for (b = 0; b < sizeof(uint64_t); ++b) { |
| 8234 | char *n = (char *)new; |
| 8235 | char *o = (char *)old; |
| 8236 | if (n[b] != o[b]) { |
| 8237 | ++diff_count; |
| 8238 | } |
| 8239 | } |
| 8240 | } |
| 8241 | |
| 8242 | if (diff_count > 1) { |
| 8243 | bit_flip = false; |
| 8244 | } |
| 8245 | |
| 8246 | if (diff_count == 0) { |
| 8247 | event->vmtc_not_found = true; |
| 8248 | } else { |
| 8249 | event->vmtc_num_byte = diff_count; |
| 8250 | } |
| 8251 | if (bit_flip) { |
| 8252 | event->vmtc_one_bit_flip = true; |
| 8253 | } |
| 8254 | |
| 8255 | done: |
| 8256 | /* |
| 8257 | * Free up the code copy buffers, but save the last |
| 8258 | * set on development / debug kernels in case they |
| 8259 | * can provide evidence for debugging memory stomps. |
| 8260 | */ |
| 8261 | #if DEVELOPMENT || DEBUG |
| 8262 | if (vmtc_last_before_buffer != NULL) { |
| 8263 | kmem_free(kernel_map, (vm_offset_t)vmtc_last_before_buffer, vmtc_last_buffer_size); |
| 8264 | } |
| 8265 | if (vmtc_last_after_buffer != NULL) { |
| 8266 | kfree_data(vmtc_last_after_buffer, vmtc_last_buffer_size); |
| 8267 | } |
| 8268 | vmtc_last_before_buffer = old_code_buffer; |
| 8269 | vmtc_last_after_buffer = new_code_buffer; |
| 8270 | vmtc_last_buffer_size = size; |
| 8271 | #else /* DEVELOPMENT || DEBUG */ |
| 8272 | kfree_data(new_code_buffer, size); |
| 8273 | kmem_free(map: kernel_map, addr: (vm_offset_t)old_code_buffer, size); |
| 8274 | #endif /* DEVELOPMENT || DEBUG */ |
| 8275 | |
| 8276 | /* |
| 8277 | * We're finished, so clear the diagnosing flag. |
| 8278 | */ |
| 8279 | if (!OSCompareAndSwap(1, 0, &vmtc_diagnosing)) { |
| 8280 | panic("Bad compare and swap in diagnose!" ); |
| 8281 | } |
| 8282 | } |
| 8283 | |
| 8284 | /* |
| 8285 | * For the given map, virt address, find the object, offset, and page. |
| 8286 | * This has to lookup the map entry, verify protections, walk any shadow chains. |
| 8287 | * If found, returns with the object locked. |
| 8288 | */ |
| 8289 | static kern_return_t |
| 8290 | vmtc_revalidate_lookup( |
| 8291 | vm_map_t map, |
| 8292 | vm_map_offset_t vaddr, |
| 8293 | vm_object_t *ret_object, |
| 8294 | vm_object_offset_t *ret_offset, |
| 8295 | vm_page_t *ret_page, |
| 8296 | vm_prot_t *ret_prot) |
| 8297 | { |
| 8298 | vm_object_t object; |
| 8299 | vm_object_offset_t offset; |
| 8300 | vm_page_t page; |
| 8301 | kern_return_t kr = KERN_SUCCESS; |
| 8302 | uint8_t object_lock_type = OBJECT_LOCK_EXCLUSIVE; |
| 8303 | vm_map_version_t version; |
| 8304 | boolean_t wired; |
| 8305 | struct vm_object_fault_info fault_info = {}; |
| 8306 | vm_map_t real_map = NULL; |
| 8307 | vm_prot_t prot; |
| 8308 | vm_object_t shadow; |
| 8309 | |
| 8310 | /* |
| 8311 | * Find the object/offset for the given location/map. |
| 8312 | * Note this returns with the object locked. |
| 8313 | */ |
| 8314 | restart: |
| 8315 | vm_map_lock_read(map); |
| 8316 | object = VM_OBJECT_NULL; /* in case we come around the restart path */ |
| 8317 | kr = vm_map_lookup_and_lock_object(var_map: &map, vaddr, VM_PROT_READ, |
| 8318 | object_lock_type, out_version: &version, object: &object, offset: &offset, out_prot: &prot, wired: &wired, |
| 8319 | fault_info: &fault_info, real_map: &real_map, NULL); |
| 8320 | vm_map_unlock_read(map); |
| 8321 | if (real_map != NULL && real_map != map) { |
| 8322 | vm_map_unlock(real_map); |
| 8323 | } |
| 8324 | |
| 8325 | /* |
| 8326 | * If there's no page here, fail. |
| 8327 | */ |
| 8328 | if (kr != KERN_SUCCESS || object == NULL) { |
| 8329 | kr = KERN_FAILURE; |
| 8330 | goto done; |
| 8331 | } |
| 8332 | |
| 8333 | /* |
| 8334 | * Chase down any shadow chains to find the actual page. |
| 8335 | */ |
| 8336 | for (;;) { |
| 8337 | /* |
| 8338 | * See if the page is on the current object. |
| 8339 | */ |
| 8340 | page = vm_page_lookup(object, vm_object_trunc_page(offset)); |
| 8341 | if (page != NULL) { |
| 8342 | /* restart the lookup */ |
| 8343 | if (page->vmp_restart) { |
| 8344 | vm_object_unlock(object); |
| 8345 | goto restart; |
| 8346 | } |
| 8347 | |
| 8348 | /* |
| 8349 | * If this page is busy, we need to wait for it. |
| 8350 | */ |
| 8351 | if (page->vmp_busy) { |
| 8352 | PAGE_SLEEP(object, page, TRUE); |
| 8353 | vm_object_unlock(object); |
| 8354 | goto restart; |
| 8355 | } |
| 8356 | break; |
| 8357 | } |
| 8358 | |
| 8359 | /* |
| 8360 | * If the object doesn't have the page and |
| 8361 | * has no shadow, then we can quit. |
| 8362 | */ |
| 8363 | shadow = object->shadow; |
| 8364 | if (shadow == NULL) { |
| 8365 | kr = KERN_FAILURE; |
| 8366 | goto done; |
| 8367 | } |
| 8368 | |
| 8369 | /* |
| 8370 | * Move to the next object |
| 8371 | */ |
| 8372 | offset += object->vo_shadow_offset; |
| 8373 | vm_object_lock(shadow); |
| 8374 | vm_object_unlock(object); |
| 8375 | object = shadow; |
| 8376 | shadow = VM_OBJECT_NULL; |
| 8377 | } |
| 8378 | *ret_object = object; |
| 8379 | *ret_offset = vm_object_trunc_page(offset); |
| 8380 | *ret_page = page; |
| 8381 | *ret_prot = prot; |
| 8382 | |
| 8383 | done: |
| 8384 | if (kr != KERN_SUCCESS && object != NULL) { |
| 8385 | vm_object_unlock(object); |
| 8386 | } |
| 8387 | return kr; |
| 8388 | } |
| 8389 | |
| 8390 | /* |
| 8391 | * Check if a page is wired, needs extra locking. |
| 8392 | */ |
| 8393 | static bool |
| 8394 | is_page_wired(vm_page_t page) |
| 8395 | { |
| 8396 | bool result; |
| 8397 | vm_page_lock_queues(); |
| 8398 | result = VM_PAGE_WIRED(page); |
| 8399 | vm_page_unlock_queues(); |
| 8400 | return result; |
| 8401 | } |
| 8402 | |
| 8403 | /* |
| 8404 | * A fatal process error has occurred in the given task. |
| 8405 | * Recheck the code signing of the text page at the given |
| 8406 | * address to check for a text page corruption. |
| 8407 | * |
| 8408 | * Returns KERN_FAILURE if a page was found to be corrupt |
| 8409 | * by failing to match its code signature. KERN_SUCCESS |
| 8410 | * means the page is either valid or we don't have the |
| 8411 | * information to say it's corrupt. |
| 8412 | */ |
| 8413 | kern_return_t |
| 8414 | revalidate_text_page(task_t task, vm_map_offset_t code_addr) |
| 8415 | { |
| 8416 | kern_return_t kr; |
| 8417 | vm_map_t map; |
| 8418 | vm_object_t object = NULL; |
| 8419 | vm_object_offset_t offset; |
| 8420 | vm_page_t page = NULL; |
| 8421 | struct vnode *vnode; |
| 8422 | uint64_t *diagnose_buffer = NULL; |
| 8423 | CA_EVENT_TYPE(vmtc_telemetry) * event = NULL; |
| 8424 | ca_event_t ca_event = NULL; |
| 8425 | vm_prot_t prot; |
| 8426 | |
| 8427 | map = task->map; |
| 8428 | if (task->map == NULL) { |
| 8429 | return KERN_SUCCESS; |
| 8430 | } |
| 8431 | |
| 8432 | kr = vmtc_revalidate_lookup(map, vaddr: code_addr, ret_object: &object, ret_offset: &offset, ret_page: &page, ret_prot: &prot); |
| 8433 | if (kr != KERN_SUCCESS) { |
| 8434 | goto done; |
| 8435 | } |
| 8436 | |
| 8437 | /* |
| 8438 | * The page must be executable. |
| 8439 | */ |
| 8440 | if (!(prot & VM_PROT_EXECUTE)) { |
| 8441 | goto done; |
| 8442 | } |
| 8443 | |
| 8444 | /* |
| 8445 | * The object needs to have a pager. |
| 8446 | */ |
| 8447 | if (object->pager == NULL) { |
| 8448 | goto done; |
| 8449 | } |
| 8450 | |
| 8451 | /* |
| 8452 | * Needs to be a vnode backed page to have a signature. |
| 8453 | */ |
| 8454 | vnode = vnode_pager_lookup_vnode(object->pager); |
| 8455 | if (vnode == NULL) { |
| 8456 | goto done; |
| 8457 | } |
| 8458 | |
| 8459 | /* |
| 8460 | * Object checks to see if we should proceed. |
| 8461 | */ |
| 8462 | if (!object->code_signed || /* no code signature to check */ |
| 8463 | object->internal || /* internal objects aren't signed */ |
| 8464 | object->terminating || /* the object and its pages are already going away */ |
| 8465 | !object->pager_ready) { /* this should happen, but check shouldn't hurt */ |
| 8466 | goto done; |
| 8467 | } |
| 8468 | |
| 8469 | |
| 8470 | /* |
| 8471 | * Check the code signature of the page in question. |
| 8472 | */ |
| 8473 | vm_page_map_and_validate_cs(object, page); |
| 8474 | |
| 8475 | /* |
| 8476 | * At this point: |
| 8477 | * vmp_cs_validated |= validated (set if a code signature exists) |
| 8478 | * vmp_cs_tainted |= tainted (set if code signature violation) |
| 8479 | * vmp_cs_nx |= nx; ?? |
| 8480 | * |
| 8481 | * if vmp_pmapped then have to pmap_disconnect.. |
| 8482 | * other flags to check on object or page? |
| 8483 | */ |
| 8484 | if (page->vmp_cs_tainted != VMP_CS_ALL_FALSE) { |
| 8485 | #if DEBUG || DEVELOPMENT |
| 8486 | /* |
| 8487 | * On development builds, a boot-arg can be used to cause |
| 8488 | * a panic, instead of a quiet repair. |
| 8489 | */ |
| 8490 | if (vmtc_panic_instead) { |
| 8491 | panic("Text page corruption detected: vm_page_t 0x%llx" , (long long)(uintptr_t)page); |
| 8492 | } |
| 8493 | #endif /* DEBUG || DEVELOPMENT */ |
| 8494 | |
| 8495 | /* |
| 8496 | * We're going to invalidate this page. Grab a copy of it for comparison. |
| 8497 | */ |
| 8498 | ca_event = CA_EVENT_ALLOCATE(vmtc_telemetry); |
| 8499 | event = ca_event->data; |
| 8500 | diagnose_buffer = vmtc_text_page_diagnose_setup(code_addr, page, event); |
| 8501 | |
| 8502 | /* |
| 8503 | * Invalidate, i.e. toss, the corrupted page. |
| 8504 | */ |
| 8505 | if (!page->vmp_cleaning && |
| 8506 | !page->vmp_laundry && |
| 8507 | !page->vmp_fictitious && |
| 8508 | !page->vmp_precious && |
| 8509 | !page->vmp_absent && |
| 8510 | !VMP_ERROR_GET(page) && |
| 8511 | !page->vmp_dirty && |
| 8512 | !is_page_wired(page)) { |
| 8513 | if (page->vmp_pmapped) { |
| 8514 | int refmod = pmap_disconnect(phys: VM_PAGE_GET_PHYS_PAGE(m: page)); |
| 8515 | if (refmod & VM_MEM_MODIFIED) { |
| 8516 | SET_PAGE_DIRTY(page, FALSE); |
| 8517 | } |
| 8518 | if (refmod & VM_MEM_REFERENCED) { |
| 8519 | page->vmp_reference = TRUE; |
| 8520 | } |
| 8521 | } |
| 8522 | /* If the page seems intentionally modified, don't trash it. */ |
| 8523 | if (!page->vmp_dirty) { |
| 8524 | VM_PAGE_FREE(page); |
| 8525 | } else { |
| 8526 | event->vmtc_not_eligible = true; |
| 8527 | } |
| 8528 | } else { |
| 8529 | event->vmtc_not_eligible = true; |
| 8530 | } |
| 8531 | vm_object_unlock(object); |
| 8532 | object = VM_OBJECT_NULL; |
| 8533 | |
| 8534 | /* |
| 8535 | * Now try to diagnose the type of failure by faulting |
| 8536 | * in a new copy and diff'ing it with what we saved. |
| 8537 | */ |
| 8538 | if (diagnose_buffer != NULL) { |
| 8539 | vmtc_text_page_diagnose(code_addr, old_code_buffer: diagnose_buffer, event); |
| 8540 | } |
| 8541 | #if DEBUG || DEVELOPMENT |
| 8542 | if (corruption_test_va != 0) { |
| 8543 | corruption_test_va = 0; |
| 8544 | event->vmtc_testing = true; |
| 8545 | } |
| 8546 | #endif /* DEBUG || DEVELOPMENT */ |
| 8547 | ktriage_record(thread_id: thread_tid(thread: current_thread()), |
| 8548 | KDBG_TRIAGE_EVENTID(KDBG_TRIAGE_SUBSYS_VM, KDBG_TRIAGE_RESERVED, KDBG_TRIAGE_VM_TEXT_CORRUPTION), |
| 8549 | arg: 0 /* arg */); |
| 8550 | CA_EVENT_SEND(ca_event); |
| 8551 | printf(format: "Text page corruption detected for pid %d\n" , proc_selfpid()); |
| 8552 | ++vmtc_total; |
| 8553 | return KERN_FAILURE; /* failure means we definitely found a corrupt page */ |
| 8554 | } |
| 8555 | done: |
| 8556 | if (object != NULL) { |
| 8557 | vm_object_unlock(object); |
| 8558 | } |
| 8559 | return KERN_SUCCESS; |
| 8560 | } |
| 8561 | |
| 8562 | #if DEBUG || DEVELOPMENT |
| 8563 | /* |
| 8564 | * For implementing unit tests - ask the pmap to corrupt a text page. |
| 8565 | * We have to find the page, to get the physical address, then invoke |
| 8566 | * the pmap. |
| 8567 | */ |
| 8568 | extern kern_return_t vm_corrupt_text_addr(uintptr_t); |
| 8569 | |
| 8570 | kern_return_t |
| 8571 | vm_corrupt_text_addr(uintptr_t va) |
| 8572 | { |
| 8573 | task_t task = current_task(); |
| 8574 | vm_map_t map; |
| 8575 | kern_return_t kr = KERN_SUCCESS; |
| 8576 | vm_object_t object = VM_OBJECT_NULL; |
| 8577 | vm_object_offset_t offset; |
| 8578 | vm_page_t page = NULL; |
| 8579 | pmap_paddr_t pa; |
| 8580 | vm_prot_t prot; |
| 8581 | |
| 8582 | map = task->map; |
| 8583 | if (task->map == NULL) { |
| 8584 | printf("corrupt_text_addr: no map\n" ); |
| 8585 | return KERN_FAILURE; |
| 8586 | } |
| 8587 | |
| 8588 | kr = vmtc_revalidate_lookup(map, (vm_map_offset_t)va, &object, &offset, &page, &prot); |
| 8589 | if (kr != KERN_SUCCESS) { |
| 8590 | printf("corrupt_text_addr: page lookup failed\n" ); |
| 8591 | return kr; |
| 8592 | } |
| 8593 | if (!(prot & VM_PROT_EXECUTE)) { |
| 8594 | printf("corrupt_text_addr: page not executable\n" ); |
| 8595 | return KERN_FAILURE; |
| 8596 | } |
| 8597 | |
| 8598 | /* get the physical address to use */ |
| 8599 | pa = ptoa(VM_PAGE_GET_PHYS_PAGE(page)) + (va - vm_object_trunc_page(va)); |
| 8600 | |
| 8601 | /* |
| 8602 | * Check we have something we can work with. |
| 8603 | * Due to racing with pageout as we enter the sysctl, |
| 8604 | * it's theoretically possible to have the page disappear, just |
| 8605 | * before the lookup. |
| 8606 | * |
| 8607 | * That's highly likely to happen often. I've filed a radar 72857482 |
| 8608 | * to bubble up the error here to the sysctl result and have the |
| 8609 | * test not FAIL in that case. |
| 8610 | */ |
| 8611 | if (page->vmp_busy) { |
| 8612 | printf("corrupt_text_addr: vmp_busy\n" ); |
| 8613 | kr = KERN_FAILURE; |
| 8614 | } |
| 8615 | if (page->vmp_cleaning) { |
| 8616 | printf("corrupt_text_addr: vmp_cleaning\n" ); |
| 8617 | kr = KERN_FAILURE; |
| 8618 | } |
| 8619 | if (page->vmp_laundry) { |
| 8620 | printf("corrupt_text_addr: vmp_cleaning\n" ); |
| 8621 | kr = KERN_FAILURE; |
| 8622 | } |
| 8623 | if (page->vmp_fictitious) { |
| 8624 | printf("corrupt_text_addr: vmp_fictitious\n" ); |
| 8625 | kr = KERN_FAILURE; |
| 8626 | } |
| 8627 | if (page->vmp_precious) { |
| 8628 | printf("corrupt_text_addr: vmp_precious\n" ); |
| 8629 | kr = KERN_FAILURE; |
| 8630 | } |
| 8631 | if (page->vmp_absent) { |
| 8632 | printf("corrupt_text_addr: vmp_absent\n" ); |
| 8633 | kr = KERN_FAILURE; |
| 8634 | } |
| 8635 | if (VMP_ERROR_GET(page)) { |
| 8636 | printf("corrupt_text_addr: vmp_error\n" ); |
| 8637 | kr = KERN_FAILURE; |
| 8638 | } |
| 8639 | if (page->vmp_dirty) { |
| 8640 | printf("corrupt_text_addr: vmp_dirty\n" ); |
| 8641 | kr = KERN_FAILURE; |
| 8642 | } |
| 8643 | if (is_page_wired(page)) { |
| 8644 | printf("corrupt_text_addr: wired\n" ); |
| 8645 | kr = KERN_FAILURE; |
| 8646 | } |
| 8647 | if (!page->vmp_pmapped) { |
| 8648 | printf("corrupt_text_addr: !vmp_pmapped\n" ); |
| 8649 | kr = KERN_FAILURE; |
| 8650 | } |
| 8651 | |
| 8652 | if (kr == KERN_SUCCESS) { |
| 8653 | printf("corrupt_text_addr: using physaddr 0x%llx\n" , (long long)pa); |
| 8654 | kr = pmap_test_text_corruption(pa); |
| 8655 | if (kr != KERN_SUCCESS) { |
| 8656 | printf("corrupt_text_addr: pmap error %d\n" , kr); |
| 8657 | } else { |
| 8658 | corruption_test_va = va; |
| 8659 | } |
| 8660 | } else { |
| 8661 | printf("corrupt_text_addr: object %p\n" , object); |
| 8662 | printf("corrupt_text_addr: offset 0x%llx\n" , (uint64_t)offset); |
| 8663 | printf("corrupt_text_addr: va 0x%llx\n" , (uint64_t)va); |
| 8664 | printf("corrupt_text_addr: vm_object_trunc_page(va) 0x%llx\n" , (uint64_t)vm_object_trunc_page(va)); |
| 8665 | printf("corrupt_text_addr: vm_page_t %p\n" , page); |
| 8666 | printf("corrupt_text_addr: ptoa(PHYS_PAGE) 0x%llx\n" , (uint64_t)ptoa(VM_PAGE_GET_PHYS_PAGE(page))); |
| 8667 | printf("corrupt_text_addr: using physaddr 0x%llx\n" , (uint64_t)pa); |
| 8668 | } |
| 8669 | |
| 8670 | if (object != VM_OBJECT_NULL) { |
| 8671 | vm_object_unlock(object); |
| 8672 | } |
| 8673 | return kr; |
| 8674 | } |
| 8675 | |
| 8676 | #endif /* DEBUG || DEVELOPMENT */ |
| 8677 | |